Authors,Author(s) ID,Title,Year,Source title,Volume,Issue,Art. No.,Page start,Page end,Page count,Cited by,DOI,Link,Affiliations,Authors with affiliations,Abstract,Author Keywords,Index Keywords,References,Correspondence Address,Editors,Publisher,ISSN,ISBN,CODEN,PubMed ID,Language of Original Document,Abbreviated Source Title,Document Type,Publication Stage,Access Type,Source,EID "Chu H., Chan C.-M., Zhang X., Wang Y., Yuan S., Zhou J., Au-Yeung R.K.-H., Sze K.-H., Yang D., Shuai H., Hou Y., Li C., Zhao X., Poon V.K.-M., Leung S.P., Yeung M.-L., Yan J., Lu G., Jin D.-Y., Gao G.F., Chan J.F.-W., Yuen K.-Y.","35781456400;16021156900;57207317848;57191433323;55364121100;7405550443;22833521900;7006735061;56892956900;56711746100;57203152721;56060549800;57190608726;54934161900;36022623200;8350940900;7403729391;35111348400;7201973614;7403171212;24278817900;36078079100;","Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells",2018,"Journal of Biological Chemistry","293","30",,"11709","11726",,12,"10.1074/jbc.RA118.001897","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050779327&doi=10.1074%2fjbc.RA118.001897&partnerID=40&md5=a4c749f8281253b693f217a0366934cd","Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Departments of Pathology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Research Centre of Infection and Immunology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Carol Yu Centre for Infection, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; School of Biomedical Sciences, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; West China Hospital Emergency Department, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong","Chu, H., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Chan, C.-M., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Zhang, X., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Wang, Y., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Yuan, S., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Zhou, J., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Au-Yeung, R.K.-H., Departments of Pathology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Sze, K.-H., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Yang, D., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Shuai, H., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Hou, Y., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Li, C., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Zhao, X., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Poon, V.K.-M., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Leung, S.P., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Yeung, M.-L., Research Centre of Infection and Immunology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, Carol Yu Centre for Infection, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Yan, J., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Lu, G., West China Hospital Emergency Department, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, China; Jin, D.-Y., School of Biomedical Sciences, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Gao, G.F., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China; Chan, J.F.-W., Research Centre of Infection and Immunology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, Carol Yu Centre for Infection, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong; Yuen, K.-Y., Departments of Microbiology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, Research Centre of Infection and Immunology, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, Carol Yu Centre for Infection, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Dept. of Microbiology, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Rd., Pokfulam, Hong Kong","Coronavirus tropism is predominantly determined by the interaction between coronavirus spikes and the host receptors. In this regard, coronaviruses have evolved a complicated receptor-recognition system through their spike proteins. Spikes from highly related coronaviruses can recognize distinct receptors, whereas spikes of distant coronaviruses can employ the same cell-surface molecule for entry. Moreover, coronavirus spikes can recognize a broad range of cell-surface molecules in addition to the receptors and thereby can augment coronavirus attachment or entry. The receptor of Middle East respiratory syndrome coronavirus (MERS-CoV) is dipeptidyl peptidase 4 (DPP4). In this study, we identified membrane-associated 78-kDa glucose-regulated protein (GRP78) as an additional binding target of the MERS-CoV spike. Further analyses indicated that GRP78 could not independently render nonpermissive cells susceptible to MERS-CoV infection but could facilitate MERS-CoV entry into permissive cells by augmenting virus attachment. More importantly, by exploring potential interactions between GRP78 and spikes of other coronaviruses, we discovered that the highly conserved human GRP78 could interact with the spike protein of bat coronavirus HKU9 (bCoV-HKU9) and facilitate its attachment to the host cell surface. Taken together, our study has identified GRP78 as a host factor that can interact with the spike proteins of two Betacoronaviruses, the lineage C MERS-CoV and the lineage D bCoV-HKU9. The capacity of GRP78 to facilitate surface attachment of both a human coronavirus and a phylogenetically related bat coronavirus exemplifies the need for continuous surveillance of the evolution of animal coronaviruses to monitor their potential for human adaptations. © 2018 Chu et al.",,"Cell membranes; Molecules; Proteins; Viruses; Cell surface molecules; Coronaviruses; Dipeptidyl peptidase; Human adaptation; Recognition systems; Spike protein; Surface attachment; Virus attachments; Cytology; cadherin; calreticulin; epidermal growth factor receptor; glucose regulated protein 78; lamin A; sialic acid; virus spike protein; coronavirus spike glycoprotein; dipeptidyl peptidase IV; DPP4 protein, human; heat shock protein; molecular chaperone GRP78; virus receptor; Article; bat coronavirus; Betacoronavirus; cell surface; cellular distribution; chromatin immunoprecipitation; conserved sequence; controlled study; embryo; human; human cell; human tissue; kidney; lung cell line; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein expression; protein protein interaction; protein purification; receptor binding; sequence homology; small intestine; upregulation; viral tropism; virus attachment; virus entry; virus strain; animal; Betacoronavirus; cell line; Chlorocebus aethiops; Coronavirinae; Coronavirus infection; host pathogen interaction; metabolism; Middle East respiratory syndrome coronavirus; physiology; protein analysis; Vero cell line; Animals; Betacoronavirus; Cell Line; Cercopithecus aethiops; Coronavirus; Coronavirus Infections; Dipeptidyl Peptidase 4; Heat-Shock Proteins; Host-Pathogen Interactions; Humans; Middle East Respiratory Syndrome Coronavirus; Protein Interaction Maps; Receptors, Virus; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Attachment","Peck, K.M., Burch, C.L., Heise, M.T., Baric, R.S., Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: Biochemical mechanisms and evolutionary perspectives (2015) Annu. Rev. Virol., 2, pp. 95-117; Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Chan, J.F., To, K.K., Chen, H., Yuen, K.Y., Cross-species transmission and emergence of novel viruses from birds (2015) Curr. Opin. Virol., 10, pp. 63-69; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Tang, J.W., Lam, T.T., Zaraket, H., Lipkin, W.I., Drews, S.J., Hatchette, T.F., Heraud, J.M., Koopmans, M.P., Global epidemiology of non-influenza RNA respiratory viruses: Data gaps and a growing need for surveillance (2017) Lancet Infect. Dis., 17, pp. e320-e326; Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Ng, T.K., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Cheng, V.C., Lau, S.K., Woo, P.C., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin. Microbiol. Rev., 20, pp. 660-694; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect. Dis. CrossRef Medline; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pöhlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 7988-7993; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J. Virol., 88, pp. 13221-13230; Watanabe, R., Sawicki, S.G., Taguchi, F., Heparan sulfate is a binding molecule but not a receptor for CEACAM1-independent infection of murine coronavirus (2007) Virology, 366, pp. 16-22; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glyco-lylneuraminic acid) binding activity (1996) J. Virol., 70, pp. 5634-5637; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant (1991) J. Virol., 65, pp. 6232-6237; Krempl, C., Schultze, B., Herrler, G., Analysis of cellular receptors for human coronavirus OC43 (1995) Adv. Exp. Med. Biol., 380, pp. 371-374; Huang, X., Dong, W., Milewska, A., Golda, A., Qi, Y., Zhu, Q.K., Marasco, W.A., Sui, J., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J. Virol., 89, pp. 7202-7213; Chan, C.M., Lau, S.K., Woo, P.C., Tse, H., Zheng, B.J., Chen, L., Huang, J.D., Yuen, K.Y., Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection (2009) J. Virol., 83, pp. 1026-1035; Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Holmes, K.V., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 15748-15753; Marzi, A., Gramberg, T., Simmons, G., Möller, P., Rennekamp, A.J., Krumbiegel, M., Geier, M., Pöhlmann, S., DC-SIGN and DC-SIGNR interact with the glycoprotein of Mar-burg virus and the S protein of severe acute respiratory syndrome coronavirus (2004) J. Virol., 78, pp. 12090-12095; Chan, C.M., Chu, H., Wang, Y., Wong, B.H., Zhao, X., Zhou, J., Yang, D., Yuen, K.Y., Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of Middle East respiratory syndrome coronavirus (2016) J. Virol., 90, pp. 9114-9127; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog, 13; Lee, A.S., Glucose-regulated proteins in cancer: Molecular mechanisms and therapeutic potential (2014) Nat. Rev. Cancer, 14, pp. 263-276; Ni, M., Zhang, Y., Lee, A.S., Beyond the endoplasmic reticulum: Atypical GRP78 in cell viability, signalling and therapeutic targeting (2011) Biochem. J., 434, pp. 181-188; Nain, M., Mukherjee, S., Karmakar, S.P., Paton, A.W., Paton, J.C., Abdin, M.Z., Basu, A., Vrati, S., GRP78 is an important host factor for Japanese encephalitis virus entry and replication in mammalian cells (2017) J. Virol., 91, p. e02274; Triantafilou, K., Fradelizi, D., Wilson, K., Triantafilou, M., GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization (2002) J. Virol., 76, pp. 633-643; Honda, T., Horie, M., Daito, T., Ikuta, K., Tomonaga, K., Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface (2009) J. Virol., 83, pp. 12622-12625; Chan, J.F., Chan, K.H., Choi, G.K., To, K.K., Tse, H., Cai, J.P., Yeung, M.L., Yuen, K.Y., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Sun, T., Yuen, K.Y., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342; Chan, C.P., Siu, K.L., Chin, K.T., Yuen, K.Y., Zheng, B., Jin, D.Y., Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein (2006) J. Virol., 80, pp. 9279-9287; Versteeg, G.A., van de Nes, P.S., Bredenbeek, P.J., Spaan, W.J., The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations (2007) J. Virol., 81, pp. 10981-10990; DeDiego, M.L., Nieto-Torres, J.L., Jiménez-Guardeno, J.M., Regla-Nava, J.A., Alvarez, E., Oliveros, J.C., Zhao, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLoS Pathog, 7, p. e1002315; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87, pp. 8124-8134; Fung, T.S., Liao, Y., Liu, D.X., The endoplasmic reticulum stress sensor IRE1 protects cells from apoptosis induced by the coronavirus infectious bronchitis virus (2014) J. Virol., 88, pp. 12752-12764; Zhang, Y., Liu, R., Ni, M., Gill, P., Lee, A.S., Cell surface relo-calization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP (2010) J. Biol. Chem., 285, pp. 15065-15075; Tsai, Y.L., Zhang, Y., Tseng, C.C., Stanciauskas, R., Pinaud, F., Lee, A.S., Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface (2015) J. Biol. Chem., 290, pp. 8049-8064; Arap, M.A., Lahdenranta, J., Mintz, P.J., Hajitou, A., Sarkis, A.S., Arap, W., Pasqualini, R., Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands (2004) Cancer Cell, 6, pp. 275-284; Gonzalez-Gronow, M., Selim, M.A., Papalas, J., Pizzo, S.V., GRP78: A multifunctional receptor on the cell surface (2009) Antioxid. Redox Signal., 11, pp. 2299-2306; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Yuen, K.Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Huang, C., Qi, J., Lu, G., Wang, Q., Yuan, Y., Wu, Y., Zhang, Y., Gao, G.F., Putative receptor binding domain of bat-derived coronavirus HKU9 spike protein: Evolution of betacoronavirus receptor binding Motifs (2016) Biochemistry, 55, pp. 5977-5988; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Van Kuppeveld, F.J.M., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. U.S.A., 114, pp. E8508-E8517; Jindadamrongwech, S., Thepparit, C., Smith, D.R., Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2 (2004) Arch. Virol., 149, pp. 915-927; Tao, Y., Tang, K., Shi, M., Conrardy, C., Li, K.S., Lau, S.K., Anderson, L.J., Tong, S., Genomic characterization of seven distinct bat coronaviruses in Kenya (2012) Virus Res, 167, pp. 67-73; Lau, S.K., Poon, R.W., Wong, B.H., Wang, M., Huang, Y., Xu, H., Guo, R., Yuen, K.Y., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel betacoronavirus subgroup (2010) J. Virol., 84, pp. 11385-11394; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Shi, Z., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J. Virol., 86, pp. 4620-4630; Tong, S., Conrardy, C., Ruone, S., Kuzmin, I.V., Guo, X., Tao, Y., Niez-Goda, M., Rupprecht, C.E., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg. Infect. Dis., 15, pp. 482-485; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Müller, M.A., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 9864-9869; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) J. Virol., 84, pp. 3134-3146; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Shortridge, K.F., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 14040-14045; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Van Beek, J., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Al Romaihi, H.E., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Chu, H., Wang, J.J., Qi, M., Yoon, J.J., Wen, X., Chen, X., Ding, L., Spearman, P., The intracellular virus-containing compartments in primary human macrophages are largely inaccessible to antibodies and small molecules (2012) PLoS ONE, 7; Chu, H., Wang, J.J., Qi, M., Yoon, J.J., Chen, X., Wen, X., Hammonds, J., Spearman, P., Tetherin/BST-2 is essential for the formation of the intracellular virus-containing compartment in HIV-infected macrophages (2012) Cell Host Microbe, 12, pp. 360-372; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Yang, D., To, K.K., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J. Infect. Dis., 213, pp. 904-914; Chu, H., Zhou, J., Wong, B.H., Li, C., Cheng, Z.S., Lin, X., Poon, V.K., Yuen, K.Y., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Chen, Z., Zhang, L., Qin, C., Ba, L., Yi, C.E., Zhang, F., Wei, Q., Ho, D.D., Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region (2005) J. Virol., 79, pp. 2678-2688; Chan, C.M., Chu, H., Zhang, A.J., Leung, L.H., Sze, K.H., Kao, R.Y., Chik, K.K., Yuen, K.Y., Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization (2016) Virology, 494, pp. 78-88; Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Kam, J., Altmeyer, R., Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M, and E (2005) J. Gen. Virol., 86, pp. 1423-1434","Chan, J.F.-W.; Research Centre of Infection and Immunology, Queen Mary Hospital, 102 Pokfulam Rd., Hong Kong; email: jfwchan@hku.hk",,"American Society for Biochemistry and Molecular Biology Inc.",00219258,,JBCHA,"29887526","English","J. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85050779327 "de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J.","24474438300;7006058325;6602465125;55291601300;","Host factors in coronavirus replication",2018,"Current Topics in Microbiology and Immunology","419",,,"1","42",,7,"10.1007/82_2017_25","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058412933&doi=10.1007%2f82_2017_25&partnerID=40&md5=6737b390869ea570fce9c4ae79d01f0a","Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","de Wilde, A.H., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Snijder, E.J., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Kikkert, M., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; van Hemert, M.J., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","Coronaviruses are pathogens with a serious impact on human and animal health. They mostly cause enteric or respiratory disease, which can be severe and life threatening, e.g., in the case of the zoonotic coronaviruses causing severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans. Despite the economic and societal impact of such coronavirus infections, and the likelihood of future outbreaks of additional pathogenic coronaviruses, our options to prevent or treat coronavirus infections remain very limited. This highlights the importance of advancing our knowledge on the replication of these viruses and their interactions with the host. Compared to other +RNA viruses, coronaviruses have an exceptionally large genome and employ a complex genome expression strategy. Next to a role in basic virus replication or virus assembly, many of the coronavirus proteins expressed in the infected cell contribute to the coronavirus-host interplay. For example, by interacting with the host cell to create an optimal environment for coronavirus replication, by altering host gene expression or by counteracting the host’s antiviral defenses. These coronavirus–host interactions are key to viral pathogenesis and will ultimately determine the outcome of infection. Due to the complexity of the coronavirus proteome and replication cycle, our knowledge of host factors involved in coronavirus replication is still in an early stage compared to what is known for some other +RNA viruses. This review summarizes our current understanding of coronavirus–host interactions at the level of the infected cell, with special attention for the assembly and function of the viral RNA-synthesising machinery and the evasion of cellular innate immune responses. © Springer International Publishing AG 2017.",,"cyclophilin; host factor; virus glycoprotein; Alphacoronavirus; amino terminal sequence; Betacoronavirus; carboxy terminal sequence; cell cycle regulation; cell membrane; Coronavirinae; Deltacoronavirus; Gammacoronavirus; host cell; human; innate immunity; nonhuman; priority journal; protein function; signal transduction; systems biology; unfolded protein response; virus cell interaction; virus entry; virus expression; virus genome; virus replication; virus transcription; animal; Coronavirinae; Coronavirus infection; genetics; growth, development and aging; host pathogen interaction; metabolism; severe acute respiratory syndrome; virology; Animals; Coronavirus; Coronavirus Infections; Host-Pathogen Interactions; Humans; Severe Acute Respiratory Syndrome; Virus Replication","Altan-Bonnet, N., Balla, T., Phosphatidylinositol 4-kinases: Hostages harnessed to build panviral replication platforms (2012) Trends Biochem Sci, 37, pp. 293-302; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) Mbio, 4, pp. e00513-e00524; Baas, T., Taubenberger, J.K., Chong, P.Y., Chui, P., Katze, M.G., SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues (2006) J Interferon Cytokine Res: The Official Journal of The International Society for Interferon and Cytokine Research, 26, pp. 309-317; Bagga, S., Bouchard, M.J., Cell cycle regulation during viral infection (2014) Methods Mol Biol, 1170, pp. 165-227; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J Biol Chem, 289, pp. 34667-34682; Bakkers, M.J., Zeng, Q., Feitsma, L.J., Hulswit, R.J., Li, Z., Westerbeke, A., van Kuppeveld, F.J., de Groot, R.J., Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation (2016) Proc Natl Acad Sci U S A, 113, pp. E3111-E3119; Barik, S., Immunophilins: For the love of proteins (2006) Cell Mol Life Sci, 63, pp. 2889-2900; Baugh, J., Gallay, P., Cyclophilin involvement in the replication of hepatitis C virus and other viruses (2012) Biol Chem, 393, pp. 579-587; Bechill, J., Chen, Z., Brewer, J.W., Baker, S.C., Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression (2008) J Virol, 82, pp. 4492-4501; Berger, K.L., Cooper, J.D., Heaton, N.S., Yoon, R., Oakland, T.E., Jordan, T.X., Mateu, G., Randall, G., Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication (2009) Proc Natl Acad Sci U S A, 106, pp. 7577-7582; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pohlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160; Bhardwaj, K., Liu, P., Leibowitz, J.L., Kao, C.C., The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein (2012) J Virol, 86, pp. 4294-4304; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30; Brierley, I., Dos Ramos, F.J., Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV (2006) Virus Res, 119, pp. 29-42; Brierley, I., Digard, P., Inglis, S.C., Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot (1989) Cell, 57, pp. 537-547; Brockway, S.M., Clay, C.T., Lu, X.T., Denison, M.R., Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase (2003) J Virol, 77, pp. 10515-10527; Bruns, A.M., Horvath, C.M., Antiviral RNA recognition and assembly by RLR family innate immune sensors (2014) Cytokine Growth Factor Rev, 25, pp. 507-512; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) Plos Pathog, 10; Cali, T., Galli, C., Olivari, S., Molinari, M., Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities (2008) Biochem Biophys Res Commun, 371, pp. 405-410; Carbajo-Lozoya, J., Muller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A., Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506 (2012) Virus Res, 165, pp. 112-117; Carbajo-Lozoya, J., Ma-Lauer, Y., Malesevic, M., Theuerkorn, M., Kahlert, V., Prell, E., von Brunn, B., von Brunn, A., Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including alisporivir (2014) Virus Res, 184C, pp. 44-53; Carette, J.E., Guimaraes, C.P., Varadarajan, M., Park, A.S., Wuethrich, I., Godarova, A., Kotecki, M., Brummelkamp, T.R., Haploid genetic screens in human cells identify host factors used by pathogens (2009) Science, 326, pp. 1231-1235; Chan, S.W., Unfolded protein response in hepatitis C virus infection (2014) Front Microbiol, 5, p. 233; Chan, C.P., Siu, K.L., Chin, K.T., Yuen, K.Y., Zheng, B., Jin, D.Y., Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein (2006) J Virol, 80, pp. 9279-9287; Chang, Y.J., Liu, C.Y., Chiang, B.L., Chao, Y.C., Chen, C.C., Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: Identification of two functional regions (2004) J Immunol, 173, pp. 7602-7614; Chen, C.J., Makino, S., Murine coronavirus replication induces cell cycle arrest in G0/G1 phase (2004) J Virol, 78, pp. 5658-5669; Chen, C.J., Sugiyama, K., Kubo, H., Huang, C., Makino, S., Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase (2004) J Virol, 78, pp. 10410-10419; Chen, Z., Wang, Y., Ratia, K., Mesecar, A.D., Wilkinson, K.D., Baker, S.C., Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63 (2007) J Virol, 81, pp. 6007-6018; Chen, J.Y., Chen, W.N., Poon, K.M., Zheng, B.J., Lin, X., Wang, Y.X., Wen, Y.M., Interaction between SARS-CoV helicase and a multifunctional cellular protein (Ddx5) revealed by yeast and mammalian cell two-hybrid systems (2009) Arch Virol, 154, pp. 507-512; Choi, K.S., Huang, P., Lai, M.M., Polypyrimidine-tract-binding protein affects transcription but not translation of mouse hepatitis virus RNA (2002) Virology, 303, pp. 58-68; Choi, K.S., Mizutani, A., Lai, M.M., SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis (2004) J Virol, 78, pp. 13153-13162; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Baez-Santos, Y.M., Baker, S.C., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J Virol, 84, pp. 4619-4629; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Drexler, J.F., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J Virol, 89, pp. 11858-11870; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Drosten, C., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci U S A, 113, pp. 9864-9869; Cottam, E.M., Maier, H.J., Manifava, M., Vaux, L.C., Chandra-Schoenfelder, P., Gerner, W., Britton, P., Wileman, T., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7, pp. 1335-1347; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10, pp. 1426-1441; Cruz, J.L., Sola, I., Becares, M., Alberca, B., Plana, J., Enjuanes, L., Zuniga, S., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) Plos Pathog, 7; Davis, T.L., Walker, J.R., Campagna-Slater, V., Finerty, P.J., Paramanathan, R., Bernstein, G., Mackenzie, F., Dhe-Paganon, S., Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases (2010) Plos Biol, 8; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group (2013) J Virol, 87, pp. 7790-7792; de Haan, C.A., Reggiori, F., Are nidoviruses hijacking the autophagy machinery? (2008) Autophagy, 4, pp. 276-279; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, M.J., Cyclosporin A inhibits the replication of diverse coronaviruses (2011) J Gen Virol, 92, pp. 2542-2548; de Wilde, A.H., Li, Y., van der Meer, Y., Vuagniaux, G., Lysek, R., Fang, Y., Snijder, E.J., van Hemert, M.J., Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis (2013) J Virol, 87, pp. 1454-1464; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J Gen Virol, 94, pp. 1749-1760; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., van den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58, pp. 4875-4884; de Wilde, A.H., Wannee, K.F., Scholte, F.E., Goeman, J.J., Ten Dijke, P., Snijder, E.J., Kikkert, M., van Hemert, M.J., A kinome-wide siRNA screen identifies proviral and antiviral host factors in SARS-coronavirus replication, including PKR and early secretory pathway proteins (2015) J Virol, 89, pp. 8318-8333; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Posthuma, C.C., Snijder, E.J., Alisporivir inhibits MERS-and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13; Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Den Boon, J.A., Ahlquist, P., Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories (2010) Annu Rev Microbiol, 64, pp. 241-256; Ding, L., Huang, Y., Dai, M., Zhao, X., Du, Q., Dong, F., Wang, L., Tong, D., Transmissible gastroenteritis virus infection induces cell cycle arrest at S and G2/M phases via p53-dependent pathway (2013) Virus Res, 178, pp. 241-251; Ding, L., Huang, Y., Du, Q., Dong, F., Zhao, X., Zhang, W., Xu, X., Tong, D., TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling (2014) Biochem Biophys Res Commun, 445, pp. 497-503; Dosch, S.F., Mahajan, S.D., Collins, A.R., SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro (2009) Virus Res, 142, pp. 19-27; Dove, B., Brooks, G., Bicknell, K., Wurm, T., Hiscox, J.A., Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication (2006) J Virol, 80, pp. 4147-4156; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV–a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7, pp. 226-236; Dusheiko, G., Side effects of alpha interferon in chronic hepatitis C (1997) Hepatology, 26, pp. 112S-121S; Emmott, E., Rodgers, M.A., Macdonald, A., McCrory, S., Ajuh, P., Hiscox, J.A., Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus (2010) Mol Cell Proteomics, 9, pp. 1920-1936; Emmott, E., Munday, D., Bickerton, E., Britton, P., Rodgers, M.A., Whitehouse, A., Zhou, E.M., Hiscox, J.A., The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology (2013) J Virol, 87, pp. 9486-9500; Enjuanes, L., Coronavirus replication and reverse genetics (2005) Current Topics in Microbiology and Immunology, 287. , Springer; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable (2012) J Virol, 86, pp. 81-93; Flisiak, R., Jaroszewicz, J., Flisiak, I., Lapinski, T., Update on alisporivir in treatment of viral hepatitis C (2012) Expert Opin Investig Drugs, 21, pp. 375-382; Follis, K.E., York, J., Nunberg, J.H., Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry (2006) Virology, 350, pp. 358-369; Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., Baric, R.S., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J Virol, 81, pp. 9812-9824; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling (2009) J Virol, 83, pp. 6689-6705; Fung, T.S., Liao, Y., Liu, D.X., Regulation of stress responses and translational control by coronavirus (2016) Viruses, 8, p. 184; Furuya, T., Lai, M.M., Three different cellular proteins bind to complementary sites on the 5′-end-positive and 3′-end-negative strands of mouse hepatitis virus RNA (1993) J Virol, 67, pp. 7215-7222; Galan, C., Sola, I., Nogales, A., Thomas, B., Akoulitchev, A., Enjuanes, L., Almazan, F., Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication (2009) Virology, 391, pp. 304-314; Garlinghouse, L.E., Jr., Smith, A.L., Holford, T., The biological relationship of mouse hepatitis virus (MHV) strains and interferon: In vitro induction and sensitivities (1984) Arch Virol, 82, pp. 19-29; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Glowacka, I., Bertram, S., Muller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pohlmann, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J Virol, 85, pp. 4122-4134; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J Virol, 76, pp. 3697-3708; Gralinski, L.E., Ferris, M.T., Aylor, D.L., Whitmore, A.C., Green, R., Frieman, M.B., Deming, D., Baric, R.S., Genome wide identification of SARS-CoV susceptibility loci using the collaborative cross (2015) Plos Genet, 11; Haagmans, B.L., Kuiken, T., Martina, B.E., Fouchier, R.A., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Osterhaus, A.D., Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nat Med, 10, pp. 290-293; Hagemeijer, M.C., Rottier, P.J., de Haan, C.A., Biogenesis and dynamics of the coronavirus replicative structures (2012) Viruses, 4, pp. 3245-3269; Hagemeijer, M.C., Monastyrska, I., Griffith, J., van der Sluijs, P., Voortman, J., van Bergen en Henegouwen, P.M., Vonk, A.M., de Haan, C.A., Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 (2014) Virology, 458-459, pp. 125-135; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121, pp. 190-193; Hopkins, S., Gallay, P.A., The role of immunophilins in viral infection (2015) Biochim Biophys Acta, 1850, pp. 2103-2110; Horowitz, D.S., Lee, E.J., Mabon, S.A., Misteli, T., A cyclophilin functions in pre-mRNA splicing (2002) EMBO J, 21, pp. 470-480; Hsu, N.Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.H., Takvorian, P.M., Pau, C., Altan-Bonnet, N., Viral reorganization of the secretory pathway generates distinct organelles for RNA replication (2010) Cell, 141, pp. 799-811; Huang, P., Lai, M.M., Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3′ untranslated region, thereby altering RNA conformation (1999) J Virol, 73, pp. 9110-9116; Huang, P., Lai, M.M., Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA (2001) J Virol, 75, pp. 5009-5017; Huang, I.C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Choe, H., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells (2006) J Biol Chem, 281, pp. 3198-3203; Huang, I.C., Bosch, B.J., Li, W., Farzan, M., Rottier, P.M., Choe, H., SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect cells: Viral entry (2006) Adv Exp Med Biol, 581, pp. 335-338; Huang, S.H., Lee, T.Y., Lin, Y.J., Wan, L., Lai, C.H., Lin, C.W., Phage display technique identifies the interaction of severe acute respiratory syndrome coronavirus open reading frame 6 protein with nuclear pore complex interacting protein NPIPB3 in modulating type I interferon antagonism (2015) J Microbiol Immunol Infect; Huang, X., Dong, W., Milewska, A., Golda, A., Qi, Y., Zhu, Q.K., Marasco, W.A., Sui, J., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J Virol, 89, pp. 7202-7213; Hulswit, R.J., de Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Donaldson, E.F., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J Virol, 86, pp. 12816-12825; Jackson, A.L., Linsley, P.S., Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application (2010) Nat Rev Drug Discov, 9, pp. 57-67; Jackson, R.J., Hellen, C.U., Pestova, T.V., The mechanism of eukaryotic translation initiation and principles of its regulation (2010) Nat Rev Mol Cell Biol, 11, pp. 113-127; Jiang, X., Chen, Z.J., The role of ubiquitylation in immune defence and pathogen evasion (2012) Nat Rev Immunol, 12, pp. 35-48; Jimenez-Guardeno, J.M., Nieto-Torres, J.L., Dediego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castano-Rodriguez, C., Enjuanes, L., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) Plos Pathog, 10; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc Natl Acad Sci USA, 103, pp. 12885-12890; Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K.G., Makino, S., A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein (2009) Nat Struct Mol Biol, 16, pp. 1134-1140; Keogh-Brown, M.R., Smith, R.D., The economic impact of SARS: How does the reality match the predictions? (2008) Health Policy, 88, pp. 110-120; Keyaerts, E., Vijgen, L., Maes, P., Neyts, J., van Ranst, M., In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine (2004) Biochem Biophys Res Commun, 323, pp. 264-268; Keyaerts, E., Li, S., Vijgen, L., Rysman, E., Verbeeck, J., van Ranst, M., Maes, P., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice (2009) Antimicrob Agents Chemother, 53, pp. 3416-3421; Khanolkar, A., Hartwig, S.M., Haag, B.A., Meyerholz, D.K., Harty, J.T., Varga, S.M., Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice (2009) J Virol, 83, pp. 8946-8956; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology, 460-461, pp. 180-193; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) Plos Pathog, 12, p. e1005531; Kindler, E., Thiel, V., To sense or not to sense viral RNA–essentials of coronavirus innate immune evasion (2014) Curr Opin Microbiol, 20, pp. 69-75; Knoops, K., Kikkert, M., van den Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) Plos Biol, 6; Knoops, K., Swett-Tapia, C., van den Worm, S.H., Te Velthuis, A.J., Koster, A.J., Mommaas, A.M., Snijder, E.J., Kikkert, M., Integrity of the early secretory pathway promotes, but is not required for, severe acute respiratory syndrome coronavirus RNA synthesis and virus-induced remodeling of endoplasmic reticulum membranes (2010) J Virol, 84, pp. 833-846; Kono, M., Tatsumi, K., Imai, A.M., Saito, K., Kuriyama, T., Shirasawa, H., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK (2008) Antiviral Res, 77, pp. 150-152; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol, 81, pp. 548-557; Krempl, C., Schultze, B., Herrler, G., Analysis of cellular receptors for human coronavirus OC43 (1995) Adv Exp Med Biol, 380, pp. 371-374; Krzystyniak, K., Dupuy, J.M., Entry of mouse hepatitis virus 3 into cells (1984) J Gen Virol, 65, pp. 227-231; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., Osterhaus, A.D., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270; Kwak, H., Park, M.W., Jeong, S., Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus (2011) Plos ONE, 6; Langereis, M.A., van Vliet, A.L., Boot, W., de Groot, R.J., Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein (2010) J Virol, 84, pp. 8970-8974; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045; Li, F., Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections (2008) J Virol, 82, pp. 6984-6991; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261; Li, Y., Weiss, S.R., Antagonism of RNase L Is required for murine coronavirus replication in kupffer cells and liver sinusoidal endothelial cells but not in hepatocytes (2016) J Virol, 90, pp. 9826-9832; Li, H.P., Zhang, X., Duncan, R., Comai, L., Lai, M.M., Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA (1997) Proc Natl Acad Sci USA, 94, pp. 9544-9549; Li, H.P., Huang, P., Park, S., Lai, M.M., Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription (1999) J Virol, 73, pp. 772-777; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Li, Q., Wang, L., Dong, C., Che, Y., Jiang, L., Liu, L., Zhao, H., Ma, S., The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect (2005) J Clin Virol: The Official Publication of The Pan American Society for Clinical Virology, 34, pp. 133-139; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Li, J., Liu, Y., Zhang, X., Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5 (2010) J Virol, 84, pp. 6472-6482; Li, S.W., Wang, C.Y., Jou, Y.J., Huang, S.H., Hsiao, L.H., Wan, L., Lin, Y.J., Lin, C.W., SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6 (2016) Int J Mol Sci, 17, p. 678; Liao, Y., Wang, X., Huang, M., Tam, J.P., Liu, D.X., Regulation of the p38 mitogen-activated protein kinase and dual-specificity phosphatase 1 feedback loop modulates the induction of interleukin 6 and 8 in cells infected with coronavirus infectious bronchitis virus (2011) Virology, 420, pp. 106-116; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125; Lokugamage, K.G., Narayanan, K., Huang, C., Makino, S., SARS coronavirus nsp1 protein is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation (2012) J Virol, 86, pp. 13598-13608; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89, pp. 10970-10981; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Lui, P.Y., Wong, L.Y., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Chan, C.P., Jin, D.Y., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg Microbes Infect, 5, p. e39; Luo, C., Luo, H., Zheng, S., Gui, C., Yue, L., Yu, C., Sun, T., Jiang, H., Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A (2004) Biochem Biophys Res Commun, 321, pp. 557-565; Lupberger, J., Zeisel, M.B., Xiao, F., Thumann, C., Fofana, I., Zona, L., Davis, C., Baumert, T.F., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy (2011) Nat Med, 17, pp. 589-595; Maier, H.J., Britton, P., Involvement of autophagy in coronavirus replication (2012) Viruses, 4, pp. 3440-3451; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., Britton, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) Mbio, 4; Ma-Lauer, Y., Carbajo-Lozoya, J., Hein, M.Y., Muller, M.A., Deng, W., Lei, J., Meyer, B., von Brunn, A., P53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1 (2016) Proc Natl Acad Sci USA, 113, pp. E5192-E5201; Matthews, K., Schafer, A., Pham, A., Frieman, M., The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity (2014) Virol J, 11, p. 209; Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882; Mazaleuskaya, L., Veltrop, R., Ikpeze, N., Martin-Garcia, J., Navas-Martin, S., Protective role of toll-like receptor 3-induced type I interferon in murine coronavirus infection of macrophages (2012) Viruses, 4, pp. 901-923; McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc Natl Acad Sci USA, 57, pp. 933-940; Menachery, V.D., Yount, B.L., Jr., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity (2014) J Virol, 88, pp. 4251-4264; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res, 194, pp. 184-190; Mizutani, T., Signal transduction in SARS-CoV-infected cells (2007) Ann N Y Acad Sci, 1102, pp. 86-95; Monastyrska, I., Ulasli, M., Rottier, P.J., Guan, J.L., Reggiori, F., de Haan, C.A., An autophagy-independent role for LC3 in equine arteritis virus replication (2013) Autophagy, 9, pp. 164-174; Moser, T.S., Jones, R.G., Thompson, C.B., Coyne, C.B., Cherry, S., A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics (2010) Plos Pathog, 6; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Nanda, S.K., Leibowitz, J.L., Mitochondrial aconitase binds to the 3′ untranslated region of the mouse hepatitis virus genome (2001) J Virol, 75, pp. 3352-3362; Nanda, S.K., Johnson, R.F., Liu, Q., Leibowitz, J.L., Mitochondrial HSP70, HSP40, and HSP60 bind to the 3′ untranslated region of the murine hepatitis virus genome (2004) Arch Virol, 149, pp. 93-111; Narayanan, K., Ramirez, S.I., Lokugamage, K.G., Makino, S., Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression (2015) Virus Res, 202, pp. 89-100; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Liao, L., Kuhn, P., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J Virol, 82, pp. 5279-5294; Ng, L.F., Hibberd, M.L., Ooi, E.E., Tang, K.F., Neo, S.Y., Tan, J., Murthy, K.R., Ren, E.C., A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection (2004) BMC Infect Dis, 4, p. 34; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87, pp. 12489-12495; Nieto-Torres, J.L., Verdia-Baguena, C., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Torres, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome (2015) Virology, 485, pp. 330-339; Nigg, E.A., Cyclin-dependent protein kinases: Key regulators of the eukaryotic cell cycle (1995) Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 17, pp. 471-480; Oostra, M., Te Lintelo, E.G., Deijs, M., Verheije, M.H., Rottier, P.J., de Haan, C.A., Localization and membrane topology of coronavirus nonstructural protein 4: Involvement of the early secretory pathway in replication (2007) J Virol, 81, pp. 12323-12336; Paeshuyse, J., Kaul, A., de Clercq, E., Rosenwirth, B., Dumont, J.M., Scalfaro, P., Bartenschlager, R., Neyts, J., The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro (2006) Hepatology, 43, pp. 761-770; Paragas, J., Blatt, L.M., Hartmann, C., Huggins, J.W., Endy, T.P., Interferon alfacon1 is an inhibitor of SARS-corona virus in cell-based models (2005) Antiviral Res, 66, pp. 99-102; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci USA, 113, pp. 12262-12267; Paul, D., Madan, V., Bartenschlager, R., Hepatitis C virus RNA replication and assembly: Living on the fat of the land (2014) Cell Host Microbe, 16, pp. 569-579; Payne, H.R., Storz, J., Henk, W.G., Initial events in bovine coronavirus infection: Analysis through immunogold probes and lysosomotropic inhibitors (1990) Arch Virol, 114, pp. 175-189; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450; Pfefferle, S., Schopf, J., Kogl, M., Friedel, C.C., Muller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors (2011) Plos Pathog, 7; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J Biol Chem, 279, pp. 10136-10141; Raaben, M., Groot Koerkamp, M.J., Rottier, P.J., de Haan, C.A., Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies (2007) Cell Microbiol, 9, pp. 2218-2229; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., van Kuppeveld, F.J., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) Plos Pathog, 12; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Reggiori, F., Monastyrska, I., Verheije, M.H., Cali, T., Ulasli, M., Bianchi, S., Bernasconi, R., Molinari, M., Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication (2010) Cell Host Microbe, 7, pp. 500-508; Reid, C.R., Airo, A.M., Hobman, T.C., The virus-host interplay: Biogenesis of +RNA replication complexes (2015) Viruses, 7, pp. 4385-4413; Reiss, S., Rebhan, I., Backes, P., Romero-Brey, I., Erfle, H., Matula, P., Kaderali, L., Bartenschlager, R., Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment (2011) Cell Host Microbe, 9, pp. 32-45; Rempel, J.D., Quina, L.A., Blakely-Gonzales, P.K., Buchmeier, M.J., Gruol, D.L., Viral induction of central nervous system innate immune responses (2005) J Virol, 79, pp. 4369-4381; Romero-Brey, I., Bartenschlager, R., Endoplasmic reticulum: The favorite intracellular niche for viral replication and assembly (2016) Viruses, 8, p. E160; Sawicki, S.G., Sawicki, D.L., Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands (1995) Adv Exp Med Biol, 380, pp. 499-506; Schinzel, A.C., Takeuchi, O., Huang, Z., Fisher, J.K., Zhou, Z., Rubens, J., Hetz, C., Korsmeyer, S.J., Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia (2005) Proc Natl Acad Sci USA, 102, pp. 12005-12010; Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions (2011) Curr Opin Virol, 1, pp. 519-525; Schultze, B., Herrler, G., Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells (1992) J Gen Virol, 73, pp. 901-906. , Pt 4; Schultze, B., Enjuanes, L., Cavanagh, D., Herrler, G., N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus (1993) Adv Exp Med Biol, 342, pp. 305-310; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity (1996) J Virol, 70, pp. 5634-5637; Selinger, C., Tisoncik-Go, J., Menachery, V.D., Agnihothram, S., Law, G.L., Chang, J., Kelly, S.M., Katze, M.G., Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates (2014) BMC Genom, 15, p. 1161; Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Zhang, F., Genome-scale CRISPR-Cas9 knockout screening in human cells (2014) Science, 343, pp. 84-87; Shen, X., Masters, P.S., Evaluation of the role of heterogeneous nuclear ribonucleoprotein A1 as a host factor in murine coronavirus discontinuous transcription and genome replication (2001) Proc Natl Acad Sci USA, 98, pp. 2717-2722; Shi, S.T., Huang, P., Li, H.P., Lai, M.M., Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus (2000) EMBO J, 19, pp. 4701-4711; Shi, S.T., Yu, G.Y., Lai, M.M., Multiple type A/B heterogeneous nuclear ribonucleoproteins (HnRNPs) can replace hnRNP A1 in mouse hepatitis virus RNA synthesis (2003) J Virol, 77, pp. 10584-10593; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci U S A, 102, pp. 11876-11881; Siu, K.L., Kok, K.H., Ng, M.H., Poon, V.K., Yuen, K.Y., Zheng, B.J., Jin, D.Y., Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex (2009) J Biol Chem, 284, pp. 16202-16209; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Chan, C.P., Jin, D.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J Virol, 80, pp. 5927-5940; Snijder, E.J., Decroly, E., Ziebuhr, J., The nonstructural proteins directing coronavirus RNA synthesis and processing (2016) Adv Virus Res, 96, pp. 59-126; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu Rev Virol, 2, pp. 265-288; Song, S., Bi, J., Wang, D., Fang, L., Zhang, L., Li, F., Chen, H., Xiao, S., Porcine reproductive and respiratory syndrome virus infection activates IL-10 production through NF-kappaB and p38 MAPK pathways in porcine alveolar macrophages (2013) Dev Comp Immunol, 39, pp. 265-272; Spagnolo, J.F., Hogue, B.G., Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication (2000) J Virol, 74, pp. 5053-5065; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martinez-Sobrido, L., Garcia-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315; Supekova, L., Supek, F., Lee, J., Chen, S., Gray, N., Pezacki, J.P., Schlapbach, A., Schultz, P.G., Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening (2008) J Biol Chem, 283, pp. 29-36; Surjit, M., Liu, B., Chow, V.T., Lal, S.K., The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells (2006) J Biol Chem, 281, pp. 10669-10681; Taguchi, F., Siddell, S.G., Difference in sensitivity to interferon among mouse hepatitis viruses with high and low virulence for mice (1985) Virology, 147, pp. 41-48; Takano, T., Katoh, Y., Doki, T., Hohdatsu, T., Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo (2013) Antiviral Res, 99, pp. 100-107; Tan, Y.W., Hong, W., Liu, D.X., Binding of the 5′-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription (2012) Nucleic Acids Res, 40, pp. 5065-5077; Tanaka, Y., Sato, Y., Osawa, S., Inoue, M., Tanaka, S., Sasaki, T., Suppression of feline coronavirus replication in vitro by cyclosporin A (2012) Vet Res, 43, p. 41; Tanaka, Y., Sato, Y., Sasaki, T., Suppression of coronavirus replication by cyclophilin inhibitors (2013) Viruses, 5, pp. 1250-1260; Tanaka, Y., Sato, Y., Sasaki, T., Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B (2016) J Gen Virol, 98, pp. 190-200; Teigelkamp, S., Achsel, T., Mundt, C., Gothel, S.F., Cronshagen, U., Lane, W.S., Marahiel, M., Luhrmann, R., The 20kD protein of human [U4/U6.U5] tri-snRNPs is a novel cyclophilin that forms a complex with the U4/U6-specific 60kD and 90kD proteins (1998) RNA, 4, pp. 127-141; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) Mbio, 7; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol, 2, pp. 264-275; Totura, A.L., Whitmore, A., Agnihothram, S., Schafer, A., Katze, M.G., Heise, M.T., Baric, R.S., Toll-Like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) Mbio, 6, pp. e00638–e00615; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J Virol, 70, pp. 8669-8674; Ulasli, M., Verheije, M.H., de Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell Microbiol, 12, pp. 844-861; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3, pp. e00412-e00473; van der Hoek, L., Human coronaviruses: What do they cause? (2007) Antiviral Therapy, 12, pp. 651-658; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-Van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res, 220, pp. 70-90; van der Meer, Y., Snijder, E.J., Dobbe, J.C., Schleich, S., Denison, M.R., Spaan, W.J., Krijnse Locker, J., Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication (1999) J Virol, 73, pp. 7641-7657; van der Schaar, H.M., Dorobantu, C.M., Albulescu, L., Strating, J.R., van Kuppeveld, F.J., Fat(Al) attraction: Picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles (2016) Trends Microbiol, 24, pp. 535-546; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) Plos Pathog, 4; van Kasteren, P.B., Bailey-Elkin, B.A., James, T.W., Ninaber, D.K., Beugeling, C., Khajehpour, M., Snijder, E.J., Kikkert, M., Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells (2013) Proc Natl Acad Sci USA, 110, pp. E838-E847; Verheije, M.H., Raaben, M., Mari, M., Te Lintelo, E.G., Reggiori, F., van Kuppeveld, F.J., Rottier, P.J., de Haan, C.A., Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation (2008) Plos Pathog, 4, p. e1000088; Versteeg, G.A., Slobodskaya, O., Spaan, W.J., Transcriptional profiling of acute cytopathic murine hepatitis virus infection in fibroblast-like cells (2006) J Gen Virol, 87, pp. 1961-1975; Vijay, R., Perlman, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr Opin Virol, 16, pp. 70-76; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., van Reeth, K., Nauwynck, H., Pensaert, M., van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglu-tinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80, pp. 7270-7274; Vogels, M.W., van Balkom, B.W., Kaloyanova, D.V., Batenburg, J.J., Heck, A.J., Helms, J.B., Rottier, P.J., de Haan, C.A., Identification of host factors involved in coronavirus replication by quantitative proteomics analysis (2011) Proteomics, 11, pp. 64-80; von Brunn, A., Ciesek, S., von Brunn, B., Carbajo-Lozoya, J., Genetic deficiency and polymorphisms of cyclophilin a reveal its essential role for human coronavirus 229E replication (2015) Curr Opin Virol, 14, pp. 56-61; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., Dimaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walsh, D., Mohr, I., Viral subversion of the host protein synthesis machinery (2011) Nat Rev Microbiol, 9, pp. 860-875; Wang, Y., Liu, L., The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism (2016) Mbio, 7; Wang, X., Liao, Y., Yap, P.L., Png, K.J., Tam, J.P., Liu, D.X., Inhibition of protein kinase R activation and upregulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells (2009) J Virol, 83, pp. 12462-12472; Wang, G., Chen, G., Zheng, D., Cheng, G., Tang, H., PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway (2011) Plos ONE, 6, p. e17192; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2015) J Virol, 90, pp. 2090-2101; Wathelet, M.G., Orr, M., Frieman, M.B., Baric, R.S., Severe acute respiratory syndrome coronavirus evades antiviral signaling: Role of nsp1 and rational design of an attenuated strain (2007) J Virol, 81, pp. 11620-11633; (2004), http://www.who.int/csr/sars/country/table2004_04_21/, SARS website; (2016), http://www.who.int/emergencies/mers-cov/en/; Wilkins, C., Gale, M., Jr., Recognition of viruses by cytoplasmic sensors (2010) Curr Opin Immunol, 22, pp. 41-47; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci U S A, 88, pp. 5533-5536; Wong, H.H., Kumar, P., Tay, F.P., Moreau, D., Liu, D.X., Bard, F., Genome-wide screen reveals valosin-containing protein requirement for coronavirus exit from endosomes (2015) J Virol, 89, pp. 11116-11128; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974; Wu, C.H., Chen, P.J., Yeh, S.H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16, pp. 462-472; Xiao, H., Xu, L.H., Yamada, Y., Liu, D.X., Coronavirus spike protein inhibits host cell translation by interaction with eIF3f (2008) Plos ONE, 3; Xu, L., Khadijah, S., Fang, S., Wang, L., Tay, F.P., Liu, D.X., The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication (2010) J Virol, 84, pp. 8571-8583; Xu, L.H., Huang, M., Fang, S.G., Liu, D.X., Coronavirus infection induces DNA replication stress partly through interaction of its nonstructural protein 13 with the p125 subunit of DNA polymerase delta (2011) J Biol Chem, 286, pp. 39546-39559; Yang, D., Leibowitz, J.L., The structure and functions of coronavirus genomic 3′ and 5′ ends (2015) Virus Res, 206, pp. 120-133; Yang, N., Ma, P., Lang, J., Zhang, Y., Deng, J., Ju, X., Zhang, G., Jiang, C., Phosphatidylinositol 4-kinase IIIbeta is required for severe acute respiratory syndrome coronavirus spike-mediated cell entry (2012) J Biol Chem, 287, pp. 8457-8467; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of middle east respiratory syndrome coronavirus (2015) J Virol, 89, pp. 9119-9123; Ye, Y., Hauns, K., Langland, J.O., Jacobs, B.L., Hogue, B.G., Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist (2007) J Virol, 81, pp. 2554-2563; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Yu, W., Leibowitz, J.L., Specific binding of host cellular proteins to multiple sites within the 3′ end of mouse hepatitis virus genomic RNA (1995) J Virol, 69, pp. 2016-2023; Yuan, X., Yao, Z., Wu, J., Zhou, Y., Shan, Y., Dong, B., Zhao, Z., Cong, Y., G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway (2007) Am J Respir Cell Mol Biol, 37, pp. 9-19; Yuan, L., Chen, Z., Song, S., Wang, S., Tian, C., Xing, G., Chen, X., Zhang, L., P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling (2015) J Biol Chem, 290, pp. 3172-3182; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Zalinger, Z.B., Elliott, R., Rose, K.M., Weiss, S.R., MDA5 is critical to host defense during infection with murine coronavirus (2015) J Virol, 89, pp. 12330-12340; Zeng, Q., Langereis, M.A., van Vliet, A.L., Huizinga, E.G., de Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc Natl Acad Sci U S A, 105, pp. 9065-9069; Zhang, X., Lai, M.M., Interactions between the cytoplasmic proteins and the intergenic (Promoter) sequence of mouse hepatitis virus RNA: Correlation with the amounts of subgenomic mRNA transcribed (1995) J Virol, 69, pp. 1637-1644; Zhang, X., Wu, K., Wang, D., Yue, X., Song, D., Zhu, Y., Wu, J., Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB (2007) Virology, 365, pp. 324-335; Zhang, L., Zhang, Z.P., Zhang, X.E., Lin, F.S., Ge, F., Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication (2010) J Virol, 84, pp. 6050-6059; Zhao, Z., Thackray, L.B., Miller, B.C., Lynn, T.M., Becker, M.M., Ward, E., Mizushima, N.N., Virgin, H., Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3, pp. 581-585; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Silverman, R.H., Weiss, S.R., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11, pp. 607-616; Zheng, B., He, M.L., Wong, K.L., Lum, C.T., Poon, L.L., Peng, Y., Guan, Y., Kung, H.F., Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-alpha/beta) but not by type II interferon (IFN-gamma) (2004) J Interferon Cytokine Res, 24, pp. 388-390; Zheng, D., Chen, G., Guo, B., Cheng, G., Tang, H., PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production (2008) Cell Res, 18, pp. 1105-1113; Zhou, P., Li, H., Wang, H., Wang, L.F., Shi, Z., Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities (2012) J Gen Virol, 93, pp. 275-281; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Thiel, V., Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat Immunol, 12, pp. 137-143","van Hemert, M.J.; Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: m.j.van_hemert@lumc.nl",,"Springer Verlag",0070217X,,CTMIA,"28643204","English","Curr. Top. Microbiol. Immunol.",Book Chapter,"Final",Open Access,Scopus,2-s2.0-85058412933 "Aydin H., Ti̇Murkan M.Ö.","57125632700;36130568600;","Partial sequence and phylogenetic analysis of the nucleoprotein gene of coronavirus and vp7/vp4 gene of rotavirus in calf diarrhea [Buzağı İshallerinde Coronavirusun Nukleoprotein Gen ve Rotavirusun VP7/VP4 Gen Bölgelerinin Kısmi Sekansı ve Filogenetik Analizi]",2018,"Ataturk Universitesi Veteriner Bilimleri Dergisi","13","2",,"211","218",,1,"10.17094/ataunivbd.372439","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057203358&doi=10.17094%2fataunivbd.372439&partnerID=40&md5=9951463e8e43840122d450b98485a56b","Atatürk Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim Dalı, Erzurum, Turkey","Aydin, H., Atatürk Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim Dalı, Erzurum, Turkey; Ti̇Murkan, M.Ö., Atatürk Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim Dalı, Erzurum, Turkey","The rotavirus and coronavirus are etiological agent of neonatal calf diarrhea and they are widespread in the world. In the twenty first century, investigation of infectious agents have accelerated with molecular-based genetic studies. So far as is known, at Least 27 distinct G genotypes and 37 distinct P genotypes have been identified. Coronaviruses are divided into four genotypic groups based on their genetic distance. The aim of this study, we investigate the rotavirus and coronavirus infections in calf diarrhea based on molecular analysis. Partial sequencing of the coronavirus nucleoprotein gene fragment and rotavirus VP4 and VP7 gen fragment was performed using specific nested primer pairs and followed phylogenetic analyses. Phylogenetic tree was constructed using reference strains obtained from GenBank. The Erzurum rotavirus strains were involved in G6 and G10 genogroup based on VP7 coding gen region and all rotavirus strain was involved in P[5] genogroup based on VP4 coding gen region. The phylogenetic analysis of coronavirus strains showed that Erzurum strains, deer, giraffe, bat, bovine and human coronavirus strains take part in Beta-coronavirus genogroup. As a conclusion, this is the first investigation of enteric coronavirus and rotavirus based on molecular analyses in Erzurum. This study will provide an advantage for the further studies. © 2018 Ataturk Universitesi.All Rights Reserved.","Bovine; Coronavirus; Erzurum; Molecular characterization; Rotavirus","protein VP4; protein VP7; virus nucleoprotein; Article; Betacoronavirus; Coronavirinae; diarrhea; gene sequence; genotype; nonhuman; nucleoprotein gene; partial sequencing; phylogenetic tree; phylogeny; Rotavirus; virus gene; virus strain; VP4 gene; VP7 gene","Cho, Y.I., Yoon, K.J., An overview of calf diarrhea - Infectious etiology, diagnosis, and intervention (2014) J Vet Sci, 15, pp. 1-17; Singh, D.D., Kumar, M., Choudhary, P.K., Singh, H.N., Neonatal calf mortality - An overview (2009) Intas Polivet, 10, pp. 165-169; Aydin, H., Aktas, O., Rotavirus genotypes in children with gastroenteritis in erzurum: First detection of G12P[6] and G12P[8] genotypes in Turkey (2017) Gastroenterology Rev, 12, pp. 122-127; Yandle, Z., Coughlan, S., Drew, R.J., O'Flaherty, N., O'Gorman, J., De Gascun, C., Circulating rotavirus genotypes in the irish paediatric population prior to the introduction of the vaccination programme (2017) Ir J Med Sci, 186, pp. 1003-1007; Timurkan, M.O., Aydin, H.A., Belen, S., Erzurum bölgesinde sığırlarda respiratorik coronavirus enfeksiyonunun RT-PCR ile tespiti ve moleküler karakterizasyonu (2015) Atatürk Üniv Vet Bil Derg, 10, pp. 186-192; Park, S.J., Jeong, C., Yoon, S.S., Choy, H.E., Saif, L.J., Park, S.H., Kim, Y.J., Cho, K.O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) J Clin Microbiol, 44, pp. 3178-3188; Kin, N., Miszczak, F., Diancourt, L., Caro, V., Moutou, F., Vabret, A., Ar Gouilh, M., Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect Genet Evol, 40, pp. 186-191; Cho, K.O., Hasöksüz, M., Nielsen, P.R., Chang, K.O., Lathrop, S., Saif, L.J., Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RTPCR and nested PCR for their detection (2001) Archives Virol, 146, pp. 2401-2419; Hall, T., BioEdit: An important software for molecular biology (2011) GERF Bulletin of Bioscience, 2, pp. 60-61; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Masuda, T., Nagai, M., Yamasato, H., Tsuchiaka, S., Okazaki, S., Katayama, Y., Oba, M., Mizutani, T., Identification of novel bovine group a rotavirus G15P[14] strain from epizootic diarrhea of adult cows by de novo sequencing using a next-generation sequencer (2014) Vet Microbiol, 171, pp. 66-73; Alkan, F., Ozkul, A., Oguzoglu, T.C., Timurkan, M.O., Caliskan, E., Martella, V., Burgu, I., Distribution of g (VP7) and p (VP4) genotypes of group a bovine rotaviruses from Turkish calves with diarrhea, 1997–2008 (2010) Vet Microbiol, 141, pp. 231-237; Pourasgari, F., Kaplon, J., Karimi-Naghlani, S., Fremy, C., Otarod, V., Ambert-Balay, K., Mirjalili, A., Pothier, P., The molecular epidemiology of bovine rotaviruses circulating in Iran: A two-year study (2016) Arch Virol, 161, pp. 3483-3494; Ennima, I., Sebbar, G., Harif, B., Amzazi, S., Loutfi, C., Touil, N., Isolation and identification of group a rotaviruses among neonatal diarrheic calves, Morocco (2016) BMC Res Notes, 9, p. 261; Hassine-Zaafrane, M., Ben Salem, I., Sdiri-Loulizi, K., Kaplon, J., Bouslama, L., Aouni, Z., Sakly, N., Ambert-Balay, K., Distribution of g (VP7) and p (VP4) genotypes of group a bovine rotaviruses from Tunisian calves with diarrhoea (2014) J Appl Microbiol, 116, pp. 1387-1395; Duman, R., Aycan, A.E., Prevalence of rotavirus infections in calves with diarrhea in konya region (2010) J Anim Vet Advances, 9, pp. 136-138; Gumusova, S.O., Yazıcı, Z., Albayrak, H., Meral, Y., Rotavirus and coronavirus prevalence in healthy calves and calves with diarrhoea (2007) Medycyna Wet, 63, pp. 62-64; Içen, H., Arserim, N.A., Işik, N., Özkan, C., Kaya, A., Prevalence of four enteropathogens with immunochromatographic rapid test in the feces of diarrheic calves in East and Southeast of Turkey (2013) Pak Vet J, 33, pp. 496-499; Yilmaz, V., Investigation of rotavirus infection in calves with diarrhea in Northeast Turkey (2016) Anim and Vet Sci, 4, pp. 1-4; Durmaz, R., Kalaycioglu, A.T., Acar, S., Bakkaloglu, Z., Karagoz, A., Korukluoglu, G., Ertek, M., Torunoglu, M.A., Prevalence of rotavirus genotypes in children younger than 5 years of age before the introduction of a universal rotavirus vaccination program: Report of rotavirus surveillance in Turkey (2014) PLoS One, 9; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Yavru, S., Yapici, O., Kale, M., Sahinduran, S., Pehlivanoglu, F., Albay, M.K., Avci, O., Bovine coronavirus (BoCV) infection in calves with diarrhoea and their dams (2016) Acta Sci Vet, 44, p. 1405; Alkan, F., Buzağı ishallerinde rotavirus ve corona virusların rolü (1998) Ankara Üniv Vet Fak Derg, 45, pp. 29-37; Hasoksuz, M., Kayar, A., Dodurka, T., Ilgaz, A., Detectıon of respiratory and enteric shedding of bovine coronaviruses in cattle in Northwestern Turkey (2005) Acta Vet Hung, 53, pp. 137-146; Alkan, F., Ozkul, A., Bilge-Dagalp, S., Karaoglu, T., Oguzoglu, T.C., Caliskan, E., Burgu, I., The detection and genetic characterization based on the S1 gene region of BCoVs from respiratory and enteric infections in Turkey (2011) Transbound Emerg Dis, 58, pp. 179-185","Aydin, H.; Atatürk Üniversitesi, Veteriner Fakültesi, Viroloji Anabilim DalıTurkey; email: hakanaydin.dr@gmail.com",,"Ataturk Universitesi",13066137,,,,"Turkish","Ataturk Univ. Vet. Bilim. Derg.",Article,"Final",Open Access,Scopus,2-s2.0-85057203358 "Lee S., Jo S.-D., Son K., An I., Jeong J., Wang S.-J., Kim Y., Jheong W., Oem J.-K.","57193717922;56697871000;57193703804;56698006300;36628619800;56697885300;57193715617;24076289900;6506283913;","Genetic Characteristics of Coronaviruses from Korean Bats in 2016",2018,"Microbial Ecology","75","1",,"174","182",,3,"10.1007/s00248-017-1033-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025066667&doi=10.1007%2fs00248-017-1033-8&partnerID=40&md5=51658476ba5780645d341ebab9f401b5","Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea","Lee, S., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Jo, S.-D., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Son, K., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; An, I., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Jeong, J., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Wang, S.-J., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Kim, Y., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Jheong, W., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea; Oem, J.-K., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, South Korea, Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea","Bats have increasingly been recognized as the natural reservoir of severe acute respiratory syndrome (SARS), coronavirus, and other coronaviruses found in mammals. However, little research has been conducted on bat coronaviruses in South Korea. In this study, bat samples (332 oral swabs, 245 fecal samples, 38 urine samples, and 57 bat carcasses) were collected at 33 natural bat habitat sites in South Korea. RT-PCR and sequencing were performed for specific coronavirus genes to identify the bat coronaviruses in different bat samples. Coronaviruses were detected in 2.7% (18/672) of the samples: 13 oral swabs from one species of the family Rhinolophidae, and four fecal samples and one carcass (intestine) from three species of the family Vespertiliodae. To determine the genetic relationships of the 18 sequences obtained in this study and previously known coronaviruses, the nucleotide sequences of a 392-nt region of the RNA-dependent RNA polymerase (RdRp) gene were analyzed phylogenetically. Thirteen sequences belonging to SARS-like betacoronaviruses showed the highest nucleotide identity (97.1–99.7%) with Bat-CoV-JTMC15 reported in China. The other five sequences were most similar to MERS-like betacoronaviruses. Four nucleotide sequences displayed the highest identity (94.1–95.1%) with Bat-CoV-HKU5 from Hong Kong. The one sequence from a carcass showed the highest nucleotide identity (99%) with Bat-CoV-SC2013 from China. These results suggest that careful surveillance of coronaviruses from bats should be continued, because animal and human infections may result from the genetic variants present in bat coronavirus reservoirs. © 2017, Springer Science+Business Media, LLC.","Bats; Coronavirus; Middle East respiratory syndrome; Phylogenetic analysis; Severe acute respiratory syndrome; South Korea","animal; bat; China; classification; Coronavirinae; Coronavirus infection; genetic variation; genetics; Hong Kong; human; isolation and purification; phylogeny; South Korea; veterinary medicine; virology; virus genome; Animals; China; Chiroptera; Coronavirus; Coronavirus Infections; Genetic Variation; Genome, Viral; Hong Kong; Humans; Phylogeny; Republic of Korea","Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30. , COI: 1:CAS:528:DC%2BD2MXht1KgsA%3D%3D, PID: 15609507; Gonzalez, J., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch Virol, 148, pp. 2207-2235. , COI: 1:CAS:528:DC%2BD3sXosVajsbY%3D, PID: 14579179; Murray, P.R., Rosenthal, K.S., Pfaller, M.A., (2009) Medical microbiology, , MOSBY Elsevier, Philadelphia; Saif, L.J., Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? (2004) Rev Sci Tech, 23, pp. 643-660. , COI: 1:STN:280:DC%2BD2M%2FntlOrtg%3D%3D, PID: 15702725; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir Res, 101, p. 45. , COI: 1:CAS:528:DC%2BC3sXhvFyksrnP, PID: 24184128; Ge, X., Li, J., Yang, X., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF, PID: 24172901; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjO, PID: 16195424; Quinn, P.J., Markey, B.K., Leonard, F.C., FitzPatrick, E.S., Fanning, S., Hartigan, P., (2011) Veterinary microbiology and microbial disease, , John Wiley & Sons, Hoboken; Shi, Z., Hu, Z., A review of studies on animal reservoirs of the SARS coronavirus (2008) Virus Res, 133, pp. 74-87. , COI: 1:CAS:528:DC%2BD1cXjtlWksbw%3D, PID: 17451830; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., AlHakeem, R., Kapoor, A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823. , COI: 1:CAS:528:DC%2BC2cXhs1ChsL7I, PID: 24206838; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699. , PID: 24050621; Moratelli, R., Calisher, C.H., Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? (2015) Mem Inst Oswaldo Cruz, 110, pp. 1-22. , PID: 25742261; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin Microbiol Rev, 19, pp. 531-545. , PID: 16847084; Kim, H., Yoon, S., Kim, D., Koo, B., Noh, J., Kim, J., Choi, Y., Song, D., Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in Faeces of Korean bats (2016) Transbound Emerg Dis, 63, pp. 365-372. , COI: 1:CAS:528:DC%2BC28XhtVyns77I, PID: 27213718; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Peiris, J.S., Identification of a novel coronavirus in bats (2005) J Virol, 79, pp. 2001-2009. , COI: 1:CAS:528:DC%2BD2MXitlejtrc%3D, PID: 15681402; Yang, L., Wu, Z., Ren, X., Yang, F., Zhang, J., He, G., Dong, J., Jin, Q., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg Infect Dis, 20, pp. 1260-1262. , PID: 24960574; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 8638-8650. , COI: 1:CAS:528:DC%2BC3sXhtFCmtbjF, PID: 23720729; Son, S.W., Choi, B.J., (2001) Bats, , Moonji publishing, Seoul; Fleming, T.H., Eby, P., Kunz, T., Fenton, M., Ecology of bat migration (2003) Bat ecology, pp. 156-208. , Kunz T, Fenton M, (eds), The University of Chicago Press, Chicago; Anthony, S., Ojeda-Flores, R., Rico-Chavez, O., Navarrete-Macias, I., Zambrana-Torrelio, C., Rostal, M., Epstein, J., Sanchez-Leon, M., Coronaviruses in bats from Mexico (2013) J Gen Virol, 94, pp. 1028-1038. , COI: 1:CAS:528:DC%2BC3sXnsV2lu78%3D, PID: 23364191; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Moreno, A., Boniotti, M.B., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689. , PID: 24184965; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J Virol, 80, pp. 7481-7490. , COI: 1:CAS:528:DC%2BD28XnsVWgtL8%3D, PID: 16840328; Xu, L., Zhang, F., Yang, W., Jiang, T., Lu, G., He, B., Li, X., Feng, Y., Detection and characterization of diverse alpha-and betacoronaviruses from bats in China (2016) Virol Sin, 31, pp. 69-77. , COI: 1:CAS:528:DC%2BC28XisFSms7Y%3D, PID: 26847648; De Benedictis, P., Marciano, S., Scaravelli, D., Priori, P., Zecchin, B., Capua, I., Monne, I., Cattoli, G., Alpha and lineage C betaCoV infections in Italian bats (2014) Virus Genes, 48, pp. 366-371. , PID: 24242847; Chu, D., Poon, L., Chan, K., Chen, H., Guan, Y., Yuen, K., Peiris, J., Coronaviruses in bent-winged bats (Miniopterus spp.) (2006) J Gen Virol, 87, pp. 2461-2466. , COI: 1:CAS:528:DC%2BD28Xoslajsrg%3D, PID: 16894183; Falcón, A., Vázquez-Morón, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Perez-Brena, P., Garin, I., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch Virol, 156, pp. 1883-1890. , PID: 21766197; Knobler, A.M.S., Lemon, S., Mack, A., Sivitz, L., Oberholtzer, K., Microbiology, ecology, and natural history of coronaviruses (2004) Learning from SARS: preparing for the next disease outbreak-workshop summary, pp. 137-172. , Knobler AMS, Lemon S, Mack A, Sivitz L, Oberholtzer K, (eds), National Academies Press, Washington DC; Eckerle, I., Müller, M.A., Kallies, S., Gotthardt, D.N., Drosten, C., In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East respiratory syndrome (MERS) coronavirus infection (2013) Virol J, 10, p. 359. , PID: 24364985; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279, p. 371. , COI: 1:CAS:528:DC%2BD3MXnvFOgsA%3D%3D, PID: 11162792; Smith, C., de Jong, C., Meers, J., Henning, J., Wang, L., Field, H., Coronavirus infection and diversity in bats in the Australasian region (2016) EcoHealth, 13, p. 72. , COI: 1:STN:280:DC%2BC28fmvF2isw%3D%3D, PID: 27048154; Dominguez, S.R., O'Shea, T.J., Oko, L.M., Holmes, K.V., Detection of group 1 coronaviruses in bats in North America (2007) Emerg. Infect Dis, 13, p. 1295. , COI: 1:CAS:528:DC%2BD2sXhtVygtbvE, PID: 18252098","Oem, J.-K.; Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, South Korea; email: jku0623@korea.kr",,"Springer New York LLC",00953628,,MCBEB,"28725945","English","Microb. Ecol.",Article,"Final",Open Access,Scopus,2-s2.0-85025066667 "Brian D.A., Shockley L.J.","7006460232;6603580100;","Coronaviruses in tamarin and marmoset colitis",2018,"A Primate Model for the Study of Colitis and Colonic Carcinoma the Cotton-Top Tamarin (Saguinus oedipus)",,,,"145","160",,1,"10.1201/9781351069410","https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344490226&doi=10.1201%2f9781351069410&partnerID=40&md5=9e0080d247b2c44d1a3225ebd053e30b","Department of Microbiology, College of Veterinary Medicine, University of Tennessee, Knoxvill, TN, United States; Lieutenant Colonel, Chemical Corps, United States Army, Alexandri, VA, United States","Brian, D.A., Department of Microbiology, College of Veterinary Medicine, University of Tennessee, Knoxvill, TN, United States; Shockley, L.J., Lieutenant Colonel, Chemical Corps, United States Army, Alexandri, VA, United States","We hypothesize that coronaviruses cause acute and chronic colitis in tamarins and marmosets. To date, the data are few that support this hypothesis, but there exist precedents for coronavirus-induced acute and chronic colitis in other animal species. We review the data that support coronavirus involvement in cases of colitis in these primate species and propose approaches that would more firmly establish their role in this disease. © 1993 by CRC Press, Inc.",,,"Fenner, F., Bachmann, P.A., Gibbs, E.P.J., Murphy, F.A., Studdert, M.J., White, D.O., (1987) Veterinary Virology, p. 15. , Academic Press, New York; Cavanagh, I.X., Brian, D.A., Eujuanes, I., Holmes, K.V., Lai, M.M.C., Laude, H., Siddell, S.G., Talbot, P.J., Coronaviridae: Fifth Report of the Coronavirus Study Group, Vertebrate Virus Subcommittee on Taxonomy of Viruses (1990) Intervirology, 1, p. 234; Siddell, S., Wege, H., Ter Meulen, V., The structure and replication of coronavirus (1982) Curr. Top. Microbiol. Immunol., 99, p. 131; Sturman, L., Holmes, S., The molecular biology of coronaviruses (1983) Adv. Virus Res., 28, p. 35; Lai, M.M., Baric, C.R.S., Brayton, P.R., Stohlman, S.A., Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus (1984) Proc. Natl. Acad. Sci. U.S.A., 81, p. 3626; Shieh, C.K., Soe, L.H., Makino, S., Chang, M.F., Stohlman, S.A., Lai, M.M.C., The 5'-end sequence of the murine coronavirus genome: Implications for multiple fusion sites in leader-primer transcription (1987) Virology, 156, p. 321; Leibowitz, J.L., Weiss, S.R., Paavola, E., Bond, C.W., Cell-free translation of murine coronavirus RNA (1982) J. Virol., 43, p. 905; Rottier, P.J.M., Spaan, W.J.M., Horzinek, M.C., Van Der Zeijst, B.A.M., Translation of the three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes (1981) J. Virol., 38, p. 20; Boursnell, M.E.G., Binns, M.M., Foulds, I.J., Brown, T.D.K., Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus (1985) J. Gen. Virol., 66, p. 573; Boursnell, M.E.G., Brown, T.D.K., Binns, M.M., Sequence of the membrane protein gene form avian coronavirus IBV (1984) Virus Res., 1, p. 303; Binns, M.M., Boursnell, M.E.G., Cavanagh, D., Pappin, D.J.C., Brown, T.D.K., Cloning and sequencing of the gene encoding the spike of the coronavirus IBV (1985) J. Gen. Virol., 66, p. 719; Armstrong, J., Smeekens, S., Rottier, P., Sequence of the nucleocapsid gene from murine coronavirus MHV-A59 (1983) Nucleic Acids Res., 11, p. 833; Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., Warren, G., Sequence and topology of a model intracellular membrane protein, El glycoprotein, from a coronavirus (1984) Nature (London), 308, p. 751; Schmidt, J., Skinner, M., Siddell, S., Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM (1987) J. Gen. Virol., 68, p. 47; Lapps, W., Hogue, B.G., Brian, D.A., Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes (1987) Virology, 157, p. 47; Kapke, P.A., Brian, D.A., Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene (1986) Virology, 151, p. 41; Kapke, P.A., Tung, F.Y.T., Brian, D.A., Woods, R.D., Wesley, R.D., The amino terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosy-lation (1988) Virology, 165, p. 367; Rasschaert, D., Laude, H., The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus (1987) J. Gen. Virol., 68, p. 1883; Boursnell, M.E.G., Brown, T.D.K., Foulds, I.J., Green, P.F., Tomley, F.M., Bins, M.M., Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus (1987) J. Gen. Virol., 68, p. 57; Wege, H., Siddell, S., Ter Meulen, B., The virology and pathogenesis of coron-aviruses (1982) Curr. Top. Microbiol. Immunol., 99, p. 165; Hierholzer, J.C., Tannock, G.A., Coronaviridae (1988) Lab. Diagn. Infect. Dis., 2, p. 451; McIntosh, K., Coronaviruses (1985) Virology, , Fields, B. N., Ed., Raven Press, New York, chap. 56; Mebus, C.A., Newman, L.E., Stair, L.E., Scanning electron, light and im-munofluorescent microscopy of intestine of gnotobiotic calf with calf diarrheal coronavirus (1975) Am. J. Vet. Res., 36, p. 1719; Storz, J., Dougri, A.M., Hajer, I., Coronaviral morphogenesis and ultrastructural changes in intestinal infections of calves (1978) J. Am. Vet. Med. Assoc., 173, p. 633; Keenan, K.P., Jervis, H.R., Marchwicki, R.H., Binn, L.N., Intestinal infection of neonatal dogs with canine coronavirus 1-71: Studies by virologic, histologic, histo-chemical, and immunofluorescent techniques (1976) Am. J. Vet. Res., 37, p. 247; Bass, E.P., Sharpee, R.L., Coronavirus and gastroenteritis in foals (1975) Lancet, 2, p. 822; Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis (1981) Am. J. Vet. Res., 42, p. 368; Ries, K., Pensaert, M.B., Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus in pigs after oronasal inoculation (1980) Am. J. Vet. Res., 41, p. 1372; Caul, E.O., Clarke, S.K.R., Coronavirus propagated from patients with non-bacterial gastroenteritis (1975) Lancet, 2, p. 953; Caul, E.O., Egglestone, S.I., Further studies on human enteric coronavirus (1977) Arch. Virol., 54, p. 107; Resta, S., Luby, J.P., Rosenfeld, C.R., Siegel, J.D., Isolation and propagation of a human enteric coronavirus (1985) Science, 229, p. 978; Biggers, D.C., Kraft, L.M., Sprinz, H., Lethal intestinal virus infection of mice (LIVM): An important new model for study of the response of the intestinal mucosa to injury (1964) Am. J. Pathol., 45, p. 413; Hierholzer, J.C., Broderson, J.R., Murphy, F.A., New strain of mouse hepatitis virus as the cause of lethal enteritis in infant mice (1979) Infect. Immun., 24, p. 508; Ishida, T., Fujiwara, K., Pathology of diarrhea due to mouse hepatitis virus in the infant mouse (1979) Jpn. J. Exp. Med., 49, p. 33; Kraft, L.M., Epizootic diarrhea of infant mice and lethal intestinal virus infection of infant mice (1966) Natl. Cancer Inst. Monogr., 20, p. 55; Sugiyama, K., Amano, Y., Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice (1981) Arch. Virol., 67, p. 241; Barthold, S.W., Smith, A.L., Lord, P.F.S., Bhatt, P.N., Jacoby, R.O., Main, A.J., Epizootic coronaviral typhlocolitis in suckling mice (1982) Lab. Anim. Sci., 32, p. 376; Pensaert, M.B., De Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, p. 243; Olson, D.P., Waxier, G.L., Roberts, A.W., Small intestinal lesions of transmissible gastroenteritis in gnotobiotic pigs: A scanning electron microscopic study (1973) Am. J. Vet. Res., 34, p. 1239; Lapierre, J., Marsolais, G., Pilon, P., Descoteaux, J.P., Preliminary report on the observation of a coronavirus in the intestine of the laboratory rabbit (1980) Can. J. Microbiol., 26, p. 1204; Ritchie, A.E., Deshmukh, D.R., Larsen, C.T., Pomeroy, B.S., Electron microscopy of coronavirus-like particles characteristic of turkey bluecomb disease (1973) Avian Dis., 17, p. 546; Coulter-Mackie, M., Adler, R., Wilson, G., Dales, S., Vivo and in vitro models of demyelinating diseases XII: Persistence and expression of corona JHM virus functions in RN2-2 Schwannoma cells during latency (1985) Virus Res, 3, p. 245; Dupuy, J.M., Lamontagne, L., Genetically-determined sensitivity to MHV3 infections is expressed in vitro in lymphoid cells and macrophages (1987) Adv. Exp. Med. Biol., 218, p. 455; Chaloner-Larsson, G., Johnson-Lussenburg, C.M., Characteristics of a long term in vitro persistent infection with human coronavirus 229E (1981) Adv. Exp. Med. Biol., 142, p. 309; Stohlman, S.A., Weiner, L.P., Chronic central nervous system demyelination in mice after JHM virus infection (1981) Neurology, 31, p. 38; Makino, S., Shieh, C.K., Keck, J.G., Lai, M.M.C., Defective-interfering particles of murine coronavirus: Mechanism of synthesis of defective viral RNAs (1988) Virology, 163, p. 104; Holland, J.J., Generation and replication of defective viral genomes (1985) Virology, , Fields, B. N., Ed., Raven Press, New York, chap. 6; Rowe, W.P., Harley, J.W., Capps, W.I., Mouse hepatitis virus infection as a highly contagious, prevalent, enteric infection of mice (1963) Proc. Soc. Exp. Biol. Med., 112, p. 161; Barthold, S.W., Mouse hapatitis virus biology and epizoobiology (1986) Viral and Mycoplasmal Infections of Laboratory Rodents, p. 571. , Bhatt, P. N., Jacoby, R. O., Morse, H. C. Ill, and New, A. E., Eds., Academic Press, New York; Barthold, S.W., Smith, A.L., Mouse hepatitis virus S in weanling Swiss mice following intranasal inoculation (1983) Lab Anim. Sci., 33, p. 355; Weir, E.C., Bhatt, P.N., Barthold, S.W., Cameron, G.A., Simack, P.A., Elimination of mouse hepatitis virus from a breeding colony by temporary cessation of breeding (1987) Lab. Anim. Sci., 34, p. 455; Barthold, S.W., Smith, A.L., Povar, M.L., Enterotropic mouse hepatitis virus infection in nude mice (1984) Lab. Anim. Sci., 35, p. 613; Knobler, R.L., Lampert, P.W., Oldstone, M.B.A., Virus persistence and recurrent demyelination produced by a temperature-sensitive mutant of mouse hepatitis virus (1982) Nature, 298, p. 279; Lavi, E., Gilden, D.H., Highkin, M.K., Weiss, S.R., Persistence of mouse hepatitis virus A59 in a slow virus demyelinating infection in mice as detected by in situ hybridization (1984) J. Virol., 51, p. 563; Suzumura, A., Lavi, E., Weiss, S.R., Silberberg, D.H., Coronavirus infection induces H-2 antigen expression of oligodendrocytes and astrocytes (1986) Science, 232, p. 991; Taguchi, F., Siddell, S.G., Wege, H., Ter Meulen, V., Characterization of a variant virus selected in rat brains after infection by coronavirus mouse hepatitis virus JHM (1985) J. Virol, 54, p. 429; Virelizier, J.L., Dayan, A.D., Allison, A.C., Neuropathological effects of persistent infection of mice by mouse hepatitis virus (1975) Infect. Immun., 12, p. 1127; Wege, H., Watanabe, R., Ter Meulen, V., Relapsing subacute demyelinating encephalomyelitis in rats in the course of coronavirus JHM infection (1984) J. Neuroimmunol., 6, p. 325; Underdahl, N.R., Mebus, C.A., Torres-Medina, A., Recovery of transmissible gastroenteritis virus from chronically infected experimental pigs (1975) Am. J. Vet. Res., 36, p. 1473; Pedersen, N.C., Virologie and immunologic aspects of feline infectious peritonitis virus infection (1987) Adv. Exp. Med. Biol., 218, p. 529; Baker, S.J., Mathan, M., Mathan, V.I., Jesudess, S., Swaminathan, S.P., Chronic enterocyte infection with coronavirus: One possible cause of the syndrome of tropical sprue? (1982) Digest. Dis. Sci., 27, p. 1039; Chalifoux, L.V., Brieland, J.K., King, N.W., Evolution and natural history of colonic disease in cotton top tamarins (Saguinus oedipus) (1985) Digest. Dis. Sci., 54S, p. 30; Lushbaugh, C., Humason, G., Clapp, N., Histology of colitis: Saguinus oedipus and other marmosets (1985) Digest. Dis. Sci., 45S, p. 30; Russell, R.G., Brian, D.A., Lenhard, A., Potgieter, L.N.D., Gillespie, D., Clapp, N.K., Coronavirus-like particles and Campylobacter in marmosets with diarrhea and colitis (1985) Digest. Dis. Sci., 72S, p. 30; Caul, E.O., Egglestone, S.I., Coronavirus-like particles present in simian feces (1979) Vet. Rec., 104, p. 168; Smith, G.C., Lester, T.L., Heberling, R.L., Kalter, S.S., Coronavirus-like particles in nonhuman primate feces (1982) Arch. Virol., 72, p. 105; Shockley, L., Kapke, P.A., Lapps, W., Brian, D.A., Potgieter, L., Woods, R., Diagnosis of porcine and bovine enteric coronavirus infections using cloned cDNA probes (1987) J. Clin. Microbiol., 25, p. 1591; Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase (1988) Science, 239, p. 487; Estes, M.K., Evaluating viral agents in marmoset colitis (1985) Digest. Dis. Sci., 80S, p. 30",,,"CRC Press",,9781351077866; 0849353637; 9781315890319,,,"English","A Primate Model for the Study of Colitis and Colonic Carcinoma the Cotton-Top Tamarin (Saguinus oedipus)",Book Chapter,"Final",,Scopus,2-s2.0-0344490226 "Corman V.M., Muth D., Niemeyer D., Drosten C.","34876424800;22135222000;50361719200;7003813990;","Hosts and Sources of Endemic Human Coronaviruses",2018,"Advances in Virus Research","100",,,"163","188",,18,"10.1016/bs.aivir.2018.01.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042024535&doi=10.1016%2fbs.aivir.2018.01.001&partnerID=40&md5=a343ff7f39221462fd2f5159ebf6feee","Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Berlin, Germany","Corman, V.M., Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Center for Infection Research (DZIF), Berlin, Germany; Muth, D., Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Center for Infection Research (DZIF), Berlin, Germany; Niemeyer, D., Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany; Drosten, C., Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Center for Infection Research (DZIF), Berlin, Germany","The four endemic human coronaviruses HCoV-229E, -NL63, -OC43, and -HKU1 contribute a considerable share of upper and lower respiratory tract infections in adults and children. While their clinical representation resembles that of many other agents of the common cold, their evolutionary histories, and host associations could provide important insights into the natural history of past human pandemics. For two of these viruses, we have strong evidence suggesting an origin in major livestock species while primordial associations for all four viruses may have existed with bats and rodents. HCoV-NL63 and -229E may originate from bat reservoirs as assumed for many other coronaviruses, but HCoV-OC43 and -HKU1 seem more likely to have speciated from rodent-associated viruses. HCoV-OC43 is thought to have emerged from ancestors in domestic animals such as cattle or swine. The bovine coronavirus has been suggested to be a possible ancestor, from which HCoV-OC43 may have emerged in the context of a pandemic recorded historically at the end of the 19th century. New data suggest that HCoV-229E may actually be transferred from dromedary camels similar to Middle East respiratory syndrome (MERS) coronavirus. This scenario provides important ecological parallels to the present prepandemic pattern of host associations of the MERS coronavirus. © 2018 Elsevier Inc.","Alphacoronavirus; Betacoronavirus; Chiroptera; Coronaviridae; Livestock; Respiratory tract infections; Rodentia; Zoonotic diseases","animal; classification; Coronavirinae; Coronavirus infection; endemic disease; host pathogen interaction; host range; human; Middle East respiratory syndrome coronavirus; phylogeny; physiology; transmission; virology; zoonosis; Animals; Coronavirus; Coronavirus Infections; Endemic Diseases; Host Specificity; Host-Pathogen Interactions; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Zoonoses","Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Halpin, R., Wang, S., Saif, L.J., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) J. Virol., 82, pp. 12422-12431; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, pp. 456-459; Annan, A., Ebach, F., Corman, V.M., Krumkamp, R., Adu-Sarkodie, Y., Eis-Hubinger, A.M., Kruppa, T., Drexler, J.F., Similar virus spectra and seasonality in paediatric patients with acute respiratory disease, Ghana and Germany (2016) Clin. Microbiol. Infect., 22, pp. 340-346; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8 (2). , e00373-17; Arbour, N., Cote, G., Lachance, C., Tardieu, M., Cashman, N.R., Talbot, P.J., Acute and persistent infection of human neural cell lines by human coronavirus OC43 (1999) J. Virol., 73, pp. 3338-3350; Arden, K.E., Nissen, M.D., Sloots, T.P., Mackay, I.M., New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia (2005) J. Med. Virol., 75, pp. 455-462; Bastien, N., Anderson, K., Hart, L., Van Caeseele, P., Brandt, K., Milley, D., Hatchette, T., Li, Y., Human coronavirus NL63 infection in Canada (2005) J. Infect. Dis., 191, pp. 503-506; Berkley, J.A., Munywoki, P., Ngama, M., Kazungu, S., Abwao, J., Bett, A., Lassauniere, R., Nokes, D.J., Viral etiology of severe pneumonia among Kenyan infants and children (2010) JAMA, 303, pp. 2051-2057; Caron, A., Cappelle, J., Cumming, G.S., de Garine-Wichatitsky, M., Gaidet, N., Bridge hosts, a missing link for disease ecology in multi-host systems (2015) Vet. Res., 46 (83); Cheng, V.C., Lau, S.K., Woo, P.C., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin. Microbiol. Rev., 20, pp. 660-694; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20, pp. 1049-1053; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill., 20 (49); Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Muller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322; Corman, V.M., Kallies, R., Philipps, H., Gopner, G., Muller, M.A., Eckerle, I., Brunink, S., Drexler, J.F., Characterization of a novel betacoronavirus related to Middle East respiratory syndrome coronavirus in European hedgehogs (2014) J. Virol., 88, pp. 717-724; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Drexler, J.F., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J. Virol., 89, pp. 11858-11870; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Drosten, C., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 9864-9869; Crossley, B.M., Barr, B.C., Magdesian, K.G., Ing, M., Mora, D., Jensen, D., Loretti, A.P., Mock, R., Identification of a novel coronavirus possibly associated with acute respiratory syndrome in alpacas (Vicugna pacos) in California, 2007 (2010) J. Vet. Diagn. Invest., 22, pp. 94-97; Crossley, B.M., Mock, R.E., Callison, S.A., Hietala, S.K., Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E (2012) Virus, 4, pp. 3689-3700; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Family coronaviridae (2012) Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-820. , K. AMQ M.J. Adams E.B. Carstens E.J. Lefkowitz Academic Press London; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Family coronaviridae (2012) Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, , A.M.Q. King M.J. Adams E.B. Carstens E.J. Lefkowitz Elsevier/Academic Press Amsterdam/Boston; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV); announcement of the coronavirus study group (2013) J. Virol., 87 (14), pp. 7790-7792; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., van der Hoek, L., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J. Clin. Virol., 53, pp. 135-139; Donaldson, E.F., Haskew, A.N., Gates, J.E., Huynh, J., Moore, C.J., Frieman, M.B., Metagenomic analysis of the Viromes of three north American bat species: viral diversity among different bat species that share a common habitat (2010) J. Virol., 84, pp. 13004-13018; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Drexler, J.F., Corman, V.M., Muller, M.A., Maganga, G.D., Vallo, P., Binger, T., Gloza-Rausch, F., Drosten, C., Bats host major mammalian paramyxoviruses (2012) Nat. Commun., 3, p. 796; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res., 101, pp. 45-56; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., Landt, O., Memish, Z.A., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin. Infect. Dis., 60, pp. 369-377; Eaton, B.T., Broder, C.C., Middleton, D., Wang, L.F., Hendra and Nipah viruses: different and dangerous (2006) Nat. Rev. Microbiol., 4, pp. 23-35; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Denison, M.R., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog., 6; Erles, K., Toomey, C., Brooks, H.W., Brownlie, J., Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease (2003) Virology, 310, pp. 216-223; Esper, F., Weibel, C., Ferguson, D., Landry, M.L., Kahn, J.S., Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children (2005) J. Infect. Dis., 191, pp. 492-498; Esper, F., Ou, Z., Huang, Y.T., Human coronaviruses are uncommon in patients with gastrointestinal illness (2010) J. Clin. Virol., 48, pp. 131-133; Fielding, B.C., Human coronavirus NL63: a clinically important virus? (2011) Future Microbiol., 6, pp. 153-159; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., de Jong, J.C., Simon, J.H., Osterhaus, A.D., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 6212-6216; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J. Clin. Microbiol., 48, pp. 2940-2947; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Shi, Z., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J. Virol., 86, pp. 4620-4630; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Gloza-Rausch, F., Ipsen, A., Seebens, A., Gottsche, M., Panning, M., Felix Drexler, J., Petersen, N., Drosten, C., Detection and prevalence patterns of group I coronaviruses in bats, northern Germany (2008) Emerg. Infect. Dis., 14, pp. 626-631; Graat, J.M., Schouten, E.G., Heijnen, M.L., Kok, F.J., Pallast, E.G., de Greeff, S.C., Dorigo-Zetsma, J.W., A prospective, community-based study on virologic assessment among elderly people with and without symptoms of acute respiratory infection (2003) J. Clin. Epidemiol., 56, pp. 1218-1223; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J. Virol., 84, pp. 3134-3146; Greger, M., The human/animal interface: emergence and resurgence of zoonotic infectious diseases (2007) Crit. Rev. Microbiol., 33, pp. 243-299; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S., Smith, L.G., Characterization of a coronavirus isolated from a diarrheic foal (2000) J. Clin. Microbiol., 38, pp. 4523-4526; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; Hanada, K., Suzuki, Y., Gojobori, T., A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes (2004) Mol. Biol. Evol., 21, pp. 1074-1080; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Halpin, R., Wang, S., Saif, L.J., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J. Virol., 81, pp. 4981-4990; Haydon, D.T., Cleaveland, S., Taylor, L.H., Laurenson, M.K., Identifying reservoirs of infection: a conceptual and practical challenge (2002) Emerg. Infect. Dis., 8, pp. 1468-1473; Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J. Virol., 82, pp. 1819-1826; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13 (11). , e1006698; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Donaldson, E.F., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol., 86, pp. 12816-12825; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice (2006) Virology, 349, pp. 335-346; Jevsnik, M., Steyer, A., Zrim, T., Pokorn, M., Mrvic, T., Grosek, S., Strle, F., Petrovec, M., Detection of human coronaviruses in simultaneously collected stool samples and nasopharyngeal swabs from hospitalized children with acute gastroenteritis (2013) Virol. J., 10, p. 46; Kim, L., Hayes, J., Lewis, P., Parwani, A.V., Chang, K.O., Saif, L.J., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Arch. Virol., 145, pp. 1133-1147; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Kim, K.M., Ki, M., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin. Infect. Dis., 64, pp. 551-557; Konca, C., Korukluoglu, G., Tekin, M., Almis, H., Bucak, I.H., Uygun, H., Altas, A.B., Bayrakdar, F., The first infant death associated with human coronavirus NL63 infection (2017) Pediatr. Infect. Dis. J., 36, pp. 231-233; Larson, H.E., Reed, S.E., Tyrrell, D.A., Isolation of rhinoviruses and coronaviruses from 38 colds in adults (1980) J. Med. Virol., 5, pp. 221-229; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Yuen, K.Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819; Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., So, L.Y., Yuen, K.Y., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337; Lau, S.K., Woo, P.C., Yip, C.C., Fan, R.Y., Huang, Y., Wang, M., Guo, R., Yuen, K.Y., Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J. Virol., 86, pp. 5481-5496; Lau, S.K., Woo, P.C., Li, K.S., Tsang, A.K., Fan, R.Y., Luk, H.K., Cai, J.P., Yuen, K.Y., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J. Virol., 89, pp. 3076-3092; Lim, S.I., Choi, S., Lim, J.A., Jeoung, H.Y., Song, J.Y., Dela Pena, R.C., An, D.J., Complete genome analysis of canine respiratory coronavirus (2013) Genome Announc., 1 (1). , e00093-12; Lu, S., Wang, Y., Chen, Y., Wu, B., Qin, K., Zhao, J., Lou, Y., Tan, W., Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1 (2017) Virus Res., 237, pp. 7-13; Lukashev, A.N., Recombination among picornaviruses (2010) Rev. Med. Virol., 20, pp. 327-337; Mackay, I.M., Arden, K.E., Speicher, D.J., O'Neil, N.T., McErlean, P.K., Greer, R.M., Nissen, M.D., Sloots, T.P., Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004 (2012) Virus, 4, pp. 637-653; Majhdi, F., Minocha, H.C., Kapil, S., Isolation and characterization of a coronavirus from elk calves with diarrhea (1997) J. Clin. Microbiol., 35, pp. 2937-2942; Mayer, K., Nellessen, C., Hahn-Ast, C., Schumacher, M., Pietzonka, S., Eis-Hubinger, A.M., Drosten, C., Wolf, D., Fatal outcome of human coronavirus NL63 infection despite successful viral elimination by IFN-alpha in a patient with newly diagnosed ALL (2016) Eur. J. Haematol., 97, pp. 208-210; McIntosh, K., Coronaviruses in the limelight (2005) J. Infect. Dis., 191, pp. 489-491; McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc. Natl. Acad. Sci. U. S. A., 57, pp. 933-940; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3′->5′ exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (13), p. 5108; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Chong, W.K., Breuer, J., Human coronavirus OC43 associated with fatal encephalitis (2016) N. Engl. J. Med., 375, pp. 497-498; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Murray, R.S., Brown, B., Brian, D., Cabirac, G.F., Detection of coronavirus RNA and antigen in multiple sclerosis brain (1992) Ann. Neurol., 31, pp. 525-533; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Madani, T.A., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854; Oosterhof, L., Christensen, C.B., Sengelov, H., Fatal lower respiratory tract disease with human corona virus NL63 in an adult haematopoietic cell transplant recipient (2010) Bone Marrow Transplant., 45 (6), p. 1115; Openshaw, P.J., Crossing barriers: infections of the lung and the gut (2009) Mucosal Immunol., 2 (2), p. 100; Owusu, M., Annan, A., Corman, V.M., Larbi, R., Anti, P., Drexler, J.F., Agbenyega, O., Drosten, C., Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana (2014) PLoS One, 9; Paloniemi, M., Lappalainen, S., Vesikari, T., Commonly circulating human coronaviruses do not have a significant role in the etiology of gastrointestinal infections in hospitalized children (2015) J. Clin. Virol., 62, pp. 114-117; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N. Engl. J. Med., 349, pp. 2431-2441; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Muller, M.A., Drosten, C., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., McCallum, H., Ecological dynamics of emerging bat virus spillover (2015) Proc. Biol. Sci., 282; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Peiris, J.S., Identification of a novel coronavirus in bats (2005) J. Virol., 79, pp. 2001-2009; Pyrc, K., Sims, A.C., Dijkman, R., Jebbink, M., Long, C., Deming, D., Donaldson, E., Pickles, R., Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures (2010) J. Virol., 84, pp. 11255-11263; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Risku, M., Lappalainen, S., Rasanen, S., Vesikari, T., Detection of human coronaviruses in children with acute gastroenteritis (2010) J. Clin. Virol., 48, pp. 27-30; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Saif, L.J., Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? (2004) Rev. Sci. Tech., 23, pp. 643-660; Sanchez, C.M., Gebauer, F., Sune, C., Mendez, A., Dopazo, J., Enjuanes, L., Genetic evolution and tropism of transmissible gastroenteritis coronaviruses (1992) Virology, 190, pp. 92-105; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Muller, M.A., Corman, V.M., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg. Infect. Dis., 23, pp. 550-551; Smith, C.S., de Jong, C.E., Meers, J., Henning, J., Wang, L., Field, H.E., Coronavirus infection and diversity in bats in the Australasian region (2016) Ecohealth, 13, pp. 72-82; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 2430-2435; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus OC43: genetic stability and neuroinvasion (2004) J. Virol., 78, pp. 8824-8834; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91 (5). , pii: e01953-16; Tsoleridis, T., Onianwa, O., Horncastle, E., Dayman, E., Zhu, M., Danjittrong, T., Wachtl, M., McClure, C.P., Discovery of novel alphacoronaviruses in European rodents and shrews (2016) Virus, 8, p. 84; Tsunemitsu, H., el-Kanawati, Z.R., Smith, D.R., Reed, H.H., Saif, L.J., Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea (1995) J. Clin. Microbiol., 33, pp. 3264-3269; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br. Med. J., 1, pp. 1467-1470; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6). , e00473-12; van der Hoek, L., Human coronaviruses: what do they cause? (2007) Antivir. Ther., 12, pp. 651-658; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; van Elden, L.J., van Loon, A.M., van Alphen, F., Hendriksen, K.A., Hoepelman, A.I., van Kraaij, M.G., Oosterheert, J.J., Nijhuis, M., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction (2004) J. Infect. Dis., 189, pp. 652-657; Vijaykrishna, D., Smith, G.J., Zhang, J.X., Peiris, J.S., Chen, H., Guan, Y., Evolutionary insights into the ecology of coronaviruses (2007) J. Virol., 81, pp. 4012-4020; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J. Virol., 79, pp. 1595-1604; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J. Virol., 80, pp. 7270-7274; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations (2013) J. Infect. Dis., 208, pp. 1634-1642; Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., Chen, H., Xu, J., SARS-CoV infection in a restaurant from palm civet (2005) Emerg. Infect. Dis., 11, pp. 1860-1865; Wang, W., Lin, X.D., Guo, W.P., Zhou, R.H., Wang, M.R., Wang, C.Q., Ge, S., Zhang, Y.Z., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; Wang, W., Lin, X.D., Liao, Y., Guan, X.Q., Guo, W.P., Xing, J.G., Holmes, E.C., Zhang, Y.Z., Discovery of a highly divergent coronavirus in the Asian house shrew from China illuminates the origin of the alphacoronaviruses (2017) J. Virol., 91, pp. e00764-17; WHO, Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—Disease Outbreak News: 21 September 2017 (2017), accessed 03.10.2017; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Woo, P.C., Lau, S.K., Yip, C.C., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) J. Virol., 80, pp. 7136-7145; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med. (Maywood), 234, pp. 1117-1127; Woo, P.C., Lau, S.K., Yuen, K.Y., Clinical features and molecular epidemiology of coronavirus-HKU1-associated community-acquired pneumonia (2009) Hong Kong Med. J., 15, pp. 46-47; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Yuen, K.Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg. Infect. Dis., 20, pp. 560-572; Woo, P.C., Lau, S.K., Fan, R.Y., Lau, C.C., Wong, E.Y., Joseph, S., Tsang, A.K., Yuen, K.Y., Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the Middle East: minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23 (2016) Int. J. Mol. Sci., 17 (5). , pii: E691; Wunschmann, A., Frank, R., Pomeroy, K., Kapil, S., Enteric coronavirus infection in a juvenile dromedary (Camelus dromedarius) (2002) J. Vet. Diagn. Invest., 14, pp. 441-444; Xu, R.H., He, J.F., Evans, M.R., Peng, G.W., Field, H.E., Yu, D.W., Lee, C.K., Schnur, A., Epidemiologic clues to SARS origin in China (2004) Emerg. Infect. Dis., 10, pp. 1030-1037; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J. Virol., 90 (6), p. 3253; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-6; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhang, X.M., Herbst, W., Kousoulas, K.G., Storz, J., Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child (1994) J. Med. Virol., 44, pp. 152-161","Drosten, C.; German Center for Infection Research (DZIF)Germany; email: christian.drosten@charite.de","Kielian M.Mettenleiter T.C.Roossinck M.J.","Academic Press Inc.",00653527,9780128152010,,"29551135","English","Adv. Virus Res.",Book Chapter,"Final",Open Access,Scopus,2-s2.0-85042024535 "Nikolaeva S.V., Zvereva Z.A., Kanner E.V., Yatsyshina S.B., Usenko D.V., Gorelov A.V.","57203268745;57204069951;57189342899;8876779600;16176800800;7005253154;","A clinical-laboratory characteristic of coronavirus infection in children",2018,"Infektsionnye Bolezni","16","1",,"35","39",,,"10.20953/1729-9225-2018-1-35-39","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054369409&doi=10.20953%2f1729-9225-2018-1-35-39&partnerID=40&md5=f7f8008d57c295154dc5b2f33c7ccbda","Clinical department of infectious pathology, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation; Respiratory group, Department of molecular diagnostics, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation; Mytishchi City Children’s Polyclinic No 2, 36 Letnaya str., Moscow region, Mytishchi, 141021, Russian Federation; I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation","Nikolaeva, S.V., Clinical department of infectious pathology, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation; Zvereva, Z.A., Mytishchi City Children’s Polyclinic No 2, 36 Letnaya str., Moscow region, Mytishchi, 141021, Russian Federation; Kanner, E.V., Clinical department of infectious pathology, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation; Yatsyshina, S.B., Respiratory group, Department of molecular diagnostics, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation; Usenko, D.V., Clinical department of infectious pathology, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation; Gorelov, A.V., Clinical department of infectious pathology, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Moscow, 111123, Russian Federation, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation","The objective. To offer a clinical and laboratory characteristic of coronavirus infection in hospitalised children. Patients and methods. The group of study included 50 children, who were diagnosed with coronavirus infection by polymerase chain reaction (PCR). Mono-coronavirus infection was found in 40 children (80%), mixed virus infection conditioned by a combination of two or three viruses - in 10 children (20%). Results. In all examined children with coronavirus infection disease had an acute onset and took a mild or moderate course. In general, the clinical picture of disease was manifested by cough, signs of rhinitis (stuffy nose, mucus discharge from the nose), febrile fever (in 52.5% of patients with mono-infection and in 80% of children with mixed infection), laryngotracheitis with laryngeal stenosis grade 1 (in 52.5% with mono-infection and in 80% with mixed infection). In 10% of children with monoinfection and in 50% of children with mixed infection gastrointestinal dysfunction was noted in the form of repeated vomiting to 2-6 times, diarrhoea to 1-4 times daily without pathological admixtures. Haematological parameters did not show any characteristic specificities in any child in both mono-infection and mixed infection. Cclusionon. Catarrhal inflammation is the leading clinical syndrome in mono- and mixed coronavirus infection; disease was manifested by cough, often - elevated body temperature, signs of stenosing laryngitis; part of children developed gastrointestinal dysfunction. © 2018, Dynasty Publishing House. All rights reserved.","Acute respiratory infections (ARIs); Children; Clinical and laboratory specificities; Coronavirus infection",,"Vijgen, L., Keyaerts, E., Moës, E., Maes, P., Duson, G., Van Ranst, M., Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E (2005) J. Clin. Microbiol, 43, pp. 5452-5456; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44 (6), pp. 2063-2071; Jevšnik, M., Steyer, A., Pokorn, M., Mrvič, T., Grosek, Š., Strle, F., The Role of Human Coronaviruses in Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures: A 2-Year Prospective Study (2016) Plos One, 11 (5); Smuts, H., Human coronavirus NL63 infections in infants hospitalised with acute respiratory tract infections in South Africa (2008) Influenza Other Respir. Influenza Other Respir Viruses, 2 (4), pp. 135-138; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical Impact of Human Coronaviruses 229E and OC43 Infection in Diverse Adult Populations (2013) J Infect Dis, 208 (10), pp. 1634-1642; Pene, F., Merlat, A., Vabret, A., Rozenberg, F., Buzyn, A., Dreyfus, F., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37 (7), pp. 929-932; Gorse, G.J., O’Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J Infect Dis, 199 (6), pp. 847-857; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An Outbreak of Coronavirus OC43 Respiratory Infection in Normandy, France (2003) Clin Infect Dis, 36 (8), pp. 985-989; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by Human Respiratory Coronaviruses (2000) J Virol, 74 (19), pp. 8913-8921; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice (2006) Virology, 349 (2), pp. 335-346; Van Der Hoek, L., Human coronaviruses: What do they cause? (2007) Antivir Ther, 12 (4), pp. 651-658; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11 (12), pp. 836-848; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, p. 87; Vergara-Alert, J., Vidal, E., Bensaid, A., Segalés, J., Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus (2017) One Health, 3, pp. 34-40; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Spread of Mutant Middle East Respiratory Syndrome Coronavirus with Reduced Affinity to Human CD26 during the South Korean Outbreak (2016) Mbio, 7 (2); Middle East Respiratory Syndrome Coronavirus (Mers-Cov). Fact Sheet, , http://www.who.int/mediacentre/factsheets/mers-cov/en/; Baranov, A.A., Gorelov, A.V., Kaganov, B.S., (2005) Ostrye respiratornye zabolevaniya u detei: Lechenie i profilaktika, p. 68. , [Acute respiratory infections in children: treatment and prevention]. Mosocw: the Union of pediatricians of Russia. Мoscow; Aya, M., Osidak, L.V., Rumel’, N.B., Korenyako, I.E., Znachimost’ koronavirusnoi infektsii v ostroi respiratornoi patologii u detei (2003) Children Infections, 3, pp. 22-25; Shvets, E., (2009) Clinical and Epidemiological Features and Diagnostic Bocavirus Infection in Children, p. 24. , Diss. Мoscow; Evseeva, E.L., (2009) Clinical and Epidemiological Features and Diagnostic Metapneumoviruses Infection in Children, p. 24. , Diss. Мoscow; Sel’Kova, E.P., Kalyuzhin, O.V., (2015) ORVI I Gripp [ARVI and Influenza], p. 223. , Мoscow: “MIA” Publ","Nikolaeva, S.V.; Clinical department of infectious pathology, Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and Welfare, 3A Novogireevskaya str., Russian Federation; email: nikolaeva008@list.ru",,"Dynasty Publishing House",17299225,,,,"Russian","Infektsionnye Bolezni",Article,"Final",,Scopus,2-s2.0-85054369409 "Tsai T.-L., Lin C.-H., Lin C.-N., Lo C.-Y., Wu H.-Y.","57191610762;57191612041;36707995900;57191609693;57129133800;","Interplay between the poly(A) tail, poly(A)-binding protein, and coronavirus nucleocapsid protein regulates gene expression of coronavirus and the host cell",2018,"Journal of Virology","92","23", e01162,"","",,2,"10.1128/JVI.01162-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056302953&doi=10.1128%2fJVI.01162-18&partnerID=40&md5=dc7a7b6a225d777230f64be814025f2d","Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan","Tsai, T.-L., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Lin, C.-H., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Lin, C.-N., Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan; Lo, C.-Y., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Wu, H.-Y., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan","In the present study, we investigated the roles of interactions among the poly(A) tail, coronavirus nucleocapsid (N) protein, and poly(A)-binding protein (PABP) in the regulation of coronavirus gene expression. Through dissociation constant (K d ) comparison, we found that the coronavirus N protein can bind to the poly(A) tail with high affinity, establishing N protein as a PABP. A subsequent analysis with UV cross-linking and immunoprecipitation revealed that the N protein is able to bind to the poly(A) tail in infected cells. Further examination demonstrated that poly(A) tail binding by the N protein negatively regulates translation of coronaviral RNA and host mRNA both in vitro and in cells. Although the N protein can interact with PABP and eukaryotic initiation factor 4G (eIF4G), the poor interaction efficiency between the poly(A)-bound N protein and eIF4E may explain the observed decreased translation efficiency. In addition to interaction with translation factor eIF4G, the N protein is able to interact with coronavirus nonstructural protein 9 (nsp9), a replicase protein required for replication. The study demonstrates interactions among the poly(A) tail, N protein, and PABP both in vitro and in infected cells. Of the interactions, binding of the poly(A) tail to N protein decreases the interaction efficiency between the poly(A) tail and eIF4E, leading to translation inhibition. The poly(A)-dependent translation inhibition by N protein has not been previously demonstrated and thus extends our understanding of coronavirus gene expression. Copyright © 2018 American Society for Microbiology. All Rights Reserved.","Coronavirus; Gene expression; Nucleocapsid protein; Poly(A) tail; Poly(A)-binding protein; Replication; RNA synthesis; Translation","initiation factor 4G; messenger RNA; nonstructural protein 9; nucleocapsid protein; poly(A) tail protein; polyadenylic acid; polyadenylic acid binding protein; Sindbis virus nonstructural protein 4; unclassified drug; viral protein; virus RNA; initiation factor 4E; initiation factor 4G; nucleocapsid protein; nucleocapsid protein, Coronavirus; polyadenylic acid; polyadenylic acid binding protein; Article; binding affinity; controlled study; Coronavirinae; cross linking; dissociation constant; gene expression regulation; host cell; immunoprecipitation; in vitro study; nonhuman; priority journal; protein interaction; RNA translation; virus cell interaction; animal; bovine; Bovine coronavirus; Coronavirus infection; genetics; HEK293 cell line; human; metabolism; physiology; virology; Animals; Cattle; Coronavirus Infections; Coronavirus, Bovine; Eukaryotic Initiation Factor-4E; Eukaryotic Initiation Factor-4G; Gene Expression Regulation; HEK293 Cells; Humans; Nucleocapsid Proteins; Poly A; Poly(A)-Binding Proteins","King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Virus taxonomy. Classification and nomenclature of viruses (2011) Ninth Report of the International Committee on Taxonomy of Viruses, , ed. Elsevier Academic Press, San Diego, CA; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc, 2, pp. e01191-e01214. , https://doi.org/10.1128/genomeA.01191-14; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292. , https://doi.org/10.1016/S0065-3527(06)66005-3; Chen, H., Gill, A., Dove, B.K., Emmett, S.R., Kemp, C.F., Ritchie, M.A., Dee, M., Hiscox, J.A., Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance (2005) J Virol, 79, pp. 1164-1179. , https://doi.org/10.1128/JVI.79.2.1164-1179.2005; Nelson, G.W., Stohlman, S.A., Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein (1993) J Gen Virol, 74, pp. 1975-1979; Cologna, R., Spagnolo, J.F., Hogue, B.G., Identification of nucleocapsid binding sites within coronavirus-defective genomes (2000) Virology, 277, pp. 235-249. , https://doi.org/10.1006/viro.2000.0611; Grossoehme, N.E., Li, L.C., Keane, S.C., Liu, P.H., Dann, C.E., Leibowitz, J.L., Giedroc, D.P., Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes (2009) J Mol Biol, 394, pp. 544-557. , https://doi.org/10.1016/j.jmb.2009.09.040; Verheije, M.H., Hagemeijer, M.C., Ulasli, M., Reggiori, F., Rottier, P.J.M., Masters, P.S., De Haan, C.A.M., The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes (2010) J Virol, 84, pp. 11575-11579. , https://doi.org/10.1128/JVI.00569-10; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) J Virol, 84, pp. 10276-10288. , https://doi.org/10.1128/JVI.01287-10; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J Virol, 87, pp. 9159-9172. , https://doi.org/10.1128/JVI.01275-13; Denison, M.R., Spaan, W.J.M., Van Der Meer, Y., Gibson, C.A., Sims, A.C., Prentice, E., Lu, X.T., The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis (1999) J Virol, 73, pp. 6862-6871; Sims, A.C., Ostermann, J., Denison, M.R., Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes (2000) J Virol, 74, pp. 5647-5654. , https://doi.org/10.1128/JVI.74.12.5647-5654.2000; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martinez-Sobrido, L., Garcia-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315. , https://doi.org/10.1016/j.virol.2006.11.027; Van Der Meer, Y., Snijder, E.J., Dobbe, J.C., Schleich, S., Denison, M.R., Spaan, W.J.M., Locker, J.K., Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication (1999) J Virol, 73, pp. 7641-7657; Chang, R.Y., Brian, D.A., Cis requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication (1996) J Virol, 70, pp. 2201-2207; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002; Almazán, F., Galan, C., Enjuanes, L., The nucleoprotein is required for efficient coronavirus genome replication (2004) J Virol, 78, pp. 12683-12688. , https://doi.org/10.1128/JVI.78.22.12683-12688.2004; Schelle, B., Karl, N., Ludewig, B., Siddell, S.G., Thiel, V., Selective replication of coronavirus genomes that express nucleocapsid protein (2005) J Virol, 79, pp. 6620-6630. , https://doi.org/10.1128/JVI.79.11.6620-6630.2005; Wu, C.H., Chen, P.J., Yeh, S.H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16, pp. 462-472. , https://doi.org/10.1016/j.chom.2014.09.009; Brockway, S.M., Clay, C.T., Lu, X.T., Denison, M.R., Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase (2003) J Virol, 77, pp. 10515-10527. , https://doi.org/10.1128/JVI.77.19.10515-10527.2003; Miknis, Z.J., Donaldson, E.F., Umland, T.C., Rimmer, R.A., Baric, R.S., Schultz, L.W., Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth (2009) J Virol, 83, pp. 3007-3018. , https://doi.org/10.1128/JVI.01505-08; Züst, R., Miller, T.B., Goebel, S.J., Thiel, V., Masters, P.S., Genetic interactions between an essential 3= cis-acting RNA pseudoknot, replicase gene products, and the extreme 3= end of the mouse coronavirus genome (2008) J Virol, 82, pp. 1214-1228. , https://doi.org/10.1128/JVI.01690-07; Deo, R.C., Bonanno, J.B., Sonenberg, N., Burley, S.K., Recognition of polyadenylate RNA by the poly(A)-binding protein (1999) Cell, 98, pp. 835-845. , https://doi.org/10.1016/S0092-8674(00)81517-2; Gorgoni, B., Gray, N.K., The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: A developmental perspective (2004) Brief Funct Genomic Proteomic, 3, pp. 125-141. , https://doi.org/10.1093/bfgp/3.2.125; Gingras, A.C., Raught, B., Sonenberg, N., EIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation (1999) Annu Rev Biochem, 68, pp. 913-963. , https://doi.org/10.1146/annurev.biochem.68.1.913; Merrick, W.C., Cap-dependent and cap-independent translation in eukaryotic systems (2004) Gene, 332, pp. 1-11. , https://doi.org/10.1016/j.gene.2004.02.051; Gamarnik, A.V., Andino, R., Switch from translation to RNA replication in a positive-stranded RNA virus (1998) Genes Dev, 12, pp. 2293-2304. , https://doi.org/10.1101/gad.12.15.2293; Barton, D.J., Morasco, B.J., Flanegan, J.B., Translating ribosomes inhibit poliovirus negative-strand RNA synthesis (1999) J Virol, 73, pp. 10104-10112; Yu, I.M., Gustafson, C.L.T., Diao, J.B., Burgner, J.W., Li, Z.H., Zhang, J.Q., Chen, J., Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain (2005) J Biol Chem, 280, pp. 23280-23286. , https://doi.org/10.1074/jbc.M501015200; Lo, Y.S., Lin, S.Y., Wang, S.M., Wang, C.T., Chiu, Y.L., Huang, T.H., Hou, M.H., Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein (2013) FEBS Lett, 587, pp. 120-127. , https://doi.org/10.1016/j.febslet.2012.11.016; Kühn, U., Pieler, T., Xenopus poly(A) binding protein: Functional domains in RNA binding and protein-protein interaction (1996) J Mol Biol, 256, pp. 20-30. , https://doi.org/10.1006/jmbi.1996.0065; Knoops, K., Kikkert, M., Van Den Worm, S.H.E., Zevenhoven-Dobbe, J.C., Van Der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6, pp. 1957-1974. , https://doi.org/10.1371/journal.pbio.0060226; Brown, C.G., Nixon, K.S., Senanayake, S.D., Brian, D.A., An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication (2007) J Virol, 81, pp. 7716-7724. , https://doi.org/10.1128/JVI.00549-07; Chang, R.Y., Hofmann, M.A., Sethna, P.B., Brian, D.A., A cis-acting function for the coronavirus leader in defective interfering RNA replication (1994) J Virol, 68, pp. 8223-8231; Raman, S., Brian, D.A., Stem-loop IV in the 5= untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication (2005) J Virol, 79, pp. 12434-12446. , https://doi.org/10.1128/JVI.79.19.12434-12446.2005; Spagnolo, J.F., Hogue, B.G., Host protein interactions with the 3= end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication (2000) J Virol, 74, pp. 5053-5065. , https://doi.org/10.1128/JVI.74.11.5053-5065.2000; Wu, H.Y., Brian, D.A., 5=-Proximal hot spot for an inducible positive-to-negative-strand template switch by coronavirus RNA-dependent RNA polymerase (2007) J Virol, 81, pp. 3206-3215. , https://doi.org/10.1128/JVI.01817-06; Soto Rifo, R., Ricci, E.P., Decimo, D., Moncorge, O., Ohlmann, T., Back to basics: The untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation (2007) Nucleic Acids Res, 35. , https://doi.org/10.1093/nar/gkm682; Hong, K.Y., Lee, S.H., Gu, S., Kim, E., An, S., Kwon, J., Lee, J.B., Jang, S.K., The bent conformation of poly(A)-binding protein induced by RNA-binding is required for its translational activation function (2017) RNA Biol, 14, pp. 370-377. , https://doi.org/10.1080/15476286.2017.1280224; Gross, J.D., Moerke, N.J., Von Der Haar, T., Lugovskoy, A.A., Sachs, A.B., McCarthy, J.E., Wagner, G., Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E (2003) Cell, 115, pp. 739-750. , https://doi.org/10.1016/S0092-8674(03)00975-9; Prevot, D., Darlix, J.L., Ohlmann, T., Conducting the initiation of protein synthesis: The role of eIF4G (2003) Biol Cell, 95, pp. 141-156. , https://doi.org/10.1016/S0248-4900(03)00031-5; Papadopoulos, E., Jenni, S., Kabha, E., Takrouri, K.J., Yi, T., Salvi, N., Luna, R.E., Wagner, G., Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G (2014) Proc Natl Acad Sci U S A, 111, pp. E3187-E3195. , https://doi.org/10.1073/pnas.1410250111; Gingras, A.C., Raught, B., Gygi, S.P., Niedzwiecka, A., Miron, M., Burley, S.K., Polakiewicz, R.D., Sonenberg, N., Hierarchical phosphorylation of the translation inhibitor 4E-BP1 (2001) Genes Dev, 15, pp. 2852-2864. , https://doi.org/10.1101/gad.887201; Wu, H.Y., Brian, D.A., Subgenomic messenger RNA amplification in coronaviruses (2010) Proc Natl Acad Sci U S A, 107, pp. 12257-12262. , https://doi.org/10.1073/pnas.1000378107; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., Coronavirus cis-acting RNA elements (2016) Adv Virus Res, 96, pp. 127-163; Wu, H.Y., Ke, T.Y., Liao, W.Y., Chang, N.Y., Regulation of coronaviral poly(A) tail length during infection (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0070548; Hofmann, M.A., Brian, D.A., The 5= end of coronavirus minus-strand RNAs contains a short poly(U) tract (1991) J Virol, 65, pp. 6331-6333; Bost, A.G., Prentice, E., Denison, M.R., Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection (2001) Virology, 285, pp. 21-29. , https://doi.org/10.1006/viro.2001.0932; Lerner, R.S., Nicchitta, C.V., mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of cap-dependent translation (2006) RNA, 12, pp. 775-789. , https://doi.org/10.1261/rna.2318906; King, B., Brian, D.A., Bovine coronavirus structural proteins (1982) J Virol, 42, pp. 700-707; Lapps, W., Hogue, B.G., Brian, D.A., Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes (1987) Virology, 157, pp. 47-57. , https://doi.org/10.1016/0042-6822(87)90312-6","Wu, H.-Y.; Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing UniversityTaiwan; email: hwu2@dragon.nchu.edu.tw",,"American Society for Microbiology",0022538X,,JOVIA,"30209168","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85056302953 "Nassar M.S., Bakhrebah M.A., Meo S.A., Alsuabeyl M.S., Zaher W.A.","37085370000;56557112100;7003732623;57203283976;24767240800;","Global seasonal occurrence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection",2018,"European Review for Medical and Pharmacological Sciences","22","12",,"3913","3918",,4,"10.26355/eurrev-201806-15276","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051129302&doi=10.26355%2feurrev-201806-15276&partnerID=40&md5=44180fa14ca0de003c388402c07da9ae","King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; College of Medicine Research Centre (CMRC), King Saud University, Riyadh, Saudi Arabia; Abu Dhabi Health Services Corporation (Seha), Abu Dhabi, United Arab Emirates","Nassar, M.S., King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; Bakhrebah, M.A., King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; Meo, S.A., Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Alsuabeyl, M.S., King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; Zaher, W.A., College of Medicine Research Centre (CMRC), King Saud University, Riyadh, Saudi Arabia, Abu Dhabi Health Services Corporation (Seha), Abu Dhabi, United Arab Emirates","OBJECTIVE: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an evolving global health crisis. Despite recent efforts, there are numerous notable gaps in the understanding of MERS-CoV seasonal diversity. We aimed at investigating the global seasonal occurrence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) outbreaks. MATERIALS AND METHODS: We obtained the data on the prevalence and occurrence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection from the World Health Organization (WHO) for all the MERS cases reported from the various countries and their allied ministries. We also recorded the research documents published in various global scientific journals on the seasonal occurrence of MERSCoV infection during the period 2012-2017. RESULTS: Worldwide 2048 laboratory confirmed cases of MERS-CoV infection were reported from June 2012 to the Dec 2017. 1680 (82.03%) cases were from the Saudi Arabia and 368 (17.96%) cases were reported from the other countries of the world. The maximum number of cases reported in June was 474 (23.14%). 287 (14.01%) cases were reported from Saudi Arabia and remaining 187 (9.13%) cases were reported from all over the world. The number of cases reported from April to June was 396 (19.33%) while the cases encountered from October to December were 231 (11.27%). CONCLUSIONS: The highest global seasonal occurrence of Middle East Respiratory Syndrome coronavirus-MERS-CoV outbreak cases were found in the month of June, while the lowest was found in the month of January during the period of 2012 to 2017. The pattern of MERSCoV infections has been observed to have seasonal variations. It is suggested that the health officials should highlight the seasonal occurrence of MERS-CoV outbreak and take better preventive measures to minimize the disease burden nationally and globally. © 2018 Verduci Editore s.r.l.All Rights Reserved.","Coronavirus; MERS; Mers-co virus; Prevalence; Seasonal occurrence","Article; disease burden; disease control; epidemic; health care personnel; human; laboratory test; major clinical study; Middle East respiratory syndrome; observational study; prevalence; Saudi Arabia; seasonal variation; Coronavirus infection; global health; season; World Health Organization; Coronavirus Infections; Disease Outbreaks; Global Health; Humans; Seasons; World Health Organization","Fantacci, C., Ferrara, P., Franceschi, F., Chiaretti, A., Pneumopericardium, pneumomediastinum, and pneumorrachis complicating acute respiratory syncytial virus bronchiolitis in children (2017) Eur Rev Med Pharmacol Sci, 21, pp. 3465-3468; Zaki, A.M., Van, B.S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Majumder, M.S., Rivers, C., Lofgren, E., Fisman, D., Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: Nsights from publicity available data (2014) PLoS Curr, p. 6. , Dec. 18; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing sars-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Alqahtani, A.S., Rashid, H., Basyouni, M.H., Alhawassi, T.M., BinDhim, N.F., Public response to MERS-CoV in the middle east: IPhone survey in six countries (2017) J Infect Pub Health, 10, pp. 534-540; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update (2017) PLoS One, 12; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human middle East respiratory syndrome coronavirus in bat South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARSlike coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 533-535; Raj, V.S., Osterhaus, A.D.M.E., Fouchier, R.A.M., Haagmans, B.L., MERS: Emergence of a novel human coronavirus (2014) Current Opinion in Virol, 5, pp. 58-62; Raj, V.S., Smits, S.L., Provacia, L.B., Vanden Brand, J.M., Wiersma, L., Ouwendijk, W.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4 mediated entry of the middle east respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838; Global Summary and Risk Assessment, , http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf, cited date Feb. 2, 2018; State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr, 5. , pii: 0bf 719e352; ISI Web of Knowl Edge, , http://webofknowledge.com/JCR/JCR?PointOfEntry=Home&SID=4FeKpokbnHkLlmE1OGe, Retrieved on Jan 22. 2018; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56","Meo, S.A.; Department of Physiology, College of Medicine, King Saud UniversitySaudi Arabia; email: sultanmeo@hotmail.com",,"Verduci Editore s.r.l",11283602,,RESFD,"29949167","English","Eur. Rev. Med. Pharmacol. Sci.",Article,"Final",,Scopus,2-s2.0-85051129302 "Lei J., Kusov Y., Hilgenfeld R.","47461414700;7004085684;7006843618;","Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein",2018,"Antiviral Research","149",,,"58","74",,17,"10.1016/j.antiviral.2017.11.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034114202&doi=10.1016%2fj.antiviral.2017.11.001&partnerID=40&md5=bbaf4d2211e72a15c7dfb3c152d06ded","Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany; German Center for Infection Research (DZIF), Hamburg – Lübeck – Borstel – Riems Site, University of Lübeck, Germany","Lei, J., Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany; Kusov, Y., Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany; Hilgenfeld, R., Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany, German Center for Infection Research (DZIF), Hamburg – Lübeck – Borstel – Riems Site, University of Lübeck, Germany","The multi-domain non-structural protein 3 (Nsp3) is the largest protein encoded by the coronavirus (CoV) genome, with an average molecular mass of about 200 kD. Nsp3 is an essential component of the replication/transcription complex. It comprises various domains, the organization of which differs between CoV genera, due to duplication or absence of some domains. However, eight domains of Nsp3 exist in all known CoVs: the ubiquitin-like domain 1 (Ubl1), the Glu-rich acidic domain (also called “hypervariable region”), a macrodomain (also named “X domain”), the ubiquitin-like domain 2 (Ubl2), the papain-like protease 2 (PL2pro), the Nsp3 ectodomain (3Ecto, also called “zinc-finger domain”), as well as the domains Y1 and CoV-Y of unknown functions. In addition, the two transmembrane regions, TM1 and TM2, exist in all CoVs. The three-dimensional structures of domains in the N-terminal two thirds of Nsp3 have been investigated by X-ray crystallography and/or nuclear magnetic resonance (NMR) spectroscopy since the outbreaks of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003 as well as Middle-East Respiratory Syndrome coronavirus (MERS-CoV) in 2012. In this review, the structures and functions of these domains of Nsp3 are discussed in depth. © 2017 Elsevier B.V.","Innate immunity; Macrodomain; Nucleic-acid binding domain; Papain-like protease; Structural biology; Ubiquitin-like domain","nonstructural protein 3; glutamine; papain; protein binding; ubiquitin; viral protein; betacoronavirus speciic marker domain; Coronaviridae; coronavirus y domain; macrodomain i; macrodomain ii; macrodomain iii; nonhuman; nsp3 ectodomain; nuclear magnetic resonance spectroscopy; nucleic acid binding domain; papain like protease 1 domain; papain like protease 2 domain; priority journal; protein domain; protein function; protein structure; Review; transmembrane region; ubiquitin like domain 1; ubiquitin like domain 2; X ray crystallography; y1 domain; amino acid sequence; chemistry; Coronaviridae; genetics; human; metabolism; molecular model; protein conformation; protein domain; structure activity relation; Amino Acid Sequence; Coronaviridae; Glutamine; Humans; Models, Molecular; Papain; Protein Binding; Protein Conformation; Protein Domains; Protein Interaction Domains and Motifs; Structure-Activity Relationship; Ubiquitin; Viral Nonstructural Proteins","Adams, M.J., Carstens, E.B., Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2012) Arch. Virol., 157, pp. 1411-1422; Aebi, M., N-linked protein glycosylation in the ER (2013) Biochim. Biophys. Acta, 1833, pp. 2430-2437; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3 (2017) Biol. Pharm. Bull., 40, pp. 345-351; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio, 4. , pii: e00524-13; Aravind, L., Zhang, D., de Souza, R.F., Anand, S., Iyer, L.M., The natural history of ADP-ribosyltransferases and the ADP-ribosylation system (2015) Curr. Top. Microbiol. Immunol., 384, pp. 3-32; Atasheva, S., Frolova, E.I., Frolov, I., Interferon-stimulated poly(ADP-ribose) polymerases are potent inhibitors of cellular translation and virus replication (2014) J. Virol., 88, pp. 2116-2130; Báez-Santos, Y.M., Mielech, A.M., Deng, X., Baker, S., Mesecar, A.D., Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 12511-12527; Báez-Santos, Y.M., St John, S.E., Mesecar, A.D., The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds (2015) Antivir. Res., 115, pp. 21-38; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J. Biol. Chem., 289, pp. 34667-34682; Bakshi, S., Holzer, B., Bridgen, A., McMullan, G., Quinn, D.G., Baron, M.D., Dugbe virus ovarian tumour domain interferes with ubiquitin/ISG15-regulated innate immune cell signalling (2013) J. Gen. Virol., 94, pp. 298-307; Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., Baker, S.C., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity (2005) J. Virol., 79, pp. 15189-15198; Basters, A., Geurink, P.P., Röcker, A., Witting, K.F., Tadayon, R., Hess, S., Semrau, M.S., Fritz, G., Structural basis of the specificity of USP18 toward ISG15 (2017) Nat. Struct. Mol. Biol., 24, pp. 270-278; Békés, M., Rut, W., Kasperkiewicz, P., Mulder, M.P., Ovaa, H., Drag, M., Lima, C.D., Huang, T.T., SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme (2015) Biochem. J., 468, pp. 215-226; Békés, M., van der Heden van Noort, G.J., Ekkebus, R., Ovaa, H., Huang, T.T., Lima, C.D., Recognition of Lys48-linked di-ubiquitin and deubiquitinating activities of the SARS coronavirus papain-like protease (2016) Mol. Cell, 62, pp. 572-585; Bencze, K.Z., Kondapalli, K.C., Cook, J.D., McMahon, S., Millán-Pacheco, C., Pastor, N., Stemmler, T.L., The structure and function of frataxin (2006) Crit. Rev. Biochem. Mol. Biol., 41, pp. 269-291; Bonilla, P.J., Hughes, S.A., Weiss, S.R., Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59 (1997) J. Virol., 71, pp. 900-909; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr. Top. Microbiol. Immunol., 287, pp. 1-30; Brierley, I., Digard, P., Inglis, S.C., Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot (1989) Cell, 57, pp. 537-547; Bütepage, M., Eckei, L., Verheugd, P., Lüscher, B., Intracellular mono-ADP-ribosylation in signaling and disease (2015) Cells, 4, pp. 569-595; Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., Huang, T.H., The SARS coronavirus nucleocapsid protein − forms and functions (2014) Antivir. Res., 103, pp. 39-50; Chatterjee, A., Johnson, M.A., Serrano, P., Pedrini, B., Joseph, J.S., Neuman, B.W., Saikatendu, K., Wüthrich, K., Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold (2009) J. Virol., 83, pp. 1823-1836; Chen, C.J., Makino, S., Murine coronavirus replication induces cell cycle arrest in G0/G1 phase (2004) J. Virol., 78, pp. 5658-5669; Chen, Z., Wang, Y., Ratia, K., Mesecar, A.D., Wilkinson, K.D., Baker, S.C., Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63 (2007) J. Virol., 81, pp. 6007-6018; Chen, X., Yang, X., Zheng, Y., Yang, Y., Xing, Y., Chen, Z., SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex (2014) Protein Cell, 5, pp. 369-381; Chen, Y., Savinov, S.N., Mielech, A.M., Cao, T., Baker, S.C., Mesecar, A.D., X-ray structural and functional studies of the three tandemly linked domains of non-structural protein 3 (nsp3) from murine hepatitis virus reveal conserved functions (2015) J. Biol. Chem., 290, pp. 25293-25306; Cho, C.C., Lin, M.H., Chuang, C.Y., Hsu, C.H., Macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV) is an efficient ADP-ribose binding module: crystal structure and biochemical studies (2016) J. Biol. Chem., 291, pp. 4894-4902; Chou, C.Y., Lai, H.Y., Chen, H.Y., Cheng, S.C., Cheng, K.W., Chou, Y.W., Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease (2014) Acta Crystallogr. D. Biol. Crystallogr., 70, pp. 572-581; Chou, C.C., Wang, A.H., Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry (2015) Mol. Biosyst., 11, pp. 2144-2151; Clasman, J.R., Báez-Santos, Y.M., Mettelman, R.C., O'Brien, A., Baker, S.C., Mesecar, A.D., X-ray structure and enzymatic activity profile of a core papain-like protease of MERS coronavirus with utility for structure-based drug design (2017) Sci. Rep., 7, p. 40292; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Baez-Santos, Y.M., Baker, S.C., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J. Virol., 84, pp. 4619-4629; Coleman, M.L., Marshall, C.J., Olson, M.F., RAS and RHO GTPases in G1-phase cell-cycle regulation (2004) Nat. Rev. Mol. Cell Biol., 5, pp. 355-366; Daczkowski, C.M., Dzimianski, J.V., Clasman, J.R., Goodwin, O., Mesecar, A.D., Pegan, S.D., Structural insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species (2017) J. Mol. Biol., 429, pp. 1661-1683; Daczkowski, C.M., Goodwin, O., Dzimianski, J.V., Farhat, J.J., Pegan, S.D., Structurally guided removal of deISGylase biochemical activity from papain-Like protease originating from the Middle East Respiratory Syndrome Virus (2017) J. Virol., , pii: JVI.01067–17; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Li, K., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J. Biol. Chem., 282, pp. 32208-32221; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; Dikic, I., Dötsch, V., Ubiquitin linkages make a difference (2009) Nat. Struct. Mol. Biol., 16, pp. 1209-1210; Dikic, I., Wakatsuki, S., Walters, K.J., Ubiquitin-binding domains - from structures to functions (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 659-671; Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Eckei, L., Krieg, S., Bütepage, M., Lehmann, A., Gross, A., Lippok, B., Grimm, A.R., Verheugd, P., The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases (2017) Sci. Rep., 7, p. 41746; Egloff, M.P., Malet, H., Putics, A., Heinonen, M., Dutartre, H., Frangeul, A., Gruez, A., Canard, B., Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains (2006) J. Virol., 80, pp. 8493-8502; Eriksson, K.K., Cervantes-Barragán, L., Ludewig, B., Thiel, V., Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1″-phosphatase, a viral function conserved in the alpha-like supergroup (2008) J. Virol., 82, pp. 12325-12334; Faesen, A.C., Luna-Vargas, M.P., Sixma, T.K., The role of UBL domains in ubiquitin-specific proteases (2012) Biochem. Soc. Trans., 40, pp. 539-545; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J. Virol., 89, pp. 1523-1536; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D.K., Perlman, S., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) MBio, 7. , pii: e01721–16; Feijs, K.L., Verheugd, P., Lüscher, B., Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology (2013) FEBS J., 280, pp. 3519-3529; Forni, D., Cagliani, R., Mozzi, A., Pozzoli, U., Al-Daghri, N., Clerici, M., Sironi, M., Extensive positive selection drives the evolution of nonstructural proteins in lineage C betacoronaviruses (2016) J. Virol., 90, pp. 3627-3639; Foury, F., Cazzalini, O., Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria (1997) FEBS Lett., 411, pp. 373-377; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling (2009) J. Virol., 83, pp. 6689-6705; Galán, C., Sola, I., Nogales, A., Thomas, B., Akoulitchev, A., Enjuanes, L., Almazán, F., Host cell proteins interacting with the 3' end of TGEV coronavirus genome influence virus replication (2009) Virology, 391, pp. 304-314; Geilhausen, H.E., Ligon, F.B., Lukert, P.D., The pathogenesis of virulent and avirulent avian infectious bronchitis virus (1973) Arch. Gesamte Virusforsch, 40, pp. 285-290; Gibson, B.A., Kraus, W.L., New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs (2012) Nat. Rev. Mol. Cell Biol., 13, pp. 411-424; Gorbalenya, A.E., Koonin, E.V., Lai, M.M., Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses (1991) FEBS Lett., 288, pp. 201-205; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res., 117, pp. 17-37; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Gouet, P., Courcelle, E., Stuart, D.I., Métoz, F., ESPript: analysis of multiple sequence alignments in PostScript (1999) Bioinformatics, 15, pp. 305-308; Graham, R.L., Denison, M.R., Replication of murine hepatitis virus is regulated by papain-like proteinase 1 processing of nonstructural proteins 1, 2, and 3 (2006) J. Virol., 80, pp. 11610-11620; Grossoehme, N.E., Li, L., Keane, S.C., Liu, P., Dann, C.E., Leibowitz, J.L., Giedroc, D.P., Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS–cTRS RNA duplexes (2009) J. Mol. Biol., 394, pp. 544-557; Hagemeijer, M.C., Ulasli, M., Vonk, A.M., Reggiori, F., Rottier, P.J., de Haan, C.A., Mobility and interactions of coronavirus nonstructural protein 4 (2011) J. Virol., 85, pp. 4572-4577; Hagemeijer, M.C., Monastyrska, I., Griffith, J., van der Sluijs, P., Voortman, J., van Bergen en Henegouwen, P.M., Vonk, A.M., de Haan, C.A., Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 (2014) Virology, 458-459, pp. 125-135; Hammond, R.G., Tan, X., Johnson, M.A., SARS-unique fold in the Rousettus bat coronavirus HKU9 (2017) Protein Sci., 26, pp. 1726-1737; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; Han, W., Li, X., Fu, X., The macro domain protein family: structure, functions, and their potential therapeutic implications (2011) Mutat. Res., 727, pp. 86-103; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Rota, P.A., Baker, S.C., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J. Virol., 78, pp. 13600-13612; Haupt, Y., Maya, R., Kazaz, A., Oren, M., Mdm2 promotes the rapid degradation of p53 (1997) Nature, 387, pp. 296-299; He, Y., Alam, S.L., Proteasa, S.V., Zhang, Y., Lesuisse, E., Dancis, A., Stemmler, T.L., Yeast frataxin solution structure, iron binding, and ferrochelatase interaction (2004) Biochemistry, 43, pp. 16254-16262; Heaton, S.M., Borg, N.A., Dixit, V.M., Ubiquitin in the activation and attenuation of innate antiviral immunity (2016) J. Exp. Med., 213, pp. 1-13; Hilgenfeld, R., From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design (2014) FEBS J., 281, pp. 4085-4096; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antivir. Res., 100, pp. 286-295; Hiscott, J., Nguyen, T.L., Arguello, M., Nakhaei, P., Paz, S., Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses (2006) Oncogene, 25, pp. 6844-6867; Hochstrasser, M., Origin and function of ubiquitin-like proteins (2009) Nature, 458, pp. 422-429; Hofer, F., Fields, S., Schneider, C., Martin, G.S., Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 11089-11093; Holm, L., Rosenström, P., Dali server: conservation mapping in 3D (2010) Nucleic Acids Res., 38, pp. W545-W549; Hu, M., Li, P., Li, M., Li, W., Yao, T., Wu, J.W., Gu, W., Shi, Y., Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde (2002) Cell, 111, pp. 1041-1054; Hu, M., Li, P., Song, L., Jeffrey, P.D., Chenova, T.A., Wilkinson, K.D., Cohen, R.E., Shi, Y., Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14 (2005) EMBO J., 24, pp. 3747-3756; Hu, W., Yen, Y.T., Singh, S., Kao, C.L., Wu-Hsieh, B.A., SARS-CoV regulates immune function-related gene expression in human monocytic cells (2012) Viral Immunol., 25, pp. 277-288; Huang, L., Hofer, F., Martin, G.S., Kim, S.H., Structural basis for the interaction of Ras with RalGDS (1998) Nat. Struct. Biol., 5, pp. 422-426; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) J. Virol., 84, pp. 10276-10288; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J. Virol., 87, pp. 9159-9172; Ikeda, F., Dikic, I., Atypical ubiquitin chains: new molecular signals (2008) EMBO Rep., 9, pp. 536-542; Imbert, I., Snijder, E.J., Dimitrova, M., Guillemot, J.C., Lécine, P., Canard, B., The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein (2008) Virus Res., 133, pp. 136-148; Johnson, M.A., Chatterjee, A., Neuman, B.W., Wüthrich, K., SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding (2010) J. Mol. Biol., 400, pp. 724-742; Kanjanahaluethai, A., Baker, S.C., Identification of mouse hepatitis virus papain-like proteinase 2 activity (2000) J. Virol., 74, pp. 7911-7921; Kanjanahaluethai, A., Chen, Z., Jukneliene, D., Baker, S.C., Membrane topology of murine coronavirus replicase nonstructural protein 3 (2007) Virology, 361, pp. 391-401; Karras, G.I., Kustatscher, G., Buhecha, H.R., Allen, M.D., Pugieux, C., Sait, F., Bycroft, M., Ladurner, A.G., The macro domain is an ADP-ribose binding module (2005) EMBO J., 24, pp. 1911-1920; Keane, S.C., Giedroc, D.P., Solution structure of mouse hepatitis virus (MHV) nsp3a and determinants of the interaction with MHV nucleocapsid (N) protein (2013) J. Virol., 87, pp. 3502-3515; Knoops, K., Kikkert, M., van den Worm, S.H.E., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6, p. e226; Komander, D., Clague, M.J., Urbé, S., Breaking the chains: structure and function of the deubiquitinases (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 550-563; Kong, L., Shaw, N., Yan, L., Lou, Z., Rao, Z., Structural view and substrate specificity of papain-like protease from avian infectious bronchitis virus (2015) J. Biol. Chem., 290, pp. 7160-7168; Koonin, E.V., Gorbalenya, A.E., Purdy, M.A., Rozanov, M.N., Reyes, G.R., Bradley, D.W., Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 8259-8263; Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes (2001) J. Mol. Biol., 305, pp. 567-580; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., Osterhaus, A.D., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270; Kuri, T., Eriksson, K.K., Putics, A., Züst, R., Snijder, E.J., Davidson, A.D., Siddell, S.G., Weber, F., The ADP-ribose-1″-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses (2011) J. Gen. Virol., 92, pp. 1899-1905; Kusov, Y., Tan, J., Alvarez, E., Enjuanes, L., Hilgenfeld, R., A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex (2015) Virology, 484, pp. 313-322; Laing, S., Unger, M., Koch-Nolte, F., Haag, F., ADP-ribosylation of arginine (2011) Amino Acids, 41, pp. 257-269; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Patel, K., Johnson, M.E., Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV (2015) ACS Chem. Biol., 10, pp. 1456-1465; Lei, J., Hilgenfeld, R., Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin (2016) Virol. Sin., 31, pp. 288-299; Lei, J., Hilgenfeld, R., RNA-virus proteases counteracting host innate immunity (2017) FEBS Lett., 591, pp. 3190-3210; Lei, J., Mesters, J.R., Drosten, C., Anemüller, S., Ma, Q., Hilgenfeld, R., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antivir. Res., 109, pp. 72-82; Leidecker, O., Bonfiglio, J.J., Colby, T., Zhang, Q., Atanassov, I., Zaja, R., Palazzo, L., Matic, I., Serine is a new target residue for endogenous ADP-ribosylation on histones (2016) Nat. Chem. Biol., 12, pp. 998-1000; Leng, R.P., Lin, Y., Ma, W., Wu, H., Lemmers, B., Chung, S., Parant, J.M., Benchimol, S., Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation (2003) Cell, 112, pp. 779-791; Li, C., Debing, Y., Jankevicius, G., Neyts, J., Ahel, I., Coutard, B., Canard, B., Viral macro domains reverse protein ADP-ribosylation (2016) J. Virol., 90, pp. 8478-8486; Li, S.W., Wang, C.Y., Jou, Y.J., Huang, S.H., Hsiao, L.H., Wan, L., Lin, Y.J., Lin, C.W., SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6 (2016) Int. J. Mol. Sci., 17. , pii: E678; Lim, K.P., Ng, L.F., Liu, D.X., Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products (2000) J. Virol., 74, pp. 1674-1685; Lindner, H.A., Fotouhi-Ardakani, N., Lytvyn, V., Lachance, P., Sulea, T., Ménard, R., The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme (2005) J. Virol., 79, pp. 15199-15208; Liu, C., Yu, X., ADP-ribosyltransferases and poly ADP-ribosylation (2015) Curr. Protein Pept. Sci., 16, pp. 491-501; Ma-Lauer, Y., Carbajo-Lozoya, J., Hein, M.Y., Müller, M.A., Deng, W., Lei, J., Meyer, B., von Brunn, A., p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1 (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. E5192-E5201; McPherson, R.L., Abraham, R., Sreekumar, E., Ong, S.E., Cheng, S.J., Baxter, V.K., Kistemaker, H.A., Leung, A.K., ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. 1666-1671; Ménard, R., Carrière, J., Laflamme, P., Plouffe, C., Khouri, H.E., Vernet, T., Tessier, D.C., Storer, A.C., Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain (1991) Biochemistry, 30, pp. 8924-8928; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Mielech, A.M., Deng, X., Chen, Y., Kindler, E., Wheeler, D.L., Mesecar, A.D., Thiel, V., Baker, S.C., Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis (2015) J. Virol., 89, pp. 4907-4917; Mogensen, T.H., Pathogen recognition and inflammatory signaling in innate immune defenses (2009) Clin. Microbiol. Rev., 22, pp. 240-273; Morales, D.J., Lenschow, D.J., The antiviral activities of ISG15 (2013) J. Mol. Biol., 425, pp. 4995-5008; Narasimhan, J., Wang, M., Fu, Z., Klein, J.M., Haas, A.L., Kim, J.J., Crystal structure of the interferon-induced ubiquitin-like protein ISG15 (2005) J. Biol. Chem., 280, pp. 27356-27365; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Liao, L., Kuhn, P., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J. Virol., 82, pp. 5279-5294; Neuman, B.W., Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles (2016) Antivir. Res., 135, pp. 97-107; Oostra, M., Hagemeijer, M.C., van Gent, M., Bekker, C.P., te Lintelo, E.G., Rottier, P.J., de Haan, C.A., Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning (2008) J. Virol., 82, pp. 12392-12405; Pan, J., Peng, X., Gao, Y., Li, Z., Lu, X., Chen, Y., Ishaq, M., Guo, D., Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication (2008) PLoS One, 3, p. e3299; Park, J.Y., Ko, J.A., Kim, D.W., Kim, Y.M., Kwon, H.J., Jeong, H.J., Kim, C.Y., Ryu, Y.B., Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV (2016) J. Enzyme Inhib. Med. Chem., 31, pp. 23-30; Pehrson, J.R., Fried, V.A., MacroH2A, a core histone containing a large nonhistone region (1992) Science, 257, pp. 1398-1400; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Peng, T.Y., Lee, K.R., Tarn, W.Y., Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization (2008) FEBS J., 275, pp. 4152-4163; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera — a visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C.C., Müller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog., 7, p. e1002331; Pfoh, R., Lacdao, I.K., Georges, A.A., Capar, A., Zheng, H., Frappier, L., Saridakis, V., Crystal structure of USP7 ubiquitin-like domains with an ICP0 peptide reveals a novel mechanism used by viral and cellular proteins to target USP7 (2015) PLoS Pathog., 11, p. e1004950; Piotrowski, Y., Hansen, G., Boomaars-van der Zanden, A.L., Snijder, E.J., Gorbalenya, A.E., Hilgenfeld, R., Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property (2009) Protein Sci., 18, pp. 6-16; Putics, A., Filipowicz, W., Hall, J., Gorbalenya, A.E., Ziebuhr, J., ADP-ribose-1“-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture (2005) J. Virol., 79, pp. 12721-12731; Putics, A., Gorbalenya, A.E., Ziebuhr, J., Identification of protease and ADP-ribose 1'-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3 (2006) J. Gen. Virol., 87, pp. 651-656; Ratia, K., Saikatendu, K.S., Santarsiero, B.D., Barretto, N., Baker, S.C., Stevens, R.C., Mesecar, A.D., Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5717-5722; Ratia, K., Kilianski, A., Baez-Santos, Y.M., Baker, S.C., Mesecar, A., Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease (2014) PLoS Pathog., 10, p. e1004113; Saikatendu, K.S., Joseph, J.S., Subramanian, V., Clayton, T., Griffith, M., Moy, K., Velasquez, J., Kuhn, P., Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1“-phosphate dephosphorylation by a conserved domain of nsP3 (2005) Structure, 13, pp. 1665-1675; Serrano, P., Johnson, M.A., Almeida, M.S., Horst, R., Herrmann, T., Joseph, J.S., Neuman, B.W., Wüthrich, K., Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus (2007) J. Virol., 81, pp. 12049-12060; Serrano, P., Johnson, M.A., Chatterjee, A., Neuman, B.W., Joseph, J.S., Buchmeier, M.J., Kuhn, P., Wüthrich, K., Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3 (2009) J. Virol., 83, pp. 12998-13008; Seth, R.B., Sun, L., Chen, Z.J., Antiviral innate immunity pathways (2006) Cell Res., 16, pp. 141-147; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Gorbalenya, A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J. Mol. Biol., 331, pp. 991-1004; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J. Virol., 80, pp. 5927-5940; Spagnolo, J.F., Hogue, B.G., Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication (2000) J. Virol., 74, pp. 5053-5065; Tan, J., Kusov, Y., Mutschall, D., Tech, S., Nagarajan, K., Hilgenfeld, R., Schmidt, C.L., The “SARS-unique domain” (SUD) of SARS coronavirus is an oligo(G)-binding protein (2007) Biochem. Biophys. Res. Commun., 364, pp. 877-882; Tan, J., Vonrhein, C., Smart, O.S., Bricogne, G., Bollati, M., Kusov, Y., Hansen, G., Hilgenfeld, R., The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes (2009) PLoS Pathog., 5, p. e1000428; Tatar, G., Tok, T.T., Clarification of interaction mechanism of mouse hepatitis virus (MHV) N and nsp3 protein with homology modeling and protein–protein docking analysis (2016) Curr. Comput. Aided Drug Des., 12, pp. 98-106; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br. Med. J., 1, pp. 1467-1470; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) PLoS Pathog., 4, p. e1000054; Verheugd, P., Forst, A.H., Milke, L., Herzog, N., Feijs, K.L., Kremmer, E., Kleine, H., Lüscher, B., Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10 (2013) Nat. Commun., 4, p. 1683; Vijay-Kumar, S., Bugg, C.E., Cook, W.J., Structure of ubiquitin refined at 1.8 Å resolution (1987) J. Mol. Biol., 194, pp. 531-544; von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Roberts, R., Haas, J., Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome (2007) PLoS One, 2, p. e459; Welchman, R.L., Gordon, C., Mayer, R.J., Ubiquitin and ubiquitin-like proteins as multifunctional signals (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 599-609; Wojdyla, J.A., Manolaridis, I., Snijder, E.J., Gorbalenya, A.E., Coutard, B., Piotrowski, Y., Hilgenfeld, R., Tucker, P.A., Structure of the X (ADRP) domain of nsp3 from feline coronavirus (2009) Acta Crystallogr. D. Biol. Crystallogr., 65, pp. 1292-1300; Wojdyla, J.A., Manolaridis, I., van Kasteren, P.B., Kikkert, M., Snijder, E.J., Gorbalenya, A.E., Tucker, P.A., Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates (2010) J. Virol., 84, pp. 10063-10073; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Xu, Y., Cong, L., Chen, C., Wei, L., Zhao, Q., Xu, X., Ma, Y., Rao, Z., Crystal structures of two coronavirus ADP-ribose-1“-monophosphatases and their complexes with ADP-ribose: a systematic structural analysis of the viral ADRP domain (2009) J. Virol., 83, pp. 1083-1092; Xu, D., Zhang, Y., Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field (2012) Proteins, 80, pp. 1715-1735; Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., Chen, Z., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease (2014) J. Gen. Virol., 95, pp. 614-626; Yuan, W., Krug, R.M., Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein (2001) EMBO J., 20, pp. 362-371; Yuan, X., Shan, Y., Zhao, Z., Chen, J., Cong, Y., G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells (2005) Virol. J., 2, p. 66; Yuan, L., Chen, Z., Song, S., Wang, S., Tian, C., Xing, G., Chen, X., Zhang, L., p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling (2015) J. Biol. Chem., 290, pp. 3172-3182; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879; Ziebuhr, J., Thiel, V., Gorbalenya, A.E., The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond (2001) J. Biol. Chem., 276, pp. 33220-33232; Ziebuhr, J., Schelle, B., Karl, N., Minskaia, E., Bayer, S., Siddell, S.G., Gorbalenya, A.E., Thiel, V., Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication (2007) J. Virol., 81, pp. 3922-3932","Hilgenfeld, R.; Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, Germany; email: hilgenfeld@biochem.uni-luebeck.de",,"Elsevier B.V.",01663542,,ARSRD,"29128390","English","Antiviral Res.",Review,"Final",Open Access,Scopus,2-s2.0-85034114202 "Yoon S.-J., Seo K.-W., Song K.-H.","57201672981;8833507700;7401740377;","Clinical evaluation of a rapid diagnostic test kit for detection of canine coronavirus",2018,"Korean Journal of Veterinary Research","58","1",,"27","31",,,"10.14405/kjvr.2018.58.1.27","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045689639&doi=10.14405%2fkjvr.2018.58.1.27&partnerID=40&md5=8fe8d6fbd7c36f609c4f015c92f09a11","College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea","Yoon, S.-J., College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea; Seo, K.-W., College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea; Song, K.-H., College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea","Canine coronavirus is a single-stranded RNA virus that causes enteritis in dogs of any age. Coronaviral enteritis is seldom definitively diagnosed, since it is usually much less severe than many other types of enteritis and is self-limiting. Conventional diagnostics for the canine coronaviral enteritis such as polymerase chain reaction (PCR), virus isolation, and electron microscopic examination are inappropriate for small animal clinics due to the complicated experimental processes involved. Therefore, a commercially available lateral flow test kit based on chromatographic immunoassay techniques was tested to evaluate its performance as a first-line diagnostic test kit that could be used in clinics. The coronavirus antigen test kit detected canine coronavirus-infected dogs with 93.1% sensitivity and 97.5% specificity. The detection limit of the test kit was between 1.97 × 104/mL and 9.85 × 103/mL for samples with a 2- fold serial dilution from 1.25 × 106 TCID50 (TCID50, 50% tissue culture infectious dose). Additionally, the test kit had no cross-reactivity with canine parvovirus, distemper virus, or Escherichia coli. Overall, the commercially available test kit showed good diagnostic performance in a clinical setting, with results similar to those from PCR, confirming their potential for convenient and accurate use in small animal clinics. © Copyright 2014 The Korean Journal of Veterinary Research - All Rights Reserved.","Antigen test kit; Coronavirus; Dogs; Polymerase chain reaction",,"Appel, M.J., Canine coronavirus (1987) Virus Infections of Carnivores, , In: Appel MJ (ed.). Elsevier Science, Amsterdam; Binn, L.N., Lazar, E.C., Kp, K., Huxsoll, D.L., Marchwicki, R.H., Strano, A.J., Recovery and characterization of a coronavirus from military dogs with diarrhea (1974) Proc Ann Meet U S Anim Health Assoc, pp. 359-366; Decaro, N., Camero, M., Greco, G., Zizzo, N., Tinelli, A., Campolo, M., Pratelli, A., Buonavoglia, C., Canine distemper and related diseases: Report of a severe outbreak in a kennel (2004) New Microbiol, 27, pp. 177-181; Decaro, N., Campolo, M., Elia, G., Buonavoglia, D., Colaianni, M.L., Lorusso, A., Mari, V., Buonavoglia, C., Infectious canine hepatitis: An ""old"" disease reemerging in Italy (2007) Res Vet Sci, 83, pp. 269-273; Decaro, N., Desario, C., Elia, G., Campolo, M., Lorusso, A., Mari, V., Martella, V., Buonavoglia, C., Occurrence of severe gastroenteritis in pups after canine parvovirus vaccine administration: A clinical and laboratory diagnostic dilemma (2007) Vaccine, 25, pp. 1161-1166; Decaro, N., Martella, V., Desario, C., Bellacicco, A.L., Camero, M., Manna, L., D'Aloja, D., Buonavoglia, C., First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain (2006) J Vet Med B Infect Dis Vet Public Health, 53, pp. 468-472; Greene, C.E., Canine coronaviral enteritis (1990) Infectious Diseases of the Dog and Cat., pp. 281-283. , In: Greene CE (ed). WB Saunders, Philadelphia; Horzinek, M.C., Lutz, H., Pedersen, N.C., Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses (1982) Infect Immun, 37, pp. 1148-1155; Iqbal, J., Sher, A., Rab, A., Plasmodium falciparum histidinerich protein 2-based immunocapture diagnostic assay for malaria: Cross-reactivity with rheumatoid factors (2000) J Clin Microbiol, 38, pp. 1184-1186; Kp, K., Jervis, H.R., Marchwicki, R.H., Binn, L.N., Intestinal infection of neonatal dogs with canine coronavirus 1-71: Studies by virologic, histologic, histochemical, and immunofluorescent techniques (1976) Am J Vet Res, 37, pp. 247-256; Martin, H.D., Zeidner, N.S., Concomitant cryptosporidia, coronavirus and parvovirus infection in a raccoon (Procyon lotor) (1992) J Wild Dis, 28, pp. 113-115; Naylor, M.J., Harrison, G.A., Monckton, R.P., McOrist, S., Lehrbach, P.R., Deane, E.M., Identification of canine coronavirus strains from feces by S gene nested PCR and molecular characterization of a new Australian isolate (2001) J Clin Microbiol, 39, pp. 1036-1041; Olsen, C.W., A review of feline infectious peritonitis virus: Molecular biology, immunopathogenesis, clinical aspects, and vaccination (1993) Vet Microbiol, 36, pp. 1-37; Pedersen, N.C., Ward, J., Mengeling, W.L., Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species (1978) Arch Virol, 58, pp. 45-53","Song, K.-H.; College of Veterinary Medicine, Chungnam National UniversitySouth Korea; email: songkh@cnu.ac.kr",,"Korean Society of Veterinary Science",24661384,,,,"English","Korean J. Vet. Res.",Article,"Final",,Scopus,2-s2.0-85045689639 "Du T., Liang J., Dong N., Lu J., Fu Y., Fang L., Xiao S., Han H.","56957769600;8966941100;56966232400;57195956699;57193692674;7402470374;7402022567;7401969036;","Glutathione-Capped Ag2S Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding",2018,"ACS Applied Materials and Interfaces","10","5",,"4369","4378",,5,"10.1021/acsami.7b13811","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041905738&doi=10.1021%2facsami.7b13811&partnerID=40&md5=5f33e0cb3f3b89937fc7fbad0f1ae1c9","State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China","Du, T., State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; Liang, J., State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; Dong, N., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Lu, J., State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; Fu, Y., State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Han, H., State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China","Development of novel antiviral reagents is of great importance for the control of virus spread. Here, Ag2S nanoclusters (NCs) were proved for the first time to possess highly efficient antiviral activity by using porcine epidemic diarrhea virus (PEDV) as a model of coronavirus. Analyses of virus titers showed that Ag2S NCs significantly suppressed the infection of PEDV by about 3 orders of magnitude at the noncytotoxic concentration at 12 h postinfection, which was further confirmed by the expression of viral proteins. Mechanism investigations indicated that Ag2S NCs treatment inhibits the synthesis of viral negative-strand RNA and viral budding. Ag2S NCs treatment was also found to positively regulate the generation of IFN-stimulating genes (ISGs) and the expression of proinflammation cytokines, which might prevent PEDV infection. This study suggest the novel underlying of Ag2S NCs as a promising therapeutic drug for coronavirus. © 2018 American Chemical Society.","Ag2S nanoclusters; antiviral; IFN-stimulating genes; proinflammation cytokines; replication","Gene expression; Genes; Nanoclusters; RNA; Viruses; antiviral; Antiviral activities; Cytokines; Mechanism investigation; Orders of magnitude; Porcine epidemic diarrhea virus; replication; Therapeutic drugs; Silver compounds; glutathione; nanomaterial; silver; sulfur; virus RNA; animal; cell proliferation; Coronavirinae; pig; Porcine epidemic diarrhea virus; Animals; Cell Proliferation; Coronavirus; Glutathione; Nanostructures; Porcine epidemic diarrhea virus; RNA, Viral; Silver; Sulfur; Swine","Lin, Z., Li, Y., Guo, M., Xu, T., Wang, C., Zhao, M., Wang, H., Zhu, B., The Inhibition of H1N1 Influenza Virus-Induced Apoptosis by Silver Nanoparticles Functionalized with Zanamivir (2017) RSC Adv., 7, pp. 742-750; Rogers, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., Hussain, S.M., A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation (2008) Nanoscale Res. Lett., 3, pp. 129-133; Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho Bragado, A., Gao, X., Lara, H.H., Yacaman, M.J., Interaction of Silver Nanoparticles with HIV-1 (2005) J. Nanobiotechnol., 3, pp. 6-16; Papp, I., Sieben, C., Ludwig, K., Roskamp, M., Bottcher, C., Schlecht, S., Herrmann, A., Haag, R., Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid-Functionalized Gold Nanoparticles (2010) Small, 6, pp. 2900-2906; Draz, M.S., Wang, Y.J., Chen, F.F., Xu, Y., Shafiee, H., Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination Against Hepatitis C Virus (2017) Adv. Funct. Mater., 27, pp. 1604139-1604149; Barras, A., Pagneux, Q., Sane, F., Wang, Q., Boukherroub, R., Hober, D., Szunerits, S., High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1 (2016) ACS Appl. Mater. Interfaces, 8, pp. 9004-9013; Muñoz, A., Sigwalt, D., Illescas, B.M., Luczkowiak, J., Rodríguez-Pérez, L., Nierengarten, I., Holler, M., Martín, N., Synthesis of Giant Globular Multivalent Glycofullerenes as Potent Inhibitors in a Model of Ebola Virus Infection (2016) Nat. Chem., 8, pp. 50-57; Sametband, M., Kalt, I., Gedanken, A., Sarid, R., Herpes Simplex Virus Type-1 Attachment Inhibition by Functionalized Graphene Oxide (2014) ACS Appl. Mater. Interfaces, 6, pp. 1228-1235; Ziem, B., Rahn, J., Donskyi, I., Silberreis, K., Cuellar, L., Dernedde, J., Keil, G., Haag, R., Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus (2017) Macromol. Biosci., 17, pp. 1600499-1600508; Deokar, A.R., Nagvenkar, A.P., Kalt, I., Shani, L., Yeshurun, Y., Gedanken, A., Sarid, R., Graphene-Based ""hot Plate"" for the Capture and Destruction of the Herpes Simplex Virus Type 1 (2017) Bioconjugate Chem., 28, pp. 1115-1122; Wang, J., Liu, Y., Xu, K., Qi, Y., Zhong, J., Zhang, K., Li, J., Kang, Z., Broad-Spectrum Antiviral Property of Polyoxometalate Localized on a Cell Surface (2014) ACS Appl. Mater. Interfaces, 6, pp. 9785-9789; Bhatia, S., Lauster, D., Bardua, M., Ludwig, K., Angioletti Uberti, S., Popp, N., Hoffmann, U., Haag, R., Linear Polysialoside Outperforms Dendritic Analogs for Inhibition of Influenza Virus Infection in Vitro and in Vivo (2017) Biomaterials, 138, pp. 22-34; Liang, J.J., Wei, J.C., Lee, Y.L., Hsu, S.H., Lin, J.J., Lin, Y.L., Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum (2014) J. Virol., 88, pp. 4218-4228; Osminkina, L.A., Timoshenko, V.Y., Shilovsky, I.P., Kornilaeva, G.V., Shevchenko, S.N., Gongalsky, M.B., Tamarov, K.P., Karamov, E.V., Porous Silicon Nanoparticles as Scavengers of Hazardous Viruses (2014) J. Nanopart. Res., 16, pp. 2430-2440; Douglas, J.L., Panis, M.L., Ho, E., Lin, K.Y., Krawczyk, S.H., Grant, D.M., Cai, R., Cihlar, T., Inhibition of Respiratory Syncytial Virus Fusion by the Small Molecule VP-14637 via Specific Interactions with F Protein (2003) J. Virol., 77, pp. 5054-5064; Yang, J., Li, M., Shen, X., Liu, S., Influenza A Virus Entry Inhibitors Targeting the Hemagglutinin (2013) Viruses, 5, pp. 352-373; Lauster, D., Glanz, M., Bardua, M., Ludwig, K., Hellmund, M., Hoffmann, U., Hamann, A., Herrmann, A., Multivalent Peptide-Nanoparticle Conjugates for Influenza-Virus Inhibition (2017) Angew. Chem., Int. Ed., 56, pp. 5931-5936; Khanal, M., Vausselin, T., Barras, A., Bande, O., Turcheniuk, K., Benazza, M., Zaitsev, V., Szunerits, S., Phenylboronic-Acid-Modified Nanoparticles: Potential Antiviral Therapeutics (2013) ACS Appl. Mater. Interfaces, 5, pp. 12488-12498; Khanal, M., Barras, A., Vausselin, T., Feneant, L., Boukherroub, R., Siriwardena, A., Dubuisson, J., Szunerits, S., Boronic Acid-Modified Lipid Nanocapsules: A Novel Platform for the Highly Efficient Inhibition of Hepatitis C Viral Entry (2015) Nanoscale, 7, pp. 1392-1402; Yang, X.X., Li, C.M., Huang, C.Z., Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection (2016) Nanoscale, 8, pp. 3040-3048; Ye, S., Shao, K., Li, Z., Guo, N., Zuo, Y., Li, Q., Lu, Z., Han, H., Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter (2015) ACS Appl. Mater. Interfaces, 7, pp. 21571-21579; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates its Interferon Antagonism by Cleaving NEMO (2016) J. Virol., 90, pp. 2090-2101; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Antagonizes Beta Interferon Production by Sequestering the Interaction between IRF3 and TBK1 (2014) J. Virol., 88, pp. 8936-8945; Du, Y., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., Wang, Q., Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor (2010) J. Am. Chem. Soc., 132, pp. 1470-1471; Gui, R., Wan, A., Liu, X., Yuan, W., Jin, H., Water-Soluble Multidentate Polymers Compactly Coating Ag2S Quantum Dots with Minimized Hydrodynamic Size and Bright Emission Tunable from Red to Second Near-Infrared Region (2014) Nanoscale, 6, pp. 5467-5473; Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., Wang, Q., Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window (2012) ACS Nano, 6, pp. 3695-3702; Tan, L., Wan, A., Li, H., Conjugating S-nitrosothiols with Glutathiose Stabilized Silver Sulfide Quantum Dots for Controlled Nitric Oxide Release and Near-Infrared Fluorescence Imaging (2013) ACS Appl. Mater. Interfaces, 5, pp. 11163-11171; Tang, R., Xue, J., Xu, B., Shen, D., Sudlow, G.P., Achilefu, S., Tunable Ultrasmall Visible-to-Extended Near-Infrared Emitting Silver Sulfide Quantum Dots for Integrin-Targeted Cancer Imaging (2015) ACS Nano, 9, pp. 220-230; Yang, T., Tang, Y., Liu, L., Lv, X., Wang, Q., Ke, H., Deng, Y., Chen, H., Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy (2017) ACS Nano, 11, pp. 1848-1857; Miao, P., Tang, Y., Wang, B., Meng, F., Near-Infrared Ag2S Quantum Dots-Based DNA Logic Gate Platform for miRNA Diagnostics (2016) Anal. Chem., 88, pp. 7567-7573; Wang, C., Wang, Y., Xu, L., Zhang, D., Liu, M., Li, X., Sun, H., Yang, B., Facile Aqueous-Phase Synthesis of Biocompatible and Fluorescent Ag2S Nanoclusters for Bioimaging: Tunable Photoluminescence from Red to Near Infrared (2012) Small, 8, pp. 3137-3142; Liu, A.A., Zhang, Z., Sun, E.Z., Zheng, Z., Zhang, Z.L., Hu, Q., Wang, H., Pang, D.W., Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific Halo Tag Labeling Strategy (2016) ACS Nano, 10, pp. 1147-1155; Huang, B.H., Lin, Y., Zhang, Z.L., Zhuan, F., Liu, A.A., Xie, M., Tian, Z.Q., Pang, D.W., Surface Labeling of Enveloped Viruses Assisted by Host Cells (2012) ACS Chem. Biol., 7, pp. 683-688; Luo, R., Fang, L., Jin, H., Jiang, Y., Wang, D., Chen, H., Xiao, S., Antiviral Activity of Type i and Type III Interferons Against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) (2011) Antiviral Res., 91, pp. 99-101; Alvarez, A.L., Melon, S., Dalton, K.P., Nicieza, I., Roque, A., Suarez, B., Parra, F., Apple Pomace, a by-Product from the Asturian Cider Industry, Inhibits Herpes Simplex Virus Types 1 and 2 in Vitro Replication: Study of its Mechanisms of Action (2012) J. Med. Food, 15, pp. 581-587; Gescher, K., Hensel, A., Hafezi, W., Derksen, A., Kuhn, J., Oligomeric Proanthocyanidins from Rumex Acetosa L. Inhibit the Attachment of Herpes Simplex Virus Type-1 (2011) Antiviral Res., 89, pp. 9-18; Duan, E., Wang, D., Fang, L., Ma, J., Luo, J., Chen, H., Li, K., Xiao, S., Suppression of Porcine Reproductive and Respiratory Syndrome Virus Proliferation by Glycyrrhizin (2015) Antiviral Res., 120, pp. 122-125; Wang, Y., Yan, X.P., Fabrication of Vascular Endothelial Growth Factor Antibody Bioconjugated Ultrasmall Near-Infrared Fluorescent Ag2S Quantum Dots for Targeted Cancer Imaging in Vivo (2013) Chem. Commun., 49, pp. 3324-3326; Xu, X., Zhang, H., Zhang, Q., Huang, Y., Dong, J., Liang, Y., Liu, H.J., Tong, D., Porcine Epidemic Diarrhea Virus N Protein Prolongs S-Phase Cell Cycle, Induces Endoplasmic Reticulum Stress, and Up-Regulates Interleukin-8 Expression (2013) Vet. Microbiol., 164, pp. 212-221; Winnik, F.M., Maysinger, D., Quantum Dot Cytotoxicity and Ways to Reduce it (2013) Acc. Chem. Res., 46, pp. 672-680; Van Kan-Davelaar, H.E., Van Hest, J.C.M., Cornelissen, J.J.L.M., Koay, M.S.T., Using Viruses as Nanomedicines (2014) Br. J. Pharmacol., 171, pp. 4001-4009; Du, T., Cai, K., Han, H., Fang, L., Liang, J., Xiao, S., Probing the Interactions of CdTe Quantum Dots with Pseudorabies Virus (2015) Sci. Rep., 5, p. 16403; Hao, J., Huang, L.L., Zhang, R., Wang, H.Z., Xie, H.Y., A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry (2012) Anal. Chem., 84, pp. 8364-8370; Zhang, P., Liu, S., Gao, D., Hu, D., Gong, P., Sheng, Z., Deng, J., Cai, L., Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging (2012) J. Am. Chem. Soc., 134, pp. 8388-8391; Baram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., Sarid, R., Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate (2009) Bioconjugate Chem., 20, pp. 1497-1502; Fensterl, V., Sen, G.C., Interferon-Induced i Fit Proteins: Their Role in Viral Pathogenesis (2015) J. Virol., 89, pp. 2462-2468; Schoggins, J.W., Wilson, S.J., Panis, M., Murphy, M.Y., Jones, C.T., Bieniasz, P., Rice, C.M., A Diverse Range of Gene Products are Effectors of the Type i Interferon Antiviral Response (2011) Nature, 472, pp. 481-485; Tokumoto, Y., Hiasa, Y., Uesugi, K., Watanabe, T., Mashiba, T., Abe, M., Kumagi, T., Onji, M., Ribavirin Regulates Hepatitis C Virus Replication through Enhancing Interferon-Stimulated Genes and Interleukin 8 (2012) J. Infect. Dis., 205, pp. 1121-1130; Yu, Y., Huang, X., Liu, J., Zhang, J., Hu, Y., Yang, Y., Huang, Y., Qin, Q., Fish TRIM32 Functions as a Critical Antiviral Molecule Against Iridovirus and Nodavirus (2017) Fish Shellfish Immunol., 60, pp. 33-43; Schoggins, J.W., Rice, C.M., Interferon-Stimulated Genes and their Antiviral Effector Functions (2011) Curr. Opin. Virol., 1, pp. 519-525; Imaizumi, T., Yoshida, H., Hayakari, R., Xing, F., Wang, L., Matsumiya, T., Tanji, K., Tanaka, H., Interferon-Stimulated Gene (ISG) 60, as well as ISG56 and ISG54, Positively Regulates TLR3/IFN-beta/STAT1 Axis in U373MG Human Astrocytoma Cells (2016) Neurosci. Res., 105, pp. 35-41; Reich, N.C., A Death-Promoting Role for ISG54/IFIT2 (2013) J. Interferon Cytokine Res., 33, pp. 199-205; Von Itzstein, M., The War Against Influenza: Discovery and Development of Sialidase Inhibitors (2007) Nat. Rev. Drug Discovery, 6, pp. 967-974; Tayyari, F., Marchant, D., Moraes, T.J., Duan, W., Mastrangelo, P., Hegele, R.G., Identification of Nucleolin as a Cellular Receptor for Human Respiratory Syncytial Virus (2011) Nat. Med., 17, pp. 1132-1135; Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M., Silver Nanoparticles as Potential Antiviral Agents (2011) Molecules, 16, pp. 8894-8918; Li, C.M., Zheng, L.L., Yang, X.X., Wan, X.Y., Wu, W.B., Zhen, S.J., Li, Y.F., Huang, C.Z., DNA-AuNP Networks on Cell Membranes as a Protective Barrier to Inhibit Viral Attachment, Entry and Budding (2016) Biomaterials, 77, pp. 216-226; Baram-Pinto, D., Shukla, S., Gedanken, A., Sarid, R., Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles (2010) Small, 6, pp. 1044-1050; Khandelwal, N., Kaur, G., Kumar, N., Tiwari, A., Application of Silver Nanoparticles in Viral Inhibition: A New Hope for Antivirals (2014) Dig. J. Nanomater. Bios., 9, pp. 175-186; Dostalova, S., Moulick, A., Milosavljevic, V., Guran, R., Kominkova, M., Cihalova, K., Heger, Z., Kizek, R., Antiviral Activity of Fullerene C60 Nanocrystals Modified with Derivatives of Anionic Antimicrobial Peptide Maximin H5 (2016) Monatsh. Chem., 147, pp. 905-918; De Souza, E.S.J.M., Hanchuk, T.D., Santos, M.I., Kobarg, J., Bajgelman, M.C., Cardoso, M.B., Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles (2016) ACS Appl. Mater. Interfaces, 8, pp. 16564-16572; Lisov, A., Vrublevskaya, V., Lisova, Z., Leontievsky, A., Morenkov, O., A 2,5-Dihydroxybenzoic Acid-Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses (2015) Viruses, 7, pp. 5343-5360; Tarr, A.W., Lafaye, P., Meredith, L., Damier-Piolle, L., Urbanowicz, R.A., Meola, A., Jestin, J.L., Krey, T., An Alpaca Nanobody Inhibits Hepatitis C Virus Entry and Cell-to-Cell Transmission (2013) Hepatology, 58, pp. 932-939; Sun, R.W.Y., Chen, R., Chung, N.P.Y., Ho, C.M., Lin, C.L.S., Che, C.M., Silver Nanoparticles Fabricated in Hepes Buffer Exhibit Cytoprotective Activities toward HIV-1 Infected Cells (2005) Chem. Commun., 40, pp. 5059-5061; Orlowski, P., Tomaszewska, E., Gniadek, M., Baska, P., Nowakowska, J., Sokolowska, J., Nowak, Z., Krzyzowska, M., Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection (2014) PLoS One, 9, p. e104113; Lee, E.C., Davis-Poynter, N., Nguyen, C.T., Peters, A.A., Monteith, G.R., Strounina, E., Popat, A., Ross, B.P., GAG Mimetic Functionalised Solid and Mesoporous Silica nanoparticles as Viral Entry Inhibitors of Herpes Simplex Type 1 and Type 2 Viruses (2016) Nanoscale, 8, pp. 16192-16196; Yang, X.X., Li, C.M., Li, Y.F., Wang, J., Huang, C.Z., Synergistic Antiviral Effect of Curcumin Functionalized Graphene Oxide against Respiratory Syncytial Virus Infection (2017) Nanoscale, 9, pp. 16086-16092; Li, Y., Lin, Z., Zhao, M., Xu, T., Wang, C., Hua, L., Wang, H., Zhu, B., Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways (2016) ACS Appl. Mater. Interfaces, 8, pp. 24385-24393; Du, T., Liang, J., Dong, N., Liu, L., Fang, L., Xiao, S., Han, H., Carbon Dots as Inhibitors of Virus by Activation of Type i Interferon Response (2016) Carbon, 110, pp. 278-285","Xiao, S.; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityChina; email: vet@mail.hzau.edu.cn",,"American Chemical Society",19448244,,,"29337529","English","ACS Appl. Mater. Interfaces",Article,"Final",,Scopus,2-s2.0-85041905738 "Zheng J., Yamada Y., Fung T.S., Huang M., Chia R., Liu D.X.","57193865599;37031349500;55795740300;57192950391;57196083247;57190128771;","Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture",2018,"Virology","513",,,"65","74",,8,"10.1016/j.virol.2017.10.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031735821&doi=10.1016%2fj.virol.2017.10.003&partnerID=40&md5=8f6114578782e4673916412d8b4d4112","South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre Guangzhou, Guangdong, 510642, China; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive63755, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States","Zheng, J., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre Guangzhou, Guangdong, 510642, China, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive63755, Singapore, Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Yamada, Y., Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Fung, T.S., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre Guangzhou, Guangdong, 510642, China; Huang, M., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive63755, Singapore; Chia, R., Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre Guangzhou, Guangdong, 510642, China","Spike (S) glycoprotein on the viral envelope is the main determinant of infectivity. The S protein of coronavirus infectious bronchitis virus (IBV) contains 29 putative asparagine(N)-linked glycosylation sites. These post-translational modifications may assist in protein folding and play important roles in the functionality of S protein. In this study, we used bioinformatics tools to predict N-linked glycosylation sites and to analyze their distribution in IBV strains and variants. Among these sites, 8 sites were confirmed in the S protein extracted from partially purified virus particles by proteomics approaches. N-D and N-Q substitutions at 13 predicted sites were introduced into an infectious clone system. The impact on S protein-mediated cell-cell fusion, viral recovery and infectivity was assessed, leading to the identification of sites essential for the functions of IBV S protein. Further characterization of these and other uncharacterized sites may reveal novel aspects of N-linked glycosylation in coronavirus replication and pathogenesis. © 2017","Cell-cell fusion; Clone; Coronavirus; Infectious bronchitis virus; Infectious cDNA; N-linked glycosylation; Spike protein; Virus infectivity","virus spike protein; vitronectin; coronavirus spike glycoprotein; S protein, avian infectious bronchitis virus; animal cell; Article; Avian infectious bronchitis virus; bioinformatics; cell culture; cell fusion; clinical assessment; controlled study; correlational study; deglycosylation; Far Western blotting; mutation accumulation; nonhuman; priority journal; protein function; protein glycosylation; proteomics; virus cell interaction; virus infectivity; virus particle; virus pathogenesis; virus replication; virus strain; amino acid substitution; animal; Avian infectious bronchitis virus; biology; Chlorocebus aethiops; dna mutational analysis; genetics; glycosylation; metabolism; physiology; Vero cell line; virus culture; virus entry; Amino Acid Substitution; Animals; Cercopithecus aethiops; Computational Biology; DNA Mutational Analysis; Glycosylation; Infectious bronchitis virus; Proteomics; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Cultivation; Virus Internalization; Virus Replication","Andoh, K., Suenaga, K., Sakaguchi, M., Yamazaki, K., Honda, T., Decreased neutralizing antigenicity in IBV S1 protein expressed from mammalian cells (2015) Virus Res., 208, pp. 164-170; Arjona, A., Ledizet, M., Anthony, K., Bonafé, N., Modis, Y., Town, T., Fikrig, E., West Nile virus envelope protein inhibits dsRNA-induced innate immune responses (2007) J. Immunol. Baltim. Md, 1950 (179), pp. 8403-8409; Bailey, U.-M., Jamaluddin, M.F., Schulz, B.L., Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins (2012) J. Proteome Res., 11, pp. 5376-5383; Balzarini, J., Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses?? (2007) Antivir. Chem. Chemother., 18, pp. 1-11; Balzarini, J., Schols, D., Neyts, J., Van Damme, E., Peumans, W., De Clercq, E., Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro (1991) Antimicrob. Agents Chemother., 35, pp. 410-416; Blom, N., Sicheritz-Pontén, T., Gupta, R., Gammeltoft, S., Brunak, S., Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence (2004) Proteomics, 4, pp. 1633-1649; Bonavia, A., Zelus, B.D., Wentworth, D.E., Talbot, P.J., Holmes, K.V., Identification of a Receptor-Binding Domain of the Spike Glycoprotein of Human Coronavirus HCoV-229E (2003) J. Virol., 77, pp. 2530-2538; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A.M., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10, p. e1004502; Cavanagh, D., Coronavirus IBV: structural characterization of the spike protein (1983) J. Gen. Virol., 64, pp. 2577-2583; Chan, C.P., Siu, K.L., Chin, K.T., Yuen, K.Y., Zheng, B., Jin, D.Y., Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein (2006) J. Virol., 80, pp. 9279-9287; Chang, K.W., Sheng, Y., Gombold, J.L., Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein (2000) Virology, 269, pp. 212-224; Delmas, B., Laude, H., Assembly of coronavirus spike protein into trimers and its role in epitope expression (1990) J. Virol., 64, pp. 5367-5375; Fang, S., Chen, B., Tay, F.P.L., Ng, B.S., Liu, D.X., An (2007) Virology, 358, pp. 136-147; Fung, T.S., Huang, M., Liu, D.X., Coronavirus-induced ER stress response and its involvement in regulation of coronavirus–host interactions (2014) Virus Res., 194, pp. 110-123; Fung, T.S., Liao, Y., Liu, D.X., Regulation of stress responses and translational control by coronavirus (2016) Viruses, p. 8; Fung, T.S., Liao, Y., Liu, D.X., The ER stress sensor IRE1α protects cells from apoptosis induced by coronavirus infectious bronchitis virus (2014) J. Virol., 88, pp. 12752-12764; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front. Microbiol., 5, pp. 1-13; Geiger, T., Clarke, S., Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides (1987) Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem., 262, pp. 785-794; Godet, M., Grosclaude, J., Delmas, B., Laude, H., Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus ((coronavirus)) spike protein (1994) J. Virol., 68, pp. 8008-8016; Han, D.P., Lohani, M., Cho, M.W., Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry (2007) J. Virol., 81, pp. 12029-12039; Kubo, H., Yamada, Y.K., Taguchi, F., Localization of neutralizing epitopes and the receptor-binding site within the (1994) J. Virol., 68, pp. 5403-5410; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87, pp. 8124-8134; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Ng, L.F., Liu, D.X., Identification of a 24-kDa polypeptide processed from the coronavirus infectious bronchitis virus 1a polyprotein by the 3C-like proteinase and determination of its cleavage sites (1998) Virology, 243, pp. 388-395; Petit, C.M., Melancon, J.M., Chouljenko, V.N., Colgrove, R., Farzan, M., Knipe, D.M., Kousoulas, K.G., Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion (2005) Virology, 341, pp. 215-230; Promkuntod, N., van Eijndhoven, R.E.W., de Vrieze, G., Gröne, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32; Ritchie, G., Harvey, D.J., Feldmann, F., Stroeher, U., Feldmann, H., Royle, L., Dwek, R.A., Rudd, P.M., Identification of N-linked carbohydrates from severe acute respiratory syndrome ((SARS)) spike glycoprotein (2010) Virology, 399, pp. 257-269; Shen, S., Law, Y.C., Liu, D.X., A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature (2004) Virology, 326, pp. 288-298; Siu, K.-L., Chan, C.-P., Kok, K.-H., Woo, P.C., Jin, D.-Y., Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus (2014) HKU1, 4, pp. 1-9; van der Meer, F.J.U.M., de Haan, C.A.M., Schuurman, N.M.P., Haijema, B.J., Verheije, M.H., Bosch, B.J., Balzarini, J., Egberink, H.F., The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins (2007) J. Antimicrob. Chemother., 60, pp. 741-749; Versteeg, G.A., Van De Nes, P.S., Bredenbeek, P.J., Spaan, W.J.M., The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations (2007) J. Virol., 81, pp. 10981-10990; Vigerust, D.J., Shepherd, V.L., Virus glycosylation: role in virulence and immune interactions (2007) Trends Microbiol., 15, pp. 211-218; Walls, A.C., Tortorici, M.A., Bosch, B.-J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Wang, S.-K., Liang, P.-H., Astronomo, R.D., Hsu, T.-L., Hsieh, S.-L., Burton, D.R., Wong, C.-H., Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN (2008) Proc. Natl. Acad. Sci. USA., 105, pp. 3690-3695; Wong, S.K., Li, W., Moore, M.J., Choe, H., Farzan, M., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 (2004) J. Biol. Chem., 279, pp. 3197-3201; Xiao, H., Xu, L.H., Yamada, Y., Liu, D.X., Coronavirus spike protein inhibits host cell translation by interaction with eIF3f (2008) PLoS One, 3, p. e1494; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J. Virol., 83, pp. 8744-8758; Zhou, Y., Lu, K., Pfefferle, S., Bertram, S., Glowacka, I., Drosten, C., Pöhlmann, S., Simmons, G., A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms (2010) J. Virol., 84, pp. 8753-8764","Liu, D.X.; Department of Molecular Medicine, The Scripps Research InstituteUnited States; email: dxliu0001@163.com",,"Academic Press Inc.",00426822,,VIRLA,"29035787","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85031735821 "Tan Y.W., Fung T.S., Shen H., Huang M., Liu D.X.","57207007646;55795740300;56949515500;57192950391;57190128771;","Coronavirus infectious bronchitis virus non-structural proteins 8 and 12 form stable complex independent of the non-translated regions of viral RNA and other viral proteins",2018,"Virology","513",,,"75","84",,1,"10.1016/j.virol.2017.10.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031086504&doi=10.1016%2fj.virol.2017.10.004&partnerID=40&md5=1b151c6514f95337ff8fb5a4f901d05f","South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive63755, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore","Tan, Y.W., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive63755, Singapore, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Fung, T.S., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Shen, H., Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Huang, M., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive63755, Singapore; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China","The cleavage products from coronavirus polyproteins, known as the non-structural proteins (nsps), are believed to make up the major components of the viral replication/transcription complex. In this study, several nsps encoded by avian gammacoronavirus infectious bronchitis virus (IBV) were screened for RNA-binding activity and interaction with its RNA-dependent RNA polymerase, nsp12. Nsp2, nsp5, nsp8, nsp9 and nsp10 were found to bind to untranslated regions (UTRs), while nsp8 was confirmed to interact with nsp12. Nsp8 has been reported to interact with nsp7 and functions as a primase synthesizing RNA primers for nsp12. Further characterization revealed that nsp8-nsp12 interaction is independent of the UTRs of viral RNA, and nsp8 interacts with both the N- and C-terminal regions of nsp12. These results have prompted a proposal of how the nsp7-nsp8 complex could possibly function in tandem with nsp12, forming a highly efficient complex that could synthesize both the RNA primer and viral RNA during coronavirus infection. © 2017","Coronavirus; IBV; Infectious bronchitis virus; Non-structure protein; Protein interaction; RNA synthesis; RNA-dependent RNA polymerase; Viral genome replication","nonstructural protein 10; nonstructural protein 12; nonstructural protein 5; nonstructural protein 7; nonstructural protein 8; nonstructural protein 9; RNA polymerase; unclassified drug; viral protein; virus RNA; protein binding; RNA binding protein; viral protein; virus RNA; 3' untranslated region; 5' untranslated region; amino terminal sequence; animal cell; Article; Avian infectious bronchitis virus; binding site; carboxy terminal sequence; complex formation; controlled study; Coronavirus infection; nonhuman; priority journal; protein expression; protein function; protein interaction; RNA binding; untranslated region; Avian infectious bronchitis virus; cell line; human; metabolism; physiology; protein multimerization; Cell Line; Humans; Infectious bronchitis virus; Protein Binding; Protein Multimerization; RNA, Viral; RNA-Binding Proteins; Viral Nonstructural Proteins","Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus non-structural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio, 4 (4), pp. e00524-13; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J. Virol., 78 (22), pp. 12218-12224; Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E.J., Canard, B., In vitro reconstitution of SARS-coronavirus mRNA cap methylation (2010) PLoS Pathog., 6 (4), p. e1000863; Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., Decroly, E., RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus non-structural protein nsp10/nsp14 exoribonuclease complex (2012) Proc. Natl. Acad. Sci. USA, 109 (24), pp. 9372-9377; Brockway, S.M., Clay, C.T., Lu, X.T., Denison, M.R., Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase (2003) J. Virol., 77 (19), pp. 10515-10527; von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome (2007) PloS One, 2 (5), p. e459; Chen, B., Fang, S., Tam, J.P., Liu, D.X., Formation of stable homodimer via the C-terminal alpha-helical domain of coronavirus non-structural protein 9 is critical for its function in viral replication (2009) Virology, 383 (2), pp. 328-337; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Functional screen reveals SARS coronavirus non-structural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc. Natl. Acad. Sci. USA, 106 (9), pp. 3484-3489; Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex (2011) PLoS Pathog., 7 (10), p. e1002294; Cheng, A., Zhang, W., Xie, Y., Jiang, W., Arnold, E., Sarafianos, S.G., Expression, purification, and characterization of SARS coronavirus RNA polymerase (2005) Virology, 335 (2), pp. 165-176; Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Coronavirus non-structural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity (2008) J. Virol., 82 (16), pp. 8071-8084; Egloff, M.-P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world (2004) Proc. Natl. Acad. Sci. USA, 101 (11), pp. 3792-3796; Fang, S., Chen, B., Tay, F.P.L., Ng, B.S., Liu, D.X., An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells (2007) Virology, 358 (1), pp. 136-147; Fang, S., Shen, H., Wang, J., Tay, F.P.L., Liu, D.X., Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase (2010) J. Virol., 84 (14), pp. 7325-7336; Fang, S.G., Shen, S., Tay, F.P.L., Liu, D.X., Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells (2005) Biochem. Biophys. Res. Commun., 336 (2), pp. 417-423; Fang, S.G., Shen, H., Wang, J., Tay, F.P.L., Liu, D.X., Proteolytic processing of polyproteins 1a and 1ab between non-structural proteins 10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable for viral replication in cultured cells (2008) Virology, 379 (2), pp. 175-180; Imbert, I., Guillemot, J., Bourhis, J., Bussetta, C., Coutard, B., Egloff, M., A second, non‐canonical RNA‐dependent RNA polymerase in SARS Coronavirus (2006) EMBO J., 25 (20), pp. 4933-4942; Imbert, I., Snijder, E.J., Dimitrova, M., Guillemot, J.-C., Lécine, P., Canard, B., The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein (2008) Virus Res., 133 (2), pp. 136-148; Ivanov, K.A., Thiel, V., Dobbe, J.C., van der Meer, Y., Snijder, E.J., Ziebuhr, J., Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase (2004) J. Virol., 78 (11), pp. 5619-5632; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc. Natl. Acad. Sci. USA, 101 (34), pp. 12694-12699; Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Brooun, A., Griffith, M., Crystal structure of non-structural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs (2006) J. Virol., 80 (16), pp. 7894-7901; Knoops, K., Kikkert, M., Van Den Worm, S.H.E., Zevenhoven-Dobbe, J.C., Van Der Meer, Y., Koster, A.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6 (9), p. e226; Lim, K.P., Liu, D.X., Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein (1998) Virology, 245 (2), pp. 303-312; Lim, K.P., Ng, L.F., Liu, D.X., Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products (2000) J. Virol., 74 (4), pp. 1674-1685; Liu, D., Inglis, S., Identification of two new polypeptides encoded by mRNA5 of the coronavirus infectious bronchitis virus (1992) Virology., 186 (1), pp. 342-347; Liu, D., Inglis, S., Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus (1992) J Virol., 66 (10), pp. 6143-6154; Liu, D., Cavanagh, D., Green, P., Inglis, S., A polycistronic mRNA specified by the coronavirus infectious bronchitis virus (1991) Virology., 184 (2), pp. 531-544; Liu, D.X., Brown, T.D., Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein (1995) Virology, 209 (2), pp. 420-427; Liu, D.X., Brierley, I., Tibbles, K.W., Brown, T.D., A 100-kilodalton polypeptide encoded by open reading frame (ORF) 1b of the coronavirus infectious bronchitis virus is processed by ORF 1a products (1994) J Virol., 68 (9), pp. 5772-5780; Liu, D.X., Tibbles, K.W., Cavanagh, D., Brown, T.D., Brierley, I., Identification, expression, and processing of an 87-kDa polypeptide encoded by ORF 1a of the coronavirus infectious bronchitis virus (1995) Virology., 208 (1), pp. 48-57; Liu, D.X., Xu, H.Y., Brown, T.D., Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: identification of a 10-kilodalton polypeptide and determination of its cleavage sites (1997) J. Virol., 71 (3), pp. 1814-1820; Liu, D.X., Shen, S., Xu, H.Y., Wang, S.F., Proteolytic mapping of the coronavirus infectious bronchitis virus 1b polyprotein: evidence for the presence of four cleavage sites of the 3C-like proteinase and identification of two novel cleavage products (1998) Virology, 246 (2), pp. 288-297; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc. Natl. Acad. Sci. USA, 112 (30), pp. 9436-9441; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) MBio, 4 (5), pp. e00801-e00813; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Discovery of an RNA virus 3′->5′ exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc. Natl. Acad. Sci. USA, 103 (13), pp. 5108-5113; Ng, L.F., Liu, D.X., Identification of a 24-kDa polypeptide processed from the coronavirus infectious bronchitis virus 1a polyprotein by the 3C-like proteinase and determination of its cleavage sites (1998) Virology, 243 (2), pp. 388-395; Ng, L.F., Liu, D.X., Further characterization of the coronavirus infectious bronchitis virus 3C-like proteinase and determination of a new cleavage site (2000) Virology, 272 (1), pp. 27-39; Ng, L.F.P., Liu, D.X., Membrane association and dimerization of a cysteine-rich, 16-kilodalton polypeptide released from the C-terminal region of the coronavirus infectious bronchitis virus 1a polyprotein (2002) J. Virol., 76 (12), pp. 6257-6267; Oostra, M., Hagemeijer, M.C., van Gent, M., Bekker, C.P., te Lintelo, E.G., Rottier, P.J., Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning (2008) J. Virol., 82 (24), pp. 12392-12405; Pan, J., Peng, X., Gao, Y., Li, Z., Lu, X., Chen, Y., Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication (2008) PloS One, 3 (10), p. e3299; Pasternak, A.O., Spaan, W.J.M., Snijder, E.J., Nidovirus transcription: how to make sense... ? (2006) J. Gen. Virol., 87, pp. 1403-1421; Ricagno, S., Egloff, M.-P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Crystal structure and mechanistic determinants of SARS coronavirus non-structural protein 15 define an endoribonuclease family (2006) Proc. Natl. Acad. Sci. USA, 103 (32), pp. 11892-11897; Seybert, A., Hegyi, A., Siddell, S.G., Ziebuhr, J., The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity (2000) RNA N Y, 6 (7), pp. 1056-1068; Su, D., Lou, Z., Sun, F., Zhai, Y., Yang, H., Zhang, R., Dodecamer structure of severe acute respiratory syndrome coronavirus non-structural protein nsp10 (2006) J Virol., 80 (16), pp. 7902-7908; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc. Natl. Acad. Sci. USA., 111 (37), pp. E3900-E3909; Tan, Y.W., Hong, W., Liu, D.X., Binding of the 5′-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription (2012) Nucleic Acids Res., 40 (11), pp. 5065-5077; te Velthuis, A.J.W., Arnold, J.J., Cameron, C.E., van den Worm, S.H.E., Snijder, E.J., The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent (2010) Nucleic Acids Res., 38 (1), pp. 203-214; te Velthuis, A.J.W., Worm, V.D., SH, E., Snijder, E.J., The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension (2012) Nucleic Acids Res., 40 (4), pp. 1737-1747; Wang, J., Fang, S., Xiao, H., Chen, B., Tam, J.P., Liu, D.X., Interaction of the coronavirus infectious bronchitis virus membrane protein with beta-actin and its implication in virion assembly and budding (2009) PloS One, 4 (3), p. e4908; Wang, X., Liao, Y., Yap, P.L., Png, K.J., Tam, J.P., Liu, D.X., Inhibition of protein kinase R activation and upregulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells (2009) J. Virol., 83 (23), pp. 12462-12472; Xiao, Y., Ma, Q., Restle, T., Shang, W., Svergun, D.I., Ponnusamy, R., Non-structural proteins 7 and 8 of feline coronavirus form a 2: 1 heterotrimer that exhibits primer-independent RNA polymerase activity (2012) J. Virol., 86 (8), pp. 4444-4454; Xu, H.Y., Lim, K.P., Shen, S., Liu, D.X., Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1b region of the avian coronavirus infectious bronchitis virus 1a/1b polyprotein (2001) Virology, 288 (2), pp. 212-222; Xu, L., Khadijah, S., Fang, S., Wang, L., Tay, F.P.L., Liu, D.X., The cellular RNA helicase DDX1 interacts with coronavirus non-structural protein 14 and enhances viral replication (2010) J. Virol., 84 (17), pp. 8571-8583; Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer (2005) Nat. Struct. Mol. Biol., 12 (11), pp. 980-986; Zhao, X., Shaw, K., Cavanagh, D., Presence of subgenomic mRNAs in virions of coronavirus IBV (1993) Virology, 196 (1), pp. 172-178","Liu, D.X.; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research CentreChina; email: dxliu0001@163.com",,"Academic Press Inc.",00426822,,VIRLA,"29035788","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85031086504 "Liu L., Chen W.","57118721600;57087483500;","Leader sequences of coronavirus are altered during infection",2018,"Frontiers in Bioscience - Landmark","23","1",,"27","35",,,"10.2741/4579","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047337522&doi=10.2741%2f4579&partnerID=40&md5=f22dc705c3576eec8a38b1e01df9621d","Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing, 100071, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China","Liu, L., Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Chen, W., Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing, 100071, China","The life cycle of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) involves a unique process called discontinuous transcription by which a set of 3’ coterminal subgenomic mRNAs (sgmRNA) with identical 5’ leader sequences can be generated. The current study demonstrates that the replication intermediates of minus strand of subgenomic RNA (sgRNA) can be readily recovered from SARS-CoV infected cells. A novel sgmRNA (M-1) was identified as a short version of membrane (M) gene. Transcriptional regulatory sequences (TRS) of SARS-CoV and Mouse Hepatitis Virus (MHV) sgmRNAs contain a species specific core element (CE). The sizes of leader sequences in MHVs vary not only in different viral strains but also among different genes in the same strain. Leader alterations such as deletion and nucleotide substitution were observed in MHVs, while a dynamic one-orientation “sequential deletion” was found among the leaders of 76 SARS-CoV isolates. These results imply that the leader sequence of coronavirus might be unstable and leader alterations during SARS-CoV transmission in humans might have negative impact on its viral infectivity. © 2018 Frontiers in Bioscience. All Rights Reserved.","MHV; SARS-CoV; SgmRNA; TRS","M protein, Coronavirus; matrix protein; virus RNA; animal; Chlorocebus aethiops; classification; gene expression regulation; genetics; human; nucleotide sequence; RNA virus; SARS coronavirus; sequence homology; severe acute respiratory syndrome; species difference; Vero cell line; virology; virus genome; Animals; Base Sequence; Cercopithecus aethiops; Gene Expression Regulation, Viral; Genome, Viral; Humans; RNA Viruses; RNA, Viral; SARS Virus; Sequence Homology, Nucleic Acid; Severe Acute Respiratory Syndrome; Species Specificity; Vero Cells; Viral Matrix Proteins","Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1953-1966; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349 (25), pp. 2431-2441; Eickmann, M., Becker, S., Klenk, H.D., Doerr, H.W., Stadler, K., Censini, S., Guidotti, S., Rappuoli, R., Phylogeny of the SARS coronavirus (2003) Science, 302 (5650), pp. 1504-1505; De Groot, R.J., Baker, S.C., Baric, R.S., Brian, D.A., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Ziebuhr, J., Family Coronaviridae (2012) Virus Taxonomy, The 9th Report of The International Committee on Taxonomy of Viruses, pp. 806-828. , King, A.M.Q., Adams, M.J., Carstens, E.B. & E.J Lefkowitz, Eds. (Academic Press); Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Roper, R.L., The Genome sequence of the SARS-associated coronavirus (2003) Science, 300 (5624), pp. 1399-1404; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300 (5624), pp. 1394-1399; Plant, E.P., Dinman, J.D., The role of programmed-1 ribosomal frameshifting in coronavirus propagation (2008) Front Biosci, 13, pp. 4873-4881. , PMCid:PMC2435135; Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Ziebuhr, J., Mechanisms and enzymes involved in SARS coronavirus genome expression (2003) J Gen Virol, 84, pp. 2305-2315; Narayanan, K., Huang, C., Makino, S., SARS coronavirus accessory proteins (2008) Virus Res, 133 (1), pp. 113-121. , PMCid:PMC2720074; Tan, Y.J., Lim, S.G., Hong, W., Characterization of viral proteins encoded by the SARS-coronavirus genome (2005) Antiviral Res, 65 (2), pp. 69-78; Tan, Y.J., Lim, S.G., Hong, W., Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus (2006) Antiviral Res, 72 (2), pp. 78-88; Sharma, K., Akerstrom, S., Sharma, A.K., Chow, V.T., Teow, S., Abrenica, B., Booth, S.A., Lal, S.K., SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus (2011) PLoS One, 6 (5), p. e19436. , PMid:21637748 PMCid:PMC3103500; Moshynskyy, I., Viswanathan, S., Vasilenko, N., Lobanov, V., Petric, M., Babiuk, L.A., Zakhartchouk, A.N., Intracellular localization of the SARS coronavirus protein 9b: Evidence of active export from the nucleus (2007) Virus Res, 127 (1), pp. 116-121; Shi, C.S., Qi, H.Y., Boularan, C., Huang, N.N., Abu-Asab, M., Shelhamer, J.H., Kehrl, J.H., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/ TRAF3/TRAF6 signalosome (2014) J Immunol, 193 (6), pp. 3080-3089. , PMCid:PMC4179872; Sawicki, S.G., Sawicki, D.L., Coronavirus transcription: A perspective (2005) Curr Top Microbiol Immunol, 287, pp. 31-55; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and Discontinuous RNA Synthesis in Coronaviruses (2015) Annu Rev Virol, 2 (1), pp. 265-288; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J Virol, 80 (12), pp. 5927-5940. , PMid: 16731931 PMCid:PMC1472606; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7 (6), pp. 439-450. , PMCid:PMC2830095; Chiu, R.W., Chim, S.S., Tong, Y.K., Fung, K.S., Chan, P.K., Zhao, G.P., Lo, Y.M., Tracing SARS-coronavirus variant with large genomic deletion (2005) Emerg Infect Dis, 11 (1), pp. 168-170. , PMid:15714661 PMCid:PMC3294368; Pavlovic-Lazetic, G.M., Mitic, N.S., Beljanski, M.V., Bioinformatics analysis of SARS coronavirus genome polymorphism (2004) BMC Bioinformatics, 5, p. 65; Pavlovic-Lazetic, G.M., Mitic, N.S., Tomovic, A.M., Pavlovic, M.D., Beljanski, M.V., SARS-CoV genome polymorphism: A bioinformatics study (2005) Genomics Proteomics Bioinformatics, 3 (1), pp. 18-35; Poon, L.L., Leung, C.S., Chan, K.H., Yuen, K.Y., Guan, Y., Peiris, J.S., Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from nonhuman primates (2005) J Med Virol, 76 (4), pp. 435-440; Tang, J.W., Cheung, J.L., Chu, I.M., Sung, J.J., Peiris, M., Chan, P.K., The large 386-nt deletion in SARS-associated coronavirus: Evidence for quasispecies? (2006) J Infect Dis, 194 (6), pp. 808-813; Pfefferle, S., Krahling, V., Ditt, V., Grywna, K., Muhlberger, E., Drosten, C., Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo (2009) Virol J, 6, p. 131; Robb, J.A., Bond, C.W., Pathogenic murine coronaviruses. I. Characterization of biological behavior in vitro and virus-specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses (1979) Virology, 94 (2), pp. 352-370; Ontiveros, E., Kim, T.S., Gallagher, T.M., Perlman, S., Enhanced virulence mediated by the murine coronavirus, mouse hepatitis virus strain JHM, is associated with a glycine at residue 310 of the spike glycoprotein (2003) J Virol, 77 (19), pp. 10260-10269. , PMCid:PMC228498; Kyuwa, S., Takagaki, S., Matsuyama, S., Taguchi, F., Saegusa, J., Iwakura, Y., Tagawa, Y., Yoshikawa, Y., Characterization of a variant virus from ascitic fluid of subacute granulomatous serositis in interferon-gamma-deficient C57BL/6 mice persistently infected with murine coronavirus strain JHM (2010) Viral Immunol, 23 (4), pp. 437-442; Zeng, F.Y., Chan, C.W., Chan, M.N., Chen, J.D., Chow, K.Y., Hon, C.C., Hui, K.H., Leung, F.C., The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39) (2003) Exp Biol Med (Maywood), 228 (7), pp. 866-873; Makino, S., Soe, L.H., Shieh, C.K., Lai, M.M., Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs (1988) J Virol, 62 (10), pp. 3870-3873; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: How to make sense.? (2006) J Gen Virol, 87, pp. 1403-1421; Cowley, T.J., Weiss, S.R., Murinecoronavirus neuropathogenesis: Determinants of virulence (2010) J Neurovirol, 16 (6), pp. 427-434. , PMCid:PMC3153983; Miura, T.A., Travanty, E.A., Oko, L., Bielefeldt-Ohmann, H., Weiss, S.R., Beauchemin, N., Holmes, K.V., The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a-/- Mice (2008) J Virol, 82 (2), pp. 755-763. , PMCid:PMC2224565; Consortium, C.S.M.E., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303 (5664), pp. 1666-1669","Liu, L.; Department of Microbiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical CollegeChina; email: lliu@pumc.edu.cn",,"Frontiers in Bioscience",10939946,,,"28930535","English","Front. Biosci. Landmark",Article,"Final",,Scopus,2-s2.0-85047337522 "Bailey E.S., Fieldhouse J.K., Choi J.Y., Gray G.C.","57195918393;57203434839;57204653861;16425441400;","A Mini Review of the Zoonotic Threat potential of influenza viruses, coronaviruses, adenoviruses, and enteroviruses",2018,"Frontiers in Public Health","6",, 104,"","",,6,"10.3389/fpubh.2018.00104","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051927303&doi=10.3389%2ffpubh.2018.00104&partnerID=40&md5=ee661fe9c005c24b7676c386aef3700d","Duke Global Health Institute, Duke University, Durham, NC, United States; Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Global Health Research Center, Duke-Kunshan University, Kunshan, China; Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore","Bailey, E.S., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Fieldhouse, J.K., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Choi, J.Y., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Gray, G.C., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States, Global Health Research Center, Duke-Kunshan University, Kunshan, China, Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore","During the last two decades, scientists have grown increasingly aware that viruses are emerging from the human-animal interface. In particular, respiratory infections are problematic; in early 2003, World Health Organization issued a worldwide alert for a previously unrecognized illness that was subsequently found to be caused by a novel coronavirus [severe acute respiratory syndrome (SARS) virus]. In addition to SARS, other respiratory pathogens have also emerged recently, contributing to the high burden of respiratory tract infection-related morbidity and mortality. Among the recently emerged respiratory pathogens are influenza viruses, coronaviruses, enteroviruses, and adenoviruses. As the genesis of these emerging viruses is not well understood and their detection normally occurs after they have crossed over and adapted to man, ideally, strategies for such novel virus detection should include intensive surveillance at the human-animal interface, particularly if one believes the paradigm that many novel emerging zoonotic viruses first circulate in animal populations and occasionally infect man before they fully adapt to man; early detection at the human-animal interface will provide earlier warning. Here, we review recent emerging virus treats for these four groups of viruses. © 2018 Bailey, Fieldhouse, Choi and Gray.","Adenoviruses; Coronaviruses; Emerging viruses; Enteroviruses; Influenza viruses; One health; Respiratory viruses",,"(2017), http://afludiary.blogspot.com/2017/05/nih-videocast-current-infectious.html, Current Infectious Disease Challenges [cited 2018 Jan 02]; (2017), https://www.cdc.gov/flu/about/viruses/types.htm, Types of Influenza Viruses [cited 2017 Sep 23]; Bowman, A.S., Walia, R.R., Nolting, J.M., Vincent, A.L., Killian, M.L., Zentkovich, M.M., Influenza A(H3N2) virus in swine at agricultural fairs and transmission to humans (2017) Emerg Infect Dis, 23 (9), p. 5. , Michigan and Ohio, USA, 2016; Lantos, P.M., Hoffman, K., Hohle, M., Anderson, B., Gray, G.C., Are people living near modern swine production facilities at increased risk of influenza virus infection? (2016) Clin Infect Dis, 63 (12), p. 6; Ma, M.J., Wang, G.L., Anderson, B.D., Bi, Z.Q., Lu, B., Wang, X.J., Evidence for cross-species influenza A virus transmission within swine farms (2018) Clin Infect Dis, 66 (4), pp. 533-540. , China; (2016), http://www.who.int/mediacentre/factsheets/avian_influenza/en/, Avian and Other Zoonotic Influenza [cited 2017 Sep 23]; (2016), https://www.cdc.gov/flu/fluincats/h7n2-cat-questions-answers.htm, H7N2 Questions & Answers [updated 2017 May 26; cited 2017 Dec 23]; Avian influenza virus A (H10N7) circulating among humans in Egypt (2004) Emerg Infect Dis, 2 (18), p. 1; Li, X., Zhang, Z., Yu, A., Ho, S.Y., Carr, M.J., Zheng, W., Global and local persistence of influenza A(H5N1) virus (2014) Emerg Infect Dis, 20 (8), pp. 1287-1295; (2016), https://www.cdc.gov/flu/avianflu/h7n9-virus.htm, Asian Lineage Avian Influenza A (H7N9) Virus. [updated 2017 Sep 26; cited 2017 Sep 20]; (2017), http://www.fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update.html, H7N9 Situation Update. [cited 2017 Sep 20]; (2017), https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm#H7N9_hongkong, Summary of Influenza Risk Assessment Tool (IRAT) Results. [updated 2017 Oct 23; cited 2017 Oct 23]; White, S.K., Ma, W., McDaniel, C.J., Gray, G.C., Lednicky, J.A., Serologic evidence of exposure to influenza D virus among persons with occupational contact with cattle (2016) J Clin Virol, 81, pp. 31-33; Foni, E., Chiapponi, C., Baioni, L., Zanni, I., Merenda, M., Rosignoli, C., Influenza D in Italy: towards a better understanding of an emerging viral infection in swine (2017) Sci Rep, 7 (1), p. 11660; Update: outbreak of severe acute respiratory syndrome-worldwide, 2003 (2003) MMWR Morb Mortal Wkly Rep, 52 (13), pp. 269-272; Reynolds, M.G., Anh, B.H., Thu, V.H., Montgomery, J.M., Bausch, D.G., Shah, J.J., Factors associated with nosocomial SARS-CoV transmission among healthcare workers in Hanoi Vietnam, 2003 (2006) BMC Public Health, 6, p. 207; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302 (5643), pp. 276-278; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102 (39), pp. 14040-14045; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538; Kayali, G., Peiris, M., A more detailed picture of the epidemiology of Middle East respiratory syndrome coronavirus (2015) Lancet Infect Dis, 15 (5), pp. 495-497; Balkhy, H.H., Perl, T.M., Arabi, Y.M., Preventing healthcare-associated transmission of the Middle East Respiratory Syndrome (MERS): our Achilles heel (2016) J Infect Public Health, 9 (3), pp. 208-212; (2017) WHO MERS-CoV Global Summary and Assessment of Risk, , Geneva: WHO; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (6268), pp. 77-81; Alharbi, N.K., Vaccines against Middle East respiratory syndrome coronavirus for humans and camels (2017) Rev Med Virol, 27 (2); Daszak, K.J.O., Parviez, R.H., Carlos, Z.-T., Noam, R., Tiffany, L.B., Peter, D., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546 (7660), p. 646; Oberste, M.S., Feeroz, M.M., Maher, K., Nix, W.A., Engel, G.A., Hasan, K.M., Characterizing the picornavirus landscape among synanthropic nonhuman primates in Bangladesh, 2007 to 2008 (2013) J Virol, 87 (1), pp. 558-571; Khetsuriani, N., Lamonte-Fowlkes, A., Fau-Oberst, S., Oberst, S., Pallansch, M.A., CDC. Enterovirus surveillance-United States, 1970-2005 (2006) MMWR Surveill Summ, 55 (8), pp. 1-20; Couch, R.B., Douglas, R.G., Jr., Lindgren, K.M., Gerone, P.J., Knight, V., Airborne transmission of respiratory infection with coxsackievirus A type 21 (1970) Am J Epidemiol, 91 (1), pp. 78-86; Miller, E.K., Lu, X., Erdman, D.D., Poehling, K.A., Zhu, Y., Griffin, M.R., Rhinovirus-associated hospitalizations in young children (2007) J Infect Dis, 195 (6), pp. 773-781; Jain, A., Humar, A., Lien, D., Weinkauf, J., Kumar, D., Strategies for safe living among lung transplant recipients: a single-center survey (2015) Transpl Infect Dis, 17 (2), pp. 185-191; Scully, E.J., Basnet, S., Wrangham, R.W., Muller, M.N., Otali, E., Hyeroba, D., Lethal respiratory disease associated with human rhinovirus C in wild chimpanzees, Uganda, 2013 (2018) Emerg Infect Dis, 24 (2), pp. 267-274; Patel, M.C., Pletneva, L.M., Boukhvalova, M.S., Vogel, S.N., Kajon, A.E., Blanco, J.C.G., Immunization with live human rhinovirus (HRV) 16 induces protection in cotton rats against HRV14 infection (2017) Front Microbiol, 8, p. 1646; Williams, G.R., Kubajewska, I., Glanville, N., Johnston, S.L., McLean, G.R., The potential for a protective vaccine for rhinovirus infections (2016) Expert Rev Vaccines, 15 (5), pp. 569-571; Midgley, C.M., Watson, J.T., Nix, W.A., Curns, A.T., Rogers, S.L., Brown, B.A., Severe respiratory illness associated with a nationwide outbreak of entero-virus D68 in the USA (2014): a descriptive epidemiological investigation (2015) Lancet Respir Med, 3 (11), pp. 879-887; (2017), Centers for Disease Control and Prevention. Non-Polio Enterovirus | About EV-D68 | Enterovirus D68. CDC; Mombo, I.M., Lukashev, A.N., Bleicker, T., Brunink, S., Berthet, N., Maganga, G.D., African non-human primates host diverse enteroviruses (2017) PLoS One, 12 (1); Nagata, N., Shimizu, H., Ami, Y., Tano, Y., Harashima, A., Suzaki, Y., Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71 (2002) J Med Virol, 67 (2), pp. 207-216; Yi, E.-J., Shin, Y.-J., Kim, J.-H., Kim, T.-G., Chang, S.-Y., Enterovirus 71 infection and vaccines (2017) Clin Exp Vaccine Res, 6 (1), pp. 4-14; Rowe, W.P., Huebner, R.J., Gilmore, L.K., Parrott, R.H., Ward, T.G., Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture (1953) Proc Soc Exp Biol Med, 84 (3), pp. 570-573; Hwang, S.M., Park, D.E., Yang, Y.I., Park, S.J., Lee, H.K., Kim, M.J., Outbreak of febrile respiratory illness caused by adenovirus at a south Korean military training facility: clinical and radiological characteristics of adenovirus pneumonia (2013) Jpn J Infect Dis, 66 (5), pp. 359-365; Gray, G.C., Erdman, D.D., (2017) Adenovirus vaccines, pp. 113-126. , 7th ed. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. Philadelphia: Saunders; Yusof, M.A., Rashid, T.R.T.A., Thayan, R., Othman, K.A., Abu Hasan, N., Adnan, N., Human adenovirus type 7 outbreak in police training center, Malaysia, 2011 (2012) Emerg Infect Dis, 18 (5), pp. 852-854; Radin, J.M., Hawksworth, A.W., Blair, P.J., Faix, D.J., Raman, R., Russell, K.L., Dramatic decline of respiratory illness among US military recruits after the renewed use of adenovirus vaccines (2014) Clin Infect Dis, 59 (7), pp. 962-968; Acute respiratory disease associated with adenovirus serotype 14-four states, 2006-2007 (2007) MMWR Morb Mortal Wkly Rep, 56 (45), pp. 1181-1184; Louie, J.K., Kajon, A.E., Holodiny, M., Guardia-LaBar, L., Lee, B., Petru, A.M., Severe pneumonia due to adenovirus serotype 14: a new respiratory threat? (2008) Clin Infect Dis, 46 (3), pp. 421-425; To, K.K.W., Tse, H., Chan, W.M., Choi, G.K.Y., Zhang, A.J.X., Sridhar, S., A novel psittacine adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis: zoonosis associated with virus-bacterium coinfection in birds (2014) Plos Neglect Trop Dis, 8 (12); Benko, M., Harrach, B., Kremer, E.J., Do nonhuman primate or bat adenoviruses pose a risk for human health? (2014) Future Microbiol, 9 (3), pp. 269-272; Hiwarkar, P., Amrolia, P., Sivaprakasam, P., Lum, S.H., Doss, H., O'Rafferty, C., Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant (2017) Blood, 129 (14), pp. 2033-2037; Gautret, P., Gray, G.C., Charrel, R.N., Odezulu, N.G., Al-Tawfiq, J.A., Zumla, A., Emerging viral respiratory tract infections-environmental risk factors and transmission (2014) Lancet Infect Dis, 14 (11), pp. 1113-1122; Danilov, S.M., Balyasnikova, I.V., Albrecht, R.F., II, Kost, O.A., Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ACE and allows detection of inhibitors in human blood (2008) J Cardiovasc Pharmacol, 52 (1), pp. 90-103; Epperson, S., Jhung, M., Richards, S., Quinlisk, P., Ball, L., Moll, M., Human infections with influenza A(H3N2) variant virus in the United States, 2011-2012 (2013) Clin Infect Dis, 57, pp. S4-S11; Presanis, A.M., Lipsitch, M., Daniela, A., The severity of pandemic H1N1 influenza in the United States, April-July 2009 (2009) PLoS Curr, 1; Yan, Z., Li, H., Chen, F., Novel influenza A (H6N1) virus that infected a person in Taiwan (2014) Iran J Public Health, 43 (11), pp. 1582-1584; Tweed, S.A., Skowronski, D.M., David, S.T., Larder, A., Petric, M., Lees, W., Human illness from avian influenza H7N3, British Columbia (2004) Emerg Infect Dis, 10 (12), pp. 2196-2199; Kajon, A., Wadell, G., Genome analysis of South American adenovirus strains of serotype 7 collected over a 7-year period (1994) J Clin Microbiol, 32 (9), pp. 2321-2323; Gerber, S.I., Erdman, D.D., Pur, S.L., Diaz, P.S., Segreti, J., Kajon, A.E., Outbreak of adenovirus genome type 7d2 infection in a pediatric chronic-care facility and tertiary-care hospital (2001) Clin Infect Dis, 32 (5), pp. 694-700; Lin, T.Y., Chang, L.Y., Hsia, S.H., Huang, Y.C., Chiu, C.H., Hsueh, C., The 1998 enterovirus 71 outbreak in Taiwan: pathogenesis and management (2002) Clin Infect Dis, 34, pp. S52-S57; Zhang, T., Bi, Y., Tian, H., Li, X., Liu, D., Wu, Y., Human infection with influenza virus A(H10N8) from live poultry markets, China, 2014 (2014) Emerg Infect Dis, 20 (12), pp. 2076-2079; Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Broekman, J.M., Kemink, S.A., Munster, V., Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome (2004) Proc Natl Acad Sci U S A, 101 (5), pp. 1356-1361; Morfin, F., Dupuis-Girod, S., Mundweiler, S., Falcon, D., Carrington, D., Sedlacek, P., In vitro susceptibility of adenovirus to antiviral drugs is species-dependent (2005) Antivir Ther, 10 (51), pp. 225-229","Bailey, E.S.; Duke Global Health Institute, Duke UniversityUnited States; email: emily.bailey2@duke.edu",,"Frontiers Media S.A.",22962565,,,,"English","Front. Public Health",Short Survey,"Final",Open Access,Scopus,2-s2.0-85051927303 "Miłek J., Blicharz-Domańska K.","57207876379;57207880918;","Coronaviruses in avian species-review with focus on epidemiology and diagnosis in wild birds",2018,"Journal of Veterinary Research (Poland)","62","3",,"249","255",,3,"10.2478/jvetres-2018-0035","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063139691&doi=10.2478%2fjvetres-2018-0035&partnerID=40&md5=11a30a8e5a41427a4865d5db4ebde9cc","Department of Poultry Diseases, National Veterinary Research Institute, Puławy, 24-100, Poland","Miłek, J., Department of Poultry Diseases, National Veterinary Research Institute, Puławy, 24-100, Poland; Blicharz-Domańska, K., Department of Poultry Diseases, National Veterinary Research Institute, Puławy, 24-100, Poland","Coronaviruses (CoVs) are a large group of enveloped viruses with a single-strand RNA genome, which continuously circulate in mammals and birds and pose a threat to livestock, companion animals, and humans. CoVs harboured by avian species are classified to the genera gamma- A nd deltacoronaviruses. Within the gamma-CoVs the main representative is avian coronavirus, a taxonomic name which includes the highly contagious infectious bronchitis viruses (IBVs) in chickens and similar viruses infecting other domestic birds such as turkeys, guinea fowls, or quails. Additionally, IBVs have been detected in healthy wild birds, demonstrating that they may act as the vector between domestic and free-living birds. Moreover, CoVs other than IBVs, are identified in wild birds, which suggests that wild birds play a key role in the epidemiology of other gammaCoVs and deltaCoVs. Development of molecular techniques has significantly improved knowledge of the prevalence of CoVs in avian species. The methods adopted in monitoring studies of CoVs in different avian species are mainly based on detection of conservative regions within the viral replicase, nucleocapsid genes, and 3'UTR or 5'UTR. The purpose of this review is to summarise recent discoveries in the areas of epidemiology and diagnosis of CoVs in avian species and to understand the role of wild birds in the virus distribution. © 2018 J. Miłek and K. Blicharz-Domańska published by Sciendo.","coronavirus; poultry; wild birds","3' untranslated region; 5' untranslated region; article; Avian infectious bronchitis virus; human; monitoring; nonhuman; poultry; prevalence; virus nucleocapsid","Bochkov, Y.A., Tosi, G., Massi, P., Drygin, V.V., Phylogenetic analysis of partial S1 and N gene sequences of infectious bronchitis virus isolates from Italy revealed genetic diversity and recombination (2007) Virus Genes, 35, pp. 65-71; Brown, P.A., Touzain, F., Briand, F.X., Gouilh, A.M., Courtillon, C., Allee, C., Lemaitre, E., Eterradossi, N., First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses (2016) J Gen Virol, 97, pp. 110-120; Callison, S.A., Hilt, D.A., Boynton, T.O., Sample, B.F., Robison, R., Swayne, D.E., Jackwood, M.W., Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) J Virol Methods, 138, pp. 60-65; Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009) (2010) Arch Virol, 155, pp. 133-146; Cavanagh, D., Mavditt, K., Sharma, M., Drury, S.E., Ainsworth, H.L., Britton, P., Gough, R.E., Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens (2001) Avian Pathol, 30, pp. 355-368; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol, 34, pp. 439-448; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet Res, 38, pp. 281-297; Chan, J.F.W., To, K.K.W., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Chan, J.F.W., To, K.K.W., Chen, H.L., Yuen, K.Y., Cross-species transmission and emergence of novel viruses from birds (2015) Curr Opin Virol, 10, pp. 63-69; Chen, G.Q., Zhuang, Q.Y., Wang, K.C., Liu, S., Shao, J.Z., Jiang, W.M., Hou, G.Y., Chen, J.M., Identification and Survey of a Novel Avian Coronavirus in Ducks (2013) Plos One, p. 8; Chu, D.K., Leung, C.Y., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Poon, L.L., Avian coronavirus in wild aquatic birds (2011) J Virol, 85, pp. 12815-12820; Circella, E., Camarda, A., Martella, V., Bruni, G., Lavazza, A., Buonavoglia, C., Coronavirus associated with an enteric syndrome on a quail farm (2007) Avian Pathol, 36, pp. 251-258; Domanska-Blicharz, K., Jacukowicz, A., Lisowska, A., Wyrostek, K., Minta, Z., Detection and molecular characterization of infectious bronchitis-like viruses in wild bird populations (2014) Avian Pathol, 43, pp. 406-413; Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Guan, Y., Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China (2007) J Virol, 81, pp. 6920-6926; Duraes-Carvalho, R., Caserta, L.C., Barnabe, A.C.S., Martini, M.C., Ferreira, H.L., Felippe, P.A.N., Santos, M.B., Arns, C.W., Coronaviruses detected in Brazilian wild birds reveal close evolutionary relationships with beta- A nd deltacoronaviruses isolated from mammals (2015) J Mol Evol, 81, pp. 21-23; Felippe, P.A., Da Silva, L.H., Santos, M.M., Spilki, F.R., Arns, C.W., Genetic diversity of avian infectious bronchitis virus isolated from domestic chicken flocks and coronaviruses from feral pigeons in Brazil between 2003 and 2009 (2010) Avian Dis, 54, pp. 1191-1196; Fong, I.W., Emerging Animal Coronaviruses: First SARS and Now MERS (2017) Emerging Infecious Disseases of the 21st Century, pp. 63-80. , edited by I.W.Fong Springer Cham; Franzo, G., Massi, P., Tucciarone, C.M., Barbieri, I., Tosi, G., Fiorentini, L., Ciccozzi, M., Moreno, A., Think globally, act locally: Phylodynamic reconstruction of infectious bronchitis virus (IBV) QX genotype (GI-19 lineage) reveals different population dynamics and spreading patterns when evaluated on different epidemiological scales (2017) Plos One, p. 12; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37; Hewson, K.A., Ignjatovic, J., Browning, G.F., Devlin, J.M., Noormohammadi, A.H., Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion (2011) Arch Virol, 156, pp. 245-252; Honkavuori, K.S., Briese, T., Krauss, S., Sanchez, M.D., Jain, K., Hutchison, S.K., Webster, R.G., Lipkin, W.I., Novel Coronavirus and astrovirus in Delaware bay shorebirds (2014) Plos One, p. 9; Hughes, L.A., Savage, C., Naylor, C., Bennett, M., Chantrey, J., Jones, R., Genetically diverse coronaviruses in wild bird populations of northern England (2009) Emerg Infect Dis, 15, pp. 1091-1094; Jackwood, M.W., Boynton, T.O., Hilt, D.A., McKinley, E.T., Kissinger, J.C., Paterson, A.H., Robertson, J., Byrd, L.A., Emergence of a group 3 coronavirus through recombination (2010) Virology, 398, pp. 98-108; Jonassen, C.M., Kofstad, T., Larsen, I.L., Lovland, A., Handeland, K., Follestad, A., Lillehaug, A., Molecular identification and characterization of novel coronaviruses infecting graylag geese (Anser anser), feral pigeons (Columbia livia) and mallards (Anas platyrhynchos) (2005) J Gen Virol, 86, pp. 1597-1607; Jordan, B.J., Hilt, D.A., Poulson, R., Staliknecht, D.E., Jackwood, M.W., Identification of avian coronavirus in wild aquatic birds of the Central and Eastern USA (2015) J Wildlife Dis, 51, pp. 218-221; Kim, H.R., Oem, J.K., Surveillance of avian coronaviruses in wild bird populations of Korea (2014) J Wildlife Dis, 50, pp. 964-968; Liais, E., Croville, G., Mariette, J., Delverdier, M., Lucas, M.N., Klopp, C., Lluch, J., Guerin, J.L., Novel avian coronavirus and fulminating disease in guinea fowl France (2014) Emerg Infect Dis, 20, pp. 105-108; Lima, F.E.D., Gil, P., Pedrono, M., Minet, C., Kwiatek, O., Campos, F., Spilki, F., Almeida, R., Diverse gammacoronaviruses detected in wild birds from Madagascar (2015) Eur J Wildlife Res, 61, pp. 635-639; Lisowska, A., Sajewicz-Krukowska, J., Fusaro, A., Pikula, A., Domanska-Blicharz, K., First characterization of a Middle-East GI-23 lineage (Var2-like) of infectious bronchitis virus in Europe (2017) Virus Res, 242, pp. 43-48; Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Liu, M., Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) (2005) J Gen Virol, 86, pp. 719-725; McCluskey, B.J., Haley, C., Rovira, A., Main, R., Zhang, Y., Barder, S., Retrospective testing and case series study of porcine delta coronavirus in US swine herds (2016) Prevent Vet Med, 123, pp. 185-191; Mihindukulasuriya, K.A., Wu, G., St Leger, J., Nordhausen, R.W., Wang, D., Identification of a novel coronavirus from a beluga whale by using a panviral microarray (2008) J Virol, 82, pp. 5084-5088; Muradrasoli, S., Mohamed, N., Hornyak, A., Fohlman, J., Olsen, B., Belak, S., Blomberg, J., Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos) (2009) J Virol Methods, 159, pp. 277-287; Muradrasoli, S., Balint, A., Wahlgren, J., Waldenstrom, J., Belak, S., Blomberg, J., Olsen, B., Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia) (2010) PLoS One, 5, p. e13640; Reed, K.D., Meece, J.K., Henkel, J.S., Shukla, S.K., Birds, migration and emerging zoonoses: West Nile Virus, Lyme disease, influenza A, enteropathogens (2003) Clin Med Res, 1, pp. 5-12; Rohaim, M.A., El Naggar, R.F., Helal, A.M., Hussein, H.A., Munir, M., Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds (2017) Vaccine, 35, pp. 3523-3527; Stephensen, C.B., Casebolt, D.B., Gangopadhyay, N.N., Phylogenetic analysis of a highly conserved region of the polymerase gene from 11 coronaviruses and development of a consensus polymerase chain reaction assay (1999) Virus Res, 60, pp. 181-189; Sun, L., Zhang, G.H., Jiang, J.W., Fu, J.D., Ren, T., Cao, W.S., Xin, C.A., Liu, W.J., A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens (2007) Virus Res, 130, pp. 121-128; Torres, C.A., Villarreal, L.Y.B., Ayres, G.R.R., Richtzenhain, L.J., Brandao, P.E., An avian coronavirus in quail withr respiratory and reproductive signs (2013) Avian Dis, 57, pp. 295-299; Torres, C.A., Hora, A.S., Tonietti, P.O., Taniwaki, S.A., Cecchinato, M., Villarreal, L.Y.B., Brandao, P.E., Gammacoronavirus and deltacoronavirus in quail (2016) Avian Dis, 60, pp. 656-661; Torres, C.A., Listorti, V., Lupini, C., Franzo, G., Drigo, M., Catelli, E., Brandao, P.E., Cecchinato, M., Gamma and deltacoronaviruses in quail and pheasants from Northern Italy (2017) Poultry Sci, 96, pp. 717-722; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect Gen Evol, 39, pp. 349-364; Wertheim, J.O., Chu, D.K.W., Peiris, J.S.M., Pond, S.L.K., Poon, L.L.M., A case for the ancient origin of coronaviruses (2013) J Virol, 87, pp. 7039-7045; Wickramasinghe, I.N.A., Van Beurden, S.J., Weerts, E.A.W.S., Verheije, M.H., The avian coronavirus spike protein (2014) Virus Res, 194, pp. 37-48; Wickramasinghe, I.N.A., De Vries, R.P., Weerts, E.A.W.S., Van Beurden, S.J., Peng, W., McBride, R., Ducatez, M., Verheijea, M.H., Novel receptor specificity of avian gammacoronaviruses that cause enteritis (2015) J Virol, 89, pp. 8783-8792; Wille, M., Avril, A., Tolf, C., Schager, A., Larsson, S., Borg, O., Olsen, B., Waldenstrom, J., Temporal dynamics, diversity, interplay in three components of the virodiversity of a Mallard population: Influenza A virus, avian paramyxovirus and avian coronavirus (2015) Infect Gen Evol, 29, pp. 129-137; Wille, M., Muradrasoli, S., Nilsson, A., Jarhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian waterfowl (2016) Plos One, p. 11; Wille, M., Lindqvist, K., Muradrasoli, S., Olsen, B., Jarhult, J.D., Urbanization and the dynamics of RNA viruses in Mallards (Anas platyrhynchos) (2017) Infect Gen Evol, 51, pp. 89-97; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med (Maywood), 234, pp. 1117-1127; Woo, P.C., Lau, S.K., Lam, C.S., Lai, K.K., Huang, Y., Lee, P., Luk, G.S., Yuen, K.Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J Virol, 83, pp. 908-917; Woo, P.C.Y., Lau, S.K.P., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H.L., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lai, K.K.Y., Huang, Y., Lee, P., Luk, G.S.M., Yuen, K.Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J Virol, 83, pp. 908-917; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Zhuang, Q.Y., Wang, K.C., Liu, S., Hou, G.Y., Jiang, W.M., Wang, S.C., Li, J.P., Chen, J.M., Genomic analysis and surveillance of the coronavirus dominant in ducks in China (2015) Plos One, p. 10",,,"Sciendo",24507393,,,,"English","J. Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85063139691 "Bonny T.S., Yezli S., Lednicky J.A.","37051800800;35996197300;6701315850;","Isolation and identification of human coronavirus 229E from frequently touched environmental surfaces of a university classroom that is cleaned daily",2018,"American Journal of Infection Control","46","1",,"105","107",,3,"10.1016/j.ajic.2017.07.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028847868&doi=10.1016%2fj.ajic.2017.07.014&partnerID=40&md5=0e69a8091fd3fea4a905e8c4d8d93368","Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia","Bonny, T.S., Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; Yezli, S., The Global Centre for Mass Gatherings Medicine, Public Health Directorate, Ministry of Health, Riyadh, Saudi Arabia; Lednicky, J.A., Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States","Frequently touched surfaces of a university classroom that is cleaned daily contained viable human coronavirus 229E (CoV-229E). Tests of a CoV-229E laboratory strain under conditions that simulated the ambient light, temperature, and relative humidity conditions of the classroom revealed that some of the virus remained viable on various surfaces for 7 days, suggesting CoV-229E is relatively stable in the environment. Our findings reinforce the notion that contact transmission may be possible for this virus. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","Frequently touched environmental surfaces; Human coronavirus 229E","Human coronavirus 229E; humidity; nonhuman; simulation; environmental microbiology; genetics; housekeeping; human; Human coronavirus 229E; isolation and purification; surface property; university; virus RNA; Coronavirus 229E, Human; Environmental Microbiology; Housekeeping; Humans; RNA, Viral; Surface Properties; Universities","Killingley, B., Nguyen–Van-Tam, J., Routes of influenza transmission (2013) Influenza Other Respir Viruses, 7, pp. 42-51; Otter, J.A., Yezli, S., Salkeld, J.A.G., French, G.L., Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings (2013) Am J Infect Control, 41, pp. S6-11; Memish, Z.A., Almasri, M., Assirri, A., Al-Shangiti, A.M., Gray, G.C., Lednicky, J., Environmental sampling for respiratory pathogens in Jeddah airport during the 2013 Hajj season (2014) Am J Infect Control, 42, pp. 1266-1269; Lednicky, J.A., Loeb, J.C., Detection and isolation of airborne influenza A H3N2 virus using a Sioutas Personal Cascade Impactor Sampler (2013) Influenza Res Treat, 2013. , 656825; Farsani, S.M., Dijkman, R., Jebbink, M.F., Goossens, H., Ieven, M., Deijs, M., The first complete genome sequences of clinical isolates of human coronavirus 229E (2012) Virus Genes, 45, pp. 433-439; Boone, S.A., Gerba, C.P., Significance of fomites in the spread of respiratory and enteric viral disease (2007) Appl Environ Microbiol, 73, pp. 1687-1696; Dowell, S.F., Simmerman, J.M., Erdman, D.D., Wu, J.S., Chaovavanich, A., Javadi, M., Severe acute respiratory syndrome coronavirus on hospital surfaces (2004) Clin Infect Dis, 39, pp. 652-657; Fraise, A.P., Lambert, P.A., Maillard, J., Russell, Hugo and Ayliffe's Principles and Practices of Disinfection. Preservation, and Sterilization (2004), Blackwell Publishing Malden (MA); Yezli, S., Otter, J.A., Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment (2011) Food Environ Virol, 3, pp. 1-30; Warnes, S.L., Keevil, C.W., Inactivation of norovirus on dry copper alloy surfaces (2013) PLoS ONE, 8, p. e75017; Ibfelt, T., Engelund, E.H., Schultz, A.C., Andersen, L.P., Effect of cleaning and disinfection of toys on infectious diseases and micro-organisms in daycare nurseries (2015) J Hosp Infect, 89, pp. 109-115","Lednicky, J.A.; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr, HPNP Bldg, Rm 4155, PO Box 100188, United States; email: jlednicky@phhp.ufl.edu",,"Mosby Inc.",01966553,,AJICD,"28893443","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85028847868 "Varghese L., Zachariah P., Vargas C., LaRussa P., Demmer R.T., Furuya Y.E., Whittier S., Reed C., Stockwell M.S., Saiman L.","57204444432;35742565100;37121064500;7003705361;56783949800;57200722171;6701460058;35222238200;22958914900;7006105788;","Epidemiology and clinical features of human coronaviruses in the pediatric population",2018,"Journal of the Pediatric Infectious Diseases Society","7","2",,"151","158",,6,"10.1093/jpids/pix027","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055614173&doi=10.1093%2fjpids%2fpix027&partnerID=40&md5=baaeaf357e562ae3d7c891b1089172a9","Emergency Preparedness Program, North Central Health District, Georgia Department of Public Health, Macon, United States; Department of Pediatrics, Columbia University Medical Center, New York, United States; Department of Medicine, Columbia University Medical Center, 622 West 168th St, PH 4–473, New York, NY 10032, United States; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, United States; Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, United States; Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, United States; Centers for Disease Control and Prevention, Atlanta, GA, United States; Department of Pediatrics, Columbia University Medical Center, 622 West 168th St, PH 4–473, New York, NY 10032, United States","Varghese, L., Emergency Preparedness Program, North Central Health District, Georgia Department of Public Health, Macon, United States; Zachariah, P., Department of Pediatrics, Columbia University Medical Center, New York, United States, Department of Pediatrics, Columbia University Medical Center, 622 West 168th St, PH 4–473, New York, NY 10032, United States; Vargas, C., Department of Pediatrics, Columbia University Medical Center, New York, United States; LaRussa, P., Department of Pediatrics, Columbia University Medical Center, New York, United States; Demmer, R.T., Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, United States; Furuya, Y.E., Department of Medicine, Columbia University Medical Center, 622 West 168th St, PH 4–473, New York, NY 10032, United States, Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, United States; Whittier, S., Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States; Reed, C., Centers for Disease Control and Prevention, Atlanta, GA, United States; Stockwell, M.S., Department of Pediatrics, Columbia University Medical Center, New York, United States, Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, United States; Saiman, L., Department of Pediatrics, Columbia University Medical Center, New York, United States, Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, United States","Background. The epidemiology and clinical features of human coronaviruses (HCoVs) in children are not fully characterized. Methods. A retrospective study of children with HCoV detected by reverse-transcriptase polymerase chain reaction (RT-PCR) was performed for a community cohort and a children’s hospital in the same community from January 2013 to December 2014. The RT-PCR assay detected HCoV 229E, HKU1, NL63, and OC43 in nasal swabs from symptomatic children ≤18 years. Factors associated with increased severity of illness in hospitalized children were assessed by multivariable logistic regression. Results. Human coronavirus was detected in 261 children, 49 and 212 from the community and hospital, respectively. The distribution of HCoV types and seasonal trends were similar in the community and hospital. Community cases were older than hospitalized cases (median age, 4.4 versus 1.7 years, respectively; P < .01), and a minority of community cases (26.5%) sought medical attention. Among the hospitalized children with HCoV detected, 39 (18.4%) received respiratory support and 24 (11.3%) were admitted to the pediatric intensive care unit (PICU). Age <2 years (odds ratio [OR] = 5.0; 95% confidence interval [CI], 1.9–13.1) and cardiovascular (OR = 3.9; 95% CI, 1.6–9.5), genetic/congenital (OR = 2.8; 95% CI, 1.1–7.0), and respiratory chronic complex conditions ([CCCs] OR = 4.5; 95% CI, 1.7–12.0) were associated with receiving respiratory support. Genetic/congenital (OR = 2.8; 95% CI, 1.1–7.4) CCCs were associated with PICU admission. Severity of illness was similar among hospitalized children with different HCoV types. Conclusions. Children in the community with HCoV detected generally had mild illness as demonstrated by few medically attended cases. In hospitalized children, young age and CCCs, but not HCoV type, were associated with increased severity of illness. © The Author(s) 2017. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved.","Community surveillance; Medically attended; Pediatric ICU; Respiratory viral illness","acute respiratory tract disease; Article; assisted ventilation; asthma; child; chill; chronic respiratory tract disease; cohort analysis; Coronaviridae; Coronavirinae; Coronavirus infection; coughing; disease surveillance; female; fever; headache; human; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; major clinical study; male; mixed infection; multiplex polymerase chain reaction; nose obstruction; pediatric intensive care unit; priority journal; reverse transcription polymerase chain reaction; rhinorrhea; sore throat; viral respiratory tract infection; wheezing; adolescent; classification; community acquired infection; comorbidity; Coronavirus infection; hospitalization; infant; multiple chronic conditions; onset age; preschool child; respiratory tract infection; retrospective study; season; severity of illness index; virology; Adolescent; Age of Onset; Child; Child, Preschool; Community-Acquired Infections; Comorbidity; Coronavirus; Coronavirus Infections; Female; Hospitalization; Humans; Infant; Male; Multiple Chronic Conditions; Respiratory Tract Infections; Retrospective Studies; Reverse Transcriptase Polymerase Chain Reaction; Seasons; Severity of Illness Index","Coleman, C.M., Frieman, M.B., Coronaviruses: Important emerging human pathogens (2014) J Virol, 88, pp. 5209-5212; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations (2013) J Infect Dis, 208, pp. 1634-1642; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; McIntosh, K., Ellis, E.F., Hoffman, L.S., The association of viral and bacterial respiratory infections with exacerbations of wheezing in young asthmatic children (1973) J Pediatr, 82, pp. 578-590; Graat, J.M., Schouten, E.G., Heijnen, M.L., A prospective, community-based study on virologic assessment among elderly people with and without symptoms of acute respiratory infection (2003) J Clin Epidemiol, 56, pp. 1218-1223; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations (2013) J Infect Dis, 208, pp. 1634-1642; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Bradburne, A.F., Somerset, B.A., Coronative antibody tires in sera of healthy adults and experimentally infected volunteers (1972) J Hyg (Lond), 70, pp. 235-244; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729; Caliendo, A.M., Multiplex PCR and emerging technologies for the detection of respiratory pathogens (2011) Clin Infect Dis, 52, pp. S326-S330; Stockwell, M.S., Reed, C., Vargas, C.Y., MoSAIC: Mobile surveillance for acute respiratory infections and influenza-like illness in the community (2014) Am J Epidemiol, 180, pp. 1196-1201; Simon, T.D., Berry, J., Feudtner, C., Children with complex chronic conditions in inpatient hospital settings in the United States (2010) Pediatrics, 126, pp. 647-655; Feudtner, C., Christakis, D.A., Connell, F.A., Pediatric deaths attributable to complex chronic conditions: A population-based study of Washington State, 1980–1997 (2000) Pediatrics, 106, pp. 205-209; Dijkman, R., Jebbink, M.F., Gaunt, E., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age (2014) Pediatr Infect Dis J, 33, pp. 814-820; Talbot, H.K., Shepherd, B.E., Crowe, J.E., Jr., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Gaunt, E.R., Hardie, A., Claas, E.C., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Vabret, A., Dina, J., Gouarin, S., Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France (2008) J Paediatr Child Health, 44, pp. 176-181; Van Der Hoek, L., Sure, K., Ihorst, G., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2; Sung, J.Y., Lee, H.J., Eun, B.W., Role of human coronavirus NL63 in hospitalized children with croup (2010) Pediatr Infect Dis J, 29, pp. 822-826; Gagneur, A., Sizun, J., Vallet, S., Coronavirus-related nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: A prospective study (2002) J Hosp Infect, 51, pp. 59-64",,,"Oxford University Press",20487193,,,"28482105","English","J. Pediatric Infect. Dis. Soc.",Article,"Final",Open Access,Scopus,2-s2.0-85055614173 "Pancer K.W.","6603403764;","Pandemic Human Coronavirus – characterization and comparison of selected properties of HCoV-SARS and HCoV-MERS [Pandemiczne koronawirusy człowieka – Charakterystyka oraz porównanie wybranych właściwości HCOV-SARS I HCoV-MERS]",2018,"Postepy Mikrobiologii","57","1",,"22","32",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050561205&partnerID=40&md5=a107360ac669c873f29a1e14980dbdce","Zakład Wirusologii Narodowego Instytutu Zdrowia Publicznego, PZH w Warszawie, ul. Chocimska 24, Warszawa, 00-791, Poland","Pancer, K.W., Zakład Wirusologii Narodowego Instytutu Zdrowia Publicznego, PZH w Warszawie, ul. Chocimska 24, Warszawa, 00-791, Poland","Two Coronaviruses, HCoV-229E and HCoV-OC43, causing generally mild respiratory tract infections in humans, were described in the XX c. Pandemic Coronaviruses were first discovered as late as in the XXI c.: SARS-HCoV in 2002 – causing severe respiratory tract infections (SARS) in China; MERS-HCoV in 2012 – circulating mostly on the Arabian Peninsula. The SARS epidemic ended in 2004 resulting in morbidity of > 8000 and > 770 deaths, while the MERS epidemic is still ongoing (> 2000 ill, > 700 deaths) although its intensity decreased. Both viruses are zoonotic and require at least two “host jumps” for the transmission of the infection to humans: for HCoV-SARS – from bat to palm civet and then to human; for HCoV-MERS – from bats to camels and subsequently to humans. Primary mode of transmission is droplet in close contact (< 1 m), but both viruses remain active in aerosol (up to 24 h), so infection can be also spread by air (ventilation). The ability for human-to-human transmission is higher for HCoV-SARS than for HCoV-MERS (8 generations vs. 4, respectively). Moreover, there are differences in genome structure and pathogenic mechanisms: different receptor, cell entry mechanism, different way of host response modulation (e.g. inhibition of IFNβ cascade), etc. Probably, these differences influence the overall manifestation of the disease in humans. Infection caused by HCoV-MERS might manifest itself as ARDS, a mild-mannered and asymptomatic disease. HCoV-SARS infections seem to be associated with severe disease only. In this paper, a comparison of the structure of these viruses, the mechanisms underlying their ability to cross the interspecies barrier and to multiply in the human body, including modulation of IFNβ cascade, as well as routes of infection transmission and symptoms caused, were presented. © 2018 Polish Society of Microbiologists. All rights reserved.","Inhibition of interferon cascade; Interspecies transmission; Structure of genome; Symptoms; Transmission of infection","Article; asymptomatic infection; bat; camel; comparative study; epidemic; human; immune response; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; morbidity; nonhuman; SARS coronavirus; severe acute respiratory syndrome; virus characterization; virus genome; virus transmission; aerosol; Coronaviridae; infection risk; pandemic; virus morphology; beta interferon","Abramczuk, E., Pancer, K., Gut, W., Litwińska, B., Niepande-miczne koronawirusy człowieka – Charakterystyka i diagno-styka (2017) Post. Mikrobiol., 56, pp. 205-213; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015 (2016) Int. J. Infect. Dis., 45, pp. 1-4; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Nassir, W.N., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Assiri, A., Memish, Z.A., Hospital outbreak of Middle East Respiratory Syndrome Coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Chan, R.W.Y., Peiris, J.S.M., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J. Virol., 87, pp. 6604-6614; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Viboud, C., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Med, 13, pp. 210-222; Corman, V.M., Memish, Z.A., Viral shedding and antibody response in 37 patients with MERS-coronavirus infection (2016) Clin. Infect. Dis., 62, pp. 477-483; Ding, Y., Jiang, S., Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways (2004) J. Pathol., 203, pp. 622-630; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) EuroSurveill, 18 (38). , pii=20590; Drosten, C., Wendtner, C.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13, pp. 745-751; (2017) ECDC Communicable Disease Threats Report, , https://ecdc.europa.eu/sites/portal/files/documents/Communicable-disease-threats-report-01-jul-2017.pdf, 26 week, 25June 1July 5.07.2017; Fowler, R.A., Lapinsky, S.E., Hallet, D., Detsky, A.S., Sibbald, W.J., Slutsky, A.S., Stewart, A., Critically ill patients with SARS (2003) JAMA, 290, pp. 367-373; Gralinski, L.E., Baric, R.S., Molecular pathology of emerging coronavirus infections (2015) J. Pathol., 235, pp. 185-195; Horby, P., New data on clinical features, incubation period, and case fatality rate of SARS in Hong Kong and Canada (2003) Euro Surveill, 7 (19). , pii=2223; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute sepiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr. Opin. Pulm. Med., 20, pp. 233-241; Lau, S.K.P., Lau, C.C.Y., Chan, K.H., Li, C.P.Y., Chen, H., Jin, D.Y., Chan, J.F.W., Yuen, K.Y., Delayed induction of pro-inflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.K., Makino, S., Middle East Respiratory Syndrome Coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J. Virol., 89, pp. 10970-10981; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Lui, P.Y., Wong, L.Y.R., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Chan, C.P., Jin, D.Y., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-depen-dent phosphorylation of IRF3 (2016) Emerg. Microbes. Infect., 5, p. e39; Liu, S., Chan, T.C., Chu, Y.T., Wu, J.T.S., Geng, X., Zhao, N., Cheng, W., King, C.C., Comparative epidemiology of human infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among healthcare personnel (2016) Plos One, 11, p. e0149988; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222; Nam, H.S., Park, J.W., Ki, M., Yeon, M.Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int. J. Infect. Dis., 58, pp. 37-42; Poutanen, S.M., McGeer, A.J., Identification of Severe Acute Respiratory Syndrome in Canada (2003) N. Engl. J. Med., 348, pp. 1995-2005; Sabir, J.S.M., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Svoboda, T., Glazier, R.H., Public health measures to control the spread of the Severe Acute Respiratory Syndrome during the outbreak in Toronto (2004) N. Engl. J. Med., 350, pp. 2352-2361; Wong, L.Y., Lui, P.Y., Jin, D.Y., A molecular arms race between host innate antiviral response and emerging human coronaviruses (2016) Virol. Sin., 31, pp. 12-23; (2003) Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July, , http://www.who.int/csr/sars/country/table2004_04_21/en/, 28.06.2017; Vijay, R., Perlma, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr. Opin. Virol., 16, pp. 70-76","Pancer, K.W.; Zakład Wirusologii Narodowego Instytutu Zdrowia Publicznego, PZH w Warszawie, ul. Chocimska 24, Poland; email: kpancer@pzh.gov.pl",,"Polish Society of Microbiologists",00794252,,PMKMA,,"Polish","Postepy Mikrobiol.",Article,"Final",,Scopus,2-s2.0-85050561205 "Soma T., Saito N., Kawaguchi M., Sasai K.","7103108050;57200191839;57200189039;7102760601;","Feline coronavirus antibody titer in cerebrospinal fluid from cats with neurological signs",2018,"Journal of Veterinary Medical Science","80","1",,"59","62",,1,"10.1292/jvms.17-0399","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040109333&doi=10.1292%2fjvms.17-0399&partnerID=40&md5=f071fa6a426d8c35b309e818635c0139","Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka 563-0011, Japan; Laboratory of Veterinary Internal Medicine, Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan","Soma, T., Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka 563-0011, Japan, Laboratory of Veterinary Internal Medicine, Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan; Saito, N., Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka 563-0011, Japan; Kawaguchi, M., Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka 563-0011, Japan; Sasai, K., Laboratory of Veterinary Internal Medicine, Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan","To investigate the utility of cerebrospinal fluid (CSF) anti-feline coronavirus (FCoV) antibody test for diagnosis of feline infectious peritonitis (FIP), the antibody titers were tested in CSF and sera from 271 FIP-suspected neurological cats. CSF antibody was detected in 28 cats, which were divided into 2 groups; 15 with CSF titer of 1:80 or lower and 13 with CSF titer of 1:640 or higher. In the latter group, reciprocal serum titer/reciprocal CSF titer was 8 or lower, which is extremely lower than normal range (256-2048), and FCoV RNA was detected in all of 11 CSF samples assayed by RT-PCR. Our findings indicate that CSF titer of 1:640 or higher may be served as a candidate for the index for diagnosing FIP. © 2018 The Japanese Society of Veterinary Science.","Antibody; CSF; Feline coronavirus; RT-PCR","virus antibody; virus RNA; animal; blood; cat; cat disease; cerebrospinal fluid; Feline coronavirus; feline infectious peritonitis; immunology; isolation and purification; virology; Animals; Antibodies, Viral; Cat Diseases; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; RNA, Viral","Addie, D.D., Feline coronavirus infections (2012) Infectious Disease of the Dog and Cat, pp. 92-108. , 4th ed. (Greene, C. E. ed.), Saunders Elsevier, St. Louis; Addie, D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M.C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J. Feline Med. Surg., 11, pp. 594-604; Andiman, W.A., Organism-specific antibody indices, the cerebrospinal fluid-immunoglobulin index and other tools: A clinician’s guide to the etiologic diagnosis of central nervous system infection (1991) Pediatr. Infect. Dis. J., 10, pp. 490-495; Boettcher, I.C., Steinberg, T., Matiasek, K., Greene, C.E., Hartmann, K., Fischer, A., Use of anti-coronavirus antibody testing of cerebrospinal fluid for diagnosis of feline infectious peritonitis involving the central nervous system in cats (2007) J. Am. Vet. Med. Assoc., 230, pp. 199-205; Clarke, J.K., Dane, D.S., Dick, G.W.A., Viral antibody in the cerebrospinal fluid and serum of multiple sclerosis patients (1965) Brain, 88, pp. 953-962; Connolly, J.H., Subacute sclerosing panencephalitis (1972) J. Clin. Pathol. Suppl. (R Coll Pathol), 6, pp. 73-77; Deibel, R., Schryver, G.D., Viral antibody in the cerebrospinal fluid of patients with acute central nervous system infections (1976) J. Clin. Microbiol., 3, pp. 397-401; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Fischer, A., Matiasek, L.A., Matiasek, K., Hartmann, K., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J. Feline Med. Surg., 18, pp. 104-109; Foley, J.E., Leutenegger, C., A review of coronavirus infection in the central nervous system of cats and mice (2001) J. Vet. Intern. Med., 15, pp. 438-444; Foley, J.E., Lapointe, J.M., Koblik, P., Poland, A., Pedersen, N.C., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J. Vet. Intern. Med., 12, pp. 415-423; Greene, C.E., Infection of the central nervous system (1984) Clinical Microbiology and Infectious Diseases of the Dog and Cat, pp. 284-300. , (Greene, C. E. ed.), WB Saunders Co., Philadelphia; Greene, C.E., Appel, M.J., Canine distemper (2006) Infectious Diseases of the Dog and Cat, pp. 25-41. , 3rd ed. (Greene, C. E. ed.), WB Saunders Co., Philadelphia; Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) J. Clin. Microbiol., 33, pp. 684-689; Negrin, A., Lamb, C.R., Cappello, R., Cherubini, G.B., Results of magnetic resonance imaging in 14 cats with meningoencephalitis (2007) J. Feline Med. Surg., 9, pp. 109-116; Pedersen, N.C., Boyle, J.F., Floyd, K., Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture (1981) Am. J. Vet. Res., 42, pp. 363-367; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34, pp. 3180-3184; Soma, T., Ishii, H., Detection of feline coronavirus antibody, feline immunodeficiency virus antibody, and feline leukemia virus antigen in ascites from cats with effusive feline infectious peritonitis (2004) J. Vet. Med. Sci., 66, pp. 89-90; Soma, T., Wada, M., Taharaguchi, S., Tajima, T., Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis (2013) J. Vet. Med. Sci., 75, pp. 1389-1392; Soma, T., Uemura, T., Nakamoto, Y., Ozawa, T., Bandai, T., Oji, T., Une, S., Canine distemper virus antibody test alone increases misdiagnosis of distemper encephalitis (2013) Vet. Rec., 173, p. 477; Steinberg, T.A., Boettcher, I.C., Matiasek, K., Hirschvogel, K., Hartmann, K., Kunz, A., Fischer, A., Use of albumin quotient and IgG index to differentiate blood- vs brain-derived proteins in the cerebrospinal fluid of cats with feline infectious peritonitis (2008) Vet. Clin. Pathol., 37, pp. 207-216; Tourtellotte, W., On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple sclerosis and other diseases. A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system (1970) J. Neurol. Sci., 10, pp. 279-304; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronavirus (1998) Virol., 243, pp. 308-319","Soma, T.; Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Japan; email: takehisa-soma@ah.ds-pharma.co.jp",,"Japanese Society of Veterinary Science",09167250,,,"29118313","English","J. Vet. Med. Sci.",Note,"Final",Open Access,Scopus,2-s2.0-85040109333 "Fung T.S., Liu D.X.","55795740300;57190128771;","Post-translational modifications of coronavirus proteins: Roles and function",2018,"Future Virology","13","6",,"405","430",,4,"10.2217/fvl-2018-0008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047444001&doi=10.2217%2ffvl-2018-0008&partnerID=40&md5=1655ea4b3dc2cf7fd50b4dd3bb59b5d2","South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals and Disease Co, Integrative Microbiology Research Center, Guangzhou, Guangdong, 510642, China; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore","Fung, T.S., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals and Disease Co, Integrative Microbiology Research Center, Guangzhou, Guangdong, 510642, China; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals and Disease Co, Integrative Microbiology Research Center, Guangzhou, Guangdong, 510642, China, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore","Post-translational modifications (PTMs) refer to the covalent modifications of polypeptides after they are synthesized, adding temporal and spatial regulation to modulate protein functions. Being obligate intracellular parasites, viruses rely on the protein synthesis machinery of host cells to support replication, and not surprisingly, many viral proteins are subjected to PTMs. Coronavirus (CoV) is a group of enveloped RNA viruses causing diseases in both human and animals. Many CoV proteins are modified by PTMs, including glycosylation and palmitoylation of the spike and envelope protein, N- or O-linked glycosylation of the membrane protein, phosphorylation and ADP-ribosylation of the nucleocapsid protein, and other PTMs on nonstructural and accessory proteins. In this review, we summarize the current knowledge on PTMs of CoV proteins, with an emphasis on their impact on viral replication and pathogenesis. The ability of some CoV proteins to interfere with PTMs of host proteins will also be discussed. © 2018 Ding Xiang Liu.","coronavirus; deubiquitination; glycosylation; innate immunity; pathogenesis; phosphorylation; post-translational modification; replication; ubiquitination; virus-host interaction","e protein; guanine nucleotide binding protein; M protein; neuroendocrine specific protein; nsp16 protein; nsp3 protein; nsp4 protein; nsp9 protein; unclassified drug; viral protein; vitronectin; adenosine diphosphate ribosylation; Coronavirinae; disulfide bond; glycosylation; nonhuman; palmitoylation; priority journal; protein cleavage; protein degradation; protein function; protein glycosylation; protein phosphorylation; protein processing; protein structure; Review; SARS coronavirus; sumoylation; ubiquitination; virus cell interaction; virus pathogenesis; virus replication","Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38 (2), pp. 281-297; Baker, D.G., Natural pathogens of laboratory mice, rats, and rabbits and their effects on research (1998) Clin. Microbiol. Rev., 11 (2), pp. 231-266; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Exp. Biol. Med., 121 (1), pp. 190-193; Kaye, H.S., Ong, S.B., Dowdle, W.R., Detection of coronavirus 229E antibody by indirect hemagglutination (1972) Appl. Microbiol., 24 (5), pp. 703-707; De Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87 (14), pp. 7790-7792; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348 (20), pp. 1953-1966; Gorbalenya, A.E., Snijder, E.J., Spaan, W.J., Severe acute respiratory syndrome coronavirus phylogeny: Toward consensus (2004) J. Virol., 78 (15), pp. 7863-7866; Woo, P.C., Lau, S.K., Lam, C.S., Discovery of seven novel mammalian and avian coronaviruses in Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol., 86 (7), pp. 3995-4008; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; De Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of corona-and toroviruses (2006) Glycoconj. J., 23 (1-2), pp. 59-72; Liu, D.X., Inglis, S.C., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology, 185 (2), pp. 911-917; To, J., Surya, W., Fung, T.S., Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus (2017) J. Virol., 91 (5), pp. e02158-e02216; Brierley, I., Boursnell, M.E., Binns, M.M., An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV (1987) EMBO J., 6 (12), pp. 3779-3785; Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., Ding, J., Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design (2003) Nucleic Acids Res., 31 (24), pp. 7117-7130; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81 (4), pp. 853-879; Shen, S., Law, Y., Liu, D., A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature (2004) Virology, 326 (2), pp. 288-298; Bosch, B., Rottier, P., Nidovirus entry into cells (2008) Nidoviruses, pp. 157-178. , ASM Press, DC, USA; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J. Virol., 83 (17), pp. 8744-8758; Yamada, Y., Liu, X.B., Fang, S.G., Tay, F.P.L., Liu, D.X., Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells (2009) PLoS ONE, 4 (7), p. e6130; Opstelten, D.J., De Groote, P., Horzinek, M.C., Vennema, H., Rottier, P.J., Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins (1993) J. Virol., 67 (12), pp. 7394-7401; Niemann, H., Boschek, B., Evans, D., Rosing, M., Tamura, T., Klenk, H.D., Post-translational glycosylation of coronavirus glycoprotein E1: Inhibition by monensin (1982) EMBO J., 1 (12), pp. 1499-1504; Van Berlo, M.F., Van Den Brink, W.J., Horzinek, M.C., Van Der Zeijst, B.A., Fatty acid acylation of viral proteins in murine hepatitis virus-infected cells. Brief report (1987) Arch. Virol., 95 (1-2), pp. 123-128; Lavillette, D., Barbouche, R., Yao, Y., Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: Comparison with HIV envelope (2006) J. Biol. Chem., 281 (14), pp. 9200-9204; Cavanagh, D., Coronavirus IBV glycopolypeptides: Size of their polypeptide moieties and nature of their oligosaccharides (1983) J. Gen. Virol., 64, pp. 1187-1191; Garwes, D.J., Bountiff, L., Millson, G.C., Elleman, C.J., Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line (1984) Adv. Exp. Med. Biol., 173, pp. 79-93; Jacobs, L., Van Der Zeijst, B.A., Horzinek, M.C., Characterization and translation of transmissible gastroenteritis virus mRNAs (1986) J. Virol., 57 (3), pp. 1010-1015; Deregt, D., Sabara, M., Babiuk, L.A., Structural proteins of bovine coronavirus and their intracellular processing (1987) J. Gen. Virol., 68, pp. 2863-2877; Delmas, B., Laude, H., Assembly of coronavirus spike protein into trimers and its role in epitope expression (1990) J. Virol., 64 (11), pp. 5367-5375; Nal, B., Chan, C., Kien, F., Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and e (2005) J. Gen. Virol., 86, pp. 1423-1434; Shen, S., Tan, T.H.P., Tan, Y.-J., Expression, glycosylation, and modification of the spike (S) glycoprotein of SARS CoV (2007) Methods Mol. Biol., 379, pp. 127-135; Ritchie, G., Harvey, D.J., Feldmann, F., Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein (2010) Virology, 399 (2), pp. 257-269; Luytjes, W., Sturman, L.S., Bredenbeek, P.J., Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site (1987) Virology, 161 (2), pp. 479-487; Schmidt, I., Skinner, M., Siddell, S., Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM (1987) J. Gen. Virol., 68, pp. 47-56; Abraham, S., Kienzle, T.E., Lapps, W., Brian, D.A., Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site (1990) Virology, 176 (1), pp. 296-301; Boireau, P., Cruciere, C., Laporte, J., Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains (1990) J. Gen. Virol., 71, pp. 487-492; Raabe, T., Schelle-Prinz, B., Siddell, S.G., Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E (1990) J. Gen. Virol., 71, pp. 1065-1073; Britton, P., Page, K.W., Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus (1990) Virus Res., 18 (1), pp. 71-80; Künkel, F., Herrler, G., Structural and functional analysis of the surface protein of human coronavirus OC43 (1993) Virology, 195 (1), pp. 195-202; Mounir, S., Talbot, P.J., Molecular characterization of the S protein gene of human coronavirus OC43 (1993) J. Gen. Virol., 74, pp. 1981-1987; Duarte, M., Laude, H., Sequence of the spike protein of the porcine epidemic diarrhoea virus (1994) J. Gen. Virol., 75, pp. 1195-1200; Yeo, S.-G., Hernandez, M., Krell, P.J., Nagy, E.E., Cloning and sequence analysis of the spike gene of porcine epidemic diarrhea virus Chinju99 (2003) Virus Genes, 26 (3), pp. 239-246; Klepfer, S., Reed, A.P., Martinez, M., Bhogal, B., Jones, E., Miller, T.J., Cloning and expression of FECV spike gene in vaccinia virus. Immunization with FECV S causes early death after FIPV challenge (1995) Adv. Exp. Med. Biol., 380, pp. 235-241; Horsburgh, B.C., Brown, T.D., Cloning sequencing and expression of the S protein gene from two geographically distinct strains of canine coronavirus (1995) Virus Res., 39 (1), pp. 63-74; An, D.-J., Jeong, W., Yoon, S.H., Jeoung, H.-Y., Kim, H.-J., Park, B.-K., Genetic analysis of canine group 2 coronavirus in Korean dogs (2010) Vet. Microbiol., 141 (1-2), pp. 46-52; Krokhin, O., Li, Y., Andonov, A., Mass spectrometric characterization of proteins from the SARS virus: A preliminary report (2003) Mol. Cell. Proteomics, 2 (5), pp. 346-356; Zheng, J., Yamada, Y., Fung, T.S., Huang, M., Chia, R., Liu, D.X., Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture (2018) Virology, 513, pp. 65-74; Koch, G., Kant, A., Binding of antibodies that strongly neutralise infectious bronchitis virus is dependent on the glycosylation of the viral peplomer protein (1990) Adv. Exp. Med. Biol., 276, pp. 143-150; Smati, R., Silim, A., Guertin, C., Molecular characterization of three new avian infectious bronchitis virus (IBV) strains isolated in Quebec (2002) Virus Genes, 25 (1), pp. 85-93; Yoo, D., Parker, M.D., Babiuk, L.A., Analysis of the S spike (peplomer) glycoprotein of bovine coronavirus synthesized in insect cells (1990) Virology, 179 (1), pp. 121-128; Delmas, B., Laude, H., Carbohydrate-induced conformational changes strongly modulate the antigenicity of coronavirus TGEV glycoproteins S and M (1991) Virus Res., 20 (2), pp. 107-120; Song, H.C., Seo, M.-Y., Stadler, K., Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein (2004) J. Virol., 78 (19), pp. 10328-10335; Fukushi, M., Yoshinaka, Y., Matsuoka, Y., Monitoring S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome-coronavirus (2012) J. Virol., 86 (21), pp. 11745-11753; Godet, M., Rasschaert, D., Laude, H., Processing and antigenicity of entire and anchor-free spike glycoprotein S of coronavirus TGEV expressed by recombinant baculovirus (1991) Virology, 185 (2), pp. 732-740; Sui, J., Li, W., Murakami, A., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association (2004) Proc. Natl Acad. Sci. USA, 101 (8), pp. 2536-2541; Chakraborti, S., Prabakaran, P., Xiao, X., Dimitrov, D.S., The SARS coronavirus S glycoprotein receptor binding domain: Fine mapping and functional characterization (2005) Virol. J., 2, p. 73; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309 (5742), pp. 1864-1868; Chen, W.-H., Du, L., Chag, S.M., Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate (2014) Hum. Vaccin. Immunother., 10 (3), pp. 648-658; Marzi, A., Gramberg, T., Simmons, G., DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus (2004) J. Virol., 78 (21), pp. 12090-12095; Yang, Z.-Y., Huang, Y., Ganesh, L., PH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN (2004) J. Virol., 78 (11), pp. 5642-5650; Shih, Y.-P., Chen, C.-Y., Liu, S.-J., Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus (2006) J. Virol., 80 (21), pp. 10315-10324; Han, D.P., Lohani, M., Cho, M.W., Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry (2007) J. Virol., 81 (21), pp. 12029-12039; Zhou, Y., Lu, K., Pfefferle, S., A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms (2010) J. Virol., 84 (17), pp. 8753-8764; Gramberg, T., Hofmann, H., Möller, P., LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus (2005) Virology, 340 (2), pp. 224-236; Charley, B., Lavenant, L., Delmas, B., Glycosylation is required for coronavirus TGEV to induce an efficient production of IFN alpha by blood mononuclear cells (1991) Scand. J. Immunol., 33 (4), pp. 435-440; Li, Y., Wang, G., Wang, J., Man, K., Yang, Q., Cell attenuated porcine epidemic diarrhea virus strain Zhejiang08 provides effective immune protection attributed to dendritic cell stimulation (2017) Vaccine, 35 (50), pp. 7033-7041; Andoh, K., Suenaga, K., Sakaguchi, M., Yamazaki, K., Honda, T., Decreased neutralizing antigenicity in IBV S1 protein expressed from mammalian cells (2015) Virus Res., 208, pp. 164-170; Pensiero, M.N., Dveksler, G.S., Cardellichio, C.B., Binding of the coronavirus mouse hepatitis virus A59 to its receptor expressed from a recombinant vaccinia virus depends on posttranslational processing of the receptor glycoprotein (1992) J. Virol., 66 (7), pp. 4028-4039; Dveksler, G.S., Basile, A.A., Cardellichio, C.B., Holmes, K.V., Mouse hepatitis virus receptor activities of an MHVR/mph chimera and MHVR mutants lacking N-linked glycosylation of the N-terminal domain (1995) J. Virol., 69 (1), pp. 543-546; Wentworth, D.E., Holmes, K.V., Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): Influence of N-linked glycosylation (2001) J. Virol., 75 (20), pp. 9741-9752; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J. Virol., 89 (8), pp. 4696-4699; Peck, K.M., Scobey, T., Swanstrom, J., Permissivity of dipeptidyl peptidase 4 orthologs to middle east respiratory syndrome coronavirus is governed by glycosylation and other complex determinants (2017) J. Virol., 91 (19), pp. piie00534-piie00617; Thorp, E.B., Boscarino, J.A., Logan, H.L., Goletz, J.T., Gallagher, T.M., Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity (2006) J. Virol., 80 (3), pp. 1280-1289; Shulla, A., Gallagher, T., Role of spike protein endodomains in regulating coronavirus entry (2009) J. Biol. Chem., 284 (47), pp. 32725-32734; Yang, J., Lv, J., Wang, Y., Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein (2012) Virology, 427 (2), pp. 98-106; Petit, C.M., Chouljenko, V.N., Iyer, A., Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion (2007) Virology, 360 (2), pp. 264-274; McBride, C.E., Machamer, C.E., Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein (2010) Virology, 405 (1), pp. 139-148; Akerström, S., Gunalan, V., Keng, C.T., Tan, Y.-J., Mirazimi, A., Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected (2009) Virology, 395 (1), pp. 1-9; Gelhaus, S., Thaa, B., Eschke, K., Veit, M., Schwegmann-Weßels, C., Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction (2014) Virology, 464-465, pp. 397-405; Corse, E., Machamer, C.E., Infectious bronchitis virus e protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J. Virol., 74 (9), pp. 4319-4326; Yuan, Q., Liao, Y., Torres, J., Tam, J.P., Liu, D.X., Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells (2006) FEBS Lett., 580 (13), pp. 3192-3200; Torres, J., Parthasarathy, K., Lin, X., Saravanan, R., Kukol, A., Liu, D.X., Model of a putative pore: The pentameric ?-helical bundle of SARS coronavirus e protein in lipid bilayers (2006) Biophys. J., 91 (3), pp. 938-947; Liao, Y., Yuan, Q., Torres, J., Tam, J.P., Liu, D.X., Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein (2006) Virology, 349 (2), pp. 264-275; Chen, S.-C., Lo, S.-Y., Ma, H.-C., Li, H.-C., Expression and membrane integration of SARS-CoV e protein and its interaction with M protein (2009) Virus Genes, 38 (3), pp. 365-371; Boscarino, J.A., Logan, H.L., Lacny, J.J., Gallagher, T.M., Envelope protein palmitoylations are crucial for murine coronavirus assembly (2008) J. Virol., 82 (6), pp. 2989-2999; Lopez, L.A., Riffle, A.J., Pike, S.L., Gardner, D., Hogue, B.G., Importance of conserved cysteine residues in the coronavirus envelope protein (2008) J. Virol., 82 (6), pp. 3000-3010; Tseng, Y.-T., Wang, S.-M., Huang, K.-J., Wang, C.-T., SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production (2014) J. Biomed. Sci., 21, p. 34; Wang, J., Fang, S., Xiao, H., Chen, B., Tam, J.P., Liu, D.X., Interaction of the coronavirus infectious bronchitis virus membrane protein with ?-actin and its implication in virion assembly and budding (2009) PLoS ONE, 4 (3), p. e4908; De Haan, C.A., Vennema, H., Rottier, P.J., Assembly of the coronavirus envelope: Homotypic interactions between the M proteins (2000) J. Virol., 74 (11), pp. 4967-4978; Hogue, B., Machamer, C., Coronavirus structural proteins and virus assembly (2008) Nidoviruses, pp. 179-200. , ASM Press, DC, USA; Holmes, K.V., Doller, E.W., Sturman, L.S., Tunicamycin resistant glycosylation of coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein (1981) Virology, 115 (2), pp. 334-344; Stern, D.F., Sefton, B.M., Coronavirus proteins: Structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins (1982) J. Virol., 44 (3), pp. 804-812; Rottier, P.J., Rose, J.K., Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region (1987) J. Virol., 61 (6), pp. 2042-2045; Niemann, H., Geyer, R., Klenk, H.D., Linder, D., Stirm, S., Wirth, M., The carbohydrates of mouse hepatitis virus (MHV) A59: Structures of the O-glycosidically linked oligosaccharides of glycoprotein E1 (1984) EMBO J., 3 (3), pp. 665-670; Tooze, S.A., Tooze, J., Warren, G., Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59 (1988) J. Cell Biol., 106 (5), pp. 1475-1487; Locker, J.K., Griffiths, G., Horzinek, M.C., Rottier, P.J., O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N-and O-linked glycosylation (1992) J. Biol. Chem., 267 (20), pp. 14094-14101; Lapps, W., Hogue, B.G., Brian, D.A., Deduced amino acid sequence and potential O-glycosylation sites for the bovine coronavirus matrix protein (1987) Adv. Exp. Med. Biol., 218, pp. 123-129; Mounir, S., Talbot, P.J., Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation (1992) J. Gen. Virol., 73, pp. 2731-2736; Locker, J.K., Rose, J.K., Horzinek, M.C., Rottier, P.J., Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation (1992) J. Biol. Chem., 267 (30), pp. 21911-21918; Locker, J.K., Klumperman, J., Oorschot, V., Horzinek, M.C., Geuze, H.J., Rottier, P.J., The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex (1994) J. Biol. Chem., 269 (45), pp. 28263-28269; Krijnse-Locker, J., Ericsson, M., Rottier, P.J., Griffiths, G., Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step (1994) J. Cell Biol., 124 (1-2), pp. 55-70; De Haan, C.A., Roestenberg, P., DeWit, M., Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein (1998) J. Biol. Chem., 273 (45), pp. 29905-29914; Yamada, Y.K., Yabe, M., Ohtsuki, T., Taguchi, F., Unique N-linked glycosylation of murine coronavirus MHV-2 membrane protein at the conserved O-linked glycosylation site (2000) Virus Res., 66 (2), pp. 149-154; De Haan, C.A., Kuo, L., Masters, P.S., Vennema, H., Rottier, P.J., Coronavirus particle assembly: Primary structure requirements of the membrane protein (1998) J. Virol., 72 (8), pp. 6838-6850; De Haan, C.A.M., De Wit, M., Kuo, L., The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain (2003) Virology, 312 (2), pp. 395-406; Hogue, B.G., Nayak, D.P., Expression of the porcine transmissible gastroenteritis coronavirus M protein (1990) Adv. Exp. Med. Biol., 276, pp. 121-126; Utiger, A., Tobler, K., Bridgen, A., Ackermann, M., Identification of the membrane protein of porcine epidemic diarrhea virus (1995) Virus Genes, 10 (2), pp. 137-148; Dea, S., Verbeek, A.J., Tijssen, P., Antigenic and genomic relationships among Turkey and bovine enteric coronaviruses (1990) J. Virol., 64 (6), pp. 3112-3118; Hu, Y., Wen, J., Tang, L., The M protein of SARS-CoV: Basic structural and immunological properties (2003) Genomics Proteomics Bioinformatics, 1 (2), pp. 118-130; Voss, D., Kern, A., Traggiai, E., Characterization of severe acute respiratory syndrome coronavirus membrane protein (2006) FEBS Lett., 580 (3), pp. 968-973; Voss, D., Pfefferle, S., Drosten, C., Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein (2009) Virol. J., 6, p. 79; Siu, K.-L., Chan, C.-P., Kok, K.-H., Chiu-Yat Woo, P., Jin, D.-Y., Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain (2014) Cell. Mol. Immunol., 11 (2), pp. 141-149; Fan, H., Ooi, A., Tan, Y.W., The nucleocapsid protein of coronavirus infectious bronchitis virus: Crystal structure of its N-terminal domain and multimerization properties (2005) Structure, 13 (12), pp. 1859-1868; Tan, Y.W., Fang, S., Fan, H., Lescar, J., Liu, D.X., Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells (2006) Nucleic Acids Res., 34 (17), pp. 4816-4825; Chang, C., Sue, S.-C., Yu, T., Modular organization of SARS coronavirus nucleocapsid protein (2006) J. Biomed. Sci., 13 (1), pp. 59-72; Hurst, K.R., Koetzner, C.A., Masters, P.S., Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein (2009) J. Virol., 83 (14), pp. 7221-7234; Luo, H., Ye, F., Chen, K., Shen, X., Jiang, H., SR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization (2005) Biochemistry, 44 (46), pp. 15351-15358; Hurst, K.R., Kuo, L., Koetzner, C.A., Ye, R., Hsue, B., Masters, P.S., A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein (2005) J. Virol., 79 (21), pp. 13285-13297; Siddell, S.G., Barthel, A., Ter Meulen, V., Coronavirus JHM: A virion-associated protein kinase (1981) J. Gen. Virol., 52, pp. 235-243; Fang, S., Xu, L., Huang, M., Qisheng Li, F., Liu, D.X., Identification of two ATR-dependent phosphorylation sites on coronavirus nucleocapsid protein with nonessential functions in viral replication and infectivity in cultured cells (2013) Virology, 444 (1-2), pp. 225-232; Li, F.Q., Xiao, H., Tam, J.P., Liu, D.X., Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus (2005) FEBS Lett., 579 (11), pp. 2387-2396; Grunewald, M.E., Fehr, A.R., Athmer, J., Perlman, S., The coronavirus nucleocapsid protein is ADP-ribosylated (2017) Virology, 517, pp. 62-68; Eleouet, J.-F., Chilmonczyk, S., Besnardeau, L., Laude, H., Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway (1998) J. Virol., 72 (6), pp. 4918-4924; Stohlman, S.A., Fleming, J.O., Patton, C.D., Lai, M.M., Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein (1983) Virology, 130 (2), pp. 527-532; Jayaram, J., Youn, S., Collisson, E.W., The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates (2005) Virology, 339 (1), pp. 127-135; Hogue, B.G., Bovine coronavirus nucleocapsid protein processing and assembly (1995) Adv. Exp. Med. Biol., 380, pp. 259-263; Calvo, E., Escors, D., López, J.A., Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells (2005) J. Gen. Virol., 86, pp. 2255-2267; Chen, H., Gill, A., Dove, B.K., Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance (2005) J. Virol., 79 (2), pp. 1164-1179; Spencer, K.-A., Dee, M., Britton, P., Hiscox, J.A., Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein (2008) Virology, 370 (2), pp. 373-381; Surjit, M., Kumar, R., Mishra, R.N., Reddy, M.K., Chow, V.T.K., Lal, S.K., The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation (2005) J. Virol., 79 (17), pp. 11476-11486; White, T.C., Yi, Z., Hogue, B.G., Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites (2007) Virus Res., 126 (1-2), pp. 139-148; Wu, C.-H., Yeh, S.-H., Tsay, Y.-G., Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication (2009) J. Biol. Chem., 284 (8), pp. 5229-5239; Wu, C.-H., Chen, P.-J., Yeh, S.-H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16 (4), pp. 462-472; Peng, T.-Y., Lee, K.-R., Tarn, W.-Y., Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization (2008) FEBS J., 275 (16), pp. 4152-4163; McCormick, C., Khaperskyy, D.A., Translation inhibition and stress granules in the antiviral immune response (2017) Nat. Rev. Immunol., 17 (10), pp. 647-660; Shin, G.-C., Chung, Y.-S., Kim, I.-S., Cho, H.-W., Kang, C., Antigenic characterization of severe acute respiratory syndrome-coronavirus nucleocapsid protein expressed in insect cells: The effect of phosphorylation on immunoreactivity and specificity (2007) Virus Res., 127 (1), pp. 71-80; Eléoüet, J.F., Slee, E.A., Saurini, F., The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and-7 during TGEV-induced apoptosis (2000) J. Virol., 74 (9), pp. 3975-3983; Diemer, C., Schneider, M., Seebach, J., Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection (2008) J. Mol. Biol., 376 (1), pp. 23-34; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87 (14), pp. 8124-8134; Fung, T.S., Liao, Y., Liu, D.X., The ER stress sensor IRE1? Protects cells from apoptosis induced by coronavirus infectious bronchitis virus (2014) J. Virol., 88 (21), pp. 12752-12764; Li, Q., Xiao, H., Tam, J.P., Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus by interaction with Ubc9 (2006) Adv. Exp. Med. Biol., 581, pp. 121-126; Oostra, M., Hagemeijer, M.C., Van Gent, M., Topology and membrane anchoring of the coronavirus replication complex: Not all hydrophobic domains of nsp3 and nsp6 are membrane spanning (2008) J. Virol., 82 (24), pp. 12392-12405; Baliji, S., Cammer, S.A., Sobral, B., Baker, S.C., Detection of nonstructural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches (2009) J. Virol., 83 (13), pp. 6957-6962; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio., 4 (4), pp. e00524-e00613; Oudshoorn, D., Rijs, K., Limpens, R.W.A.L., Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication (2017) MBio., 8 (6), pp. piie01658-piie01717; Cottam, E.M., Maier, H.J., Manifava, M., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7 (11), pp. 1335-1347; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10 (8), pp. 1426-1441; Kanjanahaluethai, A., Chen, Z., Jukneliene, D., Baker, S.C., Membrane topology of murine coronavirus replicase nonstructural protein 3 (2007) Virology, 361 (2), pp. 391-401; Lim, K.P., Ng, L.F., Liu, D.X., Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products (2000) J. Virol., 74 (4), pp. 1674-1685; Clementz, M.A., Kanjanahaluethai, A., O'Brien, T.E., Baker, S.C., Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles (2008) Virology, 375 (1), pp. 118-129; Gadlage, M.J., Sparks, J.S., Beachboard, D.C., Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function (2010) J. Virol., 84 (1), pp. 280-290; Beachboard, D.C., Anderson-Daniels, J.M., Denison, M.R., Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications (2015) J. Virol., 89 (4), pp. 2080-2089; Egloff, M.-P., Ferron, F., Campanacci, V., The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world (2004) Proc. Natl Acad. Sci. USA, 101 (11), pp. 3792-3796; Bost, A.G., Carnahan, R.H., Lu, X.T., Denison, M.R., Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly (2000) J. Virol., 74 (7), pp. 3379-3387; Sutton, G., Fry, E., Carter, L., The nsp9 replicase protein of SARS-coronavirus, structure and functional insights (2004) Structure, 12 (2), pp. 341-353; Ponnusamy, R., Moll, R., Weimar, T., Mesters, J.R., Hilgenfeld, R., Variable oligomerization modes in coronavirus non-structural protein 9 (2008) J. Mol. Biol., 383 (5), pp. 1081-1096; Decroly, E., Imbert, I., Coutard, B., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2-O)-methyltransferase activity (2008) J. Virol., 82 (16), pp. 8071-8084; Züst, R., Cervantes-Barragan, L., Habjan, M., Ribose 2 [prime]-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat. Immunol., 12 (2), pp. 137-143; Yu, X., Chen, S., Hou, P., Wang, M., Chen, Y., Guo, D., VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability (2015) Biochem. Biophys. Res. Commun., 459 (2), pp. 270-276; Liu, D.X., Fung, T.S., Kk-L, C., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res., 109, pp. 97-109; Yokomori, K., La Monica, N., Makino, S., Shieh, C.K., Lai, M.M., Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus (1989) Virology, 173 (2), pp. 683-691; Yoo, D., Graham, F.L., Prevec, L., Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus (1992) J. Gen. Virol., 73, pp. 2591-2600; Oostra, M., De Haan Ca, M., De Groot, R.J., Rottier, P.J.M., Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M (2006) J. Virol., 80 (5), pp. 2326-2336; Tan, Y.-J., Teng, E., Shen, S., A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis (2004) J. Virol., 78 (13), pp. 6723-6734; Tan, Y.-J., Tham, P.-Y., Chan, D.Z.L., The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells (2005) J. Virol., 79 (15), pp. 10083-10087; Kanzawa, N., Nishigaki, K., Hayashi, T., Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-?B activation (2006) FEBS Lett., 580 (30), pp. 6807-6812; Guan, Y., Zheng, B., He, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302 (5643), pp. 276-278; Oostra, M., De Haan, C.A.M., Rottier, P.J.M., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J. Virol., 81 (24), pp. 13876-13888; Le, T.M., Wong, H.H., Tay, F.P.L., Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus: Proteins encoded by SARS-CoV mRNA8 (2007) FEBS J., 274 (16), pp. 4211-4222; Wong, H.H., Fung, T.S., Fang, S., Huang, M., Le, M.T., Liu, D.X., Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 (2017) Virology, 515, pp. 165-175; O'Connor, J.B., Brian, D.A., Downstream ribosomal entry for translation of coronavirus TGEV gene 3b (2000) Virology, 269 (1), pp. 172-182; O'Connor, J.B., Brian, D.A., The major product of porcine transmissible gastroenteritis coronavirus gene 3b is an integral membrane glycoprotein of 31 kDa (1999) Virology, 256 (1), pp. 152-161; Zhang, X., Hasoksuz, M., Spiro, D., Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus (2007) Virology, 358 (2), pp. 424-435; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J. Virol., 78 (24), pp. 13600-13612; Ziebuhr, J., Thiel, V., Gorbalenya, A.E., The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond (2001) J. Biol. Chem., 276 (35), pp. 33220-33232; Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., Baker, S.C., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity (2005) J. Virol., 79 (24), pp. 15189-15198; Lindner, H.A., Fotouhi-Ardakani, N., Lytvyn, V., Lachance, P., Sulea, T., Ménard, R., The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme (2005) J. Virol., 79 (24), pp. 15199-15208; Chen, Z., Wang, Y., Ratia, K., Mesecar, A.D., Wilkinson, K.D., Baker, S.C., Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63 (2007) J. Virol., 81 (11), pp. 6007-6018; Zheng, D., Chen, G., Guo, B., Cheng, G., Tang, H., PLP2 a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type i interferon production (2008) Cell Res., 18 (11), pp. 1105-1113; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Yang, X., Chen, X., Bian, G., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease (2014) J. Gen. Virol., 95, pp. 614-626; Yu, L., Zhang, X., Wu, T., The papain-like protease of avian infectious bronchitis virus has deubiquitinating activity (2017) Arch. Virol., 162 (7), pp. 1943-1950; Ratia, K., Saikatendu, K.S., Santarsiero, B.D., Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme (2006) Proc. Natl Acad. Sci. USA, 103 (15), pp. 5717-5722; Lindner, H.A., Lytvyn, V., Qi, H., Lachance, P., Ziomek, E., Ménard, R., Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease (2007) Arch. Biochem. Biophys., 466 (1), pp. 8-14; Ratia, K., Kilianski, A., Baez-Santos, Y.M., Baker, S.C., Mesecar, A., Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease (2014) PLOS Pathog., 10 (5), p. e1004113; Bailey-Elkin, B.A., Knaap, R.C.M., Johnson, G.G., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J. Biol. Chem., 289 (50), pp. 34667-34682; Békés, M., Van Der Heden Van Noort, G.J., Ekkebus, R., Ovaa, H., Huang, T.T., Lima, C.D., Recognition of Lys48-linked Di-ubiquitin and deubiquitinating activities of the SARS coronavirus papain-like protease (2016) Mol. Cell, 62 (4), pp. 572-585; Békés, M., Rut, W., Kasperkiewicz, P., SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme (2015) Biochem. J., 468 (2), pp. 215-226; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res., 194, pp. 184-190; Devaraj, S.G., Wang, N., Chen, Z., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J. Biol. Chem., 282 (44), pp. 32208-32221; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-?B signaling (2009) J. Virol., 83 (13), pp. 6689-6705; Clementz, M.A., Chen, Z., Banach, B.S., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J. Virol., 84 (9), pp. 4619-4629; Wang, G., Chen, G., Zheng, D., Cheng, G., Tang, H., PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type i interferon signaling pathway (2011) PLoS ONE, 6 (2), p. e17192; Li, S.-W., Wang, C.-Y., Jou, Y.-J., SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing lys63-linked polyubiquitination of TRAF3 and TRAF6 (2016) Int. J. Mol. Sci., 17 (5), p. piiE678; Chen, X., Yang, X., Zheng, Y., Yang, Y., Xing, Y., Chen, Z., SARS coronavirus papain-like protease inhibits the type i interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex (2014) Protein Cell, 5 (5), pp. 369-381; Sun, L., Xing, Y., Chen, X., Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling (2012) PLoS ONE, 7 (2), p. e30802; Matthews, K., Schäfer, A., Pham, A., Frieman, M., The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity (2014) Virol. J., 11, p. 209; Ma-Lauer, Y., Carbajo-Lozoya, J., Hein, M.Y., P53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1 (2016) Proc. Natl Acad. Sci. USA, 113 (35), pp. E5192-5201; Shi, C.-S., Qi, H.-Y., Boularan, C., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome (2014) J. Immunol., 193 (6), pp. 3080-3089; Hu, Y., Li, W., Gao, T., The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type i interferon production by interfering with TRIM25-mediated RIG-I ubiquitination (2017) J. Virol., 91 (8), pp. e02143-e02216; Cheng, W., Chen, S., Li, R., Chen, Y., Wang, M., Guo, D., Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc (and STAT) interactor (2015) Virol. Sin., 30 (2), pp. 153-161; Zhu, X., Fang, L., Wang, D., Porcine deltacoronavirus nsp5 inhibits interferon-? Production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38; Zhu, X., Wang, D., Zhou, J., Porcine deltacoronavirus nsp5 antagonizes type i interferon signaling by cleaving STAT2 (2017) J. Virol., 91 (10), pp. piie00003-17","Liu, D.X.; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals and Disease Co, Integrative Microbiology Research CenterChina; email: dxliu0001@163.com",,"Future Medicine Ltd.",17460794,,,,"English","Future Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85047444001 "Rocha C.B., Fornells L.A.M.G., Rojas M., Liberal M., Manchego A., Pezo D., Santos N.","57188695875;6506286226;55178225400;6508169056;57194746734;56084842400;24286271400;","Molecular epidemiology of coronavirus in faeces of brazilian calves and peruvian camelid herds",2018,"Journal of Infection in Developing Countries","12","1",,"37","42",,,"10.3855/jidc.9528","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041554411&doi=10.3855%2fjidc.9528&partnerID=40&md5=59dd3206924f288bc2d6babd5ac72aec","Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói, RJ, Brazil; Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos (FMV/UNMSM), Lima, Peru; Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA), Cuzco, Peru; La Raya Research Center, Universidad Nacional de San Antonio Abab del Cuzco (UNSAAC), Sicuani, Peru","Rocha, C.B., Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Fornells, L.A.M.G., Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rojas, M., Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos (FMV/UNMSM), Lima, Peru; Liberal, M., Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Niterói, RJ, Brazil; Manchego, A., Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos (FMV/UNMSM), Lima, Peru; Pezo, D., Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA), Cuzco, Peru, La Raya Research Center, Universidad Nacional de San Antonio Abab del Cuzco (UNSAAC), Sicuani, Peru; Santos, N., Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil","Introduction: The enteric disorders represent a serious hazard for bovine and camelid breeding. The aim of this study was to examine the frequency of detection and molecular characteristics of enteric coronavirus (CoV) infections in cattle, alpaca, and llama herds bred in family-based farms in Brazil and Peru. Methodology: Stool samples were collected from calves from Brazil and camelids from Peru for detection and characterization of CoV by reverse transcription polymerase chain reaction (RT-PCR) and sequence analysis. Results: 46.5% (47/101) samples from calves and 26.8% (70/261) from alpaca tested positive for CoV. All strains belong to lineage A1 of the Betacoronavirus genus. Phylogenetic analysis showed high identity between CoV strains detected in calves and alpacas. Conclusions: This study characterised CoV strains from dairy cattle herds in the state of Rio de Janeiro, Brazil, and indicated that this virus is spread among the state herds. The results also indicate widespread circulation of CoV among the alpacas of Cuzco, Peru. © 2018 Rocha et al.","Alpaca; Bovine; Coronavirus; Diarrhoea; Epidemiology","animal experiment; Article; Betacoronavirus; Brazil; calf (bovine); camelid; Coronavirus infection; diarrhea; feces analysis; molecular epidemiology; nonhuman; nucleotide sequence; Peru; phylogeny; reverse transcription polymerase chain reaction; sequence analysis; virus detection","Cebra, C.K., Mattson, D.E., Baker, R.J., Sonn, R.J., Dearing, P.L., Potential pathogens in feces from unweaned llamas and alpacas with diarrhea (2003) J am Vet Med Assoc, 223, pp. 1806-1808; Cho, Y.I., Han, J.I., Wang, C., Cooper, V., Schwartz, K., Engelken, T., Yoon, K.J., Case-control study of microbiological etiology associated with calf diarrhea (2013) Vet Microbiol, 166, pp. 375-385; Uetake, K., Newborn calf welfare: A review focusing on mortality rates (2013) Anim Sci J, 84, pp. 101-105; Stipp, D.T., Barry, A.F., Alfieri, A.F., Takiuchi, E., Amude, A.M., Alfieri, A.A., Frequency of BCoV detection by a semi-nested PCR assay in faeces of calves from Brazilian cattle herds (2009) Trop Anim Health Prod, 41, pp. 1563-1567; Jin, L., Cebra, C.K., Baker, R.J., Mattson, D.E., Cohen, S.A., Alvarado, D.E., Rohrmann, G.F., Analysis of the genome sequence of an alpaca coronavirus (2007) Virology, 365, pp. 198-203; Genova, S.G., Streeter, R.N., Simpson, K.M., Kapil, S., Detection of an antigenic group 2 coronavirus in an adult alpaca with enteritis (2008) Clin Vaccine Immunol, 15, pp. 1629-1632; López, P.W., Chamorro, L.M., Garmendia, B.A.E., Rapid detection of rotavirus and coronavirus in alpaca crias (Vicugna Pacos) with diarrhea in the Cuzco Region, Peru (2011) Rev Inv Vet Perú, 22, pp. 407-411; Luna, L., Brandão, P.E., Maturrano, L., Rosadio, R., Silva, F.D.F., Soares, R.M., Gregori, F., Betacoronavirus 1 in alpacas (Vicugna pacos) in the High Peruvian Andes (2015) Small Rumin Res, 133, pp. 7-9; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-858. , Knipe, D.M., Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B, editors, 6th edition, Philadelphia: Wolters Kluwer / Lippincott Williams & Wilkins; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin North am Food Anim Pract, 26, pp. 123-146; Moës, E., Vijgen, L., Keyaerts, E., Zlateva, K., Li, S., Maes, P., Pyrc, K., Van Ranst, M., A novel pancoronavirus RT-PCR assay: Frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium (2005) BMC Infect Dis, 5, p. 6; Brandão, P.E., Gregori, F., Richtzenhain, L.J., Rosales, C.A., Villarreal, L.Y., Jerez, J.A., Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43 (2006) Arch Virol, 15, pp. 1735-1748; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets (2016) Mol Biol Evol, 33, pp. 1870-1874; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Yuen, K.Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg Infect Dis, 20, pp. 560-572; Jerez, J.A., Brandão, P.E., Buzinaro, M.G., Gregori, F., Rosales, C.A.R., Ito, F.H., Sakai, T., Detection of rotavirus and coronavirus in neonatal calves with diarrhea stools breed in several municipalities of the State of São Paulo, Brazil (2002) Arq Inst Biol, , 69: 19–23. [Article in Portuguese.]; Takiuchi, E., Stipp, D.T., Alfieri, A.F., Alfieri, A.A., Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control (2006) J Virol Methods, 131, pp. 148-154; Oliveira Filho, J.P., Silva, D.P.G., Pacheco, M.D., Mascarini, L.M., Ribeiro, M.G., Alfieri, A.A., Alfieri, A.F., Borges, A.S., Diarrhea in extensively reared Nelore calves: A clinical and etiological study (2007) Pesq Vet Bras, 27, pp. 419-424. , [Article in Portuguese.]; Lorenzetti, A., Leme, R.A.A., Ribeiro, J., Souza, V.R.A., Alfieri, A.F., Alfieri, A.A., (2013) Neonatal Diarrhea by Bovine Coronavirus (Bcov) in Beef Cattle Herds, , Semina: Ciências Agrárias, Londrina 34 Suppl. 2: 3795–3800; Coura, F.M., Freitas, M.D., Ribeiro, J., De Leme, R.A., De Souza, C., Alfieri, A.A., Facury Filho, E.J., Heinemann, M.B., Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd (2015) Trop Anim Health Prod, 47, pp. 3-11; Ribeiro, J., Lorenzetti, E., Alfieri, A.F., Alfieri, A.A., Molecular detection of bovine coronavirus in a diarrhea outbreak in pasture-feeding Nellore steers in southern Brazil (2016) Trop Anim Health Prod, 48, pp. 649-653; (2006), http://www.agricultura.gov.br/assuntos/sanidade-animal-e-vegetal/saude-nimal/transito-animal/arquivos-transito-internacional/ManualGTABovinoseBubalinos21.0.pdf, Manual de preenchimento para emissão de Guia de trânsito animal de bovinos e Bubalinos versão 21.0. Available:, Accessed: 27 December 2017; Liu, L., Hägglund, S., Hakhverdyan, M., Alenius, S., Larsen, L.E., Belák, S., Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene (2006) J Clin Microbiol, 44, pp. 957-960; Bidokhti, M.R., Tråvén, M., Ohlson, A., Baule, C., Hakhverdyan, M., Belák, S., Liu, L., Alenius, S., Tracing the transmission of bovine coronavirus infections in cattle herds based on S gene diversity (2012) Vet J, 193, pp. 386-390; Barros, I.N., Silva, S.O., Nogueira Neto, F.S., Asano, K.M., Souza, S.P., Richtzenhain, L.J., Brandao, P.E., A multigene approach for comparing genealogy of Betacoronavirus from cattle and horses (2013) Scientificworldjournal, 2013","Santos, N.; Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, CCS – Bl. I Ilha do Fundão, Brazil; email: nsantos@micro.ufrj.br",,"Journal of Infection in Developing Countries",20366590,,,"31628832","English","J. Infect. Dev. Ctries.",Article,"Final",Open Access,Scopus,2-s2.0-85041554411 "Pusterla N., Vin R., Leutenegger C.M., Mittel L.D., Divers T.J.","7005591152;9241960500;7006706489;6505963830;8585911600;","Enteric coronavirus infection in adult horses",2018,"Veterinary Journal","231",,,"13","18",,7,"10.1016/j.tvjl.2017.11.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035327451&doi=10.1016%2fj.tvjl.2017.11.004&partnerID=40&md5=3d6e139441834ae81c4ad5238e3ed5db","Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States; Myhre Equine Clinic, Rochester, NH 03867, United States; IDEXX Laboratories, West Sacramento, CA 95605, United States; College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States","Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States; Vin, R., Myhre Equine Clinic, Rochester, NH 03867, United States; Leutenegger, C.M., IDEXX Laboratories, West Sacramento, CA 95605, United States; Mittel, L.D., College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States; Divers, T.J., College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States","A new enteric virus of adult horses, equine coronavirus (ECoV), has recently been recognized. It is associated with fever, lethargy, anorexia, and less frequently, colic and diarrhea. This enteric virus is transmitted via the feco-oral route and horses become infected by ingesting fecally contaminated feed and water. Various outbreaks have been reported since 2010 from Japan, Europe and the USA. While the clinical signs are fairly non-specific, lymphopenia and neutropenia are often seen. Specific diagnosis is made by the detection of ECoV in feces by either quantitative real-time PCR, electron microscopy or antigen-capture ELISA. Supportive treatment is usually required, as most infections are self-limiting. However, rare complications, such as endotoxemia, septicemia and hyperammonemia-associated encephalopathy, have been reported, and have been related to the loss of barrier function at the intestinal mucosa. This review article will focus on the latest information pertaining to the virus, epidemiology, clinical signs, diagnosis, pathology, treatment and prevention of ECoV infection in adult horses. © 2017 Elsevier Ltd","Clinical disease; Diagnosis; Epidemiology; Equine coronavirus; Treatment","ammonia; lactulose; neomycin; nonsteroid antiinflammatory agent; anorexia; Article; brain disease; clinical feature; colic; Coronaviridae; Coronavirus infection; diagnostic procedure; diarrhea; electron microscopy; endotoxemia; enteric virus; environmental sanitation; enzyme linked immunosorbent assay; epidemic; Europe; feces analysis; fever; food contamination; horse; hyperammonemia; infection prevention; Japan; lethargy; lymphocytopenia; neutropenia; nonhuman; quantitative analysis; real time polymerase chain reaction; septicemia; United States; virus detection; virus transmission; water contamination; animal; Betacoronavirus 1; Coronavirus infection; horse; horse disease; pathology; physiology; veterinary; Animals; Betacoronavirus 1; Coronavirus Infections; Horse Diseases; Horses","Brockmeier, S.L., Loving, C.L., Nicholson, T.L., Palmer, M.V., Coinfection of pigs with porcine respiratory coronavirus and Bordetella bronchiseptica (2008) Veterinary Microbiology, 128, pp. 36-47; Chang, H., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerging Infectious Diseases, 18, pp. 1089-1095; Chen, W., Yang, J., Lin, J.H., Fann, C.S., Osyetrov, V., King, C.C., Chen, Y.M., Liao, F., Nasopharyngeal shedding of severe acute respiratory syndrome-associated coronavirus is associated with genetic polymorphisms (2006) Clinical Infectious Diseases, 42, pp. 1561-1569; Davis, E., Rush, B.R., Cox, J., DeBey, B., Kapil, S., Neonatal enterocolitis associated with coronavirus infection in a foal: a case report (2000) Journal of Veterinary Diagnostic Investigation, 12, pp. 153-156; Fielding, C.L., Higgins, J.K., Higgins, J.C., McIntosh, S., Scott, E., Giannitti, F., Mete, A., Pusterla, N., Disease associated with equine coronavirus infection and high case fatality rate (2015) Journal of Veterinary Internal Medicine, 29, pp. 307-310; Giannitti, F., Diab, S., Mete, A., Stanton, J.B., Fielding, L., Crossley, B., Sverlow, K., Scott, L., Necrotizing enteritis and hyperammonemic encephalopathy associated with equine coronavirus infection in equids (2015) Veterinary Pathology, 52, pp. 1148-1156; Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S., Smith, L.G., Characterization of a coronavirus isolated from a diarrheic foal (2000) Journal of Clinical Microbiology, 38, pp. 4523-4526; Hemida, M.G., Chu, D.K., Perera, R.A., Ko, R.L., So, R.T., Ng, B.C., Chan, S.M., Alhammadi, M.A., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transboundary Emerging Diseases, 64, pp. 2093-2103; Hung, I.F., Lau, S.K., Woo, P.C., Yuen, K.Y., Viral loads in clinical specimens and SARS manifestations (2009) Hong Kong Medical Journal, 15, pp. 20-22; Kooijman, L.J., James, K., Mapes, S.M., Theelen, M.J., Pusterla, N., Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA (2017) The Veterinary Journal, 220, pp. 91-94; Miszczak, F., Tesson, V., Kin, N., Dina, J., Balasuriya, U.B., Pronost, S., Vabret, A., First detection of equine coronavirus (ECoV) in Europe (2014) Veterinary Microbiology, 171, pp. 206-209; Nemoto, M., Oue, Y., Morita, Y., Kanno, T., Kinoshita, Y., Niwa, H., Ueno, T., Tsujimura, K., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Archives of Virology, 159, pp. 3329-3334; Nemoto, M., Oue, Y., Murakami, S., Kanno, T., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Complete genome analysis of equine coronavirus isolated in Japan (2015) Archives of Virology, 160, pp. 2903-2906; Nemoto, M., Oue, Y., Higuchi, T., Kinoshita, Y., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Low prevalence of equine coronavirus in foals in the largest Thoroughbred horse breeding region of Japan, 2012–2014 (2015) Acta Veterinaria Scandinavica, 57, p. 53; O'Neill, R., Mooney, J., Connaghan, E., Furphy, C., Graham, D.A., Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: a retrospective study (2014) Veterinary Record, 175, p. 351; Oue, Y., Ishihara, R., Edamatsu, H., Morita, Y., Yoshida, M., Yoshima, M., Hatama, S., Kanno, T., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Veterinary Microbiology, 150, pp. 41-48; Oue, Y., Morita, Y., Kondo, T., Nemoto, M., Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012 (2013) Journal of Veterinary Medical Science, 75, pp. 1261-1265; Pakpinyo, S., Ley, D.H., Barnes, H.J., Vaillancourt, J.P., Guy, J.S., Enhancement of enteropathogenic Escherichia coli pathogenicity in young turkeys by concurrent turkey coronavirus infection (2003) Avian Diseases, 47, pp. 396-405; Pusterla, N., Mapes, S., Wademan, C., White, A., Ball, R., Sapp, K., Burns, P., Bartol, J., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Veterinary Microbiology, 162, pp. 228-231; Pusterla, N., Holzenkaempfer, N., Mapes, S., Kass, P., Prevalence of equine coronavirus in nasal secretions from horses with fever and upper respiratory tract infection (2015) Veterinary Record, 177, p. 289; Pusterla, N., Vin, R., Leutenegger, C., Mittel, L.D., Divers, T.J., Equine coronavirus: an emerging enteric virus of adult horses (2016) Equine Veterinary Education, 28, pp. 216-223; Saif, L.J., Redman, D.R., Moorhead, P.D., Theil, K.W., Experimentally induced coronavirus infections in calves: viral replication in the respiratory and intestinal tracts (1986) American Journal of Veterinary Research, 47, pp. 1426-1432; Slovis, N.M., Elam, J., Estrada, M., Leutenegger, C.M., Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: a comprehensive molecular study (2014) Equine Veterinary Journal, 46, pp. 311-316; Srikumaran, S., Kelling, C.L., Ambagala, A., Immune evasion by pathogens of bovine respiratory disease complex (2007) Animal Health Research Reviews, 8, pp. 215-229; Tråvén, M., Näslund, K., Linde, N., Linde, B., Silván, A., Fossum, C., Hedlund, K.O., Larsson, B., Experimental reproduction of winter dysentery in lactating cows using BCV – comparison with BCV infection in milk-fed calves (2001) Veterinary Microbiology, 81, pp. 127-151; Tsunemitsu, H., Smith, D.R., Saif, L.J., Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR (1999) Archives of Virology, 144, pp. 167-175; Vermeulen, B.L., Devriendt, B., Olyslaegers, D.A., Dedeurwaerder, A., Desmarets, L.M., Favoreel, H.W., Dewerchin, H.L., Nauwynck, H.J., Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus (2013) Veterinary Microbiology, 164, pp. 46-59; Wang, X.W., Li, J.S., Jin, M., Zhen, B., Kong, Q.X., Song, N., Xiao, W.J., Wang, G.J., Study on the resistance of severe acute respiratory syndrome-associated coronavirus (2005) Journal of Virological Methods, 126, pp. 171-177; Wege, H., Siddell, S., Ter Meulen, V., The biology and pathogenesis of coronaviruses (1982) Current Topics in Microbiology and Immunology, 99, pp. 165-200; Weiss, S.R., Leibowitz, J.L., Coronavirus pathogenesis (2011) Advances in Virus Research, 81, pp. 85-164; Welter, M.W., Adaptation and serial passage of bovine coronavirus in an established diploid swine testicular cell line and subsequent development of a modified live vaccine (1998) Advances in Experimental Medicine and Biology, 440, pp. 707-711; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) Journal of Virology, 86, pp. 3995-4008; Zhang, J., Guy, J.S., Snijder, E.J., Denniston, D.A., Timoney, P.J., Balasuriya, U.B., Genomic characterization of equine coronavirus (2007) Virology, 369, pp. 92-104","Pusterla, N.; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of CaliforniaUnited States; email: npusterla@ucdavis.edu",,"Bailliere Tindall Ltd",10900233,,VTJRF,"29429482","English","Vet. J.",Article,"Final",Open Access,Scopus,2-s2.0-85035327451 "Akaji K.","7005472537;","Advances in the design of ligands interacting with 3CL protease of novel coronaviruses causing infectious respiratory syndrome",2018,"Amino Acids, Peptides and Proteins","42",,,"228","279",,2,"10.1039/9781788010627-00228","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038418909&doi=10.1039%2f9781788010627-00228&partnerID=40&md5=a0b0c8cd87ce3a6351cab8f6ff58e075","Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Japan","Akaji, K., Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Japan","Two newly isolated coronaviruses (CoVs) cause the severe pneumonia-like respiratory illnesses, Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Neither therapeutic agents nor vaccines have been developed thus far, and even future pandemics of related infectious diseases are expected through zoonotic virus infections. Since the 3C like (3CL) protease of SARS/MERS CoV, which has structural similarities with the 3C protease of rhinovirus causing common cold in humans, is essential to the proliferation of SARS/MERS CoV, inhibition of the 3CL protease (3CLpro) is thought to be an ideal target for the development of therapeutic agents against SARS and MERS. This article describes the recent achievements in the development of inhibitors of the SARS/MERS 3CLpro mainly based on two different approaches: one by combining a peptide-like structure with a reactive functional group, a so-called ""warhead,"" and a second one by combining virtual screening and high-throughput screening of a real compound library. A recent approach based on the structure-based rational design of a novel inhibitor scaffold for 3CLpro is also included. © 2018 The Royal Society of Chemistry.",,,"Beaudette, F.R., Hudson, C.B., (1937) J. Am. Vet. Med. Assoc., 90, p. 51; Tyrrell, D.A., Bynoe, M.L., (1966) Lancet, 108, p. 257; Hamre, D., Procknow, J.J., (1966) Proc. Soc. Exp. Biol. Med., 121, p. 190; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, F.M., Ahuja, A., Sung, J.J.Y., (2003) N. Engl. J. Med., 348, p. 1986; Drosten, C., Günther, S., Preiser, W., Ven Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., N. Engl. J. Med., 348, p. 1967; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., (2003) N. Engl. J. Med., 348, p. 1953; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-VanDillen, P.M., Berkhou, B., Identification of a new human coronavirus (2004) Nat. Med., 10, p. 368; Vabret, A., Mourez, T., Dina, J., Van Der Hoek, L., Gouarin, S., Petitjean, J., Brouard, J., Freymuth, F., (2005) Emerg. Infect. Dis., 11, p. 1225; Arden, K.E., Nissen, M.D., Sloots, T.P., MacKay, I.M., (2005) J. Med. Virol., 75, p. 455; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., (2005) J. Virol., 79, p. 884; Woo, P.C., Lau, S.K., Tsoi, H.W., Huang, Y., Poon, R.W., Chu, C.M., Lee, R.A., Yuen, K.Y., (2005) J. Infect. Dis., 192, p. 1898; Ren, Z., Yan, L., Zhang, N., Guo, Y., Yang, C., Lou, Z., Rao, Z., (2013) Protein Cell, 4, p. 248; Kilianski, A., Mielech, A.M., Deng, X., Baker, S., (2013) J. Virol., 87, p. 11955; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., (2003) Nature, 426, p. 450; Faj, V.S., Mou, H., Smith, S.L., Dekkens, D.H.W., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., (2013) Nature, 495, p. 251; Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., Jung, S.-H., (2016) J. Med. Chem., 59, p. 6595; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., (2003) Science, 300, p. 1394; Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Roper, R.L., (2003) Science, 300, p. 1399; Cordingley, M.G., Register, R.B., Callahan, P.L., Garsky, V.M., Colonno, R.J., (1989) J. VIRO. Dec., 63, p. 5037; Thiel, A., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weibrich, B., Ziebuhr, J., (2003) J. General Viol., 84, p. 2305; Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., Hilgenfeld, R., (2003) Science, 300, p. 1763; Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Lai, L., (2004) J. Biol. Chem., 279, p. 1637; Huang, C., Wei, P., Fan, K., Liu, Y., Lai, L., (2004) Biochemistry, 43, pp. 4568-4574; Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Rao, Z., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, p. 13190; Bacha, U., Barrila, J., Velazquez-Campoy, A., Leavitt, S.A., Freire, E., (2004) Biochemistry, 43, p. 4906; Chou, C.Y., Chang, H.C., Hsu, W.C., Lin, T.Z., Lin, C.H., Chang, G.G., (2004) Biochemistry, 43, p. 14958; Shi, J., Wei, Z., Song, J., (2004) J. Biol. Chem., 279, p. 24765; Li, C., Qi, Y., Teng, X., Yang, Z., Wei, P., Zhang, C., Tan, L., Lai, L., (2010) J. Biol. Chem., 285, p. 28134; Hsu, M.-F., Kuo, C.-J., Chang, K.-T., Chang, H.-C., Chou, C.-C., Ko, T.-P., Shr, H.-L., Liang, P.-H., (2005) J. Biol. Chem., 280, p. 31257; Li, C., Qi, Y., Teng, X., Yang, Z., Wei, P., Zhang, C., Tan, L., Lai, L., (2010) J. Biol. Chem., 285, p. 28134; Chen, S., Jonas, F., Shen, C., Higenfeld, R., (2010) Protein Cell, 1, p. 59; Tomar, S., Johnston, M.L., John, S.E.S., Osswald, H.L., Nyalapatla, P.R., Paul, L.N., Ghosh, A.K., Mesecar, A.D., (2015) J. Biol. Chem., 290, p. 19403; Jain, R.P., Pettersson, H.I., Zhang, J., Aull, K.D., Fortin, P.D., Huitema, C., Eltis, L.D., Vederas, J.C., (2004) J. Med. Chem., 47, p. 6113; Ghosh, A.K., Xi, K., Ratia, K., Santarsiero, B.D., Fu, W., Harcourt, B.H., Rota, P.A., Mesecar, A.D., (2005) J. Med. Chem., 48, p. 6767; Chen, L., Gui, C., Luo, X., Yang, Q., Günther, S., Scandella, E., Drosten, C., Jiang, H., (2005) J. Virol., 79, p. 7095; Blanchard, J.E., Elowe, N.H., Huitema, C., Fortin, P.D., Cechetto, J.D., Eltis, L.D., Brown, E.D., (2004) Chem. Biol., 11, p. 1445; Shie, J.J., Fang, J.-M., Kuo, T.-H., Kuo, C.-J., Liang, P.-H., Huang, H.-J., Wu, Y.-T., Wong, C.-H., (2005) Bioorg. Med. Chem., 13, p. 5240; Yang, S., Chen, S.-J., Hsu, M.-F., Wu, J.-D., Tseng, C.-T.K., Liu, Y.-F., Chen, H.-C., Hsu, M.-C., (2006) J. Med. Chem., 49, p. 4971; Lee, C.-C., Kuo, C.-J., Ko, T.-P., Hsu, M.-F., Tsui, Y.-C., Chang, S.-C., Yang, S., Wang, A.H.-J., (2009) J. Biol. Chem., 284, p. 7646; Akaji, K., Konno, H., Mitsui, H., Teruya, K., Shimamoto, Y., Hattori, Y., Ozaki, T., Sanjoh, A., (2011) J. Med. Chem., 54, p. 7962; Zhu, L., George, S., Schmidt, M.F., Al-Gharabli, S.I., Rademann, J., Hilgenfeld, R., (2011) Antiviral Res., 92, p. 204; Yang, S., Chen, S.-J., Hsu, M.-F., Wu, J.-D., Tseng, C.-T.K., Liu, Y.-F., Chen, H.-C., Hsu, M.-C., (2006) J. Med. Chem., 49, p. 4971; Akaji, K., Konno, H., Onozuka, M., Makino, A., Saito, H., Nosaka, K., (2008) Bioorg. Med. Chem., 16, p. 9400; Kumar, V., Shin, J.S., Shie, J.-J., Ku, K.B., Kim, C., Go, Y.Y., Huang, K.-F., Liang, P.-H., (2017) Antiviral Res., 141, p. 101; Zhang, H.-Z., Zhang, H., Kemnitzer, W., Tseng, B., Cinatl, J., Michaelis, M., Doerr, H.W., Cai, S.X., (2006) J. Med. Chem., 49, p. 1198; Bacha, U., Barrila, J., Gabelli, S.B., Kiso, Y., Amzel, L.M., Freire, E., (2008) Chem. Biol. Drug Des., 72, p. 34; Jain, R.P., Pettersson, H.I., Zhang, J., Aull, K.D., Fortin, P.D., Huitema, C., Eltis, L.D., Vederas, J.C., (2004) J. Med. Chem., 47, p. 6113; Yin, J., Niu, C., Cherney, M.M., Zhang, J., Huitema, C., Eltis, L.D., Vederas, J.C., James, M.N.G., (2007) J. Mol. Biol., 371, p. 1060; Shao, Y.-M., Yang, W.-B., Kuo, T.-H., Tsai, K.-C., Lin, C.-H., Yang, A.-S., Liang, P.-H., Wong, C.-H., (2008) J. Med. Chem., 16, p. 4652; Sydnes, M.O., Hayashi, Y., Sharma, V.K., Hamada, T., Bacha, U., Barrila, J., Freire, E., Kiso, Y., (2006) Tetrahedron, 62, p. 8601; Thanigaimalai, P., Konno, S., Yamamoto, T., Koiwai, Y., Taguchi, A., Takayama, K., Yakushiji, F., Hayashi, Y., (2013) Eur. J. Med. Chem., 68, p. 372; Thanigaimalai, P., Konno, S., Yamamoto, T., Koiwai, Y., Taguchi, A., Takayama, K., Yakushiji, F., Hayashi, Y., (2013) Eur. J. Med. Chem., 65, p. 436; Asgian, J.L., James, K.E., Li, Z.Z., Carter, W., Barrett, A.J., Mikolajczyk, J., Salvesen, G.S., Powers, J.C., (2002) J. Med. Chem., 45, p. 4958; Martina, E., Stiefl, N., Degel, B., Schulz, F., Breuning, A., Schiller, M., Vicik, R., Schirmeister, T., (2005) Bioorg. Med. Chem. Lett., 15, p. 5365; Lee, T.W., Cherney, M.M., Huitema, C., Liu, J., James, K.E., Powers, J.C., Eltis, L.D., James, M.N.G., (2005) J. Mol. Biol., 353, p. 1137; Lee, T.W., Cherney, M.M., Liu, J., James, K.E., Powers, J.C., Eltis, L.D., James, M.N.G., (2007) J. Mol. Biol., 366, p. 916; Chuck, C.-P., Chen, C., Ke, Z., Wan, D.C.-C., Chow, H.-F., Wong, K.-B., (2013) Eur. J. Med. Chem., 59, p. 1; Chen, L.-R., Wang, Y.-C., Lin, Y.W., Chou, S.-Y., Chen, S.-F., Liu, L.T., Wu, Y.-T., Juang, S.-H., (2005) Bioorg. Med. Chem. Lett., 15, p. 3058; Zhou, L., Liu, Y., Zhang, W., Wei, P., Huang, C., Pei, J., Yuan, Y., Lai, L., (2006) J. Med. Chem., 49, p. 3440; Liu, W., Zhu, H.-M., Niu, G.-J., Shi, E.-Z., Chen, J., Sun, B., Chen, W.-Q., Yang, C., (2014) Bioorg. Med. Chem., 22, p. 292; Park, J.-Y., Ko, J.-A., Kim, D.W., Kim, Y.M., Kwon, H.-J., Jeong, H.J., Kim, C.Y., Ryu, Y.B., (2016) J. Enzyme Inhib. Med. Chem., 31, p. 23; Park, J.-Y., Yuk, H.J., Ryu, H.W., Lim, S.H., Kim, K.S., Park, K.H., Ryu, Y.B., Lee, W.S., (2017) J. Enzyme Inhib. Med. Chem., 32, p. 504; Blanchard, J.E., Elowe, N.H., Huitema, C., Fortin, P.D., Cechetto, J.D., Eltis, L.D., Brown, E.D., (2004) Chem. Biol., 11, p. 1445; Wu, C.-Y., King, K.Y., Kuo, C.-J., Fang, J.-M., Wu, Y.-T., Ho, M.-Y., Liao, C.-L., Wong, C.-H., (2006) Chem. Biol., 13, p. 261; Zhang, J., Pettersson, H.I., Huitema, C., Niu, C., Yin, J., James, M.N., Eltis, L.D., Vederas, J.C., (2007) J. Med. Chem., 50, p. 1850; Verschueren, K.H.G., Pumpor, K., Anemüller, S., Chen, S., Mesters, J.R., Hilgenfeld, R., (2008) Chem. Biol., 15, p. 597; Ghosh, A.K., Gong, G., Grum-Tokars, V., Mulhearn, D.C., Baker, S.C., Coughlin, M., Prabhakar, B.S., Mesecar, A.D., (2008) Bioorg. Med. Chem. Lett., 18, p. 5684; Zhang, J., Huitema, C., Niu, C., Yin, J., James, M.N.G., Eltis, L.D., Vederas, J.C., (2008) Bioorg. Chem., 36, p. 229; Hsu, J.T.-A., Kuo, C.-J., Hsieh, H.-P., Wang, Y.-C., Huang, K.-K., Lin, C.P.-C., Huang, P.-F., Liang, P.-H., (2004) FEBS Lett., 574, p. 116; Lee, C.-C., Kuo, C.-J., Hsu, M.-F., Liang, P.-H., Fang, J.-M., Shie, J.-J., Wang, A.H.-J., (2007) FEBS Lett., 581, p. 5454; Jacobs, J., Grum-Tokars, V., Zhou, Y., Turlington, M., Saldanha, S.A., Chase, P., Eggler, A., Stauffer, S.R., (2013) J. Med. Chem., 56, p. 534; Nguyen, T.T.H., Ryu, H.-J., Lee, S.-H., Hwang, S., Breton, V., Rhee, J.H., Kim, D., (2011) Bioorg. Med. Chem. Lett., 21, p. 3088; Mukherjee, P., Desai, P., Ross, L., White, E.L., Avery, M.A., (2008) Bioorg. Med. Chem., 16, p. 4149; Lee, H., Mittal, A., Patel, K., Gatuz, J.L., Truong, L., Torres, J., Mulhearn, D.C., Johnson, M.E., (2014) Bioorg. Med. Chem., 22, p. 167; Turlington, M., Chun, A., Tomar, S., Eggler, A., Grum-Tokars, V., Jacobs, J., Daniels, J.S., Stauffer, S.R., (2013) Bioorg. Med. Chem. Lett., 23, p. 6172; Konno, H., Wakabayashi, M., Takanuma, D., Saito, Y., Akaji, K., (2016) Bioorg. Med. Chem., 24, p. 1241; Shimamoto, Y., Hattori, Y., Kobayashi, K., Teruya, K., Sanjoh, A., Nakagawa, A., Yamashita, E., Akaji, K., (2015) Bioorg. Med. Chem., 23, p. 876","Akaji, K.; Department of Medicinal Chemistry, Kyoto Pharmaceutical UniversityJapan; email: akaji@mb.kyoto-phu.ac.jp","Ryadnov M.Hudecz F.","Royal Society of Chemistry",13615904,9781788010023,,,"English","Amino Acids Pept. Proteins",Review,"Final",,Scopus,2-s2.0-85038418909 "Yavarian J., Shafiei Jandaghi N.Z., Naseri M., Hemmati P., Dadras M., Gouya M.M., Mokhtari Azad T.","34972186600;34972128300;36087853400;16645279600;57193878131;9039555700;13404643900;","Influenza virus but not MERS coronavirus circulation in Iran, 2013–2016: Comparison between pilgrims and general population",2018,"Travel Medicine and Infectious Disease","21",,,"51","55",,8,"10.1016/j.tmaid.2017.10.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035345621&doi=10.1016%2fj.tmaid.2017.10.007&partnerID=40&md5=03d758619331e2e4143bf0e4fd9c43e5","Iranian Center for Communicable Disease Control, Tehran, Iran; Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran","Yavarian, J., Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran; Shafiei Jandaghi, N.Z., Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran; Naseri, M., Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran; Hemmati, P., Iranian Center for Communicable Disease Control, Tehran, Iran; Dadras, M., Iranian Center for Communicable Disease Control, Tehran, Iran; Gouya, M.M., Iranian Center for Communicable Disease Control, Tehran, Iran; Mokhtari Azad, T., Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran","Background: The pilgrimage to Mecca and Karbala bring many Muslims to a confined area. Respiratory tract infections are the most common diseases transmitted during mass gatherings in Hajj, Umrah and Karbala. The aim of this study was to determine and compare the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza virus infections among Iranian general population and pilgrims with severe acute respiratory infections (SARI) returning from Mecca and Karbala during 2013–2016. Methods: During 2013–2016, a total of 42351 throat swabs were examined for presence of influenza viruses and MERS-CoV in Iranian general population and pilgrims returning from Mecca and Karbala with SARI by using one step RT-PCR kit. Results: None of the patients had MERS-CoV but influenza viruses were detected in 12.7% with high circulation of influenza A/H1N1 (47.1%). Conclusion: This study showed the prevalence of influenza infections among Iranian pilgrims and general population and suggests continuing surveillance, infection control and appropriate vaccination especially nowadays that the risk of influenza pandemic threatens the world, meanwhile accurate screening for MERS-CoV is also recommended. © 2017 Elsevier Ltd","General population; Influenza virus; Iran; MERS coronavirus; Pilgrims","Article; human; influenza; Influenza A virus (H1N1); Influenza A virus (H3N2); Influenza virus; Iran; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; population; prevalence; priority journal; reverse transcription polymerase chain reaction; throat culture; virus detection; comparative study; Coronavirus infection; influenza; Orthomyxoviridae; physiology; respiratory tract infection; travel; virology; Coronavirus Infections; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Iran; Middle East Respiratory Syndrome Coronavirus; Orthomyxoviridae; Prevalence; Respiratory Tract Infections; Reverse Transcriptase Polymerase Chain Reaction; Travel","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: a systematic review (2016) Travel Med Infect Dis, 14, pp. 92-109; Al-Ghamdi, S.M., Akbar, H.O., Qari, Y.A., Fathaldin, O.A., Al-Rashed, R.S., Pattern of admission to hospitals during Muslim pilgrimage (Hajj) (2003) Saudi Med J, 24 (10), pp. 1073-1076; Memish, Z.A., Al-Rabeeah, A.A., Public health management of mass gatherings: the Saudi Arabian experience with MERS-CoV (2013) Bull World Health Organ, 91. , 899–899; Balkhy, H.H., Memish, Z.A., Bafaqeer, S., Almuneef, M.A., Influenza a common viral infection among Hajj pilgrims: time for routine surveillance and vaccination (2004) J Travel Med, 11, pp. 82-86; Shafi, S., Rashid, H., Ali, K., Sheikh, A., http://www.iccuk.org/media/articles/misc/study_of_influenza.htm, Enhanced surveillance of influenza and Other respiratory viruses among UK pilgrims to Hajj 2005. Annual Conference, September 2005. Warwick, UK. (abstract available from: URL:); Rashid, H., Haworth, E., Shafi, S., Memish, Z.A., Booy, R., Pandemic influenza: mass gatherings and mass infection (2008) Lancet Infect Dis, 8, pp. 526-527; Yavarian, J., Rezaei, F., Shadab, A., Soroush, M., Gooya, M.M., Mokhtari Azad, T., Cluster of Middle East respiratory syndrome coronavirus infections in Iran, 2014 (2015) Emerg Infect Dis, 21 (2), pp. 362-364; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) EuroSurveill, 17 (39), p. pii=20288; Sadeghi, S., Heidari, A., Fazli, H., Rezaei, M., Sheikhzadeh, J., The most frequent causes of hospitalization of Iranian pilgrims in Iraq during a 5-month period in 2012, and their outcome (2015) Iran Red Crescent Med J, 17 (11), p. e12862; Mousavi, J., Jafari, F., Prevalence of diseases in pilgrims referring to Iranian clinics in Iraq (2016) Int J Travel Med Glob Health, 4 (1), pp. 31-33; Memish, Z.A., Venkatesh, S., Ahmed, Q.A., Travel epidemiology: the Saudi perspective (2003) Int J Antimicrob Agents, 21, pp. 96-101; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi Health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210 (7), pp. 1067-1072; Gautret, P., Charrel, R., Belhouchat, K., Drali, T., Benkouiten, S., Nougairede, A., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19, pp. 315-317; Balkhy, H.H., Memish, Z.A., Bafaqeer, S., Almuneef, M.A., Influenza a common viral infection among Hajj pilgrims: time for routine surveillance and vaccination (2004) J Travel Med, 11, pp. 82-86; Bashir H, E., Haworth, E., Zambon, M., Shafi, S., Zuckerman, J., Booy, R., Influenza among UK pilgrims to Hajj (2003) Emerg Infect Dis, 2004 (10), pp. 882-883; Rashid, H., Shafi, S., Booy, R., El Bashir, H., Ali, K., Zambon, M.C., Influenza and respiratory syncytial Virus infections in British Hajj pilgrims (2008) Emerg Health Threats J, 1, p. e2; Rashid, H., Shafi, S., Haworth, E., Bashir H, E., Memish, Z.A., Sudhanva, M., Viral respiratory infections at the Hajj:comparison between UK and Saudi pilgrims (2008) Clin Microbiol Infect, 14 (6), pp. 569-574; Alborzi, A., Aelami, M.H., Ziyaeyan, M., Jamalidoust, M., Moeini, M., Pourabbas, B., Viral etiology of acute respiratory infections among Iranian Hajj pilgrims (2009) J Travel Med, 16 (4), pp. 239-242; Ziyaeyan, M., Alborzi, A., Jamalidoust, M., Moeini, M., Pouladfar, G.R., Pourabbas, B., Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims from Southern Iran: a real-time RT-PCR-based study (2012) Influenza Other Respir Viruses, 6, pp. e80-e84; Imani, R., Karimi, A., Habibian, R., Acute respiratory viral infections among Tamattu’ Hajj pilgrims in Iran (2013) Life Sci J, 10, pp. 449-453; Razavi, S.M., Ziaee, H., Mokhtari-Azad, T., Hamkar, R., Doroodi, T., Mirsalehian, A., Surveying respiratory infections among Iranian Hajj pilgrims (2007) Iran J Clin Infect Dis, 2 (2), pp. 67-70; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian Hajj pilgrims returning to Shiraz, Fars province (2012) Iran Influenza Other Respir Viruses, 6, pp. 77-79; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.-A., Influenza not MERS CoV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, north India, 2014-15 (2017) Travel Med Infect Dis, 15, pp. 45-47; Timmermans, A., Melendrez, M.C., Se, Y., Chuang, I., Samon, N., Uthaimongko, N., Human sentinel surveillance of influenza and other respiratory viral pathogens in border areas of Western Cambodia (2016) Plos One, 11 (3), p. e0152529; Mancinelli, L., Onori, M., Concato, C., Sorge, R., Chiavelli, S., Coltella, L., Clinical features of children hospitalized with influenza A and B infections during the 2012–2013 influenza season in Italy (2016) BMC Infect Dis, 16, p. 6; Mosnier, A., Caini, S., Daviaud, I., Bensoussan, J.L., Stoll-Keller, F., Bui, T.T., Ten influenza seasons in France: distribution and timing of influenza A and B circulation, 2003–2013 (2015) BMC Infect Dis, 15, p. 357","Mokhtari Azad, T.; Virology Department, School of Public Health, Tehran University of Medical SciencesIran; email: mokhtari@tums.ac.ir",,"Elsevier USA",14778939,,TMIDA,"29031546","English","Travel Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85035345621 "Song Y.-J., Yang J.-S., Yoon H.J., Nam H.-S., Lee S.Y., Cheong H.-K., Park W.-J., Park S.H., Choi B.Y., Kim S.S., Ki M.","55969929400;8075425800;26638595600;7102066169;56180604200;57014411700;57203475824;56909045500;55663343300;57196231328;6603678673;","Asymptomatic Middle East Respiratory Syndrome coronavirus infection using a serologic survey in Korea",2018,"Epidemiology and health","40",,,"e2018014","",,9,"10.4178/epih.e2018014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047750221&doi=10.4178%2fepih.e2018014&partnerID=40&md5=2e0e16ebe6a50e6aeee6b1974bcae714","Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea","Song, Y.-J., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Yang, J.-S., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Yoon, H.J., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Nam, H.-S., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Lee, S.Y., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Cheong, H.-K., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Park, W.-J., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Park, S.H., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Choi, B.Y., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Kim, S.S., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea; Ki, M., Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea","OBJECTIVES: The rates of asymptomatic infection with Middle East Respiratory Syndrome (MERS) coronavirus vary. A serologic study was conducted to determine the asymptomatic MERS infection rate in healthcare workers and non-healthcare workers by exposure status.METHODS: Study participants were selected from contacts of MERS patients based on a priority system in 4 regions strongly affected by the 2015 MERS outbreak. A sero-epidemiological survey was performed in 1,610 contacts (average duration from exposure to test, 4.8 months), and the collected sera were tested using an enzyme-linked immunespecific assay (ELISA), immunofluorescence assay (IFA), and plaque reduction neutralization antibody test (PRNT). Among the 1,610 contacts, there were 7 ELISA-positive cases, of which 1 exhibited positive IFA and PRNT results.RESULTS: The asymptomatic infection rate was 0.060% (95% confidence interval, 0.002 to 0.346). The asymptomatic MERS case was a patient who had been hospitalized with patient zero on the same floor of the hospital at the same time. The case was quarantined at home for 2 weeks after discharge, and had underlying diseases, including hypertension, angina, and degenerative arthritis.CONCLUSIONS: The asymptomatic infection was acquired via healthcare-associated transmission. Thus, it is necessary to extend serologic studies to include inpatient contacts who have no symptoms.","Asymptomatic infection; Enzyme-linked immunespecific assay; Epidemiology; Middle East Respiratory Syndrome coronavirus; Nosocomial infections; Outbreak","asymptomatic disease; Coronavirus infection; cross infection; enzyme linked immunosorbent assay; epidemic; health care personnel; human; isolation and purification; Middle East respiratory syndrome coronavirus; seroepidemiology; South Korea; statistics and numerical data; Asymptomatic Diseases; Coronavirus Infections; Cross Infection; Disease Outbreaks; Enzyme-Linked Immunosorbent Assay; Health Personnel; Humans; Middle East Respiratory Syndrome Coronavirus; Republic of Korea; Seroepidemiologic Studies",,,,,20927193,,,"29656631","English","Epidemiol Health",Article,"Final",Open Access,Scopus,2-s2.0-85047750221 "Seys L.J.M., Widagdo W., Verhamme F.M., KleinJan A., Janssens W., Joos G.F., Bracke K.R., Haagmans B.L., Brusselle G.G.","56008740500;56387603500;56008794900;6603838293;35299339400;7102353943;8338303000;6701371301;6602446912;","DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients",2018,"Clinical Infectious Diseases","66","1",,"45","53",,9,"10.1093/cid/cix741","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040560766&doi=10.1093%2fcid%2fcix741&partnerID=40&md5=025139a21910e52d6dd6b4547ca7bdeb","Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Departments of Viroscience, Rotterdam, Netherlands; Pulmonary Medicine, Rotterdam, Netherlands; University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium","Seys, L.J.M., Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Widagdo, W., Departments of Viroscience, Rotterdam, Netherlands; Verhamme, F.M., Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium; KleinJan, A., Pulmonary Medicine, Rotterdam, Netherlands; Janssens, W., University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium; Joos, G.F., Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium; Bracke, K.R., Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium; Haagmans, B.L., Departments of Viroscience, Rotterdam, Netherlands; Brusselle, G.G., Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium","Middle East respiratory syndrome coronavirus (MERS-CoV) causes pneumonia with a relatively high case fatality rate in humans. Smokers and chronic obstructive pulmonary disease (COPD) patients have been reported to be more susceptible to MERS-CoV infection. Here, we determined the expression of MERS-CoV receptor, dipeptidyl peptidase IV (DPP4), in lung tissues of smokers without airflow limitation and COPD patients in comparison to nonsmoking individuals (never-smokers). Methods. DPP4 expression was measured in lung tissue of lung resection specimens of never-smokers, smokers without airflow limitation, COPD GOLD stage II patients and in lung explants of end-stage COPD patients. Both control subjects and COPD patients were well phenotyped and age-matched. The mRNA expression was determined using qRT-PCR and protein expression was quantified using immunohistochemistry. Results. In smokers and subjects with COPD, both DPP4 mRNA and protein expression were significantly higher compared to never-smokers. Additionally, we found that both DPP4 mRNA and protein expression were inversely correlated with lung function and diffusing capacity parameters. Conclusions. We provide evidence that DPP4 is upregulated in the lungs of smokers and COPD patients, which could partially explain why these individuals are more susceptible to MERS-CoV infection. These data also highlight a possible role of DPP4 in COPD pathogenesis.","chronic obstructive pulmonary disease (COPD).; dipeptidyl peptidase 4 (DPP4); Middle East respiratory syndrome coronavirus (MERS-CoV); smoking","dipeptidyl peptidase IV; messenger RNA; dipeptidyl peptidase IV; DPP4 protein, human; virus receptor; adult; aged; airflow; Article; chronic obstructive lung disease; controlled study; female; human; human cell; human tissue; lung diffusion capacity; lung function; lung parenchyma; lung resection; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; phenotype; priority journal; protein expression; smoking; upregulation; adverse event; chronic obstructive lung disease; lung; middle aged; pathology; questionnaire; upregulation; Adult; Aged; Dipeptidyl Peptidase 4; Female; Humans; Lung; Male; Middle Aged; Pulmonary Disease, Chronic Obstructive; Receptors, Virus; Smoking; Surveys and Questionnaires; Up-Regulation","Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East Respiratory Syndrome (2017) N Engl J Med, 376, pp. 584-594; (2017) Disease Outbreak News: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) per 4 April 2017, , WHO Global Alert and Response (GAR)-World Health Organization (WHO); Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Kim, S.W., Park, J.W., Jung, H.D., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Drosten, C., Meyer, B., Mler, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Saad, M., Omrani, A.S., Baig, K., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Boonacker, E., Van Noorden, C.J., The multifunctional or moonlighting protein CD26/DPPIV (2003) Eur J Cell Biol, 82, pp. 53-73; Barreira Da Silva, R., Laird, M.E., Yatim, N., Fiette, L., Ingersoll, M.A., Albert, M.L., Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy (2015) Nat Immunol, 16, pp. 850-858; Mortier, A., Gouwy, M., Van Damme, J., Proost, P., Struyf, S., CD26/dipeptidylpeptidase IV-chemokine interactions: Double-edged regulation of inflammation and tumor biology (2016) J Leukoc Biol, 99, pp. 955-969; Vanhoof, G., De Meester, I., Van Sande, M., Scharp, S., Yaron, A., Distribution of proline-specific aminopeptidases in human tissues and body fluids (1992) Eur J Clin Chem Clin Biochem, 30, pp. 333-338; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implications for the Middle East respiratory syndrome (2016) Am J Pathol, 186, pp. 78-86; Scheuplein, V.A., Seifried, J., Malczyk, A.H., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 3859-3869; Widagdo, W., Raj, V.S., Schipper, D., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90, pp. 4838-4842; Vliegen, G., Raju, T.K., Adriaensen, D., Lambeir, A.M., De Meester, I., The expression of proline-specific enzymes in the human lung (2017) Ann Transl Med, 5, p. 130; De Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci USA, 110, pp. 16598-16603; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary middle east respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Vestbo, J., Hurd, S.S., Agust, A.G., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary (2013) Am J Respir Crit Care Med, 187, pp. 347-365; Brusselle, G.G., Joos, G.F., Bracke, K.R., New insights into the immunology of chronic obstructive pulmonary disease (2011) Lancet, 378, pp. 1015-1026; Verhoeven, G.T., Verbraak, A.F., Boere-Van Der Straat, S., Hoogsteden, H.C., Bogaard, J.M., Influence of lung parenchymal destruction on the different indexes of the methacholine dose-response curve in COPD patients (2000) Chest, 117, pp. 984-990; Tashkin, D.P., Altose, M.D., Bleecker, E.R., The lung health study: Airway responsiveness to inhaled methacholine in smokers with mild to moderate airflow limitation (1992) Am Rev Respir Dis, 145, pp. 301-310. , The Lung Health Study Research Group; Braunstahl, G.J., Fokkens, W.J., Overbeek, S.E., KleinJan, A., Hoogsteden, H.C., Prins, J.B., Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: A comparison between upper and lower airways (2003) Clin Exp Allergy, 33, pp. 579-587; Demedts, I.K., Brusselle, G.G., Vermaelen, K.Y., Pauwels, R.A., Identification and characterization of human pulmonary dendritic cells (2005) Am J Respir Cell Mol Biol, 32, pp. 177-184; Seys, L.J., Verhamme, F.M., Schinwald, A., Role of B cell-activating factor in chronic obstructive pulmonary disease (2015) Am J Respir Crit Care Med, 192, pp. 706-718; Vandesompele, J., De Preter, K., Pattyn, F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes (2002) Genome Biol, 3. , RESEARCH0034.1-11; Shi, S., Kanasaki, K., Koya, D., Linagliptin but not sitagliptin inhibited transforming growth factor-2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition (2016) Biochem Biophys Res Commun, 471, pp. 184-190; Brightling, C.E., Chanez, P., Leigh, R., Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: A randomised, double-blind, placebo-controlled, phase 2b trial (2015) Lancet Respir Med, 3, pp. 692-701; Verhamme, F.M., Bracke, K.R., Joos, G.F., Brusselle, G.G., Transforming growth factor-superfamily in obstructive lung diseases: More suspects than TGF-A lone (2015) Am J Respir Cell Mol Biol, 52, pp. 653-662; Kim, V., Rogers, T.J., Criner, G.J., New concepts in the pathobiology of chronic obstructive pulmonary disease (2008) Proc Am Thorac Soc, 5, pp. 478-485; Zhong, J., Rao, X., Rajagopalan, S., An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: Potential implications in cardiovascular disease (2013) Atherosclerosis, 226, pp. 305-314; Pacheco, R., Martinez-Navio, J.M., Lejeune, M., CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse (2005) Proc Natl Acad Sci USA, 102, pp. 9583-9588; Bracke, K.R., Demedts, I.K., Joos, G.F., Brusselle, G.G., CC-chemokine receptors in chronic obstructive pulmonary disease (2007) Inflamm Allergy Drug Targets, 6, pp. 75-79; Somborac-Baura, A., Buljevi, S., Rumora, L., Decreased soluble dipeptidyl peptidase IV activity as a potential serum biomarker for COPD (2012) Clin Biochem, 45, pp. 1245-1250; Chang, X.Y., Yang, Y., Jia, X.Q., Expression and clinical significance of serum dipeptidyl peptidase IV chronic obstructive pulmonary disease (2016) Am J Med Sci, 351, pp. 244-252; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin Microbiol Infect, 20, pp. 469-474; Decramer, M., Janssens, W., Miravitlles, M., Chronic obstructive pulmonary disease (2012) Lancet, 379, pp. 1341-1351","Brusselle, G.G.; Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, Belgium; email: Guy.Brusselle@UGent.be",,"Oxford University Press",10584838,,CIDIE,"29020176","English","Clin. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85040560766 "Kalkanov I., Dinev I., Todorova K., Alexandrov М., Ananiev Y., Galabova M.","57079236900;23990394600;55125762100;57204434680;57204427600;6602314813;","Ultrastructural and immunohistochemical investigations in calves with coronavirus pneumoenteritis syndrome [Coronavirus pnömoenteritis sendromlu buzağılarda ultrastrüktürel ve immunohistokimyasal incelemeler]",2018,"Kafkas Universitesi Veteriner Fakultesi Dergisi","24","6",,"791","797",,1,"10.9775/kvfd.2018.19827","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055508902&doi=10.9775%2fkvfd.2018.19827&partnerID=40&md5=b763b5928ad29e1d9ca2d2717484da9a","Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Student Campus, Stara Zagora, 6000, Bulgaria; Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, Student Campus, Stara Zagora, 6000, Bulgaria","Kalkanov, I., Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Student Campus, Stara Zagora, 6000, Bulgaria; Dinev, I., Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Student Campus, Stara Zagora, 6000, Bulgaria; Todorova, K., Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Alexandrov, М., Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, Sofia, Bulgaria; Ananiev, Y., Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, Student Campus, Stara Zagora, 6000, Bulgaria; Galabova, M., Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, Student Campus, Stara Zagora, 6000, Bulgaria","The aim of present studies was the structural and morphogenetic investigation of spontaneous pneumoenteritis syndrome in newborn and growing calves with regard to confirmation of some structural features of disease morphogenesis. The research was done with 370 calves from 6 cattle farms in 4 regions of the country, at the age of 24 h-25 days. For rapid antigenic and viral detection of pathogens, Multiscreen Ag ELISA, Bovine respiratory, Pulmotest respiratory tetra ELISA kit for antigenic diagnosis of BoНV-1, BVDV, BRSV, and BPI-3 sandwich test for tissue lysates (BIOX Diagnostics, Belgium) and Rainbow calf scour 5 BIO K 306 Detection of Bovine Rotavirus, Coronavirus, Escherichia coli F5, Cryptosporidium parvum and Clostridium perfringens in bovine stool (BIOX Diagnostics, Belgium) were used. In 5% of cases, laboratory antigenic tests of lung tissue lysates from pneumonic calves detected co-infections with BoНV-1, BVDV, BRSV and BPI-3. The utilised antigenic, ultrastructural and virological diagnostic methods allowed concluding that they could be successfully used in the diagnostics of pulmonary and gastrointestinal viral infections in juvenile calves. Electron microscopy and immunohistochemical methods of lung and intestinal tissue are also important and applicable for diagnostics and in differential diagnostic recognition of the condition from other common diseases as IBR, BVD, BRSV, Mannheimia haemolytica, Cryptosporidium parvum, BRV and E. coli K99 (F5). © 2018, Veteriner Fakultesi Dergisi. All rights reserved.","BCoV; Calves; IHC; Pathology; Ultrastructure","abdominal bleeding; animal tissue; antigen detection; Article; Bovine coronavirus; Bovine parainfluenza virus 3; Bovine respiratory syncytial virus; Bovine rotavirus A; Bovine viral diarrhea virus 1; calf (bovine); chromatin condensation; Clostridium perfringens; controlled study; Coronavirus infection; Coronavirus pneumoenteritis syndrome; Cryptosporidium parvum; dehydration; desquamation; edema; emaciation; enteritis; enzyme linked immunosorbent assay; Escherichia coli; feces analysis; gastrointestinal infection; histopathology; hyperemia; hypersalivation; immunohistochemistry; lung emphysema; lymphadenopathy; Mannheimia haemolytica; mixed infection; morphogenesis; necrobiotic disorder; newborn; nonhuman; palpation; pneumoenteritis; pneumonia; transmission electron microscopy; ultrastructure; virus detection","Schroeder, M.E., Bounpheng, M.A., Rodgers, S., Baker, R.J., Black, W., Naikare, H., Velayudhan, B., Clavijo, A., Development and performance evaluation of calf diarrhea pathogen nucleic acid purification and detection workflow (2012) J Vet Diagn Invest, 24, pp. 945-953; Urban-Chmiel, R., Grooms, D.L., Prevention and control of bovine respiratory disease (2012) J Livest Sci, 3, pp. 27-36; Yang, D., Leibowitz, J.L., The structure and functions of coronavirus genomic 3’ and 5’ ends (2015) Virus Res, 206, pp. 120-133; Oma, V.S., Tråvén, M., Alenius, S., Myrmel, M., Stokstad, M., Bovine coronavirus in naturally and experimentally exposed calves: Viral shedding and the potential for transmission (2016) Virol J, 13, pp. 100-104; Toftaker, I., Sanchez, J., Stokstad, M., Nødtvedt, A., Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk-Risk factors and spatial analysis (2016) Prev Vet Med, 133, pp. 73-83; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Craig, R.A., Kapil, S., Detection of novel enteric virus in Wisconsin livestock (1994) Proceedings of the 37th Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians, pp. 107-122. , Grand Rapids,Wis; Crouch, C.F., Raybould, T.J.G., Acres, S.D., Monoclonal antibody capture enzyme-linked immunosorbent assay for detection of bovine enteric coronavirus (1984) J Clin Microbiol, 19, pp. 388-393; Daginakatte, G.C., Chard-Bergstrom, C., Andrews, G.A., Kapil, S., Production, characterization, and uses of monoclonal antibodies against recombinant nucleoprotein of elk coronavirus (1999) Clin Diagn Lab Immunol, 6 (3), pp. 341-344; Kapil, S., Lamm, C.G., McVey, D.S., Detection of bovine respiratory coronavirus in beef cattle (2008) Proc. 27th Annual Meeting of the American Society of Virologists, pp. 9-11. , Cornell University, Ithaca, NY, July, 15; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin North Am: Food Anim Pract, 26, pp. 123-146; Storz, J., Respiratory disease of cattle associated with coronavirus infections (1998) Current Veterinary Therapy: Food Animal Practice, pp. 291-293. , Howard JL, Smith RA, WB Saunders, Philadelphia; Luginbühl, A., Reitt, K., Metzler, A., Kollbrunner, M., Corboz, L., Deplazes, P., Field study of the prevalence and diagnosis of diarrhea-causing agents in the newborn calf in a Swiss veterinary practice area (2005) Schweiz Arch Tierheilkd, 147 (6), pp. 245-252; Gunn, A., Naylor, J.A., House, J.K., Diarrhea (2009) Large Animal Internal Medicine, pp. 340-363. , Smith BP, St. Louis (MO): Mosby; Gorden, P.J., Plummer, P., Control, management, and prevention of bovine respiratory disease in dairy calves and cows (2010) Vet Clin North Am: Food Anim Pract, 26, pp. 243-259; Mullis, L., Saif, L.J., Zhang, Y., Zhang, X., Azevedo, M.S.P., Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions (2012) Food Microbiol, 30, pp. 180-186","Kalkanov, I.; Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Student Campus, Bulgaria; email: ismet_88@abv.bg",,"Veteriner Fakultesi Dergisi",13006045,,,,"English","Kafkas Universitesi Veteriner Fakultesi Dergisi",Article,"Final",Open Access,Scopus,2-s2.0-85055508902 "Payne D.C., Biggs H.M., Al-Abdallat M.M., Alqasrawi S., Lu X., Abedi G.R., Haddadin A., Iblan I., Alsanouri T., Nsour M.A., Ali S.S., Rha B., Trivedi S.U., Rasheed M.A.U., Tamin A., Lamers M.M., Haagmans B.L., Erdman D.D., Thornburg N.J., Gerber S.I.","14014438400;46460986500;56193260600;55756735100;57216109714;55887217800;55757619800;55670283300;56806951400;57193346137;57184783300;53865436300;56025976500;55193760400;6602551546;56303249700;6701371301;7005380414;6602664202;56656063700;","Multihospital outbreak of a Middle East respiratory syndrome coronavirus deletion variant, Jordan: A molecular, serologic, and epidemiologic investigation",2018,"Open Forum Infectious Diseases","5","5", ofy095,"","",,3,"10.1093/ofid/ofy095","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054909766&doi=10.1093%2fofid%2fofy095&partnerID=40&md5=3ca7159a5e753742c9b72360c4cdf6e0","Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Communicable Diseases Directorate, United States; Laboratory Directorate, United States; Field Epidemiology Training Program, Jordan Ministry of Health, Amman, Jordan; Eastern Mediterranean Public Health Network, Amman, Jordan; Viroscience Department, Erasmus University Medical Center, Rotterdam, Netherlands; IHRC, Inc, Contracting Agency, Centers for Disease Control and Prevention, Atlanta, GA, United States; Centers for Disease Control and Prevention, Mailstop A34, 1600 Clifton Road, NE, Atlanta, GA 30329, United States","Payne, D.C., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States, Centers for Disease Control and Prevention, Mailstop A34, 1600 Clifton Road, NE, Atlanta, GA 30329, United States; Biggs, H.M., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Al-Abdallat, M.M., Communicable Diseases Directorate, United States; Alqasrawi, S., Communicable Diseases Directorate, United States; Lu, X., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Abedi, G.R., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Haddadin, A., Laboratory Directorate, United States; Iblan, I., Field Epidemiology Training Program, Jordan Ministry of Health, Amman, Jordan; Alsanouri, T., Eastern Mediterranean Public Health Network, Amman, Jordan; Nsour, M.A., Eastern Mediterranean Public Health Network, Amman, Jordan; Ali, S.S., Communicable Diseases Directorate, United States; Rha, B., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Trivedi, S.U., IHRC, Inc, Contracting Agency, Centers for Disease Control and Prevention, Atlanta, GA, United States; Rasheed, M.A.U., IHRC, Inc, Contracting Agency, Centers for Disease Control and Prevention, Atlanta, GA, United States; Tamin, A., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Lamers, M.M., Viroscience Department, Erasmus University Medical Center, Rotterdam, Netherlands; Haagmans, B.L., Viroscience Department, Erasmus University Medical Center, Rotterdam, Netherlands; Erdman, D.D., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Thornburg, N.J., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Gerber, S.I., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","Background: An outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in Jordan in 2015 involved a variant virus that acquired distinctive deletions in the accessory open reading frames. We conducted a molecular and seroepidemiologic investigation to describe the deletion variant's transmission patterns and epidemiology. Methods: We reviewed epidemiologic and medical chart data and analyzed viral genome sequences from respiratory specimens of MERS-CoV cases. In early 2016, sera and standardized interviews were obtained from MERS-CoV cases and their contacts. Sera were evaluated by nucleocapsid and spike protein enzyme immunoassays and microneutralization. Results: Among 16 cases, 11 (69%) had health care exposure and 5 (31%) were relatives of a known case; 13 (81%) were symptomatic, and 7 (44%) died. Genome sequencing of MERS-CoV from 13 cases revealed 3 transmissible deletions associated with clinical illness during the outbreak. Deletion variant sequences were epidemiologically clustered and linked to a common transmission chain. Interviews and sera were collected from 2 surviving cases, 23 household contacts, and 278 health care contacts; 1 (50%) case, 2 (9%) household contacts, and 3 (1%) health care contacts tested seropositive. Conclusions: The MERS-CoV deletion variants retained human-to-human transmissibility and caused clinical illness in infected persons despite accumulated mutations. Serology suggested limited transmission beyond that detected during the initial outbreak investigation.","Coronavirus; Emerging infectious disease; Genome deletion; Jordan; MERS-CoV; Middle East respiratory syndrome; Outbreak investigation; Sero-epidemiology","nucleocapsid protein; virus spike protein; adult; aged; Article; child; clinical article; coronary care unit; deletion mutant; enzyme linked immunosorbent assay; epidemic; female; genetic heterogeneity; genetic similarity; genetic variability; hospital infection; hospitalization; human; infant; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nucleic acid base substitution; phylogenetic tree; priority journal; retrospective study; reverse transcription polymerase chain reaction; sequence alignment; serodiagnosis; virus genome; virus transmission; whole genome sequencing","Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, Accessed 30 May 2017; Hijawi, B., Abdallat, M., Sayaydeh, A., Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Global Alert and Response (GAR): Middle East Respiratory Syndrome Coronavirus, , http://www.who.int/csr/disease/coronavirus_infections/en, Accessed 16 May 2018; Lamers, M.M., Raj, V.S., Shafei, M., Deletion variants of Middle East respiratory syndrome coronavirus from humans, Jordan, 2015 (2016) Emerg Infect Dis, 22, pp. 716-719; Assiri, A.M., Midgley, C.M., Abedi, G.R., Epidemiology of a novel recombinant MERS-CoV in humans in Saudi Arabia (2016) J Infect Dis, 22, pp. 2020-2022; Wang, Y., Liu, D., Shi, W., Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: Phylogenetics and coalescence analysis (2015) MBio, 6, pp. e01280-e01315; (2018) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Interim Guidance, , http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en, Updated January Accessed 16 May 2018; Lu, X., Whitaker, B., Sakthivel, S.K., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Hunter, J.C., Nguyen, D., Aden, B., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; Huelsenbeck, J.P., Ronquist, F., MrBayes: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755; Payne, D.C., Iblan, I., Rha, B., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826; Trivedi, S., Miao, C., Al-Abdallat, M.M., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90, pp. 367-371; Assiri, A.M., Biggs, H.M., Abedi, G.R., Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1-August 31, 2015 (2016) Open Forum Infect Dis, 3, p. ofw165; Shalhoub, S., Abdraboh, S., Palma, R., MERS-CoV in a healthcare worker in Jeddah, Saudi Arabia: An index case investigation (2016) J Hosp Infect, 93, pp. 309-312; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854. , 2014; Lu, X., Rowe, L.A., Frace, M., Spike gene deletion quasispecies in serum of patient with acute MERS-CoV infection (2017) J Med Virol, 89, pp. 542-545; Xie, Q., Cao, Y., Su, J., Two deletion variants of Middle East respiratory syndrome coronavirus found in a patient with characteristic symptoms (2017) Arch Virol, 162, pp. 2445-2449; Van Boheemen, S., De Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6), pp. e00473-e00512; Scobey, T., Yount, B.L., Sims, A.C., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162; Yang, Y., Zhang, L., Geng, H., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Thornbrough, J.M., Jha, B.K., Yount, B., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, p. e00258; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12, p. e1005982; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8 (4), pp. e00665-e00717; Oostra, M., De Haan, C.A., Rottier, P.J., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J Virol, 81, pp. 13876-13888; Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel (2016) Emerg Infect Dis, 22, pp. 1915-1920; Pyoeng Gyun, C., Perera, R.A.P.M., Wan Beom, P., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Antibody response and disease severity in healthcare worker MERS survivors Emerg Infect Dis, , press; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Boone, S.A., Gerba, C.P., Significance of fomites in the spread of respiratory and enteric viral disease (2007) Appl Environ Microbiol, 73, pp. 1687-1696; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18. , pii: 20590; Bin, S.Y., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Kim, S.H., Chang, S.Y., Sung, M., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369","Payne, D.C.; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and PreventionUnited States; email: dvp6@cdc.gov",,"Oxford University Press",23288957,,,,"English","Open Forum Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85054909766 "Zmora P., Hoffmann M., Kollmus H., Moldenhauer A.-S., Danov O., Braun A., Winkler M., Schughart K., Stefan Pöhlmann X.","37073908700;35080416400;6701865266;55344808800;57189684170;55510738600;57192896887;35495744800;57203805720;","TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1",2018,"Journal of Biological Chemistry","293","36",,"13863","13873",,,"10.1074/jbc.RA118.001273","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053004973&doi=10.1074%2fjbc.RA118.001273&partnerID=40&md5=0a8d67621641f52e1442106b8e20827a","Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, 37077, Germany; Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany; University of Veterinary Medicine Hannover, Hannover, 30599, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Science Center, Memphis, TN 38163, United States; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, Hannover, 30625, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen, 37073, Germany; Dept. of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, Magdeburg, 39106, Germany; Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, 37077, Germany","Zmora, P., Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, 37077, Germany, Dept. of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, Magdeburg, 39106, Germany; Hoffmann, M., Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, 37077, Germany; Kollmus, H., Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany; Moldenhauer, A.-S., Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, 37077, Germany; Danov, O., Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, Hannover, 30625, Germany; Braun, A., Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of REBIRTH Cluster of Excellence, Hannover, 30625, Germany; Winkler, M., Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, 37077, Germany; Schughart, K., Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany, University of Veterinary Medicine Hannover, Hannover, 30599, Germany, Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Science Center, Memphis, TN 38163, United States; Stefan Pöhlmann, X., Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, 37077, Germany, Faculty of Biology and Psychology, University of Göttingen, Göttingen, 37073, Germany, Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, 37077, Germany","The influenza virus hemagglutinin (HA) facilitates viral entry into target cells. Cleavage of HA by host cell proteases is essential for viral infectivity, and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease (TTSP) TMPRSS2 has been identified as an HA activator in cell culture and in the infected host. However, it is less clear whether TMPRSS2-related enzymes can also activate HA for spread in target cells. Moreover, the activity of cellular serine protease inhibitors against HA-activating TTSPs is poorly understood. Here, we show that TMPRSS11A, another member of the TTSP family, cleaves and activates the influenza A virus (FLUAV) HA and the Middle East respiratory syndrome coronavirus spike protein (MERS-S). Moreover, we demonstrate that TMPRSS11A is expressed in murine tracheal epithelium, which is a target of FLUAV infection, and in human trachea, suggesting that the protease could support FLUAV spread in patients. Finally, we show that HA activation by the TMPRSS11A-related enzymes human airway tryptase and DESC1, but not TMPRSS11A itself, is blocked by the cellular serine protease inhibitor hepatocyte growth factor activator inhibitor type-1 (HAI-1). Our results suggest that TMPRSS11A could promote FLUAV spread in target cells and that HA-activating TTSPs exhibit differential sensitivity to blockade by cellular serine protease inhibitors. © 2018 Zmora et al.",,"Amino acids; Cell culture; Chemical activation; Enzyme inhibition; Respiratory system; Viruses; Differential sensitivity; Hepatocyte growth factor; Influenza A virus; Influenza virus; Potential targets; Serine protease; Serine protease inhibitor; Viral infectivity; Cells; DESC1 protein; hepatocyte growth factor activator inhibitor type 1; Influenza virus hemagglutinin; serine proteinase; serine proteinase inhibitor; TMPRSS11A protein; tryptase; unclassified drug; virus spike protein; coronavirus spike glycoprotein; hemagglutinin; Influenza virus hemagglutinin; leukocyte elastase inhibitor; membrane protein; serine proteinase; SPINT1 protein, human; Spint1 protein, mouse; TMPRSS11A protein, mouse; TMPRSS2 protein, human; animal cell; animal experiment; animal model; animal tissue; Article; autocatalytic activation; catalysis; controlled study; female; human; human cell; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; protein cleavage; protein expression; trachea; trachea epithelium; viral phenomena and functions; virus cell fusion; animal; growth, development and aging; Influenza A virus; metabolism; virus entry; Animals; Hemagglutinin Glycoproteins, Influenza Virus; Hemagglutinins; Humans; Influenza A virus; Membrane Glycoproteins; Membrane Proteins; Mice; Proteinase Inhibitory Proteins, Secretory; Serine Endopeptidases; Serine Proteases; Spike Glycoprotein, Coronavirus; Virus Internalization","Paules, C., Subbarao, K., Influenza (2017) Lancet, 12 (390), pp. 697-708. , 10095: CrossRef Medline; Richard, M., Fouchier, R.A., Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential (2016) FEMS Microbiol. Rev., 40, pp. 68-85; Dunning, J., Baillie, J.K., Cao, B., Hayden, F.G., Antiviral combinations for severe influenza (2014) Lancet Infect. Dis., 14, pp. 1259-1270; Watanabe, T., Kawaoka, Y., Influenza virus– Host interactomes as a basis for antiviral drug development (2015) Curr. Opin. Virol., 14, pp. 71-78; Edinger, T.O., Pohl, M.O., Stertz, S., Entry of influenza A virus: Host factors and antiviral targets (2014) J. Gen. Virol., 95, pp. 263-277; Sun, X., Whittaker, G.R., Entry of influenza virus (2013) Adv. Exp. Med. Biol., 790, pp. 72-82; Bertram, S., Glowacka, I., Steffen, I., Kühl, A., Pöhlmann, S., Novel insights into proteolytic cleavage of influenza virus hemagglutinin (2010) Rev. Med. Virol., 20, pp. 298-310; Garten, W., Braden, C., Arendt, A., Peitsch, C., Baron, J., Lu, Y., Pawletko, K., Böttcher-Friebertshäuser, E., Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics (2015) Eur. J. Cell Biol., 94, pp. 375-383; Böttcher, E., Matrosovich, T., Beyerle, M., Klenk, H.D., Garten, W., Matrosovich, M., Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium (2006) J. Virol., 80, pp. 9896-9898; Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Tsegaye, T.S., Takeda, M., Pöhlmann, S., Proteolytic activation of the 1918 influenza virus hemagglutinin (2009) J. Virol., 83, pp. 3200-3211; Bertram, S., Glowacka, I., Blazejewska, P., Soilleux, E., Allen, P., Danisch, S., Steffen, I., Pöhlmann, S., TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells (2010) J. Virol., 84, pp. 10016-10025; Böttcher-Friebertshäuser, E., Stein, D.A., Klenk, H.D., Garten, W., Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2 (2011) J. Virol., 85, pp. 1554-1562; Bertram, S., Heurich, A., Lavender, H., Gierer, S., Danisch, S., Perin, P., Lucas, J.M., Soilleux, E.J., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts (2012) PLoS One, 7; Cheng, Z., Zhou, J., To, K.K., Chu, H., Li, C., Wang, D., Yang, D., Yuen, K.Y., The identification of TMPRSS2 as the susceptible gene for severe illness of 2009 pandemic A(H1N1) influenza and infection of A(H7N9) influenza (2015) J. Infect. Dis., 212, pp. 1214-1221; Hatesuer, B., Bertram, S., Mehnert, N., Bahgat, M.M., Nelson, P.S., Pöhlmann, S., Pöhlman, S., Schughart, K., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice (2013) PLoS Pathog, 9; Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Suzuki, T., The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses (2014) J. Virol., 88, pp. 5608-5616; Tarnow, C., Engels, G., Arendt, A., Schwalm, F., Sediri, H., Preuss, A., Nelson, P.S., Böttcher-Friebertshäuser, E., TMPRSS2 is a host factor that is essential for pneumo-tropism and pathogenicity of H7N9 influenza A virus in mice (2014) J. Virol., 88, pp. 4744-4751; Kühn, N., Bergmann, S., Kösterke, N., Lambertz, R.L.O., Keppner, A., van den Brand, J.M.A., Pöhlmann, S., Schughart, K., The proteolytic activation of (H3N2) influenza A virus hemagglutinin is facilitated by different type II transmembrane serine proteases (2016) J. Virol., 90, pp. 4298-4307; Sakai, K., Sekizuka, T., Ami, Y., Nakajima, N., Kitazawa, M., Sato, Y., Nakajima, K., Takeda, M., A mutant H3N2 influenza virus uses an alternative activation mechanism in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk region (2015) J. Virol., 89, pp. 5154-5158; Baron, J., Tarnow, C., Mayoli-Nüssle, D., Schilling, E., Meyer, D., Ham-Mami, M., Schwalm, F., Böttcher-Friebertshäuser, E., Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses (2013) J. Virol., 87, pp. 1811-1820; Beaulieu, A., Gravel, É., Cloutier, A., Marois, I., Colombo, É., Déesilets, A., Verreault, C., Richter, M.V., Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium (2013) J. Virol., 87, pp. 4237-4251; Hamilton, B.S., Gludish, D.W., Whittaker, G.R., Cleavage activation of the human-adapted influenza virus subtypes by matriptase reveals both subtype and strain specificities (2012) J. Virol., 86, pp. 10579-10586; Zmora, P., Blazejewska, P., Moldenhauer, A.S., Welsch, K., Nehlmeier, I., Wu, Q., Schneider, H., Bertram, S., DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry (2014) J. Virol., 88, pp. 12087-12097; Dittmann, M., Hoffmann, H.H., Scull, M.A., Gilmore, R.H., Bell, K.L., Ciancanelli, M., Wilson, S.J., Rice, C.M., A serpin shapes the extracellular environment to prevent influenza A virus maturation (2015) Cell, 160, pp. 631-643; Hamilton, B.S., Chung, C., Cyphers, S.Y., Rinaldi, V.D., Marcano, V.C., Whittaker, G.R., Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2 (2014) Biochem. Bio-Phys. Res. Commun., 450, pp. 1070-1075; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pöhlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87, pp. 6150-6160; Glowacka, I., Bertram, S., Müller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pöhlmann, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J. Virol., 85, pp. 4122-4134; Gierer, S., Müller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pöhlmann, S., Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J. Infect. Dis., 211, pp. 889-897; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 15214-15219; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Pöhlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Zmora, P., Moldenhauer, A.S., Hofmann-Winkler, H., Pöhlmann, S., TMPRSS2 isoform 1 activates respiratory viruses and is expressed in viral target cells (2015) PLoS One, 10; Benaud, C., Dickson, R.B., Lin, C.Y., Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor (2001) Eur. J. Biochem., 268, pp. 1439-1447; Fan, B., Wu, T.D., Li, W., Kirchhofer, D., Identification of hepatocyte growth factor activator inhibitor-1B as a potential physiological inhibitor of prostasin (2005) J. Biol. Chem., 280, pp. 34513-34520; Kido, H., Okumura, Y., Yamada, H., Le, T.Q., Yano, M., Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents (2007) Curr. Pharm. Des., 13, pp. 405-414; Böttcher-Friebertshäuser, E., Klenk, H.D., Garten, W., Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium (2013) Pathog. Dis., 69, pp. 87-100; Antalis, T.M., Bugge, T.H., Wu, Q., Membrane-anchored serine proteases in health and disease (2011) Prog. Mol. Biol. Transl. Sci., 99, pp. 1-50; Böttcher, E., Freuer, C., Steinmetzer, T., Klenk, H.D., Garten, W., MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition (2009) Vaccine, 27, pp. 6324-6329; Kato, M., Hashimoto, T., Shimomura, T., Kataoka, H., Ohi, H., Kitamura, N., Hepatocyte growth factor activator inhibitor type-1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease (2012) J. Biochem., 151, pp. 179-187; Sales, K.U., Hobson, J.P., Wagenaar-Miller, R., Szabo, R., Rasmussen, A.L., Bey, A., Shah, M.F., Bugge, T.H., Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT (2011) PLoS One, 6; Kim, T.S., Heinlein, C., Hackman, R.C., Nelson, P.S., Pheno-typic analysis of mice lacking the Tmprss2-encoded protease (2006) Mol. Cell. Biol., 26, pp. 965-975; Kam, Y.W., Okumura, Y., Kido, H., Ng, L.F., Bruzzone, R., Altmeyer, R., Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro (2009) PLoS One, 4; Kataoka, H., Suganuma, T., Shimomura, T., Itoh, H., Kitamura, N., Nabeshima, K., Koono, M., Distribution of hepatocyte growth factor activator inhibitor type-1 (HAI-1) in human tissues. Cellular surface localization of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues (1999) J. Histochem. Cy-Tochem., 47, pp. 673-682; Böttcher-Friebertshäuser, E., Freuer, C., Sielaff, F., Schmidt, S., Eickmann, M., Uhlendorff, J., Steinmetzer, T., Garten, W., Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors (2010) J. Virol., 84, pp. 5605-5614; Hoffmann, E., Krauss, S., Perez, D., Webby, R., Webster, R.G., Eight-plasmid system for rapid generation of influenza virus vaccines (2002) Vaccine, 20, pp. 3165-3170; Matthaei, M., Budt, M., Wolff, T., Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-/ responses that distinctively affect viral propagation in human cells (2013) PLoS One, 8; Brauer, R., Chen, P., Influenza virus propagation in embryonated chicken eggs (2015) J. Vis. Exp., 2015; Szretter, K.J., Balish, A.L., Katz, J.M., Influenza: Propagation, quantification, and storage (2006) Curr. Protoc. Microbiol., 15. , Chapter Unit 15G.1 CrossRef Medline; Oberst, M.D., Chen, L.Y., Kiyomiya, K., Williams, C.A., Lee, M.S., Johnson, M.D., Dickson, R.B., Lin, C.Y., HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease (2005) Am. J. Physiol. Cell Physiol., 289, pp. C462-C470; Winkler, M., Bertram, S., Gnirss, K., Nehlmeier, I., Gawanbacht, A., Kirchhoff, F., Ehrhardt, C., Pöhlmann, S., Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells (2012) PLoS One, 7; Wrensch, F., Winkler, M., Pöhlmann, S., IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: Evidence for cholesterol-independent mechanisms (2014) Viruses, 6, pp. 3683-3698; Leist, S.R., Pilzner, C., van den Brand, J.M., Dengler, L., Geffers, R., Kuiken, T., Balling, R., Schughart, K., Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice (2016) BMC Genomics, 17, p. 143","Zmora, P.; Infection Biology Unit, German Primate Center–Leibniz Institute for Primate ResearchGermany; email: zmora@mpi-magdeburg.mpg.de",,"American Society for Biochemistry and Molecular Biology Inc.",00219258,,JBCHA,"29976755","English","J. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85053004973 "Koch B., Schult-Dietrich P., Büttner S., Dilmaghani B., Lohmann D., Baer P.C., Dietrich U., Geiger H.","57202102510;6507394839;6701354997;57201741523;57201740224;7102969633;7006163144;7101683974;","Lectin affinity plasmapheresis for Middle East respiratory syndrome-coronavirus and marburg virus glycoprotein elimination",2018,"Blood Purification","46","2",,"126","133",,2,"10.1159/000487224","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046029546&doi=10.1159%2f000487224&partnerID=40&md5=0f5f2eb52d5f8b598736c7d12f36056c","Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany; Division of Nephrology, Dialysis and Transplantation Goethe University Hospital, Med. III Theodor-Stern-Kai 7, DE, Frankfurt, 60590, Germany","Koch, B., Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany, Division of Nephrology, Dialysis and Transplantation Goethe University Hospital, Med. III Theodor-Stern-Kai 7, DE, Frankfurt, 60590, Germany; Schult-Dietrich, P., Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany; Büttner, S., Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany; Dilmaghani, B., Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany; Lohmann, D., Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany; Baer, P.C., Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany; Dietrich, U., Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany; Geiger, H., Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Frankfurt, Germany","Background/Aims: Middle East respiratory syndrome coronavirus (MERS-CoV) and Marburg virus (MARV) are among the World Health Organization's top 8 emerging pathogens. Both zoonoses share nonspecific early symptoms, a high lethality rate, and a reduced number of specific treatment options. Therefore, we evaluated extracorporeal virus and glycoprotein (GP) elimination by lectin affinity plasmapheresis (LAP). Methods: For both MERS-CoV (pseudovirus) as well as MARV (GPs), 4 LAP devices (Mini Hemopurifiers, Aethlon Medical, San Diego, CA, USA) and 4 negative controls were tested. Samples were collected every 30 min and analyzed for reduction in virus infectivity by a flow cytometry-based infectivity assay (MERS-CoV) and in soluble GP content (MARV) by an immunoassay. Results: The experiments show a time-dependent clearance of MERS-CoV of up to 80% within 3 h (pseudovirus). Up to 70% of MARV-soluble GPs were eliminated at the same time. Substantial saturation of the binding resins was detected within the first treatment hour. Conclusion: MERS-CoV (pseudovirus) and MARV soluble GPs are eliminated by LAP in vitro. Considering the high lethality and missing established treatment options, LAP should be evaluated in vivo. Especially early initiation, continuous therapy, and timed cartridge exchanges could be of importance. Video Journal Club 'Cappuccino with Claudio Ronco' at http://www.karger.com/?doi=487224. © 2018 S. Karger AG, Basel. © 2018 S. Karger AG, Basel","Extracorporeal purification; Lectin affinity plasmapheresis; Marburg virus; Middle East respiratory syndrome coronavirus","acute kidney failure; affinity chromatography; Article; artificial ventilation; controlled study; flow cytometry; gene expression; human; immunoprecipitation; Marburgvirus; Middle East respiratory syndrome coronavirus; mixed infection; plasmapheresis; priority journal; animal; case control study; chemistry; devices; immunoassay; isolation and purification; metabolism; Middle East respiratory syndrome coronavirus; plasmapheresis; procedures; standards; zoonosis; glycoprotein; lectin; Animals; Case-Control Studies; Flow Cytometry; Glycoproteins; Humans; Immunoassay; Lectins; Marburgvirus; Middle East Respiratory Syndrome Coronavirus; Plasmapheresis; Zoonoses","Gates, B., (2017) Speech by Bill Gates at The 53rd Munich Security Conference, , https://www.securityconference.de/aktivitaeten/munich-security-conference/msc-2017/reden/speech-by-bill-gates/, accessed September 26, 2017; Sweileh, W.M., Global research trends of World Health Organization's top eight emerging pathogens (2017) Global Health, 13, p. 233; McIntosh, K., Perlman, S., Coronaviruses (2017) Mandell, Douglas and Bennett'S Infectious Disease Essentials, p. 215. , Bennet JE, Dolin R, Blaser MJ eds: Philadelphia, Elsevier; Geisbert, T.W., Marburg and Ebola hemorrhagic fevers (2017) Mandell, Douglas and Bennett'S Infectious Disease Essentials, p. 227. , Bennet JE, Dolin R, Blaser MJ eds: Philadelphia, Elsevier; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Mathieu, D., Guery, B., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61, pp. 275-278; Senga, M., Arabi, Y.M., Fowler, R.A., Clinical spectrum of the Middle East respiratory syndrome coronavirus (MERS-CoV) (2016) J Infect Public Health, 10, pp. 191-194; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Shalhoub, S., Critically Ill patients with the Middle East Respiratory Syndrome: A multicenter retrospective cohort study (2017) Crit Care Med, 45, pp. 1683-1695; Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Vuotto, F., Goffard, A., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of noso-comial transmission (2013) Lancet, 381, pp. 2265-2272; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Kim, S.Y., Park, S.J., Cho, S.Y., Cha, R.H., Jee, H.G., Kim, G., Viral RNA in Blood as Indicator of severe outcome in Middle East Respiratory Syndrome Coronavirus infection (2016) Emerg Infect Dis, 22, pp. 1813-1816; (2017) PRO/AH/EDR≫ MERS-CoV, (64). , http://www.promedmail.org/post/5375933, ISID published on October 12, 2017, Archive Number 20171012.5375933, accessed October 16, 2017; Siegert, R., Shu, H.L., Slenczka, W., Peters, D., Müller, G., On the cause of a previously unknown human infection transmitted from monkeys (1967) Dtsch Med Wochenschr, 92, pp. 2341-2343; Feldmann, H., Sanchez, A., Geisbert, T.W., Filo-viridae: Ebola -and Marburgvirus (2013) Fields Virology, pp. 923-956. , Knipe DM, Howley PM eds: Philadelphia, Lippincott Williams & Wilkins; Mehedi, M., Groseth, A., Feldmann, H., Ebihara, H., Clinical aspects of Marburg hemorrhagic fever (2011) Future Virol, 6, pp. 1091-1106; Hunt, L., Gupta-Wright, A., Simms, V., Tamba, F., Knott, V., Tamba, K., Clinical presentation, biochemical, and haematological parameters and their association with outcome in patients with Ebola virus disease: An observational cohort study (2015) Lancet Infect Dis, 15, pp. 1292-1299; Escudero-Pérez, B., Volchkova, V.A., Dolnik, O., Lawrence, P., Volchkov, V.E., Shed GP of Ebola virus triggers immune activation and increased vascular permeability (2014) PLoS Pathog, 10, p. e1004509; Ansari, A.A., Clinical features and pathobiolo-gy of Ebolavirus infection (2014) J Autoimmun, 55, pp. 1-9; Mohan, G.S., Li, W., Ye, L., Compans, R.W., Yang, C., Antigenic subversion: A novel mechanism of host immune evasion by Ebola virus (2012) PLoS Pathog, 8, p. e1003065; Younan, P., Ramanathan, P., Graber, J., Gusovsky, F., Bukreyev, A., The toll-like receptor 4 antagonist eritoran protects mice from lethal filovirus challenge (2017) MBio, 8. , pii:e00226-17; Mahmood, N., Hay, A.J., An ELISA utilizing im-mobilised snowdrop lectin GNA for the detection of envelope glycoproteins of HIV and SIV (1992) J Immunol Methods, 151, pp. 9-13; Büttner, S., Koch, B., Dolnik, O., Eickmann, M., Freiwald, T., Rudolf, S., Extracorporeal virus elimination for the treatment of severe Ebola virus disease - First experience with lectin affinity plasmapheresis (2014) Blood Purif, 38, pp. 286-291; Tullis, R.H., Ichim, T., Affinity hemodialysis and plasmapheresis (2012) Dialysis. History, Development and Promise, p. 841. , Ing TS, Rahman MA, Kjellstrand CM eds: Singapore, World Scientific; Koch, B., Büttner, S., Geiger, H., Schneeglöck-chen zur Senkung der Viruslast bei lebens-bedrohlichen Viruserkrankungen (2016) Dtsch Med Wochenschr, 141, pp. 1868-1871; Koch, B., Büttner, S., Dolnik, O., Eickmann, M., Freiwald, T., Rudolf, S., FP472glycoprotein and virus elimination by lectin affinity plasmapheresis (2015) Nephrol Dial Transplant, 30, p. iii229; Ronco, C., Ebola virus disease and blood purification techniques (2014) Blood Purif, 38, pp. 273-275; Tullis, R.H., Duffin, R.P., Handley, H.H., Sodhi, P., Menon, J., Joyce, J.A., Reduction of hepatitis C virus using lectin affinity plasmapheresis in dialysis patients (2009) Blood Purif, 27, pp. 64-69; Tullis, R.H., Duffin, R.P., Ichim, T.E., Joyce, J.A., Levin, N.W., Modeling hepatitis C virus therapies combining drugs and lectin affinity plasmapheresis (2010) Blood Purif, 29, pp. 210-215; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East Respiratory Syndrome Coronavirus spike glycoprotein (2015) J Virol, 89, pp. 8651-8656; Reynolds, P., Marzi, A., Ebola and Marburg virus vaccines (2017) Virus Genes, 53, pp. 501-515; Warfield, K.L., Swenson, D.L., Olinger, G.G., Kalina, W.V., Aman, M.J., Bavari, S., Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge (2007) J Infect Dis, 196, pp. S430-S437; Rougeron, V., Feldmann, H., Grard, G., Becker, S., Leroy, E.M., Ebola and Marburg haemorrhagic fever (2015) J Clin Virol, 64, pp. 111-119; Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., Alhani, H.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66, pp. 1261-1274; Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lyso-some and block the entry of Ebola virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) (2016) J Biol Chem, 291, pp. 9218-9232; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci Rep, 5, p. 17554; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavi-rus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Kallies, R., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751; Eckerle, I., Müller, M.A., Kallies, S., Gotthardt, D.N., Drosten, C., In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) Coronavirus infection (2013) Virol J, 10, p. 359; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: An update (2016) J Infect Public Health, 9, pp. 216-219; Falzarano, D., Feldmann, H., Marburg virus (2010) Desk Encyclopedia of Human and Medical Virology, pp. 434-441. , Mahy BWJ, van Regenmortel MHV eds: Oxford, Academic Press; Ajelli, M., Merler, S., Transmission potential and design of adequate control measures for Marburg hemorrhagic fever (2012) PLoS One, 7, p. e50948. , Dec 10; Ewers, E.C., Pratt, W.D., Twenhafel, N.A., Shamblin, J., Donnelly, G., Esham, H., Natural history of aerosol exposure with Marburg virus in rhesus macaques (2016) Viruses, 8, p. 87; McElroy, A.K., Erickson, B.R., Flietstra, T.D., Rollin, P.E., Nichol, S.T., Towner, J.S., Biomarker correlates of survival in pediatric patients with Ebola virus disease (2014) Emerg Infect Dis, 20, pp. 1683-1690; McElroy, A.K., Erickson, B.R., Flietstra, T.D., Rollin, P.E., Nichol, S.T., Towner, J.S., Ebola hemorrhagic fever: Novel biomarker correlates of clinical outcome (2014) J Infect Dis, 210, pp. 558-566; Knust, B., Schafer, I.J., Wamala, J., Nyakarahuka, L., Okot, C., Shoemaker, T., Multidistrict outbreak of Marburg virus disease-Uganda, 2012 (2015) J Infect Dis, 212, pp. S119-S128; Dialysis-Like Therapeutics (DLT), , https://www.darpa.mil/program/di-alysis-like-therapeutics, 2017: accessed October 11, 2017","Koch, B.; Goethe University Hospital, Division of Nephrology, Dialysis and Transplantation, Med. III, Germany; email: Benjamin.Koch@kgu.de",,"S. Karger AG",02535068,,BLPUD,"29698959","English","Blood Purif.",Article,"Final",Open Access,Scopus,2-s2.0-85046029546 "Adegboye O.A., Elfaki F.","55270465600;10839150900;","Network Analysis of MERS Coronavirus within Households, Communities, and Hospitals to Identify Most Centralized and Super-Spreading in the Arabian Peninsula, 2012 to 2016",2018,"Canadian Journal of Infectious Diseases and Medical Microbiology","2018",, 6725284,"","",,1,"10.1155/2018/6725284","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047636678&doi=10.1155%2f2018%2f6725284&partnerID=40&md5=0d05e11fc319ed9eb420c8a8919719dc","Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar","Adegboye, O.A., Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; Elfaki, F., Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar","Contact history is crucial during an infectious disease outbreak and vital when seeking to understand and predict the spread of infectious diseases in human populations. The transmission connectivity networks of people infected with highly contagious Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia were assessed to identify super-spreading events among the infected patients between 2012 and 2016. Of the 1379 MERS cases recorded during the study period, 321 (23.3%) cases were linked to hospital infection, out of which 203 (14.7%) cases occurred among healthcare workers. There were 1113 isolated cases while the number of recorded contacts per MERS patient is between 1 (n=210) and 17 (n=1), with a mean of 0.27 (SD = 0.76). Five super-important nodes were identified based on their high number of connected contacts worthy of prioritization (at least degree of 5). The number of secondary cases in each SSE varies (range, 5-17). The eigenvector centrality was significantly (p<0.05) associated with place of exposure, with hospitals having on average significantly higher eigenvector centrality than other places of exposure. Results suggested that being a healthcare worker has a higher eigenvector centrality score on average than being nonhealthcare workers. Pathogenic droplets are easily transmitted within a confined area of hospitals; therefore, control measures should be put in place to curtail the number of hospital visitors and movements of nonessential staff within the healthcare facility with MERS cases. © 2018 Oyelola A. Adegboye and Faiz Elfaki.",,"adult; aged; Article; fatality; female; health care facility; health care personnel; hospital infection; household; human; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; reverse transcription polymerase chain reaction; virus transmission","Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virology Journal, 12 (1), pp. 12-22; Zumla, A., Alagaili, A.N., Cotten, M., Azhar, E.I., Infectious diseases epidemic threats and mass gatherings: Refocusing global attention on the continuing spread of the Middle East respiratory syndrome coronavirus (MERSCoV) (2016) BMC Medicine, 14 (1), p. 132; Chowell, G., Fatima, A., Sunmi, L., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Medicine, 13 (1), p. 1; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) The Lancet, 388, pp. 994-1001. , 10048; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiology and Health, 37, p. e2015033; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of middle east respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infectious Disease, 13 (9), pp. 752-761; Kucharski, A.J., Althaus, C.L., The role of superspreading in Middle East Respiratory Syndrome Coronavirus (MERSCoV) transmission (2015) Eurosurveillance, 20 (25), pp. 14-18; Adegboye, O.A., Spatial covariate adjusted survival rates for Middle East Respiratory Syndrome (MERS) Coronavirus in the Arabian Peninsula (2016) Proceedings of the Qatar Foundation Annual Research Conference, p. HBPP1764. , Doha, Qatar; Andre, M., Ijaz, K., Tillinghast, J.D., Transmission network analysis to complement routine tuberculosis contact investigations (2007) American Journal of Public Health, 97 (3), pp. 470-477; Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F., MERS, SARS, and Ebola: The role of super-spreaders in infectious disease (2015) Cell Host and Microbe, 18 (4), pp. 398-401; Stein, R.A., Super-spreaders in infectious diseases (2011) International Journal of Infectious Diseases, 15 (8), pp. e510-e513; Shen, Z., Ning, F., Zhou, W., Superspreading sars events, Beijing, 2003 (2004) Emerging Infectious Diseases, 10 (2), pp. 256-260; Lau, M.S., Dalziel, B.D., Funk, S., Spatial and temporal dynamics of superspreading events in the 2014-2015 West Africa Ebola epidemic (2017) Proceedings of the National Academy of Sciences, 114 (9), pp. 2337-2342; Althaus, C., Ebola superspreading (2015) Lancet Infectious Diseases, 15 (5), pp. 507-508; Nishiura, H., Miyamatsu, Y., Chowell, G., Saitoh, M., Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case (2015) Eurosurveillance, 20 (27), pp. 6-11; Fisman, D.N., Leung, G.M., Lipsitch, M., Nuanced risk assessment for emerging infectious diseases (2014) The Lancet, 383 (9913), pp. 189-190; Sun, X., Lu, Z., Zhang, X., Salath, M.E., Cao, G., Infectious disease containment based on a wireless sensor system (2016) IEEE Access, 4, pp. 1548-1559; Cook, V.J., Sun, S.J., Tapia, J., Transmission network analysis in tuberculosis contact investigations (2007) Journal of Infectious Diseases, 10 (196), pp. 1517-1527; Asensio, N.C., Giner, E.M., De Groot, N.S., Burgas, M.T., Centrality in the host-pathogen interactome is associated with pathogen fitness during infection (2017) Nature Communications, 8, pp. 1-6; Rambaut, (2013) MERS-CoV Spatial, Temporal and Epidemiological Information, , http://epidemic.bio.ed.ac.uk/coronavirus_background; (2015) World Development Indicators, , http://data.worldbank.org/data-catalog/world-development-indicators; (2014) Infection Prevention/control and Management Guidelines for Patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection, , http://www.moh.gov.sa/en/CCC/StaffRegulations/Corona/Documents/GuidelinesforCoronaPatients.pdf; Csardi, G., Nepusz, T., The igraph software package for complex network research (2006) InterJournal, 1695 (5), pp. 1-9; Borgatti, S.P., Everett, M.G., Freeman, L.C., (2002) Ucinet for Windows: Software for Social Network Analysis, , Analytic Technologies, Harvard, MA, USA; Dekker, A.H., Network centrality and super-spreaders in infectious disease epidemiology (2013) Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM'2013), , Adelaide, Australia; Eifan, S.A., Nour, I., Hanif, A., Zamzam, A.M., AlJohani, S.M., A pandemic risk assessment of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Saudi Arabia (2017) Saudi Journal of Biological Sciences, 24 (7), pp. 1631-1638; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with middle east respiratory syndrome coronavirus, 2012-2015 (2016) American Journal of Epidemiology, 184 (6), pp. 1-5; Adegboye, O.A., Gayawan, E., Hanna, F., Spatial modelling of contribution of individual level risk factors for mortality from middle east respiratory syndrome coronavirus in the Arabian Peninsula (2017) PloS One, 12 (7); Al-Turaiki, I., Alshahrani, M., Almutairi, T., Building predictive models for MERS-CoV infections using data mining techniques (2016) Journal of Infection and Public Health, 9 (6), pp. 744-748; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary care hospital in Saudi Arabi (2016) Infection Control and Hospital Epidemiology, 37 (10), pp. 1147-1155; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospitalassociated outbreak of middle east respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clinical Infectious Diseases, 59 (9), pp. 1225-1233; Al-Dorzi, H.M., Aldawood, A.S., Khan, R., The critical care response to a hospital outbreak of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: An observational study (2016) Annals of Intensive Care, 6 (1), p. 101; Almutairi, A.F., Adlan, A.A., Balkhy, H.H., Abbas, O.A., Clark, A.M., It feels like I'm the dirtiest person in the world."": Exploring the experiences of healthcare providers who survived MERS-CoV in Saudi Arabia (2017) Journal of Infection and Public Health, 11 (2), pp. 187-191; Abolfotouh, M.A., AlQarni, A.A., Al-Ghamdi, S.M., Salam, M., Al-Assiri, M.H., Balkhy, H.H., An assessment of the level of concern among hospital-based health-care workers regarding MERS outbreaks in Saudi Arabia (2017) BMC Infectious Diseases, 17 (1); Nour, M.O., Babilghith, A.O., Natto, H.A., Al-Amin, F.O., Alawneh, S.M., Knowledge, attitude and practices of healthcare providers towards MERS-CoV infection at Makkah hospitals, KSA (2015) International Research Journal of Medicine and Medical Sciences, 3 (4), pp. 103-112; (2016) Disease Outbreak News: Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Saudi Arabia, , http://www.who.int/csr/don/19-june-2016-merssaudi-arabia/en/; Rothenberg, R.B., Sterk, C., Toomey, K.E., Using social network and ethnographic tools to evaluate syphilis transmission (1998) Sexually Transmitted Diseases, 25 (3), pp. 156-160","Adegboye, O.A.; Australian Institute of Tropical Health and Medicine, James Cook UniversityAustralia; email: oyeadegboye@yahoo.com",,"Hindawi Limited",17129532,,,,"English","Can. J. Infect. Dis. Med. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85047636678 "Sohrab S.S., El-Kafrawy S.A., Mirza Z., Kamal M.A., Azhar E.I.","7003696284;12545932500;55349942600;56340070000;23090055800;","Design and delivery of therapeutic siRNAS: Application to MERS-coronavirus",2018,"Current Pharmaceutical Design","24","1",,"62","77",,1,"10.2174/1381612823666171109112307","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045986847&doi=10.2174%2f1381612823666171109112307&partnerID=40&md5=b5db7f304c88ddfc309bd7db9a60018e","Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia","Sohrab, S.S., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; El-Kafrawy, S.A., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Mirza, Z., King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Kamal, M.A., King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, 7 Peterlee Place, Hebersham, NSW 2770, Australia, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia","Background: The MERS-CoV is a novel human coronavirus causing respiratory syndrome since April 2012. The replication of MERS-CoV is mediated by ORF 1ab and viral gene activity can be modulated by RNAi approach. The inhibition of virus replication has been documented in cell culture against multiple viruses by RNAi approach. Currently, very few siRNA against MERS-CoV have been computationally designed and published. Methods: In this review, we have discussed the computational designing and delivery of potential siRNAs. Potential siRNA can be designed to silence a desired gene by considering many factors like target site, specificity, length and nucleotide content of siRNA, removal of potential off-target sites, toxicity and immunogenic responses. The efficient delivery of siRNAs into targeted cells faces many challenges like enzymatic degradation and quick clearance through renal system. The siRNA can be delivered using transfection, electroporation and viral gene transfer. Currently, siRNAs delivery has been improved by using advanced nanotechnology like lipid nanoparticles, inorganic nanoparticles and polymeric nanoparticles. Conclusion: The efficacy of siRNA-based therapeutics has been used not only against many viral diseases but also against non-viral diseases, cancer, dominant genetic disorders, and autoimmune disease. This innovative technology has attracted researchers, academia and pharmaceuticals industries towards designing and development of highly effective and targeted disease therapy. By using this technology, effective and potential siRNAs can be designed, delivered and their efficacy with toxic effects and immunogenic responses can be tested against MERS-CoV. © 2018 Bentham Science Publishers.","Delivery; Designing; MERS-CoV; Nanoparticles; RNA interference; SiRNA","inorganic nanoparticle; nanocarrier; nucleotide; polymer; small interfering RNA; solid lipid nanoparticle; unclassified drug; small interfering RNA; autoimmune disease; cells; computer analysis; drug clearance; drug delivery system; drug design; drug efficacy; drug industry; electroporation; enzymatic degradation; gene; gene silencing; gene targeting; genetic disorder; genetic transfection; human; immune response; malignant neoplasm; Middle East respiratory syndrome coronavirus; nanotechnology; nonhuman; priority journal; renal clearance; Review; RNA interference; software; viral gene delivery system; virus infection; virus replication; drug effect; Middle East respiratory syndrome coronavirus; Drug Delivery Systems; Drug Design; Humans; Middle East Respiratory Syndrome Coronavirus; RNA, Small Interfering","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (HCoV-EMC) infections (2012) Euro Surveill, 17 (49); de Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J Virol, 87 (14), pp. 7790-7792; Drosten, C., Seilmaier, M., Corman, V.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13 (9), pp. 745-751; Abroug, F., Slim, A., Ouanes-Besbes, L., Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013 (2014) Emerg Infect Dis, 20 (9), pp. 1527-1530; Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19 (11), pp. 1819-1823; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-tohuman transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., MERS-CoV outbreak in Jeddah--a link to health care facilities (2014) N Engl J Med, 372 (9), pp. 846-854; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERScoronavirus in household contacts (2014) N Engl J Med, 371 (9), pp. 828-835; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction (2015) Pathog Glob Health, 109 (8), pp. 354-362; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int J Infect Dis, 38, pp. 65-67; Chen, Y., Chan, K.-H., Kang, Y., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg Microbes Infect, 4; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397; Ithete, N.L., Stoffberg, S., Corman, V.M., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19 (10), pp. 1697-1699; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5 (2), pp. e00884-00814; Chu, D., Poon, L., Gomaa, M.M., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20 (6), pp. 1049-1053; Lau, S., Lee, P., Tsang, A., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J Virol, 85 (21), pp. 11325-11337; Woo, P., Lau, S., Huang, Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med, 234 (10), pp. 1117-1127; Li, Y., Lu, J., Han, Y., RNA interference functions as an antiviral immunity mechanism in mammals (2013) Science, 342 (6155), pp. 231-234; Wilkins, C., Dishongh, R., Moore, S.C., RNA interference is an antiviral defence mechanism in Caenorhabditis elegans (2005) Nature, 436 (7053), pp. 1044-1047; Alvarado, V., Scholthof, H.B., Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens (2009) Semin Cell Dev Biol, 20 (9), pp. 1032-1040; Jeang, K.-T., RNAi in the regulation of mammalian viral infections (2012) BMC Biol, 10, p. 58; Kim, S.I., Shin, D., Lee, H., Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes (2009) J Hepatol, 50 (3), pp. 479-488; Deng, Y., Wang, C.C., Choy, K.W., Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies (2014) Gene, 538 (2), pp. 217-227; Zatsepin, T.S., Kotelevtsev, Y.V., Koteliansky, V., Lipid nanoparticles for targeted siRNA delivery-going from bench to bedside (2016) Int J Nanomedicine, 11, pp. 3077-3086; Anselmo, A.C., Mitragotri, S., A Review of Clinical Translation of Inorganic Nanoparticles (2015) AAPS J, 17 (5), pp. 1041-1054; Keles, E., Song, Y., Du, D., Recent progress in nanomaterials for gene delivery applications (2016) Biomater Sci, 4 (9), pp. 1291-1309; Wong, J., Mohseni, R., Hamidieh, A.A., Will nanotechnology bring new hope for gene delivery? (2017) Trends Biotechnol, 35, pp. 434-451; Taxman, D.J., Livingstone, L.R., Zhang, J., Criteria for effective design, construction, and gene knockdown by shRNA vectors (2006) BMC Biotechnol, 6, p. 7; Meng, Z., Xu, Y., Wu, J., Inhibition of hepatitis B virus gene expression and replication by endoribonuclease-prepared siRNA (2008) J Virol Methods, 150 (1-2), pp. 27-33; Gitlin, L., Stone, J.K., Ino, R., Poliovirus escape from RNA interference: Short interfering RNA-target recognition and implications for therapeutic approaches (2005) J Virol, 79 (2), pp. 1027-1035; Déctor, M.A., Romero, P., López, S., Rotavirus gene silencing by small interfering RNAs (2002) EMBO Rep, 3 (12), pp. 1175-1180; Hu, W.-Y., Myers, C.P., Kilzer, J.M., Inhibition of retroviral pathogenesis by RNA interference (2002) Curr Biol, 12 (15), pp. 1301-1311; Adelman, Z.N., Sanchez-Vargas, I., Travanty, E.A., RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome (2002) J Virol, 76 (24), pp. 12925-12933; Chandra, P.K., Kundu, A.K., Hazari, S., Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes (2012) Mol Ther, 20 (9), pp. 1724-1736; Ge, Q., McManus, M.T., Nguyen, T., RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription (2003) Proc Natl Acad Sci U S A, 100 (5), pp. 2718-2723; McCaffrey, A.P., Nakai, H., Pandey, K., Inhibition of hepatitis B virus in mice by RNA interference (2003) Nat Biotechnol, 21 (6), pp. 639-644; Jiang, M., Milner, J., Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference (2002) Oncogene, 21 (39), pp. 6041-6048; Wang, Z., Ren, L., Zhao, X., Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells (2004) J Virol, 78 (14), pp. 7523-7527; van Boheemen, S., de Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3 (6); Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368 (26), pp. 2487-2494; Cotten, M., Lam, T.T., Watson, S.J., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg Infect Dis, 19 (5), pp. 736B-742B; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88 (19), pp. 11297-11303; Raj, V.S., Farag, E., Reusken, C., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg Infect Dis, 20 (8), pp. 1339-1342; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveill, 19, p. 20781; Memish, Z.A., Cotten, M., Watson, S.J., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Kanasty, R., Dorkin, J.R., Vegas, A., Erson, D., Delivery materials for siRNA therapeutics (2013) Nat Mater, 12 (11), pp. 967-977; Boutros, M., Ahringer, J., The art and design of genetic screens: RNA interference (2008) Nat Rev Genet, 9 (7), pp. 554-566; Castanotto, D., Rossi, J.J., The promises and pitfalls of RNAinterference-based therapeutics (2009) Nature, 457 (7228), pp. 426-433; Xu, C.-F., Wang, J., Delivery systems for siRNA drug development in cancer therapy (2015) J Pharm Sci, 10 (1), pp. 1-12; Fire, A., Xu, S., Montgomery, M.K., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans (1998) Nature, 391, pp. 806-811; Moore, C.B., Guthrie, E.H., Huang, M.-H., Short hairpin RNA (ShRNA): Design, delivery, and assessment of gene knockdown (2010) Methods Mol Biol, 629, pp. 141-158; Zhang, Y., Wang, Z., Gemeinhart, R.A., Progress in microRNA delivery (2013) Journal of Controlled Release: J Control Release, 172, pp. 962-974; Taft, R.J., Pang, K.C., Mercer, T.R., Non-coding RNAs: Regulators of disease (2010) J Pathol, 220, pp. 126-139; Hutvagner, G., Simard, M.J., Argonaute proteins: Key players in RNA silencing. Nature Reviews (2008) Molecular Cell Biology, 9, pp. 22-32; Jinek, M., Doudna, J.A., A three-dimensional view of the molecular machinery of RNA interference (2009) Nature, 457, pp. 405-412; Ui-Tei, K., Naito, Y., Nishi, K., Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect (2008) Nucleic Acids Res, 36, pp. 7100-7109; Meister, G., Landthaler, M., Patkaniowska, A., Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs (2004) Molecular Cell, 15, pp. 185-197; Romano, P.R., McCallus, D.E., Pachuk, C.J., RNA interferencemediated prevention and therapy for hepatocellular carcinoma (2006) Oncogene, 25, pp. 3857-3865; Palliser, D., Chowdhury, D., Wang, Q.-Y., An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection (2006) Nature, 439, pp. 89-94; Wu, Y., Navarro, F., Lal, A., Durable protection from herpes simplex virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene (2009) Cell Host & Microbe, 5, pp. 84-94; Carmona, S., Jorgensen, M.R., Kolli, S., Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles (2009) Molecular Pharmaceutics, 6, pp. 706-717; Tseng, Y.-C., Mozumdar, S., Huang, L., Lipid-based systemic delivery of siRNA (2009) Adv Drug Deliv Rev, 61, pp. 721-731; Hean, J., Crowther, C., Ely, A., Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artificial DNA (2010) PNA XNA, 1, pp. 17-26; Geisbert, T.W., Lee, A., Robbins, M., Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: A proof-of-concept study. Lancet (London (2010) England), 375, pp. 1896-1905; Chen, X.Z., Zhu, K.J., Xu, Y., RNA interference silences the human papillomavirus 6b/11 early gene E7 in vitro and in vivo (2010) Clin Exp Dermatol, 35, pp. 509-515; Barik, S., SiRNA for Influenza therapy (2010) Viruses, 2, pp. 1448-1457; Wheeler, L.A., Trifonova, R., Vrbanac, V., Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras (2011) J Clin Invest, 121, pp. 2401-2412; Liu, W.-H., Yeh, S.-H., Chen, P.-J., Role of microRNAs in hepatitis B virus replication and pathogenesis (2011) Biochim Biophys Acta, 1809, pp. 678-685; Zheng, Z.-M., Wang, X., Regulation of cellular miRNA expression by human papillomaviruses (2011) Biochim Biophys Acta, 1809, pp. 668-677; Riley, K.J., Rabinowitz, G.S., Yario, T.A., EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency (2012) EMBO J, 31, pp. 2207-2221; Yang, Y.-J., Zhao, P.-S., Zhang, T., Small interfering RNAs targeting the rabies virus nucleoprotein gene (2012) Virus Res, 169, pp. 169-174; Khantasup, K., Kopermsub, P., Chaichoun, K., Targeted small interfering RNA-immunoliposomes as a promising therapeutic agent against highly pathogenic Avian Influenza A (H5N1) virus infection (2014) Antimicrob Agents Chemother, 58, pp. 2816-2824; Durymanova Ono, E.A., Iamamoto, K., Castilho, J.G., In vitro and in vivo inhibition of rabies virus replication by RNA interference (2013) Brazil J Microbiol, 44, pp. 879-882; Parashar, D., Paingankar, M.S., Kumar, S., Administration of E2 and NS1 siRNAs inhibit chikungunya virus replication in vitro and protects mice infected with the virus (2013) Plos Neglect Trop Dis, 7; Caldwell, D.J., Evans, J.D., Developing clinical role of a CCR5 coreceptor antagonist in HIV-1 infection (2008) Expert Opin Pharmacother, 9, pp. 3231-3242; Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415; Birmingham, A., Erson, E., Sullivan, K., A protocol for designing siRNAs with high functionality and specificity (2007) Nat Protocol, 2, pp. 2068-2078; Naito, Y., Yamada, T., Ui-Tei, K., SiDirect: Highly effective, target-specific siRNA design software for mammalian RNA interference (2004) Nucleic Acids Res, 32, pp. W124-W129; Naito, Y., Yoshimura, J., Morishita, S., SiDirect 2.0: Updated software for designing functional siRNA with reduced seeddependent off-target effect (2009) BMC Bioinform, 10, p. 392; Fakhr, E., Zare, F., Teimoori-Toolabi, L., Precise and efficient siRNA design: A key point in competent gene silencing (2016) Cancer Gene Therapy, 23, pp. 73-82; Toy, R., Roy, K., Engineering nanoparticles to overcome barriers to immunotherapy (2016) Bioeng Transl Med, 1, pp. 47-62; Harborth, J., Elbashir, S.M., Vandenburgh, K., Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing (2003) Antisense Nucleic Acid Drug Dev, 13, pp. 83-105; Henschel, A., Buchholz, F., Habermann, B., DEQOR: A web-based tool for the design and quality control of siRNAs (2004) Nucleic Acids Res, 32, pp. W113-W120; Teimoori-Toolabi, L., Hashemi, S., Azadmanesh, K., Silencing the wild-type and mutant K-ras increases the resistance to 5-flurouracil in HCT-116 as a colorectal cancer cell line (2015) Anti-Cancer Drugs, 26, pp. 187-196; Kim, Y.J., Computational siRNA design considering alternative splicing (2010) Methods Mol Biol, 623, pp. 81-92; Chan, C.Y., Carmack, C.S., Long, D.D., A structural interpretation of the effect of GC-content on efficiency of RNA interference (2009) BMC Bioinform, 10, pp. S33; Hasan, M.M., Akter, R., Ullah, M.S., A Computational Approach for Predicting Role of Human MicroRNAs in MERS-CoV Genome (2014) Adv Bioinform, 2014; Nur, S.M., Hasan, M.A., Amin, M.A., Design of potential RNAi (MiRNA and siRNA) molecules for middle east respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method (2015) Interdisciplinary Sci Comput Life Sci, 7, pp. 257-265; Ahmed, F., Ansari, H.R., Raghava, G.P.S., Prediction of guide strand of microRNAs from its sequence and secondary structure (2009) BMC Bioinformatics, 10, p. 105; Zheng, B.-J., Guan, Y., Hez, M.-L., Synthetic peptides outside the spike protein heptad repeat regions as potent inhibitors of SARSassociated coronavirus (2005) Antiviral Therapy, 10, pp. 393-403; Patil, M.L., Zhang, M., Betigeri, S., Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery (2008) Bioconj Chem, 19, pp. 1396-1403; Li, J., Xue, S., Mao, Z.-W., Nanoparticle delivery systems for siRNAbased therapeutics (2016) J Materials Chem B, 4, pp. 6620-6639; Pan, Q., Tilanus, H.W., Janssen, H., Prospects of RNAi and microRNA-based therapies for hepatitis C (2009) Expert Opin Biol Therapy, 9, pp. 713-724; Torrecilla, J., Rodríguez-Gascón, A., Solinís, M.Á., Lipid nanoparticles as carriers for RNAi against viral infections: Current status and future perspectives (2014) Biomed Res Int, 2014; Wan, C., Allen, T.M., Cullis, P.R., Lipid nanoparticle delivery systems for siRNA-based therapeutics (2014) Drug Deliv Transl Res, 4, pp. 74-83; Bangham, A.D., Standish, M.M., Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids (1965) J Mol Biol, 13, pp. 238-252; Deamer, D.W., From ""banghasomes"" to liposomes: A memoir of Alec Bangham, 1921-2010 (2010) FASEB J, 24, pp. 1308-1310; Mo, R.H., Zaro, J.L., Ou, J.-H., Effects of Lipofectamine 2000/siRNA complexes on autophagy in hepatoma cells (2012) Mol Biotechnol, 51, pp. 1-8; Mishra, H., Mishra, D., Mishra, P.K., Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for vaccination using subcutaneous route (2010) J Pharm Pharm Sci, 13, pp. 495-509; Thi, E.P., Mire, C.E., Lee, A., Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates (2015) Nature, 521, pp. 362-365; Yu, X., Liang, X., Xie, H., Improved delivery of Cas9 protein/ gRNA complexes using lipofectamine CRISPRMAX (2016) Biotechnol Lett, 38, pp. 919-929; Jiang, Y., Huo, S., Hardie, J., Progress and perspective of inorganic nanoparticle-based siRNA delivery systems (2016) Expert Opin Drug Deliv, 13, pp. 547-559; Kim, E.Y., Schulz, R., Swantek, P., Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes (2012) Gene Ther, 19, pp. 347-353; Kong, W.H., Bae, K.H., Jo, S.D., Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles (2012) Pharm Res, 29, pp. 362-374; Paul, A.M., Shi, Y., Acharya, D., Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro (2014) J Gen Virol, 95, pp. 1712-1722; Kong, L., Wu, Y., Alves, C.S., Efficient delivery of therapeutic siRNA into glioblastoma cells using multifunctional dendrimerentrapped gold nanoparticles (2016) Nanomedicine, 11, pp. 3103-3115; Hou, W., Wei, P., Kong, L., Partially PEGylated dendrimerentrapped gold nanoparticles: A promising nanoplatform for highly efficient DNA and siRNA delivery (2016) J Mater Chem B, 4, pp. 2933-2943; Zhu, D., Song, P., Shen, J., PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis (2016) Anal Chem, 88, pp. 4949-4954; Mendes, R., Fernandes, A.R., Baptista, P.V., Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer-The Case for Combined Delivery? (2017) Genes, p. 8; Egusquiaguirre, S.P., Igartua, M., Hernández, R.M., Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research (2012) Clin Transl Oncol, 14, pp. 83-93; Wang, Y., Li, Z., Han, Y., Nanoparticle-based delivery system for application of siRNA in vivo (2010) Curr Drug Metab, 11, pp. 182-196; Yuan, X., Naguib, S., Wu, Z., Recent advances of siRNA delivery by nanoparticles (2011) Expert Opin Drug Deliv, 8, pp. 521-536; Eguchi, A., Meade, B.R., Chang, Y.-C., Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein (2009) Nat Biotechnol, 27, pp. 567-571; Morris, W., Briley, W.E., Auyeung, E., Nucleic acid-metal organic framework (MOF) nanoparticle conjugates (2014) J am Chem Soc, 136, pp. 7261-7264; Huang, Y., Preclinical and Clinical Advances of GalNAc-Decorated Nucleic Acid Therapeutics (2017) Mol Ther Nucleic Acids, 6, pp. 116-132; Lee, J.-M., Yoon, T.-J., Cho, Y.-S., Recent developments in nanoparticle-based siRNA delivery for cancer therapy (2013) Biomed Res Int, 2013; John, S., (2016) Sirna Delivery Methods-Methods in Molecular Biology, , ISBN 978-1-4939-3112-5 (eBook); Aagaard, L., Rossi, J.J., RNAi therapeutics: Principles, prospects and challenges (2007) Adv Drug Deliv Rev, 59, pp. 75-86; Laufer, S.D., Detzer, A., Sczakiel, G., Selected Strategies for the Delivery of siRNA In Vitro and In Vivo (2010) RNA Technologies and Their Applications, pp. 29-58. , Erdmann VA, Barciszewski J, ed. eds, Springer Berlin Heidelberg: Berlin, Heidelberg; Ozcan, G., Ozpolat, B., Coleman, R.L., Preclinical and clinical development of siRNA-based therapeutics (2015) Advanced Drug Delivery Reviews, 87, pp. 108-119; Wittrup, A., Lieberman, J., Knocking down disease: A progress report on siRNA therapeutics. Nature reviews (2015) Genetics, 16, pp. 543-552; Das, S., Ghosal, S., Chakrabarti, J., SeedSeq: Off-target transcriptome database (2013) Biomed Research International, 2013; Haeussler, M., Schönig, K., Eckert, H., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR (2016) Genome Biology, 17, p. 148; Park, J., Park, J., Pei, Y., Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines (2016) Advanced Drug Delivery Reviews, 104, pp. 93-109; Sioud, M., Does the understanding of immune activation by RNA predict the design of safe siRNAs? (2008) Frontiers in Bioscience: A Journal and Virtual Library, 13, pp. 4379-4392; Fedorov, Y., Erson, E.M., Birmingham, A., Off-target effects by siRNA can induce toxic phenotype (2006) RNA (New York, N.Y.), 12, pp. 1188-1196; Chakraborty, C., Sharma, A.R., Sharma, G., Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine (2017) Mol Ther Nucleic Acids, 8, pp. 132-143; Zuckerman, J.E., Gritli, I., Tolcher, A., Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA (2014) Proc Natl Acad Sci USA, 111, pp. 11449-11454; Burnett, J.C., Rossi, J.J., RNA-based therapeutics: Current progress and future prospects (2012) Chem Biol, 19, pp. 60-71; Strumberg, D., Schultheis, B., Traugott, U., Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors (2012) International Int J Clin Pharmacol Ther, 50 (1), pp. 76-78; Coelho, T., Adams, D., Silva, A., Safety and efficacy of RNAi therapy for transthyretin amyloidosis (2013) The New England Journal of Medicine, 369, pp. 819-829; Zimmermann, T., Karsten, V., Harrop, J., Phase I First-in-Humans Trial of ALN-TTRsc, a Novel RNA Interference Therapeutic for the Treatment of Familial Amyloidotic Cardiomyopathy (FAC) J Cardiac Fail, 19, p. 66; Fitzgerald, K., Frank-Kamenetsky, M., Shulga-Morskaya, S., Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial (2014) Lancet, 383, pp. 60-68; Tolcher, A.W., Papadopoulos, K.P., Patnaik, A., Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors (2015) J Clin Oncol, 33; Full Text View, , ClinicalTrials.gov. In: ed. eds; Tabernero, J., Shapiro, G.I., Lorusso, P.M., First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement (2013) Cancer Discov, 3, pp. 406-417; Akinc, A.A., Subcutaneously administered investigational RNAi therapeutic (ALN-AT3) targeting antithrombin for treatment of hemophilia: Interim Phase 1 study results in healthy volunteers and hemophilia A and B subjects (2015) Alnylam; Enomoto, M., Hirai, T., Kaburagi, H., Efficient Gene Suppression in Dorsal Root Ganglia and Spinal Cord Using Adeno-Associated Virus Vectors Encoding Short-Hairpin RNA (2016) Methods Mol Biol, 1364, pp. 277-290; Sano, M., Iijima, M., Ohtaka, M., Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs (2016) Plos One, 11 (10); Park, Y.K., Park, S.M., Choi, Y.C., AsiDesigner: Exon-based siRNA design server considering alternative splicing (2008) Nucleic Acids Res, pp. W97-W103; Cui, W., Ning, J., Naik, U.P., OptiRNAi, an RNAi design tool (2004) Comput Methods Programs Biomed, 75 (1), pp. 67-73; Vert, J.P., Foveau, N., Lajaunie, C., An accurate and interpretable model for siRNA efficacy prediction (2006) BMC Bioinformatics, 7, p. 520; Filhol, O., Ciais, D., Lajaunie, C., DSIR: Assessing the design of highly potent siRNA by testing a set of cancer-relevant target genes (2012) Plos One, 7 (10); Horn, T., Sandmann, T., Boutros, M., Design and evaluation of genome-wide libraries for RNA interference screens (2010) Genome Biol, 11 (6), pp. R61; Lu, Z.J., Mathews, D.H., Efficient siRNA selection using hybridization thermodynamics (2008) Nucleic Acids Res, 36 (2), pp. 640-647; Ding, Y., Chan, C.Y., Lawrence, C.E., Sfold web server for statistical folding and rational design of nucleic acids (2004) Nucleic Acids Res, 32, pp. W135-W141","Sohrab, S.S.; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversitySaudi Arabia; email: sayedsartaj@gmail.com",,"Bentham Science Publishers B.V.",13816128,,CPDEF,"29119921","English","Curr. Pharm. Des.",Review,"Final",,Scopus,2-s2.0-85045986847 "Park J., Han D.-G., Kim S., Chae J.-B., Chae J.-S., Yu D.-H., Choi K.-S.","8730126700;57191856417;36614279700;7102478039;57037983200;14623495400;7403949556;","Prevalence of coronavirus from diarrheic calves in the Republic of Korea",2018,"Asian Pacific Journal of Tropical Biomedicine","7","1",,"1","6",,3,"10.4103/2221-1691.221037","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041746563&doi=10.4103%2f2221-1691.221037&partnerID=40&md5=ae6a916b79f06c63232a394f0f7d0f80","College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, South Korea; Animal Disease and Biosecurity Team, National Institute of Animal Science, Rural Development Administration, Wanju-Gun, 55365, South Korea; Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea","Park, J., College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; Han, D.-G., Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, South Korea; Kim, S., Animal Disease and Biosecurity Team, National Institute of Animal Science, Rural Development Administration, Wanju-Gun, 55365, South Korea; Chae, J.-B., Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Chae, J.-S., Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Yu, D.-H., College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Choi, K.-S., Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, South Korea","Objective: To investigate the prevalence of bovine coronavirus (BCoV), bovine rotavirus, and bovine viral diarrhea virus in the feces of normal and diarrheic Korean native calves aged 1-81 days between April and October of 2016 in the Republic of Korea. Methods: Samples were obtained from 50 normal and 93 diarrheic (56 semi-formed, 28 loose, and 9 watery feces) calves in six different regions of northern and southern Korea. These fecal samples were tested for BCoV, bovine rotavirus, and bovine viral diarrhea virus by RT-PCR. Results: Among the three pathogens examined, infection with BCoV was especially prominent in relation to diarrhea among calves aged 1-21 days [odds ratio (OR)=9.3, 95% confidence interval (CI): 1.1-78.9; P=0.02). Infection with BCoV alone (OR=2.9; 95% CI: 1.1-7.6; P=0.03) or co-infection of BCoV with bovine viral diarrhea virus (OR=3.6; 95% CI: 1.0-12.4; P=0.04) was significantly associated with the development of loose feces. Grazing and colostrum intake strongly reduced the occurrence of diarrhea as compared to housed calves (OR=0.2; 95% CI: 0.1-0.4; P=0.00) and calves that had not been fed colostrum (OR=0.2; 95% CI: 0.1-0.7; P=0.02), respectively. Conclusions: The present study suggests that BCoV is involved in calf diarrhea in the Republic of Korea. Therefore, grazing and colostrum intake is recommended for preventing and controlling calf diarrhea caused by BCoV. © 2018 Asian Pacific Journal of Tropical Biomedicine Produced by Wolters Kluwer- Medknow.","Bovine coronavirus; Bovine viral diarrhea virus; Calf diarrhea; Grazing; Loose feces","age; animal experiment; animal model; Article; Bovine coronavirus; Bovine rotavirus; bovine viral diarrhea; Bovine viral diarrhea virus 1; calf (bovine); colostrum; colostrum intake; controlled study; Coronavirus infection; diarrhea; disease association; disease classification; feces analysis; grazing; housed calf; infant; loose feces; mixed infection; nonhuman; pathophysiology; prevalence; priority journal; reverse transcription polymerase chain reaction; Rotavirus; semi formed feces; South Korea; watery feces","Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., French, N., Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms (2015) Vet J, 203 (2), pp. 155-160; Meganck, V., Hoflack, G., Piepers, S., Opsomer, G., Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds (2015) Prev Vet Med, 118 (1), pp. 64-70; Brickell, J.S., McGowan, M.M., Pfeiffer, D.U., Wathes, D.C., Mortality in Holstein-Friesian calves and replacement heifers, in relation to body weight and IGF-I concentration, on 19 farms in England (2009) Animal, 3 (8), pp. 1175-1182; Ammar, S.S., Mokhtaria, K., Tahar, B.B., Amar, A.A., Redha, B.A., Yuva, B., Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria (2014) Asian Pac J Trop Biomed, 4, pp. S318-322; Lorenz, I., Fagan, J., More, S.J., Calf health from birth to weaning II. Management of diarrhoea in pre-weaned calves (2011) Ir Vet J, 64 (1), p. 9; Bok, M., Miño, S., Rodriguez, D., Badaracco, A., Nuñes, I., Souza, S.P., Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994-2010 (2015) Vet Microbiol, 181 (3-4), pp. 221-229; Collins, P.J., Mulherin, E., Cashman, O., Lennon, G., Gunn, L., O'Shea, H., Detection and characterisation of bovine rotavirus in Ireland from 2006-2008 (2014) Ir Vet J, 67 (1), p. 13; Cho, Y.I., Yoon, K.J., An overview of calf diarrhea-infectious etiology, diagnosis, and intervention (2014) J Vet Sci, 15 (1), pp. 1-17; Mohamed, F.F., Mansour, S.M., El-Araby, I.E., Mor, S.K., Goyal, S.M., Molecular detection of enteric viruses from diarrheic calves in Egypt (2017) Arch Virol, 162 (1), pp. 129-137; Choi, K.S., Song, M.C., Epidemiological observations of bovine viral diarrhea virus in Korean indigenous calves (2011) Virus Genes, 42 (1), pp. 64-70; Oem, J.K., Hyun, B.H., Cha, S.H., Lee, K.K., Kim, S.H., Kim, H.R., Phylogenetic analysis and characterization of Korean bovine viral diarrhea viruses (2009) Vet Microbiol, 139 (3-4), pp. 356-360; Park, S.I., Jeong, Y.J., Kim, H.J., Park, J.G., Kang, S.Y., Woo, S.K., Genetically diverse group C rotaviruses cause sporadic infection in Korean calves (2011) J Vet Med Sci, 73 (4), pp. 479-482; Park, S.J., Lim, G.K., Park, S.I., Kim, H.H., Koh, H.B., Cho, K.O., Detection and molecular characterization of calf diarrhoea bovine coronaviruses circulating in South Korea during 2004-2005 (2007) Zoonoses Public Health, 54 (6-7), pp. 223-230; Isegawa, Y., Nakagomi, O., Nakagomi, T., Ishida, S., Uesugi, S., Ueda, S., Determination of bovine rotavirus G and P serotypes by polymerase chain reaction (1993) Mol Cell Probes, 7 (4), pp. 277-284; Tsunemitsu, H., Smith, D.R., Saif, L.J., Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR (1999) Arch Virol, 144 (1), pp. 167-175; Vilcek, S., Paton, D.J., Durkovic, B., Strojny, L., Ibata, G., Moussa, A., Bovine viral diarrhoea virus genotype 1 can be separated into at least eleven genetic groups (2001) Arch Virol, 146 (1), pp. 99-115; Bartels, C.J., Holzhauer, M., Jorritsma, R., Swart, W.A., Lam, T.J., Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves (2010) Prev Vet Med, 93 (2-3), pp. 162-169; Uhde, F.L., Kaufmann, T., Sager, H., Albini, S., Zanoni, R., Schelling, E., Prevalence of four enteropathogens in the faeces of young diarrhoeic dairy calves in Switzerland (2008) Vet Rec, 163 (12), pp. 362-366; Izzo, M.M., Kirkland, P.D., Mohler, V.L., Perkins, N.R., Gunn, A.A., House, J.K., Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea (2011) Aust Vet J, 89 (5), pp. 167-173; Gulliksen, S.M., Lie, K.I., Løken, T., Osterås, O., Calf mortality in Norwegian dairy herds (2009) J Dairy Sci, 92 (6), pp. 2782-2795; Delafosse, A., Chartier, C., Dupuy, M.C., Dumoulin, M., Pors, I., Paraud, C., Cryptosporidium parvum infection and associated risk factors in dairy calves in western France (2015) Prev Vet Med, 118 (4), pp. 406-412; De La Fuente, R., Garcia, A., Ruiz-Santa-Quiteria, J.A., Luzon, M., Cid, D., Garcia, S., Orden, J.A., Proportional morbidity rates of enteropathogens among diarrheic dairy calves in central Spain (1998) Prev Vet Med, 36 (2), pp. 145-152; Beam, A.L., Lombard, J.E., Kopral, C.A., Garber, L.P., Winter, A.L., Hicks, J.A., Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations (2009) J Dairy Sci, 92 (8), pp. 3973-8390; Raboisson, D., Trillat, P., Cahuzac, C., Failure of passive immune transfer in calves: A meta-analysis on the consequences and assessment of the economic impact (2016) PLoS One, 11 (3), p. e0150452","Choi, K.-S.; Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National UniversitySouth Korea; email: kschoi3@knu.ac.kr",,"Medknow Publications",22211691,,,,"English","Asian Pac. J. Trop. Biomed.",Article,"Final",Open Access,Scopus,2-s2.0-85041746563 "Fukushi S., Fukuma A., Kurosu T., Watanabe S., Shimojima M., Shirato K., Iwata-Yoshikawa N., Nagata N., Ohnishi K., Ato M., Melaku S.K., Sentsui H., Saijo M.","7004841901;36196338200;55598864400;21835166700;7003595482;7101969487;37031266800;11839905700;12791441500;6603807090;56303406700;7005853346;7006135257;","Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA",2018,"Journal of Virological Methods","251",,,"22","29",,11,"10.1016/j.jviromet.2017.10.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030857994&doi=10.1016%2fj.jviromet.2017.10.008&partnerID=40&md5=5c98036315d1d1d79139468af58c83c4","Department of Virology I, National Institute of Infectious Diseases, Japan; Department of Virology III, National Institute of Infectious Diseases, Japan; Department of Pathology, National Institute of Infectious Diseases, Japan; Department of Immunology, National Institute of Infectious Diseases, Japan; Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia; Department of Veterinary Medicine, Nihon University, Japan","Fukushi, S., Department of Virology I, National Institute of Infectious Diseases, Japan; Fukuma, A., Department of Virology I, National Institute of Infectious Diseases, Japan; Kurosu, T., Department of Virology I, National Institute of Infectious Diseases, Japan; Watanabe, S., Department of Virology I, National Institute of Infectious Diseases, Japan; Shimojima, M., Department of Virology I, National Institute of Infectious Diseases, Japan; Shirato, K., Department of Virology III, National Institute of Infectious Diseases, Japan; Iwata-Yoshikawa, N., Department of Pathology, National Institute of Infectious Diseases, Japan; Nagata, N., Department of Pathology, National Institute of Infectious Diseases, Japan; Ohnishi, K., Department of Immunology, National Institute of Infectious Diseases, Japan; Ato, M., Department of Immunology, National Institute of Infectious Diseases, Japan; Melaku, S.K., Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia; Sentsui, H., Department of Veterinary Medicine, Nihon University, Japan; Saijo, M., Department of Virology I, National Institute of Infectious Diseases, Japan","Since discovering the Middle East respiratory syndrome coronavirus (MERS-CoV) as a causative agent of severe respiratory illness in the Middle East in 2012, serological testing has been conducted to assess antibody responses in patients and to investigate the zoonotic reservoir of the virus. Although the virus neutralization test is the gold standard assay for MERS diagnosis and for investigating the zoonotic reservoir, it uses live virus and so must be performed in high containment laboratories. Competitive ELISA (cELISA), in which a labeled monoclonal antibody (MAb) competes with test serum antibodies for target epitopes, may be a suitable alternative because it detects antibodies in a species-independent manner. In this study, novel MAbs against the spike protein of MERS-CoV were produced and characterized. One of these MAbs was used to develop a cELISA. The cELISA detected MERS-CoV-specific antibodies in sera from MERS-CoV-infected rats and rabbits immunized with the spike protein of MERS-CoV. The MAb-based cELISA was validated using sera from Ethiopian dromedary camels. Relative to the neutralization test, the cELISA detected MERS-CoV-specific antibodies in 66 Ethiopian dromedary camels with a sensitivity and specificity of 98% and 100%, respectively. The cELISA and neutralization test results correlated well (Pearson's correlation coefficients = 0.71–0.76, depending on the cELISA serum dilution). This cELISA may be useful for MERS epidemiological investigations on MERS-CoV infection. © 2017 Elsevier B.V.","Competitive ELISA; Epidemiology; MERS coronavirus; Neutralizing antibody","epitope; monoclonal antibody; virus spike protein; coronavirus spike glycoprotein; monoclonal antibody; virus antibody; animal experiment; animal model; antibody blood level; antibody detection; antigen specificity; Article; controlled study; diagnostic test accuracy study; dromedary; enzyme linked immunosorbent assay; Ethiopia; Leporidae; measurement accuracy; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; rat; sensitivity and specificity; virus neutralization; animal; blood; camel; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; procedures; validation study; Animals; Antibodies, Monoclonal; Antibodies, Viral; Camelus; Enzyme-Linked Immunosorbent Assay; Middle East Respiratory Syndrome Coronavirus; Rabbits; Rats; Sensitivity and Specificity; Spike Glycoprotein, Coronavirus","Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Hall, A.J., Poon, L.L., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerg. Infect. Dis., 21, pp. 2197-2200; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin. Infect. Dis., 60, pp. 973-974; Blomstrom, A.L., Scharin, I., Stenberg, H., Figueiredo, J., Nhambirre, O., Abilio, A., Berg, M., Fafetine, J., Seroprevalence of Rift Valley fever virus in sheep and goats in Zambezia, Mozambique (2016) Infect. Ecol. Epidemiol., 6, p. 31343; Chand, K., Biswas, S.K., Pandey, A.B., Saxena, A., Tewari, N., Mondal, B., A competitive ELISA for detection of group specific antibody to bluetongue virus using anti-core antibody (2017) Biologicals, 46, pp. 168-171; Chen, Y., Chan, K.H., Kang, Y., Chen, H., Luk, H.K., Poon, R.W., Chan, J.F., Woo, P.C., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg. Microbes Infect., 4, p. e26; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Drosten, C., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill., 17; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Memish, Z.A., Transmission of MERS-coronavirus in household contacts (2014) New Engl. J. Med., 371, pp. 828-835; Fukuma, A., Tani, H., Taniguchi, S., Shimojima, M., Saijo, M., Fukushi, S., Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein (2015) Arch. Virol., 160, pp. 2293-2300; Fukuma, A., Fukushi, S., Yoshikawa, T., Tani, H., Taniguchi, S., Kurosu, T., Egawa, K., Saijo, M., Severe fever with thrombocytopenia syndrome virus antigen detection using monoclonal antibodies to the nucleocapsid protein (2016) PLoS Negl. Trop. Dis., 10, p. e0004595; Fukushi, S., Mizutani, T., Saijo, M., Matsuyama, S., Miyajima, N., Taguchi, F., Itamura, S., Morikawa, S., Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein (2005) J. Gen. Virol., 86, pp. 2269-2274; Fukushi, S., Mizutani, T., Saijo, M., Kurane, I., Taguchi, F., Tashiro, M., Morikawa, S., Evaluation of a novel vesicular stomatitis virus pseudotype-based assay for detection of neutralizing antibody responses to SARS-CoV (2006) J. Med. Virol., 78, pp. 1509-1512; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Chu, K.W., Peiris, M., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill., 19; Hirota, J., Shimoji, Y., Shimizu, S., New sensitive competitive enzyme-linked immunosorbent assay using a monoclonal antibody against nonstructural protein 1 of West Nile virus NY99 (2012) Clin. Vaccine Immunol., 19, pp. 277-283; Houlihan, C.F., McGowan, C.R., Dicks, S., Baguelin, M., Moore, D.A.J., Mabey, D., Roberts, C.H., Glynn, J.R., Ebola exposure, illness experience, and Ebola antibody prevalence in international responders to the West African Ebola epidemic 2014–2016: A cross-sectional study (2017) PLoS Med., 14, p. e1002300; Ishii, K., Hasegawa, H., Nagata, N., Ami, Y., Fukushi, S., Taguchi, F., Tsunetsugu-Yokota, Y., Neutralizing antibody against severe acute respiratory syndrome (SARS)-coronavirus spike is highly effective for the protection of mice in the murine SARS model (2009) Microbiol. Immunol., 53, pp. 75-82; Iwata-Yoshikawa, N., Fukushi, S., Fukuma, A., Suzuki, T., Takeda, M., Tashiro, M., Hasegawa, H., Nagata, N., Non susceptibility of neonatal and adult rats against the middle east respiratory syndrome Coronavirus (2016) Jpn. J. Infect. Dis., 69, pp. 510-516; Lu, G., Liu, D., SARS-like virus in the Middle East: a truly bat-related coronavirus causing human diseases (2012) Protein Cell., 3, pp. 803-805; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., AlRabiah, F.A., Zumla, A., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin. Microbiol. Infect., 20, pp. 469-474; Meyer, B., Drosten, C., Muller, M.A., Serological assays for emerging coronaviruses: challenges and pitfalls (2014) Virus Res., 194, pp. 175-183; Moreno, A., Lelli, D., Brocchi, E., Sozzi, E., Vinco, L.J., Grilli, G., Cordioli, P., Monoclonal antibody-based ELISA for detection of antibodies against H5 avian influenza viruses (2013) J. Virol. Methods, 187, pp. 424-430; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Memish, Z.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis., 15, p. 629; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill., 18, p. 20574. , pii = 20574; Qing, T., Saijo, M., Lei, H., Niikura, M., Maeda, A., Ikegami, T., Xinjung, W., Morikawa, S., Detection of immunoglobulin G to Crimean-Congo hemorrhagic fever virus in sheep sera by recombinant nucleoprotein-based enzyme-linked immunosorbent and immunofluorescence assays (2003) J. Virol. Methods, 108, pp. 111-116; Reusken, C., Mou, H., Godeke, G.J., van der Hoek, L., Meyer, B., Muller, M.A., Haagmans, B., Koopmans, M., Specific serology for emerging human coronaviruses by protein microarray (2013) Euro Surveill., 18, p. 20441; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Shirato, K., Azumano, A., Nakao, T., Hagihara, D., Ishida, M., Tamai, K., Yamazaki, K., Matsuyama, S., Middle East respiratory syndrome coronavirus infection not found in camels in Japan (2015) Jpn. J. Infect. Dis., 68, pp. 256-258; (2017), http://www.who.int/emergencies/mers-cov/en/; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell. Res., 23, pp. 986-993; Who Mers-Cov Research, G., State of knowledge and data gaps of middle east respiratory syndrome Coronavirus (MERS-CoV) in humans (2013) PLoS Curr., 5; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Zhou, T., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6, p. 8223; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle east respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus study group (2013) J. Virol., 87, pp. 7790-7792","Fukushi, S.; Department of Virology 1, National Institute of Infectious Diseases, 4-7-1 Gakuen, Japan; email: fukushi@nih.go.jp",,"Elsevier B.V.",01660934,,JVMED,"28993122","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85030857994 "Bok M., Alassia M., Frank F., Vega C.G., Wigdorovitz A., Parreño V.","44761047800;57195579861;57195573216;55326777000;6602679344;6603502038;","Passive immunity to control Bovine coronavirus diarrhea in a dairy herd in Argentina [Inmunidad pasiva en el control de la diarrea por coronavirus bovino en un rodeo lechero de Argentina]",2018,"Revista Argentina de Microbiologia","50","1",,"23","30",,1,"10.1016/j.ram.2017.03.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028913767&doi=10.1016%2fj.ram.2017.03.007&partnerID=40&md5=e81dc5cef636b7f2221e9f479eb9c685","Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, Buenos Aires, 1712, Argentina; Departamento de Producción Lechera, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza, Santa Fe 3080, Argentina; AproAgro S.A., Juan V.B. Mitri 55, S2322EGA, Sunchales, Santa Fe, Argentina","Bok, M., Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, Buenos Aires, 1712, Argentina; Alassia, M., Departamento de Producción Lechera, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza, Santa Fe 3080, Argentina; Frank, F., AproAgro S.A., Juan V.B. Mitri 55, S2322EGA, Sunchales, Santa Fe, Argentina; Vega, C.G., Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, Buenos Aires, 1712, Argentina; Wigdorovitz, A., Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, Buenos Aires, 1712, Argentina; Parreño, V., Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, Buenos Aires, 1712, Argentina","Bovine coronavirus (BCoV) is a viral enteric pathogen associated with calf diarrhea worldwide being, in Argentina, mostly detected in dairy husbandry systems. The aim of the present work was to study if maternal IgG1 antibodies (Abs) to BCoV acquired by colostrum intake modulate the development of BCoV infection in calves reared in a dairy farm in Argentina. Thirty Holstein calves were monitored during their first 60 days of age. Animals were classified into two groups depending on their initial BCoV IgG1 Ab titers. The “failure of passive transfer” (FPT) group had significantly lower IgG1 Abs to BCoV than the “acceptable passive transfer” (APT) group of calves (log10 1.98 vs. 3.38 respectively) (p < 0.0001). These differences were also observed when the total protein levels in both groups were compared (p = 0.0081). Moreover, 71% (5/7) of calves from the FPT group showed IgG1 seroconversion to BCoV compared to 29.4% (5/17) of animals from the APT group. Regarding viral circulation, BCoV was detected in 10% (3/30) of all calves and BCoV IgG1 Ab seroconversion was detected in 42% of the total animals showing that almost half of the calves were infected with BCoV. In conclusion, calves with high titers of specific BCoV IgG1 (≥1024) were mostly protected against viral infection, while animals with low titers of IgG1 (<1024) were mostly infected with BCoV. IgG1 Abs from colostrum origin are critical for prevention of BCoV infection. © 2017 Asociación Argentina de Microbiología","Coronavirus; Neonatal calf diarrhea; Passive immunity","immunoglobulin G1 antibody; virus antibody; animal experiment; antibody titer; Article; Bovine coronavirus; calf (bovine); colostrum; controlled study; diarrhea; differential diagnosis; disease duration; disease severity; enzyme linked immunosorbent assay; feces analysis; Holstein cattle; infection risk; nonhuman; passive immunization; refractometry; seroconversion; virus shedding; animal; Argentina; bovine; cattle disease; Coronavirus infection; diarrhea; feces; female; isolation and purification; pregnancy; veterinary medicine; virology; Animals; Antibodies, Viral; Argentina; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Diarrhea; Enzyme-Linked Immunosorbent Assay; Feces; Female; Pregnancy","Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., French, N., Prevalence of endemic enteropathogens of calves in New Zealand dairy farms (2014) N Z Vet J, pp. 1-18; Badaracco, A., Garaicoechea, L., Rodríguez, D., Louge Uriarte, E., Odeón, A., Bilbao, G., Galarza, R., Parreño, V., Bovine rotavirus strains circulating in beef and dairy herds in Argentina from 2004 to 2010 (2012) Vet Microbiol, 158, pp. 394-399; Badaracco, A., Garaicoechea, L., Matthijnssens, J., Louge Uriarte, E., Odeón, A., Bilbao, G., Fernandez, F., Parreño, V., Phylogenetic analyses of typical Bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds (2013) Infect Genet Evol, 18, pp. 18-30; Bendali, F., Sanaa, M., Bichet, H., Schelcher, F., Risk factors associated with diarrhoea in newborn calves (1999) Vet Res, 30, pp. 509-522; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin North Am Food Anim Pract, 26, pp. 123-146; Bok, M., Mino, S., Rodriguez, D., Badaracco, A., Nunes, I., Souza, S.P., Bilbao, G., Parreño, V., Molecular and antigenic characterization of Bovine coronavirus circulating in Argentinean cattle during 1994–2010 (2015) Vet Microbiol, 181, pp. 221-229; Cho, K.O., Hasoksuz, M., Nielsen, P.R., Chang, K.O., Lathrop, S., Saif, L.J., Crossprotection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection (2001) Arch Virol, 146, pp. 2401-2419; Cho, K.O., Hoet, A.E., Loerch, S.C., Wittum, T.E., Saif, L.J., Evaluation of concurrent shedding of Bovine coronavirus via the respiratory tract and enteric route in feedlot cattle (2001) Am J Vet Res, 62, pp. 1436-1441; Clark, M.A., Bovine coronavirus (1993) Br Vet J, 149, pp. 51-70; Cornaglia, E.M., Fernández, F.M., Gottschalk, M., Barrandeguy, M.E., Luchelli, A., Pasini, M.I., Saif, L.J., Schudel, A.A., Reduction in morbidity due to diarrhea in nursing beef calves by use of an inactivated oil-adjuvanted rotavirus – Escherichia coli vaccine in the dam (1992) Vet Microbiol, 30, pp. 191-202; Cornaglia, E.M., Fitjman, N., Schudel, A.A., Barrandeguy, M., Enzyme-linked immunosorbent assay, immunofluorescent test and electrophoresis analysis of rotaviral RNA in the diagnosis and characterization of the Bovine rotavirus (1989) Rev Latinoam Microbiol, 5, pp. 6-9; Cortese, V.S., Neonatal immunology (2009) Vet Clin North Am Food Anim Pract, 25, pp. 221-227; Coura, F.M., Freitas, M., Ribeiro, J., De Leme, R.A., De Souza, Alfieri, A.A., Facury Filho, E.J., Heinemann, M.B., Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd (2015) Trop Anim Health Prod, 47, pp. 3-11; Crouch, C.F., Acres, S.D., Prevalence of rotavirus and coronavirus antigens in the feces of normal cows (1984) Can J Comp Med, 48, pp. 340-342; Decaro, N., Elia, G., Campolo, M., Desario, C., Mari, V., Radogna, A., Colaianni, M.L., Buonavoglia, C., Detection of Bovine coronavirus using a TaqMan-based real-time RT-PCR assay (2008) J Virol Methods, 151, pp. 167-171; Garaicoechea, L., Bok, K., Jones, L.R., Combessies, G., Odeon, A., Fernandez, F., Parreño, V., Molecular characterization of Bovine rotavirus circulating in beef and dairy herds in Argentina during a 10-year period (1994–2003) (2006) Vet Microbiol, 118, pp. 1-11; Gunn, A.A., Naylor, J.A., House, J.K., Diarrhea (2009) Large Anim Intern Med, pp. 340-363; Heckert, R.A., Saif, L.J., Hoblet, K.H., Agnes, A.G., A longitudinal study of Bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio (1990) Vet Microbiol, 22, pp. 187-201; Heckert, R.A., Saif, L.J., Mengel, J.P., Myers, G.W., Isotype-specific antibody responses to Bovine coronavirus structural proteins in serum, feces, and mucosal secretions from experimentally challenge-exposed colostrum-deprived calves (1991) Am J Vet Res, 52, pp. 692-699; Heckert, R.A., Saif, L.J., Myers, G.W., Mucosal and systemic isotype-specific antibody responses to Bovine coronavirus structural proteins in naturally infected dairy calves (1991) Am J Vet Res, 52, pp. 852-857; Heckert, R.A., Saif, L.J., Myers, G.W., Agnes, A.G., Epidemiologic factors and isotype-specific antibody responses in serum and mucosal secretions of dairy calves with Bovine coronavirus respiratory tract and enteric tract infections (1991) Am J Vet Res, 52, pp. 845-851; Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., Infostat - Sofware estadístico (2013), Universidad Nacional de Córdoba, Argentina. Univ. Nac. Córdoba Argentina; Kapil, S., Trent, A.M., Goyal, S.M., Excretion and persistence of Bovine coronavirus in neonatal calves (1990) Arch Virol, 115, pp. 127-132; Lai, M.M.C., Perlman, S., Anderson, L.J., Coronaviridae (2007) Fields virology, pp. 1305-1335. , B. Fields N. Knipe M. David P. Howley D.M. Knipe P.M. Howley D.E. Griffin R.A. Lamb M.A. Martin B. Roizman S.E. Straus 5th ed. Wolters Kluwer Health/Lippincott Williams & Wilkins Philadelphia [chapter 36]; Langpap, T.J., Bergeland, M.E., Reed, D.E., Coronaviral enteritis of young calves: virologic and pathologic findings in naturally occurring infections (1979) Am J Vet Res, 40, pp. 1476-1478; Lorenzetti, E., Leme, R.A., Ribeiro, J., Rodrigues Almeida de Souza, V., Alfieri, A.F., Alfieri, A.A., Neonatal diarrhea by Bovine coronavirus (BCoV) in beef cattle herds (2013) Semin Ciênc Agrár, 34, pp. 3795-3800; Marsolais, G., Assaf, R., Montpetit, C., Marois, P., Diagnosis of viral agents associated with neonatal calf diarrhea (1978) Can J Comp Med, 42, pp. 168-171; Mawatari, T., Hirano, K., Ikeda, H., Tsunemitsu, H., Suzuki, T., Surveillance of diarrhea-causing pathogens in dairy and beef cows in Yamagata Prefecture, Japan from 2002 to 2011 (2014) Microbiol Immunol, 58, pp. 530-535; McGuirk, S.M., Collins, M., Managing the production, storage, and delivery of colostrum (2004) Vet Clin North Am Food Anim Pract, 20, pp. 593-603; Mebus, C.A., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus-like agent (1973) Am J Vet Res, 34, pp. 145-150; Ohlson, A., Alenius, S., Traven, M., Emanuelson, U., A longitudinal study of the dynamics of Bovine coronavirus and respiratory syncytial virus infections in dairy herds (2013) Vet J, 197, pp. 395-400; Oma, V.S., Tråvén, M., Alenius, S., Myrmel, M., Stokstad, M., Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission (2016) Virol J, p. 100; Pardon, B., Alliet, J., Boone, R., Roelandt, S., Valgaeren, B., Deprez, P., Prediction of respiratory disease and diarrhea in veal calves based on immunoglobulin levels and the serostatus for respiratory pathogens measured at arrival (2015) Prev Vet Med, 120, pp. 169-176; Raboisson, D., Trillat, P., Cahuzac, C., Failure of passive immune transfer in calves: a meta-analysis on the consequences and assessment of the economic impact (2016) PLoS One, 11, p. 3; Saif, L.J., Redman, D.R., Brock, K.V., Kohler, E.M., Heckert, R.A., Winter dysentery in adult dairy cattle: detection of coronavirus in the faeces (1988) Vet Rec, 123, pp. 300-301; Smith, D.R., Tsunemitsu, H., Heckert, R.A., Saif, L.J., Evaluation of two antigen-capture ELISAs using polyclonal or monoclonal antibodies for the detection of Bovine coronavirus (1996) J Vet Diagn Invest, 8, pp. 99-105; Stipp, D.T., Barry, A.F., Alfieri, A.F., Takiuchi, E., Amude, A.M., Alfieri, A.A., Frequency of BCoV detection by a semi-nested PCR assay in faeces of calves from Brazilian cattle herds (2009) Trop Anim Health Prod, 41, pp. 1563-1567; Vlasova, A.N., Saif, L.J., Biological aspects of the interspecies transmission of selected coronaviruses (2014) Viral infections and global change, pp. 393-418. , S.K. Singh 1st ed. John Wiley & Sons, Inc. [chapter 21]; Weaver, D.M., Tyler, J.W., VanMetre, D.C., Hostetler, D.E., Barrington, G.M., Passive transfer of colostral immunoglobulins in calves (2000) J Vet Intern Med, 14, pp. 569-577","Parreño, V.; Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolás Repetto S/N, Castelar, Argentina; email: parreno.viviana@inta.gob.ar",,"Asociacion Argentina de Microbiologia",03257541,,RAMID,"28893529","English; Spanish","Rev. Argent. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85028913767 "Ko J.-H., Seok H., Cho S.Y., Ha Y.E., Baek J.Y., Kim S.H., Kim Y.-J., Park J.K., Chung C.R., Kang E.-S., Cho D., Müller M.A., Drosten C., Kang C.-I., Chung D.R., Song J.-H., Peck K.R.","55804188300;56803460700;56645282200;56642344700;8926034300;57033362500;7410198066;35933391300;56390997100;20234715300;7401737920;24068857400;7003813990;7402312652;7401719232;7404787802;55664295200;","Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience",2018,"Antiviral Therapy","23","7",,"617","622",,5,"10.3851/IMP3243","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053808552&doi=10.3851%2fIMP3243&partnerID=40&md5=dc654384d2c0378aaad7f0a26ceb805c","Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, South Korea; Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Division of Infectious Diseases, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; German Centre for Infection Research, Braunschweig, Germany","Ko, J.-H., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, Division of Infectious Diseases, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, South Korea; Seok, H., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Cho, S.Y., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Ha, Y.E., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Baek, J.Y., Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Kim, S.H., Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Kim, Y.-J., Division of Infectious Diseases, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Park, J.K., Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Chung, C.R., Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Kang, E.-S., Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Cho, D., Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Müller, M.A., Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany, German Centre for Infection Research, Braunschweig, Germany; Drosten, C., Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany, German Centre for Infection Research, Braunschweig, Germany; Kang, C.-I., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Chung, D.R., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Song, J.-H., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Peck, K.R., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea","Background: The effects of convalescent plasma (CP) infusion, one of the treatment options for severe Middle East respiratory syndrome coronavirus (MERS-CoV) infections, have not yet been evaluated. Methods: Serological responses of CP-infused MERS patients during the 2015 Korean MERS outbreak at a tertiary care centre were evaluated. Serological activity was evaluated with anti-MERS-CoV enzyme-linked immunosorbent assay (ELISA) immunoglobulin (Ig)G, ELISA IgA, immunofluorescence assay IgM and plaque reduction neutralization test (PRNT). Donor plasma and one or two recipient’s serum samples per week of illness including one taken the day after each CP infusion were evaluated. For sensitivity and specificity analysis of ELISA IgG in predicting neutralization activity, a data set of 138 previously evaluated MERS-CoV-infected patients was used. Results: Three of thirteen MERS patients with respiratory failure received four CP infusions from convalesced MERS-CoV-infected patients, and only two of them showed neutralizing activity. Donor plasma with a PRNT titre 1:80 demonstrated meaningful serological response after CP infusion, while that with a PRNT titre 1:40 did not. ELISA IgG predicted neutralization activity of a PRNT titre ≥1:80 with more than 95% specificity at a cutoff optical density (OD) ratio of 1.6, and with 100% specificity at an OD ratio of 1.9. Conclusions: For effective CP infusion in MERS, donor plasma with a neutralization activity of a PRNT titre ≥1:80 should be used. ELISA IgG could substitute for the neutralization test in resource-limited situations. ©2018 International Medical Press.",,"immunoglobulin G; immunoglobulin M; antiserum; immunoglobulin A; immunoglobulin G; immunoglobulin M; virus antibody; adult; Article; clinical article; convalescence; enzyme linked immunosorbent assay; epidemic; extracorporeal oxygenation; hospital admission; hospital discharge; human; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; plaque reduction neutralization test; plasma transfusion; pneumonia; polymerase chain reaction; priority journal; respiratory failure; sensitivity and specificity; serology; tertiary care center; virus neutralization; blood; case report; convalescence; Coronavirus infection; drug effect; epidemic; immunology; middle aged; Middle East respiratory syndrome coronavirus; pathogenicity; respiratory failure; serodiagnosis; South Korea; virology; Adult; Antibodies, Viral; Convalescence; Coronavirus Infections; Disease Outbreaks; Enzyme-Linked Immunosorbent Assay; Humans; Immune Sera; Immunoglobulin A; Immunoglobulin G; Immunoglobulin M; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Republic of Korea; Respiratory Insufficiency; Tertiary Care Centers","Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East respiratory syndrome (MERS): A review (2018) J Infect Public Health, 11, pp. 9-17; Park, G.E., Ko, J.H., Peck, K.R., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Ko, J.H., Park, G.E., Lee, J.Y., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J Infect, 73, pp. 468-475; Ko, J.H., Muller, M.A., Seok, H., Suggested new breakpoints of anti-MERS-CoV antibody ELISA titers: Performance analysis of serologic tests (2017) Eur J Clin Microbiol Infect Dis, 36, pp. 2179-2186; Müller, M.A., Corman, V.M., Jores, J., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Muth, D., Corman, V.M., Meyer, B., Infectious Middle East respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia (2015) J Clin Microbiol, 53, pp. 2951-2955; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17. , pii:20334; Chun, S., Chung, C.R., Ha, Y.E., Possible transfusion-related acute lung injury following convalescent plasma transfusion in a patient with Middle East respiratory syndrome (2016) Ann Lab Med, 36, pp. 393-395; Marano, G., Vaglio, S., Pupella, S., Convalescent plasma: New evidence for an old therapeutic tool? (2016) Blood Transfus, 14, pp. 152-157; Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis (2015) J Infect Dis, 211, pp. 80-90; Arabi, Y.M., Hajeer, A.H., Luke, T., Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 1554-1561; Ko, J.H., Muller, M.A., Seok, H., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89, pp. 106-111; Ebola haemorrhagic fever in Zaire, (1978) Bull World Health Organ, 56, pp. 271-293. , 1976; Jahrling, P.B., Frame, J.D., Rhoderick, J.B., Monson, M.H., Endemic Lassa fever in Liberia. IV. Selection of optimally effective plasma for treatment by passive immunization (1985) Trans R Soc Trop Med Hyg, 79, pp. 380-384; Enria, D.A., Briggiler, A.M., Fernandez, N.J., Levis, S.C., Maiztegui, J.I., Importance of dose of neutralising antibodies in treatment of Argentine haemorrhagic fever with immune plasma (1984) Lancet, 2, pp. 255-256; Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Arabi, Y., Balkhy, H., Hajeer, A.H., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: A study protocol (2015) Springerplus, 4, p. 709","Peck, K.R.; Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSouth Korea; email: krpeck@skku.edu",,"International Medical Press Ltd",13596535,,ANTHF,"29923831","English","Antiviral Ther.",Article,"Final",,Scopus,2-s2.0-85053808552 "Singh D.D., Pawaiya R.S., Gururaj K., Gangwar N.K., Mishra A.K., Andani D., Singh M.K., Bhushan S., Kumar A.","57195764761;6603610897;45060902600;15765287000;57214672235;57194587776;57209097426;7004127159;57203774508;","Molecular detection of clostridium perfringens toxinotypes, enteropathogenic escherichia coli, rotavirus and coronavirus in diarrheic fecal samples of neonatal goat kids [Molekularni dokaz toksinskih tipova bakterije clostridium perfringens, enteropatogenih sojeva escherichia coli te rotavirusa i koronavirusa u uzorcima proljeva kod neonatalne jaradi]",2018,"Veterinarski Arhiv","88","1",,"1","20",,1,"10.24099/vet.arhiv.161027","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042281422&doi=10.24099%2fvet.arhiv.161027&partnerID=40&md5=de46d28833f55d7e2fa903c9e8a5d1bb","Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; College of Veterinary Sciences, DUVASU, Mathura, Uttar Pradesh, India","Singh, D.D., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India, College of Veterinary Sciences, DUVASU, Mathura, Uttar Pradesh, India; Pawaiya, R.S., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Gururaj, K., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Gangwar, N.K., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Mishra, A.K., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Andani, D., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Singh, M.K., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Bhushan, S., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India; Kumar, A., Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, India","In the present study, out of 1156 neonatal goat kids, 238 showing clinical diarrhea were used for detection of toxinotypes of Clostridium perfringens, Enteropathogenic E. coli (EPEC), Group A rotavirus (GARV) and Bovine coronavirus (BCV). Isolation and toxinotyping of isolates were done by multiplex Polymerase chain reaction (PCR) using primers for cpa, cpb, cpb2, etx and iap genes. For EPEC, isolation and identification were done using bfpA gene and SYBR green based real time PCR (qPCR). GARV and BCV were detected, by one-step RT-PCR (osRT-PCR). The incidence of C. perfringens was 15.13% with 75% isolates toxinotype A, 25% type D and 61.11% of isolates carrying the β2-toxin gene. The incidence of EPEC was 68.07% based on qPCR, whereas 21.85% were positive for GARV and 15.97% for BCV by osRT-PCR. There was mixed infection of C. perfringens and EPEC in 11.76% and 3.78% for C. perfringens and GARV and 2.1% of C. perfringens and BCV. EPEC and GARV was 19.74% and EPEC plus BCV positivity was 11.34%. GARV and BCV was 5.88%, and 4.20% had mixed infection of EPEC, GARV and BCV. Of the total diarrheic kids sampled, 0.84% had mixed infection of C. perfringens, GARV, BCV and EPEC. On the basis of the above findings, it may be concluded that isolation, multiplex PCR and real time PCR facilitated the characterization of circulating C. perfringens toxinotypes and EPEC in goats reared under semi-arid conditions. The importance of enteritis caused by GARV and BCV and their role in mixed infection in goats requires extensive screening and pathogenicity studies to associate the symptoms with disease. © 2018, University of Zagreb, Facultty of Veterinary Medicine. All rights reserved.","C. Perfringens; Coronavirus; E. Coli; Goats; Neonatal diarrhea; Rotavirus; Toxinotypes","adult; Article; bacteriology; bfpA gene; Clostridium perfringens; controlled study; Coronavirinae; cpa gene; cpb gene; cpb2 gene; DNA extraction; enteropathogenic Escherichia coli; etx gene; feces analysis; female; gene; hemolysis; iap gene; kid (goat); male; mixed infection; multiplex polymerase chain reaction; nonhuman; RNA extraction; Rotavirus","Aguero, M., San Miguel, E., Sanchez, A., Gomez-Tejedor, C., Jimenez-Clavero, M.A., A fully automated procedure for the high throughput detection of avian influenza virus by real-time reverse transcription-polymerase chain reaction (2007) Avian Dis, 51, pp. 235-241; Allaart, J.G., De Bruijn, N.D., Van Asten, A.J., Fabri, T.H., Gröne, A., NetB-producing and beta2-producing Clostridium perfringens associated with subclinical necrotic enteritis in laying hens in the Netherlands (2012) Avian Pathol, 41, pp. 541-546; Allen-Vercoe, E., Waddell, B., Toh, M.C., Devinney, R., Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation, alpha-actinin recruitment, and Nck-independent pedestal formation (2006) Infect. Immun., 74, pp. 6196-6205; Ammar, S.S., Mokhtaria, K., Tahar, B.B., Amar, A.A., Redha, B.A., Yuva, B., Mohamed, H.S., Laid, B., Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria (2014) Asian Pac. J. Trop. Biomed., 4, pp. S318-S322; Andrés, S., Jiménez, A., Sánchez, J., Alonso, J.M., Gómez, L., López, F., Rey, J., Evaluation of some etiological factors predisposing to diarrhoea in lambs in “La Serena” (Southwest Spain) (2007) Small Rumin. Res., 70, pp. 272-275; Bhat, M.A., Nishikawa, Y., Wani, S.A., Prevalence and virulence gene profiles of Shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli from diarrhoeic and healthy lambs in India (2008) Small Rumin. Res., 75, pp. 65-70; Bischoff, C., Lüthy, J., Altwegg, M., Baggi, F., Rapid detection of diarrheagenic E. Coli by real-time PCR (2005) J. Microbial. Met., 61, pp. 335-341; Bok, M., Miño, S., Rodriguez, D., Badaracco, A., Nuñes, I., Souza, S.P., Bilbao, G., G., E. L. URIARTE, R. GALARZA, C. VEGA, A. ODEON (2015) Molecular and Antigenic Characterization of Bovine Coronavirus Circulating in Argentinean Cattle during 1994-2010. Vet. Microbiol., 181, pp. 221-229; Bugarel, M., Martin, A., Fach, P., Beutin, L., Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: A basis for molecular risk assessment of typical and atypical EPEC strains (2011) BMC Microbiology; Chartier, C., Paraud, C., Coccidiosis due to Eimeria in sheep and goats, a review (2012) Small Rumin. Res., 103, pp. 84-92; Clark, M.A., Bovine coronavirus (1993) Br. Vet. J., 149, pp. 51-70; Cleary, J., Lai, L., Shaw, R.K., Iwanowska, A.S., Donnenberg, M.S., Frankel, G., Knutton, S., Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: Role of bundle-forming pili (BFP), EspA filaments and intimin (2004) Microbiol, 150, pp. 527-538; Croxen, M.A., Finlay, B.B., Molecular mechanisms of Escherichia coli pathogenicity (2010) Nature Rev. Microbiol., 8, pp. 26-38; Dennison, A.C., Van Metre, D.C., Morley, P.S., Callan, R.J., Plampin, E.C., Ellis, R.P., Comparison of the odds of isolation, genotypes, and in vivo production of major toxins by Clostridium perfringens obtained from the gastrointestinal tract of dairy cows with hemorrhagic bowel syndrome or left-displaced abomasum (2005) J. Am. Vet. Med. Assoc., 227, pp. 132-138; Dey, B.K., Ahmed, M.S., Ahmed, M.U., Rota viral diarrhea in kids of black Bengal goats in Mymensingh (2007) Bangladesh J. Vet. Med., 5, pp. 59-62; Donnenberg, M.S., Kaper, J.B., Enteropathogenic Escherichia coli (1992) Infect. Immun., 60, pp. 3953-3961; Dray, T., Clostridium perfringens type A and beta2 toxin associated with enterotoxemia in a 5-week-old goat (2004) Can. Vet. J., 45, pp. 251-253; Estes, M.K., Kapikian, A.Z., Rotaviruses (2007) Fields Virology, 2, pp. 1917-1974. , Knipe, D. M., P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, S. E. Straus, Eds.). 5th ed., ippincott Williams & Wilkins/ Wolters Kluwer, Philadelphia; Fernandez-Miyakawa, M.E., Uzal, F.A., The early effects of Clostridium perfringens type D epsilon toxin in ligated intestinal loops of goats and sheep (2003) Vet. Res. Commun., 27, pp. 231-241; Ferrarezi, M.C., Cardoso, T.C., Dutra, I.S., Genotyping of Clostridium perfringens isolated from calves with neonatal diarrhea (2008) Anaerobe, 14, pp. 328-331; Garmory, H.S., Chanter, N., French, N.P., Occurrence of Clostridium perfringens beta2-toxin amongst animals, determined using genotyping and subtyping PCR assays (2000) Epidemiol. Infect., 124, pp. 61-67; Gazal, S., Mir, I.A., Iqbal, A., Taku, A.K., Kumar, B., Bhat, M.A., Ovine rotaviruses (2011) Open Vet. J., 1, pp. 50-54; Gibert, M., Jolivet-Renaud, C., Popoff, M.R., Beta2 toxin, a novel toxin produced by Clostridium perfringens (1997) Gene, 203, pp. 65-73; Giron, J.A., Ho, A.S.Y., Schoolnik, G.K., An inducible bundle forming pilus of Enteropathogenic Escherichia coli (1991) Science, 254, pp. 710-714; Greco, G., Madio, A., Buonavoglia, D., Totaro, M., Corrente, M., Martella, V., Buonavoglia, C., Clostridium perfringens toxin-types in lambs and kids affected with gastroenteric pathologies in Italy (2005) Vet. J., 170, pp. 346-350; Guion, C.E., Ochoa, T.J., Walker, C.M., Barletta, F., Cleary, T.G., Detection of Diarrheagenic Escherichia coli by Use of Melting-Curve analysis and Real-Time Multiplex PCR (2008) J. Clin. Microbiol., 46, pp. 1752-1757; Habeeb, A.F.S.A., Studies on ε-prototoxin of Clostridium perfringens type D. 1. Purification methods: Evidence for multiple forms of ε-prototoxin (1969) Archiv. Biochem. Biophys, 130, pp. 430-440; Hall, T., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98; Huochun, Y., Nianxing, D., Weiyan, X., Seroepizootiological survey of bovine coronavirus in cattle, human and other animals (1990) Journal of Nanjing Agricultural University (China); Kaper, J.B., Nataro, J.P., Mobley, H.L., Pathogenic Escherichia coli (2004) Nature Rev. Microbiol., 2, pp. 123-140; Kapikian, A.Z., Chanock, R.M., Rotaviruses (1996) Fields Virology, 2, pp. 1657-1707. , Fields, B. N., D. M. Knipe, P. M. Howley, R. M. Chanock, J. L. Melinick, T. P. Monath, B. Roizman, S. E. Straus, Eds.) 3rd ed, Lippincott-Raven, Philadelphia; Khafagi, M.H., Mahmoud, M.A., Habashi, A.R., Prevalence of rotavirus infections in small ruminants (2010) Global Veterinaria, 4, pp. 539-543; Knutton, S., Baldwin, T., Williams, P.H., McNeish, A.S., Actin accumulation at sites of bacterial adhesion to tissue culture cells: Basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli (1989) Infect. Immun., 57, pp. 1290-1298; Lebrun, M., Filee, P., Mousset, B., Desmecht, D., Galleni, M., Mainil, J.G., Linden, A., The expression of Clostridium perfringens consensus beta2 toxin is associated with bovine enterotoxaemia syndrome (2007) Vet. Microbiol., 120, pp. 151-157; Manteca, C., Daube, G., Jauniaux, T., Linden, A., Pirson, V., Detilleux, J., Ginter, A., Mainil, J.G., A role for the Clostridium perfringens β2 toxin in bovine enterotoxaemia? (2002) Vet. Microbiol., 86, pp. 191-202; Uzalmiyakawa, Lyerlywilkins, The enterotoxic Clostridia (2005) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 4, pp. 698-752. , Dworkin, M., S. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt, Eds., Springer-Verlag, New York; Matthijnssens, J., Rahman, M., Van Ranst, M., Two out of the 11 genes of an unusual human G6P[6] rotavirus isolate are of bovine origin (2008) J. Gen. Virol., 89, pp. 2630-2635; Mayameei, A., Mohammadi, G., Yavari, S., Afshari, E., Omidi, A., Evaluation of relationship between Rotavirus and Coronavirus infections with calf diarrhoea by capture ELISA (2009) Comp. Clin. Pathol., 19, pp. 553-557; Mebus, C.A., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhea: Propagation, attenuation, and characteristics of a coronavirus-like agent (1973) Am. J. Vet. Res., 34, pp. 145-150; Miyashiro, S., Nassar, A.F.C., Del Fava, C., Cabral, A.D., Silva, M., Clostridium perfringens types A and D associated with enterotoxemia in an 18-month-old goat (2007) J. Venom. Anim. Toxins Incl. Trop. Dis., 13, pp. 885-893; Muñoz, M., Alvarez, M., Lanza, I., Carmenes, P., Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain (1996) Epidemiol. Infect., 117, pp. 203-211; Nataro, J.P., Kaper, J.B., Diarrheagenic Escherichia coli (1998) Clin. Microbiol. Rev., 11, pp. 142-201; Niilo, L., Clostridium perfringens in animal disease: A review of current knowledge (1980) Can. Vet. J., 21, pp. 141-148; Niilo, L., Enterotoxemic Clostridium perfringens (1986) Pathogenesis of Bacterial Infections in Animals, pp. 80-86. , Gyles, C. L., C. O. Thoen, Eds.), Iowa State University Press, Ames; Ozmen, O., Yukari, A., Haligur, M., Sahinduran, S., Observations and immunohistochemical detection of Coronavirus, Cryptosporidium parvum and Giardia intestinalis in neonatal diarrhoea in lambs and kids (2006) Schweiz. Arch. Tierheilkd., 148, pp. 357-364; Papp, H., László, B., Jakab, F., Ganesh, B., De Grazia, S., Matthijnssens, J., Ciarlet, M., Bányai, K., Review of group A rotavirus strains reported in swine and cattle (2013) Vet. Microbiol., 165, pp. 190-199; Pawaiya, R.V.S., Singh, D.D., Gangwar, N.K., Gururaj, K., Kumar, V., Paul, S., Sharma, N., Singh, S.V., Retrospective study on mortality of goats due to alimentary system diseases in an organized farm (2017) Small Rumin. Res., 149, pp. 141-146; Rai, R.B., Hansha, A., Rai, S., Singh, B., Kumar, H., Singh, A.K., Damodaran, T., Dhama, K., Prevalence of rota and coronavirus infections in calves of Barabanki and Raebareli districts of U.P (2011) Indian J. Vet. Pathol., 35, pp. 73-74; Rich, C., Alfidja, A., Sirot, J., Joly, B., Forestier, C., Identification of human enterovirulent Escherichia coli strains by multiplex PCR (2001) J. Clin. Lab. Anal., 15, pp. 100-103; Savic, B., Prodanovic, R., Ivetic, V., Radanovic, O., Bojkovski, J., Enteritis associated with Clostridium perfringens type A in 9-month-old calves (2012) Can. Vet. J., 53, p. 174; Sayeed, S.M.E., Fisher, D.J., Adams, V., Poon, R., Rood, J.I., Uzal, F.A.B.A., Epsilon-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model (2005) Infect. Immun., 73, pp. 7413-7421; Songer, J.G., Clostridial enteric diseases of domestic animals (1996) Clin. Microbiol. Rev., 9, pp. 216-234; Sumithra, T.G., Chaturvedi, V.K., Siju, S.J., Susan, C., Rawat, M., Rai, A.K., Sunita, S.C., Enterotoxaemia in goats - A review of current knowledge (2013) Small Rumin. Res., 114, pp. 1-9; Timoney, J.F., Hartmann, M., Fallon, L., Fallon, E., Walker, J., Antibody responses of mares to prepartum vaccination with Clostridium perfringens bacterin and β2 toxin (2005) Vet. Rec., 157, pp. 810-812; Tsunemitsu, H., Smith, D.R., Saif, L.J., Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR (1999) Arch. Virol., 144, pp. 167-175; Uzal, F.A., Songer, J.G., Diagnosis of Clostridium perfringens intestinal infections in sheep and goats (2008) J. Vet. Diagn. Invest., 20, pp. 253-265; Uzal, F.A., Fisher, D.J., Saputo, J., Sayeed, S., McClane, B.A., Songer, G., Trinh, H.T., Gard, S., Ulcerative enterocolitis in two goats associated with enterotoxin-and beta2 toxin-positive Clostridium Perfringens Type D (2008) J. Vet. Diagn. Invest., 20, pp. 668-672; Uzal, F.A., Vidal, J.E., McClane, B.A., Gurjar, A.A., Clostridium perfringens toxins involved in mammalian veterinary diseases (2010) Open Toxinology J., 2, p. 24; Van Asten, J.A.M., Van Der Wiel, C.W., Nikolaou, G., Houwers, D.J., Gröne, A., A multiplex PCR for toxin typing of Clostridium perfringens isolates (2009) Vet. Microbiol., 136, pp. 411-412; Van Asten, J.A.M., Nikolaou, G.N., Gröne, A., The occurrence of cpb2-toxigenic Clostridium perfringens and the possible role of the β2-toxin in enteric disease of domestic animals, wild animals and humans (2010) Vet. J., 183, pp. 135-140; Vilei, E.M., Schlatter, Y., Perreten, V., Straub, R., Popoff, M.R., Gibert, M., Gröne, A., Frey, J., Antibiotic-induced expression of a cryptic cpb2 gene in equine β2-toxigenic Clostridium perfringens (2005) Mol. Microbiol., 57, pp. 1570-1581; Wani, S.A., Bhat, M.A., Nawchoo, R., Munshi, Z.H., Bach, A.S., Evidence of rotavirus associated with neonatal lamb diarrhea in India (2004) Trop. Anim. Health Prod., 36, pp. 27-32; Wani, S.A., Samanta, I., Munshi, Z.H., Bhat, M.A., Nishikawa, Y., Shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli in healthy goats in India: Occurrence and virulence properties (2006) J. Appl. Microbiol., 100, pp. 108-113; Waters, M., Savoie, A., Garmory, H.S., Bueschel, D., Popoff, M.R., Songer, J.G., Titball, R.W., Sarker, M.R., Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets (2003) J. Clin. Microbiol., 41, pp. 3584-3591; Yang, D.K., Hwang, I.J., Kim, B.H., Kweon, C.H., Lee, K.W., Kang, M.I., Lee, C.S., Cho, K.O., Serosurveillance of viral diseases in Korean native goats (Capra hircus) (2008) J. Vet. Med. Sci., 70, pp. 977-979","Gururaj, K.; ICAR-Central Institute for Research on Goats, Makhdoom, Farah, India; email: guruvet@gmail.com",,"University of Zagreb, Facultty of Veterinary Medicine",03725480,,,,"English","Vet. Arh.",Article,"Final",Open Access,Scopus,2-s2.0-85042281422 "Hindawi S.I., Hashem A.M., Damanhouri G.A., El-Kafrawy S.A., Tolah A.M., Hassan A.M., Azhar E.I.","23473286600;57200589744;15041913700;12545932500;57188767465;7402686960;23090055800;","Inactivation of Middle East respiratory syndrome-coronavirus in human plasma using amotosalen and ultraviolet A light",2018,"Transfusion","58","1",,"52","59",,3,"10.1111/trf.14422","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038024639&doi=10.1111%2ftrf.14422&partnerID=40&md5=b0a78678a7a1da3f4ef741028ad4f214","Blood Transfusion Services, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Clinical Pathology Department, National Liver Institute, Menoufiya University, Shebin El-Kom, Egypt","Hindawi, S.I., Blood Transfusion Services, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Hashem, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Damanhouri, G.A., Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; El-Kafrawy, S.A., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Clinical Pathology Department, National Liver Institute, Menoufiya University, Shebin El-Kom, Egypt; Tolah, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Hassan, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia","BACKGROUND: Middle East respiratory syndrome-coronavirus (MERS-CoV) is a novel zoonotic pathogen. Although the potential for MERS-CoV transmission through blood transfusion is not clear, MERS-CoV was recognized as a pathogen of concern for the safety of the blood supply especially after its detection in whole blood, serum, and plasma of infected individuals. Here we investigated the efficacy of amotosalen and ultraviolet A light (UVA) to inactivate MERS-CoV in fresh-frozen plasma (FFP). STUDY DESIGN AND METHODS: Pooled FFP units were spiked with a recent clinical MERS-CoV isolate. Infectious and genomic viral titers were determined in plasma before and after inactivation with amotosalen/UVA treatment by plaque assay and reverse transcription–quantitative polymerase chain reaction, respectively. In addition, residual replicating or live virus after inactivation was examined by passaging in the permissive Vero E6 cells. RESULTS: The mean MERS-CoV infectious titer in pretreatment samples was 4.67 ± 0.25 log plaque-forming units (pfu)/mL, which was reduced to undetectable levels after inactivation with amotosalen/UVA demonstrating a mean log reduction of more than 4.67 ± 0.25 pfu/mL. Furthermore, inoculation of inactivated plasma on Vero E6 cells did not result in any cytopathic effect (CPE) even after 7 days of incubation and three consecutive passages, nor the detection of MERS RNA compared to pretreatment samples which showed complete CPE within 2 to 3 days postinoculation and log viral RNA titer ranging from 9.48 to 10.22 copies/mL in all three passages. CONCLUSION: Our data show that amotosalen/UVA treatment is a potent and effective way to inactivate MERS-CoV infectious particles in FFP to undetectable levels and to minimize the risk of any possible transfusion-related MERS-CoV transmission. © 2017 AABB",,"amotosalen; furocoumarin derivative; photosensitizing agent; virus RNA; animal; blood; Chlorocebus aethiops; cytopathogenic effect; drug effect; evaluation study; growth, development and aging; human; Middle East respiratory syndrome coronavirus; plasma; radiation response; real time polymerase chain reaction; ultraviolet radiation; Vero cell line; viral plaque assay; virology; virus inactivation; virus load; virus replication; Animals; Cercopithecus aethiops; Cytopathogenic Effect, Viral; Furocoumarins; Humans; Middle East Respiratory Syndrome Coronavirus; Photosensitizing Agents; Plasma; Real-Time Polymerase Chain Reaction; RNA, Viral; Ultraviolet Rays; Vero Cells; Viral Load; Viral Plaque Assay; Virus Inactivation; Virus Replication","Torane, V.P., Shastri, J.S., Comparison of ELISA and rapid screening tests for the diagnosis of HIV, hepatitis B and hepatitis C among healthy blood donors in a tertiary care hospital in Mumbai (2008) Indian J Med Microbiol, 26, pp. 284-285; Tessema, B., Yismaw, G., Kassu, A., Seroprevalence of HIV, HBV, HCV and syphilis infections among blood donors at Gondar University Teaching Hospital, Northwest Ethiopia: declining trends over a period of five years (2010) BMC Infect Dis. England, 10, p. 111; Paty, M.C., [The expansion of vector-borne diseases and the implications for blood transfusion safety: the case of West Nile virus, dengue and chikungunya] (2013) Transfus Clin Biol, 20, pp. 165-173; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2007) Middle East respiratory syndrome coronavirus (MERS-CoV) [Internet]., , http://www.who.int/emergencies/mers-cov/en/, Geneva: World Health Organization; 2017 [cited 2017 Feb 24]. Available from; http://www.moh.gov.sa/en/CCC/PressReleases/Pages/default.aspx, Statistics [Internet]. Riyadh, 2014 [cited 2017 Feb 24]. Available from; Mackay, I.M., Arden, K.E., Middle East respiratory syndrome: an emerging coronavirus infection tracked by the crowd (2015) Virus Res, 202, pp. 60-88; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20, p. 123; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Shehata, M.M., Gomaa, M.R., Ali, M.A., Middle East respiratory syndrome coronavirus: a comprehensive review (2016) Front Med, 10, pp. 120-136; Lessler, J., Salje, H., Van Kerkhove, M.D., Estimating the severity and subclinical burden of Middle East respiratory syndrome coronavirus infection in the Kingdom of Saudi Arabia (2016) Am J Epidemiol, 183, pp. 657-663; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Müller, M.A., Corman, V.M., Jores, J., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19. , 20828; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. 814-884; Sabir, J.S., Lam, T.T., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Shalhoub, S., Farahat, F., Al-Jiffri, A., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Kim, S.Y., Park, S.J., Cho, S.Y., Viral RNA in blood as indicator of severe outcome in Middle East respiratory syndrome coronavirus infection (2016) Emerg Infect Dis, 22, pp. 1813-1816; Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Drosten, C., Günther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Berger, A., Drosten, C., Doerr, H.W., Severe acute respiratory syndrome (SARS)—paradigm of an emerging viral infection (2004) J Clin Virol, 29, pp. 13-22; Stramer, S.L., Current perspectives in transfusion-transmitted infectious diseases: emerging and re-emerging infections (2014) ISBT Sci Ser, 9, pp. 30-36; Irsch, J., Lin, L., Pathogen inactivation of platelet and plasma blood components for transfusion using the INTERCEPT Blood System™ (2011) Transfus Med Hemother, 38, pp. 19-31; Pinna, D., Sampson-Johannes, A., Clementi, M., Amotosalen photochemical inactivation of severe acute respiratory syndrome coronavirus in human platelet concentrates (2005) Transfus Med, 15, pp. 269-276; Musso, D., Richard, V., Broult, J., Inactivation of dengue virus in plasma with amotosalen and ultraviolet A illumination (2014) Transfusion, 54, pp. 2924-2930; Aubry, M., Richard, V., Green, J., Inactivation of Zika virus in plasma with amotosalen and ultraviolet A illumination (2016) Transfusion, 56, pp. 33-40; Schlenke, P., Pathogen inactivation technologies for cellular blood components: an update (2014) Transfus Med Hemother, 41, pp. 309-325; Mintz, P.D., Neff, A., MacKenzie, M., A randomized, controlled Phase III trial of therapeutic plasma exchange with fresh-frozen plasma (FFP) prepared with amotosalen and ultraviolet A light compared to untreated FFP in thrombotic thrombocytopenic purpura (2006) Transfusion, 46, pp. 1693-1704; Cazenave, J.P., Waller, C., Kientz, D., An active hemovigilance program characterizing the safety profile of 7483 transfusions with plasma components prepared with amotosalen and UVA photochemical treatment (2010) Transfusion, 50, pp. 1210-1219; Bost, V., Chavarin, P., Boussoulade, F., Independent evaluation of tolerance of therapeutic plasma inactivated by amotosalen-HCl-UVA (Intercept ™) over a 5-year period of extensive delivery (2015) Vox Sang, 109, pp. 414-416; Al-amri, S.S., Abbas, A.T., Siddiq, L.A., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Sci Rep, 7, p. 44875; Coleman, C.M., Frieman, M.B., Growth and quantification of MERS-CoV infection (2015) Curr Protoc Microbiol, 37, pp. 15E.2.1-9; Zhou, J., Chu, H., Li, C., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2014) J Infect Dis, 209, pp. 1331-1342; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17. , 20285; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17. , 20334; HIV transmission through transfusion—Missouri and Colorado, 2008 (2010) MMWR Morb Mortal Wkly, 59, pp. 1335-1339; Bloch, E.M., Vermeulen, M., Murphy, E., Blood transfusion safety in Africa: a literature review of infectious disease and organizational challenges (2012) Transfus Med Rev, 26, pp. 164-180; Woolhouse, M.E., Haydon, D.T., Antia, R., Emerging pathogens: the epidemiology and evolution of species jumps (2005) Trends Ecol Evol, 20, pp. 238-244; Motta, I.J., Spencer, B.R., Cordeiro da Silva, S.G., Evidence for transmission of Zika virus by platelet transfusion (2016) N Engl J Med, 375, pp. 1101-1103; (2013) Guide to the preparation, usequality assurance of blood components., , 17th ed. Strasbourg Council of Europe;; Chu, H., Zhou, J., Wong, B.H., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Chu, H., Zhou, J., Wong, B.H., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213, pp. 904-914; Moustafa, A., Xie, C., Kirkness, E., The blood DNA virome in 8,000 humans (2017) PLoS Pathog, 13; Keil, S.D., Bowen, R., Marschner, S., Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment (2016) Transfusion, 56, pp. 2948-2952","Azhar, E.I.; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversitySaudi Arabia; email: eazhar@kau.edu.sa",,"Blackwell Publishing Inc.",00411132,,TRANA,"29239484","English","Transfusion",Article,"Final",Open Access,Scopus,2-s2.0-85038024639 "Toftaker I., Ågren E., Stokstad M., Nødtvedt A., Frössling J.","57191266369;24436088500;6603435349;15136844500;6506241765;","Herd level estimation of probability of disease freedom applied on the Norwegian control program for bovine respiratory syncytial virus and bovine coronavirus",2018,"Preventive Veterinary Medicine",,,,"","",,3,"10.1016/j.prevetmed.2018.07.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050524639&doi=10.1016%2fj.prevetmed.2018.07.002&partnerID=40&md5=cd8be3d08036de3543e84764ec6c6dd0","Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway; Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden; Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden","Toftaker, I., Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway; Ågren, E., Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden; Stokstad, M., Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway; Nødtvedt, A., Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Oslo, Norway; Frössling, J., Department of Disease Control and Epidemiology, National Veterinary Institute, Uppsala, Sweden, Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden","A national control program against bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) was launched in Norway in 2016. A key strategy in the program is to test for presence of antibodies and protect test-negative herds from infection. Because these viruses are endemic, the rate of re-introduction can be high, and a disease-free status will become more uncertain as time from testing elapses. The aim of this study was to estimate the probability of freedom (PostPFree) from BRSV and BCV antibodies over time by use of bulk tank milk (BTM) antibody-testing, geographic information and animal movement data, and to validate the herd-level estimates against subsequent BTM testing. BTM samples were collected from 1148 study herds in West Norway in 2013 and 2016, and these were analyzed for BRSV and BCV antibodies. PostPFree was calculated for herds that were negative in 2013/2014, and updated periodically with new probabilities every three months. Input variables were test sensitivity, the probability of introduction through animal purchase and local transmission. Probability of introduction through animal purchase was calculated by using real animal movement data and herd prevalence in the region of the source herd. The PostPFree from the final three months in 2015 was compared to BTM test results from March 2016 using a Wilcoxon Rank Sum Test. The probability of freedom was generally high for test-negative herds immediately after testing, reflecting the high sensitivity of the tests. It did however, decrease with time since testing, and was greatly affected by purchase of livestock. When comparing the median PostPFree for the final three months to the test results in 2016, it was significantly lower (p < 0.01) for test positive herds. Furthermore, there was a large difference in the proportion of test positive herds between the first and fourth quartile of PostPFree. The results show that PostPFree provides a better estimate of herd-level BTM status for both BRSV and BCV than what can be achieved by relying solely on the previous test-result. © 2018 Elsevier B.V.","Animal movements; BCoV; BCV; Bovine respiratory disease; BRD; BRSV; Bulk tank milk; Cattle; Disease control",,,"Toftaker, I.; Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146 Dep, Norway; email: ingrid.toftaker@nmbu.no",,"Elsevier B.V.",01675877,,PVMEE,,"English","Prev. Vet. Med.",Article in Press,"Article in Press",Open Access,Scopus,2-s2.0-85050524639 "Zhang S.-F., Tuo J.-L., Huang X.-B., Zhu X., Zhang D.-M., Zhou K., Yuan L., Luo H.-J., Zheng B.-J., Yuen K.-Y., Li M.-F., Cao K.-Y., Xu L.","57200408422;55830841000;56270858500;36464568600;55237506000;57191897566;57200412676;57200417476;57194384227;36078079100;35319923400;15845100900;57191897688;","Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou",2018,"PLoS ONE","13","1", e0191789,"","",,9,"10.1371/journal.pone.0191789","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041185817&doi=10.1371%2fjournal.pone.0191789&partnerID=40&md5=d05d50b36abc3339176010b8357f3b97","Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Clinical Laboratory, Institute of Medical Genetics, Women and Children’s Healthcare Hospital of Zhuhai City, Zhuhai, Guangdong Province, China; Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Medical ICU, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Department of Microbiology, University of Hong Kong, Hong Kong","Zhang, S.-F., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Clinical Laboratory, Institute of Medical Genetics, Women and Children’s Healthcare Hospital of Zhuhai City, Zhuhai, Guangdong Province, China; Tuo, J.-L., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Huang, X.-B., Medical ICU, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Zhu, X., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Zhang, D.-M., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Zhou, K., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Yuan, L., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Luo, H.-J., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Zheng, B.-J., Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Department of Microbiology, University of Hong Kong, Hong Kong; Yuen, K.-Y., Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Department of Microbiology, University of Hong Kong, Hong Kong; Li, M.-F., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Cao, K.-Y., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Xu, L., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China, Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong Province, China, Sun Yat-sen University, University of Hong Kong, Joint Laboratory of Infectious Disease Surveillance, Sun Yat-sen University, Guangzhou, Guangdong Province, China","Human coronavirus (HCoV) is one of the most common causes of respiratory tract infection throughout the world. To investigate the epidemiological and genetic variation of HCoV in Guangzhou, south China, we collected totally 13048 throat and nasal swab specimens from adults and children with fever and acute upper respiratory infection symptoms in Gunazhou, south China between July 2010 and June 2015, and the epidemiological features of HCoV and its species were studied. Specimens were screened for HCoV by real-time RT-PCR, and 7 other common respiratory viruses were tested simultaneously by PCR or real-time PCR. HCoV was detected in 294 cases (2.25%) of the 13048 samples, with most of them inpatients (251 cases, 85.4% of HCoV positive cases) and young children not in nursery (53.06%, 156 out of 294 HCoV positive cases). Four HCoVs, as OC43, 229E, NL63 and HKU1 were detected prevalent during 2010–2015 in Guangzhou, and among the HCoV positive cases, 60.20% were OC43, 16.67% were 229E, 14.97% were NL63 and 7.82% were HKU1. The month distribution showed that totally HCoV was prevalent in winter, but differences existed in different species. The 5 year distribution of HCoV showed a peak-valley distribution trend, with the detection rate higher in 2011 and 2013 whereas lower in 2010, 2012 and 2014. The age distribution revealed that children (especially those <3 years old) and old people (>50 years) were both high risk groups to be infected by HCoV. Of the 294 HCoV positive patients, 34.69% (101 cases) were co-infected by other common respiratory viruses, and influenza virus was the most common co-infecting virus (30/101, 29.70%). Fifteen HCoV-OC43 positive samples of 2013–2014 were selected for S gene sequencing and phylogenetic analysis, and the results showed that the 15 strains could be divided into 2 clusters in the phylogenetic tree, 12 strains of which formed a separate cluster that was closer to genotype G found in Malaysia. It was revealed for the first time that genotype B and genotype G of HCoV-OC43 co-circulated and the newly defined genotype G was epidemic as a dominant genotype during 2013–2014 in Guanzhou, south China. © 2018 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adolescent; adult; age distribution; Article; child; China; controlled study; Coronaviridae; Coronaviridae infection; female; fever; gene sequence; genetic variability; genotype; high risk population; human; Human coronavirus 229E; Human coronavirus HKU1; Human coronavirus NL63; Human coronavirus OC43; infant; influenza; major clinical study; Malaysia; male; nucleotide sequence; phylogenetic tree; phylogeny; polymerase chain reaction; prevalence; real time polymerase chain reaction; respiratory syncytial virus infection; respiratory tract infection; S gene; upper respiratory tract infection; virus gene; winter; classification; Coronavirinae; isolation and purification; pathogenicity; respiratory tract infection; China; Coronavirus; Humans; Phylogeny; Respiratory Tract Infections","Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23. , https://doi.org/10.1007/978-1-4939-2438-7_1, PMID: 25720466; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820. , https://doi.org/10.3390/v2081803, PMID: 21994708; Crossley, B.M., Mock, R.E., Callison, S.A., Hietala, S.K., Identification and characterization of a novel alpaca respriratory coronavirus most closely related to the human coronavirus 229E (2012) Viruses, 4, pp. 3689-3700. , https://doi.org/10.3390/v4123689, PMID: 23235471; Gerna, G., Campanini, G., Rovida, F., Percivalle, E., Sarasini, A., Marchi, A., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78 (7), pp. 938-949. , https://doi.org/10.1002/jmv.20645, PMID: 16721849; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Identification of a new human coronavirus (2004) Nat Med, 10 (4), pp. 368-373. , https://doi.org/10.1038/nm1024, PMID: 15034574; Pyrc, K., Berkhout, B., van der Hoek, L., Identification of new human coronaviruses (2007) Expert Rev Anti Infect Ther, 5 (2), pp. 245-253. , https://doi.org/10.1586/14787210.5.2.245, PMID: 17402839; Berry, M., Gamieldien, J., Fielding, B.C., Identification of new respiratory viruses in the new millennium (2015) Viruses, 7 (3), pp. 996-1019. , https://doi.org/10.3390/v7030996, PMID: 25757061; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23. , https://doi.org/10.1007/978-1-4939-2438-7_1, PMID: 25720466; Pyrc, K., Berkhout, B., Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) J Virol, 81 (7), pp. 3051-3057. , https://doi.org/10.1128/JVI.01466-06, PMID: 17079323; Tsang, K.W., Ho, P.L., Ooi, G.C., Yee, W.K., Wang, T., Chan-Yeung, M., A cluster of cases of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1977-1985. , https://doi.org/10.1056/NEJMoa030666, PMID: 12671062; Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669. , https://doi.org/10.1126/science.1092002, Chinese SARS Molecular Epidemiology Consortium. PMID: 14752165; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12 (1), p. 222. , https://doi.org/10.1186/s12985-015-0439-5, PMID: 26695637; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Coronaviruses: Severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers (2014) Curr Opin Infect Dis, 27 (5), pp. 411-417. , https://doi.org/10.1097/QCO.0000000000000089, PMID: 25033169; Zhang, D., He, Z., Xu, L., Zhu, X., Wu, J., Wen, W., Epidemiology characteristics of respiratory viruses found in children and adults with respiratory tract infections in southern China (2014) Int J Infect Dis, 25, pp. 159-164. , https://doi.org/10.1016/j.ijid.2014.02.019, PMID: 24927663; (2009) CDC Protocol of Real Time RTPCR for Influenza A (H1N1), , http://www.who.int/csr/resources/publications/swineflu/realtimeptpcr/en/, WHO. 6 October; Chidlow, G.R., Harnett, G.B., Shellam, G.R., Smith, D.W., An economical tandem multiplex real-time PCR technique for the detection of a comprehensive range of respiratory pathogens (2009) Viruses, 1 (1), pp. 42-56. , https://doi.org/10.3390/v1010042, PMID: 21994537; Hu, A., Colella, M., Tam, J.S., Rappaport, R., Cheng, S.M., Simultaneous detection, subgrouping, and quantitation of respiratory syncytial virus A and B by real-time PCR (2003) J Clin Microbiol, 41 (1), pp. 149-154. , https://doi.org/10.1128/JCM.41.1.149-154.2003, PMID: 12517840; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48 (8), pp. 2940-2947. , https://doi.org/10.1128/JCM.00636-10, PMID: 20554810; van de Pol, A.C., Van Loon, A.M., Wolfs, T.F., Jansen, N.J., Nijhuis, M., Breteler, E.K., Increased Detection of Respiratory Syncytial Virus, Influenza Viruses, Parainfluenza Viruses, and Adenoviruses with Real-Time PCR in Samples from Patients with Respiratory Symptoms (2007) J Clin Microbiol, 45 (7), pp. 2260-2262. , https://doi.org/10.1128/JCM.00848-07, PMID: 17507513; Heim, A., Ebnet, C., Harste, G., Pring-Akerblom, P., Rapid and quantitative detection of human adenovirus DNA by real-time PCR (2003) J Med Virol, 70 (2), pp. 228-239. , https://doi.org/10.1002/jmv.10382, PMID: 12696109; Lu, X., Chittaganpitch, M., Olsen, S.J., Mackay, I.M., Sloots, T.P., Fry, A.M., Real-time PCR assays for detection of bocavirus in human specimens (2006) J Clin Microbiol, 44 (9), pp. 3231-3235. , https://doi.org/10.1128/JCM.00889-06, PMID: 16954253; Maertzdorf, J., Wang, C.K., Brown, J.B., Quinto, J.D., Chu, M., De Graaf, M., Real-time reverse transcrip-tase PCR assay for detection of human metapneumoviruses from all known genetic lineages (2004) J Clin Microbiol, 42 (3), pp. 981-986. , https://doi.org/10.1128/JCM.42.3.981-986.2004, PMID: 15004041; Coiras, M.T., Aguilar, J.C., García, M.L., Casas, I., Pérez-Breña, P., Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays (2004) J Med Virol, 72, pp. 484-495. , https://doi.org/10.1002/jmv.20008, PMID: 14748074; Liao, X., Hu, Z., Liu, W., Lu, Y., Chen, D., Chen, M., New epidemiological and clinical signatures of 18 pathogens from respiratory tract infections based on a 5-Year study (2015) PLoS One, 10 (9), p. e0138684. , https://doi.org/10.1371/journal.pone.0138684, PMID: 26406339; Xu, L., He, X., Zhang, D.M., Feng, F.S., Wang, Z., Guan, L.L., Surveillance and genome analysis of human bocavirus in patients with respiratory infection in Guangzhou, China (2012) PLoS One, 7 (9), p. e44876. , https://doi.org/10.1371/journal.pone.0044876, PMID: 22984581; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum Parsimony methods (2011) Mol Biol Evol., 28 (10), pp. 2731-2739. , https://doi.org/10.1093/molbev/msr121, PMID: 21546353; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14 (8), pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81, PMID: 27344959; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining’host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23 (8), pp. 468-478. , https://doi.org/10.1016/j.tim.2015.06.003, PMID: 26206723; Liu, W.K., Liu, Q., De Chen, H., Liang, H.X., Chen, X.K., Chen, M.X., Epidemiology of acute respiratory infections in children in Guangzhou: A three-year study (2014) PLoS One, 9 (5), p. e96674. , https://doi.org/10.1371/journal.pone.0096674, PMID: 24797911; Lu, Y., Tong, J., Pei, F., Yang, Y., Xu, D., Ji, M., Viral aetiology in adults with acute upper respiratory tract infection in Jinan, Northern China (2013) Clin Dev Immunol, 2013, p. 869521. , https://doi.org/10.1155/2013/869521, PMID: 23690828; Yip, C.C., Lam, C.S., Luk, H.K., Wong, E.Y., Lee, R.A., So, L.Y., A six-year descriptive epidemiological study of human coronavirus infections in hospitalized patients in Hong Kong (2016) Virol Sin, 31 (1), pp. 41-48. , https://doi.org/10.1007/s12250-016-3714-8, PMID: 26920709; Woo, P.C., Yuen, K.Y., Lau, S.K., Epidemiology of coronavirus-associated respiratory tract infections and the role of rapid diagnostic tests: A prospective study (2012) Hong Kong Med J, 18, pp. 22-24. , PMID: 22311356; Kon, M., Watanabe, K., Tazawa, T., Watanabe, K., Tamura, T., Tsukagoshi, H., Detection of human coronavirus NL63 and OC43 in children with acute respiratory infections in Niigata, Japan, between 2010 and 2011 (2012) Jpn J Infect Dis, 65 (3), pp. 270-272. , PMID: 22627314; Liao, X., Hu, Z., Liu, W., Lu, Y., Chen, D., Chen, M., New epidemiological and clinical signatures of 18 pathogens from respiratory tract infections based on a 5-year study (2015) PLoS One, 10 (9), p. e0138684. , https://doi.org/10.1371/journal.pone.0138684, PMID: 26406339; Lu, R., Yu, X., Wang, W., Duan, X., Zhang, L., Zhou, W., Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays (2012) PLoS One, 7 (6), p. e38638. , https://doi.org/10.1371/journal.pone.0038638, PMID: 22719912; Dare, R.K., Fry, A.M., Chittaganpitch, M., Sawanpanyalert, P., Olsen, S.J., Erdman, D.D., Human coronavirus infections in rural Thailand: A comprehensive study using real-time reverse-transcription polymerase chain reaction assays (2007) J Infect Dis, 196 (9), pp. 1321-1328. , https://doi.org/10.1086/521308, PMID: 17922396; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102 (39), pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102, PMID: 16169905; Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J Virol, 85 (21), pp. 11325-11337. , https://doi.org/10.1128/JVI.05512-11, PMID: 21849456; Zhang, Y., Li, J., Xiao, Y., Zhang, J., Wang, Y., Chen, L., Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination (2015) J Infect, 70 (6), pp. 641-650. , https://doi.org/10.1016/j.jinf.2014.12.005, PMID: 25530469; Oong, X.Y., Ng, K.T., Takebe, Y., Ng, L.J., Chan, K.G., Chook, J.B., Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: Phylogenetic, spatiotemporal and transmission network analyses (2017) Emerg Microbes Infect, 6 (1), p. e3. , https://doi.org/10.1038/emi.2016.132, PMID: 28050020","Cao, K.-Y.; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen UniversityChina; email: caoky@mail.sysu.edu.cn",,"Public Library of Science",19326203,,POLNC,"29377913","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85041185817 "Bonnin A., Danneels A., Dubuisson J., Goffard A., Belouzard S.","57202922768;37112090800;7102542575;16425384700;6507480311;","HCoV-229E spike protein fusion activation by trypsin-like serine proteases is mediated by proteolytic processing in the S2′ region",2018,"Journal of General Virology","99","7", 001074,"908","912",,2,"10.1099/jgv.0.001074","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049847621&doi=10.1099%2fjgv.0.001074&partnerID=40&md5=278dec0011e03ba4407e951ef072391f","Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de Lille, Lille, F-59000, France","Bonnin, A., Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de Lille, Lille, F-59000, France; Danneels, A., Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de Lille, Lille, F-59000, France; Dubuisson, J., Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de Lille, Lille, F-59000, France; Goffard, A., Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de Lille, Lille, F-59000, France; Belouzard, S., Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de Lille, Lille, F-59000, France","Human coronavirus 229E (HCoV-229E) is responsible for common colds. Like other coronaviruses, HCoV-229E exploits cellular proteases to activate fusion mediated by the spike protein. We analysed the proteolytic processing of the HCoV-229E spike protein by trypsin-like serine proteases leading to activation of the fusion process. Unlike in other coronaviruses, HCoV-229E fusion activation appears to be a one-step process. Indeed, cleavage of the S1/S2 interface does not seem to be a prerequisite, and the fusion activation is highly reliant on the S2′ region, with arginine residue 683 acting as the recognition site. © 2018 The Authors.","Entry; Fusion; HCoV-229E; Spike protein","arginine; asparagine; cathepsin L; furin; tryptase; virus fusion protein; virus spike protein; core protein; coronavirus spike glycoprotein; serine proteinase; trypsin-like serine protease; virus fusion protein; amino acid sequence; amino terminal sequence; Article; carboxy terminal sequence; conformational transition; controlled study; human; Human coronavirus 229E; nonhuman; priority journal; protein cleavage; protein degradation; protein expression; receptor binding; virus entry; virus neutralization; virus particle; chemistry; Coronavirus infection; genetics; HEK293 cell line; Human coronavirus 229E; metabolism; Coronavirus 229E, Human; Coronavirus Infections; HEK293 Cells; Humans; Serine Endopeptidases; Spike Glycoprotein, Coronavirus; Viral Core Proteins; Viral Fusion Proteins","Simmons, G., Zmora, P., Gierer, S., Heurich, A., Pöhlmann, S., Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research (2013) Antiviral Res, 100, pp. 605-614; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci USA, 106, pp. 5871-5876; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J Virol, 83, pp. 7411-7421; Belouzard, S., Madu, I., Whittaker, G.R., Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain (2010) J Biol Chem, 285, pp. 22758-22763; Burkard, C., Verheije, M.H., Wicht, O., Van Kasteren, S.I., Van Kuppeveld, F.J., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) Plos Pathog, p. 10; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci USA, 111, pp. 15214-15219; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121, pp. 190-193; Van Der Hoek, L., Human coronaviruses: What do they cause? (2007) Antivir Ther, 12, pp. 651-658; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2009) J Virol, 83, pp. 712-721; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J Virol, 91. , JVI.01387-16; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., TMPRSS2 activates the human coronavirus 229E for cathepsinindependent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J Virol, 83, pp. 8744-8758; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci USA, 102, pp. 11876-11881; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc Natl Acad Sci USA, 102, pp. 12543-12547","Belouzard, S.; Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204, CIIL U1019 – CIIL-Centre d’Infection et d’Immunité de Lille Centre d’Infection et d’Immunité de LilleFrance; email: sandrine.belouzard@ibl.cnrs.fr",,"Microbiology Society",00221317,,JGVIA,"29786498","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85049847621 "Whittaker G.R., André N.M., Milleta J.K.","7006825143;57200535889;57200524638;","Improving virus taxonomy by recontextualizing sequence-based classification with biologically relevant data: The case of the Alphacoronavirus 1 species",2018,"mSphere","3","1", e00463-17,"","",,6,"10.1128/mSphere.00463-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041529916&doi=10.1128%2fmSphere.00463-17&partnerID=40&md5=ec14032c3b4b8c5a7b7615f5399cc11e","Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States","Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; André, N.M., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Milleta, J.K., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States","The difficulties related to virus taxonomy have been amplified by recent advances in next-generation sequencing and metagenomics, prompting the field to revisit the question of what constitutes a useful viral classification. Here, taking a challenging classification found in coronaviruses, we argue that consideration of biological properties in addition to sequence-based demarcations is critical for generating useful taxonomy that recapitulates complex evolutionary histories. Within the Alphacoronavirus genus, the Alphacoronavirus 1 species encompasses several biologically distinct viruses. We carried out functionally based phylogenetic analysis, centered on the spike gene, which encodes the main surface antigen and primary driver of tropism and pathogenesis. Within the Alphacoronavirus 1 species, we identify clade A (encompassing serotype I feline coronavirus [FCoV] and canine coronavirus [CCoV]) and clade B (grouping serotype II FCoV and CCoV and transmissible gastroenteritis virus [TGEV]-like viruses). We propose this clade designation, along with the newly proposed Alphacoronavirus 2 species, as an improved way to classify the Alphacoronavirus genus. © 2018 Whittaker et al.","Alphacoronavirus; Alphacoronavirus 1; Biotype; Canine coronavirus; Clade; Classification; Coronavirus; Feline coronavirus; Serotype; Transmissible gastroenteritis virus",,"Simmonds, P., Adams, M.J., Benko, M., Breitbart, M., Brister, J.R., Carstens, E.B., Davison, A.J., Zerbini, F.M., Consensus statement: virus taxonomy in the age of metagenomics (2017) Nat Rev Microbiol, 15, pp. 161-168. , https://doi.org/10.1038/nrmicro.2016.177; de Groot, R.J., Cowley, J.A., Enjuanes, L., Faaberg, K.S., Perlman, S., Rottier, P.J.M., Snijder, E.J., Gorbalenya, A.E., Order-Nidovirales (2012) Virus taxonomy, pp. 784-794. , In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed) Elsevier, San Diego, CA; Lauber, C., Ziebuhr, J., Junglen, S., Drosten, C., Zirkel, F., Nga, P.T., Morita, K., Gorbalenya, A.E., Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses (2012) Arch Virol, 157, pp. 1623-1628. , https://doi.org/10.1007/s00705-012-1295-x; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009) (2010) Arch Virol, 155, pp. 133-146. , https://doi.org/10.1007/s00705-009-0547-x; Haijema, B.J., Rottier, P., de Groot, R.P., Feline coronaviruses: a tale of two-faced types (2007) Coronaviruses: molecular and cellular Biology, pp. 183-204. , In Thiel V (ed) Caister Academic Press, Poole, United Kingdom; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157. , https://doi.org/10.1006/viro.1998.9045; Garner, M.M., Ramsell, K., Morera, N., Juan-Sallés, C., Jiménez, J., Ardiaca, M., Montesinos, A., Kiupel, M., Clinicopathologic features of a systemic coronavirus-associated disease resembling feline infectious peritonitis in the domestic ferret (Mustela putorius) (2008) Vet Pathol, 45, pp. 236-246. , https://doi.org/10.1354/vp.45-2-236; Licitra, B.N., Duhamel, G.E., Whittaker, G.R., Canine enteric coronaviruses: emerging viral pathogens with distinct recombinant spike proteins (2014) Viruses, 6, pp. 3363-3376. , https://doi.org/10.3390/v6083363; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033. , https://doi.org/10.3390/v4061011; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , https://doi.org/10.1016/j.virusres.2014.11.021; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Molecular biology and pathogenesis of coronaviruses, pp. 365-380. , In Rottier PJM, van der Zeijst BAM, Spaan WJM, Horzinek MC (ed) Springer, Boston, MA; Hohdatsu, T., Okada, S., Koyama, H., Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses (1991) Arch Virol, 117, pp. 85-95. , https://doi.org/10.1007/BF01310494; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: viral evolution and pathobiology (2008) Vet Microbiol, 132, pp. 221-234. , https://doi.org/10.1016/j.vetmic.2008.06.007; Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., Differences in virus receptor for type I and type II feline infectious peritonitis virus (1998) Arch Virol, 143, pp. 839-850. , https://doi.org/10.1007/s007050050336; Dye, C., Temperton, N., Siddell, S.G., Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) J Gen Virol, 88, pp. 1753-1760. , https://doi.org/10.1099/vir.0.82666-0; Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Cirone, F., Tempesta, M., Buonavoglia, C., Molecular characterisation of the virulent canine coronavirus CB/05 strain (2007) Virus Res, 125, pp. 54-60. , https://doi.org/10.1016/j.virusres.2006.12.006; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Regan, A.D., Millet, J.K., Tse, L.P., Chillag, Z., Rinaldi, V.D., Licitra, B.N., Dubovi, E.J., Whittaker, G.R., Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain (2012) Virology, 430, pp. 90-99. , https://doi.org/10.1016/j.virol.2012.04.013; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146. , https://doi.org/10.1128/JVI.01394-09; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg Infect Dis, 19, pp. 1066-1073. , https://doi.org/10.3201/eid1907.121094; de Haan, C.A.M., Haijema, B.J., Schellen, P., Wichgers Schreur, P., te Lintelo, E., Vennema, H., Rottier, P.J.M., Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation (2008) J Virol, 82, pp. 6078-6083. , https://doi.org/10.1128/JVI.00074-08; Lamers, M.M., Smits, S.L., Hundie, G.B., Provacia, L.B., Koopmans, M.P., Osterhaus, A.D., Haagmans, B.L., Raj, V.S., Naturally occurring recombination in ferret coronaviruses revealed by complete genome characterization (2016) J Gen Virol, 97, pp. 2180-2186. , https://doi.org/10.1099/jgv.0.000520; Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses (2014) Influenza Other Respir Viruses, 8, pp. 384-388. , https://doi.org/10.1111/irv.12230; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst Biol, 59, pp. 307-321. , https://doi.org/10.1093/sysbio/syq010","Whittaker, G.R.; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityUnited States; email: gary.whittaker@cornell.edu",,"American Society for Microbiology",23795042,,,,"English","mSphere",Article,"Final",,Scopus,2-s2.0-85041529916 "Lamwong J., Tang I.-M., Pongsumpun P.","57191248989;7102142557;6506102956;","Mers model of thai and south korean population",2018,"Current Applied Science and Technology","18","1",,"45","57",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064314555&partnerID=40&md5=a11930f91a66faa53619b4278cb351f0","Department of General basis, Thatphanom College, Nakhon Phanom UniversityNakhon Phanom, Thailand; Computational and Applied Science for Smart Innovation Cluster (CLASSIC), Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand; Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand","Lamwong, J., Department of General basis, Thatphanom College, Nakhon Phanom UniversityNakhon Phanom, Thailand; Tang, I.-M., Computational and Applied Science for Smart Innovation Cluster (CLASSIC), Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand; Pongsumpun, P., Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand","Coronavirus (MERS-Cov) caused the occurrence of Corona. First infected case was reported in 2012 during a poultry outbreak in Saudi Arabia. After that, there were the reports of the sporadic outbreaks in all regions. In this study, we considered the transmission cycle between two population groups: Thai and South Korea. Each population group was divided into susceptible, exposed, infected, quarantine and recovered groups. The behaviors of the solutions were obtained using a standard dynamical modeling method. The stability conditions for the disease free equilibrium state and disease endemic equilibrium states were determined. The basic reproductive number R 0 is obtained. When R 0 <1, the disease-free state was locally asymptotically stable. If R 0 >1, the endemic equilibrium state was locally asymptotically stable. The numerical solutions were shown for supporting the theoretical results. We found that when we decreased α 1 (the rate of susceptible Thai human changes to become an exposed Thai human and μ 1 (the rate at which South Korean population moved out the country), the number of coronavirus case was decreased and outburst of coronavirus epidemic was shorter. © 2018, King Mongkut's Institute of Technology Ladkrabang. All rights reserved.","Basic reproductive number; Mathematical models; MERS; Stability; Standard dynamical modeling theorem",,"(2016) Guidance for Self-Isolation and Quarantine Incase of Middle East Respiratory Syndrome MERS, , http://www.beid.ddc.moph.go.th, Available through: Bureau of Emerging Infectious disease. [online] Available at; Poletto, C., Quantifying spatiotemporal heterogeneity of MERS-CoV transmission in the Middle East region: A combined modelling approach (2015) Model Epidem, 204, pp. 1-9; Chowell, G., Blumberg, S., Simonsen, L.K., Miller, A.M., Viboud, C., Synthesizing data and models for the spread of MERS-CoV: Key role of index cases and hospital transmission (2014) Epidemics, 9, pp. 40-51; (2015) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) Republic of Korean, , http://www.who.int/csr/don/12-june-2015-mers-korea/en/, [Online].Available; (2016) Thailand Confirms Mers-Cov in Traveler, WHO Cautions against Continued Risk of Importation, , http://www.searo.who.int/mediacentre/releases/2016/1618/en/; Middle East respiratory syndrome coronavirus (MERS-Cov)-Saudi Arabia (2016) [Online], , http://www.who.int/csr/don/16-may-2016-mers-saudi-arabia/en/, Available at; Hsieh, Y.H., 2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: Insights from Modeling (2015) Peerj, 3. , https://doi.org/10.7717/peerj.1505; (2016) International Tourist Arrivals to Thailand by Nationality, , http://www.tourism.go.th/home/details/11/221/25516; (2016) Statistics of Arrivals by Cruise2016, , http://kto.visitkorea.or.kr/eng/tourismStatics/keyFacts/KoreaMonthlyStatistics/eng/inout/crInout.kto; Small, M., Tse, C.K., Walker, D.M., Super-spreaders and the rate of transmission of the SARS virus (2006) Physica D, 215, pp. 146-158; Yong, B., Owen, L., Dynamical Transmission Model of MERS-Cov in Two Areas (2016) Application of Mathematics in Industry and Life, 20010, pp. 1-7; Leah, E.K., (1988) Mathematical Models in Biology, , New York: Random House; Pongsumpun, P., Tang, I.-M., Dynamics of a New-strain of the H1N1 Influenza A Virus Incorporating the Effects of Repetitive Contacts (2014) Computational and Mathematical Methods in Medicine, pp. 1-9","Pongsumpun, P.; Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology LadkrabangThailand; email: kppuntan@kmitl.ac.th",,"King Mongkut's Institute of Technology Ladkrabang",25869396,,,,"English","Curr.Appl. Sci. Technol.",Article,"Final",,Scopus,2-s2.0-85064314555 "Zheng A., Shi Y., Shen Z., Wang G., Shi J., Xiong Q., Fang L., Xiao S., Fu Z.F., Peng G.","57146694500;55481317400;56921067100;57200632379;57201360383;57203283144;7402470374;7402022567;57205304895;56651662900;","Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer",2018,"Journal of Biological Chemistry","293","31",,"12054","12067",,1,"10.1074/jbc.RA118.003756","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051103355&doi=10.1074%2fjbc.RA118.003756&partnerID=40&md5=784d688fede01fe1123334816f7e2954","Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China","Zheng, A., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Shi, Y., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Shen, Z., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Wang, G., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Shi, J., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Xiong, Q., College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Fang, L., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Xiao, S., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Fu, Z.F., Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Peng, G., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China","Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro. Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1–Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251–Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259 –Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses. © 2018 Zheng et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.",,"Amino acids; Biology; Diseases; Monomers; Biological experiments; C-terminal regions; Enzymatic activities; Evolutionary process; Multiple sequence alignments; N-terminal domains; Nonstructural proteins; Viral replication; Dimers; asparagine; dimer; glutamine; histidine; monomer; nidovirus endoribonuclease; nonstructural protein 5; oligomer; phenylalanine; ribonuclease; unclassified drug; valine; protein binding; recombinant protein; ribonuclease; viral protein; 3' untranslated region; Alphacoronavirus; amino terminal sequence; Arterivirus; Article; Betacoronavirus; carboxy terminal sequence; controlled study; Coronavirinae; dimerization; enzyme active site; enzyme activity; eukaryotic cell; evolutionary homology; genetic code; in vitro study; innate immunity; molecular evolution; Nidovirales; Nidovirus; nonhuman; nsp15 gene; oligomerization; porcine Deltacoronavirus; priority journal; sequence alignment; structure analysis; virus morphology; virus replication; alpha helix; amino acid sequence; beta sheet; binding site; chemistry; classification; Coronavirinae; Escherichia coli; gene expression; gene vector; genetics; metabolism; molecular cloning; molecular evolution; molecular model; protein domain; protein multimerization; protein subunit; SARS coronavirus; sequence homology; X ray crystallography; Amino Acid Sequence; Arterivirus; Binding Sites; Cloning, Molecular; Coronavirus; Crystallography, X-Ray; Endoribonucleases; Escherichia coli; Evolution, Molecular; Gene Expression; Genetic Vectors; Models, Molecular; Nidovirales; Protein Binding; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Protein Interaction Domains and Motifs; Protein Multimerization; Protein Subunits; Recombinant Proteins; SARS Virus; Sequence Alignment; Sequence Homology, Amino Acid; Viral Nonstructural Proteins; Virus Replication","Nga, P.T., Parquet Mdel, C., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Thuy, N.T., Gorbalenya, A.E., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) PLoS Pathog, 7; Vasilakis, N., Guzman, H., Firth, C., Forrester, N.L., Widen, S.G., Wood, T.G., Rossi, S.L., Tesh, R.B., Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range (2014) Virol. J., 11, p. 97; Cong, Y., Verlhac, P., Reggiori, F., The interaction between nidovirales and autophagy components (2017) Viruses, 9, p. E182; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Nedialkova, D.D., Ulferts, R., van den Born, E., Lauber, C., Gorbalenya, A.E., Ziebuhr, J., Snijder, E.J., Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease (2009) J. Virol., 83, pp. 5671-5682; McCluskey, B.J., Haley, C., Rovira, A., Main, R., Zhang, Y., Barder, S., Retrospective testing and case series study of porcine Deltacoronavirus in U.S. Swine herds (2016) Prev. Vet. Med., 123, pp. 185-191; Cao, J., Zhang, X., Comparative in vivo analysis of the Nsp15 endoribonuclease of murine, porcine and severe acute respiratory syndrome coronaviruses (2012) Virus Res, 167, pp. 247-258; Balasuriya, U.B., Carossino, M., Reproductive effects of arteriviruses: Equine arteritis virus and porcine reproductive and respiratory syndrome virus infections (2017) Curr. Opin. Virol., 27, pp. 57-70; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J. Gen. Virol., 94, pp. 2141-2163; Guo, Z., Chen, X.X., Li, R., Qiao, S., Zhang, G., The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: A molecular epidemiological perspective (2018) Virol. J., 15, p. 2; Bergendahl, L.T., Marsh, J.A., Functional determinants of protein assembly into homomeric complexes (2017) Sci. Rep., 7, p. 4932; Di, H., McIntyre, A.A., Brinton, M.A., New insights about the regulation of Nidovirus subgenomic mRNA synthesis (2018) Virology, 517, pp. 38-43; Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Buch-Meier, M.J., Stevens, R.C., Kuhn, P., Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endo-nuclease Nsp15 suggests a role for hexamerization as an allosteric switch (2007) J. Virol., 81, pp. 6700-6708; Brierley, I., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., Brown, T.D., Inglis, S.C., An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV (1987) EMBO J, 6, pp. 3779-3785; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6; Chen, Q., Fang, L., Wang, D., Wang, S., Li, P., Li, M., Luo, R., Xiao, S., Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication (2012) Virus Res, 163, pp. 650-655; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Bhardwaj, K., Sun, J., Holzenburg, A., Guarino, L.A., Kao, C.C., RNA recognition and cleavage by the SARS coronavirus endoribonuclease (2006) J. Mol. Biol., 361, pp. 243-256; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc. Natl. Acad. Sci. U.S.A., 114, pp. E4251-E4260; Shi, Y., Li, Y., Lei, Y., Ye, G., Shen, Z., Sun, L., Luo, R., Peng, G., A dimerization-dependent mechanism drives the endoribonuclease function of porcine reproductive and respiratory syndrome virus nsp11 (2016) J. Virol., 90, pp. 4579-4592; Shi, X., Wang, L., Li, X., Zhang, G., Guo, J., Zhao, D., Chai, S., Deng, R., Endoribonuclease activities of porcine reproductive and respiratory syndrome virus nsp11 was essential for nsp11 to inhibit IFN- Induction (2011) Mol. Immunol., 48, pp. 1568-1572; Posthuma, C.C., Nedialkova, D.D., Zevenhoven-Dobbe, J.C., Blokhuis, J.H., Gorbalenya, A.E., Snijder, E.J., Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle (2006) J. Virol., 80, pp. 1653-1661; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J. Virol., 78, pp. 12218-12224; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E., Ziebuhr, J., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 12694-12699; Cao, J., Wu, C.C., Lin, T.L., Turkey coronavirus non-structure protein Nsp15–an endoribonuclease (2008) Intervirology, 51, pp. 342-351; Kang, H., Bhardwaj, K., Li, Y., Palaninathan, S., Sacchettini, J., Guarino, L., Leibowitz, J.L., Kao, C.C., Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease (2007) J. Virol., 81, pp. 13587-13597; Xu, X., Zhai, Y., Sun, F., Lou, Z., Su, D., Xu, Y., Zhang, R., Rao, Z., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein Nsp15 (2006) J. Virol., 80, pp. 7909-7917; Lauber, C., Ziebuhr, J., Junglen, S., Drosten, C., Zirkel, F., Nga, P.T., Morita, K., Gorbalenya, A.E., Mesoniviridae: A proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses (2012) Arch. Virol., 157, pp. 1623-1628; Laneve, P., Altieri, F., Fiori, M.E., Scaloni, A., Bozzoni, I., Caffarelli, E., Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis (2003) J. Biol. Chem., 278, pp. 13026-13032; Gioia, U., Laneve, P., Dlakic, M., Arceci, M., Bozzoni, I., Caffarelli, E., Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis (2005) J. Biol. Chem., 280, pp. 18996-19002; Ricagno, S., Egloff, M.P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Cambillau, C., Canard, B., Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 11892-11897; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879; Guarino, L.A., Bhardwaj, K., Dong, W., Sun, J., Holzenburg, A., Kao, C., Mutational analysis of the SARS virus Nsp15 endoribonuclease: Identification of residues affecting hexamer formation (2005) J. Mol. Biol., 353, pp. 1106-1117; Huo, T., Liu, X., Crystallization and preliminary X-ray crystallographic analysis of a nonstructural protein 15 mutant from human coronavirus 229E (2015) Acta Crystallogr. F Struct. Biol. Commun., 71, pp. 1156-1160; Laskowski, R.A., Swindells, M.B., LigPlot: Multiple ligand–protein interaction diagrams for drug discovery (2011) J. Chem. Inf. Model., 51, pp. 2778-2786; Renzi, F., Caffarelli, E., Laneve, P., Bozzoni, I., Brunori, M., Vallone, B., The structure of the endoribonuclease XendoU: From small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 12365-12370; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine Deltacoronavirus in the United States (2015) MBio, 6, p. e00064; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripi-Pat, T., Wegner, M., Tuntituvanont, A., Nilubol, D., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch. Virol., 161, pp. 2909-2911; Deng, X., Baker, S.C., An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses (2018) Virology, 517, pp. 157-163; Orr, H.A., Fitness and its role in evolutionary genetics (2009) Nat. Rev. Genet., 10, pp. 531-539; Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y.M., Lopez, R., The EMBL-EBI bioinformatics web and programmatic tools framework (2015) Nucleic Acids Res, 43, pp. W58-W584; Robert, X., Gouet, P., Deciphering key features in protein structures with the new ENDscript server (2014) Nucleic Acids Res, 42, pp. 320-324","Peng, G.; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig ProductionChina; email: penggq@mail.hzau.edu.cn",,"American Society for Biochemistry and Molecular Biology Inc.",00219258,,JBCHA,"29887523","English","J. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85051103355 "Ozmen O., Haligur M., Aydogan A., Demir N.","6602100853;6506544294;24068791000;7006874025;","Immunohistochemical detection of viral etiopathogenesis in lambs and goat kids with neonatal diarrhea",2018,"Acta Scientiae Veterinariae","46","1", 1572,"","",,,"10.22456/1679-9216.83864","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072375545&doi=10.22456%2f1679-9216.83864&partnerID=40&md5=84c7c829add4e4b5deab5c607b0a5129","Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, TR-15030, Turkey; Department of Pathology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey; Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey","Ozmen, O., Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Istiklal Yerleskesi, Burdur, TR-15030, Turkey; Haligur, M., Department of Pathology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey; Aydogan, A., Department of Pathology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey; Demir, N., Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey","Background: Neonatal enteritis is an important disease that causes deaths of animals before 3 weeks of age, and results in significant economic losses. Viral agents can predispose the young animals to secondary infections in the gastrointestinal tract, especially in lambs and goat kids younger than 21 days. Although the neonatal diarrhea is common in calves, there is still little knowledge about pathology, pathogenesis and immunohistochemical localization of viral agents that cause neonatal enteritis in lambs and goat kids. In this study, we carried out investigations with the aim of detecting adenovirus, rotavirus, coronavirus and herpes virus in the guts of goat kids and lambs with viral enteritis. Materials, Methods & Results: Adenovirus, rotavirus, coronavirus and herpes virus antisera were applied to paraffinembedded intestinal tissue from neonatal lambs and kids that had died from enteritis. In addition, viral agents in the gut cells were detected and evaluated by electron microscopy. The study material consisted of 15 lambs and 15 goat kids that were presented for diagnosis. Viral agents were detected by immunohistochemically in 20 out of 30 animals. Rotavirus was diagnosed in 10 animals, adenovirus in five, herpes virus in three and coronavirus in two animals; and these results were supported by the electron microscopy. This study showed that viral agents play an important role in neonatal enteritis in lambs and kids. Discussion: Bacteria, viruses and protozoa may have a role in the etiology of neonatal enteritis and identifying the etiological agents is not always possible without laboratory studies. In addition, the immune system of the animal and environmental factors are important factors for to occurrence of the disease. The ages of the animals in present study varied between 1 and 21 days, but susceptibility to infection was most commonly observed between the ages of 1 and 12 days, and the infected animals immediately died after the appearance of clinical symptoms during this period. The most common clinical symptoms were fever, depression, dehydration, tenesmus, abdominal swelling and loss of appetite. Histopathological examinations revealed mild to severe lesions in the gut samples including hyperemia of vessels, submucosal edema, desquamation, erosion and ulcers of the epithelial layer of the gut, and inflammatory cell infiltration in the submucosa. Enlargement of mucus-secreting cells was most commonly observed. These results are common in neonatal enteritis and an agreement with previous studies and classical knowledge about clinical and pathological findings in this study. The agents of neonatal diarrhea most often isolated in calves are rotavirus, coronavirus, Cryptosporidium and enterotoxigenic Escherichia coli. A diagnosis of viral agents can be made by immunohistochemical examination of tissue fixed in formalin. This study revealed that the most common viral agents in lambs and goat kids neonatal diarrhea was rotavirus. In this study, protozoal and bacterial contamination was also observed. Our current study also showed that coronavirus is not an important etiological factor, compared with other viral causes of diarrhea in small ruminants. However, according to a previous study by our group, its incidence has increased and may be an important viral agent in neonatal enteritis in the future. This study showed that viral etiology was very important to occurring of neonatal diarrhea, practitioners must be taken into consideration when meet this problem. One of the most important prophylactic measurements may be vaccination pregnant sheep or goat for passive immunity of offspring. © 2018 Universidade Federal do Rio Grande do Sul. All rights reserved.","Adenovirus; Coronavirus; Enteritis; Goat kids; Herpes virus; Lambs; Rotavirus","abdominal swelling; Adenoviridae; animal tissue; Article; bacterium contamination; Coronavirinae; Cryptosporidium; dehydration; depression; desquamation; diarrhea; disease severity; electron microscopy; enteritis; enterotoxigenic Escherichia coli; fever; Herpesviridae; histopathology; hyperemia; immunohistochemistry; incidence; infection sensitivity; inflammatory cell; inflammatory infiltrate; intestine tissue; intestine ulcer; kid (goat); lamb; loss of appetite; mucous cell; newborn; nonhuman; passive immunization; progeny; Rotavirus; ruminant; secondary infection; submucosa; tenesmus; virus detection; virus isolation","Abou El-Hassan, D.G., Neonatal diarrhoea in lambs and goat kids (1996) Proceedings of the Fourth Scientific Congress, Veterinary Medicine and Human Health, pp. 371-380. , Cairo, Egypt; Andrés, S., Jiménez, A., Sánchez, J., Alonso, J.M., Gomeza, L., Lopez, F., Rey, J., Evaluation of some etiological factors predisposing to diarrhoea in lambs in ""La Serena"" (Southwest Spain) (2007) Small Ruminant Research, 70 (2-3), pp. 272-275; Blood, D.C., Radostits, O.M., Disease of the nervous system (1989) Veterinary Medicine, pp. 619-821. , In: Blood D.C. & Radostits O.M. (Eds). 2nd edn. London: Bailliere and Tindall; Blood, D.C., (1997) Pocket Companion to Veterinary Medicine, pp. 458-459. , London: Bailliere Tindall; Brown, C.C., Barker, D.C., Barker, I.K., Alimentary systems (2007) Jubb, Kennedy and Palmer's Pathology of Domestic Animals, pp. 135-177. , In: Maxie M.G. (Ed). Philadelphia: Saunders Elsevier; Daginakatte, G.C., Chard-Bergstrom, C., Andrews, G.A., Kapil, S., Production, characterisation, and uses of monoclonal antibodies against recombinant nucleoprotein of elk coronavirus (1999) Clinical and Diagnostic Laboratory Immunolgy, 6 (3), pp. 341-344; Durham, P.J.K., Stevenson, B.J., Farquharson, B.C., Rotavirus and Coronavirus associated diarrhoea in domestic animals (1979) New Zealand Veterinary Journal, 27 (3), pp. 30-32; Eisa, M.I., Mohamed, A.A., Role of enteric pathogens in enteritis in lambs, goat kids and children and their zoonotic importance (2004) Veterinary Medical Journal of Giza, 52 (1), pp. 41-59; Gelberg, H.B., Alimentary system (2001) Thomson's Special Veterinary Pathology, pp. 48-50. , In: McGavin M.D., Carlton W.W. & Zachary J.F. (Eds). Saint Louis: Mosby; Gokce, E., Erdogan, H.M., An epidemiological study on neonatal lamb healthy (2009) Kafkas University Veterinary Faculty Journal, 15 (2), p. 225236; Hervas, J., Lopez, S., De Lara, F.C.M., Carrasco, J.A.L., Gomez-Villamandos, J.C., Adeno-virus infection in Spanish Ibex (1998) Journal of Veterinary Diagnostic Investigation, 10 (1), pp. 97-100; Kahn, C.M., Line, S., (2005) Merck Veterinary Manual, 2700p. , 9th edn. Wellington: Merck; Lehmkuhl, H.D., Debey, B.M., Cutlip, R.C., A new serotype adenovirus isolated from a goat in the United States (2001) Journal of Veterinary Diagnostic Investigation, 13 (3), pp. 195-200; Martellaa, V., Decaroa, N., Buonavoglia, C., Enteric viral infections in lambs or kids (2015) Veterinary Microbiology, 181 (1-2), pp. 154-160; Matthijnssens, J., Potgieter, C.A., Ciarlet, M., Parreño, V., Martella, V., Bányai, K., Garaicoechea, L., Van Ranst, M., Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? (2009) Journal of Virology, 83 (7), pp. 2917-2929; Munoz, M., Alvarez, M., Lanza, I., Carmenes, P., Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain (1996) Epidemiology and Infection, 117 (1), pp. 203-211; Naylor, J.M., Diarrhoea in neonatal ruminants (1990) Large Animal Internal Disease, pp. 348-353. , In: Smith B.P. (Ed). Saint Louis: Mosby Publishing; Olson, E.J., Haskell, S.R.R., Frank, R.K., Lehmkuhl, H.D., Ann Hobbs, L., Warg, J.V., Landgraf, J.G., Wunschmann, A., Isolation of an adenovirus and an adeno-associated virus from goat kids with enteritis (2004) Journal of Veterinary Diagnostic Investigation, 16 (5), pp. 461-464; Ozmen, O., Yukari, B.A., Haligur, M., Sahinduran, S., Observations and immunohistochemical detection of coronavirus, Cryptosporidium parvum and Giardia intestinalis in neonatal diarrhoea in lambs and kids (2006) Schweizer Archiv fur Tierheilkunde, 148 (7), pp. 357-364; Papp, H., Malik, Y., Farkas, S., Jakab, F., Martella, V., Banyai, K., Rotavirus strains in neglected animal species, including lambs, goats and camelids (2014) Virus Disease, 25 (2), pp. 215-222; Steele, A.D., Geyer, A., Gerdes, G.H., Rotavirus infections (2004) Infectious Diseases of Livestock, pp. 1256-1264. , In: Coetzer J.A.W. & Tustin R.C. (Eds). New York: Oxford University Press","Ozmen, O.; Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Istiklal YerleskesiTurkey; email: ozlemozmen@mehmetakif.edu.tr",,"Universidade Federal do Rio Grande do Sul",16780345,,,,"English","Acta Sci. Vet.",Article,"Final",Open Access,Scopus,2-s2.0-85072375545 "Al-Abdely H.M., Midgley C.M., Alkhamis A.M., Abedi G.R., Tamin A., Binder A.M., Alanazi K., Lu X., Abdalla O., Sakthivel S.K., Mohammed M., Queen K., Algarni H.S., Li Y., Trivedi S., Algwizani A., Alhakeem R.F., Thornburg N.J., Tong S., Ghazal S.S., Erdman D.D., Assiri A.M., Gerber S.I., Watson J.T.","6602914036;56372310100;57207929673;55887217800;6602551546;57007830700;57205250746;57216109714;57191346377;55414566800;56453979700;55601440700;56780140000;57171026600;56025976500;57192893697;54796434800;6602664202;55783951400;6602583744;7005380414;36607531400;56656063700;55374101200;","Infectious MERS-CoV isolated from a mildly ill patient, Saudi Arabia",2018,"Open Forum Infectious Diseases","5","6",,"","",,5,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053776371&partnerID=40&md5=ed0c689d3634fc74f405b2d900d582b7","Ministry of Health, Riyadh, Saudi Arabia; Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States","Al-Abdely, H.M., Ministry of Health, Riyadh, Saudi Arabia; Midgley, C.M., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Alkhamis, A.M., Ministry of Health, Riyadh, Saudi Arabia; Abedi, G.R., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Tamin, A., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Binder, A.M., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Alanazi, K., Ministry of Health, Riyadh, Saudi Arabia; Lu, X., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Abdalla, O., Ministry of Health, Riyadh, Saudi Arabia; Sakthivel, S.K., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Mohammed, M., Ministry of Health, Riyadh, Saudi Arabia; Queen, K., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Algarni, H.S., Ministry of Health, Riyadh, Saudi Arabia; Li, Y., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Trivedi, S., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Algwizani, A., Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Alhakeem, R.F., Ministry of Health, Riyadh, Saudi Arabia; Thornburg, N.J., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Tong, S., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Ghazal, S.S., Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Erdman, D.D., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Assiri, A.M., Ministry of Health, Riyadh, Saudi Arabia; Gerber, S.I., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States; Watson, J.T., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, Atlanta, GA 30329, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with a wide range of clinical presentations, from asymptomatic or mildly ill to severe respiratory illness including death. We describe isolation of infectious MERS-CoV from the upper respiratory tract of a mildly ill 27-year-old female in Saudi Arabia 15 days after illness onset. © 2018 Oxford University Press. All rights reserved.","Asymptomatic; MERS; Mild; Prolonged detection; Virus isolation","azithromycin; ceftriaxone; oseltamivir; acutely ill patient; adult; antibody response; Article; case report; child; clinical article; coughing; enzyme linked immunosorbent assay; female; headache; hospitalization; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; priority journal; respiratory tract disease; reverse transcription polymerase chain reaction; rhinorrhea; Saudi Arabia; thorax radiography; virus isolation; whole genome sequencing","Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary middle east respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854. , 2014; Omrani, A.S., Matin, M.A., Haddad, Q., A family cluster of middle east respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Middle east respiratory syndrome coronavirus transmission among health care workers: Implication for infection control (2018) Am J Infect Control, 46, pp. 165-168; Al Hosani, F.I., Pringle, K., Al Mulla, M., Response to emergence of middle east respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014 (2016) Emerg Infect Dis, 22, pp. 1162-1168; Al-Gethamy, M., Corman, V.M., Hussain, R., A case of long-term excretion and subclinical infection with middle east respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; (2015) MOH: 4 Workers at PNU Quarantined, No MERS-CoV Cases Reported Amongst Students, , https://www.moh.gov.sa/en/Ministry/MediaCenter/News/Pages/news-2015-10-15-002.aspx, Saudi Arabia Ministry of Health. Accessed 19 October 2017; (2015) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Saudi Arabia, , http://www.who.int/csr/don/22october-2015-mers-saudi-arabia/en/, Accessed 19 October 2017; Corman, V.M., Ölschläger, S., Wendtner, C.M., Performance and clinical validation of the RealStar MERS-CoV Kit for detection of middle east respiratory syndrome coronavirus RNA (2014) J Clin Virol, 60, pp. 168-171; Lu, X., Whitaker, B., Sakthivel, S.K., Real-time reverse transcription-PCR assay panel for middle east respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Assiri, A.M., Midgley, C.M., Abedi, G.R., Epidemiology of a novel recombinant middle east respiratory syndrome coronavirus in humans in Saudi Arabia (2016) J Infect Dis, 214, pp. 712-721; Assiri, A.M., Biggs, H.M., Abedi, G.R., Increase in middle east respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1-August 31, 2015 (2016) Open Forum Infect Dis, 3, p. ofw165; Yusof, M.F., Queen, K., Eltahir, Y.M., Diversity of middle east respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg Microbes Infect, 6; Trivedi, S., Miao, C., Al-Abdallat, M.M., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90, pp. 367-371; (2018) Management of Asymptomatic Persons Who Are RT-PCR Positive for Middle East Respiratory Syndrome Coronavirus (MERSCoV), , http://www.who.int/csr/disease/coronavirus_infections/management_of_asymptomatic_patients/en/, World Health Organization; Accessed 6 January 2018; Moon, S.Y., Son, J.S., Infectivity of an asymptomatic patient with middle east respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458","Midgley, C.M.; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A34, United States; email: ydk5@cdc.gov",,"Oxford University Press",23288957,,,,"English","Open Forum Infect. Dis.",Article,"Final",,Scopus,2-s2.0-85053776371 "Mustafa S., Balkhy H., Gabere M.N.","57195490754;6701797249;35174624800;","Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review",2018,"Journal of Infection and Public Health","11","1",,"9","17",,15,"10.1016/j.jiph.2017.08.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028465604&doi=10.1016%2fj.jiph.2017.08.009&partnerID=40&md5=cdba2bf2cbbe2959fd90d614afcbfcbb","Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia; Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia","Mustafa, S., Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia; Balkhy, H., Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia; Gabere, M.N., Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic respiratory virus with mechanisms that may be driven by innate immune responses. Despite the effort of scientific studies related to this virus, Middle East Respiratory Syndrome (MERS) is still a public health concern. MERS-CoV infection has a high mortality rate, and to date, no therapeutic or vaccine has been discovered, that is effective in treating or preventing the disease. In this review, we summarize our understanding of the molecular and biological events of compounds acting as MERS-CoV inhibitors, the outcomes of existing therapeutic options and the various drugs undergoing clinical trials. Currently, several therapeutic options have been employed, such as convalescent plasma (CP), intravenous immunoglobulin (IVIG), monoclonal antibodies and repurposing of existing clinically approved drugs. However, these therapeutic options have drawbacks, thus the need for an alternative approach. The requirement for effective therapeutic treatment has brought the necessity for additional MERS treatments. We suggest that antimicrobial peptides (AMPs) may be used as alternative therapeutic agents against MERS-CoV infection. In addition, we propose the feasibility of developing effective agents by repurposing the existing and clinically approved anti-coronavirus and anti-viral peptide drugs. © 2017 The Authors","Antimicrobial peptides; Convalescent plasma; Interferon; Intravenous immunoglobin; MERS-CoV; Peptide therapeutics; Ribavirin","antivirus agent; immunoglobulin; monoclonal antibody; nonstructural protein; peptide; polyclonal antibody; polypeptide antibiotic agent; unclassified drug; viral protein; antimicrobial cationic peptide; antivirus agent; antiviral activity; antiviral therapy; blood; convalescence plasma therapy; Coronaviridae; drug mechanism; drug repositioning; human; Middle East respiratory syndrome; nonhuman; plasma; priority journal; Review; virus assembly; virus entry; virus release; virus replication; whole blood therapy; clinical trial (topic); Coronavirus infection; Antimicrobial Cationic Peptides; Antiviral Agents; Clinical Trials as Topic; Coronavirus Infections; Drug Repositioning; Humans","Petersen, E., Hui, D.S., Perlman, S., Zumla, A., Middle East Respiratory Syndrome – advancing the public health and research agenda on MERS – lessons from the South Korea outbreak (2015) Int J Infect Dis, 36, pp. 54-55; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East Respiratory Syndrome Coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Liu, Q., Xia, S., Sun, Z., Wang, Q., Du, L., Lu, L., Testing of Middle East Respiratory Syndrome Coronavirus replication inhibitors for the ability to block viral entry (2015) Antimicrob Agents Chemother, 59 (1), pp. 742-744; Chan, R.W.Y., Chan, M.C.W., Agnihothram, S., Chan, L.L.Y., Kuok, D.I.T., Fong, J.H.M., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J Virol, 87 (12), pp. 6604-6614; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4 (3), pp. e00165-13; Zumla, A., Hui, D.S., Perlman, S., Middle East Respiratory Syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Chowell, G., Blumberg, S., Simonsen, L., Miller, M.A., Viboud, C., Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission (2014) Epidemics, pp. 40-51; Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538; Coleman, C.M., Frieman, M.B., Emergence of the Middle East Respiratory Syndrome coronavirus (2013) PLoS Pathog, 9 (9), p. e1003595; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Middle East Respiratory Syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res, 194, pp. 200-210; Surya, W., Li, Y., Verdià-Bàguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res, 201, pp. 61-66; Surya, W., Samsó, M., Torres, J., Structural and functional aspects of viroporins in human respiratory viruses: respiratory syncytial virus and coronaviruses (2013); Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes (2010) J Infect Dis, 202 (8), pp. 1171-1180; de Haan, C.A.M., Rottier, P.J.M., Molecular interactions in the assembly of coronaviruses (2005) Advances in virus research, pp. 165-230. , Academic Press; Cho, C.-C., Lin, M.-H., Chuang, C.-Y., Hsu, C.-H., Macro domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an efficient ADP-ribose binding module: crystak structure and biochemcall studies (2016) J Biol Chem, 291 (10), pp. 4894-4902; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.-Y., Coronaviruses drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15 (5), pp. 327-347; Durai, P., Batool, M., Shah, M., Choi, S., Middle East Respiratory Syndrome Coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47, p. e181; Aouadi, W., Blanjoie, A., Vasseur, J.-J., Debart, F., Canard, B., Decroly, E., Binding of the methyl donor SAM to MERS-CoV 2′-O-methyltransferase nsp16 promotes the recruitment of the allosteric activator nsp10 (2016) J Virol; St. John, S.E., Mesecar, A.D., Design, synthesis, and development of broad spectrum coronaviral 3C-like protease inhibitors to target emerging human pathogens: a phylochemical approach (2016) FASEB J, 30 (1). , 842.4; Tomar, S., Johnston, M.L., St John, S.E., Osswald, H.L., Nyalapatla, P.R., Paul, L.N., Ligand-induced dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CL(pro)): implications for nsp5 regulation and the development of antivirals (2015) J Biol Chem, 290 (32), pp. 19403-19422; Wang, F., Chen, C., Tan, W., Yang, K., Yang, H., (2016) Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design, 6, p. 22677; (2016), Dassault Systèmes BIOVIA. Discovery studio modeling environment. 2016 (Release 2017, San Diego: Dassault Systèmes); Adedeji, A.O., Sarafianos, S.G., Antiviral drugs specific for coronaviruses in preclinical development (2014) Curr Opin Virol, pp. 45-53; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East Respiratory Syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58 (8), pp. 4875-4884; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Repurposing of clinically developed drugs for treatment of Middle East Respiratory Syndrome Coronavirus infection (2014) Antimicrob Agents Chemother, 58 (8), pp. 4885-4893; Cao, J., Forrest, J.C., Zhang, X., A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs (2015) Antiviral Res, 114, pp. 1-10; Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin (2013) Sci Rep, 3, p. 1686; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Clinical features and short-term outcomes of 144 patients with sars in the greater toronto area (2003) JAMA, 289 (21), pp. 2801-2809; Rossignol, J.-F., Nitazoxanide a new drug candidate for the treatment of Middle East Respiratory Syndrome Coronavirus (2016) J Infect Public Health, 9 (3), pp. 227-230; Lin, S.-C., Ho, C.-T., Chuo, W.-H., Li, S., Wang, T.T., Lin, C.-C., Effective inhibition of MERS-CoV infection by resveratrol (2017) BMC Infect Dis, 17, p. 144; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13; JF-W, C., Yao, Y., Yeung, M.-L., Deng, W., Bao, L., Jia, L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212 (12), pp. 1904-1913; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Interferon-α2b and ribavirin treatment improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East Respiratory Syndrome Coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14 (11), pp. 1090-1095; Kim, U., Won, E., Kee, S., Jung, S., Jang, H., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East Respiratory Syndrome (2016) Antiviral Ther, 21 (5), pp. 455-459; Tawalah, H.A., Al-Qabandi, M., Sadiq, M., Chehadeh, C., Al-Hujailan, G., Al-Qaseer, M., The most effective therapeutic regimen for patients with severe Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection (2015) J Infect Dis Ther, 3 (4); Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East Respiratory Syndrome Coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al Mutairy, E., Ribavirin and interferon-α2b as primary and preventive treatment for Middle East Respiratory Syndrome Coronavirus: a preliminary report of two cases (2015) Antiviral Ther, 20, pp. 87-91; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East Respiratory Syndrome Coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70 (7), pp. 2129-2132; Chan, J.F.W., Chan, K.-H., Kao, R.Y.T., To, K.K.W., Zheng, B.-J., Li, C.P.Y., Broad-spectrum antivirals for the emerging Middle East Respiratory Syndrome Coronavirus (2013) J Infect, 67 (6), pp. 606-616; Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Al-Omari, A., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East Respiratory Syndrome Coronavirus infection: a study protocol (2015) SpringerPlus, 4 (709); Marano, G., Vaglio, S., Pupella, S., Facco, G., Catalano, L., Liumbruno, G.M., Convalescent plasma: new evidence for an old therapeutic tool? (2016) Blood Transfus, 14 (2), pp. 152-157; Chong, Y.P., Song, J.Y., Seo, Y.B., Choi, J.-P., Shin, H.-S., Rapid Response T. Antiviral Treatment Guidelines for Middle East Respiratory Syndrome (2015) Infect Chemother, 47 (3), pp. 212-222; Hartung, H.P., Mouthon, L., Ahmed, R., Jordan, S., Laupland, K.B., Jolles, S., Clinical applications of intravenous immunoglobulins (IVIg) – beyond immunodeficiencies and neurology (2009) Clin Exp Immunol, 158, pp. 23-33; Jolles, S., Sewell, W.A.C., Misbah, S.A., Clinical uses of intravenous immunoglobulin (2005) Clin Exp Immunol, 142 (1), pp. 1-11; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.-A., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Trans Med, 8 (326). , 326ra21-ra21; Sakamoto, S., Tanaka, H., Morimoto, S., Towards the prophylactic and therapeutic use of human neutralizing monoclonal antibodies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2015) Ann Trans Med, 3 (3), p. 35; Corti, D., Passini, N., Lanzavecchia, A., Zambon, M., Rapid generation of a human monoclonal antibody to combat Middle East Respiratory Syndrome (2016) J Infect Public Health, 9 (3), pp. 231-235; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci, 112 (33), pp. 10473-10478; Tang, X.-C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci, 111 (19), pp. E2018-E2026; Jiang, L., Wang, N., Zuo, T., Shi, X., Vincent Poon, K.-M., Wu, Y., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Trans Med, 6 (234), p. 234ra59; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci, 112 (28), pp. 8738-8743; Tang, X.-C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111 (19), pp. E2018-E2026; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East Respiratory Syndrome Coronavirus infection (2016) Sci Rep, 6, p. 31629; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C.Y., Lu, L., Exceptionally potent neutralization of Middle East Respiratory Syndrome Coronavirus by human monoclonal antibodies (2014) J Virol, 88 (14), pp. 7796-7805; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6, p. 8223; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East Respiratory Syndrome (MERS)-coronavirus infection (2016) Antivir Res, 132, pp. 141-148; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25 (11), pp. 1237-1249; Nelson, P.N., Reynolds, G.M., Waldron, E.E., Ward, E., Giannopoulos, K., Murray, P.G., Demystified monoclonal antibodies (2000) Mol Pathol, 53 (3), pp. 111-117; Shirato, K., Kawase, M., Matsuyama, S., Middle East Respiratory Syndrome Coronavirus infection mediated by the Transmembrane Serine Protease TMPRSS2 (2013) J Virol, 87 (23), pp. 12552-12561; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87 (10), pp. 5502-5511; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East Respiratory Syndrome Coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111 (42), pp. 15214-15219; Coleman, C.M., Sisk, J.M., Mingo, R.M., Nelson, E.A., White, J.M., Frieman, M.B., Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East Respiratory Syndrome Coronavirus fusion (2016) J Virol, 90 (19), pp. 8924-8933; Wrensch, F., Winkler, M., Pöhlmann, S., IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms (2014) Viruses, 6 (9), pp. 3683-3698; Luo, Y., Ou, R., Ling, Y., Qin, T., The therapeutic effect of high flow nasal cannula oxygen therapy for the first imported case of Middle East Respiratory Syndrome to China (2015) Chin Crit Care Med, 10, pp. 841-844; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East Respiratory Syndrome virus (2014) PLoS Pathog, 10 (5), p. e1004166; Peters, H.L., Jochmans, D., de Wilde, A.H., Posthuma, C.C., Snijder, E.J., Neyts, J., Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity (2015) Bioorg Med Chem Lett, 25 (15), pp. 2923-2926; Adedeji, A.O., Singh, K., Kassim, A., Coleman, C.M., Elliott, R., Weiss, S.R., Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East Respiratory Syndrome Coronaviruses (2014) Antimicrob Agents Chemother, 58 (8), pp. 4894-4898; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W.A.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) J Gen Virol, 94, pp. 1749-1760; Fosgerau, K., Hoffmann, T., Peptide therapeutics: current status and future directions (2015) Drug Discov Today, 20 (1), pp. 122-128; Kaspar, A.A., Reichert, J.M., Future directions for peptide therapeutics development (2013) Drug Discov Today, 18 (17-18), pp. 807-817; Bruno, B.J., Miller, G.D., Lim, C.S., Basics and recent advances in peptide and protein drug delivery (2013) Ther Deliv, 4 (11), pp. 1443-1467; Ali, M.M., Karasneh, G.A., Jarding, M.J., Tiwari, V., Shukla, D., A 3-O-sulfated heparan sulfate binding peptide preferentially targets herpes simplex virus 2-infected cells (2012) J Virol, 86 (12), pp. 6434-6443; Tincho, M.B., Gabere, M.N., Pretorius, A., In silico identification and molecular validation of putative antimicrobial peptides for HIV therapy (2016) J AIDS Clin Res, 7 (606); Melnik, L.I., Garry, R.F., Morris, C.A., Peptide inhibition of human cytomegalovirus infection (2011) Virol J, 8 (1), p. 76; Koehler, J.W., Smith, J.M., Ripoll, D.R., Spik, K.W., Taylor, S.L., Badger, C.V., A fusion-inhibiting peptide against rift valley fever virus inhibits multiple, diverse viruses (2013) PLoS Negl Trop Dis, 7 (9), p. e2430; Vigant, F., Santos, N.C., Lee, B., Broad-spectrum antivirals against viral fusion (2015) Nat Rev Micro, 13 (7), pp. 426-437; Chen, Y., Cao, L., Zhong, M., Zhang, Y., Han, C., Li, Q., Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7 (2012) PLoS One, 7 (4), p. e34947; Albericio, F., Kruger, H.G., Therapeutic peptides (2012) Future Med Chem, 4 (12), pp. 1527-1531; Qureshi, A., Thakur, N., Tandon, H., Kumar, M., AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses (2014) Nucleic Acids Res, 42 (Database issue), pp. D1147-D1153; Fjell, C.D., Hancock, R.E.W., Cherkasov, A., AMPer: a database and an automated discovery tool for antimicrobial peptides (2007) Bioinformatics, 23 (9), pp. 1148-1155; Fjell, C.D., Hiss, J.A., Hancock, R.E.W., Schneider, G., Designing antimicrobial peptides: form follows function (2012) Nat Rev Drug Discov, 11 (1), pp. 37-51; Ganz, T., Defensins: antimicrobial peptides of innate immunity (2003) Nat Rev Immunol, 3 (9), pp. 710-720; Wang, Z., Wang, G., APD: the antimicrobial peptide database (2004) Nucleic Acids Res, 32 (Database issue), pp. D590-D592; Jenssen, H., Hamill, P., Hancock, R.E.W., Peptide antimicrobial agents (2006) Clin Microbiol Rev, 19 (3), pp. 491-511; Harder, J., Schröder, J.M., Antimicrobial peptides role in human health and disease (2015), Springer International Publishing; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279 (2), pp. 371-374; Taguchi, F., The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding (1995) J Virol, 69 (11), pp. 7260-7263; Taguchi, F., Shimazaki, Y.K., Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity (2000) J Gen Virol, 81 (12), pp. 2867-2871; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., The spike protein of SARS-CoV: a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7 (3), pp. 226-236; Hilchie, A.L., Wuerth, K., Hancock, R.E.W., Immune modulation by multifaceted cationic host defense (antimicrobial) peptides (2013) Nat Chem Biol, 9 (12), pp. 761-768; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Structure-based discovery of Middle East Respiratory Syndrome Coronavirus fusion inhibitor (2014) Nat Commun, 5; Shuwen, L., Shuguang, W., Shibo, J., HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds (2007) Curr Pharm Des, 13 (2), pp. 143-162; Sainz, B., Mossel, E.C., Gallaher, W.R., Wimley, W.C., Peters, C.J., Wilson, R.B., Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein (2006) Virus Res, 120 (1-2), pp. 146-155; Rico-Mata, R., De Leon-Rodriguez, L.M., Avila, E.E., Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites (2013) Exp Parasitol, 133 (3), pp. 300-306; Wang, G., Natural antimicrobial peptides as promising anti-HIV candidates (2012) Curr Topics Pept Protein Res, 13, pp. 93-110; Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V.K.-M., A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses (2016) Sci Rep, 6, p. 22008; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Micro, 14 (8), pp. 523-534; Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., Cao, L., Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses (2011) Peptides, 32 (7), pp. 1518-1525; Ke, M., Chen, Y., Wu, A., Sun, Y., Su, C., Wu, H., Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex (2012) Virus Res, 167 (2), pp. 322-328; Fehr, A.R., Perlman, S., Coronaviruses an overview of their replication and pathogenesis (2015) Methods Mol Biol (Clifton, NJ), 1282, pp. 1-23; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S Protein of Middle East Respiratory Syndrome Coronavirus (2013) J Virol, 87 (24), pp. 13134-13140; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Protective effect of intranasal regimens containing peptidic Middle East Respiratory Syndrome Coronavirus fusion inhibitor against MERS-CoV Infection (2015) J Infect Dis, 212 (12), pp. 1894-1903; Wang, G., Li, X., Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education (2016) Nucleic Acids Res, 44 (Database issue), pp. D1087-D1093; Ren, X., Liu, B., Yin, J., Zhang, H., Li, G., Phage displayed peptides recognizing porcine aminopeptidase N inhibit transmissible gastroenteritis coronavirus infection in vitro (2011) Virology, 410 (2), pp. 299-306; Struck, A.-W., Axmann, M., Pfefferle, S., Drosten, C., Meyer, B., A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2 (2012) Antivir Res, 94 (3), pp. 288-296; Lu, W., Wu, X.-D., Shi, M.D., Yang, R.F., He, Y.Y., Bian, C., Synthetic peptides derived from SARS coronavirus S protein with diagnostic and therapeutic potential (2005) FEBS Lett, 579 (10), pp. 2130-2136","Gabere, M.N.; Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Saudi Arabia; email: mgabere@gmail.com",,"Elsevier Ltd",18760341,,,"28864360","English","J. Infect. Public Health",Review,"Final",Open Access,Scopus,2-s2.0-85028465604 "Park W.B., Jun K.I., Kim G., Choi J.-P., Rhee J.-Y., Cheon S., Lee C.H., Park J.-S., Kim Y., Joh J.-S., Chin B.S., Choe P.G., Bang J.H., Park S.-W., Kim N.J., Lim D.-G., Kim Y.-S., Oh M., Shin H.-S.","7402229219;55568681800;55915343600;8635780700;55264248300;54790749100;57196253438;57202424625;56066688300;55255891900;7102658932;15070608400;15070169400;56108350600;35495869100;23470056500;35976040800;7201600302;55361474100;","Correlation between pneumonia severity and pulmonary complications in Middle East respiratory syndrome",2018,"Journal of Korean Medical Science","33","24", e169,"","",,1,"10.3346/jkms.2018.33.e169","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048296134&doi=10.3346%2fjkms.2018.33.e169&partnerID=40&md5=63bb2050d5d4baf696c06a6bf588c2bf","Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Center for Infectious Diseases, National Medical Center, Seoul, South Korea; Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea; Division of Infectious Disease, Department of Medicine, Dankook University College of Medicine, Cheonan, South Korea; Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea; Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Infectious Diseases Research Center, Research Institute, National Medical Center, Seoul, South Korea; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul, South Korea","Park, W.B., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Jun, K.I., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Kim, G., Center for Infectious Diseases, National Medical Center, Seoul, South Korea; Choi, J.-P., Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea; Rhee, J.-Y., Division of Infectious Disease, Department of Medicine, Dankook University College of Medicine, Cheonan, South Korea; Cheon, S., Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea; Lee, C.H., Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea, Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Park, J.-S., Infectious Diseases Research Center, Research Institute, National Medical Center, Seoul, South Korea; Kim, Y., Center for Infectious Diseases, National Medical Center, Seoul, South Korea; Joh, J.-S., Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul, South Korea; Chin, B.S., Center for Infectious Diseases, National Medical Center, Seoul, South Korea; Choe, P.G., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Bang, J.H., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Park, S.-W., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Kim, N.J., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Lim, D.-G., Center for Infectious Diseases, National Medical Center, Seoul, South Korea; Kim, Y.-S., Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea; Oh, M., Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Shin, H.-S., Center for Infectious Diseases, National Medical Center, Seoul, South Korea","This nationwide, prospective cohort study evaluated pulmonary function and radiological sequelae according to infection severity in 73 survivors from the 2015 Middle East respiratory syndrome (MERS) outbreak in Korea. Patients with severe pneumonia in MERS-coronavirus infection had more impaired pulmonary function than those with no or mild pneumonia at the 1-year follow-up, which was compatible with the radiological sequelae. Severe pneumonia significantly impairs pulmonary function and makes long radiological sequelae in MERS. © 2018 The Korean Academy of Medical Sciences.","Complication; Coronavirus; MERS; Outbreak","adult; aged; complication; Coronavirus infection; female; forced expiratory volume; human; lung; male; middle aged; pathology; pathophysiology; pneumonia; prospective study; severity of illness index; South Korea; statistical model; survivor; very elderly; Adult; Aged; Aged, 80 and over; Coronavirus Infections; Female; Forced Expiratory Volume; Humans; Linear Models; Lung; Male; Middle Aged; Pneumonia; Prospective Studies; Republic of Korea; Severity of Illness Index; Survivors","Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6 (4), pp. 269-278; Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32 (5), pp. 744-749; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48 (2), pp. 118-126; Park, W.B., Kwon, N.J., Choe, P.G., Choi, S.J., Oh, H.S., Lee, S.M., Isolation of Middle East respiratory syndrome coronavirus from a patient of the 2015 Korean outbreak (2016) J Korean Med Sci, 31 (2), pp. 315-320; Hui, D.S., Wong, K.T., Ko, F.W., Tam, L.S., Chan, D.P., Woo, J., The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors (2005) Chest, 128 (4), pp. 2247-2261; Antonio, G.E., Wong, K.T., Hui, D.S., Wu, A., Lee, N., Yuen, E.H., Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience (2003) Radiology, 228 (3), pp. 810-815; Hui, D.S., Joynt, G.M., Wong, K.T., Gomersall, C.D., Li, T.S., Antonio, G., Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors (2005) Thorax, 60 (5), pp. 401-409; Chan, K.S., Zheng, J.P., Mok, Y.W., Li, Y.M., Liu, Y.N., Chu, C.M., SARS: prognosis, outcome and sequelae (2003) Respirology, 8, pp. S36-S40; Xie, L., Liu, Y., Xiao, Y., Tian, Q., Fan, B., Zhao, H., Follow-up study on pulmonary function and lung radiographic changes in rehabilitating severe acute respiratory syndrome patients after discharge (2005) Chest, 127 (6), pp. 2119-2124; Wu, X., Dong, D., Ma, D., Thin-section computed tomography manifestations during convalescence and long-term follow-up of patients with severe acute respiratory syndrome (SARS) (2016) Med Sci Monit, 22, pp. 2793-2799; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375 (13), pp. 1303-1305; Ngai, J.C., Ko, F.W., Ng, S.S., To, K.W., Tong, M., Hui, D.S., The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status (2010) Respirology, 15 (3), pp. 543-550; Simpson, D.L., Goodman, M., Spector, S.L., Petty, T.L., Long-term follow-up and bronchial reactivity testing in survivors of the adult respiratory distress syndrome (1978) Am Rev Respir Dis, 117 (3), pp. 449-454; Peters, J.I., Bell, R.C., Prihoda, T.J., Harris, G., Andrews, C., Johanson, W.G., Clinical determinants of abnormalities in pulmonary functions in survivors of the adult respiratory distress syndrome (1989) Am Rev Respir Dis, 139 (5), pp. 1163-1168; Orme, J., Jr., Romney, J.S., Hopkins, R.O., Pope, D., Chan, K.J., Thomsen, G., Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome (2003) Am J Respir Crit Care Med, 167 (5), pp. 690-694; Oh, M.D., Choe, P.G., Oh, H.S., Park, W.B., Lee, S.M., Park, J., East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015 (2015) J Korean Med Sci, 30 (11), pp. 1701-1705","Shin, H.-S.; Center for Infectious Diseases, National Medical Center, 245 Eulji-ro, South Korea; email: hyoungsshin@nmc.or.kr",,"Korean Academy of Medical Science",10118934,,JKMSE,"29892209","English","J. Korean Med. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85048296134 "Pisareva M.M., Eder V.A., Buzitskaya Zh.V., Musaeva T.D., Afanaseva V.S., Go A.A., Obraztsova E.A., Sukhovetskaya V.F., Komissarov A.B.","6506831021;57202414211;35788086700;57189459858;57202135721;57040671300;57205110123;6504395817;56649157500;","Etiological structure of influenza and other arvi in ST. Petersburg during epidemic seasons 2012-2016",2018,"Voprosy Virusologii","63","5",,"233","239",,,"10.18821/0507-4088-2018-63-5-233-239","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058597673&doi=10.18821%2f0507-4088-2018-63-5-233-239&partnerID=40&md5=272607ac01016adb3e6cb699f962a130","Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation","Pisareva, M.M., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Eder, V.A., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Buzitskaya, Zh.V., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Musaeva, T.D., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Afanaseva, V.S., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Go, A.A., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Obraztsova, E.A., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Sukhovetskaya, V.F., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation; Komissarov, A.B., Federal State Research Institute of Influenza, St-Petersburg, 197376, Russian Federation","The etiological structure of influenza and other acute respiratory viral infections including their rate of incidence in St. Petersburg and Leningrad region during 4 epidemic seasons has been studied. Seasonality of some respiratory viruses was shown and peaks of circulation of RSV, adenovirus, parainfluenza viruses, rhinovirus, bocavirus, metapneumovirus and coronavirus were marked. The interference of influenza A viruses and RSV, RSV and rhinoviruses was highlighted. A high incidence of adenovirus infection in organized communities and RSV infection in children was revealed. © 2018 Izdatel'stvo Meditsina. All rights reserved.","Acute respiratory viral infections (arvi); Epidemic season; Influenza viruses; PCR diagnostics","Adenoviridae; adolescent; Bocaparvovirus; child; classification; Coronavirinae; epidemic; human; human adenovirus infection; infant; influenza; Influenza A virus; Metapneumovirus; paramyxovirus infection; pathogenicity; Pneumovirus; respiratory tract infection; Rhinovirus; Russian Federation; season; virology; Adenoviridae; Adenovirus Infections, Human; Adolescent; Bocavirus; Child; Coronavirus; Epidemics; Humans; Infant; Influenza A virus; Influenza, Human; Metapneumovirus; Paramyxoviridae Infections; Respiratory Syncytial Viruses; Respiratory Tract Infections; Rhinovirus; Russia; Seasons","Drinevskiy, V.P., Osidak, L.V., Tsybalova, L.M., (2003) Acute Respiratory Infections in Children and Teenagers, , Ostrye respiratornye infektsii u detey ipodrostkovj. St. Petersburg, (in Russian; Nichols, W.G., Peck, C.A.J., Boeckh, M., Respiratory viruses other than influenza virus: Impact and therapeutic advances (2008) Clin. Microbiol. Rev, 21 (2), pp. 274-290; (2013) State Report Regarding the Condition of Sanitary and Epidemiological Welfare of the Population in the Russian Federation in 2012, , Moscow, (in Russian; Yatsyshina, S.B., Konovalov, A.V., Magkoeva, Z.G., Praded, M.N., Shelkovskaya, L.P., Perevozchikova, L.A., Laboratory diagnostics in evaluation of acute respiratory viral infection morbidity in 2010-2011 epidemic season (2013) Zhurnal Mikrobiologii, Epidemiologii I Immunobiologii, (1), pp. 34-38. , in Russian; Ecdc and who Europe weekly influenza update Flu News Europe, , https://flunewseurope.org, ArcHIVes; Eshaghi, A., Duvvuri, V.R., Lai, R., Nadarajah, J.T., Li, A., Patel, S.N., Genetic variability of human respiratory syncytial virus a strains circulating in Ontario: A novel genotype with a 72 nucleotide g gene duplication (2012) PLoS One, 7 (3), p. e32807; Tapia, L.I., Shaw, C.A., Aideyan, L.O., Jewell, A.M., Dawson, B.C., Haq, T.R., Gene sequence variability of the three surface proteins of human respiratory syncytial virus (hRSV) in Texas. (2014) PLoS One, 9 (3), p. e90786; Trento, A., Abrego, L., Rodriguez-Fernandez, R., Gonzilez-S'Anchez, M.I., Gonzalez-Martinez, F., Delfraro, A., Conservation of gprotein epitopes in respiratory syncytial virus (group a) despite broad genetic diversity: Is antibody selection involved in virus evolution? (2015) J. Virol, 89 (15), pp. 7776-7785; Van Asten, L., Bijkerk, P., Fanoy, E., Van Ginkel, A., Suijkerbuijk, A., Van Der Hoek, W., Early occurrence of influenza a epidemics coincided with changes in occurrence of other respiratory virus infections. (2016) Influenza other Respir. Viruses, 10 (1), pp. 14-26; Linde, A., Rotzon-Ostlund, M., Zweygberg-Wirgart, B., Rubinova, S., Brytting, M., Does viral interference affect spread of influenza? (2009) Euro Surveill, 14 (40); Pascalis, H., Temmam, S., Turpin, M., Rollot, O., Flahault, A., Carrat, F., Intense co-circulation of non-influenza respiratory viruses during the first wave of pandemic influenza ph in 1/2009: A cohort study in Reunion island (2012) PLoS One, 7 (9), p. e44755; Mak, G.C., Wong, A.H., Ho, W.Y., Lim, W., The impact of pandemic influenza a (h1n1) 2009 on the circulation of respiratory viruses 2009-2011 (2012) Influenza other Respir. Viruses, 6 (3), pp. e6-e10; Koren, M.A., Arnold, J.C., Fairchok, M.P., Lalani, T., Danaher, P.J., Schofleld, C.M., Type-specific clinical characteristics of adenovinisassociated influenza-like illness at five us military medical centers, 2009-2014 (2016) Influenza other Respir. Viruses, 10 (5), pp. 414-420; Aberle, J.H., Aberle, S.W., Redlberger-Fritz, M., Sandhofer, M.J., Popow-Kraupp, T., Human metapneumovirus subgroup changes and seasonality during epidemics (2010) Pediatr. Infect. Dis. J, 29 (11), pp. 1016-1018; Mahalingam, S., Schwarze, J., Zaid, A., Nissen, M., Sloots, T., Tauro, S., Perspective on the host response to human metapneumovirus infection: What can we leam from respiratory syncytial virus infections? (2006) Microbes Infect, 8 (1), pp. 285-293; Manoha, C., Espinosa, S., Ahob, S.L., Huet, F., Pothier, P., Epidemiological and clinical features of hMPV, RSV and RVs infections in young children (2007) J. Clin. Virol, 38 (3), pp. 221-226","Pisareva, M.M.; Federal State Research Institute of InfluenzaRussian Federation; email: pisareva@influenza.spb.ru",,"Izdatel'stvo Meditsina",05074088,,VVIRA,"30550100","Russian","Vopr. Virusol.",Article,"Final",,Scopus,2-s2.0-85058597673 "Salim Mattar V., Marco González T.","34877738800;36468819900;","Zoonotic emergence of coronavirus: A potential public risk for Latin America [Emergencia zoonótica de coronavirus: Un potencial riesgo público para América Latina]",2018,"Revista MVZ Cordoba","23","3",,"6775","6777",,1,"10.21897/rmvz.1408","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063724205&doi=10.21897%2frmvz.1408&partnerID=40&md5=c8c671c782eb65fbb44e40aae6f553c6","Universidad de Córdoba, Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia","Salim Mattar, V., Universidad de Córdoba, Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia; Marco González, T., Universidad de Córdoba, Facultad de Medicina Veterinaria y Zootecnia, Montería, Colombia",[No abstract available],,,"Kudagammana, H.D.W.S., Thevanesam, V., Chu, D.K.W., Eriyagama, N.B., Peiris, J.S.M., Noordeen, F., Coronaviruses in guano from Pteropus medius bats in Peradeniya, Sri Lanka (2018) Transbound Emerg Dis., 65, pp. 1122-1124. , https://doi.org/10.1111/tbed.12851; Chamings, A., Tiffanie, M.N., Vibin, J., Michelle, W., klaassen, M., Soren, A., Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds (2018) Scientific Reports., 8, p. 5980. , https://doi.org/10.1038/s41598-018-24407-x",,,"Universidad de Cordoba",01220268,,,,"English; Spanish","Rev. MVZ Cordoba",Editorial,"Final",Open Access,Scopus,2-s2.0-85063724205 "Savarin C., Bergmann C.C.","24473502300;35449739000;","Fine Tuning the Cytokine Storm by IFN and IL-10 Following Neurotropic Coronavirus Encephalomyelitis",2018,"Frontiers in immunology","9",,,"3022","",,,"10.3389/fimmu.2018.03022","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059927385&doi=10.3389%2ffimmu.2018.03022&partnerID=40&md5=b481302f6f6312c10c5abbdec38898ce","Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States","Savarin, C., Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States; Bergmann, C.C., Department of Neuroscience, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, United States","The central nervous system (CNS) is vulnerable to several viral infections including herpes viruses, arboviruses and HIV to name a few. While a rapid and effective immune response is essential to limit viral spread and mortality, this anti-viral response needs to be tightly regulated in order to limit immune mediated tissue damage. This balance between effective virus control with limited pathology is especially important due to the highly specialized functions and limited regenerative capacity of neurons, which can be targets of direct virus cytolysis or bystander damage. CNS infection with the neurotropic strain of mouse hepatitis virus (MHV) induces an acute encephalomyelitis associated with focal areas of demyelination, which is sustained during viral persistence. Both innate and adaptive immune cells work in coordination to control virus replication. While type I interferons are essential to limit virus spread associated with early mortality, perforin, and interferon-γ promote further virus clearance in astrocytes/microglia and oligodendrocytes, respectively. Effective control of virus replication is nonetheless associated with tissue damage, characterized by demyelinating lesions. Interestingly, the anti-inflammatory cytokine IL-10 limits expansion of tissue lesions during chronic infection without affecting viral persistence. Thus, effective coordination of pro- and anti-inflammatory cytokines is essential during MHV induced encephalomyelitis in order to protect the host against viral infection at a limited cost.","central nervous system; demyelination; IFNα/β; IFNγ; IL-10; JHMV; viral infection","IL10 protein, mouse; interferon; interleukin 10; perforin; animal; central nervous system; Coronavirus infection; disease model; encephalomyelitis; host pathogen interaction; immunology; metabolism; mouse; Murine hepatitis virus; virology; Animals; Central Nervous System; Coronavirus Infections; Disease Models, Animal; Encephalomyelitis; Host-Pathogen Interactions; Interferons; Interleukin-10; Mice; Murine hepatitis virus; Perforin",,,,"NLM (Medline)",16643224,,,"30619363","English","Front Immunol",Review,"Final",Open Access,Scopus,2-s2.0-85059927385 "Poutanen S.M.","6603932528;","Human Coronaviruses",2018,"Principles and Practice of Pediatric Infectious Diseases",,,,"1148","1152.e3",,,"10.1016/B978-0-323-40181-4.00222-X","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055492402&doi=10.1016%2fB978-0-323-40181-4.00222-X&partnerID=40&md5=249592e1f1bf6aeb2f1ddbab18c00a38","University of Toronto, Canada; Microbiologist and Infectious Disease Physician, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada","Poutanen, S.M., University of Toronto, Canada, Microbiologist and Infectious Disease Physician, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada",[No abstract available],,,"Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc Natl Acad Sci USA, 101, pp. 6212-6216; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; CDC laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.cdc.gov/coronavirus/mers/lab/lab-testing.html; Public health guidance for community-level preparedness and response to severe acute respiratory syndrome (SARS), version 2/3. Appendix F8: guidelines for laboratory diagnosis of SARS-CoV infection. Supplement F: laboratory guidance, , http://www.cdc.gov/sars/guidance/f-lab/app8.html; Siegel, J.D., Rhinehart, E., Jackson, M., Centers for Disease Control and Prevention: 2007 guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings, , http://www.cdc.gov/hicpac/pdf/isolation/Isolation2007.pdf; Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS-CoV), , https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html; Virus Taxonomy: 2015 Release, , http://www.ictvonline.org/virusTaxonomy.asp, EC 47 London, UK; Email ratification 2016 (MSL#30); Chan, J.F., Lau, S.K., To, K.K., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Kahn, J.S., The widening scope of coronaviruses (2006) Curr Opin Pediatr, 18, pp. 42-47; McIntosh, K., Coronaviruses in the limelight (2005) J Infect Dis, 191, pp. 489-491; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br Med J, 5448, pp. 1467-1470; McIntosh, K., Dees, J.H., Becker, W.B., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc Natl Acad Sci USA, 57, pp. 933-940; Mortensen, M.L., Ray, C.G., Payne, C.M., Coronaviruslike particles in human gastrointestinal disease: epidemiologic, clinical, and laboratory observations (1985) Am J Dis Child, 139, pp. 928-934; Resta, S., Luby, J.P., Rosenfeld, C.R., Isolation and propagation of a human enteric coronavirus (1985) Science, 229, pp. 978-981; Gerna, G., Passarani, N., Battaglia, M., Human enteric coronaviruses: antigenic relatedness to human coronavirus OC43 and possible etiologic role in viral gastroenteritis (1985) J Infect Dis, 151, pp. 796-803; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; Peiris, J.S., Lai, S.T., Poon, L.L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Christian, M.D., Poutanen, S.M., Loutfy, M.R., Severe acute respiratory syndrome (2004) Clin Infect Dis, 38, pp. 1420-1427; Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, , http://www.who.int/csr/sars/country/table2004_04_21/en; Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Guan, Y., Zheng, B.J., He, Y.Q., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Lau, S.K., Woo, P.C., Li, K.S., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045; Li, W., Shi, Z., Yu, M., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Cheng, V.C., Lau, S.K., Woo, P.C., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin Microbiol Rev, 20, pp. 660-694; Ge, X.Y., Li, J.L., Yang, X.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc Natl Acad Sci USA, 101, pp. 6212-6216; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Talbot, H.K., Shepherd, B.E., Crowe, J.E., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Esper, F., Weibel, C., Ferguson, D., Coronavirus HKU1 infection in the United States (2006) Emerg Infect Dis, 12, pp. 775-779; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/; Vabret, A., Dina, J., Gouarin, S., Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France (2008) J Paediatr Child Health, 44, pp. 176-181; Dijkman, R., Jebbink, M.F., El Idrissi, N.B., Human coronavirus NL63 and 229E seroconversion in children (2008) J Clin Microbiol, 46, pp. 2368-2373; Severance, E.G., Bossis, I., Dickerson, F.B., Development of a nucleocapsid-based human coronavirus immunoassay and estimates of individuals exposed to coronavirus in a U.S. metropolitan population (2008) Clin Vaccine Immunol, 15, pp. 1805-1810; Liang, G., Chen, Q., Xu, J., Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China (2004) Emerg Infect Dis, 10, pp. 1774-1781; Lim, P.L., Kurup, A., Gopalakrishna, G., Laboratory-acquired severe acute respiratory syndrome (2004) N Engl J Med, 350, pp. 1740-1745; SARS case in laboratory worker in Taiwan, China, , http://www.who.int/mediacentre/releases/2003/np26/en; SARS-Worldwide (30): China, Cases. ProMED-mail, , http://www.promedmail.org, (archive number 20040703.1774); Wong, T., Wallington, T., McDonald, L.C., Late recognition of SARS in nosocomial outbreak, Toronto (2005) Emerg Infect Dis, 11, pp. 322-325; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary iddle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Chowell, G., Abdirizak, F., Lee, S., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Middle East respiratory syndrome coronavirus (MERS-CoV)-Republic of Korea, , http://www.who.int/csr/don/21-july-2015-mers-korea/en/; Goldmann, D.A., Transmission of viral respiratory infections in the home (2000) Pediatr Infect Dis J, 19, pp. S97-S102; Otter, J.A., Donskey, C., Yezli, S., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination (2016) J Hosp Infect, 92, pp. 235-250; Warnes, S.L., Little, Z.R., Keevil, C.W., Human coronavirus 229E remains infectious on common touch surface materials (2015) MBio, 6 (6); Lau, J.T., Lau, M., Kim, J.H., Probable secondary infections in households of SARS patients in Hong Kong (2004) Emerg Infect Dis, 10, pp. 235-243; Loeb, M., McGeer, A., Henry, B., SARS among critical care nurses, Toronto (2004) Emerg Infect Dis, 10, pp. 251-255; Scales, D.C., Green, K., Chan, A.K., Illness in intensive care staff after brief exposure to severe acute respiratory syndrome (2003) Emerg Infect Dis, 9, pp. 1205-1210; Wong, T.W., Lee, C.K., Tam, W., Cluster of SARS among medical students exposed to single patient, Hong Kong (2004) Emerg Infect Dis, 10, pp. 269-276; Yu, I.T., Li, Y., Wong, T.W., Evidence of airborne transmission of the severe acute respiratory syndrome virus (2004) N Engl J Med, 350, pp. 1731-1739; Olsen, S.J., Chang, H.L., Cheung, T.Y., Transmission of the severe acute respiratory syndrome on aircraft (2003) N Engl J Med, 349, pp. 2416-2422; Chen, Y.C., Huang, L.M., Chan, C.C., SARS in hospital emergency room (2004) Emerg Infect Dis, 10, pp. 782-788; Dowell, S.F., Simmerman, J.M., Erdman, D.D., Severe acute respiratory syndrome coronavirus on hospital surfaces (2004) Clin Infect Dis, 39, pp. 652-657; Wong, S.F., Chow, K.M., Leung, T.N., Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome (2004) Am J Obstet Gynecol, 191, pp. 292-297; Shek, C.C., Ng, P.C., Fung, G.P., Infants born to mothers with severe acute respiratory syndrome (2003) Pediatrics, 112; Bin, S.Y., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; van Elden, L.J., van Loon, A.M., van Alphen, F., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction (2004) J Infect Dis, 189, pp. 652-657; Bradburne, A.F., Bynoe, M.L., Tyrrell, D.A., Effects of a ""new"" human respiratory virus in volunteers (1967) Br Med J, 3, pp. 767-769; Consensus document on the epidemiology of severe acute respiratory syndrome (SARS), , http://www.who.int/csr/sars/en/WHOconsensus.pdf; Peiris, J.S., Chu, C.M., Cheng, V.C., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study (2003) Lancet, 361, pp. 1767-1772; Cheng, P.K., Wong, D.A., Tong, L.K., Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome (2004) Lancet, 363, pp. 1699-1700; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Lessler, J., Reich, N.G., Brookmeyer, R., Incubation periods of acute respiratory viral infections: a systematic review (2009) Lancet Infect Dis, 9, pp. 291-300; Denison, M.R., Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update (2004) Pediatr Infect Dis J, 23, pp. S207-S214; Akerlund, A., Greiff, L., Andersson, M., Mucosal exudation of fibrinogen in coronavirus-induced common colds (1993) Acta Otolaryngol, 113, pp. 642-648; Linden, M., Greiff, L., Andersson, M., Nasal cytokines in common cold and allergic rhinitis (1995) Clin Exp Allergy, 25, pp. 166-172; Tyrrell, D.A., Cohen, S., Schlarb, J.E., Signs and symptoms in common colds (1993) Epidemiol Infect, 111, pp. 143-156; Callow, K.A., Parry, H.F., Sergeant, M., The time course of the immune response to experimental coronavirus infection of man (1990) Epidemiol Infect, 105, pp. 435-446; Monto, A.S., Lim, S.K., The Tecumseh study of respiratory illness: VI. Frequency of and relationship between outbreaks of coronavirus infection (1974) J Infect Dis, 129, pp. 271-276; Callow, K.A., Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection (1985) J Hyg (Lond), 95, pp. 173-189; Li, W., Moore, M.J., Vasilieva, N., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426 (6965), pp. 450-454; Ng, E.K., Hui, D.S., Chan, K.C., Quantitative analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome (2003) Clin Chem, 49, pp. 1976-1980; Chan, K.H., Poon, L.L., Cheng, V.C., Detection of SARS coronavirus in patients with suspected SARS (2004) Emerg Infect Dis, 10, pp. 294-299; Ding, Y., He, L., Zhang, Q., Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways (2004) J Pathol, 203, pp. 622-630; Farcas, G.A., Poutanen, S.M., Mazzulli, T., Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus (2005) J Infect Dis, 191, pp. 193-197; Liu, X., Shi, Y., Li, P., Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients (2004) Clin Diagn Lab Immunol, 11, pp. 227-228; Wong, C.K., Lam, C.W., Wu, A.K., Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome (2004) Clin Exp Immunol, 136, pp. 95-103; Zhang, Y., Li, J., Zhan, Y., Analysis of serum cytokines in patients with severe acute respiratory syndrome (2004) Infect Immun, 72, pp. 4410-4415; Ng, D.L., Al, H.F., Keating, M.K., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658; Hocke, A.C., Becher, A., Knepper, J., Emerging human Middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs (2013) Am J Respir Crit Care Med, 188, pp. 882-886; Hendley, J.O., Fishburne, H.B., Gwaltney, J.M., Coronavirus infections in working adults: eight-year study with 229 E and OC 43 (1972) Am Rev Respir Dis, 105, pp. 805-811; Bastien, N., Robinson, J.L., Tse, A., Human coronavirus NL-63 infections in children: a 1-year study (2005) J Clin Microbiol, 43, pp. 4567-4573; Bastien, N., Anderson, K., Hart, L., Human coronavirus NL63 infection in Canada (2005) J Infect Dis, 191, pp. 503-506; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071; Makela, M.J., Puhakka, T., Ruuskanen, O., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36, pp. 539-542; van der Zalm, M.M., van Ewijk, B.E., Wilbrink, B., Respiratory pathogens in children with and without respiratory symptoms (2009) J Pediatr, 154, pp. 396-400; Pappas, D.E., Hendley, J.O., Hayden, F.G., Symptom profile of common colds in school-aged children (2008) Pediatr Infect Dis J, 27, pp. 8-11; Johnston, S.L., Pattemore, P.K., Sanderson, G., Community study of role of viral infections in exacerbations of asthma in 9-11 year old children (1995) BMJ, 310, pp. 1225-1229; Vabret, A., Dina, J., Gouarin, S., Detection of the new human coronavirus HKU1: a report of 6 cases (2006) Clin Infect Dis, 42, pp. 634-639; Falsey, A.R., Walsh, E.E., Hayden, F.G., Rhinovirus and coronavirus infection-associated hospitalizations among older adults (2002) J Infect Dis, 185, pp. 1338-1341; McIntosh, K., Chao, R.K., Krause, H.E., Coronavirus infection in acute lower respiratory tract disease of infants (1974) J Infect Dis, 130, pp. 502-507; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Riski, H., Hovi, T., Coronavirus infections of man associated with diseases other than the common cold (1980) J Med Virol, 6, pp. 259-265; Arden, K.E., Nissen, M.D., Sloots, T.P., New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia (2005) J Med Virol, 75, pp. 455-462; Esper, F., Weibel, C., Ferguson, D., Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children (2005) J Infect Dis, 191, pp. 492-498; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729; Ebihara, T., Endo, R., Ma, X., Detection of human coronavirus NL63 in young children with bronchiolitis (2005) J Med Virol, 75, pp. 463-465; Moes, E., Vijgen, L., Keyaerts, E., A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium (2005) BMC Infect Dis, 5, p. 6; Sung, J.Y., Lee, H.J., Eun, B.W., Role of human coronavirus NL63 in hospitalized children with croup (2010) Pediatr Infect Dis J, 29, pp. 822-826; van der Hoek, L., Sure, K., Ihorst, G., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2; Chang, L.Y., Chiang, B.L., Kao, C.L., Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan (2006) J Infect Dis, 193, pp. 283-286; Esper, F., Shapiro, E.D., Weibel, C., Association between a novel human coronavirus and Kawasaki disease (2005) J Infect Dis, 191, pp. 499-502; Esper, F., Ou, Z., Huang, Y.T., Human coronaviruses are uncommon in patients with gastrointestinal illness (2010) J Clin Virol, 48, pp. 131-133; Tsui, P.T., Kwok, M.L., Yuen, H., Severe acute respiratory syndrome: clinical outcome and prognostic correlates (2003) Emerg Infect Dis, 9, pp. 1064-1069; Fowler, R.A., Lapinsky, S.E., Hallett, D., Critically ill patients with severe acute respiratory syndrome (2003) JAMA, 290, pp. 367-373; Lew, T.W., Kwek, T.K., Tai, D., Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome (2003) JAMA, 290, pp. 374-380; Donnelly, C.A., Ghani, A.C., Leung, G.M., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong (2003) Lancet, 361, pp. 1761-1766; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area (2003) JAMA, 289, pp. 2801-2809; Wang, J.T., Sheng, W.H., Fang, C.T., Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients (2004) Emerg Infect Dis, 10, pp. 818-824; Wong, K.T., Antonio, G.E., Hui, D.S., Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients (2003) Radiology, 228, pp. 401-406; Muller, N.L., Ooi, G.C., Khong, P.L., Severe acute respiratory syndrome: radiographic and CT findings (2003) AJR Am J Roentgenol, 181, pp. 3-8; Wong, K.T., Antonio, G.E., Hui, D.S., Thin-section CT of severe acute respiratory syndrome: evaluation of 73 patients exposed to or with the disease (2003) Radiology, 228, pp. 395-400; Bitnun, A., Allen, U., Heurter, H., Children hospitalized with severe acute respiratory syndrome-related illness in Toronto (2003) Pediatrics, 112; Hon, K.L., Leung, C.W., Cheng, W.T., Clinical presentations and outcome of severe acute respiratory syndrome in children (2003) Lancet, 361, pp. 1701-1703; Yang, G.G., Lin, S.Z., Liao, K.W., SARS-associated coronavirus infection in teenagers (2004) Emerg Infect Dis, 10, pp. 382-383; Chiu, W.K., Cheung, P.C., Ng, K.L., Severe acute respiratory syndrome in children: experience in a regional hospital in Hong Kong (2003) Pediatr Crit Care Med, 4, pp. 279-283; Ng, P.C., Leung, C.W., Chiu, W.K., SARS in newborns and children (2004) Biol Neonate, 85, pp. 293-298; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Poon, L.L., Chan, K.H., Wong, O.K., Early diagnosis of SARS coronavirus infection by real time RT-PCR (2003) J Clin Virol, 28, pp. 233-238; Chan, P.K., Ng, K.C., Chan, R.C., Immunofluorescence assay for serologic diagnosis of SARS (2004) Emerg Infect Dis, 10, pp. 530-532; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22 (6); Tang, P., Louie, M., Richardson, S.E., Interpretation of diagnostic laboratory tests for severe acute respiratory syndrome: the Toronto experience (2004) Can Med Assoc J, 170, pp. 47-54; Grant, P.R., Garson, J.A., Tedder, R.S., Detection of SARS coronavirus in plasma by real-time RT-PCR (2003) N Engl J Med, 349, pp. 2468-2469; CDC laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.cdc.gov/coronavirus/mers/lab/lab-testing.html; Public health guidance for community-level preparedness and response to severe acute respiratory syndrome (SARS), version 2/3. Appendix F8: guidelines for laboratory diagnosis of SARS-CoV infection. Supplement F: laboratory guidance, , http://www.cdc.gov/sars/guidance/f-lab/app8.html; Chan, K.S., Lai, S.T., Chu, C.M., Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study (2003) Hong Kong Med J, 9, pp. 399-406; Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study (2003) JAMA, 290, pp. 3222-3228; Wong, V.W., Dai, D., Wu, A.K., Treatment of severe acute respiratory syndrome with convalescent plasma (2003) Hong Kong Med J, 9, pp. 199-201; Zhao, Z., Zhang, F., Xu, M., Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China (2003) J Med Microbiol, 52, pp. 715-720; Barnard, D.L., Hubbard, V.D., Burton, J., Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine (2004) Antivir Chem Chemother, 15, pp. 15-22; Chu, C.M., Cheng, V.C., Hung, I.F., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings (2004) Thorax, 59, pp. 252-256; Cinatl, J., Michaelis, M., Scholz, M., Role of interferons in the treatment of severe acute respiratory syndrome (2004) Expert Opin Biol Ther, 4, pp. 827-836; Haagmans, B.L., Kuiken, T., Martina, B.E., Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nat Med, 10, pp. 290-293; Hensley, L.E., Fritz, L.E., Jahrling, P.B., Interferon-beta 1a and SARS coronavirus replication (2004) Emerg Infect Dis, 10, pp. 317-319; Stroher, U., DiCaro, A., Li, Y., Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha (2004) J Infect Dis, 189, pp. 1164-1167; Tan, E.L., Ooi, E.E., Lin, C.Y., Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs (2004) Emerg Infect Dis, 10, pp. 581-586; Yamamoto, N., Yang, R., Yoshinaka, Y., HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus (2004) Biochem Biophys Res Commun, 318, pp. 719-725; Zheng, B., He, M.L., Wong, K.L., Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-alpha/beta) but not by type II interferon (IFN-gamma) (2004) J Interferon Cytokine Res, 24, pp. 388-390; Cinatl, J., Morgenstern, B., Bauer, G., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus (2003) Lancet, 361, pp. 2045-2046; Zhaori, G., Antiviral treatment of SARS: can we draw any conclusions? (2003) Can Med Assoc J, 169, pp. 1165-1166; Groneberg, D.A., Poutanen, S.M., Low, D.E., Treatment and vaccines for severe acute respiratory syndrome (2005) Lancet Infect Dis, 5, pp. 147-155; Treatment of MERS-CoV: information for clinicians. Clinical decision-making support for treatment of MERS-CoV patients, , https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/459835/merscov_for_clinicians_sept2015.pdf; Roberts, L., Smith, W., Jorm, L., Effect of infection control measures on the frequency of upper respiratory infection in child care: a randomized, controlled trial (2000) Pediatrics, 105, pp. 738-742; Apisarnthanarak, A., Apisarnthanarak, P., Cheevakumjorn, B., Implementation of an infection control bundle in a school to reduce transmission of influenza-like illness during the novel influenza A 2009 H1N1 pandemic (2010) Infect Control Hosp Epidemiol, 31, pp. 310-311; Turner, R.B., Felton, A., Kosak, K., Prevention of experimental coronavirus colds with intranasal alpha-2b interferon (1986) J Infect Dis, 154, pp. 443-447; Higgins, P.G., Phillpotts, R.J., Scott, G.M., Intranasal interferon as protection against experimental respiratory coronavirus infection in volunteers (1983) Antimicrob Agents Chemother, 24, pp. 713-715; McElhaney, J.E., Goel, V., Toane, B., Efficacy of COLD-fX in the prevention of respiratory symptoms in community-dwelling adults: a randomized, double-blinded, placebo controlled trial (2006) J Altern Complement Med, 12, pp. 153-157; Predy, G.N., Goel, V., Lovlin, R., Efficacy of an extract of North American ginseng containing poly-furanosyl-pyranosyl-saccharides for preventing upper respiratory tract infections: a randomized controlled trial (2005) Can Med Assoc J, 173, pp. 1043-1048; Wang, M., Guilbert, L.J., Ling, L., Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium) (2001) J Pharm Pharmacol, 53, pp. 1515-1523; Wang, M., Guilbert, L.J., Li, J., A proprietary extract from North American ginseng (Panax quinquefolium) enhances IL-2 and IFN-gamma productions in murine spleen cells induced by Con-A (2004) Int Immunopharmacol, 4, pp. 311-315; Siegel, J.D., Rhinehart, E., Jackson, M., Centers for Disease Control and Prevention: 2007 guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings, , http://www.cdc.gov/hicpac/pdf/isolation/Isolation2007.pdf; Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS-CoV), , https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html; Rabenau, H.F., Cinatl, J., Morgenstern, B., Stability and inactivation of SARS coronavirus (2005) Med Microbiol Immunol, 194, pp. 1-6; Roper, R.L., Rehm, K.E., SARS vaccines: where are we? (2009) Expert Rev Vaccines, 8, pp. 887-898; Stadler, K., Masignani, V., Eickmann, M., SARS-beginning to understand a new virus (2003) Nat Rev Microbiol, 1, pp. 209-218; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathog Glob Health, 109, pp. 354-362; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712","Poutanen, S.M.; University of TorontoCanada",,"Elsevier Inc.",,9780323401814,,,"English","Princ. and Pract. of Pediatr. Infect. Dis.",Book Chapter,"Final",,Scopus,2-s2.0-85055492402 "Matoba Y., Aoki Y., Tanaka S., Unno M., Komabayashi K., Ikeda T., Shimotai Y., Matsuzaki Y., Itagaki T., Mizuta K.","56366553100;55358273300;56495890700;57197833043;57201307884;35867115500;10539231100;35431095500;8056655000;7103028059;","Trends of human coronaviruses in Yamagata, Japan in 2015–2016 focusing on the OC43 outbreak of June 2016",2018,"Japanese Journal of Infectious Diseases","71","2",,"167","169",,1,"10.7883/yoken.JJID.2017.263","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044315758&doi=10.7883%2fyoken.JJID.2017.263&partnerID=40&md5=a814b8d8da9cb229fb6c3e98dd970b71","Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, 990-9585, Japan; Yamanobe Pediatric Clinic, Yamagata, 990-0301, Japan","Matoba, Y., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Aoki, Y., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Tanaka, S., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Unno, M., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Komabayashi, K., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Ikeda, T., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan; Shimotai, Y., Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, 990-9585, Japan; Matsuzaki, Y., Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, 990-9585, Japan; Itagaki, T., Yamanobe Pediatric Clinic, Yamagata, 990-0301, Japan; Mizuta, K., Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, 990-0031, Japan",[No abstract available],,"adolescent; Article; child; Coronavirinae; Coronavirus infection; female; gene sequence; human; infant; Influenza virus; Japan; major clinical study; male; multicenter study; nasopharyngeal aspiration; newborn; observational study; real time polymerase chain reaction; reverse transcription polymerase chain reaction; rhinopharyngitis; Coronavirus infection; epidemic; epidemiological monitoring; genetics; Human coronavirus OC43; longitudinal study; nasopharynx; polymerase chain reaction; preschool child; respiratory tract infection; virology; Child, Preschool; Coronavirus Infections; Coronavirus OC43, Human; Disease Outbreaks; Epidemiological Monitoring; Female; Humans; Infant; Infant, Newborn; Japan; Longitudinal Studies; Male; Nasopharynx; Polymerase Chain Reaction; Respiratory Tract Infections","Masters, P.S., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-828. , Knipe DM, Howley PM, editors, 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; Matoba, Y., Abiko, C., Ikeda, T., Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan (2015) Jpn J Infect Dis, 68, pp. 138-141; Matoba, Y., Aoki, Y., Tanaka, S., An outbreak of human coronavirus OC43 during the 2014–2015 influenza season in Yamagata, Japan (2015) Jpn J Infect Dis, 68, pp. 442-445; Mizuta, K., Abiko, C., Aoki, Y., Analysis of monthly isolation of respiratory viruses from children by cell culture using a microplate method: A two-year study from 2004 to 2005 in Yamagata, Japan (2008) Jpn J Infect Dis, 61, pp. 196-201; Matoba, Y., Aoki, Y., Tanaka, S., Hela-ACE2-TMPRSS2 cells are useful for the isolation of human coronavirus 229E (2016) Jpn J Infect Dis, 69, pp. 452-454; Gaunt, E.R., Hardie, A., Claas, E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Canducci, F., Debiaggi, M., Sampaolo, M., Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease (2008) J Med Virol, 80, pp. 716-723; Yip, C.C., Lam, C.S., Luk, H.K., A six-year descriptive epidemiological study of human coronavirus infections in hospitalized patients in Hong Kong (2016) Virol Sin, 31, pp. 41-48; Kim, K.Y., Han, S.Y., Kim, H.S., Human coronavirus in the 2014 winter season as a cause of lower respiratory tract infection (2017) Yonsei Med J, 58, pp. 174-179; Dijkman, R., Jebbink, M.F., Gaunt, E., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Lau, S.K., Lee, P., Tsang, A.K., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J Virol, 85, pp. 11325-11337; Kin, N., Miszczak, F., Lin, W., Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes (2015) Viruses, 7, pp. 2358-2377; Zhang, Y., Li, J., Xiao, Y., Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination (2015) J Infect, 70, pp. 641-650; National Epidemiological Surveillance of Infectious Diseases (NESID) System, , http://nesid3g.wish.mhlw.hq.admix.go.jp/, Accessed February 15, 2017","Mizuta, K.; Department of Microbiology, Yamagata, Prefectural Institute of Public Health, Tokamachi 1-6-6, Japan; email: mizutak@pref.yamagata.jp",,"National Institute of Health",13446304,,JJIDF,"29491239","English","Jpn. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85044315758 "Muraduzzaman A.K.M., Khan M.H., Parveen R., Sultana S., Alam A.N., Akram A., Rahman M., Shirin T.","56312454000;57200283998;57198129782;35786469000;57200282843;57200267759;57208679541;23052377700;","Event based surveillance of middle east respiratory syndrome coronavirus (MERS-CoV) in Bangladesh among pilgrims and travelers from the middle east: An update for the period 2013–2016",2018,"PLoS ONE","13","1", e0189914,"","",,4,"10.1371/journal.pone.0189914","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040597873&doi=10.1371%2fjournal.pone.0189914&partnerID=40&md5=98ed455d886173e7dbb842964545fea9","Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Department of Pathology and Microbiology, Dhaka Dental College, Dhaka, Bangladesh; Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh","Muraduzzaman, A.K.M., Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Khan, M.H., Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Parveen, R., Department of Pathology and Microbiology, Dhaka Dental College, Dhaka, Bangladesh; Sultana, S., Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Alam, A.N., Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Akram, A., Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Rahman, M., Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh; Shirin, T., Deparment of Virology, Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh","Introduction Every year around 150,000 pilgrims from Bangladesh perform Umrah and Hajj. Emergence and continuous reporting of MERS-CoV infection in Saudi Arabia emphasize the need for surveillance of MERS-CoV in returning pilgrims or travelers from the Middle East and capacity building of health care providers for disease containment. The Institute of Epidemiology, Disease Control & Research (IEDCR) under the Bangladesh Ministry of Health and Family welfare (MoHFW), is responsible for MERS-CoV screening of pilgrims/ travelers returning from the Middle East with respiratory illness as part of its outbreak investigation and surveillance activities. Methods Bangladeshi travelers/pilgrims who returned from the Middle East and presented with fever and respiratory symptoms were studied over the period from October 2013 to June 2016. Patients with respiratory symptoms that fulfilled the WHO MERS-CoV case algorithm were tested for MERS-CoV and other respiratory tract viruses. Beside surveillance, case recognition training was conducted at multiple levels of health care facilities across the country in support of early detection and containment of the disease. Results Eighty one suspected cases tested by real time PCR resulted in zero detection of MERS-CoV infection. Viral etiology detected in 29.6% of the cases was predominantly influenza A (H1N1 and H3N2), and influenza B infection (22%). Peak testing occurred mostly following the annual Hajj season. Conclusions Respiratory tract infections in travelers/pilgrims returning to Bangladesh from the Middle East are mainly due to influenza A and influenza B. Though MERS-CoV was not detected in the 81 patients tested, continuous screening and surveillance are essential for early detection of MERS-CoV infection and other respiratory pathogens to prevent transmissions in hospital settings and within communities. Awareness building among healthcare providers will help identify suspected cases. © 2018 Muraduzzaman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adolescent; adult; aged; Article; Bangladesh; Bangladeshi; child; early diagnosis; female; fever; health care facility; health survey; human; infant; influenza A (H1N1); influenza A (H3N2); Influenza A virus (H1N1); Influenza A virus (H3N2); influenza B; Influenza B virus; major clinical study; male; middle aged; Middle East; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; newborn; pathogenesis; preschool child; real time polymerase chain reaction; respiratory tract disease; respiratory tract infection; school child; screening test; travel; virus detection; young adult; Bangladesh; Coronavirus infection; genetics; isolation and purification; Middle East respiratory syndrome coronavirus; polymerase chain reaction; Bangladesh; Coronavirus Infections; Humans; Middle East; Middle East Respiratory Syndrome Coronavirus; Polymerase Chain Reaction; Population Surveillance; Travel","Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: A study protocol (2015) Springerplus, 4, p. 709. , https://doi.org/10.1186/s40064-015-1490-9, PMID: 26618098; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans MBio, 3; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, PMID: 23075143; (2015) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , WHO; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Hospital outbreak of Middle East respiratory syndrome coronavirus N Engl J Med, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742PMID, 23782161; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections N Engl J Med, 368, pp. 2487-2494. , https://doi.org/10.1056/NEJMoa1303729, PMID: 23718156; Puzelli, S., Azzi, A., Santini, M.G., Di Martino, A., Facchini, M., Investigation of an imported case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013 Euro Surveill, p. 18; (2015) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Summary of Current Situation, Literature Update and Risk Assessment, , WHO; (2016) WHO MERS-CoV Global Summary and Risk Assessment, , WHO December, WHO/MERS/RA/ 16.1 WHO/MERS/RA/16.1; (2014) First Confirmed Cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in The United States, Updated Information on The Epidemiology of MERS-CoV Infection, and Guidance, , MMWR) MaMWR for the Public, Clinicians, and Public Health Authorities—May 2014; (2016) WHO MERS-CoV Global Summary and Risk Assessment, , WHO; State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans (2013) PLoS Curr, p. 5. , Who Mers-Cov Research G; Memish, Z.A., Al-Rabeeah, A.A., Public health management of mass gatherings: The Saudi Arabian experience with MERS-CoV Bull World Health Organ, 91, pp. 899–899A. , https://doi.org/10.2471/BLT.13.132266PMID, 24347725; Gautret, P., Parola, P., Brouqui, P., Relative risk for influenza like illness in French Hajj pilgrims compared to non-Hajj attending controls during the 2009 influenza pandemic Travel Med Infect Dis, 11, pp. 95-97. , https://doi.org/10.1016/j.tmaid.2013.03.003, PMID: 23566855; Alzeer, A.H., Respiratory tract infection during Hajj (2009) Ann Thorac Med, 4, pp. 50-53. , https://doi.org/10.4103/1817-1737.49412, PMID: 19561924; (2013) Satastics on Bangladeshi Pilgrim 2013, , Bangladesh Hajj management portal MoRA; WHO Statement on the third meeting of the IHR Emergency committee concerning Middle East respiratory syndrome coronavirus (MERS-CoV) (2013) Wkly Epidemiol Rec, 88, pp. 435-436. , WHO PMID: 24159666; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: A prospective descriptive study for the period 2013–2015 (2016) Int J Infect Dis; (2012) Guidance on Regulations for The Transport of Infectious Substances, 2013–2014, , WHO; Lu, X., Whitaker, B., Sakthivel, S.K.K., Kamili, S., Rose, L.E., Real-Time Reverse Transcription-PCR Assay Panel for Middle East Respiratory Syndrome Coronavirus (2014) Journal of Clinical Microbiology, 52, pp. 67-75. , https://doi.org/10.1128/JCM.02533-13, PMID: 24153118; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1986-1994. , https://doi.org/10.1056/NEJMoa030685, PMID: 12682352; Fraser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D., Pandemic potential of a strain of influenza A (H1N1): Early findings (2009) Science, 324, pp. 1557-1561. , https://doi.org/10.1126/science.1176062, PMID: 19433588; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj Emerg Infect Dis, 20, pp. 728-730. , https://doi.org/10.3201/eid2004.131708, PMID: 24656283; (2017) National Influenza Surveillance, , stitute of Epidemiology DCRI Bangladesh; Al-Hajjar, S., Akhter, J., Al Jumaah, S., Qadri, S.H., Respiratory viruses in children attending a major referral centre in Saudi Arabia (1998) Annals of Tropical Paediatrics, 18, pp. 87-92. , PMID: 9924568; Hashem, A.M., Influenza immunization and surveillance in Saudi Arabia (2016) Annals of Thoracic Medicine, 11, p. 161. , https://doi.org/10.4103/1817-1737.180022, PMID: 27168867; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Prevalence of MERS-CoV Nasal Carriage and Compliance With the Saudi Health Recommendations Among Pilgrims Attending the 2013 Hajj J Infect Dis; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222. , https://doi.org/10.1186/s12985-015-0439-5, PMID: 26695637; Al-Tawfiq, J.A., Assiri, A., Memish, Z.A., Middle East respiratory syndrome novel corona MERS-CoV infection. Epidemiology and outcome update (2013) Saudi Med J, 34, pp. 991-994. , PMID: 24145930; (2014) CDC Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , CDC; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., The spectrum of respiratory pathogens among returning Hajj pilgrims: Myths and reality (2016) Int J Infect Dis; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): Prevention in travelers (2014) Travel Med Infect Dis, 12, pp. 602-608. , https://doi.org/10.1016/j.tmaid.2014.10.006PMID, 25457301; Sridhar, S., Brouqui, P., Parola, P., Gautret, P., Imported cases of Middle East respiratory syndrome: An update (2015) Travel Med Infect Dis, 13, pp. 106-109. , https://doi.org/10.1016/j.tmaid.2014.11.006, PMID: 25477148; Corrigendum to ""middle east respiratory syndrome coronavirus outbreak in the Republic of Korea (2016), 7, p. 138. , https://doi.org/10.1016/j.phrp.2016.03.002, Prevention KCfDCa 2015"" 6, 4, August 2015, 269–278. Osong Public Health Res Perspect PMID: 27218017","Shirin, T.; Deparment of Virology, Institute of Epidemiology, Disease Control & Research (IEDCR)Bangladesh; email: tahmina.shirin14@gmail.com",,"Public Library of Science",19326203,,POLNC,"29337997","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85040597873 "Gonzales Zamora J.A.","57191982323;","Pneumonia caused by coronavirus 229e and parainfluenza 3 coinfection in a lung transplant recipient",2018,"Infectious Diseases in Clinical Practice","26","1",,"e3","e4",,,"10.1097/IPC.0000000000000564","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040374628&doi=10.1097%2fIPC.0000000000000564&partnerID=40&md5=7d80b10f80469d106751a7f8b3ca104b","Division of Infectious Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, United States","Gonzales Zamora, J.A., Division of Infectious Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, United States",[No abstract available],,,"Vu, D.L., Bridevaux, P.O., Aubert, J.D., Respiratory viruses in lung transplant recipients: A critical review and pooled analysis of clinical studies (2011) Am J Transplant., 11 (5), pp. 1071-1078; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis., 37 (7), pp. 929-932; Gottlieb, J., Schulz, T.F., Welte, T., Community-acquired respiratory viral infections in lung transplant recipients: A single season cohort study (2009) Transplantation., 87 (10), pp. 1530-1537; Sridhar, S., Luk, H.K., Lau, S.K., First report of severe parainfluenza virus 4B and rhinovirus C coinfection in a liver transplant recipient treated with immunoglobulin (2014) J Clin Virol., 61 (4), pp. 611-614; Ghattas, C., Mossad, S.B., Fatal human metapneumovirus and influenza B virus coinfection in an allogeneic hematopoietic stem cell transplant recipient (2012) Transpl Infect Dis., 14 (5), pp. E41-E43",,,"Lippincott Williams and Wilkins",10569103,,IDCPE,,"English","Infect. Dis. Clin. Pract.",Letter,"Final",,Scopus,2-s2.0-85040374628 "Pyankov O.V., Bodnev S.A., Pyankova O.G., Agranovski I.E.","6602579756;8722292400;6507401910;7004905558;","Survival of aerosolized coronavirus in the ambient air",2018,"Journal of Aerosol Science","115",,,"158","163",,4,"10.1016/j.jaerosci.2017.09.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028928153&doi=10.1016%2fj.jaerosci.2017.09.009&partnerID=40&md5=463f421834ef654c7d0638862989973e","State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region630559, Russian Federation; School of Engineering, Griffith University, Brisbane, QLD 4111, Australia","Pyankov, O.V., State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region630559, Russian Federation; Bodnev, S.A., State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region630559, Russian Federation; Pyankova, O.G., State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region630559, Russian Federation; Agranovski, I.E., School of Engineering, Griffith University, Brisbane, QLD 4111, Australia","An inactivation of airborne pathogenic Middle East Respiratory Syndrome (MERS-CoV) virus was investigated under controlled laboratory conditions. Two sets of climatic conditions were used in the experiments; (1) representing common office environment (25 °C and 79% RH) and (2) climatic conditions of the Middle Eastern region where the virus was originated from (38 °C and 24% RH). At the lower temperature, the virus demonstrated high robustness and strong capability to survive with about 63.5% of microorganisms remaining infectious 60 min after aerosolisation. Fortunately, virus decay was much stronger for hot and dry air scenario with only 4.7% survival over 60 min procedure. © 2017 Elsevier Ltd","Airborne virus; Bioaerosol; Coronavirus; Virus viability","Atmospheric aerosols; Airborne virus; Bioaerosols; Climatic conditions; Controlled laboratories; Coronaviruses; High robustness; Lower temperatures; Office environments; Viruses; aerosol; ambient air; climate conditions; laboratory method; low temperature; microorganism; survival; temperature effect; viability; virus; aerosol; ambient air; Article; Betacoronavirus; Coronaviridae; measurement; Middle East respiratory syndrome coronavirus; nonhuman; particle size; priority journal; reverse transcription polymerase chain reaction; temperature; virus survival; Middle East; Coronavirus","Agranovski, I., Myojo, T., Braddock, R., Comparative study of the performance of nine filters utilized in filtration of aerosols by bubbling (2001) Aerosol Science and Technology, 35, pp. 852-859; Agranovski, I., Agranovski, V., Reponen, T., Willeke, K., Grinshpun, S., Collection of airborne microorganisms into liquid by bubbling through porous medium (2002) Aerosol Science and Technology, 36, pp. 502-509; Agranovski, I., Safatov, A., Pyankov, O., Sergeev, A.N., Agafonov, A., Ignatiev, G., Agranovski, V., Monitoring of viable airborne SARS virus in ambient air (2004) Atmospheric Environment, 38, pp. 3879-3884; Agranovski, I., Safatov, A., Borodulin, A., Pyankov, O., Petrishchenko, V., Sergeev, A., Grinshpun, S., New personal sampler for viable airborne viruses; feasibility study (2005) Journal of Aerosol Science, 36, pp. 609-617; Agranovski, I., Safatov, A., Sergeev, A.A., Pyankov, O., Petrishchenko, V., Mikheev, M., Sergeev, A.N., Rapid detection of airborne viruses by personal bioaerosol sampler combined with the PCR device (2006) Atmospheric Environment, 40, pp. 3924-3929; Agranovski, I., Safatov, A., Agafonov, A., Pyankov, O., Sergeev, A.N., Monitoring of airborne mumps and measles viruses in a hospital (2008) CLEAN: Soil Air Water, 36, pp. 845-849; Agranovski, I.E., Pyankov, O.V., Pyankova, O.G., Sergeev, A.A., Sergeev, A.N., Smetannikova, M.A., Safatov, A.S., Development of a new procedure for precise determination of viral aerosol lethal dose (ALD(50)) for birds (2010) Journal of Aerosol Science, 41, pp. 161-169; Atkinson, M.P., Wein, L.M., Quantifying the routes of transmission for pandemic influenza (2008) Bulletin of Mathematical Biology, 70, pp. 820-867; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Madani, T.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) mBio, 5 (4), pp. e01450-14; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Drosten, C., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveillance, 17 (40). , (pii/20288); Choi, J.W., Kim, K.H., Cho, Y.M., Kim, S.H., Current epidemiological situation of Middle East respiratory syndrome coronavirus clusters and implications for public health response in South Korea (2015) Journal of Korean Medical Association, 58 (6), pp. 487-497; French, N.P., Kelly, L., Jones, R., Clancy, D., Dose–response relationships for foot and mouth disease in cattle and sheep (2002) Epidemiology & Infection, 128, pp. 325-332; Gao, H.N., Yao, H.P., Yang, S.G., Li, L.J., From SARS to MERS: Evidence and speculation (2016) Frontiers in Medicine, 10, pp. 377-382; Harper, G.J., Airborne micro-organisms: Survival tests with four viruses (1961) Journal of Hygiene, 59, pp. 479-486; Harper, G.J., The influence of environment on the survival of airborne virus particles in the laboratory (1963) Archiv Fur Die Gesamte Virusforschung, 13, pp. 64-71; Hemmes, J.H., Winkler, K.C., Kool, S.M., Virus survival as a seasonal factor in influenza and poliomyelitis (1960) Nature, 188, pp. 430-431; Hemmes, J.H., Kool, S.M., Winkler, K.C., Virus survival as a seasonal factor in influenza and poliomyelitis (1962) Antonie van Leeuwenhoek, 28, pp. 221-233; Hermann, J.R., Hoff, S.J., Yoon, Y.K.J., Burkhardt, A.C., Evans, R.B., Zimmerman, J.J., Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus (2006) Applied and Environmental Microbiology, 72, pp. 4811-4818; Hermann, J.R., Muñoz-Zanzib, C.A., Zimmerman, J.J., A method to provide improved dose–response estimates for airborne pathogens in animals: An example using porcine reproductive and respiratory syndrome virus (2009) Veterinary Microbiology, 133 (3), pp. 297-302; Hood, A.M., Infectivity of influenza virus aerosols (1963) Journal of Hygiene, 61, pp. 331-335; Karber, G., Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche (1931) Archiv fur Experimentelle Pathologie und Pharmakologie, 162, pp. 480-487; Kwon, Y.K., Swayne, D.E., Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks (2010) Avian Diseases, 54 (4), pp. 1260-1269; Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Murray, M., Transmission dynamics and control of severe acute respiratory syndrome (2003) Science, 300 (5627), pp. 1966-1970; Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., Weber, D.J., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination (2016) Journal of Hospital Infection, 92 (3), pp. 235-250; Pyankov, O., Agranovski, I., Pyankova, O., Mokhonova, E., Mokhonov, V., Safatov, A., Khromykh, A., Using bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses; feasibility study (2007) Environment Microbiology, 9, pp. 992-1000; Pyankov, O.V., Pyankova, O., Agranovski, I.E., Inactivation of airborne Influenza virus in the ambient air (2012) Journal of Aerosol Science, 53, pp. 21-28; Sergeev, A.A., Demina, O.K., Pyankov, O.V., Agafonov, A.P., Kiselev, S.A., Agranovski, I.E., Sergeev, A.N., Infection caused by avian influenza virus A/H5N1 delivered by aerosol and other routes (2013) Transboundary and Emerging Diseases, 60, pp. 159-165; Spearman, C., The method of 'Right and Wrong' cases ('Constant Stimuli') without Gauss's formulae (1908) British Journal of Psychology, 2, pp. 227-242; Spekreijse, D., Bouma, A., Koch, G., Stegeman, J.A., Airborne transmission of a highly pathogenic avian influenza virus strain H5N1 between groups of chickens quantified in an experimental setting (2011) Veterinary Microbiology, 152 (1-2), pp. 88-95; Tellier, R., Review of aerosol transmission of influenza A virus (2006) Emerging Infectious Diseases, 12 (11), pp. 1657-1662; Usachev, E., Usacheva, O., Agranovski, I., Investigation of sensitivity and detection limits of SPR based real time bioaerosol detection (2013) Journal of Aerosol Science, 76, pp. 39-47; Weber, T.P., Stilianakis, N.I., Inactivation of influenza A viruses in the environment and modes of transmission: A critical review (2008) Journal of Infection, 57 (5), pp. 361-373","Agranovski, I.E.; School of Engineering, Griffith UniversityAustralia; email: i.agranovski@griffith.edu.au",,"Elsevier Ltd",00218502,,JALSB,,"English","J. Aerosol Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85028928153 "Canton J., Fehr A.R., Fernandez-Delgado R., Gutierrez-Alvarez F.J., Sanchez-Aparicio M.T., García-Sastre A., Perlman S., Enjuanes L., Sola I.","57191749950;36061058900;55986933600;57191845034;54895272800;7006948562;7102708317;7006565392;7003336781;","MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection",2018,"PLoS Pathogens","14","1", e1006838,"","",,16,"10.1371/journal.ppat.1006838","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041527551&doi=10.1371%2fjournal.ppat.1006838&partnerID=40&md5=2b544c3984140cab6f84326b80257d83","Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States","Canton, J., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Fehr, A.R., Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Fernandez-Delgado, R., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Gutierrez-Alvarez, F.J., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Sanchez-Aparicio, M.T., Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; García-Sastre, A., Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States, Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Perlman, S., Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Enjuanes, L., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Sola, I., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain","Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that emerged in 2012, causing severe pneumonia and acute respiratory distress syndrome (ARDS), with a case fatality rate of ~36%. When expressed in isolation, CoV accessory proteins have been shown to interfere with innate antiviral signaling pathways. However, there is limited information on the specific contribution of MERS-CoV accessory protein 4b to the repression of the innate antiviral response in the context of infection. We found that MERS-CoV 4b was required to prevent a robust NF-κB dependent response during infection. In wild-type virus infected cells, 4b localized to the nucleus, while NF-κB was retained in the cytoplasm. In contrast, in the absence of 4b or in the presence of cytoplasmic 4b mutants lacking a nuclear localization signal (NLS), NF-κB was translocated to the nucleus leading to the expression of pro-inflammatory cytokines. This indicates that NF-κB repression required the nuclear import of 4b mediated by a specific NLS. Interestingly, we also found that both in isolation and during infection, 4b interacted with α-karyopherin proteins in an NLS-dependent manner. In particular, 4b had a strong preference for binding karyopherin-α4 (KPNA4), which is known to translocate the NF-κB protein complex into the nucleus. Binding of 4b to KPNA4 during infection inhibited its interaction with NF-κB-p65 subunit. Thereby we propose a model where 4b outcompetes NF-κB for KPNA4 binding and translocation into the nucleus as a mechanism of interference with the NF-κB-mediated innate immune response. © 2018 Canton et al.",,"Article; immune response; animal; cell culture; Coronavirus infection; hamster; host pathogen interaction; human; immune evasion; immunology; innate immunity; metabolism; Middle East respiratory syndrome coronavirus; physiology; virology; immunoglobulin enhancer binding protein; viral protein; Animals; Cells, Cultured; Coronavirus Infections; Cricetinae; Host-Pathogen Interactions; Humans; Immune Evasion; Immunity, Innate; Middle East Respiratory Syndrome Coronavirus; NF-kappa B; Viral Proteins","Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J Virol, 87, pp. 5300-5304. , 23449793,..;: –. Epub 2013/03/02.; PubMed Central PMCID: PMC3624328; Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., Fong, J.H., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J Virol, 87, pp. 6604-6614. , 23552422,..;: –. Epub 2013/04/05.; PubMed Central PMCID: PMC3676115; Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) MBio, 4, pp. e00611-e00612. , 23422412,..;: –.; PubMed Central PMCID: PMCPMC3573664; Li, Q., Verma, I.M., NF-kappaB regulation in the immune system (2002) Nat Rev Immunol, 2, pp. 725-734. , 1236021; DeDiego, M.L., Nieto-Torres, J.L., Regla-Nava, J.A., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Inhibition of NF-kappaB mediated inflammation in severe acute respiratory syndome coronavirus-infected mice increases survival (2014) J Virol, 88, pp. 913-924. , 24198408,..;: –. Epub 2013/11/08; Smits, S.L., de Lang, A., van den Brand, J.M., Leijten, L.M., van, I.W.F., Eijkemans, M.J., Exacerbated innate host response to SARS-CoV in aged non-human primates (2010) PLoS Pathog, 6, p. e1000756. , 20140198,..;:. Epub 2010/02/09.; PubMed Central PMCID: PMC2816697; Ludwig, S., Planz, O., Influenza viruses and the NF-kappaB signaling pathway—towards a novel concept of antiviral therapy (2008) Biol Chem, 389, pp. 1307-1312. , 1871301; Almazan, F., DeDiego, M.L., Sola, I., Zuñiga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4, pp. e00613-e00650. , 24023385,..;: –. Epub 2013/09/12.; PubMed Central PMCID: PMC3774192; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12, p. e1005982. , 27783669,..;:.; PubMed Central PMCID: PMCPMC5081173; Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882. , 24443473,.;: –. Epub 2014/01/21; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L.M., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004. , 1292753; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87, pp. 12489-12495. , 24027320,..;: –. Epub 2013/09/13.; PubMed Central PMCID: PMC3807936; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in innate antiviral response (2014) J Virol, 88, pp. 4866-4876. , 24522921,..;: –. Epub 2014/02/14; Hehner, S.P., Hofmann, T.G., Droge, W., Schmitz, M.L., The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex (1999) J Immunol, 163, pp. 5617-5623. , 10553091,.;: –. Epub 1999/11/24; Brown, K., Park, S., Kanno, T., Franzoso, G., Siebenlist, U., Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha (1993) Proc Natl Acad Sci USA, 90, pp. 2532-2536. , 8460169,.;: –.; PubMed Central PMCID: PMCPMC46122; Freitas, N., Cunha, C., Mechanisms and signals for the nuclear import of proteins (2009) Curr Genomics, 10, pp. 550-557. , 20514217,.;: –.; PubMed Central PMCID: PMCPMC2817886; Pumroy, R.A., Cingolani, G., Diversification of importin-alpha isoforms in cellular trafficking and disease states (2015) Biochem J, 466, pp. 13-28. , 25656054,.;: –.; PubMed Central PMCID: PMCPMC4405237; Fagerlund, R., Kinnunen, L., Kohler, M., Julkunen, I., Melen, K., NF-kappa B is transported into the nucleus by importin alpha3 and importin alpha4 (2005) J Biol Chem, 280, pp. 15942-15951. , 1567744; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961. , 24318862,..;: –. Epub 2013/12/10; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci Rep, 5, p. 17554. , 26631542,..;:.; PubMed Central PMCID: PMCPMC4668369; Versteeg, G.A., Garcia-Sastre, A., Viral tricks to grid-lock the type I interferon system (2010) Curr Opin Microbiol, 13, pp. 508-516. , 20538505,.;: –. Epub 2010/06/12.; PubMed Central PMCID: PMC2920345; Kindler, E., Thiel, V., Weber, F., Interaction of SARS and MERS coronaviruses with the antiviral interferon response (2016) Adv Virus Res, 96, pp. 219-243. , 2771262; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70. , 24503068,.;: –.; PubMed Central PMCID: PMCPMC3957432; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00412-e00473. , 23170002,..;: –. Epub 2012/11/22.; PubMed Central PMCID: PMC3509437; Corman, V.M., Kallies, R., Philipps, H., Gopner, G., Muller, M.A., Eckerle, I., Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs (2014) J Virol, 88, pp. 717-724. , 24131722,..;: –.; PubMed Central PMCID: PMCPMC3911734; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., MERS-CoV Accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00617-e00665. , 28830941,..;: –.; PubMed Central PMCID: PMCPMC5565963; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol, 2, pp. 264-275. , 22572391,.;: –. Epub 2012/05/11; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, p. e00258. , 27025250,..;:.; PubMed Central PMCID: PMCPMC4817253; Sola, I., Almazán, F., Zúñiga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu Rev Virol, 2, pp. 265-288. , 2695891; Freundt, E.C., Yu, L., Park, E., Lenardo, M.J., Xu, X.N., Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein (2009) J Virol, 83, pp. 6631-6640. , 19403678,.;: –. Epub 2009/05/01.; PubMed Central PMCID: PMC2698541; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018. , 25105276,.;: –.; PubMed Central PMCID: PMCPMC4147684; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Middle East Respiratory Syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89, pp. 10970-10981. , 26311885,..;: –. Epub 2015/08/28.; PubMed Central PMCID: PMCPMC4621111; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268. , 2677338; Hiscox, J.A., The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication (2003) Virus Res, 95, pp. 13-22. , 1292199; Le Sage, V., Mouland, A.J., Viral subversion of the nuclear pore complex (2013) Viruses, 5, pp. 2019-2042. , 23959328,.;: –.; PubMed Central PMCID: PMCPMC3761240; Malik, P., Tabarraei, A., Kehlenbach, R.H., Korfali, N., Iwasawa, R., Graham, S.V., Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through Nup62, inhibiting host nucleocytoplasmic transport pathways (2012) J Biol Chem, 287, pp. 12277-12292. , 22334672,..;: –.; PubMed Central PMCID: PMCPMC3320978; Chang, C.W., Lee, C.P., Su, M.T., Tsai, C.H., Chen, M.R., BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins (2015) J Virol, 89, pp. 1703-1718. , 25410863,.;: –.; PubMed Central PMCID: PMCPMC4300756; Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., Baric, R.S., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J Virol, 81, pp. 9812-9824. , 1759630; Zhao, J., Falcon, A., Zhou, H., Netland, J., Enjuanes, L., Perez Brena, P., Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication (2009) J Virol, 83, pp. 2368-2373. , 1909186; Zhou, H., Ferraro, D., Zhao, J., Hussain, S., Shao, J., Trujillo, J., The N Terminal Region of Severe Acute Respiratory Syndrome Coronavirus Protein 6 Induces Membrane Rearrangement and Enhances Virus Replication (2010) J Virol, , 20106914,.. Epub 2010/01/29; Reid, S.P., Leung, L.W., Hartman, A.L., Martinez, O., Shaw, M.L., Carbonnelle, C., Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation (2006) J Virol, 80, pp. 5156-5167. , 16698996,..;: –.; PubMed Central PMCID: PMCPMC1472181; Wang, C., Sun, M., Yuan, X., Ji, L., Jin, Y., Cardona, C.J., Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-alpha1 degradation (2017) J Biol Chem, 292, pp. 10262-10274. , 28455446,..;: –.; PubMed Central PMCID: PMCPMC5473229; Gustin, K.E., Sarnow, P., Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition (2001) EMBO J, 20, pp. 240-249. , 11226174,.;: –.; PubMed Central PMCID: PMCPMC140206; Gustin, K.E., Sarnow, P., Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus (2002) J Virol, 76, pp. 8787-8796. , 12163599,.;: –.; PubMed Central PMCID: PMCPMC136411; Taylor, S.L., Frias-Staheli, N., Garcia-Sastre, A., Schmaljohn, C.S., Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B (2009) J Virol, 83, pp. 1271-1279. , 19019947,.;: –.; PubMed Central PMCID: PMCPMC2620888; Ye, J., Chen, Z., Li, Y., Zhao, Z., He, W., Zohaib, A., production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-κB (2017) J Virol, 91, pp. e00017-e00039. , 28179530,. Japanese encephalitis virus NS5 inhibits type I interferon (IFN).;: –.; PubMed Central PMCID: PMCPMC5375679; Xu, H., Su, C., Pearson, A., Mody, C.H., Zheng, C., Herpes simplex virus 1 UL24 abrogates the DNA sensing signal pathway by inhibiting NF-kappaB activation (2017) J Virol, 91, pp. e00017-e00025. , 28100608,.;: –.; PubMed Central PMCID: PMCPMC5355614; Poppe, M., Wittig, S., Jurida, L., Bartkuhn, M., Wilhelm, J., Muller, H., The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells (2017) PLoS Pathog, 13, p. e1006286. , 28355270,..;:.; PubMed Central PMCID: PMCPMC5386326; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , 19430490, Epub 2009/05/12 Central PMCID: PMC2830095; Sims, A.C., Tilton, S.C., Menachery, V.D., Gralinski, L.E., Schafer, A., Matzke, M.M., Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells (2013) J Virol, 87, pp. 3885-3902. , 23365422,..;: –. Epub 2013/02/01.; PubMed Central PMCID: PMCPmc3624188; Pewe, L., Zhou, H., Netland, J., Tangudu, C., Olivares, H., Shi, L., A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus (2005) J Virol, 79, pp. 11335-11342. , 1610318; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114, pp. E3119-E3128. , 28348219,..;: –.; PubMed Central PMCID: PMCPMC5393213; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , 2789292; Yoshikawa, T., Hill, T.E., Yoshikawa, N., Popov, V.L., Galindo, C.L., Garner, H.R., Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection (2010) PLoS One, 5, p. e8729. , 20090954,..;:. Epub 2010/01/22.; PubMed Central PMCID: PMC2806919; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) MBio, 7, pp. e01716-e01721. , 27965448,..;: –.; PubMed Central PMCID: PMCPMC5156301; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408. , 11846609,.;: –. Epub 2002/02/16. S1046-2023(01)91262-9 [pi; Suzuki, K., Bose, P., Leong-Quong, R.Y.Y., Fujita, D.J., Riabowol, K., REAP: A two minute cell fractionation method (2010) BMC Res Notes, 3, p. 294. , 21067583,.;:.; PubMed Central PMCID: PMCPMC2993727","Enjuanes, L.; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC)Spain; email: L.Enjuanes@cnb.csic.es",,"Public Library of Science",15537366,,,"29370303","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85041527551 "Alsuwaidi A.R., Alkalbani A.M., Alblooshi A., George J., Albadi G., Kamal S.M., Narchi H., Souid A.-K.","23099317500;57201121457;55922259200;12646126100;57201121765;57198235493;7005117376;7003798602;","Nasopharyngeal isolates and their clinical impact on young children with asthma: A pilot study",2018,"Journal of Asthma and Allergy","11",,,"233","243",,2,"10.2147/JAA.S169966","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059018323&doi=10.2147%2fJAA.S169966&partnerID=40&md5=4c9d0710d153d67d72f72be75741496a","Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Tawam Hospital, Abu Dhabi Health Services Company (SEHA), Al Ain, United Arab Emirates; Ambulatory Healthcare Services, SEHA, Abu Dhabi, United Arab Emirates","Alsuwaidi, A.R., Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Alkalbani, A.M., Tawam Hospital, Abu Dhabi Health Services Company (SEHA), Al Ain, United Arab Emirates; Alblooshi, A., Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; George, J., Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Albadi, G., Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Kamal, S.M., Ambulatory Healthcare Services, SEHA, Abu Dhabi, United Arab Emirates; Narchi, H., Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Souid, A.-K., Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates","Introduction: Respiratory infections have significant effects on childhood asthma. Viral respiratory infections, such as rhinovirus and respiratory syncytial virus are likely to be important in the development and exacerbation of asthma. In this study, we investigated the nasopharyngeal colonization in children with asthma to determine the prevalence of pathogens and their contribution to respiratory symptoms and airway resistance during winter. Methods: From December 2016 to March 2017, 50 nasopharyngeal specimens were collected from 18 patients (age, 5.0±1.1 years) with asthma and 9 specimens from 9 control children (age, 4.9±1.0 years). Samples were tested for 19 viruses and 7 bacteria, using multiplex real-time PCR. Respiratory disease markers included the Global Asthma Network Questionnaire, the Common-Cold Questionnaire, the Global Initiative for Asthma assessment of asthma control, and the airway resistance at 5 Hz by forced-oscillation technique. Results: The most commonly isolated organisms in both groups (patients and controls) were Streptococcus pneumoniae, Haemophilus influenzae, and rhinovirus. Most patients had multiple isolates (median, 3.5; range, 1–5), which changed during the study period. Types of isolates were 4 bacteria (S. pneumoniae, H. influenzae, Bordetella pertussis, and Bordetella parapertussis) and 6 viruses (rhinovirus, enterovirus, metapneumovirus, adenovirus, coronaviruses, and parainflu-enza viruses). Similar isolates, including influenza A-H3 virus and bocavirus, were detected in the controls. Of the 9 patients with “wheezing disturbing sleep ≥1 per week”, 6 had rhinovirus, 2 coronaviruses, and 1 no detectable viruses. Patients with mild common cold symptoms had significantly higher airway resistance at 5 Hz z-score (P=0.025). Conclusion: Multiple respiratory pathogens were isolated from many patients with asthma, which appeared to contribute to disease symptoms and airway resistance. Minimizing children’s exposure to respiratory pathogens might be beneficial, especially during winter. © 2018 Alsuwaidi et al.","Asthma; Communicable diseases; Inhaled corticosteroids; Nasopharyngeal colonization; Respiratory pathogens","corticosteroid; Acinetobacter baumannii; adult; Article; asthma; chronic obstructive lung disease; clinical article; coughing; female; human; influenza; male; pilot study; prevalence; questionnaire; real time polymerase chain reaction; respiratory tract infection","Papadopoulos, N.G., Christodoulou, I., Rohde, G., Viruses and bacteria in acute asthma exacerbations--a GA² LEN-DARE systematic review (2011) Allergy, 66 (4), pp. 458-468; Tovey, E.R., Stelzer-Braid, S., Toelle, B.G., Rhinoviruses significantly affect day-to-day respiratory symptoms of children with asthma (2015) J Allergy Clin Immunol, 135 (3), pp. 663-669; Halmø Hürdum, S., Zhang, G., Khoo, S.K., Recurrent rhinovirus detec-tions in children following a rhinovirus-induced wheezing exacerbation: A retrospective study (2015) Int J Pediatr Child Health, 3 (1), pp. 10-18; Maffey, A.F., Barrero, P.R., Venialgo, C., Viruses and atypical bacteria associated with asthma exacerbations in hospitalized children (2010) Pediatr Pulmonol, 45 (6), pp. 619-625; Zhang, L., Prietsch, S.O., Mendes, A.P., Inhaled corticosteroids increase the risk of oropharyngeal colonization by Streptococcus pneumoniae in children with asthma (2013) Respirology, 18 (2), pp. 272-277; Al-Alaiyan, S., Pollack, P., Notario, G.F., Safety and pharmacokinetics of extended use of palivizumab in Saudi Arabian infants and children (2015) Drugs Context, 4; Khadadah, M., Essa, S., Higazi, Z., Behbehani, N., Al-Nakib, W., Respiratory syncytial virus and human rhinoviruses are the major causes of severe lower respiratory tract infections in Kuwait (2010) J Med Virol, 82 (8), pp. 1462-1467; (2015) Global Initiative for Asthma, Global Strategy for Asthma Management and Prevention, , https://www.ginasthma.org; http://www.globalasth-manetwork.org/surveillance/manual/study6.php, Accessed October 24, 2016; Powell, H., Smart, J., Wood, L.G., Validity of the common cold questionnaire (CCQ) in asthma exacerbations (2008) Plos One, 19 (3); Alblooshi, A., Alkalbani, A., Narchi, H., Respiratory function in healthy Emirati children using forced oscillations (2018) Pediatr Pulmonol, 53 (7), pp. 936-941; Park, S., Oh, K.C., Kim, K.S., Role of Atypical Pathogens and the Antibiotic Prescription Pattern in Acute Bronchitis: A Multicenter Study in Korea (2015) J Korean Med Sci, 30 (10), pp. 1446-1452; Pérez-Losada, M., Alamri, L., Crandall, K.A., Freishtat, R.J., Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma (2017) Plos One, 12 (1); Capili, C.R., Hettinger, A., Rigelman-Hedberg, N., Increased risk of pertussis in patients with asthma (2012) J Allergy Clin Immunol, 129 (4), pp. 957-963; Nakamura, A., Iwashima, Y., Takakuwa, O., Sato, S., Sensitivity to bordetella pertussis in asthmatic patients (2011) Eur Respir J, 38, p. 2515; Martin, M., Shaw, D., Effect of inhaled corticosteroids on the microbiology of the respiratory tract (2013) Respirology, 18 (2), pp. 201-202; Larsen, K., Zhu, J., Feldman, L.Y., The Annual September Peak in Asthma Exacerbation Rates. Still a Reality? (2016) Ann am Thorac Soc, 13 (2), pp. 231-239; Cohen, H.A., Blau, H., Hoshen, M., Batat, E., Balicer, R.D., Seasonality of asthma: A retrospective population study (2014) Pediatrics, 133 (4), pp. e923-e932; Khetsuriani, N., Kazerouni, N.N., Erdman, D.D., Prevalence of viral respiratory tract infections in children with asthma (2007) J Allergy Clin Immunol, 119 (2), pp. 314-321; Jartti, T., van den Hoogen, B., Garofalo, R.P., Osterhaus, A.D., Ruuskanen, O., Metapneumovirus and acute wheezing in children (2002) Lancet, 360 (9343), pp. 1393-1394; Allander, T., Jartti, T., Gupta, S., Human bocavirus and acute wheezing in children (2007) Clin Infect Dis, 44 (7), pp. 904-910; Ahanchian, H., Jones, C.M., Y-Sheng, C., Sly, P.D., Respiratory viral infections in children with asthma: Do they matter and can we prevent them? (2012) BMC Pediatr, 12, p. 147","Alsuwaidi, A.R.; Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Khalifa Bin Zayed Street, United Arab Emirates; email: alsuwaidia@uaeu.ac.ae",,"Dove Medical Press Ltd.",11786965,,,,"English","J. Asthma Allerg.",Article,"Final",Open Access,Scopus,2-s2.0-85059018323 "Hermann T.","57204347073;","Viral RNA targets and their small molecule ligands",2018,"Topics in Medicinal Chemistry","27",,,"111","134",,3,"10.1007/7355_2016_20","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030762082&doi=10.1007%2f7355_2016_20&partnerID=40&md5=a5c3c4912a94f353fab1ca5b7ac97099","Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States; Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States","Hermann, T., Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States, Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States","RNA genomes and transcripts of viruses contain conserved structured motifs which are attractive targets for small molecule inhibitors of viral replication. Ligand binding affects conformational states, stability, and interactions of these viral RNA targets which play key roles in the infection process. Inhibition of viral RNA function by small molecule ligands has been extensively studied for human immunodeficiency virus (HIV) and hepatitis C virus (HCV) which provide valuable insight for the future exploration of RNA targets in other viral pathogens including severe respiratory syndrome coronavirus (SARS CoV), influenza A, and insect-borne flaviviruses (Dengue, Zika, and West Nile) as well as filoviruses (Ebola and Marburg). Here, I will review recent progress on the discovery and design of small molecule ligands targeting structured viral RNA motifs. © Springer International Publishing AG 2017.","Antiviral drugs; Drug targets; Hepatitis C virus; Human immunodeficiency virus; Influenza A virus; Noncoding RNA; Viral inhibitors","2 aminobenzimidazole; aminoquinazoline; antivirus agent; benzimidazole derivative; cyproheptadine; diaminopiperidine; initiation factor; nucleocapsid protein; piperidine; quinazoline derivative; thienopyridine derivative; transactivator protein; unclassified drug; virus RNA; 5' untranslated region; alpha helix; antiviral activity; beta sheet; binding site; Dengue virus; down regulation; drug structure; drug targeting; Ebolavirus; EC50; Flavivirus; Hepatitis B virus; Hepatitis C virus; Human herpesvirus 8; Human immunodeficiency virus; hydrogen bond; IC50; Influenza A virus; Marburgvirus; nonhuman; priority journal; protein expression; protein RNA binding; regulatory sequence; RNA analysis; RNA conformation; RNA sequence; RNA translation; SARS coronavirus; transactivation; transcription initiation site; transcription regulation; virus genome; virus replication; West Nile virus; Zika virus","Hermann, T., Drugs targeting the ribosome (2005) Curr Opin Struct Biol, 15, pp. 355-366; McCoy, L.S., Xie, Y., Tor, Y., Antibiotics that target protein synthesis (2011) Wiley Interdiscip Rev RNA, 2, pp. 209-232; Le Grice, S.F., Targeting the HIV RNA genome: High-hanging fruit only needs a longer ladder (2015) Curr Top Microbiol Immunol, 389, pp. 147-169; Dibrov, S.M., Parsons, J., Carnevali, M., Zhou, S., Rynearson, K.D., Ding, K., Garcia Sega, E., Castaldi, M.P., Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site (2014) J Med Chem, 57, pp. 1694-1707; Gallego, J., Varani, G., The hepatitis C virus internal ribosome-entry site: A new target for antiviral research (2002) Biochem Soc Trans, 30, pp. 140-145; Jubin, R., Targeting hepatitis C virus translation: Stopping HCV where it starts (2003) Curr Opin Investig Drugs, 4, pp. 162-167; Hermann, T., Westhof, E., RNA as a drug target: Chemical, modelling, and evolutionary tools (1998) Curr Opin Biotechnol, 9, pp. 66-73; Hermann, T., Strategies for the design of drugs targeting RNA and RNA-protein complexes (2000) Angew Chem Int Ed Engl, 39, pp. 1890-1904; Gallego, J., Varani, G., Targeting rna with small-molecule drugs: Therapeutic promise and chemical challenges (2001) Acc Chem Res, 34, pp. 836-843; Thomas, J.R., Hergenrother, P.J., Targeting RNA with small molecules (2008) Chem Rev, 108, pp. 1171-1224; Guan, L., Disney, M.D., Recent advances in developing small molecules targeting RNA (2012) ACS Chem Biol, 7, pp. 73-86; Disney, M.D., Yildirim, I., Childs-Disney, J.L., Methods to enable the design of bioactive small molecules targeting RNA (2014) Org Biomol Chem, 12, pp. 1029-1039; Mousseau, G., Mediouni, S., Valente, S.T., Targeting HIV transcription: The quest for a functional cure (2015) Curr Top Microbiol Immunol, 389, pp. 121-145; Blond, A., Ennifar, E., Tisne, C., Micouin, L., The design of RNA binders: Targeting the HIV replication cycle as a case study (2014) Chemmedchem, 9, pp. 1982-1996; Brakier-Gingras, L., Charbonneau, J., Butcher, S.E., Targeting frameshifting in the human immunodeficiency virus (2012) Expert Opin Ther Targets, 16, pp. 249-258; Shortridge, M.D., Varani, G., Structure based approaches for targeting non-coding RNAs with small molecules (2015) Curr Opin Struct Biol, 30, pp. 79-88; Zapp, M.L., Stern, S., Green, M.R., Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production (1993) Cell, 74, pp. 969-978; Mei, H.-Y., Galan, A.A., Halim, N.S., Mack, D.P., Moreland, D.W., Sanders, K.B., Truong, H.N., Czarnik, A.W., Inhibition of an HIV-1 Tat-derived peptide binding to TAR RNA by aminoglycoside antibiotics (1995) Bioorg Med Chem Lett, 5, pp. 2755-2760; Ratmeyer, L., Zapp, M.L., Green, M.R., Vinayak, R., Kumar, A., Boykin, D.W., Wilson, W.D., Inhibition of HIV-1 Rev-RRE interaction by diphenylfuran derivatives (1996) Biochemistry, 35, pp. 13689-13696; Park, W.K.C., Auer, M., Jaksche, H., Wong, C.-H., Rapid combinatorial synthesis of aminoglycoside antibiotic mimetics: Use of a polyethylene glycol-linked amine and a neamine-derived aldehyde in multiple component condensation as a strategy for the discovery of new inhibitors of the HIV RNA Rev responsive element (1996) J am Chem Soc, 118, pp. 10150-10155; Wang, S., Huber, P.W., Cui, M., Czarnik, A.W., Mei, H.Y., Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism (1998) Biochemistry, 37, pp. 5549-5557; Mei, H.Y., Cui, M., Heldsinger, A., Lemrow, S.M., Loo, J.A., Sannes-Lowery, K.A., Sharmeen, L., Czarnik, A.W., Inhibitors of protein-RNA complexation that target the RNA: Specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules (1998) Biochemistry, 37, pp. 14204-14212; Mei, H.Y., Mack, D.P., Galan, A.A., Halim, N.S., Heldsinger, A., Loo, J.A., Moreland, D.W., Truong, H.N., Discovery of selective, small-molecule inhibitors of RNA complexes – I. The Tat protein/TAR RNA complexes required for HIV-1 transcription (1997) Bioorg Med Chem, 5, pp. 1173-1184; Davidson, A., Patora-Komisarska, K., Robinson, J.A., Varani, G., Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein (2011) Nucleic Acids Res, 39, pp. 248-256; Davis, B., Afshar, M., Varani, G., Murchie, A.I., Karn, J., Lentzen, G., Drysdale, M., Starkey, I.D., Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic “hot spots” (2004) J Mol Biol, 336, pp. 343-356; Jayaraman, B., Crosby, D.C., Homer, C., Ribeiro, I., Mavor, D., Frankel, A.D., RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev-Rev response element complex (2014) Elife, 3; Ennifar, E., Paillart, J.C., Bodlenner, A., Walter, P., Weibel, J.M., Aubertin, A.M., Pale, P., Marquet, R., Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: From crystal to cell (2006) Nucleic Acids Res, 34, pp. 2328-2339; De Guzman, R.N., Zr, W., Stalling, C.C., Pappalardo, L., Borer, P.N., Summers, M.F., Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element (1998) Science, 279, pp. 384-388; Marcheschi, R.J., Tonelli, M., Kumar, A., Butcher, S.E., Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication (2011) ACS Chem Biol, 6, pp. 857-864; Keane, S.C., Heng, X., Lu, K., Kharytonchyk, S., Ramakrishnan, V., Carter, G., Barton, S., Santos, J., RNA structure. Structure of the HIV-1 RNA packaging signal (2015) Science, 348, pp. 917-921; Dinman, J.D., Mechanisms and implications of programmed translational frameshifting (2012) Wiley Interdiscip Rev RNA, 3, pp. 661-673; Parsons, J., Castaldi, M.P., Dutta, S., Dibrov, S.M., Wyles, D.L., Hermann, T., Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA (2009) Nat Chem Biol, 5, pp. 823-825; Dibrov, S.M., Ding, K., Brunn, N.D., Parker, M.A., Bergdahl, B.M., Wyles, D.L., Hermann, T., Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches (2012) Proc Natl Acad Sci U S A, 109, pp. 5223-5228; Lee, M.K., Bottini, A., Kim, M., Bardaro, M.F., Jr., Zhang, Z., Pellecchia, M., Choi, B.S., Varani, G., A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication (2014) Chem Commun (Camb), 50, pp. 368-370; Jubin, R., Hepatitis C IRES: Translating translation into a therapeutic target (2001) Curr Opin Mol Ther, 3, pp. 278-287; Tan, S.L., Pause, A., Shi, Y., Sonenberg, N., Hepatitis C therapeutics: Current status and emerging strategies (2002) Nat Rev Drug Discov, 1, pp. 867-881; Wang, W., Preville, P., Morin, N., Mounir, S., Cai, W., Siddiqui, M.A., Hepatitis C viral IRES inhibition by phenazine and phenazine-like molecules (2000) Bioorg Med Chem Lett, 10, pp. 1151-1154; Jefferson, E.A., Seth, P.P., Robinson, D.E., Winter, D.K., Miyaji, A., Osgood, S.A., Swayze, E.E., Risen, L.M., Biaryl guanidine inhibitors of in vitro HCV-IRES activity (2004) Bioorg Med Chem Lett, 14, pp. 5139-5143; Seth, P.P., Miyaji, A., Jefferson, E.A., Sannes-Lowery, K.A., Osgood, S.A., Propp, S.S., Ranken, R., Ecker, D.J., SAR by MS: Discovery of a new class of RNA-binding small molecules for the hepatitis C virus: Internal ribosome entry site IIA subdomain (2005) J Med Chem, 48, pp. 7099-7102; Boerneke, M.A., Hermann, T., Ligand-responsive RNA mechanical switches (2015) RNA Biol, 12, pp. 780-786; Dibrov, S.M., Johnston-Cox, H., Weng, Y.H., Hermann, T., Functional architecture of HCV IRES domain II stabilized by divalent metal ions in the crystal and in solution (2007) Angew Chem Int Ed Engl, 46, pp. 226-229; Boerneke, M.A., Dibrov, S.M., Gu, J., Wyles, D.L., Hermann, T., Functional conservation despite structural divergence in ligand-responsive RNA switches (2014) Proc Natl Acad Sci U S A, 111, pp. 15952-15957; Wang, S.R., Min, Y.Q., Wang, J.Q., Liu, C.X., Bs, F., Wu, F., Ly, W., Gh, X., A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target (2016) Sci Adv, 2; Guo, J.U., Bartel, D.P., RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria (2016) Science, 353; Pflug, A., Guilligay, D., Reich, S., Cusack, S., Structure of influenza A polymerase bound to the viral RNA promoter (2014) Nature, 516, pp. 355-360; Fodor, E., Pritlove, D.C., Brownlee, G.G., The influenza virus panhandle is involved in the initiation of transcription (1994) J Virol, 68, pp. 4092-4096; Flick, R., Neumann, G., Hoffmann, E., Neumeier, E., Hobom, G., Promoter elements in the influenza vRNA terminal structure (1996) RNA, 2, pp. 1046-1057; Noble, E., Mathews, D.H., Chen, J.L., Turner, D.H., Takimoto, T., Kim, B., Biophysical analysis of influenza A virus RNA promoter at physiological temperatures (2011) J Biol Chem, 286, pp. 22965-22970; Bae, S.H., Cheong, H.K., Lee, J.H., Cheong, C., Kainosho, M., Choi, B.S., Structural features of an influenza virus promoter and their implications for viral RNA synthesis (2001) Proc Natl Acad Sci U S A, 98, pp. 10602-10607; Park, S.J., Kim, Y.G., Park, H.J., Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening (2011) J am Chem Soc, 133, pp. 10094-10100; Plant, E.P., Perez-Alvarado, G.C., Jacobs, J.L., Mukhopadhyay, B., Hennig, M., Dinman, J.D., A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal (2005) Plos Biol, 3; Mc, S., Chang, C.T., Chu, C.H., Tsai, C.H., Chang, K.Y., An atypical RNA pseudoknot sti-mulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus (2005) Nucleic Acids Res, 33, pp. 4265-4275; Villordo, S.M., Carballeda, J.M., Filomatori, C.V., Gamarnik, A.V., RNA structure duplications and flavivirus host adaptation (2016) Trends Microbiol, 24 (4), pp. 270-283; Filomatori, C.V., Iglesias, N.G., Villordo, S.M., Alvarez, D.E., Gamarnik, A.V., RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase (2011) J Biol Chem, 286, pp. 6929-6939; Gebhard, L.G., Filomatori, C.V., Gamarnik, A.V., Functional RNA elements in the dengue virus genome (2011) Viruses, 3, pp. 1739-1756; Lodeiro, M.F., Filomatori, C.V., Gamarnik, A.V., Structural and functional studies of the promoter element for dengue virus RNA replication (2009) J Virol, 83, pp. 993-1008; Sztuba-Solinska, J., Le Grice, S.F., Insights into secondary and tertiary interactions of dengue virus RNA by SHAPE (2014) Methods Mol Biol, 1138, pp. 225-239; Sztuba-Solinska, J., Teramoto, T., Rausch, J.W., Shapiro, B.A., Padmanabhan, R., Le Grice, S.F., Structural complexity of dengue virus untranslated regions: Cis-acting RNA motifs and pseudoknot interactions modulating functionality of the viral genome (2013) Nucleic Acids Res, 41, pp. 5075-5089; Crary, S.M., Towner, J.S., Honig, J.E., Shoemaker, T.R., Nichol, S.T., Analysis of the role of predicted RNA secondary structures in Ebola virus replication (2003) Virology, 306, pp. 210-218; Weik, M., Enterlein, S., Schlenz, K., Muhlberger, E., The Ebola virus genomic replication promoter is bipartite and follows the rule of six (2005) J Virol, 79, pp. 10660-10671; Neumann, G., Watanabe, S., Kawaoka, Y., Characterization of Ebolavirus regulatory genomic regions (2009) Virus Res, 144, pp. 1-7; Weik, M., Modrof, J., Klenk, H.D., Becker, S., Muhlberger, E., Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation (2002) J Virol, 76, pp. 8532-8539; Enterlein, S., Schmidt, K.M., Schumann, M., Conrad, D., Krahling, V., Olejnik, J., Muhlberger, E., The Marburg virus 30 noncoding region structurally and functionally differs from that of ebola virus (2009) J Virol, 83, pp. 4508-4519; Brauburger, K., Boehmann, Y., Krahling, V., Muhlberger, E., Transcriptional regulation in Ebola virus: Effects of gene border structure and regulatory elements on gene expression and polymerase scanning behavior (2015) J Virol, 90, pp. 1898-1909; Wang, S.R., Zhang, Q.Y., Wang, J.Q., Ge, X.Y., Song, Y.Y., Wang, Y.F., Li, X.D., Shu, B., Chemical targeting of a G-quadruplex RNA in the Ebola virus L gene (2016) Cell Chem Biol, 23, pp. 1113-1122; Guasparri, I., Keller, S.A., Cesarman, E., KSHV vFLIP is essential for the survival of infected lymphoma cells (2004) J Exp Med, 199, pp. 993-1003; Bieleski, L., Talbot, S.J., Kaposi’s sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site (2001) J Virol, 75, pp. 1864-1869; Bieleski, L., Hindley, C., Talbot, S.J., A polypyrimidine tract facilitates the expression of Kaposi’s sarcoma-associated herpesvirus vFLIP through an internal ribosome entry site (2004) J Gen Virol, 85, pp. 615-620; Othman, Z., Sulaiman, M.K., Willcocks, M.M., Ulryck, N., Blackbourn, D.J., Sargueil, B., Roberts, L.O., Locker, N., Functional analysis of Kaposi’s sarcoma-associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation (2014) RNA, 20, pp. 1803-1814; Tycowski, K.T., Shu, M.D., Borah, S., Shi, M., Steitz, J.A., Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses (2012) Cell Rep, 2, pp. 26-32; Conrad, N.K., New insights into the expression and functions of the Kaposi’s sarcoma-associated herpesvirus long noncoding PAN RNA (2016) Virus Res, 212, pp. 53-63; Mitton-Fry, R.M., Degregorio, S.J., Wang, J., Steitz, T.A., Steitz, J.A., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix (2010) Science, 330, pp. 1244-1247; Beck, J., Nassal, M., Hepatitis B virus replication (2007) World J Gastroenterol, 13, pp. 48-64; Kramvis, A., Kew, M.C., Structure and function of the encapsidation signal of hepadna-viridae (1998) J Viral Hepat, 5, pp. 357-367; Jones, S.A., Boregowda, R., Spratt, T.E., Hu, J., In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase (2012) J Virol, 86, pp. 5134-5150; Feng, H., Chen, P., Zhao, F., Nassal, M., Hu, K., Evidence for multiple distinct interactions between hepatitis B virus P protein and its cognate RNA encapsidation signal during initiation of reverse transcription (2013) Plos One, 8; Cao, F., Jones, S., Li, W., Cheng, X., Hu, Y., Hu, J., Tavis, J.E., Sequences in the terminal protein and reverse transcriptase domains of the hepatitis B virus polymerase contribute to RNA binding and encapsidation (2014) J Viral Hepat, 21, pp. 882-893; Feng, H., Beck, J., Nassal, M., Kh, H., A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication (2011) Plos One, 6; Sztuba-Solinska, J., Shenoy, S.R., Gareiss, P., Krumpe, L.R., Le Grice, S.F., O’Keefe, B.R., Schneekloth, J.S., Jr., Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays (2014) J am Chem Soc, 136, pp. 8402-8410; Zeiger, M., Stark, S., Kalden, E., Ackermann, B., Ferner, J., Scheffer, U., Shoja-Bazargani, F., Gobel, M.W., Fragment based search for small molecule inhibitors of HIV-1 Tat-TAR (2014) Bioorg Med Chem Lett, 24, pp. 5576-5580; Joly, J.P., Mata, G., Eldin, P., Briant, L., Fontaine-Vive, F., Duca, M., Benhida, R., Artificial nucleobase-amino acid conjugates: A new class of TAR RNA binding agents (2014) Chemistry, 20, pp. 2071-2079; Duca, M., Malnuit, V., Barbault, F., Benhida, R., Design of novel RNA ligands that bind stem-bulge HIV-1 TAR RNA (2010) Chem Commun (Camb), 46, pp. 6162-6164; Ranjan, N., Kumar, S., Watkins, D., Wang, D., Appella, D.H., Arya, D.P., Recognition of HIV-TAR RNA using neomycin-benzimidazole conjugates (2013) Bioorg Med Chem Lett, 23, pp. 5689-5693; Kumar, S., Ranjan, N., Kellish, P., Gong, C., Watkins, D., Arya, D.P., Multivalency in the recognition and antagonism of a HIV TAR RNA-TAT assembly using an aminoglycoside benzimidazole scaffold (2016) Org Biomol Chem, 14, pp. 2052-2056; Watanabe, K., Katou, T., Ikezawa, Y., Yajima, S., Shionoya, H., Akagi, T., Hamasaki, K., Nucleobase modified neamines, their synthesis and binding specificity for HIV TAR RNA (2007) Nucleic Acids Symp Ser (Oxf), pp. 209-210; Inoue, R., Watanabe, K., Katou, T., Ikezawa, Y., Hamasaki, K., Nucleobase modified neamines with a lysine as a linker, their inhibition specificity for TAR-Tat derived from HIV-1 (2015) Bioorg Med Chem, 23, pp. 2139-2147; Chapman, R.L., Stanley, T.B., Hazen, R., Garvey, E.P., Small molecule modulators of HIV Rev/Rev response element interaction identified by random screening (2002) Antiviral Res, 54, pp. 149-162; Shuck-Lee, D., Chen, F.F., Willard, R., Raman, S., Ptak, R., Hammarskjold, M.L., Rekosh, D., Heterocyclic compounds that inhibit Rev-RRE function and human immunodeficiency virus type 1 replication (2008) Antimicrob Agents Chemother, 52, pp. 3169-3179; Lichinchi, G., Gao, S., Saletore, Y., Gonzalez, G.M., Bansal, V., Wang, Y., Mason, C.E., Rana, T.M., Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells (2016) Nat Microbiol, 1; Prado, S., Beltran, M., Coiras, M., Bedoya, L.M., Alcami, J., Gallego, J., Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen (2016) Biochem Pharmacol, 107, pp. 14-28; Zhou, S., Rynearson, K.D., Ding, K., Brunn, N.D., Hermann, T., Screening for inhibitors of the hepatitis C virus internal ribosome entry site RNA (2013) Bioorg Med Chem, 21, pp. 6139-6144; Carnevali, M., Parsons, J., Wyles, D.L., Hermann, T., A modular approach to synthetic RNA binders of the hepatitis C virus internal ribosome entry site (2010) Chembiochem, 11, pp. 1364-1367; Ding, K., Wang, A., Boerneke, M.A., Dibrov, S.M., Hermann, T., Aryl-substituted aminoben-zimidazoles targeting the hepatitis C virus internal ribosome entry site (2014) Bioorg Med Chem Lett, 24 (14), pp. 3113-3117; Rynearson, K.D., Charrette, B., Gabriel, C., Moreno, J., Boerneke, M.A., Dibrov, S.M., Hermann, T., 2-Aminobenzoxazole ligands of the hepatitis C virus internal ribosome entry site (2014) Bioorg Med Chem Lett, 24, pp. 3521-3525; Charrette, B.P., Boerneke, M.A., Hermann, T., Ligand optimization by improving shape complementarity at a hepatitis C virus RNA target (2016) ACS Chem Biol, 11 (12), pp. 3263-3267; Grand, C.L., Han, H., Munoz, R.M., Weitman, S., Von Hoff, D.D., Hurley, L.H., Bearss, D.J., The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo (2002) Mol Cancer Ther, 1, pp. 565-573; Muller, S., Kumari, S., Rodriguez, R., Balasubramanian, S., Small-molecule-mediated G-quadruplex isolation from human cells (2010) Nat Chem, 2, pp. 1095-1098; Huppert, J.L., Four-stranded nucleic acids: Structure, function and targeting of G-quadruplexes (2008) Chem Soc Rev, 37, pp. 1375-1384; Parkinson, G.N., Ghosh, R., Neidle, S., Structural basis for binding of porphyrin to human telomeres (2007) Biochemistry, 46, pp. 2390-2397; Hurley, L.H., Von Hoff, D.D., Siddiqui-Jain, A., Yang, D., Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element (2006) Semin Oncol, 33, pp. 498-512; Bradford, S., Cowan, J.A., Catalytic metallodrugs targeting HCV IRES RNA (2012) Chem Commun (Camb), 48, pp. 3118-3120; Bradford, S.S., Ross, M.J., Fidai, I., Cowan, J.A., Insight into the recognition, binding, and re-activity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA (2014) Chemmedchem, 9, pp. 1275-1285; Ross, M.J., Bradford, S.S., Cowan, J.A., Catalytic metallodrugs based on the LaR2C peptide target HCV SLIV IRES RNA (2015) Dalton Trans, 44, pp. 20972-20982; Kim, H., Lee, M.K., Ko, J., Park, C.J., Kim, M., Jeong, Y., Hong, S., Choi, B.S., Aminoglycoside antibiotics bind to the influenza A virus RNA promoter (2012) Mol Biosyst, 8, pp. 2857-2859; Bottini, A., De, S.K., Wu, B., Tang, C., Varani, G., Pellecchia, M., Targeting influenza A virus RNA promoter (2015) Chem Biol Drug Des, 86, pp. 663-673; Hermann, T., Small molecules targeting viral RNA (2016) Wiley Interdiscip Rev RNA, 7, pp. 726-743; Ritchie, D.B., Soong, J., Sikkema, W.K., Woodside, M.T., Anti-frameshifting ligand reduces the conformational plasticity of the SARS virus pseudoknot (2014) J am Chem Soc, 136, pp. 2196-2199; Ritchie, D.B., Foster, D.A., Woodside, M.T., Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding (2012) Proc Natl Acad Sci U S A, 109, pp. 16167-16172; Blount, K.F., Breaker, R.R., Riboswitches as antibacterial drug targets (2006) Nat Biotechnol, 24, pp. 1558-1564; Matzner, D., Mayer, G., (Dis)similar analogues of riboswitch metabolites as antibacterial lead compounds (2015) J Med Chem, 58, pp. 3275-3286; Howe, J.A., Wang, H., Fischmann, T.O., Balibar, C.J., Xiao, L., Galgoci, A.M., Malinverni, J.C., Nahvi, A., Selective small-molecule inhibition of an RNA structural element (2015) Nature, 526, pp. 672-677","Hermann, T.; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, United States; email: tch@ucsd.edu",,"Springer Verlag",18622461,,,,"English","Top. Med. Chem.",Book Chapter,"Final",,Scopus,2-s2.0-85030762082 "Church M.E., Terio K.A., Keel M.K.","56385122400;6603040191;57215776140;","Procyonidae, viverridae, hyenidae, herpestidae, eupleridae, and prionodontidae",2018,"Pathology of Wildlife and Zoo Animals",,,,"305","321",,,"10.1016/B978-0-12-805306-5.00012-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081906017&doi=10.1016%2fB978-0-12-805306-5.00012-2&partnerID=40&md5=a554738f219846e0315bf119e8b55919","University of Pennsylvania, Philadelphia, PA, United States; University of Illinois, Brookfield, IL, United States; University of California, Davis, CA, United States","Church, M.E., University of Pennsylvania, Philadelphia, PA, United States; Terio, K.A., University of Illinois, Brookfield, IL, United States; Keel, M.K., University of California, Davis, CA, United States","This chapter covers the diseases and pathology of multiple taxonomic groups within the order Carnivora including Procyonidae several of the Feliformia carnivores. The overwhelming majority of knowledge about disease pathogenesis for these species is biased toward raccoons and concern for disease spread to humans and companion animals. Procyonids and feliform carnivores are ubiquitous in their environments and share habitat and environmental resources with other nondomestic and domestic carnivores and humans. As reservoirs for a number of important multispecies or zoonotic pathogens, surveys for pathogens that may be harbored or vectored by several of the species in this chapter, for example, raccoons (e.g., canine distemper virus, rabies, and leptospirosis) and civets (e.g., SARS coronavirus), have been active areas of investigation. Unfortunately, less research has focused on the potential effects of these pathogens on their hosts. © 2018 Elsevier Inc. All rights reserved.","Canine distemper; Herpestidae; Hyenidae; Leptospirosis; Procyonidae; Rabies; Viverridae",,"Adamvoicz, L., Kennedy-Stoskopf, S., Talley, A., Cullen, J.M., Bizkova, P., Grunkemeyer, V., Mycobacterium intracellulare infection causing a retroperitoneal mass in a binturong (Arctictis binturong) (2017) J. Zoo Wildl. Med., 48, pp. 544-548; Agnew, D.W., Barbiers, R.B., Poppenga, R.H., Watson, G.L., Zinc toxicosis in a captive striped hyena (Hyaena hyaena) (1999) J. Zoo Wildl. Med., 30, pp. 431-434; Aihara, N., Pleomorphic liposarcoma of the intrathoracic cavity in a meerkat (Suricata suricatta) (2009) J. Vet. Med. Sci., 71, pp. 685-688; Alexander, K.A., Laver, P.N., Michel, A.L., Williams, M., van Helden, P.D., Warren, R.M., Gey van Pittius, N.C.M., Novel Mycobacterium tuberculosis complex pathogen, M. mungi (2010) Emerg. Infect. Dis., 16, pp. 1296-1299; Alexander, K.A., Pleydell, E., Williams, M.C., Lane, E.P., Nyange, J.F.C., Michel, A.L., Mycobacterium tuberculosis: An emerging disease of free-ranging wildlife (2002) Emerg. Infect. Dis., 8, pp. 598-601; Alexander, K.A., Sanderson, C.E., Larsen, M.H., Robbe-Austerman, S., Williams, M.C., Palmer, M.V., Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo) (2016) mBio, 7, pp. e00281-e316; Allison, A.B., Kohler, D.J., Fox, K.A., Brown, J.D., Gerhold, R.W., Shearn-Bochsler, V., Dubovi, E.J., Holmes, E.C., Frequent cross-species transmission of parvoviruses among diverse carnivore hosts (2013) J. Virol., 87, pp. 2342-2347; Alvarado-Rybak, M., Solano-Gallego, L., Millán, J., A review of piroplasmid infections in wild carnivores worldwide: Importance for domestic animal health and wildlife conservation (2016) Parasit. Vectors, 9, p. 538; Anderson, G.A., Cullor, J.S., Generalized amyloidosis and peritonitis in a raccoon (1982) J. Am. Vet. Med. Assoc., 181, p. 1407; Anonis, D.P., Animal notes in perfumery: Civet and civet compounds (1997) Perfumer Flavourist, 22, pp. 44-47; Barker, I.K., Parrish, C.R., Parvovirus Infections (2001) Infectious Diseases of Wild Mammals, pp. 131-146. , E.S. Williams., I.K. Barker, Iowa State Press Ames; Basso, W., More, G., Quiroga, M.A., Pardini, L., Baciqalupe, D., Venturini, L., Valenzuela, M.C., Venturini, M.C., Isolation and molecular characterization of Toxoplasma gondii from captive slender-tailed meerkats (Suricata suricatta) with fatal toxoplasmosis in Argentina (2009) Vet. Parasitol., 161, pp. 201-206; Bautista, A.C., Woods, L.W., Filigenzi, M.S., Puschner, B., Bromethalin poisoning in a raccoon (Procyon lotor): Diagnostic considerations and relevance to nontarget wildlife (2013) J. Vet. Diagn. Invest., 26, pp. 154-157; Beineke, A., Baumgärtner, W., Wohlsein, P., Cross-species transmission of canine distemper virus-an update (2015) One Health, 1, pp. 49-59; Berentsen, A.R., Johnson, S.R., Gilbert, A.T., verCauteren, K.C., Exposure to rabies in small Indian Mongooses (Herpestes auropunctatus) from two regions in Puerto Rico (2015) J. Wildl. Dis., 51, pp. 896-900; Bjornson, A.P., Lewis, J.C., Appleby, E.C., Mammary neoplasia in a binturong (Arctictis binturong) (1999) Vet. Rec., 144, pp. 421-422; Boadella, M., Gortazar, C., Vicente, J., Ruiz-Fons, F., Wild boar: An increasing concern for Aujeszky’s disease control in pigs? (2012) BMC Vet. Res., 8, p. 7; Boonsri, K., Sritan, J., Vechmanus, T., O’Sullivan, M.G., Pringproa, K., Intrahepatic cholangiocarcinoma in a captive meerkat (Suricata suricatta) (2013) J. Zoo Wildl. Med., 44, pp. 740-743; Brostoff, T., Dela Cruz, F.N., Church, M.E., Woolard, K.D., Pesavento, P.A., The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors (2014) J. Virol., 88, pp. 12816-12824; Brüns, A.C., Tanner, M., Williams, M.C., Botha, L., O’Brien, A., Fosgate, G.T., van Helden, P.D., Michel, A.L., Diagnosis and implications of Mycobacterium bovis infection in banded mongooses (Munos mungo) in the Kruger National Park, South Africa (2017) J. Wildl. Dis., 53, pp. 19-29; Burger, M., Du Plessis, E.C., Suleman, E., Gardner, B.R., Fatal disseminated toxoplasmosis in a zoological collection of meerkats (Suricata suricatta) (2017) J. S Afr. Vet. Assoc., 88, p. 1428; Chan, P.K., Chan, M.C., Tracing the SARS-coronavirus (2013) J. Thorac. Dis., 5 (5), pp. S118-S121; Chandra, A.M., Ginn, P.E., Terrell, S.P., Ferguson, B., Adjiri-Awere, A., Dennis, P., Homer, B.L., Canine distemper virus infection in binturongs (Arctictis binturong) (2000) J. Vet. Diagn. Invest., 12, pp. 88-91; Childs-Sanford, S.E., Peters, R.M., Morrisey, J.K., Alcaraz, A., Sarcomatoid renal cell carcinoma in a binturong (Arctictis binturong) (2005) J. Zoo Wildl. Med., 36, pp. 308-312; Chittick, E., Rotstein, D., Brown, T., Wolfe, B., Pyometra and uterine adenocarcinoma in a melengestrol acetate-implanted captive coati (Nasua nasua) (2001) J. Zoo Wildl. Med., 32, pp. 245-251; Christoffrsen, M., De Assis, J., A systematic monograph of the recent pentastomida, with a compilation of their hosts (2013) Zool. Meded., 87, pp. 1-206; Chu, P.D., Loynachan, A.T., Congenital glycogen storage disease in a South American coati (Nasua nasua) (2013) J. Zoo Wildl. Med., 44, pp. 769-772; Chu, P.Y., Zhuo, Y.X., Wang, F.I., Jeng, C.R., Pang, V.F., Change, P.H., Chin, S.C., Lui, C.H., Spontaneous neoplasms in zoo mammals, birds, and reptiles in Taiwan-a 10-year survey (2012) Anim. Biol., 62, pp. 95-110; Church, M.E., Estrada, M., Leutenegger, C.M., Dela Cruz, F.N., Pesavento, P.A., Woolard, K.D., BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells (2016) J. Gen. Virol., 97, pp. 1-10; Church, M.E., Dela Cruz, F.N., Estrada, M., Jr., Leutenegger, C.M., Pesavento, P.A., Woolard, K.D., Exposure to raccoon polyomavirus (RacPyV) in free-ranging North American raccoons (Procyon lotor) (2016) Virology., 489, pp. 292-299; Clothier, K.A., Villanueva, M., Torain, A., Reinl, S., Barr, B., Disseminated histoplasmosis in two juvenile raccoons (Procyon lotor) from a nonendemic region of the United States (2014) J. Vet. Diagn. Invest., 26, pp. 297-301; Dictionary, C.E., (2016) Complete & Unabridged 10th Edition, , http://www.dictionary.com/browse/raccoon, Available from; Cooper, T.K., Garner, M.M., Baccon, J., Manj, H., Coati bodies: Cytoplasmic hyaline globules in the ganglionic neurons of aging captive coatis (2017) Vet. Pathol., 54, pp. 851-854; Dadone, L.I., Garner, M.M., Klaphake, E., Johnston, M.S., Han, S., Anaplastic mandibular carcinoma in a meerkat (Suricata suricatta) (2014) J. Zoo Wildl. Med., 45, pp. 413-416; Daniels, D., (2013) Second Generation Anticoagulant Rodenticide Assessment, , Department of Pesicide Regulation Memorandum Sacramento, CA; Davidson, W.R., (2006) Field Manual of Wildlife Diseases in the Southeastern, , third ed., South Eastern Cooperative Wildlife Disease Study United States; Dawood, K., Mammary gland adenocarcinoma in three small indian mongooses (Herpestes javanieus) (2012) J. Anim. Vet. Adv., 11, pp. 94-96; De Araujo, J., Dantas, A., de Galiza, G., Pedroso, P., Silva, M., Pimentel, L., Riet-Correa, F., Histopathological and immunohistochemical aspects of rabies in foxes (Cerdocyon thous) (2014) Acta Sci. Vet., 42, pp. 1-6; Dechkajorn, S., Nomsiri, R., Boonsri, K., Sripakdee, D., Sukontason, K.L., Wannasan, A., Chailangkarn, S., Tiwananthagorn, S., Visceral pentastomiasis caused by Armillifer armillatus in a captive striped hyena (Hyaena hyaena) in Chiang Mai Night Safari, Thailand (2016) Parasitol. Int., 65, pp. 58-61; Del Rio, L., Chitimia, L., Cubas, A., Victoriano, I., De La Rúa, P., Gerrikagoitia, X., Barral, M., Berriatua, E., Evidence for widespread Leishmania infantum infection among wild carnivores in L. infantum perendimic northern Spain (2014) Prevent. Vet. Med., 113, pp. 430-435; Dela Cruz, F.N., Giannitti, F., Li, L., Woods, L.W., Del Valle, L., Delwart, E., Pesavento, P.A., Novel polyomavirus associated with brain tumors in free-ranging raccoons, Western United States (2013) Emerg. Infect. Dis., 19, pp. 77-84; Demeter, Z., Gál, J., Palade, E.A., Rusvai, M., Feline parvovirus infection in an Asian palm civet (Paradoxurus hermaphroditus) (2009) Vet. Rec., 164, pp. 213-215; Drewe, J.A., Eames, K.T., Madden, J.R., Pearce, G.P., Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: Implications for control (2011) Prevent. Vet. Med., 101, pp. 113-120; Drewe, J.A., Foote, A.K., Sutcliffe, R.L., Pearce, G.P., Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta) (2009) J. Comp. Pathol., 140, pp. 12-24; Duarte, M.D., Henriques, A.M., Barros, S.C., Fagulha, T., Mendonça, P., Carvalho, P., Monteiro, M., Cunha, M.V., Snapshot of viral infections in wild carnivores reveals ubiquity of parvovirus and susceptibility of Egyptian mongoose to feline panleukopenia (2013) PLoS One, 8. , e59399; Dubey, J.P., Hamir, A.N., Hanlon, C.A., Rupprecht, C.E., Prevalence of Toxoplasma gondii infection in raccoons (1992) J. Am. Vet. Med. Assoc., 200, pp. 534-536; Dubey, J.P., Garner, M.M., Rosenthal, B.M., DeGhetto, D., Clinical coccidiosis in raccoons (Procyon lotor) (2000) J. Parasitol., 86, pp. 1299-1303; Duncan, C., Krafsur, G., Podell, B., Baeten, L.A., LeVan, I., Charles, B., Erhhart, E.J., Leptospirosis and Tularaemia in Raccoons (Procyon lotor) of Larimer County, Colorado (2012) Zoonoses Public Health, 59, pp. 29-34; Effron, M., Griner, L., Benirschke, K., Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy (1977) J. Natl. Cancer Inst., 59, p. 185; Eleni, C., Di Cesare, A., Cavicchio, P., Tonnicchia, M.C., Meoli, R., di Regalbono, A.F., Paoletti, B., Di Liberato, C., Fatal Angiostrongylus dujardini infection in callitrichid monkeys and suricates in an Italian zoological garden (2016) Parasitol. Int., 65, pp. 333-335; Enders, A.C., Blankenship, T.N., Conley, A.J., Jones, C.J., Structure of the midterm placenta of the spotted hyena, Crocuta crocuta, with emphasis on the diverse hemophagous regions (2006) Cells Tissues Organs, 183, pp. 141-155; Eschar, D., Peddle, G.D., Briscoe, J.A., Diagnosis and treatment of congestive heart failure secondary to hypertrophic cardiomyopathy in a kinkajou (Potos flavus) (2010) J. Zoo Wildl. Med., 41, pp. 342-345; Ewer, R.F., (1973) The Carnivores, , Cornell University Press Ithaca, NY, pp. 62-64; Fitzgerald, S.D., Cooley, T.M., Murphy, A., Cosgrove, M.K., King, B.A., Sarcoptic Mange in Raccoons in Michigan (2004) J. Wildl. Dis., 40, pp. 347-350; Frantz, A.C., Cyriacks, P., Schley, L., Spatial behaviour of a female raccoon (Procyon lotor) at the edge of the species’ European distribution range (2005) Eur. J. Wildl. Res., 51, pp. 126-130; Fournier-Chambrillon, C., Aasted, B., Perrot, A., Pontier, D., Sauvage, F., Artois, M., Cassiède, J.M., Fournier, P., Antibodies to Aleutian mink disease parvovirus in free-ranging European mink (Mustela lutreola) and other small carnivores from southwestern France (2004) J. Wildl. Dis., 40, pp. 394-402; Gabriel, M.W., Woods, L.W., Poppenga, R., Sweitzer, R.A., Thompson, C., Matthews, S.M., Higley, J.M., Clifford, D.L., Anticoagulant rodenticides on our public and community lands: Spatial distribution of exposure and poisoning of a rare forest carnivore (2012) PLoS One, 7. , e40163; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Giannitti, F., Higgins, R.J., Pesavento, P.A., Dela Cruz, F., Clifford, D.L., Piazza, M., Parker Struckhoff, A., Woods, L.W., Temporal and geographic clustering of polyomavirus-associated olfactory tumors in 10 free-ranging raccoons (Procyon lotor) (2014) Vet. Pathol., 51, pp. 832-845; Goodnight, A.L., Traslavina, R.P., Emanuelson, K., Affolter, V.K., Gaffney, P.M., Vernau, W., Williams, C., Lowenstine, L.J., Squamous cell carcinoma of the anal sac in a spotted hyena (Crocuta crocuta) (2013) J. Zoo Wildl. Med., 44, pp. 1068-1074; Greene, L.K., Wallen, T.W., Moresco, A., Goodwin, T.E., Drea, C.M., Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: Discovering why bearcats smell like popcorn (2016) Sci. Nat., 103, p. 37; Greve, J., The brown hyaena (Hyaena brunnea), a new host for nymphal Armillifer armillatus (Pentastomida: Porocephalidae) (2017) J. Parasitol., 60, p. 52; Hahn, N., Jenné, K., Diggs, H., Dermatophytosis in three colony-born spotted hyenas (2003) J. Am. Vet. Med. Assoc., 12, pp. 1809-1811; Hamir, A.N., Pathology of neurologic disorders of raccoons (Procyon lotor) (2011) J. Vet. Diagn. Invest., 23, pp. 873-884; Hamir, A.N., Spontaneous lesions in aged captive raccoons (Procyon lotor) (2011) J. Am. Assoc. Lab. Anim. Sci., 50, pp. 322-325; Hamir, A.N., Hanlon, C.A., Rupprecht, C.E., Lymphosarcoma in a raccoon (Procyon lotor) (1996) J. Wildl. Dis., 32, pp. 670-673; Hamir, A.N., Hanlon, C.A., Niezgoda, M., Rupprecht, C.E., The prevalence of interstitial nephritis and leptospirosis in 283 raccoons (Procyon lotor) from 5 different sites in the United States (2001) Can. Vet. J., 42, pp. 869-871; Hamir, A.N., Klein, L., Polycystic kidney disease in a raccoon (Procyon lotor) (1996) J. Wildl. Dis., 32, pp. 674-676; Hamir, A.N., Kunkle, R.A., Miller, J.M., Cutlip, R.C., Richt, J.A., Kehrli, M.E., Williams, E.S., Age-related lesions in laboratory-confined raccoons (Procyon lotor) inoculated with the agent of chronic wasting disease of mule deer (2007) J. Vet. Diagn. Invest., 19, pp. 680-686; Hamir, A.N., Miller, J.M., Stack, M.J., Chaplin, M.F., Cutlip, R.C., Neuroaxonal dystrophy in raccoons (Procyon lotor) from Iowa (2002) J. Vet. Diagn. Invest., 14, pp. 175-178; Hamir, A.N., Picton, R., Blythe, L.L., Heidel, J.R., Diagnostic exercise: Astrocytoma with involvement of medulla oblongata, spinal cord, and spinal nerves in a raccoon (Procyon lotor) (2008) Vet. Pathol., 45, pp. 949-951; Hamir, A., Rupprecht, C.E., Adrenal gland adenomas in raccoons (Procyon lotor) from the eastern United States (1995) J. Vet. Diagn. Invest., 7, pp. 413-416; Hamir, A.N., Summers, B.A., Rupprecht, C.E., Concurrent rabies and canine distemper encephalitis in a raccoon (Procyon lotor) (1998) J. Vet. Diagn. Invest., 10, pp. 194-196; Heidt, G.A., Congenital reduction of fore-legs and tail in a raccoon (Procyon lotor) (1969) Am. Midl. Nat., 82, pp. 280-281; Hollamby, S., Simmons, H., Bell, T., Duncan, A., Stadler, C., Myocardial necrosis in a captive binturong (Arctictis binturong) (2004) Vet. Rec., 154, pp. 596-598; Höner, O., Wachter, B., Speck, S., Wibbelt, G., Ludwig, A., Fyumagwa, R., Wohlsein, P., East, M.L., Severe Streptococcus infection in spotted hyenas in the Ngorongoro Crater, Tanzania (2006) Vet. Microbiol., 115, pp. 223-228; Horai, S., Furukawa, T., Ando, T., Akiba, S., Takeda, Y., Yamada, K., Kuno, K., Watanabe, I., Subcellular distribution and potential detoxification mechanisms of mercury in the liver of the javan mongoose (Herpestes javanicus) Amamioshima Island, Japan (2008) Environ. Toxicol. Chem., 27, pp. 1354-1360; Howard, L., Lafortune, M., Tocidlowski, M., Flanagan, J., Fabiani, M., King, G., Therapy for nasal squamous cell carcinoma in a slender tailed meerkat (Suricata suricatta) (2007) Proc. Am. Assoc. Zoo Vet. Annu. Meet., pp. 141-144; Hunter, K.W., Campbell, A.R., Sayles, P.C., Human infestation by cat fleas, Ctenocephalides Felis (Siphonaptera: Pulicidae), from suburban raccoons (1979) J. Med. Entomol., 16, p. 547; Hur, K., Bae, J.S., Choi, J.H., Kim, J.H., Kwon, S.W., Lee, K.W., Kim, D.Y., Canine distemper virus infection in binturongs (Arctictis binturong) (1999) J. Comp. Pathol., 121, pp. 295-299; Ikede, B.O., Falade, S., Golding, R.R., Anthrax in captive carnivores in Ibadan, Nigeria (1976) J. Wildl. Dis., 12, pp. 130-132; Juan-Sallés, C., Prats, N., López, S., Domingo, M., Marco, A.J., Morán, J.F., Epizootic disseminated toxoplasmosis in captive slender-tailed meerkats (Suricata suricatta) (1997) Vet. Pathol., 34, pp. 1-7; Junge, R.E., Bauman, K., King, M., Gompper, M.E., A serologic assessment of exposure to viral pathogens and Leptospira in an urban raccoon (Procyon lotor) population inhabiting a large zoological park (2007) J. Zoo Wildl. Med., 38, pp. 18-26; Kapil, S., Rezabek, G., Germany, B., Johnston, L., Isolation of a virus related to canine parvovirus type 2 from a raccoon (Procyon lotor) (2010) Vet. Rec., 166, pp. 24-25; Katale, B.Z., Mbugi, E.V., Siame, K.K., Keyyu, J.D., Kendall, S., Kazwala, R.R., Dockrell, H.M., Matee, M.I., Isolation and potential for transmission of Mycobacterium bovis at human-livestock interface of the Serengeti Ecosystem, Northern Tanzania (2017) Transboundary Emerg. Dis., 64, pp. 815-825; Klinkowski-Clark, C., Kutilek, M.J., Estimating relative distribution of raccoons, opossums, skunks, and foxes using animal control data (2010) Human Wildl. Interact., 4, pp. 32-46; Klaphake, E., Shoieb, A., Ramsay, E.C., Schumacher, J., Craig, L., Renal adenocarcinoma, hepatocellular carcinoma, pancreatic islet cell carcinoma in a binturong (Arctictis binturong) (2005) J. Zoo Wildl. Med., 36, pp. 127-130; Klok, R., Nugteren, D.H., New macrocyclic-compounds from secretions of civet cat and musk rat (1973) J. R Netherlands Chem. Soc., 92, pp. 915-928; Knable, A., Werner, W.E., Jr., Raccoon with unusual dental complement (1964) J. Mammal., 45, p. 493; Koizumi, N., Uchida, M., Makino, T., Taguri, T., Kuroki, T., Muto, M., Kato, Y., Watanabe, H., Isolation and Characterization of Leptospira spp. from Raccoons in Japan (2009) J. Vet. Med. Sci., 71, pp. 425-429; Kubiski, S.V., Sisó, S., Church, M.E., Cartoceti, A.N., Barr, B., Pesavento, P.A., Unusual necrotizing encephalitis in raccoons and skunks concurrently infected with canine distemper virus and Sarcocystis sp (2016) Vet. Pathol., 53, pp. 674-676; Kurth, A., Straube, M., Kuczka, A., Dunsche, A.J., Meyer, H., Nitsche, A., Cowpox virus outbreak in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) with a time-delayed infection to humans (2009) PLoS One, 4. , e6883; Laura, B., Nicola, D.G., Alessandro, M., Leonardo, D.S., Paolo, S., Fatal hemorrhagic-necrotiing pancreatitis associated with pancreatic and hepatic lipidosis in an obese Asian palm civet (Paradoxurus hermaphroditus) (2014) Asian Pacific J. Trop. Biomed., 4, pp. S62-S65; Lemberger, K.Y., Gondim, L.F., Pessier, A.P., McAllister, M.M., Kinsel, M.J., Neospora caninum infection in a free-ranging raccoon (Procyon lotor) with concurrent canine distemper virus infection (2005) J. Parasitol., 91, pp. 960-961; Li, W., Wong, S.K., Li, F., Kuhn, J.H., Huang, I.C., Choe, H., Farzan, M., Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions (2006) J. Virol., 80, pp. 4211-4219; Lombard, L.S., Witte, E.J., Frequency and types of tumors in mammals and birds of the Philadelphia Zoological Gardens (1959) Cancer Res., 19, pp. 127-141; Long, C.A., Hogan, A., Two independent loci for albinism in raccoons (Procyon lotor) (1988) J. Heredity, 79, pp. 387-389; Marrow, J.C., Basu, P., Walsh, T.F., Siegal-Willott, J.L., Hepatocellular carcinoma in captive slender tailed meerkats (Suricata suricatta): 5 cases (2014) J. Zoo Wildl. Med., 45, pp. 134-142; McCain, S.L., Allender, M.C., Bohling, M., Ramsay, E.C., Morandi, F., Newkirk, K.M., Thyroid neoplasia in captive raccoons (Procyon lotor) (2010) J. Zoo Wildl. Med., 41, pp. 121-127; Mech, L.D., Anderson, N.V., Renal hypoplasia and compensatory hypertrophy in a raccoon (1966) J. Mammal, 47, pp. 128-129; Millan, J., Candela, M.G., Lopez-Bao, J.V., Pereira, M., Jimenez, M.A., Leon-Vizcaino, L., Leptospirosis in wild and domestic carnivores in natural areas in Andalusia, Spain (2009) Vector Borne Zoonotic Dis., 9, pp. 549-554; Millán, J., Chirife, A.D., Altet, L., Serum chemistry reference values for the common genet (Genetta genetta): Variations associated with Leishmania infantum infections (2015) Vet. Quart., 35, pp. 43-47; Millán, J., Mateo, R., Taggart, M.A., López-Bao, J.V., Viota, M., Monsalve, L., Camarero, P.R., Jiménez, B., Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from Southern Spain (2008) Sci. Total Environ., 399, pp. 193-201; Miller, R.S., Sweeney, S.J., Mycobacterium bovis (bovine tuberculosis) infection in North American wildlife: Current status and opportunities for mitigation of risks of further infection in wildlife populations (2013) Epidemiol. Infect., 141, pp. 1357-1370; Moinet, M., Fournier-Chambrillon, C., Andre-Fontain, G., Aulangnier, S., Mesplede, A., Blanchard, B., Descarsin, V., Fournier, P., Leptospirosis in free-ranging endangered European mink (Mustela lutreola) and other small carnivores (Mustelidae, Viverridae) from southwestern France (2010) J. Wildl. Dis., 46, pp. 1141-1151; Monello, R.J., Gompper, M.E., Relative importance of demographics, locale, and seasonality underlying louse and flea parasitism of raccoons (Procyon lotor) (2009) J. Parasitol., 95, pp. 56-62; Montali, R.J., An overview of tumors in zoo animals (1980) The Comparative Pathology of Zoo Animals, , R.J. Montali., G. Migaki, Smithsonian Institution Press Washington DC; Nakamura, S., Hayashidani, H., Yonezawa, A., Suzuki, I., Une, Y., Yersiniosis due to infection by Yersinia pseudotuberculosis 4b in captive meerkats (Suricata suricatta) in Japan (2015) J. Vet. Diagn. Invest., 27, pp. 641-644; Naples, L.M., Lacasse, C., Landolfi, J.A., Langan, J.N., Steiner, J.M., Sucholdolski, J.S., Gamble, K.C., Acute pancreatitis in slender-tailed meerkats (Suricata suricatta) (2010) J. Zoo Wildl. Med., 41, pp. 275-286; Nelson, K.G., Engh, A.L., McKnight, C.A., Kiupel, M., Wise, A.G., Maes, R.K., Stevens, H., Holekamp, K.E., Papillomavirus-associated cutaneous papillomas in a population of wild spotted hyenas (Crocuta crocuta) (2013) J. Wildl. Dis., 49, pp. 627-631; Nicolier, A., Welle, M., Walzer, C., Robert, N., Congenital follicular dysplasia in five related coatimundis (Nasua nasua) (2005) Vet. Dermatol., 16, pp. 420-424; Ninomiya, H., Ogata, M., Makino, T., Notoedric mange in free-ranging masked palm civets (Paguma larvata) in Japan (2003) Vet. Dermatol., 14, pp. 339-344; Oie, K.L., Durrant, G., Wolfinbarger, J.B., Martin, D., Costello, F., Perryman, S., Hogan, D., Bloom, M.E., The relationship between capsid protein (VP2) sequence and pathogenicity of aleutian mink disease parvovirus (ADV): A possible role for raccoons in the transmission of ADV infections (1996) J. Virol., 70, pp. 852-861; Olivieri, L., Nardini, G., Leopardi, S., Abramo, F., Mite infection in a masked palm civet (Paguma larvata) treated by Sleamectin (Stronghold, Pfizer LTD.) (2015) J. Zoo Wildl. Med., 46, pp. 592-595; Palgrave, C.J., Benato, L., Eatwell, K., Laurenson, I.F., Smith, N.H., Mycobacterium microti infection in two meerkats (Suricata suricatta) (2012) J. Comp. Pathol., 146, pp. 278-282; Palmer, M.V., Waters, W.R., Whipple, D.L., Susceptibility of raccoons (Procyon lotor) to infection with Mycobacterium bovis (2002) J. Wildl. Dis., 38, pp. 266-274; Parsons, S.D.C., Drewe, J.A., Gey van Pittius, N.C., Warren, R.M., van Helden, P.D., Novel cause of tuberculosis in meerkats, South Africa (2013) Emerg. Infect. Dis., 19, pp. 2004-2007; Pinard, C.L., Brightman, A.H., Yeary, T.J., Everson, T.D., Cox, L.K., Chen-Gappa, M.M., Davidson, H.J., Normal conjunctival flora in the North American opossum (Didelphis virginiana) and raccoon (Procyon lotor) (2002) J. Wildl. Dis., 38, pp. 851-855; Ramsay, E., Procyonids and Viverids (2015) Fowlers Zoo and Wild Animal Medicine, 8. , R.E. Miller., M.E. Fowler, Elsevier Saunders USA, Chapter 49; Rattner, B.N., Lazarus, R.S., Elliott, J.E., Shore, R.F., van den Brink, N., Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife (2014) Environ. Sci. Technol., 48, pp. 8433-8445; Raizman, E.A., Dharmarajan, G., Beasley, J.C., Wu, C.C., Pogranichniy, R.M., Rhodes, O.E., Jr., Serologic survey for selected infectious diseases in raccoons (Procyon lotor) in Indiana, USA (2009) J. Wildl. Dis., 45, pp. 531-536; Richardson, D.J., Acanthocephala of the raccoon (Procyon lotor) with a faunal review of Macracanthorhynchus ingens (Archiacanthocephala: Oligacanthorhynchidae) (2014) Comp. Parasitol., 81, pp. 44-52; Richardson, D.J., Gauthier, J.L., A serosurvey of leptospirosis in Connecticut peridomestic wildlife (2003) Vector Borne Zoonotic Dis., 3, pp. 187-193; Richardson, D.J., Owen, W.B., Snyder, D.E., Helminth parasites of the raccoon (Procyon lotor) from North-Central Arkansas (1992) J. Parasitol., 78, pp. 163-166; Rentería-Solís, Z., Min, A.M., Alasaad, S., Müller, K., Michler, F.U., Schmäschke, R., Wittstatt, U., Wibbelt, G., Genetic epidemiology and pathology of raccoon-derived Sarcoptes mites from urban areas of Germany (2014) Med. Vet. Entomol., 28, pp. 98-103; Riley, M.C., Wilkes, R.P., Sequencing of emerging canine distemper virus strain reveals new distinct genetic lineage in the United States associated with disease in wildlife and domestic canine populations (2015) Virol. J., 12, p. 219; Roberton, S.I., Bell, D.J., Smith, G.J.D., Nicholls, J.M., Chan, K.H., Nguyen, D.T., Tran, P.Q., Peiris, J.S.M., Avian influenza H5N1 in viverrids: Implications for wildlife health and conservation (2006) Proc. Biol. Sci., 273, pp. 1729-1732; Ruprecht, C.E., Stohr, K., Meredith, C., Rabies (2001) Infectious Diseases of Wild Mammals, pp. 3-36. , E.S. Williams., I.K. Barker, Iowa State Press Ames; Sabeta, C.T., Shumba, W., Mohale, D.K., Miyen, J.M., Wandeler, A.I., Nel, L.H., Mongoose rabies and the African civet in Zimbabwe (2008) Vet. Rec., 163, p. 580; Sanderson, G.C., A congenital diaphragmatic hernia in the raccoon (1960) Am. Midl. Nat., 64, pp. 500-501; Schmiedeknecht, G., Eickmann, M., Köhler, K., Herden, C.E., Kolesnikova, L., Förster, C., Burkhardt, E.H., Reinacher, M., Fatal cowpox virus infection in captive banded mongooses (Mungos mungo) (2010) Vet. Pathol., 47, pp. 547-552; Schrenzel, M., Tucker, T.A., Stalis, I.H., Kagan, R.A., Burns, R.P., Denison, A.M., Drew, C.P., Rideout, B.A., Pandemic (H1N1) 2009 virus in 3 wildlife species, San Diego, California, USA (2011) Emerg. Infect. Dis., 17, pp. 747-749; Seguel, M., Gottdenker, N., The diversity and impact of hookworm infections in wildlife (2017) Int. J. Parasitol. Parasit. Wildl., 6, pp. 177-194; Singh, B.P., Patterson-Kane, J.C., Redrobe, S.P., Chapman, J.L., Intrarenal pelvic nephroblastoma in a meerkat (Suricata suricatta) (2005) J. Vet. Diagn. Invest., 17, pp. 623-625; Singleton, C.L., Wack, R.F., Zabka, T.S., Kent, M.S., Larsen, R.S., Diagnosis and treatment of chronic T-lymphocytic leukemia in a spotted hyena (Crocuta crocuta) (2007) J. Zoo Wildl. Med., 38, pp. 488-491; Speck, S., Höner, O., Wachter, B., Fickel, J., Characterization of Streptococcus equi subsp. ruminatorum isolated from spotted hyenas (Crocuta crocuta) and plains zebras (Equus burchelli), and identification of a M-like protein (SrM) encoding gene (2008) Vet. Microbiol., 128, pp. 148-159; Stallknecht, D.E., Howerth, E.W., Pseudorabies (Aujeszky’s disease) (2001) Infectious Diseases of Wild Mammals, pp. 164-170. , E.S. Williams., I.K. Barker, Iowa State Press Ames; Stone, W.B., Okoniewski, J.C., Stedelin, J.R., Poisoning of wildlife with anticoagulant rodenticides in New York (1999) J. Wildl. Dis., 35, pp. 187-193; Suzán, G., Ceballos, G., The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico city limits (2005) J. Zoo Wildl. Med., 36, pp. 479-484; Tokiwa, T., Nakamura, S., Taira, K., Une, Y., Baylisascaris potosis n. sp., a new ascarid nematode isolated from captive kinkajou, Potos flavus, from the Cooperative Republic of Guyana (2014) Parasitol. Int., 63, pp. 591-596; Techangamsuwan, S., Banlunara, W., Radtanakatikanon, A., Sommanustweechai, A., Siriaroonrat, B., Lombardini, E.D., Rungsipipat, A., Pathologic and molecular virologic characterization of a canine distemper outbreak in farmed civets (2015) Vet. Pathol., 52, pp. 724-731; Thompson, K.A., Patterson, J., Fitzgerald, S.D., Needle, D., Harrison, T., Treatment of renal carcinoma in a binturong (Arctictis binturong) with nephrectomy and a tyrosine kinase inhibitor (2016) J. Zoo Wildl. Med., 47, pp. 1109-1113; Tolosa, T., Regassa, F., The husbandry, welfare and health of captive African civets (Vivera civetica) in western Ethiopia (2007) Anim. Welfare, 16, pp. 15-19; Turnbull, B.G., Rasmusson, D.D., Sensory innervation of the raccoon forepaw: 1. Receptor types in glabrous and hairy skin and deep tissue (1986) Somatosens. Res., 4, pp. 43-62; van Helden, P.D., Gey van Pittius, N.C., Warren, R.M., Michel, A., Hlokwe, T., Morar, D., Godfroid, J., Bengis, R., Pulmonary infection due to Mycobacterium goodii in a spotted hyena (Crocuta crocuta) from South Africa (2008) J. Wildl. Dis., 44, pp. 151-154; Vapniarsky, N., Wenger, D.A., Scheenstra, D., Mete, A., Sphingomyelin lipidosis (Niemann-Pick disease) in a juvenile raccoon (Procyon lotor) (2013) J. Comp. Pathol., 149, pp. 385-389; Vellard, J., Penteado, J., Une queue multiple de Procyon [Procyon with multiple tails] (1931) Bull. Soc. Zoo Fr., 56, pp. 255-260; Voss, R.S., Jansa, S.A., Snake-venom resistance as a mammalian trophic adaptation: Lessons from didephid marsupials (2012) Biol. Rev. Camb. Philos. Soc., 87, pp. 822-837; Wadsworth, P.F., Jones, D.M., Pugsley, S.L., Primary hepatic neoplasia in some captive mammals (1982) J. Zoo Anim. Med., 13, p. 29; Wang, F.I., Chiou, M.T., Chang, C.H., Chang, P.H., Liu, C.H., Jeng, C.R., Pang, V.F., A peritoneal mesothelioma in a captive aardwolf (Proteles cristatus) (2001) Proc. Natl. Sci. Counc. Repub. China B, 25, pp. 193-196; Whithear, K., Diseases due to Mycoplasmas (2001) Infectious Diseases of Wild Mammals, p. 414. , E.S. Williams., I.K. Barker, Iowa State Press Ames; Wicker, L.V., Canfield, P.J., Higgins, D.P., Potential pathogens reported in species of the family Viverridae and their implications for human and animal health (2017) Zoonoses Public Health, 64, pp. 75-93; Williams, E.S., Canine distemper (2001) Infectious Diseases of Wild Mammals, pp. 50-59. , E.S. Williams., I.K. Barker, Iowa State Press Ames; Witmer, G., Fine, A.E., Gionfriddo, J., Pipas, M., Shively, K., Piccolo, K., Burke, P., Epizootiologic survey of Mycobacterium bovis in wildlife and farm environments in Northern Michigan (2010) J. Wildl. Dis., 46, pp. 368-378; Wojcinski, Z.W., Barker, I.K., Tyzzer’s disease as a complication of canine distemper in a raccoon (1986) J. Wildl. Dis., 22, pp. 55-59; Xiao, Y., Meng, Q., Yin, X., Guan, Y., Liu, Y., Li, C., Wang, M., Wu, D., Pathological changes in masked palm civets experimentally infected by severe acute respiratory syndrome (SARS) coronavirus (2008) J. Comp. Pathol., 138, pp. 171-179; Yabsley, M.J., Noblet, G.P., Seroprevalence of Trypanosoma cruzi in raccoons From South Carolina and Georgia (2002) J. Wildl. Dis., 38, pp. 75-83; Youlatos, D., Osteological correlates of tail prehensility in carnivorans (2003) J. Zool. Lond, 259, pp. 423-430; Zhou, Y., Wang, S.R., Ma, J.Z., Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia Carnivora) based on mitochondrial DNA (2017) PLoS One, 12. , e0174902",,,"Elsevier",,9780128053065; 9780128092194,,,"English","Pathology of Wildl. and Zoo Animals",Book Chapter,"Final",,Scopus,2-s2.0-85081906017 "Alicia Rubio V., Alfonso Chavera C.","57201722812;12793993700;","Feline infectious peritonitis: Two clinical cases in lima, Peru [Peritonitis infecciosa felina: Dos casos clínicos en lima-perú]",2018,"Revista de Investigaciones Veterinarias del Peru","29","1",,"381","388",,,"10.15381/rivep.v29i1.14188","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045926799&doi=10.15381%2frivep.v29i1.14188&partnerID=40&md5=bc19f80ef3d2ecb7f7191e382df5ae42","Universidad Científica del Sur, Lima, Peru; Laboratorio de Histología, Embriología y Patología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru","Alicia Rubio, V., Universidad Científica del Sur, Lima, Peru; Alfonso Chavera, C., Laboratorio de Histología, Embriología y Patología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru","Feline Infectious Peritonitis (PIF) is a lethal disease in cats caused by a coronavirus, which until now has no curative treatment. Two clinical cases are described: a 6-month Siamese male with apathy and anorexia and a 19-month female with short hair who was presented with abortion and decay. Both patients presented mild to severe ascites with a yellowish and protein peritoneal fluid compatible with wet form of PIF. At necropsy ascites was found and fibrin gelatinoid masses adhered to the serosa of liver, spleen, pericardium, intestine and mesentery were observed in both patients. Histopathology showed copious mixed inflammatory exudate composed of fibrin strings interspersed with neutrophils at varying degrees of degeneration and plasma cells, accompanied by severe vasculitis with cytoplasmic swelling of endothelial cells and effusion of acidophilic proteinic fluid. © 2018 Universidad Nacional Mayor de San Marcos. All Rights Reserved.","Cats: ascites; Feline infectious peritonitis; Vasculitis",,"Addie, D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Feline infectious peritonitis, ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 594-604; Brown, M., Troyer, J., Pecon-Slattery, J., Roelke, M., O’Brien, S., Genetics and pathogenesis of feline infectious peritonitis virus (2009) Emerg Infect Dis, 15, pp. 1445-1452; Chang, H., Groot, R., Egberink, H., Rottier, P., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420; Diaz, J., Poma, R., Diagnosis and clinical signs of feline infectious peritonitis in the central nervous system (2009) Can Vet J, 50, pp. 1091-1093; Ishida, T., Shibanai, A., Tanaka, S., Uchida, K., Mochizuki, M., Use of recombinant feline interferon and glucocorticoid in the treatment of feline infectious peritonitis (2004) J Feline Med Surg, 6, pp. 107-109; Hartmann, K., Diagnosis and treatment of feline infectious peritonitis (2010) Consultations in Feline Internal Medicine, pp. 62-76. , August J (ed). USA: Elsevier; Hsieh, B., Burney, D., Feline infectious peritonitis (2014) Clinicians Brief, pp. 75-80. , Febr 2014; Jeffery, U., Deitz, K., Hostetter, S., Positive predictive value of albumin: Globulin ratio for feline infectious peritonitis in a mid-western referral hospital population (2012) J Feline Med Surg, 14, pp. 903-905; Kennedy, M., Little, S., Viral diseases, infectious diseases (2012) The Cat, Clinical Medicine and Management, pp. 1038-1047. , Little S (ed). USA: Elsevier; Kipar, A., Baptiste, K., Barth, A., Reinacher, M., Natural FCoV infection: Cats with FIP exhibit significantly higher viral loads than healthy infected cats (2006) J Feline Med Surg, 8, pp. 69-72; Lin, C., Su, B., Huang, H., Lee, J., Hsieh, M., Chueh, L., Field strain feline coronaviruses with small deletionsin ORF7b associated with both enteric infectionandfelineinfectiousperitonitis (2009) J Feline Med Surg, 11, pp. 413-419; Norsworthy, G., Feline infectious peritonitis (2011) The Feline Patient, pp. 181-183. , Norsworthy G, Crystal M, Fooshe S, Tilley L (eds). 4th ed. USA: Blackwell Publishing; Paltrinieri, S., Grieco, V., Comazzi, S., Cammarata Parodi, M., Laboratory profiles in cats with different pathological and immunohistochemical findings due to feline infectious peritonitis (FIP) (2001) J Feline Med Surg, 3, pp. 149-159; Paltrinieri, S., Giordano, A., Ceciliani, F., Sironi, G., Tissue distribution of a feline AGP related protein (fAGPrP) in cats with feline infectious peritonitis (FIP) (2004) J Feline Med Surg, 6, pp. 99-105; Pedersen, N., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J Feline Med Surg, 11, pp. 225-258; Richards, J., Elston, T., Ford, R., Gaskell, R., Hartmann, K., Hurley, K., Lappin, M., The 2006 American association of feline practitioners feline vaccines panel report (2006) J Am Vet Med Assoc, 9, pp. 1405-1441; Scherk, M., Ford, R., Gaskell, R., Hartmann, K., Hurley, K., Lappin, M., Levy, J., 2013 AAFP feline vaccination advisory panel report (2013) J Feline Med Surg, 15, pp. 785-808; Wack, R., Felidae (2003) Zoo and Wild Animal Medicine, pp. 491-500. , Folger M, Miller E (eds). 5th ed. USA: Elsevier; Wanderley, L., Silva, M., Peternelli, F., Silva, A., Junior, Resende, M., Almeida, R., The paradox of feline coronavirus pathogenesis: A review (2011) AdvancesVirol2011, , ArticleID109849","Alicia Rubio, V.; Universidad Científica del SurPeru; email: alicia@veterinariarubio.com.pe",,"Universidad Nacional Mayor de San Marcos",16823419,,,,"Spanish","Rev. Investi. Vet. Peru",Article,"Final",Open Access,Scopus,2-s2.0-85045926799 "Fki Berrajah L., Aïssa Ben Slama K., Khbou I., Gargouri S., Chtourou A., Znazen A., Kassis M., Yaich S., Hammami A., Hachicha M., Vabret A., Karray Hakim H.","6507745675;57208321032;57206787699;57192234889;57191706931;23398927600;34770216300;16679943500;7004377906;26426067200;7003959575;56283010400;","Virus and atypical pathogens detected in community-acquired lower respiratory tract infection in infants and children of Sfax Region, Tunisia [Virus et bactéries atypiques détectés dans les infections respiratoires basses communautaires de l’enfant dans la région de Sfax en Tunisie]",2018,"Bulletin de la Societe de Pathologie Exotique","11","2",,"90","98",,1,"10.3166/bspe-2018-0024","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061994485&doi=10.3166%2fbspe-2018-0024&partnerID=40&md5=d728620cb4e8a5a459fe493a0800f9a0","Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia; CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Faculté de Médecine de Sfax, Université de Sfax, Tunisia; Service de Pédiatrie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia; Service Médecine Communautaire et d’Épidémiologie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia; Faculté de Médecine de Sfax, Université de Sfax, Tunisia; Laboratoire de Virologie, CHU de Caen, Caen, 14000, France","Fki Berrajah, L., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Aïssa Ben Slama, K., Faculté de Médecine de Sfax, Université de Sfax, Tunisia, Service de Pédiatrie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia; Khbou, I., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Gargouri, S., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Chtourou, A., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Znazen, A., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Kassis, M., Service de Pédiatrie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia, Service Médecine Communautaire et d’Épidémiologie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia, Faculté de Médecine de Sfax, Université de Sfax, Tunisia; Yaich, S., Service de Pédiatrie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia, Service Médecine Communautaire et d’Épidémiologie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia, Faculté de Médecine de Sfax, Université de Sfax, Tunisia; Hammami, A., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia; Hachicha, M., Faculté de Médecine de Sfax, Université de Sfax, Tunisia, Service de Pédiatrie, CHU Hédi Chaker, route El-Aïn, Sfax, 3029, Tunisia; Vabret, A., Laboratoire de Virologie, CHU de Caen, Caen, 14000, France; Karray Hakim, H., Laboratoire de Microbiologie, Faculté de Médecine de Sfax, Université de Sfax, Tunisia, CHU Habib Bourguiba, rue El-Ferdaous, Sfax, 3029, Tunisia","Little is known about viral and atypical bacteria pathogen spectra of community-acquired lower respiratory tract infection in children in Tunisia. Thus, a prospective study was carried out between January 2009 and March 2010 in Sfax. Nasopharyngeal aspirates collected from 368 patients (78 with pneumonia and 290 with acute bronchiolitis) were analyzed by indirect immunofluorescence assay and PCR to detect influenza viruses, parainfluenza viruses, respiratory syncytial virus (RSV), human metapneumovirus, human rhinovirus, human enterovirus, adenovirus, coronavirus, Mycoplasma pneumonia (Mpn) and Chlamydia pneumonia (Cpn). One or more etiology was documented in 319 cases (86.7%). The most detected viruses were RSV (42.7%), rhinovirus (32.9%) and adenovirus (28.5%). Co-detection of two or three pathogens was found in 40% of positive samples. This study highlights the importance of respiratory viruses in lower respiratory tract infection in children of Sfax region as well as the high rate of co-detection of multiple viruses, resulting in challenges in clinical interpretation. © Société de pathologie exotique et Lavoisier SAS 2018.","Atypical bacteria; Co-detection; Co-infection; Hospital; Infants and children; Influenza virus; Lower respiratory infection; Northern Africa; Parainfluenza virus; Respiratory syncytial virus; Respiratory viruses; Sfax; Tunisia","adolescent; bacterial infection; bacterium; child; classification; community acquired infection; female; human; infant; isolation and purification; male; microbiology; mixed infection; newborn; preschool child; prospective study; respiratory tract infection; Tunisia; virology; virus; virus infection; Adolescent; Bacteria; Bacterial Infections; Child; Child, Preschool; Coinfection; Community-Acquired Infections; Female; Humans; Infant; Infant, Newborn; Male; Prospective Studies; Respiratory Tract Infections; Tunisia; Virus Diseases; Viruses","Bellau-Pujol, S., Vabret, A., Legrand, L., Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses (2005) J Virol Methods, 126, pp. 53-63; Bezerra, P.G., Britto, M.C., Correia, J.B., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) PLoS One, 6; Bhuyan, G.S., Hossain, M.A., Sarker, S.K., Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in dhaka city (2017) PLoS One, 12; Bicer, S., Giray, T., Çöl, D., Virological and clinical characterizations of respiratory infections in hospitalized children (2013) Ital J Pediatr, 39, p. 22; Brandenburg, A.H., Groen, J., van Steensel-Moll, H.A., Respiratory syncytial virus specific serum antibodies in infants under six months of age: Limited serological response upon infection (1997) J Med Virol, 52, pp. 97-104; Chen, Y.W., Huang, Y.C., Ho, T.H., Viral etiology of bronchiolitis among pediatric inpatients in northern Taiwan with emphasis on newly identified respiratory viruses (2014) J Microbiol Immunol Infect, 47, pp. 116-121; Cilla, G., Oñate, E., Perez-Yarza, E.G., Viruses in community-acquired pneumonia in children aged less than 3 years old: High rate of viral coinfection (2008) J Med Virol, 80, pp. 1843-1849; Dina, J., Nguyen, E., Gouarin, S., Development of duplex real-time PCR for detection of two DNA respiratory viruses (2009) J Virol Methods, 162, pp. 119-125; Freymuth, F., Vabret, A., Les viroses respiratoires aiguës en pratique: Le point de vue du virologue (2008) XIII e Journée Nationale Des GROG — Paris, 2p. , le 13 novembre 2008; Freymuth, F., Vabret, A., Cuvillon-Nimal, D., Comparison of multiplex PCR assays and conventional techniques for the diagnostic of respiratory virus infections in children admitted to hospital with an acute respiratory illness (2006) J Med Virol, 78, pp. 1498-1504; Freymuth, F., Vabret, A., Dina, J., Techniques actuelles de diagnostic des infections virales respiratoires en réanimation (2007) Réanimation, 16, pp. 200-209; Freymuth, F., Vabret, A., Dina, J., Les virus des bronchiolites aiguës (2010) Arch Pediatr, 17, pp. 1192-1201; Hardegger, D., Nadal, D., Bossart, W., Rapid detection of mycoplasma pneumoniae in clinical samples by real-time PCR (2000) J Microbiol Methods, 41, pp. 45-51; Heath, P.T., Epidemiology and bacteriology of bacterial pneumonias (2000) Paediatr Respir Rev, 1, pp. 4-7; Hoffmann, J., Rabezanahary, H., Randriamarotia, M., Viral and atypical bacterial etiology of acute respiratory infections in children under 5 years old living in a rural tropical area of madagascar (2012) PLoS One, 7; Huang, G., Yu, D., Mao, N., Viral etiology of acute respiratory infection in gansu province, china, 2011 (2013) PLoS One, 8; Jartti, T., Jartti, L., Peltola, V., Identification of respiratory viruses in asymptomatic subjects: Asymptomatic respiratory viral infections (2008) Pediatr Infect Dis J, 27, pp. 1103-1107; Jartti, T., Lehtinen, P., Vuorinen, T., Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children (2004) J Med Virol, 72, pp. 695-699; Juvén, T., Mertsola, J., Waris, M., Etiology of community-acquired pneumonia in 254 hospitalized children (2000) Pediatr Infect Dis J, 19, pp. 293-298; Kwofie, T.B., Anane, Y.A., Nkrumah, B., Respiratory viruses in children hospitalized for acute lower respiratory tract infection in ghana (2012) Virol J, 9, p. 78; Michelow, I.C., Olsen, K., Lozano, J., Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children (2004) Pediatrics, 113, pp. 701-707; Nair, H., Nokes, D.J., Gessner, B.D., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555; Rhedin, S., Lindstrand, A., Hjelmgren, A., Respiratory viruses associated with community-acquired pneumonia in children: Matched case-control study (2015) Thorax, 70, pp. 847-853; Rudan, I., O’Brien, K.L., Nair, H., Epidemiology and etiology of childhood pneumonia in 2010: Estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries (2013) J Glob Health, 3, pp. 1-14; Spuesens, E.B., Fraaij, P.L., Visser, E.G., Carriage of mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: An observational study (2013) PLoS Med, 10; Stein, R.T., Marostica, P.J.C., Community-acquired pneumonia (2006) Paediatr Respir Rev, 7, pp. 136-137; Sung, R.Y., Chan, P.K., Tsen, T., Identification of viral and atypical bacterial pathogens in children hospitalized with acute respiratory infections in Hong Kong by multiplex PCR assays (2009) J Med Virol, 81, pp. 153-159; Vabret, A., Dina, J., Gouarin, S., Detection of the new human coronavirus HKU1: A report of 6 cases (2006) Clin Infect Dis, 42, pp. 634-639; Vabret, A., Mourez, T., Dina, J., Human coronavirus NL63, france (2006) Emerg Infect Dis, 11, pp. 1225-1229; Welti, M., Jaton, K., Altwegg, M., Development of a multiplex real-time quantitative PCR assay to detect chlamydia pneumoniae, legionella pneumophila and mycoplasma pneumoniae in respiratory tract secretions (2003) Diagn Microbiol Infect Dis, 45, pp. 85-95","Karray Hakim, H.; Laboratoire De Microbiologie, Faculté de Médecine de Sfax, Université de SfaxTunisia; email: hela_hakim@yahoo.fr",,"Lavoisier",00379085,,,"30789240","French","Bull. Soc. Pathol. Exot.",Article,"Final",Open Access,Scopus,2-s2.0-85061994485 "Bak S.L., Jun K.I., Jung J., Kim J.-H., Kang C.K., Park W.B., Kim N.-J., Oh M.-D.","57205247697;55568681800;57205246545;57201088269;55808491400;7402229219;35495869100;7201600302;","An atypical case of middle east respiratory syndrome in a returning traveler to Korea from Kuwait, 2018",2018,"Journal of Korean Medical Science","33","53", e348,"","",,3,"10.3346/jkms.2018.33.e348","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059255697&doi=10.3346%2fjkms.2018.33.e348&partnerID=40&md5=ff7dc18e6feb174afe2373c1ff9a9719","Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea","Bak, S.L., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Jun, K.I., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Jung, J., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, J.-H., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kang, C.K., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Park, W.B., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, N.-J., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Oh, M.-D., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea","We report a case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in a 61-year-old businessman returning from Kuwait. The patient arrived there on August 16, 2018, developed watery diarrhea on August 28 (day 0), and came back to Korea on September 7 (day 10) as his condition worsened. Upon arrival, he complained of diarrhea and weakness, but denied any respiratory symptoms, and he directly went to visit an emergency room. Chest radiography revealed interstitial infiltrates in the lungs, and he was immediately transferred to an isolation unit. Quantitative real-time PCR analysis of sputum samples taken on day 11 returned positive for MERS-CoV. No secondary MERS-CoV infection was identified among people who had close contact with him. This case underscores the importance of a high index of suspicion of MERS-CoV infection in any febrile patients who present after a trip to the Middle East. © 2018 The Korean Academy of Medical Sciences.","Diarrhea; Infection transmission; Korea; Kuwait; MERS-CoV","alanine aminotransferase; aspartate aminotransferase; virus RNA; blood; case report; Coronavirus infection; genetics; human; isolation and purification; Kuwait; leukopenia; male; metabolism; middle aged; Middle East respiratory syndrome coronavirus; South Korea; sputum; travel; virology; Alanine Transaminase; Aspartate Aminotransferases; Coronavirus Infections; Humans; Kuwait; Leukopenia; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Republic of Korea; RNA, Viral; Sputum; Travel","Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) N Engl J Med, 376 (6), pp. 584-594; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, Updated 2018. Accessed Oct 12, 2018; Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32 (5), pp. 744-749; Middle East respiratory syndrome statistics, , http://www.cdc.go.kr/CDC/contents/CdcKrContentView.jsp?.cid=140626&menuIds=HOME006-MNU2802-MNU3035-MNU2869, (Korean). Updated 2018. Accessed Oct 12, 2018; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10 (8); Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48 (2), pp. 118-126; Kim, E.S., Choe, P.G., Park, W.B., Oh, H.S., Kim, E.J., Nam, E.Y., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) J Korean Med Sci, 31 (11), pp. 1717-1725; Chan, J.F., Chan, K.H., Choi, G.K., To, K.K., Tse, H., Cai, J.P., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation (2013) J Infect Dis, 207 (11), pp. 1743-1752; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62 (4), pp. 477-483; Wu, J., Yi, L., Zou, L., Zhong, H., Liang, L., Song, T., Imported case of MERS-CoV infection identified in China, May 2015: detection and lesson learned (2015) Euro Surveill, 20 (24), p. 21158; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci Adv, 3 (11); Kligerman, S.J., Franks, T.J., Galvin, J.R., From the radiologic pathology archives: organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia (2013) Radiographics, 33 (7), pp. 1951-1975; Ajlan, A.M., Ahyad, R.A., Jamjoom, L.G., Alharthy, A., Madani, T.A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection: chest CT findings (2014) AJR Am J Roentgenol, 203 (4), pp. 782-787; El Zein, S., Khraibani, J., Zahreddine, N., Mahfouz, R., Ghosn, N., Kanj, S.S., Atypical presentation of Middle East respiratory syndrome coronavirus in a Lebanese patient returning from Saudi Arabia (2018) J Infect Dev Ctries, 12 (9), pp. 808-811; Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (MERS-CoV) infection is suspected: interim guidance, , http://apps.who.int/iris/handle/10665/178529, Updated 2015. Accessed Oct 12, 2018","Oh, M.-D.; Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, South Korea; email: mdohmd@snu.ac.kr",,"Korean Academy of Medical Science",10118934,,JKMSE,"30595687","English","J. Korean Med. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85059255697 "Ma L., Zeng F., Huang B., Cong F., Huang R., Ma J., Guo P.","57203960867;57202942871;57190381187;57195918992;36183347600;7406199976;55433605900;","Development of a conventional RT-PCR assay for rapid detection of porcine deltacoronavirus with the same detection limit as a SYBR green-based real-time RT-PCR assay",2018,"BioMed Research International","2018",, 5035139,"","",,3,"10.1155/2018/5035139","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057007048&doi=10.1155%2f2018%2f5035139&partnerID=40&md5=b2a6e9cc45e226ce4cc9041fe64035ff","Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals, Monitoring Institute, Guangzhou, China; College of Animal Science, South China Agricultural University, Guangzhou, China","Ma, L., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals, Monitoring Institute, Guangzhou, China; Zeng, F., College of Animal Science, South China Agricultural University, Guangzhou, China; Huang, B., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals, Monitoring Institute, Guangzhou, China; Cong, F., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals, Monitoring Institute, Guangzhou, China; Huang, R., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals, Monitoring Institute, Guangzhou, China; Ma, J., College of Animal Science, South China Agricultural University, Guangzhou, China; Guo, P., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals, Monitoring Institute, Guangzhou, China","Porcine deltacoronavirus (PDCoV) is a newly discovered coronavirus, which belongs to the family Coronaviridae. It causes watery diarrhea, vomiting, and dehydration in newborn piglets. A sensitive RT-PCR method is urgently required to detect PDCoV infection. In this study, we developed and evaluated a conventional RT-PCR assay and a SYBR green-based real-time RT-PCR assay that targeted the PDCoV n gene. Both assays are specific and have the same limit of detection at 2 × 10 1 copies of RNA molecules per reaction. Eighty-four clinical samples were subjected to both conventional RT-PCR and real-time RT-PCR, and the same positive rate (41.7%) was achieved, which was much higher than the positive rate (26.2%) using a previously described one-step RT-PCR technique. In summary, a conventional RT-PCR technique was successfully established for the detection of PDCoV with the same detection limit as a SYBR green-based real-time RT-PCR assay. © 2018 Lei Ma et al.",,"article; Coronavirinae; human; limit of detection; major clinical study; nonhuman; pig; reverse transcription polymerase chain reaction; animal; chemistry; Coronavirinae; genetics; isolation and purification; pig; procedures; reproducibility; reverse transcription polymerase chain reaction; sensitivity and specificity; swine disease; virology; organic compound; SYBR Green I; Animals; Coronavirus; Limit of Detection; Organic Chemicals; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; Sensitivity and Specificity; Swine; Swine Diseases","Coleman, C.M., Frieman, M.B., Coronaviruses: Important emerging human pathogens (2014) Journal of Virology, 88 (10), pp. 5209-5212; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerging Infectious Diseases, 20 (8), pp. 1347-1350; Huang, Y.-W., Dickerman, A.W., Piñeyro, P., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4 (5); Zhou, P., Fan, H., Lan, T., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) Journal of Virology, 86 (7), pp. 3995-4008; Ma, Y., Zhang, Y., Liang, X., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6 (2); Lee, S., Lee, C., Genomic and antigenic characterization of porcine epidemic diarrhoea virus strains isolated from South Korea, 2017 (2018) Transboundary and Emerging Diseases, 65 (4), pp. 949-956; Xu, Z., Zhong, H., Zhou, Q., A Highly Pathogenic Strain of PorcineDeltacoronavirusCausedWateryDiarrhea inNewborn Piglets (2018) Virologica Sinica, pp. 1-11; Jang, G., Kim, S., Lee, Y.J., Isolation and characterization of Korean porcine deltacoronavirus strain KNU16-07 (2018) Journal of Veterinary Science, 19 (4), p. 577; Fu, X., Fang, B., Liu, Y., Newly emerged porcine enteric alphacoronavirus in southern China: Identification, origin and evolutionary history analysis (2018) Infection, Genetics and Evolution, 62, pp. 179-187; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging Infectious Diseases, 20 (7), pp. 1227-1230; Song, D., Zhou, X., Peng, Q., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transboundary and Emerging Diseases, 62 (6), pp. 575-580; Mai, K., Feng, J., Chen, G., The detection and phylogenetic analysis of porcine deltacoronavirus fromGuangdong Province in Southern China (2018) Transboundary and Emerging Diseases, 65 (1), pp. 166-173; Suzuki, T., Shibahara, T., Imai, N., Yamamoto, T., Ohashi, S., Genetic characterization and pathogenicity of Japanese porcine deltacoronavirus (2018) Infection, Genetics and Evolution, 61, pp. 176-182; Dong, N., Fang, L., Yang, H., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Veterinary Microbiology, 196, pp. 98-106; Luo, S.-X., Fan, J.-H., Opriessnig, T., Di, J.-M., Liu, B.-J., Zuo, Y.-Z., Development and application of a recombinant M protein-based indirect ELISA for the detection of porcine deltacoronavirus IgG antibodies (2017) Journal of VirologicalMethods, 249, pp. 76-78; Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Research, 226, pp. 71-84; Hu, H., Jung, K., Vlasova, A.N., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) Journal of Clinical Microbiology, 53 (5), pp. 1537-1548; Zhang, J., Tsai, Y.-L., Lee, P.-Y.A., Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Journal of Virological Methods, 234, pp. 34-42; Zhang, F., Ye, Y., Song, D., A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification (2017) Biological Research, 50 (1); Mai, K., Li, D., Wu, J., Complete genome sequences of two porcine deltacoronavirus strains, CHN-GD16-03 and CHNGD16-05, isolated in southern China, 2016 (2018) Genome Announcements, 6 (4); Gabriel, S., Rasheed, A.K., Siddiqui, R., Appaturi, J.N., Fen, L.B., Khan, N.A., Development of nanoparticle-assisted PCR assay in the rapid detection of brain-eating amoebae (2018) Parasitology Research, 117 (6), pp. 1801-1811; Wanzhe, Y., Jianuan, L., Peng, L., Jiguo, S., Ligong, C., Juxiang, L., Development of a nano-particle-assisted PCR assay for detection of duck tembusu virus (2016) Letters in Applied Microbiology, 62 (1), pp. 63-67; Zhang, L., Luo, Y., Liang, L., Li, J., Cui, S., Phylogenetic analysis of porcine circovirus type 3 and porcine circovirus type 2 in China detected by duplex nanoparticle-assisted PCR (2018) Infection, Genetics and Evolution, 60, pp. 1-6","Ma, J.; College of Animal Science, South China Agricultural UniversityChina; email: majy2400@scau.edu.cn",,"Hindawi Limited",23146133,,,"30533434","English","BioMed Res. Int.",Article,"Final",Open Access,Scopus,2-s2.0-85057007048 "Guinobert I., Bardot V., Berthomier L., Ripoche I., Faivre C., Haddioui L., Belkhelfa H.","57190969856;57196005900;57211627231;6507019976;57214416021;26664524100;27067500800;","In vitro virucidal activity of an extract of cypress on human and bovine viruses [Activité virucide in vitro d'un extrait de cyprès sur des virus humains et bovins]",2018,"Phytotherapie","16","5",,"281","289",,1,"10.3166/phyto-2018-0064","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056892746&doi=10.3166%2fphyto-2018-0064&partnerID=40&md5=7f3d0480bcb3ad13c0817374e340148b","Groupe PiLeJe, 37, quai de Grenelle, Paris Cedex 15, F-75015, France; Naturopôle, Les Tiolans, Saint-Bonnet-de-Rochefort, F-03800, France; CNRS, Sigma Clermont, Université Clermont-Auvergne, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand, F-63000, France; Wamine, 20 Rue du Docteur-Finlay, Paris Cedex 15, F-75738, France; Laboratoire Fonderephar, Faculté de Pharmacie, 35, chemin des Maraîchers, Toulouse Cedex 04, F-31062, France","Guinobert, I., Groupe PiLeJe, 37, quai de Grenelle, Paris Cedex 15, F-75015, France; Bardot, V., Groupe PiLeJe, 37, quai de Grenelle, Paris Cedex 15, F-75015, France; Berthomier, L., CNRS, Sigma Clermont, Université Clermont-Auvergne, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand, F-63000, France; Ripoche, I., Naturopôle, Les Tiolans, Saint-Bonnet-de-Rochefort, F-03800, France, CNRS, Sigma Clermont, Université Clermont-Auvergne, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand, F-63000, France; Faivre, C., Wamine, 20 Rue du Docteur-Finlay, Paris Cedex 15, F-75738, France; Haddioui, L., Laboratoire Fonderephar, Faculté de Pharmacie, 35, chemin des Maraîchers, Toulouse Cedex 04, F-31062, France; Belkhelfa, H., Laboratoire Fonderephar, Faculté de Pharmacie, 35, chemin des Maraîchers, Toulouse Cedex 04, F-31062, France","The aim of this study was to carry out HPTLC (high-performance thin-layer chromatography) fingerprinting analysis and to identify by LC/MS (liquid chromatography-mass spectrometry) the main components of a hydroethanolic extract of cypress (Cupressus sempervirens L.) fresh cones; the study also aimed at evaluating the extract's virucidal activity against four human viruses and three bovine viruses. The phytochemical analysis showed the presence of tannins, flavonoids, amino acids, and carbohydrates. At 40% (v/v) concentration, in contact with viruses for 60 minutes at 37 °C, the extract had virucidal activity against coronavirus, parainfluenza type 3 virus, bovine respiratory syncytial virus, and bovine rotavirus. At 80% (v/v), the extract had virucidal activity against influenza A-H1N1 virus, rhinovirus, and bovine herpes type 1 virus. These results show that it would be worthwhile to pursue research on this cypress extract and to explore its antiviral effects in vivo. © 2018 Lavoisier SAS.","Cypress; Proanthocyanidins; Tannins; Virucidal activity; Virus","alcohol; amino acid; antivirus agent; carbohydrate; Cupressus sempervirens extract; flavonoid; plant extract; tannin derivative; unclassified drug; antiviral activity; Article; Bovine respiratory syncytial virus; bovine rotavirus; Coronavirinae; Cupressus; Cupressus sempervirens; high performance thin layer chromatography; human; in vitro study; Influenza A virus (H1N1); liquid chromatography-mass spectrometry; Paramyxovirinae; phytochemistry; Rhinovirus","Bergeron, A., (2016) Infections Virales des Voies Respiratoires: Stratégie Thérapeutique, , https://www.has-sante.fr/portail/jcms/c_2042689/fr/infections-virales-des-voies-respiratoires-stra-tegie-therapeutique, Le Webzine de la HAS. Magazine des bonnes pratiques. Pneumologie (Dernier accès le 20 juin 2018); Field, A.K., Biron, K.K., The end of innocence. Revisited: Resistance of herpesviruses to antiviral drugs (1994) Clin Microbiol Rev, 7, pp. 1-13; Baz, M., Abed, Y., Papenburg, J., Emergence of oseltamivir-resistant pandemic H1N1 virus during prophylaxis (2009) N Engl J Med, 361, pp. 2296-2297; Gaur, A.H., Bagga, B., Barman, S., Intravenous zanami-vir for oseltamivir-resistant 2009 H1N1 influenza (2010) N Engl J Med, 362, pp. 88-89; Van Der Vries, E., Stelma, F.F., Boucher, C.A.B., Emergence of a multidrugresistant pandemic influenza A(H1N1) virus (2010) N Engl J Med, 363, pp. 1381-1382; Hurt, A.C., Hardie, K., Wilson, N.J., Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza (2011) N Engl J Med, 365, pp. 2541-2542; Lackenby, A., Moran Gilad, J., Pebody, R., Continued emergence and changing epidemiology of oseltamivir-resistant influenza A(H1N1)2009 virus. United Kingdom, winter 2010/11 (2011) Eurosurveillance, 16, pp. 1-6. , https://www.eurosurveillance.org/content/10.2807/ese.16.05.19784-en, Dernier accès le 20 juin 2018; Boivin, G., Detection and management of antiviral resistance for influenza viruses (2013) Influenza Other Respir Viruses, 7, pp. 18-23; Grimprel, E., Cohen, R., Relation entre la grippe et les infections bactériennes (2010) MT Pediatr, 13, pp. 316-321; Le Fur, P.H., Serment, C., Bronchopneumopathies aiguës et antibiothérapie en 1992. Aspects socioéconomiques (1995) Bull CRE-DES, 1062, pp. 1-35; (2017) ECOAN-TIBIO2: Plan National de Réduction des Risques d'Antibiorésis-tance en Médecine Vétérinaire 2017-2021, , http://agriculture.gouv.fr/le-plan-ecoantibio-2-2017-2021, Ministère de l'Agriculture et de l'Alimentation; http://agriculture.gouv.fr/le-plan-ecoantibio-2-2017-2021, Dernier accès le 20 juin 2018; (2003) La Vaccination Contre les Viroses Respiratoires du Bétail Est-elle Effi-cace?, , https://www.vetcompen-dium.be/sites/default/files/03fvf2a.pdf, Centre belge d'information pharmacothérapeutique, Folia Veterinaria 15 juin 2003 (Dernier accès le 20 juin 2018); (2004) Diar-rhées Néonatales du Veau et Choix Raisonné de l'Antibiothérapie, , https://www.vetcompendium.be/sites/default/files/04fvf2d.pdf, Centre belge d'information pharmacothérapeutique, Folia Veterinaria 15 juin 2004 (Dernier accès le 20 juin 2018); Larsen, L.E., Bovine respiratory syncytial virus (BRSV): A review (2000) Acta Vet Scand, 41, pp. 1-24; (2015) Lutte Contre l'Antibiorésistance: Une Seule Santé, Une Seule Planète, , http://agriculture.gouv.fr/ecoantibio-2017-une-seule-sante-une-seule-planete, Ministère de l'Agriculture et de l'Alimentation (Dernier accès le 20 juin 2018); Amouroux, P., Jean, D., Lamaison, J.L., Antiviral activity in vitro of Cupressus sempervirens on two human retroviruses HIV and HTLV (1998) Phytother Res, 12, pp. 367-368; Perera, C., Efferth, T., Antiviral medicinal herbs and phyto-chemicals (2012) J Pharmacogn, 3, pp. 45-48; Theisen, L.L., Erdelmeier, C.A.J., Spoden, G.A., Tannins from Hamamelis virginiana bark extract: Characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus (2014) PLoS One, 9, p. e88062; Chattopadhyay, D., Naik, T.N., Antivirals of ethnomedicinal origin: Structure activity relantionship and scope (2007) Mini Rev Med Chem, 7, pp. 275-301; Wink, M., Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine (2008) Curr Drug Metab, 10, pp. 996-1009; Carson, R.S., Frisch, A.W., The inactivation of influenza viruses by tannic acid and related compounds (1953) J Bacteriol, 66, pp. 572-575; Nakayama, M., Suzuki, K., Toda, M., Inhibition of the infectivity of influenza virus by tea polyphenols (1993) Antiviral Res, 21, pp. 289-299; Song, J.M., Lee, K.H., Seong, B.L., Antiviral effect of catechins in green tea on influenza virus (2005) Antivir Res, 68, pp. 66-74; Choi, H.J., Song, J.H., Park, K.S., Kwon, D.H., Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication (2009) Eur J Pharm Sci, 37, pp. 329-333; Wirotesangthong, M., Nagai, T., Yamada, H., Effects of Clinacanthus siamensis leaf extract on influenza virus infection (2009) Microbiol Immunol, 53, pp. 66-74; Liu, G., Xiong, S., Xiang, Y.F., Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus (2011) Arch Virol, 156, pp. 1359-1369; Theisen, L.L., Muller, C.P., EPsH 7630 (UmckaloaboH), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo (2012) Antiviral Res, 94, pp. 147-156; Enkhtaivan, G., Maria John, K.M., Anti-influenza (H1N1) potential of leaf and stem bark extracts of selected medicinal plants of South India (2015) Saudi J Biol Sci, 22, pp. 532-538; Emami, S.A., Tayarani-Najaran, Z., Ghannad, M.S., Antiviral activity of obtained extracts from different parts of Cupres-sus sempervirens against herpes simplex virus type 1 (2009) Iran J Basic Med Sci, 12, pp. 133-139; (2015) NF en 14476+A1 Octobre 2015. Antiseptiques et Désinfectants Chimiques. Essai Quantitatif de Suspension pour l'Évaluation de l'Activité Virucide des Antiseptiques et des Désin-fectants Chimiques Utilisés dans le Domaine Médical, , Afnor, Méthode d'essai et prescriptions (phase 2, étape 1); (2015) NF en 14675 Mai 2015. Antiseptiques et Désinfec-tants Chimiques. Essai Quantitatif de Suspension pour l'Évaluation de l'Activité Virucide des Antiseptiques et des Désinfectants Chimi-ques Utilisés dans le Domaine Vétérinaire, , Afnor, Méthodes d'essai et prescriptions (phase 2, étape 1); Pringle, C.R., (2018) Revue Générale des Infections Virales Respira-toires, , https://www.msdmanuals.com/fr/professional/maladies-infectieuses/virus-res-piratoires/revue-g%C3%A9n%C3%A9rale-des-infections-virales-respiratoires, Le manuel MSD pour les professionnels de la santé, Merck and Co., Inc., Kenilworth, NJ, États-Unis (Dernier accès le 20 juin 2018); Bate-Smith, E.C., Rasper, V., Tannins of grains sorghum: Luteo-forol (leucoluteolinidin), 1', 4, 4'5, 7-pentahydroxyflavan (1969) J Food Sci, 34, pp. 203-209; Chambon, M., Bailly, J.L., Peigue-Lafeuille, H., Antiseptiques, désinfectants chimiques et virus en secteur médical (1999) Virologie, 3, pp. 367-378; Noguchi, A., Hamauzu, Y., Yasui, H., Inhibitory effects of Goishi tea against influenza virus infection (2008) Food Sci Technol Res, 14, pp. 277-284; Yang, Z., Wang, Y., Zhong, S., In vitro inhibition of influenza virus infection by a crude extract from Isatis indigotica root resulting in the prevention of viral attachment (2012) Mol Med Rep, 5, pp. 793-799; Ho, J.Y., Chang, H.W., Lin, C.F., Characterization of the anti-influenza activity of the Chinese herbal plant Paeonia lacti-flora (2014) Viruses, 6, pp. 1861-1875; Barber, K.A., Daugherty, H.C., Ander, S.E., Protein composition of the bovine herpesvirus 1.1 virion (2017) Vet Sci, 4, pp. 1-16; Gescher, K., Kühn, J., Hafezi, W., Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1 (2011) Fitoterapia, 82, pp. 408-413; Cordey, S., Schibler, M., Tapparel, C., Kaiser, L., Rhinovirus: diversité clinique et génomique (2008) Virologie, 12, pp. 361-373; Bernfield, M., Götte, M., Park, P.W., Functions of cell surface heparan sulfate proteoglycans (1999) Annu Rev Biochem, 68, pp. 729-777; Germi, R., Crance, J.M., Garin, D., Rôle des glycosami-noglycanes dans l'adsorption des virus sur les cellules-hôtes (2001) Virologie, 5, pp. 255-263; Nair, M.P., Kandaswami, C., Mahajan, S., Grape seed extract proanthocyanidins downregulate HIV-1 entry coreceptors, CCR2b, CCR3, and CCR5 gene expression by normal peripheral blood mononuclear cells (2002) Biol Res, 35, pp. 421-431; You, H.L., Huang, C.C., Chen, C.J., Anti-pandemic influenza A(H1N1) virus potential of catechin and gallic acid (2018) J Chin Med Assoc, 81, pp. 458-468; Yu, C., Yan, Y., Wu, X., Anti-influenza virus effects of the aqueous extract from Mosla scabra (2009) J Ethnopharmacol, 127, pp. 280-285; Lee, H.J., Lee, Y.N., Youn, H.N., Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens (2012) Poult Sci, 91, pp. 66-73; Yamada, H., Takuma, N., Daimon, T., Hara, Y., Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: A prospective clinical study (2006) J Altern Complement Med, 12, pp. 669-672; Matsumoto, Y., Kaihatsu, K., Nishino, K., Antibacterial and antifungal activities of new acylated derivatives of epigallo-catechin gallate (2012) Front Microbiol, 3, p. 53; Xu, J., Xu, Z., Zheng, W., A review of the antiviral role of green tea catechins (2017) Molecules, 22, p. 1337; Ide, K., Kawasaki, Y., Kawakami, K., Yamada, H., Anti-influenza virus effects of catechins: A molecular and clinical review (2016) Curr Med Chem, 23, pp. 1-11; Kitazato, K., Wang, Y., Kobayashi, N., Viral infectious disease and natural products with antiviral activity (2007) Drug Discov Ther, 1, pp. 14-22; Bahramsoltani, R., Sodagari, H.R., Farzaei, M.H., The preventive and therapeutic potential of natural polyphenols on influenza (2015) Expert Rev Anti Infect Ther, 14, pp. 57-80; Chaouche, T.M., Haddouchi, F., Atik-Bekara, F., Antio-xidant, haemolytic activities and HPLC-DAD-ESI-MSn characterization of phenolic compounds from root bark of Junipe-rus oxycedrus subsp. oxycedrus (2015) Ind Crop Prod, 64, pp. 182-187","Guinobert, I.; Groupe PiLeJe, 37, quai de Grenelle, France; email: i.guinobert@pileje.com",,"Lavoisier",16248597,,,,"French","Phytotherapie",Article,"Final",Open Access,Scopus,2-s2.0-85056892746 "Qiu W., Chu C., Mao A., Wu J.","56956286000;56435044600;56956518400;57202911835;","The impacts on health, society, and economy of SARS and H7N9 Outbreaks in China: A Case Comparison Study",2018,"Journal of Environmental and Public Health","2018",, 2710185,"","",,5,"10.1155/2018/2710185","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049805581&doi=10.1155%2f2018%2f2710185&partnerID=40&md5=92ab33bfa2abb0d6c9506386027eabe2","Department of Public Health Information Research, Institute of Medical Information, Chinese Academy of Medical Sciences, 3 Yabao Road, Chaoyang District, Beijing, 100020, China; Centre for Environment and Population Health, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; Chinese Centre for Health Education, 12 Anhua Xili 1 Qu, Anding men Wai, Chaoyangqu, Beijing, 100011, China","Qiu, W., Department of Public Health Information Research, Institute of Medical Information, Chinese Academy of Medical Sciences, 3 Yabao Road, Chaoyang District, Beijing, 100020, China; Chu, C., Centre for Environment and Population Health, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; Mao, A., Department of Public Health Information Research, Institute of Medical Information, Chinese Academy of Medical Sciences, 3 Yabao Road, Chaoyang District, Beijing, 100020, China; Wu, J., Chinese Centre for Health Education, 12 Anhua Xili 1 Qu, Anding men Wai, Chaoyangqu, Beijing, 100011, China","Background. Epidemics such as SARS and H7N9 have caused huge negative impacts on population health and the economy in China. Aims. This article discusses the impacts of SARS in 2003 and H7N9 in 2013 in China, in order to provide a better understanding to government and practitioners of why improving management of response to infectious disease outbreaks is so critical for a country's economy, its society, and its place in the global community. Methods. To provide the results of an analysis of impacts of SARS and H7N9 based on feedback from documents, informants, and focus groups on events during the SARS and H7N9 outbreaks. Results. Both outbreaks of SARS and H7N9 have had an impact on China, causing significant negative impacts on health, the economy, and even national and even international security. Conclusions. Both SARS coronavirus and H7N9 viruses presented a global epidemic threat, but the social and economic impacts of H7N9 were not as serious as in the case of SARS because the response to H7N9 was more effective. © 2018 Wuqi Qiu et al.",,"Article; China; economic aspect; epidemic; government; health practitioner; human; influenza A (H7N9); Influenza A virus (H7N9); nonhuman; population health; SARS coronavirus; severe acute respiratory syndrome; society; case control study; China; epidemic; influenza; physiology; public health; severe acute respiratory syndrome; virology; Case-Control Studies; China; Disease Outbreaks; Humans; Influenza A Virus, H7N9 Subtype; Influenza, Human; Public Health; SARS Virus; Severe Acute Respiratory Syndrome","Lu, X., Xue, L., Managing the unexpected: Sense-making in the Chinese emergency management system (2016) Public Administration, 94 (2), pp. 414-429; Hu, Z.A.Z., Zhao, L., A comparative study of publichealth emergency management (2009) Industrial Management &Data Systems, 109 (7), pp. 976-992; Xiu, W., The outbreak of SARS in the world (2003) Strait Journal of Preventive Medicine, 9 (5), pp. 80-81; Gu, S., Lu, J., Yu, M., Wei, X., Hu, Y., Path analysis and evaluation abouthealth communication for h7n9 emergencies in Shanghai in (2013) Health Education AndHealth Promotion, 9 (1); Qiu, W., Chu, C., Hou, X., A comparison of China's risk communication in response to sars and h7n9 using principles drawn frominternational practice (2017) DisasterMedicine and Public Health Preparedness, pp. 1-12; Wong, G.W.K., Leung, T.F., Bird flu: Lessons from SARS (2007) Paediatric Respiratory Reviews, 8 (2), pp. 171-176; Bai, Y., Lin, C.-C., Lin, C.-Y., Chen, J.-Y., Chue, C.-M., Chou, P., Survey of stress reactions among health care workers involved with the SARS outbreak (2004) Psychiatric Services, 55 (9), pp. 1055-1057; Lau, J.T.F., Yang, X., Tsui, H.Y., Pang, E., Wing, Y.K., Positive mental health-related impacts of the SARS epidemic on the general public in Hong Kong and their associations with other negative impacts (2006) Infection, 53 (2), pp. 114-124; Ma, R., Spread of sars andwar-related rumors through new media in China (2008) Communication Quarterly, 56 (4), pp. 376-391; Han, J., Song, Y., Zhang, P., The construction of emergency communicationmodel based on the kite-type co-orientation approach (2012) Technology for Education and Learning 136 of Advances in Intelligent Systems and Computing, pp. 243-250. , Springer Berlin Heidelberg, Berlin, Heidelberg; Chen, F., Cao, S., Xin, J., Luo, X., Ten years after SARS: Where was the virus from? (2013) Journal OfThoracic Disease, 5, p. S163; Tong, W., Construction of the, prevention-active , public health emergency management modereflection on response to sars and a/h1n1 incidents (2013) Journal of University of Electronic Science and Technology of China (Social Sciences Edition), 15 (1); Wishnick, E., Dilemmas of securitization and health risk management in the People's Republic of China: The cases of SARS and avian influenza (2010) Health Policy and Planning, 25 (6), pp. 454-466; Smith, Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management (2006) Social Science &Medicine, 63 (12), pp. 3113-3123; MacKellar, L., Pandemic influenza: A review (2007) Population and Development Review, 33 (3), pp. 429-451; Du, L., Luo, B., Wang, J., Pan, B., Chen, J., Liu, J., Study on social burden of asrs in guangzhou (2006) Chinese Journal of Public Health Mangement, 22 (4), pp. 274-276; Zhang, The impact of SARS on China's economy should not be underestimated (2003) Journal of Guizhou University(Social Science), 21 (4), pp. 48-50; Zeng, B., Carter, R.W., De Lacy, T., Short-term perturbations and tourism effects: The case of SARS in China (2005) Current Issues in Tourism, 8 (4), pp. 306-322; Liu, S., Sun, J., Cai, J., Epidemiological, clinical and viral characteristics of fatal cases of human avian influenzaA(H7N9) virus in Zhejiang Province, China (2013) Infection, 67 (6), pp. 595-605; Huo, X., Chen, L.-L., Hong, L., Economic burden and its associated factors of hospitalized patients infected with A (H7N9) virus: A retrospective study in Eastern China, 2013-2014 (2016) Infectious Diseases of Poverty, 5 (1); Shen, Y., Lu, H., Global concern regarding the fifth epidemic of human infection with avian influenza A (H7N9) virus in China (2017) Bioscience Trends, 11 (1), pp. 120-121; Zheng, M., Qu, D., Wang, H., Intranasal administration of chitosan against influenza a (h7n9) virus infection in a mouse model (2016) Scientific Reports, 6; Fangriya, R., Pandemic influenza threat (2015) World Scientific News, 11, pp. 120-137; Tanner, W.D., Toth, D.J.A., Gundlapalli, A.V., The pandemic potential of avian influenza A(H7N9) virus: A review (2015) Epidemiology and Infection, 143 (16), pp. 3359-3374; Zong, P., SARS"" to ""H7N9"" (2013) Education for the Elderly:Home for the Elderly, (6), pp. 24-25; Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Niazi, N.K., Crop improvement through conventional and non-conventional breeding approaches for grain yield and quality traits in Zea mays L (2015) Life Sciences, 12, pp. 38-50; Huang, F., Fang, K., Zhou, X., Sun, Z., Chen, X., Influences of h7n9 avian influenza on the development of waterfowl industry in China (2015) Hubei Journal of Animal and Veterinary Sciences, (4), pp. 7-9; Zhong, N.S., Zheng, B.J., Li, Y.M., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003 (2003) The Lancet, 362 (9393), pp. 1353-1358; Gao, R., Cao, B., Hu, Y., Human infection with a novel avianorigin influenza A (H7N9) virus (2013) The New England Journal of Medicine, 368 (20), pp. 1888-1897; Xu, M., Li, S.-X., Analysis of good practice of public health Emergency Operations Centers (2015) Asian Pacific Journal of Tropical Medicine, 8 (8), pp. 677-682; Scarfone, R.J., Alexander, S., Coffin, S.E., Emergency preparedness for pandemic influenza (2006) Pediatric Emergency Care, 22 (9), pp. 661-671","Wu, J.; Chinese Centre for Health Education, 12 Anhua Xili 1 Qu, Anding men Wai, China; email: wujing@nihe.org.cn",,"Hindawi Limited",16879805,,,"30050581","English","J. Environ. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85049805581 "AlMoammar A., AlHenaki L., Kurdi H.","57204774883;57204769031;24071124200;","Selecting accurate classifier models for a MERS-CoV dataset",2018,"Advances in Intelligent Systems and Computing","868",,,"1070","1084",,,"10.1007/978-3-030-01054-6_74","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057079038&doi=10.1007%2f978-3-030-01054-6_74&partnerID=40&md5=fce5b8675fbf7013cfe81738154cff77","Computer Science Department, KSU, Riyadh, KSA, Saudi Arabia","AlMoammar, A., Computer Science Department, KSU, Riyadh, KSA, Saudi Arabia; AlHenaki, L., Computer Science Department, KSU, Riyadh, KSA, Saudi Arabia; Kurdi, H., Computer Science Department, KSU, Riyadh, KSA, Saudi Arabia","The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a viral respiratory disease that is spreading worldwide necessitating to have an accurate diagnosis system that accurately predicts infections. As data mining classifiers can greatly assist in enhancing the prediction accuracy of diseases in general. In this paper, classifier model performance for two classification types: (1) binary and (2) multi-class were tested on a MERS-CoV dataset that consists of all reported cases in Saudi Arabia between 2013 and 2017. A cross-validation model was applied to measure the accuracy of the Support Vector Machine (SVM), Decision Tree, and k-Nearest Neighbor (k-NN) classifiers. Experimental results demonstrate that SVM and Decision Tree classifiers achieved the highest accuracy of 86.44% for binary classification based on healthcare personnel class. On the other hand, for multiclass classification based on city class, the decision tree classifier had the highest accuracy among the remaining classifiers; although it did not reach a satisfactory accuracy level (42.80%). This work is intended to be a part of a MERS-CoV prediction system to enhance the diagnosis of MERS-CoV disease. © Springer Nature Switzerland AG 2019.","Accuracy measurement; Classification; Classifier model; Cross-validation model; Data mining; Medical data; MERS-CoV","Binary trees; Data mining; Decision trees; Diagnosis; Intelligent systems; Medical computing; Nearest neighbor search; Support vector machines; Accuracy measurements; Classifier models; Cross validation; Medical data; MERS-CoV; Classification (of information)","(2017) Coronavirus Website-Ministry of Health, , http://www.moh.gov.sa/en/CCC/, Accessed 29 Oct; (2017) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/, Accessed 23 Oct; Koh, H.C., Tan, G., Data mining applications in healthcare (2005) J. Healthc. Inf. Manag., 19 (2), pp. 64-72; Han, J., Kamber, M., Data Mining: Concepts and Techniques (2012) Elsevier, Haryana, India, Burlington; Yoo, Data mining in healthcare and biomedicine: A survey of the literature (2012) J. Med. Syst., 36 (4), pp. 2431-2448; Al-Turaiki, M., Alshahrani, M., Almutairi, T., Building predictive models for MERS-CoV infections using data mining techniques (2016) J. Infect. Public Health, 9 (6), pp. 744-748; Almansour, N., Kurdi, H., Identifying accurate classifier models for a text-based MERS-CoV dataset (2017) Presented at the Intelligent Systems Conference, 2017. , London, UK; Deepika, K., Seema, S., (2016) Predictive Analytics to Prevent and Control Chronic Diseases, pp. 381-386; Ferreira, D., Oliveira, A., Freitas, A., Applying data mining techniques to improve diagnosis in neonatal jaundice (2012) BMC Med. Inform. Decis. Mak, 12 (1). , December; Asri, H., Mousannif, H., Moatassime, H.A., Noel, T., Using machine learning algorithms for breast cancer risk prediction and diagnosis (2016) Procedia Comput. Sci., 83, pp. 1064-1069; Li, J., Zhao, Z., Liu, Y., Cheng, Z., Wang, X., A comparative study on machine classification model in lung cancer cases analysis (2018) Frontier Computing, 422, pp. 343-357. , Yen, N.Y., Hung, J.C. (eds.), pp., Springer Singapore, Singapore; Daghistani, T., Alshammari, R., Diagnosis of diabetes by applying data mining classification techniques (2016) Int. J. Adv. Comput. Sci. Appl., 7 (7); Sowjanya, K., Singhal, A., Choudhary, C., (2015) Mobdbtest: A Machine Learning Based System for Predicting Diabetes Risk Using Mobile Devices, pp. 397-402; Kim, D., Hong, S., Choi, S., Yoon, T., (2016) Analysis of Transmission Route of MERS Coronavirus Using Decision Tree and Apriori Algorithm, pp. 559-565; Sandhu, R., Sood, S.K., Kaur, G., An intelligent system for predicting and preventing MERS-CoV infection outbreak (2016) J. Supercomput., 72 (8), pp. 3033-3056; Jang, S., Lee, S., Choi, S.-M., Seo, J., Choi, H., Yoon, T., Comparison between SARS CoV and MERS CoV using Apriori Algorithm, Decision Tree, SVM (2016) MATEC Web of Conferences, 49; (2017) Rapidminer Studio-Rapidminer Documentation, , http://docs.rapidminer.com/studio/, Accessed 11 Jan; Witten, H., Frank, E., Hall, M.A., (2011) Data Mining: Practical Machine Learning Tools and Techniques, , 3rd edn. Morgan Kaufmann, Burlington; Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection (1995) Proceedings of the 14Th International Joint Conference on Artificial Intelligence, 2, pp. 1137-1143; Stehman, S.V., Selecting and interpreting measures of thematic classification accuracy (1997) Remote Sens. Environ., 62 (1), pp. 77-89; Sokolova, M., Lapalme, G., A systematic analysis of performance measures for classification tasks (2009) Inf. Process. Manag., 45 (4), pp. 427-437","AlMoammar, A.; Computer Science Department, KSUSaudi Arabia; email: 437203909@student.ksu.edu.sa","Arai K.Kapoor S.Bhatia R.","Springer Verlag",21945357,9783030010539,,,"English","Adv. Intell. Sys. Comput.",Conference Paper,"Final",Open Access,Scopus,2-s2.0-85057079038 "O'Dea E.B., Park A.W., Drake J.M.","36247444500;57200742018;7201816666;","Estimating the distance to an epidemic threshold",2018,"Journal of the Royal Society Interface","15","143", 20180034,"","",,3,"10.1098/rsif.2018.0034","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049646187&doi=10.1098%2frsif.2018.0034&partnerID=40&md5=c6afff92ffb917802b024fff330c2ef4","Department of Ecology, United Kingdom; Center for the Ecology of Infectious Diseases, Georgia; Odum School of Ecology, United States; Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States","O'Dea, E.B., Department of Ecology, United Kingdom, Center for the Ecology of Infectious Diseases, Georgia; Park, A.W., Odum School of Ecology, United States, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; Drake, J.M., Center for the Ecology of Infectious Diseases, Georgia, Odum School of Ecology, United States","The epidemic threshold of the susceptible - infected - recovered model is a boundary separating parameters that permit epidemics from those that do not. This threshold corresponds to parameters where the system's equilibrium becomes unstable. Consequently, we use the average rate at which deviations from the equilibrium shrink to define a distance to this threshold. However, the vital dynamics of the host population may occur slowly even when transmission is far from threshold levels. Here, we show analytically how such slow dynamics can prevent estimation of the distance to the threshold from fluctuations in the susceptible population. Although these results are exact only in the limit of long-term observation of a large system, simulations show that they still provide useful insight into systems with a range of population sizes, environmental noise and observation schemes. Having established some guidelines about when estimates are accurate, we then illustrate how multiple distance estimates can be used to estimate the rate of approach to the threshold. The estimation approach is general and may be applicable to zoonotic pathogens such as Middle East respiratory syndrome-related coronavirus (MERS-CoV) as well as vaccine-preventable diseases like measles. © 2018 The Authors.","Early warning; Infectious disease model; Multivariate statistics; Slowing down","Epidemiology; Multivariant analysis; Population statistics; Early warning; Estimation approaches; Infectious disease modeling; Long term observations; Multivariate statistics; Slowing down; Susceptible population; Susceptible-infected-recovered model; Diseases; Article; basic reproduction number; birth rate; disease transmission; epidemic; host; human; immigration; infection; measurement accuracy; mortality rate; population size; practice guideline; susceptible population; time series analysis; animal; biological model; Coronavirus infection; epidemic; measles; Middle East respiratory syndrome coronavirus; zoonosis; Animals; Coronavirus Infections; Epidemics; Humans; Measles; Middle East Respiratory Syndrome Coronavirus; Models, Biological; Zoonoses","Bedford, T., Global circulation patterns of seasonal influenza viruses vary with antigenic drift (2015) Nature, 523, pp. 217-220; Ferrari, M.J., Grais, R.F., Bharti, N., Conlan, A.J.K., Bjørnstad, O.N., Wolfson, L.J., Guerin, P.J., Grenfell, B.T., The dynamics of measles in sub-Saharan Africa (2008) Nature, 451, pp. 679-684; Anderson, R.M., May, R.M., (1992) Infectious Diseases of Humans: Dynamics and Control, , New York, NY: Oxford University Press; Fine, P., Eames, K., Heymann, D.L., Herd immunity': A rough guide (2011) Clin. Infect. Dis., 52, pp. 911-916; Fefferman, N.H., Naumova, E.N., Dangers of vaccine refusal near the herd immunity threshold: A modelling study (2015) Lancet Infect. Dis., 15, pp. 922-926; Grenfell, B.T., Pybus, O.G., Gog, J.R., Wood, J.L.N., Daly, J.M., Mumford, J.A., Holmes, E.C., Unifying the epidemiological and evolutionary dynamics of pathogens (2004) Science, 303, pp. 327-332; Dibble, C.J., O'Dea, E.B., Park, A.W., Drake, J.M., Waiting time to infectious disease emergence (2016) J. R. Soc. Interface, 13, p. 20160540; Wissel, C., A universal law of the characteristic return time near thresholds (1984) Oecologia, 65, pp. 101-107; Scheffer, M., (2009) Critical Transitions in Nature and Society, , Princeton, NJ: Princeton University Press; Scheffer, M., Early-warning signals for critical transitions (2009) Nature, 461, pp. 53-59; O'Regan, S.M., Drake, J.M., Theory of early warning signals of disease emergence and leading indicators of elimination (2013) Theor. Ecol., 6, pp. 333-357; O'Regan, S.M., Lillie, J.W., Drake, J.M., Leading indicators of mosquito-borne disease elimination (2015) Theor. Ecol., 9, pp. 269-286; Brett, T.S., Drake, J.M., Rohani, P., Anticipating the emergence of infectious diseases (2017) J. R. Soc. Interface, 14, p. 20170115; Wiggins, S., (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos, , New York, NY: Springer; Kuehn, C., A mathematical framework for critical transitions: Normal forms, variance and applications (2012) J. Nonlinear. Sci., 23, pp. 457-510; Boerlijst, M.C., Oudman, T., De Roos, A.M., Catastrophic collapse can occur without early warning: Examples of silent catastrophes in structured ecological models (2013) PLoS ONE, 8; Boettiger, C., Ross, N., Hastings, A., Early warning signals: The charted and uncharted territories (2013) Theor. Ecol., 6, pp. 255-264; Dakos, V., Identifying best-indicator species for abrupt transitions in multispecies communities (2017) Ecol. Indic.; Bretó, C., Ionides, E.L., Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems (2011) Stoch. Process. Appl., 121, pp. 2571-2591; He, D., Ionides, E.L., King, A.A., Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study (2010) J. R. Soc. Interface, 7, pp. 271-283; Bretó, C., He, D., Ionides, E.L., King, A.A., Time series analysis via mechanistic models (2009) Ann. Appl. Stat., 3, pp. 319-348; Ferrari, M.J., Perkins, S.E., Pomeroy, L.W., Bjørnstad, O.N., Pathogens, social networks, and the paradox of transmission scaling (2011) Interdiscip. Perspect. Infect. Dis., 2011, p. 267049; Anderson, R.M., May, R.M., (1991) Infectious Diseases of Humans: Dynamics and Control, , New York, NY: Oxford University Press; Van Kampen, N.G., (2007) Stochastic Processes in Physics and Chemistry, , 3rd edn. Amsterdam, The Netherlands: North Holland; Reluga, T.C., Medlock, J., Perelson, A.S., Backward bifurcations and multiple equilibria in epidemic models with structured immunity (2008) J. Theor. Biol., 252, pp. 155-165; Kwon, C., Ao, P., Thouless, D.J., Structure of stochastic dynamics near fixed points (2005) Proc. Natl Acad. Sci. USA, 102, pp. 13029-13033; Elzhov, T.V., Mullen, K.M., Spiess, A.N., Bolker, B., (2015) Minpack.Lm: R Interface to The Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds, , https://cran.r-project.org/package=minpack.lm, R package version 1.2-0; Hopcraft, K., Jakeman, E., Ridley, K., (2014) The Dynamics of Discrete Populations and Series of Events, , Boca Raton, FL: Taylor & Francis; King, A.A., Nguyen, D., Ionides, E.L., Statistical inference for partially observed markov processes via the R Package pomp (2016) J. Stat. Softw., 69; King, A.A., (2016) Pomp: Statistical Inference for Partially Observed Markov Processes, , https://kingaa.github.io/pomp/, R package version 1.4.1.1; Nguyen, H.T., Rohani, P., Noise, nonlinearity and seasonality: The epidemics of whooping cough revisited (2008) J. R. Soc. Interface, 5, pp. 403-413; Keeling, M.J., Rohani, P., (2008) Modeling Infectious Diseases in Humans and Animals, , Princeton, NJ: Princeton University Press; Emerson, H., Measles and whooping cough: Part I (1937) Am. J. Public Health Nations Health, 27, pp. 1-58; Gamado, K.M., Streftaris, G., Zachary, S., Modelling under-reporting in epidemics (2014) J. Math. Biol., 69, pp. 737-765; Mandelshtam, V.A., Taylor, H.S., Harmonic inversion of time signals and its applications (1997) J. Chem. Phys., 107, pp. 6756-6769; Bobashev, G.V., Ellner, S.P., Nychka, D.W., Grenfell, B.T., Reconstructing susceptible and recruitment dynamics from measles epidemic data (2000) Math. Popul. Stud., 8, pp. 1-29; Rasmussen, D.A., Ratmann, O., Koelle, K., Inference for nonlinear epidemiological models using genealogies and time series (2011) PLoS Comput. Biol., 7; O'Dea, E.B., E3bo/2017distance (2017) Zenodo","O'Dea, E.B.; Department of EcologyUnited Kingdom; email: ebodea@uga.edu",,"Royal Society Publishing",17425689,,,"29950512","English","J. R. Soc. Interface",Article,"Final",Open Access,Scopus,2-s2.0-85049646187 "Kiang Tay C., Sung K., Hyun Cho Y.","57215918185;7201459759;57208439659;","Clinical pearls in venovenous extracorporeal life support for adult respiratory failure",2018,"ASAIO Journal","64","1",,"1","9",,5,"10.1097/MAT.0000000000000657","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041247288&doi=10.1097%2fMAT.0000000000000657&partnerID=40&md5=5823633dbcedb608642c131c5c43a148","Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore; Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul, South Korea; Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea","Kiang Tay, C., Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore; Sung, K., Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul, South Korea; Hyun Cho, Y., Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea","Extracorporeal life support (ECLS) has been widely utilized to treat neonatal respiratory failure for two decades. However, its uptake in the case of adult respiratory failure has been slow because of a paucity of quality evidence and a sluggish tempo of ECLS-related technological advances. In recent years, interest in ECLS has been piqued after encouraging results were reported from its use during the 2009 H1N1 influenza pandemic. In a world constantly under threat from another influenza epidemic or deadly novel respiratory infection, e.g., the severe acute respiratory syndrome (SARS) virus, the Middle East respiratory syndrome coronavirus (MERS-CoV), the role of venovenous (VV) ECLS as a treatment modality for acute respiratory distress syndrome (ARDS) cannot be overemphasized. In hopes of standardizing practice, the Extracorporeal Life Support Organization (ELSO) has published books and guidelines on ECLS. However, high-level evidence to guide clinical decisions is still expediently needed in this field. Relying on the available literature and our experience in the recent South Korean MERS-CoV outbreak, we hope to highlight key physiologic and clinical points in VV ECLS for adult respiratory failure in this review. ASAIO Journal 2018; 64:1-9. Copyright © 2017 by the ASAIO","Acute respiratory distress syndrome; Extracorporeal life support; Extracorporeal membrane oxygenation; Venovenous","anticoagulant agent; 2009 H1N1 influenza; adult respiratory distress syndrome; anesthesia level; anticoagulant therapy; Article; artificial ventilation; brain tissue; cannulation; extracorporeal oxygenation; human; hypoxemia; lung gas exchange; Middle East respiratory syndrome coronavirus; mobilization; patient selection; priority journal; respiratory failure; resuscitation; SARS coronavirus; sedation; severe acute respiratory syndrome; time to treatment; tracheostomy; treatment contraindication; treatment indication; treatment outcome; venovenous extracorporeal life support; ventilator weaning; adult; extracorporeal oxygenation; procedures; respiratory failure; Adult; Extracorporeal Membrane Oxygenation; Humans; Respiratory Insufficiency","Hill, J.D., O'Brien, T.G., Murray, J.J., Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung (1972) N Engl J Med, 286, pp. 629-634. , Internet; Panigada, M., Iapichino, G., L'Acqua, C., Prevalence of “flat-line” thromboelastography during extracorporeal membrane oxygenation for respiratory failure in adults (2016) ASAIO J, 62, pp. 302-309; Lewandowski, K., Rossaint, R., Pappert, D., High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation (1997) Intensive Care Med, 23, pp. 819-835; Kolla, S., Awad, S.S., Rich, P.B., Extracorporeal life support for 100 adult patients with severe respiratory failure (1997) Ann Surg, 226, pp. 544-564; Rich, P.B., Awad, S.S., Kolla, S., An approach to the treatment of severe adult respiratory failure (1998) J Crit Care, 13, pp. 26-36; Hemmila, M.R., Rowe, S.A., Boules, T.N., Extracorporeal life support for severe acute respiratory distress syndrome in adults (2004) Ann Surg, 240, pp. 595-605; Davies, A., Jones, D., Extracorporeal membrane oxygenation for 2009 Influenza A(H1N1) acute respiratory distress syndrome (2009) JAMA, 302, pp. 1888-1895; Peek, G.J., Mugford, M., Tiruvoipati, R., Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial (2009) Lancet (London, England, 374, pp. 1351-1363; Noah, M.A., Peek, G.J., Finney, S.J., Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1) (2011) JAMA, 306, pp. 1659-1668; Pham, T., Combes, A., Rozé, H., Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: A cohort study and propensity-matched analysis (2013) Am J Respir Crit Care Med, 187, pp. 276-285; Papazian, L., Forel, J.-M., Gacouin, A., Neuromuscular blockers in early acute respiratory distress syndrome (2010) N Engl J Med, 363, pp. 1107-1116; Guérin, C., Reignier, J., Richard, J.-C., Prone positioning in severe acute respiratory distress syndrome (2013) N Engl J Med, 368, pp. 2159-2168; Brower, R.G., Matthay, M.A., Morris, A., Schoenfeld, D., Thompson, B.T., Wheeler, A., Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome (2000) N Engl J Med, 342, pp. 1301-1308. , The Acute Respiratory Distress Syndrome Network; Putensen, C., Theuerkauf, N., Zinserling, J., Meta-analysis: Ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury (2009) Ann Intern Med, 151, pp. 566-576; Phua, J., Badia, J.R., Adhikari, N.K.J., Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review (2009) Am J Respir Crit Care Med, 179, pp. 220-227; Young, D., Lamb, S.E., Shah, S., High-frequency oscillation for acute respiratory distress syndrome (2013) N Engl J Med, 368, pp. 806-813; Ferguson, N.D., Cook, D.J., Guyatt, G.H., High-frequency oscillation in early acute respiratory distress syndrome (2013) N Engl J Med, 368, pp. 795-805; Terragni, P.P., Del Sorbo, L., Mascia, L., Tidal volume lower than 6 ml/kg enhances lung protection: Role of extracorporeal carbon dioxide removal (2009) Anesthesiology, 111, pp. 826-835. , Internet; Bein, T., Weber-Carstens, S., Goldmann, A., Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: The prospective randomized Xtravent-study (2013) Intensive Care Med, 39, pp. 847-856; Costa, E.L.V., Amato, M.B.P., Ultra-protective tidal volume: How low should we go? (2013) Crit Care, 17, p. 127; Fanelli, V., Ranieri, M.V., Mancebo, J., Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome (2016) Crit Care, 20, p. 36; Patroniti, N., Zangrillo, A., Pappalardo, F., The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: Preparation for severe respiratory emergency outbreaks (2011) Intensive Care Med, 37, pp. 1447-1457; Guidelines for ECMO Centers, , http://www.elso.org/resources/Guidelines.aspx, Version 1.7.: Accessed March 1, 2014; Brodie, D., Bacchetta, M., Extracorporeal membrane oxygenation for ARDS in adults (2011) N Engl J Med, 365, pp. 1905-1914; Cummins, R.O., Ornato, J.P., Thies, W.H., Improving survival from sudden cardiac arrest: The “chain of survival” concept. A statement for health professionals from the Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association (1991) Circuilation, 83, pp. 1832-1847. , Internet; Brogan, T.V., Thiagarajan, R.R., Rycus, P.T., Extracorporeal membrane oxygenation in adults with severe respiratory failure: A multi-center database (2009) Intensive Care Med, 35, pp. 2105-2114; Biehl, M., Kashiouris, M.G., Gajic, O., Ventilator-induced lung injury: Minimizing its impact in patients with or at risk for ARDS (2013) Respir Care, 58, pp. 927-937; Powers, S.K., Shanely, R.A., Coombes, J.S., Mechanical ventilation results in progressive contractile dysfunction in the diaphragm (2002) J Appl Physiol, 92, pp. 1851-1858; Shanely, R.A., Zergeroglu, M.A., Lennon, S.L., Mechanical ventilation-induced diaphragmatic atrophy is associated with oxida-tive injury and increased proteolytic activity (2002) Am J Respir Crit Care Med, 166, pp. 1369-1374; Levine, S., Nguyen, T., Taylor, N., Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans (2008) N Engl J Med, 358, pp. 1327-1335; Puthucheary, Z.A., Rawal, J., McPhail, M., Acute skeletal muscle wasting in critical illness (2013) JAMA, 310, pp. 1591-1600; Cornejo, R.A., Díaz, J.C., Tobar, E.A., Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome (2013) Am J Respir Crit Care Med, 188, pp. 440-448; Girard, T.D., Kress, J.P., Fuchs, B.D., Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): A randomised controlled trial (2008) N Engl J Med, 371, pp. 1471-1477. , Internet; Kimmoun, A., Roche, S., Bridey, C., Prolonged prone positioning under VV-ECMO is safe and improves oxygenation and respiratory compliance (2015) Ann Intensive Care, 5, p. 35; Kredel, M., Bischof, L., Wurmb, T.E., Combination of positioning therapy and venovenous extracorporeal membrane oxygenation in ARDS patients (2014) Perfusion, 29, pp. 171-177; Guervilly, C., Hraiech, S., Gariboldi, V., Prone positioning during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults Minerva Anestesiol, 80, pp. 307-313. , XXX2014; Kress, J.P., Pohlman, A.S., O'Connor, M.F., Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation (2000) N Engl J Med, 342, pp. 1471-1477; Fuehner, T., Kuehn, C., Hadem, J., Extracorporeal membrane oxygenation in awake patients as bridge to lung transplantation (2012) Am J Respir Crit Care Med, 185, pp. 763-768; Braune, S., Kienast, S., Hadem, J., Safety of percutaneous dilata-tional tracheostomy in patients on extracorporeal lung support (2013) Intensive Care Med, 39, pp. 1792-1799; Luyt, C.-E., Bréchot, N., Demondion, P., Brain injury during venovenous extracorporeal membrane oxygenation (2016) Intensive Care Med, 42, pp. 897-907; Kredel, M., Lubnow, M., Westermaier, T., Cerebral tissue oxygenation during the initiation of venovenous ECMO (2014) ASAIO J, 60, pp. 694-700; Maldonado, Y., Singh, S., Taylor, M.A., Cerebral near-infrared spectroscopy in perioperative management of left ventricular assist device and extracorporeal membrane oxygenation patients (2014) Curr Opin Anaesthesiol, 27, pp. 81-88; Schmidt, M., Tachon, G., Devilliers, C., Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults (2013) Intensive Care Med, 39, pp. 838-846; Reickert, C.A., Schreiner, R.J., Bartlett, R.H., Percutaneous access for venovenous extracorporeal life support in neonates (1998) J Pediatr Surg, 33, pp. 365-369; Kuhl, T., Michels, G., Pfister, R., Comparison of the Avalon dual-lumen cannula with conventional cannulation technique for venovenous extracorporeal membrane oxygenation (2015) Thorac Cardiovasc Surg, 63, pp. 653-662; Ko, Y., Cho, Y.H., Park, Y.H., Feasibility and safety of early physical therapy and active mobilization for patients on extracorporeal membrane oxygenation (2015) ASAIO J, 61, pp. 564-568; Rich, P.B., Awad, S.S., Crotti, S., A prospective comparison of atrio-femoral and femoro-atrial flow in adult venovenous extracorporeal life support (1998) J Thorac Cardiovasc Surg, 116, pp. 628-632; Sidebotham, D., Allen, S.J., McGeorge, A., Venovenous extracorporeal membrane oxygenation in adults: Practical aspects of circuits, cannulae, and procedures (2012) J Cardiothorac Vasc Anesth, 26, pp. 893-909; Wiedemann, H.P., Wheeler, A.P., Bernard, G.R., Comparison of two fluid-management strategies in acute lung injury (2006) N Engl J Med, 354, pp. 2564-2575. , National Heart, Lung and BIARDS (ARDS) CTN; Schweickert, W.D., Pohlman, M.C., Pohlman, A.S., Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial (2009) Lancet, 373, pp. 1874-1882. , London, England; Turner, D.A., Cheifetz, I.M., Rehder, K.J., Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: A practical approach (2011) Crit Care Med, 39, pp. 2593-2598; Rehder, K.J., Turner, D.A., Hartwig, M.G., Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation (2013) Respir Care, 58, pp. 1291-1298; Hassan, E., Critical care pharmacotherapy: Issues and approaches (2000) Curr Opin Crit Care, 6, pp. 299-303; Shekar, K., Fraser, J.F., Smith, M.T., Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation (2012) J Crit Care, 27, pp. 741e9-741e18; Buck, M.L., Pharmacokinetic changes during extracorporeal membrane oxygenation: Implications for drug therapy of neonates (2003) Clin Pharmacokinet, 42, pp. 403-417; Wildschut, E.D., Ahsman, M.J., Allegaert, K., Determinants of drug absorption in different ECMO circuits (2010) Intensive Care Med, 36, pp. 2109-2116; Shekar, K., Roberts, J.A., Mcdonald, C.I., Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation (2012) Crit Care, 16, p. R194; Villar, J., Blanco, J., Añón, J.M., The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation (2011) Intensive Care Med, 37, pp. 1932-1941; Jain, S., Self, W.H., Wunderink, R.G., Community-acquired pneumonia requiring hospitalization among U.S. Adults (2015) N Engl J Med, 373, pp. 415-427; Park, S.J., Yang, J.H., Park, H.J., Trough concentrations of vancomycin in patients undergoing extracorporeal membrane oxygenation (2015) PLoS One, 10; Mulla, H., Peek, G.J., Harvey, C., Oseltamivir pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation support (2013) Anaesth Intensive Care, 41, pp. 66-73; Shekar, K., Roberts, J.A., Welch, S., ASAP ECMO: Antibiotic, sedative and analgesic pharmacokinetics during extracorporeal membrane oxygenation: A multi-centre study to optimise drug therapy during ECMO (2012) BMC Anesthesiol, 12, p. 29; Bembea, M.M., Annich, G., Rycus, P., Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: An international survey (2013) Pediatr Crit Care Med, 14, pp. e77-e84; Turpie, A.G., Pharmacology of the low-molecular-weight heparins (1998) Am Heart J, 135, pp. S329-S335; Young, E., Cosmi, B., Weitz, J., Comparison of the non-specific binding of unfractionated heparin and low molecular weight heparin (Enoxaparin) to plasma proteins (1993) Thromb Haemost, 70, pp. 625-630; Agerstrand, C.L., Burkart, K.M., Abrams, D.C., Blood conservation in extracorporeal membrane oxygenation for acute respiratory distress syndrome (2015) Ann Thorac Surg, 99, pp. 590-595; Coughlin, M.A., Bartlett, R.H., Anticoagulation for extracorporeal life support (2015) ASAIO J, 61, pp. 652-655","Hyun Cho, Y.; Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, South Korea; email: yanghyun.cho@samsung.com",,"Lippincott Williams and Wilkins",10582916,,AJOUE,"28885377","English","ASAIO J.",Article,"Final",,Scopus,2-s2.0-85041247288 "Perin N., Alić J., Liekens S., Van Aerschot A., Vervaeke P., Gadakh B., Hranjec M.","37261734600;57201792841;6602578682;55981161000;48661553000;57200377341;6508133198;","Different positions of amide side chains on the benzimidazo[1,2-: A] quinoline skeleton strongly influence biological activity",2018,"New Journal of Chemistry","42","9",,"7096","7104",,2,"10.1039/c8nj00416a","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046115721&doi=10.1039%2fc8nj00416a&partnerID=40&md5=1059e144c8320536316b8320c2d97934","Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19 P. O. Box 177, Zagreb, HR-10000, Croatia; Rega Institute, Department of Microbiology and Immunology, Herestraat 49, Leuven, B-3000, Belgium; Rega Institute, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, Leuven, B-3000, Belgium; Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, B-3000, Belgium","Perin, N., Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19 P. O. Box 177, Zagreb, HR-10000, Croatia; Alić, J., Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19 P. O. Box 177, Zagreb, HR-10000, Croatia; Liekens, S., Rega Institute, Department of Microbiology and Immunology, Herestraat 49, Leuven, B-3000, Belgium; Van Aerschot, A., Rega Institute, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, Leuven, B-3000, Belgium; Vervaeke, P., Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Leuven, B-3000, Belgium; Gadakh, B., Rega Institute, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, Leuven, B-3000, Belgium; Hranjec, M., Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19 P. O. Box 177, Zagreb, HR-10000, Croatia","Benzimidazo[1,2-a]quinolines substituted with amide chains have been evaluated for their antiproliferative, antibacterial and antiviral activity in vitro. Amido-substituted cyclic derivatives were synthesized by classical organic synthetic reactions in order to study the influence of the type and length of the amide side chain as well as its position on the tetracyclic skeleton on biological activity. The most promising antiproliferative activity (i.e. sub-micromolar IC50 concentrations) was displayed by 6-N,N-dimethylaminopropyl 21, 6-N,N-diethylaminoethyl 22 and the 2- and 6-N,N-dimethylaminopropyl substituted derivative 25. Additionally, micromolar concentrations of compounds 21 and 25 induced apoptosis in human cervical carcinoma HeLa cells. Compounds 28, 29 and 30, substituted with the isobutyl, N,N-dimethylaminopropyl and N,N-diethylaminoethyl amide side chain placed at position 2, displayed antiviral activity against herpes simplex virus (HCV) (EC50 1.8-6.8 μM) and human coronavirus (EC50 4-12 μM). Furthermore, N,N-dimethylaminopropyl 21 and N,N-diethylaminoethyl 22 substituted compounds bearing the amide side chain at position 6 of the tetracyclic skeleton were active against S. epidermidis and C. albicans strains. © 2018 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.",,"amide; benzimidazo[1,2 a]quinoline; ciprofloxacin; fluorouracil; n (2 (diethylamino)ethyl)benzimidazo[1,2 a]quinoline 6 carboxamide; n (3 (dimethylamino)propyl)benzimidazo[1,2 a]quinoline 2 carboxamide; n (3 (dimethylamino)propyl)benzimidazo[1,2 a]quinoline 6 carboxamide; n isobutylbenimidazo[1,2 a]quinoline 2 carboxamide; n,n bis(3 (dimethylamino)propyl)benzimidazo[1,2 a]quinoline 2,6 dicarboxamide; pseudomonic acid; quinoline derivative; unclassified drug; antimicrobial activity; antiproliferative activity; antiviral activity; apoptosis; Article; bacterial strain; biological activity; Candida albicans; controlled study; Coronaviridae; drug screening; drug synthesis; EC50; fungal strain; HeLa cell line; Herpes simplex virus 2; human; Human alphaherpesvirus 1; human cell; IC50; MCF-7 cell line; nonhuman; priority journal; Staphylococcus epidermidis; structure activity relation","Silverman, R.B., (2004) The Organic Chemistry of Drug Design and Drug Action, , Elsevier Academic Press, 2nd edn; Demeunynck, M., Bailly, C., Wilson, W.D., (2002) D.N.A. and R.N.A. Binders, , Wiley-VCH, Weinheim; Bansal, Y., Silakari, O., (2012) Bioorg. Med. Chem., 20, pp. 6208-6236; Monforte, A.M., Ferro, S., De Luca, L., Lo Surdo, G., Morreale, F., Pannecouque, C., Balzarini, J., Chimirri, A., (2014) Bioorg. Med. Chem., 22, pp. 1459-1467; Ates-Alagoz, Z., Yildiz, S., Buyukbingol, E., (2007) Chemotherapy, 53, pp. 110-113; Grogan, H.M., (2006) Pest. Manage. Sci., 62, pp. 153-161; Hranjec, M., Horak, E., Babić, D., Plavljanin, S., Srdović, Z., Murković Steinberg, I., Vianello, R., Perin, N., (2017) New J. Chem., 41, pp. 358-371; Kovalska, V.B., Kryvorotenko, D.V., Balanda, A.O., Losytsky, M.Y., Tokar, V.P., Yarmoluk, S.M., (2005) Dyes Pigm., 67, pp. 47-54; Hranjec, M., Kralj, M., Piantanida, I., Sedić, M., Šuman, L., Pavelić, K., Karminski-Zamola, G., (2007) J. Med. Chem., 50, pp. 5696-5711; Perin, N., Nhili, R., Cindrić, M., Bertoša, B., Vušak, D., Martin-Kleiner, I., Laine, W., David-Cordonnier, M.H., (2016) Eur. J. Med. Chem., 122, pp. 530-545; Perin, N., Martin-Kleiner, I., Nhili, R., Laine, W., David-Cordonnier, M.H., Vurgek, O., Karminski-Zamola, G., Hranjec, M., (2013) MedChemComm, 4, pp. 1537-1550; De Souza, I.O., Schrekker, C.M.L., Lopes, W., Orru, R., Hranjec, M., Perin, N., Machado, M., Schrekker, H.S., (2016) J. Photochem. Photobiol., B, 163, pp. 319-326; Rohini, R., Shanker, K., Muralidhar Reddy, P., Ravinder, V., (2010) J. Braz. Chem. Soc., 21, pp. 49-57; Rohini, R., Shanker, K., Muralidhar Reddy, P., Ho, Y.P., Ravinder, V., (2009) Eur. J. Med. Chem., 44, pp. 3330-3339; Lyakhova, E.A., Gusyeva, Y.A., Nekhoroshkova, J.V., Shafran, L.M., Lyakhov, S.A., (2009) Eur. J. Med. Chem., 44, pp. 3305-3312; Joshi, P.P., Shirodkar, S.G., (2014) World J. Pharm. Pharm. Sci., 3, pp. 950-958; Hranjec, M., Pavlović, G., Marjanović, M., Kralj, M., Karminski-Zamola, G., (2010) Eur. J. Med. Chem., 45, pp. 2405-2417; Perin, N., Uzelac, L., Piantanida, I., Karminski-Zamola, G., Kralj, M., Hranjec, M., (2011) Bioorg. Med. Chem., 19, pp. 6329-6339; Vanheule, V., Vervaeke, P., Mortier, A., Noppen, S., Gouwy, M., Snoeck, R., Andrei, G., Proost, P., (2016) Biochem. Pharmacol., 100, pp. 73-85; Canela, M.D., Noppen, S., Bueno, O., Prota, A.E., Bargsten, K., Sáez-Calvo, G., Jimeno, M.L., Liekens, S., (2017) Oncotarget, 8 (9), pp. 14325-14342; Nabiev, I., Chourpa, I., Riou, J.F., Nguyen, C.H., Lavelle, F., Manfait, M., (1994) Biochemistry, 33, pp. 9013-9023; Poddevin, B., Riou, J.F., Lavelle, F., Pommier, Y., (1993) Mol. Pharmacol., 44, pp. 767-774; Wakelin, L.P.G., Chetcuti, P., Denny, W.A., (1990) J. Med. Chem., 33, pp. 2039-2044; Pastwa, E., Ciesielska, E., Piestrzeniewicz, M.K., Denny, W.A., Gniazdowski, M., Szmigiero, L., (1998) Biochem. Pharmacol., 56, pp. 351-359; Spicer, J.A., Gamage, S.A., Atwell, G.J., Finlay, G.J., Baguley, B.C., Denny, W.A., (1997) J. Med. Chem., 40, pp. 1919-1929; Venezio, F.R., Tatarowicz, W., Divicenzo, C.A., O'Keefe, J.P., Antimicrob. Agents (1986) Chemotherapy, 30, pp. 940-941","Hranjec, M.; Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19 P. O. Box 177, Croatia; email: mhranjec@fkit.hr",,"Royal Society of Chemistry",11440546,,NJCHE,,"English","New J. Chem.",Article,"Final",,Scopus,2-s2.0-85046115721 "Xiao S., Li Y., Sung M., Wei J., Yang Z.","57195039277;57204521929;56108483100;55842068700;57199499779;","A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea",2018,"Indoor Air","28","1",,"51","63",,16,"10.1111/ina.12430","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038100788&doi=10.1111%2fina.12430&partnerID=40&md5=fbf94a5f61d5187f177a8dad0433a100","Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; Department of Architectural Engineering, Sejong University, Seoul, South Korea; Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China","Xiao, S., Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; Li, Y., Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; Sung, M., Department of Architectural Engineering, Sejong University, Seoul, South Korea; Wei, J., Department of Mechanical Engineering, The University of Hong Kong, Hong Kong; Yang, Z., Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China","Infections caused by the Middle East respiratory syndrome coronavirus (MERS-CoV) are a serious health issue due to their prevalence and associated mortality. However, the transmission routes of the virus remain unclear, and thus, the current recommended control strategies are not evidence based. In this study, we investigated the transmission routes of MERS-CoV during the first nosocomial outbreak in the Republic of Korea in May 2015 using a multi-agent modeling framework. We identified seven hypothesized transmission modes based on the three main transmission routes (long-range airborne, close contact, and fomite). The infection risks for each hypothesis were estimated using the multi-agent modeling framework. Least-squares fitting was conducted to compare the distribution of the predicted infection risk in the various scenarios with that of the reported attack rates and to identify the hypotheses with the best fit. In the scenarios in which the index patient was a super-spreader, our model simulations suggested that MERS-CoV probably spread via the long-range airborne route. However, it is possible that the index patient shed an average viral load comparable to the loads reported in the literature, and that transmission occurred via a combined long-range airborne and close contact route. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd","close contact; Fomite; long-range airborne; Middle East respiratory syndrome coronavirus; multi-agent modeling; multi-route transmission","computer simulation; Coronavirus infection; epidemic; human; Middle East respiratory syndrome coronavirus; retrospective study; South Korea; theoretical model; transmission; Computer Simulation; Coronavirus Infections; Disease Outbreaks; Humans; Middle East Respiratory Syndrome Coronavirus; Models, Theoretical; Republic of Korea; Retrospective Studies","de Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792; Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, [WHO website]. September 18, 2017., Accessed September 18, 2017; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah: a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Kim, K.M., Ki, M., Cho, S., Epidemiologic features of the first MERS outbreak in Korea: focus on Pyeongtaek St. Mary's Hospital (2015) Epidemiol Health, 37; WHO statement on the tenth meeting of the IHR Emergency Committee regarding MERS, , http://www.who.int/mediacentre/news/statements/2015/ihr-emergency-committee-mers/en/, [WHO website]. September 3, 2015., Accessed June 3, 2016; Information about Middle East respiratory syndrome (MERS), , http://www.cdc.gov/coronavirus/mers/downloads/factsheet-mers_en.pdf, [CDC website]. December, 2015., Accessed June 3, 2016; Brankston, G., Gitterman, L., Hirji, Z., Transmission of influenza A in human beings (2007) Lancet Infect Dis, 7, pp. 257-265; Nicas, M., Jones, R.M., Relative contributions of four exposure pathways to influenza infection risk (2009) Risk Anal, 29, pp. 1292-1303; Otter, J.A., Donskey, C., Yezli, S., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination (2016) J Hosp Infect, 92, pp. 235-250; Summary and risk assessment of current situation in Republic of Korea and China, , http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-19june2015/en/, [WHO website]. June 19, 2015., Accessed June 3, 2016; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Hijawi, B., Abdallat, M., Sayaydeh, A., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, p. S12; Seo, Y.B., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Kim, S.H., Chang, S.Y., Sung, M., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18, p. 20590; Middle East respiratory syndrome coronavirus (MERS-CoV): update, , http://www.who.int/csr/don/2014_04_11_mers/en/, [WHO website]. April 11, 2014., Accessed June 3, 2016; Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome Coronavirus (MERS-CoV), , http://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, [CDC website]. June, 2015., Accessed June 3, 2016; Chowell, G., Abdirizak, F., Lee, S., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 1; Ki, M., MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 2015, p. 37; Middle East respiratory syndrome coronavirus (MERS-CoV): summary of current situation, literature update and risk assessment, , http://apps.who.int/iris/bitstream/10665/179184/2/WHO_MERS_RA_15.1_eng.pdf, [WHO website]. July 7, 2015., Accessed June 3, 2016; Park, Y.S., Lee, C., Kim, K.M., The first case of the 2015 Korean Middle East respiratory syndrome outbreak (2015) Epidemiol Health, 37; Kim, S.J., 30 cases linked to Pyeongtaek St. Mary's Hospital, , http://www.koreatimes.co.kr/www/news/nation/2016/11/113_180300.html, [The Korea Times website]. June 5, 2015., Accessed August 5, 2016; Nicas, M., Sun, G., An integrated model of infection risk in a healthcare environment (2016) Risk Anal, 26, pp. 1085-1096; Atkinson, M.P., Wein, L.M., Quantifying the routes of transmission for pandemic influenza (2008) Bull Math Biol, 70, pp. 820-867; Gao, X., (2011) Relative Effectiveness of Ventilation in Community Indoor Environments for Controlling Infection, , Hong Kong, HKU Theses Online (HKUTO); Xiao, S., Li, Y., Wong, T.W., Hui, D.S.C., Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong (2017) PLoS One, 12; Pan, X., Han, C.S., Dauber, K., Law, K.H., A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations (2007) AI & Soc, 22, pp. 113-132; Gilbert, G.N., (2007) Agent-Based Models, , London, Sage; Kozier, B., Erb, G.L., Olivieri, R., (1991) Fundamentals of Nursing, Concepts, Process and Practice, , Chesmut Hill, MA, School of Nursing Boston College; Huslage, K., Rutala, W.A., Sickbert-Bennett, E., Weber, D.J., A quantitative approach to defining ‘high-touch’ surfaces in hospitals (2010) Infect Control Hosp Epidemiol, 31, pp. 850-853; Li, Y., Duan, S., Yu, I., Wong, T., Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens (2005) Indoor Air, 15, pp. 96-111; Meselson, M., Guillemin, J., Hugh-Jones, M., The Sverdlovsk anthrax outbreak of 1979 (1994) Science, 266, pp. 1202-1208; Sorensen, J.H., Jensen, C.O., Mikkelsen, T., Modeling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness (2001) Phys Chem Earth, 26, pp. 93-97; Chen, C., Zhao, B., Yang, X., Li, Y., Role of two-way airflow owing to temperature difference in severe acute respiratory syndrome transmission: revisiting the largest nosocomial severe acute respiratory syndrome outbreak in Hong Kong (2011) J R Soc Interface, 8, pp. 699-710; Li, Y., Delsante, A., Symons, J., Prediction of natural ventilation in buildings with large openings (2000) Build Environ, 35, pp. 191-206; Brockmann, D., Hufnagel, L., Geisel, T., The scaling laws of human travel (2006) Nature, 439, pp. 462-465; Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L., Understanding individual human mobility patterns (2008) Nature, 453, pp. 779-782; Xie, X., Li, Y., Chwang, A.T.Y., How far droplets can move in indoor environments: revisiting the wells evaporation–falling curve (2007) Indoor Air, 17, pp. 211-225; Riley, E., Murphy, G., Riley, R., Airborne spread of measles in a suburban elementary school (1978) Am J Epidemiol, 107, pp. 421-432; Draper, N.R., Smith, H., Pownell, E., (1966) Applied Regression Analysis, 3. , New York, NY, Wiley; Chau, J.P.C., Thompson, D.R., Twinn, S., An evaluation of hospital hand hygiene practice and glove use in Hong Kong (2011) J Clin Nurs, 20, pp. 1319-1328; Pittet, D., Dharan, S., Touveneau, S., Bacterial contamination of the hands of hospital staff during routine patient care (1999) Arch Intern Med, 159, pp. 821-826; Wein, L.M., Atkinson, M.P., Assessing infection control measures for pandemic influenza (2009) Risk Anal, 29, pp. 949-962; Johnson, G.R., Morawska, L., Ristovski, Z.D., Modality of human expired aerosol size distributions (2011) J Aerosol Sci, 42, pp. 839-851; Lee, J.H., Lee, C.S., Lee, H.B., An appropriate lower respiratory tract specimen is essential for diagnosis of Middle East respiratory syndrome (MERS) (2015) J Korean Med Sci, 30, pp. 1207-1208; Goh, G.K.M., Dunker, A.K., Uversky, V., Prediction of intrinsic disorder in MERS-CoV/HCoV-EMC supports a high oral-fecal transmission (2013) PLoS Curr, 5, pp. 1-22; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Supplemental information: dose response parameters for gain of function pathogens, , http://www.gryphonscientific.com/wp-content/uploads/2015/12/Supplemental-Info-Dose-Response.pdf, [Gryphon Scientific website]. December, 2015., Assessed on April 13, 2016; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Cowling, B.J., Park, M., Fang, V.J., Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015 (2015) Euro Surveill, 20, p. 21163; Wong, G., Liu, W., Liu, Y., MERS, SARS, and Ebola: the role of super-spreaders in infectious disease (2015) Cell Host Microbe, 18, pp. 398-401; Li, Y., Yu, I.T.S., Xu, P., Predicting super spreading events during the 2003 SARS epidemics in Hong Kong and Singapore (2004) Am J Epidemiol, 160, pp. 719-728; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522","Li, Y.; Department of Mechanical Engineering, The University of Hong KongHong Kong; email: liyg@hku.hk",,"Blackwell Munksgaard",09056947,,INAIE,"28960494","English","Indoor Air",Article,"Final",Open Access,Scopus,2-s2.0-85038100788 "Van Hemert F., Jebbink M., Van Der Ark A., Scholer F., Berkhout B.","6603633359;6603747286;57207300734;57207313199;7102015390;","Euclidean distance analysis enables nucleotide skew analysis in viral genomes",2018,"Computational and Mathematical Methods in Medicine","2018",, 6490647,"","",,3,"10.1155/2018/6490647","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062416963&doi=10.1155%2f2018%2f6490647&partnerID=40&md5=355624787b223e8d1c5822571c8915ea","Laboratory of Experimental Virology, Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands; Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands","Van Hemert, F., Laboratory of Experimental Virology, Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Jebbink, M., Laboratory of Experimental Virology, Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Van Der Ark, A., Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands; Scholer, F., Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands; Berkhout, B., Laboratory of Experimental Virology, Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands","Nucleotide skew analysis is a versatile method to study the nucleotide composition of RNA/DNA molecules, in particular to reveal characteristic sequence signatures. For instance, skew analysis of the nucleotide bias of several viral RNA genomes indicated that it is enriched in the unpaired, single-stranded genome regions, thus creating an even more striking virus-specific signature. The comparison of skew graphs for many virus isolates or families is difficult, time-consuming, and nonquantitative. Here, we present a procedure for a more simple identification of similarities and dissimilarities between nucleotide skew data of coronavirus, flavivirus, picornavirus, and HIV-1 RNA genomes. Window and step sizes were normalized to correct for differences in length of the viral genome. Cumulative skew data are converted into pairwise Euclidean distance matrices, which can be presented as neighbor-joining trees. We present skew value trees for the four virus families and show that closely related viruses are placed in small clusters. Importantly, the skew value trees are similar to the trees constructed by a “classical” model of evolutionary nucleotide substitution. Thus, we conclude that the simple calculation of Euclidean distances between nucleotide skew data allows an easy and quantitative comparison of characteristic sequence signatures of virus genomes. These results indicate that the Euclidean distance analysis of nucleotide skew data forms a nice addition to the virology toolbox. Copyright © 2018 Formijn van Hemert et al.",,"virus RNA; virus RNA; Article; Bovine viral diarrhea virus 1; cluster analysis; Coronavirinae; Flavivirus; genetic analysis; genetic identification; genome size; Human immunodeficiency virus; Human immunodeficiency virus 1; maximum likelihood method; mosquito; nonhuman; nucleotide sequence; nucleotide skew analysis; phylogenetic tree; phylogenetic tree construction method; phylogeny; Picornaviridae; Rubella virus; SARS coronavirus; virus genome; West Nile virus; Yellow fever virus; Zika virus; algorithm; animal; biological model; classification; DNA base composition; genetics; human; mathematical phenomena; statistical model; Algorithms; Animals; Base Composition; Coronavirus; Genome, Viral; HIV-1; Humans; Likelihood Functions; Mathematical Concepts; Models, Genetic; Phylogeny; Picornaviridae; RNA, Viral; Rubella virus","Grigoriev, A., Analyzing genomes with cumulative skew diagrams (1998) Nucleic Acids Research, 26 (10), pp. 2286-2290; Arakawa, K., Suzuki, H., Tomita, M., Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index (2009) BMC Genomics, 10 (1), p. 640; Li, W.C., Zhong, Z.J., Zhu, P.P., Sequence analysis of origins of replication in the Saccharomyces cerevisiae genomes (2014) Front Microbiol, 5, p. 574; Sernova, N.V., Gelfand, M.S., Identification of replication origins in prokaryotic genomes (2008) Briefings in Bioinformatics, 9 (5), pp. 376-391; Van Hemert, F., Van Der Kuyl, A.C., Berkhout, B., Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage (2016) Journal of General Virology, 97 (10), pp. 2608-2619; Van Hemert, F., Berkhout, B., Nucleotide composition of the Zika virus RNA genome and its codon usage (2016) Virology Journal, 13 (1), p. 95; Hulo, C., De Castro, E., Masson, P., ViralZone: A knowledge resource to understand virus diversity (2011) Nucleic Acids Research, 39 (1), pp. D576-D582; Masson, P., Hulo, C., De Castro, E., ViralZone: Recent updates to the virus knowledge resource (2013) Nucleic Acids Research, 41 (D1), pp. D579-D583; Schubert, A.M., Putonti, C., Evolution of the sequence composition of Flaviviruses (2010) Infection, Genetics and Evolution, 10 (1), pp. 129-136; Stapleton, J.T., Foung, S., Muerhoff, A.S., Bukh, J., Simmonds, P., The Gb viruses: A review and proposed classification of GbV-A, GbV-C (HGV), and GbV-D in genus Pegivirus within the family Flaviviridae (2011) Journal of General Virology, 92 (2), pp. 233-246; Katoh, K., Standley, D.M., MaFFT: Iterative refinement and additional methods (2014) Methods in Molecular Biology, 1079, pp. 131-146; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Molecular Biology and Evolution, 33 (7), pp. 1870-1874; Van Hemert, F.J., Van Der Kuyl, A.C., Berkhout, B., The A-nucleotide preference of HIV-1 in the context of its structured RNA genome (2013) RNA Biology, 10 (2), pp. 211-215; Berkhout, B., Van Hemert, F., On the biased nucleotide composition of the human coronavirus RNA genome (2015) Virus Research, 202, pp. 41-47; Van Der Kuyl, A.C., Berkhout, B., The biased nucleotide composition of the HIV genome: A constant factor in a highly variable virus (2012) Retrovirology, 9 (1), p. 92","Van Hemert, F.; Laboratory of Experimental Virology, Medical Microbiology, Amsterdam UMC, University of AmsterdamNetherlands; email: f.j.vanhemert@amc.uva.nl",,"Hindawi Limited",1748670X,,,"30510593","English","Comp. Math. Methods Med.",Article,"Final",Open Access,Scopus,2-s2.0-85062416963 "Aydin H., Timurkan M.O.","57125632700;36130568600;","A pilot study on feline astrovirus and feline panleukopenia virus in shelter cats in Erzurum, Turkey",2018,"Revue de Medecine Veterinaire","169","1-2",,"52","57",,2,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042086005&partnerID=40&md5=a90054bce5b73195db3c6906fd3cecfd","Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, 25240, Turkey","Aydin, H., Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, 25240, Turkey; Timurkan, M.O., Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, 25240, Turkey","The aim of the study was to investigate the presence and molecular character of feline astrovirus and feline panleukopenia virus in cats in Erzurum, Turkey. Fifty feces from cats of which 13 with clinical signs and 37 with clinically healthy were analysed using reverse transcription polymerase chain reaction for ORF2 gene of astrovirus and VP2 gene of panleukopenia virus. Upon reverse transcription polymerase chain reaction, sequence analyses, bioinformatics analyses and phylogeny was performed. Of the cats 8 % (4/50) were positive for FAstV and 10 % (5/50) were positive for FPLV. Stool samples from the astrovirus and panleukopenia virus positive cats were negative for rotavirus and coronavirus. When positive astrovirus amplicons were sequenced, the feline astrovirus strains appeared to be genetically more related to human astroviruses than to porcine, canine, bat, and avian astroviruses. Result of the sequence analysis of the feline panleukopenia virus positive PCR products indicate that it was closely related to Asian strains in the cluster of G1. This study also has shown that the genotypes of the feline panleukopenia virus found in this study were different from previously reported a single study from Turkey and were closely related to European strains. This is the first report on the presence and molecular characterization of FAstV in cats from Turkey. While role of parvovirus in gastroenteritis cases was well known, role of astrovirus is remain unclear in cats.","Diarrhoea; Feline astrovirus; Feline panleukopenia virus; Molecular characterization; Turkey","anorexia; Article; Avastrovirus; bioinformatics; diarrhea; feces analysis; Feline panleukopenia virus; mixed infection; nonhuman; nucleotide sequence; phylogeny; pilot study; reverse transcription polymerase chain reaction; sequence analysis; vomiting","Buonavoglia, C., Martella, V., Pratelli, A., Tempesta, M., Cavalli, A., Buonavoglia, D., Bozzo, G., Carmichael, L., Evidence for evolution of canine parvovirus type 2 in Italy (2001) J. Gen. Virol., 82, pp. 3021-3025; Cho, Y.Y., Lim, S.I., Kim, Y.K., Song, J.Y., Lee, J.B., An, D.J., Molecular characterization and phylogenetic analysis of feline astrovirus in Korean cats (2014) J. Feline Med. Surg., 16, pp. 679-683; Decaro, N., Desario, C., Miccolupo, A., Campolom, Parisi, A., Martella, V., Amorisco, F., Buonavoglia, C., Genetic analysis of feline panleukopenia viruses from cats with gastroenteritis (2008) J. Gen. Virol., 89, pp. 2290-2298; Decaro, N., Desario, C., Parisi, A., Martella, V., Lorusso, A., Miccolupo, A., Mariv, Buonavoglia, C., Genetic analysis of canine parvovirus type 2c (2009) Virology., 385, pp. 5-10; Driscoll, C.A., Menotti-Raymond, M., Roca, A.L., Hupe, K., Johnson, W.E., Geffen, E., Harley, E.H., Macdonald, D.W., The Near Eastern origin of cat domestication (2007) Science, 317, pp. 519-523; (2014) EUROPEAN PET FOOD INDUSTRY FEDERATION (FEDIAF): Facts & Figures, , http://www.fediaf.org/facts-figures, accessed February 23, 2017; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucl. Acids. Symp. Ser., 41, pp. 95-98; Harbour, D.A., Ashley, C.R., Williams, P.D., Gruffydd-Jones, T.J., Natural and experimental astrovirus infection of cats (1987) Vet. Rec., 120, pp. 555-557; Hoshino, Y., Zimmer, J.F., Moise, N.S., Scott, F.W., Detection of astroviruses in feces of a cat with diarrhea (1981) Arch. Virol., 70, pp. 373-376; (2017) Pets by The Numbers, , http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html, accessed February 23, 2017; Ikeda, Y., Nakamura, K., Miyazawa, T., Takahashi, E., Mochizuki, M., Feline host range of canine parvovirus: Recent emergence of new antigenic types in cats (2002) Emerg. Infect. Dis., 8, pp. 341-346; Kapoor, A., Li, L., Victoria, J., Oderinde, B., Mason, C., Pandey, P., Zaidi, S.Z., Delwart, E., Multiple novel astrovirus species in human stool (2009) J. Gen. Virol., 90, pp. 2965-2972; Lau, S.K., Woo, P.C., Yip, C.C., Bai, R., Wu, Y., Tse, H., Yuen, K.Y., Complete genome sequence of a novel feline astrovirus from a domestic cat in Hong Kong (2013) Genome Announc., 1, pp. 1-2; Lukashov, V.V., Goudsmit, J., Evolutionary relationships among Astroviridae (2002) J. Gen. Virol., 83, pp. 397-405; Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M.C., Yasuda, N., Uno, T., Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia (1996) J. Clin. Microbiol., 34, pp. 2101-2105; Moschidou, P., Martella, V., Lorusso, E., Desario, C., Pinto, P., Losurdo, M., Catella, C., Buonavoglia, C., Mixed infection by Feline astrovirus and Feline panleukopenia virus in a domestic cat with gastroenteritis and panleukopenia (2011) J. Vet. Diagn. Invest., 23, pp. 581-584; Muz, D., Oguzoglu, T.C., Timurkan, M.O., Akin, H., Characterization of the partial VP2 gene region of canine parvoviruses in domestic cats from Turkey (2012) Virus Genes., 44, pp. 301-308; Oguzoglu, T.C., Muz, D., Timurkan, M.O., Maral, N., Gurcan, I.S., Prevalences of Feline Coronavirus (FCoV), Feline Leukaemia Virus (FeLV), Feline Immunodeficiency Virus (FIV) and Feline Parvovirus (FPLV) among domestic cats in Ankara, Turkey (2013) Revue. Méd. Vét., 164, pp. 511-516; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739; Truyen, U., Emergence and recent evolution of canine parvovirus (1999) Vet. Microbiol., 69, pp. 47-50",,,"Ecole Nationale Veterinaire",00351555,,RVMVA,,"English","Rev. Med. Vet.",Article,"Final",,Scopus,2-s2.0-85042086005 "Zheng X.-Y., Qiu M., Guan W.-J., Li J.-M., Chen S.-W., Cheng M.-J., Huo S.-T., Chen Z., Wu Y., Jiang L.-N., Chen Q.","55467335500;56825085300;55220462400;7410056826;56729305800;57195985481;56825278800;9232332900;56909307800;56683540100;35602829700;","Viral metagenomics of six bat species in close contact with humans in southern China",2018,"Archives of Virology","163","1",,"73","88",,4,"10.1007/s00705-017-3570-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030679164&doi=10.1007%2fs00705-017-3570-3&partnerID=40&md5=68d1c51e01d1f20c52348a14aa8b9743","Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China; Institute of Non-communicable Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; College of Life Science, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Guangzhou University, Guangzhou, Guangdong, China","Zheng, X.-Y., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China, Institute of Non-communicable Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Qiu, M., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China; Guan, W.-J., State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China; Li, J.-M., Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Chen, S.-W., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China; Cheng, M.-J., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China; Huo, S.-T., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China; Chen, Z., College of Life Science, Hainan Normal University, Haikou, Hainan, China; Wu, Y., College of Life Science, Guangzhou University, Guangzhou, Guangdong, China; Jiang, L.-N., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China; Chen, Q., Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China","Accumulating studies have shown that bats could harbor various important pathogenic viruses that could be transmitted to humans and other animals. Extensive metagenomic studies of different organs/tissues from bats have revealed a large number of novel or divergent viruses. To elucidate viral diversity and epidemiological and phylogenetic characteristics, six pooled fecal samples from bats were generated (based on bat species and geographic regions characteristic for virome analysis). These contained 500 fecal samples from six bat species, collected in four geographic regions. Metagenomic analysis revealed a plethora of divergent viruses originally found in bats. Multiple contigs from influenza A virus and coronaviruses in bats shared high identity with those from humans, suggesting possible cross-species transmission, whereas a number of contigs, whose sequences were taxonomically classifiable within Alphapapillomavirus, Betaretrovirus, Alpharetrovirus, Varicellovirus, Cyprinivirus, Chlorovirus and Cucumovirus had low identity to viruses in existing databases, which indicated possible evolution of novel viral species. None of the established caliciviruses and picornaviruses were found in the 500 fecal specimens. Papillomaviruses with high amino acid identity were found in Scotophilus kuhlii and Rhinolophus blythi, challenging the hypotheses regarding the strict host specificity and co-evolution of papillomaviruses. Phylogenetic analysis showed that four bat rotavirus A strains might be tentative G3 strains, according to the Rotavirus Classification Working Group classification. © 2017, Springer-Verlag GmbH Austria.",,"animal; bat; China; classification; genetics; isolation and purification; metagenomics; phylogeny; procedures; species difference; veterinary; virology; virus; virus genome; virus infection; zoonosis; Animals; China; Chiroptera; Genome, Viral; Metagenomics; Phylogeny; Species Specificity; Virus Diseases; Viruses; Zoonoses","Wilson, D.E., Reeder, D.M., (2005) Mammal species of the world. A taxonomic and geographic reference, pp. 154-196. , 3, Johns Hopkins University Press, Baltimore; Lau, S.K., Woo, P.C., Lai, K.K., Huang, Y., Yip, C.C., Shek, C.T., Complete genome analysis of three novel picornaviruses from diverse bat species (2011) J Virol, 85, pp. 8819-8828. , COI: 1:CAS:528:DC%2BC3MXhtVKqtbjJ, PID: 21697464; Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Host range, prevalence, and genetic diversity of adenoviruses in bats (2010) J Virol, 84, pp. 3889-3897. , COI: 1:CAS:528:DC%2BC3cXkvVyqs7Y%3D, PID: 20089640; Wibbelt, G., Kurth, A., Yasmum, N., Bannert, M., Nagel, S., Nitsche, A., Discovery of herpesviruses in bats (2007) J Gen Virol, 88, pp. 2651-2655. , COI: 1:CAS:528:DC%2BD2sXhtFKrtLrN, PID: 17872515; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045. , COI: 1:CAS:528:DC%2BD2MXhtVOqsbbO, PID: 16169905; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin Microbiol Rev, 19, pp. 531-545. , PID: 16847084; Victoria, J.G., Kapoor, A., Dupuis, K., Schnurr, D.P., Delwart, E.L., Rapid identification of known and new RNA viruses from animal tissues (2008) PLoS Pathog, 4 (9). , PID: 18818738; Li, L., Victoria, J.G., Wang, C., Jones, M., Fellers, G.M., Kunz, T.H., Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalianviruses (2010) J Virol, 84 (14), pp. 6955-6965. , COI: 1:CAS:528:DC%2BC3cXhtVWls7vM, PID: 20463061; Donaldson, E.F., Haskew, A.N., Gates, J.E., Huynh, J., Moore, C.J., Frieman, M.B., Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat (2010) J Virol, 84 (24), pp. 13004-13018. , COI: 1:CAS:528:DC%2BC3MXlsVeguw%3D%3D, PID: 20926577; Dacheux, L., Cervantes-Gonzalez, M., Guigon, G., Thiberge, J.M., Vandenbogaert, M., Maufrais, C., Preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses (2014) PLoS One, 9 (1). , PID: 24489870; Wang, J., Moore, N.E., Murray, Z.L., McInnes, K., White, D.J., Tompkins, D.M., Hall, R.J., Discovery of novel virus sequences in an isolated and threatened bat species, the New Zealand lesser short-tailed bat (Mystacina tuberculata) (2015) J Gen Virol, 96 (8), pp. 2442-2452. , COI: 1:CAS:528:DC%2BC28XivVarsLc%3D, PID: 25900137; He, B., Li, Z., Yang, F., Virome profiling of bats from Myanmar by metagenomic analysis of tissue samples reveals more novel mammalian viruses (2013) PLoS One, 8 (4). , COI: 1:CAS:528:DC%2BC3sXntVWgsLw%3D, PID: 23630620; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Shi, Z., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J Virol, 86 (8), pp. 4620-4630. , COI: 1:CAS:528:DC%2BC38XlsVCgtrk%3D, PID: 22345464; Wu, Z., Ren, X., Yang, L., Hu, Y., Yang, J., He, G., Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces (2012) J Virol, 86 (20), pp. 10999-11012. , COI: 1:CAS:528:DC%2BC38XhsVyru7fN, PID: 22855479; Yuan, L., Li, M., Li, L., Monagin, C., Chmura, A.A., Schneider, B.S., Evidence for retrovirus and paramyxovirus infection of multiple bat species in China (2014) Viruses, 6 (5), pp. 2138-2154. , COI: 1:CAS:528:DC%2BC2cXhs1Cqtb%2FN, PID: 24841387; Tse, H., Tsang, A.K., Tsoi, H.W., Leung, A.S., Ho, C.C., Lau, S.K., Identification of a novel bat papillomavirus by metagenomics (2012) PLoS One, 7 (8). , COI: 1:CAS:528:DC%2BC38Xht1Oit77K, PID: 22937142; Kemenesi, G., Dallos, B., Görföl, T., Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses (2014) Vector Borne Zoonotic Dis, 14 (12), pp. 846-855. , PID: 25514120; Lau, S.K., Woo, P.C., Lai, K.K., Complete genome analysis of three novel picornaviruses from diverse bat species (2011) J Virol, 85 (17), pp. 8819-8828. , COI: 1:CAS:528:DC%2BC3MXhtVKqtbjJ, PID: 21697464; He, B., Yang, F., Yang, W., Zhang, Y., Feng, Y., Zhou, J., Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses (2013) J Virol, 87 (22), pp. 12357-12366. , COI: 1:CAS:528:DC%2BC3sXhslSqs7nM, PID: 24027312; Linacre, A., Lee, J.C., Species determination: the role and use of the cytochrome b gene (2005) Methods Mol Biol, 297, pp. 45-52. , COI: 1:CAS:528:DC%2BD2MXktlehsLs%3D, PID: 15570099; Djikeng, A., Halpin, R., Kuzmickas, R., Depasse, J., Feldblyum, J., Sengamalay, N., Viral genome sequencing by random priming methods (2008) BMC Genom, 7 (9), p. 5; Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., SOAP2: an improved ultrafast tool for short read alignment (2009) Bioinformatics, 25, pp. 1966-1967. , COI: 1:CAS:528:DC%2BD1MXovVeku7w%3D, PID: 19497933; Luo, R., Liu, B., Xie, Y., SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler (2012) GigaScience, 1 (1), p. 18. , PID: 23587118; Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C., MEGAN analysis of metagenomic data (2008) Genome Res, 17, pp. 377-386; Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , COI: 1:CAS:528:DC%2BD2sXhtlaqsL%2FM, PID: 17846036; Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599. , COI: 1:CAS:528:DC%2BD2sXpsVGrsL8%3D, PID: 17488738; Rector, A., Bossart, G.D., Ghim, S.J., Sundberg, J.P., Jenson, A.B., Van Ranst, M., Characterization of a novel close-to-root papillomavirus from a Florida manatee by using multiply primed rolling-circle amplification: Trichechus manatus latirostris papillomavirus type 1 (2004) J Virol, 78, pp. 12698-12702. , COI: 1:CAS:528:DC%2BD2cXhtVWgsr7O, PID: 15507660; de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., zur Hausen, H., Classification of papillomaviruses (2004) Virology, 324, pp. 17-27. , PID: 15183049; Lima, F.E., Cibulski, S.P., Dall Bello, A.G., Mayer, F.Q., Witt, A.A., Roehe, P.M., A novel chiropteran circovirus genome recovered from a Brazilian insectivorous bat species (2015) Genome Announc 25, 3 (6), pp. e01315-e01393; Daly, G.M., Bexfield, N., Heaney, J., A viral discovery methodology for clinical biopsy samples utilising massively parallel next generation sequencing (2011) PLoS One, 6. , COI: 1:CAS:528:DC%2BC38XksFClsw%3D%3D, PID: 22216131; Chua, K.B., Crameri, G., Hyatt, A., A previously unknown retrovirus of bat origin is associated with an acute respiratory disease in humans (2007) Proc Natl Acad Sci USA, 2104, pp. 11424-11429; Gifford, R.J., Katzourakis, A., Tristem, M., A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution (2008) Proc Natl Acad Sci USA, 105, pp. 20362-20367. , COI: 1:CAS:528:DC%2BD1MXhsFWlug%3D%3D, PID: 19075221; Drexler, J.F., Corman, V.M., Muller, M.A., Bats host major mammalian paramyxoviruses (2012) Nat Commun, 24 (3), p. 796; Baker, K.S., Leggett, R.M., Bexfield, N.H., Metagenomic study of the viruses of African straw-colored fruit bats: detection of a chiropteran poxvirus and isolation of a novel adenovirus (2013) Virology, 441, pp. 95-106. , COI: 1:CAS:528:DC%2BC3sXlsVKgur0%3D, PID: 23562481; Garcia-Perez, R., Ibánez, C., Godinez, J.M., Novel papillomaviruses in free-ranging Iberian bats: no virus-host co-evolution, no strict host specificity, and hints for recombination (2014) Genome Biol Evol, 6 (1), pp. 94-104. , PID: 24391150; Matthijnssens, J., Ciarlet, M., McDonald, S.M., Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG) (2011) Arch Virol, 156, pp. 1397-1413. , COI: 1:CAS:528:DC%2BC3MXpsVWqsbc%3D, PID: 21597953; Matthijnssens, J., Ciarlet, M., Rahman, M., Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments (2008) Arch Virol, 153 (8), pp. 1621-1629. , COI: 1:CAS:528:DC%2BD1cXos1Wisrc%3D, PID: 18604469; Matthijnssens, J., De Grazia, S., Piessens, J., Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains (2011) Infect Genet Evol, 11, pp. 1396-1406. , PID: 21609783; Tsugawa, T., Hoshino, Y., Whole genome sequence and phylogenetic analyses reveal human rotavirus G3P[3] strains Ro1845 and HCR3A are examples of direct virion transmission of canine/feline rotaviruses to humans (2008) Virology, 380, pp. 344-353. , COI: 1:CAS:528:DC%2BD1cXht1egur7P, PID: 18789808; Wang, Y.H., Pang, B.B., Zhou, X., Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation (2013) Infect Genet Evol, 16, pp. 103-112. , COI: 1:CAS:528:DC%2BC3sXosVOmsL4%3D, PID: 23403096; Khamrin, P., Maneekarn, N., Peerakome, S., Molecular characterization of a rare G3P[3] human rotavirus reassortant strain reveals evidence for multiple human-animal interspecies transmissions (2006) J Med Virol, 78, pp. 986-994. , COI: 1:CAS:528:DC%2BD28Xmslyjsrc%3D, PID: 16721863","Chen, Q.; Department of Epidemiology, School of Public Health, Southern Medical University, 1838 Guangzhou Avenue North, China; email: qch.2009@163.com",,"Springer-Verlag Wien",03048608,,ARVID,"28983731","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85030679164 "Zhang P., Liu X., Liu H., Wang W., Liu X., Li X., Wu X.","57193768189;57197876810;57194639093;57195424305;57195423149;57195422563;57193769868;","Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication",2018,"Microbial Pathogenesis","114",,,"124","128",,6,"10.1016/j.micpath.2017.11.026","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035807960&doi=10.1016%2fj.micpath.2017.11.026&partnerID=40&md5=2129a997e6d368995fa65556d4e7c5bf","Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China; Heilongjiang Animal Science Institute, #2 Heyi Street, Qiqihaer, Heilongjiang Province 161005, China","Zhang, P., Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China; Liu, X., Heilongjiang Animal Science Institute, #2 Heyi Street, Qiqihaer, Heilongjiang Province 161005, China; Liu, H., Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China; Wang, W., Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China; Liu, X., Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China; Li, X., Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China; Wu, X., Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, Changchun, Jilin Province 130124, China","The avian coronavirus causes infectious bronchitis (IB), which is one of the most serious diseases affecting the avian industry worldwide. However, there are no effective strategies for controlling the IB virus (IBV) at present. Therefore, development of novel antiviral treatment strategies is urgently required. As reported, astragalus polysaccharides (APS) have potential antiviral effects against several viruses; however, the antiviral effect of APS against IBV remains unclear. In this study, we explored whether APS had the potential to inhibit IBV infectionby utilizing several in vitro experimental approaches. To this end, the effect of APS on the replication of IBV was examined in chicken embryo kidney (CEK) cells. Viral titers were calculated by using the plaque formation assay, and the cytotoxicity of APS was tested by utilizing a Cell Counting Kit-8 assay. The expression of viral mRNA and cytokine (IL-1β, IL-6, IL-8 and TNF-α) mRNA transcripts was determined by real-time quantitative RT-PCR(qRT-PCR). IBV titers in infected CEK cells treated with APS were significantly reduced in a dose-dependent manner, indicating that APS inhibited IBV replication in vitro. We also found that the decreased viral replication after APS treatment was associated with reduced mRNA levels of the cytokines IL-1B, IL-6, IL-8 and TNF-α. In conclusion, these results suggest that APS exhibit antiviral activities against IBV and it may represent a potential therapeutic agent for inhibiting the replication of IBV. © 2017 Elsevier Ltd","Antiviral effects; Astragalus polysaccharides; Cytokines; Infectious bronchitis; Infectious bronchitis virus","antivirus agent; astragalus polysaccharide; guanine nucleotide binding protein; interleukin 1beta; interleukin 6; interleukin 8; messenger RNA; polysaccharide; tumor necrosis factor; unclassified drug; antivirus agent; cytokine; interleukin 1beta; interleukin 6; interleukin 8; plant extract; polysaccharide; tumor necrosis factor; animal cell; antiviral activity; Article; Astragalus (plant); avian infectious bronchitis; cell counting; cell proliferation; controlled study; cytotoxicity test; embryo; IL 1beta gene; IL 6 gene; IL 8 gene; in vitro study; nonhuman; priority journal; quantitative analysis; real time polymerase chain reaction; RNA transcription; TNF alpha gene; virus inhibition; virus plaque; virus replication; animal; antagonists and inhibitors; Avian infectious bronchitis virus; bird disease; cell line; chemistry; chicken; Coronavirus infection; drug effect; genetics; metabolism; viral plaque assay; virology; virus load; virus replication; Animals; Antiviral Agents; Astragalus Plant; Cell Line; Cell Proliferation; Chickens; Coronavirus Infections; Cytokines; Infectious bronchitis virus; Interleukin-1beta; Interleukin-6; Interleukin-8; Plant Extracts; Polysaccharides; Poultry Diseases; RNA, Messenger; Tumor Necrosis Factor-alpha; Viral Load; Viral Plaque Assay; Virus Replication","Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian pathology J. WVPA, 34, pp. 439-448; Raj, G.D., Jones, R.C., Infectious bronchitis virus: immunopathogenesis of infection in the chicken (1997) Avian pathology J. WVPA, 26, pp. 677-706; Fabricant, J., The early history of infectious bronchitis (1998) Avian Dis., 42, pp. 648-650; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian pathology J. WVPA, 34, pp. 439-448; Cook, J.K., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian pathology J. WVPA, 41, pp. 239-250; Yamasaki, K., Otake, T., Mori, H., Morimoto, M., Ueba, N., Kurokawa, Y., Screening test of crude drug extract on anti-HIV activity (1993) Yakugaku zasshi J. Pharm. Soc. Jpn., 113, pp. 818-824; Chen, X., Yang, L., Zhang, N., Turpin, J.A., Buckheit, R.W., Osterling, C., Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1 (2003) Antimicrob. agents Chemother., 47, pp. 2810-2816; Li, J., Yin, J., Sui, X., Li, G., Ren, X., Comparative analysis of the effect of glycyrrhizin diammonium and lithium chloride on infectious bronchitis virus infection in vitro (2009) Avian pathology J. WVPA, 38, pp. 215-221; Dang, S.S., Jia, X.L., Song, P., Cheng, Y.A., Zhang, X., Sun, M.Z., Inhibitory effect of emodin and Astragalus polysaccharide on the replication of HBV (2009) World J. gastroenterology, 15, pp. 5669-5673; Wang, Y., Chen, Y., Du, H., Yang, J., Ming, K., Song, M., Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides (2017) Exp. Biol. Med., 242, pp. 344-353; Xue, H., Gan, F., Zhang, Z., Hu, J., Chen, X., Huang, K., Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-kappaB pathway (2015) Int. J. Biol. Macromol., 81, pp. 22-30; Kallon, S., Li, X., Ji, J., Chen, C., Xi, Q., Chang, S., Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo (2013) J. animal Sci. Biotechnol., 4, p. 22; Li, J., Zhong, Y., Li, H., Zhang, N., Ma, W., Cheng, G., Enhancement of Astragalus polysaccharide on the immune responses in pigs inoculated with foot-and-mouth disease virus vaccine (2011) Int. J. Biol. Macromol., 49, pp. 362-368; Guo, L., Liu, J., Hu, Y., Wang, D., Li, Z., Zhang, J., Astragalus polysaccharide and sulfated epimedium polysaccharide synergistically resist the immunosuppression (2012) Carbohydr. Polym., 90, pp. 1055-1060; Huang, X., Wang, D., Hu, Y., Lu, Y., Guo, Z., Kong, X., Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus (2008) Int. J. Biol. Macromol., 42, pp. 166-171; Boubaker-Elandalousi, R., Mekni-Toujani, M., Kaabi, B., Larbi, I., Diouani, M.F., Gharbi, M., Non-cytotoxic Thymus capitata extracts prevent Bovine herpesvirus-1 infection in cell cultures (2014) BMC veterinary Res., 10, p. 231; Dove, B., Brooks, G., Bicknell, K., Wurm, T., Hiscox, J.A., Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication (2006) J. virology, 80, pp. 4147-4156; Harrison, S.M., Tarpey, I., Rothwell, L., Kaiser, P., Hiscox, J.A., Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture (2007) Avian pathology J. WVPA, 36, pp. 109-114; Chen, H., Gill, A., Dove, B.K., Emmett, S.R., Kemp, C.F., Ritchie, M.A., Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance (2005) J. virology, 79, pp. 1164-1179; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. virus Res., 48, pp. 1-100; Pu, X., Ma, X., Liu, L., Ren, J., Li, H., Li, X., Structural characterization and antioxidant activity in vitro of polysaccharides from angelica and astragalus (2016) Carbohydr. Polym., 137, pp. 154-164; Jin, M., Zhao, K., Huang, Q., Shang, P., Structural features and biological activities of the polysaccharides from Astragalus membranaceus (2014) Int. J. Biol. Macromol., 64, pp. 257-266; Tian, Q.E., De Li, H., Yan, M., Cai, H.L., Tan, Q.Y., Zhang, W.Y., Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro (2012) BMC complementary Altern. Med., 12, p. 94; Wang, X., Li, Y., Yang, X., Yao, J., Astragalus polysaccharide reduces inflammatory response by decreasing permeability of LPS-infected Caco2 cells (2013) Int. J. Biol. Macromol., 61, pp. 347-352; Zhang, P., Wang, J., Wang, W., Liu, X., Liu, H., Li, X., Astragalus polysaccharides enhance the immune response to avian infectious bronchitis virus vaccination in chickens (2017) Microb. Pathog., 111, pp. 81-85; Jiang, J., Kong, F., Li, N., Zhang, D., Yan, C., Lv, H., Purification, structural characterization and in vitro antioxidant activity of a novel polysaccharide from Boshuzhi (2016) Carbohydr. Polym., 147, pp. 365-371; Nii, T., Isobe, N., Yoshimura, Y., Effects of avian infectious bronchitis virus antigen on eggshell formation and immunoreaction in hen oviduct (2014) Theriogenology, 81, pp. 1129-1138; Lv, J., Zhang, Y., Tian, Z., Liu, F., Shi, Y., Liu, Y., Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-kappacapital VE, Cyrillic activation (2017) Int. J. Biol. Macromol., 98, pp. 723-729","Li, X.; Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, #1363 Shengtai Street, China; email: lixintao2005@126.com",,"Academic Press",08824010,,MIPAE,"29170045","English","Microb. Pathog.",Article,"Final",,Scopus,2-s2.0-85035807960 "Hou P., Zhao G., Wang H., He C., He H.","57069617600;57188929252;35199368700;34969281200;55267766000;","Rapid detection of bovine viral diarrhea virus using recombinase polymerase amplification combined with lateral flow dipstick assays in bulk milk [Brzo otkrivanje uzročnika virusnog proljeva goveda u mlijeku iz spremnika pomoću kombinacije metoda umnožene rekombinazne polimeraze i test-traka za „lateral flow“ analizu]",2018,"Veterinarski Arhiv","88","5",,"627","642",,5,"10.24099/vet.arhiv.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056150523&doi=10.24099%2fvet.arhiv.014&partnerID=40&md5=da1e1be7d89d5d147e526a13394520cf","Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China","Hou, P., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; Zhao, G., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; Wang, H., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; He, C., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; He, H., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China","Bovine viral diarrhea virus (BVDV) is one of the most prevalent and economically important pathogens of ruminants, and leads to significant financial losses to the livestock industry worldwide. Development of rapid and accurate diagnostic methods is of great importance for the control and eradication of BVDV infection. The aim of this study was to develop a novel isothermal recombinase polymerase amplification (RPA) method combined with a lateral flow dipstick (LFD), for rapid detection of BVDV. RPA primers and a probe targeting the specific conserved 5′-UTR of BVDV genome were designed. The RPA amplification could be finished at a constant temperature of 38 0000C for 15 min, and the amplification product was easily visualized on a simple LFD within 5 min. The detection limit of this assay was 20 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses, such as infectious bovine rhinotracheitis virus (IBRV), bovine enterovirus (BEV), bovine coronavirus (BcoV), bovine parainfluenza virus type 3 (BPIV-3), bovine ephemeral fever virus (BEFV) and bovine respiratory syncytial virus (BRSV). The assay performance on bulk tank milk was also evaluated, and the sensitivity and accuracy of BVDV LFD RPA was compared with real-time RT-PCR. Of 284 pool or bulk tank milk samples, 51 were found to be positive by RPA assay, whereas 52 were positive by real-time RT-PCR. The coincidence rate between LFD RPA and real-time RT-PCR was 97.54% (277/284). © 2018, University of Zagreb, Facultty of Veterinary Medicine. All rights reserved.","Bovine viral diarrhea virus (BVDV); Bulk tank milk; Lateral flow dipstick; Recombinase polymerase amplification (RPA)","complementary DNA; 5' untranslated region; accuracy; Article; bioassay; Bovine coronavirus; Bovine enterovirus; Bovine ephemeral fever virus; Bovine herpesvirus 1; Bovine parainfluenza virus 3; Bovine respiratory syncytial virus; Bovine viral diarrhea virus 1; controlled study; DNA extraction; gene amplification; gene dosage; genotype; lateral flow dipstick assay; milk; nonhuman; reaction temperature; real time polymerase chain reaction; recombinase polymerase amplification; reproducibility; RNA extraction; sensitivity and specificity; virus detection; virus infection","Aebischer, A., Wernike, K., Hoffmann, B., Beer, M., Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR (2014) J Clin Microbiol, 52, pp. 1883-1892; Bendfeldt, S., Flebbe, U., Fritzemeier, J., Greiser-Wilke, I., Grummer, B., Haas, L., Ornban, S., Moenning, V., Analysis of bulk milk samples using polymerase chain reaction: An additional tool for bovine viral diarrhea monitoring (2005) DTW. Dtsch. Tierarztl. Wochenschr., 112, pp. 130-135; Brodersen, B.W., Bovine viral diarrhea virus infections: Manifestations of infection and recent advances in understanding pathogenesis and control (2014) Vet. Pathol., 51, pp. 453-464; Ciulli, S., Galletti, E., Battilani, M., Scagliarini, A., Gentile, A., Morganti, L., Prosperi, S., Genetic typing of bovine viral diarrhoea virus: Evidence of an increasing number of variants in Italy (2008) New Microbiol, 31, pp. 263-271; Crannell, Z.A., Rohrman, B., Richards-Kortum, R., Equipment-free incubation of recombinase polymerase amplification reactions using body heat (2014) Plos One, 9; Daher, R.K., Stewart, G., Boissinot, M., Bergeron, M.G., Recombinase polymerase amplification for diagnostic applications (2016) Clin. Chem., 62, pp. 947-958; Deng, M., Ji, S., Fei, W., Raza, S., He, C., Chen, Y., Chen, H., Guo, A., Prevalence study and genetic typing of bovine viral diarrhea virus (BVDV) in four bovine species in China (2015) Plos One, 10; Dubovi, E.J., Laboratory diagnosis of bovine viral diarrhea virus (2013) Biologicals, 41, pp. 8-13; Foddai, A., Enoe, C., Stockmarr, A., Krogh, K., Uttenthal, A., Challenges for bovine viral diarrhoea virus antibody detection in bulk milk by antibody enzyme-linked immunosorbent assays due to changes in milk production levels (2015) Acta Vet. Scand., 57, p. 32; Gonzalez, A.M., Arnaiz, I., Eiras, C., Camino, F., Sanjuan, M.L., Yus, E., Dieguez, F.J., Monitoring the bulk milk antibody response to bovine viral diarrhea in dairy herds vaccinated with inactivated vaccines (2014) J Dairy Sci, 97, pp. 3684-3688; Grooms, D.L., Brock, K.V., Bolin, S.R., Grotelueschen, D.M., Cortese, V.S., Effect of constant exposure to cattle persistently infected with bovine viral diarrhea virus on morbidity and mortality rates and performance of feedlot cattle (2014) J. Am. Vet. Med. Assoc., 244, pp. 212-224; Jaroenram, W., Owens, L., Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome (2014) J. Virol. Methods, 208, pp. 144-151; James, A., Macdonald, J., Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics (2015) Expert Rev. Mol. Diagn., 15, pp. 1475-1489; Kersting, S., Rausch, V., Bier, F.F., von Nickisch-Rosenegk, M., Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis (2014) Malar J, 13, p. 99; Kim, S.G., Dubovi, E.J., A novel simple one-step single-tube RT-duplex PCR method with an internal control for detection of bovine viral diarrhoea virus in bulk milk, blood, and follicular fluid samples (2003) Biologicals, 31, pp. 103-106; Lanyon, S.R., Hill, F.I., Reichel, M.P., Brownlie, J., Bovine viral diarrhoea: Pathogenesis and diagnosis (2014) Vet. J., 199, pp. 201-209; Larson, R.L., Bovine viral diarrhea virus-associated disease in feedlot cattle (2015) Vet. Clin. North Am. Food Anim. Pract., 31, pp. 367-380; Lillis, L., Lehman, D., Singhal, M.C., Cantera, J., Ingleton, J., Abatre, P., Toyama, A., Boyle, D.S., Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA (2014) Plos One, 9; Liu, H., Li, Y., Gao, M., Wen, K., Jia, Y., Liu, X., Zhang, W., Wang, J., Complete genome sequence of a bovine viral diarrhea virus 2 from commercial fetal bovine serum (2012) J. Virol., 86, p. 10233; Liu, H.B., Zang, Y.X., Du, X.J., Li, P., Wang, S., Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria (2017) J. Dairy Sci., 100, pp. 7016-7025; Liu, W., Liu, H.X., Zhang, L., Hou, X.X., Wan, K.L., Hao, Q., A novel isothermal assay of Borrelia burgdorferi by recombinase polymerase amplification with lateral flow detection (2016) Int. J. Mol. Sci., 17; Luzzago, C., Lauzi, S., Branati, E., Iammarioli, M., Oreno, A., Annella, V., Masoero, L., Peletto, S., Extended genetic diversity of bovine viral diarrhea virus and frequency of genotypes and subtypes in cattle in Italy between 1995 and 2013 (2014) Biomed. Res. Int.; Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A., DNA detection using recombination proteins (2006) Plos Biol, 4; Renshaw, R.W., Ray, R., Dubovi, E.J., Comparison of virus isolation and reverse transcription polymerase chain reaction assay for detection of bovine viral diarrhea virus in bulk milk tank samples (2000) J. Vet. Diagn. Invest., 12, pp. 184-186; Rodning, S.P., Givens, M.D., Marley, M.S., Zhang, Y., Riddell, K.P., Galik, P.K., Hathcock, T.L., Owsley, W.F., Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of heifers (2012) Theriogenology, 78, pp. 1508-1516; Tu, P.A., Shiu, J.S., Lee, S.H., Pang, V.F., Wang, D.C., Wang, P.H., Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection (2017) J. Virol. Methods, 243, pp. 98-104; Wang, W., Shi, X., Chen, C., Wu, H., Genetic characterization of a noncytopathic bovine viral diarrhea virus 2b isolated from cattle in China (2014) Virus Genes, 49, pp. 339-341; Wu, Y.D., Xu, M.J., Wang, Q.Q., Zhou, C.X., Wang, M., Zhu, X.Q., Zhou, D.H., Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for detection of Toxoplasma gondii in the environment (2017) Vet. Parasitol., 243, pp. 199-203; Xia, X., Yu, Y., Weidmann, M., Pan, Y., Yan, S., Wang, Y., Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay (2014) Plos One, 9; Xue, F., Zhu, Y.M., Li, J., Zhu, L.C., Ren, X.G., Feng, J.K., Shi, H.F., Gao, Y.R., Genotyping of bovine viral diarrhea viruses from cattle in China between 2005 and 2008 (2010) Vet. Microbiol., 143, pp. 379-383; Yang, Y., Qin, X., Wang, G., Jin, J., Shang, Y., Zhang, Z., Development of an isothermoal amplification-based assay for rapid visual detection of an Orf virus (2016) Virol. J., 13, p. 46; Yin, F., Liu, J., Liu, A., Li, Y., Luo, J., Guan, G., Yin, H., Rapid diagnosis of Theileria annulata by recombinase polymerase amplification combined with a lateral flow strip (LF-RPA) in epidemic regions (2017) Vet. Parasitol., 237, pp. 125-129; Zhong, F., Li, N., Huang, X., Guo, Y., Chen, H., Wang, X., Shi, C., Zhang, X., Genetic typing and epidemiologic observation of bovine viral diarrhea virus in Western China (2011) Virus Genes, 42, pp. 204-207; Zhu, L., Lu, H., Cao, Y., Gai, X., Guo, C., Liu, Y., Liu, J., Wang, X., Molecular Characterization of a Novel Bovine Viral Diarrhea Virus Isolate SD-15 (2016) Plos One, 11; Zhu, L.Q., Lin, Y.Q., Ding, X.Y., Ren, M., Tao, J., Wang, J.Y., Zhang, G.P., Zhu, G.Q., Genomic sequencing and characterization of a Chinese isolate of Bovine viral diarrhea virus 2 (2009) Acta Virol, 53, pp. 197-202","Wang, H.; College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, China; email: hongmeiwang@sdnu.edu.cn",,"University of Zagreb, Facultty of Veterinary Medicine",03725480,,,,"English","Vet. Arh.",Article,"Final",,Scopus,2-s2.0-85056150523 "Lee J.M., Lee J.H., Kim Y.K.","39261799700;57193676397;9237571900;","Laboratory impact of rapid molecular tests used for the detection of respiratory pathogens",2018,"Clinical Laboratory","64","9",,"1545","1551",,1,"10.7754/Clin.Lab.2018.180411","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054084708&doi=10.7754%2fClin.Lab.2018.180411&partnerID=40&md5=216c5d07bf9b265809b7ac5bed26acb7","Department of Pediatrics, College of Medicine, Yeungnam University, Daegu, South Korea; Department of Laboratory Medicine, College of Medicine, Yeungnam University, Daegu, South Korea; Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea; Department of Laboratory Medicine, Kyungpook National University Hospital, Dongdeok-ro 130, Jung-gu, Daegu, 41944, South Korea","Lee, J.M., Department of Pediatrics, College of Medicine, Yeungnam University, Daegu, South Korea; Lee, J.H., Department of Laboratory Medicine, College of Medicine, Yeungnam University, Daegu, South Korea; Kim, Y.K., Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea, Department of Laboratory Medicine, Kyungpook National University Hospital, Dongdeok-ro 130, Jung-gu, Daegu, 41944, South Korea","Background: With outbreaks of new respiratory viruses such as the severe acute respiratory syndrome coronavirus and swine-origin influenza A/H1N1, the nucleic acid-based amplification test was introduced to identify causative agents. Multiplex PCR, which can simultaneously detect various respiratory pathogens, is currently used worldwide. Recently, a new type of multiplexed molecular test using a fully automated workflow system was developed, which was also adapted to our laboratory. In this study, we assessed improvements in laboratory practice brought about by the implementation of the rapid test for the detection of respiratory viruses. Methods: We investigated the number of routine and rapid tests conducted as well as the change in monthly test frequency of the routine test. We also analyzed the waiting time, turnaround time, and lead time for the routine and rapid tests. The Anyplex II RV16 detection kit (Seegene, Seoul, Korea) and Filmarray Respiratory Panel (Bio- Fire Diagnostics, Inc., Salt Lake City, UT, USA) were used for the routine and rapid tests, respectively. Results: Compared to the routine test, the rapid test significantly (p < 0.01) decreased the mean waiting time (1 hour 46 minutes), turnaround time (1 hour 45 minutes), and lead time (3 hours 32 minutes). After the implementation of the rapid test, the number of routine tests conducted was reduced over the 5-month period, from 13 times a month to 3 times a month. Conclusions: The implementation of the rapid test for the detection of respiratory viruses improved the diagnostic efficiency of the laboratory and greatly reduced lead time. © 2018 Verlag Klinisches Labor GmbH. All rights reserved.","Rapid molecular test; Respiratory virus; Turnaround time","virus DNA; classification; genetics; human; molecular diagnosis; multiplex polymerase chain reaction; organization and management; predictive value; procedures; prognosis; respiratory tract infection; time factor; virology; virus; workflow; DNA, Viral; Efficiency, Organizational; Humans; Molecular Diagnostic Techniques; Multiplex Polymerase Chain Reaction; Predictive Value of Tests; Prognosis; Respiratory Tract Infections; Time Factors; Virology; Viruses; Workflow","Zumla, A., Al-Tawfiq, J.A., Enne, V.I., Rapid point of care diagnostic tests for viral and bacterial respiratory tract infectionsneeds, advances, and future prospects (2014) Lancet Infect Dis, 14, pp. 1123-1135. , (PMID: 25189349); Meissner, H.C., Viral bronchiolitis in children (2016) N Engl J Med, 374, pp. 62-72. , (PMID: 26735994); Ham, H., Jang, J., Choi, S., Epidemiological characterization of respiratory viruses detected from acute respiratory patients in Seoul (2013) Ann Clin Microbiol, 16, pp. 188-195. , https://doi.org/10.5145/ACM.2013.16.4.188; Mahony, J.B., Petrich, A., Smieja, M., Molecular diagnosis of respiratory virus infections (2011) Crit Rev Clin Lab Sci, 48, pp. 217-249. , (PMID: 22185616); Somerville, L.K., Ratnamohan, V.M., Dwyer, D.E., Kok, J., Molecular diagnosis of respiratory viruses (2015) Pathology, 47, pp. 243-249. , (PMID: 25764205); Babady, N.E., The FilmArray® respiratory panel: An automated, broadly multiplexed molecular test for the rapid and accurate detection of respiratory pathogens (2013) Expert Rev Mol Diagn, 13, pp. 779-788. , (PMID: 24151847); Poon, L.L., Chan, K.H., Smith, G.J., Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT-PCR assays (2009) Clin Chem, 55, pp. 1555-1558. , (PMID: 19439731); Taylor, J., McPhie, K., Druce, J., Birch, C., Dwyer, D.E., Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses (2009) J Med Virol., 81, pp. 1918-1922. , (PMID: 19774693); Lee, C.K., Cho, C.H., Woo, M.K., Nyeck, A.E., Lim, C.S., Kim, W.J., Evaluation of sofia fluorescent immunoassay analyzer for influenza A/B virus (2012) J Clin Virol, 55, pp. 239-243. , (PMID: 22871494)","Kim, Y.K.; Department of Laboratory Medicine, Kyungpook National University Hospital, Dongdeok-ro 130, South Korea; email: kimyg@knu.ac.kr",,"Verlag Klinisches Labor GmbH",14336510,,CLLAF,"30274011","English","Clin. Lab.",Article,"Final",,Scopus,2-s2.0-85054084708 "Li M., Yan N., Ji C., Wang M., Zhang B., Yue H., Tang C.","57197718668;57197712335;57202923256;57197709596;55811769500;8855570100;36646976100;","Prevalence and genome characteristics of canine astrovirus in southwest China",2018,"Journal of General Virology","99","7", 001077,"880","889",,1,"10.1099/jgv.0.001077","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049837141&doi=10.1099%2fjgv.0.001077&partnerID=40&md5=a130e476c260963cdeec0269cd2eda05","College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China; Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China","Li, M., College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China; Yan, N., College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China; Ji, C., Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China; Wang, M., College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China; Zhang, B., College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China; Yue, H., College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China; Tang, C., College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, Chengdu, 610041, China","The aim of this study was to investigate canine astrovirus (CaAstV) infection in southwest China. We collected 107 faecal samples from domestic dogs with obvious diarrhoea. Forty-two diarrhoeic samples (39.3%) were positive for CaAstV by RTPCR, and 41/42 samples showed co-infection with canine coronavirus (CCoV), canine parvovirus-2 (CPV-2) and canine distemper virus (CDV). Phylogenetic analysis based on 26 CaAstV partial ORF1a and ORF1b sequences revealed that most CaAstV strains showed unique evolutionary features. Interestingly, putative recombination events were observed among four of the five complete ORF2 sequences cloned in this study, and three of the five complete ORF2 sequences formed a single unique group, suggesting that these strains could be a novel genotype. We successfully sequenced the complete genome of one CaAstV strain (designated 2017/44/CHN), which was 6628 nt in length. The features of this genome include putative recombination events in the ORF1a, ORF1b and ORF2 genes, while the ORF2 gene had a continuous insertion of 7 aa in region II compared with the other complete ORF2 sequences available in GenBank. Phylogenetic analysis showed that 2017/ 44/CHN formed a single group based on genome sequences, suggesting that this strain might be a novel genotype. The results of this study revealed that CaAstV circulates widely in diarrhoeic dogs in southwest China and exhibits unique evolutionary events. To the best of our knowledge, this is the first report of recombination events in CaAstV, and it contributes to further understanding of the genetic evolution of CaAstV. © 2018 The Authors.","Canine astrovirus; Genome; Molecular characteristics; Prevalence; Recombination","amino acid; arginine; capsid protein; genomic RNA; lysine; nucleotide; unclassified drug; V27 protein; virus DNA; virus spike protein; viral protein; amino acid sequence; animal cell; Article; Astroviridae; astrovirus infection; Canine astrovirus; canine astrovirus infection; Canine coronavirus; Canine distemper virus; Canine parvovirus 2; China; diarrhea; dog disease; domestic animal; feces analysis; gene insertion; gene sequence; genetic recombination; genotype; mixed infection; molecular epidemiology; molecular evolution; molecular phylogeny; nonhuman; nucleotide sequence; nucleotide sequence; open reading frame; phylogenetic tree; prevalence; priority journal; real time polymerase chain reaction; virus genome; virus strain; animal; Astroviridae; astrovirus infection; classification; Coronavirus infection; diarrhea; dog; dog disease; evolution; feces; female; gene expression; genetics; isolation and purification; male; phylogeny; veterinary medicine; virology; Animals; Astroviridae; Astroviridae Infections; Biological Evolution; China; Coinfection; Coronavirus Infections; Coronavirus, Canine; Diarrhea; Dog Diseases; Dogs; Feces; Female; Gene Expression; Genome, Viral; Genotype; Male; Open Reading Frames; Phylogeny; Prevalence; Recombination, Genetic; Viral Proteins","Williams, F.P., Astrovirus-like, coronavirus-like, and parvovirus-like particles detected in the diarrheal stools of beagle pups (1980) Arch Virol, 66, pp. 215-226; Toffan, A., Jonassen, C.M., De Battisti, C., Schiavon, E., Kofstad, T., Genetic characterization of a new astrovirus detected in dogs suffering from diarrhoea (2009) Vet Microbiol, 139, pp. 147-152; Martella, V., Moschidou, P., Catella, C., Larocca, V., Pinto, P., Enteric disease in dogs naturally infected by a novel canine astrovirus (2012) J Clin Microbiol, 50, pp. 1066-1069; Choi, S., Lim, S.I., Kim, Y.K., Cho, Y.Y., Song, J.Y., Phylogenetic analysis of astrovirus and kobuvirus in Korean dogs (2014) J Vet Med Sci, 76, pp. 1141-1145; Lizasoain, A., Tort, L.F., García, M., Gómez, M.M., Leite, J.P., Sewage surveillance reveals the presence of canine GVII norovirus and canine astrovirus in Uruguay (2015) Arch Virol, 160, pp. 2839-2843; Zhou, H., Liu, L., Li, R., Qin, Y., Fang, Q., Detection and genetic characterization of canine astroviruses in pet dogs in Guangxi, China (2017) Virol J, 14, p. 156; Grellet, A., De Battisti, C., Feugier, A., Pantile, M., Marciano, S., Prevalence and risk factors of astrovirus infection in puppies from French breeding kennels (2012) Vet Microbiol, 157, pp. 214-219; Martella, V., Moschidou, P., Lorusso, E., Mari, V., Camero, M., Detection and characterization of canine astroviruses (2011) J Gen Virol, 92, pp. 1880-1887; Takano, T., Takashina, M., Doki, T., Hohdatsu, T., Detection of canine astrovirus in dogs with diarrhea in Japan (2015) Arch Virol, 160, pp. 1549-1553; Caddy, S.L., Goodfellow, I., Complete genome sequence of canine astrovirus with molecular and epidemiological characterisation of UK strains (2015) Vet Microbiol, 177, pp. 206-213; Mihalov-Kovács, E., Martella, V., Lanave, G., Bodnar, L., Fehér, E., Genome analysis of canine astroviruses reveals genetic heterogeneity and suggests possible inter-species transmission (2017) Virus Res, 232, pp. 162-170; Moreno, P.S., Wagner, J., Mansfield, C.S., Stevens, M., Gilkerson, J.R., Characterisation of the canine faecal virome in healthy dogs and dogs with acute diarrhoea using shotgun metagenomics (2017) Plos One, p. 12; Zhu, A.L., Zhao, W., Yin, H., Shan, T.L., Zhu, C.X., Isolation and characterization of canine astrovirus in China (2011) Arch Virol, 156, pp. 1671-1675; Lukashov, V.V., Goudsmit, J., Evolutionary relationships among Astroviridae (2002) J Gen Virol, 83, pp. 1397-1405; Arias, C.F., Dubois, R.M., The astrovirus capsid: A review (2017) Viruses, 9, p. 15; De Grazia, S., Medici, M.C., Pinto, P., Moschidou, P., Tummolo, F., Genetic heterogeneity and recombination in human type 2 astroviruses (2012) J Clin Microbiol, 50, pp. 3760-3764; Babkin, I.V., Tikunov, A.Y., Sedelnikova, D.A., Zhirakovskaia, E.V., Tikunova, N.V., Recombination analysis based on the HAstV-2 and HAstV-4 complete genomes (2014) Infect Genet Evol, 22, pp. 94-102; Ha, H.J., Lee, S.G., Cho, H.G., Jin, J.Y., Lee, J.W., Complete genome sequencing of a recombinant strain between human astrovirus antigen types 2 and 8 isolated from South Korea (2016) Infect Genet Evol, 39, pp. 127-131; Bull, R.A., Hansman, G.S., Clancy, L.E., Tanaka, M.M., Rawlinson, W.D., Norovirus recombination in ORF1/ORF2 overlap (2005) Emerg Infect Dis, 11, pp. 1079-1085; Martella, V., Medici, M.C., Terio, V., Catella, C., Bozzo, G., Lineage diversification and recombination in type-4 human astroviruses (2013) Infect Genet Evol, 20, pp. 330-335; Wolfaardt, M., Kiulia, N.M., Mwenda, J.M., Taylor, M.B., Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis (2011) J Clin Microbiol, 49, pp. 728-731; Pativada, M.S., Chatterjee, D., Mariyappa, N.S., Rajendran, K., Bhattacharya, M.K., Emergence of unique variants and intergenotype recombinants of human astroviruses infecting infants, children and adults in Kolkata, India (2011) Int J Mol Epidemiol Genet, 2, pp. 228-235; Bull, R.A., Tanaka, M.M., White, P.A., Norovirus recombination (2007) J Gen Virol, 88, pp. 3347-3359; Donato, C., Vijaykrishna, D., The broad host range and genetic diversity of mammalian and avian astroviruses (2017) Viruses, 9, p. 102; Verma, H., Chitambar, S.D., Gopalkrishna, V., Astrovirus associated acute gastroenteritis in western India: Predominance of dual serotype strains (2010) Infect Genet Evol, 10, pp. 575-579; Van Hemert, F.J., Lukashov, V.V., Berkhout, B., Different rates of (Non-) synonymous mutations in astrovirus genes; correlation with gene function (2007) Virol J, 4, pp. 12-25; Decaro, N., Elia, G., Martella, V., Desario, C., Campolo, M., A real-time PCR assay for rapid detection and quantitation of canine parvovirus type 2 in the feces of dogs (2005) Vet Microbiol, 105, pp. 19-28; Elia, G., Decaro, N., Martella, V., Cirone, F., Lucente, M.S., Detection of canine distemper virus in dogs by real-time RT-PCR (2006) J Virol Methods, 136, pp. 171-176; Decaro, N., Pratelli, A., Campolo, M., Elia, G., Martella, V., Quantitation of canine coronavirus RNA in the faeces of dogs by TaqMan RT-PCR (2004) J Virol Methods, 119, pp. 145-150; Martin, D., Rybicki, E., RDP: Detection of recombination amongst aligned sequences (2000) Bioinformatics, 16, pp. 562-563; Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D., GARD: A genetic algorithm for recombination detection (2006) Bioinformatics, 22, pp. 3096-3098","Tang, C.; College of Life Science and Technology, Southwest University for Nationalities, No. 16, South 4th Section 1st Ring Road, China; email: tangcheng101@163.com",,"Microbiology Society",00221317,,JGVIA,"29846155","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85049837141 "Ryu S., Kim S., Kim B.I., Klein E.Y., Yoon Y.K., Chun B.C.","57203497905;57208531976;57189463634;22134613000;25947937900;8910945900;","Temporal relationship between antibiotic use and respiratory virus activities in the Republic of Korea: a time-series analysis",2018,"Antimicrobial resistance and infection control","7",,,"56","",,,"10.1186/s13756-018-0347-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065047128&doi=10.1186%2fs13756-018-0347-8&partnerID=40&md5=885781f2d71faaf0531e576077a20410","Division of Infectious Disease Control, Gyeonggi Provincial Government, Suwon, South Korea; Department of Epidemiology and Health Informatics, Graduate School of Public Health, Korea University, Seoul, South Korea; Department of Insurance Benefit, National Health Insurance Service, Seoul, South Korea; 4Center for Disease Dynamics, Economics & Policy, Washington D.C, United States; Department of Emergency Medicine, Johns Hopkins University, Baltimore, United States; 6Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea","Ryu, S., Division of Infectious Disease Control, Gyeonggi Provincial Government, Suwon, South Korea, Department of Epidemiology and Health Informatics, Graduate School of Public Health, Korea University, Seoul, South Korea; Kim, S., Department of Insurance Benefit, National Health Insurance Service, Seoul, South Korea; Kim, B.I., Department of Epidemiology and Health Informatics, Graduate School of Public Health, Korea University, Seoul, South Korea; Klein, E.Y., 4Center for Disease Dynamics, Economics & Policy, Washington D.C, United States, Department of Emergency Medicine, Johns Hopkins University, Baltimore, United States; Yoon, Y.K., 6Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Chun, B.C., Department of Epidemiology and Health Informatics, Graduate School of Public Health, Korea University, Seoul, South Korea, Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea","Background: Inappropriate use of antibiotics increases resistance and reduces their effectiveness. Despite evidence-based guidelines, antibiotics are still commonly used to treat infections likely caused by respiratory viruses. In this study, we examined the temporal relationships between antibiotic usage and respiratory infections in the Republic of Korea. Methods: The number of monthly antibiotic prescriptions and the incidence of acute respiratory tract infections between 2010 and 2015 at all primary care clinics were obtained from the Korean Health Insurance Review and Assessment Service. The monthly detection rates of respiratory viruses, including adenovirus, respiratory syncytial virus, influenza virus, human coronavirus, and human rhinovirus, were collected from Korea Centers for Disease Control and Prevention. Cross-correlation analysis was conducted to quantify the temporal relationship between antibiotic use and respiratory virus activities as well as respiratory infections in primary clinics. Results: The monthly use of different classes of antibiotic, including penicillins, other beta-lactam antibacterials, macrolides and quinolones, was significantly correlated with influenza virus activity. These correlations peaked at the 0-month lag with cross-correlation coefficients of 0.45 (p < 0.01), 0.46 (p < 0.01), 0.40 (p < 0.01), and 0.35 (< 0.01), respectively. Furthermore, a significant correlation was found between acute bronchitis and antibiotics, including penicillin (0.73, p < 0.01), macrolides (0.74, p < 0.01), and quinolones (0.45, p < 0.01), at the 0-month lag. Conclusions: Our findings suggest that there is a significant temporal relationship between influenza virus activity and antibiotic use in primary clinics. This relationship indicates that interventions aimed at reducing influenza cases in addition to effort to discourage the prescription of antibiotics by physicians may help to decrease unnecessary antibiotic consumption.","Antibiotic use; Influenza; Korea; Respiratory virus; Time-series analysis",,,,,"NLM (Medline)",20472994,,,"29736236","English","Antimicrob Resist Infect Control",Article,"Final",Open Access,Scopus,2-s2.0-85065047128 "Graf C., Bernkop-Schnürch A., Egyed A., Koller C., Prieschl-Grassauer E., Morokutti-Kurz M.","57212691686;7006620450;57208385291;56622529700;25636347500;56716384500;","Development of a nasal spray containing xylometazoline hydrochloride and iota-carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis",2018,"International Journal of General Medicine","11",,,"275","283",,2,"10.2147/IJGM.S167123","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061970025&doi=10.2147%2fIJGM.S167123&partnerID=40&md5=f6af73efb9e6108c60f97018bd1659b1","Marinomed Biotech AG, Vienna, Austria; ThioMatriX, Innsbruck, Austria","Graf, C., Marinomed Biotech AG, Vienna, Austria; Bernkop-Schnürch, A., ThioMatriX, Innsbruck, Austria; Egyed, A., Marinomed Biotech AG, Vienna, Austria; Koller, C., Marinomed Biotech AG, Vienna, Austria; Prieschl-Grassauer, E., Marinomed Biotech AG, Vienna, Austria; Morokutti-Kurz, M., Marinomed Biotech AG, Vienna, Austria","Introduction: Xylometazoline hydrochloride (HCl) is a nasal decongestant that causes vasoconstriction in the nasal submucosa. It has been used for more than 50 years for the treatment of nasal congestion caused by rhinitis/sinusitis. Iota-carrageenan is effective against a broad variety of respiratory viruses, which are the most common cause of infections of the upper respiratory tract. Therefore, it is used as the active component in the antiviral nasal spray Coldamaris prophylactic (1.2 mg/mL iota-carrageenan in 0.5% NaCl) and other medical device nasal sprays that are approved and marketed in the EU. Recently, we developed a nasal spray formulation containing both xylometazoline HCl (0.05%) and iota-carrageenan (0.12%) that provides decongestion and antiviral protection of the nasal mucosa at the same time. Results: A set of in vitro experiments revealed that the vasoconstrictive properties of xylometazoline HCl and the antiviral effectiveness of iota-carrageenan against human rhinovirus (hRV) 1a, hRV8 and human coronavirus OC43 were maintained in the formulation containing these two compounds. Permeation experiments using bovine nasal mucosa showed that iota-carrageenan had no significant influence on the permeation of xylometazoline HCl. Finally, in the local tolerance and toxicity study, it was shown that the formulation was well tolerated at the application site with no occurrence of erythema or edema in the nostrils of all rabbits or any signs of toxicity in any of the organs and tissues inspected. Conclusion: Investigations on compatibility of xylometazoline HCl and iota-carrageenan demonstrated that the substances do not influence each other, allowing both to fulfill their known specific clinical efficacy (xylometazoline HCl) and effectiveness (iota-carrageenan). © 2018 Graf et al.","Antiviral; Permeation; Toxicity; Vasoconstriction","carrageenan; xylometazoline; animal cell; animal experiment; animal tissue; antiviral activity; Article; controlled study; drug dosage form comparison; drug formulation; drug penetration; drug tolerance; female; human; human cell; Human coronavirus OC43; Human rhinovirus; Human rhinovirus 8; Human rhinovirus A1; in vitro study; male; nonhuman; nose mucosa; nose obstruction; rhinitis; sinusitis; toxicity testing; vasoconstriction","Haenisch, B., Walstab, J., Herberhold, S., Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline (2010) Fundam Clin Pharmacol, 24 (6), pp. 729-739; Hamilton, L.H., Effect of xylometazoline nasal spray on nasal conductance in subjects with coryza (1981) J Otolaryngol, 10 (2), pp. 109-116; Williams, R.G., Eccles, R., Nasal airflow asymmetry and the effects of a topical nasal decongestant (1992) Rhinology, 30 (4), pp. 277-282; Castellano, F., Mautone, G., Decongestant activity of a new formulation of xylometazoline nasal spray: A double-blind, randomized versus placebo and reference drugs controlled, dose-effect study (2002) Drugs Exp Clin Res, 28 (1), pp. 27-35; Cohen, S.M., Ito, N., A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract (2002) Crit Rev Toxicol, 32 (5), pp. 413-444; Michel, G., Nyval-Collen, P., Barbeyron, T., Czjzek, M., Helbert, W., Bio-conversion of red seaweed galactans: A focus on bacterial agarases and carrageenases (2006) Appl Microbiol Biotechnol, 71 (1), pp. 23-33; Carlucci, M.J., Ciancia, M., Matulewicz, M.C., Cerezo, A.S., Damonte, E.B., Antiherpetic activity and mode of action of natural carrageenans of diverse structural types (1999) Antiviral Res, 43 (2), pp. 93-102; Talarico, L.B., Damonte, E.B., Interference in dengue virus adsorption and uncoating by carrageenans (2007) Virology, 363 (2), pp. 473-485; González, M.E., Alarcón, B., Carrasco, L., Polysaccharides as antiviral agents: Antiviral activity of carrageenan (1987) Antimicrob Agents Chemother, 31 (9), pp. 1388-1393; Buck, C.B., Thompson, C.D., Roberts, J.N., Müller, M., Lowy, D.R., Schiller, J.T., Carrageenan is a potent inhibitor of papillomavirus infection (2006) Plos Pathog, 2 (7); Carlucci, M.J., Scolaro, L.A., Noseda, M.D., Cerezo, A.S., Damonte, E.B., Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice (2004) Antiviral Res, 64 (2), pp. 137-141; Pujol, C.A., Scolaro, L.A., Ciancia, M., Matulewicz, M.C., Cerezo, A.S., Damonte, E.B., Antiviral activity of a carrageenan from Gigartina skotts-bergii against intraperitoneal murine herpes simplex virus infection (2006) Planta Med, 72 (2), pp. 121-125; Baba, M., Snoeck, R., Pauwels, R., de Clercq, E., Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus (1988) Antimicrob Agents Chemother, 32 (11), pp. 1742-1745; Talarico, L.B., Pujol, C.A., Zibetti, R.G., The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell (2005) Antiviral Res, 66 (2-3), pp. 103-110; Turville, S.G., Aravantinou, M., Miller, T., Efficacy of Carraguard-based microbicides in vivo despite variable in vitro activity (2008) Plos One, 3 (9); Kilmarx, P.H., Blanchard, K., Chaikummao, S., A randomized, placebo-controlled trial to assess the safety and acceptability of use of carraguard vaginal gel by heterosexual couples in Thailand (2008) Sex Transm Dis, 35 (3), pp. 226-232; Girond, S., Crance, J.M., van Cuyck-Gandre, H., Renaudet, J., Deloince, R., Antiviral activity of carrageenan on hepatitis A virus replication in cell culture (1991) Res Virol, 142 (4), pp. 261-270; Damonte, E.B., Matulewicz, M.C., Cerezo, A.S., Sulfated seaweed polysaccharides as antiviral agents (2004) Curr Med Chem, 11 (18), pp. 2399-2419; Ghosh, T., Chattopadhyay, K., Marschall, M., Karmakar, P., Mandal, P., Ray, B., Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation (2009) Glycobiology, 19 (1), pp. 2-15; Witvrouw, M., de Clercq, E., Sulfated polysaccharides extracted from sea algae as potential antiviral drugs (1997) Gen Pharmacol, 29 (4), pp. 497-511; Grassauer, A., Weinmuellner, R., Meier, C., Pretsch, A., Prieschl-Grassauer, E., Unger, H., Iota-carrageenan is a potent inhibitor of rhinovirus infection (2008) Virol J, 5, p. 107; Leibbrandt, A., Meier, C., König-Schuster, M., Iota-carrageenan is a potent inhibitor of influenza A virus infection (2010) Plos One, 5 (12); Eccles, R., Meier, C., Jawad, M., Weinmüllner, R., Grassauer, A., Prieschl-Grassauer, E., Efficacy and safety of an antiviral iota-carrageenan nasal spray: A randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold (2010) Respir Res, 11, p. 108; Fazekas, T., Eickhoff, P., Pruckner, N., Lessons learned from a double-blind randomised placebo-controlled study with a iota-carrageenan nasal spray as medical device in children with acute symptoms of common cold (2012) BMC Complement Altern Med, 12, p. 147; Ludwig, M., Enzenhofer, E., Schneider, S., Efficacy of a carrageenan nasal spray in patients with common cold: A randomized controlled trial (2013) Respir Res, 14, p. 124; Koenighofer, M., Lion, T., Bodenteich, A., Carrageenan nasal spray in virus confirmed common cold: Individual patient data analysis of two randomized controlled trials (2014) Multidiscip Respir Med, 9 (1), p. 57; Morokutti-Kurz, M., Graf, C., Prieschl-Grassauer, E., Amylmetacresol/2,4-dichlorobenzyl alcohol, hexylresorcinol, or carrageenan lozenges as active treatments for sore throat (2017) Int J Gen Med, 10, pp. 53-60; Greimel, A., Bernkop-Schnürch, A., Del Curto, M.D., D’Antonio, M., Transport characteristics of a beta sheet breaker peptide across excised bovine nasal mucosa (2007) Drug Dev Ind Pharm, 33 (1), pp. 71-77; Wilson, T.D., Steck, W.F., A modified HET-CAM assay approach to the assessment of anti-irritant properties of plant extracts (2000) Food Chem Toxicol, 38 (10), pp. 867-872; Paper, D.H., Karall, E., Kremser, M., Krenn, L., Comparison of the antiinflam-matory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay (2005) Phytother Res, 19 (4), pp. 323-326; Luepke, N.P., Hen’s egg chorioallantoic membrane test for irritation potential (1985) Food Chem Toxicol, 23 (2), pp. 287-291; Vinardell, M.P., Macián, M., Comparative study of the HET-CAM test and the Draize eye test for assessment of irritancy potential (1994) Toxicol in Vitro, 8 (3), pp. 467-470; Nichols, W.G., Peck Campbell, A.J., Boeckh, M., Respiratory viruses other than influenza virus: Impact and therapeutic advances (2008) Clin Microbiol Rev, 21 (2), pp. 274-290. , table of contents; Hebar, A., Koller, C., Seifert, J.M., Non-clinical safety evaluation of intranasal iota-carrageenan (2015) Plos One, 10 (4); Andersen, I., Camner, P., Jensen, P.L., Philipson, K., Proctor, D.F., A comparison of nasal and tracheobronchial clearance (1974) Arch Environ Health, 29 (5), pp. 290-293","Morokutti-Kurz, M.; Marinomed Biotech AG, Veterinärplatz 1, Austria; email: martina.kurz@marinomed.com",,"Dove Medical Press Ltd.",11787074,,,,"English","Int. J. Gen. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85061970025 "Gonzalez A.J., Ijezie E.C., Balemba O.B., Miura T.A.","57194463650;57204595556;6603110882;8751522100;","Attenuation of influenza A virus disease severity by viral coinfection in a mouse model",2018,"Journal of Virology","92","23", e00881,"","",,4,"10.1128/JVI.00881-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056329634&doi=10.1128%2fJVI.00881-18&partnerID=40&md5=a3babc55007c4a3bacc00817a06e30e4","Department of Biological Sciences, Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States","Gonzalez, A.J., Department of Biological Sciences, Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Ijezie, E.C., Department of Biological Sciences, Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Balemba, O.B., Department of Biological Sciences, Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States, Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID, United States; Miura, T.A., Department of Biological Sciences, Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States","Influenza viruses and rhinoviruses are responsible for a large number of acute respiratory viral infections in human populations and are detected as copathogens within hosts. Clinical and epidemiological studies suggest that coinfection by rhinovirus and influenza virus may reduce disease severity and that they may also interfere with each other's spread within a host population. To determine how coinfection by these two unrelated respiratory viruses affects pathogenesis, we established a mouse model using a minor serogroup rhinovirus (rhinovirus strain 1B [RV1B]) and mouse-adapted influenza A virus (A/Puerto Rico/8/1934 [PR8]). Infection of mice with RV1B 2 days before PR8 reduced the severity of infection by a low or medium, but not high, dose of PR8. Disease attenuation was associated with an early inflammatory response in the lungs and enhanced clearance of PR8. However, coinfection by RV1B did not reduce PR8 viral loads early in infection or inhibit replication of PR8 within respiratory epithelia or in vitro. Inflammation in coinfected mice remained focal compared to diffuse inflammation and damage in the lungs of mice infected by PR8. The timing of RV1B coinfection was a critical determinant of protection, suggesting that sufficient time is needed to induce this response. Finally, disease attenuation was not unique to RV1B: dose-dependent coinfection by a murine coronavirus (mouse hepatitis virus strain 1 [MHV-1]) also reduced the severity of PR8 infection. Unlike RV1B, coinfection with MHV-1 reduced early PR8 replication, which was associated with upregulation of beta interferon (IFN-) expression. This model is critical for understanding the mechanisms responsible for influenza disease attenuation during coinfection by unrelated respiratory viruses. Copyright © 2018 American Society for Microbiology. All Rights Reserved.","Coinfection; Coronavirus; Immunopathogenesis; Influenza; Mouse model; Rhinovirus","beta interferon; animal cell; animal experiment; animal model; animal tissue; Article; controlled study; Coronavirus infection; disease severity; female; human; human cell; in vitro study; influenza A; Influenza A virus (A/Puerto Rico/8/1934(H1N1)); mouse; mouse model; nonhuman; pneumonia; priority journal; protein expression; respiratory epithelium; Rhinovirus; Rhinovirus 1B; upregulation; viral clearance; virus attenuation; virus load; virus replication; animal; Bagg albino mouse; complication; disease model; immunology; Influenza A virus; mixed infection; orthomyxovirus infection; picornavirus infection; pneumonia; severity of illness index; time factor; virology; virus entry; Animals; Coinfection; Disease Models, Animal; Female; Influenza A virus; Mice; Mice, Inbred BALB C; Orthomyxoviridae Infections; Picornaviridae Infections; Pneumonia; Rhinovirus; Severity of Illness Index; Time Factors; Virus Internalization; Virus Replication","Brunstein, J.D., Cline, C.L., McKinney, S., Thomas, E., Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections (2008) J Clin Microbiol, 46, pp. 97-102. , https://doi.org/10.1128/JCM.01117-07; Fairchok, M.P., Martin, E.T., Chambers, S., Kuypers, J., Behrens, M., Braun, L.E., Englund, J.A., Epidemiology of viral respiratory tract infections in a prospective cohort of infants and toddlers attending daycare (2010) J Clin Virol, 49, pp. 16-20. , https://doi.org/10.1016/j.jcv.2010.06.013; Calvo, C., García-García, M.L., Blanco, C., Vázquez, M.C., Frías, M.E., Pérez-Breña, P., Casas, I., Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain (2008) J Clin Virol, 42, pp. 268-272. , https://doi.org/10.1016/j.jcv.2008.03.012; Nolan, V.G., Arnold, S.R., Bramley, A.M., Ampofo, K., Williams, D.J., Grijalva, C.G., Self, W.H., McCullers, J.A., Etiology and impact of coinfections in children hospitalized with community-acquired pneumonia (2018) J Infect Dis, 218, pp. 179-188. , https://doi.org/10.1093/infdis/jix641; DaPalma, T., Doonan, B.P., Trager, N.M., Kasman, L.M., A systematic approach to virus-virus interactions (2010) Virus Res, 149, pp. 1-9. , https://doi.org/10.1016/j.virusres.2010.01.002; Opatowski, L., Baguelin, M., Eggo, R.M., Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1006770; Robinson, K.M., Kolls, J.K., Alcorn, J.F., The immunology of influenza virus-associated bacterial pneumonia (2015) Curr Opin Immunol, 34, pp. 59-67. , https://doi.org/10.1016/j.coi.2015.02.002; Jain, S., Williams, D.J., Arnold, S.R., Ampofo, K., Bramley, A.M., Reed, C., Stockmann, C., Finelli, L., Community-acquired pneumonia requiring hospitalization among U.S. Children (2015) N Engl J Med, 372, pp. 835-845. , https://doi.org/10.1056/NEJMoa1405870; Grondahl, B., Ankermann, T., Von Bismarck, P., Rockahr, S., Kowalzik, F., Gehring, S., Meyer, C., Puppe, W., The 2009 pandemic influenza A(H1N1) coincides with changes in the epidemiology of other viral pathogens causing acute respiratory tract infections in children (2014) Infection, 42, pp. 303-308. , https://doi.org/10.1007/s15010-013-0545-5; Greer, R.M., McErlean, P., Arden, K.E., Faux, C.E., Nitsche, A., Lambert, S.B., Nissen, M.D., Mackay, I.M., Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? (2009) J Clin Virol, 45, pp. 10-15. , https://doi.org/10.1016/j.jcv.2009.03.008; Esper, F.P., Spahlinger, T., Zhou, L., Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease (2011) J Infect, 63, pp. 260-266. , https://doi.org/10.1016/j.jinf.2011.04.004; Papadopoulos, N.G., Moustaki, M., Tsolia, M., Bossios, A., Astra, E., Prezerakou, A., Gourgiotis, D., Kafetzis, D., Association of rhinovirus infection with increased disease severity in acute bronchiolitis (2002) Am J Respir Crit Care Med, 165, pp. 1285-1289. , https://doi.org/10.1164/rccm.200112-118BC; Aberle, J.H., Aberle, S.W., Pracher, E., Hutter, H.P., Kundi, M., Popow-Kraupp, T., Single versus dual respiratory virus infections in hospitalized infants: Impact on clinical course of disease and interferon-gamma response (2005) Pediatr Infect Dis J, 24, pp. 605-610. , https://doi.org/10.1097/01.inf.0000168741.59747.2d; Marcos, M.A., Ramon, S., Anton, A., Martinez, E., Vilella, A., Olive, V., Cilloniz, C., Pumarola, T., Clinical relevance of mixed respiratory viral infections in adults with influenza A H1N1 (2011) Eur Respir J, 38, pp. 739-742. , https://doi.org/10.1183/09031936.00168610; Martin, E.T., Kuypers, J., Wald, A., Englund, J.A., Multiple versus single virus respiratory infections: Viral load and clinical disease severity in hospitalized children (2012) Influenza Other Respir Viruses, 6, pp. 71-77. , https://doi.org/10.1111/j.1750-2659.2011.00265.x; Martínez-Roig, A., Salvadó, M., Caballero-Rabasco, M.A., Sánchez-Buenavida, A., López-Segura, N., Bonet-Alcaina, M., Viral coinfection in childhood respiratory tract infections (2015) Arch Bronconeumol, 51, pp. 5-9. , https://doi.org/10.1016/j.arbres.2014.01.018; Camargo, C., Guatura, S.B., Bellei, N., Respiratory viral coinfection among hospitalized patients with H1N1 2009 during the first pandemic wave in Brazil (2012) Braz J Infect Dis, 16, pp. 180-183; Yoshida, L.M., Suzuki, M., Nguyen, H.A., Le, M.N., Dinh Vu, T., Yoshino, H., Schmidt, W.P., Ariyoshi, K., Respiratory syncytial virus: Co-infection and paediatric lower respiratory tract infections (2013) Eur Respir J, 42, pp. 461-469. , https://doi.org/10.1183/09031936.00101812; Marguet, C., Lubrano, M., Gueudin, M., Le Roux, P., Deschildre, A., Forget, C., Couderc, L., Freymuth, F., In very young infants severity of acute bronchiolitis depends on carried viruses (2009) PLoS One, 4. , https://doi.org/10.1371/journal.pone.0004596; Richard, N., Komurian-Pradel, F., Javouhey, E., Perret, M., Rajoharison, A., Bagnaud, A., Billaud, G., Paranhos-Baccalà, G., The impact of dual viral infection in infants admitted to a pediatric intensive care unit associated with severe bronchiolitis (2008) Pediatr Infect Dis J, 27, pp. 213-217. , https://doi.org/10.1097/INF.0b013e31815b4935; Anestad, G., Nordbo, S.A., Virus interference. Did rhinoviruses activity hamper the progress of the 2009 influenza A (H1N1) pandemic in Norway? (2011) Med Hypotheses, 77, pp. 1132-1134. , https://doi.org/10.1016/j.mehy.2011.09.021; Casalegno, J.S., Ottmann, M., Duchamp, M.B., Escuret, V., Billaud, G., Frobert, E., Morfin, F., Lina, B., Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France (2010) Clin Microbiol Infect, 16, pp. 326-329. , https://doi.org/10.1111/j.1469-0691.2010.03167.x; Linde, A., Rotzén-Östlund, M., Zweygberg-Wirgart, B., Rubinova, S., Brytting, M., Does viral interference affect spread of influenza? (2009) Euro Surveill, 14 (40); Pascalis, H., Temmam, S., Turpin, M., Rollot, O., Flahault, A., Carrat, F., De Lamballerie, X., Dellagi, K., Intense co-circulation of non-influenza respiratory viruses during the first wave of pandemic influenza pH1N1/2009: A cohort study in Reunion Island (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0044755; Vogel, A.J., Harris, S., Marsteller, N., Condon, S.A., Brown, D.M., Early cytokine dysregulation and viral replication are associated with mortality during lethal influenza infection (2014) Viral Immunol, 27, pp. 214-224. , https://doi.org/10.1089/vim.2013.0095; Fukushi, M., Ito, T., Oka, T., Kitazawa, T., Miyoshi-Akiyama, T., Kirikae, T., Yamashita, M., Kudo, K., Serial histopathological examination of the lungs of mice infected with influenza A virus PR8 strain (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0021207; Sugamata, R., Dobashi, H., Nagao, T., Yamamoto, K., Nakajima, N., Sato, Y., Aratani, Y., Suzuki, K., Contribution of neutrophil-derived myeloperoxidase in the early phase of fulminant acute respiratory distress syndrome induced by influenza virus infection (2012) Microbiol Immunol, 56, pp. 171-182. , https://doi.org/10.1111/j.1348-0421.2011.00424.x; Tuthill, T.J., Papadopoulos, N.G., Jourdan, P., Challinor, L.J., Sharp, N.A., Plumpton, C., Shah, K., Johnston, S.L., Mouse respiratory epithelial cells support efficient replication of human rhinovirus (2003) J Gen Virol, 84, pp. 2829-2836. , https://doi.org/10.1099/vir.0.19109-0; Bartlett, N.W., Walton, R.P., Edwards, M.R., Aniscenko, J., Caramori, G., Zhu, J., Glanville, N., Johnston, S.L., Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation (2008) Nat Med, 14, pp. 199-204. , https://doi.org/10.1038/nm1713; De Albuquerque, N., Baig, E., Ma, X., Zhang, J., He, W., Rowe, A., Habal, M., Levy, G.A., Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice (2006) J Virol, 80, pp. 10382-10394. , https://doi.org/10.1128/JVI.00747-06; Khanolkar, A., Hartwig, S.M., Haag, B.A., Meyerholz, D.K., Harty, J.T., Varga, S.M., Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice (2009) J Virol, 83, pp. 8946-8956. , https://doi.org/10.1128/JVI.01857-08; Gonzalez, A.J., Ijezie, E.C., Balemba, O.B., Miura, T.A., Attenuation of influenza A virus disease severity by viral co-infection in a mouse model (2018) bioRxiv, , https://doi.org/10.1101/326546; VanLeuven, J.T., Ridenhour, B.J., Gonzalez, A.J., Miller, C.R., Miura, T.A., Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses (2017) PLoS One, 12. , https://doi.org/10.1371/journal.pone.0178408; Li, R., Lim, A., Phoon, M.C., Narasaraju, T., Ng, J.K., Poh, W.P., Sim, M.K., Alonso, S., Attenuated Bordetella pertussis protects against highly pathogenic influenza A viruses by dampening the cytokine storm (2010) J Virol, 84, pp. 7105-7113. , https://doi.org/10.1128/JVI.02542-09; Tuvim, M.J., Gilbert, B.E., Dickey, B.F., Evans, S.E., Synergistic TLR2/6 and TLR9 activation protects mice against lethal influenza pneumonia (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0030596; Lau, Y.F., Tang, L.H., Ooi, E.E., Subbarao, K., Activation of the innate immune system provides broad-spectrum protection against influenza A viruses with pandemic potential in mice (2010) Virology, 406, pp. 80-87. , https://doi.org/10.1016/j.virol.2010.07.008; Shinjoh, M., Omoe, K., Saito, N., Matsuo, N., Nerome, K., In vitro growth profiles of respiratory syncytial virus in the presence of influenza virus (2000) Acta Virol, 44, pp. 91-97; Goto, H., Ihira, H., Morishita, K., Tsuchiya, M., Ohta, K., Yumine, N., Tsurudome, M., Nishio, M., Enhanced growth of influenza A virus by coinfection with human parainfluenza virus type 2 (2016) Med Microbiol Immunol, 205, pp. 209-218. , https://doi.org/10.1007/s00430-015-0441-y; Garcia-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D.E., Durbin, J.E., Palese, P., Muster, T., Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems (1998) Virology, 252, pp. 324-330. , https://doi.org/10.1006/viro.1998.9508; Glanville, N., Peel, T.J., Schroder, A., Aniscenko, J., Walton, R.P., Finotto, S., Johnston, S.L., Tbet deficiency causes T helper cell dependent airways eosinophilia and mucus hypersecretion in response to rhinovirus infection (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005913; Girkin, J., Hatchwell, L., Foster, P., Johnston, S.L., Bartlett, N., Collison, A., Mattes, J., CCL7 and IRF-7 mediate hallmark inflammatory and IFN responses following rhinovirus 1B infection (2015) J Immunol, 194, pp. 4924-4930. , https://doi.org/10.4049/jimmunol.1401362; Seo, S.U., Kwon, H.J., Ko, H.J., Byun, Y.H., Seong, B.L., Uematsu, S., Akira, S., Kweon, M.N., Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1001304; Stifter, S.A., Bhattacharyya, N., Pillay, R., Florido, M., Triccas, J.A., Britton, W.J., Feng, C.G., Functional interplay between type I and II interferons is essential to limit influenza A virus-induced tissue inflammation (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005378; Chung, Y., Hong, J.Y., Lei, J., Chen, Q., Bentley, J.K., Hershenson, M.B., Rhinovirus infection induces interleukin-13 production from CD11b-positive, M2-polarized exudative macrophages (2015) Am J Respir Cell Mol Biol, 52, pp. 205-216. , https://doi.org/10.1165/rcmb.2014-0068OC; Ganesan, S., Pham, D., Jing, Y., Farazuddin, M., Hudy, M.H., Unger, B., Comstock, A.T., Sajjan, U.S., TLR2 activation limits rhinovirus-stimulated CXCL-10 by attenuating IRAK-1-dependent IL-33 receptor signaling in human bronchial epithelial cells (2016) J Immunol, 197, pp. 2409-2420. , https://doi.org/10.4049/jimmunol.1502702; Oshansky, C.M., Gartland, A.J., Wong, S.S., Jeevan, T., Wang, D., Roddam, P.L., Caniza, M.A., Thomas, P.G., Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load (2014) Am J Respir Crit Care Med, 189, pp. 449-462. , https://doi.org/10.1164/rccm.201309-1616OC; Rutigliano, J.A., Sharma, S., Morris, M.Y., Oguin, T.H., III, McClaren, J.L., Doherty, P.C., Thomas, P.G., Highly pathological influenza A virus infection is associated with augmented expression of PD-1 by functionally compromised virus-specific CD8 T cells (2014) J Virol, 88, pp. 1636-1651. , https://doi.org/10.1128/JVI.02851-13; Lin, K.L., Suzuki, Y., Nakano, H., Ramsburg, E., Gunn, M.D., CCR2 monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality (2008) J Immunol, 180, pp. 2562-2572. , https://doi.org/10.4049/jimmunol.180.4.2562; Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., Si-Tahar, M., Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia (2006) PLoS Pathog, 2. , https://doi.org/10.1371/journal.ppat.0020053; Unger, B.L., Faris, A.N., Ganesan, S., Comstock, A.T., Hershenson, M.B., Sajjan, U.S., Rhinovirus attenuates non-typeable Hemophilus influenzae-stimulated IL-8 responses via TLR2-dependent degradation of IRAK-1 (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002969; Narasaraju, T., Yang, E., Samy, R.P., Ng, H.H., Poh, W.P., Liew, A.A., Phoon, M.C., Chow, V.T., Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis (2011) Am J Pathol, 179, pp. 199-210. , https://doi.org/10.1016/j.ajpath.2011.03.013; Ichikawa, A., Kuba, K., Morita, M., Chida, S., Tezuka, H., Hara, H., Sasaki, T., Imai, Y., CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin (2013) Am J Respir Crit Care Med, 187, pp. 65-77. , https://doi.org/10.1164/rccm.201203-0508OC; Zhou, G., Juang, S.W., Kane, K.P., NK cells exacerbate the pathology of influenza virus infection in mice (2013) Eur J Immunol, 43, pp. 929-938. , https://doi.org/10.1002/eji.201242620; Marois, I., Cloutier, A., Garneau, E., Richter, M.V., Initial infectious dose dictates the innate, adaptive, and memory responses to influenza in the respiratory tract (2012) J Leukoc Biol, 92, pp. 107-121. , https://doi.org/10.1189/jlb.1011490; Davidson, S., Crotta, S., McCabe, T.M., Wack, A., Pathogenic potential of interferon alphabeta in acute influenza infection (2014) Nat Commun, 5, p. 3864. , https://doi.org/10.1038/ncomms4864; Wolf, A.I., Strauman, M.C., Mozdzanowska, K., Williams, K.L., Osborne, L.C., Shen, H., Liu, Q., Erikson, J., Pneumolysin expression by Streptococcus pneumoniae protects colonized mice from influenza virus-induced disease (2014) Virology, 462-463, pp. 254-265. , https://doi.org/10.1016/j.virol.2014.06.019; Haynes, L., Szaba, F.M., Eaton, S.M., Kummer, L.W., Lanthier, P.A., Petell, A.H., Duso, D.K., Smiley, S.T., Immunity to the conserved influenza nucleoprotein reduces susceptibility to secondary bacterial infections (2012) J Immunol, 189, pp. 4921-4929. , https://doi.org/10.4049/jimmunol.1201916; Wang, J., Li, F., Sun, R., Gao, X., Wei, H., Tian, Z., Klebsiella pneumoniae alleviates influenza-induced acute lung injury via limiting NK cell expansion (2014) J Immunol, 193, pp. 1133-1141. , https://doi.org/10.4049/jimmunol.1303303; Khanolkar, A., Hartwig, S.M., Haag, B.A., Meyerholz, D.K., Epping, L.L., Haring, J.S., Varga, S.M., Harty, J.T., Protective and pathologic roles of the immune response to mouse hepatitis virus type 1: Implications for severe acute respiratory syndrome (2009) J Virol, 83, pp. 9258-9272. , https://doi.org/10.1128/JVI.00355-09; Zhao, J., Wohlford-Lenane, C., Zhao, J., Fleming, E., Lane, T.E., McCray, P.B., Jr., Perlman, S., Intranasal treatment with poly(I·C) protects aged mice from lethal respiratory virus infections (2012) J Virol, 86, pp. 11416-11424. , https://doi.org/10.1128/JVI.01410-12; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193. , https://doi.org/10.1016/j.chom.2016.01.007; Kamble, N.M., Hajam, I.A., Lee, J.H., Orally administered live attenuated Salmonella typhimurium protects mice against lethal infection with H1N1 influenza virus (2017) Vet Microbiol, 201, pp. 1-6. , https://doi.org/10.1016/j.vetmic.2017.01.006; Park, M.K., Ngo, V., Kwon, Y.M., Lee, Y.T., Yoo, S., Cho, Y.H., Hong, S.M., Kang, S.M., Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0075368; Jung, Y.J., Lee, Y.T., Ngo, V.L., Cho, Y.H., Ko, E.J., Hong, S.M., Kim, K.H., Kang, S.M., Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection (2017) Sci Rep, 7, p. 17360. , https://doi.org/10.1038/s41598-017-17487-8; Scheer, S., Krempl, C., Kallfass, C., Frey, S., Jakob, T., Mouahid, G., Mone, H., Lamers, M.C., S. Mansoni bolsters antiviral immunity in the murine respiratory tract (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0112469; Leiva-Juarez, M.M., Kirkpatrick, C.T., Gilbert, B.E., Scott, B., Tuvim, M.J., Dickey, B.F., Evans, S.E., Markesich, D., Combined aerosolized Toll-like receptor ligands are an effective therapeutic agent against influenza pneumonia when co-administered with oseltamivir (2018) Eur J Pharmacol, 818, pp. 191-197. , https://doi.org/10.1016/j.ejphar.2017.10.035; Wong, J.P., Christopher, M.E., Viswanathan, S., Karpoff, N., Dai, X., Das, D., Sun, L.Q., Salazar, A.M., Activation of toll-like receptor signaling pathway for protection against influenza virus infection (2009) Vaccine, 27, pp. 3481-3483. , https://doi.org/10.1016/j.vaccine.2009.01.048; Slater, L., Bartlett, N.W., Haas, J.J., Zhu, J., Message, S.D., Walton, R.P., Sykes, A., Edwards, M.R., Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium (2010) PLoS Pathog, 6. , https://doi.org/10.1371/journal.ppat.1001178; Wang, Q., Nagarkar, D.R., Bowman, E.R., Schneider, D., Gosangi, B., Lei, J., Zhao, Y., Hershenson, M.B., Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses (2009) J Immunol, 183, pp. 6989-6997. , https://doi.org/10.4049/jimmunol.0901386","Miura, T.A.; Department of Biological Sciences, Center for Modeling Complex Interactions, University of IdahoUnited States; email: tmiura@uidaho.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30232180","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85056329634 "Li C., Zhao J., Wang C., Yao Y.","36063162500;57202301295;24178402800;8577017200;","Protein sequence comparison and dna-binding protein identification with generalized pseaac and graphical representation",2018,"Combinatorial Chemistry and High Throughput Screening","21","2",,"100","110",,2,"10.2174/1386207321666180130100838","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047817284&doi=10.2174%2f1386207321666180130100838&partnerID=40&md5=aa017a78bb09dd79b9d36babbbfa043c","School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Department of Mathematics, Bohai University, Jinzhou, 121013, China; Research Institute of Food Science, Bohai University, Jinzhou, 121013, China","Li, C., School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China, Department of Mathematics, Bohai University, Jinzhou, 121013, China, Research Institute of Food Science, Bohai University, Jinzhou, 121013, China; Zhao, J., Department of Mathematics, Bohai University, Jinzhou, 121013, China; Wang, C., Department of Mathematics, Bohai University, Jinzhou, 121013, China; Yao, Y., School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China","Aim and Objective: The rapid increase in the amount of protein sequence data available leads to an urgent need for novel computational algorithms to analyze and compare these sequences. This study is undertaken to develop an efficient computational approach for timely encoding protein sequences and extracting the hidden information. Methods: Based on two physicochemical properties of amino acids, a protein primary sequence was converted into a three-letter sequence, and then a graph without loops and multiple edges and its geometric line adjacency matrix were obtained. A generalized PseAAC (pseudo amino acid composition) model was thus constructed to characterize a protein sequence numerically. Results: By using the proposed mathematical descriptor of a protein sequence, similarity comparisons among β-globin proteins of 17 species and 72 spike proteins of coronaviruses were made, respectively. The resulting clusters agreed well with the established taxonomic groups. In addition, a generalized PseAAC based SVM (support vector machine) model was developed to identify DNA-binding proteins. Experiment results showed that our method performed better than DNAbinder, DNA-Prot, iDNA-Prot and enDNA-Prot by 3.29-10.44% in terms of ACC, 0.056-0.206 in terms of MCC, and 1.45-15.76% in terms of F1M. When the benchmark dataset was expanded with negative samples, the presented approach outperformed the four previous methods with improvement in the range of 2.49-19.12% in terms of ACC, 0.05-0.32 in terms of MCC, and 3.82-33.85% in terms of F1M. Conclusion: These results suggested that the generalized PseAAC model was very efficient for comparison and analysis of protein sequences, and very competitive in identifying DNA-binding proteins. © 2018 Bentham Science Publishers.","Adjacency matrix; Generalized PseAAC; Graph; Identification of DNA-binding proteins; Phylogenetic analysis; Protein sequences","amino acid; DNA binding protein; hemoglobin beta chain; viral protein; amino acid; DNA binding protein; amino acid sequence; Article; benchmarking; Coronavirinae; mathematical parameters; nonhuman; phylogeny; physical chemistry; priority journal; protein analysis; support vector machine; algorithm; amino acid sequence; biology; chemistry; computer graphics; information processing; procedures; sequence homology; support vector machine; Algorithms; Amino Acid Sequence; Amino Acids; Computational Biology; Computer Graphics; Datasets as Topic; DNA-Binding Proteins; Phylogeny; Sequence Homology, Amino Acid; Support Vector Machine","Kumar, M., Gromiha, M.M., Raghava, G.-P.S., Identification of DNA-binding proteins using support vector machines and evolutionary profiles (2007) BMC Bioinformatics, 8, p. 463; Kumar, K.K., Pugalenthi, G., Suganthan, P.N., DNA-prot: Identification of DNA binding proteins from protein sequence information using random forest (2009) J. Biomol. Struct. Dyn, 26 (6), pp. 679-686; Lin, W.Z., Fang, J.A., Xiao, X., Chou, K.C., IDNA-prot: Identification of DNA binding proteins using random forest with grey model (2011) Plos One, 6 (9); Xu, R.F., Zhou, J.Y., Liu, B., Yao, L., He, Y., Zou, Q., Wang, X., EnDNA-Prot: Identification of DNA-binding proteins by applying ensemble learning (2014) Biomed. Res. Int, 2014. , 294279; Zhang, Y.P., Wuyunqiqige, Zheng, W., Liu, S.Y., Zhao, C.G., GDNA-Prot: Predict DNA-binding proteins by employing support vector machine and a novel numerical characterization of Protein sequence (2016) J. Theor. Biol, 406, pp. 8-16; Li, C., Li, X.Q., Lin, Y.X., Numerical characterization of protein sequences based on the generalized Chou’s pseudo amino acid composition (2016) Appl. Sci, 6 (12), p. 406; Liu, Z.C., Shin, D.S., Shokouhimehr, M., Lee, K.N., Yoo, B.W., Kim, Y.K., Lee, Y.S., Light-directed synthesis of peptide nucleic acids (PNAs) chips. Biosens (2007) Bioelectron, 22, pp. 2891-2897; Marks, D.S., Hopf, T.A., Sander, C., Protein structure prediction from sequence variation. Nat (2012) Biotechnol, 30 (11), pp. 1072-1080; Anfinsen, C.B., Principles that govern the folding of protein chains (1973) Science, 181, pp. 223-230; Chou, K.C., Prediction of protein cellular attributes using pseudoamino acid composition (2001) Proteins: Struct. Funct. Genet, 43, pp. 246-255; Chou, K.C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes (2005) Bioinformatics, 21, pp. 10-19; Chou, K.C., Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology (2009) Curr. Proteomics, 6, pp. 262-274; Tahir, M., Hayat, M., INuc-STNC: A sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC (2016) Mol. Biosyst, 12, pp. 2587-2593; Chen, W., Zhang, X., Brooker, J., Lin, H., Zhang, L., Chou, K.C., PseKNC-General: A cross-platform package for generating various modes of pseudo nucleotide compositions (2015) Bioinformatics, 31, pp. 119-120; Chen, W., Feng, P.M., Lin, H., Chou, K.C., IRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition (2013) Nucleic Acids Res, 41; Li, L.Q., Yu, S.J., Xiao, W.D., Li, Y.S., Huang, L., Zheng, X.Q., Zhou, S.W., Yang, H., Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM (2014) BMC Bioinformatics, 15, p. 340; Yu, L.L., Zhang, Y.S., Gutman, I., Shi, Y.T., Dehmer, M., Protein sequence comparison based on physicochemical properties and the position-feature energy matrix (2017) Sci. Rep, 7, p. 46237; He, P.A., Tao, H., Ma, T.T., Dai, Q., Yao, Y., A Novel protein characterization based on pseudo amino acids composition and star-like graph topological indices (2017) Comb. Chem. High Throughput Screen, 20 (4), pp. 328-337; Yu, Z.G., Anh, V., Lau, K.S., Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses (2004) J. Theor. Biol, 226, pp. 341-348; Wang, J., Wang, W., A computational approach to simplifying the protein folding problem (1999) Nature Struct. Biol, 6, pp. 1033-1038; Wang, J., Wang, W., Modeling study on the validity of a possibly simplified representation of proteins (2000) Phys. Rev. E, 61, pp. 6981-6986; Li, C., Xing, L.L., Wang, X., 2-D graphical representation of protein sequences and its application to coronavirus phylogeny (2008) BMB Reports, 41, pp. 217-222; Cheon, M., Chang, I., Clustering of the protein design alphabets by using hierarchical self-organizing map (2004) J. Korean Phys. Soc, 44, pp. 1577-1580; Yao, Y.H., Yan, S., Han, J., Dai, Q., He, P.A., A novel descriptor of protein sequences and its application (2014) J. Theor. Biol, 347, pp. 109-117; Wang, L.J., Brown, S.J., BindN: A web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences (2006) Nucleic Acids Res, 34, pp. W243-W248; Grantham, R., Amino acid difference formula to help explain protein (1974) Science, 185, pp. 862-864; Ma, F., Wu, Y.T., Xu, X.F., Correlation analysis of some physical chemistry properties among genetic codons and amino acids (2003) J. Anhui Agricul. Univ, 30, pp. 439-445; Li, C., Wang, J., Zhang, Y., Wang, J., Similarity analysis of protein sequences based on the normalized relative entropy (2008) Comb. Chem. High through Screen, 11, pp. 477-481; Randic, M., Vracko, M., Nandy, A., Basak, S.C., On 3-D graphical representation of DNA primary sequences and their numerical characterization (2000) J. Chem. Inf. Comput. Sci, 40, pp. 1235-1244; Randic, M., Vracko, M., Lers, N., Plavsic, D., Analysis of similarity/dissimilarity of DNA sequences based on novel 2-D graphical representation (2003) Chem. Phys. Lett, 371, pp. 202-207; Randic, M., Novic, M., Plavsic, D., Milestones in graphical bioinformatics (2013) Int. J. Quantum Chem, 113, pp. 2413-2446; Randic, M., Zupan, J., Balaban, A.T., Vikić-Topić, D., Plavšić, D., Graphical representation of proteins (2011) Chem. Rev, 111, pp. 790-862; Novic, M., Randic, M., Representation of proteins as walks in 20-D space (2008) SAR. QSAR. Environ. Res, 19, pp. 317-337; Li, C., Yang, Y., Jia, M.D., Zhang, Y., Yu, X., Wang, C., Phylogenetic analysis of DNA sequences based on k-word and rough set theory (2014) Physica A, 398, pp. 162-171; Randic, M., Guo, X.F., Basak, S.C., On the characterization of DNA primary sequences by triplet of nucleic acid bases (2001) J. Chem. Inf. Comput. Sci, 41, pp. 619-626; Zhang, Z.J., DV-Curve: A novel intuitive tool for visualizing and analyzing DNA sequences (2009) Bioinformatics, 25 (9), pp. 1112-1117; Liao, B., Liao, B.Y., Sun, X.M., Zeng, Q.G., A Novel method for similarity analysis and protein sub-cellular localization prediction (2010) Bioinformatics, 26 (21), pp. 2678-2683; Nikolic, S., Kovacevic, G., Milicevic, A., Trinajstic, N., The Zagreb indices 30 years after (2003) Croat. Chem. Acta, 76, pp. 113-124; Doslic, T., Furtula, B., Graovac, A., Gutman, I., Moradi, S., Yarahmadi, Z., On vertex-degree-based molecular structure descriptors (2011) MATCH Commun. Math. Comput. Chem, 66, pp. 613-626; Su, G.F., Tu, J.H., Das, K.-C., Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randic index (2015) Appl. Math. Comput, 270, pp. 705-710; Li, C., Wang, J., New invariant of DNA sequences (2005) J. Chem. Inf. Model, 36, pp. 115-120; Ren, L., Zhang, Y., Li, J., Xiao, Y., Zhang, J., Wang, Y., Chen, L., Wang, J., Genetic drift of human coronavirus OC43 spike gene during adaptive evolution (2015) Sci. Rep, 5. , 11451; http://www.who.int/emergencies/mers-cov/en/, (accessed July 21, 2017); Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., https://CRAN.Rproject.org/package=e1071, e1071: R package version 1.6-8, (accessed February 2, 2017); Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: An overview (2000) Bioinformatics, 16, pp. 412-424; Lin, H., Deng, E.Z., Ding, H., Chen, W., Chou, K.C., IPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition (2014) Nucleic Acids Res, 42, pp. 12961-12972; Chen, W., Feng, P., Ding, H., Lin, H., Chou, K.C., Using deformation energy to analyze nucleosome positioning in genomes (2016) Genomics, 107, pp. 69-75; Chen, W., Tang, H., Ye, J., Lin, H., Chou, K.C., IRNA-PseU: Identifying RNA pseudouridine sites (2016) Mol. Ther. Nucleic Acids, 5; Zhang, C.T., Wang, J., Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve (2000) Nucleic Acids Res, 28, pp. 2804-2814; Zhang, C.T., Wang, J., Zhang, R., Using a Euclid distance discriminant method to find protein coding genes in the yeast genome (2002) Comput. Chem, 26, pp. 195-206","Li, C.; School of Mathematics and Statistics, Hainan Normal UniversityChina; email: lichwun@163.com",,"Bentham Science Publishers B.V.",13862073,,CCHSF,"29380690","English","Comb. Chem. High Throughput Screen.",Article,"Final",,Scopus,2-s2.0-85047817284 "Case J.B., Li Y., Elliott R., Lu X., Graepel K.W., Sexton N.R., Smith E.C., Weiss S.R., Denison M.R.","55620542600;55802366600;36536763700;56137171400;55660767100;55892070600;33768169900;57203567044;7101971810;","Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity.",2018,"Journal of Virology","92","1", e01531-17,"","",,6,"10.1128/JVI.01531-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037987266&doi=10.1128%2fJVI.01531-17&partnerID=40&md5=af0ea92dc89f2a0a3b3621f38c91b5ae","Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biology, The University of the South, Sewanee, TN, United States","Case, J.B., Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Li, Y., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Elliott, R., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Lu, X., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Graepel, K.W., Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Sexton, N.R., Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Smith, E.C., Department of Biology, The University of the South, Sewanee, TN, United States; Weiss, S.R., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Denison, M.R., Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States","Coronaviruses (CoVs) are positive-sense RNA viruses that infect numerous mammalian and avian species and are capable of causing severe and lethal disease in humans. CoVs encode several innate immune antagonists that counteract the host innate immune response to facilitate efficient viral replication. CoV nonstructural protein 14 (nsp14) encodes 3=-to-5= exoribonuclease activity (ExoN), which performs a proofreading function and is required for high-fidelity replication. Outside of the order Nidovirales, arenaviruses are the only RNA viruses that encode an ExoN, which functions to degrade double-stranded RNA (dsRNA) replication intermediates. In this study, we tested the hypothesis that CoV ExoN also functions to antagonize the innate immune response. We demonstrate that viruses lacking ExoN activity [ExoN(-)] are sensitive to cellular pretreatment with interferon beta (IFN-β) in a dose-dependent manner. In addition, ExoN(-) virus replication was attenuated in wild-type bone marrow-derived macrophages (BMMs) and partially restored in interferon alpha/beta receptor-deficient (IFNAR-/-) BMMs. ExoN(-) virus replication did not result in IFN-β gene expression, and in the presence of an IFN-β-mediated antiviral state, ExoN(-) viral RNA levels were not substantially reduced relative to those of untreated samples. However, ExoN(-) virus generated from IFN-β-pretreated cells had reduced specific infectivity and decreased relative fitness, suggesting that ExoN(-) virus generated during an antiviral state is less viable to establish a subsequent infection. Overall, our data suggest murine hepatitis virus (MHV) ExoN activity is required for resistance to the innate immune response, and antiviral mechanisms affecting the viral RNA sequence and/or an RNA modification act on viruses lacking ExoN activity. © 2017 American Society for Microbiology.","Coronavirus; ExoN; Exoribonuclease; Innate immunity; Interferon; MHV","beta interferon; nonstructural protein 14; unclassified drug; viral protein; antivirus agent; beta interferon; exoribonuclease; viral protein; virus RNA; animal cell; Article; bioaccumulation; bone marrow derived macrophage; controlled study; innate immunity; mouse; Murine hepatitis virus; nonhuman; polymerase chain reaction; priority journal; protein binding; protein function; quantitative analysis; RNA sequence; virus attenuation; virus genome; virus infectivity; virus replication; animal; drug effects; enzymology; genetics; immunology; metabolism; Murine hepatitis virus; mutagenesis; mutation; Animals; Antiviral Agents; Exoribonucleases; Genome, Viral; Immunity, Innate; Interferon-beta; Mice; Murine hepatitis virus; Mutagenesis; Mutation; RNA, Viral; Viral Nonstructural Proteins; Virus Replication","Roth-Cross, J.K., Martinez-Sobrido, L., Scott, E.P., Garcia-Sastre, A., Weiss, S.R., Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels (2007) J Virol, 81, pp. 7189-7199. , https://doi.org/10.1128/JVI.00013-07; Frieman, M., Heise, M., Baric, R., SARS coronavirus and innate immunity (2008) Virus Res, 133, pp. 101-112. , https://doi.org/10.1016/j.virusres.2007.03.015; Rose, K.M., Weiss, S.R., Murine coronavirus cell type dependent interaction with the type I interferon response (2009) Viruses, 1, pp. 689-712. , https://doi.org/10.3390/v1030689; Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: a complex web of host defenses (2014) Annu Rev Immunol, 32, pp. 513-545. , https://doi.org/10.1146/annurev-immunol-032713-120231; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc Natl Acad Sci U S A, 103, pp. 12885-12890. , https://doi.org/10.1073/pnas.0603144103; Zhang, R., Li, Y., Cowley, T.J., Steinbrenner, A.D., Phillips, J.M., Yount, B.L., Baric, R.S., Weiss, S.R., The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU (2015) J Virol, 89, pp. 3598-3609. , https://doi.org/10.1128/JVI.03535-14; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Li, K., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J Biol Chem, 282, pp. 32208-32221. , https://doi.org/10.1074/jbc.M704870200; Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., Baker, S.C., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity (2005) J Virol, 79, pp. 15189-15198. , https://doi.org/10.1128/JVI.79.24.15189-15198.2005; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc Natl Acad Sci U S A, 106, pp. 3484-3489. , https://doi.org/10.1073/pnas.0808790106; Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Gorbalenya, A.E., Canard, B., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2=O)-methyltransferase activity (2008) J Virol, 82, pp. 8071-8084. , https://doi.org/10.1128/JVI.00407-08; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Silverman, R.H., Weiss, S.R., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11, pp. 607-616. , https://doi.org/10.1016/j.chom.2012.04.011; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006195; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3'→5' exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci U S A, 103, pp. 5108-5113. , https://doi.org/10.1073/pnas.0508200103; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis of S-adenosyl-l-methionine-binding residues in coronavirus nsp14 N7-methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity (2016) J Virol, 90, pp. 7248-7256. , https://doi.org/10.1128/JVI.00542-16; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81, pp. 12135-12144. , https://doi.org/10.1128/JVI.01296-07; Smith, E.C., Blanc, H., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003565; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat Med, 18, pp. 1820-1826. , https://doi.org/10.1038/nm.2972; Qi, X., Lan, S., Wang, W., Schelde, L.M., Dong, H., Wallat, G.D., Ly, H., Dong, C., Cap binding and immune evasion revealed by Lassa nucleoprotein structure (2010) Nature, 468, pp. 779-783. , https://doi.org/10.1038/nature09605; Hastie, K.M., Kimberlin, C.R., Zandonatti, M.A., MacRae, I.J., Saphire, E.O., Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression (2011) Proc Natl Acad Sci U S A, 108, pp. 2396-2401. , https://doi.org/10.1073/pnas.1016404108; Russier, M., Reynard, S., Carnec, X., Baize, S., The exonuclease domain of Lassa virus nucleoprotein is involved in antigen-presenting-cellmediated NK cell responses (2014) J Virol, 88, pp. 13811-13820. , https://doi.org/10.1128/JVI.01908-14; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuñiga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Rose, K.M., Elliott, R., Martinez-Sobrido, L., Garcia-Sastre, A., Weiss, S.R., Murine coronavirus delays expression of a subset of interferon-stimulated genes (2010) J Virol, 84, pp. 5656-5669. , https://doi.org/10.1128/JVI.00211-10; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Rao, Z., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc Natl Acad Sci U S A, 112, pp. 9436-9441. , https://doi.org/10.1073/pnas.1508686112; Graepel, K., Lu, X., Case, J.B., Sexton, N.R., Smith, E.C., Denison, M.R., (2017) Proofreading-deficient coronaviruses adapt for increased fitness over long-term passage without reversion of exoribonuclease-inactivating mutations, , https://doi.org/10.1101/175562; Zhao, L., Rose, K.M., Elliott, R., Van Rooijen, N., Weiss, S.R., Cell-typespecific type I interferon antagonism influences organ tropism of murine coronavirus (2011) J Virol, 85, pp. 10058-10068. , https://doi.org/10.1128/JVI.05075-11; Zhao, L., Birdwell, L.D., Wu, A., Elliott, R., Rose, K.M., Phillips, J.M., Li, Y., Weiss, S.R., Cell-type-specific activation of the oligoadenylate synthetase-RNase L pathway by a murine coronavirus (2013) J Virol, 87, pp. 8408-8418. , https://doi.org/10.1128/JVI.00769-13; Tomaselli, S., Galeano, F., Locatelli, F., Gallo, A., ADARs and the balance game between virus infection and innate immune cell response (2015) Curr Issues Mol Biol, 17, pp. 37-51; Neil, S., Bieniasz, P., Human immunodeficiency virus, restriction factors, and interferon (2009) J Interferon Cytokine Res, 29, pp. 569-580. , https://doi.org/10.1089/jir.2009.0077; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am J Pathol, 170, pp. 1136-1147. , https://doi.org/10.2353/ajpath.2007.061088; Kindler, E., Thiel, V., To sense or not to sense viral RNA-essentials of coronavirus innate immune evasion (2014) Curr Opin Microbiol, 20, pp. 69-75. , https://doi.org/10.1016/j.mib.2014.05.005; Birdwell, L.D., Zalinger, Z.B., Li, Y., Wright, P.W., Elliott, R., Rose, K.M., Silverman, R.H., Weiss, S.R., Activation of RNase L by murine coronavirus in myeloid cells is dependent on basal Oas gene expression and independent of virus-induced interferon (2016) J Virol, 90, pp. 3160-3172. , https://doi.org/10.1128/JVI.03036-15; Malathi, K., Dong, B., Gale, M., Silverman, R.H., Small self-RNA generated by RNase L amplifies antiviral innate immunity (2007) Nature, 448, pp. 816-819. , https://doi.org/10.1038/nature06042; Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., Decroly, E., RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex (2012) Proc Natl Acad Sci U S A, 109, pp. 9372-9377. , https://doi.org/10.1073/pnas.1201130109; Xiao, Y., Dolan, P.T., Goldstein, E.F., Li, M., Farkov, M., Brodsky, L., Andino, R., Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses (2017) Nat Commun, 8, p. 375. , https://doi.org/10.1038/s41467-017-00354-5; Lahouassa, H., Daddacha, W., Hofmann, H., Ayinde, D., Logue, E.C., Dragin, L., Bloch, N., Margottin-Goguet, F., SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates (2012) Nat Immunol, 13, pp. 223-228. , https://doi.org/10.1038/ni.2236; Hrecka, K., Hao, C., Gierszewska, M., Swanson, S.K., Kesik-Brodacka, M., Srivastava, S., Florens, L., Skowronski, J., Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein (2011) Nature, 474, pp. 658-661. , https://doi.org/10.1038/nature10195; Sanjuán, R., Domingo-Calap, P., Mechanisms of viral mutation (2016) Cell Mol Life Sci, 73, pp. 4433-4448. , https://doi.org/10.1007/s00018-016-2299-6; Chen, W., Baric, R.S., Molecular anatomy of mouse hepatitis virus persistence: coevolution of increased host cell resistance and virus virulence (1996) J Virol, 70, pp. 3947-3960; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002; Donaldson, E.F., Sims, A.C., Graham, R.L., Denison, M.R., Baric, R.S., Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis (2007) J Virol, 81, pp. 6356-6368. , https://doi.org/10.1128/JVI.02805-06; Sexton, N.R., Smith, E.C., Blanc, H., Vignuzzi, M., Peersen, O.B., Denison, M.R., Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens (2016) J Virol, 90, pp. 7415-7428. , https://doi.org/10.1128/JVI.00080-16; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Sexton, N.R., Smith, E.C., Denison, M.R., Mouse hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2017) bioRxiv, , https://doi.org/10.1101/182196","Denison, M.R.; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterUnited States; email: mark.denison@vanderbilt.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29046453","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85037987266 "Bawazir A., Al-Mazroo E., Jradi H., Ahmed A., Badri M.","6507659243;57194606817;6506551098;35278332600;7005213070;","MERS-CoV infection: Mind the public knowledge gap",2018,"Journal of Infection and Public Health","11","1",,"89","93",,6,"10.1016/j.jiph.2017.05.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021117600&doi=10.1016%2fj.jiph.2017.05.003&partnerID=40&md5=470991b4b21a8e191eef97f7cebd32ca","College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Saudi Arabia; Infection Control Department, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia","Bawazir, A., College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Saudi Arabia; Al-Mazroo, E., Infection Control Department, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Jradi, H., College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Saudi Arabia; Ahmed, A., College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Saudi Arabia; Badri, M., College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Saudi Arabia","In August 2015, the Corona outbreak caused by Middle East respiratory syndrome coronavirus (MERS-CoV) was the 9th episode since June 2012 in Saudi Arabia. Little is known about the public awareness toward the nature or prevention of the disease. The aim of this work was to assess the knowledge of the adult population in Riyadh toward the MERS-CoV. In this cross-sectional survey, a self-administrated questionnaire was distributed to randomly selected participants visiting malls in Riyadh. The questionnaire contained measurable epidemiological and clinical MERS-CoV knowledge level variables and relevant source of information. The study included 676 participants. Mean age was 32.5 (±SD 8.6) years and 353 (47.8%) were males. Almost all participants heard about the corona disease and causative agent. The study showed a fair overall knowledge (66.0%), less knowledge on epidemiological features of the disease (58.3%), and good knowledge (90.7%) on the clinical manifestation of the MERS-CoV. Internet was the major (89.0%) source of disease information, and other sources including health care providers, SMS, television, magazines and books were low rated (all <25%). In a multivariate logistic regression analysis age ≤30 years (Odds Ratio (OR) = 1.647, 95%CI 1.048–2.584, P = 0.030), male gender (OR = 1.536, 95%CI 1.105–2.134, P = 0.01), and no tertiary education (OR = 1.957, 95%CI 1.264–3.030, P = 0.003) were independent significant predictors of poor epidemiological knowledge. This study concludes that there was inadequate epidemiological knowledge received by the public and the reliance mostly on the clinical manifestations to recognizing the MERS-CoV disease. Comprehensive public health education programs is important to increase awareness of simple epidemiological determinants of the disease is warranted. © 2017","Attitude; Corona virus; MERS-CoV; Riyadh; Saudi Arabia","adult; age; Article; attitude to health; book; clinical feature; cross-sectional study; educational status; female; health care personnel; health education; human; Internet; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; priority journal; Saudi Arabia; sex difference; television viewing; text messaging; virus transmission; adolescent; aged; animal; Coronavirus infection; middle aged; pathology; psychology; questionnaire; very elderly; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Animals; Coronavirus Infections; Cross-Sectional Studies; Female; Health Knowledge, Attitudes, Practice; Humans; Male; Middle Aged; Saudi Arabia; Surveys and Questionnaires; Young Adult","Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; http://www.who.int/emergencies/mers-cov/en/]., Middle East respiratory syndrome coronavirus (MERS-CoV) [; Mailles, A., Blanckaert, K., Chaud, P., van der Werf, S., Lina, B., Caro, V., First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013 (2013) Euro Surveill, 18 (24); http://www.who.int/emergencies/mers-cov/en/]., Middle East respiratory syndrome coronavirus (MERS-CoV) Summary of Current Situation: Literature Update and Risk Assessment [; http://www.cdc.gov/coronavirus/mers/]., Middle East Respiratory Syndrome [; Askarian, M., Danaei, M., Vakili, V., Knowledge, attitudes, and practices regarding pandemic H1N1 influenza among medical and dental residents and fellowships in Shiraz, Iran (2013) Int J Prev Med, 4 (4); Alsolamy, S., Arabi, Y.M., Infection with Middle East respiratory syndrome coronavirus (2015) Can J Resp Therapy, 51 (4), p. 102; Bermingham, A., Chand, M., Brown, C., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17 (40); Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37, pp. 1-4; www.moh.gov.sa/en/CCC/…/GuidelinesforCoronaPatients.pdf, Infection prevention/control and management guidelines for patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection; http://whqlibdoc.who.int/hq/2007/WHO_CDS_EPR_2007.6_eng]., Infection prevention and control of epidemic-and pandemic-prone acute respiratory diseases in health care: WHO interim guidelines [; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866; Gautret, P., Benkouiten, S., Salaheddine, I., Belhouchat, K., Drali, T., Parola, P., Hajj pilgrims knowledge about Middle East respiratory syndrome coronavirus, August to September 2013 (2013) Euro Surveill, 18 (41), p. 20604; Memish, Z., Al-Tawfiq, J., Makhdoom, H., Al-Rabeeah, A., Assiri, A., Alhakeem, R., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol infec, 20 (5), pp. 469-474; Khan, M.U., Shah, S., Ahmad, A., Fatokun, O., Knowledge and attitude of healthcare workers about middle east respiratory syndrome in multispecialty hospitals of Qassim, Saudi Arabia (2014) BMC Public Health, 14 (1), p. 1; Nour, M.O., Babilghith, A.O., Natto, H.A., Al-Amin, F.O., Alawneh, S.M., Knowledge, attitude and practices of healthcare providers towards MERS-CoV infection at Makkah hospitals, KSA (2015) Int Res J Med Med Sci, 3 (4), pp. 103-112; Almutairi, K.M., Al Helih, E.M., Moussa, M., Boshaiqah, A.E., Alajilan, A.S., Vinluan, J.M., Awareness, attitudes, and practices related to coronavirus pandemic among public in Saudi Arabia (2015) Fam Community Health, 38 (4), pp. 332-340; Al-Mohrej, O.A., Al-Shirian, S.D., Al-Otaibi, S.K., Tamim, H.M., Masuadi, E.M., Fakhoury, H.M., Is the Saudi public aware of Middle East respiratory syndrome? (2016) J Infect Public Health, 9 (3), pp. 259-266; http://www.emro.who.int/pdf/surveillance-forecasting-response/surveillance-news/mers-mission-january2016.pdf?ua=1, WHO's high-level mission to Saudi Arabia on Middle East respiratory syndrome coronavirus (MERS-CoV)-updates; http://www.health.govt.nz/our-work/diseases-and-conditions/middle-east-respiratory-syndrome-coronavirus-mers-cov]., Middle East Respiratory Syndrome: Risk assessment [; Di Giuseppe, G., Abbate, R., Albano, L., Marinelli, P., Angelillo, I.F., A survey of knowledge, attitudes and practices towards avian influenza in an adult population of Italy (2008) BMC Infect Dis, 8 (1), p. 1; Seale, H., McLaws, M.-L., Heywood, A.E., Ward, K.F., Lowbridge, C.P., MacIntyre, C., The community's attitude towards swine flu and pandemic influenza (2009) Med J Aust, 191 (5), pp. 267-269; De Zwart, O., Veldhuijzen, I.K., Elam, G., Aro, A.R., Abraham, T., Bishop, G.D., Avian influenza risk perception, Europe and Asia (2007) Emerg Infect Diseases, 13 (2), p. 290; Hoda, J., Identification of information types and sources by the public for promoting awareness of Middle East respiratory syndrome coronavirus in Saudi Arabia (2016) Health Educ Res, 31 (1), pp. 12-23","Bawazir, A.; Department of Community and Environmental Health, College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Mail Code 2350, P.O. Box 3660, Saudi Arabia; email: bawazir56@hotmail.com",,"Elsevier Ltd",18760341,,,"28647126","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85021117600 "Upadhyay B.P., Banjara M.R., Shrestha R.K., Tashiro M., Ghimire P.","25522525600;9244636100;57195758889;7201482415;57208262359;","Etiology of coinfections in children with influenza during 2015/16 winter season in Nepal",2018,"International Journal of Microbiology","2018",, 8945142,"","",,,"10.1155/2018/8945142","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062588357&doi=10.1155%2f2018%2f8945142&partnerID=40&md5=9a65592f5fae590287572b1eb0dfd8b6","Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; National Public Health Laboratory, Department of Health Services, Kathmandu, Nepal; National Institute of Infectious Disease, Tokyo, Japan","Upadhyay, B.P., Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal, National Public Health Laboratory, Department of Health Services, Kathmandu, Nepal; Banjara, M.R., Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal; Shrestha, R.K., National Public Health Laboratory, Department of Health Services, Kathmandu, Nepal; Tashiro, M., National Institute of Infectious Disease, Tokyo, Japan; Ghimire, P., Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal","Acute respiratory infections (ARIs) are one of the major public health problems in developing countries like Nepal. Besides the influenza, several other pathogens are responsible for acute respiratory infection in children. Etiology of infections is poorly characterized at the course of clinical management, and hence empirical antimicrobial agents are used. The objective of this study was to characterize the influenza and other respiratory pathogens by real-time PCR assay. A total of 175 throat swab specimens of influenza-positive cases collected at National Influenza Center, Nepal, during the 2015/16 winter season were selected for detecting other respiratory copathogens. Total nucleic acid was extracted using Pure Link viral RNA/DNA mini kit (Invitrogen), and multiplex RT-PCR assays were performed. Influenza A and B viruses were found in 120 (68.6%) and 55 (31.4%) specimens, respectively, among which coinfections were found in 106 (60.6%) specimens. Among the influenza A-positive cases, 25 (20.8%) were A/H1N1 pdm09 and 95 (79.2%) were A/H3 subtypes. Viruses coinfected frequently with influenza virus in children were rhinovirus (26; 14.8%), respiratory syncytial virus A/B (19; 10.8%), adenovirus (14; 8.0%), coronavirus (CoV)-HKU1 (14; 8.0%), CoV-OC43 (5; 2.9%), CoV-229E (2; 1.1%), metapneumovirus A/B (5; 2.9%), bocavirus (6; 3.4%), enterovirus (5; 2.9%), parainfluenza virus-1 (3; 1.7%), and parainfluenza virus-3 (2; 1.1%). Coinfection of Mycoplasma pneumoniae with influenza virus was found in children (5; 2.8%). Most of the viral infection occurred in young children below 5 years of age. In addition to influenza virus, nine different respiratory pathogens were detected, of which coinfections of rhinovirus and respiratory syncytial virus A/B were predominantly found in children. This study gives us better information on the respiratory pathogen profile and coinfection combinations which are important for diagnosis and treatment of ARIs. Copyright © 2018 Bishnu Prasad Upadhyay et al.",,,"Shatizadeh, S., Yavarian, J., Rezaie, F., Mahamoodi, M., Neseri, M., Azad, T.M., Epidemiological and clinical evaluation of children with respiratory virus infections (2014) Medical Journal of The Islamic Republic of Iran, 28, p. 102; Zhang, D., He, Z., Xu, L., Epidemiology characteristics of respiratory viruses found in children and adults with respiratory tract infection in southern China (2014) International Journal of Infectious Diseases, 25, pp. 159-164; Essa, S., Owayed, A., Altawalah, H., Khadadah, M., Behbehani, N., Al-Nakib, W., Mixed viral infections circulating in hospitalized patients with respiratory tract infections in Kuwait (2015) Advances in Virology, 2015, p. 8; Lu, Y., Wang, S., Zhang, L., Epidemiology of human respiratory viruses in children with acute respiratory tract infection in Jinan, China (2013) Clinical and Developmental Immunology, 2013, p. 8; Tramuto, F., Orsi, A., Maida, C.M., The molecular epidemiology and evolutionary dynamics of influenza B virus in two Italian Regions during 2010-2015: The experience of Sicily and Liguria (2016) International Journal of Molecular Sciences, 17 (4), p. 549; Qi, L., Xiong, Y., Xiao, B., Epidemiological and VIRO-logical characteristics of influenza in Chongqing, China, 2011–2015 (2016) PLoS One, 11 (12); Upadhyay, B.P., Ghimire, P., Tashiro, M., Banjara, M.R., Molecular epidemiology and antigenic characterization of seasonal influenza viruses circulating in Nepal (2017) Journal of Nepal Health Research Council, 15 (35), pp. 44-50; Lagare, A., Mainassara, H.B., Issaka, B., Sidiki, A., Tempia, S., Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger (2015) BMC Infectious Diseases, 15, p. 515; (2018) WHO Surveillance Case Definitions for ILI and SARI, , http://www.who.int/influenza/surveillance_monitoring/ili_sari_surveillance_case_definition/en/Retrivedon, WHO, Geneva, Switzerland; Liu, W.K., Liu, Q., Chen, D.H., Epidemiology of acute respiratory infection in children in Guangzhou: A three year study (2014) PLoS One, 9 (5); Liu, T., Li, Z., Zhang, S., Viral etiology of acute respiratory tract infections in hospitalized children and adults in Shandong Province, China (2015) Virology Journal, 12, p. 168; Wangchuk, S., Thapa, B., Zangmo, S., Jarman, R.G., Bhoomiboonchoo, P., Gibbons, R.V., Influenza surveillance from November 2008 to 2011; including pandemic influenza A(H1N1) pdm09 in Bhutan (2013) Influenza and Other Respiratory Viruses, 7 (3), pp. 426-430; Ikawati, H.D., Roselinda, Setiawaty, V., Epidemiology of influenza like illness (ILI) in Java, Island, Indonesia in 2011 (2014) Journal of Public Health Research, 4 (4), pp. 111-116; Khuntirat, B., Yoon, I.K., Chittaganpitch, M., High rate of A(H1N1) pdm09 infections among rural Thai villagers, 2009-2010 (2014) PLoS One, 9 (9); Koul, P.A., Mir, H., Akram, S., Potdar, V., Chadha, M.S., Respiratory viruses in acute exacerbation of chronic obstructive pulmonary disease (2017) Lungs India, 34 (1), pp. 29-33; Ouedraogo, S., Traore, B., Nene Bi, Z.A., Viral etiology of respiratory tract infections in children at the pediatric hospital in Ouagdougou (Burkina Faso) (2014) PLoS One, 9 (10); Mathisen, M., Strand, T.A., Sharma, B.N., Clinical presentation and severity of viral community-acquired pneumonia in young Nepalese children (2010) Pediatric Infectious Disease Journal, 29 (1), pp. e1-e6; Mathisen, M., Basnet, S., Sharma, A., RNA virus in young Nepalese children hospitalized with severe pneumonia (2011) Pediatric Infectious Disease Journal, 30 (12), pp. 1032-1036; Uddin, S.M.I., Englund, J.A., Kuypers, J., Burden and risk factors for coronavirus infection in infants in rural Nepal (2018) Clinical Infectious Diseases, , press; Song, Q., Xu, B.P., Shen, K.L., Effects of bacterial and viral co-infections of Mycoplasma pneumoniae pneumonia in children: Analysis report from Beijing children’s hospital between 2010 and 2014 (2015) International Journal of Clinical and Experimental Medicine, 8 (9), pp. 15666-15674; Abdel Khalek, E.M., Abdel-Salam, D.M., Acute respiratory tract infections in children under 5 years of age in Upper Egypt (2016) International Journal of Community Medicine and Public Health, 3 (5), pp. 1161-1166; Nair, G.B., Niederman, M.S., Community-acquired pneumonia: An unfinished battle (2011) Medical Clinics of North America, 95 (6), pp. 1143-1161; Islam, F., Sarma, R., Debroy, A., Kar, S., Pal, R., Profiling acute respiratory tract infections in children from Assam, India (2013) Journal of Global Infectious Diseases, 5 (1), pp. 8-14; Nguyen, H.K.L., Naguyen, S.V., Nguyen, A.P., Surveillance of severe acute respiratory infection (SARI) for hospitalized patients in Northern Vietnam (2017) Japanese Journal of Infectious Diseases, 70 (5), pp. 522-527; Sentilhes, A.C., Choumlivong, K., Celhay, O., Respiratory virus infection in hospitalized children and adults in Lao PDR (2013) Influenza and Other Respiratory Viruses, 7 (6), pp. 1070-1078; Mizuta, K., Abiko, C., Aoki, Y., Seasonal pattern of respiratory syncytial virus, influenza A virus, human metapneumovirus and parainfluenza virus type 3 infection on the basis of virus isolation data between 2004 and 2011 in Yamagata, Japan (2013) Japanese Journal of Infectious Diseases, 66 (2), pp. 140-145; Huijskens, E.G., Biesmans, R.C., Buiting, A.G., Obihara, C.C., Rossen, J.W., Diagnostic value of respiratory virus detection in symptomatic children using real-time PCR (2012) Virology Journal, 9, p. 276; Mishra, P., Nayak, L., Das, R.R., Dwibedi, B., Singh, A., Viral agents causing acute respiratory infections in children under five: A study from Eastern India (2016) International Journal of Pediatrics, 2016, p. 8; Georgivea, I., Angilova, S., Korsun, N., Viral etiology of acute respiratory infections among children under 5 years of age in Bulgaria, during the 2013/2014 and 2014/2015 seasons (2015) Trakia Journal of Sciences, 13 (2), pp. 55-60; Benites, E.C., Cabrini, D.P., Silva, A.C., Acute respiratory viral infection in pediatric cancer patients undergoing chemotherapy (2014) Jornal De Pediatria, 90 (4), pp. 370-376; Kamikawa, J., Granato, C.F., Bellei, N., Viral etiology of common colds of outpatient children at primary care level and the use of antibiotics (2015) Memórias Do Instituto Oswaldo Cruz, 110 (7), pp. 884-889; Serin, D.C., Pullukcu, H., Cicek, C., Sipahi, O.R., Tasbakan, S., Atalay, S., Bacterial and viral etiology in hospitalized community acquired pneumonia with molecular methods and clinical evaluation (2014) Journal of Infection in Developing Countries, 8 (4), pp. 510-518; Hara, M., Takao, S., Shimazu, Y., Nishimura, T., Three year study of viral etiology and features of febrile respiratory tract infections in Japanese pediatric outpatients (2014) Pediatric Infectious Disease Journal, 33 (7), pp. 687-692; Lio, X., Hu, Z., Liu, W., New epidemiological and clinical signatures of 18 pathogens from respiratory tract infections based on a 5-year study (2015) PLoS One, 10 (9); Rutvisuttinunt, W., Klungthong, C., Thaisomboonsuk, B., Retrospective use of next-generation sequencing reveals the presence of enteroviruses in acute influenza-like illness respiratory samples collected in South/South-East Asia during 2010–2013 (2017) Journal of Clinical Virology, 94, pp. 91-99; Banstola, A., Banstola, A., The epidemiology of hospitalization for pneumonia in children under five in the rural Western Region of Nepal: A descriptive study (2013) PLoS One, 8 (8)","Upadhyay, B.P.; Central Department of Microbiology, Tribhuvan UniversityNepal; email: bishnupd@gmail.com",,"Hindawi Limited",1687918X,,,,"English","Int. J. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85062588357 "Fisher B.T., Danziger-Isakov L., Sweet L.R., Munoz F.M., Maron G., Tuomanen E., Murray A., Englund J.A., Dulek D., Halasa N., Green M., Michaels M.G., Madan R.P., Herold B.C., Steinbach W.J.","35723564000;8329743600;56973705800;7103206377;23473594800;35517655700;57204580733;35227211100;36008162700;6602646208;7406237201;7005166995;10638918000;24512307400;7004164877;","A multicenter consortium to define the epidemiology and outcomes of inpatient respiratory viral infections in pediatric hematopoietic stem cell transplant recipients",2018,"Journal of the Pediatric Infectious Diseases Society","7","4",,"275","282",,9,"10.1093/jpids/pix051","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059796484&doi=10.1093%2fjpids%2fpix051&partnerID=40&md5=113b398562b06037d1e29f6a091b4e6f","Division of Infectious Diseases, Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, CHOP North, Philadelphia, PA 19104, United States; Center for Pediatric Clinical Effectiveness, Children’s Hospital of PhiladelphiaPA, United States; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterOH, United States; Department of Pediatrics, Section of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, United States; Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States; Seattle Children’s Research Institute, Seattle Children’s Hospital, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; University of Washington, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Division of Pediatric Infectious Diseases, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Division of Infectious Diseases, Children’s Hospital of Pittsburgh of UPMC, Departments of Pediatrics and Surgery, United States; University of Pittsburgh School of MedicinePA, United States; Department of Pediatrics, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, NY, United States; Departments of Pediatrics and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States","Fisher, B.T., Division of Infectious Diseases, Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, CHOP North, Philadelphia, PA 19104, United States, Center for Pediatric Clinical Effectiveness, Children’s Hospital of PhiladelphiaPA, United States, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; Danziger-Isakov, L., Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterOH, United States; Sweet, L.R., Department of Pediatrics, Section of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, United States; Munoz, F.M., Department of Pediatrics, Section of Infectious Diseases, Texas Children’s Hospital, Baylor College of Medicine, Houston, United States; Maron, G., Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States; Tuomanen, E., Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States; Murray, A., Seattle Children’s Research Institute, Seattle Children’s Hospital, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States, University of Washington, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Englund, J.A., Seattle Children’s Research Institute, Seattle Children’s Hospital, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States, University of Washington, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Dulek, D., Division of Pediatric Infectious Diseases, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Halasa, N., Division of Pediatric Infectious Diseases, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Green, M., Division of Infectious Diseases, Children’s Hospital of Pittsburgh of UPMC, Departments of Pediatrics and Surgery, United States, University of Pittsburgh School of MedicinePA, United States; Michaels, M.G., Division of Infectious Diseases, Children’s Hospital of Pittsburgh of UPMC, Departments of Pediatrics and Surgery, United States, University of Pittsburgh School of MedicinePA, United States; Madan, R.P., Department of Pediatrics, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, NY, United States; Herold, B.C., Department of Pediatrics, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, Bronx, NY, United States; Steinbach, W.J., Departments of Pediatrics and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States","Background. Respiratory virus infections (RVIs) pose a threat to children undergoing hematopoietic stem cell transplantation (HSCT). In this era of sensitive molecular diagnostics, the incidence and outcome of HSCT recipients who are hospitalized with RVI (H-RVI) are not well described. Methods. A retrospective observational cohort of pediatric HSCT recipients (between January 2010 and June 2013) was assembled from 9 US pediatric transplant centers. Their medical charts were reviewed for H-RVI events within 1 year after their transplant. An H-RVI diagnosis required respiratory signs or symptoms plus viral detection (human rhinovirus/enterovirus, human metapneumovirus, influenza, parainfluenza, coronaviruses, and/or respiratory syncytial virus). The incidence of H-RVI was calculated, and the association of baseline HSCT factors with subsequent pulmonary complications and death was assessed. Results. Among 1560 HSCT recipients, 259 (16.6%) acquired at least 1 H-RVI within 1 year after their transplant. The median age of the patients with an H-RVI was lower than that of patients without an H-RVI (4.8 vs 7.1 years; P < .001). Among the patients with a first H-RVI, 48% required some respiratory support, and 14% suffered significant pulmonary sequelae. The all-cause and attributable case-fatality rates within 3 months of H-RVI onset were 11% and 5.4%, respectively. Multivariate logistic regression revealed that H-RVI onset within 60 days of HSCT, steroid use in the 7 days before H-RVI onset, and the need for respiratory support at H-RVI onset were associated with subsequent morbidity or death. Conclusion. Results of this multicenter cohort study suggest that H-RVIs are relatively common in pediatric HSCT recipients and contribute to significant morbidity and death. These data should help inform interventional studies specific to each viral pathogen. © The Author(s) 2017.","Hematopoietic stem cell transplantation; Pediatrics; Respiratory viral infection","immunoglobulin G; corticosteroid; all cause mortality; Alphacoronavirus; Article; assisted ventilation; case fatality rate; child; cohort analysis; Coronavirinae; female; follow up; graft versus host reaction; hematopoietic stem cell transplantation; hospital patient; human; Human metapneumovirus; Human respiratory syncytial virus; incidence; infection risk; Influenza virus; lung disease; lymphocyte count; major clinical study; male; microbial consortium; mortality; multicenter study; neutrophil count; observational study; outcome assessment; polymerase chain reaction; priority journal; respiratory syncytial virus infection; retrospective study; Rhinovirus; risk factor; viral respiratory tract infection; virus detection; clinical trial; hematopoietic stem cell transplantation; hospitalization; preschool child; respiratory care; respiratory tract infection; statistics and numerical data; time factor; treatment outcome; United States; virus infection; Adrenal Cortex Hormones; Child; Child, Preschool; Female; Hematopoietic Stem Cell Transplantation; Hospitalization; Humans; Incidence; Male; Respiratory Therapy; Respiratory Tract Infections; Retrospective Studies; Risk Factors; Time Factors; Treatment Outcome; United States; Virus Diseases","Jain, S., Williams, D.J., Arnold, S.R., Community-acquired pneumonia requiring hospitalization among U.S. Children (2015) N Engl J Med, 372, pp. 835-845; Waghmare, A., Englund, J.A., Boeckh, M., How I treat respiratory viral infections in the setting of intensive chemotherapy or hematopoietic cell transplantation (2016) Blood, 127, pp. 2682-2692; Luján-Zilbermann, J., Benaim, E., Tong, X., Respiratory virus infections in pediatric hematopoietic stem cell transplantation (2001) Clin Infect Dis, 33, pp. 962-968; Lee, J.H., Jang, J.H., Lee, S.H., Respiratory viral infections during the first 28 days after transplantation in pediatric hematopoietic stem cell transplant recipients (2012) Clin Transplant, 26, pp. 736-740; Hutspardol, S., Essa, M., Richardson, S., Significant transplantation-related mortality from respiratory virus infections within the first one hundred days in children after hematopoietic stem cell transplantation (2015) Biol Blood Marrow Transplant, 21, pp. 1802-1807; Harris, P.A., Taylor, R., Thielke, R., Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support (2009) J Biomed Inform, 42, pp. 377-381; Hanning, W.N., Duncan, C.N., El-Haddad, A., Lehmann, L.E., Principles of bone marrow and stem cell trasplantation (2015) Hematology and Oncology of Infancy and Childhood, 1, pp. 254-290. , Orkin SH, Fishr DE, Ginsburg D, et al. Philadelphia, PA: Elsevier Saunders; Lo, M.S., Lee, G.M., Gunawardane, N., The impact of RSV, adenovirus, influenza, and parainfluenza infection in pediatric patients receiving stem cell transplant, solid organ transplant, or cancer chemotherapy (2013) Pediatr Transplant, 17, pp. 133-143; Seo, S., Xie, H., Campbell, A.P., Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: Viral detection in the lung predicts outcome (2014) Clin Infect Dis, 58, pp. 1357-1368; Seo, S., Gooley, T.A., Kuypers, J.M., Human metapneumovirus infections following hematopoietic cell transplantation: Factors associated with disease progression (2016) Clin Infect Dis, 63, pp. 178-185; Renaud, C., Xie, H., Seo, S., Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients (2013) Biol Blood Marrow Transplant, 19, pp. 1220-1226; Srinivasan, A., Wang, C., Yang, J., Symptomatic parainfluenza virus infections in children undergoing hematopoietic stem cell transplantation (2011) Biol Blood Marrow Transplant, 17, pp. 1520-1527; Nichols, W.G., Guthrie, K.A., Corey, L., Boeckh, M., Influenza infections after hematopoietic stem cell transplantation: Risk factors, mortality, and the effect of antiviral therapy (2004) Clin Infect Dis, 39, pp. 1300-1306; Kim, Y.J., Guthrie, K.A., Waghmare, A., Respiratory syncytial virus in hematopoietic cell transplant recipients: Factors determining progression to lower respiratory tract disease (2014) J Infect Dis, 209, pp. 1195-1204; Seo, S., Campbell, A.P., Xie, H., Outcome of respiratory syncytial virus lower respiratory tract disease in hematopoietic cell transplant recipients receiving aero-solized ribavirin: Significance of stem cell source and oxygen requirement (2013) Biol Blood Marrow Transplant, 19, pp. 589-596; Milano, F., Campbell, A.P., Guthrie, K.A., Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients (2010) Blood, 115, pp. 2088-2094","Fisher, B.T.; Division of Infectious Diseases, Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, CHOP North, United States; email: fisherbria@email.chop.edu",,"Oxford University Press",20487193,,,"29106589","English","J. Pediatric Infect. Dis. Soc.",Article,"Final",Open Access,Scopus,2-s2.0-85059796484 "Sharma K.K., Kalyani I.H., Pandya S.M., Vala J.A.","35607616500;8519346000;57204357392;57204357350;","Diagnosis and characterization of canine parvovirus-2 affecting canines of south Gujarat, India",2018,"Acta Veterinaria Brno","87","3",,"247","254",,,"10.2754/avb201887030247","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055251094&doi=10.2754%2favb201887030247&partnerID=40&md5=ed9069455d113b1d147c16b187f05cdd","Navsari Agricultural University, College of Veterinary Science and Animal Husbandry Department of Veterinary Microbiology, Navsari, Gujarat, India; Navsari Agricultural University, College of Veterinary Science and Animal Husbandry Teaching Veterinary Clinical Complex, Navsari, Gujarat, India","Sharma, K.K., Navsari Agricultural University, College of Veterinary Science and Animal Husbandry Department of Veterinary Microbiology, Navsari, Gujarat, India; Kalyani, I.H., Navsari Agricultural University, College of Veterinary Science and Animal Husbandry Department of Veterinary Microbiology, Navsari, Gujarat, India; Pandya, S.M., Navsari Agricultural University, College of Veterinary Science and Animal Husbandry Department of Veterinary Microbiology, Navsari, Gujarat, India; Vala, J.A., Navsari Agricultural University, College of Veterinary Science and Animal Husbandry Teaching Veterinary Clinical Complex, Navsari, Gujarat, India","The present study was carried out in the region of South Gujarat, India, to determine the prevalence and predisposing factors of canine parvovirus-2 (CPV-2) infection in acute gastroenteritis of pups. Further, haemagglutination (HA) test, enzyme linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) and rapid immunochromatography test were compared for diagnosis and prevalent CPV-2 types were ascertained. A total of 73 diarrhoea samples were collected and out of those 32, 33 and 35 were found positive via HA, ELISA and PCR, respectively. In rapid test, 26/52 samples were found positive. Among different age-groups, 11/24 and 13/21 animals were positive in pups aged 4-8 and 8-12 weeks, respectively. All but one (34/35) positive samples were from unvaccinated animals. Labrador was found to be the most susceptible breed (n = 13) to infection. Considering PCR as the best test, 47.94% (35/73) prevalence of CPV was recorded. Among PCR positive samples, 3 and 32 belonged to type CPV-2a and CPV-2b, respectively. Type CPV-2c was not detected among the examined samples. Sequencing analysis of 9/10 CPV-2b isolates revealed single nucleotide polymorphism (SNP) (A-G) at position 4106 (alanine to threonine) and suggested the occurrence of mutant, new CPV-2b in this area. As other major pathogen canine coronavirus was detected in 7/38 CPV negative samples. Conclusively, CPV-2 infection was detected in 47.97% cases of AGE of pups which warrants search for other pathogens in the diagnostic procedure. This work is among the few recent reports which depict the occurrence of a novel mutant (new CPV-2b) in India. © 2018, University of Veterinary and Pharmaceutical Sciences. All rights reserved.","Canine coronavirus; New CPV-2b; Polymerase chain reaction; Sequencing; Variant","acute gastroenteritis; age; Article; Canine coronavirus; Canine parvovirus; Canine parvovirus 2; Canine parvovirus 2 infection; Canine parvovirus 2a; Canine parvovirus 2b; controlled study; diarrhea; disease predisposition; dog; enzyme linked immunosorbent assay; feces analysis; female; gene sequence; hemagglutination inhibition test; hemagglutination test; immunoaffinity chromatography; infection sensitivity; Labrador retriever; male; nonhuman; parvovirus infection; polymerase chain reaction; prevalence; restriction mapping; sequence alignment; sequence analysis; single nucleotide polymorphism; vaccination; virus characterization","Amrani, N., Desario, C., Kadiri, A., Cavalli, A., Berrada, J., Zro, K., Sebbar, G., Decaro, N., Molecular epidemiology of canine parvovirus in Morocco (2016) Infect Genet Evol, 41, pp. 201-206; Buonavoglia, C.V., Martella, A., Pratelli, M., Tempesta, A., Cavalli, D., Bozzo, G., Decaro, N., Carmichael, L.E., Evidence for evolution of canine parvovirus type-2 in Italy (2001) J Gen Virol, 82, pp. 1555-1560; Chinchkar, S., Subramanian, B.M., Rao, H.N., Rangarajan, P.N., Thiagarajan, D., Srinivasan, V.A., Analysis of VP2 gene sequences of canine parvovirus isolates in India (2006) Arch Virol, 151, pp. 1881-1888; Decaro, N., Campolo, M., Desario, C., Elia, G., Martella, V., Ricci, D., Lorusso, E., Buonavoglia, C., Maternally-derived antibodies in pups and protection from canine parvovirus infection (2005) Biologicals, 33, pp. 261-267; Decaro, N., Desario, C., Elia, G., Campolo, M., Lorusso, M., Mari, V., Martella, V., Buonavoglia, C., Occurrence of severe gastroenteritis in pups after canine parvovirus vaccine administration: A clinical and laboratory diagnostic dilemma (2007) Vaccine, 25, pp. 1161-1166; Decaro, N., Cirone, F., Desario, C., Elia, G., Lorusso, E., Colaianni, M.L., Martella, V., Buonavoglia, C., Severe parvovirus in a 12-year-old dog that had been repeatedly vaccinated (2009) Vet Rec, 164, pp. 593-595; Decaro, N., Desario, C., Beall, M.J., Cavalli, A., Campolo, A., Dimarco, A.A., Amorisco, F., Buonavoglia, C., Detection of canine parvovirus type 2c by a commercially available in-house rapid test (2010) Vet J, 184, pp. 373-375; Decaro, N., Buonavoglia, C., Canine parvovirus-A review of epidemiological and diagnostic aspects, with emphasis on type 2c (2012) Vet Microbiol, 155, pp. 1-12; Decaro, N., Desario, C., Billi, M., Lorusso, E., Colaianni, M.L., Colao, V., Elia, G., Buonavoglia, C., Evaluation of an in-clinic assay for the diagnosis of canine parvovirus (2013) Vet J, 198, pp. 504-507; Decaro, N., Buonavoglia, C., Canine parvovirus post-vaccination shedding: Interference with diagnostic assays and correlation with host immune status (2017) Vet J, 221, pp. 23-24; Desario, C., Decaro, N., Campolo, M., Cavalli, A., Cirone, F., Elia, G., Martella, V., Buonavoglia, C., Canine parvovirus infection: Which diagnostic test for virus? (2005) J Virol Methods, 126, pp. 179-185; Dowgier, G., Lorusso, E., Decaro, N., Desario, C., Mari, V., Lucente, M.S., Lanave, G., Elia, G., A molecular survey for selected viral enteropathogens revealed a limited role of canine circovirus in the development of canine acute gastroenteritis (2017) Vet Microbiol, 204, pp. 54-58; Filipov, C., Desario, C., Patouchas, O., Eftimov, P., Gruichev, G., Manov, V., Filipov, G., Decaro, N., A ten-year molecular survey on parvoviruses infecting carnivores in Bulgaria (2016) Transbound Emerg Dis, 63, pp. 460-464; Houston, D.M., Ribble, C.S., Lead, L.L., Risk factors associated with parvovirus enteritis in the canine parvovirus of dogs (1996) J am Vet Med Assoc, 208, pp. 542-548; Ju, C., Cheng, Y., Ji, Y., Wang, Y., Sun, L., Huang, J., Genome sequence of canine parvovirus strain SC02/2011, isolated from a puppy with severe diarrhea in south China (2012) J Virol, 86, p. 13805; Kaur, G., Chandra, M., Dwivedi, P.N., Sharma, N.S., Antigenic typing of canine parvovirus using differential PCR (2014) Virus Dis, 25, pp. 481-487; Kumar, M., Chidri, S., Nandi, S., A sensitive method to detect canine parvoviral DNA in faecal samples by nested polymerase chain reaction (2011) Indian J Biotechnol, 10, pp. 183-187; Kumar, M., Nandi, S., Molecular typing of canine parvovirus variants by polymerase chain reaction and restriction enzyme analysis (2010) Transbound Emerg Dis, 57, pp. 458-463; Kumar, M., Nandi, S., Chidri, S., Development of a polyclonal antibody-based AC-ELISA and its comparison with PCR for diagnosis of canine parvovirus infection (2010) Virol Sin, 25, pp. 352-360; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874; Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685; Martella, V., Decaro, N., Elia, G., Buonavoglia, C., Surveillance activity for canine parvovirus in Italy (2005) J Vet Med B, 52, pp. 312-315; Martella, V., Decaro, N., Buonavoglia, C., Genetic and antigenic variation of CPV-2 and implication for antigenic/genetic characterization (2006) Virus Genes, 33, pp. 11-13; Mira, F., Purpari, G., Lorusso, E., Di Bella, S., Gucciardi, F., Desario, C., Macaluso, G., Guercio, A., Introduction of Asian canine parvovirus in Europe through dog importation (2018) Transbound Emerg Dis, 65, pp. 16-21; Mochizuki, M., Sangabriel, M.C., Nakatani, H., Yoshida, M., Harasawa, R., Comparison of polymerase chain reaction with virus isolation and haemagglutination assays for the detection of canine parvoviruses in faecal specimens (1993) Res Vet Sc, 55, pp. 60-63; Nandi, S., Chidri, S., Kumar, M., Chauhan, R.S., Occurrence of canine parvovirus type 2c in the dogs with haemorrhagic enteritis in India (2010) Res Vet Sci, 88, pp. 169-171; Nandi, S., Kumar, M., Canine parvovirus: Current perspective (2010) Indian J Virol, 21, pp. 31-44; Nookala, M., Mukhopadhyay, H.K., Sivaprakasam, A., Balasubramanian, B., Prabhakar, X.A., Thanislass, J., Srinivas, M.V., Pillai, R.M., Full-length VP2 gene analysis of canine parvovirus reveals emergence of newer variants in India (2016) Acta Microbiol Immunol Hung, 63, pp. 411-426; Parrish, C.R., Aquadro, C.F., Carmichael, L.E., Canine host range and a specific epitope map along with variant sequences in the capsid protein gene of canine parvovirus and related feline, mink, and raccoon parvoviruses (1988) Virology, 16, pp. 293-307; Parthiban, S., Mukhopadhyay, H.K., Antony, P.X., Pillai, R.M., Molecular typing of canine parvovirus occurring in Pondicherry by Multiplex PCR and PCR-RFLP (2010) Indian J Virol, 21, pp. 86-89; Parthiban, M., Saranya, R., Divya, K.C., Kumanan, K., Detection of antigenic variation of canine parvovirus strains of Tamilnadu using differential PCR (2012) Indian J Anim Sc, 82, pp. 237-239; Pereira, C.A., Monezi, T.A., Mehnert, D.U., D’Angelo, M., Durigon, E.L., Molecular characterization of canine parvovirus in Brazil by polymerase chain reaction assay (2000) Vet Microbiol, 75, pp. 127-133; Reed, A.P., Jones, E.V., Miller, T.J., Nucleotide sequence and genome organization of canine parvovirus (1988) J Virol, 62, pp. 266-276; Rimmelzwaan, G.F., Groen, J., Egberink, H., Borst, G.H.A., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E., The use of enzyme-linked immunosorbent assay systems for serology and antigen detection in parvovirus, corona virus and rota virus infections in dogs in Netherlands (1991) Vet Microbiol, 26, pp. 25-40; Sharma, S., Dhar, P., Thakur, A., Sharma, V., Sharma, M., First detection of canine parvovirus type 2b from diarrheic dogs in Himachal Pradesh (2016) Vet World, 9, pp. 964-969; Singh, D., Verma, A.K., Kumar, A., Phylogenetic analysis of canine parvovirus isolates from Mathura (2014) India. Vet Arhiv, 84, pp. 505-512; Srinivas, V.M.V., Mukhopadhyay, H.K., Thanislass, J., Antony, P.X., Pillai, R.M., Molecular epidemiology of canine parvovirus in southern India (2013) Vet World, 6, pp. 744-749; Wu, J., Gao, X.T., Hou, S.H., Guo, X.Y., Yang, X.S., Yuan, W.F., Xin, T., Jia, H., Molecular epidemiological and phylogenetic analyses of canine parvovirus in domestic dogs and cats in Beijing, 2010-2013 (2015) J Vet Med Sci, 77, pp. 1305-1310","Sharma, K.K.; College of Veterinary Science and Animal Husbandry Sardarkrushinagar, Dantiwada Agricultural University, Gujarat, BK, India; email: kishan12sharma@rediffmail.com",,"University of Veterinary and Pharmaceutical Sciences",00017213,,,,"English","Acta Vet. Brno",Article,"Final",Open Access,Scopus,2-s2.0-85055251094 "Nyiro J.U., Munywoki P., Kamau E., Agoti C., Gichuki A., Etyang T., Otieno G., James Nokes D.","8860421400;26533067900;57192954963;36489084300;57207763029;56884815100;56897265600;7006232828;","Surveillance of respiratory viruses in the outpatient setting in rural coastal Kenya: Baseline epidemiological observations [version 1; referees: 2 approved]",2018,"Wellcome Open Research","3",, 89,"","",,5,"10.12688/wellcomeopenres.14662.1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062891042&doi=10.12688%2fwellcomeopenres.14662.1&partnerID=40&md5=cad57cc975e51908b147c3a5beea1c25","Virus Epidemiology and Control, Kilifi, +254, Kenya; Pwani University, Kilifi, +254, Kenya; School of Life Sciences and Zeeman Institue of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Conventry, United Kingdom","Nyiro, J.U., Virus Epidemiology and Control, Kilifi, +254, Kenya; Munywoki, P., Virus Epidemiology and Control, Kilifi, +254, Kenya, Pwani University, Kilifi, +254, Kenya; Kamau, E., Virus Epidemiology and Control, Kilifi, +254, Kenya; Agoti, C., Virus Epidemiology and Control, Kilifi, +254, Kenya, Pwani University, Kilifi, +254, Kenya; Gichuki, A., Virus Epidemiology and Control, Kilifi, +254, Kenya; Etyang, T., Virus Epidemiology and Control, Kilifi, +254, Kenya; Otieno, G., Virus Epidemiology and Control, Kilifi, +254, Kenya; James Nokes, D., Virus Epidemiology and Control, Kilifi, +254, Kenya, Pwani University, Kilifi, +254, Kenya, School of Life Sciences and Zeeman Institue of Systems Biology and Infectious Disease Research (SBIDER), University of Warwick, Conventry, United Kingdom","Background: Endemic and seasonally recurring respiratory viruses are a major cause of disease and death globally. The burden is particularly severe in developing countries. Improved understanding of the source of infection, pathways of spread and persistence in communities would be of benefit in devising intervention strategies. Methods: We report epidemiological data obtained through surveillance of respiratory viruses at nine outpatient health facilities within the Kilifi Health and Demographic Surveillance System, Kilifi County, coastal Kenya, between January and December 2016. Nasopharyngeal swabs were collected from individuals of all ages presenting with acute respiratory infection (ARI) symptoms (up to 15 swabs per week per facility) and screened for 15 respiratory viruses using real-time PCR. Paediatric inpatient surveillance at Kilifi County Hospital for respiratory viruses provided comparative data. Results: Over the year, 5,647 participants were sampled, of which 3,029 (53.7%) were aged <5 years. At least one target respiratory virus was detected in 2,380 (42.2%) of the samples; the most common being rhinovirus 18.6% (1,050), influenza virus 6.9% (390), coronavirus 6.8% (387), parainfluenza virus 6.6% (371), respiratory syncytial virus (RSV) 3.9% (219) and adenovirus 2.7% (155). Virus detections were higher among <5-year-olds compared to older children and adults (50.3% vs 32.7%, respectively; χ 2 (1) =177.3, P=0.0001). Frequency of viruses did not differ significantly by facility (χ 2 (8) =13.38, P=0.072). However, prevalence was significantly higher among inpatients than outpatients in <5-year-olds for RSV (22.1% vs 6.0%; χ 2 (1) = 159.4, P=0.0001), and adenovirus (12.4% vs 4.4%, χ 2 (1) =56.6, P=0.0001). Conclusions: Respiratory virus infections are common amongst ARI outpatients in this coastal Kenya setting, particularly in young children. Rhinovirus predominance warrants further studies on the health and socio-economic implications. RSV and adenovirus were more commonly associated with severe disease. Further analysis will explore epidemiological transmission patterns with the addition of virus sequence data. © 2018 Nyiro JU et al.","Coastal Kenya; Nasopharyngeal samples; Outpatient; Real-time PCR; Respiratory viruses; Surveillance",,"Walker, C.L., Rudan, I., Liu, L., Global burden of childhood pneumonia and diarrhoea (2013) Lancet, 381 (9875), pp. 1405-1416; Nair, H., Simões, E.A., Rudan, I., Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: A systematic analysis (2013) Lancet, 381 (9875), pp. 1380-1390; Selwyn, B.J., The epidemiology of acute respiratory tract infection in young children: Comparison of findings from several developing countries (1990) Coordinated Data Group of BOSTID Researchers. Rev Infect Dis., 12, pp. S870-S888; Gilani, Z., Kwong, Y.D., Levine, O.S., A literature review and survey of childhood pneumonia etiology studies: 2000-2010 (2012) Clin Infect Dis, 54, pp. S102-S108; Berkley, J.A., Munywoki, P., Ngama, M., Viral etiology of severe pneumonia among Kenyan infants and children (2010) JAMA, 303 (20), pp. 2051-2057; Adegbola, R.A., Childhood pneumonia as a global health priority and the strategic interest of the Bill & Melinda Gates Foundation (2012) Clin Infect Dis, 54, pp. S89-S92; Scott, J.A., English, M., What are the implications for childhood pneumonia of successfully introducing Hib and Pneumococcal vaccines in developing countries? (2008) Plos Med, 5 (4); Russell, C.A., Jones, T.C., Barr, I.G., Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses (2008) Vaccine, 26, pp. D31-D34; Flannery, B., Clippard, J., Zimmerman, R.K., Early estimates of seasonal influenza vaccine effectiveness-United States, January 2015 (2015) MMWR Morb Mortal Wkly Rep, 64 (1), pp. 10-15; Jacobs, S.E., Lamson, D.M., St George, K., Human rhinoviruses (2013) Clin Microbiol Rev, 26 (1), pp. 135-162; Anderson, L.J., Dormitzer, P.R., Nokes, D.J., Strategic priorities for respiratory syncytial virus (RSV) vaccine development (2013) Vaccine, 31, pp. B209-B215; Nokes, D.J., Okiro, E.A., Ngama, M., Respiratory Syncytial Virus Epidemiology in a Birth Cohort from Kilifi District, Kenya: Infection during the First Year of Life (2004) J Infect Dis, 190 (10), pp. 1828-1832; English, M., Muhoro, A., Aluda, M., Outcome of delivery and cause-specific mortality and severe morbidity in early infancy: A Kenyan District Hospital birth cohort (2003) Am J Trop Med Hyg, 69 (2), pp. 228-232; Scott, J.A., Bauni, E., Moisi, J.C., Profile: The Kilifi Health and Demographic Surveillance System (KHDSS) (2012) Int J Epidemiol, 41 (3), pp. 650-657; (2013) Pocket Book of Hospital Care for Children: Guidelines for the Management of Common Childhood Illnesses, , WHO Press. 2nd ed Geneva; Chan, K.H., Peiris, J.S., Lim, W., Comparison of nasopharyngeal flocked swabs and aspirates for rapid diagnosis of respiratory viruses in children (2008) J Clin Virol, 42 (1), pp. 65-69; Gunson, R.N., Collins, T.C., Carman, W.F., Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions (2005) J Clin Virol, 33 (4), pp. 341-344; Hammitt, L.L., Kazungu, S., Welch, S., Added value of an oropharyngeal swab in detection of viruses in children hospitalized with lower respiratory tract infection (2011) J Clin Microbiol, 49 (6), pp. 2318-2320; Kamau, E., Agoti, C.N., Lewa, C.S., Recent sequence variation in probe binding site affected detection of respiratory syncytial virus group B by real-time RT-PCR (2017) J Clin Virol, 88, pp. 21-25; Nokes, D.J., Ngama, M., Bett, A., Incidence and severity of respiratory syncytial virus pneumonia in rural Kenyan children identified through hospital surveillance (2009) Clin Infect Dis, 49 (9), pp. 1341-1349; Onyango, C.O., Welch, S.R., Munywoki, P.K., Molecular epidemiology of human rhinovirus infections in Kilifi, coastal Kenya (2012) J Med Virol, 84 (5), pp. 823-831; Onyansgo, C.O., Njeru, R., Kazungu, S., Influenza surveillance among children with pneumonia admitted to a district hospital in coastal Kenya, 2007-2010 (2012) J Infect Dis, 206, pp. S61-S67; Owor, B.E., Masankwa, G.N., Mwango, L.C., Human metapneumovirus epidemiological and evolutionary patterns in Coastal Kenya, 2007-11 (2016) BMC Infect Dis, 16, p. 301; Baggett, H.C., Chittaganpitch, M., Thamthitiwat, S., Incidence and epidemiology of hospitalized influenza cases in rural Thailand during the influenza A (H1N1)pdm09 pandemic, 2009-2010 (2012) Plos One, 7 (11); Ahmed, J.A., Katz, M.A., Auko, E., Epidemiology of respiratory viral infections in two long-term refugee camps in Kenya, 2007-2010 (2012) BMC Infect Dis, 12, p. 7; Hazlett, D.T., Bell, T.M., Tukei, P.M., Viral etiology and epidemiology of acute respiratory infections in children in Nairobi, Kenya (1988) Am J Trop Med Hyg, 39 (6), pp. 632-640; Kiti, M.C., Kinyanjui, T.M., Koech, D.C., Quantifying age-related rates of social contact using diaries in a rural coastal population of Kenya (2014) Plos One, 9 (8); Mossong, J., Hens, N., Jit, M., Social contacts and mixing patterns relevant to the spread of infectious diseases (2008) Plos Med, 5 (3); Monto, A.S., Sullivan, K.M., Acute respiratory illness in the community. Frequency of illness and the agents involved (1993) Epidemiol Infect, 110 (1), pp. 145-160; Nyiro, J.U., Nokes, D.J., Otieno, G., Replication Data for: Surveillance of respiratory viruses in the outpatient setting in rural coastal Kenya: Baseline epidemiological observations (2018) Harvard Dataverse, 2. , V, UNF:6:4D9I073fM0F3LdQaGE7SVQ==,. Data Source","Nyiro, J.U.; Virus Epidemiology and ControlKenya; email: jnyiro@kemri-wellcome.org",,"F1000 Research Ltd",2398502X,,,,"English","Wellcome Open Res.",Article,"Final",Open Access,Scopus,2-s2.0-85062891042 "Hu F., Zhang Y.","35573609000;57192280268;","Expression profile and promoter analysis of HEPIS",2018,"Experimental and Therapeutic Medicine","15","1",,"569","575",,,"10.3892/etm.2017.5374","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035238111&doi=10.3892%2fetm.2017.5374&partnerID=40&md5=097ee16cd1f63246ea4d4e82780b8e74","Department of Biological Information, College of Life Sciences, North China University of Science and Technology, Tangshan, China; Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei 063000, China","Hu, F., Department of Biological Information, College of Life Sciences, North China University of Science and Technology, Tangshan, China; Zhang, Y., Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei 063000, China","Human embryo lung cellular protein interacting with severe acute respiratory syndrome-coronavirus nonstructural protein-10 (HEPIS) is a novel transcriptional repressor, the expression profile and promoter activity of which have not been well studied. In the present study, in situ hybridization of RNA was used to study differential HEPIS expression levels in different types of cancer and normal tissues. A total of six truncated lengths of the HEPIS promoter regulatory sequences were cloned into the pGL3-basic vector, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and dual luciferase reporter assays were performed. The results of RT-qPCR demonstrated that HEPIS expression levels differed across four breast cancer cell lines. The results of the dual luciferase reporter assays revealed that the activities of the reporter gene fragments spanning -1334/+373, -1203/+373, -1060/+373 and -899/+373 bp were higher compared with the reporter gene fragments spanning -759/+373 and -279/+373 bp. A search of the transcription factor database TRANSFAC identified numerous octamer transcription factor-1 (OCT-1), nuclear factor (NF)-κB and C-JUN transcription factor binding sites located on the HEPIS promoter (pHEPIS). Furthermore, the results revealed that mutations of the OCT-1 (-1236/-1223 bp), NF-κB (-1186/-1176 bp) and C-JUN (-856/-846 bp) sites on the human pHEPIS resulted in a decrease in luciferase activity. A chromatin immunoprecipitation assay revealed that OCT-1, NF-κB and C-JUN bound to pHEPIS in a site-dependent manner at the basal state. The TRANSFAC database was used to analyze the pHEPIS of multiple species and several activator protein-1, NF-κB and OCT-1 transcription factor binding sites were predicted. In conclusion, the results of the present study suggest that HEPIS is expressed at different levels in multiple organs and breast cancer cell lines. Furthermore, these findings indicate that OCT-1, NF-κB and C-JUN transcription factors are associated with transcriptional regulation of the HEPIS gene. © 2018, Spandidos Publications. All rights reserved.","Core promoter; Expression profile; Human embryo lung cellular protein interacting with severe acute respiratory syndrome-coronavirus nonstructural protein-10; Transcriptional regulation","HEPIS protein; immunoglobulin enhancer binding protein; octamer transcription factor 1; peptides and proteins; protein c jun; unclassified drug; agar gel electrophoresis; Article; breast cancer cell line; chromatin immunoprecipitation; controlled study; gene mutation; genetic analysis; genetic transfection; histopathology; human; human cell; human tissue; immunohistochemistry; in situ hybridization; luciferase assay; major clinical study; malignant neoplasm; phylogenetic tree; plasmid; protein expression; reverse transcription polymerase chain reaction; SARS coronavirus","Hong, M., Li, W., Wang, L., Jiang, L., Liu, L., Zhao, H., Li, Q., Identification of a novel transcriptional repressor (HEPIS) that interacts with nsp-10 of SARS coronavirus (2008) Viral Immunol, 21, pp. 153-162; Sawicki, S.G., Sawicki, D.L., Younker, D., Meyer, Y., Thiel, V., Stokes, H., Siddell, S.G., Functional and genetic analysis of coronavirus replicase-transcriptase proteins (2005) Plos Pathog, 1; Edwards, R., Machina, A., McGregor, G., Van Den Driessche, P., A modelling framework for gene regulatory networks including transcription and translation (2015) Bull Math Biol, 77, pp. 953-983; Shanmugam, M.K., Nguyen, A.H., Kumar, A.P., Tan, B.K., Sethi, G., Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer (2012) Cancer Lett, 320, pp. 158-170; Sterling, K., Bresnick, E., Oct-1 transcription factor is a negative regulator of rat CYP1A1 expression via an octamer sequence in its negative regulatory element (1996) Mol Pharmacol, 49, pp. 329-337; Lee, M.C., Toh, L.L., Yaw, L.P., Luo, Y., Drosophila octamer elements and Pdm-1 dictate the coordinated transcription of core histone genes (2010) J Biol Chem, 285, pp. 9041-9053; Wang, P., Wang, Q., Sun, J., Wu, J., Li, H., Zhang, N., Huang, Y., Liu, L., POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP (2009) J Biol Chem, 284, pp. 26456-26465; Malin, S., Linderson, Y., Almqvist, J., Ernberg, I., Tallone, T., Pettersson, S., DNA-dependent conversion of Oct-1 and Oct-2 into transcriptional repressors by Groucho/TLE (2005) Nucleic Acids Res, 33, pp. 4618-4625; Zhou, C., Tong, Y., Wawrowsky, K., Bannykh, S., Donangelo, I., Melmed, S., Oct-1 induces pituitary tumor transforming gene expression in endocrine tumors (2008) Endocr-Relat Cancer, 15, pp. 817-831; Obinata, D., Takayama, K., Urano, T., Murata, T., Kumagai, J., Fujimura, T., Ikeda, K., Ouchi, Y., Oct1 regulates cell growth of LNCaP cells and is a prognostic factor for prostate cancer (2012) Int J Cancer, 130, pp. 1021-1028; Wang, Z., Zhu, S., Shen, M., Liu, J., Wang, M., Li, C., Wang, Y., Mei, Q., STAT3 is involved in esophageal carcinogenesis through regulation of Oct-1 (2013) Carcinogenesis, 34, pp. 678-688; Wang, Y.P., Song, G.H., Chen, J., Xiao, C., Li, C., Zhong, L., Sun, X., Yu, F.D., Elevated OCT1 participates in colon tumorigenesis and independently predicts poor prognoses of colorectal cancer patients (2016) Tumour Biol, 37, pp. 3247-3255; Karin, M., Ben-Neriah, Y., Phosphorylation meets ubiquitination: The control of NF-[kappa] B activity (2000) Annu Rev Immunol, 18, pp. 621-663; Gebel, H.M., Braun, D.P., Tambur, A., Frame, D., Rana, N., Dmowski, W.P., Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis (1998) Fertil Steril, 69, pp. 1042-1047; Huxford, T., Malek, S., Ghosh, G., Structure and mechanism in NF-kappa B/I kappa B signaling (1999) Cold Spring Harb Symp Quant Biol, 64, pp. 533-540; Baldwin, A.S., Jr., The NF-kappa B and I kappa B proteins: New discoveries and insights (1996) Annu Rev Immunol, 14, pp. 649-683; Shaulian, E., Karin, M., AP-1 in cell proliferation and survival (2001) Oncogene, 20, pp. 2390-2400; Eferl, R., Wagner, E.F., AP-1: A double-edged sword in tumorigenesis (2003) Nat Rev Cancer, 3, pp. 859-868; Li, G.C., Gustafson-Brown, C., Hanks, S.K., Nason, K., Arbeit, J.M., Pogliano, K., Wisdom RM and Johnson RS: C-Jun is essential for organization of the epidermal leading edge (2003) Dev Cell, 4, pp. 865-877; Shen, G., Jeong, W.S., Hu, R., Kong, A.N., Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents (2005) Antioxid Redox Signal, 7, pp. 1648-1663; Hu, F., Yang, S., Lv, S., Peng, Y., Meng, L., Gou, L., Zhang, X., Analysis of AC3-33 gene expression in multiple organ cancer and adjacent normal tissue by RNA in situ hybridization (2015) Oncol Lett, 9, pp. 2795-2798; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408; Hu, F., Meng, Y., Gou, L., Zhang, X., Analysis of promoters and CREB/AP-1 binding sites of the human TMEM174 gene (2013) Exp Ther Med, 6, pp. 1290-1294; Denijn, M., Schuurman, H.J., Jacobse, K.C., De Weger, R.A., In situ hybridization: A valuable tool in diagnostic pathology (1992) APMIS, 100, pp. 669-681; Vale, G., Dell’Orto, P., Non-radioactive nucleic acid probes: Labeling and detection procedures (1992) Liver, 12, pp. 243-251; Farnham, P.J., Insights from genomic profiling of transcription factors (2009) Nat Rev Genet, 10, pp. 605-616","Hu, F.; Department of Biological Information, College of Life Sciences, North China University of Science and Technology, 57 Jianshenan Road, China; email: ihufen@126.com",,"Spandidos Publications",17920981,,,,"English","Exp. Ther. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85035238111 "Srivastava S., Kamthania M., Singh S., Saxena A.K., Sharma N.","57204877182;55479937900;57212237916;36129194200;57209914934;","Structural basis of development of multi-epitope vaccine against middle east respiratory syndrome using in silico approach",2018,"Infection and Drug Resistance","11",,,"2377","2391",,,"10.2147/IDR.S175114","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057620981&doi=10.2147%2fIDR.S175114&partnerID=40&md5=e4df49c3b803488e074050c2a90c4bc3","Department of Biotechnology, Mangalayatan University, Aligarh, India; Molecular Medicine Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Department of Biotechnology, Faculty of Life Sciences, Institute of Applied Medicines and Research, Ghaziabad, Uttar Pradesh, India","Srivastava, S., Department of Biotechnology, Mangalayatan University, Aligarh, India, Molecular Medicine Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Kamthania, M., Department of Biotechnology, Mangalayatan University, Aligarh, India, Department of Biotechnology, Faculty of Life Sciences, Institute of Applied Medicines and Research, Ghaziabad, Uttar Pradesh, India; Singh, S., Department of Biotechnology, Mangalayatan University, Aligarh, India; Saxena, A.K., Molecular Medicine Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Sharma, N., Department of Biotechnology, Mangalayatan University, Aligarh, India","Background: Middle East respiratory syndrome (MERS) is caused by MERS coronavirus (MERS-CoV). Thus far, MERS outbreaks have been reported from Saudi Arabia (2013 and 2014) and South Korea (2015). No specific vaccine has yet been reported against MERS. Purpose: To address the urgent need for an MERS vaccine, in the present study, we have designed two multi-epitope vaccines (MEVs) against MERS utilizing several in silico methods and tools. Methods: The design of both the multi-epitope vaccines (MEVs) are composed of cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) epitopes, screened form thirteen different proteins of MERS-CoV. Both the MEVs also carry potential B-cell linear epitope regions, B-cell discontinuous epitopes as well as interferon-γ-inducing epitopes. Human β-defensin-2 and β-defensin-3 were used as adjuvants to enhance the immune response of MEVs. To design the MEVs, short peptide molecular linkers were utilized to link screened most potential CTL epitopes, HTL epitopes and the adjuvants. Tertiary models for both the MEVs were generated, refined, and further studied for their molecular interaction with toll-like receptor 3. The cDNAs of both MEVs were generated and analyzed in silico for their expression in a mammalian host cell line (human). Results: Screened CTL and HTL epitopes were found to have high propensity for stable molecular interaction with HLA alleles molecules. CTL epitopes were also found to have favorable molecular interaction within the cavity of transporter associated with antigen processing. The selected CTL and HTL epitopes jointly cover upto 94.0% of worldwide human population. Both the CTL and HTL MEVs molecular models have shown to have stable binding and complex formation propensity with toll-like receptor 3. The cDNA analysis of both the MEVs have shown high expression tendency in mammalian host cell line (human). Conclusion: After multistage in silico analysis, both the MEVs are predicted to elicit humoral as well as cell mediated immune response. Epitopes of the designed MEVs are predicted to cover large human population worldwide. Hence both the designed MEVs could be tried in vivo as potential vaccine candidates against MERS. © 2018 Srivastava et al.","Epitope; Human transporter associated with antigen processing; Immunoinformatics; MD simulation; MERS; MERS-CoV; Middle east respiratory syndrome; Middle east respiratory syndrome coronavirus; Molecular docking; Molecular dynamics simulation; Multi-epitope vaccine; TAP; TLR-3; Toll-like receptor 3","beta defensin 2; beta defensin 3; complementary DNA; epitope; gamma interferon; HLA antigen; immunological adjuvant; Middle East respiratory syndrome multi epitope vaccine; toll like receptor 3; unclassified drug; virus vaccine; antigen binding cell; antigen presentation; Article; B lymphocyte; cellular immunity; complex formation; computer model; cytotoxic T lymphocyte; drug design; drug screening; helper cell; human; human cell; immune response; in vivo study; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; molecular docking; molecular dynamics; molecular interaction; molecular model; nonhuman; structural model","(2016), www.who.int/emergencies/mers-cov/mers-summary-2016.pdf, Accessed May 20, 2018; Assiri, A., McGeer, A., Perl, T.M., KSA MERS-CoV Investigation Team. Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med Overseas Ed, 369 (5), pp. 407-416; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah – a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Park, J.W., Lee, K.J., Lee, K.H., Hospital Outbreaks of Middle East Respiratory Syndrome, Daejeon, South Korea, 2015 (2017) Emerg Infect Dis, 23 (6), pp. 898-905; Kim, K.M., Ki, M., Cho, S.I., Epidemiologic features of the first MERS outbreak in Korea: Focus on Pyeongtaek St. Mary’s Hospital (2015) Epidemiol Health, 37; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol Health, 37; Emergencies Preparedness, Reponse: Coronavirus Infections, , http://www.who.int/csr/don/25-october-2015-mers-korea/en/, [cited October 25, 2015], Accessed May 20, 2018; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Xie, Q., He, X., Yang, F., Analysis of the genome sequence and prediction of B-cell epitopes of the envelope protein of Middle East respiratory syndrome-coronavirus (2018) IEEE/ACM Trans Comput Biol Bioinform, 15 (4), pp. 1344-1350; Wang, Y.S., Chang, C.K., Hou, M.H., Crystallographic analysis of the N-terminal domain of Middle East respiratory syndrome coronavirus nucleocapsid protein (2015) Acta Crystallogr F Struct Biol Commun, 71, pp. 977-980. , Pt 8; Lui, P.Y., Wong, L.Y., Fung, C.L., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg Microbes Infect, 5 (4), p. e39; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) Mbio, 8 (4), pp. e00665-17; Lei, J., Mesters, J.R., Drosten, C., Anemüller, S., Ma, Q., Hilgenfeld, R., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antiviral Res, 109, pp. 72-82; Tomar, S., Johnston, M.L., St John, S.E., Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS (2015) J Biol Chem, 290 (32), pp. 19403-19422; Lei, J., Hilgenfeld, R., Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin (2016) Virol Sin, 31 (4), pp. 288-299; Lu, R., Zou, L., Wang, Y., Sequencing and Phylogenetic Analyses of Structural and Accessory Proteins of Middle East Respiratory Syndrome Coronavirus from the First Imported Case in China, 2015 (2015) Bing Du Xue Bao, 31 (4), pp. 333-340. , Chinese; Wilson, S.S., Wiens, M.E., Smith, J.G., Antiviral mechanisms of human defensins (2013) J Mol Biol, 425 (24), pp. 4965-4980; Duits, L.A., Nibbering, P.H., van Strijen, E., Rhinovirus increases human β-defensin-2 and-3 mRNA expression in cultured bronchial epithelial cells (2003) Pathogens and Disease, 38 (1), pp. 59-64; Antoniou, A.N., Powis, S.J., Elliott, T., Assembly and export of MHC class I peptide ligands (2003) Curr Opin Immunol, 15 (1), pp. 75-81; Delneste, Y., Beauvillain, C., Jeannin, P., Innate immunity: Structure and function of TLRs (2007) Med Sci (Paris), 23 (1), pp. 67-73; Totura, A.L., Whitmore, A., Agnihothram, S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) Mbio, 6 (3), pp. e00638-15; Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling (2006) Bioinformatics, 22 (2), pp. 195-201; Tenzer, S., Peters, B., Bulik, S., Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding (2005) Cell Mol Life Sci, 62 (9), pp. 1025-1037; Peters, B., Bulik, S., Tampe, R., van Endert, P.M., Holzhütter, H.G., Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors (2003) J Immunol, 171 (4), pp. 1741-1749; Hoof, I., Peters, B., Sidney, J., NetMHCpan, a method for MHC class I binding prediction beyond humans (2009) Immunogenetics, 61 (1), pp. 1-13; Calis, J.J., Maybeno, M., Greenbaum, J.A., Properties of MHC class I presented peptides that enhance immunogenicity (2013) Plos Comput Biol, 9 (10); Wang, P., Sidney, J., Kim, Y., Peptide binding predictions for HLA DR, DP and DQ molecules (2010) BMC Bioinformatics, 11 (1), p. 568; Sidney, J., Assarsson, E., Moore, C., Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries (2008) Immunome Res, 4 (1), p. 2; Nielsen, M., Lundegaard, C., Lund, O., Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method (2007) BMC Bioinformatics, 8 (1), p. 238; Sturniolo, T., Bono, E., Ding, J., Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices (1999) Nat Biotechnol, 17 (6), pp. 555-561; Bui, H.H., Sidney, J., Dinh, K., Southwood, S., Newman, M.J., Sette, A., Predicting population coverage of T-cell epitope-based diagnostics and vaccines (2006) BMC Bioinformatics, 7, p. 153; Larsen, J.E., Lund, O., Nielsen, M., Improved method for predicting linear B-cell epitopes (2006) Immunome Res, 2 (2); Chou, P.Y., Fasman, G.D., Prediction of the secondary structure of proteins from their amino acid sequence (1978) Adv Enzymol Relat Areas Mol Biol, 47, pp. 45-148; Emini, E.A., Hughes, J.V., Perlow, D.S., Boger, J., Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide (1985) J Virol, 55 (3), pp. 836-839; Karplus, P.A., Schulz, G.E., Prediction of chain flexibility in proteins (1985) Naturwissenschaften, 72 (4), pp. 212-213; Kolaskar, A.S., Tongaonkar, P.C., A semi-empirical method for prediction of antigenic determinants on protein antigens (1990) FEBS Lett, 276 (1-2), pp. 172-174; Parker, J.M., Guo, D., Hodges, R.S., New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites (1986) Biochemistry, 25 (19), pp. 5425-5432; Kringelum, J.V., Lundegaard, C., Lund, O., Nielsen, M., Reliable B cell epitope predictions: Impacts of method development and improved benchmarking (2012) Plos Comput Biol, 8 (12); Ponomarenko, J., Bui, H.H., Li, W., ElliPro: A new structure-based tool for the prediction of antibody epitopes (2008) BMC Bioinformatics, 9, p. 514; Bui, H.H., Sidney, J., Li, W., Fusseder, N., Sette, A., Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines (2007) BMC Bioinformatics, 8, p. 361; Gupta, S., Kapoor, P., Chaudhary, K., In silico approach for predicting toxicity of peptides and proteins (2013) Plos One, 8 (9); Sievers, F., Wilm, A., Dineen, D., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega (2011) Mol Syst Biol, 7, p. 539; Benkert, P., Tosatto, S.C., Schomburg, D., QMEAN: A comprehensive scoring function for model quality assessment (2008) Proteins, 71 (1), pp. 261-277; Singh, S., Singh, H., Tuknait, A., PEPstrMOD: Structure prediction of peptides containing natural, non-natural and modified residues (2015) Biol Direct, 10, p. 73; Morris, G.M., Huey, R., Lindstrom, W., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J Comput Chem, 30 (16), pp. 2785-2791; Trott, O., Olson, A.J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) J Comput Chem, 31 (2), pp. 455-461; Abraham, M.J., Murtola, T., Schulz, R., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers (2015) Softwarex, 1-2 (2), pp. 19-25; Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids (1996) J am Chem Soc, 118 (45), pp. 11225-11236; Oldham, M.L., Grigorieff, N., Chen, J., Structure of the transporter associated with antigen processing trapped by herpes simplex virus (2016) Elife, 5; Hu, W., Li, F., Yang, X., A flexible peptide linker enhances the immunoreactivity of two copies HBsAg preS1 (21-47) fusion protein (2004) J Biotechnol, 107 (1), pp. 83-90; Hoover, D.M., Rajashankar, K.R., Blumenthal, R., The structure of human beta-defensin-2 shows evidence of higher order oligomerization (2000) J Biol Chem, 275 (42), pp. 32911-32918; Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahma-Tabadi, S.S., Ghasemi, Y., Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus (2017) Infect Genet Evol, 48, pp. 83-94; Chen, X., Zaro, J.L., Shen, W.C., Fusion protein linkers: Property, design and functionality (2013) Adv Drug Deliv Rev, 65 (10), pp. 1357-1369; Nagpal, G., Gupta, S., Chaudhary, K., Dhanda, S.K., Prakash, S., Raghava, G.P., Vaccine, D.A., Prediction, design and genome-wide screening of oligodeoxynucleotide-based vaccine adjuvants (2015) Sci Rep, 5; Dhanda, S.K., Vir, P., Raghava, G.P., Designing of interferon-gamma inducing MHC class-II binders (2013) Biol Direct, 8, p. 30; Saha, S., Raghava, G.P., AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes (2006) Nucleic Acids Res, 34 (Web Server), pp. W202-W209; Doytchinova, I.A., Flower, D.R., VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines (2007) BMC Bioinformatics, 8, p. 4; Gasteiger, E., Hoogland, C., Gattiker, A., Protein identification and analysis tools on the ExPASy server (2005) The Proteomics Protocols Handbook, pp. 571-607. , Walker JM, editor, Chicago, IL: Humana Press; Källberg, M., Wang, H., Wang, S., Template-based protein structure modeling using the RaptorX web server (2012) Nat Protoc, 7 (8), pp. 1511-1522; Ko, J., Park, H., Heo, L., Seok, C., GalaxyWEB server for protein structure prediction and refinement (2012) Nucleic Acids Res., 40. , http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE; Lovell, S.C., Davis, I.W., Arendall, W.B., 3Rd, Structure validation by Cal-pha geometry: Phi,psi and Cbeta deviation (2003) Proteins, 50 (3), pp. 437-450; Bell, J.K., Botos, I., Hall, P.R., The molecular structure of the Toll-like receptor 3 ligand-binding domain (2005) Proc Natl Acad Sci U S A, 102 (31), pp. 10976-10980; Duhovny, D., Nussinov, R., Wolfson, H.J., Efficient unbound docking of rigid molecules (2002) Proceedings of the 2’nd Workshop on Algorithms in Bioinformatics (WABI), 2452, pp. 185-200. , Guigó R, Gusfield D, editors, Rome: Lecture Notes in Computer Science; Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J., PatchDock and SymmDock: Servers for rigid and symmetric docking (2005) Nucleic Acids Res, 33 (Web Server), pp. W363-W367; Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M.R., Ghasemi, Y., Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches (2017) Mol Biosyst, 13 (4), pp. 699-713; Morla, S., Makhija, A., Kumar, S., Synonymous codon usage pattern in glycoprotein gene of rabies virus (2016) Gene, 584 (1), pp. 1-6; Wu, X., Wu, S., Li, D., Computational identification of rare codons of Escherichia coli based on codon pairs preference (2010) BMC Bioinformatics, 11 (1), p. 61; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2 (14); Robinson, J., Halliwell, J.A., Hayhurst, J.D., Flicek, P., Parham, P., Marsh, S.G., The IPD and IMGT/HLA database: Allele variant databases (2014) Nucleic Acids Research, 43 (D1), pp. D423-D431; Xu, D., Zhang, Y., Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-step Atomic-level Energy Mini-mization (2011) Biophys J, 101 (10), pp. 2525-2534","Srivastava, S.; Department of Biotechnology, Mangalayatan UniversityIndia; email: srivastav.sukrit@gmail.com",,"Dove Medical Press Ltd.",11786973,,,,"English","Infect. Drug Resist.",Article,"Final",Open Access,Scopus,2-s2.0-85057620981 "Curry S.M., Burrough E.R., Schwartz K.J., Yoon K.J., Lonergan S.M., Gabler N.K.","57191337702;35221228000;7201734898;7401607376;7003877889;6508204089;","Porcine epidemic diarrhea virus reduces feed efficiency in nursery pigs",2018,"Journal of Animal Science","96","1",,"85","97",,5,"10.1093/jas/skx005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042159514&doi=10.1093%2fjas%2fskx005&partnerID=40&md5=b294235542a8624062c77508b283b0f7","Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, United States","Curry, S.M., Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Burrough, E.R., Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, United States; Schwartz, K.J., Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, United States; Yoon, K.J., Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, United States; Lonergan, S.M., Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Gabler, N.K., Department of Animal Science, Iowa State University, Ames, IA 50011, United States","Porcine epidemic diarrhea virus (PEDV) infects enterocytes and in nursery pigs, results in diarrhea, anorexia, and reduced performance. Therefore, the objective of this study was to determine how PEDV infection influenced growth performance and repartitioning of amino acids and energy in nursery pigs. A total of 32 barrows and gilts, approximately 1 wk post-wean (BW = 8.46 ± 0.50 kg), and naïve for PEDV were obtained, weighed, and allotted based on sex and BW to one of two treatments: 1) Control, PEDV naïve and 2) PEDV-inoculated (PEDV) with eight pens of two pigs each per treatment. On day post-inoculation (dpi) 0, PEDV pigs were inoculated via intragastric gavage with PEDV isolate (USA/Iowa/18984/2013). Pig and feeder weights were recorded at dpi −7, 0, 5, and 20 in order to calculate ADG, ADFI, and G:F. Eight pigs per treatment were euthanized on dpi 5 and 20, and tissues and blood were collected. At dpi 5, all PEDV pigs were PCR positive for PEDV in feces. Overall, PEDV pigs tended (P < 0.10) to increase ADFI, which resulted in reduced (P < 0.05) feed efficiency. At dpi 5, PEDV pigs had reduced (P < 0.05) villus height and increased (P < 0.05) stem cell proliferation in the jejunum compared with Control pigs. Pigs inoculated with PEDV had increased (P < 0.05) serum haptoglobin and increased insulin-to-glucose ratios compared with Control pigs at dpi 5. Markers of muscle proteolysis were not different (P > 0.05) between treatments within dpi; however, at dpi 5, 20S proteasome activity was increased (P < 0.05) in longissimus dorsi of PEDV pigs compared with Control pigs. Liver and jejunum gluconeogenic enzyme activities were not different (P > 0.05) between treatments within dpi. Overall, PEDV-inoculated pigs did recover the absorptive capacity that was reduced during PEDV infection by increasing proliferation of intestinal stem cells. However, the energy and nutrients needed to recover the epithelium may be originating from available luminal nutrients instead of muscle proteolysis and gluconeogenesis. This study provides insight into the effects of an enteric coronavirus on postabsorptive metabolism in nursery pigs. © The Author(s) 2018.","Feed efficiency; Gluconeogenesis; Metabolism; Pig; Porcine epidemic diarrhea virus; Skeletal muscle","amino acid; animal; cell proliferation; Coronavirus infection; diarrhea; energy metabolism; feces; female; genetics; isolation and purification; jejunum; male; metabolism; physiology; pig; Porcine epidemic diarrhea virus; stem cell; swine disease; veterinary; virology; weaning; Amino Acids; Animals; Cell Proliferation; Coronavirus Infections; Diarrhea; Energy Metabolism; Feces; Female; Jejunum; Male; Porcine epidemic diarrhea virus; Stem Cells; Swine; Swine Diseases; Weaning","Bee, G., Anderson, A.L., Lonergan, S.M., Huff-Lonergan, E., Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork (2007) Meat Sci, 76, pp. 359-365; Burrin, D.G., Stoll, B., Metabolic fate and function of dietary glutamate in the gut (2009) Am. J. Clin. Nutr., 90, pp. 850S-856S; Coleman, W., Dubois, E.F., Seventh paper calorimetric observations on the metabolism of typhoid patients with and without food (1915) Arch. Intern. Med., 15, pp. 887-938; Croset, M., Rajas, F., Zitoun, C., Hurot, J.-M., Montano, S., Mithieux, G., Rat small intestine is an insulin-sensitive gluconeogenic organ (2001) Diabetes, 50, pp. 740-746; Cruzen, S.M., Harris, A.J., Hollinger, K., Punt, R.M., Grubbs, J.K., Selsby, J.T., Dekkers, J.C.M., Huff-Lonergan, E., Evidence of decreased muscle protein turnover in gilts selected for low residual feed intake1 (2013) J. Anim. Sci., 91, pp. 4007-4016; Curry, S.M., Gibson, K.A., Burrough, E.R., Schwartz, K.J., Yoon, K.J., Gabler, N.K., Nursery pig growth performance and tissue accretion modulation due to porcine epidemic diarrhea virus or porcine deltacoronavirus challenge (2017) J. Anim. Sci, 95, pp. 1-9; Curry, S.M., Schwartz, K.J., Yoon, K.J., Gabler, N.K., Burrough, E.R., Effects of porcine epidemic diarrhea virus infection on nursery pig intestinal function and barrier integrity (2017) Vet. Microbiol., 211, pp. 58-66; Davies, P.R., One world, one health: The threat of emerging swine diseases. A North American perspective (2012) Transbound. Emerg. Dis, 59, pp. 18-26; Davis, T.A., Nguyen, H.V., Suryawan, A., Bush, J.A., Jefferson, L.S., Kimball, S.R., Developmental changes in the feeding-induced stimulation of translation initiation in muscle of neonatal pigs (2000) Am. J. Physiol. Endocrinol. Metab, 279, pp. E1226-E1234; Hagbom, M., Istrate, C., Engblom, D., Karlsson, T., Rodriguez-Diaz, J., Buesa, J., Taylor, J.A., Ahlman, H., Rotavirus stimulates release of serotonin (5-HT) from human entero-chromaffin cells and activates brain structures involved in nausea and vomiting (2011) Plos. Pathog., 7; Hasselgren, P.-O., Catabolic response to stress and injury: Implications for regulation (2000) World. J. Surg., 24, pp. 1452-1459; Hasselgren, P.O., Warner, B.W., James, J.H., Takehara, H., Fischer, J.E., Effect of insulin on amino acid uptake and protein turnover in skeletal muscle from septic rats. Evidence for insulin resistance of protein breakdown (1987) Arch. Surg., 122, pp. 228-233; Hoang, H., Killian, M.L., Madson, D.M., Arruda, P.H., Sun, D., Schwartz, K.J., Yoon, K.J., Full-length genome sequence of a plaque-cloned virulent porcine epidemic diarrhea virus isolate (USA/Iowa/18984/2013) from a Midwestern U.S. swine herd (2013) Genome. Announc., 1; Holloway, G., Coulson, B.S., Innate cellular responses to rotavirus infection (2013) J. Gen. Virol., 94, pp. 1151-1160; Humphrey, B., Klasing, K., Modulation of nutrient metabolism and homeostasis by the immune system (2004) Worlds. Poult. Sci. J., 60, pp. 90-100; Johnson, R.W., Immune and endocrine regulation of food intake in sick animals (1998) Domest. Anim. Endocrinol., 15, pp. 309-319; Jung, K., Annamalai, T., Lu, Z., Saif, L.J., Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs (2015) Vet. Microbiol., 178, pp. 31-40; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immu-noprophylaxis (2015) Vet. J., 204, pp. 134-143; Kandil, H.M., Argenzio, R.A., Chen, W., Berschneider, H.M., Stiles, A.D., Westwick, J.K., Rippe, R.A., Rhoads, J.M., L-glutamine and L-asparagine stimulate ODC activity and proliferation in a porcine jejunal enterocyte line (1995) Am. J. Physiol., 269, pp. G591-G599; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology, 460-461, pp. 180-193; Klasing, K.C., Johnstone, B.J., Monokines in growth and development (1991) Poult. Sci., 70, pp. 1781-1789; Lonergan, S.M., Huff-Lonergan, E., Schwartz, K., Schweer, W., Gabler, N.K., Viral challenges augment skeletal muscle proteolysis in growing pigs (2015) 61St International Congress of Meat Science and Technology, , http://icomst-proceed-ings.helsinki.fi/papers/2015_06_56.pdf, DigICoMST, Helsinki, Finland accessed June 20, 2017; Madson, D.M., Magstadt, D.R., Arruda, P.H., Hoang, H., Sun, D., Bower, L.P., Bhandari, M., Pillatzki, A.E., Pathogenesis of porcine epidemic diarrhea virus isolate (US/ Iowa/18984/2013) in 3-week-old weaned pigs (2014) Vet. Microbiol., 174, pp. 60-68; Mittelman, S., Bergman, R.N., Liver glucose production in health and diabetes (1998) Curr. Opin. Endocrinol. Diabetes. Obes., 5, pp. 126-135; Murray, M.J., Murray, A.B., Anorexia of infection as a mechanism of host defense (1979) Am. J. Clin. Nutr., 32, pp. 593-596; Neti, G., Novak, S.M., Thompson, V.F., Goll, D.E., Properties of easily releasable myofilaments: Are they the first step in myofibrillar protein turnover? (2009) Am. J. Physiol. Cell. Physiol., 296, pp. C1383-C1390; (2012) Nutrient Requirements of Swine, , 11th rev. ed. Washington, DC: Natl. Acad. Press; Orellana, R.A., Kimball, S.R., Nguyen, H.V., Bush, J.A., Suryawan, A., Thivierge, M.C., Jefferson, L.S., Davis, T.A., Regulation of muscle protein synthesis in neonatal pigs during prolonged endotoxemia (2004) Pediatr. Res., 55, pp. 442-449; Pringle, T.D., Calkins, C.R., Koohmaraie, M., Jones, S.J., Effect over time of feeding a β-adrenergic agonist to wether lambs on animal performance, muscle growth, endogenous muscle proteinase activities, and meat tenderness (1993) J. Anim. Sci., 71, pp. 636-644; Reeds, P.J., Fjeld, C.R., Jahoor, F., Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? (1994) J. Nutr., 124, pp. 906-910; Rhoads, J.M., Corl, B.A., Harrell, R., Niu, X., Gatlin, L., Phillips, O., Blikslager, A., Odle, J., Intestinal ribosomal p70(S6K) signaling is increased in piglet rotavirus enteritis (2007) Am. J. Physiol. Gastrointest. Liver. Physiol., 292, pp. G913-G922; Schweer, W.P., Pearce, S.C., Burrough, E.R., Schwartz, K., Yoon, K.J., Sparks, J.C., Gabler, N.K., The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs II: Intestinal integrity and function (2015) J. Anim. Sci., 94, pp. 523-532; Schweer, W.P., Schwartz, K., Burrough, E.R., Yoon, K.J., Sparks, J.C., Gabler, N.K., The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs I: Growth performance and digestibility (2015) J. Anim. Sci., 94, pp. 514-522; Scrimshaw, N.S., Effect of infection on nutrient requirements (1977) Am. J. Clin. Nutr., 30, pp. 1536-1544; Snell, K., Muscle alanine synthesis and hepatic gluconeogenesis (1980) Biochem. Soc. Trans., 8, pp. 205-213; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Schmitt, B.J., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Invest., 25, pp. 649-654; Ueda, I., Wada, T., Determination of inorganic phosphate by the molybdovanadate method in the presence of ATP and some interfering organic bases (1970) Anal. Biochem., 37, pp. 169-174; Watford, M., Is the small intestine a gluconeogenic organ (2005) Nutr. Rev., 63, pp. 356-360; Williams, A.B., Decourten-Myers, G.M., Fischer, J.E., Luo, G., Sun, X., Hasselgren, P.O., Sepsis stimulates release of myofilaments in skeletal muscle by a calci-um-dependent mechanism (1999) FASEB J, 13, pp. 1435-1443; Wimmer, M., A bioluminescent assay for the determination of phosphoenolpyruvate carboxykinase activity in nano-gram-sized tissue samples (1988) Anal. Biochem., 170, pp. 376-381; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavi-rus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Zamir, O., Hasselgren, P.-O., Higashiguchi, T., Frederick, J.A., Fischer, J.E., Tumour necrosis factor (TNF) and interleukin-1 (IL-1) induce muscle proteolysis through different mechanisms (1992) Mediators. Inflamm., 1, pp. 247-250","Gabler, N.K.; Department of Animal Science, Iowa State UniversityUnited States; email: ngabler@iastate.edu",,"American Society of Animal Science",00218812,,,"29378029","English","J. Anim. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85042159514 "Sominina A.A., Danilenko D.M., Komissarov A.B., Fadeev A.V., Pisareva M.M., Eropkin M.Yu., Konovalova N.I., Petrova P.A., Shtro A.A., Stolyarov K.A., Karpova L.S., Burtseva E.I., Vasin A.V.","6701386513;55776067900;56649157500;57210563323;6506831021;8066981400;17346076900;57159245000;36026022700;54397623700;7003478541;7003607710;7005419335;","Summary of influenza and other respiratory viruses detected and characterized in Russia during 2017–2018 season",2018,"Russian Journal of Infection and Immunity","8","4",,"473","488",,,"10.15789/2220-7619-2018-4-473-488","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062029825&doi=10.15789%2f2220-7619-2018-4-473-488&partnerID=40&md5=69add0d5a26b752b9d82a1de866ec151","Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; N.F. Gamaleya Federal Rerearch Center of Epidemiology and Microbiology, Moscow, Russian Federation","Sominina, A.A., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Danilenko, D.M., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Komissarov, A.B., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Fadeev, A.V., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Pisareva, M.M., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Eropkin, M.Yu., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Konovalova, N.I., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Petrova, P.A., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Shtro, A.A., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Stolyarov, K.A., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Karpova, L.S., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation; Burtseva, E.I., N.F. Gamaleya Federal Rerearch Center of Epidemiology and Microbiology, Moscow, Russian Federation; Vasin, A.V., Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, St. Petersburg, 197376, Russian Federation","The influenza season 2017–2018 started significantly later compared to the five previous seasons. Influenza epidemic lasted for 12 weeks (weeks 6–17), was of moderate intensity and 10,4% of the population of the country was involved with children aged 0–2 and 3–6 years being the most affected groups as usually. The average hospitalization rate of patients with ILI and ARI was 2,6% and was the highest in infants aged 0–2 years (5,4%). The number of influenza-associated deaths was two times higher this season compared to 2016–2017 which can be attributed to the circulation of A(H1N1)pdm09 viruses that still is the major cause of lethal influenza outcomes in the country. A total 72 759 patients were investigated by RT-PCR in 55 collaborating RBLs. Laboratory confirmed influenza (LCI) was detected in 12 149 (20.7%) cases, of which 39.3% were influenza A(H1N1)pdm09 viruses, 29.6% were A(H3N2) and 31.1% influenza B (Yamagata lineage) viruses. The first cases of influenza viruses were detected at the very beginning of the season (weeks 40–45.2017), however a distinct increase in the rate of detection was registered only from the week 2.2018 with the peak on the week 13–14.2018 and subsequent gradual decline up to the end of the season. The certain differences in the etiology of morbidity between Federal Districts were registered. The impact of influenza and other ARI agents in different stage of epidemic was determined. In the pre-epidemic period, the incidence growth was occurred mainly due to ARI agents (about 32,7%), especially due to rhinoviruses (RhV) and RSV (10.2 and 8.0% cases, respectively) while LCI were registered in 3.4% only. During the epidemic, the rate of LCI detection increased up to 29.2% at simultaneous decrease in frequency of parainfluenza, adenovirus, bocavirus, coronavirus and, especially, rhinoviruses, to a lesser extent RSV infection. In the post-epidemic period, the role of influenza A(H1N1)pdm09, A(H3N2) and В viruses decreased up to 6.1; 6.9 and 3.6%, respectively, with increase of rhinoviruses (9.5% of diseases). Genetic analysis of influenza A(H1N1)pdm09 and A(H3N2) viruses circulating in 2017–2018 season showed that all analyzed viruses by the structure of surface genes encoding antigenic determinants, in difference from influenza B viruses, corresponded to the vaccine strains recommended by WHO for the Northern Hemisphere for 2017–2018 epidemic season. However, significant changes in the internal genes of circulating viruses were revealed. The control of the susceptibility of 316 influenza A and B viruses to antiviral drugs showed that the absolute majority of them (99.7%) retained their susceptibility to neuraminidase inhibitors. © 2018 Saint Petersburg Pasteur Institute.All Rights Reserved.","Antigenic properties; Antivirals; ARVI; Genetic analysis; Influenza; Molecular diagnostics",,"Karpova, L.S., Volik, K.M., Stolyarov, K.A., Popovtseva, N.M., Stolyarova, T.P., Sominina, A.A., Burtseva, E.I., Features of the epidemic process for influenza A (H1N1) pdm09 and A (H3N2) in Russia from 2009 to 2017 (2018) Voprosy Virusologii = Problems of Virology, 63 (4), pp. 177-184. , Russ; (2010) The Method of Calculation of The Epidemic Threshold for Influenza and Acute Respiratory Viral Infections by The Subjects of The Russian Federation: Methodological Recommendations МR 3.1.0005-10, p. 86. , http://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=6288, Moscow: URL: 20.09.2018; (2006) Isolation of Seasonal and Potentially Pandemic Influenza Viruses in Cell Cultures and Chick Embryos and Their Identification: Methodological Recommendations No, p. 15. , 0100/ 4430-06-34. approved by Federal Service for Supervision of Consumer Rights Protection and Human Welfare of April 18; Mikhailova, E.V., Chudakova, T.K., Yarushkina, M.S., Romanovskaya, A.V., Khvorostukhina, N.F., Respiratory syncytial viral infection: Clinical features and laboratory indicators of intoxication (2017) Detskie Infektsii = Children'S Infections, 16 (2), pp. 23-25. , Russ; Sominina, A.A., Smorodintseva, E.A., Stolyarov, K.A., Melnikova, A.A., Improving the system of influenza surveillance in the Russian Federation: The main results of sentinel surveillance for influenza and other acute respiratory viral infections (2017) Epidemio-Logiya I Vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 16 (1), pp. 7-15. , Russ; Ilyicheva, T., Durymanov, A., Susloparov, I., Kolosova, N., Goncharova, N., Svyatchenko, S., Petrova, O., Ryzhikov, A., Fatal cases of seasonal influenza in Russia in 2015–2016 (2016) PLoS ONE, 11 (10); Komissarov, A., Fadeev, A., Sergeeva, M., Petrov, S., Sintsova, K., Egorova, A., Pisareva, M., Grudinin, M., Rapid spread of influenza A(H1N1)pdm09 viruses with a new set of specific mutations in the internal genes in the beginning of 2015/2016 epidemic season in Moscow and Saint Petersburg (Russian Federation) (2016) Influenza Other Respir. Viruses, 4, pp. 247-253; Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Lipshultz, S.E., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010 (2012) Lancet, 380 (9859), pp. 2095-2128. , Ohno S.L., Mabweijano J., MacIntyre M.F., Mallinger L., March L., Marks G.B., Marks R., Matsumori A., Matzopoulos R., Mayosi B.M., McAnulty J.H., McDermott M.M., McGrath J., Mensah G.A., Merriman T.R., Michaud C., Miller M., Miller T.R., Mock C., Mocumbi A.O., Mokdad A.A., Moran A., Mulholland K., Nair M.N., Naldi L., Narayan K.M., Nasseri K., Norman O'Donnell M., Omer S.B., Ortblad K., Osborne R., Ozgediz D., Pahari B., Pandian J.D., Rivero A., Padilla R., Perez-Ruiz F., Perico N., Phillips D., Pierce K., Pope C.A. 3rd, Porrini E., Pourmalek F., Raju M., Ranganathan D., Rehm J.T., Rein D.B., Remuzzi G., Rivara F., Roberts T., De León F.R., Rosenfeld L.C., Rushton L., Sacco R.L., Salomon J.A., Sampson U., Sanman E., Schwebel D.C., Segui-Gomez M., Shepard D.S., Singh D., Singleton J., Sliwa K., Smith E., Steer A., Taylor J.A., Thomas B., Tleyjeh I.M., Towbin J.A., Truelsen T., Undurraga E.A., Venketasubramanian N., Vijayakumar L., Vos T., Wagner G.R., Wang M., Wang W., Watt K., Weinstock M.A., Weintraub R., Wilkinson J.D., Woolf A.D., Wulf S., Yeh H., Yip Zabetian A., Zheng Z.J., Lopez A.D., Murray C.J., AlMazroa M.A., Memish Z.A; Lopez-Labrador, Х., Natividad-Sancho, A., Pisareva, M., Komissarov, A., Salvatierra, K., Fadeev, A., Moya, A., Puig-Barbera, J., Genetic characterization of influenza viruses from influenza-related hospital admissions in the St. Petersburg and Valencia sites of the Global Influenza Hospital Surveillance Network during the 2013/14 influenza season (2016) J. Clin. Virol., 84, pp. 32-38; (2011) Manual for The Laboratory Diagnosis and Virological Surveillance of Influenza, p. 139. , WHO; Moe, N., Stenseng, I.H., Krokstad, S., Christensen, A., Skanke, L.H., Risnes, K.R., Nordbø, S.A., Døllner, H., The burden of human metap-neumovirus and respiratory syncytial virus infections in hospitalized norwegian children (2017) J. Infect. Dis., 216 (1), pp. 110-116; Influenza activity in the United States during the 2017–18 season and composition of the 2018–19 influenza vaccine (2018) MMWR, 67 (22), pp. 634-642. , Morbidity and Mortality Weekly Report; Nair, H., Brooks, W.A., Katz, M., Roca, A., Berkley, J.A., Madhi, S.A., Simmerman, J.M., Campbell, H., Global burden of respiratory infections due to seasonal influenza in young children: A systematic review and meta-analysis (2011) Lancet, 378 (9807), pp. 1917-1930; Puig-Barberà, J., Tormos, A., Trushakova, S., Burtseva, E., Sominina, A., Pisareva, M., Ciblak, M.A., Burtseva, E., The Global Influenza Hospital Surveillance Network (GIHSN): A new platform to describe the epidemiology of severe influenza (2015) Influenza Other Respir. Viruses, 9 (6), pp. 277-286; Ray, R., Dos Santos, G., O Buck, P., Claeys, C., Matias, G., Innis, B., Bekkat-Berkani, R., A review of the value of quadrivalent influenza vaccines and their potential contribution to influenza control (2017) Human Vaccines & Immunotherapeutics, 13 (7), pp. 1640-1652; Ruggiero, T., De Rosa, F., Cerutti, F., Pagani, N., Allice, T., Stella, M., Milia, M.G., Ghisetti, V., A(H1N1)pdm09 hemagglutinin D222G and D222N variants are frequently harbored by patients requiring extracorporeal membrane oxygenation and advanced respiratory assistance for severe A(H1N1)pdm09 infection (2013) Influenza Other Respir. Viruses, 7 (6), pp. 1416-1426; Shi, T., McAllister, D.A., O'Brien, K.L., Simoes, E.A.F., Madhi, S.A., Gessner, B.D., Polack, F.P., Scheltema, N., RSV Global Epidemiology Network. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study Lancet, 390, pp. 946-958. , Tapia M.D., Thamthitiwat S., Thomas E.D., Tokarz R., Turner C., Venter M., Waicharoen S., Wang J., Watthanaworawit W., Yoshida L.-M., Yu H., Zar H.J., Campbell H., Nair H, 2017,. 10098; Sominina, A., Burtseva, E., Eropkin, M., Karpova, L., Zarubaev, V., Smorodintseva, E., Konovalova, N., Cox, N., Influenza surveillance in Russia based on epidemiological and laboratory data for the period from 2005 to 2012 (2013) Am. J. Infect. Dis., 9 (3), pp. 77-93; Sominina, A.A., Pisareva, M.M., Grudinin, M.P., Eropkin, M.Y., Konovalova, N.I., Sukhovetskaya, V.F., Afanasieva, O.I., Go, A.A., Two years of experience in hospital surveillance for the severe influenza like illnesses in St. Petersburg: Etiology, clinical characterization of diseases, antigenic and genetic properties of isolated influenza viruses (2015) Microbiol. Mol. Biol. Rev, 2 (1), pp. 44-55; Vega, T., Lozano, J., Meerhoff, T., Snaken, R., Mott, J., De Lejarazu, O., Nunes, B., Influenza surveillance in Europe: Establishing epidemic thresholds by the moving epidemic method (2013) Influenza Other Respir. Viruses, 7 (4), pp. 546-558; Vaccines against influenza WHO position paper — November 2012 (2012) Wkly Epidemiol. Rec., 87 (47), pp. 461-476. , World Health Organization; Zheng, X.Y., Xu, Y.J., Guan, W.J., Lin, L.F., Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: A literature review (2018) Arch. Virol., 163 (4), pp. 845-853","Sominina, A.A.; Smorodintsev Research Institute of Influenza, Professor Popov str., 15/17, Russian Federation; email: anna.sominina@influenza.spb.ru",,"Saint Petersburg Pasteur Institute",22207619,,,,"Russian","Rus. J. Infect. Immun.",Article,"Final",Open Access,Scopus,2-s2.0-85062029825 "Dudas G., Carvalho L.M., Rambaut A., Bedford T.","56117173500;56317179300;7004230842;7003593301;","MERS-CoV spillover at the camel-human interface",2018,"eLife","7",, e31257,"","",,34,"10.7554/eLife.31257","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042074507&doi=10.7554%2feLife.31257&partnerID=40&md5=02be29a95bb68f87dd53631d16a0d126","Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, United States","Dudas, G., Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States; Carvalho, L.M., Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom; Rambaut, A., Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom, Fogarty International Center, National Institutes of Health, Bethesda, United States; Bedford, T., Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus from camels causing significant mortality and morbidity in humans in the Arabian Peninsula. The epidemiology of the virus remains poorly understood, and while case-based and seroepidemiological studies have been employed extensively throughout the epidemic, viral sequence data have not been utilised to their full potential. Here, we use existing MERS-CoV sequence data to explore its phylodynamics in two of its known major hosts, humans and camels. We employ structured coalescent models to show that long-term MERS-CoV evolution occurs exclusively in camels, whereas humans act as a transient, and ultimately terminal host. By analysing the distribution of human outbreak cluster sizes and zoonotic introduction times, we show that human outbreaks in the Arabian peninsula are driven by seasonally varying zoonotic transfer of viruses from camels. Without heretofore unseen evolution of host tropism, MERS-CoV is unlikely to become endemic in humans. © Dudas et al.",,"article; camel; human; Middle East respiratory syndrome coronavirus; nonhuman; tropism; animal; camel; classification; cluster analysis; Coronavirus infection; disease transmission; DNA sequence; epidemic; genetic variation; genetics; isolation and purification; Middle East respiratory syndrome coronavirus; molecular epidemiology; phylogeny; transmission; veterinary; zoonosis; Animals; Camelus; Cluster Analysis; Coronavirus Infections; Disease Outbreaks; Disease Transmission, Infectious; Genetic Variation; Humans; Middle East Respiratory Syndrome Coronavirus; Molecular Epidemiology; Phylogeny; Sequence Analysis, DNA; Zoonoses","Abdallah, H., Faye, B., Typology of camel farming system in Saudi Arabia (2013) Emirates Journal of Food and Agriculture, 25, p. 250. , https://doi.org/10.9755/ejfa.v25i4.15491; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20, pp. 1999-2005. , https://doi.org/10.3201/eid2012.141280, PMID: 25418529; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., El-Taweel, A.N., Systematic, K.G., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerging Microbes & Infections, 6. , https://doi.org/10.1038/emi.2016.130, PMID: 2 8050021; Almutairi, S.E., Boujenane, I., Musaad, A., Awad-Acharari, F., Non-genetic factors influencing reproductive traits and calving weight in Saudi camels (2010) Tropical Animal Health and Production, 42, pp. 1087-1092. , https://doi.org/10.1007/s11250-010-9529-y, PMID: 20195755; Antia, R., Regoes, R.R., Koella, J.C., Bergstrom, C.T., The role of evolution in the emergence of infectious diseases (2003) Nature, 426, pp. 658-661. , https://doi.org/10.1038/nature02104, PMID: 14668863; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Epidemiological, M.Z.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) The Lancet Infectious Diseases, 13, pp. 752-761. , https://doi.org/10.1016/S1473-3099(13)70204-4, PMID: 23891402; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Mers-Cov Investigation Team, K.S.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New England Journal of Medicine, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742, PMID: 23782161; Bedford, T., Cobey, S., Pascual, M., Strength and tempo of selection revealed in viral gene genealogies (2011) BMC Evolutionary Biology, 11, p. 220. , https://doi.org/10.1186/1471-2148-11-220, PMID: 21787390; Blumberg, S., Lloyd-Smith, J.O., Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains (2013) Plos Computational Biology, 9. , https://doi.org/10.1371/journal.pcbi.1002993, PMID: 23658504; Boni, M.F., Posada, D., Feldman, M.W., An exact nonparametric method for inferring mosaic structure in sequence triplets (2007) Genetics, 176, pp. 1035-1047. , https://doi.org/10.1534/genetics.106.068874, PMID: 1740907 8; Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Drummond, A.J., BEAST 2: A software platform for Bayesian evolutionary analysis (2014) Plos Computational Biology, 10. , https://doi.org/10.1371/journal.pcbi.1003537, PMID: 24722319; Bruen, T.C., Philippe, H., Bryant, D., A simple and robust statistical test for detecting the presence of recombination (2006) Genetics, 172, pp. 2665-2681. , https://doi.org/10.1534/genetics.105.048975, PMID: 16489234; Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.A., Riddell, A., Stan: A probabilistic programming language (2016) Journal of Statistical Software, 20, pp. 1-37. , https://doi.org/10.18637/jss.v076.i01; Cauchemez, S., Nouvellet, P., Cori, A., Jombart, T., Garske, T., Clapham, H., Moore, S., Van Kerkhove, M.D., Unraveling the drivers of MERS-CoV transmission (2016) PNAS, 113, pp. 9081-9086. , https://doi.org/10.1073/pnas.1519235113, PMID: 27457935; Chen, X., Chughtai, A.A., Dyda, A., Macintyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerging Microbes & Infections, 6. , https://doi.org/10.1038/emi.2017.40, PMID: 28588290; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerging Infectious Diseases, 20, pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299, PMID: 24856660; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Müller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerging Infectious Diseases, 20, pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596, PMID: 25075637; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Al-Tawfiq, J.A., Rambaut, A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) The Lancet, 382, pp. 1993-2002. , https://doi.org/10.1016/S0140-6736(13)61887-5, PMID: 24055451; De Maio, N., Wu, C.H., O’Reilly, K.M., Wilson, D., New routes to phylogeography: A Bayesian structured coalescent approximation (2015) PLOS Genetics, 11. , https://doi.org/10.1371/journal.pgen.1005421, PMID: 26267488; Drummond, A.J., Ho, S.Y., Phillips, M.J., Rambaut, A., Relaxed phylogenetics and dating with confidence (2006) Plos Biology, 4. , https://doi.org/10.1371/journal.pbio.0040088, PMID: 16683862; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Molecular Biology and Evolution, 29, pp. 1969-1973. , https://doi.org/10.1093/molbev/mss075, PMID: 2236774 8; Dudas, G., Bedford, T., Lycett, S., Rambaut, A., Reassortment between influenza B lineages and the emergence of a coadapted PB1-PB2-HA gene complex (2015) Molecular Biology and Evolution, 32, pp. 162-172. , https://doi.org/10.1093/molbev/msu287, PMID: 25323575; Dudas, G., Carvalho, L.M., Bedford, T., Tatem, A.J., Baele, G., Faria, N.R., Park, D.J., Fakoli, L.S., Virus genomes reveal factors that spread and sustained the Ebola epidemic (2017) Nature, 544, pp. 309-315. , https://doi.org/10.1038/nature22040, PMID: 28405027; Dudas, G., Rambaut, A., MERS-CoV recombination: Implications about the reservoir and potential for adaptation (2016) Virus Evolution, p. 2. , https://doi.org/10.1093/ve/vev023, vev023, PMID: 27774293; Dudas, G., Mers-structure: Looking into MERS-CoV dynamics through the structured coalescent lens (2017) Bedford Lab, , https://github.com/blab/mers-structure; Fagbo, S.F., Skakni, L., Chu, D.K., Garbati, M.A., Joseph, M., Peiris, M., Hakawi, A.M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1981-1988. , https://doi.org/10.3201/eid2111.150944, PMID: 26484549; Faria, N.R., Suchard, M.A., Rambaut, A., Streicker, D.G., Lemey, P., Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints (2013) Philosophical Transactions of the Royal Society B: Biological Sciences, 368. , https://doi.org/10.1098/rstb.2012.0196, PMID: 23382420; Frost, S.D., Volz, E.M., Viral phylodynamics and the search for an ’effective number of infections (2010) Philosophical Transactions of the Royal Society B: Biological Sciences, 365, pp. 1879-1890. , https://doi.org/10.1098/rstb.2010.0060, PMID: 20478883; Gill, M.S., Lemey, P., Faria, N.R., Rambaut, A., Shapiro, B., Suchard, M.A., Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci (2013) Molecular Biology and Evolution, 30, pp. 713-724. , https://doi.org/10.1093/molbev/mss265, PMID: 23180580; Gire, S.K., Goba, A., Ersen, K.G., Sealfon, R.S., Park, D.J., Kanneh, L., Jalloh, S., Yang, X., Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak (2014) Science, 345, pp. 1369-1372. , https://doi.org/10.1126/science.1259657, PMID: 25214632; Grubaugh, N.D., Ladner, J.T., Kraemer, M., Dudas, G., Tan, A.L., Gangavarapu, K., Wiley, M.R., Baniecki, M.L., Genomic epidemiology reveals multiple introductions of Zika virus into the United States (2017) Nature, 546, pp. 401-405. , https://doi.org/10.1038/nature22400, PMID: 28538723; Guindon, S., Gascuel, O., A Simple, R.B., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood (2003) Systematic Biology, 52, pp. 696-704. , https://doi.org/10.1080/10635150390235520, PMID: 14530136; Hasegawa, M., Kishino, H., Yano, T., Ta, Y., Dating of the human-ape splitting by a molecular clock of mitochondrial DNA (1985) Journal of Molecular Evolution, 22, pp. 160-174. , https://doi.org/10.1007/BF02101694, PMID: 3934395; Heled, J., Bouckaert, R.R., Looking for trees in the forest: Summary tree from posterior samples (2013) BMC Evolutionary Biology, 13, p. 221. , https://doi.org/10.1186/1471-2148-13-221, PMID: 24093883; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., De Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) Journal of Virology, 72, pp. 4508-4514. , PMID: 9557750; Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) Journal of Virology, 82, pp. 1819-1826. , https://doi.org/10.1128/JVI.01926-07, PMID: 18057240; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Molecular Biology and Evolution, 30, pp. 772-780. , https://doi.org/10.1093/molbev/mst010, PMID: 23329690; Keck, J.G., Matsushima, G.K., Makino, S., Fleming, J.O., Vannier, D.M., Stohlman, S.A., Lai, M.M., In vivo RNA-RNA recombination of coronavirus in mouse brain (1988) Journal of Virology, 62, pp. 1810-1813. , PMID: 2833625; Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D., GARD: A genetic algorithm for recombination detection (2006) Bioinformatics, 22, pp. 3096-3098. , https://doi.org/10.1093/bioinformatics/btl474, PMID: 17110367; Kottier, S.A., Cavanagh, D., Britton, P., Experimental evidence of recombination in coronavirus infectious bronchitis virus (1995) Virology, 213, pp. 569-580. , https://doi.org/10.1006/viro.1995.0029, PMID: 7491781; Kühnert, D., Stadler, T., Vaughan, T.G., Drummond, A.J., Phylodynamics with migration: A computational framework to quantify population structure from genomic data (2016) Molecular Biology and Evolution, 33, pp. 2102-2116. , https://doi.org/10.1093/molbev/msw064, PMID: 27189573; Lai, M.M., Baric, R.S., Makino, S., Keck, J.G., Egbert, J., Leibowitz, J.L., Stohlman, S.A., Recombination between nonsegmented RNA genomes of murine coronaviruses (1985) Journal of Virology, 56, pp. 449-456; PMID: 2997467; Lemey, P., Rambaut, A., Drummond, A.J., Suchard, M.A., Bayesian phylogeography finds its roots (2009) Plos Computational Biology, 5. , https://doi.org/10.1371/journal.pcbi.1000520, PMID: 19779555; Lipsitch, M., Barclay, W., Raman, R., Russell, C.J., Belser, J.A., Cobey, S., Kasson, P.M., Russell, C.A., Viral factors in influenza pandemic risk assessment (2016) Elife, 5. , https://doi.org/10.7554/eLife.18491, PMID: 27834632; Liu, D., Shi, W., Shi, Y., Wang, D., Xiao, H., Li, W., Bi, Y., Gao, G.F., Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: Phylogenetic, structural, and coalescent analyses (2013) The Lancet, 381, pp. 1926-1932. , https://doi.org/10.1016/S0140-6736(13)60938-1, PMID: 23643111; Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M., Superspreading and the effect of individual variation on disease emergence (2005) Nature, 438, pp. 355-359. , https://doi.org/10.1038/nature04153, PMID: 16292310; Lycett, S., Bodewes, R., Pohlmann, A., Banks, J., Banyai, K., Boni, M., Bouwstra, R., Chen, H., Role for migratory wild birds in the global spread of avian influenza H5N8 (2016) Science, 354, pp. 213-217. , https://doi.org/10.1126/science.aaf8852, Global Consortium for H5N8 and Related Influenza Viruses, PMID: 27738169; Makino, S., Keck, J.G., Stohlman, S.A., Lai, M.M., High-frequency RNA recombination of murine coronaviruses (1986) Journal of Virology, 57, pp. 729-737. , PMID: 3005623; Martinez, V.P., Bellomo, C., San Juan, J., Pinna, D., Forlenza, R., Elder, M., Padula, P.J., Person-to-person transmission of Andes virus (2005) Emerging Infectious Diseases, 11, pp. 1848-1853. , https://doi.org/10.3201/eid1112.050501, PMID: 16485469; Martinez-Bakker, M., Bakker, K.M., King, A.A., Rohani, P., Human birth seasonality: Latitudinal gradient and interplay with childhood disease dynamics (2014) Proceedings of the Royal Society B: Biological Sciences, 281. , https://doi.org/10.1098/rspb.2013.2438, PMID: 24695423; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infectious Diseases, 20, pp. 1012-1015. , https://doi.org/10.3201/eid2006.140402, PMID: 24857749; Mueller, N.F., Rasmussen, D.A., Stadler, T., MASCOT: Parameter and state inference under the marginal structured coalescent approximation (2017) Biorxiv, , https://doi.org/10.1101/188516; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerging Infectious Diseases, 20, pp. 2093-2095. , https://doi.org/10.3201/eid2012.141026, PMID: 25425139; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Memish, Z.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) The Lancet Infectious Diseases, 15, pp. 559-564. , https://doi.org/10.1016/S1473-3099(15)70090-3, PMID: 25863564; Notohara, M., The coalescent and the genealogical process in geographically structured population (1990) Journal of Mathematical Biology, 29, pp. 59-75. , https://doi.org/10.1007/BF00173909, PMID: 2277236; Park, M., Loverdo, C., Schreiber, S.J., Lloyd-Smith, J.O., Multiple scales of selection influence the evolutionary emergence of novel pathogens (2013) Philosophical Transactions of the Royal Society B: Biological Sciences, 368. , https://doi.org/10.1098/rstb.2012.0333, PMID: 23382433; Quick, J., Ashton, P., Calus, S., Chatt, C., Gossain, S., Hawker, J., Nair, S., Loman, N.J., Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella (2015) Genome Biology, 16, p. 114. , https://doi.org/10.1186/s13059-015-0677-2, PMID: 26025440; Rasmussen, D.A., Volz, E.M., Koelle, K., Phylodynamic inference for structured epidemiological models (2014) Plos Computational Biology, 10. , https://doi.org/10.1371/journal.pcbi.1003570, PMID: 24743590; Reed, K.D., Melski, J.W., Graham, M.B., Regnery, R.L., Sotir, M.J., Wegner, M.V., Kazmierczak, J.J., Damon, I.K., The detection of monkeypox in humans in the Western Hemisphere (2004) New England Journal of Medicine, 350, pp. 342-350. , https://doi.org/10.1056/NEJMoa032299, PMID: 14736926; Reusken, C.B., Farag, E.A., Haagmans, B.L., Mohran, K.A., Godeke, G.J., Raj, S., Alhajri, F., Koopmans, M.P., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013-2014 (2015) Emerging Infectious Diseases, 21, pp. 1422-1425. , https://doi.org/10.3201/eid2108.150481, PMID: 26196891; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Rottier, P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) The Lancet Infectious Diseases, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6, PMID: 23933067; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerging Infectious Diseases, 20, pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590, PMID: 25062254; Smith, G.J., Bahl, J., Vijaykrishna, D., Zhang, J., Poon, L.L., Chen, H., Webster, R.G., Guan, Y., Dating the emergence of pandemic influenza viruses (2009) PNAS, 106, pp. 11709-11712. , https://doi.org/10.1073/pnas.0904991106, PMID: 19597152; Turner, T.L., Hahn, M.W., Nuzhdin, S.V., Genomic islands of speciation in Anopheles gambiae (2005) Plos Biology, 3. , https://doi.org/10.1371/journal.pbio.0030285, PMID: 16076241; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3. , https://doi.org/10.1128/mBio.00473-12, e00473-12, PMID: 23170002; Vaughan, T.G., Kühnert, D., Popinga, A., Welch, D., Drummond, A.J., Efficient Bayesian inference under the structured coalescent (2014) Bioinformatics, 30, pp. 2272-2279. , https://doi.org/10.1093/bioinformatics/btu201, PMID: 24753484; Volz, E.M., Koelle, K., Bedford, T., Viral phylodynamics (2013) Plos Computational Biology, 9. , https://doi.org/10.1371/journal.pcbi.1002947, PMID: 23555203; Volz, E.M., Complex population dynamics and the coalescent under neutrality (2012) Genetics, 190, pp. 187-201. , https://doi.org/10.1534/genetics.111.134627, PMID: 22042576; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Khazanehdari, K., Drosten, C., Acute Middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1019-1022. , https://doi.org/10.3201/eid2106.150038, PMID: 25989145; Wernery, U., Camelid immunoglobulins and their importance for the new-born-a review (2001) Journal of Veterinary Medicine Series B, 48, pp. 561-568. , https://doi.org/10.1046/j.1439-0450.2001.00478.x, PMID: 1170 8675; State of knowledge and data gaps of Middle East respiratory syndromecoronavirus (MERS-CoV) in humans (2013) Plos Currents, p. 5. , https://doi.org/10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8; (2016), http://www.who.int/csr/don/19-december-2016-2-mers-saudi-arabia/en/, Disease outbreak news; (2017), http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf, WHO MERS-CoV global summary and assessment of risk; Yang, Z., Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods (1994) Journal of Molecular Evolution, 39, pp. 306-314. , https://doi.org/10.1007/BF00160154, PMID: 7932792; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, PMID: 23075143; Zhang, Z., Shen, L., Gu, X., Evolutionary dynamics of MERS-CoV: Potential recombination, positive selection and transmission (2016) Scientific Reports, 6, p. 25049. , https://doi.org/10.1038/srep25049, PMID: 27142087","Dudas, G.; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research CenterUnited States; email: gdudas@fredhutch.org",,"eLife Sciences Publications Ltd",2050084X,,,"29336306","English","eLife",Article,"Final",Open Access,Scopus,2-s2.0-85042074507 "Ahn I., Heo S., Ji S., Kim K.H., Kim T., Lee E.J., Park J., Sung K.","7006536994;57196401662;57196401684;57188651295;57196401360;55650947900;8687571800;57196401283;","Investigation of nonlinear epidemiological models for analyzing and controlling the MERS outbreak in Korea",2018,"Journal of Theoretical Biology","437",,,"17","28",,,"10.1016/j.jtbi.2017.10.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032858905&doi=10.1016%2fj.jtbi.2017.10.004&partnerID=40&md5=c174dd7ea1d4a7838351d024cce0acca","Department of Mathematics, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Department of Control and Instrumentation Engineering, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Department of Internal Medicine, Korea University Anam Hospital, College of Medicine, Korea University, Seoul, 136-705, South Korea","Ahn, I., Department of Mathematics, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Heo, S., Department of Control and Instrumentation Engineering, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Ji, S., Department of Control and Instrumentation Engineering, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Kim, K.H., Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Kim, T., Department of Control and Instrumentation Engineering, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Lee, E.J., Department of Internal Medicine, Korea University Anam Hospital, College of Medicine, Korea University, Seoul, 136-705, South Korea; Park, J., Department of Control and Instrumentation Engineering, College of Science and Technology, Korea University, Sejong, 339-700, South Korea; Sung, K., Department of Control and Instrumentation Engineering, College of Science and Technology, Korea University, Sejong, 339-700, South Korea","Much concern has arisen regarding serious epidemics due to the Middle East Respiratory Syndrome (MERS) coronavirus. The first MERS case of Korea was reported on 20 May 2015, and since then, the MERS outbreak in Korea has resulted in hundreds of confirmed cases and tens of deaths. Deadly infectious diseases such as MERS have significant direct and indirect social impacts, which include disease-induced mortality and economic losses. Also, a delayed response to the outbreak and underestimating its danger can further aggravate the situation. Hence, an analysis and establishing efficient strategies for preventing the propagation of MERS is a very important and urgent issue. In this paper, we propose a class of nonlinear susceptible-infectious-quarantined (SIQ) models for analyzing and controlling the MERS outbreak in Korea. For the SIQ based ordinary differential equation (ODE) model, we perform the task of parameter estimation, and apply optimal control theory to the controlled SIQ model, with the goal of minimizing the infectious compartment population and the cost of implementing the quarantine and isolation strategies. Simulation results show that the proposed SIQ model can explain the observed data for the confirmed cases and the quarantined cases in the MERS outbreak very well, and the number of the MERS cases can be controlled reasonably well via the optimal control approach. © 2017 Elsevier Ltd","Coronavirus; Epidemiological model; Optimal control; Parameter estimation","cause of death; disease control; disease spread; economic impact; epidemiology; mortality; parameter estimation; respiratory disease; social impact; virus; Article; control strategy; controlled study; cost control; epidemic; human; infection control; infection prevention; infection sensitivity; Korea; mathematical model; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonlinear system; patient isolation; priority journal; quarantine; simulation; susceptible population; virus isolation; algorithm; computer simulation; Coronavirus infection; economics; epidemic; Middle East respiratory syndrome coronavirus; mortality; nonlinear system; procedures; public health; South Korea; statistics and numerical data; survival rate; transmission; Korea; Coronavirus; Algorithms; Computer Simulation; Coronavirus Infections; Disease Outbreaks; Humans; Middle East Respiratory Syndrome Coronavirus; Nonlinear Dynamics; Public Health; Quarantine; Republic of Korea; Survival Rate","Bishop, C.M., Pattern Recognition and Machine Learning (2006), Springer New York; Buonomo, B., Messina, E., Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: a theoretical study (2012) Math. Biosci. Eng., 9 (3), pp. 539-552; Caetano, M.A.L., Yoneyama, T., Optimal and sub-optimal control in dengue epidemics (2001) Optim. Control Appl. Methods, 22, pp. 63-73; Castillo-Chavez, C., Castillo-Garsow, C.W., Yakubu, A., Mathematical models of isolation and quarantine (2003) JAMA, 290, pp. 2876-2877; Cui, J., Sun, Y., Zhu, H., The impact of media on the control of infectious diseases (2008) J. Dynam. Differ. Equ., 20, pp. 31-53; Day, T., Park, A., Madras, N., Gumel, A., Wu, J., When is quarantine a useful control strategy for emerging infectious diseases? (2006) Am. J. Epidemiol., 163 (5), pp. 479-485; Feng, Z., Yang, Y., Xu, D., Zhang, P., McCauley, M.M., Glasser, J.W., Timely identification of optimal control strategies for emerging infectious diseases (2009) J. Theor. Biol., 259, pp. 165-171; Fleming, W.H., Rishel, R.W., Deterministic and Stochastic Optimal Control (1975), Springer-Verlag Berlin-New York; Gupta, N.K., Rink, R.E., Optimal control of epidemics (1973) Math. Biosci., 18, pp. 383-396; Hethcote, H., Zhien, M., Shengbing, L., Effects of quarantine in six endemic models for infectious diseases (2002) Math. Biosci., 180, pp. 141-160; Joshi, H.R., Lenhart, S., Li, M.Y., Wang, L., Optimal control methods applied to disease models (2006) Contemp. Math., 410, pp. 187-208; Jung, E., Lenhart, S., Feng, Z., Optimal control of treatments in a two-strain tuberculosis model (2002) Discrete Continuous Dynam. Syst. Ser. B, 2, pp. 473-482; Keeling, M.J., Rohani, P., Modeling Infectious Diseases in Humans and Animals (2008), Princeton University Press Princeton; Kirschner, D., Lenhart, S., Serbin, S., Optimal control of the chemotherapy of HIV (1997) J. Math. Biol., 35, pp. 775-792; Kupferschmidt, K., Amid panic, a chance to learn about MERS (2015) Science, 348, pp. 1183-1184; Lenhart, S., Workman, J.T., Optimal Control Applied to Biological Models (2007), CRC Press Boca Raton; Lewis, F.L., Syrmos, V.L., Optimal Control (1995), John Wiley & Sons New York; Liu, R., Wu, J., Zhu, H., Media/psychological impact on multiple outbreaks of emerging infectious diseases (2007) Math. Methods Med., 8, pp. 153-164; http://www.mers.go.kr/mers/html/jsp/main.jsp, (accessed 15.07.08); Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Madani, T.A., 2014 MERS-CoV outbreak in jeddah-a link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854; de Pillis, L.G., Gu, W., Fister, K.R., Head, T.A., Maples, K., Murugan, A., Neal, T., Yoshida, K., Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls (2007) Math. Biosci., 209, pp. 292-315; Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F., The Mathematical Theory of Optimal Processes (1987), CRC Press Boca Raton; Rasmussen, D.A., Ratmann, O., Koelle, K., Inference for nonlinear epidemiological models using genealogies and time series (2011) PLoS Comput. Biol., 7. , E1002136; Sun, C., Yang, W., Arino, J., Khan, K., Effect of media-induced social distancing on disease transmission in a two patch setting (2011) Math. Biosci., 230, pp. 87-95; Xiao, Y., Tang, S., Wu, J., Media impact switching surface during an infectious disease outbreak (2015) Sci. Rep., 5, p. 7838; Yan, X., Zou, Y., Control of epidemics by quarantine and isolation strategies in highly mobile populations (2009) Int. J. Inf. Syst. Sci., 5, pp. 271-286; Yan, X., Zou, Y., Li, J., Optimal quarantine and isolation strategies in epidemics control (2007) World J. Model. Simul., 3, pp. 202-211; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in saudi arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zumla, A., Hui, D.S., Perlman, S., Middle east respiratory syndrome (2015) Lancet, 386, pp. 995-1007","Ahn, I.; Department of Mathematics, College of Science and Technology, Korea UniversitySouth Korea; email: ahnik@korea.ac.kr",,"Academic Press",00225193,,JTBIA,"29031518","English","J. Theor. Biol.",Article,"Final",,Scopus,2-s2.0-85032858905 "Oma V.S., Klem T., Tråvén M., Alenius S., Gjerset B., Myrmel M., Stokstad M.","57189689064;36161809900;6603563444;7004457776;12760503400;6602232235;6603435349;","Temporary carriage of bovine coronavirus and bovine respiratory syncytial virus by fomites and human nasal mucosa after exposure to infected calves",2018,"BMC Veterinary Research","14","1", 22,"","",,1,"10.1186/s12917-018-1335-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040863701&doi=10.1186%2fs12917-018-1335-1&partnerID=40&md5=34998b67ed4a1e3b286ba6b3fc9b57d9","Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, 0033, Norway; Swedish University of Agricultural Sciences, Department of Clinical Sciences, Uppsala, 75007, Sweden; Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo, 0106, Norway; Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep, Oslo, 0033, Norway","Oma, V.S., Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, 0033, Norway; Klem, T., Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, 0033, Norway; Tråvén, M., Swedish University of Agricultural Sciences, Department of Clinical Sciences, Uppsala, 75007, Sweden; Alenius, S., Swedish University of Agricultural Sciences, Department of Clinical Sciences, Uppsala, 75007, Sweden; Gjerset, B., Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo, 0106, Norway; Myrmel, M., Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep, Oslo, 0033, Norway; Stokstad, M., Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, 0033, Norway","Background: In order to prevent spread of the endemic pathogens bovine coronavirus (BCoV) and bovine respiratory syncytial virus (BRSV) between herds, knowledge of indirect transmission by personnel and fomites is fundamental. The aims of the study were to determine the duration of viral RNA carriage and the infectivity of viral particles on fomites and human nasal mucosa after exposure to BCoV and BRSV. During two animal infection experiments, swabs were collected from personnel (nasal mucosa) and their clothes, boots and equipment after contact with calves shedding either virus. Viral RNA was quantified by RT-qPCR or droplet digital RT-PCR (RT-ddPCR), and selected samples with high levels of viral RNA were tested by cell culture for infectivity. Results: For BCoV, 46% (n = 80) of the swabs from human nasal mucosa collected 30 min after exposure were positive by RT-qPCR. After two, four and six hours, 15%, 5% and 0% of the swabs were positive, respectively. Infective virions were not detected in mucosal swabs (n = 2). A high viral RNA load was detected on 97% (n = 44) of the fomites 24 h after exposure, and infective virions were detected in two of three swabs. For BRSV, 35% (n = 26) of the human nasal mucosa swabs collected 30 min after exposure, were positive by RT-ddPCR, but none were positive for infective virions. Of the fomites, 89% (n = 38) were positive for BRSV RNA 24 h after exposure, but all were negative for infective viruses. Conclusions: The results indicate that human nasal mucosa can carry both BCoV and BRSV RNA after exposure to virus shedding calves, but the carriage seems short-lived and the transmission potential is likely limited. High viral loads on contaminates fomites 24 h after exposure to infected animals, and detection of infective BCoV, indicate that contaminated fomites represent a significant risk for indirect transmission between herds. © 2018 The Author(s).","Biosecurity; Bovine respiratory disease; Cattle; Human nasal mucosa; Indirect transmission; Virus infectivity","virus RNA; animal cell; animal experiment; animal model; Article; Bovine coronavirus; bovine respiratory syncytial virus infection; calf (bovine); diarrhea; fomite; human; nonhuman; nose mucosa; pneumonia; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; stem cell culture; viral respiratory tract infection; virus infectivity; virus load; virus shedding; virus transmission; animal; bovine; Bovine coronavirus; Bovine respiratory syncytial virus; cattle disease; Coronavirus infection; female; fomite; isolation and purification; male; medical device contamination; nose mucosa; respiratory syncytial virus infection; transmission; veterinary medicine; virology; Animals; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Equipment Contamination; Female; Fomites; Humans; Male; Nasal Mucosa; Respiratory Syncytial Virus Infections; Respiratory Syncytial Virus, Bovine","Tråvén, M., Näslund, K., Linde, N., Linde, B., Silván, A., Fossum, C., Hedlund, K.O., Larsson, B., Experimental reproduction of winter dysentery in lactating cows using BCV -- comparison with BCV infection in milk-fed calves (2001) Vet Microbiol, 81, pp. 127-151; Brodersen, B.W., Bovine respiratory syncytial virus (2010) Vet Clin North Am Food Anim Pract, 26, pp. 323-333; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin North Am Food Anim Pract., 26, pp. 123-146; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Murray, G.M., O'Neill, R.G., More, S.J., McElroy, M.C., Earley, B., Cassidy, J.P., Evolving views on bovine respiratory disease: an appraisal of selected control measures - part 2 (2016) Vet J, 217, pp. 78-82; Klem, T.B., Gulliksen, S.M., Lie, K.I., Løken, T., Østerås, O., Stokstad, M., Bovine respiratory syncytial virus: infection dynamics within and between herds (2013) Vet Rec., 173, p. 476; Hägglund, S., Svensson, C., Emanuelson, U., Valarcher, J.F., Alenius, S., Dynamics of virus infections involved in the bovine respiratory disease complex in Swedish dairy herds (2006) Vet J, 172, pp. 320-328; Toftaker, I., Sanchez, J., Stokstad, M., Nødtvedt, A., Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk - risk factors and spatial analysis (2016) Prev Vet Med, 133, pp. 73-83; Boone, S.A., Gerba, C.P., Significance of fomites in the spread of respiratory and enteric viral disease (2007) Appl Environ Microbiol, 73, pp. 1687-1696; Sizun, J., M.W, Y., Talbot, P.J., Survival of human coronaviruses 229E and OC43 in suspension and after drying on surfaces: a possible source of hospital-acquired infections (2000) J Hosp Infect., 46, pp. 55-60; Hall, C.B., Douglas, R.G., Geiman, J.M., Possible transmission by fomites of respiratory syncytial virus (1980) J Infect Dis, 141, pp. 98-102; Beaudeau, F., Ohlson, A., Emanuelson, U., Associations between bovine coronavirus and bovine respiratory syncytial virus infections and animal performance in Swedish dairy herds (2010) J Dairy Sci, 93, pp. 1523-1533; Oma, V.S., Tråvén, M., Alenius, S., Myrmel, M., Stokstad, M., Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission (2016) Virol J, 13, p. 100; Klem, T.B., Rimstad, E., Stokstad, M., Occurrence and phylogenetic analysis of bovine respiratory syncytial virus in outbreaks of respiratory disease in Norway (2014) BMC Vet Res, 10, p. 15; Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M., Altman, D.G., Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research (2010) PLoS Biol, 8; Russell, W.M.S., The increase of humanity in experimentation: replacement, reduction and refinement (1957) Laboratory Animals Bureau, Collected Papers, 6, pp. 23-25; Decaro, N., Elia, G., Campolo, M., Desario, C., Mari, V., Radogna, A., Colaianni, M.L., Buonavoglia, C., Detection of bovine coronavirus using a TaqMan-based real-time RT-PCR assay (2008) J Virol Methods, 151, pp. 167-171; Dohoo, I., Martin, W., Stryhn, H., Modelling survival data (2009), pp. 467-522. , 2nd ed. Veterinary epidemiologic research, Charlottetown, Prince Edward Island, Canada: VER Inc; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method (2001) Methods, 25, pp. 402-408; Boxus, M., Letellier, C., Kerkhofs, P., Real time RT-PCR for the detection and quantitation of bovine respiratory syncytial virus (2005) J Virol Methods, 125, pp. 125-130; Kapil, S., Richardson, K.L., Radi, C., Chard-Bergstrom, C., Factors affecting isolation and propagation of bovine coronavirus in human rectal tumor-18 cell line (1996) J Vet Diagn Investig, 8, pp. 96-99; Reynolds, K.A., Gerba, C.P., Pepper, I.L., Detection of infectious enteroviruses by an integrated cell culture-PCR procedure (1996) Appl Environ Microbiol, 62, pp. 1424-1427; La Rosa, G., Fratini, M., Della Libera, S., Iaconelli, M., Muscillo, M., Viral infections acquired indoors through airborne, droplet or contact transmission (2013) Ann Ist Super Sanita, 49, pp. 124-132; Zhang, X.M., Herbst, W., Kousoulas, K.G., Storz, J., Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child (1994) J Med Virol, 44, pp. 152-161; Han, M.G., Cheon, D.S., Zhang, X., Saif, L.J., Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves (2006) J Virol, 80, pp. 12350-12356; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604; Sellers, R.F., Herniman, K.A.J., Mann, J.A., Transfer of foot-and-mouth disease virus in the nose of man from infected to non-infected animals (1971) Vet Rec., 89, pp. 447-449; Amass, S.F., Mason, P.W., Pacheco, J.M., Miller, C.A., Ramirez, A., Clark, L.K., Ragland, D., Kenyon, S.J., Procedures for preventing transmission of foot-and-mouth disease virus (O/TAW/97) by people (2004) Vet Microbiol, 103, pp. 143-149; Wright, C.F., Gloster, J., Mazelet, L., Paton, D.J., Ryan, E.D., Short-lived carriage of foot-and-mouth disease virus in human nasal cavities after exposure to infected animals (2010) Vet Rec, 167, pp. 928-931; Wolff, M.H., Sattar, S.A., Adegbunrin, O., Tetro, J., Environmental survival and microbicide inactivation of coronaviruses (2005) Coronaviruses with special emphasis on first insights concerning SARS, pp. 201-212. , Schmidt A, Wolff MH, Weber O, editors, Basel: Birkhäuser Verlag; Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., Weber, D.J., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination (2016) J Hosp Infect, 92, pp. 235-250; Hambling, M.H., Survival of the respiratory syncytial virus during storage under various conditions (1964) Br J Exp Pathol, 45, pp. 647-655; Rechsteiner, J., Winkler, K.C., Inactivation of respiratory syncytial virus in aerosol (1969) J Gen Virol., 5, pp. 405-410; Ijaz, M.K., Brunner, A.H., Sattar, S.A., Nair, R.C., Johnson-Lussenburg, C.M., Survival characteristics of airborne human coronavirus 229E (1985) J Gen Virol, 66, pp. 2743-2748; Rabenau, H.F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., Doerr, H.W., Stability and inactivation of SARS coronavirus (2005) Med Microbiol Immunol, 194, pp. 1-6; Mullis, L., Saif, L.J., Zhang, Y., Zhang, X., Azevedo, M.S., Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions (2012) Food Microbiol, 30, pp. 180-186; Ohlson, A., Emanuelson, U., Tråvén, M., Alenius, S., The relationship between antibody status to bovine corona virus and bovine respiratory syncytial virus and disease incidence, reproduction and herd characteristics in dairy herds (2010) Acta Vet Scand, 52, p. 37","Oma, V.S.; Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Norway; email: Veslemoy.Oma@nmbu.no",,"BioMed Central Ltd.",17466148,,,"29357935","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85040863701 "Menachery V.D., Schäfer A., Burnum-Johnson K.E., Mitchell H.D., Eisfeld A.J., Walters K.B., Nicora C.D., Purvine S.O., Casey C.P., Monroe M.E., Weitz K.K., Stratton K.G., Webb-Robertson B.-J.M., Gralinski L.E., Metz T.O., Smith R.D., Waters K.M., Sims A.C., Kawaoka Y., Baric R.S.","24281639500;8599352200;55341427000;7202670454;12241829700;57190441527;13410209800;6602975856;57164428500;7006334977;6603970145;35765680000;57202553641;6505609367;7004139728;55542871600;7102277063;7102763252;26643027000;57205312930;","MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape",2018,"Proceedings of the National Academy of Sciences of the United States of America","115","5",,"E1012","E1021",,6,"10.1073/pnas.1706928115","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041174031&doi=10.1073%2fpnas.1706928115&partnerID=40&md5=8bbb243711763812664b88c00a4b2727","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 113-8654, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, 113-8654, Japan; Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Drug Development Division, Southern Research, Frederick, MD 21701, United States","Menachery, V.D., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Schäfer, A., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Burnum-Johnson, K.E., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Mitchell, H.D., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Eisfeld, A.J., Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States; Walters, K.B., Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States, Drug Development Division, Southern Research, Frederick, MD 21701, United States; Nicora, C.D., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Purvine, S.O., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Casey, C.P., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Monroe, M.E., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Weitz, K.K., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Stratton, K.G., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Webb-Robertson, B.-J.M., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Gralinski, L.E., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Metz, T.O., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Smith, R.D., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Waters, K.M., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States; Sims, A.C., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Kawaoka, Y., Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States, Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 113-8654, Japan, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, 113-8654, Japan; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States","Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ–dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/ 1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV–mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.","Antigen presentation; Coronavirus; DNA; Epigenetics; Influenza; Methylation","gamma interferon; histone; antigen presentation; Article; controlled study; DNA methylation; down regulation; epigenetic landscape; epigenetics; gene control; gene expression; genetic regulation; histone modification; influenza A (H5N1); Influenza A virus (A influenza California 04 2009(H1N1)); Influenza A virus (A influenza Vietnam 1203 2004(H1N1)); Influenza A virus (H1N1); Influenza A virus (H5N1); Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; proteomics; SARS coronavirus; animal; antigenic variation; cell line; chemistry; Chlorocebus aethiops; dog; genetic epigenesis; human; Influenza A virus (H5N1); major histocompatibility complex; MDCK cell line; Middle East respiratory syndrome coronavirus; mutation; open reading frame; pathogenicity; Vero cell line; Animals; Antigen Presentation; Antigenic Variation; Cell Line; Cercopithecus aethiops; DNA Methylation; Dogs; Down-Regulation; Epigenesis, Genetic; Histones; Humans; Influenza A Virus, H5N1 Subtype; Madin Darby Canine Kidney Cells; Major Histocompatibility Complex; Middle East Respiratory Syndrome Coronavirus; Mutation; Open Reading Frames; Proteomics; Vero Cells","Mandl, J.N., Reservoir host immune responses to emerging zoonotic viruses (2015) Cell, 160, pp. 20-35; Kreuder Johnson, C., Spillover and pandemic properties of zoonotic viruses with high host plasticity (2015) Sci Rep, 5, p. 14830; Morse, S.S., Prediction and prevention of the next pandemic zoonosis (2012) Lancet, 380, pp. 1956-1965; Sawyer, S.L., Elde, N.C., A cross-species view on viruses (2012) Curr Opin Virol, 2, pp. 561-568; Menachery, V.D., Baric, R.S., Bugs in the system (2013) Immunol Rev, 255, pp. 256-274; Menachery, V.D., Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses (2014) MBio, 5, pp. e01174-e01214; Avgousti, D.C., A core viral protein binds host nucleosomes to sequester immune danger signals (2016) Nature, 535, pp. 173-177; Marazzi, I., Suppression of the antiviral response by an influenza histone mimic (2012) Nature, 483, pp. 428-433; Lewandowska-Polak, A., Human parainfluenza virus type 3 (HPIV3) induces production of IFNγ and RANTES in human nasal epithelial cells (HNECs) (2015) J Inflamm (Lond), 12, p. 16; Pancham, K., Premature infants have impaired airway antiviral IFNγ responses to human metapneumovirus compared to respiratory syncytial virus (2015) Pediatr Res, 78, pp. 389-394; Tenland, E., Innate immune responses after airway epithelial stimulation with Mycobacterium bovis Bacille-Calmette Guérin (2016) PLoS One, 11, p. e0164431; Siezen, C.L., Genetic susceptibility to respiratory syncytial virus bronchiolitis in preterm children is associated with airway remodeling genes and innate immune genes (2009) Pediatr Infect Dis J, 28, pp. 333-335; Heller, N.M., Interferon-gamma inhibits STAT6 signal transduction and gene expression in human airway epithelial cells (2004) Am J Respir Cell Mol Biol, 31, pp. 573-582; Zissler, U.M., Interleukin-4 and interferon-γ orchestrate an epithelial polarization in the airways (2016) Mucosal Immunol, 9, pp. 917-926; Scobey, T., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci USA, 110, pp. 16157-16162; Chakrabarti, A.K., Host gene expression profiling in influenza A virus-infected lung epithelial (A549) cells: A comparative analysis between highly pathogenic and modified H5N1 viruses (2010) Virol J, 7, p. 219; Sarmento, L., Afonso, C.L., Estevez, C., Wasilenko, J., Pantin-Jackwood, M., Differential host gene expression in cells infected with highly pathogenic H5N1 avian influenza viruses (2008) Vet Immunol Immunopathol, 125, pp. 291-302; Wang, Z., Transcriptome analysis of the hippocampus in novel rat model of febrile seizures (2014) PLoS One, 9, p. e95237; Guo, Y., Korteweg, C., McNutt, M.A., Gu, J., Pathogenetic mechanisms of severe acute respiratory syndrome (2008) Virus Res, 133, pp. 4-12; Chu, H., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Chu, H., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213, pp. 904-914; Tynell, J., Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells (2016) J Gen Virol, 97, pp. 344-355; Summerfield, A., McCullough, K.C., Dendritic cells in innate and adaptive immune responses against influenza virus (2009) Viruses, 1, pp. 1022-1034; Perrone, L.A., Plowden, J.K., García-Sastre, A., Katz, J.M., Tumpey, T.M., H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice (2008) PLoS Pathog, 4, p. e1000115; Hatta, Y., Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice (2010) PLoS Pathog, 6, p. e1001139; Rimmelzwaan, G.F., Katz, J.M., Immune responses to infection with H5N1 influenza virus (2013) Virus Res, 178, pp. 44-52; Arabi, Y.M., Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 1554-1561; Alshukairi, A.N., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22, pp. 1113-1115; Smale, S.T., Tarakhovsky, A., Natoli, G., Chromatin contributions to the regulation of innate immunity (2014) Annu Rev Immunol, 32, pp. 489-511; Lieberman, P.M., Epigenetics and genetics of viral latency (2016) Cell Host Microbe, 19, pp. 619-628; Ferrari, R., Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection (2014) Cell Host Microbe, 16, pp. 663-676; Seo, Y.L., Heo, S., Jang, K.L., Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation (2015) J Gen Virol, 96, pp. 822-832; Verweij, M.C., Viral inhibition of the transporter associated with antigen processing (TAP): A striking example of functional convergent evolution (2015) PLoS Pathog, 11, p. e1004743; Aevermann, B.D., A comprehensive collection of systems biology data characterizing the host response to viral infection (2014) Sci Data, 1, p. 140033; McDermott, J.E., The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus (2016) BMC Syst Biol, 10, p. 93; Gralinski, L.E., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) MBio, 4, pp. e00271-e00313; Sims, A.C., Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells (2013) J Virol, 87, pp. 3885-3902; Josset, L., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4, pp. e00165-e00213; Gibbs, D.L., Protein co-expression network analysis (ProCoNA) (2013) J Clin Bioinforma, 3, p. 11; Li, C., Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus (2011) J Virol, 85, pp. 10955-10967; Yount, B., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc Natl Acad Sci USA, 100, pp. 12995-13000; Neumann, G., Generation of influenza A viruses entirely from cloned cDNAs (1999) Proc Natl Acad Sci USA, 96, pp. 9345-9350; Webb-Robertson, B.J., Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data (2010) J Proteome Res, 9, pp. 5748-5756; Matzke, M.M., Improved quality control processing of peptide-centric LC-MS proteomics data (2011) Bioinformatics, 27, pp. 2866-2872; Webb-Robertson, B.J., Matzke, M.M., Jacobs, J.M., Pounds, J.G., Waters, K.M., A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors (2011) Proteomics, 11, pp. 4736-4741; Matzke, M.M., A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments (2013) Proteomics, 13, pp. 493-503","Kawaoka, Y.; Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–MadisonUnited States; email: yoshihiro.kawaoka@wisc.edu",,"National Academy of Sciences",00278424,,PNASA,"29339515","English","Proc. Natl. Acad. Sci. U. S. A.",Article,"Final",Open Access,Scopus,2-s2.0-85041174031 "Arabi Y.M., Alothman A., Balkhy H.H., Al-Dawood A., AlJohani S., Al Harbi S., Kojan S., Al Jeraisy M., Deeb A.M., Assiri A.M., Al-Hameed F., AlSaedi A., Mandourah Y., Almekhlafi G.A., Sherbeeni N.M., Elzein F.E., Memon J., Taha Y., Almotairi A., Maghrabi K.A., Qushmaq I., Al Bshabshe A., Kharaba A., Shalhoub S., Jose J., Fowler R.A., Hayden F.G., Hussein M.A., Martin G.S., Schoenfeld D.A., Walmsley S.L., Carson S., Harbi S.A., Jeraisy M.A., Muhaidib M.A., Musharaf S., Anizi H.A., Dael R., AlMazroa M., Asiri A., Memish Z.A., Ghazal S.S., Alfaraj S.H., Harthy A.A., Sulaiman M.A., Mady A., Ahmad A., Ghaleb A Almekhlafi, Muhammed R., Samirrai S.A., Awad S., Cabal R.C., Onazi B.A., Aljuhani M., Vince M., Enani M.A., Alqurashi A., Alenezi F., Alkhani N., Thaqafi A., Oraabi O.A., Rifai J., Elsamadisi P., Medhat S.H., Basher S.A., Abduldhaher M., Bajhamoum W., Alahsa S.S., Bashir S., Al-Dossary I., Al-Muhainy Dammam B., Khobar S.S.A., Alshahrani M.S., Al Jabri A., Farid M., Alaidarous A., Alseraihi W., Shahada H., Taif J.S., And the MIRACLE trial group","57211811296;6602315601;6701797249;8043511100;26648040700;14008055200;57200443187;36597852200;56324534900;36607531400;6507857242;57200246707;54385796100;57189068027;56412013800;56026924500;26647755400;57200424165;57188964531;20635259000;13409875600;34871328100;50161809700;56381466300;57192669117;7102786298;7103233446;57077787200;8931642700;37016733700;7005495799;7102011975;57200440638;57200451030;57200445982;57200441749;57200451344;57200443669;35572530900;57200450036;7005059350;6602583744;57191595182;57200451335;57200448441;54583983000;57200438912;57200450628;57200439049;57200443014;57200441407;57200442223;57200445313;57200436618;57200447608;57202334218;57200447457;57191560779;57200435878;6508304994;57200438189;57200442143;37002493900;57200443604;57200441598;57200436066;57200436151;57200435580;57200449424;57200440612;57200438959;57200448065;55178192500;57200440407;57200439004;57200449325;57200439376;57200449896;57200443391;","Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): Study protocol for a randomized controlled trial",2018,"Trials","19","1", 81,"","",,25,"10.1186/s13063-017-2427-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041331786&doi=10.1186%2fs13063-017-2427-0&partnerID=40&md5=cc4765bf2b6e15d128ad4113d40e9d10","King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Intensive Care Department, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Department of Medicine, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Department of Infection Prevention and Control, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Department of Pathology and Laboratory Medicine, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Pharmaceutical Care Department, Riyadh, Saudi Arabia; Infection Prevention and Control, Ministry of Health, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdulaziz Medical City, Intensive Care Department, Jeddah, Saudi Arabia; King Abdulaziz Medical City, Department of Infection Prevention and Control, Jeddah, Saudi Arabia; Prince Sultan Military Medical City, Department of Intensive Care Services, Riyadh, Saudi Arabia; Prince Sultan Military Medical City, Infectious Diseases Division, Riyadh, Saudi Arabia; King Abdulaziz Hospital, Intensive Care Section, Department of Medicine, Alahsa, Saudi Arabia; King Abdulaziz Hospital, Department of Medicine, Alahsa, Saudi Arabia; King Fahad Medical City, Department of Critical Care Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research, Department of Critical Care Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Department of Medicine, Jeddah, Saudi Arabia; King Khalid University, Aseer Central Hospital, Department of Critical Care Medicine, Abha, Saudi Arabia; King Fahad Hospital, Ohoud Hospital, Department of Critical Care, Al-Madinah Al-Monawarah, Saudi Arabia; King Fahad Armed Forces Hospital, Department of Medicine, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Department of Biostatistics and Bioinformatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; University of Toronto, AMR Infection Control and Publications AIP/PED/HSE/HQ, Institute of Health Policy Management and Evaluation, Toronto, ON, Canada; Sunnybrook Hospital, Department of Critical Care Medicine, 2075 Bayview Avenue, Toronto, ON, Canada; Sunnybrook Hospital, Department of Medicine, 2075 Bayview Avenue, Toronto, ON, Canada; University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, VA, United States; International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; Critical Care Division of Pulmonary, Allergy, Critical Care and Sleep Emory University School of Medicine, United States; Harvard Medical School, Department of Biostatistics, United States; Toronto General Research Institute (TGRI), Canada; University of North Carolina, Chapel Hill School of Medicine, United States; King Abdulaziz Medical City, Riyadh, Saudi Arabia; Ministry of Health, Riyadh, Saudi Arabia; Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Fahad Bafaqeeh King Saud Medical City, Riyadh, Saudi Arabia; Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Malibary King Fahad Medical City, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Jeddah, Saudi Arabia; King Abdullah Medical Complex, Jeddah, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; King Abdulaziz Hospital, Jeddah, Saudi Arabia; Saleh Al Mekhloof King Fahad Hospital, Jeddah, Saudi Arabia; Dammam Medical Complex, Jeddah, Saudi Arabia; King Fahad Hospital of the University-Dammam University, Jeddah, Saudi Arabia; Aseer Central Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Kingdom of Saudi Arabia King Fahad Hospital, Jeddah, Saudi Arabia; Ohoud Hospital, Jeddah, Saudi Arabia; Kingdom of Saudi Arabia King Faisal Hospital, Jeddah, Saudi Arabia; Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; University of Toronto, Toronto, Canada; University of Virginia School of Medicine, Charlottesville, VA, United States","Arabi, Y.M., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Intensive Care Department, Riyadh, Saudi Arabia, International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Alothman, A., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Department of Medicine, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Balkhy, H.H., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Department of Infection Prevention and Control, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al-Dawood, A., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Intensive Care Department, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; AlJohani, S., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Department of Pathology and Laboratory Medicine, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al Harbi, S., King Abdullah International Medical Research Center, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Pharmaceutical Care Department, Riyadh, Saudi Arabia; Kojan, S., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Department of Medicine, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al Jeraisy, M., King Abdullah International Medical Research Center, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Pharmaceutical Care Department, Riyadh, Saudi Arabia; Deeb, A.M., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Intensive Care Department, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Assiri, A.M., Infection Prevention and Control, Ministry of Health, Riyadh, Saudi Arabia, Ministry of Health, Riyadh, Saudi Arabia; Al-Hameed, F., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia, King Abdulaziz Medical City, Intensive Care Department, Jeddah, Saudi Arabia, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; AlSaedi, A., King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia, King Abdulaziz Medical City, Department of Infection Prevention and Control, Jeddah, Saudi Arabia, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Mandourah, Y., Prince Sultan Military Medical City, Department of Intensive Care Services, Riyadh, Saudi Arabia, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Almekhlafi, G.A., Prince Sultan Military Medical City, Department of Intensive Care Services, Riyadh, Saudi Arabia; Sherbeeni, N.M., Prince Sultan Military Medical City, Infectious Diseases Division, Riyadh, Saudi Arabia, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Elzein, F.E., Prince Sultan Military Medical City, Infectious Diseases Division, Riyadh, Saudi Arabia, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Memon, J., King Abdulaziz Hospital, Intensive Care Section, Department of Medicine, Alahsa, Saudi Arabia, Dammam Medical Complex, Jeddah, Saudi Arabia; Taha, Y., King Abdulaziz Hospital, Department of Medicine, Alahsa, Saudi Arabia, Dammam Medical Complex, Jeddah, Saudi Arabia; Almotairi, A., King Fahad Medical City, Department of Critical Care Medicine, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Maghrabi, K.A., King Faisal Specialist Hospital and Research, Department of Critical Care Medicine, Riyadh, Saudi Arabia, King Abdullah Medical Complex, Jeddah, Saudi Arabia; Qushmaq, I., King Faisal Specialist Hospital and Research Center, Department of Medicine, Jeddah, Saudi Arabia, King Abdulaziz Hospital, Jeddah, Saudi Arabia; Al Bshabshe, A., King Khalid University, Aseer Central Hospital, Department of Critical Care Medicine, Abha, Saudi Arabia, Ohoud Hospital, Jeddah, Saudi Arabia; Kharaba, A., King Fahad Hospital, Ohoud Hospital, Department of Critical Care, Al-Madinah Al-Monawarah, Saudi Arabia, Kingdom of Saudi Arabia King Faisal Hospital, Jeddah, Saudi Arabia, Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; Shalhoub, S., King Fahad Armed Forces Hospital, Department of Medicine, Jeddah, Saudi Arabia; Jose, J., King Abdullah International Medical Research Center, Department of Biostatistics and Bioinformatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Fowler, R.A., University of Toronto, AMR Infection Control and Publications AIP/PED/HSE/HQ, Institute of Health Policy Management and Evaluation, Toronto, ON, Canada, Sunnybrook Hospital, Department of Critical Care Medicine, 2075 Bayview Avenue, Toronto, ON, Canada, Sunnybrook Hospital, Department of Medicine, 2075 Bayview Avenue, Toronto, ON, Canada, University of Toronto, Toronto, Canada; Hayden, F.G., University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health, Charlottesville, VA, United States, University of Virginia School of Medicine, Charlottesville, VA, United States; Hussein, M.A., King Abdullah International Medical Research Center, Department of Biostatistics and Bioinformatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Martin, G.S., Critical Care Division of Pulmonary, Allergy, Critical Care and Sleep Emory University School of Medicine, United States; Schoenfeld, D.A., Harvard Medical School, Department of Biostatistics, United States; Walmsley, S.L., Toronto General Research Institute (TGRI), Canada; Carson, S., University of North Carolina, Chapel Hill School of Medicine, United States; Harbi, S.A., King Abdulaziz Medical City, Riyadh, Saudi Arabia; Jeraisy, M.A., King Abdulaziz Medical City, Riyadh, Saudi Arabia; Muhaidib, M.A., King Abdulaziz Medical City, Riyadh, Saudi Arabia; Musharaf, S., King Abdulaziz Medical City, Riyadh, Saudi Arabia; Anizi, H.A., King Abdulaziz Medical City, Riyadh, Saudi Arabia; Dael, R., King Abdulaziz Medical City, Riyadh, Saudi Arabia; AlMazroa, M., Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Asiri, A., Fahad Bafaqeeh King Saud Medical City, Riyadh, Saudi Arabia; Memish, Z.A., Fahad Bafaqeeh King Saud Medical City, Riyadh, Saudi Arabia; Ghazal, S.S., Fahad Bafaqeeh King Saud Medical City, Riyadh, Saudi Arabia; Alfaraj, S.H., Fahad Bafaqeeh King Saud Medical City, Riyadh, Saudi Arabia; Harthy, A.A., Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Sulaiman, M.A., Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Mady, A., Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Ahmad, A., Malibary King Fahad Medical City, Riyadh, Saudi Arabia; Ghaleb A Almekhlafi, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Muhammed, R., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Samirrai, S.A., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Awad, S., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Cabal, R.C., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Onazi, B.A., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Aljuhani, M., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Vince, M., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Enani, M.A., King Abdulaziz Medical City, Jeddah, Saudi Arabia; Alqurashi, A., King Abdulaziz Medical City, Jeddah, Saudi Arabia; Alenezi, F., King Abdulaziz Medical City, Jeddah, Saudi Arabia; Alkhani, N., King Abdulaziz Medical City, Jeddah, Saudi Arabia; Thaqafi, A., King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Oraabi, O.A., King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Rifai, J., King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Elsamadisi, P., King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Medhat, S.H., King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Basher, S.A., King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Abduldhaher, M., King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Bajhamoum, W., King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Alahsa, S.S., Saleh Al Mekhloof King Fahad Hospital, Jeddah, Saudi Arabia; Bashir, S., Dammam Medical Complex, Jeddah, Saudi Arabia; Al-Dossary, I., Dammam Medical Complex, Jeddah, Saudi Arabia; Al-Muhainy Dammam, B., King Fahad Hospital of the University-Dammam University, Jeddah, Saudi Arabia; Khobar, S.S.A., Aseer Central Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Alshahrani, M.S., Kingdom of Saudi Arabia King Fahad Hospital, Jeddah, Saudi Arabia; Al Jabri, A., Kingdom of Saudi Arabia King Faisal Hospital, Jeddah, Saudi Arabia; Farid, M., Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; Alaidarous, A., Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; Alseraihi, W., Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; Shahada, H., Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; Taif, J.S., Kingdom of Saudi Arabia Buraidah Central Hospital, Jeddah, Saudi Arabia; And the MIRACLE trial group","Background: It had been more than 5 years since the first case of Middle East Respiratory Syndrome coronavirus infection (MERS-CoV) was recorded, but no specific treatment has been investigated in randomized clinical trials. Results from in vitro and animal studies suggest that a combination of lopinavir/ritonavir and interferon-β1b (IFN-β1b) may be effective against MERS-CoV. The aim of this study is to investigate the efficacy of treatment with a combination of lopinavir/ritonavir and recombinant IFN-β1b provided with standard supportive care, compared to treatment with placebo provided with standard supportive care in patients with laboratory-confirmed MERS requiring hospital admission. Methods: The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. Hospitalized adult patients with laboratory-confirmed MERS will be enrolled in this recursive, two-stage, group sequential, multicenter, placebo-controlled, double-blind randomized controlled trial. The trial is initially designed to include 2 two-stage components. The first two-stage component is designed to adjust sample size and determine futility stopping, but not efficacy stopping. The second two-stage component is designed to determine efficacy stopping and possibly readjustment of sample size. The primary outcome is 90-day mortality. Discussion: This will be the first randomized controlled trial of a potential treatment for MERS. The study is sponsored by King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. Enrollment for this study began in November 2016, and has enrolled thirteen patients as of Jan 24-2018. © 2018 The Author(s).","Antiviral; Clinical trial; Coronavirus; Interferon-β1b; Lopinavir/ritonavir; MERS; Saudi Arabia","alanine aminotransferase; amiodarone; atorvastatin; chemokine; cytokine; fentanyl; fluconazole; interferon beta serine; lopinavir plus ritonavir; midazolam; phenytoin; placebo; quetiapine; rifampicin; sildenafil; simvastatin; voriconazole; antivirus agent; interferon beta serine; lopinavir; lopinavir-ritonavir drug combination; ritonavir; abdominal pain; acute pancreatitis; adult; alanine aminotransferase blood level; anaphylaxis; Article; bleeding tendency; bronchospasm; clearance; controlled study; depression; diarrhea; double blind procedure; drug efficacy; drug monitoring; drug safety; drug withdrawal; dyspnea; fatigue; headache; hospital mortality; hospital patient; human; immune response; insomnia; length of stay; liver function test; mania; Middle East respiratory syndrome; mortality rate; multicenter study; nausea; psychosis; randomized controlled trial; rash; Sequential Organ Failure Assessment Score; side effect; skin necrosis; tongue edema; urticaria; virus replication; vomiting; combination drug therapy; Coronavirus infection; drug combination; drug effect; female; hospital admission; male; Middle East respiratory syndrome coronavirus; multicenter study (topic); pathogenicity; randomized controlled trial (topic); Saudi Arabia; time factor; treatment outcome; virology; Antiviral Agents; Coronavirus Infections; Double-Blind Method; Drug Combinations; Drug Therapy, Combination; Female; Humans; Interferon beta-1b; Lopinavir; Male; Middle East Respiratory Syndrome Coronavirus; Multicenter Studies as Topic; Patient Admission; Randomized Controlled Trials as Topic; Ritonavir; Saudi Arabia; Time Factors; Treatment Outcome","(2018), http://www.who.int/emergencies/mers-cov/en/, Accessed 14 Jan; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Al-Omari, A., Denison, M.R., Middle East Respiratory Syndrome (2017) N Engl J Med, 376 (6), pp. 584-594; Zaki, A.M., Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Mo, Y., Fisher, D., A review of treatment modalities for Middle East Respiratory Syndrome (2016) J Antimicrob Chemother, 71 (12), pp. 3340-3350; Falzarano, D., Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., Mushtaq, A., IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70 (7), pp. 2129-2132; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al, M.E., Ribavirin and interferon-alpha2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases (2015) Antivir Ther, 20 (1), pp. 87-91; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14 (11), pp. 1090-1095; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jahrling, P.B., Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J Gen Virol, 95, pp. 571-577; Falzarano, D., Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin (2013) Sci Rep, 3, p. 1686; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Li, P.T., Chen, H., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67 (6), pp. 606-616; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment (2013) J Gen Virol, 94, pp. 2679-2690; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Bortolotti, P., Dessein, R., Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? (2014) PLoS One, 9 (2); Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Becker, S., Weber, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J Virol, 87 (9), pp. 5300-5304; Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J Gen Virol, 94, pp. 1749-1760; Jankovic, S.M., Injectable interferon beta-1b for the treatment of relapsing forms of multiple sclerosis (2010) J Inflamm Res, 3, pp. 25-31; Hurwitz, B.J., Jeffery, D., Arnason, B., Bigley, K., Coyle, P., Goodin, D., Kaba, S., Mandler, R., Tolerability and safety profile of 12- to 28-week treatment with interferon beta-1b 250 and 500 microg QOD in patients with relapsing-remitting multiple sclerosis: a multicenter, randomized, double-blind, parallel-group pilot study (2008) Clin Ther, 30 (6), pp. 1102-1112; Gottesman, M.H., Friedman-Urevich, S., Interferon beta-1b (betaseron/betaferon) is well tolerated at a dose of 500 microg: interferon dose escalation assessment of safety (IDEAS) (2006) Mult Scler, 12 (3), pp. 271-280; Huang, X., Xu, Y., Yang, Q., Chen, J., Zhang, T., Li, Z., Guo, C., Li, N., Efficacy and biological safety of lopinavir/ritonavir based anti-retroviral therapy in HIV-1-infected patients: a meta-analysis of randomized controlled trials (2015) Sci Rep, 5, p. 8528; Chu, C.M., Cheng, V.C., Hung, I.F., Wong, M.M., Chan, K.H., Chan, K.S., Kao, R.Y., Guan, Y., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings (2004) Thorax, 59 (3), pp. 252-256; Product Information: Kaletra® (2018), https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021226s030lbl.pdf, Accessed 14 Jan; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yu, P., Treatment with lopinavir/ritonavir or interferon-beta1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212 (12), pp. 1904-1913; Kim, U.J., Won, E.J., Kee, S.J., Jung, S.I., Jang, H.C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome (2016) Antivir Ther, 21 (5), pp. 455-459; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Koulouris, N.G., Tsakris, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44 (6), pp. 528-532; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, J.H., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Chan, A.W., Tetzlaff, J.M., Altman, D.G., Laupacis, A., Gotzsche, P.C., Krleza-Jeric, K., Hrobjartsson, A., Berlin, J.A., SPIRIT 2013 statement: defining standard protocol items for clinical trials (2013) Ann Intern Med, 158 (3), pp. 200-207; Chang, M., Adaptive Design Theory and implementation using SAS and R (2014), pp. 153-180. , 2nd ed. Chapman and Hall/CRC; Bellomo, R., Ronco, C., Kellum, J.A., Mehta, R.L., Palevsky, P., Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group (2004) Crit Care, 8 (4), pp. R204-212; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Bestebroer, T.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39); Banks, P.A., Bollen, T.L., Dervenis, C., Gooszen, H.G., Johnson, C.D., Sarr, M.G., Tsiotos, G.G., Vege, S.S., Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international consensus (2013) Gut, 62 (1), pp. 102-111; O'Toole, D.M., Golden, A.M., Evaluating cancer patients for rehabilitation potential (1991) West J Med, 155 (4), pp. 384-387; (2018) LiverTox, , https://livertox.nlm.nih.gov//Lopinavir.htm, Accessed 14 Jan; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Altayyar, S., Alghamedi, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20 (1), p. 123; Uniform requirements for manuscripts submitted to biomedical journals (1997) N Engl J Med, 336 (4), pp. 309-315; Arabi, Y., Deeb, A.M., Aqeel, H., Balkhy, H., PubMed-cited research articles on the Middle East respiratory syndrome (2016) Ann Thorac Med, 11 (2), pp. 112-113; Ippolito, G., Lanini, S., Brouqui, P., Caro, A., Vairo, F., Fusco, F.M., Krishna, S., Puro, V., Non-randomised Ebola trials-lessons for optimal outbreak research (2016) Lancet Infect Dis, 16 (4), pp. 407-408; Macklin, R., Cowan, E., Conducting research in disease outbreaks (2009) PLoS Negl Trop Dis, 3 (4); Schafer, H., Muller, H.H., Modification of the sample-size and the schedule of interim analyses in survival trials based on data inspections (2001) Stat Med, 20, pp. 3741-3751","Arabi, Y.M.; King Abdullah International Medical Research Center, College of Medicine, King Saud Bin Abdulaziz University for Health SciencesSaudi Arabia; email: arabi@ngha.med.sa",,"BioMed Central Ltd.",17456215,,,"29382391","English","Trials",Article,"Final",Open Access,Scopus,2-s2.0-85041331786 "Berto A., Anh P.H., Carrique-Mas J.J., Simmonds P., Van Cuong N., Tue N.T., Van Dung N., Woolhouse M.E., Smith I., Marsh G.A., Bryant J.E., Thwaites G.E., Baker S., Rabaa M.A., the VIZIONS consortium, Kiet B.T., Boni M.F., Phu B.D., Campbell J.I., Hung D.M., Huong D.T., Oanh D.T., Day J.N., Van Tan D., van Doorn H.R., Han D.A., Farrar J.J., Trang H.T.T., Nghia H.D.T., Long H.B., Van Duong H., Thu H.T.K., Cuong L.C., Hung M., Phuong T., Phuc T., Phuong T., Luat X., Ha L.T.T., Van Chuong L., Loan M.T.P., Nadjm B., Bao N.T., Tu N.C., Thuan N.D., Dong N., Chuyen N.K., An N.N., Vinh N.N., Hung N.Q., Dung N.T., Minh N.T., Binh N.T., Tham N.T.H., Tien N.T.H., Chuc N.T.K., Le Ngoc N.T., Ha N.T.L., Lien N.T.N., Diep N.T.N., Nhung N.T., Chau N.T.S., Chi N.T.Y., Trinh N.T., Van N.T., Van Hung N., Van Kinh N., Van Minh Hoang N., Van My N., Van Thang N., Van Thanh N., Van Vinh Chau N., Van Xang N., My P.H., Khoa P.T.M., Tam P.T.T., Van Lao P., Van Minh P., Van Be Bay P., Rahman M., Thompson C., Ngan T.T.D., Nhu T.D.H., Chau T.H.M., Toan T.K., Phuc T.M., Hong T.T.K., Dung T.T.N., Thanh T.T.T., Minh T.T.T., Nguyen T.T., Hien T.T., Tri T.Q., Hien V.B., Tai V.N., Cuong V.Q., Phat V.V., Huong V.T.L., Hang V.T.T., Wertheim H., Bogaardt C., Brierley L., Chase-Topping M., Ivens A., Lu L., Rambaut A., Woolhouse M., Cotten M., Oude Munnink B.B., Kellam P., Phan M.V.T., van der Hoek L., Deijs M., Jebbink M.F., Farsani S.M.J., Saylors K., Wolfe N.","49860970300;55399542200;16644993100;7102203090;24467132200;56498876000;55600902800;7006414059;7404426171;22958167400;7202903793;6603796838;57203188765;23971250000;56487984200;24174121700;55370186100;7404876058;57193006191;57188726003;57193005382;7403323661;57193006810;56941604800;57193002764;7103292979;57190671301;22954361200;57203518898;57193011347;57193006340;57193008696;57200288934;57200297179;53876163600;57200297178;57200292011;57200291298;6506992113;57193006109;16417310900;56544135200;56998417000;57193010120;55902614000;56998638200;57193011864;53064794400;7103368963;24175953900;55341840600;24833025600;16029879300;7006532811;6603235871;57193005537;57193004105;55902018700;56619266000;56809544000;57197914454;56998306000;57193011522;41361970400;57204381252;35115680400;24482776400;57192294829;35081355200;57215954234;24170234100;57193004927;57193007068;57193009401;56366821000;57193004623;35304126200;8240946300;57212184273;55342541900;57073592000;56366720700;41162188800;57209726769;56909931500;56015628400;55443742700;55585489500;57193007718;57209166072;7005271267;57193011078;56037613900;57193010827;6507617378;55443207100;6602924302;16165972000;6602423153;56736932200;57110312300;6507407738;57193092098;57211812235;7004230842;57216111296;7005126445;55989982700;56839023100;56352130200;57208140398;37661384500;6603747286;55342490400;36909092100;7005047509;","Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam",2018,"Zoonoses and Public Health","65","1",,"30","42",,4,"10.1111/zph.12362","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018661369&doi=10.1111%2fzph.12362&partnerID=40&md5=6fc565bacae090e088a8fd22f48ad896","Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Centre for Immunity, Infection & Evolution, The University of Edinburgh, Edinburgh, United Kingdom; Health and Biosecurity, CSIRO, Australian Animal Health Laboratory, Geelong, VIC, Australia; The London School of Hygiene and Tropical Medicine, London, United Kingdom","Berto, A., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Anh, P.H., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Carrique-Mas, J.J., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam, Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; Simmonds, P., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Van Cuong, N., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Tue, N.T., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Van Dung, N., Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Woolhouse, M.E., Centre for Immunity, Infection & Evolution, The University of Edinburgh, Edinburgh, United Kingdom; Smith, I., Health and Biosecurity, CSIRO, Australian Animal Health Laboratory, Geelong, VIC, Australia; Marsh, G.A., Health and Biosecurity, CSIRO, Australian Animal Health Laboratory, Geelong, VIC, Australia; Bryant, J.E., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam, Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; Thwaites, G.E., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam, Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; Baker, S., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam, Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom, The London School of Hygiene and Tropical Medicine, London, United Kingdom; Rabaa, M.A., Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam, Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom; the VIZIONS consortium; Kiet, B.T.; Boni, M.F.; Phu, B.D.; Campbell, J.I.; Hung, D.M.; Huong, D.T.; Oanh, D.T.; Day, J.N.; Van Tan, D.; van Doorn, H.R.; Han, D.A.; Farrar, J.J.; Trang, H.T.T.; Nghia, H.D.T.; Long, H.B.; Van Duong, H.; Thu, H.T.K.; Cuong, L.C.; Hung, M.; Phuong, T.; Phuc, T.; Phuong, T.; Luat, X.; Ha, L.T.T.; Van Chuong, L.; Loan, M.T.P.; Nadjm, B.; Bao, N.T.; Tu, N.C.; Thuan, N.D.; Dong, N.; Chuyen, N.K.; An, N.N.; Vinh, N.N.; Hung, N.Q.; Dung, N.T.; Minh, N.T.; Binh, N.T.; Tham, N.T.H.; Tien, N.T.H.; Chuc, N.T.K.; Le Ngoc, N.T.; Ha, N.T.L.; Lien, N.T.N.; Diep, N.T.N.; Nhung, N.T.; Chau, N.T.S.; Chi, N.T.Y.; Trinh, N.T.; Van, N.T.; Van Hung, N.; Van Kinh, N.; Van Minh Hoang, N.; Van My, N.; Van Thang, N.; Van Thanh, N.; Van Vinh Chau, N.; Van Xang, N.; My, P.H.; Khoa, P.T.M.; Tam, P.T.T.; Van Lao, P.; Van Minh, P.; Van Be Bay, P.; Rahman, M.; Thompson, C.; Ngan, T.T.D.; Nhu, T.D.H.; Chau, T.H.M.; Toan, T.K.; Phuc, T.M.; Hong, T.T.K.; Dung, T.T.N.; Thanh, T.T.T.; Minh, T.T.T.; Nguyen, T.T.; Hien, T.T.; Tri, T.Q.; Hien, V.B.; Tai, V.N.; Cuong, V.Q.; Phat, V.V.; Huong, V.T.L.; Hang, V.T.T.; Wertheim, H.; Bogaardt, C.; Brierley, L.; Chase-Topping, M.; Ivens, A.; Lu, L.; Rambaut, A.; Woolhouse, M.; Cotten, M.; Oude Munnink, B.B.; Kellam, P.; Phan, M.V.T.; van der Hoek, L.; Deijs, M.; Jebbink, M.F.; Farsani, S.M.J.; Saylors, K.; Wolfe, N.","Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH","bats; coronavirus; paramyxovirus; rats; Viet Nam; zoonotic viruses","RNA directed RNA polymerase; virus RNA; virus RNA; Article; bat; controlled study; Coronavirinae; Filovirus; maximum likelihood method; nonhuman; Paramyxoviridae; phylogeny; priority journal; rat; screening; Viet Nam; Vietnamese; virus detection; animal; Coronavirinae; feces; Filoviridae; genetics; human; isolation and purification; Paramyxoviridae; urine; virology; Animals; Chiroptera; Coronavirus; Feces; Filoviridae; Humans; Paramyxoviridae; Phylogeny; Rats; RNA, Viral; Urine; Vietnam","Baker, K.S., Todd, S., Marsh, G.A., Crameri, G., Barr, J., Kamins, A.O., Wang, L.F., Novel, potentially zoonotic paramyxoviruses from the African straw-colored fruit bat Eidolon helvum (2013) Journal of Virology, 87, pp. 1348-1358; Bates, P., Kingston, T., Francis, C., Rosell-Ambal, G., Heaney, L., Gonzales, J.-C., Srinivasulu, C., Scotophilus kuhlii (2016) The IUCN Red List of Threatened Species, , https://doi.org/10.2305/IUCN.UK.2008.RLTS.T20068A9142479.en, 2008, Retrieved from, (Accessed September 9 2016); Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clinical Microbiology Reviews, 19, pp. 531-545; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Research, 101, pp. 45-56; Drexler, J.F., Corman, V.M., Gloza-Rausch, F., Seebens, A., Annan, A., Ipsen, A., Drosten, C., Henipavirus RNA in African bats (2009) PLoS One, 4; Drexler, J.F., Corman, V.M., Muller, M.A., Maganga, G.D., Vallo, P., Binger, T., Drosten, C., Bats host major mammalian paramyxoviruses (2012) Nature Communications, 3, p. 796; Edson, D., Field, H., McMichael, L., Vidgen, M., Goldspink, L., Broos, A., Smith, C., Routes of Hendra virus excretion in naturally-infected flying-foxes: Implications for viral transmission and spillover risk (2015) PLoS One, 10; Escaffre, O., Borisevich, V., Rockx, B., Pathogenesis of Hendra and Nipah virus infection in humans (2013) Journal of Infection in Developing Countries, 7, pp. 2-5; Escobar, L.E., Peterson, A.T., Papes, M., Favi, M., Yung, V., Restif, O., Medina-Vogel, G., Ecological approaches in veterinary epidemiology: Mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery (2015) Veterinary Research, 46, p. 92; Field, H., Jordan, D., Edson, D., Morris, S., Melville, D., Parry-Jones, K., Smith, C., Spatiotemporal aspects of Hendra virus infection in pteropid bats (flying-foxes) in eastern Australia (2015) PLoS One, 10; Fourment, M., Holmes, E.C., Seqotron: A user-friendly sequence editor for Mac OS X (2016) BMC Research Notes, 9, p. 106; Ge, X.-Y., Wang, N., Zhang, W., Hu, B., Li, B., Zhang, Y.-Z., Shi, Z.L., Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft (2016) Virologica Sinica, 31, pp. 31-40; Goldspink, L.K., Edson, D.W., Vidgen, M.E., Bingham, J., Field, H.E., Smith, C.S., Natural Hendra virus infection in flying-foxes – tissue tropism and risk factors (2015) PLoS One, 10; Heaton, P.R., Johnstone, P., McElhinney, L.M., Cowley, R., O'Sullivan, E., Whitby, J.E., Heminested PCR assay for detection of six genotypes of rabies and rabies-related viruses (1997) Journal of Clinical Microbiology, 35, pp. 2762-2766; Hoffmann, M., Müller, M.A., Drexler, J.F., Glende, J., Erdt, M., Gützkow, T., Herrler, G., Differential sensitivity of bat cells to infection by enveloped RNA viruses: Coronaviruses, paramyxoviruses, filoviruses, and influenza viruses (2013) PLoS One, 8; Jakava-Viljanen, M., Nokireki, T., Sironen, T., Vapalahti, O., Sihvonen, L., Huovilainen, A., Evolutionary trends of European bat lyssavirus type 2 including genetic characterization of Finnish strains of human and bat origin 24 years apart (2015) Archives of Virology, 160, pp. 1489-1498; Jayme, S.I., Field, H.E., de Jong, C., Olival, K.J., Marsh, G., Tagtag, A.M., Newman, S.H., Molecular evidence of Ebola Reston virus infection in Philippine bats (2015) Virology Journal, 12, p. 107; Kgaladi, J., Wright, N., Coertse, J., Markotter, W., Marston, D., Fooks, A.R., Nel, L.H., Diversity and epidemiology of Mokola virus (2013) PLoS Neglected Tropical Diseases, 7; Kulkarni, D.D., Tosh, C., Venkatesh, G., Senthil Kumar, D., Nipah virus infection: Current scenario (2013) Indian Journal of Virology, 24, pp. 398-408; Lau, S.K.P., Woo, P.C.Y., Wong, B.H.L., Wong, A.Y.P., Tsoi, H.-W., Wang, M., Yuen, K.Y., Identification and complete genome analysis of three novel paramyxoviruses, Tuhoko virus 1, 2 and 3, in fruit bats from China (2010) Virology, 404, pp. 106-116; Leendertz, S.A.J., Gogarten, J.F., Düx, A., Calvignac-Spencer, S., Leendertz, F.H., Assessing the evidence supporting fruit bats as the primary reservoirs for ebola viruses (2015) EcoHealth, 13, pp. 18-25; Moratelli, R., Calisher, C.H., Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? (2015) Memorias do Instituto Oswaldo Cruz, 110, pp. 1-22; Ogawa, H., Miyamoto, H., Ebihara, H., Ito, K., Morikawa, S., Feldmann, H., Takada, A., Detection of all known filovirus species by reverse transcription-polymerase chain reaction using a primer set specific for the viral nucleoprotein gene (2011) Journal of Virological Methods, 171, pp. 310-313; Paterson, B.J., Butler, M.T., Eastwood, K., Cashman, P.M., Jones, A., Durrheim, D.N., Cross sectional survey of human-bat interaction in Australia: Public health implications (2014) BMC Public Health, 14, p. 58; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., McCallum, H., Ecological dynamics of emerging bat virus spillover (2015) Proceedings of the Royal Society B Biological Sciences, 282, p. 20142124; Poon, L.L.M., Peiris, J.S.M., Detection of group 1 coronaviruses in bats using universal coronavirus reverse transcription polymerase chain reactions (2008) Methods in Molecular Biology, 454, pp. 13-26; Posada, D., Selection of models of DNA evolution with jModelTest (2009) Methods in Molecular Biology, 537, pp. 93-112; Rabaa, M.A., Tue, N.T., Phuc, T.M., Carrique-Mas, J., Saylors, K., Cotten, M., Baker, S., The Vietnam Initiative on Zoonotic Infections (VIZIONS): A strategic approach to studying emerging zoonotic infectious diseases (2015) EcoHealth, 12, pp. 726-735; Rocha, S.M., de Oliveira, S.V., Heinemann, M.B., Gonçalves, V.S.P., Epidemiological profile of wild rabies in Brazil (2002-2012) (2015) Transboundry and Emerging Diseases, 64, pp. 624-633; Sasaki, M., Setiyono, A., Handharyani, E., Rahmadani, I., Taha, S., Adiani, S., Kimura, T., Molecular detection of a novel paramyxovirus in fruit bats from Indonesia (2012) Virology Journal, 9, p. 240; Sherrini, B.A., Chong, T.T., Nipah encephalitis – an update (2014) Medical Journal of Malaysia, 69, pp. 103-111; Stamatakis, A., RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models (2006) Bioinformatics, 22, pp. 2688-2690; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) Journal of Virology, 80, pp. 7481-7490; Tong, S., Chern, S.W.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) Journal of Clinical Microbiology, 46, pp. 2652-2658; Van Cuong, N., Carrique-Mas, J., Vo Be, H., An, N.N., Tue, N.T., Anh, N.L., Bryant, J.E., Rodents and risk in the mekong delta of Vietnam: Seroprevalence of selected zoonotic viruses in rodents and humans (2015) Vector Borne and Zoonotic Diseases, 15, pp. 65-72; Wang, W., Lin, X., Guo, W., Zhou, R., Wang, M., Wang, C., Zhang, Y.Z., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Akashi, H., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerging Infectious Diseases, 16, pp. 1217-1223; Wong, S., Lau, S., Woo, P., Yuen, K.-Y., Bats as a continuing source of emerging infections in humans (2007) Reviews in Medical Virology, 17, pp. 67-91; Woo, P.C.Y., Lau, S.K.P., Wong, B.H.L., Wu, Y., Lam, C.S.F., Yuen, K.Y., Novel variant of beilong paramyxovirus in Rats, China (2012) Emerging Infectious Diseases, 18, pp. 1022-1024","Rabaa, M.A.; Wellcome Trust Major Overseas Programme, Oxford University Clinical Research UnitViet Nam; email: mrabaa@oucru.org",,"Wiley-VCH Verlag",18631959,,,"28418192","English","Zoonoses Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85018661369 "Yin Y., Wunderink R.G.","23986735100;7006725767;","MERS, SARS and other coronaviruses as causes of pneumonia",2018,"Respirology","23","2",,"130","137",,20,"10.1111/resp.13196","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040785929&doi=10.1111%2fresp.13196&partnerID=40&md5=7d44d493b3fa78af65ca797aaf4db440","Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States","Yin, Y., Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Wunderink, R.G., Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States","Human coronaviruses (HCoVs) have been considered to be relatively harmless respiratory pathogens in the past. However, after the outbreak of the severe acute respiratory syndrome (SARS) and emergence of the Middle East respiratory syndrome (MERS), HCoVs have received worldwide attention as important pathogens in respiratory tract infection. This review focuses on the epidemiology, pathogenesis and clinical characteristics among SARS-coronaviruses (CoV), MERS-CoV and other HCoV infections. © 2017 Asian Pacific Society of Respirology","human coronaviruses; Middle East respiratory syndrome; pneumonia; severe acute respiratory syndrome","alanine aminotransferase; angiotensin converting enzyme 2; aspartate aminotransferase; beta interferon; beta1a interferon; creatine kinase; dipeptidyl peptidase IV; gamma interferon; gamma interferon inducible protein 10; hypertensive factor; interferon; interferon beta serine; lactate dehydrogenase; lopinavir plus ritonavir; messenger RNA; microsomal aminopeptidase; mycophenolic acid; recombinant alpha2b interferon; ribavirin; tumor necrosis factor; virus spike protein; adult; adult respiratory distress syndrome; age; antibody detection; antigen detection; antiviral activity; artificial ventilation; asthma; bacterial superinfection; Canada; cardiovascular disease; China; chronic hepatitis B; chronic kidney failure; chronic liver disease; chronic obstructive lung disease; community acquired pneumonia; comorbidity; controlled study; Coronaviridae; coughing; death; diabetes mellitus; diarrhea; disease transmission; dyspnea; epidemic; female; fever; headache; health care personnel; hematologic disease; hospital infection; host resistance; human; hypertension; hypotension; immunomodulation; innate immunity; interferon production; Korea; length of stay; lymphocytopenia; major clinical study; male; malignant neoplasm; membrane fusion; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; myalgia; nausea; passive immunization; pathogenesis; pneumonia; priority journal; protein expression; protein function; radiodiagnosis; real time polymerase chain reaction; respiratory tract infection; reverse transcription polymerase chain reaction; Review; rhabdomyolysis; RNA synthesis; SARS coronavirus; serology; severe acute respiratory syndrome; shock; sore throat; survival rate; symptom; thrombocytopenia; viral tropism; virus cell interaction; virus culture; vomiting; zoonosis; complication; Coronavirus infection; Middle East respiratory syndrome coronavirus; SARS coronavirus; severe acute respiratory syndrome; virus pneumonia; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Pneumonia, Viral; SARS Virus; Severe Acute Respiratory Syndrome","Weiss, S.R., Leibowitz, J.L., Coronavirus pathogenesis (2011) Adv. Virus Res., 81, pp. 85-164; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; (2017) WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome (SARS), , http://www.who.int/csr/resources/publications/WHO_CDS_CSR_ARO_2004_1/en/, Updated recommendations, October 2004. [Accessed 28 Aug,] Available from; Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fact Sheet, , http://www.who.int/mediacentre/factsheets/mers-cov/en/, [Accessed 28 Aug 2017.] Available from; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Gates, J.E., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol., 86, pp. 12816-12825; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Woo, P.C., Lau, S.K., Li, K.S., Poon, R.W., Wong, B.H., Tsoi, H.W., Yip, B.C., Yuen, K.Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Lau, S.K., Woo, P.C., Li, K.S., Tsang, A.K., Fan, R.Y., Luk, H.K., Cai, J.P., Wang, M., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J. Virol., 89, pp. 3076-3092; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Khudair, A., Imambaccus, H., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg. Infect. Dis., 22, pp. 647-656; Middle East Respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res. Perspect., 6, pp. 269-278; Anderson, R.M., Fraser, C., Ghani, A.C., Donnelly, C.A., Riley, S., Ferguson, N.M., Leung, G.M., Hedley, A.J., Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic (2004) Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, pp. 1091-1105; Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Park, S.W., Cho, S.I., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 Outbreak in Korea (2017) J. Korean Med. Sci., 32, pp. 744-749; Moon, S.Y., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin. Infect. Dis., 64, pp. 1457-1458; Woo, P.C., Lau, S.K., Yuen, K.Y., Clinical features and molecular epidemiology of coronavirus-HKU1-associated community-acquired pneumonia (2009) Hong Kong Med. J., 15, pp. 46-47; Skowronski, D.M., Astell, C., Brunham, R.C., Low, D.E., Petric, M., Roper, R.L., Talbot, P.J., Babiuk, L., Severe acute respiratory syndrome (SARS): a year in review (2005) Annu. Rev. Med., 56, pp. 357-381; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al Raiy, B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160, pp. 389-397; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 49-55; Park, S.H., Kim, Y.S., Jung, Y., Choi, S.Y., Cho, N.H., Jeong, H.W., Heo, J.Y., Cheon, S., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect. Chemother., 48, pp. 99-107; Mailles, A., Blanckaert, K., Chaud, P., van der Werf, S., Lina, B., Caro, V., Campese, C., Lemaire, X., First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013 (2013) Euro Surveill., 18; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Lee, P., Lee, R.A., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J. Clin. Microbiol., 44, pp. 2063-2071; Woo, P.C., Yuen, K.Y., Lau, S.K., Epidemiology of coronavirus-associated respiratory tract infections and the role of rapid diagnostic tests: a prospective study (2012) Hong Kong Med. J., 18, pp. 22-24; Lee, W.J., Chung, Y.S., Yoon, H.S., Kang, C., Kim, K., Prevalence and molecular epidemiology of human coronavirus HKU1 in patients with acute respiratory illness (2013) J. Med. Virol., 85, pp. 309-314; Johnstone, J., Majumdar, S.R., Fox, J.D., Marrie, T.J., Viral infection in adults hospitalized with community-acquired pneumonia: prevalence, pathogens, and presentation (2008) Chest, 134, pp. 1141-1148; Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., Reed, C., Courtney, D.M., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N. Engl. J. Med., 373, pp. 415-427; Cao, B., Ren, L.L., Zhao, F., Gonzalez, R., Song, S.F., Bai, L., Yin, Y.D., Guo, P., Viral and Mycoplasma pneumoniae community-acquired pneumonia and novel clinical outcome evaluation in ambulatory adult patients in China (2010) Eur. J. Clin. Microbiol. Infect. Dis., 29, pp. 1443-1448; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279, pp. 371-374; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pohlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 7988-7993; Imai, Y., Kuba, K., Ohto-Nakanishi, T., Penninger, J.M., Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis (2010) Circ. J., 74, pp. 405-410; Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Leong-Poi, H., Angiotensin-converting enzyme 2 protects from severe acute lung failure (2005) Nature, 436, pp. 112-116; Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Deng, W., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury (2005) Nat. Med., 11, pp. 875-879; Meyerholz, D.K., Lambertz, A.M., Mc, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East respiratory syndrome (2016) Am J Pathol., 186, pp. 78-86; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J., Bosch, B.J., Bensaid, A., Osterhaus, A.D., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J. Virol., 90, pp. 4838-4842; Boonacker, E., Van Noorden, C.J., The multifunctional or moonlighting protein CD26/DPPIV (2003) Eur. J. Cell Biol., 82, pp. 53-73; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Menachery, V.D., Eisfeld, A.J., Schafer, A., Josset, L., Sims, A.C., Proll, S., Fan, S., Tilton, S.C., Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses (2014) MBio, 5, pp. e01114-e01174; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Chan, J.F., Chan, K.H., Choi, G.K., To, K.K., Tse, H., Cai, J.P., Yeung, M.L., Che, X.Y., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752; Yoshikawa, T., Hill, T.E., Yoshikawa, N., Popov, V.L., Galindo, C.L., Garner, H.R., Peters, C.J., Tseng, C.T., Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection (2010) PLoS One, 5; Kaye, M., SARS-associated coronavirus replication in cell lines (2006) Emerg. Infect. Dis., 12, pp. 128-133; Clinical Management of Severe Acute Respiratory Infection When Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection Is Suspected, , http://www.who.int/csr/disease/coronavirus_infections/case-management-ipc/en/, [Accessed 28 Aug 2017.] Available from; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Alsubaie, S., Hussain, R., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J. Infect. Dis., 210, pp. 1590-1594; Chan, J.F., Sridhar, S., Yip, C.C., Lau, S.K., Woo, P.C., The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic (2017) J. Microbiol., 55, pp. 172-182; Chan, K.S., Zheng, J.P., Mok, Y.W., Li, Y.M., Liu, Y.N., Chu, C.M., Ip, M.S., SARS: prognosis, outcome and sequelae (2003) Respirology, 8, pp. S36-40; Nunes, M.C., Kuschner, Z., Rabede, Z., Madimabe, R., Van Niekerk, N., Moloi, J., Kuwanda, L., Adrian, P.V., Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children (2014) PLoS One, 9; Garbino, J., Crespo, S., Aubert, J.D., Rochat, T., Ninet, B., Deffernez, C., Wunderli, W., Kaiser, L., A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection (2006) Clin. Infect. Dis., 43, pp. 1009-1015; Chu, K.H., Tsang, W.K., Tang, C.S., Lam, M.F., Lai, F.M., To, K.F., Fung, K.S., Chan, H.W., Acute renal impairment in coronavirus-associated severe acute respiratory syndrome (2005) Kidney Int., 67, pp. 698-705; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Al Aidaroos, A.Y., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int. J. Infect. Dis., 29, pp. 301-306; Peiris, J.S., Chu, C.M., Cheng, V.C., Chan, K.S., Hung, I.F., Poon, L.L., Law, K.I., Chan, C.S., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study (2003) Lancet, 361, pp. 1767-1772; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Walmsley, S.L., Derkach, P., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area (2003) JAMA, 289, pp. 2801-2809; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., To, K.F., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N. Engl. J. Med., 348, pp. 1986-1994; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Altayyar, S., Alghamedi, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit. Care, 20, p. 123; Wong, K.T., Antonio, G.E., Hui, D.S., Lee, N., Yuen, E.H., Wu, A., Leung, C.B., Chung, S.S., Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients (2003) Radiology, 228, pp. 401-406; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Kim, G., Kim, H.O., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect. Chemother., 48, pp. 118-126; Das, K.M., Lee, E.Y., Al Jawder, S.E., Enani, M.A., Singh, R., Skakni, L., Al-Nakshabandi, N., Larsson, S.G., Acute Middle East respiratory syndrome coronavirus: temporal lung changes observed on the chest radiographs of 55 patients (2015) Am. J. Roentgenol., 205, pp. W267-W274; Das, K.M., Lee, E.Y., Enani, M.A., AlJawder, S.E., Singh, R., Bashir, S., Al-Nakshbandi, N., Larsson, S.G., CT correlation with outcomes in 15 patients with acute Middle East respiratory syndrome coronavirus (2015) Am. J. Roentgenol., 204, pp. 736-742; Morgenstern, B., Michaelis, M., Baer, P.C., Doerr, H.W., Cinatl, J., Jr., Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines (2005) Biochem. Biophys. Res. Commun., 326, pp. 905-908; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int. J. Infect. Dis., 20, pp. 42-46; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect. Dis., 14, pp. 1090-1095; von Grotthuss, M., Wyrwicz, L.S., Rychlewski, L., mRNA cap-1 methyltransferase in the SARS genome (2003) Cell, 113, pp. 701-702; Chan, J.F., Chan, K.H., Kao, R.Y., Zheng, B.J., Li, C.P., Li, P.T., Dai, J., Yuen, K.Y., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J. Infect., 67, pp. 606-616; Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Ward, S., Wolff, B., Lho, H., Pham, D.H., Chang, M., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study (2003) JAMA, 290, pp. 3222-3228; Chu, C.M., Cheng, V.C., Hung, I.F., Wong, M.M., Chan, K.H., Chan, K.S., Kao, R.Y., Guan, Y., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings (2004) Thorax, 59, pp. 252-256; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yu, P., Treatment with lopinavir/ritonavir or interferon-beta1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J. Infect. Dis., 212, pp. 1904-1913; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Jahrling, P.B., Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J. Gen. Virol., 95, pp. 571-577; Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw, F.M., Lim, W.S., Makki, S., Beck, C.R., The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis (2015) J. Infect. Dis., 211, pp. 80-90; Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Al-Omari, A., Al-Hameed, F.M., Whitehead, J., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol (2015) Springerplus, 4, p. 709; Lee, N., Allen Chan, K.C., Hui, D.S., Ng, E.K., Wu, A., Chiu, R.W., Wong, V.W., Wong, E., Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients (2004) J. Clin. Virol., 31, pp. 304-309; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Dimitrov, D.S., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci. Rep., 6, p. 31629; Tao, X., Mei, F., Agrawal, A., Peters, C.J., Ksiazek, T.G., Cheng, X., Tseng, C.T., Blocking of exchange proteins directly activated by cAMP leads to reduced replication of Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 3902-3910; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Dang, N.H., Morimoto, C., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J. Virol., 87, pp. 13892-13899","Wunderink, R.G.; Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of MedicineUnited States; email: r-wunderink@northwestern.edu",,"Blackwell Publishing",13237799,,RSPIF,"29052924","English","Respirology",Review,"Final",Open Access,Scopus,2-s2.0-85040785929 "Müller C., Hardt M., Schwudke D., Neuman B.W., Pleschka S., Ziebuhr J.","56651517200;7004176768;11439755600;8263558000;6602999462;7003783935;","Inhibition of cytosolic phospholipase A2α impairs an early step of coronavirus replication in cell culture",2018,"Journal of Virology","92","4", e01463-17,"","",,6,"10.1128/JVI.01463-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041189329&doi=10.1128%2fJVI.01463-17&partnerID=40&md5=ebb114a8f49cac0283e67513f3cedde4","Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Imaging Unit, Biomedical Research Center, Justus Liebig University Giessen, Giessen, Germany; Division of Bioanalytical Chemistry, Priority Area Infection, Research Center Borstel, Leibniz Center for Medicine and Bioscience, Borstel, Germany; Texas A and M University, Texarkana, TX, United States","Müller, C., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Hardt, M., Imaging Unit, Biomedical Research Center, Justus Liebig University Giessen, Giessen, Germany; Schwudke, D., Division of Bioanalytical Chemistry, Priority Area Infection, Research Center Borstel, Leibniz Center for Medicine and Bioscience, Borstel, Germany; Neuman, B.W., Texas A and M University, Texarkana, TX, United States; Pleschka, S., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Ziebuhr, J., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany","Coronavirus replication is associated with intracellular membrane rearrangements in infected cells, resulting in the formation of double-membrane vesicles (DMVs) and other membranous structures that are referred to as replicative organelles (ROs). The latter provide a structural scaffold for viral replication/transcription complexes (RTCs) and help to sequester RTC components from recognition by cellular factors involved in antiviral host responses. There is increasing evidence that plus-strand RNA (αRNA) virus replication, including RO formation and virion morphogenesis, affects cellular lipid metabolism and critically depends on enzymes involved in lipid synthesis and processing. Here, we investigated the role of cytosolic phospholipase A2α (cPLA2α) in coronavirus replication using a low-molecular-weight nonpeptidic inhibitor, pyrrolidine-2 (Py-2). The inhibition of cPLA2α activity, which produces lysophospholipids (LPLs) by cleaving at the sn-2 position of phospholipids, had profound effects on viral RNA and protein accumulation in human coronavirus 229E-infected Huh-7 cells. Transmission electron microscopy revealed that DMV formation in infected cells was significantly reduced in the presence of the inhibitor. Furthermore, we found that (i) viral RTCs colocalized with LPL-containing membranes, (ii) cellular LPL concentrations were increased in coronavirus-infected cells, and (iii) this increase was diminished in the presence of the cPLA2α inhibitor Py-2. Py-2 also displayed antiviral activities against other viruses representing the Coronaviridae and Togaviridae families, while members of the Picornaviridae were not affected. Taken together, the study provides evidence that cPLA2α activity is critically involved in the replication of various +RNA virus families and may thus represent a candidate target for broad-spectrum antiviral drug development. © 2018 American Society for Microbiology.","Coronavirus","cytosolic phospholipase A2 alpha; lysophospholipid; phospholipase A2; phospholipase A2 inhibitor; pyrrolidine 2; unclassified drug; virus RNA; phospholipase A2 group IV; PLA2G4A protein, human; pyrrolidine; pyrrolidine derivative; animal cell; Article; cell culture; controlled study; Coronaviridae; Coronavirinae; Coronavirus infection; double membrane vesicle; enzyme activity; enzyme inhibition; human; human cell; membrane vesicle; nonhuman; priority journal; Togaviridae; virus replication; virus transcription; animal; antagonists and inhibitors; cell division; cell line; Chlorocebus aethiops; Coronavirinae; dog; drug effects; genetics; hamster; intracellular membrane; MDCK cell line; metabolism; physiology; Vero cell line; virology; Animals; Cell Division; Cell Line; Cercopithecus aethiops; Coronavirus; Coronavirus Infections; Cricetinae; Dogs; Group IV Phospholipases A2; Humans; Intracellular Membranes; Madin Darby Canine Kidney Cells; Pyrrolidines; RNA, Viral; Vero Cells; Virus Replication","de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Family Coronaviridae (2012) Virus taxonomy, pp. 806-828. , In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed). Elsevier, Amsterdam, the Netherlands; de Groot, R.J., Cowley, J.A., Enjuanes, L., Faaberg, K.S., Perlman, S., Rottier, P.J.M., Snijder, E.J., Gorbalenya, A.E., Order Nidovirales (2012) Virus taxonomy, pp. 785-795. , In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed). Elsevier, Amsterdam, the Netherlands; van der Hoek, L., Human coronaviruses: what do they cause? (2007) Antivir Ther, 12, pp. 651-658; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441. , https://doi.org/10.1056/NEJMra032498; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , https://doi.org/10.1016/S0140-6736(03)13077-2; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8; Angelini, M.M., Neuman, B.W., Buchmeier, M.J., Untangling membrane rearrangement in the Nidovirales (2014) DNA Cell Biol, 33, pp. 122-127. , https://doi.org/10.1089/dna.2013.2304; V'Kovski, P., Al-Mulla, H., Thiel, V., Neuman, B.W., New insights on the role of paired membrane structures in coronavirus replication (2015) Virus Res, 202, pp. 33-40. , https://doi.org/10.1016/j.virusres.2014.12.021; Ahlquist, P., Parallels among positive-strand RNA viruses, reversetranscribing viruses and double-stranded RNA viruses (2006) Nat Rev Microbiol, 4, pp. 371-382. , https://doi.org/10.1038/nrmicro1389; den Boon, J.A., Ahlquist, P., Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories (2010) Annu Rev Microbiol, 64, pp. 241-256. , https://doi.org/10.1146/annurev.micro.112408.134012; den Boon, J.A., Diaz, A., Ahlquist, P., Cytoplasmic viral replication complexes (2010) Cell Host Microbe, 8, pp. 77-85. , https://doi.org/10.1016/j.chom.2010.06.010; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio, 4. , https://doi.org/10.1128/mBio.00524-13; Baliji, S., Cammer, S.A., Sobral, B., Baker, S.C., Detection of nonstructural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches (2009) J Virol, 83, pp. 6957-6962. , https://doi.org/10.1128/JVI.00254-09; Oostra, M., Hagemeijer, M.C., van Gent, M., Bekker, C.P., te Lintelo, E.G., Rottier, P.J., de Haan, C.A., Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning (2008) J Virol, 82, pp. 12392-12405. , https://doi.org/10.1128/JVI.01219-08; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Ulasli, M., Verheije, M.H., de Haan, C.A.M., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell Microbiol, 12, pp. 844-861. , https://doi.org/10.1111/j.1462-5822.2010.01437.x; Hagemeijer, M.C., Verheije, M.H., Ulasli, M., Shaltiël, I.A., de Vries, L.A., Reggiori, F., Rottier, P.J.M., de Haan, C.A.M., Dynamics of coronavirus replicationtranscription complexes (2010) J Virol, 84, pp. 2134-2149. , https://doi.org/10.1128/JVI.01716-09; Hagemeijer, M.C., Vonk, A.M., Monastyrska, I., Rottier, P.J.M., de Haan, C.A.M., Visualizing coronavirus RNA synthesis in time by using click chemistry (2012) J Virol, 86, pp. 5808-5816. , https://doi.org/10.1128/JVI.07207-11; Knoops, K., Bárcena, M., Limpens, R.W.A.L., Koster, A.J., Mommaas, A.M., Snijder, E.J., Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis (2012) J Virol, 86, pp. 2474-2487. , https://doi.org/10.1128/JVI.06677-11; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J.M., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J Virol, 80, pp. 5927-5940. , https://doi.org/10.1128/JVI.02501-05; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J Virol, 76, pp. 3697-3708. , https://doi.org/10.1128/JVI.76.8.3697-3708.2002; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6. , https://doi.org/10.1371/journal.pbio.0060226; Sodeik, B., Krijnse-Locker, J., Assembly of vaccinia virus revisited: de novo membrane synthesis or acquisition from the host? (2002) Trends Microbiol, 10, pp. 15-24. , https://doi.org/10.1016/S0966-842X(01)02256-9; Knoops, K., Swett-Tapia, C., van den Worm, S.H., Te Velthuis, A.J., Koster, A.J., Mommaas, A.M., Snijder, E.J., Kikkert, M., Integrity of the early secretory pathway promotes, but is not required for, severe acute respiratory syndrome coronavirus RNA synthesis and virus-induced remodeling of endoplasmic reticulum membranes (2010) J Virol, 84, pp. 833-846. , https://doi.org/10.1128/JVI.01826-09; Reggiori, F., Monastyrska, I., Verheije, M.H., Cali, T., Ulasli, M., Bianchi, S., Bernasconi, R., Molinari, M., Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication (2010) Cell Host Microbe, 7, pp. 500-508. , https://doi.org/10.1016/j.chom.2010.05.013; Maier, H.J., Britton, P., Involvement of autophagy in coronavirus replication (2012) Viruses, 4, pp. 3440-3451. , https://doi.org/10.3390/v4123440; Reid, C.R., Airo, A.M., Hobman, T.C., The virus-host interplay: biogenesis of +RNA replication complexes (2015) Viruses, 7, pp. 4385-4413. , https://doi.org/10.3390/v7082825; Heaton, N.S., Perera, R., Berger, K.L., Khadka, S., Lacount, D.J., Kuhn, R.J., Randall, G., Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis (2010) Proc Natl Acad Sci U S A, 107, pp. 17345-17350. , https://doi.org/10.1073/pnas.1010811107; Greseth, M.D., Traktman, P., De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004021; Martin-Acebes, M.A., Blazquez, A.B., Jimenez de Oya, N., Escribano-Romero, E., Saiz, J.C., West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0024970; Perera, R., Riley, C., Isaac, G., Hopf-Jannasch, A.S., Moore, R.J., Weitz, K.W., Pasa-Tolic, L., Kuhn, R.J., Dengue virus infection perturbs lipid homeostasis in infected mosquito cells (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002584; Sagan, S.M., Rouleau, Y., Leggiadro, C., Supekova, L., Schultz, P.G., Su, A.I., Pezacki, J.P., The influence of cholesterol and lipid metabolism on host cell structure and hepatitis C virus replication (2006) Biochem Cell Biol, 84, pp. 67-79. , https://doi.org/10.1139/o05-149; Yang, W., Hood, B.L., Chadwick, S.L., Liu, S., Watkins, S.C., Luo, G., Conrads, T.P., Wang, T., Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production (2008) Hepatology, 48, pp. 1396-1403. , https://doi.org/10.1002/hep.22508; Balsinde, J., Winstead, M.V., Dennis, E.A., Phospholipase A(2) regulation of arachidonic acid mobilization (2002) FEBS Lett, 531, pp. 2-6. , https://doi.org/10.1016/S0014-5793(02)03413-0; Murakami, M., Taketomi, Y., Miki, Y., Sato, H., Hirabayashi, T., Yamamoto, K., Recent progress in phospholipase A(2) research: from cells to animals to humans (2011) Prog Lipid Res, 50, pp. 152-192. , https://doi.org/10.1016/j.plipres.2010.12.001; Ghosh, M., Tucker, D.E., Burchett, S.A., Leslie, C.C., Properties of the group IV phospholipase A2 family (2006) Prog Lipid Res, 45, pp. 487-510. , https://doi.org/10.1016/j.plipres.2006.05.003; Lin, L.L., Wartmann, M., Lin, A.Y., Knopf, J.L., Seth, A., Davis, R.J., cPLA2 is phosphorylated and activated by MAP kinase (1993) Cell, 72, pp. 269-278. , https://doi.org/10.1016/0092-8674(93)90666-E; Menzel, N., Fischl, W., Hueging, K., Bankwitz, D., Frentzen, A., Haid, S., Gentzsch, J., Pietschmann, T., MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002829; Seno, K., Okuno, T., Nishi, K., Murakami, Y., Watanabe, F., Matsuura, T., Wada, M., Ohtani, M., Pyrrolidine inhibitors of human cytosolic phospholipase A(2) (2000) J Med Chem, 43, pp. 1041-1044. , https://doi.org/10.1021/jm9905155; Müller, C., Karl, N., Ziebuhr, J., Pleschka, S., D, L-Lysine acetylsalicylate + glycine impairs coronavirus replication (2016) J Antivir Antiretrovir, 8, pp. 142-150; Ziebuhr, J., Siddell, S.G., Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab (1999) J Virol, 73, pp. 177-185; Heusipp, G., Grotzinger, C., Herold, J., Siddell, S.G., Ziebuhr, J., Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells (1997) J Gen Virol, 78, pp. 2789-2794. , https://doi.org/10.1099/0022-1317-78-11-2789; Jao, C.Y., Salic, A., Exploring RNA transcription and turnover in vivo by using click chemistry (2008) Proc Natl Acad Sci U S A, 105, pp. 15779-15784. , https://doi.org/10.1073/pnas.0808480105; Romero-Brey, I., Bartenschlager, R., Membranous replication factories induced by plus-strand RNA viruses (2014) Viruses, 6, pp. 2826-2857. , https://doi.org/10.3390/v6072826; Strating, J.R., van Kuppeveld, F.J., Viral rewiring of cellular lipid metabolism to create membranous replication compartments (2017) Curr Opin Cell Biol, 47, pp. 24-33. , https://doi.org/10.1016/j.ceb.2017.02.005; Konan, K.V., Sanchez-Felipe, L., Lipids and RNA virus replication (2014) Curr Opin Virol, 9, pp. 45-52. , https://doi.org/10.1016/j.coviro.2014.09.005; Dorobantu, C.M., Albulescu, L., Harak, C., Feng, Q., van Kampen, M., Strating, J.R., Gorbalenya, A.E., van Kuppeveld, F.J., Modulation of the host lipid landscape to promote RNA virus replication: the Picornavirus Encephalomyocarditis virus converges on the pathway used by hepatitis C virus (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005185; Harizi, H., Corcuff, J.B., Gualde, N., Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology (2008) Trends Mol Med, 14, pp. 461-469. , https://doi.org/10.1016/j.molmed.2008.08.005; Mishima, K., Nakajima, M., Ogihara, T., Effects of lysophospholipids on membrane order of phosphatidylcholine (2004) Colloids Surf B Biointerfaces, 33, pp. 185-189. , https://doi.org/10.1016/j.colsurfb.2003.10.004; Roux, A., Cuvelier, D., Nassoy, P., Prost, J., Bassereau, P., Goud, B., Role of curvature and phase transition in lipid sorting and fission of membrane tubules (2005) EMBO J, 24, pp. 1537-1545. , https://doi.org/10.1038/sj.emboj.7600631; Sheetz, M.P., Singer, S.J., Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions (1974) Proc Natl Acad Sci U S A, 71, pp. 4457-4461. , https://doi.org/10.1073/pnas.71.11.4457; Burger, K.N., Greasing membrane fusion and fission machineries (2000) Traffic, 1, pp. 605-613. , https://doi.org/10.1034/j.1600-0854.2000.010804.x; Huttner, W.B., Schmidt, A.A., Membrane curvature: a case of endofeelin' (2002) Trends Cell Biol, 12, pp. 155-158. , https://doi.org/10.1016/S0962-8924(02)02252-3; Zimmerberg, J., Gawrisch, K., The physical chemistry of biological membranes (2006) Nat Chem Biol, 2, pp. 564-567. , https://doi.org/10.1038/nchembio1106-564; Brown, W.J., Chambers, K., Doody, A., Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function (2003) Traffic, 4, pp. 214-221. , https://doi.org/10.1034/j.1600-0854.2003.00078.x; de Figueiredo, P., Drecktrah, D., Katzenellenbogen, J.A., Strang, M., Brown, W.J., Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation (1998) Proc Natl Acad Sci U S A, 95, pp. 8642-8647. , https://doi.org/10.1073/pnas.95.15.8642; Gubern, A., Casas, J., Barcelo-Torns, M., Barneda, D., de la Rosa, X., Masgrau, R., Picatoste, F., Claro, E., Group IVA phospholipase A2 is necessary for the biogenesis of lipid droplets (2008) J Biol Chem, 283, pp. 27369-27382. , https://doi.org/10.1074/jbc.M800696200; Cai, B., Caplan, S., Naslavsky, N., cPLA2alpha and EHD1 interact and regulate the vesiculation of cholesterol-rich, GPI-anchored, proteincontaining endosomes (2012) Mol Biol Cell, 23, pp. 1874-1888. , https://doi.org/10.1091/mbc.E11-10-0881; Gallop, J.L., McMahon, H.T., BAR domains and membrane curvature: bringing your curves to the BAR (2005) Biochem Soc Symp, 2005, pp. 223-231. , https://doi.org/10.1042/bss0720223; Zizza, P., Iurisci, C., Bonazzi, M., Cossart, P., Leslie, C.C., Corda, D., Mariggio, S., Phospholipase A2IValpha regulates phagocytosis independent of its enzymatic activity (2012) J Biol Chem, 287, pp. 16849-16859. , https://doi.org/10.1074/jbc.M111.309419; Brown, M.F., Curvature forces in membrane lipid-protein interactions (2012) Biochemistry, 51, pp. 9782-9795. , https://doi.org/10.1021/bi301332v; Jarsch, I.K., Daste, F., Gallop, J.L., Membrane curvature in cell biology: an integration of molecular mechanisms (2016) J Cell Biol, 214, pp. 375-387. , https://doi.org/10.1083/jcb.201604003; McMahon, H.T., Boucrot, E., Membrane curvature at a glance (2015) J Cell Sci, 128, pp. 1065-1070. , https://doi.org/10.1242/jcs.114454; Wang, X., Devaiah, S.P., Zhang, W., Welti, R., Signaling functions of phosphatidic acid (2006) Prog Lipid Res, 45, pp. 250-278. , https://doi.org/10.1016/j.plipres.2006.01.005; Athenstaedt, K., Daum, G., The life cycle of neutral lipids: synthesis, storage and degradation (2006) Cell Mol Life Sci, 63, pp. 1355-1369. , https://doi.org/10.1007/s00018-006-6016-8; Gault, C.R., Obeid, L.M., Hannun, Y.A., An overview of sphingolipid metabolism: from synthesis to breakdown (2010) Adv Exp Med Biol, 688, pp. 1-23. , https://doi.org/10.1007/978-1-4419-6741-1_1; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front Microbiol, 5, p. 296. , https://doi.org/10.3389/fmicb.2014.00296; Cong, Y., Verlhac, P., Reggiori, F., The interaction between Nidovirales and autophagy components (2017) Viruses, 9, p. 182. , https://doi.org/10.3390/v9070182; de Haan, C.A., Reggiori, F., Are nidoviruses hijacking the autophagy machinery? (2008) Autophagy, 4, pp. 276-279. , https://doi.org/10.4161/auto.5241; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J Biol Chem, 279, pp. 10136-10141. , https://doi.org/10.1074/jbc.M306124200; Zhao, Z., Thackray, L.B., Miller, B.C., Lynn, T.M., Becker, M.M., Ward, E., Mizushima, N.N., Virgin, H.W., IV, Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3, pp. 581-585. , https://doi.org/10.4161/auto.4782; Cottam, E.M., Maier, H.J., Manifava, M., Vaux, L.C., Chandra-Schoenfelder, P., Gerner, W., Britton, P., Wileman, T., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7, pp. 1335-1347. , https://doi.org/10.4161/auto.7.11.16642; Maier, H.J., Cottam, E.M., Stevenson-Leggett, P., Wilkinson, J.A., Harte, C.J., Wileman, T., Britton, P., Visualizing the autophagy pathway in avian cells and its application to studying infectious bronchitis virus (2013) Autophagy, 9, pp. 496-509. , https://doi.org/10.4161/auto.23465; Utermohlen, O., Herz, J., Schramm, M., Kronke, M., Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses (2008) Immunobiology, 213, pp. 307-314. , https://doi.org/10.1016/j.imbio.2007.10.016; Aktepe, T.E., Pham, H., Mackenzie, J.M., Differential utilisation of ceramide during replication of the flaviviruses West Nile and dengue virus (2015) Virology, 484, pp. 241-250. , https://doi.org/10.1016/j.virol.2015.06.015; Roe, B., Kensicki, E., Mohney, R., Hall, W.W., Metabolomic profile of hepatitis C virus-infected hepatocytes (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0023641; Street, I.P., Lin, H.K., Laliberte, F., Ghomashchi, F., Wang, Z., Perrier, H., Tremblay, N.M., Gelb, M.H., Slow-and tight-binding inhibitors of the 85-kDa human phospholipase A2 (1993) Biochemistry, 32, pp. 5935-5940. , https://doi.org/10.1021/bi00074a003; Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65, pp. 55-63. , https://doi.org/10.1016/0022-1759(83)90303-4; Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Ziebuhr, J., Mechanisms and enzymes involved in SARS coronavirus genome expression (2003) J Gen Virol, 84, pp. 2305-2315. , https://doi.org/10.1099/vir.0.19424-0; Dunn, K.W., Kamocka, M.M., McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy (2011) Am J Physiol Cell Physiol, 300, pp. C723-C742. , https://doi.org/10.1152/ajpcell.00462.2010; Manders, E.M., Stap, J., Brakenhoff, G.J., van Driel, R., Aten, J.A., Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy (1992) J Cell Sci, 103, pp. 857-862; Manders, E.M., Verbeek, F.J., Aten, J.A., Measurement of colocalization of objects in dual-colour confocal images (1993) J Microsc, 169, pp. 375-382. , https://doi.org/10.1111/j.1365-2818.1993.tb03313.x; Adler, J., Parmryd, I., Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient (2010) Cytometry, 77A, pp. 733-742. , https://doi.org/10.1002/cyto.a.20896; Barlow, A.L., Macleod, A., Noppen, S., Sanderson, J., Guerin, C.J., Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of Pearson's correlation coefficient (2010) Microsc Microanal, 16, pp. 710-724. , https://doi.org/10.1017/S143192761009389X; Costes, S.V., Daelemans, D., Cho, E.H., Dobbin, Z., Pavlakis, G., Lockett, S., Automatic and quantitative measurement of protein-protein colocalization in live cells (2004) Biophys J, 86, pp. 3993-4003. , https://doi.org/10.1529/biophysj.103.038422; Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., Schwudke, D., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics (2008) J Lipid Res, 49, pp. 1137-1146. , https://doi.org/10.1194/jlr.D700041-JLR200; Herzog, R., Schuhmann, K., Schwudke, D., Sampaio, J.L., Bornstein, S.R., Schroeder, M., Shevchenko, A., LipidXplorer: a software for consensual cross-platform lipidomics (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0029851; Herzog, R., Schwudke, D., Shevchenko, A., LipidXplorer: Software for quantitative shotgun lipidomics compatible with multiple mass spectrometry platforms (2013) Curr Protoc Bioinformatics, 43. , https://doi.org/10.1002/0471250953.bi1412s43; Schwudke, D., Liebisch, G., Herzog, R., Schmitz, G., Shevchenko, A., Shotgun lipidomics by tandem mass spectrometry under datadependent acquisition control (2007) Methods Enzymol, 433, pp. 175-191. , https://doi.org/10.1016/S0076-6879(07)33010-3; Schwudke, D., Schuhmann, K., Herzog, R., Bornstein, S.R., Shevchenko, A., Shotgun lipidomics on high resolution mass spectrometers (2011) Cold Spring Harb Perspect Biol, 3. , https://doi.org/10.1101/cshperspect.a004614","Ziebuhr, J.; Institute of Medical Virology, Justus Liebig University GiessenGermany; email: john.ziebuhr@viro.med.uni-giessen.de",,"American Society for Microbiology",0022538X,,JOVIA,"29167338","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85041189329 "Stodola J.K., Dubois G., Le Coupanec A., Desforges M., Talbot P.J.","56471655600;57200078686;54583844300;6701643379;7102670281;","The OC43 human coronavirus envelope protein is critical for infectious virus production and propagation in neuronal cells and is a determinant of neurovirulence and CNS pathology",2018,"Virology","515",,,"134","149",,3,"10.1016/j.virol.2017.12.023","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039147968&doi=10.1016%2fj.virol.2017.12.023&partnerID=40&md5=c4bb470c2a195c028d17a018c89a57f2","Laboratory of Neuroimmunovirology, INRS-Institut Armand‐ Frappier, Laval, Québec, Canada","Stodola, J.K., Laboratory of Neuroimmunovirology, INRS-Institut Armand‐ Frappier, Laval, Québec, Canada; Dubois, G., Laboratory of Neuroimmunovirology, INRS-Institut Armand‐ Frappier, Laval, Québec, Canada; Le Coupanec, A., Laboratory of Neuroimmunovirology, INRS-Institut Armand‐ Frappier, Laval, Québec, Canada; Desforges, M., Laboratory of Neuroimmunovirology, INRS-Institut Armand‐ Frappier, Laval, Québec, Canada; Talbot, P.J., Laboratory of Neuroimmunovirology, INRS-Institut Armand‐ Frappier, Laval, Québec, Canada","The OC43 strain of human coronavirus (HCoV-OC43) is an ubiquitous respiratory tract pathogen possessing neurotropic capacities. Coronavirus structural envelope (E) protein possesses specific motifs involved in protein-protein interaction or in homo-oligomeric ion channel formation, which are known to play various roles including in virion morphology/assembly and in cell response to infection and/or virulence. Making use of recombinant viruses either devoid of the E protein or harboring mutations either in putative transmembrane domain or PDZ-binding motif, we demonstrated that a fully functional HCoV-OC43 E protein is first needed for optimal production of recombinant infectious viruses. Furthermore, HCoV-OC43 infection of human epithelial and neuronal cell lines, of mixed murine primary cultures from the central nervous system and of mouse central nervous system showed that the E protein is critical for efficient and optimal virus replication and propagation, and thereby for neurovirulence. © 2017 Elsevier Inc.","Coronavirus; E protein; HCoV-OC43; Pathogenesis; PDZ binding motif; Transmembrane domain; Virus production","ion channel; PDZ protein; virus envelope protein; virus envelope protein; animal cell; animal experiment; animal model; Article; central nervous system infection; controlled study; female; human; human cell; Human coronavirus OC43; male; mouse; neuronal cell line; neuropathology; nonhuman; priority journal; protein function; protein motif; protein protein interaction; virion; virus infectivity; virus recombinant; virus replication; virus strain; virus virulence; animal; C57BL mouse; cell line; central nervous system; Coronavirus infection; genetics; Human coronavirus OC43; metabolism; nerve cell; pathogenicity; pathology; physiology; virology; virulence; Animals; Cell Line; Central Nervous System; Coronavirus Infections; Coronavirus OC43, Human; Female; Humans; Male; Mice; Mice, Inbred C57BL; Neurons; Viral Envelope Proteins; Virulence","Almazán, F., Dediego, M.L., Sola, I., Zuñiga, S., Nieto-torres, J.L., Marquez-jurado, S., Andrés, G., A vaccine candidate east respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4, pp. 1-11; Almazán, F., Sola, I., Zuñiga, S., Marquez-Jurado, S., Morales, L., Becares, M., Enjuanes, L., Coronavirus reverse genetic systems: infectious clones and replicons (2014) Virus Res., 189, pp. 262-270; Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Saeed, B.T., Balkhy, H., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by human respiratory coronaviruses (2000) J. Virol., 74, pp. 8913-8921; Bonavia, A., Arbour, N., Yong, V.W., Talbot, P.J., Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43 (1997) J. Virol., 71, pp. 800-806; Brison, E., Jacomy, H., Desforges, M., Talbot, P.J., Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein (2011) J. Virol., 85, pp. 12464-12473; Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Sabatini, D.M., CellProfiler: image analysis software for identifying and quantifying cell phenotypes (2006) Genome Biol., 7, p. R100; Cohen, J.R., Lin, L.D., Machamer, C.E., Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein (2011) J. Virol., 85, pp. 5794-5803; Curtis, K., Yount, B., Baric, R., Heterologous gene expression from transmissible gastroenteritis virus replicon particles (2002) J. Virol., 76, pp. 1422-1434; DeDiego, M.L., Alvarez, E., Almazan, F., Rejas, M.T., Lamirande, E., Roberts, A., Shieh, W.J., Enjuanes, L., A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo (2007) J. Virol., 81, pp. 1701-1713; DeDiego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology, 376, pp. 379-389; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Usera, F., Enjuanes, L., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res., 194, pp. 124-137; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J. Virol., 87, pp. 3097-3107; Desforges, M., Le Coupanec, A., Stodola, J.K., Meessen-Pinard, M., Talbot, P.J., Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis (2014) Virus Res., 194, pp. 145-158; Drosten, C., Günther, S., Preiser, W., Werf, S., van der, Brodt, H.-R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilin D dependent and potentially caspase dispensable (2012) J. Virol., 86, pp. 81-93; Feng, W., Zhang, M., Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density (2009) Nat. Rev. Neurosci., 10, pp. 87-99; Fischer, F., Stegen, C.F., Masters, P.S., Samsonoff, W.A., Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly (1998) J. Virol., 72, pp. 7885-7894; Fronhoffs, S., Totzke, G., Stier, S., Wernert, N., Rothe, M., Bruning, T., Koch, B., Ko, Y., A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction (2002) Mol. Cell Probes, 16, pp. 99-110; Godet, M., L'Haridon, R., Vautherot, J.F., Laude, H., TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions (1992) Virology, 188, pp. 666-675; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Coronaviridae (2012) Virus Taxonomy, pp. 806-828. , A.M.Q. King M.J. Adams E.B. Carstens E.J. Lefkowitz Elsevier New York, NY; Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Leong, A.S.-Y., Multiple organ infection and the pathogenesis of SARS (2005) J. Exp. Med., 202, pp. 415-424; Hill, D.P., Robertson, K.A., Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction (1998) Brain Res. Protoc., 2, pp. 183-190; Jacomy, H., Talbot, P.J., Vacuolating encephalitis in mice infected by human coronavirus OC43 (2003) Virology, 315, pp. 20-33; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice (2006) Virology, 349, pp. 335-346; Javier, R.T., Rice, A.P., Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses (2011) J. Virol., 85, pp. 11544-11556; Jimenez-Guardeño, J.M., Nieto-Torres, J.L., DeDiego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLoS Pathog., 10, p. e1004320; Jimenez-Guardeño, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castaño-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLoS Pathog., 11, p. e1005215; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, L.J.A.T., Emery, S., Tong, S., the SARS Working Group, M.D., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., pp. 1953-1966; Kuo, L., Masters, P.S., The small envelope protein E is not essential for murine coronavirus replication (2003) J. Virol., 77, pp. 4597-4608; Kuo, L., Masters, P.S., Evolved variants of the membrane protein can partially replace the envelope protein in murine coronavirus assembly (2010) J. Virol., 84, pp. 12872-12885; Kuo, L., Hurst, K.R., Masters, P.S., Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function (2007) J. Virol., 81, pp. 2249-2262; Lambert, F., Jacomy, H., Marceau, G., Talbot, P.J., Titration of human coronaviruses using an immunoperoxidase assay (2008) J. Vis. Exp.; Le Coupanec, A., Desforges, M., Meessen-Pinard, M., Dubé, M., Day, R., Seidah, N.G., Talbot, P.J., Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system (2015) PLoS Pathog., 11, p. e1005261; Liu, D.X., Inglis, S.C., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology, 185, pp. 911-917; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Chong, W.K., Breuer, J., Human coronavirus OC43 associated with fatal encephalitis (2016) N. Engl. J. Med., 375, pp. 497-498; Nieto-Torres, J.L., Dediego, M.L., Alvarez, E., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Llorente, M., Kremer, L., Enjuanes, L., Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein (2011) Virology, 415, pp. 69-82; Nieto-Torres, J.L., DeDiego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog., 10, p. e1004077; Nieva, J.L., Madan, V., Carrasco, L., Viroporins: structure and biological functions (2012) Nat. Rev. Microbiol, 10, pp. 563-574; Ortego, J., Escors, D., Laude, H., Enjuanes, L., Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome (2002) J. Virol., 76, pp. 11518-11529; Ortego, J., Ceriani, J.E., Patiño, C., Plana, J., Enjuanes, L., Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway (2007) Virology, 368, pp. 296-308; Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F.L., Yu, D., Vararattanavech, A., Torres, J., Structure and inhibition of the SARS coronavirus envelope protein ion channel (2009) PLoS Pathog., 5, p. e1000511; Préhaud, C., Wolff, N., Terrien, E., Lafage, M., Mégret, F., Babault, N., Cordier, F., Lafon, M., Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein (2010) Sci. Signal., 3, p. ra5; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Castaño-Rodríguez, C., Perlman, S., DeDiego, M.L., Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates (2015) J. Virol., 89, pp. 3870-3887; Ruch, T.R., Machamer, C.E., The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus (2011) J. Virol., 85, pp. 675-685; Ruch, T.R., Machamer, C.E., A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus E protein (2012) PLoS Pathog., 8, p. e1002674; Scott, C., Griffin, S., Viroporins: structure, function and potential as antiviral targets (2015) J. Gen. Virol., 96, pp. 2000-2027; St-Jean, J.R., Desforges, M., Almazán, F., Jacomy, H., Enjuanes, L., Talbot, P.J., Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone (2006) J. Virol., 80, pp. 3670-3674; Surya, W., Li, Y., Verdià-Bàguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res., 201, pp. 61-66; Teoh, K.-T., Siu, Y.-L., Chan, W.-L., Schlüter, M.A., Liu, C.-J., Peiris, J.S.M., Bruzzone, R., Nal, B., The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis (2010) Mol. Biol. Cell, 21, pp. 3838-3852; Torres, J., Wang, J., Parthasarathy, K., Liu, D.X., Xiang, D., The transmembrane oligomers of coronavirus protein E (2005) Biophys. J., 88, pp. 1283-1290; Torres, J., Parthasarathy, K., Lin, X., Saravanan, R., Kukol, A., Liu, D.X., Model of a putative pore: the pentameric alpha-helical bundle of SARS coronavirus E protein in lipid bilayers (2006) Biophys. J., 91, pp. 938-947; Vabret, A., Dina, J., Brison, E., Brouard, J., Freymuth, F., Coronavirus humains (HCoV) (2009) Pathol. Biol., 57, pp. 149-160; Venkatagopalan, P., Daskalova, S.M., Lopez, L.A., Dolezal, K.A., Hogue, B.G., Coronavirus envelope (E) protein remains at the site of assembly (2015) Virology, 478, pp. 75-85; Verdiá-Báguena, C., Nieto-Torres, J.L., Alcaraz, A., DeDiego, M.L., Torres, J., Aguilella, V.M., Enjuanes, L., Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids (2012) Virology, 432, pp. 485-494; Verdiá-Báguena, C., Nieto-Torres, J.L., Alcaraz, A., Dediego, M.L., Enjuanes, L., Aguilella, V.M., Analysis of SARS-CoV e protein ion channel activity by tuning the protein and lipid charge (2013) Biochim. Biophys. Acta - Biomembr., 1828, pp. 2026-2031; Vijgen, L., Keyaerts, E., Moe, E., Maes, P., Duson, G., Ranst, M., Van, Development of one-step, real-time, quantitative reverse transcriptase pcr assays for absolute quantitation (2005) J. Clin. Microbiol., 43, pp. 5452-5456; Westerbeck, J.W., Machamer, C.E., A coronavirus E protein is present in two distinct pools with different effects on assembly and the secretory pathway (2015) J. Virol., , (JVI.01237-15); Wilson, L., Mckinlay, C., Gage, P., Ewart, G., SARS coronavirus E protein forms cation-selective ion channels (2004) Virology, 330, pp. 322-331; Wilson, L., Gage, P., Ewart, G., Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication (2006) Virology, 353, pp. 294-306; Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Jiang, Y., Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis (2005) Clin. Infect. Dis., 41, pp. 1089-1096; Ye, F., Zhang, M., Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures (2013) Biochem. J., 455, pp. 1-14; Ye, Y., Hogue, B.G., Role of the coronavirus E viroporin protein transmembrane domain in virus assembly (2007) J. Virol., 81, pp. 3597-3607; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-e76; Yu, X., Bi, W., Weiss, S.R., Leibowitz, J.L., Mouse hepatitis virus gene 5b protein is a new virion envelope protein (1994) Virology, 202, pp. 1018-1023; Zaki, A.M., Boheemen, S., van, Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367, pp. 1814-1820","Desforges, M.531, Boulevard des Prairies, Canada; email: marc.desforges@iaf.inrs.ca",,"Academic Press Inc.",00426822,,VIRLA,"29287230","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85039147968 "Rubio E., Martínez M.J., Gonzalo V., Barrachina J., Torner N., Martínez A.I., Jané M., Vilella A., del Rio A., Rodriguez-Valero N., Pinazo M.J., Muñoz J., Soriano A., Trilla A., Vila J., Marcos M.A.","57192713606;56890159100;55579987400;57196392655;24176188800;7404026491;6603877168;6604059244;56908498600;55312111100;24328735000;35482708100;7004480416;35485787100;7202012753;35450412800;","Definitive diagnosis in suspected middle east respiratory syndrome coronavirus cases",2018,"Journal of Travel Medicine","25","1", tax084,"","",,1,"10.1093/jtm/tax084","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042670028&doi=10.1093%2fjtm%2ftax084&partnerID=40&md5=5750a180eada2a274da661b44e402f6c","Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona, Spain; Agencia de Salud Pública de Cataluña, Ciber de Epidemiología y Salud Pública CIBERESP, Spain; Public Health Department, Hospital Clínic, University of Barcelona, Barcelona, Spain; Department of Infectious Diseases, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain; Centre for Research in International Health (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain","Rubio, E., Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain; Martínez, M.J., Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain; Gonzalo, V., Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain; Barrachina, J., Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain; Torner, N., Agencia de Salud Pública de Cataluña, Ciber de Epidemiología y Salud Pública CIBERESP, Spain; Martínez, A.I., Agencia de Salud Pública de Cataluña, Ciber de Epidemiología y Salud Pública CIBERESP, Spain; Jané, M., Agencia de Salud Pública de Cataluña, Ciber de Epidemiología y Salud Pública CIBERESP, Spain; Vilella, A., ISGlobal Barcelona Institute for Global Health, Barcelona, Spain, Public Health Department, Hospital Clínic, University of Barcelona, Barcelona, Spain; del Rio, A., Department of Infectious Diseases, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain; Rodriguez-Valero, N., ISGlobal Barcelona Institute for Global Health, Barcelona, Spain, Centre for Research in International Health (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain; Pinazo, M.J., ISGlobal Barcelona Institute for Global Health, Barcelona, Spain, Centre for Research in International Health (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain; Muñoz, J., ISGlobal Barcelona Institute for Global Health, Barcelona, Spain, Centre for Research in International Health (CRESIB), Hospital Clinic, University of Barcelona, Barcelona, Spain; Soriano, A., Department of Infectious Diseases, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain; Trilla, A., ISGlobal Barcelona Institute for Global Health, Barcelona, Spain, Public Health Department, Hospital Clínic, University of Barcelona, Barcelona, Spain; Vila, J., Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain; Marcos, M.A., Department of Clinical Mirobiology, Hospital Clínic, University of Barcelona, Barcelona, Spain, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain","We evaluated the microbiological diagnosis in 14 patients with epidemiological and clinical suspicion of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) attended in a non-endemic area between June 2015 and January 2017. While no MERS-CoV was detected, other respiratory viruses were identified in 12 cases and Mycoplasma pneumoniae in 1 case. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved.","Diagnosis; FilmArray; MERS-CoV; Multiplex PCR; Respiratory agents","adult; article; clinical article; diagnosis; female; human; male; Middle East respiratory syndrome coronavirus; multiplex polymerase chain reaction; Mycoplasma pneumoniae; nonhuman; aged; Coronavirus infection; diet therapy; ethnology; genetics; isolation and purification; middle aged; Middle East; Middle East respiratory syndrome coronavirus; polymerase chain reaction; prospective study; Spain; travel; virology; young adult; Adult; Aged; Coronavirus Infections; Female; Humans; Male; Middle Aged; Middle East; Middle East Respiratory Syndrome Coronavirus; Polymerase Chain Reaction; Prospective Studies; Spain; Travel; Young Adult","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; (2016) WHO MERS-CoV Global Summary and Risk Assessment, , WHO/MERS/RA/16.1; Al-Gethamu, M., Corman, V., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Special report: Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; (2015) Surveillance for human infection with Middle East respiratory syndrome coronavirus (MERS-CoV). Interim Guidance, , WHO/MERS/SUR/15.1; (2017) Interim Patient Under Investigation (PUI) Guidance and Case Definitions [Internet], , https://www.cdc.gov/coronavirus/mers/case-def.html#pui, (17 April, date last accessed); de Catalunya, A.D.S.P., (2016) Síndrome Respiratòria de l'Orient Mitjà Nou Coronavirus (MERS-CoV): Procediment d'actuació davant casos sospitosos produïts pel nou coronavirus, pp. 1-18. , http://canalsalut.gencat.cat/web/.content/home_canal_salut/professionals/temes_de_salut/coronavirus/documents/procediment_mers_cov.pdf; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285; Martinez, M., Marcos, M.A., Gonzalo, V., Lack of detection of Middle East respiratory syndrome coronavirus in mild and severe respiratory infections in Catalonia, northeastern Spain (2014) New Microbes Hum, 2, pp. 27-28; Zhang, E.X., Oh, O.S.H., See, W., Assessment of the risk posed to Singapore by the 2015 Middle East respiratory syndrome outbreak in the Republic of Korea (2016) West Pac Surveill Response J, 7, pp. 17-25; Memish, Z.A., Al-taw, J.A., Makhdoom, H.Q., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210, pp. 1590-1594; Memish, Z.A., Assiri, A., Almasri, M., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi Health Recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210, pp. 1067-1072; Abdulhaq, A.A., Basode, V.K., Hashem, A.M., Patterns of human respiratory viruses and lack of MERS-coronavirus in patients with acute upper respiratory tract infections in Southwestern province of Saudi Arabia (2017) Adv Virol, 2017, pp. 1-7; Gautret, P., Charrel, R., Belhouchat, K., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19, pp. E315-E317. , http://dx.doi.org/10.1111/1469-0691.12174","Marcos, M.A.; Department of Clinical Mirobiology, Hospital Clínic, University of BarcelonaSpain; email: mmarcos@clinic.cat",,"Oxford University Press",11951982,,JTRMF,"29232459","English","J. Travel Med.",Article,"Final",Open Access,Scopus,2-s2.0-85042670028 "Zheng J., Perlman S.","57210471516;7102708317;","Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host",2018,"Current Opinion in Virology","28",,,"43","52",,3,"10.1016/j.coviro.2017.11.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034428057&doi=10.1016%2fj.coviro.2017.11.002&partnerID=40&md5=9f392caebcde1452db28dcaff72f5de4","Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States","Zheng, J., Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States; Perlman, S., Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States","Respiratory viruses, especially influenza A viruses and coronaviruses such as MERS-CoV, represent continuing global threats to human health. Despite significant advances, much needs to be learned. Recent studies in virology and immunology have improved our understanding of the role of the immune system in protection and in the pathogenesis of these infections and of co-evolution of viruses and their hosts. These findings, together with sophisticated molecular structure analyses, omics tools and computer-based models, have helped delineate the interaction between respiratory viruses and the host immune system, which will facilitate the development of novel treatment strategies and vaccines with enhanced efficacy. © 2017 Elsevier B.V.",,"Coronavirus vaccine; influenza vaccine; unclassified drug; virus vaccine; adaptive immunity; chemical structure; Coronavirus infection; human; immune evasion; immune response; immune system; influenza A; Influenza A virus; innate immunity; Middle East respiratory syndrome coronavirus; nonhuman; pathogenesis; priority journal; Review; virus cell interaction; animal; computer simulation; Coronavirinae; Coronavirus infection; immunology; influenza; mouse; orthomyxovirus infection; Animals; Computer Simulation; Coronavirus; Coronavirus Infections; Host Microbial Interactions; Humans; Influenza A virus; Influenza, Human; Mice; Middle East Respiratory Syndrome Coronavirus; Orthomyxoviridae Infections","Zhao, J., Zhao, J., Van Rooijen, N., Perlman, S., Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice (2009) PLoS Pathog, 5, p. e1000636; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193; DeDiego, M.L., Nieto-Torres, J.L., Regla-Nava, J.A., Jimenez-Guardeno, J.M., Fernandez-Delgado, R., Fett, C., Castano-Rodriguez, C., Enjuanes, L., Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival (2014) J Virol, 88, pp. 913-924; Berri, F., Le, V.B., Jandrot-Perrus, M., Lina, B., Riteau, B., Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits (2013) Cel Mol Life Sci, 71, pp. 885-898; Ong, J.D., Mansell, A., Tate, M.D., Hero turned villain: NLRP3 inflammasome-induced inflammation during influenza A virus infection (2017) J Leukoc Biol, 101, pp. 863-874; Shirey, K.A., Lai, W., Patel, M.C., Pletneva, L.M., Pang, C., Kurt-Jones, E., Lipsky, M., Tracey, K.J., Novel strategies for targeting innate immune responses to influenza (2016) Mucosal Immunol, 9, pp. 1173-1182; Kuriakose, T., Kanneganti, T.D., Regulation and functions of NLRP3 inflammasome during influenza virus infection (2017) Mol Immunol, 86, pp. 56-64; Kuiken, T., Riteau, B., Fouchier, R., Rimmelzwaan, G., Pathogenesis of influenza virus infections: the good, the bad and the ugly (2012) Curr Opin Virol, 2, pp. 276-286; Kanegai, C.M., Xi, Y., Donne, M.L., Gotts, J.E., Driver, I.H., Amidzic, G., Lechner, A.J., Chapman, H.A., Persistent pathology in influenza-infected mouse lungs (2016) Am J Respir Cell Mol Biol, 55, pp. 613-615; Jin, S., Li, Y., Pan, R., Zou, X., Characterizing and controlling the inflammatory network during influenza A virus infection (2014) Sci Rep, 4, p. 3799; Duan, M., Hibbs, M.L., Chen, W., The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis (2016) Immunol Cell Biol, 95, pp. 225-235; Braciale, T.J., Sun, J., Kim, T.S., Regulating the adaptive immune response to respiratory virus infection (2012) Nat Rev Immunol, 12, pp. 295-305; Baumgarth, N., How specific is too specific? B-cell responses to viral infections reveal the importance of breadth over depth (2013) Immunol Rev, 255, pp. 82-94; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Yang, D., Li, C., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213, pp. 904-914; Duan, S., Thomas, P.G., Balancing immune protection and immune pathology by CD8 T-cell responses to influenza infection (2016) Front Immunol, 7, p. 25; Gonzalez, Y., Juarez, E., Carranza, C., Sada, E., Pedraza-Sanchez, S., Torres, M., Diminished effector and memory CD8+ circulating T lymphocytes in patients with severe influenza caused by the AH1N1 pdm09 virus (2016) Virology, 500, pp. 139-148; He, W., Tan, G.S., Mullarkey, C.E., Lee, A.J., Lam, M.M., Krammer, F., Henry, C., Palese, P., Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus (2016) Proc Natl Acad Sci U S A, 113, pp. 11931-11936. , Cross talk among antibodies of varying specificities determined the magnitude of Fc receptor-mediated effector functions; Hou, D., Ying, T., Wang, L., Chen, C., Lu, S., Wang, Q., Seeley, E., Li, T., Immune repertoire diversity correlated with mortality in avian influenza A (H7N9) virus infected patients (2016) Sci Rep, 6, p. 33843; Kai McKinstry, K., Dutton, R.W., Swain, S.L., Strutt, T.M., Memory CD4 T cell-mediated immunity against influenza A virus: more than a little helpful (2013) Arch Immunol Ther Exp, 61, pp. 341-353; Laidlaw, B.J., Decman, V., Ali, M.A., Abt, M.C., Wolf, A.I., Monticelli, L.A., Mozdzanowska, K., Erikson, J., Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity (2013) PLoS Pathog, 9, p. e1003207; Laursen, N.S., Wilson, I.A., Broadly neutralizing antibodies against influenza viruses (2013) Antiviral Res, 98, pp. 476-483; Miller, M.S., Gardner, T.J., Krammer, F., Aguado, L.C., Tortorella, D., Basler, C.F., Palese, P., Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis (2013) Sci Transl Med, 5. , 198ra107; Ng, O.W., Chia, A., Tan, A.T., Jadi, R.S., Leong, H.N., Bertoletti, A., Tan, Y.J., Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection (2016) Vaccine, 34, pp. 2008-2014; Nicholls, J.M., The battle between influenza and the innate immune response in the human respiratory tract (2013) Infect Chemother, 45, pp. 11-21; Parzych, E.M., Dimenna, L.J., Latimer, B.P., Small, J.C., Kannan, S., Manson, B., Lasaro, M.O., Ertl, H.C., Influenza virus specific CD8(+) T cells exacerbate infection following high dose influenza challenge of aged mice (2013) Biomed Res Int, 2013, p. 876314; Quinones-Parra, S.M., Clemens, E.B., Wang, Z., Croom, H.A., Kedzierski, L., McVernon, J., Vijaykrishna, D., Kedzierska, K., A role of influenza exposure history in determining pandemic susceptibility and CD8+ T cell responses (2016) J Virol, 90, pp. 6936-6947; Rowe, R.K., Pyle, D.M., Tomlinson, A.R., Lv, T., Hu, Z., Gill, M.A., IgE cross-linking impairs monocyte antiviral responses and inhibits influenza-driven Th1 differentiation (2017) J Allergy Clin Immunol, 140. , 294–298.e8; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91. , pii:e01651-16; Trieu, M.C., Zhou, F., Lartey, S., Jul-Larsen, A., Mjaaland, S., Sridhar, S., Cox, R.J., Long-term maintenance of the influenza-specific cross-reactive memory CD4+ T-cell responses following repeated annual influenza vaccination (2016) J Infect Dis, 215, pp. 740-749; Zarnitsyna, V.I., Lavine, J., Ellebedy, A., Ahmed, R., Antia, R., Multi-epitope models explain how pre-existing antibodies affect the generation of broadly protective responses to influenza (2016) PLoS Pathog, 12, p. e1005692. , A novel model explaining ‘original antigenic sin’ observed in the generation of IAV-specific antibodies; Zens, K.D., Chen, J.K., Farber, D.L., Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection (2016) JCI Insight, p. 1. , e85832; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Dada, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, p. 2. , eaan5393 First paper illustrating the correlation between recovery of MERS-CoV infected patients with their cellular and humoral immune responses; Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw, F.M., Lim, W.S., Makki, S., Beck, C.R., The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis (2015) J Infect Dis, 211, pp. 80-90; Oslund, K.L., Baumgarth, N., Influenza-induced innate immunity: regulators of viral replication, respiratory tract pathology and adaptive immunity (2011) Future Virol, 6, pp. 951-962; Stifter, S.A., Bhattacharyya, N., Pillay, R., Florido, M., Triccas, J.A., Britton, W.J., Feng, C.G., Functional interplay between type I and II interferons is essential to limit influenza A virus-induced tissue inflammation (2016) PLoS Pathog, 12, p. e1005378; Priest, S.O., Baumgarth, N., The role of innate signals in B cell immunity to influenza virus (2013) Front Biosci, 5, pp. 105-117; Kandasamy, M., Suryawanshi, A., Tundup, S., Perez, J.T., Schmolke, M., Manicassamy, S., Manicassamy, B., RIG-I signaling is critical for efficient polyfunctional T cell responses during influenza virus infection (2016) PLoS Pathog, 12, p. e1005754; Pillai, P.S., Molony, R.D., Martinod, K., Dong, H., Pang, I.K., Tal, M.C., Solis, A.G., Trentalange, M., Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease (2016) Science, 352, pp. 463-466. , In the absence of Mavs-mediated and TLR7-mediated antiviral resistance, vulnerability to IAV disease depended on caspase signals rather than viral load; Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G., Doering, T.A., Angelosanto, J.M., Sathaliyawala, T., Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus (2011) Nat Immunol, 12, pp. 1045-1054; Sun, X., Zeng, H., Kumar, A., Belser, J.A., Maines, T.R., Tumpey, T.M., Constitutively expressed IFITM3 protein in human pulmonary endothelial cells poses an early infection block to human influenza viruses (2016) J Virol, 90, pp. 11157-11167; Armstrong, S.M., Mubareka, S., Lee, W.L., The lung microvascular endothelium as a therapeutic target in severe influenza (2013) Antiviral Res, 99, pp. 113-118; Reilly, E.C., Lambert-Emo, K., Topham, D.J., The effects of acute neutrophil depletion on resolution of acute influenza infection, establishment of tissue resident memory (TRM), and heterosubtypic immunity (2016) PLOS ONE, 11, p. e0164247; Samarasinghe, A.E., Melo, R.C., Duan, S., LeMessurier, K.S., Liedmann, S., Surman, S.L., Lee, J.J., McCullers, J.A., Eosinophils promote antiviral immunity in mice infected with influenza A virus (2017) J Immunol, 198, pp. 3214-3226; Zarnegar, B., Mendez-Enriquez, E., Westin, A., Soderberg, C., Dahlin, J.S., Gronvik, K.O., Hallgren, J., Influenza infection in mice induces accumulation of lung mast cells through the recruitment and maturation of mast cell progenitors (2017) Front Immunol, 8, p. 310; Cole, S.L., Ho, L.P., Contribution of innate immune cells to pathogenesis of severe influenza virus infection (2017) Clin Sci (Lond), 131, pp. 269-283; Zens, K.D., Chen, J.K., Guyer, R.S., Wu, F.L., Cvetkovski, F., Miron, M., Farber, D.L., Reduced generation of lung tissue-resident memory T cells during infancy (2017) J Exp Med, , pii:jem.20170521 Mouse and human infant T cells exhibited increased T-bet expression after activation, which impaired the establishment of tissue-resident memory T cells in infant mice; Coates, B.M., Staricha, K.L., Wiese, K.M., Ridge, K.M., Influenza A virus infection, innate immunity, and childhood (2015) JAMA Pediatr, 169, pp. 956-963; Bahadoran, A., Lee, S.H., Wang, S.M., Manikam, R., Rajarajeswaran, J., Raju, C.S., Sekaran, S.D., Immune responses to influenza virus and its correlation to age and inherited factors (2016) Front Microbiol, 7, p. 1841; Hsu, A.C., See, H.V., Wark, P.A., Innate immunity to influenza in chronic airways diseases (2012) Respirology, 17, pp. 1166-1175; Cobey, S., Hensley, S.E., Immune history and influenza virus susceptibility (2017) Curr Opin Virol, 22, pp. 105-111. , An excellent review of the correlation between immune history and IAV susceptibility; Arora, S., Lim, W., Bist, P., Perumalsamy, R., Lukman, H.M., Li, F., Welker, L.B., Tambyah, P.A., Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis (2016) Cell Death Differ, 23, pp. 1243-1256; Batra, J., Tripathi, S., Kumar, A., Katz, J.M., Cox, N.J., Lal, R.B., Sambhara, S., Lal, S.K., Human heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins (2016) Sci Rep, 6, p. 19063; Channappanavar, R., Fett, C., Mack, M., Ten Eyck, P.P., Meyerholz, D.K., Perlman, S., Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection (2017) J Immunol, 198, pp. 4046-4053; Cohen, J.R., Lin, L.D., Machamer, C.E., Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein (2011) J Virol, 85, pp. 5794-5803; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10, pp. 1426-1441; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog, 13, p. e1006546; Fan, Y., Mok, C.K., Chan, M.C., Zhang, Y., Nal-Rogier, B., Kien, F., Bruzzone, R., Sanyal, S., Cell cycle independent role of cyclin D3 in host restriction of influenza virus infection (2017) J Biol Chem, 292, pp. 5070-5088; Feizi, N., Mehrbod, P., Romani, B., Soleimanjahi, H., Bamdad, T., Feizi, A., Jazaeri, E.O., Jamali, A., Autophagy induction regulates influenza virus replication in a time-dependent manner (2017) J Med Microbiol, 66, pp. 536-541; Hall, O.J., Nachbagauer, R., Vermillion, M.S., Fink, A.L., Phuong, V., Krammer, F., Klein, S.L., Progesterone-based contraceptives reduce adaptive immune responses and protection against sequential influenza A virus infections (2017) J Virol, , pii:e02160-16; Herold, S., Ludwig, S., Pleschka, S., Wolff, T., Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury (2012) J Leukoc Biol, 92, pp. 75-82; Killip, M.J., Smith, M., Jackson, D., Randall, R.E., Activation of the interferon induction cascade by influenza A viruses requires viral RNA synthesis and nuclear export (2014) J Virol, 88, pp. 3942-3952; Kim, J.A., Seong, R.K., Shin, O.S., Enhanced viral replication by cellular replicative senescence (2016) Immune Netw, 16, pp. 286-295; Marcos-Villar, L., Pazo, A., Nieto, A., Influenza virus and the chromatin: Role of CHD1 chromatin remodeler on virus life cycle (2016) J Virol, 90, pp. 3694-3707; Ninpan, K., Suptawiwat, O., Boonarkart, C., Phuangphung, P., Sathirareuangchai, S., Uiprasertkul, M., Auewarakul, P., Expression of importin-alpha isoforms in human nasal mucosa: implication for adaptation of avian influenza A viruses to human host (2016) Virol J, 13, p. 90; Resa-Infante, P., Gabriel, G., The nuclear import machinery is a determinant of influenza virus host adaptation (2013) BioEssays, 35, pp. 23-27; Rialdi, A., Hultquist, J., Jimenez-Morales, D., Peralta, Z., Campisi, L., Fenouil, R., Moshkina, N., Kaake, R.M., The RNA exosome syncs IAV-RNAPII transcription to promote viral ribogenesis and infectivity (2017) Cell, 169, pp. 679-692. , e614 Exosome deficiency uncoupled chromatin targeting of the IAV polymerase complex and the formation of cellular-viral RNA hybrids, which licensed transcription of antisense genomic viral RNAs; Vale-Costa, S., Alenquer, M., Sousa, A.L., Kellen, B., Ramalho, J., Tranfield, E.M., Amorim, M.J., Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors (2016) J Cell Sci, 129, pp. 1697-1710; Yadav, V., Panganiban, A.T., Honer Zu Bentrup, K., Voss, T.G., Influenza infection modulates vesicular trafficking and induces Golgi complex disruption (2016) Virus Dis, 27, pp. 357-368; Zelaya, H., Alvarez, S., Kitazawa, H., Villena, J., Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection (2016) Front Immunol, 7, p. 633; Lin, T.Y., Brass, A.L., Host genetic determinants of influenza pathogenicity (2013) Curr Opin Virol, 3, pp. 531-536; Ciancanelli, M.J., Abel, L., Zhang, S.Y., Casanova, J.L., Host genetics of severe influenza: from mouse Mx1 to human IRF7 (2016) Curr Opin Immunol, 38, pp. 109-120; Brooke, C.B., Population diversity and collective interactions during influenza virus replication and evolution (2017) J Virol, , pii:JVI.01164-17; Dimitrakopoulou, K., Dimitrakopoulos, G.N., Wilk, E., Tsimpouris, C., Sgarbas, K.N., Schughart, K., Bezerianos, A., Influenza A Immunomics and Public Health Omics: the dynamic pathway interplay in host response to H1N1 infection (2014) Omics, 18, pp. 167-183; Tisoncik-Go, J., Gasper, D.J., Kyle, J.E., Eisfeld, A.J., Selinger, C., Hatta, M., Morrison, J., Kim, Y.M., Integrated Omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: the crucial role of lipid metabolism (2016) Cell Host Microbe, 19, pp. 254-266. , Crucial role of lipid metabolism in IAV infection was illustrated USING integrated omics analysis; Schafer, A., Baric, R.S., Epigenetic landscape during coronavirus infection (2017) Pathogens, 6. , E8; Peteranderl, C., Morales-Nebreda, L., Selvakumar, B., Lecuona, E., Vadasz, I., Morty, R.E., Schmoldt, C., Pleschka, S., Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection (2016) J Clin Invest, 126, pp. 1566-1580. , Interaction between macrophage and epithelial cells exacerbated disease severity by inhibitIng lung edema clearance; Cardani, A., Boulton, A., Kim, T.S., Braciale, T.J., Alveolar macrophages prevent lethal influenza pneumonia by inhibiting infection of type-1 alveolar epithelial cells (2017) PLoS Pathog, 13, p. e1006140. , Aveolar macrophage prevented lethal pneumonia by inhibiting IAV infection on epithelial cells; Cao, P., Yan, A.W., Heffernan, J.M., Petrie, S., Moss, R.G., Carolan, L.A., Guarnaccia, T.A., McVernon, J., Innate immunity and the inter-exposure interval determine the dynamics of secondary influenza virus infection and explain observed viral hierarchies (2015) PLoS Comput Biol, 11, p. e1004334; Phua, K.K.L., Liu, Y., Sim, S.H., Non-linear enhancement of mRNA delivery efficiencies by influenza A derived NS1 protein engendering host gene inhibition property (2017) Biomaterials, 133, pp. 29-36; Moriyama, M., Chen, I.Y., Kawaguchi, A., Koshiba, T., Nagata, K., Takeyama, H., Hasegawa, H., Ichinohe, T., The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated IL-1beta secretion (2016) J Virol, 90, pp. 4105-4114; Garcia-Sastre, A., Induction and evasion of type I interferon responses by influenza viruses (2011) Virus Res, 162, pp. 12-18; Anastasina, M., Le May, N., Bugai, A., Fu, Y., Soderholm, S., Gaelings, L., Ohman, T., Barboric, M., Influenza virus NS1 protein binds cellular DNA to block transcription of antiviral genes (2016) Biochim Biophys Acta, 1859, pp. 1440-1448; Qian, W., Wei, X., Guo, K., Li, Y., Lin, X., Zou, Z., Zhou, H., Jin, M., The C-terminal effector domain of non-structural protein 1 of influenza A virus blocks IFN-beta production by targeting TNF receptor-associated factor 3 (2017) Front Immunol, 8, p. 779; Kuo, R.L., Li, L.H., Lin, S.J., Li, Z.H., Chen, G.W., Chang, C.K., Wang, Y.R., Krug, R.M., The role of N-terminus-truncated NS1 proteins of influenza A virus in inhibiting IRF3 activation (2016) J Virol, 90, pp. 4696-4705; Schierhorn, K.L., Jolmes, F., Bespalowa, J., Saenger, S., Peteranderl, C., Dzieciolowski, J., Budt, M., Herold, S., Influenza A virus virulence depends on two amino acids in the N-terminal domain of its NS1 protein facilitating inhibition of PKR (2017) J Virol, 91. , pii:e00198-17; Bar-On, Y., Glasner, A., Meningher, T., Achdout, H., Gur, C., Lankry, D., Vitenshtein, A., Mandelboim, O., Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses (2013) Cell Rep, 3, pp. 1044-1050; Hu, S., Yin, L., Mei, S., Li, J., Xu, F., Sun, H., Liu, X., Li, A., BST-2 restricts IAV release and is countered by the viral M2 protein (2017) Biochem J, 474, pp. 715-730; Kuss, S.K., Mata, M.A., Zhang, L., Fontoura, B.M., Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export (2013) Viruses, 5, pp. 1824-1849; Gotz, V., Magar, L., Dornfeld, D., Giese, S., Pohlmann, A., Hoper, D., Kong, B.W., Haller, O., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import (2016) Sci Rep, 6, p. 23138; Marvin, S.A., Russier, M., Huerta, C.T., Russell, C.J., Schultz-Cherry, S., Influenza overcomes cellular blocks to productively replicate impacting macrophage function (2017) J Virol, 91. , pii:e01417-1416; dWeber-Gerlach, M., Weber, F., To conquer the host, Influenza virus is packing it in: interferon-antagonistic strategies beyond NS1 (2016) J Virol, 90, pp. 8389-8394; Shin, D., Lee, J., Park, J.H., Min, J.Y., Double PHD Fingers 2 (DPF2) promotes the immune escape of influenza virus by suppressing interferon-beta production (2017) J Virol, 91. , pii:e02260-16; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Zust, R., Stalder, H., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13, p. e1006195; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260. , Two independent studies illustrating nsp15-mediated immunoevasion by CoV; Lei, J., Hilgenfeld, R., RNA-virus proteases counteracting host innate immunity (2017) FEBS Lett; Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., Ma, Q., Cao, C., SARS coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-Mediated RIG-I ubiquitination (2017) J Virol, 91. , pii:e02143-16; Dumit, V.I., Dengjel, J., Autophagosomal protein dynamics and influenza virus infection (2012) Front Immunol, 3, p. 43; Miyake, Y., Ishii, K., Honda, A., Influenza virus infection induces host pyruvate kinase M which interacts with viral RNA-dependent RNA polymerase (2017) Front Microbiol, 8, p. 162; Abbas, Y.M., Laudenbach, B.T., Martinez-Montero, S., Cencic, R., Habjan, M., Pichlmair, A., Damha, M.J., Nagar, B., Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations (2017) Proc Natl Acad Sci U S A, 114, pp. E2106-E2115; Kesavardhana, S., Kuriakose, T., Guy, C.S., Samir, P., Malireddi, R.K.S., Mishra, A., Kanneganti, T.D., ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death (2017) J Exp Med, 214, pp. 2217-2229; Cao, S., Dhungel, P., Yang, Z., Going against the tide: selective cellular protein synthesis during virally induced host shutoff (2017) J Virol, 91. , pii:e00071-17; Wang, C., Liu, H., Luo, J., Chen, L., Li, M., Su, W., Zhao, N., Jia, Y., HA triggers the switch from MEK1 SUMOylation to phosphorylation of the ERK pathway in influenza A virus-infected cells and facilitates its infection (2017) Front Cell Infect Microbiol, 7, p. 27; Hui, K.P., Li, H.S., Cheung, M.C., Chan, R.W., Yuen, K.M., Mok, C.K., Nicholls, J.M., Chan, M.C., Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3 (2016) Sci Rep, 6, p. 28593; To, E.E., Vlahos, R., Luong, R., Halls, M.L., Reading, P.C., King, P.T., Chan, C., Broughton, B.R.S., Endosomal NOX2 oxidase exacerbates virus pathogenicity and is a target for antiviral therapy (2017) Nat Commun, 8, p. 69. , Activated NOX2 exacerbated virus-mediated pathogenicity via production of reactive oxygen species (ROS); Yu, G., Liang, W., Liu, J., Meng, D., Wei, L., Chai, T., Cai, Y., Proteomic analysis of differential expression of cellular proteins in response to avian H9N2 virus infection of A549 cells (2016) Front Microbiol, 7, p. 1962; Zhao, J., Zhao, J., Legge, K., Perlman, S., Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice (2011) J Clin Invest, 121, pp. 4921-4930; Vijay, R., Hua, X., Meyerholz, D.K., Miki, Y., Yamamoto, K., Gelb, M., Murakami, M., Perlman, S., Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection (2015) J Exp Med, 212, pp. 1851-1868; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV Non-Structural protein 3 (2017) Biol Pharm Bull, 40, pp. 345-351; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D.K., Perlman, S., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) MBio, 7. , pii:e01721-16; Aouadi, W., Blanjoie, A., Vasseur, J.J., Debart, F., Canard, B., Decroly, E., Binding of the methyl donor SAM to MERS-CoV 2′-O-methyltransferase nsp16 promotes the recruitment of the allosteric activator nsp10 (2016) J Virol, 91. , pii:e02217-16; Nagesh, P.T., Husain, M., Influenza A virus dysregulates host histone deacetylase 1 that inhibits viral infection in lung epithelial cells (2016) J Virol, 90, pp. 4614-4625; Zhang, T., Ye, Z., Yang, X., Qin, Y., Hu, Y., Tong, X., Lai, W., Ye, X., NEDDylation of PB2 reduces its stability and blocks the replication of influenza A virus (2017) Sci Rep, 7, p. 43691; Soderholm, S., Kainov, D.E., Ohman, T., Denisova, O.V., Schepens, B., Kulesskiy, E., Imanishi, S.Y., Aittokallio, T., Phosphoproteomics to characterize host response during influenza A virus infection of human macrophages (2016) Mol Cell Proteomics, 15, pp. 3203-3219; Khatri, K., Klein, J.A., White, M.R., Grant, O.C., Leymarie, N., Woods, R.J., Hartshorn, K.L., Zaia, J., Integrated omics and computational glycobiology reveal structural basis for Influenza A virus glycan microheterogeneity and host interactions (2016) Mol Cell Proteomics, 15, pp. 1895-1912; Alymova, I.V., York, I.A., Air, G.M., Cipollo, J.F., Gulati, S., Baranovich, T., Kumar, A., McCullers, J.A., Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence (2016) Sci Rep, 6, p. 36216; Peck, K.M., Scobey, T., Swanstrom, J., Jensen, K.L., Burch, C.L., Baric, R.S., Heise, M.T., Permissivity of DPP4 orthologs to MERS-Coronavirus is governed by glycosylation and other complex determinants (2017) J Virol, 91. , pii:e00534-17; Air, G.M., Influenza virus-glycan interactions (2014) Curr Opin Virol, 7C, pp. 128-133; Abdelwhab, E.M., Veits, J., Tauscher, K., Ziller, M., Grund, C., Hassan, M.K., Shaheen, M., Stech, J., Progressive glycosylation of the hemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift (2016) J Gen Virol, 97, pp. 3193-3204; Tate, M.D., Job, E.R., Deng, Y.M., Gunalan, V., Maurer-Stroh, S., Reading, P.C., Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection (2014) Viruses, 6, pp. 1294-1316; Parsons, L.M., An, Y., de Vries, R.P., de Haan, C.A., Cipollo, J.F., Glycosylation characterization of an influenza H5N7 hemagglutinin series with engineered glycosylation patterns: implications for structure-function relationships (2016) J Proteome Res, 16, pp. 398-412; Zhao, D., Liang, L., Wang, S., Nakao, T., Li, Y., Liu, L., Guan, Y., Kawaoka, Y., Glycosylation of the HA protein of H5N1 virus increases its virulence in mice by exacerbating the host immune response (2017) J Virol, 91. , pii:e02215-16; Liu, W.C., Jan, J.T., Huang, Y.J., Chen, T.H., Wu, S.C., Unmasking stem-specific neutralizing epitopes by abolishing N-linked glycosylation sites of influenza hemagglutinin proteins for vaccine design (2016) J Virol, 90, pp. 8496-8508; Wu, C.Y., Lin, C.W., Tsai, T.I., Lee, C.D., Chuang, H.Y., Chen, J.B., Tsai, M.H., Liu, C.P., Influenza A surface glycosylation and vaccine design (2016) Proc Natl Acad Sci U S A, 114, pp. 280-285. , IAV surface glycosylation and implications for vaccine design; Gudjonsson, A., Lysen, A., Balan, S., Sundvold-Gjerstad, V., Arnold-Schrauf, C., Richter, L., Baekkevold, E.S., Fossum, E., Targeting influenza virus hemagglutinin to Xcr1+ dendritic cells in the absence of rReceptor-mediated endocytosis enhances protective antibody responses (2017) J Immunol, 198, pp. 2785-2795; Lynn, D.J., Pulendran, B., The potential of the microbiota to influence vaccine responses (2017) J Leukoc Biol, , pii:jlb.5MR0617-216R; Furman, D., Jojic, V., Kidd, B., Shen-Orr, S., Price, J., Jarrell, J., Tse, T., Maecker, H.T., Apoptosis and other immune biomarkers predict influenza vaccine responsiveness (2013) Mol Syst Biol, 9, p. 659; McMichael, A.J., Haynes, B.F., Influenza vaccines: mTOR inhibition surprisingly leads to protection (2013) Nat Immunol, 14, pp. 1205-1207; Lees, W.D., Moss, D.S., Shepherd, A.J., Evolution in the influenza A H3 stalk — a challenge for broad-spectrum vaccines? (2013) J Gen Virol, 95, pp. 317-324; Cruz, J.L., Perez-Giron, J.V., Ludtke, A., Gomez-Medina, S., Ruibal, P., Idoyaga, J., Munoz-Fontela, C., Monocyte-derived dendritic cells enhance protection against secondary influenza challenge by controlling the switch in CD82 T-cell immunodominance (2016) Eur J Immunol, 47, pp. 345-352; Hwang, H.S., Lee, Y.T., Kim, K.H., Ko, E.J., Lee, Y., Kwon, Y.M., Kang, S.M., Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus (2017) Virology, 511, pp. 142-151; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391. , Conserved epitopes-specific airway memory CD4(+) T cells induced by vaccine protected animals from SARS-CoVs and MERS-CoV infection; Pizzolla, A., Nguyen, T.H.O., Smith, J.M., Brooks, A.G., Kedzieska, K., Heath, W.R., Reading, P.C., Wakim, L.M., Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection (2017) Sci Immunol, 2. , pii:eaam6970; Slutter, B., Van Braeckel-Budimir, N., Abboud, G., Varga, S.M., Salek-Ardakani, S., Harty, J.T., Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity (2017) Sci Immunol, 2. , pii:eaag2031; Neu, K.E., Henry Dunand, C.J., Wilson, P.C., Heads, stalks and everything else: how can antibodies eradicate influenza as a human disease? (2016) Curr Opin Immunol, 42, pp. 48-55; Vanderven, H.A., Jegaskanda, S., Wheatley, A.K., Kent, S.J., Antibody-dependent cellular cytotoxicity and influenza virus (2017) Curr Opin Virol, 22, pp. 89-96; Burke, T.W., Henao, R., Soderblom, E., Tsalik, E.L., Thompson, J.W., McClain, M.T., Nichols, M., Lucas, J.E., Nasopharyngeal protein biomarkers of acute respiratory virus infection (2017) EBioMedicine, 17, pp. 172-181; Richert, L.E., Harmsen, A.L., Rynda-Apple, A., Wiley, J.A., Servid, A.E., Douglas, T., Harmsen, A.G., Inducible bronchus-associated lymphoid tissue (iBALT) synergizes with local lymph nodes during antiviral CD4(+) T cell responses (2013) Lymphat Res and Biol, 11, pp. 196-202; Pizzolla, A., Wang, Z., Groom, J.R., Kedzierska, K., Brooks, A.G., Reading, P.C., Wakim, L.M., Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells (2017) Proc Natl Acad Sci U S A, 114, pp. 5225-5230. , NALTs support the recall but not priming of IAV-specific cytotoxic T cells; Beyleveld, G., White, K.M., Ayllon, J., Shaw, M.L., New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions (2013) Antiviral Res, 100, pp. 120-132; Wang, D., Ma, W., Visualization of IAV genomes at the single-cell level (2017) Trends Microbiol, 25, pp. 781-782; Hartmann, B.M., Thakar, J., Albrecht, R.A., Avey, S., Zaslavsky, E., Marjanovic, N., Chikina, M., Schmolke, M., Human dendritic cell response signatures distinguish 1918, pandemic and seasonal H1N1 influenza viruses (2015) J Virol, 89, pp. 10190-10205; Altboum, Z., Steuerman, Y., David, E., Barnett-Itzhaki, Z., Valadarsky, L., Keren-Shaul, H., Meningher, T., Gat-Viks, I., Digital cell quantification identifies global immune cell dynamics during influenza infection (2014) Mol Syst Biol, 10, p. 720; Sonnberg, S., Webby, R.J., Webster, R.G., Natural history of highly pathogenic avian influenza H5N1 (2013) Virus Res, 178, pp. 63-77; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Yau, E., Poon, L.L., Longitudinal study of Middle East respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015 (2017) Emerg Microbes Infect, 6, p. e56; Bedford, T., Rambaut, A., Pascual, M., Canalization of the evolutionary trajectory of the human influenza virus (2012) BMC Biol, 10, p. 38; Manchanda, H., Seidel, N., Krumbholz, A., Sauerbrei, A., Schmidtke, M., Guthke, R., Within-host influenza dynamics: a small-scale mathematical modeling approach (2014) BioSystems, 118, pp. 51-59; Tria, F., Pompei, S., Loreto, V., Dynamically correlated mutations drive human Influenza A evolution (2013) Sci Rep, 3, p. 2705; Woo, H.J., Reifman, J., Quantitative modeling of virus evolutionary dynamics and adaptation in serial passages using empirically inferred fitness landscapes (2013) J Virol, 88, pp. 1039-1050",,,"Elsevier B.V.",18796257,,,"29172107","English","Curr. Opin. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85034428057 "Cho H., Excler J.-L., Kim J.H., Yoon I.-K.","57200525406;7003534012;7601367709;35093599900;","Development of Middle East Respiratory Syndrome Coronavirus vaccines–advances and challenges",2018,"Human Vaccines and Immunotherapeutics","14","2",,"304","313",,6,"10.1080/21645515.2017.1389362","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041500705&doi=10.1080%2f21645515.2017.1389362&partnerID=40&md5=c8143df814993f5014eb7bd4bed35d28","Department of Clinical Development and Regulatory, International Vaccine Institute, Seoul, South Korea","Cho, H., Department of Clinical Development and Regulatory, International Vaccine Institute, Seoul, South Korea; Excler, J.-L., Department of Clinical Development and Regulatory, International Vaccine Institute, Seoul, South Korea; Kim, J.H., Department of Clinical Development and Regulatory, International Vaccine Institute, Seoul, South Korea; Yoon, I.-K., Department of Clinical Development and Regulatory, International Vaccine Institute, Seoul, South Korea","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging pathogen with the potential to pose a threat to global public health. Sporadic cases and outbreaks continue to be reported in the Middle East, and case fatality rates remain high at approximately 36% globally. No specific preventive or therapeutic countermeasures currently exist. A safe and effective vaccine could play an important role in protecting against the threat from MERS-CoV. This review discusses human vaccine candidates currently under development, and explores viral characteristics, molecular epidemiology and immunology relevant to MERS-CoV vaccine development. At present, a DNA vaccine candidate has begun a human clinical trial, while two vector-based candidates will very soon begin human trials. Protein-based vaccines are still at pre-clinical stage. Challenges to successful development include incomplete understanding of viral transmission, pathogenesis and immune response (in particular at the mucosal level), no optimal animal challenge models, lack of standardized immunological assays, and insufficient sustainable funding. © 2018 Taylor & Francis.","MERS coronavirus; Middle East Respiratory Syndrome; receptor-binding domain; spike protein; vaccine","DNA vaccine; gamma interferon; live vaccine; Middle East respiratory syndrome coronavirus vaccine; phospholipid antibody; tissue plasminogen activator; tumor necrosis factor; unclassified drug; virus vaccine; virus vector; virus vaccine; drug efficacy; drug safety; drug tolerability; electroporation; human; immune response; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; Review; virus replication; virus shedding; virus virulence; Coronavirus infection; immunology; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Vaccines, DNA; Viral Vaccines","(2014) Revised case definition for reporting to WHO Middle East respiratory syndrome coronavirus, , http://www.who.int/csr/disease/coronavirus_infections/case_definition_jul2014/en; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , 23075143,. PMID; Chan, R.W., Hemida, M.G., Kayali, G., Chu, D.K., Poon, L.L., Alnaeem, A., Ali, M.A., Ng, H.Y., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study (2014) Lancet Respir Med, 2, pp. 813-822. , 25174549, et al.,. PMID; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg Infect Dis, 20, pp. 1339-1342. , 25075761, et al.,. PMID; Chowell, G., Blumberg, S., Simonsen, L., Miller, M.A., Viboud, C., Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission (2014) Epidemics, 9, pp. 40-51. , 25480133,. PMID; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution (2014) Trends Microbiol, 22, pp. 573-579. , 25178651,. PMID; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , 23782161, et al.,. PMID; (2017) Middle East Respiratory Syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV) maps and epicurves, , http://www.who.int/csr/disease/coronavirus_infections/maps-epicurves/en/; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg Microbes Infect, 6, p. e51. , 28588290,. PMID; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Vibound, C., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210. , 26336062, PMID; Guery, B., Poissy, J., el Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., Enouf, V., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272. , 23727167, et al.,. PMID; Mailles, A., Blanckaert, K., Chaud, P., van der Werf, S., Lina, B., Caro, V., Campese, C., Lemaire, X., First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission (2013) Euro Surveill, 18 (24). , France, May 2013, 23787161, et al. PMID; (2015) Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/, June; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: An update (2016) J Infect Public Health, 9 (3), pp. 216-219. , 27106390,. PMID; Chan, J.F., Choi, G.K., Tsang, A.K., Tee, K.M., Lam, H.Y., Yip, C.C., To, K.K., Lau, S.K., Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses (2015) J Clin Microbiol, 53, pp. 2722-2726. , 26019210, et al.,. PMID; (2015) Interim guidelines for collecting, handling, and testing clinical specimens from patients under investigation (PUIs) for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.cdc.gov/coronavirus/mers/downloads/guidelines-clinical-specimens.pdf, Available from; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222. , 26695637,. PMID; Park, W.B., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Oh, H.S., Kim, E.S., Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189. , 26583829, et al.,. PMID; Chen, Y., Chan, K.H., Kang, Y., Chen, H., Luk, H., Poon, R.W., Chan, J.F., Lau, S.K., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg Microbes Infect, 4 (4), p. e26. , et al; Song, D., Ha, G., Serhan, W., Eltahir, Y., Yusof, M., Hashem, F., Elsayed, E., Al Muhairi, S., Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels (2015) J Clin Microbiol, 53 (4), pp. 1178-1182. , 25631809,. PMID; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478. , 26206723,. PMID; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8. , 24098509,. PMID; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Kang, J.I., Kim, G., Spread of Mutant Middle East Respiratory Syndrome Coronavirus with Reduced Affinity to Human CD26 during the South Korean Outbreak (2016) MBio, 7, pp. e16-e19. , 26933050, et al.,. PMID; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111, pp. E2018-E2026. , 24778221, et al.,. PMID; Tang, F., Quan, Y., Xin, Z.T., Wrammert, J., Ma, M.J., Lv, H., Wang, T.B., Liu, W., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study (2011) J Immunol, 186, pp. 7264-7268. , 21576510, et al.,. PMID; Sui, J., Deming, M., Rockx, B., Liddington, R.C., Zhu, Q.K., Baric, R.S., Marasco, W.A., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J Virol, 88, pp. 13769-13780. , 25231316,. PMID; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Bortolotti, P., Dessein, R., Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? (2014) PLoS One, 9. , 24551142, et al.,. PMID; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Muth, D., Assiri, A.M., Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection (2016) Clin Infect Dis, 62 (4), pp. 477-483. , 26565003, et al.,. PMID; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, J.H., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359. , 27146253, et al.,. PMID; Kim, E.S., Choe, P.G., Park, W.B., Oh, H.S., Kim, E.J., Nam, E.Y., Na, S.H., Bang, J.H., Clinical Progression and Cytokine Profiles of Middle East Respiratory Syndrome Coronavirus Infection (2016) J Korean Med Sci, 31, pp. 1717-1725. , 27709848, et al.,. PMID; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111, pp. 4970-4975. , 24599590, et al.,. PMID; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., Van Kerkhove, K.J., Kieny, M.P., A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation (2016) Nat Med, 22, pp. 701-705. , 27387881,. PMID; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805. , 24789777, et al.,. PMID; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Dimitrov, D.S., Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection (2016) Sci Rep, 6, p. 31629. , 28442756, et al.,. PMID; Rabaan, A.A., Bazzi, A.M., Al-Ahmed, S.H., Al-Tawfiq, J.A., Molecular aspects of MERS-CoV (2017) Front Med; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.A., Matsushita, H., Ork, B.L., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Transl Med, 8, p. 326ra21. , 26888429, et al.,. PMID; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., Yu, Y., Lou, Y., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg Microbes Infect, 6, p. e37. , 28536429, et al.,. PMID; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J Gen Virol, 95, pp. 408-412. , 24197535,. PMID; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Haagmans, B., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS One, 8. , 23844250, et al.,. PMID; Yu, P., Xu, Y., Deng, W., Bao, L., Huang, L., Xu, Y., Yao, Y., Qin, C., Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus (2017) PLoS One, 12. , 28234937,. PMID; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Chang, J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110, pp. 16598-16603. , 24062443, et al.,. PMID; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209, pp. 236-242. , 24218506, et al.,. PMID; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS pathogens, 10 (8), p. e1004250. , 25144235, et al.,. PMID; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005. , 25418529,. PMID; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas (2016) Emerg Infect Dis, 22 (6), pp. 1031-1037. , 27070385,. PMID; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , 25589660,. PMID; Baseler, L., de Wit, E., Feldmann, H., A Comparative Review of Animal Models of Middle East Respiratory Syndrome Coronavirus Infection (2016) Vet Pathol, 53, pp. 521-531. , 26869154,. PMID; Goncalves, G.A., Prather, K.L., Monteiro, G.A., Carnes, A.E., Prazeres, D.M., Plasmid DNA production with Escherichia coli GALG20, a pgi-gene knockout strain: fermentation strategies and impact on downstream processing (2014) Journal of biotechnology, 186, pp. 119-127. , 24995846,. PMID; Roberts, A., Lamirande, E.W., Vogel, L., Jackson, J.P., Paddock, C.D., Guarner, J., Zaki, S.R., Subbarao, K., Animal models and vaccines for SARS-CoV infection (2008) Virus research, 133 (1), pp. 20-32. , 17499378,. PMID; Martin, J.E., Sullivan, N.J., Enama, M.E., Gordon, I.J., Roederer, M., Koup, R.A., Bailer, R.T., Gomez, P.L., A DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial (2006) Clinical and Vaccine Immunology: CVI, 13 (11), pp. 1267-1277. , 16988008, et al.,. PMID; Martin, J.E., Louder, M.K., Holman, L.A., Gordon, I.J., Enama, M.E., Larkin, B.D., Andrews, C.A., Roederer, M., A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial (2008) Vaccine, 26, pp. 6338-6343. , 18824060, et al.,. PMID; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132. , 26290414, et al.,. PMID; (2017), https://clinicaltrials.gov/ct2/show/NCT02670187?term=GLS-5300&rank=1; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Yassine, H.M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712. , 26218507, et al.,. PMID; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Zhou, Y., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PloS one, 8 (12). , 24324708, et al.,. PMID; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Lu, L., Zheng, B.J., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J Virol, 87 (17), pp. 9939-9942. , 23824801, et al.,. PMID; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev Vaccines, 13 (6), pp. 761-774. , 24766432,. PMID; Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Tan, W., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS One, 9. , 25405618,. PMID; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Tseng, C.T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13, pp. 180-190. , 25640653, et al.,. PMID; Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., Gao, G.F., T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV (2017) Antiviral Res, 137, pp. 82-92. , 27840203,. PMID; McPherson, C., Chubet, R., Holtz, K., Honda-Okubo, Y., Barnard, D., Cox, M., Petrovsky, N., Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant (2016) Methods Mol Biol, 1403, pp. 269-284. , 27076136,. PMID; Chen, W.H., Chag, S.M., Poongavanam, M.V., Biter, A.B., Ewere, E.A., Rezende, W., Seid, C.A., McAtee, C.P., Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate (2017) J Pharm Sci, , et al; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , 28393837, et al.,. PMID; Excler, J.L., Delvecchio, C.J., Wiley, R.E., Williams, M., Yoon, I.K., Modjarrad, K., Bourjelal, M., Kim, J.H., Toward Developing a Preventive MERS-CoV Vaccine-Report from a Workshop Organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14–15, 2015 (2016) Emerg Infect Dis, 22 (8). , 27439020, PMID; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Gao, G.F., Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge (2015) EBioMedicine, 2, pp. 1438-1446. , 26629538, et al.,. PMID; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Li, N., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694. , 27050368, et al.,. PMID; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.T., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176. , 25240756,. PMID; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Chan, T.S., Jiang, S., Characterization and Demonstration of value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease (2015) J Virol, 90, pp. 57-67. , 26446606, et al.,. PMID; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18. , 27899228,. PMID; Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T., Jiang, S., Zhou, Y., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum Vaccin Immunother, 11, pp. 1244-1250. , 25874632,. PMID; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptor-binding domains of multiple MERS-coronaviruses induce cross-neutralizing antibodies against divergent human and camel MERS-coronaviruses and antibody-escape mutants (2016) J Virol, 91, pp. 1616-1651; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Du, L., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382. , 27750111, et al.,. PMID; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Glenn, G.M., Frieman, M.B., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174. , 24736006,. PMID; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., Frieman, M.B., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35, pp. 1586-1589. , 28237499,. PMID; Bengtsson, K.L., Song, H., Stertman, L., Liu, Y., Flyer, D.C., Massare, M.J., Xu, R.H., Kwilas, S.A., Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice (2016) Vaccine, 34, pp. 1927-1935. , 26921779, et al.,. PMID; Liu, Y.V., Massare, M.J., Pearce, M.B., Sun, X., Belser, J.A., Maines, T.R., Creager, H.M., Smith, G.E., Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets (2015) Vaccine, 33, pp. 2152-2158. , 25772674, et al.,. PMID; Malczyk, A.H., Kupke, A., Prufer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Tondera, C., A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform (2015) J Virol, 89, pp. 11654-11667. , 26355094, et al.,. PMID; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Tan, W., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484. , 25762305,. PMID; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Becker, S., Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein (2015) J Virol, 89, pp. 8651-8656. , 26018172, et al.,. PMID; Pichla-Gollon, S.L., Lin, S.W., Hensley, S.E., Lasaro, M.O., Herkenhoff-Haut, L., Drinker, M., Tatsis, N., Ertl, H.C., Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo (2009) J Virol, 83 (11), pp. 5567-5573. , 19279092, et al.,. PMID; Weingartl, H., Czub, M., Czub, S., Neufeld, J., Marszal, P., Gren, J., Smith, G., Deschambault, Y., Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets (2004) J Virol, 78 (22), pp. 12672-12676. , 15507655, et al.,. PMID; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81. , 26678878, et al.,. PMID; Warimwe, G.M., Gesharisha, J., Carr, B.V., Otieno, S., Otingah, K., Wright, D., Charleston, B., Lorenzo, G., Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever (2016) Sci Rep, 6, p. 20617. , 26847478, et al.,. PMID; Capone, S., D'Alise, A.M., Ammendola, V., Colloca, S., Cortese, R., Nicosia, A., Folgori, A., Development of chimpanzee adenoviruses as vaccine vectors: challenges and successes emerging from clinical trials (2013) Expert Rev Vaccines, 12, pp. 379-393. , 23560919,. PMID; Afolabi, M.O., Tiono, A.B., Adetifa, U.J., Yaro, J.B., Drammeh, A., Nebie, I., Bliss, C., Snou, G.S., Safety and Immunogenicity of ChAd63 and MVA ME-TRAP in West African Children and Infants (2016) Mol Ther, 24 (8), pp. 1470-1477. , 27109630, et al.,. PMID; Tapia, M.D., Sow, S.O., Lyke, K.E., Haidara, F.C., Diallo, F., Doumbia, M., Traore, A., Onwuchekwa, U., Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial (2016) Lancet Infect Dis, 16 (1), pp. 31-42. , 26546548, et al.,. PMID; Ledgerwood, J.E., DeZure, A.D., Stanley, D.A., Coates, E.E., Novik, L., Enama, M.E., Berkowitz, N.M., Ploquin, A., Chimpanzee Adenovirus Vector Ebola Vaccine (2017) N Engl J Med, 376 (10), pp. 928-938. , 25426834, et al.,. PMID; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., Grehan, K., Warimwe, G., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788. , 28579232, et al.,. PMID; Almazan, F., DeDiego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4, pp. e613-e650. , 24023385,. PMID; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat Med, 18 (12), pp. 1820-1826. , Epub 2012/11/13, 23142821,. PMID; Choi, J., Kim, M.G., Oh, Y.K., Kim, Y.B., Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review (2017) Expert Opin Ther Pat, 27, pp. 721-731. , 28121202,. PMID; Ulmer, J.B., Geall, A.J., Recent innovations in mRNA vaccines (2016) Curr Opin Immunol, 41, pp. 18-22. , 27240054,. PMID; Richner, J.M., Himansu, S., Dowd, K.A., Butler, S.L., Salazar, V., Fox, J.M., Julander, J.G., Pierson, T.C., Modified mRNA Vaccines Protect against Zika Virus Infection (2017) Cell, 169, p. 176. , 28340344, et al.,. PMID; Honda-Okubo, Y., Barnard, D., Ong, C.H., Peng, B.H., Tseng, C.T., Petrovsky, N., Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology (2015) J Virol, 89, pp. 2995-3007. , 25520500,. PMID; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108. , 24560617,. PMID; Iwata-Yoshikawa, N., Uda, A., Suzuki, T., Tsunetsugu-Yokota, Y., Sato, Y., Morikawa, S., Tashiro, M., Nagata, N., Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine (2014) J Virol, 88, pp. 8597-8614. , 24850731,. PMID; (2017) WHO Target Product Profiles for MERS-CoV Vaccines, , http://www.who.int/blueprint/what/research-development/MERS_CoV_TPP_15052017.pdf?ua=1; Antrobus, R.D., Coughlan, L., Berthoud, T.K., Dicks, M.D., Hill, A.V., Lambe, T., Gilbert, S.C., Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens (2014) Mol Ther, 22, pp. 668-674. , 24374965,. PMID; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., Hensley, L.E., Schnell, M.J., One-Health: a Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus (2017) J Virol, 91 (2). , 27807241,. García-Sastre A, ed. e02040–16. PMID; Kim, E., Okada, K., Kenniston, T., Raj, V.S., AlHajri, M.M., Farag, E.A., AlHajri, F., Gambotto, A., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982. , 25192975,. PMID","Cho, H.; International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, South Korea; email: heeyoun.cho@ivi.int",,"Taylor and Francis Inc.",21645515,,,"29048984","English","Hum. Vaccines Immunother.",Review,"Final",,Scopus,2-s2.0-85041500705 "Wong H.H., Fung T.S., Fang S., Huang M., Le M.T., Liu D.X.","35081546400;55795740300;9842744100;57192950391;57200117986;57190128771;","Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3",2018,"Virology","515",,,"165","175",,6,"10.1016/j.virol.2017.12.028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039808501&doi=10.1016%2fj.virol.2017.12.028&partnerID=40&md5=e12c1b22e0880e757e6bdaa03be11c9f","South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Institute of Molecular and Cell Biology, 61 Biopolis DriveProteos, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive637551, Singapore; Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, China","Wong, H.H., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China, Institute of Molecular and Cell Biology, 61 Biopolis DriveProteos, Singapore; Fung, T.S., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Fang, S., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive637551, Singapore, Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, China; Huang, M., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive637551, Singapore; Le, M.T., Institute of Molecular and Cell Biology, 61 Biopolis DriveProteos, Singapore; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive637551, Singapore","Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. © 2017 Elsevier Inc.","IFN antagonist; IRF3; ORF8; SARS-CoV; Ubiquitin-dependent degradation","accessory protein 8ab; accessory protein 8b; beta interferon; interferon; interferon regulatory factor 3; polyinosinic polycytidylic acid; proteasome; ubiquitin; unclassified drug; viral protein; interferon regulatory factor 3; proteasome; protein binding; ubiquitin; viral protein; animal cell; Article; Avian infectious bronchitis virus; cell division; controlled study; dimerization; gene overexpression; human; human cell; interferon induction; interferon production; nonhuman; priority journal; protein degradation; protein expression; protein function; protein protein interaction; SARS coronavirus; signal transduction; virus activation; virus infection; virus recombinant; animal; cell line; chemistry; genetics; metabolism; protein degradation; protein domain; SARS coronavirus; severe acute respiratory syndrome; signal transduction; virology; Animals; Cell Line; Humans; Interferon Regulatory Factor-3; Proteasome Endopeptidase Complex; Protein Binding; Protein Domains; Proteolysis; SARS Virus; Severe Acute Respiratory Syndrome; Signal Transduction; Ubiquitin; Viral Regulatory and Accessory Proteins","Anderson, R.A., Liu, D.X., Gompels, U.A., Definition of a human herpesvirus-6 betaherpesvirus-specific domain in glycoprotein gH that governs interaction with glycoprotein gL: substitution of human cytomegalovirus glycoproteins permits group-specific complex formation (1996) Virology, 217, pp. 517-526; Bibeau-Poirier, A., Gravel, S.-P., Clément, J.-F., Rolland, S., Rodier, G., Coulombe, P., Hiscott, J., Servant, M.J., Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation (2006) J. Immunol., 1950 (177), pp. 5059-5067; Chen, C.Y., Ping, Y.H., Lee, H.C., Chen, K.H., Lee, Y.M., Chan, Y.J., Lien, T.C., Chen, Y.M.A., Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis (2007) J. Infect. Dis., 196, pp. 405-415; Chen, Z., Rijnbrand, R., Jangra, R.K., Devaraj, S.G., Qu, L., Ma, Y., Lemon, S.M., Li, K., Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus (2007) Virology, 366, pp. 277-292; Dediego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology, 376, pp. 379-389; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Li, K., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J. Biol. Chem., 282, pp. 32208-32221; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J. Virol., 88, pp. 8936-8945; Fang, S., Chen, B., Tay, F.P.L., Ng, B.S., Liu, D.X., An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells (2007) Virology, 358, pp. 136-147; Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Maniatis, T., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway (2003) Nat. Immunol., 4, pp. 491-496; Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., Baric, R.S., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J. Virol., 81, pp. 9812-9824; Goodbourn, S., Didcock, L., Randall, R.E., Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures (2000) J. Gen. Virol., 81, pp. 2341-2364; Grandvaux, N., Servant, M.J., tenOever, B., Sen, G.C., Balachandran, S., Barber, G.N., Lin, R., Hiscott, J., Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes (2002) J. Virol., 76, pp. 5532-5539; Guan, Y., Zheng, B., He, Y., Liu, X., Zhuang, Z., Cheung, C., Luo, S., Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Higgs, R., Jefferies, C.A., Targeting IRFs by ubiquitination: regulating antiviral responses (2008) Biochem. Soc. Trans., 36, pp. 453-458; Higgs, R., Ní Gabhann, J., Ben Larbi, N., Breen, E.P., Fitzgerald, K.A., Jefferies, C.A., The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3 (2008) J. Immunol., 1950 (181), pp. 1780-1786; Hiscott, J., Triggering the innate antiviral response through IRF-3 activation (2007) J. Biol. Chem., 282, pp. 15325-15329; Jimenez-Guardeño, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castaño-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for thE Design of A Genetically Stable Vaccine (2015) PLoS Pathog., 11, p. e1005215; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 12885-12890; Keng, C.-T., Akerström, S., Leung, C.S.-W., Poon, L.L.M., Peiris, J.S.M., Mirazimi, A., Tan, Y.-J., SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway (2011) Microbes Infect., 13, pp. 179-188; Keng, C.-T., Choi, Y.-W., Welkers, M.R.A., Chan, D.Z.L., Shen, S., Gee Lim, S., Hong, W., Tan, Y.-J., The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells (2006) Virology, 354, pp. 132-142; Kopecky-Bromberg, S.A., Martínez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J. Virol., 81, pp. 548-557; Kubota, T., Matsuoka, M., Chang, T.-H., Tailor, P., Sasaki, T., Tashiro, M., Kato, A., Ozato, K., Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression (2008) J. Biol. Chem., 283, pp. 25660-25670; Kumagai, Y., Takeuchi, O., Akira, S., Pathogen recognition by innate receptors (2008) J. Infect. Chemother. Off. J. Jpn. Soc. Chemother., 14, pp. 86-92; Kumar, H., Kawai, T., Akira, S., Toll-like receptors and innate immunity (2009) Biochem. Biophys. Res. Commun., 388, pp. 621-625; Kumar, H., Kawai, T., Akira, S., Pathogen recognition in the innate immune response (2009) Biochem. J., 420, pp. 1-16; Lau, S.K.P., Feng, Y., Chen, H., Luk, H.K.H., Yang, W.-H., Li, K.S.M., Zhang, Y.-Z., Woo, P.C.Y., Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J. Virol., 89, pp. 10532-10547; Law, P.Y.P., Liu, Y.-M., Geng, H., Kwan, K.H., Waye, M.M.-Y., Ho, Y.-Y., Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus (2006) FEBS Lett., 580, pp. 3643-3648; Le, T.M., Wong, H.H., Tay, F.P.L., Fang, S., Keng, C.-T., Tan, Y.J., Liu, D.X., Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus (2007) FEBS J., 274, pp. 4211-4222; Li, F.Q., Xiao, H., Tam, J.P., Liu, D.X., Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus (2005) FEBS Lett., 579, pp. 2387-2396; Lim, K.P., Liu, D.X., The missing link in coronavirus assembly retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-golgi compartments and physical interaction between the envelope and membrane proteins (2001) J. Biol. Chem., 276, pp. 17515-17523; Lim, Y.X., Ng, Y.L., Tam, J.P., Liu, D.X., Human coronaviruses: a review of virus-host interactions (2016) Diseases, p. 4; Lin, R., Heylbroeck, C., Pitha, P.M., Hiscott, J., Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation (1998) Mol. Cell. Biol., 18, pp. 2986-2996; Lin, R., Mamane, Y., Hiscott, J., Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains (1999) Mol. Cell. Biol., 19, pp. 2465-2474; Liu, D.X., Inglis, S.C., Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus (1992) J. Virol., 66, pp. 6143-6154; Liu, D.X., Inglis, S.C., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology, 185, pp. 911-917; Liu, D.X., Fung, T.S., Chong, K.K.L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir. Res., 109, pp. 97-109; Liu, Y.-C., Penninger, J., Karin, M., Immunity by ubiquitylation: a reversible process of modification (2005) Nat. Rev. Immunol., 5, pp. 941-952; Loo, Y.-M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Akira, S., Gale, M., Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity (2008) J. Virol., 82, pp. 335-345; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Lui, P.-Y., Wong, L.-Y.R., Fung, C.-L., Siu, K.-L., Yeung, M.-L., Yuen, K.-S., Chan, C.-P., Jin, D.-Y., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg. Microbes Infect., 5, p. e39; Marra, M.A., Jones, S.J.M., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Roper, R.L., The Genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404; Matthews, K., Schäfer, A., Pham, A., Frieman, M., The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity (2014) Virol. J., 11, p. 209; Minakshi, R., Padhan, K., Rani, M., Khan, N., Ahmad, F., Jameel, S., The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor (2009) PLoS One, 4, p. e8342; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.-T.K., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J. Virol., 82, pp. 4471-4479; Narayanan, K., Huang, C., Makino, S., SARS coronavirus accessory proteins (2008) Virus Res., 133, pp. 113-121; Onomoto, K., Yoneyama, M., Fujita, T., Regulation of antiviral innate immune responses by RIG-I family of RNA helicases (2007) Curr. Top. Microbiol. Immunol., 316, pp. 193-205; Oostra, M., de Haan, C.A.M., Rottier, P.J.M., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J. Virol., 81, pp. 13876-13888; Ran, Y., Liu, T.-T., Zhou, Q., Li, S., Mao, A.-P., Li, Y., Liu, L.-J., Shu, H.-B., SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation (2011) J. Mol. Cell Biol., 3, pp. 283-292; Saira, K., Zhou, Y., Jones, C., The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) associates with interferon regulatory factor 7 and consequently inhibits beta interferon promoter activity (2009) J. Virol., 83, pp. 3977-3981; Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamaoka, S., Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1 (2006) Nat. Immunol., 7, pp. 598-605; Sen, A., Feng, N., Ettayebi, K., Hardy, M.E., Greenberg, H.B., IRF3 inhibition by rotavirus NSP1 is host cell and virus strain dependent but independent of NSP1 proteasomal degradation (2009) J. Virol., 83, pp. 10322-10335; Shen, H., Fang, S.G., Chen, B., Chen, G., Tay, F.P.L., Liu, D.X., Towards construction of viral vectors based on avian coronavirus infectious bronchitis virus for gene delivery and vaccine development (2009) J. Virol. Methods, 160, pp. 48-56; Siu, K.-L., Kok, K.-H., Ng, M.-H.J., Poon, V.K.M., Yuen, K.-Y., Zheng, B.-J., Jin, D.-Y., Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex (2009) J. Biol. Chem., 284, pp. 16202-16209; Siu, K.-L., Yeung, M.L., Kok, K.-H., Yuen, K.-S., Kew, C., Lui, P.-Y., Chan, C.-P., Jin, D.-Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J. Virol., 88, pp. 4866-4876; Spiegel, M., Pichlmair, A., Martínez-Sobrido, L., Cros, J., García-Sastre, A., Haller, O., Weber, F., Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3 (2005) J. Virol., 79, pp. 2079-2086; Spiegel, M., Pichlmair, A., Mühlberger, E., Haller, O., Weber, F., The antiviral effect of interferon-beta against SARS-coronavirus is not mediated by MxA protein (2004) J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol., 30, pp. 211-213; Stetson, D.B., Medzhitov, R., Type I interferons in host defense (2006) Immunity, 25, pp. 373-381; Suhara, W., Yoneyama, M., Kitabayashi, I., Fujita, T., Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex (2002) J. Biol. Chem., 277, pp. 22304-22313; Sung, S.C., Chao, C.Y., Jeng, K.S., Yang, J.Y., Lai, M., The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 (2009) Virology, 387, pp. 402-413; Tan, Y.W., Fang, S., Fan, H., Lescar, J., Liu, D.X., Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells (2006) Nucleic Acids Res., 34, pp. 4816-4825; Taniguchi, T., Ogasawara, K., Takaoka, A., Tanaka, N., IRF family of transcription factors as regulators of host defense (2001) Annu. Rev. Immunol., 19, pp. 623-655; Thanos, D., Maniatis, T., Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome (1995) Cell, 83, pp. 1091-1100; Versteeg, G.A., Bredenbeek, P.J., van den Worm, S.H.E., Spaan, W.J.M., Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition (2007) Virology, 361, pp. 18-26; Wang, G., Chen, G., Zheng, D., Cheng, G., Tang, H., PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway (2011) PLoS One, 6, p. e17192; Wathelet, M.G., Orr, M., Frieman, M.B., Baric, R.S., Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain (2007) J. Virol., 81, pp. 11620-11633; Weber, F., Kochs, G., Haller, O., Staeheli, P., Viral evasion of the interferon system: old viruses, new tricks (2003) J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res., 23, pp. 209-213; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Tan, W., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci. Rep., 5, p. 17554; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J. Virol., 79, pp. 14909-14922; Zhang, M., Tian, Y., Wang, R.-P., Gao, D., Zhang, Y., Diao, F.-C., Chen, D.-Y., Shu, H.-B., Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3 (2008) Cell Res., 18, pp. 1096-1104; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zheng, B., He, M.-L., Wong, K.-L., Lum, C.T., Poon, L.L.M., Peng, Y., Guan, Y., Kung, H.-F., Potent inhibition of SARS-associated coronavirus (SCOV) infection and replication by type I interferons (IFN-alpha/beta) but not by type II interferon (IFN-gamma) (2004) J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res., 24, pp. 388-390; Zhong, Y., Tan, Y.W., Liu, D.X., Recent progress in studies of arterivirus- and coronavirus-host interactions (2012) Viruses, 4, pp. 980-1010","Liu, D.X.; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, Integrative Microbiology Research CentreChina; email: dxliu0001@163.com",,"Academic Press Inc.",00426822,,VIRLA,"29294448","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85039808501 "Milewska A., Nowak P., Owczarek K., Szczepanski A., Zarebski M., Hoang A., Berniak K., Wojarski J., Zeglen S., Baster Z., Rajfur Z., Pyrc K.","55200074700;56399057400;57200288997;57200300836;23494355600;56898668000;55804123600;6603569822;6602292170;55774276900;6602347295;8869026100;","Entry of human coronavirus NL63 into the cell",2018,"Journal of Virology","92","3", e01933-17,"","",,10,"10.1128/JVI.01933-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040682109&doi=10.1128%2fJVI.01933-17&partnerID=40&md5=61358ffe9246f281dda4cb675bd5dcc1","Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland; Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland","Milewska, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland, Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Nowak, P., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland, Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Owczarek, K., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland, Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Szczepanski, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland, Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Zarebski, M., Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Hoang, A., Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Berniak, K., Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Wojarski, J., Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland; Zeglen, S., Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland; Baster, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland; Rajfur, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland; Pyrc, K., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland, Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland","The first steps of human coronavirus NL63 (HCoV-NL63) infection were previously described. The virus binds to target cells by use of heparan sulfate proteoglycans and interacts with the ACE2 protein. Subsequent events, including virus internalization and trafficking, remain to be elucidated. In this study, we mapped the process of HCoV-NL63 entry into the LLC-Mk2 cell line and ex vivo three-dimensional (3D) tracheobronchial tissue. Using a variety of techniques, we have shown that HCoV-NL63 virions require endocytosis for successful entry into the LLC-MK2 cells, and interaction between the virus and the ACE2 molecule triggers recruitment of clathrin. Subsequent vesicle scission by dynamin results in virus internalization, and the newly formed vesicle passes the actin cortex, which requires active cytoskeleton rearrangement. Finally, acidification of the endosomal microenvironment is required for successful fusion and release of the viral genome into the cytoplasm. For 3D tracheobronchial tissue cultures, we also observed that the virus enters the cell by clathrin-mediated endocytosis, but we obtained results suggesting that this pathway may be bypassed. © 2018 American Society for Microbiology.","Clathrin; Coronaviridae; Coronavirus; Endocytosis; Entry; HCoV-NL63; Infection; Internalization","ACE2 protein; actin; clathrin; cytochalasin D; dynamin; F actin; jaspamide; nocodazole; proteoheparan sulfate; transmembrane protease serine 2 protein; unclassified drug; viral protein; virus RNA; clathrin; coronavirus spike glycoprotein; proteoheparan sulfate; virus envelope protein; acidification; actin filament; actin polymerization; adult; Article; cells; controlled study; Coronavirus infection; endocytosis; endosome; enzyme inhibition; human; human cell; Human coronavirus NL63; human tissue; LLC-MK2 cell line; microtubule; nonhuman; priority journal; protein binding; protein interaction; virion; virus entry; virus genome; virus replication; cell line; endocytosis; Human coronavirus NL63; metabolism; physiology; Cell Line; Clathrin; Coronavirus Infections; Coronavirus NL63, Human; Endocytosis; Endosomes; Heparan Sulfate Proteoglycans; Humans; Spike Glycoprotein, Coronavirus; Viral Envelope Proteins; Virus Internalization","van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373. , https://doi.org/10.1038/nm1024; Konca, C., Korukluoglu, G., Tekin, M., Almis, H., Bucak, I., Uygun, H., Altas, A.B., Bayrakdar, F., The first infant death associated with human Coronavirus NL63 infection (2017) Pediatr Infect Dis J, 36, pp. 231-233. , https://doi.org/10.1097/INF.0000000000001390; Mayer, K., Nellessen, C., Hahn-Ast, C., Schumacher, M., Pietzonka, S., Eis-Hübinger, A.M., Drosten, C., Wolf, D., Fatal outcome of human coronavirus NL63 infection despite successful viral elimination by IFN-alpha in a patient with newly diagnosed ALL (2016) Eur J Haematol, 97, pp. 208-210. , https://doi.org/10.1111/ejh.12744; Cabeça, T.K., Bellei, N., Human coronavirus NL-63 infection in a Brazilian patient suspected of H1N1 2009 influenza infection: description of a fatal case (2012) J Clin Virol, 53, pp. 82-84. , https://doi.org/10.1016/j.jcv.2011.09.006; Oosterhof, L., Christensen, C.B., Sengeløv, H., Fatal lower respiratory tract disease with human coronavirus NL63 in an adult haematopoietic cell transplant recipient (2010) Bone Marrow Transplant, 45, pp. 1115-1116. , https://doi.org/10.1038/bmt.2009.292; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., de Jong, J.C., Simon, J.H., Osterhaus, A.D., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc Natl Acad Sci U S A, 101, pp. 6212-6216. , https://doi.org/10.1073/pnas.0400762101; Pyrc, K., Berkhout, B., van der Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) J Virol, 81, pp. 3051-3057. , https://doi.org/10.1128/JVI.01466-06; van der Hoek, L., Sure, K., Ihorst, G., Stang, A., Pyrc, K., Jebbink, M.F., Petersen, G., Uberla, K., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2. , https://doi.org/10.1371/journal.pmed.0020240; van der Hoek, L., Pyrc, K., Berkhout, B., Human coronavirus NL63, a new respiratory virus (2006) FEMS Microbiol Rev, 30, pp. 760-773. , https://doi.org/10.1111/j.1574-6976.2006.00032.x; Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., van der Hoek, L., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J Mol Biol, 364, pp. 964-973. , https://doi.org/10.1016/j.jmb.2006.09.074; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Donaldson, E.F., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J Virol, 86, pp. 12816-12825. , https://doi.org/10.1128/JVI.00906-12; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol, 91. , https://doi.org/10.1128/JVI.01953-16; Fields, B.N., Knipe, D.M., Howley, P.M., (2013) Fields virology, 6th ed, , Lippincott Williams & Wilkins, Philadelphia, PA; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pöhlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci U S A, 102, pp. 7988-7993. , https://doi.org/10.1073/pnas.0409465102; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Wickramasinghe, I.N., de Vries, R.P., Gröne, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J Virol, 85, pp. 8903-8912. , https://doi.org/10.1128/JVI.05112-11; Promkuntod, N., Wickramasinghe, I.N., de Vrieze, G., Gröne, A., Verheije, M.H., Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus (2013) Virus Res, 177, pp. 127-137. , https://doi.org/10.1016/j.virusres.2013.09.006; Pöhlmann, S., Gramberg, T., Wegele, A., Pyrc, K., van der Hoek, L., Berkhout, B., Hofmann, H., Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2 (2006) Adv Exp Med Biol, 581, pp. 281-284. , https://doi.org/10.1007/978-0-387-33012-9_47; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J Virol, 88, pp. 13221-13230. , https://doi.org/10.1128/JVI.02078-14; Mathewson, A.C., Bishop, A., Yao, Y., Kemp, F., Ren, J., Chen, H., Xu, X., Jones, I.M., Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2 (2008) J Gen Virol, 89, pp. 2741-2745. , https://doi.org/10.1099/vir.0.2008/003962-0; Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., Tashiro, Y., Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells (1991) J Biol Chem, 266, pp. 17707-17712; Misinzo, G., Delputte, P.L., Nauwynck, H.J., Inhibition of endosomelysosome system acidification enhances porcine circovirus 2 infection of porcine epithelial cells (2008) J Virol, 82, pp. 1128-1135. , https://doi.org/10.1128/JVI.01229-07; Richards, A.L., Jackson, W.T., Intracellular vesicle acidification promotes maturation of infectious poliovirus particles (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1003046; Milewska, A., Ciejka, J., Kaminski, K., Karewicz, A., Bielska, D., Zeglen, S., Karolak, W., Szczubialka, K., Novel polymeric inhibitors of HCoV-NL63 (2013) Antiviral Res, 97, pp. 112-121. , https://doi.org/10.1016/j.antiviral.2012.11.006; Mu, F.T., Callaghan, J.M., Steele-Mortimer, O., Stenmark, H., Parton, R.G., Campbell, P.L., McCluskey, J., Toh, B.H., EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine ""fingers"" and contains a calmodulin-binding IQ motif (1995) J Biol Chem, 270, pp. 13503-13511; Dutta, D., Williamson, C.D., Cole, N.B., Donaldson, J.G., Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0045799; Joshi, S., Perera, S., Gilbert, J., Smith, C.M., Mariana, A., Gordon, C.P., Sakoff, J.A., Chircop, M., The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells (2010) Mol Cancer Ther, 9, pp. 1995-2006. , https://doi.org/10.1158/1535-7163.MCT-10-0161; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J Virol, 91. , https://doi.org/10.1128/JVI.01387-16; Reinke, L.M., Spiegel, M., Plegge, T., Hartleib, A., Nehlmeier, I., Gierer, S., Hoffmann, M., Pöhlmann, S., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12. , https://doi.org/10.1371/journal.pone.0179177; Casella, J.F., Flanagan, M.D., Lin, S., Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change (1981) Nature, 293, pp. 302-305. , https://doi.org/10.1038/293302a0; Holzinger, A., Jasplakinolide: an actin-specific reagent that promotes actin polymerization (2009) Methods Mol Biol, 586, pp. 71-87. , https://doi.org/10.1007/978-1-60761-376-3_4; Hopkins, C.R., Miller, K., Beardmore, J.M., Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake (1985) J Cell Sci Suppl, 3, pp. 173-186. , https://doi.org/10.1242/jcs.1985.Supplement_3.17; Warren, R.A., Green, F.A., Enns, C.A., Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor (1997) J Biol Chem, 272, pp. 2116-2121. , https://doi.org/10.1074/jbc.272.4.2116; Ferguson, S.M., De Camilli, P., Dynamin, a membrane-remodelling GTPase (2012) Nat Rev Mol Cell Biol, 13, pp. 75-88. , https://doi.org/10.1038/nrm3266; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113, pp. 12262-12267. , https://doi.org/10.1073/pnas.1608147113; MacLean-Fletcher, S., Pollard, T.D., Mechanism of action of cytochalasin B on actin (1980) Cell, 20, pp. 329-341. , https://doi.org/10.1016/0092-8674(80)90619-4; Reed, L., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am J Epidemiol, 27, pp. 493-497. , https://doi.org/10.1093/oxfordjournals.aje.a118408; Harding, C., Heuser, J., Stahl, P., Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes (1983) J Cell Biol, 97, pp. 329-339. , https://doi.org/10.1083/jcb.97.2.329; Schubert, W., Frank, P.G., Razani, B., Park, D.S., Chow, C.W., Lisanti, M.P., Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo (2001) J Biol Chem, 276, pp. 48619-48622. , https://doi.org/10.1074/jbc.C100613200; Berniak, K., Rybak, P., Bernas, T., Zarȩbski, M., Biela, E., Zhao, H., Darzynkiewicz, Z., Dobrucki, J.W., Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis (2013) Cytometry A, 83, pp. 913-924. , https://doi.org/10.1002/cyto.a.22327; Bolte, S., Cordelières, F.P., A guided tour into subcellular colocalization analysis in light microscopy (2006) J Microsc, 224, pp. 213-232. , https://doi.org/10.1111/j.1365-2818.2006.01706.x","Pyrc, K.; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityPoland; email: k.a.pyrc@uj.edu.pl",,"American Society for Microbiology",0022538X,,JOVIA,"29142129","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85040682109 "Lin M.-H., Moses D.C., Hsieh C.-H., Cheng S.-C., Chen Y.-H., Sun C.-Y., Chou C.-Y.","56191040000;57195314283;57200134199;36604056200;7601427720;14014203700;7403593375;","Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes",2018,"Antiviral Research","150",,,"155","163",,5,"10.1016/j.antiviral.2017.12.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039853110&doi=10.1016%2fj.antiviral.2017.12.015&partnerID=40&md5=8d53d3e9b6b9934685d8270492e2f72d","Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan; Department of Nephrology, Chang-Gung Memorial Hospital, Keelung, 204, Taiwan","Lin, M.-H., Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Moses, D.C., Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan; Hsieh, C.-H., Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Cheng, S.-C., Department of Nephrology, Chang-Gung Memorial Hospital, Keelung, 204, Taiwan; Chen, Y.-H., Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan; Sun, C.-Y., Department of Nephrology, Chang-Gung Memorial Hospital, Keelung, 204, Taiwan; Chou, C.-Y., Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan","Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in southern China in late 2002 and caused a global outbreak with a fatality rate around 10% in 2003. Ten years later, a second highly pathogenic human CoV, MERS-CoV, emerged in the Middle East and has spread to other countries in Europe, North Africa, North America and Asia. As of November 2017, MERS-CoV had infected at least 2102 people with a fatality rate of about 35% globally, and hence there is an urgent need to identify antiviral drugs that are active against MERS-CoV. Here we show that a clinically available alcohol-aversive drug, disulfiram, can inhibit the papain-like proteases (PLpros) of MERS-CoV and SARS-CoV. Our findings suggest that disulfiram acts as an allosteric inhibitor of MERS-CoV PLpro but as a competitive (or mixed) inhibitor of SARS-CoV PLpro. The phenomenon of slow-binding inhibition and the irrecoverability of enzyme activity after removing unbound disulfiram indicate covalent inactivation of SARS-CoV PLpro by disulfiram, while synergistic inhibition of MERS-CoV PLpro by disulfiram and 6-thioguanine or mycophenolic acid implies the potential for combination treatments using these three clinically available drugs. © 2017 Elsevier B.V.","6-Thioguanine; Disulfiram; MERS- and SARS-CoV; Mycophenolic acid; Papain-like protease; Synergistic inhibition","disulfiram; papain; proteinase; antivirus agent; disulfiram; peptide hydrolase; protein binding; apparent dissociation constant; Article; competitive inhibition; controlled study; dissociation constant; DNA sequence; drug mechanism; enzyme activity; IC50; inactivation rate constant; inhibition constant; Middle East respiratory syndrome coronavirus; nonhuman; pH; polyacrylamide gel electrophoresis; priority journal; protein degradation; rate constant; SARS coronavirus; steady state; time-dependent inhibition; chemistry; conformation; dose response; drug effect; enzyme activation; enzymology; genetics; human; metabolism; microbial sensitivity test; Middle East respiratory syndrome coronavirus; molecular model; SARS coronavirus; Antiviral Agents; Disulfiram; Dose-Response Relationship, Drug; Enzyme Activation; Humans; Inhibitory Concentration 50; Microbial Sensitivity Tests; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Molecular Conformation; Peptide Hydrolases; Protein Binding; SARS Virus","Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J. Biol. Chem., 289, pp. 34667-34682; Bell, R.G., Smith, H.W., Preliminary report on clinical trials of antabuse (1949) Can. Med. Assoc. J., 60, pp. 286-288; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Li, P.T., Yuen, K.Y., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J. Infect., 67, pp. 606-616; Chen, C.Z., Southall, N., Galkin, A., Lim, K., Marugan, J.J., Kulakova, L., Shinn, P., Herzberg, O., A homogenous luminescence assay reveals novel inhibitors for giardia lamblia carbamate kinase (2012) Curr. Chem. Genomics, 6, pp. 93-102; Chen, X., Chou, C.Y., Chang, G.G., Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme (2009) Antivir. Chem. Chemother., 19, pp. 151-156; Cheng, K.W., Cheng, S.C., Chen, W.Y., Lin, M.H., Chuang, S.J., Cheng, I.H., Sun, C.Y., Chou, C.Y., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus (2015) Antiviral Res., 115, pp. 9-16; Chou, C.Y., Chien, C.H., Han, Y.S., Prebanda, M.T., Hsieh, H.P., Turk, B., Chang, G.G., Chen, X., Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus (2008) Biochem. Pharmacol., 75, pp. 1601-1609; Chou, C.Y., Lai, H.Y., Chen, H.Y., Cheng, S.C., Cheng, K.W., Chou, Y.W., Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease (2014) Acta Crystallogr. Sect. D Biol. Crystallogr., 70, pp. 572-581; Chou, Y.W., Cheng, S.C., Lai, H.Y., Chou, C.Y., Differential domain structure stability of the severe acute respiratory syndrome coronavirus papain-like protease (2012) Arch. Biochem. Biophys., 520, pp. 74-80; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Baez-Santos, Y.M., Baker, S.C., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J. Virol., 84, pp. 4619-4629; Copeland, R., Enzymes: a Practical Introduction to Structure, Mechanism, and Data Analysis (2000), Wiley-VCH Inc; Diaz-Sanchez, A.G., Alvarez-Parrilla, E., Martinez-Martinez, A., Aguirre-Reyes, L., Orozpe-Olvera, J.A., Ramos-Soto, M.A., Nunez-Gastelum, J.A., de la Rosa, L.A., Inhibition of urease by disulfiram, an FDA-approved thiol reagent used in humans (2016) Molecules, 21; Elliott, J.H., McMahon, J.H., Chang, C.C., Lee, S.A., Hartogensis, W., Bumpus, N., Savic, R., Lewin, S.R., Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study (2015) Lancet HIV, 2, pp. e520-529; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. Sect. D Biol. Crystallogr., 60, pp. 2126-2132; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling (2009) J. Virol., 83, pp. 6689-6705; Galkin, A., Kulakova, L., Lim, K., Chen, C.Z., Zheng, W., Turko, I.V., Herzberg, O., Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram (2014) J. Biol. Chem., 289, pp. 10502-10509; Han, Y.S., Chang, G.G., Juo, C.G., Lee, H.J., Yeh, S.H., Hsu, J.T., Chen, X., Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition (2005) Biochemistry, 44, pp. 10349-10359; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res., 100, pp. 286-295; Kitson, T.M., The effect of disulfiram on the aldehyde dehydrogenases of sheep liver (1975) Biochem. J., 151, pp. 407-412; Krampe, H., Ehrenreich, H., Supervised disulfiram as adjunct to psychotherapy in alcoholism treatment (2010) Curr. Pharm. Des., 16, pp. 2076-2090; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Patel, K., Johnson, M.E., Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV (2015) ACS Chem. Biol., 10, pp. 1456-1465; Lee, Y.M., Duh, Y., Wang, S.T., Lai, M.M., Yuan, H.S., Lim, C., Using an old drug to target a new drug site: application of disulfiram to target the Zn-Site in HCV NS5A protein (2016) J. Am. Chem. Soc., 138, pp. 3856-3862; Lei, J., Mesters, J.R., Drosten, C., Anemuller, S., Ma, Q., Hilgenfeld, R., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antiviral Res., 109, pp. 72-82; Lin, M.H., Chuang, S.J., Chen, C.C., Cheng, S.C., Cheng, K.W., Lin, C.H., Sun, C.Y., Chou, C.Y., Structural and functional characterization of MERS coronavirus papain-like protease (2014) J. Biomed. Sci., 21, p. 54; Lipsky, J.J., Shen, M.L., Naylor, S., In vivo inhibition of aldehyde dehydrogenase by disulfiram (2001) Chem. Biol. Interact., 130-132, pp. 93-102; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J. Appl. Crystallogr., 40, pp. 658-674; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 3048-3053; Moore, S.A., Baker, H.M., Blythe, T.J., Kitson, K.E., Kitson, T.M., Baker, E.N., Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases (1998) Structure, 6, pp. 1541-1551; Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures (2011) Acta Crystallogr. Sect. D Biol. Crystallogr., 67, pp. 355-367; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326; Paranjpe, A., Zhang, R., Ali-Osman, F., Bobustuc, G.C., Srivenugopal, K.S., Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage (2014) Carcinogenesis, 35, pp. 692-702; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, pp. 439-450; Ratia, K., Pegan, S., Takayama, J., Sleeman, K., Coughlin, M., Baliji, S., Chaudhuri, R., Mesecar, A.D., A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 16119-16124; Ratia, K., Saikatendu, K.S., Santarsiero, B.D., Barretto, N., Baker, S.C., Stevens, R.C., Mesecar, A.D., Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5717-5722; Verma, S., Dixit, R., Pandey, K.C., Cysteine proteases: modes of activation and future prospects as pharmacological targets (2016) Front. Pharmacol., 7, p. 107; Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., Chen, Z., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease (2014) J. Gen. Virol., 95, pp. 614-626; Yonetani, T., Theorell, H., Studies on liver alcohol hydrogenase complexes. 3. Multiple inhibition kinetics in the presence of two competitive inhibitors (1964) Arch. Biochem. Biophys., 106, pp. 243-251; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zheng, D., Chen, G., Guo, B., Cheng, G., Tang, H., PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production (2008) Cell Res., 18, pp. 1105-1113","Chou, C.-Y.155 Li-Nong St., Sec. 2, Taiwan; email: cychou@ym.edu.tw",,"Elsevier B.V.",01663542,,ARSRD,"29289665","English","Antiviral Res.",Article,"Final",Open Access,Scopus,2-s2.0-85039853110 "Zeng Z.-Q., Chen D.-H., Tan W.-P., Qiu S.-Y., Xu D., Liang H.-X., Chen M.-X., Li X., Lin Z.-S., Liu W.-K., Zhou R.","56970283500;55561402600;56609644300;56158095400;57191609898;54681960100;56157372900;55718279300;57198819325;42861832700;55359175300;","Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: a study of hospitalized children with acute respiratory tract infection in Guangzhou, China",2018,"European Journal of Clinical Microbiology and Infectious Diseases","37","2",,"363","369",,8,"10.1007/s10096-017-3144-z","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037092374&doi=10.1007%2fs10096-017-3144-z&partnerID=40&md5=76043fae0cdf628597ef602fad0280cd","State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China","Zeng, Z.-Q., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Chen, D.-H., Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Tan, W.-P., Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Qiu, S.-Y., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Xu, D., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Liang, H.-X., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Chen, M.-X., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Li, X., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Lin, Z.-S., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Liu, W.-K., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Zhou, R., State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510182, China","Human coronaviruses (HCoV) OC43, 229E, NL63, and HKU1 are common respiratory viruses which cause various respiratory diseases, including pneumonia. There is a paucity of evidence on the epidemiology and clinical manifestations of these four HCoV strains worldwide. We collected 11,399 throat swabs from hospitalized children with acute respiratory tract infection from July 2009 to June 2016 in Guangzhou, China. These were tested for four strains of HCoV infection using real-time polymerase chain reaction (PCR). HCoV-positive patients were then tested for 11 other respiratory pathogens. 4.3% (489/11399) of patients were positive for HCoV, of which 3.0% were positive for OC43 (346/11399), 0.6% for 229E (65/11399), 0.5% for NL63 (60/11399), and 0.3% for HKU1 (38/11399). Patients aged 7–12 months had the highest prevalence of HCoV and OC43 when compared with other age groups (p < 0.001). The peak seasons of infection varied depending on the HCoV strain. Patients infected with a single strain of HCoV infection were less likely to present fever (≥ 38 °C) (p = 0.014) and more likely to present pulmonary rales (p = 0.043) than those co-infected with more than one HCoV strain or other respiratory pathogens. There were also significant differences in the prevalence of certain symptoms, including coughing (p = 0.032), pneumonia (p = 0.026), and abnormal pulmonary rales (p = 0.002) according to the strain of HCoV detected. This retrospective study of the prevalence of four HCoV strains and clinical signs among a large population of pediatric patients in a subtropical region of China provides further insight into the epidemiology and clinical features of HCoV. © 2017, The Author(s).",,"adolescent; age; Article; autumn; child; childhood disease; China; clinical feature; Coronaviridae; coughing; crackle; epidemiology; female; fever; hospitalized child; human; Human coronavirus 229E; Human coronavirus HKU1; Human coronavirus NL63; Human coronavirus OC43; infant; major clinical study; male; mixed infection; newborn; nonhuman; pneumonia; priority journal; real time polymerase chain reaction; retrospective study; seasonal variation; spring; throat culture; viral respiratory tract infection; virus detection; virus pathogenesis; virus strain; Coronavirus infection; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; isolation and purification; preschool child; prevalence; respiratory tract infection; virology; Adolescent; Child; Child, Preschool; China; Coronavirus 229E, Human; Coronavirus Infections; Coronavirus NL63, Human; Coronavirus OC43, Human; Female; Humans; Infant; Infant, Newborn; Male; Prevalence; Real-Time Polymerase Chain Reaction; Respiratory Tract Infections; Retrospective Studies","Vabret, A., Mourez, T., Gouarin, S., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis, 36, pp. 985-989. , PID: 12684910; Woo, P.C., Lau, S.K., Tsoi, H.W., Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia (2005) J Infect Dis, 192, pp. 1898-1907. , COI: 1:CAS:528:DC%2BD2MXhtlSrtL3K, PID: 16267760; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932. , PID: 13130404; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin Respir Crit Care Med, 37, pp. 555-571. , PID: 27486736; Kuypers, J., Martin, E.T., Heugel, J., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119, pp. e70-e76. , PID: 17130280; Zhao, Q., Li, S., Xue, F., Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1 (2008) J Virol, 82, pp. 8647-8655. , COI: 1:CAS:528:DC%2BD1cXhtVClt7%2FK, PID: 18562531; van der Hoek, L., Pyrc, K., Berkhout, B., Human coronavirus NL63, a new respiratory virus (2006) FEMS Microbiol Rev, 30, pp. 760-773. , PID: 16911043; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895. , COI: 1:CAS:528:DC%2BD2MXlt12hsA%3D%3D, PID: 15613317; Yip, C.C., Lam, C.S., Luk, H.K., A six-year descriptive epidemiological study of human coronavirus infections in hospitalized patients in Hong Kong (2016) Virol Sin, 31, pp. 41-48. , PID: 26920709; Esper, F., Weibel, C., Ferguson, D., Coronavirus HKU1 infection in the United States (2006) Emerg Infect Dis, 12, pp. 775-779. , PID: 16704837; Matoba, Y., Abiko, C., Ikeda, T., Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan (2015) Jpn J Infect Dis, 68, pp. 138-141. , PID: 25420656; Gerna, G., Percivalle, E., Sarasini, A., Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients (2007) J Clin Virol, 38, pp. 244-250. , COI: 1:CAS:528:DC%2BD2sXitFequro%3D, PID: 17222582; Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age (2014) Pediatr Infect Dis J, 33, pp. 814-820. , PID: 24577040; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071. , COI: 1:CAS:528:DC%2BD28XmvFKgs7g%3D, PID: 16757599; Gerna, G., Campanini, G., Rovida, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78, pp. 938-949. , COI: 1:CAS:528:DC%2BD28Xmslyjsro%3D, PID: 16721849; Jevšnik, M., Uršič, T., Žigon, N., Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease (2012) BMC Infect Dis, 12, p. 365. , PID: 23256846; Liu, W.K., Chen, D.H., Liu, Q., Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China (2011) BMC Infect Dis, 11, p. 345. , COI: 1:CAS:528:DC%2BC3MXltlKgtLw%3D, PID: 22168387; Liu, W.K., Liu, Q., Chen, D.H., Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study (2014) PLoS One, 9. , PID: 24797911; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: a one-year study in Colorado (2009) J Med Virol, 81, pp. 1597-1604. , PID: 19626607; Gaunt, E.R., Hardie, A., Claas, E.C., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947. , COI: 1:CAS:528:DC%2BC3cXht1Omu7jK, PID: 20554810; Lu, R., Yu, X., Wang, W., Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays (2012) PLoS One, 7. , COI: 1:CAS:528:DC%2BC38XptFaltb8%3D, PID: 22719912; Huijskens, E.G., Biesmans, R.C., Buiting, A.G., Diagnostic value of respiratory virus detection in symptomatic children using real-time PCR (2012) Virol J, 9, p. 276. , COI: 1:CAS:528:DC%2BC3sXlvFOksw%3D%3D, PID: 23164039; van der Zalm, M.M., van Ewijk, B.E., Wilbrink, B., Respiratory pathogens in children with and without respiratory symptoms (2009) J Pediatr, 154, pp. 396-400. , PID: 18823911; Suryadevara, M., Cummings, E., Bonville, C.A., Viral etiology of acute febrile respiratory illnesses in hospitalized children younger than 24 months (2011) Clin Pediatr (Phila), 50, pp. 513-517; Leung, T.F., Li, C.Y., Lam, W.Y., Epidemiology and clinical presentations of human coronavirus NL63 infections in Hong Kong children (2009) J Clin Microbiol, 47, pp. 3486-3492. , COI: 1:CAS:528:DC%2BD1MXhsFems77K, PID: 19759228; Kristoffersen, A.W., Nordbø, S.A., Rognlien, A.G., Coronavirus causes lower respiratory tract infections less frequently than RSV in hospitalized Norwegian children (2011) Pediatr Infect Dis J, 30, pp. 279-283. , PID: 21057374","Liu, W.-K.; State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical UniversityChina; email: ahlwk2000-2004@163.com",,"Springer Verlag",09349723,,EJCDE,"29214503","English","Eur. J. Clin. Microbiol. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85037092374 "Alfaraj S.H., Al-Tawfiq J.A., Altuwaijri T.A., Alanazi M., Alzahrani N., Memish Z.A.","57191595182;9436438200;57188694559;34067501600;57193393571;7005059350;","Middle East respiratory syndrome coronavirus transmission among health care workers: Implication for infection control",2018,"American Journal of Infection Control","46","2",,"165","168",,17,"10.1016/j.ajic.2017.08.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029815556&doi=10.1016%2fj.ajic.2017.08.010&partnerID=40&md5=f82596f7713196cb6172dc5fecbc9a9c","Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; University of British Columbia, Vancouver, BC, Canada; Indiana University School of Medicine, Indianapolis, IN, United States; Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Surgery, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Department of Emergency, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Alfaraj, S.H., Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, University of British Columbia, Vancouver, BC, Canada; Al-Tawfiq, J.A., Indiana University School of Medicine, Indianapolis, IN, United States, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Altuwaijri, T.A., Department of Surgery, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Alanazi, M., Department of Emergency, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Alzahrani, N., Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Background: Many outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) have occurred in health care settings and involved health care workers (HCWs). We describe the occurrence of an outbreak among HCWs and attempt to characterize at-risk exposures to improve future infection control interventions. Methods: This study included an index case and all HCW contacts. All contacts were screened for MERS-CoV using polymerase chain reaction. Results: During the study period in 2015, the index case was a 30-year-old Filipino nurse who had a history of unprotected exposure to a MERS-CoV–positive case on May 15, 2015, and had multiple negative tests for MERS-CoV. Weeks later, she was diagnosed with pulmonary tuberculosis and MERS-CoV infection. A total of 73 staff were quarantined for 14 days, and nasopharyngeal swabs were taken on days 2, 5, and 12 postexposure. Of those contacts, 3 (4%) were confirmed positive for MERS-CoV. An additional 18 staff were quarantined and had MERS-CoV swabs. A fourth case was confirmed positive on day 12. Subsequent contact investigations revealed a fourth-generation transmission. Only 7 (4.5%) of the total 153 contacts were positive for MERS-CoV. Conclusions: The role of HCWs in MERS-CoV transmission is complex. Although most MERS-CoV–infected HCWs are asymptomatic or have mild disease, fatal infections can occur and HCWs can play a major role in propagating health care facility outbreaks. This investigation highlights the need to continuously review infection control guidance relating to the role of HCWs in MERS-CoV transmission in health care outbreaks, especially as it relates to the complex questions on definition of risky exposures, who to test, and the frequency of MERS-CoV testing; criteria for who to quarantine and for how long; and clearance and return to active duty criteria. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","Infection control; MERS-CoV; Middle East respiratory syndrome coronavirus; Outbreak","alanine aminotransferase; amoxicillin; aspartate aminotransferase; adult; alanine aminotransferase blood level; Article; aspartate aminotransferase blood level; case report; clinical article; clinical feature; coughing; disease transmission; dry cough; dyspnea; female; health care facility; health care personnel; hemodialysis; human; infection control; leukocyte count; lung tuberculosis; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nasopharyngeal aspiration; polymerase chain reaction; thorax radiography; contact examination; Coronavirus infection; infection control; isolation and purification; male; Middle East respiratory syndrome coronavirus; Philippines; procedures; Saudi Arabia; transmission; virology; Adult; Contact Tracing; Coronavirus Infections; Female; Health Personnel; Humans; Infection Control; Male; Middle East Respiratory Syndrome Coronavirus; Philippines; Saudi Arabia","Al-Tawfiq, J.A., Assiri, A., Memish, Z.A., Middle East respiratory syndrome novel corona (MERS-CoV) infection: epidemiology and outcome update (2013) Saudi Med J, 34, pp. 991-994; Guery, B., Poissy, J., el Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Gulland, A., Novel coronavirus spreads to Tunisia (2013) BMJ, 346, p. f3372; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, WHO Available from (Accessed 18 August 2017); Al-Tawfiq, J.A., Memish, Z.A., Infection control measures for the prevention of MERS coronavirus transmission in healthcare settings (2016) Expert Rev Anti Infect Ther, 14, pp. 281-283; Hastings, D.L., Tokars, J.I., Abdel Aziz, I.Z.A.M., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Outbreak of Middle East respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 794-801; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: nosocomial outbreak of middle east respiratory syndrome in a large tertiary care hospital–Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia (2016), http://www.who.int/csr/don/21-june-2016-mers-saudi-arabia/en/, Available from (Accessed 26 June 2017); Assiri, A., Abedi, G.R., Bin Saeed, A.A., Abdalla, M.A., al-Masry, M., Choudhry, A.J., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome-coronavirus (MERS-CoV): a case-control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Kim, S.W., Park, J.W., Jung, H.-D., Yang, J.-S., Park, Y.-S., Lee, C., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Ghazal, H., Ghazal, S., Alharbi, T., Al Nujaidi, M., Memish, Z., Middle-East respiratory syndrome-coronavirus: putting emergency departments in the spotlight (2017) J Health Spec, 5, p. 51; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Memish, Z.A., Middle East respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: implications for infection control (2017) Intervirology; Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Expert Rev Respir Med, 10, pp. 331-338; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Kim, C.-J., Choi, W.S., Jung, Y., Kiem, S., Seol, H.Y., Woo, H.J., Surveillance of the MERS coronavirus infection in healthcare workers after contact with confirmed MERS patients: incidence and risk factors of MERS-CoV seropositivity (2016) Clin Microbiol Infect, 22, pp. 880-886; Wiboonchutikul, S., Manosuthi, W., Sangsajja, C., Zero transmission of Middle East respiratory syndrome: lessons learned from Thailand (2017) Clin Infect Dis, 64, pp. S167-S170; Hall, A.J., Tokars, J.I., Badreddine, S.A., Saad, Z.B., Furukawa, E., Al Masri, M., Health care worker contact with MERS patient, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 2148-2151; Kim, S.G., Healthcare workers infected with Middle East respiratory syndrome coronavirus and infection control (2015) J Korean Med Assoc, 58, pp. 647-654; Liu, S., Chan, T.-C., Chu, Y.-T., Wu, J.T.-S., Geng, X., Zhao, N., Comparative epidemiology of human infections with Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses among healthcare personnel (2016) PLoS ONE, 11. , 0149988; Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Slayton, R.B., Estivariz, C.F., Geller, A.I., Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel (2016) Emerg Infect Dis, 22, pp. 1915-1920; Moon, S., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458; Feikin, D.R., Alraddadi, B., Qutub, M., Shabouni, O., Curns, A., Oboho, I.K., Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 2029-2035; Command and Control Center Ministry of Health Kingdom of Saudi Arabia Scientific Advisory Board, Infection prevention and control guidelines for the Middle East respiratory syndrome coronavirus (MERS-CoV) Infection (2017), http://www.moh.gov.sa/endepts/Infection/Documents/Guidelines-for-MERS-CoV.PDF, 4th edition; Available from (Accessed 12 May 2017); Centers for Disease Control and Prevention, Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS-CoV) (2015), https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, Available from (Accessed 9 March 2017); Park, G.E., Ko, J.-H., Peck, K.R., Lee, J.Y., Lee, J.Y., Cho, S.Y., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, p. 87; World Health Organization, Surveillance for human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) (2015), http://apps.who.int/iris/bitstream/10665/177869/1/WHO_MERS_SUR_15.1_eng.pdf?ua=1, Available from (Accessed 10 July 2017); World Health Organization, Management of asymptomatic persons who are RT-PCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV (2015), http://apps.who.int/iris/bitstream/10665/180973/1/WHO_MERS_IPC_15.2_eng.pdf?ua=1, Available from (Accessed 10 July 2017); Wiboonchutikul, S., Manosuthi, W., Likanonsakul, S., Sangsajja, C., Kongsanan, P., Nitiyanontakij, R., Lack of transmission among healthcare workers in contact with a case of Middle East respiratory syndrome coronavirus infection in Thailand (2016) Antimicrob Resist Infect Control, 5, p. 21; Kim, T., Jung, J., Kim, S.-M., Seo, D.-W., Lee, Y.S., Kim, W.Y., Transmission among healthcare worker contacts with a Middle East respiratory syndrome patient in a single Korean centre (2016) Clin Microbiol Infect, 22, pp. e11-e13; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol Infect, 20, pp. 469-474; Chan, K.H., Poon, L.L.L.M., Cheng, V.C.C., Guan, Y., Hung, I.F.N., Kong, J., Detection of SARS coronavirus in patients with suspected SARS (2004) Emerg Infect Dis, 10, pp. 294-299","Memish, Z.A.; College of Medicine, Alfaisal University, PO Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Mosby Inc.",01966553,,AJICD,"28958446","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85029815556 "Xiong X., Tortorici M.A., Snijder J., Yoshioka C., Walls A.C., Li W., McGuire A.T., Rey F.A., Bosch B.-J., Veesler D.","55370685000;6603890184;42462439500;7004148705;57159082300;54966542700;55624659200;7102099345;7003681993;25227836200;","Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections",2018,"Journal of Virology","92","4", e01628-17,"","",,20,"10.1128/JVI.01628-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041238304&doi=10.1128%2fJVI.01628-17&partnerID=40&md5=fd53deb38642b393de6511cc980eac45","Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569 Virologie, Paris, France; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States","Xiong, X., Department of Biochemistry, University of Washington, Seattle, WA, United States; Tortorici, M.A., Institut Pasteur, Unité de Virologie Structurale, Paris, France, CNRS UMR 3569 Virologie, Paris, France; Snijder, J., Department of Biochemistry, University of Washington, Seattle, WA, United States; Yoshioka, C., Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States; Walls, A.C., Department of Biochemistry, University of Washington, Seattle, WA, United States; Li, W., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; McGuire, A.T., Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Rey, F.A., Institut Pasteur, Unité de Virologie Structurale, Paris, France, CNRS UMR 3569 Virologie, Paris, France; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Veesler, D., Department of Biochemistry, University of Washington, Seattle, WA, United States","Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to initiate infection. The S protein is a major determinant of the zoonotic potential of coronaviruses and is also the main target of the host humoral immune response. We report here the 3.5-Å-resolution cryoelectron microscopy structure of the S glycoprotein trimer from the pathogenic porcine deltacoronavirus (PDCoV), which belongs to the recently identified Deltacoronavirus genus. Structural and glycoproteomics data indicate that the glycans of PDCoV S are topologically conserved compared with the human respiratory coronavirus NL63 S, resulting in similar surface areas being shielded from neutralizing antibodies and implying that both viruses are under comparable immune pressure in their respective hosts. The structure further reveals a shortened S 2 ' activation loop, containing a reduced number of basic amino acids, which participates in rendering the spike largely protease resistant. This property distinguishes PDCoV S from recently characterized betacoronavirus S proteins and suggests that the S protein of enterotropic PDCoV has evolved to tolerate the protease-rich environment of the small intestine and to fine-tune its fusion activation to avoid premature triggering and reduction of infectivity. © 2018 American Society for Microbiology.","Coronaviruses; Cryo-EM; Fusion proteins","amino acid; glycan; neutralizing antibody; proteinase; virus fusion protein; virus spike protein; coronavirus spike glycoprotein; polysaccharide; animal cell; Article; Betacoronavirus; controlled study; Coronavirinae; cryoelectron microscopy; human; human cell; Human coronavirus NL63; immune response; intestine infection; membrane fusion; nonhuman; Porcine deltacoronavirus; priority journal; protein structure; strain difference; surface area; virus cell interaction; animal; chemistry; classification; Coronaviridae; Coronaviridae infection; Drosophila melanogaster; metabolism; pathology; physiology; pig; protein conformation; swine disease; virology; virus attachment; Animals; Coronaviridae; Coronaviridae Infections; Drosophila melanogaster; Humans; Membrane Fusion; Polysaccharides; Protein Conformation; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases; Virus Attachment","Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347. , https://doi.org/10.1038/nrd.2015.37; Vijay, R., Perlman, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr Opin Virol, 16, pp. 70-76. , https://doi.org/10.1016/j.coviro.2016.01.011; Schrauwen, E.J., Fouchier, R.A., Host adaptation and transmission of influenza A viruses in mammals (2014) Emerg Microbes Infect, 3, p. e9. , https://doi.org/10.1038/emi.2014.9; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868. , https://doi.org/10.1126/science.1116480; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , https://doi.org/10.1038/nature12328; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci U S A, 113, pp. 3048-3053. , https://doi.org/10.1073/pnas.1517719113; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , https://doi.org/10.1038/nature12711; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521. , https://doi.org/10.1073/pnas.1405889111; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , https://doi.org/10.1016/j.chom.2014.08.009; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , https://doi.org/10.1016/j.virusres.2014.11.021; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106, pp. 5871-5876. , https://doi.org/10.1073/pnas.0809524106; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004502; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 9119-9123. , https://doi.org/10.1128/JVI.01279-15; Bosch, B.J., Bartelink, W., Rottier, P.J., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide (2008) J Virol, 82, pp. 8887-8890. , https://doi.org/10.1128/JVI.00415-08; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J Virol, 88, pp. 7952-7961. , https://doi.org/10.1128/JVI.00297-14; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , https://doi.org/10.1126/science.aac8608; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , https://doi.org/10.1126/science.1087139; Smith, G.J., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O.G., Ma, S.K., Rambaut, A., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic (2009) Nature, 459, pp. 1122-1125. , https://doi.org/10.1038/nature08182; Ksiazek, T.G., Rota, P.A., Rollin, P.E., A review of Nipah and Hendra viruses with an historical aside (2011) Virus Res, 162, pp. 173-183. , https://doi.org/10.1016/j.virusres.2011.09.026; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , https://doi.org/10.1038/nature16988; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23, pp. 899-905. , https://doi.org/10.1038/nsmb.3293; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryoelectron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27, pp. 119-129. , https://doi.org/10.1038/cr.2016.152; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , https://doi.org/10.1038/nature17200; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERSCoV spike antigen (2017) Proc Natl Acad Sci U S A, 114, pp. E7348-E7357. , https://doi.org/10.1073/pnas.1707304114; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125. , https://doi.org/10.1128/JVI.00430-15; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Walls, A., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy (2017) Protein Sci, 26, pp. 113-121. , https://doi.org/10.1002/pro.3048; Snijder, J., Borst, A.J., Dosey, A., Walls, A.C., Burrell, A., Reddy, V.S., Kollman, J.M., Veesler, D., Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids (2017) J Struct Biol, 198, pp. 38-42. , https://doi.org/10.1016/j.jsb.2017.02.008; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501. , https://doi.org/10.1107/S0907444910007493; DiMaio, F., Song, Y., Li, X., Brunner, M.J., Xu, C., Conticello, V., Egelman, E., Baker, D., Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement (2015) Nat Methods, 12, pp. 361-365. , https://doi.org/10.1038/nmeth.3286; Frese, C.K., Zhou, H., Taus, T., Altelaar, A.F., Mechtler, K., Heck, A.J., Mohammed, S., Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD) (2013) J Proteome Res, 12, pp. 1520-1525. , https://doi.org/10.1021/pr301130k; Stewart-Jones, G.B., Soto, C., Lemmin, T., Chuang, G.Y., Druz, A., Kong, R., Thomas, P.V., Kwong, P.D., Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G (2016) Cell, 165, pp. 813-826. , https://doi.org/10.1016/j.cell.2016.04.010; Gristick, H.B., von Boehmer, L., West, A.P., Jr., Schamber, M., Gazumyan, A., Golijanin, J., Seaman, M.S., Bjorkman, P.J., Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site (2016) Nat Struct Mol Biol, 23, pp. 906-915. , https://doi.org/10.1038/nsmb.3291; Lin, Y.P., Xiong, X., Wharton, S.A., Martin, S.R., Coombs, P.J., Vachieri, S.G., Christodoulou, E., McCauley, J.W., Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin (2012) Proc Natl Acad Sci U S A, 109, pp. 21474-21479. , https://doi.org/10.1073/pnas.1218841110; Zhou, Y., Lu, K., Pfefferle, S., Bertram, S., Glowacka, I., Drosten, C., Pohlmann, S., Simmons, G., A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms (2010) J Virol, 84, pp. 8753-8764. , https://doi.org/10.1128/JVI.00554-10; Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Holmes, K.V., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus (2004) Proc Natl Acad Sci U S A, 101, pp. 15748-15753. , https://doi.org/10.1073/pnas.0403812101; Jeffers, S.A., Hemmila, E.M., Holmes, K.V., Human coronavirus 229E can use CD209L (L-SIGN) to enter cells (2006) Adv Exp Med Biol, 581, pp. 265-269. , https://doi.org/10.1007/978-0-387-33012-9_44; Krempl, C., Ballesteros, M.L., Zimmer, G., Enjuanes, L., Klenk, H.D., Herrler, G., Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants (2000) J Gen Virol, 81, pp. 489-496. , https://doi.org/10.1099/0022-1317-81-2-489; Sanchez, C.M., Gebauer, F., Sune, C., Mendez, A., Dopazo, J., Enjuanes, L., Genetic evolution and tropism of transmissible gastroenteritis coronaviruses (1992) Virology, 190, pp. 92-105. , https://doi.org/10.1016/0042-6822(92)91195-Z; Huang, X., Dong, W., Milewska, A., Golda, A., Qi, Y., Zhu, Q.K., Marasco, W.A., Sui, J., Human coronavirus HKU1 spike protein uses o-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptordestroying enzyme (2015) J Virol, 89, pp. 7202-7213. , https://doi.org/10.1128/JVI.00854-15; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc Natl Acad Sci U S A, 85, pp. 4526-4529. , https://doi.org/10.1073/pnas.85.12.4526; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J Biol Chem, 287, pp. 41931-41938. , https://doi.org/10.1074/jbc.M112.418210; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974. , https://doi.org/10.1073/pnas.0908837106; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002859; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Zhou, T., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6, p. 8223. , https://doi.org/10.1038/ncomms9223; Prabakaran, P., Gan, J., Feng, Y., Zhu, Z., Choudhry, V., Xiao, X., Ji, X., Dimitrov, D.S., Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody (2006) J Biol Chem, 281, pp. 15829-15836. , https://doi.org/10.1074/jbc.M600697200; Hwang, W.C., Lin, Y., Santelli, E., Sui, J., Jaroszewski, L., Stec, B., Farzan, M., Liddington, R.C., Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R (2006) J Biol Chem, 281, pp. 34610-34616. , https://doi.org/10.1074/jbc.M603275200; Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L.J., Wong, S.K., Moore, M.J., Marasco, W.A., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association (2004) Proc Natl Acad Sci U S A, 101, pp. 2536-2541. , https://doi.org/10.1073/pnas.0307140101; Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., Hensley, L.E., Dimitrov, D.S., Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies (2007) Proc Natl Acad Sci U S A, 104, pp. 12123-12128. , https://doi.org/10.1073/pnas.0701000104; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.-J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114, pp. 11157-11162. , https://doi.org/10.1073/pnas.1708727114; Tse, L.V., Hamilton, A.M., Friling, T., Whittaker, G.R., A novel activation mechanism of avian influenza virus H9N2 by furin (2014) J Virol, 88, pp. 1673-1683. , https://doi.org/10.1128/JVI.02648-13; Kawaoka, Y., Naeve, C.W., Webster, R.G., Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? (1984) Virology, 139, pp. 303-316. , https://doi.org/10.1016/0042-6822(84)90376-3; Zheng, Q., Deng, Y., Liu, J., van der Hoek, L., Berkhout, B., Lu, M., Core structure of S2 from the human coronavirus NL63 spike glycoprotein (2006) Biochemistry, 45, pp. 15205-15215. , https://doi.org/10.1021/bi061686w; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Proteasemediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc Natl Acad Sci U S A, 102, pp. 12543-12547. , https://doi.org/10.1073/pnas.0503203102; Matsuyama, S., Taguchi, F., Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis (2009) J Virol, 83, pp. 11133-11141. , https://doi.org/10.1128/JVI.00959-09; Eckert, D.M., Malashkevich, V.N., Kim, P.S., Crystal structure of GCN4-pIQI, a trimeric coiled coil with buried polar residues (1998) J Mol Biol, 284, pp. 859-865. , https://doi.org/10.1006/jmbi.1998.2214; Yin, H.S., Wen, X., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439, pp. 38-44. , https://doi.org/10.1038/nature04322; Berrow, N.S., Alderton, D., Sainsbury, S., Nettleship, J., Assenberg, R., Rahman, N., Stuart, D.I., Owens, R.J., A versatile ligation-independent cloning method suitable for high-throughput expression screening applications (2007) Nucleic Acids Res, 35, p. e45. , https://doi.org/10.1093/nar/gkm047; Mastronarde, D.N., Automated electron microscope tomography using robust prediction of specimen movements (2005) J Struct Biol, 152, pp. 36-51. , https://doi.org/10.1016/j.jsb.2005.07.007; Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., Agard, D.A., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy (2017) Nat Methods, 14, pp. 331-332. , https://doi.org/10.1038/nmeth.4193; Zhang, K., Gctf: real-time CTF determination and correction (2016) J Struct Biol, 193, pp. 1-12. , https://doi.org/10.1016/j.jsb.2015.11.003; Rohou, A., Grigorieff, N., CTFFIND4: fast and accurate defocus estimation from electron micrographs (2015) J Struct Biol, 192, pp. 216-221. , https://doi.org/10.1016/j.jsb.2015.08.008; Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S., Carragher, B., DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy (2009) J Struct Biol, 166, pp. 205-213. , https://doi.org/10.1016/j.jsb.2009.01.004; Kimanius, D., Forsberg, B.O., Scheres, S.H., Lindahl, E., Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 (2016) ELife, 5; Scheres, S.H., RELION: implementation of a Bayesian approach to cryo-EM structure determination (2012) J Struct Biol, 180, pp. 519-530. , https://doi.org/10.1016/j.jsb.2012.09.006; Scheres, S.H., Chen, S., Prevention of overfitting in cryo-EM structure determination (2012) Nat Methods, 9, pp. 853-854. , https://doi.org/10.1038/nmeth.2115; Rosenthal, P.B., Henderson, R., Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy (2003) J Mol Biol, 333, pp. 721-745. , https://doi.org/10.1016/j.jmb.2003.07.013; Chen, S., McMullan, G., Faruqi, A.R., Murshudov, G.N., Short, J.M., Scheres, S.H., Henderson, R., High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy (2013) Ultramicroscopy, 135, pp. 24-35. , https://doi.org/10.1016/j.ultramic.2013.06.004; Goddard, T.D., Huang, C.C., Ferrin, T.E., Visualizing density maps with UCSF Chimera (2007) J Struct Biol, 157, pp. 281-287. , https://doi.org/10.1016/j.jsb.2006.06.010; Brown, A., Long, F., Nicholls, R.A., Toots, J., Emsley, P., Murshudov, G., Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions (2015) Acta Crystallogr D Biol Crystallogr, 71, pp. 136-153. , https://doi.org/10.1107/S1399004714021683; DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D., Andre, I., Modeling symmetric macromolecular structures in Rosetta3 (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0020450; Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 12-21. , https://doi.org/10.1107/S0907444909042073; Agirre, J., Iglesias-Fernandez, J., Rovira, C., Davies, G.J., Wilson, K.S., Cowtan, K.D., Privateer: software for the conformational validation of carbohydrate structures (2015) Nat Struct Mol Biol, 22, pp. 833-834. , https://doi.org/10.1038/nsmb.3115; Bern, M., Kil, Y.J., Becker, C., Byonic: advanced peptide and protein identification software (2012) Curr Protoc Bioinformatics, , Chapter 13, Unit 13.20","Veesler, D.; Department of Biochemistry, University of WashingtonUnited States; email: dveesler@uw.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29093093","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85041238304 "Shang J., Zheng Y., Yang Y., Liu C., Geng Q., Tai W., Du L., Zhou Y., Zhang W., Li F.","57191992928;57191993071;57192214076;57191676713;57158970800;57188879191;8686996200;57191653017;36543394900;26028899600;","Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state",2018,"Journal of Virology","92","4", e01556-17,"","",,23,"10.1128/JVI.01556-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041170336&doi=10.1128%2fJVI.01556-17&partnerID=40&md5=8416e2f9e29e228095aac43f79ccf85e","Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States; Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States","Shang, J., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Zheng, Y., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Yang, Y., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Liu, C., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Geng, Q., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Tai, W., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Zhang, W., Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States, Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States; Li, F., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States","Coronavirus spike proteins from different genera are divergent, although they all mediate coronavirus entry into cells by binding to host receptors and fusing viral and cell membranes. Here, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at 3.3-Å resolution. The trimeric protein contains three receptor-binding S1 subunits that tightly pack into a crown-like structure and three membrane fusion S2 subunits that form a stalk. Each S1 subunit contains two domains, an N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD). PdCoV S1-NTD has the same structural fold as alphaand betacoronavirus S1-NTDs as well as host galectins, and it recognizes sugar as its potential receptor. PdCoV S1-CTD has the same structural fold as alphacoronavirus S1-CTDs, but its structure differs from that of betacoronavirus S1-CTDs. PdCoV S1- CTD binds to an unidentified receptor on host cell surfaces. PdCoV S2 is locked in the prefusion conformation by structural restraint of S1 from a different monomeric subunit. PdCoV spike possesses several structural features that may facilitate immune evasion by the virus, such as its compact structure, concealed receptorbinding sites, and shielded critical epitopes. Overall, this study reveals that deltacoronavirus spikes are structurally and evolutionally more closely related to alphacoronavirus spikes than to betacoronavirus spikes; it also has implications for the receptor recognition, membrane fusion, and immune evasion by deltacoronaviruses as well as coronaviruses in general. © 2018 American Society for Microbiology.","Cryo-electron microscopy; Immune evasion; Membrane fusion; Prefusion; Receptor binding; Single-particle reconstruction; Viral spike glycoprotein","virus spike protein; coronavirus spike glycoprotein; Alphacoronavirus; amino terminal sequence; animal cell; Article; Betacoronavirus; carboxy terminal sequence; controlled study; Coronavirinae; cryoelectron microscopy; human; human cell; immune evasion; membrane fusion; nonhuman; Porcine deltacoronavirus; priority journal; protein folding; protein function; protein structure; protein subunit; receptor binding; structural homology; animal; Coronavirinae; pig; Sf9 cell line; Spodoptera; ultrastructure; Animals; Coronavirus; Cryoelectron Microscopy; Humans; Sf9 Cells; Spike Glycoprotein, Coronavirus; Spodoptera; Swine","Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch Virol, 148, pp. 2207-2235. , https://doi.org/10.1007/s00705-003-0162-1; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Du, L.Y., He, Y.X., Zhou, Y.S., Liu, S.W., Zheng, B.J., Jiang, S.B., The spike protein of SARS-CoV-a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7, pp. 226-236. , https://doi.org/10.1038/nrmicro2090; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261. , https://doi.org/10.1146/annurev-virology-110615-042301; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146. , https://doi.org/10.1128/JVI.01394-09; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848. , https://doi.org/10.1038/nrmicro3143; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89, pp. 1954-1964. , https://doi.org/10.1128/JVI.02615-14; Li, W.H., Moore, M.J., Vasilieva, N., Sui, J.H., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Raj, V.S., Mou, H.H., Smits, S.L., Dekkers, D.H.W., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Delmas, B., Gelfi, J., Lharidon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase-N is a major receptor for the enteropathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420. , https://doi.org/10.1038/357417a0; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pohlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci U S A, 102, pp. 7988-7993. , https://doi.org/10.1073/pnas.0409465102; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002859; Chen, L., Lin, Y.L., Peng, G., Li, F., Structural basis for multifunctional roles of mammalian aminopeptidase N (2012) Proc Natl Acad Sci U S A, 109, pp. 17966-17971. , https://doi.org/10.1073/pnas.1210123109; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974. , https://doi.org/10.1073/pnas.0908837106; Li, F., Li, W.H., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868. , https://doi.org/10.1126/science.1116480; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , https://doi.org/10.1038/nature12328; Peng, G.Q., Sun, D.W., Rajashankar, K.R., Qian, Z.H., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc Natl Acad Sci U S A, 108, pp. 10696-10701. , https://doi.org/10.1073/pnas.1104306108; Peng, G.Q., Xu, L.Q., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J Biol Chem, 287, pp. 41931-41938. , https://doi.org/10.1074/jbc.M112.418210; Tan, K.M., Zelus, B.D., Meijers, R., Liu, J.H., Bergelson, J.M., Duke, N., Zhang, R., Wang, J.H., Crystal structure of murine sCEACAM1a 1,4: a coronavirus receptor in the CEA family (2002) EMBO J, 21, pp. 2076-2086. , https://doi.org/10.1093/emboj/21.9.2076; Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V., Dieffenbach, C.W., Cloning of the mouse hepatitis-virus (Mhv) receptor-expression in human and hamster-cell lines confers susceptibility to Mhv (1991) J Virol, 65, pp. 6881-6891; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitisvirus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci U S A, 88, pp. 5533-5536. , https://doi.org/10.1073/pnas.88.13.5533; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S-protein of bovine coronavirus is a hemagglutinin recognizing 9-o-acetylated sialic-acid as a receptor determinant (1991) J Virol, 65, pp. 6232-6237; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (Nglycolylneuraminic acid) binding activity (1996) J Virol, 70, pp. 5634-5637; Harrison, S.C., Viral membrane fusion (2015) Virology, 479-480, pp. 498-507; Bosch, B.J., van der Zee, R., de Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J Virol, 77, pp. 8801-8811. , https://doi.org/10.1128/JVI.77.16.8801-8811.2003; Skehel, J.J., Wiley, D.C., Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin (2000) Annu Rev Biochemistry, 69, pp. 531-569. , https://doi.org/10.1146/annurev.biochem.69.1.531; Colman, P.M., Lawrence, M.C., The structural biology of type I viral membrane fusion (2003) Nat Rev Mol Cell Biol, 4, pp. 309-319. , https://doi.org/10.1038/nrm1076; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23, pp. 899-905. , https://doi.org/10.1038/nsmb.3293; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , https://doi.org/10.1038/nature16988; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , https://doi.org/10.1038/nature17200; Duquerroy, S., Vigouroux, A., Rottier, P.J., Rey, F.A., Bosch, B.J., Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein (2005) Virology, 335, pp. 276-285. , https://doi.org/10.1016/j.virol.2005.02.022; Xu, Y.H., Lou, Z.Y., Liu, Y.W., Pang, H., Tien, P., Gao, G.F., Rao, Z.H., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J Biol Chem, 279, pp. 49414-49419. , https://doi.org/10.1074/jbc.M408782200; Supekar, V.M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., Carfi, A., Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein (2004) Proc Natl Acad Sci U S A, 101, pp. 17958-17963. , https://doi.org/10.1073/pnas.0406128102; Ou, X., Zheng, W., Shan, Y., Mu, Z., Dominguez, S.R., Holmes, K.V., Qian, Z., Identification of the fusion peptide-containing region in betacoronavirus spike glycoproteins (2016) J Virol, 90, pp. 5586-5600. , https://doi.org/10.1128/JVI.00015-16; Basso, L.G., Vicente, E.F., Crusca, E., Jr., Cilli, E.M., Costa-Filho, A.J., SARSCoV fusion peptides induce membrane surface ordering and curvature (2016) Sci Rep, 6, p. 37131. , https://doi.org/10.1038/srep37131; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106, pp. 5871-5876. , https://doi.org/10.1073/pnas.0809524106; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580. , https://doi.org/10.3390/v4040557; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6. , https://doi.org/10.1128/mBio.00064-15; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet Microbiol, 196, pp. 98-106. , https://doi.org/10.1016/j.vetmic.2016.10.022; Mahajan, M., Bhattacharjya, S., NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARSCoV: Implications in membrane fusion (2015) Biochim Biophys Acta, 1848, pp. 721-730. , https://doi.org/10.1016/j.bbamem.2014.11.025; Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S.H., Rini, J.M., X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-angstrom resolution (1998) J Biol Chem, 273, pp. 13047-13052. , https://doi.org/10.1074/jbc.273.21.13047; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; Li, F., Berardi, M., Li, W.H., Farzan, M., Dormitzer, P.R., Harrison, S.C., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain (2006) J Virol, 80, pp. 6794-6800. , https://doi.org/10.1128/JVI.02744-05; Carragher, B., Kisseberth, N., Kriegman, D., Milligan, R.A., Potter, C.S., Pulokas, J., Reilein, A., Leginon: an automated system for acquisition of images from vitreous ice specimens (2000) J Struct Biol, 132, pp. 33-45. , https://doi.org/10.1006/jsbi.2000.4314; Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y., Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM (2013) Nat Methods, 10, pp. 584-590. , https://doi.org/10.1038/nmeth.2472; Zhang, K., Gctf: real-time CTF determination and correction (2016) J Struct Biol, 193, pp. 1-12. , https://doi.org/10.1016/j.jsb.2015.11.003; Chen, S., McMullan, G., Faruqi, A.R., Murshudov, G.N., Short, J.M., Scheres, S.H., Henderson, R., High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy (2013) Ultramicroscopy, 135, pp. 24-35. , https://doi.org/10.1016/j.ultramic.2013.06.004; Goddard, T.D., Huang, C.C., Ferrin, T.E., Visualizing density maps with UCSF Chimera (2007) J Struct Biol, 157, pp. 281-287. , https://doi.org/10.1016/j.jsb.2006.06.010; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501. , https://doi.org/10.1107/S0907444910007493; Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Zwart, P.H., PHENIX: a comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 213-221. , https://doi.org/10.1107/S0907444909052925; Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 12-21. , https://doi.org/10.1107/S0907444909042073; Barad, B.A., Echols, N., Wang, R.Y., Cheng, Y., DiMaio, F., Adams, P.D., Fraser, J.S., EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy (2015) Nat Methods, 12, pp. 943-946. , https://doi.org/10.1038/nmeth.3541; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125. , https://doi.org/10.1128/JVI.00430-15; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Li, F., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat Commun, 7, p. 13473. , https://doi.org/10.1038/ncomms13473; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera-a visualization system for exploratory research and analysis (2004) J Comput Chem, 25, pp. 1605-1612. , https://doi.org/10.1002/jcc.20084","Zhang, W.; Department of Diagnostic and Biological Sciences, School of Dentistry, University of MinnesotaUnited States; email: zhangwei@umn.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29070693","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85041170336 "Mahajan M., Chatterjee D., Bhuvaneswari K., Pillay S., Bhattacharjya S.","55763520500;57191346167;57197773930;47861390300;6701366148;","NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion",2018,"Biochimica et Biophysica Acta - Biomembranes","1860","2",,"407","415",,1,"10.1016/j.bbamem.2017.10.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034644342&doi=10.1016%2fj.bbamem.2017.10.002&partnerID=40&md5=73bed17cbc9615a702fefb7203fb7325","School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore","Mahajan, M., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Chatterjee, D., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Bhuvaneswari, K., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Pillay, S., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Bhattacharjya, S., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore","The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV. © 2017 Elsevier B.V.","Cell fusion; Fusion peptide; Fusion protein; NMR; SARS-CoV; Structure","dodecylphosphorylcholine; hybrid protein; long fusion peptide; unclassified drug; viral protein; coronavirus spike glycoprotein; peptide; phosphorylcholine; protein binding; amino terminal sequence; Article; carboxy terminal sequence; cell fusion; controlled study; micelle; nonhuman; nuclear magnetic resonance spectroscopy; priority journal; protein conformation; protein localization; protein structure; SARS coronavirus; viral cell fusion; amino acid sequence; chemical phenomena; chemistry; membrane fusion; metabolism; molecular model; nuclear magnetic resonance spectroscopy; procedures; protein multimerization; static electricity; virus entry; Amino Acid Sequence; Hydrophobic and Hydrophilic Interactions; Magnetic Resonance Spectroscopy; Membrane Fusion; Micelles; Models, Molecular; Peptides; Phosphorylcholine; Protein Binding; Protein Conformation; Protein Multimerization; SARS Virus; Spike Glycoprotein, Coronavirus; Static Electricity; Virus Internalization","Skehel, J.J., Wiley, D.C., Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin (2000) Annu. Rev. Biochem., 69, pp. 531-569; Eckert, D.M., Kim, P.S., Mechanisms of viral membrane fusion and its inhibition (2001) Annu. Rev. Biochem., 70, pp. 777-810; White, J.M., Delos, S.E., Brecher, M., Schornberg, K., Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme (2008) Crit. Rev. Biochem. Mol. Biol., 43, pp. 189-219; Kielian, M., Rey, F.A., Virus membrane-fusion proteins: more than one way to make a hairpin (2006) Nat. Rev. Microbiol., 4, pp. 67-76; Epand, R.M., Fusion peptides and the mechanism of viral fusion (2003) Biochim. Biophys. Acta, 1614, pp. 116-121; Klug, Y.A., Rotem, E., Schwarzer, R., Shai, Y., Mapping out the intricate relationship of the HIV envelope protein and the membrane environment (2017) Biochim. Biophys. Acta, 1859, pp. 550-560; Tamm, L.K., Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion (2003) Biochim. Biophys. Acta, 1614, pp. 14-23; Apellaniz, B., Huarte, N., Largo, E., Nieva, J.L., The three lives of viral fusion peptides (2014) Chem. Phys. Lipids, 181, pp. 40-55; Blumenthal, R., Durell, S., Viard, M., HIV entry and envelope glycoprotein-mediated fusion (2012) J. Biol. Chem., 287, pp. 40841-40849; Badani, H., Garry, R.F., Wimley, W.C., Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity (2014) Biochim. Biophys. Acta, 1838, pp. 2180-2197; Matthews, T., Salgo, M., Greenberg, M., Chung, J., DeMasi, R., Bolognesi, D., Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes (2004) Nat. Rev. Drug Discov., 3, pp. 215-225; Mathieu, C., Augusto, M.T., Niewiesk, S., Horvat, B., Palermo, L.M., Sanna, G., Madeddu, S., Moscona, A., Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides (2017) Sci. Rep., 7, p. 43610; Gómara, M.J., Sánchez-Merino, V., Paús, A., Merino-Mansilla, A., Gatell, J.M., Yuste, E., Haro, I., Definition of an 18-mer synthetic peptide derived from the GB virus C E1 protein as a new HIV-1 entry inhibitor (2016) Biochim. Biophys. Acta, 1860, pp. 1139-1148; Hrobowski, Y.M., Garry, R.F., Michael, S.F., Peptide inhibitors of dengue virus and West Nile virus infectivity (2005) Virol. J., 2, p. 49; Weissenhorn, W., Hinz, A., Gaudin, Y., Virus membrane fusion (2007) FEBS Lett., 581, pp. 2150-2155; Earp, L.J., Delos, S.E., Park, H.E., White, J.M., The many mechanisms of viral membrane fusion proteins (2005) Curr. Top. Microbiol. Immunol., 285, pp. 25-66; Smith, A.E., Helenius, A., How viruses enter animal cells (2004) Science, 304, pp. 237-242; Harrison, S.C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698; Guardado-Calvo, P., Bignon, E.A., Stettner, E., Jeffers, S.A., Pérez-Vargas, J., Pehau-Arnaudet, G., Tortorici, M.A., Rey, F.A., Mechanistic insight into bunyavirus-induced membrane fusion from structure-function analyses of the hantavirus envelope glycoprotein Gc (2016) PLoS Pathog., 12; Worch, R., Krupa, J., Filipek, A., Szymaniec, A., Setny, P., Three conserved C-terminal residues of influenza fusion peptide alter its behavior at the membrane interface (2017) Biochim. Biophys. Acta, 1861, pp. 97-105; Klug, Y.A., Ashkenazi, A., Viard, M., Porat, Z., Blumenthal, R., Shai, Y., Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site (2014) Biochem. J., 461, pp. 213-222; Alves, N.S., Mendes, Y.S., Souza, T.L., Bianconi, M.L., Silva, J.L., Gomes, A.M., Oliveira, A.C., A biophysical characterization of the interaction of a hepatitis C virus membranotropic peptide with micelles (2016) Biochim. Biophys. Acta, 1864, pp. 359-371; Ratnayake, P.U., Sackett, K., Nethercott, M.J., Weliky, D.P., pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: two kinetically distinct processes and fully-membrane-associated gp41 with predominant β sheet fusion peptide conformation (2015) Biochim. Biophys. Acta, 1848, pp. 289-298; Han, X., Bushweller, J.H., Cafiso, D.S., Tamm, L.K., Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin (2001) Nat. Struct. Biol., 8, pp. 715-720; Lorieau, J.L., Louis, J.M., Bax, A., The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid: water interface (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 11341-11346; Agopian, A., Quetin, M., Castano, S., A biophysical characterization of the interaction of a hepatitis C virus membranotropic peptide with micelles (2016) Biochim. Biophys. Acta, 1858, pp. 2671-2680; Gregory, S.M., Harada, E., Liang, B., Delos, S.E., White, J.M., Tamm, L.K., Structure and function of the complete internal fusion loop from ebolavirus glycoprotein 2 (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 11211-11216; Lu, G., Wang, Q., Gao, F.G., Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 8, pp. 468-478; Weinstein, R.A., Planning for epidemics-the lessons of SARS (2004) N. Engl. J. Med., 350, pp. 2332-2334; Holmes, K.V., Structural biology. Adaptation of SARS coronavirus to humans (2005) Science, 309, pp. 1822-1823; Bolles, M., Donaldson, E., Baric, R., SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission (2011) Curr. Opin. Virol., 6, pp. 624-634; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution (2014) Trends Microbiol., 22, pp. 573-579; Aleanizy, F.S., Mohmed, N., Alqahtani, F.Y., Mohamed, E.H.R.A., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study (2017) BMC Infect. Dis., 17, p. 23; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches (2017) Curr. Opin. Virol., 23, pp. 49-58; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 8, pp. 523-534; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279, pp. 371-374; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Taguchi, F., Shimazaki, Y.K., Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity (2000) J. Gen. Virol., 81, pp. 2867-2871; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J., Rottier, P.J., Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 8455-8460; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 1, pp. 119-129; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 49414-49419; Supekar, V.M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., Carfi, A., Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 17958-17963; Deng, Y., Liu, J., Zheng, Q., Yong, W., Lu, M., Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein (2006) Structure, 14, pp. 889-899; Hakansson-McReynolds, S., Jiang, S., Rong, L., Caffrey, M., Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state (2006) J. Biol. Chem., 281, pp. 11965-11971; Sainz, B., Jr., Rausch, J.M., Gallaher, W.R., Garry, R.F., Wimley, W.C., Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein (2005) J. Virol., 79, pp. 7195-7206; Guillen, J., Perez-Berna, A.J., Moreno, M.R., Villalain, J., Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism (2005) J. Virol., 79, pp. 1743-1752; Guillen, J., Perez-Berna, A.J., Moreno, M.R., Villalain, J., A second SARS-CoV S2 glycoprotein internal membrane-active peptide. Biophysical characterization and membrane interaction (2008) Biochemistry, 47, pp. 8214-8224; Sainz, B., Jr., Rausch, J.M., Gallaher, W.R., Garry, R.F., Wimley, W.C., The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry (2005) Biochemistry, 44, pp. 947-958; Ou, X., Zheng, W., Shan, Y., Mu, Z., Dominguez, S.R., Holmes, K.V., Qian, Z., Identification of the fusion peptide-containing region in betacoronavirus spike glycoproteins (2016) J. Virol., 90, pp. 5586-5600; Basso, L.G., Vicente, E.F., Crusca, E., Cilli, E.M., Costa-Filho, A.J., SARS-CoV fusion peptides induce membrane surface ordering and curvature (2016) Sci Rep, 6, p. 37131; Guillen, J., Kinnunen, P.K., Villalain, J., Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein (2008) Biochim. Biophys. Acta, 1778, pp. 2765-2774; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83, pp. 7411-7421; Mahajan, M., Bhattacharjya, S., NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: implications in membrane fusion (2015) Biochim. Biophys. Acta, 1848, pp. 721-730; Mahajan, M., Bhattacharjya, S., Designed di-heme binding helical transmembrane protein (2014) Chembiochem, 15, pp. 1257-1262; Bhattacharjya, S., Xu, P., Xiang, H., Chrétien, M., Seidah, N.G., Ni, F., pH-induced conformational transitions of a molten-globule-like state of the inhibitory prodomain of furin: implications for zymogen activation (2001) Protein Sci., 5, pp. 934-942; Bhattacharjya, S., Xu, P., Wang, P., Osborne, M.J., Ni, F., Conformational analyses of a partially-folded bioactive prodomain of human furin (2007) Biopolymers, 86, pp. 329-344; Ingris, A.S., Cleavage at aspartic acid (1983) Methods Enzymol., 91, pp. 324-332; Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L., Sykes, B.D., 1H, 13C and 15N chemical shift referencing in biomolecular NMR (1995) J. Biomol. NMR, 6, pp. 135-140; Struck, D.K., Hoekstra, D., Pagano, R.E., Use of resonance energy transfer to monitor membrane fusion (1981) Biochemistry, 20, pp. 4093-4099; Mohanram, H., Nip, A., Domadia, P.N., Bhunia, A., Bhattacharjya, S., NMR structure, localization, and vesicle fusion of chikungunya virus fusion peptide (2012) Biochemistry, 51, pp. 7863-7872; Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., Jiang, C., SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway (2008) Cell Res., 18, pp. 290-301; Wishart, D.S., Interpreting protein chemical shift data (2011) Prog. Nucl. Magn. Reson. Spectrosc., 58, pp. 62-87; Buchner, L., Güntert, P., Systematic evaluation of combined automated NOE assignment and structure calculation with CYANA (2015) J. Biomol. NMR, 62, pp. 81-95; Damberg, P., Jarvet, J., Graslund, A., Micellar systems as solvents in peptide and protein structure determination (2001) Methods Enzymol., 339, pp. 271-285; Hilty, C., Wider, G., Fernandez, C., Wuthrich, K., Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents (2004) Chembiochem, 5, pp. 467-473; Samuel, O., Shai, Y., Participation of two fusion peptides in measles virus-induced membrane fusion: emerging similarity with other paramyxoviruses (2001) Biochemistry, 40, pp. 1340-1349; Moreno, M.R., Pascual, R., Villalain, J., Identification of membrane-active regions of the HIV-1 envelope glycoprotein gp41 using a 15-mer gp41-peptide scan (2004) Biochim. Biophys. Acta, 1661, pp. 97-105; Peisajovich, S.G., Shai, Y., Viral fusion proteins: multiple regions contribute to membrane fusion (2003) Biochim. Biophys. Acta, 1614, pp. 122-129; Ghosh, U., Xie, L., Jia, L., Liang, S., Weliky, D.P., Closed and semiclosed interhelical structures in membrane vs closed and open structures in detergent for the influenza virus hemagglutinin fusion peptide and correlation of hydrophobic surface area with fusion catalysis (2015) J. Am. Chem. Soc., 137, pp. 7548-7551; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Sackett, K., Nethercott, M.J., Zheng, Z., Weliky, D.P., Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel beta sheet fusion peptide structure in the final six-helix bundle state (2014) J. Mol. Biol., 426, pp. 1077-1094; Sainz, B., Jr., Mossel, E.C., Gallaher, W.R., Wimley, W.C., Peters, C.J., Wilson, R.B., Garry, R.F., Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein (2006) Virus Res., 120, pp. 146-155; Lu, L., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067","Bhattacharjya, S.60 Nanyang Drive, Singapore; email: surajit@ntu.edu.sg",,"Elsevier B.V.",00052736,,BBBMB,"28988778","English","Biochim. Biophys. Acta Biomembr.",Article,"Final",Open Access,Scopus,2-s2.0-85034644342 "Liu R., Wang J., Shao Y., Wang X., Zhang H., Shuai L., Ge J., Wen Z., Bu Z.","56988163500;55262410800;57190173726;39762908000;57199410749;54935968100;15750354800;26634606600;56020060600;","A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization",2018,"Antiviral Research","150",,,"30","38",,9,"10.1016/j.antiviral.2017.12.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038018275&doi=10.1016%2fj.antiviral.2017.12.007&partnerID=40&md5=eef0d14ac3b29e8fb0eceebdc1f82c90","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China","Liu, R., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Wang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Shao, Y., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Wang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Zhang, H., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Shuai, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Ge, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Wen, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China; Bu, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China","Middle East respiratory syndrome coronavirus (MERS-CoV) has been a highly threatening zoonotic pathogen since its outbreak in 2012. Similar to SARS-CoV, MERS-CoV belongs to the coronavirus family and can induce severe respiratory symptoms in humans, with an average case fatality rate of 35% according to the World Health Organization. Spike (S) protein of MERS-CoV is immunogenic and can induce neutralizing antibodies, thus is a potential major target for vaccine development. Here we constructed a chimeric virus based on the vesicular stomatitis virus (VSV) in which the G gene was replaced by MERS-CoV S gene (VSVΔG-MERS). The S protein efficiently incorporated into the viral envelope and mediated cell entry through binding its receptor, human DPP4. Knockdown of clathrin expression by siRNA drastically abrogated the infection of VSVΔG-MERS in Vero cells. Furthermore, in animal studies, the recombinant virus induced neutralizing antibodies and T cell responses in rhesus monkeys after a single intramuscular or intranasal immunization dose. Our findings indicate the potential of the chimeric VSVΔG-MERS as a rapid response vaccine candidate against emerging MERS-CoV disease. © 2017 Elsevier B.V.",,"clathrin; dipeptidyl peptidase IV; guanine nucleotide binding protein; Middle East respiratory syndrome coronavirus vaccine; neutralizing antibody; small interfering RNA; unclassified drug; virus vaccine; virus vector; vitronectin; dipeptidyl peptidase IV; DPP4 protein, human; immunoglobulin G; neutralizing antibody; recombinant vaccine; virus antibody; virus vaccine; animal cell; animal experiment; Article; BHK-21 cell line; cellular immunity; controlled study; drug formulation; female; gene expression; immunization; in vitro study; in vivo study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; receptor binding; rhesus monkey; single drug dose; T lymphocyte; Vero cell line; Vesiculovirus; virus envelope; virus gene; virus immunity; virus recombinant; virus strain; animal; Chlorocebus aethiops; Coronavirus infection; disease model; gene vector; genetics; human; immunology; metabolism; Middle East respiratory syndrome coronavirus; reporter gene; T lymphocyte; virus entry; Animals; Antibodies, Neutralizing; Antibodies, Viral; Cercopithecus aethiops; Coronavirus Infections; Dipeptidyl Peptidase 4; Disease Models, Animal; Gene Expression; Genes, Reporter; Genetic Vectors; Humans; Immunoglobulin G; Macaca mulatta; Male; Middle East Respiratory Syndrome Coronavirus; T-Lymphocytes; Vaccines, Synthetic; Vero Cells; Viral Vaccines; Virus Internalization","Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, pp. 456-459; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Cureton, D.K., Massol, R.H., Saffarian, S., Kirchhausen, T.L., Whelan, S.P., Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization (2009) PLoS Pathog., 5; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Munster, V.J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 16598-16603; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Munster, V.J., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog., 10; Ge, J., Wang, X., Tao, L., Wen, Z., Feng, N., Yang, S., Xia, X., Bu, Z., Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats (2011) J. Virol., 85, pp. 8241-8252; Ge, J., Wen, Z., Wang, X., Hu, S., Liu, Y., Kong, X., Chen, H., Bu, Z., Generating vesicular stomatitis virus pseudotype bearing the severe acute respiratory syndrome coronavirus spike envelope glycoprotein for rapid and safe neutralization test or cell-entry assay (2006) Ann. N. Y. Acad. Sci., 1081, pp. 246-248; Geisbert, T.W., Geisbert, J.B., Leung, A., Daddario-DiCaprio, K.M., Hensley, L.E., Grolla, A., Feldmann, H., Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus (2009) J. Virol., 83, pp. 7296-7304; Grehan, K., Ferrara, F., Temperton, N., An optimised method for the production of MERS-CoV spike expressing viral pseudotypes (2015) MethodsX, 2, pp. 379-384; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D.K., Peiris, M., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound. Emerg. Dis., 64, pp. 344-353; Henao-Restrepo, A.M., Longini, I.M., Egger, M., Dean, N.E., Edmunds, W.J., Camacho, A., Carroll, M.W., Rottingen, J.A., Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial (2015) Lancet, 386, pp. 857-866; Jaume, M., Yip, M.S., Cheung, C.Y., Leung, H.L., Li, P.H., Kien, F., Dutry, I., Peiris, J.S., Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcgammaR pathway (2011) J. Virol., 85, pp. 10582-10597; Kayali, G., Peiris, M., A more detailed picture of the epidemiology of Middle East respiratory syndrome coronavirus (2015) Lancet Infect. Dis., 15, pp. 495-497; Kong, D., Wen, Z., Su, H., Ge, J., Chen, W., Wang, X., Wu, C., Bu, Z., Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs (2012) Virology, 432, pp. 327-335; Korea Ministry of Health and Welfare, Press Release: MERS Statistics (2015), http://www.mohw.go.kr/eng/sg/ssg0111vw.jsp?PAR_MENU_ID=1001&MENU_ID=100111&page=1&CONT_SEQ=326092, Korea Ministry of Health and Welfare Sejong Available at: (Accessed 2 October 2015); Liu, R.Q., Ge, J.Y., Wang, J.L., Shao, Y., Zhang, H.L., Wang, J.L., Wen, Z.Y., Bu, Z.G., Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels (2017) J. Integr. Agr., 16, pp. 2264-2273; Malczyk, A.H., Kupke, A., Prufer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Muhlebach, M.D., A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J. Virol., 89, pp. 11654-11667; Marzi, A., Feldmann, F., Geisbert, T.W., Feldmann, H., Safronetz, D., Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses (2015) Emerg. Infect. Dis., 21, pp. 305-307; Marzi, A., Robertson, S.J., Haddock, E., Feldmann, F., Hanley, P.W., Scott, D.P., Strong, J.E., Feldmann, H., EBOLA VACCINE. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain (2015) Science, 349, pp. 739-742; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Lipkin, W.I., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 15214-15219; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., Van Kerkhove, M., Kim, J., Kieny, M.P., A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation (2016) Nat. Med., 22, pp. 701-705; Munster, V.J., de Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N. Engl. J. Med., 368, pp. 1560-1562; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Weiner, D.B., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7. , 301ra132; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 8738-8743; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLos One, 8; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D., Sutter, G., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J. Virol., 87, pp. 11950-11954; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Sutter, G., Protective efficacy of recombinant modified vaccinia virus ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J. Virol., 89, pp. 8651-8656; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Wang, X., Ge, J., Hu, S., Wang, Q., Wen, Z., Chen, H., Bu, Z., Efficacy of DNA immunization with F and G protein genes of Nipah virus (2006) Ann. N. Y. Acad. Sci., 1081, pp. 243-245; WHO, (2017), Middle East respiratory syndrome coronavirus (MERS-CoV); Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 12516-12521; Yang, Z.Y., Kong, W.P., Huang, Y., Roberts, A., Murphy, B.R., Subbarao, K., Nabel, G.J., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice (2004) Nature, 428, pp. 561-564; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Qin, C., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis., 209, pp. 236-242; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Dimitrov, D.S., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Perlman, S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 4970-4975","Wen, Z.678 Haping Road, Xiangfang District, China; email: wenzhiyuan@caas.cn",,"Elsevier B.V.",01663542,,ARSRD,"29246504","English","Antiviral Res.",Article,"Final",Open Access,Scopus,2-s2.0-85038018275 "Ko J.-H., Seok H., Park G.E., Lee J.Y., Lee J.Y., Cho S.Y., Ha Y.E., Kang J.-M., Kim Y.-J., Kang C.-I., Chung D.R., Song J.-H., Peck K.R.","55804188300;56803460700;56489421000;57202882103;56010875800;56645282200;56642344700;56587136500;7410198066;7402312652;7401719232;7404787802;55664295200;","Host susceptibility to MERS-CoV infection, a retrospective cohort study of the 2015 Korean MERS outbreak",2018,"Journal of Infection and Chemotherapy","24","2",,"150","152",,1,"10.1016/j.jiac.2017.09.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042867214&doi=10.1016%2fj.jiac.2017.09.008&partnerID=40&md5=95d9857d817f6bb68a778502076f8997","Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, South Korea","Ko, J.-H., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States, Division of Infectious Diseases, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, South Korea; Seok, H., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Park, G.E., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Lee, J.Y., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Lee, J.Y., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Cho, S.Y., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Ha, Y.E., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Kang, J.-M., Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Kim, Y.-J., Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Kang, C.-I., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Chung, D.R., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Song, J.-H., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States; Peck, K.R., Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06531, United States","To evaluate host susceptibility factors to Middle East respiratory syndrome coronavirus (MERS-CoV) infection, we conducted a retrospective cohort study from the single largest exposure event of the 2015 Korean MERS outbreak. A total of 175 patients were closely exposed to a super-spreader, 26 of which were infected (14.9%). In a multivariate analysis, history of autologous stem cell transplantation (HR, 31.151; 95% CI, 5.447–178.145; P < 0.001) and tachypnea at ED (HR, 4.392; 95% CI, 1.402–13.761; P = 0.011) were significantly associated with MERS-CoV infection. © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases","Middle East respiratory syndrome coronavirus; Stem cell transplantation; Susceptibility; Tachypnea","garenoxacin; levofloxacin; quinoline derived antiinfective agent; quinolone derivative; sitafloxacin; tosufloxacin; acute otitis media; antibacterial activity; antibiotic sensitivity; Article; bacterium isolate; community acquired pneumonia; DNA sequence; gene; gyra gene; Haemophilus influenzae; lung lavage; MIC90; Moraxella catarrhalis; mutant selection window; nonhuman; nose cavity; nose mucus; parc gene; pharmacological parameters; quinolone resistance determining region; Streptococcus pneumoniae; adult; aged; autotransplantation; cohort analysis; Coronavirus infection; disease predisposition; epidemic; female; host pathogen interaction; human; isolation and purification; male; middle aged; Middle East respiratory syndrome coronavirus; multivariate analysis; retrospective study; risk factor; South Korea; stem cell transplantation; tachypnea; virology; Adult; Aged; Cohort Studies; Coronavirus Infections; Disease Outbreaks; Disease Susceptibility; Female; Host-Pathogen Interactions; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Multivariate Analysis; Republic of Korea; Retrospective Studies; Risk Factors; Stem Cell Transplantation; Tachypnea; Transplantation, Autologous","Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Ko, J.H., Park, G.E., Lee, J.Y., Lee, J.Y., Cho, S.Y., Ha, Y.E., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J Infect, 73, pp. 468-475; Park, G.E., Ko, J.H., Peck, K.R., Lee, J.Y., Lee, J.Y., Cho, S.Y., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Sahin, U., Toprak, S.K., Atilla, P.A., Atilla, E., Demirer, T., An overview of infectious complications after allogeneic hematopoietic stem cell transplantation (2016) J Infect Chemother, 22, pp. 505-514; Ko, J.H., Peck, K.R., Lee, W.J., Lee, J.Y., Cho, S.Y., Ha, Y.E., Clinical presentation and risk factors for cytomegalovirus colitis in immunocompetent adult patients (2015) Clin Infect Dis, 60, pp. e20-e26; Kim, S.H., Chang, S.Y., Sung, M., Park, J.H., Bin Kim, H., Lee, H., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369","Peck, K.R.; Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, United States; email: krpeck@skku.edu",,"Elsevier B.V.",1341321X,,JICHF,"29223614","English","J. Infect. Chemother.",Article,"Final",Open Access,Scopus,2-s2.0-85042867214 "Wang N., Li S.-Y., Yang X.-L., Huang H.-M., Zhang Y.-J., Guo H., Luo C.-M., Miller M., Zhu G., Chmura A.A., Hagan E., Zhou J.-H., Zhang Y.-Z., Wang L.-F., Daszak P., Shi Z.-L.","55908990800;54410991100;35811468700;57201344205;55386577300;57202102183;55908846900;57201865574;30567972400;55539155600;55481753000;35084618200;55076337000;35243718700;7003646071;7403733955;","Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China",2018,"Virologica Sinica","33","1",,"104","107",,14,"10.1007/s12250-018-0012-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044376588&doi=10.1007%2fs12250-018-0012-7&partnerID=40&md5=9eb6af8cf1ea1c26a792976e76f1dc8f","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Health Sciences, Wuhan University, Wuhan, 430071, China; EcoHealth Alliance, New York, NY 10001, United States; Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China; School of Public Health, Dali University, Dali, 671000, China; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore","Wang, N., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Li, S.-Y., School of Health Sciences, Wuhan University, Wuhan, 430071, China; Yang, X.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Huang, H.-M., School of Health Sciences, Wuhan University, Wuhan, 430071, China; Zhang, Y.-J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Guo, H., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Luo, C.-M., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Miller, M., EcoHealth Alliance, New York, NY 10001, United States; Zhu, G., EcoHealth Alliance, New York, NY 10001, United States; Chmura, A.A., EcoHealth Alliance, New York, NY 10001, United States; Hagan, E., EcoHealth Alliance, New York, NY 10001, United States; Zhou, J.-H., Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China; Zhang, Y.-Z., Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China, School of Public Health, Dali University, Dali, 671000, China; Wang, L.-F., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Daszak, P., EcoHealth Alliance, New York, NY 10001, United States; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China",[No abstract available],,"nucleocapsid protein; virus antibody; virus antibody; asymptomatic infection; bat; blood donor; China; Coronavirus infection; cross reaction; disease surveillance; enzyme linked immunosorbent assay; high risk population; human; injury severity; Letter; livestock; longitudinal study; lung alveolus epithelium cell; lung injury; nonhuman; respiratory tract disease; SARS-related coronavirus; serology; serum; severe acute respiratory syndrome; upper respiratory tract; virus detection; virus immunity; virus neutralization; virus strain; virus transmission; virus virulence; Western blotting; adolescent; adult; aged; animal; blood; child; female; immunology; male; middle aged; SARS coronavirus; severe acute respiratory syndrome; very elderly; virology; young adult; zoonosis; Adolescent; Adult; Aged; Aged, 80 and over; Animals; Antibodies, Viral; Child; China; Chiroptera; Enzyme-Linked Immunosorbent Assay; Female; Humans; Male; Middle Aged; SARS Virus; Serologic Tests; Severe Acute Respiratory Syndrome; Young Adult; Zoonoses","Abdul-Rasool, S., Fielding, B.C., Understanding human coronavirus HCoV-NL63 (2010) Open Virol J, 4, pp. 76-84. , COI: 1:CAS:528:DC%2BC3cXnt1Cqsr0%3D, PID: 20700397; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G.J., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF, PID: 24172901; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L.M., Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China (2003) Science, 302, pp. 276-278. , COI: 1:CAS:528:DC%2BD3sXnvFWgtL0%3D, PID: 12958366; He, Y.X., Li, J.J., Li, W.H., Lustigman, S., Farzan, M., Jiang, S.B., Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein (2006) J Immunol, 176, pp. 6085-6092. , COI: 1:CAS:528:DC%2BD28XktVWguro%3D, PID: 16670317; Hu, B., Ge, X.Y., Wang, L.F., Shi, Z.L., Bat origin of human coronaviruses (2015) Virol J; Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., Racaniello, V.R., Roizman, B., (2013) Fields virology, 1. , 6, Wolters Kluwer/Lippincott Williams and Wilkins, Alphen aan den Rijn; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S.X., Grp, S.W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966. , COI: 1:CAS:528:DC%2BD3sXjslajtbk%3D, PID: 12690092; Lehmann, C., Wolf, H., Xu, J.G., Zhao, Q.B., Shao, Y.M., Motz, M., Lindner, P., A line immunoassay utilizing recombinant nucleocapsid proteins for detection of antibodies to human coronaviruses (2008) Diagn Microbiol Infect Dis, 61, pp. 40-48. , COI: 1:CAS:528:DC%2BD1cXkvFGjsLk%3D, PID: 18191362; Li, W.D., Shi, Z.L., Yu, M., Ren, W.Z., Smith, C., Epstein, J.H., Wang, H.Z., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjO, PID: 16195424; Menachery, V.D., Yount, B.L., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci USA, 113, pp. 3048-3053. , COI: 1:CAS:528:DC%2BC28XktV2msr8%3D, PID: 26976607; Peiris, J.S.M., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat Med, 10, pp. S88-S97. , COI: 1:CAS:528:DC%2BD2cXhtVeht7fJ, PID: 15577937; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Grp, S.S., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , COI: 1:STN:280:DC%2BD3s3gvF2rsA%3D%3D, PID: 12711465; Wu, L.P., Wang, N.C., Chang, Y.H., Tian, X.Y., Na, D.Y., Zhang, L.Y., Zheng, L., Liang, G.D., Duration of antibody responses after severe acute respiratory syndrome (2007) Emerg Infect Dis, 13, pp. 1562-1564. , PID: 18258008; Xu, R.H., He, J.F., Evans, M.R., Peng, G.W., Field, H.E., Yu, D.W., Lee, C.K., Schnur, A., Epidemiologic clues to SARS origin in China (2004) Emerg Infect Dis, 10, pp. 1030-1037. , PID: 15207054; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2016) J Virol, 90, pp. 3253-3256. , COI: 1:CAS:528:DC%2BC28Xht1WqtrvI","Shi, Z.-L.; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"Science Press",16740769,,,"29500691","English","Virol. Sin.",Letter,"Final",Open Access,Scopus,2-s2.0-85044376588 "Trivedi S., Miao C., Al-Abdallat M.M., Haddadin A., Alqasrawi S., Iblan I., Nsour M.A., Alsanouri T., Ali S.S., Rha B., Gerber S.I., Payne D.C., Tamin A., Thornburg N.J.","56025976500;8624002000;56193260600;55757619800;55756735100;55670283300;57193346137;56806951400;57184783300;53865436300;56656063700;14014438400;6602551546;6602664202;","Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection",2018,"Journal of Medical Virology","90","2",,"367","371",,12,"10.1002/jmv.24948","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037691351&doi=10.1002%2fjmv.24948&partnerID=40&md5=85008dc74c2dbddd5130e3d9fceb9e00","ORISE Fellowship Training Program, Oak Ridge, TN, United States; Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States; Jordan Ministry of Health, Amman, Jordan; Jordan Field Epidemiology Training Program, Amman, Jordan; Eastern Mediterranean Public Health Network, Amman, Jordan","Trivedi, S., ORISE Fellowship Training Program, Oak Ridge, TN, United States; Miao, C., Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States; Al-Abdallat, M.M., Jordan Ministry of Health, Amman, Jordan; Haddadin, A., Jordan Ministry of Health, Amman, Jordan; Alqasrawi, S., Jordan Ministry of Health, Amman, Jordan; Iblan, I., Jordan Field Epidemiology Training Program, Amman, Jordan; Nsour, M.A., Eastern Mediterranean Public Health Network, Amman, Jordan; Alsanouri, T., Jordan Ministry of Health, Amman, Jordan; Ali, S.S., Jordan Ministry of Health, Amman, Jordan; Rha, B., Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States; Gerber, S.I., Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States; Payne, D.C., Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States; Tamin, A., Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States; Thornburg, N.J., Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States","The Centers for Disease Control and Prevention (CDC) algorithm for detecting presence of serum antibodies against Middle East Respiratory Syndrome coronavirus (MERS-CoV) in subjects with potential infections with the virus has included screening by indirect ELISA against recombinant nucleocapsid (N) protein and confirmation by immunofluorescent staining of infected monolayers and/or microneutralization titration. Other international groups include indirect ELISA assays using the spike (S) protein, as part of their serological determinations. In the current study, we describe development and validation of an indirect MERS-CoV S ELISA to be used as part of our serological determination for evidence of previous exposure to the virus. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.","antibodies; coronaviruses; immunity; MERS-CoV; serology; surveillance","nucleocapsid protein; viral protein; virus antibody; coronavirus spike glycoprotein; virus antibody; algorithm; antibody blood level; antibody detection; antibody titer; Article; controlled study; enzyme linked immunosorbent assay; human; immunofluorescence test; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; serology; validation process; virus identification; virus titration; Western blotting; algorithm; blood; Coronavirus infection; enzyme linked immunosorbent assay; immunology; Middle East respiratory syndrome coronavirus; procedures; serology; Algorithms; Antibodies, Viral; Coronavirus Infections; Enzyme-Linked Immunosorbent Assay; Humans; Middle East Respiratory Syndrome Coronavirus; Serologic Tests; Spike Glycoprotein, Coronavirus","(2017) Middle East respiratory syndrome coronavirus (MERS-CoV), 2017; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Chan, J.F., Sridhar, S., Yip, C.C., Lau, S.K., Woo, P.C., The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic (2017) J Microbiol, 55, pp. 172-182; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19, p. 20828; Meyer, B., Drosten, C., Muller, M.A., Serological assays for emerging coronaviruses: challenges and pitfalls (2014) Virus Res, 194, pp. 175-183; Muth, D., Corman, V.M., Meyer, B., Infectious middle east respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia (2015) J Clin Microbiol, 53, pp. 2951-2955; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS Coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Muller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, p. 629; Park, S.W., Perera, R.A., Choe, P.G., Comparison of serological assays in human Middle East respiratory syndrome (MERS)-coronavirus infection (2015) Euro Surveill, 20, p. 30042; Kapoor, M., Pringle, K., Kumar, A., Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States (2014) Clin Infect Dis, 59, pp. 1511-1518; Payne, D.C., Iblan, I., Rha, B., Persistence of antibodies against middle east respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826; Greiner, M., Two-graph receiver operating characteristic (TG-ROC): a Microsoft-EXCEL template for the selection of cut-off values in diagnostic tests (1995) J Immunol Methods, 185, pp. 145-146; Greiner, M., Sohr, D., Gobel, P., A modified ROC analysis for the selection of cut-off values and the definition of intermediate results of serodiagnostic tests (1995) J Immunol Methods, 185, pp. 123-132; Chan, K.H., Chan, J.F., Tse, H., Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) J Infect, 67, pp. 130-140; Wang, W., Wang, H., Deng, Y., Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China (2016) Emerg Microbes Infect, 5; Ko, J.H., Muller, M.A., Seok, H., Suggested new breakpoints of anti-MERS-CoV antibody ELISA titers: performance analysis of serologic tests (2017) Eur J Clin Microbiol Infect Dis, , epub ahead of print; Tan, Y.J., Goh, P.Y., Fielding, B.C., Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers (2004) Clin Diagn Lab Immunol, 11, pp. 362-371; Woo, P.C., Lau, S.K., Wong, B.H., Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia (2005) J Clin Microbiol, 43, pp. 3054-3058; Agnihothram, S., Gopal, R., Yount, B.L., Jr., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J Infect Dis, 209, pp. 995-1006","Thornburg, N.J.; Respiratory Viruses Branch, Div. of Viral Diseases, Natl. Ctr. for Immunization and Respiratory Diseases, CDCUnited States; email: nax3@cdc.gov",,"John Wiley and Sons Inc.",01466615,,JMVID,"28906003","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85037691351 "Park J.-S., Lee E.-H., Park N.-R., Choi Y.H.","57195576803;27169729100;37762093500;27167708700;","Mental Health of Nurses Working at a Government-designated Hospital During a MERS-CoV Outbreak: A Cross-sectional Study",2018,"Archives of Psychiatric Nursing","32","1",,"2","6",,1,"10.1016/j.apnu.2017.09.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028946648&doi=10.1016%2fj.apnu.2017.09.006&partnerID=40&md5=d43b13334be59c119137d86df210b513","Seoul National University Bundang Hospital, Bundang, South Korea; Graduate School of Public Health, Ajou University, Suwon, South Korea; Graduate School of Public Health, Inje University, Seoul, South Korea; Department of Infectious Disease, School of Medicine, Ajou University, Suwon, South Korea","Park, J.-S., Seoul National University Bundang Hospital, Bundang, South Korea; Lee, E.-H., Graduate School of Public Health, Ajou University, Suwon, South Korea; Park, N.-R., Graduate School of Public Health, Inje University, Seoul, South Korea; Choi, Y.H., Department of Infectious Disease, School of Medicine, Ajou University, Suwon, South Korea","BACKGROUND: During an epidemic of a novel infectious disease, many healthcare workers suffer from mental health problems. OBJECTIVES: The aims of this study were to test the following hypotheses: stigma and hardiness exert both direct effects on mental health and also indirect (mediated) effects on mental health through stress in nurses working at a government-designated hospital during a Middle East Respiratory Syndrome coronavirus (MERS-CoV) epidemic. METHODS: A total of 187 participants were recruited using a convenience sampling method. The direct and indirect effects related to the study hypotheses were computed using a series of ordinary least-squares regressions and 95% bootstrap confidence intervals with 10,000 bootstrap resamples from the data. DISCUSSIONS: The influences of stigma and hardiness on mental health were partially mediated through stress in nurses working at a hospital during a MERS-CoV epidemic. Their mental health was influenced more by direct effects than by indirect effects. © 2017 Elsevier Inc.","Hardiness; Mental health; Middle East Respiratory Syndrome coronavirus; Nurse; Stigma; Stress","adult; Coronavirus infection; cross-sectional study; epidemic; female; hospital; human; mental health; mental stress; Middle East respiratory syndrome coronavirus; nurse attitude; psychiatric nursing; psychology; South Korea; statistics and numerical data; Adult; Coronavirus Infections; Cross-Sectional Studies; Disease Outbreaks; Female; Hospitals, State; Humans; Mental Health; Middle East Respiratory Syndrome Coronavirus; Nurse's Role; Psychiatric Nursing; Republic of Korea; Stress, Psychological","Bai, Y., Lin, C.-C., Lin, C.-Y., Chen, J.-Y., Chue, C.-M., Chou, P., Survey of stress reactions among health care workers involved with the SARS outbreak (2004) Psychiatric Services, 55, pp. 1055-1057; Baron, R.M., Kenny, D.A., The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations (1986) Journal of Personality and Social Psychology, 52, pp. 1173-1182; Bartone, P.T., Test-retest reliability of the Dispositional Resilience Scale-15, a brief hardiness scale (2007) Psychological Reports, 101, pp. 943-944; Browne, M.W., Cudeck, R., Alternatives ways of assessing model fit (1993) Testing structural equation models, pp. 136-162. , K.A. Bollen J.S. Long Sage Newbury Park, CA; Chan, A.O.M., Huak, C.Y., Psychological impact of the 2003 severe acute respiratory syndrome outbreak on health care workers in a medium size regional general hospital in Singapore (2004) Occupational Medicine, 54, pp. 190-196; Charles, B., Jeyaseelan, L., Pandian, A.K., Sam, A.E., Thenmozhi, M., Jayaseelan, V., Association between stigma, depression and quality of life of people living with HIV/AIDS (PLHA) in South India – A community based cross sectional study (2012) BMC Public Health, 12, p. 463; Chen, W.-K., Cheng, Y.-C., Chung, Y.-T., Lin, C.-C., The impact of the SARS outbreak on an urban emergency department in Taiwan (2005) Medical Care, 43, pp. 168-172; Cho, H.N., Kim, S.-J., Relationship of job stress, hardness, and burnout among emergency room nurses (2014) Korean Journal of Occupational Health Nursing, 24, pp. 11-19; Choi, J.-S., Kim, J.-S., Factors influencing emergency nurses’ ethical problems during the outbreak of MERS-CoV (2016) Nursing Ethics; Cluver, L., Gardner, F., Operario, D., Effects of stigma on the mental health of adolescents orphaned by AIDS (2008) Journal of Adolescent Health, 42, pp. 410-417; Cohen, S., Williamson, G., Perceived stress in a probability sample of the United States (1988) The social psychology of health: Claremont symposium on applied social psychology, pp. 31-67. , S. Spacapan S. Oskamp Sage Newbury Park, CA; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiology assessment of MERS-CoV outbreak in South Korea, May-June 2015 (2015) Euro Surveillance, 20, pp. 7-13; Crocker, J., Major, B., Steele, C., Social stigma (1998) Handbook of social psychology, pp. 504-553. , D. Gilbert S.T. Fiske G. Lindzey 4th ed. McGraw Hill Boston; Demi, A., Bakeman, R., Moneyham, L., Sowell, R., Seals, B., Effects of resources and stressors on burden and depression of family members who provide care to an HIV-infected woman (1997) Journal of Family Psychology, 11, pp. 35-48; Edwards, J.R., Lambert, L.S., Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis (2007) Psychological Methods, 12, pp. 1-22; Field, A., Discovering statistics using IBM SPSS statistics (2013), 4th ed. Sage London; Furlotte, C., Schwartz, K., Mental health experiences of older adults living with HIV: Uncertainty, stigma, and approaches to resilience (2016) Canadian Journal on Aging, 36 (2), pp. 125-140; Gito, M., Ihara, H., Ogata, H., The relationship of resilience, hardiness, depression and burnout among Japanese psychiatric hospital nurses (2013) Journal of Nursing Education and Practice, 3 (11), pp. 12-18; Gomes, A.R., Faria, S., Lopes, H., Stress and psychological health: Testing the mediating role of cognitive appraisal (2016) Western Journal of Nursing Research, 38, pp. 1448-1468; Harrison, M., Loiselle, C.G., Duquette, A., Semenic, S.E., Hardiness, work support and psychological distress among nursing assistant and registered nurses in Quebec (2002) Journal of Advanced Nursing, 28, pp. 584-591; Hatzenbuehler, M.L., Phelan, J.C., Link, B.G., Stigma as a fundamental causes of population health inequalities (2013) American Journal of Public Health, 103, pp. 813-821; Hays, A.F., Beyond Baron and Kenny: Statistical mediation analysis in the new millennium (2009) Communication Monographs, 76, pp. 408-420; Hays, A.F., Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2013), Guilford Press New York; Henderson, J., The effect of hardiness education on hardiness and burnout on registered nurses (2015) Nursing Economics, 34 (4), pp. 204-209; Hernandez, S.H.A., Morgan, B.J., Parshall, M.B., Resilience, stress, stigma, and barriers to mental healthcare in U.S. Air Force nursing personnel (2016) Nursing Research, 65 (6), pp. 481-486; Judkins, S., Massey, C., Huff, B., Hardiness, stress, and use of ill-time among nurse managers: Is there a connection? (2006) Nursing Economics, 24, pp. 187-192; Judkins, S., Rind, R., Hardiness, job satisfaction, and stress among home health nurses (2005) Home Health Care Management and Practice, 17, pp. 113-118; Jung, J.S., Works of operation nurses and health status (2002), (Unpublished thesis) Yonsei University Seoul, South Korea; Jung, W.S., Cho, H.K., Punishment when refused to attend school of child with medical staff parents caring MERS-CoV infection patients (2015) The Kyunghyang Shinmun, 2, June 2015, , http://news.khan.co.kr/kh_news/khan_art_view.html?artid=201506212253315&code=940100, (Accessed 30 October 2015); Khalid, I., Khalid, T.J., Qabajap, M.R., Barnard, A.G., Qushmaq, I.A., Healthcare workers emotions, perceived stressors and coping strategies during a MERS-CoV outbreak (2016) Clinical Medicine & Research, 14, pp. 7-14; Khee, K.S., Lee, L.B., Chai, O.T., Loong, C.K., Ming, C.W., Kheng, T.H., The psychological impact of SARS on health care providers (2004) Critical Care and Shock, 7, pp. 99-106; Kim, J.E., Health evaluation of general hospital nurses by their working patterns (2004), (Unpublished thesis) Yonsei University Seoul, South Korea; Kobasa, S.C., Maddi, S.R., Zola, M.A., Type-A and hardiness (1983) Journal of Behavioral Medicine, 6, pp. 41-51; Koh, D., Lim, M.K., Chia, S.E., Ko, S.M., Quin, F., Ng, V., Risk perception and impact of severe acute respiratory syndrome (SARS) on work and personal lives of healthcare workers in Singapore: What can we learn? (2005) Medical Care, 43, pp. 676-682; Korean Centers for Disease Control and Prevention, MERS data (2015), http://www.mers.go.kr/mers/html/jsp/Menu_C/list_C1.jsp?fid=21, (Accessed 29 June 2015); Lambert, V.A., Lambert, C.E., Petrini, M., Mei, X., Zhang, Y.J., Workplace and personal factors associated with physical and mental health in hospital nurses in China (2007) Nursing and Health Sciences, 9, pp. 120-126; Lazarus, R.S., Folkman, S., Stress, appraisal and coping (1984), Springer New York; Lee, E.-H., Review of the psychometric evidence of the perceived stress scale (2012) Asian Nursing Research, 6, pp. 121-127; Lee, E.-H., Chung, B.Y., Suh, C.H., Jung, J.Y., Korean versions of the Perceived Stress Scale (PSS-14, -10 and -4): Psychometric evaluation in patients with chronic disease (2015) Scandinavian Journal of Caring Sciences, 29, pp. 183-192; Lynn, M.R., Determination and quantification of content validity (1986) Nursing Research, 35, pp. 382-385; MacKinnon, D.P., Lockwood, C.M., Hoffman, J.M., West, S.G., Sheets, V., A comparison of methods to test mediation and other intervening variable effects (2002) Psychological Methods, 7, pp. 83-104; Maunder, R., Hunter, J., Vincent, L., Bennett, J., Peladeau, N., Leszcz, M., The immediate psychological and occupational impact of the 2003 SARS outbreak in a teaching hospital (2003) Canadian Medical Association Journal, 168, pp. 1245-1251; McCalister, K.T., Dolbier, C.L., Webster, J.A., Mallon, M.W., Steinhardt, M.A., Hardiness and support at work as predictors of work stress and job satisfaction (2006) American Journal of Health Promotion, 21, pp. 183-191; Rűsch, N., Corrigan, P.W., Wassel, A., Michaels, P., Olschewski, M., Wilkniss, S., A stress-coping model of mental illness stigma: I. Predictors of cognitive stress appraisal (2009) Schizophrenia Research, 110, pp. 59-64; Shin, J.-S., Lee, K.-H., Kim, K.-S., Lee, Y.-I., The impact of perceived social stigma on depression among people with disabilities living in Chungbuk (2011) Journal of Community Welfare, 36, pp. 361-385; Sobel, M.E., Asymptotic confidence intervals for indirect effects in structural equation models (1982) Sociological methodology, pp. 290-312. , S. Leinhardt American Sociological Association Washington DC; Soderstrom, M., Dolbier, C., Leiferman, J., Steinhardt, M., The relationship of hardiness, coping strategies, and perceived stress to symptoms of illness (2000) Journal of Behavioral Medicine, 23, pp. 311-328; Tofighi, D., MacKinnon, D.P., Yoon, M., Covariances between regression coefficient estimate in a single mediator model (2009) British Journal of Mathematical and Statistical Psychology, 62, pp. 457-484; Tsutsumi, A., Izutsu, T., Islam, A., Jalai, U.A., Nakahara, S., Takagi, F., Depressive status of leprosy patients in Bangladesh: Association with self-perception of stigma (2004) Leprosy Review, 75, pp. 57-66; Uys, L.R., Holzemer, W.L., Chirwa, M.L., Dlamini, P.S., Greeff, M., Kohi, T.W., The development and validation of the HIV/AIDS Stigma Instrument-Nurse (HASI-N) (2009) AIDS Care, 21, pp. 150-159; Verma, S., Mythily, S., Chan, Y.H., Deslypere, J.P., Teo, E.K., Chong, S.A., Post-SARS psychological morbidity and stigma among general practitioners and traditional Chinese medicine practitioners in Singapore (2004) Annals of the Academy of Medicine, Singapore, 33, pp. 743-748; Ware, J.E., SF-36 physical and mental health summary scales: A user's manual (1994), New England Medical Center, Boston: Health Assessment Lab; Whitmer, M., Hurst, S., Prins, M., Intergenerational views of hardiness in critical care nurses (2009) Dimensions of Critical Care Nursing, 28, pp. 214-220; Woo, M.H., Suh, K.-H., The influence of job stress and hardiness on physical and mental health among nursing home employees (2008) Korean Journal of Health Psychology, 13, pp. 91-109; Zaki, A.M., van Bestebroer, B.S., Osterhaus, A.D., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367, pp. 1814-1820","Lee, E.-H.; Graduate School of Public Health, Ajou University, 164 Worldcup-ro, Yeongtong-Gu, South Korea; email: ehlee@ajou.ac.kr",,"W.B. Saunders",08839417,,,"29413067","English","Arch. Psychiatr. Nurs.",Article,"Final",Open Access,Scopus,2-s2.0-85028946648 "Luo Y., Li B., Jiang R.-D., Hu B.-J., Luo D.-S., Zhu G.-J., Hu B., Liu H.-Z., Zhang Y.-Z., Yang X.-L., Shi Z.-L.","57201338288;57077269800;13408601200;57201335027;57198432368;30567972400;55908560200;16425918800;55076337000;35811468700;7403733955;","Longitudinal Surveillance of Betacoronaviruses in Fruit Bats in Yunnan Province, China During 2009–2016",2018,"Virologica Sinica","33","1",,"87","95",,5,"10.1007/s12250-018-0017-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044356518&doi=10.1007%2fs12250-018-0017-2&partnerID=40&md5=ac6f91b411b7419fa21b6b12ceb951db","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; EcoHealth Alliance, New York, NY 10001, United States; Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China; School of Public Health, Dali University, Dali, 671000, China; University of Chinese Academy of Sciences, Beijing, 100049, China","Luo, Y., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Li, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Jiang, R.-D., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hu, B.-J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Luo, D.-S., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhu, G.-J., EcoHealth Alliance, New York, NY 10001, United States; Hu, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Liu, H.-Z., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhang, Y.-Z., Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China, School of Public Health, Dali University, Dali, 671000, China; Yang, X.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China","Previous studies indicated that fruit bats carry two betacoronaviruses, BatCoV HKU9 and BatCoV GCCDC1. To investigate the epidemiology and genetic diversity of these coronaviruses, we conducted a longitudinal surveillance in fruit bats in Yunnan province, China during 2009–2016. A total of 59 (10.63%) bat samples were positive for the two betacorona-viruses, 46 (8.29%) for HKU9 and 13 (2.34%) for GCCDC1, or closely related viruses. We identified a novel HKU9 strain, tentatively designated as BatCoV HKU9-2202, by sequencing the full-length genome. The BatCoV HKU9-2202 shared 83% nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences. The most divergent region is in the spike protein, which only shares 68% amino acid identity with BatCoV HKU9. Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1, but some HKU9 was also detected in the heart, kidney, and lung tissues of bats. This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves. © 2018, Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd.","Betacoronavirus; Genetic diversity; Surveillance","amino acid; nucleotide; viral protein; virus RNA; animal experiment; animal tissue; Article; Betacoronavirus; Betacoronavirus GCCDC1; Betacoronavirus KHU9; China; controlled study; flying fox; genetic variability; heart tissue; host range; intestine infection; kidney tissue; lung parenchyma; nonhuman; nucleotide sequence; phylogeny; polymerase chain reaction; prevalence; quantitative analysis; virus genome; virus strain; whole genome sequencing; animal; animal structures; bat; Betacoronavirus; classification; Coronavirus infection; disease carrier; DNA sequence; epidemiological monitoring; epidemiology; genetic variation; genetics; isolation and purification; real time polymerase chain reaction; veterinary medicine; virology; Animal Structures; Animals; Betacoronavirus; China; Chiroptera; Coronavirus Infections; Disease Reservoirs; Epidemiological Monitoring; Genetic Variation; Real-Time Polymerase Chain Reaction; RNA, Viral; Sequence Analysis, DNA; Whole Genome Sequencing","Agnarsson, I., Zambrana-Torrelio, C.M., Flores-Saldana, N.P., May-Collado, L.J., A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) (2011) PLoS Curr, 3, p. RRN1212. , PID: 21327164; Channappanavar, R., Perlman, S., Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology (2017) Semin Immunopathol, 39, pp. 529-539. , COI: 1:CAS:528:DC%2BC2sXntVGquro%3D, PID: 28466096; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle east respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group (2013) J Virol, 87, pp. 7790-7792. , PID: 23678167; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , COI: 1:CAS:528:DC%2BD3sXjslajurw%3D, PID: 12690091; Du, L., Lu, Z., Fan, Y., Meng, K., Jiang, Y., Zhu, Y., Wang, S., Tu, C., Xi River virus, a new bat reovirus isolated in southern China (2010) Arch Virol, 155, pp. 1295-1299. , COI: 1:CAS:528:DC%2BC3cXps1Cnurg%3D, PID: 20495835; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Shi, Z., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J Virol, 86, pp. 4620-4630. , COI: 1:CAS:528:DC%2BC38XlsVCgtrk%3D, PID: 22345464; He, B., Feng, Y., Zhang, H., Xu, L., Yang, W., Zhang, Y., Li, X., Tu, C., Filovirus RNA in fruit bats, China (2015) Emerg Infect Dis, 21, pp. 1675-1677. , COI: 1:CAS:528:DC%2BC28XitVGltLvK, PID: 26291173; Hu, B., Ge, X.Y., Wang, L.F., Shi, Z.L., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221. , PID: 26689940; Huang, C.P., Liu, W.J., Xu, W., Jin, T., Zhao, Y.Z., Song, J.D., Shi, Y., Gao, G.F., A bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) PLoS Pathog, 12. , PID: 27676249; Hunter, P., The nature of flight—the molecules and mechanics of flight in animals (2007) EMBO Rep, 8, pp. 811-813. , COI: 1:CAS:528:DC%2BD2sXpvFWksL4%3D, PID: 17767190; Jiang, Y., Wang, L., Lu, Z., Xuan, H., Han, X., Xia, X., Zhao, F., Tu, C., Seroprevalence of rabies virus antibodies in bats from southern China (2010) Vector Borne Zoonotic Dis, 10, pp. 177-181. , PID: 19492948; Lau, S.K., Poon, R.W., Wong, B.H., Wang, M., Huang, Y., Xu, H., Guo, R., Yuen, K.Y., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J Virol, 84, pp. 11385-11394. , COI: 1:CAS:528:DC%2BC3cXhsVeisbzN, PID: 20702646; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjO, PID: 16195424; Li, Y., Wang, J., Hickey, A.C., Zhang, Y., Li, Y., Wu, Y., Zhang, H., Shi, Z., Antibodies to Nipah or Nipah-like viruses in bats, China (2008) Emerg Infect Dis, 14, pp. 1974-1976. , PID: 19046545; Li, Z., Liu, D., Ran, X., Liu, C., Guo, D., Hu, X., Tian, J., Qu, L., Characterization and pathogenicity of a novel mammalian orthoreovirus from wild short-nosed fruit bats (2016) Infect Genet Evol, 43, pp. 347-353. , COI: 1:CAS:528:DC%2BC28XhtFerurjF, PID: 27259366; Luna, L.K.D., Heiser, V., Regamey, N., Panning, M., Drexler, J.F., Mulangu, S., Poon, L., Drosten, C., Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray (2007) J Clin Microbiol, 45, pp. 1049-1052. , COI: 1:CAS:528:DC%2BD2sXktFOgtbk%3D; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, 2, pp. 825-858. , Knipe DM, Howley PM, (eds), 6, Lippincott Williams & Wilkins, Philadelphia; Mickleburgh, S., Waylen, K., Racey, P., Bats as bushmeat: a global review (2009) Oryx, 43, p. 217; Shi, Z., Emerging infectious diseases associated with bat viruses (2013) Sci China Life Sci, 56, pp. 678-682. , PID: 23917838; Stuckey, M.J., Chomel, B.B., de Fleurieu, E.C., Aguilar-Setien, A., Boulouis, H.J., Chang, C.C., Bartonella, bats and bugs: a review (2017) Comp Immunol Microbiol Infect Dis, 55, pp. 20-29. , PID: 29127990; Tan, B., Yang, X.L., Ge, X.Y., Peng, C., Liu, H.Z., Zhang, Y.Z., Zhang, L.B., Shi, Z.L., Novel bat adenoviruses with low G+C content shed new light on the evolution of adenoviruses (2017) J Gen Virol, 98, pp. 739-748. , COI: 1:CAS:528:DC%2BC2sXhsVOnurjM, PID: 28475035; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Yuen, K.Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81, pp. 1574-1585. , COI: 1:CAS:528:DC%2BD2sXhslKjsr0%3D, PID: 17121802; Yang, X.L., Zhang, Y.Z., Jiang, R.D., Guo, H., Zhang, W., Li, B., Wang, N., Shi, Z.L., Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 2009 and 2015 (2017) Emerg Infect Dis, 23, pp. 482-486. , PID: 28221123; Yuan, J.F., Zhang, Y.J., Li, J.L., Zhang, Y.Z., Wang, L.F., Shi, Z.L., Serological evidence of ebolavirus infection in bats, China (2012) Virol J, 9, p. 236. , PID: 23062147","Shi, Z.-L.; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"Science Press",16740769,,,"29500692","English","Virol. Sin.",Article,"Final",Open Access,Scopus,2-s2.0-85044356518 "Mai K., Feng J., Chen G., Li D., Zhou L., Bai Y., Wu Q., Ma J.","57189711019;57189710817;57193314304;57197285019;55861714100;57192102316;57192094381;7406199976;","The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China",2018,"Transboundary and Emerging Diseases","65","1",,"166","173",,20,"10.1111/tbed.12644","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017262070&doi=10.1111%2ftbed.12644&partnerID=40&md5=c2f14d1865397b59449885e0248a8b52","College of Animal Science, South China Agricultural University, Guangzhou, China","Mai, K., College of Animal Science, South China Agricultural University, Guangzhou, China; Feng, J., College of Animal Science, South China Agricultural University, Guangzhou, China; Chen, G., College of Animal Science, South China Agricultural University, Guangzhou, China; Li, D., College of Animal Science, South China Agricultural University, Guangzhou, China; Zhou, L., College of Animal Science, South China Agricultural University, Guangzhou, China; Bai, Y., College of Animal Science, South China Agricultural University, Guangzhou, China; Wu, Q., College of Animal Science, South China Agricultural University, Guangzhou, China; Ma, J., College of Animal Science, South China Agricultural University, Guangzhou, China","Porcine deltacoronavirus (PDCoV) is a newly discovered coronavirus that causes diarrhoea, vomiting and dehydration in sucking and nursing piglets. It was first reported in Hong Kong in 2012 and has since been discovered in the United States, Canada, South Korea, mainland China, Thailand and Laos. PDCoV has been experimentally proved to lead to diarrhoea in swine and it was detected positive in pigs in Guangdong, southern China. In our study, 252 faecal and intestinal samples from sucking piglets and sows with diarrhoea were surveyed for common enteric viruses. We found a prevalence of PDCoV (21.8%), porcine epidemic diarrhoea virus (65.5%), transmissible gastroenteritis virus (0%), rotavirus group A (25.0%) and porcine kobuvirus (68.7%). We isolated 13 PDCoV strains and discovered that PDCoV infections were often co-infections with kobuvirus rather than the commonly linked porcine epidemic diarrhoea virus. Phylogenetic analysis of S gene and N gene revealed that 11 of 13 PDCoV strains belonged to Chinese lineage. As for the left two strains, one single strain (CHN-GD16-05) belonged to American and Korean lineages while another strain (CHN-GD16-03) was similar to a Thai strain, but only in the S gene. This suggested a possible recombination event between the Thai and the newly described Chinese strain. © 2017 Blackwell Verlag GmbH","nucleocapsid gene; phylogenetic analysis; Porcine deltacoronavirus; prevalence; Southern China; spike gene","animal; China; Coronavirus infection; diarrhea; feces; female; genetics; intestine; isolation and purification; phylogeny; pig; Porcine epidemic diarrhea virus; prevalence; swine disease; veterinary; virology; virus gene; Animals; China; Coronavirus Infections; Diarrhea; Feces; Female; Genes, Viral; Intestines; Phylogeny; Porcine epidemic diarrhea virus; Prevalence; Swine; Swine Diseases","Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerging Infectious Diseases, 22, pp. 83-87; Bosch, B.J., Van, D.Z.R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) Journal of Virology, 77, pp. 8801-8811; Cao, L., Ge, X., Gao, Y., Zarlenga, D.S., Wang, K., Li, X., Li, G., Putative phage-display epitopes of the porcine epidemic diarrhea virus S1 protein and their anti-viral activity (2015) Virus Genes, 51, pp. 217-224; Chakraborti, S., Prabakaran, P., Xiao, X., Dimitrov, D.S., The SARS coronavirus S glycoprotein receptor binding domain: Fine mapping and functional characterization (2005) Virology Journal, 2, pp. 1-10; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Chen, F., Zhu, Y., Wu, M., Ku, X., Yao, L., He, Q., Full-length genome characterization of Chinese porcine deltacoronavirus strain CH/SXD1/2015 (2015) Genome Announcements, 3, pp. 1215-1284; Di, B.I., Angeloni, G., Tofani, S., Monini, M., Ruggeri, F.M., Infection of farmed pigs with porcine kobuviruses in Italy (2015) Archives of Virology, 160, pp. 1533-1536; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerging Infectious Diseases, 21, pp. 2254-2255; Homwong, N., Jarvis, M.C., Lam, H.C., Diaz, A., Rovira, A., Nelson, M., Marthaler, D., Characterization and evolution of porcine deltacoronavirus in the United States (2016) Preventive Veterinary Medicine, 123, pp. 168-174; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Amonsin, A., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerging Infectious Diseases, 22, pp. 757-759; Jarvis, M.C., Lam, H.C., Zhang, Y., Wang, L., Hesse, R.A., Hause, B.M., Nelson, M.I., Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus (2015) Preventive Veterinary Medicine, 123, pp. 175-184; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Park, B.K., Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015 (2016) Transboundary and Emerging Diseases, 63, pp. 248-252; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announcements, 2, pp. 1114-1191; Li, G., Chen, Q., Harmon, K.M., Yoon, K., Schwartz, K.J., Hoogland, M.J., Zhang, J., Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announcements, 2, pp. 214-278; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., Nilubol, D., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Archives of Virology, 161, pp. 2909-2911; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6, pp. 15-64; Madapong, A., Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Srijangwad, A., Tripipat, T., Nilubol, D., Complete genome sequence of porcine deltacoronavirus isolated in Thailand in 2015 (2016) Genome Announcements, 4, pp. e00408-e00416; Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete genome sequence of strain SDCV/USA/Illinois121/2014, a porcine deltacoronavirus from the United States (2014) Genome Announcements, 2, pp. 214-218; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerging Infectious Diseases, 20, pp. 1347-1350; Pfankuche, V.M., Bodewes, R., Hahn, K., Puff, C., Beineke, A., Habierski, A., Baumgärtner, W., Porcine bocavirus infection associated with encephalomyelitis in a pig, Germany (2016) Emerging Infectious Diseases, 22, pp. 1310-1312; Schwegmann-Weßels, C., Glende, J., Ren, X., Qu, X., Deng, H., Enjuanes, L., Herrler, G., Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus (2009) Journal of General Virology, 90, pp. 1724-1729; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: Identification, prevalence and full-length genome sequence analysis (2015) Transboundary and Emerging Diseases, 62, pp. 575-580; Tamura, K., Nei, M., Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method (2004) Proceedings of the National Academy of Sciences of the USA, 101, pp. 11030-11035; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013) Molecular Biology and Evolution, 30, pp. 2725-2729; Thachil, A., Gerber, P.F., Xiao, C., Huang, Y., Opriessnig, T., Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies (2015) PLoS One, 10; Tian, P., Jin, Y., Xing, G., Qv, L., Huang, Y., Zhou, J., Evidence of recombinant strains of porcine epidemic diarrhea virus, United States, 2013 (2014) Emerging Infectious Diseases, 20, pp. 1731-1734; Valerij, A., Martin, B., Sandra, B., Dennis, H., Dirk, H., Maria, J., Anne, P., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerging Infectious Diseases, 22, pp. 1314-1315; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging Infectious Diseases, 20, pp. 1227-1230; Wang, J., Deng, F., Ye, G., Dong, W., Zheng, A., He, Q., Peng, G., Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses (2016) Virologica Sinica, 31, pp. 49-56; Wang, C., Lan, X., Yang, B., Molecular epidemiological investigation of porcine kobuvirus and its coinfection rate with PEDV and SaV in Northwest China (2016) BioMed Research International, 2016, pp. 1-6; Wang, Y., Yue, H., Fang, W., Huang, Y., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from Mainland China (2015) Genome Announcements, 3, pp. 915-945; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of Virology, 86, pp. 3995-4008; Zhai, S., Wei, W., Li, X., Wen, X., Zhou, X., Zhang, H., Wang, D., Occurrence and sequence analysis of porcine deltacoronaviruses in southern China (2016) Virology Journal, 13, p. 136; Zhao, Z.P., Yang, Z., Lin, W.D., Wang, W.Y., Yang, J., Jin, W.J., Qin, A.J., The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus (2016) Acta Virologica, 60, pp. 55-61","Ma, J.; College of Animal Science, South China Agricultural UniversityChina; email: majy2400@scau.edu.cn",,"Blackwell Publishing Ltd",18651674,,,"28345292","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85017262070 "Alsaad K.O., Hajeer A.H., Al Balwi M., Al Moaiqel M., Al Oudah N., Al Ajlan A., AlJohani S., Alsolamy S., Gmati G.E., Balkhy H., Al-Jahdali H.H., Baharoon S.A., Arabi Y.M.","56705141800;8707753200;20336950200;57192009925;26642463500;56200845900;26648040700;55987048500;57195399704;6701797249;6603777947;24477253100;57211811296;","Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection – clinicopathological and ultrastructural study",2018,"Histopathology","72","3",,"516","524",,23,"10.1111/his.13379","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034568979&doi=10.1111%2fhis.13379&partnerID=40&md5=5f40f8765a65b8ca38c463cf2c5f50f0","Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Division of Immunopathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Division of Molecular Genetics and Cytogenetics, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Division of Microbiology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Division of Hematology, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Department of Infection Prevention and Control and Division of Infectious Diseases, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Division of Pulmonology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia","Alsaad, K.O., Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Hajeer, A.H., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Division of Immunopathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al Balwi, M., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Division of Molecular Genetics and Cytogenetics, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al Moaiqel, M., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al Oudah, N., Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Al Ajlan, A., Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; AlJohani, S., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Division of Microbiology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Alsolamy, S., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Gmati, G.E., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Division of Hematology, Department of Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Balkhy, H., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Department of Infection Prevention and Control and Division of Infectious Diseases, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al-Jahdali, H.H., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Division of Pulmonology, Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Baharoon, S.A., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Arabi, Y.M., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Department of Intensive Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia","Aims: The pathogenesis, viral localization and histopathological features of Middle East respiratory syndrome – coronavirus (MERS-CoV) in humans are not described sufficiently. The aims of this study were to explore and define the spectrum of histological and ultrastructural pathological changes affecting various organs in a patient with MERS-CoV infection and represent a base of MERS-CoV histopathology. Methods and results: We analysed the post-mortem histopathological findings and investigated localisation of viral particles in the pulmonary and extrapulmonary tissue by transmission electron microscopic examination in a 33-year-old male patient of T cell lymphoma, who acquired MERS-CoV infection. Tissue needle biopsies were obtained from brain, heart, lung, liver, kidney and skeletal muscle. All samples were collected within 45 min from death to reduce tissue decomposition and artefact. Histopathological examination showed necrotising pneumonia, pulmonary diffuse alveolar damage, acute kidney injury, portal and lobular hepatitis and myositis with muscle atrophic changes. The brain and heart were histologically unremarkable. Ultrastructurally, viral particles were localised in the pneumocytes, pulmonary macrophages, renal proximal tubular epithelial cells and macrophages infiltrating the skeletal muscles. Conclusion: The results highlight the pulmonary and extrapulmonary pathological changes of MERS-CoV infection and provide the first evidence of the viral presence in human renal tissue, which suggests tissue trophism for MERS-CoV in kidney. © 2017 John Wiley & Sons Ltd","electron microscopy; extra pulmonary; histopathology; MERS-CoV; Middle East respiratory syndrome coronavirus; pulmonary; renal","antibiotic agent; antineoplastic agent; asparaginase; creatinine; etoposide; ifosfamide; methotrexate; prednisolone; Acinetobacter baumannii; acute kidney failure; adult; antibiotic therapy; Article; artificial ventilation; autopsy; cancer chemotherapy; cancer combination chemotherapy; cancer radiotherapy; cancer regression; case report; cell infiltration; cell ultrastructure; cellulitis; clinical article; clinical feature; coughing; creatinine blood level; cutaneous T cell lymphoma; drug withdrawal; face; fever; health care associated pneumonia; hepatitis; histopathology; human; human cell; human tissue; hypoxemia; intensive care unit; kidney function test; kidney tubule cell; Klebsiella pneumoniae; lower limb; lung alveolus cell; lung alveolus macrophage; lung parenchyma; male; Middle East respiratory syndrome; multiple cycle treatment; muscle atrophy; myositis; necrotizing pneumonia; needle biopsy; neuromuscular blocking; neutropenia; platelet count; priority journal; real time polymerase chain reaction; reverse transcription polymerase chain reaction; scalp; sepsis; shock; side effect; skeletal muscle; sputum culture; thorax radiography; thrombocytopenia; tracheal aspiration procedure; transmission electron microscopy; trunk; upper limb; virus particle; Coronavirus infection; Middle East respiratory syndrome coronavirus; pathology; Adult; Coronavirus Infections; Humans; Male; Microscopy, Electron, Transmission; Middle East Respiratory Syndrome Coronavirus","Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect. Control Hosp. Epidemiol., 37, pp. 1147-1155; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, (accessed 14 July 2017); Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160, pp. 389-397; Cha, R.H., Joh, J.S., Jeong, I., Renal complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-CoV designated hospital (2015) J. Korean Med. Sci., 30, pp. 1807-1814; Eckerle, I., Müller, M.A., Kallies, S., In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) coronavirus infection (2013) Virol. J., 23, p. 359; Ng, D.L., Al Hosani, F., Keating, M.K., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am. J. Pathol., 186, pp. 652-658; de Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl Acad. Sci. USA, 110, pp. 16598-16603; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Li, K., Wohlford-Lenane, C., Perlman, S., Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J. Infect. Dis., 213, pp. 712-722; Guery, B., Poissy, J., el Mansouf, L., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Joshi, R.M., Middle East respiratory syndrome coronavirus (MERSCoV): perceptions, predictions, preventions and the pilgrimage (2013) J. Clin. Microbiol., 2; Yeung, M.L., Yao, Y., Jia, L., MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat. Microbiol., 1, p. 16004; Cha, R.H., Yang, S.H., Moon, K.C., A case report of a Middle East respiratory syndrome survivor with kidney biopsy results (2016) J. Korean Med. Sci., 31, pp. 635-640; Leung, T.W., Wong, K.S., Hui, A.C., Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series (2005) Arch. Neurol., 62, pp. 1113-1117; Farcas, G.A., Poutanen, S.M., Mazzulli, T., Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus (2005) J. Infect. Dis., 191, pp. 193-197; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am. J. Pathol., 170, pp. 1136-1147; Chau, T.N., Lee, K.C., Yao, H., SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases (2004) Hepatology, 39, pp. 302-310","Arabi, Y.M.; King Abdullah International Medical Research CenterSaudi Arabia; email: arabi@ngha.med.sa",,"Blackwell Publishing Ltd",03090167,,HISTD,"28858401","English","Histopathology",Article,"Final",Open Access,Scopus,2-s2.0-85034568979 "Sabalza M., Yasmin R., Barber C.A., Castro T., Malamud D., Kim B.J., Zhu H., Montagna R.A., Abrams W.R.","57199173275;55276655200;16303279400;55814559600;55601131900;57200500493;57200497375;7004216992;24521200600;","Detection of Zika virus using reverse-transcription LAMP coupled with reverse dot blot analysis in saliva",2018,"PLoS ONE","13","2", e0192398,"","",,12,"10.1371/journal.pone.0192398","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041422788&doi=10.1371%2fjournal.pone.0192398&partnerID=40&md5=1a81d6b72628c622337196d03abf0f0f","Department of Basic Sciences, New York University College of Dentistry, New York, NY, United States; Rheonix, Inc., Ithaca, NY, United States; Stomatology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil; Department of Medicine, New York University School of Medicine, New York, NY, United States","Sabalza, M., Department of Basic Sciences, New York University College of Dentistry, New York, NY, United States; Yasmin, R., Rheonix, Inc., Ithaca, NY, United States; Barber, C.A., Department of Basic Sciences, New York University College of Dentistry, New York, NY, United States; Castro, T., Department of Basic Sciences, New York University College of Dentistry, New York, NY, United States, Stomatology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil; Malamud, D., Department of Basic Sciences, New York University College of Dentistry, New York, NY, United States, Department of Medicine, New York University School of Medicine, New York, NY, United States; Kim, B.J., Rheonix, Inc., Ithaca, NY, United States; Zhu, H., Rheonix, Inc., Ithaca, NY, United States; Montagna, R.A., Rheonix, Inc., Ithaca, NY, United States; Abrams, W.R., Department of Basic Sciences, New York University College of Dentistry, New York, NY, United States","In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co) in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP) and reverse dot-blot for detection (RDB) and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV) RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease. © 2018 Sabalza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"genomic RNA; virus RNA; virus RNA; Article; human; microfluidics; reverse transcription loop mediated isothermal amplification; RNA analysis; saliva; virus detection; virus titration; Zika virus; genetics; isolation and purification; nucleic acid amplification; procedures; reverse transcription; virology; Zika virus; Humans; Nucleic Acid Amplification Techniques; Reverse Transcription; RNA, Viral; Saliva; Zika Virus","Hutchins, S.S., Truman, B.I., Merlin, T.L., Redd, S.C., Protecting vulnerable populations from pandemic influenza in the United States: A strategic imperative (2009) American Journal of Public Health, 99, pp. S243-S248. , https://doi.org/10.2105/AJPH.2009.164814, Epub 2009/10/08. PMID: 19797737; Finger, F., Genolet, T., Mari, L., De Magny, G.C., Manga, N.M., Rinaldo, A., Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks (2016) Proceedings of The National Academy of Sciences of The United States of America, 113 (23), pp. 6421-6426. , https://doi.org/10.1073/pnas.1522305113, Epub 2016/05/25. PMID: 27217564; Mangili, A., Vindenes, T., Gendreau, M., Infectious risks of air travel (2015) Microbiology Spectrum, 3 (5). , https://doi.org/10.1128/microbiolspec.IOL5-0009-2015, Epub 2015/11/07. PMID: 26542037; Brierley, L., Vonhof, M.J., Olival, K.J., Daszak, P., Jones, K.E., Quantifying global drivers of zoonotic bat viruses: A process-based perspective (2016) The American Naturalist, 187 (2), pp. E53-E64. , https://doi.org/10.1086/684391, Epub 2016/01/ 26. PMID: 26807755; Wilson, M.E., Travel and the emergence of infectious diseases (1995) Emerging Infectious Diseases, 1 (2), pp. 39-46. , Epub 1995/04/01. PMID: 8903157; Marchette, N.J., Garcia, R., Rudnick, A., Isolation of zika virus from aedes aegypti mosquitoes in Malaysia (1969) The American Journal of Tropical Medicine and Hygiene, 18 (3), pp. 411-415. , Epub 1969/05/01. PMID: 4976739; McCrae, A.W., Kirya, B.G., Yellow fever and zika virus epizootics and enzootics in Uganda (1982) Transactions of The Royal Society of Tropical Medicine and Hygiene, 76 (4), pp. 552-562. , Epub 1982/01/01. PMID: 6304948; Saluzzo, J.F., Ivanoff, B., Languillat, G., Georges, A.J., Serological survey for arbovirus antibodies in the human and simian populations of the South-East of Gabon (author’s transl) (1982) Bulletin De La Societe De Pathologie Exotique Et De Ses Filiales, 75 (3), pp. 262-266. , Epub 1982/05/01. PMID: 6809352; Duffy, M.R., Chen, T.H., Hancock, W.T., Powers, A.M., Kool, J.L., Lanciotti, R.S., Zika virus outbreak on yap island, federated states of Micronesia (2009) The New England Journal of Medicine, 360 (24), pp. 2536-2543. , https://doi.org/10.1056/NEJMoa0805715, Epub 2009/06/12. PMID: 19516034; Shi, W., Zhang, Z., Ling, C., Carr, M.J., Tong, Y., Gao, G.F., Increasing genetic diversity of Zika virus in the Latin American outbreak (2016) Emerging Microbes & Infections, 5 (7), p. e68. , https://doi.org/10.1038/emi.2016.68, PMID: 27381219; Leder, K., Grobusch, M.P., Gautret, P., Chen, L.H., Kuhn, S., Lim, P.L., Zika beyond the Americas: Travelers as sentinels of Zika virus transmission. A GeoSentinel analysis, 2012 to 2016 (2017) PLoS One, 12 (10), p. e0185689. , https://doi.org/10.1371/journal.pone.0185689, Epub 2017/10/04. PMID: 28973011; (2016) 2016 Case Counts in The US, , https://www.cdc.gov/zika/reporting/2016-case-counts.html, CDC; Septfons, A., Leparc-Goffart, I., Couturier, E., Franke, F., Deniau, J., Balestier, A., Travel-associated and autochthonous Zika virus infection in mainland France, 1 January to 15 July 2016 (2016) Eurosurveillance, 21 (32), p. 30315. , https://doi.org/10.2807/1560-7917.ES.2016.21.32.30315, PMID: 27542120; Nakata, Y., Rost, G., Global analysis for spread of infectious diseases via transportation networks (2015) J Math Biol, 70 (6), pp. 1411-1456. , https://doi.org/10.1007/s00285-014-0801-z, PMID: 24948128; Wilson, M.E., The traveller and emerging infections: Sentinel, courier, transmitter (2003) J Appl Microbiol, 94, pp. 1S-11S. , PMID: 12675931; Chen, Z., Zhu, H., Malamud, D., Barber, C., Ongagna, Y.Y., Yasmin, R., A Rapid, self-confirming assay for HIV: simultaneous detection of Anti-HIV antibodies and viral RNA (2016) J AIDS Clin Res, 7 (1). , https://doi.org/10.4172/2155-6113.1000540, PMID: 26925300; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res, 28 (12), p. E63. , PMID: 10871386; Notomi, T., Mori, Y., Tomita, N., Kanda, H., Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects (2015) J Microbiol, 53 (1), pp. 1-5. , https://doi.org/10.1007/s12275-015-4656-9, PMID: 25557475; Maffert, P., Reverchon, S., Nasser, W., Rozand, C., Abaibou, H., New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings (2017) European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of The European Society of Clinical Microbiology, , https://doi.org/10.1007/s10096-017-3013-9, Epub 2017/06/03. PMID: 28573472; Nagamine, K., Hase, T., Notomi, T., Accelerated reaction by loop-mediated isothermal amplification using loop primers (2002) Molecular and Cellular Probes, 16 (3), pp. 223-229. , Epub 2002/07/30. PMID: 12144774; Malamud, D., Rodriguez-Chavez, I.R., Saliva as a Diagnostic Fluid (2011) Dental Clinics of North America, 55 (1), pp. 159-178. , https://doi.org/10.1016/j.cden.2010.08.004, PMID: 21094724; Hajosi-Kalcakosz, S., Vincze, E., Dezso, K., Paku, S., Rokusz, A., Sapi, Z., EZH2 is a sensitive marker of malignancy in salivary gland tumors (2015) Diagn Pathol, 10, p. 163. , https://doi.org/10.1186/s13000-015-0392-z, PMID: 26377323; Duz, M.B., Karatas, O.F., Guzel, E., Turgut, N.F., Yilmaz, M., Creighton, C.J., Identification of MIR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: A pilot study (2016) Cell Oncol, 39 (2), pp. 187-193. , https://doi.org/10.1007/s13402-015-0259-z, Dordr, PMID: 26650483; DeSantis, A.S., Adam, E.K., Hawkley, L.C., Kudielka, B.M., Cacioppo, J.T., Racial and ethnic differences in diurnal cortisol rhythms: Are they consistent over time? (2015) Psychosom Med, 77 (1), pp. 6-15. , https://doi.org/10.1097/PSY.0000000000000131, PMID: 25548989; Corstjens, P.L., Abrams, W.R., Malamud, D., Detecting viruses by using salivary diagnostics (2012) J Am Dent Assoc, 143 (10), pp. 12S-18S. , PMID: 23034833; Tang, H., Wu, Z., Zhang, J., Su, B., Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis (2013) Mol Med Rep, 7 (3), pp. 761-766. , https://doi.org/10.3892/mmr.2012.1254, PMID: 23292713; Cone, E.J., Presley, L., Lehrer, M., Seiter, W., Smith, M., Kardos, K.W., Oral fluid testing for drugs of abuse: Positive prevalence rates by Intercept immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations (2002) J Anal Toxicol, 26 (8), pp. 541-546. , PMID: 12501910; Spizz, G., Chen, Z., Li, P., McGuire, I.C., Klimkiewicz, P., Zysling, D., Determination of genotypes using a fully automated molecular detection system (2015) Archives of Pathology & Laboratory Medicine, 139 (6), pp. 805-811. , https://doi.org/10.5858/arpa.2014-0059-OA, Epub 2015/06/02. PMID: 26030250; Lau, Y.L., Lai, M.Y., Teoh, B.T., Abd-Jamil, J., Johari, J., Sam, S.S., Colorimetric detection of dengue by single tube reverse-transcription-loop-mediated isothermal amplification (2015) PLoS One, 10 (9), p. e0138694. , https://doi.org/10.1371/journal.pone.0138694, Epub 2015/09/19. PMID: 26384248; Spizz, G., Young, L., Yasmin, R., Chen, Z., Lee, T., Mahoney, D., Rheonix CARD(®) technology: An innovative and fully automated molecular diagnostic device (2012) Point of Care, 11 (1), pp. 42-51. , https://doi.org/10.1097/POC.0b013e318222e184, PMID: 22754401; (2017) World Map of Areas with Risk of Zika 2017, , https://wwwnc.cdc.gov/travel/page/world-map-areas-with-zika, CDC. December 19; (2017) Countries and Territories with Autochthonous Transmission in The Americas Reported in 2015–2017, , http://www.paho.org/hq/index.php?option=com_content&view=article&id=11603:countriesterritories-zika-autochthonous-transmission-americas&Itemid=41696&lang=en, PAHO; Yadav, S., Rawal, G., Baxi, M., Zika virus: An emergence of a new arbovirus (2016) Journal of Clinical and Diagnostic Research: JCDR, 10 (7), pp. Dm01-Dm03. , https://doi.org/10.7860/JCDR/2016/19170.8133, Epub 2016/09/16. PMID: 27630846; Butler, D., Brazil asks whether Zika acts alone to cause birth defects (2016) Nature, 535 (7613), pp. 475-476. , https://doi.org/10.1038/nature.2016.20309, Epub 2016/07/29. PMID: 27466104; Zhang, Q., Sun, K., Chinazzi, M., Pastore, Y.P.A., Dean, N.E., Rojas, D.P., Spread of zika virus in the Americas (2017) Proceedings of The National Academy of Sciences of The United States of America, 114 (22), pp. E4334–e43. , https://doi.org/10.1073/pnas.1620161114, Epub 2017/04/27. PMID: 28442561; Kelser, E.A., Meet dengue’s cousin, Zika (2016) Microbes Infect, 18 (3), pp. 163-166. , https://doi.org/10.1016/j.micinf.2015.12.003, Epub 2015/12/27. PMID: 26706817; De Souza, M., Matsuzawa, T., Sakai, K., Muraosa, Y., Lyra, L., Busso-Lopes, A.F., Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies (2017) Mycopathologia, , https://doi.org/10.1007/s11046-017-0129-5, Epub 2017/03/23. PMID: 28324245; Zanoli, L.M., Spoto, G., Isothermal amplification methods for the detection of nucleic acids in microfluidic devices (2013) Biosensors, 3 (1), pp. 18-43. , https://doi.org/10.3390/bios3010018, Epub 2013/03/01. PMID: 25587397; Fernández-Soto, P., Mvoulouga, P.O., Akue, J.P., Abán, J.L., Santiago, B.V., Sánchez, M.C., Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of loa loa (2014) PLoS One, 9 (4). , https://doi.org/10.1371/journal.pone.0094664, PMID: 24722638; Zanoli, L.M., Spoto, G., Isothermal amplification methods for the detection of nucleic acids in microfluidic devices (2013) Biosensors, 3 (1), pp. 18-43. , https://doi.org/10.3390/bios3010018, PMID: 25587397; Modak, S.S., Barber, C.A., Geva, E., Abrams, W.R., Malamud, D., Ongagna, Y.S., Rapid point-of-care isothermal amplification assay for the detection of malaria without nucleic acid purification (2016) Infectious Diseases, 9, pp. 1-9. , https://doi.org/10.4137/IDRT.S32162, Epub 2016/01/29. PMID: 26819557; Javaid, M.A., Ahmed, A.S., Durand, R., Tran, S.D., Saliva as a diagnostic tool for oral and systemic diseases (2016) Journal of Oral Biology and Craniofacial Research, 6 (1), pp. 66-75. , https://doi.org/10.1016/j.jobcr.2015.08.006, Epub 2016/03/05. PMID: 26937373; Musso, D., Roche, C., Nhan, T.X., Robin, E., Teissier, A., Cao-Lormeau, V.M., Detection of Zika virus in saliva (2015) Journal of Clinical Virology: The Official Publication of The Pan American Society for Clinical Virology, 68, pp. 53-55. , https://doi.org/10.1016/j.jcv.2015.04.021, Epub 2015/06/14. PMID: 26071336; Barzon, L., Pacenti, M., Berto, A., Sinigaglia, A., Franchin, E., Lavezzo, E., Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016 (2016) Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 21 (10), p. 30159. , https://doi.org/10.2807/15607917.es.2016.21.10.30159, Epub 2016/03/19. PMID: 26987769; Bonaldo, M.C., Ribeiro, I.P., Lima, N.S., Dos Santos, A.A., Menezes, L.S., Da Cruz, S.O., Isolation of infective zika virus from urine and saliva of patients in Brazil (2016) PLoS Negl Trop Dis, 10 (6), p. e0004816. , https://doi.org/10.1371/journal.pntd.0004816, Epub 2016/06/25. PMID: 27341420; Miočević, O., Cole, C.R., Laughlin, M.J., Buck, R.L., Slowey, P.D., Shirtcliff, E.A., Quantitative lateral flow assays for salivary biomarker assessment: A review (2017) Frontiers in Public Health, 5 (133). , https://doi.org/10.3389/fpubh.2017.00133, PMID: 28660183; Martins, D., Levicky, R., Song, Y.A., Enhancing the speed of morpholino-DNA biosensor by electrokinetic concentration of DNA in a microfluidic chip (2015) Biosens Bioelectron, 72, pp. 87-94. , https://doi.org/10.1016/j.bios.2015.04.063, PMID: 25966462; Chotiwan, N., Brewster, C.D., Magalhaes, T., Weger-Lucarelli, J., Duggal, N.K., Rückert, C., Rapid and specific detection of Asian- And African-lineage Zika viruses (2017) Science Translational Medicine, 9, p. 388. , https://doi.org/10.1126/scitranslmed.aag0538, PMID: 28469032; Simonin, Y., Van Riel, D., Van De Perre, P., Rockx, B., Salinas, S., Differential virulence between Asian and African lineages of Zika virus (2017) PLOS Neglected Tropical Diseases, 11 (9), p. e0005821. , https://doi.org/10.1371/journal.pntd.0005821, PMID: 28934211; Chotiwan, N., Brewster, C.D., Magalhaes, T., Weger-Lucarelli, J., Duggal, N.K., Ruckert, C., Rapid and specific detection of Asian- And African-lineage Zika viruses (2017) Science Translational Medicine, 9 (388). , https://doi.org/10.1126/scitranslmed.aag0538, Epub 2017/05/05. PMID: 28469032; Priye, A., Bird, S.W., Light, Y.K., Ball, C.S., Negrete, O.A., Meagher, R.J., A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses (2017) Scientific Reports, 7, p. 44778. , https://doi.org/10.1038/srep44778, Epub 2017/03/21. PMID: 28317856; Driggers, R.W., Ho, C.-Y., Korhonen, E.M., Kuivanen, S., Jääskeläinen, A.J., Smura, T., Zika virus infection with prolonged maternal viremia and fetal brain abnormalities (2016) New England Journal of Medicine, 374 (22), pp. 2142-2151. , https://doi.org/10.1056/NEJMoa1601824, PMID: 27028667; Triunfol, M., Microcephaly in Brazil: Confidence builds in Zika connection The Lancet Infectious Diseases, 16 (5), pp. 527-528. , https://doi.org/10.1016/S1473-3099(16)30015-9, PMID: 27599648; Calvert, A.E., Biggerstaff, B.J., Tanner, N.A., Lauterbach, M., Lanciotti, R.S., Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP) (2017) PLoS One, 12 (9), p. e0185340. , https://doi.org/10.1371/journal.pone.0185340, Epub 2017/09/26. PMID: 28945787; Murray, K.O., Gorchakov, R., Carlson, A.R., Berry, R., Lai, L., Natrajan, M., Prolonged detection of zika virus in vaginal secretions and whole blood (2017) Emerging Infectious Diseases, 23 (1), pp. 99-101. , https://doi.org/10.3201/eid2301.161394, PMID: 27748649; Froeschl, G., Huber, K., Von Sonnenburg, F., Nothdurft, H.D., Bretzel, G., Hoelscher, M., Long-term kinetics of Zika virus RNA and antibodies in body fluids of a vasectomized traveller returning from Martinique: A case report (2017) BMC Infectious Diseases, 17. , https://doi.org/10.1186/s12879-016-2123-9, PMID: 28068904; Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus (2016) Nature Immunology, 17 (9), pp. 1102-1108. , https://doi.org/10.1038/ni.3515, PMID: 27339099; Sabalza, M., Barber, C.A., Abrams, W.R., Montagna, R., Malamud, D., (2017) Zika Virus Specific Diagnostic Epitope Discovery, 130, p. e56784. , https://doi.org/10.3791/56784, PMID: 29286404; Chotiwan, N., Brewster, C.D., Magalhaes, T., Weger-Lucarelli, J., Duggal, N.K., Rückert, C., Rapid and specific detection of Asian- And African-lineage Zika viruses (2017) Science Translational Medicine, 9 (388), p. eaag0538. , https://doi.org/10.1126/scitranslmed.aag0538, PMID: 28469032; Song, J., Mauk, M.G., Hackett, B.A., Cherry, S., Bau, H.H., Liu, C., Instrument-free point-of-care molecular detection of zika virus (2016) Analytical Chemistry, 88 (14), pp. 7289-7294. , https://doi.org/10.1021/acs.analchem.6b01632, Epub 2016/06/17. PMID: 27306491; Nicolini, A.M., McCracken, K.E., Yoon, J.-Y., Future developments in biosensors for field-ready Zika virus diagnostics (2017) Journal of Biological Engineering, 11 (1), p. 7. , https://doi.org/10.1186/s13036-016-0046-z, PMID: 28127399; Emergency Use Authorizations 2017, , https://www.fda.gov/MedicalDevices/Safety/EmergencySituations/ucm161496.htm, FDA","Sabalza, M.; Department of Basic Sciences, New York University College of DentistryUnited States; email: ms10129@nyu.edu",,"Public Library of Science",19326203,,POLNC,"29401479","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85041422788 "Babady N.E., England M.R., Jurcic Smith K.L., He T., Wijetunge D.S., Tang Y.-W., Chamberland R.R., Menegus M., Swierkosz E.M., Jerris R.C., Greene W.","6505980739;57208928569;56079472400;55118282200;55439868000;7404592458;55571847400;7005546978;6701542881;6507207807;7202789050;","Multicenter Evaluation of the ePlex Respiratory Pathogen Panel for the Detection of Viral and Bacterial Respiratory Tract Pathogens in Nasopharyngeal Swabs",2018,"Journal of clinical microbiology","56","2",,"","",,20,"10.1128/JCM.01658-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066862593&doi=10.1128%2fJCM.01658-17&partnerID=40&md5=844fcbfa821f9815b76f950558c063d9","Memorial Sloan Kettering Cancer CenterNY, United States; Pennsylvania State University, Hershey Medical Center, Hershey, PA, United States; University of Rochester Medical Center, Rochester, NY, United States; Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Weill Medical College of Cornell UniversityNY, United States; Saint Louis University School of Medicine, St. Louis, MO, United States; Children's Healthcare of Atlanta, Atlanta, GA, United States","Babady, N.E., Memorial Sloan Kettering Cancer CenterNY, United States; England, M.R., Pennsylvania State University, Hershey Medical Center, Hershey, PA, United States; Jurcic Smith, K.L., University of Rochester Medical Center, Rochester, NY, United States; He, T., Memorial Sloan Kettering Cancer CenterNY, United States, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Wijetunge, D.S., Pennsylvania State University, Hershey Medical Center, Hershey, PA, United States; Tang, Y.-W., Memorial Sloan Kettering Cancer CenterNY, United States, Weill Medical College of Cornell UniversityNY, United States; Chamberland, R.R., Saint Louis University School of Medicine, St. Louis, MO, United States; Menegus, M., University of Rochester Medical Center, Rochester, NY, United States; Swierkosz, E.M., Saint Louis University School of Medicine, St. Louis, MO, United States; Jerris, R.C., Children's Healthcare of Atlanta, Atlanta, GA, United States; Greene, W., Pennsylvania State University, Hershey Medical Center, Hershey, PA, United States","The performance of the new ePlex Respiratory Pathogen (RP) panel (GenMark Diagnostics) for the simultaneous detection of 19 viruses (influenza A virus; influenza A H1 virus; influenza A 2009 H1 virus; influenza A H3 virus; influenza B virus; adenovirus; coronaviruses [HKU1, OC43, NL63, and 229E]; human rhinovirus/enterovirus; human metapneumovirus; parainfluenza viruses 1, 2, 3, and 4; and respiratory syncytial virus [RSV] [RSV subtype A and RSV subtype B]) and 2 bacteria (Mycoplasma pneumoniae and Chlamydia pneumoniae) was evaluated. Prospectively and retrospectively collected nasopharyngeal swab (NPS) specimens (n = 2,908) were evaluated by using the ePlex RP panel, with the bioMérieux/BioFire FilmArray Respiratory Panel (BioFire RP) as the comparator method. Discordance analysis was performed by using target-specific PCRs and bidirectional sequencing. The reproducibility of the assay was evaluated by using reproducibility panels comprised of 6 pathogens. The overall agreement between the ePlex RP and BioFire RP results was >95% for all targets. Positive percent agreement with the BioFire RP result for viruses ranged from 85.1% (95% confidence interval [CI], 80.2% to 88.9%) to 95.1% (95% CI, 89.0% to 97.9%), while negative percent agreement values ranged from 99.5% (95% CI, 99.1% to 99.7%) to 99.8% (95% CI, 99.5% to 99.9%). Additional testing of discordant targets (12%; 349/2,908) confirmed the results of ePlex RP for 38% (131/349) of samples tested. Reproducibility was 100% for all targets tested, with the exception of adenovirus, for which reproducibilities were 91.6% at low virus concentrations and 100% at moderate virus concentrations. The ePlex RP panel offers a new, rapid, and sensitive ""sample-to-answer"" multiplex panel for the detection of the most common viral and bacterial respiratory pathogens. Copyright © 2018 Babady et al.","multiplex syndromic panel; rapid diagnosis; rapid PCR; respiratory pathogens; respiratory tract infections; sample-to-answer test","bacterium; clinical trial; diagnostic test; evaluation study; human; isolation and purification; microbiology; molecular diagnosis; multicenter study; nasopharynx; polymerase chain reaction; procedures; reproducibility; respiratory tract infection; retrospective study; virology; virus; Bacteria; Diagnostic Tests, Routine; Humans; Molecular Diagnostic Techniques; Nasopharynx; Polymerase Chain Reaction; Reproducibility of Results; Respiratory Tract Infections; Retrospective Studies; Viruses",,,,,1098660X,,,"29212701","English","J. Clin. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85066862593 "Müller C., Schulte F.W., Lange-Grünweller K., Obermann W., Madhugiri R., Pleschka S., Ziebuhr J., Hartmann R.K., Grünweller A.","56651517200;57192102317;54995572400;57200082456;26654846800;6602999462;7003783935;7201739353;6602507444;","Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses",2018,"Antiviral Research","150",,,"123","129",,19,"10.1016/j.antiviral.2017.12.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039172275&doi=10.1016%2fj.antiviral.2017.12.010&partnerID=40&md5=ccbca132a624b5f8c85bfc23b1a0cf2a","Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, Gießen, 35392, Germany; Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, 35037, Germany; Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany","Müller, C., Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, Gießen, 35392, Germany, Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany; Schulte, F.W., Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, 35037, Germany; Lange-Grünweller, K., Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, 35037, Germany; Obermann, W., Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, 35037, Germany; Madhugiri, R., Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, Gießen, 35392, Germany; Pleschka, S., Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, Gießen, 35392, Germany, Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany; Ziebuhr, J., Institut für Medizinische Virologie, Justus-Liebig-Universität Gießen, Schubertstraße 81, Gießen, 35392, Germany, Deutsches Zentrum für Infektionsforschung (DZIF) at the partner site Gießen-Marburg-Langen, Germany; Hartmann, R.K., Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, 35037, Germany; Grünweller, A., Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, 35037, Germany","Coronaviruses (CoV) and picornaviruses are plus-strand RNA viruses that use 5′ cap-dependent and cap-independent strategies, respectively, for viral mRNA translation initiation. Here, we analyzed the effects of the plant compound silvestrol, a specific inhibitor of the DEAD-box RNA helicase eIF4A, on viral translation using a dual luciferase assay and virus-infected primary cells. Silvestrol was recently shown to have potent antiviral activity in Ebola virus-infected human macrophages. We found that silvestrol is also a potent inhibitor of cap-dependent viral mRNA translation in CoV-infected human embryonic lung fibroblast (MRC-5) cells. EC50 values of 1.3 nM and 3 nM silvestrol were determined for MERS-CoV and HCoV-229E, respectively. For the highly pathogenic MERS-CoV, the potent antiviral activities of silvestrol were also confirmed using peripheral blood mononuclear cells (PBMCs) as a second type of human primary cells. Silvestrol strongly inhibits the expression of CoV structural and nonstructural proteins (N, nsp8) and the formation of viral replication/transcription complexes. Furthermore, potential antiviral effects against human rhinovirus (HRV) A1 and poliovirus type 1 (PV), representing different species in the genus Enterovirus (family Picornaviridae), were investigated. The two viruses employ an internal ribosomal entry site (IRES)-mediated translation initiation mechanism. For PV, which is known to require the activity of eIF4A, an EC50 value of 20 nM silvestrol was determined in MRC-5 cells. The higher EC50 value of 100 nM measured for HRV A1 indicates a less critical role of eIF4A activity in HRV A1 IRES-mediated translation initiation. Taken together, the data reveal a broad-spectrum antiviral activity of silvestrol in infected primary cells by inhibiting eIF4A-dependent viral mRNA translation. © 2017 Elsevier B.V.","Cap-dependent translation; Coronavirus; eIF4A; IRES; Picornavirus; Silvestrol","antivirus agent; DEAD box protein; initiation factor 4A; silvestrol; unclassified drug; antivirus agent; DNA binding protein; ELF4 protein, human; silvestrol; transcription factor; triterpene; antiviral activity; Article; concentration response; controlled study; Coronaviridae; cytotoxicity; Ebolavirus; EC50; Enterovirus; fibroblast; Huh-7 cell line; human; human cell; Human rhinovirus A1; immunofluorescence; internal ribosome entry site; lung alveolus cell; macrophage; Middle East respiratory syndrome coronavirus; MRC-5 cell line; peripheral blood mononuclear cell; Picornaviridae; priority journal; SARS coronavirus; animal; antagonists and inhibitors; cell line; Chlorocebus aethiops; dose response; drug effect; gene expression; gene expression regulation; Picornaviridae; reporter gene; Vero cell line; Animals; Antiviral Agents; Cell Line; Cercopithecus aethiops; DNA-Binding Proteins; Dose-Response Relationship, Drug; Gene Expression; Gene Expression Regulation, Viral; Genes, Reporter; Humans; Picornaviridae; Transcription Factors; Triterpenes; Vero Cells","Biedenkopf, N., Lange-Grünweller, K., Schulte, F.W., The natural compound silvestrol is a potent inhibitor of Ebola virus replication (2017) Antivir. Res., 137, pp. 76-81; Bordeleau, M.E., Mori, A., Oberer, M., Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A (2006) Nat. Chem. Biol., 2, pp. 213-220; Cencic, R., Carrier, M., Galicia-Vázquez, G., Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol (2009) PLos One, 4; Chu, J., Galicia-Vázquez, G., Cencic, R., CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA helicase, eIF4A (2016) Cell Rep, 15, pp. 2340-2347; Hinnebusch, A.G., Ivanov, I.P., Sonenberg, N., Translational control by 5’-untranslated regions of eukaryotic mRNAs (2016) Science, 352, pp. 1413-1416; Kogure, T., Kinghorn, A.D., Yan, I., Therapeutic potential of the translation inhibitor silvestrol in hepatocellular cancer (2013) PLos One, 8; Lee, K.M., Chen, C.J., Shih, S.R., Regulation mechanisms of viral IRES-driven translation (2017) Trends Microbiol., 25, pp. 546-561. , (Review); Lucas, D.M., Edwards, R.B., Lozanski, G., The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo (2009) Blood, 113, pp. 4656-4666; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Trybala, E., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog., 10; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., Coronavirus cis-acting RNA elements (2016) Adv. Virus Res., 96, pp. 127-163. , Review; Müller, C., Karl, N., Ziebuhr, J., Pleschka, S., D, L-lysine acetylsalicylate and glycine impairs Coronavirus Replication (2016) J Antivir Antiretrovir, 8, pp. 142-150; Pan, L., Woodard, J.L., Lucas, D.M., Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species (2014) Nat. Prod. Rep., 31, pp. 924-939. , Review; Patton, J.T., Lustberg, M.E., Lozanski, G., The translation inhibitor silvestrol exhibits direct anti-tumor activity while preserving innate and adaptive immunity against EBV-driven lymphoproliferative disease (2015) Oncotarget, 6, pp. 2693-2708; Pelletier, J., Graff, J., Ruggero, D., Sonenberg, N., Targeting the eIF4F translation initiation complex: a critical nexus for cancer development (2015) Cancer Res., 75, pp. 250-263; Rubio, C.A., Weisburd, B., Holderfield, M., Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation (2014) Genome Biol., 15 (10), p. 476; Sadlish, H., Galicia-Vazquez, G., Paris, C.G., Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex (2013) ACS Chem. Biol., 8, pp. 1519-1527; Saradhi, U.V., Gupta, S.V., Chiu, M., Characterization of silvestrol pharmacokinetics in mice using liquid chromatography-tandem mass spectrometry (2011) AAPS J., 13, pp. 347-356; Schatz, J.H., Oricchio, E., Wolfe, A.L., Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma (2011) J. Exp. Med., 208, pp. 1799-1807; Schlereth, J., Grünweller, A., Biedenkopf, N., RNA binding specificity of Ebola virus transcription factor VP30 (2016) RNA Biol., 17, pp. 1-16. , ([Epub ahead of print]); Su, B.N., Chai, H., Mi, Q., Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in Indonesia (2006) Bioorg. Med. Chem., 14, pp. 960-972; Thompson, S.R., (2012) Trends Microbiol., 20, pp. 558-566. , (Review); Weik, M., Modrof, J., Klenk, H.D., Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation (2002) J. Virol., 76, pp. 8532-8539; Zhu, J.Y., Lavrik, I.N., Mahlknecht, U., The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen-activated protein kinase activities (2007) Int. J. Canc., 121, pp. 839-846; Ziebuhr, J., Siddell, S.G., Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab (1999) J. Virol., 73, pp. 177-185","Grünweller, A.; Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Germany; email: gruenwel@staff.uni-marburg.de",,"Elsevier B.V.",01663542,,ARSRD,"29258862","English","Antiviral Res.",Article,"Final",,Scopus,2-s2.0-85039172275 "Xia S., Xu W., Wang Q., Wang C., Hua C., Li W., Lu L., Jiang S.","56410369000;22137287100;55638946700;56592029300;57193114091;57171085200;55715616400;56491898300;","Peptide-based membrane fusion inhibitors targeting HCOV-229E spike protein HR1 and HR2 domains",2018,"International Journal of Molecular Sciences","19","2", 487,"","",,8,"10.3390/ijms19020487","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041509999&doi=10.3390%2fijms19020487&partnerID=40&md5=27e5387836169ef2c5087e7b094ddcab","Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States","Xia, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Xu, W., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Wang, Q., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Wang, C., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Hua, C., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Li, W., Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China; Lu, L., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China; Jiang, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai, 200032, China, Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, The Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States","Human coronavirus 229E (HCoV-229E) infection in infants, elderly people, and immunocompromised patients can cause severe disease, thus calling for the development of effective and safe therapeutics to treat it. Here we reported the design, synthesis and characterization of two peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains, 229E-HR1P and 229E-HR2P, respectively. We found that 229E-HR1P and 229E-HR2P could interact to form a stable six-helix bundle and inhibit HCoV-229E spike protein-mediated cell-cell fusion with IC50 of 5.7 and 0.3 μM, respectively. 229E-HR2P effectively inhibited pseudotyped and live HCoV-229E infection with IC50 of 0.5 and 1.7 μM, respectively. In a mouse model, 229E-HR2P administered intranasally could widely distribute in the upper and lower respiratory tracts and maintain its fusion-inhibitory activity. Therefore, 229E-HR2P is a promising candidate for further development as an antiviral agent for the treatment and prevention of HCoV-229E infection. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Cell-cell fusion; HCoV-229E; Inhibitor; Membrane fusion; Peptide","antivirus agent; Human coronavirus 229E heptad repeat 1 protein; Human coronavirus 229E heptad repeat 2 protein; membrane fusion protein; protein inhibitor; unclassified drug; virus spike protein; coronavirus spike glycoprotein; peptide; protein binding; virus fusion inhibitor; animal experiment; animal model; antiviral activity; Article; biophysics; cell counting; cell fusion; cell viability; circular dichroism; controlled study; Coronavirus infection; cytotoxicity; cytotoxicity assay; drug design; drug synthesis; female; fluorescence microscopy; high performance liquid chromatography; human; human cell; Human coronavirus 229E; luciferase assay; native polyacrylamide gel electrophoresis; nonhuman; peptide synthesis; selectivity index; thermostability; Vesiculovirus; virus inhibition; virus replication; animal; antagonists and inhibitors; cell survival; chemistry; drug effect; giant cell; Human coronavirus 229E; membrane fusion; mouse; protein domain; virology; Animals; Cell Survival; Coronavirus 229E, Human; Giant Cells; Humans; Membrane Fusion; Mice; Peptides; Protein Binding; Protein Interaction Domains and Motifs; Spike Glycoprotein, Coronavirus; Viral Fusion Protein Inhibitors","Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping. (2009) Exp. Biol. Med, 234, pp. 1117-1127; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Hofmann-Winkler, H., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol, 87, pp. 6150-6160; Oong, X.Y., Ng, K.T., Takebe, Y., Ng, L.J., Chan, K.G., Chook, J.B., Kamarulzaman, A., Tee, K.K., Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: Phylogenetic, spatiotemporal and transmission network analyses. (2017) Emerg. Microbes Infect, e3, p. 6; Liu, L., Wang, T., Lu, J., The prevalence, origin, and prevention of six human coronaviruses. (2016) Virol. Sin, 31, pp. 94-99; Niu, P.H., Shen, J., Zhu, N., Lu, R.J., Tan, W.J., Two-tube multiplex real-time reverse transcription PCR to detect six human coronaviruses. (2016) Virol. Sin, 31, pp. 85-88; http://www.who.int/csr/sars/country/table2004_04_21/en/; http://www.who.int/csr/don/19-december-2017-mers-saudi-arabia/en; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Luk, W.K., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol, 79, pp. 884-895; Chiu, S.S., Chan, K.H., Chu, K.W., Kwan, S.W., Guan, Y., Poon, L.L., Peiris, J.S., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin. Infect. Dis, 40, pp. 1721-1729; Gorse, G.J., O’Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J. Infect. Dis, 199, pp. 847-857; Jean, A., Quach, C., Yung, A., Semret, M., Severity and outcome associated with human coronavirus OC43 infections among children (2013) Pediatr. Infect. Dis. J, 32, pp. 325-329; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular Evolution of Human Coronavirus Genomes. (2017) Trends. Microbiol, 25, pp. 35-48; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Adu-Sarkodie, Y., Evidence for an Ancestral Association of Human Coronavirus 229E with Bats (2015) J. Virol, 89, pp. 11858-11870; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry (2017) J. Virol, p. 91; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History (2017) J. Virol, p. 91; Shirato, K., Imada, Y., Kawase, M., Nakagaki, K., Matsuyama, S., Taguchi, F., Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease (2014) J. Med. Virol, 86, pp. 2146-2153; Kolb, A.F., Hegyi, A., Siddell, S.G., Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase (1997) N. J. Gen. Virol, 78, pp. 2795-2802; Liu, C., Feng, Y., Gao, F., Zhang, Q., Wang, M., Characterization of HCoV-229E fusion core: Implications for structure basis of coronavirus membrane fusion. (2006) Biochem. Biophys. Res. Commun, 345, pp. 1108-1115; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2009) J. Virol, 83, pp. 712-721; Jiang, S., Lin, K., Strick, N., Neurath, A.R., HIV-1 inhibition by a peptide (1993) Nature, 365, p. 113; Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B., Matthews, T.J., Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 9770-9774; Lu, M., Blacklow, S.C., Kim, P., Trimeric structural domain of the HIV-1 transmembrane glycoprotein. (1995) Nat. Struct. Biol, 2, pp. 1075-1082; Lalezari, J.P., Henry, K., O’Hearn, M., Montaner, J.S., Piliero, P.J., Trottier, B., Walmsley, S., Eron, J.J., Jr., Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America (2003) N. Engl. J. Med, 348, pp. 2175-2185; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Tien, P., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363, pp. 938-947; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. (2014) Nat. Commun, 5, p. 3067; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection (2015) J. Infect. Dis, 212, pp. 1894-1903; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res, 194, pp. 200-210; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV--a target for vaccine and therapeutic development. (2009) Nat. Rev. Microbiol, 7, pp. 226-236; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J. Biol. Chem, 279, pp. 49414-49419; Poppe, M., Wittig, S., Jurida, L., Bartkuhn, M., Wilhelm, J., Muller, H., Beuerlein, K., Ziebuhr, J., The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells (2017) Plos Pathog, 13; Orikawa, H., Kawaguchi, M., Baba, T., Yorita, K., Sakoda, S., Kataoka, H., Activation of macrophage-stimulating protein by human airway trypsin-like protease (2012) FEBS Lett, 586, pp. 217-221; Plusa, T., Tchorzewski, H., Analysis of proteolytic enzymes and their natural inhibitors in serum and bronchial lavage fluid in atopic bronchial asthma, chronic bronchitis and pneumonia. (1985) Allerg. Immunol, 31, pp. 169-178; Chen, X., Lu, L., Qi, Z., Lu, H., Wang, J., Yu, X., Chen, Y., Jiang, S., Novel recombinant engineered gp41 N-terminal heptad repeat trimers and their potential as anti-HIV-1 therapeutics or microbicides (2010) J. Biol. Chem, 285, pp. 25506-25515; Platt, E.J., Madani, N., Kozak, S.L., Kabat, D., Infectious properties of human immunodeficiency virus type 1 mutants with distinct affinities for the CD4 receptor (1997) J. Virol, 71, pp. 883-890; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) Plos Pathog, 13; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Alsubaie, S., Hussain, R., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J. Infect. Dis, 210, pp. 1590-1594; Madhi, A., Ghalyanchilangeroudi, A., Soleimani, M., Evidence of human coroanvirus (229E), in patients with respiratory infection, Iran, 2015: The first report (2016) Iran. J. Microbiol., 8, pp. 316-320; Dabaniyasti, D., Eksi, F., Keskin, O., Ozkars, M.Y., Karsligil, T., Balci, I., An investigation into respiratory tract viruses in children with acute lower respiratory tract infection or wheezing (2016) Minerva Pediatr, , in press; Chen, L., Gui, C., Luo, X., Yang, Q., Gunther, S., Scandella, E., Drosten, C., Ludewig, B., Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro (2005) J. Virol, 79, pp. 7095-7103; Lundin, A., Dijkman, R., Bergstrom, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Kint, J., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. (2014) Plos. Pathog, 10; Milewska, A., Kaminski, K., Ciejka, J., Kosowicz, K., Zeglen, S., Wojarski, J., Nowakowska, M., Pyrc, K., HTCC: Broad Range Inhibitor of Coronavirus Entry (2016) Plos ONE, 11; Muller, C., Hardt, M., Schwudke, D., Neuman, B.W., Pleschka, S., Ziebuhr, J., Inhibition of cytosolic phospholipase A2alpha impairs an early step of coronavirus replication in cell culture (2017) J. Virol; Muller, C., Schulte, F.W., Lange-Grunweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Grunweller, A., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. (2017) Antivir. Res, 150, pp. 123-129; Kono, M., Tatsumi, K., Imai, A.M., Saito, K., Kuriyama, T., Shirasawa, H., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK (2008) Antivir. Res., 77, pp. 150-152; Zhu, Y., Su, S., Qin, L., Wang, Q., Shi, L., Ma, Z., Tang, J., Ye, S., Rational improvement of gp41-targeting HIV-1 fusion inhibitors: An innovatively designed Ile-Asp-Leu tail with alternative conformations. (2016) Sci. Rep, 6; Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J., Wiley, D.C., Atomic structure of the ectodomain from HIV-1 gp41 (1997) Nature, 387, pp. 426-430; Chen, Y.H., Yang, J.T., Chau, K.H., Determination of the helix and beta form of proteins in aqueous solution by circular dichroism (1974) Biochemistry, 13, pp. 3350-3359; Riedel, H., Kondor-Koch, C., Garoff, H., Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA (1984) EMBO J, 3, pp. 1477-1483; Wang, J., Deng, F., Ye, G., Dong, W., Zheng, A., He, Q., Peng, G., Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses. (2016) Virol. Sin, 31, pp. 49-56; Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. (2006) Pharmacol. Rev, 58, pp. 621-681; Yu, Y., Deng, Y.Q., Zou, P., Wang, Q., Dai, Y., Yu, F., Du, L., Hao, J.N., A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. (2017) Nat. Commun, 8, p. 15672; Wu, Y.H., Tseng, C.P., Cheng, M.L., Ho, H.Y., Shih, S.R., Chiu, D.T., Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection (2008) J. Infect. Dis, 197, pp. 812-816; Li, H., Yu, F., Xia, S., Yu, Y., Wang, Q., Lv, M., Wang, Y., Lu, L., Chemically Modified Human Serum Albumin Potently Blocks Entry of Ebola Pseudoviruses and Viruslike Particles (2017) Antimicrob. Agents Chemother, p. 61; Voss, M., Wonnenberg, B., Honecker, A., Kamyschnikow, A., Herr, C., Bischoff, M., Tschernig, T., Beisswenger, C., Cigarette smoke-promoted acquisition of bacterial pathogens in the upper respiratory tract leads to enhanced inflammation in mice (2015) Respir. Res, 16, p. 41; Nelson, A.L., Roche, A.M., Gould, J.M., Chim, K., Ratner, A.J., Weiser, J.N., Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect (2007) Immun, 75, pp. 83-90; Beisswenger, C., Lysenko, E.S., Weiser, J.N., Early bacterial colonization induces toll-like receptor-dependent transforming growth factor beta signaling in the epithelium (2009) Infect. Immun, 77, pp. 2212-2220","Jiang, S.; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Rd., Xuhui District, China; email: shibojiang@fudan.edu.cn",,"MDPI AG",16616596,,,"29415501","English","Int. J. Mol. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85041509999 "Prescott J., Falzarano D., de Wit E., Hardcastle K., Feldmann F., Haddock E., Scott D., Feldmann H., Munster V.J.","7102197164;13411417100;22834240700;56269998000;12771883300;43761241400;54387473900;7202115850;9332531900;","Pathogenicity and viral shedding of MERS-CoV in immunocompromised rhesus macaques",2018,"Frontiers in Immunology","9","FEB", 205,"","",,5,"10.3389/fimmu.2018.00205","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041921699&doi=10.3389%2ffimmu.2018.00205&partnerID=40&md5=ba5fa473ebc11c2bf3def5baea5aed0c","Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Rocky Mountain Veterinary Branch, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States","Prescott, J., Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Falzarano, D., Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; de Wit, E., Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Hardcastle, K., Rocky Mountain Veterinary Branch, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Feldmann, F., Rocky Mountain Veterinary Branch, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Haddock, E., Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Scott, D., Rocky Mountain Veterinary Branch, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Feldmann, H., Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Munster, V.J., Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged in the Middle East. Since 2012, there have been approximately 2,100 confirmed cases, with a 35% case fatality rate. Disease severity has been linked to patient health status, as people with chronic diseases or an immunocompromised status fare worse, although the mechanisms of disease have yet to be elucidated. We used the rhesus macaque model of mild MERS to investigate whether the immune response plays a role in the pathogenicity in relation to MERS-CoV shedding. Immunosuppressed macaques were inoculated with MERS-CoV and sampled daily for 6 days to assess their immune statues and to measure viral shedding and replication. Immunosuppressed macaques supported significantly higher levels of MERS-CoV replication in respiratory tissues and shed more virus, and virus disseminated to tissues outside of the respiratory tract, whereas viral RNA was confined to respiratory tissues in non-immunosuppressed animals. Despite increased viral replication, pathology in the lungs was significantly lower in immunosuppressed animals. The observation that the virus was less pathogenic in these animals suggests that disease has an immunopathogenic component and shows that inflammatory responses elicited by the virus contribute to disease. © 2018 Prescott, Falzarano, de Wit, Hardcastle, Feldmann, Haddock, Scott, Feldmann and Munster.","Immunosuppression; Macaque monkey; Middle East respiratory syndrome coronavirus; Pathology; Shedding","cyclophosphamide; dexamethasone; virus antigen; virus RNA; animal cell; animal experiment; animal model; animal tissue; Article; controlled study; female; histopathology; immune response; immunosuppressive treatment; mediastinum lymph node; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; reverse transcription polymerase chain reaction; T cell depletion; virus replication; virus shedding; virus virulence","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2015) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/mediacentre/factsheets/mers-cov/en/, Geneva: World Health Organisation; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr Opin Pulm Med, 20, pp. 233-241; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Kindler, E., Jónsdóttir, H., Muth, D., Hamming, O., Hartmann, R., Rodriguez, R., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) mBio, 4, p. 12; Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., Fong, J.H., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J Virol, 87, pp. 6604-6614; Chan, R.W., Hemida, M.G., Kayali, G., Chu, D.K., Poon, L.L., Alnaeem, A., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study (2014) Lancet Respir Med, 2, pp. 813-822; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305; Munster, V., de Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N Engl J Med, 368, pp. 1560-1562; de Wit, E., Rasmussen, A., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in Rhesus macaques (2013) Proc Natl Acad Sci U S A, 110, pp. 16598-16603; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., AlRabiah, F.A., Al Hajjar, S., Albarrak, A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr Infect Dis J, 33, pp. 904-906; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, p. 17; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS One, 8; Charbonnel, N., Pages, M., Sironen, T., Henttonen, H., Vapalahti, O., Mustonen, J., Immunogenetic factors affecting susceptibility of humans and rodents to hantaviruses and the clinical course of hantaviral disease in humans (2014) Viruses, 6, pp. 2214-2241; Meyer, K.C., The role of immunity and inflammation in lung senescence and susceptibility to infection in the elderly (2010) Semin Respir Crit Care Med, 31, pp. 561-574; Assiri, A., Al-Tawfiq, J., Al-Rabeeah, A., Al-Rabiah, F., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Kim, S.H., Ko, J.H., Park, G.E., Cho, S.Y., Ha, Y.E., Kang, J.M., Atypical presentations of MERS-CoV infection in immunocompromised hosts (2017) J Infect Chemother, 23, pp. 769-773; Assiri, A., McGeer, A., Perl, T., Price, C., Al Rabeeah, A., Cummings, D., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Dandona, P., Aljada, A., Bandyopadhyay, A., Inflammation: the link between insulin resistance, obesity and diabetes (2004) Trends Immunol, 25, pp. 4-7; Bastard, J.P., Maachi, M., Lagathu, C., Kim, M.J., Caron, M., Vidal, H., Recent advances in the relationship between obesity, inflammation, and insulin resistance (2006) Eur Cytokine Netw, 17, pp. 4-12; DeFuria, J., Belkina, A.C., Jagannathan-Bogdan, M., Snyder-Cappione, J., Carr, J.D., Nersesova, Y.R., B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile (2013) Proc Natl Acad Sci U S A, 110, pp. 5133-5138; Deeks, S.G., Tracy, R., Douek, D.C., Systemic effects of inflammation on health during chronic HIV infection (2013) Immunity, 39, pp. 633-645; Hunt, P.W., Th17, gut, and HIV: therapeutic implications (2010) Curr Opin HIV AIDS, 5, pp. 189-193; Baseler, L.J., Falzarano, D., Scott, D.P., Rosenke, R., Thomas, T., Munster, V.J., An acute immune response to Middle East respiratory syndrome coronavirus replication contributes to viral pathogenicity (2016) Am J Pathol, 186, pp. 630-638; Zhou, J., Chu, H., Li, C., Wong, B., Cheng, Z.-S., Poon, V., Active MERS-CoV replication and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2013) J Infect Dis, 209 (9), pp. 1331-1342; Scheuplein, V.A., Seifried, J., Malczyk, A.H., Miller, L., Hocker, L., Vergara-Alert, J., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 3859-3869; Drosten, C., Seilmaier, M., Corman, V., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751","Munster, V.J.; Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: munstervj@niaid.nih.gov",,"Frontiers Media S.A.",16643224,,,,"English","Front. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85041921699 "van Beurden S.J., Berends A.J., Krämer-Kühl A., Spekreijse D., Chenard G., Philipp H.-C., Mundt E., Rottier P.J.M., Verheije M.H.","36060522500;57194493485;55668059700;36158829700;7801425522;14042281700;7004238027;7006145490;7801561319;","Recombinant live attenuated avian coronavirus vaccines with deletions in the accessory genes 3ab and/or 5ab protect against infectious bronchitis in chickens",2018,"Vaccine","36","8",,"1085","1092",,8,"10.1016/j.vaccine.2018.01.017","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040693684&doi=10.1016%2fj.vaccine.2018.01.017&partnerID=40&md5=e425379985b15fcb8f1f2095d169801d","Utrecht University, Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht, Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department Infectious Diseases and Immunology, Virology Division, Utrecht, Netherlands; Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Boehringer Ingelheim Animal Health Operations BV, Weesp, Netherlands","van Beurden, S.J., Utrecht University, Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht, Netherlands; Berends, A.J., Utrecht University, Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht, Netherlands; Krämer-Kühl, A., Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Spekreijse, D., Boehringer Ingelheim Animal Health Operations BV, Weesp, Netherlands; Chenard, G., Boehringer Ingelheim Animal Health Operations BV, Weesp, Netherlands; Philipp, H.-C., Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Mundt, E., Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Rottier, P.J.M., Utrecht University, Faculty of Veterinary Medicine, Department Infectious Diseases and Immunology, Virology Division, Utrecht, Netherlands; Verheije, M.H., Utrecht University, Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht, Netherlands","Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens, causing severe economic losses in poultry industry worldwide. Live attenuated viruses are widely used in both the broiler and layer industry because of their efficacy and ability to be mass applied. Recently, we established a novel reverse genetics system based on targeted RNA recombination to manipulate the genome of IBV strain H52. Here we explore the possibilities to attenuate IBV in a rational way in order to generate safe and effective vaccines against virulent IBV (van Beurden et al., 2017). To this end, we deleted the nonessential group-specific accessory genes 3 and/or 5 in the IBV genome by targeted RNA recombination and selected the recombinant viruses in embryonated eggs. The resulting recombinant (r) rIBV-Δ3ab, rIBV-Δ5ab, and rIBV-Δ3ab5ab could be rescued and grew to the same virus titer as recombinant and wild type IBV strain H52. Thus, genes 3ab and 5ab are not essential for replication in ovo. When administered to one-day-old chickens, rIBV-Δ3ab, rIBV-Δ5ab, and rIBV-Δ3ab5ab showed reduced ciliostasis as compared to rIBV H52 and wild type H52, indicating that the accessory genes contribute to the pathogenicity of IBV. After homologous challenge with the virulent IBV strain M41, all vaccinated chickens were protected against disease based on reduced loss of ciliary movement in the trachea compared to the non-vaccinated but challenged controls. Taken together, deletion of accessory genes 3ab and/or 5ab in IBV resulted in mutant viruses with an attenuated phenotype and the ability to induce protection in chickens. Hence, targeted RNA recombination based on virulent IBV provides opportunities for the development of a next generation of rationally designed live attenuated IBV vaccines. © 2018 The Authors","Accessory genes; Chicken; Coronavirus; Infectious bronchitis virus; Live attenuated virus; Recombinant vaccine","avian infectious bronchitis virus vaccine; unclassified drug; virus vaccine; live vaccine; recombinant vaccine; virus RNA; virus vaccine; accessory gene 3ab; accessory gene 5ab; animal cell; animal experiment; animal tissue; Article; avian infectious bronchitis; Avian infectious bronchitis virus; controlled study; embryo; gene deletion; in vivo study; Leghorn chicken; mouse; nonhuman; priority journal; protection; vaccination; virogenesis; virus gene; virus genome; virus mutant; virus recombinant; virus strain; virus virulence; wild type; animal; bird disease; chick embryo; chicken; Coronavirus infection; gene deletion; genetics; immunology; veterinary medicine; virology; virus load; Animals; Chick Embryo; Chickens; Coronavirus Infections; Gene Deletion; Infectious bronchitis virus; Poultry Diseases; RNA, Viral; Vaccines, Attenuated; Vaccines, Synthetic; Viral Load; Viral Vaccines","de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Family coronaviridae (2012) Ninth report of the international committee on taxonomy of viruses, , Elsevier Oxford; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet Res, 38 (2), pp. 281-297; Cook, J.K., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol, 41 (3), pp. 239-250; Bijlenga, G., Cook, J.K., Gelb, J., Jr, de Wit, J.J., Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review (2004) Avian Pathol, 33 (6), pp. 550-557; Sjaak de Wit, J.J., Cook, J.K., van der Heijden, H.M., Infectious bronchitis virus variants: a review of the history, current situation and control measures (2011) Avian Pathol, 40 (3), pp. 223-235; Britton, P., Evans, S., Dove, B., Davies, M., Casais, R., Cavanagh, D., Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection (2005) J Virol Methods, 123 (2), pp. 203-211; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J Virol, 75 (24), pp. 12359-12369; Fang, S., Chen, B., Tay, F.P., Ng, B.S., Liu, D.X., An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells (2007) Virology, 358 (1), pp. 136-147; Youn, S., Leibowitz, J.L., Collisson, E.W., In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication (2005) Virology, 332 (1), pp. 206-215; Zhou, Y.S., Zhang, Y., Wang, H.N., Fan, W.Q., Yang, X., Zhang, A.Y., Establishment of reverse genetics system for infectious bronchitis virus attenuated vaccine strain H120 (2013) Vet Microbiol, 162 (1), pp. 53-61; Geilhausen, H.E., Ligon, F.B., Lukert, P.D., The pathogenesis of virulent and avirulent avian infectious bronchitis virus (1973) Arch Gesamte Virusforsch, 40 (3), pp. 285-290; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J Virol, 77 (16), pp. 9084-9089; Armesto, M., Evans, S., Cavanagh, D., Abu-Median, A.B., Keep, S., Britton, P., A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype (2011) PLoS One, 6 (8), p. e24352; Armesto, M., Cavanagh, D., Britton, P., The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity (2009) PLoS One, 4 (10), p. e7384; van Beurden, S.J., Berends, A.J., Kramer-Kuhl, A., Spekreijse, D., Chenard, G., Philipp, H.C., A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination (2017) Virol J, 14 (1). , 109,017-0775-8; Casais, R., Davies, M., Cavanagh, D., Britton, P., Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication (2005) J Virol, 79 (13), pp. 8065-8078; Hodgson, T., Britton, P., Cavanagh, D., Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication (2006) J Virol, 80 (1), pp. 296-305; Brooks, J.E., Rainer, A.C., Parr, R.L., Woolcock, P., Hoerr, F., Collisson, E.W., Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes (2004) Virus Res, 100 (2), pp. 191-198; Kint, J., Fernandez-Gutierrez, M., Maier, H.J., Britton, P., Langereis, M.A., Koumans, J., Activation of the chicken type I interferon response by infectious bronchitis coronavirus (2015) J Virol, 89 (2), pp. 1156-1167; Kint, J., Dickhout, A., Kutter, J., Maier, H.J., Britton, P., Koumans, J., Infectious bronchitis coronavirus inhibits STAT1 signaling and requires accessory proteins for resistance to Type I interferon activity (2015) J Virol, 89 (23), pp. 12047-12057; Kint, J., Langereis, M.A., Maier, H.J., Britton, P., van Kuppeveld, F.J., Koumans, J., Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b (2016) J Virol, 90 (16), pp. 7519-7528; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J Virol, 78 (8), pp. 3863-3871; de Haan, C.A., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296 (1), pp. 177-189; Ortego, J., Sola, I., Almazan, F., Ceriani, J.E., Riquelme, C., Balasch, M., Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence (2003) Virology, 308 (1), pp. 13-22; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J Virol, 79 (23), pp. 14909-14922; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier (2000) J Virol, 74 (3), pp. 1393-1406; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Hygiene, 27 (493), pp. 493-497; Koch, G., Hartog, L., Kant, A., van Roozelaar, D.J., Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions (1990) J Gen Virol, 71, pp. 1929-1935; De Wit, J.J., Koch, G., Kant, A., Van Roozelaar, D.J., Detection by immunofluorescent assay of serotype-specific and group-specific antigens of infectious bronchitis virus in tracheas of broilers with respiratory problems (1995) Avian Pathol, 24 (3), pp. 465-474; Dalton, K., Casais, R., Shaw, K., Stirrups, K., Evans, S., Britton, P., cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging (2001) J Virol, 75 (1), pp. 125-133; Williams, A.K., Wang, L., Sneed, L.W., Collisson, E.W., Analysis of a hypervariable region in the 3' non-coding end of the infectious bronchitis virus genome (1993) Virus Res, 28 (1), pp. 19-27; Karpala, A.J., Bagnaud-Baule, A., Goossens, K.E., Lowenthal, J.W., Bean, A.G., Ontogeny of the interferon system in chickens (2012) J Reprod Immunol, 94 (2), pp. 169-174; Sekellick, M.J., Biggers, W.J., Marcus, P.I., Development of the interferon system. I. In chicken cells development in ovo continues on time in vitro (1990) In Vitro Cell Dev Biol, 26 (10), pp. 997-1003","Verheije, M.H.; Utrecht University, Faculty Veterinary Medicine, Department Pathobiology, Pathology Division, Yalelaan 1, 3584 CL Utrecht, Netherlands; email: m.h.verheije@uu.nl",,"Elsevier Ltd",0264410X,,VACCD,"29366709","English","Vaccine",Article,"Final",Open Access,Scopus,2-s2.0-85040693684 "Rappe J.C.F., de Wilde A., Di H., Müller C., Stalder H., V'kovski P., Snijder E., Brinton M.A., Ziebuhr J., Ruggli N., Thiel V.","56768031900;24474438300;55323288900;56651517200;7103223413;55807132400;7006058325;7004849890;7003783935;6603119767;35238592100;","Antiviral activity of K22 against members of the order Nidovirales",2018,"Virus Research","246",,,"28","34",,2,"10.1016/j.virusres.2018.01.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041478614&doi=10.1016%2fj.virusres.2018.01.002&partnerID=40&md5=00ee1184256186f64b83da519586f4ed","Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland; Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Department of Biology, Georgia State University, 623 Petit Science Center, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States; Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Francis Crick Institute, London, United Kingdom","Rappe, J.C.F., Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland, Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland, Francis Crick Institute, London, United Kingdom; de Wilde, A., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Di, H., Department of Biology, Georgia State University, 623 Petit Science Center, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States; Müller, C., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Stalder, H., Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland, Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland; V'kovski, P., Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland, Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland; Snijder, E., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Brinton, M.A., Department of Biology, Georgia State University, 623 Petit Science Center, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States; Ziebuhr, J., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Ruggli, N., Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland, Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland; Thiel, V., Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland, Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland","Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 μM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication. © 2018 The Authors","Antiviral drug; Double membrane vesicles; K22; Nidoviruses; Replication organelles","antivirus agent; double stranded RNA; k 22; unclassified drug; virus RNA; antivirus agent; benzamide derivative; double stranded RNA; piperidine derivative; virus RNA; antiviral activity; Arteriviridae; Article; cell proliferation; cell viability; concentration response; Equine arteritis virus; equine torovirus; human; Nidovirales; nonhuman; Porcine reproductive and respiratory syndrome virus; priority journal; Simian hemorrhagic fever virus; Torovirinae; virus replication; virus strain; White bream virus; animal; antagonists and inhibitors; Arterivirus; biosynthesis; carp; cell line; Chlorocebus aethiops; Coronaviridae; drug effect; epithelium cell; genetics; growth, development and aging; Mesocricetus; metabolism; Torovirus; virology; virus replication; Animals; Antiviral Agents; Arteritis Virus, Equine; Arterivirus; Benzamides; Carps; Cell Line; Cercopithecus aethiops; Coronaviridae; Epithelial Cells; Mesocricetus; Piperidines; Porcine respiratory and reproductive syndrome virus; RNA, Double-Stranded; RNA, Viral; Torovirus; Virus Replication","Ahlquist, P., Noueiry, A.O., Lee, W.M., Kushner, D.B., Dye, B.T., Host factors in positive-strand RNA virus genome replication (2003) J. Virol., 77 (15), pp. 8181-8186; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) mBio, 4 (4); Angelini, M.M., Neuman, B.W., Buchmeier, M.J., Untangling membrane rearrangement in the nidovirales (2014) DNA Cell Biol., 33 (3), pp. 122-127; Avila-Perez, G., Rejas, M.T., Rodriguez, D., Ultrastructural characterization of membranous torovirus replication factories (2016) Cell. Microbiol., 8 (12), pp. 1691-1708; Baliji, S., Cammer, S.A., Sobral, B., Baker, S.C., Detection of nonstructural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches (2009) J. Virol., 83 (13), pp. 6957-6962; Blanck, S., Ziebuhr, J., Proteolytic processing of mesonivirus replicase polyproteins by the viral 3C-like protease (2016) J. Gen. Virol., 97 (6), pp. 1439-1445; Blanck, S., Stinn, A., Tsiklauri, L., Zirkel, F., Junglen, S., Ziebuhr, J., Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases (2014) J. Virol., 88 (23), pp. 13747-13758; Cowley, J.A., Dimmock, C.M., Walker, P.J., Gill-associated nidovirus of Penaeus monodon prawns transcribes 3'-coterminal subgenomic mRNAs that do not possess 5'-leader sequences (2002) J. Gen. Virol., 83, pp. 927-935; De Vries, A.A., Horzinek, M.C., Rottier, P.J., De Groot, R.J., The genome organization of the Nidovirales: similarities and differences between arteri- toro-, and coronaviruses (1997) Semin. Virol., 8, pp. 33-47; Dennis, D.E., Brian, D.A., Coronavirus cell-associated RNA-dependent RNA polymerase (1981) Adv. Exp. Med. Biol., 142, pp. 155-170; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, M.J., Cyclosporin A inhibits the replication of diverse coronaviruses (2011) J. Gen. Virol., 92, pp. 2542-2548; de Wilde, A.H., Li, Y., van der Meer, Y., Vuagniaux, G., Lysek, R., Fang, Y., Snijder, E.J., van Hemert, M.J., Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis (2013) J. Virol., 87 (3), pp. 1454-1464; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; den Boon, J.A., Ahlquist, P., Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories (2010) Annu. Rev. Microbiol., 64, pp. 241-256; Faisal, M., Baird, A., Winters, A.D., Millard, E.V., Marcquenski, S., Hsu, H.M., Hennings, A., Warg, J., Isolation of the fathead minnow nidovirus from muskellunge experiencing lingering mortality (2016) J. Aquat. Anim. Health, 28 (2), pp. 131-141; Firth, A.E., Brierley, I., Non-canonical translation in RNA viruses (2012) J. Gen. Virol., 93, pp. 1385-1409; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res., 117 (1), pp. 17-37; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76 (8), pp. 3697-3708; Hagemeijer, M.C., Monastyrska, I., Griffith, J., van der Sluijs, P., Voortman, J., van Bergen en Henegouwen, P.M., Vonk, A.M., de Haan, C.A., Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 (2014) Virology, 458-459, pp. 125-135; Junglen, S., Kurth, A., Kuehl, H., Quan, P.L., Ellerbrok, H., Pauli, G., Nitsche, A., Leendertz, F.H., Examining landscape factors influencing relative distribution of mosquito genera and frequency of virus infection (2009) EcoHealth, 6 (2), pp. 239-249; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6 (9), p. e226; Knoops, K., Barcena, M., Limpens, R.W., Koster, A.J., Mommaas, A.M., Snijder, E.J., Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis (2012) J. Virol., 86 (5), pp. 2474-2487; Koonin, E.V., The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses (1991) J. Gen. Virol., 72, pp. 2197-2206; Lauber, C., Goeman, J.J., Parquet Mdel, C., Nga, P.T., Snijder, E.J., Morita, K., Gorbalenya, A.E., The footprint of genome architecture in the largest genome expansion in RNA viruses (2013) PLoS Pathog., 9 (7), p. e1003500; Lehmann, K.C., Snijder, E.J., Posthuma, C.C., Gorbalenya, A.E., What we know but do not understand about nidovirus helicases (2015) Virus Res., 202, pp. 12-32; Lehmann, K.C., Gorbalenya, A.E., Snijder, E.J., Posthuma, C.C., Arterivirus RNA-dependent RNA polymerase: vital enzymatic activity remains elusive (2016) Virology, 487, pp. 68-74; Lundin, A., Dijkman, R., Bergstrom, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Trybala, E., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog., 10 (5), p. e1004166; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., Britton, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) mBio, 4 (5), pp. e00801-e00813; Metwally, S., Mohamed, F., Faaberg, K., Burrage, T., Prarat, M., Moran, K., Bracht, A., Carrillo, C., Pathogenicity and molecular characterization of emerging porcine reproductive and respiratory syndrome virus in Vietnam in 2007 (2010) Transbound. Emerg. Dis., 57 (5), pp. 315-329; Nedialkova, D.D., Ulferts, R., van den Born, E., Lauber, C., Gorbalenya, A.E., Ziebuhr, J., Snijder, E.J., Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease (2009) J. Virol., 83 (11), pp. 5671-5682; Neufeldt, C.J., Joyce, M.A., Van Buuren, N., Levin, A., Kirkegaard, K., Gale, M., Jr., Tyrrell, D.L., Wozniak, R.W., The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites (2016) PLoS Pathog., 12 (2), p. e1005428; Nga, P.T., Parquet Mdel, C., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Thuy, N.T., Gorbalenya, A.E., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) PLoS Pathog., 7 (9), p. e1002215; Orenstein, J.M., Banach, B., Baker, S.C., Morphogenesis of coronavirus HCoV-NL63 in cell culture: a transmission electron microscopic study (2008) Open Infect. Dis. J., 2, pp. 52-58; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: how to make sense…? (2006) J. Gen. Virol., 87, pp. 1403-1421; Pedersen, K.W., van der Meer, Y., Roos, N., Snijder, E.J., Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex (1999) J. Virol., 73 (3), pp. 2016-2026; Pfefferle, S., Schopf, J., Kogl, M., Friedel, C.C., Muller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog., 7 (10), p. e1002331; Posthuma, C.C., Pedersen, K.W., Lu, Z., Joosten, R.G., Roos, N., Zevenhoven-Dobbe, J.C., Snijder, E.J., Formation of the arterivirus replication/transcription complex: a key role for nonstructural protein 3 in the remodeling of intracellular membranes (2008) J. Virol., 82 (9), pp. 4480-4491; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints 1 2 (1938) Am. J. Epidemiol., 27 (3), pp. 493-497; Romero-Brey, I., Bartenschlager, R., Viral infection at high magnification: 3D electron microscopy methods to analyze the architecture of infected cells (2015) Viruses, 7 (12), pp. 6316-6345; Salonen, A., Ahola, T., Kaariainen, L., Viral RNA replication in association with cellular membranes (2005) Curr. Top. Microbiol. Immunol., 285, pp. 139-173; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J. Virol., 81 (1), pp. 20-29; Schutze, H., Ulferts, R., Schelle, B., Bayer, S., Granzow, H., Hoffmann, B., Mettenleiter, T.C., Ziebuhr, J., Characterization of White bream virus reveals a novel genetic cluster of nidoviruses (2006) J. Virol., 80 (23), pp. 11598-11609; Schwartz, M., Chen, J., Lee, W.M., Janda, M., Ahlquist, P., Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (31), pp. 11263-11268; Seybert, A., van Dinten, L.C., Snijder, E.J., Ziebuhr, J., Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases (2000) J. Virol., 74 (20), pp. 9586-9593; Smits, S.L., van Vliet, A.L., Segeren, K., el Azzouzi, H., van Essen, M., de Groot, R.J., Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter (2005) J. Virol., 79 (13), pp. 8275-8281; Snijder, E.J., Horzinek, M.C., Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily (1993) J. Gen. Virol., 74, pp. 2305-2316; Snijder, E.J., Meulenberg, J.J., The molecular biology of arteriviruses (1998) J. Gen. Virol., 79, pp. 961-979; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J. Virol., 80 (12), pp. 5927-5940; Sun, M.X., Huang, L., Wang, R., Yu, Y.L., Li, C., Li, P.P., Hu, X.C., Mao, X., Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication (2012) Autophagy, 8 (10), pp. 1434-1447; Tanaka, Y., Sato, Y., Osawa, S., Inoue, M., Tanaka, S., Sasaki, T., Suppression of feline coronavirus replication in vitro by cyclosporin A (2012) Vet. Res., 43, p. 41; Ulferts, R., Ziebuhr, J., Nidovirus ribonucleases: structures and functions in viral replication (2011) RNA Biol., 8 (2), pp. 295-304; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) PLoS Pathog., 4 (5), p. e1000054; van Marle, G., Dobbe, J.C., Gultyaev, A.P., Luytjes, W., Spaan, W.J., Snijder, E.J., Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences (1999) Proc. Natl. Acad. Sci. U. S. A., 96 (21), pp. 12056-12061; van Vliet, A.L., Smits, S.L., Rottier, P.J., de Groot, R.J., Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus (2002) EMBO J., 21 (23), pp. 6571-6580; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res., 220, pp. 70-90; Vasilakis, N., Guzman, H., Firth, C., Forrester, N.L., Widen, S.G., Wood, T.G., Rossi, S.L., Tesh, R.B., Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range (2014) Virol. J., 11, p. 97; Wernery, U., Lau, S.K., Woo, P.C., Genomics and zoonotic infections: Middle East respiratory syndrome (2016) Rev. Sci. Tech., 35 (1), pp. 191-202; Wickramasinghe, I.N., de Vries, R.P., Grone, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J. Virol., 85 (17), pp. 8903-8912; Wood, O., Tauraso, N., Liebhaber, H., Electron microscopic study of tissue cultures infected with simian haemorrhagic fever virus (1970) J. Gen. Virol., 7 (2), pp. 129-136; Zeng, C., Wu, A., Wang, Y., Xu, S., Tang, Y., Jin, X., Wang, S., Guo, D., Identification and characterization of a ribose 2'-O-methyltransferase encoded by the ronivirus branch of nidovirales (2016) J. Virol., 90 (15), pp. 6675-6685; Ziebuhr, J., Siddell, S.G., Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab (1999) J. Virol., 73 (1), pp. 177-185; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879; Zirkel, F., Kurth, A., Quan, P.L., Briese, T., Ellerbrok, H., Pauli, G., Leendertz, F.H., Junglen, S., An insect nidovirus emerging from a primary tropical rainforest (2011) mBio, 2 (3). , (e00077–e00011); Zirkel, F., Roth, H., Kurth, A., Drosten, C., Ziebuhr, J., Junglen, S., Identification and characterization of genetically divergent members of the newly established family Mesoniviridae (2013) J. Virol., 87 (11), pp. 6346-6358","Thiel, V.; Institute for Virology and Immunology IVISwitzerland; email: volker.thiel@vetsuisse.unibe.ch",,"Elsevier B.V.",01681702,,VIRED,"29337162","English","Virus Res.",Article,"Final",Open Access,Scopus,2-s2.0-85041478614 "Wacharapluesadee S., Duengkae P., Chaiyes A., Kaewpom T., Rodpan A., Yingsakmongkon S., Petcharat S., Phengsakul P., Maneeorn P., Hemachudha T.","6602950054;35329412300;57200915123;55235040000;36648094900;12785678600;55022689900;56730859100;56609209700;7007163205;","Longitudinal study of age-specific pattern of coronavirus infection in Lyle's flying fox (Pteropus lylei) in Thailand",2018,"Virology Journal","15","1", 38,"","",,1,"10.1186/s12985-018-0950-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042584759&doi=10.1186%2fs12985-018-0950-6&partnerID=40&md5=5667da6f97958f277dee8915512266e3","Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Faculty of Forestry, Kasetsart University, Bangkok, Thailand; Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand","Wacharapluesadee, S., Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Duengkae, P., Faculty of Forestry, Kasetsart University, Bangkok, Thailand; Chaiyes, A., Faculty of Forestry, Kasetsart University, Bangkok, Thailand; Kaewpom, T., Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Rodpan, A., Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Yingsakmongkon, S., Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand; Petcharat, S., Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Phengsakul, P., Faculty of Forestry, Kasetsart University, Bangkok, Thailand; Maneeorn, P., Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand; Hemachudha, T., Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand","Background: Bats are natural reservoirs for several highly pathogenic and novel viruses including coronaviruses (CoVs) (mainly Alphacoronavirus and Betacoronavirus). Lyle's flying fox (Pteropus lylei)'s roosts and foraging sites are usually in the proximity to humans and animals. Knowledge about age-specific pattern of CoV infection in P. lylei, prevalence, and viral shedding at roosts and foraging sites may have an impact on infection-age-structure model to control CoV outbreak. Methods: P. lylei bats were captured monthly during January-December 2012 for detection of CoV at three areas in Chonburi province; two human dwellings, S1 and S2, where few fruit trees were located with an open pig farm, 0.6 km and 5.5 km away from the bat roost, S3. Nested RT-PCR of RNA-dependent RNA polymerase (RdRp) gene from rectal swabs was used for CoV detection. The strain of CoV was confirmed by sequencing and phylogenetic analysis. Results: CoV infection was found in both juveniles and adult bats between May and October (January, in adults only and April, in juveniles only). Of total rectal swab positives (68/367, 18.5%), ratio was higher in bats captured at S1 (11/44, 25.0%) and S2 (35/99, 35.4%) foraging sites than at roost (S3) (22/224, 9.8%). Juveniles (forearm length ≤ 136 mm) were found with more CoV infection than adults at all three sites; S1 (9/24, 37.5% vs 2/20, 10%), S2 (22/49, 44.9% vs 13/50, 26.0%), and S3 (10/30, 33.3% vs 12/194, 6.2%). The average BCI of CoV infected bats was significantly lower than uninfected bats. No gender difference related to infection was found at the sites. Phylogenetic analysis of conserved RdRp gene revealed that the detected CoVs belonged to group D betacoronavirus (n = 64) and alphacoronavirus (n = 4). Conclusions: The fact that CoV infection and shedding was found in more juvenile than adult bats may suggest transmission from mother during peripartum period. Whether viral reactivation during parturition period or stress is responsible in maintaining transmission in the bat colony needs to be explored. © 2018 The Author(s).","Chiroptera; Coronavirus; Pteropus; Thailand","RNA directed RNA polymerase; virus RNA; adult; age; Alphacoronavirus; Article; Betacoronavirus; controlled study; Coronavirinae; Coronavirus infection; female; foraging; juvenile animal; longitudinal study; male; nonhuman; phylogeny; Pteropus; Pteropus lylei; RdRp gene; reverse transcription polymerase chain reaction; seasonal variation; sequence analysis; sex difference; Thailand; virus detection; virus shedding; virus strain; animal; animal disease; bat; Coronavirinae; Coronavirus infection; genetics; prevalence; veterinary medicine; virology; virus genome; Age Factors; Animal Diseases; Animals; Chiroptera; Coronavirus; Coronavirus Infections; Female; Genome, Viral; Longitudinal Studies; Male; Phylogeny; Prevalence; RNA, Viral; Thailand; Virus Shedding","Adams, M.J., Carstens, E.B., Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2012) Arch Virol, 157, pp. 1411-1422. , 1:CAS:528:DC%2BC38XptlamsL8%3D 22481600; Woo, P.C., Sk, L., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , 1:CAS:528:DC%2BC38XktlOrsr8%3D 22278237 3302495; De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Family Coronaviridae (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-820. , A.M.Q. King E. Lefkowitz M.J. Adams E.B. Carstens (eds) Elsevier Amsterdam; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir Res, 101, pp. 45-56. , 1:CAS:528:DC%2BC3sXhvFyksrnP 24184128; Chan, J.F., Li, K.S., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoVEMC) the beginning of another SARS-like pandemic? (2012) J Inf Secur, 65, pp. 477-489. , To KK; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81, pp. 1574-1585. , 1:CAS:528:DC%2BD2sXhslKjsr0%3D 17121802; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699. , 24050621 3810765; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8 (2). , e00373-17 28377531 5380844; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045. , 1:CAS:528:DC%2BD2MXhtVOqsbbO 16169905 1236580; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , 1:CAS:528:DC%2BD2MXhtFChsLjO 16195424; Tong, S., Conrardy, C., Ruone, S., Kuzmin, I.V., Guo, X., Tao, Y., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg Infect Dis, 15, pp. 482-485. , 19239771 2681120; Razanajatovo, N.H., Nomenjanahary, L.A., Wilkinson, D.A., Razafimanahaka, J.H., Goodman, S.M., Jenkins, R.K., Detection of new genetic variants of Betacoronaviruses in endemic frugivorous bats of Madagascar (2015) Virol J, 12, p. 42. , 25888853 4404003; Lau, S.K., Poon, R.W., Wong, B.H., Wang, M., Huang, Y., Xu, H., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J Virol, 84, pp. 11385-11394. , 1:CAS:528:DC%2BC3cXhsVeisbzN 20702646 2953156; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg Infect Dis, 16, pp. 1217-1223. , 1:CAS:528:DC%2BC3cXhtVOnsbnE 20678314 3298303; Tsuda, S., Watanabe, S., Masangkay, J.S., Mizutani, T., Alviola, P., Ueda, N., Genomic and serological detection of bat coronavirus from bats in the Philippines (2012) Arch Virol, 157, pp. 2349-2355. , 1:CAS:528:DC%2BC38Xhslanu73P 22833101; Anthony, S.J., Epstein, J.H., Murray, K.A., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Solovyov, A., A strategy to estimate unknown viral diversity in mammals (2013) MBio, 4. , e00598-13 24003179 3760253; Wacharapluesadee, S., Duengkae, P., Rodpan, A., Kaewpom, T., Maneeorn, P., Kanchanasaka, B., Diversity of coronavirus in bats from eastern Thailand (2015) Virol J, 12, p. 57. , 25884446 4416284; Karnpun, S., Wongwai, A., Soisook, P., (2016) Cave-dwelling Bats of Thailand, , Wildlife Research Section, Department of National Parks Wildlife and Plant Conservation Bangkok; Wacharapluesadee, S., Sintunawa, C., Kaewpom, T., Khongnomnan, K., Olival, K.J., Epstein, J.H., Group C betacoronavirus in bat guano fertilizer, Thailand (2013) Emerg Infect Dis, 19, pp. 1349-1351. , 1:CAS:528:DC%2BC2cXhslaksrfN 23880503 3739538; Ma, G., Puechmaille, S.J., Gonzalez, J.P., Teeling, E., Kittayapong, P., Manuguerra, J.C., SARS-coronavirus ancestor's foot-prints in south-east Asian bat colonies and the refuge theory (2011) Infect Genet Evol, 11, pp. 1690-1702; Wacharapluesadee, S., Lumlertdacha, B., Boongird, K., Wanghongsa, S., Chanhome, L., Rollin, P., Bat Nipah virus, Thailand (2005) Emerg Infect Dis, 11, pp. 1949-1951. , 16485487 3367639; Wacharapluesadee, S., Boongird, K., Wanghongsa, S., Ratanasetyuth, N., Supavonwong, P., Saengsen, D., A longitudinal study of the prevalence of Nipah virus in Pteropus Lylei bats in Thailand: Evidence for seasonal preference in disease transmission (2010) Vector Borne Zoonotic Dis, 10, pp. 183-190. , 19402762; Bumrungsri, S., Suyanto, A., Francis, C., Pteropus lylei (2008) The IUCN Red List of Threatened Species, , https://doi.org/10.2305/IUCN.UK.2008.RLTS.T18734A8513517.en, Accessed 12 Nov 2017; Wacharapluesadee, S., Olival, K.J., Kanchanasaka, B., Duengkae, P., Kaewchot, S., Srongmongkol, P., Surveillance for Ebola virus in wildlife, Thailand (2015) Emerg Infect Dis, 21, pp. 2271-2273. , 26584224 4672430; Osborne, C., Cryan, P.M., O'Shea, T.J., Oko, L.M., Ndaluka, C., Calisher, C.H., Alphacoronaviruses in new world bats: Prevalence, persistence, phylogeny, and potential for interaction with humans (2011) PLoS One, 6. , e19156 1:CAS:528:DC%2BC3MXmtlKlur4%3D 21589915 3093381; Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res, 30, pp. 3059-3066. , 1:CAS:528:DC%2BD38XlslOqu7s%3D 12136088 135756; Silvestro, D., Michalak, I., RaxmlGUI: A graphical front-end for RAxML (2012) Org Divers Evol, 12, pp. 335-337; Rambaut, A., (2014) FigTree Tree Figure Drawing Tool, , http://tree.bio.ed.ac.uk/software/figtree/, Version 1.4.2 Accessed 12 Nov 2017; Wanghongsa, S., Boongird, K., On the population number and distribution of Lyle's flying fox (Pteropus lylei) in central plain (2003) Wildlife Research Section Annual Report. Department of National Parks Wildlife and Plant Conservation, pp. 89-100. , Bangkok; Weber, N., Duengkae, P., Fahr, J., Dechmann, D.K., Phengsakul, P., Khumbucha, W., High-resolution GPS tracking of Lyle's flying fox between temples and orchards in central Thailand (2015) J Wildl Manag, 79, pp. 957-968; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439. , 1:CAS:528:DC%2BD2sXhtFeitbzE 17617433; Chu, D.K., Poon, L.L., Chan, K.H., Chen, H., Guan, Y., Yuen, K.Y., Peiris, J.S., Coronaviruses in bent-winged bats (Miniopterus spp.) (2006) J Gen Virol, 87, pp. 2461-2466. , 1:CAS:528:DC%2BD28Xoslajsrg%3D 16894183; Gloza-Rausch, F., Ipsen, A., Seebens, A., Göttsche, M., Panning, M., Drexler, J.F., Detection and prevalence patterns of group i coronaviruses in bats, northern Germany (2008) Emerg Infect Dis, 14, pp. 626-631. , 18400147 2570906; Lau, S.K., Li, K.S., Tsang, A.K., Shek, C.T., Wang, M., Choi, G.K., Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: First evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J Virol, 86, pp. 11906-11918. , 1:CAS:528:DC%2BC38XhsFCmurrP 22933277 3486284","Wacharapluesadee, S.; Thai Red Cross Emerging Infectious Diseases, Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn UniversityThailand; email: spwa@hotmail.com",,"BioMed Central Ltd.",1743422X,,,"29463282","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85042584759 "Chafekar A., Fielding B.C.","57200988869;7006525584;","MERS-CoV: Understanding the latest human coronavirus threat",2018,"Viruses","10","2", 93,"","",,18,"10.3390/v10020093","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042790024&doi=10.3390%2fv10020093&partnerID=40&md5=ac9ce9cb75e5b5dda56e2c33fd0ba8cf","Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa","Chafekar, A., Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa; Fielding, B.C., Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, Bellville, 7535, South Africa","Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012, a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure; (ii) clinical features; (iii) diagnosis of infection; and (iv) treatment and vaccine development. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Clinical features; Human coronavirus; Lower respiratory tract infections; MERS-CoV; Respiratory viruses; Upper respiratory tract infections","DNA vaccine; immunoglobulin enhancer binding protein; interferon; live vaccine; nanoparticle; neutralizing antibody; nucleocapsid protein; phosphodiesterase; subunit vaccine; antivirus agent; vaccine; viral protein; brain hemorrhage; chronic kidney failure; chronic lung disease; clinical feature; computer assisted tomography; disease transmission; gene mutation; gene overexpression; human; immune response; immunofluorescence test; innate immunity; loop mediated isothermal amplification; lower respiratory tract infection; Middle East respiratory syndrome coronavirus; molecular clock; nonhuman; respiratory failure; reverse transcription polymerase chain reaction; Review; SARS coronavirus; signal transduction; structure analysis; technology; thorax radiography; thrombocytopenia; upper respiratory tract infection; virus replication; animal; Coronavirus infection; disease model; genetics; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; pathogenicity; respiratory tract infection; transmission; virology; virus genome; Animals; Antiviral Agents; Coronavirus Infections; Disease Models, Animal; Genome, Viral; Humans; Middle East Respiratory Syndrome Coronavirus; Respiratory Tract Infections; Vaccines; Viral Proteins","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; (2016), http://www.who.int/emergencies/mers-cov/en/, accessed on 23 May; Gautret, P., Middle East Respiratory Syndrome (MERS) coronavirus. What travel health advice should be given to Hajj pilgrims? (2013) Travel Med. Infect. Dis., 11, pp. 263-265; Warnes, S.L., Little, Z.R., Keevil, C.W., Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials (2015) Mbio, 6; Pas, S.D., Koopmans, M.P., Niedrig, M., Clinical implications of and lessons learnt from external assessment of Mers-CoV diagnostics (2016) Expert Rev. Mol. Diagn., 16, pp. 7-9; Bin, S.Y., Heo, J.Y., Song, M.S., Lee, J., Kim, E.H., Park, S.J., Kwon, H.I., Si, Y.J., Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea (2016) Clin. Infect. Dis., 62, pp. 755-760; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Leyten, E., Groeneveld, P., Jansen, C., Thurkow, I., Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014 (2014) Euro Surveill, 19, p. 20817; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3; Wernery, U., El Rasoul, I.H., Wong, E.Y., Joseph, M., Chen, Y., Jose, S., Tsang, A.K., Elizabeth, S.K., A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age (2015) Emerg. Microbes Infect., 4; Smits, S.L., Raj, V.S., Pas, S.D., Reusken, C.B., Mohran, K., Farag, E.A., Al-Romaihi, H.E., Koopmans, M.P., Reliable typing of MERS-CoV variants with a small genome fragment (2015) J. Clin. Virol., 64, pp. 83-87; Wernery, U., Lau, S.K., Woo, P.C., Genomics and zoonotic infections: Middle East respiratory syndrome (2016) Rev. Sci. Tech., 35, pp. 191-202; Lu, R., Wang, Y., Wang, W., Nie, K., Zhao, Y., Su, J., Deng, Y., Wang, H., Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) from the First Imported MERS-CoV Case in China (2015) Genome Announc, p. 3; Kim, Y.J., Cho, Y.J., Kim, D.W., Yang, J.S., Kim, H., Park, S., Han, Y.W., Kim, A.R., Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus KOR/KNIH/002_05_2015, Isolated in South Korea (2015) Genome Announc, 3; Kandeil, A., Shehata, M.M., El Shesheny, R., Gomaa, M.R., Ali, M.A., Kayali, G., Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus Isolated from a Dromedary Camel in Egypt (2016) Genome Announc, 4; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation (2016) Mbio, 7; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Graham, R.L., McAnarney, E.T., Beall, A., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) Mbio, 8, p. 17; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Kim, J.D., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Almazan, F., Dediego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) Mbio, 4; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, pp. 64-70; Garcia-Sastre, A., Biron, C.A., Type 1 interferons and the virus-host relationship: A lesson in detente (2006) Science, 312, pp. 879-882; Garcia-Sastre, A., Antiviral response in pandemic influenza viruses (2006) Emerg. Infect. Dis., 12, pp. 44-47; Randall, R.E., Goodbourn, S., Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J. Gen. Virol., 89, pp. 1-47; Taylor, K.E., Mossman, K.L., Recent advances in understanding viral evasion of type I interferon (2013) Immunology, 138, pp. 190-197; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon (2012) Curr. Opin. Virol., 2, pp. 264-275; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495; Matthews, K.L., Coleman, C.M., Van Der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J. Gen. Virol, 95, pp. 874-882; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin (2015) J. Virol., 89, pp. 10970-10981; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., Van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J. Biol. Chem., 289, pp. 34667-34682; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al Raiy, B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160; Senga, M., Arabi, Y.M., Fowler, R.A., Clinical spectrum of the Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) J. Infect. Public Health, 10, pp. 191-194; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Alsheikh, S., Alsanouri, T., Novel coronavirus infections in Jordan (2012) Epidemiological Findings from a Retrospective Investigation. East. Mediterr. Health J., 19, pp. S12-S18. , April; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., Hajomar, W., Landt, O., Al Shangiti, A., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin. Infect. Dis., 60, pp. 369-377; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., Enouf, V., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 368, pp. 2487-2494; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Memish, Z.A., Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients (2014) Clin. Infect. Dis., 59, pp. 160-165; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., 2014 MERS-CoV outbreak in Jeddah—A link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Kupferschmidt, K., INFECTIOUS DISEASE. Camel vaccine offers hope to stop MERS (2015) Science, 350, p. 1453; Al-Dorzi, H.M., Alsolamy, S., Arabi, Y.M., Critically ill patients with Middle East respiratory syndrome coronavirus infection (2016) Crit. Care, 20, p. 65; Kapoor, M., Pringle, K., Kumar, A., Dearth, S., Liu, L., Lovchik, J., Perez, O., Yeadon-Fagbohun, J., Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States (2014) Clin. Infect. Dis., 59, pp. 1511-1518; Browne, A., St-Onge Ahmad, S., Beck, C.R., Nguyen-Van-Tam, J.S., The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: A systematic review (2016) J. Travel Med., 23; Mohammed, M.S., Khalid, H.S., Muddathir, A.E., El-Tahir, K., Khan, A.A., Algadir, H.A., Osman, W.J., Siddiqui, N.A., Effect of some plants’ extracts used in Sudanese folkloric medicines on carrageenan-induced inflammation (2015) Pak. J. Pharm. Sci, 28, pp. 159-165; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Muth, D., Assiri, A.M., Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection (2016) Clin. Infect. Dis, 62, pp. 477-483; State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans (2013) Plos Curr, 5; Berry, M., Fielding, B.C., Gamieldien, J., Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study (2015) Viruses, 7, pp. 6642-6660; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al Nsour, M., Farag, N.H., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis., 59, pp. 1225-1233; O’Keefe, L.C., Middle East Respiratory Syndrome Coronavirus (2016) Workplace Health Saf; Yan, Y., Li, Q., Sun, X., Ren, Z., He, F., Wang, Y., Wang, L., Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(II) and Cd(II) from wastewater (2015) J. Colloid Interface Sci., 457, pp. 86-95; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr. Opin. Pulm. Med., 20, pp. 233-241; Al-Tawfiq, J.A., Kattan, R.F., Memish, Z.A., Middle East respiratory syndrome coronavirus disease is rare in children: An update from Saudi Arabia (2016) World J. Clin. Pediatr., 5, pp. 391-396; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Alrabiah, F.A., Al Hajjar, S., Albarrak, A., Flemban, H., Alsubaie, S., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr. Infect. Dis. J., 33, pp. 904-906; Zumla, A., Azhar, E.I., Arabi, Y., Alotaibi, B., Rao, M., McCloskey, B., Petersen, E., Maeurer, M., Host-directed therapies for improving poor treatment outcomes associated with the middle east respiratory syndrome coronavirus infections (2015) Int. J. Infect. Dis., 40, pp. 71-74; Pinky, L., Dobrovolny, H.M., Coinfections of the Respiratory Tract: Viral Competition for Resources (2016) Plos ONE, 11; Calvo, C., Garcia-Garcia, M.L., Pozo, F., Paula, G., Molinero, M., Calderon, A., Gonzalez-Esguevillas, M., Casas, I., Respiratory Syncytial Virus Coinfections With Rhinovirus and Human Bocavirus in Hospitalized Children (2015) Medicine, 94; Furuse, Y., Okamoto, M., Oshitani, H., Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015 (2015) Int. J. Infect. Dis., 40, pp. 25-27; Wiwanitkit, V., Critical care medicine for emerging Middle East respiratory syndrome: Which point to be considered? (2015) Indian J. Crit. Care Med., 19, pp. 528-530; Eggers, M., Eickmann, M., Zorn, J., Rapid and Effective Virucidal Activity of Povidone-Iodine Products Against Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Modified Vaccinia Virus Ankara (MVA) (2015) Infect. Dis. Ther., 4, pp. 491-501; Chen, Y., Chan, K.H., Kang, Y., Chen, H., Luk, H., Poon, R.W., Chan, J.F., Lau, S.K., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg. Microbes Infect., 4; Noorwali, A.A., Turkistani, A.M., Asiri, S.I., Trabulsi, F.A., Alwafi, O.M., Alzahrani, S.H., Rashid, M.M., Bawakid, K.O., Descriptive epidemiology and characteristics of confirmed cases of Middle East respiratory syndrome coronavirus infection in the Makkah Region of Saudi Arabia, March to June 2014 (2015) Ann. Saudi Med., 35, pp. 203-209; Bakaletz, L.O., Viral-bacterial co-infections in the respiratory tract (2017) Curr. Opin. Microbiol., 35, pp. 30-35; Kim, J.E., Heo, J.H., Kim, H.O., Song, S.H., Park, S.S., Park, T.H., Ahn, J.Y., Choi, J.P., Neurological Complications during Treatment of Middle East Respiratory Syndrome (2017) J. Clin. Neurol., 13, pp. 227-233; Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Saeed, B.T., Aldabbagh, T., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Al Aidaroos, A.Y., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int. J. Infect. Dis., 29, pp. 301-306; Algahtani, H., Subahi, A., Shirah, B., Neurological Complications of Middle East Respiratory Syndrome Coronavirus: A Report of Two Cases and Review of the Literature (2016) Case Rep. Neurol. Med., 2016, p. 3502683; Cha, R.H., Yang, S.H., Moon, K.C., Joh, J.S., Lee, J.Y., Shin, H.S., Kim, D.K., Kim, Y.S., A Case Report of a Middle East Respiratory Syndrome Survivor with Kidney Biopsy Results (2016) J. Korean Med. Sci., 31, pp. 635-640; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Mathieu, D., Guery, B., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J. Clin. Virol, 61, pp. 275-278; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Junglen, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13, pp. 745-751; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Van Boheemen, S., Bestebroer, T.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Nitsche, A., Assays for laboratory confirmation of novel human coronavirus (HCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol, 94, pp. 1749-1760; Leland, D.S., Ginocchio, C.C., Role of cell culture for virus detection in the age of technology (2007) Clin. Microbiol. Rev., 20, pp. 49-78; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222; Shirato, K., Yano, T., Senba, S., Akachi, S., Kobayashi, T., Nishinaka, T., Notomi, T., Matsuyama, S., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP) (2014) Virol. J., 11, p. 139; Lu, X., Whitaker, B., Sakthivel, S.K., Kamili, S., Rose, L.E., Lowe, L., Mohareb, E., Haddadin, A., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J. Clin. Microbiol, 52, pp. 67-75; Chen, W., He, B., Li, C., Zhang, X., Wu, W., Yin, X., Fan, B., Wang, J., Real-time RT-PCR for H5N1 avian influenza A virus detection (2007) J. Med. Microbiol., 56, pp. 603-607; Pang, X., Lee, B., Chui, L., Preiksaitis, J.K., Monroe, S.S., Evaluation and validation of real-time reverse transcription-pcr assay using the LightCycler system for detection and quantitation of norovirus (2004) J. Clin. Microbiol., 42, pp. 4679-4685; Buller, R.S., Storch, G., Evaluation of a real-time PCR assay using the LightCycler system for detection of parvovirus B19 DNA (2004) J. Clin. Microbiol., 42, pp. 3326-3328; Ke, G.M., Cheng, H.L., Ke, L.Y., Ji, W.T., Chulu, J.L., Liao, M.H., Chang, T.J., Liu, H.J., Development of a quantitative Light Cycler real-time RT-PCR for detection of avian reovirus (2006) J. Virol. Methods, 133, pp. 6-13; Parida, M.M., Rapid and real-time detection technologies for emerging viruses of biomedical importance (2008) J. Biosci., 33, pp. 617-628; Yamaoka, Y., Matsuyama, S., Fukushi, S., Matsunaga, S., Matsushima, Y., Kuroyama, H., Kimura, H., Ryo, A., Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen (2016) Front. Microbiol., 7, p. 509; Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., Ellington, A.D., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) Plos ONE, 10; Abd El Wahed, A., Patel, P., Heidenreich, D., Hufert, F.T., Weidmann, M., Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus (2013) Plos Curr, 5; Song, D., Ha, G., Serhan, W., Eltahir, Y., Yusof, M., Hashem, F., Elsayed, E., Al Muhairi, S., Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels (2015) J. Clin. Microbiol., 53, pp. 1178-1182; Meyer, B., Drosten, C., Muller, M.A., Serological assays for emerging coronaviruses: Challenges and pitfalls (2014) Virus Res, 194, pp. 175-183; Chan, K.H., Chan, J.F., Tse, H., Chen, H., Lau, C.C., Cai, J.P., Tsang, A.K., Lau, S.K., Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) J. Infect, 67, pp. 130-140; Aburizaiza, A.S., Mattes, F.M., Azhar, E.I., Hassan, A.M., Memish, Z.A., Muth, D., Meyer, B., Drosten, C., Investigation of anti-middle East respiratory syndrome antibodies in blood donors and slaughterhouse workers in Jeddah and Makkah, Saudi Arabia, fall 2012 (2014) J. Infect. Dis., 209, pp. 243-246; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Moatasim, Y., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Jiang, S., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J, 10, p. 266; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., Van Beek, J., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis., 20, pp. 552-559; Reusken, C., Mou, H., Godeke, G.J., Van Der Hoek, L., Meyer, B., Muller, M.A., Haagmans, B., Dittmer, U., Specific serology for emerging human coronaviruses by protein microarray (2013) Euro Surveill, 18; Lee, S.H., Baek, Y.H., Kim, Y.H., Choi, Y.K., Song, M.S., Ahn, J.Y., One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV (2016) Front. Microbiol, 7, p. 2166; Go, Y.Y., Kim, Y.S., Cheon, S., Nam, S., Ku, K.B., Kim, M., Cho, N.H., Lin, Y.C., Evaluation and Clinical Validation of Two Field-Deployable Reverse Transcription-Insulated Isothermal PCR Assays for the Detection of the Middle East Respiratory Syndrome-Coronavirus (2017) J. Mol. Diagn, 19, pp. 817-827; Huh, H.J., Kim, J.Y., Kwon, H.J., Yun, S.A., Lee, M.K., Ki, C.S., Lee, N.Y., Kim, J.W., Performance Evaluation of the PowerChek MERS (UpE & ORF1a) Real-Time PCR Kit for the Detection of Middle East Respiratory Syndrome Coronavirus RNA (2017) Ann. Lab. Med., 37, pp. 494-498; Teengam, P., Siangproh, W., Tuantranont, A., Vilaivan, T., Chailapakul, O., Henry, C.S., Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides (2017) Anal. Chem., 89, pp. 5428-5435; Xiu, L., Zhang, C., Wu, Z., Peng, J., Establishment and Application of a Universal Coronavirus Screening Method Using MALDI-TOF Mass Spectrometry (2017) Front. Microbiol., 8, p. 1510; Noh, J.Y., Yoon, S.W., Kim, D.J., Lee, M.S., Kim, J.H., Na, W., Song, D., Kim, H.K., Simultaneous detection of severe acute respiratory syndrome, Middle East respiratory syndrome, and related bat coronaviruses by real-time reverse transcription PCR (2017) Arch. Virol, 162, pp. 1617-1623; Sutton, T.C., Subbarao, K., Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus (2015) Virology, pp. 247-258; Haagmans, B.L., Van Den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., De Waal, L., Verjans, G.M., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135; Raj, V.S., Smits, S.L., Provacia, L.B., Van Den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; De Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Haagmans, B.L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) Plos ONE, 8; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J.M.J., Baric, R.S., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2; De Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Chang, J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16598-16603; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat. Med., 19, pp. 1313-1317; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis, 209, pp. 236-242; Falzarano, D., De Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Nagy, L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) Plos Pathog, 10; Gillim-Ross, L., Subbarao, K., Emerging respiratory viruses: Challenges and vaccine strategies (2006) Clin. Microbiol. Rev., 19, pp. 614-636; Malik, M., Elkholy, A.A., Khan, W., Hassounah, S., Abubakar, A., Minh, N.T., Mala, P., Middle East respiratory syndrome coronavirus: Current knowledge and future considerations (2016) East. Mediterr. Health J., 22, pp. 537-546; Momattin, H., Mohammed, K., Zumla, A., Memish, Z.A., Al-Tawfiq, J.A., Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)—Possible lessons from a systematic review of SARS-CoV therapy (2013) Int. J. Infect. Dis, 17, pp. e792-e798; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study (2014) Lancet Infect. Dis., 14, pp. 1090-1095; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: From discovery to intervention (2017) ONE Health, 3, pp. 11-16; Abba, Y., Hassim, H., Hamzah, H., Noordin, M.M., Antiviral Activity of Resveratrol against Human and Animal Viruses (2015) Adv. Virol., 2015, p. 184241; Campagna, M., Rivas, C., Antiviral activity of resveratrol (2010) Biochem. Soc. Trans., 38, pp. 50-53; Drago, L., Nicola, L., Ossola, F., De Vecchi, E., In vitro antiviral activity of resveratrol against respiratory viruses (2008) J. Chemother., 20, pp. 393-394; Lin, S.C., Ho, C.T., Chuo, W.H., Li, S., Wang, T.T., Lin, C.C., Effective inhibition of MERS-CoV infection by resveratrol (2017) BMC Infect. Dis., 17, p. 144; McBride, R., Van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Nakamura, M., Saito, H., Ikeda, M., Hokari, R., Kato, N., Hibi, T., Miura, S., An antioxidant resveratrol significantly enhanced replication of hepatitis C virus (2010) World J. Gastroenterol., 16, pp. 184-192; Berardi, V., Ricci, F., Castelli, M., Galati, G., Risuleo, G., Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: Potential clinical use (2009) J. Exp. Clin. Cancer Res., 28, p. 96; Shi, Y., Li, Y., Huang, C., Ying, L., Xue, J., Wu, H., Chen, Z., Yang, Z., Resveratrol enhances HBV replication through activating Sirt1-PGC-1alpha-PPARalpha pathway (2016) Sci. Rep., 6, p. 24744; De Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Posthuma, C.C., Snijder, E.J., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13; Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., Hilgenfeld, R., Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs (2003) Science, 300, pp. 1763-1767; Kumar, V., Shin, J.S., Shie, J.J., Ku, K.B., Kim, C., Go, Y.Y., Huang, K.F., Liang, P.H., Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CLPro inhibitors (2017) Antivir. Res., 141, pp. 101-106; Berry, M., Fielding, B., Gamieldien, J., Human coronavirus OC43 3CL protease and the potential of ML188 as a broad-spectrum lead compound: Homology modelling and molecular dynamic studies (2015) BMC Struct. Biol., 15, p. 8; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34, pp. 2982-2987; Kaufmann, S.H., McElrath, M.J., Lewis, D.J., Del Giudice, G., Challenges and responses in human vaccine development (2014) Curr. Opin. Immunol, 28, pp. 18-26; Honda-Okubo, Y., Barnard, D., Ong, C.H., Peng, B.H., Tseng, C.T., Petrovsky, N., Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology (2015) J. Virol., 89, pp. 2995-3007; Enjuanes, L., Dediego, M.L., Alvarez, E., Deming, D., Sheahan, T., Baric, R., Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease (2008) Virus Res, 133, pp. 45-62; Jiang, S., He, Y., Liu, S., SARS vaccine development (2005) Emerg. Infect. Dis., 11, pp. 1016-1020; Marshall, E., Enserink, M., Medicine. Caution urged on SARS vaccines (2004) Science, 303, pp. 944-946; Wang, D., Lu, J., Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV (2004) Physiol. Genom., 18, pp. 245-248; He, Y., Jiang, S., Vaccine design for severe acute respiratory syndrome coronavirus (2005) Viral Immunol, 18, pp. 327-332; Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., Gao, G.F., T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV (2017) Antivir. Res., 137, pp. 82-92; Wang, C., Zheng, X., Gai, W., Wong, G., Wang, H., Jin, H., Feng, N., Li, N., Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antivir. Res., 140, pp. 55-61; Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T., Jiang, S., Zhou, Y., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum. Vaccin. Immunother., 11, pp. 1244-1250; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Alhabbab, R.Y., Hashem, A.M., Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein (2017) Sci. Rep., 7; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Perlman, S., Vijay, R., Middle East respiratory syndrome vaccines (2016) Int. J. Infect. Dis., 47, pp. 23-28; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E2018-E2026; Van Doremalen, N., Falzarano, D., Ying, T., De Wit, E., Bushmaker, T., Feldmann, F., Okumura, A., Hanley, P.W., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antivir. Res., 143, pp. 30-37; Corti, D., Passini, N., Lanzavecchia, A., Zambon, M., Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome (2016) J. Infect. Public Health, 9, pp. 231-235; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.A., Matsushita, H., Ork, B.L., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci. Transl. Med., 8, pp. 326ra321; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Couch, R.B., Tseng, C.T., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum. Vaccin. Immunother., 12, pp. 2351-2356; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Becker, S., Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein (2015) J. Virol., 89, pp. 8651-8656; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Alhajri, M.M., Farag, E.A., Alhajri, F., Gambotto, A., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Malczyk, A.H., Kupke, A., Prufer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Tondera, C., A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform (2015) J. Virol., 89, pp. 11654-11667; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., Hensley, L.E., Schnell, M.J., One-Health: A Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus (2017) J. Virol., 91; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses (2016) Immunity, 44, pp. 1379-1391; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Yang, Y., Deng, Y., Wen, B., Wang, H., Meng, X., Lan, J., Gao, G.F., Tan, W., The amino acids 736–761 of the MERS-CoV spike protein induce neutralizing antibodies: Implications for the development of vaccines and antiviral agents (2014) Viral Immunol, 27, pp. 543-550; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Gao, G.F., Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge (2015) Ebiomedicine, 2, pp. 1438-1446; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Tseng, C.T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell. Mol. Immunol, 13, pp. 180-190; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Du, L., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (HDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382. , et al; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Li, N., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Smith, G.E., Frieman, M.B., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., Frieman, M.B., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35, pp. 1586-1589; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) Mbio, 5; Borucki, M.K., Lao, V., Hwang, M., Gardner, S., Adney, D., Munster, V., Bowen, R., Allen, J.E., Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants (2016) Plos ONE, 11; Gardner, L.M., Rey, D., Heywood, A.E., Toms, R., Wood, J., Travis Waller, S., Raina Macintyre, C., A scenario-based evaluation of the Middle East respiratory syndrome coronavirus and the Hajj (2014) Risk Anal, 34, pp. 1391-1400; Kim, J.I., Kim, Y.J., Lemey, P., Lee, I., Park, S., Bae, J.Y., Kim, D., Yang, J.S., The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination (2016) Sci. Rep., 6, p. 18825; Stanhope, M.J., Brown, J.R., Amrine-Madsen, H., Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV (2004) Infect. Genet. Evol., 4, pp. 15-19; Holmes, E.C., Rambaut, A., Viral evolution and the emergence of SARS coronavirus (2004) Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, pp. 1059-1065; Holmes, E.C., Drummond, A.J., The evolutionary genetics of viral emergence (2007) Curr. Top. Microbiol. Immunol., 315, pp. 51-66; Worobey, M., Han, G.Z., Rambaut, A., A synchronized global sweep of the internal genes of modern avian influenza virus (2014) Nature, 508, pp. 254-257; Almazan, F., Marquez-Jurado, S., Nogales, A., Enjuanes, L., Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes (2015) Methods Mol. Biol, 1282, pp. 135-152; Fielding, B.C., Human coronavirus NL63: A clinically important virus? (2011) Future Microbiol, 6, pp. 153-159; Donaldson, E.F., Yount, B., Sims, A.C., Burkett, S., Pickles, R.J., Baric, R.S., Systematic assembly of a full-length infectious clone of human coronavirus NL63 (2008) J. Virol., 82, pp. 11948-11957; Madani, T.A., Case definition and management of patients with MERS coronavirus in Saudi Arabia (2014) Lancet Infect. Dis., 14, pp. 911-913; Hui, D.S., Super-spreading events of MERS-CoV infection (2016) Lancet, 388, pp. 942-943; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) Lancet, 383, pp. 1869-1871","Fielding, B.C.; Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Robert Sobukwe Drive, South Africa; email: bfielding@uwc.ac.za",,"MDPI AG",19994915,,,"29495250","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85042790024 "Kim J.-M., Kim S.-T., Yang J.-S., Kim S.S., Cheong H.-M.","57192934192;57201332661;8075425800;57196231328;7102495826;","Complete genome sequence of human coronavirus NL63 CN0601/14, first isolated in South Korea",2018,"Genome Announcements","6","12", e00152-18,"","",,,"10.1128/genomeA.00152-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044363945&doi=10.1128%2fgenomeA.00152-18&partnerID=40&md5=44f892263911c2bbda0058e4e2f2d525","Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Division of Biologics Research, Department for Pharmaceutical and Medical Device Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, South Korea","Kim, J.-M., Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Kim, S.-T., Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Yang, J.-S., Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Kim, S.S., Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea, Division of Biologics Research, Department for Pharmaceutical and Medical Device Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, South Korea; Cheong, H.-M., Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea","We report here the complete genome sequence of the human coronavirus NL63 CN0601/14 strain, first isolated from South Korea. It contains 18-nucleotide discontinuous deletions of the open reading frame 1a (ORF1a) and spike regions. This study will aid in our understanding of the complete genome sequences of isolated coronaviruses in South Korea. Copyright. © 2018 Kim et al.",,,"Abdul-Rasool, S., Fielding, B.C., Understanding human coronavirus HCoV-NL63 (2010) Open Virol J, 4, pp. 76-84; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Wertheim-van Dillen, P.M.E., Berkhout, B., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373. , https://doi.org/10.1038/nm1024; Geng, H., Cui, L., Xie, Z., Lu, R., Zhao, L., Tan, W., Characterization and complete genome sequence of human coronavirus NL63 isolated in China (2012) J Virol, 86, pp. 9546-9547. , https://doi.org/10.1128/JVI.01457-12; Pyrc, K., Jebbink, M.F., Berkhout, B., van der Hoek, L., Genome structure and transcriptional regulation of human coronavirus NL63 (2004) Virol J, 1, p. 7. , https://doi.org/10.1186/1743-422X-1-7; Han, T.H., Chung, J.Y., Kim, S.W., Hwang, E.S., Human coronavirus-NL63 infections in Korean children, 2004-2006 (2007) J Clin Virol, 38, pp. 27-31. , https://doi.org/10.1016/j.jcv.2006.10.009; Moes, E., Vijgen, L., Keyaerts, E., Zlateva, K., Li, S., Maes, P., Pyrc, K., Ranst, M.V., A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium (2005) BMC Infect Dis, 5, p. 6. , https://doi.org/10.1186/1471-2334-5-6; Arden, K.E., Nissen, M.D., Sloots, T.P., Mackay, I.M., New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia (2005) J Med Virol, 75, pp. 455-462. , https://doi.org/10.1002/jmv.20288; Chiu, S.S., Chan, K.H., Chu, K.W., Kwan, S.W., Guan, Y., Poon, L.L.M., Peiris, J.S.M., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729. , https://doi.org/10.1086/430301; Ebihara, T., Endo, R., Ma, X., Ishiguro, N., Kikuta, H., Detection of human coronavirus NL63 in young children with bronchiolitis (2005) J Med Virol, 75, pp. 463-465. , https://doi.org/10.1002/jmv.20289; Lau, S.K.P., Woo, P.C.Y., Yip, C.C.Y., Tse, H., Tsoi, H., Cheng, V.C.C., Lee, P., Yuen, K., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071. , https://doi.org/10.1128/JCM.02614-05; van der Hoek, L., Sure, K., Ihorst, G., Stang, A., Pyrc, K., Jebbink, M.F., Petersen, G., Uberla, K., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2. , https://doi.org/10.1371/journal.pmed.0020240","Cheong, H.-M.; Division of Vaccine Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and PreventionSouth Korea; email: hmcheong@nih.go.kr",,"American Society for Microbiology",21698287,,,,"English","Genome Announce.",Article,"Final",Open Access,Scopus,2-s2.0-85044363945 "Vandroux D., Allou N., Jabot J., Li Pat Yuen G., Brottet E., Roquebert B., Martinet O.","56460056000;24400841500;24778431700;36175802900;36930086900;13008556100;7004032887;","Intensive care admission for Coronavirus OC43 respiratory tract infections [Admissions en réanimation pour infection respiratoire à Coronavirus OC43]",2018,"Medecine et Maladies Infectieuses","48","2",,"141","144",,,"10.1016/j.medmal.2018.01.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041335591&doi=10.1016%2fj.medmal.2018.01.001&partnerID=40&md5=f8b52db0822a92f26a400b7876fc9bb1","Service de réanimation polyvalente, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis-de-La-Réunion, 97400, France; CHU La-Réunion, Inserm, CIC 1410, Saint-Pierre, 97410, France; Laboratoire de biologie moléculaire, service de microbiologie, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis, 97400, Reunion; Santé publique France, CIRE océan indien, 2, bis avenue Georges-Brassens, CS 61002, cedex 9, Saint-Denis, 97443, Reunion","Vandroux, D., Service de réanimation polyvalente, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis-de-La-Réunion, 97400, France, CHU La-Réunion, Inserm, CIC 1410, Saint-Pierre, 97410, France; Allou, N., Service de réanimation polyvalente, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis-de-La-Réunion, 97400, France; Jabot, J., Service de réanimation polyvalente, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis-de-La-Réunion, 97400, France; Li Pat Yuen, G., Laboratoire de biologie moléculaire, service de microbiologie, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis, 97400, Reunion; Brottet, E., Santé publique France, CIRE océan indien, 2, bis avenue Georges-Brassens, CS 61002, cedex 9, Saint-Denis, 97443, Reunion; Roquebert, B., CHU La-Réunion, Inserm, CIC 1410, Saint-Pierre, 97410, France, Laboratoire de biologie moléculaire, service de microbiologie, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis, 97400, Reunion; Martinet, O., Service de réanimation polyvalente, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021, Saint-Denis-de-La-Réunion, 97400, France","Background: Coronavirus OC43 infection causes severe pneumonia in patients presenting with comorbidities, but clinical signs alone do not allow for viral identification. Objectives: To analyze acute manifestations of Coronavirus OC43 infections and outcomes of patients admitted to an intensive care unit (ICU). Patients and methods: Retrospective and monocentric study performed during a Coronavirus OC43 outbreak. We used multiplex PCR to detect an OC43 outbreak in Reunion Island during the 2016 Southern Hemisphere's winter: seven admissions to the ICU. Results: Mean age of patients was 71 [67;76] years, SAPS II was 42 [28;53], pneumonia severity index 159 [139;182] vs 73 [40.5;107] for patients in medical wards, and 43% required mechanical ventilation. Comorbidities were diabetes mellitus (87%), chronic respiratory failure (57%), and chronic renal failure (29%). One patient died from Haemophilus influenzae co-infection. Conclusion: As for MERS Co-V infections, underlying comorbidities impacted the clinical outcomes of OC43 infections. © 2018 Elsevier Masson SAS","Coronavirus OC43; multiplex PCR","adult; age; aged; Article; artificial ventilation; child; chronic kidney failure; clinical article; clinical feature; comorbidity; controlled study; diabetes mellitus; female; Haemophilus influenzae; human; Human coronavirus OC43; intensive care; male; mixed infection; outcome assessment; Pneumonia Severity Index; respiratory tract infection; retrospective study; winter; comparative study; Coronavirus infection; hospital admission; respiratory tract infection; virology; Aged; Coronavirus Infections; Coronavirus OC43, Human; Critical Care; Female; Humans; Male; Patient Admission; Respiratory Tract Infections; Retrospective Studies","Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Human Coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, p. 5; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of Coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis, 36, pp. 985-989; Filleul, L., Brottet, E., Gauzere, B.A., Winer, A., Vandroux, D., Michault, A., Reunion, a sentinel territory for influenza surveillance in Europe (2012) Euro Surveill, 17 (27). , [pii=20212]; Fine, M.J., Auble, T.E., Yealy, D.M., A prediction rule to identify low-risk patients with community-acquired pneumonia (1997) N Engl J Med, 336, pp. 243-250; Patrick DM1, Petric, M., Skowronski, D.M., Guasparini, R., Booth, T.F., Krajden, M., An outbreak of human Coronavirus OC43 infection and serological cross-reactivity with SARS Coronavirus (2006) Can J Infect Dis Med Microbiol, 17 (6), pp. 330-336; Templeton, K.E., Scheltinga, S.A., van den Eeden, W.C., Graffelman, A.W., van den Broek, P.J., Claas, E.C.J., Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction (2005) Clin Infect Dis, 41, pp. 345-351; Al-Khannaq, M.N., Tien Ng, K., Oong, X.Y., Pang, Y.K., Takebe, Y., Chook, J.B., Molecular epidemiology and evolionary histories of human Coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia (2016) Virol J, 13, p. 33; Trombetta, H., Faggion, H.Z., Leotte, J., Nogueira, M.B., Vidal, L.R., Raboni, S.M., Human coronavirus and severe acute respiratory infection in Southern Brazil (2016) Pathog Glob Health, 110 (3), pp. 113-118; http://www.meteofrance.re/climat/previsions-saisonnieres","Vandroux, D.; Service de réanimation polyvalente, hôpital Félix-Guyon, CHU La-Réunion, allée des topazes, CS11021France; email: vandroux.david@gmail.com",,"Elsevier Masson SAS",0399077X,,MMAIB,"29402475","English; French","Med. Mal. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85041335591 "Leopardi S., Holmes E.C., Gastaldelli M., Tassoni L., Priori P., Scaravelli D., Zamperin G., De Benedictis P.","55566240300;55535773400;16635878600;56659454900;55923620400;24475020400;55556200800;24068344000;","Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses",2018,"Infection, Genetics and Evolution","58",,,"279","289",,7,"10.1016/j.meegid.2018.01.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041622104&doi=10.1016%2fj.meegid.2018.01.012&partnerID=40&md5=8fac1801451b7a81588548b58c47c9bb","National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Padova, Legnaro 35020, Italy; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; S.T.E.R.N.A., Forlì, Italy","Leopardi, S., National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Padova, Legnaro 35020, Italy; Holmes, E.C., Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; Gastaldelli, M., National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Padova, Legnaro 35020, Italy; Tassoni, L., National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Padova, Legnaro 35020, Italy; Priori, P., S.T.E.R.N.A., Forlì, Italy; Scaravelli, D., S.T.E.R.N.A., Forlì, Italy; Zamperin, G., National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Padova, Legnaro 35020, Italy; De Benedictis, P., National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Padova, Legnaro 35020, Italy","Coronaviruses (CoVs) have been documented in almost every species of bat sampled. Bat CoVs exhibit both extensive genetic diversity and a broad geographic range, indicative of a long-standing host association. Despite this, the respective roles of long-term virus-host co-divergence and cross-species transmission (host-jumping) in the evolution of bat coronaviruses are unclear. Using a phylogenetic approach we provide evidence that CoV diversity in bats is shaped by both species richness and their geographical distribution, and that CoVs exhibit clustering at the level of bat genera, with these genus-specific clusters largely associated with distinct CoV species. Co-phylogenetic analyses revealed that cross-species transmission has been more common than co-divergence across coronavirus evolution as a whole, and that cross-species transmission events were more likely between sympatric bat hosts. Notably, however, an analysis of the CoV RNA polymerase phylogeny suggested that many such host-jumps likely resulted in short-term spill-over infections, with little evidence for sustained onward transmission in new co-roosting host species. © 2018 Elsevier B.V.","Bats; Coronaviruses; Cross-species transmission; Evolution; Phylogeny co-divergence; Virus","RNA polymerase; virus enzyme; Alphacoronavirus; Article; bat; Betacoronavirus; Coronavirinae; evolution; microbial diversity; nonhuman; organisms by geographical distribution; phylogeny; priority journal; species richness; virus transmission; animal; animal disease; classification; Coronavirinae; Coronavirus infection; genetic variation; genetics; host range; molecular evolution; phylogeography; transmission; veterinary medicine; virology; virus genome; Animal Diseases; Animals; Chiroptera; Coronavirus; Coronavirus Infections; Evolution, Molecular; Genetic Variation; Genome, Viral; Host Specificity; Phylogeny; Phylogeography","Anthony, S.J., Ojeda-Flores, R., Rico-Chávez, O., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Rostal, M.K., Epstein, J.H., Lipkin, W.I., Coronaviruses in bats from Mexico (2013) J. Gen. Virol., 94, pp. 1028-1038; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A.K., Further evidence for bats as the evolutionary source of Middle East Respiratory Syndrome coronavirus (2017) MBio, 8, pp. 1-13; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Hicks, A.L., Goldstein, T., Global patterns in coronavirus diversity (2017) J. Trop. Pediatr. Evol., 3, pp. 1-15; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R., Jane: a new tool for the cophylogeny reconstruction problem (2010) Algorithms Mol. Biol., 5, p. 16; Corman, V.M., Rasche, A., Diallo, T.D., Cottontail, V.M., Stöcker, A., Souza, B.F.D.C.D., Corrêa, J.I., Drexler, J.F., Highly diversified coronaviruses in neotropical bats (2013) J. Gen. Virol., 94, pp. 1984-1994; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Drexler, J.F., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J. Virol., 89, pp. 11858-11870; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J.Z., Drosten, C., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. U. S. A., , 201604472; Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Hu, Z., Zhang, S., Evolutionary relationships between bat coronaviruses and their hosts (2007) Emerg. Infect. Dis., 13, pp. 1526-1532; De Vienne, D.M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M.E., Giraud, T., Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution (2013) New Phytol., 198, pp. 347-385; Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Gascuel, O., Phylogeny.fr: robust phylogenetic analysis for the non-specialist (2008) Nucleic Acids Res., 36, pp. 465-469; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of Severe Acute Respiratory Syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56; Fenton, M.B., Simmons, N.B., Bats a World of Science and Mistery (2015), University of Chicago Press Chicago; Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.-L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2014) Nature, 503, pp. 535-538; Geoghegan, J.L., Duchêne, S., Holmes, E.C., Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families (2017) PLoS Pathog., 13, pp. 1-17; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS. Strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848; Halpin, K., Young, P.L., Field, H.E., Mackenzie, J.S., Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus (2000) J. Gen. Virol., 81, pp. 1927-1932; Holmes, E.C., The Evolution and Emergence of RNA Viruse. Oxford Series in Ecology and Evolution (OSEE) (2009), Oxford University Press Oxford; Hu, B., Ge, X., Wang, L.-F., Shi, Z., Bat origin of human coronaviruses (2015) Virol. J., 12; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., Shi, Y., Gao, G.F., A bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) PLoS Pathog., 12, pp. 1-25; Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res., 30, pp. 3059-3066; Kingston, T., Lara, M.C., Jones, G., Akbar, Z., Kunz, T.H., Schneider, C.J., Acoustic divergence in two cryptic Hipposideros species: a role for social selection? (2001) Proc. R. Soc. B Biol. Sci., 268, pp. 1381-1386; Leopardi, S., Oluwayelu, D., Meseko, C., Marciano, S., Tassoni, L., Bakarey, L., Monne, I., De Benedictis, P., The close genetic relationship of lineage D betacoronavirus from Nigerian and Kenyan straw-colored fruit bats (Eidolon helvum) is consistent with the existence of a single epidemiological unit across sub-Saharan Africa (2016) Virus Genes, 52, pp. 573-577; Letunic, I., Bork, P., Interactive Tree Of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees (2016) Nucleic Acids Res., 44, pp. W242-W245; Lin, X.D., Wang, W., Hao, Z.Y., Wang, Z.X., Guo, W.P., Guan, X.Q., Wang, M.R., Zhang, Y.Z., Extensive diversity of coronaviruses in bats from China (2017) Virology, 507, pp. 1-10; Menachery, V.D., Yount, B.L., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci., 113; Moratelli, R., Calisher, C.H., Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? (2015) Mem. Inst. Oswaldo Cruz, 110, pp. 1-22; Parker, J., Rambaut, A., Pybus, O.G., Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty (2008) Infect. Genet. Evol., 8, pp. 239-246; Parrish, C.R., Holmes, E.C., Morens, D.M., Park, E., Burke, D.S., Calisher, C.H., Laughlin, C.A., Daszak, P., Cross-species virus transmission and the emergence of new epidemic diseases (2008) Microbiol. Mol. Biol. Rev., 72, pp. 457-470; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Müller, M.A., Drosten, C., Distant relatives of Severe Acute Respiratory Syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Rambaut, A., Lam, T.T., Max Carvalho, L., Pybus, O.G., Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen) (2016) Virus Evol., 2; Reusken, C.B.E.M., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr. Opin. Virol., 16, pp. 55-62; Richardson, P., Bats, Natura His. (2002), Natural History Museum London; Ronquist, F., Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, E.M., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Smith, C.S., De Jong, C.E., Meers, J., Henning, J., Wang, L.-F., Field, H.E., Coronavirus infection and diversity in bats in the Australasian region (2016) EcoHealth; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol., 30, pp. 2725-2729; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., , (JVI.01953-16); Vijaykrishna, D., Smith, G.J.D., Zhang, J.X., Peiris, J.S.M., Chen, H., Guan, Y., Evolutionary insights into the ecology of coronaviruses (2007) J. Virol., 81, pp. 4012-4020; Wertheim, J.O., Chu, D.K.W., Peiris, J.S.M., Kosakovsky Pond, S.L., Poon, L.L.M., A case for the ancient origin of coronaviruses (2013) J. Virol., 87, pp. 7039-7045; WHO, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) WHO MERS-CoV Global Summary and Assessment of Risk (2017); Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K.-Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Woolhouse, M.E.J., Gowtage-Sequeria, S., Host range and emerging and reemerging infectious diseases (2005) Emerg. Infect. Dis., 11, pp. 1842-1847; Wright, E.S., Using DECIPHER v2.0 to analyze big biological sequence data in R (2016) R J., 8, pp. 352-359; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Jin, Q., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2015) ISME J., pp. 1-12; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci., 111, pp. 12516-12521; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of Severe Acute Respiratory Syndrome coronavirus (2016) J. Virol., 90, pp. 3253-3256; Young, C.C.W., Olival, K.J., Optimizing viral discovery in bats (2016) PLoS One, 11, pp. 1-18; Zeng, L., Gao, Y., Ge, X., Zhang, Q., Peng, C., Yang, X., Tan, B., Chen, J., Bat Severe Acute Respiratory Syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response (2016) J. Virol., 90, pp. 6573-6582","Leopardi, S.; National Reference Centre, OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita' 10, Italy; email: Sleopardi@izsvenezie.it",,"Elsevier B.V.",15671348,,IGENC,"29355607","English","Infec. Genet. Evol.",Article,"Final",Open Access,Scopus,2-s2.0-85041622104 "Farsang A., Bódi I., Fölker O., Minkó K., Benyeda Z., Bálint Á., Kiss A.L., Oláh I.","12140724600;35093648900;57195640081;6507869202;26030885200;8308795400;7201646034;7006129565;","Coronavirus infection retards the development of the cortico-medullary capillary network in the bursa of fabricius of chicken",2018,"Acta Veterinaria Hungarica","66","1",,"20","27",,2,"10.1556/004.2018.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045857070&doi=10.1556%2f004.2018.003&partnerID=40&md5=e6abba6c6a3309b7b7760d8df571987e","National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary; Ceva-Phylaxia Co. Ltd., Szállás u. 5, Budapest, H-1107, Hungary; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Prophyl Ltd., Mohács, Hungary; National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary","Farsang, A., National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary, Ceva-Phylaxia Co. Ltd., Szállás u. 5, Budapest, H-1107, Hungary; Bódi, I., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Fölker, O., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Minkó, K., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Benyeda, Z., Prophyl Ltd., Mohács, Hungary; Bálint, Á., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary; Kiss, A.L., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Oláh, I., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary","Coronavirus infection delays the development of the cortico-medullary (CM) capillary network which results in retarded development of bursal follicles. The smaller size of the medulla in the coronavirus-infected birds may lead to a lower number of B lymphocytes and bursal secretory dendritic cells, which negatively affects the reactivity and efficacy of the immune system. Contrary to the wild-type infectious bronchitis virus (IBV) strain, infection induced by H120 vaccine virus exerts only a moderate influence on caveolin-1 expression of the CM capillary web and on follicular development compared to the untreated controls. © 2018 Akadémiai Kiadó, Budapest.","Bursa of Fabricius; Caveolin-1; Chicken; Coronavirus; Cortico-medullary capillary network; Retarded development","angiogenesis; animal; bird disease; bursa Fabricii; chicken; Coronavirus infection; germfree animal; pathology; vascularization; veterinary medicine; virology; Animals; Bursa of Fabricius; Chickens; Coronavirus Infections; Neovascularization, Physiologic; Poultry Diseases; Specific Pathogen-Free Organisms","Abbate, F., Pfarrer, C., Jones, C.J., Ciriaco, E., Germanà, G., Leiser, R., Age-dependent changes in the pigeon bursa of Fabricius vasculature: A comparative study using light microscopy and scanning electron microscopy of vessel casts (2007) J. Anat., 211, pp. 387-398; Benyeda, Z., Mató, T., Süveges, T., Szabó, E., Kardi, V., Abonyi-Tóth, Z., Rusvai, M., Palya, V., Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions (2009) Avian Pathol, 38, pp. 449-456; Bódi, I., Minkó, K., Fölker, O., Benyeda, Z., Felföldi, B., Magyar, A., Kiss, A., Oláh, I., Expression of caveolin-1 in the interfollicular but not the follicle-associated epithelial cells in the bursa of Fabricius of chickens (2018) J. Morphol., 279, pp. 17-26; De Wit, J.J., Detection of infectious bronchitis virus (2000) Avian Pathol, 29, pp. 71-93; De Wit, J.J., Cook, J.K., Van der Heijden, H.M., Infectious bronchitis virus variants: A review of the history, current situation and control measures (2011) Avian Pathol, 40, pp. 223-235; Dhinakar Raj, G., Jones, R.C., Immunopathogenesis of infection in SPF chicks and commercial broilers of a variant infectious bronchitis virus of economic importance (1996) Avian Pathol, 25, pp. 481-501; Dhinakar Raj, G., Jones, R.C., Infectious bronchitis virus: Immunopathogenesis of infection in the chicken (1997) Avian Pathol, 26, pp. 677-706; Farsang, A., Ros, C., Renström, L.H., Baule, C., Soós, T., Belák, S., Molecular epizo-otiology of infectious bronchitis virus in Sweden indicating the involvement of a vaccine strain (2002) Avian Pathol, 31, pp. 229-236; Gelb, J., Lunt, R.L., Metz, A.L., Fries, P.A., Attenuation of avian infectious bronchitis virus isolated from commercial layer and broiler chickens (1991) Avian Dis, 35, pp. 82-87; Ignjatovic, J., Gould, G., Sapats, S., Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains (2006) Arch. Virol., 151, pp. 1567-1585; Jia, W., Karaca, K., Parrish, C.R., Naqi, S.A., A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains (1995) Arch. Virol., 140, pp. 259-271; King, D.J., Cavanagh, D., Infectious bronchitis (1991) Diseases of Poultry, pp. 471-484. , Calnek, B.W., Barnes, H.J., Beard, C.W., Reid, W.M. and Yoder, H.W. Jr. (eds) Iowa State University Press, Ames, Iowa, USA; Kiss, I., Mató, T., Homonnay, Z.G., Kojer, J., Farsang, A., Bálint, Á., Palya, V., Survey indicates circulation of 4/91 and QX-type infectious bronchitis viruses in Hungary in 2014 - Short communication (2015) Acta Vet. Hung., 63, pp. 382-388; Liu, X.L., Su, J.L., Zhao, J.X., Zhang, G.Z., Complete genome sequence analysis of a predominant infectious bronchitis virus (IBV) strain in China (2009) Virus Genes, 38, pp. 56-65; Mase, M., Kawanishi, N., Ootani, Y., Murayama, K., Karino, A., Inoue, T., A novel genotype of avian infectious bronchitis virus isolated in Japan in 2009 (2010) J. Vet. Med. Sci., 72, pp. 1265-1268; Nagy, N., Oláh, I., Experimental evidence for the ectodermal origin of the epithelial an-lage of the chicken bursa of Fabricius (2010) Development, 137, pp. 3019-3023; Navarro, A., Anand-Apte, B., Parat, M.O., A role for caveolae in cell migration (2004) FASEB J, 18, pp. 1801-1811; Pardanaud, L., Yassine, F., Dieterlen-Lievre, F., Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny (1989) Development, 105, pp. 473-485; Pelkmans, L., Kartenbeck, J., Helenius, A., Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER (2001) Nat. Cell Biol., 3, pp. 473-483; Schoenwolf, G.C., Bell, L.A., Watterson, R.L., Vasculogenesis of the bursa cloacalis (bursa of Fabricius) of the chick embryo (1981) J. Morphol., 167, pp. 35-42; Van Deurs, B., Roepstorff, K., Hommelgaard, A.M., Sandvig, K., Caveolae: Anchored, multifunctional platforms in the lipid ocean (2003) Trends Cell Biol, 13, pp. 92-100; Zanella, A., Lavazza, A., Marchi, R., Moreno Martin, A., Paganelli, F., Avian infectious bronchitis: Characterization of new isolates from Italy (2003) Avian Dis, 47, pp. 180-185","Farsang, A.; Ceva-Phylaxia Co. Ltd., Szállás u. 5, Hungary; email: attila.farsang@ceva.com",,"Akademiai Kiado Rt.",02366290,,,"29580080","English","Acta Vet. Hung.",Article,"Final",Open Access,Scopus,2-s2.0-85045857070 "Zhao X., Sehgal M., Hou Z., Cheng J., Shu S., Wu S., Guo F., Le Marchand S.J., Lin H., Chang J., Guo J.-T.","55674750200;55635282800;57200820023;57213384529;57195758388;57189684670;55375818100;57193964874;55500769900;55568522823;7404490091;","Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses",2018,"Journal of Virology","92","6", e01535-17,"","",,12,"10.1128/JVI.01535-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042510667&doi=10.1128%2fJVI.01535-17&partnerID=40&md5=0bcb12a5d4f961d942032b76c388c82d","Beijing Ditan Hospital, Capital Medical University, Beijing, China; Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Biology, Drexel University, Philadelphia, PA, United States","Zhao, X., Beijing Ditan Hospital, Capital Medical University, Beijing, China, Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Sehgal, M., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Hou, Z., Beijing Ditan Hospital, Capital Medical University, Beijing, China; Cheng, J., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Shu, S., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Wu, S., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Guo, F., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Le Marchand, S.J., Department of Biology, Drexel University, Philadelphia, PA, United States; Lin, H., Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Chang, J., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Guo, J.-T., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States","Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the infectious entry of many enveloped RNA viruses. However, we demonstrated previously that human IFITM2 and IFITM3 are essential host factors facilitating the entry of human coronavirus (HCoV) OC43. In a continuing effort to decipher the molecular mechanism underlying IFITM differential modulation of HCoV entry, we investigated the roles of structural motifs important for IFITM protein posttranslational modifications, intracellular trafficking, and oligomerization in modulating the entry of five HCoVs. We found that three distinct mutations in IFITM1 or IFITM3 converted the host restriction factors to enhance entry driven by the spike proteins of severe acute respiratory syndrome coronavirus (SARS-CoV) and/or Middle East respiratory syndrome coronavirus (MERS-CoV). First, replacement of IFITM3 tyrosine 20 with either alanine or aspartic acid to mimic unphosphorylated or phosphorylated IFITM3 reduced its activity to inhibit the entry of HCoV-NL63 and -229E but enhanced the entry of SARS-CoV and MERS-CoV. Second, replacement of IFITM3 tyrosine 99 with either alanine or aspartic acid reduced its activity to inhibit the entry of HCoV-NL63 and SARS-CoV but promoted the entry of MERS-CoV. Third, deletion of the carboxyl-terminal 12 amino acid residues from IFITM1 enhanced the entry of MERS-CoV and HCoV-OC43. These findings suggest that these residues and structural motifs of IFITM proteins are key determinants for modulating the entry of HCoVs, most likely through interaction with viral and/or host cellular components at the site of viral entry to modulate the fusion of viral envelope and cellular membranes. © 2018 American Society for Microbiology.","Coronavirus; IFITM; Viral entry","alanine; aspartic acid; interferon induced transmembrane protein; membrane protein; tyrosine; unclassified drug; virus receptor; coronavirus spike glycoprotein; differentiation antigen; IFITM2 protein, human; IFITM3 protein, human; leu-13 antigen; membrane protein; RNA binding protein; amino acid substitution; antiviral activity; Article; carboxy terminal sequence; cell migration; controlled study; Coronaviridae; Middle East respiratory syndrome coronavirus; mutational analysis; nonhuman; oligomerization; priority journal; protein motif; protein phosphorylation; protein processing; residue analysis; SARS coronavirus; structure analysis; virus entry; Coronavirinae; genetics; human; metabolism; missense mutation; protein multimerization; tumor cell line; Amino Acid Motifs; Amino Acid Substitution; Antigens, Differentiation; Cell Line, Tumor; Coronavirus; Humans; Membrane Proteins; Mutation, Missense; Protein Multimerization; RNA-Binding Proteins; Spike Glycoprotein, Coronavirus; Virus Internalization","Cullen, B.R., Cherry, S., ten Oever, B.R., Is RNA interference a physiologically relevant innate antiviral immune response in mammals? (2013) Cell Host Microbe, 14, pp. 374-378. , https://doi.org/10.1016/j.chom.2013.09.011; Chang, J., Block, T.M., Guo, J.T., The innate immune response to hepatitis B virus infection: implications for pathogenesis and therapy (2012) Antiviral Res, 96, pp. 405-413. , https://doi.org/10.1016/j.antiviral.2012.10.001; Diamond, M.S., Farzan, M., The broad-spectrum antiviral functions of IFIT and IFITM proteins (2013) Nat Rev Immunol, 13, pp. 46-57. , https://doi.org/10.1038/nri3344; Bailey, C.C., Zhong, G., Huang, I.C., Farzan, M., IFITM-family proteins: the cell's first line of antiviral defense (2014) Annu Rev Virol, 1, pp. 261-283. , https://doi.org/10.1146/annurev-virology-031413-085537; Perreira, J.M., Chin, C.R., Feeley, E.M., Brass, A.L., IFITMs restrict the replication of multiple pathogenic viruses (2013) J Mol Biol, 425, pp. 4937-4955. , https://doi.org/10.1016/j.jmb.2013.09.024; Brass, A.L., Huang, I.C., Benita, Y., John, S.P., Krishnan, M.N., Feeley, E.M., Ryan, B.J., Elledge, S.J., The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus (2009) Cell, 139, pp. 1243-1254. , https://doi.org/10.1016/j.cell.2009.12.017; Jiang, D., Weidner, J.M., Qing, M., Pan, X.B., Guo, H., Xu, C., Zhang, X., Guo, J.T., Identification of five interferoninduced cellular proteins that inhibit West Nile virus and dengue virus infections (2010) J Virol, 84, pp. 8332-8341. , https://doi.org/10.1128/JVI.02199-09; Huang, I.C., Bailey, C.C., Weyer, J.L., Radoshitzky, S.R., Becker, M.M., Chiang, J.J., Brass, A.L., Farzan, M., Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1001258; Mudhasani, R., Tran, J.P., Retterer, C., Radoshitzky, S.R., Kota, K.P., Altamura, L.A., Smith, J.M., Bavari, S., IFITM-2 and IFITM-3 but not IFITM-1 restrict Rift Valley fever virus (2013) J Virol, 87, pp. 8451-8464. , https://doi.org/10.1128/JVI.03382-12; Anafu, A.A., Bowen, C.H., Chin, C.R., Brass, A.L., Holm, G.H., Interferoninducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry (2013) J Biol Chem, 288, pp. 17261-17271. , https://doi.org/10.1074/jbc.M112.438515; Wilkins, C., Woodward, J., Lau, D.T., Barnes, A., Joyce, M., McFarlane, N., McKeating, J.A., Gale, M., Jr., IFITM1 is a tight junction protein that inhibits hepatitis C virus entry (2013) Hepatology, 57, pp. 461-469. , https://doi.org/10.1002/hep.26066; Yu, J., Li, M., Wilkins, J., Ding, S., Swartz, T.H., Esposito, A.M., Zheng, Y.M., Liu, S.L., IFITM proteins restrict HIV-1 infection by antagonizing the envelope glycoprotein (2015) Cell Rep, 13, pp. 145-156. , https://doi.org/10.1016/j.celrep.2015.08.055; Savidis, G., Perreira, J.M., Portmann, J.M., Meraner, P., Guo, Z., Green, S., Brass, A.L., The IFITMs inhibit Zika virus replication (2016) Cell Rep, 15, pp. 2323-2330. , https://doi.org/10.1016/j.celrep.2016.05.074; Gorman, M.J., Poddar, S., Farzan, M., Diamond, M.S., The interferonstimulated gene Ifitm3 restricts West Nile virus infection and pathogenesis (2016) J Virol, 90, pp. 8212-8225. , https://doi.org/10.1128/JVI.00581-16; Poddar, S., Hyde, J.L., Gorman, M.J., Farzan, M., Diamond, M.S., The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses (2016) J Virol, 90, pp. 8780-8794. , https://doi.org/10.1128/JVI.00655-16; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947. , https://doi.org/10.1128/JCM.00636-10; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., van der Hoek, L., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139. , https://doi.org/10.1016/j.jcv.2011.11.011; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res, 100, pp. 286-295. , https://doi.org/10.1016/j.antiviral.2013.08.015; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848. , https://doi.org/10.1038/nrmicro3143; Wrensch, F., Winkler, M., Pohlmann, S., IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterolindependent mechanisms (2014) Viruses, 6, pp. 3683-3698. , https://doi.org/10.3390/v6093683; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pohlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsinindependent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160. , https://doi.org/10.1128/JVI.03372-12; John, S.P., Chin, C.R., Perreira, J., Feeley, E.M., Aker, A., Savidis, G., Smith, S.E., Brass, A.L., The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication (2013) J Virol, 87, pp. 7837-7852. , https://doi.org/10.1128/JVI.00481-13; Amini-Bavil-Olyaee, S., Choi, Y.J., Lee, J.H., Shi, M., Huang, I.C., Farzan, M., Jung, J.U., The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry (2013) Cell Host Microbe, 13, pp. 452-464. , https://doi.org/10.1016/j.chom.2013.03.006; Li, K., Markosyan, R.M., Zheng, Y.M., Golfetto, O., Bungart, B., Li, M., Ding, S., Liu, S.L., IFITM proteins restrict viral membrane hemifusion (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003124; Desai, T.M., Marin, M., Chin, C.R., Savidis, G., Brass, A.L., Melikyan, G.B., IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004048; Lin, T.Y., Chin, C.R., Everitt, A.R., Clare, S., Perreira, J.M., Savidis, G., Aker, A.M., Brass, A.L., Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction (2013) Cell Rep, 5, pp. 895-908. , https://doi.org/10.1016/j.celrep.2013.10.033; Zhao, X., Guo, F., Liu, F., Cuconati, A., Chang, J., Block, T.M., Guo, J.T., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43 (2014) Proc Natl Acad Sci U S A, 111, pp. 6756-6761. , https://doi.org/10.1073/pnas.1320856111; Lu, J., Pan, Q., Rong, L., He, W., Liu, S.L., Liang, C., The IFITM proteins inhibit HIV-1 infection (2011) J Virol, 85, pp. 2126-2137. , https://doi.org/10.1128/JVI.01531-10; Wrensch, F., Karsten, C.B., Gnirss, K., Hoffmann, M., Lu, K., Takada, A., Winkler, M., Pohlmann, S., Interferon-induced transmembrane protein-mediated inhibition of host cell entry of ebolaviruses (2015) J Infect Dis, 212, pp. S210-S218. , https://doi.org/10.1093/infdis/jiv255; Xie, M., Xuan, B., Shan, J., Pan, D., Sun, Y., Shan, Z., Zhang, J., Qian, Z., Human cytomegalovirus exploits interferon-induced transmembrane proteins to facilitate morphogenesis of the virion assembly compartment (2015) J Virol, 89, pp. 3049-3061. , https://doi.org/10.1128/JVI.03416-14; Tandon, R., Mocarski, E.S., Viral and host control of cytomegalovirus maturation (2012) Trends Microbiol, 20, pp. 392-401. , https://doi.org/10.1016/j.tim.2012.04.008; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Everitt, A.R., Clare, S., Pertel, T., John, S.P., Wash, R.S., Smith, S.E., Chin, C.R., Kellam, P., IFITM3 restricts the morbidity and mortality associated with influenza (2012) Nature, 484, pp. 519-523. , https://doi.org/10.1038/nature10921; Bailey, C.C., Huang, I.C., Kam, C., Farzan, M., Ifitm3 limits the severity of acute influenza in mice (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002909; Zhang, Y.H., Zhao, Y., Li, N., Peng, Y.C., Giannoulatou, E., Jin, R.H., Yan, H.P., Dong, T., Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals (2013) Nat Commun, 4, p. 1418. , https://doi.org/10.1038/ncomms2433; Wang, Z., Zhang, A., Wan, Y., Liu, X., Qiu, C., Xi, X., Ren, Y., Xu, J., Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection (2014) Proc Natl Acad Sci U S A, 111, pp. 769-774. , https://doi.org/10.1073/pnas.1321748111; Jia, R., Pan, Q., Ding, S., Rong, L., Liu, S.L., Geng, Y., Qiao, W., Liang, C., The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization (2012) J Virol, 86, pp. 13697-13707. , https://doi.org/10.1128/JVI.01828-12; Jia, R., Xu, F., Qian, J., Yao, Y., Miao, C., Zheng, Y.M., Liu, S.L., Liang, C., Identification of an endocytic signal essential for the antiviral action of IFITM3 (2014) Cell Microbiol, 16, pp. 1080-1093. , https://doi.org/10.1111/cmi.12262; Compton, A.A., Roy, N., Porrot, F., Billet, A., Casartelli, N., Yount, J.S., Liang, C., Schwartz, O., Natural mutations in IFITM3 modulate posttranslational regulation and toggle antiviral specificity (2016) EMBO Rep, 17, pp. 1657-1671. , https://doi.org/10.15252/embr.201642771; Chesarino, N.M., McMichael, T.M., Hach, J.C., Yount, J.S., Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination (2014) J Biol Chem, 289, pp. 11986-11992. , https://doi.org/10.1074/jbc.M114.557694; Ganley, I.G., Carroll, K., Bittova, L., Pfeffer, S., Rab9 GTPase regulates late endosome size and requires effector interaction for its stability (2004) Mol Biol Cell, 15, pp. 5420-5430. , https://doi.org/10.1091/mbc.E04-08-0747; Yount, J.S., Karssemeijer, R.A., Hang, H.C., S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus (2012) J Biol Chem, 287, pp. 19631-19641. , https://doi.org/10.1074/jbc.M112.362095; Yount, J.S., Moltedo, B., Yang, Y.Y., Charron, G., Moran, T.M., Lopez, C.B., Hang, H.C., Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3 (2010) Nat Chem Biol, 6, pp. 610-614. , https://doi.org/10.1038/nchembio.405; Chesarino, N.M., McMichael, T.M., Yount, J.S., E3 ubiquitin ligase NEDD4 promotes influenza virus infection by decreasing levels of the antiviral protein IFITM3 (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005095; Chesarino, N.M., McMichael, T.M., Yount, J.S., Regulation of the trafficking and antiviral activity of IFITM3 by post-translational modifications (2014) Future Microbiol, 9, pp. 1151-1163. , https://doi.org/10.2217/fmb.14.65; Lawe, D.C., Sitouah, N., Hayes, S., Chawla, A., Virbasius, J.V., Tuft, R., Fogarty, K., Corvera, S., Essential role of Ca2+/ calmodulin in early endosome antigen-1 localization (2003) Mol Biol Cell, 14, pp. 2935-2945. , https://doi.org/10.1091/mbc.E02-09-0591; Hach, J.C., McMichael, T., Chesarino, N.M., Yount, J.S., Palmitoylation on conserved and nonconserved cysteines of murine IFITM1 regulates its stability and anti-influenza A virus activity (2013) J Virol, 87, pp. 9923-9927. , https://doi.org/10.1128/JVI.00621-13; Warren, C.J., Griffin, L.M., Little, A.S., Huang, I.C., Farzan, M., Pyeon, D., The antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human papillomavirus, cytomegalovirus and adenovirus (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0096579; Foster, T.L., Wilson, H., Iyer, S.S., Coss, K., Doores, K., Smith, S., Kellam, P., Neil, S.J., Resistance of transmitted founder HIV-1 to IFITM-mediated restriction (2016) Cell Host Microbe, 20, pp. 429-442. , https://doi.org/10.1016/j.chom.2016.08.006; Wu, W.L., Grotefend, C.R., Tsai, M.T., Wang, Y.L., Radic, V., Eoh, H., Huang, I.C., Delta20 IFITM2 differentially restricts X4 and R5 HIV-1 (2017) Proc Natl Acad Sci U S A, 114, pp. 7112-7117. , https://doi.org/10.1073/pnas.1619640114; Fu, B., Wang, L., Li, S., Dorf, M.E., ZMPSTE24 defends against influenza and other pathogenic viruses (2017) J Exp Med, 214, pp. 919-929. , https://doi.org/10.1084/jem.20161270; Gerlach, T., Hensen, L., Matrosovich, T., Bergmann, J., Winkler, M., Peteranderl, C., Klenk, H.D., Matrosovich, M., pH optimum of hemagglutinin-mediated membrane fusion determines sensitivity of influenza A viruses to the interferon-induced antiviral state and IFITMs (2017) J Virol, 91. , https://doi.org/10.1128/JVI.00246-17; Desai, T.M., Marin, M., Mason, C., Melikyan, G.B., pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion (2017) J Biol Chem, 292, pp. 7817-7827. , https://doi.org/10.1074/jbc.M117.783878; Rabbani, M.A., Ribaudo, M., Guo, J.T., Barik, S., Identification of IFNstimulated gene (ISG) proteins that inhibit human parainfluenza virus type 3 (2016) J Virol, 90, pp. 11145-11156. , https://doi.org/10.1128/JVI.01551-16; Yount, J.S., Zhang, M.M., Hang, H.C., Emerging roles for protein S-palmitoylation in immunity from chemical proteomics (2013) Curr Opin Chem Biol, 17, pp. 27-33. , https://doi.org/10.1016/j.cbpa.2012.11.008; Jia, R., Ding, S., Pan, Q., Liu, S.L., Qiao, W., Liang, C., The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0118794; Li, K., Jia, R., Li, M., Zheng, Y.M., Miao, C., Yao, Y., Ji, H.L., Liu, S.L., A sorting signal suppresses IFITM1 restriction of viral entry (2015) J Biol Chem, 290, pp. 4248-4259. , https://doi.org/10.1074/jbc.M114.630780; Jiang, D., Guo, H., Xu, C., Chang, J., Gu, B., Wang, L., Block, T.M., Guo, J.T., Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus (2008) J Virol, 82, pp. 1665-1678. , https://doi.org/10.1128/JVI.02113-07; Weidner, J.M., Jiang, D., Pan, X.B., Chang, J., Block, T.M., Guo, J.T., Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms (2010) J Virol, 84, pp. 12646-12657. , https://doi.org/10.1128/JVI.01328-10; Chang, J., Warren, T.K., Zhao, X., Gill, T., Guo, F., Wang, L., Comunale, M.A., Block, T.M., Small molecule inhibitors of ER alphaglucosidases are active against multiple hemorrhagic fever viruses (2013) Antiviral Res, 98, pp. 432-440. , https://doi.org/10.1016/j.antiviral.2013.03.023; Lin, H.X., Feng, Y., Tu, X., Zhao, X., Hsieh, C.H., Griffin, L., Junop, M., Zhang, C., Characterization of the spike protein of human coronavirus NL63 in receptor binding and pseudotype virus entry (2011) Virus Res, 160, pp. 283-293. , https://doi.org/10.1016/j.virusres.2011.06.029; He, J., Choe, S., Walker, R., Di Marzio, P., Morgan, D.O., Landau, N.R., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity (1995) J Virol, 69, pp. 6705-6711; Connor, R.I., Chen, B.K., Choe, S., Landau, N.R., Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes (1995) Virology, 206, pp. 935-944. , https://doi.org/10.1006/viro.1995.1016; Zhao, X., Guo, F., Comunale, M.A., Mehta, A., Sehgal, M., Jain, P., Cuconati, A., Guo, J.T., Inhibition of endoplasmic reticulumresident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2 (2015) Antimicrob Agents Chemother, 59, pp. 206-216. , https://doi.org/10.1128/AAC.03999-14; Chang, J., Warren, T.K., Zhao, X., Gill, T., Guo, F., Wang, L., Comunale, M.A., Block, T.M., Small molecule inhibitors of ER alphaglucosidases are active against multiple hemorrhagic fever viruses (2013) Antiviral Res, 98, pp. 432-440. , https://doi.org/10.1016/j.antiviral.2013.03.023; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J Virol, 88, pp. 13221-13230. , https://doi.org/10.1128/JVI.02078-14","Zhao, X.; Beijing Ditan Hospital, Capital Medical UniversityChina; email: zhaoxuesen@ccmu.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"29263263","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85042510667 "Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X., Smith E.C., Case J.B., Feng J.Y., Jordan R., Ray A.S., Cihlar T., Siegel D., Mackman R.L., Clarke M.O., Baric R.S., Denison M.R.","57203043706;57195516811;7102763252;57203199836;15756255200;56137171400;33768169900;55620542600;7403883758;8948148800;35275719400;6701481609;56533209000;6602807635;8755030900;57205312930;7101971810;","Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease",2018,"mBio","9","2", e00221-18,"","",,35,"10.1128/mBio.00221-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046493350&doi=10.1128%2fmBio.00221-18&partnerID=40&md5=baa72b3d2c5b99961bdae8b40130be24","Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biology, University of the South, Sewanee, TN, United States; Gilead Sciences, Inc, Foster City, CA, United States","Agostini, M.L., Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Andres, E.L., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Sims, A.C., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Graham, R.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Sheahan, T.P., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lu, X., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Smith, E.C., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Department of Biology, University of the South, Sewanee, TN, United States; Case, J.B., Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Feng, J.Y., Gilead Sciences, Inc, Foster City, CA, United States; Jordan, R., Gilead Sciences, Inc, Foster City, CA, United States; Ray, A.S., Gilead Sciences, Inc, Foster City, CA, United States; Cihlar, T., Gilead Sciences, Inc, Foster City, CA, United States; Siegel, D., Gilead Sciences, Inc, Foster City, CA, United States; Mackman, R.L., Gilead Sciences, Inc, Foster City, CA, United States; Clarke, M.O., Gilead Sciences, Inc, Foster City, CA, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Denison, M.R., Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States","Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS- 5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50. The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs. IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group β-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral. © 2018 Agostini et al.","Antiviral agents; Antiviral resistance; Coronavirus; Nucleoside analogs; Pandemic; RNA polymerases; SARS-CoV","exoribonuclease; nsp12 protein; remdesivir; unclassified drug; viral polymerase; virus enzyme; alanine; antivirus agent; exoribonuclease; GS-5734; ribonucleotide; animal cell; animal experiment; animal model; antiviral resistance; antiviral susceptibility; Article; controlled study; Coronavirinae; EC50; human; human cell; in vitro study; Middle East respiratory syndrome coronavirus; mixed infection; mouse; mouse model; Murine hepatitis virus; nonhuman; pathogenesis; phenotype; priority journal; SARS coronavirus; virus mutation; analogs and derivatives; animal; chemistry; Coronavirinae; drug effect; enzymology; genetics; metabolism; mutation; virus replication; Alanine; Animals; Antiviral Agents; Coronavirus; Exoribonucleases; Mice; Mutation; Ribonucleotides; SARS Virus; Virus Replication","Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966. , https://doi.org/10.1056/NEJMoa030781; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Chan-Yeung, M., Xu, R.H., SARS: Epidemiology (2003) Respirology, 8, pp. S9-S14. , https://doi.org/10.1046/j.1440-1843.2003.00518.x; Stockman, L.J., Bellamy, R., Garner, P., SARS: Systematic review of treatment effects (2006) PLoS Med, 3. , https://doi.org/10.1371/journal.pmed.0030343; Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin Microbiol Rev, 20, pp. 660-694. , https://doi.org/10.1128/CMR.00023-07; Cheng, V.C.C., Chan, J.F.W., To, K.K.W., Yuen, K.Y., Clinical management and infection control of SARS: Lessons learned (2013) Antiviral Res, 100, pp. 407-419. , https://doi.org/10.1016/j.antiviral.2013.08.016; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347. , https://doi.org/10.1038/nrd.2015.37; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic Betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522. , https://doi.org/10.1128/CMR.00102-14; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Al-Omari, A., Fowler, R.A., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594. , https://doi.org/10.1056/NEJMsr1408795; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci U S A, 113, pp. 3048-3053. , https://doi.org/10.1073/pnas.1517719113; Menachery, V.D., Yount, B.L., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , https://doi.org/10.1038/nm.3985; Agnihothram, S., Yount, B.L., Donaldson, E.F., Huynh, J., Menachery, V.D., Gralinski, L.E., Graham, R.L., Baric, R.S., A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant (2014) mBio, 5, pp. e00047-e00114. , https://doi.org/10.1128/mBio.00047-14; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521. , https://doi.org/10.1073/pnas.1405889111; Eltahla, A.A., Luciani, F., White, P.A., Lloyd, A.R., Bull, R.A., Inhibitors of the hepatitis C virus polymerase; mode of action and resistance (2015) Viruses, 7, pp. 5206-5224. , https://doi.org/10.3390/v7102868; De Clercq, E., Li, G., Approved antiviral drugs over the past 50 years (2016) Clin Microbiol Rev, 29, pp. 695-747. , https://doi.org/10.1128/CMR.00102-15; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3=¡5= exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci U S A, 103, pp. 5108-5113. , https://doi.org/10.1073/pnas.0508200103; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81, pp. 12135-12144. , https://doi.org/10.1128/JVI.01296-07; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Denison, M.R., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog, 6, pp. e1000896-e1000915. , https://doi.org/10.1371/journal.ppat.1000896; Taylor, R., Kotian, P., Warren, T., Panchal, R., Bavari, S., Julander, J., Dobo, S., Sheridan, W.P., BCX4430-a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease (2016) J Infect Publ Health, 9, pp. 220-226. , https://doi.org/10.1016/j.jiph.2016.04.002; Chu, C.K., Gadthula, S., Chen, X., Choo, H., Olgen, S., Barnard, D.L., Sidwell, R.W., Antiviral activity of nucleoside analogues against SARScoronavirus (SARS-CoV) (2006) Antivir Chem Chemother, 17, pp. 285-289. , https://doi.org/10.1177/095632020601700506; Subissi, L., Imbert, I., Ferron, F., Collet, A., Coutard, B., Decroly, E., Canard, B., SARS-CoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets (2014) Antiviral Res, 101, pp. 122-130. , https://doi.org/10.1016/j.antiviral.2013.11.006; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003565; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, 9, pp. 1-11. , https://doi.org/10.1126/scitranslmed.aal3653; Cho, A., Saunders, O.L., Butler, T., Zhang, L., Xu, J., Vela, J.E., Feng, J.Y., Kim, C.U., Synthesis and antiviral activity of a series of 1=-substituted 4-aza-7,9-dideazaadenosine C-nucleosides (2012) Bioorg Med Chem Lett, 22, pp. 2705-2707. , https://doi.org/10.1016/j.bmcl.2012.02.105; Warren, T.K., Wells, J., Panchal, R.G., Stuthman, K.S., Garza, N.L., Van Tongeren, S.A., Dong, L., Bavari, S., Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430 (2014) Nature, 508, pp. 402-405. , https://doi.org/10.1038/nature13027; Lo, M.K., Jordan, R., Arvey, A., Sudhamsu, J., Shrivastava-Ranjan, P., Hotard, A.L., Flint, M., Spiropoulou, C.F., GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses (2017) Sci Rep, 7, p. 43395. , https://doi.org/10.1038/srep43395; Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Bavari, S., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 381-385. , https://doi.org/10.1038/nature17180; Murakami, E., Niu, C., Bao, H., Micolochick Steuer, H.M., Whitaker, T., Nachman, T., Sofia, M.A., Furman, P.A., The mechanism of action of β-D-2=-deoxy-2=-fluoro-2=-C-methylcytidine involves a second metabolic pathway leading to β-D-2=-deoxy-2=-fluoro-2=-Cmethyluridine 5=-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase (2008) Antimicrob Agents Chemother, 52, pp. 458-464. , https://doi.org/10.1128/AAC.01184-07; Sims, A.C., Baric, R.S., Yount, B., Burkett, S.E., Collins, P.L., Pickles, R.J., Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs (2005) J Virol, 79, pp. 15511-15524. , https://doi.org/10.1128/JVI.79.24.15511-15524.2005; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23. , https://doi.org/10.1007/978-1-4939-2438-7_1; Daelemans, D., Pauwels, R., De Clercq, E., Pannecouque, C., A time-ofdrug addition approach to target identification of antiviral compounds (2011) Nat Protoc, 6, pp. 925-933. , https://doi.org/10.1038/nprot.2011.330; Sexton, N.R., Smith, E.C., Blanc, H., Vignuzzi, M., Peersen, O.B., Denison, M.R., Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens (2016) J Virol, 90, pp. 7415-7428. , https://doi.org/10.1128/JVI.00080-16; Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., Ding, J., Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design (2003) Nucleic Acids Res, 31, pp. 7117-7130. , https://doi.org/10.1093/nar/gkg916; Pfeiffer, J.K., Kirkegaard, K., A single mutation in poliovirus RNAdependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity (2003) Proc Natl Acad Sci U S A, 100, pp. 7289-7294. , https://doi.org/10.1073/pnas.1232294100; Migliaccio, G., Tomassini, J.E., Carroll, S.S., Tomei, L., Altamura, S., Bhat, B., Bartholomew, L., Flores, O.A., Characterization of resistance to non-obligate chainterminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro (2003) J Biol Chem, 278, pp. 49164-49170. , https://doi.org/10.1074/jbc.M305041200; Coffey, L.L., Beeharry, Y., Bordería, A.V., Blanc, H., Vignuzzi, M., Arbovirus high fidelity variant loses fitness in mosquitoes and mice (2011) Proc Natl Acad Sci U S A, 108, pp. 16038-16043. , https://doi.org/10.1073/pnas.1111650108; Miller, V., Stürmer, M., Staszewski, S., Gröschel, B., Hertogs, K., de Béthune, M.P., Pauwels, R., Larder, B.A., The M184 V mutation in HIV-1 reverse transcriptase (RT) conferring lamivudine resistance does not result in broad cross-resistance to nucleoside analogue RT inhibitors (1998) AIDS, 12, pp. 705-712. , https://doi.org/10.1097/00002030-199807000-00006; Gralinski, L.E., Bankhead, A., Jeng, S., Menachery, V.D., Proll, S., Belisle, S.E., Matzke, M., Baric, R.S., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) mBio, 4, pp. e00271-e00313. , https://doi.org/10.1128/mBio.00271-13; Crotty, S., Maag, D., Arnold, J.J., Zhong, W., Lau, J.Y.N., Hong, Z., Andino, R., Cameron, C.E., The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen (2000) Nat Med, 6, pp. 1375-1379. , https://doi.org/10.1038/82191; Pyrc, K., Bosch, B.J., Berkhout, B., Jebbink, M.F., Dijkman, R., Rottier, P., van der Hoek, L., Inhibition of human coronavirus NL63 infection at early stages of the replication cycle (2006) Antimicrob Agents Chemother, 50, pp. 2000-2008. , https://doi.org/10.1128/AAC.01598-05; Sangawa, H., Komeno, T., Nishikawa, H., Yoshida, A., Takahashi, K., Nomura, N., Furuta, Y., Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase (2013) Antimicrob Agents Chemother, 57, pp. 5202-5208. , https://doi.org/10.1128/AAC.00649-13; Baranovich, T., Wong, S.S., Armstrong, J., Marjuki, H., Webby, R.J., Webster, R.G., Govorkova, E.A., T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro (2013) J Virol, 87, pp. 3741-3751. , https://doi.org/10.1128/JVI.02346-12; Te, H.S., Randall, G., Jensen, D.M., Mechanism of action of ribavirin in the treatment of chronic hepatitis C (2007) Gastroenterol Hepatol, 3, pp. 218-225; Streeter, D.G., Witkowski, J.T., Khare, G.P., Sidwell, R.W., Bauer, R.J., Robins, R.K., Simon, L.N., Mechanism of action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (virazole), a new broad-spectrum antiviral agent (1973) Proc Natl Acad Sci U S A, 70, pp. 1174-1178; Derse, D., Cheng, Y.-C., Furman, P.A., Clair, M.H.S., Elion, G.B., Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate (1981) J Biol Chem, 256, pp. 11447-11451; Ferrer-Orta, C., Arias, A., Pérez-Luque, R., Escarmís, C., Domingo, E., Verdaguer, N., Sequential structures provide insights into the fidelity of RNA replication (2007) Proc Natl Acad Sci U S A, 104, pp. 9463-9468. , https://doi.org/10.1073/pnas.0700518104; Wainberg, M.A., Drosopoulos, W.C., Salomon, H., Hsu, M., Borkow, G., Parniak, M.A., Gu, Z., Prasad, V.R., Enhanced fidelity of 3TC-selected mutant HIV-1 reverse transcriptase (1996) Science, 271, pp. 1282-1285. , https://doi.org/10.1126/science.271.5253.1282; Hsu, M., Inouye, P., Rezende, L., Richard, N., Li, Z., Prasad, V.R., Wainberg, M.A., Higher fidelity of RNA-dependent DNA mispair extension by M184V drug-resistant than wild-type reverse transcriptase of human immunodeficiency virus type 1 (1997) Nucleic Acids Res, 25, pp. 4532-4536. , https://doi.org/10.1093/nar/25.22.4532; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Imbert, I., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc Natl Acad Sci U S A, 111, pp. E3900-E3909. , https://doi.org/10.1073/pnas.1323705111; Ferron, F., Subissi, L., Silveira De Morais, A.T., Le, N.T.T., Sevajol, M., Gluais, L., Decroly, E., Imbert, I., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Natl Acad Sci U S A, 115, pp. E162-E171. , https://doi.org/10.1073/pnas.1718806115; Svarovskaia, E.S., Gane, E., Dvory-Sobol, H., Martin, R., Doehle, B., Hedskog, C., Jacobson, I.M., Mo, H., L159F and V321A sofosbuvir-associated hepatitis C virus NS5B substitutions (2016) J Infect Dis, 213, pp. 1240-1247. , https://doi.org/10.1093/infdis/jiv564; Pfeiffer, J.K., Kirkegaard, K., Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice (2005) PLoS Pathog, 1. , https://doi.org/10.1371/journal.ppat.0010011; Paredes, R., Sagar, M., Marconi, V.C., Hoh, R., Martin, J.N., Parkin, N.T., Petropoulos, C.J., Kuritzkes, D.R., In vivo fitness cost of the M184V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine (2009) J Virol, 83, pp. 2038-2043. , https://doi.org/10.1128/JVI.02154-08; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002; Sims, A.C., Tilton, S.C., Menachery, V.D., Gralinski, L.E., Schäfer, A., Matzke, M.M., Webb-Robertson, B.J., Baric, R.S., Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells (2013) J Virol, 87, pp. 3885-3902. , https://doi.org/10.1128/JVI.02520-12; Fulcher, L.M., Gabriel, S., Burns, K.A., Yankaskas, J.R., Randell, S.H., Welldifferentiated human airway epithelial cell cultures (2004) Methods Mol Med, 107, pp. 183-206; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Denison, M.R., Baric, R.S., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc Natl Acad Sci U S A, 100, pp. 12995-13000. , https://doi.org/10.1073/pnas.1735582100","Baric, R.S.; Department of Epidemiology, University of North Carolina at Chapel HillUnited States; email: rbaric@email.unc.edu",,"American Society for Microbiology",21612129,,,"29511076","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85046493350 "Bouvier M., Chen W.-J., Arnold J.C., Fairchok M.P., Danaher P.J., Lalani T., Malone L., Mor D., Ridoré M., Burgess T.H., Millar E.V.","57200435541;57194513812;35483180800;6603322513;8924934000;55702949000;37061430100;56527043000;25923035500;7005669449;8257594500;","Species-specific clinical characteristics of human coronavirus infection among otherwise healthy adolescents and adults",2018,"Influenza and other Respiratory Viruses","12","2",,"299","303",,2,"10.1111/irv.12538","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041339676&doi=10.1111%2firv.12538&partnerID=40&md5=6887727ebcb003d8c9c864d26b03e1a9","Betty Irene Moore School of Nursing, University of California Davis, Sacramento, CA, United States; Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Naval Medical Center, San Diego, CA, United States; Madigan Army Medical Center, Tacoma, WA, United States; San Antonio Military Medical Center, San Antonio, TX, United States; Diatherix Laboratories, LLC, Huntsville, AL, United States; Children's National Medical Center, Washington, DC, United States","Bouvier, M., Betty Irene Moore School of Nursing, University of California Davis, Sacramento, CA, United States; Chen, W.-J., Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Arnold, J.C., Naval Medical Center, San Diego, CA, United States; Fairchok, M.P., Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States, Madigan Army Medical Center, Tacoma, WA, United States; Danaher, P.J., San Antonio Military Medical Center, San Antonio, TX, United States; Lalani, T., Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Malone, L., Diatherix Laboratories, LLC, Huntsville, AL, United States; Mor, D., Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Ridoré, M., Children's National Medical Center, Washington, DC, United States; Burgess, T.H., Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Millar, E.V., Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States","Human coronavirus (HCoV) is a known cause of influenza-like illness (ILI). In a multisite, observational, longitudinal study of ILI among otherwise healthy adolescents and adults, 12% of subjects were PCR-positive for HCoV. The distribution of species was as follows: HCoV-OC43 (34%), HCoV-229E (28%), HCoV-NL63 (22%), and HCoV-HKU1 (16%). We did not observe species-specific differences in the clinical characteristics of HCoV infection, with the exception of HCoV-HKU1, for which the severity of gastrointestinal symptoms trended higher on the fourth day of illness. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","clinical characteristics; coronavirus; influenza-like illness","adolescent; adult; aged; Article; causal attribution; clinical feature; Coronaviridae; Coronavirus infection; disease association; disease duration; disease severity; disease surveillance; ethnicity; female; flu like syndrome; gastrointestinal symptom; geographic distribution; human; major clinical study; male; nonhuman; priority journal; sex ratio; species distribution; virus strain; Alphacoronavirus; Betacoronavirus; classification; clinical trial; complication; Coronavirus infection; gastrointestinal disease; genetics; isolation and purification; longitudinal study; middle aged; multicenter study; pathogenicity; pathology; polymerase chain reaction; respiratory tract infection; virology; young adult; virus RNA; Adolescent; Adult; Aged; Alphacoronavirus; Betacoronavirus; Coronavirus Infections; Female; Gastrointestinal Diseases; Humans; Longitudinal Studies; Male; Middle Aged; Polymerase Chain Reaction; Respiratory Tract Infections; RNA, Viral; Young Adult","Severe respiratory illness associated with a novel coronavirus–Saudi Arabia and Qatar, 2012 (2012) MMWR Morb Mortal Wkly Rep, 61, p. 820; Updated information on the epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) infection and guidance for the public, clinicians, and public health authorities, 2012-2013 (2013) MMWR Morb Mortal Wkly Rep, 62, pp. 793-796; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) New Engl J Med, 348, pp. 1953-1966; Dare, R.K., Fry, A.M., Chittaganpitch, M., Sawanpanyalert, P., Olsen, S.J., Erdman, D.D., Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays (2007) J Infect Dis, 196, pp. 1321-1328; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: a one-year study in Colorado (2009) J Med Virol, 81, pp. 1597-1604; Gerna, G., Percivalle, E., Sarasini, A., Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients (2007) J Clin Virol, 38, pp. 244-250; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071; Kanwar, A., Selvaraju, S., Esper, F., Human coronavirus-HKU1 infection among adults in Cleveland, Ohio (2017) Open Forum Infect Dis, 4, p. ofx052; Silva, C.S., Mullis, L.B., Pereira, O., Jr., Human respiratory coronaviruses detected in patients with influenza-like illness in Arkansas, USA (2014) Virol Mycol, 2014, p. 004; Hendley, J.O., Fishburne, H.B., Gwaltney, J.M., Jr., Coronavirus infections in working adults. Eight-year study with 229 E and OC 43 (1972) Am Rev Respir Dis, 105, pp. 805-811; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations (2013) J Infect Dis, 208, pp. 1634-1642; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Chen, W.J., Arnold, J.C., Fairchok, M.P., Epidemiologic, clinical, and virologic characteristics of human rhinovirus infection among otherwise healthy children and adults: rhinovirus among adults and children (2015) J Clin Virol, 64, pp. 74-82; Gorse, G.J., Donovan, M.M., Patel, G.B., Balasubramanian, S., Lusk, R.H., Coronavirus and other respiratory illnesses comparing older with young adults (2015) Am J Med, 128, p. 1251. , e11-20; Hayden, F.G., Fritz, R., Lobo, M.C., Alvord, W., Strober, W., Straus, S.E., Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense (1998) J Clin Invest, 101, pp. 643-649","Millar, E.V.; Department of Preventive Medicine and Biostatistics, Infectious Disease Clinical Research Program, Uniformed Services University of the Health SciencesUnited States; email: emillar@idcrp.org",,"Blackwell Publishing Ltd",17502640,,,"29350887","English","Influ. Other Respir. Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85041339676 "Wheeler D.L., Sariol A., Meyerholz D.K., Perlman S.","56606695100;57200984890;6602303240;7102708317;","Microglia are required for protection against lethal coronavirus encephalitis in mice",2018,"Journal of Clinical Investigation","128","3",,"931","943",,21,"10.1172/JCI97229","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042749897&doi=10.1172%2fJCI97229&partnerID=40&md5=730438bf0ccabafeabec3d0f3782f4b7","Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA 52242, United States","Wheeler, D.L., Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Sariol, A., Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Meyerholz, D.K., Department of Pathology, University of Iowa, Iowa City, IA, United States; Perlman, S., Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States, Department of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA 52242, United States","Recent findings have highlighted the role of microglia in orchestrating normal development and refining neural network connectivity in the healthy CNS. Microglia are not only vital cells in maintaining CNS homeostasis, but also respond to injury, infection, and disease by undergoing proliferation and changes in transcription and morphology. A better understanding of the specific role of microglia in responding to viral infection is complicated by the presence of nonmicroglial myeloid cells with potentially overlapping function in the healthy brain and by the rapid infiltration of hematopoietic myeloid cells into the brain in diseased states. Here, we used an inhibitor of colony-stimulating factor 1 receptor (CSF1R) that depletes microglia to examine the specific roles of microglia in response to infection with the mouse hepatitis virus (MHV), a neurotropic coronavirus. Our results show that microglia were required during the early days after infection to limit MHV replication and subsequent morbidity and lethality. Additionally, microglia depletion resulted in ineffective T cell responses. These results reveal nonredundant, critical roles for microglia in the early innate and virus-specific T cell responses and for subsequent host protection from viral encephalitis. © 2018 Blackwell Publishing Ltd. All rights reserved.",,"3' deamino 3' morpholinooxaunomycin; allograft inflammatory factor 1; beta interferon; carbon tetrachloride; gamma interferon; genomic RNA; ifit1 protein; interferon; interleukin 6; messenger RNA; oas2 protein; pattern recognition receptor; protein; RANTES; unclassified drug; virus RNA; Csf1r protein, mouse; granulocyte macrophage colony stimulating factor receptor; organic compound; PLX5622; animal experiment; animal model; animal tissue; antigen presentation; Article; CD4+ T lymphocyte; cell infiltration; controlled study; Coronavirus encephalitis; flow cytometry; gene expression; infection; inflammatory cell; lymphocyte count; microarray analysis; microglia; mortality rate; mouse; Murine hepatitis virus; nonhuman; priority journal; quantitative analysis; survival rate; T lymphocyte; upregulation; viral clearance; virus encephalitis; virus load; virus replication; adaptive immunity; animal; antagonists and inhibitors; brain; C57BL mouse; cell proliferation; Coronavirus infection; cytology; encephalitis; gene expression profiling; immunology; innate immunity; macrophage; male; microglia; nerve cell network; olfactory bulb; transgenic mouse; virology; Adaptive Immunity; Animals; Brain; Cell Proliferation; Coronavirus Infections; Encephalitis; Gene Expression Profiling; Immunity, Innate; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Murine hepatitis virus; Nerve Net; Olfactory Bulb; Organic Chemicals; Receptors, Granulocyte-Macrophage Colony-Stimulating Factor; T-Lymphocytes","Butovsky, O., Identification of a unique TGF-β-dependent molecular and functional signature in microglia (2014) Nat Neurosci., 17 (1), pp. 131-143; Hickman, S.E., The microglial sensome revealed by direct RNA sequencing (2013) Nat Neurosci., 16 (12), pp. 1896-1905; Ginhoux, F., Fate mapping analysis reveals that adult microglia derive from primitive macrophages (2010) Science., 330 (6005), pp. 841-845; Gomez Perdiguero, E., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors (2015) Nature., 518 (7540), pp. 547-551; Nelson, L.H., Lenz, K.M., Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats (2017) Behav Brain Res., 316, pp. 279-293; Nimmerjahn, A., Kirchhoff, F., Helmchen, F., Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo (2005) Science., 308 (5726), pp. 1314-1318; Paolicelli, R.C., Synaptic pruning by microglia is necessary for normal brain development (2011) Science., 333 (6048), pp. 1456-1458; Prinz, M., Priller, J., Sisodia, S.S., Ransohoff, R.M., Heterogeneity of CNS myeloid cells and their roles in neurodegeneration (2011) Nat Neurosci., 14 (10), pp. 1227-1235; Schafer, D.P., Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner (2012) Neuron., 74 (4), pp. 691-705; Crotti, A., Ransohoff, R.M., Microglial physiology and pathophysiology: Insights from genomewide transcriptional profiling (2016) Immunity., 44 (3), pp. 505-515; Rock, R.B., Role of microglia in central nervous system infections (2004) Clin Microbiol Rev., 17 (4), pp. 942-964. , table of contents; Rademakers, R., Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids (2011) Nat Genet., 44 (2), pp. 200-205; Paloneva, J., Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype (2002) Am J Hum Genet., 71 (3), pp. 656-662; Erny, D., Host microbiota constantly control maturation and function of microglia in the CNS (2015) Nat Neurosci., 18 (7), pp. 965-977; Bergmann, C.C., Lane, T.E., Stohlman, S.A., Coronavirus infection of the central nervous system: Host-virus stand-off (2006) Nat Rev Microbiol., 4 (2), pp. 121-132; Weiss, S.R., Leibowitz, J.L., Coronavirus pathogenesis (2011) Adv Virus Res., 81, pp. 85-164; Pearce, B.D., Hobbs, M.V., McGraw, T.S., Buchmeier, M.J., Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo (1994) J Virol., 68 (9), pp. 5483-5495; Parra, B., Hinton, D.R., Lin, M.T., Cua, D.J., Stohlman, S.A., Kinetics of cytokine mRNA expression in the central nervous system following lethal and nonlethal coronavirus-induced acute encephalomyelitis (1997) Virology., 233 (2), pp. 260-270; Rempel, J.D., Murray, S.J., Meisner, J., Buchmeier, M.J., Differential regulation of innate and adaptive immune responses in viral encephalitis (2004) Virology., 318 (1), pp. 381-392; Sun, N., Grzybicki, D., Castro, R.F., Murphy, S., Perlman, S., Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus (1995) Virology., 213 (2), pp. 482-493; Minagawa, H., Takenaka, A., Mohri, S., Mori, R., Protective effect of recombinant murine interferon beta against mouse hepatitis virus infection (1987) Antiviral Res., 8 (2), pp. 85-95; Smith, A.L., Barthold, S.W., Beck, D.S., Intranasally administered alpha/beta interferon prevents extension of mouse hepatitis virus, strain JHM, into the brains of BALB/cByJ mice (1987) Antiviral Res., 8 (5-6), pp. 239-245; Cervantes-Barragan, L., Control of coronavirus infection through plasmacytoid dendritic-cellderived type i interferon (2007) Blood., 109 (3), pp. 1131-1137; Xue, S., Sun, N., Van Rooijen, N., Perlman, S., Depletion of blood-borne macrophages does not reduce demyelination in mice infected with a neurotropic coronavirus (1999) J Virol., 73 (8), pp. 6327-6334; Marten, N.W., Stohlman, S.A., Bergmann, C.C., Role of viral persistence in retaining CD8(+) T cells within the central nervous system (2000) J Virol., 74 (17), pp. 7903-7910; Bergmann, C.C., Parra, B., Hinton, D.R., Chandran, R., Morrison, M., Stohlman, S.A., Perforin-mediated effector function within the central nervous system requires IFN-gamma-mediated MHC upregulation (2003) J Immunol., 170 (6), pp. 3204-3213; Lin, M.T., Stohlman, S.A., Hinton, D.R., Mouse hepatitis virus is cleared from the central nervous systems of mice lacking perforin-mediated cytolysis (1997) J Virol., 71 (1), pp. 383-391; Parra, B., IFN-gamma is required for viral clearance from central nervous system oligodendroglia (1999) J Immunol., 162 (3), pp. 1641-1647; Gonzalez, J.M., Inhibition of interferongamma signaling in oligodendroglia delays coronavirus clearance without altering demyelination (2006) Am J Pathol., 168 (3), pp. 796-804; Anghelina, D., Pewe, L., Perlman, S., Pathogenic role for virus-specific CD4 T cells in mice with coronavirus-induced acute encephalitis (2006) Am J Pathol., 169 (1), pp. 209-222; Wang, Y., IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia (2012) Nat Immunol., 13 (8), pp. 753-760; Elmore, M.R., Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain (2014) Neuron., 82 (2), pp. 380-397; Spangenberg, E.E., Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology (2016) Brain., 139, pp. 1265-1281; Dagher, N.N., Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice (2015) J Neuroinflammation., 12, p. 139; Herz, J., Filiano, A.J., Smith, A., Yogev, N., Kipnis, J., Myeloid cells in the central nervous system (2017) Immunity., 46 (6), pp. 943-956; Salter, M.W., Beggs, S., Sublime microglia: Expanding roles for the guardians of the CNS (2014) Cell., 158 (1), pp. 15-24; Yamasaki, R., Differential roles of microglia and monocytes in the inflamed central nervous system (2014) J Exp Med., 211 (8), pp. 1533-1549; Barnett, E.M., Perlman, S., The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM (1993) Virology., 194 (1), pp. 185-191; Schwob, J.E., Saha, S., Youngentob, S.L., Jubelt, B., Intranasal inoculation with the olfactory bulb line variant of mouse hepatitis virus causes extensive destruction of the olfactory bulb and accelerated turnover of neurons in the olfactory epithelium of mice (2001) Chem Senses., 26 (8), pp. 937-952; Youngentob, S.L., Schwob, J.E., Saha, S., Manglapus, G., Jubelt, B., Functional consequences following infection of the olfactory system by intranasal infusion of the olfactory bulb line variant (OBLV) of mouse hepatitis strain JHM (2001) Chem Senses., 26 (8), pp. 953-963; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J Virol., 89 (3), pp. 1523-1536; Sasmono, R.T., A macrophage colonystimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse (2003) Blood., 101 (3), pp. 1155-1163; Templeton, S.P., Kim, T.S., O'Malley, K., Perlman, S., Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus (2008) Brain Pathol., 18 (1), pp. 40-51; Vogl, T., Gharibyan, A.L., Morozova-Roche, L.A., Pro-inflammatory S100A8 and S100A9 proteins: Self-assembly into multifunctional native and amyloid complexes (2012) Int J Mol Sci., 13 (3), pp. 2893-2917; Chernov, A.V., The calcium-binding proteins S100A8 and S100A9 initiate the early inflammatory program in injured peripheral nerves (2015) J Biol Chem., 290 (18), pp. 11771-11784; Zhao, J., Zhao, J., Perlman, S., Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages (2014) PLoS Pathog., 10 (8), p. e1004279; Wu, G.F., Dandekar, A.A., Pewe, L., Perlman, S., CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination (2000) J Immunol., 165 (4), pp. 2278-2286; Elmore, M.R., Lee, R.J., West, B.L., Green, K.N., Characterizing newly repopulated microglia in the adult mouse: Impacts on animal behavior, cell morphology, and neuroinflammation (2015) PLoS ONE., 10 (4), p. e0122912; Ma, Y., Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice (2016) J Neuroinflammation., 13, p. 38; Tsai, T.T., Microglia retard dengue virus-induced acute viral encephalitis (2016) Sci Rep., 6, p. 27670; Houtman, J.J., Fleming, J.O., Dissociation of demyelination and viral clearance in congenitally immunodeficient mice infected with murine coronavirus JHM (1996) J Neurovirol., 2 (2), pp. 101-110; Williamson, J.S., Stohlman, S.A., Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells (1990) J Virol., 64 (9), pp. 4589-4592; Parra, B., Lin, M.T., Stohlman, S.A., Bergmann, C.C., Atkinson, R., Hinton, D.R., Contributions of Fas-Fas ligand interactions to the pathogenesis of mouse hepatitis virus in the central nervous system (2000) J Virol., 74 (5), pp. 2447-2450; Phares, T.W., Stohlman, S.A., Hwang, M., Min, B., Hinton, D.R., Bergmann, C.C., CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis (2012) J Virol., 86 (5), pp. 2416-2427; Zhao, J., Zhao, J., Fett, C., Trandem, K., Fleming, E., Perlman, S., IFN-γ-and IL-10-expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis (2011) J Exp Med., 208 (8), pp. 1571-1577; Savarin, C., Bergmann, C.C., Hinton, D.R., Stohlman, S.A., Differential regulation of self-reactive CD4+ T cells in cervical lymph nodes and central nervous system during viral encephalomyelitis (2016) Front Immunol., 7, p. 370; Zhu, C., A neuroprotective role for microglia in prion diseases (2016) J Exp Med., 213 (6), pp. 1047-1059; Pewe, L., A severe acute respiratory syndromeassociated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus (2005) J Virol., 79 (17), pp. 11335-11342; Eckerle, L.D., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog., 6 (5), p. e1000896; Castro, R.F., Perlman, S., CD8+ T-cell epitopes within the surface glycoprotein of a neurotropic coronavirus and correlation with pathogenicity (1995) J Virol., 69 (12), pp. 8127-8131; Haring, J.S., Pewe, L.L., Perlman, S., High-magnitude, virus-specific CD4 T-cell response in the central nervous system of coronavirus-infected mice (2001) J Virol., 75 (6), pp. 3043-3047; Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complexassociated proteins (2017) MBio., 8 (1), pp. e02320-e02416","Perlman, S.; Department of Microbiology and Immunology, BSB 3-712, University of IowaUnited States; email: Stanley-perlman@uiowa.edu",,"American Society for Clinical Investigation",00219738,,JCINA,"29376888","English","J. Clin. Invest.",Article,"Final",Open Access,Scopus,2-s2.0-85042749897 "Piñana J.L., Madrid S., Pérez A., Hernández-Boluda J.C., Giménez E., Terol M.J., Calabuig M., Navarro D., Solano C.","15049943100;56955163500;55229963700;6701850161;55485325600;7004114075;24758173300;7004873661;7005089609;","Epidemiologic and Clinical Characteristics of Coronavirus and Bocavirus Respiratory Infections after Allogeneic Stem Cell Transplantation: A Prospective Single-Center Study",2018,"Biology of Blood and Marrow Transplantation","24","3",,"563","570",,12,"10.1016/j.bbmt.2017.11.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038350618&doi=10.1016%2fj.bbmt.2017.11.001&partnerID=40&md5=84f9d16a63244fd04e6333137f91c685","Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain; Department of Hematology, Hospital Universitari i Politècnic la Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain; Microbiology Service, Hospital Clínico Universitario, Valencia, Spain; Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain; Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain","Piñana, J.L., Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain, Department of Hematology, Hospital Universitari i Politècnic la Fe, Valencia, Spain, CIBERONC, Instituto Carlos III, Madrid, Spain; Madrid, S., Microbiology Service, Hospital Clínico Universitario, Valencia, Spain; Pérez, A., Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain; Hernández-Boluda, J.C., Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain; Giménez, E., Microbiology Service, Hospital Clínico Universitario, Valencia, Spain; Terol, M.J., Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain; Calabuig, M., Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain; Navarro, D., Microbiology Service, Hospital Clínico Universitario, Valencia, Spain, Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain; Solano, C., Department of Hematology, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain, Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain","Epidemiologic data about coronaviruses (CoVs) and human bocavirus (HBoV) in the setting of allogeneic hematopoietic stem cell transplantation (allo-HSCT) are scarce. We conducted a prospective longitudinal study on respiratory viral infections (RVIs) in allo-HSCT recipients with respiratory symptoms from December 2013 until June 2016. Respiratory virus in upper and/or lower respiratory tract (URT and LRT) specimens were tested using Luminex xTAG RVP Fast v1 assay. Seventy-nine consecutive allo-HSCT recipients developed a total of 192 virologically documented RVI episodes over 30 months. The median follow-up after RVI was 388 days (range, 5 to 923). CoV or HBoV was detected in 27 of 192 episodes (14%); 18 of 79 recipients (23%) developed a total of 21 CoV RVI episodes, whereas 6 recipients (8%) had 1 HBoV RVI episode each. Fourteen CoV RVI episodes were limited to the URT, whereas 7 affected the LRT. Co-pathogens were detected in 8 (38%) CoV cases. Type OC43 CoV was the dominant type (48%) followed by NL63 (24%), KHU1 (19%), and 229E (9%); the CoV hospitalization rate was 19%, whereas mortality was 5% (1 patient without any other microbiologic documentation). Among the 6 recipients with HBoV (3%), only 1 had LRT involvement and no one died from respiratory failure. In 5 cases (83%) HBoV was detected along with other viral co-pathogens. CoV RVIs are common after allo-HSCT, and in a significant proportion of cases CoV progressed to LRT and showed moderate to severe clinical features. In contrast, HBoV RVIs were rare and mostly presented in the context of co-infections. © 2017 The American Society for Blood and Marrow Transplantation","Allogeneic stem cell transplantation; Bocavirus; Community-acquired respiratory virus; Coronavirus; Respiratory virus infection; Viral pneumonia","adult; aged; allogeneic stem cell transplantation; Article; Bocaparvovirus; chronic graft versus host disease; clinical feature; Coronavirinae; female; follow up; graft recipient; hospitalization; human; longitudinal study; lower respiratory tract; major clinical study; male; mortality; Mycobacterium tuberculosis; prospective study; real time polymerase chain reaction; respiratory failure; reverse transcription polymerase chain reaction; Stenotrophomonas maltophilia; upper respiratory tract; viral respiratory tract infection; allograft; Coronavirus infection; hematopoietic stem cell transplantation; hospitalization; Human bocavirus; middle aged; parvovirus infection; respiratory tract infection; Adult; Aged; Allografts; Coronavirus; Coronavirus Infections; Female; Follow-Up Studies; Hematopoietic Stem Cell Transplantation; Hospitalization; Human bocavirus; Humans; Male; Middle Aged; Parvoviridae Infections; Prospective Studies; Respiratory Tract Infections","Renaud, C., Campbell, A.P., Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients (2011) Curr Opin Infect Dis, 24, pp. 333-343; Shah, D.P., Ghantoji, S.S., Mulanovich, V.E., Ariza-Heredia, E.J., Chemaly, R.F., Management of respiratory viral infections in hematopoietic cell transplant recipients (2012) Am J Blood Res, 2, pp. 203-218; McIntosh, K., Coronaviruses (1997) Clinical Virology, pp. 1123-1132. , D. Richman R.J. Whitley F.G. Hayden Churchill Livingstone New York, NY; Van der Hoek, L., Human coronaviruses: what do they cause? (2007) Antivir Ther, 12, pp. 651-658; Kuypers, J., Martin, E.T., Heugel, J., Wright, N., Morrow, R., Englund, J.A., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119, pp. e70-e76; Heugel, J., Martin, E.T., Kuypers, J., Englund, J.A., Coronavirusassociated pneumonia in previously healthy children (2007) Pediatr Infect Dis J, 26, pp. 753-755; Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age (2014) Pediatr Infect Dis J, 33, pp. 814-820; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Folz, R.J., Elkordy, M.A., Coronavirus pneumonia following autologous bone marrow transplantation for breast cancer (1999) Chest, 115, pp. 901-905; Oosterhof, L., Christensen, C.B., Sengelov, H., Fatal lower respiratory tract disease with human corona virus NL63 in an adult haematopoietic cell transplant recipient (2010) Bone Marrow Transplant, 45, pp. 1115-1116; Milano, F., Campbell, A.P., Guthrie, K.A., Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients (2010) Blood, 115, pp. 2088-2094; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., From the hHCoVer: cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci USA, 102, pp. 12891-12896; Bastien, N., Brandt, K., Dust, K., Ward, D., Li, Y., Human bocavirus infection, Canada (2006) Emerg Infect Dis, 12, pp. 848-850; Martin, E.T., Fairchok, M.P., Kuypers, J., Frequent and prolonged shedding of bocavirus in young children attending daycare (2010) J Infect Dis, 201, pp. 1625-1632; Martin, E.T., Kuypers, J., McRoberts, J.P., Englund, J.A., Zerr, D.M., Human bocavirus 1 primary infection and shedding in infants (2015) J Infect Dis, 212, pp. 516-524; Schenk, T., Strahm, B., Kontny, U., Hufnagel, M., Neumann-Haefelin, D., Falcone, V., Disseminated bocavirus infection after stem cell transplant (2007) Emerg Infect Dis, 13, pp. 1425-1427; Schenk, Maier, T., Hufnagel, B., Persistence of human bocavirus DNA in immunocompromised children (2011) Pediatr Infect Dis J, 30, pp. 82-84; Waggoner, J., Deresinski, S., Rare and emerging viral infection in the transplant population (2013) Principles and Practice of Transplant Infectious Diseases, , A. Safdar Springer Medizin Berlin, Germany; Schildgen, O., Muller, A., Allander, T., Human bocavirus: passenger or pathogen in acute respiratory tract infections? (2008) Clin Microbiol Rev, 21, pp. 291-304. , table of contents; Miyakis, S., van Hal, S.J., Barratt, J., Stark, D., Marriott, D., Harkness, J., Absence of human bocavirus in bronchoalveolar lavage fluid of lung transplant patients (2009) J Clin Virol, 44, pp. 179-180; Piñana, J.L., Hernández-Boluda, J.C., Calabuig, M., A risk-adapted approach to treating respiratory syncytial virus and human parainfluenza virus in allogeneic stem cell transplantation recipients with oral ribavirin therapy: a pilot study (2017) Transpl Infect Dis, 19; Shah, D.P., Ghantoji, S.S., Ariza-Heredia, E.J., Immunodeficiency scoring index to predict poor outcomes in hematopoietic cell transplant recipients with RSV infections (2014) Blood, 123, pp. 3263-3268; Seo, S., Xie, H., Campbell, A.P., Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: viral detection in the lung predicts outcome (2014) Clin Infect Dis, 58, pp. 1357-1368; Hirsch, H.H., Martino, R., Ward, K.N., Boeckh, M., Einsele, H., Ljungman, P., Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus (2013) Clin Infect Dis, 56, pp. 258-266; Costa, E., Rodríguez-Domínguez, M., Clari, M.Á., Giménez, E., Galán, J.C., Navarro, D., Comparison of the performance of 2 commercial multiplex PCR platforms for detection of respiratory viruses in upper and lower tract respiratory specimens (2015) Diagn Microbiol Infect Dis, 82, pp. 40-43; Leung, T.F., Li, C.Y., Lam, W.Y., Epidemiology and clinical presentations of human coronavirus NL63 infections in Hong Kong children (2009) J Clin Microbiol, 47, pp. 3486-3492; Hakki, M., Rattray, R.M., Press, R.D., The clinical impact of coronavirus infection in patients with hematologic malignancies and hematopoietic stem cell transplant recipients (2015) J Clin Virol, 68, pp. 1-5; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin Infect Dis, 64, pp. 1532-1539; Sipulwa, L.A., Ongus, J.R., Coldren, R.L., Bulimo, W.D., Molecular characterization of human coronaviruses and their circulation dynamics in Kenya, 2009-2012 (2016) Virol J, 13, p. 18; Dijkman, R., Jebbink, M.F., Gaunt, E., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Schenk, T., Maier, B., Hufnagel, M., Persistence of human bocavirus DNA in immunocompromised children (2011) Pediatr Infect Dis J, 30, pp. 82-84; Schlaberg, R., Ampofo, K., Tardif, K.D., Human bocavirus capsid messenger RNA detection in children with pneumonia (2017) J Infect Dis, 216, pp. 688-696; Peck Campbell, A., Kuypers, J., Nguyen, P., Human bocavirus (BoV) detection in nasal washes of hematopoietic cell transplantation recipients (2008), Presented at the 48th annual meeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy and the 46th annual meeting of the Infectious Diseases Society of America, October 25–28, Washington DC abstract V-3777","Piñana, J.L.; Division of Clinical Hematology, Hospital Universitario la Fe de Valencia, Avda Fernando Abril Martorell, 106 CP, Spain; email: jlpinana@gmail.com",,"Elsevier Inc.",10838791,,BBMTF,"29155041","English","Biol. Blood Marrow Transplant.",Article,"Final",Open Access,Scopus,2-s2.0-85038350618 "Bourgarel M., Pfukenyi D.M., Boué V., Talignani L., Chiweshe N., Diop F., Caron A., Matope G., Missé D., Liégeois F.","19336831200;57191692951;53876826900;56584423400;18633730800;56054175200;36338641200;6506293630;6506275831;7003352060;","Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimbabwe",2018,"Infection, Genetics and Evolution","58",,,"253","257",,7,"10.1016/j.meegid.2018.01.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040341375&doi=10.1016%2fj.meegid.2018.01.007&partnerID=40&md5=af82771cbf2068689760e906ed70ce63","CIRAD, UMR ASTRE, RP-PCP, Harare, Zimbabwe; ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France; Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe; MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France; CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique; Faculdade de Veterinária, Universidade Eduardo Mondlane, Maputo, Mozambique","Bourgarel, M., CIRAD, UMR ASTRE, RP-PCP, Harare, Zimbabwe, ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France; Pfukenyi, D.M., Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe; Boué, V., MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France; Talignani, L., MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France; Chiweshe, N., CIRAD, UMR ASTRE, RP-PCP, Harare, Zimbabwe; Diop, F., MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France; Caron, A., CIRAD, UMR ASTRE, RP-PCP, Harare, Zimbabwe, CIRAD, UMR ASTRE, RP-PCP, Maputo, Mozambique, Faculdade de Veterinária, Universidade Eduardo Mondlane, Maputo, Mozambique; Matope, G., Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe; Missé, D., MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France; Liégeois, F., MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France","Bats carry a great diversity of zoonotic viruses with a high-impact on human health and livestock. Since the emergence of new coronaviruses and paramyxoviruses in humans (e.g. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Nipah virus), numerous studies clearly established that bats can maintain some of these viruses. Improving our understanding on the role of bats in the epidemiology of the pathogens they harbour is necessary to prevent cross-species spill over along the wild/domestic/human gradient. In this study, we screened bat faecal samples for the presence of Coronavirus and Paramyxovirus in two caves frequently visited by local people to collect manure and/or to hunt bats in Zimbabwe. We amplified partial RNA-dependent RNA polymerase genes of Alpha and Betacoronavirus together with the partial polymerase gene of Paramyxovirus. Identified coronaviruses were related to pathogenic human strains and the paramyxovirus belonged to the recently described Jeilongvirus genus. Our results highlighted the importance of monitoring virus circulation in wildlife, especially bats, in the context of intense human-wildlife interfaces in order to strengthen prevention measures among local populations and to implement sentinel surveillance in sites with high zoonotic diseases transmission potential. © 2018 Elsevier B.V.","Bat; Coronavirus; Emerging infectious diseases; Paramyxovirus; Phylogeny; Zimbabwe","cytochrome b; RNA directed RNA polymerase; agar gel electrophoresis; Alphacoronavirus; Article; bat; Betacoronavirus; biodiversity; bioinformatics; disease surveillance; feces analysis; gene amplification; gene sequence; health impact assessment; human; human impact (environment); infection prevention; Marburgvirus; nonhuman; Paramyxoviridae; phylogeny; polymerase chain reaction; prevalence; reverse transcription; RNA extraction; SARS coronavirus; structural gene; virus gene; virus infection; virus transmission; Alphacoronavirus; animal; Betacoronavirus; classification; communicable disease; Coronavirus infection; genetic variation; genetics; molecular evolution; Paramyxoviridae; paramyxovirus infection; veterinary medicine; virology; virus genome; Zimbabwe; Alphacoronavirus; Animals; Betacoronavirus; Chiroptera; Communicable Diseases, Emerging; Coronavirus Infections; Evolution, Molecular; Genetic Variation; Genome, Viral; Paramyxoviridae; Paramyxoviridae Infections; Phylogeny; Zimbabwe","Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Hicks, A.L., Goldstein, T., Global patterns in coronavirus diversity (2017) Virus Evol., 3 (vex012); Audsley, M.D., Marsh, G.A., Lieu, K.G., Tachedjian, M., Joubert, D.A., Wang, L.F., Jans, D.A., Moseley, G.W., The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus (2016) J. Gen. Virol., 97, pp. 581-592; Bingham, J., Javangwe, S., Sabeta, C.T., Wandeler, A.I., Nel, L.H., Report of isolations of unusual lyssaviruses (rabies and Mokola virus) identified retrospectively from Zimbabwe (2001) J. S. Afr. Vet. Assoc., 72, pp. 92-94; Brierley, L., Vonhof, M.J., Olival, K.J., Daszak, P., Jones, K.E., Quantifying global drivers of zoonotic bat viruses: a process-based perspective (2016) Am. Nat., 187, pp. E53-64; Brook, C.E., Dobson, A.P., Bats as ‘special’ reservoirs for emerging zoonotic pathogens (2015) Trends Microbiol., 23, pp. 172-180; Chu, D.K., Leung, C.Y., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Poon, L.L., Avian coronavirus in wild aquatic birds (2011) J. Virol., 85, pp. 12815-12820; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Drexler, J.F., Evidence for an ancestral Association of Human Coronavirus 229E with bats (2015) J. Virol., 89, pp. 11858-11870; Drexler, J.F., Corman, V.M., Muller, M.A., Maganga, G.D., Vallo, P., Binger, T., Gloza-Rausch, F., Drosten, C., Bats host major mammalian paramyxoviruses (2012) Nat. Commun., 3, p. 796; Foggin, C.M., Atypical rabies virus in cats and a dog in Zimbabwe (1982) Vet. Rec., 110, p. 338; Foley, N.M., Thong, V.D., Soisook, P., Goodman, S.M., Armstrong, K.N., Jacobs, D.S., Puechmaille, S.J., Teeling, E.C., How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats (2015) Mol. Biol. Evol., 32, pp. 313-333; Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.P., Teeling, E., Kittayapong, P., Manuguerra, J.C., SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory (2011) Infect. Genet. Evol., 11, pp. 1690-1702; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst. Biol., 59, pp. 307-321; Hayman, D.T., Bowen, R.A., Cryan, P.M., McCracken, G.F., O'Shea, T.J., Peel, A.J., Gilbert, A., Wood, J.L., Ecology of zoonotic infectious diseases in bats: current knowledge and future directions (2013) Zoonoses Public Health, 60, pp. 2-21; Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X., Wilson, A.C., Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 6196-6200; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874; Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Milne, I., Lindner, D., Bayer, M., Husmeier, D., McGuire, G., Marshall, D.F., Wright, F., TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops (2009) Bioinformatics, 25, pp. 126-127; Monadjem, A., Taylor, P.J., Cotterill, P.D.F., Schoeman, M.C., Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis (2010), Book, Wits University Press; Morse, S.S., Mazet, J.A., Woolhouse, M., Parrish, C.R., Carroll, D., Karesh, W.B., Zambrana-Torrelio, C., Daszak, P., Prediction and prevention of the next pandemic zoonosis (2012) Lancet, 380, pp. 1956-1965; Pauly, M., Pir, J.B., Loesch, C., Sausy, A., Snoeck, C.J., Hubschen, J.M., Muller, C.P., Novel alphacoronaviruses and paramyxoviruses Cocirculate with type 1 and severe acute respiratory system (SARS)-related Betacoronaviruses in Synanthropic bats of Luxembourg (2017) Appl. Environ. Microbiol., 83; Masters, S.P., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-858. , Sixth Ed. Lippincott Williams & Wilkins Philadelphia; Peterson, A.T., Lash, R.R., Carroll, D.S., Johnson, K.M., Geographic potential for outbreaks of Marburg hemorrhagic fever (2006) Am. J. Trop. Med. Hyg., 75, pp. 9-15; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Muller, M.A., Drosten, C., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., McCallum, H., Ecological dynamics of emerging bat virus spillover (2015) Proc. Biol. Sci., 282; Pol Scientific, (1999), http://www.protocol-online.org/prot/Protocols/RNAlater-3999.html; Quan, P.L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Hutchison, S.K., Lipkin, W.I., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) MBio, 1; Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Huelsenbeck, J.P., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61, pp. 539-542; Simmons, N.B., Evolution. An Eocene big bang for bats (2005) Science, 307, pp. 527-528; Smith, I., Wang, L.F., Bats and their virome: an important source of emerging viruses capable of infecting humans (2013) Curr. Opin. Virol., 3, pp. 84-91; Smith, C.S., de Jong, C.E., Meers, J., Henning, J., Wang, L., Field, H.E., Coronavirus infection and diversity in bats in the Australasian region (2016) EcoHealth, 13, pp. 72-82; Tong, S., Chern, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) J. Clin. Microbiol., 46, pp. 2652-2658; (2003), http://tree.bio.ed.ac.uk/software/tracer/, Tracer. v1.6. Available online; Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S., Jin, Q., ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J. Infect. Dis., 213, pp. 579-583","Liégeois, F.; IRD/UMR 224, MIVEGEC, 911 avenue Agropolis, France; email: florian.liegeois@ird.fr",,"Elsevier B.V.",15671348,,IGENC,"29331670","English","Infec. Genet. Evol.",Article,"Final",Open Access,Scopus,2-s2.0-85040341375 "Geldenhuys M., Mortlock M., Weyer J., Bezuidt O., Seamark E.C.J., Kearney T., Gleasner C., Erkkila T.H., Cui H., Markotter W.","55788436500;56866315900;23991418800;37088257300;6508104299;7005632519;35198175100;55677088047;57201382769;12752757200;","A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa",2018,"PLoS ONE","13","3", e0194527,"","",,16,"10.1371/journal.pone.0194527","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044544238&doi=10.1371%2fjournal.pone.0194527&partnerID=40&md5=29bab01de6ee777a6170e2484ed47a4e","Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa; Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa; AfricanBats NPC, Pretoria, South Africa; Eugène Marais Cha. of Wildlife Management, Mammal Research Institute, University of Pretoria, Pretoria, South Africa; Ditsong National Museum of Natural History, Pretoria, South Africa; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa; Los Alamos National Laboratory, Los Alamos, NM, United States","Geldenhuys, M., Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa; Mortlock, M., Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa; Weyer, J., Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa; Bezuidt, O., Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa; Seamark, E.C.J., AfricanBats NPC, Pretoria, South Africa, Eugène Marais Cha. of Wildlife Management, Mammal Research Institute, University of Pretoria, Pretoria, South Africa; Kearney, T., Ditsong National Museum of Natural History, Pretoria, South Africa, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa; Gleasner, C., Los Alamos National Laboratory, Los Alamos, NM, United States; Erkkila, T.H., Los Alamos National Laboratory, Los Alamos, NM, United States; Cui, H., Los Alamos National Laboratory, Los Alamos, NM, United States; Markotter, W., Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa","Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and herpesvirus sequences that were widespread throughout Neoromicia populations in South Africa. Furthermore, similar adenovirus sequences were detected within these populations throughout several years. With the exception of the coronaviruses, the study represents the first report of sequence data from several viral families within a Southern African insectivorous bat genus; highlighting the need for continued investigations in this regard. © 2018 Public Library of Science. All Rights Reserved.",,"Adenoviridae; animal; bat; biology; Coronavirinae; Coronavirus infection; DNA sequence; gastrointestinal tract; genetic variation; genetics; Herpesviridae; high throughput sequencing; human; mammal; metagenomics; pathogenicity; phylogeny; phylogeography; physiology; procedures; South Africa; veterinary; virology; virus genome; zoonosis; Adenoviridae; Animals; Chiroptera; Computational Biology; Coronavirus; Coronavirus Infections; Gastrointestinal Tract; Genetic Variation; Genome, Viral; Herpesviridae; High-Throughput Nucleotide Sequencing; Humans; Mammals; Metagenomics; Phylogeny; Phylogeography; Sequence Analysis, DNA; South Africa; Zoonoses","Rahman, M.A., Khan, S.U., Rahman, M., Gurley, E.S., Rollin, P.E., Lo, M.K., Date palm sap linked to nipah virus outbreak in Bangladesh, 2008 (2012) Vector Borne Zoonotic Dis., 12 (1), pp. 65-72. , https://doi.org/10.1089/vbz.2011.0656, PMID: 21923274; Amman, B.R., Carroll, S.A., Reed, Z.D., Sealy, T.K., Balinandi, S., Swanepoel, R., Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection (2012) PLoS Pathog., 8 (10); Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.-W., Wong, B.H.L., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) PNAS, 102 (39), pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102, PMID: 16169905; Corman, V.M., Ithete, N.L., Richards, R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of middle east respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol., 88 (19), pp. 11297-11303. , https://doi.org/10.1128/JVI.01498-14, PMID: 25031349; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8 (2), pp. 1-13; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res., 101 (1), pp. 45-56; Ge, X., Li, J., Yang, X., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and Characterization of a bat SARSlike coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538. , https://doi.org/10.1038/nature12711, PMID: 24172901; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2015) ISME J, 10, pp. 1-12; Wang, J., Moore, N.E., Murray, Z.L., Mcinnes, K., White, J., Tompkins, D.M., Discovery of novel virus sequences in an isolated and threatened bat species, the New Zealand lesser short-tailed bat (Mystacina tuberculata) (2015) J Virol., 96, pp. 2442-2452; Drexler, J.F., Corman, V.M., Muèller, M.A., Maganga, G.D., Vallo, P., Binger, T., Bats host major mammalian paramyxoviruses (2012) Nat Commun., 3 (796), pp. 1-12; Wu, Z., Ren, X., Yang, L., Hu, Y., Yang, J., He, G., Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces (2012) J Virol., 86 (20), pp. 10999-11012. , https://doi.org/10.1128/JVI.01394-12, PMID: 22855479; Drexler, J.F., Geipel, A., Koènig, A., Corman, V.M., Van Riel, D., Leijten, L.M., Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes (2013) PNAS, 110 (40), pp. 16151-16156. , https://doi.org/10.1073/pnas.1308049110, PMID: 24043818; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J Virol., 80 (15), pp. 7481-7490. , https://doi.org/10.1128/JVI.00697-06, PMID: 16840328; Li, L., Victoria, J.G., Wang, C., Jones, M., Fellers, G.M., Kunz, T.H., Bat guano virome: Predominance of dietary viruses from insects and plants plus novel mammalian viruses (2010) J Virol., 84 (14), pp. 6955-6965. , https://doi.org/10.1128/JVI.00501-10, PMID: 20463061; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J Virol., 86 (8), pp. 4620-4630. , https://doi.org/10.1128/JVI.06671-11, PMID: 22345464; Donaldson, E.F., Haskew, A.N., Gates, J.E., Huynh, J., Moore, C.J., Frieman, M.B., Metagenomic analysis of the viromes of three North American bat species: Viral diversity among different bat species that share a common habitat (2010) J Virol., 84 (24), pp. 13004-13018. , https://doi.org/10.1128/JVI.01255-10, PMID: 20926577; Baker, K.S., Leggett, R.M., Bexfield, N.H., Alston, M., Daly, G., Todd, S., Metagenomic study of the viruses of African straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus (2013) Virology., 441 (2), pp. 95-106. , https://doi.org/10.1016/j.virol.2013.03.014, PMID: 23562481; Dacheux, L., Cervantes-Gonzalez, M., Guigon, G., Thiberge, J.M., Vandenbogaert, M., Maufrais, C., A preliminary study of viral metagenomics of French bat species in contact with humans: Identification of new mammalian viruses (2014) PLoS One, 9 (1), p. e87194. , https://doi.org/10.1371/journal.pone.0087194, PMID: 24489870; Kohl, C., Vidovszky, M.Z., Muhldorfer, K., Dabrowski, P.W., Radonić, A., Nitsche, A., Genome analysis of bat adenovirus 2: Indications of interspecies transmission (2012) J Virol., 86 (3), pp. 1888-1892. , https://doi.org/10.1128/JVI.05974-11, PMID: 22130531; Quan, P., Firth, C., Conte, J.M., Williams, S.H., Zambrana-Torrelio, C.M., Anthony, S.J., Bats are a major natural reservoir for hepaciviruses and pegiviruses (2013) PNAS, 110 (20), pp. 8194-8199. , https://doi.org/10.1073/pnas.1303037110, PMID: 23610427; Van Cakenberghe, V., Seamark, E.C.J., (2016) African Chiroptera Report, , ACR. editors. Pretoria: AfricanBats, Pretoria, Republic of South Africa ISSN: 1990-6471; Goodman, S.M., Kearney, T., Ratsimbazafy, M.M., Hassanin, A., Description of a new species of Neoromicia (Chiroptera: Vespertilionidae) from southern Africa: A name for N. Cf. Melckorum (2017) Zootaxa, 4236 (2). , zootaxa.4236.2.10; Jacobs, D., Cotterill, F.P.D., Taylor, P.J., Neoromicia capensis (2014) The IUCN Red List of Threatened Species, , e.T44918A67358046. 2014; Hutson, A.M., Racey, P.A., Goodman, S., Jacobs, D., Neoromicia nana (2014) The IUCN Red List of Threatened Species, , e.T44923A67357605. 2014; Sumibcay, L., Kadjo, B., Gu, S.H., Kang, H.J., Lim, B.K., Cook, J.A., Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Cote D'Ivoire (2012) Virol J, 9 (34); Mortlock, M., Kuzmin, I.V., Weyer, J., Gilbert, A.T., Agwanda, B., Rupprecht, C.E., Novel paramyxoviruses in bats from sub-Saharan Africa, 2007-2012 (2015) Emerg Infect Dis., 21 (10), pp. 1840-1843. , https://doi.org/10.3201/eid2110.140368, PMID: 26402433; Geldenhuys, M., Weyer, J., Nel, L.H., Markotter, W., Coronaviruses in South African bats (2013) Vector Borne Zoonotic Dis., 13 (7), pp. 516-519. , https://doi.org/10.1089/vbz.2012.1101, PMID: 23473214; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis., 19 (10), pp. 1697-1699. , https://doi.org/10.3201/eid1910.130946, PMID: 24050621; Gloza-Rausch, F., Ipsen, A., Seebens, A., Goèttsche, M., Panning, M., Felix Drexler, J., Detection and prevalence patterns of group I coronaviruses in bats, northern Germany (2008) Emerg Infect Dis., 14 (4), pp. 626-631. , https://doi.org/10.3201/eid1404.071439, PMID: 18400147; Monadjem, A., Taylor, P.J., Cotterill, W., Schoeman, M.C., (2010) Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis, , Johannesburg: Wits University Press; Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates (1994) Mol Mar Biol Biotechnol, 3 (5), pp. 294-299. , PMID: 7881515; Kohl, C., Brinkmann, A., Dabrowski, P.W., Radoni, A., Nitsche, A., Kurth, A., Protocol for metagenomic virus detection in clinical specimens (2015) Emerg Infect Dis., 21 (1), pp. 49-57; Victoria, J.G., Kapoor, A., Dupuis, K., Schnurr, D.P., Delwart, E.L., Rapid identification of known and new RNA viruses from animal tissues (2008) PLoS Pathog., 4 (9), p. e1000163. , https://doi.org/10.1371/journal.ppat.1000163, PMID: 18818738; Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C., (2007) MEGAN Analysis of Metagenomic Data, pp. 377-386; Zerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res., 18 (5), pp. 821-829. , https://doi.org/10.1101/gr.074492.107, PMID: 18349386; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J Virol., 84 (21), pp. 11336-11349. , https://doi.org/10.1128/JVI.00650-10, PMID: 20686038; Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Host range, prevalence, and genetic diversity of adenoviruses in bats (2010) J Virol., 84 (8), pp. 3889-3897. , https://doi.org/10.1128/JVI.02497-09, PMID: 20089640; Van Devanter, D.R., Warrener, P., Bennett, L., Schultz, E.R., Coulter, S., Garber, R.L., Detection and analysis of diverse herpesviral species by consensus primer PCR (1996) J Clin Microbiol., 34 (7), pp. 1666-1671. , PMID: 8784566; Wang, S., Sundaram, J.P., Spiro, D., VIGOR, an annotation program for small viral genomes (2010) BMC Bioinformatics, 11 (451), pp. 1-10; Hall, T., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser., 41, pp. 95-98; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol., 33 (7), pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054, PMID: 27004904; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol., 29 (8), pp. 1969-1973. , https://doi.org/10.1093/molbev/mss075, PMID: 22367748; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and high-performance computing (2015) Nat Methods, 9 (8), pp. 6-9; Miller, M.A., Pfeiffer, W., Schwartz, T., Creating the CIPRES science gateway for inference of large phylogenetic trees (2010) Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1-8. , New Orleans, LA; Sayre, R., Comer, P., Hak, J., Josse, C., Bow, J., Warner, H., A new map of standardized terrestrial ecosystems of Africa (2013) African Geogr Rev., pp. 1-24; Faye, B., Role, distribution and perspective of camel breeding in the third millennium economies (2015) Emirates J Food Agric., 27 (4), pp. 318-327; Wilson, R.T., The one-humped camel in Southern Africa: Unusual and new records for seven countries in the Southern African development community (2013) African J Agric Res., 8 (28), pp. 3716-3723; Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., Very high resolution interpolated climate surfaces for global land areas (2005) Int J Climatol., 25, pp. 1965-1978; Phillips, S.B., Aneja, V.P., Kang, D., Arya, S.P., Modelling and analysis of the atmospheric nitrogen deposition in North Carolina (2006) Int J Glob Environ Issues, 6 (2-3), pp. 231-252; Reusken, C.B.E.M., Haagmans, B.L., Muèller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2013) Lancet, 3099 (13), pp. 1-6; Reusken, C.B.E.M., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis., 20 (8), pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590, PMID: 25062254; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Antibodies against MERS coronavirus in Dromedary camels, Kenya, 1992-2013 (2014) Emerg Infect Dis., 20 (8), pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596, PMID: 25075637; Muèller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., MERS coronavirus neutralizing antibodies in camels, eastern Africa, 1983-1997 (2014) Emerg Infect Dis., 20 (12), pp. 2093-2095. , https://doi.org/10.3201/eid2012.141026, PMID: 25425139; Chu, D.K.W., Poon, L.L.M., Gomaa, M.M., Shehata, M.M., Perera, R.A.P.M., Zeid, D.A., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis., 20 (6), pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299, PMID: 24856660; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Dromedary camels and the transmission of middle east respiratory syndrome coronavirus (MERS-CoV) (2015) Transbound Emerg Dis., 64 (2), pp. 344-353. , https://doi.org/10.1111/tbed.12401, PMID: 26256102; He, B., Li, Z., Yang, F., Zheng, J., Feng, Y., Guo, H., Virome profiling of bats from myanmar by metagenomic analysis of tissue samples reveals more novel Mammalian viruses (2013) PLoS One, 8 (4), p. e61950. , https://doi.org/10.1371/journal.pone.0061950, PMID: 23630620; Zhao, G., Wu, G., Lim, E.S., Droit, L., Krishnamurthy, S., Barouch, D.H., Virus Seeker, a computational pipeline for virus discovery and virome composition analysis (2017) Virology, 503, pp. 21-30. , https://doi.org/10.1016/j.virol.2017.01.005, PMID: 28110145; Li, L., Kapoor, A., Slikas, B., Bamidele, O.S., Wang, C., Shaukat, S., Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces (2010) J Virol., 84 (4), pp. 1674-1682. , https://doi.org/10.1128/JVI.02109-09, PMID: 20007276; De Lima, S.F.E., Cibulski, S.P., Dos Santos, H.F., Teixeira, T.F., Varela, A.P.M., Roehe, P.M., Genomic characterization of novel circular ssDNA viruses from insectivorous bats in Southern Brazil (2015) PLoS One, 10 (2), p. e0118070. , https://doi.org/10.1371/journal.pone.0118070, PMID: 25688970; Oude Munnink, B.B., Phan, M.V.T., Van Der-Hoek, L., Kellam, P., Cotten, M., Genome sequences of a novel Vietnamese bat bunyavirus (2016) Genome Announc., 4 (6), pp. e01366-e01416. , https://doi.org/10.1128/genomeA.01366-16, PMID: 28007850; Mourya, D.T., Yadav, P.D., Basu, A., Shete, A., Patil, D.Y., Zawar, D., Malsoor Virus, a novel bat phlebovirus, is closely related to Severe Fever with Thrombocytopenia Syndrome virus and Heartland virus (2014) J Virol., 88 (6), pp. 3605-3609. , https://doi.org/10.1128/JVI.02617-13, PMID: 24390329; Lau, S.K.P., Woo, P.C.Y., Lai, K.K.Y., Huang, Y., Yip, C.C.Y., Shek, C.-T., Complete genome analysis of three novel picornaviruses from diverse bat species (2011) J Virol., 85 (17), pp. 8819-8828. , https://doi.org/10.1128/JVI.02364-10, PMID: 21697464; Kemenesi, G., Zhang, D., Marton, S., Dallos, B., Gorfol, T., Estok, P., Genetic characterization of a novel picornavirus detected in Miniopterus schreibersii bats (2014) J Gen Virol., 96, pp. 815-821. , https://doi.org/10.1099/jgv.0.000028, PMID: 25516541; Lukashev, A.N., Corman, V.M., Schacht, D., Gloza-Rausch, F., Seebens-Hoyer, A., Gmyl, A.P., Close genetic relatedness of picornaviruses from European and Asian bats (2017) J Gen Virol., 98, pp. 955-961. , https://doi.org/10.1099/jgv.0.000760, PMID: 28555547; Pankovics, P., Boros, A.A., Bõâroâ, H., Barbara, K., Gia, T., Delwart, E., Novel picornavirus in domestic rabbits (Oryctolagus cuniculus var. Domestica) (2016) Infect Genet Evol., 37, pp. 117-122. , https://doi.org/10.1016/j.meegid.2015.11.012, PMID: 26588888; Li, L., Deng, X., Mee, E.T., Collot-Teixeira, S., Anderson, R., Schepelmann, S., Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent (2015) J Virol Methods, 213, pp. 139-146. , https://doi.org/10.1016/j.jviromet.2014.12.002, PMID: 25497414; Grard, G., Fair, J.N., Lee, D., Slikas, E., Steffen, I., Muyembe, J.J., A novel rhabdovirus sssociated with scute hemorrhagic fever in Central Africa (2012) PLoS Pathog., 8 (9), p. e1002924. , https://doi.org/10.1371/journal.ppat.1002924, PMID: 23028323; Yuan, L., Li, M., Li, L., Monagin, C., Chmura, A.A., Schneider, B.S., Evidence for retrovirus and paramyxovirus infection of multiple bat species in China (2014) Viruses, 6, pp. 2138-2154. , https://doi.org/10.3390/v6052138, PMID: 24841387; Jaânoska, M., Vidovszky, M., Molnaâr, V., Liptovszky, M., Harrach, B., Benko, M., Novel adenoviruses and herpesviruses detected in bats (2011) Vet J, 189 (1), pp. 118-121. , https://doi.org/10.1016/j.tvjl.2010.06.020, PMID: 20813566; Vidovszky, M.Z., Kohl, C., Bologh, S., Gorfol, T., Wibbelt, G., Kurth, A., Random sampling of the Central European bat fauna reveals the existence of numerous hithero unknown adenoviruses (2015) Acta Vet Hung., 63 (4), pp. 508-525. , https://doi.org/10.1556/004.2015.047, PMID: 26599097; Benko, M., Harrach, B., Kremer, E.J., Do nonhuman primate or bat adenoviruses pose a risk for human health? (2014) Future Microbiol, 9, pp. 269-272. , https://doi.org/10.2217/fmb.13.170, PMID: 24762301; Sonntag, M., Muèhldorfer, K., Speck, S., Wibbelt, G., Kurth, A., New adenovirus in bats, Germany (2009) Emerg Infect Dis., 15 (12), pp. 2052-2055. , https://doi.org/10.3201/eid1512.090646, PMID: 19961700; Shabman, R.S., Shrivastava, S., Tsibane, T., Attie, O., Jayaprakash, A., Mire, C.E., Isolation and characterization of a novel Gammaherpesvirus from a microbat cell line (2016) MSphere, 1 (1), pp. 1-15; Zheng, X., Qiu, M., Chen, S., Xiao, J., Ma, L., Shan, L., High prevalence and diversity of viruses of the subfamily Gammaherpesvirinae, family Herpesviridae, in fecal specimens from bats of different species in southern China (2016) Arch Virol., 161, pp. 135-140. , https://doi.org/10.1007/s00705-015-2614-9, PMID: 26446885; Escalera-Zamudio, M., Rojas-Anaya, E., Kolokotronis, S.-O., Taboada, B., Loza-Rubio, E., Meândez-Ojeda, M.L., Bats, primates, and the evolutionary origins and diversification of mammalian gammaherpesviruses (2016) MBio., 7 (6), pp. e01425-e01516. , https://doi.org/10.1128/mBio.01425-16, PMID: 27834200; De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Family coronaviridae (2012) Virus Taxonomy: Classification and Nomenclature of Viruses Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-820. , King A, Adams MJ, Carstens EB, Lefkowitz E, editors. London, United Kingdom: Academic Press; Van Der-Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Identification of a new human coronavirus (2004) Nat Med., 10 (4), pp. 368-373. , https://doi.org/10.1038/nm1024, PMID: 15034574; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol., 91, pp. e01916-e01953. , https://doi.org/10.1128/JVI.01953-16, PMID: 28077633; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg Infect Dis., 15 (9), pp. 1377-1384. , https://doi.org/10.3201/eid1509.090224, PMID: 19788804; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg Infect Dis., 19 (3), pp. 3-6; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, E.M.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2015) Science, 351 (6268), pp. 81-84. , https://doi.org/10.1126/science.aac8608, PMID: 26678874; Temmam, S., Davoust, B., Berenger, J., Raoult, D., Desnues, C., Viral metagenomics on animals as a tool for the detection of zoonoses prior to human infection? (2014) Int J Mol Sci., 15, pp. 10377-10397. , https://doi.org/10.3390/ijms150610377, PMID: 24918293","Markotter, W.; Centre for Viral Zoonoses, Department of Medical Virology, University of PretoriaSouth Africa; email: wanda.markotter@up.ac.za",,"Public Library of Science",19326203,,POLNC,"29579103","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85044544238 "Jordan P.C., Stevens S.K., Deval J.","57189302457;7201710295;57213753296;","Nucleosides for the treatment of respiratory RNA virus infections",2018,"Antiviral Chemistry and Chemotherapy","26",,,"","",,8,"10.1177/2040206618764483","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051395653&doi=10.1177%2f2040206618764483&partnerID=40&md5=18339f943a081e1a7b3ada3ba1254896","Alios BioPharma, Inc, Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, United States","Jordan, P.C., Alios BioPharma, Inc, Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, United States; Stevens, S.K., Alios BioPharma, Inc, Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, United States; Deval, J., Alios BioPharma, Inc, Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, United States","Influenza virus, respiratory syncytial virus, human metapneumovirus, parainfluenza virus, coronaviruses, and rhinoviruses are among the most common viruses causing mild seasonal colds. These RNA viruses can also cause lower respiratory tract infections leading to bronchiolitis and pneumonia. Young children, the elderly, and patients with compromised cardiac, pulmonary, or immune systems are at greatest risk for serious disease associated with these RNA virus respiratory infections. In addition, swine and avian influenza viruses, together with severe acute respiratory syndrome-associated and Middle Eastern respiratory syndrome coronaviruses, represent significant pandemic threats to the general population. In this review, we describe the current medical need resulting from respiratory infections caused by RNA viruses, which justifies drug discovery efforts to identify new therapeutic agents. The RNA polymerase of respiratory viruses represents an attractive target for nucleoside and nucleotide analogs acting as inhibitors of RNA chain synthesis. Here, we present the molecular, biochemical, and structural fundamentals of the polymerase of the four major families of RNA respiratory viruses: Orthomyxoviridae, Pneumoviridae/Paramyxoviridae, Coronaviridae, and Picornaviridae. We summarize past and current efforts to develop nucleoside and nucleotide analogs as antiviral agents against respiratory virus infections. This includes molecules with very broad antiviral spectrum such as ribavirin and T-705 (favipiravir), and others targeting more specifically one or a few virus families. Recent advances in our understanding of the structure(s) and function(s) of respiratory virus polymerases will likely support the discovery and development of novel nucleoside analogs. © The Author(s) 2018.","antiviral; coronavirus; influenza; nucleoside analog; picornavirus; Respiratory syncytial virus; rhinovirus; RNA-dependent RNA polymerase","7 deaza 2' c methyladenosine; antivirus agent; favipiravir; genomic RNA; lumicitabine; mk 0608; nitd 008; nucleoside analog; oseltamivir; palivizumab; peramivir; remdesivir; ribavirin; RNA polymerase; unclassified drug; zanamivir; antivirus agent; nucleoside; antiviral resistance; Article; causal attribution; Coronaviridae; Coronaviridae infection; drug approval; drug effect; drug potency; drug structure; drug targeting; Ebola hemorrhagic fever; Ebolavirus; human; Human rhinovirus; influenza; nonhuman; Orthomyxoviridae; Paramyxoviridae; Pneumovirinae; prevalence; priority journal; respiratory virus; RNA virus infection; structure activity relation; treatment planning; viral respiratory tract infection; virus capsid; virus infectivity; virus replication; chemical structure; chemistry; drug effect; microbial sensitivity test; molecular model; respiratory tract infection; RNA virus; RNA virus infection; virology; Antiviral Agents; Humans; Microbial Sensitivity Tests; Models, Molecular; Molecular Structure; Nucleosides; Respiratory Tract Infections; RNA Virus Infections; RNA Viruses","Ferkol, T., Schraufnagel, D., The global burden of respiratory disease (2014) Ann Am Thorac Soc, 11, pp. 404-406. , and; Gelderblom, H.R., Structure and classification of viruses (1996) Medical microbiology, , Baron S., (ed), 4th ed, Galveston: University of Texas Medical Branch, In:, (ed; Mackie, P.L., The classification of viruses infecting the respiratory tract (2003) Paediatr Respir Rev, 4, pp. 84-90; Kawaguchi, A., Bates, A., Lee, B.E., Virus detection in critically ill children with acute respiratory disease: a new profile in view of new technology (2017) Acta Paediatr, , 107: 504–510; Te Velthuis, A.J., Fodor, E., Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis (2016) Nat Rev Microbiol, 14, pp. 479-493. , and; Muchmore, E.A., Varki, A., Selective inactivation of influenza C esterase: a probe for detecting 9-O-acetylated sialic acids (1987) Science, 236, pp. 1293-1295. , and; Song, H., Qi, J., Khedri, Z., An open receptor-binding cavity of hemagglutinin-esterase-fusion glycoprotein from newly-identified influenza D virus: Basis for its broad cell tropism (2016) PLOS Pathog, 12, p. e1005411; Rello, J., Pop-Vicas, A., Clinical review: Primary influenza viral pneumonia (2009) Crit Care, 13, p. 235. , and; Moghadami, M., A narrative review of influenza: A seasonal and pandemic disease (2017) Iran J Med Sci, 42, pp. 2-13; Fowlkes, A., Steffens, A., Temte, J., Incidence of medically attended influenza during pandemic and post-pandemic seasons through the Influenza Incidence Surveillance Project, 2009-2013 (2015) Lancet Respir Med, 3, pp. 709-718; Girard, M.P., Cherian, T., Pervikov, Y., A review of vaccine research and development: Human acute respiratory infections (2005) Vaccine, 23, pp. 5708-5724; Afonso, C.L., Amarasinghe, G.K., Banyai, K., Taxonomy of the order Mononegavirales: update 2016 (2016) Arch Virol, 161, pp. 2351-2360; Hall, C.B., Respiratory syncytial virus and parainfluenza virus (2001) New Engl J Med, 344, pp. 1917-1928; Marx, A., Török, T.J., Holma, R.C., Pediatric hospitalizations for croup (laryngotracheobronchitis): Biennial increases associated with human parainfluenza virus 1 epidemics (1997) J Infect Dis, 176, pp. 1423-1427; Friesner, R.A., Banks, J.L., Murphy, R.B., Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy (2004) J Med Chem, 47, pp. 1739-1749; Liu, W.-K., Liu, Q., Chen, D.-H., Epidemiology and clinical presentation of the four human parainfluenza virus types (2013) BMC Infect Dis, 13, p. 28; Iwane, M.K., Edwards, K.M., Szilagyi, P.G., Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children (2004) Pediatrics, 113, pp. 1758-1764; Nair, H., Nokes, D.J., Gessner, B.D., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555; Broadbent, L., Groves, H., Shields, M.D., Respiratory syncytial virus, an ongoing medical dilemma: an expert commentary on respiratory syncytial virus prophylactic and therapeutic pharmaceuticals currently in clinical trials (2015) Influenza Other Respir Virus, 9, pp. 169-178; McNamara, P.S., Smyth, R.L., The pathogenesis of respiratory syncytial virus disease in childhood (2002) Br Med Bull, 61, pp. 13-28. , and; Krilov, L.R., Respiratory syncytial virus disease: update on treatment and prevention (2011) Expert Rev Anti-infect Ther, 9, pp. 27-32; Falsey, A.R., Human metapneumovirus infection in adults (2008) Pediatr Infect Dis J, 27, pp. S80-S83; Hamelin, M.-È., Abed, Y., Boivin, G., Human metapneumovirus: A new player among respiratory viruses (2004) Clin Infect Dis, 38, pp. 983-990. , and; Maggi, F., Pifferi, M., Vatteroni, M., Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy (2003) J Clin Microbiol, 41, pp. 2987-2991; Turner, R.B., Epidemiology, pathogenesis, and treatment of the common cold (1997) Ann Allergy Asthma Immunol, 78, pp. 531-539. , quiz 9–40; Tapparel, C., Siegrist, F., Petty, T.J., Picornavirus and enterovirus diversity with associated human diseases (2013) Infect Genet Evol, 14, pp. 282-293; Pappas, D.E., Hendley, J.O., Hayden, F.G., Symptom profile of common colds in school-aged children (2008) Pediatr Infect Dis J, 27, pp. 8-11; de Crom SCM, Rossen JWA, van Furth AM and Obihara CC. Enterovirus and parechovirus infection children: a brief overview., 2016; 175: 1023–1029; Smura, T., Blomqvist, S., Vuorinen, T., Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 (2014) PloS One, 9, p. e94579; Royston, L., Tapparel, C., Rhinoviruses and respiratory enteroviruses: Not as simple as ABC (2016) Viruses, 8. , and;, : 1–23; Yi, E.-J., Shin, Y.-J., Kim, J.-H., Enterovirus 71 infection and vaccines (2017) Clin Exp Vaccine Res, 6, pp. 4-14; Lee, K.Y., Enterovirus 71 infection and neurological complications (2016) Korean J Pediatr, 59, pp. 395-401; Lim, X.Y., Ng, L.Y., Tam, P.J., Human coronaviruses: A review of virus–host interactions (2016) Diseases, 4. , 1–28; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Abdul-Rasool, S., Fielding, B.C., Understanding human coronavirus HCoV-NL63 (2010) Open Virol J, 4, pp. 76-84. , and; Esper, F., Weibel, C., Ferguson, D., Coronavirus HKU1 Infection in the United States (2006) Emerg Infect Dis, 12, pp. 775-779; Zhao, Z., Zhang, F., Xu, M., Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China (2003) J Med Microbiol, 52, pp. 715-720; Cheng, V.C., Lau, S.K., Woo, P.C., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin Microbiol Rev, 20, pp. 660-694; Hijawi, B., Abdallat, M., Sayaydeh, A., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Zumla, A., Hui, D.S., Perlman, S., Middle east respiratory syndrome (2015) Lancet (London, England), 386, pp. 995-1007. , and; Zumla, A., Chan, J.F.W., Azhar, E.I., Coronaviruses - drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347; Alsolamy, S., Arabi, Y.M., Infection with Middle East respiratory syndrome coronavirus (2015) Canad J Respir Ther, 51, p. 102. , and; Deval, J., Antimicrobial strategies: inhibition of viral polymerases by 3'-hydroxyl nucleosides (2009) Drugs, 69, pp. 151-166; Medina, R.A., García-Sastre, A., Influenza A viruses: new research developments (2011) Nat Rev Micro, 9, pp. 590-603. , and; Fodor, E., The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication (2013) Acta Virol, 57, pp. 113-122; Reich, S., Guilligay, D., Pflug, A., Structural insight into cap-snatching and RNA synthesis by influenza polymerase (2014) Nature, 516, pp. 361-366; Ulmanen, I., Broni, B.A., Krug, R.M., Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription (1981) Proc Natl Acad Sci, 78, pp. 7355-7359. , and; Blass, D., Patzelt, E., Kuechler, E., Identification of the cap binding protein of influenza virus (1982) Nucl Acids Res, 10, pp. 4803-4812. , and; Guilligay, D., Tarendeau, F., Resa-Infante, P., The structural basis for cap binding by influenza virus polymerase subunit PB2 (2008) Nat Struct Mol Biol, 15, pp. 500-506; Dias, A., Bouvier, D., Crepin, T., The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit (2009) Nature, 458, pp. 914-918; Yuan, P., Bartlam, M., Lou, Z., Crystal structure of an avian influenza polymerase PA N reveals an endonuclease active site (2009) Nature, 458, p. 909; Pflug, A., Guilligay, D., Reich, S., Structure of influenza A polymerase bound to the viral RNA promoter (2014) Nature, 516, pp. 355-360; Kirui, J., Bucci, M.D., Poole, D.S., Conserved features of the PB2 627 domain impact influenza virus polymerase function and replication (2014) J Virol, 88, pp. 5977-5986; Nilsson, B.E., te Velthuis, A.J.W., Fodor, E., Role of the PB2 627 domain in influenza A virus polymerase function (2017) J Virol, 91. , and;, : e02467–16; te Velthuis, A.J.W., Robb, N.C., Kapanidis, A.N., The role of the priming loop in influenza A virus RNA synthesis (2016) Nat Microbiol, 1, p. 16029; Stevaert, A., Naesens, L., The influenza virus polymerase complex: An update on its structure, functions, and significance for antiviral drug design (2016) Med Res Rev, 36, pp. 1127-1173. , and; Noton, S.L., Fearns, R., Initiation and regulation of paramyxovirus transcription and replication (2015) Virology, 479-480, pp. 545-554. , and; Fearns, R., Plemper, R.K., Polymerases of paramyxoviruses and pneumoviruses (2017) Virus Res, 234, pp. 87-102. , and; Fearns, R., Deval, J., New antiviral approaches for respiratory syncytial virus and other mononegaviruses: Inhibiting the RNA polymerase (2016) Antiviral Res, 134, pp. 63-76. , and; Collins, P.L., Hill, M.G., Cristina, J., Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus (1996) Proc Natl Acad Sci, 93, pp. 81-85; Collins, P.L., Hill, M.G., Camargo, E., Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development (1995) Proc Natl Acad Sci, 92, pp. 11563-11567; Mazumder, B., Adhikary, G., Barik, S., Bacterial expression of human respiratory syncytial viral phosphoprotein P and identification of Ser237 as the site of phosphorylation by cellular casein kinase II (1994) Virology, 205, pp. 93-103. , and; Pereira, N., Cardone, C., Lassoued, S., New insights into structural disorder in human respiratory syncytial virus phosphoprotein and implications for binding of protein partners (2017) J Biol Chem, 292, pp. 2120-2131; Mason, S.W., Aberg, E., Lawetz, C., Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity (2003) J Virol, 77, pp. 10670-10676; Blondot, M.-L., Dubosclard, V., Fix, J., Structure and functional analysis of the RNA-and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein (2012) PLoS Pathog, 8, p. e1002734; Galloux, M., Tarus, B., Blazevic, I., Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein (2012) J Virol, 86, pp. 8375-8387; Ghildyal, R., Ho, A., Jans, D.A., Central role of the respiratory syncytial virus matrix protein in infection (2006) FEMS Microbiol Rev, 30, pp. 692-705. , and; Liang, B., Li, Z., Jenni, S., Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy (2015) Cell, 162, pp. 314-327; Poch, O., Blumberg, B.M., Bougueleret, L., Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains (1990) J Gen Virol, 71, pp. 1153-1162; Rahmeh, A.A., Schenk, A.D., Danek, E.I., Molecular architecture of the vesicular stomatitis virus RNA polymerase (2010) Proc Natl Acad Sci USA, 107, pp. 20075-20080; Kallberg, M., Wang, H., Wang, S., Template-based protein structure modeling using the RaptorX web server (2012) Nat Protoc, 7, pp. 1511-1522; Paesen, G.C., Collet, A., Sallamand, C., X-ray structure and activities of an essential mononegavirales L-protein domain (2015) Nat Commun, p. 8749. , et al.; 6; Li, J., Rahmeh, A., Morelli, M., A conserved motif in region v of the large polymerase proteins of nonsegmented negative-sense RNA viruses that is essential for mRNA capping (2008) J Virol, 82, pp. 775-784; Bujnicki, J.M., Rychlewski, L., In silico identification, structure prediction and phylogenetic analysis of the 2′-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses (2002) Prot Eng Des Select, 15, pp. 101-108. , and; Ogino, T., Banerjee, A.K., Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus (2007) Mol Cell, 25, pp. 85-97. , and; Ogino, T., In vitro capping and transcription of rhabdoviruses (2013) Methods, 59, pp. 188-198; Decroly, E., Ferron, F., Lescar, J., Conventional and unconventional mechanisms for capping viral mRNA (2012) Nat Rev Micro, 10, pp. 51-65; Ferrer-Orta, C., Ferrero, D., Verdaguer, N., RNA-dependent RNA polymerases of picornaviruses: from the structure to regulatory mechanisms (2015) Viruses, 7, pp. 4438-4460. , and; van Dijk, A.A., Makeyev, E.V., Bamford, D.H., Initiation of viral RNA-dependent RNA polymerization (2004) J Gen Virol, 85, pp. 1077-1093. , and; Ferrer-Orta, C., Arias, A., Escarmís, C., A comparison of viral RNA-dependent RNA polymerases (2006) Curr Opin Struct Biol, 16, pp. 27-34; Paul, A.V., Possible unifying mechanism of picornavirus genome replication (2002) Molecular biology of picornavirus, pp. 227-246. , Semler B.L., Wimmer E., (eds), Washington, DC, ASM Press, In:, (eds; Peersen, O.B., Picornaviral polymerase structure, function, and fidelity modulation (2017) Virus Res, 234, pp. 4-20; Paul, A.V., Peters, J., Mugavero, J., Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus (2003) J Virol, 77, pp. 891-904; Paul, A.V., Yin, J., Mugavero, J., A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus (2003) J Biol Chem, 278, pp. 43951-43960; Rieder, E., Paul, A.V., Kim, D.W., Genetic and biochemical studies of polioviruscis-acting replication element cre in relation to VPg uridylylation (2000) J Virol, 74, pp. 10371-10380; Appleby, T.C., Luecke, H., Shim, J.H., Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer (2005) J Virol, 79, pp. 277-288; Chen, C., Wang, Y., Shan, C., Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation (2013) J Virol, 87, pp. 5755-5768; Gong, P., Peersen, O.B., Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase (2010) Proc Natl Acad Sci, 107, pp. 22505-22510. , and; Černý, J., Bolfíková, B.Č., Valdes, J.J., Evolution of tertiary structure of viral RNA dependent polymerases (2014) PloS One, 9, p. e96070; Hansen, J.L., Long, A.M., Schultz, S.C., Structure of the RNA-dependent RNA polymerase of poliovirus (1997) Structure, 5. , and; Poch, O., Sauvaget, I., Delarue, M., Identification of four conserved motifs among the RNA-dependent polymerase encoding elements (1989) EMBO J, 8, pp. 3867-3874; Thompson, A.A., Peersen, O.B., Structural basis for proteolysis‐dependent activation of the poliovirus RNA‐dependent RNA polymerase (2004) EMBO J, 23, pp. 3462-3471. , and; Gohara, D.W., Crotty, S., Arnold, J.J., Poliovirus RNA-dependent RNA polymerase (3Dpol): Structural, biochemical, and biological analysis of conserved structural motifs A and B (2000) J Biol Chem, 275, pp. 25523-25532; Lyle, J.M., Bullitt, E., Bienz, K., Visualization and functional analysis of RNA-dependent RNA polymerase lattices (2002) Science, 296, pp. 2218-2222; Wang, J., Lyle, J.M., Bullitt, E., Surface for catalysis by poliovirus RNA-dependent RNA polymerase (2013) J Mol Biol, 425, pp. 2529-2540. , and; Hobson, S.D., Rosenblum, E.S., Richards, O.C., Oligomeric structures of poliovirus polymerase are important for function (2001) EMBO J, 20, pp. 1153-1163; Pathak, H.B., Ghosh, S.K.B., Roberts, A.W., Structure-function relationships of the RNA-dependent RNA polymerase from poliovirus (3Dpol) A surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation (2002) J Biol Chem, 277, pp. 31551-31562; Posthuma, C.C., te Velthuis, A.J.W., Snijder, E.J., Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes (2017) Virus Res, 234, pp. 58-73. , and; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , and; Subissi, L., Posthuma, C.C., Collet, A., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc Natl Acad Sci, 111, pp. E3900-E3909; Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses (2015) Nucl Acids Res, 43, pp. 8416-8434; Xu, X., Liu, Y., Weiss, S., Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design (2003) Nucl Acids Res, 31, pp. 7117-7130; Gorbalenya, A.E., Pringle, F.M., Zeddam, J.-L., The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage (2002) J Mol Biol, 324, pp. 47-62; Cheng, A., Zhang, W., Xie, Y., Expression, purification, and characterization of SARS coronavirus RNA polymerase (2005) Virology, 335, pp. 165-176; Ma, Y., Wu, L., Shaw, N., Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex (2015) Proc Natl Acad Sci, 112, pp. 9436-9441; Witkowski, J.T., Robins, R.K., Sidwell, R.W., Design, synthesis, and broad spectrum antiviral activity of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides (1972) J Med Chem, 15, pp. 1150-1154; Sidwell, R.W., Huffman, J.H., Khare, G.P., Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (1972) Science, 177, pp. 705-706; Wilson, S.Z., Knight, V., Wyde, P.R., Amantadine and ribavirin aerosol treatment of influenza A and B infection in mice (1980) Antimicrob Agents Chemother, 17, pp. 642-648; Wyde, P.R., Wilson, S.Z., Gilbert, B.E., Protection of mice from lethal influenza virus infection with high dose-short duration ribavirin aerosol (1986) Antimicrob Agents Chemother, 30, pp. 942-944; Snell, N.J., Ribavirin–current status of a broad spectrum antiviral agent (2001) Expert Opin Pharmacother, 2, pp. 1317-1324; Lau, J.Y., Tam, R.C., Liang, T.J., Mechanism of action of ribavirin in the combination treatment of chronic HCV infection (2002) Hepatology, 35, pp. 1002-1009; Crotty, S., Maag, D., Arnold, J.J., The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen (2000) Nat Med, 6, pp. 1375-1379; Benzaria, S., Bardiot, D., Bouisset, T., 2'-C-Methyl branched pyrimidine ribonucleoside analogues: potent inhibitors of RNA virus replication (2007) Antiviral Chem Chemother, 18, pp. 225-242; Carroll, S.S., Tomassini, J.E., Bosserman, M., Inhibition of hepatitis C virus RNA replication by 2'-modified nucleoside analogs (2003) J Biol Chem, 278, pp. 11979-11984; Eldrup, A.B., Prhavc, M., Brooks, J., Structure-activity relationship of heterobase-modified 2'-C-methyl ribonucleosides as inhibitors of hepatitis C virus RNA replication (2004) J Med Chem, 47, pp. 5284-5297; Julander, J.G., Jha, A.K., Choi, J.A., Efficacy of 2'-C-methylcytidine against yellow fever virus in cell culture and in a hamster model (2010) Antiviral Res, 86, pp. 261-267; Olsen, D.B., Eldrup, A.B., Bartholomew, L., A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties (2004) Antimicrob Agents Chemother, 48, pp. 3944-3953; Schul, W., Liu, W., Xu, H.Y., A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs (2007) J Infect Dis, 195, pp. 665-674; Pierra, C., Amador, A., Benzaria, S., Synthesis and pharmacokinetics of valopicitabine (NM283), an efficient prodrug of the potent anti-HCV agent 2′-C-methylcytidine (2006) J Med Chem, 49, pp. 6614-6620; Carroll, S.S., Ludmerer, S., Handt, L., Robust antiviral efficacy upon administration of a nucleoside analog to hepatitis C virus-infected chimpanzees (2009) Antimicrob Agents Chemother, 53, pp. 926-934; Mello, C., Aguayo, E., Rodriguez, M., Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C (2014) Antimicrob Agents Chemother, 58, pp. 1546-1555; Yin, Z., Chen, Y.L., Schul, W., An adenosine nucleoside inhibitor of dengue virus (2009) Proc Natl Acad Sci USA, 106, pp. 20435-20439; Latour, D.R., Jekle, A., Javanbakht, H., Biochemical characterization of the inhibition of the dengue virus RNA polymerase by beta-D-2'-ethynyl-7-deaza-adenosine triphosphate (2010) Antiviral Res, 87, pp. 213-222; Shang, L., Wang, Y., Qing, J., An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation (2014) Antiviral Res, 112, pp. 47-58; Deng, C.L., Yeo, H., Ye, H.Q., Inhibition of enterovirus 71 by adenosine analog NITD008 (2014) J Virol, 88, pp. 11915-11923; Meng, W.D., Qing, F.L., Fluorinated nucleosides as antiviral and antitumor agents (2006) Curr Top Med Chem, 6, pp. 1499-1528. , and; Tuttle, J.V., Tisdale, M., Krenitsky, T.A., Purine 2'-deoxy-2'-fluororibosides as antiinfluenza virus agents (1993) J Med Chem, 36, pp. 119-125. , and; Jakeman, K.J., Tisdale, M., Russell, S., Efficacy of 2'-deoxy-2'-fluororibosides against influenza A and B viruses in ferrets (1994) Antimicrob Agents Chemother, 38, pp. 1864-1867; Tisdale, M., Ellis, M., Klumpp, K., Inhibition of influenza virus transcription by 2'-deoxy-2'-fluoroguanosine (1995) Antimicrob Agents Chemother, 39, pp. 2454-2458; Kumaki, Y., Day, C.W., Smee, D.F., In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections (2011) Antiviral Res, 92, pp. 329-340; Wu, J.Z., Larson, G., Walker, H., Phosphorylation of ribavirin and viramidine by adenosine kinase and cytosolic 5'-nucleotidase II: Implications for ribavirin metabolism in erythrocytes (2005) Antimicrob Agents Chemother, 49, pp. 2164-2171; Shi, J., Du, J., Ma, T., Synthesis and anti-viral activity of a series of D- and L-2'-deoxy-2'-fluororibonucleosides in the subgenomic HCV replicon system (2005) Bioorg Med Chem, 13, pp. 1641-1652; Stuyver, L.J., McBrayer, T.R., Whitaker, T., Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2'-deoxy-2'-fluorocytidine (2004) Antimicrob Agents Chemother, 48, pp. 651-654; Fung, A., Jin, Z., Dyatkina, N., Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase (2014) Antimicrob Agents Chemother, 58, pp. 3636-3645; Wohlrab, F., Jamieson, A.T., Hay, J., The effect of 2'-fluoro-2'-deoxycytidine on herpes virus growth (1985) Biochim Biophys Acta, 824, pp. 233-242; Richardson, F.C., Kuchta, R.D., Mazurkiewicz, A., Polymerization of 2'-fluoro- and 2'-O-methyl-dNTPs by human DNA polymerase alpha, polymerase gamma, and primase (2000) Biochem Pharmacol, 59, pp. 1045-1052; Richardson, F.C., Tennant, B.C., Meyer, D.J., An evaluation of the toxicities of 2'-fluorouridine and 2'-fluorocytidine-HCl in F344 rats and woodchucks (Marmota monax) (1999) Toxicol Pathol, 27, pp. 607-617; Furuta, Y., Takahashi, K., Fukuda, Y., In vitro and in vivo activities of anti-influenza virus compound T-705 (2002) Antimicrob Agents Chemother, 46, pp. 977-981; Sidwell, R.W., Barnard, D.L., Day, C.W., Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice (2007) Antimicrob Agents Chemother, 51, pp. 845-851; Furuta, Y., Takahashi, K., Kuno-Maekawa, M., Mechanism of action of T-705 against influenza virus (2005) Antimicrob Agents Chemother, 49, pp. 981-986; Furuta, Y., Takahashi, K., Shiraki, K., T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections (2009) Antiviral Res, 82, pp. 95-102; Baranovich, T., Wong, S.S., Armstrong, J., T-705 (Favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro (2013) J Virol, , et al.; 87: 3741–3751; Jin, Z., Smith, L.K., Rajwanshi, V.K., The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5'-triphosphate towards influenza A virus polymerase (2013) PLoS One, 8, p. e68347; Oestereich, L., Lüdtke, A., Wurr, S., Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model (2014) Antiviral Res, 105, pp. 17-21; Smither, S.J., Eastaugh, L.S., Steward, J.A., Post-exposure efficacy of Oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model (2014) Antiviral Res, 104, pp. 153-155; Gowen, B.B., Smee, D.F., Wong, M.H., Treatment of late stage disease in a model of arenaviral hemorrhagic fever: T-705 efficacy and reduced toxicity suggests an alternative to ribavirin (2008) PLoS One, 3, p. e3725; Gowen, B.B., Wong, M.H., Jung, K.H., In vitro and in vivo activities of T-705 against arenavirus and bunyavirus infections (2007) Antimicrob Agents Chemother, 51, pp. 3168-3176; Gowen, B.B., Wong, M.H., Jung, K.H., Efficacy of favipiravir (T-705) and T-1106 pyrazine derivatives in phlebovirus disease models (2010) Antiviral Res, 86, pp. 121-127; Julander, J.G., Shafer, K., Smee, D.F., Activity of T-705 in a hamster model of yellow fever virus infection in comparison with that of a chemically related compound, T-1106 (2009) Antimicrob Agents Chemother, 53, pp. 202-209; Julander, J.G., Smee, D.F., Morrey, J.D., Effect of T-705 treatment on western equine encephalitis in a mouse model (2009) Antiviral Res, 82, pp. 169-171; Mendenhall, M., Russell, A., Juelich, T., T-705 (favipiravir) inhibition of arenavirus replication in cell culture (2011) Antimicrob Agents Chemother, 55, pp. 782-787; Rocha-Pereira, J., Jochmans, D., Dallmeier, K., Favipiravir (T-705) inhibits in vitro norovirus replication (2012) Biochem Biophys Res Commun, 424, pp. 777-780; de Avila, A.I., Gallego, I., Soria, M.E., Lethal mutagenesis of hepatitis C virus induced by favipiravir (2016) PLoS One, 11, p. e0164691; Jin, Z., Kinkade, A., Behera, I., Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs (2017) Antiviral Res, 143, pp. 151-161; Jin, Z., Tucker, K., Lin, X., Biochemical evaluation of the inhibition properties of favipiravir and 2'-C-methyl-cytidine triphosphates against human and mouse norovirus RNA polymerases (2015) Antimicrob Agents Chemother, 59, pp. 7504-7516; Huchting, J., Winkler, M., Nasser, H., Synthesis of T-705-ribonucleoside and T-705-ribonucleotide and studies of chemical stability (2017) ChemMedChem, 12 (9), pp. 652-65; Vanderlinden, E., Vrancken, B., Van Houdt, J., Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis (2016) Antimicrob Agents Chemother, 60, pp. 6679-6691; Wang, G., Deval, J., Hong, J., Discovery of 4'-chloromethyl-2'-deoxy-3',5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), a first-in-class RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection (2015) J Med Chem, 58, pp. 1862-1878; Deval, J., Hong, J., Wang, G., Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate (2015) PLoS Pathog, 11, p. e1004995; Meng, J.D.J., Jekle, A., Symons, J., Development of ALS-8112/ALS-8176 as an effective replication inhibitor of human metapneumovirus. In:, Atlanta, 2100–25 May 2017, Abstract 160; DeVincenzo, J.P., McClure, M.W., Symons, J.A., Activity of oral ALS-008176 in a respiratory syncytial virus challenge study (2015) N Engl J Med, 373, pp. 2048-2058; Warren, T.K., Jordan, R., Lo, M.K., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 38-45; Lo, M.K., Jordan, R., Arvey, A., GS-5734 and its parent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses (2017) Sci Reports, 7, p. 43395; Siegel, D., Hui, H.C., Doerffler, E., Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses (2017) J Med Chem, 60, pp. 1648-1661; Feng, J.Y., Cheng, G., Perry, J., Inhibition of hepatitis C virus replication by GS-6620, a potent C-nucleoside monophosphate prodrug (2014) Antimicrob Agents Chemother, 58, pp. 19-42; Cho, A., Zhang, L., Xu, J., Discovery of the first C-nucleoside HCV polymerase inhibitor (GS-6620) with demonstrated antiviral response in HCV infected patients (2014) J Med Chem, 57, pp. 1812-1825; Jacobs, M., Rodger, A., Bell, D.J., Late Ebola virus relapse causing meningoencephalitis: a case report (2016) Lancet, 388, pp. 498-503; Dornemann, J., Burzio, C., Ronsse, A., First newborn baby to receive experimental therapies survives Ebola virus disease (2017) J Infect Dis, 215, pp. 171-174; Sheahan, T.P., Sims, A.C., Graham, R.L., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, , et al; Agostini, M.A.E., Lu, X., Sims, A., (2017), The nucleoside prodrug GS-5734 inhibits multiple coronaviruses and selects for resistance mutations the RNA-dependent RNA polymerase that are associated with a decrease viral replication fitness. In:, Atlanta, 21–25 May, Abstract 155","Deval, J.; Alios BioPharma, Inc, Janssen Pharmaceutical Company of Johnson & JohnsonUnited States; email: jdeval@its.jnj.com",,"SAGE Publications Inc.",20402066,,ACCHE,"29562753","English","Antiviral Chem. Chemother.",Article,"Final",Open Access,Scopus,2-s2.0-85051395653 "Sheahan T.P., Baric R.S.","15756255200;57205312930;","Is regulation preventing the development of therapeutics that may prevent future coronavirus pandemics?",2018,"Future Virology","13","3",,"143","146",,1,"10.2217/fvl-2017-0143","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043240489&doi=10.2217%2ffvl-2017-0143&partnerID=40&md5=1bcf181d0d6a9a65cafa4eee220dd572","Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Sheahan, T.P., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States",[No abstract available],,"complementary DNA; virus RNA; Coronavirinae; human; Middle East respiratory syndrome coronavirus; nonhuman; pandemic; priority journal; Review; SARS coronavirus; virus genome; virus mutant; virus strain; virus transmission; virus virulence; zoonosis","Jones, K.E., Patel, N.G., Levy, M.A., Global trends in emerging infectious diseases (2008) Nature, 451 (7181), pp. 990-993; Marston, H.D., Folkers, G.K., Morens, D.M., Fauci, A.S., Emerging viral diseases: Confronting threats with new technologies (2014) Sci. Transl. Med., 6 (253), p. 253ps210; Casadevall, A., Imperiale, M.J., Risks and benefits of gain-of-function experiments with pathogens of pandemic potential, such as influenza virus: A call for a science-based discussion (2014) MBio, 5 (4), pp. e01730-e011714; (2014) US Government Gain-of-Function Deliberative Process and Research Funding Pause on Selected Gain-of-Function Research Involving Influenza, MERS, and SARS Viruses, , https://www.phe.gov/s3/dualuse/documents/gain-of-function.pdf, NSABB; (2017) Recommended Policy Guidance for Departmental Development of Review Mechanisms for Potential Pandemic Pathogen Care and Oversight (P3CO), , https://www.phe.gov/s3/dualuse/Documents/P3CO-FinalGuidanceStatement.pdf, OSTP; (2017) Framework for Guiding Funding Decisions about Proposed Research Involving Enhanced Potential Pandemic Pathogens, , https://www.phe.gov/s3/dualuse/Documents/p3co.pdf, DHHS; Possession, use, and transfer of select agents and toxins (2012) Biennial Review, 77. , https://www.gpo.gov/fdsys/pkg/FR-2012-10-05/pdf/FR-2012-10-05.pdf, DHHS; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14 (8), pp. 523-534; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl Acad. Sci. USA, 113 (11), pp. 3048-3053; Menachery, V.D., Yount, B.L., Jr., Debbink, K., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21 (12), pp. 1508-1513; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J. Virol., 76 (21), pp. 11065-11078; Yount, B., Curtis, K.M., Fritz, E.A., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc. Natl Acad. Sci. USA, 100 (22), pp. 12995-13000; Donaldson, E.F., Yount, B., Sims, A.C., Burkett, S., Pickles, R.J., Baric, R.S., Systematic assembly of a full-length infectious clone of human coronavirus NL63 (2008) J. Virol., 82 (23), pp. 11948-11957; Scobey, T., Yount, B.L., Sims, A.C., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl Acad. Sci. USA, 110 (40), pp. 16157-16162; Agnihothram, S., Yount, B.L., Jr., Donaldson, E.F., A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant (2014) MBio, 5 (2), pp. e00047-00014; Roberts, A., Deming, D., Paddock, C.D., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog., 3 (1), p. e5; Bolles, M., Deming, D., Long, K., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J. Virol., 85 (23), pp. 12201-12215; Becker, M.M., Graham, R.L., Donaldson, E.F., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl Acad. Sci. USA, 105 (50), pp. 19944-19949; Sheahan, T.P., Sims, A.C., Graham, R.L., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci. Transl. Med., 9 (396), p. eaal3653; Lo, M.K., Jordan, R., Arvey, A., GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses (2017) Sci. Rep., 7, p. 43395","Sheahan, T.P.; Department of Epidemiology, University of North Carolina at Chapel HillUnited States; email: sheahan@email.unc.edu",,"Future Medicine Ltd.",17460794,,,,"English","Future Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85043240489 "Noh J.Y., Yoon S.-W., Kim D.-J., Lee M.-S., Kim J.-H., Na W., Song D., Jeong D.G., Kim H.K.","57189463570;7404036061;55866272900;55626176100;57189467880;56494484800;7402443633;17136974400;57209048300;","Correction to: Simultaneous detection of severe acute respiratory syndrome, Middle East respiratory syndrome, and related bat coronaviruses by real-time reverse transcription PCR (Archives of Virology, (2017), 162, 6, (1617-1623), 10.1007/s00705-017-3281-9)",2018,"Archives of Virology","163","3",,"819","",,1,"10.1007/s00705-017-3677-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038841095&doi=10.1007%2fs00705-017-3677-6&partnerID=40&md5=4ed3ca218076128f3d9147c529b212b5","Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, South Korea; Department of Pharmacy, College of Pharmacy, Korea University, Sejong, South Korea","Noh, J.Y., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea; Yoon, S.-W., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, South Korea; Kim, D.-J., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Lee, M.-S., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, South Korea; Kim, J.-H., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Na, W., Department of Pharmacy, College of Pharmacy, Korea University, Sejong, South Korea; Song, D., Department of Pharmacy, College of Pharmacy, Korea University, Sejong, South Korea; Jeong, D.G., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, Bio-Analytical Science Division, Korea University of Science and Technology (UST), Daejeon, South Korea; Kim, H.K., Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea","Unfortunately, the concentration unit of plasmids was published incorrectly in the original publication of the article. The concentration unit, ‘copies/ml’ should be corrected to ‘copies/μl’. This changes do not affect to the analytic sensitivity of the method because the detection limits of 50–100 copies/μL and 5–100 copies/μL using pUC57-SARS-pS2 (a template for SARS-CoV) and pGEM-MERS-S2 (a template for MERS-CoV), respectively, were as sensitive as other real-time PCR methods [1]. © 2017, Springer-Verlag GmbH Austria, part of Springer Nature.",,"erratum; error",,"Jeong, D.G.; Infectious Disease Research Center, Korea Research Institute of Bioscience and BiotechnologySouth Korea; email: dgjeong@kribb.re.kr",,"Springer-Verlag Wien",03048608,,ARVID,"29273879","English","Arch. Virol.",Erratum,"Final",Open Access,Scopus,2-s2.0-85038841095 "Coignard-Biehler H., Rapp C., Chapplain J.M., Hoen B., Che D., Berthelot P., Cazenave-Roblot F., Rabaud C., Brouqui P., Leport C., and, SPILF-COREB Emergences group","26021133500;55163139200;6507190749;7006893506;57197768584;7102652777;6602511650;7006274453;7005522769;24325576900;","The French Infectious Diseases Society's readiness and response to epidemic or biological risk–the current situation following the Middle East respiratory syndrome coronavirus and Ebola virus disease alerts [Préparation et réponse de la Société de pathologie infectieuse de langue française au risque épidémique et biologique – état des lieux suite aux alertes MERS-CoV et Ébola]",2018,"Medecine et Maladies Infectieuses","48","2",,"95","102",,,"10.1016/j.medmal.2017.10.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034653557&doi=10.1016%2fj.medmal.2017.10.002&partnerID=40&md5=b4ec2b7a110710414725cf185f32f3e9","Unité de coordination opérationnelle du risque épidémique et biologique, AP–HP, Paris, 75001, France; Service des maladies infectieuses et tropicales, hôpital Necker–Enfants malades, Paris, 75015, France; Samu 75, hôpital Necker–Enfants malades, Paris, 75015, France; CMETE, 10, rue du Colonel-Driant, Paris, 75001, France; Hôpital d'instruction des armées Bégin, 69, avenue de Paris, Saint-Mandé cedex, 94160, France; Service des maladies infectieuses et tropicales, hôpital Pontchaillou, Rennes, 35000, France; Inserm CIC 14-24, faculté de médecine Hyacinthe-Bastaraud, université des Antilles, centre hospitalier universitaire, Pointe-à-Pitre, 97110, Guadeloupe; Santé publique France, Saint-Maurice, 94410, France; Unité d'hygiène interhospitalière, service des maladies infectieuses et laboratoire des agents infectieux et hygiène, CHU de Saint-Etienne, Saint-Priest-en-Jarez, 42270, France; Service des maladies infectieuses et tropicales, CHU de Poitiers, Poitiers, 86021, France; Service des maladies infectieuses et tropicales, CHRU de Nancy, Nancy, 54000, France; Service des maladies infectieuses et tropicales, hôpital Nord, Marseille, 13000, France; UMR 1137, Inserm, université Paris Diderot, Paris, 75018, France","Coignard-Biehler, H., Unité de coordination opérationnelle du risque épidémique et biologique, AP–HP, Paris, 75001, France, Service des maladies infectieuses et tropicales, hôpital Necker–Enfants malades, Paris, 75015, France, Samu 75, hôpital Necker–Enfants malades, Paris, 75015, France; Rapp, C., CMETE, 10, rue du Colonel-Driant, Paris, 75001, France, Hôpital d'instruction des armées Bégin, 69, avenue de Paris, Saint-Mandé cedex, 94160, France; Chapplain, J.M., Unité de coordination opérationnelle du risque épidémique et biologique, AP–HP, Paris, 75001, France, Service des maladies infectieuses et tropicales, hôpital Pontchaillou, Rennes, 35000, France; Hoen, B., Inserm CIC 14-24, faculté de médecine Hyacinthe-Bastaraud, université des Antilles, centre hospitalier universitaire, Pointe-à-Pitre, 97110, Guadeloupe; Che, D., Santé publique France, Saint-Maurice, 94410, France; Berthelot, P., Unité d'hygiène interhospitalière, service des maladies infectieuses et laboratoire des agents infectieux et hygiène, CHU de Saint-Etienne, Saint-Priest-en-Jarez, 42270, France; Cazenave-Roblot, F., Service des maladies infectieuses et tropicales, CHU de Poitiers, Poitiers, 86021, France; Rabaud, C., Service des maladies infectieuses et tropicales, CHRU de Nancy, Nancy, 54000, France; Brouqui, P., Service des maladies infectieuses et tropicales, hôpital Nord, Marseille, 13000, France; Leport, C., Unité de coordination opérationnelle du risque épidémique et biologique, AP–HP, Paris, 75001, France, UMR 1137, Inserm, université Paris Diderot, Paris, 75018, France; and; SPILF-COREB Emergences group","Context: In 2012, the French Infectious Diseases Society (French acronym SPILF) initiated the “Coordination of epidemic and biological risk” (SPILF-COREB - Emergences [SCE]) group to support the readiness and response of healthcare workers (HCWs) to new alerts. Objective: To present the SCE group, its functioning, and the main support it provided for frontline HCWs. Methods: A multidisciplinary group of heads of infectious disease departments from reference hospitals was created to build a network of clinical expertise for care, training, and research in the field of epidemic and biological risk (EBR). The network developed a set of standardized operational procedures (SOPs) to guide interventions to manage EBR-suspect patients. Results: A working group created the SOP aimed at frontline HCWs taking care of patients. Priority was given to the development of a generic procedure, which was then adapted according to the current alert. Five key steps were identified and hierarchized: detecting, protecting, caring for, alerting, and referring the EBR patient. The interaction between clinicians and those responsible for the protection of the community was crucial. The SOPs validated by the SPILF and its affiliates were disseminated to a wide range of key stakeholders through various media including workshops and the SPILF's website. Conclusion: SPILF can easily adapt and timely mobilize the EBR expertise in case of an alert. The present work suggests that sharing and discussing this experience, initiated at the European level, can generate a new collective expertise and needs to be further developed and strengthened. © 2017 Elsevier Masson SAS","Clinical network; Emerging infectious diseases; Epidemic and biological risk; Standardized operating procedures","Article; Ebolavirus; epidemic; Europe; health care personnel; human; infection risk; medical care; medical education; medical research; medical society; Middle East respiratory syndrome coronavirus; patient care; patient referral; Coronavirus infection; Ebola hemorrhagic fever; epidemic; France; medical society; risk; risk factor; Coronavirus Infections; Epidemics; France; Hemorrhagic Fever, Ebola; Humans; Middle East Respiratory Syndrome Coronavirus; Risk; Risk Factors; Societies, Medical","(2017), http://www.sante.gouv.fr/IMG/pdf/circulaire_du_2_mai_2003-2.pdf, Ministère de l'Emploi et de Solidarité Direction de l'hospitalisation et de l'organisation des soins, Haut fonctionnaire de la défense. Circulaire DHOS/HFD no 2002-284 du 3 mai 2002 relative à l'organisation du système hospitalier en cas d'afflux de victimes. SP 3 312, NOR: MESH0230349C. [Internet. Available from: - Accessed on September 28]; Achonu, C., Laporte, A., Gardam, M.A., The financial impact of controlling a respiratory virus outbreak in a teaching hospital: lessons learned from SARS (2005) Can J Public Health, 96 (1), pp. 52-54; (2017), https://ecdc.europa.eu/en, European Centre for Disease Prevention and Control. Available from: [Internet. Accessed on September 28]; Leport, C., Vittecoq, D., Perronne, C., Debord, T., Carli, P., Camphin, P., Infections at risk for epidemic or biological threat. Importance of the initial management of suspect patients (2011) Press Med Paris Fr, 40 (4), pp. 336-340; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Guery, B., Poissy, J., el Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272; Maladie à virus Ebola. Tenues et procédures de déshabillage des soignants en établissement de santé de référence (2015), http://www.inrs.fr/dms/inrs/CataloguePapier/ED/TI-ED-6209/ed6209.pdf, [Internet. Available from: - accessed on September 28, 2017]; (2017), http://www.infectiologie.com/UserFiles/File/medias/coreb/lettre-coreb-n-5-vf-16-juin-2017.pdf, Lettres COREB [Internet. Available from: - Accessed on September 28]; Knobler, S., Mahmoud, A., Lemon, S., Mack, A., Sivitz, L., Oberholtzer, K., (2004) Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary, , National Academies Press (US) Washington (DC); Brun-Buisson, C., Richard J-CM, Mercat, A., Thiebaut, A.C.M., Brochard, L., Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome (2011) Am J Respir Crit Care Med, 183 (9), pp. 1200-1206; Walunj, A., Global clinical networking and pandemic influenza (2010) Intens Care Soc, pp. 165-170; (2017), http://www.who.int/csr/edcarn/en/, EDCARN: Emerging Disease Clinical Assessment and Response Network [Internet]. Available from: - Accessed on September 28; Thomson, G., Nicoll, A., Responding to new severe diseases–the case for routine hospital surveillance and clinical networks in Europe (2010) Euro Surveill, 15 (49); Baka, A., Fusco, F.M., Puro, V., Vetter, N., Skinhoj, P., Ott, K., A curriculum for training healthcare workers in the management of highly infectious diseases (2007) Euro Surveill, 12 (6); Bannister, B., Puro, V., Fusco, F.M., Heptonstall, J., Ippolito, G., Framework for the design and operation of high-level isolation units: consensus of the European Network of Infectious Diseases (2009) Lancet Infect Dis, 9, pp. 45-56; Brouqui, P., Puro, V., Fusco, F.M., Bannister, B., Schilling, S., Follin, P., Infection control in the management of highly pathogenic infectious diseases: consensus of the European Network of Infectious Disease (2009) Lancet Infect Dis, 9 (5), pp. 301-311; PREPARE Newsletter (2014), http://www.prepare-europe.eu/Portals/0/Documents/Newsletters/PREPARE%20Newsletter%20September%202014%20-%20web.pdf, [Available from: - accessed on September 28, 2017]; Dunning, J.W., Merson, L., Rohde, G.G.U., Gao, Z., Semple, M.G., Tran, D., Open source clinical science for emerging infections (2014) Lancet Infect Dis, 14 (1), pp. 8-9; Bannister, B., Prygodzicz, A., Ippolito, G., Training health care workers to face highly infectious diseases (2009) Clin Microbiol Infect, 15 (8), pp. 740-742; Ministère des affaires sociales et de la santé, Guide d'aide à l'organisation de l'offre de soins en situation sanitaire exceptionnelle (2014), http://solidarites-sante.gouv.fr/systeme-de-sante-et-medico-social/securite-sanitaire/article/le-dispositif-orsan, [Internet. Available from: - accessed on September 28, 2017]","Coignard-Biehler, H.; Samu-Smur, GHEH - hospices civils de Lyon, groupement hospitalier, Édouard-Herriot, 5, place d'Arsonval, cedex 3, France; email: helene.coignard-biehler@chu-lyon.fr",,"Elsevier Masson SAS",0399077X,,MMAIB,"29169817","English; French","Med. Mal. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85034653557 "Feng J.Y.","7403883758;","Addressing the selectivity and toxicity of antiviral nucleosides",2018,"Antiviral Chemistry and Chemotherapy","26",,,"","",,7,"10.1177/2040206618758524","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060007073&doi=10.1177%2f2040206618758524&partnerID=40&md5=e6bcb45604b78b108a3afc5f178d8790","Gilead Sciences Inc, Foster City, United States","Feng, J.Y., Gilead Sciences Inc, Foster City, United States","Nucleoside and nucleotide analogs have played significant roles in antiviral therapies and are valued for their impressive potency and high barrier to resistance. They have been approved for treatment of herpes simplex virus-1, HIV, HBV, HCV, and influenza, and new drugs are being developed for the treatment of RSV, Ebola, coronavirus MERS, and other emerging viruses. However, this class of compounds has also experienced a high attrition rate in clinical trials due to toxicity. In this review, we discuss the utility of different biochemical and cell-based assays and provide recommendations for assessing toxicity liability before entering animal toxicity studies. © The Author(s) 2018.","antiviral therapy; chain termination; Nucleosides; nucleotides; polymerase; prodrugs; selectivity; virus","antivirus agent; galactose; glucose; nucleoside derivative; nucleotide derivative; virus DNA; virus RNA; antivirus agent; nucleoside; adverse outcome; biochemical analysis; CC50; cell assay; cell line; cytotoxicity; DNA replication; DNA synthesis; drug screening; drug structure; drug targeting; human; mitochondrial toxicity; nonhuman; predictive value; priority journal; Review; RNA replication; RNA synthesis; side effect; therapeutic index; toxicity testing; treatment response; virus infection; animal; chemical structure; drug effect; toxicity testing; virus; Animals; Antiviral Agents; Humans; Molecular Structure; Nucleosides; Toxicity Tests; Viruses","Elion, G.B., Nobel lecture: The purine path to chemotherapy, , 1989; 25: 321–330; Feng, J.Y., Furman, P.A., Other drug applications (2005) Nucleoside triphosphates and their analogs: Chemistry, biotechnology, and biological applications, pp. 343-356. , Vaghefi M., (ed), Oxfordshire, UK, Taylor & Francis Group, and, In:, (ed; Galmarini, C.M., Mackey, J.R., Dumontet, C., Nucleoside analogues and nucleobases in cancer treatment (2002) Lancet Oncol, 3, pp. 415-424. , and; Clair, S., Furman, M.H., Lubbers, P.A., Inhibition of cellular α and virally induced deoxyribonucleic acid polymerases by the triphosphate of acyclovir (1980) Antimicrob Agents Chemother, 18, pp. 741-745; De Clercq, E., A 40-year journey in search of selective antiviral chemotherapy (2011) Annu Rev Pharmacol Toxicol, 51, pp. 1-24; Brinkman, K., Kakuda, T.N., Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? (2000) Curr Opin Infect Dis, 13, pp. 5-11. , and; Johnson, A.A., Ray, A.S., Hanes, J., Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase (2001) J Biol Chem, 276, pp. 40847-40857; Chen, C.H., Cheng, Y.C., The role of cytoplasmic deoxycytidine kinase in the mitochondrial effects of the anti-human immunodeficiency virus compound, 2',3'-dideoxycytidine (1992) J Biol Chem, 267, pp. 2856-2859. , and; Chen, C.H., Vazquez-Padua, M., Cheng, Y.-C., Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity (1991) Mol Pharmacol, 39, pp. 625-628. , and; Lewis, L.D., Hamzeh, F.M., Lietman, P.S., Ultrastructural changes associated with reduced mitochondrial DNA and impaired mitochondrial function in the presence of 2'3'-dideoxycytidine (1992) Antimicrob Agents Chemother, 36, pp. 2061-2065. , and; Arnaudo, E., Dalakas, M., Shanske, S., Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy (1991) Lancet, 337, pp. 508-510; Johnson, A.A., Tsai, Y., Graves, S.W., Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization (2000) Biochemistry, 39, pp. 1702-1708; (1995) Review of the fialuridine (FIAU) clinical trials, , Washington, DC, The National Academies Press, :, p; Lewis, W., Griniuviene, B., Tankersley, K.O., Depletion of mitochondrial DNA, destruction of mitochondria, and accumulation of lipid droplets result from fialuridine treatment in woodchucks (Marmota monax) (1997) Lab Invest, 76, pp. 77-87; McKenzie, R., Fried, M.W., Sallie, R., Hepatic failure and lactic acidosis due to fialuridine (FIAU): An investigational nucleoside analogue for chronic hepatitis B (1995) N Engl J Med, 333, pp. 1099-1105; (2006), Rockville, MD; Brown, N.A., Progress towards improving antiviral therapy for hepatitis C with hepatitis C virus polymerase inhibitors. Part I: Nuleoside analogues (2009) Expert Opin Investig Drugs, 18, pp. 709-725; (2012), [Press Release]. BusinessWire; (2013), Cambridge, MA: BusinessWire; Feng, J.Y., Xu, Y., Barauskas, O., Role of mitochondrial RNA polymerase in the toxicity of nucleotide inhibitors of hepatitis C virus (2016) Antimicrob Agents Chemother, 60, pp. 806-817; Jin, Z., Kinkade, A., Behera, I., Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs (2017) Antiviral Res, 143, pp. 1-43; Arnold, J.J., Sharma, S.D., Feng, J.Y., Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides (2012) PLoS Pathog, 8, p. e1003030; Banerjee, D., Reddy, K.R., Review article: safety and tolerability of direct-acting anti-viral agents in the new era of hepatitis C therapy (2016) Aliment Pharmacol Ther, 43, pp. 674-696. , and; Fenaux, M., Lin, X., Yokokawa, F., Antiviral nucleotide incorporation by recombinant human mitochondrial RNA polymerase is predictive of increased in vivo mitochondrial toxicity risk (2016) Antimicrob Agents Chemother, 60, pp. 7077-7085; Feld, J.J., Interferon-free strategies with a nucleoside/nucleotide analogue (2014) Semin Liver Dis, 34, pp. 37-46; Bari, A., Josephson, L., Prince, A.M., Book reviews: Letters to the editor (1996) New Engl J Med, 334, pp. 1135-1138; (2011) Pharmasset Announces Intent to Amend QUANTUM Trial [Press Release], , Princeton, NJ, BusinessWire; (2013), Cambridge, MA: BusinessWire; Baumgart, B.R., Wang, F., Kwagh, J., (2016), Effects of BMS-986094, a guanosine nucleotide analogue, on mitochondrial DNA synthesis and function.; 153: 396–408; Lynx, M.D., McKee, E.E., 3'-Azido-3'-deoxythymidine (AZT) is a competitive inhibitor of thymidine phosphorylation in isolated rat heart and liver mitochondria (2006) Biochem Pharmacol, 72, pp. 239-243. , and; Graci, J.D., Cameron, C.E., Mechanisms of action of ribavirin against distinct viruses (2006) Rev Med Virol, 16, pp. 37-48. , and; Feng, J.Y., Cheng, G., Perry, J., Inhibition of hepatitis C virus replication by GS-6620, a potent C-nucleoside monophosphate prodrug (2014) Antimicrob Agents Chemother, 58, pp. 1930-1942; Jin, Z., Kinkade, A., Behera, I., Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs (2017) Antiviral Res, 143, pp. 151-161; Mery, B., Guy, J.B., Vallard, A., In vitro cell death determination for drug discovery: A landscape review of real issues (2017) J Cell Death, 10, pp. 1-8; Birkus, G., Hitchcock, M.J.M., Cihlar, T., Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors (2002) Antimicrob Agents Chemother, 46, pp. 716-723. , and; Richardson, F.C., Tennant, B.C., Meyer, D.J., An evaluation of the toxicities of 2'-fluorouridine and 2'-fluorocytidine-HCl in F344 rats and woodchucks (Marmota monax) (1999) Toxicol Pathol, 27, pp. 607-617; (2006), 1, –4; Pereira, C.V., Moreira, A.C., Pereira, S.P., Investigating drug-induced mitochondrial toxicity: a biosensor to increase drug safety? (2009) Curr Drug Saf, 4, pp. 34-54; Dykens, J.A., Will, Y., The significance of mitochondrial toxicity testing in drug development (2007) Drug Discov Today, 12, pp. 777-785. , and; Beeson, C.C., Beeson, G.C., Schnellmann, R.G., A high-throughput respirometric assay for mitochondrial biogenesis and toxicity (2010) Anal Biochem, 404, pp. 75-81. , and; Nadanaciva, S., Rana, P., Beeson, G.C., Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform (2012) J Bioenerg Biomembr, 44, pp. 421-437; Nadanaciva, S., Aleo, M.D., Strock, C.J., Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes (2013) Toxicol Appl Pharmacol, 272, pp. 272-280; Marroquin, L.D., Hynes, J., Dykens, J.A., Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants (2007) Toxicol Sci, 97, pp. 539-547; Hynes, J., Nadanaciva, S., Swiss, R., A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays (2013) Toxicol In Vitro, 27, pp. 560-569; Will, Y., Dykens, J., Mitochondrial toxicity assessment in industry - A decade of technology development and insight (2014) Expert Opin Drug Metab Toxicol, 10, pp. 1061-1067. , and; (2012), Research Triangle Park, NC: BusinessWire; Yin, Z., Chen, Y.L., Schul, W., An adenosine nucleoside inhibitor of dengue virus (2009) Proc Natl Acad Sci USA, 106, pp. 20435-20439; Blomme, E.A., Will, Y., Toxicology strategies for drug discovery: Present and future (2016) Chem Res Toxicol, 29, pp. 1-118. , and; Ong, M.M., Latchoumycandane, C., Boelsterli, U.A., Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities (2007) Toxicol Sci, 97, pp. 205-213. , and; Xu, D., Nishimura, T., Nishimura, S., Fialuridine induces acute liver failure in chimeric TK-NOG mice: A model for detecting hepatic drug toxicity prior to human testing (2014) PLoS Med, 11, pp. 1-9","Feng, J.Y.; Gilead Sciences IncUnited States; email: Joy.Feng@Gilead.com",,"SAGE Publications Inc.",20402066,,ACCHE,"29534607","English","Antiviral Chem. Chemother.",Review,"Final",Open Access,Scopus,2-s2.0-85060007073 "Amery-Gale J., Hartley C.A., Vaz P.K., Marenda M.S., Owens J., Eden P.A., Devlin J.M.","56488338600;7103116393;37114942800;6602895130;55353898200;57195258426;14025458900;","Avian viral surveillance in Victoria, Australia, and detection of two novel avian herpesviruses",2018,"PLoS ONE","13","3", e0194457,"","",,3,"10.1371/journal.pone.0194457","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044375662&doi=10.1371%2fjournal.pone.0194457&partnerID=40&md5=8aff36857b691641b51ed50a75cca5c0","Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, VIC, Australia; Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia","Amery-Gale, J., Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia, Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, VIC, Australia; Hartley, C.A., Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Vaz, P.K., Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Marenda, M.S., Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia; Owens, J., Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Eden, P.A., Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, VIC, Australia; Devlin, J.M., Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia","Viruses in avian hosts can pose threats to avian health and some have zoonotic potential. Hospitals that provide veterinary care for avian patients may serve as a site of exposure of other birds and human staff in the facility to these viruses. They can also provide a useful location to collect samples from avian patients in order to examine the viruses present in wild birds. This study aimed to investigate viruses of biosecurity and/or zoonotic significance in Australian birds by screening samples collected from 409 birds presented to the Australian Wildlife Health Centre at Zoos Victoria’s Healesville Sanctuary for veterinary care between December 2014 and December 2015. Samples were tested for avian influenza viruses, herpesviruses, paramyxoviruses and coronaviruses, using genus- or family-wide polymerase chain reaction methods coupled with sequencing and phylogenetic analyses for detection and identification of both known and novel viruses. A very low prevalence of viruses was detected. Columbid alphaherpesvirus 1 was detected from a powerful owl (Ninox strenua) with inclusion body hepatitis, and an avian paramyxovirus most similar to Avian avulavirus 5 was detected from a musk lorikeet (Glossopsitta concinna). Two distinct novel avian alphaherpesviruses were detected in samples from a sulphur-crested cockatoo (Cacatua galerita) and a tawny frogmouth (Podargus strigoides). Avian influenza viruses and avian coronaviruses were not detected. The clinical significance of the newly detected viruses remains undetermined. Further studies are needed to assess the host specificity, epidemiology, pathogenicity and host-pathogen relationships of these novel viruses. Further genome characterization is also indicated, and would be required before these viruses can be formally classified taxonomically. The detection of these viruses contributes to our knowledge on avian virodiversity. The low level of avian virus detection, and the absence of any viruses with zoonotic potential, suggests low risk to biosecurity and human health. © 2018 Amery-Gale et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"Alphaherpesvirinae; animal; bird; bird disease; herpes virus infection; veterinary; Victoria; virology; Alphaherpesvirinae; Animals; Bird Diseases; Birds; Herpesviridae Infections; Victoria","Cross, T.A., Arsnoe, D.M., Minnis, R.B., King, D.T., Swafford, S., Pedersen, K., Prevalence of avian paramyxovirus 1 and avian influenza virus in double-crested cormorants (Phalacrocorax auritus) in eastern North America (2013) J Wildl Dis, 49 (4), pp. 965-977. , https://doi.org/10.7589/2012-06-164, PMID: 24502724; Glaser, L.C., Barker, I.K., Weseloh, D.C., Ludwig, J., Windingstad, R.M., Key, D.W., The 1992 epizootic of Newcastle disease in double-crested cormorants in North America (1999) J Wildl Dis, 35 (2), pp. 319-330. , https://doi.org/10.7589/0090-3558-35.2.319, PMID: 10231759; Alexander, D., The epidemiology and control of avian influenza and Newcastle disease (1995) J Comp Pathol, 112 (2), pp. 105-126. , PMID: 7769142; Alexander, D., Campbell, G., Manvell, R., Collins, M., Parsons, G., McNulty, M., Characterisation of an antigen-ically unusual virus responsible for two outbreaks of Newcastle disease in the Republic of Ireland in 1990 (1992) Vet Rec, 130 (4), pp. 65-68. , PMID: 1532467; Alexander, D.J., An overview of the epidemiology of avian influenza (2007) Vaccine, 25 (30), pp. 5637-5644. , https://doi.org/10.1016/j.vaccine.2006.10.051, PMID: 17126960; Xu, Y., Ramey, A.M., Bowman, A.S., DeLiberto, T.J., Killian, M.L., Krauss, S., Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A (H7N8) virus (2017) J Virol, 91 (9), pp. e02208-e02216. , https://doi.org/10.1128/JVI.02208-16, PMID: 28202755; Lycett, S.J., Bodewes, R., Pohlmann, A., Banks, J., Bányai, K., Boni, M.F., Role for migratory wild birds in the global spread of avian influenza H5N8 (2016) Science, 354 (6309), pp. 213-217. , https://doi.org/10.1126/science.aaf8852, PMID: 27738169; Peiris, J.M., De Jong, M.D., Guan, Y., Avian influenza virus (H5N1): A threat to human health (2007) Clin Microbiol Rev, 20 (2), pp. 243-267. , https://doi.org/10.1128/CMR.00037-06, PMID: 17428885; Li, K., Guan, Y., Wang, J., Smith, G., Xu, K., Duan, L., Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia (2004) Nature, 430 (6996), pp. 209-213. , https://doi.org/10.1038/nature02746, PMID: 15241415; Arzey, G.G., Kirkland, P.D., Arzey, K.E., Frost, M., Maywood, P., Conaty, S., Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia (2012) Emerg Infect Dis, 18 (5), p. 814. , https://doi.org/10.3201/eid1805.111852, PMID: 22516302; Perdue, M.L., Swayne, D.E., Public health risk from avian influenza viruses (2005) Avian Dis, 49 (3), pp. 317-327. , https://doi.org/10.1637/7390-060305R.1, PMID: 16252482; Reperant, L.A., Kuiken, T., Osterhaus, A.D., Influenza viruses: From birds to humans (2012) Hum Vaccin Immun-Other, 8 (1), pp. 7-16. , https://doi.org/10.4161/hv.8.1.18672, PMID: 22251997; Richard, M., Md, G., Herfst, S., Avian influenza A viruses: From zoonosis to pandemic (2014) Future Virol, 9 (5), pp. 513-524. , https://doi.org/10.2217/fvl.14.30, PMID: 25214882; Capua, I., Alexander, D.J., Human health implications of avian influenza viruses and paramyxoviruses (2004) Eur J Clin Microbiol Infect Dis, 23 (1), pp. 1-6. , https://doi.org/10.1007/s10096-003-1059-3, PMID: 14663646; Peroulis, I., O’Riley, K., Detection of avian paramyxoviruses and influenza viruses amongst wild bird populations in Victoria (2004) Aust Vet J, 82 (1 & 2), pp. 79-82; Sharples, E., Baines, S.J., Prevalence of chlamydophila psittaci-positive cloacal PCR tests in wild avian casualties in the UK (2009) Vet Rec, 164 (1), p. 16. , PMID: 19122217; Kalmar, I.D., Dicxk, V., Dossche, L., Vanrompay, D., Zoonotic infection with Chlamydia psittaci at an avian refuge centre (2014) Vet J, 199 (2), pp. 300-302. , https://doi.org/10.1016/j.tvjl.2013.10.034, PMID: 24326117; Aaziz, R., Gourlay, P., Vorimore, F., Sachse, K., Siarkou, V.I., Laroucau, K., Chlamydiaceae in North Atlantic seabirds admitted to a wildlife rescue center in western France (2015) Appl Environ Microbiol, 81 (14), pp. 4581-4590. , https://doi.org/10.1128/AEM.00778-15, PMID: 25934619; Stojanovic, D., Alves, F., Cook, H., Crates, R., Heinsohn, R., Peters, A., Further knowledge and urgent action required to save orange-bellied parrots from extinction (2017) Emu, pp. 1-9; Raidal, S.R., Sarker, S., Peters, A., Review of psittacine beak and feather disease and its effect on Australian endangered species (2015) Aust Vet J, 93 (12), pp. 466-470. , https://doi.org/10.1111/avj.12388, PMID: 26769072; Amery-Gale, J., Marenda, M.S., Owens, J., Eden, P.A., Browning, G.F., Devlin, J.M., A high prevalence of beak and feather disease virus in non-psittacine Australian birds (2017) J Med Microbiol, 66 (7), pp. 1005-1013. , https://doi.org/10.1099/jmm.0.000516, PMID: 28703699; Tomaszewski, E.K., Wigle, W., Phalen, D.N., Tissue distribution of psittacid herpesviruses in latently infected parrots, repeated sampling of latently infected parrots and prevalence of latency in parrots submitted for necropsy (2006) J Vet Diagn Invest, 18 (6), pp. 536-544. , https://doi.org/10.1177/104063870601800603, PMID: 17121080; Phalen, D.N., Woods, R., Psittacid herpesviruses and mucosal papillomas of birds in Australia: Fact sheet (2009) Wildlife Health Australia; Gallagher, A., Sullivan, N.D., Internal papilloma disease in greenwinged macaws (Ara chloroptera) (1997) Aust Vet J, 75 (9), p. 675. , https://doi.org/10.1111/j.1751-0813.1997.tb15372.x; Alexander, D.J., Avian paramyxoviruses—other than Newcastle disease virus (1982) Worlds Poult Sci J, 38 (2), pp. 97-104; Jung, A., Grund, C., Muller, I., Rautenschlein, S., Avian paramyxovirus serotype 3 infection in Neopsephotus, Cyanoramphus, and Neophema species (2009) J Avian Med Surg, 23 (3), pp. 205-208. , https://doi.org/10.1647/2008-022.1, PMID: 19999764; Shihmanter, E., Weisman, Y., Lublin, A., Mahani, S., Panshin, A., Lipkind, M., Isolation of avian serotype 3 paramyxoviruses from imported caged birds in Israel (1998) Avian Dis, 42 (4), pp. 829-831. , PMID: 9876858; Smit, T., Rondhuis, P., Studies on a virus isolated from the brain of a parakeet (Neophema sp.) (1976) Avian Pathol, 5 (1), pp. 21-30. , https://doi.org/10.1080/03079457608418166, PMID: 18777326; Kumar, S., Nayak, B., Collins, P.L., Samal, S.K., Complete genome sequence of avian paramyxovirus type 3 reveals an unusually long trailer region (2008) Virus Res, 137 (2), pp. 189-197. , https://doi.org/10.1016/j.virusres.2008.07.012, PMID: 18691616; Kumar, S., Nayak, B., Samuel, A.S., Xiao, S., Collins, P.L., Samal, S.K., Complete genome sequence of avian paramyxovirus-3 strain Wisconsin: Evidence for the existence of subgroups within the serotype (2010) Virus Res, 149 (1), pp. 78-85. , https://doi.org/10.1016/j.virusres.2009.12.015, PMID: 20079781; Shihmanter, E., Weisman, Y., Lublin, A., Mechani, S., Gruenberg, R., Horowith, H., Avian paramyxoviruses serotype 3 isolated from captive birds in Israel: Clinical signs, pathology, and antigenic characterization (1998) Avian Dis, 42 (2), pp. 418-422. , PMID: 9645338; Mustaffa-Babjee, A., Spradbrow, P., Samuel, J.L., A pathogenic paramyxovirus from a budgerigar (Melopsittacus undulatus) (1974) Avian Dis, 18 (2), pp. 226-230. , https://doi.org/10.2307/1589130, PMID: 4828579; Nerome, K., Nakayama, M., Ishida, M., Fukumi, H., Morita, A., Isolation of a new avian paramyxovirus from budgerigar (Melopsittacus undulatus) (1978) J Gen Virol, 38 (2), pp. 293-301. , https://doi.org/10.1099/0022-1317-38-2-293, PMID: 627875; Samuel, A.S., Paldurai, A., Kumar, S., Collins, P.L., Samal, S.K., Complete genome sequence of avian paramyxovirus (APMV) serotype 5 completes the analysis of nine APMV serotypes and reveals the longest APMV genome (2010) PLoS ONE, 5 (2), p. e9269. , https://doi.org/10.1371/journal.pone.0009269, PMID: 20174645; Arzey, G., The role of wild aquatic birds in the epidemiology of avian influenza in Australia (2004) Aust Vet J, 82 (6), pp. 377-378. , PMID: 15267098; Van Dijk, J.G., Verhagen, J.H., Wille, M., Waldenström, J., Host and virus ecology as determinants of influenza A virus transmission in wild birds (2018) Curr Opin Virol, 28, pp. 26-36. , https://doi.org/10.1016/j.coviro.2017.10.006, PMID: 29121508; Olson, S.H., Parmley, J., Soos, C., Gilbert, M., Latorre-Margalef, N., Hall, J.S., Sampling strategies and biodiversity of influenza A subtypes in wild birds (2014) PLoS ONE, 9 (3), p. e90826. , https://doi.org/10.1371/journal.pone.0090826, PMID: 24599502; Hansbro, P.M., Warner, S., Tracey, J.P., Arzey, K.E., Selleck, P., O’Riley, K., Surveillance and analysis of avian influenza viruses, Australia (2010) Emerg Infect Dis, 16 (12), pp. 1896-1904. , https://doi.org/10.3201/eid1612.100776, PMID: 21122219; Hill, N.J., Hussein, I.T., Davis, K.R., Ma, E.J., Spivey, T.J., Ramey, A.M., Reassortment of influenza A viruses in wild birds in Alaska before H5 Clade 2.3.4.4 outbreaks (2017) Emerg Infect Dis, 23 (4), pp. 654-657. , https://doi.org/10.3201/eid2304.161668, PMID: 28322698; Poovorawan, Y., Pyungporn, S., Prachayangprecha, S., Makkoch, J., Global alert to avian influenza virus infection: From H5N1 to H7N9 (2013) Pathog Glob Health, 107 (5), pp. 217-223. , https://doi.org/10.1179/2047773213Y.0000000103, PMID: 23916331; Prosser, D.J., Hungerford, L.L., Erwin, R.M., Ottinger, M.A., Takekawa, J.Y., Ellis, E.C., Mapping avian influenza transmission risk at the interface of domestic poultry and wild birds (2013) Front Public Health, 1 (28), pp. 1-11. , https://doi.org/10.3389/fpubh.2013.00028, PMID: 24350197; (2012) Notification of Low Pathogenic Avian Influenza Virus Outbreak in Poultry, , http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=11554, Australian Government Department of Agriculture and Water Resources. World Organisation for Animal Health (OIE); (2013) Notification of Highly Pathogenic Avian Influenza Virus H7N2 Outbreak, , http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2013/, Australian Government Department of Agriculture and Water Resources. World Organisation for Animal Health (OIE); Vijaykrishna, D., Deng, Y.-M., Su, Y.C.F., Fourment, M., Iannello, P., Arzey, G.G., The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses (2013) J Virol, 87 (18), pp. 10182-10189. , https://doi.org/10.1128/JVI.03437-12, PMID: 23864623; Hernandez-Jover, M., Schemann, K., East, I., Toribio, J.-A., Evaluating the risk of avian influenza introduction and spread among poultry exhibition flocks in Australia (2015) Prev Vet Med, 118 (1), pp. 128-141. , https://doi.org/10.1016/j.prevetmed.2014.11.018, PMID: 25496909; Grillo, V.L., Arzey, K.E., Hansbro, P.M., Hurt, A.C., Warner, S., Bergfeld, J., Avian influenza in Australia: A summary of 5 years of wild bird surveillance (2015) Aust Vet J, 93 (11), pp. 387-393. , https://doi.org/10.1111/avj.12379, PMID: 26503532; Haynes, L., Arzey, E., Bell, C., Buchanan, N., Burgess, G., Cronan, V., Australian surveillance for avian influenza viruses in wild birds between July 2005 and June 2007 (2009) Aust Vet J, 87 (7), pp. 266-272. , https://doi.org/10.1111/j.1751-0813.2009.00446.x, PMID: 19573149; Quinteros, J.A., Lee, S.-W., Markham, P.F., Noormohammadi, A.H., Hartley, C.A., Legione, A.R., Full genome analysis of Australian infectious bronchitis viruses suggests frequent recombination events between vaccine strains and multiple phylogenetically distant avian coronaviruses of unknown origin (2016) Vet Microbiol, 197, pp. 27-38. , https://doi.org/10.1016/j.vetmic.2016.11.003, PMID: 27938680; Quinteros, J.A., Markham, P.F., Lee, S.-W., Hewson, K.A., Hartley, C.A., Legione, A.R., Analysis of the complete genomic sequences of two virus subpopulations of the Australian infectious bronchitis virus vaccine VicS (2015) Avian Pathol, 44 (3), pp. 182-191. , https://doi.org/10.1080/03079457.2015.1022857, PMID: 25721384; Mardani, K., Noormohammadi, A.H., Hooper, P., Ignjatovic, J., Browning, G.F., Infectious bronchitis viruses with a novel genomic organization (2008) J Virol, 82 (4), pp. 2013-2024. , https://doi.org/10.1128/JVI.01694-07, PMID: 18045937; Chmielewicz, B., Goltz, M., Lahrmann, K.-H., Ehlers, B., Approaching virus safety in xenotransplantation: A search for unrecognized herpesviruses in pigs (2003) Xenotransplantation, 10 (4), pp. 349-356. , https://doi.org/10.1034/j.1399-3089.2003.02074.x, PMID: 12795684; Van Boheemen, S., Bestebroer, T.M., Verhagen, J.H., Osterhaus, A.D., Pas, S.D., Herfst, S., A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study (2012) PLoS ONE, 7 (4), p. e34961. , https://doi.org/10.1371/journal.pone.0034961, PMID: 22496880; Tong, S., Chern, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) J Clin Microbiol, 46 (8), pp. 2652-2658. , https://doi.org/10.1128/JCM.00192-08, PMID: 18579717; Callison, S.A., Hilt, D.A., Boynton, T.O., Sample, B.F., Robison, R., Swayne, D.E., Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) J Virol Methods, 138 (1-2), pp. 60-65. , https://doi.org/10.1016/j.jviromet.2006.07.018, PMID: 16934878; Heine, H.G., Trinidad, L., Selleck, P., Lowther, S., Rapid detection of highly pathogenic avian influenza H5N1 virus by TaqMan reverse transcriptase–polymerase chain reaction (2007) Avian Dis, 51 (s1), pp. 370-372. , https://doi.org/10.1637/7587-040206r.1, PMID: 17494586; Brown, L.D., Cai, T.T., DasGupta, A., Interval estimation for a binomial proportion (2001) Stat Sci, 16 (2), pp. 101-117; Fisher, R.A., On the interpretation of χ2 from contingency tables, and the calculation of P (1922) J R Stat Soc, 85 (1), pp. 87-94; Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics, 28 (12), pp. 1647-1649. , https://doi.org/10.1093/bioinformatics/bts199, PMID: 22543367; Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23 (21), pp. 2947-2948. , https://doi.org/10.1093/bioinformatics/btm404, PMID: 17846036; Guindon, S., Gascuel, O., A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood (2003) Syst Biol, 52 (5), pp. 696-704. , https://doi.org/10.1080/10635150390235520, PMID: 14530136; Ehlers, B., Borchers, K., Grund, C., Frölich, K., Ludwig, H., Buhk, H.-J., Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers (1999) Virus Genes, 18 (3), pp. 211-220. , PMID: 10456789; Gailbreath, K.L., Lindsay Oaks, J., Herpesviral inclusion body disease in owls and falcons is caused by the pigeon herpesvirus (columbid herpesvirus 1) (2008) J Wildl Dis, 44 (2), pp. 427-433. , https://doi.org/10.7589/0090-3558-44.2.427, PMID: 18436674; Guo, Y., Li, S., Sun, X., He, Y., Zhao, H., Wang, Y., Complete genome sequence and evolution analysis of a columbid herpesvirus type 1 from feral pigeon in China (2017) Arch Virol, 162, pp. 2131-2133. , https://doi.org/10.1007/s00705-017-3329-x, PMID: 28316016; Phalen, D.N., Alvarado, C., Grillo, V., Mason, P., Dobson, E., Holz, P., Prevalence of columbid herpesvirus infection in feral pigeons (Columba livia) from New South Wales and Victoria, Australia, with spillover into a wild powerful owl (Ninox struena) (2017) J Wildl Dis, 53 (3), pp. 543-551. , https://doi.org/10.7589/2016-07-158, PMID: 28192040; Phalen, D.N., Holz, P., Rasmussen, L., Bayley, C., Fatal columbid herpesvirus-1 infections in three species of Australian birds of prey (2011) Aust Vet J, 89 (5), pp. 193-196. , https://doi.org/10.1111/j.1751-0813.2011.00706.x, PMID: 21495992; Pinkerton, M.E., Jr, W.J.F.X., Johnson, A.J., Childress, A.L., Fitzgerald, S.D., Kinsel, M.J., Columbid herpesvirus-1 in two Cooper’s hawks (Accipiter cooperii) with fatal inclusion body disease (2008) J Wildl Dis, 44 (3), pp. 622-628. , https://doi.org/10.7589/0090-3558-44.3.622, PMID: 18689647; Zhang, L., Li, Z., Li, S., Hu, X., Sun, H., Li, M., Characterization of the first columbid herpesvirus 1 isolate from a hybrid meat-type pigeon flock in China (2015) Arch Virol, 160 (2), pp. 459-464. , https://doi.org/10.1007/s00705-014-2247-4, PMID: 25298181; Thureen, D.R., Jr, K.C.L., Psittacid herpesvirus 1 and infectious laryngotracheitis virus: Comparative genome sequence analysis of two avian alphaherpesviruses (2006) J Virol, 80 (16), pp. 7863-7872. , https://doi.org/10.1128/JVI.00134-06, PMID: 16873243; Styles, D.K., Tomaszewski, E.K., Phalen, D.N., A novel psittacid herpesvirus found in African grey parrots (Psittacus erithacus erithacus) (2005) Avian Pathol, 34 (2), pp. 150-154. , https://doi.org/10.1080/03079450500059032, PMID: 16191697; Hulbert, C.L., Chamings, A., Hewson, K.A., Steer, P.A., Gosbell, M., Noormohammadi, A.H., Survey of captive parrot populations around Port Phillip Bay, Victoria, Australia, for psittacine beak and feather disease virus, avian polyomavirus and psittacine adenovirus (2015) Aust Vet J, 93 (8), pp. 287-292. , https://doi.org/10.1111/avj.12350, PMID: 26220322; Hiono, T., Matsuno, K., Tuchiya, K., Lin, Z., Okamatsu, M., Sakoda, Y., Complete genome sequence of the avian paramyxovirus serotype 5 strain APMV-5/budgerigar/Japan/TI/75 (2016) Genome Announc, 4 (5), pp. e01005-e01016. , https://doi.org/10.1128/genomeA.01005-16, PMID: 27660785; Hughes, L.A., Savage, C., Naylor, C., Bennett, M., Chantrey, J., Jones, R., Genetically diverse coronaviruses in wild bird populations of northern England (2009) Emerg Infect Dis, 15 (7), pp. 1091-1094. , https://doi.org/10.3201/eid1507.090067, PMID: 19624927; Muradrasoli, S., Balint, A., Wahlgren, J., Waldenström, J., Belak, S., Blomberg, J., Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia) (2010) PLoS ONE, 5 (10), p. e13640. , https://doi.org/10.1371/journal.pone.0013640, PMID: 21060827; Stallknecht, D.E., Shane, S.M., Host range of avian influenza virus in free-living birds (1988) Vet Res Commun, 12 (2-3), pp. 125-141. , PMID: 3055662; Durães-Carvalho, R., Caserta, L.C., Barnabé, A.C., Martini, M.C., Simas, P.V., Santos, M.M., Phylogenetic and phylogeographic mapping of the avian coronavirus spike protein-encoding gene in wild and synan-thropic birds (2015) Virus Res, 201, pp. 101-112. , https://doi.org/10.1016/j.virusres.2015.03.002, PMID: 25771408; Domanska-Blicharz, K., Jacukowicz, A., Lisowska, A., Wyrostek, K., Minta, Z., Detection and molecular characterization of infectious bronchitis-like viruses in wild bird populations (2014) Avian Pathol, 43 (5), pp. 406-413. , https://doi.org/10.1080/03079457.2014.949619, PMID: 25133705; Nemeth, N.M., Oesterle, P.T., Poulson, R.L., Jones, C.A., Tompkins, S.M., Brown, J.D., Experimental infection of European starlings (Sturnus vulgaris) and house sparrows (Passer domesticus) with pandemic 2009 H1N1 and swine H1N1 and H3N2 triple reassortant influenza viruses (2013) J Wildl Dis, 49 (2), pp. 437-440. , https://doi.org/10.7589/2012-09-224, PMID: 23568924; Nesterowicz, A., Kawaoka, Y., Bean, W., Webster, R., Molecular analysis of the haemagglutinin genes of Australian H7N7 influenza viruses: Role of passerine birds in maintenance of transmission (1987) Virology, 160, pp. 411-418. , PMID: 3660587; Garnett, S., Flanagan, M., Survey for Newcastle disease virus in northern Queensland birds (1989) Aust Vet J, 66 (5), pp. 129-134. , PMID: 2735890; Hoque, M.A., Burgess, G.W., Karo-Karo, D., Cheam, A.L., Skerratt, L.F., Monitoring of wild birds for Newcastle disease virus in north Queensland, Australia (2012) Prev Vet Med, 103 (1), pp. 49-62. , https://doi.org/10.1016/j.prevetmed.2011.08.013, PMID: 21945812; Subbiah, M., Nayak, S., Collins, P.L., Samal, S.K., Complete genome sequences of avian paramyxovirus serotype 2 (APMV-2) strains Bangor, England and Kenya: Evidence for the existence of subgroups within serotype 2 (2010) Virus Res, 152 (1), pp. 85-95; Xiao, S., Subbiah, M., Kumar, S., De Nardi, R., Terregino, C., Collins, P.L., Complete genome sequences of avian paramyxovirus serotype 6 prototype strain Hong Kong and a recent novel strain from Italy: Evidence for the existence of subgroups within the serotype (2010) Virus Res, 150 (1), pp. 61-72; Tomaszewski, E.K., Kaleta, E.F., Phalen, D.N., Molecular phylogeny of the psittacid herpesviruses causing Pacheco’s disease: Correlation of genotype with phenotypic expression (2003) J Virol, 77 (20), pp. 11260-11267. , https://doi.org/10.1128/JVI.77.20.11260-11267.2003, PMID: 14512573; Raidal, S.R., Cross, G.M., Tomaszewski, E., Graham, D.L., Phalen, D.N., A serologic survey for avian polyomavirus and Pacheco’s disease virus in Australian cockatoos (1998) Avian Pathol, 27 (3), pp. 263-268. , https://doi.org/10.1080/03079459808419334, PMID: 18483996; Maré, C.J., Graham, D.L., Falcon herpesvirus, the etiologic agent of inclusion body disease of falcons (1973) Infect Immun, 8 (1), pp. 118-126. , PMID: 4352453; Rose, N., Warren, A.L., Whiteside, D., Bidulka, J., Robinson, J.H., Illanes, O., Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta (2012) Can Vet J, 53 (3), pp. 265-268. , PMID: 22942441; Shivaprasad, H.L., Phalen, D.N., A novel herpesvirus associated with respiratory disease in Bourke’s parrots (Neopsephotus bourkii) (2012) Avian Pathol, 41 (6), pp. 531-539. , https://doi.org/10.1080/03079457.2012.732692, PMID: 23237365; Vaz, P., Horsington, J., Hartley, C., Browning, G., Ficorilli, N., Studdert, M., Evidence of widespread natural recombination among field isolates of equine herpesvirus 4 but not among field isolates of equine herpesvirus 1 (2016) J Gen Virol, 97 (3), pp. 747-755. , https://doi.org/10.1099/jgv.0.000378, PMID: 26691326; Patel, J., Heldens, J., Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)–epidemiology, disease and immu-noprophylaxis: A brief review (2005) Vet J, 170 (1), pp. 14-23. , https://doi.org/10.1016/j.tvjl.2004.04.018, PMID: 15993786","Amery-Gale, J.; Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of MelbourneAustralia; email: j.amery-gale@student.unimelb.edu.au",,"Public Library of Science",19326203,,POLNC,"29570719","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85044375662 "Oh M.-D., Park W.B., Park S.-W., Choe P.G., Bang J.H., Song K.-H., Kim E.S., Kim H.B., Kim N.J.","7201600302;7402229219;56108350600;15070608400;15070169400;23398486700;22938086900;35307429400;35495869100;","Middle east respiratory syndrome: What we learned from the 2015 outbreak in the republic of Korea",2018,"Korean Journal of Internal Medicine","33","2",,"233","246",,24,"10.3904/kjim.2018.031","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043521664&doi=10.3904%2fkjim.2018.031&partnerID=40&md5=deb6ba1de96efe22c7379ff4a7ead1e3","Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea","Oh, M.-D., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Park, W.B., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Park, S.-W., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Choe, P.G., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Bang, J.H., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Song, K.-H., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, E.S., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, H.B., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, N.J., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea","Middle East Respiratory Syndrome coronavirus (MERS-CoV) was first isolated from a patient with severe pneumonia in 2012. The 2015 Korea outbreak of MERS-CoV involved 186 cases, including 38 fatalities. A total of 83% of transmission events were due to five superspreaders, and 44% of the 186 MERS cases were the patients who had been exposed in nosocomial transmission at 16 hospitals. The epidemic lasted for 2 months and the government quarantined 16,993 individuals for 14 days to control the outbreak. This outbreak provides a unique opportunity to fill the gap in our knowledge of MERS-CoV infection. Therefore, in this paper, we review the literature on epidemiology, virology, clinical features, and prevention of MERS-CoV, which were acquired from the 2015 Korea outbreak of MERS-CoV. © 2018 The Korean Association of Internal Medicine.","Coronavirus; Coronavirus infections; Disease outbreaks; Korea; Middle East respiratory syndrome coronavirus","amikacin; ceftriaxone; corticosteroid; interferon; lopinavir plus ritonavir; ribavirin; antivirus agent; acute kidney failure; airborne infection; antibody response; case fatality rate; epidemic; health care personnel; hospital infection; hospital mortality; human; incubation time; infection control; infection prevention; laboratory diagnosis; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; occupational exposure; organizing pneumonia; pneumonia; prognosis; public-private partnership; quarantine; reverse transcription polymerase chain reaction; Review; seroconversion; South Korea; thorax radiography; travel; viral contamination; virus genome; virus shedding; virus transmission; adolescent; adult; age distribution; aged; Coronavirus infection; cross infection; epidemic; female; male; middle aged; Middle East respiratory syndrome coronavirus; sex ratio; transmission; very elderly; virology; young adult; Adolescent; Adult; Age Distribution; Aged; Aged, 80 and over; Antiviral Agents; Coronavirus Infections; Cross Infection; Disease Outbreaks; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Republic of Korea; Sex Distribution; Young Adult","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://who.int/emergencies/mers-cov/en/, Geneva: World Health Organization, 2018 Feb 8; (2014) Mers-Cov Daily Update [Internet]. Riyadh (SA): Ministry of Health Kingdom of Saudi Arabia, , https://www.moh.gov.sa/en/CCC/PressReleases/Pages/statistics-2018-01-27-001.aspx, 2018 Feb 8; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, , In Press; Treatment of MERS-CoV: Information for clinicians (2017) Clinical Decision-Making Support for Treatment of Mers-Cov Patients, , https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/638628/MERS_CoV_guidance:for_clinicians.pdf, London (UK): Public Health England; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278; Oh, M.D., The Korean Middle East respiratory syndrome coronavirus outbreak and our responsibility to the global scientific community (2016) Infect Chemother, 48, pp. 145-146; Lee, J.Y., Kim, Y.J., Chung, E.H., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis, 17, p. 498; Kim, K.M., Ki, M., Cho, S.I., Epidemiologic features of the first MERS outbreak in Korea: Focus on Pyeongtaek St. Mary's Hospital (2015) Epidemiol Health, 37; Yang, J.S., Park, S., Kim, Y.J., Middle East respiratory syndrome in 3 persons, South Korea, 2015 (2015) Emerg Infect Dis, 21, pp. 2084-2087; Park, Y.S., Lee, C., Kim, K.M., The first case of the 2015 Korean Middle East respiratory syndrome outbreak (2015) Epidemiol Health, 37; (2018) South Korea Coronavirus MERS Case List: Including Imported and Exported Cases, , https://flutrackers.com/forum/forum/novel-coronavirus-ncov-mers-2012-2014/novel-coronavirus-who-chp-wpro-ecdc-oie-fao-moa-reports-and-updates/south-korea-coronavirus/732065-south-korea-coronavirus-mers-case-list-including-imported-and-exported-cases-ministry-of-health-who-confirmed-data-only-2015-outbreak, FluTrackers, Ministry of Health & WHO confirmed data only: 2015 outbreak [Internet]. Winter Park (FL): FluTrackers; (2013) Mers-Cov Infection: Current Status-Interactive and Infographics, , http://dj.kbs.co.kr/resources/2015-06-08/, KBS Digital News; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int J Infect Dis, 38, pp. 65-67; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; (2016) The 2015 MERS Outbreak in the Republic of Korea: Learning from MERS (The White Paper), p. 473. , Seoul (KR): Ministry of Health and Welfare; Xiao, S., Li, Y., Sung, M., Wei, J., Yang, Z., A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea (2018) Indoor Air, 28, pp. 51-63; Oh, M.D., Choe, P.G., Oh, H.S., Middle East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015 (2015) J Korean Med Sci, 30, pp. 1701-1705; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Park, G.E., Ko, J.H., Peck, K.R., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Park, S.H., Kim, Y.S., Jung, Y., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect Chemother, 48, pp. 99-107; Park, J.W., Lee, K.J., Lee, K.H., Hospital outbreaks of Middle East respiratory syndrome, Daejeon, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 898-905; Nam, H.S., Park, J.W., Ki, M., Yeon, M.Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int J Infect Dis, 58, pp. 37-42; Wu, J., Yi, L., Zou, L., Zhong, H., Imported case of MERS-CoV infection identified in China, May 2015: Detection and lesson learned (2015) Euro Surveill, 20; Wang, Y., Liu, D., Shi, W., Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in china: Phylo-genetics and coalescence analysis (2015) Mbio, 6; Kang, C.K., Song, K.H., Choe, P.G., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; Park, S.H., Kim, W.J., Yoo, J.H., Choi, J.H., Epidemiologic parameters of the Middle East respiratory syndrome outbreak in Korea, 2015 (2016) Infect Chemother, 48, pp. 108-117; Park, H.Y., Lee, E.J., Ryu, Y.W., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Euro Surveill, 20, pp. 1-6; Chowell, G., Abdirizak, F., Lee, S., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Med, 13, p. 210; Chun, B.C., Understanding and modeling the super-spread-ing events of the Middle East respiratory syndrome outbreak in Korea (2016) Infect Chemother, 48, pp. 147-149; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol Health, 37; Nishiura, H., Endo, A., Saitoh, M., Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: A retrospective epidemiological analysis (2016) BMJ Open, 6; Virlogeux, V., Fang, V.J., Park, M., Wu, J.T., Cowling, B.J., Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia (2016) Sci Rep, 6; Zhang, X.S., Pebody, R., Charlett, A., Estimating and modelling the transmissibility of Middle East respiratory syndrome coronavirus during the 2015 outbreak in the Republic of Korea (2017) Influenza Other Respir Viruses, 11, pp. 434-444; Choi, S., Jung, E., Choi, B.Y., Hur, Y.J., Ki, M., High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: Mathematical modelling in Saudi Arabia and South Korea (2017) J Hosp Infect, , https://doi.org/10.1016/j.jhin.2017.09.017, Sep 25; Kucharski, A.J., Althaus, C.L., The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission (2015) Euro Surveill, 20, pp. 14-18; Kim, S.W., Park, J.W., Jung, H.D., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Kim, T., Jung, J., Kim, S.M., Transmission among healthcare worker contacts with a Middle East respiratory syndrome patient in a single Korean centre (2016) Clin Microbiol Infect, 22; Kim, Y.J., Cho, Y.J., Kim, D.W., Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/KNIH/002_05_2015, isolated in South Korea (2015) Genome Announc, 3; Lu, R., Wang, Y., Wang, W., Complete genome sequence of Middle East Respiratory syndrome coronavirus (MERS-CoV) from the first imported MERS-CoV case in China (2015) Genome Announc, 3; Park, W.B., Kwon, N.J., Choe, P.G., Isolation of Middle East respiratory syndrome coronavirus from a patient of the 2015 Korean outbreak (2016) J Korean Med Sci, 31, pp. 315-320; Seong, M.W., Kim, S.Y., Corman, V.M., Microevolution of outbreak-associated Middle East respiratory syndrome coronavirus, South Korea, 2015 (2016) Emerg Infect Dis, 22, pp. 327-330; Sabir, J.S., Lam, T.T., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Kim, J.I., Kim, Y.J., Lemey, P., The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination (2016) Sci Rep, 6; Kim, D.W., Kim, Y.J., Park, S.H., Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015 (2016) Emerg Infect Dis, 22, pp. 100-104; Kim, Y., Cheon, S., Min, C.K., Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) Mbio, 7; Park, D., Huh, H.J., Kim, Y.J., Analysis of intrapatient heterogeneity uncovers the microevolution of Middle East respiratory syndrome coronavirus (2016) Cold Spring Harb Mol Case Stud, 2; Xie, Q., Cao, Y., Su, J., Two deletion variants of Middle East respiratory syndrome coronavirus found in a patient with characteristic symptoms (2017) Arch Virol, 162, pp. 2445-2449; Oh, M.D., Park, W.B., Choe, P.G., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305; Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Ko, J.H., Muller, M.A., Seok, H., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89, pp. 106-111; Choe, P.G., Perera, R.A.P.M., Park, W.B., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084; Choi, W.S., Kang, C.I., Kim, Y., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48, pp. 118-126; Rhee, J.Y., Hong, G., Ryu, K.M., Clinical implications of 5 cases of Middle East respiratory syndrome coronavirus infection in a South Korean outbreak (2016) Jpn J Infect Dis, 69, pp. 361-366; Kim, E.S., Choe, P.G., Park, W.B., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) J Korean Med Sci, 31, pp. 1717-1725; Ko, J.H., Park, G.E., Lee, J.Y., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J Infect, 73, pp. 468-475; Cha, R.H., Joh, J.S., Jeong, I., Renal complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-CoV designated hospital (2015) J Korean Med Sci, 30, pp. 1807-1814; Kim, J.E., Heo, J.H., Kim, H.O., Neurological complications during treatment of Middle East respiratory syndrome (2017) J Clin Neurol, 13, pp. 227-233; Choi, W.J., Lee, K.N., Kang, E.J., Lee, H., Middle East respiratory syndrome-coronavirus infection: A case report of serial computed tomographic findings in a young male patient (2016) Korean J Radiol, 17, pp. 166-170; Park, G.E., Kang, C.I., Ko, J.H., Differential cell count and CRP level in blood as predictors for Middle East respiratory syndrome coronavirus infection in acute febrile patients during nosocomial outbreak (2017) J Korean Med Sci, 32, pp. 151-154; Lee, H., Ki, C.S., Sung, H., Guidelines for the laboratory diagnosis of Middle East respiratory syndrome coronavirus in Korea (2016) Infect Chemother, 48, pp. 61-69; Ki, C.S., Lee, H., Sung, H., Korean Society for Laboratory Medicine practice guidelines for the molecular diagnosis of Middle East respiratory syndrome during an outbreak in Korea in 2015 (2016) Ann Lab Med, 36, pp. 203-208; Huh, H.J., Ko, J.H., Kim, Y.E., Importance of specimen type and quality in diagnosing Middle East respiratory syndrome (2017) Ann Lab Med, 37, pp. 81-83; Lee, J.H., Lee, C.S., Lee, H.B., An appropriate lower respiratory tract specimen is essential for diagnosis of Middle East respiratory syndrome (MERS) (2015) J Korean Med Sci, 30, pp. 1207-1208; Kim, S.H., Ko, J.H., Park, G.E., Atypical presentations of MERS-CoV infection in immunocompromised hosts (2017) J Infect Chemother, 23, pp. 769-773; Chong, Y.P., Song, J.Y., Seo, Y.B., Choi, J.P., Shin, H.S., Team, R.R., Antiviral treatment guidelines for Middle East respiratory syndrome (2015) Infect Chemother, 47, pp. 212-222; Hong, K.H., Choi, J.P., Hong, S.H., Predictors of mortality in Middle East respiratory syndrome (MERS) (2018) Thorax, 73, pp. 286-289; Majumder, M.S., Kluberg, S.A., Mekaru, S.R., Brownstein, J.S., Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea, 2015 (2015) Emerg Infect Dis, 21, pp. 2088-2090; Mizumoto, K., Endo, A., Chowell, G., Miyamatsu, Y., Saitoh, M., Nishiura, H., Real-time characterization of risks of death associated with the Middle East respiratory syndrome (MERS) in the Republic of Korea, 2015 (2015) BMC Med, 13, p. 228; Kim, S.Y., Park, S.J., Cho, S.Y., Viral RNA in blood as indicator of severe outcome in Middle East respiratory syndrome coronavirus infection (2016) Emerg Infect Dis, 22, pp. 1813-1816; Virlogeux, V., Park, M., Wu, J.T., Cowling, B.J., Association between severity of MERS-CoV infection and incubation period (2016) Emerg Infect Dis, 22, pp. 526-528; Jeong, S.Y., Sung, S.I., Sung, J.H., MERS-CoV infection in a pregnant woman in Korea (2017) J Korean Med Sci, 32, pp. 1717-1720; Kim, I., Lee, J.E., Kim, K.H., Lee, S., Lee, K., Mok, J.H., Successful treatment of suspected organizing pneumonia in a patient with Middle East respiratory syndrome coronavirus infection: A case report (2016) J Thorac Dis, 8, pp. E1190-E1194; Jeong, H., Yim, H.W., Song, Y.J., Mental health status of people isolated due to Middle East respiratory syndrome (2016) Epidemiol Health, 38; Chun, S., Chung, C.R., Ha, Y.E., Possible transfusion-related acute lung injury following convalescent plasma transfusion in a patient with Middle East respiratory syndrome (2016) Ann Lab Med, 36, pp. 393-395; Kim, J.Y., Song, J.Y., Yoon, Y.K., Middle East respiratory syndrome infection control and prevention guideline for healthcare facilities (2015) Infect Chemother, 47, pp. 278-302; Moon, S.Y., Son, J.S., Lee, Y.H., Middle East respiratory syndrome coronavirus transmission in dialysis unit and infection control interventions in Korea (2016) Infect Control Hosp Epidemiol, 37, pp. 1514-1516; Park, H.C., Lee, Y.K., Lee, S.H., Middle East respiratory syndrome clinical practice guideline for hemodialysis facilities (2017) Kidney Res Clin Pract, 36, pp. 111-116; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS- CoV) under different environmental conditions (2013) Euro Surveill, 18; Bin, S.Y., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Oh, M.D., Environmental contamination and viral shedding in MERS patients (2016) Clin Infect Dis, 62, p. 1615; Song, J.Y., Cheong, H.J., Choi, M.J., Viral shedding and environmental cleaning in Middle East respiratory syndrome coronavirus infection (2015) Infect Chemother, 47, pp. 252-255; Kim, S.H., Chang, S.Y., Sung, M., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369; Oh, M.D., Transmissibility of Middle East respiratory syndrome by the airborne route (2016) Clin Infect Dis, 63, p. 1143; Majumder, M.S., Brownstein, J.S., Finkelstein, S.N., Larson, R.C., Bourouiba, L., Nosocomial amplification of MERS-coronavirus in South Korea, 2015 (2017) Trans R Soc Trop Med Hyg, 111, pp. 261-269; Nam, H.S., Yeon, M.Y., Park, J.W., Hong, J.Y., Son, J.W., Healthcare worker infected with Middle East Respiratory Syndrome during cardiopulmonary resuscitation in Korea, 2015 (2017) Epidemiol Health, 39; Kim, C.J., Choi, W.S., Jung, Y., Surveillance of the Middle East respiratory syndrome (MERS) coronavirus (CoV) infection in healthcare workers after contact with confirmed MERS patients: Incidence and risk factors of MERS-CoV seropositivity (2016) Clin Microbiol Infect, 22, pp. 880-886; Lee, J.Y., Kim, G., Lim, D.G., Seroprevalence of Middle East respiratory syndrome coronavirus among healthcare personnel caring for patients with middle east respiratory syndrome in South Korea (2016) Infect Control Hosp Epidemiol, 37, pp. 1513-1514; Ko, J.H., Lee, J.Y., Baek, J.Y., Serologic evaluation of MERS screening strategy for healthcare personnel during a hospital-associated outbreak (2017) Infect Control Hosp Epidemiol, 38, pp. 234-238; Moon, S.Y., Son, J.S., Lee, Y.H., Middle East respiratory syndrome coronavirus transmission in dialysis unit and infection control interventions in Korea (2016) Infect Control Hosp Epidemiol, 37, pp. 1514-1516; (2018) Management of Asymptomatic Persons Who are RT-PCR Positive for Middle East Respiratory Syndrome Coronavirus (Mers-Cov): Interim Guidance, , http://apps.who.int/iris/bitstream/10665/180973/1/WHO_MERS_IPC_15.2_eng.pdf?ua=1&ua=1, Geneva: World Health Organization, 2018 Feb 8; Lee, J., Kim, W.J., Collaborative intervention of Middle East respiratory syndrome: Rapid response team (2016) Infect Chemother, 48, pp. 71-74; Jeon, M.H., Kim, T.H., Institutional preparedness to prevent future Middle East respiratory syndrome coronavirus-like outbreaks in Republic of Korea (2016) Infect Chemother, 48, pp. 75-80","Oh, M.-D.; Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, South Korea; email: mdohmd@snu.ac.kr",,"Korean Association of Internal Medicine",12263303,,KJIME,"29506344","English","Korean J. Intern. Med.",Review,"Final",Open Access,Scopus,2-s2.0-85043521664 "Afelt A., Lacroix A., Zawadzka-Pawlewska U., Pokojski W., Buchy P., Frutos R.","6505915775;57191997400;57200111470;8982822400;15019240000;7003578491;","Distribution of bat-borne viruses and environment patterns",2018,"Infection, Genetics and Evolution","58",,,"181","191",,3,"10.1016/j.meegid.2017.12.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039760316&doi=10.1016%2fj.meegid.2017.12.009&partnerID=40&md5=c2e4194d38534d8b91ff346432d02b8e","Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Tyniecka 15/17, Warsaw, 02-630, Poland; Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia; CIRAD, UMR 17, CIRAD-IRD, Montpellier, France; Institute of Physical Geography, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland; Laboratory of Spatial Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland; GSK Vaccines R&D, 150 Beach road, # 22-00189720, Singapore; Université de Montpellier, IES, UMR 5214, CNRS-UM, Montpellier, France","Afelt, A., Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Tyniecka 15/17, Warsaw, 02-630, Poland; Lacroix, A., Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia, CIRAD, UMR 17, CIRAD-IRD, Montpellier, France; Zawadzka-Pawlewska, U., Institute of Physical Geography, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland; Pokojski, W., Laboratory of Spatial Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland; Buchy, P., Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia, GSK Vaccines R&D, 150 Beach road, # 22-00189720, Singapore; Frutos, R., CIRAD, UMR 17, CIRAD-IRD, Montpellier, France, Université de Montpellier, IES, UMR 5214, CNRS-UM, Montpellier, France","Environmental modifications are leading to biodiversity changes, loss and habitat disturbance. This in turn increases contacts between wildlife and hence the risk of transmission and emergence of zoonotic diseases. We analyzed the environment and land use using remote spatial data around the sampling locations of bats positive for coronavirus (21 sites) and astrovirus (11 sites) collected in 43 sites. A clear association between viruses and hosts was observed. Viruses associated to synanthropic bat genera, such as Myotis or Scotophilus were associated to highly transformed habitats with human presence while viruses associated to fruit bat genera were correlated with natural environments with dense forest, grassland areas and regions of high elevation. In particular, group C betacoronavirus were associated with mosaic habitats found in anthropized environments. © 2017 Elsevier B.V.","Bat viruses; Cambodia; Emerging diseases; Environmental analysis; Evolution of environment; Lao PDR; South East Asia","virus RNA; Article; Astroviridae; bat borne virus; Betacoronavirus; controlled study; Coronaviridae; environmental factor; forest; grassland; group C Betacoronavirus; land use; Myotis; nonhuman; priority journal; Scotophilus; species distribution; virus cell interaction; virus detection; viruses by habitat; animal; bat; Cambodia; classification; cluster analysis; Coronavirinae; environmental microbiology; genetic variation; genetics; human; Laos; mouse; phylogeny; phylogeography; RNA virus; transmission; virology; zoonosis; Animals; Astroviridae; Cambodia; Chiroptera; Cluster Analysis; Coronavirus; Environmental Microbiology; Genetic Variation; Humans; Laos; Mice; Phylogeny; Phylogeography; RNA Viruses; Zoonoses","Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T., Malingreau, J.P., Determination of deforestation rates of the world's humid tropical forests (2002) Science, 297, pp. 999-1002; Bates, P., Bumrungsri, S., Francis, C., Csorba, G., Hipposideros armiger. IUCN Red List Threat. Species 2008 ET10110A3162617 (2008), https://doi.org/10.2305/IUCN.UK.2008.RLTS.T10110A3162617, Available: (WWW Document) (Accessed 21 September 2016); Bates, P., Kingston, T., Francis, C., Rosell-Ambal, G., Heaney, L., Gonzales, J.C., Molur, S., Srinivasulu, C., Scotophilus kuhlii. IUCN Red List Threat. Species 2008 ET20068A9142479 (2008), https://doi.org/10.2305/IUCN.UK.2008.RLTS.T20068A9142479, Available: (WWW Document) (Accessed 21 September 2016); Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Chhay, S., Cambodian bats: a review of farming practices and economic value of lesser Asiatic yellow house bat Scotophilus kuhlii (Leach, 1821), in Kandal and Takeo Provinces, Cambodia (2012) Camb. J. Nat. Hist., 2012, p. 164; Chu, D.K.W., Poon, L.L.M., Guan, Y., Peiris, J.S.M., Novel astroviruses in insectivorous bats (2008) J. Virol., 82, pp. 9107-9114; Chua, K.B., Bellini, W.J., Rota, P.A., Harcourt, B.H., Tamin, A., Lam, S.K., Ksiazek, T.G., Mahy, B.W.J., Nipah virus: a recently emergent deadly paramyxovirus (2000) Science, 288, pp. 1432-1435; Clare, E.L., Lim, B.K., Fenton, M.B., Hebert, P.D.N., Neotropical bats: estimating species diversity with DNA barcodes (2011) PLoS One, 6; Costenbader, J., Broadhead, J., Yasmi, Y., Durst, P.B., Drivers Affecting Forest Change in the Greater Mekong Subregion (GMS): An Overview (2015), FAO, USAID and LEAF Bangkok; Csorba, G., Bates, P., Furey, N., Bumrungsri, S., Molur, S., Srinivasulu, C., Pipistrellus coromandra (Coromandel Pipistrelle, Indian Pipistrelle, Little Indian Bat). IUCN Red List Threat. Species 2008 ET17335A6996860 (2008), https://doi.org/10.2305/IUCN.UK.2008.RLTS.T17335A6996860.en, Available: (Accessed 22 March 2016); DeFries, R.S., Rudel, T., Uriarte, M., Hansen, M., Deforestation driven by urban population growth and agricultural trade in the twenty-first century (2010) Nat. Geosci., 3, pp. 178-181; Field, H.E., Bats and emerging zoonoses: henipaviruses and SARS (2009) Zoonoses Public Health, 56, pp. 278-284; Flemming, T.H., Eby, P., Ecology of bat migration (2003) Bat Ecology, pp. 156-208. , T.H. Kunz M.B. Fenton University of Chicago Press Chicago; Flint, E.P., Changes in land use in South and Southeast Asia from 1880 to 1980: a data base prepared as part of a coordinated research program on carbon fluxes in the tropics (1994) Chemosphere, 29, pp. 1015-1062; Food and Agriculture Organization, World Bank, Forest area (% of land area) (2016), http://data.worldbank.org/indicator/AG.LND.FRST.ZS?view=chart, Available: (Accessed 5 October 2016); Fortin, M.J., Keitt, T.H., Maurer, B.A., Taper, M.L., Kaufman, D.M., Blackburn, T.M., Species’ geographic ranges and distributional limits: pattern analysis and statistical issues (2005) Oikos, 108, pp. 7-17; Gay, N., Olival, K.J., Bumrungsri, S., Siriaroonrat, B., Bourgarel, M., Morand, S., Parasite and viral species richness of Southeast Asian bats: fragmentation of area distribution matters (2014) Int. J. Parasitol., 3, pp. 161-170; Han, H.J., Wen, H.L., Zhou, C.M., Chen, F.F., Luo, L.M., Liu, J.W., Yu, X.J., Bats as reservoirs of severe emerging infectious diseases (2015) Virus Res., 205, pp. 1-6; Henle, K., Davies, K.F., Kleyer, M., Margules, C., Settele, J., Predictors of species sensitivity to fragmentation (2004) Biodivers. Conserv., 13, pp. 207-251; Hutson, A.M., Suyanto, A., Kingston, T., Bates, P., Francis, C., Molur, S., Srinivasulu, C., Macroglossus sobrinus. IUCN Red List Threat. Species 2008 ET12595A3363666 (2008), https://doi.org/10.2305/IUCN.UK.2008.RLTS.T12595A3363666, Available: (Accessed 21 September 2016); IUCN, IUCN Red List of Threatened Species. Version 2.1 < www.iucnredlist.org > (2017), http://www.iucn.org/fr, Available: (Accessed 11 August 2016); Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993; Jung, K., Threlfall, C.G., Urbanisation and its effects on bats—a global meta-analysis (2016) Bats in the Anthropocene: Conservation of Bats in a Changing World, pp. 13-33. , C.C. Voigt T. Kingston Springer International Publishing; Kingston, T., Research priorities for bat conservation in Southeast Asia: a consensus approach (2010) Biodivers. Conserv., 19, pp. 471-484; Korstian, J.M., Hale, A.M., Bennett, V.J., Williams, D.A., Using DNA barcoding to improve bat carcass identification at wind farms in the United States (2016) Conserv. Genet. Resour., 8, pp. 27-34; Kunz, T.H., Fenton, M.B., Bat Ecology (2005), University of Chicago Press; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Chea, S., Buchy, P., Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia (2017) Infect. Genet. Evol., 48, pp. 10-18; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Chea, S., Buchy, P., Diversity of bat astroviruses in Lao PDR and Cambodia (2017) Infect. Genet. Evol., 48, pp. 41-50; Lipkin, W.I., Anthony, S.J., Virus hunting (2015) Virology, 479, pp. 194-199; Meyer, C.F.J., Fründ, J., Lizano, W.P., Kalko, E.K.V., Ecological correlates of vulnerability to fragmentation in Neotropical bats (2008) J. Appl. Ecol., 45, pp. 381-391; Mildenstein, T., Tanshi, I., Racey, P.A., Exploitation of bats for bushmeat and medicine (2016) Bats in the Anthropocene: Conservation of Bats in a Changing World, pp. 325-375. , C.C. Voigt T. Kingston Springer International Publishing; Morse, S.S., Public health surveillance and infectious disease detection (2012) Biosecurity Bioterrorism Biodefense Strategy Pract. Sci., 10, pp. 6-16; National Geomatics Center of China NGCC, 30 meter Global Land Cover Dataset, product description (2014), http://www.globallandcover.com/GLC30Download/index.aspx; Olson, J.G., Rupprecht, C., Rollin, P.E., An, U.S., Niezgoda, M., Clemins, T., Walston, J., Ksiazek, T.G., Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia (2002) Emerg. Infect. Dis., 8, pp. 987-988; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction. Pathog (2015) Glob. Health, 109, pp. 354-362; Osborne, J.C., Rupprecht, C.E., Olson, J.G., Ksiazek, T.G., Rollin, P.E., Niezgoda, M., Goldsmith, C.S., Nichol, S.T., Isolation of Kaeng Khoi virus from dead Chaerephon plicata bats in Cambodia (2003) J. Gen. Virol., 8, pp. 2685-2689; Reynes, J.M., Molia, S., Audry, L., Hout, S., Ngin, S., Walston, J., Bourhy, H., Serologic evidence of lyssavirus infection in bats, Cambodia (2004) Emerg. Infect. Dis., 10, pp. 2231-2234; Reynes, J.M., Counor, D., Ong, S., Faure, C., Seng, V., Molia, S., Walston, J., Sarthou, J.L., Nipah virus in Lyle's flying foxes, Cambodia (2005) Emerg. Infect. Dis., 11, pp. 1042-1047; Rosell-Ambal, G., Tabaranza, B., Heaney, L., Gonzales, J.C., Molur, S., Srinivasulu, C., Myotis horsfieldii. IUCN Red List Threat. Species 2008 ET14166A4413659 (2008), https://doi.org/10.2305/IUCN.UK.2008.RLTS.T14166A4413659, Available: (Accessed 21 September 2016); Salaün, J.J., Klein, J.M., Hebrad, G., A new virus, Phnom-Penh bat virus, isolated in Cambodia from a short-nosed fruit bat, Cynopterus brachyotis angulatus (1974) Ann. Microbiol. Inst. Pasteur., 125A, pp. 485-495; Save Cambodia's Wildlife, Atlas of Cambodia. Maps on Socio-economic Development and Environment (2014), Save Cambodia's Wildlife Phnom Penh; Sisouphanthong, B., Taillard, C., Atlas of Laos: The Spatial Structures of Economic and Social Development of the Lao People's Democratic Republic (2000), St. Martin's Press; Smith, A.C., Fahrig, L., Francis, C.M., Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds (2011) Ecography, 34, pp. 103-113; Sodhi, N.S., Koh, L.P., Brook, B.W., Ng, P.K.L., Southeast Asian biodiversity: an impending disaster (2004) Trends Ecol. Evol., 19, pp. 654-660; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: a review of current epidemiology and available vaccines (2015) Clin. Exp. Vaccine Res., 4, pp. 166-176; Stibig, H.J., Stolle, F., Dennis, R., Feldkotter, C., Forest cover change in Southeast Asia–the regional pattern (2007) JRC Scientific and Technical Reports, EUR, 22896; Walston, J., Kingston, T., Hutson, A.M., Rhinolophus affinis (2008), Red List Threat. Species 2008 ET19522A8952553. Available: e.T19522A8952553. Accessed September 21, 2016; Wang, L., Shi, Z., Zhang, S., Field, H., Daszak, P., Eaton, B.T., Review of bats and SARS (2006) Emerg. Infect. Dis., 12, pp. 18-34; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Akashi, H., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223; World Development Indicators, World Development Indicators: poverty & equity (2016), http://povertydata.worldbank.org/poverty/home/, Available: (Accessed 5 October 2016); WWF, Ecosystems in the Greater Mekong: Past Trends, Current Status, Possible Futures (2013), World Wide Fund For Nature, Greater Mekong Bangkok, Thailand","Afelt, A.; University of Warsaw, Interdisciplinary Center for Mathematical, Modelling and Computation, Tyniecka 15/17, Poland; email: akafelt@uw.edu.pl",,"Elsevier B.V.",15671348,,IGENC,"29277555","English","Infec. Genet. Evol.",Article,"Final",,Scopus,2-s2.0-85039760316 "Boyce J.M.","7201747407;","Alcohols as surface disinfectants in healthcare settings",2018,"Infection Control and Hospital Epidemiology","39","3",,"323","328",,5,"10.1017/ice.2017.301","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051321933&doi=10.1017%2fice.2017.301&partnerID=40&md5=2f5311e651742b239974b40f6e171514","JM Boyce Consulting, 62 Sonoma Ln, Middletown, CT 0645, United States","Boyce, J.M., JM Boyce Consulting, 62 Sonoma Ln, Middletown, CT 0645, United States","Isopropyl alcohol and ethyl alcohol have been used as low-level disinfectants in healthcare settings for many years. Recent studies have found that ethyl alcohol inhibits protein synthesis in Escherichia coli by direct effects on ribosomes and RNA polymerase and that 60%-70% solutions have in vitro efficacy against murine norovirus, Ebola virus, and several coronaviruses. Alcohol prep pads or towelettes containing isopropyl or ethyl alcohol and water have been used primarily for disinfection of small noncritical items due to a concern regarding their rapid evaporation rates and associated short contact times. Sterile alcohol solutions are used mostly for disinfection of compounding pharmacies and controlled areas. One new Environmental Protection Agency (EPA)-registered cleaner/disinfectant formulation differs from other alcohol-based disinfectants by virtue of having a 30-second contact time for multiple pathogens and a toxicity rating of category IV. Multiple disinfectants containing ethyl alcohol and/or isopropyl alcohol combined with other active agents such as quaternary ammonium or phenolic compounds are widely used for disinfecting environmental surfaces in healthcare facilities. © 2018 by The Society for Healthcare Epidemiology of America. All rights reserved.",,"2 propanol; alcohol; disinfectant agent; phenol derivative; quaternary ammonium derivative; alcohol derivative; disinfectant agent; disinfection; drug formulation; Escherichia coli; health care; health care facility; human; infectious agent; pharmacy; Review; safety; surface property; cross infection; disinfection; medical device contamination; procedures; Alcohols; Cross Infection; Disinfectants; Disinfection; Equipment Contamination; Health Facilities; Humans","Otter, J.A., Yezli, S., French, G.L., The role played by contaminated surfaces in the transmission of nosocomial pathogens (2011) Infect Control Hosp Epidemiol, 32, pp. 687-699; Weber, D.J., Anderson, D., Rutala, W.A., The role of the surface environment in healthcare-associated infections (2013) Curr Opin Infect Dis, 26, pp. 338-344; Donskey, C.J., Does improving surface cleaning and disinfection reduce health care-associated infections? (2013) Am J Infect Control, 41, pp. S12-S19; Dancer, S.J., Controlling hospital-acquired infection: Focus on the role of the environment and new technologies for decontamination (2014) Clin Microbiol Rev, 27, pp. 665-690; Boyce, J.M., Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals (2016) Antimicrob Resist Infect Control, 5, p. 10; Kanamori, H., Rutala, W.A., Weber, D.J., The role of patient care items as a fomite in healthcare-associated outbreaks and infection prevention (2017) Clin Infect Dis, 65, pp. 1412-1419; Rutala, W.A., Weber, D.J., Selection of the ideal disinfectant (2014) Infect Control Hosp Epidemiol, 35, pp. 855-865; Rutala, W.A., Weber, D.J., Monitoring and improving the effectiveness of surface cleaning and disinfection (2016) Am J Infect Control, 44, pp. e69-e76; Rutala, W.A., Weber, D.J., Disinfection, sterilization, antisepsis: An overview (2016) Am J Infect Control, 44, pp. e1-e6; Rutala, W.A., Weber, D.J., Use of inorganic hypochlorite (bleach) in health-care facilities (1997) Clin Microbiol Rev, 10, pp. 597-610; Gerba, C.P., Quaternary ammonium biocides: Efficacy in application (2015) Appl Environ Microbiol, 81, pp. 464-469; Ali, Y., Dolan, M.J., Fendler, E.J., Larson, E.L., Alcohols (2001) Disinfection, Sterilization and Preservation. 5th Ed, pp. 229-254. , In Block SS, editor Philadelphia: Lippincott Williams & Wilkins;; Sehulster, L., Chinn, R.Y., CDC HICPAC. Guidelines for environmental infection control in health-care facilities (2003) Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR, 52, pp. 1-42. , (RR-10); Rutala, W.A., Weber, D.J., The Healthcare Infection Control Practices Advisory Committee. Guideline for disinfection and sterilization in healthcare facilities 2008 Centers for Disease Control and Prevention Website., , https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines.pdf, Published 2008. Accessed December 6 2017; Price, P.B., Ethyl alcohol as a germicide (1939) Arch Surg, 38, pp. 528-542; Harrington, C., Walker, H., The germicidal action of alcohol (1903) Boston Med Surg J, 148, pp. 548-552; Price, P.B., Reevaluation of ethyl alcohol as a germicide (1950) Arch Surg, 60, pp. 492-502; Morton, H.E., The relationship of concentration and germicidal efficiency of ethyl alcohol (1950) Ann N y Acad Sci, 53, pp. 191-196; O'Hare, K.D., Spedding, P.L., Evaporation of a binay liquid mixture (2017) Chem Engineer J, 48, pp. 1-9; Environmental Protection Agency Website., , https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0150-0021, EPA Product performance test guidelines OCSPP 810.2200: Disinfectants for use on hard surfaces efficacy data recommen dations Published 2015. Accessed December 6 2017; Rotter, M., Arguments for the alcoholic hand disinfection (2001) J Hosp Infect, 28, pp. S4-S8; Haft, R.J., Keating, D.H., Schwaegler, T., Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria (2014) Proc Natl Acad Sci USA, 111, pp. E2576-E2585; McDonnell, G., Russell, A.D., Antiseptics and disinfectants: Activity, action, resistance (1999) Clin Microbiol Rev, 12, pp. 147-179; Nerandzic, M.M., Sunkesula, V.C., Setlow, P., Donskey, C.J., Unlocking the sporicidal potential of ethanol: Induced sporicidal activity of ethanol against Clostridium difficile and bacillus spores under altered physical and chemical conditions (2015) PLoS One, 10, p. e0132805; Doerrbecker, J., Friesland, M., Ciesek, S., Inactivation and survival of hepatitis C virus on inanimate surfaces (2011) J Infect Dis, 204, pp. 1830-1838; Kurtz, J.B., Lee, T.W., Parsons, A.J., The action of alcohols on rotavirus, astrovirus and enterovirus (1980) J Hosp Infect, 1, pp. 321-325; Rabenau, H.F., Steinmann, J., Rapp, I., Schwebke, I., Eggers, M., Evaluation of a virucidal quantitative carrier test for surface disinfectants (2014) PLoS One, 9, p. e86128; Magulski, T., Paulmann, D., Bischoff, B., Inactivation of murine norovirus by chemical biocides on stainless steel (2009) BMC Infect Dis, 9, p. 107; Zonta, W., Mauroy, A., Farnir, F., Thiry, E., Comparative virucidal efficacy of seven disinfectants against murine norovirus and feline calicivirus, surrogates of human norovirus (2016) Food Environ Virol, 8, pp. 1-12; Belliot, G., Lavaux, A., Souihel, D., Agnello, D., Pothier P.Use ofmurine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants (2008) Appl Environ Microbiol, 74, pp. 3315-3318; Cook, B.W., Cutts, T.A., Nikiforuk, A.M., The disinfection characteristics of Ebola virus outbreak variants (2016) Sci Rep, 6, p. 38293; Hulkower, R.L., Casanova, L.M., Rutala, W.A., Weber, D.J., Sobsey, M.D., Inactivation of surrogate coronaviruses on hard surfaces by health care germicides (2011) Am J Infect Control, 39, pp. 401-407; Rabenau, H.F., Cinatl, J., Morgenstern, B., Stability and inactivation of SARS coronavirus (2005) Med Microbiol Immunol, 194, pp. 1-6; Rutala, W.A., Association for Professionals in Infection Control and Epidemiology guideline for selection and use of disinfectants. 1994, 1995, 1996 APIC Guidelines Committee (1996) Am J Infect Control, 24, pp. 313-342; Environmental Protection Agency Website, , https://iaspub.epa.gov/apex/pesticides/f?p=PPLS:1, Pesticide product and label system Published 2017. Accessed September 10 2017; Dolan, S.A., Dowell, E., Littlehorn, C., Notes from the field: Contamination of alcohol prep pads with Bacillus cereus Group and Bacillus species-Colorado, 2010 (2017) MMWR, 60, p. 347; FDA Alerts Health Care Professionals and Patients Not to Use Alcohol Pads or Benzalkoniym Chloride Towelettes Manufactured by Foshan Flying Medical Products, , https://www.fda.gov/drugs/drugsafety/ucm574386.htm, Food and Drug Adminis tration website. Published 2017. Accessed November 28 2017; Marschall, J., Mermel, L.A., Fakih, M., Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update (2014) Infect Control Hosp Epidemiol, 35, pp. S89-S107; Sweet, M.A., Cumpston, A., Briggs, F., Craig, M., Hamadani, M., Impact of alcohol-impregnated port protectors and needleless neutral pressure connectors on central line-associated bloodstream infections and contamination of blood cultures in an inpatient oncology unit (2012) Am J Infect Control, 40, pp. 931-934; Wright, M.O., Tropp, J., Schora, D.M., Continuous passive disinfection of catheter hubs prevents contamination and bloodstream infection (2013) Am J Infect Control, 41, pp. 33-38; Martino, A., Thompson, L., Mitchell, C., Efforts of a unit practice council to implement practice change utilizing alcohol impregnated port protectors in a burn ICU (2017) Burns, 43, pp. 956-964; Kastango, E.S., Douglass, K., Patel, K., Safer sterile compounding: Choosing and using disinfectants for the cleanroom (2015) Int J Pharm Compd, 19, pp. 268-278; Petersen, B.T., Cohen, J., Hambrick, R.D., III, Multisociety guideline on reprocessing flexible GI endoscopes: 2016 update (2017) Gastrointest Endosc, 85, pp. 282-294; Alhmidi, H., Koganti, S., Cadnum, J.L., Evaluation of a novel alcohol-based surface disinfectant for disinfection of hard and soft surfaces in healthcare facilities (2017) Open Forum Infect Dis, 4, p. 54; Koganti, S., Alhmidi, H., Tomas, M.E., Evaluation of an ethanol-based spray disinfectant for decontamination of cover gowns prior to removal (2017) Infect Control Hosp Epidemiol, 38, pp. 364-366; Kohn, W.G., Collins, A.S., Cleveland, J.L., Guidelines for infection control in dental health-care settings 2003 (2003) MMWR Recomm Rep, 52, pp. 1-61; Slaughter, R.J., Mason, R.W., Beasley, D.M., Vale, J.A., Schep, L.J., Isopropanol poisoning (2014) Clin Toxicol (Phila), 52, pp. 470-478; Quinot, C., Dumas, O., Henneberger, P.K., Development of a job-task-exposure matrix to assess occupational exposure to disinfectants among US nurses (2017) Occup Environ Med, 74, pp. 130-137; Maier, A., Ovesen, J.L., Allen, C.L., Safety assessment for ethanolbased topical antiseptic use by health care workers: Evaluation of developmental toxicity potential (2015) Regul Toxicol Pharmacol, 73, pp. 248-264; Pires, D., Bellissimo-Rodrigues, F., Pittet, D., Ethanol-based handrubs: Safe for patients and health care workers (2016) Am J Infect Control, 44, pp. 858-859; Weber, D.J., Consoli, S.A., Rutala, W.A., Occupational health risks associated with the use of germicides in health care (2016) Am J Infect Control, 44, pp. e85-e89","Boyce, J.M.; JM Boyce Consulting, 62 Sonoma Ln, United States; email: jmboyce69@gmail.com",,"Cambridge University Press",0899823X,,ICEPE,"29374503","English","Infect. Control Hosp. Epidemiol.",Review,"Final",,Scopus,2-s2.0-85051321933 "Ohnuma K., Hatano R., Komiya E., Otsuka H., Itoh T., Iwao N., Kaneko Y., Yamada T., Dang N.H., Morimoto C.","7007131144;57214067845;15122382400;56489766000;57192676900;57188995449;57193604968;56302854900;7006444530;7102275791;","A novel role for CD26/dipeptidyl peptidase IV as a therapeutic target",2018,"Frontiers in Bioscience - Landmark","23","9",,"1754","1779",,5,"10.2741/4671","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047292269&doi=10.2741%2f4671&partnerID=40&md5=d2bbaace7a4013d7e55022a91f55bbef","Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Department of Hematology, Juntendo University Shizuoka Hospital, Nagaoka 1129, Izunokuni-city, Shizuoka, 410-2295, Japan; Y’s AC Co., Ltd., 5-3-14, Toranomon, Minato-ku, Tokyo, 105-0001, Japan; Department of Pathology, Keio University school of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pathology, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0459, Japan; Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road-Box 100278, Room MSB M410A, Gainesville, FL 32610, United States","Ohnuma, K., Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Hatano, R., Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Komiya, E., Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Otsuka, H., Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Itoh, T., Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Iwao, N., Department of Hematology, Juntendo University Shizuoka Hospital, Nagaoka 1129, Izunokuni-city, Shizuoka, 410-2295, Japan; Kaneko, Y., Y’s AC Co., Ltd., 5-3-14, Toranomon, Minato-ku, Tokyo, 105-0001, Japan; Yamada, T., Department of Pathology, Keio University school of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, Department of Pathology, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0459, Japan; Dang, N.H., Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road-Box 100278, Room MSB M410A, Gainesville, FL 32610, United States; Morimoto, C., Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan","CD26 is a 110 kDa surface glycoprotein with intrinsic dipeptidyl peptidase IV activity that is expressed on numerous cell types and has a multitude of biological functions. The role of CD26 in immune regulation has been extensively characterized, with recent findings elucidating its linkage with signaling pathways and structures involved in T-lymphocyte activation as well as antigen presenting cell-T-cell interaction. In this paper, we will review emerging data on CD26-mediated immune regulation suggesting that CD26 may be an appropriate therapeutic target for the treatment of selected immune disorders as well as Middle East respiratory syndrome coronavirus. Moreover, we have had a long-standing interest in the role of CD26 in cancer biology and its suitability as a novel therapeutic target in selected neoplasms. We reported robust in vivo data on the anti-tumor activity of anti-CD26 monoclonal antibody in mouse xenograft models. We herein review significant novel findings and the early clinical development of a CD26-targeted therapy in selected immune disorders and cancers, advances that can lead to a more hopeful future for patients with these intractable diseases. © 2018 Frontiers in Bioscience. All Rights Reserved.","Caveolin-1; CD26; DPPIV; Graft-versus-host disease; Humanized anti-CD26 monoclonal antibody; Malignant pleural mesothelioma; Review","dipeptidyl peptidase IV; monoclonal antibody; animal; drug effect; human; immunology; immunopathology; lymphocyte activation; metabolism; neoplasm; signal transduction; T lymphocyte; Animals; Antibodies, Monoclonal; Dipeptidyl Peptidase 4; Humans; Immune System Diseases; Lymphocyte Activation; Neoplasms; Signal Transduction; T-Lymphocytes","Fox, D.A., Hussey, R.E., Fitzgerald, K.A., Acuto, O., Poole, C., Palley, L., Daley, J.F., Reinherz, E.L., Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody (1984) J Immunol, 133 (3), pp. 1250-1256; Nanus, D.M., Engelstein, D., Gastl, G.A., Gluck, L., Vidal, M.J., Morrison, M., Finstad, C.L., Albino, A.P., Molecular cloning of the human kidney differentiation antigen gp160: Human aminopeptidase A (1993) Proc Natl Acad Sci U S A, 90 (15), pp. 7069-7073. , PMid:8346219 PMCid:PMC47077; Tanaka, T., Camerini, D., Seed, B., Torimoto, Y., Dang, N.H., Kameoka, J., Dahlberg, H.N., Morimoto, C., Cloning and functional expression of the T cell activation antigen CD26 (1992) J Immunol, 149 (2), pp. 481-486; De Meester, I., Korom, S., Van Damme, J., Scharpe, S., CD26, let it cut or cut it down (1999) Immunol Today, 20 (8), pp. 367-375; Fleischer, B., CD26: A surface protease involved in T-cell activation (1994) Immunol Today, 15 (4), pp. 180-184; Morimoto, C., Schlossman, S.F., The structure and function of CD26 in the T-cell immune response (1998) Immunol Rev, 161, pp. 55-70. , PMid:9553764; Von Bonin, A., Huhn, J., Fleischer, B., Dipeptidyl-peptidase IV/CD26 on T cells: Analysis of an alternative T-cell activation pathway (1998) Immunol Rev, 161, pp. 43-53. , PMid:9553763; Thompson, M.A., Ohnuma, K., Abe, M., Morimoto, C., Dang, N.H., CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders (2007) Mini Rev Med Chem, 7 (3), pp. 253-273; Ohnuma, K., Dang, N.H., Morimoto, C., Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function (2008) Trends Immunol, 29 (6), pp. 295-301. , PMid:18456553; Havre, P.A., Abe, M., Urasaki, Y., Ohnuma, K., Morimoto, C., Dang, N.H., The role of CD26/dipeptidyl peptidase IV in cancer (2008) Front Biosci, 13, pp. 1634-1645; Busek, P., Stremenova, J., Sedo, A., Dipeptidyl peptidase-IV enzymatic activity bearing molecules in human brain tumors--good or evil? (2008) Front Biosci, 13, pp. 2319-2326; Sromova, L., Busek, P., Sedova, L., Sedo, A., Intraindividual changes of dipeptidyl peptidase-IV in peripheral blood of patients with rheumatoid arthritis are associated with the disease activity (2015) BMC Musculoskelet Disord, 16, p. 244; Ohnuma, K., Takahashi, N., Yamochi, T., Hosono, O., Dang, N.H., Morimoto, C., Role of CD26/dipeptidyl peptidase IV in human T cell activation and function (2008) Front Biosci, 13, pp. 2299-2310; Blazar, B.R., Murphy, W.J., Abedi, M., Advances in Graft-Versus-Host Disease; Biology and therapy (2012) Nat Rev Immunol, 12 (6), pp. 443-458. , PMCid:PMC3552454; Deeg, H.J., Lin, D., Leisenring, W., Boeckh, M., Anasetti, C., Appelbaum, F.R., Chauncey, T.R., Storb, R., Cyclosporine or cyclosporine plus methylprednisolone for prophylaxis of graft-versus-host disease: A prospective, randomized trial (1997) Blood, 89 (10), pp. 3880-3887; Filipovich, A.H., Diagnosis and manifestations of chronic graft-versus-host disease (2008) Best Pract Res Clin Haematol, 21 (2), pp. 251-257. , 18503990; Socie, G., Ritz, J., Current issues in chronic graft-versus-host disease (2014) Blood, 124 (3), pp. 374-384. , PMCid:PMC4102710; Chien, J.W., Duncan, S., Williams, K.M., Pavletic, S.Z., Bronchiolitis obliterans syndrome after allogeneic hematopoietic stem cell transplantation-an increasingly recognized manifestation of chronic graft-versus-host disease (2010) Biol Blood Marrow Transplant, 16 (1), pp. S106-S114; Dudek, A.Z., Mahaseth, H., DeFor, T.E., Weisdorf, D.J., Bronchiolitis obliterans in chronic graft-versus-host disease: Analysis of risk factors and treatment outcomes (2003) Biol Blood Marrow Transplant, 9 (10), pp. 657-666; Nakaseko, C., Ozawa, S., Sakaida, E., Sakai, M., Kanda, Y., Oshima, K., Kurokawa, M., Okamoto, S., Incidence, risk factors and outcomes of bronchiolitis obliterans after allogeneic stem cell transplantation (2011) Int J Hematol, 93 (3), pp. 375-382; Zeiser, R., Blazar, B.R., Preclinical models of acute and chronic graft-versus-host disease: How predictive are they for a successful clinical translation? (2016) Blood, 127 (25), pp. 3117-3126; Champlin, R., Khouri, I., Giralt, S., Graft-vs.-malignancy with allogeneic blood stem cell transplantation: A potential primary treatment modality (1999) Pediatr Transplant, 3, pp. 52-58; Rudd, C.E., T-cell signaling and immunopathologies (2010) Semin Immunopathol, 32 (2), pp. 91-94. , 20238116; Markey, K.A., MacDonald, K.P., Hill, G.R., The biology of graft-versus-host disease: Experimental systems instructing clinical practice (2014) Blood, 124 (3), pp. 354-362. , PMCid:PMC4102708; Dang, N.H., Torimoto, Y., Deusch, K., Schlossman, S.F., Morimoto, C., Comitogenic effect of solid-phase immobilized anti-1F7 on human CD4 T cell activation via CD3 and CD2 pathways (1990) J Immunol, 144 (11), pp. 4092-4100; Morimoto, C., Torimoto, Y., Levinson, G., Rudd, C.E., Schrieber, M., Dang, N.H., Letvin, N.L., Schlossman, S.F., 1F7, a novel cell surface molecule, involved in helper function of CD4 cells (1989) J Immunol, 143 (11), pp. 3430-3439; Ohnuma, K., Yamochi, T., Uchiyama, M., Nishibashi, K., Yoshikawa, N., Shimizu, N., Iwata, S., Morimoto, C., CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1 (2004) Proc Natl Acad Sci U S A, 101 (39), pp. 14186-14191. , PMCid:PMC521134; Ohnuma, K., Yamochi, T., Uchiyama, M., Nishibashi, K., Iwata, S., Hosono, O., Kawasaki, H., Morimoto, C., CD26 mediates dissociation of Tollip and IRAK-1 from caveolin-1 and induces upregulation of CD86 on antigen-presenting cells (2005) Mol Cell Biol, 25 (17), pp. 7743-7757. , PMCid:PMC1190283; Ohnuma, K., Uchiyama, M., Yamochi, T., Nishibashi, K., Hosono, O., Takahashi, N., S; Tanaka, K.H., Lin, X., Dang, N.H., Morimoto, C., Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1 (2007) J Biol Chem, 282 (13), pp. 10117-10131; Ohnuma, K., Uchiyama, M., Hatano, R., Takasawa, W., Endo, Y., Dang, N.H., Morimoto, C., Blockade of CD26-mediated T cell costimulation with soluble caveolin-1Ig fusion protein induces anergy in CD4+T cells (2009) Biochem Biophys Res Commun, 386 (2), pp. 327-332. , PMid:19523449; Bengsch, B., Seigel, B., Flecken, T., Wolanski, J., Blum, H.E., Thimme, R., Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26) (2012) J Immunol, 188 (11), pp. 5438-5447; Hatano, R., Ohnuma, K., Yamamoto, J., Dang, N.H., Yamada, T., Morimoto, C., Prevention of acute graft-versus-host disease by humanized anti-CD26 monoclonal antibody (2013) Br J Haematol, 162 (2), pp. 263-277; Sato, K., Nagayama, H., Takahashi, T.A., Aberrant CD3- And CD28-mediated signaling events in cord blood T cells are associated with dysfunctional regulation of Fas ligand-mediated cytotoxicity (1999) J Immunol, 162 (8), pp. 4464-4471; Kobayashi, S., Ohnuma, K., Uchiyama, M., Iino, K., Iwata, S., Dang, N.H., Morimoto, C., Association of CD26 with CD45RA outside lipid rafts attenuates cord blood T-cell activation (2004) Blood, 103 (3), pp. 1002-1010; Shultz, L.D., Brehm, M.A., Garcia-Martinez, J.V., Greiner, D.L., Humanized mice for immune system investigation: Progress, promise and challenges (2012) Nat Rev Immunol, 12 (11), pp. 786-798. , PMCid:PMC3749872; Tezuka, K., Xun, R., Tei, M., Ueno, T., Tanaka, M., Takenouchi, N., Fujisawa, J., ; An animal model of adult T-cell leukemia: Humanized mice with HTLV-1-specific immunity (2014) Blood, 123 (3), pp. 346-355. , 24196073; Ohnuma, K., Hatano, R., Aune, T.M., Otsuka, H., Iwata, S., Dang, N.H., Yamada, T., Morimoto, C., Regulation of pulmonary graft-versus-host disease by IL-26+CD26+CD4 T lymphocytes (2015) J Immunol, 194 (8), pp. 3697-3712. , PMCid:PMC4568737; Collins, P.L., Henderson, M.A., Aune, T.M., Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element (2012) Genes Immun, 13 (6), pp. 481-488. , 22622197 PMCid:PMC4180225; Donnelly, R.P., Sheikh, F., Dickensheets, H., Savan, R., Young, H.A., Walter, M.R., Interleukin-26: An IL-10-related cytokine produced by Th17 cells (2010) Cytokine Growth Factor Rev, 21 (5), pp. 393-401. , PMid:20947410 PMCid:PMC2997847; Collins, P.L., Chang, S., Henderson, M., Soutto, M., Davis, G.M., McLoed, A.G., Townsend, M.J., Aune, T.M., Distal regions of the human IFNG locus direct cell type-specific expression (2010) J Immunol, 185 (3), pp. 1492-1501. , PMid:20574006 PMCid:PMC2923829; Engelman, J.A., Zhang, X., Galbiati, F., Volonte, D., Sotgia, F., Pestell, R.G., Minetti, C., Lisanti, M.P., Molecular genetics of the caveolin gene family: Implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy (1998) Am J Hum Genet, 63 (6), pp. 1578-1587. , PMCid:PMC1377628; Wu, C.J., Ritz, J., Revealing tumor immunity after hematopoietic stem cell transplantation (2009) Clin Cancer Res, 15 (14), pp. 4515-4517; Marguet, D., Bernard, A.M., Vivier, I., Darmoul, D., Naquet, P., Pierres, M., CDNA ; cloning for mouse thymocyte-activating molecule. A multifunctional ecto-dipeptidyl peptidase IV (CD26) included in a subgroup of serine proteases (1992) J Biol Chem, 267 (4), pp. 2200-2208. , activating molecule; Yan, S., Marguet, D., Dobers, J., Reutter, W., Fan, H., Deficiency of CD26 results in a change of cytokine and immunoglobulin secretion after stimulation by pokeweed mitogen (2003) Eur J Immunol, 33 (6), pp. 1519-1527; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; (2017) Emergencies: Middle East Resipratory Syndrome Cornavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, Projects; Mo, Y., Fisher, D., A review of treatment modalities for Middle East Respiratory Syndrome (2016) J Antimicrob Chemother, 71 (12), pp. 3340-3350; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - Drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15 (5), pp. 327-347; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6); Agnihothram, S., Gopal, R., Yount, B.L., Jr., Donaldson, E.F., Menachery, V.D., Graham, R.L., Scobey, T.D., Baric, R.S., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and ; Other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J Infect Dis, 209 (7), pp. 995-1006. , PMid:24253287 PMCid:PMC3952667; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87 (16), pp. 9379-9383. , PMCid:PMC3754068; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: Current status and novel approaches (2017) Curr Opin Virol, 23, pp. 49-58. , PMid:28412285; Jiang, S., Lu, L., Du, L., Debnath, A.K., A predicted receptor-binding and critical neutralizing domain in S protein of the novel human coronavirus HCoV-EMC (2013) J Infect, 66 (5), pp. 464-466; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Pohlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87 (10), pp. 5502-5511. , PMCid:PMC3648152; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Thiel, V., ; Drosten, C., Rottier, P.J., Osterhaus, A.D., Bosch, B.J., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6 (234), p. 234ra59; Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S.F., Morimoto, C., Direct association of adenosine deaminase with a T cell activation antigen, CD26 (1993) Science, 261 (5120), pp. 466-469; Gakis, C., Adenosine deaminase (ADA) isoenzymes ADA1 and ADA2: Diagnostic and biological role (1996) Eur Respir J, 9 (4), pp. 632-633; Weihofen, W.A., Liu, J., Reutter, W., Saenger, W., Fan, H., Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface (2004) J Biol Chem, 279 (41), pp. 43330-43335; Rasmussen, H.B., Branner, S., Wiberg, F.C., Wagtmann, N., Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog (2003) Nat Struct Biol, 10 (1), pp. 19-25; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Dang, N.H., Morimoto, C., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J Virol, 87 (24), pp. 13892-13899. , PMCid:PMC3838260; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East Respiratory Syndrome; Coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, p. 87; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368 (26), pp. 2487-2494; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Wendtner, C.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13 (9), pp. 745-751; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., M E-C s, Clinical features and viral diagnosisoftwocasesofinfectionwithMiddle East Respiratory Syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272; Dong, R.P., Tachibana, K., Hegen, M., Scharpe, S., Cho, D., Schlossman, S.F., Morimoto, C., Correlation of the epitopes defined by anti-CD26 mAbs and CD26 function (1998) Mol Immunol, 35 (1), pp. 13-21; Inamoto, T., Yamada, T., Ohnuma, K., Kina, S., Takahashi, N., Yamochi, T., Inamoto, S., Morimoto, C., Humanized anti-CD26 monoclonal antibody as a treatment for malignant mesothelioma tumors (2007) Clin Cancer Res, 13 (14), pp. 4191-4200; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with ; Human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993. , PMid:23835475 PMCid:PMC3731569; Angevin, E., Isambert, N., Trillet-Lenoir, V., You, B., Alexandre, J., Zalcman, G., Vielh, P., Morimoto, C., First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers (2017) Br J Cancer, 116 (9), pp. 1126-1134. , PMCid:PMC5418443; Szepietowski, J.C., Reich, A., Pruritus in psoriasis: An update (2016) Eur J Pain, 20 (1), pp. 41-46; Yosipovitch, G., Goon, A., Wee, J., Chan, Y.H., Goh, C.L., The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis (2000) Br J Dermatol, 143 (5), pp. 969-973. , PMid:11069504; Szepietowski, J.C., Reich, A., Wisnicka, B., Pruritus and psoriasis (2004) Br J Dermatol, 151 (6), p. 1284; Chang, S.E., Han, S.S., Jung, H.J., Choi, J.H., Neuropeptides and their receptors in psoriatic skin in relation to pruritus (2007) Br J Dermatol, 156 (6), pp. 1272-1277. , PMid:17535226; Amatya, B., Wennersten, G., Nordlind, K., Patients’ perspective of pruritus in chronic plaque psoriasis: A questionnaire-based study (2008) J Eur Acad Dermatol Venereol, 22 (7), pp. 822-826. , PMid:18422545; Stinco, G., Trevisan, G., Piccirillo, F., Pezzetta, S., Errichetti, E., Di Meo, N., Valent, F., Patrone, P., Pruritus in chronic plaque psoriasis: A questionnaire-based study of 230 Italian patients (2014) Acta Dermatovenerol Croat, 22 (2), pp. 122-128; Nakamura, M., Toyoda, M., Morohashi, M., Pruritogenic mediators in psoriasis vulgaris: Comparative evaluation of itch-associated cutaneous factors (2003) Br J Dermatol, 149 (4), pp. 718-730. , PMid:14616362; Raut, A.S., Prabhu, R.H., Patravale, V.B., Psoriasis clinical implications and treatment: A review (2013) Crit Rev Ther Drug Carrier Syst, 30 (3), pp. 183-216. , PMid:23614646; Thielitz, A., Reinhold, D., Vetter, R., Bank, U., Helmuth, M., Hartig, R., Wrenger, S., Gollnick, H., Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation (2007) J Invest Dermatol, 127 (5), pp. 1042-1051; Novelli, M., Savoia, P., Fierro, M.T., Verrone, A., Quaglino, P., Bernengo, M.G., Keratinocytes express dipeptidyl-peptidase IV (CD26) in benign and malignant skin diseases (1996) Br J Dermatol, 134 (6), pp. 1052-1056. , PMid:8763423 10.1046/j.1365-2133.1996.d01-900.x; Van Lingen, R.G., van de Kerkhof, P.C., Seyger, M.M., De Jong, E.M., Van Rens, D.W., Poll, M.K., Zeeuwen, P.L., Van Erp, P.E., CD26/dipeptidyl-peptidase IV in psoriatic skin: Upregulation and topographical changes (2008) Br J Dermatol, 158 (6), pp. 1264-1272. , PMid:18384439; Lynch, M., Tobin, A.M., Ahern, T., O’Shea, D., Kirby, B., Sitagliptin for severe psoriasis (2014) Clin Exp Dermatol, 39 (7), pp. 841-842; Nishioka, T., Shinohara, M., Tanimoto, N., Kumagai, C., Hashimoto, K., Sitagliptin, a dipeptidyl peptidase-IV inhibitor, improves psoriasis (2012) Dermatology, 224 (1), pp. 20-21; Ohnuma, K., Hosono, O., Dang, N.H., Morimoto, C., Dipeptidyl peptidase in autoimmune pathophysiology (2011) Adv Clin Chem, 53, pp. 51-84. , PMid:21404914; Diani, M., Altomare, G., Reali, E., T cell responses in psoriasis and psoriatic arthritis (2015) Autoimmun Rev, 14 (4), pp. 286-292; Baliwag, J., Barnes, D.H., Johnston, A., Cytokines in psoriasis (2015) Cytokine, 73 (2), pp. 342-350. , PMCid:PMC4437803; Schon, M.P., Boehncke, W.H., Psoriasis (2005) N Engl J Med, 352 (18), pp. 1899-1912; Komiya, E., Hatano, R., Otsuka, H., Itoh, T., Yamazaki, H., Yamada, T., Dang, N.H., Ohnuma, K., A possible role for CD26/DPPIV enzyme activity in the regulation of psoriatic pruritus (2017) J Dermatol Sci, 86 (3), pp. 212-221; Ohnuma, K., Saito, T., Hatano, R., Hosono, O., Iwata, S., Dang, N.H., Ninomiya, H., Morimoto, C., Comparison of two commercial ELISAs against an in-house ELISA for measuring soluble CD26 in human serum (2015) J Clin Lab Anal, 29 (2), pp. 106-111; Sedo, A., Malik, R., Dipeptidyl peptidase IV-like molecules: Homologous proteins or homologous activities? (2001) Biochim Biophys Acta, 1550 (2), pp. 107-116; De Felipe, C., Herrero, J.F., O’Brien, J.A., Palmer, J.A., Doyle, C.A., Smith, A.J., Laird, J.M., Hunt, S.P., Altered nociception, analgesia and aggression in mice lacking the receptor for substance P (1998) Nature, 392 (6674), pp. 394-397; Nestle, F.O., Di Meglio, P., Qin, J.Z., Nickoloff, B.J., Skin immune sentinels in health and disease (2009) Nat Rev Immunol, 9 (10), pp. 679-691; Akiyama, T., Carstens, E., Neural processing of itch (2013) Neuroscience, 250, pp. 697-714. , PMid:23891755 PMCid:PMC3772667; van der Fits, L., Mourits, S., Voerman, J.S., Kant, M., Boon, L., Laman, J.D., Cornelissen, F., Lubberts, E., Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis (2009) J Immunol, 182 (9), pp. 5836-5845. , 19380832; Sakai, K., Sanders, K.M., Youssef, M.R., Yanushefski, K.M., Jensen, L., Yosipovitch, G., Akiyama, T., Mouse model of imiquimod-induced psoriatic itch (2016) Pain, 157 (11), pp. 2536-2543. , PMCid:PMC5069152; Remrod, C., Lonne-Rahm, S., Nordlind, K., Study of substance P and its receptor neurokinin-1 in psoriasis and their relation to chronic stress and pruritus (2007) Arch Dermatol Res, 299 (2), pp. 85-91. , PMid:17370082; Amatya, B., Nordlind, K., Wahlgren, C.F., Responses to intradermal injections of substance P in psoriasis patients with pruritus (2010) Skin Pharmacol Physiol, 23 (3), pp. 133-138; Miyagaki, T., Sugaya, M., Suga, H., Morimura, S., Kamata, M., Ohmatsu, H., Fujita, H., Sato, S., Serum soluble CD26 levels: Diagnostic efficiency for atopic dermatitis, cutaneous T-cell lymphoma and psoriasis in combination with serum thymus and activation-regulated chemokine levels (2013) J Eur Acad Dermatol Venereol, 27 (1), pp. 19-24; Van Lingen, R.G., Poll, M.K., Seyger, M.M., De Jong, E.M., van de Kerkhof, P.C., ; Van Erp, P.E., Distribution of dipeptidylpeptidase IV on keratinocytes in the margin zone of a psoriatic lesion: A comparison with hyperproliferation and aberrant differentiation markers (2008) Arch Dermatol Res, 300 (10), pp. 561-567. , PMid:18496701; Drucker, D.J., Enhancing incretin action for the treatment of type 2 diabetes (2003) Diabetes Care, 26 (10), pp. 2929-2940; Barreira da Silva, R., Laird, M.E., Yatim, N., Fiette, L., Ingersoll, M.A., Albert, M.L., Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy (2015) Nat Immunol, 16 (8), pp. 850-858; Proost, P., Schutyser, E., Menten, P., Struyf, S., Wuyts, A., Opdenakker, G., Detheux, M., Van Damme, J., Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties (2001) Blood, 98 (13), pp. 3554-3561; van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., Boon, T., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma (1991) Science, 254 (5038), pp. 1643-1647; Liu, M., Guo, S., Stiles, J.K., The emerging role of CXCL10 in cancer (2011) Oncol Lett, 2 (4), pp. 583-589; Groom, J.R., Luster, A.D., CXCR3 in T cell function (2011) Exp Cell Res, 317 (5), pp. 620-631. , PMid:21376175 PMCid:PMC3065205; Koch, M.A., Tucker-Heard, G., Perdue, N.R., Killebrew, J.R., Urdahl, K.B., Campbell, D.J., The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation (2009) Nat Immunol, 10 (6), pp. 595-602. , PMCid:PMC2712126; Shi, Z., Okuno, Y., Rifa’i, M., Endharti, A.T., Akane, K., Isobe, K., Suzuki, H., Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg (2009) Eur J Immunol, 39 (8), pp. 2106-2119. , 19609979; Hatano, R., Ohnuma, K., Otsuka, H., Komiya, E., Taki, I., Iwata, S., Dang, N.H., Morimoto, C., CD26-mediated induction of EGR2 and IL-10 as potential regulatory mechanism for CD26 costimulatory pathway (2015) J Immunol, 194 (3), pp. 960-972; Okamura, T., Fujio, K., Shibuya, M., Sumitomo, S., Shoda, H., Sakaguchi, S., Yamamoto, K., CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2 (2009) Proc Natl Acad Sci U S A, 106 (33), pp. 13974-13979. , 19666526 PMCid:PMC2729005; Huard, B., Prigent, P., Pages, F., Bruniquel, D., Triebel, F., T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding (1996) Eur J Immunol, 26 (5), pp. 1180-1186; Macon-Lemaitre, L., Triebel, F., The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells (2005) Immunology, 115 (2), pp. 170-178. , PMid:15885122 PMCid:PMC1782137; Nguyen, L.T., Ohashi, P.S., Clinical blockade of PD1 and LAG3--potential mechanisms of action (2015) Nat Rev Immunol, 15 (1), pp. 45-56; Dang, N.H., Torimoto, Y., Schlossman, S.F., Morimoto, C., Human CD4 helper T cell activation: Functional involvement of two ; Distinct collagen receptors, 1F7 and VLA integrin family (1990) J Exp Med, 172 (2), pp. 649-652. , PMid:2165129; Amatya, V.J., Takeshima, Y., Kushitani, K., Yamada, T., Morimoto, C., Inai, K., Overexpression of CD26/DPPIV in mesothelioma tissue and mesothelioma cell lines (2011) Oncol Rep, 26 (6), pp. 1369-1375; Aoe, K., Amatya, V.J., Fujimoto, N., Ohnuma, K., Hosono, O., Hiraki, A., Fujii, M., Morimoto, C., CD26 overexpression is associated with prolonged survival and enhanced chemosensitivity in malignant pleural mesothelioma (2012) Clin Cancer Res, 18 (5), pp. 1447-1456; Inamoto, T., Yamochi, T., Ohnuma, K., Iwata, S., Kina, S., Inamoto, S., Tachibana, M., Morimoto, C., Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27kip1 enhancement, and disruption of binding to the extracellular matrix (2006) Clin Cancer Res, 12 (11), pp. 3470-3477; Hayashi, M., Madokoro, H., Yamada, K., Nishida, H., Morimoto, C., Sakamoto, M., Yamada, T., A humanized anti-CD26 monoclonal antibody inhibits cell growth of malignant mesothelioma via retarded G2/M cell cycle transition (2016) Cancer Cell Int, 16, p. 35; (2017) Clinical Study of YS110 in Patients With Malignant Pleural Mesothelioma, , https://www.clinicaltrials.gov/ct2/show/NCT03177668?term=YS110&cond=Mesotheliomas+Pleural&rank=1, gov; Durinx, C., Neels, H., Van der Auwera, J.C., Naelaerts, K., Scharpe, S., De Meester, I., Reference values for plasma dipeptidylpeptidase IV activity and their association with other laboratory parameters (2001) Clin Chem Lab Med, 39 (2), pp. 155-159; Drucker, D.J., Nauck, M.A., The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes (2006) Lancet, 368 (9548), pp. 1696-1705; Okamoto, T., Iwata, S., Yamazaki, H., Hatano, R., Komiya, E., Dang, N.H., Ohnuma, K., Morimoto, C., CD9 negatively regulates CD26 expression and inhibits CD26-mediated enhancement of invasive potential of malignant mesothelioma cells (2014) PLoS ONE, 9 (1), p. e86671. , PMid:24466195 PMCid:PMC3900581; Komiya, E., Ohnuma, K., Yamazaki, H., Hatano, R., Iwata, S., Okamoto, T., Dang, N.H., Morimoto, C., CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells (2014) Biochem Biophys Res Commun, 447 (4), pp. 609-615; Morra, L., Moch, H., Periostin expression and epithelial-mesenchymal transition in cancer: A review and an update (2011) Virchows Arch, 459 (5), pp. 465-475. , PMCid:PMC3205268; Yamamoto, J., Ohnuma, K., Hatano, R., Okamoto, T., Komiya, E., Yamazaki, H., Iwata, S., Morimoto, C., Regulation of somatostatin receptor 4-mediated cytostatic effects by CD26 in malignant pleural mesothelioma (2014) Br J Cancer, 110 (9), pp. 2232-2245. , PMCid:PMC4007235; Ohnuma, K., Hatano, R., Yamazaki, H., Kaneko, Y., Dang, N.H., Morimoto, C., CD26-targeted therapy: A new horizon in malignant pleural mesothelioma management (2017) Horizons in Cancer Research, , Ed S. H. Wanatabe. Nova Science Publishers, Inc., Hauppauge, NY; Yamada, K., Hayashi, M., Du, W., Ohnuma, K., Sakamoto, M., Morimoto, C., Yamada, T., Localization of CD26/DPPIV in nucleus and its nuclear translocation enhanced by anti-CD26 monoclonal antibody with anti-tumor effect (2009) Cancer Cell Int, 9, p. 17; Yamada, K., Hayashi, M., Madokoro, H., Nishida, H., Du, W., Ohnuma, K., Sakamoto, M., Yamada, T., Nuclear localization of CD26 induced by a humanized monoclonal antibody inhibits tumor cell growth by modulating of POLR2A transcription (2013) PLoS One, 8 (4). , PMid:23638030 PMCid:PMC3639274; Havre, P.A., Abe, M., Urasaki, Y., Ohnuma, K., Morimoto, C., Dang, N.H., CD26 expression on T cell lines increases SDF-1-alpha-mediated invasion (2009) Br J Cancer, 101 (6), pp. 983-991. , 19654580 PMCid:PMC2743358; Droz, D., Zachar, D., Charbit, L., Gogusev, J., Chretein, Y., Iris, L., Expression of the human nephron differentiation molecules in renal cell carcinomas (1990) Am J Pathol, 137 (4), pp. 895-905; Stange, T., Kettmann, U., Holzhausen, H.J., Immunoelectron microscopic demonstration of the membrane proteases aminopeptidase N/CD13 and dipeptidyl peptidase IV/CD26 in normal and neoplastic renal parenchymal tissues and cells (2000) Eur J Histochem, 44 (2), pp. 157-164; Bauvois, B., De Meester, I., Dumont, J., Rouillard, D., Zhao, H.X., Bosmans, E., Constitutive expression of CD26/ dipeptidylpeptidase IV on peripheral blood B lymphocytes of patients with B chronic lymphocytic leukaemia (1999) Br J Cancer, 79 (7-8), pp. 1042-1048; Dang, N.H., Aytac, U., Sato, K., O’Brien, S., Melenhorst, J., Morimoto, C., Barrett, A.J., Molldrem, J.J., T-large granular lymphocyte lymphoproliferative disorder: Expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition (2003) Br J Haematol, 121 (6), pp. 857-865. , PMid:12786796; Carbone, A., Cozzi, M., Gloghini, A., Pinto, A., CD26/dipeptidyl peptidase IV expression in human lymphomas is restricted to CD30-positive anaplastic large cell and a subset of T-cell non-Hodgkin’s lymphomas (1994) Hum Pathol, 25 (12), pp. 1360-1365; Carbone, A., Gloghini, A., Zagonel, V., Aldinucci, D., Gattei, V., Degan, M., Improta, S., Pinto, A., The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias (1995) Blood, 86 (12), pp. 4617-4626; Sato, K., Dang, N.H., CD26: A novel treatment target for T-cell lymphoid malignancies? (Review) (2003) Int J Oncol, 22 (3), pp. 481-497; Aytac, U., Claret, F.X., Ho, L., Sato, K., Ohnuma, K., Mills, G.B., Cabanillas, F., Dang, N.H., Expression of CD26 and its associated dipeptidyl peptidase IV enzyme activity enhances sensitivity to doxorubicin-induced cell cycle arrest at the G(2)/M checkpoint (2001) Cancer Res, 61 (19), pp. 7204-7210; Aytac, U., Sato, K., Yamochi, T., Yamochi, T., Ohnuma, K., Mills, G.B., Morimoto, C., Dang, N.H., Effect of CD26/dipeptidyl peptidase IV on Jurkat sensitivity to G2/M arrest induced by topoisomerase II inhibitors (2003) Br J Cancer, 88 (3), pp. 455-462. , PMid:12569391 PMCid:PMC2747550; Sato, K., Aytac, U., Yamochi, T., Yamochi, T., Ohnuma, K., McKee, K.S., Morimoto, C., Dang, N.H., CD26/dipeptidyl peptidase IV enhances expression of topoisomerase IIα and sensitivity to apoptosis induced by topoisomerase II inhibitors (2003) Br J Cancer, 89 (7), pp. 1366-1374. , PMid:14520473 PMCid:PMC2394325; Yamochi, T., Yamochi, T., Aytac, U., Sato, T., Sato, K., Ohnuma, K., McKee, K.S., Dang, N.H., Regulation of p38 phosphorylation and topoisomerase IIα expression in the B-cell lymphoma line Jiyoye by CD26/dipeptidyl peptidase IV is associated with enhanced in vitro and in vivo sensitivity to doxorubicin (2005) Cancer Res, 65 (5), pp. 1973-1983; Oravecz, T., Pall, M., Roderiquez, G., Gorrell, M.D., Ditto, M., Nguyen, N.Y., Boykins, R., Norcross, M.A., Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and ; Secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage (1997) J Exp Med, 186 (11), pp. 1865-1872. , PMCid:PMC2199148; Proost, P., Struyf, S., Schols, D., Opdenakker, G., Sozzani, S., Allavena, P., Mantovani, A., De Meester, I., Truncation of macrophage-derived chemokine by CD26/ dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction (1999) J Biol Chem, 274 (7), pp. 3988-3993; Pang, R., Law, W.L., Chu, A.C., Poon, J.T., Lam, C.S., Chow, A.K., Ng, L., Wong, B.C., A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer (2010) Cell Stem Cell, 6 (6), pp. 603-615; Jang, J.H., Baerts, L., Waumans, Y., De Meester, I., Yamada, Y., Limani, P., Gil-Bazo, I., Jungraithmayr, W., Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice (2015) Clin Exp Metastasis, 32 (7), pp. 677-687. , 26233333; Yamaguchi, U., Nakayama, R., Honda, K., Ichikawa, H., Hasegawa, T., Shitashige, M., Ono, M., Yamada, T., Distinct gene expression-defined classes of gastrointestinal stromal tumor (2008) J Clin Oncol, 26 (25), pp. 4100-4108. , PMid:18757323; Hopsu-Havu, V.K., Glenner, G.G., A new dipeptide naphthylamidase hydrolyzing g l y c y l - P r o l y l - B e t a - N a p h t h y l a m i d e (1966) Histochemie, 7 (3), pp. 197-201; Abbott, C.A., Baker, E., Sutherland, G.R., McCaughan, G.W., Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene (1994) Immunogenetics, 40 (5), pp. 331-338; Morrison, M.E., Vijayasaradhi, S., Engelstein, D., Albino, A.P., Houghton, A.N., A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase (1993) J Exp Med, 177 (4), pp. 1135-1143; Farag, S.S., Srivastava, S., Messina-Graham, S., Schwartz, J., Robertson, M.J., Abonour, R., Cornetta, K., Broxmeyer, H.E., In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies (2013) Stem Cells Dev, 22 (7), pp. 1007-1015. , PMCid:PMC3607909; Proost, P., Struyf, S., Van Damme, J., Fiten, P., Ugarte-Berzal, E., Opdenakker, G., Chemokine isoforms and processing in inflammation and immunity (2017) J Autoimmun; Ohnuma, K., Hatano, R., Itoh, T., Iwao, N., Dang, N.H., Morimoto, C., Role of IL-26+CD26+CD4 T Cells in Pulmonary Chronic Graft-Versus-Host Disease and Treatment with Caveolin-1-Ig Fc Conjugate (2016) Crit Rev Immunol, 36 (3), pp. 239-267. , PMid:28008806; Ghani, F.I., Yamazaki, H., Iwata, S., Okamoto, T., Aoe, K., Okabe, K., Mimura, Y., Morimoto, C., Identification of cancer stem cell markers in human malignant mesothelioma cells (2011) Biochem Biophys Res Commun, 404 (2), pp. 735-742; Yamazaki, H., Naito, M., Ghani, F.I., Dang, N.H., Iwata, S., Morimoto, C., Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells (2012) Biochem Biophys Res Commun, 419 (3), pp. 529-536. , PMid:22369943; Herrmann, H., Sadovnik, I., Cerny-Reiterer, S., Rulicke, T., Stefanzl, G., Willmann, M., Hoermann, G., Valent, P., Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia (2014) Blood, 123 (25), pp. 3951-3962; Davies, S., Beckenkamp, A., Buffon, A., CD26 a cancer stem cell marker and therapeutic target (2015) Biomed Pharmacother, 71, pp. 135-138; Hatano, R., Yamada, T., Matsuoka, S., Iwata, S., Yamazaki, H., Komiya, E., Okamoto, T., Morimoto, C., Establishment of monoclonal anti-human CD26 antibodies suitable for immunostaining of formalin-fixed tissue (2014) Diagn Pathol, 9, pp. 30-42. , PMCid:PMC3944398; Ohnuma, K., Hatano, R., Morimoto, C., DPP4 in anti-tumor immunity: Going beyond the enzyme (2015) Nat Immunol, 16 (8), pp. 791-792","Ohnuma, K.; Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Japan; email: kohnuma@juntendo.ac.jp",,"Frontiers in Bioscience",10939946,,,"29772527","English","Front. Biosci. Landmark",Article,"Final",,Scopus,2-s2.0-85047292269 "Shen Z., Ye G., Deng F., Wang G., Cui M., Fang L., Xiao S., Fu Z.F., Peng G.","56921067100;57141715200;57206759976;57200632379;55789783900;7402470374;7402022567;7403347700;56651662900;","Structural basis for the inhibition of host gene expression by porcine epidemic diarrhea virus nsp1",2018,"Journal of Virology","92","5", e01896-17,"","",,3,"10.1128/JVI.01896-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042032266&doi=10.1128%2fJVI.01896-17&partnerID=40&md5=841152a35e937ebac4b2bedeb0a62f5e","State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China","Shen, Z., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Ye, G., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Deng, F., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Wang, G., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Cui, M., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Fang, L., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Fu, Z.F., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; Peng, G., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China","Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the pork industry. Nonstructural protein 1 (nsp1) is a characteristic feature of alpha- and betacoronaviruses, which exhibits both functional conservation and mechanistic diversity in inhibiting host gene expression and antiviral responses. However, the detailed structure and molecular mechanisms underlying the Alphacoronavirus nsp1 inhibition of host gene expression remain unclear. Here, we report the first full-length crystal structure of Alphacoronavirus nsp1 from PEDV. The structure displays a sixstranded β;-barrel fold in the middle of two α-helices. The core structure of PEDV nsp1 shows high similarity to those of severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 and transmissible gastroenteritis virus (TGEV) nsp1, despite its low degree of sequence homology. Using ribopuromycylation and Renilla luciferase reporter assays, we showed that PEDV nsp1 can dramatically inhibit general host gene expression. Furthermore, three motifs (amino acids [aa] 67 to 71, 78 to 85, and 103 to 110) of PEDV nsp1 create a stable functional region for inhibiting protein synthesis, differing considerably from Betacoronavirus nsp1. These results elucidate the detailed structural basis through which PEDV nsp1 inhibits host gene expression, providing insight into the development of a new attenuated vaccine with nsp1 modifications. © 2018 American Society for Microbiology.","C terminus; Host gene expression inhibition; Nonstructural protein 1; Porcine epidemic diarrhea virus; Structure","nonstructural protein 1; live vaccine; Nsp1 protein, SARS coronavirus; RNA directed RNA polymerase; viral protein; alpha helix; Article; controlled study; crystal structure; gene expression; inhibition kinetics; luciferase assay; nonhuman; Porcine epidemic diarrhea virus; priority journal; protein expression; protein modification; protein secondary structure; protein synthesis; sequence homology; structural homology; structure activity relation; structure analysis; amino acid sequence; animal; cell line; chemistry; classification; Coronavirinae; Coronavirus infection; gene expression regulation; genetics; HEK293 cell line; host pathogen interaction; human; metabolism; molecular model; physiology; pig; Porcine epidemic diarrhea virus; protein folding; protein tertiary structure; SARS coronavirus; sequence alignment; swine disease; Transmissible gastroenteritis virus; virology; X ray crystallography; Amino Acid Sequence; Animals; Cell Line; Coronavirus; Coronavirus Infections; Crystallography, X-Ray; Gene Expression Regulation; HEK293 Cells; Host-Pathogen Interactions; Humans; Models, Molecular; Porcine epidemic diarrhea virus; Protein Folding; Protein Structure, Tertiary; RNA Replicase; SARS Virus; Sequence Alignment; Sequence Homology; Swine; Swine Diseases; Transmissible gastroenteritis virus; Vaccines, Attenuated; Viral Nonstructural Proteins","Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820. , https://doi.org/10.3390/v2081803; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033. , https://doi.org/10.3390/v4061011; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome coronavirus: the 'knowns' and 'unknowns.' (2013) J Formosan Med Assoc, 112, pp. 372-381. , https://doi.org/10.1016/j.jfma.2013.05.010; Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R., SARS-beginning to understand a new virus (2003) Nat Rev Microbiol, 1, pp. 209-218. , https://doi.org/10.1038/nrmicro775; Pasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury-Hyatt, C., Swekla, K., Handel, K., Alexandersen, S., Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada (2014) Transbound Emerg Dis, 61, pp. 397-410. , https://doi.org/10.1111/tbed.12269; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis, 18, pp. 161-163. , https://doi.org/10.3201/eid1801.111259; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg Infect Dis, 20, pp. 917-919. , https://doi.org/10.3201/eid2005.140195; Lee, H.J., Shieh, C.K., Gorbalenya, A.E., Koonin, E.V., La Monica, N., Tuler, J., Bagdzhadzhyan, A., Lai, M.M., The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase (1991) Virology, 180, pp. 567-582. , https://doi.org/10.1016/0042-6822(91)90071-I; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37. , https://doi.org/10.1016/j.virusres.2006.01.017; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Rota, P.A., Baker, S.C., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J Virol, 78, pp. 13600-13612. , https://doi.org/10.1128/JVI.78.24.13600-13612.2004; Prentice, E., McAuliffe, J., Lu, X., Subbarao, K., Denison, M.R., Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins (2004) J Virol, 78, pp. 9977-9986. , https://doi.org/10.1128/JVI.78.18.9977-9986.2004; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3'-5' exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci U S A, 103, pp. 5108-5113. , https://doi.org/10.1073/pnas.0508200103; Hu, T., Chen, C., Li, H., Dou, Y., Zhou, M., Lu, D., Zong, Q., Su, D., Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9 (2017) Protein Sci, 26, pp. 1037-1048. , https://doi.org/10.1002/pro.3150; Sevajol, M., Subissi, L., Decroly, E., Canard, B., Imbert, I., Insights into RNA synthesis, capping, and proofreading mechanisms of SARScoronavirus (2014) Virus Res, 194, pp. 90-99. , https://doi.org/10.1016/j.virusres.2014.10.008; Lundin, A., Dijkman, R., Bergstrom, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Trybala, E., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004166; Ahn, D.G., Choi, J.K., Taylor, D.R., Oh, J.W., Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates (2012) Arch Virol, 157, pp. 2095-2104. , https://doi.org/10.1007/s00705-012-1404-x; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260. , https://doi.org/10.1073/pnas.1618310114; Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Jin, X., Guo, D., Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis (2015) J Virol, 89, pp. 8416-8427. , https://doi.org/10.1128/JVI.00948-15; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Sexton, N.R., Smith, E.C., Denison, M.R., Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2017) J Virol, , https://doi.org/10.1128/JVI.01531-17, 18 October; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis of S-adenosyl-L-methionine-binding residues in coronavirus nsp14 N7-methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity (2016) J Virol, 90, pp. 7248-7256. , https://doi.org/10.1128/JVI.00542-16; Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins (2017) MBio, 8. , https://doi.org/10.1128/mBio.02320-16; Aouadi, W., Blanjoie, A., Vasseur, J.J., Debart, F., Canard, B., Decroly, E., Binding of the methyl donor S-adenosyl-L-methionine to Middle East respiratory syndrome coronavirus 2=-O-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10 (2017) J Virol, 91. , https://doi.org/10.1128/JVI.02217-16; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuniga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89, pp. 10970-10981. , https://doi.org/10.1128/JVI.01352-15; Yu, X., Chen, S., Hou, P., Wang, M., Chen, Y., Guo, D., VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability (2015) Biochem Biophys Res Commun, 459, pp. 270-276. , https://doi.org/10.1016/j.bbrc.2015.02.097; Narayanan, K., Ramirez, S.I., Lokugamage, K.G., Makino, S., Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression (2015) Virus Res, 202, pp. 89-100. , https://doi.org/10.1016/j.virusres.2014.11.019; Bouvet, M., Lugari, A., Posthuma, C.C., Zevenhoven, J.C., Bernard, S., Betzi, S., Imbert, I., Morelli, X., Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes (2014) J Biol Chem, 289, pp. 25783-25796. , https://doi.org/10.1074/jbc.M114.577353; Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Guo, D., Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2=-O-methylation by nsp16/nsp10 protein complex (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002294; Daczkowski, C.M., Goodwin, O., Dzimianski, J.V., Farhat, J.J., Pegan, S.D., Structurally guided removal of deISGylase biochemical activity from papain-like protease originating from the Middle East respiratory syndrome virus (2017) J Virol, , https://doi.org/10.1128/JVI.01067-17, 20 September; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3 (2017) Biol Pharm Bull, 40, pp. 345-351. , https://doi.org/10.1248/bpb.b16-00870; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J.C., Athmer, J., Meyerholz, D.K., Perlman, S., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) MBio, 7. , https://doi.org/10.1128/mBio.01721-16; Lei, J., Hilgenfeld, R., Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin (2016) Virol Sin, 31, pp. 288-299. , https://doi.org/10.1007/s12250-016-3742-4; Forni, D., Cagliani, R., Mozzi, A., Pozzoli, U., Al-Daghri, N., Clerici, M., Sironi, M., Extensive positive selection drives the evolution of nonstructural proteins in lineage C betacoronaviruses (2016) J Virol, 90, pp. 3627-3639. , https://doi.org/10.1128/JVI.02988-15; Kindler, E., Thiel, V., To sense or not to sense viral RNA-essentials of coronavirus innate immune evasion (2014) Curr Opin Microbiol, 20, pp. 69-75. , https://doi.org/10.1016/j.mib.2014.05.005; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the Middle East respiratory syndrome coronavirus (MERSCoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J Biol Chem, 289, pp. 34667-34682. , https://doi.org/10.1074/jbc.M114.609644; Menachery, V.D., Debbink, K., Baric, R.S., Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments (2014) Virus Res, 194, pp. 191-199. , https://doi.org/10.1016/j.virusres.2014.09.009; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol, 2, pp. 264-275. , https://doi.org/10.1016/j.coviro.2012.04.004; Wang, D., Fang, L.R., Shi, Y.L., Zhang, H., Gao, L., Peng, G.Q., Chen, H.C., Xiao, S.B., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2016) J Virol, 90, pp. 2090-2101. , https://doi.org/10.1128/JVI.02514-15; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Gorbalenya, A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004. , https://doi.org/10.1016/S0022-2836(03)00865-9; Connor, R.F., Roper, R.L., Unique SARS-CoV protein nsp1: bioinformatics, biochemistry and potential effects on virulence (2007) Trends Microbiol, 15, pp. 51-53. , https://doi.org/10.1016/j.tim.2006.12.005; Jansson, A.M., Structure of alphacoronavirus transmissible gastroenteritis virus nsp1 has implications for coronavirus nsp1 function and evolution (2013) J Virol, 87, pp. 2949-2955. , https://doi.org/10.1128/JVI.03163-12; Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., Makino, S., Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate (2011) J Virol, 85, pp. 638-643. , https://doi.org/10.1128/JVI.01806-10; Wang, Y., Shi, H., Rigolet, P., Wu, N., Zhu, L., Xi, X.G., Vabret, A., Wang, T., Nsp1 proteins of group I and SARS coronaviruses share structural and functional similarities (2010) Infect Genet Evol, 10, pp. 919-924. , https://doi.org/10.1016/j.meegid.2010.05.014; Zhang, Q., Ma, J., Yoo, D., Inhibition of NF-kappaB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion (2017) Virology, 510, pp. 111-126. , https://doi.org/10.1016/j.virol.2017.07.009; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268. , https://doi.org/10.1016/j.virol.2015.12.010; Almeida, M.S., Johnson, M.A., Wuthrich, K., NMR assignment of the SARS-CoV protein nsp1 (2006) J Biomol NMR, 36, p. 46. , https://doi.org/10.1007/s10858-006-9018-9; Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K.G., Makino, S., A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein (2009) Nat Struct Mol Biol, 16, pp. 1134-1140. , https://doi.org/10.1038/nsmb.1680; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.T., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J Virol, 82, pp. 4471-4479. , https://doi.org/10.1128/JVI.02472-07; Zheng, L., Zhang, C., Shi, C., Yang, Z., Wang, Y., Zhou, T., Sun, F., Li, Y., Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006662; Lee, N., Yario, T.A., Gao, J.S., Steitz, J.A., EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression (2016) Proc Natl Acad Sci U S A, 113, pp. 3221-3226. , https://doi.org/10.1073/pnas.1601773113; Rawat, S., Bouchard, M.J., The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival (2015) J Virol, 89, pp. 999-1012. , https://doi.org/10.1128/JVI.02440-14; Adams, S., Xing, Z., Li, J., Mendoza, K., Perez, D., Reed, K., Cardona, C., The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells (2013) Mol Immunol, 56, pp. 358-368. , https://doi.org/10.1016/j.molimm.2013.05.236; Jauregui, A.R., Savalia, D., Lowry, V.K., Farrell, C.M., Wathelet, M.G., Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0062416; Peng, G.Q., Xu, L.Q., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J Biol Chem, 287, pp. 41931-41938. , https://doi.org/10.1074/jbc.M112.418210; Zust, R., Cervantes-Barragan, L., Kuri, T., Blakqori, G., Weber, F., Ludewig, B., Thiel, V., Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines (2007) PLoS Pathog, 3. , https://doi.org/10.1371/journal.ppat.0030109; Wathelet, M.G., Orr, M., Frieman, M.B., Baric, R.S., Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain (2007) J Virol, 81, pp. 11620-11633. , https://doi.org/10.1128/JVI.00702-07; Shi, Y., Li, Y., Lei, Y., Ye, G., Shen, Z., Sun, L., Luo, R., Peng, G., A dimerization-dependent mechanism drives the endoribonuclease function of porcine reproductive and respiratory syndrome virus nsp11 (2016) J Virol, 90, pp. 4579-4592. , https://doi.org/10.1128/JVI.03065-15; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326; Ogden, K.M., Hu, L., Jha, B.K., Sankaran, B., Weiss, S.R., Silverman, R.H., Patton, J.T., Prasad, B.V., Structural basis for 2=-5=-oligoadenylate binding and enzyme activity of a viral RNase L antagonist (2015) J Virol, 89, pp. 6633-6645. , https://doi.org/10.1128/JVI.00701-15; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674. , https://doi.org/10.1107/S0021889807021206; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., PHENIX: building new software for automated crystallographic structure determination (2002) Acta Crystallogr Sect D Biol Crystallogr, 58, pp. 1948-1954. , https://doi.org/10.1107/S0907444902016657; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr Sect D Biol Crystallogr, 60, pp. 2126-2132. , https://doi.org/10.1107/S0907444904019158; Grell, L., Parkin, C., Slatest, L., Craig, P.A., EZ-Viz, a tool for simplifying molecular viewing in PyMOL (2006) Biochem Mol Biol Educ, 34, pp. 402-407. , https://doi.org/10.1002/bmb.2006.494034062672; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739. , https://doi.org/10.1093/molbev/msr121; Schmidt, E.K., Clavarino, G., Ceppi, M., Pierre, P., SUnSET, a nonradioactive method to monitor protein synthesis (2009) Nat Methods, 6, pp. 275-277. , https://doi.org/10.1038/nmeth.1314","Peng, G.; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityChina; email: penggq@mail.hzau.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"29237834","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85042032266 "Almutairi A.F., Adlan A.A., Balkhy H.H., Abbas O.A., Clark A.M.","55350686300;55157515300;6701797249;57200970742;7404479752;","“It feels like I'm the dirtiest person in the world.”: Exploring the experiences of healthcare providers who survived MERS-CoV in Saudi Arabia",2018,"Journal of Infection and Public Health","11","2",,"187","191",,7,"10.1016/j.jiph.2017.06.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021451394&doi=10.1016%2fj.jiph.2017.06.011&partnerID=40&md5=9729877ddfef5a241f24fcce6310a41d","King Abdullah International Medical Research Center, Saudi Arabia; King Saud Bin Abdulaziz University of Health Sciences, Saudi Arabia; Infection Prevention & Control Department at Ministry of National Guard Health Affairs, Saudi Arabia; Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada","Almutairi, A.F., King Abdullah International Medical Research Center, Saudi Arabia, King Saud Bin Abdulaziz University of Health Sciences, Saudi Arabia; Adlan, A.A., King Abdullah International Medical Research Center, Saudi Arabia, King Saud Bin Abdulaziz University of Health Sciences, Saudi Arabia; Balkhy, H.H., King Abdullah International Medical Research Center, Saudi Arabia, King Saud Bin Abdulaziz University of Health Sciences, Saudi Arabia, Infection Prevention & Control Department at Ministry of National Guard Health Affairs, Saudi Arabia; Abbas, O.A., King Abdullah International Medical Research Center, Saudi Arabia; Clark, A.M., Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada","In summer 2015, a Saudi 1000-bed tertiary care hospital experienced a serious outbreak among patients of Middle Eastern Respiratory Syndrome (MERS); during which, some healthcare providers contracted the virus, but none died. The outbreak provoked not only fear and stress; but also professional, emotional, ethical, and social conflicts and tension among healthcare providers and patients alike. Therefore, this study aims to explore what healthcare providers, who survived coronavirus infection, have experienced as a MERS patient and how the infection affected their relationship with their colleagues. Semi-structured, face-to-face interviews were conducted individually with seven survivors (healthcare providers). Each interview lasted up to 90 min, and the data were analyzed using the thematic analysis technique. Within the participants’ rich and illuminating experiences, four themes were identified: caring for others in the defining moments, perceived prejudice behaviours and stigmatization, lived moments of traumatic fear and despair, and denial and underestimation of the seriousness of the disease at the individual and organizational levels. Survivors still suffered as a result of their traumatic experiences, which might negatively influence their performance. As these survivors are vulnerable, it is their organization's responsibility to provide a system that embraces HCPs during and after disastrous events. © 2017 The Authors","Coronavirus; Infection; MERS; Outbreak; Qualitative research; Saudi Arabia; Survivor","adult; aged; anxiety; Article; denial; epidemic; fear; female; health care personnel; hopelessness; human; male; medical care; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; neglect; personal experience; prejudice; priority journal; Saudi Arabia; semi structured interview; social attitude; social stigma; survivor; thematic analysis; Coronavirus infection; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; psychology; statistics and numerical data; tertiary care center; virology; Adult; Aged; Coronavirus Infections; Disease Outbreaks; Fear; Female; Health Personnel; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Saudi Arabia; Tertiary Care Centers","Zaki, A.M., Boheemen, S., Bestebroer, T.M., Osterhaus, A., Fouchier, R., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2014) N Eng J Med, 367 (19); WHO, http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf?ua=1, Middle East respiratory syndrome coronavirus (MERS-CoV) summary and literatureupdate. Available from: 2014; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37 (10), p. 1147; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndromecoronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir Res, 101, pp. 45-56; Wit, E.D., Munster, V.J., MERS-CoV: the intermediate host identified? (2013) Lancet Infect Dis, 13 (10), pp. 827-828; World Health Organization, (2015), http://www.who.int/csr/disease/coronavirus_infections/faq/en/, Frequently Asked Questions on Middle East respiratory syndrome coronavirus (MERS-CoV). Available from:; Health, S.M., (2016), http://www.moh.gov.sa/en/CCC/PressReleases/Pages/default.aspx, o.;; World Health Organization, (2015), http://www.who.int/emergencies/mers-cov/mers-cov-republic-of-korea-and-china-risk-assessment-19-june-2015.pdf, Middle East respiratory syndrome coronavirus (MERS-CoV): Summary and Risk Assessment of Current Situation in the Republic of Korea and China—as of 19 June 2015. Available from:; Siu, J.Y., The SARS-associated stigma of SARS victims in the post-SARS era of Hong Kong (2008) Qual Health Res, 18 (6), pp. 729-738; Cava, M.A., Fay, K.E., Beanlands, H.J., McCay, E.A., Wignall, R., The experience of quarantine for individuals affected by SARS in Toronto (2005) Public Health Nurs, 22 (5), pp. 398-406; Straus, S.E., Wilson, K., Rambaldini, G., Rath, D., Lin, Y., Gold, W.L., Severe acute respiratory syndrome and its impact on professionalism: qualitative study of physicians’ behaviour during an emerging healthcare crisis (2004) Br Med J, 329 (7457), p. 83; Alston, M., Bowles, W., Research for social workers: an introduction to methods (2003), 2nd edition Routledge Press London and New York; Creswell, J., Research design: qualitative, quantitative, and mixed methods approaches (2012), 3rd edition Sage Thousand Oaks, CA; Merriam, S.B., Qualitative research: a guide to design and implementation (2009), John Wiley and Sons San Francisco, CA; Lyons, E., Coyle, A., Analysing qualitative data in psychology (2016), SAGE London; Malterud, K., Qualitative research: standards, challenges, and guidelines (2001) Lancet, 358 (9280), pp. 483-488; Feigin, S., Owens, G., Goodyear-Smith, F., Theories of human altruism: a systematic review (2014) Ann Neurosci Psychol, 1.1, pp. 1-9; Oliner, P., Embracing the other: philosophical, psychological, and historical perspectives on altruism (1995), NYU press; Zickmund, S., Ho, E.Y., Masuda, M., Ippolito, L., LaBrecque, D.R., They treated me like a leper stigmatization and the quality of life of patients with hepatitis C (2003) J Gen Intern Med, 18, pp. 835-844; Zacks, S., Beavers, K., Theodore, D., Dougherty, K., Batey, B., Shumaker, J., Social stigmatization and hepatitis C virus infection (2006) J Clin Gastroenterol, 40 (3), pp. 220-224; Davtyan, M., Brown, B., Folayan, M.O., Addressing ebola-related stigma: lessons learned from HIV/AIDS (2014) Global Health Action, 7, pp. 1-4; Qureshi, A.I., Chughtai, M., Loua, T.O., Kolie, J.P., Camara, H.F.S., Ishfaq, M.F., Study of ebola virus disease survivors in Guinea (2014) Clin Infect Dis, 61; Pharo, H., Gross, J., Richardson, R., Hayne, H., Age-related changes in the effect of ostracism (2011) Psychol Press, 6 (1), pp. 22-38; Williams, K.D., Ostracism (2007) Annu Rev Psychol, 58, pp. 425-452; Buckley, K.E., Winkel, R.E., Leary, M.R., Reactions to acceptance and rejection: effects of level and sequence of relational evaluation (2007) J Exp Soc Psychol, 40 (1), pp. 14-28; Eisenberger, N.I., Lieberman, M.D., Why rejection hurts: a common neural alarm system for physical and social pain (2004) Trends Cogn Sci, 8 (7); Twenge, J.M., Baumeister, R.F., Tice, D.M., Stucke, T.S., If you can't join them, beat them: effects of social exclusion on aggressive behavior (2001) J Pers Soc Psychol, 81 (6), pp. 1058-1069; Baumeister, R., DeWall, C., Ciarocco, N., Twenge, J., Social exclusion impairs self-regulation (2005) J Pers Soc Psychol, 88 (4), pp. 589-604; Quinn, D., (2006) Conceable versus conspicuous stigmatized identities, , Lawrence Erlbaum Associates, Publishers London; Wiener, R.L., Willborn, S.L., Disability and aging discrimination: perspectives in law and psycholog (2011), Springer New York; Al-Dorzi, H.M., Aldawood, A.S., Khan, R., Baharoon, S., Alchin, J.D., Matroud, A.A., The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study (2016) Ann Intensive Care, 6, p. 101","Almutairi, A.F.; Dr. Adel F. Almutairi. King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University of Health Sciences, Ministry of National Guard—Health AffairsSaudi Arabia; email: almutairiad1@ngha.med.sa",,"Elsevier Ltd",18760341,,,"28676285","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85021451394 "Headley S.A., Okano W., Balbo L.C., Marcasso R.A., Oliveira T.E., Alfieri A.F., Negri Filho L.C., Michelazzo M.Z., Rodrigues S.C., Baptista A.L., Saut J.P.E., Alfieri A.A.","6701310492;6507927806;57193791395;23969471200;57189712610;24450006600;57188737465;57195935340;57200577086;57193797939;13002624800;56216806200;","Molecular survey of infectious agents associated with bovine respiratory disease in a beef cattle feedlot in southern Brazil",2018,"Journal of Veterinary Diagnostic Investigation","30","2",,"249","251",,6,"10.1177/1040638717739945","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041739020&doi=10.1177%2f1040638717739945&partnerID=40&md5=3054a006116e1a779f0ac5fb38b12322","Laboratories of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Molecular Biology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil; Large Animal Health Laboratory, Faculty of Veterinary Medicine, Universidade Federal de Uberlândia, Minas Gerais, Brazil","Headley, S.A., Laboratories of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Okano, W., Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil; Balbo, L.C., Molecular Biology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Marcasso, R.A., Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil; Oliveira, T.E., Laboratories of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Alfieri, A.F., Molecular Biology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Negri Filho, L.C., Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil; Michelazzo, M.Z., Laboratories of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil; Rodrigues, S.C., Faculty of Veterinary Medicine, Universidade Norte do Paraná, Arapongas, Paraná, Brazil; Baptista, A.L., Large Animal Health Laboratory, Faculty of Veterinary Medicine, Universidade Federal de Uberlândia, Minas Gerais, Brazil; Saut, J.P.E., Large Animal Health Laboratory, Faculty of Veterinary Medicine, Universidade Federal de Uberlândia, Minas Gerais, Brazil; Alfieri, A.A., Molecular Biology, Department of Veterinary Preventive Medicine, Universidade Estadual de LondrinaParaná, Brazil","We investigated the occurrence of infectious pathogens during an outbreak of bovine respiratory disease (BRD) in a beef cattle feedlot in southern Brazil that has a high risk of developing BRD. Nasopharyngeal swabs were randomly collected from steers (n = 23) and assessed for the presence of infectious agents of BRD by PCR and/or RT-PCR assays. These included: Histophilus somni, Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCoV), bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoHV-1), and bovine parainfluenza virus 3 (BPIV-3). Pulmonary sections of one steer that died with clinical BRD were submitted for pathology and molecular testing. The frequencies of the pathogens identified from the nasopharyngeal swabs were: H. somni 39% (9 of 23), BRSV 35% (8 of 23), BCoV 22% (5 of 23), and M. haemolytica 13% (3 of 23). PCR or RT-PCR assays did not identify P. multocida, M. bovis, BoHV-1, BVDV, or BPIV-3 from the nasopharyngeal swabs. Single and concomitant associations of infectious agents of BRD were identified. Fibrinous bronchopneumonia was diagnosed in one steer that died; samples were positive for H. somni and M. haemolytica by PCR. H. somni, BRSV, and BCoV are important disease pathogens of BRD in feedlot cattle in Brazil, but H. somni and BCoV are probably under-reported. © 2017, © 2017 The Author(s).","Bovine coronavirus; bovine respiratory syncytial virus; Brazil; Histophilus somni; molecular testing","Article; beef cattle; Bovine coronavirus; Bovine parainfluenza virus 3; Bovine respiratory syncytial virus; Bovine viral diarrhea virus 1; Brazil; bronchopneumonia; bullock; cattle disease; dyspnea; Histophilus somni; infectious agent; interstitial pneumonia; Mannheimia haemolytica; Mycoplasma bovis; nonhuman; nose smear; Pasteurella multocida; polymerase chain reaction; respiratory distress syndrome; reverse transcription polymerase chain reaction; animal; bacterial shedding; bovine; Bovine herpesvirus 1; cattle disease; enzyme linked immunosorbent assay; epidemic; isolation and purification; male; microbiology; nose; red meat; respiratory tract disease; veterinary; virus shedding; Animals; Bacterial Shedding; Brazil; Cattle; Cattle Diseases; Disease Outbreaks; Enzyme-Linked Immunosorbent Assay; Herpesvirus 1, Bovine; Male; Mannheimia haemolytica; Nose; Parainfluenza Virus 3, Bovine; Red Meat; Respiratory Syncytial Virus, Bovine; Respiratory Tract Diseases; Virus Shedding","Baptista, A.L., Bovine respiratory disease complex associated mortality and morbidity rates in feedlot cattle from southeastern Brazil (2017) J Infect Dev Ctries, , Accepted; Beuttemmuller, E., Brazilian strain of bovine respiratory coronavirus is derived from dual enteric and respiratory tropism (2017) Genet Mol Res, 16; Brasil, N.D.A., Doenças respiratórias em bezerros na região sul do Rio Grande do Sul: estudo retrospectivo de 33 surtos [Respiratory diseases in calves in southern Rio Grande do Sul: study of 33 outbreaks] (2013) Pesq Vet Bras, 33, pp. 745-751. , Portuguese; Cusack, P.M., The medicine and epidemiology of bovine respiratory disease in feedlots (2003) Aust Vet J, 81, pp. 480-487; Driemeier, D., Manifestação clínico-patológica de infecção natural pelo Vírus Respiratório Sincicial Bovino (BRSV) em bovinos de criação extensiva no Rio Grande do Sul, Brasil [Clinic-pathological aspects in the natural infection of bovine respiratory syncytial virus (BRSV) in extensive management of cattle in Rio Grande do Sul, Brazil] (1997) Pesq Vet Bras, 17, pp. 77-81. , Portuguese; Flores, E.F., A retrospective search for bovine respiratory syncytial virus (BRSV) antigens in histological specimens by immunofluorescence and immunohistochemistry (2000) Pesq Vet Bras, 20, pp. 139-143; Fulton, R.W., Bovine coronavirus (BCV) infections in transported commingled beef cattle and sole-source ranch calves (2011) Can J Vet Res, 75, pp. 191-199; Gagea, M.I., Diseases and pathogens associated with mortality in Ontario beef feedlots (2006) J Vet Diagn Invest, 18, pp. 18-28; Griffin, D., Bacterial pathogens of the bovine respiratory disease complex (2010) Vet Clin North Am Food Anim Pract, 26, pp. 381-394; Headley, S.A., Histophilus somni is a potential threat to beef cattle feedlots in Brazil (2014) Vet Rec, 175, p. 249; Headley, S.A., Bovine respiratory disease associated with Histophilus somni and bovine respiratory syncytial virus in a beef cattle feedlot from Southeastern Brazil (2017) Semin Cienc Agrar, 38, pp. 283-294; O’Neill, R., Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: a retrospective study (2014) Vet Rec, 175, p. 351; Snowder, G.D., Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors (2006) J Anim Sci, 84, pp. 1999-2008; Taylor, J.D., The epidemiology of bovine respiratory disease: what is the evidence for predisposing factors? (2010) Can Vet J, 51, pp. 1095-1102","Headley, S.A.; Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, PO Box 10.011, Brazil; email: selwyn.headley@uel.br",,"SAGE Publications Inc.",10406387,,,"29105570","English","J. Vet. Diagn. Invest.",Article,"Final",Open Access,Scopus,2-s2.0-85041739020 "Rasmussen T.B., Boniotti M.B., Papetti A., Grasland B., Frossard J.-P., Dastjerdi A., Hulst M., Hanke D., Pohlmann A., Blome S., Van Der Poel W.H.M., Steinbach F., Blanchard Y., Lavazza A., Bøtner A., Belsham G.J.","35307937000;35581822800;56590403300;24766300500;23979773700;6507776671;6603742346;55831525300;7003618776;8724568800;7004316448;7004533159;8100019000;35339480400;7004532046;7005351600;","Full-length genome sequences of porcine epidemic diarrhoea virus strain CV777; use of NGS to analyse genomic and sub-genomic RNAs",2018,"PLoS ONE","13","3", e0193682,"","",,3,"10.1371/journal.pone.0193682","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042759625&doi=10.1371%2fjournal.pone.0193682&partnerID=40&md5=b53378fcd24acdb61aafb7220009b6e9","DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark; IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy; ANSES, Laboratory of Ploufragan-Plouzané, BP 53, Ploufragan, France; Université Bretagne Loire, Rennes, France; Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom; Wageningen BioVeterinary Research, Department of Virology, Lelystad, Netherlands; Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany","Rasmussen, T.B., DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark; Boniotti, M.B., IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy; Papetti, A., IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy; Grasland, B., ANSES, Laboratory of Ploufragan-Plouzané, BP 53, Ploufragan, France, Université Bretagne Loire, Rennes, France; Frossard, J.-P., Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom; Dastjerdi, A., Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom; Hulst, M., Wageningen BioVeterinary Research, Department of Virology, Lelystad, Netherlands; Hanke, D., Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany; Pohlmann, A., Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany; Blome, S., Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany; Van Der Poel, W.H.M., Wageningen BioVeterinary Research, Department of Virology, Lelystad, Netherlands; Steinbach, F., Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom; Blanchard, Y., ANSES, Laboratory of Ploufragan-Plouzané, BP 53, Ploufragan, France, Université Bretagne Loire, Rennes, France; Lavazza, A., IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy; Bøtner, A., DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark; Belsham, G.J., DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark","Porcine epidemic diarrhoea virus, strain CV777, was initially characterized in 1978 as the causative agent of a disease first identified in the UK in 1971. This coronavirus has been widely distributed among laboratories and has been passaged both within pigs and in cell culture. To determine the variability between different stocks of the PEDV strain CV777, sequencing of the full-length genome (ca. 28kb) has been performed in 6 different laboratories, using different protocols. Not surprisingly, each of the different full genome sequences were distinct from each other and from the reference sequence (Accession number AF353511) but they are >99% identical. Unique and shared differences between sequences were identified. The coding region for the surface-exposed spike protein showed the highest proportion of variability including both point mutations and small deletions. The predicted expression of the ORF3 gene product was more dramatically affected in three different variants of this virus through either loss of the initiation codon or gain of a premature termination codon. The genome of one isolate had a substantially rearranged 5´-terminal sequence. This rearrangement was validated through the analysis of sub-genomic mRNAs from infected cells. It is clearly important to know the features of the specific sample of CV777 being used for experimental studies. © 2018 Rasmussen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"messenger RNA; virus RNA; virus spike protein; virus RNA; 3' untranslated region; 5' untranslated region; amino acid sequence; animal cell; Article; codon; controlled study; gene deletion; gene identification; gene mapping; gene mutation; gene rearrangement; gene sequence; genetic analysis; genetic heterogeneity; genetic variability; next generation sequencing; nonhuman; Porcine epidemic diarrhea virus; Porcine epidemic diarrhea virus strain CV777; RNA sequence; RNA structure; Vero cell line; virus strain; animal; chemistry; Coronavirus infection; genetics; high throughput sequencing; isolation and purification; molecular evolution; nucleotide sequence; open reading frame; phylogeny; pig; point mutation; Porcine epidemic diarrhea virus; procedures; sequence analysis; swine disease; virology; virus genome; Animals; Base Sequence; Coronavirus Infections; Evolution, Molecular; Genome, Viral; High-Throughput Nucleotide Sequencing; Open Reading Frames; Phylogeny; Point Mutation; Porcine epidemic diarrhea virus; RNA, Viral; Sequence Analysis, RNA; Sequence Deletion; Swine; Swine Diseases","Pensaert, M.B., De Bouck, P., A new coronavirus-like particle associated with diarrhea in swine. 1978 Archiv. Virology, 58, pp. 243-247; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144. , PMID: 11724265; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017, PMID: 25841898; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol. J., 12, p. 193. , https://doi.org/10.1186/s12985-015-0421-2, PMID: 26689811; Choudhury, B., Dastjerdi, A., Doyle, N., Frossard, J.P., Steinbach, F., From the field to the lab—An European view on the global spread of PEDV (2016) Virus Res, 226, pp. 40-49. , https://doi.org/10.1016/j.virusres.2016.09.003, PMID: 27637348; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg. Infect. Dis., 18, pp. 161-163. , https://doi.org/10.3201/eid1801.111259, PMID 22261231; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) J. Clin. Microbiol., 52, pp. 234-243. , https://doi.org/10.1128/JCM.02820-13, PMID: 24197882; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00737-e00813. , https://doi.org/10.1128/mBio.00737-13, PMID: 24129257; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg. Infect. Dis., 20, pp. 917-919. , https://doi.org/10.3201/eid2005.140195, PMID: 24750580; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014 (2014) Emerg Infect. Dis., 20, pp. 1620-1628. , https://doi.org/10.3201/eid2010.140491, PMID: 25279722; Hanke, D., Jenckel, M., Petrov, A., Ritzmann, M., Stadler, J., Akimkin, V., Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014 (2015) Emerg. Infect. Dis., 21, pp. 493-496. , https://doi.org/10.3201/eid2103.141165, PMID: 25695311; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg. Infect. Dis., 22, pp. 83-87. , https://doi.org/10.3201/eid2201.150544, PMID: 26689738; Grasland, B., Bigault, L., Bernard, C., Quenault, H., Toulouse, O., Fablet, C., Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in France in December 2014 (2015) Genome Announc, 3. , https://doi.org/10.1128/genomeA.00535-15, pii: e00535–15. PMID: 26044419; Mesquita, J.R., Hakze-Van Der Honing, R., Almeida, A., Lourenço, M., Van Der Poel, W.H., Nascimento, M.S., Outbreak of porcine epidemic diarrhea virus in Portugal, 2015 (2015) Transbound. Emerg. Dis., 62, pp. 586-588. , https://doi.org/10.1111/tbed.12409, PMID: 26344708; Steinrigl, A., Fernández, S.R., Stoiber, F., Pikalo, J., Sattler, T., Schmoll, F., First detection, clinical presentation and phylogenetic characterization of porcine epidemic diarrhea virus in Austria (2015) BMC Vet Res, 11, p. 310. , https://doi.org/10.1186/s12917-015-0624-1, PMID: 26714453; Toplak, I., Ipavec, M., Kuhar, U., Kušar, D., Papić, B., Koren, S., Complete genome sequence of the porcine epidemic diarrhea virus strain SLO/JH-11/2015 (2016) Genome Announc, 4, p. e01725. , https://doi.org/10.1128/genomeA.01725-15, pii: –15. PMID: 27056240; Dastjerdi, A., Carr, J., Ellis, R.J., Steinbach, F., Williamson, S., Porcine epidemic diarrhea virus among farmed pigs, Ukraine (2015) Emerg. Infect. Dis., 21, pp. 2235-2237. , https://doi.org/10.3201/eid2112.150272, PMID 26584081; Lin, C.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Vet Res, 46, p. 134. , https://doi.org/10.1186/s13567-015-0278-9, PMID: 26589292; Scientific opinion on porcine epidemic diarrhoea and emerging pig deltacoronavirus (2014) EFSA J, 12, p. 3877; Bridgen, A., Duarte, M., Tobler, K., Laude, H., Ackermann, M., Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus (1993) J. Gen. Virol., 74, pp. 1795-1804. , https://doi.org/10.1099/0022-1317-74-9-1795, PMID: 8397280; Chen, S.C., Olsthoorn, R.C., Group-specific structural features of the 5’-proximal sequences of coronavirus genomic RNAs (2010) Virology, 401, pp. 29-41. , https://doi.org/10.1016/j.virol.2010.02.007, PMID: 20202661; Masuda, T., Murakami, S., Takahashi, O., Miyazaki, A., Ohashi, S., Yamasato, H., New porcine epidemic diarrhoea virus variant with a large deletion in the spike gene identified in domestic pigs (2015) Arch Virol, 160, pp. 2565-2568. , https://doi.org/10.1007/s00705-015-2522-z, PMID: 26162305; Song, D., Huang, D., Peng, Q., Huang, T., Chen, Y., Zhang, T., Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in jiangxi, China 2013 (2015) PLoS One, 10, p. e0120310. , https://doi.org/10.1371/journal.pone.20310, PMID: 25790462; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., RNA structure analysis of alphacoronavirus terminal genome regions (2014) Virus Res, 194, pp. 76-89. , https://doi.org/10.1016/j.virusres.2014.10.001, PMID: 25307890; Pelletier, J., Sonenberg, N., Insertion mutagenesis to increase secondary structure within the 5’ noncoding region of a eukaryotic mRNA reduces translational efficiency (1985) Cell, 40, pp. 515-526. , PMID: 2982496; Svitkin, Y.V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G.J., The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5’ secondary structure (2001) RNA, 7, pp. 382-394. , PMID: 11333019; Irigoyen, N., Firth, A.E., Jones, J.D., Chung, B.Y., Siddell, S.G., Brierley, I., High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling (2016) PLoS Pathog, 12, p. e1005473. , https://doi.org/10.1371/journal.ppat.1005473, PMID: 26919232; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr. Top. Microbiol. Immu-Nol., 287, pp. 1-30. , PMID: 15609507; Have, P., Moving, V., Svansson, V., Uttenthal, A., Bloch, B., Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus (1992) Vet. Microbiol., 31, pp. 1-10. , PMID: 1319622; Lohse, L., Krog, J.S., Strandbygaard, B., Rasmussen, T.B., Kjær, J., Belsham, G.J., Experimental infection of young pigs with an early European strain of porcine epidemic diarrhoea virus and a recent US strain (2017) Transbound. Emerg. Dis., 64, pp. 1380-1386. , https://doi.org/10.1111/tbed.12509, PMID: 27161288; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: A flexible trimmer for illumina sequence data (2014) Bio-Informatics, 30, pp. 2114-2120. , https://doi.org/10.1093/bioinformatics/btu170, PMID: 24695404; Chevreux, B., Wetter, T., Suhai, S., Genome sequence assembly using trace signals and additional sequence information (1999) German Conference on Bioinformatics, 99, pp. 45-56; Chikhi, R., Medvedev, P., Informed and automated k-mer size selection for genome assembly (2014) Bioinformatics, 30, pp. 31-37. , https://doi.org/10.1093/bioinformatics/btt310, PMID: 23732276; Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing (2012) J. Comput. Biol., 19, pp. 455-477. , https://doi.org/10.1089/cmb.2012.0021, PMID: 22506599; Rissman, A.I., Mau, B., Biehl, B.S., Darling, A.E., Glasner, J.D., Perna, N.T., Reordering contigs of draft genomes using the mauve aligner (2009) Bioinformatics, 25, pp. 2071-2073. , https://doi.org/10.1093/bioinformatics/btp356, PMID: 19515959; Milne, I., Stephen, G., Bayer, M., Cock, P.J., Pritchard, L., Cardle, L., Using tablet for visual exploration of second-generation sequencing data (2013) Brief Bioinform, 14, pp. 193-202. , https://doi.org/10.1093/bib/bbs012, PMID: 22445902; Hierholzer, J.C., Bingham, P.G., Vero microcultures for adenovirus neutralization tests (1978) J. Clin. Microbiol., 7, pp. 499-506. , PMID: 670375; Gurrala, R., Dastjerdi, A., Johnson, N., Nunez-Garcia, J., Grierson, S., Steinbach, F., Development of a DNA microarray for simultaneous detection and genotyping of lyssaviruses (2009) Virus Res., 144, pp. 202-208. , https://doi.org/10.1016/j.virusres.2009.04.028, PMID: 19433118; Milne, I., Bayer, M., Cardle, L., Shaw, P., Stephen, G., Wright, F., Tablet—next generation sequence assembly visualization (2010) Bioinformatics, 26, pp. 401-402. , https://doi.org/10.1093/bioinformatics/tp666, PMID: 19965881; Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucl. Acids Res., 31, pp. 3406-3415. , PMID: 12824337",,,"Public Library of Science",19326203,,POLNC,"29494671","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85042759625 "Al-Tawfiq J.A., Rothwell S., Mcgregor H.A., Khouri Z.A.","9436438200;57195482420;57195482130;57203432189;","A multi-faceted approach of a nursing led education in response to MERS-CoV infection",2018,"Journal of Infection and Public Health","11","2",,"260","264",,5,"10.1016/j.jiph.2017.08.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028365140&doi=10.1016%2fj.jiph.2017.08.006&partnerID=40&md5=f02775698d499a1a9c5410af1f51194f","Specaility Medicine Division, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, United States; Nursing Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia","Al-Tawfiq, J.A., Specaility Medicine Division, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indianapolis, IN, United States; Rothwell, S., Nursing Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Mcgregor, H.A., Nursing Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Khouri, Z.A., Nursing Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia","Background: The emergence of the Middle East respiratory syndrome-coronavirus (MERS-CoV) resulted in multiple healthcare associated outbreaks. In response, we developed a nurse-led program to screen and triage patients with MERS-CoV infection. Methods: A formal educational program was implemented to ensure a standardized approach to care planning and delivery. The essential skills that were included were the use of Personal Protective Equipment (PPE) including gown, gloves, head cover and N95 mask, hand hygiene, the practice of donning and doffing and the collection of MERS-CoV nasopharyngeal specimens. Results: A core group of nurses were identified from high-risk units. The education program consisted of four skill-days. Nurses were assigned a pre-course work from Mosby's Nursing Skills, an online skill module, donning and doffing of PPE, and the process for obtaining a nasopharyngeal swab. The skill lab incorporated multiple methods such group discussion, watching an on-line video, and a simulated demonstration and practice on a mannequin. In total, 450 nurses attended the Nasopharyngeal Skills Day and 1000 nurses received training. Donning and doffing PPE and N95 mask fit testing has become an annual mandatory competency requirement for staff in nursing and clinical services. Conclusion: The application of specified protocols minimizes the risks of cross infection, placing emphasis on patient and staff safety as well as expediting the patient to definitive treatment. Nurse educators have an instrumental role in training nurses and other healthcare providers on the specifics needed to identify, contain and manage patient presenting with MERS-CoV. © 2017 The Authors","Coronavirus; Education; Hospital care; MERS-CoV; Middle East respiratory syndrome; Outbreak preparedness; Saudi Arabia","Article; e-mail; education program; emergency health service; human; human experiment; infection prevention; Middle East respiratory syndrome; normal human; nurse; nursing competence; nursing education; occupational safety; priority journal; Coronavirus infection; cross infection; disease management; education; epidemic; health care personnel; isolation and purification; Middle East respiratory syndrome coronavirus; nasopharynx; nursing education; procedures; protective equipment; Saudi Arabia; utilization; virology; Coronavirus Infections; Cross Infection; Disease Management; Disease Outbreaks; Education, Nursing; Health Personnel; Humans; Middle East Respiratory Syndrome Coronavirus; Nasopharynx; Personal Protective Equipment; Saudi Arabia","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Curr Opin Infect Dis, 28, pp. 392-396; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-8; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Health Res Perspect, 7, pp. 49-55; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia (2014) Clin Infect Dis, 2015 (60), pp. 369-377; http://promedmail.chip.org/pipermail/promed/2014-June/004423.html, ProMed. MERS-CoV — Eastern Mediterranean 80: S Arabia, Iran, Algeria, Tunisia n.d; Hall, A.J., Tokars, J.I., Badreddine, S.A., Saad Bin, Z., Furukawa, E., Masri Al, M., Health care worker contact with MERS patient, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 2148-2151; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome-coronavirus (MERS-CoV): a case-controlstudy of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Alsahafi, A., Cheng, A., Knowledge, attitudes and behaviours of healthcare workers in the kingdom of Saudi Arabia to MERS coronavirus and other emerging infectious diseases (2016) Int J Environ Res Public Health, 13, p. 1214; Abolfotouh, M.A., AlQarni, A.A., Al-Ghamdi, S.M., Salam, M., Al-Assiri, M.H., Balkhy, H.H., An assessment of the level of concern among hospital-based health-care workers regarding MERS outbreaks in Saudi Arabia (2017) BMC Infect Dis, 17, p. 4; Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, WHO Available at: [Accessed 9 March 2017]; CDC, Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS-CoV) (2015), https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, [Accessed 9 March 2017]; Centers for Disease C Prevention, Update: recommendations for Middle East respiratory syndrome coronavirus (MERS-CoV) (2013) MMWR Morb Mortal Wkly Rep, 62, p. 557; Madani, T.A., Althaqafi, A.O., Alraddadi, B.M., Infection prevention and control guidelines for patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2014) Saudi Med J, 35, pp. 897-913; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Guery, B., Poissy, J., el Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet (London England), 381, pp. 2265-2272; NEJMvideo, NEJM procedure collection of nasopharyngeal specimens with the swab technique — YouTube (2009), https://www.youtube.com/watch?v=DVJNWefmHjE, [Accessed 9 March 2017]; Hastings, D.L., Tokars, J.I., Abdel Aziz, I.Z.A.M., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Outbreak of Middle East respiratory syndrome at Tertiary Care Hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 794-801; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Park, S.H., Kim, Y.-S., Jung, Y., Choi, S.Y., Cho, N.-H., Jeong, H.W., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect Chemother, 48, pp. 99-107; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: nosocomial outbreak of Middle East respiratory syndrome in a Large Tertiary Care Hospital—Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164; Butt, T.S., Koutlakis-Barron, I., AlJumaah, S., AlThawadi, S., AlMofada, S., Infection control and prevention practices implemented to reduce transmission risk of Middle East respiratory syndrome-coronavirus in a tertiary care institution in Saudi Arabia (2016) Am J Infect Control, 44, pp. 605-611; Loutfy, M.R., Wallington, T., Rutledge, T., Mederski, B., Rose, K., Kwolek, S., Hospital preparedness and SARS (2004) Emerg Infect Dis, 10, pp. 771-776; Kim, C.-J., Yoo, H.-R., Yoo, M.S., Kwon, B.E., Hwang, K.J., Attitude, beliefs, and intentions to care for SARS patients among Korean clinical nurses: an application of theory of planned behavior (2006) Taehan Kanho Hakhoe Chi, 36, pp. 596-603; Lau, J.T.F., Fung, K.S., Wong, T.W., Kim, J.H., Wong, E., Chung, S., SARS transmission among hospital workers in Hong Kong (2004) Emerg Infect Dis, 10, pp. 280-286; Yassi, A., Moore, D., Fitzgerald, J.M., Bigelow, P., Hon, C.-Y., Bryce, E., Research gaps in protecting healthcare workers from SARS and other respiratory pathogens: an interdisciplinary, multi-stakeholder, evidence-based approach (2005) J Occup Environ Med, 47, pp. 41-50; Coffey, C.C., Campbell, D.L., Myers, W.R., Comparison of six respirator fit-test methods with an actual measurement of exposure in a simulated health care environment: part III—validation (1999) Am Ind Hyg Assoc J, 60, pp. 363-366; Bukhari, E.E., Temsah, M.H., Aleyadhy, A.A., Alrabiaa, A.A., Alhboob, A.A., Jamal, A.A., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak perceptions of risk and stress evaluation in nurses (2016) J Infect Dev Ctries, 10, pp. 845-850; Choi, J.-S., Kim, J.-S., Factors influencing emergency nurses’ ethical problems during the outbreak of MERS-CoV (2016) Nurs Ethics, , pii: 0969733016648205. [Epub ahead of print]","Al-Tawfiq, J.A.; Dhahran Health Center, Johns Hopkins Aramco Healthcare, P.O. Box 76, Room A-428-2, Building 61, Saudi Arabia; email: jaffar.tawfiq@jhah.com",,"Elsevier Ltd",18760341,,,"28869153","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85028365140 "Erdem S.B., Can D., Girit S., Çatal F., Şen V., Pekcan S., Yüksel H., Bingöl A., Bostancı I., Erge D., Ersu R.","56581526800;55700039100;57191955628;57203921928;36167281400;15061804000;7003886352;55363610100;55933228600;50161113600;57204399672;","Does atopy affect the course of viral pneumonia?",2018,"Allergologia et Immunopathologia","46","2",,"119","126",,2,"10.1016/j.aller.2017.04.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020528856&doi=10.1016%2fj.aller.2017.04.003&partnerID=40&md5=d7cefbd88206b987c0ed1c9e0ed15f67","Dr Behcet Uz Children's Hospital, Department of Pediatric Allergy, Izmir, Turkey; Kartal Dr Lütfü Kırdar Training and Research Hospital, Pediatric Pulmonology, Istanbul, Turkey; Inonu University Faculty of Medicine, Department of Allergy Immunology, Malatya, Turkey; Dicle University Faculty of Medicine, Department of Pediatrics, Diyarbakır, Turkey; Necmettin Erbakan University, Meram Medical Faculty, Department of Allergy Immunology, Konya, Turkey; Celal Bayar University Medical Faculty, Department of Allergy Immunology, Manisa, Turkey; Akdeniz University Faculty of Medicine, Department of Allergy Immunology, Antalya, Turkey; Dr. Sami Ulus Obstetrics and Child Health and Diseases Training and Research Hospital, Department of Allergy Immunology, Ankara, Turkey; Adnan Menderes University Medical Faculty, Department of Allergy Immunology, Aydın, Turkey; Marmara University Faculty of Medicine, Department of Pediatric Pulmonology, Istanbul, Turkey","Erdem, S.B., Dr Behcet Uz Children's Hospital, Department of Pediatric Allergy, Izmir, Turkey; Can, D., Dr Behcet Uz Children's Hospital, Department of Pediatric Allergy, Izmir, Turkey; Girit, S., Kartal Dr Lütfü Kırdar Training and Research Hospital, Pediatric Pulmonology, Istanbul, Turkey; Çatal, F., Inonu University Faculty of Medicine, Department of Allergy Immunology, Malatya, Turkey; Şen, V., Dicle University Faculty of Medicine, Department of Pediatrics, Diyarbakır, Turkey; Pekcan, S., Necmettin Erbakan University, Meram Medical Faculty, Department of Allergy Immunology, Konya, Turkey; Yüksel, H., Celal Bayar University Medical Faculty, Department of Allergy Immunology, Manisa, Turkey; Bingöl, A., Akdeniz University Faculty of Medicine, Department of Allergy Immunology, Antalya, Turkey; Bostancı, I., Dr. Sami Ulus Obstetrics and Child Health and Diseases Training and Research Hospital, Department of Allergy Immunology, Ankara, Turkey; Erge, D., Adnan Menderes University Medical Faculty, Department of Allergy Immunology, Aydın, Turkey; Ersu, R., Marmara University Faculty of Medicine, Department of Pediatric Pulmonology, Istanbul, Turkey","Background: The presence of atopy is considered as a risk factor for severe respiratory symptoms in children. The objective of this study was to examine the effect of atopy on the course of disease in children hospitalised with viral pneumonia. Methods: Children between the ages of 1 and 6 years hospitalised due to viral pneumonia between the years of 2013 and 2016 were included to this multicentre study. Patients were classified into two groups as mild–moderate and severe according to the course of pneumonia. Presence of atopy was evaluated with skin prick tests. Groups were compared to evaluate the risk factors associated with severe viral pneumonia. Results: A total of 280 patients from nine centres were included in the study. Of these patients, 163 (58.2%) were male. Respiratory syncytial virus (29.7%), Influenza A (20.5%), rhinovirus (18.9%), adenovirus (10%), human metapneumovirus (8%), parainfluenza (5.2%), coronavirus (6%), and bocavirus (1.6%) were isolated from respiratory samples. Eighty-five (30.4%) children had severe pneumonia. Atopic sensitisation was found in 21.4% of the patients. Ever wheezing (RR: 1.6, 95% CI: 1.1–2.4), parental asthma (RR: 1.5, 95% CI: 1.1–2.2), other allergic diseases in the family (RR: 1.8, 95% CI: 1.2–2.9) and environmental tobacco smoke (RR: 1.6, 95% CI: 1.1–3.5) were more common in the severe pneumonia group. Conclusions: When patients with mild–moderate pneumonia were compared to patients with severe pneumonia, frequency of atopy was not different between the two groups. However, parental asthma, ever wheezing and environmental tobacco smoke exposure are risk factors for severe viral pneumonia in children. © 2017 SEICAP","Atopy; Children; Viral pneumonia","tobacco smoke; Adenoviridae; allergic disease; allergic rhinitis; Article; asthma; atopy; Bocaparvovirus; child; Coronavirinae; environmental exposure; female; human; Human metapneumovirus; Human respiratory syncytial virus; Influenza A virus; major clinical study; male; multicenter study; Paramyxovirinae; prick test; Rhinovirus; risk factor; virus pneumonia; wheezing; cigarette smoking; clinical trial; disease exacerbation; hospitalization; immediate type hypersensitivity; infant; preschool child; risk; skin test; turkey (bird); virus infection; virus pneumonia; Child; Child, Preschool; Cigarette Smoking; Disease Progression; Female; Hospitalization; Humans; Hypersensitivity, Immediate; Infant; Male; Pneumonia, Viral; Risk; Skin Tests; Turkey; Virus Diseases","Rowe, R.K., Gill, M.A., Asthma: the interplay between viral infections and allergic diseases (2015) Immunol Allergy Clin North Am, 35, pp. 115-127; Boulet, L., Bélanger, M., Carrier, G., Airway responsiveness and bronchial-wall thickness in asthma with or without fixed airflow obstruction (1995) Am J Respir Crit Care Med, 152, pp. 865-871; Colllins, S.A., Lockett, G.A., Holloway, J.W., The genetics of allergic disease and asthma (2016) Pediatric allergy: principles and practice, pp. 18-30. , D.Y.M. Leung S.J. Szefler C.A. Akdis F.A. Bonilla H.A. Sampson 3rd ed. Toronto; Okayama, Y., Celluler and humoral immunity of virus-induced asthma (2013) Front Microbıol, 4, p. 252; Gavala, M.L., Bashir, H., Gern, J.E., Virus/allergen interactions in asthma (2013) Curr Allergy Asthma Rep, 13, pp. 298-307; Kim, Y.J., Ryu, S.L., Jung, S.H., Shim, J.W., Kim, D.S., Jung, H.L., Increased prevalence of H1N1-induced severe lower respiratory tract diseases in children with atopic sensitization (2012) Allergy Asthma Immunol Res, 4, pp. 277-283; Dawood, F.S., Kamimoto, L., D'Mello, T.A., Reingold, A., Gershman, K., Meek, J., Emerging Infections Program Network Children with asthma hospitalized with seasonal or pandemic influenza, 2003–2009 (2011) Pediatrics, 128, pp. 27-32; Hasegawa, S., Hirano, R., Hashimoto, K., Haneda, Y., Shirabe, K., Ichiyama, T., Characteristics of atopic children with pandemic H1N1 influenza viral infection: pandemic H1N1 influenza reveals ‘occult’ asthma of childhood (2011) Pediatr Allergy Immunol, 22, pp. 119-123; Corne, J.M., Marshall, C., Smith, S., Schreiber, J., Sanderson, G., Holgate, S.T., Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study (2002) Lancet, 359, pp. 831-834; Stensballe, L.G., Kristensen, K., Simoes, E.A., Jensen, H., Nielsen, J., Benn, C.S., Danish RSV Data Network. Atopik disposition, wheezing, and subsequent respiratory syncytiel virus hospitalization in Danish children younger than 18 months: a nested case-control study (2006) Pediatrics, 118, pp. 1360-1368; Jung, J.A., Kita, H., Yawn, B.P., Boyce, T.G., Yoo, K.H., McGree, M.E., Increased risk of serious pneumococcal disease in patients with atopic conditions other than asthma (2010) J Allergy Clin Immunol, 125, pp. 217-221; Kloepfer, K.M., Gern, J.E., Virus/allergen interactions and exacerbations of asthma (2010) Immunol Allergy Clin North Am, 30, pp. 553-563; Ahanchian, H., Jones, C.M., Chen, Y.S., Sly, P.D., Respiratory viral infections in children with asthma: do they matter and can we prevent them? (2012) BMC Pediatrics, 12, p. 147; Custovic, A., Johnston, S.L., Pavord, I., Gaga, M., Fabbri, L., Bel, E.H., EAACI position statement on asthma exacerbations and severe asthma (2013) Allergy, 68, pp. 1520-1531; Swindle, E.J., Collins, J.E., Davies, D.E., Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches (2009) J Allergy Clin Immunol, 124, pp. 23-34; Lambrecht, B.N., Hammad, H., Asthma: the importance of dysregulated barrier immuity (2013) Eur J Immunol, 43, pp. 3125-3137; Furuse, M., Molecular basis of the core structure of tight junctions (2010) Cold Spring Harb Perspect Biol, 2, p. 002907; Steed, E., Balda, M.S., Matter, K., Dynamics and functions of tight junctions (2010) Trends Cell Biol, 20, pp. 142-149; Proud, D., Leigh, R., Epithelial cells and airway diseases (2011) Immunol Rev, 242, pp. 186-204; Holgate, S.T., The sentinel role of the airway epithelium in asthma pathogenesis (2011) Immunol Rev, 242, pp. 205-219; Sly, P.D., Boner, A.L., Björksten, B., Bush, A., Custovic, A., Eigenmann, P.A., Early identification of atopy in the prediction of persistent asthma in children (2008) Lancet, 372, pp. 1100-1106; Sporik, R., Holgate, S.T., Platts-Mills, T.A., Cogswell, J.J., Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study (1990) N Engl J Med, 323, pp. 502-507; Jacquet, A., Interactions of airway epithelium with protease allergens in the allergic response (2011) Clin Exp Allergy, 41, pp. 305-311; Van der Schans, C.P., Bronchial mucus transport (2007) Respir Care, 52, pp. 1150-1156; Thornton, D.J., Rousseau, K., McGuckin, M.A., Structure and function of the polymeric mucins in airwaysmucus (2008) Annu Rev Physiol, 70, pp. 459-486; Grünberg, K., Timmers, M.C., de Klerk, E.P., Dick, E.C., Sterk, P.J., Experimental rhinovirus 16 infection causes variable airway obstruction in subjects with atopic asthma (1999) Am J RespirCrit Care Med, 160, pp. 1375-1380; Ducharme, F.M., Zemek, R., Chauhan, B.F., Gravel, J., Chalut, D., Poonai, N., Factors associated with failure of emergency department management in children with acute moderate or severe asthma: a prospective, multicentre, cohort study (2016) Lancet Respir Med, 4, pp. 990-998; Costa, L.D., Costa, P.S., Camargos, P.A., Exacerbation of asthma and airway infection: is the virus the villain? (2014) J Pediatr (Rio J), 90, pp. 542-555; Ahn, A., Edwards, K.M., Grijalva, C.G., Self, W.H., Zhu, Y., Chappell, J.D., Secondhand smoke exposure and illness severity among children hospitalized with pneumonia (2015) J Pediatr, 167, pp. 869-874; O'Dempsey, T.J., McArdle, T.F., Morris, J., Lloyd-Evans, N., Baldeh, I., Laurence, B.E., A study of risk factors for pneumococcal disease among children in a rural area of West Africa (1996) Int J Epidemiol, 25, pp. 885-893; Gessner, B.D., Ussery, X.T., Parkinson, A.J., Breiman, R.F., Risk factors for invasive disease caused by Streptococcus pneumoniae among Alaska native children younger than two years of age (1995) Pediatr Infect Dis J, 14, pp. 123-128; Takala, A.K., Jero, J., Kela, E., Rönnberg, P.R., Koskenniemi, E., Eskola, J., Risk factors for primary invasive pneumococcal disease among children in Finland (1995) JAMA, 273, pp. 859-864; Jroundi, I., Mahraoui, C., Benmessaoud, R., Moraleda, C., Tligui, H., Seffar, M., Risk factors for a poor outcome among children admitted with clinically severe pneumonia to a university hospital in Rabat, Morocco (2014) Int J Infect Dis, 28, pp. 164-170; Lazzerini, M., Seward, N., Lufesi, N., Banda, R., Sinyeka, S., Masache, G., Mortality and its risk factors in Malawian children admitted to hospital with clinical pneumonia, 2001–12: a retrospective observational study (2016) Lancet Glob Health, 4, pp. 57-68; Jackson, S., Mathews, K.H., Pulanic, D., Falconer, R., Rudan, I., Campbell, H., Risk factors for severe acute lower respiratory infections in children: a systematic review and meta-analysis (2013) Croat Med J, 54, pp. 110-121; Camara, A.A., Silva, J.M., Ferriani, V.P., Tobias, K.R., Macedo, I.S., Padovani, M.A., Risk factors for wheezing in a subtropical environment: role of respiratory viruses and allergen sensitization (2004) J Allergy Clin Immunol, 113, pp. 551-557; Kusel, M.M., Kebadze, T., Johnston, S.L., Holt, P.G., Sly, P.D., Febrile respiratory illnesses in infancy and atopy are risk factors for persistent asthma and wheeze (2012) Eur Respir J, 39, pp. 876-882; Hyvärinen, M., Piippo-Savolainen, E., Korhonen, K., Korppi, M., Teenage asthma after severe infantile bronchiolitis or pneumonia (2005) Acta Paediatr, 94, pp. 1378-1383; Teijeiro, A., Badellino, H., Raiden, M.G., Cuello, M.N., Kevorkof, G., Gatti, C., Risk factors for recurrent wheezing in the first year of life in the city of Córdoba, Argentina (2016) Allergol Immunopathol, 16, pp. 30120-30123; Bhat, R.Y., Manjunath, N., Correlates of acute lower respiratory tract infections in children under 5 years of age in India (2013) Int J Tuberc Lung Dis, 17, pp. 418-422","Erdem, S.B.; Dr Behcet Uz Children's Hospital, Department of Pediatric AllergyTurkey; email: semihabahceci@hotmail.com",,"Elsevier Doyma",03010546,,AGIMB,"28634031","English","Allergol. Immunopathol.",Article,"Final",,Scopus,2-s2.0-85020528856 "Tasker S.","55790583400;","Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests",2018,"Journal of Feline Medicine and Surgery","20","3",,"228","243",,14,"10.1177/1098612X18758592","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042624175&doi=10.1177%2f1098612X18758592&partnerID=40&md5=1a176f87cdbce1072cb63b0046fedca6","The Feline Centre, Langford Vets, Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, United Kingdom","Tasker, S., The Feline Centre, Langford Vets, Bristol Veterinary School, University of Bristol, Bristol, BS40 5DU, United Kingdom","Practical relevance: Feline coronavirus (FCoV) infection is very common in cats, usually causing only mild intestinal signs such as diarrhoea. Up to 10% of FCoV infections, however, result in the fatal disease feline infectious peritonitis (FIP). Clinical challenges: Obtaining a definitive diagnosis of FIP based on non-invasive approaches is difficult. Confirmation of the disease relies on finding appropriate cytological or histopathological changes in association with positive immunostaining for FCoV antigen. In FIP cases with effusions, cytology and immunostaining on effusion samples can be relatively easy to perform; otherwise obtaining diagnostic samples is more challenging and collection of biopsies from tissues with gross lesions is necessary. In the absence of a definitive diagnosis, a high index of suspicion of FIP may be obtained from the cat’s signalment and history, combined with findings on clinical examination and laboratory test results. If largely consistent with FIP, these can be used as a basis for discussion with the owner about whether additional, more invasive, diagnostic tests are warranted. In some cases it may be that euthanasia is discussed as an alternative to pursuing a definitive diagnosis ante-mortem, especially if financial limitations exist or where there are concerns over a cat’s ability to tolerate invasive diagnostic procedures. Ideally, the diagnosis should be confirmed in such patients from samples taken at post-mortem examination. Global importance: FIP occurs wherever FCoV infection is present in cats, which equates to most parts of the world. Evidence base: This review provides a comprehensive overview of how to approach the diagnosis of FIP, focusing on the tests available to the veterinary practitioner and recently published evidence supporting their use. © 2018, © The Author(s) 2018.",,"endoscopic ultrasonography; environmental factor; Feline coronavirus; Gilbert disease; histopathology; human; human cell; peritonitis; priority journal; protein electrophoresis; reverse transcription polymerase chain reaction; Review; virus replication; animal; cat; feline infectious peritonitis; laboratory technique; procedures; virology; Animals; Cats; Clinical Laboratory Techniques; Coronavirus, Feline; Feline Infectious Peritonitis; Virology","Siddell, S.G., (1995) The coronaviridae, , London, Plenum Press; Denison, M.R., Graham, R.L., Donaldson, E.F., Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol, 8, pp. 270-279; Desmarets, L.M., Vermeulen, B.L., Theuns, S., Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures (2016) Sci Rep, 6, p. 20022; Levy, J.K., Crawford, P.C., Lappin, M.R., Infectious diseases of dogs and cats on Isabela Island, Galapagos (2008) J Vet Intern Med, 22, pp. 60-65; Addie, D.D., McDonald, M., Audhuy, S., Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection (2012) J Feline Med Surg, 14, pp. 171-176; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Prevalence of feline coronavirus types I and II in cats with histopatholog-ically verified feline infectious peritonitis (2004) Vet Microbiol, 99, pp. 31-42; Hohdatsu, T., Okada, S., Ishizuka, Y., The prevalence of types I and II feline coronavirus infections in cats (1992) J Vet Med Sci, 54, pp. 557-562; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Feline corona-virus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Jaimes, J.A., Whittaker, G.R., Feline coronavirus: insights into viral pathogenesis based on the spike protein structure and function (2018) Virology, , 9, January,. Epub ahead of print; Dye, C., Temperton, N., Siddell, S.G., Type I feline corona-virus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) J Gen Virol, 88, pp. 1753-1760; Addie, D.D., Clustering of feline coronaviruses in multicat households (2000) Vet J, 159, pp. 8-9; Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infections in kittens (1992) Vet Rec, 130, pp. 133-137; Addie, D., Feline coronavirus infections (2012) Infectious diseases of the dog and cat, pp. 92-108. , Greene C.E., (ed), 4th ed., St Louis, MO, Elsevier,. In:, (ed); Addie, D.D., Toth, S., Murray, G.D., Risk of feline infectious peritonitis in cats naturally infected with feline corona -virus (1995) Am J Vet Res, 56, pp. 429-434; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J Feline Med Surg, 11, pp. 225-258; Wang, Y.T., Su, B.L., Hsieh, L.E., An outbreak of feline infectious peritonitis in a Taiwanese shelter: epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus (2013) Vet Res, 44, p. 57; Barker, E.N., Tasker, S., Gruffydd-Jones, T.J., Phylogenetic analysis of feline coronavirus strains in an epizootic outbreak of feline infectious peritonitis (2013) J Vet Intern Med, 27, pp. 445-450; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog, 12, p. e1005531; Legendre, A.M., Kuritz, T., Galyon, G., Polyprenyl immunostimulant treatment of cats with presumptive non-effusive feline infectious peritonitis in a field study (2017) Front Vet Sci, 4, p. 7; Pedersen, N.C., Kim, Y., Liu, H., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg (2017) Epub ahead of print, , 1, September; Kipar, A., Baptiste, K., Barth, A., Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats (2006) J Feline Med Surg, 8, pp. 69-72; Kipar, A., Meli, M.L., Baptiste, K.E., Sites of feline coronavirus persistence in healthy cats (2010) J Gen Virol, 91, pp. 1698-1707; Meli, M., Kipar, A., Muller, C., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally infected FCoV-infected cats (2004) J Feline Med Surg, 6, pp. 69-81; Bosch, B.J., van der Zee, R., de Haan, C.A., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J Virol, 77, pp. 8801-8811; Belouzard, S., Millet, J.K., Licitra, B.N., Mechanisms of coro-navirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Chang, H.W., Egberink, H.F., Halpin, R., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18, pp. 1089-1095; Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis (2014) Vet Microbiol, 173, pp. 177-188; Licitra, B.N., Millet, J.K., Regan, A.D., Mutation in spike protein cleavage site and pathogenesis of feline corona-virus (2013) Emerg Infect Dis, 19, pp. 1066-1073; Porter, E., Tasker, S., Day, M.J., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet Res, 45, p. 49; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet Pathol, 51, pp. 505-526; de Groot-Mijnes, J.D., van Dun, J.M., van der Most, R.G., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2005) J Virol, 79, pp. 1036-1044; Golovko, L., Lyons, L.A., Liu, H., Genetic susceptibility to feline infectious peritonitis in Birman cats (2013) Virus Res, 175, pp. 58-63; Pedersen, N.C., Liu, H., Durden, M., Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection (2016) Vet Immunol Immunopathol, 171, pp. 17-20; Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., Replication of feline coronaviruses in peripheral blood monocytes (2005) Arch Virol, 150, pp. 2483-2500; Battilani, M., Coradin, T., Scagliarini, A., Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected cats (2003) FEMS Immunol Med Microbiol, 39, pp. 141-147; Tasker, S., Dowgray, N., Managing feline coronavirus and feline infectious peritonitis in the multi-cat/shelter environment (2018) BSAVA manual of canine and feline shelter medicine: principles of health and welfare in a multi-animal environment, , Dean R., Roberts M., Stavisky J., (eds), Gloucester, BSAVA Publications,. In:, (eds).,. In press; Riemer, F., Kuehner, K.A., Ritz, S., Clinical and laboratory features of cats with feline infectious peritonitis - a retrospective study of 231 confirmed cases (2000-2010) (2016) J Feline Med Surg, 18, pp. 348-356; Pesteanu-Somogyi, L.D., Radzai, C., Pressler, B.M., Prevalence of feline infectious peritonitis in specific cat breeds (2006) J Feline Med Surg, 8, pp. 1-5; Worthing, K.A., Wigney, D.I., Dhand, N.K., Risk factors for feline infectious peritonitis in Australian cats (2012) J Feline Med Surg, 14, pp. 405-412; Spencer, S.E., Knowles, T., Ramsey, I.K., Pyrexia in cats: retrospective analysis of signalment, clinical investigations, diagnosis and influence of prior treatment in 106 referred cases (2017) J Feline Med Surg, 19, pp. 1123-1130; Ritz, S., Egberink, H., Hartmann, K., Effect of feline inter-feron-omega on the survival time and quality of life of cats with feline infectious peritonitis (2007) J Vet Intern Med, 21, pp. 1193-1197; Crawford, A.H., Stoll, A.L., Sanchez-Masian, D., Clinicopathologic features and magnetic resonance imaging findings in 24 cats with histopathologically confirmed neurologic feline infectious peritonitis (2017) J Vet Intern Med, 31, pp. 1477-1486; Bauer, B.S., Kerr, M.E., Sandmeyer, L.S., Positive immunostaining for feline infectious peritonitis (FIP) in a Sphinx cat with cutaneous lesions and bilateral panuveitis (2013) Vet Ophthalmol, 16, pp. 160-163; Cannon, M.J., Silkstone, M.A., Kipar, A.M., Cutaneous lesions associated with coronavirus-induced vasculitis in a cat with feline infectious peritonitis and concurrent feline immunodeficiency virus infection (2005) J Feline Med Surg, 7, pp. 233-236; Kipar, A., Koehler, K., Bellmann, S., Feline infectious peritonitis presenting as a tumour in the abdominal cavity (1999) Vet Rec, 144, pp. 118-122; Harvey, C.J., Lopez, J.W., Hendrick, M.J., An uncommon intestinal manifestation of feline infectious peritonitis: 26 cases (1986-1993) (1996) J Am Vet Med Assoc, 209, pp. 1117-1120; Tsai, H.Y., Chueh, L.L., Lin, C.N., Clinicopathological findings and disease staging of feline infectious peritonitis: 51 cases from 2003 to 2009 in Taiwan (2011) J Feline Med Surg, 13, pp. 74-80; Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., Feline infectious peritonitis: a review of clinico -pathological changes in 65 cases, and a critical assessment of their diagnostic value (1991) Vet Rec, 129, pp. 209-212; Norris, J.M., Bosward, K.L., White, J.D., Clinico -pathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990-2002) (2005) Aust Vet J, 83, pp. 666-673; Jeffery, U., Deitz, K., Hostetter, S., Positive predictive value of albumin:globulin ratio for feline infectious peritonitis in a mid-western referral hospital population (2012) J Feline Med Surg, 14, pp. 903-905; Stranieri, A., Giordano, A., Bo, S., Frequency of electro-phoretic changes consistent with feline infectious peritonitis in two different time periods (2004-2009 vs 2013-2014) (2017) J Feline Med Surg, 19, pp. 880-887; Taylor, S.S., Tappin, S.W., Dodkin, S.J., Serum protein electro-phoresis in 155 cats (2010) J Feline Med Surg, 12, pp. 643-653; Giori, L., Giordano, A., Giudice, C., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J Small Anim Pract, 52, pp. 152-157; Duthie, S., Eckersall, P.D., Addie, D.D., Value of alpha 1-acid glycoprotein in the diagnosis of feline infectious peritonitis (1997) Vet Rec, 141, pp. 299-303; Paltrinieri, S., Giordano, A., Tranquillo, V., Critical assessment of the diagnostic value of feline alpha1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach (2007) J Vet Diagn Invest, 19, pp. 266-272; Hazuchova, K., Held, S., Neiger, R., Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions (2017) J Feline Med Surg, 19, pp. 809-816; Addie, D.D., le Poder, S., Burr, P., Utility of feline coronavirus antibody tests (2015) J Feline Med Surg, 17, pp. 152-162; Bell, E.T., Malik, R., Norris, J.M., The relationship between the feline coronavirus antibody titre and the age, breed, gender and health status of Australian cats (2006) Aust Vet J, 84, pp. 2-7; Bell, E.T., Toribio, J.A., White, J.D., Seroprevalence study of feline coronavirus in owned and feral cats in Sydney, Australia (2006) Aust Vet J, 84, pp. 74-81; Meli, M.L., Burr, P., Decaro, N., Samples with high virus load cause a trend toward lower signal in feline coronavirus antibody tests (2013) J Feline Med Surg, 15, pp. 295-299; Addie, D., Belak, S., Boucraut-Baralon, C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 594-604; Negrin, A., Lamb, C.R., Cappello, R., Results of magnetic resonance imaging in 14 cats with meningoencephalitis (2007) J Feline Med Surg, 9, pp. 109-116; Fischer, Y., Weber, K., Sauter-Louis, C., The Rivalta’s test as a diagnostic variable in feline effusions - evaluation of optimum reaction and storage conditions (2013) Fieraerztl Prax K H, 41, pp. 297-303; Fischer, Y., Sauter-Louis, C., Hartmann, K., Diagnostic accuracy of the Rivalta test for feline infectious peritonitis (2012) Vet Clin Pathol, 41, pp. 558-567; Lorusso, E., Mari, V., Losurdo, M., Discrepancies between feline coronavirus antibody and nucleic acid detection in effusions of cats with suspected feline infectious peritonitis (2017) Res Vet Sci, , 31, October,. Epub ahead of print; Foley, J.E., Lapointe, J.M., Koblik, P., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J Vet Intern Med, 12, pp. 415-423; Penderis, J., The wobbly cat. Diagnostic and therapeutic approach to generalised ataxia (2009) J Feline Med Surg, 11, pp. 349-359; Singh, M., Foster, D.J., Child, G., Inflammatory cerebrospinal fluid analysis in cats: clinical diagnosis and outcome (2005) J Feline Med Surg, 7, pp. 77-93; Barker, E.N., Stranieri, A., Helps, C.R., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Vet Res, 48, p. 60; Barker, E.N., Tasker, S., (2017) Diagnosing FIP: has recent research made it any easier?, , Proceedings of the ACVIM Forum, Harbor, Maryland, USA, Washington, American College of Veterinary Internal Medicine; Stranieri, A., Lauzi, S., Giordano, A., Reverse transcriptase loop-mediated isothermal amplification for the detection of feline coronavirus (2017) J Virol Methods, 243, pp. 105-108; Pedersen, N.C., Eckstrand, C., Liu, H., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet Microbiol, 175, pp. 157-166; Freiche, G.M., Guidez, C.L., Duarte, M., Sequencing of 3c and spike genes in feline infectious peritonitis: which samples are the most relevant for analysis? A retrospective study of 33 cases from 2008 to 2014 [abstract] (2016) J Vet Intern Med, 30, p. 411; Felten, S., Weider, K., Doenges, S., Detection of feline coro-navirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 321-335; Longstaff, L., Porter, E., Crossley, V.J., Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 240-245; Doenges, S.J., Weber, K., Dorsch, R., Comparison of realtime reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 344-350; Doenges, S.J., Weber, K., Dorsch, R., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J Feline Med Surg, 18, pp. 104-109; Giordano, A., Paltrinieri, S., Bertazzolo, W., Sensitivity of Tru-cut and fine needle aspiration biopsies of liver and kidney for diagnosis of feline infectious peritonitis (2005) Vet Clin Pathol, 34, pp. 368-374; Felten, S., Matiasek, K., Gruendl, S., Investigation into the utility of an immunocytochemical assay in body cavity effusions for diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 410-418; Hartmann, K., Binder, C., Hirschberger, J., Comparison of different tests to diagnose feline infectious peritonitis (2003) J Vet Intern Med, 17, pp. 781-790; Hirschberger, J., Hartmann, K., Wilhelm, N., Clinical symptoms and diagnosis of feline infectious peritonitis [article in German] (1995) Tierarztl Prax, 23, pp. 92-99; Litster, A.L., Pogranichniy, R., Lin, T.L., Diagnostic utility of a direct immunofluorescence test to detect feline corona-virus antigen in macrophages in effusive feline infectious peritonitis (2013) Vet J, 198, pp. 362-366; Paltrinieri, S., Cammarata, M.P., Cammarata, G., In vivo diagnosis of feline infectious peritonitis by comparison of protein content, cytology, and direct immunofluorescence test on peritoneal and pleural effusions (1999) J Vet Diagn Invest, 11, pp. 358-361; Parodi, M.C., Cammarata, G., Paltrinieri, S., Using direct immunofluorescence to detect coronaviruses in peritoneal and pleural effusions (1993) J Small Anim Pract, 34, pp. 609-613; Ives, E.J., Vanhaesebrouck, A.E., Cian, F., Immuno-cytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages (2013) J Feline Med Surg, 15, pp. 1149-1153; Gruendl, S., Matiasek, K., Matiasek, L., Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in the central nervous system (2016) J Feline Med Surg, 19, pp. 576-585; Felten, S., Matiasek, K., Gruendl, S., Utility of an immuno-cytochemical assay using aqueous humor in the diagnosis of feline infectious peritonitis (2018) Vet Ophthalmol, 21, pp. 27-34","Tasker, S.; The Feline Centre, Langford Vets, Bristol Veterinary School, University of BristolUnited Kingdom; email: s.tasker@bristol.ac.uk",,"SAGE Publications Ltd",1098612X,,,"29478397","English","J. Feline Med. Surg.",Review,"Final",,Scopus,2-s2.0-85042624175 "Zhang H., Peng C., Liu B., Liu J., Yuan Z., Shi Z.","57192482516;55729132200;57201068628;57201071573;55736513400;7403733955;","Evaluation of MICRO-CHEM PLUS as a Disinfehctant for Biosafety Level 4 Laboratory in China",2018,"Applied Biosafety","23","1",,"32","38",,,"10.1177/1535676018758891","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043327520&doi=10.1177%2f1535676018758891&partnerID=40&md5=1e24fc757f0bdbcedba2d062edb3741b","Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China","Zhang, H., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Peng, C., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Liu, B., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Liu, J., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Yuan, Z., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Shi, Z., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China","MICRO-CHEM PLUS Detergent Disinfectant Cleaner (MCP) is a commonly used disinfectant at biosafety level 4 (BSL-4) laboratories where research activities involving the most dangerous pathogens must be conducted. Using bat severe acute respiratory syndrome (SARS)–like coronavirus (CoV) WIV1 as a surrogate pathogen, we extensively evaluated the disinfection efficacy of 5% MCP in the first BSL-4 laboratory in China. WIV1 was completely inactivated in 1 minute of contact time by a 27-fold dilution of 5% MCP with a titer reduction of more than 7 lg 50% tissue culture infectious dose (TCID50)/mL, while a 243-fold dilution of 5% MCP showed very weak activity. For 81-fold dilution, WIV1 was killed by more than 6 lg TCID50/mL in 1 minute, but to get complete inactivation, the contact time should be at least 2 minutes. No loss of efficacy was detected for 5% MCP at a temperature of 0°C, ambient, or 37°C or in the solution of pH 3.2 to 12.2. No interference to disinfection efficacy was detected with up to 25% fetal bovine serum, 5% bovine serum albumin, or 8% cell debris. The decontamination of a positive pressure suit by chemical shower was tested with the filter pieces taped onto the head, chest, back, armpits, crotch, and boot soles, and no virus survived after a shower cycle of 4 minutes at 5% MCP plus 2 minutes of a soft water rinse. Keeping the ambient temperature for 79 days or in the tank for the chemical shower for 25 days, 5% MCP showed the same activity as when it was freshly prepared. Taken together, 5% MCP is a very efficient disinfectant for BSL-4 laboratories, and we recommend its application for other enveloped viruses. © 2018, © American Biological Safety Association 2018.","BSL-4; disinfectant; disinfection efficacy; MICRO-CHEM PLUS; positive pressure suit",,"(2004) Laboratory Biosafety Manual, , 3rd ed, Geneva, Switzerland, World Health Organization; (2008) Guidelines for disinfection and sterilization in healthcare facilities, , https://www.cdc.gov/infectioncontrol/guidelines/Disinfection/index.html; (2002) Technical Standard for Disinfection, , Beijing, Ministry of Health of the People’s Republic of China; MICRO-CHEM PLUS™, , http://www.nclonline.com/products/view/MICRO_CHEM_PLUS_#tab-efficacy; Cyranoski, D., Inside the Chinese lab poised to study world’s most dangerous pathogens (2017) Nature, 542 (7642), pp. 399-400; Ge, X., Li, J., Yang, X., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538; Menachery, V., Yount, B., Debbink, K., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21 (12), pp. 1508-1513; Reed, L., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am J Epidemiol, 27 (3), pp. 493-497; (2014) Guidance on the Application of Laboratory Biosafety Accreditation Criteria: Evaluation of Key Protective Equipments, , Beijing, China National Accreditation Service for Conformity Assessment; Uddowla, S., Clarkson, A., Ziegler, S., Evaluation of EARTH SENSE® Neutral Disinfectant Detergent as an alternative to MICRO-CHEM PLUS™ Detergent Disinfectant for use in BSL-4 laboratories using vesicular stomatitis virus as a surrogate (2016) Appl Biosafety, 21 (1), pp. 19-25; Klaponski, N., Cutts, T., Gordon, D., A study of the effectiveness of the containment level-4 (CL-4) chemical shower in decontaminating dover positive-pressure suits (2011) Appl Biosafety, 16 (2), pp. 112-117; Jono, K., Takayama, T., Kuno, M., Higashide, E., Effect of alkyl chain length of benzalkonium chloride on the bactericidal activity and binding to organic materials (1986) Chem Pharm Bull, 34 (10), pp. 4215-4224; Efficacy test requirements: virucides, designation DIS/TSS-7. 1981, , http://www.epa.gov/pesticides/antimicrobials/dis_tss_docs/dis-07.htm","Yuan, Z.; Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan, China; email: yzm@wh.iov.cn",,"SAGE Publications Inc.",15356760,,,,"English","Appl. Biosafety",Article,"Final",Open Access,Scopus,2-s2.0-85043327520 "Ahmed A.E.","35278332600;","Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: A worldwide study",2018,"Epidemiology and Infection","146","4",,"489","495",,10,"10.1017/S095026881700293X","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042208308&doi=10.1017%2fS095026881700293X&partnerID=40&md5=40e8d9e4b301cf313e8b64efddf7722c","King Abdullah International Medical Research Center /College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia","Ahmed, A.E., King Abdullah International Medical Research Center /College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia","Although Middle East respiratory syndrome coronavirus (MERS-CoV) has a recorded 5 years of circulation in 27 countries worldwide, there is no international study to assess whether there is variation in mortality by region. Neither has there been a comprehensive study detailing how the disease characteristics of MERS-CoV influence mortality in patients presenting symptoms. This study aimed to assess how region, patient and disease characteristics influence 14- and 45-day mortality in MERS patients. The author utilised publically available data on MERS-CoV. The study included 883 MERS patients reported between 5 January 2015 and 10 March 2017. Data on patient and disease characteristics were collected. The mean age at MERS-CoV diagnosis was 54.3 years: 69.1% were male, and 86.7% of the cases were reported from Saudi Arabia. About 40% of MERS patients studied were over the age of 60. The study estimated 14- and 45-day survival rates after initial onset of symptoms: 83.67% and 65.9%, respectively. Saudi Arabian MERS patients exhibited 4.1 and 5.0 times higher 14-day (adjusted hazard risk (aHR) = 4.1; 95% confidence interval (CI) 1.012-16.921) and 45-day (aHR = 5.0; 95% CI 1.856-13.581) mortality risk compared with MERS patients in the Republic of Korea or other countries. Similarly, Middle Eastern MERS patients showed 5.3 and 4.1 times higher 14-day (aHR = 5.3; 95% CI 1.070-25.902) and 45-day (aHR = 4.1; 95% CI 1.288-113.076) mortality risk compared with MERS patients in the Republic of Korea or other countries. The results demonstrated a link between mortality and geography, disease and patient factors such as regions, symptoms, source of infections, underlying medical conditions, modes of transmission, non-healthcare workers and those of older age. Educational programmes, access to healthcare and early diagnosis could be implemented as modifiable factors to reduce the higher mortality rates in MERS patients. © Cambridge University Press 2017.","Camels; MERS-CoV; older age; Republic of Korea; Saudi Arabia","adult; age; aged; Article; clinical feature; demography; disease transmission; early diagnosis; education program; female; geography; health care access; health status; human; major clinical study; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality; risk assessment; risk reduction; Saudi Arabia; sex ratio; South Korea; survival rate; symptom; adolescent; child; Coronavirus infection; global health; infant; isolation and purification; mortality; preschool child; risk factor; survival rate; very elderly; virology; Adolescent; Adult; Aged; Aged, 80 and over; Child; Child, Preschool; Coronavirus Infections; Demography; Female; Global Health; Humans; Infant; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Survival Rate","Feikin, D.R., Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia (2015) Emerging Infectious Diseases, 21, pp. 2029-2035; Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., Bawayan, M.F., Sood, G., Treatment outcomes for patients with Middle Eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia (2016) BMC Infectious Diseases, 16, p. 174; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infectious Diseases, 17 (1), p. 615; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Aloqiel, S.A., Aldosari, K., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Medicine and Infectious Disease, 14, pp. 464-470; Mizumoto, K., Saitoh, M., Chowell, G., Miyamatsu, Y., Nishiura, H., Estimating the risk of Middle East respiratory syndrome (MERS) death during the course of the outbreak in the Republic of Korea, 2015 (2015) International Journal of Infectious Diseases, 31 (39), pp. 7-9; Nam, H.S., Park, J.W., Ki, M., Yeon, M.Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) International Journal of Infectious Diseases, 16, pp. 197-202; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) Journal of Hospital Infection, 28 (95), pp. 207-213; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Altayyar, S., Talag, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Critical Care, 20, p. 123; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Al Sherbeeni, N., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A singlecenter experience in Saudi Arabia (2014) International Journal of Infectious Diseases, 29, pp. 301-306; Mizumoto, K., Endo, A., Chowell, G., Miyamatsu, Y., Saitoh, M., Nishiura, H., Real-time characterization of risks of death associated with the Middle East respiratory syndrome (MERS) in the Republic of Korea, 2015 (2015) BMC Medicine, 30 (13), p. 228; Majumder, M.S., Kluberg, S.A., Mekaru, S.R., Brownstein, J.S., Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea, 2015 (2015) Emerging Infectious Diseases, 21, pp. 2088-2090; Banik, G.R., Alqahtani, A.S., Booy, R., Rashid, H., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virologica Sinica, 31, pp. 81-84; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012-2015 (2016) American Journal of Epidemiology, 184, pp. 460-464; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERSCoV) in Saudi Arabia and South Korea (2017) Emerging Microbes & Infections, 6 (6), p. e51; Ahmed, A.E., Diagnostic delays in 537 symptomatic cases of MERSCoV infection in Saudi Arabia (2017) International Journal of Infectious Diseases, 62, pp. 47-51; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) The Lancet Infectious Diseases, 13, pp. 752-761; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): Prevention in travelers (2014) Travel Medicine and Infectious Disease, 12, pp. 602-608","Ahmed, A.E.; King Abdullah International Medical Research Center /College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health SciencesSaudi Arabia; email: ahmeda5@vcu.edu",,"Cambridge University Press",09502688,,EPINE,"29271336","English","Epidemiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85042208308 "Althomairy S.A., Baseer M.A., Assery M., Alsaffan A.D.","57201737331;57193609005;6507574156;57201738177;","Knowledge and attitude of dental health professionals about middle east respiratory syndrome in Saudi Arabia",2018,"Journal of International Society of Preventive and Community Dentistry","8","2",,"137","144",,1,"10.4103/jispcd.JISPCD-9-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045989307&doi=10.4103%2fjispcd.JISPCD-9-18&partnerID=40&md5=d2a1b176c98c591a8063f1f3e59d4f70","Department of Preventive Dentistry, Division of Community Dentistry, Riyadh Elm University, Riyadh, 11681, Saudi Arabia; Deanship of Postgraduate Studies and Research, Riyadh Elm University, Riyadh, Saudi Arabia","Althomairy, S.A., Department of Preventive Dentistry, Division of Community Dentistry, Riyadh Elm University, Riyadh, 11681, Saudi Arabia; Baseer, M.A., Department of Preventive Dentistry, Division of Community Dentistry, Riyadh Elm University, Riyadh, 11681, Saudi Arabia; Assery, M., Deanship of Postgraduate Studies and Research, Riyadh Elm University, Riyadh, Saudi Arabia; Alsaffan, A.D., Department of Preventive Dentistry, Division of Community Dentistry, Riyadh Elm University, Riyadh, 11681, Saudi Arabia","Aim and Objective: This study aims to evaluate the knowledge and attitude of practicing dental health professionals (DHPs) (dentist and dental auxiliaries) toward Middle East Respiratory Syndrome coronavirus (MERS-CoV) in Saudi Arabia. Materials and Methods: A cross-sectional descriptive study was undertaken among practicing DHPs in Saudi Arabia. A total of 202 DHPs participated in this study. Knowledge and attitude were assessed using self-administered and pretested questionnaire. The questionnaire was administered online through Survey Monkey® program by sending link to the registered E-mail. Descriptive statistics were performed on demographic data. Mean knowledge and mean attitude scores of DHPs were calculated. Mann-Whitney U-test and Kruskal-Wallis tests were used to disclose the differences between study variables. Chi-square tests and Spearman's correlation tests were applied to find the associations between the variables. Results: The study participants showed mean knowledge score of 12.26 ± 2.27 (based on 17 knowledge questions) and attitude score of 8.63 ± 1.68 (based on 10 attitude questions). The spearman's test showed the positive correlation between knowledge and attitude of DHPs about MERS (r = 0.093, P = 0.188). Knowledge gaps were reflected in questions related to the duration of infectivity (47.5%), treatment of MERS (39.6%), reservoir of MERS-CoV (38.1%), availability of vaccination against MERS-CoV (25.2%), the likelihood of infection (24.3%), and the type of MERS-CoV (23.3%). DHPs showed a positive attitude toward adherence to universal precautions given by CDC and WHO (0.94 ± 0.25), active participation infection control program (0.94 ± 0.24), and use of gowns, gloves, mask, and goggles while dealing with MERS-CoV patients (0.97 ± 0.17). Male DHPs showed significantly higher knowledge and positive attitude toward MERS-CoV infection compared to females. Conclusion: DHPs participated in this study showed good knowledge and positive attitude toward MERS. However, still few lacunae in the knowledge and attitudes toward MERS-CoV were found requiring extensive educational programs. © 2018 Journal of International Society of Preventive and Community Dentistry | Published by Wolters Kluwer - Medknow.","Attitude; coronavirus; dental professionals; knowledge; middle east respiratory syndrome",,"Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2015) Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.cdc.gov/coronavirus/mers/guidelines-lab-biosafety.html, CDC. [Last accessed on 2017 Nov 13]; (2012) Laboratory Testing for Novel Coronavirus: Interim Recommendations, , http://www.who.int/csr/disease/coronavirus_infections/LaboratoryTestingNovelCoronavirus_21Dec12.pdf, WHO. [Last accessed on 2017 Nov 13]; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-coV spillover at the camel-human interface (2018) Elife, 7. , pii: E31257; Ahmed, A., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: A worldwide study (2017) Epidemiology and Infection, pp. 1-7; (2017) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Summary of Current Situation, , WHO. WHO; Khan, M.U., Shah, S., Ahmad, A., Fatokun, O., Knowledge and attitude of healthcare workers about middle east respiratory syndrome in multispecialty hospitals of Qassim, Saudi Arabia (2014) BMC Public Health, 14, p. 1281; Dutil, S., Meriaux, A., De Latremoille, M.C., Lazure, L., Barbeau, J., Duchaine, C., Measurement of airborne bacteria and endotoxin generated during dental cleaning (2009) J Occup Environ Hyg, 6, pp. 121-130; Checchi, L., Montevecchi, M., Moreschi, A., Graziosi, F., Taddei, P., Violante, F.S., Efficacy of three face masks in preventing inhalation of airborne contaminants in dental practice (2005) J Am Dent Assoc, 136, pp. 877-882; Kharma, M.Y., Alalwani, M.S., Amer, M.F., Tarakji, B., Aws, G., Assessment of the awareness level of dental students toward middle east respiratory syndrome-coronavirus (2015) J Int Soc Prev Community Dent, 5, pp. 163-169; Baseer, M.A., Ansari, S.H., AlShamrani, S.S., Alakras, A.R., Mahrous, R., Alenazi, A.M., Awareness of droplet and airborne isolation precautions among dental health professionals during the outbreak of corona virus infection in Riyadh city, Saudi Arabia (2016) J Clin Exp Dent, 8, pp. e379-e387; Al-Sehaibany, F.S., Middle east respiratory syndrome in children. Dental considerations (2017) Saudi Med J, 38, pp. 339-343; Almutairi, M.A., Awareness about Middle East Respiratory syndrome-corona virus (MERS-CoV) among dental students in Riyadh, Saudi Arabia (2016) Pak Oral Dent J, 36, pp. 426-429; Coronavirus Website - Ministry of Health, , http://www.moh.gov.sa/en/CCC/, Command and Control Centre, Ministry of Health, Saudi Arabia. [Last accessed on 2017 Dec 02]; Bawazir, A., Al-Mazroo, E., Jradi, H., Ahmed, A., Badri, M., MERS-CoV infection: Mind the public knowledge gap (2018) J Infect Public Health, 11, pp. 89-93; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East Respiratory syndrome coronavirus (MERS-coV) origin and animal reservoir (2016) Virol J, 13, p. 87; Hawkes, N., Camels could be the source of MERS coronavirus, research finds (2013) BMJ, 347, p. f5052; Alsahafi, A.J., Cheng, A.C., Knowledge, attitudes and behaviours of healthcare workers in the Kingdom of Saudi Arabia to MERS coronavirus and other emerging infectious diseases (2016) Int J Environ Res Public Health, 13. , pii: E1214; Joukar, F., Mansour-Ghanaei, F., Soati, F., Meskinkhoda, P., Knowledge levels and attitudes of health care professionals toward patients with hepatitis C infection (2012) World J Gastroenterol, 18, pp. 2238-2244; Isara, A.R., Akpodiete, A., Concerns about the knowledge and attitude of multidrug-resistant tuberculosis among health care workers and patients in delta state, Nigeria (2015) Niger J Clin Pract, 18, pp. 664-669; Vidyasagar, G., Rea, D.M., Saudi women doctors: Gender and careers within Wahhabic Islam and a ""westernised"" work culture (2004) Womens Stud Int Forum, 27, pp. 261-280; Fisher, W.A., Fisher, J.D., Rye, B.J., Understanding and promoting AIDS-preventive behavior: Insights from the theory of reasoned action (1995) Health Psychol, 14, pp. 255-264; McEachan, R., Taylor, N., Harrison, R., Lawton, R., Gardner, P., Conner, M., Meta-analysis of the reasoned action approach (RAA) to understanding health behaviors (2016) Ann Behav Med, 50, pp. 592-612; Al-Tawfiq, J.A., Omrani, A.S., Memish, Z.A., Middle East Respiratory syndrome coronavirus: Current situation and travel-associated concerns (2016) Front Med, 10, pp. 111-119; Jeon, M.H., Kim, T.H., Institutional preparedness to prevent future Middle East Respiratory syndrome coronavirus-like outbreaks in republic of Korea (2016) Infect Chemother, 48, pp. 75-80","Baseer, M.A.; Department of Preventive Dentistry, Division of Community Dentistry, Riyadh Elm UniversitySaudi Arabia; email: basheer.dr@gmail.com",,"Wolters Kluwer (UK) Ltd.",22310762,,,,"English","J. Intl. Soc. Prev. Community Dent.",Article,"Final",,Scopus,2-s2.0-85045989307 "Cong Y., Hart B.J., Gross R., Zhou H., Frieman M., Bollinger L., Wada J., Hensley L.E., Jahrling P.B., Dyall J., Holbrook M.R.","57189515608;56037516200;57192198110;57192197343;9240056500;53871035300;55998440800;55303564700;7004533817;6507103339;7006036112;","MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells",2018,"PLoS ONE","13","3", e0194868,"","",,8,"10.1371/journal.pone.0194868","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044284357&doi=10.1371%2fjournal.pone.0194868&partnerID=40&md5=8aa23d57dafff212fcf6c78a6d48eeac","Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Emerging Viral Pathogen Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Naval Medical Research Center (NMRC), Frederick, MD, United States","Cong, Y., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Hart, B.J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States, Naval Medical Research Center (NMRC), Frederick, MD, United States; Gross, R., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Zhou, H., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Frieman, M., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Bollinger, L., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Wada, J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Hensley, L.E., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Jahrling, P.B., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States, Emerging Viral Pathogen Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Dyall, J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States; Holbrook, M.R., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) presents an emerging threat to public health worldwide by causing severe respiratory disease in humans with high virulence and case fatality rate (about 35%) since 2012. Little is known about the pathogenesis and innate antiviral response in primary human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) upon MERS-CoV infection. In this study, we assessed MERS-CoV replication as well as induction of inflammatory cytokines and chemokines in MDMs and immature and mature MDDCs. Immature MDDCs and MDMs were permissive for MERS-CoV infection, while mature MDDCs were not, with stimulation of proinflammatory cytokine and chemokine upregulation in MDMs, but not in MDDCs. To further evaluate the antiviral activity of well-defined drugs in primary antigen presenting cells (APCs), three compounds (chloroquine, chlorpromazine and toremifine), each with broad-spectrum antiviral activity in immortalized cell lines, were evaluated in MDMs and MDDCs to determine their antiviral effect on MERS-CoV infection. While chloroquine was not active in these primary cells, chlorpromazine showed strong anti-MERS-CoV activity, but it was associated with high cytotoxicity narrowing the potential window for drug utilization. Unlike in established cells, toremifene had marginal activity when tested in antigen presenting cells, with high apparent cytotoxicity, also limiting its potential as a therapeutic option. These results demonstrate the value of testing drugs in primary cells, in addition to established cell lines, before initiating preclinical or clinical studies for MERS treatment and the importance of carefully assessing cytotoxicity in drug screen assays. Furthermore, these studies also highlight the role of APCs in stimulating a robust protective immune response to MERS-CoV infection. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.",,"alpha2 interferon; chloroquine; chlorpromazine; gamma interferon; gamma interferon inducible protein 10; interleukin 12p40; interleukin 6; interleukin 8; macrophage inflammatory protein 1alpha; monocyte chemotactic protein 1; RANTES; toremifene; tumor necrosis factor; antivirus agent; antigen presenting cell; antiviral activity; Article; controlled study; cytokine production; drug cytotoxicity; drug efficacy; human; human cell; Middle East respiratory syndrome coronavirus; monocyte; monocyte derived dendritic cell; monocyte derived macrophage; nonhuman; virus replication; animal; antigen presenting cell; cell culture; Chlorocebus aethiops; Coronavirus infection; drug approval; drug effect; immunology; macrophage; monocyte; physiology; preclinical study; treatment outcome; Vero cell line; Animals; Antigen-Presenting Cells; Antiviral Agents; Cells, Cultured; Cercopithecus aethiops; Coronavirus Infections; Drug Approval; Drug Evaluation, Preclinical; Humans; Macrophages; Middle East Respiratory Syndrome Coronavirus; Monocytes; Treatment Outcome; Vero Cells","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, Epub 2012/10/ 19. PMID: 23075143; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) Journal of Virology, 87 (14), pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13, Epub 2013/05/17. PMID: 23678167; PubMed Central PMCID: PMCPmc3700179; Middle East respiratory syndrome coronavirus (MERS-CoV)—Saudi Arabia (2017) Disease Outbreak News, , http://www.who.int/csr/don/6-september-2017-mers-saudi-arabia/en/, World Health Organization. Geneva, CH: World Health Organization; cited 2017 11 September; Almario, C.V., Chey, W., Kaung, A., Whitman, C., Fuller, G., Reid, M., Computer-generated vs. Physician-documented history of present illness (HPI): Results of a blinded comparison (2015) Am J Gastroenterol, 110 (1), pp. 170-179. , https://doi.org/10.1038/ajg.2014.356, PMID: 25461620; PubMed Central PMCID: PMC4289091; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14 (2), pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X, PMID: 24355866; (2017) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/mediacentre/factsheets/mers-cov/en/, Fact sheet. Geneva, CH: World Health Organization; updated 2017 May; cited 2017 11 September; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Current Opinion in Pulmonary Medicine, 20 (3), pp. 233-241. , https://doi.org/10.1097/MCP.0000000000000046, Epub 2014/03/15. PMID: 24626235; Senga, M., Arabi, Y.M., Fowler, R.A., Clinical spectrum of the Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) J Infect Public Health, 10 (2), pp. 191-194. , https://doi.org/10.1016/j.jiph.2016.04.008PMID, 27140697; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) Journal of Clinical Virology: The Official Publication of The Pan American Society for Clinical Virology, 61 (2), pp. 275-278. , https://doi.org/10.1016/j.jcv.2014.07.002, Epub 2014/07/31. PMID: 25073585; Collins, R.A., Werling, D., Duggan, S.E., Bland, A.P., Parsons, K.R., Howard, C.J., Gammadelta T cells present antigen to CD4+ alphabeta T cells (1998) Journal of Leukocyte Biology, 63 (6), pp. 707-714. , Epub 1998/06/10. PMID: 9620663; Funk, C.J., Wang, J., Ito, Y., Travanty, E.A., Voelker, D.R., Holmes, K.V., Infection of human alveolar macrophages by human coronavirus strain 229E (2012) The Journal of General Virology, 93, pp. 494-503. , https://doi.org/10.1099/vir.0.038414-0, Epub 2011/11/18. PMID: 22090214; PubMed Central PMCID: PMCPmc3352353; Kopf, M., Schneider, C., Nobs, S.P., The development and function of lung-resident macrophages and dendritic cells (2015) Nature Immunology, 16 (1), pp. 36-44. , https://doi.org/10.1038/ni.3052PMID, Epub 2014/12/19. 25521683; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrobial Agents and Chemotherapy, 58 (8), pp. 4885-4893. , https://doi.org/10.1128/AAC.03036-14, Epub 2014/05/21. PMID: 24841273; PubMed Central PMCID: PMCPmc4136000; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrobial Agents and Chemotherapy, 58 (8), pp. 4875-4884. , https://doi.org/10.1128/AAC.03011-14, PMID: 24841269; PubMed Central PMCID: PMC4136071; Cong, Y., McArthur, M.A., Cohen, M., Jahrling, P.B., Janosko, K.B., Josleyn, N., Characterization of yellow fever virus infection of human and non-human primate antigen presenting cells and their Interaction with CD4+ T Cells (2016) PLoS Negl Trop Dis, 10 (5), p. e0004709. , https://doi.org/10.1371/journal.pntd.0004709, PMID: 27191161; PubMed Central PMCID: PMC4871483; Sandow, D., Hofmann, F., Gropler, K., Nuhn, P., Statistical analysis of the in-vitro action of combination antiviral agents (1990) Z Gesamte Hyg, 36 (9), pp. 471-474. , PMID: 2173288; Wulff, N.H., Tzatzaris, M., Young, P.J., Monte Carlo simulation of the Spearman-Kaerber TCID50 (2012) J Clin Bioinforma, 2 (1), p. 5. , https://doi.org/10.1186/2043-9113-2-5, PMID: 22330733; PubMed Central PMCID: PMC3331834; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nature Reviews Microbiology, 11 (12), pp. 836-848. , https://doi.org/10.1038/nrmicro3143, Epub 2013/11/13. PMID: 24217413; Chu, H., Zhou, J., Wong, B.H., Li, C., Cheng, Z.S., Lin, X., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205. , https://doi.org/10.1016/j.virol.2014.02.018, PMID: 24725946; Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M.C., Liu, Y.J., Rabourdin-Combe, C., Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells (1997) J Exp Med, 186 (6), pp. 813-823. , PMID: 9294136; PubMed Central PMCID: PMC2199042; Granelli-Piperno, A., Finkel, V., Delgado, E., Steinman, R.M., Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells (1999) Curr Biol, 9 (1), pp. 21-29. , PMID: 9889121; Rescigno, M., Winzler, C., Delia, D., Mutini, C., Lutz, M., Ricciardi-Castagnoli, P., Dendritic cell maturation is required for initiation of the immune response (1997) Journal of Leukocyte Biology, 61 (4), pp. 415-421. , PMID: 9103227; Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Immunobiology of dendritic cells (2000) Annu Rev Immunol, 18, pp. 767-811. , https://doi.org/10.1146/annurev.immunol.18.1.767, PMID: 10837075; Hart, D.N., Dendritic cells: Unique leukocyte populations which control the primary immune response (1997) Blood, 90 (9), pp. 3245-3287. , PMID: 9345009; Sallusto, F., Lanzavecchia, A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregu-lated by tumor necrosis factor alpha (1994) J Exp Med, 179 (4), pp. 1109-1118. , PMID: 8145033; PubMed Central PMCID: PMC2191432; Spiegel, M., Schneider, K., Weber, F., Weidmann, M., Hufert, F.T., Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells (2006) The Journal of General Virology, 87, pp. 1953-1960. , https://doi.org/10.1099/vir.0.81624-0, Epub 2006/06/09. PMID: 16760397; Kruse, M., Rosorius, O., Kratzer, F., Stelz, G., Kuhnt, C., Schuler, G., Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity (2000) Journal of Virology, 74 (15), pp. 7127-7136. , PMID: 10888653; PubMed Central PMCID: PMC112231; Alloatti, A., Kotsias, F., Magalhaes, J.G., Amigorena, S., Dendritic cell maturation and cross-presentation: Timing matters! (2016) Immunol Rev, 272 (1), pp. 97-108. , https://doi.org/10.1111/imr.12432, PMID: 27319345; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and VIRO-logical analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13 (9), pp. 745-751. , https://doi.org/10.1016/S1473-3099(13)70154-3, Epub 2013/06/21. PMID: 23782859; Huang, K.J., Su, I.J., Theron, M., Wu, Y.C., Lai, S.K., Liu, C.C., An interferon-gamma-related cytokine storm in SARS patients (2005) Journal of Medical Virology, 75 (2), pp. 185-194. , https://doi.org/10.1002/jmv.20255, Epub 2004/12/17. PMID: 15602737; Nicholls, J.M., Poon, L.L., Lee, K.C., Ng, W.F., Lai, S.T., Leung, C.Y., Lung pathology of fatal severe acute respiratory syndrome (2003) Lancet, 361 (9371), pp. 1773-1778. , PMID: 12781536; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) The Journal of Infectious Diseases, 209 (9), pp. 1331-1342. , https://doi.org/10.1093/infdis/jit504, Epub 2013/09/26. PMID: 24065148; Jiang, Y., Xu, J., Zhou, C., Wu, Z., Zhong, S., Liu, J., Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome (2005) American Journal of Respiratory and Critical Care Medicine, 171 (8), pp. 850-857. , https://doi.org/10.1164/rccm.200407-857OC, Epub 2005/01/20. PMID: 15657466; Tynell, J., Westenius, V., Ronkko, E., Munster, V.J., Melen, K., Osterlund, P., Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells (2016) The Journal of General Virology, 97 (2), pp. 344-355. , https://doi.org/10.1099/jgv.0.000351, PMID: 26602089; PubMed Central PMCID: PMC4804640; Scheuplein, V.A., Seifried, J., Malczyk, A.H., Miller, L., Hocker, L., Vergara-Alert, J., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) Journal of Virology, 89 (7), pp. 3859-3869. , https://doi.org/10.1128/JVI.03607-14, PMID: 25609809; PubMed Central PMCID: PMC4403407; Bergamaschi, A., Pancino, G., Host hindrance to HIV-1 replication in monocytes and macrophages (2010) Retro-Virology, 7, p. 31. , https://doi.org/10.1186/1742-4690-7-31, PMID: 20374633; PubMed Central PMCID: PMC2868797; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4 (3), pp. e00165-e00213. , https://doi.org/10.1128/mBio.00165-13, PMID: 23631916; PubMed Central PMCID: PMC3663187; Johansen, L.M., Brannan, J.M., Delos, S.E., Shoemaker, C.J., Stossel, A., Lear, C., FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection (2013) Sci Transl Med, 5 (190), p. 190ra79. , https://doi.org/10.1126/scitranslmed.3005471, PMID: 23785035; PubMed Central PMCID: PMC3955358; Thome, R., Moraes, A.S., Bombeiro, A.L., Farias Ados, S., Francelin, C., da Costa, T.A., Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis (2013) PLoS One, 8 (6), p. e65913. , https://doi.org/10.1371/journal.pone.0065913, PMID: 23799062; PubMed Central PMCID: PMC3683039; Savarino, A., Boelaert, J.R., Cassone, A., Majori, G., Cauda, R., Effects of chloroquine on viral infections: An old drug against today’s diseases? (2003) Lancet Infect Dis, 3 (11), pp. 722-727. , PMID: 14592603; Akpovwa, H., Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity (2016) Cell Biochem Funct, 34 (4), pp. 191-196. , https://doi.org/10.1002/cbf.3182, PMID: 27001679; PubMed Central PMCID: PMC5071688; Long, J., Wright, E., Molesti, E., Temperton, N., Barclay, W., Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry (2015) F1000Res, 4, p. 30. , https://doi.org/10.12688/f1000research.6085.2, PMID: 26069727; PubMed Central PMCID: PMC4431382; Madrid, P.B., Chopra, S., Manger, I.D., Gilfillan, L., Keepers, T.R., Shurtleff, A.C., A systematic screen of FDA-approved drugs for inhibitors of biological threat agents (2013) PLoS One, 8 (4), p. e60579. , https://doi.org/10.1371/journal.pone.0060579, PMID: 23577127; PubMed Central PMCID: PMC3618516; Porotto, M., Orefice, G., Yokoyama, C.C., Mungall, B.A., Realubit, R., Sganga, M.L., Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy (2009) Journal of Virology, 83 (10), pp. 5148-5155. , https://doi.org/10.1128/JVI.00164-09, PMID: 19264786; PubMed Central PMCID: PMC2682105; Miyamoto, S., Miyake, N., Jarskog, L.F., Fleischhacker, W.W., Lieberman, J.A., Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents (2012) Mol Psychiatry, 17 (12), pp. 1206-1227. , https://doi.org/10.1038/mp.2012.47, PMID: 22584864; Chu, J.J., Ng, M.L., Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway (2004) Journal of Virology, 78 (19), pp. 10543-10555. , https://doi.org/10.1128/JVI.78.19.10543-10555.2004PMID, 15367621; PubMed Central PMCID: PMC516396","Holbrook, M.R.; Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, United States; email: Michael.holbrook@nih.gov",,"Public Library of Science",19326203,,POLNC,"29566060","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85044284357 "Wang C., Xia S., Zhang P., Zhang T., Wang W., Tian Y., Meng G., Jiang S., Liu K.","55448261100;56410369000;57201123354;56491811000;57193552464;57201113963;57194340788;56491898300;8561320700;","Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors",2018,"Journal of Medicinal Chemistry","61","5",,"2018","2026",,9,"10.1021/acs.jmedchem.7b01732","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043449468&doi=10.1021%2facs.jmedchem.7b01732&partnerID=40&md5=0ea3a80d0e57c00ff6c1119c02225626","State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai, 200032, China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Pharmaceutical Preparation Section, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100144, China","Wang, C., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Xia, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai, 200032, China; Zhang, P., Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Zhang, T., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Wang, W., Pharmaceutical Preparation Section, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100144, China; Tian, Y., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Meng, G., Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiang, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai, 200032, China, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Liu, K., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China","The hexameric α-helical coiled-coil formed between the C-terminal and N-terminal heptad repeat (CHR and NHR) regions of class I viral fusion proteins plays an important role in mediating the fusion of the viral and cellular membranes and provides a clear starting point for molecular mimicry that drives viral fusion inhibitor design. Unfortunately, such peptide mimicry of the short α-helical region in the CHR of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein has been thwarted by the loss of the peptide's native α-helical conformation when taken out of the parent protein structure. Here, we describe that appropriate all-hydrocarbon stapling of the short helical portion-based peptide to reinforce its bioactive secondary structure remarkably improves antiviral potency. The resultant stapled peptide P21S10 could effectively inhibit infection by MERS-CoV pseudovirus and its spike protein-mediated cell-cell fusion; additionally, P21S10 exhibits improved pharmacokinetic properties than HR2P-M2, suggesting strong potential for development as an anti-MERS-CoV therapeutic. © 2018 American Chemical Society.",,"hr 2p m 2; hydrocarbon; p 21; p 21l 10; p 21l 2; p 21l 4; p 21l 5; p 21l 8; p 21l 9; p 21r 8; p 21r 8f; p 21r 8z; p 21r 8zf; p 21s 1; p 21s 10; p 21s 2; p 21s 3; p 21s 4; p 21s 5; p 21s 6; p 21s 7; p 21s 8; p 21s 8f; p 21s 8z; p 21s 8zf; p 21s 9; unclassified drug; virus fusion inhibitor; virus fusion protein; vitronectin; antivirus agent; hydrocarbon; peptide; alpha helix; amino acid sequence; amino terminal sequence; animal experiment; antiviral activity; area under the curve; Article; Calu-3 cell line; carboxy terminal sequence; cell fusion; controlled study; crystal structure; cyclization; drug clearance; drug potency; EC50; Huh-7 cell line; maximum concentration; mean residence time; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; molecular mimicry; nonhuman; peptide synthesis; protein conformation; rat; selectivity index; virus inhibition; volume of distribution; chemistry; Coronavirus infection; drug development; drug effect; human; Middle East respiratory syndrome coronavirus; virus entry; Antiviral Agents; Coronavirus Infections; Drug Discovery; Humans; Hydrocarbons; Middle East Respiratory Syndrome Coronavirus; Peptides; Protein Conformation, alpha-Helical; Virus Internalization","Harrison, S.C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698; Dimitrov, D.S., Virus entry: Molecular mechanisms and biomedical applications (2004) Nat. Rev. Microbiol., 2, pp. 109-122; Eckert, D.M., Kim, P.S., Mechanisms of viral membrane fusion and its inhibition (2001) Annu. Rev. Biochem., 70, pp. 777-810; Vigant, F., Santos, N.C., Lee, B., Broad-spectrum antivirals against viral fusion (2015) Nat. Rev. Microbiol., 13, pp. 426-437; Lu, M., Blacklow, S.C., Kim, P.S.A., Trimeric structural domain of the HIV-1 transmembrane glycoprotein (1995) Nat. Struct. Mol. Biol., 2, pp. 1075-1082; Lai, W., Wang, C., Yu, F., Lu, L., Wang, Q., Jiang, X., Xu, X., Liu, K., An effective strategy for recapitulating N-terminal heptad repeat trimers in enveloped virus surface glycoproteins for therapeutic applications (2016) Chem. Sci., 7, pp. 2145-2150; Follis, K.E., York, J., Nunberg, J.H., Serine-scanning mutagenesis studies of the C-terminal heptad repeats in the SARS coronavirus S glycoprotein highlight the important role of the short helical region (2005) Virology, 341, pp. 122-129; Bullough, P.A., Hughson, F.M., Skehel, J.J., Wiley, D.C., Structure of influenza haemagglutinin at the pH of membrane fusion (1994) Nature, 371, pp. 37-43; Liu, S., Xiao, G., Chen, Y., He, Y.X., Niu, J.K., Escalante, C.R., Xiong, H., Jiang, S., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363, pp. 938-947; Miller, E.H., Harrison, J.S., Radoshitzky, S.R., Higgins, C.D., Chi, X., Dong, L., Kuhn, J.H., Chandran, K., Inhibition of Ebola virus entry by a C-peptide targeted to endosomes (2011) J. Biol. Chem., 286, pp. 15854-15861; Lu, L., Liu, Q., Zhu, Y., Chan, K., Qin, L., Li, Y., Wang, Q., Jiang, S., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Berkhout, B., Eggink, D., Sanders, R.W., Is there a future for antiviral fusion inhibitors? (2012) Curr. Opin. Virol., 2, pp. 50-59; Azzarito, V., Long, K., Murphy, N.S., Wilson, A.J., Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules (2013) Nat. Chem., 5, pp. 161-173; Cai, L., Jiang, S., Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41 (2010) ChemMedChem, 5, pp. 1813-1824; Pan, C., Liu, S., Jiang, S., HIV-1 gp41 fusion intermediate: A target for HIV therapeutics (2010) J. Formosan Med. Assoc., 109, pp. 94-105; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Gao, G., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 13134-13140; Lau, Y., De Andrade, P., Wu, Y., Spring, D.R., Peptide stapling techniques based on different macrocyclisation chemistries (2015) Chem. Soc. Rev., 44, pp. 91-102; Walensky, L.D., Bird, G.H., Hydrocarbon-stapled peptides: Principles, practice, and progress (2014) J. Med. Chem., 57, pp. 6275-6288; Tan, Y., Lane, D.P., Verma, C.S., Stapled peptide design: Principles and roles of computation (2016) Drug Discovery Today, 21, pp. 1642-1653; Kawamoto, S.A., Coleska, A., Ran, X., Yi, H., Yang, C., Wang, S., Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-Catenin/B-Cell CLL/lymphoma 9 (BCL9) protein-protein interaction (2012) J. Med. Chem., 55, pp. 1137-1146; Hojo, K., Hossain, M.A., Tailhades, J., Shabanpoor, F., Wong, L.L.L., Ong-Palsson, E.E.K., Kastman, H.E., Bathgate, R.A.D., Development of a single-chain peptide agonist of the relaxin-3 receptor using hydrocarbon stapling (2016) J. Med. Chem., 59, pp. 7445-7456; Frank, A.O., Vangamudi, B., Feldkamp, M.D., Souza-Fagundes, E.M., Luzwick, J.W., Cortez, D., Olejniczak, E.T., Fesik, S.W., Discovery of a potent stapled helix peptide that binds to the 70N domain of replication protein A (2014) J. Med. Chem., 57, pp. 2455-2461; Hilinski, G.J., Kim, Y.W., Hong, J., Kutchukian, P.S., Crenshaw, C.M., Berkovitch, S.S., Chang, A., Verdine, G.L., Stitched alpha-helical peptides via bis ring-closing metathesis (2014) J. Am. Chem. Soc., 136, pp. 12314-12322; Chang, Y., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K.H., Olson, K.A., Sawyer, T.K., Stapled alpha-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. E3445-E3454; Wang, C., Shi, W., Cai, L., Lu, L., Wang, Q., Zhang, T., Li, J., Liu, K., Design, synthesis, and biological evaluation of highly potent small molecule-peptide conjugates as new HIV-1 fusion inhibitors (2013) J. Med. Chem., 56, pp. 2527-2539; Wang, C., Shi, W., Cai, L., Lu, L., Yu, F., Wang, Q., Jiang, X., Liu, K., Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains (2014) J. Antimicrob. Chemother., 69, pp. 1537-1545; Wuo, M., Mahon, A.B., Arora, P.S., An effective strategy for stabilizing minimal coiled coil mimetics (2015) J. Am. Chem. Soc., 137, pp. 11618-11621; Apostolovic, B., Danial, M., Klok, H.A., Coiled coils: Attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials (2010) Chem. Soc. Rev., 39, pp. 3541-3575; Zheng, B., Wang, K., Lu, L., Yu, F., Cheng, M., Jiang, S., Liu, K., Cai, L., Hydrophobic mutations in buried polar residues enhance HIV-1 gp41 N-terminal heptad repeat-C-terminal heptad repeat interactions and C-peptides' anti-HIV activity (2014) AIDS, 28, pp. 1251-1260; Qi, Z., Shi, W., Xue, N., Pan, C., Jing, W., Liu, K., Jiang, S., Rationally designed anti-HIV peptides containing multifunctional domains as molecule probes for studying the mechanisms of action of the first and second generation HIV fusion inhibitors (2008) J. Biol. Chem., 283, pp. 30376-30384; Anderhuber, N., Fladischer, P., Gruber-Khadjawi, M., Mairhofer, J., Striedner, G., Wiltschi, B., High-level biosynthesis of norleucine in E.coli for the economic labeling of proteins (2016) J. Biotechnol., 235, pp. 100-111; Fletcher, J.M., Boyle, A.L., Bruning, M., Bartlett, G.J., Vincent, T.L., Zaccai, N.R., Armstrong, C.T., Woolfson, D.N., A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology (2012) ACS Synth. Biol., 1, pp. 240-250; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Memish, Z.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, 5, p. 13. , e01062; Lawless, M.K., Barney, S., Guthrie, K.I., Bucy, T.B., Petteway, S.R., Jr., Merutka, G., HIV-1 membrane fusion mechanism: Structural studies of the interactions between biologically-active peptides from gp41 (1996) Biochemistry, 35, pp. 13697-13708; Cai, L.F., Balogh, E., Gochin, M., Stable extended human immunodeficiency virus type 1 gp41 coiled coil as an effective target in an assay for high-affinity fusion inhibitors (2009) Antimicrob. Agents Chemother., 53, pp. 2444-2449; Dwyer, J.J., Wilson, K.L., Davison, D.K., Freel, S.A., Seedorff, J.E., Wring, S.A., Tvermoes, N.A., Delmedico, M.K., Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 12772-12777; Shi, W.G., Cai, L.F., Lu, L., Wang, C., Wang, K., Xu, L., Zhang, S., Liu, K.L., Design of highly potent HIV fusion inhibitors based on artificial peptide sequences (2012) Chem. Commun., 48, pp. 11579-11581; Zhu, X.J., Zhu, Y., Ye, S., Wang, Q., Xu, W., Su, S., Sun, Z.W., Jiang, S.B., Improved pharmacological and structural properties of HIV fusion inhibitor AP3 over enfuvirtide: Highlighting advantages of artificial peptide strategy (2015) Sci. Rep., 5, p. 13028; Cui, H., Qing, J., Guo, Y., Wang, Y., Cui, L., He, T., Zhang, L., Liu, L., Stapled peptide-based membrane fusion inhibitors of hepatitis C virus (2013) Bioorg. Med. Chem., 21, pp. 3547-3554; Liu, Q., Xia, S., Sun, Z., Wang, Q., Du, L., Lu, L., Jiang, S., Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry (2015) Antimicrob. Agents Chemother., 59, pp. 742-744; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Zhou, Y., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10, p. 266","Jiang, S.; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, China; email: shibojiang@fudan.edu.cn",,"American Chemical Society",00222623,,JMCMA,"29442512","English","J. Med. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85043449468 "Abuelgasim K.A., Alsharhan Y., Alenzi T., Alhazzani A., Ali Y.Z., Jazieh A.R.","36112701400;57201116313;57201123543;57201113054;55991355300;6701681849;","The use of complementary and alternative medicine by patients with cancer: Af cross-sectional survey in Saudi Arabia",2018,"BMC Complementary and Alternative Medicine","18","1", 88,"","",,5,"10.1186/s12906-018-2150-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043464580&doi=10.1186%2fs12906-018-2150-8&partnerID=40&md5=85bd24c30a12dda0269f3a32d1ef1d36","King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Abdulaziz Medical City, Department of Oncology, Ministry of National Guards, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia","Abuelgasim, K.A., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Department of Oncology, Ministry of National Guards, Riyadh, Saudi Arabia; Alsharhan, Y., King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Alenzi, T., King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Alhazzani, A., King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Ali, Y.Z., King Abdulaziz Medical City, Department of Oncology, Ministry of National Guards, Riyadh, Saudi Arabia; Jazieh, A.R., King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, King Abdulaziz Medical City, Department of Oncology, Ministry of National Guards, Riyadh, Saudi Arabia","Background: A significant proportion of cancer patients use complementary and alternative medicine (CAM) along with conventional therapies (CT), whereas a smaller proportion delay or defer CT in favor of CAM. Previous studies exploring CAM use among cancer patients in the Middle East region have shown discrepant results. This study investigates the prevalence and pattern of CAM use by Saudi cancer patients. It also discusses the possible benefits and harm related to CAM use by cancer patients, and it explores the beliefs patients hold and their transparency with health care providers regarding their CAM use. Methods: A cross-sectional study was conducted in oncology wards and outpatient clinics by using face-to-face interviews with the participants. Results: A total of 156 patients with a median age of 50 years (18-84) participated in the study. The prevalence of CAM use was 69.9%; the most prominent types of CAM were those of a religious nature, such as supplication (95.4%), Quran recitation (88.1%), consuming Zamzam water (84.4%), and water upon which the Quran has been read (63.3%). Drinking camel milk was reported by 24.1% of CAM users, whereas camel urine was consumed by 15.7%. A variety of reasons were given for CAM use: 75% reported that they were using CAM to treat cancer, enhance mood (18.3%),control pain (11.9%), enhance the immune system (11%),increase physical fitness (6.4%), and improve appetite (4.6%). Thirty percent of CAM users had discussed the issue with their doctors; only 7.7% had done so with their nurses. Conclusions: The use of CAM, including camel products, is highly prevalent among cancer patients in the Middle East, but these patients do not necessarily divulge their CAM use to their treating physicians and nurses. Although CAM use can be beneficial, some can be very harmful, especially for cancer patients. Association is known between camel products and brucellosis and Middle East respiratory syndrome coronavirus (MERS-CoV). Both can lead to tremendous morbidity in immune-compromised patients. Doctor-patient communication regarding CAM use is of paramount importance in cancer care. © 2018 The Author(s).","Brucellosis; Camel products; Cancer; Complementary and alternative medicine; Middle East respiratory syndrome coronavirus (MERS-CoV); Religious belief","antineoplastic agent; adult; aged; alternative medicine; appetite; Article; cancer chemotherapy; cancer radiotherapy; cancer surgery; cross-sectional study; female; fitness; health belief; health survey; hematologic malignancy; human; immune system; interview; major clinical study; male; malignant neoplasm; mood; oncology ward; outpatient department; pain; prevalence; religion; Saudi Arabia; solid malignant neoplasm; very elderly; alternative medicine; middle aged; neoplasm; patient; questionnaire; statistics and numerical data; utilization; young adult; Adult; Aged; Aged, 80 and over; Complementary Therapies; Cross-Sectional Studies; Female; Humans; Male; Middle Aged; Neoplasms; Patients; Prevalence; Saudi Arabia; Surveys and Questionnaires; Young Adult","Alternative or Integrative: What's in a name?., , https://nccih.nih.gov/health/integrative-healthnocvsa, Last accessed 29 Oct 2017; The Use of Complementary and Alternative Medicine in the United States: About CAM., , https://nccih.nih.gov/research/statistics/2007/camsurvey_fs1.htm, Last accessed 29 Oct 2017; Harris, P.E., Cooper, K.L., Relton, C., Thomas, K.J., Prevalence of complementary and alternative medicine (CAM) use by general population a systematic review and update (2012) Int J Clin Pract, 66, pp. 924-939; Posadzki, P., Watson, L.K., Alotaibi, A., Ernst, E., Prevalence of use of complementary and alternative medicine (CAM) by patients/consumers in the UK: systematic review of surveys (2013) Clin Med (Lond), 13, pp. 126-131; Paul, M., Davey, B., Senf, B., Stoll, C., Munstedt, K., Mucke, R., Patients with advanced cancer and their usage of complementary and alternative medicine (2013) J Cancer Res Clin Oncol, 139, pp. 1515-1522; Lee, M.M., Chang, J.S., Jacobs, B., Wrensch, M.R., Complementary and alternative medicine use among men with prostate cancer in 4 ethnic populations (2002) Am J Public Health, 92, pp. 1606-1609; Chrystal, K., Allan, S., Forgeson, G., Isaacs, R., The use of complementary/alternative medicine by cancer patients in a New Zealand regional cancer treatment Centre (2003) NZ Med J, 116, p. U296; Cassileth, B.R., Deng, G., Complementary and alternative therapies for cancer (2004) Oncologist, 9, pp. 80-89; Shukla, Y., Pal, S.K., Complementary and alternative cancer therapies: past, present and the future scenario (2004) Asian Pac J Cancer Prev, 5, pp. 3-14; Adams, M., Jewell, A.P., The use of complementary and alternative medicine by cancer patients. Int Semin Surg Oncol. 2007;4:10 Verhoef MJ, Balneavea LG, boon HS, Vroegindewey a. Reasons for and characteristics associated with complementary and alternative medicine use among adult cancer patients: a systematic review (2005) Integr Cancer Ther, 4, pp. 274-286; White, M.A., Verhoef, M.J., Davison, B.J., Gunn, H., Cooke, K., Seeking mind, body and Spirit healing-why some men with prostate cancer choose CAM (complementary and alternative medicine) over conventional cancer treatments (2008) Integr Med Insights, 3, pp. 1-11; Alrowais, N.A., Alyousefi, N.A., The prevalence extent of complementary and alternative medicine (CAM) use among Saudis (2017) Saudi Pharm J, 25, pp. 306-318; Al-Faris, E.A., The pattern of alternative medicine use among patients attending health centers in a military community in Riyadh (2000) J Family Community Med, 7, pp. 17-25; Albedaham, K.M.K., Alolemy, A.T., Al Mudaiheem, A.A., Al Eidi, S., Al-Yahia, O.A., The use and out-of-pocket spending on complementary and alternative medicine in Qassim province, Saudi Arabia (2013) Ann Saudi Med, 33, pp. 282-289; Al-Saeedi, M., Elzubier, A.G., Bahnassi, A.A., Al-Dawood, K.M., Patterns of belief and use of traditional remedies by diabetic patients in mecca (2003) Saudi Arabia East Mediterr Health J, 9, pp. 99-107; Sait, K.H., Anfinan, N.M., Eldeek, B., Al-Ahmadi, J., Al-Attas, M., Sait, H.K., Perception of patients with cancer towards support management services and use of complementary alternative medicine. A single institution hospital-based study in Saudi Arabia (2014) Asian Pac J Cancer Prev, 15, pp. 2547-2554; Jazieh, A.R., Al Sudairy, R., Abulkhair, O., Alaskar, A., Al Safi, F., Sheblaq, N., Use of complementary and alternative medicine by patients with cancer in Saudi Arabia (2012) J Altern Complement Med, 18, pp. 1045-1049; AlBedah, A., Challenges and future plan for national center of complementary medicine center in Saudi Arabia. (Tabt) Arab (2012) Periodical J Nat Center Complement Med Center Saudi Arabia, 1, p. 5; Jazieh, A.R., Kopp, M., Foraida, M., Ghouse, M., Khalil, M., Savidqe, M., The use of dietary supplements by veterans with cancer (2004) J Altern Complement Med, 10, pp. 560-564; Ventola, C.L., Current issues regarding complementary and alternative medicine (CAM) in the United States. Part 3: policies and practices regarding dietary supplements in health care facilities (2010) PT, 35, pp. 570-576; Clarke, T.C., Black, L.I., Trends in the use of complementary health approaches among adults: United States, 2002-2012 (2015) Natl Health Stat Report, 10, pp. 1-16; Burstein, H.J., Krilov, L., Aragon-Ching, J.B., Baxter, N.N., Chiorean, E.G., Chow, W.A., Clinical cancer advances 2017: annual report on progress against cancer from the American Society of Clinical Oncology (2017) J ClinOncol, 35, pp. 1341-1367; Wojtacki, J., Pawlowski, L., Pawlowska, I., Lichodziejewska-Niemeirko, S.M., Complementary and alternative medicine (CAM) use among patients with cancer undergoing palliative care: a pilot study of a single institution in Poland (2017) J Clin Oncol, 35 (5), p. 178; Hoffman, C., Benefits of complementary therapies (2007) Breast Cancer Res, 9, p. S9; Navarro, V.J., Barnhart, H., Bonkovsky, H.L., Davern, T., Fontana, R.J., Grant, L., Liver injury from herbals and dietary supplements in the U.S. drug-induced liver injury network (2014) Hepatology, 60, pp. 1399-1408; Teo, D.C., Ng, P.S., Tan, S.H., Lim, A.T., Toh, D.S., Chan, S.Y., Cheong, H.H., Drug-induced liver injury associated with complementary and alternative medicine: a review of adverse event reports in an Asian community from 2009 to 2014 (2016) BMC Complement Altern Med, 16, p. 192; Sparreboom, A., Cox, M.C., Acharya, M.R., Figg, W.D., Herbal remedies in the United States: potential adverse interactions with anticancer agents (2004) J Clin Oncol, 22, pp. 2489-2503; Hegazy, A.A., El-Dughaym, A., Alknah, M., Housawi, F.M.T., Hatem, M.E., Studies on mastitis in female camels with special reference to brucellosis (2004) J Camel Sci, 1, pp. 96-102; Abbas, B., Agab, H., A review of camel brucellosis (2002) Prev Vet Med, 55, pp. 47-56; Omer, M.M., Musa, M.T., Bakheit, M.R., Perrett, L., Brucellosis in camels, cattle and humans: association and evaluation of serological tests used for diagnosis of the disease in certain nomadic localities in Sudan (2010) Rev Sci Tech, 29, pp. 663-669; Madkour, M.M., (1989) Brucillosis Butterworths., p. 294. , London; Kiel, F.W., Khan, M.Y., Analysis of 506 consecutive positive serological tests for brucellosis in Saudi Arabia (1987) J Clin Microbial, 25, pp. 1384-1387; http://www.CDC.gov/brucellosis/index.html, Last accessed 29 Oct 2017; Sikkema, R.S., Faraq, E.A.B.A., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Identification of risk factors for primary Middle East respiratory syndrome corona virus infection in camel workers in Qatar during 2013-2014: a case-control study (2017) J Infect Dis, 215, pp. 1702-1705; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralizing antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill, 19","Abuelgasim, K.A.; King Abdullah International Medical Research CenterSaudi Arabia; email: ahmedkh1@ngha.med.sa",,"BioMed Central Ltd.",14726882,,BCAMC,"29530034","English","BMC Complement. Altern. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85043464580 "Shaman J., Morita H., Birger R., Boyle M., Comito D., Lane B., Ligon C., Smith H., Desalle R., Planet P.","57203074277;57201295094;14027791500;57201291438;56399289300;57201293492;57201288760;55984499800;10240465000;6603245247;","Asymptomatic Summertime Shedding of Respiratory Viruses",2018,"Journal of Infectious Diseases","217","7",,"1074","1077",,9,"10.1093/infdis/jix685","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044233891&doi=10.1093%2finfdis%2fjix685&partnerID=40&md5=2dc07764e8b001ae433e442575e78b60","Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States; Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, United States; Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Jacobi Medical Center, New York, NY, United States; Oregon Health and Science University, Portland, United States","Shaman, J., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States, Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY, United States; Morita, H., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States; Birger, R., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States; Boyle, M., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States, Department of Pediatrics, Jacobi Medical Center, New York, NY, United States; Comito, D., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States; Lane, B., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States; Ligon, C., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States; Smith, H., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, New York, NY 10032, United States, Oregon Health and Science University, Portland, United States; Desalle, R., Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY, United States; Planet, P., Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, NY, United States, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, United States, Children's Hospital of Philadelphia, Philadelphia, PA, United States","To determine rates of both symptomatic and asymptomatic infection among ambulatory adults, we collected nasopharyngeal swab specimens, demographic characteristics, and survey information from 1477 adult visitors to a New York City tourist attraction during April-July 2016. Multiplex polymerase chain reaction analysis was used to identify specimens positive for common respiratory viruses. A total of 7.2% of samples tested positive for respiratory viruses; among positive samples, 71.0% contained rhinovirus, and 21.5% contained coronavirus. Influenza virus, respiratory syncytial virus, and parainfluenza virus were also detected. Depending on symptomatologic definition, 57.7%-93.3% of positive samples were asymptomatic. These findings indicate that significant levels of asymptomatic respiratory viral shedding exist during summer among the ambulatory adult population. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.","Asymptomatic infection; common cold questionnaire; definition of symptomatic infection; respiratory viruses; viral shedding","adult; aged; asymptomatic infection; Conference Paper; Coronavirinae; Coronavirus infection; female; human; Human metapneumovirus; Human metapneumovirus infection; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus A; infection rate; influenza; Influenza virus; male; multiplex polymerase chain reaction; New York; Parainfluenza virus infection; priority journal; respiratory syncytial virus infection; Rhinovirus; Rhinovirus infection; summer; virus shedding; classification; isolation and purification; nasopharynx; physiology; season; virology; virus; virus shedding; Humans; Multiplex Polymerase Chain Reaction; Nasopharynx; New York City; Seasons; Virus Shedding; Viruses","Centers for Disease Control and Prevention (CDC). Weekly US Influenza Surveillance Report., , https://www.cdc.gov/flu/weekly/, Atlanta, GA: CDC, 2017. Accessed 21 April 2017; (2017) Global Influenza Programme., , http://www.who.int/influenza/en, World Health Organization (WHO). Geneva, Switzerland: WHO. Accessed 21 April 2017; Powell, H., Smart, J., Wood, L.G., Validity of the common cold questionnaire (CCQ) in asthma exacerbations (2008) PLoS One, 3, p. e1802; Murphy, V.E., Powell, H., Wark, P.A.B., Gibson, P.G., A prospective study of respiratory viral infection in pregnant women with and without asthma (2013) Chest, 144, pp. 420-427; Wiselka, M.J., Nicholson, K.G., Kent, J., Cookson, J.B., Tyrrell, D.A., Prophylactic intranasal alpha 2 interferon and viral exacerbations of chronic respiratory disease (1991) Thorax, 46, pp. 706-711; Papenburg, J., Baz, M., Hamelin, M.E., Household transmission of the 2009 pandemic A/H1N1 influenza virus: Elevated laboratory-confirmed secondary attack rates and evidence of asymptomatic infections (2010) Clin Infect Dis, 51, pp. 1033-1041; Hsieh, Y.H., Tsai, C.A., Lin, C.Y., Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan (2014) BMC Infect Dis, 14, p. 80. , CIDER Research Team; Calvo, C., Casas, I., Garcia-Garcia, M.L., Role of rhinovirus C respiratory infections in sick and healthy children in Spain (2010) Pediatr Infect Dis J, 29, pp. 717-720; Principi, N., Zampiero, A., Gambino, M., Prospective evaluation of rhinovirus infection in healthy young children (2015) J Clin Virol, 66, pp. 83-89; Pierce, V.M., Hodinka, R.L., Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children (2012) J Clin Microbiol, 50, pp. 3458-3465; Popowitch, E.B., O'Neill, S.S., Miller, M.B., Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses (2013) J Clin Microbiol, 51, pp. 1528-1533","Shaman, J.; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1104E, United States; email: jls106@cumc.columbia.edu",,"Oxford University Press",00221899,,JIDIA,"29300926","English","J. Infect. Dis.",Conference Paper,"Final",Open Access,Scopus,2-s2.0-85044233891 "Hui D.S.","7101862411;","Systemic corticosteroid therapy may delay viral clearance in patients with middle east respiratory syndrome coronavirus infection",2018,"American Journal of Respiratory and Critical Care Medicine","197","6",,"700","701",,2,"10.1164/rccm.201712-2371ED","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045188253&doi=10.1164%2frccm.201712-2371ED&partnerID=40&md5=2a6bc9a96ac70f1aa789d63a11fb17a0","Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong","Hui, D.S., Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin, Hong Kong",[No abstract available],,"corticosteroid; interferon; lopinavir; virus RNA; corticosteroid; assisted ventilation; corticosteroid therapy; Editorial; human; influenza A (H1N1); Middle East respiratory syndrome; nonhuman; priority journal; quantitative analysis; respiratory tract infection; reverse transcription polymerase chain reaction; systemic therapy; viral clearance; virus pneumonia; virus shedding; Coronavirus infection; critical illness; Middle East respiratory syndrome coronavirus; Adrenal Cortex Hormones; Coronavirus Infections; Critical Illness; Humans; Middle East Respiratory Syndrome Coronavirus","Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J Infect Dis, 209, pp. 1331-1342; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - Clinicopathological and ultrastructural study (2018) Histopathology, 72, pp. 516-524; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically ill patients with the Middle East respiratory syndrome: A multicenter retrospective cohort study (2017) Crit Care Med, 45, pp. 1683-1695; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Almekhlafi, G.A., Hussein, M.A., Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome (2018) Am J Respir Crit Care Med, 197, pp. 757-767; Lee, N., Allen Chan, K.C., Hui, D.S., Ng, E.K., Wu, A., Chiu, R.W., Effects of early corticosteroid treatment on plasma SARS-associated coronavirus RNA concentrations in adult patients (2004) J Clin Virol, 31, pp. 304-309; Rodrigo, C., Leonardi-Bee, J., Nguyen-Van-Tam, J., Lim, W.S., Corticosteroids as adjunctive therapy in the treatment of influenza (2016) Cochrane Database Syst Rev, 3, p. CD010406; Cao, B., Gao, H., Zhou, B., Deng, X., Hu, C., Deng, C., Adjuvant Corticosteroid Treatment in Adults with Influenza A (H7N9) Viral Pneumonia (2016) Crit Care Med, 44, pp. e318-e328; Li, H., Yang, S.G., Gu, L., Zhang, Y., Yan, X.X., Liang, Z.A., Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia (2017) Influenza Other Respir Viruses, 11, pp. 345-354; Lee, N., Leo, Y.S., Cao, B., Chan, P.K., Kyaw, W.M., Uyeki, T.M., Neuraminidase inhibitors, superinfection and corticosteroids affect survival of influenza patients (2015) Eur Respir J, 45, pp. 1642-1652; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305; Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; (2017) Treatment of MERS-CoV: Information for Clinicians: Clinical Decision-making Support for Treatment of MERS-CoV Patients, Version 4.0, , https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/638628/MERS_CoV_guidance_for_clinicians.pdf, Aug 16 [accessed 2017 Aug 17]; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Treatment with lopinavir/ritonavir or interferon-b1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212, pp. 1904-1913; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084","Hui, D.S.; Department of Medicine and Therapeutics, Chinese University of Hong KongHong Kong",,"American Thoracic Society",1073449X,,AJCME,"29227752","English","Am. J. Respir. Crit. Care Med.",Editorial,"Final",,Scopus,2-s2.0-85045188253 "Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Mady O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Balkhy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group","57211811296;54385796100;6507857242;26039585200;57189068027;57077787200;57192669117;16646325300;55883902400;50161809700;57188964531;57193446664;56563960000;56381466300;55385682500;13409875600;54583983000;57201530493;16232591900;57203397490;57195950548;6701797249;57201518690;56324534900;55222201700;8043511100;10639152700;7103233446;7102786298;","Corticosteroid therapy for critically ill patients with middle east respiratory syndrome",2018,"American Journal of Respiratory and Critical Care Medicine","197","6",,"757","767",,26,"10.1164/rccm.201706-1172OC","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045205939&doi=10.1164%2frccm.201706-1172OC&partnerID=40&md5=f513f776050625c2ea2dc757899f50bb","College of Medicine, Intensive Care Department, MC1425, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, P.O. Box 22490, Riyadh, 11426, Saudi Arabia; Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Intensive Care, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biostatistics and Bioinformatics, Canada; Sunnybrook Hospital, University of Toronto, Toronto, ON, Canada; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Intensive Care, Dr. Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia; Department of Critical Care, King Fahad Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Department of Critical Care, Ohoud Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Department of Critical Care Medicine, King Fahad Medical City, Riyadh, Saudi Arabia; Intensive Care Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Division of Infectious Diseases, Department of Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Department of Critical Care Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Anesthesiology and Intensive Care, Tanta University Hospitals, Tanta, Egypt; Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Intensive Care Department, King Abdulaziz Hospital, Al Ahsa, Saudi Arabia; Department of Research, Ministry of Health, Jeddah, Saudi Arabia; Intensive Care Department, King Fahd Hospital, Jeddah, Saudi Arabia; Department of Infection Prevention and Control, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; International Severe Acute Respiratory and Emerging Infection Consortium, Infectious Diseases Data Observatory, Oxford University, Oxford, United Kingdom; Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Canada; Department of Medicine, Sunnybrook Hospital, Toronto, ON, Canada","Arabi, Y.M., College of Medicine, Intensive Care Department, MC1425, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, P.O. Box 22490, Riyadh, 11426, Saudi Arabia; Mandourah, Y., Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Al-Hameed, F., Department of Intensive Care, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Sindi, A.A., Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Almekhlafi, G.A., Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Hussein, M.A., Department of Biostatistics and Bioinformatics, Canada; Jose, J., Department of Biostatistics and Bioinformatics, Canada; Pinto, R., Sunnybrook Hospital, University of Toronto, Toronto, ON, Canada; Al-Omari, A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Department of Intensive Care, Dr. Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia; Kharaba, A., Department of Critical Care, King Fahad Hospital, Al-Madinah Al-Monawarah, Saudi Arabia, Department of Critical Care, Ohoud Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Almotairi, A., Department of Critical Care Medicine, King Fahad Medical City, Riyadh, Saudi Arabia; Al Khatib, K., Intensive Care Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia; Alraddadi, B., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Shalhoub, S., Division of Infectious Diseases, Department of Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Abdulmomen, A., Department of Critical Care Medicine, King Saud University, Riyadh, Saudi Arabia; Qushmaq, I., Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Mady, A., Department of Anesthesiology and Intensive Care, Tanta University Hospitals, Tanta, Egypt, Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; Mady, O., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Al-Aithan, A.M., Intensive Care Department, King Abdulaziz Hospital, Al Ahsa, Saudi Arabia; Al-Raddadi, R., Department of Research, Ministry of Health, Jeddah, Saudi Arabia; Ragab, A., Intensive Care Department, King Fahd Hospital, Jeddah, Saudi Arabia; Balkhy, H.H., College of Medicine, Intensive Care Department, MC1425, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, P.O. Box 22490, Riyadh, 11426, Saudi Arabia, Department of Infection Prevention and Control, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia; Balkhy, A., Department of Anesthesiology and Intensive Care, Tanta University Hospitals, Tanta, Egypt; Deeb, A.M., King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Al Mutairi, H., King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Al-Dawood, A., College of Medicine, Intensive Care Department, MC1425, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, P.O. Box 22490, Riyadh, 11426, Saudi Arabia; Merson, L., International Severe Acute Respiratory and Emerging Infection Consortium, Infectious Diseases Data Observatory, Oxford University, Oxford, United Kingdom; Hayden, F.G., International Severe Acute Respiratory and Emerging Infection Consortium, Infectious Diseases Data Observatory, Oxford University, Oxford, United Kingdom, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Fowler, R.A., Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, ON, Canada, Department of Critical Care Medicine, Canada, Department of Medicine, Sunnybrook Hospital, Toronto, ON, Canada; Saudi Critical Care Trial Group","Rationale: Corticosteroid therapy is commonly used among critically ill patients with Middle East Respiratory Syndrome (MERS), but its impact on outcomes is uncertain. Analyses of observational studies often do not account for patients' clinical condition at the time of corticosteroid therapy initiation. Objectives: To investigate the association of corticosteroid therapy on mortality and onMERS coronavirusRNAclearance in critically ill patients with MERS. Methods: ICU patients with MERs were included from 14 Saudi Arabian centers between September 2012 and October 2015. We performed marginal structural modeling to account for baseline and time-varying confounders. Measurements and Main Results: Of 309 patients, 151 received corticosteroids. Corticosteroids were initiated at a median of 3.0 days (quartile 1 [Q1]-Q3, 1.0-7.0) from ICU admission. Patients who received corticosteroids weremore likely to receive invasive ventilation (141 of 151 [93.4%] vs. 121 of 158 [76.6%]; P,0.0001) and had higher 90-day crude mortality (112 of 151 [74.2%] vs. 91 of 158 [57.6%]; P = 0.002). Usingmarginal structuralmodeling, corticosteroid therapy was not significantly associated with 90-day mortality (adjusted odds ratio, 0.75; 95% confidence interval, 0.52-1.07; P = 0.12) but was associated with delay inMERS coronavirusRNA clearance (adjusted hazard ratio, 0.35; 95% CI, 0.17-0.72; P = 0.005). Conclusions: Corticosteroid therapy in patients withMERSwas not associated with a difference in mortality after adjustment for timevarying confounders but was associated with delayed MERS coronavirus RNA clearance. These findings highlight the challenges and importance of adjusting for baseline and time-varying confounders when estimating clinical effects of treatments using observational studies. Copyright © 2018 by the American Thoracic Society.","Coronavirus; Corticosteroid; Pneumonia; Respiratory distress syndrome; Saudi Arabia","hydrocortisone; methylprednisolone; virus RNA; corticosteroid; adult; Article; artificial ventilation; clinical article; cohort analysis; corticosteroid therapy; critically ill patient; female; hospital mortality; human; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; priority journal; Saudi Arabia; viral clearance; clinical trial; Coronavirus infection; critical illness; intensive care; multicenter study; procedures; retrospective study; treatment outcome; Adrenal Cortex Hormones; Cohort Studies; Coronavirus Infections; Critical Care; Critical Illness; Female; Humans; Male; Middle Aged; Retrospective Studies; Saudi Arabia; Treatment Outcome","(2017) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, [accessed 2017 Apr 17]; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically ill patients with the Middle East respiratory syndrome: A multicenter retrospective cohort study (2017) Crit Care Med, 45, pp. 1683-1695; Yam, L.Y., Lau, A.C., Lai, F.Y., Shung, E., Chan, J., Wong, V., Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong (2007) J Infect, 54, pp. 28-39; Auyeung, T.W., Lee, J.S., Lai, W.K., Choi, C.H., Lee, H.K., Lee, J.S., The use of corticosteroid as treatment in SARS was associated with adverse outcomes: A retrospective cohort study (2005) J Infect, 51, pp. 98-102; Stockman, L.J., Bellamy, R., Garner, P., SARS: Systematic review of treatment effects (2006) PLoS Med, 3, p. e343; Lee, N., Allen Chan, K.C., Hui, D.S., Ng, E.K., Wu, A., Chiu, R.W., Effects of early corticosteroid treatment on plasma SARS-associated coronavirus RNA concentrations in adult patients (2004) J Clin Virol, 31, pp. 304-309; Lee, N., Leo, Y.S., Cao, B., Chan, P.K., Kyaw, W.M., Uyeki, T.M., Neuraminidase inhibitors, superinfection and corticosteroids affect survival of influenza patients (2015) Eur Respir J, 45, pp. 1642-1652; Rodrigo, C., Leonardi-Bee, J., Nguyen-Van-Tam, J.S., Lim, W.S., Effect of corticosteroid therapy on influenza-related mortality: A systematic review and meta-analysis (2015) J Infect Dis, 212, pp. 183-194; Delaney, J.W., Pinto, R., Long, J., Lamontagne, F., Adhikari, N.K., Kumar, A., The influence of corticosteroid treatment on the outcome of influenza A(H1N1pdm09)-related critical illness (2016) Crit Care, 20, p. 75; Shintani, A.K., Girard, T.D., Eden, S.K., Arbogast, P.G., Moons, K.G., Ely, E.W., Immortal time bias in critical care research: Application of timevarying Cox regression for observational cohort studies (2009) Crit Care Med, 37, pp. 2939-2945; Sjoding, M.W., Luo, K., Miller, M.A., Iwashyna, T.J., When do confounding by indication and inadequate risk adjustment bias critical care studies? A simulation study (2015) Crit Care, 19, p. 195; Suissa, S., Effectiveness of inhaled corticosteroids in chronic obstructive pulmonary disease: Immortal time bias in observational studies (2003) Am J Respir Crit Care Med, 168, pp. 49-53; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Al Omari, A., Sindi, A., Alraddadi, B., The association of corticosteroid therapy and the outcome of critically ill patients with the Middle East respiratory syndrome [abstract] (2017) Am J Respir Crit Care Med, 195, p. A6868; The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), , https://isaric.tghn.org/, [accessed 2017 Nov 15]; Vincent, J.L., De Mendonça, A., Cantraine, F., Moreno, R., Takala, J., Suter, P.M., Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on ""sepsis-related problems"" of the European Society of Intensive Care Medicine (1998) Crit Care Med, 26, pp. 1793-1800; Hernań, M.A., Brumback, B., Robins, J.M., Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men (2000) Epidemiology, 11, pp. 561-570; Faries, D.E., Kadziola, Z.A., Analysis of longitudinal observational data using marginal structural models (2010) Analysis of Observational Health Care Data Using SAS, pp. 211-230. , Faries DE, Leon AC, Haro JM, Obenchain RL, editors., Cary, NC: SAS Institute; Robins, J.M., Hernań, M.A., Brumback, B., Marginal structural models and causal inference in epidemiology (2000) Epidemiology, 11, pp. 550-560; Cao, B., Gao, H., Zhou, B., Deng, X., Hu, C., Deng, C., Adjuvant corticosteroid treatment in adults with influenza A (H7N9) viral pneumonia (2016) Crit Care Med, 44, pp. e318-e328; Rochwerg, B., Oczkowski, S., Siemieniuk, R.A., Menon, K., Szczeklik, W., English, S., Corticosteroids in sepsis: An updated systematic review and meta-analysis (protocol) (2017) BMJ Open, 7, p. e016847; Kim, S.H., Hong, S.B., Yun, S.C., Choi, W.I., Ahn, J.J., Lee, Y.J., Corticosteroid treatment in critically ill patients with pandemic influenza A/H1N1 2009 infection: Analytic strategy using propensity scores (2011) Am J Respir Crit Care Med, 183, pp. 1207-1214; Brun-Buisson, C., Richard, J.C., Mercat, A., Thiébaut, A.C., Brochard, L., Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome (2011) Am J Respir Crit Care Med, 183, pp. 1200-1206; Martin-Loeches, I., Lisboa, T., Rhodes, A., Moreno, R.P., Silva, E., Sprung, C., Use of early corticosteroid therapy on ICU admission in patients affected by severe pandemic (H1N1)v influenza A infection (2011) Intensive Care Med, 37, pp. 272-283; Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (MERS-CoV) infection is suspected Interim Guidance, , http://www.who.int/csr/disease/coronavirus_infections/casemanagement-ipc/en/, [updated 2015, July 2; accessed 2017 Sept 6]; Torres, A., Sibila, O., Ferrer, M., Polverino, E., Menendez, R., Mensa, J., Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: A randomized clinical trial (2015) JAMA, 313, pp. 677-686; Blum, C.A., Nigro, N., Briel, M., Schuetz, P., Ullmer, E., Suter-Widmer, I., Adjunct prednisone therapy for patients with communityacquired pneumonia: A multicentre, double-blind, randomised, placebo-controlled trial (2015) Lancet, 385, pp. 1511-1518; Snijders, D., Daniels, J.M., De Graaff, C.S., Van Der Werf, T.S., Boersma, W.G., Efficacy of corticosteroids in community-acquired pneumonia: A randomized double-blinded clinical trial (2010) Am J Respir Crit Care Med, 181, pp. 975-982; Ruan, S.Y., Lin, H.H., Huang, C.T., Kuo, P.H., Wu, H.D., Yu, C.J., Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: A systematic review and meta-analysis (2014) Crit Care, 18, p. R63","Arabi, Y.M.; College of Medicine, Intensive Care Department, MC1425, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, P.O. Box 22490, Saudi Arabia; email: arabi@ngha.med.sa",,"American Thoracic Society",1073449X,,AJCME,"29161116","English","Am. J. Respir. Crit. Care Med.",Article,"Final",,Scopus,2-s2.0-85045205939 "Chu D.K.W., Hui K.P.Y., Perera R.A.P.M., Miguel E., Niemeyer D., Zhao J., Channappanavar R., Dudas G., Oladipo J.O., Traoré A., Fassi-Fihri O., Ali A., Demissié G.F., Muth D., Chan M.C.W., Nicholls J.M., Meyerholz D.K., Kuranga S.A., Mamo G., Zhou Z., So R.T.Y., Hemida M.G., Webby R.J., Roger F., Rambaut A., Poon L.L.M., Perlman S., Drosten C., Chevalier V., Peiris M.","7201734326;24492032000;43861730800;55508587300;50361719200;8584763700;35309748500;56117173500;57003293300;7004452535;6603071678;57201312906;57201316062;22135222000;26654715500;7201463077;6602303240;7801633865;36054647500;57204118575;57193613725;37037447300;35448064800;56216788500;7004230842;7005441747;7102708317;7003813990;55884078800;7005486823;","MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity",2018,"Proceedings of the National Academy of Sciences of the United States of America","115","12",,"3144","3149",,38,"10.1073/pnas.1718769115","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044278309&doi=10.1073%2fpnas.1718769115&partnerID=40&md5=48dab7f641de94527c5bb495ca2536bb","School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, F-34398, France; Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, CNRS, Universitè de Montpellier, Montpellier, F-34398, France; Institute of Virology, Campus Charite Mitte, Charite-Universitätsmedizin Berlin, Berlin, 10117, Germany; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, United States; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510000, China; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria; Laboratoire de Biologie et Santé Animals, Institut de L'Environnement et de Recherches Agricoles du Burkina Faso, Centre National de la Recherche Scientifique et Technologique, 04 BP 8645, Ouagadougou 04, Burkina Faso; Institut Agronomique et Vétérinaire, Hassan II Université, Rabat-Instituts, B.P. 6202, Rabat, Morocco; Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia; College of Veterinary Medecine, Haramaya University, Dire Dawa, Ethiopia; Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong; Department of Pathology, University of Iowa, Iowa City, IA 52242, United States; Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia; Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Kasetsart University, Bangkok, 10900, Thailand; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 2FL, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, United States; Institut Pasteur du Cambodge, Phnom Penh, Cambodia","Chu, D.K.W., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Hui, K.P.Y., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Perera, R.A.P.M., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Miguel, E., Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, F-34398, France, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, CNRS, Universitè de Montpellier, Montpellier, F-34398, France; Niemeyer, D., Institute of Virology, Campus Charite Mitte, Charite-Universitätsmedizin Berlin, Berlin, 10117, Germany; Zhao, J., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, United States, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510000, China; Channappanavar, R., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, United States; Dudas, G., Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Oladipo, J.O., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria; Traoré, A., Laboratoire de Biologie et Santé Animals, Institut de L'Environnement et de Recherches Agricoles du Burkina Faso, Centre National de la Recherche Scientifique et Technologique, 04 BP 8645, Ouagadougou 04, Burkina Faso; Fassi-Fihri, O., Institut Agronomique et Vétérinaire, Hassan II Université, Rabat-Instituts, B.P. 6202, Rabat, Morocco; Ali, A., Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia; Demissié, G.F., College of Veterinary Medecine, Haramaya University, Dire Dawa, Ethiopia; Muth, D., Institute of Virology, Campus Charite Mitte, Charite-Universitätsmedizin Berlin, Berlin, 10117, Germany; Chan, M.C.W., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Nicholls, J.M., Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong; Meyerholz, D.K., Department of Pathology, University of Iowa, Iowa City, IA 52242, United States; Kuranga, S.A., Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria; Mamo, G., Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia; Zhou, Z., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; So, R.T.Y., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Hemida, M.G., Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia, Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Webby, R.J., Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Roger, F., Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, F-34398, France, Kasetsart University, Bangkok, 10900, Thailand; Rambaut, A., Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 2FL, United Kingdom, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, United States; Poon, L.L.M., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Perlman, S., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, United States; Drosten, C., Institute of Virology, Campus Charite Mitte, Charite-Universitätsmedizin Berlin, Berlin, 10117, Germany; Chevalier, V., Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, F-34398, France, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; Peiris, M., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong","Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. AlthoughMERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERSCoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b. Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4- transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies ofMERS-CoV at the animal-human interface. © 2018 National Academy of Sciences. All rights reserved.","Africa; Coronavirus; Evolution; MERS; Zoonosis","interferon; interferon type III; unclassified drug; Article; Burkina Faso; Calu-3 cell line; camel; cladistics; controlled study; Ethiopia; ex vivo study; gene deletion; genetic difference; genetic variability; human; human tissue; Middle East respiratory syndrome coronavirus; Morocco; Nigeria; nonhuman; ORF4b gene; phylogeny; priority journal; species difference; viral genetics; virus gene; virus isolation; virus recombinant; virus replication; virus strain; Africa; animal; C57BL mouse; Coronavirus infection; female; genetic variation; genetics; lung; Middle East respiratory syndrome coronavirus; pathogenicity; veterinary medicine; virology; zoonosis; Africa; Animals; Camelus; Coronavirus Infections; Female; Genetic Variation; Humans; Lung; Mice, Inbred C57BL; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Virus Replication; Zoonoses","(2016) WHO MERS-CoV Global Summary and Risk Assessment, , www.who.int/emergencies/mers-cov/mers-summary-2016.pdf?ua=1, December 5. Accessed February 18, 2018; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Curr Opin Infect Dis, 28, pp. 392-396; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr Opin Virol, 16, pp. 55-62; Chu, D.K., MERS coronaviruses in dromedary camels (2014) Egypt. Emerg Infect Dis, 20, pp. 1049-1053; Chu, D.K., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill, 20; Miguel, E., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, 22, p. 30498; Ithete, N.L., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699; Thornbrough, J.M., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, pp. e00258-e00316; Yang, Y., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type i interferon production through both cytoplasmic and nuclear targets (2015) Sci Rep, 5, p. 17554; Matthews, K.L., Coleman, C.M., Van Der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882; Scobey, T., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci USA, 110, pp. 16157-16162; Haagmans, B.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111, pp. 4970-4975; Chan, R.W., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: An in-vitro and ex-vivo study (2014) Lancet Respir Med, 2, pp. 813-822; Zielecki, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J Virol, 87, pp. 5300-5304; Faye, B., Camel meat in the world (2013) Camel Meat and Meat Products, pp. 7-16. , eds Kadim I, Maghoub O, Faye B, Farouk M (CAB International, Oxfordshire, UK); Menachery, V.D., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e00717; Cockrell, A.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226; Li, K., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114, pp. E3119-E3128; Lamers, M.M., Deletion variants of Middle East respiratory syndrome coronavirus from humans, Jordan, 2015 (2016) Emerg Infect Dis, 22, pp. 716-719; Siu, K.L., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876; Miguel, E., Absence of Middle East respiratory syndrome coronavirus in camelids, Kazakhstan, 2015 (2016) Emerg Infect Dis, 22, pp. 555-557; Guindon, S., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst Biol, 59, pp. 307-321; Hemida, M.G., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 1231-1234","Peiris, M.; School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong KongHong Kong; email: malik@hku.hk",,"National Academy of Sciences",00278424,,PNASA,"29507189","English","Proc. Natl. Acad. Sci. U. S. A.",Article,"Final",Open Access,Scopus,2-s2.0-85044278309 "Almansour N., Kurdia H.","57195067722;57203188641;","Identifying accurate classifier models for a text-based MERS-CoV dataset",2018,"2017 Intelligent Systems Conference, IntelliSys 2017","2018-January",,,"430","435",,,"10.1109/IntelliSys.2017.8324330","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050893345&doi=10.1109%2fIntelliSys.2017.8324330&partnerID=40&md5=15dd859e66ef0a235ea9740a11a94e35","Computer Science Department, KSU, KSA, Riyadh, Saudi Arabia","Almansour, N., Computer Science Department, KSU, KSA, Riyadh, Saudi Arabia; Kurdia, H., Computer Science Department, KSU, KSA, Riyadh, Saudi Arabia","Data mining is an active research area that has attracted significant attention due to the rapidly growing quantities of data and the imminent need to transform these amounts of data into useful information and knowledge. An example of data that still rapidly growing is the dataset of medical information from patients suffering from Middle East Respiratory Syndrome Coronavirus (MERS-CoV); MERS-CoV is a viral respiratory disease spreading worldwide. Since the need for an accurate diagnosis system that predicts MERS-CoV infections has increased, exploiting the classifier model performance of different classification types can greatly help to improve the prediction accuracy of MERS-CoV infection. In this paper, we examine classifier model performance for three classification types: 1) binary; 2) multi-class; and 3) multi-label, on a text-based MERS-CoV dataset using a cross-validation model to measure the accuracy of ¿-nearest neighbor, decision tree, and naïve Bayes algorithms. Our empirical study concluded that the decision tree classifier performed best for binary classification, with an accuracy of 90%. In contrast, for multi-class classification, the ¿-nearest neighbor algorithm had a comparatively good accuracy measurement, 51.60%, but did not reach a satisfactory accuracy level. For multi-label classification, the naïve Bayes classifier was the most accurate, at 77%. This work is conducted as a part of a larger project dedicated to producing a MERS-CoV prediction system. © 2017 IEEE.","accuracy measurement; classification; classifier model; cross-validation model; Data mining; medical data mining; MERS-CoV; text-based dataset","Binary trees; Classification (of information); Computer aided diagnosis; Decision trees; Intelligent systems; Medical computing; Text processing; Accuracy measurements; Classifier models; Cross validation; Medical data mining; MERS-CoV; text-based dataset; Data mining","Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, [Online] [Accessed 01-Jan-2017]; Coronavirus Website-Ministry of Health, , http://www.moh.gov.sa/en/CCC/, [Online] [Accessed 01-Jan-2017]; RapidMiner Studio-Rapid Miner Documentation, , http://docs.rapidminer.com/studio/, [Online] [Accessed 01-Jan-2017]; Han, J., Kamber, M., Data Mining: Concepts and Techniques, , 2nd ed; Ilayaraja, M., Meyyappan, T., Mining medical data to identify frequent diseases using a priori algorithm (2013) 2013 Int Conf Pattern Recognition, Informatics and Mobile Eng, pp. 194-199; Jyoti, S., Ujma, A., Dipesh, S., Sunita, S., Predictive data mining for medical diagnosis: An overview of heart disease prediction (2011) Int J Comput Appl, 17 (8), pp. 43-48; Antonie, M., Zaane, O.R., Coman, A., Application of data mining techniques for medical image classification (2002) ResearchGate; Subbalakshmi, G., Ramesh, K., Rao, M.C., Decision support in heart disease prediction system using naive Bayes (2012) Indian J Comput Sci Eng IJCSE, 2 (2), pp. 170-176; Jyoti, S., Ujma, A., Dipesh, S., Sunita, S., Predictive data mining for medical diagnosis: An overview of heart disease prediction (2014) Int J Comput Appl, 17 (8), pp. 43-48; Jang, S., Lee, S., Seong-Min, C., Seo, J., Choi, H., Yoon, T., Comparison between SARS CoV and MERS CoV using a priori algorithm, decision tree, SVM (2016) MATEC Web of Conf, p. 49; Sandhu, R., Sood, S.K., Kaur, G., An intelligent system for predicting and preventing MERS-CoV infection outbreak (2015) J Supercomput, pp. 1-24; Estella, F., Delgado-Márquez, B.L., Rojas, P., Valenzuela, O., San Roman, B., Rojas, I., Advanced system for autonomously classify brain MRI in neurodegenerative disease (2012) 2012 Int Conf Multimedia Comput Syst (ICMCS), pp. 250-255; Coronavirus, , https://www.cdc.gov/coronavirus/index.html, [Online] [Accessed 01-Jan-2017]; MERS Outbreak in South Korea, , http://www.healthmap.org/site/diseasedaily/article/mers-outbreak-southkorea-6715, [Online]; WHO Guidelines for Investigation of Cases of Human Infection with Middle East Respiratory Syndrome Coronavirus 2013, , http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_investigation_guideline_Jul13.pdf, [Online] [Accessed 01-Jan-2017]; Lu, L., Liu, Q., Du, L., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV): Challenges in identifying its source and controlling its spread (2013) Microbes and Infection, 15 (8), pp. 625-629; (2001) The Technology Review Ten, , MIT Technology Review January/February; Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J.F., Hua, L., Data mining in healthcare and biomedicine: A survey of the literature (2011) Springer Science + Business Media, LLC; Larose, D.T., (2004) Discovering Knowledge in Data: An Introduction to Data Mining, , Wiley; Hand, D., Mannila, H., Smyth, P., (2001) Principles of Data Mining, , MIT; Tomar, D., Agarwal, S., A survey on data mining approaches for healthcare (2013) Int. J. Bio-Science and Bio-Technology, 5 (5); Wu, Q., Tan, M., Song, H., Chen, J., Ng, M.K., ML-FOREST: A multi-label tree ensemble method for multi-label classification (2016) IEEE Trans. Knowl Data Eng; Tu, M.C., Shin, D., Shin, D.K., A comparative study of medical data classification methods based on decision tree and bagging algorithms (2009) 8th IEEE Int Conf Dependable, Autonomic and Secure Comput; Sokolova, M., Lapalme, G., A systematic analysis of performance measures for classification tasks (2009) Inf Process Manag, 45 (4), pp. 427-437",,,"Institute of Electrical and Electronics Engineers Inc.",,9781509064359,,,"English","Intell. Syst. Conf., IntelliSys",Conference Paper,"Final",,Scopus,2-s2.0-85050893345 "Nyon M.P., Du L., Tseng C.-T.K., Seid C.A., Pollet J., Naceanceno K.S., Agrawal A., Algaissi A., Peng B.-H., Tai W., Jiang S., Bottazzi M.E., Strych U., Hotez P.J.","57200793563;8686996200;7402541658;57113485400;26768099200;57200797823;34876164500;57046024300;7102873025;57188879191;56491898300;6603937133;6602996116;7004958298;","Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen",2018,"Vaccine","36","14",,"1853","1862",,8,"10.1016/j.vaccine.2018.02.065","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042424089&doi=10.1016%2fj.vaccine.2018.02.065&partnerID=40&md5=3be8c9023fb132d0cef4009d2b4991ad","Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia; Texas Children's Hospital Center for Vaccine Development, United States; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Department of Microbiology and Immunology & Center of Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, United States; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China","Nyon, M.P., Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia, Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Tseng, C.-T.K., Department of Microbiology and Immunology & Center of Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, United States; Seid, C.A., Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Pollet, J., Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Naceanceno, K.S., Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Agrawal, A., Department of Microbiology and Immunology & Center of Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, United States; Algaissi, A., Department of Microbiology and Immunology & Center of Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, United States; Peng, B.-H., Department of Microbiology and Immunology & Center of Biodefense and Emerging Diseases, University of Texas Medical Branch, Galveston, TX, United States; Tai, W., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Jiang, S., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China; Bottazzi, M.E., Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Strych, U., Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States; Hotez, P.J., Texas Children's Hospital Center for Vaccine Development, United States, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377–588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line. © 2018 Elsevier Ltd","Chinese hamster ovary cells; Middle East respiratory syndrome coronavirus; Receptor binding domain","dihydrofolate reductase; dipeptidyl peptidase IV; immunoglobulin G; interleukin 2; methotrexate; Middle East respiratory syndrome coronavirus S377-588 Fc subunit vaccine; mifamurtide; neutralizing antibody; recombinant protein; unclassified drug; epitope; immunoglobulin Fc fragment; recombinant protein; virus antigen; virus vaccine; animal cell; animal experiment; animal model; antibody production; antibody response; antigen expression; antigen specificity; Article; cell engineering; CHO cell line; controlled study; drug efficacy; drug formulation; drug purification; drug screening; extracellular matrix; HEK293T cell line; Middle East respiratory syndrome; mouse; nonhuman; priority journal; process development; protein secretion; survival time; vaccine production; animal; chemistry; CHO cell line; Coronavirus infection; Cricetulus; gene expression; gene vector; genetic engineering; genetics; immunology; Middle East respiratory syndrome coronavirus; protein processing; vaccine immunogenicity; Animals; Antigens, Viral; CHO Cells; Coronavirus Infections; Cricetulus; Epitopes; Gene Expression; Genetic Engineering; Genetic Vectors; Immunogenicity, Vaccine; Immunoglobulin Fc Fragments; Mice; Middle East Respiratory Syndrome Coronavirus; Protein Processing, Post-Translational; Recombinant Proteins; Viral Vaccines","Middle East respiratory syndrome coronavirus (MERS-CoV); Azhar, E.I., Lanini, S., Ippolito, G., Zumla, A., The middle east respiratory syndrome coronavirus – a continuing risk to global health security (2017) Adv Exp Med Biol, 972, pp. 49-60; (2017), Vaccine development against prioritized epidemic infectious diseases;; (2017), Inovio. Inovio Reports New Positive Clinical Data on Vaccine Advances in the Fight Against Emerging Infectious Diseases. Inovio Pharmaceuticals;; Kobiyama, K., Jounai, N., Aoshi, T., Tozuka, M., Takeshita, F., Coban, C., Innate immune signaling by, and genetic adjuvants for DNA vaccination (2013) Vaccines (Basel), 1, pp. 278-292; Li, L., Saade, F., Petrovsky, N., The future of human DNA vaccines (2012) J Biotechnol, 162, pp. 171-182; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89, pp. 1954-1964; Du, L., Jiang, S., Middle East respiratory syndrome: current status and future prospects for vaccine development (2015) Expert Opin Biol Ther, 15, pp. 1647-1651; Du, L., Tai, W., Zhou, Y., Jiang, S., Vaccines for the prevention against the threat of MERS-CoV (2016) Expert Rev Vaccines, 15, pp. 1123-1134; Chen, W.H., Du, L., Chag, S.M., Ma, C., Tricoche, N., Tao, X., Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate (2014) Hum Vaccin Immunother, 10, pp. 648-658; Jiang, S., Bottazzi, M.E., Du, L., Lustigman, S., Tseng, C.T., Curti, E., Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome (2012) Expert Rev Vaccines, 11, pp. 1405-1413; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res, 202, pp. 151-159; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.T., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13, pp. 180-190; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Recombinant receptor-binding domains of multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91, pp. e01651-e1716; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum Vaccines Immunother, 13, pp. 1615-1624; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PloS One, 8, p. e81587; Zhou, J., Zhang, J., Du, L., Li, Z., Li, Y., Lei, F., Characteristics of early- and late-onset rapid eye movement sleep behavior disorder in China: a case-control study (2014) Sleep Med, 15, pp. 654-660; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 90, pp. 57-67; Yoshikawa, T., Nakanishi, F., Itami, S., Kameoka, D., Omasa, T., Katakura, Y., Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes (2000) Cytotechnology, 33, pp. 37-46; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6, p. 8223; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum Vaccin Immunother, 12, pp. 2351-2356; Kober, L., Zehe, C., Bode, J., Optimized signal peptides for the development of high expressing CHO cell lines (2013) Biotechnol Bioeng, 110, pp. 1164-1173; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin Ther Targets, 21, pp. 131-143; Sou, S.N., Polizzi, K.M., Kontoravdi, C., Evaluation of transfection methods for transient gene expression in Chinese hamster ovary cells (2013) Adv Biosci Biotechnol, 4, pp. 1013-1019; Khan, K.H., Gene expression in Mammalian cells and its applications (2013) Adv Pharm Bull, 3, pp. 257-263; Capon, D.J., Chamow, S.M., Mordenti, J., Marsters, S.A., Gregory, T., Mitsuya, H., Designing CD4 immunoadhesins for AIDS therapy (1989) Nature, 337, pp. 525-531; Konduru, K., Bradfute, S.B., Jacques, J., Manangeeswaran, M., Nakamura, S., Morshed, S., Ebola virus glycoprotein Fc fusion protein confers protection against lethal challenge in vaccinated mice (2011) Vaccine, 29, pp. 2968-2977; Lu, L., Palaniyandi, S., Zeng, R., Bai, Y., Liu, X., Wang, Y., A neonatal Fc receptor-targeted mucosal vaccine strategy effectively induces HIV-1 antigen-specific immunity to genital infection (2011) J Virol, 85, pp. 10542-10553; Loureiro, S., Ren, J., Phapugrangkul, P., Colaco, C.A., Bailey, C.R., Shelton, H., Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines (2011) J Virol, 85, pp. 3010-3014; Soleimanpour, S., Farsiani, H., Mosavat, A., Ghazvini, K., Eydgahi, M.R., Sankian, M., APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice (2015) Appl Microbiol Biotechnol, 99, pp. 10467-10480; Czajkowsky, D.M., Hu, J., Shao, Z., Pleass, R.J., Fc-fusion proteins: new developments and future perspectives (2012) EMBO Mol Med, 4, pp. 1015-1028; Wozniak-Knopp, G., Stadlmann, J., Ruker, F., Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds (2012) PloS One, 7, p. e30083; Gstraunthaler, G., Lindl, T., van der Valk, J., A plea to reduce or replace fetal bovine serum in cell culture media (2013) Cytotechnology, 65, pp. 791-793; Lai, T., Yang, Y., Ng, S.K., Advances in Mammalian cell line development technologies for recombinant protein production (2013) Pharmaceuticals (Basel), 6, pp. 579-603; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J Virol, 87, pp. 9939-9942; Coloma, M.J., Hastings, A., Wims, L.A., Morrison, S.L., Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction (1992) J Immunol Methods, 152, pp. 89-104","Bottazzi, M.E.; Department of Pediatrics, National School of Tropical Medicine, Baylor College of MedicineUnited States; email: bottazzi@bcm.edu",,"Elsevier Ltd",0264410X,,VACCD,"29496347","English","Vaccine",Article,"Final",Open Access,Scopus,2-s2.0-85042424089 "Deng X., Baker S.C.","36096409000;7403307881;","An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses",2018,"Virology","517",,,"157","163",,6,"10.1016/j.virol.2017.12.024","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039898316&doi=10.1016%2fj.virol.2017.12.024&partnerID=40&md5=c12acfdfc1655936b89d5f10348fd50d","Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States","Deng, X., Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States; Baker, S.C., Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, United States","Here we review the evolving story of the coronavirus endoribonuclease (EndoU). Coronavirus EndoU is encoded within the sequence of nonstructural protein (nsp) 15, which was initially identified as a component of the viral replication complex. Biochemical and structural studies revealed the enzymatic nature of nsp15/EndoU, which was postulated to be essential for the unique replication cycle of viruses in the order Nidovirales. However, the role of nsp15 in coronavirus replication was enigmatic as EndoU-deficient coronaviruses were viable and replicated to near wild-type virus levels in fibroblast cells. A breakthrough in our understanding of the role of EndoU was revealed in recent studies, which showed that EndoU mediates the evasion of viral double-stranded RNA recognition by host sensors in macrophages. This new discovery of nsp15/EndoU function leads to new opportunities for investigating how a viral EndoU contributes to pathogenesis and exploiting this enzyme for therapeutics and vaccine design against pathogenic coronaviruses. © 2018 Elsevier Inc.","Antiviral defense; Coronavirus; Double-stranded RNA; Endoribonuclease; Host recognition; Interferon; Nsp15","double stranded RNA; nonstructural protein 15; ribonuclease; unclassified drug; viral protein; ribonuclease; viral protein; amino acid substitution; amino terminal sequence; Article; carboxy terminal sequence; Coronavirinae; enzyme active site; enzyme activity; fibroblast; host resistance; macrophage; nonhuman; priority journal; protein expression; protein folding; RNA cleavage; RNA synthesis; virus replication; virus titration; virus viability; animal; Coronavirus infection; enzymology; gene expression regulation; immunology; metabolism; physiology; Animals; Coronavirus; Coronavirus Infections; Endoribonucleases; Gene Expression Regulation, Viral; Viral Nonstructural Proteins; Virus Replication","Athmer, J., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins (2017) MBio, 8 (1). , (e02320-16); Barber, G., The dsRNA-dependent protein kinase, PKR and cell death (2005) Cell Death Differ., 12, pp. 563-570; Becares, M., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J. Virol., 90 (11), pp. 5399-5414; Beura, L.K., Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation (2010) J. Virol., 84 (3), pp. 1574-1584; Bhardwaj, K., Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15 (2008) J. Biol. Chem., 283 (6), pp. 3655-3664; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J. Virol., 78 (22), pp. 12218-12224; Bhardwaj, K., Sun, J., Holzenburg, A., Guarino, L.A., Kao, C.C., RNA recognition and cleavage by the SARS coronavirus endoribonuclease (2006) J. Mol. Biol., 361 (2), pp. 243-256; Bhardwaj, K., Liu, P., Leibowitz, J.L., Kao, C.C., The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein (2012) J. Virol., 86 (8), pp. 4294-4304; Birdwell, L.D., Activation of RNase L by murine coronavirus in myeloid cells is dependent on basal Oas gene expression and independent of virus-induced interferon (2016) J. Virol., 90 (6), pp. 3160-3172; Cao, J., Zhang, X., Comparative in vivo analysis of the nsp15 endoribonuclease of murine, porcine and severe acute respiratory syndrome coronaviruses (2012) Virus Res., 167 (2), pp. 247-258; Cao, J., Wu, C.-C., Lin, T.L., Turkey coronavirus non-structure protein NSP15 – An endoribonuclease (2008) Intervirology, 51 (5), pp. 342-351; Deng, X., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc. Natl. Acad. Sci. USA, 114 (21), pp. E4251-E4260; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling (2009) J. Virol., 83 (13), pp. 6689-6705. , (13); Guarino, L.A., Mutational analysis of the SARS virus Nsp15 endoribonuclease: identification of residues affecting hexamer formation (2005) J. Mol. Biol., 353 (5), pp. 1106-1117; Hagemeijer, M.C., Vonk, A.M., Monastyrska, I., Rottier, P.J.M., de Haan, C.A.M., Visualizing coronavirus RNA synthesis in time by using click chemistry (2012) J. Virol., 86 (10), pp. 5808-5816; Hastie, K.M., Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding (2011) Proc Natl. Acad. Sci., 108 (48), pp. 19365-19370; Heusipp, G., Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells (1997) J. Gen. Virol., 78 (11), pp. 2789-2794; Hsu, L.-C., The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4 (2004) Nature, 428 (6980), pp. 341-345; Ivanov, K.A., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc Natl. Acad. Sci. USA, 101 (34), pp. 12694-12699; Joseph, J.S., Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch (2007) J. Virol., 81 (12), pp. 6700-6708; Kang, H., Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease (2007) J. Virol., 81 (24), pp. 13587-13597; Kindler, E., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog., 13 (2), p. e1006195; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J. Virol., 87 (9), pp. 5182-5192; Lauber, C., Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses (2012) Arch. Virol., 157 (8), pp. 1623-1628; Lei, Y., MAVS-mediated apoptosis and its inhibition by viral proteins (2009) PLoS One, 4 (5), p. e5466; Nedialkova, D.D., Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease (2009) J. Virol., 83 (11), pp. 5671-5682; Nga, P.T., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA Virus genomes (2011) PLoS Pathog., 7 (9), p. e1002215; Ortiz-Alcantara, J., Small molecule inhibitors of the SARS-CoV Nsp15 endoribonuclease (2010) Virus Adapt. Treat., 2 (1), pp. 125-133; Posthuma, C.C., Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle (2006) J. Virol., 80 (4), pp. 1653-1661; Python, S., Gerber, M., Suter, R., Ruggli, N., Summerfield, A., Efficient sensing of infected cells in absence of virus particles by blasmacytoid dendritic cells is blocked by the viral ribonuclease Erns (2013) PLoS Pathog., 9 (6), p. e1003412; Qi, X., Cap binding and immune evasion revealed by Lassa nucleoprotein structure (2010) Nature, 468 (7325), pp. 779-783; Ricagno, S., Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family (2006) Proc. Natl. Acad. Sci., 103 (32), pp. 11892-11897; Roth-Cross, J.K., Organ-specific attenuation of murine hepatitis virus strain A59 by replacement of catalytic residues in the putative viral cyclic phosphodiesterase ns2 (2009) J. Virol., 83 (8), pp. 3743-3753; Shi, S.T., Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells (1999) J. Virol., 73 (7), pp. 5957-5969; Shi, X., Endoribonuclease activities of porcine reproductive and respiratory syndrome virus nsp11 was essential for nsp11 to inhibit IFN-β induction (2011) Mol. Immunol., 48 (12-13), pp. 1568-1572; Shi, Y., A dimerization-dependent mechanism drives the endoribonuclease function of porcine reproductive and respiratory syndrome virus nsp11 (2016) J. Virol., 90 (9), pp. 4579-4592; Snijder, E.J., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J. Mol. Biol., 331 (5), pp. 991-1004; Snijder, E.J., Decroly, E., Ziebuhr, J., The nonstructural proteins directing coronavirus RNA synthesis and processing (2016) Adv. Virus Res., pp. 59-126; Sun, Y., Nonstructural protein 11 of porcine reproductive and respiratory syndrome virus suppresses both MAVS and RIG-I expression as one of the mechanisms to antagonize Type I interferon production (2016) PLoS One, 11 (12), p. e0168314; Thornbrough, J.M., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7 (2). , (e00258-16); Ulferts, R., Ziebuhr, J., Nidovirus ribonucleases: structures and functions in viral replication (2011) RNA Biol., 8 (2), pp. 295-304; Wang, D., The nonstructural protein 11 of porcine reproductive and respiratory syndrome virus inhibits NF-κB signaling by means of its deubiquitinating activity (2015) Mol. Immunol., 68 (2), pp. 357-366; Xu, X., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 (2006) J. Virol., 80 (16), pp. 7909-7917; Zhang, M., Structural biology of the arterivirus nsp11 endoribonucleases (2017) J. Virol., 91 (1), pp. e01309-e01316; Zhao, L., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11 (6), pp. 607-616; Zhao, L., Rose, K.M., Elliott, R., Van Rooijen, N., Weiss, S.R., Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus (2011) J. Virol., 85 (19), pp. 10058-10068; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81 (4), pp. 853-879","Deng, X.; Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University ChicagoUnited States; email: xudeng@luc.edu",,"Academic Press Inc.",00426822,,VIRLA,"29307596","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85039898316 "Shang J., Zheng Y., Yang Y., Liu C., Geng Q., Luo C., Zhang W., Li F.","57191992928;57191993071;57192214076;57191676713;57158970800;55908846900;36543394900;26028899600;","Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins",2018,"PLoS Pathogens","14","4", e1007009,"","",,26,"10.1371/journal.ppat.1007009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046421949&doi=10.1371%2fjournal.ppat.1007009&partnerID=40&md5=aa746e69587097267e2cece459fa700a","Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States; Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States","Shang, J., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Zheng, Y., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Yang, Y., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Liu, C., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Geng, Q., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Luo, C., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Zhang, W., Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States, Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States; Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States","As cell-invading molecular machinery, coronavirus spike proteins pose an evolutionary conundrum due to their high divergence. In this study, we determined the cryo-EM structure of avian infectious bronchitis coronavirus (IBV) spike protein from the γ-genus. The trimeric IBV spike ectodomain contains three receptor-binding S1 heads and a trimeric membrane-fusion S2 stalk. While IBV S2 is structurally similar to those from the other genera, IBV S1 possesses structural features that are unique to different other genera, thereby bridging these diverse spikes into an evolutionary spectrum. Specifically, among different genera, the two domains of S1, the N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD), diverge from simpler tertiary structures and quaternary packing to more complex ones, leading to different functions of the spikes in receptor usage and membrane fusion. Based on the above structural and functional comparisons, we propose that the evolutionary spectrum of coronavirus spikes follows the order of α-, δ-, γ-, and β-genus. This study has provided insight into the evolutionary relationships among coronavirus spikes and deepened our understanding of their structural and functional diversity. © 2018 Shang et al.",,"amino terminal sequence; article; Avian infectious bronchitis virus; carboxy terminal sequence; genus; head; membrane fusion; nonhuman; oligomerization; receptor binding; spike; structure activity relation; Avian infectious bronchitis virus; chemistry; Coronavirus infection; cryoelectron microscopy; HEK293 cell line; human; metabolism; molecular evolution; pathogenicity; procedures; protein conformation; virology; coronavirus spike glycoprotein; Coronavirus Infections; Cryoelectron Microscopy; Evolution, Molecular; HEK293 Cells; Humans; Infectious bronchitis virus; Protein Conformation; Spike Glycoprotein, Coronavirus","Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84 (7), pp. 3134-3146. , 19906932, Epub 2009/11/13.; PubMed Central PMCID: PMC2838128; Li, W.H., Wong, S.K., Li, F., Kuhn, J.H., Huang, I.C., Choe, H., Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions (2006) Journal of Virology, 80 (9), pp. 4211-4219. , 16611880, ISI:000236980000001; Li, F., Receptor recognition and cross-species infections of SARS coronavirus (2013) Antiviral Res, 100 (1), pp. 246-254. , 23994189, Epub 2013/09/03; Gonzaalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Archives of Virology, 148 (11), pp. 2207-2235. , 14579179, WOS:000186399900009; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nature Reviews Microbiology, 7 (6), pp. 439-450. , 19430490, WOS:000266451100012; Li, F., Structure, Function, and Evolution of Coronavirus Spike Proteins (2016) Annual review of virology, 3 (1), pp. 237-261. , 27578435, Epub 2016/09/01; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89 (4), pp. 1954-1964. , 25428871, Epub 2014/11/28.; PubMed Central PMCID: PMCPmc4338876; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4 (6), pp. 1011-1033. , 22816037, Epub 2012/07/21.; PubMed Central PMCID: PMC3397359; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , 25445340,.;: –. Epub 2014/12/03.; PubMed Central PMCID: PMCPmc4465284; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4 (4), pp. 557-580. , 22590686, Epub 2012/05/17.; PubMed Central PMCID: PMCPmc3347323; Yang, Z.Y., Werner, H.C., Kong, W.P., Leung, K., Traggiai, E., Lanzavecchia, A., Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses (2005) Proc Natl Acad Sci U S A, 102 (3), pp. 797-801. , 15642942, Epub 2005/01/12.; PubMed Central PMCID: PMCPMC545557; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23 (10), pp. 899-905. , 27617430, Epub 2016/09/13; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J Virol, , 29070693,.. Epub 2017/10/27; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J Virol, , 29093093,.. Epub 2017/11/03; Li, F., Evidence for a Common Evolutionary Origin of Coronavirus Spike Protein Receptor-Binding Subunits (2012) Journal of Virology, 86 (5), pp. 2856-2858. , 22205743, WOS:000300536800043; Siltberg-Liberles, J., Grahnen, J.A., Liberles, D.A., The evolution of protein structures and structural ensembles under functional constraint (2011) Genes, 2 (4), pp. 748-762. , 24710290, Epub 2011/01/01.; PubMed Central PMCID: PMCPMC3927589; Goldstein, R.A., The structure of protein evolution and the evolution of protein structure (2008) Curr Opin Struct Biol, 18 (2), pp. 170-177. , 18328690, Epub 2008/03/11; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117. , 26855426, Epub 2016/02/09; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nature communications, 8, p. 15092. , 28393837,..;:. Epub 2017/04/11; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), pp. 118-121. , 26935699, Epub 2016/03/05; Li, F., Li, W.H., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309 (5742), pp. 1864-1868. , 16166518, ISI:000231989500052; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106 (47), pp. 19970-19974. , 19901337, Epub 2009/11/11.; PubMed Central PMCID: PMCPmc2785276; Peng, G.Q., Sun, D.W., Rajashankar, K.R., Qian, Z.H., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proceedings of the National Academy of Sciences of the United States of America, 108 (26), pp. 10696-10701. , 21670291, ISI:000292251000064; Peng, G.Q., Xu, L.Q., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain (2012) Journal of Biological Chemistry, 287 (50), pp. 41931-41938. , 23091051, WOS:000312103000033; Raj, V.S., Mou, H.H., Smits, S.L., Dekkers, D.H.W., Muller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254. , 23486063, WOS:000316652300054; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8 (8); Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (19), pp. 10777-10783. , 23903833, Epub 2013/08/02.; PubMed Central PMCID: PMCPmc3807420; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231. , 23831647, Epub 2013/07/09; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114 (42), pp. 11157-11162. , 29073020, Epub 2017/10/27.; PubMed Central PMCID: PMCPMC5651768; Li, F., Berardi, M., Li, W.H., Farzan, M., Dormitzer, P.R., Harrison, S.C., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain (2006) Journal of Virology, 80 (14), pp. 6794-6800. , 16809285, ISI:000238770000008; Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core (2004) J Biol Chem, 279 (29), pp. 30514-30522. , 15123674, Epub 2004/05/05; Xu, Y.H., Lou, Z.Y., Liu, Y.W., Pang, H., Tien, P., Gao, G.F., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) Journal of Biological Chemistry, 279 (47), pp. 49414-49419. , 15345712, WOS:000225098100110; Zheng, Q., Deng, Y., Liu, J., van der Hoek, L., Berkhout, B., Lu, M., Core structure of S2 from the human coronavirus NL63 spike Glycoprotein (2006) Biochemistry, 45 (51), pp. 15205-15215. , 17176042, WOS:000242935600008; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nature communications, 5, p. 3067. , 24473083,..;:. Epub 2014/01/30; Duquerroy, S., Vigouroux, A., Rottier, P.J., Rey, F.A., Bosch, B.J., Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein (2005) Virology, 335 (2), pp. 276-285. , 15840526, Epub 2005/04/21; Mastronarde, D.N., Automated electron microscope tomography using robust prediction of specimen movements (2005) Journal of structural biology, 152 (1), pp. 36-51. , 16182563, Epub 2005/09/27; Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM (2013) Nature methods, 10 (6), pp. 584-590. , 23644547, Epub 2013/05/07.; PubMed Central PMCID: PMCPMC3684049; Zhang, K., Gctf: Real-time CTF determination and correction (2016) Journal of structural biology, 193 (1), pp. 1-12. , 26592709, Epub 2015/11/26.; PubMed Central PMCID: PMCPMC4711343; Scheres, S.H., RELION: implementation of a Bayesian approach to cryo-EM structure determination (2012) Journal of structural biology, 180 (3), pp. 519-530. , 23000701, Epub 2012/09/25.; PubMed Central PMCID: PMCPMC3690530; Chen, S., McMullan, G., Faruqi, A.R., Murshudov, G.N., Short, J.M., Scheres, S.H., High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy (2013) Ultramicroscopy, 135, pp. 24-35. , 23872039,..;: –. Epub 2013/07/23.; PubMed Central PMCID: PMCPMC3834153; Goddard, T.D., Huang, C.C., Ferrin, T.E., Visualizing density maps with UCSF Chimera (2007) J Struct Biol, 157 (1), pp. 281-287. , 16963278; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501. , 20383002,; PubMed Central PMCID: PMC2852313; Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., PHENIX: a comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 213-221. , 20124702,; PubMed Central PMCID: PMC2815670; Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 12-21. , 20057044,; PubMed Central PMCID: PMC2803126; Barad, B.A., Echols, N., Wang, R.Y., Cheng, Y., DiMaio, F., Adams, P.D., EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy (2015) Nat Methods, 12 (10), pp. 943-946. , 26280328,; PubMed Central PMCID: PMC4589481; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111 (34), pp. 12516-12521. , 25114257, Epub 2014/08/13.; PubMed Central PMCID: PMCPmc4151778; Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J Mol Biol, 372 (3), pp. 774-797. , 17681537, Epub 2007/08/08; Ou, X., Zheng, W., Shan, Y., Mu, Z., Dominguez, S.R., Holmes, K.V., Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins (2016) J Virol, 90 (12), pp. 5586-5600. , 27030273, Epub 2016/04/01.; PubMed Central PMCID: PMCPMC4886789; Basso, L.G., Vicente, E.F., Crusca, E., Jr., Cilli, E.M., Costa-Filho, A.J., SARS-CoV fusion peptides induce membrane surface ordering and curvature (2016) Scientific reports, 6, p. 37131. , 27892522,.;:. Epub 2016/11/29.; PubMed Central PMCID: PMCPMC5125003; Wickramasinghe, I.N., de Vries, R.P., Grone, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J Virol, 85 (17), pp. 8903-8912. , 21697468, Epub 2011/06/24.; PubMed Central PMCID: PMCPMC3165808; Promkuntod, N., van Eijndhoven, R.E., de Vrieze, G., Grone, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32. , 24314633,.;: –. Epub 2013/12/10; Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S.H., Rini, J.M., X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-angstrom resolution (1998) Journal of Biological Chemistry, 273 (21), pp. 13047-13052. , 9582341, ISI:000073768500052; Chen, L., Li, F., Structural Analysis of the Evolutionary Origins of Influenza Virus Hemagglutinin and Other Viral Lectins (2013) Journal of Virology, 87 (7), pp. 4118-4120. , 23365425, WOS:000315957100049; Rossmann, M.G., The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance (1989) J Biol Chem, 264 (25), pp. 14587-14590. , 2670920, Epub 1989/09/05; Kint, J., Fernandez-Gutierrez, M., Maier, H.J., Britton, P., Langereis, M.A., Koumans, J., Activation of the chicken type I interferon response by infectious bronchitis coronavirus (2015) J Virol, 89 (2), pp. 1156-1167. , 25378498, Epub 2014/11/08.; PubMed Central PMCID: PMCPMC4300645; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci U S A, 114 (35), pp. E7348-e7357. , 28807998, Epub 2017/08/16.; PubMed Central PMCID: PMCPMC5584442; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (15), pp. 8638-8650. , 23720729, Epub 2013/05/31.; PubMed Central PMCID: PMC3719811; Holm, L., Sander, C., Touring protein fold space with Dali/FSSP (1998) Nucleic Acids Research, 26 (1), pp. 316-319. , 9399863, ISI:000071778900076; Peng, G., Yang, Y., Pasquarella, J.R., Xu, L., Qian, Z., Holmes, K.V., Structural and Molecular Evidence Suggesting Coronavirus-driven Evolution of Mouse Receptor (2017) J Biol Chem, 292 (6), pp. 2174-2181. , 28035001, Epub 2016/12/31.; PubMed Central PMCID: PMCPMC5313091","Li, F.; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of MinnesotaUnited States; email: lifang@umn.edu",,"Public Library of Science",15537366,,,"29684066","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85046421949 "Anna V., Tamást T., Attila C.","57202388603;57202393276;8642171200;","Enteral coronaviruses of swine [A sertések enteralis coronavírusai Irodalmi összefoglaló]",2018,"Magyar Allatorvosok Lapja","140","4",,"207","216",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048163831&partnerID=40&md5=95d60392671a44c27aba4ed4cf09de6e","Allatorvostudomanyi Egyetem, Jarvanytani Es Mikrobiologiai Tanszek, krt. 23-25, Budapest, H-1143, Hungary","Anna, V., Allatorvostudomanyi Egyetem, Jarvanytani Es Mikrobiologiai Tanszek, krt. 23-25, Budapest, H-1143, Hungary; Tamást, T., Allatorvostudomanyi Egyetem, Jarvanytani Es Mikrobiologiai Tanszek, krt. 23-25, Budapest, H-1143, Hungary; Attila, C., Allatorvostudomanyi Egyetem, Jarvanytani Es Mikrobiologiai Tanszek, krt. 23-25, Budapest, H-1143, Hungary","Enteric diseases induced by viruses are highly prevalent and have great economic importance in the swine industry. From the many viruses, which can be found in the background of watery diarrhoea the coronaviruses were chosen to be reviewed in this paper. One of the first enteric diseases of swine discovered was transmissible gastroenteritis (TGE), which became endemic in Europe, as later on its deletion mutant, the porcine respiratory coronavirus (PRCV) spread worldwide. Porcine epidemic diarrhoea (PED), recognized later, is also caused by a coronavirus and it can be only differentiated from TGE by laboratory diagnostic methods, as their clinical and pathological appearance is quite similar. Recently, PED appeared in the previously porcine epidemic diarrhoea virus (PEDV) free North America, and spread rapidly causing great economic losses. These outbreaks attracted the attention to the renewed investigation of PED in European countries as well, which resulted in founding different contemporary viruses in several countries, including Hungary. Several years ago, a novel coronavirus, porcine deltacoronavirus (PDCoV) was discovered in China, then appeared as an enteropathogen in the United States (US), and spread also to other Asian countries, but has not been reported in Europe yet. Based on the currently available field observations from the US and Asia, the clinical disease caused by PDCoV seems to be milder with lower mortality compared to PED. On the other hand, it causes a differential diagnostic challenge, which is made even more difficult by the fact that porcine coronaviruses can occur in the same animal at the same time. At the moment, vaccines are available only for the prevention of TGE and PED, but not for PDCoV, and research is still in progress to make them more effective by reducing virus shedding and inducing proper local immunity on the mucous membrane of the small intestine. © 2018 Magyar Mezogazdasag Ltd. All rights reserved.",,,"Akimkin, V., Beer, M., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerg. Infect. Dis, 22, pp. 1314-1315; Belsham, G.J., Rasmussen, T.B., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in central eastern Europe in 2016 (2016) Transbound. Emerg. Dis, 63, pp. 595-601; Benyeda, J., Drávai, Gy., Gajdács, Gy., Lázár, I., TGE-szerû megbetegedés elõfordulása sertésállományainkban (1977) Mogy. Állatorvosok Lapja, 32, pp. 99-100; Benyeda, J., Mocsári, E., A malacok vírusos hasmenésének (TGE) immunológiája különös tekintettel az aktív immunizálás lehetõségére (1973) Mogy. Állatorvosok Lapja, 28, pp. 409-411; Boniotti, M.B., Papetti, A., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus (2016) Italy. Emerg. Infect. Dis, 22, pp. 83-87; Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009) (2009) Arch. Virol, 155, pp. 133-146; Chen, J., Wang, C., Molecular epidemiology of porcine epidemic diarrhea virus in China (2010) Arch. Virol, 155, pp. 1471-1476; Chen, Q., Gauger, P., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Csontos, L., Szent-Iványi, T., Benyeda, J., Vakcinázási kísérletek a sertés vírusos hasmenése (TGE) ellen (1973) III. Mogy. Állatorvosok Lapja, 28, pp. 22-26; Csontos, L., Szent-Iványi, T., Járványtani és diagnosztikai vizsgálatok a malacok vírusos hasmenésérõl (1971) Magy. Állatorvosok Lapja, 26, pp. 5-9; Dastjerdi, A., Carr, J., Porcine epidemic diarrhea virus among farmed pigs (2015) Ukraine. Emerg. Infect. Dis, 21, pp. 2235-2237; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J. Am. Vet. Med. Assoc, 108, pp. 257-259; (2014) Scientific Opinion on Porcine Epidemic Diarrhoea and Emerging Pig Deltacoronavirus. EFSA, 12, pp. 3877-3945; Gerber, P.F., Gong, Q.H., Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA (2014) The Vet. J, 202, pp. 33-36; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses Vet. Microbiol, 206, pp. 45-51; Goede, D., Murtaugh, M.P., Previous infection of sows with a mild strain of porcine epidemic diarrhea virus confers protection against infection with a severe strain (2015) Vet. Microbiol, 176, pp. 161-164; Gu, J.P., Yue, X.W., Progress in genetically engineered vaccines for porcine transmissible gastroenteritis virus (2012) Revue Méd. Vét, 163, pp. 107-111; Holland, R.E., Some infectious causes of diarrhea in young farm animals (1990) Clin. Microbiol. Rev, 3, pp. 345-375; Holtkamp, D., Rotto, H., Garcia, R., Economic cost of major health challanges in large US swine production (2007) Swine News, 30, pp. 85-89; Huang, Y., Dickerman, A.W., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MSio, 4, pp. e00737-e00813; Jackwood, D.J., Bae, I., Transmissible gastroenteritis virus and porcine respiratory coronavirus: Molecular characterization of the S gene using cDNA probes and nucleotide sequence analysis (2012) Coronaviruses: Molecular Biology and Virus-Host Interactions, 342, pp. 43-48; Joachim, A., Daugschies, A., Endoparasites in swine in different age groups and management systems (2000) Berl. Münch. Tierarztl. Wochenschr, 113, pp. 129-133; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59; Jung, K., Hu, H., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis, 21, pp. 650-654; Kim, S.Y., Song, D.S., Park, B.K., Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR (2001) J. Vet. Diagn. Invest, 13, pp. 516-520; Kim, Y.K., Lim, S.I., A novel diagnostic approach to detecting porcine epidemic diarrhea virus: The lateral immuno-chromatography assay.) (2015) Virol. Methods, 225, pp. 4-8; Kweon, C., Kwon, B., Immunoprophylactic effect of chicken egg yolk immunoglobulin (lg Y) against porcine epidemic diarrhea virus (PEDV) in piglets.) (2000) Vet. Med. Sci, 62, pp. 961-964; Langel, S.N., Paim, F.C., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus Res, 226, pp. 93-107; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: Molecular features and virus-host interactions (1993) Vet. Res, 24, pp. 125-150; Li, W., Li, H., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg. Infect. D/'s, 18, pp. 1350-1353; Lorincz, M., Biksi, I., Andersson, S., Cságola, A., Tuboly, T., Sporadic re-emergence of enzootic porcine transmissible gastroenteritis in Hungary (2013) Acta Vet. Hung, 62, pp. 125-133; Martelli, P., Lavazza, A., Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy (2008) Vet. Rec, 162, pp. 307-310; Marthaler, D., Raymond, L., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis, 20, pp. 1347-1350; Mocsári, E., Csontos, L., Horváth, I., A sertés TGE-szerû betegsége (1984) Magy. Állatorvosok Lapja, 39, pp. 537-540; Mocsári, E., Vizsgálatok a sertés vírusos hasmenése (TGE) laboratóriumi kórjelzésének tökéletesítésére (1977) Magy. Állatorvosok Lapja, 32, pp. 508-511; Moxley, R.A., Duhamel, G.E., Comparative pathology of bacterial enteric diseases of swine (1999) Adv. Exp. Med. Biol, 473, pp. 83-101; Nagy, B., Nagy, G., Meder, M., Mocsári, E., Enterotoxigenic Escherichia coli, rotavirus, porcine epidemic diarrhoea virus, adenovirus and calici-like virus in porcine postweaning diarrhoea in Hungary (1996) Acta Vet. Hun, 44, pp. 9-19; Olanratmanee, E., Kunavongkrit, A., Tummaruk, P., Impact of porcine epidemic diarrhea virus infection at different periods of pregnancy on subsequent reproductive performance in gilts and sows (2010) Anim. Reprod. Sci, 122, pp. 42-51; Pensaert, M.B., De Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol, 58, pp. 243-247; Pensaert, M., Callebaut, P., Vergote, J., Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis (1986) Vet. Quarterly, 8, pp. 257-261; Pritchard, C., Paton, D.J., Transmissible gastroenteritis and porcine epidemic diarrhoea in Britain (1999) Vet. Rec, 144, pp. 616-618; Saif, L.J., Pensaert, M.P., Coronaviruses (2012) Diseases of Swine, pp. 1821-1914. , Zimmerman, J. J., Karriker, L. A. et al. (eds.), Wiley-Black-well. USA; Saif, L.J., Comparative pathogenesis of enteric viral infections of swine (1999) Adv. Exp. Med. Biol, 473, pp. 47-59; Smíd, B., Valícek, L., Electron microscopic demonstration of porcine epidemic diarrhea virus in the Czech Republic (1993) Vet. Med. Czech, 38, pp. 333-341; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: A review of current epidemiology and available vaccines (2015) Clin. Exp. Vaccine Res, 4, pp. 166-176; Song, D., Park, B., Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175; Stadler, J., Zoels, S., Emergence of porcine epidemic diarrhea virus in southern Germany (2015) BMC Vet. Res, 11, pp. 142-149; Stadler, J., Moser, L., Investigation of three outbreaks of Porcine Epidemic Diarrhea in Germany in 2016 demonstrates age dependent differences in the development of humoral immune response (2018) Prev. Vet. Med, 150, pp. 93-100; Stevenson, G.W., Hoang, H., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences.) (2013) Vet. Diag. Invest, 25, pp. 649-654; Szent-Iványi, T., Szabó, I., Temesi, Z., Ratalics, L., A malacok vírusos hasmenése ""transmissible gastro-enteritis"" megállapítása hazánkban (1964) Magy. Állatorvosok Lapja, 19, pp. 11-15; Tuboly, T., Újabb ismeretek a sertések enterális coronavíru-sairól (1996) Magy. Állatorvosol: Lapja, 51, pp. 361-365; Valkó, A., Biksi, I., Cságola, A., Tuboly, T., Kiss, K., Ursu, K., Dán, Á., Porcine epidemic diarrhoea virus with a recombinant S gene detected in Hungary, 2016 (2017) Acta Vet. Hun, 65, pp. 253-261; Van Reeth, K., Pensaert, M., Prevalence of infections with enzootic respiratory and enteric viruses in feeder pigs entering fattening herds (1994) Vet. Rec, 135, pp. 594-597; Vijgen, L., Keyaerts, E., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J. Virol, 80, pp. 7270-7274; Vlasova, A.N., Marthaler, D., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014 (2014) Emerg. Infect. Dis, 20, pp. 1620-1628; Wang, J., Zhao, P., Porcine epidemic diarrhea virus variants with high pathogenicity (2013) China. Emerg. Infect. Dis, 19, pp. 2048-2049; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis, 20, pp. 1227-1230; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg. Infect. Dis, 20, pp. 917-919; Woo, P.C.Y., Huang, Y., Coronavirus genomics and bio-informatics analysis (2010) Viruses, 2, pp. 1804-1820; Woo, P.C.Y., Lau, S.K.P., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J. Virol, 83, pp. 908-917; Woo, P.C.Y., Lau, S.K.P., Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoro-navirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol, 86, pp. 3995-4008; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet. Rec, 100, pp. 243-244; Zeng, Q., Langereis, M.A., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 9065-9069",,,"Magyar Mezogazdasag Ltd",0025004X,,,,"Hungarian","Magyar Allatorv. Lapja",Review,"Final",,Scopus,2-s2.0-85048163831 "Zhou P., Fan H., Lan T., Yang X.-L., Shi W.-F., Zhang W., Zhu Y., Zhang Y.-W., Xie Q.-M., Mani S., Zheng X.-S., Li B., Li J.-M., Guo H., Pei G.-Q., An X.-P., Chen J.-W., Zhou L., Mai K.-J., Wu Z.-X., Li D., Anderson D.E., Zhang L.-B., Li S.-Y., Mi Z.-Q., He T.-T., Cong F., Guo P.-J., Huang R., Luo Y., Liu X.-L., Chen J., Huang Y., Sun Q., Zhang X.-L.-L., Wang Y.-Y., Xing S.-Z., Chen Y.-S., Sun Y., Li J., Daszak P., Wang L.-F., Shi Z.-L., Tong Y.-G., Ma J.-Y.","56996599500;55513104400;57201787210;35811468700;55662158800;56151953000;55723768200;57201559903;9249047300;57201548973;57198448529;57077269800;57201552319;57202102183;55513467200;7102948557;57201552219;55861714100;57189711019;57193311808;57197285019;25631949200;8852093300;54410991100;8586625800;57203271861;57195918992;55433605900;36183347600;57201338288;57201551148;57203334768;56923823900;57199812923;57192507134;57201559923;57192870870;57201550365;56166199400;57193002664;7003646071;35243718700;7403733955;7202614688;57205222918;","Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin",2018,"Nature","556","7700",,"255","259",,90,"10.1038/s41586-018-0010-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045258243&doi=10.1038%2fs41586-018-0010-9&partnerID=40&md5=873c4d8025738aeaa08749154d771791","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Beijing Institute of Microbiology and Epidemiology, Beijing, China; College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Key Lab. of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, China; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China; School of Public Health, Wuhan University, Wuhan, China; Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; EcoHealth Alliance, New York, NY, United States; School of Life Sciences, North China University of Science and Technology, Tangshan, China","Zhou, P., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Fan, H., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Lan, T., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Yang, X.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Shi, W.-F., Key Lab. of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, China; Zhang, W., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Zhu, Y., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Zhang, Y.-W., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Xie, Q.-M., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Mani, S., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Zheng, X.-S., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Li, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Li, J.-M., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Guo, H., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Pei, G.-Q., Beijing Institute of Microbiology and Epidemiology, Beijing, China; An, X.-P., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Chen, J.-W., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Zhou, L., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Mai, K.-J., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Wu, Z.-X., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Li, D., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Anderson, D.E., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Zhang, L.-B., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China; Li, S.-Y., School of Public Health, Wuhan University, Wuhan, China; Mi, Z.-Q., Beijing Institute of Microbiology and Epidemiology, Beijing, China; He, T.-T., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Cong, F., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Guo, P.-J., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Huang, R., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Luo, Y., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Liu, X.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Chen, J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Huang, Y., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Sun, Q., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Zhang, X.-L.-L., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Wang, Y.-Y., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Xing, S.-Z., Beijing Institute of Microbiology and Epidemiology, Beijing, China; Chen, Y.-S., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Sun, Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Li, J., Key Lab. of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, China; Daszak, P., EcoHealth Alliance, New York, NY, United States; Wang, L.-F., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Tong, Y.-G., Beijing Institute of Microbiology and Epidemiology, Beijing, China, School of Life Sciences, North China University of Science and Technology, Tangshan, China; Ma, J.-Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China","Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1. Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth. © 2018 Macmillan Publishers Ltd., part of Springer Nature.",,"bat; cause of death; diarrheal disease; disease transmission; etiology; public health; severe acute respiratory syndrome; virus; animal cell; animal experiment; animal tissue; Article; bat; cause of death; China; controlled study; Coronaviridae infection; Coronavirinae; epidemic; female; genetic variability; horseshoe bat; immunopathology; immunoprecipitation; livestock; luciferase assay; microbial diversity; nonhuman; nucleotide sequence; phylogeny; piglet; priority journal; severe acute respiratory syndrome; sow (swine); swine acute diarrhea syndrome; swine acute diarrhea syndrome coronavirus; swine disease; virus carrier; virus isolation; virus transmission; Alphacoronavirus; animal; animal disease; biodiversity; classification; Coronavirus infection; diarrhea; disease carrier; genetics; human; isolation and purification; jejunum; pathogenicity; pathology; pig; severe acute respiratory syndrome; spatiotemporal analysis; transmission; veterinary; virology; virus genome; zoonosis; China; Guangdong; Animalia; Coronavirus; Rhinolophus; Suidae; Alphacoronavirus; Animal Diseases; Animals; Biodiversity; China; Chiroptera; Coronavirus Infections; Diarrhea; Disease Reservoirs; Genome, Viral; Humans; Jejunum; Phylogeny; Severe Acute Respiratory Syndrome; Spatio-Temporal Analysis; Swine; Zoonoses","Olival, K.J., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650; Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl Acad. Sci. USA, 102, pp. 14040-14045; Li, W., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; He, B., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J. Virol., 88, pp. 7070-7082; Yang, X.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2016) J. Virol., 90, pp. 3253-3256; Wu, Z., ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J. Infect. Dis., 213, pp. 579-583; Wang, L., Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China (2017) Emerg. Microbes Infect., 6, p. e14; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13, p. e1006698; Drosten, C., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Ksiazek, T.G., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Marra, M.A., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404; Peiris, J.S., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Rota, P.A., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399; Wang, L.-F., Cowled, C., (2015) Bats and Viruses: A New Frontier of Emerging Infectious Diseases, , 1st edn (John Wiley & Sons, Hoboken,); Dong, N., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review (2016) J. Vet. Med. Sci., 78, pp. 355-363; Lau, S.K., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Chen, J., Molecular epidemiology of porcine epidemic diarrhea virus in China (2010) Arch. Virol., 155, pp. 1471-1476; Burbelo, P.D., Serological diagnosis of human herpes simplex virus type 1 and 2 infections by luciferase immunoprecipitation system assay (2009) Clin. Vaccine Immunol., 16, pp. 366-371; Gong, L., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Pan, Y., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Masters, P.S., Perlman, S., (2013) Fields Virology, 2, pp. 825-858. , (eds Knipe, D. M. & Howley, P. M.) (Lippincott Williams & Wilkins, Philadelphia,); Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Harlow, E., Lane, D., (1988) Antibodies: A Laboratory Manual, , (Cold Spring Harbor Laboratory Press, New York,); Ren, W., Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin (2008) J. Virol., 82, pp. 1899-1907","Daszak, P.; EcoHealth AllianceUnited States; email: daszak@ecohealthalliance.org",,"Nature Publishing Group",00280836,,NATUA,"29618817","English","Nature",Article,"Final",Open Access,Scopus,2-s2.0-85045258243 "Madhugiri R., Karl N., Petersen D., Lamkiewicz K., Fricke M., Wend U., Scheuer R., Marz M., Ziebuhr J.","26654846800;7004162467;57201279502;57201269136;55860414800;6505907868;57201275799;23134902300;7003783935;","Structural and functional conservation of cis-acting RNA elements in coronavirus 5'-terminal genome regions",2018,"Virology","517",,,"44","55",,3,"10.1016/j.virol.2017.11.025","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044115619&doi=10.1016%2fj.virol.2017.11.025&partnerID=40&md5=164b6d7f753a800df4317415dd561979","Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Faculty of Mathematics and Computer Science, Friedrich Schiller University, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany","Madhugiri, R., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Karl, N., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Petersen, D., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Lamkiewicz, K., Faculty of Mathematics and Computer Science, Friedrich Schiller University, Jena, Germany, European Virus Bioinformatics Center, Jena, Germany; Fricke, M., Faculty of Mathematics and Computer Science, Friedrich Schiller University, Jena, Germany, European Virus Bioinformatics Center, Jena, Germany; Wend, U., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Scheuer, R., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Marz, M., Faculty of Mathematics and Computer Science, Friedrich Schiller University, Jena, Germany, FLI Leibniz Institute for Age Research, Jena, Germany, European Virus Bioinformatics Center, Jena, Germany; Ziebuhr, J., Institute of Medical Virology, Justus Liebig University, Giessen, Germany, European Virus Bioinformatics Center, Jena, Germany","Structure predictions suggest a partial conservation of RNA structure elements in coronavirus terminal genome regions. Here, we determined the structures of stem-loops (SL) 1 and 2 of two alphacoronaviruses, human coronavirus (HCoV) 229E and NL63, by RNA structure probing and studied the functional relevance of these putative cis-acting elements. HCoV-229E SL1 and SL2 mutants generated by reverse genetics were used to study the effects on viral replication of single-nucleotide substitutions predicted to destabilize the SL1 and SL2 structures. The data provide conclusive evidence for the critical role of SL1 and SL2 in HCoV-229E replication and, in some cases, revealed parallels with previously characterized betacoronavirus SL1 and SL2 elements. Also, we were able to rescue viable HCoV-229E mutants carrying replacements of SL2 with equivalent betacoronavirus structural elements. The data obtained in this study reveal a remarkable degree of structural and functional conservation of 5′-terminal RNA structural elements across coronavirus genus boundaries. © 2017 Elsevier Inc.","cis-acting RNA element; Coronavirus; Coronavirus phylogeny; Replication; RNA structure; Stem-loop","cis acting element; virus RNA; virus RNA; Alphacoronavirus; Article; Betacoronavirus; Coronavirinae; nonhuman; RNA probe; RNA structure; RNA synthesis; single nucleotide polymorphism; terminal sequence; virus genome; virus mutation; virus replication; wild type; cell line; chemistry; conformation; genetics; human; Human coronavirus 229E; Human coronavirus NL63; nucleotide sequence; physiology; regulatory sequence; Base Sequence; Cell Line; Coronavirus 229E, Human; Coronavirus NL63, Human; Genome, Viral; Humans; Nucleic Acid Conformation; Regulatory Sequences, Nucleic Acid; RNA, Viral; Virus Replication","Almazan, F., Dediego, M.L., Galan, C., Escors, D., Alvarez, E., Ortego, J., Sola, I., Enjuanes, L., Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis (2006) J. Virol., 80, pp. 10900-10906; Barton, D.J., O'Donnell, B.J., Flanegan, J.B., 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis (2001) EMBO J., 20, pp. 1439-1448; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr. Top. Microbiol. Immunol., 287, pp. 1-30; Brown, C.G., Nixon, K.S., Senanayake, S.D., Brian, D.A., An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication (2007) J. Virol., 81, pp. 7716-7724; Chang, R.Y., Hofmann, M.A., Sethna, P.B., Brian, D.A., A cis-acting function for the coronavirus leader in defective interfering RNA replication (1994) J. Virol., 68, pp. 8223-8231; Chang, R.Y., Krishnan, R., Brian, D.A., The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA (1996) J. Virol., 70, pp. 2720-2729; Chen, S.C., Olsthoorn, R.C., Group-specific structural features of the 5'-proximal sequences of coronavirus genomic RNAs (2010) Virology, 401, pp. 29-41; Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14, pp. 1188-1190; Darty, K., Denise, A., Ponty, Y., VARNA: interactive drawing and editing of the RNA secondary structure (2009) Bioinformatics, 25, pp. 1974-1975; Dufour, D., Mateos-Gomez, P.A., Enjuanes, L., Gallego, J., Sola, I., Structure and functional relevance of a transcription-regulating sequence involved in coronavirus discontinuous RNA synthesis (2011) J. Virol., 85, pp. 4963-4973; Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J.P., Ehresmann, B., Probing the structure of RNAs in solution (1987) Nucleic Acids Res, 15, pp. 9109-9128; Firth, A.E., Brierley, I., Non-canonical translation in RNA viruses (2012) J. Gen. Virol., 93, pp. 1385-1409; Goebel, S.J., Taylor, J., Masters, P.S., The 3' cis-acting genomic replication element of the severe acute respiratory syndrome coronavirus can function in the murine coronavirus genome (2004) J. Virol., 78, pp. 7846-7851; Goto, H., Muramoto, Y., Noda, T., Kawaoka, Y., The genome-packaging signal of the influenza A virus genome comprises a genome incorporation signal and a genome-bundling signal (2013) J. Virol., 87, pp. 11316-11322; Gustin, K.M., Guan, B.J., Dziduszko, A., Brian, D.A., Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements (2009) J. Virol., 83, pp. 6087-6097; Hertzig, T., Scandella, E., Schelle, B., Ziebuhr, J., Siddell, S.G., Ludewig, B., Thiel, V., Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA (2004) J. Gen. Virol., 85, pp. 1717-1725; Isaacs, S.N., Kotwal, G.J., Moss, B., Reverse guanine phosphoribosyltransferase selection of recombinant vaccinia viruses (1990) Virology, 178, pp. 626-630; Kang, H., Feng, M., Schroeder, M.E., Giedroc, D.P., Leibowitz, J.L., Putative cis-acting stem-loops in the 5' untranslated region of the severe acute respiratory syndrome coronavirus can substitute for their mouse hepatitis virus counterparts (2006) J. Virol., 80, pp. 10600-10614; Keane, S.C., Heng, X., Lu, K., Kharytonchyk, S., Ramakrishnan, V., Carter, G., Barton, S., Summers, M.F., RNA structure. Structure of the HIV-1 RNA packaging signal (2015) Science, 348, pp. 917-921; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J. Virol., 87, pp. 5182-5192; Li, L., Kang, H., Liu, P., Makkinje, N., Williamson, S.T., Leibowitz, J.L., Giedroc, D.P., Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication (2008) J. Mol. Biol., 377, pp. 790-803; Liu, P., Leibowitz, J., RNA higher-order structures within the coronavirus 5' and 3' untranslated regions and their roles in viral replication (2010) Molecular Biology of the SARS-Coronavirus, pp. 47-61. , S.K. Lal Springer-Verlag Berlin Heidelberg, Germany; Liu, P., Li, L., Keane, S.C., Yang, D., Leibowitz, J.L., Giedroc, D.P., Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions (2009) J. Virol., 83, pp. 12084-12093; Liu, P., Li, L., Millership, J.J., Kang, H., Leibowitz, J.L., Giedroc, D.P., A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication (2007) RNA, 13, pp. 763-780; Liu, Y., Wimmer, E., Paul, A.V., Cis-acting RNA elements in human and animal plus-strand RNA viruses (2009) Biochim Biophys. Acta, 1789, pp. 495-517; Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., ViennaRNA Package 2.0 (2011) Algorithms Mol. Biol., 6, p. 26; Luo, D., Condon, C., Grunberg-Manago, M., Putzer, H., In vitro and in vivo secondary structure probing of the thrS leader in Bacillus subtilis (1998) Nucleic Acids Res, 26, pp. 5379-5387; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., RNA structure analysis of alphacoronavirus terminal genome regions (2014) Virus Res, 194, pp. 76-89; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., Coronavirus cis-acting RNA elements (2016) Adv. Virus Res., 96, pp. 127-163; Masters, P.S., Genomic cis-acting elements in coronavirus RNA replication (2007) Coronaviruses - Molecular and Cellular Biology., pp. 65-80. , V. Thiel Caister Academic Press Norfolk, United Kingdom; Morales, L., Mateos-Gomez, P.A., Capiscol, C., del Palacio, L., Enjuanes, L., Sola, I., Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process (2013) J. Virol., 87, pp. 11579-11590; Nagy, P.D., Simon, A.E., New insights into the mechanisms of RNA recombination (1997) Virology, 235, pp. 1-9; Nicholson, B.L., White, K.A., Functional long-range RNA-RNA interactions in positive-strand RNA viruses (2014) Nat. Rev. Microbiol., 12, pp. 493-504; Raman, S., Bouma, P., Williams, G.D., Brian, D.A., Stem-loop III in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication (2003) J. Virol., 77, pp. 6720-6730; Raman, S., Brian, D.A., Stem-loop IV in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication (2005) J. Virol., 79, pp. 12434-12446; Reed, L.J., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Schelle, B., Karl, N., Ludewig, B., Siddell, S.G., Thiel, V., Selective replication of coronavirus genomes that express nucleocapsid protein (2005) J. Virol., 79, pp. 6620-6630; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J. Gen. Virol., 82, pp. 1273-1281; Van Den Born, E., Gultyaev, A.P., Snijder, E.J., Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome (2004) RNA, 10, pp. 424-437; Will, S., Joshi, T., Hofacker, I.L., Stadler, P.F., Backofen, R., LocARNA-P: accurate boundary prediction and improved detection of structural RNAs (2012) RNA, 18, pp. 900-914; Yang, D., Leibowitz, J.L., The structure and functions of coronavirus genomic 3' and 5' ends (2015) Virus Res, 206, pp. 120-133; Yang, D., Liu, P., Wudeck, E.V., Giedroc, D.P., Leibowitz, J.L., SHAPE analysis of the RNA secondary structure of the Mouse Hepatitis Virus 5' untranslated region and N-terminal nsp1 coding sequences (2015) Virology, 475, pp. 15-27; Zuniga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J. Virol., 78, pp. 980-994","Ziebuhr, J.; Institute of Medical Virology, Biomedical Research Center, Justus Liebig University, Schubertstr. 81, Germany; email: john.ziebuhr@viro.med.uni-giessen.de",,"Academic Press Inc.",00426822,,VIRLA,"29223446","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85044115619 "Jaimes J.A., Whittaker G.R.","55173670700;7006825143;","Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function",2018,"Virology","517",,,"108","121",,10,"10.1016/j.virol.2017.12.027","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040117030&doi=10.1016%2fj.virol.2017.12.027&partnerID=40&md5=04ffe269a894612aaf840aec860f0256","Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, 930 Campus Rd. VMC C4-133, Ithaca, NY 14853, United States; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, VMC C4-127, Ithaca, NY 14853, United States","Jaimes, J.A., Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, 930 Campus Rd. VMC C4-133, Ithaca, NY 14853, United States; Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, VMC C4-127, Ithaca, NY 14853, United States","Feline coronavirus (FCoV) is an etiological agent that causes a benign enteric illness and the fatal systemic disease feline infectious peritonitis (FIP). The FCoV spike (S) protein is considered the viral regulator for binding and entry to the cell. This protein is also involved in FCoV tropism and virulence, as well as in the switch from enteric disease to FIP. This regulation is carried out by spike's major functions: receptor binding and virus-cell membrane fusion. In this review, we address important aspects in FCoV genetics, replication and pathogenesis, focusing on the role of S. To better understand this, FCoV S protein models were constructed, based on the human coronavirus NL63 (HCoV-NL63) S structure. We describe the specific structural characteristics of the FCoV S, in comparison with other coronavirus spikes. We also revise the biochemical events needed for FCoV S activation and its relation to the structural features of the protein. © 2018 Elsevier Inc.","Cleavage activation; Coronavirus; Feline coronavirus; Feline infectious peritonitis; Pathogenesis; Serotype; Spike protein; Spike structure; Tropism","virus spike protein; coronavirus spike glycoprotein; S protein, feline infectious peritonitis virus (FIPV); Article; biochemical analysis; Feline coronavirus; human; Human coronavirus NL63; nonhuman; priority journal; protein analysis; protein function; protein induction; protein structure; species comparison; taxonomy; viral genetics; virus assembly; virus cell interaction; virus morphology; virus pathogenesis; virus replication; animal; cat; chemistry; Feline coronavirus; feline infectious peritonitis; gene expression regulation; genetics; metabolism; pathogenicity; pathology; physiology; virology; Animals; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Gene Expression Regulation, Viral; Spike Glycoprotein, Coronavirus; Virus Replication","An, D.J., Jeoung, H.Y., Jeong, W., Park, J.Y., Lee, M.H., Park, B.K., Prevalence of Korean cats with natural feline coronavirus infections (2011) Virol. J., 8, p. 455; Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., Warren, G., Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus (1984) Nature, 308, pp. 751-752; Balint, A., Farsang, A., Zadori, Z., Hornyak, A., Dencso, L., Almazan, F., Enjuanes, L., Belak, S., Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism (2012) J. Virol., 86, pp. 6258-6267; Barcena, M., Oostergetel, G.T., Bartelink, W., Faas, F.G., Verkleij, A., Rottier, P.J., Koster, A.J., Bosch, B.J., Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 582-587; Barker, E.N., Stranieri, A., Helps, C.R., Porter, E.L., Davidson, A.D., Day, M.J., Knowles, T., Tasker, S., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Vet. Res., 48, p. 60; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 5871-5876; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Mostl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet. Microbiol., 99, pp. 31-42; Black, J.W., Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP) (1980) Vet. Med. Small Anim. Clin.: VM SAC, 75, pp. 811-814; Bosch, B.J., van der Zee, R., de Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Brierley, I., Digard, P., Inglis, S.C., Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot (1989) Cell, 57, pp. 537-547; Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., O'Brien, S.J., Genetics and pathogenesis of feline infectious peritonitis virus (2009) Emerg. Infect. Dis., 15, pp. 1445-1452; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10, p. e1004502; Cham, T.-C., Chang, Y.-C., Tsai, P.-S., Wu, C.-H., Chen, H.-W., Jeng, C.-R., Pang, V.F., Chang, H.-W., Determination of the cell tropism of serotype 1 feline infectious peritonitis virus using the spike affinity histochemistry in paraffin-embedded tissues (2017) Microbiol. Immunol., 61, pp. 318-327; Chambers, P., Pringle, C.R., Easton, A.J., Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins (1990) J. Gen. Virol., 71, pp. 3075-3080; Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Lee, S.J., Huang, T.H., Modular organization of SARS coronavirus nucleocapsid protein (2006) J. Biomed. Sci., 13, pp. 59-72; Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis., 18, pp. 1089-1095; Chang, H.W., Egberink, H.F., Rottier, P.J., Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory (2011) Emerg. Infect. Dis., 17, pp. 744-746; Corapi, W.V., Olsen, C.W., Scott, F.W., Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus (1992) J. Virol., 66, pp. 6695-6705; Corse, E., Machamer, C.E., The cytoplasmic tail of infectious Bronchitis Virus E protein directs golgi targeting (2002) J. Virol., 76, pp. 1273-1284; de Haan, C.A., Haijema, B.J., Schellen, P., Wichgers Schreur, P., te Lintelo, E., Vennema, H., Rottier, P.J., Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation (2008) J. Virol., 82, pp. 6078-6083; Dedeurwaerder, A., Desmarets, L.M., Olyslaegers, D.A., Vermeulen, B.L., Dewerchin, H.L., Nauwynck, H.J., The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes (2013) Vet. Microbiol., 162, pp. 447-455; Dedeurwaerder, A., Olyslaegers, D.A., Desmarets, L.M., Roukaerts, I.D., Theuns, S., Nauwynck, H.J., ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-alpha-induced antiviral response (2014) J. Gen. Virol., 95, pp. 393-402; DeDiego, M.L., Alvarez, E., Almazan, F., Rejas, M.T., Lamirande, E., Roberts, A., Shieh, W.J., Enjuanes, L., A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo (2007) J. Virol., 81, pp. 1701-1713; Dye, C., Siddell, S.G., Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146 (2005) J. Gen. Virol., 86, pp. 2249-2253; Dye, C., Temperton, N., Siddell, S.G., Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) J. Gen. Virol., 88, pp. 1753-1760; Enjuanes, L., Almazan, F., Sola, I., Zuniga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu. Rev. Microbiol., 60, pp. 211-230; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus (1997) J. Am. Vet. Med. Assoc., 210, pp. 1313-1318; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129; Gunn-Moore, D.A., Gruffydd-Jones, T.J., Harbour, D.A., Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis (1998) Vet. Microbiol., 62, pp. 193-205; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J. Virol., 78, pp. 3863-3871; Harrison, S.C., Principles of virus structure (2013) Fields Virology, pp. 52-86. , D.M. Knipe P.M. Howley 6th ed. Lippincot Williams & Wilkins Philadelphia, PA; Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., de Groot, R.J., The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes (1995) Virology, 212, pp. 622-631; Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514; Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., Differences in virus receptor for type I and type II feline infectious peritonitis virus (1998) Arch. Virol., 143, pp. 839-850; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci., 54, pp. 557-562; Hohdatsu, T., Yamato, H., Ohkawa, T., Kaneko, M., Motokawa, K., Kusuhara, H., Kaneshima, T., Koyama, H., Vaccine efficacy of a cell lysate with recombinant baculovirus-expressed feline infectious peritonitis (FIP) virus nucleocapsid protein against progression of FIP (2003) Vet. Microbiol., 97, pp. 31-44; Holzworth, J., Some important disorders of cats (1963) Cornell Vet., 53, pp. 157-160; Hurst, K.R., Koetzner, C.A., Masters, P.S., Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein (2009) J. Virol., 83, pp. 7221-7234; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J. Virol., 87, pp. 9159-9172; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis., 56, pp. 634-641; Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis (2001) Vet. Microbiol, 81, pp. 227-234; Kennedy, M.A., Abd-Eldaim, M., Zika, S.E., Mankin, J.M., Kania, S.A., Evaluation of antibodies against feline coronavirus 7b protein for diagnosis of feline infectious peritonitis in cats (2008) Am. J. Vet. Res., 69, pp. 1179-1182; Kipar, A., Kohler, K., Leukert, W., Reinacher, M., A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection (2001) J. Comp. Pathol., 125, pp. 182-191; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Krijnse-Locker, J., Ericsson, M., Rottier, P.J., Griffiths, G., Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step (1994) J. Cell Biol., 124, pp. 55-70; Kubo, H., Yamada, Y.K., Taguchi, F., Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein (1994) J. Virol., 68, pp. 5403-5410; Lai, A.L., Millet, J.K., Daniel, S., Freed, J.H., Whittaker, G.R., The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner (2017) J. Mol. Biol.; Lai, M.M., Coronavirus: organization, replication and expression of genome (1990) Annu. Rev. Microbiol., 44, pp. 303-333; Lewis, C.S., Porter, E., Matthews, D., Kipar, A., Tasker, S., Helps, C.R., Siddell, S.G., Genotyping coronaviruses associated with feline infectious peritonitis (2015) J. Gen. Virol., 96, pp. 1358-1368; Li, F., Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits (2012) J. Virol., 86, pp. 2856-2858; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu. Rev. Virol., 3, pp. 237-261; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the middle east respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19, pp. 1066-1073; Licitra, B.N., Sams, K.L., Lee, D.W., Whittaker, G.R., (2014), p. 5. , Feline Coronaviruses Associated with Feline Infectious Peritonitis Have Modifications to Spike Protein Activation Sites at Two Discrete Positions, arXiv. Cornell University Library; Look, A.T., Ashmun, R.A., Shapiro, L.H., Peiper, S.C., Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N (1989) J. Clin. Investig., 83, pp. 1299-1307; Madu, I.G., Chu, V.C., Lee, H., Regan, A.D., Bauman, B.E., Whittaker, G.R., Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus beaudette (2007) Avian Dis., 51, pp. 45-51; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83, pp. 7411-7421; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-858. , D.M. Knipe P.M. Howley 6th ed. Lippincot Williams & Wilkins Philadelphia, PA; McKeirnan, A.J., Evermann, J.F., Davis, E.V., Ott, R.L., Comparative properties of feline coronaviruses in vitro (1987) Can. J. Vet. Res. = Rev. Can. De. Rech. Vet., 51, pp. 212-216; Meli, M., Kipar, A., Muller, C., Jenal, K., Gonczi, E., Borel, N., Gunn-Moore, D., Lutz, H., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats (2004) J. Feline Med. Surg., 6, pp. 69-81; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., Droese, B., Buchmeier, M.J., A structural analysis of M protein in coronavirus assembly and morphology (2011) J. Struct. Biol., 174, pp. 11-22; Nieto-Torres, J.L., DeDiego, M.L., Verdia-Baguena, C., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Castano-Rodriguez, C., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog., 10, p. e1004077; Olsen, C.W., A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination (1993) Vet. Microbiol., 36, pp. 1-37; Pedersen, N.C., Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures (1976) Am. J. Vet. Res., 37, pp. 567-572; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Adv. Exp. Med. Biol., 173, pp. 365-380; Pedersen, N.C., Boyle, J.F., Floyd, K., Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture (1981) Am. J. Vet. Res., 42, pp. 363-367; Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis (1981) Am. J. Vet. Res., 42, pp. 368-377; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res., 165, pp. 17-28; Pedersen, N.C., Sato, R., Foley, J.E., Poland, A.M., Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus (2004) J. Feline Med. Surg., 6, pp. 83-88; Pedersen, N.C., Ward, J., Mengeling, W.L., Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species (1978) Arch. Virol., 58, pp. 45-53; Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F.L., Yu, D., Vararattanavech, A., Torres, J., Structure and inhibition of the SARS coronavirus envelope protein ion channel (2009) PLoS Pathog., 5, p. e1000511; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34, pp. 3180-3184; Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G., Helps, C.R., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet. Res., 45, p. 49; Promkuntod, N., van Eijndhoven, R.E., de Vrieze, G., Grone, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32; Regan, A.D., Shraybman, R., Cohen, R.D., Whittaker, G.R., Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses (2008) Vet. Microbiol., 132, pp. 235-248; Regan, A.D., Whittaker, G.R., Utilization of DC-SIGN for entry of feline coronaviruses into host cells (2008) J. Virol., 82, pp. 11992-11996; Robertson, A.L., Headey, S.J., Ng, N.M., Wijeyewickrema, L.C., Scanlon, M.J., Pike, R.N., Bottomley, S.P., Protein unfolding is essential for cleavage within the alpha-helix of a model protein substrate by the serine protease, thrombin (2016) Biochimie, 122, pp. 227-234; Rossen, J.W., Kouame, J., Goedheer, A.J., Vennema, H., Rottier, P.J., Feline and canine coronaviruses are released from the basolateral side of polarized epithelial LLC-PK1 cells expressing the recombinant feline aminopeptidase-N cDNA (2001) Arch. Virol., 146, pp. 791-799; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J. Virol.; Shiba, N., Maeda, K., Kato, H., Mochizuki, M., Iwata, H., Differentiation of feline coronavirus type I and II infections by virus neutralization test (2007) Vet. Microbiol., 124, pp. 348-352; Sturman, L.S., Holmes, K.V., Behnke, J., Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid (1980) J. Virol., 33, pp. 449-462; Takano, T., Katada, Y., Moritoh, S., Ogasawara, M., Satoh, K., Satoh, R., Tanabe, M., Hohdatsu, T., Analysis of the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection: aminopeptidase N is not important and a process of acidification of the endosome is necessary (2008) J. Gen. Virol., 89, pp. 1025-1029; Takano, T., Kawakami, C., Yamada, S., Satoh, R., Hohdatsu, T., Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection (2008) J. Vet. Med. Sci., 70, pp. 1315-1321; Tekes, G., Hofmann-Lehmann, R., Bank-Wolf, B., Maier, R., Thiel, H.J., Thiel, V., Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage (2010) J. Virol., 84, pp. 1326-1333; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J. Virol., 70, pp. 8669-8674; Van Hamme, E., Desmarets, L., Dewerchin, H.L., Nauwynck, H.J., Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes (2011) Virus Res., 160, pp. 32-39; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc. Natl. Acad. Sci. USA, 85, pp. 4526-4529; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Ward, J.M., Morphogenesis of a virus in cats with experimental feline infectious peritonitis (1970) Virology, 41, pp. 191-194; Ward, J.M., Munn, R.J., Gribble, D.H., Dungworth, D.L., An observation of feline infectious peritonitis (1968) Vet. Rec., 83, pp. 416-417; Wesseling, J.G., Vennema, H., Godeke, G.J., Horzinek, M.C., Rottier, P.J., Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses (1994) J. Gen. Virol., 75, pp. 1789-1794; White, J.M., Delos, S.E., Brecher, M., Schornberg, K., Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme (2008) Crit. Rev. Biochem. Mol. Biol., 43, pp. 189-219; White, J.M., Whittaker, G.R., Fusion of enveloped viruses in endosomes (2016) Traffic, 17, pp. 593-614; Whittaker, G.R., André, N., Millet, J.K., Improving virus taxonomy by re-contextualizing sequence-based classification with biologically-relevant data: the case of the Alphacoronavirus 1 species (2018) mSphere, 3, pp. e00463-00417; Wickramasinghe, I.N., van Beurden, S.J., Weerts, E.A., Verheije, M.H., The avian coronavirus spike protein (2014) Virus Res., 194, pp. 37-48; Winter, C., Schwegmann-Wessels, C., Cavanagh, D., Neumann, U., Herrler, G., Sialic acid is a receptor determinant for infection of cells by avian Infectious bronchitis virus (2006) J. Gen. Virol., 87, pp. 1209-1216; Wolfe, L.G., Griesemer, R.A., Feline infectious peritonitis (1966) Pathol. Vet., 3, pp. 255-270; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Wurzer, W.J., Obojes, K., Vlasak, R., The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae (2002) J. Gen. Virol., 83, pp. 395-402; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J. Virol.; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zhang, Y., Buckles, E., Whittaker, G.R., Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus (2012) Vet. Microbiol., 157, pp. 285-293; Zook, B.C., King, N.W., Robison, R.L., McCombs, H.L., Ultrastructural evidence for the viral etiology of feline infectious peritonitis (1968) Pathol. Vet., 5, pp. 91-95","Whittaker, G.R.; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, VMC C4-127, United States; email: grw7@cornell.edu",,"Academic Press Inc.",00426822,,VIRLA,"29329682","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85040117030 "de Wilde A.H., Zevenhoven-Dobbe J.C., Beugeling C., Chatterji U., de Jong D., Gallay P., Szuhai K., Posthuma C.C., Snijder E.J.","24474438300;6503906245;21933521700;6602466770;57203950530;57204336324;25123357900;6507457020;7006058325;","Coronaviruses and arteriviruses display striking differences in their cyclophilin A-dependence during replication in cell culture",2018,"Virology","517",,,"148","156",,4,"10.1016/j.virol.2017.11.022","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039413597&doi=10.1016%2fj.virol.2017.11.022&partnerID=40&md5=e5700633436ae2a050b43ee097761846","Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands","de Wilde, A.H., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Zevenhoven-Dobbe, J.C., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Beugeling, C., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Chatterji, U., Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States; de Jong, D., Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands; Gallay, P., Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States; Szuhai, K., Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands; Posthuma, C.C., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Snijder, E.J., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","Cyclophilin A (CypA) is an important host factor in the replication of a variety of RNA viruses. Also the replication of several nidoviruses was reported to depend on CypA, although possibly not to the same extent. These prior studies are difficult to compare, since different nidoviruses, cell lines and experimental set-ups were used. Here, we investigated the CypA dependence of three distantly related nidoviruses that can all replicate in Huh7 cells: the arterivirus equine arteritis virus (EAV), the alphacoronavirus human coronavirus 229E (HCoV-229E), and the betacoronavirus Middle East respiratory syndrome coronavirus (MERS-CoV). The replication of these viruses was compared in the same parental Huh7 cells and in CypA-knockout Huh7 cells generated using CRISPR/Cas9-technology. CypA depletion reduced EAV yields by ~ 3-log, whereas MERS-CoV progeny titers were modestly reduced (3-fold) and HCoV-229E replication was unchanged. This study reveals that the replication of nidoviruses can differ strikingly in its dependence on cellular CypA. © 2018 The Authors","Arterivirus; CRISPR/Cas9; Cyclophilin; CypA; EAV; human coronavirus-229E; Knockout; MERS-coronavirus","cyclophilin A; cyclophilin A; Arterivirus; arterivirus equine arteritis virus; Article; Betacoronavirus; cell culture; controlled study; Coronavirinae; CRISPR-CAS9 system; human; human cell; Human coronavirus 229E; karyotyping; Middle East respiratory syndrome coronavirus; molecular cloning; nonhuman; priority journal; sequence analysis; virus cell interaction; virus replication; virus strain; virus titration; Western blotting; animal; Arterivirus; cell line; Coronavirinae; hamster; metabolism; physiology; virus culture; virus replication; Animals; Arterivirus; Cell Line; Coronavirus; Cricetinae; Cyclophilin A; Humans; Virus Cultivation; Virus Replication","Blight, K.J., McKeating, J.A., Rice, C.M., Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication (2002) J. Virol., 76, pp. 13001-13014; Braaten, D., Franke, E.K., Luban, J., Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription (1996) J. Virol., 70, pp. 3551-3560; Bryans, J.T., Crowe, M.E., Doll, E.R., McCollum, W.H., Isolation of a filterable agent causing arteritis of horses and abortion by mares; its differentiation from the equine abortion (influenza) virus (1957) Cornell Vet., 47, pp. 3-41; Carbajo-Lozoya, J., Ma-Lauer, Y., Malesevic, M., Theuerkorn, M., Kahlert, V., Prell, E., von Brunn, B., von Brunn, A., Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir (2014) Virus Res., 184C, pp. 44-53; Carbajo-Lozoya, J., Muller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A., Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506 (2012) Virus Res., 165, pp. 112-117; Carlotti, F., Bazuine, M., Kekarainen, T., Seppen, J., Pognonec, P., Maassen, J.A., Hoeben, R.C., Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes (2004) Mol. Ther.: J. Am. Soc. Gene Ther., 9, pp. 209-217; Cervantes-Barragan, L., Zust, R., Maier, R., Sierro, S., Janda, J., Levy, F., Speiser, D., Thiel, V., Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity (2010) MBio, 1, pp. e00171-00110; Chatterji, U., Bobardt, M., Selvarajah, S., Yang, F., Tang, H., Sakamoto, N., Vuagniaux, G., Gallay, P., The isomerase active site of cyclophilin A is critical for hepatitis C virus replication (2009) J. Biol. Chem., 284, pp. 16998-17005; Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems (2013) Science, 339, pp. 819-823; Davis, T.L., Walker, J.R., Campagna-Slater, V., Finerty, P.J., Paramanathan, R., Bernstein, G., MacKenzie, F., Dhe-Paganon, S., Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases (2010) PLoS Biol., 8, p. e1000439; de Graaff, M.A., de Jong, D., Briaire-de Bruijn, I.H., Hogendoorn, P.C., Bovee, J.V., Szuhai, K., A translocation t(6;14) in two cases of leiomyosarcoma: Molecular cytogenetic and array-based comparative genomic hybridization characterization (2015) Cancer Genet., 208, pp. 537-544; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Posthuma, C.C., Snijder, E.J., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res., 228, pp. 7-13; de Wilde, A.H., Li, Y., van der Meer, Y., Vuagniaux, G., Lysek, R., Fang, Y., Snijder, E.J., van Hemert, M.J., Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis (2013) J. Virol., 87, pp. 1454-1464; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; de Wilde, A.H., Snijder, E.J., Kikkert, M., van Hemert, M.J., Host factors in coronavirus replication (2017) Curr. Top. Microbiol. Immunol.; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, M.J., Cyclosporin A inhibits the replication of diverse coronaviruses (2011) J. Gen. Virol., 92, pp. 2542-2548; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; den Boon, J.A., Snijder, E.J., Chirnside, E.D., de Vries, A.A., Horzinek, M.C., Spaan, W.J., Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily (1991) J. Virol., 65, pp. 2910-2920; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable (2012) J. Virol., 86, pp. 81-93; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res., 117, pp. 17-37; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Hagemeijer, M.C., Vonk, A.M., Monastyrska, I., Rottier, P.J., de Haan, C.A., Visualizing coronavirus RNA synthesis in time by using click chemistry (2012) J. Virol., 86, pp. 5808-5816; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract. Proceedings of the Society for Experimental biology and medicine (1966) Soc. Exp. Biol. Med., 121, pp. 190-193; Harding, M.W., Handschumacher, R.E., Speicher, D.W., Isolation and amino acid sequence of cyclophilin (1986) J. Biol. Chem., 261, pp. 8547-8555; Hatziioannou, T., Perez-Caballero, D., Cowan, S., Bieniasz, P.D., Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells (2005) J. Virol., 79, pp. 176-183; Holtkamp, D.J., Kliebenstein, J.B., Neumann, E.J., Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers (2013) JSHAP, 21, pp. 72-84; Hopkins, S., Gallay, P.A., The role of immunophilins in viral infection (2015) Biochim. Biophys. Acta, 1850, pp. 2103-2110; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology, 460-461, pp. 180-193; Knoops, K., Barcena, M., Limpens, R.W., Koster, A.J., Mommaas, A.M., Snijder, E.J., Ultrastructural characterization of arterivirus replication structures: reshaping the endoplasmic reticulum to accommodate viral RNA synthesis (2012) J. Virol., 86, pp. 2474-2487; Knoops, K., Kikkert, M., van den Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6, p. e226; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res., 226, pp. 20-39; Lin, Y.C., Boone, M., Meuris, L., Lemmens, I., Van Roy, N., Soete, A., Reumers, J., Callewaert, N., Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations (2014) Nat. Commun., 5, p. 4767; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., Britton, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) MBio, 4, pp. e00801-e00813; Mertens, F., Johansson, B., Fioretos, T., Mitelman, F., The emerging complexity of gene fusions in cancer (2015) Nat. Rev. Cancer, 15, pp. 371-381; Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., Sato, J., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium (1982) Cancer Res., 42, pp. 3858-3863; Naoumov, N.V., Cyclophilin inhibition as potential therapy for liver diseases (2014) J. Hepatol., 61, pp. 1166-1174; Nedialkova, D.D., Gorbalenya, A.E., Snijder, E.J., Arterivirus Nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs (2010) PLoS Pathog., 6, p. e1000772; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Liao, L., Kuhn, P., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J. Virol., 82, pp. 5279-5294; Nga, P.T., Parquet Mdel, C., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Thuy, N.T., Gorbalenya, A.E., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) PLoS Pathog., 7, p. e1002215; Nigro, P., Pompilio, G., Capogrossi, M.C., Cyclophilin A: a key player for human disease (2013) Cell Death Dis., 4, p. e888; Oudshoorn, D., van der Hoeven, B., Limpens, R.W., Beugeling, C., Snijder, E.J., Barcena, M., Kikkert, M., Antiviral innate immune response interferes with the formation of replication-associated membrane structures induced by a positive-strand RNA virus (2016) MBio, p. 7; Pedersen, K.W., van der, M.Y., Roos, N., Snijder, E.J., Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex (1999) J. Virol., 73, pp. 2016-2026; Pfefferle, S., Schopf, J., Kogl, M., Friedel, C.C., Muller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog., 7, p. e1002331; Sanjana, N.E., Shalem, O., Zhang, F., Improved vectors and genome-wide libraries for CRISPR screening (2014) Nat. Methods, 11, pp. 783-784; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J. Gen. Virol., 94, pp. 2141-2163; Szuhai, K., Tanke, H.J., COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping (2006) Nat. Protoc., 1, pp. 264-275; Tanaka, Y., Sato, Y., Osawa, S., Inoue, M., Tanaka, S., Sasaki, T., Suppression of feline coronavirus replication in vitro by cyclosporin A (2012) Vet. Res., 43, p. 41; Tanaka, Y., Sato, Y., Sasaki, T., Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B (2017) J. Gen. Virol., 98, pp. 190-200; Ulasli, M., Verheije, M.H., de Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell. Microbiol., 12, pp. 844-861; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00473-00412; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res., 220, pp. 70-90; van Hemert, M.J., de Wilde, A.H., Gorbalenya, A.E., Snijder, E.J., The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor (2008) J. Biol. Chem., 283, pp. 16525-16536; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) PLoS Pathog., 4, p. e1000054; van Kasteren, P.B., Beugeling, C., Ninaber, D.K., Frias-Staheli, N., van Boheemen, S., Garcia-Sastre, A., Snijder, E.J., Kikkert, M., Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling (2012) J. Virol., 86, pp. 773-785; von Brunn, A., Editorial overview: engineering for viral resistance (2015) Curr. Opin. Virol. 14, , (v-vii); von Brunn, A., Ciesek, S., von Brunn, B., Carbajo-Lozoya, J., Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication (2015) Curr. Opin. Virol., 14, pp. 56-61; Wilkens, L., Hammer, C., Glombitza, S., Muller, D.E., Hepatocellular and cholangiolar carcinoma-derived cell lines reveal distinct sets of chromosomal imbalances (2012) Pathobiology, 79, pp. 115-126; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhong, Y., Tan, Y.W., Liu, D.X., Recent progress in studies of arterivirus- and coronavirus-host interactions (2012) Viruses, 4, pp. 980-1010; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Thiel, V., Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat. Immunol., 12, pp. 137-143","de Wilde, A.H.; Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: A.H.de_Wilde@lumc.nl",,"Academic Press Inc.",00426822,,VIRLA,"29249267","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85039413597 "Johnson B.A., Graham R.L., Menachery V.D.","57183432200;57203199836;24281639500;","Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses",2018,"Virology","517",,,"30","37",,1,"10.1016/j.virol.2017.12.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039552156&doi=10.1016%2fj.virol.2017.12.009&partnerID=40&md5=db297f70cca48fa199698c90607eaaef","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Johnson, B.A., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Graham, R.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Menachery, V.D., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States","Viral metagenomics, modeling of protein structure, and manipulation of viral genetics are key approaches that have laid the foundations of our understanding of coronavirus biology. In this review, we discuss the major advances each method has provided and discuss how future studies should leverage these strategies synergistically to answer novel questions. © 2017 Elsevier Inc.",,"angiotensin converting enzyme 2; dipeptidyl carboxypeptidase; Alphacoronavirus; amino terminal sequence; Article; bat; Betacoronavirus; civet (animal); Coronavirinae; cryoelectron microscopy; Deltacoronavirus; electron microscopy; epidemic; epitope mapping; Gammacoronavirus; human; metagenomics; Middle East respiratory syndrome coronavirus; nonhuman; phylogenetic tree; phylogeny; plasmid; polymerase chain reaction; priority journal; protein domain; protein glycosylation; protein motif; protein structure; receptor binding; reverse genetics; SARS coronavirus; viral genetics; viral metagenomics; viral tropism; virion; virus culture; virus genome; virus isolation; virus strain; Coronavirinae; genetics; metagenomics; procedures; virus genome; Coronavirus; Genome, Viral; Metagenomics; Phylogeny","Agnihothram, S., Gopal, R., Yount, B.L., Donaldson, E.F., Menachery, V.D., Graham, R.L., Scobey, T.D., Baric, R.S., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J. Infect. Dis., 209, pp. 995-1006; Agnihothram, S., Yount, B.L., Donaldson, E.F., Huynh, J., Menachery, V.D., Gralinski, L.E., Graham, R.L., Baric, R.S., A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant (2014) MBio, 5, pp. e00047-00014; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-00814; Almazán, F., Sola, I., Zuñiga, S., Marquez-Jurado, S., Morales, L., Becares, M., Enjuanes, L., Reprint of: coronavirus reverse genetic systems: infectious clones and replicons (2014) Virus Res., 194, pp. 67-75; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, pp. 456-459; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A., Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus (2017) MBio, p. 8; Anthony, S.J., Ojeda-Flores, R., Rico-Chávez, O., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Rostal, M.K., Epstein, J.H., Lipkin, W.I., Coronaviruses in bats from Mexico (2013) J. Gen. Virol., 94, pp. 1028-1038; Aylor, D.L., Valdar, W., Foulds-Mathes, W., Buus, R.J., Verdugo, R.A., Baric, R.S., Ferris, M.T., Churchill, G.A., Genetic analysis of complex traits in the emerging Collaborative Cross (2011) Genome Res., 21, pp. 1213-1222; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; Beall, A., Yount, B., Lin, C.M., Hou, Y., Wang, Q., Saif, L., Baric, R., Characterization of a pathogenic Full-Length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A (2016) MBio, 7, pp. e01451-01415; Becker, M.M., Graham, R.L., Donaldson, E.F., Rockx, B., Sims, A.C., Sheahan, T., Pickles, R.J., Denison, M.R., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 19944-19949; Beniac, D.R., deVarennes, S.L., Andonov, A., He, R., Booth, T.F., Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion (2007) PLoS One, 2, p. e1082; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Daszak, P., Lipkin, W.I., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e01146-01114; Cao, Z., Liu, L., Du, L., Zhang, C., Jiang, S., Li, T., He, Y., Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients (2010) Virol. J., 7, p. 299; Casadevall, A., Imperiale, M.J., Risks and benefits of gain-of-function experiments with pathogens of pandemic potential, such as influenza virus: a call for a science-based discussion (2014) MBio, 5, pp. e01730-01714; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Pybus, O.G., Nastouli, E., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg. Infect. Dis., 19, pp. 736-742B; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Al-Tawfiq, J.A., Memish, Z.A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Memish, Z.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, p. 5; Day, C.W., Baric, R., Cai, S.X., Frieman, M., Kumaki, Y., Morrey, J.D., Smee, D.F., Barnard, D.L., A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo (2009) Virology, 395, pp. 210-222; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Munster, V.J., The middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS One, 8, p. e69127; DeDiego, M.L., Alvarez, E., Almazán, F., Rejas, M.T., Lamirande, E., Roberts, A., Shieh, W.J., Enjuanes, L., A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo (2007) J. Virol., 81, pp. 1701-1713; Donaldson, E.F., Haskew, A.N., Gates, J.E., Huynh, J., Moore, C.J., Frieman, M.B., Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat (2010) J. Virol., 84, pp. 13004-13018; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Jiang, S., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PLoS One, 8, p. e81587; Du, L., Zhao, G., He, Y., Guo, Y., Zheng, B.J., Jiang, S., Zhou, Y., Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model (2007) Vaccine, 25, pp. 2832-2838; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Lu, L., Jiang, S., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942; Edwards, R.A., Rohwer, F., Viral metagenomics (2005) Nat. Rev. Microbiol., 3, pp. 504-510; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Munster, V.J., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog., 10, p. e1004250; Fett, C., DeDiego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein (2013) J. Virol., 87, pp. 6551-6559; Frieman, M., Yount, B., Agnihothram, S., Page, C., Donaldson, E., Roberts, A., Vogel, L., Baric, R.S., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J. Virol., 86, pp. 884-897; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med., 18, pp. 1820-1826; Gralinski, L.E., Ferris, M.T., Aylor, D.L., Whitmore, A.C., Green, R., Frieman, M.B., Deming, D., Baric, R.S., Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross (2015) PLoS Genet., 11, p. e1005504; Gralinski, L.E., Menachery, V.D., Morgan, A.P., Totura, A.L., Beall, A., Kocher, J., Plante, J., Baric, R.S., Allelic variation in the toll-like receptor adaptor protein Ticam2 Contributes to SARS-coronavirus pathogenesis in mice (2017) G3, 7, pp. 1653-1663; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Tu, C., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J. Virol., 88, pp. 7070-7082; He, Y., Li, J., Heck, S., Lustigman, S., Jiang, S., Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design (2006) J. Virol., 80, pp. 5757-5767; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J. Immunol., 174, pp. 4908-4915; He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M., Jiang, S., Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine (2004) Biochem. Biophys. Res. Commun., 324, pp. 773-781; He, Y., Zhu, Q., Liu, S., Zhou, Y., Yang, B., Li, J., Jiang, S., Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines (2005) Virology, 334, pp. 74-82; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis., 20, pp. 1231-1234; Hou, Y., Peng, C., Yu, M., Li, Y., Han, Z., Li, F., Wang, L.F., Shi, Z., Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry (2010) Arch. Virol., 155, pp. 1563-1569; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Kang, C., Keller, T.H., Luo, D., Zika virus protease: an antiviral drug target (2017) Trends Microbiol.; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Group, S.W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Li, F., Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections (2008) J. Virol., 82, pp. 6984-6991; Li, F., Receptor recognition and cross-species infections of SARS coronavirus (2013) Antivir. Res., 100, pp. 246-254; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; Lu, L., Manopo, I., Leung, B.P., Chng, H.H., Ling, A.E., Chee, L.L., Ooi, E.E., Kwang, J., Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus (2004) J. Clin. Microbiol., 42, pp. 1570-1576; Menachery, V.D., Baric, R.S., Bugs in the system (2013) Immunol. Rev., 255, pp. 256-274; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., Graham, R.L., Baric, R.S., Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere, p. 2; Menachery, V.D., Yount, B.L., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity (2014) J. Virol., 88, pp. 4251-4264; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3048-3053; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Müller, M.A., Raj, V.S., Muth, D., Meyer, B., Kallies, S., Smits, S.L., Wollny, R., Drosten, C., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) MBio, p. 3; Netland, J., DeDiego, M.L., Zhao, J., Fett, C., Alvarez, E., Nieto-Torres, J.L., Enjuanes, L., Perlman, S., Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease (2010) Virology, 399, pp. 120-128; Neuman, B.W., Adair, B.D., Yoshioka, C., Quispe, J.D., Orca, G., Kuhn, P., Milligan, R.A., Buchmeier, M.J., Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy (2006) J. Virol., 80, pp. 7918-7928; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., group, S., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stöhr, K., The severe acute respiratory syndrome (2003) N. Engl. J. Med., 349, pp. 2431-2441; Perez, D., Reverse Genetics of RNA Viruses (2017), Springer Science+Business Media New York, NY; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Peiris, J.S., Identification of a novel coronavirus in bats (2005) J. Virol., 79, pp. 2001-2009; Qu, X.X., Hao, P., Song, X.J., Jiang, S.M., Liu, Y.X., Wang, P.G., Rao, X., Deng, H.K., Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy (2005) J. Biol. Chem., 280, pp. 29588-29595; Racaniello, V., Moving beyond metagenomics to find the next pandemic virus (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 2812-2814; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Haagmans, B.L., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; Ren, W., Li, W., Yu, M., Hao, P., Zhang, Y., Zhou, P., Zhang, S., Shi, Z., Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis (2006) J. Gen. Virol., 87, pp. 3355-3359; Ren, W., Qu, X., Li, W., Han, Z., Yu, M., Zhou, P., Zhang, S.Y., Shi, Z., Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin (2008) J. Virol., 82, pp. 1899-1907; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog., 3, p. e5; Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., Baric, R., Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge (2008) J. Virol., 82, pp. 3220-3235; Rockx, B., Donaldson, E., Frieman, M., Sheahan, T., Corti, D., Lanzavecchia, A., Baric, R.S., Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus (2010) J. Infect. Dis., 201, pp. 946-955; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Peñaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399; Saphire, E.O., An update on the use of antibodies against the filoviruses (2013) Immunotherapy, 5, pp. 1221-1233; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Sheahan, T., Rockx, B., Donaldson, E., Corti, D., Baric, R., Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus (2008) J. Virol., 82, pp. 8721-8732; Simmonds, P., Adams, M.J., Benkő, M., Breitbart, M., Brister, J.R., Carstens, E.B., Davison, A.J., Zerbini, F.M., Consensus statement: virus taxonomy in the age of metagenomics (2017) Nat. Rev. Microbiol., 15, pp. 161-168; Sims, A.C., Baric, R.S., Yount, B., Burkett, S.E., Collins, P.L., Pickles, R.J., Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs (2005) J. Virol., 79, pp. 15511-15524; Snijder, E.J., Decroly, E., Ziebuhr, J., The Nonstructural proteins Directing Coronavirus RNA Synthesis and processing (2016) Adv. Virus Res., 96, pp. 59-126; Sui, J., Deming, M., Rockx, B., Liddington, R.C., Zhu, Q.K., Baric, R.S., Marasco, W.A., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J. Virol., 88, pp. 13769-13780; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History (2017) J. Virol., p. 91; Tu, C., Crameri, G., Kong, X., Chen, J., Sun, Y., Yu, M., Xiang, H., Wang, L.F., Antibodies to SARS coronavirus in civets (2004) Emerg. Infect. Dis., 10, pp. 2244-2248; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Weiss, S., Yitzhaki, S., Shapira, S.C., Lessons to be learned from recent biosafety Incidents in the United States (2015) Isr. Med. Assoc. J., 17, pp. 269-273; World Health Organization, WHO SARS Risk Assessment and Preparedness Framework (2004), WHO Press Geneva; Wu, K., Peng, G., Wilken, M., Geraghty, R.J., Li, F., Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus (2012) J. Biol. Chem., 287, pp. 8904-8911; Wu, N.C., Wilson, I.A., A perspective on the structural and functional constraints for immune evasion: insights from influenza virus (2017) J. Mol. Biol., 429, pp. 2694-2709; Xiong, H., Morrison, J., Ferris, M.T., Gralinski, L.E., Whitmore, A.C., Green, R., Thomas, M.J., Katze, M.G., Genomic profiling of collaborative cross founder mice infected with respiratory viruses reveals novel transcripts and infection-related strain-specific gene and isoform expression (2014) G3 (Bethesda), 4, pp. 1429-1444; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the Direct progenitor of severe acute respiratory syndrome Coronavirus (2015) J. Virol., 90, pp. 3253-3256; Yount, B., Curtis, K.M., Baric, R.S., Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model (2000) J. Virol., 74, pp. 10600-10611; Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Denison, M.R., Baric, R.S., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 12995-13000; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J. Virol., 76, pp. 11065-11078; Yount, B., Roberts, R.S., Lindesmith, L., Baric, R.S., Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 12546-12551; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zakhartchouk, A.N., Sharon, C., Satkunarajah, M., Auperin, T., Viswanathan, S., Mutwiri, G., Petric, M., Babiuk, L.A., Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine (2007) Vaccine, 25, pp. 136-143; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Thiel, V., Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat. Immunol., 12, pp. 137-143","Menachery, V.D.; University of Texas Medical Branch, 301 University Blvd., Route 610, United States; email: Vimenach@utmb.edu",,"Academic Press Inc.",00426822,,VIRLA,"29279138","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85039552156 "ur Rahman S.A.","57194490854;","Transmission of Middle East respiratory syndrome coronavirus infections among healthcare personnel in the Middle East: A systematic review",2018,"Tropical Journal of Pharmaceutical Research","17","4",,"731","739",,,"10.4314/tjpr.v17i4.24","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047467300&doi=10.4314%2ftjpr.v17i4.24&partnerID=40&md5=882670b68fe6acd4ac9a8bdfe785e21f","Department of Pharmaceutics of Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarrah, Saudi Arabia; College of Pharmacy, Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Sehore, M.P., India","ur Rahman, S.A., Department of Pharmaceutics of Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarrah, Saudi Arabia, College of Pharmacy, Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Sehore, M.P., India","Purpose: To undertake a systematic review of the high mortality rate of Middle East respiratory syndrome coronavirus infections (MERS-CoV) among healthcare personnel in the Middle East. Methods: To conduct this systematic review various electronic databases were searched for earlier recorded studies. Prisma guidelines were used to shortlist the studies based on the inclusion and exclusion criterion. Finally, twelve studies were selected and analysed for the systematic review. Results: Twelve articles were selected after filtering 184 articles on Coronavirus. The studies chosen for this systematic review which outline the transmission information of MERS-CoV among health care personnel. A majority of studies were from Saudi Arabia, as the prevalence of Mers-CoV in Saudi Arabia is higher than in other countries in the region. Mers-CoV transmission into humans was mainly expected from infected dromedary camels. Conclusion: The results indicate that the use of infection control procedures and protocols, which include ensuring that all persons with respiratory infection symptoms adhere to respiratory hygiene, hand hygiene, and cough etiquette, would minimize the infection rate among HCPs. The required consumables for maintaining hand hygiene should be readily available to all HCPs. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria and 2018 The author.","Coronaviruses; Health care personnel; Healthcare-associated infections; Middle East respiratory syndrome coronavirus (MERS-CoV); Systematic review","Article; bibliographic database; cross-sectional study; hand washing; health care personnel; human; infection control; Middle East; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; prevalence; prospective study; questionnaire; randomized controlled trial (topic); Saudi Arabia; systematic review","Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369 (9), pp. 884-886; Hall, A.J., Tokars, J.I., Badreddine, S.A., Saad, Z.B., Furukawa, E., Al Masri, M., Health care worker contact with MERS patient, Saudi Arabia (2014) Emerg Infect Dis, 20 (12), pp. 2148-2151; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi (2016) Emerg Infect Dis, 22 (4), pp. 647-656; Khan, M.U., Shah, S., Ahmad, A., Fatokun, O., Knowledge and attitude of healthcare workers about Middle East Respiratory Syndrome in multispecialty hospitals of Qassim, Saudi Arabia (2014) BMC Public Health, 14, p. 1281; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Khalid, I., Khalid, T.J., Qabajah, M.R., Barnard, A.G., Qushmaq, I.A., Healthcare Workers Emotions, Perceived Stressors and Coping Strategies During a MERS-CoV Outbreak (2016) Clin Med Res, 14 (1), pp. 7-14; Shalhoub, S., Abdraboh, S., Palma, R., Alsharif, H., Assiri, N., MERS-CoV in a healthcare worker in Jeddah, Saudi Arabia: An index case investigation (2016) J Hosp Infect, 93 (3), pp. 309-312; Maltezou, H.C., Tsiodras, S., Middle East respiratory syndrome coronavirus: Implications for health care facilities (2014) Am J Infect Control, 42 (12), pp. 1261-1265; Sherbini, N., Iskandrani, A., Kharaba, A., Khalid, G., Abduljawad, M., Al-Jahdali, H., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data (2017) J Epidemiol Glob Health, 7 (1), pp. 29-36; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Rabaan, A.A., Alhani, H.M., Bazzi, A.M., Al-Ahmed, S.H., Questionnaire-based analysis of infection prevention and control in healthcare facilities in Saudi Arabia in regards to Middle East Respiratory Syndrome (2017) J Infect Public Health, 10 (5), pp. 548-563; Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Slayton, R.B., Estivariz, C.F., Geller, A.I., Risk Factors for Middle East Respiratory Syndrome Coronavirus Infection among Healthcare Personnel (2016) Emerg Infect Dis, 22 (11), pp. 1915-1920; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55; (2017), http://www.who.int/emergencies/mers-cov/en/, World Health Organization; Momattin, H., Mohammed, K., Zumla, A., Memish, Z.A., Al-Tawfiq, J.A., Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)-- possible lessons from a systematic review of SARS-CoV therapy (2013) Int J Infect Dis, 17 (10), pp. e792-e798; Dawson, P., Morse, S., 20.083 Middle East Respiratory Syndrome Coronavirus (MERS-CoV): A systematic literature review Int J Infect Dis, 53, p. 125; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382 (9909), pp. 1993-2002; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Hui, D.S.C., Chan, P.K.S., Severe Acute Respiratory Syndrome and Coronavirus Infectious Disease Clinics, 24 (3), pp. 619-638; Fernstrom, A., Goldblatt, M., Aerobiology and its role in the transmission of infectious diseases (2013) J Pathog, 2013; Kim, J.Y., Song, J.Y., Yoon, Y.K., Choi, S.H., Song, Y.G., Kim, S.R., Middle East Respiratory Syndrome Infection Control and Prevention Guideline for Healthcare Facilities (2015) Infect Chemother, 47 (4), pp. 278-302; Saudi Arabia: World Health Organization, , http://www.who.int/csr/don/19-december-2017-mers-saudi-arabia/en/, December 2017","ur Rahman, S.A.; Department of Pharmaceutics of Pharmaceutical Technology, College of Pharmacy, Taibah UniversitySaudi Arabia; email: saur9186@gmail.com",,"University of Benin",15965996,,,,"English","Trop. J. Pharm. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85047467300 "Shirato K., Kawase M., Matsuyama S.","7101969487;25958099400;7201442043;","Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry",2018,"Virology","517",,,"9","15",,8,"10.1016/j.virol.2017.11.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036635612&doi=10.1016%2fj.virol.2017.11.012&partnerID=40&md5=8c3eafc84ba9d8c6da61cbc2728d10ad","Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan","Shirato, K., Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan; Kawase, M., Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan; Matsuyama, S., Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan","Human coronaviruses (HCoVs) enter cells via two distinct pathways: the endosomal pathway using cathepsins to activate spike protein and the cell-surface or early endosome pathway using extracellular proteases such as transmembrane protease serine 2 (TMPRSS2). We previously reported that clinical isolates of HCoV-229E preferred cell-surface TMPRSS2 to endosomal cathepsin for cell entry, and that they acquired the ability to use cathepsin L by repeated passage in cultured cells and were then able to enter cells via the endosomal pathway. Here, we show that clinical isolates of HCoV-OC43 and -HKU1 preferred the cell-surface TMRRSS2 to endosomal cathepsins for cell entry, similar to HCoV-229E. In addition, the cell-culture-adapted HCoV-OC43 lost the ability to infect and replicate in air-liquid interface cultures of human bronchial tracheal epithelial cells. These results suggest that circulating HCoVs in the field generally use cell-surface TMPRSS2 for cell entry, not endosomal cathepsins, in human airway epithelial cells. © 2017 Elsevier Inc.","Air-liquid interface culture; Entry; Human bronchial tracheal epithelial cells; Human coronavirus","cathepsin; protein; TMPRSS2 protein; unclassified drug; cathepsin; cathepsin L; coronavirus spike glycoprotein; messenger RNA; serine proteinase; TMPRSS2 protein, human; airway epithelium cell; Article; cell culture; cell surface; controlled study; Coronaviridae; endosome; epithelium cell; human; human cell; nucleotide sequence; priority journal; trachea epithelium; wild type; amino acid sequence; cell line; Coronavirinae; genetics; metabolism; physiology; virus entry; virus replication; Amino Acid Sequence; Cathepsin L; Cathepsins; Cell Line; Coronavirus; Endosomes; Humans; RNA, Messenger; Serine Endopeptidases; Spike Glycoprotein, Coronavirus; Virus Internalization; Virus Replication","Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pohlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87, pp. 6150-6160; Bruckova, M., McIntosh, K., Kapikian, A.Z., Chanock, R.M., The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers (1970) Proc. Soc. Exp. Biol. Med, 135, pp. 431-435; Dare, R.K., Fry, A.M., Chittaganpitch, M., Sawanpanyalert, P., Olsen, S.J., Erdman, D.D., Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays (2007) J. Infect. Dis., 196, pp. 1321-1328; Desai, T.M., Marin, M., Chin, C.R., Savidis, G., Brass, A.L., Melikyan, G.B., IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion (2014) PLoS Pathog., 10, p. e1004048; Dijkman, R., Jebbink, M.F., El Idrissi, N.B., Pyrc, K., Muller, M.A., Kuijpers, T.W., Zaaijer, H.L., van der Hoek, L., Human coronavirus NL63 and 229E seroconversion in children (2008) J. Clin. Microbiol, 46, pp. 2368-2373; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Deijs, M., Jonsdottir, H.R., Molenkamp, R., Ieven, M., van der Hoek, L., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J. Virol., 87, pp. 6081-6090; Fulcher, M.L., Gabriel, S., Burns, K.A., Yankaskas, J.R., Randell, S.H., Well-differentiated human airway epithelial cell cultures (2005) Methods Mol. Med., 107, pp. 183-206; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; Hara, M., Takao, S., Coronavirus Infections in Pediatric Outpatients with Febrile Respiratory Tract Infections in Hiroshima, Japan, over a 3-Year Period (2015) Jpn. J. Infect. Dis., 68, pp. 523-525; Hirokawa, C., Watanabe, K., Kon, M., Tamura, T., Nishikawa, M., Isolation of a virus closely related to human coronavirus 229E from a case of pharyngitis, March 2008-Niigata (2008) Infect. Agents Surveill. Rep., 29, p. 283. , written in Japanese; Kaida, A., Kubo, H., Takakura, K., Sekiguchi, J., Yamamoto, S.P., Kohdera, U., Togawa, M., Iritani, N., Associations between co-detected respiratory viruses in children with acute respiratory infections (2014) Jpn. J. Infect. Dis., 67, pp. 469-475; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2009) J. Virol., 83, pp. 712-721; Kawase, M., Shirato, K., van der Hoek, L., Taguchi, F., Matsuyama, S., Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry (2012) J. Virol., 86, pp. 6537-6545; Li, K., Markosyan, R.M., Zheng, Y.M., Golfetto, O., Bungart, B., Li, M., Ding, S., Liu, S.L., IFITM proteins restrict viral membrane hemifusion (2013) PLoS Pathog., 9, p. e1003124; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83, pp. 7411-7421; Matoba, Y., Aoki, Y., Tanaka, S., Yahagi, K., Shimotai, Y., Matsuzaki, Y., Itagaki, T., Mizuta, K., An Outbreak of Human Coronavirus OC43 during the 2014–2015 Influenza Season in Yamagata, Japan (2015) Jpn. J. Infect. Dis., 68, pp. 442-445; Matoba, Y., Aoki, Y., Tanaka, S., Yahagi, K., Katsushima, Y., Katsushima, F., Sugawara, K., Mizuta, K., HeLa-ACE2-TMPRSS2 Cells Are Useful for the Isolation of Human Coronavirus 229E (2016) Jpn. J. Infect. Dis., 69, pp. 452-454; McIntosh, K., Becker, W.B., Chanock, R.M., Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease (1967) Proc. Natl. Acad. Sci. USA, 58, pp. 2268-2273; McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc. Natl. Acad. Sci. USA, 57, pp. 933-940; Munoz-Moreno, R., Cuesta-Geijo, M.A., Martinez-Romero, C., Barrado-Gil, L., Galindo, I., Garcia-Sastre, A., Alonso, C., Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection (2016) PLoS One, 11, p. e0154366; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 12262-12267; Peiris, J.S.M., Poon, L.L.M., Coronaviruses and Toroviruses (2009) Principles and Practice of Clinical Virology, pp. 511-532. , A.J. Zuckerman J.E. Banatvala P. Griffiths B. Schoub P. Mortimer Sixth ed John Wiley & Sons, Inc Hoboken, NJ; Pyrc, K., Sims, A.C., Dijkman, R., Jebbink, M., Long, C., Deming, D., Donaldson, E., Pickles, R., Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures (2010) J. Virol., 84, pp. 11255-11263; Shirato, K., Kawase, M., Watanabe, O., Hirokawa, C., Matsuyama, S., Nishimura, H., Taguchi, F., Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004–2008 depend on the S1 region sequence of the spike protein (2012) J. Gen. Virol., 93, pp. 1908-1917; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry (2017) J. Virol., 91. , e01387-16; Tao, X., Hill, T.E., Morimoto, C., Peters, C.J., Ksiazek, T.G., Tseng, C.T., Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells (2013) J. Virol., 87, pp. 9953-9958; Tyrrell, D.A.J., Myint, S.H., Coronaviruses (1996) Medical Microbiology, , S. Baron 4th ed University of Texas Medical Branch at Galveston Galveston, Texas; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; van Elden, L.J., van Loon, A.M., van Alphen, F., Hendriksen, K.A., Hoepelman, A.I., van Kraaij, M.G., Oosterheert, J.J., Nijhuis, M., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction (2004) J. Infect. Dis., 189, pp. 652-657; Yano, T., Ochiai, H., Ihara, T., [Detection of human coronavirus OC43 in children with acute respiratory infections in Mie, Japan] (2014) Kansenshogaku Zasshi, 88, pp. 708-710","Shirato, K.; Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Japan; email: shirato@nih.go.jp",,"Academic Press Inc.",00426822,,VIRLA,"29217279","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85036635612 "Grunewald M.E., Fehr A.R., Athmer J., Perlman S.","57193548278;36061058900;56491003300;7102708317;","The coronavirus nucleocapsid protein is ADP-ribosylated",2018,"Virology","517",,,"62","68",,6,"10.1016/j.virol.2017.11.020","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035782154&doi=10.1016%2fj.virol.2017.11.020&partnerID=40&md5=8ca5a8f531f63d53c6c6db304dc020a6","Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States","Grunewald, M.E., Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States; Fehr, A.R., Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States; Athmer, J., Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States; Perlman, S., Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242, United States","ADP-ribosylation is a common post-translational modification, although how it modulates RNA virus infection is not well understood. While screening for ADP-ribosylated proteins during coronavirus (CoV) infection, we detected a ~55 kDa ADP-ribosylated protein in mouse hepatitis virus (MHV)-infected cells and in virions, which we identified as the viral nucleocapsid (N) protein. The N proteins of porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV were also ADP-ribosylated. ADP-ribosylation of N protein was also observed in cells exogenously expressing N protein by transduction using Venezuelan equine encephalitis virus replicon particles (VRPs). However, plasmid-derived N protein was not ADP-ribosylated following transient transfection but was ADP-ribosylated after MHV infection, indicating that this modification requires virus infection. In conclusion, we have identified a novel post-translation modification of the CoV N protein that may play a regulatory role for this important structural protein. © 2017 Elsevier Inc.","ADP-ribosylation; Coronavirus; Macrodomain; MERS-CoV; Mouse hepatitis virus; Nucleocapsid; PEDV; SARS-CoV","nucleocapsid protein; nucleocapsid protein; nucleocapsid protein, Coronavirus; viral protein; adenosine diphosphate ribosylation; Article; controlled study; Coronavirinae; Middle East respiratory syndrome coronavirus; Murine hepatitis virus; nonhuman; plasmid; Porcine epidemic diarrhea virus; priority journal; protein expression; replicon; SARS coronavirus; Venezuelan equine encephalitis virus; virion; adenosine diphosphate ribosylation; animal; cell line; Coronavirinae; gene expression regulation; genetics; human; metabolism; physiology; protein domain; ADP-Ribosylation; Animals; Cell Line; Coronavirus; Gene Expression Regulation, Viral; Humans; Nucleocapsid Proteins; Protein Domains; Viral Nonstructural Proteins","Atasheva, S., Akhrymuk, M., Frolova, E.I., Frolov, I., New PARP gene with an anti-alphavirus function (2012) J. Virol., 86, pp. 8147-8160; Atasheva, S., Frolova, E.I., Frolov, I., Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication (2014) J. Virol., 88, pp. 2116-2130; Bailey, O.T., Pappenheimer, A.M., Cheever, F.S., Daniels, J.B., A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin: ii. pathology (1949) J. Exp. Med., 90, pp. 195-212; Bernardi, R., Rossi, L., Poirier, G.G., Scovassi, A.I., Analysis of poly(ADP-ribose) glycohydrolase activity in nuclear extracts from mammalian cells (1997) Biochim. Biophys. Acta, 1338, pp. 60-68; Bick, M.J., Carroll, J.W., Gao, G., Goff, S.P., Rice, C.M., MacDonald, M.R., Expression of the zinc-finger antiviral protein inhibits alphavirus replication (2003) J. Virol., 77, pp. 11555-11562; Bock, F.J., Chang, P., New directions in PARP biology (2016) FEBS J.; Cervantes-Laurean, D., Jacobson, E.L., Jacobson, M.K., Preparation of low molecular weight model conjugates for ADP-ribose linkages to protein (1997) Methods Enzymol., 280, pp. 275-287; Collins, A.R., Knobler, R.L., Powell, H., Buchmeier, M.J., Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell–cell fusion (1982) Virology, 119, pp. 358-371; Daugherty, M.D., Young, J.M., Kerns, J.A., Malik, H.S., Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts (2014) PLoS Genet., 10, p. e1004403; Dery, C.V., de Murcia, G., Lamarre, D., Morin, N., Poirier, G.G., Weber, J., Possible role of ADP-ribosylation of adenovirus core proteins in virus infection (1986) Virus Res., 4, pp. 313-329; Eckei, L., Krieg, S., Butepage, M., Lehmann, A., Gross, A., Lippok, B., Grimm, A.R., Verheugd, P., The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases (2017) Sci. Rep., 7, p. 41746; Eriksson, K.K., Cervantes-Barragan, L., Ludewig, B., Thiel, V., Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1''-phosphatase, a viral function conserved in the alpha-like supergroup (2008) J. Virol., 82, pp. 12325-12334; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J. Virol., 89, pp. 1523-1536; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D.K., Perlman, S., The conserved Coronavirus Macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome Coronavirus infection (2016) MBio, 7; Gao, G., Guo, X., Goff, S.P., Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein (2002) Science, 297, pp. 1703-1706; Goenka, S., Cho, S.H., Boothby, M., Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription (2007) J. Biol. Chem., 282, pp. 18732-18739; Gordon-Shaag, A., Yosef, Y., Abd El-Latif, M., Oppenheim, A., The abundant nuclear enzyme PARP participates in the life cycle of simian virus 40 and is stimulated by minor capsid protein VP3 (2003) J. Virol., 77, pp. 4273-4282; Guo, X., Carroll, J.W., Macdonald, M.R., Goff, S.P., Gao, G., The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs (2004) J. Virol., 78, pp. 12781-12787; Guo, X., Ma, J., Sun, J., Gao, G., The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 151-156; Ha, H.C., Juluri, K., Zhou, Y., Leung, S., Hermankova, M., Snyder, S.H., Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 3364-3368; Hiscox, J.A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D., Brooks, G., The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus (2001) J. Virol., 75, pp. 506-512; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J. Virol., 87, pp. 9159-9172; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) J. Virol., 84, pp. 10276-10288; Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., Ladurner, A.G., A family of macrodomain proteins reverses cellular mono-ADP-ribosylation (2013) Nat. Struct. Mol. Biol., 20, pp. 508-514; Kawamitsu, H., Hoshino, H., Okada, H., Miwa, M., Momoi, H., Sugimura, T., Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures (1984) Biochemistry, 23, pp. 3771-3777; Kleine, H., Poreba, E., Lesniewicz, K., Hassa, P.O., Hottiger, M.O., Litchfield, D.W., Shilton, B.H., Luscher, B., Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation (2008) Mol. Cell, 32, pp. 57-69; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J. Virol., 81, pp. 548-557; Kuny, C.V., Sullivan, C.S., Virus-host interactions and the ARTD/PARP family of enzymes (2016) PLoS Pathog., 12, p. e1005453; Kuri, T., Eriksson, K.K., Putics, A., Zust, R., Snijder, E.J., Davidson, A.D., Siddell, S.G., Weber, F., The ADP-ribose-1''-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses (2011) J. Gen. Virol., 92, pp. 1899-1905; Leung, A.K., Vyas, S., Rood, J.E., Bhutkar, A., Sharp, P.A., Chang, P., Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm (2011) Mol. Cell, 42, pp. 489-499; Li, C., Debing, Y., Jankevicius, G., Neyts, J., Ahel, I., Coutard, B., Canard, B., Viral macro domains reverse protein ADP-ribosylation (2016) J. Virol., 90, pp. 8478-8486; Liu, C.H., Zhou, L., Chen, G., Krug, R.M., Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein (2015) Proc. Natl. Acad. Sci. USA; Lupey-Green, L.N., Moquin, S.A., Martin, K.A., McDevitt, S.M., Hulse, M., Caruso, L.B., Pomerantz, R.T., Tempera, I., PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter (2017) Virology, 507, pp. 220-230; MacDonald, M.R., Machlin, E.S., Albin, O.R., Levy, D.E., The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses (2007) J. Virol., 81, pp. 13509-13518; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Muller, S., Moller, P., Bick, M.J., Wurr, S., Becker, S., Gunther, S., Kummerer, B.M., Inhibition of filovirus replication by the zinc finger antiviral protein (2007) J. Virol., 81, pp. 2391-2400; Narayanan, K., Maeda, A., Maeda, J., Makino, S., Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells (2000) J. Virol., 74, pp. 8127-8134; Peng, T.Y., Lee, K.R., Tarn, W.Y., Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization (2008) FEBS J., 275, pp. 4152-4163; Perlman, S., Schelper, R., Bolger, E., Ries, D., Late onset, symptomatic, demyelinating encephalomyelitis in mice infected with MHV-JHM in the presence of maternal antibody (1987) Microb. Pathog., 2, pp. 185-194; Rosenthal, F., Feijs, K.L., Frugier, E., Bonalli, M., Forst, A.H., Imhof, R., Winkler, H.C., Hottiger, M.O., Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases (2013) Nat. Struct. Mol. Biol., 20, pp. 502-507; Sharifi, R., Morra, R., Appel, C.D., Tallis, M., Chioza, B., Jankevicius, G., Simpson, M.A., Ahel, I., Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease (2013) EMBO J., 32, pp. 1225-1237; Strickfaden, H., McDonald, D., Kruhlak, M.J., Haince, J.F., Th'ng, J.P., Rouleau, M., Ishibashi, T., Hendzel, M.J., Poly(ADP-ribosyl)ation-dependent transient chromatin decondensation and histone displacement following laser microirradiation (2016) J. Biol. Chem., 291, pp. 1789-1802; Tempera, I., Deng, Z., Atanasiu, C., Chen, C.J., D'Erme, M., Lieberman, P.M., Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1 (2010) J. Virol., 84, pp. 4988-4997; White, T.C., Yi, Z., Hogue, B.G., Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites (2007) Virus Res., 126, pp. 139-148; Wielckens, K., Schmidt, A., George, E., Bredehorst, R., Hilz, H., DNA fragmentation and NAD depletion. their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins (1982) J. Biol. Chem., 257, pp. 12872-12877; Wu, C.H., Chen, P.J., Yeh, S.H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16, pp. 462-472; Yamada, T., Horimoto, H., Kameyama, T., Hayakawa, S., Yamato, H., Dazai, M., Takada, A., Takaoka, A., Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense (2016) Nat. Immunol., 17, pp. 687-694; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J. Virol., 76, pp. 11065-11078; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Perlman, S., Rapid generation of a mouse model for middle east respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391; Zhou, H., Perlman, S., Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by double-stranded RNA (2007) J. Virol., 81, pp. 568-574; Zhu, Y., Chen, G., Lv, F., Wang, X., Ji, X., Xu, Y., Sun, J., Gao, G., Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 15834-15839","Perlman, S.; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Road, United States; email: Stanley-Perlman@uiowa.edu",,"Academic Press Inc.",00426822,,VIRLA,"29199039","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85035782154 "Fish E.J., Diniz P.P.V.P., Juan Y.-C., Bossong F., Collisson E.W., Drechsler Y., Kaltenboeck B.","37040381600;24757707000;57200789250;56413006400;57194517102;6508111865;6701467603;","Cross-sectional quantitative RT-PCR study of feline coronavirus viremia and replication in peripheral blood of healthy shelter cats in Southern California",2018,"Journal of Feline Medicine and Surgery","20","4",,"295","301",,3,"10.1177/1098612X17705227","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042427855&doi=10.1177%2f1098612X17705227&partnerID=40&md5=c2998355cdc80f279b609c2ab977352d","College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Department of Pathobiology, College of Veterinary Medicine, Auburn University, College of Veterinary Medicine, 264A Greene Hall, Auburn, AL 36849, United States","Fish, E.J., College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States, Department of Pathobiology, College of Veterinary Medicine, Auburn University, College of Veterinary Medicine, 264A Greene Hall, Auburn, AL 36849, United States; Diniz, P.P.V.P., College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States; Juan, Y.-C., Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States; Bossong, F., College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States; Collisson, E.W., College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States; Drechsler, Y., College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States; Kaltenboeck, B., Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States","Objectives: The objectives of this study were to determine the prevalence of feline coronavirus (FCoV) viremia, and its replication in peripheral blood using quantitative RT-PCR (qRT-PCR) methodology in a population of 205 healthy shelter cats in Southern California, as well as to assess any possible connection to longitudinal development of feline infectious peritonitis (FIP). Methods: The study was performed on buffy-coat samples from EDTA-anticoagulated whole blood samples of 205 healthy shelter cats. From 50 of these cats, fecal samples were also examined. FCoV genomic and subgenomic RNA in the buffy coats was amplified by a total FCoV RNA qRT-PCR. Evidence for FCoV replication in peripheral blood and feces was obtained by M gene mRNA qRT-PCR. Results: Nine of 205 cats (4.4%) were viremic by the total FCoV RNA qRT-PCR, and one of these cats had evidence of peripheral FCoV blood replication by an FCoV mRNA qRT-PCR. The single cat with peripheral blood replication had a unique partial M gene sequence distinct from positive controls and previously published FCoV sequences. Neither seven of the nine viremic cats with follow-up nor the single cat with replicating FCoV with positive qRT-PCR results developed signs compatible with FIP within 6 months of sample collection. Conclusions and relevance: FCoV viremia and peripheral blood replication in healthy shelter cats have a low prevalence and do not correlate with later development of FIP in this study population, but larger case-control studies evaluating the prognostic accuracy of the qRT-PCR assays are needed. © 2017, © The Author(s) 2017.",,"genomic RNA; animal experiment; anticoagulant therapy; Article; case control study; cat; controlled study; Coronavirus infection; correlation analysis; cross-sectional study; diagnostic accuracy; diagnostic test accuracy study; feces analysis; feline infectious peritonitis; female; follow up; gene; gene sequence; genetic analysis; M gene; male; mRNA expression assay; nonhuman; observational study; prevalence; priority journal; quantitative analysis; reverse transcription polymerase chain reaction; sensitivity and specificity; United States; viremia; animal; California; feces; Feline coronavirus; feline infectious peritonitis; genetics; isolation and purification; veterinary medicine; viremia; virology; Animals; California; Case-Control Studies; Cats; Coronavirus, Feline; Cross-Sectional Studies; Feces; Feline Infectious Peritonitis; Reverse Transcriptase Polymerase Chain Reaction; Viremia","Hartmann, K., Feline infectious peritonitis and feline coronavirus infection (2010) Textbook of veterinary internal medicine: diseases of the dog and the cat, pp. 940-945. , Ettinger S.J., Feldman E.C., (eds), St Louis, MO, Saunders Elsevier, In:, (eds); Simons, F.A., Vennema, H., Rofina, J.E., A mRNA PCR for the diagnosis of feline infectious peritonitis (2005) J Virol Methods, 124, pp. 111-116; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J Feline Med Surg, 10, pp. 529-541; Vennema, H., Poland, A., Foley, J., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Chang, H.W., de Groot, R.J., Egberink, H.F., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420; Poland, A.M., Vennema, H., Foley, J.E., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J Clin Microbiol, 34, pp. 3180-3184; Rottier, P.J., Nakamura, K., Schellen, P., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein (2005) J Virol, 79, pp. 14122-14130; Licitra, B.N., Millet, J.K., Regan, A.D., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg Infect Diseases, 19, pp. 1066-1073; Chang, H.W., Egberink, H.F., Halpin, R., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Diseases, 18, pp. 1089-1095; Porter, E., Tasker, S., Day, M.J., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) BMC Vet Res, 45, p. 49; Hartmann, K., Feline infectious peritonitis (2005) Vet Clin North Am Small Anim Pract, 35, pp. 39-79; Pedersen, N.C., An update on feline infectious peritonitis: diagnostics and therapeutics (2014) Vet J, 201, pp. 133-141; Giori, L., Giordano, A., Giudice, C., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J Small Anim Pract, 52, pp. 152-157; Hartmann, K., Binder, C., Hirschberger, J., Comparison of different tests to diagnose feline infectious peritonitis (2003) J Vet Intern Med, 17, pp. 781-790; Gunn-Moore, D.A., Gruffydd-Jones, T.J., Harbour, D.A., Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis (1998) Vet Microbiol, 62, pp. 193-205; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J Feline Med Surg, 11, pp. 225-258; Desmarets, L.M.B., Vermeulen, B.L., Theuns, S., Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures (2016) Sci Rep, 6, p. 20022; Vogel, L., Van der Lubben, M., te Lintelo, E.G., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet Res, 41, p. 71; Can-Sahna, K., Ataseven, S., Pinar, V.D., The detection of feline coronaviruses in blood samples from cats by mRNA RT-PCR (2007) J Feline Med Surg, 9, pp. 369-372; Sharif, S., Arshad, S.S., Hair-Bejo, M., Evaluation of feline coronavirus viraemia in clinically healthy and ill cats with feline infectious peritonitis (2011) J Anim Vet Adv, 10, pp. 18-22; Doenges, S.J., Weber, K., Dorsch, R., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 344-350; Dye, C., Helps, C.R., Siddell, S.G., Evaluation of real-time RT-PCR for the quantification of FCoV shedding in the faeces of domestic cats (2008) J Feline Med Surg, 10, pp. 167-174; Wang, C., Gao, D., Vaglenov, A., One-step real-time duplex reverse transcription PCRs simultaneously quantify analyte and housekeeping gene mRNAs (2004) BioTechniques, 36, pp. 508-516; Pedersen, N.C., Eckstrand, C., Liu, H., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet Microbiol, 175, pp. 157-166; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet Microbiol, 99, pp. 31-42","Fish, E.J.; College of Veterinary Medicine, Western University of Health SciencesUnited States",,"SAGE Publications Ltd",1098612X,,,"28425327","English","J. Feline Med. Surg.",Article,"Final",Open Access,Scopus,2-s2.0-85042427855 "Killerby M.E., Biggs H.M., Haynes A., Dahl R.M., Mustaquim D., Gerber S.I., Watson J.T.","57207624890;46460986500;55616842400;56160038100;38461276100;56656063700;55374101200;","Human coronavirus circulation in the United States 2014–2017",2018,"Journal of Clinical Virology","101",,,"52","56",,4,"10.1016/j.jcv.2018.01.019","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041644139&doi=10.1016%2fj.jcv.2018.01.019&partnerID=40&md5=c7381cc443d9d821082f9797b5aece01","Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; IHRC Incorporated, Contracting agency to National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; MAXIMUS Federal, Contracting agency to National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States","Killerby, M.E., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States, Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Biggs, H.M., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Haynes, A., IHRC Incorporated, Contracting agency to National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Dahl, R.M., MAXIMUS Federal, Contracting agency to National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Mustaquim, D., Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Gerber, S.I., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States; Watson, J.T., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States","Background: Human coronaviruses (HCoVs) -OC43, -229E, -NL63 and -HKU1 cause upper and lower respiratory tract infections. HCoVs are globally distributed and the predominant species may vary by region or year. Prior studies have shown seasonal patterns of HCoV species and annual variation in species prevalence but national circulation patterns in the US have not yet been described. Objectives: To describe circulation patterns of HCoVs -OC43, -229E, -NL63 and -HKU1 in the US. Study design: We reviewed real-time reverse transcription polymerase chain reaction (rRT-PCR) test results for HCoV-OC43, -229E, -NL63 and -HKU1 reported to The National Respiratory and Enteric Virus Surveillance System (NREVSS) by U.S. laboratories from July 2014–June 2017. We calculated the total number of tests and percent positive by week. For a subset of HCoV positive submissions with age and sex of the patient available, we tested for differences in age and sex across the four HCoV species using Chi Square and Kruskal Wallace tests. Results: 117 laboratories reported 854,575 HCoV tests; 2.2% were positive for HCoV-OC43, 1.0% for HCoV-NL63, 0.8% for HCoV-229E, and 0.6% for HCoV-HKU1. The percentage of positive tests peaked during December – March each year. No significant differences in sex were seen across species, although a significant difference in age distribution was noted. Conclusions: Common HCoVs may have annual peaks of circulation in winter months in the US, and individual HCoVs may show variable circulation from year to year. Different HCoV species may be detected more frequently in different age groups. Further years of data are needed to better understand patterns of activity for HCoVs. © 2018","Coronavirus; Epidemiology; Respiratory tract infection; Respiratory virus","adult; age distribution; Article; child; controlled study; Coronaviridae; Coronaviridae infection; human; Human coronavirus 229E; Human coronavirus HKU1; Human coronavirus NL63; Human coronavirus OC43; infection rate; major clinical study; priority journal; real time polymerase chain reaction; reverse transcription polymerase chain reaction; school child; United States; young adult; age; classification; Coronavirinae; Coronavirus infection; factual database; female; genetics; isolation and purification; male; prevalence; respiratory tract infection; season; virology; Age Factors; Coronavirus; Coronavirus Infections; Databases, Factual; Female; Humans; Male; Prevalence; Real-Time Polymerase Chain Reaction; Respiratory Tract Infections; Seasons; United States","Su, S., Wong, G., Shi, W., Epidemiology, genetic recombination, and pathogenesis of Coronaviruses (2016) Trends Microbiol., 24 (June(6)), pp. 490-502; Mäkelä, M.J., Puhakka, T., Ruuskanen, O., Viruses and bacteria in the etiology of the common cold (1998) J. Clin. Microbiol., 36 (February(2)), pp. 539-542; Sipulwa, L.A., Ongus, J.R., Coldren, R.L., Bulimo, W.D., Molecular characterization of human coronaviruses and their circulation dynamics in Kenya, 2009–2012 (2016) Virol. J., 13 (Febraury(18)); Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J. Clin. Microbiol., 48 (August(8)), pp. 2940-2947; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: a one-year study in Colorado (2009) J. Med. Virol., 81 (September(9)), pp. 1597-1604; Talbot, H.K., Shepherd, B.E., Crowe, J.E., Jr, The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr. Infect. Dis. J., 28 (August(8)), pp. 682-687; Haynes, A.K., Prill, M.M., Iwane, M.K., Gerber, S.I., Centers for disease control and prevention (CDC). respiratory syncytial virus–United states, july 2012–June 2014 (2014) MMWR Morb. Mortal Wkly. Rep., 63 (December(48)), pp. 1133-1136; Association of Public Health Laboratories: Informatics Initiatives; PHLIP Electronic Laboratory Surveillance Message for Influenza (2016), https://www.aphl.org/programs/informatics/Pages/Technical-Assistance-for-Data-Exchange.aspx, Available at (Accessed 25 August 2017); Centers for Disease Control and Prevention: Influenza (Flu) The Flu Season (2016), https://www.cdc.gov/flu/about/season/flu-season.htm, Available at (Accessed 25 August 2017); van der Hoek, L., Ihorst, G., Sure, K., Burden of disease due to human coronavirus NL63 infections and periodicity of infection (2010) J. Clin. Virol., 48 (June(2)), pp. 104-108; Monto, A.S., Lim, S.K., The Tecumseh study of respiratory illness: VI. Frequency of and relationship between outbreaks of coronavirus infection (1974) J. Infect. Dis., 129 (March(3)), pp. 271-276; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., van der Hoek, L., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J. Clin. Virol., 53 (February(2)), pp. 135-139; van der Hoek, L., Sure, K., Ihorst, G., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med., 2 (August(8)), p. e240; Asner, S.A., Science, M.E., Tran, D., Smieja, M., Merglen, A., Mertz, D., Clinical disease severity of respiratory viral co-infection versus single viral infection: a systematic review and meta-analysis (2014) PLoS One, 9 (June(6)), p. e99392; Prill, M.M., Iwane, M.K., Edwards, K.M., Human coronavirus in young children hospitalized for acute respiratory illness and asymptomatic controls (2012) Pediatr. Infect. Dis. J., 31 (March(3)), pp. 235-240","Killerby, M.E.; Centers for Disease Control and Prevention, 1600 Clifton Road NE, United States; email: lxo9@cdc.gov",,"Elsevier B.V.",13866532,,JCVIF,"29427907","English","J. Clin. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85041644139 "Purpari G., Giudice E., Antoci F., Di Pietro S., Barreca S., Macaluso G., Di Bella S., Mira F., Gucciardi F., Cannella V., Dimarco P., Lavazza A., Crinò C., Guercio A.","6508216336;6603819695;55922820300;57192256128;57211128574;56566304000;55161372700;57188742675;57196393320;6701849768;57202747136;35339480400;56884498000;9235075400;","Outbreak of ""Winter Dysentery"" (Bovine Coronavirus, BCoV) infection in dairy cows housed in a farm in Sicily",2018,"Large Animal Review","24","2",,"59","62",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049206407&partnerID=40&md5=4b2e3de959be215c4bade4dc50f3eb2f","Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, S. Agata-Messina, 98166, Italy; Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, 98168, Italy","Purpari, G., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Giudice, E., Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, S. Agata-Messina, 98166, Italy; Antoci, F., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Di Pietro, S., Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, 98168, Italy; Barreca, S., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Macaluso, G., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Di Bella, S., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Mira, F., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Gucciardi, F., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Cannella, V., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Dimarco, P., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Lavazza, A., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy; Crinò, C., Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Messina, 98168, Italy; Guercio, A., Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy","Introduction: Bovine Coronavirus (BCoV) is an important pathogen of livestock that causes an enteric and respiratory disease in cattle (Winter Dysentery) and calves (Neonatal Calf Diarrhea). The BCoV infection rarely causes death but shows high morbidity (up to 100%) that induces economic losses in farms. Aim: This paper describes a case of BCoV infection occurred on December 2016 in a high milk production farm, placed in Ragusa (Sicily, Italy). Materials and methods: All bovines farmed (nr. 150 subjects) showed hyperthermia (41°C), watery dysentery mixed to blood and fibrin, buccal and gengival erosions, high reduction of milk production. Four days before the appearance of these symptoms, the involved animals had been vaccinated with a delete vaccine against Bovine Viral Diarrhea Virus (BVDV). Whole blood, sera, feces and nasal swabs were collected from 15 animals that showed more severe symptoms. Serological (ELISA) and Virological tests (RT-PCR, Real Time RT-PCR, ELISA) were carried out to detect BCoV, Rotavirus, BVDV, Bluetongue Virus (BTV), Infectious Bovine Rhinotracheitis/Infectious Pustular Vulvovaginitis Virus (IBR/IPV), Herpes Bovine Virus type 4(BHV4), Bovine Respiratory Syncytial Virus (BRSV) and Schmallenberg Virus (SBV). Feces were also analyzed for BCoV detection through Immunoelectron Microscopy (IEM). Results and discussion: Blood and swabs samples gave negative results for all virological tests. All feces samples resulted positives for BCoV by Semi Nested RT-PCR but they resulted negative by ELISA. Viral particles, referable to BCoV, were also observed at IEM. Serological tests gave positive results for Rotavirus, BVDV, IBR/IPV, VRSB, BHV4. In this study, BCoV was the only etiological agent detected in feces collected from cows affected by severe clinical signs. RT-PCR and IEM were found to be two reliable methods for the diagnosis of BCoV, showing a greater sensitivity than ELISA. Serological positivity detected for IBR/IPV, BTV, BVDV, BHV4 and VRSB were connected to previous vaccinations, while, the presence of antibodies against Rotavirus showed previous circulation of this virus in farm. Conclusions: BCoV infection, usually referred as ""Winter Dysentery"" (WD) is also reported as ""Conditioned Disease"" because it is induced by various stressors. Vaccination against BVDV could have been one of the putative stressor, responsible for the disease. Although BCoV infection has had a benign evolution, without mortality in affected animals, it has caused significant economic losses. Therefore, a control of stressors and a correct management of animal welfare represent the only valid prevention tool. © 2018 Massimo Morgante. All rights reserved.","Bovine Coronavirus; Dairy cows; ELISA; Real Time RT-PCR; South Italy",,"Saif, L.J., Bovine coronavirus infection (2004) Infectious Diseases of Livestock, pp. 795-802. , Ed. Coetzer J. A. W., Tustin R. C., 2nd ed., Oxford University Press, Oxford, UK; Bidokhti, M.R.M., Tråvén, M., Ohlson, A., Baule, C., Hakhverdyan, M., Belák, S., Liu, L., Alenius, S., Tracing the transmission of bovine coronavirus infections in cattle herds based on S gene diversity (2012) Vet J, 193, pp. 386-390; Jeong, J.H., Kim, G.Y., Yoon, S.S., Park, S.J., Kim, Y.J., Sung, C.M., Jang, O.J., Cho, K.O., Detection and isolation of winter dysentery bovine coronavirus circulated in Korea during 2002-2004 (2005) J Vet Med Sci, 67, pp. 187-189; Liu, L., Hägglund, S., Hakhverdyan, M., Alenius, S., Larsen, L.E., Belák, S., Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene (2006) J Clin Microbiol, 44, pp. 957-960; Clark, K.J., Sarr, A.B., Grant, P.G., Phillipsb, T.D., Woodea, G.N., In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus (1998) Vet Microbiol, 63 (2-4), pp. 137-146; Park, S.J., Kim, G.Y., Choy, H.E., Hong, Y.J., Saif, L.J., Jeong, J.H., Park, S.I., Cho, K.O., Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves (2007) Arch Virol, 152 (10), pp. 1885-1900; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin Food Anim, 26, pp. 123-146; Evermann, J.F., Benfield, D.A., Coronaviral infections (2001) Infectious Diseases of Wild Mammals, pp. 245-253. , Ed. Williams E. S., Barber I. K., 3rd ed, Iowa State University Press, Ames, IA; Hasoksuz, M., Hoet, A.E., Loerch, S.C., Wittum, T.E., Nielsen, P.R., Saif, L.J., Detection of respiratory and enteric shedding of bovine coronaviruses in cattle at an Ohio feedlot (2002) J Vet Diagn Invest, 14 (4), pp. 308-313; Saif, L.J., Bovine respiratory coronavirus (2010) Vet Clin Food Anim, 26, pp. 349-364; Reynolds, D.J., Debney, T.G., Hall, G.A., Thomas, L.H., Parsons, K.R., Studies on the relationship between coronaviruses from the intestinal and respiratory tracts in calves (1985) Arch Virol, 85 (1-2), pp. 71-83; Hasoksuz, M., Lathrop, S., Al-Dubaib, M.A., Lewis, P., Saif, L.J., Antigenic variation among bovine enteric coronaviruses (BEVC) and bovine respiratory coronaviruses (BRCV) detected using monoclonal antibodies (1999) Arch Virol, 144 (12), pp. 2441-2447; Cho, K.O., Halbur, P.G., Bruna, J.D., Sorden, S.D., Yoon, K.J., Janke, B.H., Chang, K.O., Saif, L.J., Detection and isolation of coronavirus from feces of three herds of feedlot cattle during outbreaks of winter dysentery-like diseases (2000) J Am Vet Med Assoc, 217 (8), pp. 1191-1194; Natsuaki, S., Goto, K., Nakamura, K., Yamada, M., Ueo, H., Komori, T., Shirakawa, H., Uchinuno, Y., Fatal winter dysentery with severe anemia in an adult cow (2007) J Vet Med Sci, 69 (9), pp. 957-960; Thrusfield, M., Ortega, C., De Blas, I., Noordhuizen, J.P., Frankena, K., WIN EPISCOPE 2.0: Improved epidemiological software for veterinary medicine (2001) Vet Rec, 148 (18), pp. 567-572; Decaro, N., Mari, V., Desario, C., Campolo, M., Elia, G., Martella, V., Greco, G., Buonavoglia, C., Severe outbreak of bovine coronavirus infection in dairy cattle during the warmer season (2008) Vet Microbiol, 126, pp. 30-39; Park, S.J., Jeong, C., Yoon, S.S., Choy, H.E., Saif, L.J., Park, S.H., Kim, Y.J., Cho, K.O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) J Clin Microbiol, 44, pp. 3178-3188; Takiuchi, E., Stipp, D.T., Alfieri, A.F., Alfieri, A.A., Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control (2006) J Virol Methods, 131, pp. 148-156; Kim, S.G., Dubovi, E.J., A novel simple one-step single-tube RT-duplex PCR method with an internal control for detection of bovine viral diarrhoea virus in bulk milk, blood, and follicular fluid samples (2003) Biologicals, 31 (2), pp. 103-106; Freeman, M.M., Kerin, T., Hull, J., McCaustland, K., Gentsch, J., Enhancement of detection and quantification of rotavirus in stool using a modified real-time RT-PCR assay (2008) J Med Virol, 80 (8), pp. 1489-1496","Giudice, E.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, Italy; email: egiudice@unime.it",,"Massimo Morgante",11244593,,,,"English","Large Animal Rev.",Article,"Final",,Scopus,2-s2.0-85049206407 "Millet J.K., Whittaker G.R.","55217392700;7006825143;","Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells",2018,"Virology","517",,,"3","8",,5,"10.1016/j.virol.2017.12.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038832920&doi=10.1016%2fj.virol.2017.12.015&partnerID=40&md5=4d7b12e12cba1659d67f307bfd16da1a","Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States","Millet, J.K., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States; Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States","During viral entry, enveloped viruses require the fusion of their lipid envelope with host cell membranes. For coronaviruses, this critical step is governed by the virally-encoded spike (S) protein, a class I viral fusion protein that has several unique features. Coronavirus entry is unusual in that it is often biphasic in nature, and can occur at or near the cell surface or in late endosomes. Recent advances in structural, biochemical and molecular biology of the coronavirus S protein has shed light on the intricacies of coronavirus entry, in particular the molecular triggers of coronavirus S-mediated membrane fusion. Furthermore, characterization of the coronavirus fusion peptide (FP), the segment of the fusion protein that inserts to a target lipid bilayer during membrane fusion, has revealed its particular attributes which imparts some of the unusual properties of the S protein, such as Ca2+-dependency. These unusual characteristics can explain at least in part the biphasic nature of coronavirus entry. In this review, using severe acute respiratory syndrome coronavirus (SARS-CoV) as model virus, we give an overview of advances in research on the coronavirus fusion peptide with an emphasis on its role and properties within the biological context of host cell entry. © 2017 Elsevier Inc.","Calcium; Coronavirus; Endosomes; Fusion peptide; SARS; Spike protein; Virus entry","core protein; coronavirus S fusion peptide; unclassified drug; virus fusion protein; coronavirus spike glycoprotein; virus envelope protein; Article; cytology; gene location; host cell; membrane fusion; nonhuman; priority journal; protein folding; protein function; protein localization; protein structure; SARS-related coronavirus; signal transduction; virus entry; cell membrane; chemistry; human; membrane fusion; physiology; SARS coronavirus; Cell Membrane; Humans; Membrane Fusion; SARS Virus; Spike Glycoprotein, Coronavirus; Viral Envelope Proteins; Virus Internalization","Apellaniz, B., Huarte, N., Largo, E., Nieva, J.L., The three lives of viral fusion peptides (2014) Chem. Phys. Lipids, 181, pp. 40-55; Basso, L.G., Vicente, E.F., Crusca, E., Jr., Cilli, E.M., Costa-Filho, A.J., SARS-CoV fusion peptides induce membrane surface ordering and curvature (2016) Sci. Rep., 6, p. 37131; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci., 106, pp. 5871-5876; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pöhlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87, pp. 6150-6160; Bertram, S., Glowacka, I., Muller, M.A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., Pöhlmann, S., Cleavage and activation of the SARS-coronavirus spike-protein by human airway trypsin-like protease (2011) J. Virol., 85, pp. 13363-13372; Bosch, B.J., van der Zee, R., de Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Boulant, S., Stanifer, M., Lozach, P.Y., Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis (2015) Viruses, 7, pp. 2794-2815; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A.M., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10, p. e1004502; Chernomordik, L.V., Kozlov, M.M., Mechanics of membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 675-683; Colman, P.M., Lawrence, M.C., The structural biology of type I viral membrane fusion (2003) Nat. Rev. Mol. Cell Biol., 4, pp. 309-319; Costello, D.A., Millet, J.K., Hsia, C.Y., Whittaker, G.R., Daniel, S., Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers (2013) Biomaterials, 34, pp. 7895-7904; de Groot, R.J., Cowley, J.A., Enjuanes, L., Faaberg, K.S., Perlman, S., Rottier, P.J.M., Snijder, E.J., Gorbalenya, A.E., Order - Nidovirales (2012) Virus Taxonomy, pp. 784-794. , A.M.Q. King M.J. Adams E.B. Carstens E.J. Lefkowitz Elsevier San Diego; Delos, S.E., Brecher, M.B., Chen, Z., Melder, D.C., Federspiel, M.J., White, J.M., Cysteines flanking the internal fusion peptide are required for the avian sarcoma/leukosis virus glycoprotein to mediate the lipid mixing stage of fusion with high efficiency (2008) J. Virol., 82, pp. 3131-3134; Dube, M., Etienne, L., Fels, M., Kielian, M., Calcium-dependent rubella virus fusion occurs in early endosomes (2016) J. Virol., 90, pp. 6303-6313; Dube, M., Rey, F.A., Kielian, M., Rubella virus: first calcium-requiring viral fusion protein (2014) PLoS Pathog., 10, p. e1004530; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog., 13, p. e1006546; Epand, R.M., Fusion peptides and the mechanism of viral fusion (2003) Biochim. Biophys. Acta (BBA) - Biomembr., 1614, pp. 116-121; Ge, M., Freed, J.H., Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study (2009) Biophys. J., 96, pp. 4925-4934; Ge, M., Freed, J.H., Two conserved residues are important for inducing highly ordered membrane domains by the transmembrane domain of influenza hemagglutinin (2011) Biophys. J., 100, pp. 90-97; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Pöhlmann, S., The spike-protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2 and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Glowacka, I., Bertram, S., Müller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pöhlmann, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J. Virol., 85, pp. 4122-4134; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848; Grove, J., Marsh, M., The cell biology of receptor-mediated virus entry (2011) J. Cell Biol., 195, pp. 1071-1082; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129; Guillen, J., Kinnunen, P.K.J., Villalain, J., Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein (2008) Biochim. Biophys. Acta (BBA) - Biomembr., 1778, pp. 2765-2774; Guillen, J., Perez-Berna, A.J., Moreno, M.R., Villalain, J., Identification of the membrane-active regions of the severe acute respiratory syndrome coronavirus spike membrane glycoprotein using a 16/18-mer peptide scan: implications for the viral fusion mechanism (2005) J. Virol., 79, pp. 1743-1752; Guillén, J., Pérez-Berná, A.J., Moreno, M.R., Villalaín, J., A Second SARS-CoV S2 Glycoprotein Internal Membrane-Active Peptide. Biophysical Characterization and Membrane Interaction (2008) Biochemistry, 47, pp. 8214-8224; Harrison, S.C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698; Harrison, S.C., Viral membrane fusion (2015) Virology, 479-480, pp. 498-507; Hofmann, H., Pöhlmann, S., Cellular entry of the SARS coronavirus (2004) Trends Microbiol., 12, pp. 466-472; Hulswit, R.J., de Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv. Virus Res., 96, pp. 29-57; Huotari, J., Helenius, A., Endosome maturation (2011) EMBO J., 30, pp. 3481-3500; Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T., Sugamura, K., Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted (2007) J. Virol., 81, pp. 8722-8729; Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Holmes, K.V., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 15748-15753; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Lai, A.L., Freed, J.H., HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion (2014) Biophys. J., 106, pp. 172-181; Lai, A.L., Freed, J.H., The Interaction between Influenza HA Fusion Peptide and Transmembrane Domain Affects Membrane Structure (2015) Biophys. J., 109, pp. 2523-2536; Lai, A.L., Li, Y., Tamm, L.K., Interplay of Proteins and Lipids in Virus Entry by Membrane Fusion, Protein–Lipid Interactions (2005), pp. 279-303. , Wiley-VCH Verlag GmbH & Co. KGaA; Lai, A.L., Millet, J.K., Daniel, S., Freed, J.H., Whittaker, G.R., The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner (2017) J. Mol. Biol., 429, pp. 3875-3892; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Luzio, J.P., Bright, N.A., Pryor, P.R., The role of calcium and other ions in sorting and delivery in the late endocytic pathway (2007) Biochem. Soc. Trans., 35, pp. 1088-1091; Madu, I.G., Belouzard, S., Whittaker, G.R., SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion (2009) Virology, 393, pp. 265-271; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83, pp. 7411-7421; Mahajan, M., Bhattacharjya, S., NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: implications in membrane fusion (2015) Biochim. Biophys. Acta, 1848, pp. 721-730; Marsh, M., Helenius, A., Virus entry: open sesame (2006) Cell, 124, pp. 729-740; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J. Virol., 84, pp. 12658-12664; Matsuyama, S., Taguchi, F., Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis (2009) J. Virol., 83, pp. 11133-11141; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc. Natl. Acad. Sci., 102, pp. 12543-12547; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci., 111, pp. 15214-15219; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; Mingo, R.M., Simmons, J.A., Shoemaker, C.J., Nelson, E.A., Schornberg, K.L., D'Souza, R.S., Casanova, J.E., White, J.M., Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step (2015) J. Virol., 89, pp. 2931-2943; Nash, T.C., Buchmeier, M.J., Entry of mouse hepatitis virus into cells by endosomal and nonendosomal pathways (1997) Virology, 233, pp. 1-8; Petit, C.M., Melancon, J.M., Chouljenko, V.N., Colgrove, R., Farzan, M., Knipe, D.M., Kousoulas, K.G., Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion (2005) Virology, 341, pp. 215-230; Pinello, J.F., Lai, A.L., Millet, J.K., Cassidy-Hanley, D., Freed, J.H., Clark, T.G., Structure-function studies link class II viral fusogens with the ancestral gamete fusion protein HAP2 (2017) Curr. Biol.: CB, 27, pp. 651-660; Reinke, L.M., Spiegel, M., Plegge, T., Hartleib, A., Nehlmeier, I., Gierer, S., Hoffmann, M., Pohlmann, S., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12, p. e0179177; Scott, C.C., Gruenberg, J., Ion flux and the function of endosomes and lysosomes: pH is just the start (2010) Bioessays, 33, pp. 103-110; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J. Virol., 85, pp. 873-882; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 11876-11881; Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., Bates, P., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry (2004) Proc. Natl. Acad. Sci., 101, pp. 4240-4245; Stadler, K., Ha, H.R., Ciminale, V., Spirli, C., Saletti, G., Schiavon, M., Bruttomesso, D., Baritussio, A., Amiodarone alters late endosomes and inhibits SARS coronavirus infection at a post-endosomal level (2008) Am. J. Respir. Cell Mol. Biol., 39, pp. 142-149; Sun, X., Belouzard, S., Whittaker, G.R., Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein (2008) J. Biol. Chem., 283, pp. 6418-6427; Tamm, L.K., Han, X., Viral fusion peptides: a tool set to disrupt and connect biological membranes (2000) Biosci. Rep., 20, p. 501; Tamm, L.K., Han, X., Li, Y., Lai, A.L., Structure and function of membrane fusion peptides (2002) Biopolymers, 66, pp. 249-260; Walls, A.C., Tortorici, M.A., Bosch, B.-J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., Jiang, C., SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway (2008) Cell Res., 18, pp. 290-301; White, J.M., Delos, S.E., Brecher, M., Schornberg, K., Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme (2008) Crit. Rev. Biochem. Mol. Biol., 43, pp. 189-219; White, J.M., Whittaker, G.R., Fusion of enveloped viruses in endosomes (2016) Traffic, 17, pp. 593-614; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zhang, H., Wang, G., Li, J., Nie, Y., Shi, X., Lian, G., Wang, W., Deng, H., Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies (2004) J. Virol., 78, pp. 6938-6945","Whittaker, G.R.; Department of Microbiology & Immunology, C4-127 VMC, Cornell UniversityUnited States; email: gary.whittaker@cornell.edu",,"Academic Press Inc.",00426822,,VIRLA,"29275820","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85038832920 "Ar Gouilh M., Puechmaille S.J., Diancourt L., Vandenbogaert M., Serra-Cobo J., Lopez Roïg M., Brown P., Moutou F., Caro V., Vabret A., Manuguerra J.-C., on behalf of the EPICOREM consortium","56050832500;12645631200;8696085300;9733119900;6603584046;6506116421;57214061734;55363184500;6602327394;7003959575;7003610543;","SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world",2018,"Virology","517",,,"88","97",,6,"10.1016/j.virol.2018.01.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042380349&doi=10.1016%2fj.virol.2018.01.014&partnerID=40&md5=fdbe710eb2020660949c6f8ce0bd589f","Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, Paris, 75015, France; Greifswald University, Greifswald, 17489, Germany; University College Dublin, Belfield, Dublin 4, Ireland; Chauves-souris Aveyron, Vimenet, 12310, France; IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain; Ecole Nationale Vétérinaire d'Alfort, Maison-Alfort, 94704, France; Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, Caen, 14000, France; French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, 22440, France","Ar Gouilh, M., Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, Paris, 75015, France, Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, Caen, 14000, France; Puechmaille, S.J., Greifswald University, Greifswald, 17489, Germany, University College Dublin, Belfield, Dublin 4, Ireland, Chauves-souris Aveyron, Vimenet, 12310, France; Diancourt, L., Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, Paris, 75015, France; Vandenbogaert, M., Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, Paris, 75015, France; Serra-Cobo, J., IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain; Lopez Roïg, M., IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain; Brown, P., French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, 22440, France; Moutou, F., Ecole Nationale Vétérinaire d'Alfort, Maison-Alfort, 94704, France; Caro, V., Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, Paris, 75015, France; Vabret, A., Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, Caen, 14000, France; Manuguerra, J.-C., Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, Paris, 75015, France; on behalf of the EPICOREM consortium","The emergence of SARS-CoV and MERS-CoV, triggered the discovery of a high diversity of coronaviruses in bats. Studies from Europe have shown that coronaviruses circulate in bats in France but this reflects only a fraction of the whole diversity. In the current study the diversity of coronaviruses circulating in western Europe was extensively explored. Ten alphacoronaviruses in eleven bat species belonging to the Miniopteridae, Vespertilionidae and Rhinolophidae families and, a SARS-CoV-related Betacoronavirus in Rhinolophus ferrumequinum were identified. The diversity and prevalence of bat coronaviruses presently reported from western Europe is much higher than previously described and includes a SARS-CoV sister group. This diversity demonstrates the dynamic evolution and circulation of coronaviruses in this species. That said, the identified coronaviruses were consistently associated with a particular bat species or genus, and these relationships were maintained no matter the geographic location. The observed phylogenetic grouping of coronaviruses from the same species in Europe and Asia, emphasizes the role of host/pathogen coevolution in this group. © 2018 Elsevier Inc.","Bats; Chiroptera; Coronavirus; Diversity; Emergence; Europe; Evolution; MERS-CoV; Phylogenetics; SARS-CoV","Alphacoronavirus; Article; Asia; bat; Betacoronavirus; coevolution; Europe; evolution; genus; geography; nested polymerase chain reaction; nonhuman; phylogeny; prevalence; priority journal; SARS coronavirus; species diversity; Vespertilionidae; Western Europe; Alphacoronavirus; animal; Betacoronavirus; Coronavirus infection; genetic variation; genetics; isolation and purification; SARS coronavirus; veterinary; virology; Alphacoronavirus; Animals; Betacoronavirus; Chiroptera; Coronavirus Infections; Genetic Variation; Phylogeny; SARS Virus","Balboni, A., Battilani, M., Prosperi, S., The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus (2012) New Microbiol., 35, pp. 1-16; Barataud, M., Aulagnier, S., Pourquoi certaines espèces de chauves-souris s'associent-elles en essaims mixtes durant lamise-bas et l'élevage des jeunes? Exemple en Limousin (2012) Arvicola, 20, pp. 40-42; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the middle East, September 2012 (2012) Eur. Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull., 17, p. 20290; CBEM, R., Lina, P.H.C., Pielaat, A., de Vries, A., Dam-Deisz, C., Adema, J., Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe (2010) Vector-Borne Zoonotic Dis., 10, pp. 785-791; Crucitti, P., Caratteristiche della aggregazione Miniopterus schreibersi - Myotis capaccinii nel Lazio, Italia centrale (Chiroptera) (1993) Boll. Mus. Reg. Sci. Nat., 11, pp. 407-422; Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Evolutionary relationships between bat coronaviruses and their hosts (2007) Emerg. Infect. Dis., 13, pp. 1526-1532; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nat. Methods, 9. , (772–772); Dominguez, S.R., Sims, G.E., Wentworth, D.E., Halpin, R.A., Robinson, C.C., Town, C.D., Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination (2012) J. Gen. Virol., 93, pp. 2387-2398; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Genomic characterization of severe acute respiratory syndrome-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56; Drosten, C., Günther, S., Preiser, W., Werf, S., van der, Brodt, H.-R., Becker, S., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol. Biol., 7. , (214–214); Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., Relaxed phylogenetics and dating with confidence (2006) PLoS Biol., 4, p. e88; Falcón, A., Vázquez-Morón, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch. Virol., 156, pp. 1883-1890; Fischer, K., Zeus, V., Kwasnitschka, L., Kerth, G., Haase, M., Groschup, M.H., Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany (2016) Infect. Genet Evol., 37, pp. 108-116; Foley, N.M., Thong, V.D., Soisook, P., Goodman, S.M., Armstrong, K.N., Jacobs, D.S., How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats (2015) Mol. Biol. Evol., 32, pp. 313-333; Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Gloza-Rausch, F., Ipsen, A., Seebens, A., Göttsche, M., Panning, M., Drexler, J.F., Detection and prevalence patterns of group I coronaviruses in bats, northern Germany (2008) Emerg. Infect. Dis., 14 (626), p. 631; Goffard, A., Demanche, C., Arthur, L., Pinçon, C., Michaux, J., Dubuisson, J., Alphacoronaviruses detected in French bats are phylogeographically linked to coronaviruses of European bats (2015) Viruses, 7, pp. 6279-6290; Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.-P., Teeling, E., Kittayapong, P., Manuguerra, J.-C., SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory (2011) Infect. Genet Evol., 11, pp. 1690-1702; Gouy, M., Guindon, S., Gascuel, O., Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building (2010) Mol. Biol. Evol., 27, pp. 221-224; Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst. Biol., 59, pp. 307-321; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol., 86, pp. 12816-12825; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability (2013) Mol. Biol. Evol., 30, pp. 772-780; Kin, N., Miszczak, F., Lin, W., Gouilh, M.A., Vabret, A., Consortium, E., Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes (2015) Viruses, 7, pp. 2358-2377; Kin, N., Miszczak, F., Diancourt, L., Caro, V., Moutou, F., Vabret, A., Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect. Genet Evol. J. Mol. Epidemiol. Evol. Genet Infect. Dis., 40, pp. 186-191; Kingman, J.F.C., The coalescent (1982) Stoch. Process Appl., 13, pp. 235-248; Kohl, C., Kurth, A., European bats as carriers of viruses with zoonotic potential (2014) Viruses, 6, pp. 3110-3128; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Wang, M., Lam, C.S.F., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Lau, S.K.P., Li, K.S.M., Huang, Y., Shek, C.-T., Tse, H., Wang, M., Eco-epidemiology and complete genome comparison of SARS-related Rhinolophus bat coronavirus in China reveal bats as reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol.; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Moreno, A., Boniotti, M.B., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , (doi:1118391); Li, Z., Hu, Y., Zhan, H., Yun, X., Du, Y., Ke, X., An epidemiological investigation of bats carrying SARS-CoV in Guangzhou and its vicinity (2006) Nan Fang. Yi Ke Xue Xue Bao, 26, pp. 949-953; Puechmaille, S.J., Mathy, G., Petit, E.J., Good DNA from bat droppings (2007) Acta Chiropterologica, 9, pp. 269-276; Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J. Mol. Biol., 364 (964), p. 973; Quan, P.-L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) mBio, 1. , (e00208-10-e00208-18); Rihtarič, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Arch. Virol., 155, pp. 507-514; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Prevalence and Genetic Diversity of Coronaviruses in Bats from China (2006) J. Virol., 80, pp. 7481-7490; Tong, S., Conrardy, C., Ruone, S., Kuzmin, I.V., Guo, X., Tao, Y., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg. Infect. Dis., 15, pp. 482-485; Wacharapluesadee, S., Duengkae, P., Rodpan, A., Kaewpom, T., Maneeorn, P., Kanchanasaka, B., Diversity of coronavirus in bats from Eastern Thailand (2015) Virol. J., 12, p. 57; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Wong, B.H.L., Tsoi, H., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521","Ar Gouilh, M.; GRAM - Groupe de Recherche sur l'Adaptation Microbienne, EA 2656 UNICAEN / UNIROUEN, Université de Normandie, Laboratoire de Virologie, CHU de Caen, CNR ROR - Centre National de Référence pour les Virus de la Rougeole, Rubéole et Oreillons, Av. Georges Clémenceau, France; email: meriadeg.le-gouil@pasteur.fr",,"Academic Press Inc.",00426822,,VIRLA,"29482919","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85042380349 "Beigel J.H., Voell J., Kumar P., Raviprakash K., Wu H., Jiao J.-A., Sullivan E., Luke T., Davey R.T., Jr","6506675950;8634533900;55574228328;6603743013;55899094800;16689471600;7201723211;7003941793;7202083492;","Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study",2018,"The Lancet Infectious Diseases","18","4",,"410","418",,18,"10.1016/S1473-3099(18)30002-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040575647&doi=10.1016%2fS1473-3099%2818%2930002-1&partnerID=40&md5=fcee083cb0bdc3b285e07863ecf4bd86","Leidos Biomedical Research Inc., Frederick, MD, United States; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, United States; The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States; Naval Medical Research Center, Silver Spring, MD, United States; SAB Biotherapeutics Inc., Sioux Falls, SD, United States","Beigel, J.H., Leidos Biomedical Research Inc., Frederick, MD, United States; Voell, J., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Kumar, P., National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, United States; Raviprakash, K., Naval Medical Research Center, Silver Spring, MD, United States; Wu, H., SAB Biotherapeutics Inc., Sioux Falls, SD, United States; Jiao, J.-A., SAB Biotherapeutics Inc., Sioux Falls, SD, United States; Sullivan, E., SAB Biotherapeutics Inc., Sioux Falls, SD, United States; Luke, T., The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, United States; Davey, R.T., Jr, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States","Background: Middle East respiratory syndrome (MERS) is a severe respiratory illness with an overall mortality of 35%. There is no licensed or proven treatment. Passive immunotherapy approaches are being developed to prevent and treat several human medical conditions where alternative therapeutic options are absent. We report the safety of a fully human polyclonal IgG antibody (SAB-301) produced from the hyperimmune plasma of transchromosomic cattle immunised with a MERS coronavirus vaccine. Methods: We did a phase 1 double-blind, placebo-controlled, single-dose escalation trial at the National Institutes of Health Clinical Center. We recruited healthy participants aged 18–60 years who had normal laboratory parameters at enrolment, a body-mass index of 19–32 kg/m 2 , and a creatinine clearance of 70 mL/min or more, and who did not have any chronic medical problems that required daily oral medications, a positive rheumatoid factor (≥15 IU/mL), IgA deficiency (<7 mg/dL), or history of allergy to intravenous immunoglobulin or human blood products. Participants were randomly assigned by a computer-generated table, made by a masked pharmacist, to one of six cohorts (containing between three and ten participants each). Cohorts 1 and 2 had three participants, randomly assigned 2:1 to receive active drug SAB-301 versus normal saline placebo; cohorts 3 and 4 had six participants randomised 2:1; and cohorts 5 and 6 had ten participants, randomised 4:1. Participants received 1 mg/kg, 2·5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, or 50 mg/kg of SAB-301, or equivalent volume placebo (saline control), on day 0, and were followed up by clinical, laboratory, and pharmacokinetic assessments on days 1, 3, 7, 21, 42, and 90. The primary outcome was safety, and immunogenicity was a secondary outcome. We analysed the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT02788188. Findings: Between June 2, 2016, and Jan 4, 2017, we screened 43 participants, of whom 38 were eligible and randomly assigned to receive SAB-301 (n=28) or placebo (n=10). 97 adverse events were reported: 64 adverse events occurred in 23 (82%) of 28 participants receiving SAB-301 (mean 2·3 adverse events per participant). 33 adverse events occurred in all ten participants receiving placebo (mean 3·3 adverse events per participant). The most common adverse events were headache (n=6 [21%] in participants who received SAB-301 and n=2 [20%] in those receiving placebo), albuminuria (n=5 [18%] vs n=2 [20%]), myalgia (n=3 [11%] vs n=1 [10%]), increased creatine kinase (n=3 [11%] vs 1 [10%]), and common cold (n=3 [11%] vs n=2 [20%]). There was one serious adverse event (hospital admission for suicide attempt) in one participant who received 50 mg/kg of SAB-301. The area under the concentration–time curve (AUC) in the 50 mg/kg dose (27 498 μg × days per mL) is comparable to the AUC that was associated with efficacy in a preclinical model. Interpretation: Single infusions of SAB-301 up to 50 mg/kg appear to be safe and well tolerated in healthy participants. Human immunoglobulin derived from transchromosomic cattle could offer a new platform technology to produce fully human polyclonal IgG antibodies for other medical conditions. Funding: National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Biomedical Advanced Research and Development Authority. © 2018 Elsevier Ltd",,"bicarbonate; creatine kinase; hyperimmune globulin; immunoglobulin; immunoglobulin G antibody; placebo; rheumatoid factor; sab 301; sodium chloride; unclassified drug; virus vaccine; immunoglobulin G; placebo; virus antibody; abdominal cramp; adult; albuminuria; arthralgia; Article; bicarbonate blood level; body mass; bovine; clinical article; common cold; coughing; creatine kinase blood level; creatinine clearance; depression; double blind procedure; drug dose escalation; drug efficacy; drug safety; drug tolerability; faintness; fatigue; female; fever; gastroenteritis; headache; hematuria; human; hypotension; immunogenicity; immunoglobulin A deficiency; impetigo; indigestion; intertrigo; lethargy; loose feces; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; myalgia; normal human; otitis media; phase 1 clinical trial; plasma concentration-time curve; priority journal; proteinuria; rash; rhinorrhea; shoulder pain; single drug dose; sinus congestion; sore throat; suicide attempt; urinary tract infection; adverse drug reaction; animal; clinical trial; controlled study; follow up; immunology; intravenous drug administration; middle aged; national health organization; passive immunization; pathology; procedures; randomized controlled trial; transgenic animal; United States; young adult; Adult; Animals; Animals, Genetically Modified; Antibodies, Viral; Cattle; Double-Blind Method; Drug-Related Side Effects and Adverse Reactions; Female; Follow-Up Studies; Healthy Volunteers; Humans; Immunization, Passive; Immunoglobulin G; Infusions, Intravenous; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; National Institutes of Health (U.S.); Placebos; United States; Young Adult","Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, (accessed Nov 27, 2017); Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Arabi, Y.M., Hajeer, A.H., Luke, T., Feasibility of using convalescent plasma immunotherapy for MERS-CoVinfection, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 1554-1561; Winkler, A.M., Koepsell, S.A., The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease (2015) Curr Opin Hematol, 22, pp. 521-526; Beigel, J.H., Tebas, P., Elie-Turenne, M.C., Immune plasma for the treatment of severe influenza: an open-label, multicentre, phase 2 randomised study (2017) Lancet Respir Med, 5, pp. 500-511; Matsushita, H., Sano, A., Wu, H., Species-specific chromosome engineering greatly improves fully human polyclonal antibody production profile in cattle (2015) PLoS One, 10, pp. e0130699-e0130730; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS–CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS–CoV (2015) Nat Commun, 6, p. 7712; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Coleman, C.M., Liu, Y.V., Mu, H., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Luke, T., Wu, H., Zhao, J., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS–CoV in vivo (2016) Science Transl Med, 8, p. 326ra21; Luke, T.C., Kilbane, E.M., Jackson, J.L., Hoffman, S.L., Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? (2006) Ann Intern Med, 145, pp. 599-609; Yeh, K.M., Chiueh, T.S., Siu, L.K., Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital (2005) J Antimicrob Chemother, 56, pp. 919-922; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Critically ill patients with the Middle East respiratory syndrome: a multicenter retrospective cohort study (2017) Crit Care Med, 45, pp. 1683-1695","Beigel, J.H.; Leidos Biomedical Research Inc., Support to National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: jbeigel@niaid.nih.gov",,"Lancet Publishing Group",14733099,,LIDAB,"29329957","English","Lancet Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85040575647 "Shaw S.D., Stämpfli H.","57201879726;6701808970;","Diagnosis and Treatment of Undifferentiated and Infectious Acute Diarrhea in the Adult Horse",2018,"Veterinary Clinics of North America - Equine Practice","34","1",,"39","53",,3,"10.1016/j.cveq.2017.11.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043382794&doi=10.1016%2fj.cveq.2017.11.002&partnerID=40&md5=52b671aefa8990f4c5f12bbe4f4c9493","Rotenberg Veterinary P.C., Palgrave, Ontario LOG 1WO, Canada; Large Animal Medicine, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Present address: PO Box 1015, Tottenham, Ontario L0G 1W0, Canada","Shaw, S.D., Rotenberg Veterinary P.C., Palgrave, Ontario LOG 1WO, Canada, Large Animal Medicine, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada, Present address: PO Box 1015, Tottenham, Ontario L0G 1W0, Canada; Stämpfli, H., Large Animal Medicine, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada","Acute, infectious, diarrhea in adult horses is a major cause of morbidity and is associated with numerous complications. Common causes include salmonellosis, clostridiosis, Coronavirus, and infection with Neorickettsia risticii (Potomac horse fever). Treatment is empirical and supportive until results of specific diagnostic tests are available. Supportive care is aimed at restoring hydration, correcting electrolyte imbalances, and limiting the systemic inflammatory response. The mainstays of therapy are intravenous fluid therapy, electrolyte supplementation where necessary, nonsteroidal anti-inflammatory agents, and nutritional support. Specific therapies include colloid oncotic support, antibiotics, hyperimmune plasma, polymyxin B, pentoxifylline, probiotics, binding agents, gastroprotectants, laminitis prevention, and coagulation prophylaxis. © 2017 Elsevier Inc.","Colitis; Equine; Infectious diarrhea; Intravenous fluid therapy; Typhlocolitis","ceftiofur; cotrimazine; flunixin meglumine; ketoprofen; metronidazole; omeprazole; penicillin derivative; pentoxifylline; polymyxin B; probiotic agent; Clostridium infection; colitis; colloid; Coronavirinae; echography; electrolyte disturbance; endoscopic ultrasonography; endotoxemia; feces analysis; feces microflora; fluid resuscitation; hematological parameters; horse disease; infectious diarrhea; microorganism detection; nonhuman; oncotic pressure; Potomac horse fever; Review; salmonellosis; serology; stomach intubation; systemic inflammatory response syndrome; animal; diarrhea; horse; horse disease; microbiology; veterinary; Animals; Diarrhea; Horse Diseases; Horses","Sanchez, L.C., Pathophysiology of Diarrhea (2010) Equine internal medicine. vol, pp. 793-866. , S.M. Reed W.M. Bayly D.C. Sellon 3rd edition Saunders St. Louis(MO); Cohen, N.D., Woods, A.W., Characteristics and risk factors for failure of horses with acute diarrhea to survive: 122 cases (1990-1996) (1999) J Am Vet Med Assoc, 214 (3), pp. 382-390; Belgrave, R.L., Dickey, M.M., Arheart, K.L., Assessment of serum amyloid A testing of horses and its clinical application in a specialized equine practice (2013) J Am Vet Med Assoc, 243 (1), pp. 113-119; Staempfli, H.R., Townsend, H.G.G., Prescott, J.F., Prognostic features and clinical presentation of acute idiopathic enterocolitis in horses (1991) Can Vet J, 32 (2), pp. 232-237; Hashimoto-Hill, S., Magdesian, K.G., Kass, P.H., Serial measurement of lactate concentration in horses with acute colitis (2011) J Vet Intern Med, 25 (6), pp. 1414-1419; Weese, J.S., Baird, J.D., Poppe, C., Emergence of Salmonella typhimurium definitive type 104 (DT104) as an important cause of salmonellosis in horses in Ontario (2001) Can Vet J, 42 (10), pp. 788-792; Kurowski, B., Traub-dargatz, J.L., Morley, P.S., Detection of Salmonella spp in fecal specimens by use of real-time polymerase chain reaction assay (2002) Am J Vet Res, 63 (9), pp. 1256-1268; Timoney, J., Salmonella infections in horses (2013) Salmonella in domestic animals, pp. 305-317. , P.A. Barrow U. Methner 2nd edition CABI Oxfordshire(UK); Ekiri, A.B., MacKay, R.J., Gaskin, J.M., Epidemiologic analysis of nosocomial salmonella infections in hospitalized horses (2009) J Am Vet Med Assoc, 234 (1), pp. 108-119; Ernst, N.S., Hernandez, J.A., MacKay, R.J., Risk factors associated with fecal salmonella shedding among hospitalized horses with signs of gastrointestinal tract disease (2004) J Am Vet Med Assoc, 225 (2), pp. 275-281; Alinovi, C.A., Ward, M.P., Couëtil, L.L., Risk factors for fecal shedding of Salmonella from horses in a veterinary teaching hospital (2003) Prev Vet Med, 60 (4), pp. 307-317; Cohen, N.D., Martin, L.J., Simpson, R.B., Comparison of polymerase chain reaction and microbiological culture for detection of salmonellae in equine feces and environmental samples (1996) Am J Vet Res, 57 (6), pp. 780-786; Schoster, A., Arroyo, L.G., Staempfli, H.R., Presence and molecular characterization of Clostridium difficile and Clostridium perfringens in intestinal compartments of healthy horses (2012) BMC Vet Res, 8 (94), pp. 1-6; Schoster, A., Staempfli, H., Epidemiology and antimicrobial resistance in Clostridium difficile with special reference to the horse (2016) Curr Clin Microbiol Rep, 3 (1), pp. 32-41; Magdesian, K.G., Dujowich, M., Madigan, J.E., Molecular characterization of Clostridium difficile isolates from horses in an intensive care unit and association of disease severity with strain type (2006) J Am Vet Med Assoc, 228 (5), pp. 751-755; Magdesian, K.G., Leutenegger, C.M., Real-time PCR and typing of Clostridium difficile isolates colonizing mare-foal pairs (2011) Vet J, 190 (1), pp. 119-123; Elmer, G.W., McFarland, L.V., Biotherapeutic agents in the treatment of infectious diarrhea (2001) Gastroenterol Clin North Am, 30 (3), pp. 837-854; van Nood, E., Vrieze, A., Nieuwdorp, M., Duodenal infusion of donor feces for recurrent Clostridium difficile (2013) N Engl J Med, 368 (5), pp. 407-415; Mullen, K.R., Yasuda, K., Divers, T.J., Equine faecal microbiota transplant: current knowledge, proposed guidelines and future directions (2016) Equine Vet Educ, pp. 1-10; Waters, M., Raju, D., Garmory, H.S., Regulated expression of the beta2-toxin gene (cpb2) in Clostridium perfringens type A isolates from horses with gastrointestinal diseases (2005) J Clin Microbiol, 43 (8), pp. 4002-4009; Gohari, I.M., Arroyo, L., MacInnes, J.I., Characterization of Clostridium perfringens in the feces of adult horses and foals with acute enterocolitis (2014) Can J Vet Res, 78 (1), pp. 1-7; Lawler, J.B., Hassel, D.M., Magnuson, R.J., Absorptive effects of di-tri-octahedral smectite on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies (2008) Am J Vet Res, 69 (2), pp. 233-239; Weese, J.S., Cote, N.M., deGannes, R.V.G., Evaluation of in vitro properties of di-tri-octahedral smectite on clostridial toxins and growth (2003) Equine Vet J, 35 (7), pp. 638-641; Oue, Y., Ishihara, R., Edamatsu, H., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet Microbiol, 150, pp. 41-48; Pusterla, N., Mapes, S., Wademan, C., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet Microbiol, 162 (1), pp. 228-231; Giannitti, F., Diab, S., Mete, A., Necrotizing enteritis and hyperammonemic encephalopathy associated with equine coronavirus infection in equids (2015) Vet Pathol, 52 (6), pp. 1148-1156; Xiong, Q., Bekebrede, H., Sharma, P., An ecotype of Neorickettsia risticii causing Potomac horse fever in Canada (2016) Appl Environ Microbiol, 82 (19), pp. 6030-6036; Pusterla, N., Johnson, E.M., Chae, J.S., Digenetic trematodes, Acanthatrium sp. and Lecithodendrium sp., as vectors of Neorickettsia risticii, the agent of Potomac horse fever (2003) J Helminthol, 77 (4), pp. 335-339; Mott, J., Muramatsu, Y., Seaton, E., Molecular analysis of Neorickettsia risticii in adult aquatic insects in Pennsylvania, in horses infected by ingestion of insects, and isolated in cell culture (2002) J Clin Microbiol, 40 (2), pp. 690-693; Bertin, F.R., Reising, A., Slovis, N.M., Clinical and clinicopathological factors associated with survival in 44 horses with equine neorickettsiosis (Potomac horse fever) (2013) J Vet Intern Med, 27 (6), pp. 1528-1534; Madigan, J.E., Rikihisa, Y., Palmer, J.E., Evidence for a high rate of false-positive results with the indirect fluorescent antibody test for Ehrlichia risticii antibody in horses (1995) J Am Vet Med Assoc, 207 (11), pp. 1448-1453; Mott, J., Rikihisa, Y., Zhang, Y., Comparison of PCR and culture to the indirect fluorescent-antibody test for diagnosis of Potomac horse fever (1997) J Clin Microbiol, 35 (9), pp. 2215-2219; Atwill, E.R., Mohammed, H.O., Evaluation of vaccination of horses as a strategy to control equine monocytic ehrlichiosis (1996) J Am Vet Med Assoc, 208 (8), pp. 1290-1294; Dutta, S.K., Vemulapalli, R., Biswas, B., Association of deficiency in antibody response to vaccine and heterogeneity of Ehrlichia risticii strains with Potomac horse fever vaccine failure in horses (1998) J Clin Microbiol, 36 (2), pp. 506-512; Seahorn, J.L., Seahorn, T.L., Fluid therapy in horses with gastrointestinal disease (2003) Vet Clin North Am Equine Pract, 19 (3), pp. 665-679; Jones, P.A., Tomasic, M., Gentry, P.A., Oncotic, hemodilutional, and hemostatic effects of isotonic saline and hydroxyethyl starch solutions in clinically normal ponies (1997) Am J Vet Res, 58 (5), pp. 541-548; Jones, P.A., Bain, F.T., Byars, T.D., Effect of hydroxyethyl starch infusion on colloid oncotic pressure in hypoproteinemic horses (2001) J Am Vet Med Assoc, 218 (7), pp. 1130-1135; Bellezzo, F., Kuhnmuench, T., Hackett, E.S., The effect of colloid formulation on colloid osmotic pressure in horses with naturally occurring gastrointestinal disease (2014) BMC Vet Res, 10, pp. 1-5; Pantaleon, L.G., Furr, M.O., McKenzie, H.C., Cardiovascular and pulmonary effects of hetastarch plus hypertonic saline solutions during experimental endotoxemia in anesthetized horses (2006) J Vet Intern Med, 20 (6), pp. 1422-1428; Pantaleon, L.G., Furr, M.O., McKenzie, H.C., Effects of small- and large-volume resuscitation on coagulation and electrolytes during experimental endotoxemia in anesthetized horses (2007) J Vet Intern Med, 21 (6), pp. 1374-1379; Blong, A.E., Epstein, K.L., Brainard, B.M., In vitro effects of three formulations of hydroxyethyl starch solutions on coagulation and platelet function in horses (2013) Am J Vet Res, 74 (5), pp. 712-720; Epstein, K.L., Bergren, A., Giguère, S., Cardiovascular, colloid osmotic pressure, and hemostatic effects of 2 formulations of hydroxyethyl starch in healthy horses (2014) J Vet Intern Med, 28 (1), pp. 223-233; Dellinger, R.P., Levy, M.M., Rhodes, A., Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012 (2013) Intensive Care Med, 39 (2), pp. 165-228; McKenzie, E.C., Esser, M.M., McNitt, S.E., Effect of infusion of equine plasma or 6% hydroxyethyl starch (600/0.75) solution on plasma colloid osmotic pressure in healthy horses (2016) Am J Vet Res, 77 (7), pp. 708-714; Grønvold, A.M.R., L'Abée-Lund, T.M., Strand, E., Fecal microbiota of horses in the clinical setting: potential effects of penicillin and general anesthesia (2010) Vet Microbiol, 145 (3-4), pp. 366-372; Costa, M.C., Stämpfli, H.R., Arroyo, L.G., Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs (2015) BMC Vet Res, 11 (19), pp. 1-12; Costa, M.C., Arroyo, L.G., Allen-Vercoe, E., Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16s rRNA gene (2012) PLoS One, 7 (7), pp. 1-12; House, J.K., Mainar-Jaime, R.C., Smith, B.P., Risk factors for nosocomial salmonella infection among hospitalized horses (1999) J Am Vet Med Assoc, 214 (10), pp. 1511-1516; Moore, J.N., Barton, M.H., Treatment of endotoxemia (2003) Vet Clin North Am Equine Pract, 19 (3), pp. 681-695; Jackman, B.R., Moore, J.N., Barton, M.H., Comparison of the effects of ketoprofen and flunixin meglumine on the in vitro response of equine peripheral blood monocytes to bacterial endotoxin (1994) Can J Vet Res, 58 (2), pp. 138-143; Semrad, S.D., Hardee, G.E., Hardee, M.M., Low dose flunixin meglumine: effects on eicosanoid production and clinical signs induced by experimental endotoxaemia in horses (1987) Equine Vet J, 19 (3), pp. 201-206; Morresey, P.R., MacKay, R.J., Endotoxin-neutralizing activity of polymyxin B in blood after IV administration in horses (2006) Am J Vet Res, 67 (4), pp. 642-647; Parviainen, A.K., Barton, M.H., Norton, N.N., Evaluation of polymyxin B in an ex vivo of endotoxemia in horses (2001) Am J Vet Res, 62 (1), pp. 72-76; Forbes, G., Church, S., Savage, C.J., Effects of hyperimmune equine plasma on clinical and cellular responses in a low-dose endotoxaemia model in horses (2012) Res Vet Sci, 92 (1), pp. 40-44; Liska, D.A., Akucewich, L.H., Marsella, R., Pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite after oral and intravenous administration of pentoxifylline to healthy adult horses (2006) Am J Vet Res, 67 (9), pp. 1621-1627; Barton, M.H., Moore, J.N., Norton, N., Effects of pentoxifylline infusion on response of horses to in vivo challenge exposure with endotoxin (1997) Am J Vet Res, 58 (11), pp. 1300-1307; Baskett, A., Barton, M.H., Norton, N., Effect of pentoxifylline, flunixin meglumine, and their combination on a model of endotoxemia in horses (1997) Am J Vet Res, 58 (11), pp. 1291-1299; Edmunds, J.L., Worgan, H.J., Dougal, K., In vitro analysis of the effect of supplementation with activated charcoal on the equine hindgut (2016) J Equine Sci, 27 (2), pp. 49-55; Desrochers, A.M., Dolente, B.A., Roy, M.-F., Efficacy of Saccharomyces boulardii for treatment of horses with acute enterocolitis (2005) J Am Vet Med Assoc, 227, pp. 954-959; Boyle, A.G., Magdesian, K.G., Durando, M.M., Saccharomyces boulardii viability and efficacy in horses with antimicrobial-induced diarrhoea (2013) Vet Rec, 172, p. 128; Schoster, A., Staempfli, H.R., Abrahams, M., Effect of a probiotic on prevention of diarrhea and Clostridium difficile and Clostridium perfringens shedding in foals (2015) J Vet Intern Med, 29 (3), pp. 925-931; Furr, M., Orally administered Pediococcus acidilactici and Saccharomyces boulardii-based probiotics alter select equine immune function parameters (2014) J Equine Vet Sci, 34 (10), pp. 1156-1163; Weese, J.S., Microbiologic evaluation of commercial probiotics (2002) J Am Vet Med Assoc, 220 (6), pp. 794-797; Scott Weese, J., Martin, H., Assessment of commercial probiotic bacterial contents and label accuracy (2011) Can Vet J, 52 (1), pp. 43-46; Tleyjeh, I.M., Bin Abdulhak, A.A., Riaz, M., Association between proton pump inhibitor therapy and Clostridium difficile infection: a contemporary systematic review and meta-analysis (2012) PLoS One, 7, p. e50836; Furr, M., Cohen, N.D., Axon, J.E., Treatment with histamine-type 2 receptor antagonists and omeprazole increase the risk of diarrhoea in neonatal foals treated in intensive care units (2012) Equine Vet J, 44, pp. 80-86; Van Eps, A.W., Pollitt, C.C., Equine laminitis model: lamellar histopathology seven days after induction with oligofructose (2009) Equine Vet J, 41 (8), pp. 735-740; Divers, T.J., Clinical application of current research findings toward the prevention and treatment of acute laminitis in horses with systemic inflammatory diseases: an internist's perspective (2010) J Equine Vet Sci, 30 (9), pp. 517-524; Liu, X.-L., Want, X.-Z., Liu, X.-X., Low-dose heparin as treatment for early disseminated intravascular coagulation during sepsis: a prospective clinical study (2014) Exp Ther Med, 7, pp. 604-608; De La Rebière Pouyade, G., Grulke, S., Detilleux, J., Evaluation of low-molecular-weight heparin for the prevention of equine laminitis after colic surgery: retrospective study (2009) J Vet Emerg Crit Care (San Antonio), 19 (1), pp. 113-119; Feige, K., Schwarzwald, C.C., Bombeli, T., Comparison of unfractioned and low molecular weight heparin for prophylaxis of coagulopathies in 52 horses with colic: a randomised double-blind clinical trial (2003) Equine Vet J, 35 (5), pp. 506-513; Gary Magdesian, K., Nutrition for critical gastrointestinal illness: feeding horses with diarrhea or colic (2003) Vet Clin North Am Equine Pract, 19 (3), pp. 617-644","Stämpfli, H.; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stoneroad, Canada; email: hstaempf@uoguelph.ca",,"W.B. Saunders",07490739,,VCEPE,"29426709","English","Vet. Clin. North Am. Equine Pract.",Review,"Final",,Scopus,2-s2.0-85043382794 "Di H., McIntyre A.A., Brinton M.A.","55323288900;57200677590;7004849890;","New insights about the regulation of Nidovirus subgenomic mRNA synthesis",2018,"Virology","517",,,"38","43",,3,"10.1016/j.virol.2018.01.026","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042155946&doi=10.1016%2fj.virol.2018.01.026&partnerID=40&md5=bf19b57becdfa7560b5f81b38228de58","Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, United States","Di, H., Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, United States; McIntyre, A.A., Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, United States; Brinton, M.A., Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30303, United States","The members of the Order Nidovirales share a similar genome organization with two overlapping nonstructural polyproteins encoded in the 5′ two-thirds and the structural proteins encoded in the 3′ third. They also express their 3′ region proteins from a nested set of 3′ co-terminal subgenomic messenger RNAs (sg mRNAs). Some but not all of the Nidovirus sg mRNAs also have a common 5′ leader sequence that is acquired by a discontinuous RNA synthesis mechanism regulated by multiple 3′ body transcription regulating sequences (TRSs) and the 5′ leader TRS. Initial studies detected a single major body TRS for each 3′ sg mRNA with a few alternative functional TRSs reported. The recent application of advanced techniques, such as next generation sequencing and ribosomal profiling, in studies of arteriviruses and coronaviruses has revealed an expanded sg mRNA transcriptome and coding capacity. © 2018 Elsevier Inc.","Arterivirus; Coronavirus; Discontinuous RNA synthesis; Leader-body junction sequences; Next generation sequencing; Nidovirus; Subgenomic mRNAs; Transcription regulatory sequences","messenger RNA; structural protein; messenger RNA; viral protein; virus RNA; Arterivirus; Article; carboxy terminal sequence; Coronavirinae; discontinuous RNA synthesis; gene amplification; mass spectrometry; molecular cloning; next generation sequencing; Nidovirales; Nidovirus; nonhuman; Northern blotting; open reading frame; Porcine reproductive and respiratory syndrome virus; priority journal; protein analysis; protein expression; protein function; protein structure; real time polymerase chain reaction; RNA synthesis; sequence analysis; Torovirus; transcription regulation; virus strain; animal; biosynthesis; gene expression regulation; genetics; human; metabolism; Nidovirales; physiology; virus genome; Animals; Gene Expression Regulation, Viral; Genome, Viral; Humans; Nidovirales; RNA, Messenger; RNA, Viral; Viral Proteins","Bentley, K., Keep, S.M., Armesto, M., Britton, P., Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses (2013) J. Virol., 87, pp. 2128-2136; Chen, Z., Kuo, L., Rowland, R.R., Even, C., Faaberg, K.S., Plagemann, P.G., Sequences of 3' end of genome and of 5' end of open reading frame 1a of lactate dehydrogenase-elevating virus and common junction motifs between 5' leader and bodies of seven subgenomic mRNAs (1993) J. General. Virol., 74, pp. 643-659; Cong, Y., Verlhac, P., Reggiori, F., The Interaction between Nidovirales and autophagy components (2017) Viruses, p. 9; Cowley, J.A., Dimmock, C.M., Walker, P.J., Gill-associated nidovirus of Penaeus monodon prawns transcribes 3'-coterminal subgenomic mRNAs that do not possess 5'-leader sequences (2002) J. Gen. Virol., 83, pp. 927-935; de Vries, A.A., Chirnside, E.D., Bredenbeek, P.J., Gravestein, L.A., Horzinek, M.C., Spaan, W.J., All subgenomic mRNAs of equine arteritis virus contain a common leader sequence (1990) Nucleic Acids Res., 18, pp. 3241-3247; de Vries, A.A., Chirnside, E.D., Bredenbeek, P.J., Gravestein, L.A., Horzinek, M.C., Spaan, W.J., All subgenomic mRNAs of equine arteritis virus contain a common leader sequence (1990) Nucleic Acids Res., 18, pp. 3241-3247; den Boon, J.A., Kleijnen, M.F., Spaan, W.J., Snijder, E.J., Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs (1996) J. Virol., 70, pp. 4291-4298; den Boon, J.A., Snijder, E.J., Chirnside, E.D., de Vries, A.A., Horzinek, M.C., Spaan, W.J., Equine arteritis virus is not a togavirus but belongs to the coronavirus like superfamily (1991) J. Virol., 65, pp. 2910-2920; Di, H., Madden, J.C., Jr., Morantz, E.K., Tang, H.Y., Graham, R.L., Baric, R.S., Brinton, M.A., Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus (2017) Proc. Natl. Acad. Sci. USA, 114. , (E8895-e8904); Firth, A.E., Zevenhoven-Dobbe, J.C., Wills, N.M., Go, Y.Y., Balasuriya, U.B.R., Atkins, J.F., Snijder, E.J., Posthuma, C.C., Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production (2011) J. General. Virol., 92, pp. 1097-1106; Fischer, F., Peng, D., Hingley, S.T., Weiss, S.R., Masters, P.S., The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication (1997) J. Virol., 71, pp. 996-1003; Godeny, E.K., de Vries, A.A., Wang, X.C., Smith, S.L., de Groot, R.J., Identification of the leader-body junctions for the viral subgenomic mRNAs and organization of the simian hemorrhagic fever virus genome: evidence for gene duplication during arterivirus evolution (1998) J. Virol., 72, pp. 862-867; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res., 117, pp. 17-37; Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Guo, D., Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus (2005) J. Virol., 79, pp. 5288-5295; Irigoyen, N., Firth, A.E., Jones, J.D., Chung, B.Y., Siddell, S.G., Brierley, I., High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling (2016) PLoS Pathog., 12, p. e1005473; Johnson, C.R., Griggs, T.F., Gnanandarajah, J., Murtaugh, M.P., Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses (2011) J. Gen. Virol., 92, pp. 1107-1116; Joo, M., Makino, S., The effect of two closely inserted transcription consensus sequences on coronavirus transcription (1995) J. Virol., 69, pp. 272-280; Krishnan, R., Chang, R.Y., Brian, D.A., Tandem placement of a coronavirus promoter results in enhanced mRNA synthesis from the downstream-most initiation site (1996) Virology, 218, pp. 400-405; La Monica, N., Yokomori, K., Lai, M.M., Coronavirus mRNA synthesis: identification of novel transcription initiation signals which are differentially regulated by different leader sequences (1992) Virology, 188, pp. 402-407; Lai, M.M., Coronavirus leader-RNA-primed transcription: an alternative mechanism to RNA splicing (1986) BioEssays: News Rev. Mol., Cell. Dev. Biol., 5, pp. 257-260; Lai, M.M., Brayton, P.R., Armen, R.C., Patton, C.D., Pugh, C., Stohlman, S.A., Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3 (1981) J. Virol., 39, pp. 823-834; Lai, M.M., Stohlman, S.A., RNA of mouse hepatitis virus (1978) J. Virol., 26, pp. 236-242; Landry, C.R., Zhong, X., Nielly-Thibault, L., Roucou, X., Found in translation: functions and evolution of a recently discovered alternative proteome (2015) Curr. Opin. Struct. Biol., 32, pp. 74-80; Lin, Y.C., Chang, R.Y., Chueh, L.L., Leader-body junction sequence of the viral subgenomic mRNAs of porcine reproductive and respiratory syndrome virus isolated in Taiwan (2002) J. Vet. Med Sci., 64, pp. 961-965; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir. Res., 109, pp. 97-109; Makino, S., Soe, L.H., Shieh, C.K., Lai, M.M., Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs (1988) J. Virol., 62, pp. 3870-3873; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields Virology Sixth Edition, pp. 825-858. , D.M. Knipe P.M. Howley; Mateos-Gomez, P.A., Morales, L., Zuniga, S., Enjuanes, L., Sola, I., Long-distance RNA-RNA interactions in the coronavirus genome form high-order structures promoting discontinuous RNA synthesis during transcription (2013) J. Virol., 87, pp. 177-186; Meier, C., Aricescu, A.R., Assenberg, R., Aplin, R.T., Gilbert, R.J., Grimes, J.M., Stuart, D.I., The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus (2006) Structure, 14, pp. 1157-1165; Meng, X.J., Paul, P.S., Morozov, I., Halbur, P.G., A nested set of six or seven subgenomic mRNAs is formed in cells infected with different isolates of porcine reproductive and respiratory syndrome virus (1996) J. Gen. Virol., 77, pp. 1265-1270; Meulenberg, J.J., de Meijer, E.J., Moormann, R.J., Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence (1993) J. Gen. Virol., 74, pp. 1697-1701; Miller, W.A., Koev, G., Synthesis of subgenomic RNAs by positive-strand RNA viruses (2000) Virology, 273, pp. 1-8; Morales, L., Oliveros, J.C., Fernandez-Delgado, R., tenOever, B.R., Enjuanes, L., Sola, I., SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology (2017) Cell Host Microbe, 21, pp. 344-355; Moreno, J.L., Zuniga, S., Enjuanes, L., Sola, I., Identification of a coronavirus transcription enhancer (2008) J. Virol., 82, pp. 3882-3893; Nedialkova, D.D., Gorbalenya, A.E., Snijder, E., Aterivirus nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs (2010) PLOS Pathog., 6, p. 31000772; Nelsen, C.J., Murtaugh, M.P., Faaberg, K.S., Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents (1999) J. Virol., 73, pp. 270-280; O'Connor, J.B., Brian, D.A., Downstream ribosomal entry for translation of coronavirus TGEV gene 3b (2000) Virology, 269, pp. 172-182; Olasz, F., Denes, B., Balint, A., Magyar, T., Belak, S., Zadori, Z., Immunological and biochemical characterisation of 7ap, a short protein translated from an alternative frame of ORF7 of PRRSV (2016) Acta Vet. Hung., 64, pp. 273-287; Ozdarendeli, A., Ku, S., Rochat, S., Williams, G.D., Senanayake, S.D., Brian, D.A., Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis (2001) J. Virol., 75, pp. 7362-7374; Pasternak, A.O., Gultyaev, A.P., Spaan, W.J., Snijder, E.J., Genetic manipulation of arterivirus alternative mRNA leader-body junction sites reveals tight regulation of structural protein expression (2000) J. Virol., 74, pp. 11642-11653; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Regulation of relative abundance of arterivirus subgenomic mRNAs (2004) J. Virol., 78, pp. 8102-8113; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: how to make sense…? (2006) J. Gen. Virol., 87, pp. 1403-1421; Pasternak, A.O., van den Born, E., Spaan, W.J., Snijder, E.J., Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis (2001) EMBO J., 20, pp. 7220-7228; Pasternak, A.O., van den Born, E., Spaan, W.J., Snijder, E.J., The stability of the duplex between sense and antisense transcription-reguating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis (2003) J. Virol., 77, pp. 1175-1183; Pueyo, J.I., Magny, E.G., Couso, J.P., New peptides under the s(ORF)ace of the genome (2016) Trends Biochem. Sci., 41, pp. 665-678; Sawicki, S.G., Sawicki, D.L., Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis (1990) J. Virol., 64, pp. 1050-1056; Schaad, M.C., Baric, R.S., Evidence for new transcriptional units encoded at the 3' end of the mouse hepatitis virus genome (1993) Virology, 196, pp. 190-198; Schelle, B., Karl, N., Ludewig, B., Siddell, S.G., Thiel, V., Selective replication of coronavirus genomes that express nucleocapsid protein (2005) J. Virol., 79, pp. 6620-6630; Sethna, P.B., Hung, S.L., Brian, D.A., Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons (1989) Proc. Natl. Acad. Sci. USA, 86, pp. 5626-5630; Smith, S.L., Wang, X., Godeny, E.K., Sequence of the 3' end of the simian hemorrhagic fever virus genome (1997) Gene, 191, pp. 205-210; Smits, S.L., van Vliet, A.L., Segeren, K., el Azzouzi, H., van Essen, M., de Groot, R.J., Torovirus non-discontinuous transcription: mutational analysis of a subgenomic mRNA promoter (2005) J. Virol., 79, pp. 8275-8281; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J. Gen. Virol., 94, pp. 2141-2163; Snijder, E.J., van Tol, H., Pedersen, K.W., Raamsman, M.J., de Vries, A.A., Identification of a novel structural protein of arteriviruses (1999) J. Virol., 73, pp. 6335-6345; Sola, I., Moreno, J.L., Zuniga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) J. Virol., 79, pp. 2506-2516; Thiel, V., Siddell, S.G., Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5 (1994) J. Gen. Virol., 75, pp. 3041-3046; Tijms, M.A., Nedialkova, D.D., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Snijder, E.J., Arterivirus subgenomic mRNA synthesis and virion biogenesis depend on the multifunctional nsp1 autoprotease (2007) J. Virol., 81, pp. 10496-10505; van Berlo, M.F., Horzinek, M.C., van der Zeijst, B.A., Equine arteritis virus-infected cells contain six polyadenylated virus-specific RNAs (1982) Virology, 118, pp. 345-352; van Berlo, M.F., Rottier, P.J., Horzinek, M.C., van der Zeijst, B.A., Intracellular equine arteritis virus (EAV)-specific RNAs contain common sequences (1986) Virology, 152, pp. 492-496; Van Den Born, E., Gultyaev, A.P., Snijder, E.J., Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome (2004) RNA, 10, pp. 424-437. , (New York, N.Y.); van den Born, E., Posthuma, C.C., Gultyaev, A.P., Snijder, E.J., Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region (2005) J. Virol., 79, pp. 6312-6324; van Marle, G., Dobbe, J.C., Gultyaev, A.P., Luytjes, W., Spaan, W.J., Snijder, E.J., Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 12056-12061; van Marle, G., van Dinten, L.C., Spaan, W.J., Luytjes, W., Snijder, E.J., Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis (1999) J. Virol., 73, pp. 5274-5281; van Vliet, A.L., Smits, S.L., Rottier, P.J., de Groot, R.J., Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus (2002) EMBO J., 21, pp. 6571-6580; Vatter, H.A., Di, H., Donaldson, E.F., Baric, R.S., Brinton, M.A., Each of the eight simian hemorrhagic fever virus minor structural proteins is functionally important (2014) Virology, 462–463C, pp. 351-362; Wang, Y., Zhang, X., The leader RNA of coronavirus mouse hepatitis virus contains an enhancer-like element for subgenomic mRNA transcription (2000) J. Virol., 74, pp. 10571-10580; Wu, H.Y., Brian, D.A., Subgenomic messenger RNA amplification in coronaviruses (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 12257-12262; Yuan, S., Murtaugh, M.P., Faaberg, K.S., Heteroclite subgenomic RNAs are produced in porcine reproductive and respiratory syndrome virus infection (2000) Virology, 275, pp. 158-169; Yuan, S., Murtaugh, M.P., Schumann, F.A., Mickelson, D., Faaberg, K.S., Characterization of heteroclite subgenomic RNAs associated with PRRSV infection (2004) Virus Res., 105, pp. 75-87; Zeng, L., Godeny, E.K., Methven, S.L., Brinton, M.A., Analysis of simian hemorrhagic fever virus (SHFV) subgenomic RNAs, junction sequences, and 5' leader (1995) Virology, 207, pp. 543-548; Zhang, X., Liu, R., Identification of a noncanonical signal for transcription of a novel subgenomic mRNA of mouse hepatitis virus: implication for the mechanism of coronavirus RNA transcription (2000) Virology, 278, pp. 75-85; Zhao, X., Shaw, K., Cavanagh, D., Presence of subgenomic mRNAs in virions of coronavirus IBV (1993) Virology, 196, pp. 172-178; Zirkel, F., Roth, H., Kurth, A., Drosten, C., Ziebuhr, J., Junglen, S., Identification and characterization of genetically divergent members of the newly established family Mesoniviridae (2013) J. Virol., 87, pp. 6346-6358; Zuniga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J. Virol., 78, pp. 980-994","Brinton, M.A.; Department of Biology, Georgia State University, P.O. Box 4010, United States; email: mbrinton@gsu.edu",,"Academic Press Inc.",00426822,,VIRLA,"29475599","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85042155946 [No author name available],[No author id available],"Corrigendum to: 2017 ACCP Annual Meeting (Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, (2017), 37, 12, (e124-e238), 10.1002/phar.2052)",2018,"Pharmacotherapy","38","4",,"483","",,,"10.1002/phar.2104","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045533168&doi=10.1002%2fphar.2104&partnerID=40&md5=2c20ccb48672fd1c80add0d134c9ff0b",,"","In ACCP Annual Meeting, an abstract was excluded from the originally published issue. Here is the missing abstract: 201. Ribavirin plus interferon in the management of Middle East respiratory syndrome coronavirus: a historical control study of 113 patients. Eyad Alkhadhairi, Pharm.D.1, Sulaiman Alzubairy, Pharm.D., MBA, BCPS, BCOP, SIDP2, Maram Abuzaid, MS, Pharm.D.3 and Abdulkhaliq Alsalman, RPh, MSc, PhD1; (1)College of Pharmacy, Northern Border University, Rafha, Saudi Arabia (2)Clinical Pharmacy Services, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia (3)Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia Introduction: Since September 2012, WHO has reported nearly 2,000 laboratory-confirmed cases of the Middle East respiratory syndrome coronavirus (MERS-CoV), predominantly from Saudi Arabia. There is no anti-infective therapy approved for the infection. However, based on limited data, oral ribavirin combination with PEGylated interferon α2a injection (RIF) has been used. Research Question or Hypothesis: What are the mortality rates and clinical outcomes in MERS-CoV patients treated with RIF plus supportive care versus supportive care alone (SCA)? Study Design: Retrospective historical control Methods: Chart data collection for all patients diagnosed with laboratory-confirmed MERS-CoV infection between September 2013 and June 2017. The primary endpoint was death due to infection; secondary endpoints were the requirement for CRRT and mechanical ventilation, and changes from baseline serum creatinine (SrCr), and urea nitrogen. Results: 113 patients met the study inclusion criteria; 49 of whom have received RIF and 64 SCA. In the RIF group, 24 patients have died (49%) and 23 patients (36%) in the SCA arm (p=0.182). CRRT was required in 24 RIF patients (49%) and 17 (27%) SCA patients (p=0.018). 31 patients (63%) in the RIF group required mechanical ventilation and 25 patients (39%) with SCA (p=0.014). The average rise in SrCr and urea nitrogen from baseline in the RIF arm were 2.14 mg/dl, and 42 mg/dl, respectively, while they were 1.36 and 39, respectively, in the SCA arm (p=0.050, and p=0.876, respectively). Conclusion: In our study, RIF addition to supportive care was associated with inferior clinical outcomes. Larger prospective well-designed studies are warranted to confirm these findings. We apologize for this error. © 2018 Pharmacotherapy Publications, Inc.",,"Erratum; error","2017 ACCP Annual Meeting (2017) Pharmacotherapy, 37 (12), pp. e124-238",,,"Pharmacotherapy Publications Inc.",02770008,,PHPYD,,"English","Pharmacotherapy",Erratum,"Final",Open Access,Scopus,2-s2.0-85045533168 "Grist J.J., Marro B., Lane T.E.","56896990500;54401448900;24722465300;","Neutrophils and viral-induced neurologic disease",2018,"Clinical Immunology","189",,,"52","56",,1,"10.1016/j.clim.2016.05.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006345071&doi=10.1016%2fj.clim.2016.05.009&partnerID=40&md5=22cfeaeceeddea66fb177128a1ee5e2f","Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States; Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, United States","Grist, J.J., Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States; Marro, B., Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, United States; Lane, T.E., Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States","Infection of the central nervous system (CNS) by neurotropic viruses represents an increasing worldwide problem in terms of morbidity and mortality for people of all ages. Although unique structural features of the blood-brain-barrier (BBB) provide a physical and physiological barrier, a number of neurotropic viruses are able to enter the CNS resulting in a variety of pathological outcomes. Nonetheless, antigen-specific lymphocytes are ultimately able to accumulate within the CNS and contribute to defense by reducing or eliminating the invading viral pathogen. Alternatively, infiltration of activated cells of the immune system may be detrimental, as these cells can contribute to neuropathology that may result in long-term cellular damage or death. More recently, myeloid cells e.g. neutrophils have been implicated in contributing to both host defense and disease in response to viral infection of the CNS. This review highlights recent studies using coronavirus-induced neurologic disease as a model to determine how neutrophils affect effective control of viral replication as well as demyelination. © 2016 Elsevier Inc.","Chemokine receptors; Chemokines; Mouse hepatitis virus; Neutrophils","acute disease; Article; Coronavirinae; demyelination; encephalomyelitis; human; neurologic disease; neuropathology; neutrophil; nonhuman; priority journal; transgenic organism; virus infection; virus replication; animal; blood brain barrier; complication; Coronavirinae; Coronavirus infection; demyelinating disease; immune system; immunology; neurologic disease; neutrophil; physiology; T lymphocyte; virology; Animals; Blood-Brain Barrier; Coronavirus; Coronavirus Infections; Demyelinating Diseases; Humans; Immune System; Nervous System Diseases; Neutrophils; T-Lymphocytes","Bao, F., Omana, V., Brown, A., Weaver, L.C., The systemic inflammatory response after spinal cord injury in the rat is decreased by alpha4beta1 integrin blockade (2012) J. Neurotrauma, 29, pp. 1626-1637; Belperio, J.A., Keane, M.P., Burdick, M.D., Gomperts, B.N., Xue, Y.Y., Hong, K., Mestas, J., Strieter, R.M., CXCR2/CXCR2 ligand biology during lung transplant ischemia-reperfusion injury (2005) J. Immunol., 175, pp. 6931-6939; Borregaard, N., Neutrophils, from marrow to microbes (2010) Immunity, 33, pp. 657-670; Carlson, T., Kroenke, M., Rao, P., Lane, T.E., Segal, B., The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease (2008) J. Exp. Med., 205, pp. 811-823; Cheever, F.S., Daniels, J.B., Pappenheimer, A.M., Bailey, O.T., A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin (1949) J. Exp. Med., 90, pp. 181-194; Christy, A.L., Walker, M.E., Hessner, M.J., Brown, M.A., Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE (2013) J. Autoimmun., 42, pp. 50-61; Glabinski, A.R., Krakowski, M., Han, Y., Owens, T., Ransohoff, R.M., Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis (1999) J. Neurovirol., 5, pp. 95-101; Glabinski, A.R., Tuohy, V.K., Ransohoff, R.M., Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis (1998) Neuroimmunomodulation, 5, pp. 166-171; Gorio, A., Madaschi, L., Zadra, G., Marfia, G., Cavalieri, B., Bertini, R., Di Giulio, A.M., Reparixin, an inhibitor of CXCR2 function, attenuates inflammatory responses and promotes recovery of function after traumatic lesion to the spinal cord (2007) J. Pharmacol. Exp. Ther., 322, pp. 973-981; Guha, D., Klamar, C.R., Reinhart, T., Ayyavoo, V., Transcriptional regulation of CXCL5 in HIV-1-infected macrophages and its functional consequences on CNS pathology (2015) J. Interf. Cytokine Res., 35, pp. 373-384; Herz, J., Sabellek, P., Lane, T.E., Gunzer, M., Hermann, D.M., Doeppner, T.R., Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice (2015) Stroke, 46, pp. 2916-2925; Hosking, M.P., Liu, L., Ransohoff, R.M., Lane, T.E., A protective role for ELR + chemokines during acute viral encephalomyelitis (2009) PLoS Pathog., 5; Hosking, M.P., Tirotta, E., Ransohoff, R.M., Lane, T.E., CXCR2 signaling protects oligodendrocytes and restricts demyelination in a mouse model of viral-induced demyelination (2010) PLoS One, 5; Howe, C.L., Lafrance-Corey, R.G., Sundsbak, R.S., Lafrance, S.J., Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain (2012) J. Neuroinflammation, 9, p. 50; Huber, A.K., Wang, L., Han, P., Zhang, X., Ekholm, S., Srinivasan, A., Irani, D.N., Segal, B.M., Dysregulation of the IL-23/IL-17 axis and myeloid factors in secondary progressive MS (2014) Neurology, 83, pp. 1500-1507; Jacob, A., Saadoun, S., Kitley, J., Leite, M., Palace, J., Schon, F., Papadopoulos, M.C., Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence (2012) Mult. Scler., 18, pp. 1801-1803; Kang, Z., Wang, C., Zepp, J., Wu, L., Sun, K., Zhao, J., Chandrasekharan, U., Li, X., Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2 + glial cells (2013) Nat. Neurosci., 16, pp. 1401-1408; Kielian, T., Barry, B., Hickey, W.F., CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses (2001) J. Immunol., 166, pp. 4634-4643; Kim, J.V., Kang, S.S., Dustin, M.L., McGavern, D.B., Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis (2009) Nature, 457, pp. 191-195; Kostic, M., Dzopalic, T., Zivanovic, S., Zivkovic, N., Cvetanovic, A., Stojanovic, I., Vojinovic, S., Colic, M., IL-17 and glutamate excitotoxicity in the pathogenesis of multiple sclerosis (2014) Scand. J. Immunol., 79, pp. 181-186; Lane, T.E., Asensio, V.C., Yu, N., Paoletti, A.D., Campbell, I.L., Buchmeier, M.J., Dynamic regulation of alpha- and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease (1998) J. Immunol., 160, pp. 970-978; Liu, L., Belkadi, A., Darnall, L., Hu, T., Drescher, C., Cotleur, A.C., Padovani-Claudio, D., Ransohoff, R.M., CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis (2010) Nat. Neurosci., 13, pp. 319-326; Liu, Y., Holdbrooks, A.T., Meares, G.P., Buckley, J.A., Benveniste, E.N., Qin, H., Preferential recruitment of neutrophils into the cerebellum and brainstem contributes to the atypical experimental autoimmune encephalomyelitis phenotype (2015) J. Immunol., 195, pp. 841-852; Londhe, V.A., Belperio, J.A., Keane, M.P., Burdick, M.D., Xue, Y.Y., Strieter, R.M., CXCR2 is critical for dsRNA-induced lung injury: relevance to viral lung infection (2005) J. Inflamm. (Lond.), 2, p. 4; Londhe, V.A., Belperio, J.A., Keane, M.P., Burdick, M.D., Xue, Y.Y., Strieter, R.M., CXCR2/CXCR2 ligand biological axis impairs alveologenesis during dsRNA-induced lung inflammation in mice (2005) Pediatr. Res., 58, pp. 919-926; Marro, B.S., Grist, J.J., Lane, T.E., Inducible expression of CXCL1 within the central nervous system amplifies viral-induced demyelination (2016) J. Immunol., 196, pp. 1855-1864; McColl, S.R., Staykova, M.A., Wozniak, A., Fordham, S., Bruce, J., Willenborg, D.O., Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis (1998) J. Immunol., 161, pp. 6421-6426; Moser, B., Clark-Lewis, I., Zwahlen, R., Baggiolini, M., Neutrophil-activating properties of the melanoma growth-stimulatory activity (1990) J. Exp. Med., 171, pp. 1797-1802; Naegele, M., Tillack, K., Reinhardt, S., Schippling, S., Martin, R., Sospedra, M., Neutrophils in multiple sclerosis are characterized by a primed phenotype (2012) J. Neuroimmunol., 242, pp. 60-71; Nathan, C., Neutrophils and immunity: challenges and opportunities (2006) Nat. Rev. Immunol., 6, pp. 173-182; Openshaw, H., Stuve, O., Antel, J.P., Nash, R., Lund, B.T., Weiner, L.P., Kashyap, A., Forman, S., Multiple sclerosis flares associated with recombinant granulocyte colony-stimulating factor (2000) Neurology, 54, pp. 2147-2150; Perlman, S.R., Lane, T.E., Buchmeier, M.J., Coronaviruses: hepatitis, peritonitis, and central nervous system disease (1999) Effects of Microbes on the Immune System, pp. 331-348. , M.W. Cunningham R.S. Fujinami Lippincott Williams & Wilkins Philadelphia; Provencio, J.J., Swank, V., Lu, H., Brunet, S., Baltan, S., Khapre, R.V., Seerapu, H., Ransohoff, R.M., Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors (2016) Brain Behav. Immun.; Ransohoff, R.M., Brown, M.A., Innate immunity in the central nervous system (2012) J. Clin. Invest., 122, pp. 1164-1171; Rumble, J.M., Huber, A.K., Krishnamoorthy, G., Srinivasan, A., Giles, D.A., Zhang, X., Wang, L., Segal, B.M., Neutrophil-related factors as biomarkers in EAE and MS (2015) J. Exp. Med., 212, pp. 23-35; Saiwai, H., Ohkawa, Y., Yamada, H., Kumamaru, H., Harada, A., Okano, H., Yokomizo, T., Okada, S., The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury (2010) Am. J. Pathol., 176, pp. 2352-2366; Savarin, C., Stohlman, S.A., Atkinson, R., Ransohoff, R.M., Bergmann, C.C., Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis (2010) J. Virol., 84, pp. 4878-4888; Sayed, B.A., Christy, A.L., Walker, M.E., Brown, M.A., Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? (2010) J. Immunol., 184, pp. 6891-6900; Schumacher, C., Clark-Lewis, I., Baggiolini, M., Moser, B., High- and low-affinity binding of GRO alpha and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 10542-10546; Sewell, D.L., Nacewicz, B., Liu, F., Macvilay, S., Erdei, A., Lambris, J.D., Sandor, M., Fabry, Z., Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist (2004) J. Neuroimmunol., 155, pp. 55-63; Simmons, S.B., Liggitt, D., Goverman, J.M., Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during experimental autoimmune encephalomyelitis (2014) J. Immunol., 193, pp. 555-563; Stoolman, J.S., Duncker, P.C., Huber, A.K., Segal, B.M., Site-specific chemokine expression regulates central nervous system inflammation and determines clinical phenotype in autoimmune encephalomyelitis (2014) J. Immunol., 193, pp. 564-570; Strieter, R.M., Keane, M.P., Burdick, M.D., Sakkour, A., Murray, L.A., Belperio, J.A., The role of CXCR2/CXCR2 ligands in acute lung injury (2005) Curr. Drug Targets Inflamm. Allergy, 4, pp. 299-303; Tonai, T., Shiba, K., Taketani, Y., Ohmoto, Y., Murata, K., Muraguchi, M., Ohsaki, H., Nishisho, T., A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats (2001) J. Neurochem., 78, pp. 1064-1072; Wang, F.I., Hinton, D.R., Gilmore, W., Trousdale, M.D., Fleming, J.O., Sequential infection of glial cells by the murine hepatitis virus JHM strain (MHV-4) leads to a characteristic distribution of demyelination (1992) Lab. Investig., 66, pp. 744-754; Wang, P., Bai, F., Zenewicz, L.A., Dai, J., Gate, D., Cheng, G., Yang, L., Fikrig, E., IL-22 signaling contributes to West Nile encephalitis pathogenesis (2012) PLoS One, 7; Wareing, M.D., Shea, A.L., Inglis, C.A., Dias, P.B., Sarawar, S.R., CXCR2 is required for neutrophil recruitment to the lung during influenza virus infection, but is not essential for viral clearance (2007) Viral Immunol., 20, pp. 369-378; Wolpe, S.D., Sherry, B., Juers, D., Davatelis, G., Yurt, R.W., Cerami, A., Identification and characterization of macrophage inflammatory protein 2 (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 612-616; Zenaro, E., Pietronigro, E., Della Bianca, V., Piacentino, G., Marongiu, L., Budui, S., Turano, E., Constantin, G., Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin (2015) Nat. Med., 21, pp. 880-886; Zhou, J., Stohlman, S.A., Hinton, D.R., Marten, N.W., Neutrophils promote mononuclear cell infiltration during viral-induced encephalitis (2003) J. Immunol., 170, pp. 3331-3336","Lane, T.E.; Department of Pathology, University of Utah School of MedicineUnited States; email: tom.lane@path.utah.edu",,"Academic Press Inc.",15216616,,CLIIF,"27288312","English","Clin. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85006345071 "Kim K., Jung K.","57192105524;56054222900;","Dynamics of Interorganizational Public Health Emergency Management Networks: Following the 2015 MERS Response in South Korea",2018,"Asia-Pacific Journal of Public Health","30","3",,"207","216",,,"10.1177/1010539518762847","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044354495&doi=10.1177%2f1010539518762847&partnerID=40&md5=e428dab75a4231866837ffc029a855fa","University of North Texas, Denton, TX, United States; Sungkyunkwan University, Seoul, South Korea","Kim, K., University of North Texas, Denton, TX, United States; Jung, K., Sungkyunkwan University, Seoul, South Korea","We investigated public health emergency management networks during the recent outbreak of Middle East respiratory syndrome coronavirus that affected more than 17 000 people in South Korea. We administered a survey to 169 organizations in order to map the pattern of communication and response networks during the Middle East respiratory syndrome outbreak. We also conducted 11 semistructured interviews with national, regional, and local government officials to comprehend inhibiting and facilitating factors in risk communication and response to the system. National ministries or agencies play central roles in coordinating and supporting the overall response, and local and regional governments or agencies interact with other governments and agencies. Governmental agencies coordinating and/or supporting the outbreak response had difficulties in communicating with other agencies because of the ambiguity of the nature of the infectious disease, slow information disclosure, differences in the organizational priorities, different information standards, and the limitations of the information system. To better respond to a virus outbreak, government agencies need to improve hierarchical communication among different levels of governments, horizontal communication and cooperation between same types or different types of agencies, and information systems. © 2018, 2018 APJPH.","interorganizational dynamics; Middle East respiratory syndrome; public health emergency management networks; risk communication; South Korea","Coronavirus infection; epidemic; human; interpersonal communication; public health service; public relations; questionnaire; South Korea; Communication; Coronavirus Infections; Disease Outbreaks; Humans; Interinstitutional Relations; Public Health Administration; Republic of Korea; Surveys and Questionnaires","Ansell, C., Boin, A., Keller, A., Managing transboundary crises: identifying the building blocks of an effective response system (2010) J Contingencies Crisis Manage, 18, pp. 195-207; Middle East respiratory syndrome (MERS), , https://www.cdc.gov/features/novelcoronavirus/index.html, Accessed February 20, 2018; Arrival of the MERS-infected patient, , http://www.mers.go.kr/mers/html/jsp/Menu_C/list_C1.jsp?menuIds=&fid=21&q_type=&q_value=&cid=62905&pageNum=1, Accessed July 27, 2015; (2015) Report for MERS Response Special Investigation, , Seoul, Korea, National Assembly of the Republic of Korea; Intensified public health measures help control MERS-CoV outbreak in the Republic of Korea, , http://www.wpro.who.int/mediacentre/releases/2015/20150728/en/, Accessed August 25, 2015; MERS statistics, , http://english.mw.go.kr/front_eng/sg/ssg0111vw.jsp?PAR_MENU_ID=1001&MENU_ID=100111&page=1&CONT_SEQ=324489, Accessed July 27, 2015; Kim, S.Y., Middle East respiratory syndrome in Korea (2015) Asia Pac J Public Health, 27 (8), pp. 116S-117S; Seoul metropolitan government’s criticism on the offering of the MERS management authority to Samsung Hospital and the lack of information disclosure, , http://www.mers.go.kr/mers/html/jsp/Menu_C/list_C1.jsp?menuIds=&fid=21&q_type=title&q_value=%EC%84%9C%EC%9A%B8%EC%8B%9C&cid=63466&pageNum=, Accessed February 16, 2018; Andrew, S., Arlikatti, S., Siebeneck, L., Pongponrat, K., Jaikampan, K., Sources of organisational resiliency during the Thailand floods of 2011: a test of the bonding and bridging hypotheses (2016) Disasters, 40, pp. 65-84; Demiroz, F., Kapucu, N., Dodson, R., 17 Community capacity and interorganizational networks for disaster resilience (2013) Disaster Resiliency: Interdisciplinary Perspectives, 4, p. 334; Hu, Q., Knox, C.C., Kapucu, N., What have we learned since September 11, 2001? A network study of the Boston marathon bombings response (2014) Public Adm Rev, 74, pp. 698-712; Jung, K., Song, M., Feiock, R., Isolated and broken bridges from interorganizational emergency management networks: an institutional collective action perspective [published online February 5, 2017] Urban Aff Rev; Jung, K., Song, M., Linking emergency management networks to disaster resilience: bonding and bridging strategy in hierarchical or horizontal collaboration networks (2015) Qual Quant, 49, pp. 1465-1483; Jung, K., Community resiliency and emergency management networks: following the 2012 Korean typhoons, , https://hazards.colorado.edu/uploads/quick_report/jung_2013.pdf, Accessed February 20, 2018; Murakami, M., Tsubokura, M., Evaluating risk communication after the Fukushima disaster based on Nudge theory (2017) Asia Pac J Public Health, 29 (2), pp. 193S-200S","Jung, K.; Department of Public Administration, Sungkyunkwan University, 40510 Faculty Hall, 25-2 Sungkyunkwanro, Jongno-gu, South Korea; email: kjung1@skku.edu",,"SAGE Publications Inc.",10105395,,,"29561166","English","Asia-Pac. J. Public Health",Article,"Final",,Scopus,2-s2.0-85044354495 "Chasqueira M.-J., Paixão P., Rodrigues M.-L., Piedade C., Caires I., Palmeiro T., Botelho M.-A., Santos M., Curran M., Guiomar R., Pechirra P., Costa I., Papoila A., Alves M., Neuparth N.","34876247400;6508103792;23395262500;56050069900;24074289000;56548984600;57190738715;54585948300;7102337863;15925507000;9238568100;56385190700;6507532321;55762063400;19736694100;","Respiratory infections in elderly people: Viral role in a resident population of elderly care centers in Lisbon, winter 2013–2014",2018,"International Journal of Infectious Diseases","69",,,"1","7",,4,"10.1016/j.ijid.2018.01.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042295910&doi=10.1016%2fj.ijid.2018.01.012&partnerID=40&md5=b4237067a94fd62ad1932a2f652c9126","NOVA Medical School-Faculdade de Ciências Médicas, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal; Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal; Hospital Curry Cabral, Centro Hospitalar de Lisboa Central, Rua da Beneficência n.° 8, Lisboa, 1069-166, Portugal; Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0QQ, United Kingdom; Laboratório Nacional de Referência para o Vírus da Gripe, Instituto Nacional de Saúde Ricardo Jorge, Av. Padre Cruz, Lisboa, 1600, Portugal; Epidemiology and Statistics, Research Unit, Centro Hospitalar de Lisboa Central, EPE, Rua José António Serrano, Lisboa, 1150-199, Portugal; CEAUL, Departamento de Bioestatística e Informática, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal","Chasqueira, M.-J., NOVA Medical School-Faculdade de Ciências Médicas, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal; Paixão, P., Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal; Rodrigues, M.-L., NOVA Medical School-Faculdade de Ciências Médicas, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal; Piedade, C., NOVA Medical School-Faculdade de Ciências Médicas, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal; Caires, I., Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal; Palmeiro, T., Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal; Botelho, M.-A., Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal; Santos, M., Hospital Curry Cabral, Centro Hospitalar de Lisboa Central, Rua da Beneficência n.° 8, Lisboa, 1069-166, Portugal; Curran, M., Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0QQ, United Kingdom; Guiomar, R., Laboratório Nacional de Referência para o Vírus da Gripe, Instituto Nacional de Saúde Ricardo Jorge, Av. Padre Cruz, Lisboa, 1600, Portugal; Pechirra, P., Laboratório Nacional de Referência para o Vírus da Gripe, Instituto Nacional de Saúde Ricardo Jorge, Av. Padre Cruz, Lisboa, 1600, Portugal; Costa, I., Laboratório Nacional de Referência para o Vírus da Gripe, Instituto Nacional de Saúde Ricardo Jorge, Av. Padre Cruz, Lisboa, 1600, Portugal; Papoila, A., Epidemiology and Statistics, Research Unit, Centro Hospitalar de Lisboa Central, EPE, Rua José António Serrano, Lisboa, 1150-199, Portugal, CEAUL, Departamento de Bioestatística e Informática, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal; Alves, M., Epidemiology and Statistics, Research Unit, Centro Hospitalar de Lisboa Central, EPE, Rua José António Serrano, Lisboa, 1150-199, Portugal; Neuparth, N., Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School-Faculdade de Ciências Médicas, CEDOC I, Rua do Instituto Bacteriológico, n.°s 5, 5-A e 5-B, Lisboa, 1150-190, Portugal","Objective: The aim of this study was to analyze the etiology and clinical consequences of viral respiratory infections in 18 elderly care centers (ECC) in Lisbon, which housed a total of 1022 residents. Methods: Nasopharyngeal swabs were collected whenever an elderly had symptoms of acute respiratory infections (ARI). PCR and RT-PCR were performed for influenza A/B, human parainfluenza virus 1–4, adenovirus, human metapneumovirus (HMPV), respiratory syncytial virus (RSV), rhinovirus, enterovirus, human coronavirus and human Bocavirus (HBoV). Array cards for atypical bacteria were also used in severe cases. Results: In total, 188 episodes of ARI were reported, being rhinovirus the most frequently detected (n = 53), followed by influenza A(H3) (n = 19) and HBoV (n = 14). Severe infections were reported in 19 patients, 11 of which were fatal, Legionela pneumophila, rhinovirus, HMPV and RSV associated with these fatalities. Nine influenza strains were analyzed, all antigenically dissimilar from vaccine strain 2013/14. “Age”, “HMPV” and “Respiratory disease” showed an association with severe infection. Conclusions: In this study an etiologic agent could be found in 60% of the acute respiratory episodes. These data provides information about the circulating viruses in ECC and highlights the importance of searching both viruses and atypical bacteria in severe ARI. © 2018 The Authors","Elderly; Elderly care centers; Legionella pneumophila; Real time PCR; Respiratory infections; Respiratory viruses","virus vaccine; vaccine; adenovirus infection; adult; aged; Article; Bocavirus infection; controlled study; Coronaviridae; Coronaviridae infection; elderly care; Enterovirus; Enterovirus infection; female; hospitalization; human; Human adenovirus C; Human bocavirus; Human metapneumovirus; Human metapneumovirus infection; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; influenza A; influenza B; Legionella pneumophila; legionnaire disease; major clinical study; male; Metapneumovirus; mixed infection; Parainfluenza virus infection; real time polymerase chain reaction; resident; respiratory tract infection; Rhinovirus; Rhinovirus infection; throat culture; vaccination; winter; follow up; home for the aged; middle aged; nursing home; polymerase chain reaction; Portugal; respiratory tract infection; season; statistics and numerical data; very elderly; virology; virus infection; Aged; Aged, 80 and over; Female; Follow-Up Studies; Homes for the Aged; Humans; Male; Middle Aged; Nursing Homes; Polymerase Chain Reaction; Portugal; Respiratory Tract Infections; Seasons; Vaccines; Virus Diseases","Araújo-Martins, J., Carreiro Martins, P., Viegas, J., Aelenei, D., Cano, M.M., Teixeira, J.P., Environment and health in children day care centres (ENVIRH) — study rationale and protocol (2014) Rev Port Pneumol, 20, pp. 311-323; Carreiro-Martins, P., Gomes-Belo, J., Papoila, A.L., Caires, I., Palmeiro, T., Gaspar-Marques, J., Chronic respiratory diseases and quality of life in elderly nursing home residents (2016) Chron Respir Dis, (March). , pii: 1479972316636990; Centers for Disease Control and Prevention, Seasonal influenza (flu) (2016), http://www.cdc.gov/flu/protect/keyfacts.htm, [Accessed December 2016]; Cesario, T.C., Viruses associated with pneumonia in adults (2012) Clin Infect Dis, 55, pp. 107-113; Cho, M.C., Kim, H., An, D., Lee, M., Noh, S.A., Kim, M.N., Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila (2012) Ann Lab Med, 32, pp. 133-138; Clark, T.W., Medina, M.J., Batham, S., Curran, M.D., Parmar, S., Nicholson, K.G., Adults hospitalised with acute respiratory illness rarely have detectable bacteria in the absence of COPD or pneumonia; viral infection predominates in a large prospective UK sample (2014) J Infect, 69, pp. 507-515; Clark, T.W., Medina, M.J., Batham, S., Curran, M.D., Parmar, S., Nicholson, K.G., C-reactive protein level and microbial aetiology in patients hospitalised with acute exacerbation of COPD (2015) Eur Respir J, 45, pp. 76-86; Cristovão, P., Pechirra, P., Conde, P., Maia, A., Roque, C., Carpinteiro, D., Vigilância da gripe em Portugal no inverno 2013/2014 (2014) Instituto Nacional de Saúde Doutor Ricardo Jorge Boletim Epidemiológico, 8, pp. 20-24; Portugal doenças respiratórias em números 2014 (2014) Programa nacional para as doenças respiratórias, Lisboa, Dezembro de, , https://www.dgs.pt/estatisticas-de-saude/estatisticas-de-saude/publicacoes/portugal-doencas-respiratorias-em-numeros-2014.aspx, [Accessed 21 January 2016]; Ellis, J.S., Curran, M.D., Simultaneous molecular detection and confirmation of influenza AH5, with internal control (2011) Methods Mol Biol, 665, pp. 161-181; Influenza in Europe — season 2013–2014 (2014), http://ecdc.europa.eu/en/publications/Publications/Influenza-2013-14-season-report.pdf, ECDC Stockholm [Accessed 15 December 2015]; Seasonal influenza in the EU/EEA countries, 2014–2015 (2015), http://ecdc.europa.eu/en/publications/Publications/seasonal-influenza-risk-assessment.pdf, ECDC Stockholm [Accessed 15 December 2015]; Eurostat, Population structure and ageing (2016), http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing, [Accessed 21 January 2017]; Falsey, A., Walsh, E., Viral pneumonia in older adults (2006) Clin. Inf. Dis., 42, pp. 518-524. , PMID:16421796; Kandel, R., Srinivasan, A., D'Agata, E.M., Lu, X., Erdman, D., Jhung, M., Outbreak of adenovirus type 4 infection in a long-term care facility for the elderly (2010) Infect Control Hosp Epidemiol, 31, pp. 755-757; Liu, W.K., Chen, D.H., Liu, Q., Liang, H.X., Yang, Z.F., Qin, S., Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China (2011) BMC Infect Dis, 11, pp. 345-352; Nicholson, K.G., Kent, J., Hammersley, V., Cancio, E., Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden (1997) Br Med J, 315, pp. 1060-1064; (2012), http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012D0506&qid=1428573336660&from=EN#page=16, 55; L262. [Accessed 1 September 2013]; Paixão, P., Piedade, C., Papoila, A., Caires, I., Pedro, C., Santos, M., Improving influenza surveillance in Portuguese preschool children by parents’ report (2014) Eur J Pediatr, 173, pp. 1059-1065; Panda, S., Mohakud, N.K., Pena, L., Kumar, S., Human metapneumovirus: review of an important respiratory pathogen (2014) Int J Infect Dis, 25, pp. 45-52; Phin, N., Parry-Ford, F., Harrison, T., Stagg, H.R., Zhang, N., Kumar, K., Epidemiology and clinical management of Legionnaires’ disease (2014) Lancet Infect Dis, 14, pp. 1011-1021; Pop-Vicas, A., Gravenstein, S., Influenza in the elderly — a mini-review (2011) Gerontology, 57, pp. 397-404; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377 (9773), pp. 1264-1275; Schildgen, O., Müller, A., Allander, T., Mackay, I.M., Völz, S., Kupfer, B., Human bocavirus: passenger or pathogen in acute respiratory tract infections? (2008) Clin Microbiol Rev, 21, pp. 291-304; Seenivasan, M.H., Yu, V.L., Muder, R.R., Legionnaires’ disease in long-term care facilities: overview and proposed solutions (2005) J Am Geriatr Soc, 53, pp. 875-880; Steensels, D., Reynders, M., Descheemaeker, P., Curran, M.D., Jacobs, F., Denis, O., Clinical evaluation of a multi-parameter customized respiratory TaqMan®array card compared to conventional methods in immunocompromised patients (2015) J Clin Virol, 72, pp. 36-41; Strausbaugh, L., Sukumar, S., Joseph, C., Infectious disease outbreaks in nursing homes: an unappreciated hazard for frail elderly persons (2003) Clin Infect Dis, 36, pp. 870-876; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf, Department of Economic and Social Affairs, Population Division (2015). World Population Ageing 2015: 29 (ST/ESA/SER.A/390). [Accessed 21 January 2016]; Walsh, E.E., Falsey, A.R., Respiratory syncytial virus infection in adult populations (2012) Infect Disord Drug Targets, 12, pp. 98-102; Welti, M., Jaton, K., Altwegg, M., Sahli, R., Wenger, A., Bille, J., Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions (2003) Diagn Microbiol Infect Dis, 45, pp. 85-95; World Health Organization, Manual for the laboratory diagnosis and virological surveillance of influenza (2011), http://www.who.int/influenza/gisrs_laboratory/manual_diagnosis_surveillance_influenza/en/, WHO [Accessed 15 December 2014]","Chasqueira, M.-J.; NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Portugal; email: mjchasqueira@nms.unl.pt",,"Elsevier B.V.",12019712,,IJIDF,"29391246","English","Int. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85042295910 "Mahallawi W.H., Khabour O.F., Zhang Q., Makhdoum H.M., Suliman B.A.","55683366800;6506863680;7407971815;56354629800;54385854500;","MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile",2018,"Cytokine","104",,,"8","13",,8,"10.1016/j.cyto.2018.01.025","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042914230&doi=10.1016%2fj.cyto.2018.01.025&partnerID=40&md5=0e7a0d04dc4e275668c2dfc77ebb52ce","Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia; Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom; Molecular Biomedicine Program, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan","Mahallawi, W.H., Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia; Khabour, O.F., Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan; Zhang, Q., Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom; Makhdoum, H.M., Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia; Suliman, B.A., Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia, Molecular Biomedicine Program, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia","The Middle East respiratory syndrome coronavirus (MERS-CoV) has been recognized as a highly pathogenic virus to humans that infects the respiratory tract and is associated with high morbidity and mortality. Studies in animal models suggest that MERS-CoV infection induces a strong inflammatory response, which may be related to the severity of disease. Data showing the cytokine profiles in humans during the acute phase of MERS-CoV infection are limited. In this study, we have analyzed the profile of cytokine responses in plasma samples from patients with confirmed MERS-CoV infections (n = 7) compared to healthy controls (n = 13). The cytokine profiles, including T helper (Th) 1, Th2 and Th17 responses, were analyzed using cytometric bead array (CBA). A prominent pro-inflammatory Th1 and Th17 response was clearly seen in patients with MERS-CoV infection, with markedly increased concentrations of IFN-γ, TNF-α, IL-15 and IL-17 compared to controls. IL-12 expression levels showed no difference between patients with MERS-CoV infection and the healthy controls despite the significantly increased levels of IFN-α2 and IFN-γ (P <.01). No changes were observed in the levels of IL-2, IL-4, IL-5, IL-13, and TGF-α (P >.05). Our results demonstrate a marked pro-inflammatory cytokine response during the acute phase of MERS-CoV infection in humans. © 2018","Cytokines; Humans; Interferons; MERS-CoV","alpha2 interferon; gamma interferon; helper factor; interleukin 12; interleukin 13; interleukin 15; interleukin 17; interleukin 2; interleukin 4; interleukin 5; transforming growth factor alpha; tumor necrosis factor; cytokine; interferon; acute phase response; adult; Article; blood sampling; clinical article; controlled study; cytokine response; cytometry; disease association; disease severity; human; male; Middle East respiratory syndrome; priority journal; protein blood level; protein expression; qualitative analysis; reverse transcription polymerase chain reaction; Th1 cell; Th17 cell; blood; chemistry; Coronavirus infection; immunology; metabolism; middle aged; Middle East respiratory syndrome coronavirus; physiology; protein secondary structure; Th1 cell; Th17 cell; virology; young adult; Adult; Coronavirus Infections; Cytokines; Humans; Interferons; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Protein Structure, Secondary; Th1 Cells; Th17 Cells; Young Adult","Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222; Thomas, C., MERS-CoV: where are we now? (2015) Ann. Acad. Med. Singapore, 44, pp. 155-156; Almaghrabi, R.S., Omrani, A.S., Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Brit. J. Hospital Med., 78, pp. 23-26; Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV (2017) Antiviral Res., 137, pp. 82-92; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Song, W., Wang, Y., Wang, N., Wang, D., Guo, J., Fu, L., Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry (2014) Virology., 471-473, pp. 49-53; Al-Tawfiq, J.A., Memish, Z.A., Emerging respiratory viral infections: MERS-CoV and influenza (2014) Lancet Respirat. Med., 2, pp. 23-25; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis (2016) Int. J. Infect. Diseases: IJID: official publication of the International Society for Infectious Diseases, 49, pp. 129-133; Banik, G.R., Khandaker, G., Rashid, H., Middle East respiratory syndrome coronavirus “MERS-CoV”: current knowledge gaps (2015) Paediat. Respir. Rev., 16, pp. 197-202; Hsieh, Y.H., 2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling (2015) PeerJ., 3, p. e1505; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro surveillance: bulletin Europeen sur les maladies transmissibles =European communicable disease bulletin., 17, p. 20290; Fisman, D.N., Tuite, A.R., The epidemiology of MERS-CoV (2014) Lancet Infect. Diseases, 14, pp. 6-7; Gautret, P., Gray, G.C., Charrel, R.N., Odezulu, N.G., Al-Tawfiq, J.A., Zumla, A., Emerging viral respiratory tract infections–environmental risk factors and transmission (2014) The Lancet Infect. Diseases, 14, pp. 1113-1122; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Dromedary camels and the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2015) Transbound. Emerg. Diseases; Mailles, A., Blanckaert, K., Chaud, P., van der Werf, S., Lina, B., Caro, V., (2013), First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European Communicable Disease Bulletin 18; Premila, J., Devi, W., Noraini, R., Norhayati, C., (2014), Chee Kheong, A.S. Badrul, S. Zainah, et al., Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: preparedness and response, April 2014. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 19; Regan, J.J., Jungerman, M.R., Lippold, S.A., Washburn, F., Roland, E., Objio, T., Tracing airline travelers for a public health investigation: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in the United States, 2014 (2016) Public Health Reports, 131, pp. 552-559; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia, mBio 5 (2014) e01146–e01214; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathogens and Global Health, 109, pp. 354-362; Reeves, T., Samy, A.M., Peterson, A.T., MERS-CoV geography and ecology in the Middle East: analyses of reported camel exposures and a preliminary risk map (2015) BMC Res. Notes, 8, p. 801; Reperant, L.A., Osterhaus, A.D., Dromedary MERS-CoV replicates in human respiratory tissues (2014) The Lancet Respir. Med., 2, pp. 779-781; Yusof, M.F., Eltahir, Y.M., Serhan, W.S., Hashem, F.M., Elsayed, E.A., Marzoug, B.A., Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates (2015) Virus Genes, 50, pp. 509-513; Cauchemez, S., Nouvellet, P., Cori, A., Jombart, T., Garske, T., Clapham, H., Unraveling the drivers of MERS-CoV transmission (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9081-9086; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med. Infect. Disease, 14, pp. 464-470; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) Lancet, 383, pp. 1869-1871; Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501; Cha, R.H., Joh, J.S., Jeong, I., Lee, J.Y., Shin, H.S., Kim, G., Renal complications and their prognosis in Korean patients with Middle East Respiratory Syndrome-Coronavirus from the central MERS-CoV designated hospital (2015) J. Kor. Med. Sci., 30, pp. 1807-1814; Khalid, I., Alraddadi, B.M., Dairi, Y., Khalid, T.J., Kadri, M., Alshukairi, A.N., Acute management and long-term survival among subjects with severe Middle East Respiratory Syndrome coronavirus Pneumonia and Ards (2016) Respir. Care, 61, pp. 340-348; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Ko, J.H., Park, G.E., Lee, J.Y., Lee, J.Y., Cho, S.Y., Ha, Y.E., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J. Infect., 73, pp. 468-475; Sherbini, N., Iskandrani, A., Kharaba, A., Khalid, G., Abduljawad, M., Al-Jahdali, H., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: demographic, clinical and survival data (2017) J. Epidemiol. Global Health, 7, pp. 29-36; Lee, H., Ki, C.S., Sung, H., Kim, S., Seong, M.W., Yong, D., Guidelines for the laboratory diagnosis of Middle East respiratory syndrome coronavirus in Korea (2016) Infect. Chemother., 48, pp. 61-69; Morgan, E., Varro, R., Sepulveda, H., Ember, J.A., Apgar, J., Wilson, J., Cytometric bead array: a multiplexed assay platform with applications in various areas of biology (2004) Clin. Immunol., 110, pp. 252-266; Gattoni, A., Parlato, A., Vangieri, B., Bresciani, M., Derna, R., Interferon-gamma: biologic functions and HCV terapy (type I/II) (2 of 2 parts) (2006) La Clinica terapeutica, 157, pp. 457-468; Tovey, M.G., Lallemand, C., Safety, tolerability, and immunogenicity of interferons (2010) Pharmaceuticals, 3, pp. 1162-1186; Manni, M.L., Robinson, K.M., Alcorn, J.F., A tale of two cytokines: IL-17 and IL-22 in asthma and infection (2014) Expert Rev. Respir. Med., 8, pp. 25-42; Herbein, G., O'Brien, W.A., Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis (2000) Proc. Soc. Exper. Biol. Med. Soc. Exper. Biol. Med., 223, pp. 241-257; Dumoutier, L., Renauld, J.C., Viral and cellular interleukin-10 (IL-10)-related cytokines: from structures to functions (2002) Eur. Cytokine Network, 13, pp. 5-15; Carey, A.J., Tan, C.K., Ulett, G.C., Infection-induced IL-10 and JAK-STAT: a review of the molecular circuitry controlling immune hyperactivity in response to pathogenic microbes (2012) Jak-Stat., 1, pp. 159-167; Wang, L., Li, G., Yao, Z.Q., Moorman, J.P., Ning, S., MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV (2015) Rev. Med. Virol., 25, pp. 320-341; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? (2014) PloS One, 9, p. e88716; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367, pp. 1814-1820; Zaritsky, L.A., Bedsaul, J.R., Zoon, K.C., Virus multiplicity of infection affects type I interferon subtype induction profiles and interferon-stimulated genes (2015) J. Virol., 89, pp. 11534-11548; Kim, I.W., Hwang, J.Y., Kim, S.K., Kim, J.K., Park, H.S., Interferon-stimulated genes response in endothelial cells following Hantaan virus infection (2007) J. Kor. Med. Sci., 22, pp. 987-992; Kroetz, D.N., Allen, R.M., Schaller, M.A., Cavallaro, C., Ito, T., Kunkel, S.L., Type I interferon induced epigenetic regulation of macrophages suppresses innate and adaptive immunity in acute respiratory viral infection (2015) PLoS Pathogens, 11, p. e1005338; Stubblefield Park, S.R., Widness, M., Levine, A.D., Patterson, C.E., T cell-, interleukin-12-, and gamma interferon-driven viral clearance in measles virus-infected brain tissue (2011) J. Virol., 85, pp. 3664-3676; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2014) J. Infect. Diseases, 209, pp. 1331-1342; Selinger, C., Tisoncik-Go, J., Menachery, V.D., Agnihothram, S., Law, G.L., Chang, J., Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates (2014) BMC Genom., 15, p. 1161; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res., 194, pp. 124-137; Seo, S.H., Webster, R.G., Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells (2002) J. Virol., 76, pp. 1071-1076; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus, mBio 4 (2013) e00165–e00213; Jin, W., Dong, C., IL-17 cytokines in immunity and inflammation (2013) Emerg. Microbes Infect., 2, p. e60; Blackburn, S.D., Wherry, E.J., IL-10, T cell exhaustion and viral persistence (2007) Trends Microbiol., 15, pp. 143-146; Ogura, H., Murakami, M., Okuyama, Y., Tsuruoka, M., Kitabayashi, C., Kanamoto, M., Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction (2008) Immunity, 29, pp. 628-636; Donnelly, R.P., Dickensheets, H., Finbloom, D.S., The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes (1999) J. Interferon Cytokine Res., 19, pp. 563-573; Darnell, J.E., Jr, Kerr, I.M., Stark, G.R., Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins (1994) Science-AAAS-weekly paper edition-including guide to scientific information, 264, pp. 1415-1420; Waris, G., Siddiqui, A., Interaction between STAT-3 and HNF-3 leads to the activation of liver-specific hepatitis B virus enhancer 1 function (2002) J. Virol., 76, pp. 2721-2729; Stevenson, N.J., Bourke, N.M., Ryan, E.J., Binder, M., Fanning, L., Johnston, J.A., Hepatitis C virus targets the interferon-α JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes (2013) FEBS Lett., 587, pp. 1571-1578; Jia, D., Rahbar, R., Chan, R.W., Lee, S.M., Chan, M.C., Wang, B.X., Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling (2010) PloS One, 5, p. e13927; Mizutani, T., Fukushi, S., Murakami, M., Hirano, T., Saijo, M., Kurane, I., Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells (2004) FEBS Lett., 577, pp. 187-192; Ali, A.K., Nandagopal, N., Lee, S.H., IL-15-PI3K-AKT-mTOR: a critical pathway in the life journey of natural killer cells (2015) Front. Immunol., 6, p. 355; Adib-Conquy, M., Scott-Algara, D., Cavaillon, J.M., Souza-Fonseca-Guimaraes, F., TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals (2014) Immunol Cell Biol., 92, pp. 256-262; Gee, K., Guzzo, C., Che Mat, N.F., Ma, W., Kumar, A., The IL-12 family of cytokines in infection, inflammation and autoimmune disorders (2009) Inflam. Allergy Drug Targets, 8, pp. 40-52; Chu, H., Zhou, J., Wong, B.H.-Y., Li, C., Cheng, Z.-S., Lin, X., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454, pp. 197-205; Lu, R., Moore, P.A., Pitha, P.M., Stimulation of IRF-7 gene expression by tumor necrosis factor α requirement for NFκB transcription factor and gene accessibility (2002) J. Biolog. Chem., 277, pp. 16592-16598","Khabour, O.F.; College of Applied Medical Sciences, Taibah University, Prince Naif bin Abdulaziz Rd, Saudi Arabia; email: ofkhabour@taibahu.edu.sa",,"Academic Press",10434666,,CYTIE,"29414327","English","Cytokine",Article,"Final",Open Access,Scopus,2-s2.0-85042914230 "Sun Y., Cheng Y., Lin P., Yi L., Tong M., Cao Z., Wang G., Li S., Cheng S., Yuan W., Wang J.","57190219442;54408034900;56729641900;35345855800;57206512365;57129571800;57200912213;36342483800;35434455300;15125310900;35436702700;","A multiplex TaqMan real-time PCR for detection and differentiation of four antigenic types of canine parvovirus in China",2018,"Molecular and Cellular Probes","38",,,"7","12",,5,"10.1016/j.mcp.2018.02.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042597954&doi=10.1016%2fj.mcp.2018.02.004&partnerID=40&md5=6f8899da559bdd3012701c4773891475","Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; College of Animal Medicine, Agriculture University of Hebei, Baoding, 071001, China","Sun, Y., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Cheng, Y., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Lin, P., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Yi, L., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Tong, M., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Cao, Z., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Wang, G., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Li, S., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Cheng, S., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Yuan, W., College of Animal Medicine, Agriculture University of Hebei, Baoding, 071001, China; Wang, J., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, PR China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China","Canine parvovirus (CPV) is an important pathogen in domestic dogs, and the original antigenic types CPV-2 and its variants, CPV-2a, 2b and 2c, are prevalent worldwide. A multiplex TaqMan real-time PCR method was developed for the detection and differentiation of four antigenic types of CPV. A set of primers and probes, CPV-305F/CPV-305R and CPV-2-305P (for CPV-2)/CPV-2a-305P (for CPV-2a, 2b and 2c), was able to differentiate CPV-2 and its variants (CPV-2a, 2b and 2c). Another set of primers and probes, CPV-426F/CPV-426R and CPV-2-426P (for CPV-2 and 2a)/CPV-2b-426P (for CPV-2b)/CPV-2c-426P (for CPV-2c), was able to differentiate CPV-2a (2), CPV-2b, and CPV-2c. With these primers and probes, the multiplex TaqMan real-time PCR assay detected effectively and differentiated CPV-2, 2a, 2b and 2c by two separate real-time PCRs. No cross reactivity was observed with canine distemper virus, canine adenovirus, and canine coronavirus. The detection limit of the assay is 101 genome copies/μL for CPV-2, CPV-2a, CPV-2b, and 102 copies/μL for CPV-2c. The multiplex real-time PCR has 100% agreement with DNA sequencing. We provide a sensitive assay that simultaneously detects and differentiate four antigenic types of CPV and the method was also used for quantification of CPVs viral genome. © 2018 Elsevier Ltd","Antigenic types; Canine parvovirus; Detection; Differentiation; Multiplex real-time PCR","virus DNA; virus antigen; animal experiment; antigenicity; Article; Canine adenovirus; Canine coronavirus; Canine distemper virus; Canine parvovirus; China; controlled study; cross reaction; DNA sequence; dog; limit of detection; multiplex polymerase chain reaction; nonhuman; priority journal; real time polymerase chain reaction; reproducibility; sensitivity analysis; species differentiation; virus detection; virus genome; virus strain; animal; Canine parvovirus; genetics; procedures; real time polymerase chain reaction; sensitivity and specificity; standard; Animals; Antigens, Viral; China; Dogs; Limit of Detection; Parvovirus, Canine; Real-Time Polymerase Chain Reaction; Reference Standards; Reproducibility of Results; Sensitivity and Specificity; Sequence Analysis, DNA","Cotmore, S.F., Agbandje-McKenna, M., Chiorini, J.A., Mukha, D.V., Pintel, D.J., Qiu, J., Soderlund-Venermo, M., Davison, A.J., The family Parvoviridae (2014) Arch. Virol., 159 (5), pp. 1239-1247; Kaur, G., Chandra, M., Dwivedi, P.N., Sharma, N.S., Antigenic typing of canine parvovirus using differential PCR (2014) Virusdisease, 25 (4), pp. 481-487; Appel, M.J., Scott, F.W., Carmichael, L.E., Isolation and immunisation studies of a canine parco-like virus from dogs with haemorrhagic enteritis (1979) Vet. Rec., 105 (8), pp. 156-159; Johnson, R.H., Spradbrow, P.B., Isolation from dogs with severe enteritis of a parvovirus related to feline panleukopenia virus (1979) Aust. Vet. J., 55 (3), pp. 151-152; Miranda, C., Thompson, G., Canine parvovirus: the worldwide occurrence of antigenic variants (2016) J. Gen. Virol., 97 (9), pp. 2043-2057; Parrish, C.R., O'Connell, P.H., Evermann, J.F., Carmichael, L.E., Natural variation of canine parvovirus (1985) Science, 230 (4729), pp. 1046-1048; Parrish, C.R., Aquadro, C.F., Strassheim, M.L., Evermann, J.F., Sgro, J.Y., Mohammed, H.O., Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus (1991) J. Virol., 65 (12), pp. 6544-6552; Wang, J., Lin, P., Zhao, H., Cheng, Y., Jiang, Z., Zhu, H., Wu, H., Cheng, S., Continuing evolution of canine parvovirus in China: isolation of novel variants with an Ala5Gly mutation in the VP2 protein (2016) Infect Genet E, 38, pp. 73-78; Buonavoglia, C., Martella, V., Pratelli, A., Tempesta, M., Cavalli, A., Buonavoglia, D., Bozzo, G., Carmichael, L., Evidence for evolution of canine parvovirus type 2 in Italy (2001) J. Gen. Virol., 82, pp. 3021-3025; Zhao, H., Wang, J., Jiang, Y., Cheng, Y., Lin, P., Zhu, H., Han, G., Cheng, S., Typing of canine parvovirus strains circulating in North-East China (2017) Transbound Emerg Dis, 64 (2), pp. 495-503; Decaro, N., Buonavoglia, C., Canine parvovirus–a review of epidemiological and diagnostic aspects, with emphasis on type 2c (2012) Vet. Microbiol., 155 (1), pp. 1-12; Mukhopadhyay, H.K., Amsaveni, S., Matta, S.L., Antony, P.X., Thanislass, J., Pillai, R.M., Development and evaluation of loop-mediated isothermal amplification assay for rapid and sensitive detection of canine parvovirus DNA directly in faecal specimens (2012) Lett. Appl. Microbiol., 55 (3), pp. 202-209; Kumar, M., Nandi, S., Development of a SYBR Green based real-time PCR assay for detection and quantitation of canine parvovirus in faecal samples (2010) J. Virol Meth., 169 (1), pp. 198-201; Wilkes, R.P., Lee, P.Y., Tsai, Y.L., Tsai, C.F., Chang, H.H., Chang, H.F., Wang, H.T., An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need (2015) J. Virol Meth., 220, pp. 35-38; Wang, J., Liu, L., Li, R., Wang, J., Fu, Q., Yuan, W., Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification (2016) Arch. Virol., 161 (4), pp. 1015-1018; Uwatoko, K., Sunairi, M., Nakajima, M., Yamaura, K., Rapid method utilizing the polymerase chain reaction for detection of canine parvovirus in feces of diarrheic dogs (1995) Vet. Microbiol., 43 (4), pp. 315-323; Sun, Y.L., Yen, C.H., Tu, C.F., Visual detection of canine parvovirus based on loop-mediated isothermal amplification combined with enzyme-linked immunosorbent assay and with lateral flow dipstick (2014) J. Vet. Med. Sci., 76 (4), pp. 509-516; Gupta, V., Chakravarti, S., Chander, V., Majumder, S., Bhat, S.A., Gupta, V.K., Nandi, S., Polymerase spiral reaction (PSR): a novel, visual isothermal amplification method for detection of canine parvovirus 2 genomic DNA (2017) Arch. Virol., 162 (7), pp. 1995-2001; Decaro, N., Elia, G., Desario, C., Roperto, S., Martella, V., Campolo, M., Lorusso, A., Buonavoglia, C., A minor groove binder probe real-time PCR assay for discrimination between type 2-based vaccines and field strains of canine parvovirus (2006) J. Virol Meth., 136 (1-2), pp. 65-70; Kaur, G., Chandra, M., Dwivedi, P.N., Narang, D., Multiplex real-time PCR for identification of canine parvovirus antigenic types (2016) J. Virol Meth., 233, pp. 1-5; Zhang, C., Yu, Y., Yang, H., Li, G., Yu, Z., Zhang, H., Shan, H., Development of a PCR-RFLP assay for the detection and differentiation of canine parvovirus and mink enteritis virus (2014) J. Virol Meth., 210, pp. 1-6; Dowgier, G., Mari, V., Losurdo, M., Larocca, V., Colaianni, M.L., Cirone, F., Lucente, M.S., Decaro, N., A duplex real-time PCR assay based on TaqMan technology for simultaneous detection and differentiation of canine adenovirus types 1 and 2 (2016) J. Virol Meth., 234, pp. 1-6; Ligozzi, M., Diani, E., Lissandrini, F., Mainardi, R., Gibellini, D., Assessment of NS1 gene-specific real time quantitative TaqMan PCR for the detection of Human Bocavirus in respiratory samples (2017) Mol. Cell. Probes, 34, pp. 53-55; Wang, J.K., Molecular Characterization and Pathogenicity of Carnivore Parvovirus Epidemic Isolates (2016), pp. 41-78. , (Ph.D. thesis) Chin. Acad. Agric. Sci. Beijing; Yi, L., Cheng, S., Xu, H., Wang, J., Cheng, Y., Yang, S., Luo, B., Development of a combined canine distemper virus specific RT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and genetic characterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs (2012) J. Virol Meth., 179 (1), pp. 281-287; Cheng, Y., Zhang, M., Establishment of process to produce live vaccine of fox encephalitis (CAV-2c strain) (2016) Mod. Agric. Sci. Technol., 10, pp. 253-254; Cheng, Y., Wang, J., Zhang, M., Zhao, J., Shao, X., Ma, Z., Zhao, H., Wu, H., Isolation and sequence analysis of a canine distemper virus from a raccoon dog in Jilin Province, China (2015) Virus Gene., 51 (2), pp. 298-301; Lin, P., Wang, H.M., Wang, J.K., Zhao, H., Guo, L., Yang, Y., Cheng, Y.N., Cheng, S.P., Prokaryotic expression and identification of mink enteritis virus VP2 gene (2015) J. Econ. Anim., 19 (3), pp. 133-139; Zhang, X.J., Han, Q.Y., Sun, Y., Zhang, X., Qiu, H.J., Development of a triplex TaqMan real-time RT-PCR assay for differential detection of wild-type and HCLV vaccine strains of classical swine fever virus and bovine viral diarrhea virus 1 (2012) Res. Vet. Sci., 92 (3), pp. 512-518; Hernandez-Blanco, B., Catala-Lopez, F., Are licensed canine parvovirus (CPV2 and CPV2b) vaccines able to elicit protection against CPV2c subtype in puppies?: A systematic review of controlled clinical trials (2015) Vet. Microbiol., 180 (1-2), pp. 1-9; Woolford, L., Crocker, P., Bobrowski, H., Baker, T., Hemmatzadeh, F., Detection of the canine parvovirus 2c subtype in australian dogs (2017) Viral Immunol., 30 (5), pp. 371-376; Nakamura, M., Nakamura, K., Miyazawa, T., Tohya, Y., Mochizuki, M., Akashi, H., Monoclonal antibodies that distinguish antigenic variants of canine parvovirus (2003) Clin. Diagn. Lab. Immunol., 10 (6), pp. 1085-1089; Nakamura, M., Tohya, Y., Miyazawa, T., Mochizuki, M., Phung, H.T., Nguyen, N.H., Huynh, L.M., Akashi, H., A novel antigenic variant of Canine parvovirus from a Vietnamese dog (2004) Arch. Virol., 149 (11), pp. 2261-2269; Parrish, C.R., Carmichael, L.E., Antczak, D.F., Antigenic relationships between canine parvovirus type 2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal antibodies (1982) Arch. Virol., 72 (4), pp. 267-278; Cavalli, A., Bozzo, G., Decaro, N., Tinelli, A., Aliberti, A., Buonavoglia, D., Characterization of a canine parvovirus strain isolated from an adult dog (2001) New Microbiol, 24 (3), pp. 239-242; Touihri, L., Bouzid, I., Daoud, R., Desario, C., El Goulli, A.F., Decaro, N., Ghorbel, A., Bahloul, C., Molecular characterization of canine parvovirus-2 variants circulating in Tunisia (2009) Virus Gene., 38 (2), pp. 249-258; Kumar, M., Nandi, S., Molecular typing of canine parvovirus variants by polymerase chain reaction and restriction enzyme analysis (2010) Transboundary Emerg. Dis., 57 (6), pp. 458-463; Naidu, H., Subramanian, B.M., Chinchkar, S.R., Sriraman, R., Rana, S.K., Srinivasan, V.A., Typing of canine parvovirus isolates using mini-sequencing based single nucleotide polymorphism analysis (2012) J. Virol Meth., 181 (2), pp. 197-201; Decaro, N., Elia, G., Martella, V., Campolo, M., Desario, C., Camero, M., Cirone, F., Buonavoglia, C., Characterisation of the canine parvovirus type 2 variants using minor groove binder probe technology (2006) J. Virol Meth., 133 (1), pp. 92-99; Zhang, R., Yang, S., Zhang, W., Zhang, T., Xie, Z., Feng, H., Wang, S., Xia, X., Phylogenetic analysis of the VP2 gene of canine parvoviruses circulating in China (2010) Virus Gene., 40 (3), pp. 397-402","Wang, J.; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, China; email: wangjianke@caas.cn",,"Academic Press",08908508,,MCPRE,"29499233","English","Mol. Cell. Probes",Article,"Final",,Scopus,2-s2.0-85042597954 "Hou P., Zhao G., Wang H., He C., Huan Y., He H.","57069617600;57188929252;35199368700;34969281200;35088359500;55267766000;","Development of a recombinase polymerase amplification combined with lateral-flow dipstick assay for detection of bovine ephemeral fever virus",2018,"Molecular and Cellular Probes","38",,,"31","37",,12,"10.1016/j.mcp.2017.12.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039872919&doi=10.1016%2fj.mcp.2017.12.003&partnerID=40&md5=5d856de226c8dfd314f96de381d34b28","Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China","Hou, P., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; Zhao, G., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; Wang, H., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; He, C., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; Huan, Y., College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China; He, H., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China","Bovine ephemeral fever virus (BEFV), identified as the causative pathogen of bovine ephemeral fever (BEF), is responsible for increasing numbers of epidemics/outbreaks and has a significant harmful effect on the livestock industry. Therefore, a rapid detection assay is imperative for BEFV diagnosis. In this study, we described the development of lateral-flow dipstick isothermal recombinase polymerase amplification (LFD-RPA) assays for detection of BEFV. RPA primers and LF probes were designed by targeting the specific G gene, and the amplification product can be visualized on a simple lateral flow dipstick with the naked eyes. The amplification reaction was performed at 38 °C for 20 min and LFD incubation time within 5 min. The detection limit of this assay was 8 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses such as bovine viral diarrhea virus, infectious bovine rhinotracheitis virus, bovine respiratory syncytial virus, bovine coronavirus, bovine parainfluenza virus type 3, bovine vesicular stomatitis virus. In addition, the assay was performed with total 128 clinical specimens and the diagnostic results were compared with conventional RT-PCR, real-time quantative(q) PCR. The result showed that the coincidence rate of BEFV LFD-RPA and real-time qPCR was 96.09% (123/128), which was higher than conventional RT-PCR. The RPA combined with LFD assay probably provides a rapid and sensitive alternative for diagnosis of BEFV infections outbreak. © 2018 Elsevier Ltd","Bovine ephemeral fever virus (BEFV); Lateral flow dipstick; Recombinase polymerase amplification (RPA)","recombinase; recombinase polymerase; unclassified drug; recombinase; Article; Bovine coronavirus; Bovine ephemeral fever virus; Bovine herpesvirus 1; Bovine parainfluenza virus 3; Bovine respiratory syncytial virus; Bovine viral diarrhea virus 1; cross reaction; enzyme assay; gene amplification; incubation time; lateral flow dipstick isothermal recombinase polymerase amplication assay; limit of detection; nonhuman; priority journal; real time polymerase chain reaction; sensitivity and specificity; animal; bioassay; bovine; Bovine ephemeral fever virus; isolation and purification; metabolism; procedures; temperature; time factor; Animals; Biological Assay; Cattle; Ephemeral Fever Virus, Bovine; Real-Time Polymerase Chain Reaction; Recombinases; Sensitivity and Specificity; Temperature; Time Factors","Hsieh, Y.C., Chen, S.H., Chou, C.C., Ting, L.J., Itakura, C., Wang, F.I., Bovine ephemeral fever in Taiwan (2001-2002) (2005) J. Vet. Med. Sci., 67 (4), pp. 411-416; Nandi, S., Negi, B.S., Bovine ephemeral fever: a review (1999) Comp. Immunol. Microbiol. Infect. Dis., 22 (2), pp. 81-91; Walker, P.J., Bovine ephemeral fever in Australia and the world (2005) Curr. Top. Microbiol. Immunol., 292, pp. 57-80; Bai, W.B., Jiang, C.L., Davis, S.S., Preliminary observations on the epidemiology of bovine ephemeral fever in China (1991) Trop. Anim. Health Prod., 23 (1), pp. 22-26; Li, Z., Zheng, F., Gao, S., Wang, S., Wang, J., Liu, Z., Du, J., Yin, H., Large-scale serological survey of bovine ephemeral fever in China (2015) Vet. Microbiol., 176 (1-2), pp. 155-160; Shirakawa, H., Ishibashi, K., Ogawa, T., A comparison of the epidemiology of bovine ephemeral fever in South Korea and south-western Japan (1994) Aust. Vet. J., 71 (2), pp. 50-52; Tonbak, S., Berber, E., Yoruk, M.D., Azkur, A.K., Pestil, Z., Bulut, H., A large-scale outbreak of bovine ephemeral fever in Turkey, 2012 (2013) J. Vet. Med. Sci., 75 (11), pp. 1511-1514; Walker, P.J., Cybinski, D.H., Bovine ephemeral fever and rhabdoviruses endemic to Australia (1989) Aust. Vet. J., 66 (12), pp. 398-400; Walker, P.J., Klement, E., Epidemiology and control of bovine ephemeral fever (2015) Vet. Res., 46, p. 124; Yeruham, I., Sharir, B., Yadin, H., Tiomkin, D., Chai, D., Bovine ephemeral fever in beef cattle herds in the Jordan Valley, Israel (2003) Vet. Rec., 152 (3), pp. 86-88; Yeruham, I., Van Ham, M., Stram, Y., Friedgut, O., Yadin, H., Mumcuoglu, K.Y., Braverman, Y., Epidemiological investigation of bovine ephemeral Fever outbreaks in Israel (2010) Vet. Med. Int., 2010; Hsieh, Y.C., Chen, S.H., Chou, C.S., Hsiao, H.W., Chen, S.Z., Lee, Y.F., Liu, H.J., Development of a reliable assay protocol for identification of diseases (RAPID)-bioactive amplification with probing (BAP) for detection of bovine ephemeral fever virus (2005) J. Virol Meth., 129 (1), pp. 75-82; Johal, J., Gresty, K., Kongsuwan, K., Walker, P.J., Antigenic characterization of bovine ephemeral fever rhabdovirus G and GNS glycoproteins expressed from recombinant baculoviruses (2008) Arch. Virol., 153 (9), pp. 1657-1665; Kato, T., Aizawa, M., Takayoshi, K., Kokuba, T., Yanase, T., Shirafuji, H., Tsuda, T., Yamakawa, M., Phylogenetic relationships of the G gene sequence of bovine ephemeral fever virus isolated in Japan, Taiwan and Australia (2009) Vet. Microbiol., 137 (3-4), pp. 217-223; Zheng, F., Qiu, C., Phylogenetic relationships of the glycoprotein gene of bovine ephemeral fever virus isolated from mainland China, Taiwan, Japan, Turkey, Israel and Australia (2012) Virol. J., 9, p. 268; Zheng, F.Y., Lin, G.Z., Qiu, C.Q., Zhou, J.Z., Cao, X.A., Gong, X.W., Development and application of G1-ELISA for detection of antibodies against bovine ephemeral fever virus (2009) Res. Vet. Sci., 87 (2), pp. 211-212; Bakhshesh, M., Abdollahi, D., Bovine ephemeral fever in Iran: diagnosis, isolation and molecular characterization (2015) J. arthropod-borne Dis., 9 (2), pp. 195-203; Zhang, M., Ge, J., Wen, Z., Chen, W., Wang, X., Liu, R., Bu, Z., Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus (2017) Arch. Virol., 162 (2), pp. 359-367; Yazdani, F., Bakhshesh, M., Esmaelizad, M., Sadigh, Z.A., Expression of G1- epitope of bovine ephemeral fever virus in E. coli : a novel candidate to develop ELISA kit (2017) Vet. Res. Forum Int. Q J., 8 (3), pp. 209-213; Snowdon, W.A., Bovine ephemeral fever: the reaction of cattle to different strains of ephemeral fever virus and the antigenic comparison of two strains of virus (1970) Aust. Vet. J., 46 (6), pp. 258-266; Tzipori, S., The isolation of bovine ephemeral fever virus in cell cultures and evidence for autointerference (1975) Aust. J. Exp. Biol. Med. Sci., 53 (4), pp. 273-279; Fenglan Tian, C.W., Bai, W., Jiang, C., Zhang, Z., Application of indirect immunofluorescent assay for the detection of bovine ephemeral fever virus[in Chinese] (1985) Anim. Infect. Dis., 25 (4), pp. 7-9; Blasdell, K.R., Adams, M.M., Davis, S.S., Walsh, S.J., Aziz-Boaron, O., Klement, E., Tesh, R.B., Walker, P.J., A reverse-transcription PCR method for detecting all known ephemeroviruses in clinical samples (2013) J. Virol Meth., 191 (2), pp. 128-135; Niwa, T., Shirafuji, H., Ikemiyagi, K., Nitta, Y., Suzuki, M., Kato, T., Yanase, T., Occurrence of bovine ephemeral fever in Okinawa Prefecture, Japan, in 2012 and development of a reverse-transcription polymerase chain reaction assay to detect bovine ephemeral fever virus gene (2015) J. Vet. Med. Sci., 77 (4), pp. 455-460; Stram, Y., Kuznetzova, L., Levin, A., Yadin, H., Rubinstein-Giuni, M., A real-time RT-quantative(q)PCR for the detection of bovine ephemeral fever virus (2005) J. Virol Meth., 130 (1-2), pp. 1-6; Zakrzewski, H., Cybinski, D.H., Walker, P.J., A blocking ELISA for the detection of specific antibodies to bovine ephemeral fever virus (1992) J. Immunol. Meth., 151 (1-2), pp. 289-297; Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A., DNA detection using recombination proteins (2006) PLoS Biol., 4 (7); Santiago-Felipe, S., Tortajada-Genaro, L.A., Puchades, R., Maquieira, A., Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis (2014) Anal. Chim. Acta, 811, pp. 81-87; Loo, J.F., Lau, P.M., Ho, H.P., Kong, S.K., An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening (2013) Talanta, 115, pp. 159-165; Kersting, S., Rausch, V., Bier, F.F., von Nickisch-Rosenegk, M., Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens (2014) Mikrochim. Acta, 181 (13-14), pp. 1715-1723; Euler, M., Wang, Y., Nentwich, O., Piepenburg, O., Hufert, F.T., Weidmann, M., Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus (2012) J. Clin. Virol. Offic. Publ. Pan Am. Soc. Clin. Virol., 54 (4), pp. 308-312; Kersting, S., Rausch, V., Bier, F.F., von Nickisch-Rosenegk, M., Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis (2014) Malar. J., 13, p. 99; Rosser, A., Rollinson, D., Forrest, M., Webster, B.L., Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection (2015) Parasites Vectors, 8, p. 446; Wu, Y.D., Zhou, D.H., Zhang, L.X., Zheng, W.B., Ma, J.G., Wang, M., Zhu, X.Q., Xu, M.J., Recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for equipment-free detection of Cryptosporidium spp. oocysts in dairy cattle feces (2016) Parasitol. Res., 115 (9), pp. 3551-3555; He, C.Q., Liu, Y.X., Wang, H.M., Hou, P.L., He, H.B., Ding, N.Z., New genetic mechanism, origin and population dynamic of bovine ephemeral fever virus (2016) Vet. Microbiol., 182, pp. 50-56; Wang, J.C., Yuan, W.Z., Han, Q.A., Wang, J.F., Liu, L.B., Reverse transcription recombinase polymerase amplification assay for the rapid detection of type 2 porcine reproductive and respiratory syndrome virus (2017) J. Virol Meth., 243, pp. 55-60; Oguzoglu, T.C., Erturk, A., Cizmeci, S.G., Koc, B.T., Akca, Y., A report on bovine ephemeral fever virus in Turkey: antigenic variations of different strains of EFV in the 1985 and 2012 outbreaks using partial glycoprotein gene sequences (2015) Transboundary Emerg. Dis., 62 (5), pp. e66-70; Zheng, F., Lin, G., Zhou, J., Wang, G., Cao, X., Gong, X., Qiu, C., A reverse-transcription, loop-mediated isothermal amplification assay for detection of bovine ephemeral fever virus in the blood of infected cattle (2011) J. Virol Meth., 171 (1), pp. 306-309; Lillis, L., Siverson, J., Lee, A., Cantera, J., Parker, M., Piepenburg, O., Lehman, D.A., Boyle, D.S., Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care (2016) Mol. Cell. Probes, 30 (2), pp. 74-78; Hou, P., Wang, H., Zhao, G., He, C., He, H., Rapid detection of infectious bovine rhinotracheitis virus using recombinase polymerase amplification assays (2017) BMC Vet. Res., 13 (1), p. 386; Lee, Y.G., Chang, K.S., Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid (2005) Talanta, 65 (5), pp. 1335-1342; Finlaison, D.S., Read, A.J., Zhang, J., Paskin, R., Kirkland, P.D., Application of a real-time polymerase chain reaction assay to the diagnosis of bovine ephemeral fever during an outbreak in New South Wales and northern Victoria in 2009-10 (2014) Aust. Vet. J., 92 (1-2), pp. 24-27","He, H.; College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, China; email: hongbinhe@sdnu.edu.cn",,"Academic Press",08908508,,MCPRE,"29288049","English","Mol. Cell. Probes",Article,"Final",,Scopus,2-s2.0-85039872919 "Zheng X.-Y., Xu Y.-J., Guan W.-J., Lin L.-F.","55467335500;57200912774;55220462400;55202898700;","Regional, age and respiratory-secretion-specific prevalence of respiratory viruses associated with asthma exacerbation: a literature review",2018,"Archives of Virology","163","4",,"845","853",,15,"10.1007/s00705-017-3700-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040328312&doi=10.1007%2fs00705-017-3700-y&partnerID=40&md5=d256feef857169c591ef51f881807e38","Guangdong Provincial Center for Disease control and Prevention,Institute of non-communicable disease control and prevention, 160 Qunxian Road, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China","Zheng, X.-Y., Guangdong Provincial Center for Disease control and Prevention,Institute of non-communicable disease control and prevention, 160 Qunxian Road, Guangzhou, China; Xu, Y.-J., Guangdong Provincial Center for Disease control and Prevention,Institute of non-communicable disease control and prevention, 160 Qunxian Road, Guangzhou, China; Guan, W.-J., State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China; Lin, L.-F., Guangdong Provincial Center for Disease control and Prevention,Institute of non-communicable disease control and prevention, 160 Qunxian Road, Guangzhou, China","Despite increased understanding of how viral infection is involved in asthma exacerbations, it is less clear which viruses are involved and to what extent they contribute to asthma exacerbations. Here, we sought to determine the prevalence of different respiratory viruses during asthma exacerbations. Systematic computerized searches of the literature up to June 2017 without language limitation were performed. The primary focus was on the prevalence of respiratory viruses, including AdV (adenovirus), BoV (bocavirus), CoV (coronavirus), CMV (cytomegalovirus), EnV (enterovirus), HSV (herpes simplex virus), IfV (influenza virus), MpV (metapneumovirus), PiV (parainfluenzavirus), RV (rhinovirus) and RSV (respiratory syncytial virus) during asthma exacerbations. We also examined the prevalence of viral infection stratified by age, geographic region, type of respiratory secretion, and detection method. Sixty articles were included in the final analysis. During asthma exacerbations, the mean prevalence of AdV, BoV, CoV, CMV, EnV, HSV, IfV, MpV, PiV, RV and RSV was 3.8%, 6.9%, 8.4%, 7.2%, 10.1%, 12.3%, 10.0%, 5.3%, 5.6%, 42.1% and 13.6%, respectively. EnV, MPV, RV and RSV were more prevalent in children, whereas AdV, BoV, CoV, IfV and PiV were more frequently present in adults. RV was the major virus detected globally, except in Africa. RV could be detected in both the upper and lower airway. Polymerase chain reaction was the most sensitive method for detecting viral infection. Our findings indicate the need to develop prophylactic polyvalent or polyvirus (including RV, EnV, IfV and RSV) vaccines that produce herd immunity and reduce the healthcare burden associated with virus-induced asthma exacerbations. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"Adenoviridae; Africa; age; Asia; asthma; complication; Coronavirinae; Cytomegalovirus; Enterovirus; Europe; human; Human bocavirus; Human respiratory syncytial virus; Metapneumovirus; pathogenicity; physiology; prevalence; respiratory system; respiratory tract infection; Respirovirus; Rhinovirus; Simplexvirus; virology; virus infection; Western Hemisphere; Adenoviridae; Africa; Age Factors; Americas; Asia; Asthma; Coronavirus; Cytomegalovirus; Enterovirus; Europe; Human bocavirus; Humans; Metapneumovirus; Prevalence; Respiratory Syncytial Virus, Human; Respiratory System; Respiratory Tract Infections; Respirovirus; Rhinovirus; Simplexvirus; Virus Diseases","Castillo, J.R., Peters, S.P., Busse, W.W., Asthma exacerbations: pathogenesis, prevention, and treatment (2017) J Allergy Clin Immunol Pract, 5, pp. 918-927. , PID: 28689842; Masoli, M., Fabian, D., Holt, S., Beasley, R., Global Initiative for Asthma (GINA) Program. The global burden of asthma: executive summary of the GINA Dissemination Committee Report (2004) Allergy, 59, pp. 469-478. , PID: 15080825; Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study (2017) Lancet Respir Med, 5 (9), pp. 691-706; Johnston, S.L., Pattemore, P.K., Sanderson, G., Smith, S., Lampe, F., Josephs, L., Symington, P., Tyrrell, D.A., Community study of role of viral infections in exacerbations of asthma in 9–11 year old children (1995) BMJ, 310, pp. 1225-1229. , COI: 1:STN:280:DyaK2M3osVKkug%3D%3D, PID: 7767192; Papadopoulos, N.G., Christodoulou, I., Rohde, G., Agache, I., Almqvist, C., Bruno, A., Bonini, S., Zuberbier, T., Viruses and bacteria in acute asthma exacerbations—a GA2LEN-DARE systematic review (2011) Allergy, 66, pp. 458-468. , COI: 1:STN:280:DC%2BC3Mrlt1ahsw%3D%3D, PID: 21087215; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (2009) BMJ, 339, p. b2535. , PID: 19622551; Whiting, P.F., Rutjes, A.W., Westwood, M.E., Mallett, S., Deeks, J.J., Reitsma, J.B., Leeflang, M.M., Bossuyt, P.M., QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies (2011) Ann Intern Med, 155, pp. 529-536. , PID: 22007046; Sanchez-Padilla, E., Grais, R.F., Guerin, P.J., Steele, A.D., Burny, M.E., Luquero, F.J., Burden of disease and circulating serotypes of rotavirus infection in sub-Saharan Africa: systematic review and meta-analysis (2009) Lancet Infect Dis, 9, pp. 567-576. , PID: 19695493; DerSimonian, R., Laird, N., Meta-analysis in clinical trials (1986) Control Clin Trials, 7, pp. 177-188. , COI: 1:STN:280:DyaL2s7gsVamtA%3D%3D, PID: 3802833; Tang, J.W., Lam, T.T., Zaraket, H., Lipkin, W.I., Drews, S.J., Hatchette, T.F., Heraud, J.M., Koopmans, M.P., Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance (2017) Lancet Infect Dis, S1473–3099 (17), pp. 302-384; Wildenbeest, J.G., van der Schee, M.P., Hashimoto, S., Benschop, K.S., Minnaar, R.P., Sprikkelman, A.B., Haarman, E.G., Wolthers, K.C., Prevalence of rhinoviruses in young children of an unselected birth cohort from the Netherlands (2016) Clin Microbiol Infect, 22, pp. 7369-736. , COI: 1:STN:280:DC%2BC2s%2FntVymtw%3D%3D; Fernandes-Matano, L., Monroy-Muñoz, I.E., Angeles-Martínez, J., Sarquiz-Martinez, B., Palomec-Nava, I.D., Pardavé-Alejandre, H.D., Santos Coy-Arechavaleta, A., Muñoz-Medina, J.E., Prevalence of non-influenza respiratory viruses in acute respiratory infection cases in Mexico (2017) PLoS One, 12. , PID: 28467515; Colosia, A.D., Yang, J., Hillson, E., Mauskopf, J., Copley-Merriman, C., Shinde, V., Stoddard, J., The epidemiology of medically attended respiratory syncytial virus in older adults in the United States: a systematic review (2017) PLoS One, 12. , PID: 28797053; de Jong, E.P., van den Beuken, M.G.A., van Elzakker, E.P.M., Wolthers, K.C., Sprij, A.J., Lopriore, E., Walther, F.J., Brus, F., Epidemiology of sepsis-like illness in young infants: major role of enterovirus and human parechovirus (2017) Pediatr Infect Dis J; Calvo, C., García-García, M.L., Pozo, F., Carballo, D., Martínez-Monteserín, E., Casas, I., Infections and coinfections by respiratory human bocavirus during eight seasons in hospitalized children (2016) J Med Virol, 88, pp. 2052-2058. , PID: 27124519; Vazquez-Perez, J.A., Ramirez-Gonzalez, J.E., Moreno-Valencia, Y., Hernandez-Hernandez, V.A., Romero-Espinoza, J.A., Castillejos-Lopez, M., Hernandez, A., Salas-Hernandez, J., EV-D68 infection in children with asthma exacerbation and pneumonia in Mexico City during 2014 autumn (2016) Influ Other Respir Viruses, 10, pp. 154-160; Edwards, K.M., Zhu, Y., Griffin, M.R., Weinberg, G.A., Hall, C.B., Szilagyi, P.G., Staat, M.A., Network, N.V.S., Burden of human metapneumovirus infection in young children (2013) N Engl J Med, 368, pp. 633-643. , COI: 1:CAS:528:DC%2BC3sXivVWjsr8%3D, PID: 23406028; Lukkarinen, M., Koistinen, A., Turunen, R., Lehtinen, P., Vuorinen, T., Jartti, T., Rhinovirus-induced first wheezing episode predicts atopic but not nonatopic asthma at school age (2017) J Allergy Clin Immunol, 140 (4), pp. 988-995. , PID: 28347734; Shi, T., McAllister, D.A., O’Brien, K.L., Global, regional and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study (2017) Lancet, 390 (10098), pp. 946-958; Manti, S., Cuppari, C., Lanzafame, A., Salpietro, C., Betta, P., Leonardi, S., Perez, M.K., Piedimonte, G., Detection of respiratory syncytial virus (RSV) at birth in a newborn with respiratory distress (2017) Pediatr Pulmonol, , PID: 28834426; Iaconelli, M., Divizia, M., Della Libera, S., Di Bonito, P., La Rosa, G., Frequent detection and genetic diversity of human bocavirus in urban sewage samples (2016) Food Environ Virol, 8, pp. 289-295. , COI: 1:CAS:528:DC%2BC28XhtVWltLrF, PID: 27311692; Phyu, W.K., Ong, K.C., Wong, K.T., Modelling person-to-person transmission in an Enterovirus A71 orally infected hamster model of hand-foot-and-mouth disease and encephalomyelitis (2017) Emerg Microbes Infect, 6. , COI: 1:CAS:528:DC%2BC2sXhtFygsLnP, PID: 28698666; Lee, W.M., Grindle, K., Pappas, T., Marshall, D.J., Moser, M.J., Beaty, E.L., Shult, P.A., Gern, J.E., High-throughput, sensitive, and accurate multiplex PCR-microsphere flow cytometry system for large-scale comprehensive detection of respiratory viruses (2007) J Clin Microbiol, 45, pp. 2626-2634. , COI: 1:CAS:528:DC%2BD2sXhtVehs7vL, PID: 17537928; de Crom, S.C., Obihara, C.C., de Moor, R.A., Veldkamp, E.J., van Furth, A.M., Rossen, J.W., Prospective comparison of the detection rates of human enterovirus and parechovirus RT-qPCR and viral culture in different pediatric specimens (2013) J Clin Virol, 58, pp. 449-454. , PID: 23973350; van der Schans, C.P., Bronchial mucus transport (2007) Respir Care, 52, pp. 1150-1156. , PID: 17716383; Ahern, W., Bird, T., Court, S., Gardner, P.S., McQuillin, J., Pathological changes in virus infections of the lower respiratory tract in children (1970) J Clin Invest, 23, pp. 7-18; Thornton, D.J., Rousseau, K., McGuckin, M.A., Structure and function of the polymeric mucins in airways mucus (2008) Annu Rev Physiol, 70, pp. 459-486. , COI: 1:CAS:528:DC%2BD1cXkt1eqt7o%3D, PID: 17850213; Jackson, D.J., Johnston, S.L., The role of viruses in acute exacerbations of asthma (2010) J Allergy Clin Immunol, 125, pp. 1178-1187. , COI: 1:CAS:528:DC%2BC3cXhtVaitL3M, PID: 20513517; Leigh, R., Oyelusi, W., Wiehler, S., Koetzler, R., Zaheer, R.S., Newton, R., Proud, D., Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling (2008) J Allergy Clin Immunol, 121, pp. 1238-1245. , COI: 1:CAS:528:DC%2BD1cXlslKlur0%3D, PID: 18355907; Nicholas, B., Skipp, P., Mould, R., Rennard, S., Davies, D.E., O’Connor, C.D., Djukanovic, R., Shotgun proteomic analysis of human-induced sputum (2006) Proteomics, 6, pp. 4390-4401. , COI: 1:CAS:528:DC%2BD28XovVKqtLY%3D, PID: 16819730; Mazur, N.I., Martinón-Torres, F., Baraldi, E., Fauroux, B., Greenough, A., Heikkinen, T., Manzoni, P., Bont, L., Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics (2015) Lancet Respir Med, 3, pp. 888-900. , PID: 26411809; Moss, R.B., Enterovirus 68 infection-association with asthma (2016) J Allergy Clin Immunol Pract, 4, pp. 226-228. , PID: 26843407; Rouphael, N.G., Paine, M., Mosley, R., Henry, S., McAllister, D.V., Kalluri, H., Pewin, W., Prausnitz, M.R., The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial (2017) Lancet, 390, pp. 649-658. , COI: 1:CAS:528:DC%2BC2sXhtVyntL7E, PID: 28666680; Lee, S., Nguyen, M.T., Currier, M.G., Jenkins, J.B., Strobert, E.A., Kajon, A.E., Madan-Lala, R., Moore, M.L., A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques (2016) Nat Commun, 7, p. 12838. , COI: 1:CAS:528:DC%2BC28XhsFKmt7rF, PID: 27653379","Lin, L.-F.; Guangdong Provincial Center for Disease control and Prevention,Institute of non-communicable disease control and prevention, 160 Qunxian Road, China; email: 1396320174@qq.com",,"Springer-Verlag Wien",03048608,,ARVID,"29327237","English","Arch. Virol.",Review,"Final",,Scopus,2-s2.0-85040328312 "Wilkes R.P., Anis E., Dunbar D., Lee P.-Y.A., Tsai Y.-L., Lee F.-C., Chang H.-F.G., Wang H.-T.T., Graham E.M.","7005431604;36697646600;57200853598;37006558200;35312441900;56391774000;55199965000;56270266400;25959545000;","Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection",2018,"Journal of Feline Medicine and Surgery","20","4",,"362","369",,6,"10.1177/1098612X17712847","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042536505&doi=10.1177%2f1098612X17712847&partnerID=40&md5=33cf294792eaabdf1d28e7c463ddf4b7","Clinical Virology Laboratory, University of Tennessee Veterinary Medical Center, Knoxville, TN, United States; Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Beheira, Egypt; Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; GeneReach USA, Lexington, MA, United States; Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, United States","Wilkes, R.P., Clinical Virology Laboratory, University of Tennessee Veterinary Medical Center, Knoxville, TN, United States, Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, United States; Anis, E., Clinical Virology Laboratory, University of Tennessee Veterinary Medical Center, Knoxville, TN, United States, Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Beheira, Egypt, Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, United States; Dunbar, D., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Lee, P.-Y.A., GeneReach USA, Lexington, MA, United States; Tsai, Y.-L., GeneReach USA, Lexington, MA, United States; Lee, F.-C., GeneReach USA, Lexington, MA, United States; Chang, H.-F.G., GeneReach USA, Lexington, MA, United States; Wang, H.-T.T., GeneReach USA, Lexington, MA, United States; Graham, E.M., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom","Objectives: Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the feline haematopoietic system that are invariably fatal. Rapid and accurate testing at the point-of-need (PON) supports prevention of virus spread and management of clinical disease. This study evaluated the performance of an insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for FeLV detection at the PON. Methods: Mycoplasma haemofelis, feline coronavirus, feline herpesvirus, feline calicivirus and feline immunodeficiency virus were used to test analytical specificity. In vitro transcribed RNA, artificial plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical FeLV isolate were used in the analytical sensitivity assays. A retrospective study including 116 clinical plasma and serum samples that had been tested with virus isolation, real-time PCR and ELISA, and a prospective study including 150 clinical plasma and serum samples were implemented to evaluate the clinical performances of the iiPCR-based methods for FeLV detection. Results: Ninety-five percent assay limit of detection was calculated to be 16 RNA and five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both reactions had analytical sensitivity comparable to a reference real-time PCR (qPCR) and did not detect five non-target feline pathogens. The clinical performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97) and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The agreement between an automatic nucleic extraction/RT-iiPCR system and virus isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67% (κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study, respectively. Conclusions and relevance: These results suggested that both RT-iiPCR and iiPCR assays can serve as reliable tools for PON FeLV detection. © 2017, © The Author(s) 2017.",,"plasmid DNA; virus RNA; animal experiment; Article; blood sampling; cat; enzyme linked immunosorbent assay; Feline coronavirus; feline leukemia; Feline leukemia virus; Herpesviridae; Mycoplasma haemofelis; nonhuman; priority journal; real time polymerase chain reaction; retrospective study; reverse transcription polymerase chain reaction; sensitivity analysis; sensitivity and specificity; virus detection; virus isolation; animal; feline acquired immunodeficiency syndrome; Feline immunodeficiency virus; isolation and purification; polymerase chain reaction; prospective study; veterinary medicine; virology; Animals; Cats; Feline Acquired Immunodeficiency Syndrome; Immunodeficiency Virus, Feline; Polymerase Chain Reaction; Prospective Studies; Real-Time Polymerase Chain Reaction; Retrospective Studies; RNA, Viral; Sensitivity and Specificity","Hoover, E.A., Mullins, J.I., Feline leukemia virus infection and diseases (1991) J Am Vet Med Assoc, 199, pp. 1287-1297; Torres, A.N., O’Halloran, K.P., Larson, L.J., Development and application of a quantitative real-time PCR assay to detect feline leukemia virus RNA (2008) Vet Immunol Immunopathol, 123, pp. 81-89; Torres, A.N., Mathiason, C.K., Hoover, E.A., Re-examination of feline leukemia virus: host relationships using real-time PCR (2005) Virology, 332, pp. 272-283; Hofmann-Lehmann, R., Cattori, V., Tandon, R., Vaccination against the feline leukaemia virus: outcome and response categories and long-term follow-up (2007) Vaccine, 25, pp. 5239-5531; McClelland, A.J., Hardy, W.D., Zuckerman, E.E., Prognosis of healthy feline leukemia virus infected cats (1980) Feline leukemia virus, pp. 121-126. , Hardy W.D., Essex M., Mcclelland A.J., (eds), New York, Elsevier/North-Holland, In:, (eds); Levy, J.K., Scott, H.M., Lachtara, J.L., Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in North America and risk factors for seropositivity (2006) J Am Vet Med Assoc, 228, pp. 371-376; Little, S., Sears, W., Lachtara, J., Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada (2009) Can Vet J, 50, pp. 644-648; Gleich, S.E., Krieger, S., Hartmann, K., Prevalence of feline immunodeficiency virus and feline leukaemia virus among client-owned cats and risk factors for infection in Germany (2009) J Feline Med Surg, 11, pp. 985-992; Lutz, H., Addie, D., Belak, S., Feline leukaemia. ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 565-574; Levy, J., Crawford, C., Hartmann, K., 2008 American Association of Feline Practitioners’ feline retrovirus management guidelines (2008) J Feline Med Surg, 10, pp. 300-316; Hofmann-Lehmann, R., Huder, J.B., Gruber, S., Feline leukaemia provirus load during the course of experimental infection and in naturally infected cats (2001) J Gen Virol, 82, pp. 1589-1596; Hofmann-Lehmann, R., Cattori, V., Tandon, R., How molecular methods change our views of FeLV infection and vaccination (2008) Vet Immunol Immunopathol, 123, pp. 119-123; Cattori, V., Tandon, R., Pepin, A., Rapid detection of feline leukemia virus provirus integration into feline genomic DNA (2006) Mol Cell Probes, 20, pp. 172-181; Krishnan, M., Ugaz, V.M., Burns, M.A., PCR in a Rayleigh-Benard convection cell (2002) Science, 298, p. 793; Chang, H.F.G., Tsai, Y.L., Tsai, C.F., A thermally baffled device for highly stabilized convective PCR (2012) Biotechnol J, 7, pp. 662-666; Tsai, Y.L., Lin, Y.C., Chou, P.H., Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions (2012) J Virol Methods, 181, pp. 134-137; Tsai, Y.L., Wang, H.T., Chang, H.F., Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection (2012) PLoS One, 7, p. e45278; Wilkes, R.P., Kania, S., Tsai, Y.L., Rapid and sensitive detection of feline immunodeficiency virus using an insulated isothermal polymerase chain reaction-based assay with a point-of-need PCR detection platform (2015) J Vet Diagn Invest, 27, pp. 510-515; Lung, O., Pasick, J., Fisher, M., Insulated isothermal reverse transcriptase PCR (iiRT-PCR) for rapid and sensitive detection of classical swine fever virus (2016) Transbound Emerg Dis, 63, pp. 465-578; Ambagala, A., Pahari, S., Fisher, M., A rapid field-deployable reverse transcription-insulated isothermal polymerase chain reaction assay for sensitive and specific detection of bluetongue virus (2017) Transbound Emerg Dis, 64, pp. 476-486; Wilkes, R.P., Tsai, Y.L., Lee, P.Y., Rapid and sensitive detection of canine distemper virus by one-tube reverse transcription-insulated isothermal polymerase chain reaction (2014) BMC Vet Res, 10, p. 213; Balasuriya, U.B., Lee, P.Y., Tiwari, A., Rapid detection of equine influenza virus H3N8 subtype by insulated isothermal RT-PCR (iiRT-PCR) assay using the POCKIT Nucleic Acid Analyzer (2014) J Virol Methods, 207, pp. 66-72; Wilkes, R.P., Lee, P.Y., Tsai, Y.L., An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need (2015) J Virol Methods, 220, pp. 35-38; Tandon, R., Cattori, V., Gomes-Keller, M.A., Quantitation of feline leukaemia virus viral and proviral loads by TaqMan real-time polymerase chain reaction (2005) J Virol Methods, 130, pp. 124-132; Jarrett, O., Ganiere, J.P., Comparative studies of the efficacy of a recombinant feline leukaemia virus vaccine (1996) Vet Rec, 138, pp. 7-11; Lutz, H., Pedersen, N.C., Durbin, R., Monoclonal antibodies to three epitopic regions of feline leukemia virus p27 and their use in enzyme-linked immunosorbent assay of p27 (1983) J Immunol Methods, 56, pp. 209-220; Pinches, M.D., Helps, C.R., Gruffydd-Jones, T.J., Diagnosis of feline leukaemia virus infection by semi-quantitative real-time polymerase chain reaction (2007) J Feline Med Surg, 9, pp. 8-13; Nesina, S., Katrin Helfer-Hungerbuehler, A., Riond, B., Retroviral DNA–the silent winner: blood transfusion containing latent feline leukemia provirus causes infection and disease in naive recipient cats (2015) Retrovirology, 12, p. 105; Beatty, J.A., Tasker, S., Jarrett, O., Markers of feline leukaemia virus infection or exposure in cats from a region of low seroprevalence (2011) J Feline Med Surg, 13, pp. 927-933; Stutzer, B., Muller, F., Majzoub, M., Role of latent feline leukemia virus infection in nonregenerative cytopenias of cats (2010) J Vet Intern Med, 24, pp. 192-197; Stutzer, B., Simon, K., Lutz, H., Incidence of persistent viraemia and latent feline leukaemia virus infection in cats with lymphoma (2011) J Feline Med Surg, 13, pp. 81-87; Hardy, W.D., Jr., McClelland, A.J., Zuckerman, E.E., Prevention of the contagious spread of feline leukaemia virus and the development of leukaemia in pet cats (1976) Nature, 263, pp. 326-328; Madewell, B.R., Jarrett, O., Recovery of feline leukaemia virus from non-viraemic cats (1983) Vet Rec, 112, pp. 339-342; Helfer-Hungerbuehler, A.K., Widmer, S., Kessler, Y., Long-term follow up of feline leukemia virus infection and characterization of viral RNA loads using molecular methods in tissues of cats with different infection outcomes (2015) Virus Res, 197, pp. 137-150; Hartmann, K., Clinical aspects of feline retroviruses: a review (2012) Viruses, 4, pp. 2684-2710; Hofmann-Lehmann, R., Tandon, R., Boretti, F.S., Reassessment of feline leukaemia virus (FeLV) vaccines with novel sensitive molecular assays (2006) Vaccine, 24, pp. 1087-1094; Lassen, K., Han, Y., Zhou, Y., The multifactorial nature of HIV-1 latency (2004) Trends Mol Med, 10, pp. 525-531","Graham, E.M.25 Moorhouse Street, New Zealand; email: lgraham@anexafvc.co.nz",,"SAGE Publications Ltd",1098612X,,,"28589743","English","J. Feline Med. Surg.",Article,"Final",Open Access,Scopus,2-s2.0-85042536505 "Lora I., Gottardo F., Contiero B., Dall Ava B., Bonfanti L., Stefani A., Barberio A.","56829553600;8625094600;6508201101;57200577963;16244084100;24344993300;8650057800;","Association between passive immunity and health status of dairy calves under 30 days of age",2018,"Preventive Veterinary Medicine","152",,,"12","15",,8,"10.1016/j.prevetmed.2018.01.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041750962&doi=10.1016%2fj.prevetmed.2018.01.009&partnerID=40&md5=4ca6eec3cdb37ce01762dbce015ede25","PhD Course in Animal and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy; Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy; Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, PD 35020, Italy","Lora, I., PhD Course in Animal and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy, Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy; Gottardo, F., Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy; Contiero, B., Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy; Dall Ava, B., Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, PD 35020, Italy; Bonfanti, L., Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, PD 35020, Italy; Stefani, A., Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, PD 35020, Italy; Barberio, A., Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, PD 35020, Italy","Calves are highly susceptible to disease and mortality occurrence within the first month of life. Even if failed transfer of passive immunity (FTPI) is commonly recognized as a main factor affecting calf health and survival, conflicting results are reported in literature about the association between passive immunity (PI) and calf health, especially regarding enteric diseases. Therefore, a prospective cohort study was conducted on 78 calves of three Italian dairy farms during winters of years 2014–2016, with the specific aim of evaluating the association between PI and health status of calves within 30 days of age under field conditions. Blood samples were collected between 1 and 5 days of age from each calf included in the study, and disease and mortality occurrence was monitored throughout the first month of life. Additionally, fecal samples were collected from calves with scours before treatment. Blood serum samples were tested by an electrophoretic method for the assessment of immunoglobulin (Ig) concentration, whereas fecal samples were submitted to ELISA test for positivity to Escherichia coli K99, rotavirus, coronavirus, and Cryptosporidium spp. Only enteric diseases occurred in calves of this study. Calves that suffered from diarrhea or died within the first month of life had lower serum Ig concentrations than those that remained healthy or survived (P <.05). Even if not significantly (P =.127), lower serum Ig concentrations were observed in sick calves that had been treated with antibiotics compared to those that had not been treated. The odds of disease and mortality occurrence were 24 (95% CI = 3–231) and 11 (95% CI = 1–111) times higher, respectively, for calves with FTPI (serum Ig concentration <10.0 g/L) than for those with an adequate PI transfer (P <.05). Calves with adequate PI transfer had also a 6-day delay in the age at first disease onset compared to those with FTPI (P <.01). Even if estimated on a small number of calves, those with FTPI had higher risks of enteric infections by rotavirus (odds ratio = 12; 95% CI = 1–137) and Cryptosporidium spp. (odds ratio = 9; 95% CI = 1–72) (P <.05). In this study, the PI level influenced the occurrence of enteric diseases and mortality in calves under one month of age, confirming the importance of a proper colostrum provision to calf health and, consequently, to the reduction of antimicrobial use in dairy farming. However, further investigations are needed, particularly focusing on the relationship between PI and specific enteropathogen infections in calves. © 2018 Elsevier B.V.","Calf; Diarrhea; Mortality; Passive immunity","antibiotic agent; immunoglobulin; immunoglobulin; antibiotic therapy; Article; blood sampling; bovine viral diarrhea; calf (bovine); cohort analysis; Coronavirinae; cryptosporidiosis; Cryptosporidium; disease severity; enzyme linked immunosorbent assay; Escherichia coli; female; health status; infection risk; intestine infection; male; mortality; nonhuman; passive immunization; priority journal; prospective study; respiratory tract infection; Rotavirus; Rotavirus infection; animal; blood; bovine; cattle disease; Coronavirus infection; dairying; epidemiology; Escherichia coli infection; immunology; isolation and purification; Italy; microbiology; parasitology; prevalence; virology; Animals; Cattle; Cattle Diseases; Coronavirus; Coronavirus Infections; Cryptosporidiosis; Cryptosporidium; Dairying; Escherichia coli; Escherichia coli Infections; Female; Health Status; Immunity, Maternally-Acquired; Immunoglobulins; Italy; Male; Prevalence; Prospective Studies; Rotavirus; Rotavirus Infections","Bartels, C.J.M., Holzhauer, M., Jorritsma, R., Swart, W.A.J.M., Lam, T.J.G.M., Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves (2010) Prev. Vet. Med., 93, pp. 162-169; Berge, A.C.B., Lindeque, P., Moore, D.A., Sischo, W.M., A clinical trial evaluating prophylactic and therapeutic antibiotic use on health and performance of preweaned calves (2005) J. Dairy Sci., 88, pp. 2166-2177; Blom, J.Y., The relationship between serum immunoglobulin values and incidence of respiratory disease and enteritis in calves (1982) Nord. Vet. Med., 34, pp. 276-284; Curtis, C.R., Scarlett, J.M., Erb, H.N., White, M.E., Path model of individual-calf risk factors for calfhood morbidity and mortality in New York Holstein herds (1988) Prev. Vet. Med., 6, pp. 43-62; Daniel, W.W., Biostatistics: a Foundation for Analysis in the Health Sciences (1999), seventh ed. John Wiley & Sons New York; Davidson, J.N., Yancey, S.P., Campbell, S.G., Warner, R.G., Relationship between serum immunoglobulin values and incidence of respiratory disease in calves (1981) J. Am. Vet. Med. Assoc., 179, pp. 708-710; de la Fuente, R., Luzón, M., Ruiz-Santa-Quiteria, J.A., García, A., Cid, D., Orden, J.A., García, S., Gómez-Bautista, M., Cryptosporidium and concurrent infections with other major enterophatogens in 1 to 30-day-old diarrheic dairy calves in central Spain (1999) Vet. Parasitol., 80, pp. 179-185; Donovan, G.A., Dohoo, I.R., Montgomery, D.M., Bennett, F.L., Calf and disease factors affecting growth in female Holstein calves in Florida, USA (1998) Prev. Vet. Med., 33, pp. 1-10; Donovan, G.A., Dohoo, I.R., Montgomery, D.M., Bennett, F.L., Associations between passive immunity and morbidity and mortality in dairy heifers in Florida, USA (1998) Prev. Vet. Med., 34, pp. 31-46; Furman-Fratczak, K., Rzasa, A., Stefaniak, T., The influence of colostral immunoglobulin concentration in heifer calves’ serum on their health and growth (2011) J. Dairy Sci., 94, pp. 5536-5543; Geurden, T., Claerebout, E., Vercruysse, J., Berkvens, D., A Bayesian evaluation of four immunological assays for the diagnosis of clinical cryptosporidiosis in calves (2008) Vet. J., 176, pp. 400-402; Godden, S., Colostrum management for dairy calves (2008) Vet. Clin. North Am. Food Anim. Pract., 24, pp. 19-39; Izzo, M.M., Kirkland, P.D., Mohler, V.L., Perkins, N.R., Gunn, A.A., House, J.K., Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea (2011) Aust. Vet. J., 89, pp. 167-173; Izzo, M.M., Kirkland, P.D., Gu, X., Lele, Y., Gunn, A.A., House, J.K., Comparison of three diagnostic techniques for detection of rotavirus and coronavirus in calf faeces in Australia (2012) Aust. Vet. J., 90, pp. 122-129; Kohara, J., Tsunemitsu, H., Correlation between maternal serum antibodies and protection against bovine rotavirus diarrhea in calves (2000) J. Vet. Med. Sci., 62, pp. 219-221; Lora, I., Barberio, A., Contiero, B., Paparella, P., Bonfanti, L., Brscic, M., Stefani, A.L., Gottardo, F., Factors associated with passive immunity transfer in dairy calves: combined effect of delivery time, amount and quality of the first colostrum meal (2017) Animal, pp. 1-9; Lundborg, G.K., Svensson, E.C., Oltenacu, P.A., Herd-level risk factors for infectious diseases in Swedish dairy calves aged 0–90 days (2005) Prev. Vet. Med., 68, pp. 123-143; Massimini, G., Peli, A., Boari, A., Britti, D., Evaluation of assay procedures for prediction of passive transfer status in lambs (2006) Am. J. Vet. Res., 67, pp. 593-598; Maunsell, F., Donovan, G.A., Biosecurity and risk management for dairy replacements (2008) Vet. Clin. North. Am. Food Anim. Pract., 24, pp. 155-190; McGuire, T.C., Pfeiffer, N.E., Weikel, J.M., Bartsch, R.C., Failure of colostral immunoglobulin transfer in calves dying from infectious disease (1976) J. Am. Vet. Med. Assoc., 169, pp. 713-778; McGuirk, S.M., Disease management of dairy calves and heifers (2008) Vet. Clin. North. Am. Food Anim. Pract., 24, pp. 139-153; Meganck, V., Hoflack, G., Opsomer, G., Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds (2015) Prev. Vet. Med., 118, pp. 64-70; Pfeiffer, N.E., McGuire, T.C., Bendel, R.B., Weikel, J.M., Quantitation of bovine immunoglobulins: comparison of single radial immunodiffusion, zinc sulfate turbidity, serum electrophoresis, and refractometer methods (1977) Am. J. Vet. Res., 38, pp. 693-698; Raboisson, D., Delor, F., Cahuzac, E., Gendre, C., Sans, P., Allaire, G., Perinatal, neonatal, and rearing period mortality of dairy calves and replacement heifers in France (2013) J. Dairy Sci., 96, pp. 2913-2924; Raboisson, D., Trillat, P., Cahuzac, C., Failure of passive immune transfer in calves: a meta-analysis on the consequences and assessment of the economic impact (2016) PLoS One., 11, p. e0150452; Rumbaugh, G.E., Ardans, A.A., Ginno, D., Trommershausen-Smith, A., Measurement of neonatal equine immunoglobulins for assessment of colostral immunoglobulin transfer: comparison of single radial immunodiffusion with the zinc sulfate turbidity test, serum electrophoresis, refractometry for total serum protein, and the sodium sulfite precipitation test (1978) J. Am. Vet. Med. Assoc., 172, pp. 321-325; Sivula, N.J., Ames, T.R., Marsh, W.E., Werdin, R.E., Descriptive epidemiology of morbidity and mortality in Minnesota dairy heifer calves (1996) Prev. Vet. Med., 27, pp. 155-171; Svensson, C., Linder, A., Olsson, S.-O., Mortality in Swedish dairy calves and replacement heifers (2006) J. Dairy Sci., 89, pp. 4769-4777; Trotz-Williams, L.A., Martin, S.W., Leslie, K.E., Duffield, T., Nydam, D.V., Peregrine, A.S., Calf-level risk factors for neonatal diarrhea and shedding of Cryptosporidium parvum in Ontario dairy calves (2007) Prev. Vet. Med., 82, pp. 12-28; van der Fels-Klerx, H.J., Martin, S.W., Nielen, M., Huirne, R.B.M., Effects on productivity and risk factors of bovine respiratory disease in dairy heifers; a review for the Netherlands (2002) Neth. J. Agric. Sci., 50, pp. 27-45; Windeyer, M.C., Leslie, K.E., Godden, S.M., Hodgins, D.C., Lissemore, K.D., LeBlanc, S.J., Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age (2014) Prev. Vet. Med., 113, pp. 231-240","Gottardo, F.; Department of Animal Medicine, Production and Health, University of Padova, Viale dell'Università 16, Italy; email: flaviana.gottardo@unipd.it",,"Elsevier B.V.",01675877,,PVMEE,"29559100","English","Prev. Vet. Med.",Article,"Final",,Scopus,2-s2.0-85041750962 "Al-Tawfiq J.A., Hinedi K.","9436438200;8416140700;","The calm before the storm: clinical observations of Middle East respiratory syndrome (MERS) patients",2018,"Journal of Chemotherapy","30","3",,"179","182",,3,"10.1080/1120009X.2018.1429236","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041327677&doi=10.1080%2f1120009X.2018.1429236&partnerID=40&md5=89821b65a9c4c4eef7ae363ea29f6a4d","Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Hospital Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia","Al-Tawfiq, J.A., Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Hinedi, K., Hospital Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia","Background: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection emerged in 2012. The majority of cases occurred in the Kingdom of Saudi Arabia and the disease carrie. high case fatality rate. Methods: We present three MERS-CoV cases and highlight the salient clinical features and laboratory, and radiographic characteristics. Results: Although all nasopharyngeal samples were negative, MERS CoV infection was confirmed by reverse transcription–polymerase chain reaction of th. gene (UpE) and open reading frame (ORF1b) on sputum samples. The Ct value of the ORF1 gene was 24.8–29.11. One patient had been on immune suppressive agent and two patients had diabetes mellitus. The average length of hospital stay was 10.6 days. Two patients received ribavirin and IFN-a2b in addition to supportive management. The clinical course for these patients started wit. febrile period lasting five days. reduction in fever was coinciding with increased respiratory rate and oxygen requirements. All patients were discharged home. None of the 50 contacts tested positive for MERS-CoV. Conclusion:Resolution of the fever was accompanied by an increase in oxygen requirements and respiratory rate also lasting several days. This was followed by resolution of all symptoms and return to normal. © 2018 Edizioni Scientifiche per l'Informazione su Farmac. Terapia.","Hospital care; MERS-CoV; Middle East Respiratory Syndrome Coronavirus","adalimumab; alpha2b interferon; oxygen; prednisone; ribavirin; antivirus agent; ribavirin; adult; Article; breathing rate; case report; clinical article; community acquired pneumonia; computer assisted tomography; coughing; crackle; diabetes mellitus; dizziness; E gene; fatigue; fever; gene; human; male; middle aged; Middle East respiratory syndrome; nausea; nose smear; open reading frame; ORF1 gene; oxygen saturation; rash; reverse transcription polymerase chain reaction; rheumatoid arthritis; sputum analysis; thorax radiography; throat culture; vomiting; weakness; Coronavirus infection; isolation and purification; Middle East respiratory syndrome coronavirus; prognosis; Saudi Arabia; transmission; virology; Antiviral Agents; Coronavirus Infections; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Prognosis; Ribavirin; Saudi Arabia","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation o. novel coronavirus fro. man with pneumonia in Saudi Arabia (2012) N Eng. Med, 367, pp. 1814-1820; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, WHO, [cited 2017 Apr 30]. Available from; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome-coronavirus (MERS-CoV). case-controlstudy of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia. retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection. single-center experience in Saudi Arabia (2014) In. Infect Dis, 29, pp. 301-306; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia. descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210, pp. 1590-1594; (2015) Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV), , http://apps.who.int/iris/bitstream/10665/176982/1/WHO_MERS_LAB_15.1_eng.pdf?ua=1, [cited 2016 Dec 20]. Available from; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Eng. Med, 368, pp. 2487-2494; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of middle east respiratory syndrome coronavirus infections related t. likely unrecognized asymptomatic or mild case (2013) In. Infect Dis, 17, pp. e668-e672; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia. descriptive genomic study (2014) In. Infect Dis, 23, pp. 63-68; Hall, A.J., Tokars, J.I., Badreddine, S.A., Bin, S.Z., Furukawa, E., Al, M.M., Health care worker contact with MERS patient, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 2148-2151; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Eng. Med, 369, pp. 407-416; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015 (2015) Euro Surveill, 20 (25), pp. 7-13; Al-Tawfiq, J.A., Memish, Z.A., Managing MERS-CoV in the healthcare setting (2015) Hosp Pract, 43, pp. 158-163; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) In. Infect Dis, 20, pp. 42-46; Momattin, H., Mohammed, K., Zumla, A., Memish, Z.A., Al-Tawfiq, J.A., Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)–possible lessons fro. systematic review of SARS-CoV therapy (2013) In. Infect Dis, 17, pp. e792-e798; Al-Tawfiq, J.A., Memish, Z.A., Update on therapeutic options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2017) Expert Rev Anti Infect Ther, 2016, p. 1271712; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection. retrospective cohort study (2014) Lancet Infect Dis, 14, pp. 1090-1095","Al-Tawfiq, J.A.; Dhahran Health Center, Johns Hopkins Aramco Healthcare, P.O. Box 76; Room A-428-2, Building 61, Saudi Arabia; email: jaltawfi@yahoo.com",,"Taylor and Francis Ltd.",1120009X,,JCHEE,"29385908","English","J. Chemother.",Article,"Final",Open Access,Scopus,2-s2.0-85041327677 "Aghazadeh-Attari J., Mohebbi I., Mansorian B., Ahmadzadeh J., Mirza-Aghazadeh-Attari M., Mobaraki K., Oshnouei S.","36643305500;23019266500;57195488324;36573331500;57194018318;55853618500;55504471100;","Epidemiological factors and worldwide pattern of middle east respiratory syndrome coronavirus from 2013 to 2016",2018,"International Journal of General Medicine","11",,,"121","125",,3,"10.2147/IJGM.S160741","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049242424&doi=10.2147%2fIJGM.S160741&partnerID=40&md5=4e8765071132b0fda2979d7c2fdb60ba","Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Social Determinants of Health Research Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran; Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran","Aghazadeh-Attari, J., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Mohebbi, I., Social Determinants of Health Research Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran; Mansorian, B., Social Determinants of Health Research Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran; Ahmadzadeh, J., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Mirza-Aghazadeh-Attari, M., Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Mobaraki, K., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Oshnouei, S., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging threat to global health security with high intensity and lethality. This study was conducted to investigate epidemiological factors and patterns related to this disease. Methods: Full details of MERS-CoV cases available on the disease outbreak news section of the World Health Organization official website from January 2013 to November 2016 were retrieved; demographic and clinical information, global distribution status, potential contacts, and probable risk factors for the mortality of laboratory-confirmed MERS-CoV cases were extracted and analyzed by following standard statistical methods. Results: Details of 1,094 laboratory-confirmed cases were recorded, including 421 related deaths. Significant differences were observed in the presentation of the disease from year to year, and all studied parameters differed during the years under study (all P-values <0.05). Evaluation of the effects of various potential risk factors of the final outcome (dead/survived) revealed that two factors, namely, the morbid case being native and travel history, are significant based on a unifactorial analysis (P <0.05). From 2013 to 2016, these factors remained important. However, factors that were significant in predicting mortality varied in different years. Conclusion: These findings point to interesting potential dimensions in the dynamic of this disease. Furthermore, effective national and international preparedness plans and actions are essential to prevent, control, and predict such viral outbreaks; improve patient management; and ensure global health security. © 2018 Aghazadeh-Attari et al.","Disease outbreaks; Global health; MERS-CoV; Risk factors; World Health Organization","Article; clinical outcome; epidemic; epidemiological data; female; human; infection control; infection prevention; major clinical study; male; Middle East respiratory syndrome; mortality rate; patient care; risk factor; world health organization","Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Habibzadeh, F., Hadj ritual and risk of a pandemic (2014) Am J Infect Control, 42 (1), p. 84; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371 (9), pp. 828-835; Sha, J., Li, Y., Chen, X., Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea (2017) Arch Virol, 162 (1), pp. 33-44; Ryalat, S.T., Sawair, F.A., Shayyab, M.H., Amin, W.M., The knowledge and attitude about HIV/AIDS among Jordanian dental students: (Clinical versus pre clinical students) at the University of Jordan (2011) BMC Res Notes, 4, p. 191; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55; Shehata, M.M., Gomaa, M.R., Ali, M.A., Kayali, G., Middle East respiratory syndrome coronavirus: A comprehensive review (2016) Front Med, 10 (2), pp. 120-136; Vijay, R., Perlman, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr Opin Virol, 16, pp. 70-76; Hunter, J.C., Nguyen, D., Aden, B., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22 (4), pp. 647-656; Park, S.H., Kim, W.J., Yoo, J.H., Choi, J.H., Epidemiologic parameters of the Middle East respiratory syndrome outbreak in Korea, 2015 (2016) Infect Chemother, 48 (2), pp. 108-117; Heydari, A., Heydari, G., Ramazani, A.A., Arefi, A., Poodineh, Z., Abbas Zadeh Bazzi, M., Evaluation the effect of health education on knowledge, attitude and practices of Zabol’s women barbers about AIDS in 2008 (2008) Int J Basic Sci Med, 1 (4), pp. 9-17. , in Persian; Bhatia, P.K., Sethi, P., Gupta, N., Biyani, G., Middle East respiratory syndrome: A new global threat (2016) Indian J Anaesth, 60 (2), pp. 85-88; Malik, A., El Masry, K.M., Ravi, M., Sayed, F., Middle East respiratory syndrome coronavirus during pregnancy, Abu Dhabi, United Arab Emirates, 2013 (2016) Emerg Infect Dis, 22 (3), pp. 515-517; Lessler, J., Salje, H., van Kerkhove, M.D., Estimating the severity and subclinical burden of Middle East respiratory syndrome coronavirus infection in the Kingdom of Saudi Arabia (2016) Am J Epidemiol, 183 (7), pp. 657-663; Perlman, S., McCray, P.B., Jr., Person-to-person spread of the MERS coronavirus—an evolving picture (2013) N Engl J Med, 369 (5), pp. 466-467; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 371 (14), pp. 1359-1360","Mohebbi, I.; Social Determinants of Health Research Center, Occupational Medicine Center, Urmia University of Medical Sciences, Resalat Street, Iran; email: irajmohebbi@umsu.ac.ir",,"Dove Medical Press Ltd.",11787074,,,,"English","Int. J. Gen. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85049242424 "Schmidt M.E., Varga S.M.","57193441527;7102950594;","The CD8 T cell response to respiratory virus infections",2018,"Frontiers in Immunology","9","APR", 678,"","",,20,"10.3389/fimmu.2018.00678","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045261286&doi=10.3389%2ffimmu.2018.00678&partnerID=40&md5=7d36f6ea4355357d7501dc3c1fd46256","Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States","Schmidt, M.E., Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Varga, S.M., Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States, Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States, Department of Pathology, University of Iowa, Iowa City, IA, United States","Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination. © 2018 Schmidt and Varga.","CD8 T cell; Coronavirus; Human metapneumovirus; Influenza A virus; Memory T cell; Respiratory syncytial virus; Respiratory virus; Rhinovirus","CD8+ T lymphocyte; cellular immunity; effector cell; human; immunopathology; immunoregulation; lymphocyte function; nonhuman; Review; secondary infection; viral clearance; viral respiratory tract infection","Lessler, J., Reich, N.G., Brookmeyer, R., Perl, T.M., Nelson, K.E., Cummings, D.A., Incubation periods of acute respiratory viral infections: a systematic review (2009) Lancet Infect Dis, 9 (5), pp. 291-300; Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis (2010) Lancet, 375 (9725), pp. 1545-1555; Hall, C.B., Powell, K.R., MacDonald, N.E., Gala, C.L., Menegus, M.E., Suffin, S.C., Respiratory syncytial viral infection in children with compromised immune function (1986) N Engl J Med, 315 (2), pp. 77-81; Falsey, A.R., Cunningham, C.K., Barker, W.H., Kouides, R.W., Yuen, J.B., Menegus, M., Respiratory syncytial virus and influenza A infections in the hospitalized elderly (1995) J Infect Dis, 172 (2), pp. 389-394; Falsey, A.R., Hennessey, P.A., Formica, M.A., Walsh, E.E., Respiratory syncytial virus infection in elderly and high-risk adults (2005) N Engl J Med, 352 (17), pp. 1749-1759; Jansen, A.G., Sanders, E.A., Hoes, A.W., van Loon, A.M., Hak, E., Influenza-and respiratory syncytial virus-associated mortality and hospitalisations (2007) Eur Respir J, 30 (6), pp. 1158-1166; Reed, G., Jewett, P.H., Thompson, J., Tollefson, S., Wright, P.F., Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children < 5 years old (1997) J Infect Dis, 175 (4), pp. 807-813; Henrickson, K.J., Parainfluenza viruses (2003) Clin Microbiol Rev, 16 (2), pp. 242-264; (2017) Influenza (Seasonal) Fact Sheet (Accessed: December, 2017), , http://www.who.int/mediacentre/factsheets/fs211/en/; Thompson, W.W., Weintraub, E., Dhankhar, P., Cheng, P.Y., Brammer, L., Meltzer, M.I., Estimates of US influenza-associated deaths made using four different methods (2009) Influenza Other Respir Viruses, 3 (1), pp. 37-49; Nair, H., Brooks, W.A., Katz, M., Roca, A., Berkley, J.A., Madhi, S.A., Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis (2011) Lancet, 378 (9807), pp. 1917-1930; Dawood, F.S., Iuliano, A.D., Reed, C., Meltzer, M.I., Shay, D.K., Cheng, P.Y., Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study (2012) Lancet Infect Dis, 12 (9), pp. 687-695; Makela, M.J., Puhakka, T., Ruuskanen, O., Leinonen, M., Saikku, P., Kimpimaki, M., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36 (2), pp. 539-542; Williams, J.V., Harris, P.A., Tollefson, S.J., Halburnt-Rush, L.L., Pingsterhaus, J.M., Edwards, K.M., Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children (2004) N Engl J Med, 350 (5), pp. 443-450; Kuypers, J., Martin, E.T., Heugel, J., Wright, N., Morrow, R., Englund, J.A., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119 (1), pp. e70-e76; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1953-1966; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Glezen, W.P., Taber, L.H., Frank, A.L., Kasel, J.A., Risk of primary infection and reinfection with respiratory syncytial virus (1986) Am J Dis Child, 140 (6), pp. 543-546; Williams, J.V., Wang, C.K., Yang, C.F., Tollefson, S.J., House, F.S., Heck, J.M., The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience (2006) J Infect Dis, 193 (3), pp. 387-395; Zlateva, K.T., de Vries, J.J., Coenjaerts, F.E., van Loon, A.M., Verheij, T., Little, P., Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness (2014) Eur Respir J, 44 (1), pp. 169-177; Butler, W.T., Waldmann, T.A., Rossen, R.D., Douglas, R.G., Jr., Couch, R.B., Changes in IgA and IgG concentrations in nasal secretions prior to the appearance of antibody during viral respiratory infection in man (1970) J Immunol, 105 (3), pp. 584-591; Habibi, M.S., Jozwik, A., Makris, S., Dunning, J., Paras, A., DeVincenzo, J.P., Impaired antibody-mediated protection and defective IgA B-cell memory in experimental infection of adults with respiratory syncytial virus (2015) Am J Respir Crit Care Med, 191 (9), pp. 1040-1049; Chen, W.H., Cross, A.S., Edelman, R., Sztein, M.B., Blackwelder, W.C., Pasetti, M.F., Antibody and Th1-type cell-mediated immune responses in elderly and young adults immunized with the standard or a high dose influenza vaccine (2011) Vaccine, 29 (16), pp. 2865-2873; Taylor, P.M., Askonas, B.A., Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo (1986) Immunology, 58 (3), pp. 417-420; Graham, B.S., Bunton, L.A., Wright, P.F., Karzon, D.T., Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice (1991) J Clin Invest, 88 (3), pp. 1026-1033; Melendi, G.A., Zavala, F., Buchholz, U.J., Boivin, G., Collins, P.L., Kleeberger, S.R., Mapping and characterization of the primary and anamnestic H-2d-restricted cytotoxic T-lymphocyte response in mice against human metapneumovirus (2007) J Virol, 81 (20), pp. 11461-11467; Slutter, B., Pewe, L.L., Kaech, S.M., Harty, J.T., Lung airway-surveilling CXCR3(hi) memory CD8+ T cells are critical for protection against influenza A virus (2013) Immunity, 39 (5), pp. 939-948; Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D.K., Perlman, S., Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection (2014) J Virol, 88 (19), pp. 11034-11044; Schmidt, M.E., Knudson, C.J., Hartwig, S.M., Pewe, L.L., Meyerholz, D.K., Langlois, R.A., Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection (2017) PLoS Pathog, 14 (1); McDermott, D.S., Weiss, K.A., Knudson, C.J., Varga, S.M., Central role of dendritic cells in shaping the adaptive immune response during respiratory syncytial virus infection (2011) Future Virol, 6 (8), pp. 963-973; Kim, T.H., Lee, H.K., Differential roles of lung dendritic cell subsets against respiratory virus infection (2014) Immune Netw, 14 (3), pp. 128-137; Hufford, M.M., Kim, T.S., Sun, J., Braciale, T.J., The effector T cell response to influenza infection (2015) Curr Top Microbiol Immunol, 386, pp. 423-455; Chang, J., Srikiatkhachorn, A., Braciale, T.J., Visualization and characterization of respiratory syncytial virus F-specific CD8(+) T cells during experimental virus infection (2001) J Immunol, 167 (8), pp. 4254-4260; Lukens, M.V., Claassen, E.A., de Graaff, P.M., van Dijk, M.E., Hoogerhout, P., Toebes, M., Characterization of the CD8+ T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice (2006) Virology, 352 (1), pp. 157-168; Ruckwardt, T.J., Bonaparte, K.L., Nason, M.C., Graham, B.S., Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities (2009) J Virol, 83 (7), pp. 3019-3028; Knudson, C.J., Weiss, K.A., Hartwig, S.M., Varga, S.M., The pulmonary localization of virus-specific T lymphocytes is governed by the tissue tropism of infection (2014) J Virol, 88 (16), pp. 9010-9016; Flynn, K.J., Belz, G.T., Altman, J.D., Ahmed, R., Woodland, D.L., Doherty, P.C., Virus-specific CD8+ T cells in primary and secondary influenza pneumonia (1998) Immunity, 8 (6), pp. 683-691; Crowe, S.R., Turner, S.J., Miller, S.C., Roberts, A.D., Rappolo, R.A., Doherty, P.C., Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections (2003) J Exp Med, 198 (3), pp. 399-410; Kolli, D., Bataki, E.L., Spetch, L., Guerrero-Plata, A., Jewell, A.M., Piedra, P.A., T lymphocytes contribute to antiviral immunity and pathogenesis in experimental human metapneumovirus infection (2008) J Virol, 82 (17), pp. 8560-8569; Erickson, J.J., Gilchuk, P., Hastings, A.K., Tollefson, S.J., Johnson, M., Downing, M.B., Viral acute lower respiratory infections impair CD8+ T cells through PD-1 (2012) J Clin Invest, 122 (8), pp. 2967-2982; van Helden, M.J., van Kooten, P.J., Bekker, C.P., Grone, A., Topham, D.J., Easton, A.J., Pre-existing virus-specific CD8+ T-cells provide protection against pneumovirus-induced disease in mice (2012) Vaccine, 30 (45), pp. 6382-6388; Wiley, J.A., Hogan, R.J., Woodland, D.L., Harmsen, A.G., Antigen-specific CD8+ T cells persist in the upper respiratory tract following influenza virus infection (2001) J Immunol, 167 (6), pp. 3293-3299; Heidema, J., Rossen, J.W., Lukens, M.V., Ketel, M.S., Scheltens, E., Kranendonk, M.E., Dynamics of human respiratory virus-specific CD8+ T cell responses in blood and airways during episodes of common cold (2008) J Immunol, 181 (8), pp. 5551-5559; de Bree, G.J., van Leeuwen, E.M., Out, T.A., Jansen, H.M., Jonkers, R.E., van Lier, R.A., Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung (2005) J Exp Med, 202 (10), pp. 1433-1442; Heidema, J., Lukens, M.V., van Maren, W.W., van Dijk, M.E., Otten, H.G., van Vught, A.J., CD8+ T cell responses in bronchoalveolar lavage fluid and peripheral blood mononuclear cells of infants with severe primary respiratory syncytial virus infections (2007) J Immunol, 179 (12), pp. 8410-8417; Hogan, R.J., Usherwood, E.J., Zhong, W., Roberts, A.A., Dutton, R.W., Harmsen, A.G., Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections (2001) J Immunol, 166 (3), pp. 1813-1822; Claassen, E.A., van der Kant, P.A., Rychnavska, Z.S., van Bleek, G.M., Easton, A.J., van der Most, R.G., Activation and inactivation of antiviral CD8 T cell responses during murine pneumovirus infection (2005) J Immunol, 175 (10), pp. 6597-6604; Jozwik, A., Habibi, M.S., Paras, A., Zhu, J., Guvenel, A., Dhariwal, J., RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection (2015) Nat Commun, 6, p. 10224; Sridhar, S., Begom, S., Bermingham, A., Hoschler, K., Adamson, W., Carman, W., Cellular immune correlates of protection against symptomatic pandemic influenza (2013) Nat Med, 19 (10), pp. 1305-1312; Steinke, J.W., Liu, L., Turner, R.B., Braciale, T.J., Borish, L., Immune surveillance by rhinovirus-specific circulating CD4+ and CD8+ T lymphocytes (2015) PLoS One, 10 (1); Savic, M., Dembinski, J.L., Kim, Y., Tunheim, G., Cox, R.J., Oftung, F., Epitope specific T-cell responses against influenza A in a healthy population (2016) Immunology, 147 (2), pp. 165-177; Tzannou, I., Nicholas, S.K., Lulla, P., Aguayo-Hiraldo, P.I., Misra, A., Martinez, C.A., Immunologic profiling of human metapneumovirus for the development of targeted immunotherapy (2017) J Infect Dis, 216 (6), pp. 678-687; Kohlmeier, J.E., Reiley, W.W., Perona-Wright, G., Freeman, M.L., Yager, E.J., Connor, L.M., Inflammatory chemokine receptors regulate CD8+ T cell contraction and memory generation following infection (2011) J Exp Med, 208 (8), pp. 1621-1634; Chen, H., Hou, J., Jiang, X., Ma, S., Meng, M., Wang, B., Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals (2005) J Immunol, 175 (1), pp. 591-598; Herd, K.A., Nissen, M.D., Hopkins, P.M., Sloots, T.P., Tindle, R.W., Major histocompatibility complex class I cytotoxic T lymphocyte immunity to human metapneumovirus (hMPV) in individuals with previous hMPV infection and respiratory disease (2008) J Infect Dis, 197 (4), pp. 584-592; de Bree, G.J., Heidema, J., van Leeuwen, E.M., van Bleek, G.M., Jonkers, R.E., Jansen, H.M., Respiratory syncytial virus-specific CD8+ memory T cell responses in elderly persons (2005) J Infect Dis, 191 (10), pp. 1710-1718; Ely, K.H., Cauley, L.S., Roberts, A.D., Brennan, J.W., Cookenham, T., Woodland, D.L., Nonspecific recruitment of memory CD8+ T cells to the lung airways during respiratory virus infections (2003) J Immunol, 170 (3), pp. 1423-1429; Kohlmeier, J.E., Miller, S.C., Smith, J., Lu, B., Gerard, C., Cookenham, T., The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections (2008) Immunity, 29 (1), pp. 101-113; McMaster, S.R., Wilson, J.J., Wang, H., Kohlmeier, J.E., Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-gamma production (2015) J Immunol, 195 (1), pp. 203-209; Ely, K.H., Roberts, A.D., Woodland, D.L., Cutting edge: effector memory CD8+ T cells in the lung airways retain the potential to mediate recall responses (2003) J Immunol, 171 (7), pp. 3338-3342; Kohlmeier, J.E., Cookenham, T., Roberts, A.D., Miller, S.C., Woodland, D.L., Type I interferons regulate cytolytic activity of memory CD8+ T cells in the lung airways during respiratory virus challenge (2010) Immunity, 33 (1), pp. 96-105; Mahnke, Y.D., Brodie, T.M., Sallusto, F., Roederer, M., Lugli, E., The who's who of T-cell differentiation: human memory T-cell subsets (2013) Eur J Immunol, 43 (11), pp. 2797-2809; Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., Carbone, F.R., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus (2009) Nat Immunol, 10 (5), pp. 524-530; Turner, D.L., Bickham, K.L., Thome, J.J., Kim, C.Y., D'Ovidio, F., Wherry, E.J., Lung niches for the generation and maintenance of tissue-resident memory T cells (2014) Mucosal Immunol, 7 (3), pp. 501-510; Wu, T., Hu, Y., Lee, Y.T., Bouchard, K.R., Benechet, A., Khanna, K., Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection (2014) J Leukoc Biol, 95 (2), pp. 215-224; Takamura, S., Yagi, H., Hakata, Y., Motozono, C., McMaster, S.R., Masumoto, T., Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance (2016) J Exp Med, 213 (13), pp. 3057-3073; Ostler, T., Hussell, T., Surh, C.D., Openshaw, P., Ehl, S., Long-term persistence and reactivation of T cell memory in the lung of mice infected with respiratory syncytial virus (2001) Eur J Immunol, 31 (9), pp. 2574-2582; Hogan, R.J., Cauley, L.S., Ely, K.H., Cookenham, T., Roberts, A.D., Brennan, J.W., Long-term maintenance of virus-specific effector memory CD8+ T cells in the lung airways depends on proliferation (2002) J Immunol, 169 (9), pp. 4976-4981; Ely, K.H., Cookenham, T., Roberts, A.D., Woodland, D.L., Memory T cell populations in the lung airways are maintained by continual recruitment (2006) J Immunol, 176 (1), pp. 537-543; Kohlmeier, J.E., Miller, S.C., Woodland, D.L., Cutting edge: antigen is not required for the activation and maintenance of virus-specific memory CD8+ T cells in the lung airways (2007) J Immunol, 178 (8), pp. 4721-4725; Khanna, K.M., Aguila, C.C., Redman, J.M., Suarez-Ramirez, J.E., Lefrancois, L., Cauley, L.S., In situ imaging reveals different responses by naive and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection (2008) Eur J Immunol, 38 (12), pp. 3304-3315; Hu, Y., Lee, Y.T., Kaech, S.M., Garvy, B., Cauley, L.S., Smad4 promotes differentiation of effector and circulating memory CD8 T cells but is dispensable for tissue-resident memory CD8 T cells (2015) J Immunol, 194 (5), pp. 2407-2414; Lee, Y.T., Suarez-Ramirez, J.E., Wu, T., Redman, J.M., Bouchard, K., Hadley, G.A., Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes (2011) J Virol, 85 (9), pp. 4085-4094; Wakim, L.M., Gupta, N., Mintern, J.D., Villadangos, J.A., Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3 (2013) Nat Immunol, 14 (3), pp. 238-245; Kinnear, E., Lambert, L., McDonald, J.U., Cheeseman, H.M., Caproni, L.J., Tregoning, J.S., Airway T cells protect against RSV infection in the absence of antibody (2017) Mucosal Immunol, 11 (1), pp. 249-256; Zens, K.D., Chen, J.K., Farber, D.L., Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection (2016) JCI Insight, 1 (10); Morabito, K.M., Ruckwardt, T.R., Redwood, A.J., Moin, S.M., Price, D.A., Graham, B.S., Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung (2017) Mucosal Immunol, 10 (2), pp. 545-554; Zens, K.D., Chen, J.K., Guyer, R.S., Wu, F.L., Cvetkovski, F., Miron, M., Reduced generation of lung tissue-resident memory T cells during infancy (2017) J Exp Med, 214 (10), pp. 2915-2932; Slutter, B., Van Braeckel-Budimir, N., Abboud, G., Varga, S.M., Salek-Ardakani, S., Harty, J.T., Dynamics of influenza-induced lung-resident memory T cells underlie waning heterosubtypic immunity (2017) Sci Immunol, 2 (7); Lukacher, A.E., Braciale, V.L., Braciale, T.J., In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific (1984) J Exp Med, 160 (3), pp. 814-826; Cannon, M.J., Openshaw, P.J., Askonas, B.A., Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus (1988) J Exp Med, 168 (3), pp. 1163-1168; Alwan, W.H., Record, F.M., Openshaw, P.J., CD4+ T cells clear virus but augment disease in mice infected with respiratory syncytial virus. Comparison with the effects of CD8+ T cells (1992) Clin Exp Immunol, 88 (3), pp. 527-536; Alwan, W.H., Kozlowska, W.J., Openshaw, P.J., Distinct types of lung disease caused by functional subsets of antiviral T cells (1994) J Exp Med, 179 (1), pp. 81-89; Yap, K.L., Ada, G.L., The recovery of mice from influenza virus infection: adoptive transfer of immunity with immune T lymphocytes (1978) Scand J Immunol, 7 (5), pp. 389-397; Yap, K.L., Ada, G.L., McKenzie, I.F., Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus (1978) Nature, 273 (5659), pp. 238-239; Wells, M.A., Ennis, F.A., Albrecht, P., Recovery from a viral respiratory infection. II. Passive transfer of immune spleen cells to mice with influenza pneumonia (1981) J Immunol, 126 (3), pp. 1042-1046; Cannon, M.J., Stott, E.J., Taylor, G., Askonas, B.A., Clearance of persistent respiratory syncytial virus infections in immunodeficient mice following transfer of primed T cells (1987) Immunology, 62 (1), pp. 133-138; Ostler, T., Davidson, W., Ehl, S., Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma (2002) Eur J Immunol, 32 (8), pp. 2117-2123; Taylor, G., Stott, E.J., Hayle, A.J., Cytotoxic lymphocytes in the lungs of mice infected with respiratory syncytial virus (1985) J Gen Virol, 66, pp. 2533-2538; Fishaut, M., Tubergen, D., McIntosh, K., Cellular response to respiratory viruses with particular reference to children with disorders of cell-mediated immunity (1980) J Pediatr, 96 (2), pp. 179-186; El Saleeby, C.M., Suzich, J., Conley, M.E., DeVincenzo, J.P., Quantitative effects of palivizumab and donor-derived T cells on chronic respiratory syncytial virus infection, lung disease, and fusion glycoprotein amino acid sequences in a patient before and after bone marrow transplantation (2004) Clin Infect Dis, 39 (2), pp. e17-e20; McMichael, A.J., Gotch, F.M., Noble, G.R., Beare, P.A., Cytotoxic T-cell immunity to influenza (1983) N Engl J Med, 309 (1), pp. 13-17; Wang, Z., Wan, Y., Qiu, C., Quinones-Parra, S., Zhu, Z., Loh, L., Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8(+) T cells (2015) Nat Commun, 6, p. 6833; Harty, J.T., Tvinnereim, A.R., White, D.W., CD8+ T cell effector mechanisms in resistance to infection (2000) Annu Rev Immunol, 18, pp. 275-308; Topham, D.J., Tripp, R.A., Doherty, P.C., CD8+ T cells clear influenza virus by perforin or Fas-dependent processes (1997) J Immunol, 159 (11), pp. 5197-5200; Hamada, H., Bassity, E., Flies, A., Strutt, T.M., Garcia-Hernandez Mde, L., McKinstry, K.K., Multiple redundant effector mechanisms of CD8+ T cells protect against influenza infection (2013) J Immunol, 190 (1), pp. 296-306; Ishikawa, E., Nakazawa, M., Yoshinari, M., Minami, M., Role of tumor necrosis factor-related apoptosis-inducing ligand in immune response to influenza virus infection in mice (2005) J Virol, 79 (12), pp. 7658-7663; Brincks, E.L., Katewa, A., Kucaba, T.A., Griffith, T.S., Legge, K.L., CD8 T cells utilize TRAIL to control influenza virus infection (2008) J Immunol, 181 (7), pp. 4918-4925; Aung, S., Rutigliano, J.A., Graham, B.S., Alternative mechanisms of respiratory syncytial virus clearance in perforin knockout mice lead to enhanced disease (2001) J Virol, 75 (20), pp. 9918-9924; Rutigliano, J.A., Graham, B.S., Prolonged production of TNF-alpha exacerbates illness during respiratory syncytial virus infection (2004) J Immunol, 173 (5), pp. 3408-3417; Hussell, T., Pennycook, A., Openshaw, P.J., Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology (2001) Eur J Immunol, 31 (9), pp. 2566-2573; Frey, S., Krempl, C.D., Schmitt-Graff, A., Ehl, S., Role of T cells in virus control and disease after infection with pneumonia virus of mice (2008) J Virol, 82 (23), pp. 11619-11627; Wiley, J.A., Cerwenka, A., Harkema, J.R., Dutton, R.W., Harmsen, A.G., Production of interferon-gamma by influenza hemagglutinin-specific CD8 effector T cells influences the development of pulmonary immunopathology (2001) Am J Pathol, 158 (1), pp. 119-130; Durbin, J.E., Johnson, T.R., Durbin, R.K., Mertz, S.E., Morotti, R.A., Peebles, R.S., The role of IFN in respiratory syncytial virus pathogenesis (2002) J Immunol, 168 (6), pp. 2944-2952; Lee, J.Y., Chang, J., Recombinant baculovirus-based vaccine expressing M2 protein induces protective CD8+ T-cell immunity against respiratory syncytial virus infection (2017) J Microbiol, 55 (11), pp. 900-908; Wen, S.C., Schuster, J.E., Gilchuk, P., Boyd, K.L., Joyce, S., Williams, J.V., Lung CD8+ T cell impairment occurs during human metapneumovirus infection despite virus-like particle induction of functional CD8+ T cells (2015) J Virol, 89 (17), pp. 8713-8726; Herd, K.A., Mahalingam, S., Mackay, I.M., Nissen, M., Sloots, T.P., Tindle, R.W., Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice (2006) J Virol, 80 (4), pp. 2034-2044; Lee, S., Stokes, K.L., Currier, M.G., Sakamoto, K., Lukacs, N.W., Celis, E., Vaccine-elicited CD8+ T cells protect against respiratory syncytial virus strain A2-line19F-induced pathogenesis in BALB/c mice (2012) J Virol, 86 (23), pp. 13016-13024; Schulman, J.L., Kilbourne, E.D., Induction of partial specific heterotypic immunity in mice by a single infection with influenza a virus (1965) J Bacteriol, 89, pp. 170-174; Liang, S., Mozdzanowska, K., Palladino, G., Gerhard, W., Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity (1994) J Immunol, 152 (4), pp. 1653-1661; Christensen, J.P., Doherty, P.C., Branum, K.C., Riberdy, J.M., Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8+ T-cell memory (2000) J Virol, 74 (24), pp. 11690-11696; Seo, S.H., Peiris, M., Webster, R.G., Protective cross-reactive cellular immunity to lethal A/Goose/Guangdong/1/96-like H5N1 influenza virus is correlated with the proportion of pulmonary CD8+ T cells expressing gamma interferon (2002) J Virol, 76 (10), pp. 4886-4890; Weinfurter, J.T., Brunner, K., Capuano, S.V., III, Li, C., Broman, K.W., Kawaoka, Y., Cross-reactive T cells are involved in rapid clearance of 2009 pandemic H1N1 influenza virus in nonhuman primates (2011) PLoS Pathog, 7 (11); Hayward, A.C., Wang, L., Goonetilleke, N., Fragaszy, E.B., Bermingham, A., Copas, A., Natural T cell-mediated protection against seasonal and pandemic influenza. Results of the flu watch cohort study (2015) Am J Respir Crit Care Med, 191 (12), pp. 1422-1431; Bont, L., Versteegh, J., Swelsen, W.T., Heijnen, C.J., Kavelaars, A., Brus, F., Natural reinfection with respiratory syncytial virus does not boost virus-specific T-cell immunity (2002) Pediatr Res, 52 (3), pp. 363-367; Bender, B.S., Croghan, T., Zhang, L., Small, P.A., Jr., Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge (1992) J Exp Med, 175 (4), pp. 1143-1145; Tregoning, J.S., Pribul, P.K., Pennycook, A.M., Hussell, T., Wang, B., Lukacs, N., The chemokine MIP1alpha/CCL3 determines pathology in primary RSV infection by regulating the balance of T cell populations in the murine lung (2010) PLoS One, 5 (2); Walsh, K.B., Teijaro, J.R., Brock, L.G., Fremgen, D.M., Collins, P.L., Rosen, H., Animal model of respiratory syncytial virus: CD8+ T cells cause a cytokine storm that is chemically tractable by sphingosine-1-phosphate 1 receptor agonist therapy (2014) J Virol, 88 (11), pp. 6281-6293; Bem, R.A., Bos, A.P., Bots, M., Wolbink, A.M., van Ham, S.M., Medema, J.P., Activation of the granzyme pathway in children with severe respiratory syncytial virus infection (2008) Pediatr Res, 63 (6), pp. 650-655; Welliver, T.P., Garofalo, R.P., Hosakote, Y., Hintz, K.H., Avendano, L., Sanchez, K., Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses (2007) J Infect Dis, 195 (8), pp. 1126-1136; Welliver, T.P., Reed, J.L., Welliver Sr., R.C., Respiratory syncytial virus and influenza virus infections: observations from tissues of fatal infant cases (2008) Pediatr Infect Dis J, 27 (10), pp. S92-S96; Mejias, A., Dimo, B., Suarez, N.M., Garcia, C., Suarez-Arrabal, M.C., Jartti, T., Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection (2013) PLoS Med, 10 (11); Chang, J., Braciale, T.J., Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract (2002) Nat Med, 8 (1), pp. 54-60; Vallbracht, S., Unsold, H., Ehl, S., Functional impairment of cytotoxic T cells in the lung airways following respiratory virus infections (2006) Eur J Immunol, 36 (6), pp. 1434-1442; DiNapoli, J.M., Murphy, B.R., Collins, P.L., Bukreyev, A., Impairment of the CD8+ T cell response in lungs following infection with human respiratory syncytial virus is specific to the anatomical site rather than the virus, antigen, or route of infection (2008) Virol J, 5, p. 105; Fulton, R.B., Olson, M.R., Varga, S.M., Regulation of cytokine production by virus-specific CD8 T cells in the lungs (2008) J Virol, 82 (16), pp. 7799-7811; Fulton, R.B., Meyerholz, D.K., Varga, S.M., Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection (2010) J Immunol, 185 (4), pp. 2382-2392; Betts, R.J., Prabhu, N., Ho, A.W., Lew, F.C., Hutchinson, P.E., Rotzschke, O., Influenza A virus infection results in a robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response (2012) J Virol, 86 (5), pp. 2817-2825; Brincks, E.L., Roberts, A.D., Cookenham, T., Sell, S., Kohlmeier, J.E., Blackman, M.A., Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection (2013) J Immunol, 190 (7), pp. 3438-3446; Liu, J., Ruckwardt, T.J., Chen, M., Nicewonger, J.D., Johnson, T.R., Graham, B.S., Epitope-specific regulatory CD4 T cells reduce virus-induced illness while preserving CD8 T-cell effector function at the site of infection (2010) J Virol, 84 (20), pp. 10501-10509; Sun, J., Madan, R., Karp, C.L., Braciale, T.J., Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10 (2009) Nat Med, 15 (3), pp. 277-284; Weiss, K.A., Christiaansen, A.F., Fulton, R.B., Meyerholz, D.K., Varga, S.M., Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection (2011) J Immunol, 187 (6), pp. 3145-3154; Loebbermann, J., Schnoeller, C., Thornton, H., Durant, L., Sweeney, N.P., Schuijs, M., IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice (2012) PLoS One, 7 (2); Zou, Q., Wu, B., Xue, J., Fan, X., Feng, C., Geng, S., CD8+ Treg cells suppress CD8+ T cell-responses by IL-10-dependent mechanism during H5N1 influenza virus infection (2014) Eur J Immunol, 44 (1), pp. 103-114; McNally, B., Ye, F., Willette, M., Flano, E., Local blockade of epithelial PDL-1 in the airways enhances T cell function and viral clearance during influenza virus infection (2013) J Virol, 87 (23), pp. 12916-12924; Yao, S., Jiang, L., Moser, E.K., Jewett, L.B., Wright, J., Du, J., Control of pathogenic effector T-cell activities in situ by PD-L1 expression on respiratory inflammatory dendritic cells during respiratory syncytial virus infection (2015) Mucosal Immunol, 8 (4), pp. 746-759; Erickson, J.J., Rogers, M.C., Hastings, A.K., Tollefson, S.J., Williams, J.V., Programmed death-1 impairs secondary effector lung CD8+ T cells during respiratory virus reinfection (2014) J Immunol, 193 (10), pp. 5108-5117; Telcian, A.G., Laza-Stanca, V., Edwards, M.R., Harker, J.A., Wang, H., Bartlett, N.W., RSV-induced bronchial epithelial cell PD-L1 expression inhibits CD8+ T cell nonspecific antiviral activity (2011) J Infect Dis, 203 (1), pp. 85-94; Erickson, J.J., Rogers, M.C., Tollefson, S.J., Boyd, K.L., Williams, J.V., Multiple inhibitory pathways contribute to lung CD8+ T cell impairment and protect against immunopathology during acute viral respiratory infection (2016) J Immunol, 197 (1), pp. 233-243; Sharma, S., Sundararajan, A., Suryawanshi, A., Kumar, N., Veiga-Parga, T., Kuchroo, V.K., T cell immunoglobulin and mucin protein-3 (tim-3)/galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses (2011) Proc Natl Acad Sci U S A, 108 (47), pp. 19001-19006","Varga, S.M.; Interdisciplinary Graduate Program in Immunology, University of IowaUnited States; email: steven-varga@uiowa.edu",,"Frontiers Media S.A.",16643224,,,,"English","Front. Immunol.",Review,"Final",Open Access,Scopus,2-s2.0-85045261286 "Afelt A., Frutos R., Devaux C.","6505915775;7003578491;9941051300;","Bats, coronaviruses, and deforestation: Toward the emergence of novel infectious diseases?",2018,"Frontiers in Microbiology","9","APR", 702,"","",,3,"10.3389/fmicb.2018.00702","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045290031&doi=10.3389%2ffmicb.2018.00702&partnerID=40&md5=2d89f0fe5b520cc5f5b3f277e1a3d350","Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland; IES, Univ. Montpellier, CNRS, Montpellier, France; Cirad, UMR 17, Intertryp, Montpellier, France; Aix Marseille Université, Centre National de la Recherche Scientifique, IRD, Institut National de la Sante et de la Recherche Medicale, AP-HM, URMITE, IHU-Mediterranee Infection, Marseille, France","Afelt, A., Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland; Frutos, R., IES, Univ. Montpellier, CNRS, Montpellier, France, Cirad, UMR 17, Intertryp, Montpellier, France; Devaux, C., Aix Marseille Université, Centre National de la Recherche Scientifique, IRD, Institut National de la Sante et de la Recherche Medicale, AP-HM, URMITE, IHU-Mediterranee Infection, Marseille, France",[No abstract available],"Anthropization; Bat; Coronavirus; Deforestation; Emergence; Mosaic landscape; Novel contacts","animal disease; Arbovirus; bat; biodiversity; bioinformatics; common cold; Coronavirinae; deforestation; demography; diarrhea; disease re-emergence; disease surveillance; disease transmission; environmental change; farming system; human; infection; nonhuman; Note; probability; respiratory tract infection","Afelt, A., Lacroix, A., Zawadzka-Pawlewska, U., Pokojski, W., Buchy, P., Frutos, R., Distribution of bat-borne viruses and environment patterns (2018) Infect. Genet. Evol, 58, pp. 181-191; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Global patterns in coronavirus diversity (2017) Virus Evol, 3; Ashwell, D., Walston, N., (2008) An Overview of the Use and Trade of Plants and Animals in Traditional Medicine System in Cambodia, , TRAFFIC Southeast Asia Gt. Mekong Programme Ha Noi; Berto, A., Anh, P.H., Carrique-Mas, J.J., Simmonds, P., Van Cuong, N., Tue, N.T., Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region od southern Viet Nam (2017) Zoonoses Public Health, 65, pp. 30-42; Brook, C.E., Dobson, A.P., Bats as 'special' reservoirs for emerging zoonotic pathogens (2015) Trends Microbiol, 23, pp. 172-180; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev, 19, pp. 531-545; Chadha, M.S., James, A.C., Lowe, L., Rota, P.A., Rollin, P.E., Bellini, W.J., Nipah virus-associated encephalitis outbreak, Siliguri, India (2006) Emerg. Infect. Dis, 12, pp. 235-240; Chan, J.F.-W., To, K.K.-W., Tse, H., Jin, D.-Y., Yuen, K.-Y., Interspecies transmission and emergence of novel viruses: lesson from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Chen, L., Liu, B., Yang, J., Jin, Q., DBatVir: the database of bat-associated viruses (2014) Database, 2014; Chhay, S., (2012) Cambodian Bat Farms: A Review of Farming Practices and Economic Value of Lesser Asiatic Yellow House Bat, Scotophilus kuhlii (Leach, 1821), in Kandal and Takeo Provinces, Cambodia, , Student master defense; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Link of a ubiquitous human coronavirus to dromedary camel (2016) Proc. Natl. Acad. Sci. U.S.A, 113, pp. 9864-9869; Devaux, C.A., Emerging and re-emerging viruses: a global challenge illustrated by Chikungunya virus outbreaks (2012) World J. Virol, 1, pp. 11-22; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances (2017) F1000Res, 6, p. 1628; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol, 11, pp. 836-848; Halpin, K., Young, P.L., Filed, H.E., Mackenzie, J.S., Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus (2000) J. Gen. Virol, 81, pp. 1927-1932; Han, H.J., Wen, H.L., Zhou, C.M., Chen, F.F., Luo, L.M., Liu, J.W., Bats as reservoirs of severe emerging infectious diseases (2015) Virus Res, 205, pp. 1-6; Hanna, J.N., Carney, I.K., Smith, G.A., Tannenberg, A.E., Deverill, J.E., Botha, J.A., Australian bat lyssavirus infection: a second human case, with a long incubation period (2000) Med. J. Aust, 172, pp. 597-599; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Evidence supporting a zoonotic origin of human Coronavirus strain NL63 (2012) J. Virol, 86, pp. 12816-12825; Ito, F., Bernard, E., Torres, R.A., What is for Dinner? First report of human blood in the diet of the hairy-legged vampire bat Diphylla ecaudata (2016) Acta Chiropterol, 18, pp. 509-515; Kalka, M.B., Smith, A.R., Kalko, E.K., Bats limit arthropods and herbivory in a tropical forest (2008) Science, 320, pp. 71-71; Kelm, D.H., Wiesner, K.R., von Helversen, O., Effect of artificial roosts for Frugivorous bats on seed dispersal in a Neotropical forest pasture mosaic (2008) Conserv. Biol, 22, pp. 733-741; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Genetic diversity of coronavirus in bats in Lao PDR and Cambodia (2017) Infect. Genet. Evol, 48, pp. 10-18; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Diversity of bat astroviruses in Lao PDR and Cambodia (2017) Infect. Genet. Evol, 47, pp. 41-50; Leelapaibul, W., Bumrungsri, S., Pattanawiboon, A., Diet of wrinckle-lipped free-tail bat (Tadarida plicata Buchannan, 1800) in central Thailand: insectivorous bats potentially act as biological pest control agents (2005) Acta Chiropterol, 7, pp. 111-119; Lin, X.D., Wang, W., Hao, Z.Y., Wang, Z.X., Guo, W.P., Guan, X.Q., Extensive diversity of coronavirus in bats from China (2017) Virology, 507, pp. 1-10; McDonald, L.C., Simor, A.E., Su, I.J., Maloney, S., Ofner, M., Chen, K.T., SARS in healthcare facilities, Toronto and Taiwan (2004) Emerg. Infect. Dis, 10, pp. 777-781; Mildenstein, T., Tanshi, I., Racey, P.A., 'Bats in the Anthropocene: conservation of bats in a changing world,' (2016) Exploitation of Bats for Bushmeat and Medicine, pp. 325-375. , eds C. C. Voigt and T. Kingston (Cham; Heidelberg; New York, NY; Dordrecht; London: Springer International Publishing); Omatsu, T., Watanabe, S., Akashi, H., Yoshikawa, Y., Biological characters of bats in relation to natural reservoir of emerging viruses (2007) Comp. Immunol. Microbiol. Infect. Dis, 30, pp. 357-374; Paweska, J.T., Blumberg, L.H., Liebenberg, C., Hewlett, R.H., Grobbelaar, A.A., Leman, P.A., Fatal human infection with rabies-related duvenhage virus, South Africa (2006) Emerg. Infect. Dis, 12, pp. 1965-1967; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Distant relatives of Severe Acute Respiratory Syndrome Coronavirus and close relatives of human Coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis, 15, pp. 1377-1384; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Ecological dynamics of emerging bat virus spillover (2015) Proc Biol Sci, 282; Reuter, K.E., Wills, A.R., Lee, R.W., Cordes, E.E., Sewall, B.J., Using stable isotopes to infer the impacts of habitat change on the diets and vertical stratification of frugivorous bats in Madagascar (2016) PLoS ONE, 11; Saif, L.J., Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? (2014) Rev. Sci. Tech, 23, pp. 643-660; Smith, I., Wang, L.F., Bats and their virome: an important source of emerging viruses capable of infecting humans (2013) Curr. Opin. Virol, 3, pp. 84-91; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci. U.S.A, 102, pp. 2430-2435; Storm, N., Van Vuren, P.J., Markotter, W., Paweska, J.T., Antibody responses to marburg virus in Egyptian rousette bats and their role in protection against infection (2018) Viruses, 10, p. 73; Thi, S., Furey, N.M., Jurgens, J.A., Effect of bat guano on the growth of five economically important plant species (2014) J. Trop. Agric, 52, pp. 169-173; Tignor, G.H., Murphy, F.A., Clark, H.F., Shope, R.E., Madore, P., Bauer, S.P., Duvenhage virus: morphological, biochemical, histopathological and antigenic relationships to the rabies serogroup (1977) J. Gen. Virol, 37, pp. 595-611; Walker, S., Some Informal Correspondence on Local People's Medicinal Uses of Fruit Bats (2005) Bat Net News Chiropt Conserv Inf Netw South Asia, 6, p. 6; Walsh, M.G., Wiethoelter, A., Haseeb, M.A., The impact of human population pressure on flying fox niches and the potential consequences for Hendra virus spillover (2017) Sci. Rep, 7, p. 8226; Weatherman, S., Feldmann, H., de Wit, E., Transmission of henipaviruses (2017) Curr. Opin. Virol, 28, pp. 7-11; Whittnaker, R.J., Bush, M.B., Partomihardio, T., Asquith, N.M., Richards, K., Ecological aspects of plant colonization of the Krakatau Islands (1992) GeoJournal, 28, pp. 201-211; Zheng, B.J., Guan, Y., Wong, K.H., Zhou, J., Wong, K.L., Young, B.W., SARS-related virus predating SARS outbreak, Hong Kong (2004) Emerg. Inf. Dis, 10, pp. 176-178; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov, 15, pp. 327-347","Afelt, A.; Interdisciplinary Center for Mathematical and Computational Modelling, University of WarsawPoland; email: akafelt@uw.edu.pl",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Note,"Final",Open Access,Scopus,2-s2.0-85045290031 "Heilmann R.M., Grellet A., Grützner N., Cranford S.M., Suchodolski J.S., Chastant-Maillard S., Steiner J.M.","24478446500;24338149600;35573094500;55440232700;56705769700;6701803799;7201651899;","Effect of selected gastrointestinal parasites and viral agents on fecal S100A12 concentrations in puppies as a potential comparative model",2018,"Parasites and Vectors","11","1", 252,"","",,,"10.1186/s13071-018-2841-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045543450&doi=10.1186%2fs13071-018-2841-5&partnerID=40&md5=79d4c645f22b627f0b3c8822611a85e0","Small Animal Clinic, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 23, Leipzig, DE-04103, Germany; Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas AandM University, 465 Raymond Stotzer Pkwy, College Station, TX 77843-4474, United States; NeoCare, IHAP, University of Toulouse, INRA, ENVT, BP 87614 23 chemin des Capelles, Toulouse Cedex 03, 31076, France; Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Theodor-Lieser St 11, Halle (Saale), DE-06120, Germany","Heilmann, R.M., Small Animal Clinic, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 23, Leipzig, DE-04103, Germany, Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas AandM University, 465 Raymond Stotzer Pkwy, College Station, TX 77843-4474, United States; Grellet, A., NeoCare, IHAP, University of Toulouse, INRA, ENVT, BP 87614 23 chemin des Capelles, Toulouse Cedex 03, 31076, France; Grützner, N., Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas AandM University, 465 Raymond Stotzer Pkwy, College Station, TX 77843-4474, United States, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Theodor-Lieser St 11, Halle (Saale), DE-06120, Germany; Cranford, S.M., Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas AandM University, 465 Raymond Stotzer Pkwy, College Station, TX 77843-4474, United States; Suchodolski, J.S., Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas AandM University, 465 Raymond Stotzer Pkwy, College Station, TX 77843-4474, United States; Chastant-Maillard, S., NeoCare, IHAP, University of Toulouse, INRA, ENVT, BP 87614 23 chemin des Capelles, Toulouse Cedex 03, 31076, France; Steiner, J.M., Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas AandM University, 465 Raymond Stotzer Pkwy, College Station, TX 77843-4474, United States","Background: Previous data suggest that fecal S100A12 has clinical utility as a biomarker of chronic gastrointestinal inflammation (idiopathic inflammatory bowel disease) in both people and dogs, but the effect of gastrointestinal pathogens on fecal S100A12 concentrations is largely unknown. The role of S100A12 in parasite and viral infections is also difficult to study in traditional animal models due to the lack of S100A12 expression in rodents. Thus, the aim of this study was to evaluate fecal S100A12 concentrations in a cohort of puppies with intestinal parasites (Cystoisospora spp., Toxocara canis, Giardia sp.) and viral agents that are frequently encountered and known to cause gastrointestinal signs in dogs (coronavirus, parvovirus) as a comparative model. Methods: Spot fecal samples were collected from 307 puppies [median age (range): 7 (4-13) weeks; 29 different breeds] in French breeding kennels, and fecal scores (semiquantitative system; scores 1-13) were assigned. Fecal samples were tested for Cystoisospora spp. (C. canis and C. ohioensis), Toxocara canis, Giardia sp., as well as canine coronavirus (CCV) and parvovirus (CPV). S100A12 concentrations were measured in all fecal samples using an in-house radioimmunoassay. Statistical analyses were performed using non-parametric 2-group or multiple-group comparisons, non-parametric correlation analysis, association testing between nominal variables, and construction of a multivariate mixed model. Results: Fecal S100A12 concentrations ranged from < 24-14,363 ng/g. Univariate analysis only showed increased fecal S100A12 concentrations in dogs shedding Cystoisospora spp. (P = 0.0384) and in dogs infected with parvovirus (P = 0.0277), whereas dogs infected with coronavirus had decreased fecal S100A12 concentrations (P = 0.0345). However, shedding of any single enteropathogen did not affect fecal S100A12 concentrations in multivariate analysis (all P > 0.05) in this study. Only fecal score and breed size had an effect on fecal S100A12 concentrations in multivariate analysis (P < 0.0001). Conclusions: An infection with any single enteropathogen tested in this study is unlikely to alter fecal S100A12 concentrations, and these preliminary data are important for further studies evaluating fecal S100A12 concentrations in dogs or when using fecal S100A12 concentrations as a biomarker in patients with chronic idiopathic gastrointestinal inflammation. © 2018 The Author(s).","Biomarker; Calgranulin C; Canine; Diarrhea; Enteropathogen; Parasite; Virus","calgranulin C; biological marker; calgranulin C; adult; Article; Canine coronavirus; Canine parvovirus; chronic inflammation; cohort analysis; comparative study; digestive system inflammation; dog breed; enteropathogen; feces analysis; female; giardiasis; human; idiopathic disease; intestine parasite; isosporiasis; major clinical study; male; nonhuman; puppy; radioimmunoassay; toxocariasis; virus infection; animal; chemistry; Coronavirinae; dog; dog disease; feces; gastroenteritis; Giardia; intestine infection; isolation and purification; Isospora; parasitology; Parvoviridae; pathology; Toxocara; veterinary medicine; virology; Animals; Biomarkers; Coronavirus; Dog Diseases; Dogs; Feces; Gastroenteritis; Giardia; Intestinal Diseases, Parasitic; Isospora; Parvovirus; S100A12 Protein; Toxocara; Virus Diseases","Ilg, E.C., Troxler, H., Bürgisser, D.M., Kuster, T., Markert, M., Guignard, F., Amino acid sequence determination of human S100A12 (p6, calgranulin C, CGRP, CAAF1) by tandem mass spectrometry (1996) Biochem Biophys Res Commun, 225, pp. 146-150. , 1:CAS:528:DyaK28XlslaqurY%3D 8769108; Heizmann, C.W., The multifunctional S100 protein family (2002) Methods Mol Biol, 172, pp. 69-80. , 1:CAS:528:DC%2BD38XmvFWksg%3D%3D 11833360; Moroz, O.V., Antson, A.A., Grist, S.J., Maitland, N.J., Dodson, G.G., Wilson, K.S., Structure of the human S100A12-copper complex: Implications for host-parasite defence (2003) Acta Crystallogr D Biol Crystallogr, 59, pp. 859-867. , 1:STN:280:DC%2BD3s3ltlKitA%3D%3D 12777802; Xie, J., Burz, D.S., He, W., Bronstein, I.B., Lednev, I., Shekhtman, A., Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycation end products (RAGE) using symmetric hydrophobic target-binding patches (2007) J Biol Chem, 282, pp. 4218-4231. , 1:CAS:528:DC%2BD2sXht1OjtLk%3D 17158877; Moroz, O.V., Burkitt, W., Wittkowski, H., He, W., Ianoul, A., Novitskaya, V., Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function (2009) BMC Biochem, 10, p. 11. , 19386136 2686732; Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides (1999) Cell, 97, pp. 889-901. , 1:CAS:528:DyaK1MXktlCltrc%3D 10399917; Hatakeyama, T., Okada, M., Shimamoto, S., Kubota, Y., Kobayashi, R., Identification of intracellular target proteins of the calcium-signaling protein S100A12 (2004) Eur J Biochem, 271, pp. 3765-3775. , 1:CAS:528:DC%2BD2cXnvVWmsL4%3D 15355353; Pietzsch, J., Hoppmann, S., Human S100A12: A novel key player in inflammation? (2008) Amino Acids, 36, pp. 381-389. , 18443896; Foell, D., Wittkowski, H., Vogl, T., Roth, J., S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules (2007) J Leukoc Biol, 81, pp. 28-37. , 1:CAS:528:DC%2BD2sXktVaisQ%3D%3D 16943388; Gottsch, J.D., Eisinger, S.W., Liu, S.H., Scott, A.L., Calgranulin, C., Has filaricidal and filariastatic activity (1999) Infect Immun, 67, pp. 6631-6636. , 1:CAS:528:DyaK1MXns1yks7k%3D 10569784 97076; Miranda, L.P., Tao, T., Jones, A., Chernushevich, I., Standing, K.G., Geczy, C.L., Total chemical synthesis and chemotactic activity of human S100A12 (EN-RAGE) (2001) FEBS Lett, 488, pp. 85-90. , 1:CAS:528:DC%2BD3MXksVehsQ%3D%3D 11163801; Yang, Z., Tao, T., Raftery, M.J., Youssef, P., Di Girolamo, N., Geczy, C.L., Proinflammatory properties of the human S100 protein S100A12 (2001) J Leukoc Biol, 69, pp. 986-994; Hsu, K., Champaiboon, C., Guenther, B.D., Sorenson, B.S., Khammanivong, A., Ross, K.F., Anti-infective protective properties of S100 calgranulins (2009) Antiinflamm Antiallerg Agents Med Chem, 8, pp. 290-305. , 1:CAS:528:DC%2BD1MXhsFCitrnO; Gebhardt, C., Riehl, A., Durchdewald, M., Németh, J., Fürstenberger, G., Müller-Decker, K., RAGE signaling sustains inflammation and promotes tumor development (2008) J Exp Med, 205, pp. 275-285. , 1:CAS:528:DC%2BD1cXisVeht7w%3D 18208974 2271015; Bierhaus, A., Humpert, P.M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Understanding RAGE, the receptor for advanced glycation end products (2005) J Mol Med, 83, pp. 876-886. , 1:CAS:528:DC%2BD2MXht1SksbjP 16133426; Foell, D., Wittkowski, H., Roth, J., Monitoring disease activity by stool analyses: From occult blood to molecular markers of intestinal inflammation and damage (2009) Gut, 58, pp. 859-868. , 1:CAS:528:DC%2BD1MXmvFant7k%3D 19136508; Kaiser, T., Langhorst, J., Wittkowski, H., Becker, K., Friedrich, A.W., Rueffer, A., Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome (2007) Gut, 56, pp. 1706-1713. , 1:CAS:528:DC%2BD1cXmsFKlsg%3D%3D 17675327 2095695; Heilmann, R.M., Grellet, A., Allenspach, K., Lecoindre, P., Day, M.J., Priestnall, S.L., Association between fecal S100A12 concentration and histologic, endoscopic, and clinical disease severity in dogs with idiopathic inflammatory bowel disease (2014) Vet Immunol Immunopathol, 158, pp. 156-166. , 1:CAS:528:DC%2BC2cXisFejt7g%3D 24518653; Heilmann, R.M., Volkmann, M., Otoni, C.C., Grützner, N., Kohn, B., Jergens, A.E., Fecal S100A12 concentration predicts a lack of response to treatment in dogs affected with chronic enteropathy (2016) Vet J, 215, pp. 96-100. , 1:CAS:528:DC%2BC28XktVOntrc%3D 27017054; Garzón, M., Pereira-Da-Silva, L., Seixas, J., Papoila, A.L., Alves, M., Ferreira, F., Association of enteric parasitic infection and permeability in asymptomatic infants of São Tomé Island (2017) Pathog Glob Health, 111, pp. 116-127. , 28279129; Fuellen, G., Nacken, W., Sorg, C., Kerkhoff, C., Computational searches for missing orthologs: The case of S100A12 in mice (2004) OMICS, 8, pp. 334-340. , 1:CAS:528:DC%2BD2MXhs1WgsLo%3D 15703480; Heilmann, R.M., Suchodolski, J.S., Steiner, J.M., Purification and partial characterization of canine S100A12 (2010) Biochimie, 92, pp. 1914-1922. , 1:CAS:528:DC%2BC3cXhsFantbjF 20727380; Fraser, C.G., Generation, H.E.K., Application of data on biological variation in clinical chemistry (1989) Crit Rev Clin Lab Sci, 27, pp. 409-437. , 1:CAS:528:DyaK3cXhvVensQ%3D%3D 2679660; Grellet, A., Heilmann, R.M., Polack, B., Feugier, A., Boucraut-Baralon, C., Grandjean, D., Influence of breed size, age, fecal quality, and enteropathogen shedding on fecal calprotectin and immunoglobulin A concentrations in puppies during the weaning period (2016) J Vet Intern Med, 30, pp. 1056-1064. , 1:STN:280:DC%2BC2s%2Fns1yqtQ%3D%3D 27279352 5089601; Grellet, A., Feugier, A., Chastant-Maillard, S., Carrez, B., Boucraut-Baralon, C., Casseleux, G., Validation of a fecal scoring scale in puppies during the weaning period (2012) Prev Vet Med, 106, pp. 315-323. , 22520179; Heilmann, R.M., Lanerie, D.J., Ruaux, C.G., Grützner, N., Suchodolski, J.S., Steiner, J.M., Development and analytic validation of an immunoassay for the quantification of canine S100A12 in serum and fecal samples and its biological variability in serum from healthy dogs (2011) Vet Immunol Immunopathol, 144, pp. 200-209. , 1:CAS:528:DC%2BC3MXhsFSjtLzK 22030158; Volkmann, M., Steiner, J.M., Fosgate, G.T., Zentek, J., Hartmann, S., Kohn, B., Chronic diarrhea in dogs - Retrospective study in 136 cases (2017) J Vet Intern Med, 31, pp. 1043-1055. , 1:STN:280:DC%2BC1cjntFCgtw%3D%3D 28703447 5508351; Akpek, E.K., Liu, S.H., Thompson, R., Gottsch, J.D., Identification of paramyosin as a binding protein for calgranulin C in experimental helminthic keratitis (2002) Invest Ophthalmol Vis Sci, 43, pp. 2677-2684. , 12147602; Yang, Z., Yan, W.X., Cai, H., Tedla, N., Armishaw, C., Di Girolamo, N., S100A12 provokes mast cell activation: A potential amplification pathway in asthma and innate immunity (2007) J Allergy Clin Immunol, 119, pp. 106-114. , 1:CAS:528:DC%2BD2sXit1Oksw%3D%3D 17208591; Sattasathuchana, P., Steiner, J.M., Canine eosinophilic gastrointestinal disorders (2017) Anim Health Res Rev, 15, pp. 76-86; Basika, T., Muñoz, N., Casaravilla, C., Irigoín, F., Batthyány, C., Bonilla, M., Phagocyte-specific S100 proteins in the local response to the Echinococcus granulosus larva (2012) Parasitology, 139, pp. 271-283. , 1:CAS:528:DC%2BC38XitFSqtro%3D 22216900; Zackular, J.P., Chazin, W.J., Skaar, E.P., Nutritional immunity: S100 proteins at the host-pathogen interface (2015) J Biol Biochem, 290, pp. 18991-18998. , 1:CAS:528:DC%2BC2MXht1Khsr7I; Heilmann, R.M., Suchodolski, J.S., Steiner, J.M., Purification and partial characterization of canine calprotectin (2008) Biochimie, 90, pp. 1306-1315. , 1:CAS:528:DC%2BD1cXptVajtL0%3D 18405670; Moxham, G., Waltham feces scoring system - A tool for veterinarians and pet owners: How does your pet rate? (2001) Waltham® Focus, 11 (2), pp. 24-25. , www.waltham.com/dyn/_assets/_pdfs/resources/FaecesQuality2.pdf; Friedrichs, K.R., Harr, K.E., Freeman, K.P., Szladovits, B., Walton, R.M., Barnhardt, K.F., ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics (2012) Vet Clin Pathol, 41, pp. 441-453. , 23240820; Heida, A., Kobold, A.C.M., Wagenmakers, L., Van De Belt, K., Van Rheenen, P.F., Reference values of fecal calgranulin C (S100A12) in school aged children and adolescents (2017) Clin Chem Lab Med, 56, pp. 126-131. , 28708568","Heilmann, R.M.; Small Animal Clinic, College of Veterinary Medicine, University of Leipzig, An den Tierkliniken 23, Germany; email: romy.heilmann@kleintierklinik.uni-leipzig.de",,"BioMed Central Ltd.",17563305,,,"29665827","English","Parasites Vectors",Article,"Final",Open Access,Scopus,2-s2.0-85045543450 "Galasiti Kankanamalage A.C., Kim Y., Damalanka V.C., Rathnayake A.D., Fehr A.R., Mehzabeen N., Battaile K.P., Lovell S., Lushington G.H., Perlman S., Chang K.-O., Groutas W.C.","55908089500;55747316900;56595259400;57192253855;36061058900;56310157100;6602742427;7005933944;6602098885;7102708317;56155853500;7005127415;","Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element",2018,"European Journal of Medicinal Chemistry","150",,,"334","346",,7,"10.1016/j.ejmech.2018.03.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043374869&doi=10.1016%2fj.ejmech.2018.03.004&partnerID=40&md5=6d2c35347b135dafd5e68d36edf861d9","Department of Chemistry, Wichita State University, Wichita, KS 67260, United States; Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, United States; IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439, United States; LiS Consulting, Lawrence, KS 66046, United States; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States","Galasiti Kankanamalage, A.C., Department of Chemistry, Wichita State University, Wichita, KS 67260, United States; Kim, Y., Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Damalanka, V.C., Department of Chemistry, Wichita State University, Wichita, KS 67260, United States; Rathnayake, A.D., Department of Chemistry, Wichita State University, Wichita, KS 67260, United States; Fehr, A.R., Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Mehzabeen, N., Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, United States; Battaile, K.P., IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, IL 60439, United States; Lovell, S., Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047, United States; Lushington, G.H., LiS Consulting, Lawrence, KS 66046, United States; Perlman, S., Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Chang, K.-O., Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Groutas, W.C., Department of Chemistry, Wichita State University, Wichita, KS 67260, United States","There are currently no approved vaccines or small molecule therapeutics available for the prophylaxis or treatment of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections. MERS-CoV 3CL protease is essential for viral replication; consequently, it is an attractive target that provides a potentially effective means of developing small molecule therapeutics for combatting MERS-CoV. We describe herein the structure-guided design and evaluation of a novel class of inhibitors of MERS-CoV 3CL protease that embody a piperidine moiety as a design element that is well-suited to exploiting favorable subsite binding interactions to attain optimal pharmacological activity and PK properties. The mechanism of action of the compounds and the structural determinants associated with binding were illuminated using X-ray crystallography. © 2018 Elsevier Masson SAS","3CL protease; Antiviral; MERS-CoV; Peptidomimetic inhibitors; Piperidine moiety","1 (methylsulfonyl)piperidin 4 yl [4 methyl 1 oxo 1 [[ 1 oxo 3 (2 oxopyr rolidin 3 yl)propan 2 yl]amino]pentan 2 yl]carbamate; 4 benzyl 1 (methylsulfonyl)piperidin 4 yl [4 methyl 1 oxo 1 [[1 oxo 3 (2 oxopyrrolidin 3 yl)propan 2 yl]amino]pentan 2 yl]carbamate; antivirus agent; ethyl 4 [[[4 methyl 1 oxo 1 [[1 oxo 3 (2 oxopyrrolidin 3 yl)propan 2 yl]amino]pentan 2 yl]carbamoyl]oxy]piperidine 1 carboxylate; peptidomimetic agent; piperidine derivative; proteinase inhibitor; sodium 1 hydroxy 2 [4 methyl 2 [[[[1 (methylsulfonyl)piperidin 4 yl]oxy]carbonyl]amino]pentanamido] 3 [2 oxopyrrolidin 3 yl]propane 1 sulfonate; sodium 2 [2 [[[[1 (ethoxycarbonyl)piperidin 4 yl]oxy]carbonyl]amino] 4 methylpentanamido] 1 hydroxy 3 [2 oxopyrrolidin 3 yl]propane 1 sulfonate; sodium 2 [2 [[[[1 (tert butoxycarbonyl) 4 ethylpiperidin 4 yl]oxy]carbonyl]amino] 4 methylpentanamido] 1 hydroxy 3 [2 oxopyrrolidin 3 yl]propane 1 sulfonate; sodium 2 [2 [[[[4 benzyl 1 (tert butoxycarbonyl)piperidin 4 yl]oxy]carbonyl]amino] 4 methylpentanamido] 1 hydroxy 3 [2 oxopyrrolidin 3 yl] propane 1 sulfonate; sodium 2 [[2 [[[1 (tert butoxycarbonyl)piperidin 4 yl]oxy]carbonyl]amino] 4 methylpentanamido] 1 hydroxy 3 [2 oxopyrrolidin 3 yl]propane 1 sulfonate; sodium [2 [2 [[[4 benzyl 1 (methylsulfonyl)piperidin 4 yl]oxy]carbonyl]amino] 4 methylpentanamido] 1 hydroxy 3 [2 oxopyrrolidin 3 yl]propane 1 sulfonate; tert butyl 4 benzyl 4 [[[ 4 methyl 1 oxo 1 [[1 oxo 3 (2 oxopyrrolidin 3 yl)propan 2 yl]amino]pentan 2 yl]carbamoyl]oxy]piperidine 1 carboxylate; tert butyl 4 ethyl 4 [[[4 methyl 1 oxo 1 [[1 oxo 3 (2 oxopyrrolidin 3 yl)propan 2 yl]amino]pentan 2 yl]carbamoyl]oxy]piperidine 1 carboxylate; tert butyl 4 [[[4 methyl 1 oxo 1 [[ 1 oxo 3 (2 oxopyrrolidin 3 yl)propan 2 yl]amino]pentan 2 yl]carbamoyl]oxy]piperidine 1 carboxylate; unclassified drug; 3C proteases; antivirus agent; cysteine proteinase; cysteine proteinase inhibitor; piperidine; piperidine derivative; viral protein; antiviral activity; Article; drug cytotoxicity; drug design; drug potency; drug synthesis; EC50; Feline infectious peritonitis virus; Middle East respiratory syndrome coronavirus; physical chemistry; proteinase inhibition; structure activity relation; therapeutic index; virus replication; X ray crystallography; animal; antagonists and inhibitors; cat; cell culture; cell death; chemical structure; chemistry; Chlorocebus aethiops; dose response; drug effects; enzymology; metabolism; Middle East respiratory syndrome coronavirus; molecular model; structure activity relation; synthesis; Vero cell line; Animals; Antiviral Agents; Cats; Cell Death; Cells, Cultured; Cercopithecus aethiops; Crystallography, X-Ray; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Molecular Structure; Piperidines; Structure-Activity Relationship; Vero Cells; Viral Proteins","Masters, P.S., Perlman, S., Coronaviridae in Field's virology (2013) Lippincott, 1, pp. 825-858. , D.M. Knipe P.M. Howley Williams & Wilkins Philadelphia; Coleman, C.M., Frieman, M.B., Coronaviruses: important emerging human pathogens (2014) J. Virol., 88, pp. 5209-5212; De Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin. Respir. Crit. Care Med., 37, pp. 555-571; Vijay, R., Perlman, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr. Opin. Virol, 16, pp. 70-76; Van den Brand, J.M.A., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.-Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Hui, D.S., Peiris, M., Middle East respiratory syndrome (2015) Am. J. Respir. Crit. Care Med., 192, pp. 278-279; Zumla, A., Chan, J.F., Azhar, E., Hui, D.S., Yuen, K.-Y., Coronaviruses: drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Adedeji, A.O., Sarafianos, S.G., Antiviral drugs specific for coronaviruses in preclinical development (2014) Curr. Opin. Virol, 8, pp. 45-53; Modjarrad, K., MERS-CoV vaccine candidates in development: the current landscape (2016) Vaccine, 34, pp. 2982-2987; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East syndrome coronavirus (MERS-CoV) in virus and syncytia formation (2013) PLoS One, 8; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Miller, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory distress syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 15214-15219; Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., Jung, S.-H., An overview of severe acute respiratory distress syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy (2016) J. Med. Chem., 59, pp. 6595-6628; Baez-Santos, Y.M., St. John, S.E., Mesecar, A.D., The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds (2015) Antivir. Res., 115, pp. 21-38; Kumar, V., Tan, K.-P., Wang, Y.-M., Lin, S.-W., Liang, P.-H., Identification, synthesis, and evaluation of SARS-CoV and SARS-CoV 3C-like protease inhibitors (2016) Bioorg. Med. Chem., 24, pp. 3035-3042; Needle, D., Lountos, G.T., Waugh, D.S., Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity (2015) Acta Crystallogr., D71, pp. 1102-1111; Hilgenfeld, R., From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design (2014) FEBS J., 281, pp. 4085-4096; Wu, A., Wang, Y., Zeng, C., Huang, X., Xu, S., Su, C., Wang, M., Guo, D., Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus (2015) Virus Res., 208, pp. 56-65; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Patel, K., Johnson, M.E., Inhibitor recognition specificity for MERS-CoV papain-like protease may differ from that of SARS-CoV (2015) ACS Chem. Biol., 10, pp. 1456-1465; Nomenclature used is that of L. Schechter, A. Berger (1967) Biochem. Biophys. Res. Commun., 27, pp. 157-162. , where S1, S2, S3, …. Sn and S1’ S2’ S3’ …. Sn’ correspond to the enzyme subsites on the N-terminus and C-terminus side, respectively, of the scissile bond. Each subsite accommodates a corresponding amino acid residue side chain designated P1, P2, P3,…..Pn and P1’, P2’ P3’,…..Pn’ of a substrate or inhibitor. P1 is the primary substrate specificity residue and P1-P1’ is the scissile bond; Wang, F., Chen, C., Tan, W., Yang, K., Yang, H., Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design (2016) Sci. Rep., 6, p. 22677; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog., 12; Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2017) J. Feline Med. Surg., , 17 Sep 1:1098612X17729626 ([Epub ahead of print]); Webster, S.E., Okano, K., Little, T.L., Reich, S.H., Xin, Y., Fuhrman, S.A., Matthews, D.A., Worland, S.T., Tripeptide aldehyde inhibitors of human rhinovirus 3C protease: design, synthesis, biological evaluation, and cocrystal structure solution of P1 glutamine isosteric replacements (1998) J. Med. Chem., 41, pp. 2786-2805; Galasiti Kankanamalage, A.C., Kim, Y., Weerawarna, P.W., Uy, R.A.Z., Damalanka, V.C., Mndadapu, S.R., Alliston, K.R., Groutas, W.C., Structure-guided design and optimization of dipeptidyl inhibitors of norovirus 3CL protease. Structure-activity relationships and biochemical, X-ray crystallographic, cell-based, and in vivo studies (2015) J. Med. Chem., 58, pp. 3144-3155; Mandadapu, S.R., Gunnam, M.R., Tiew, K.-C., Uy, R.A.Z., Prior, A.M., Alliston, K.R., Hua, D.H., Groutas, W.C., Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors (2013) Bioorg. Med. Chem. Lett, 23, pp. 62-65; Kim, Y., Lovell, S., Tiew, K.C., Mandadapu, S.R., Alliston, K.R., Battaille, K.P., Groutas, W.C., Chang, K.-O., Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses and coronaviruses (2012) J. Virol., 6, pp. 1754-11762; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Posthuma, C.C., Snijder, E.J., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res., 228, pp. 7-13; http://www.graphpad.com/quickcalcs/ConfInterval1.cfm, (accessed April 2017); Kabsch, W., Automatic indexing of rotation diffraction patterns (1988) J. Appl. Crystallogr., 21, pp. 67-72; Kabsch, W., (2010) Xds. Acta Crystallogr. D Biol. Crystallogr., 66, pp. 125-132; Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T., Bricogne, G., Data processing and analysis with the autoPROC toolbox (2011) Acta Crystallogr. D Biol. Crystallogr., 67 (Pt4), pp. 293-302; Evans, P.R., An introduction to data reduction: space-group determination, scaling and intensity statistics (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 282-292; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J. Appl. Crystallogr., 40, pp. 658-674; Johnston, T.S., St. John, S.E., Osswald, H.L., Nyalapatla, P.R., Paul, L.N., Ghosh, A.K., Denison, M.R., Mesecar, A.D., Ligand-induced dimerization of Middle East Respiratory Syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals (2015) J. Biol. Chem., 290, pp. 19403-19422; Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., David, I.W., Echols, N., Headd, J.J., Zwart, P.H., PHENIX: a comprehensive python-based system for macromolecular structure solution (2010) Acta Crystallogr. Sect. D Biol. Crystallogr., 66, pp. 213-221; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr. Sect. D Biol. Crystallogr., 66, pp. 486-501; Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr. Sect. D Biol. Crystallogr., 66, pp. 12-21; Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowlan, K., Emlsey, P., Murshudov, G.N., Noble, M., Developments in the CCP4 molecular graphics project (2004) Acta Crystallogr. Sect. D Biol. Crystallogr., 60, pp. 2288-2294; Evans, P., Scaling and assessment of data quality (2006) Acta Crystallogr. Sect. D Biol. Crystallogr., 62, pp. 72-82; Diederichs, K., Karplus, P.A., Improved R-factors for diffraction data analysis in macromolecular crystallography (1997) Nat. Struct. Biol., 4, pp. 269-275; Weiss, M.S., Global indicators of X-ray data quality (2001) J. Appl. Crystallogr., 34, pp. 130-135; Karplus, P.A., Diederichs, K., Linking crystallographic model and data quality (2012) Science, 336, pp. 1030-1033; Evans, P., Biochemistry. Resolving some old problems in protein crystallography (2012) Science, 336, pp. 986-987; Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, N., Terwilliger, T.C., Adams, P.D., Towards automated crystallographic structure refinement with phenix.refine (2012) Acta Crystallogr., 60, pp. 352-367","Groutas, W.C.; Department of Chemistry, Wichita State UniversityUnited States; email: bill.groutas@wichita.edu",,"Elsevier Masson SAS",02235234,,EJMCA,"29544147","English","Eur. J. Med. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85043374869 "Webb S.R., Smith S.E., Fried M.G., Dutch R.E.","55964879700;56120594700;57196594419;6602168471;","Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro",2018,"mSphere","3","2",,"","",,3,"10.1128/mSphere.00047-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047128453&doi=10.1128%2fmSphere.00047-18&partnerID=40&md5=ff044b5423c4953ced5307d700a6b31d","Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States","Webb, S.R., Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Smith, S.E., Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Fried, M.G., Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Dutch, R.E., Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States","Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development. Copyright © 2018 Webb et al.","Ebola virus; fusion protein; influenza; rabies; SARS; transmembrane domain; virus","glycoprotein; virus envelope protein; virus fusion protein; chemistry; Ebolavirus; membrane fusion; Orthomyxoviridae; physiology; protein domain; protein multimerization; protein stability; Rabies virus; SARS coronavirus; virus entry; Ebolavirus; Glycoproteins; Membrane Fusion; Orthomyxoviridae; Protein Domains; Protein Multimerization; Protein Stability; Rabies virus; SARS Virus; Viral Envelope Proteins; Viral Fusion Proteins; Virus Internalization",,,,"NLM (Medline)",23795042,,,"29669880","English","mSphere",Article,"Final",Open Access,Scopus,2-s2.0-85047128453 "Sisk J.M., Frieman M.B., Machamer C.E.","56723770700;9240056500;7004585797;","Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors",2018,"Journal of General Virology","99","5", 001047,"619","630",,2,"10.1099/jgv.0.001047","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046402518&doi=10.1099%2fjgv.0.001047&partnerID=40&md5=8095ccd01c2d850e9969af28c7edbe0a","Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States; Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, United States","Sisk, J.M., Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States; Frieman, M.B., Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, United States; Machamer, C.E., Department of Cell Biology, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States","Enveloped viruses gain entry into host cells by fusing with cellular membranes, a step that is required for virus replication. Coronaviruses, including the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and infectious bronchitis virus (IBV), fuse at the plasma membrane or use receptor-mediated endocytosis and fuse with endosomes, depending on the cell or tissue type. The virus spike (S) protein mediates fusion with the host cell membrane. We have shown previously that an Abelson (Abl) kinase inhibitor, imatinib, significantly reduces SARS-CoV and MERS-CoV viral titres and prevents endosomal entry by HIV SARS S and MERS S pseudotyped virions. SARSCoV and MERS-CoV are classified as BSL-3 viruses, which makes experimentation into the cellular mechanisms involved in infection more challenging. Here, we use IBV, a BSL-2 virus, as a model for studying the role of Abl kinase activity during coronavirus infection. We found that imatinib and two specific Abl kinase inhibitors, GNF2 and GNF5, reduce IBV titres by blocking the first round of virus infection. Additionally, all three drugs prevented IBV S-induced syncytia formation prior to the hemifusion step. Our results indicate that membrane fusion (both virus–cell and cell–cell) is blocked in the presence of Abl kinase inhibitors. Studying the effects of Abl kinase inhibitors on IBV will be useful in identifying the host cell pathways required for coronavirus infection. This will provide an insight into possible therapeutic targets to treat infections by current as well as newly emerging coronaviruses. © 2018 The Authors.","Abl kinase; Abl1; Abl2; Cell-cell fusion; Coronavirus; GNF2; GNF5; IBV; Imatinib; MERS-CoV; SARS-CoV; Virus-cell fusion","Abelson kinase; gnf 2; gnf 5; imatinib; protein tyrosine kinase inhibitor; unclassified drug; virus receptor; virus spike protein; Abelson kinase; antivirus agent; benzamide derivative; coronavirus spike glycoprotein; GNF-2 compound; imatinib; N-(2-hydroxyethyl)-3-(6-((4-(trifluoromethoxy)phenyl)amino)-4-pyrimidinyl)benzamide; protein kinase inhibitor; pyrimidine derivative; animal cell; antiviral activity; Article; controlled study; Coronavirus infection; endocytosis; enzyme activity; host cell; membrane fusion; Middle East respiratory syndrome coronavirus; model; nonhuman; priority journal; protein processing; receptor binding; SARS coronavirus; syncytium; virus attachment; virus cell interaction; virus titration; animal; antagonists and inhibitors; Avian infectious bronchitis virus; cell membrane; Chlorocebus aethiops; endosome; genetics; metabolism; Vero cell line; virology; virus entry; virus replication; Animals; Antiviral Agents; Benzamides; Cell Membrane; Cercopithecus aethiops; Endosomes; Imatinib Mesylate; Infectious bronchitis virus; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-abl; Pyrimidines; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Internalization; Virus Replication","Mingo, R.M., Simmons, J.A., Shoemaker, C.J., Nelson, E.A., Schornberg, K.L., Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: Evidence that transport to NPC1+ endolysosomes is a rate-defining step (2015) J Virol, 89, pp. 2931-2943; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci USA, 111, pp. 15214-15219; Burkard, C., Verheije, M.H., Wicht, O., Van Kasteren, S.I., Van Kuppeveld, F.J., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) Plos Pathog, p. 10; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58, pp. 4885-4893; Gaki, G.S., Papavassiliou, A.G., Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease (2014) Neuromolecular Med, 16, pp. 217-230; Colicelli, J., ABL tyrosine kinases: Evolution of function, regulation, and specificity (2010) Sci Signal, 3; Cheng, W.H., Von Kobbe, C., Opresko, P.L., Fields, K.M., Ren, J., Werner syndrome protein phosphorylation by abl tyrosine kinase regulates its activity and distribution (2003) Mol Cell Biol, 23, pp. 6385-6395; Rogers, E.M., Spracklen, A.J., Bilancia, C.G., Sumigray, K.D., Allred, S.C., Abelson kinase acts as a robust, multifunctional scaffold in regulating embryonic morphogenesis (2016) Mol Biol Cell, 27, pp. 2613-2631; Khatri, A., Wang, J., Pendergast, A.M., Multifunctional Abl kinases in health and disease (2016) J Cell Sci, 129, pp. 9-16; Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Müller, M., Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative (1996) Cancer Res, 56, pp. 100-104; Rowley, J.D., Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining (1973) Nature, 243, pp. 290-293; Heisterkamp, N., Stephenson, J.R., Groffen, J., Hansen, P.F., De Klein, A., Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia (1983) Nature, 306, pp. 239-242; Bartram, C.R., De Klein, A., Hagemeijer, A., Van Agthoven, T., Geurts Van Kessel, A., Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia (1983) Nature, 306, pp. 277-280; Coleman, C.M., Sisk, J.M., Mingo, R.M., Nelson, E.A., White, J.M., Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion (2016) J Virol, 90, pp. 8924-8933; Coyne, C.B., Bergelson, J.M., Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions (2006) Cell, 124, pp. 119-131; Newsome, T.P., Weisswange, I., Frischknecht, F., Way, M., Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus (2006) Cell Microbiol, 8, pp. 233-241; Harmon, B., Campbell, N., Ratner, L., Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step (2010) Plos Pathog, p. 6; Thomas, A., Mariani-Floderer, C., López-Huertas, M.R., Gros, N., Hamard, E., Involvement of the Rac1-IRSp53-Wave2- Arp2/3 signaling pathway in HIV-1 gag particle release in CD4 T cells (2015) J Virol, 89, pp. 8162-8181; Reeves, P.M., Smith, S.K., Olson, V.A., Thorne, S.H., Bornmann, W., Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases (2011) J Virol, 85, pp. 21-31; García, M., Cooper, A., Shi, W., Bornmann, W., Carrion, R., Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase (2012) Sci Transl Med, 4, p. 123; Kouznetsova, J., Sun, W., Martínez-Romero, C., Tawa, G., Shinn, P., Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs (2014) Emerg Microbes Infect, 3; Yamauchi, S., Takeuchi, K., Chihara, K., Sun, X., Honjoh, C., Hepatitis C virus particle assembly involves phosphorylation of NS5A by the c-Abl tyrosine kinase (2015) J Biol Chem, 290, pp. 21857-21864; Cluett, E.B., Kuismanen, E., Machamer, C.E., Heterogeneous distribution of the unusual phospholipid semilysobisphosphatidic acid through the Golgi complex (1997) Mol Biol Cell, 8, pp. 2233-2240; Hogue, B.M.C., (2008) Coronavirus Structural Proteins and Virus Assembly, , Washington, DC: ASM Press; Schindler, T., Bornmann, W., Pellicena, P., Miller, W.T., Clarkson, B., Structural mechanism for STI-571 inhibition of abelson tyrosine kinase (2000) Science, 289, pp. 1938-1942; Nagar, B., Bornmann, W.G., Pellicena, P., Schindler, T., Veach, D.R., Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571) (2002) Cancer Res, 62, pp. 4236-4243; Zhang, J., Adri, F.J., Jahnke, W., Cowan-Jacob, S.W., Li, A.G., Ag, L., Targeting Bcr-Abl by combining allosteric with ATP-bindingsite inhibitors (2010) Nature, 463, pp. 501-506; Greuber, E.K., Smith-Pearson, P., Wang, J., Pendergast, A.M., Role of ABL family kinases in cancer: From leukaemia to solid tumours (2013) Nat Rev Cancer, 13, pp. 559-571; Reddy, E.P., Aggarwal, A.K., The ins and outs of bcr-abl inhibition (2012) Genes Cancer, 3, pp. 447-454; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martínez-Sobrido, L., The intracellular sites of early replication and budding of SARScoronavirus (2007) Virology, 361, pp. 304-315; Lontok, E., Corse, E., Machamer, C.E., Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site (2004) J Virol, 78, pp. 5913-5922; Bradley, W.D., Koleske, A.J., Regulation of cell migration and morphogenesis by Abl-family kinases: Emerging mechanisms and physiological contexts (2009) J Cell Sci, 122, pp. 3441-3454; Huang, Y., Comiskey, E.O., Dupree, R.S., Li, S., Koleske, A.J., The c- Abl tyrosine kinase regulates actin remodeling at the immune synapse (2008) Blood, 112, pp. 111-119; Gu, J.J., Lavau, C.P., Pugacheva, E., Soderblom, E.J., Moseley, M.A., Abl family kinases modulate T cell-mediated inflammation and chemokine-induced migration through the adaptor HEF1 and the GTPase Rap1 (2012) Sci Signal, 5, p. 51; Koleske, A.J., Gifford, A.M., Scott, M.L., Nee, M., Bronson, R.T., Essential roles for the Abl and Arg tyrosine kinases in neurulation (1998) Neuron, 21, pp. 1259-1272; Smith-Pearson, P.S., Greuber, E.K., Yogalingam, G., Pendergast, A.M., Abl kinases are required for invadopodia formation and chemokine- induced invasion (2010) J Biol Chem, 285, pp. 40201-40211; Mader, C.C., Oser, M., Magalhaes, M.A., Bravo-Cordero, J.J., Condeelis, J., An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion (2011) Cancer Res, 71, pp. 1730-1741; Lapetina, S., Mader, C.C., Machida, K., Mayer, B.J., Koleske, A.J., Arg interacts with cortactin to promote adhesion-dependent cell edge protrusion (2009) J Cell Biol, 185, pp. 503-519; Macgrath, S.M., Koleske, A.J., Arg/Abl2 modulates the affinity and stoichiometry of binding of cortactin to F-actin (2012) Biochemistry, 51, pp. 6644-6653; Lin, Y.C., Yeckel, M.F., Koleske, A.J., Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways (2013) J Neurosci, 33, pp. 1846-1857; Courtemanche, N., Gifford, S.M., Simpson, M.A., Pollard, T.D., Koleske, A.J., Abl2/Abl-related gene stabilizes actin filaments, stimulates actin branching by actin-related protein 2/3 complex, and promotes actin filament severing by cofilin (2015) J Biol Chem, 290, pp. 4038-4046; Woodring, P.J., Hunter, T., Wang, J.Y., Inhibition of c-Abl tyrosine kinase activity by filamentous actin (2001) J Biol Chem, 276, pp. 27104-27110; Hern, S.E., Krishnaswami, M., Miller, A.L., Koleske, A.J., How do Abl family kinases regulate cell shape and movement? (2004) Trends Cell Biol, 14, pp. 36-44; Selbach, M., Backert, S., Cortactin: An Achilles’ heel of the actin cytoskeleton targeted by pathogens (2005) Trends Microbiol, 13, pp. 181-189; Taylor, M.P., Koyuncu, O.O., Enquist, L.W., Subversion of the actin cytoskeleton during viral infection (2011) Nat Rev Microbiol, 9, pp. 427-439; Wessler, S., Backert, S., Abl family of tyrosine kinases and microbial pathogenesis (2011) Int Rev Cell Mol Biol, 286, pp. 271-300; Levaot, N., Simoncic, P.D., Dimitriou, I.D., Scotter, A., La Rose, J., 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions (2011) J Clin Invest, 121, pp. 3244-3257; Hindi, S.M., Tajrishi, M.M., Kumar, A., Signaling mechanisms in mammalian myoblast fusion (2013) Sci Signal, 6; Kim, J.H., Jin, P., Duan, R., Chen, E.H., Mechanisms of myoblast fusion during muscle development (2015) Curr Opin Genet Dev, 32, pp. 162-170; Shilagardi, K., Li, S., Luo, F., Marikar, F., Duan, R., Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion (2013) Science, 340, pp. 359-363; Georgess, D., Machuca-Gayet, I., Blangy, A., Jurdic, P., Podosome organization drives osteoclast-mediated bone resorption (2014) Cell Adh Migr, 8, pp. 192-204; Youn, S., Collisson, E.W., Machamer, C.E., Contribution of trafficking signals in the cytoplasmic tail of the infectious bronchitis virus spike protein to virus infection (2005) J Virol, 79, pp. 13209-13217; McBride, C.E., Li, J., Machamer, C.E., The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein (2007) J Virol, 81, pp. 2418-2428; McBride, C.E., Machamer, C.E., A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein (2010) J Virol, 84, pp. 1891-1901; Wickramasinghe, I.N., De Vries, R.P., Gröne, A., De Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J Virol, 85, pp. 8903-8912; Promkuntod, N., Wickramasinghe, I.N., De Vrieze, G., Gröne, A., Verheije, M.H., Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus (2013) Virus Res, 177, pp. 127-137; Wang, L., Parr, R.L., King, D.J., Collisson, E.W., A highly conserved epitope on the spike protein of infectious bronchitis virus (1995) Arch Virol, 140, pp. 2201-2213; Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., Characterization of severe acute respiratory syndromeassociated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry (2004) Proc Natl Acad Sci USA, 101, pp. 4240-4245","Sisk, J.M.; Department of Cell Biology, The Johns Hopkins University, School of MedicineUnited States; email: jsisk2@jhu.edu",,"Microbiology Society",00221317,,JGVIA,"29557770","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85046402518 "Byukusenge M., Nissly R.H., Kasibhatla S.M., Li L., Russell R., Springer H., Barry R., Van Saun R., Wolfgang D., Hovingh E., Kulkarni-Kale U., Kuchipudi S.V.","56436667700;56191285100;52563561500;56109577200;57202304283;57202304334;57194761265;7004514036;6603450490;23018812100;6507581306;36059411000;","Complete genome sequences of four bovine coronavirus isolates from Pennsylvania",2018,"Genome Announcements","6","22", e00467-18,"","",,,"10.1128/genomeA.00467-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047814979&doi=10.1128%2fgenomeA.00467-18&partnerID=40&md5=4ebc6d6e28f47f44ba1ae0954b7994d0","Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Bioinformatics Centre, INDI, Pune, India; HPC-Medical and Bioinformatics Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University, Pune, India; Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States","Byukusenge, M., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Nissly, R.H., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Kasibhatla, S.M., Bioinformatics Centre, INDI, Pune, India, HPC-Medical and Bioinformatics Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University, Pune, India; Li, L., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Russell, R., Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Springer, H., Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Barry, R., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Van Saun, R., Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Wolfgang, D., Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States, Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States; Hovingh, E., Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States; Kulkarni-Kale, U., Bioinformatics Centre, INDI, Pune, India; Kuchipudi, S.V., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States","We report four full-genome sequences of bovine coronavirus (BCoV) isolates from dairy calves in Pennsylvania obtained in 2016 and 2017. BCoV is a pathogen of great importance to cattle health, and this is the first report of fullgenome sequences of BCoV from PA cattle. © 2018 Byukusenge et al.",,"animal experiment; article; Bovine coronavirus; calf (mammal); genome; infectious agent; nonhuman; Pennsylvania","Hasoksuz, M., Hoet, A.E., Loerch, S.C., Wittum, T.E., Nielsen, P.R., Saif, L.J., Detection of respiratory and enteric shedding of bovine coronaviruses in cattle in an Ohio feedlot (2002) J Vet Diagn Invest, 14, pp. 308-313. , https://doi.org/10.1177/104063870201400406; Park, S.J., Kim, G.Y., Choy, H.E., Hong, Y.J., Saif, L.J., Jeong, J.H., Park, S.I., Cho, K.O., Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves (2007) Arch Virol, 152, pp. 1885-1900. , https://doi.org/10.1007/s00705-007-1005-2; Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., GenBank (2013) Nucleic Acids Res, 41, pp. D36-D42. , https://doi.org/10.1093/nar/gks1195; Cho, Y.-I., Kim, W.-I., Liu, S., Kinyon, J.M., Yoon, K.J., Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces (2010) J Vet Diagn Invest, 22, pp. 509-517. , https://doi.org/10.1177/104063871002200403; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054; Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797. , https://doi.org/10.1093/nar/gkh340; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410. , https://doi.org/10.1016/S0022-2836(05)80360-2; Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402. , https://doi.org/10.1093/nar/25.17.3389","Kuchipudi, S.V.; Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State UniversityUnited States; email: skuchipudi@psu.edu",,"American Society for Microbiology",21698287,,,,"English","Genome Announce.",Article,"Final",Open Access,Scopus,2-s2.0-85047814979 "Athmer J., Fehr A.R., Grunewald M.E., Qu W., Wheeler D.L., Graepel K.W., Channappanavar R., Sekine A., Aldabeeb D.S., Gale M., Jr., Denison M.R., Perlman S.","56491003300;36061058900;57193548278;57202229343;56606695100;55660767100;35309748500;57192254495;57193433654;55382766000;7101971810;7102708317;","Selective packaging in murine coronavirus promotes virulence by limiting type I interferon responses",2018,"mBio","9","3", e00272-18,"","",,1,"10.1128/mBio.00272-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047541104&doi=10.1128%2fmBio.00272-18&partnerID=40&md5=9cc2c5570f83001fa8d14d4a83fa648b","Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Department of Medicine, King Saud University Medical City, College of Medicine, Riyadh, Saudi Arabia","Athmer, J., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Fehr, A.R., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Grunewald, M.E., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Qu, W., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Wheeler, D.L., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Graepel, K.W., Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Channappanavar, R., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Sekine, A., Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Aldabeeb, D.S., Department of Medicine, King Saud University Medical City, College of Medicine, Riyadh, Saudi Arabia; Gale, M., Jr., Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Denison, M.R., Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, United States; Perlman, S., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States","Selective packaging is a mechanism used by multiple virus families to specifically incorporate genomic RNA (gRNA) into virions and exclude other types of RNA. Lineage A betacoronaviruses incorporate a 95-bp stem-loop structure, the packaging signal (PS), into the nsp15 locus of ORF1b that is both necessary and sufficient for the packaging of RNAs. However, unlike other viral PSs, where mutations generally resulted in viral replication defects, mutation of the coronavirus (CoV) PS results in large increases in subgenomic RNA packaging with minimal effects on gRNA packaging in vitro and on viral titers. Here, we show that selective packaging is also required for viral evasion of the innate immune response and optimal pathogenicity. We engineered two distinct PS mutants in two different strains of murine hepatitis virus (MHV) that packaged increased levels of subgenomic RNAs, negativesense genomic RNA, and even cellular RNAs. All PS mutant viruses replicated normally in vitro but caused dramatically reduced lethality and weight loss in vivo. PS mutant virus infection of bone marrow-derived macrophages resulted in increased interferon (IFN) production, indicating that the innate immune system limited the replication and/or pathogenesis of PS mutant viruses in vivo. PS mutant viruses remained attenuated in MAVS-/- and Toll-like receptor 7-knockout (TLR7-/-) mice, two well-known RNA sensors for CoVs, but virulence was restored in interferon alpha/ beta receptor-knockout (IFNAR-/-) mice or in MAVS-/- mice treated with IFNAR-blocking antibodies. Together, these data indicate that coronaviruses promote virulence by utilizing selective packaging to avoid innate immune detection. IMPORTANCE Coronaviruses (CoVs) produce many types of RNA molecules during their replication cycle, including both positive- and negative-sense genomic and subgenomic RNAs. Despite this, coronaviruses selectively package only positive-sense genomic RNA into their virions. Why CoVs selectively package their genomic RNA is not clear, as disruption of the packaging signal in MHV, which leads to loss of selective packaging, does not affect genomic RNA packaging or virus replication in cultured cells. This contrasts with other viruses, where disruption of selective packaging generally leads to altered replication. Here, we demonstrate that in the absence of selective packaging, the virulence of MHV was significantly reduced. Importantly, virulence was restored in the absence of interferon signaling, indicating that selective packaging is a mechanism used by CoVs to escape innate immune detection. © 2018 Athmer et al.","Coronavirus; Interferon response; Murine hepatitis virus; Packaging signal; RNA packaging; Selective packaging","alpha interferon; beta interferon; drug vehicle; genomic RNA; interferon; toll like receptor 7; interferon; viral protein; virus RNA; animal cell; animal experiment; animal model; animal tissue; Article; body weight loss; bone marrow derived macrophage; cell interaction; controlled study; genomics; immunodetection; in vitro study; in vivo study; innate immunity; interferon production; knockout mouse; lethality; male; mouse; Murine coronavirus; Murine hepatitis virus; mutant; nonhuman; pathogenesis; pathogenicity; priority journal; protein modification; signal transduction; virus attenuation; virus infection; virus replication; virus strain; virus virulence; animal; chemistry; Coronavirus infection; genetics; host pathogen interaction; immunology; inverted repeat; metabolism; open reading frame; pathogenicity; physiology; rodent disease; veterinary medicine; virology; virulence; virus assembly; Animals; Coronavirus Infections; Host-Pathogen Interactions; Interferon Type I; Inverted Repeat Sequences; Male; Mice; Murine hepatitis virus; Open Reading Frames; RNA, Viral; Rodent Diseases; Viral Nonstructural Proteins; Virulence; Virus Assembly; Virus Replication","Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) Plos Biol, 6. , https://doi.org/10.1371/journal.pbio.0060226; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J Virol, 80, pp. 5927-5940. , https://doi.org/10.1128/JVI.02501-05; Fosmire, J.A., Hwang, K., Makino, S., Identification and characterization of a coronavirus packaging signal (1992) J Virol, 66, pp. 3522-3530; Woo, K., Joo, M., Narayanan, K., Kim, K.H., Makino, S., Murine coronavirus packaging signal confers packaging to nonviral RNA (1997) J Virol, 71, pp. 824-827; Narayanan, K., Makino, S., Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging (2001) J Virol, 75, pp. 9059-9067. , https://doi.org/10.1128/JVI.75.19.9059-9067.2001; Kuo, L., Koetzner, C.A., Masters, P.S., A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging (2016) Virology, 494, pp. 100-107. , https://doi.org/10.1016/j.virol.2016.04.009; Chen, S.C., Van Den Born, E., Van Den Worm, S.H., Pleij, C.W., Snijder, E.J., Olsthoorn, R.C., New structure model for the packaging signal in the genome of group IIa coronaviruses (2007) J Virol, 81, pp. 6771-6774. , https://doi.org/10.1128/JVI.02231-06; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J Virol, 87, pp. 5182-5192. , https://doi.org/10.1128/JVI.00100-13; Kim, D.Y., Firth, A.E., Atasheva, S., Frolova, E.I., Frolov, I., Conservation of a packaging signal and the viral genome RNA packaging mechanism in alphavirus evolution (2011) J Virol, 85, pp. 8022-8036. , https://doi.org/10.1128/JVI.00644-11; Rulli, S.J., Jr., Hibbert, C.S., Mirro, J., Pederson, T., Biswal, S., Rein, A., Selective and nonselective packaging of cellular RNAs in retrovirus particles (2007) J Virol, 81, pp. 6623-6631. , https://doi.org/10.1128/JVI.02833-06; Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins (2017) Mbio, 8, pp. e02320-e02416. , https://doi.org/10.1128/mBio.02320-16; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J Virol, 89, pp. 1523-1536. , https://doi.org/10.1128/JVI.02596-14; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) Plos Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006195; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260. , https://doi.org/10.1073/pnas.1618310114; Roth-Cross, J.K., Bender, S.J., Weiss, S.R., Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia (2008) J Virol, 82, pp. 9829-9838. , https://doi.org/10.1128/JVI.01199-08; Ireland, D.D., Stohlman, S.A., Hinton, D.R., Atkinson, R., Bergmann, C.C., Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells (2008) J Virol, 82, pp. 300-310. , https://doi.org/10.1128/JVI.01794-07; Cervantes-Barragan, L., Züst, R., Weber, F., Spiegel, M., Lang, K.S., Akira, S., Thiel, V., Ludewig, B., Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon (2007) Blood, 109, pp. 1131-1137. , https://doi.org/10.1182/blood-2006-05-023770; Zalinger, Z.B., Elliott, R., Rose, K.M., Weiss, S.R., MDA5 is critical to host defense during infection with murine coronavirus (2015) J Virol, 89, pp. 12330-12340. , https://doi.org/10.1128/JVI.01470-15; Pinto, A.K., Daffis, S., Brien, J.D., Gainey, M.D., Yokoyama, W.M., Sheehan, K.C., Murphy, K.M., Diamond, M.S., A temporal role of type I interferon signaling in CD8_ T cell maturation during acute West Nile virus infection (2011) Plos Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002407; Narayanan, K., Chen, C.J., Maeda, J., Makino, S., Nucleocapsidindependent specific viral RNA packaging via viral envelope protein and viral RNA signal (2003) J Virol, 77, pp. 2922-2927. , https://doi.org/10.1128/JVI.77.5.2922-2927.2003; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002","Perlman, S.; Department of Microbiology and Immunology, University of IowaUnited States; email: Stanley-perlman@uiowa.edu",,"American Society for Microbiology",21612129,,,"29717007","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85047541104 "Islam A., Epstein J.H., Rostal M.K., Islam S., Rahman M.Z., Hossain M.E., Uzzaman M.S., Munster V.J., Peiris M., Flora M.S., Rahman M., Daszak P.","55772975400;8962685100;24482404300;55432804200;57210956909;57192409243;57200375793;9332531900;7005486823;7003862949;57208679541;7003646071;","Middle east respiratory syndrome Coronavirus antibodies in dromedary camels, Bangladesh, 2015",2018,"Emerging Infectious Diseases","24","5",,"926","928",,6,"10.3201/eid2405.171192","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045691188&doi=10.3201%2feid2405.171192&partnerID=40&md5=c04ff07b401cff0b36aba9863aa1cb14","EcoHealth Alliance, New York, NY, United States; Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh; Icddr,b, Dhaka, Bangladesh; National Institutes of Health, Hamilton, MT, United States; University of Hong Kong, School of Public Health, Hong Kong","Islam, A., EcoHealth Alliance, New York, NY, United States; Epstein, J.H., EcoHealth Alliance, New York, NY, United States; Rostal, M.K., EcoHealth Alliance, New York, NY, United States; Islam, S., EcoHealth Alliance, New York, NY, United States, Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh; Rahman, M.Z., Icddr,b, Dhaka, Bangladesh; Hossain, M.E., Icddr,b, Dhaka, Bangladesh; Uzzaman, M.S., Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh; Munster, V.J., National Institutes of Health, Hamilton, MT, United States; Peiris, M., University of Hong Kong, School of Public Health, Hong Kong; Flora, M.S., Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh; Rahman, M., Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh; Daszak, P., EcoHealth Alliance, New York, NY, United States","Dromedary camels are bred domestically and imported into Bangladesh. In 2015, of 55 camels tested for Middle East respiratory syndrome coronavirus in Dhaka, 17 (31%) were seropositive, including 1 bred locally. None were PCR positive. The potential for infected camels in urban markets could have public health implications and warrants further investigation. © 2018, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"virus antibody; animal experiment; animal model; camel; DNA synthesis; enzyme linked immunosorbent assay; female; gene product; Letter; male; Middle East respiratory syndrome; nonhuman; real time polymerase chain reaction; sensitivity and specificity; seroprevalence; virus detection; virus neutralization; virus transmission; animal; Bangladesh; camel; Coronavirus infection; isolation and purification; Middle East respiratory syndrome coronavirus; veterinary medicine; virology; Animals; Bangladesh; Camelus; Coronavirus Infections; Female; Male; Middle East Respiratory Syndrome Coronavirus","Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823. , http://dx.doi.org/10.3201/eid1911.131172; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505. , http://dx.doi.org/10.1056/NEJMoa1401505; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between Africa and the Middle East (2016) Trop Anim Health Prod, 48, pp. 1277-1282. , http://dx.doi.org/10.1007/s11250-016-1089-3; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg Infect Dis, 23, pp. 550-551. , http://dx.doi.org/10.3201/eid2303.161285; Quan, P.L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Identification of a severe acute respiratory syndrome coronavirus–like virus in a leaf-nosed bat in Nigeria (2010) Mbio, 1, pp. e00208-e00210. , http://dx.doi.org/10.1128/mBio.00208-10; Abroug, F., Slim, A., Ouanes-Besbes, L., Hadj Kacem, M.A., Dachraoui, F., Ouanes, I., World Health Organization Global Outbreak Alert and Response Network Middle East Respiratory Syndrome Coronavirus International Investigation Team. Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013 (2014) Emerg Infect Dis, 20, pp. 1527-1530. , http://dx.doi.org/10.3201/eid2009.140378; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095. , http://dx.doi.org/10.3201/eid2012.141026; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18. , http://dx.doi.org/10.2807/1560-7917.ES2013.18.50.20659; Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross-host transmission in the emergence of MERS coronavirus (2016) Curr Opin Virol, 16, pp. 55-62. , http://dx.doi.org/10.1016/j.coviro.2016.01.004; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64, pp. 344-353. , http://dx.doi.org/10.1111/tbed.12401","Epstein, J.H.; EcoHealth Alliance, 460 W 34th St, 17th Fl, United States; email: epstein@ecohealthalliance.org",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"29664373","English","Emerg. Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85045691188 "Dinwiddie D.L., Hardin O., Denson J.L., Kincaid J.C., Schwalm K.C., Stoner A.N., Abramo T.J., Thompson T.M., Putt C.M., Young S.A., Dehority W.N., Kennedy J.L.","55144038600;57195398285;56490700800;57193057325;57192231396;57192012358;6701740089;7401554234;57195398110;57214832021;15047628600;57203049205;","Complete genome sequences of four novel human coronavirus OC43 isolates associated with severe acute respiratory infection",2018,"Genome Announcements","6","21", e00452-18,"","",,1,"10.1128/genomeA.00452-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047506056&doi=10.1128%2fgenomeA.00452-18&partnerID=40&md5=085fec06dacc4fcd7c94fc764c4a4d4a","Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Clinical Translational Sciences Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Arkansas Children's Research Institute, Little Rock, AR, United States; TriCore Reference Laboratories, Albuquerque, NM, United States","Dinwiddie, D.L., Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States, Clinical Translational Sciences Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Hardin, O., Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Denson, J.L., Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Kincaid, J.C., Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Schwalm, K.C., Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Stoner, A.N., Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Abramo, T.J., Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Thompson, T.M., Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Putt, C.M., Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States, Arkansas Children's Research Institute, Little Rock, AR, United States; Young, S.A., TriCore Reference Laboratories, Albuquerque, NM, United States; Dehority, W.N., Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States; Kennedy, J.L., Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States, Arkansas Children's Research Institute, Little Rock, AR, United States","We report here the complete genome sequences of four human coronavirus (HCoV) OC43 isolates generated using targeted viral nucleic acid capture and next-generation sequencing; the isolates were collected in New Mexico and Arkansas, USA, in February (HCoV-OC43/USA/TCNP_0070/2016) and March (HCoV-OC43/USA/ACRI_0052/2016) 2016 and January 2017 (HCoV-OC43/USA/TCNP_00204/2017 and HCoV-OC43/USA/TCNP_00212/2017). © 2018 Dinwiddie et al.",,"Article; fever; genetic similarity; genome analysis; human; Human coronavirus OC43; lung congestion; next generation sequencing; nonhuman; nucleotide sequence; respiratory tract infection; strain difference; strain identification; virus genome; virus isolation; virus strain; wheezing","Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, 1, pp. 825-858. , In Knipe DM, Howley PM (ed). Lippincott Williams & Wilkins, Philadelphia, PA; Vijgen, L., Keyaerts, E., Moës, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.-M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604. , https://doi.org/10.1128/JVI.79.3.1595-1604.2005; Myint, S., Human coronaviruses: a brief review (1994) Rev Med Virol, 4, pp. 35-46. , https://doi.org/10.1002/rmv.1980040108; Larson, H., Reed, S.E., Tyrrell, D., Isolation of rhinoviruses and coronaviruses from 38 colds in adults (1980) J Med Virol, 5, pp. 221-229; Gagneur, A., Sizun, J., Vallet, S., Legr, M.C., Picard, B., Talbot, P.J., Coronavirusrelated nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: a prospective study (2002) J Hosp Infect, 51, pp. 59-64. , https://doi.org/10.1053/jhin.2002.1179; González, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch Virol, 148, pp. 2207-2235. , https://doi.org/10.1007/s00705-003-0162-1; Kothari, A., Burgess, M.J., Crescencio, J.C.R., Kennedy, J.L., Denson, J.L., Schwalm, K.C., Stoner, A.N., Dinwiddie, D.L., The role of next generation sequencing in infection prevention in human parainfluenza virus 3 infections in immunocompromised patients (2017) J Clin Virol, 92, pp. 53-55. , https://doi.org/10.1016/j.jcv.2017.05.010; Pickett, B.E., Sadat, E.L., Zhang, Y., Noronha, J.M., Squires, R.B., Hunt, V., Liu, M., Scheuermann, R.H., ViPR: an open bioinformatics database and analysis resource for virology research (2012) Nucleic Acids Res, 40, pp. D593-D598. , https://doi.org/10.1093/nar/gkr859","Kennedy, J.L.; Department of Internal Medicine, University of Arkansas for Medical SciencesUnited States; email: kennedyjoshual@uams.edu",,"American Society for Microbiology",21698287,,,,"English","Genome Announce.",Article,"Final",Open Access,Scopus,2-s2.0-85047506056 "Paden C.R., Yusof M.F.B.M., Al Hammadi Z.M., Queen K., Tao Y., Eltahir Y.M., Elsayed E.A., Marzoug B.A., Bensalah O.K.A., Khalafalla A.I., Al Mulla M., Khudhair A., Elkheir K.A., Issa Z.B., Pradeep K., Elsaleh F.N., Imambaccus H., Sasse J., Weber S., Shi M., Zhang J., Li Y., Pham H., Kim L., Hall A.J., Gerber S.I., Al Hosani F.I., Tong S., Al Muhairi S.S.M.","57193553180;56501630800;56966690500;55601440700;36744564300;57189085776;56501667600;56502399800;56502269500;7003866427;56926568500;57193787912;57201528716;57201523505;57189708880;57201528343;6508088766;56158359200;57209138010;25951822000;57196378566;57171026600;57216111697;55175211200;9241843500;56656063700;55572197500;55783951400;53879463500;","Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE",2018,"Zoonoses and Public Health","65","3",,"322","333",,15,"10.1111/zph.12435","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038026283&doi=10.1111%2fzph.12435&partnerID=40&md5=06a9f801e5bd47341a2b04c1159def95","Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Oak Ridge Institute for Science Education, Oak RidgeTN, United States; Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; The University of Sydney, Sydney, NSW, Australia","Paden, C.R., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States, Oak Ridge Institute for Science Education, Oak RidgeTN, United States; Yusof, M.F.B.M., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Al Hammadi, Z.M., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Queen, K., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States, Oak Ridge Institute for Science Education, Oak RidgeTN, United States; Tao, Y., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Eltahir, Y.M., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Elsayed, E.A., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Marzoug, B.A., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Bensalah, O.K.A., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Khalafalla, A.I., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Al Mulla, M., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Khudhair, A., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Elkheir, K.A., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Issa, Z.B., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Pradeep, K., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Elsaleh, F.N., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Imambaccus, H., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Sasse, J., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Weber, S., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Shi, M., The University of Sydney, Sydney, NSW, Australia; Zhang, J., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Li, Y., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Pham, H., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Kim, L., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Hall, A.J., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Gerber, S.I., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Al Hosani, F.I., Health Authority Abu Dhabi, Abu Dhabi, United Arab Emirates; Tong, S., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Al Muhairi, S.S.M., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates","Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, there have been a number of clusters of human-to-human transmission. These cases of human-to-human transmission involve close contact and have occurred primarily in healthcare settings, and they are suspected to result from repeated zoonotic introductions. In this study, we sequenced whole MERS-CoV genomes directly from respiratory samples collected from 23 confirmed MERS cases in the United Arab Emirates (UAE). These samples included cases from three nosocomial and three household clusters. The sequences were analysed for changes and relatedness with regard to the collected epidemiological data and other available MERS-CoV genomic data. Sequence analysis supports the epidemiological data within the clusters, and further, suggests that these clusters emerged independently. To understand how and when these clusters emerged, respiratory samples were taken from dromedary camels, a known host of MERS-CoV, in the same geographic regions as the human clusters. Middle East respiratory syndrome coronavirus genomes from six virus-positive animals were sequenced, and these genomes were nearly identical to those found in human patients from corresponding regions. These data demonstrate a genetic link for each of these clusters to a camel and support the hypothesis that human MERS-CoV diversity results from multiple zoonotic introductions. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH","dromedary camel; epidemiology; genomics; middle east respiratory syndrome; viral pathogens; zoonoses","isoleucine; nucleotide; threonine; Abu Dhabi; amplicon; Article; consensus sequence; dromedary; Dubai; gene sequence; genetic variability; human; major clinical study; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; Oman; phylogeny; priority journal; Sanger sequencing; sequence analysis; single nucleotide polymorphism; United Arab Emirates; virus genome; virus transmission; animal; camel; Coronavirus infection; genetics; Middle East respiratory syndrome coronavirus; transmission; virology; zoonosis; Animals; Camelus; Coronavirus Infections; Genome, Viral; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; United Arab Emirates; Zoonoses","Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20 (12), pp. 1999-2005. , https://doi.org/10.3201/eid2012.141280; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Poon, L.L., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerging Infectious Diseases, 21 (12), pp. 2197-2200. , https://doi.org/10.3201/eid2112.151132; Al Hosani, F.I., Pringle, K., Al Mulla, M., Kim, L., Pham, H., Alami, N.N., Gerber, S.I., Response to emergence of Middle East respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014 (2016) Emerging Infectious Diseases, 22 (7), pp. 1162-1168. , https://doi.org/10.3201/eid2207.160040; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) mBio, 5 (2), pp. e00814-e00884. , https://doi.org/10.1128/mbio.00884-14; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Mazet, J.A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) mBio, 8 (2), pp. e00317-e00373. , https://doi.org/10.1128/mbio.00373-17; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Team, K.M.-C.I., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New England Journal of Medicine, 369 (5), pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 370 (26), pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3 (6), pp. e00412-e00473; Bolles, M., Donaldson, E., Baric, R., SARS-CoV and emergent coronaviruses: Viral determinants of interspecies transmission (2011) Current Opinion in Virology, 1 (6), pp. 624-634. , https://doi.org/10.1016/j.coviro.2011.10.012; Borucki, M.K., Lao, V., Hwang, M., Gardner, S., Adney, D., Munster, V., Allen, J.E., Correction: Middle East respiratory syndrome coronavirus intra-host populations are characterized by numerous high frequency variants (2016) PLoS ONE, 11 (4). , https://doi.org/10.1371/journal.pone.0154424; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Lipkin, W.I., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) mBio, 5 (3), pp. e01114-e01146. , https://doi.org/10.1128/mbio.01146-14; Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303 (5664), pp. 1666-1669. , https://doi.org/10.1126/science.1092002; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Kim, Y.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388 (10048), pp. 994-1001. , https://doi.org/10.1016/S0140-6736(16)30623-7; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Muller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerging Infectious Diseases, 20 (8), pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Memish, Z.A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382 (9909), pp. 1993-2002. , https://doi.org/10.1016/S0140-6736(13)61887-5; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Memish, Z.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) mBio, 5 (1), pp. e01013-e01062. , https://doi.org/10.1128/mbio.01062-13; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 371 (14), pp. 1359-1360. , https://doi.org/10.1056/NEJMc1409847#SA1; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., Memish, Z.A., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2014) Clinical Infectious Diseases, 60 (3), pp. 369-377. , https://doi.org/10.1093/cid/ciu812; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Molecular Biology and Evolution, 29 (8), pp. 1969-1973. , https://doi.org/10.1093/molbev/mss075; Edgar, R.C., MUSCLE: A multiple sequence alignment method with reduced time and space complexity (2004) BMC Bioinformatics, 5, p. 113. , https://doi.org/10.1186/1471-2105-5-113; Ferguson, N.M., Van Kerkhove, M.D., Identification of MERS-CoV in dromedary camels (2014) The Lancet. Infectious Diseases, 14 (2), pp. 93-94. , https://doi.org/10.1016/S1473-3099(13)70691-1; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Systematic Biology, 59 (3), pp. 307-321. , https://doi.org/10.1093/sysbio/syq010; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Ghobashy, H., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) The Lancet. Infectious Diseases, 14 (2), pp. 140-145. , https://doi.org/10.1016/s1473-3099(13)70690-x; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Osterhaus, A., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2015) Science, 351 (6268), pp. 77-81. , https://doi.org/10.1126/science.aad1283; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerging Infectious Diseases, 20 (7), pp. 1231-1234. , https://doi.org/10.3201/eid2007.140571; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Elkheir, K.A., Al Kaabi, N., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerging Infectious Diseases, 22 (4), pp. 647-656. , https://doi.org/10.3201/eid2204.151615; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evolution, 1 (1), p. vev003. , https://doi.org/10.1093/ve/vev003; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) New England Journal of Medicine, 369 (18), pp. 1761-1762. , https://doi.org/10.1056/NEJMc1311004; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infectious Diseases, 20 (6), pp. 1012-1015. , https://doi.org/10.3201/eid2006.140402; Muhairi, S.A., Hosani, F.A., Eltahir, Y.M., Mulla, M.A., Yusof, M.F., Serhan, W.S., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52 (6), pp. 848-854. , https://doi.org/10.1007/s11262-016-1367-1; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerging Infectious Diseases, 20 (12), pp. 2093-2095. , https://doi.org/10.3201/eid2012.141026; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Eurosurveillance Weekly, 19 (16), p. 20781; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Madani, T.A., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) New England Journal of Medicine, 372 (9), pp. 846-854. , https://doi.org/10.1056/NEJMoa1408636; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Yi, S.J., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Eurosurveillance Weekly, 20 (25), pp. 1-6; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Haagmans, B.L., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerging Infectious Diseases, 20 (8), pp. 1339-1342. , https://doi.org/10.3201/eid2008.140663; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254. , https://doi.org/10.1038/nature12005; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Eurosurveillance Weekly, 18 (50), p. 20662. , https://doi.org/10.2807/1560-7917.es2013.18.50.20662; Reusken, C.B., Chrispijn Schilp, V., De Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., Koopmans, M.P., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerging Infectious Diseases, 22 (6), p. 1129. , https://doi.org/10.3201/eid2206.152113; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Eurosurveillance Weekly, 19 (23); Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) The Lancet. Infectious diseases., 13 (10), pp. 859-866. , https://doi.org/10.1016/s1473-3099(13)70164-6; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerging Infectious Diseases, 20 (8), pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84. , https://doi.org/10.1126/science.aac8608; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Sutter, G., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) Journal of Virology, 87 (21), pp. 11950-11954. , https://doi.org/10.1128/jvi.01672-13; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proceedings of the National Academy of Sciences of the USA, 102 (7), pp. 2430-2435. , https://doi.org/10.1073/pnas.0409608102; Treangen, T.J., Ondov, B.D., Koren, S., Phillippy, A.M., The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes (2014) Genome Biology, 15 (11), p. 524. , https://doi.org/10.1186/PREACCEPT-2573980311437212; Wong, S.K., Li, W., Moore, M.J., Choe, H., Farzan, M., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 (2004) Journal of Biological Chemistry, 279 (5), pp. 3197-3201. , https://doi.org/10.1074/jbc.C300520200; (2017) WHO Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, 12/4/2017., Retrieved from; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721","Tong, S.; Division of Viral Diseases, Centers for Disease Control and PreventionUnited States; email: sot1@cdc.gov",,"Wiley-VCH Verlag",18631959,,,"29239118","English","Zoonoses Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85038026283 "Wang L., Shi W., Chappell J.D., Joyce M.G., Zhang Y., Kanekiyo M., Becker M.M., Doremalen N., Fischer R., Wang N., Corbett K.S., Choe M., Mason R.D., Van Galen J.G., Zhou T., Saunders K.O., Tatti K.M., Haynes L.M., Kwong P.D., Modjarrad K., Kong W.-P., McLellan J.S., Denison M.R., Munster V.J., Mascola J.R., Graham B.S.","35199353800;56739696500;7102682277;7103056909;57211357998;8575989600;7402282339;57201740575;55458514900;55782500200;36500702900;57002752800;23492997200;56607434200;7402989717;26640762900;6701375003;7101765135;57209046218;9243452100;7101828843;11140034400;7101971810;9332531900;7005343486;7201610365;","Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the Middle East respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape",2018,"Journal of Virology","92","10", e002002-17,"","",,18,"10.1128/JVI.002002-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046008693&doi=10.1128%2fJVI.002002-17&partnerID=40&md5=f125b41770b10b7d01315b383b54e6ae","Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Division of Viral Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Misook Choe and Kayvon Modjarrad, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Department of Surgery, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States","Wang, L., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Shi, W., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Chappell, J.D., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Joyce, M.G., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, Misook Choe and Kayvon Modjarrad, Walter Reed Army Institute of Research, Silver Spring, MD, United States; Zhang, Y., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Kanekiyo, M., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Becker, M.M., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Doremalen, N., Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Fischer, R., Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Wang, N., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Corbett, K.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Choe, M., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Mason, R.D., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Van Galen, J.G., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Zhou, T., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Saunders, K.O., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, Department of Surgery, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States; Tatti, K.M., Division of Viral Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Haynes, L.M., Division of Viral Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Kwong, P.D., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Modjarrad, K., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Kong, W.-P., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; McLellan, J.S., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Denison, M.R., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Munster, V.J., Virus Ecology Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Mascola, J.R., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. The potential for a future pandemic originating from animal reservoirs or health care-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell cloning strategy, we have identified and characterized multiple neutralizing monoclonal antibodies (MAbs) specifically binding to the receptor-binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific MAbs tended to have greater neutralizing potency than non-RBD S1- specific MAbs. Six RBD-specific and five S1-specific MAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined cocrystal structures for two MAbs targeting the RBD from different angles and show they can bind the RBD only in the ""out"" position. We then showed that selected RBD-specific, non-RBD S1-specific, and S2-specific MAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD MAbs delayed the emergence of escape mutations in a cell-based virus escape assay. These studies identify MAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERSCoV neutralization and for developing more effective interventions to prevent or treat MERS-CoV infections. © 2018 American Society for Microbiology.","Escape mutation; MERS-CoV; Monoclonal antibody; Protection; RBD; S1","coronavirus spike glycoprotein; DNA vaccine; monoclonal antibody; neutralizing antibody; unclassified drug; viral protein; viral protein S1; virus vaccine; coronavirus spike glycoprotein; monoclonal antibody; neutralizing antibody; virus antibody; animal cell; animal experiment; animal model; animal tissue; antibody combining site; antibody structure; antigen binding; Article; binding site; cell assay; controlled study; crystal structure; human; human cell; immunization; lung infection; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; mutation; nonhuman; priority journal; protein domain; receptor binding; rhesus monkey; structure analysis; virus escape assay; virus neutralization; virus replication; animal; chemistry; Coronavirus infection; immunology; metabolism; Middle East respiratory syndrome coronavirus; vaccination; X ray crystallography; Animals; Antibodies, Monoclonal; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Crystallography, X-Ray; Humans; Macaca mulatta; Mice; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Vaccination","Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47, p. e181. , https://doi.org/10.1038/emm.2015.76; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Team, K.M.-C.I., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Memish, Z.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761. , https://doi.org/10.1016/S1473-3099(13)70204-4; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382, pp. 694-699. , https://doi.org/10.1016/S0140-6736(13)61492-0; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Enouf, V., Ferguson, N.M., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56. , https://doi.org/10.1016/S1473-3099(13)70304-9; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015. , https://doi.org/10.3201/eid2006.140402; Graham, B.S., Ambrosino, D.M., History of passive antibody administration for prevention and treatment of infectious diseases (2015) Curr Opin HIV AIDS, 10, pp. 129-134. , https://doi.org/10.1097/COH.0000000000000154; Cavanagh, D., Coronavirus IBV: structural characterization of the spike protein (1983) J Gen Virol, 64, pp. 2577-2583; Buchholz, U.J., Bukreyev, A., Yang, L., Lamirande, E.W., Murphy, B.R., Subbarao, K., Collins, P.L., Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity (2004) Proc Natl Acad Sci U S A, 101, pp. 9804-9809. , https://doi.org/10.1073/pnas.0403492101; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , https://doi.org/10.1038/nature12328; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993. , https://doi.org/10.1038/cr.2013.92; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87, pp. 9379-9383. , https://doi.org/10.1128/JVI.01277-13; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112, pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci U S A, 112, pp. 10473-10478. , https://doi.org/10.1073/pnas.1510199112; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Yan, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249. , https://doi.org/10.1038/cr.2015.113; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, p. 234ra259. , https://doi.org/10.1126/scitranslmed.3008140; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Marasco, W.A., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111, pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Dimitrov, D.S., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805. , https://doi.org/10.1128/JVI.00912-14; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Zhou, Y., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053. , https://doi.org/10.1128/JVI.00433-14; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712. , https://doi.org/10.1038/ncomms8712; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., Yu, Y., Tan, W., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg Microbes Infect, 6, p. e60. , https://doi.org/10.1038/emi.2017.50; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Wang, X., Structural basis for the neutralization of MERSCoV by a human monoclonal antibody MERS-27 (2015) Sci Rep, 5, p. 13133. , https://doi.org/10.1038/srep13133; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Zhou, T., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6, p. 8223. , https://doi.org/10.1038/ncomms9223; Chen, Z., Bao, L., Chen, C., Zou, T., Xue, Y., Li, F., Lv, Q., Jin, Q., Human neutralizing monoclonal antibody efficiently inhibits MERS-CoV replication in common marmoset (2017) J Infect Dis, 215, pp. 1807-1815. , https://doi.org/10.1093/infdis/jix209; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Marasco, W.A., 3B11-N, a monoclonal antibody against MERSCoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , https://doi.org/10.1016/j.virol.2016.01.004; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213, pp. 1557-1561. , https://doi.org/10.1093/infdis/jiw080; Sui, J., Deming, M., Rockx, B., Liddington, R.C., Zhu, Q.K., Baric, R.S., Marasco, W.A., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J Virol, 88, pp. 13769-13780. , https://doi.org/10.1128/JVI.02232-14; Coughlin, M.M., Prabhakar, B.S., Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential (2012) Rev Med Virol, 22, pp. 2-17. , https://doi.org/10.1002/rmv.706; Elshabrawy, H.A., Coughlin, M.M., Baker, S.C., Prabhakar, B.S., Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0050366; Kong, R., Louder, M.K., Wagh, K., Bailer, R.T., deCamp, A., Greene, K., Gao, H., Mascola, J.R., Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes (2015) J Virol, 89, pp. 2659-2671. , https://doi.org/10.1128/JVI.03136-14; Klein, F., Halper-Stromberg, A., Horwitz, J.A., Gruell, H., Scheid, J.F., Bournazos, S., Mouquet, H., Nussenzweig, M.C., HIV therapy by a combination of broadly neutralizing antibodies in humanized mice (2012) Nature, 492, pp. 118-122. , https://doi.org/10.1038/nature11604; Shingai, M., Nishimura, Y., Klein, F., Mouquet, H., Donau, O.K., Plishka, R., Buckler-White, A., Martin, M.A., Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia (2013) Nature, 503, pp. 277-280. , https://doi.org/10.1038/nature12746; Sundling, C., Phad, G., Douagi, I., Navis, M., Karlsson Hedestam, G.B., Isolation of antibody V(D)J sequences from single cell sorted rhesus macaque B cells (2012) J Immunol Methods, 386, pp. 85-93. , https://doi.org/10.1016/j.jim.2012.09.003; Mason, R.D., Welles, H.C., Adams, C., Chakrabarti, B.K., Gorman, J., Zhou, T., Nguyen, R., Roederer, M., Targeted isolation of antibodies directed against major sites of SIV Env vulnerability (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005537; Lingwood, D., McTamney, P.M., Yassine, H.M., Whittle, J.R., Guo, X., Boyington, J.C., Wei, C.J., Nabel, G.J., Structural and genetic basis for development of broadly neutralizing influenza antibodies (2012) Nature, 489, pp. 566-570. , https://doi.org/10.1038/nature11371; Prabakaran, P., Zhu, Z., Chen, W., Gong, R., Feng, Y., Streaker, E., Dimitrov, D.S., Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing (2012) Front Microbiol, 3, p. 277. , https://doi.org/10.3389/fmicb.2012.00277; Huang, C.C., Venturi, M., Majeed, S., Moore, M.J., Phogat, S., Zhang, M.Y., Dimitrov, D.S., Kwong, P.D., Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptorbinding site on gp120 (2004) Proc Natl Acad Sci U S A, 101, pp. 2706-2711. , https://doi.org/10.1073/pnas.0308527100; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERSCoV spike antigen (2017) Proc Natl Acad Sci U S A, 114, pp. E7348-E7357. , https://doi.org/10.1073/pnas.1707304114; van Doremalen, N., Falzarano, D., Ying, T., de Wit, E., Bushmaker, T., Feldmann, F., Okumura, A., Munster, V.J., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37. , https://doi.org/10.1016/j.antiviral.2017.03.025; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.A., Matsushita, H., Frieman, M.B., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Transl Med, 8, p. 326ra321. , https://doi.org/10.1126/scitranslmed.aaf1061; Zhao, J., Perera, R.A., Kayali, G., Meyerholz, D., Perlman, S., Peiris, M., Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection (2015) J Virol, 89, pp. 6117-6120. , https://doi.org/10.1128/JVI.00446-15; Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J.B., Fausther-Bovendo, H., Kobinger, G.P., Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp (2014) Nature, 514, pp. 47-53. , https://doi.org/10.1038/nature13777; Xu, L., Pegu, A., Rao, E., Doria-Rose, N., Beninga, J., McKee, K., Lord, D.M., Nabel, G.J., Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques (2017) Science, 358, pp. 85-90. , https://doi.org/10.1126/science.aan8630; Wang, J., Bardelli, M., Espinosa, D.A., Pedotti, M., Ng, T.S., Bianchi, S., Simonelli, L., Corti, D., A human bi-specific antibody against Zika virus with high therapeutic potential (2017) Cell, 171, pp. 229-241 and e215. , https://doi.org/10.1016/j.cell.2017.09.002; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryoelectron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27, pp. 119-129. , https://doi.org/10.1038/cr.2016.152; Gilman, M.S., Moin, S.M., Mas, V., Chen, M., Patel, N.K., Kramer, K., Zhu, Q., McLellan, J.S., Characterization of a prefusion-specific antibody that recognizes a quaternary, cleavage-dependent epitope on the RSV fusion glycoprotein (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005035; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , https://doi.org/10.1038/nature17200; Barouch, D.H., Yang, Z.Y., Kong, W.P., Korioth-Schmitz, B., Sumida, S.M., Truitt, D.M., Kishko, M.G., Nabel, G.J., A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates (2005) J Virol, 79, pp. 8828-8834. , https://doi.org/10.1128/JVI.79.14.8828-8834.2005; Catanzaro, A.T., Roederer, M., Koup, R.A., Bailer, R.T., Enama, M.E., Nason, M.C., Martin, J.E., Graham, B.S., Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine (2007) Vaccine, 25, pp. 4085-4092. , https://doi.org/10.1016/j.vaccine.2007.02.050; Naldini, L., Blomer, U., Gage, F.H., Trono, D., Verma, I.M., Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector (1996) Proc Natl Acad Sci U S A, 93, pp. 11382-11388; Yang, Z.Y., Werner, H.C., Kong, W.P., Leung, K., Traggiai, E., Lanzavecchia, A., Nabel, G.J., Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses (2005) Proc Natl Acad Sci U S A, 102, pp. 797-801. , https://doi.org/10.1073/pnas.0409065102; Wu, X., Zhou, T., Zhu, J., Zhang, B., Georgiev, I., Wang, C., Chen, X., Mascola, J.R., Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing (2011) Science, 333, pp. 1593-1602. , https://doi.org/10.1126/science.1207532; Wu, X., Yang, Z.Y., Li, Y., Hogerkorp, C.M., Schief, W.R., Seaman, M.S., Zhou, T., Mascola, J.R., Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 (2010) Science, 329, pp. 856-861. , https://doi.org/10.1126/science.1187659; Brochet, X., Lefranc, M.P., Giudicelli, V., IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis (2008) Nucleic Acids Res, 36, pp. W503-W508. , https://doi.org/10.1093/nar/gkn316; Giudicelli, V., Brochet, X., Lefranc, M.P., IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences (2011) Cold Spring Harb Protoc, 2011, pp. 695-715. , https://doi.org/10.1101/pdb.prot5633; Kong, R., Li, H., Georgiev, I., Changela, A., Bibollet-Ruche, F., Decker, J.M., Rowland-Jones, S.L., Shaw, G.M., Epitope mapping of broadly neutralizing HIV-2 human monoclonal antibodies (2012) J Virol, 86, pp. 12115-12128. , https://doi.org/10.1128/JVI.01632-12; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326. , https://doi.org/10.1016/S0076-6879(97)76066-X; Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., Leslie, A.G., iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM (2011) Acta Crystallogr D Biol Crystallogr, 67, pp. 271-281. , https://doi.org/10.1107/S0907444910048675; Evans, P.R., Murshudov, G.N., How good are my data and what is the resolution? (2013) Acta Crystallogr D Biol Crystallogr, 69, pp. 1204-1214; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674. , https://doi.org/10.1107/S0021889807021206; Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 12-21; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132. , https://doi.org/10.1107/S0907444904019158; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., PHENIX: building new software for automated crystallographic structure determination (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 1948-1954. , https://doi.org/10.1107/S0907444902016657; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; (2015) Public Health Service policy on humane care and use of laboratory animals, , NIH, Bethesda, MD; (2011) Guide for the care and use of laboratory animals, , 8th ed. National Academies Press, Washington, DC; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , https://doi.org/10.1128/JVI.03427-14; van Doremalen, N., Munster, V.J., Animal models of Middle East respiratory syndrome coronavirus infection (2015) Antiviral Res, 122, pp. 28-38. , https://doi.org/10.1016/j.antiviral.2015.07.005","Graham, B.S.; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: bgraham@nih.gov",,"American Society for Microbiology",0022538X,,JOVIA,"29514901","English","J. Virol.",Article,"Final",,Scopus,2-s2.0-85046008693 "Castaño-Rodriguez C., Honrubia J.M., Gutiérrez-Álvarez J., DeDiego M.L., Nieto-Torres J.L., Jimenez-Guardeño J.M., Regla-Nava J.A., Fernandez-Delgado R., Verdia-Báguena C., Queralt-Martín M., Kochan G., Perlman S., Aguilella V.M., Sola I., Enjuanes L.","55988452600;57202236213;57191845034;9437111700;35322971900;35793661000;37097924300;55986933600;55130631300;37017645100;26649509700;7102708317;6603875833;7003336781;7006565392;","Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis",2018,"mBio","9","3", e02325-17,"","",,11,"10.1128/mBio.02325-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047545266&doi=10.1128%2fmBio.02325-17&partnerID=40&md5=18554140a59ea4349a9b01e1893c1d21","Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States; Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdISNA, Pamplona, Navarra, Spain; Department of Microbiology, University of Iowa, Iowa City, IA, United States; Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, Castelló, Spain","Castaño-Rodriguez, C., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Honrubia, J.M., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Gutiérrez-Álvarez, J., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; DeDiego, M.L., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Nieto-Torres, J.L., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Jimenez-Guardeño, J.M., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Regla-Nava, J.A., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Fernandez-Delgado, R., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Verdia-Báguena, C., Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, Castelló, Spain; Queralt-Martín, M., Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States, Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, Castelló, Spain; Kochan, G., Immunomodulation Group, Navarrabiomed-Biomedical Research Centre, IdISNA, Pamplona, Navarra, Spain; Perlman, S., Department of Microbiology, University of Iowa, Iowa City, IA, United States; Aguilella, V.M., Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, Castelló, Spain; Sola, I., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain; Enjuanes, L., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain","Viroporins are viral proteins with ion channel (IC) activity that play an important role in several processes, including virus replication and pathogenesis. While many coronaviruses (CoVs) encode two viroporins, severe acute respiratory syndrome CoV (SARS-CoV) encodes three: proteins 3a, E, and 8a. Additionally, proteins 3a and E have a PDZ-binding motif (PBM), which can potentially bind over 400 cellular proteins which contain a PDZ domain, making them potentially important for the control of cell function. In the present work, a comparative study of the functional motifs included within the SARS-CoV viroporins was performed, mostly focusing on the roles of the IC and PBM of E and 3a proteins. Our results showed that the full-length E and 3a proteins were required for maximal SARS-CoV replication and virulence, whereas viroporin 8a had only a minor impact on these activities. A virus missing both the E and 3a proteins was not viable, whereas the presence of either protein with a functional PBM restored virus viability. E protein IC activity and the presence of its PBM were necessary for virulence in mice. In contrast, the presence or absence of the homologous motifs in protein 3a did not influence virus pathogenicity. Therefore, dominance of the IC and PBM of protein E over those of protein 3a was demonstrated in the induction of pathogenesis in mice. IMPORTANCE Collectively, these results demonstrate key roles for the ion channel and PBM domains in optimal virus replication and pathogenesis and suggest that the viral viroporins and PBMs are suitable targets for antiviral therapy and for mutation in attenuated SARS-CoV vaccines. © 2018 Castaño-Rodriguez et al.","Coronavirus; PBM; PDZ; SARS-CoV; Viroporins","amino acid; ion channel; unclassified drug; viral protein; viroporin 3a; viroporin 8a; viroporin E; 3a protein, severe acute respiratory syndrome coronavirus; E protein, SARS coronavirus; viral protein; virus envelope protein; amino acid analysis; Article; cellular distribution; human; in vitro study; in vivo study; lipid bilayer; nonhuman; priority journal; protein domain; protein motif; SARS coronavirus; virogenesis; virus pathogenesis; virus replication; virus virulence; animal; Bagg albino mouse; Chlorocebus aethiops; female; genetics; metabolism; mouse; pathogenicity; physiology; SARS coronavirus; severe acute respiratory syndrome; Vero cell line; virology; virulence; Animals; Cercopithecus aethiops; Female; Humans; Mice; Mice, Inbred BALB C; SARS Virus; Severe Acute Respiratory Syndrome; Vero Cells; Viral Envelope Proteins; Viral Proteins; Virulence; Virus Replication","Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399. , https://doi.org/10.1126/science.1085952; Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , https://doi.org/10.1038/nm.3985; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci U S A, 113, pp. 3048-3053. , https://doi.org/10.1073/pnas.1517719113; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Bermingham, A., Chand, M., Brown, C., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17, p. 20290; Nieto-Torres, J.L., Verdia-Baguena, C., Castano-Rodriguez, C., Aguilella, V.M., Enjuanes, L., Relevance of viroporin ion channel activity on viral replication and pathogenesis (2015) Viruses, 7, pp. 3552-3573. , https://doi.org/10.3390/v7072786; Pinto, L.H., Holsinger, L.J., Lamb, R.A., Influenza virus M2 protein has ion channel activity (1992) Cell, 69, pp. 517-528. , https://doi.org/10.1016/0092-8674(92)90452-I; Ewart, G.D., Sutherland, T., Gage, P.W., Cox, G.B., The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels (1996) J Virol, 70, pp. 7108-7115; Pavlovic´, D., Neville, D.C., Argaud, O., Blumberg, B., Dwek, R.A., Fischer, W.B., Zitzmann, N., The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives (2003) Proc Natl Acad Sci U S A, 100, pp. 6104-6108. , https://doi.org/10.1073/pnas.1031527100; Hyser, J.M., Collinson-Pautz, M.R., Utama, B., Estes, M.K., Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity (2010) Mbio, 1, pp. e00265-10. , https://doi.org/10.1128/mBio.00265-10; Liao, Y., Lescar, J., Tam, J.P., Liu, D.X., Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability (2004) Biochem Biophys Res Commun, 325, pp. 374-380. , https://doi.org/10.1016/j.bbrc.2004.10.050; Surya, W., Li, Y., Verdia-Baguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res, 201, pp. 61-66. , https://doi.org/10.1016/j.virusres.2015.02.023; Ao, D., Sun, S.Q., Guo, H.C., Topology and biological function of enterovirus non-structural protein 2B as a member of the viroporin family (2014) Vet Res, 45, p. 87. , https://doi.org/10.1186/s13567-014-0087-6; Nieva, J.L., Madan, V., Carrasco, L., Viroporins: Structure and biological functions (2012) Nat Rev Microbiol, 10, pp. 563-574. , https://doi.org/10.1038/nrmicro2820; Hover, S., Foster, B., Barr, J.N., Mankouri, J., Viral dependence on cellular ion channels—an emerging anti-viral target? (2017) J Gen Virol, 98, pp. 345-351. , https://doi.org/10.1099/jgv.0.000712; Ichinohe, T., Pang, I.K., Iwasaki, A., Influenza virus activates inflammasomes via its intracellular M2 ion channel (2010) Nat Immunol, 11, pp. 404-410. , https://doi.org/10.1038/ni.1861; Zhang, K., Hou, Q., Zhong, Z., Li, X., Chen, H., Li, W., Wen, J., Zhong, F., Porcine reproductive and respiratory syndrome virus activates inflammasomes of porcine alveolar macrophages via its small envelope protein (2013) E. Virology, 442, pp. 156-162. , https://doi.org/10.1016/j.virol.2013.04.007; Ito, M., Yanagi, Y., Ichinohe, T., Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome (2012) Plos Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002857; Andrew, A., Strebel, K., HIV-1 Vpu targets cell surface markers CD4 and BST-2 through distinct mechanisms (2010) Mol Aspects Med, 31, pp. 407-417. , https://doi.org/10.1016/j.mam.2010.08.002; Griffin, S.D., Plugging the holes in hepatitis C virus antiviral therapy (2009) Proc Natl Acad Sci U S A, 106, pp. 12567-12568. , https://doi.org/10.1073/pnas.0906760106; Zhang, R., Wang, K., Lv, W., Yu, W., Xie, S., Xu, K., Schwarz, W., Sun, B., The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production (2014) Biochim Biophys Acta, 1838, pp. 1088-1095. , https://doi.org/10.1016/j.bbamem.2013.07.025; Zhang, R., Wang, K., Ping, X., Yu, W., Qian, Z., Xiong, S., Sun, B., The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis (2015) J Virol, 89, pp. 11383-11395. , https://doi.org/10.1128/JVI.01986-15; Wang, K., Lu, W., Chen, J., Xie, S., Shi, H., Hsu, H., Yu, W., Sun, B., PEDV ORF3 encodes an ion channel protein and regulates virus production (2012) FEBS Lett, 586, pp. 384-391. , https://doi.org/10.1016/j.febslet.2012.01.005; Lu, W., Zheng, B.J., Xu, K., Schwarz, W., Du, L., Wong, C.K., Chen, J., Sun, B., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release (2006) Proc Natl Acad Sci U S A, 103, pp. 12540-12545. , https://doi.org/10.1073/pnas.0605402103; Chen, C.C., Kruger, J., Sramala, I., Hsu, H.J., Henklein, P., Chen, Y.M., Fischer, W.B., ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations (2011) Biochim Biophys Acta, 1808, pp. 572-579. , https://doi.org/10.1016/j.bbamem.2010.08.004; Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Yasui, F., Kannagi, M., Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation (2006) FEBS Lett, 580, pp. 6807-6812. , https://doi.org/10.1016/j.febslet.2006.11.046; Freundt, E.C., Yu, L., Goldsmith, C.S., Welsh, S., Cheng, A., Yount, B., Liu, W., Lenardo, M.J., The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death (2010) J Virol, 84, pp. 1097-1109. , https://doi.org/10.1128/JVI.01662-09; Yuan, X., Li, J., Shan, Y., Yang, Z., Zhao, Z., Chen, B., Yao, Z., Cong, Y., Subcellular localization and membrane association of SARS-CoV 3a protein (2005) Virus Res, 109, pp. 191-202. , https://doi.org/10.1016/j.virusres.2005.01.001; Vennema, H., Godeke, G.J., Rossen, J., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Rottier, P.J.M., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBO J, 15, pp. 2020-2028; Verdia-Baguena, C., Nieto-Torres, J.L., Alcaraz, A., Dediego, M.L., Torres, J., Aguilella, V.M., Enjuanes, L., Coronavirus E protein forms ion channels with functionally and structurally involved membrane lipids (2012) Virology, 432, pp. 485-494. , https://doi.org/10.1016/j.virol.2012.07.005; Nieto-Torres, J.L., Dediego, M.L., Verdia-Baguena, C., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Castano-Rodriguez, C., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) Plos Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004077; Oostra, M., De Haan, C.A., Rottier, P.J., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J Virol, 81, pp. 13876-13888. , https://doi.org/10.1128/JVI.01631-07; Chen, C.Y., Ping, Y.H., Lee, H.C., Chen, K.H., Lee, Y.M., Chan, Y.J., Lien, T.C., Chen, Y.M., Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis (2007) J Infect Dis, 196, pp. 405-415. , https://doi.org/10.1086/519166; Piserchio, A., Spaller, M., Mierke, D.F., Targeting the PDZ domains of molecular scaffolds of transmembrane ion channels (2006) AAPS J, 8, pp. E396-E401. , https://doi.org/10.1007/BF02854911; Feng, W., Zhang, M., Organization and dynamics of PDZ-domainrelated supramodules in the postsynaptic density (2009) Nat Rev Neurosci, 10, pp. 87-99. , https://doi.org/10.1038/nrn2540; Guggino, W.B., Stanton, B.A., New insights into cystic fibrosis: Molecular switches that regulate CFTR (2006) Nat Rev Mol Cell Biol, 7, pp. 426-436. , https://doi.org/10.1038/nrm1949; Hung, A.Y., Sheng, M., PDZ domains: Structural modules for protein complex assembly (2002) J Biol Chem, 277, pp. 5699-5702. , https://doi.org/10.1074/jbc.R100065200; Munz, M., Hein, J., Biggin, P.C., The role of flexibility and conformational selection in the binding promiscuity of PDZ domains (2012) Plos Comput Biol, 8. , https://doi.org/10.1371/journal.pcbi.1002749; Luck, K., Charbonnier, S., Trave, G., The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains (2012) FEBS Lett, 586, pp. 2648-2661. , https://doi.org/10.1016/j.febslet.2012.03.056; Javier, R.T., Rice, A.P., Emerging theme: Cellular PDZ proteins as common targets of pathogenic viruses (2011) J Virol, 85, pp. 11544-11556. , https://doi.org/10.1128/JVI.05410-11; Lenfant, N., Polanowska, J., Bamps, S., Omi, S., Borg, J.P., Reboul, J., A genome-wide study of PDZ-domain interactions in C. Elegans reveals a high frequency of non-canonical binding (2010) BMC Genomics, 11, p. 671. , https://doi.org/10.1186/1471-2164-11-671; Gallardo, R., Ivarsson, Y., Schymkowitz, J., Rousseau, F., Zimmermann, P., Structural diversity of PDZ-lipid interactions (2010) Chembiochem, 11, pp. 456-467. , https://doi.org/10.1002/cbic.200900616; Jimenez-Guardeno, J.M., Nieto-Torres, J.L., Dediego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castano-Rodriguez, C., Enjuanes, L., The PDZbinding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) Plos Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004320; Teoh, K.T., Siu, Y.L., Chan, W.L., Schluter, M.A., Liu, C.J., Peiris, J.S., Bruzzone, R., Nal, B., The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis (2010) Mol Biol Cell, 21, pp. 3838-3852. , https://doi.org/10.1091/mbc.E10-04-0338; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) Plos Pathog, 3. , https://doi.org/10.1371/journal.ppat.0030005; Almazan, F., Dediego, M.L., Galan, C., Escors, D., Alvarez, E., Ortego, J., Sola, I., Enjuanes, L., Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis (2006) J Virol, 80, pp. 10900-10906. , https://doi.org/10.1128/JVI.00385-06; Bezrukov, S.M., Vodyanoy, I., Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states (1993) Biophys J, 64, pp. 16-25. , https://doi.org/10.1016/S0006-3495(93)81336-5; Aguilella, V.M., Queralt-Martin, M., Aguilella-Arzo, M., Alcaraz, A., Insights on the permeability of wide protein channels: Measurement and interpretation of ion selectivity (2011) Integr Biol, 3, pp. 159-172. , https://doi.org/10.1039/c0ib00048e; Hille, B., (2001) Ion Channels of Excitable Membranes, , 3rd ed. Sinauer Associates, Sunderland, MA; Hodgkin, A.L., Katz, B., The effect of sodium ions on the electrical activity of giant axon of the squid (1949) J Physiol, 108, pp. 37-77. , https://doi.org/10.1113/jphysiol.1949.sp004310; Hsu, H.J., Fischer, W.B., In silico investigations of possible routes of assembly of ORF 3a from SARS-CoV (2012) J Mol Model, 18, pp. 501-514. , https://doi.org/10.1007/s00894-011-1092-6; Kruger, J., Fischer, W.B., Assembly of viral membrane proteins (2009) J Chem Theory Comput, 5, pp. 2503-2513. , https://doi.org/10.1021/ct900185n; Nieto-Torres, J.L., Dediego, M.L., Alvarez, E., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Llorente, M., Kremer, L., Enjuanes, L., Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein (2011) Virology, 415, pp. 69-82. , https://doi.org/10.1016/j.virol.2011.03.029; Bolte, S., Cordelieres, F.P., A guided tour into subcellular colocalization analysis in light microscopy (2006) J Microsc, 224, pp. 213-232. , https://doi.org/10.1111/j.1365-2818.2006.01706.x; Nieto-Torres, J.L., Verdia-Baguena, C., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Torres, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome (2015) Virology, 485, pp. 330-339. , https://doi.org/10.1016/j.virol.2015.08.010; Berridge, M.J., Lipp, P., Bootman, M.D., The versatility and universality of calcium signalling (2000) Nat Rev Mol Cell Biol, 1, pp. 11-21. , https://doi.org/10.1038/35036035; Dediego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Alvarez, E., Oliveros, J.C., Zhao, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) Plos Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002315; Dediego, M.L., Alvarez, E., Almazan, F., Rejas, M.T., Lamirande, E., Roberts, A., Shieh, W.J., Enjuanes, L., A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo (2007) J Virol, 81, pp. 1701-1713. , https://doi.org/10.1128/JVI.01467-06; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J Virol, 79, pp. 14909-14922. , https://doi.org/10.1128/JVI.79.23.14909-14922.2005; Chan, C.M., Tsoi, H., Chan, W.M., Zhai, S., Wong, C.O., Yao, X., Chan, W.Y., Chan, H.Y., The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function (2009) Int J Biochem Cell Biol, 41, pp. 2232-2239. , https://doi.org/10.1016/j.biocel.2009.04.019; Dediego, M.L., Nieto-Torres, J.L., Regla-Nava, J.A., Jimenez-Guardeno, J.M., Fernandez-Delgado, R., Fett, C., Castano-Rodriguez, C., Enjuanes, L., Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival (2014) J Virol, 88, pp. 913-924. , https://doi.org/10.1128/JVI.02576-13; Chiu, R.W., Chim, S.S., Tong, Y.K., Fung, K.S., Chan, P.K., Zhao, G.P., Lo, Y.M., Tracing SARS-coronavirus variant with large genomic deletion (2005) Emerg Infect Dis, 11, pp. 168-170. , https://doi.org/10.3201/eid1101.040544; Zhang, M., Zeng, C.Q., Morris, A.P., Estes, M.K., A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells (2000) J Virol, 74, pp. 11663-11670. , https://doi.org/10.1128/JVI.74.24.11663-11670.2000; Minakshi, R., Padhan, K., The YXXPhi motif within the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is crucial for its intracellular transport (2014) Virol J, 11, p. 75. , https://doi.org/10.1186/1743-422X-11-75; Jimenez-Guardeno, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., Dediego, M.L., Castano-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) Plos Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005215; Ganti, K., Broniarczyk, J., Manoubi, W., Massimi, P., Mittal, S., Pim, D., Szalmas, A., Banks, L., The human papillomavirus E6 PDZ binding motif: From life cycle to malignancy (2015) Viruses, 7, pp. 3530-3551. , https://doi.org/10.3390/v7072785; Caillet-Saguy, C., Maisonneuve, P., Delhommel, F., Terrien, E., Babault, N., Lafon, M., Cordier, F., Wolff, N., Strategies to interfere with PDZmediated interactions in neurons: What we can learn from the rabies virus (2015) Prog Biophys Mol Biol, 119, pp. 53-59. , https://doi.org/10.1016/j.pbiomolbio.2015.02.007; Jackson, D., Hossain, M.J., Hickman, D., Perez, D.R., Lamb, R.A., A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity (2008) Proc Natl Acad Sci U S A, 105, pp. 4381-4386. , https://doi.org/10.1073/pnas.0800482105; Handa, Y., Durkin, C.H., Dodding, M.P., Way, M., Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling (2013) Cell Host Microbe, 14, pp. 51-62. , https://doi.org/10.1016/j.chom.2013.06.006; Fett, C., Dediego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirusmediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking (2013) E Protein. J Virol, 87, pp. 6551-6559. , https://doi.org/10.1128/JVI.00087-13; Dediego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology, 376, pp. 379-389. , https://doi.org/10.1016/j.virol.2008.03.005; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Fernandez-Delgado, R., Fett, C., Castano-Rodriguez, C., Perlman, S., Dediego, M.L., Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates (2015) J Virol, 89, pp. 3870-3887. , https://doi.org/10.1128/JVI.03566-14; Dediego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Usera, F., Enjuanes, L., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res, 194, pp. 124-137. , https://doi.org/10.1016/j.virusres.2014.07.024; Montal, M., Mueller, P., Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties (1972) Proc Natl Acad Sci U S A, 69, pp. 3561-3566. , https://doi.org/10.1073/pnas.69.12.3561; Alcaraz, A., Nestorovich, E.M., Lopez, M.L., Garcia-Gimenez, E., Bezrukov, S.M., Aguilella, V.M., Diffusion, exclusion, and specific binding in a large channel: A study of OmpF selectivity inversion (2009) Biophys J, 96, pp. 56-66. , https://doi.org/10.1016/j.bpj.2008.09.024; Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis (2012) Nat Methods, 9, pp. 671-675. , https://doi.org/10.1038/nmeth.2089","Enjuanes, L.; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de MadridSpain; email: L.Enjuanes@cnb.csic.es",,"American Society for Microbiology",21612129,,,"29789363","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85047545266 "Ahmed A.E., Al-Jahdali H., Alshukairi A.N., Alaqeel M., Siddiq S.S., Alsaab H., Sakr E.A., Alyahya H.A., Alandonisi M.M., Subedar A.T., Aloudah N.M., Baharoon S., Alsalamah M.A., Al Johani S., Alghamdi M.G.","35278332600;6603777947;15821823600;57192714520;57201396297;57201390059;57201398195;57201397225;55989163300;57201393771;57214293420;24477253100;57194152353;26648040700;55936106800;","Early identification of pneumonia patients at increased risk of Middle East respiratory syndrome coronavirus infection in Saudi Arabia",2018,"International Journal of Infectious Diseases","70",,,"51","56",,6,"10.1016/j.ijid.2018.03.005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044570409&doi=10.1016%2fj.ijid.2018.03.005&partnerID=40&md5=c3fe6e24b1ea26ffbbeb0f911e5d8811","King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia; King Fahad General Hospital, Jeddah, Saudi Arabia; King Saud University, Riyadh, Saudi Arabia","Ahmed, A.E., King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; Al-Jahdali, H., King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; Alshukairi, A.N., King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia; Alaqeel, M., King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; Siddiq, S.S., King Fahad General Hospital, Jeddah, Saudi Arabia; Alsaab, H., King Fahad General Hospital, Jeddah, Saudi Arabia; Sakr, E.A., King Fahad General Hospital, Jeddah, Saudi Arabia; Alyahya, H.A., King Fahad General Hospital, Jeddah, Saudi Arabia; Alandonisi, M.M., King Fahad General Hospital, Jeddah, Saudi Arabia; Subedar, A.T., King Fahad General Hospital, Jeddah, Saudi Arabia; Aloudah, N.M., King Saud University, Riyadh, Saudi Arabia; Baharoon, S., King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; Alsalamah, M.A., King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; Al Johani, S., King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health Affairs, Riyadh, 11426, Saudi Arabia; Alghamdi, M.G., King Fahad General Hospital, Jeddah, Saudi Arabia","Background: The rapid and accurate identification of individuals who are at high risk of Middle East respiratory syndrome coronavirus (MERS-CoV) infection remains a major challenge for the medical and scientific communities. The aim of this study was to develop and validate a risk prediction model for the screening of suspected cases of MERS-CoV infection in patients who have developed pneumonia. Methods: A two-center, retrospective case–control study was performed. A total of 360 patients with confirmed pneumonia who were evaluated for MERS-CoV infection by real-time reverse transcription polymerase chain reaction (rRT-PCR) between September 1, 2012 and June 1, 2016 at King Abdulaziz Medical City in Riyadh and King Fahad General Hospital in Jeddah, were included. According to the rRT-PCR results, 135 patients were positive for MERS-CoV and 225 were negative. Demographic characteristics, clinical presentations, and radiological and laboratory findings were collected for each subject. Results: A risk prediction model to identify pneumonia patients at increased risk of MERS-CoV was developed. The model included male sex, contact with a sick patient or camel, diabetes, severe illness, low white blood cell (WBC) count, low alanine aminotransferase (ALT), and high aspartate aminotransferase (AST). The model performed well in predicting MERS-CoV infection (area under the receiver operating characteristics curves (AUC) 0.8162), on internal validation (AUC 0.8037), and on a goodness-of-fit test (p = 0.592). The risk prediction model, which produced an optimal probability cut-off of 0.33, had a sensitivity of 0.716 and specificity of 0.783. Conclusions: This study provides a simple, practical, and valid algorithm to identify pneumonia patients at increased risk of MERS-CoV infection. This risk prediction model could be useful for the early identification of patients at the highest risk of MERS-CoV infection. Further validation of the prediction model on a large prospective cohort of representative patients with pneumonia is necessary. © 2018 The Author(s)","Early diagnosis; MERS-CoV case definitions; Pneumonia; Saudi Arabia","alanine aminotransferase; aspartate aminotransferase; alanine aminotransferase; adolescent; adult; aged; alanine aminotransferase level; algorithm; Article; aspartate aminotransferase level; camel; case control study; controlled study; diabetes mellitus; disease severity; female; fever; gastrointestinal symptom; high risk patient; human; leukocyte count; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; pneumonia; real time polymerase chain reaction; respiratory tract disease; retrospective study; reverse transcription polymerase chain reaction; Saudi Arabia; sensitivity and specificity; animal; clinical trial; complication; Coronavirus infection; early diagnosis; genetics; immunology; isolation and purification; metabolism; middle aged; multicenter study; pneumonia; predictive value; program development; risk; Saudi Arabia; validation study; very elderly; virology; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Alanine Transaminase; Animals; Camelus; Case-Control Studies; Coronavirus Infections; Early Diagnosis; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Pneumonia; Predictive Value of Tests; Program Development; Real-Time Polymerase Chain Reaction; Retrospective Studies; Risk; Saudi Arabia; Young Adult","Ahmed, A.E., McClish, D.K., Schubert, C.M., Accuracy and cost comparison in medical testing using sequential testing strategies (2011) Stat Med, pp. 3416-3430; Ahmed, A.E., Schubert, C.M., McClish, D.K., Reducing cost in sequential testing: a limit of indifference approach (2013) Stat Med, pp. 2715-2727; Ahmed, A.E., McClish, D.K., Schubert, C.M., Believe the extreme (BE) strategy at the optimal point: what strategy will it become? (2015) Austin Biom Biostat, 2 (3), p. 1022; Ahmed, A.E., Diagnostic delays in 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2017) Int J Infect Dis, 1 (62), pp. 47-51; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2017) Epidemiol Infect, pp. 1-7; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (1), p. 615; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: an update (2016) J Infect Public Health, pp. 216-219; Al-Dorzi, H.M., Aldawood, A.S., Khan, R., Baharoon, S., Alchin, J.D., Matroud, A.A., The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study (2016) Ann Intens Care, p. 101; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients (2014) Clin Infect Dis, pp. 160-165; Aleanizy, F.S., Mohmed, N., Alqahtani, F.Y., Mohamed, R.A., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study (2017) BMC Infect Dis, p. 23; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, p. 49; Anon, Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV) (2018), http://apps.who.int/iris/bitstream/10665/176982/1/WHO_MERS_LAB_15.1_eng.pdf?ua=1; Anon, Case definition and surveillance guidance - updated June 2015 (2018), www.moh.gov.sa/en/CCC/Regulations/Case%20Definition.pdf; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically ill patients with the Middle East respiratory syndrome: a multicenter retrospective cohort study (2017) Crit Care Med, 45 (10), pp. 1683-1695; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, pp. 752-761; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) MBio, 5 (4). , e01450-14; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis (2016) Int J Infect Dis, pp. 129-133; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Clinical presentation and outcomes of Middle East Respiratory Syndrome in the Republic of Korea (2016) Infect Chemother, 48 (June (2)), pp. 118-126; Corman, V., Müller, M., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Eurosurveillance, 17 (49), p. 20334; Corman, V., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Eurosurveillance, 17 (39); Etzioni, R., Kooperberg, C., Pepe, M., Smith, R., Gann, P.H., Combining biomarkers to detect disease with application to prostate cancer (2003) Biostatistics, pp. 523-538; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, pp. 207-213; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14 (5), pp. 464-470; Al Muhairi, S., Al Hosani, F., Eltahir, Y.M., Al Mulla, M., Yusof, M.F., Serhan, W.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52 (6), pp. 848-854; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Pepe, M.S., Thompson, M.L., Combining diagnostic test results to increase accuracy (2000) Biostatistics, pp. 123-140; Reeves, T., Samy, A.M., Peterson, A.T., MERS-CoV geography and ecology in the Middle East: analyses of reported camel exposures and a preliminary risk map (2015) BMC Res Notes, p. 801; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29 (December), pp. 301-306; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Shen, C., On the principles of believe the positive and believe the negative for diagnosis using two continuous tests (2008) J Data Sci, pp. 189-205; Sherbini, N., Iskandrani, A., Kharaba, A., Khalid, G., Abduljawad, M., Hamdan, A.J., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data (2017) J Epidemiol Glob Health, pp. 29-36; Sidransky, D., Emerging molecular markers of cancer (2002) Nat Rev Cancer, p. 210; Su, J.Q., Liu, J.S., Linear combinations of multiple diagnostic markers (1993) J Am Stat Assoc, pp. 1350-1355; Sung, H., Yong, D., Ki, C.S., Kim, J.S., Seong, M.W., Lee, H., Comparative evaluation of three homogenization methods for isolating Middle East respiratory syndrome coronavirus nucleic acids from sputum samples for real-time reverse transcription PCR (2016) Ann Laborat Med, pp. 457-462; Thompson, M.L., Assessing the diagnostic accuracy of a sequence of tests (2003) Biostatistics, pp. 341-351; Youden, W.J., Index for rating diagnostic tests (1950) Cancer, pp. 32-35; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between Africa and the Middle East (2016) Trop Anim Health Prod, pp. 1277-1282; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820","Ahmed, A.E.; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard – Health AffairsSaudi Arabia; email: ahmeda5@vcu.edu",,"Elsevier B.V.",12019712,,IJIDF,"29550445","English","Int. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85044570409 "Choi J.-S., Kim J.-S.","57213021217;57202453447;","Factors influencing emergency nurses’ ethical problems during the outbreak of MERS-CoV",2018,"Nursing Ethics","25","3",,"335","345",,6,"10.1177/0969733016648205","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041233225&doi=10.1177%2f0969733016648205&partnerID=40&md5=89c7b556aa1d3cc945ea0f67e83a502e","Gachon University, South Korea","Choi, J.-S., Gachon University, South Korea; Kim, J.-S., Gachon University, South Korea","Background: Whenever there has been a worldwide contagious disease outbreak, there have been reports of infection and death of healthcare workers. Particularly because emergency nurses have contact with patients on the front line, they experience ethical problems in nursing while struggling with infectious diseases in an unfavorable environment. Objective: The objective of this study was to explore emergency nurses’ ethical problems and to identify factors influencing these problems during the outbreak of Middle East respiratory syndrome–coronavirus in Korea. Design and sample: For this cross-sectional study, a questionnaire survey was conducted with emergency nurses working in six hospitals selected through convenience sampling from the hospitals designated for Middle East respiratory syndrome–coronavirus patients in the capital area. Methods: Data were collected from 169 emergency nurses in Korea during August 2015. Ethical considerations: This research was approved by the Institutional Review Board of G University in Korea. Results: The findings of this study suggest that during the Middle East respiratory syndrome–coronavirus outbreak, emergency nurses experienced ethical problems tied to a mind-set of avoiding patients. Three factors were found to influence emergency nurses’ ethical problems (in order of influence): cognition of social stigmatization, level of agreement with infection control measures, and perceived risk. Conclusion: Through this study, we obtained information on emergency nurses’ ethical problems during the Middle East respiratory syndrome–coronavirus outbreak and identified the factors that influence them. As found in this study, nurses’ ethical problems were influenced most by cognitions of social stigmatization. Accordingly, to support nurses confidently care for people during future health disasters, it is most urgent to promote appropriate public consciousness that encourages healthcare workers. © 2016, © The Author(s) 2016.","Emergency room; ethical problems; influencing factors; Middle East respiratory syndrome–coronavirus; nurses","adult; cross-sectional study; epidemic; ethics; female; human; medical ethics; middle aged; Middle East respiratory syndrome coronavirus; nurse; psychology; questionnaire; South Korea; Adult; Cross-Sectional Studies; Disease Outbreaks; Ethics, Nursing; Female; Humans; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Nurses; Republic of Korea; Surveys and Questionnaires","Current outbreak situation in the Republic of Korea, , http://www.mers.go.kr/mers/html/jsp/Menu_B/content_B1.jsp, accessed 30 October 2015; Lee, K.H., Emergency medical services in response to the Middle East respiratory syndrome outbreak in Korea (2015) J Korean Med Assoc, 58 (7), pp. 611-616; Kim, H., Healthcare policy and healthcare utilization behavior to improve hospital infection control after the Middle East respiratory syndrome outbreak (2015) J Korean Med Assoc, 58 (7), pp. 598-605; (2015) Current situation of Middle East respiratory syndrome in Korea, , http://dj.kbs.co.kr/resources/2015-06-08, accessed 30 October 2015; Suwantarat, N., Apisarnthanarak, A., Risks to healthcare workers with emerging diseases: lessons from MERS-CoV, Ebola, SARS, and avian flu (2015) Curr Opin Infect Dis, 28 (4), pp. 349-361; Maltezou, H.C., Tsiodras, S., Middle East respiratory syndrome coronavirus: implications for health care facilities (2014) Am J Infect Control, 42 (12), pp. 1261-1265; Chen, W., Cheng, Y., Chung, Y., The impact of the SARS outbreak on an urban emergency department in Taiwan (2005) Med Care, 43 (2), pp. 168-172; Maunder, R., Hunter, J., Vincent, L., The immediate psychological and occupational impact of the 2003 SARS outbreak in a teaching hospital (2003) CMAJ, 168 (10), pp. 1245-1251; Koh, D., Lim, M.K., Chia, S.E., Risk perception and impact of severe acute respiratory syndrome (SARS) on work and personal lives of healthcare workers in Singapore: what can we learn? (2005) Med Care, 43 (7), pp. 676-682; Dwyer, J., Tsai, D.F., Developing the duty to treat: HIV, SARS, and the next epidemic (2008) J Med Ethics, 34 (1), pp. 7-10; Tomlinson, T., Caring for risky patients: duty or virtue? (2008) J Med Ethics, 34 (6), pp. 458-462; Tzeng, H., Nurses’ professional care obligation and their attitudes towards SARS infection control measures in Taiwan during and after the 2003 epidemic (2004) Nurs Ethics, 11 (3), pp. 277-289; Tzeng, H., Yin, C., Nurses’ fears and professional obligations concerning possible human-to-human Avian Flu (2006) Nurs Ethics, 13 (5), pp. 455-470; Falco-Pegueroles, A., Lluch-Canut, T., Roldan-Merino, J., Ethical conflict in critical care nursing: correlation between exposure and types (2015) Nurs Ethics, 22 (5), pp. 594-607; Rejno, A., Berg, L., Strategies for handling ethical problems in end of life care: obstacles and possibilities (2015) Nurs Ethics, 22 (7), pp. 778-789; Jimenez-Herrera, M.F., Axelsson, C., Some ethical conflicts in emergency care (2015) Nurs Ethics, 22 (5), pp. 548-560; Falco-Pegueroles, A., Lluch-Canut, M.T., Marinez-Estalella, G., Levels of exposure to ethical conflict in the ICU: correlation between sociodemographic variables and the clinical environment (2016) Intensive Crit Care Nurs, 33, pp. 12-20; Faul, F., Erdfelder, E., Lang, A., G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences (2007) Behav Res Methods, 39 (2), pp. 175-191; (2015) Guideline for the Middle East respiratory syndrome, p. 6. , Cheongju-si, South Korea, Korea Center for Disease Control and Prevention; Kwan, W.J., How MERS could affect South Korea’s economy The Wall Street Journal, , http://blogs.wsj.com/economics/2015/06/10/how-mers-could-affect-south-koreas-economy, June 2015, accessed 30 October 2015; Jung, W.S., Cho, H.K., Punishment when refused to attend school of child with medical staff parents caring MERS-CoV infection patients The Kyunghyang Shinmun, , http://news.khan.co.kr/kh_news/khan_art_view.html?artid=201506212253315&code=940100, 2 June 2015, accessed 30 October 2015; Shabanowitz, R.B., Reardon, J.E., Avian flu pandemic—flight of the healthcare worker? (2009) HEC Forum, 21 (4), pp. 365-385; Wu, C., Lee, W., Lin, R.S.J., Are employees more committed and willing to accept critical assignments during a crisis? A study of organizational commitment, professional commitment and willingness to care during the SARS outbreak in Taiwan (2012) Int J Hum Resour Man, 23 (13), pp. 2698-2711","Kim, J.-S.; College of Nursing, Gachon University, 191 Hambakmoero, Yeonsu-gu, South Korea; email: kimjisoo@gachon.ac.kr",,"SAGE Publications Ltd",09697330,,,"27216828","English","Nurs. Ethics",Article,"Final",Open Access,Scopus,2-s2.0-85041233225 "Zhou L., Sun Y., Wu J.-L., Mai K.-J., Chen G.-H., Wu Z.-X., Bai Y., Li D., Zhou Z.-H., Cheng J., Wu R.-T., Zhang X.-B., Ma J.-Y.","55861714100;56166199400;57196410875;57189711019;57193314304;57193311808;57192102316;57197285019;57200414689;57200407299;57196419932;36968813100;7406199976;","Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs",2018,"Journal of Virological Methods","255",,,"66","70",,11,"10.1016/j.jviromet.2018.02.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042386412&doi=10.1016%2fj.jviromet.2018.02.002&partnerID=40&md5=ebad39fbfe6f833204fcbc58afe548e6","College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Hog Production Division, Guangdong Wen's Foodstuffs Group Co., Ltd.Xinxing 527439, China; Guangdong Wen's Foodstuff Group Co., Ltd., Yanjiang Street, Xinxing, Guangdong 527400, China","Zhou, L., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Sun, Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Wu, J.-L., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Mai, K.-J., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Chen, G.-H., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Wu, Z.-X., Guangdong Wen's Foodstuff Group Co., Ltd., Yanjiang Street, Xinxing, Guangdong 527400, China; Bai, Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Li, D., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Zhou, Z.-H., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Cheng, J., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Wu, R.-T., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Zhang, X.-B., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China, Hog Production Division, Guangdong Wen's Foodstuffs Group Co., Ltd.Xinxing 527439, China; Ma, J.-Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China","Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel coronavirus which was first reported in southern China in 2017. It can cause severe diarrhea disease in pigs. In order to detect this new emerging virus rapidly and reliably, a TaqMan-based real-time RT-PCR assay was established in this study. Specific primers and probe were designed and synthesized based on the conserved region within the N gene of the viral genome. Results showed that the lowest limit of detection was 3.0 × 101 copies/μL. This approach was specific for SADS-CoV, and there were no cross-reaction observed against other 15 swine viruses. It was 10 times more sensitive than the conventional PCR and gave higher SADS-CoV positive detection rate (70.69%, 123/174) than the conventional PCR (51.15%, 89/174) from clinical samples. These data indicated that the TaqMan-based real-time RT-PCR assay established here was an effective method with high sensitivity, specificity and reproducibility for faster and more accurate detection and quantification of SADS-CoV. © 2018 Elsevier B.V.","Diagnosis; Quantification; SADS-CoV; TaqMan-based real-time RT-PCR","animal tissue; Article; Coronavirinae; cross reaction; disease association; DNA extraction; nonhuman; plasmid; porcine epidemic diarrhea; priority journal; real time polymerase chain reaction; reproducibility; reverse transcription; sensitivity and specificity; swine acute diarrhea syndrome coronavirus; virus detection; virus genome; Alphacoronavirus; animal; Coronavirus infection; diarrhea; genetics; pig; procedures; swine disease; veterinary medicine; virology; Swine acute diarrhea syndrome coronavirus; Alphacoronavirus; Animals; Coronavirus Infections; Diarrhea; Real-Time Polymerase Chain Reaction; Reproducibility of Results; Sensitivity and Specificity; Swine; Swine Diseases","Dall Agnol, A.M., Otonel, R.A., Leme, R.A., Alfieri, A.A., Alfieri, A.F., A TaqMan-based qRT-PCR assay for Senecavirus A detection in tissue samples of neonatal piglets (2017) Mol. Cell. Probes, 33, pp. 28-31; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Fowler, V.L., Ransburgh, R.H., Poulsen, E.G., Wads worth, J., King, D.P., Mioulet, V., Knowles, N.J., Anderson, G.A., Development of a novel real-time RT-PCR assay to detect Seneca Valley virus associated with emerging cases of vesicular disease in pigs (2016) J. Virol. Methods, 239, p. 34; Gava, D., Souza, C.K., Schaefer, R., Vincent, A.L., Cantao, M.E., Coldebella, A., Ciacci-Zanella, J.R., A TaqMan-based real-time PCR for detection and quantification of porcine parvovirus 4 (2015) J. Virol. Methods, 219, pp. 14-17; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new Bat-HKU2–like Coronavirus in Swine, China (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Li, B., Xiao, S., Ma, J., Liu, Y., Mao, L., Wen, L., Mao, A., He, K., Development of a novel TaqMan-based real-time PCR assay for the detection of porcine boca-like virus (Pbo-likeV) (2011) Virol. J., 8, p. 357; Li, J., Li, W., Mao, L., Hao, F., Yang, L., Zhang, W., Jiang, J., Rapid detection of novel caprine parainfluenza virus type 3 (CPIV3) using a TaqMan-based RT-qPCR (2016) J. Virol. Methods, 236, pp. 126-131; Mackay, I.M., Arden, K.E., Nitsche, A., Real-time PCR in virology (2002) Nucleic Acids Res., 30, pp. 1292-1305; Niu, X., Chen, Y., Yu, X., Ti, J., Wang, A., Diao, Y., Development of a TaqMan-based real-time PCR assay for the detection of Novel GPV (2016) J. Virol. Methods, 237, pp. 32-37; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y., Wang, L., Huang, Y., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Sun, D., Wang, X., Wei, C., Feng, J., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review (2016) J. Vet. Med. Sci., 78, pp. 355-363; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, T., Yuen, K.Y., Discovery of seven novel Mammalian and Avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and Avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Zhou, P., Fan, H., Lan, T., Yang, X.L., Zhang, W., Zhu, Y., (2018), Fatal swine acute diarrhea syndrome caused by an HKU2-related coronavirus of bat origin. Nature (Accepted for publication)","Zhang, X.-B.; College of Animal Science, South China Agricultural UniversityChina; email: Zhangxb@scau.edu.cn",,"Elsevier B.V.",01660934,,JVMED,"29427670","English","J. Virol. Methods",Article,"Final",,Scopus,2-s2.0-85042386412 "Morra M.E., Van Thanh L., Kamel M.G., Ghazy A.A., Altibi A.M.A., Dat L.M., Thy T.N.X., Vuong N.L., Mostafa M.R., Ahmed S.I., Elabd S.S., Fathima S., Le Huy Vu T., Omrani A.S., Memish Z.A., Hirayama K., Huy N.T.","57190517387;57215808043;57194521533;57197708955;57190516057;57201690970;57201687581;57191268954;57190509143;57212960511;57201688487;57214486802;57190510631;55751328500;7005059350;35396191500;57209480434;","Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis",2018,"Reviews in Medical Virology","28","3", e1977,"","",,5,"10.1002/rmv.1977","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045731792&doi=10.1002%2frmv.1977&partnerID=40&md5=8d1c382d3c3d229edb68fa8ae8af4243","Faculty of Medicine, Alazhar University, Cairo, Egypt; University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Faculty of Medicine, Minia University, Minya, Egypt; Department of Cardiology, Shebin El-Kom Teaching Hospital, Shibin El Kom, Egypt; University of Pittsburgh Medical Center, Pittsburgh, PA, United States; Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam; Faculty of Medicine, Tanta University, Tanta, Egypt; Faculty of Medicine, Cairo University, Giza, Egypt; Faculty of Medicine, Benha University, Benha, Egypt; Deccan College of Medical Sciences, University of Health and Sciences, Hyderabad, India; University of California, Los Angeles, CA, United States; Department of Medicine, Section of Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Ministry of Health, Riyadh, Saudi Arabia; Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan","Morra, M.E., Faculty of Medicine, Alazhar University, Cairo, Egypt; Van Thanh, L., University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Kamel, M.G., Faculty of Medicine, Minia University, Minya, Egypt; Ghazy, A.A., Department of Cardiology, Shebin El-Kom Teaching Hospital, Shibin El Kom, Egypt; Altibi, A.M.A., University of Pittsburgh Medical Center, Pittsburgh, PA, United States; Dat, L.M., Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam; Thy, T.N.X., University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Vuong, N.L., University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Mostafa, M.R., Faculty of Medicine, Tanta University, Tanta, Egypt; Ahmed, S.I., Faculty of Medicine, Cairo University, Giza, Egypt; Elabd, S.S., Faculty of Medicine, Benha University, Benha, Egypt; Fathima, S., Deccan College of Medical Sciences, University of Health and Sciences, Hyderabad, India; Le Huy Vu, T., University of California, Los Angeles, CA, United States; Omrani, A.S., Department of Medicine, Section of Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Memish, Z.A., Ministry of Health, Riyadh, Saudi Arabia; Hirayama, K., Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Huy, N.T., Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam, Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan","Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus. Because of lack of vaccination, various studies investigated the therapeutic efficacy of antiviral drugs and supportive remedies. A systematic literature search from 10 databases was conducted and screened for relevant articles. Studies reporting information about the treatment of MERS coronavirus infection were extracted and analyzed. Despite receiving treatment with ribavirin plus IFN, the case fatality rate was as high as 71% in the IFN-treatment group and exactly the same in patients who received supportive treatment only. Having chronic renal disease, diabetes mellitus and hypertension increased the risk of mortality (P <.05), and chronic renal disease is the best parameter to predict the mortality. The mean of survival days from onset of illness to death was 46.6 (95% CI, 30.5-62.6) for the IFN group compared with 18.8 (95% CI, 10.3-27.4) for the supportive-only group (P =.001). Delay in starting treatment, older age group, and preexisting comorbidities are associated with worse outcomes. In conclusion, there is no difference between IFN treatment and supportive treatment for MERS patients in terms of mortality. However, ribavirin and IFN combination might have efficacious effects with timely administration and monitoring of adverse events. Large-scale prospective randomized studies are required to assess the role of antiviral drugs for the treatment of this high mortality infection. Copyright © 2018 John Wiley & Sons, Ltd.","interferon; MERS-CoV; Middle East respiratory syndrome; systematic review","antivirus agent; interferon; Coronavirus infection; female; human; male; meta analysis; Middle East respiratory syndrome coronavirus; mortality; risk factor; treatment outcome; virology; Antiviral Agents; Coronavirus Infections; Female; Humans; Interferons; Male; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Treatment Outcome","Kupferschmidt, K., Infectious diseases. MERS surges again, but pandemic jitters ease (2015) Science, 347 (6228), pp. 1296-1297. , https://doi.org/10.1126/science.347.6228.1296; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , May; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New England Journal of Medicine, 369 (5), pp. 407-416; Drosten, C., Seilmaier, M., Corman, V.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13 (9), pp. 745-751; Guery, B., Poissy, J., el Mansouf, L., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) The Lancet, 381 (9885), pp. 2265-2272; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368 (26), pp. 2487-2494; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; de Wilde, A.H., Raj, V.S., Oudshoorn, D., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) J Gen Virol, 94 (8), pp. 1749-1760; Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin (2013) Sci Rep, 3, p. 1686; Falzarano, D., De Wit, E., Rasmussen, A.L., Treatment with interferon-[alpha] 2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317; Liberati, A., Altman, D.G., Tetzlaff, J., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration (2009) PLoS Med, 6 (7); Case report guidelines, , http://www.care-statement.org/; (2010) The Newcastle&#x 2010;Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta&#x 2010;analyses, , http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp, for assessing the quality of nonrandomized studies in meta&; DerSimonian, R., Laird, N., Meta-analysis in clinical trials (1986) Control Clin Trials, 7 (3), pp. 177-188; Higgins, J., Thompson, S.G., Deeks, J.J., Altman, D.G., Measuring inconsistency in meta-analyses [journal article as teaching resource, deposited by John Flynn] (2003) Br Med J, 327, pp. 557-560; Munafò, M.R., Flint, J., Meta-analysis of genetic association studies (2004) Trends Genet, 20 (9), pp. 439-444; Zintzaras, E., Lau, J., Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches (2008) J Clin Epidemiol, 61 (7), pp. 634-645; Kamel, M.G., Nam, N.T., Han, N.H.B., Post-dengue acute disseminated encephalomyelitis: a case report and meta-analysis (2017) PLoS Negl Trop Dis, 11 (6); AlGhamdi, M., Mushtaq, F., Awn, N., Shalhoub, S., MERS CoV infection in two renal transplant recipients: case report (2015) Am J Transplant, 15 (4), pp. 1101-1104; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397; Guberina, H., Witzke, O., Timm, J., A patient with severe respiratory failure caused by novel human coronavirus (2014) Infection, 42 (1), pp. 203-206; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al Mutairy, E., Ribavirin and interferon-alpha2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases (2015) Antivir Ther, 20 (1), pp. 87-91; Khalid, M., Khan, B., Al Rabiah, F., Middle Eastern respiratory syndrome corona virus (MERS CoV): case reports from a tertiary care hospital in Saudi Arabia (2014) Ann Saudi Med, 34 (5), pp. 396-400; Omrani, A.S., Saad, M.M., Baig, K., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14 (11), pp. 1090-1095; Shalhoub, S., AlZahrani, A., Simhairi, R., Mushtaq, A., Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report (2015) J Clin Virol, 62, pp. 69-71; Shalhoub, S., Farahat, F., Al-Jiffri, A., IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70 (7), pp. 2129-2132; Spanakis, N., Tsiodras, S., Haagmans, B.L., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44 (6), pp. 528-532; Thabet, F., Chehab, M., Bafaqih, H., Al Mohaimeed, S., Middle East respiratory syndrome coronavirus in children (2015) Saudi Med J, 36 (4), pp. 484-486; Al-Hameed, F., Wahla, A.S., Siddiqui, S., Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia (2016) J Intensive Care Med, 31 (5), pp. 344-348; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17 (9), pp. e668-e672; (2014) Infection prevention/control and management guidelines for patients with Middle East respiratory syndrome coronavirus (MERS CoV) infection; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. the Middle East respiratory syndrome (2014) Curr Opin Pulm Med, 20 (3), pp. 233-241","Huy, N.T.; Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang UniversityViet Nam; email: nguyentienhuy@tdt.edu.vn",,"John Wiley and Sons Ltd",10529276,,RMVIE,"29664167","English","Rev. Med. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85045731792 "D. Y.-M.","57074079800;","Coronavirus: Returns through China [Bréve : Coronavirus : retour par la Chine]",2018,"Option/Bio","29","579-580",,"8","",,,"10.1016/S0992-5945(18)30101-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047167573&doi=10.1016%2fS0992-5945%2818%2930101-6&partnerID=40&md5=10c5ed36d04b5674f65d69038d323d95",,"D., Y.-M.",[No abstract available],,,"Zhou, P., Fan, H., Lan, T., Fatal swine acute diarrhea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature., 556 (7700), pp. 255-258. , Apr;",,,"Elsevier Masson SAS",09925945,,,,"French","Option Bio",Article,"Final",Open Access,Scopus,2-s2.0-85047167573 "Inn K.-S., Kim Y., Aigerim A., Park U., Hwang E.-S., Choi M.-S., Kim Y.-S., Cho N.-H.","24450477300;57196175320;57189092175;57201359704;35322149100;56582818800;35976040800;34973855600;","Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus",2018,"Virology","518",,,"324","327",,4,"10.1016/j.virol.2018.03.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044447328&doi=10.1016%2fj.virol.2018.03.015&partnerID=40&md5=a1b0af8161d14c01e46ebba6ef0ff9a7","Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea; Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea","Inn, K.-S., Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea; Kim, Y., Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; Aigerim, A., Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; Park, U., Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea; Hwang, E.-S., Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Choi, M.-S., Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Kim, Y.-S., Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Cho, N.-H., Department of Microbiology and Immunology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea, Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea","Dipeptidyl peptidase 4 (DPP4) is a receptor for MERS-CoV. The soluble form of DPP4 (sDPP4) circulates systematically and can competitively inhibit MERS-CoV entry into host cells. Here, we measured the concentration of sDPP4 in the plasma and sputa of 14 MERS-CoV-infected patients of various degrees of disease severity. The concentration of sDPP4 in the plasma of MERS patients (474.76 ± 108.06 ng/ml) was significantly lower than those of healthy controls (703.42 ± 169.96 ng/ml), but there were no significant differences among the patient groups. Interestingly, plasma levels of IL-10 and EGF were negatively and positively correlated with sDPP4 concentrations, respectively. The sDPP4 levels in sputa were less than 300 ng/ml. Viral infection was inhibited by 50% in the presence of more than 8000 ng/ml of sDPP4. Therefore, sDPP4 levels in the plasma of MERS patients are significantly reduced below the threshold needed to exert an antiviral effect against MERS-CoV infection. © 2018","Antiviral therapy; Dipeptidyl peptidase 4 (DPP4); Middle East respiratory syndrome coronavirus (MERS-CoV); Soluble DPP4","dipeptidyl peptidase IV; epidermal growth factor; interleukin 10; dipeptidyl peptidase IV; epidermal growth factor derivative; IL10 protein, human; interleukin 10; Article; clinical article; controlled study; disease severity; enzyme inhibition; enzyme linked immunosorbent assay; human; informed consent; luciferase assay; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein blood level; protein function; retrospective study; trend study; virus entry; blood; chemistry; Coronavirus infection; IC50; pathology; plasma; sputum; Coronavirus Infections; Dipeptidyl Peptidase 4; EGF Family of Proteins; Humans; Inhibitory Concentration 50; Interleukin-10; Plasma; Sputum","Andrieu, T., Thibault, V., Malet, I., Laporte, J., Bauvois, B., Agut, H., Cahour, A., Similar increased serum dipeptidyl peptidase IV activity in chronic hepatitis C and other viral infections (2003) J. Clin. Virol., 27, pp. 59-68; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Juillerat-Jeanneret, L., Aubert, J.D., Leuenberger, P., Peptidases in human bronchoalveolar lining fluid, macrophages, and epithelial cells: dipeptidyl (amino)peptidase IV, aminopeptidase N, and dipeptidyl (carboxy)peptidase (angiotensin-converting enzyme) (1997) J. Lab. Clin. Med., 130, pp. 603-614; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Kang, J.I., Cho, N.H., Spread of mutant middle east respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean Outbreak (2016) MBio, 7, p. e00019; Klemann, C., Wagner, L., Stephan, M., von Horsten, S., Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system (2016) Clin. Exp. Immunol., 185, pp. 1-21; Lambeir, A.M., Durinx, C., Scharpe, S., De Meester, I., Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV (2003) Crit. Rev. Clin. Lab. Sci., 40, pp. 209-294; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the middle east respiratory syndrome (2016) Am. J. Pathol., 186, pp. 78-86; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, Y.S., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci. Rep., 6, p. 25359; Mulvihill, E.E., Drucker, D.J., Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors (2014) Endocr. Rev., 35, pp. 992-1019; (2017), Organization, W.H., World Health Organization; Rafiei, A., Ajami, A., Mohammad Mirabi, A., Saffar, M.J., Amjadi, O., Haghshenas, M.R., Abedian, F., Khaje-Enayati, P., Serum levels of soluble CD26, a novel prognostic marker for hepatitis E infection (2016) Jundishapur J. Microbiol., 9, p. e31110; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, p. 251; Rohrborn, D., Wronkowitz, N., Eckel, J., DPP4 in diabetes (2015) Front. Immunol., 6, p. 386; Seys, L.J.M., Widagdo, W., Verhamme, F.M., Kleinjan, A., Janssens, W., Joos, G.F., Bracke, K.R., Brusselle, G.G., DPP4, the middle east respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients (2018) Clin. Infect. Dis., 66, pp. 45-53; Willis, V.C., Demoruelle, M.K., Derber, L.A., Chartier-Logan, C.J., Parish, M.C., Pedraza, I.F., Weisman, M.H., Deane, K.D., Sputum autoantibodies in patients With established rheumatoid arthritis and subjects at risk of future clinically apparent disease (2013) Arthritis Rheumatol., 65, pp. 2545-2554; Wronkowitz, N., Gorgens, S.W., Romacho, T., Villalobos, L.A., Sanchez-Ferrer, C.F., Peiro, C., Sell, H., Eckel, J., Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2 (2014) Biochim. Biophys. Acta, 1842, pp. 1613-1621; Yang, J.S., Park, S., Kim, Y.J., Kang, H.J., Kim, H., Han, Y.W., Lee, H.S., Kim, S.S., Middle east respiratory syndrome in 3 persons, South Korea, 2015 (2015) Emerg. Infect. Dis., 21, pp. 2084-2087","Kim, Y.-S.; Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of MedicineSouth Korea; email: alice@cnuh.co.kr",,"Academic Press Inc.",00426822,,VIRLA,"29587190","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85044447328 "Koo H.J., Lim S., Choe J., Choi S.-H., Sung H., Do K.-H.","55906019500;56875041200;55908900800;55736565000;7201871337;14062994800;","Radiographic and CT features of viral pneumonia",2018,"Radiographics","38","3",,"719","739",,21,"10.1148/rg.2018170048","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047271075&doi=10.1148%2frg.2018170048&partnerID=40&md5=d54c3690ebe98ea5893834e152618238","Department of Radiology and Research Institute of Radiology, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Division of Infectious Disease, Department of Internal Medicine, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Department of Laboratory Medicine, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Department of Radiology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, South Korea","Koo, H.J., Department of Radiology and Research Institute of Radiology, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Lim, S., Department of Radiology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, South Korea; Choe, J., Department of Radiology and Research Institute of Radiology, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Choi, S.-H., Division of Infectious Disease, Department of Internal Medicine, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Sung, H., Department of Laboratory Medicine, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Do, K.-H., Department of Radiology and Research Institute of Radiology, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea","Viruses are the most common causes of respiratory infection. The imaging findings of viral pneumonia are diverse and overlap with those of other nonviral infectious and inflammatory conditions. However, identification of the underlying viral pathogens may not always be easy. There are a number of indicators for identifying viral pathogens on the basis of imaging patterns, which are associated with the pathogenesis of viral infections. Viruses in the same viral family share a similar pathogenesis of pneumonia, and the imaging patterns have distinguishable characteristics. Although not all cases manifest with typical patterns, most typical imaging patterns of viral pneumonia can be classified according to viral families. Although a definite diagnosis cannot be achieved on the basis of imaging features alone, recognition of viral pneumonia patterns may aid in differentiating viral pathogens, thus reducing the use of antibiotics. Recently, new viruses associated with recent outbreaks including human metapneumovirus, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus have been discovered. The imaging findings of these emerging pathogens have been described in a few recent studies. This review focuses on the radiographic and computed tomographic patterns of viral pneumonia caused by different pathogens, including new pathogens. Clinical characteristics that could affect imaging, such as patient age and immune status, seasonal variation and community outbreaks, and pathogenesis, are also discussed. The first goal of this review is to indicate that there are imaging features that should raise the possibility of viral infections. Second, to help radiologists differentiate viral infections, viruses in the same viridae that have similar pathogenesis and can have similar imaging characteristics are shown. By considering both the clinical and radiologic characteristics, radiologists can suggest the diagnosis of viral pneumonia. © RSNA, 2018.",,"diagnostic imaging; differential diagnosis; human; procedures; thorax radiography; virology; virus pneumonia; x-ray computed tomography; Diagnosis, Differential; Humans; Pneumonia, Viral; Radiography, Thoracic; Tomography, X-Ray Computed","Pavia, A.T., Viral infections of the lower respiratory tract: Old viruses, new viruses, and the role of diagnosis (2011) Clin Infect Dis, 52, pp. S284-S289; Miller, W.T., Mickus, T.J., Barbosa, E., Mullin, C., van Deerlin, V.M., Shiley, K.T., CT of viral lower respiratory tract infections in adults: Comparison among viral organisms and between viral and bacterial infections (2011) AJR am J Roentgenol, 197 (5), pp. 1088-1095; Kahn, J.S., Newly identified respiratory viruses (2007) Pediatr Infect Dis J, 26 (8), pp. 745-746; Kahn, J.S., Newly discovered respiratory viruses: Significance and implications (2007) Curr Opin Pharmacol, 7 (5), pp. 478-483; Azhar, E.I., Lanini, S., Ippolito, G., Zumla, A., The Middle East respiratory syndrome coronavirus: A continuing risk to global health security (2017) Adv Exp Med Biol, 972, pp. 49-60; Hall, C.B., Respiratory syncytial virus and parainfluenza virus (2001) N Engl J Med, 344 (25), pp. 1917-1928; Chang, A., Masante, C., Buchholz, U.J., Dutch, R.E., Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate (2012) J Virol, 86 (6), pp. 3230-3243; Franquet, T., Imaging of pulmonary viral pneumonia (2011) Radiology, 260 (1), pp. 18-39; Chong, S., Kim, T.S., Cho, E.Y., Herpes simplex virus pneumonia: High-resolution CT findings (2010) Br J Radiol, 83 (991), pp. 585-589; Podlech, J., Holtappels, R., Pahl-Seibert, M.F., Steffens, H.P., Reddehase, M.J., Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: Persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection (2000) J Virol, 74 (16), pp. 7496-7507; Buckwalter, S.P., Teo, R., Espy, M.J., Sloan, L.M., Smith, T.F., Pritt, B.S., Real-time qualitative PCR for 57 human adenovirus types from multiple specimen sources (2012) J Clin Microbiol, 50 (3), pp. 766-771; Yoon, H., Jhun, B.W., Kim, S.J., Kim, K., Clinical characteristics and factors predicting respiratory failure in adenovirus pneumonia (2016) Respirology, 21 (7), pp. 1243-1250; Lewis, P.F., Schmidt, M.A., Lu, X., A community-based outbreak of severe respiratory illness caused by human adenovirus serotype 14 (2009) J Infect Dis, 199 (10), pp. 1427-1434; Park, J.Y., Kim, B.J., Lee, E.J., Clinical features and courses of adenovirus pneumonia in healthy young adults during an outbreak among Korean military personnel (2017) Plos One, 12 (1); Hubmann, M., Fritsch, S., Zoellner, A.K., Occurrence, risk factors and outcome of adenovirus infection in adult recipients of allogeneic hematopoietic stem cell transplantation (2016) J Clin Virol, 82, pp. 33-40; Aquino, S.L., Dunagan, D.P., Chiles, C., Haponik, E.F., Herpes simplex virus 1 pneumonia: Patterns on CT scans and conventional chest radiographs (1998) J Comput Assist Tomogr, 22 (5), pp. 795-800; Gasparetto, E.L., Escuissato, D.L., Inoue, C., Marchiori, E., Müller, N.L., Herpes simplex virus type 2 pneumonia after bone marrow transplantation: High-resolution CT findings in 3 patients (2005) J Thorac Imaging, 20 (2), pp. 71-73; Graham, B.S., Snell, J.D., Jr., Herpes simplex virus infection of the adult lower respiratory tract (1983) Medicine (Baltimore), 62 (6), pp. 384-393; Byers, R.J., Hasleton, P.S., Quigley, A., Pulmonary herpes simplex in burns patients (1996) Eur Respir J, 9 (11), pp. 2313-2317; Ramsey, P.G., Fife, K.H., Hackman, R.C., Meyers, J.D., Corey, L., Herpes simplex virus pneumonia: Clinical, virologic, and pathologic features in 20 patients (1982) Ann Intern Med, 97 (6), pp. 813-820; Travis, W.D., Colby, T.V., Koss, M.N., Rosado-de-Christenson, M.L., Muller, N.L., Te, K., (2002) Non-Neoplastic Disorders of the Lower Respiratory Tract, , Washington, DC: American Registry of Pathology; Umans, U., Golding, R.P., Duraku, S., Manoliu, R.A., Herpes simplex virus 1 pneumonia: Conventional chest radiograph pattern (2001) Eur Radiol, 11 (6), pp. 990-994; Alanezi, M., Varicella pneumonia in adults: 13 years’ experience with review of literature (2007) Ann Thorac Med, 2 (4), pp. 163-165; Kim, J.S., Ryu, C.W., Lee, S.I., Sung, D.W., Park, C.K., High-resolution CT findings of varicella-zoster pneumonia (1999) AJR am J Roentgenol, 172 (1), pp. 113-116; Hughes, D.P., Lea, S., Wahbi, Z.K., (2007) Varicella Pneumonia. EU- RORAD - Radiologic Teaching Files; Maher, T.M., Gupta, N.K., Burke, M.M., Carby, M.R., CT findings of varicella pneumonia after lung transplantation (2007) AJR am J Roentgenol, 188 (6), pp. W557-W559; Kim, E.A., Lee, K.S., Primack, S.L., Viral pneumonias in adults: Radiologic and pathologic findings (2002) Radiographics, 22 (Spec No), pp. S137-S149; McGuinness, G., Scholes, J.V., Garay, S.M., Leitman, B.S., McCau-Ley, D.I., Naidich, D.P., Cytomegalovirus pneumonitis: Spectrum of parenchymal CT findings with pathologic correlation in 21 AIDS patients (1994) Radiology, 192 (2), pp. 451-459; Vogel, M.N., Brodoefel, H., Hierl, T., Differences and similarities of cytomegalovirus and pneumocystis pneumonia in HIV-negative immunocompromised patients: Thin section CT morphology in the early phase of the disease (2007) Br J Radiol, 80 (955), pp. 516-523; Jenson, H.B., Acute complications of Epstein-Barr virus infectious mononucleosis (2000) Curr Opin Pediatr, 12 (3), pp. 263-268; Miyake, H., Matsumoto, A., Komatsu, E., Infectious mononucleosis with pulmonary consolidation (1996) J Thorac Imaging, 11 (2), pp. 158-160; Myers, J.L., Peiper, S.C., Katzenstein, A.L., Pulmonary involvement in infectious mononucleosis: Histopathologic features and detection of Epstein-Barr virus-related DNA sequences (1989) Mod Pathol, 2 (5), pp. 444-448; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci U S A, 102 (36), pp. 12891-12896. , Published correction appears in Proc Natl Acad Sci U S A 2005;102(43):15712; Christensen, A., Nordbø, S.A., Krokstad, S., Rognlien, A.G., Døllner, H., Human bocavirus commonly involved in multiple viral airway infections (2008) J Clin Virol, 41 (1), pp. 34-37; Calvo, C., García-García, M.L., Pozo, F., Carballo, D., Martínez-Monteserín, E., Casas, I., Infections and coinfections by respiratory human bocavirus during eight seasons in hospitalized children (2016) J Med Virol, 88 (12), pp. 2052-2058; Akturk, H., Sık, G., Salman, N., Atypical presentation of human bocavirus: Severe respiratory tract infection complicated with encephalopathy (2015) J Med Virol, 87 (11), pp. 1831-1838; Allander, T., Jartti, T., Gupta, S., Human bocavirus and acute wheezing in children (2007) Clin Infect Dis, 44 (7), pp. 904-910; Kupfer, B., Vehreschild, J., Cornely, O., Severe pneumonia and human bocavirus in adult (2006) Emerg Infect Dis, 12 (10), pp. 1614-1616; Shah, D.P., Shah, P.K., Azzi, J.M., Chemaly, R.F., Parainfluenza virus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 370 (2), pp. 358-364; Choi, S.H., Hong, S.B., Ko, G.B., Viral infection in patients with severe pneumonia requiring intensive care unit admission (2012) Am J Respir Crit Care Med, 186 (4), pp. 325-332; Kim, M.C., Kim, M.Y., Lee, H.J., CT findings in viral lower respiratory tract infections caused by parainfluenza virus, influenza virus and respiratory syncytial virus (2016) Medicine (Baltimore), 95 (26); Rota, P.A., Moss, W.J., Takeda, M., de Swart, R.L., Thompson, K.M., Measles, G.J.L., (2016) Nat Rev Dis Primers, 2; Caseris, M., Houhou, N., Longuet, P., French 2010-2011 measles outbreak in adults: Report from a Parisian teaching hospital (2014) Clin Microbiol Infect, 20 (4), pp. O242-O244; Atmar, R.L., Englund, J.A., Hammill, H., Complications of measles during pregnancy (1992) Clin Infect Dis, 14 (1), pp. 217-226; Rafat, C., Klouche, K., Ricard, J.D., Severe measles infection: The spectrum of disease in 36 critically ill adult patients (2013) Medicine (Baltimore), 92 (5), pp. 257-272; Farrag, M.A., Almajhdi, F.N., Human respiratory syncytial virus: Tole of innate immunity in clearance and disease progression (2016) Viral Immunol, 29 (1), pp. 11-26; Jain, S., Williams, D.J., Arnold, S.R., Community-acquired pneumonia requiring hospitalization among U.S. children (2015) N Engl J Med, 372 (9), pp. 835-845; Johnstone, J., Majumdar, S.R., Fox, J.D., Marrie, T.J., Human metapneumovirus pneumonia in adults: Results of a prospective study (2008) Clin Infect Dis, 46 (4), pp. 571-574; Seo, S., Gooley, T.A., Kuypers, J.M., Human metapneumovirus infections following hematopoietic cell transplantation: Factors associated with disease progression (2016) Clin Infect Dis, 63 (2), pp. 178-185; Godet, C., Le Goff, J., Beby-Defaux, A., Human metapneumovirus pneumonia in patients with hematological malignancies (2014) J Clin Virol, 61 (4), pp. 593-596; Liu, Q., He, B., Huang, S.Y., Wei, F., Zhu, X.Q., Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis (2014) Lancet Infect Dis, 14 (8), pp. 763-772; Yu, X.J., Liang, M.F., Zhang, S.Y., Fever with thrombocytopenia associated with a novel bunyavirus in China (2011) N Engl J Med, 364 (16), pp. 1523-1532; Takahashi, T., Maeda, K., Suzuki, T., The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan (2014) J Infect Dis, 209 (6), pp. 816-827; Kim, K.H., Yi, J., Kim, G., Severe fever with thrombocytopenia syndrome, South Korea, 2012 (2013) Emerg Infect Dis, 19 (11), pp. 1892-1894; Oh, W.S., Heo, S.T., Kim, S.H., Choi, W.J., Han, M.G., Kim, J.Y., Plasma exchange and ribavirin for rapidly progressive severe fever with thrombocytopenia syndrome (2014) Int J Infect Dis, 18, pp. 84-86; Schountz, T., Prescott, J., Hantavirus immunology of rodent reservoirs: Current status and future directions (2014) Viruses, 6 (3), pp. 1317-1335; Manigold, T., Vial, P., Human hantavirus infections: Epidemiology, clinical features, pathogenesis and immunology (2014) Swiss Med Wkly, 144; Papa, A., Vaheri, A., Leduc, J.W., Meeting report: Tenth International Conference on Hantaviruses (2016) Antiviral Res, 133, pp. 234-241; Boroja, M., Barrie, J.R., Raymond, G.S., Radiographic findings in 20 patients with Hantavirus pulmonary syndrome correlated with clinical outcome (2002) AJR am J Roentgenol, 178 (1), pp. 159-163; Rewar, S., Mirdha, D., Rewar, P., Treatment and prevention of pandemic H1N1 influenza (2015) Ann Glob Health, 81 (5), pp. 645-653; Nakajima, N., Sato, Y., Katano, H., Histopathological and immunohistochemical findings of 20 autopsy cases with 2009 H1N1 virus infection (2012) Mod Pathol, 25 (1), pp. 1-13; Taubenberger, J.K., Morens, D.M., The pathology of influenza virus infections (2008) Annu Rev Pathol, 3 (1), pp. 499-522; Agarwal, P.P., Cinti, S., Kazerooni, E.A., Chest radiographic and CT findings in novel swine-origin influenza A (H1N1) virus (S-OIV) infection (2009) AJR am J Roentgenol, 193 (6), pp. 1488-1493; Oikonomou, A., Müller, N.L., Nantel, S., Radiographic and high-resolution CT findings of influenza virus pneumonia in patients with hematologic malignancies (2003) AJR am J Roentgenol, 181 (2), pp. 507-511; Marchiori, E., Zanetti, G., D’Ippolito, G., Swine-origin influenza A (H1N1) viral infection: Thoracic findings on CT (2011) AJR am J Roentgenol, 196 (6), pp. W723-W728; Ajlan, A.M., Quiney, B., Nicolaou, S., Müller, N.L., Swine-origin influenza A (H1N1) viral infection: Radiographic and CT findings (2009) AJR am J Roentgenol, 193 (6), pp. 1494-1499; Wright, P.F., Kirkland, K.B., Modlin, J.F., When to consider the use of antibiotics in the treatment of 2009 H1N1 influenza-associated pneumonia (2009) N Engl J Med, 361 (24); Qureshi, N.R., Hien, T.T., Farrar, J., Gleeson, F.V., The radiologic manifestations of H5N1 avian influenza (2006) J Thorac Imaging, 21 (4), pp. 259-264; Galante, O., Avni, Y.S., Fuchs, L., Ferster, O.A., Almog, Y., Coronavirus NL63-induced adult respiratory distress syndrome (2016) Am J Respir Crit Care Med, 193 (1), pp. 100-101; Geller, C., Varbanov, M., Duval, R.E., Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies (2012) Viruses, 4 (11), pp. 3044-3068; Imai, Y., Kuba, K., Rao, S., Angiotensin-converting enzyme 2 protects from severe acute lung failure (2005) Nature, 436 (7047), pp. 112-116; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr Opin Pulm Med, 20 (3), pp. 233-241; Cleri, D.J., Ricketti, A.J., Vernaleo, J.R., Severe acute respiratory syndrome (SARS) (2010) Infect Dis Clin North Am, 24 (1), pp. 175-202; Ooi, G.C., Khong, P.L., Müller, N.L., Severe acute respiratory syndrome: Temporal lung changes at thin-section CT in 30 patients (2004) Radiology, 230 (3), pp. 836-844; Wong, K.T., Antonio, G.E., Hui, D.S., Severe acute respiratory syndrome: Radiographic appearances and pattern of progression in 138 patients (2003) Radiology, 228 (2), pp. 401-406; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12 (1), p. 222; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Coronaviruses: Severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers (2014) Curr Opin Infect Dis, 27 (5), pp. 411-417; Ajlan, A.M., Ahyad, R.A., Jamjoom, L.G., Alharthy, A., Madani, T.A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection: Chest CT findings (2014) AJR am J Roentgenol, 203 (4), pp. 782-787; Das, K.M., Lee, E.Y., Al Jawder, S.E., Acute Middle East respiratory syndrome coronavirus: Temporal lung changes observed on the chest radiographs of 55 patients (2015) AJR am J Roentgenol, 205 (3), pp. W267-W274; Choi, W.J., Lee, K.N., Kang, E.J., Lee, H., Middle East respiratory syndrome-coronavirus infection: A case report of serial computed tomographic findings in a young male patient (2016) Korean J Radiol, 17 (1), pp. 166-170; Choi, S.H., Hong, S.B., Kim, T., Clinical and molecular characterization of rhinoviruses A, B, and C in adult patients with pneumonia (2015) J Clin Virol, 63, pp. 70-75; Mermond, S., Zurawski, V., D’Ortenzio, E., Lower respiratory infections among hospitalized children in New Caledonia: A pilot study for the Pneumonia Etiology Research for Child Health project (2012) Clin Infect Dis, 54, pp. S180-S189; Choi, S.H., Huh, J.W., Hong, S.B., Clinical characteristics and outcomes of severe rhinovirus-associated pneumonia identified by bronchoscopic bronchoalveolar lavage in adults: Comparison with severe influenza virus-associated pneumonia (2015) J Clin Virol, 62, pp. 41-47; Kennedy, J.L., Turner, R.B., Braciale, T., Heymann, P.W., Borish, L., Pathogenesis of rhinovirus infection (2012) Curr Opin Virol, 2 (3), pp. 287-293; Snoeck, R., de Clercq, E., Role of cidofovir in the treatment of DNA virus infections, other than CMV infections, in immunocompromised patients (2002) Curr Opin Investig Drugs, 3 (11), pp. 1561-1566; Razonable, R.R., Antiviral drugs for viruses other than human immunodeficiency virus (2011) Mayo Clin Proc, 86 (10), pp. 1009-1026; Kramer, S.C., Bansal, S., Assessing the use of antiviral treatment to control influenza (2015) Epidemiol Infect, 143 (8), pp. 1621-1631; Hung, I.F.N., To KKW, Chan JFW, et al. Efficacy of clarithro-mycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A(H3N2) infection: An open-label randomized, controlled, phase IIb/III trial (2017) Chest, 151 (5), pp. 1069-1080","Do, K.-H.; Department of Radiology and Research Institute of Radiology, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, South Korea; email: dokh@amc.seoul.kr",,"Radiological Society of North America Inc.",02715333,,,"29757717","English","Radiographics",Review,"Final",Open Access,Scopus,2-s2.0-85047271075 "Kasem S., Qasim I., Al-Hufofi A., Hashim O., Alkarar A., Abu-Obeida A., Gaafer A., Elfadil A., Zaki A., Al-Romaihi A., Babekr N., El-Harby N., Hussien R., AL-Sahaf A., Al-Doweriej A., Bayoumi F., Poon L.L.M., Chu D.K.W., Peiris M., Perera R.A.P.M.","25723316800;57195995101;57195999225;57195996573;57195998383;57195999848;57195999667;57195286148;57196614759;57195995110;57195999125;57195997166;57195997832;57195994731;57195993549;57195998238;7005441747;7201734326;7005486823;43861730800;","Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia",2018,"Journal of Infection and Public Health","11","3",,"331","338",,11,"10.1016/j.jiph.2017.09.022","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030789295&doi=10.1016%2fj.jiph.2017.09.022&partnerID=40&md5=e9437785eaffcb7a28fb3ec71e971cce","Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh, 33516, Egypt; Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong","Kasem, S., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia, Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh, 33516, Egypt; Qasim, I., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Al-Hufofi, A., Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Hashim, O., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Alkarar, A., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Abu-Obeida, A., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Gaafer, A., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Elfadil, A., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Zaki, A., Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Al-Romaihi, A., Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Babekr, N., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; El-Harby, N., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Hussien, R., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; AL-Sahaf, A., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Al-Doweriej, A., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Bayoumi, F., Department of Animal Resources, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Poon, L.L.M., Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong; Chu, D.K.W., Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong; Peiris, M., Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong; Perera, R.A.P.M., Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerged coronavirus that is associated with a severe respiratory disease in humans in the Middle East. The epidemiological profiles of the MERS-CoV infections suggest zoonotic transmission from an animal reservoir to humans. Methods: This study was designed to investigate animal herds associated with Middle East respiratory syndrome (MERS)-infected patients in Saudi Arabia, during the last three years (2014–2016). Nasal swabs and serum samples from 584 dromedary camels, 39 sheep, 51 goats, and 2 cattle were collected. Nasal samples from camels, sheep, goats, and cattle were examined by real-time reverse-transcription PCR (RT-PCR) to detect MERS-CoV RNA, and the Anti-MERS ELISA assay was performed to detect camel humeral immune response (IgG) to MERS-CoV S1 antigen infection. The complete genome sequencing of ten MERS-CoV camel isolates and phylogenetic analysis was performed. Results: The data indicated that seventy-five dromedary camels were positive for MERS-CoV RNA; the virus was not detected in sheep, goats, and cattle. MERS-CoV RNA from infected camels was not detected beyond 2 weeks after the first positive result was detected in nasal swabs obtained from infected camels. Anti-MERS ELISA assays showed that 70.9% of camels related to human cases had antibodies to MERS-CoV. The full genome sequences of the ten MERS-CoV camel isolates were identical to their corresponding patients and were grouped together within the larger MERS-CoV sequences cluster for human and camel isolates reported form the Arabian Peninsula. Conclusions: These findings indicate that camels are a significant reservoir for the maintenance of MERS-CoVs, and they are an important source of human infection with MERS. © 2017 The Authors","Dromedary camel; ELISA; MERS; Real time-PCR; Saudi Arabia","immunoglobulin G; virus antibody; virus RNA; virus antibody; virus RNA; animal experiment; Article; bovine; camel; cross-sectional study; dromedary; enzyme linked immunosorbent assay; female; goat; herd; immune response; male; Middle East respiratory syndrome; nonhuman; nose smear; phylogeny; priority journal; real time polymerase chain reaction; reverse transcription polymerase chain reaction; Saudi Arabia; sheep; virus detection; virus genome; virus load; virus neutralization; animal; blood; Coronavirus infection; disease carrier; genetics; human; immunology; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; transmission; veterinary medicine; virology; whole genome sequencing; zoonosis; Animals; Antibodies, Viral; Camelus; Cattle; Coronavirus Infections; Cross-Sectional Studies; Disease Reservoirs; Enzyme-Linked Immunosorbent Assay; Goats; Humans; Immunoglobulin G; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Real-Time Polymerase Chain Reaction; RNA, Viral; Saudi Arabia; Sheep; Whole Genome Sequencing; Zoonoses","Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Guberina, H., Witzke, O., Timm, J., Dittmer, U., Muller, M.A., Drosten, C., A patient with severe respiratory failure caused by novel human coronavirus (2013) Infection, 42 (1), pp. 203-206; Puzelli, S., Azzi, A., Santini, M.G., Di Martino, A., Facchini, M., Castrucci, M.R., Investigation of an imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013 (2013) Euro Surveill, 18 (34). , https://doi.org/10.2807/1560-7917.ES2013.18.34.20564, pii = 20564; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; World Health Organization, WHO MERS-CoV global summary and risk assessment (WHO/MERS/RA/16.1) (2016), http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf?ua=1, WHO Geneva Available at [cited 21 July 2017]; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368 (26), pp. 2487-2494; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88 (19), pp. 11297-11303. , PMID: 25031349; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg Microbes Infect, 1 (11), p. e35; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2), pp. e01002-e01014; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18 (50), p. 20659. , https://doi.org/10.2807/1560-7917.ES2013.18.50.20659; Meyer, B., Müller, M.A., Corman, V.M., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095. , https://doi.org/10.3201/eid2012.141026; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Seroepdemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18 (36), pp. 1-7; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18 (50), p. 20662. , https://doi.org/10.2807/1560-7917.ES2013.18.50.20662; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866; http://www.fao.org/ag/againfo/programmes/en/empres/mers/situation_update.htm, Food and Agriculture Organization of the United Nations. MERS-CoV situation update 20 July 2016; 2016. [cited 28 July 2016]; Saqib, M., Sieberg, A., Hussain, M., Mansoor, M., Zohaib, A., Lattwein, E., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg Infect Dis, 23 (3), pp. 550-551. , https://dx.doi.org/10.3201/eid2303.161285; Falzarano, D., Kamissoko, B., Wit, E., Maïga, O., Cronin, J., Samaké, K., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43. , https://doi.org/10.1016/j.onehlt.2017.03.003; Chu, D.K.W., Poon, L.L.M., Gomaa, M.M., Shehata, M.M., Perera, R.A.P.M., Zeid, D.A.E., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20 (6), pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299, [Epub ahead of print]; Farag, E.A., Reusken, C.B., Haagmans, B.L., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5, p. 28305; Ali, M.A., Shehata, M.M., Gomaa, M.R., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect, 6, p. e1; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (49). , http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20334, pii: 20334; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39). , http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20285, pii: 20285; Laboratory testing for Middle East respiratory syndrome coronavirus (2013), www.who.int/csr/disease/coronavirusinfections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1, WHO Geneva Available from; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874; Saitou, N., Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4 (4), pp. 406-425; Tajima, F., Nei, M., Estimation of evolutionary distance between nucleotide sequences (1984) Mol Biol Evol, 1, pp. 269-285; Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap (1985) Evolution, 39 (4), pp. 783-791; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, pp. 87-93; Hemida, M.G., Al-Naeem, A., Perera, R.A., Chin, A.W., Poon, L.L., Peiris, M., Lack of Middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerg Infect Dis, 21 (4), pp. 699-701; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505. , pmid: 24896817; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Al Muhairi, S., Al Hosani, F., Eltahir, Y.M., Al Mulla, M., Yusof, M.F., Serhan, W.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52, pp. 848-854; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22 (11), p. 30487. , https://doi.org/10.2807/1560-7917.ES.2017.22.11.30487, pii = 30487; Deem, S.L., Fèvre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.-J., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedaries) in Laikipia County, Kenya (2015) PLoS One, 10 (10), p. e0140125; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64 (2), pp. 344-353. , PMID: 26256102; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) mBio, 5 (3). , e01146-14; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20 (6), pp. 1012-1015. , PMID: 24857749","Kasem, S.; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Egypt; email: samy_kasem1976@yahoo.com",,"Elsevier Ltd",18760341,,,"28993171","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85030789295 "Pintos Pascual I., Muñez Rubio E., Alarcón Tomás A., Ramos Martínez A.","55548673700;15061870800;57202007577;13409223600;","Flu virus and respiratory virus infections [Infecciones por virus de la gripe y virus respiratorios]",2018,"Medicine (Spain)","12","56",,"3291","3297",,,"10.1016/j.med.2018.04.019","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046817502&doi=10.1016%2fj.med.2018.04.019&partnerID=40&md5=c5e5aa57afe7a77f835019512196ba1a","Servicio de Medicina Interna. Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Unidad de Enfermedades Infecciosas. Servicio de Medicina Interna. Hospital Universitario Puerta de Hierro, Majadahonda. Madrid, Spain; Servicio de Hematología. Hospital Universitario Puerta de Hierro, Majadahonda. Madrid, Spain","Pintos Pascual, I., Servicio de Medicina Interna. Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Muñez Rubio, E., Unidad de Enfermedades Infecciosas. Servicio de Medicina Interna. Hospital Universitario Puerta de Hierro, Majadahonda. Madrid, Spain; Alarcón Tomás, A., Servicio de Hematología. Hospital Universitario Puerta de Hierro, Majadahonda. Madrid, Spain; Ramos Martínez, A., Unidad de Enfermedades Infecciosas. Servicio de Medicina Interna. Hospital Universitario Puerta de Hierro, Majadahonda. Madrid, Spain","In general, respiratory infections are benign and self-limiting, but occasionally they can cause severe symptoms and become a major cause of mortality and morbidity, especially in the more vulnerable population groups. Flu epidemics occur annually, and there can be pandemics every few years, such as those caused by types H1N1 or H3N2. The main clinical manifestations are respiratory symptoms associated with fever, and complications such as pneumonia can arise. Nasopharyngeal swab and RT-PCR should be performed to confirm the diagnosis, which can yield results for other viruses as well. Treatment is generally symptomatic, reserving neuraminidase inhibitors for the more serious cases. The best preventive measure is annual vaccination of the population at risk. The coronavirus is also particularly relevant, due to its potential prognostic implications, and the respiratory syncytial virus and parainfluenza virus should be borne in mind in children. © 2018","Flu; Influenza; Respiratory tract infection; Virosis","sialidase inhibitor; Article; clinical feature; Coronavirinae; fever; high risk population; Human respiratory syncytial virus; influenza; Influenza A virus (H1N1); Influenza A virus (H3N2); influenza vaccination; morbidity; mortality; nonhuman; nose smear; pandemic influenza; Parainfluenza virus infection; Paramyxovirinae; pneumonia; respiratory syncytial virus infection; respiratory tract infection; reverse transcription polymerase chain reaction; throat culture","Neumann, G., Noda, T., Kawaoka, Y., Emergence and pandemic potential of swine-origin H1N1 influenza virus (2009) Nature., 459 (7249), pp. 931-939; Peiris, J.S.M., Yu, W.C., Leung, C.W., Cheung, C.Y., Ng, W.F., Nicholls, J.M., Re-emergence of fatal human influenza A subtype H5N1 disease (2004) Lancet., 363 (9409), pp. 617-619; Jain, S., Kamimoto, L., Bramley, A.M., Schmitz, A.M., Benoit, S.R., Louie, J., Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009 (2009) N Engl J Med., 361 (20), pp. 1935-1944; Chaves, S.S., Aragon, D., Bennett, N., Cooper, T., D'Mello, T., Farley, M., Patients hospitalized with laboratory-confirmed influenza during the 2010-2011 influenza season: Exploring disease severity by virus type and subtype (2013) J Infect Dis., 208 (8), pp. 1305-1314; Bowman, A.S., Walia, R.R., Nolting, J.M., Vincent, A.L., Killian, M.L., Zentkovich, M.M., Influenza A(H3N2) Virus in Swine at Agricultural Fairs and Transmission to Humans, Michigan and Ohio, USA, 2016 (2017) Emerg Infect Dis., 23 (9), pp. 1551-1555; Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus (2013) N Engl J Med., 368 (20), pp. 1888-1897; Cowling, B.J., Chan, K.H., Fang, V.J., Lau, L.L.H., So, H.C., Fung, R.O.P., Comparative epidemiology of pandemic and seasonal influenza A in households (2010) N Engl J Med., 362 (23), pp. 2175-2184; Call, S.A., Does this patient have influenza?. (2005) JAMA [Internet]., 293 (8), p. 987; Memoli, M.J., Athota, R., Reed, S., Czajkowski, L., Bristol, T., Proudfoot, K., The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts (2014) Clin Infect Dis., 58 (2), pp. 214-224; Chertow, D.S., Bacterial coinfection in influenza A grand rounds review bacterial coinfection in influenza (2013) JAMA., 309 (3), p. 275; Goenka, A., Michael, B.D., Ledger, E., Hart, I.J., Absoud, M., Chow, G., Neurological manifestations of influenza infection in children and adults: Results of a national british surveillance study (2014) Clin Infect Dis., 58 (6), pp. 775-784; Monto, S., Gravenstein, S., Elliott, M., Colopy, M., Schweinle, J., Clinical signs and symptoms predicting influenza infection (2000) Arch Intern Med., 160 (21), pp. 3243-3247; Harper, S.A., Bradley, J.S., Englund, J.A., File, T.M., Gravenstein, S., Hayden, F.G., Seasonal influenza in adults and children-Diagnosis, treatment, chemoprophylaxis, and institutional outbreak management: Clinical practice guidelines of the Infectious Diseases Society of America (2009) Clin Infect Dis., 48 (8), pp. 1003-1032; Fiore, A.E., Fry, A., Shay, D., Gubareva, L., Bresee, J.S., Uyeki, T.M., Antiviral agents for the treatment and chemoprophylaxis of influenza — recommendations of the Advisory Committee on Immunization Practices (ACIP) (2011) MMWR Recomm Rep., 60 (1), pp. 1-24; Cooper, N.J., Sutton, A.J., Abrams, K.R., Wailoo, A., Turner, D., Nicholson, K.G., Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza A and B: systematic review and meta-analyses of randomised controlled trials (2003) BMJ., 326 (7401), p. 1235; Jefferson, T., Jones, M., Doshi, P., Spencer, E.A., Onakpoya, I., Heneghan, C.J., Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments (2014) BMJ., 348, p. g2545; Heneghan, C.J., Onakpoya, I., Thompson, M., Spencer, E.A., Jones, M., Jefferson, T., Zanamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments (2014) BMJ., 348, p. g2547; Dobson, J., Whitley, R.J., Pocock, S., Monto, A.S., Oseltamivir treatment for influenza in adults: A meta-analysis of randomised controlled trials (2015) Lancet., 385 (9979), pp. 1729-1737; Muthuri, S.G., Venkatesan, S., Myles, P.R., Leonardi-Bee, J., Al Khuwaitir, T.S.A., Al Mamun, A., Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: A meta-analysis of individual participant data (2014) Lancet Respir Med., 2 (5), pp. 395-404; Grohskopf, L.A., Sokolow, L.Z., Broder, K.R., Olsen, S.J., Karron, R.A., Jernigan, D.B., Prevention and control of seasonal influenza with vaccines (2016) MMWR Recomm Rep., 65 (5), pp. 1-54; Castilla, J., Godoy, P., Domínguez, Á., Martínez-Baz, I., Astray, J., Martín, V., Influenza vaccine effectiveness in preventing outpatient, inpatient, and severe cases of laboratory-confirmed influenza (2013) Clin Infect Dis., 57 (2), pp. 167-175; Greenhawt, M.J., Li, J.T., Bernstein, D.I., Blessing-Moore, J., Cox, L., Khan, D., Administering influenza vaccine to egg allergic recipients: A focused practice parameter update (2011) Ann Allergy Asthma Immunol., 106 (1), pp. 11-16; , 344. , Hall [Figure presented]CB. Respiratory syncytial virus and parainfluenza virus., The New England journal of medicine. 2001. 1917-28 p; Olsen, S.J., Chang, H.-L., Cheung, T.Y.-Y., Tang, A.F.-Y., Fisk, T.L., Ooi, S.P.-L., Transmission of the severe acute respiratory syndrome on aircraft (2003) N Engl J Med., 349 (25), pp. 2416-2422; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East Respiratory Syndrome (2017) N Engl J Med., 376 (6), pp. 584-594","Pintos Pascual, I.; Servicio de Medicina Interna. Hospital Universitario Fundación Jiménez DíazSpain; email: ilduarapintos@gmail.com",,"Ediciones Doyma, S.L.",03045412,,,,"English; Spanish","Medicine",Article,"Final",,Scopus,2-s2.0-85046817502 "Alamoudi R.J., Azhar L.E., Alamoudi D.H., Alamoudi D.H., Tolah A.M., Alhabbab R.Y., Azhar E.I., Hashem A.M.","8554221100;57202416508;57202424975;57202424974;57188767465;53863098400;23090055800;57200589744;","No molecular evidence of MERS-CoV circulation in Jeddah, Saudi Arabia between 2010–2012: A single-center retrospective study",2018,"Journal of Infection in Developing Countries","12","5",,"390","393",,1,"10.3855/jidc.9523","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048271121&doi=10.3855%2fjidc.9523&partnerID=40&md5=482cf693ff491fd08a44ff40ea3648a5","Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Student Research and Innovation Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia","Alamoudi, R.J., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Azhar, L.E., Student Research and Innovation Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Alamoudi, D.H., Student Research and Innovation Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Alamoudi, D.H., Student Research and Innovation Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Tolah, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Alhabbab, R.Y., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hashem, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia","Introduction: Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic viral pathogen and a serious public health concern. The virus was first reported in Saudi Arabia in 2012 and continues to be endemic in the region. Most of the initial MERS-CoV cases in 2012 and early 2013 were sporadic, and it remains unclear whether MERS-CoV was circulating before 2012 or not. Therefore, we tried here to find any molecular evidence of MERS-CoV circulation in humans before or during 2012 in the city of Jeddah, Saudi Arabia. Methodology: We examined 349 archived respiratory samples collected between January 2010 and December 2012 from patients with acute respiratory illnesses from the city of Jeddah in Western Saudi Arabia. All samples were screened for MERS-CoV by real-time RT-PCR targeting the upstream E-gene (UpE) and the open reading frame 1 a (ORF1a). Results: All tested samples which were originally found negative for influenza A H1N1 virus were also found to be negative for MERS-CoV. Conclusions: These results suggest that circulation of MERS-CoV was uncommon among patients with acute respiratory symptoms in Western Saudi Arabia between 2010 and 2012. © 2018 Alamoudi et al.","Jeddah; MERS-CoV; Saudi Arabia","acute respiratory tract disease; adolescent; adult; aged; Article; child; controlled study; female; human; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; prevalence; real time polymerase chain reaction; retrospective study; reverse transcription polymerase chain reaction; RNA extraction; Saudi Arabia; upper respiratory tract infection; virus transmission","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2012) Novel Coronavirus Infection — Update — Revised Interim Case Definition, , http://www.who.int/csr/don/2012_09_29/en/index.html, GenevaWorld Health Organization, Accessed: 15 March 2017; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al Nsour, M., Gerber, S.I., Hospital-associated outbreak of Middle East Respiratory Syndrome Coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/Accessed, 15 March 2017; (2017), http://www.moh.gov.sa/en/ccc/pressreleases/pages/default.aspx, Statistics Available, Accessed: 15 March 2017; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Chu, K.W., Peiris, M., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) M Bio, 5, pp. 884-914; Park, S.H., Kim, Y.S., Jung, Y., Choi, S.Y., Cho, N.H., Jeong, H.W., Heo, J.Y., Sohn, K.M., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect Chemother, 48, pp. 99-107; Xu, R.H., He, J.F., Evans, M.R., Peng, G.W., Field, H.E., Yu, D.W., Lee, C.K., Schnur, A., Epidemiologic clues to SARS origin in China (2004) Emerg Infect Dis, 10, pp. 1030-1037; Memish, Z.A., Alsahly, A., Masri, M.A., Heil, G.L., Anderson, B.D., Peiris, M., Khan, S.U., Gray, G.C., Sparse evidence of MERS-CoV infection among animal workers living in Southern Saudi Arabia during 2012 (2015) Influenza Other Respir Viruses, 9, pp. 64-67; Aburizaiza, A.S., Mattes, F.M., Azhar, E.I., Hassan, A.M., Memish, Z.A., Muth, D., Meyer, B., Drosten, C., Investigation of anti-MERS Coronavirus antibodies in blood donors and abbatoir workers in Jeddah and Makkah, Kingdom of Saudi Arabia (2014) Fall 2012. J Infect Dis, 209, pp. 243-246; Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Algarni, H., Gerber, S.I., Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015-February 2016 (2017) Emerg Infect Dis, 23, pp. 682-685","Hashem, A.M.; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80205, Saudi Arabia; email: amhashem@kau.edu.sa",,"Journal of Infection in Developing Countries",20366590,,,"31865304","English","J. Infect. Dev. Ctries.",Article,"Final",Open Access,Scopus,2-s2.0-85048271121 "Al-Tawfiq J.A., Benkouiten S., Memish Z.A.","9436438200;46460979500;7005059350;","A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae",2018,"Travel Medicine and Infectious Disease","23",,,"6","13",,14,"10.1016/j.tmaid.2018.04.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046125035&doi=10.1016%2fj.tmaid.2018.04.007&partnerID=40&md5=f7240290663afb0e6b38661a4c265e61","Specialty Internal Medicine Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN 46202, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, 13005, France; Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Department of Medicine and Research, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Rollins School of Public Health, Emory University, Atlanta, GA, United States","Al-Tawfiq, J.A., Specialty Internal Medicine Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indianapolis, IN 46202, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Benkouiten, S., Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, 13005, France, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France; Memish, Z.A., Department of Medicine and Research, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Background: The annual Hajj to the Kingdom of Saudi Arabia attracts millions of pilgrims from around the world. International health community's attention goes towards this mass gathering and the possibility of the development of any respiratory tract infections due to the high risk of acquisition of respiratory viruses. Method: We searched MEDLINE/PubMed and Scopus databases for relevant papers describing the prevalence of respiratory viruses among Hajj pilgrims. Results: The retrieved articles were summarized based on the methodology of testing for these viruses. A total of 31 studies were included in the quantitative/qualitative analyses. The main methods used for the diagnosis of most common respiratory viruses were polymerase chain reaction (PCR), culture and enzyme-linked immunosorbent assay (ELISA). Influenza, rhinovirus and parainfluenza were the most common viruses detected among pilgrims. Coronaviruses other than MERS-CoV were also detected among pilgrims. The acquisition of MERS-CoV remains very limited and systematic screening of pilgrims showed no infections. Conclusions: Well conducted multinational follow-up studies using the same methodology of testing are necessary for accurate surveillance of respiratory viral infections among Hajj pilgrims. Post-Hajj cohort studies would further evaluate the impact of the Hajj on the acquisition of respiratory viruses. © 2018 Elsevier Ltd","Hajj; Mass gatherings; Respiratory viruses; Saudi Arabia; Streptococcus pneumonia","Adenoviridae; adenovirus infection; bacterium culture; enzyme linked immunosorbent assay; herpes virus infection; Herpesviridae; human; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human respiratory syncytial virus; immunofluorescence test; influenza A; influenza A (H1N1); influenza A (H3N2); Influenza A virus; Influenza A virus (H1N1); Influenza A virus (H3N2); influenza B; Influenza B virus; Influenza virus; laboratory diagnosis; mass screening; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mixed infection; nonhuman; pandemic influenza; Parainfluenza virus infection; Paramyxovirinae; polymerase chain reaction; prevalence; priority journal; qualitative analysis; quantitative analysis; respiratory syncytial virus infection; respiratory virus; Review; Rhinovirus; Rhinovirus infection; SARS coronavirus; Saudi Arabia; severe acute respiratory syndrome; Streptococcus pneumonia; Streptococcus pneumoniae; systematic review; upper respiratory tract infection; viral respiratory tract infection; virus culture; virus detection; complication; Islam; microbiology; pneumococcal infection; respiratory tract infection; travel; virology; Humans; Islam; Pneumococcal Infections; Respiratory Tract Infections; Saudi Arabia; Streptococcus pneumoniae; Travel","Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Hajj: infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Al-Tawfiq, J.A., Memish, Z.A., Mass gatherings and infectious diseases: prevention, detection, and control (2012) Infect Dis Clin North Am, 26, pp. 725-737; Al-Tawfiq, J.A., Memish, Z.A., The hajj: updated health hazards and current recommendations for 2012 (2012) Euro Surveill, 17, p. 20295; Al-Tawfiq, J.A., Memish, Z.A., Mass gathering medicine: 2014 hajj and umra preparation as a leading example (2014) Int J Infect Dis, 27, pp. 26-31; Al-Tawfiq, J.A., Smallwood, C.A.H., Arbuthnott, K.G., Malik, M.S.K., Barbeschi, M., Memish, Z.A., Emerging respiratory and novel coronavirus 2012 infections and mass gatherings (2013) East Mediterr Heal J, 19, pp. S48-S54; Al-Tawfiq, J.A., Gautret, P., Memish, Z.A., Expected immunizations and health protection for hajj and umrah 2018 —an overview (2017) Travel Med Infect Dis, 19, pp. 2-7; Leangapichart, T., Rolain, J.-M., Memish, Z.A., Al-Tawfiq, J.A., Gautret, P., Emergence of drug resistant bacteria at the hajj: a systematic review (2017) Travel Med Infect Dis, 18, pp. 3-17; Patel, D., The hajj and umrah: health protection matters (2017) Travel Med Infect Dis, 19, p. 1; Gautret, P., Influenza risk at muslim pilgrimages in Iraq and Saudi Arabia (2017) Travel Med Infect Dis; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual hajj: potential risks and mitigation strategies (2013) Curr Opin Pulm Med, 19, pp. 192-197; Abubakar, I., Gautret, P., Brunette, G.W., Blumberg, L., Johnson, D., Poumerol, G., Global perspectives for prevention of infectious diseases associated with mass gatherings (2012) Lancet Infect Dis, 12, pp. 66-74; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: a systematic review (2016) Travel Med Infect Dis, 14, pp. 92-109; Shafi, S., Booy, R., Haworth, E., Rashid, H., Memish, Z.A., Hajj: health lessons for mass gatherings (2008) J Infect Public Health, 1, pp. 27-32; Gautret, P., Charrel, R., Belhouchat, K., Drali, T., Benkouiten, S., Nougairede, A., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French hajj pilgrims returning from the hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19, pp. E315-E317; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Drali, T., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Deris, Z.Z., Hasan, H., Sulaiman, S.A., Wahab, M.S.A., Naing, N.N., Othman, N.H., The prevalence of acute respiratory symptoms and role of protective measures among Malaysian hajj pilgrims (2010) J Travel Med, 17, pp. 82-88; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Salez, N., Nougairede, A., Circulation of respiratory viruses among pilgrims during the 2012 hajj pilgrimage (2013) Clin Infect Dis, 57, pp. 992-1000; Meysamie, A., Ardakani, H.Z., Razavi, S.M., Doroodi, T., Comparison of mortality and morbidity rates among Iranian pilgrims in hajj 2004 and 2005 (2006) Saudi Med J, 27, pp. 1049-1053; Madani, T.A., Ghabrah, T.M., Albarrak, A.M., Alhazmi, M.A., Alazraqi, T.A., Althaqafi, A.O., Causes of admission to intensive care units in the hajj period of the Islamic year 1424 (2004) Ann Saudi Med, 27, pp. 101-105; Madani, T.A., Ghabrah, T.M., Al-Hedaithy, M.A., Alhazmi, M.A., Alazraqi, T.A., Albarrak, A.M., Causes of hospitalization of pilgrims in the hajj season of the Islamic year 1423 (2003) Ann Saudi Med, 26, pp. 346-351; Gautret, P., Soula, G., Delmont, J., Parola, P., Brouqui, P., Common health hazards in French pilgrims during the hajj of 2007: a prospective cohort study (2009) J Travel Med, 16, pp. 377-381; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (2009) Open Med, 3, pp. e123-e130; Rashid, H., Shafi, S., Booy, R., El Bashir, H., Ali, K., Zambon, M., Influenza and respiratory syncytial virus infections in British hajj pilgrims (2008) Emerg Health Threats J, 1, p. e2; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Ali, K.A., Memish, Z.A., Value of rapid testing for influenza among hajj pilgrims (2007) Travel Med Infect Dis, 5, pp. 310-313; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Memish, Z.A., Sudhanva, M., Viral respiratory infections at the hajj: comparison between UK and Saudi pilgrims (2008) Clin Microbiol Infect, 14, pp. 569-574; Alborzi, A., Aelami, M.H., Ziyaeyan, M., Jamalidoust, M., Moeini, M., Pourabbas, B., Viral etiology of acute respiratory infections among Iranian hajj pilgrims (2006) J Travel Med, 2009 (16), pp. 239-242; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian hajj pilgrims returning to Shiraz, Fars province (2012) Iran. Influenza Other Respi Viruse, 6, pp. e77-e79; Barasheed, O., Almasri, N., Badahdah, A.-M., Heron, L., Taylor, J., McPhee, K., Pilot randomised controlled trial to test effectiveness of facemasks in preventing influenza-like illness transmission among Australian hajj pilgrims in 2011 (2014) Infect Disord - Drug Targets, 14, pp. 110-116; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Azeem, M., Bokhary, H., Viral respiratory infections among hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Yezli, S., Etiology of severe community-acquired pneumonia during the 2013 hajj-part of the MERS-CoV surveillance program (2014) Int J Infect Dis, 25, pp. 186-190; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B Viruses but not MERS-CoV in hajj pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21, pp. 726-727; Kandeel, A., Deming, M., Elkreem, E.A., El-Refay, S., Afifi, S., Abukela, M., Pandemic (H1N1) 2009 and hajj pilgrims who received predeparture vaccination, Egypt (2011) Emerg Infect Dis, 17, pp. 1266-1268; Ziyaeyan, M., Alborzi, A., Jamalidoust, M., Moeini, M., Pouladfar, G.R., Pourabbas, B., Pandemic 2009 influenza A (H1N1) infection among 2009 hajj pilgrims from Southern Iran: a real-time RT-PCR-based study (2012) Influenza Other Respi Viruse, 6, pp. e80-e84; Memish, Z.A., Assiri, A.M., Hussain, R., Alomar, I., Stephens, G., Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic (2012) J Travel Med, 19, pp. 15-21; Refaey, S., Amin, M.M., Roguski, K., Azziz-Baumgartner, E., Uyeki, T.M., Labib, M., Cross-sectional survey and surveillance for influenza viruses and MERS-CoV among egyptian pilgrims returning from hajj during 2012-2015 (2016) Influenza Other Respi Viruse; Ashshi, A., Azhar, E., Johargy, A., Asghar, A., Momenah, A., Turkestani, A., Demographic distribution and transmission potential of influenza A and 2009 pandemic influenza A H1N1 in pilgrims (2014) J Infect Dev Ctries, 8, pp. 1169-1175; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20, pp. 807-812; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Respiratory viruses and bacteria among pilgrims during the 2013 hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Mass gathering and globalization of respiratory pathogens during the 2013 hajj (2015) Clin Microbiol Infect, 21. , 571.e1-8; Yavarian, J., Shafiei Jandaghi, N.Z., Naseri, M., Hemmati, P., Dadras, M., Gouya, M.M., Influenza virus but not MERS coronavirus circulation in Iran, 2013–2016: comparison between pilgrims and general population (2017) Travel Med Infect Dis; Ma, X., Liu, F., Liu, L., Zhang, L., Lu, M., Abudukadeer, A., No MERS-CoV but positive influenza viruses in returning hajj pilgrims, China, 2013–2015 (2017) BMC Infect Dis, 17, p. 715; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.-A., Influenza not MERS CoV among returning hajj and umrah pilgrims with respiratory illness, Kashmir, north India, 2014–15 (2017) Travel Med Infect Dis, 15, pp. 45-47; El-Sheikh, S.M., El-Assouli, S.M., Mohammed, K.A., Albar, M., Bacteria and viruses that cause respiratory tract infections during the pilgrimage (haj) season in makkah, Saudi Arabia (1998) Trop Med Int Health, 3, pp. 205-209; Balkhy, H.H., Memish, Z.A., Bafaqeer, S., Almuneef, M.A., Influenza a common viral infection among hajj pilgrims: time for routine surveillance and vaccination (2004) J Travel Med, 11, pp. 82-86; Abdulrahman, N., Choudhry, A., Al Mazroo, M., Etiology of upper respiratory tract infection among inter national pilgrims arriving for hajj 2010 G (2011) Saudi Epidemiol Bull, 19, pp. 14-16; Alzeer, A., Mashlah, A., Fakim, N., Al-Sugair, N., Al-Hedaithy, M., Al-Majed, S., Tuberculosis is the commonest cause of pneumonia requiring hospitalization during hajj (pilgrimage to makkah) (1998) J Infect, 36, pp. 303-306; Kholeidi, A., Baksh, M., Al Hamad, N., Al Mazam, A., Mohammed, A., Ghazi, H., Seropositivity in clinical influenza cases among pilgrims during hajj, 1421 H (2001) (2001) Saudi Epidemiol Bull, 8, pp. 27-28; AlSaleh, E., Al Mazroua, M., Chaudhry, A.J., Turkistani, A., Al Hamdan, N., Azhar, E., Serotypes of influenza during hajj season, 1424 H (2004) (2005) Saudi Epidemiol Bull, 12, pp. 1-2; Razavi, S., Ziaee, H., Mokhtari-Azad, T., Hamkar, R., Doroodi, T., MirSalehian, A., Surveying respiratory infections among Iranian hajj pilgrims (2007) Iran J Clin Infect Dis, 2, pp. 67-70; Gautret, P., Benkouiten, S., Griffiths, K., Sridhar, S., The inevitable hajj cough: surveillance data in French pilgrims, 2012-2014 (2015) Travel Med Infect Dis, 13, pp. 485-489; Benkouiten, S., Gautret, P., Belhouchat, K., Drali, T., Salez, N., Memish, Z.A., Acquisition of Streptococcus pneumoniae carriage in pilgrims during the 2012 hajj (2014) Clin Infect Dis, 58, pp. e106-e109; Razavi, S., Dabiran, S., Ziaee Ardekani, H., The incidence of influenza like illness and determination of the efficacy of Flu vaccine in Iranian pilgrims during hajj pilgrimage (2004) Acta Med Iran, 42, pp. 397-401; Razavi, M., Sadeghi-Hassanabadi, M., Salamati, P., The comparison of influenza vaccine efficacy on respiratory diseases among Iranian pilgrims in the 2003 and 2004 seasons (2005) Acta Med Iran, 43, pp. 279-281; Al-Abdallat, M.M., Rha, B., Alqasrawi, S., Payne, D.C., Iblan, I., Binder, A.M., Acute respiratory infections among returning hajj pilgrims—Jordan, 2014 (2017) J Clin Virol, 89, pp. 34-37; Memish, Z., McNabb, S., Mahoney, F., Alrabiah, F., Marano, N., Ahmed, Q., Establishment of public health security in Saudi Arabia for the 2009 hajj in response to pandemic influenza A H1N1 (2009) Lancet, 374, pp. 1786-1791; Khan, K., Memish, Z.A., Chabbra, A., Liauw, J., Hu, W., Janes, D.A., Global public health implications of a mass gathering in Mecca, Saudi Arabia during the midst of an influenza pandemic (2010) J Travel Med, 17, pp. 75-81; Memish, Z.A., Assiri, A.M., Alshehri, M., Hussain, R., Alomar, I., The prevalance of respiratory viruses among healthcare workers serving pilgrims in makkah during the 2009 influenza A (H1N1) pandemic (2012) Travel Med Infect Dis, 10, pp. 18-24; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Travel implications of emerging coronaviruses: SARS and MERS-CoV (2014) Travel Med Infect Dis, 12, pp. 422-428; Baharoon, S., Al-Jahdali, H., Al Hashmi, J., Memish, Z.A., Ahmed, Q.A., Severe sepsis and septic shock at the hajj: etiologies and outcomes (2009) Travel Med Infect Dis, 7, pp. 247-252; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 hajj (2014) J Infect Dis, 210, pp. 1067-1072; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Petersen, E., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013–2015 (2016) Int J Infect Dis, 47, pp. 10-14; ProMed, Novel coronavirus – Eastern Mediterranean (03): Saudi comment (2013), http://promedmail.org/post/20130326.1603038, 12 February 2013; Griffiths, K., Charrel, R., Lagier, J.-C., Nougairede, A., Simon, F., Parola, P., Infections in symptomatic travelers returning from the Arabian peninsula to France: a retrospective cross-sectional study (2016) Travel Med Infect Dis, 14, pp. 414-416; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., The spectrum of respiratory pathogens among returning hajj pilgrims: myths and reality (2016) Int J Infect Dis, 47, pp. 83-85; Charrel, R.N., Nougairede, A., Brouqui, P., Raoult, D., Gautret, P., Influenza vaccine for hajj and umrah pilgrims (2015) Lancet Infect Dis, 15, p. 267; Al-Tawfiq, J.A., Gautret, P., Benkouiten, S., Memish, Z.A., Mass gatherings and the spread of respiratory infections. Lessons from the hajj (2016) Ann Am Thorac Soc, 13, pp. 759-765; Benkouiten, S., Brouqui, P., Gautret, P., Non-pharmaceutical interventions for the prevention of respiratory tract infections during hajj pilgrimage (2014) Travel Med Infect Dis, 12, pp. 429-442; Alherabi, A.Z., Impact of pH1N1 influenza A infections on the otolaryngology, head and neck clinic during hajj, 2009 (2011) Saudi Med J, 32, pp. 933-938; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Leyten, E., Groeneveld, P., Middle east respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in The Netherlands, May 2014 (2014) Euro Surveill, 19; Mandourah, Y., Al-Radi, A., Ocheltree, A.H., Ocheltree, S.R., Fowler, R.A., Clinical and temporal patterns of severe pneumonia causing critical illness during hajj (2012) BMC Infect Dis, 12, p. 117; Haworth, E., Barasheed, O., Memish, Z.A., Rashid, H., Booy, R., Prevention of influenza at hajj: applications for mass gatherings (2013) J R Soc Med, 106, pp. 215-223; Razavi, S.M., Salamati, P., Prevention of influenza at hajj: applications for mass gatherings (2013) J R Soc Med, 106, p. 386; Gundlapalli, A.V., Rubin, M.A., Samore, M.H., Lopansri, B., Lahey, T., McGuire, H.L., Influenza, winter olympiad, 2002 (2006) Emerg Infect Dis, 12, pp. 144-146; van Hal, S.J., Foo, H., Blyth, C.C., McPhie, K., Armstrong, P., Sintchenko, V., Influenza outbreak during Sydney World Youth Day 2008: the utility of laboratory testing and case definitions on mass gathering outbreak containment (2009) PLoS One, 4; Blyth, C.C., Foo, H., van Hal, S.J., Hurt, A.C., Barr, I.G., McPhie, K., Influenza outbreaks during world youth day 2008 mass gathering (2010) Emerg Infect Dis, 16, pp. 809-815; Gautret, P., Parola, P., Brouqui, P., Relative risk for influenza like illness in French hajj pilgrims compared to non-hajj attending controls during the 2009 influenza pandemic (2013) Travel Med Infect Dis, 11, pp. 95-97; Lim, H.C., Cutter, J., Lim, W.K., Ee, A., Wong, Y.C., Tay, B.K., The influenza A (H1N1-2009) experience at the inaugural Asian Youth Games Singapore 2009: mass gathering during a developing pandemic (2010) Br J Sports Med, 44, pp. 528-532; Botelho-Nevers, E., Gautret, P., Benarous, L., Charrel, R., Felkai, P., Parola, P., Travel-related influenza A/H1N1 infection at a rock festival in Hungary: one virus may hide another one (2010) J Travel Med, 17, pp. 197-198; Shi, P., Keskinocak, P., Swann, J.L., Lee, B.Y., The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model (2010) BMC Publ Health, 10, p. 778; Ishola, D.A., Phin, N., Could influenza transmission be reduced by restricting mass gatherings? Towards an evidence-based policy framework (2011) J Epidemiol Glob Health, 1, pp. 33-60; Hong, C.-Y., Lin, R.T.P., Tan, E.S.L., Chong, P.-N., Tan, Y.S.L., Lew, Y.-J., Acute respiratory symptoms in adults in general practice (2004) Fam Pract, 21, pp. 317-323; Mackay, I.M., Human rhinoviruses: the cold wars resume (2008) J Clin Virol, 42, pp. 297-320; Fanoy, E.B., van der Sande, M.A., Kraaij-Dirkzwager, M., Dirksen, K., Jonges, M., van der Hoek, W., Travel-related MERS-CoV cases: an assessment of exposures and risk factors in a group of Dutch travellers returning from the Kingdom of Saudi Arabia, May 2014 (2014) Emerg Themes Epidemiol, 11, p. 16; ProMed, MERS-COV (01): Bangladesh, Saudi Arabia, Algeria, UAE, Iran, WHO, Request for information 2014 http://www.promedmail.org/post/20140616.2541707, (Accessed 11 November 2016); http://promedmail.chip.org/pipermail/promed/2014-June/004423.html, ProMed. MERS-CoV - Eastern Mediterranean (80): S Arabia, Iran, Algeria, Tunisia n.d; Sridhar, S., Brouqui, P., Parola, P., Gautret, P., Imported cases of Middle East respiratory syndrome: an update (2015) Travel Med Infect Dis, 13, pp. 106-109; Gardner, L.M., Rey, D., Heywood, A.E., Toms, R., Wood, J., Travis Waller, S., A scenario-based evaluation of the middle east respiratory syndrome coronavirus and the hajj (2014) Risk Anal, 34, pp. 1391-1400; Memish, Z.A., Al-Tawfiq, J.A., Almasri, M., Akkad, N., Yezli, S., Turkestani, A., A cohort study of the impact and acquisition of naspharyngeal carriage of Streptococcus pneumoniae during the hajj (2016) Travel Med Infect Dis, 14, pp. 242-247","Memish, Z.A.; Ministry of Health, P.O. Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Elsevier USA",14778939,,TMIDA,"29673810","English","Travel Med. Infect. Dis.",Review,"Final",,Scopus,2-s2.0-85046125035 "Rissi D.R.","8663882200;","A retrospective study of the neuropathology and diagnosis of naturally occurring feline infectious peritonitis",2018,"Journal of Veterinary Diagnostic Investigation","30","3",,"392","399",,2,"10.1177/1040638718755833","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042596309&doi=10.1177%2f1040638718755833&partnerID=40&md5=88a461a608f6d2fd4da625841238f62c","Department of Pathology and Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States","Rissi, D.R., Department of Pathology and Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States","Feline infectious peritonitis (FIP) is one of the most important viral diseases of cats worldwide. Our study describes the neuropathology and the diagnostic features of 26 cases of FIP in domestic cats. The average age of affected individuals was 11.8 mo, and there was no sex or breed predisposition. Clinical neurologic signs were noted in 22 cases, and rabies was clinically suspected in 11 cases. Twenty cats had lesions in multiple organs, and 6 cats had lesions only in the brain. Gross neuropathologic changes occurred in 15 cases and consisted of hydrocephalus (10 cases), cerebellar herniation through the foramen magnum (6 cases), cerebral swelling with flattening of gyri (2 cases), and accumulation of fibrin within ventricles (2 cases) or leptomeninges (1 case). Histologically, 3 main distinct distributions of neuropathologic changes were observed, namely periventricular encephalitis (12 cases), rhombencephalitis (8 cases), and diffuse leptomeningitis with superficial encephalitis (6 cases). Fresh tissue samples were submitted for fluorescent antibody testing (FAT) after autopsy in 17 cases, and positive results were found in only 7 cases. Immunohistochemistry (IHC) for feline coronavirus confirmed the diagnosis in all 26 cases. IHC appears to be a more sensitive and reliable test for confirmation of FIP than is FAT. © 2018, © 2018 The Author(s).","Feline infectious peritonitis; meningoencephalitis; neuropathology","virus antigen; aggressiveness; animal experiment; animal tissue; anisocoria; Article; astrocytosis; ataxia; autopsy; brain damage; brain hernia; depression; domestic cat; encephalitis; Feline coronavirus; feline infectious peritonitis; female; gliosis; head tilting; histopathology; hydrocephalus; immunohistochemistry; inflammation; male; meningitis; miosis; muscle rigidity; neuropathology; nonhuman; nystagmus; opisthotonus; rabies; recumbency; retrospective study; seizure; urine incontinence; animal; cat; feline infectious peritonitis; genetics; immunology; neuropathology; pathology; veterinary medicine; Animals; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Female; Immunohistochemistry; Male; Neuropathology; Retrospective Studies","Addie, D., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 594-604; Boettcher, I.C., Use of anti-coronavirus antibody testing of cerebrospinal fluid for diagnosis of feline infectious peritonitis involving the central nervous system in cats (2007) J Am Vet Med Assoc, 230, pp. 199-205; Bradshaw, J.M., A retrospective study of 286 cases of neurological disorders of the cat (2004) J Comp Pathol, 131, pp. 112-120; Chang, H.W., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18, pp. 1089-1095; Doenges, S.J., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J Feline Med Surg, 18, pp. 104-109; Foley, J.E., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J Vet Intern Med, 12, pp. 415-423; Foley, J.E., Leutenegger, C., A review of coronavirus infection in the central nervous system of cats and mice (2001) J Vet Intern Med, 15, pp. 438-444; Foley, J.E., Inflammation and changes in cytokine levels in neurological feline infectious peritonitis (2003) J Feline Med Surg, 5, pp. 313-322; Giori, L., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J Small Anim Pract, 52, pp. 152-157; Goodson, T., Feline infectious peritonitis (2009) Compend Contin Educ Vet, 31, pp. 1-8; Gruendl, S., Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in the central nervous system (2017) J Feline Med Surg, 19, pp. 576-585; Hartmann, K., Feline infectious peritonitis (2005) Vet Clin North Am Small Anim Pract, 35, pp. 39-79; Hartmann, K., Comparison of different tests to diagnose feline infectious peritonitis (2003) J Vet Intern Med, 17, pp. 781-790; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet Pathol, 51, pp. 505-526; Kline, K.L., Feline infectious peritonitis with neurologic involvement: clinical and pathological findings in 24 cats (1994) J Am Animal Hosp Assoc, 30, pp. 111-118; Kornegay, J.N., Feline infectious peritonitis: central nervous system form (1978) J Am Animal Hosp Assoc, 14, pp. 580-584; Krum, S., Hydrocephalus associated with the noneffusive form of feline infectious peritonitis (1975) J Am Vet Med Assoc, 167, pp. 746-748; Legendre, A.M., Whitenack, D.L., Feline infectious peritonitis with spinal cord involvement in two cats (1975) J Am Vet Med Assoc, 167, pp. 31-32; Marioni-Henry, K., Prevalence of diseases of the spinal cord of cats (2004) J Vet Intern Med, 18, pp. 851-858; Mesquita, L.P., Glial response in the central nervous system of cats with feline infectious peritonitis (2016) J Feline Med Surg, 18, pp. 1023-1030; Norris, J.M., Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990–2002) (2005) Aust Vet J, 83, pp. 666-673; Olsen, C.W., A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination (1993) Vet Microbiol, 36, pp. 1-37; Paltrinieri, S., Laboratory profiles in cats with different pathological and immunohistochemical findings due to feline infectious peritonitis (FIP) (2001) J Feline Med Surg, 3, pp. 149-159; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J Feline Med Surg, 11, pp. 225-258; Pesavento, P.A., Murphy, B.G., Common and emerging infectious diseases in the animal shelter (2014) Vet Pathol, 51, pp. 478-491; Poncelet, L., Detection of antigenic heterogeneity in feline coronavirus nucleocapsid in feline pyogranulomatous meningoencephalitis (2008) Vet Pathol, 45, pp. 140-153; Rand, J.S., Clinical, cerebrospinal fluid, and histological data from twenty-seven cats with primary inflammatory disease of the central nervous system (1994) Can Vet J, 35, pp. 103-110; Slauson, D.O., Finn, J.P., Meningoencephalitis and panophthalmitis in feline infectious peritonitis (1972) J Am Vet Med Assoc, 160, pp. 729-734; Sparkes, A.H., Feline infectious peritonitis: a review of clinicopathological changes in 65 cases, and a critical assessment of their diagnostic value (1991) Vet Rec, 129, pp. 209-212; Tamke, P.G., Acquired hydrocephalus and hydromyelia in a cat with feline infectious peritonitis: A case report and brief review (1998) Can Vet J, 29, pp. 997-1000; Uzal, F.A., Alimentary system Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals, 2016, pp. 253-255. , Maxie M.G., (ed), 6th ed., St. Louis, MO, Elsevier, In:, ed; Vennema, H., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157","Rissi, D.R.; Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, The University of GeorgiaUnited States; email: rissi@uga.edu",,"SAGE Publications Inc.",10406387,,,"29411701","English","J. Vet. Diagn. Invest.",Article,"Final",Open Access,Scopus,2-s2.0-85042596309 "Lei H., Li Y., Xiao S., Lin C.-H., Norris S.L., Wei D., Hu Z., Ji S.","57191494092;57204521929;57195039277;15035009600;56992367800;56991991800;57202062158;55295897600;","Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses",2018,"Indoor Air","28","3",,"394","403",,11,"10.1111/ina.12445","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040055701&doi=10.1111%2fina.12445&partnerID=40&md5=127299e503a2db4b9ae7a66585a9048f","Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong; Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, United States; Boeing (China) Co. Ltd., Beijing, China; Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China","Lei, H., Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong; Li, Y., Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong; Xiao, S., Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong; Lin, C.-H., Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, United States; Norris, S.L., Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, United States; Wei, D., Boeing (China) Co. Ltd., Beijing, China; Hu, Z., Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China; Ji, S., Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China","Identifying the exact transmission route(s) of infectious diseases in indoor environments is a crucial step in developing effective intervention strategies. In this study, we proposed a comparative analysis approach and built a model to simulate outbreaks of 3 different in-flight infections in a similar cabin environment, that is, influenza A H1N1, severe acute respiratory syndrome (SARS) coronavirus (CoV), and norovirus. The simulation results seemed to suggest that the close contact route was probably the most significant route (contributes 70%, 95% confidence interval [CI]: 67%-72%) in the in-flight transmission of influenza A H1N1 transmission; as a result, passengers within 2 rows of the index case had a significantly higher infection risk than others in the outbreak (relative risk [RR]: 13.4, 95% CI: 1.5-121.2, P =.019). For SARS CoV, the airborne, close contact, and fomite routes contributed 21% (95% CI: 19%-23%), 29% (95% CI: 27%-31%), and 50% (95% CI: 48%-53%), respectively. For norovirus, the simulation results suggested that the fomite route played the dominant role (contributes 85%, 95% CI: 83%-87%) in most cases; as a result, passengers in aisle seats had a significantly higher infection risk than others (RR: 9.5, 95% CI: 1.2-77.4, P =.022). This work highlighted a method for using observed outbreak data to analyze the roles of different infection transmission routes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd","air cabin; in-flight infection; intervention; mathematical model; multiroute transmission; outbreak","aircraft; analysis; calicivirus infection; comparative study; computer simulation; epidemic; female; human; indoor air pollution; influenza; Influenza A virus (H1N1); male; Norovirus; risk; SARS coronavirus; severe acute respiratory syndrome; transmission; Air Pollution, Indoor; Aircraft; Caliciviridae Infections; Computer Simulation; Disease Outbreaks; Female; Humans; Influenza A Virus, H1N1 Subtype; Influenza, Human; Male; Norovirus; Risk; SARS Virus; Severe Acute Respiratory Syndrome","Yu, I.T.S., Li, Y.G., Wong, T.W., Evidence of airborne transmission of the severe acute respiratory syndrome virus (2004) N Engl J Med, 350, pp. 1731-1739; Khan, K., Arino, J., Hu, W., Spread of a novel influenza A(H1N1) virus via global airline transportation (2009) N Engl J Med, 361, pp. 212-214; Leder, K., Newman, D., Respiratory infections during air travel (2005) Intern Med J, 35, pp. 50-55; Mills, C.E., Robins, J.M., Lipsitch, M., Transmissibility of 1918 pandemic influenza (2004) Nature, 432, pp. 904-906; Glass, R.I., Parashar, U.D., Estes, M.K., Norovirus gastroenteritis (2009) N Engl J Med, 361, pp. 1776-1785; Lindesmith, L., Moe, C., Marionneau, S., Human susceptibility and resistance to Norwalk virus infection (2003) Nat Med, 9, pp. 548-553; Mangili, A., Gendreau, M.A., Transmission of infectious diseases during commercial air travel (2005) Lancet, 365, pp. 989-996; Atkinson, M.P., Wein, L.M., Quantifying the routes of transmission for pandemic influenza (2008) Bull Math Biol, 70, pp. 820-867; Nicas, M., Jones, R.M., Relative contributions of four exposure pathways to influenza infection risk (2009) Risk Anal, 29, pp. 1292-1303; Tung-Thompson, G., Libera, D.A., Koch, K.L., Francis, L., III, Jaykus, L.A., Aerosolization of a human norovirus surrogate, bacteriophage MS2, during simulated vomiting (2015) PLoS ONE, 10; Liu, L., Li, Y., Nielsen, P.V., Wei, J., Jensen, R.L., Short-range airborne transmission of expiratory droplets between two people (2017) Indoor Air, 27, pp. 452-462; Cox, C.S., Aerosol survival of Pasteurella tularensis disseminated from the wet and dry states (1971) Appl Microbiol, 21, pp. 482-486; Ehresmann, D.W., Hatch, M.T., Effect of relative humidity on the survival of airborne unicellular algae (1975) Appl Microbiol, 29, pp. 352-357; Riley, R.L., O'Grady, F., (1961) Airborne infection: transmission and control, , New York, NY, The Macmillan Company; Xie, X., Li, Y.G., Zhang, T., Fang, H.H., Bacterial survival in evaporating deposited droplets on a teflon-coated surface (2006) Appl Microbiol Biotechnol, 76, pp. 703-712; Xie, X., Li, Y.G., Chwang, A.T.Y., Ho, P.L., Seto, W.H., How far droplets can move in indoor environments – revisiting the Wells evaporation-falling curve (2007) Indoor Air, 17, pp. 211-225; Eklund, T.I., Inflight cabin smoke control (1996) Toxicology, 115, pp. 135-144; Liu, W., Wen, J.Z., Chao, J.Y., Accurate and high-resolution boundary conditions and flow fields in the first-class cabin of an MD-82 commercial airliner (2012) Atmos Environ, 56, pp. 33-44; Lindgren, T., Norback, D., Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking (2002) Indoor Air, 12, pp. 263-272; Jones, R.M., Masago, Y., Bartrand, T., Haas, C.N., Nicas, M., Rose, J.B., Characterizing the risk of infection from Mycobacterium tuberculosis in commercial passenger aircraft using quantitative microbial risk assessment (2009) Risk Anal, 29, pp. 355-365; Chen, S.C., Chang, C.F., Liao, C.M., Predictive models of control strategies involved in containing indoor airborne infections (2006) Indoor Air, 16, pp. 469-481; Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection (1994) Ann ICRP, 24, pp. 1-482; AuYeung, W., Canales, R.A., Leckie, J.O., The fraction of total hand surface area involved in young children's outdoor hand-to-object contacts (2008) Environ Res, 108, pp. 294-299; Lee, J.Y., Choi, J.W., Kim, H., Determination of hand surface area by sex and body shape using alginate (2007) J Physiol Anthropol, 26, pp. 475-483; Spicknall, I.H., Koopman, J.S., Nicas, M., Pujol, J.M., Li, S., Eisenberg, J.N.S., Informing optimal environmental influenza interventions: how the host, agent, and environment alter dominant routes of transmission (2010) PLoS Comput Biol, 6; Kirking, H.L., Cortes, J., Burrer, S., Likely transmission of norovirus on an airplane, October 2008 (2010) Clin Infect Dis, 50, pp. 1216-1221; Olsen, S.J., Chang, H.L., Cheung, T.Y.Y., Transmission of the severe acute respiratory syndrome on aircraft (2003) N Engl J Med, 349, pp. 2416-2422; Neatherlin, J., Cramer, E.H., Dubray, C., Influenza A(H1N1)pdm09 during air travel (2013) Travel Med Infect Dis, 11, pp. 110-118; (2009) WHO technical advice for case management of influenza A(H1N1) in air transport, , Geneva, Switzerland, World Health Organization; Teunis, P.F.M., Brienen, N., Kretzschmar, M.E.E., High infectivity and pathogenicity of influenza A virus via aerosol and droplet transmission (2010) Epidemics, 2, pp. 215-222; Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C., Gardam, M., Transmission of influenza A in human beings (2007) Lancet Infect Dis, 7, pp. 257-265; Moser, M.R., Bender, T.R., Margolis, H.S., Noble, G.R., Kendal, A.P., Ritter, D.G., An outbreak of influenza aboard a commercial airliner (1979) Am J Epidemiol, 110, pp. 1-6; Li, Y.G., Huang, X., Yu, I.T.S., Wong, T.W., Qian, H., Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong (2005) Indoor Air, 5, pp. 83-95; Sze To, G.N., Wan, M.P., Chao, C.Y.H., Fang, L., Melikov, A., Experimental study of dispersion and deposition of expiratory aerosols in aircraft cabins and impact on infectious disease transmission (2009) Aerosol Sci Technol, 43, pp. 466-485; Dowell, S.F., Simmerman, J.M., Erdman, D.D., Severe acute respiratory syndrome coronavirus on hospital surfaces (2004) Clin Infect Dis, 39, pp. 652-657; Cheesbrough, J.S., Green, J., Gallimore, C.I., Wright, P.A., Brown, D.W., Widespread environmental contamination with Norwalk-like viruses (NLV) detected in a prolonged hotel outbreak of gastroenteritis (2000) Epidemiol Infect, 125, pp. 93-98; Wu, H.M., Fornek, M., Schwab, K.J., A norovirus outbreak at a long-term-care facility: the role of environmental surface contamination (2005) Infect Control Hosp Epidemiol, 26, pp. 802-810; Nazaroff, W.W., Norovirus, gastroenteritis, and indoor environmental quality (2011) Indoor Air, 21, pp. 353-356; Bonifait, L., Charlebois, R., Vimont, A., Detection and quantification of airborne norovirus during outbreaks in healthcare facilities (2015) Clin Infect Dis, 61, pp. 299-304; Marks, P.J., Vipond, I.B., Carlisle, D., Deakin, D., Fey, R.E., Caul, E.O., Evidence for airborne transmission of Norwalk-like virus (NLV) in a hotel restaurant (2000) Epidemiol Infect, 124, pp. 481-487","Li, Y.; Department of Mechanical Engineering, The University of Hong KongHong Kong; email: liyg@hku.hk",,"Blackwell Munksgaard",09056947,,INAIE,"29244221","English","Indoor Air",Article,"Final",Open Access,Scopus,2-s2.0-85040055701 "Li X., Li J., Meng L., Zhu W., Liu X., Yang M., Yu D., Niu L., Shen X.","57201184431;55992337200;57198479348;57211781312;56682276300;57201183113;55481568700;57201184115;55796759100;","Viral etiologies and epidemiology of patients with acute respiratory infections based on sentinel hospitals in Gansu Province, Northwest China, 2011-2015",2018,"Journal of Medical Virology","90","5",,"828","835",,3,"10.1002/jmv.25040","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043696714&doi=10.1002%2fjmv.25040&partnerID=40&md5=b0a19dc52e0348527e22f7c97b8dfbc0","Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China; Centers’ for Disease Control and PreventionGansu Province, China","Li, X., Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China; Li, J., Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China; Meng, L., Centers’ for Disease Control and PreventionGansu Province, China; Zhu, W., Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China; Liu, X., Centers’ for Disease Control and PreventionGansu Province, China; Yang, M., Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China; Yu, D., Centers’ for Disease Control and PreventionGansu Province, China; Niu, L., Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China; Shen, X., Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityGansu Province, China","Understanding etiological role and epidemiological profile is needed to improve clinical management and prevention of acute respiratory infections (ARIs). A 5-year prospective study about active surveillance for outpatients and inpatients with ARIs was conducted in Gansu province, China, from January 2011 to November 2015. Respiratory specimens were collected from patients and tested for eight respiratory viruses using polymerase chain reaction (PCR) or reverse transcription polymerase chain reaction (RT-PCR). In this study, 2768 eligible patients with median age of 43 years were enrolled including pneumonia (1368, 49.2%), bronchitis (435, 15.7%), upper respiratory tract infection or URTI (250, 9.0%), and unclassified ARI (715, 25.8%). Overall, 29.2% (808/2768) were positive for any one of eight viruses, of whom 130 cases were identified with two or more viruses. Human rhinovirus (HRV) showed the highest detection rate (8.6%), followed by influenza virus (Flu, 7.3%), respiratory syncytial virus (RSV, 6.1%), human coronavirus (hCoV, 4.3%), human parainfluenza (PIV, 4.0%), adenovirus (ADV, 2.1%), human metapneumovirus (hMPV, 1.6%), and human bocavirus (hBoV, 0.7%). Compared with URTI, RSV was more likely identified in pneumonia (χ 2 = 12.720, P < 0.001) and hCoV was more commonly associated with bronchitis than pneumonia (χ 2 = 15.019, P < 0.001). In patients aged less than 5 years, RSV showed the highest detection rate and hCoV was the most frequent virus detected in adults and elderly. The clear epidemical seasons were observed in HRV, Flu, and hCoV infections. These findings could serve as a reference for local health authorities in drawing up further plans to prevent and control ARIs associated with viral etiologies. © 2018 Wiley Periodicals, Inc.","acute respiratory infections; epidemiology; molecular detection; respiratory virus","Adenoviridae; adult; age; aged; Article; bronchitis; child; China; Coronaviridae; Coronavirus infection; disease association; disease surveillance; female; hospital; human; Human bocavirus; Human metapneumovirus; Human parainfluenza virus; Human respiratory syncytial virus; Human rhinovirus; influenza; Influenza virus; major clinical study; male; nonhuman; Paramyxovirinae; prospective study; reverse transcription polymerase chain reaction; Rhinovirus infection; seasonal variation; viral respiratory tract infection; viral upper respiratory tract infection; virus detection; virus pneumonia; adolescent; classification; genetics; hospitalization; infant; isolation and purification; middle aged; newborn; pathology; polymerase chain reaction; preschool child; respiratory tract infection; season; very elderly; virology; virus; virus infection; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Child; Child, Preschool; China; Female; Hospitalization; Hospitals; Humans; Infant; Infant, Newborn; Male; Middle Aged; Polymerase Chain Reaction; Prospective Studies; Respiratory Tract Infections; Seasons; Virus Diseases; Viruses; Young Adult","Murray, C.J.L., Lopez, A.D., Global mortality, disability, and the contribution of risk factors: global burden of disease study (1997) Lancet, 349, pp. 1436-1442; Williams, B.G., Gouws, E., Boschi-Pinto, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; Rudan, I., Chan, K.Y., Zhang, J.S.F., Causes of deaths in children younger than 5 years in China in 2008 (2010) Lancet, 375, pp. 1083-1089; Jing, H.E., Gong, Y., Zhang, W.J., Study on the viral etiology of acute respiratory tract infections in Shanghai area during 2009–2010 (2011) J Microbes Infect, 6, pp. 90-96; Ren, L., Gonzalez, R., Wang, Z., Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005–2007 (2009) Clin Microbiol Infect, 15, pp. 1146-1153; Sung, R.Y.T., Chan, P.K.S., Tsen, T., Identification of viral and atypical bacterial pathogens in children hospitalized with acute respiratory infections in Hong Kong by multiplex PCR assays (2009) J Med Virol, 81, pp. 153-159; Liu, T., Li, Z., Zhang, S., Viral Etiology of acute respiratory tract infections in hospitalized children and adults in Shandong Province, China (2015) Virol J, 12, pp. 1-7; Wang, H., Zheng, Y., Deng, J., Prevalence of respiratory viruses among children hospitalized from respiratory infections in Shenzhen, China (2016) Virol J, 13, pp. 1-5; Allard, A., Girones, R., Juto, P., Polymerase chain reaction for detection of adenoviruses in stool samples (1991) J Clin Microbiol, 29, p. 2683; Chung, J.Y., Han, T.H., Kim, C.K., Bocavirus infection in hospitalized children, South Korea (2006) Emerg Infect Dis, 12, pp. 1254-1256; Coiras, M.T., Perez-Brena, P., Garcia, M.L., Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay (2003) J Med Virol, 69, pp. 132-144; Coiras, M.T., Aguilar, J.C., Garcia, M.L., Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays (2004) J Med Virol, 72, pp. 484-495; Peiris, J.S.M., Tang, W.-H., Chan, K.-H., Children with respiratory disease associated with metapneumovirus in Hong Kong (2003) Emerg Infect Dis, 9, pp. 628-633; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Huang, G., Yu, D., Mao, N., Viral etiology of acute respiratory infection in Gansu Province, China, 2011 (2013) PLoS ONE, 8; Feng, L., Li, Z., Zhao, S., Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009–2013 (2014) PLoS ONE, 9; Troeger, C., Forouzanfar, M., Rao, P.C., Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015 (2017) Lancet Infect Dis, 17, pp. 1133-1161; Niederman, M.S., Krilov, L.R., Acute lower respiratory infections in developing countries (2013) Lancet, 381, pp. 1341-1342; Falsey, A.R., McElhaney, J.E., Beran, J., Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness (2014) J Infect Dis, 209, pp. 1873-1881; Johnstone, J., Majumdar, S.R., Fox, J.D., Viral infection in adults hospitalized with community-acquired pneumonia: prevalence, pathogens, and presentation (2008) Chest, 134, pp. 1141-1148; Li, S.-W., Lin, C.-W., Human coronaviruses: clinical features and phylogenetic analysis (2013) Biomedicine, 3, pp. 43-50; Malasao, R., Okamoto, M., Chaimongkol, N., Molecular characterization of human respiratory syncytial virus in the Philippines, 2012–2013 (2015) PLoS ONE, 10; Kaneko, M., Watanabe, J., Kuwahara, M., Impact of respiratory syncytial virus infection as a cause of lower respiratory tract infection in children younger than 3 years of age in Japan (2002) J Infect, 44, pp. 240-243; Nair, H., Nokes, D.J., Gessner, B.D., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis (2010) Infect Immun, 6, pp. 149-155; Stein, R.T., Bont, L.J., Zar, H., Respiratory syncytial virus hospitalization and mortality: systematic review and meta-analysis (2017) Pediatr Pulmonol, 52, pp. 556-569; Pierangeli, A., Gentile, M., Di Marco, P., Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy (2007) J Med Virol, 79, pp. 463-468; Greenberg, S.B., Respiratory consequences of rhinovirus infection (2003) Arch Intern Med, 163, pp. 278-284; Wat, D., The common cold: a review of the literature (2004) Eur J Intern Med, 15, pp. 79-88; Heikkinen, T., Järvinen, A., The common cold (2003) Lancet, 361, pp. 51-59; Glueck, R., Review of intranasal influenza vaccine (2001) Adv Drug Deliv Rev, 51, pp. 203-211; Glueck, R., Pre-clinical and clinical investigation of the safety of a novel adjuvant for intranasal immunization (2001) Vaccine, 20, pp. S42-S44; Feng, L., Mounts, A.W., Feng, Y., Seasonal influenza vaccine supply and target vaccinated population in China, 2004-2009 (2010) Vaccine, 28, pp. 6778-6782; Bezerra, P.G.M., Britto, M.C.A., Correia, J.B., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) PLoS ONE, 6, pp. 20-26; Berkley, J.A., Munywoki, P., Ngama, M., Viral etiology of severe pneumonia among Kenyan young infants and children (2010) JAMA, 303, pp. 2051-2057; Guerrier, G., Goyet, S., Chheng, E.T., Acute viral lower respiratory tract infections in Cambodian children: clinical and epidemiologic characteristics (2013) Pediatr Infect Dis J, 32, pp. e8-13; Arruda, E., Pitkaranta, A., Witek, T.J., Jr., Frequency and natural history of rhinovirus infections in adults during autumn (1997) J Clin Microbiol, 35, pp. 2864-2868; Ghebrehewet, S., MacPherson, P., Ho, A., Influenza (2016) BMJ, 355, p. 6258; Ren, L., Gonzalez, R., Xu, J., Prevalence of human coronaviruses in adults with acute respiratory tract infections in Beijing, China (2011) J Med Virol, 83, pp. 291-297; Gaunt, E.R., Hardie, A., Claas, E.C., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947","Li, J.; Institution of Epidemiology and Health Statistics, School of Public Health, Lanzhou UniversityChina; email: lijsh16@163.com",,"John Wiley and Sons Inc.",01466615,,JMVID,"29388679","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85043696714 "Pusch E., Renz H., Skevaki C.","57203040939;7102453099;13605079800;","Respiratory virus-induced heterologous immunity: Part of the problem or part of the solution?",2018,"Allergo Journal International","27","3",,"79","96",,,"10.1007/s40629-018-0056-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050335483&doi=10.1007%2fs40629-018-0056-0&partnerID=40&md5=49da4ae7719002a974134b4e5784a913","Institute of Laboratory Medicine and Pathobiochemistry, German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, Marburg, 35043, Germany","Pusch, E., Institute of Laboratory Medicine and Pathobiochemistry, German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, Marburg, 35043, Germany; Renz, H., Institute of Laboratory Medicine and Pathobiochemistry, German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, Marburg, 35043, Germany; Skevaki, C., Institute of Laboratory Medicine and Pathobiochemistry, German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, Marburg, 35043, Germany","Purpose To provide current knowledge on respiratory virus-induced heterologous immunity (HI) with a focus on humoral and cellular cross-reactivity. Adaptive heterologous immune responses have broad implications on infection, autoimmunity, allergy and transplant immunology. A better understanding of the mechanisms involved might ultimately open up possibilities for disease prevention, for example by vaccination. Methods A structured literature search was performed using Medline and PubMed to provide an overview of the current knowledge on respiratory-virus induced adaptive HI. Results In HI the immune response towards one antigen results in an alteration of the immune response towards a second antigen. We provide an overview of respiratory virus-induced HI, including viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), coronavirus (CoV) and influenza virus (IV). We discuss T cell receptor (TCR) and humoral crossreactivity as mechanisms of HI involving those respiratory viruses. Topics covered include HI between respiratory viruses as well as between respiratory viruses and other pathogens. Newly developed vaccines which have the potential to provide protection against multiple virus strains are also discussed. Furthermore, respiratory viruses have been implicated in the development of autoimmune diseases, such as narcolepsy, Guillain–Barré syndrome, type 1 diabetes or myocarditis. Finally, we discuss the role of respi-ratory viruses in asthma and the hygiene hypothesis, and review our recent findings on HI between IV and allergens, which leads to protection from experimental asthma. Conclusion Respiratory-virus induced HI may have protective but also detrimental effects on the host. Respiratory viral infections contribute to asthma or autoimmune disease development, but on the other hand, a lack of microbial encounter is associated with an increasing number of allergic as well as autoimmune diseases. Future research might help identify the elements which determine a protective or detrimental outcome in HI-based mechanisms. © Springer Medizin Verlag GmbH, a part of Springer Nature 2018.","Adaptive; Asthma; Autoimmunity; Cross-reactivity; immunity; Respiratory virus","allergen; antigen; capsid protein; influenza vaccine; major histocompatibility antigen class 2; myosin heavy chain alpha; T lymphocyte receptor; acute disseminated encephalomyelitis; allergy; asthma; autoimmune disease; autoimmunity; CD8+ T lymphocyte; celiac disease; chronic obstructive lung disease; Coronavirinae; cross reaction; cytokine release; Epstein Barr virus; Guillain Barre syndrome; Hepatitis C virus; heterologous immunity; human; Human immunodeficiency virus; Human respiratory syncytial virus; immune response; immunization; immunological memory; influenza; influenza A (H1N1); Influenza virus; insulin dependent diabetes mellitus; Medline; mental disease; Middle East respiratory syndrome coronavirus; myocarditis; narcolepsy; nonhuman; respiratory virus; Review; Rhinovirus; severe acute respiratory syndrome; Sjoegren syndrome; T lymphocyte activation; vaccination; virus infection; Wart virus","Fendrick, A.M., Monto, A.S., Nightengale, B., Sarnes, M., The economicburdenofnon-influenza-relatedviralrespiratory tract infection in the United States (2003) Arch Intern Med, 163, p. 487. , https://doi.org/10.1001/archinte.163.4.487; Molinari, N.-A., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., The annual impact of seasonal influenza in the US: Measuring disease burden and costs (2007) Vaccine, 25, pp. 5086-5096. , https://doi.org/10.1016/j.vaccine.2007.03.046; Mäkelä, M.J., Puhakka, T., Ruuskanen, O., Leinonen, M., Saikku, P., Kimpimäki, M., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36, pp. 539-542; Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N Engl J Med, 373, pp. 415-427. , https://doi.org/10.1056/NEJMoa1500245; Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: An updated systematic analysis (2015) Lancet, 385, pp. 430-440. , https://doi.org/10.1016/S0140-6736(14)61698-6; Nair, H., Brooks, W.A., Katz, M., Roca, A., Berkley, J.A., Madhi, S.A., Global burden of respiratory infections due to seasonal influenza in young children: A systematic review and meta-analysis (2011) Lancet, 378, pp. 1917-1930. , https://doi.org/10.1016/S0140-6736(11)61051-9; Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555. , https://doi.org/10.1016/S0140-6736(10)60206-1; Wedzicha, J.A., Seemungal, T., COPD exacerbations: Defining their cause and prevention (2007) Lancet, 370, pp. 786-796. , https://doi.org/10.1016/S0140-6736(07)61382-8; Jartti, T., Gern, J.E., Role of viral infections in the development and exacerbation of asthma in children (2017) J Allergy Clin Immunol, 140, pp. 895-906. , https://doi.org/10.1016/j.jaci.2017.08.003; Holt, P.G., Sly, P.D., Viral infections and atopy in asthma pathogenesis: New rationales for asthma prevention and treatment (2012) Nat Med, 18, pp. 726-735. , https://doi.org/10.1038/nm.2768; Cusick, M.F., Libbey, J.E., Fujinami, R.S., Molecular mimicry as a mechanism of autoimmune disease (2012) Clin Rev Allergy Immunol, 42, pp. 102-111. , https://doi.org/10.1007/s12016-011-8294-7; Netea, M.G., Quintin, J., Van Der Meer, J.W.M., Trained immunity: A memory for innate host defense (2011) Cell Host Microbe, 9, pp. 355-361. , https://doi.org/10.1016/j.chom.2011.04.006; Goodridge, H.S., Ahmed, S.S., Curtis, N., Kollmann, T.R., Levy, O., Netea, M.G., Harnessing the beneficial heterologous effects of vaccination (2016) Nat Rev Immunol, 16, pp. 392-400. , https://doi.org/10.1038/nri.2016.43; Martin, S.F., Adaptation in the innate immune system and heterologous innate immunity (2014) Cell Mol Life Sci, 71, pp. 4115-4130. , https://doi.org/10.1007/s00018-014-1676-2; Corti, D., Bianchi, S., Vanzetta, F., Minola, A., Perez, L., Agatic, G., Cross-neutralization of four paramyxoviruses by a human monoclonal antibody (2013) Nature, 501, pp. 439-443. , https://doi.org/10.1038/nature12442; D’Orsogna, L., Van Den Heuvel, H., Van Kooten, C., Heidt, S., Claas, F.H.J., Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms (2017) Immunogenetics, 69, pp. 631-641. , https://doi.org/10.1007/s00251-017-0989-3; Guo, H., Topham, D.J., Multiple distinct forms of CD8+ T cell cross-reactivity and specificities revealed after 2009 H1N1 influenza A virus infection in mice (2012) Plos ONE, 7, pp. 1-11. , https://doi.org/10.1371/journal.pone.0046166; Sridhar, S., Begom, S., Bermingham, A., Hoschler, K., Adamson, W., Carman, W., Cellular immune correlates of protection against symptomatic pandemic influenza (2013) Nat Med, 19, pp. 1305-1312. , https://doi.org/10.1038/nm.3350; Steinke, J.W., Liu, L., Turner, R.B., Braciale, T.J., Borish, L., Immune surveillance by rhinovirus-specific circulating CD4+ and CD8+ T lymphocytes (2015) Plos ONE, 10. , https://doi.org/10.1371/journal.pone.0115271; Wilkinson, T.M., Li, C.K., Chui, C.S., Huang, A.K., Perkins, M., Liebner, J.C., Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans (2012) Nat Med, 18, pp. 276-282. , https://doi.org/10.1038/nm.2612; Acierno, P.M., Newton, D.A., Brown, E.A., Maes, L., Baatz, J.E., Gattoni-Celli, S., Cross-reactivity between HLA-A2-restricted FLU-M1:58–66 and HIV p17 GAG:77–85 epitopes in HIV-infected and uninfected individuals (2003) J Transl Med, 1 (3). , https://doi.org/10.1186/1479-5876-1-3; Wedemeyer, H., Mizukoshi, E., Davis, A.R., Bennink, J.R., Rehermann, B., Cross-reactivity between hepatitis C virus and Influenza A virus determinant-specific cytotoxic T cells (2001) J Virol., 75, pp. 11392-11400. , https://doi.org/10.1128/JVI.75.23.11392; Su, L., Kidd, B., Han, A., Kotzin, J., Davis, M., Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults (2013) Immunity, 38, pp. 373-383; Vujanovic, L., Shi, J., Kirkwood, J.M., Storkus, W.J., Butterfield, L.H., Molecular mimicry of MAGE-A6 and mycoplasma penetrans HF-2 epitopes in the induction of antitumor CD8+ T-cell responses (2014) Oncoimmunology, 3. , https://doi.org/10.4161/21624011.2014.954501; Johnson, L.R., Weizman, O.-E., Rapp, M., Way, S.S., Sun, J.C., Epitope-specific vaccination limits clonal expansion of heterologous naive T cells during viral challenge (2016) Cell Rep, 17, pp. 636-644. , https://doi.org/10.1016/j.celrep.2016.09.019; Oberle, S.G., Hanna-El-Daher, L., Chennupati, V., Enouz, S., Scherer, S., Prlic, M., Zehn, D., A minimum epitope overlap between infections strongly narrows the emerging T cell repertoire (2016) Cell Rep, 17, pp. 627-635. , https://doi.org/10.1016/j.celrep.2016.09.072; Urbani, S., Amadei, B., FisicaroP, Pilli M, MissaleG, Bertoletti A, Ferrari C. Heterologous T cell immunity in severe hepatitis C virus infection (2005) J Exp Med, 201, pp. 675-680. , https://doi.org/10.1084/jem.20041058; Welsh, R.M., Che, J.W., Brehm, M.A., Selin, L.K., Heterologous immunity between viruses (2010) Immunol Rev, 235, pp. 244-266. , https://doi.org/10.1111/j.0105-2896.2010.00897.x; Wucherpfennig, K.W., Strominger, J.L., Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein (1995) Cell, 80, pp. 695-705. , https://doi.org/10.1016/0092-8674(95)90348-8; Heutinck, K.M., Yong, S.L., Tonneijck, L., Van Den Heuvel, H., Van Der Weerd, N.C., Van Der Pant, K., Virus-specific CD8(+) T cells cross-reactive to donor-alloantigen are transiently present in the circulation of kidney transplant recipients infected with CMV and/or EBV (2016) Am J Transplant, 16, pp. 1480-1491. , https://doi.org/10.1111/ajt.13618; Younes, S.-A., Freeman, M.L., Mudd, J.C., Shive, C.L., Reynaldi, A., Panigrahi, S., IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection (2016) J Clin Invest, 126, pp. 2745-2756. , https://doi.org/10.1172/JCI85996; Lertmemongkolchai, G., Cai, G., Hunter, C.A., Bancroft, G.J., Bystander activation of CD8+ T cells contributes to the rapid production of IFN-in response to bacterial pathogens (2001) J Immunol, 166, pp. 1097-1105. , https://doi.org/10.4049/jimmunol.166.2.1097; Kohlmeier, J.E., Cookenham, T., Roberts, A.D., Miller, S.C., Woodland, D.L., Type, I., Interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge (2010) Immunity, 33, pp. 96-105. , https://doi.org/10.1016/j.immuni.2010.06.016; Kamath, A.T., Sheasby, C.E., Tough, D.F., Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma (2005) J Immunol, 174, pp. 767-776. , https://doi.org/10.4049/jimmunol.174.2.767; Chu, T., Tyznik, A.J., Roepke, S., Berkley, A.M., Woodward-Davis, A., Pattacini, L., Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner (2013) Cell Rep, 3, pp. 701-708. , https://doi.org/10.1016/j.celrep.2013.02.020; McMaster, S.R., Wilson, J.J., Wang, H., Kohlmeier, J.E., Airway-resident memory CD8 T cells provide antigen-specific protection against respiratory virus challenge through rapid IFN-gamma production (2015) J Immunol, 195, pp. 203-209. , https://doi.org/10.4049/jimmunol.1402975; Jozwik, A., Habibi, M.S., Paras, A., Zhu, J., Guvenel, A., Dhariwal, J., RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection (2015) Nat Commun, 6, p. 10224. , https://doi.org/10.1038/ncomms10224; Lee, Y.-N., Lee, Y.-T., Kim, M.-C., Gewirtz, A.T., Kang, S.-M., A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosub-typic immunity against future pandemic influenza virus (2016) J Immunol, 196, pp. 2637-2645. , https://doi.org/10.4049/jimmunol.1501637; Zens, K.D., Chen, J.K., Farber, D.L., Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection (2016) JCI Insight, , https://doi.org/10.1172/jci.insight.85832; Che, J.W., Selin, L.K., Welsh, R.M., Evaluation of non-reciprocal heterologous immunity between unrelated viruses (2015) Virology, 482, pp. 89-97. , https://doi.org/10.1016/j.virol.2015.03.002; Sewell, A.K., Why must T cells be cross-reactive? (2012) Nat Rev Immunol, 12, pp. 669-677. , https://doi.org/10.1038/nri3279; Arstila, T.P., A direct estimate of the human T cell receptor diversity (1999) Science, 286, pp. 958-961. , https://doi.org/10.1126/science.286.5441.958; Mason, D., A very high level of crossreactivity is an es-sential feature of the T-cell receptor (1998) Immunol Today, 19, pp. 395-404. , https://doi.org/10.1016/S0167-5699(98)01299-7; Wooldridge, L., Ekeruche-Makinde, J., Van Den Berg, H.A., Skowera, A., Miles, J.J., Tan, M.P., A single autoimmune T cell receptor recognizes more than a million different peptides (2012) J Biol Chem, 287, pp. 1168-1177. , https://doi.org/10.1074/jbc.M111.289488; Kagnoff, M.F., Austin, R.K., Hubert, J.J., Bernardin, J.E., Kasarda, D.D., Possiblerolefor a human adenovirus in the pathogenesis of celiac disease (1984) J Exp Med, 160 (5), pp. 1544-1557; Nilges, K., Höhn, H., Pilch, H., Neukirch, C., Freitag, K., Talbot, P.J., Maeurer, M.J., Human papillomavirus type 16 E7 peptide-directed CD8+ T cells from patients with cervical cancer are cross-reactive with the coronavirus NS2 protein (2003) J Virol, 77, pp. 5464-5474. , https://doi.org/10.1128/JVI.77.9.5464; Valkenburg, S.A., Josephs, T.M., Clemens, E.B., Grant, E.J., Nguyen, T., Wang, G.C., Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses (2016) Proc Natl Acad Sci USA, 113, pp. 4440-4445. , https://doi.org/10.1073/pnas.1603106113; Clute, S.C., Watkin, L.B., Cornberg, M., Naumov, Y.N., Sullivan, J.L., Luzuriaga, K., Cross-reactive influenza virusspecific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis (2005) J Clin Invest, 115, pp. 3602-3612. , https://doi.org/10.1172/JCI25078; Cornberg, M., Clute, S.C., Watkin, L.B., Saccoccio, F.M., Kim, S.-K., Naumov, Y.N., CD8 T cell cross-reactivity networks mediate heterologous immunity in human EBV and murine vaccinia virus infections (2010) J Immunol, 184, pp. 2825-2838. , https://doi.org/10.4049/jimmunol.0902168; Markovic-Plese, S., Hemmer, B., Zhao, Y., Simon, R., Pinilla, C., Martin, R., High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: Implications for the initiation of autoimmune response in multiple sclerosis (2005) J Neuroimmunol, 169, pp. 31-38. , https://doi.org/10.1016/j.jneuroim.2005.07.014; Huckelhoven, A.G., Etschel, J.K., Bergmann, S., Zitzelsberger, K., Mueller-Schmucker, S.M., Harrer, E.G., Harrer, T., Cross-reactivity between influenza matrix-and HIV-1 P17-specific CTL-A large cohort study (2015) J Acquir Immune Defic Syndr, 69, pp. 528-535. , https://doi.org/10.1097/qai.0000000000000657; Ekeruche-Makinde, J., Miles, J.J., Van Den Berg, H.A., Skowera, A., Cole, D.K., Dolton, G., Peptide length determines the outcome of TCR/peptide-MHCI engagement (2013) Blood, 121, pp. 1112-1123. , https://doi.org/10.1182/blood-2012-06-437202; Adams, J.J., Narayanan, S., Birnbaum, M.E., Sidhu, S.S., Blevins, S.J., Gee, M.H., Structural interplay between germline interactions and adaptive recognition determines the band-width of TCR-peptide-MHC cross-reactivity (2016) Nat Immunol, 17, pp. 87-94. , https://doi.org/10.1038/ni.3310; Van Regenmortel, M.H.V., Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition (2014) J Mol Recognit, 27, pp. 627-639. , https://doi.org/10.1002/jmr.2394; Kringelum, J.V., Nielsen, M., Padkjær, S.B., Lund, O., Structural analysis of B-cell epitopes in antibody: Protein complexes (2013) Mol Immunol, 53, pp. 24-34. , https://doi.org/10.1016/j.molimm.2012.06.001; Sela-Culang, I., Kunik, V., Ofran, Y., The structural basis of antibody-antigen recognition (2013) Front Immunol, 4, p. 302. , https://doi.org/10.3389/fimmu.2013.00302; Channappanavar, R., Fett, C., Zhao, J., Meyerholz, D.K., Perlman, S., Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 11034-11044. , https://doi.org/10.1128/JVI.01505-14; Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., Gao, G.F., T-cell immunity of SARS-coV: Implications for vaccine development against MERS-coV (2017) Antiviral Res, 137, pp. 82-92. , https://doi.org/10.1016/j.antiviral.2016.11.006; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Recombinant receptor-binding domains of multiple middle east respiratory syndrome coronaviruses (MERS-coVs) induce cross-neutralizingantibodiesagainstdivergenthumanand camel MERS-covs and antibody escape mutants (2017) J Virol, , https://doi.org/10.1128/JVI.01651-16; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391. , https://doi.org/10.1016/j.immuni.2016.05.006; Tu, W., Mao, H., Zheng, J., Liu, Y., Chiu, S.S., Qin, G., Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus (2010) J Virol, 84, pp. 6527-6535. , https://doi.org/10.1128/JVI.00519-10; Li, J., Arévalo, M.T., Chen, Y., Chen, S., Zeng, M., T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine (2014) Int J Infect Dis, 27, pp. 37-43. , https://doi.org/10.1016/j.ijid.2014.05.016; Mohn, K., Zhou, F., Brokstad, K.A., Sridhar, S., Cox, R.J., Boosting of cross-reactive and protection-associated T cells in childrenafter liveattenuatedinfluenzavaccination (2017) J Infectdis, 215, pp. 1527-1535. , https://doi.org/10.1093/infdis/jix165; Magini, D., Giovani, C., Mangiavacchi, S., Maccari, S., Cecchi, R., Ulmer, J.B., Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge (2016) Plos ONE, 11. , https://doi.org/10.1371/journal.pone.0161193; Chua, B.Y., Wong, C.Y., Mifsud, E.J., Edenborough, K.M., Sekiya, T., Tan, A., Inactivated influenza vaccine that provides rapid, innate-immune-system-mediated protection and subsequent long-term adaptive immunity (2015) Mbio, 6, pp. 1-11. , https://doi.org/10.1128/mBio.01024-15; Krammer, F., Palese, P., Influenza virus hemagglutinin stalk-based antibodies and vaccines (2013) Curr Opin Virol, 3, pp. 521-530. , https://doi.org/10.1016/j.coviro.2013.07.007; Ellebedy, A.H., Krammer, F., Li, G.-M., Miller, M.S., Chiu, C., Wrammert, J., Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans (2014) Proc Natl Acad Sci USA, 111, pp. 13133-13138. , https://doi.org/10.1073/pnas.1414070111; Krammer, F., Novel universal influenza virus vaccine approaches (2016) Curr Opin Virol, 17, pp. 95-103. , https://doi.org/10.1016/j.coviro.2016.02.002; Carter, D.M., Darby, C.A., Lefoley, B.C., Crevar, C.J., Alefantis, T., Oomen, R., Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses (2016) J Virol, 90, pp. 4720-4734. , https://doi.org/10.1128/JVI.03152-15; Deng, L., Cho, K.J., Fiers, W., Saelens, X., M2e-based universal influenza A vaccines (2015) Vaccines (Basel), 3, pp. 105-136. , https://doi.org/10.3390/vaccines3010105; Eliasson, D.G., Omokanye, A., Schön, K., Wenzel, U.A., Bernasconi, V., Bemark, M., M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection (2017) Mucosal Immunol, , https://doi.org/10.1038/mi.2017.14; Schotsaert, M., Ysenbaert, T., Smet, A., Schepens, B., Vanderschaeghe, D., Stegalkina, S., Long-lasting cross-protection against influenza A by neuraminidase and M2e-based immunization strategies (2016) Sci Rep, , https://doi.org/10.1038/srep24402; Ramos, E.L., Mitcham, J.L., Koller, T.D., Bonavia, A., Usner, D.W., Balaratnam, G., Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza (2015) J Infect Dis, 211, pp. 1038-1044. , https://doi.org/10.1093/infdis/jiu539; Graham, B.S., Vaccines against respiratory syncytial virus: The time has finally come (2016) Vaccine, 34, pp. 3535-3541. , https://doi.org/10.1016/j.vaccine.2016.04.083; Cortjens, B., Yasuda, E., Yu, X., Wagner, K., Claassen, Y.B., Bakker, A.Q., Broadly reactive anti-respiratory syncytial virus G antibodies from exposed individuals effectively inhibit infection of primary airway epithelial cells (2017) J Virol, , https://doi.org/10.1128/JVI.02357-16; Lee, J.-Y., Chang, J., Universal vaccine against respiratory syncytial virus A and B subtypes (2017) Plos ONE, 12. , https://doi.org/10.1371/journal.pone.0175384; Taylor, G., Thom, M., Capone, S., Pierantoni, A., Guzman, E., Herbert, R., Efficacy of a virus-vectored vaccine against human and bovine respiratory syncytial virus infections (2015) Sci Transl Med, 7. , https://doi.org/10.1126/scitranslmed.aac5757, 300ra127; Schuster, J.E., Cox, R.G., Hastings, A.K., Boyd, K.L., Wadia, J., Chen, Z., A broadly neutralizing human monoclonal antibody exhibits in vivo efficacy against both human metapneumovirus and respiratory syncytial virus (2015) J Infect Dis, 211, pp. 216-225. , https://doi.org/10.1093/infdis/jiu307; Glanville, N., McLean, G.R., Guy, B., Lecouturier, V., Berry, C., Girerd, Y., Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein (2013) Plos Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003669; Muehling, L.M., Mai, D.T., Kwok, W.W., Heymann, P.W., Pomes, A., Woodfolk, J.A., Circulating memory CD4+ T cells target conserved epitopes of rhinovirus capsid proteins and respond rapidly to experimental infection in humans (2016) J Immunol, 197, pp. 3214-3224. , https://doi.org/10.4049/jimmunol.1600663; Iwasaki, J., Smith, W.-A., Stone, S.R., Thomas, W.R., Hales, B.J., Species-specific and cross-reactive IgG1 antibody binding to viral capsid protein 1 (VP1) antigens of human rhinovirus species A, B and C (2013) Plos ONE, 8. , https://doi.org/10.1371/journal.pone.0070552; Niespodziana, K., Napora, K., Cabauatan, C., Focke-Tejkl, M., Keller, W., Niederberger, V., Misdirected antibody responses against an N-terminal epitope on human rhinovirus VP1 as explanation for recurrent RV infections (2012) Faseb J, 26, pp. 1001-1008. , https://doi.org/10.1096/fj.11-193557; Aslan, N., Watkin, L.B., Gil, A., Mishra, R., Clark, F.G., Welsh, R.M., Severity of acute infectious mononucleosis correlates with cross-reactive influenza CD8 T-cell receptor repertoires (2017) Mbio, , https://doi.org/10.1128/mBio.01841-17; Odumade, O.A., Knight, J.A., Schmeling, D.O., Masopust, D., Balfour, H.H., Primary Epstein-Barr virus infection does not erode preexisting CD8(+) T cell memory in humans (2012) J Exp Med, 209, pp. 471-478. , https://doi.org/10.1084/jem.20112401; Watkin, L.B., Mishra, R., Gil, A., Aslan, N., Ghersi, D., Luzuriaga, K., Selin, L.K., Unique influenza A cross-reactive memory CD8 T-cell receptor repertoire has a potential to protect against EBV seroconversion (2017) J Allergy Clin Immunol, 140, pp. 1206-1210. , https://doi.org/10.1016/j.jaci.2017.05.037; Zhang, S., BakshiRK, Suneetha PV, Fytili P,Antunes DA,Vieira GF, et al. Frequency, private specificity, and cross-reactivity of preexisting hepatitis C virus (HCV)-specific CD8+ T cells in HCV-seronegative individuals: Implications for vaccine responses (2015) J Virol, 89, pp. 8304-8317. , https://doi.org/10.1128/JVI.00539-15; Kasprowicz, V., Ward, S.M., Turner, A., Grammatikos, A., Nolan, B.E., Lewis-Ximenez, L., Defining the directionality and quality of influenza virus—specific CD8+ T cell cross-reactivity in individuals infected with hepatitis C virus (2008) J Clin Invest, 118, pp. 1143-1153. , https://doi.org/10.1172/JCI33082DS1; Ertl, H.C., Viral vectors as vaccine carriers (2016) Curr Opin Virol, 17, pp. 1-8. , https://doi.org/10.1016/j.coviro.2016.06.001; Kotterman, M.A., Chalberg, T.W., Schaffer, D.V., Viral vectors for gene therapy: Translational and clinical outlook (2015) Annu Rev Biomed Eng, 17, pp. 63-89. , https://doi.org/10.1146/annurev-bioeng-071813-104938; Singh, S., Vedi, S., Samrat, S.K., Li, W., Kumar, R., Agrawal, B., Heterologous immunity between adenoviruses and hepatitis C virus: A new paradigm in HCV immunity and vaccines (2016) Plos ONE, 11, pp. 1-23. , https://doi.org/10.1371/journal.pone.0146404; Frahm, N., Decamp, A.C., Friedrich, D.P., Carter, D.K., Defawe, O.D., Kublin, J.G., Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine (2012) J Clin Invest, 122, pp. 359-367. , https://doi.org/10.1172/JCI60202; Pennington, S.H., Thompson, A.L., Wright, A., Ferreira, D.M., Jambo, K.C., Wright, A.D., Oral typhoid vaccination with live-attenuated Salmonella typhi strain Ty21a generates Ty21a-responsive and heterologous influenza virus–responsive CD4+ and CD8+ T cells at the human intestinal mucosa (2016) J Infect Dis, 213, pp. 1809-1819. , https://doi.org/10.1093/infdis/jiw030; Tenembaum, S., Chitnis, T., Ness, J., Hahn, J.S., Acute disseminated encephalomyelitis (2007) Neurology, 68 (16), pp. S23-S36; Karussis, D., Petrou, P., The spectrum of post-vaccination inflammatory CNS demyelinating syndromes (2014) Autoimmun Rev, 13, pp. 215-224. , https://doi.org/10.1016/j.autrev.2013.10.003; Ravaglia, S., Ceroni, M., Moglia, A., Todeschini, A., Marchioni, E., Post-infectious and post-vaccinal acute disseminated encephalomyelitis occurring in the same patients (2004) J Neurol, 251, pp. 1147-1150. , https://doi.org/10.1007/s00415-004-0498-9; Athauda, D., Rews, T.C., Holmes, P.A., Howard, R.S., Multiphasic acute disseminated encephalomyelitis (ADEM) following influenza type A (swine specific H1N1) (2012) J Neurol, 259, pp. 775-778. , https://doi.org/10.1007/s00415-011-6258-8; Au, W.Y., Lie, A., Cheung, R., Cheng, P.W., Ooi, C., Yujenc, K.-Y., Kwong, Y.-L., Acute disseminated encephalomyelitis after para-influenza infection post bone marrow transplantation (2002) Leuk Lymphoma, 43, pp. 455-457. , https://doi.org/10.1080/10428190290006350; Sellers, S.A., Hagan, R.S., Hayden, F.G., Fischer, W.A., The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection (2017) Influenza Other Respir Viruses, 11, pp. 372-393. , https://doi.org/10.1111/irv.12470; Blackmore, S., Hernandez, J., Juda, M., Ryder, E., Freund, G.G., Johnson, R.W., Steelman, A.J., Influenza infection triggers disease in a genetic model of experimental autoimmune encephalomyelitis (2017) Proc Natl Acad Sci USA, 114, pp. 6107-6116. , https://doi.org/10.1073/pnas.1620415114; Chen, Q., Liu, Y., Lu, A., Ni, K., Xiang, Z., Wen, K., Tu, W., Influenza virus infection exacerbates experimental autoimmune encephalomyelitis disease by promoting type I T cells infiltration into central nervous system (2017) J Autoimmun, 77, pp. 1-10. , https://doi.org/10.1016/j.jaut.2016.10.006; Sriram, S., Steiner, I., Experimental allergic encephalomyelitis: A misleading model of multiple sclerosis (2005) Ann Neurol, 58, pp. 939-945. , https://doi.org/10.1002/ana.20743; Pohl-Koppe, A., Burchett, S.K., Thiele, E.A., Hafler, D.A., Myelin basic protein reactive Th2 T cells are found in acute disseminated encephalomyelitis (1998) J Neuroimmunol, 91, pp. 19-27. , https://doi.org/10.1016/S0165-5728(98)00125-8; Hennes, E.-M., Baumann, M., Schanda, K., Anlar, B., Bajer-Kornek, B., Blaschek, A., Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome (2017) Neurology, 89, pp. 900-908. , https://doi.org/10.1212/WNL.0000000000004312; Boucher, A., Desforges, M., Duquette, P., Talbot, P.J., Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients (2007) Clin Immunol, 123, pp. 258-267. , https://doi.org/10.1016/j.clim.2007.02.002; Peschl, P., Bradl, M., Höftberger, R., Berger, T., Reindl, M., Myelin oligodendrocyte glycoprotein: Deciphering a target in inflammatory demyelinating diseases (2017) Front Immunol, 8, p. 529. , https://doi.org/10.3389/fimmu.2017.00529; Lehmann, H.C., Hartung, H.-P., Kieseier, B.C., Hughes, R.A., Guillain-Barré syndrome after exposure to influenza virus (2010) Lancet Infect Dis, 10, pp. 643-651; Martín Arias, L.H., Sanz, R., Sáinz, M., Treceño, C., Carvajal, A., Guillain-Barré syndrome and influenza vaccines: A metaanalysis (2015) Vaccine, 33, pp. 3773-3778. , https://doi.org/10.1016/j.vaccine.2015.05.013; Nachamkin, I., Shadomy, S.V., Moran, A.P., Cox, N., Fitzgerald, C., Ung, H., Anti-ganglioside antibody induction by swine (A/NJ/1976/H1N1) and other influenza vaccines: Insights into vaccine-associated Guillain-Barré syndrome (2008) J Infect Dis, 198, pp. 226-233. , https://doi.org/10.1086/589624; Partinen, M., Kornum, B.R., Plazzi, G., Jennum, P., Julkunen, I., Vaarala, O., Narcolepsy as an autoimmune disease: The role of H1N1 infection and vaccination (2014) Lancet Neurol, 13, pp. 600-613. , https://doi.org/10.1016/S1474-4422(14)70075-4; Han, F., Lin, L., Warby, S.C., Faraco, J., Li, J., Dong, S.X., Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China (2011) Ann Neurol, 70, pp. 410-417. , https://doi.org/10.1002/ana.22587; Ahmed, S.S., Volkmuth, W., Duca, J., Corti, L., Pallaoro, M., Pezzicoli, A., Antibodies to influenza nucleoprotein crossreact with human hypocretin receptor 2 (2015) Sci Transl Med, 7. , https://doi.org/10.1126/scitranslmed.aab2354, 294ra105; Saariaho, A.-H., Vuorela, A., Freitag, T.L., Pizza, F., Plazzi, G., Partinen, M., Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after pandemrix vaccination against 2009 pandemic H1N1 type influenza virus (2015) J Autoimmun, 63, pp. 68-75. , https://doi.org/10.1016/j.jaut.2015.07.006; Cvetkovic-Lopes, V., Bayer, L., Dorsaz, S., Maret, S., Pradervand, S., Dauvilliers, Y., Elevated tribbles homolog 2-specific antibody levels in narcolepsy patients (2010) J Clin Invest, 120, pp. 713-719. , https://doi.org/10.1172/JCI41366; Lind, A., Ramelius, A., Olsson, T., Arnheim-Dahlström, L., Lamb, F., Khademi, M., A/H1N1 antibodies and TRIB2 autoantibodies in narcolepsy patients diagnosed in conjunction with the pandemrix vaccination campaign in Sweden 2009–2010 (2014) J Autoimmun, 50, pp. 99-106. , https://doi.org/10.1016/j.jaut.2014.01.031; Katzav, A., Arango, M.T., Kivity, S., Tanaka, S., Givaty, G., Agmonlevin, N., Passive transfer of narcolepsy: Anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice (2013) J Autoimmun, 45, pp. 24-30. , https://doi.org/10.1016/j.jaut.2013.06.010; Prüss, H., Finke, C., Höltje, M., Hofmann, J., Klingbeil, C., Probst, C., N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis (2012) Ann Neurol, 72, pp. 902-911. , https://doi.org/10.1002/ana.23689; Berger, B., Pytlik, M., Hottenrott, T., Stich, O., Absent anti-Nmethyl-D-aspartate receptor NR1a antibodies in herpes simplex virus encephalitis and varicella zoster virus infections (2017) Int J Neurosci, 127, pp. 109-117. , https://doi.org/10.3109/00207454.2016.1147447; Brown, A.S., Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism (2012) Dev Neurobiol, 72, pp. 1272-1276. , https://doi.org/10.1002/dneu.22024; Lucchese, G., Capone, G., Kanduc, D., Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins (2014) Schizophr Bull, 40, pp. 362-375. , https://doi.org/10.1093/schbul/sbs197; Lucchese, G., Understanding neuropsychiatric diseases, analyzing the peptide sharing between infectious agents and the language-associated NMDA 2A protein (2016) Front Psychiatry, 7, p. 60. , https://doi.org/10.3389/fpsyt.2016.00060; Wheatland, R., Chronic ACTH autoantibodies are a significant pathological factor in the disruption of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome, anorexia nervosa and major depression (2005) Med Hypotheses, 65, pp. 287-295. , https://doi.org/10.1016/j.mehy.2005.02.031; Wheatland, R., Molecular mimicry of ACTH in SARS—implications for corticosteroid treatment and prophylaxis (2004) Med Hypotheses, 63, pp. 855-862. , https://doi.org/10.1016/j.mehy.2004.04.009; Beyerlein, A., Donnachie, E., Ziegler, A.-G., Infections in early life and development of celiac disease (2017) Am J Epidemiol, , https://doi.org/10.1093/aje/kwx190; Kagnoff, M.F., Paterson, Y.J., Kumar, P.J., Kasarda, D.D., Carbone FR,UnsworthDJ,AustinRK.Evidencefortheroleofahuman intestinal adenovirus in the pathogenesis of coeliac disease (1987) Gut, 28, pp. 995-1001; Mantzaris, G.J., Karagiannis, J.A., Priddle, J.D., Jewell, D.P., Cellular hypersensitivity to a synthetic dodecapeptide derived from human adenovirus 12 which resembles a sequence of A-gliadin in patients with coeliac disease (1990) Gut, 31, pp. 668-673; Kupfer, S.S., Jabri, B., Pathophysiology of celiac disease (2012) Gastrointest Endosc Clin N Am, 22, pp. 639-660. , https://doi.org/10.1016/j.giec.2012.07.003; Caforio, A., Pankuweit, S., Arbustini, E., Basso, C., Gimenoblanes, J., Felix, S.B., Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology WorkingGrouponMyocardial andPericardial Diseases (2013) Eur Heart J, 34, pp. 2636–2648, 2648a-2648d. , https://doi.org/10.1093/eurheartj/eht210; Massilamany, C., Gangaplara, A., Steffen, D., Reddy, J., Identification of novel mimicry epitopes for cardiac myosin heavy chain-a that induce autoimmune myocarditis in A/J mice (2011) Cell Immunol, 271, pp. 438-449. , https://doi.org/10.1016/j.cellimm.2011.08.013; Gangaplara, A., Massilamany, C., Brown, D.M., Delhon, G., Pattnaik, A.K., Chapman, N., Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-a-reactive CD4 T cells in A/J mice (2012) Clin Immunol, 144, pp. 237-249. , https://doi.org/10.1016/j.clim.2012.07.003; Root-Bernstein, R., Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: Laminin, collagen IV, CAR, and B1AR as initial targets of disease (2014) Front Pediatr, 2, p. 85. , https://doi.org/10.3389/fped.2014.00085; Igoe, A., Scofield, R.H., Autoimmunity and infection in Sjögren’s syndrome (2013) Curr Opin Rheumatol, 25, pp. 480-487. , https://doi.org/10.1097/BOR.0b013e32836200d2; Tong, L., Koh, V., Thong, B.-H., Review of autoantigens in Sjögren’ssyndrome: Anupdate (2017) J Inflammres, 10, pp. 97-105. , https://doi.org/10.2147/JIR.S137024; Singh, N., Cohen, P.L., The T cell in Sjogren’s syndrome: Force majeure, not spectateur (2012) J Autoimmun, 39, pp. 229-233. , https://doi.org/10.1016/j.jaut.2012.05.019; Stathopoulou, E.A., Routsias, J.G., Stea, E.A., Moutsopoulos, H.M., Tzioufas, A.G., Cross-reaction between antibodies to the major epitope of Ro60 kD autoantigen and a homologous peptide of Coxsackie virus 2B protein (2005) Clin Exp Immunol, 141, pp. 148-154. , https://doi.org/10.1111/j.1365-2249.2005.02812.x; Szymula, A., Rosenthal, J., Szczerba, B.M., Bagavant, H., Fu, S.M., Deshmukh, U.S., T cell epitope mimicry between Sjögren’s syndrome Antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria (2014) Clin Immunol, 152, pp. 1-9. , https://doi.org/10.1016/j.clim.2014.02.004; Lönnrot, M., Lynch, K.F., Elding Larsson, H., Lernmark, Å., Rewers, M.J., Törn, C., Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: The TEDDY study (2017) Diabetologia, , https://doi.org/10.1007/s00125-017-4365-5; Op De Beeck, A., Eizirik, D.L., Viral infections in type 1 diabetes mellitus—why the ß cells? (2016) Nat Rev Endocrinol, 12, pp. 263-273. , https://doi.org/10.1038/nrendo.2016.30; Hiemstra, H.S., Schloot, N.C., Van Rood, J.J., Willemen, S., Franken, K., De Vries, R., Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase (2001) Proc Natl Acad Sci USA, 98, pp. 3988-3991; Honeyman, M.C., Stone, N.L., Falk, B.A., Nepom, G., Harrison, L.C., Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens (2010) J Immunol, 184, pp. 2204-2210. , https://doi.org/10.4049/jimmunol.0900709; Qi, Z., Hu, H., Wang, Z., Wang, G., Li, Y., Zhao, X., Antibodies against H1N1 influenza virus cross-react with a-cells of pancreatic islets (2017) J Diabetes Investig, , https://doi.org/10.1111/jdi.12690; Thorel, F., Népote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., Herrera, P.L., Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss (2010) Nature, 464, pp. 1149-1154. , https://doi.org/10.1038/nature08894; Masoli, M., Fabian, D., Holt, S., Beasley, R., The global burden of asthma: Executive summary of the GINA Dissemination Committee report (2004) Allergy, 59, pp. 469-478. , https://doi.org/10.1111/j.1398-9995.2004.00526.x; Lötvall, J., Pawankar, R., Wallace, D.V., Akdis, C.A., Rosenwasser, L.J., Weber, R.W., We call for iCAALL: International Collaboration in Asthma, Allergy and Immunology (2012) World Allergy Organ J, 5, pp. 39-40. , https://doi.org/10.1097/WOX.0b013e3182504245; Papadopoulos, N.G., Christodoulou, I., Rohde, G., Agache, I., Almqvist, C., Bruno, A., Viruses and bacteria in acute asthma exacerbations—a GA² LEN-DARE systematic review (2011) Allergy, 66, pp. 458-468. , https://doi.org/10.1111/j.1398-9995.2010.02505.x; Lukkarinen, M., Koistinen, A., Turunen, R., Lehtinen, P., Vuorinen, T., Jartti, T., Rhinovirus-induced first wheezing episode predicts atopic but not nonatopic asthma at school age (2017) J Allergy Clin Immunol, 140, pp. 988-995. , https://doi.org/10.1016/j.jaci.2016.12.991; Jackson, D.J., Gangnon, R.E., Evans, M.D., Roberg, K.A., Erson, E.L., Pappas, T.E., Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children (2008) Am J Respir Crit Care Med, 178, pp. 667-672. , https://doi.org/10.1164/rccm.200802-309OC; Strachan, D.P., Hay fever, hygiene, and household size (1989) BMJ, 299, pp. 1259-1260. , https://doi.org/10.1136/bmj.299.6710.1259; Garn, H., Renz, H., Epidemiological and immunological evidence for the hygiene hypothesis (2007) Immunobiology, 212, pp. 441-452. , https://doi.org/10.1016/j.imbio.2007.03.006; Machiels, B., Dourcy, M., Xiao, X., Javaux, J., Mesnil, C., Sabatel, C., A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes (2017) Nat Immunol, 18, pp. 1310-1320; Chang, Y.-J., Kim, H.Y., Albacker, L.A., Lee, H.H., Baumgarth, N., Akira, S., Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity (2011) J Clin Invest, 121, pp. 57-69. , https://doi.org/10.1172/JCI44845; Conrad, M.L., Ferstl, R., Teich, R., Brand, S., Blümer, N., Yildirim, A.O., Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe acinetobacter lwoffii F78 (2009) J Exp Med, 206, pp. 2869-2877. , https://doi.org/10.1084/jem.20090845; Wohlleben, G., Muller, J., Tatsch, U., Hambrecht, C., Herz, U., Renz, H., Influenza A virus infection inhibits the efficient recruitment of Th2 cells into the airways and the development of airway eosinophilia (2003) J Immunol, 170, pp. 4601-4611. , https://doi.org/10.4049/jimmunol.170.9.4601; Skevaki, C., Hudemann, C., Matrosovich, M., Möbs, C., Paul, S., Wachtendorf, A., Influenza-derived peptides cross-react with allergens and provide asthma protection (2017) J Allergy Clin Immunol, , https://doi.org/10.1016/j.jaci.2017.07.056; Bien, C.G., Bauer, J., Autoimmune epilepsies (2014) Neurotherapeutics, 11, pp. 311-318. , https://doi.org/10.1007/s13311-014-0264-3; Mustalahti, K., Catassi, C., Reunanen, A., Fabiani, E., Heier, M., McMillan, S., The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project (2010) Ann Med, 42, pp. 587-595. , https://doi.org/10.3109/07853890.2010.505931; Lerner, A., Arleevskaya, M., Schmiedl, A., Matthias, T., Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? (2017) Front Microbiol, 8, p. 1392. , https://doi.org/10.3389/fmicb.2017.01392","Skevaki, C.; Institute of Laboratory Medicine and Pathobiochemistry, Member of the German Center for Lung Research (DZL), Philipps University Marburg, Baldingerstraße, Germany; email: Chrysanthi.Skevaki@uk-gm.de",,"Springer Medizin",21970378,,,,"English","Allergo J. Int.",Review,"Final",,Scopus,2-s2.0-85050335483 "Norris S.L., Sawin V.I., Ferri M., Sastre L.R., Porgo T.V.","7103213643;57202311589;25824872800;57202303864;56038801300;","An evaluation of emergency guidelines issued by the World Health Organization in response to four infectious disease outbreaks",2018,"PLoS ONE","13","5", e0198125,"","",,2,"10.1371/journal.pone.0198125","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047827524&doi=10.1371%2fjournal.pone.0198125&partnerID=40&md5=bd7013e13009bccd7e0f7f073881d642","WHO Guidelines Review Committee, World Health Organization, Geneva, Switzerland; National School of Public Health, Madrid, Spain; Department of Social and Preventative Medicine, Laval University, Quebec City, Canada","Norris, S.L., WHO Guidelines Review Committee, World Health Organization, Geneva, Switzerland; Sawin, V.I., WHO Guidelines Review Committee, World Health Organization, Geneva, Switzerland; Ferri, M., WHO Guidelines Review Committee, World Health Organization, Geneva, Switzerland; Sastre, L.R., National School of Public Health, Madrid, Spain; Porgo, T.V., Department of Social and Preventative Medicine, Laval University, Quebec City, Canada","Background The production of high-quality guidelines in response to public health emergencies poses challenges for the World Health Organization (WHO). The urgent need for guidance and the paucity of structured scientific data on emerging diseases hinder the formulation of evidence-informed recommendations using standard methods and procedures. Objectives In the context of the response to recent public health emergencies, this project aimed to describe the information products produced by WHO and assess the quality and trustworthiness of a subset of these products classified as guidelines. Methods We selected four recent infectious disease emergencies: outbreaks of avian influenza A—H1N1 virus (2009) and H7N9 virus (2013), Middle East respiratory syndrome coronavirus (MERS-CoV) (2013), and Ebola virus disease (EVD) (2014 to 2016). We analyzed the development and publication processes and evaluated the quality of emergency guidelines using AGREE-II. Results We included 175 information products of which 87 were guidelines. These products demonstrated variable adherence to WHO publication requirements including the listing of external contributors, management of declarations of interest, and entry into WHO’s public database of publications. For guidelines, the methods for development were incompletely reported; WHO’s quality assurance process was rarely used; systematic or other evidence reviews were infrequently referenced; external peer review was not performed; and they scored poorly with AGREE II, particularly for rigour of development and editorial independence. Conclusions Our study suggests that WHO guidelines produced in the context of a public health emergency can be improved upon, helping to assure the trustworthiness and utility of WHO information products in future emergencies. © 2018 Norris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"2009 H1N1 influenza; Article; avian influenza (H5N1); cohort analysis; data base; Ebola hemorrhagic fever; emergency health service; epidemic; health care quality; infection; influenza A (H7N9); Middle East respiratory syndrome; peer review; practice guideline; process development; program evaluation; protocol compliance; public service announcement; purchasing; quality control; world health organization; emergency; epidemic; human; statistics and numerical data; virus infection; Disease Outbreaks; Emergencies; Guidelines as Topic; Humans; Virus Diseases; World Health Organization","(2011) Clinical Practice Guidelines We Can Trust, , https://doi.org/10.17226/13058, US Insitute of Medicine (IOM. Washington (DC): National Academies Press (US; PMID: 24983061; (2014) WHO Handbook for Guideline Development- 2nd Edition, , http://apps.who.int/iris/bitstream/10665/145714/1/9789241548960_eng.pdf?ua=1, World Health Organizaton. Geneva: World Health Organization; Accessed 11 April 2018; (2013) Emergency Response Framework (ERF), , World Health Organization. Geneva: World Health Organization; (2014) Facilitation Manual: Psychological First Aid During Ebola Virus Disease Outbreaks, , http://www.who.int/mental_health/emergencies/psychological_first_aid_ebola_manual/en/, World Health Organization. Accessed 11 April 2018; (2014) Ebola Virus Disease: Key Questions and Answers Concerning Water, Sanitation and Hygiene, , http://www.who.int/csr/resources/publications/ebola/watersanitation-hygiene/en/, Accessed 11 April 2018; (2014) Ebola Virus Disease (EVD): Occupational Safety and Health: Joint WHO/ILO Briefing Note for Workers and Employers, , http://apps.who.int/iris/handle/10665/146427; (2014) Infection Prevention and Control (IPC) Guidance Summary: Ebola Guidance Package, , http://www.who.int/csr/resources/publications/ebola/evd-guidancesummary/en/, Accessed 11 April 2018; Ebola Virus Disease Preparedness Strengthening Team: Mali Country Visit 20–24 October 2014, , http://apps.who.int/iris/handle/10665/144504, Accessed 11 April 2018; Facility Questionnaire for Ebola Virus Disease/Viral Haemorrhagic Fever Diagnosis Capacity 2015, , http://www.who.int/csr/resources/publications/ebola/laboratory/en/, Accessed 11 April 2018; Brouwers, M.C., Kho, M.E., Browman, G.P., Burgers, J.S., Cluzear, F., Feder, G., AGREE II: Advancing guideline development, reporting and evaluation in health care (2010) CMAJ, 182 (18), pp. E839-E842. , https://doi.org/10.1503/cmaj.090449, PMID: 20603348; Pandemic (H1N1) 2009 guidance documents (2016) Emergencies Preparedness, Response [website], , http://www.who.int/csr/resources/publications/swineflu/en/, Geneva: Accessed 11 April 2018; Norris, S.L., Holmer, H.K., Ogden, L.A., Burda, B.U., Conflict of interest in clinical practice guideline development: A systematic review (2011) PLoS One, 6 (10). , https://doi.org/10.1371/journal.pone.0025153, PMID: 22039406; Eikermann, M., Holzmann, N., Siering, U., Rüther, A., Tools for assessing the content of guidelines are needed to enable their effective use–a systematic comparison (2014) BMC Research Notes, 7, p. 853. , https://doi.org/10.1186/1756-0500-7-853, PMID: 25427972","Norris, S.L.; WHO Guidelines Review Committee, World Health OrganizationSwitzerland; email: norriss@who.int",,"Public Library of Science",19326203,,POLNC,"29847593","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85047827524 "Holz P.H., Lumsden L.F., Druce J., Legione A.R., Vaz P., Devlin J.M., Hufschmid J.","7003809528;35615701000;6601964776;36615397700;37114942800;14025458900;24385433700;","Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses",2018,"PLoS ONE","13","5", e0197625,"","",,6,"10.1371/journal.pone.0197625","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047479769&doi=10.1371%2fjournal.pone.0197625&partnerID=40&md5=0ea681a2dacc65c53d43b245b093a46a","Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia; Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, VIC, Australia; Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, Australia","Holz, P.H., Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia, Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Lumsden, L.F., Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, VIC, Australia; Druce, J., Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, Australia; Legione, A.R., Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Vaz, P., Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Devlin, J.M., Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Hufschmid, J., Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia","While bats are often viewed as carriers of infectious disease agents, little research has been conducted on the effects these potential pathogens may have on the bat populations themselves. The southern bent-winged bat (Miniopterus orianae bassanii) is a critically endangered subspecies endemic to south-eastern Australia. Population numbers of this bat have been declining for the past 50 years, but the reasons for this are unclear. As part of a larger study to determine if disease could be a contributing factor to this decline, 351 southern bent-winged bats from four locations were captured, and oral swabs were collected and tested for the presence of potentially pathogenic viruses. Results were compared with those obtained from 116 eastern bent-winged bats (Miniopterus orianae oceanensis) from three different locations. The eastern bent-winged bat is a related but more common and widespread subspecies whose geographical range overlaps partly with southern bent-winged bats. Herpesviruses were detected in bent-winged bats from all seven locations. At least six novel herpesviruses (five betaherpesviruses and one gammaherpesvirus) were identified. The prevalence of herpesvirus infection was higher in eastern bent-winged bats (44%, 51/ 116), compared to southern bent-winged bats (27%, 95/351), although this varied across the locations and sampling periods. Adenoviruses and a range of different RNA viruses (lyssaviruses, filoviruses, coronaviruses and henipaviruses) were also tested for but not detected. The detected herpesviruses did not appear to be associated with obvious ill health, and may thus not be playing a role in the population decline of the southern bent-winged bat. The detection of multiple novel herpesviruses at a high prevalence of infection is consistent with our understanding of bats as hosts to a rich diversity of viruses. © 2018 Holz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"Adenoviridae; animal cell; animal tissue; Australia; bat; Betaherpesvirinae; controlled study; Coronavirinae; female; Filovirus; Gammaherpesvirinae; geographical variation (species); Henipavirus; herpes virus infection; Lyssavirus; male; Miniopterus orianae bassanii; Miniopterus orianae oceanensis; nonhuman; oral biopsy; prevalence; Review; RNA virus; subspecies; virus detection; virus virulence; animal; animal disease; bat; biodiversity; classification; genetics; geography; herpes virus infection; Herpesviridae; phylogeny; phylogeography; prevalence; South Australia; veterinary medicine; virology; virus; virus infection; Animal Diseases; Animals; Biodiversity; Chiroptera; Geography; Herpesviridae; Herpesviridae Infections; Phylogeny; Phylogeography; Prevalence; South Australia; Virus Diseases; Viruses","Smith, K.F., Sax, D.F., Lafferty, K.D., Evidence for the role of infectious disease in species extinction and endangerment (2006) Conserv Biol, 20 (5), pp. 1349-1357. , https://doi.org/10.1111/j.15231739.2006.00524.x, Epub 2006/09/28. PMID: 17002752; Cook, R.A., Karesh, W.B., Emerging diseases at the interface of people, domestic animals, and wildlife (2012) Fowler’S Zoo and Wild Animal Medicine: Current Therapy, 7, pp. 136-146. , Miller RE, Fowler ME, editors. St. Louis: Elsevier Saunders; Civitello, D.J., Cohen, J., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A., Biodiversity inhibits parasites: Broad evidence for the dilution effect (2015) Proc Natl Acad Sci U S A, 112 (28), pp. 8667-8671. , https://doi.org/10.1073/pnas.1506279112, Epub 2015/06/13. PMID: 26069208; PubMed Central PMCID: PMCPMC4507196; Woolhouse, M.E., Gowtage-Sequeria, S., Host range and emerging and reemerging pathogens (2005) Emerg Infect Dis, 11 (12), pp. 1842-1847. , https://doi.org/10.3201/eid1112.050997, Epub 2006/02/21. PMID: 16485468; PubMed Central PMCID: PMCPMC3367654; Wibbelt, G., Moore, M.S., Schountz, T., Voigt, C.C., Emerging diseases in Chiroptera: Why bats? (2010) Biol Lett, 6 (4), pp. 438-440. , https://doi.org/10.1098/rsbl.2010.0267, Epub 2010/04/30. PMID: 20427329; PubMed Central PMCID: PMCPMC2942877; Blehert, D.S., Fungal disease and the developing story of bat white-nose syndrome (2012) PLoS Pathog, 8 (7). , https://doi.org/10.1371/journal.ppat.1002779, PMID: 22829763; PubMed Central PMCID: PMCPMC3400555; Roué, S.Y., Némoz, M., (2002) Mortalité Exceptionnelle Du Minioptère De Schreibers En France Lors De L’Année, , Bilan national SFEPM. Paris, France; Negredo, A., Palacios, G., Vazquez-Moron, S., Gonzalez, F., Dopazo, H., Molero, F., Discovery of an ebolavirus-like filovirus in Europe (2011) PLoS Pathog, 7 (10). , https://doi.org/10.1371/journal.ppat.1002304, Epub 2011/11/01. PMID: 22039362; PubMed Central PMCID: PMCPMC3197594; Wibbelt, G., Kurth, A., Yasmum, N., Bannert, M., Nagel, S., Nitsche, A., Discovery of herpesviruses in bats (2007) J Gen Virol, 88, pp. 2651-2655. , https://doi.org/10.1099/vir.0.83045-0, PMID: 17872515; Watanabe, S., Maeda, K., Suzuki, K., Ueda, N., Iha, K., Taniguchi, S., Novel betaherpesvirus in bats (2010) Emerg Infect Dis, 16 (6), pp. 986-988. , https://doi.org/10.3201/eid1606.091567, PMID: 20507753; PubMed Central PMCID: PMCPMC3086227; Zhang, H., Todd, S., Tachedjian, M., Barr, J.A., Luo, M., Yu, M., A novel bat herpesvirus encodes homo-logues of major histocompatibility complex classes I and II, C-type lectin, and a unique family of immune-related genes (2012) J Virol, 86 (15), pp. 8014-8030. , https://doi.org/10.1128/JVI.00723-12, PMID: 22623774; PubMed Central PMCID: PMCPMC3421651; Pozo, F., Juste, J., Vazquez-Moron, S., Aznar-Lopez, C., Ibanez, C., Garin, I., Identification of novel betaherpesviruses in Iberian bats reveals parallel evolution (2016) PLoS One, 11 (12). , https://doi.org/10.1371/journal.pone.0169153, PMID: 28036408; PubMed Central PMCID: PMCPMC5201282; Zheng, X.Y., Qiu, M., Chen, S.W., Xiao, J.P., Ma, L.Z., Liu, S., High prevalence and diversity of viruses of the subfamily Gammaherpesvirinae, family Herpesviridae, in fecal specimens from bats of different species in southern China (2016) Arch Virol, 161 (1), pp. 135-140. , https://doi.org/10.1007/s00705-015-2614-9PMID, 26446885; Watanabe, S., Ueda, N., Iha, K., Masangkay, J.S., Fujii, H., Alviola, P., Detection of a new bat gammaherpesvirus in the Philippines (2009) Virus Genes, 39 (1), pp. 90-93. , https://doi.org/10.1007/s11262-009-0368-8PMID, 19452269; Van Dyck, S., Strahan, R., (2008) The Mammals of Australia, p. 887. , 3rd ed. Sydney: Reed New Holland; Cardinal, B.R., Christidis, L., Mitochondrial DNA and morphology reveal three geographically distinct lineages of the large bentwing bat (Miniopterus schreibersii) in Australia (2000) Aust J Zool, 48 (1), pp. 1-19; (2017) National Recovery Plan for The Southern Bent-Wing Bat Miniopterus Schreibersii Bassanii Draft, p. 44. , Department of Environment, Land, Water and Planning. Melbourne: Department of Environment, Land, Water and Planning; McLelland, D.J., Reardon, T., Bourne, S., Dickason, C., Kessell, A., Boardman, W., Outbreak of skin nodules associated with Riouxgolvania beveridgei (Nematoda: Muspiceida) in the southern bentwing bat (Miniopterus schreibersii bassanii), South Australia (2013) J Wildl Dis, 49 (4), pp. 1009-1013. , https://doi.org/10.7589/2012-11-288, PMID: 24502731; Field, H.E., (2004) The Ecology of Hendra Virus and Australian Bat Lyssavirus, p. 209. , PhD Thesis. Brisbane: University of Queensland; Bunn, C., Garner, G., Update on surveillance for Australian bat lyssavirus (1997) Australas Epidemiol, 3, pp. 27-30. , edsihc.434508924574121; Arguin, P.M., Murray-Lillibridge, K., Miranda, M.E.G., Smith, J.S., Calaor, A.B., Rupprecht, C.E., Serologic evidence of lyssavirus infections among bats, the Philippines (2002) Emerg Infect Dis, 8 (3), pp. 258-262. , https://doi.org/10.3201/eid0803.010330, PMID: 11927022; Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Host range, prevalence, and genetic diversity of adenoviruses in bats (2010) J Virol, 84 (8), pp. 3889-3897. , https://doi.org/10.1128/JVI.02497-09, PMID: 20089640; Maeda, K., Hondo, E., Terakawa, J., Kiso, Y., Nakaichi, N., Endoh, D., Isolation of novel adenovirus from fruit bat (Pteropus dasymallus yayeyamae) (2008) Emerg Infect Dis, 14 (2), pp. 347-349. , https://doi.org/10.3201/eid1402.070932, PMID: 18258142; Sonntag, M., Muhldorfer, K., Speck, S., Wibbelt, G., Kurth, A., New adenovirus in bats, Germany (2009) Emerg Infect Dis, 12, pp. 2052-2055. , https://doi.org/10.3201/eid1512.090646, edsgcl.216040809. PMID: 19961700; Janoska, M., Vidovszky, M., Molnar, V., Liptovszky, M., Harrach, B., Benko, M., Novel adenoviruses and herpesviruses detected in bats (2011) Vet J, 189 (1), pp. 118-121. , https://doi.org/10.1016/j.tvjl.2010.06.020PMID, 20813566; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56. , https://doi.org/10.1016/j.antiviral.2013.10.013, Epub 2013/11/05. PMID: 24184128; Smith, C.S., Jong, C.E., Meers, J., Henning, J., Wang, L.F., Field, H.E., Coronavirus infection and diversity in bats in the Australasian region (2016) EcoHealth, 13, pp. 72-82. , https://doi.org/10.1007/s10393-016-1116-x, PubMed PMID: edsgcl.449327561. PMID: 27048154; Wacharapluesadee, S., Duengkae, P., Rodpan, A., Thongchai, K., Maneeorn, P., Budsabong, K., Diversity of coronavirus in bats from eastern Thailand (2015) Virol J, 12 (1), pp. 1-7. , https://doi.org/10.1186/s12985-015-0289-1, PMID: 103007484; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Identification of a novel coronavirus in bats (2005) J Virol, 79 (4), pp. 2001-2009. , https://doi.org/10.1128/JVI.79.4.2001-2009.2005, Epub 2005/02/01. PMID: 15681402; PubMed Central PMCID: PMCPMC546586; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J Virol, 80 (15), pp. 7481-7490. , https://doi.org/10.1128/JVI.00697-06, Epub 2006/07/15. PMID: 16840328; PubMed Central PMCID: PMCPMC1563713; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J Virol, 84 (21), pp. 11336-11349. , https://doi.org/10.1128/JVI.00650-10, Epub 2010/08/06. PMID: 20686038; PubMed Central PMCID: PMCPMC2953168; Li, Y., Wang, J., Hickey, A.C., Zhang, Y., Li, Y., Wu, Y., Antibodies to Nipah or Nipah-like viruses in bats, China (2008) Emerg Infect Dis, 14 (12), pp. 1974-1976. , https://doi.org/10.3201/eid1412.080359, Epub 2008/12/03. PMID: 19046545; PubMed Central PMCID: PMCPMC2634619; Olival, K.J., Hayman, D.T., Filoviruses in bats: Current knowledge and future directions (2014) Viruses, 6 (4), pp. 1759-1788. , https://doi.org/10.3390/v6041759, PMID: 24747773; PubMed Central PMCID: PMCPMC4014719; Jayme, S.I., Field, H.E., De Jong, C., Olival, K.J., Marsh, G., Tagtag, A.M., Molecular evidence of Ebola Reston virus infection in Philippine bats (2015) Virol J, 12, p. 107. , https://doi.org/10.1186/s12985-015-0331-3PMID, 26184657; PubMed Central PMCID: PMCPMC4504098; Yuan, J., Zhang, Y., Li, J., Zhang, Y., Wang, L.-F., Shi, Z., Serological evidence of ebolavirus infection in bats, China (2012) Virol J, 9, p. 236. , https://doi.org/10.1186/1743-422X-9-236, . PMID: 23062147; Tidemann, C.R., Woodside, D.P., A collapsible bat-trap and a comparison of results obtained with the trap and with mist-nets (1978) Aust Wildl Res, 5, pp. 355-362; Brunet-Rossinni, A.K., Wilkinson, G.S., Methods for age estimation and the study of senescence in bats (2009) Ecological and Behavioral Methods for The Study of Bats, pp. 315-325. , Kunz TH, Parsons S, editors. Baltimore: Johns Hopkins University Press; Steer, P.A., Kirkpatrick, N.C., O’Rourke, D., Noormohammadi, A.H., Classification of fowl adenovirus sero-types by use of high-resolution melting-curve analysis of the hexon gene region (2009) J Clin Microbiol, 47 (2), pp. 311-321. , https://doi.org/10.1128/JCM.01567-08, PubMed PMID: edsagr.US201301590021. PMID: 19036935; Chmielewicz, B., Goltz, M., Lahrmann, K.-H., Ehlers, B., Approaching virus safety in xenotransplantation: A search for unrecognized herpesviruses in pigs (2003) Xenotransplantation, 10 (4), pp. 349-356. , https://doi.org/10.1034/j.1399-3089.2003.02074.x, PMID: 12795684; Druce, J.D., (2017) Optimising The Laboratory Response to Outbreaks Caused by Novel Viruses, , PhD Thesis. Clayton: Monash University; Coppo, M.J.C., Devlin, J.M., Legione, A.R., Vaz, P.K., Lee, S.W., Quinteros, J.A., The infectious laryngotracheitis virus (ILTV) viral chemokine-binding protein glycoprotein G alters the transcription of key inflammatory mediators in vitro and in vivo (2018) J Virol, 92 (1). , https://doi.org/10.1128/JVI.01534-17, Epub 2017/10/27. PMID: 29070686; Van Boheemen, S., Bestebroer, T.M., Verhagen, J.H., Osterhaus, A.D., Pas, S.D., Herfst, S., A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study (2012) PLoS One, 7 (4). , https://doi.org/10.1371/journal.pone.0034961, Epub 2012/04/13. PMID: 22496880; PubMed Central PMCID: PMCPMC3319594; Database resources of the National Center for Biotechnology Information (2016) Nucleic Acids Res, 44 (Database issue), pp. D7-D19. , https://doi.org/10.1093/nar/gkv1290, NCBI Resource Coordinators. Epub 2015 Nov 28. PMID: 26615191; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215 (3), pp. 403-410. , https://doi.org/10.1016/S0022-2836(05)80360-2, Epub 1990/10/05. PMID: 2231712; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol Biol Evol, 30 (4), pp. 772-780. , https://doi.org/10.1093/molbev/mst010, Epub 2013/01/19. PMID: 23329690; PubMed Central PMCID: PMCPMC3603318; Henikoff, S., Henikoff, J.G., Amino acid substitution matrices from protein blocks (1992) Proc Natl Acad Sci U S A, 89 (22), pp. 10915-10919. , Epub 1992/11/15. PMID: 1438297; PubMed Central PMCID: PMCPMC50453; Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17 (8), pp. 754-755. , Epub 2001/08/29. PMID: 11524383; McGeoch, D.J., Dolan, A., Ralph, A.C., Toward a comprehensive phylogeny for mammalian and avian herpesviruses (2000) J Virol, 74 (22), pp. 10401-10406. , Epub 2000/10/24. PMID: 11044084; PubMed Central PMCID: PMCPMC110914; Keane, T.M., Creevey, C.J., Pentony, M.M., Naughton, T.J., McLnerney, J.O., Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified (2006) BMC Evol Biol, 6 (29). , https://doi.org/10.1186/471-2148-6-29Epub2006/03/28.10.1186/1471-2148-6-29, PMID: 16563161; PubMed Central PMCID: PMCPMC1435933; Le, S.Q., Gascuel, O., An improved general amino acid replacement matrix (2008) Mol Biol Evol, 25 (7), pp. 1307-1320. , https://doi.org/10.1093/molbev/msn067, Epub 2008/03/28. PMID: 18367465; Akaike, H., A new look at the statistical model identification (1974) IEEE Trans Autom Control, 19 (6), pp. 716-723; Knowles, D.P., Herpesvirales (2011) Fenner’S Veterinary Virology, pp. 179-201. , Maclachlan NJ, Dubovi EJ, editors. 4th ed. London: Elsevier Academic Press; Echevarria, J.E., Avellon, A., Juste, J., Vera, M., Ibanez, C., Screening of active lyssavirus infection in wild bat populations by viral RNA detection on oropharyngeal swabs (2001) J Clin Microbiol, 39 (10), pp. 3678-3683. , https://doi.org/10.1128/JCM.39.10.3678-3683.2001, Epub 2001/09/28. PMID: 11574590; PubMed Central PMCID: PMCPMC88406; Smith, I.L., Northill, J.A., Harrower, B.J., Smith, G.A., Detection of Australian bat lyssavirus using a fluorogenic probe (2002) J Clin Virol, 25 (3), pp. 285-291. , Epub 2002/11/09. PMID: 12423692; Baker, K.S., Leggett, R.M., Bexfield, N.H., Alston, M., Daly, G., Todd, S., Metagenomic study of the viruses of African straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus (2013) Virology, 441 (2), pp. 95-106. , https://doi.org/10.1016/j.virol.2013.03.014PMID, Epub 2013/04/09. 23562481; PubMed Central PMCID: PMCPMC3667569; McGeoch, D.J., Cook, S., Dolan, A., Jamieson, F.E., Telford, E.A., Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses (1995) J Mol Biol, 247 (3), pp. 443-458. , https://doi.org/10.1006/jmbi.1995.0152, Epub 1995/03/31. PMID: 7714900; Stalder, K.J., (2013) Herpesviruses in Australian Marsupials, p. 118. , MVS Thesis. Melbourne: University of Melbourne; Critselis, E., Nastos, P.T., Theodoridou, K., Theodoridou, M., Tsolia, M.N., Hadjichristodoulou, C., Time trends in pediatric hospitalizations for varicella infection are associated with climatic changes: A 22-year retrospective study in a tertiary Greek referral center (2012) PLoS One, 7 (12). , https://doi.org/10.1371/journal.pone.0052016, Epub 2013/01/ 04. PMID: 23284855; PubMed Central PMCID: PMCPMC3532345; Nardelli, S., Farina, G., Lucchini, R., Valorz, C., Moresco, A., Dal Zotto, R., Dynamics of infection and immunity in a dairy cattle population undergoing an eradication programme for infectious bovine rhino-tracheitis (IBR) (2008) Prev Vet Med, 85 (1-2), pp. 68-80. , https://doi.org/10.1016/j.prevetmed.2008.01.001, Epub 2008/02/29. PMID: 18304663; Wheeler, C.E., Canby, C.M., Effect of temperature on the growth curves of herpes simplex virus in tissue cultures (1959) J Immunol, 83, pp. 392-396. , Epub 1959/10/01. PMID: 13844276; Dwyer, P.D., Hamilton-Smith, E., Breeding caves and maternity colonies of the bent-winged bat in southeastern Australia (1965) Helictite, 4 (1), pp. 3-21; Burbank, R.C., Young, J.Z., Temperature changes and winter sleep of bats (1934) J Physiol, 82, pp. 459-467. , PMID: 16994601; Kruger, J.M., Venta, P.J., Swenson, C.L., Syring, R., Gibbons-Burgener, S.N., Richter, M., Prevalence of bovine herpesvirus-4 infection in cats in central Michigan (2000) J Vet Intern Med, 14 (6), pp. 593-597. , Epub 2000/12/08. PMID: 11110380; Lillehaug, A., Vikoren, T., Larsen, I.L., Akerstedt, J., Tharaldsen, J., Handeland, K., Antibodies to ruminant alpha-herpesviruses and pestiviruses in Norwegian cervids (2003) J Wildl Dis, 39 (4), pp. 779-786. , https://doi.org/10.7589/0090-3558-39.4.779, Epub 2004/01/22. PMID: 14733272; Simon, A.K., Hollander, G.A., McMichael, A., Evolution of the immune system in humans from infancy to old age (2015) Proc Biol Sci, 282 (1821), p. 20143085. , https://doi.org/10.1098/rspb.2014.3085, Epub 2015/12/25. PMID: 26702035; PubMed Central PMCID: PMCPMC4707740; Kemenesi, G., Dallos, B., Gorfol, T., Estok, P., Boldogh, S., Kurucz, K., Genetic diversity and recombination within bufaviruses: Detection of a novel strain in Hungarian bats (2015) Infect Genet Evol, 33, pp. 288-292. , https://doi.org/10.1016/j.meegid.2015.05.017, Epub 2015/05/20. PMID: 25989375; Kemenesi, G., Zhang, D., Marton, S., Dallos, B., Gorfol, T., Estok, P., Genetic characterization of a novel picornavirus detected in Miniopterus schreibersii bats (2015) J Gen Virol, 96, pp. 815-821. , https://doi.org/10.1099/jgv.0.000028, Epub 2014/ 12/18. PMID: 25516541; Banyai, K., Kemenesi, G., Budinski, I., Foldes, F., Zana, B., Marton, S., Candidate new rotavirus species in Schreiber’s bats, Serbia (2017) Infect Genet Evol, 48, pp. 19-26. , https://doi.org/10.1016/j.meegid.2016.12.002, Epub 2016/12/10. PMID: 27932285; Kemenesi, G., Dallos, B., Gorfol, T., Boldogh, S., Estok, P., Kurucz, K., Molecular survey of RNA viruses in Hungarian bats: Discovering novel astroviruses, coronaviruses, and caliciviruses (2014) Vector Borne Zoo-Notic Dis, 14 (12), pp. 846-855. , https://doi.org/10.1089/vbz.2014.1637, Epub 2014/12/17. PMID: 25514120; Emerson, G.L., Nordhausen, R., Garner, M.M., Huckabee, J.R., Johnson, S., Wohrle, R.D., Novel poxvirus in big brown bats, northwestern United States (2013) Emerg Infect Dis, 19 (6), pp. 1002-1004. , https://doi.org/10.3201/eid1906.121713, Epub 2013/06/ 06. PMID: 23735421; PubMed Central PMCID: PMCPMC3713833; Tavare, S., Some probabilistic and statistical problems in the analysis of DNA sequences (1986) Lectures on Mathematics in The Life Sciences, 17, pp. 57-86","Holz, P.H.; Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of MelbourneAustralia; email: holzp@student.unimelb.edu.au",,"Public Library of Science",19326203,,POLNC,"29795610","English","PLoS ONE",Review,"Final",Open Access,Scopus,2-s2.0-85047479769 "Kocher J.F., Lindesmith L.C., Debbink K., Beall A., Mallory M.L., Yount B.L., Graham R.L., Huynh J., Gates J.E., Donaldson E.F., Baric R.S.","6603690353;6603638834;36997143900;57159085300;57194330396;6603564156;57203199836;37026158900;35558469700;8324050300;57205312930;","Bat caliciviruses and human noroviruses are antigenically similar and have overlapping histo-blood group antigen binding profiles",2018,"mBio","9","3", e00869-18,"","",,6,"10.1128/mBio.00869-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047556649&doi=10.1128%2fmBio.00869-18&partnerID=40&md5=e2b78eb8b1ce90855abfec01a479379b","Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Natural Sciences, Bowie State University, Bowie, MD, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; University of Maryland Center for Environmental Science, Frostburg, MD, United States; Washington University in St. Louis, St. Louis, MO, United States; Food and Drug Administration, Silver Spring, MD, United States","Kocher, J.F., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lindesmith, L.C., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Debbink, K., Department of Natural Sciences, Bowie State University, Bowie, MD, United States; Beall, A., Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Mallory, M.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Yount, B.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Graham, R.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Huynh, J., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Washington University in St. Louis, St. Louis, MO, United States; Gates, J.E., University of Maryland Center for Environmental Science, Frostburg, MD, United States; Donaldson, E.F., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Food and Drug Administration, Silver Spring, MD, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to _recoviruses._ Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histoblood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens. IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second noroviruslike bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations. © 2018 Kocher et al.","Calicivirus; Histo-blood group antigens; Noroviruses; Sialic acid; Zoonotic infections","blood group antigen; epitope; blood group antigen; capsid protein; virus antigen; antigen binding; antigenicity; Article; bat; Bat calicivirus; Caliciviridae; controlled study; gene sequence; ligand binding; molecular evolution; molecular phylogeny; nonhuman; Norovirus; Perimyotis subflavus; priority journal; sequence homology; virus capsid; virus gene; virus like agent; virus strain; virus transmission; animal; Caliciviridae; calicivirus infection; chemistry; classification; genetics; human; immunology; Norovirus; phylogeny; protein domain; virology; Animals; Antigens, Viral; Blood Group Antigens; Caliciviridae; Caliciviridae Infections; Capsid Proteins; Chiroptera; Humans; Norovirus; Phylogeny; Protein Domains","Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993. , https://doi.org/10.1038/nature06536; Woolhouse, M.E., Haydon, D.T., Antia, R., Emerging pathogens: The epidemiology and evolution of species jumps (2005) Trends Ecol Evol, 20, pp. 238-244. , https://doi.org/10.1016/j.tree.2005.02.009; Leroy, E.M., Epelboin, A., Mondonge, V., Pourrut, X., Gonzalez, J.P., Muyembe-Tamfum, J.J., Formenty, P., Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007 (2009) Vector Borne Zoonotic Dis, 9, pp. 723-728. , https://doi.org/10.1089/vbz.2008.0167; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Swanepoel, R., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576. , https://doi.org/10.1038/438575a; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , https://doi.org/10.1126/science.1118391; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , https://doi.org/10.1038/nm.3985; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci U S A, 113, pp. 3048-3053. , https://doi.org/10.1073/pnas.1517719113; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Lipkin, W.I., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823. , https://doi.org/10.3201/eid1911.131172; Anthony, S.J., Epstein, J.H., Murray, K.A., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Solovyov, A., Ojeda-Flores, R., Lipkin, W.I., A strategy to estimate unknown viral diversity in mammals (2013) Mbio, 4. , https://doi.org/10.1128/mBio.00598-13, e00598-13; Mesquita, J.R., Barclay, L., Nascimento, M.S., Vinjé, J., Novel norovirus in dogs with diarrhea (2010) Emerg Infect Dis, 16, pp. 980-982. , https://doi.org/10.3201/eid1606.091861; Bodnar, L., Di Martino, B., Di Profio, F., Melegari, I., Lanave, G., Lorusso, E., Cavalli, A., Martella, V., Detection and molecular characterization of sapoviruses in dogs (2016) Infect Genet Evol, 38, pp. 8-12. , https://doi.org/10.1016/j.meegid.2015.11.034; Soma, T., Nakagomi, O., Nakagomi, T., Mochizuki, M., Detection of norovirus and Sapovirus from diarrheic dogs and cats in Japan (2015) Microbiol Immunol, 59, pp. 123-128. , https://doi.org/10.1111/1348-0421.12223; Di Martino, B., Di Profio, F., Melegari, I., Sarchese, V., Cafiero, M.A., Robetto, S., Aste, G., Martella, V., A novel feline norovirus in diarrheic cats (2016) Infect Genet Evol, 38, pp. 132-137. , https://doi.org/10.1016/j.meegid.2015.12.019; Wang, Q.H., Han, M.G., Cheetham, S., Souza, M., Funk, J.A., Saif, L.J., Porcine noroviruses related to human noroviruses (2005) Emerg Infect Dis, 11, pp. 1874-1881. , https://doi.org/10.3201/eid1112.050485; Shen, Q., Zhang, W., Yang, S., Cui, L., Hua, X., Complete genome sequence of a new-genotype porcine norovirus isolated from piglets with diarrhea (2012) J Virol, 86, pp. 7015-7016. , https://doi.org/10.1128/JVI.00757-12; Wobus, C.E., Karst, S.M., Thackray, L.B., Chang, K.O., Sosnovtsev, S.V., Belliot, G., Krug, A., Virgin, H.W., Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages (2004) Plos Biol, 2. , https://doi.org/10.1371/journal.pbio.0020432; Karst, S.M., Wobus, C.E., Lay, M., Davidson, J., Virgin, H., STAT1-dependent innate immunity to a Norwalk-like virus (2003) Science, 299, pp. 1575-1578. , https://doi.org/10.1126/science.1077905; Wolf, S., Williamson, W., Hewitt, J., Lin, S., Rivera-Aban, M., Ball, A., Scholes, P., Greening, G.E., Molecular detection of norovirus in sheep and pigs in New Zealand farms (2009) Vet Microbiol, 133, pp. 184-189. , https://doi.org/10.1016/j.vetmic.2008.06.019; Liu, B.L., Lambden, P.R., Günther, H., Otto, P., Elschner, M., Clarke, I.N., Molecular characterization of a bovine enteric calicivirus: Relationship to the Norwalk-like viruses (1999) J Virol, 73, pp. 819-825; Li, L., Shan, T., Wang, C., Côté, C., Kolman, J., Onions, D., Gulland, F.M., Delwart, E., The fecal viral flora of California sea lions (2011) J Virol, 85, pp. 9909-9917. , https://doi.org/10.1128/JVI.05026-11; McClenahan, S.D., Burek, K.A., Beckmen, K.B., Knowles, N.J., Neill, J.D., Romero, C.H., Genomic characterization of novel marine vesiviruses from Steller sea lions (Eumetopias jubatus) from Alaska (2008) Virus Res, 138, pp. 26-35. , https://doi.org/10.1016/j.virusres.2008.08.002; Neill, J.D., Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: Identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins (1992) Virus Res, 24, pp. 211-222. , https://doi.org/10.1016/0168-1702(92)90008-W; Guo, M., Evermann, J.F., Saif, L.J., Detection and molecular characterization of cultivable caliciviruses from clinically normal mink and enteric caliciviruses associated with diarrhea in mink (2001) Arch Virol, 146, pp. 479-493. , https://doi.org/10.1007/s007050170157; Meyers, G., Wirblich, C., Thiel, H.J., Rabbit hemorrhagic disease virus. Molecular cloning and nucleotide sequencing of a calicivirus genome (1991) Virology, 184, pp. 664-676. , https://doi.org/10.1016/0042-6822(91)90436-F; Liu, S.J., Xue, H.P., Pu, B.Q., Qian, N.H., A new viral disease in rabbits (1984) Anim Husbandry Vet Med, 16, pp. 253-255; Wolf, S., Reetz, J., Otto, P., Genetic characterization of a novel calicivirus from a chicken (2011) Arch Virol, 156, pp. 1143-1150. , https://doi.org/10.1007/s00705-011-0964-5; Liao, Q., Wang, X., Wang, D., Zhang, D., Complete genome sequence of a novel calicivirus from a goose (2014) Arch Virol, 159, pp. 2529-2531. , https://doi.org/10.1007/s00705-014-2083-6; Wang, F., Wang, M., Dong, Y., Zhang, B., Zhang, D., Genetic characterization of a novel calicivirus from a goose (2017) Arch Virol, 162, pp. 2115-2118. , https://doi.org/10.1007/s00705-017-3302-8; Mikalsen, A.B., Nilsen, P., Frøystad-Saugen, M., Lindmo, K., Eliassen, T.M., Rode, M., Evensen, O., Characterization of a novel calicivirus causing systemic infection in Atlantic salmon (Salmo salar L.): Proposal for a new genus of Caliciviridae (2014) Plos One, 9. , https://doi.org/10.1371/journal.pone.0107132; Farkas, T., Sestak, K., Wei, C., Jiang, X., Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae (2008) J Virol, 82, pp. 5408-5416. , https://doi.org/10.1128/JVI.00070-08; Farkas, T., Cross, R.W., Hargitt, E., Lerche, N.W., Morrow, A.L., Sestak, K., Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses (2010) J Virol, 84, pp. 8617-8625. , https://doi.org/10.1128/JVI.00630-10; Siebenga, J.J., Vennema, H., Renckens, B., De Bruin, E., Van Der Veer, B., Siezen, R.J., Koopmans, M., Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006 (2007) J Virol, 81, pp. 9932-9941. , https://doi.org/10.1128/JVI.00674-07; Lindesmith, L.C., Donaldson, E.F., Lobue, A.D., Cannon, J.L., Zheng, D.P., Vinje, J., Baric, R.S., Mechanisms of GII.4 norovirus persistence in human populations (2008) Plos Med, 5. , https://doi.org/10.1371/journal.pmed.0050031; Karst, S.M., Baric, R.S., What is the reservoir of emergent human norovirus strains? (2015) J Virol, 89, pp. 5756-5759. , https://doi.org/10.1128/JVI.03063-14; Debbink, K., Lindesmith, L.C., Ferris, M.T., Swanstrom, J., Beltramello, M., Corti, D., Lanzavecchia, A., Baric, R.S., Within-host evolution results in antigenically distinct GII.4 noroviruses (2014) J Virol, 88, pp. 7244-7255. , https://doi.org/10.1128/JVI.00203-14; Mathijs, E., Stals, A., Baert, L., Botteldoorn, N., Denayer, S., Mauroy, A., Scipioni, A., Thiry, E., A review of known and hypothetical transmission routes for noroviruses (2012) Food Environ Virol, 4, pp. 131-152. , https://doi.org/10.1007/s12560-012-9091-z; Wilhelm, B., Waddell, L., Greig, J., Rajic´, A., Houde, A., McEwen, S.A., A scoping review of the evidence for public health risks of three emerging potentially zoonotic viruses: Hepatitis E virus, norovirus, and rotavirus (2015) Prev Vet Med, 119, pp. 61-79. , https://doi.org/10.1016/j.prevetmed.2015.01.015; Mesquita, J.R., Costantini, V.P., Cannon, J.L., Lin, S.C., Nascimento, M.S., Vinjé, J., Presence of antibodies against genogroup VI norovirus in humans (2013) Virol J, 10, p. 176. , https://doi.org/10.1186/1743-422X-10-176; Caddy, S.L., De Rougemont, A., Emmott, E., El-Attar, L., Mitchell, J.A., Hollinshead, M., Belliot, G., Goodfellow, I., Evidence for human norovirus infection of dogs in the United Kingdom (2015) J Clin Microbiol, 53, pp. 1873-1883. , https://doi.org/10.1128/JCM.02778-14; Mattison, K., Shukla, A., Cook, A., Pollari, F., Friendship, R., Kelton, D., Bidawid, S., Farber, J.M., Human noroviruses in swine and cattle (2007) Emerg Infect Dis, 13, pp. 1184-1188. , https://doi.org/10.3201/eid1308.070005; Menon, V.K., George, S., Shanti, A.A., Saravanabavan, A., Samuel, P., Ramani, S., Estes, M.K., Kang, G., Exposure to human and bovine noroviruses in a birth cohort in southern India from 2002 to 2006 (2013) J Clin Microbiol, 51, pp. 2391-2395. , https://doi.org/10.1128/JCM.01015-13; Widdowson, M.A., Rockx, B., Schepp, R., Van Der Poel, W.H., Vinje, J., Van Duynhoven, Y.T., Koopmans, M.P., Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands (2005) J Med Virol, 76, pp. 119-128. , https://doi.org/10.1002/jmv.20333; Tse, H., Chan, W.M., Li, K.S., Lau, S.K., Woo, P.C., Yuen, K.Y., Discovery and genomic characterization of a novel bat sapovirus with unusual genomic features and phylogenetic position (2012) Plos One, 7. , https://doi.org/10.1371/journal.pone.0034987; Kemenesi, G., Gellért, Á., Dallos, B., Görföl, T., Boldogh, S., Estók, P., Marton, S., Jakab, F., Sequencing and molecular modeling identifies candidate members of Caliciviridae family in bats (2016) Infect Genet Evol, 41, pp. 227-232. , https://doi.org/10.1016/j.meegid.2016.04.004; Wang, J., Moore, N.E., Murray, Z.L., McInnes, K., White, D.J., Tompkins, D.M., Hall, R.J., Discovery of novel virus sequences in an isolated and threatened bat species, the New Zealand lesser short-tailed bat (Mystacina tuberculata) (2015) J Gen Virol, 96, pp. 2442-2452. , https://doi.org/10.1099/vir.0.000158; Kemenesi, G., Dallos, B., Görföl, T., Boldogh, S., Estók, P., Kurucz, K., Kutas, A., Jakab, F., Molecular survey of RNA viruses in Hungarian bats: Discovering novel astroviruses, coronaviruses, and caliciviruses (2014) Vector Borne Zoonotic Dis, 14, pp. 846-855. , https://doi.org/10.1089/vbz.2014.1637; Waruhiu, C., Ommeh, S., Obanda, V., Agwanda, B., Gakuya, F., Ge, X.Y., Yang, X.L., Shi, Z.L., Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses (2017) Virol Sin, 32, pp. 101-114. , https://doi.org/10.1007/s12250-016-3930-2; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Jin, Q., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J, 10, pp. 609-620. , https://doi.org/10.1038/ismej.2015.138; Hu, D., Zhu, C., Wang, Y., Ai, L., Yang, L., Ye, F., Ding, C., Wang, C., Virome analysis for identification of novel mammalian viruses in bats from Southeast China (2017) Sci Rep, 7, p. 10917. , https://doi.org/10.1038/s41598-017-11384-w; Donaldson, E.F., Haskew, A.N., Gates, J.E., Huynh, J., Moore, C.J., Frieman, M.B., Metagenomic analysis of the viromes of three North American bat species: Viral diversity among different bat species that share a common habitat (2010) J Virol, 84, pp. 13004-13018. , https://doi.org/10.1128/JVI.01255-10; Lindesmith, L.C., Donaldson, E.F., Baric, R.S., Norovirus GII.4 strain antigenic variation (2011) J Virol, 85, pp. 231-242. , https://doi.org/10.1128/JVI.01364-10; Halsall, A.L., Boyles, J.G., Whitaker, J.O., Body temperature patterns of big brown bats during winter in a building hibernaculum (2012) J Mammal, 93, pp. 497-503. , https://doi.org/10.1644/11-MAMM-A-262.1; Hock, R.J., The metabolic rates and body temperatures of bats (1951) Biol Bull, 101, pp. 289-299. , https://doi.org/10.2307/1538547; Lindesmith, L.C., Donaldson, E.F., Beltramello, M., Pintus, S., Corti, D., Swanstrom, J., Debbink, K., Baric, R.S., Particle conformation regulates antibody access to a conserved GII.4 norovirus blockade epitope (2014) J Virol, 88, pp. 8826-8842. , https://doi.org/10.1128/JVI.01192-14; Parra, G.I., Sosnovtsev, S.V., Abente, E.J., Sandoval-Jaime, C., Bok, K., Dolan, M.A., Green, K.Y., Mapping and modeling of a strain-specific epitope in the Norwalk virus capsid inner shell (2016) Virology, 492, pp. 232-241. , https://doi.org/10.1016/j.virol.2016.02.019; Hansman, G.S., Natori, K., Shirato-Horikoshi, H., Ogawa, S., Oka, T., Katayama, K., Tanaka, T., Takeda, N., Genetic and antigenic diversity among noroviruses (2006) J Gen Virol, 87, pp. 909-919. , https://doi.org/10.1099/vir.0.81532-0; Zheng, D.P., Ando, T., Fankhauser, R.L., Beard, R.S., Glass, R.I., Monroe, S.S., Norovirus classification and proposed strain nomenclature (2006) Virology, 346, pp. 312-323. , https://doi.org/10.1016/j.virol.2005.11.015; Ossiboff, R.J., Zhou, Y., Lightfoot, P.J., Prasad, B.V., Parker, J.S., Conformational changes in the capsid of a calicivirus upon interaction with its functional receptor (2010) J Virol, 84, pp. 5550-5564. , https://doi.org/10.1128/JVI.02371-09; Prasad, B.V., Hardy, M.E., Dokland, T., Bella, J., Rossmann, M.G., Estes, M.K., X-ray crystallographic structure of the Norwalk virus capsid (1999) Science, 286, pp. 287-290. , https://doi.org/10.1126/science.286.5438.287; Alva, V., Nam, S.Z., Söding, J., Lupas, A.N., The MPI Bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis (2016) Nucleic Acids Res, 44, pp. W410-W415. , https://doi.org/10.1093/nar/gkw348; Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J Mol Biol, 234, pp. 779-815. , https://doi.org/10.1006/jmbi.1993.1626; Sali, A., Potterton, L., Yuan, F., Van Vlijmen, H., Karplus, M., Evaluation of comparative protein modeling by MODELLER (1995) Proteins, 23, pp. 318-326. , https://doi.org/10.1002/prot.340230306; Wass, M.N., Kelley, L.A., Sternberg, M.J., 3DLigandSite: Predicting ligandbinding sites using similar structures (2010) Nucleic Acids Res, 38, pp. W469-W473. , https://doi.org/10.1093/nar/gkq406; Eden, J.S., Read, A.J., Duckworth, J.A., Strive, T., Holmes, E.C., Resolving the origin of rabbit hemorrhagic disease virus: Insights from an investigation of the viral stocks released in Australia (2015) J Virol, 89, pp. 12217-12220. , https://doi.org/10.1128/JVI.01937-15; Kerr, P.J., Kitchen, A., Holmes, E.C., Origin and phylodynamics of rabbit hemorrhagic disease virus (2009) J Virol, 83, pp. 12129-12138. , https://doi.org/10.1128/JVI.01523-09; Yamamoto, F., Cid, E., Yamamoto, M., Saitou, N., Bertranpetit, J., Blancher, A., An integrative evolution theory of histo-blood group ABO and related genes (2014) Sci Rep, 4, p. 6601. , https://doi.org/10.1038/srep06601; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A.K., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) Mbio, 8, pp. e00373-17. , https://doi.org/10.1128/mBio.00373-17; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Di Martino, B., Marsilio, F., Di Profio, F., Lorusso, E., Friedrich, K.G., Buonavoglia, C., Martella, V., Detection of antibodies against norovirus genogroup GIV in carnivores (2010) Clin Vaccine Immunol, 17, pp. 180-182. , https://doi.org/10.1128/CVI.00312-09; Di Martino, B., Di Profio, F., Ceci, C., Di Felice, E., Green, K.Y., Bok, K., De Grazia, S., Martella, V., Seroprevalence of norovirus genogroup IV antibodies among humans, Italy, 2010-2011 (2014) Emerg Infect Dis, 20, pp. 1828-1832. , https://doi.org/10.3201/eid2011.131601; Lindesmith, L., Moe, C., Marionneau, S., Ruvoen, N., Jiang, X., Lindblad, L., Stewart, P., Baric, R., Human susceptibility and resistance to Norwalk virus infection (2003) Nat Med, 9, pp. 548-553. , https://doi.org/10.1038/nm860; Nyström, K., Abrantes, J., Lopes, A.M., Le Moullac-Vaidye, B., Marchandeau, S., Rocher, J., Ruvoën-Clouet, N., Le Pendu, J., Neofunctionalization of the Sec1 alpha1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus (2015) Plos Pathog, 11. , https://doi.org/10.1371/journal.ppat.1004759; Nyström, K., Le Gall-Reculé, G., Grassi, P., Abrantes, J., Ruvoën-Clouet, N., Le Moullac-Vaidye, B., Lopes, A.M., Le Pendu, J., Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner (2011) Plos Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002188; Zakhour, M., Ruvoën-Clouet, N., Charpilienne, A., Langpap, B., Poncet, D., Peters, T., Bovin, N., Le Pendu, J., The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission (2009) Plos Pathog, 5. , https://doi.org/10.1371/journal.ppat.1000504; Mauroy, A., Gillet, L., Mathijs, E., Vanderplasschen, A., Thiry, E., Alternative attachment factors and internalization pathways for GIII.2 bovine noroviruses (2011) J Gen Virol, 92, pp. 1398-1409. , https://doi.org/10.1099/vir.0.030072-0; Taube, S., Perry, J.W., McGreevy, E., Yetming, K., Perkins, C., Henderson, K., Wobus, C.E., Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-dependent manner (2012) J Virol, 86, pp. 5584-5593. , https://doi.org/10.1128/JVI.06854-11; Haga, K., Fujimoto, A., Takai-Todaka, R., Miki, M., Doan, Y.H., Murakami, K., Yokoyama, M., Katayama, K., Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells (2016) Proc Natl Acad Sci U S A, 113, pp. E6248-E6255. , https://doi.org/10.1073/pnas.1605575113; Orchard, R.C., Wilen, C.B., Doench, J.G., Baldridge, M.T., McCune, B.T., Lee, Y.C., Lee, S., Virgin, H.W., Discovery of a proteinaceous cellular receptor for a norovirus (2016) Science, 353, pp. 933-936. , https://doi.org/10.1126/science.aaf1220; Kim, D.S., Hosmillo, M., Alfajaro, M.M., Kim, J.Y., Park, J.G., Son, K.Y., Ryu, E.H., Cho, K.O., Both alpha2,3-and alpha2,6-linked sialic acids on O-linked glycoproteins act as functional receptors for porcine Sapovirus (2014) Plos Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004172; Sosnovtsev, S.V., Sandoval-Jaime, C., Parra, G.I., Tin, C.M., Jones, R.W., Soden, J., Barnes, D., Green, K.Y., Identification of human junctional adhesion Molecule 1 as a functional receptor for the Hom-1 calicivirus on human cells (2017) Mbio, 8, pp. e00031-17. , https://doi.org/10.1128/mBio.00031-17; Makino, A., Shimojima, M., Miyazawa, T., Kato, K., Tohya, Y., Akashi, H., Junctional adhesion molecule 1 is a functional receptor for feline calicivirus (2006) J Virol, 80, pp. 4482-4490. , https://doi.org/10.1128/JVI.80.9.4482-4490.2006; Taube, S., Perry, J.W., Yetming, K., Patel, S.P., Auble, H., Shu, L., Nawar, H.F., Wobus, C.E., Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses (2009) J Virol, 83, pp. 4092-4101. , https://doi.org/10.1128/JVI.02245-08; Wegener, H., Mallagaray, Á., Schöne, T., Peters, T., Lockhauserbäumer, J., Yan, H., Uetrecht, C., Taube, S., Human norovirus GII.4(MI001) P dimer binds fucosylated and sialylated carbohydrates (2017) Glycobiology, 27, pp. 1027-1037. , https://doi.org/10.1093/glycob/cwx078; Han, L., Tan, M., Xia, M., Kitova, E.N., Jiang, X., Klassen, J.S., Gangliosides are ligands for human noroviruses (2014) J am Chem Soc, 136, pp. 12631-12637. , https://doi.org/10.1021/ja505272n; Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., Blast+: Architecture and applications (2009) BMC Bioinformatics, 10, p. 421. , https://doi.org/10.1186/1471-2105-10-421; Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J., The Phyre2 web portal for protein modeling, prediction and analysis (2015) Nat Protoc, 10, pp. 845-858. , https://doi.org/10.1038/nprot.2015.053; Cao, S., Lou, Z., Tan, M., Chen, Y., Liu, Y., Zhang, Z., Zhang, X.C., Rao, Z., Structural basis for the recognition of blood group trisaccharides by norovirus (2007) J Virol, 81, pp. 5949-5957. , https://doi.org/10.1128/JVI.00219-07; Singh, B.K., Leuthold, M.M., Hansman, G.S., Human noroviruses’ fondness for histo-blood group antigens (2015) J Virol, 89, pp. 2024-2040. , https://doi.org/10.1128/JVI.02968-14; Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., Higgins, D.G., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega (2011) Mol Syst Biol, 7, p. 539. , https://doi.org/10.1038/msb.2011.75; Debbink, K., Costantini, V., Swanstrom, J., Agnihothram, S., Vinje, J., Baric, R., Lindesmith, L., Human norovirus detection and production, quantification, and storage of virus-like particles (2013) Curr Protoc Microbiol, 31, pp. 15K.11.11-15K.11.45. , https://doi.org/10.1002/9780471729259.mc15k01s31; Harrington, P.R., Lindesmith, L., Yount, B., Moe, C.L., Baric, R.S., Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice (2002) J Virol, 76, pp. 12335-12343. , https://doi.org/10.1128/JVI.76.23.12335-12343.2002; Moe, C.L., Sair, A., Lindesmith, L., Estes, M.K., Jaykus, L.A., Diagnosis of Norwalk virus infection by indirect enzyme immunoassay detection of salivary antibodies to recombinant Norwalk virus antigen (2004) Clin Diagn Lab Immunol, 11, pp. 1028-1034. , https://doi.org/10.1128/CDLI.11.6.1028-1034.2004; Lindesmith, L.C., Beltramello, M., Donaldson, E.F., Corti, D., Swanstrom, J., Debbink, K., Lanzavecchia, A., Baric, R.S., Immunogenetic mechanisms driving norovirus GII.4 antigenic variation (2012) Plos Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002705","Baric, R.S.; Department of Epidemiology, the University of North Carolina at Chapel HillUnited States; email: rbaric@email.unc.edu",,"American Society for Microbiology",21612129,,,"29789360","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85047556649 "Martini M.C., Caserta L.C., dos Santos M.M.A.B., Barnabé A.C.S., Durães-Carvalho R., Padilla M.A., Simão R.M., Rizotto L.S., Simas P.V.M., Bastos J.C.S., Cardoso T.C., Felippe P.A.N., Ferreira H.L., Arns C.W.","55618665400;56556565800;55428046700;56607432800;55328025000;55833066700;57193066032;57193063983;42062166200;56959964500;8344789200;26531136000;12241195400;7003952459;","Avian coronavirus isolated from a pigeon sample induced clinical disease, tracheal ciliostasis, and a high humoral response in day-old chicks",2018,"Avian Pathology","47","3",,"286","293",,1,"10.1080/03079457.2018.1442557","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044480763&doi=10.1080%2f03079457.2018.1442557&partnerID=40&md5=01a63764980ce771c5a5ace1c1d7e341","Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo (FZEA-USP), Pirassununga, SP, Brazil; Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, SP, Brazil; ICB-Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil; DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, SP, Brazil","Martini, M.C., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Caserta, L.C., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; dos Santos, M.M.A.B., ICB-Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil; Barnabé, A.C.S., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Durães-Carvalho, R., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Padilla, M.A., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Simão, R.M., Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, SP, Brazil; Rizotto, L.S., Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, SP, Brazil; Simas, P.V.M., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Bastos, J.C.S., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Cardoso, T.C., DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, SP, Brazil; Felippe, P.A.N., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil; Ferreira, H.L., Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo (FZEA-USP), Pirassununga, SP, Brazil, Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, SP, Brazil; Arns, C.W., Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil","The detection of avian coronaviruses (AvCoV) in wild birds and the emergence of new AvCoV have increased in the past few years. In the present study, the pathogenicity of three AvCoV isolates was investigated in day-old chicks. One AvCoV isolated from a pigeon, which clustered with the Massachusetts vaccine serotype, and two AvCoV isolated from chickens, which grouped with a Brazilian genotype lineage, were used. Clinical signs, gross lesions, histopathological changes, ciliary activity, viral RNA detection, and serology were evaluated during 42 days post infection. All AvCoV isolates induced clinical signs, gross lesions in the trachea, moderate histopathological changes in the respiratory tract, and mild changes in other tissues. AvCoV isolated from the pigeon sample caused complete tracheal ciliostasis over a longer time span. Specific viral RNA was detected in all tissues, but the highest RNA loads were detected in the digestive tract (cloacal swabs and ileum). The highest antibody levels were also detected in the group infected with an isolate from the pigeon. These results confirm the pathogenicity of Brazilian variants, which can cause disease and induce gross lesions and histopathological changes in chickens. Our results suggest that non-Galliformes birds can also play a role in the ecology of AvCoV. © 2018 Houghton Trust Ltd.","chicken; ciliostasis; Infectious bronchitis virus; pathogenicity; pigeon","virus antibody; virus RNA; virus antibody; animal experiment; animal tissue; antibody detection; antibody response; Article; Avian coronavirus; cecal tonsil; ciliary dyskinesia; ciliary motility; cloaca; Columbidae; controlled study; Coronavirus infection; demineralization; edema; genetic variability; genotype; granuloma; histopathology; humoral immunity; ileum; interstitial nephritis; interstitial pneumonia; kidney injury; kidney tissue; Leghorn chicken; lesions and defects; lung parenchyma; male; necrosis; nonhuman; real time polymerase chain reaction; respiratory system; reverse transcription polymerase chain reaction; RNA analysis; serology; serotype; testis tissue; trachea tissue; tracheitis; virus immunity; virus load; virus virulence; animal; Avian infectious bronchitis virus; bird disease; blood; chicken; Coronavirus infection; Gammacoronavirus; genetics; immunology; isolation and purification; pathogenicity; trachea; trachea disease; veterinary medicine; virology; Animals; Antibodies, Viral; Chickens; Columbidae; Coronavirus Infections; Gammacoronavirus; Genotype; Infectious bronchitis virus; Poultry Diseases; Trachea; Tracheal Diseases","Ambali, A.G., Jones, R.C., Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus (1990) Avian Diseases, 34, pp. 809-817; Bancroft, J.D., Gamble, M., (2008) Theory and Practice of Histological Techniques, , 6th ed, Amsterdam: Elsevier Health Sciences; Barr, D.A., Reece, R.L., O’Rourke, D., Button, C., Faragher, J.T., Isolation of infectious bronchitis virus from a flock of racing pigeons (1988) Australian Veterinary Journal, 65, p. 228; Benyeda, Z., Mato, T., Suveges, T., Szabo, E., Kardi, V., Abonyi-Toth, Z., Rusvai, M., Palya, V., Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions (2009) Avian Pathology, 38, pp. 449-456; Benyeda, Z., Szeredi, L., Mato, T., Suveges, T., Balka, G., Abonyi-Toth, Z., Rusvai, M., Palya, V., Comparative histopathology and immunohistochemistry of QX-like, Massachusetts and 793/B serotypes of infectious bronchitis virus infection in chickens (2010) Journal of Comparative Pathology, 143, pp. 276-283; Callison, S.A., Hilt, D.A., Boynton, T.O., Sample, B.F., Robison, R., Swayne, D.E., Jackwood, M.W., Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) Journal of Virological Methods, 138, pp. 60-65; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathology, 34, pp. 439-448; Cavanagh, D., Mawditt, K., Welchman Dde, B., Britton, P., Gough, R.E., Coronaviruses from pheasants (Phasianus colchicus) are genetically closely related to coronaviruses of domestic fowl (infectious bronchitis virus) and turkeys (2002) Avian Pathology, 31, pp. 81-93; Chacon, J.L., Rodrigues, J.N., Assayag, M.S., Peloso, C., Pedroso, A.C., Ferreira, A.J., Epidemiological survey and molecular characterization of avian infectious bronchitis virus in Brazil between 2003 and 2009 (2011) Avian Pathology, 40, pp. 153-162; Chhabra, R., Kuchipudi, S.V., Chantrey, J., Ganapathy, K., Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune response (2016) Virology, 488, pp. 232-241; Cook, J.K., Orbell, S.J., Woods, M.A., Huggins, M.B., Breadth of protection of the respiratory tract provided by different live-attenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous serotypes (1999) Avian Pathology, 28, pp. 477-485; De Wit, J.J., Brandao, P., Torres, C.A., Koopman, R., Villarreal, L.Y., Increased level of protection of respiratory tract and kidney by combining different infectious bronchitis virus vaccines against challenge with nephropathogenic Brazilian genotype subcluster 4 strains (2015) Avian Pathology, 44, pp. 352-357; Domanska-Blicharz, K., Jacukowicz, A., Lisowska, A., Wyrostek, K., Minta, Z., Detection and molecular characterization of infectious bronchitis-like viruses in wild bird populations (2014) Avian Pathology, 43, pp. 406-413; Ducatez, M.F., Liais, E., Croville, G., Guerin, J.L., Full genome sequence of Guinea fowl coronavirus associated with fulminating disease (2015) Virus Genes, 50, pp. 514-517; Elbers, A.R., Koch, G., Bouma, A., Performance of clinical signs in poultry for the detection of outbreaks during the avian influenza A (H7N7) epidemic in The Netherlands in 2003 (2005) Avian Pathology, 34, pp. 181-187; Fan, W.Q., Wang, H.N., Zhang, Y., Guan, Z.B., Wang, T., Xu, C.W., Zhang, A.Y., Yang, X., Comparative dynamic distribution of avian infectious bronchitis virus M41, H120, and SAIBK strains by quantitative real-time RT-PCR in SPF chickens (2012) Bioscience, Biotechnology, and Biochemistry, 76, pp. 2255-2260; Felippe, P.A., da Silva, L.H., Santos, M.M., Spilki, F.R., Arns, C.W., Genetic diversity of avian infectious bronchitis virus isolated from domestic chicken flocks and coronaviruses from feral pigeons in Brazil between 2003 and 2009 (2010) Avian Diseases, 54, pp. 1191-1196; Ferreira, H.L., Spilki, F.R., de Almeida, R.S., Santos, M.M., Arns, C.W., Inhibition of avian metapneumovirus (AMPV) replication by RNA interference targeting nucleoprotein gene (N) in cultured cells (2007) Antiviral Research, 74, pp. 77-81; Guy, J.S., Barnes, H.J., Smith, L.G., Breslin, J., Antigenic characterization of a turkey coronavirus identified in poult enteritis- and mortality syndrome-affected turkeys (1997) Avian Diseases, 41, pp. 583-590; Hughes, L.A., Savage, C., Naylor, C., Bennett, M., Chantrey, J., Jones, R., Genetically diverse coronaviruses in wild bird populations of northern England (2009) Emerging Infectious Diseases, 15, pp. 1091-1094; (2014) Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, , San Diego: Elsevier Academic Press; Jackwood, M., Wit, S., Infectious Bronchitis (2013) Diseases of Poultry, pp. 139-160. , Swayne D., (ed), 13th edn, Ames, IA: John Wiley & Sons, &,. In; Jackwood, M.W., Lee, D.H., Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry (2017) PLoS One, 12; Jonassen, C.M., Kofstad, T., Larsen, I.L., Lovland, A., Handeland, K., Follestad, A., Lillehaug, A., Molecular identification and characterization of novel coronaviruses infecting graylag geese (Anser anser), feral pigeons (Columbia livia) and mallards (Anas platyrhynchos) (2005) Journal of General Virology, 86, pp. 1597-1607; Jordan, B.J., Hilt, D.A., Poulson, R., Stallknecht, D.E., Jackwood, M.W., Identification of avian coronavirus in wild aquatic birds of the central and eastern USA (2015) Journal of Wildlife Diseases, 51, pp. 218-221; Kim, H.R., Oem, J.K., Surveillance of avian coronaviruses in wild bird populations of Korea (2014) Journal of Wildlife Diseases, 50, pp. 964-968; Kim, L.M., King, D.J., Guzman, H., Tesh, R.B., Travassos da Rosa, A.P., Bueno, R., Jr., Dennett, J.A., Afonso, C.L., Biological and phylogenetic characterization of pigeon paramyxovirus serotype 1 circulating in wild North American pigeons and doves (2008) Journal of Clinical Microbiology, 46, pp. 3303-3310; Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Liu, M., Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) (2005) Journal of General Virology, 86, pp. 719-725; Martini, M.C., Gameiro, J., Cardoso, T.C., Caserta, L.C., Gualberto, A.C., Keid, L.B., Oliveira, T.M., Ferreira, H.L., Experimental infection of inbred BALB/c and A/J mice with Massachusetts and Brazilian strains of infectious bronchitis virus (IBV) (2015) Archives of Virology, 160, pp. 1785-1790; Olsen, B., Munster, V.J., Wallensten, A., Waldenstrom, J., Osterhaus, A.D., Fouchier, R.A., Global patterns of influenza a virus in wild birds (2006) Science, 312, pp. 384-388; Otsuki, K., Huggins, M.B., Cook, J.K., Comparison of the susceptibility to avian infectious bronchitis virus infection of two inbred lines of white leghorn chickens (1990) Avian Pathology, 19, pp. 467-475; Raj, G.D., Jones, R.C., Infectious bronchitis virus: immunopathogenesis of infection in the chicken (1997) Avian Pathology, 26, pp. 677-706; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) American Journal of Epidemiology, 27, pp. 493-497; Sun, L., Zhang, G.H., Jiang, J.W., Fu, J.D., Ren, T., Cao, W.S., Xin, C.A., Liu, W.J., A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens (2007) Virus Research, 130, pp. 121-128; Tarnagda, Z., Yougbare, I., Kam, A., Tahita, M.C., Ouedraogo, J.B., Prevalence of infectious bronchitis and Newcastle disease virus among domestic and wild birds in H5N1 outbreaks areas (2011) The Journal of Infection in Developing Countries, 5, pp. 565-570; Torres, C.A., Villarreal, L.Y., Ayres, G.R., Richtzenhain, L.J., Brandao, P.E., An avian coronavirus in quail with respiratory and reproductive signs (2013) Avian Diseases, 57, pp. 295-299; Wille, M., Muradrasoli, S., Nilsson, A., Jarhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian waterfowl (2016) PLoS One, 11; Woo, P.C., Lau, S.K., Lam, C.S., Lai, K.K., Huang, Y., Lee, P., Luk, G.S., Yuen, K.Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) Jounal of Virology, 83, pp. 908-917","Ferreira, H.L.; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, ZMV-FZEA-USP, Av. Duque de Caxias Norte, 225, Brazil; email: hlage@usp.br",,"Taylor and Francis Ltd.",03079457,,AVPAD,"29517348","English","Avian Pathol.",Article,"Final",Open Access,Scopus,2-s2.0-85044480763 "Kim Y.-S., Son A., Kim J., Kwon S.B., Kim M.H., Kim P., Kim J., Byun Y.H., Sung J., Lee J., Yu J.E., Park C., Kim Y.-S., Cho N.-H., Chang J., Seong B.L.","57200249338;55757216100;57202081836;55991290800;57201330627;57198536834;57203325787;35309508700;57199258519;57206731859;57202072700;57202073129;35976040800;34973855600;8735999100;7006077026;","Chaperna-mediated assembly of ferritin-based middle East respiratory syndrome-coronavirus nanoparticles",2018,"Frontiers in Immunology","9","MAY", 1093,"","",,7,"10.3389/fimmu.2018.01093","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047091892&doi=10.3389%2ffimmu.2018.01093&partnerID=40&md5=a0495b41f4be55a17009b3d85b1335bd","Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea","Kim, Y.-S., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Son, A., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea; Kim, J., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Kwon, S.B., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Kim, M.H., Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Kim, P., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Kim, J., Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea; Byun, Y.H., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea; Sung, J., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Lee, J., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Yu, J.E., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Park, C., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea; Kim, Y.-S., Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea; Cho, N.-H., Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea; Chang, J., Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Seong, B.L., Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea, Vaccine Translational Research Center, Yonsei University, Seoul, South Korea","The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic ""pace-keeping"" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections. © 2018 Kim, Son, Kim, Kwon, Kim, Kim, Kim, Byun, Sung, Lee, Yu, Park, Kim, Cho, Chang and Seong.","Chaperone; Ferritin; Lysyl-tRNA synthetase; Middle East respiratory syndrome coronavirus; nanoparticle; Receptor-binding domain; RNA-interacting domain of human LysRS; Virus-like particle","bacterioferritin; chaperone; ferritin; nanoparticle; recombinant vaccine; ribonuclease A; sodium chloride; animal experiment; animal model; Article; cellular immunity; controlled study; cryoelectron microscopy; enzyme linked immunosorbent assay; Escherichia coli; expression vector; female; flow cytometry; gel mobility shift assay; gene mutation; gene synthesis; immunization; Middle East respiratory syndrome coronavirus; mouse; nonhuman; photon correlation spectroscopy; polyacrylamide gel electrophoresis; polymerase chain reaction; protein expression; protein purification; protein RNA binding; size exclusion chromatography; transmission electron microscopy; virus infection; Western blotting","Jeong, H., Seong, B.L., Exploiting virus-like particles as innovative vaccines against emerging viral infections (2017) J Microbiol, 55 (3), pp. 220-230; Wong, S.-S., Webby, R.J., Traditional and new influenza vaccines (2013) Clin Microbiol Rev, 26 (3), pp. 476-492; Ulmer, J.B., Valley, U., Rappuoli, R., Vaccine manufacturing: challenges and solutions (2006) Nat Biotechnol, 24 (11), pp. 1377-1383; Gunther, S., Feldmann, H., Geisbert, T.W., Hensley, L.E., Rollin, P.E., Nichol, S.T., Management of accidental exposure to Ebola virus in the biosafety level 4 laboratory, Hamburg, Germany (2011) J Infect Dis, 204, pp. S785-S790; Gregory, A.E., Titball, R., Williamson, D., Vaccine delivery using nanoparticles (2013) Front Cell Infect Microbiol, 3, p. 13; Bachmann, M.F., Jennings, G.T., Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns (2010) Nat Rev Immunol, 10 (11), pp. 787-796; Kushnir, N., Streatfield, S.J., Yusibov, V., Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development (2012) Vaccine, 31 (1), pp. 58-83; Bachmann, M.F., Rohrer, U.H., Kundig, T.M., Burki, K., Hengartner, H., Zinkernagel, R.M., The influence of antigen organization on B cell responsiveness (1993) Science, 262 (5138), pp. 1448-1451; Guu, T.S., Liu, Z., Ye, Q., Mata, D.A., Li, K., Yin, C., Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding (2009) Proc Natl Acad Sci U S A, 106 (31), pp. 12992-12997; Hagensee, M.E., Yaegashi, N., Galloway, D.A., Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins (1993) J Virol, 67 (1), pp. 315-322; Roden, R., Wu, T.-C., How will HPV vaccines affect cervical cancer? (2006) Nat Rev Cancer, 6 (10), pp. 753-763; Kang, S.-M., Kim, M.-C., Compans, R.W., Virus-like particles as universal influenza vaccines (2012) Expert Rev Vaccines, 11 (8), pp. 995-1007; Webb, B., Sali, A., Comparative protein structure modeling using MODELLER (2014) Curr Protoc Bioinformatics, 47. , 561-32; Raman, S., Machaidze, G., Lustig, A., Aebi, U., Burkhard, P., Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles (2006) Nanomedicine, 2 (2), pp. 95-102; Martí-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, F., Šali, A., Comparative protein structure modeling of genes and genomes (2000) Annu Rev Biophys Biomol Struct, 29 (1), pp. 291-325; Zeltins, A., Construction and characterization of virus-like particles: a review (2013) Mol Biotechnol, 53 (1), pp. 92-107; Lopez-Sagaseta, J., Malito, E., Rappuoli, R., Bottomley, M.J., Self-assembling protein nanoparticles in the design of vaccines (2016) Comput Struct Biotechnol J, 14, pp. 58-68; Fang, N., Frazer, I.H., Fernando, G.J., Differences in the post-translational modifications of human papillomavirus type 6b major capsid protein expressed from a baculovirus system compared with a vaccinia virus system (2000) Biotechnol Appl Biochem, 32 (1), pp. 27-33; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl J Med, 367 (19), pp. 1814-1820; Engler, O., Klingström, J., Aliyev, E., Niederhauser, C., Fontana, S., Strasser, M., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18 (50), p. 20662; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20 (6), p. 1012; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382 (9893), pp. 694-699; Choi, J.Y., An outbreak of middle east respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med J, 56 (5), p. 1174; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Yariv, J., Kalb, A., Sperling, R., Bauminger, E., Cohen, S., Ofer, S., The composition and the structure of bacterioferritin of Escherichia coli (1981) Biochem J, 197 (1), pp. 171-175; Zhang, Y., Orner, B.P., Self-assembly in the ferritin nano-cage protein superfamily (2011) Int J Mol Sci, 12 (8), pp. 5406-5421; He, L., de Val, N., Morris, C.D., Vora, N., Thinnes, T.C., Kong, L., Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles (2016) Nat Commun, 7, p. 12041; Yassine, H.M., Boyington, J.C., McTamney, P.M., Wei, C.-J., Kanekiyo, M., Kong, W.-P., Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection (2015) Nat Med, 21 (9), pp. 1065-1070; Todd, T.J., Zhen, Z., Xie, J., Ferritin nanocages: great potential as clinically translatable drug delivery vehicles? (2013) Nanomedicine, 8 (10), pp. 1555-1557; Clark, E.D.B., Refolding of recombinant proteins (1998) Curr Opin Biotechnol, 9 (2), pp. 157-163; Lilie, H., Schwarz, E., Rudolph, R., Advances in refolding of proteins produced in E. coli (1998) Curr Opin Biotechnol, 9 (5), pp. 497-501; Hendrick, J., Hartl, F., The role of molecular chaperones in protein folding (1995) FASEB J, 9 (15), pp. 1559-1569; Hartl, F.U., Hayer-Hartl, M., Molecular chaperones in the cytosol: from nascent chain to folded protein (2002) Science, 295 (5561), pp. 1852-1858; Bukau, B., Horwich, A.L., The Hsp70 and Hsp60 chaperone machines (1998) Cell, 92 (3), pp. 351-366; Choi, S.I., Ryu, K., Seong, B.L., RNA-mediated chaperone type for de novo protein folding (2009) RNA Biol, 6 (1), pp. 21-24; Son, A., Choi, S.I., Han, G., Seong, B.L., M1 RNA is important for the in-cell solubility of its cognate C5 protein: implications for RNA-mediated protein folding (2015) RNA Biol, 12 (11), pp. 1198-1208; Horowitz, S., Bardwell, J.C., RNAs as chaperones (2016) RNA Biol, 13 (12), pp. 1228-1231; Kim, J.M., Choi, H.S., Seong, B.L., The folding competence of HIV-1 Tat mediated by interaction with TAR RNA (2017) RNA Biol, 14 (7), pp. 926-937; Choi, S.I., Han, K.S., Kim, C.W., Ryu, K.-S., Kim, B.H., Kim, K.-H., Protein solubility and folding enhancement by interaction with RNA (2008) PLoS One, 3 (7); Fiser, A., Do, R.K., Sali, A., Modeling of loops in protein structures (2000) Protein Sci, 9 (9), pp. 1753-1773; Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J., ClusPro: a fully automated algorithm for protein-protein docking (2004) Nucleic Acids Res, 32 (WEB SERVER ISSUE), pp. W96-W99; Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., The ClusPro web server for protein-protein docking (2017) Nat Protoc, 12 (2), pp. 255-278; Lee, J.-Y., Chang, J., Universal vaccine against respiratory syncytial virus A and B subtypes (2017) PLoS One, 12 (4); Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.-T.K., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum Vaccin Immunother, 11 (5), pp. 1244-1250; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PLoS One, 8 (12); Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), p. 251; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res, 194, pp. 200-210; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Kilic, M.A., Spiro, S., Moore, G.R., Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein (2003) Protein Sci, 12 (8), pp. 1663-1674; Sanchez, R., Sali, A., Evaluation of comparative protein structure modeling by MODELLER-3 (1997) Proteins, pp. 50-58; Worwood, M., Ferritin (1990) Blood Rev, 4 (4), pp. 259-269; Sun, W., Jiao, C., Xiao, Y., Wang, L., Yu, C., Liu, J., Salt-dependent aggregation and assembly of E coli-expressed ferritin (2016) Dose Response, 14 (1); Theil, E.C., Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry (2011) Curr Opin Chem Biol, 15 (2), pp. 304-311; Yiadom, K.P.A.B., Hammamieh, R., Ukpabi, N., Tsang, P., Yang, D.C.H., A peptide from the extension of Lys-tRNA synthetase binds to transfer RNA and DNA (2003) Peptides, 24 (7), pp. 987-998; Santner, A.A., Croy, C.H., Vasanwala, F.H., Uversky, V.N., Van, Y.Y., Dunker, A.K., Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression (2012) Biochemistry, 51 (37), pp. 7250-7262; Oldfield, C.J., Dunker, A.K., Intrinsically disordered proteins and intrinsically disordered protein regions (2014) Annu Rev Biochem, 83, pp. 553-584; Dyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions (2005) Nat Rev Mol cell biol, 6 (3), pp. 197-208; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13 (2), p. 180; Yang, W., Guo, W., Chang, J., Zhang, B., Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications (2017) J Mater Chem B, 5 (3), pp. 401-417; Kanekiyo, M., Wei, C.J., Yassine, H.M., McTamney, P.M., Boyington, J.C., Whittle, J.R., Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies (2013) Nature, 499 (7456), pp. 102-106; Yang, S.W., Jang, Y.H., Kwon, S.B., Lee, Y.J., Chae, W., Byun, Y.H., Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation (2018) FASEB J, 32 (5), pp. 2658-2675; Georgopoulos, C.P., Hendrix, R.W., Casjens, S.R., Kaiser, A.D., Host participation in bacteriophage lambda head assembly (1973) J Mol Biol, 76 (1), pp. 45-60; Sternberg, N., Properties of a mutant of Escherichia coli defective in bacteriophage lambda head formation (groE). I. Initial characterization (1973) J Mol Biol, 76 (1), pp. 1-23; Liu, C., Young, A.L., Starling-Windhof, A., Bracher, A., Saschenbrecker, S., Rao, B.V., Coupled chaperone action in folding and assembly of hexadecameric Rubisco (2010) Nature, 463 (7278), pp. 197-202; Date, M.S., Dominy, B.N., Modeling the influence of salt on the hydrophobic effect and protein fold stability (2015) Commun Comput Phys, 13 (1), pp. 90-106; Kanekiyo, M., Bu, W., Joyce, M.G., Meng, G., Whittle, J.R., Baxa, U., Rational design of an Epstein-Barr virus vaccine targeting the receptor-binding site (2015) Cell, 162 (5), pp. 1090-1100","Seong, B.L.; Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei UniversitySouth Korea; email: blseong@yonsei.ac.kr",,"Frontiers Media S.A.",16643224,,,,"English","Front. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85047091892 "Hoffmann M., Hofmann-Winkler H., Pöhlmann S.","35080416400;42761418600;7003508167;","Priming time: How cellular proteases arm coronavirus spike proteins",2018,"Activation of Viruses by Host Proteases",,,,"71","98",,2,"10.1007/978-3-319-75474-1_4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053548337&doi=10.1007%2f978-3-319-75474-1_4&partnerID=40&md5=e5a25bf55f0a415cf6bb378372cfb1ae","Infection Biology Unit, German Primate Center, Göttingen, Germany","Hoffmann, M., Infection Biology Unit, German Primate Center, Göttingen, Germany; Hofmann-Winkler, H., Infection Biology Unit, German Primate Center, Göttingen, Germany; Pöhlmann, S., Infection Biology Unit, German Primate Center, Göttingen, Germany","Coronaviruses are enveloped RNA viruses that infect mammals and birds. Infection of humans with globally circulating human coronaviruses is associated with the common cold. In contrast, transmission of animal coronaviruses to humans can result in severe disease: The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) are responsible for hundreds of deaths in Asia and the Middle East, respectively, and are both caused by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that were zoonotically transmitted from an animal host to humans. At present, neither vaccines nor specific treatment is available to combat coronavirus infection in humans, and novel antiviral strategies are urgently sought. The viral spike pro- tein (S) mediates the first essential step in coronavirus infection, viral entry into target cells. For this, the S protein critically depends on priming by host cell proteases, and the responsible enzymes are potential targets for antiviral inter- vention. Recent studies revealed that the endosomal cysteine protease cathepsin L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS- CoV and MERS-CoV and provided evidence that successive S protein cleavage at two sites is required for S protein priming. Moreover, mechanisms that control protease choice were unraveled, and insights were obtained into which enzyme promotes viral spread in the host. Here, we will provide basic information on S protein function and proteolytic priming, and we will then discuss recent prog- ress in our understanding of the priming of the S proteins of SARS-CoV and MERS-CoV. © Springer International Publishing AG, part of Springer Nature 2018. All rights reserved.",,,"Adams, M.J., Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012) (2012) Arch Virol, 157 (7), pp. 1411-1422; Afzelius, B.A., Ultrastructure of human nasal epithelium during an episode of coronavirus infection (1994) Virchows Arch, 424 (3), pp. 295-300; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de, W.E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2), pp. e00884-14; Alsolamy, S., Arabi, Y.M., Infection with Middle East respiratory syndrome coronavirus (2015) Can J Respir Ther, 51 (4), p. 102; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg Infect Dis, 19 (3), pp. 456-459; Antalis, T.M., Bugge, T.H., Wu, Q., Membrane-anchored serine proteases in health and disease (2011) Prog Mol Biol Transl Sci, 99, pp. 1-50; Antalis, T.M., Buzza, M.S., Hodge, K.M., Hooper, J.D., Netzel-Arnett, S., The cutting edge: Membrane- anchored serine protease activities in the pericellular microenvironment (2010) Biochem J, 428 (3), pp. 325-346; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Memish, Z.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., Jr., Pb, M.C., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88 (9), pp. 4953-4961; Baron, J., Tarnow, C., Mayoli-Nussle, D., Schilling, E., Meyer, D., Hammami, M., Schwalm, F., Böttcher-Friebertshäuser, E., Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses (2013) J Virol, 87 (3), pp. 1811-1820; Beaulieu, A., Gravel, E., Cloutier, A., Marois, I., Colombo, E., Desilets, A., Verreault, C., Richter, M.V., Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium (2013) J Virol, 87 (8), pp. 4237-4251; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106 (14), pp. 5871-5876; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Virus, 4 (6), pp. 1011-1033; Bergeron, E., Vincent, M.J., Wickham, L., Hamelin, J., Basak, A., Nichol, S.T., Chretien, M., Seidah, N.G., Implication of proprotein concertases in the processing and spread of severe acute respiratory syndrome coronavirus (2005) Biochem Biophys Res Commun, 326 (3), pp. 554-563; Berry, D.M., Almeida, J.D., The morphological and biological effects of various antisera on avian infectious bronchitis virus (1968) J Gen Virol, 3 (1), pp. 97-102; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pöhlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87 (11), pp. 6150-6160; Bertram, S., Glowacka, I., Blazejewska, P., Soilleux, E., Allen, P., Danisch, S., Steffen, I., Pöhlmann, S., TMPRSS2 and TMPRSS4 facilitate trypsinindependent spread of influenza virus in Caco-2 cells (2010) J Virol, 84 (19), pp. 10016-10025; Bertram, S., Glowacka, I., Muller, M.A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., Pöhlmann, S., Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease (2011) J Virol, 85 (24), pp. 13363-13372; Bertram, S., Glowacka, I., Steffen, I., Kuhl, A., Pöhlmann, S., Novel insights into proteolytic cleavage of influenza virus hemagglutinin (2010) Rev Med Virol, 20 (5), pp. 298-310; Bertram, S., Heurich, A., Lavender, H., Gierer, S., Danisch, S., Perin, P., Lucas, J.M., Soilleux, E.J., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts (2012) PLoS One, 7 (4), p. e35876; Bonavia, A., Zelus, B.D., Wentworth, D.E., Talbot, P.J., Holmes, K.V., Identification of a receptorbinding domain of the spike glycoprotein of human coronavirus HCoV-229E (2003) J Virol, 77 (4), pp. 2530-2538; Bosch, B.J., Bartelink, W., Rottier, P.J., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide (2008) J Virol, 82 (17), pp. 8887-8890; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J Virol, 77 (16), pp. 8801-8811; Bosshart, H., Humphrey, J., Deignan, E., Davidson, J., Drazba, J., Yuan, L., Oorschot, V., Bonifacino, J.S., The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system (1994) J Cell Biol, 126 (5), pp. 1157-1172; Böttcher, E., Matrosovich, T., Beyerle, M., Klenk, H.D., Garten, W., Matrosovich, M., Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium (2006) J Virol, 80 (19), pp. 9896-9898; Böttcher-Friebertshäuser, E., Stein, D.A., Klenk, H.D., Garten, W., Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2 (2011) J Virol, 85 (4), pp. 1554-1562; Breslin, J.J., Mork, I., Smith, M.K., Vogel, L.K., Hemmila, E.M., Bonavia, A., Talbot, P.J., Holmes, K.V., Human coronavirus 229E: Receptor binding domain and neutralization by soluble receptor at 37 degrees C (2003) J Virol, 77 (7), pp. 4435-4438; Breslin, J.J., Smith, L.G., Fuller, F.J., Guy, J.S., Sequence analysis of the turkey coronavirus nucleocap- sid protein gene and 3' untranslated region identifies the virus as a close relative of infectious bronchitis virus (1999) Virus Res, 65 (2), pp. 187-193; Bugge, T.H., Antalis, T.M., Wu, Q., Type II transmembrane serine proteases (2009) J Biol Chem, 284 (35), pp. 23177-23181; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10 (11), p. e1004502; Cavanagh, D., Davis, P.J., Coronavirus IBV: Removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells (1986) J Gen Virol, 67, pp. 1443-1448; Cavanagh, D., Mawditt, K., Sharma, M., Drury, S.E., Ainsworth, H.L., Britton, P., Gough, R.E., Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens (2001) Avian Pathol, 30 (4), pp. 355-368; Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Tsegaye, T.S., Takeda, M., Pöhlmann, S., Proteolytic activation of the 1918 influenza virus hemagglutinin (2009) J Virol, 83 (7), pp. 3200-3211; Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P., Cunningham, J.M., Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection (2005) Science, 308 (5728), pp. 1643-1645; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (19), pp. 10777-10783; Cheng, Z., Zhou, J., To, K.K., Chu, H., Li, C., Wang, D., Yang, D., Yuen, K.Y., Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza (2015) J Infect Dis, 212 (8), pp. 1214-1221; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Baric, R.S., Heise, M.T., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88 (9), pp. 5195-5199; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J Gen Virol, 95, pp. 408-412; de Groot, R.J., Luytjes, W., Horzinek, M.C., van der Zeijst, B.A., Spaan, W.J., Lenstra, J.A., Evidence for a coiled-coil structure in the spike proteins of coronaviruses (1987) J Mol Biol, 196 (4), pp. 963-966; de Haan, C.A., Stadler, K., Godeke, G.J., Bosch, B.J., Rottier, P.J., Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion (2004) J Virol, 78 (11), pp. 6048-6054; Debouck, P., Pensaert, M., Experimental infection of pigs with a new porcine enteric coronavirus, CV 777 (1980) Am J Vet Res, 41 (2), pp. 219-223; Deng, F., Ye, G., Liu, Q., Navid, M.T., Zhong, X., Li, Y., Wan, C., Peng, G., Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains (2016) Virus, 8 (3), p. 55; Dimitrov, D.S., Virus entry: Molecular mechanisms and biomedical applications (2004) Nat Rev Microbiol, 2 (2), pp. 109-122; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1967-1976; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV-a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7 (3), pp. 226-236; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Lu, L., Jiang, S., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J Virol, 87 (17), pp. 9939-9942; Du, L., Zhao, G., Lin, Y., Sui, H., Chan, C., Ma, S., He, Y., Zheng, B.J., Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection (2008) J Immunol, 180 (2), pp. 948-956; Dudas, G., Rambaut, A., MERS-CoV recombination: Implications about the reservoir and potential for adaptation (2016) Virus Evol, 2 (1). , vev023; Duquerroy, S., Vigouroux, A., Rottier, P.J., Rey, F.A., Bosch, B.J., Central ions and lateral asparagine/glu- tamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein (2005) Virology, 335 (2), pp. 276-285; Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V., Dieffenbach, C.W., Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV (1991) J Virol, 65 (12), pp. 6881-6891; Ebert, D.H., Deussing, J., Peters, C., Dermody, T.S., Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells (2002) J Biol Chem, 277 (27), pp. 24609-24617; Foley, J.E., Leutenegger, C., A review of coronavirus infection in the central nervous system of cats and mice (2001) J Vet Intern Med, 15 (5), pp. 438-444; Follis, K.E., York, J., Nunberg, J.H., Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry (2006) Virology, 350 (2), pp. 358-369; Fonovic, M., Turk, B., Cysteine cathepsins and extracellular matrix degradation (2014) Biochim Biophys Acta, 1840 (8), pp. 2560-2570; Frieman, M., Yount, B., Agnihothram, S., Page, C., Donaldson, E., Roberts, A., Vogel, L., Baric, R.S., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J Virol, 86 (2), pp. 884-897; Fukuma, A., Tani, H., Taniguchi, S., Shimojima, M., Saijo, M., Fukushi, S., Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein (2015) Arch Virol, 160 (9), pp. 2293-2300; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Pöhlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87 (10), pp. 5502-5511; Gierer, S., Muller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pöhlmann, S., Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J Infect Dis, 211 (6), pp. 889-897; Glowacka, I., Bertram, S., Muller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pöhlmann, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J Virol, 85 (9), pp. 4122-4134; Godet, M., Grosclaude, J., Delmas, B., Laude, H., Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein (1994) J Virol, 68 (12), pp. 8008-8016; Goulet, B., Baruch, A., Moon, N.S., Poirier, M., Sansregret, L.L., Erickson, A., Bogyo, M., Nepveu, A., A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor (2004) Mol Cell, 14 (2), pp. 207-219; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) J Virol, 84 (7), pp. 3134-3146; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302 (5643), pp. 276-278; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27 (1), pp. 119-129; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14 (2), pp. 140-145; Haga, S., Yamamoto, N., Nakai-Murakami, C., Osawa, Y., Tokunaga, K., Sata, T., Yamamoto, N., Ishizaka, Y., Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry (2008) Proc Natl Acad Sci U S A, 105 (22), pp. 7809-7814; Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H.D., Garten, W., Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160 (1992) Nature, 360 (6402), pp. 358-361; Hamilton, B.S., Whittaker, G.R., Daniel, S., Influenza virus-mediated membrane fusion: Determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion (2012) Virus, 4 (7), pp. 1144-1168; Hasilik, A., Wrocklage, C., Schroder, B., Intracellular trafficking of lysosomal proteins and lysosomes (2009) Int J Clin Pharmacol Ther, 47, pp. S18-S33; Hatesuer, B., Bertram, S., Mehnert, N., Bahgat, M.M., Nelson, P.S., Pöhlmann, S., Schughart, K., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice (2013) PLoS Pathog, 9 (12), p. e1003774; He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M., Jiang, S., Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine (2004) Biochem Biophys Res Commun, 324 (2), pp. 773-781; Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., Pöhlmann, S., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein (2014) J Virol, 88 (2), pp. 1293-1307; Hofmann, H., Hattermann, K., Marzi, A., Gramberg, T., Geier, M., Krumbiegel, M., Kuate, S., Pöhlmann, S., S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients (2004) J Virol, 78 (12), pp. 6134-6142; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pöhlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci U S A, 102 (22), pp. 7988-7993; Hofmann, H., Simmons, G., Rennekamp, A.J., Chaipan, C., Gramberg, T., Heck, E., Geier, M., Pöhlmann, S., Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors (2006) J Virol, 80 (17), pp. 8639-8652; Hooper, J.D., Clements, J.A., Quigley, J.P., Antalis, T.M., Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes (2001) J Biol Chem, 276 (2), pp. 857-860; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; Huang, I.C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Choe, H., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells (2006) J Biol Chem, 281 (6), pp. 3198-3203; Jonassen, C.M., Kofstad, T., Larsen, I.L., Lovland, A., Handeland, K., Follestad, A., Lillehaug, A., Molecular identification and characterization of novel coronaviruses infecting graylag geese (Anser anser), feral pigeons (Columbia livia) and mallards (Anas platyrhynchos) (2005) J Gen Virol, 86, pp. 1597-1607; Jung, K., Ahn, K., Chae, C., Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus (2006) Res Vet Sci, 81 (3), pp. 310-315; Kam, Y.W., Okumura, Y., Kido, H., Ng, L.F., Bruzzone, R., Altmeyer, R., Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro (2009) PLoS One, 4 (11), p. e7870; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2009) J Virol, 83 (2), pp. 712-721; Kawase, M., Shirato, K., van der Hoek, L., Taguchi, F., Matsuyama, S., Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry (2012) J Virol, 86 (12), pp. 6537-6545; Kim, T.S., Heinlein, C., Hackman, R.C., Nelson, P.S., Phenotypic analysis of mice lacking the Tmprss2- encoded protease (2006) Mol Cell Biol, 26 (3), pp. 965-975; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), pp. 118-121; Krempl, C., Schultze, B., Laude, H., Herrler, G., Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus (1997) J Virol, 71 (4), pp. 3285-3287; Krieger, E., Vriend, G., YASARA view-molecular graphics for all devices-from smartphones to workstations (2014) Bioinformatics, 30 (20), pp. 2981-2982; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1953-1966; Kubo, H., Yamada, Y.K., Taguchi, F., Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein (1994) J Virol, 68 (9), pp. 5403-5410; Kuhn, N., Bergmann, S., Kosterke, N., Lambertz, R.L., Keppner, A., van den Brand, J.M., Pöhlmann, S., Schughart, K., The proteolytic activation of (H3N2) influenza A virus hemagglutinin is facilitated by different type II transmembrane serine proteases (2016) J Virol, 90 (9), pp. 4298-4307; Kunkel, F., Herrler, G., Structural and functional analysis of the surface protein of human coronavirus OC43 (1993) Virology, 195 (1), pp. 195-202; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Tan, W., Recombinant receptor binding domain protein induces partial protective immunity in Rhesus Macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2 (10), pp. 1438-1446; Lane, T.E., Hosking, M.P., The pathogenesis of murine coronavirus infection of the central nervous system (2010) Crit Rev Immunol, 30 (2), pp. 119-130; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (15), pp. 8638-8650; Lecaille, F., Kaleta, J., Bromme, D., Human and parasitic papain-like cysteine proteases: Their role in physiology and pathology and recent developments in inhibitor design (2002) Chem Rev, 102 (12), pp. 4459-4488; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol J, 12, p. 193; Li, F., Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections (2008) J Virol, 82 (14), pp. 6984-6991; Li, F., Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits (2012) J Virol, 86 (5), pp. 2856-2858; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3 (1), pp. 237-261; Li, F., Berardi, M., Li, W., Farzan, M., Dormitzer, P.R., Harrison, S.C., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain (2006) J Virol, 80 (14), pp. 6794-6800; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309 (5742), pp. 1864-1868; Li, W., Greenough, T.C., Moore, M.J., Vasilieva, N., Somasundaran, M., Sullivan, J.L., Farzan, M., Choe, H., Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2 (2004) J Virol, 78 (20), pp. 11429-11433; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg Infect Dis, 18 (8), pp. 1350-1353; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426 (6965), pp. 450-454; Li, W., Wicht, O., van Kuppeveld, F.J., He, Q., Rottier, P.J., Bosch, B.J., A single point mutation creating a furin cleavage site in the spike protein renders porcine epidemic diarrhea coronavirus trypsin independent for cell entry and fusion (2015) J Virol, 89 (15), pp. 8077-8081; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24 (8), pp. 1634-1643; Lin, H.X., Feng, Y., Wong, G., Wang, L., Li, B., Zhao, X., Li, Y., Zhang, C., Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction (2008) J Gen Virol, 89, pp. 1015-1024; Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Li, F., Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases (2016) J Biol Chem, 291 (47), pp. 24779-24786; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89 (11), pp. 6121-6125; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23 (8), pp. 468-478; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Jiang, S., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Marzi, A., Reinheckel, T., Feldmann, H., Cathepsin B & L are not required for ebola virus replication (2012) PLoS Negl Trop Dis, 6 (12), p. e1923; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, , In: Knipe DM, Howley PM, editors. 1st ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J Virol, 84 (24), pp. 12658-12664; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc Natl Acad Sci US A, 102 (35), pp. 12543-12547; Meyer, D., Sielaff, F., Hammami, M., Böttcher-Friebertshäuser, E., Garten, W., Steinmetzer, T., Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation (2013) Biochem J, 452 (2), pp. 331-343; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111 (42), pp. 15214-15219; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East Respiratory Syndrome Coronavirus (MERS- CoV) origin and animal reservoir (2016) Virol J, 13, p. 87; Molloy, S.S., Thomas, L., VanSlyke, J.K., Stenberg, P.E., Thomas, G., Intracellular trafficking and activation of the furin proprotein convertase: Localization to the TGN and recycling from the cell surface (1994) EMBO J, 13 (1), pp. 18-33; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87 (16), pp. 9379-9383; Nakayama, K., Furin: A mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins (1997) Biochem J, 327, pp. 625-635; Obermajer, N., Jevnikar, Z., Doljak, B., Kos, J., Role of cysteine cathepsins in matrix degradation and cell signalling (2008) Connect Tissue Res, 49 (3), pp. 193-196; Oh, J., Lee, K.W., Choi, H.W., Lee, C., Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein (2014) Arch Virol, 159 (11), pp. 2977-2987; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., PB MC Jr, Gallagher T Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113 (43), pp. 12262-12267; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J Virol, 89 (8), pp. 4696-4699; Peiris, J.S., Chu, C.M., Cheng, V.C., Chan, K.S., Hung, I.F., Poon, L.L., Law, K.I., Yuen, K.Y., Hku Uch Sars Study Group. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study (2003) Lancet, 361 (9371), pp. 1767-1772; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J Biol Chem, 287 (50), pp. 41931-41938; Pensaert, M.B., de, B.P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch Virol, 58 (3), pp. 243-247; Promkuntod, N., van Eijndhoven, R.E., de, V.G., Grone, A., Verheije, M.H., Mapping of the receptorbinding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8 (10), p. e76469; Qiu, Z., Hingley, S.T., Simmons, G., Yu, C., Das, S.J., Bates, P., Weiss, S.R., Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry (2006) J Virol, 80 (12), pp. 5768-5776; Qu, X.X., Hao, P., Song, X.J., Jiang, S.M., Liu, Y.X., Wang, P.G., Rao, X., Deng, H.K., Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy (2005) J Biol Chem, 280 (33), pp. 29588-29595; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus- EMC (2013) Nature, 495 (7440), pp. 251-254; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Haagmans, B.L., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88 (3), pp. 1834-1838; Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr Opin Virol, 16, pp. 55-62; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300 (5624), pp. 1394-1399; Saftig, P., Klumperman, J., Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function (2009) Nat Rev Mol Cell Biol, 10 (9), pp. 623-635; Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Takeda, M., The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses (2014) J Virol, 88 (10), pp. 5608-5616; Schultze, B., Cavanagh, D., Herrler, G., Neuraminidase treatment of avian infectious bronchitis Coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes (1992) Virology, 189 (2), pp. 792-794; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant (1991) J Virol, 65 (11), pp. 6232-6237; Seidah, N.G., Prat, A., The biology and therapeutic targeting of the proprotein concertases (2012) Nat Rev Drug Discov, 11 (5), pp. 367-383; Seidah, N.G., Sadr, M.S., Chretien, M., Mbikay, M., The multifaceted proprotein convertases: Their unique, redundant, complementary, and opposite functions (2013) J Biol Chem, 288 (30), pp. 21473-21481; Sha, Y., Wu, Y., Cao, Z., Xu, X., Wu, W., Jiang, D., Mao, X., Li, W., A convenient cell fusion assay for the study of SARS-CoV entry and inhibition (2006) IUBMB Life, 58 (8), pp. 480-486; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J Virol, 91 (1), pp. e01387-16; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87 (23), pp. 12552-12561; Shirato, K., Matsuyama, S., Ujike, M., Taguchi, F., Role of proteases in the release of porcine epidemic diarrhea virus from infected cells (2011) J Virol, 85 (15), pp. 7872-7880; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J Virol, 85 (2), pp. 873-882; Simmons, G., Bertram, S., Glowacka, I., Steffen, I., Chaipan, C., Agudelo, J., Lu, K., Pöhlmann, S., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion (2011) Virology, 413 (2), pp. 265-274; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathep- sin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci U S A, 102 (33), pp. 11876-11881; Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., Bates, P., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein- mediated viral entry (2004) Proc Natl Acad Sci U S A, 101 (12), pp. 4240-4245; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc Natl Acad Sci U S A, 102 (7), pp. 2430-2435; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Investig, 25 (5), pp. 649-654; Stieneke-Gröber, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.D., Garten, W., Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin- like endoprotease (1992) EMBO J, 11 (7), pp. 2407-2414; Szabo, R., Bugge, T.H., Membrane-anchored serine proteases in vertebrate cell and developmental biology (2011) Annu Rev Cell Dev Biol, 27, pp. 213-235; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptorbinding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91 (1), pp. e01651-16; Tarnow, C., Engels, G., Arendt, A., Schwalm, F., Sediri, H., Preuss, A., Nelson, P.S., Böttcher-Friebertshäuser, E., TMPRSS2 is a host factor that is essential for pneu- motropism and pathogenicity of H7N9 influenza A virus in mice (2014) J Virol, 88 (9), pp. 4744-4751; Tresnan, D.B., Holmes, K.V., Feline aminopeptidase N is a receptor for all group I coronaviruses (1998) Adv Exp Med Biol, 440, pp. 69-75; Tripet, B., Howard, M.W., Jobling, M., Holmes, R.K., Holmes, K.V., Hodges, R.S., Structural characterization of the SARS-coronavirus spike S fusion protein core (2004) J Biol Chem, 279 (20), pp. 20836-20849; Turk, B., Bieth, J.G., Bjork, I., Dolenc, I., Turk, D., Cimerman, N., Kos, J., Turk, V., Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/ or endogenous protein inhibitors, cystatins (1995) Biol Chem Hoppe Seyler, 376 (4), pp. 225-230; Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., Turk, D., Cysteine cathepsins: From structure, function and regulation to new frontiers (2012) Biochim Biophys Acta, 1824 (1), pp. 68-88; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range (2007) J Virol, 81 (3), pp. 1261-1273; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br Med J, 1 (5448), pp. 1467-1470; van, D.N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88 (16), pp. 9220-9232; Vlasak, R., Luytjes, W., Leider, J., Spaan, W., Palese, P., The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity (1988) J Virol, 62 (12), pp. 4686-4690; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Cryo- electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23 (10), pp. 899-905; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Wang, P., Chen, J., Zheng, A., Nie, Y., Shi, X., Wang, W., Wang, G., Deng, H., Expression cloning of functional receptor used by SARS coronavirus (2004) Biochem Biophys Res Commun, 315 (2), pp. 439-444; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69 (4), pp. 635-664; White, J.M., Whittaker, G.R., Fusion of enveloped viruses in endosomes (2016) Traffic, 17 (6), pp. 593-614; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, Accessed 27 April 2017; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carci- noembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci U S A, 88 (13), pp. 5533-5536; Wong, S.K., Li, W., Moore, M.J., Choe, H., Farzan, M., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 (2004) J Biol Chem, 279 (5), pp. 3197-3201; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008; Wu, D., Tu, C., Xin, C., Xuan, H., Meng, Q., Liu, Y., Yu, Y., Kong, X., Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates (2005) J Virol, 79 (4), pp. 2620-2625; Wu, K., Chen, L., Peng, G., Zhou, W., Pennell, C.A., Mansky, L.M., Geraghty, R.J., Li, F., A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses (2011) J Virol, 85 (11), pp. 5331-5337; Wu, K., Peng, G., Wilken, M., Geraghty, R.J., Li, F., Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus (2012) J Biol Chem, 287 (12), pp. 8904-8911; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J Virol, 83 (17), pp. 8744-8758; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, (34), pp. 12516-12521; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of middle east respiratory syndrome coronavirus (2015) J Virol, 89 (17), pp. 9119-9123; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357 (6377), pp. 420-422; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092; Zaki, A.M., van, B.S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr., Nunneley, J.W., Barnard, D., Simmons, G., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antivir Res, 116, pp. 76-84; Zmora, P., Blazejewska, P., Moldenhauer, A.S., Welsch, K., Nehlmeier, I., Wu, Q., Schneider, H., Bertram, S., DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry (2014) J Virol, 88 (20), pp. 12087-12097","Pöhlmann, S.; Infection Biology Unit, German Primate CenterGermany; email: spoehlmann@dpz.eu",,"Springer International Publishing",,9783319754741; 9783319754734,,,"English","Act. of Viruses by Host Proteases",Book Chapter,"Final",Open Access,Scopus,2-s2.0-85053548337 "Mikola E., Elenius V., Saarinen M., Palomares O., Waris M., Turunen R., Puhakka T., Ivaska L., Rückert B., Aab A., Vahlberg T., Vuorinen T., Allander T., Camargo C.A., Jr., Akdis M., Akdis C.A., Jartti T.","57202229771;8083218200;57202238284;6505979777;7003873654;56511838400;6701748112;57212086209;6602821838;25421323800;6602710478;7005778445;6602398527;57203082774;7003709928;57204593994;6603865579;","Tonsillar cytokine expression between patients with tonsillar hypertrophy and recurrent tonsillitis",2018,"Clinical and Translational Allergy","8","1", 22,"","",,4,"10.1186/s13601-018-0205-z","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047534674&doi=10.1186%2fs13601-018-0205-z&partnerID=40&md5=33da702c7b392e8508085fdef8c91a55","Department of Otorhinolaryngology, Turku University Hospital and Turku University, Turku, Finland; Department of Paediatrics and Adolescent Medicine, Turku University Hospital and Turku University, P.O. Box 52, Turku, 20520, Finland; Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain; Department of Clinical Virology, Turku University Hospital, Turku, Finland; Department of Virology, University of Turku, Turku, Finland; Department of Otorhinolaryngology, Satakunta Central Hospital, Pori, Finland; Department of Biostatistics, University of Turku, Turku University Hospital, Turku, Finland; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States; Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States","Mikola, E., Department of Otorhinolaryngology, Turku University Hospital and Turku University, Turku, Finland; Elenius, V., Department of Paediatrics and Adolescent Medicine, Turku University Hospital and Turku University, P.O. Box 52, Turku, 20520, Finland; Saarinen, M., Department of Paediatrics and Adolescent Medicine, Turku University Hospital and Turku University, P.O. Box 52, Turku, 20520, Finland; Palomares, O., Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland, Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain; Waris, M., Department of Clinical Virology, Turku University Hospital, Turku, Finland, Department of Virology, University of Turku, Turku, Finland; Turunen, R., Department of Paediatrics and Adolescent Medicine, Turku University Hospital and Turku University, P.O. Box 52, Turku, 20520, Finland; Puhakka, T., Department of Otorhinolaryngology, Turku University Hospital and Turku University, Turku, Finland, Department of Otorhinolaryngology, Satakunta Central Hospital, Pori, Finland; Ivaska, L., Department of Otorhinolaryngology, Turku University Hospital and Turku University, Turku, Finland; Rückert, B., Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Aab, A., Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Vahlberg, T., Department of Biostatistics, University of Turku, Turku University Hospital, Turku, Finland; Vuorinen, T., Department of Clinical Virology, Turku University Hospital, Turku, Finland, Department of Virology, University of Turku, Turku, Finland; Allander, T., Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Camargo, C.A., Jr., Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States; Akdis, M., Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Akdis, C.A., Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Jartti, T., Department of Paediatrics and Adolescent Medicine, Turku University Hospital and Turku University, P.O. Box 52, Turku, 20520, Finland","Background: Tonsils provide an innovative in vivo model for investigating immune response to infections and allergens. However, data are scarce on the differences in tonsillar virus infections and immune responses between patients with tonsillar hypertrophy or recurrent tonsillitis. We investigated the differences in virus detection and T cell and interferon gene expression in patients undergoing tonsillectomy due to tonsillar hypertrophy or recurrent tonsillitis. Methods: Tonsils of 89 surgical patients with tonsillar hypertrophy (n = 47) or recurrent tonsillitis (n = 42) were analysed. Patients were carefully characterized clinically. Standard questionnaire was used to asses preceding and allergy symptoms. Respiratory viruses were analysed in tonsils and nasopharynx by PCR. Quantitative real-time PCR was used to analyse intratonsillar gene expressions of IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2 and Tbet. Results: Median age of the subjects was 15 years (range 2-60). Patients with tonsillar hypertrophy were younger, smoked less often, had less pollen allergy and had more adenovirus, bocavirus-1, coronavirus and rhinovirus in nasopharynx (all P < 0.05). Only bocavirus-1 was more often detected in hypertrophic tonsils (P < 0.05). In age-adjusted analysis, tonsillar hypertrophy was associated with higher mRNA expressions of IL-37 (P < 0.05). Conclusions: Intratonsillar T cell and interferon gene expressions appeared to be relatively stable for both tonsillar hypertrophy and recurrent tonsillitis. Of the studied cytokines, only newly discovered anti-inflammatory cytokine IL-37, was independently associated with tonsillar hypertrophy showing slightly stronger anti-inflammatory response in these patients. © 2018 The Author(s).","Allergy; Asthma; Child; Cytokine; Interferon; Interleukin; T helper cell; Tonsil; Virus","alpha interferon; beta interferon; cytokine; gamma interferon; interleukin 10; interleukin 13; interleukin 17; interleukin 28; interleukin 29; interleukin 37; messenger RNA; retinoid related orphan receptor gamma; retinoid related orphan receptor gamma 2; transcription factor FOXP3; transcription factor GATA 3; transcription factor T bet; transforming growth factor beta; unclassified drug; Adenoviridae; adult; Article; Bocaparvovirus; Bocavirus 1; child; Coronavirinae; disease association; female; gene expression; human; human tissue; major clinical study; male; nasopharynx; pollen allergy; priority journal; quantitative assay; real time polymerase chain reaction; recurrent disease; respiratory virus; Rhinovirus; smoking habit; symptom; tonsil; tonsil disease; tonsillar hypertrophy; tonsillitis","Ogra, P.L., Mucosal immune response in the ear, nose and throat (2000) Pediatr Infect Dis J, 19 (5), pp. S4-S8. , 10821466; Palomares, O., Rückert, B., Jartti, T., Kücüksezer, U.C., Puhakka, T., Gomez, E., Induction and maintenance of allergen-specific FOXP3+ Treg cells in human tonsils as potential first-line organs of oral tolerance (2012) J Allergy Clin Immunol, 129 (2), pp. 510-520. , 22051696; Kücüksezer, U.C., Palomares, O., Rückert, B., Jartti, T., Puhakka, T., Nandy, A., Triggering of specific Toll-like receptors and proinflammatory cytokines breaks allergen-specific T-cell tolerance in human tonsils and peripheral blood (2013) J Allergy Clin Immunol, 131 (3), pp. 875-885. , 23265862; Jartti, T., Palomares, O., Waris, M., Tastan, O., Nieminen, R., Puhakka, T., Distinct regulation of tonsillar immune response in virus infection (2014) Allergy, 69 (5), pp. 658-667. , 24684577; Elenius, V., Palomares, O., Waris, M., Turunen, R., Puhakka, T., Rückert, B., The relationship of serum vitamins A, D, E and LL-37 levels with allergic status, tonsillar virus detection and immune response (2017) PLoS ONE, 12 (2), p. e0172350. , 28235040 5325266; Andersson, J., Abrams, J., Björk, L., Funa, K., Litton, M., Agren, K., Concomitant in vivo production of 19 different cytokines in human tonsils (1994) Immunology, 83 (1), pp. 16-24. , 7821961 1415014; Kim, J., Bhattacharjee, R., Dayyat, E., Snow, A.B., Kheirandish-Gozal, L., Goldman, J.L., Increased cellular proliferation and inflammatory cytokines in tonsils derived from children with obstructive sleep apnea (2009) Pediatr Res, 66 (4), pp. 423-428. , 19581829 2892472; Woon, H.G., Braun, A., Li, J., Smith, C., Edwards, J., Sierro, F., Compartmentalization of total and virus-specific tissue-resident memory CD8+ T cells in human lymphoid organs (2016) PLoS Pathog, 12 (8), p. e1005799. , 27540722 4991796; Nold, M.F., Nold-Petry, C.A., Zepp, J.A., Palmer, B.E., Bufler, P., Dinarello, C.A., IL-37 is a fundamental inhibitor of innate immunity (2010) Nat Immunol, 11 (11), pp. 1014-1022. , 20935647 3537119; Banchereau, J., Pascual, V., O'Garra, A., From IL-2 to IL-37: The expanding spectrum of anti-inflammatory cytokines (2012) Nat Immunol, 13 (10), pp. 925-931. , 22990890 3609707; Conti, P., Carinci, F., Lessiani, G., Spinas, E., Kritas, S.K., Ronconi, G., Potential therapeutic use of IL-37: A key suppressor of innate immunity and allergic immune responses mediated by mast cells (2017) Immunol Res, 65 (5), pp. 982-986. , 28748328; Kelm, N.E., Zhu, Z., Ding, V.A., Xiao, H., Wakefield, M.R., Bai, Q., The role of IL-29 in immunity and cancer (2016) Crit Rev Oncol Hematol, 106, pp. 91-98. , 27637354; Witte, K., Witte, E., Sabat, R., Wolk, K., IL-28A, IL-28B, and IL-29: Promising cytokines with type I interferon-like properties (2010) Cytokine Growth Factor Rev, 21 (4), pp. 237-251. , 20655797; Akdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases (2011) J Allergy Clin Immunol, 127 (3), pp. 701-721. , 21377040; Commins, S., Steinke, J.W., Borish, L., The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29 (2008) J Allergy Clin Immunol, 121 (5), pp. 1108-1111. , 18405958; Rosenmann, E., Rabinowitz, R., Schlesinger, M., Lymphocyte subsets in human tonsils: The effect of age and infection (1998) Pediatr Allergy Immunol, 9 (3), pp. 161-167. , 9814732; Reis, L.G., Almeida, E.C., Da Silva, J.C., GeA, P., VeF, B., Etchebehere, R.M., Tonsillar hyperplasia and recurrent tonsillitis: Clinical-histological correlation (2013) Braz J Otorhinolaryngol, 79 (5), pp. 603-608. , 24141676; Zhang, P.C., Pang, Y.T., Loh, K.S., Wang, D.Y., Comparison of histology between recurrent tonsillitis and tonsillar hypertrophy (2003) Clin Otolaryngol Allied Sci, 28 (3), pp. 235-239. , 12755763; Agren, K., Andersson, U., Litton, M., Funa, K., Nordlander, B., Andersson, J., The production of immunoregulatory cytokines is localized to the extrafollicular area of human tonsils (1996) Acta Otolaryngol, 116 (3), pp. 477-485. , 8790751; Jartti, T., Burmeister, K.A., Seroogy, C.M., Jennens-Clough, M.L., Tisler, C.J., Salazar, L.P., Association between CD4+CD25(high) T cells and atopy in children (2007) J Allergy Clin Immunol, 120 (1), pp. 177-183. , 17433828; Proença-Módena, J.L., Buzatto, G.P., Paula, F.E., Saturno, T.H., Delcaro, L.S., Prates, M.C., Respiratory viruses are continuously detected in children with chronic tonsillitis throughout the year (2014) Int J Pediatr Otorhinolaryngol, 78 (10), pp. 1655-1661. , 25128448; Günel, C., Klrdar, S., Ömürlü, A., Aǧdaş, F., Detection of the Epstein-Barr virus, human bocavirus and novel KI and KU polyomaviruses in adenotonsillar tissues (2015) Int J Pediatr Otorhinolaryngol, 79 (3), pp. 423-427. , 25631935; Comar, M., Grasso, D., Dal Molin, G., Zocconi, E., Campello, C., HHV-6 infection of tonsils and adenoids in children with hypertrophy and upper airway recurrent infections (2010) Int J Pediatr Otorhinolaryngol, 74 (1), pp. 47-49. , 19926147; Sharma, S., Kulk, N., Nold, M.F., Gräf, R., Kim, S.H., Reinhardt, D., The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines (2008) J Immunol, 180 (8), pp. 5477-5482. , 18390730; Bulau, A.M., Nold, M.F., Li, S., Nold-Petry, C.A., Fink, M., Mansell, A., Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses (2014) Proc Natl Acad Sci USA, 111 (7), pp. 2650-2655. , 24481253 3932872","Jartti, T.; Department of Paediatrics and Adolescent Medicine, Turku University Hospital and Turku University, P.O. Box 52, Finland; email: tuomas.jartti@utu.fi",,"BioMed Central Ltd.",20457022,,,,"English","Clin. Transl. Allergy",Article,"Final",Open Access,Scopus,2-s2.0-85047534674 "Böttcher-Friebertshäuser E.","36018221900;","Membrane-anchored serine proteases: Host cell factors in proteolytic activation of viral glycoproteins",2018,"Activation of Viruses by Host Proteases",,,,"153","203",,2,"10.1007/978-3-319-75474-1_8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053543565&doi=10.1007%2f978-3-319-75474-1_8&partnerID=40&md5=549ea0cd016955e497454f1fe02b21b2","Institute of Virology, Philipps-University Marburg, Marburg, Germany","Böttcher-Friebertshäuser, E., Institute of Virology, Philipps-University Marburg, Marburg, Germany","Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibri- nolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like pro- teases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a num- ber of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matrip- tase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinat- ing and rapidly evolving group of MASPs and a summary of the current knowl- edge on their role in proteolytic activation of viral fusion proteins. © Springer International Publishing AG, part of Springer Nature 2018. All rights reserved.",,,"Abe, M., Tahara, M., Sakai, K., Yamaguchi, H., Kanou, K., Shirato, K., Kawase, M., Takeda, M., TMPRSS2 is an activating protease for respiratory parainfluenza viruses (2013) J Virol, 87, pp. 11930-11935; Afar, D.E., Vivanco, I., Hubert, R.S., Kuo, J., Chen, E., Saffran, D.C., Raitano, A.B., Jakobovits, A., Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia (2001) Cancer Res, 61, pp. 1686-1692; Aimes, R.T., Zijlstra, A., Hooper, J.D., Ogbourne, S.M., Sit, M.L., Fuchs, S., Gotley, D.C., Antalis, T.M., Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis (2003) Thromb Haemost, 89, pp. 561-572; Andreasen, D., Vuagniaux, G., Fowler-Jaeger, N., Hummler, E., Rossier, B.C., Activation of epithelial sodium channels by mouse channel activating proteases (mCAP) expressed in Xenopus oocytes requires catalytic activity of mCAP3 and mCAP2 but not mCAP1 (2006) J Am Soc Nephrol, 17, pp. 968-976; Antalis, T.M., Bugge, T.H., Wu, Q., Membrane-anchored serine proteases in health and disease (2011) Prog Mol Biol Transl Sci, 99, pp. 1-50; Appel, L.F., Prout, M., Abu-Shumays, R., Hammonds, A., Garbe, J.C., Fristrom, D., Fristrom, J., The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis (1993) Proc Natl Acad Sci U S A, 90, pp. 4937-4941; Baba, T., Azuma, S., Kashiwabara, S., Toyoda, Y., Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization (1994) J Biol Chem, 269, pp. 31845-31849; Babitt, J.L., Huang, F.W., Wrighting, D.M., Xia, Y., Sidis, Y., Samad, T.A., Campagna, J.A., Lin, H.Y., Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression (2006) Nat Genet, 38, pp. 531-539; Bao, Y., Li, K., Guo, Y., Wang, Q., Li, Z., Yang, Y., Chen, Z., Yang, W., Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer (2016) Oncotarget, 7, pp. 26780-26792; Baron, J., Tarnow, C., Mayoli-Nüssle, D., Schilling, E., Meyer, D., Hammami, M., Schwalm, F., Böttcher-Friebertshäuser, E., Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses (2013) J Virol, 87, pp. 1811-1820; Bugge, T.H., Antalis, T.M., Wu, Q., Type II transmembrane serine proteases (2009) J Biol Chem, 284, pp. 23177-23181. , Review; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lyso- somal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10, p. e1004502; Buzza, M.S., Netzel-Arnett, S., Shea-Donohue, T., Zhao, A., Lin, C.Y., List, K., Szabo, R., Antalis, T.M., Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine (2010) Proc Natl Acad Sci U S A, 107, pp. 4200-4205; Buzza, M.S., Martin, E.W., Driesbaugh, K.H., Désilets, A., Leduc, R., Antalis, T.M., Prostasin is required for matriptase activation in intestinal epithelial cells to regulate closure of the paracellular pathway (2013) J Biol Chem, 288, pp. 10328-10337; Cal, S., Quesada, V., Garabaya, C., Lopez-Otin, C., Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product (2003) Proc Natl Acad Sci U S A, 100, pp. 9185-9190; Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Tsegaye, T.S., Takeda, M., Pöhlmann, S., Proteolytic activation of the 1918 influenza virus hemagglutinin (2009) J Virol, 83, pp. 3200-3211; Chan, J.C., Knudson, O., Wu, F., Morser, J., Dole, W.P., Wu, Q., Hypertension in mice lacking the proatrial natriuretic peptide concertase corin (2005) Proc Natl Acad Sci U S A, 102, pp. 785-790; Chen, L.M., Chai, K.X., Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation (2002) Int J Cancer, 97, pp. 323-329; Chen, L.M., Hodge, G.B., Guarda, L.A., Welch, J.L., Greenberg, N.M., Chai, K.X., Down-regulation of prostasin serine protease: A potential invasion suppressor in prostate cancer (2001) Prostate, 48, pp. 93-103; Chen, L.M., Skinner, M.L., Kauffman, S.W., Chao, J., Chao, L., Thaler, C.D., Chai, K.X., Prostasin is a glycosylphosphatidylinositol-anchored active serine protease (2001) J Biol Chem, 276, pp. 21434-21442. , Epub 2001 Mar 26; Chen, Y.W., Lee, M.S., Lucht, A., Chou, F.P., Huang, W., Havighurst, T.C., Kim, K., Lin, C.Y., TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells (2010) Am J Pathol, 176, pp. 2986-2996; Chen, S., Cao, P., Dong, N., Peng, J., Zhang, C., Wang, H., Zhou, T., Wu, Q., PCSK6-mediated corin activation is essential for normal blood pressure (2015) Nat Med, 21, pp. 1048-1053; Cheng, H., Fukushima, T., Takahashi, N., Tanaka, H., Kataoka, H., Hepatocyte growth factor activator inhibitor type 1 regulates epithelial to mesenchymal transition through membrane-bound serine proteinases (2009) Cancer Res, 69, pp. 1828-1835; Cheng, Z., Zhou, J., To, K.K., Chu, H., Li, C., Wang, D., Yang, D., Yuen, K.Y., Identification of TMPRSS2 as a susceptibility gene for severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza (2015) J Infect Dis, 212, pp. 1214-1221; Chokki, M., Yamamura, S., Eguchi, H., Masegi, T., Horiuchi, H., Tanabe, H., Kamimura, T., Yasuoka, S., Human airway trypsin-like protease increases mucin gene expression in airway epithelial cells (2004) Am J Respir Cell Mol Biol, 30, pp. 470-478; Dhanasekaran, S.M., Barrette, T.R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K.J., Chinnaiyan, A.M., Delineation of prognostic biomarkers in prostate cancer (2001) Nature, 412, pp. 822-826; Donaldson, S.H., Hirsh, A., Li, D.C., Holloway, G., Chao, J., Boucher, R.C., Gabriel, S.E., Regulation of the epithelial sodium channel by serine proteases in human airways (2002) J Biol Chem, 277, pp. 8338-8345; Driesbaugh, K.H., Buzza, M.S., Martin, E.W., Conway, G.D., Kao, J.P., Antalis, T.M., Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin (2015) J Biol Chem, 290, pp. 3529-3541; Du, X., She, E., Gelbart, T., Truksa, J., Lee, P., Xia, Y., Khovananth, K., Beutler, B., The serine protease TMPRSS6 is required to sense iron deficiency (2008) Science, 320, pp. 1088-1092; Duhaime, M.J., Page, K.O., Varela, F.A., Murray, A.S., Silverman, M.E., Zoratti, G.L., List, K., Cell surface human airway trypsin-like protease is lost during squamous cell carcinogenesis (2016) J Cell Physiol, 231, pp. 1476-1483; Enshell-Seijffers, D., Lindon, C., Morgan, B.A., The serine protease Corin is a novel modifier of the Agouti pathway (2008) Development, 135, pp. 217-225; Fang, C., Shen, L., Dong, L., Liu, M., Shi, S., Dong, N., Wu, Q., Reduced urinary corin levels in patients with chronic kidney disease (2013) Clin Sci (Lond), 124, pp. 709-717; Fasquelle, L., Scott, H.S., Lenoir, M., Wang, J., Rebillard, G., Gaboyard, S., Venteo, S., Delprat, B., Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochlear hair cell survival at the onset of hearing (2011) J Biol Chem, 286, pp. 17383-17397; Ferrara, F., Molesti, E., Böttcher-Friebertshäuser, E., Cattoli, G., Corti, D., Scott, S., Temperton, N., The human Transmembrane Protease Serine 2 is necessary for the production of Group 2 influenza A virus pseudotypes (2013) J Mol Genet Med, 7, pp. 309-314; Finberg, K.E., Heeney, M.M., Campagna, D.R., Aydinok, Y., Pearson, H.A., Hartman, K.R., Mayo, M.M., Fleming, M.D., Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA) (2008) Nat Genet, 40, pp. 569-571; Finberg, K.E., Whittlesey, R.L., Fleming, M.D., Andrews, N.C., Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis (2010) Blood, 115, pp. 3817-3826; Frateschi, S., Keppner, A., Malsure, S., Iwaszkiewicz, J., Sergi, C., Merillat, A.M., Fowler-Jaeger, N., Hummler, E., Mutations of the serine protease CAP1/Prss8 lead to reduced embryonic viability, skin defects, and decreased ENaC activity (2012) Am J Pathol, 181, pp. 605-615; Friedrich, R., Fuentes-Prior, P., Ong, E., Coombs, G., Hunter, M., Oehler, R., Pierson, D., Madison, E.L., Catalytic domain structures of Mt-Sp1/Matriptase, a matrixdegrading transmembrane serine proteinase (2002) J Biol Chem, 277, p. 2160; Friis, S., Uzzun Sales, K., Godiksen, S., Peters, D.E., Lin, C.Y., Vogel, L.K., Bugge, T.H., A matriptase- prostasin reciprocal zymogen activation complex with unique features: Prostasin as a nonenzymatic co-factor for matriptase activation (2013) J Biol Chem, 288, pp. 19028-19039; Friis, S., Madsen, D.H., Bugge, T.H., Distinct Developmental Functions of Prostasin (CAP1/PRSS8) Zymogen and Activated Prostasin (2016) J Biol Chem, 291, pp. 2577-2582; Galloway, S.E., Reed, M.L., Russell, C.J., Steinhauer, D.A., Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: Implications for host range and adaptation (2013) PLoS Pathog, 9, p. e1003151; Ganz, T., Nemeth, E., Hepcidin and iron homeostasis (2012) Biochim Biophys Acta, 1823, pp. 1434-1443; Gasi Tandefelt, D., Boormans, J., Hermans, K., Trapman, J., ETS fusion genes in prostate cancer (2014) Endocr Relat Cancer, 21, pp. R143-R152; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Pöhlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511; Gladysheva, I.P., King, S.M., Houng, A.K., N-glycosylation modulates the cell-surface expression and catalytic activity of corin (2008) Biochem Biophys Res Commun, 373, pp. 130-135; Glowacka, I., Bertram, S., Müller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pöhlmann, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J Virol, 85, pp. 4122-4134; Götze, H., Adelson, J.W., Hadorn, H.B., Portmann, R., Troesch, V., Hormone-elicited enzyme release by the small intestinal wall (1972) Gut, 13 (6), p. 471; Guipponi, M., Vuagniaux, G., Wattenhofer, M., Shibuya, K., Vazquez, M., Dougherty, L., Scamuffa, N., Rossier, B.C., The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro (2002) Hum Mol Genet, 11, pp. 2829-2836; Guipponi, M., Tan, J., Cannon, P.Z., Donley, L., Crewther, P., Clarke, M., Wu, Q., Scott, H.S., Mice deficient for the type II transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss (2007) Am J Pathol, 171, pp. 608-616; Guipponi, M., Toh, M.Y., Tan, J., Park, D., Hanson, K., Ballana, E., Kwong, D., Scott, H.S., An integrated genetic and functional analysis of the role of type II transmembrane serine proteases (TMPRSSs) in hearing loss (2008) Hum Mutat, 29, pp. 130-141; Guo, Y.J., Krauss, S., Senne, D.A., Mo, I.P., Lo, K.S., Xiong, X.P., Norwood, M., Guan, Y., Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia (2000) Virology, 267, pp. 279-288; Hadorn, B., Tarlow, M.J., Lloyd, J.K., Wolff, O.H., Intestinal enterokinase deficiency (1969) Lancet, 1, pp. 812-813; Hamilton, B.S., Whittaker, G.R., Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12 (2013) J Biol Chem, 288, pp. 17399-17407; Hamilton, B.S., Gludish, D.W., Whittaker, G.R., Cleavage activation of the human-adapted influenza virus subtypes by matriptase reveals both subtype and strain specificities (2012) J Virol, 86 (19), pp. 10579-10586; Hanifa, S., Scott, H.S., Crewther, P., Guipponi, M., Tan, J., Thyroxine treatments do not correct inner ear defects in tmprss1 mutant mice (2010) Neuroreport, 21, pp. 897-901; Hansbro, P.M., Hamilton, M.J., Fricker, M., Gellatly, S.L., Jarnicki, A.G., Zheng, D., Frei, S.M., Stevens, R.L., Importance of mast cell Prss31/trans- membrane tryptase/tryptase-y in lung function and experimental chronic obstructive pulmonary disease and colitis (2014) J Biol Chem, 289, pp. 18214-18227; Hansen, I.A., Fassnacht, M., Hahner, S., Hammer, F., Schammann, M., Meyer, S.R., Bicknell, A.B., Allolio, B., The adrenal secretory serine protease AsP is a short secretory isoform of the transmembrane airway trypsin-like protease (2004) Endocrinology, 145, pp. 1898-1905; Hatesuer, B., Bertram, S., Mehnert, N., Bahgat, M.M., Nelson, P.S., Pöhlmann, S., Schughart, K., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice (2013) PLoS Pathog, 9, p. e1003774; Hermon-Taylor, J., Perrin, J., Grant, D.A., Appleyard, A., Bubel, M., Magee, A.I., Immunofluorescent localisation of enterokinase in human small intestine (1977) Gut, 18, pp. 259-265; Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., Pöhlmann, S., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 1293-1307; Hildenbrand, R., Gandhari, M., Stroebel, P., Marx, A., Allgayer, H., Arens, N., The urokinase-system- role of cell proliferation and apoptosis (2008) Histol Histopathol, 23, pp. 227-236; Hobson, J.P., Netzel-Arnett, S., Szabo, R., Réhault, S.M., Church, F.C., Strickland, D.K., Lawrence, D.A., Bugge, T.H., Mouse DESC1 is located within a cluster of seven DESC1-like genes and encodes a type II transmembrane serine protease that forms serpin inhibitory complexes (2004) J Biol Chem, 279, pp. 46981-46994; Hoffmann, M., Krüger, N., Zmora, P., Wrensch, F., Herrler, G., Pöhlmann, S., The hemagglutinin of Bat- associated influenza viruses is activated by TMPRSS2 for pH-dependent entry into Bat but not human cells (2016) PLoS One, 11, p. e0152134; Holzinger, A., Maier, E.M., Bück, C., Mayerhofer, P.U., Kappler, M., Haworth, J.C., Moroz, S.P., Roscher, A.A., Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency (2002) Am J Hum Genet, 70, pp. 20-25; Homma, M., Ohuchi, M., Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells (1973) J Virol, 12, pp. 1457-1465; Honda, A., Yamagata, K., Sugiura, S., Watanabe, K., Baba, T., A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol- anchored protein (2002) J Biol Chem, 277, pp. 16976-16984; Hooper, J.D., Nicol, D.L., Dickinson, J.L., Eyre, H.J., Scarman, A.L., Normyle, J.F., Stuttgen, M.A., Antalis, T.M., Testisin, a new human serine proteinase expressed by premeiotic testicular germ cells and lost in testicular germ cell tumors (1999) Cancer Res, 59, pp. 3199-3205; Hooper, J.D., Bowen, N., Marshall, H., Cullen, L.M., Sood, R., Daniels, R., Stuttgen, M.A., Jazwinska, E.C.T.M., Localization, expression and genomic structure of the gene encoding the human serine protease testisin (2000) Biochim Biophys Acta, 1492, pp. 63-71; Hooper, J.D., Clements, J.A., Quigley, J.P., Antalis, T.M., Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes (2001) J Biol Chem, 276, pp. 857-860. , Review; Hsu, Y.C., Huang, H.P., Yu, I.S., Su, K.Y., Lin, S.R., Lin, W.C., Wu, H.L., Lin, S.W., Serine protease hepsin regulates hepatocyte size and hemodynamic retention of tumor cells by hepatocyte growth factor signaling in mice (2012) Hepatology, 56, pp. 1913-1923; Hummler, E., Dousse, A., Rieder, A., Stehle, J.C., Rubera, I., Osterheld, M.C., Beermann, F., Charles, R.P., The channel-activating protease CAP1/Prss8 is required for placental labyrinth maturation (2013) PLoS One, 8, p. e55796; Inoue, M., Kanbe, N., Kurosawa, M., Kido, H., Cloning and tissue distribution of a novel serine protease esp-1 from human eosinophils (1998) Biochem Biophys Res Commun, 252, pp. 307-312; Iwakiri, K., Ghazizadeh, M., Jin, E., Fujiwara, M., Takemura, T., Takezaki, S., Kawana, S., Kawanami, O., Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris (2004) J Invest Dermatol, 122, pp. 937-944; Jiang, J., Wu, S., Wang, W., Chen, S., Peng, J., Zhang, X., Wu, Q., Ectodomain shedding and autocleavage of the cardiac membrane protease corin (2011) J Biol Chem, 286, pp. 10066-10072; Jung, H., Lee, K.P., Park, S.J., Park, J.H., Jang, Y.S., Choi, S.Y., Jung, J.G., Park, Y.W., TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelialmesenchymal transition (2008) Oncogene, 27, pp. 2635-2647; Kam, Y.W., Okumura, Y., Kido, H., Ng, L.F., Bruzzone, R., Altmeyer, R., Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro (2009) PLoS One, 4, p. e7870; Kato, M., Hashimoto, T., Shimomura, T., Kataoka, H., Ohi, H., Kitamura, N., Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease (2012) J Biochem, 151, pp. 179-187; Kawano, N., Kang, W., Yamashita, M., Koga, Y., Yamazaki, T., Hata, T., Miyado, K., Baba, T., Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro (2010) Biol Reprod, 83, pp. 359-369; Kawaoka, Y., Naeve, C.W., Webster, R.G., Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin (1984) Virology, 139, pp. 303-316; Keppner, A., Andreasen, D., Mérillat, A.M., Bapst, J., Ansermet, C., Wang, Q., Maillard, M., Hummler, E., Epithelial sodium channel-mediated sodium transport is not dependent on the membrane-bound serine protease CAP2/Tmprss4 (2015) PLoS One, 10, p. e0135224; Kesic, M.J., Meyer, M., Bauer, R., Jaspers, I., Exposure to ozone modulates human airway protease/anti- protease balance contributing to increased influenza A infection (2012) PLoS One, 7, p. e35108; Kido, H., Okumura, Y., Takahashi, E., Pan, H.Y., Wang, S., Chida, J., Le, T.Q., Yano, M., Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses (2008) J Mol Genet Med, 3, pp. 167-175; Kim, S., Lee, J.W., Membrane proteins involved in epithelial-mesenchymal transition and tumor invasion: Studies on TMPRSS4 and TM4SF5 (2014) Genom Inform, 12, pp. 12-20; Kim, D.R., Sharmin, S., Inoue, M., Kido, H., Cloning and expression of novel mosaic serine proteases with and without a transmembrane domain from human lung (2001) Biochim Biophys Acta, 1518, pp. 204-209; Kim, T.S., Heinlein, C., Hackman, R.C., Nelson, P.S., Phenotypic analysis of mice lacking the Tmprss2- encoded protease (2006) Mol Cell Biol, 26, pp. 965-975; Kim, S., Kang, H.Y., Nam, E.H., Choi, M.S., Zhao, X.F., Hong, C.S., Lee, J.W., Park, Y.K., TMPRSS4 induces invasion and epithelial-mesenchymal transition through upregulation of integrin alpha5 and its signaling pathways (2010) Carcinogenesis, 31, pp. 597-606; Kitamoto, Y., Yuan, X., Wu, Q., McCourt, D.W., Sadler, J.E., Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains (1994) Proc Natl Acad Sci U S A, 91, pp. 7588-7592; Kitamoto, Y., Veile, R.A., Donis-Keller, H., Sadler, J.E., CDNA sequence and chromosomal localization of human enterokinase, the proteolytic activator of trypsinogen (1995) Biochemistry, 34, pp. 4562-4568; Klenk, H.D., Rott, R., Orlich, M., Blödorn, J., Activation of influenza A viruses by trypsin treatment (1975) Virology, 68, pp. 426-439; Klezovitch, O., Chevillet, J., Mirosevich, J., Roberts, R.L., Matusik, R.J., Vasioukhin, V., Hepsin promotes prostate cancer progression and metastasis (2004) Cancer Cell, 6, pp. 185-195; Ko, C.J., Huang, C.C., Lin, H.Y., Juan, C.P., Lan, S.W., Shyu, H.Y., Wu, S.R., Lee, M.S., Androgen-induced TMPRSS2 activates Matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis (2015) Cancer Res, 75, pp. 2949-2960; Kühn, N., Bergmann, S., Kösterke, N., Lambertz, R.L., Keppner, A., van den Brand, J.M., Pöhlmann, S., Schughart, K., The proteolytic activation of (H3N2) Influenza A virus hemagglutinin is facilitated by different type II transmembrane serine proteases (2016) J Virol, 90, pp. 4298-4307; Kunitz, M., Formation of trypsin from crystalline trypsinogen by means of enterokinase (1939) J Gen Physiol, 22, pp. 429-446; Kyrieleis, O.J., Huber, R., Ong, E., Oehler, R., Hunter, M., Madison, E.L., Jacob, U., Crystal structure of the catalytic domain of DESC1, a new member of the type II transmembrane serine proteinase family (2007) FEBS J, 274, pp. 2148-2160; Lang, J.C., Schuller, D.E., Differential expression of a novel serine protease homologue in squamous cell carcinoma of the head and neck (2001) Br J Cancer, 84, pp. 237-243; Larsen, B.R., Steffensen, S.D., Nielsen, N.V., Friis, S., Godiksen, S., Bornholdt, J., Soendergaard, C., Vogel, L.K., Hepatocyte growth factor activator inhibitor-2 prevents shedding of matriptase (2013) Exp Cell Res, 319, pp. 918-929; Lazarowitz, S.G., Choppin, P.W., Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide (1975) Virology, 68, pp. 440-454; Lazarowitz, S.G., Goldberg, A.R., Choppin, P.W., Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: Host cell activation of serum plasminogen (1973) Virology, 56, pp. 172-180; Leshem, O., Madar, S., Kogan-Sakin, I., Kamer, I., Goldstein, I., Brosh, R., Cohen, Y., Berger, R., TMPRSS2/ ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model (2011) PLoS One, 6, p. e21650; Leytus, S.P., Loeb, K.R., Hagen, F.S., Kurachi, K., Davie, E.W., A novel trypsin-like serine protease (hep- sin) with a putative transmembrane domain expressed by human liver and hepatoma cells (1988) Biochemistry, 27, pp. 1067-1074; Leyvraz, C., Charles, R.P., Rubera, I., Guitard, M., Rotman, S., Breiden, B., Sandhoff, K., Hummler, E., The epidermal barrier function is dependent on the serine protease CAP1/Prss8 (2005) J Cell Biol, 170, pp. 487-496; Li, Y., Zhang, X., Huang, G., Miao, X., Guo, L., Lin, D., Lu, S.H., Identification of a novel polymorphism Arg290Gln of esophageal cancer related gene 1 (ECRG1) and its related risk to esophageal squamous cell carcinoma (2006) Carcinogenesis, 27, pp. 798-802; Li, X., Qi, W., He, J., Ning, Z., Hu, Y., Tian, J., Jiao, P., Liao, M., Molecular basis of efficient replication and pathogenicity of H9N2 avian influenza viruses in mice (2012) PLoS One, 7, p. e40118; Li, Y., Peng, A., Ge, S., Wang, Q., Liu, J., MiR-204 suppresses cochlear spiral ganglion neuron survival in vitro by targeting TMPRSS3 (2014) Hear Res, 314, pp. 60-64; Li, H., Zhang, Y., Wu, Q., Role of corin in the regulation of blood pressure (2017) Curr Opin Nephrol Hypertens, 26, pp. 67-73; Liao, X., Wang, W., Chen, S., Wu, Q., Role of glycosylation in corin zymogen activation (2007) J Biol Chem, 282, pp. 27728-27735; Lin, C.Y., Anders, J., Johnson, M., Sang, Q.A., Dickson, R.B., Molecular cloning of cDNA for matrip- tase, a matrix-degrading serine protease with trypsin-like activity (1999) J Biol Chem, 274, pp. 18231-18236; List, K., Haudenschild, C.C., Szabo, R., Chen, W., Wahl, S.M., Swaim, W., Engelholm, L.H., Bugge, T.H., Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis (2002) Oncogene, 21, pp. 3765-3779; List, K., Szabo, R., Wertz, P.W., Segre, J., Haudenschild, C.C., Kim, S.Y., Bugge, T.H., Loss of proteo- lytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1 (2003) J Cell Biol, 163, pp. 901-910; List, K., Bugge, T.H., Szabo, R., Matriptase: Potent proteolysis on the cell surface (2006) Mol Med, 12, pp. 1-7. , Review; List, K., Szabo, R., Molinolo, A., Nielsen, B.S., Bugge, T.H., Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis (2006) Am J Pathol, 168, pp. 1513-1525; List, K., Currie, B., Scharschmidt, T.C., Szabo, R., Shireman, J., Molinolo, A., Cravatt, B.F., Bugge, T.H., Autosomal ichthyosis with hypotrichosis syndrome displays low matriptase proteolytic activity and is phenocopied in ST14 hypomorphic mice (2007) J Biol Chem, 282, pp. 36714-36723; Lu, D., Yuan, X., Zheng, X., Sadler, J.E., Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain (1997) J Biol Chem, 272, pp. 31293-31300; Lu, D., Fütterer, K., Korolev, S., Zheng, X., Tan, K., Waksman, G., Sadler, J.E., Crystal structure of entero- peptidase light chain complexed with an analog of the trypsinogen activation peptide (1999) J Mol Biol, 292, pp. 361-373; Lucas, J.M., True, L., Hawley, S., Matsumura, M., Morrissey, C., Vessella, R., Nelson, P.S., The androgenregulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma (2008) J Pathol, 215, pp. 118-125; Lucas, J.M., Heinlein, C., Kim, T., Hernandez, S.A., Malik, M.S., True, L.D., Morrissey, C., Nelson, P.S., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis (2014) Cancer Discov, 4, pp. 1310-1325; Madsen, D.H., Szabo, R., Molinolo, A.A., Bugge, T.H., TMPRSS13 deficiency impairs stratum corneum formation and epidermal barrier acquisition (2014) Biochem J, 461, pp. 487-495; Masmoudi, S., Antonarakis, S.E., Schwede, T., Ghorbel, A.M., Gratri, M., Pappasavas, M.P., Drira, M., Guipponi, M., Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness (2001) Hum Mutat, 18, pp. 101-108; Matsushima, M., Ichinose, M., Yahagi, N., Kakei, N., Tsukada, S., Miki, K., Kurokawa, K., Shinomiya, K., Structural characterization of porcine enteropeptidase (1994) J Biol Chem, 269, pp. 19976-19982; Matsushima, R., Takahashi, A., Nakaya, Y., Maezawa, H., Miki, M., Nakamura, Y., Ohgushi, F., Yasuoka, S., Human airway trypsin-like protease stimulates human bronchial fibroblast proliferation in a protease-activated receptor-2-dependent pathway (2006) Am J Physiol Lung Cell Mol Physiol, 290, pp. L385-L395; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J Virol, 84, pp. 12658-12664; Miao, J., Mu, D., Ergel, B., Singavarapu, R., Duan, Z., Powers, S., Oliva, E., Orsulic, S., Hepsin colocalizes with desmosomes and induces progression of ovarian cancer in a mouse model (2008) Int J Cancer, 123, pp. 2041-2047; Miller, G.S., List, K., The matriptase-prostasin proteolytic cascade in epithelial development and pathology (2013) Cell Tissue Res, 351, pp. 245-253; Miller, G.S., Zoratti, G.L., Murray, A.S., Bergum, C., Tanabe, L.M., List, K., HATL5: A cell surface serine protease differentially expressed in epithelial cancers (2014) PLoS One, 9, p. e87675; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134; Milner, J.M., Patel, A., Davidson, R.K., Swingler, T.E., Desilets, A., Young, D.A., Kelso, E.B., Rowan, A.D., Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis (2010) Arthritis Rheum, 62, pp. 1955-1966; Min, H.J., Lee, M.K., Lee, J.W., Kim, S., TMPRSS4 induces cancer cell invasion through pro-uPA processing (2014) Biochem Biophys Res Commun, 446, pp. 1-7; Min, H.J., Lee, Y., Zhao, X.F., Park, Y.K., Lee, M.K., Lee, J.W., Kim, S., TMPRSS4 upregulates uPA gene expression through JNK signaling activation to induce cancer cell invasion (2014) Cell Signal, 26, pp. 398-408; Miyata, H., Thaler, C.D., Haimo, L.T., Cardullo, R.A., Protease activation and the signal transduction pathway regulating motility in sperm from the water strider Aquarius remigis (2012) Cytoskeleton (Hoboken), 69, pp. 207-220; Molina, L., Fasquelle, L., Nouvian, R., Salvetat, N., Scott, H.S., Guipponi, M., Molina, F., Delprat, B., Tmprss3 loss of function impairs cochlear inner hair cell Kcnma1 channel membrane expression (2013) Hum Mol Genet, 22, pp. 1289-1299; Murray, A.S., Varela, F.A., List, K., Type II transmembrane serine proteases as potential targets for cancer therapy (2016) Biol Chem, 397, pp. 815-826; Nagai, Y., Klenk, H.D., Rott, R., Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus (1976) Virology, 72, pp. 494-508; Nagaike, K., Kawaguchi, M., Takeda, N., Fukushima, T., Sawaguchi, A., Kohama, K., Setoyama, M., Kataoka, H., Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor, Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis-like condition and abnormal hair development in mice (2008) Am J Pathol, 173, pp. 1464-1475; Narikiyo, T., Kitamura, K., Adachi, M., Miyoshi, T., Iwashita, K., Shiraishi, N., Nonoguchi, H., Tomita, K., Regulation of prostasin by aldosterone in the kidney (2002) J Clin Invest, 109, pp. 401-408; Netzel-Arnett, S., Hooper, J.D., Szabo, R., Madison, E.L., Quigley, J.P., Bugge, T.H., Antalis, T.M., Membrane anchored serine proteases: A rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer (2003) Cancer Metastasis Rev, 22, pp. 237-258. , Review; Netzel-Arnett, S., Currie, B.M., Szabo, R., Lin, C.Y., Chen, L.M., Chai, K.X., Antalis, T.M., List, K., Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation (2006) J Biol Chem, 281, pp. 32941-32945; Netzel-Arnett, S., Bugge, T.H., Hess, R.A., Carnes, K., Stringer, B.W., Scarman, A.L., Hooper, J.D., Antalis, T.M., The glycosylphosphatidylinositol-anchored serine protease PRSS21 (testisin) imparts murine epididymal sperm cell maturation and fertilizing ability (2009) Biol Reprod, 81, pp. 921-932; Netzel-Arnett, S., Buzza, M.S., Shea-Donohue, T., Désilets, A., Leduc, R., Fasano, A., Bugge, T.H., Antalis, T.M., Matriptase protects against experimental colitis and promotes intestinal barrier recovery (2012) Inflamm Bowel Dis, 18, pp. 1303-1314; Ng, H.Y., Ko, J.M., Yu, V.Z., Ip, J.C., Dai, W., Cal, S., Lung, M.L., DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma (2016) Int J Cancer, 138, pp. 2940-2951; Nonboe, A.W., Krigslund, O., Soendergaard, C., Skovbjerg, S., Friis, S., Andersen, M.N., Ellis, V., Vogel, L.K., HAI-2 stabilizes, inhibits and regulates SEA-cleavage- dependent secretory transport of matriptase (2017) Traffic, 18, pp. 378-391; Oberst, M.D., Williams, C.A., Dickson, R.B., Johnson, M.D., Lin, C.Y., The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor (2003) J Biol Chem, 278, pp. 26773-26779; Oberst, M.D., Chen, L.Y., Kiyomiya, K., Williams, C.A., Lee, M.S., Johnson, M.D., Dickson, R.B., Lin, C.Y., HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease (2005) Am J Physiol Cell Physiol, 289, pp. C462-C470; Ogiwara, K., Takahashi, T., Specificity of the medaka enteropeptidase serine protease and its usefulness as a biotechnological tool for fusion-protein cleavage (2007) Proc Natl Acad Sci U S A, 104, pp. 7021-7026; Okumura, Y., Hayama, M., Takahashi, E., Fujiuchi, M., Shimabukuro, A., Yano, M., Kido, H., Serase-IB, a new splice variant of polyserase-1/TMPRSS9, activates urokinase-type plasminogen activator and the proteolytic activation is negatively regulated by glycosaminoglycans (2006) Biochem J, 400, pp. 551-561; Okumura, Y., Takahashi, E., Yano, M., Ohuchi, M., Daidoji, T., Nakaya, T., Böttcher, E., Kido, H., Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication (2010) J Virol, 84 (10), pp. 5089-5096. , May; Paoloni-Giacobino, A., Chen, H., Peitsch, M.C., Rossier, C., Antonarakis, S.E., Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3 (1997) Genomics, 44, pp. 309-320; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B.J., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113 (43), pp. 12262-12267; Peitsch, C., Klenk, H.D., Garten, W., Böttcher-Friebertshäuser, E., Activation of influenza A viruses by host proteases from swine airway epithelium (2014) J Virol, 88, pp. 282-291; Perona, J.J., Craik, C.S., Structural basis of substrate specificity in the serine proteases (1995) Protein Sci, 4, pp. 337-360. , Review; Peters, D.E., Szabo, R., Friis, S., Shylo, N.A., Uzzun Sales, K., Holmbeck, K., Bugge, T.H., The membrane- anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity (2014) J Biol Chem, 289, pp. 14740-14749; Planès, C., Randrianarison, N.H., Charles, R.P., Frateschi, S., Cluzeaud, F., Vuagniaux, G., Soler, P., Hummler, E., ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1 (2010) EMBO Mol Med, 2, pp. 26-37; Polzin, D., Kaminski, H.J., Kastner, C., Wang, W., Krämer, S., Gambaryan, S., Russwurm, M., Theilig, F., Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases (2010) Kidney Int, 78, pp. 650-659; Ramsay, A.J., Hooper, J.D., Folgueras, A.R., Velasco, G., López-Otín, C., Matriptase-2 (TMPRSS6): A proteolytic regulator of iron homeostasis (2009) Haematologica, 94, pp. 840-849; Rickert, K.W., Kelley, P., Byrne, N.J., Diehl, R.E., Hall, D.L., Montalvo, A.M., Reid, J.C., Su, H.P., Structure of human prostasin, a target for the regulation of hypertension (2008) J Biol Chem, 283, pp. 34864-34872; Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Takeda, M., The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses (2014) J Virol, 88, pp. 5608-5616; Sakai, K., Sekizuka, T., Ami, Y., Nakajima, N., Kitazawa, M., Sato, Y., Nakajima, K., Takeda, M., A mutant H3N2 influenza virus uses an alternative activation mechanism in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk region (2015) J Virol, 89, pp. 5154-5158; Sakai, K., Ami, Y., Nakajima, N., Nakajima, K., Kitazawa, M., Anraku, M., Takayama, I., Takeda, M., TMPRSS2 independency for haemagglutinin cleavage in vivo differentiates Influenza B virus from Influenza A virus (2016) Sci Rep, 6, p. 29430; Sales, K.U., Hobson, J.P., Wagenaar-Miller, R., Szabo, R., Rasmussen, A.L., Bey, A., Shah, M.F., Bugge, T.H., Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT (2011) PLoS One, 6, p. e23261; Scheiblauer, H., Reinacher, M., Tashiro, M., Rott, R., Interactions between bacteria and influenza A virus in the development of influenza pneumonia (1992) J Infect Dis, 166, pp. 783-791; Scheid, A., Choppin, P.W., Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus (1974) Virology, 57, pp. 475-490; Schmidlin, F., Amadesi, S., Dabbagh, K., Lewis, D.E., Knott, P., Bunnett, N.W., Gater, P.R., Stevens, M.E., Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway (2002) J Immunol, 169, pp. 5315-5321; Scott, H.S., Kudoh, J., Wattenhofer, M., Shibuya, K., Berry, A., Chrast, R., Guipponi, M., Antonarakis, S.E., Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness (2001) Nat Genet, 27, pp. 59-63; Sedghizadeh, P.P., Mallery, S.R., Thompson, S.J., Kresty, L., Beck, F.M., Parkinson, E.K., Biancamano, J., Lang, J.C., Expression of the serine protease DESC1 correlates directly with normal keratinocyte differentiation and inversely with head and neck squamous cell carcinoma progression (2006) Head Neck, 28, pp. 432-440; Semenov, A.G., Tamm, N.N., Seferian, K.R., Postnikov, A.B., Karpova, N.S., Serebryanaya, D.V., Koshkina, E.V., Katrukha, A.G., Processing of pro-B-type natriuretic peptide: Furin and corin as candidate concertases (2010) Clin Chem, 56, pp. 1166-1176; Shi, Y.E., Torri, J., Yieh, L., Wellstein, A., Lippman, M.E., Dickson, R.B., Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells (1993) Cancer Res, 53, pp. 1409-1415; Shi, W., Fan, W., Bai, J., Tang, Y., Wang, L., Jiang, Y., Tang, L., Li, Y., TMPRSS2 and MSPL facilitate trypsin-independent porcine epidemic diarrhea virus replication in vero cells (2017) Virus, p. 9; Shigemasa, K., Underwood, L.J., Beard, J., Tanimoto, H., Ohama, K., Parmley, T.H., O'Brien, T.J., Overexpression of testisin, a serine protease expressed by testicular germ cells, in epithelial ovarian tumor cells (2000) J Soc Gynecol Investig, 7, pp. 358-362; Shipway, A., Danahay, H., Williams, J.A., Tully, D.C., Backes, B.J., Harris, J.L., Biochemical characterization of prostasin, a channel activating protease (2004) Biochem Biophys Res Commun, 324, pp. 953-963; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561; Shirogane, Y., Takeda, M., Iwasaki, M., Ishiguro, N., Takeuchi, H., Nakatsu, Y., Tahara, M., Yanagi, Y., Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2 (2008) J Virol, 82, pp. 8942-8946; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J Virol, 85, pp. 873-882; Silvestri, L., Pagani, A., Nai, A., De Domenico, I., Kaplan, J., Camaschella, C., The serine protease mat- riptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin (2008) Cell Metab, 8, pp. 502-511; Somoza, J.R., Ho, J.D., Luong, C., Ghate, M., Sprengeler, P.A., Mortara, K., Shrader, W.D., Katz, B.A., The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain (2003) Structure, 11, pp. 1123-1131; Spacek, D.V., Perez, A.F., Ferranti, K.M., Wu, L.K., Moy, D.M., Magnan, D.R., King, T.R., The mouse frizzy (fr) and rat 'hairless' (frCR) mutations are natural variants of protease serine S1 family member 8 (Prss8) (2010) Exp Dermatol, 19, pp. 527-532; Stefanska, B., Huang, J., Bhattacharyya, B., Suderman, M., Hallett, M., Han, Z.G., Szyf, M., Definition of the landscape of promoter DNA hypomethylation in liver cancer (2011) Cancer Res, 71, pp. 5891-5903; Stephan, C., Yousef, G.M., Scorilas, A., Jung, K., Jung, M., Kristiansen, G., Hauptmann, S., Diamandis, E.P., Hepsin is highly over expressed in and a new candidate for a prognostic indicator in prostate cancer (2004) J Urol, 171, pp. 187-191; Stieneke-Gröber, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.D., Garten, W., Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin- like endoprotease (1992) EMBO J, 11, pp. 2407-2414; Stirnberg, M., Maurer, E., Horstmeyer, A., Kolp, S., Frank, S., Bald, T., Arenz, K., Gütschow, M., Proteolytic processing of the serine protease matriptase- 2: Identification of the cleavage sites required for its autocatalytic release from the cell surface (2010) Biochem J, 430, pp. 87-95; Szabo, R., Bugge, T.H., Membrane-anchored serine proteases in vertebrate cell and developmental biology (2011) Annu Rev Cell Dev Biol, 27, pp. 213-235; Szabo, R., Wu, Q., Dickson, R.B., Netzel-Arnett, S., Antalis, T.M., Bugge, T.H., Type II transmembrane serine proteases (2003) Thromb Haemost, 90, pp. 185-193. , Review; Szabo, R., Netzel-Arnett, S., Hobson, J.P., Antalis, T.M., Bugge, T.H., Matriptase-3 is a novel phylogeneti- cally preserved membrane-anchored serine protease with broad serpin reactivity (2005) Biochem J, 390, pp. 231-242; Szabo, R., Molinolo, A., List, K., Bugge, T.H., Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development (2007) Oncogene, 26, pp. 1546-1556; Szabo, R., Hobson, J.P., Christoph, K., Kosa, P., List, K., Bugge, T.H., Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice (2009) Development, 136, pp. 2653-2663; Szabo, R., Uzzun Sales, K., Kosa, P., Shylo, N.A., Godiksen, S., Hansen, K.K., Friis, S., Bugge, T.H., Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation (2012) PLoS Genet, 8, p. e10029e37; Szabo, R., Lantsman, T., Peters, D.E., Bugge, T.H., Delineation of proteolytic and non-proteolytic functions of the membrane-anchored serine protease prostasin (2016) Development, 143, pp. 2818-2828; Takahashi, M., Sano, T., Yamaoka, K., Kamimura, T., Umemoto, N., Nishitani, H., Yasuoka, S., Localization of human airway trypsin-like protease in the airway: An immunohistochemical study (2001) Histochem Cell Biol, 115, pp. 181-187; Tanabe, L.M., List, K., The role of type II transmembrane serine protease-mediated signaling in cancer (2017) FEBS J, 284, pp. 1421-1436; Tanaka, H., Nagaike, K., Takeda, N., Itoh, H., Kohama, K., Fukushima, T., Miyata, S., Kataoka, H., Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is required for branching morphogenesis in the chorioallantoic placenta (2005) Mol Cell Biol, 25, pp. 5687-5698; Tarnow, C., Engels, G., Arendt, A., Schwalm, F., Sediri, H., Preuss, A., Nelson, P.S., Böttcher-Friebertshäuser, E., TMPRSS2 is a host factor that is essential for pneu- motropism and pathogenicity of H7N9 influenza A virus in mice (2014) J Virol, 88, pp. 4744-4751; Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., Varambally, S., Chinnaiyan, A.M., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer (2005) Science, 310, pp. 644-648; Tong, Z., Illek, B., Bhagwandin, V.J., Verghese, G.M., Caughey, G.H., Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line (2004) Am J Physiol Lung Cell Mol Physiol, 287, pp. L928-L935; Tsuji, A., Torres-Rosado, A., Arai, T., Le Beau, M.M., Lemons, R.S., Chou, S.H., Hepsin, K.K., A cell membrane-associated protease. Characterization, tissue distribution, and gene localization (1991) J Biol Chem, 266, pp. 16948-16953; Ujike, M., Taguchi, F., Incorporation of spike and membrane glycoproteins into coronavirus virions (2015) Virus, 7, pp. 1700-1725. , Review; Underwood, L.J., Shigemasa, K., Tanimoto, H., Beard, J.B., Schneider, E.N., Wang, Y., Parmley, T.H., O'Brien, T.J., Ovarian tumor cells express a novel multi-domain cell surface serine protease (2000) Biochim Biophys Acta, 1502, pp. 337-350; Vallet, V., Chraibi, A., Gaeggeler, H.P., Hoiisberger, J.D., Rossier, B.C., An epithelial serine protease activates the amiloride-sensitive sodium channel (1997) Nature, 389, pp. 607-610; Verghese, G.M., Gutknecht, M.F., Caughey, G.H., Prostasin regulates epithelial monolayer function: Cell-specific Gpld1-mediated secretion and functional role for GPI anchor (2006) Am J Physiol Cell Physiol, 291, pp. C1258-C1270; Verhelst, J., Hulpiau, P., Saelens, X., Mx proteins: Antiviral gatekeepers that restrain the uninvited (2013) Microbiol Mol Biol Rev, 77, pp. 551-566; Villalba, M., Diaz-Lagares, A., Redrado, M., de Aberasturi, A.L., Segura, V., Bodegas, M.E., Pajares, M.J., Calvo, A., Epigenetic alterations leading to TMPRSS4 promoter hypomethylation and protein overexpression predict poor prognosis in squamous lung cancer patients (2016) Oncotarget, 7, pp. 22752-22769; Vuagniaux, G., Vallet, V., Jaeger, N.F., Hummler, E., Rossier, B.C., Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes (2002) J Gen Physiol, 120, pp. 191-201; Wallrapp, C., Hähnel, S., Müller-Pillasch, F., Burghardt, B., Iwamura, T., Ruthenbürger, M., Lerch, M.M., Gress, T.M.A., Novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer (2000) Cancer Res, 60, pp. 2602-2606; Wang, C.Y., Meynard, D., Lin, H.Y., The role of TMPRSS6/matriptase-2 in iron regulation and anemia (2014) Front Pharmacol, 5, p. 114; Wang, H., Zhou, T., Peng, J., Xu, P., Dong, N., Chen, S., Wu, Q., Distinct roles of N-glycosylation at different sites of corin in cell membrane targeting and ectodomain shedding (2015) J Biol Chem, 290, pp. 1654-1663; Wattenhofer, M., Sahin-Calapoglu, N., Andreasen, D., Kalay, E., Caylan, R., Braillard, B., Fowler-Jaeger, N., Antonarakis, S.E., A novel TMPRSS3 missense mutation in a DFNB8/10 family prevents proteolytic activation of the protein (2005) Hum Genet, 117, pp. 528-535; Wilson, S., Greer, B., Hooper, J., Zijlstra, A., Walker, B., Quigley, J., Hawthorne, S., The membrane- anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells (2005) Biochem J, 388, pp. 967-972; Wong, G.W., Tang, Y., Feyfant, E., Sali, A., Li, L., Li, Y., Huang, C., Stevens, R.L., Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension (1999) J Biol Chem, 274, pp. 30784-30793; Wu, Q., Yu, D., Post, J., Halks-Miller, M., Sadler, J.E., Morser, J., Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease (1998) J Clin Invest, 101, pp. 321-326; Wu, C., Wu, F., Pan, J., Morser, J., Wu, Q., Furin-mediated processing of Pro-C-type natriuretic peptide (2003) J Biol Chem, 278, pp. 25847-25852; Yamaguchi, N., Okui, A., Yamada, T., Nakazato, H., Mitsui, S., Spinesin/TMPRSS5, a novel transmembrane serine protease, cloned from human spinal cord (2002) J Biol Chem, 277, pp. 6806-6812; Yamaoka, K., Masuda, K., Ogawa, H., Takagi, K., Umemoto, N., Yasuoka, S., Cloning and characterization of the cDNA for human airway trypsin-like protease (1998) J Biol Chem, 273, pp. 11895-11901; Yan, W., Sheng, N., Seto, M., Morser, J., Wu, Q., Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart (1999) J Biol Chem, 274 (21), pp. 14926-14935; Yan, W., Wu, F., Morser, J., Wu, Q., Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme (2000) Proc Natl Acad Sci U S A, 97, pp. 8525-8529; Yasuoka, S., Ohnishi, T., Kawano, S., Tsuchihashi, S., Ogawara, M., Masuda, K., Yamaoka, K., Sano, T., Purification, characterization, and localization of a novel trypsin-like protease found in the human airway (1997) Am J Respir Cell Mol Biol, 16, pp. 300-308; Yoshinaga, S., Nakahori, Y., Yasuoka, S., Fibrinogenolytic activity of a novel trypsin-like enzyme found in human airway (1998) J Med Invest, 45, pp. 77-86; Yu, J.X., Chao, L., Chao, J., Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland (1994) J Biol Chem, 269, pp. 18843-18848; Yuan, X., Zheng, X., Lu, D., Rubin, D.C., Pung, C.Y., Sadler, J.E., Structure of murine enterokinase (enteropeptidase) and expression in small intestine during development (1998) Am J Physiol, 274, pp. G342-G349; Yun, B., Zhang, Y., Liu, Y., Guan, X., Wang, Y., Qi, X., Cui, H., Wang, X., TMPRSS12 is an activating protease for Subtype B Avian Metapneumovirus (2016) J Virol, 90, pp. 11231-11246; Zamolodchikova, T.S., Sokolova, E.A., Alexandrov, S.L., Mikhaleva, I.I., Prudchenko, I.A., Morozov, I.A., Kononenko, N.V., Vorotyntseva, T.I., Subcellular localization, substrate specificity and crystallization of duode- nase, a potential activator of enteropeptidase (1997) Eur J Biochem, 249, pp. 612-621; Zamolodchikova, T.S., Sokolova, E.A., Lu, D., Sadler, J.E., Activation of recombinant proenteropepti- dase by duodenase (2000) FEBS Lett, 466, pp. 295-299; Zhang, D., Qiu, S., Wang, Q., Zheng, J., TMPRSS3 modulates ovarian cancer cell proliferation, invasion and metastasis (2016) Oncol Rep, 35, pp. 81-88; Zhang, Z., Hu, Y., Yan, R., Dong, L., Jiang, Y., Zhou, Z., Liu, M., Wu, Q., The transmembrane serine protease HAT-like 4 is important for epidermal barrier function to prevent body fluid loss (2017) Sci Rep, 7, p. 45262; Zhao, N., Wang, J., Cui, Y., Guo, L., Lu, S.H., Induction of G1 cell cycle arrest and P15INK4b expression by ECRG1 through interaction with Miz-1 (2004) J Cell Biochem, 92, pp. 65-76; Zheng, X., Sadler, J.E., Mucin-like domain of enteropeptidase directs apical targeting in Madin- Darby canine kidney cells (2002) J Biol Chem, 277, pp. 6858-6863; Zheng, X.L., Kitamoto, Y., Sadler, J.E., Enteropeptidase, a type II transmembrane serine protease (2009) Front Biosci (Elite Ed), 1, pp. 242-249. , Review; Zhirnov, O., Klenk, H.D., Human influenza A viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells (2003) Virology, 313 (1), pp. 198-212; Zhirnov, O.P., Ikizler, M.R., Wright, P.F., Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases (2002) J Virol, 76, pp. 8682-8689; Zhou, X., Chen, J., Zhang, Q., Shao, J., Du, K., Xu, X., Kong, Y., Prognostic value of plasma soluble corin in patients with acute myocardial infarction (2016) J Am Coll Cardiol, 67, pp. 2008-2014; Zmora, P., Blazejewska, P., Moldenhauer, A.S., Welsch, K., Nehlmeier, I., Wu, Q., Schneider, H., Bertram, S., DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry (2014) J Virol, 88, pp. 12087-12097","Böttcher-Friebertshäuser, E.; Institute of Virology, Philipps-University MarburgGermany; email: friebertshaeuser@staff.uni-marburg.de",,"Springer International Publishing",,9783319754741; 9783319754734,,,"English","Act. of Viruses by Host Proteases",Book Chapter,"Final",,Scopus,2-s2.0-85053543565 "Steinmetzer T., Hardes K.","6603803320;42461419800;","The antiviral potential of host protease inhibitors",2018,"Activation of Viruses by Host Proteases",,,,"279","325",,2,"10.1007/978-3-319-75474-1_11","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053532138&doi=10.1007%2f978-3-319-75474-1_11&partnerID=40&md5=b09d904a0beb7eb031a2392b8f35a4c3","Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany","Steinmetzer, T., Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany; Hardes, K., Institute of Pharmaceutical Chemistry, Philipps University, Marburg, Germany","The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influ- enza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infec- tion by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable tar- gets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher prob- ability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far. © Springer International Publishing AG, part of Springer Nature 2018. All rights reserved.",,,"Adams, J., The proteasome: A suitable antineoplastic target (2004) Nat Rev Cancer, 4, pp. 349-360; Al-Horani, R.A., Desai, U.R., Recent advances on plasmin inhibitors for the treatment of fibrinolysis- related disorders (2014) Med Res Rev, 34, pp. 1168-1216; Anderson, E.D., Thomas, L., Hayflick, J.S., Thomas, G., Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant (1993) J Biol Chem, 268, pp. 24887-24891; Angliker, H., Synthesis of tight binding inhibitors and their action on the proprotein-processing enzyme furin (1995) J Med Chem, 38, pp. 4014-4018; Antalis, T.M., Bugge, T.H., Wu, Q., Membrane-anchored serine proteases in health and disease (2011) Prog Mol Biol Transl Sci, 99, pp. 1-50; Apeler, H., Peters, J., Schröder, W., Schneider, K.H., Lemm, G., Hinz, V., Rossouw, G.J., Dembowsky, K., Expression, purification, biochemical and pharmacological characterization of a recombinant aprotinin variant (2004) Arzneimittelforschung, 54, pp. 483-497; Ascenzi, P., Bocedi, A., Bolognesi, M., Spallarossa, A., Coletta, M., De Cristofaro, R., Menegatti, E., The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): A milestone protein (2003) Curr Protein Pept Sci, 4, pp. 231-251; Baron, J., Tarnow, C., Mayoli-Nüssle, D., Schilling, E., Meyer, D., Hammami, M., Schwalm, F., Garten, W., Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses (2013) J Virol, 87, pp. 1811-1820; Barrett, A.J., Starkey, P.M., The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism (1973) Biochem J, 133, pp. 709-724; Basak, A., Lazure, C., Synthetic peptides derived from the prosegments of proprotein concertase 1/3 and furin are potent inhibitors of both enzymes (2003) Biochem J, 373, pp. 231-239; Basak, A., Lotfipour, F., Modulating furin activity with designed mini-PDX peptides: Synthesis and in vitro kinetic evaluation (2005) FEBS Lett, 579, pp. 4813-4821; Basak, A., Cooper, S., Roberge, A.G., Banik, U.K., Chrétien, M., Seidah, N.G., Inhibition of proprotein convertases-1, -7 and furin by diterpines of Andrographis paniculata and their succinoyl esters (1999) Biochem J, 338, pp. 107-113; Basak, A., Khatib, A.M., Mohottalage, D., Basak, S., Kolajova, M., Bag, S.S., A novel enediynyl peptide inhibitor of furin that blocks processing of proPDGF-A, B and proVEGF-C (2009) PLoS One, 4, p. e7700; Basak, A., Chen, A., Scamuffa, N., Mohottalage, D., Basak, S., Khatib, A.M., Blockade of furin activity and furin-induced tumor cells malignant phenotypes by the chemically synthesized human furin prodomain (2010) Curr Med Chem, 17, pp. 2214-2221; Basak, A., Goswami, M., Rajkumar, A., Mitra, T., Majumdar, S., O'Reilly, P., Bdour, H.M., Basak, A., Enediynyl peptides and iso-coumarinyl methyl sulfones as inhibitors of proprotein convertases PCSK8/SKI-1/S1P and PCSK4/PC4: Design, synthesis and biological evaluations (2015) Bioorg Med Chem Lett, 25, pp. 2225-2237; Beaulieu, A., Gravel, E., Cloutier, A., Marois, I., Colombo, E., Désilets, A., Verreault, C., Richter, M.V., Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium (2013) J Virol, 87, pp. 4237-4251; Becker, G.L., Sielaff, F., Than, M.E., Lindberg, I., Routhier, S., Day, R., Lu, Y., Steinmetzer, T., Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics (2010) J Med Chem, 53, pp. 1067-1075; Becker, G.L., Hardes, K., Steinmetzer, T., New substrate analogue furin inhibitors derived from 4-amidinobenzylamide (2011) Bioorg Med Chem Lett, 21, pp. 4695-4697; Becker, G.L., Lu, Y., Hardes, K., Strehlow, B., Levesque, C., Lindberg, I., Sandvig, K., Garten, W., Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases (2012) J Biol Chem, 287, pp. 21992-22003; Bertram, S., Głowacka, I., Błazejewska, P., Soilleux, E., Allen, P., Dänisch, S., Steffen, I., Schneider, H., TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells (2010) J Virol, 84, pp. 10016-10025; Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Bordoli, L., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res, 42, pp. W252-W258; Bodvard, K., Mohlin, J., Knecht, W., Recombinant expression, purification, and kinetic and inhibitor characterisation of human site-1-protease (2007) Protein Expr Purif, 51, pp. 308-319; Böttcher, E., Matrosovich, T., Beyerle, M., Klenk, H.D., Garten, W., Matrosovich, M., Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium (2006) J Virol, 80, pp. 9896-9898; Böttcher, E., Freuer, C., Steinmetzer, T., Klenk, H.D., Garten, W., MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition (2009) Vaccine, 27, pp. 6324-6329; Böttcher-Friebertshäuser, E., Freuer, C., Sielaff, F., Schmidt, S., Eickmann, M., Uhlendorff, J., Steinmetzer, T., Garten, W., Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors (2010) J Virol, 84, pp. 5605-5614; Böttcher-Friebertshäuser, E., Stein, D.A., Klenk, H.D., Garten, W., Inhibition of Influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2 (2011) J Virol, 85, pp. 1554-1562; Böttcher-Friebertshäuser, E., Lu, Y., Meyer, D., Sielaff, F., Steinmetzer, T., Klenk, H.D., Garten, W., Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections (2012) Vaccine, 30, pp. 7374-7380; Böttcher-Friebertshäuser, E., Klenk, H.D., Garten, W., Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium (2013) Pathog Dis, 69, pp. 87-100; Brömme, D., Panwar, P., Turan, S., Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences (2016) Expert Opin Drug Discovery, 11, pp. 457-472; Cameron, A., Appel, J., Houghten, R.A., Lindberg, I., Polyarginines are potent furin inhibitors (2000) J Biol Chem, 275, pp. 36741-36749; Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Tsegaye, T.S., Takeda, M., Park, Y., Proteolytic activation of the 1918 influenza virus hemagglutinin (2009) J Virol, 83, pp. 3200-3211; Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P., Cunningham, J.M., Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection (2005) Science, 308, pp. 1643-1645; Chapurlat, R.D., Odanacatib: A review of its potential in the management of osteoporosis in postmenopausal women (2015) Ther Adv Musculoskelet Dis, 7, pp. 103-109; Chase, T.J., Shaw, E., P-Nitrophenyl-p'-guanidinobenzoate HCl: A new active site titrant for trypsin (1967) Biochem Biophys Res Commun, 29, pp. 508-514; Chen, Y., Shiota, M., Ohuchi, M., Towatari, T., Tashiro, J., Murakami, M., Yano, M., Kido, H., Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses. Purification and characterization (2000) Eur J Biochem, 267, pp. 3189-3197; Clement, B., Reduction of N-hydroxylated compounds: Amidoximes (N-hydroxyamidines) as prodrugs of amidines (2002) Drug Metab Rev, 34, pp. 565-579; Colombo, E., Désilets, A., Düchene, D., Chagnon, F., Najmanovich, R., Leduc, R., Marsault, E., Design and synthesis of potent, selective inhibitors of matriptase (2012) ACS Med Chem Lett, 3, pp. 530-534; Coppola, J.M., Bhojani, M.S., Ross, B.D., Rehemtulla, A., A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness (2008) Neoplasia, 10, pp. 363-370; Creemers, J.W., Khatib, A.M., Knock-out mouse models of proprotein convertases: Unique functions or redundancy (2008) Front Biosci, 13, pp. 4960-4971; Dahlen, J.R., Jean, F., Thomas, G., Foster, D.C., Kisiel, W., Inhibition of soluble recombinant furin by human proteinase inhibitor 8 (1998) J Biol Chem, 273, pp. 1851-1854; Dahms, S.O., Hardes, K., Becker, G.L., Steinmetzer, T., Brandstetter, H., Than, M.E., X-ray structures of human furin in complex with competitive inhibitors (2014) ACS Chem Biol, 9, pp. 1113-1118; Dahms, S.O., Arciniega, M., Steinmetzer, T., Huber, R., Than, M.E., Structure of the unliganded form of the proprotein convertase furin suggests activation by a substrate-induced mechanism (2016) Proc Natl Acad Sci U S A, 113, pp. 11196-11201; Dahms, S.O., Creemers, J.W., Schaub, Y., Bourenkov, G.P., Zogg, T., Brandstetter, H., Than, M.E., The structure of a furin-antibody complex explains non-competitive inhibition by steric exclusion of substrate conformers (2016) Sci Rep, 6, p. 34303; Dahms, S.O., Jiao, G.S., Than, M.E., Structural studies revealed active site distortions of human Furin by a small molecule inhibitor (2017) ACS Chem Biol, 12, pp. 1211-1216; Diederich, S., Maisner, A., Molecular characteristics of the Nipah virus glycoproteins (2007) Ann N Y Acad Sci, 1102, pp. 39-50; Diederich, S., Thiel, L., Maisner, A., Role of endocytosis and cathepsin-mediated activation in Nipah virus entry (2008) Virology, 375, pp. 391-400; Dolnik, O., Volchkova, V., Garten, W., Carbonnelle, C., Becker, S., Kahnt, J., Stroher, U., Volchkov, V., Ectodomain shedding of the glycoprotein GP of Ebola virus (2004) EMBO J, 23, pp. 2175-2184; Düchene, D., Colombo, E., Désilets, A., Boudreault, P.L., Leduc, R., Marsault, E., Najmanovich, R., Analysis of subpocket selectivity and identification of potent selective inhibitors for matriptase and matriptase-2 (2014) J Med Chem, 57, pp. 10198-10204; Enyedy, I.J., Lee, S.L., Kuo, A.H., Dickson, R.B., Lin, C.Y., Wang, S., Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase (2001) J Med Chem, 44, pp. 1349-1355; Escudero-Pérez, B., Volchkova, V.A., Dolnik, O., Lawrence, P., Volchkov, V.E., Shed GP of Ebola virus triggers immune activation and increased vascular permeability (2014) PLoS Pathog, 10, p. e1004509; Fennell, B.D., Warren, J.M., Chung, K.K., Main, H.L., Arend, A.B., Tochowicz, A., Gotz, M.G., Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors (2013) J Enzyme Inhib Med Chem, 28, pp. 468-478; Fergusson, D.A., Hebert, P.C., Mazer, C.D., Fremes, S., MacAdams, C., Murkin, J.M., Teoh, K., Blajchman, M.A., A comparison of aprotinin and lysine analogues in high-risk cardiac surgery (2008) N Engl J Med, 358, pp. 2319-2331; Fittler, H., Avrutina, O., Glotzbach, B., Empting, M., Kolmar, H., Combinatorial tuning of peptidic drug candidates: High-affinity matriptase inhibitors through incremental structure-guided optimization (2013) Org Biomol Chem, 11, pp. 1848-1857; Fittler, H., Avrutina, O., Empting, M., Kolmar, H., Potent inhibitors of human matriptase-1 based on the scaffold of sunflower trypsin inhibitor (2014) J Pept Sci, 20, pp. 415-420; Fittler, H., Depp, A., Avrutina, O., Dahms, S.O., Than, M.E., Empting, M., Kolmar, H., Engineering a constrained peptidic scaffold towards potent and selective Furin inhibitors (2015) ChemBioChem, 16, pp. 2441-2444; Frizler, M., Stirnberg, M., Sisay, M.T., Gütschow, M., Development of nitrile-based peptidic inhibitors of cysteine cathepsins (2010) Curr Top Med Chem, 10, pp. 294-322; Fugere, M., Appel, J., Houghten, R.A., Lindberg, I., Day, R., Short polybasic peptide sequences are potent inhibitors of PC5/6 and PC7: Use of positional scanning-synthetic peptide combinatorial libraries as a tool for the optimization of inhibitory sequences (2007) Mol Pharmacol, 71, pp. 323-332; Fujii, S., Hitomi, Y., New synthetic inhibitors of C1r, C1 esterase, thrombin, plasmin, kallikrein and trypsin (1981) Biochim Biophys Acta, 661, pp. 342-345; Furtmann, N., Häussler, D., Scheidt, T., Stirnberg, M., Steinmetzer, T., Bajorath, J., Gütschow, M., Limiting the number of potential binding modes by introducing symmetry into ligands: Structure-based design of inhibitors for trypsin-like serine proteases (2016) ChemMedChem, 22, pp. 610-625; Galkin, A.V., Mullen, L., Fox, W.D., Brown, J., Duncan, D., Moreno, O., Madison, E.L., Agus, D.B., CVS- 3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts (2004) Prostate, 61, pp. 228-235; Garten, W., Klenk, H.D., Cleavage activation of the influenza virus hemagglutinin and its role in pathogenesis (2008) Avian Influenza, pp. 156-167. , In: Klenk HD, Matrosovich M, Stech J, editors. Basel: Karger; Garten, W., Stieneke, A., Shaw, E., Wikström, P., Klenk, H.D., Inhibition of proteolytic activation of influenza virus hemagglutinin by specific peptidyl chloroalkyl ketones (1989) Virology, 172, pp. 25-31; Garten, W., Hallenberger, S., Ortmann, D., Schäfer, W., Vey, M., Angliker, H., Shaw, E., Klenk, H.D., Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones (1994) Biochimie, 76, pp. 217-225; Garten, W., Braden, C., Arendt, A., Peitsch, C., Baron, J., Lu, Y., Pawletko, K., Böttcher-Friebertshäuser, E., Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics (2015) Eur J Cell Biol, 94, pp. 375-383; Ghosh, A.K., Osswald, H.L., Prato, G., Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS (2016) J Med Chem, 59, pp. 5172-5208; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Drosten, C., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511; Goettig, P., Magdolen, V., Brandstetter, H., Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs) (2010) Biochimie, 92, pp. 1546-1567; Goswami, R., Mukherjee, S., Wohlfahrt, G., Ghadiyaram, C., Nagaraj, J., Chandra, B.R., Sistla, R.K., Moilanen, A., Discovery of Pyridyl Bis(oxy)dibenzimidam- ide derivatives as selective Matriptase inhibitors (2013) ACS Med Chem Lett, 4, pp. 1152-1157; Goswami, R., Mukherjee, S., Ghadiyaram, C., Wohlfahrt, G., Sistla, R.K., Nagaraj, J., Satyam, L.K., Gopinath, S., Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy (2014) Bioorg Med Chem, 22, pp. 3187-3203; Goswami, R., Wohlfahrt, G., Mukherjee, S., Ghadiyaram, C., Nagaraj, J., Satyam, L.K., Subbarao, K., Subramanya, H.S., Discovery of O-(3-carbamimidoylphenyl)-l- serine amides as matriptase inhibitors using a fragment-linking approach (2015) Bioorg Med Chem Lett, 25, pp. 616-620; Gotoh, B., Ogasawara, T., Toyoda, T., Inocencio, N.M., Hamaguchi, M., Nagai, Y., An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo (1990) EMBO J, 9, pp. 4189-4195; Greenspan, P.D., Clark, K.L., Tommasi, R.A., Cowen, S.D., McQuire, L.W., Farley, D.L., van Duzer, J.H., Du, Z., Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design (2001) J Med Chem, 44, pp. 4524-4534; Gustafsson, D., Bylund, R., Antonsson, T., Nilsson, I., Nyström, J.E., Eriksson, U., Bredberg, U., Teger-Nilsson, A.C., A new oral anticoagulant: The 50-year challenge (2004) Nat Rev Drug Discov, 3, pp. 649-659; Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H.D., Garten, W., Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160 (1992) Nature, 360, pp. 358-361; Hamilton, B.S., Whittaker, G.R., Cleavage activation of human-adapted influenza virus subtypes by kallikrein-related peptidases 5 and 12 (2013) J Biol Chem, 288, pp. 17399-17407; Hamilton, B.S., Chung, C., Cyphers, S.Y., Rinaldi, V.D., Marcano, V.C., Whittaker, G.R., Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2 (2014) Biochem Biophys Res Commun, 450, pp. 1070-1075; Hammami, M., Rühmann, E., Maurer, E., Heine, A., Gütschow, M., Klebe, G., Steinmetzer, T., New 3-amidinophenylalanine-derived inhibitors of matriptase (2012) Med Chem Commun, 3, pp. 807-813; Han, S.J., Kim, H.S., Kim, K.I., Whang, S.M., Hong, K.S., Lee, W.K., Lee, S.H., Use of Nafamostat Mesilate as an anticoagulant during extracorporeal membrane oxygenation (2011) J Korean Med Sci, 26, pp. 945-950; Han, Z., Harris, P.K., Jones, D.E., Chugani, R., Kim, T., Agarwal, M., Shen, W., Janetka, J.W., Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A nonkinase strategy to block cell signaling in cancer (2014) ACS Med Chem Lett, 5, pp. 1219-1224; Han, Z., Harris, P.K., Karmakar, P., Kim, T., Owusu, B.Y., Wildman, S.A., Klampfer, L., Janetka, J.W., Alpha- Ketobenzothiazole Serine Protease inhibitors of aberrant HGF/c-MET and MSP/RON Kinase pathway signaling in cancer (2016) ChemMedChem, 11, pp. 585-599; Hanada, K., Tamai, M., Yamagishi, M., Ohmura, S., Sawada, J., Tanaka, I., Isolation and characterization of E-64, a new thiol protease inhibitor (1978) Agric Biol Chem, 42, pp. 523-528; Hanson, S.R., Harker, L.A., Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (1988) Proc Natl Acad Sci U S A, 85, pp. 3184-3188; Hardes, K., Becker, G.L., Lu, Y., Dahms, S.O., Köhler, S., Beyer, W., Sandvig, K., Walz, L., Novel Furin inhibitors with potent anti-infectious activity (2015) ChemMedChem, 10, pp. 1218-1231; Hardes, K., Ivanova, T., Thaa, B., McInerney, G.M., Klokk, T.I., Sandvig, K., Künzel, S., Steinmetzer, T., Elongated and shortened peptidomimetic inhibitors of the proprotein concertase furin (2017) ChemMedChem, 12, pp. 613-620; Hatesuer, B., Bertram, S., Mehnert, N., Bahgat, M.M., Nelson, P.S., Pöhlman, S., Schughart, K., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice (2013) PLoS Pathog, 9, p. e1003774; Hay, B.A., Abrams, B., Zumbrunn, A.Y., Valentine, J.J., Warren, L.C., Petras, S.F., Shelly, L.D., Hawkins, J.L., Aminopyrrolidineamide inhibitors of site-1 protease (2007) Bioorg Med Chem Lett, 17, pp. 4411-4414; Hellstern, P., Stürzebecher, U., Wuchold, B., Haubelt, H., Seyfert, U.T., Bauer, M., Vogt, A., Stürzebecher, J., Preservation of in vitro function of platelets stored in the presence of a synthetic dual inhibitor of factor Xa and thrombin (2007) J Thromb Haemost, 5, pp. 2119-2126; Henrich, S., Cameron, A., Bourenkov, G.P., Kiefersauer, R., Huber, R., Lindberg, I., Bode, W., Than, M.E., The crystal structure of the proprotein processing proteinase furin explains its stringent specificity (2003) Nat Struct Biol, 10, pp. 520-526; Henrich, S., Lindberg, I., Bode, W., Than, M.E., Proprotein convertase models based on the crystal structures of furin and kexin: Explanation of their specificity (2005) J Mol Biol, 345, pp. 211-227; Hosoya, M., Shigeta, S., Ishii, T., Suzuki, H., De Clercq, E., Comparative inhibitory effects of various nucleoside and nonnucleoside analogues on replication of influenza virus types A and B in vitro and in ovo (1993) J Infect Dis, 168, pp. 641-646; Howell, E.H., Cameron, S.J., Neprilysin inhibition: A brief review of past pharmacological strategies for heart failure treatment and future directions (2016) Cardiol J, 23, pp. 591-598; Jean, F., Stella, K., Thomas, L., Liu, G., Xiang, Y., Reason, A.J., Thomas, G., Alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: Application as an antipathogenic agent (1998) Proc Natl Acad Sci U S A, 95, pp. 7293-7298; Jiao, G.S., Cregar, L., Wang, J., Millis, S.Z., Tang, C., O'Malley, S., Johnson, A.T., Thomas, G., Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine (2006) Proc Natl Acad Sci U S A, 103, pp. 19707-19712; Kacprzak, M.M., Peinado, J.R., Than, M.E., Appel, J., Henrich, S., Lipkind, G., Houghten, R.A., Lindberg, I., Inhibition of furin by polyarginine-containing peptides: Nanomolar inhibition by nona-D-arginine (2004) J Biol Chem, 279, pp. 36788-36794; Kang, S., Min, H.J., Kang, M.S., Jung, M.G., Kim, S., Discovery of novel 2-hydroxydiarylamide derivatives as TMPRSS4 inhibitors (2013) Bioorg Med Chem Lett, 23, pp. 1748-1751; Kawase, M., Shirato, K., van der Hoek, L., Taguchi, F., Matsuyama, S., Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry (2012) J Virol, 86, pp. 6537-6545; Kido, H., Yokogoshi, Y., Sakai, K., Tashiro, M., Kishino, Y., Fukutomi, A., Katunuma, N., Isolation and characterization of a novel trypsin-like protease found in rat bronchiolar epithelial Clara cells. A possible activator of the viral fusion glycoprotein (1992) J Biol Chem, 267, pp. 13573-13579; Kido, H., Okumura, Y., Takahashi, E., Pan, H.Y., Wang, S., Yao, D., Yao, M., Yano, M., Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure (2012) Biochim Biophys Acta, 1824, pp. 186-194; Klenk, H.D., Garten, W., Host cell proteases controlling virus pathogenicity (1994) Trends Microbiol, 2, pp. 39-43; Klenk, H.D., Rott, R., Formation of influenza virus proteins (1973) J Virol, 11, pp. 823-831; Klenk, H.D., Rott, R., Orlich, M., Blodorn, J., Activation of influenza A viruses by trypsin treatment (1975) Virology, 68, pp. 426-439; Komiyama, T., Fuller, R.S., Engineered eglin c variants inhibit yeast and human proprotein processing proteases, Kex2 and furin (2000) Biochemistry, 39, pp. 15156-15165; Komiyama, T., Coppola, J.M., Larsen, M.J., van Dort, M.E., Ross, B.D., Day, R., Rehemtulla, A., Fuller, R.S., Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules (2009) J Biol Chem, 284, pp. 15729-15738; Kortuem, K.M., Stewart, A.K., Carfilzomib (2013) Blood, 121, pp. 893-897; Kouretova, J., Hammamy, M.Z., Epp, A., Hardes, K., Kallis, S., Zhang, L., Hilgenfeld, R., Steinmetzer, T., Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication (2017) J Enzyme Inhib Med Chem, 32, pp. 712-721; Kowalska, D., Liu, J., Appel, J.R., Ozawa, A., Nefzi, A., Mackin, R.B., Houghten, R.A., Lindberg, I., Synthetic small-molecule prohormone convertase 2 inhibitors (2009) Mol Pharmacol, 75, pp. 617-625; Kühn, N., Bergmann, S., Kosterke, N., Lambertz, R.L., Keppner, A., van den Brand, J.M., Pöhlmann, S., Hatesuer, B., The proteolytic activation of (H3N2) Influenza A virus hemagglutinin is facilitated by different type II Transmembrane serine proteases (2016) J Virol, 90, pp. 4298-4307; Kwiatkowska, A., Couture, F., Levesque, C., Ly, K., Beauchemin, S., Desjardins, R., Neugebauer, W., Day, R., Novel insights into structure-activity relationships of N-terminally modified PACE4 inhibitors (2016) ChemMedChem, 11, pp. 289-301; Lazarowitz, S.G., Choppin, P.W., Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide (1975) Virology, 68, pp. 440-454; Lee, M.G., Kim, K.H., Park, K.Y., Kim, J.S., Evaluation of anti-influenza effects of camostat in mice infected with non-adapted human influenza viruses (1996) Arch Virol, 141, pp. 1979-1989; Lennartz, F., Bayer, K., Czerwonka, N., Lu, Y., Kehr, K., Hirz, M., Steinmetzer, T., Herden, C., Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell (2016) Cell Microbiol, 18, pp. 340-354; Levesque, C., Fugère, M., Kwiatkowska, A., Couture, F., Desjardins, R., Routhier, S., Moussette, P., Appel, J.R., The Multi-Leu peptide inhibitor discriminates between PACE4 and furin and exhibits antiproliferative effects on prostate cancer cells (2012) J Med Chem, 55, pp. 10501-10511; Levy, J.H., Adkinson, N.F.J., Anaphylaxis during cardiac surgery: Implications for clinicians (2008) Anesth Analg, 106, pp. 392-403; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Li, P., Jiang, S., Lee, S.L., Lin, C.Y., Johnson, M.D., Dickson, R.B., Michejda, C.J., Roller, P.P., Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1 (2007) J Med Chem, 50, pp. 5976-5983; Liu, Z.X., Fei, H., Chi, C.W., Two engineered eglin c mutants potently and selectively inhibiting kexin or furin (2004) FEBS Lett, 556, pp. 116-120; Liu, M., Yuan, C., Jensen, J.K., Zhao, B., Jiang, Y., Jiang, L., Huang, M., The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition (2017) J Biol Chem, 292, pp. 8412-8423; Long, Y.Q., Lee, S.L., Lin, C.Y., Enyedy, I.J., Wang, S., Li, P., Dickson, R.B., Roller, P.P., Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase (2001) Bioorg Med Chem Lett, 11, pp. 2515-2519; Löser, R., Frizler, M., Schilling, K., Gütschow, M., Azadipeptide nitriles: Highly potent and pro- teolytically stable inhibitors of papain-like cysteine proteases (2008) Angew Chem Int Ed Engl, 47, pp. 4331-4334; Lu, W., Zhang, W., Molloy, S.S., Thomas, G., Ryan, K., Chiang, Y., Anderson, S., Laskowski M Jr. Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin (1993) J Biol Chem, 268, pp. 14583-14585; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Lu, Y., Hardes, K., Dahms, S.O., Böttcher-Friebertshäuser, E., Steinmetzer, T., Than, M.E., Klenk, H.D., Garten, W., Peptidomimetic furin inhibitor MI-701 in combination with oseltamivir and ribavirin efficiently blocks propagation of highly pathogenic avian influenza viruses and delays high level oseltamivir resistance in MDCK cells (2015) Antiviral Res, 120, pp. 89-100; Lucas, J.M., Heinlein, C., Kim, T., Hernandez, S.A., Malik, M.S., True, L.D., Morrissey, C., Mostaghel, E., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis (2014) Cancer Discov, 4, pp. 1310-1325; Luckett, S., Garcia, R.S., Barker, J.J., Konarev, A.V., Shewry, P.R., Clarke, A.R., Brady, R.L., Highresolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds (1999) J Mol Biol, 290, pp. 525-533; Maisa, A., Stroher, U., Klenk, H.D., Garten, W., Strecker, T., Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1)-antitrypsin variants (2009) PLoS Negl Trop Dis, 3, p. e446; Maiwald, A., Hammami, M., Wagner, S., Heine, A., Klebe, G., Steinmetzer, T., Changing the selectivity profile-from substrate analog inhibitors of thrombin and factor Xa to potent matriptase inhibitors (2016) J Enzyme Inhib Med Chem, 31, pp. 89-97; Manasanch, E.E., Orlowski, R.Z., Proteasome inhibitors in cancer therapy (2017) Nat Rev Clin Oncol, 14, pp. 417-433; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J Virol, 84, pp. 12658-12664; McBride, J.D., Watson, E.M., Brauer, A.B., Jaulent, A.M., Leatherbarrow, R.J., Peptide mimics of the Bowman-Birk inhibitor reactive site loop (2002) Biopolymers, 66, pp. 79-92; McCauley, J.A., Rudd, M.T., Hepatitis C virus NS3/4a protease inhibitors (2016) Curr Opin Pharmacol, 30, pp. 84-92; Meyer, D., Sielaff, F., Hammami, M., Böttcher-Friebertshäuser, E., Garten, W., Steinmetzer, T., Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation (2013) Biochem J, 452, pp. 331-343; Midgley, I., Hood, A.J., Proctor, P., Chasseaud, L.F., Irons, S.R., Cheng, K.N., Brindley, C.J., Bonn, R., Metabolic fate of 14C-camostat mesylate in man, rat and dog after intravenous administration (1994) Xenobiotica, 24, pp. 79-92; (2016) C.C.G.I., 1010 Sherbooke St. West, Suite #910, , Montreal, QC, Canada, H3A 2R7; Mullard, A., Merck &Co. drops osteoporosis drug odanacatib (2016) Nat Rev Drug Discov, 15, p. 669; Murakami, M., Towatari, T., Ohuchi, M., Shiota, M., Akao, M., Okumura, Y., Parry, M.A., Kido, H., Miniplasmin found in the epithelial cells of bronchioles triggers infection by broad-spectrum influenza A viruses and Sendai virus (2001) Eur J Biochem, 268, pp. 2847-2855; Oe, Y., Hayashi, S., Fushima, T., Sato, E., Kisu, K., Sato, H., Ito, S., Takahashi, N., Coagulation Factor Xa and Protease-Activated Receptor 2 as novel therapeutic targets for diabetic nephropathy (2016) Arterioscler Thromb Vasc Biol, 36, pp. 1525-1533; Okumura, Y., Takahashi, E., Yano, M., Ohuchi, M., Daidoji, T., Nakaya, T., Böttcher, E., Kido, H., Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication (2010) J Virol, 84, pp. 5089-5096; Opal, S.M., Artenstein, A.W., Cristofaro, P.A., Jhung, J.W., Palardy, J.E., Parejo, N.A., Lim, Y.P., Inter-alphainhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication (2005) Infect Immun, 73, pp. 5101-5105; Ovcharenko, A.V., Zhirnov, O.P., Aprotinin aerosol treatment of influenza and paramyxovirus bronchopneumonia of mice (1994) Antiviral Res, 23, pp. 107-118; Paju, A., Sorsa, T., Tervahartiala, T., Koivunen, E., Haglund, C., Leminen, A., Wahlström, T., Stenman, U.H., The levels of trypsinogen isoenzymes in ovarian tumour cyst fluids are associated with promatrix metalloproteinase-9 but not promatrix metalloproteinase-2 activation (2001) Br J Cancer, 84, pp. 1363-1371; Palmer, J.T., Rasnick, D., Klaus, J.L., Brömme, D., Vinyl sulfones as mechanism-based cysteine protease inhibitors (1995) J Med Chem, 38, pp. 3193-3196; Pan, H.Y., Yamada, H., Chida, J., Wang, S., Yano, M., Yao, M., Zhu, J., Kido, H., Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis (2011) Cardiovasc Res, 89, pp. 595-603; Pasquato, A., Pullikotil, P., Asselin, M.C., Vacatello, M., Paolillo, L., Ghezzo, F., Basso, F., Seidah, N.G., The proprotein concertase SKI-1/S1P. In vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors (2006) J Biol Chem, 281, pp. 23471-23481; Pasquato, A., Rochat, C., Burri, D.J., Pasqual, G., de la Torre, J.C., Kunz, S., Evaluation of the antiarenaviral activity of the subtilisin kexin isozyme-1/site-1 protease inhibitor PF-429242 (2012) Virology, 423, pp. 14-22; Pasquato, A., Ramos da Palma, J., Galan, C., Seidah, N.G., Kunz, S., Viral envelope glycoprotein processing by proprotein convertases (2013) Antiviral Res, 99, pp. 49-60; Phillips, J.M., Gallagher, T., Weiss, S.R., Neurovirulent Murine Coronavirus JHM. SD uses cellular zinc metalloproteases for virus entry and cell-cell fusion (2017) J Virol, 91, pp. e01564-16; Podsiadlo, P., Komiyama, T., Fuller, R.S., Blum, O., Furin inhibition by compounds of copper and zinc (2004) J Biol Chem, 279, pp. 36219-36227; Powers, J.C., Asgian, J.L., Ekici, O.D., James, K.E., Irreversible inhibitors of serine, cysteine, and threonine proteases (2002) Chem Rev, 102, pp. 4639-4750; Pullikotil, P., Vincent, M., Nichol, S.T., Seidah, N.G., Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: Processing of SREBP-2, ATF6, and a viral glycoprotein (2004) J Biol Chem, 279, pp. 17338-17347; Quesada, V., Ordónez, G.R., Sáñchez, L.M., Puente, X.S., López-Otin, C., The Degradome database: Mammalian proteases and diseases of proteolysis (2009) Nucleic Acids Res, 37, pp. D239-D243; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Rawlings, N.D., Waller, M., Barrett, A.J., Bateman, A., MEROPS: The database of proteolytic enzymes, their substrates and inhibitors (2014) Nucleic Acids Res, 42, pp. D503-D509; Remacle, A.G., Gawlik, K., Golubkov, V.S., Cadwell, G.W., Liddington, R.C., Cieplak, P., Millis, S.Z., Yuan, X.W., Selective and potent furin inhibitors protect cells from anthrax without significant toxicity (2010) Int J Biochem Cell Biol, 42, pp. 987-995; Renatus, M., Bode, W., Huber, R., Stürzebecher, J., Stubbs, M.T., Structural and functional analyses of benzamidine-based inhibitors in complex with trypsin: Implications for the inhibition of factor Xa, tPA, and urokinase (1998) J Med Chem, 41, pp. 5445-5456; Rockwell, N.C., Krysan, D.J., Komiyama, T., Fuller, R.S., Precursor processing by kex2/furin proteases (2002) Chem Rev, 102, pp. 4525-4548; Runger, T.M., Adami, S., Benhamou, C.L., Czerwinski, E., Farrerons, J., Kendler, D.L., Mindeholm, L., Smith, V., Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib (2012) J Am Acad Dermatol, 66, pp. e89-e96; Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Suzaki, Y., The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses (2014) J Virol, 88, pp. 5608-5616; Sato, M., Yoshida, S., Iida, K., Tomozawa, T., Kido, H., Yamashita, M., A novel influenza A virus activating enzyme from porcine lung: Purification and characterization (2003) Biol Chem, 384, pp. 219-227; Satoyoshi, E., Therapeutic trials on progressive muscular dystrophy (1992) Intern Med, 31, pp. 841-846; Schechter, I., Berger, A., On the size of the active site in proteases. I. Papain (1967) Biochem Biophys Res Commun, 27, pp. 157-162; Scheen, A.J., A review of gliptins for 2014 (2015) Expert Opin Pharmacother, 16, pp. 43-62; Schweinitz, A., Stürzebecher, A., Stürzebecher, U., Schuster, O., Stürzebecher, J., Steinmetzer, T., New substrate analogue inhibitors of factor Xa containing 4-amidinobenzylamide as P1 residue: Part 1 (2006) Med Chem, 2, pp. 349-361; Seidah, N.G., Chapter 721-Site-1 Protease A2-Rawlings, Neil D (2013) Handbook of proteolytic enzymes, pp. 3265-3270. , In: Salvesen G, editor. New York: Academic Press; Seidah, N.G., Chrétien, M., Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides (1999) Brain Res, 848, pp. 45-62; Seidah, N.G., Prat, A., The biology and therapeutic targeting of the proprotein convertases (2012) Nat Rev Drug Discov, 11, pp. 367-383; Setyono-Han, B., Stürzebecher, J., Schmalix, W.A., Muehlenweg, B., Sieuwerts, A.M., Timmermans, M., Magdolen, V., Foekens, J.A., Suppression of rat breast cancer metastasis and reduction of primary tumour growth by the small synthetic urokinase inhibitor WX-UK1 (2005) Thromb Haemost, 93, pp. 779-786; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human Coronavirus 229E bypass the endosome for cell entry (2017) J Virol, 91, pp. e01387-16; Shiryaev, S.A., Remacle, A.G., Ratnikov, B.I., Nelson, N.A., Savinov, A.Y., Wei, G., Bottini, M., Desjardins, R., Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens (2007) J Biol Chem, 282, pp. 20847-20853; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J Virol, 85, pp. 873-882; Sielaff, F., Böttcher-Friebertshäuser, E., Meyer, D., Saupe, S.M., Volk, I.M., Garten, W., Steinmetzer, T., Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT (2011) Bioorg Med Chem Lett, 21, pp. 4860-4864; Sielaff, F., Than, M.E., Bevec, D., Lindberg, I., Steinmetzer, T., New furin inhibitors based on weakly basic amidinohydrazones (2011) Bioorg Med Chem Lett, 21, pp. 836-840; Siklos, M., BenAissa, M., Thatcher, G.R., Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors (2015) Acta Pharmaceut Sin B, 5, pp. 506-519; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci U S A, 102, pp. 11876-11881; Singh, J., Petter, R.C., Baillie, T.A., Whitty, A., The resurgence of covalent drugs (2011) Nat Rev Drug Discov, 10, pp. 307-317; Sisay, M.T., Steinmetzer, T., Stirnberg, M., Maurer, E., Hammami, M., Bajorath, J., Gütschow, M., Identification of the first low-molecular-weight inhibitors of matriptase-2 (2010) J Med Chem, 53, pp. 5523-5535; Someya, A., Tanaka, N., Okuyama, A., Inhibition of influenza virus A/WSN replication by a trypsin inhibitor, 6-amidino-2-naphthyl p-guanidinobenzoate (1990) Biochem Biophys Res Commun, 169, pp. 148-152; Sorsa, T., Salo, T., Koivunen, E., Tyynela, J., Konttinen, Y.T., Bergmann, U., Tuuttila, A., Heikkila, P., Activation of type IV procollagenases by human tumor-associated trypsin-2 (1997) J Biol Chem, 272, pp. 21067-21074; Steinmetzer, T., Hauptmann, J., Stürzebecher, J., Advances in the development of thrombin inhibitors (2001) Expert Opin Investig Drugs, 10, pp. 845-864; Steinmetzer, T., Schweinitz, A., Stürzebecher, A., Dönnecke, D., Uhland, K., Schuster, O., Steinmetzer, P., Than, M.E., Secondary amides of sulfonylated 3-amidinophenylalanine. New potent and selective inhibitors of matriptase (2006) J Med Chem, 49, pp. 4116-4126; Stevens, J., Corper, A.L., Basler, C.F., Taubenberger, J.K., Palese, P., Wilson, I.A., Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus (2004) Science, 303, pp. 1866-1870; Straub, A., Roehrig, S., Hillisch, A., Oral, direct thrombin and factor Xa inhibitors: The replacement for warfarin, leeches, and pig intestines (2011) Angew Chem Int Ed Engl, 50, pp. 4574-4590; Stürzebecher, J., Prasa, D., Hauptmann, J., Vieweg, H., Wikström, P., Synthesis and structure-activity relationships of potent thrombin inhibitors: Piperazides of 3-amidinophenylalanine (1997) J Med Chem, 40, pp. 3091-3099; Stürzebecher, J., Vieweg, H., Steinmetzer, T., Schweinitz, A., Stubbs, M.T., Renatus, M., Wikström, P., 3-Amidinophenylalanine-based inhibitors of urokinase (1999) Bioorg Med Chem Lett, 9, pp. 3147-3152; Stürzebecher, J., Schweinitz, A., Schmalix, W.A., Wikström, P., Synthetic urokinase inhibitors as potential anti-invasive drugs (2001) IDrugs, 4, pp. 677-683; Swedberg, J.E., Harris, J.M., Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors (2011) Biochemistry, 50, pp. 8454-8462; Szabo, R., Hobson, J.P., List, K., Molinolo, A., Lin, C.Y., Bugge, T.H., Potent inhibition and global colocalization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity (2008) J Biol Chem, 283, pp. 29495-29504; Tarnow, C., Engels, G., Arendt, A., Schwalm, F., Sediri, H., Preuss, A., Nelson, P.S., Gabriel, G., TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice (2014) J Virol, 88, pp. 4744-4751; Taylor, N.A., Van De Ven, W.J., Creemers, J.W., Curbing activation: Proprotein convertases in homeostasis and pathology (2003) FASEB J, 17, pp. 1215-1227; Thomas, G., Furin at the cutting edge: From protein traffic to embryogenesis and disease (2002) Nat Rev Mol Cell Biol, 3, pp. 753-766; Turk, B., Targeting proteases: Successes, failures and future prospects (2006) Nat Rev Drug Discov, 5, pp. 785-799; Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., Turk, D., Cysteine cathepsins: From structure, function and regulation to new frontiers (2012) Biochim Biophys Acta, 1824, pp. 68-88; Tziridis, A., Rauh, D., Neumann, P., Kolenko, P., Menzel, A., Bräuer, U., Ursel, C., Schweinitz, A., Correlating structure and ligand affinity in drug discovery: A cautionary tale involving second shell residues (2014) Biol Chem, 395, pp. 891-903; Urata, S., Yun, N., Pasquato, A., Paessler, S., Kunz, S., de la Torre, J.C., Antiviral activity of a small- molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease (2011) J Virol, 85, pp. 795-803; Van Rompaey, L., Ayoubi, T., Van De Ven, W., Marynen, P., Inhibition of intracellular proteolytic processing of soluble proproteins by an engineered alpha 2-macroglobulin containing a furin recognition sequence in the bait region (1997) Biochem J, 326, pp. 507-514; Vandenbroucke, R.E., Libert, C., Is there new hope for therapeutic matrix metalloproteinase inhibition (2014) Nat Rev Drug Discov, 13, pp. 904-927; Vlieghe, P., Lisowski, V., Martinez, J., Khrestchatisky, M., Synthetic therapeutic peptides: Science and market (2010) Drug Discov Today, 15, pp. 40-56; Wang, S., Le, T.Q., Kurihara, N., Chida, J., Cisse, Y., Yano, M., Kido, H., Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza (2010) J Infect Dis, 202, pp. 991-1001; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Watanabe, M., Hirano, A., Stenglein, S., Nelson, J., Thomas, G., Wong, T.C., Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus (1995) J Virol, 69, pp. 3206-3210; Wood, J.M., Maibaum, J., Rahuel, J., Grutter, M.G., Cohen, N.C., Rasetti, V., Ruger, H., Fuhrer, W., Structure-based design of aliskiren, a novel orally effective renin inhibitor (2003) Biochem Biophys Res Commun, 308, pp. 698-705; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974; Wysocka, M., Spichalska, B., Lesner, A., Jaros, M., Brzozowski, K., Legowska, A., Rolka, K., Substrate specificity and inhibitory study of human airway trypsin-like protease (2010) Bioorg Med Chem, 18, pp. 5504-5509; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Yuan, C., Chen, L., Meehan, E.J., Daly, N., Craik, D.J., Huang, M., Ngo, J.C., Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1 (2011) BMC Struct Biol, 11, p. 30; Zeslawska, E., Schweinitz, A., Karcher, A., Sondermann, P., Sperl, S., Stürzebecher, J., Jacob, U., Crystals of the urokinase type plasminogen activator variant beta(c)-uPAin complex with small molecule inhibitors open the way towards structure-based drug design (2000) J Mol Biol, 301, pp. 465-475; Zhirnov, O.P., Ovcharenko, A.V., Bukrinskaya, A.G., Protective effect of protease inhibitors in influenza virus infected animals (1982) Arch Virol, 73, pp. 263-272; Zhirnov, O.P., Ovcharenko, A.V., Bukrinskaya, A.G., Proteolytic activation of influenza WSN virus in cultured cells is performed by homologous plasma enzymes (1982) J Gen Virol, 63, pp. 469-474; Zhirnov, O.P., Klenk, H.D., Wright, P.F., Aprotinin and similar protease inhibitors as drugs against influenza (2011) Antiviral Res, 92, pp. 27-36; Zhong, M., Munzer, J.S., Basak, A., Benjannet, S., Mowla, S.J., Decroly, E., Chretien, M., Seidah, N.G., The prosegments of furin and PC7 as potent inhibitors of proprotein concertases. In vitro and ex vivo assessment of their efficacy and selectivity (1999) J Biol Chem, 274, pp. 33913-33920; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr., Nunneley, J.W., Barnard, D., Renslo, A.R., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res, 116, pp. 76-84; Zhu, J., Declercq, J., Roucourt, B., Ghassabeh, G.H., Meulemans, S., Kinne, J., David, G., Lindberg, I., Generation and characterization of non-competitive furin- inhibiting nanobodies (2012) Biochem J, 448, pp. 73-82; Zmora, P., Blazejewska, P., Moldenhauer, A.S., Welsch, K., Nehlmeier, I., Wu, Q., Schneider, H., Bertram, S., DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry (2014) J Virol, 88, pp. 12087-12097; Zoratti, G.L., Tanabe, L.M., Varela, F.A., Murray, A.S., Bergum, C., Colombo, E., Lang, J.E., Marsault, E., Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling (2015) Nat Commun, 6, p. 6776","Steinmetzer, T.; Institute of Pharmaceutical Chemistry, Philipps UniversityGermany; email: steinmetzer@uni-marburg.de",,"Springer International Publishing",,9783319754741; 9783319754734,,,"English","Act. of Viruses by Host Proteases",Book Chapter,"Final",,Scopus,2-s2.0-85053532138 "Hsin W.-C., Chang C.-H., Chang C.-Y., Peng W.-H., Chien C.-L., Chang M.-F., Chang S.C.","57202195619;57202204831;57202204774;57202192562;7402864133;7404504288;36850651000;","Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus",2018,"Journal of Biomedical Science","25","1", 47,"","",,8,"10.1186/s12929-018-0449-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047405559&doi=10.1186%2fs12929-018-0449-x&partnerID=40&md5=293f8c989839505c4a4dcc3088428efe","Institute of Microbiology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan","Hsin, W.-C., Institute of Microbiology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Chang, C.-H., Institute of Microbiology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Chang, C.-Y., Institute of Microbiology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Peng, W.-H., Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Chien, C.-L., Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Chang, M.-F., Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan; Chang, S.C., Institute of Microbiology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taipei, 100, Taiwan","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) consists of a positive-sense, single-stranded RNA genome and four structural proteins: the spike, envelope, membrane, and nucleocapsid protein. The assembly of the viral genome into virus particles involves viral structural proteins and is believed to be mediated through recognition of specific sequences and RNA structures of the viral genome. Methods and Results: A culture system for the production of MERS coronavirus-like particles (MERS VLPs) was determined and established by electron microscopy and the detection of coexpressed viral structural proteins. Using the VLP system, a 258-nucleotide RNA fragment, which spans nucleotides 19,712 to 19,969 of the MERS-CoV genome (designated PS258(19712-19969)ME), was identified to function as a packaging signal. Assembly of the RNA packaging signal into MERS VLPs is dependent on the viral nucleocapsid protein. In addition, a 45-nucleotide stable stem-loop substructure of the PS258(19712-19969)ME interacted with both the N-terminal domain and the C-terminal domain of the viral nucleocapsid protein. Furthermore, a functional SARS-CoV RNA packaging signal failed to assemble into the MERS VLPs, which indicated virus-specific assembly of the RNA genome. Conclusions: A MERS-oV RNA packaging signal was identified by the detection of GFP expression following an incubation of MERS VLPs carrying the heterologous mRNA GFP-PS258(19712-19969)ME with virus permissive Huh7 cells. The MERS VLP system could help us in understanding virus infection and morphogenesis. © 2018 The Author(s).","MERS-CoV; Nucleocapsid protein; RNA packaging signal","messenger RNA; nucleocapsid protein; nucleotide; viral protein; virus RNA; messenger RNA; nucleocapsid protein; virus RNA; amino terminal sequence; Article; binding affinity; bioinformatics; carboxy terminal sequence; controlled study; electron microscopy; embryo; HEK293T cell line; Huh-7 cell line; human; human cell; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein expression; protein RNA binding; RNA packaging; RNA sequence; RNA structure; SARS coronavirus; signal transduction; virus assembly; virus genome; virus morphogenesis; genetics; HEK293 cell line; metabolism; Middle East respiratory syndrome coronavirus; physiology; tumor cell line; virus assembly; Cell Line, Tumor; HEK293 Cells; Humans; Middle East Respiratory Syndrome Coronavirus; Nucleocapsid Proteins; RNA, Messenger; RNA, Viral; Virus Assembly","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , 23075143; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , 23486063; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , 23831647; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: How to make sense.? (2006) J Gen Virol, 87, pp. 1403-1421. , 16690906; Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R., SARS - Beginning to understand a new virus (2003) Nat Rev Microbiol, 1, pp. 209-218. , 15035025; Dires, B., Dawo, F., Review on Middle East respiratory syndrome (2015) Open Acc Lib J, 2, p. e1749; Boscarino, J., Logan, H., Lacny, J., Gallagher, T., Envelope protein palmitoylations are crucial for murine coronavirus assembly (2008) J Virol, 82, pp. 2989-2999. , 18184706 2258982; De Haan, C.A., Vennema, H., Rottier, P.J., Assembly of the coronavirus envelope: Homotypic interactions between the M proteins (2000) J Virol, 74, pp. 4967-4978. , 10799570 110848; Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Rottier, P.J., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBO J, 15, pp. 2020-2028. , 8617249 450121; Chang, C.K., Lo, S.C., Wang, Y.S., Hou, M.H., Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein (2016) Drug Discov Today, 21, pp. 562-572. , 26691874; Kuo, L., Koetzner, C.A., Hurst, K.R., Masters, P.S., Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein (2014) J Virol, 88, pp. 4451-4465. , 24501403 3993769; Molenkamp, R., Spaan, W.J.M., Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal (1997) Virology, 239, pp. 78-86. , 9426448; Fosmire, J.A., Hwang, K., Makino, S., Identification and characterization of a coronavirus packaging signal (1992) J Virol, 66, pp. 3522-3530. , 1316465 241133; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J Virol, 87, pp. 5182-5192. , 23449786 3624306; Woo, K., Joo, M., Narayanan, K., Kim, K.H., Makino, S., Murine coronavirus packaging signal confers packaging to nonviral RNA (1997) J Virol, 71, pp. 824-827. , 8985424 191125; Cologna, R., Hogue, B.G., Identification of a bovine coronavirus packaging signal (2000) J Virol, 74, pp. 580-583. , 10590153 111575; Chen, S.C., Van Den Born, E., Van Den Worm, S.H., Pleij, C.W., Snijder, E.J., Olsthoorn, R.C., New structure model for the packaging signal in the genome of group IIa coronaviruses (2007) J Virol, 81, pp. 6771-6774. , 17428856 1900089; Chen, S.C., Olsthoorn, R.C., Group-specific structural features of the 5'-proximal sequences of coronavirus genomic RNAs (2010) Virology, 401, pp. 29-41. , 20202661; Hsieh, P.K., Chang, S.C., Huang, C.C., Lee, T.T., Hsiao, C.W., Kou, Y.H., Chen, I.Y., Chang, M.F., Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent (2005) J Virol, 79, pp. 13848-13855. , 16254320 1280188; Escors, D., Izeta, A., Capiscol, C., Enjuanes, L., Transmissible gastroenteritis coronavirus packaging signal is located at the 5′ end of the virus genome (2003) J Virol, 77, pp. 7890-7902. , 12829829 161917; Morales, L., Mateos-Gomez, P.A., Capiscol, C., Del Palacio, L., Enjuanes, L., Sola, I., Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5′ end of the genome and promotes viral RNA incorporation into virions in a replication-independent process (2013) J Virol, 87, pp. 11579-11590. , 23966403 3807314; Penzes, Z., Tibbles, K., Shaw, K., Britton, P., Brown, T.D., Cavanagh, D., Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus (1994) Virology, 203, pp. 286-293. , 8053152; Dalton, K., Casais, R., Shaw, K., Stirrups, K., Evans, S., Britton, P., Brown, T.D., Cavanagh, D., Cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging (2001) J Virol, 75, pp. 125-133. , 11119581 113905; Narayanan, K., Chen, C.J., Maeda, J., Makino, S., Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal (2003) J Virol, 77, pp. 2922-2927. , 12584316 149775; Narayanan, K., Makino, S., Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging (2001) J Virol, 75, pp. 9059-9067. , 11533169 114474; Kuo, L., Koetzner, C., Masters, P.S., A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging (2016) Virology, 494, pp. 100-107. , 27105451 4884538; Chang, M.F., Sun, C.Y., Chen, C.J., Chang, S.C., Functional motifs of delta antigen essential for RNA binding and replication of hepatitis delta virus (1993) J Virol, 67, pp. 2529-2536. , 8474158 237572; Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., Huang, T.H., The SARS coronavirus nucleocapsid protein - Forms and functions (2014) Antivir Res, 103, pp. 39-50. , 24418573; Papageorgiou, N., Lichière, J., Baklouti, A., Ferron, F., Sévajol, M., Canard, B., Coutard, B., Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering (2016) Acta Crystallogr D Struct Biol, 72, pp. 192-202. , 26894667; Saikatendu, K.S., Joseph, J.S., Subramanian, V., Neuman, B.W., Buchmeier, M.J., Stevens, R.C., Kuhn, P., Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein (2007) J Virol, 81, pp. 3913-3921. , 17229691 1866093; Chen, C.Y., Chang, C.K., Chang, Y.W., Sue, S.C., Bai, H.I., Riang, L., Hsiao, C.D., Huang, T.H., Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA (2007) J Mol Biol, 368, pp. 1075-1086. , 17379242; Luo, H., Chen, J., Chen, K., Shen, X., Jiang, H., Carboxyl terminus of severe acute respiratory syndrome coronavirus nucleocapsid protein: Self-association analysis and nucleic acid binding characterization (2006) Biochemistry, 45, pp. 11827-11835. , 17002283; Takeda, M., Chang, C.K., Ikeya, T., Güntert, P., Chang, Y.H., Hsu, Y.L., Huang, T.H., Kainosho, M., Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method (2008) J Mol Biol, 380, pp. 608-622. , 18561946; Yu, I.M., Gustafson, C.L., Diao, J., Burgner, I.I.J.W., Li, Z., Zhang, J., Chen, J., Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain (2005) J Biol Chem, 280, pp. 23280-23286. , 15849181; Chang, C.K., Hsu, Y.L., Chang, Y.H., Chao, F.A., Wu, M.C., Huang, Y.S., Hu, C.K., Huang, T.H., Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: Implications for ribonucleocapsid protein packaging (2009) J Virol, 83, pp. 2255-2264. , 19052082; Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Lee, S.J., Huang, T.H., Modular organization of SARS coronavirus nucleocapsid protein (2006) J Biomed Sci, 13, pp. 59-72. , 16228284; Hurst, K., Koetzner, C., Masters, P., Identification of in vivo interacting domains of the murine coronavirus nucleocapsid protein (2009) J Virol, 83, pp. 7221-7234. , 19420077 2704785; Ma, Y., Tong, X., Xu, X., Li, X., Lou, Z., Rao, Z., Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus (2010) Protein Cell, 1, pp. 688-697. , 21203940 4875274","Chang, M.-F.; Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, First Section, No. 1, Jen-Ai Road, Taiwan; email: mfchang@ntu.edu.tw",,"BioMed Central Ltd.",10217770,,JBCIE,"29793506","English","J. Biomed. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85047405559 "Huang P., Wang H., Cao Z., Jin H., Chi H., Zhao J., Yu B., Yan F., Hu X., Wu F., Jiao C., Hou P., Xu S., Zhao Y., Feng N., Wang J., Sun W., Wang T., Gao Y., Yang S., Xia X.","57193760636;36487256300;56655813200;35344902400;57188849905;8584763700;57199692198;56959769400;57194449891;57196353313;57193761289;57193762805;57202300647;55199696000;35175960300;56414620200;56281723400;55709791700;14060009300;35212814200;12787855600;","A rapid and specific assay for the detection of MERS-CoV",2018,"Frontiers in Microbiology","9","MAY", 1101,"","",,11,"10.3389/fmicb.2018.01101","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047835322&doi=10.3389%2ffmicb.2018.01101&partnerID=40&md5=d597bd1cf36cd5a53ab0efddea921e73","Animal Science and Technology College, Jilin Agricultural University, Changchun, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China; Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Heath, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China","Huang, P., Animal Science and Technology College, Jilin Agricultural University, Changchun, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Wang, H., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, College of Veterinary Medicine, Jilin University, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Cao, Z., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, College of Veterinary Medicine, Jilin University, Changchun, China; Jin, H., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, College of Veterinary Medicine, Jilin University, Changchun, China; Chi, H., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Zhao, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Heath, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China; Yu, B., Department of Clinical Laboratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China; Yan, F., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Hu, X., Animal Science and Technology College, Jilin Agricultural University, Changchun, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Wu, F., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Jiao, C., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Hou, P., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, College of Veterinary Medicine, Jilin University, Changchun, China; Xu, S., Animal Science and Technology College, Jilin Agricultural University, Changchun, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China; Zhao, Y., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Feng, N., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Wang, J., Animal Science and Technology College, Jilin Agricultural University, Changchun, China; Sun, W., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Wang, T., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Gao, Y., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Yang, S., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China; Xia, X., Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China, Jiangsu Co-innovation Center for Prevention, Control of Important Animal Infectious Disease, Zoonoses, Yangzhou, China","Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that can cause human respiratory disease. The development of a detection method for this virus that can lead to rapid and accurate diagnosis would be significant. In this study, we established a nucleic acid visualization technique that combines the reverse transcription loop-mediated isothermal amplification technique and a vertical flow visualization strip (RT-LAMP-VF) to detect the N gene of MERS-CoV. The RT-LAMP-VF assay was performed in a constant temperature water bath for 30 min, and the result was visible by the naked eye within 5 min. The RT-LAMP-VF assay was capable of detecting 2 × 101 copies/μl of synthesized RNA transcript and 1 × 101 copies/μl of MERS-CoV RNA. The method exhibits no cross-reactivities with multiple CoVs including SARS-related (SARSr)-CoV, HKU4, HKU1, OC43 and 229E, and thus exhibits high specificity. Compared to the real-time RT-PCR (rRT-PCR) method recommended by the World Health Organization (WHO), the RT-LAMP-VF assay is easy to handle, does not require expensive equipment and can rapidly complete detection within 35 min. © 2018 Huang, Wang, Cao, Jin, Chi, Zhao, Yu, Yan, Hu, Wu, Jiao, Hou, Xu, Zhao, Feng, Wang, Sun, Wang, Gao, Yang and Xia.","Middle East respiratory syndrome coronavirus; Nucleic acid visualization; Reverse transcription loop-mediated isothermal amplification; RT-LAMP-VF; Visual detection","nucleic acid; Article; gene sequence; gene synthesis; human; Middle East respiratory syndrome coronavirus; recombinant plasmid; respiratory tract disease; reverse transcription loop mediated isothermal amplification; reverse transcription polymerase chain reaction; RNA extraction; RNA transcription; sensitivity and specificity; severe acute respiratory syndrome","Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 370, pp. 2499-2505; Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., Ellington, A.D., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) PLoS One, 10; Cao, Z., Wang, H., Wang, L., Li, L., Jin, H., Xu, C., Visual detection of west nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (2016) Front. Microbiol, 7, p. 554; Chan, J.F., Choi, G.K., Tsang, A.K., Tee, K.M., Lam, H.Y., Yip, C.C., Development and evaluation of novel real-time reverse transcription-PCR Assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses (2015) J. Clin. Microbiol, 53, pp. 2722-2726; Chotiwan, N., Brewster, C.D., Magalhaes, T., Weger-Lucarelli, J., Duggal, N.K., Ruckert, C., Rapid and specific detection of Asian-and African-lineage Zika viruses (2017) Sci. Transl. Med, 9; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17; Ge, X.Y., Wang, N., Zhang, W., Hu, B., Li, B., Zhang, Y.Z., Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft (2016) Virol. Sin, 31, pp. 31-40; Ge, Y., Wu, B., Qi, X., Zhao, K., Guo, X., Zhu, Y., Rapid and sensitive detection of novel avian-origin influenza A (H7N9) virus by reverse transcription loop-mediated isothermal amplification combined with a lateral-flow device (2013) PLoS One, 8; Ge, Y., Zhou, Q., Zhao, K., Chi, Y., Liu, B., Min, X., Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor (2017) Int. J. Nanomedicine, 12, pp. 2645-2656; Kurosaki, Y., Grolla, A., Fukuma, A., Feldmann, H., Yasuda, J., Development and evaluation of a simple assay for Marburg virus detection using a reverse transcription-loop-mediated isothermal amplification method (2010) J. Clin. Microbiol, 48, pp. 2330-2336; Kwallah, A., Inoue, S., Muigai, A.W., Kubo, T., Sang, R., Morita, K., A real-time reverse transcription loop-mediated isothermal amplification assay for the rapid detection of yellow fever virus (2013) J. Virol. Methods, 193, pp. 23-27; Lee, S.H., Baek, Y.H., Kim, Y.H., Choi, Y.K., Song, M.S., Ahn, J.Y., One-Pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV (2016) Front. Microbiol, 7, p. 2166; Ling, Y., Qu, R., Luo, Y., Clinical analysis of the first patient with imported Middle East respiratory syndrome in China (2015) Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 27, pp. 630-634; Lu, X., Whitaker, B., Sakthivel, S.K., Kamili, S., Rose, L.E., Lowe, L., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J. Clin. Microbiol, 52, pp. 67-75; Mekata, T., Kono, T., Savan, R., Sakai, M., Kasornchandra, J., Yoshida, T., Detection of yellow head virus in shrimp by loop-mediated isothermal amplification (LAMP) (2006) J. Virol. Methods, 135, pp. 151-156; Mori, Y., Nagamine, K., Tomita, N., Notomi, T., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation (2001) Biochem. Biophys. Res. Commun, 289, pp. 150-154; Nazer, R.I., Outbreak of middle east respiratory syndrome-coronavirus causes high fatality after cardiac operations (2017) Ann. Thorac. Surg, 104, pp. e127-e129; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res, 28; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Shirato, K., Yano, T., Senba, S., Akachi, S., Kobayashi, T., Nishinaka, T., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP) (2014) Virol. J, 11, p. 139; Wang, J., Cheng, S., Yi, L., Cheng, Y., Yang, S., Xu, H., Detection of mink enteritis virus by loop-mediated isothermal amplification (LAMP) (2013) J. Virol. Methods, 187, pp. 401-405; Wang, Y., Liu, D., Shi, W., Lu, R., Wang, W., Zhao, Y., Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis (2015) mBio, 6; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: from discovery to intervention (2017) One Health, 3, pp. 11-16; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med, 234, pp. 1117-1127; Xu, C., Wang, H., Jin, H., Feng, N., Zheng, X., Cao, Z., Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection (2016) Arch. Virol, 161, pp. 1125-1133; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A., Fouchier, R.A.M., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820","Wang, H.; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChina; email: whl831125@163.com",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85047835322 "Li W., Hulswit R.J.G., Kenney S.P., Widjaja I., Jung K., Alhamo M.A., van Dieren B., van Kuppeveld F.J.M., Saif L.J., Bosch B.-J.","54966542700;56685560200;21934200600;26026520100;7402479954;57192310594;57195938065;7004255109;57205309530;7003681993;","Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility",2018,"Proceedings of the National Academy of Sciences of the United States of America","115","22",,"E5135","E5143",,28,"10.1073/pnas.1802879115","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047931538&doi=10.1073%2fpnas.1802879115&partnerID=40&md5=6f44939add7c88860be995254de2be5f","Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, United States","Li, W., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Hulswit, R.J.G., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Kenney, S.P., Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, United States; Widjaja, I., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Jung, K., Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, United States; Alhamo, M.A., Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, United States; van Dieren, B., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; van Kuppeveld, F.J.M., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Saif, L.J., Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, United States; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands","Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood. © 2018 National Academy of Sciences. All rights reserved.","APN; Cross-species transmission; PDCoV; Receptor; Spike","aminopeptidase; cell surface protein; virus spike protein; coronavirus spike glycoprotein; microsomal aminopeptidase; virus antibody; Alphacoronavirus; Article; bird; cat; chicken; controlled study; Coronavirinae; cross species transmission; enzyme active site; host range; human; human cell; infection sensitivity; knockout gene; mammal; nonhuman; phylogeny; pig; Porcine delta coronavirus; priority journal; protein analysis; protein domain; protein expression; receptor binding; species diversity; virus entry; virus identification; virus infection; virus transmission; animal; cell line; chemistry; Chlorocebus aethiops; communicable disease; Coronavirinae; Coronavirus infection; dog; genetics; host pathogen interaction; immunology; MDCK cell line; metabolism; mouse; pathogenicity; physiology; transmission; Vero cell line; veterinary medicine; virology; zoonosis; Animals; Antibodies, Viral; Cats; CD13 Antigens; Cell Line; Cercopithecus aethiops; Chickens; Communicable Diseases, Emerging; Coronavirus; Coronavirus Infections; Dogs; Host Specificity; Host-Pathogen Interactions; Humans; Madin Darby Canine Kidney Cells; Mice; Spike Glycoprotein, Coronavirus; Swine; Vero Cells; Zoonoses","Geoghegan, J.L., Duchêne, S., Holmes, E.C., Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families (2017) PLoS Pathog, 13; Kitchen, A., Shackelton, L.A., Holmes, E.C., Family level phylogenies reveal modes of macroevolution in RNA viruses (2011) Proc Natl Acad Sci USA, 108, pp. 238-243; (2015) Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003, , www.who.int/csr/sars/country/table2004_04_21/en/, Accessed January 29, 2018; Li, W., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146; Vijgen, L., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80, pp. 7270-7274; Corman, V.M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci USA, 113, pp. 9864-9869; Corman, V.M., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J Virol, 89, pp. 11858-11870; Tao, Y., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol, 91, pp. 1-16; Lau, S.K.P., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J Virol, 89, pp. 3076-3092; Hulswit, R.J., De Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57; Woo, P.C.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Le, V.P., A novel strain of porcine deltacoronavirus in Vietnam (2017) Arch Virol, 163, pp. 203-207; Li, G., Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announc, 2, pp. e00278-e00314; Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete genome sequence of strain SDCV/USA/Illinois121/2014, a porcine deltacoronavirus from the United States (2014) Genome Announc, 2, pp. e00218-e00314; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20, pp. 1227-1230; Janetanakit, T., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg Infect Dis, 22, pp. 757-759; Lorsirigool, A., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch Virol, 161, pp. 2909-2911; Song, D., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: Identification, prevalence and full-length genome sequence analysis (2015) Transbound Emerg Dis, 62, pp. 575-580; Mai, K., The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China (2018) Transbound Emerg Dis, 65, pp. 166-173; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc, 2, pp. 4-5; Hu, H., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548; Dong, N., Porcine deltacoronavirus in mainland China (2015) Emerg Infect Dis, 21, pp. 2254-2255; Ma, Y., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6, p. e00064; Jung, K., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg Infect Dis, 21, pp. 650-654; De Groot, R.J., Baker, S., Baric, R.S., Ziebuhr, J., Coronaviridae (2011) Virus Taxonomy: Ninth Report of The International Committee on Taxonomy of Viruses, pp. 806-828. , eds King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (Elsevier, London); Walls, A.C., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23, pp. 899-905; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Xiong, X., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J Virol, 92, pp. 1-16; Shang, J., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J Virol, 92, pp. 1-14; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci USA, 88, pp. 5533-5536; Yeager, C.L., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Delmas, B., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Hofmann, H., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci USA, 102, pp. 7988-7993; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Li, W., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci USA, 114, pp. E8508-E8517; Matrosovich, M., Herrler, G., Klenk, H.D., Sialic acid receptors of viruses (2015) Top Curr Chem, 367, pp. 1-28; Winter, C., Schwegmann-Wessels, C., Cavanagh, D., Neumann, U., Herrler, G., Sialic acid is a receptor determinant for infection of cells by avian infectious bronchitis virus (2006) J Gen Virol, 87, pp. 1209-1216; Huang, X., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J Virol, 89, pp. 7202-7213; Kolb, A.F., Maile, J., Heister, A., Siddell, S.G., Characterization of functional domains in the human coronavirus HCV 229E receptor (1996) J Gen Virol, 77, pp. 2515-2521; Li, W., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13; Bausch-Fluck, D., A mass spectrometric-derived cell surface protein atlas (2015) PLoS One, 10; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Shirato, K., Matsuyama, S., Ujike, M., Taguchi, F., Role of proteases in the release of porcine epidemic diarrhea virus from infected cells (2011) J Virol, 85, pp. 7872-7880; Chen, L., Lin, Y.-L., Peng, G., Li, F., Structural basis for multifunctional roles of mammalian aminopeptidase N (2012) Proc Natl Acad Sci USA, 109, pp. 17966-17971; Delmas, B., Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site (1994) J Virol, 68, pp. 5216-5224; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J Virol, 70, pp. 8669-8674; Mina-Osorio, P., The moonlighting enzyme CD13: Old and new functions to target (2008) Trends Mol Med, 14, pp. 361-371; Dijkman, R., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J Virol, 87, pp. 6081-6090; van der Velden, V.H.J., Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus (1998) Clin Exp Allergy, 28, pp. 110-120; Kenny, A.J., Maroux, S., Topology of microvillar membrance hydrolases of kidney and intestine (1982) Physiol Rev, 62, pp. 91-128; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range (2007) J Virol, 81, pp. 1261-1273; Kolb, A.F., Hegyi, A., Siddell, S.G., Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N (1997) J Gen Virol, 78, pp. 2795-2802; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci USA, 106, pp. 19970-19974; Earnest, J.T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog, 13; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Vijaykrishna, D., Evolutionary insights into the ecology of coronaviruses (2007) J Virol, 81, pp. 4012-4020; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species-a mechanism for coronavirus persistence and survival (2017) Curr Opin Virol, 23, pp. 1-7; Barlan, A., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 4953-4961; Raj, V.S., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838; Woolhouse, M., Scott, F., Hudson, Z., Howey, R., Chase-Topping, M., Human viruses: Discovery and emergence (2012) Philos Trans R Soc Lond B Biol Sci, 367, pp. 2864-2871; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch Virol, 162, pp. 2357-2362; Dong, B.Q., Detection of a novel and highly divergent coronavirus from Asian leopard cats and Chinese ferret badgers in Southern China (2007) J Virol, 81, pp. 6920-6926; Robinson, T.P., (2011) Global Livestock Production Systems, , FAO, Rome; Shi, Y., Wu, Y., Zhang, W., Qi, J., Gao, G.F., Enabling the ‘host jump’: Structural determinants of receptor-binding specificity in influenza A viruses (2014) Nat Rev Microbiol, 12, pp. 822-831; Weatherman, S., Feldmann, H., De Wit, E., Transmission of henipaviruses (2018) Curr Opin Virol, 28, pp. 7-11; Welch, S.K., Saif, L.J., Monoclonal antibodies to a virulent strain of transmissible gastroenteritis virus: Comparison of reactivity with virulent and attenuated virus (1988) Arch Virol, 101, pp. 221-235; Simkins, R.A., Weilnau, P.A., Bias, J., Saif, L.J., Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV (1992) Am J Vet Res, 53, pp. 1253-1258; Lin, C.-M., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342; Santiago, C., Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection (2017) Sci Rep, 7, p. 46045",,,"National Academy of Sciences",00278424,,PNASA,"29760102","English","Proc. Natl. Acad. Sci. U. S. A.",Article,"Final",Open Access,Scopus,2-s2.0-85047931538 "Wang L., Su S., Bi Y., Wong G., Gao G.F.","57189262949;54918814500;35093646300;37022200400;7403171212;","Bat-Origin Coronaviruses Expand Their Host Range to Pigs",2018,"Trends in Microbiology","26","6",,"466","470",,5,"10.1016/j.tim.2018.03.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045891091&doi=10.1016%2fj.tim.2018.03.001&partnerID=40&md5=b36604761f8a6f05b18e17a708f1c9c6","CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China","Wang, L., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China; Su, S., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Bi, Y., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China, Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, China; Wong, G., Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, China; Gao, G.F., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, China, Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China","Infections with bat-origin coronaviruses have caused severe illness in humans by ‘host jump’. Recently, novel bat-origin coronaviruses were found in pigs. The large number of mutations on the receptor-binding domain allowed the viruses to infect the new host, posing a potential threat to both agriculture and public health. © 2018 Elsevier Ltd","bat-origin; host jump; public health; SeACoV; swine enteric alphacoronaviruses","agriculture; Alphacoronavirus; animal dispersal; bat origin Coronavirus; case fatality rate; China; Coronavirinae; disease severity; gene mutation; genetic recombination; geographic distribution; host range; human; intermediate host; Middle East respiratory syndrome coronavirus; nonhuman; pig; population distribution; priority journal; public health; receptor binding; SARS coronavirus; Short Survey; spike gene; swine enteric alphacoronavirus; Verner Morrison syndrome; virus detection; virus gene; virus transmission; animal; bat; Coronavirus infection; genetic variation; genetics; phylogeny; pig; transmission; veterinary medicine; virology; wild animal; Alphacoronavirus; Animals; Animals, Wild; China; Chiroptera; Coronavirus Infections; Genetic Variation; Host Specificity; Humans; Phylogeny; Swine","Su, S., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Lu, G.W., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; de Wit, E., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Brown, I.H., The pig as an intermediate host for influenza A viruses between birds and humans (2001) Int. Congr. Ser., 1219, pp. 173-178; Gong, L., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Pan, Y.F., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Lu, G., Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; Calisher, C.H., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Sabir, J.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Chen, W., SARS-associated coronavirus transmitted from human to pig (2005) Emerg. Infect. Dis., 11, pp. 446-448; Vergara-Alert, J., Livestock susceptibility to infection with Middle East Respiratory Syndrome coronavirus (2017) Emerg. Infect. Dis., 23, pp. 232-240; Huang, C.P., A bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) PLoS Pathog., 12","Gao, G.F.; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC)China; email: gaof@im.ac.cn",,"Elsevier Ltd",0966842X,,TRMIE,"29680361","English","Trends Microbiol.",Short Survey,"Final",Open Access,Scopus,2-s2.0-85045891091 "Kim J.H., Jang J.-H., Yoon S.-W., Noh J.Y., Ahn M.-J., Kim Y., Jeong D.G., Kim H.K.","57189467880;57201778196;7404036061;57189463570;57200334534;8260553900;17136974400;57209048300;","Detection of bovine coronavirus in nasal swab of non-captive wild water deer, Korea",2018,"Transboundary and Emerging Diseases","65","3",,"627","631",,2,"10.1111/tbed.12847","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046094542&doi=10.1111%2ftbed.12847&partnerID=40&md5=14ffea4597a348520c403f58ca0dcc8c","Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungnam Wild Animal Rescue Center, Yesan, South Korea; Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon, South Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea","Kim, J.H., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Jang, J.-H., Chungnam Wild Animal Rescue Center, Yesan, South Korea; Yoon, S.-W., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon, South Korea; Noh, J.Y., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea; Ahn, M.-J., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon, South Korea; Kim, Y., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea; Jeong, D.G., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon, South Korea; Kim, H.K., Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea","Bovine coronavirus (BCoV) is a causative agent of respiratory and enteric diseases in cattle and calves. BCoV infection was also evident in captive wild ruminants. Recently, water deer are recognized as the most common wildlife to approach farmhouses and livestock barns in Korea. Therefore, we investigated 77 nasal swab samples from non-captive wild water deer (Hydropotes inermis) between November 2016 and September 2017 and identified three samples positive for coronavirus, indicating potential for respiratory shedding. The full genomic sequences of the water deer coronavirus were closely related to BCoV (>98%). Therefore, effective biosecurity system in bovine farms would be necessary to prevent contact between farm ruminants and free-ranging wild water deer. © 2018 Blackwell Verlag GmbH","bovine coronavirus; carrier; nasal swab; water deer","RNA directed RNA polymerase; Article; Bovine coronavirus; deer; gene sequence; Korea; maximum likelihood method; New Zealand; nonhuman; nose smear; open reading frame; respiratory tract disease; reverse transcription polymerase chain reaction; RNA extraction; virus detection; virus genome; virus isolation; whole genome sequencing; wild water deer; animal; Bovine coronavirus; Coronavirus infection; deer; genetics; isolation and purification; nose cavity; South Korea; veterinary medicine; virology; Animals; Coronavirus Infections; Coronavirus, Bovine; Deer; Nasal Cavity; Republic of Korea; Whole Genome Sequencing","Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Halpin, R., Saif, L.J., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) Journal of Virology, 82, pp. 12422-12431. , https://doi.org/10.1128/JVI.01586-08; Bidokhti, M.R., Traven, M., Krishna, N.K., Munir, M., Belak, S., Alenius, S., Cortey, M., Evolutionary dynamics of bovine coronaviruses: Natural selection pattern of the spike gene implies adaptive evolution of the strains (2013) Journal of General Virology, 94, pp. 2036-2049. , https://doi.org/10.1099/vir.0.054940-0; Chung, J.-Y., Kim, H.-R., Bae, Y.-C., Lee, O.S., Oem, J.-K., Detection and characterization of bovine-like coronaviruses from four species of zoo ruminants (2011) Veterinary Microbiology, 148, pp. 396-401. , https://doi.org/10.1016/j.vetmic.2010.08.035; Han, M.G., Cheon, D.S., Zhang, X., Saif, L.J., Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves (2006) Journal of Virology, 80, pp. 12350-12356. , https://doi.org/10.1128/JVI.00402-06; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Halpin, R., Saif, L.J., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) Journal of Virology, 81, pp. 4981-4990. , https://doi.org/10.1128/JVI.02361-06; Ismail, M.M., Cho, K.O., Ward, L.A., Saif, L.J., Saif, Y.M., Experimental bovine coronavirus in turkey poults and young chickens (2001) Avian Diseases, 45, pp. 157-163. , https://doi.org/10.2307/1593023; Kim, S.H., Choi, H., Yoon, J., Woo, C., Chung, H.M., Kim, J.T., Shin, J.H., Pathogens in water deer (Hydropotes inermis) in South Korea, 2010-12 (2014) Journal of Wildlife Diseases, 50, pp. 478-483. , https://doi.org/10.7589/2013-06-137; Poon, L.L.M., Chu, D.K.W., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H.C., Peiris, J.S.M., Identification of a novel coronavirus in bats (2005) Journal of Virology, 79, pp. 2001-2009. , https://doi.org/10.1128/JVI.79.4.2001-2009.2005; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 (2013) Molecular Biology and Evolution, 30, pp. 2725-2729. , https://doi.org/10.1093/molbev/mst197; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) Journal of Virology, 80, pp. 7270-7274. , https://doi.org/10.1128/JVI.02675-05; Zhang, X.M., Herbst, W., Kousoulas, K.G., Storz, J., Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child (1994) Journal of Medical Virology, 44, pp. 152-161. , https://doi.org/10.1002/(ISSN)1096-9071","Jeong, D.G.; Infectious Diseases Research Center, Korea Research Institute of Bioscience and BiotechnologySouth Korea; email: dgjeong@kribb.re.kr",,"Blackwell Publishing Ltd",18651674,,,"29508550","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85046094542 "Symes S.J., Allen J.L., Mansell P.D., Woodward K.L., Bailey K.E., Gilkerson J.R., Browning G.F.","16318228900;7406425282;7004498854;57202349455;55949929500;6701908745;7102201704;","First detection of bovine noroviruses and detection of bovine coronavirus in Australian dairy cattle",2018,"Australian Veterinary Journal","96","6",,"203","208",,1,"10.1111/avj.12695","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047993191&doi=10.1111%2favj.12695&partnerID=40&md5=5fd0cb997de0ee27397ab842e198d9b8","Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia; Fish CreekVIC, Australia","Symes, S.J., Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Allen, J.L., Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Mansell, P.D., Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia; Woodward, K.L., Fish CreekVIC, Australia; Bailey, K.E., Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Gilkerson, J.R., Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia; Browning, G.F., Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia","Background and objective: Noroviruses have been recognised as a significant cause of neonatal enteritis in calves in many countries, but there has been no investigation of their occurrence in Australian cattle. This study aimed to establish whether bovine noroviruses could be detected in faecal samples from Australian dairy cattle. It also sought to determine whether bovine coronaviruses, also associated with neonatal enteritis in calves, could be detected in the same faecal samples. Methods: A selection of faecal samples that were negative for rotaviruses from dairy farms located in three geographically distinct regions of Victoria were pooled and tested by reverse transcription-PCR for the presence of noroviruses (genogroup III), neboviruses and bovine coronaviruses. Results and conclusion: Genetically distinct genogroup III noroviruses were detected in two sample pools from different geographic regions and bovine coronavirus was detected in a third pool of samples. This is the first report of bovine norovirus infection in Australian cattle and suggests that future work is required to determine the significance of these agents as a cause of bovine enteric disease in Australia. © 2018 Australian Veterinary Association","bovine coronavirus; bovine norovirus; Caliciviridae; cattle; Coronaviridae; diarrhoea; enteritis","Article; Australia; Bovine coronavirus; controlled study; dairy cattle; DNA sequence; feces analysis; genotype; nonhuman; Norovirus; open reading frame; phylogeny; polyacrylamide gel electrophoresis; reverse transcription polymerase chain reaction; animal; bovine; calicivirus infection; cattle disease; Coronavirinae; Coronavirus infection; dairying; diarrhea; feces; gastroenteritis; genetics; isolation and purification; Norovirus; veterinary medicine; Victoria; virology; Animals; Caliciviridae Infections; Cattle; Cattle Diseases; Coronavirus; Coronavirus Infections; Dairying; Diarrhea; Feces; Gastroenteritis; Genotype; Norovirus; Reverse Transcriptase Polymerase Chain Reaction; Victoria","Bridger, J.C., Hall, G.A., Brown, J.F., Characterization of a calici-like virus (Newbury agent) found in association with astrovirus in bovine diarrhea (1984) Infect Immun, 43, pp. 133-138; Woode, G.N., Bridger, J.C., Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves (1978) J Med Microbiol, 11, pp. 441-452; Gunther, H., Otto, P., Heilmann, P., Diarrhea in young calves. 6. Determination of the pathogenicity of a bovine coronavirus and an unidentified icosahedral virus (1984) Arch Exp Veterinarmed, 38, pp. 781-792; Dastjerdi, A.M., Green, J., Gallimore, C.I., The bovine Newbury agent-2 is genetically more closely related to human SRSVs than to animal caliciviruses (1999) Virology, 254, pp. 1-5; Liu, B.L., Lambden, P.R., Gunther, H., Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses (1999) J Virol, 73, pp. 819-825; Oliver, S.L., Asobayire, E., Dastjerdi, A.M., Genomic characterization of the unclassified bovine enteric virus Newbury agent-1 (Newbury1) endorses a new genus in the family Caliciviridae (2006) Virology, 350, pp. 240-250; Clarke, I.N., Estes, M.K., Green, K.Y., Caliciviridae (2011) Ninth report of the International Committee on Taxonomy of Viruses, , In, King AMQ, Adams MJ, Carstens EB, editors., Elsevier Academic Press, San Diego; Green, K.Y., Caliciviridae: the noroviruses (2007) Field’s virology, , In, Knipe DM, Howley PM, Griffin DE, editors., 5th edn, Lippincott Williams & Wilkins; van der Poel, W.H., Vinje, J., van der Heide, R., Norwalk-like calicivirus genes in farm animals (2000) Emerg Infect Dis, 6, pp. 36-41; van der Poel, W.H., van der Heide, R., Verschoor, F., Epidemiology of Norwalk-like virus infections in cattle in the Netherlands (2003) Vet Microbiol, 92, pp. 297-309; Wise, A.G., Monroe, S.S., Hanson, L.E., Molecular characterization of noroviruses detected in diarrheic stools of Michigan and Wisconsin dairy calves: circulation of two distinct subgroups (2004) Virus Res, 100, pp. 165-177; Cho, Y.I., Han, J.I., Wang, C., Case–control study of microbiological etiology associated with calf diarrhea (2013) Vet Microbiol, 166, pp. 375-385; Wolf, S., Williamson, W.M., Hewitt, J., Sensitive multiplex real-time reverse transcription-PCR assay for the detection of human and animal noroviruses in clinical and environmental samples (2007) Appl Environ Microbiol, 73, pp. 5464-5470; Park, S.I., Jeong, C., Kim, H.H., Molecular epidemiology of bovine noroviruses in South Korea (2007) Vet Microbiol, 124, pp. 125-133; Jor, E., Myrmel, M., Jonassen, C.M., SYBR Green based real-time RT-PCR assay for detection and genotype prediction of bovine noroviruses and assessment of clinical significance in Norway (2010) J Virol Methods, 169, pp. 1-7; Kaplon, J., Guenau, E., Asdrubal, P., Possible novel nebovirus genotype in cattle, France (2011) Emerg Infect Dis, 17, pp. 1120-1123; Yilmaz, H., Turan, N., Altan, E., First report on the phylogeny of bovine norovirus in Turkey (2011) Arch Virol, 156, pp. 143-147; Hassine-Zaafrane, M., Kaplon, J., Sdiri-Loulizi, K., Molecular prevalence of bovine noroviruses and neboviruses detected in central-eastern Tunisia (2012) Arch Virol, 157, pp. 1599-1604; Park, S.I., Jeong, C., Park, S.J., Molecular detection and characterization of unclassified bovine enteric caliciviruses in South Korea (2008) Vet Microbiol, 130, pp. 371-379; de Groot, R.J., Cowley, J.A., Enjuanes, L., Nidovirales (2011) Ninth report of the International Committee on Taxonomy of Viruses, , In, King AMQ, Adams MJ, Carstens EB, editors., Elsevier Academic Press, San Diego; Izzo, M.M., Kirkland, P.D., Gu, X., Comparison of three diagnostic techniques for detection of rotavirus and coronavirus in calf faeces in Australia (2012) Aust Vet J, 90, pp. 122-129; Hick, P.M., Read, A.J., Lugton, I., Coronavirus infection in intensively managed cattle with respiratory disease (2012) Aust Vet J, 90, pp. 381-386; Smiley, J.R., Hoet, A.E., Traven, M., Reverse transcription-PCR assays for detection of bovine enteric caliciviruses (BEC) and analysis of the genetic relationships among BEC and human caliciviruses (2003) J Clin Microbiol, 41, pp. 3089-3099; Jiang, X., Huang, P.W., Zhong, W.M., Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR (1999) J Virol Methods, 83, pp. 145-154; Cho, Y.I., Kim, W.I., Liu, S., Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces (2010) J Vet Diagn Invest, 22, pp. 509-517; Symes, S.J., Job, N., Ficorilli, N., Novel assay to quantify recombination in a calicivirus (2015) Vet Microbiol, 177, pp. 25-31; Widdowson, M.A., Rockx, B., Schepp, R., Detection of serum antibodies to bovine norovirus in veterinarians and the general population in the Netherlands (2005) J Med Virol, 76, pp. 119-128; Palmer, S., Brown, D., Morgan, D., Early qualitative risk assessment of the emerging zoonotic potential of animal diseases (2005) BMJ, 331, pp. 1256-1260; Oliver, S.L., Dastjerdi, A.M., Wong, S., Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (Norwalk-like viruses) unlikely to be of risk to humans (2003) J Virol, 77, pp. 2789-2798; Menon, V.K., George, S., Shanti, A.A., Exposure to human and bovine noroviruses in a birth cohort in southern India from 2002 to 2006 (2013) J Clin Microbiol, 51, pp. 2391-2395; Batten, C.A., Clarke, I.N., Kempster, S.L., Characterization of a cross-reactive linear epitope in human genogroup I and bovine genogroup III norovirus capsid proteins (2006) Virology, 356, pp. 179-187; Oliver, S.L., Batten, C.A., Deng, Y., Genotype 1 and genotype 2 bovine noroviruses are antigenically distinct but share a cross-reactive epitope with human noroviruses (2006) J Clin Microbiol, 44, pp. 992-998; Mattison, K., Shukla, A., Cook, A., Human noroviruses in swine and cattle (2007) Emerg Infect Dis, 13, pp. 1184-1188; Hansman, G.S., Takeda, N., Oka, T., Intergenogroup recombination in sapoviruses (2005) Emerg Infect Dis, 11, pp. 1916-1920; Nayak, M.K., Balasubramanian, G., Sahoo, G.C., Detection of a novel intergenogroup recombinant Norovirus from Kolkata, India (2008) Virology, 377, pp. 117-123; Phan, T.G., Kaneshi, K., Ueda, Y., Genetic heterogeneity, evolution, and recombination in noroviruses (2007) J Med Virol, 79, pp. 1388-1400; Jiang, X., Espul, C., Zhong, W.M., Characterization of a novel human calicivirus that may be a naturally occurring recombinant (1999) Arch Virol, 144, pp. 2377-2387; Oliver, S.L., Brown, D.W., Green, J., A chimeric bovine enteric calicivirus: evidence for genomic recombination in genogroup III of the norovirus genus of the Caliciviridae (2004) Virology, 326, pp. 231-239; Bull, R.A., Hansman, G.S., Clancy, L.E., Norovirus recombination in ORF1/ORF2 overlap (2005) Emerg Infect Dis, 11, pp. 1079-1085; Symes, S.J., Gunesekere, I.C., Marshall, J.A., Norovirus mixed infection in an oyster-associated outbreak: an opportunity for recombination (2007) Arch Virol, 152, pp. 1075-1086","Symes, S.J.; Faculty of Veterinary and Agricultural Sciences, University of MelbourneAustralia; email: sally.symes@dhhs.vic.gov.au",,"Blackwell Publishing",00050423,,,"29878330","English","Austr. Vet. J.",Article,"Final",Open Access,Scopus,2-s2.0-85047993191 "Niederwerder M.C., Hesse R.A.","54791245100;7005769153;","Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada",2018,"Transboundary and Emerging Diseases","65","3",,"660","675",,27,"10.1111/tbed.12823","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041177518&doi=10.1111%2ftbed.12823&partnerID=40&md5=86eff5b21d9cbe09b037dc753afa131d","Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States","Niederwerder, M.C., Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States, Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States; Hesse, R.A., Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States, Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States","Swine enteric coronaviruses, including porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV), have emerged and spread throughout the North American swine industry over the last four years. These diseases cause significant losses within the pork industry and within the first year after PEDV introduction, approximately 10% of the US herd died due to the disease. Similar to other enteric coronaviruses, such as transmissible gastroenteritis virus (TGEV), these emerging swine enteric coronavirus diseases (SECD) are age-dependent, with high morbidity and mortality in neonatal pigs. Since the introduction of SECD, research has focused on investigating viral pathogenesis through experimental inoculation, increasing maternal antibody for neonatal protection, understanding transmission risks through feed and transportation, and outlining the importance of biosecurity in preventing SECD introduction and spread. A survey of swine professionals conducted for this review revealed that the majority of respondents (75%) believe SECD can be eradicated and that most herds have been successful at long-term elimination of SECD after exposure (80%). However, unique properties of SECD, such as ineffective immunity through parenteral vaccination and a low oral infectious dose, play a major role in management of SECD. This review serves to describe the current knowledge of SECD and the characteristics of these viruses which provide both opportunities and challenges for long-term disease control and potential eradication from the US swine population. © 2018 Blackwell Verlag GmbH","coronavirus; porcine deltacoronavirus; porcine epidemic diarrhoea virus; review; swine; transmission","Canada; Coronavirus infection; enzyme linked immunosorbent assay; epidemic; farm animal; herd immunity; human; immunohistochemistry; infection control; intestine villus atrophy; morbidity; mortality; nonhuman; polymerase chain reaction; porcine deltacoronavirus infection; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; prevalence; Review; risk factor; United States; vaccination; viral clearance; virus shedding; virus transmission; animal; Coronavirinae; Coronavirus infection; pig; Porcine epidemic diarrhea virus; swine disease; veterinary medicine; virology; Animals; Canada; Coronavirus; Coronavirus Infections; Porcine epidemic diarrhea virus; Swine; Swine Diseases; United States","(2013) PEDV Positive Cases ascertained from the VDL's (ISU, KSU, OADDL, SDSU, & UMN), , https://www.aasv.org/aasv%20website/Resources/Diseases/PED/LABSUMTOT_WK_STATE.pdf; Alonso, C., Goede, D.P., Morrison, R.B., Davies, P.R., Rovira, A., Marthaler, D.G., Torremorell, M., Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds (2014) Veterinary research, 45, p. 73. , https://doi.org/10.1186/s13567-014-0073-z; Alonso, C., Raynor, P.C., Goyal, S., Olson, B.A., Alba, A., Davies, P.R., Torremorell, M., Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms (2017) Journal of veterinary diagnostic investigation, 29, pp. 298-304. , https://doi.org/10.1177/1040638717700221; Alvarez, J., Goede, D., Morrison, R., Perez, A., Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States (2016) Preventive Veterinary Medicine, 123, pp. 155-160. , https://doi.org/10.1016/j.prevetmed.2015.11.003; Alvarez, J., Sarradell, J., Morrison, R., Perez, A., Impact of porcine epidemic diarrhea on performance of growing pigs (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0120532; Annamalai, T., Saif, L.J., Lu, Z., Jung, K., Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs (2015) Veterinary immunology and immunopathology, 168, pp. 193-202. , https://doi.org/10.1016/j.vetimm.2015.09.006; Bowman, A.S., Krogwold, R.A., Price, T., Davis, M., Moeller, S.J., Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation (2015) BMC veterinary research, 11, p. 38. , https://doi.org/10.1186/s12917-015-0348-2; Bowman, A.S., Nolting, J.M., Nelson, S.W., Bliss, N., Stull, J.W., Wang, Q., Premanandan, C., Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus (2015) Veterinary microbiology, 179, pp. 213-218. , https://doi.org/10.1016/j.vetmic.2015.05.027; Canning, P., Ruston, C., Madson, D., Bates, J., Skoland, K., Davenport, J., Karriker, L., Effect of direct-fed microbial Bacillus subtilis C-3102 on enteric health in nursery pigs after challenge with porcine epidemic diarrhea virus (2017) Journal of Swine Health and Production, 25, pp. 129-137; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59. , https://doi.org/10.1016/j.virol.2015.03.024; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Zhang, J., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) Journal of clinical microbiology, 52, pp. 234-243. , https://doi.org/10.1128/JCM.02820-13; Cochrane, R.A., Dritz, S.S., Woodworth, J.C., Huss, A.R., Stark, C.R., Saensukjaroenphon, M., Jones, C.K., (2016) Assessing the Effects of Medium Chain Fatty Acids and Fat Sources on Porcine Epidemic Diarrhea Virus Viral RNA Stability and Infectivity, , In Kansas Agricultural Experiment Station Research Reports; Cochrane, R.A., Dritz, S.S., Woodworth, J.C., Stark, C.R., Huss, A.R., Cano, J.P., Jones, C.K., Feed mill biosecurity plans: a systematic approach to prevent biological pathogens in swine feed (2016) Journal of Swine Health and Production, 24, pp. 154-164; Cochrane, R.A., Saensukjaroenphon, M., Dritz, S.S., Woodworth, J.C., Huss, A.R., Stark, C.R., Jones, C.K., Evaluating the inclusion level of medium chain fatty acids to reduce the risk of PEDV in feed and spray-dried animal plasma (2016) Journal of animal science, 94, p. 50. , https://doi.org/10.2527/msasas2016-107, Abstract; Cochrane, R.A., Schumacher, L.L., Dritz, S.S., Woodworth, J.C., Huss, A.R., Stark, C.R., Jones, C.K., Effect of pelleting on survival of porcine epidemic diarrhea virus-contaminated feed (2017) Journal of animal science, 95, pp. 1170-1178; Crawford, K., Lager, K.M., Kulshreshtha, V., Miller, L.C., Faaberg, K.S., Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada (2016) Virus research, 226, pp. 108-116. , https://doi.org/10.1016/j.virusres.2016.08.005; Crawford, K., Lager, K., Miller, L., Opriessnig, T., Gerber, P., Hesse, R., Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs (2015) Veterinary research, 46, p. 49. , https://doi.org/10.1186/s13567-015-0180-5; Curry, S.M., Gibson, K.A., Burrough, E.R., Schwartz, K.J., Yoon, K.J., Gabler, N.K., Nursery pig growth performance and tissue accretion modulation due to porcine epidemic diarrhea virus or porcine deltacoronavirus challenge (2017) Journal of animal science, 95, pp. 173-181; Dee, S., Clement, T., Schelkopf, A., Nerem, J., Knudsen, D., Christopher-Hennings, J., Nelson, E., An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept (2014) BMC veterinary research, 10, p. 176. , https://doi.org/10.1186/s12917-014-0176-9; Dee, S., Neill, C., Clement, T., Singrey, A., Christopher-Hennings, J., Nelson, E., An evaluation of porcine epidemic diarrhea virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial (2015) Porcine Health Management, 1, p. 9. , https://doi.org/10.1186/s40813-015-0003-0; Dee, S., Neill, C., Singrey, A., Clement, T., Cochrane, R., Jones, C., Nelson, E., Modeling the transboundary risk of feed ingredients contaminated with porcine epidemic diarrhea virus (2016) BMC veterinary research, 12, p. 51. , https://doi.org/10.1186/s12917-016-0674-z; (2015) Useful Information on Disinfectants after Contamination with Novel Swine Enteric Coronavirus Diseases (SECD), , http://www.manitobapork.com/images/producers/pdfs/may-2017/Disinfectants-Proven-Effective-against-Coronaviruses-EQSP-150424.pdf, Quebec swine health team); Furuuchi, S., Shimizu, Y., Effect of ambient temperatures on multiplication of attenuated transmissible gastroenteritis virus in the bodies of newborn piglets (1976) Infection and immunity, 13, pp. 990-992; Gebhardt, J.T., Woodworth, J.C., Jones, C.K., Gauger, P.C., Tokach, M.D., DeRouchey, J.M., Dritz, S.S., (2016) Evaluation of the Effects of Flushing Feed Manufacturing Equipment with Chemically-Treated Rice Hulls on Porcine Epidemic Diarrhea Virus Cross Contamination During Feed Manufacturing, , In Kansas Agricultural Experiment Station Research Reports; Gerber, P.F., Xiao, C.T., Chen, Q., Zhang, J., Halbur, P.G., Opriessnig, T., The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma (2014) Veterinary microbiology, 174, pp. 86-92. , https://doi.org/10.1016/j.vetmic.2014.09.008; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Veterinary microbiology, 206, pp. 45-51. , https://doi.org/10.1016/j.vetmic.2016.11.029; Gillespie, T., Song, Q., Inskeep, M., Stone, S., Murtaugh, M.P., Effect of booster vaccination with inactivated porcine epidemic diarrhea virus on neutralizing antibody response in mammary secretions (2017) Viral immunology, 31, pp. 62-68; Goede, D., Morrison, R.B., Production impact & time to stability in sow herds infected with porcine epidemic diarrhea virus (PEDV) (2016) Preventive Veterinary Medicine, 123, pp. 202-207. , https://doi.org/10.1016/j.prevetmed.2015.11.010; Goede, D., Murtaugh, M.P., Nerem, J., Yeske, P., Rossow, K., Morrison, R., Previous infection of sows with a “mild” strain of porcine epidemic diarrhea virus confers protection against infection with a “severe” strain (2015) Veterinary microbiology, 176, pp. 161-164. , https://doi.org/10.1016/j.vetmic.2014.12.019; Hamblin, J., (2017) Previously Infected Pigs Spread PED Longer Than Previously Thought, , https://www.aasv.org/news/story.php?id=10384; Hofmann, M., Wyler, R., Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV) (1989) Veterinary microbiology, 20, pp. 131-142. , https://doi.org/10.1016/0378-1135(89)90036-9; Holtkamp, D.J., Myers, J., Thomas, P.R., Karriker, L.A., Ramirez, A., Zhang, J., Wang, C., Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces (2017) Canadian Journal of Veterinary Research, 81, pp. 100-107; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Archives of virology, 161, pp. 3421-3434. , https://doi.org/10.1007/s00705-016-3056-8; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) mBio, 4; Huss, A.R., Schumacher, L.L., Cochrane, R.A., Poulsen, E., Bai, J., Woodworth, J.C., Jones, C.K., Elimination of porcine epidemic diarrhea virus in an animal feed manufacturing facility (2017) PLoS ONE, 12. , https://doi.org/10.1371/journal.pone.0169612; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Amonsin, A., Porcine Deltacoronavirus, Thailand, 2015 (2016) Emerging infectious diseases, 22, pp. 757-759. , https://doi.org/10.3201/eid2204.151852; Jung, K., Eyerly, B., Annamalai, T., Lu, Z., Saif, L.J., Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus (2015) Veterinary microbiology, 177, pp. 373-378. , https://doi.org/10.1016/j.vetmic.2015.03.022; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus research, 226, pp. 50-59. , https://doi.org/10.1016/j.virusres.2016.04.009; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Veterinary Journal, 204, pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017; Jung, K., Saif, L.J., Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus (2017) Research in veterinary science, 110, pp. 12-15. , https://doi.org/10.1016/j.rvsc.2016.10.009; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerging infectious diseases, 20, pp. 662-665; Kemeny, L.J., Wiltsey, V.L., Riley, J.L., Upper respiratory infection of lactating sows with transmissible gastroenteritis virus following contact exposure to infected piglets (1975) The Cornell Veterinarian, 65, pp. 352-362; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology, 460-461, pp. 180-193. , https://doi.org/10.1016/j.virol.2014.04.040; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144. , https://doi.org/10.1023/A:1011831902219; Kochhar, H.S., Canada: Porcine epidemic diarrhea in Canada: an emerging disease case study (2014) The Canadian Veterinary Journal, 55, pp. 1048-1049; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus research, 226, pp. 93-107. , https://doi.org/10.1016/j.virusres.2016.05.016; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virology journal, 12, p. 193. , https://doi.org/10.1186/s12985-015-0421-2; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announcements, 2, pp. e01114-e01191; Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., Main, R., Role of transportation in spread of porcine epidemic diarrhea virus infection, United States (2014) Emerging infectious diseases, 20, pp. 872-874. , https://doi.org/10.3201/eid2005.131628; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6; Madson, D.M., Arruda, P.H., Magstadt, D.R., Burrough, E.R., Hoang, H., Sun, D., Yoon, K.J., Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-day-old Cesarean-derived colostrum-deprived piglets (2015) Veterinary pathology, 53, pp. 44-52; Madson, D.M., Magstadt, D.R., Arruda, P.H., Hoang, H., Sun, D., Bower, L.P., Yoon, K.J., Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs (2014) Veterinary microbiology, 174, pp. 60-68. , https://doi.org/10.1016/j.vetmic.2014.09.002; (2017) Porcine Epidemic Diarrhea (PED) Virus, , http://www.gov.mb.ca/agriculture/animals/animal-health/porcine-epidemic-diarrhea.html, Manitoba Government); Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete Genome Sequence of Strain SDCV/USA/Illinois121/2014, a Porcine Deltacoronavirus from the United States (2014) Genome Announcements, 2, pp. e00214-e00218; Moon, H.W., Epithelial cell migration in the alimentary mucosa of the suckling pig (1971) Proceedings of the Society for Experimental Biology and Medicine, 137, pp. 151-154. , https://doi.org/10.3181/00379727-137-35533, Society for Experimental Biology and Medicine; Moon, H.W., Norman, J.O., Lambert, G., Age dependent resistance to transmissible gastroenteritis of swine (TGE). I. Clinical signs and some mucosal dimensions in small intestine (1973) Canadian Journal of Comparative Medicine, 37, pp. 157-166; Niederwerder, M.C., Nietfeld, J.C., Bai, J., Peddireddi, L., Breazeale, B., Anderson, J., Hesse, R.A., Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs (2016) Journal of veterinary diagnostic investigation, 28, pp. 671-678. , https://doi.org/10.1177/1040638716663251; Ojkic, D., Hazlett, M., Fairles, J., Marom, A., Slavic, D., Maxie, G., Burlatschenko, S., The first case of porcine epidemic diarrhea in Canada (2015) The Canadian Veterinary Journal, 56, pp. 149-152; Opriessnig, T., Xiao, C.T., Gerber, P.F., Zhang, J., Halbur, P.G., Porcine epidemic diarrhea virus RNA present in commercial spray-dried porcine plasma is not infectious to naive pigs (2014) PLoS ONE, 9. , https://doi.org/10.1371/journal.pone.0104766; O'Toole, D., Brown, I., Bridges, A., Cartwright, S.F., Pathogenicity of experimental infection with ‘pneumotropic’ porcine coronavirus (1989) Research in veterinary science, 47, pp. 23-29; Park, C., Lee, C., Clinical examination and control measures in a commercial pig farm persistently infected with porcine epidemic diarrhea(PED) virus (2009) Journal of Veterinary Clinics, 26, pp. 463-466; Pasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury-Hyatt, C., Swekla, K., Alexandersen, S., Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada (2014) Transboundary and Emerging Diseases, 61, pp. 397-410. , https://doi.org/10.1111/tbed.12269; Pasma, T., Furness, M.C., Alves, D., Aubry, P., Outbreak investigation of porcine epidemic diarrhea in swine in Ontario (2016) The Canadian Veterinary Journal, 57, pp. 84-89; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Archives of virology, 58, pp. 243-247. , https://doi.org/10.1007/BF01317606; Pensaert, M.B., Debouck, P., Reynolds, D.J., An immunoelectron microscopic and immunofluorescent study on the antigenic relationship between the coronavirus-like agent, CV 777, and several coronaviruses (1981) Archives of virology, 68, pp. 45-52. , https://doi.org/10.1007/BF01315166; Pijpers, A., van Nieuwstadt, A.P., Terpstra, C., Verheijden, J.H., Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs (1993) The Veterinary record, 132, pp. 129-131. , https://doi.org/10.1136/vr.132.6.129; Schumacher, L.L., Woodworth, J.C., Jones, C.K., Chen, Q., Zhang, J., Gauger, P.C., Dritz, S.S., Evaluation of the minimum infectious dose of porcine epidemic diarrhea virus in virus-inoculated feed (2016) American journal of veterinary research, 77, pp. 1108-1113. , https://doi.org/10.2460/ajvr.77.10.1108; Schweer, W.P., Pearce, S.C., Burrough, E.R., Schwartz, K., Yoon, K.J., Sparks, J.C., Gabler, N.K., The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs II: Intestinal integrity and function (2016) Journal of animal science, 94, pp. 523-532. , https://doi.org/10.2527/jas.2015-9836; Schweer, W.P., Schwartz, K., Burrough, E.R., Yoon, K.J., Sparks, J.C., Gabler, N.K., The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs I: Growth performance and digestibility (2016) Journal of animal science, 94, pp. 514-522. , https://doi.org/10.2527/jas.2015-9834; Scott, A., McCluskey, B., Brown-Reid, M., Grear, D., Pitcher, P., Ramos, G., Singrey, A., Porcine epidemic diarrhea virus introduction into the United States: Root cause investigation (2016) Preventive Veterinary Medicine, 123, pp. 192-201. , https://doi.org/10.1016/j.prevetmed.2015.11.013; Shibata, I., Tsuda, T., Mori, M., Ono, M., Sueyoshi, M., Uruno, K., Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages (2000) Veterinary microbiology, 72, pp. 173-182. , https://doi.org/10.1016/S0378-1135(99)00199-6; Sinha, A., Gauger, P., Zhang, J., Yoon, K.J., Harmon, K., PCR-based retrospective evaluation of diagnostic samples for emergence of porcine deltacoronavirus in US swine (2015) Veterinary microbiology, 179, pp. 296-298. , https://doi.org/10.1016/j.vetmic.2015.06.005; Song, D., Park, B., Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175. , https://doi.org/10.1007/s11262-012-0713-1; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) Journal of veterinary diagnostic investigation, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerging infectious diseases, 18, pp. 161-163. , https://doi.org/10.3201/eid1801.111259; (2016) SHIC Funded Research Identifies Feed Biosecurity as Critical to Global Animal Health, , http://www.swinehealth.org/shic-funded-research-identifies-feed-biosecurity-as-critical-to-global-animal-health/; (2017) Modeling the transboundary survival of foreign animal disease pathogens in contaminated feed ingredients, , http://www.swinehealth.org/pathogen-transmission-white-paper/, Sundberg, P., ed; Thachil, A., Gerber, P.F., Xiao, C.T., Huang, Y.W., Opriessnig, T., Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0124363; Thomas, J.T., Chen, Q., Gauger, P.C., Gimenez-Lirola, L.G., Sinha, A., Harmon, K.M., Zhang, J., Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0139266; Trudeau, M.P., Verma, H., Sampedro, F., Urriola, P.E., Shurson, G.C., Goyal, S.M., Environmental persistence of porcine coronaviruses in feed and feed ingredients (2017) PLoS ONE, 12. , https://doi.org/10.1371/journal.pone.0178094; Trudeau, M.P., Verma, H., Sampedro, F., Urriola, P.E., Shurson, G.C., McKelvey, J., Goyal, S.M., Comparison of thermal and non-thermal processing of swine feed and the use of selected feed additives on inactivation of porcine epidemic diarrhea virus (PEDV) (2016) PLoS ONE, 11. , https://doi.org/10.1371/journal.pone.0158128; (2014) Swine Enteric Coronavirus Disease Testing Summary Report, , https://www.aphis.usda.gov/animal_health/animal_dis_spec/swine/downloads/secd_sit_rep_11_14_14.pdf, Animal and Plant Health Inspection Service); (2017) Swine Enteric Coronavirus Disease (SECD) Situation Report, , https://www.aphis.usda.gov/animal_health/animal_dis_spec/swine/downloads/secd_sit_rep_11_30_17.pdf, Animal and Plant Health Inspection Service); Vitosh-Sillman, S., Loy, J.D., Brodersen, B., Kelling, C., Doster, A., Topliff, C., Hesse, R., Experimental infection of conventional nursing pigs and their dams with Porcine deltacoronavirus (2016) Journal of veterinary diagnostic investigation, 28, pp. 486-497. , https://doi.org/10.1177/1040638716654200; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging infectious diseases, 20, pp. 1227-1230; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerging infectious diseases, 20, pp. 1594-1595. , https://doi.org/10.3201/eid2009.140756; Wang, X.M., Niu, B.B., Yan, H., Gao, D.S., Yang, X., Chen, L., Wang, C.Q., Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010 (2013) Archives of virology, 158, pp. 2487-2494. , https://doi.org/10.1007/s00705-013-1767-7; Weng, L., Weersink, A., Poljak, Z., de Lange, K., von Massow, M., An economic evaluation of intervention strategies for Porcine Epidemic Diarrhea (PED) (2016) Preventive Veterinary Medicine, 134, pp. 58-68. , https://doi.org/10.1016/j.prevetmed.2016.09.018; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of virology, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) The Veterinary record, 100, pp. 243-244. , https://doi.org/10.1136/vr.100.12.243; Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus research, 226, pp. 71-84. , https://doi.org/10.1016/j.virusres.2016.05.028","Niederwerder, M.C.; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State UniversityUnited States; email: mniederwerder@vet.k-state.edu",,"Blackwell Publishing Ltd",18651674,,,"29392870","English","Transboundary Emer. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85041177518 "Garout M.A., Jokhdar H.A.A., Aljahdali I.A., Zein A.R., Goweda R.A., Hassan-Hussein A.","57188847535;6507147807;57203399315;57194486506;57203388885;57196186309;","Mortality rate of ICU patients with the middle east respiratory syndrome – Coronavirus infection at king Fahad hospital, Jeddah, Saudi Arabia",2018,"Central European Journal of Public Health","26","2",,"87","91",,,"10.21101/cejph.a4764","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051560578&doi=10.21101%2fcejph.a4764&partnerID=40&md5=1a648fc94b3decfa779b1c884ab9b384","Department of Community Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Intensive Care Department, King Fahad Hospital, Jeddah, Saudi Arabia; Department of Family Medicine, Faculty of Medicine, Suez Canal University, Egypt","Garout, M.A., Department of Community Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Jokhdar, H.A.A., Department of Community Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Aljahdali, I.A., Department of Community Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Zein, A.R., Intensive Care Department, King Fahad Hospital, Jeddah, Saudi Arabia; Goweda, R.A., Department of Community Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia, Department of Family Medicine, Faculty of Medicine, Suez Canal University, Egypt; Hassan-Hussein, A., Department of Community Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia","Objective: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a novel coronavirus circulating in the Arabian Peninsula since September 2012. It leads to significant respiratory disease and among patients with co-morbidities is associated with high mortality. This research studied the mortality rate of MERS-CoV among intensive care unit (ICU) patients and the correlation of mortality with different co-morbidities. Methods: This was a retrospective observational study conducted at the Intensive Care Unit of the King Fahad Hospital, Jeddah, Saudi Arabia. Data was obtained through patient chart review. Results: The total sample consisted of 52 laboratory-confirmed MERS-CoV infection patients. 39 patients died, with a 75% case-fatality rate. Many patients had underlying co-morbidities, including diabetes mellitus (51.9%), hypertension (46.2%), and chronic renal disease (21.2%). Conclusions: MERS-CoV ICU mortality remains markedly high due to a combination of factors; the disease process of MERS-CoV leads to multiple organ failure, particularly respiratory and renal failure. © 2018, Czech National Institute of Public Health. All rights reserved.","Intensive care units; Middle East Respiratory Syndrome Coronavirus; Mortality; Saudi Arabia","adolescent; adult; aged; comorbidity; Coronavirus infection; epidemiology; female; human; intensive care unit; isolation and purification; male; middle aged; Middle East respiratory syndrome coronavirus; mortality; retrospective study; risk factor; Saudi Arabia; statistics and numerical data; very elderly; virology; Adolescent; Adult; Aged; Aged, 80 and over; Comorbidity; Coronavirus Infections; Female; Humans; Intensive Care Units; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Retrospective Studies; Risk Factors; Saudi Arabia","http://coronamap.com/, MERS Corona Map [Internet]. Riyadh: Saudi Ministry of Health; Bialek, S.R., Allen, D., Alvarado-Ramy, F., Arthur, R., Balajee, A., Bell, D., Centers for Disease Control and Prevention (CDC). First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014 (2014) MMWR Morb Mortal Wkly Rep, 63 (19), pp. 431-436. , May 16; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; http://www.who.int/csr/disease/coronavirus_infections/InterimGuidance:ClinicalManagement_NovelCoronavirus_11Feb13u.pdf, World Health Organization. Interim guidance - clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do [Internet]; http://www.cdc.gov/coronavirus/mers/faq.html, Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS). Frequently asked questions and answers [Internet]; http://www.cdc.gov/media/releases/2014/p0502-US-MERS.html, Centers for Disease Control and Prevention. CDC Newsroom. CDC announces first case of Middle East Respiratory Syndrome Coronavirus infection (MERS) in the United States [Internet]; http://www.who.int/entity/csr/disease/coronavirus_infections/case_definition/en/index.html, World Health Organization. Revised interim case definition for reporting to WHO - Middle East respiratory syndrome coronavirus (MERS-CoV) [Internet]; (2013), The WHO MERS-CoV Research Group. State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans. PLoS Curr, Nov 12;5. pii: ecurrents.outbreaks.0bf719e35 2e7478f8ad85fa30127ddb8; http://www.who.int/entity/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf, World Health Organization. Laboratory testing for Middle East respiratory syndrome coronavirus: interim recommendations [Internet]; http://www.cdc.gov/coronavirus/mers/guidelines-clinical-specimens.html, Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS). Interim guidelines for collecting, handling, and testing clinical specimens from Patients Under Investigation (PUIs) for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Version 2 [Internet]. Atlanta: CDC; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39); Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) Mbio, (1). , Feb 19, e00611-12; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317. , Sep 8; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) Int J Infect Dis, 20, pp. 42-46; Ren, Z., Yan, L., Zhang, N., Guo, Y., Yang, C., Luo, Z., The newly emerged SARS-like coronavirus HCoV-EMC also has an ""Achilles’ heel"": Current effective inhibitor targeting a 3C-like protease (2013) Protein Cell, 4 (4), pp. 248-250; Van Meurs, K., Lally, K.P., Peek, G., Zwischenberger, J.B., (2005) ECMO: Extracorporeal Cardiopulmonary Support in Critical Care, , 3rd ed. Ann Arbor: Extracorporeal Life Support Organization; http://www.moh.gov.sa/en/CCC/StaffRegulations/Corona/Pages/StaffRegulations.aspx, Saudi Ministry of Health. Case definition and surveillance guidance for MERS-CoV testing in Saudi Arabia [Internet]; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67 (6), pp. 606-616; Falzarano, D., De Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel b coronavirus replication by a combination of interferon a2b and ribavirin (2013) Sci Rep, 3, p. 1686","Goweda, R.A.; Department of Family Medicine, Suez Canal University, Kilo 4.5, Egypt; email: redagoweda@yahoo.com",,"Czech National Institute of Public Health",12107778,,CEJHE,"30102495","English","Cent. Eur. J. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85051560578 "Wills S.E., Beaufrère H.H., Brisson B.A., Fraser R.S., Smith D.A.","57189217697;24512069800;6603798625;15219301800;7410365056;","Pancreatitis and systemic coronavirus infection in a ferret (Mustela putorius furo)",2018,"Comparative Medicine","68","3",,"208","211",,,"10.30802/AALAS-CM-17-000109","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058446138&doi=10.30802%2fAALAS-CM-17-000109&partnerID=40&md5=e5f4564ecb67aee90d66128ad0dfd292","Exotic Animal Care Centre, Pasadena, CA, United States; Department of Clinical Studies, Ontario Veterinary College, University of GuelphON, Canada; Department of Pathobiology, Ontario Veterinary College, University of GuelphON, Canada","Wills, S.E., Exotic Animal Care Centre, Pasadena, CA, United States; Beaufrère, H.H., Department of Clinical Studies, Ontario Veterinary College, University of GuelphON, Canada; Brisson, B.A., Department of Clinical Studies, Ontario Veterinary College, University of GuelphON, Canada; Fraser, R.S., Department of Pathobiology, Ontario Veterinary College, University of GuelphON, Canada; Smith, D.A., Department of Pathobiology, Ontario Veterinary College, University of GuelphON, Canada","A 1-y-old spayed female ferret (Mustela putorius furo) was referred for additional diagnostic evaluation after physical examination by the referring veterinarian revealed a cranial abdominal mass. The ferret had a 2-wk history of inappetence, weight loss, and lethargy. On presentation, the ferret was thin, and an approximately 3-cm mass was palpable in the cranial abdomen. No other abnormalities were noted. Abdominal ultrasonography confirmed the presence of a soft-tissue structure, with a moderate blood supply and mesenteric lymphadenopathy. Fine-needle aspirates of the mass were nondiagnostic. Exploratory laparotomy revealed multiple nodules and thickened tissues throughout the mesentery, a thickened and nodular pancreas, and a small amount of free abdominal fluid. Histopathology of mesenteric, lymphatic, and pancreatic biopsies revealed suppurative pancreatitis and necrotizing and pyogranulomatous mesenteric steatitis. Positive immunohistochemistry for feline coronavirus confirmed a diagnosis of ferret systemic coronavirus disease (FSCD). The ferret was treated medically with oral prednisolone, improved dramatically, and was still doing well 22 mo after diagnosis. Although FSCD has been reported extensively, this case is noteworthy for the presence of suppurative pancreatitis and the positive long-term outcome after corticosteroid therapy. Copyright 2018 by the American Association for Laboratory Animal Science",,"prednisolone; sucralfate; Article; body weight loss; Coronavirus infection; echography; female; histopathology; immunohistochemistry; laparotomy; lethargy; low fat diet; lymphadenopathy; Mustela putorius furo; nonhuman; pancreatitis; protein diet; steatitis","Allison, R.W., Laboratory evaluation of the pancreas and glucose metabolism (2012) Veterinary Hematology and Clinical Biochemistry, pp. 425-440. , Thrall M, Weiser G, Allison R, Campbell T, editors. 2nd ed. Ames (IA): Wiley–Blackwell; Autieri, C.R., Miller, C.L., Scott, K.E., Kilgore, A., Papscoe, V.A., Garner, M.M., Haupt, J.L., Fox, J.G., Systemic coronaviral disease in 5 ferrets (2015) Comp Med, 65, pp. 508-516; Dominguez, E., Novellas, R., Moya, A., Espada, Y., Martorell, J., Abdominal radiographic and ultrasonographic findings in ferrets (Mustela putorius furo) with systemic coronavirus infection (2011) Vet Rec, 169, p. 231. , https://doi.org/10.1136/vr.d4705; Doria-Torra, G., Vidaña, B., Ramis, A., Amarilla, S.P., Martínez, J., Coronavirus infection in ferrets: Antigen distribution and inflammatory response (2016) Vet Pathol, 53, pp. 1180-1186. , https://doi.org/10.1177/0300985816634809; Fox, J., Normal clinical and biological parameters (2014) Biology and Disease of The Ferret, pp. 157-186. , Fox J, Marini R, editors. 3rd ed. Ames(IA): Wiley–Blackwell; Fujii, Y., Tochitani, T., Kouchi, M., Matsumoto, I., Yamada, T., Funabashi, H., Glomerulonephritis in a ferret with feline coronavirus infection (2015) J Vet Diagn Invest, 27, pp. 637-640. , https://doi.org/10.1177/1040638715599570; Garner, M.M., Ramsell, K., Morera, N., Juan-Sallés, C., Jiménez, J., Ardiaca, M., Montesinos, A., Kiupel, M., Clinicopathologic features of a systemic coronavirus-associated disease resembling feline infectious peritonitis in the domestic ferret (Mustela putorius) (2008) Vet Pathol, 45, pp. 236-246. , https://doi.org/10.1354/vp.45-2-236; Gnirs, K., Quinton, J.F., Dally, C., Nicolier, A., Ruel, Y., Cerebral pyogranuloma associated with systemic coronavirus infection in a ferret (2015) J Small Anim Pract, 57, pp. 36-39. , https://doi.org/10.1111/jsap.12377; Kiupel, M., Perpinan, D., Viral diseases of ferrets (2014) Biology and Disease of The Ferret, pp. 439-518. , Fox J, Marini R, editors. 3rd ed. Ames (IA): Wiley–Blackwell; Lamers, M.M., Smits, S.L., Hundie, G.B., Provacia, L.B., Koopmans, M., Osterhaus, A.D.M.E., Haagmans, B.L., Raj, V.S., Naturally occurring recombination in ferret coronaviruses revealed by complete genome characterization (2016) J Gen Virol, 97, pp. 2180-2186. , https://doi.org/10.1099/jgv.0.000520; Lindemann, D.M., Eshar, D., Schumacher, L.L., Almes, K.M., Rankin, A.J., Pyogranulomatous panophthalmitis with systemic coronavirus disease in a domestic ferret (Mustela putorius furo) (2015) Vet Ophthalmol, 19, pp. 167-171. , https://doi.org/10.1111/vop.12274; Martínez, J., Reinacher, M., Perpiñán, D., Ramis, A., Identification of group 1 coronavirus antigen in multisystemic granulomatous lesions in ferrets (Mustela putorius furo) (2007) J Comp Pathol, 138, pp. 54-58. , https://doi.org/10.1016/j.jcpa.2007.10.002; Minami, S., Kuroda, Y., Terada, Y., Yonemitsu, K., Van, N.D., Kuwata, R., Shimoda, H., Maeda, K., Detection of novel ferret coronaviruses and evidence of recombination among ferret coronaviruses (2016) Virus Genes, 52, pp. 858-862. , https://doi.org/10.1007/s11262-016-1365-3; Morrisey, J.K., Ferrets (2013) Exotic Animal Formulary, pp. 564-594. , Carpenter J, Marion C, editors. 4th ed. St Louis (MO): Elsevier; Perpinan, D., Johnson-Delaney, C.A., Disorders of the digestive system and liver (2017) Ferret Medicine and Surgery, pp. 159-190. , Johnson-Delaney C, editor. Boca Raton (FL): CRC Press; Perpiñán, D., López, C., Clinical aspects of systemic granulomatous inflammatory syndrome in ferrets (Mustela putorius furo) (2008) Vet Rec, 162, pp. 180-183. , https://doi.org/10.1136/vr.162.6.180; Petritz, O.A., Chen, S., Therapeutic contraindications in exotic pets (2018) Vet Clin North Am Exot Anim Pract, 21, pp. 327-340. , https://doi.org/10.1016/j.cvex.2018.01.004; Swisher, S., Lennox, A.M., Disorders of the haemic, immunological and lymphatic systems (2017) Ferret Medicine and Surgery, pp. 237-258. , Johnson-Delaney C, editor. Boca Raton (FL): CRC Press; Wise, A.G., Kiupel, M., Garner, M.M., Clark, A.K., Maes, R.K., Comparative sequence analysis of the distal one-third of the genomes of a systemic and an enteric ferret coronavirus (2010) Virus Res, 149, pp. 42-50. , https://doi.org/10.1016/j.virusres.2009.12.011","Beaufrère, H.H.; Department of Clinical Studies, Ontario Veterinary College, University of GuelphCanada; email: beaufrer@uoguelph.ca",,"American Association for Laboratory Animal Science",15320820,,COMEF,"29921366","English","Comp. Med.",Article,"Final",,Scopus,2-s2.0-85058446138 "Kiyuka P.K., Agoti C.N., Munywoki P.K., Njeru R., Bett A., Otieno J.R., Otieno G.P., Kamau E., Clark T.G., van der Hoek L., Kellam P., Nokes D.J., Cotten M.","56538602400;36489084300;26533067900;6505950090;24342655600;57210894285;56897265600;57192954963;7403216793;57208140398;56839023100;7006232828;7005126445;","Human coronavirus NL63 molecular epidemiology and evolutionary patterns in rural coastal Kenya",2018,"Journal of Infectious Diseases","217","11",,"1728","1739",,3,"10.1093/infdis/jiy098","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052015304&doi=10.1093%2finfdis%2fjiy098&partnerID=40&md5=680a190db887b60468daadc2ed698214","Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; School of Health and Human Sciences, Pwani University, Kilifi, Kenya; Faculty of Infectious and Tropical Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom; Laboratory of Experimental Virology, Academic Medical Center of the University of Amsterdam, Netherlands; Department of Medicine, Division of Infectious Diseases, Imperial College London, United Kingdom; Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom; School of Life Sciences and Zeeman Institute, University of Warwick, Coventry, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands","Kiyuka, P.K., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Agoti, C.N., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands, School of Health and Human Sciences, Pwani University, Kilifi, Kenya; Munywoki, P.K., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Njeru, R., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Bett, A., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Otieno, J.R., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Otieno, G.P., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Kamau, E., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands; Clark, T.G., Faculty of Infectious and Tropical Diseases, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom; van der Hoek, L., Laboratory of Experimental Virology, Academic Medical Center of the University of Amsterdam, Netherlands; Kellam, P., Department of Medicine, Division of Infectious Diseases, Imperial College London, United Kingdom, Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom; Nokes, D.J., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands, School of Life Sciences and Zeeman Institute, University of Warwick, Coventry, United Kingdom; Cotten, M., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Erasmus MC, Wytemaweg 80, Rotterdam, 3015CN, Netherlands, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands","Background. Human coronavirus NL63 (HCoV-NL63) is a globally endemic pathogen causing mild and severe respiratory tract infections with reinfections occurring repeatedly throughout a lifetime. Methods. Nasal samples were collected in coastal Kenya through community-based and hospital-based surveillance. HCoV-NL63 was detected with multiplex real-time reverse transcription PCR, and positive samples were targeted for nucleotide sequencing of the spike (S) protein. Additionally, paired samples from 25 individuals with evidence of repeat HCoV-NL63 infection were selected for whole-genome virus sequencing. Results. HCoV-NL63 was detected in 1.3% (75/5573) of child pneumonia admissions. Two HCoV-NL63 genotypes circulated in Kilifi between 2008 and 2014. Full genome sequences formed a monophyletic clade closely related to contemporary HCoV-NL63 from other global locations. An unexpected pattern of repeat infections was observed with some individuals showing higher viral titers during their second infection. Similar patterns for 2 other endemic coronaviruses, HCoV-229E and HCoV-OC43, were observed. Repeat infections by HCoV-NL63 were not accompanied by detectable genotype switching. Conclusions. In this coastal Kenya setting, HCoV-NL63 exhibited low prevalence in hospital pediatric pneumonia admissions. Clade persistence with low genetic diversity suggest limited immune selection, and absence of detectable clade switching in reinfections indicates initial exposure was insufficient to elicit a protective immune response. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.","Coronavirus; Repeat infection; Virus evolution","spike protein; unclassified drug; viral protein; adolescent; adult; Article; child; controlled study; Coronavirus infection; endemic disease; evolution; female; gene sequence; gene switching; genotype; hospital admission; hospital based case control study; human; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; Kenya; major clinical study; male; molecular epidemiology; monophyly; nonhuman; nose smear; nucleotide sequence; nucleotide sequence; pathophysiology; phylogeny; pneumonia; preschool child; prevalence; priority journal; real time polymerase chain reaction; reinfection; school child; Student t test; virus evolution; whole genome virus sequencing; Coronavirus infection; evolution; genetics; hospitalization; Human coronavirus NL63; infant; molecular epidemiology; newborn; prospective study; respiratory tract infection; virology; young adult; Adolescent; Adult; Biological Evolution; Child; Child, Preschool; Coronavirus Infections; Coronavirus NL63, Human; Coronavirus OC43, Human; Female; Hospitalization; Humans; Infant; Infant, Newborn; Kenya; Male; Molecular Epidemiology; Phylogeny; Prevalence; Prospective Studies; Respiratory Tract Infections; Young Adult","Liu, L., Johnson, H.L., Cousens, S., Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000 (2012) Lancet, 379, pp. 2151-2161; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; Pavia, A.T., Viral infections of the lower respiratory tract: Old viruses, new viruses, and the role of diagnosis (2011) Clin Infect Dis, 52, pp. S284-S289; Berkley, J.A., Munywoki, P., Ngama, M., Viral etiology of severe pneumonia among Kenyan infants and children (2010) JAMA, 303, pp. 2051-2057; Nokes, D.J., Ngama, M., Bett, A., Incidence and severity of respiratory syncytial virus pneumonia in rural Kenyan children identified through hospital surveillance (2009) Clin Infect Dis, 49, pp. 1341-1349; Venter, M., Lassaunière, R., Kresfelder, T.L., Westerberg, Y., Visser, A., Contribution of common and recently described respiratory viruses to annual hospitalizations in children in South Africa (2011) J Med Virol, 83, pp. 1458-1468; Smuts, H., Workman, L., Zar, H.J., Role of human metapneu-movirus, human coronavirus NL63 and human bocavirus in infants and young children with acute wheezing (2008) J Med Virol, 80, pp. 906-912; Poon, L.L., Guan, Y., Nicholls, J.M., Yuen, K.Y., Peiris, J.S., The aetiology, origins, and diagnosis of severe acute respiratory syndrome (2004) Lancet Infect Dis, 4, pp. 663-671; Peiris, J.S., Lai, S.T., Poon, L.L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; De Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Garbino, J., Crespo, S., Aubert, J.D., A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection (2006) Clin Infect Dis, 43, pp. 1009-1015; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Owusu, M., Annan, A., Corman, V.M., Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana (2014) PLoS One, 9, p. e99782; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: A one-year study in Colorado (2009) J Med Virol, 81, pp. 1597-1604; Plotkin, S., History of vaccination (2014) Proc Natl Acad Sci U S A, 111, pp. 12283-12287; Riedel, S., Edward Jenner and the history of smallpox and vaccination (2005) Proceedings, 18, pp. 21-25; Morens, D.M., Antibody-dependent enhancement of infection and the pathogenesis of viral disease (1994) Clin Infect Dis, 19, pp. 500-512; Yang, Z.Y., Werner, H.C., Kong, W.P., Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses (2005) Proc Natl Acad Sci U S A, 102, pp. 797-801; Yip, M.S., Leung, N.H., Cheung, C.Y., Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus (2014) Virol J, 11, p. 82; Weingartl, H., Czub, M., Czub, S., Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets (2004) J Virol, 78, pp. 12672-12676; Peiris, J.S., Porterfield, J.S., Antibody-mediated enhancement of Flavivirus replication in macrophage-like cell lines (1979) Nature, 282, pp. 509-511; Sullivan, N.J., Antibody-mediated enhancement of viral disease (2001) Curr Top Microbiol Immunol, 260, pp. 145-169; Agoti, C.N., Mwihuri, A.G., Sande, C.J., Genetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural Kenya (2012) J Infect Dis, 206, pp. 1532-1541; Nokes, D.J., Okiro, E.A., Ngama, M., Respiratory syncytial virus epidemiology in a birth cohort from Kilifi district, Kenya: Infection during the first year of life (2004) J Infect Dis, 190, pp. 1828-1832; Nokes, D.J., Okiro, E.A., Ngama, M., Respiratory syncytial virus infection and disease in infants and young children observed from birth in Kilifi District, Kenya (2008) Clin Infect Dis, 46, pp. 50-57; Munywoki, P.K., Koech, D.C., Agoti, C.N., The source of respiratory syncytial virus infection in infants: A household cohort study in rural Kenya (2014) J Infect Dis, 209, pp. 1685-1692; Agoti, C.N., Otieno, J.R., Ngama, M., Successive respiratory syncytial virus epidemics in local populations arise from multiple variant introductions, providing insights into virus persistence (2015) J Virol, 89, pp. 11630-11642; Hammitt, L.L., Kazungu, S., Morpeth, S.C., A preliminary study of pneumonia etiology among hospitalized children in Kenya (2012) Clin Infect Dis, 54, pp. S190-S199; Driscoll, A.J., Karron, R.A., Morpeth, S.C., Standardization of laboratory methods for the PERCH study (2017) Clin Infect Dis, 64, pp. 245-252; Gunson, R.N., Collins, T.C., Carman, W.F., Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions (2005) J Clin Virol, 33, pp. 341-344; Cotten, M., Oude Munnink, B., Canuti, M., Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm (2014) PLoS One, 9, p. e93269; Endoh, D., Mizutani, T., Kirisawa, R., Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription (2005) Nucleic Acids Res, 33, p. e65; Watson, S.J., Welkers, M.R., Depledge, D.P., Viral population analysis and minority-variant detection using short read next-generation sequencing (2013) Philos Trans R Soc Lond B Biol Sci, 368, p. 20120205; Bankevich, A., Nurk, S., Antipov, D., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing (2012) J Comput Biol, 19, pp. 455-477; Edgar, R.C., Search and clustering orders of magnitude faster than BLAST (2010) Bioinformatics, 26, pp. 2460-2461; Katoh, K., Toh, H., Recent developments in the MAFFT multiple sequence alignment program (2008) Brief Bioinform, 9, pp. 286-298; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739; Kokot, M., Dlugosz, M., Deorowicz, S., KMC 3: Counting and manipulating k-mer statistics (2017) Bioinformatics, 33, pp. 2759-2761; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974; Lin, H.X., Feng, Y., Tu, X., Characterization of the spike protein of human coronavirus NL63 in receptor binding and pseudotype virus entry (2011) Virus Res, 160, pp. 283-293; Pyrc, K., Dijkman, R., Deng, L., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J Mol Biol, 364, pp. 964-973; Gerna, G., Campanini, G., Rovida, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78, pp. 938-949; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071; Koetz, A., Nilsson, P., Lindén, M., van der Hoek, L., Ripa, T., Detection of human coronavirus NL63, human metapneu-movirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden (2006) Clin Microbiol Infect, 12, pp. 1089-1096; Lu, R., Yu, X., Wang, W., Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays (2012) PLoS One, 7, p. e38638; Ren, L., Gonzalez, R., Xu, J., Prevalence of human coronaviruses in adults with acute respiratory tract infections in Beijing, China (2011) J Med Virol, 83, pp. 291-297; van der Hoek, L., Ihorst, G., Sure, K., Burden of disease due to human coronavirus NL63 infections and periodicity of infection (2010) J Clin Virol, 48, pp. 104-108",,,"Oxford University Press",00221899,,JIDIA,"29741740","English","J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85052015304 "Surya W., Li Y., Torres J.","36344416000;56014851600;7402798449;","Structural model of the SARS coronavirus E channel in LMPG micelles",2018,"Biochimica et Biophysica Acta - Biomembranes","1860","6",,"1309","1317",,2,"10.1016/j.bbamem.2018.02.017","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043522938&doi=10.1016%2fj.bbamem.2018.02.017&partnerID=40&md5=2b1a40f323fbbb7dec5d80c6712f20cb","School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore","Surya, W., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Li, Y., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore; Torres, J., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore","Coronaviruses (CoV) cause common colds in humans, but are also responsible for the recent Severe Acute, and Middle East, respiratory syndromes (SARS and MERS, respectively). A promising approach for prevention are live attenuated vaccines (LAVs), some of which target the envelope (E) protein, which is a small membrane protein that forms ion channels. Unfortunately, detailed structural information is still limited for SARS-CoV E, and non-existent for other CoV E proteins. Herein, we report a structural model of a SARS-CoV E construct in LMPG micelles with, for the first time, unequivocal intermolecular NOEs. The model corresponding to the detergent-embedded region is consistent with previously obtained orientational restraints obtained in lipid bilayers and in vivo escape mutants. The C-terminal domain is mostly α-helical, and extramembrane intermolecular NOEs suggest interactions that may affect the TM channel conformation. © 2018 Elsevier B.V.","Envelope protein; Micelles; Oligomerization; Solution NMR; Transmembrane α-helices","glycerophospholipid; lyso myristoyl phosphatidylglycerol; unclassified drug; virus envelope protein; phosphatidylglycerol; virus envelope protein; alpha helix; Article; carboxy terminal sequence; lipid bilayer; micelle; mutant; nonhuman; oligomerization; priority journal; protein conformation; protein domain; SARS coronavirus; structural model; structure analysis; chemistry; molecular model; nuclear magnetic resonance; polyacrylamide gel electrophoresis; SARS coronavirus; structure activity relation; Electrophoresis, Polyacrylamide Gel; Micelles; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Phosphatidylglycerols; Protein Conformation; SARS Virus; Structure-Activity Relationship; Viral Envelope Proteins","Holmes, K.V., SARS coronavirus: a new challenge for prevention and therapy (2003) J. Clin. Invest., 111, pp. 1605-1609; Raj, V.S., Osterhaus, A.D.M.E., Fouchier, R.A.M., Haagmans, B.L., MERS: emergence of a novel human coronavirus (2014) Curr. Opin. Virol., 5, pp. 58-62; Lou, Z., Sun, Y., Rao, Z., Current progress in antiviral strategies (2014) Trends Pharmacol. Sci., 35, pp. 86-102; Kilianski, A., Baker, S.C., Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors (2014) Antivir. Res., 101, pp. 105-112; Kilianski, A., Mielech, A.M., Deng, X., Baker, S.C., Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors (2013) J. Virol., 87, pp. 11955-11962; Wei, Y.Q., Guo, H.C., Dong, H., Wang, H.M., Xu, J., Sun, D.H., Fang, S.G., Sun, S.Q., Development and characterization of a recombinant infectious bronchitis virus expressing the ectodomain region of S1 gene of H120 strain (2014) Appl. Microbiol. Biotechnol., 98, pp. 1727-1735; Lv, L., Li, X., Liu, G., Li, R., Liu, Q., Shen, H., Wang, W., Cao, Y., Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus (2014) J. Vet. Sci., 15, pp. 209-216; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med., 18. , (1820-+); Enjuanes, L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., DeDiego, M.L., Recombinant live vaccines to protect against the severe acute respiratory syndrome coronavirus (2011) Replicating Vaccines, Birkhauser Advances in Infectious Diseases, pp. 73-97. , P.R.D.e. al. Springer Basel; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis., 56, pp. 634-641; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580; Lamirande, E.W., DeDiego, M.L., Roberts, A., Jackson, J.P., Alvarez, E., Sheahan, T., Shieh, W.J., Subbarao, K., A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters (2008) J. Virol., 82, pp. 7721-7724; Netland, J., DeDiego, M.L., Zhao, J., Fett, C., Alvarez, E., Nieto-Torres, J.L., Enjuanes, L., Perlman, S., Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease (2010) Virology, 399, pp. 120-128; Almazán, F., DeDiego, M.L., Sola, I., Zuñiga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andrés, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4; Torres, J., Wang, J., Parthasarathy, K., Liu, D.X., The transmembrane oligomers of coronavirus protein E (2005) Biophys. J., 88, pp. 1283-1290; Torres, J., Parthasarathy, K., Lin, X., Saravanan, R., Kukol, A., Ding, X.L., Model of a putative pore: the pentameric α-helical bundle of SARS coronavirus E protein in lipid bilayers (2006) Biophys. J., 91, pp. 938-947; Parthasarathy, K., Ng, L., Lin, X., Liu, D.X., Pervushin, K., Gong, X., Torres, J., Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel (2008) Biophys. J., 95, pp. L39-41; Parthasarathy, K., Lu, H., Surya, W., Vararattanavech, A., Pervushin, K., Torres, A., Expression and purification of coronavirus envelope proteins using a modified beta-barrel construct (2012) Protein Expr. Purif., 85, pp. 133-141; Li, Y., Surya, W., Claudine, S., Torres, J., Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins (2014) J. Biol. Chem., 289, pp. 12535-12549; Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F.L., Yu, D., Vararattanavech, A., Torres, J., Structure and inhibition of the SARS coronavirus envelope protein ion channel (2009) PLoS Pathog., 5; Surya, W., Li, Y., Verdià-Bàguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res., 201, pp. 61-66; Verdia-Baguena, C., Nieto-Torres, J.L., Alcaraz, A., DeDiego, M.L., Torres, J., Aguilella, V.M., Enjuanes, L., Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids (2012) Virology, 432, pp. 485-494; Wilson, L., Gage, P., Ewart, G., Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication (2006) Virology, 353, pp. 294-306; Liao, Y., Yuan, Q., Torres, J., Tam, J.P., Liu, D.X., Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein (2006) Virology, 349, pp. 264-275; Tung, F.Y.T., Abraham, S., Sethna, M., Hung, S.-L., Sethna, P., Hogue, B.G., Brian, D.A., The 9-kDa hydrophobic protein encoded at the 3′ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated (1992) Virology, 186, pp. 676-683; Corse, E., Machamer, C.E., The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction (2003) Virology, 312, pp. 25-34; Raamsman, M.J.B., Krijnse Locker, J., De Hooge, A., De Vries, A.A.F., Griffiths, G., Vennema, H., Rottier, P.J.M., Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E (2000) J. Virol., 74, pp. 2333-2342; Lopez, L.A., Riffle, A.J., Pike, S.L., Gardner, D., Hogue, B.G., Importance of conserved cysteine residues in the coronavirus envelope protein (2008) J. Virol., 82, pp. 3000-3010; Nieto-Torres, J.L., DeDiego, M.L., Alvarez, E., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Llorente, M., Kremer, L., Enjuanes, L., Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein (2011) Virology, 415, pp. 69-82; DeDiego, M.L., Nieto-Torres, J.L., Regla-Nava, J.A., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Castaño-Rodriguez, C., Enjuanes, L., Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival (2014) J. Virol., 88, pp. 913-924; DeDiego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Álvarez, E., Oliveros, J.C., Zhao, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLoS Pathog., 7; Jimenez-Guardeno, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castano-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLoS Pathog., 11; Jimenez-Guardeno, J.M., Nieto-Torres, J.L., DeDiego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castano-Rodriguez, C., Enjuanes, L., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLoS Pathog., 10; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Castaño-Rodríguez, C., Perlman, S., De Diego, M.L., Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates (2015) J. Virol., 89, pp. 3870-3887; Torres, J., Briggs, J.A., Arkin, I.T., Multiple site-specific infrared dichroism of CD3-zeta, a transmembrane helix bundle (2002) J. Mol. Biol., 316, pp. 365-374; Torres, J., Maheswari, U., Parthasarathy, K., Ng, L., Ding, X.L., Gong, X., Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein (2007) Protein Sci., 16, pp. 2065-2071; OuYang, B., Xie, S., Berardi, M.J., Zhao, X., Dev, J., Yu, W., Sun, B., Chou, J.J., Unusual architecture of the p7 channel from hepatitis C virus (2013) Nature, 498, pp. 521-525; Godet, M., L'Haridon, R., Vautherot, J.-F., Laude, H., TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions (1992) Virology, 188, pp. 666-675; Sivashanmugam, A., Murray, V., Cui, C.X., Zhang, Y.H., Wang, J.J., Li, Q.Q., Practical protocols for production of very high yields of recombinant proteins using Escherichia coli (2009) Protein Sci., 18, pp. 936-948; Tugarinov, V., Kanelis, V., Kay, L.E., Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy (2006) Nat. Protoc., 1, pp. 749-754; Gan, S.W., Vararattanavech, A., Nordin, N., Eshaghi, S., Torres, J., A cost-effective method for simultaneous homo-oligomeric size determination and monodispersity conditions for membrane proteins (2011) Anal. Biochem., 416, pp. 100-106; Arkin, I.T., MacKenzie, K.R., Brunger, A.T., Site-directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers (1997) J. Am. Chem. Soc., 119, pp. 8973-8980; Cornilescu, G., Delaglio, F., Bax, A., Protein backbone angle restraints from searching a database for chemical shift and sequence homology (1999) J. Biomol. NMR, 13, pp. 289-302; Guntert, P., Mumenthaler, C., Wuthrich, K., Torsion angle dynamics for NMR structure calculation with the new program DYANA (1997) J. Mol. Biol., 273, pp. 283-298; Herrmann, T., Guntert, P., Wuthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J. Mol. Biol., 319, pp. 209-227; Dominguez, C., Boelens, R., Bonvin, A.M.J.J., HADDOCK: a protein−protein docking approach based on biochemical or biophysical information (2003) J. Am. Chem. Soc., 125, pp. 1731-1737; Lau, T.L., Kim, C., Ginsberg, M.H., Ulmer, T.S., The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling (2009) EMBO J., 28, pp. 1351-1361; Surya, W., Li, Y., Millet, O., Diercks, T., Torres, J., Transmembrane and juxtamembrane structure of alphaL integrin in bicelles (2013) PLoS One, 8; Lau, T.L., Dua, V., Ulmer, T.S., Structure of the integrin alphaIIb transmembrane segment (2008) J. Biol. Chem., 283, pp. 16162-16168; Li, R., Babu, C.R., Lear, J.D., Wand, A.J., Bennett, J.S., DeGrado, W.F., Oligomerization of the integrin αIIbβ3: roles of the transmembrane and cytoplasmic domains (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 12462-12467; Suk, J.-E., Situ, A.J., Ulmer, T.S., Construction of covalent membrane protein complexes and high-throughput selection of membrane mimics (2012) J. Am. Chem. Soc., 134, pp. 9030-9033; Lai, C., Liu, X., Tian, C., Wu, F., Integrin α1 has a long helix, extending from the transmembrane region to the cytoplasmic tail in detergent micelles (2013) PLoS One, 8; Gan, S.W., Tan, E., Lin, X., Yu, D., Wang, J., Tan, G., Vararattanavech, A., Torres, J., The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels (2012) J. Biol. Chem., 287, pp. 24671-24689; Heuberger, E.H., Veenhoff, L.M., Duurkens, R.H., Friesen, R.H., Poolman, B., Oligomeric state of membrane transport proteins analyzed with blue native electrophoresis and analytical ultracentrifugation (2002) J. Mol. Biol., 317, pp. 591-600","Torres, J.; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore; email: jtorres@ntu.edu.sg",,"Elsevier B.V.",00052736,,BBBMB,"29474890","English","Biochim. Biophys. Acta Biomembr.",Article,"Final",Open Access,Scopus,2-s2.0-85043522938 "Weng X., Neethirajan S.","56542647400;14024586000;","Immunosensor based on antibody-functionalized MoS2 for rapid detection of avian coronavirus on cotton thread",2018,"IEEE Sensors Journal","18","11",,"4358","4363",,2,"10.1109/JSEN.2018.2829084","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045736862&doi=10.1109%2fJSEN.2018.2829084&partnerID=40&md5=ee31668a0cda3f5115b976b8c326a1f0","BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada","Weng, X., BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; Neethirajan, S., BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada","Infectious bronchitis virus (IBV), an avian coronavirus, significantly affects the performance of both the egg-laying and meat-type birds causing the foremost of economic loss in poultry industry. This paper aims to develop a rapid, low-cost, and sensitive biosensor for IBV detection by using molybdenum disulfide (MoS2). MoS2 is a 2-D nanosheet which has strong high fluorescence-quenching ability when applied to a dye-labeled antibody (Ab). In this paper, we developed an Ab-functionalized MoS2-based fluorescent immunosensor, which utilized the fluorescence resonance energy transfer (FRET) between the MoS2 and fluorescence dye during the Ab-antigen interaction. The assay was performed on a low-cost cotton thread-based microfluidic platform due to the good wicking property and flexibility. Upon the optimization of assay conditions, the immunosensor demonstrated remarkable sensitivity of 4.6× 10-2 EID50 per mL and specificity with a dynamic linear response range of 102-106 EID50 per mL for IBV standard solutions. The developed immunoassay successfully detected the IBV spiked chicken serum with satisfactory results. The foregoing presents its potential application for on-farm detection. © 2001-2012 IEEE.","Cotton thread; FRET; Immunosensor; Infectious bronchitis virus; Molybdenum disulfide","Antibodies; Antigen-antibody reactions; Antigens; Chemical detection; Cotton; Energy transfer; Fluorescence; Fluorescence quenching; Forster resonance energy transfer; Immune system; Immunosensors; Layered semiconductors; Losses; Microfluidics; Molybdenum; Nanosheets; Sulfur; Sulfur compounds; Viruses; Yarn; Antibody-antigen interactions; Cotton threads; Fluorescent immunosensors; Microfluidic platforms; Molybdenum disulfide; Poultry industry; Standard solutions; Wicking properties; Molybdenum compounds","He, Y., Responses of the toll-like receptor and melanoma differentiation-associated protein 5 signaling pathways to avian infectious bronchitis virus infection in chicks (2016) Virol. Sin., 31 (1), pp. 57-68. , Feb; Awad, F., Chhabra, R., Baylis, M., Ganapathy, K., An overview of infectious bronchitis virus in chickens (2014) World's Poultry Sci. J., 70 (2), pp. 375-384. , Jun; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38 (2), pp. 281-297. , Mar; Promkuntod, N., Van Eijndhoven, R.E.W., De Vrieze, G., Gröne, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32. , Jan; Cheng, Y., Tang, H., Jiang, J., Enzyme mediated assembly of gold nanoparticles for ultrasensitive colorimetric detection of hepatitis C virus antibody (2017) Anal. Methods, 9, pp. 3777-3781. , May; Kumar, S., Ahlawat, W., Kumar, R., Dilbaghi, N., Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare (2015) Biosensors Bioelectron., 70, pp. 498-503. , Aug; Holzinger, M., Le Goff, A., Cosnier, S., Nanomaterials for biosensing applications: A review (2014) Front. Chem., 2, p. 63. , Aug; Ge, X., Asiri, A.M., Du, D., Wen, W., Wang, S., Lin, Y., Nanomaterialenhanced paper-based biosensors (2014) TrAC Trends Anal. Chem., 58, pp. 31-39. , Jun; Lv, R., Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets (2014) Accounts Chem. Res., 48 (1), pp. 56-64. , Dec; Li, H., Wu, J., Yin, Z., Zhang, H., Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets (2014) Accounts Chem. Res., 47 (4), pp. 1067-1075. , Apr; Kong, R.M., Ding, L., Wang, Z., You, J., Qu, F., A novel aptamerfunctionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen (2015) Anal. Bioanal. Chem., 407 (2), pp. 369-377. , Jan; Kalantar-Zadeh, K., Ou, J.Z., Biosensors based on two-dimensional MoS2 (2015) ACS Sensors, 1 (1), pp. 5-16. , Nov; Zang, Y., Lei, J., Hao, Q., Ju, H., CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation (2016) Biosensors Bioelectron., 77, pp. 557-564. , Mar; Hassanzadeh, J., Khataee, A., Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots (2018) Talanta, 178, pp. 992-1000. , Feb; Loan, P.T.K., Zhang, W., Lin, C.-T., Wei, K.-H., Li, L.-J., Chen, C.-H., Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation (2014) Adv. Mater., 26 (28), pp. 4838-4844. , Jul; Chen, H., Quasi-two-dimensional metal oxide semiconductors based ultrasensitive potentiometric biosensors (2017) ACS Nano, 11 (5), pp. 4710-4718. , Apr; Lin, K.C., Jagannath, B., Muthukumar, S., Prasad, S., Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS2 (2017) Analyst, 142 (15), pp. 2770-2780; Tuteja, S.K., Duffield, T., Neethirajan, S., Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis (2017) Nanoscale, 9 (30), pp. 10886-10896; Geldert, A., Kenry, K., Zhang, X., Zhang, H., Lim, C.T., Enhancing the sensing specificity of a MoS2 nanosheet-based FRET aptasensor using a surface blocking strategy (2017) Analyst, 142, pp. 2570-2577. , May; Zhang, X., A sandwich electrochemiluminescence immunosensor for highly sensitive detection of alpha fetal protein based on MoS2-PEI-Au nanocomposites and Au@BSA core/shell nanoparticles (2017) Sens. Actuators B, Chem., 253, pp. 470-477. , Dec; Safavieh, R., Mirzaei, M., Qasaimeh, M.A., Juncker, D., Yarn based microfluidics: From basic elements to complex circuits (2009) Proc. MicroTAS, 13th Int. Conf. Miniaturized Syst. Chem. Life Sci.; Mao, X., Du, T.E., Wang, Y., Meng, L., Disposable dry-reagent cotton thread-based point-of-care diagnosis devices for protein and nucleic acid test (2015) Biosensors Bioelectron., 65, pp. 390-396. , Mar; Du, T.E., Wang, Y., Zhang, Y., Zhang, T., Mao, X., A novel adenosinebased molecular beacon probe for room temperature nucleic acid rapid detection in cotton thread device (2015) Anal. Chim. Acta, 861, pp. 69-73. , Feb; Grgić, H., Hunter, D.B., Hunton, P., Nagy, E., Pathogenicity of infectious bronchitis virus isolates from Ontario chickens (2008) Can. J. Vet. Res., 72 (5), p. 403. , Oct; St Paul, M., Effects of ligands for toll-like receptors 3, 4, and 21 as adjuvants on the immunogenicity of an avian influenza vaccine in chickens (2014) Viral Immunol., 27 (4), pp. 167-173. , May; Singh, S.M., Characterization of immune responses to an inactivated avian influenza virus vaccine adjuvanted with nanoparticles containing CpG ODN (2016) Viral Immunol., 29 (5), pp. 269-275. , Jun; Angenendt, P., Glökler, J., Murphy, D., Lehrach, H., Cahill, D.J., Toward optimized antibody microarrays: A comparison of current microarray support materials (2002) Anal. Biochem., 309 (2), pp. 253-260. , Oct; Yao, Y., High-concentration aqueous dispersions of MoS2 (2013) Adv. Funct. Mater., 23 (28), pp. 3577-3583. , Jul; Marsich, L., Bonifacio, A., Mandal, S., Krol, S., Beleites, C., Sergo, V., Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering (2012) Langmuir, 28 (37), pp. 13166-13171. , Sep; Yadav, S., Liu, J., Shire, S.J., Kalonia, D.S., Specific interactions in high concentration antibody solutions resulting in high viscosity (2010) J. Pharmaceutical Sci., 99 (3), pp. 1152-1168. , Mar; Posudievsky, O.Y., Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2 (2013) J. Mater. Chem. C, 1 (39), pp. 6411-6415; Forsberg, V., Exfoliated MoS2 in water without additives (2016) PLoS ONE, 11 (4), p. e0154522. , Apr; Thomsen, V., Schatzlein, D., Mercuro, D., Limits of detection in spectroscopy (2003) Spectroscopy, 18 (12), pp. 112-114. , Dec","Neethirajan, S.; BioNano Laboratory, School of Engineering, University of GuelphCanada; email: sneethir@uoguelph.ca",,"Institute of Electrical and Electronics Engineers Inc.",1530437X,,,,"English","IEEE Sensors J.",Article,"Final",,Scopus,2-s2.0-85045736862 "Shin J.S., Jung E., Kim M., Baric R.S., Go Y.Y.","55882931800;57192963294;35196299600;57205312930;24173294400;","Saracatinib inhibits middle east respiratory syndrome-coronavirus replication in vitro",2018,"Viruses","10","6", 283,"","",,5,"10.3390/v10060283","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047872591&doi=10.3390%2fv10060283&partnerID=40&md5=5c53d49e181dc3ab7f431e117b45c4dd","Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34114, South Korea; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States","Shin, J.S., Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea; Jung, E., Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Kim, M., Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea, Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34114, South Korea; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Go, Y.Y., Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea, Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34114, South Korea","The Middle East respiratory syndrome-coronavirus (MERS-CoV), first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK), was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Gemcitabine; MERS-CoV; Middle East Respiratory Syndrome; Saracatinib; Src-family kinase inhibitor","gemcitabine; protein tyrosine kinase; saracatinib; 1,3 benzodioxole derivative; antivirus agent; deoxycytidine; enzyme inhibitor; gemcitabine; protein tyrosine kinase; quinazoline derivative; saracatinib; antiviral activity; Article; CC50; Coronavirinae; cytotoxicity; EC50; human; human cell; immunoblotting; in vitro study; life cycle; Middle East respiratory syndrome coronavirus; mutation; plaque assay; real time polymerase chain reaction; respiratory tract disease; reverse transcription polymerase chain reaction; RNA isolation; RNAi therapeutics; viral plaque assay; virus infection; virus replication; Western blotting; analogs and derivatives; antagonists and inhibitors; cell line; cross infection; DNA replication; drug development; drug effect; Middle East respiratory syndrome coronavirus; molecular library; virus replication; Antiviral Agents; Benzodioxoles; Cell Line; Cross Infection; Deoxycytidine; DNA Replication; Drug Discovery; Enzyme Inhibitors; Humans; Middle East Respiratory Syndrome Coronavirus; Quinazolines; Small Molecule Libraries; src-Family Kinases; Virus Replication","de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses—Drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns” (2013) J. Formos. Med. Assoc., 112, pp. 372-381; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., 2014 MERS-CoV outbreak in Jeddah—A link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Al-Tawfiq, J.A., Memish, Z.A., What are our pharmacotherapeutic options for MERS-CoV? (2014) Expert Rev. Clin. Pharmacol., 7, pp. 235-238; Ashburn, T.T., Thor, K.B., Drug repositioning: Identifying and developing new uses for existing drugs (2004) Nat. Rev. Drug Discov., 3, pp. 673-683; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., van den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Johnson, R.F., Laidlaw, M., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob. Agents Chemother., 58, pp. 4885-4893; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Jahrling, P.B., Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J. Gen. Virol., 95, pp. 571-577; Kindrachuk, J., Ork, B., Hart, B.J., Mazur, S., Holbrook, M.R., Frieman, M.B., Traynor, D., Kuhn, J.H., Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis (2015) Antimicrob. Agents Chemother., 59, pp. 1088-1099; Coleman, C.M., Sisk, J.M., Mingo, R.M., Nelson, E.A., White, J.M., Frieman, M.B., Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion (2016) J. Virol., 90, pp. 8924-8933; Kim, D.W., Kim, Y.J., Park, S.H., Yun, M.R., Yang, J.S., Kang, H.J., Han, Y.W., Kim, H., Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015 (2016) Emerg. Infect. Dis., 22, pp. 100-104; Kumar, V., Shin, J.S., Shie, J.J., Ku, K.B., Kim, C., Go, Y.Y., Huang, K.F., Liang, P.H., Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CLPro inhibitors (2017) Antivir. Res., 141, pp. 101-106; Zhang, J.H., Chung, T.D., Oldenburg, K.R., A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays (1999) J. Biomol. Screen., 4, pp. 67-73; Go, Y.Y., Kim, Y.S., Cheon, S., Nam, S., Ku, K.B., Kim, M., Cho, N.H., Lin, Y.C., Evaluation and Clinical Validation of Two Field-Deployable Reverse Transcription-Insulated Isothermal PCR Assays for the Detection of the Middle East Respiratory Syndrome-Coronavirus (2017) J. Mol. Diagn., 19, pp. 817-827; Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol. Rev., 58, pp. 621-681; Go, Y.Y., Evaluation of Antiviral Activity of Saracatinib against Virus Attachment (2018) Korea Research Institute of Chemical Technology, , Daejeon, Korea; Green, T.P., Fennell, M., Whittaker, R., Curwen, J., Jacobs, V., Allen, J., Logie, A., Wilkinson, R.W., Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530 (2009) Mol. Oncol., 3, pp. 248-261; Hennequin, L.F., Allen, J., Breed, J., Curwen, J., Fennell, M., Green, T.P., Lambert-Van der Brempt, C., Olivier, A., N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl) ethoxy]-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor (2006) J. Med. Chem., 49, pp. 6465-6488; Plunkett, W., Huang, P., Gandhi, V., Preclinical characteristics of gemcitabine (1995) Anticancer Drugs, 6, pp. 7-13; Plunkett, W., Huang, P., Xu, Y.Z., Heinemann, V., Grunewald, R., Gandhi, V., Gemcitabine: Metabolism, mechanisms of action, and self-potentiation (1995) Semin. Oncol., 22, pp. 3-10. , PubMed; Kang, H., Kim, C., Kim, D.E., Song, J.H., Choi, M., Choi, K., Kang, M., Shin, J.S., Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses (2015) Antivir. Res., pp. 1-10; Manicassamy, S., Sotrastaurin, a protein kinase C inhibitor for the prevention of transplant rejection and treatment of psoriasis (2009) Curr. Opin. Investig. Drugs, 10, pp. 1225-1235. , PubMed; Thomas, S.M., Brugge, J.S., Cellular functions regulated by Src family kinases (1997) Annu. Rev. Cell Dev. Biol., 13, pp. 513-609; Ricono, J.M., Huang, M., Barnes, L.A., Lau, S.K., Weis, S.M., Schlaepfer, D.D., Hanks, S.K., Cheresh, D.A., Specific cross-talk between epidermal growth factor receptor and integrin αvβ5 promotes carcinoma cell invasion and metastasis (2009) Cancer Res, 69, pp. 1383-1391; Colicelli, J., ABL tyrosine kinases: Evolution of function, regulation, and specificity (2010) Sci. Signal, 3, p. 6; Johnsen, I.B., Nguyen, T.T., Bergstroem, B., Fitzgerald, K.A., Anthonsen, M.W., The tyrosine kinase c-Src enhances RIG-I (Retinoic acid-inducible gene I)-elicited antiviral signaling (2009) J. Biol. Chem., 284, pp. 19122-19131; Johnsen, I.B., Nguyen, T.T., Ringdal, M., Tryggestad, A.M., Bakke, O., Lien, E., Espevik, T., Anthonsen, M.W., Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling (2006) EMBO J, 25, pp. 3335-3346; Hahn, A.S., Kaufmann, J.K., Wies, E., Naschberger, E., Panteleev-Ivlev, J., Schmidt, K., Holzer, A., Konig, S., The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (2012) Nat. Med., 18, pp. 961-966; Eierhoff, T., Hrincius, E.R., Rescher, U., Ludwig, S., Ehrhardt, C., The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells (2010) Plos Pathog, 6; Kumar, N., Sharma, N.R., Ly, H., Parslow, T.G., Liang, Y., Receptor tyrosine kinase inhibitors that block replication of influenza a and other viruses (2011) Antimicrob. Agents Chemother., 55, pp. 5553-5559; Brindley, M.A., Hunt, C.L., Kondratowicz, A.S., Bowman, J., Sinn, P.L., McCray, P.B., Jr., Quinn, K., Maury, W., Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein (2011) Virology, 415, pp. 83-94; Coyne, C.B., Bergelson, J.M., Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions (2006) Cell, 124, pp. 119-131; Pfannkuche, A., Buther, K., Karthe, J., Poenisch, M., Bartenschlager, R., Trilling, M., Hengel, H., Bode, J.G., C-Src is required for complex formation between the hepatitis C virus-encoded proteins NS5A and NS5B: A prerequisite for replication (2011) Hepatology, 53, pp. 1127-1136; Supekova, L., Supek, F., Lee, J., Chen, S., Gray, N., Pezacki, J.P., Schlapbach, A., Schultz, P.G., Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening (2008) J. Biol. Chem., 283, pp. 29-36; Hirsch, A.J., Medigeshi, G.R., Meyers, H.L., Defilippis, V., Fruh, K., Briese, T., Lipkin, W.I., Nelson, J.A., The Src family kinase c-Yes is required for maturation of West Nile virus particles (2005) J. Virol., 79, pp. 11943-11951; Tintori, C., Laurenzana, I., la Rocca, F., Falchi, F., Carraro, F., Ruiz, A., Este, J.A., Maga, G., Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents (2013) Chemmedchem, 8, pp. 1353-1360; McCarthy, S.D., Sakac, D., Neschadim, A., Branch, D.R., C-SRC protein tyrosine kinase regulates early HIV-1 infection post-entry (2016) AIDS, 30, pp. 849-858; Musumeci, F., Schenone, S., Brullo, C., Desogus, A., Botta, L., Tintori, C., Hck inhibitors as potential therapeutic agents in cancer and HIV infection (2015) Curr. Med. Chem., 22, pp. 1540-1564; Coiras, M., Ambrosioni, J., Cervantes, F., Miro, J.M., Alcami, J., Tyrosine kinase inhibitors: Potential use and safety considerations in HIV-1 infection (2017) Expert Opin. Drug Saf., 16, pp. 547-559; de Wispelaere, M., Lacroix, A.J., Yang, P.L., The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase (2013) J. Virol., 87, pp. 7367-7381; Kumar, R., Agrawal, T., Khan, N.A., Nakayama, Y., Medigeshi, G.R., Identification and characterization of the role of c-terminal Src kinase in dengue virus replication (2016) Sci. Rep., 6, p. 30490; Newsome, T.P., Weisswange, I., Frischknecht, F., Way, M., Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus (2006) Cell. Microbiol., 8, pp. 233-241; Sisk, J.M., Frieman, M.B., Machamer, C.E., Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors (2018) J. Gen. Virol., 99, pp. 619-630; Finn, R.S., Targeting Src in breast cancer (2008) Ann. Oncol, 19, pp. 1379-1386; Cai, Y., Liu, Y., Zhang, X., Suppression of coronavirus replication by inhibition of the MEK signaling pathway (2007) J. Virol., 81, pp. 446-456; Cai, Y., Liu, Y., Zhang, X., Induction of transcription factor Egr-1 gene expression in astrocytoma cells by Murine coronavirus infection (2006) Virology, 355, pp. 152-163; Sierra, J.R., Cepero, V., Giordano, S., Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy (2010) Mol. Cancer, 9, p. 75; Mini, E., Nobili, S., Caciagli, B., Landini, I., Mazzei, T., Cellular pharmacology of gemcitabine (2006) Ann. Oncol., 17, pp. vv7-v12; Denisova, O.V., Kakkola, L., Feng, L., Stenman, J., Nagaraj, A., Lampe, J., Yadav, B., Ahola, T., Obatoclax, saliphenylhalamide, and gemcitabine inhibit influenza a virus infection (2012) J. Biol. Chem., 287, pp. 35324-35332; Clouser, C.L., Patterson, S.E., Mansky, L.M., Exploiting drug repositioning for discovery of a novel HIV combination therapy (2010) J. Virol., 84, pp. 9301-9309; Song, J.H., Kim, S.R., Heo, E.Y., Lee, J.Y., Kim, D.E., Cho, S., Chang, S.Y., Ko, H.J., Antiviral activity of gemcitabine against human rhinovirus in vitro and in vivo (2017) Antivir. Res., 145, pp. 6-13","Go, Y.Y.; Virus Research Group, Korea Research Institute of Chemical TechnologySouth Korea; email: yygo@krict.re.kr",,"MDPI AG",19994915,,,"29795047","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85047872591 "Amer H., Alqahtani A.S., Alaklobi F., Altayeb J., Memish Z.A.","57201583437;57193667170;57190423732;57202543689;7005059350;","Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): Revision of screening strategies urgently needed",2018,"International Journal of Infectious Diseases","71",,,"113","116",,9,"10.1016/j.ijid.2018.04.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048726235&doi=10.1016%2fj.ijid.2018.04.001&partnerID=40&md5=0b34505eb3d7c37e98160ea31f389828","Infection Control Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Department of Community Medicine, National Research Center, Egypt; Medical Affairs, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Department of Pediatric Infectious Disease, King Saud Medical City, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University and Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Amer, H., Infection Control Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia, Department of Community Medicine, National Research Center, Egypt; Alqahtani, A.S., Medical Affairs, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Alaklobi, F., Department of Pediatric Infectious Disease, King Saud Medical City, Riyadh, Saudi Arabia; Altayeb, J., Infection Control Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Memish, Z.A., College of Medicine, Alfaisal University and Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Objectives: Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause frequent hospital outbreaks in Saudi Arabia, with emergency departments as the initial site of the spread of this virus. Methods: The risk of transmission of MERS-CoV infection to healthcare workers (HCWs) was assessed in an outbreak in Riyadh. All HCWs with unprotected exposure to confirmed cases were tested after 24 h of exposure. Two negative results for MERS-CoV obtained 3 days apart and being free of any suggestive signs and symptoms were used to end the isolation of the HCWs and allow their return to duty. Results: Overall 17 out of 879 HCWS with different levels of exposure tested positive for MERS-CoV. Of the 15 positive HCWS with adequate follow-up, 40% (6/15 HCWs) tested positive on the first sampling and 53% (8/15) tested positive on the second sampling. The time to negative results among the 15 positive HCWs ranged between 4 and 47 days (average 14.5 days) and the infected HCWs needed on average two samples for clearance. All positive HCWs were either asymptomatic or had mild disease. Conclusions: The data obtained in this study support the widespread testing of all close contacts of MERS-CoV cases, regardless of the significance of the contact or presence or absence of symptoms. In addition, urgent careful review of guidance regarding the return of asymptomatic MERS-CoV-positive HCWs under investigation to active duty is needed. © 2018 The Author(s)","HCWs; Isolation; MERS-CoV; Quarantine; Saudi Arabia; Screening","adult; descriptive research; disease severity; disease transmission; epidemic; female; follow up; health care personnel; human; incubation time; infection control; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; occupational exposure; real time polymerase chain reaction; reverse transcription polymerase chain reaction; risk assessment; Short Survey; Coronavirus infection; health care personnel; isolation and purification; Saudi Arabia; transmission; Adult; Coronavirus Infections; Disease Outbreaks; Female; Health Personnel; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Occupational Exposure; Saudi Arabia","Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: Implication for infection control (2018) Am J Infect Control, 46 (February (2)), pp. 165-168; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2018) Am J Infect Control, 46 (February (2)), pp. 165-168; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East Respiratory Syndrome Corona Virus (MERS-CoV) leading to a large outbreak in Riyadhin 2017 (2018) Am J Infect Control, , [in press]; Anon, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Updates (2018), http://www.who.int/emergencies/mers-cov/en/, Accessed 20 February 2018, at; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New Engl J Med, 369, pp. 407-416; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Description of a Hospital Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37 (October (10)), pp. 1147-1155; CDC, Interim Infection Prevention and Control Recommendations for Hospitalized Patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2015), http://refhub.elsevier.com/S0196-6553(17)30957-4/sr0150; Command and Control Center Ministry of Health Kingdom of Saudi Arabia Scientific Advisory Board, Infection prevention and control guidelines for the Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection (2017), http://www.moh.gov.sa/endepts/Infection/Documents/Guidelines-for-MERS-CoV.PDF, 4th ed. Available at:; Ghazal, H.S., Ghazal, S., Alharbi, T.M., Al Nujaidi, M., Memish, Z.A., Middle-East Respiratory Syndrome-Coronavirus: Putting Emergency Departments in the Spotlight (2017) J Health Spec, 5, pp. 51-54; Memish, Z.A., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus infection control: the missing piece? (2014) Am J Infect Control, 42, pp. 1258-1260; WHO, Surveillance for human infection with Middle East respiratory syndrome coronavirus (MERS-CoV): Interim guidance Updated 30 June 2015 (2018), http://apps.who.int/iris/bitstream/10665/177869/1/WHO_MERS_SUR_15.1_eng.pdf?ua=1, [Accessed February 10, 2018]; WHO, Management of asymptomatic persons who are RTPCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV): Interim guidance 3 January 2018 WHO/MERS/IPC/15.2 Rev.1 (2018), http://apps.who.int/iris/bitstream/handle/10665/180973/WHO_MERS_IPC_15.2_eng.pdf?sequence=1, [Accessed February 2018]; WHO, Management of asymptomatic persons who are RTPCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV) Interim guidance 27 July 2015 (2018), http://apps.who.int/iris/bitstream/10665/180973/1/WHO_MERS_IPC_15.2_eng.pdf?ua=1&ua=1, [Accessed February 20, 2018]","Memish, Z.A.; College of Medicine, Alfaisal University and Prince Mohammed Bin Abdulaziz Hospital, Ministry of HealthSaudi Arabia; email: memishz@pmah.med.sa",,"Elsevier B.V.",12019712,,IJIDF,"29649550","English","Int. J. Infect. Dis.",Short Survey,"Final",Open Access,Scopus,2-s2.0-85048726235 "Günther S., Felten S., Wess G., Hartmann K., Weber K.","57201211601;57193734979;7003688668;7201407340;56424889600;","Detection of feline Coronavirus in effusions of cats with and without feline infectious peritonitis using loop-mediated isothermal amplification",2018,"Journal of Virological Methods","256",,,"32","36",,2,"10.1016/j.jviromet.2018.03.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043981817&doi=10.1016%2fj.jviromet.2018.03.003&partnerID=40&md5=0b3808a21bd2630703634e2e64151d93","Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany","Günther, S., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany; Felten, S., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany; Wess, G., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany; Hartmann, K., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany; Weber, K., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany","Feline infectious peritonitis (FIP) is a fatal disease in cats worldwide. The aim of this study was to test two commercially available reaction mixtures in a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect feline Coronavirus (FCoV) in body cavity effusions of cats with and without FIP, in order to minimize the time from sampling to obtaining results. RNA was extracted from body cavity effusion samples of 71 cats, including 34 samples from cats with a definitive diagnosis of FIP, and 37 samples of control cats with similar clinical signs but other confirmed diseases. Two reaction mixtures (Isothermal Mastermix, OptiGene Ltd.and PCRun™ Molecular Detection Mix, Biogal) were tested using the same primers, which were designed to bind to a conserved region of the FCoV membrane protein gene. Both assays were conducted under isothermal conditions (61 °C–62 °C). Using the Isothermal Mastermix of OptiGene Ltd., amplification times ranged from 4 and 39 min with a sensitivity of 35.3% and a specificity of 94.6% for the reported sample group. Using the PCRun™ Molecular Detection Mix of Biogal, amplification times ranged from 18 to 77 min with a sensitivity of 58.8% and a specificity of 97.3%. Although the RT-LAMP assay is less sensitive than real time reverse transcription PCR (RT-PCR), it can be performed without the need of expensive equipment and with less hands-on time. Further modifications of primers might lead to a suitable in-house test and accelerate the diagnosis of FIP. © 2018 Elsevier B.V.","Diagnosis; FIP; RT-LAMP","membrane protein; viral protein; Article; cat; controlled study; Feline coronavirus; feline infectious peritonitis; loop mediated isothermal amplification; nonhuman; priority journal; real time polymerase chain reaction; reverse transcription loop mediated isothermal amplification; reverse transcription polymerase chain reaction; RNA extraction; sensitivity and specificity; virus detection; virus gene; animal; cat; Feline coronavirus; feline infectious peritonitis; genetics; nucleic acid amplification; point of care testing; virology; Animals; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Nucleic Acid Amplification Techniques; Point-of-Care Testing; Real-Time Polymerase Chain Reaction; Sensitivity and Specificity","Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infections in kittens (1992) Vet. Rec., 130, pp. 133-137; Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., Ellington, A.D., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) PloS One, 10, p. e0123126; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis., 18, pp. 1089-1095; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Virus taxonomy: ninth report of the international committee on taxonomy of viruses (2011) Coronaviridae, pp. 806-828. , A.M.Q. King M.J. Adams E.B. Carstens E.J. Lefkowitz Elsevier Academic Press London; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 344-350; Felten, S., Leutenegger, C.M., Balzer, H.J., Pantchev, N., Matiasek, K., Wess, G., Egberink, H., Hartmann, K., Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis (2017) BMC Vet. Res., 13, p. 228; Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., Schroo, S., Frost, J., Hermanns, W., Comparison of different tests to diagnose feline infectious peritonitis (2003) J. Vet. Intern. Med. Am. Coll. Vet. Intern. Med., 17, pp. 781-790; Hirschberger, J., Hartmann, K., Wilhelm, N., Frost, J., Lutz, H., Kraft, W., Clinical symptoms and diagnosis of feline infectious peritonitis (1995) Tierarztl Prax, 23, pp. 92-99; Hong, T.C., Mai, Q.L., Cuong, D.V., Parida, M., Minekawa, H., Notomi, T., Hasebe, F., Morita, K., Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus (2004) J. Clin. Microbiol., 42, pp. 1956-1961; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Lorusso, E., Mari, V., Losurdo, M., Lanave, G., Trotta, A., Dowgier, G., Colaianni, M.L., Decaro, N., Discrepancies between feline coronavirus antibody and nucleic acid detection in effusions of cats with suspected feline infectious peritonitis (2017) Res. Vet. Sci., (17), pp. 30649-30655; Nagamine, K., Hase, T., Notomi, T., Accelerated reaction by loop-mediated isothermal amplification using loop primers (2002) Mol. Cell. Probes, 16, pp. 223-229; Nemoto, M., Morita, Y., Niwa, H., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Rapid detection of equine coronavirus by reverse transcription loop-mediated isothermal amplification (2015) J. Virol. Methods, 215-216, pp. 13-16; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res., 28, p. E63; Parida, M., Sannarangaiah, S., Dash, P.K., Rao, P.V., Morita, K., Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases (2008) Rev. Med. Virol., 18, pp. 407-421; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet. Microbiol., 175, pp. 157-166; Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G., Helps, C.R., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet. Res., 45, p. 49; Ritz, S., Egberink, H., Hartmann, K., Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis (2007) J. Vet. Intern. Med. Am. Coll. Vet. Intern. Med., 21, pp. 1193-1197; Stranieri, A., Lauzi, S., Giordano, A., Paltrinieri, S., Reverse transcriptase loop-mediated isothermal amplification for the detection of feline coronavirus (2017) J. Virol. Methods, 243, pp. 105-108; Stumpf, F., Schwemmer, F., Hutzenlaub, T., Baumann, D., Strohmeier, O., Dingemanns, G., Simons, G., Mark, D., LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus (2016) Lab Chip, 16, pp. 199-207; Surabattula, R., Vejandla, M.P., Mallepaddi, P.C., Faulstich, K., Polavarapu, R., Simple, rapid, inexpensive platform for the diagnosis of malaria by loop mediated isothermal amplification (LAMP) (2013) Exp. Parasitol., 134, pp. 333-340; Techangamsuwan, S., Radtanakatikanon, A., Thanawongnuwech, R., Development and application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) for feline coronavirus detection (2013) Thai J. Vet. Med., 43, p. 5; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Zanoli, L.M., Spoto, G., Isothermal amplification methods for the detection of nucleic acids in microfluidic devices (2013) Biosensors, 3, pp. 18-43","Weber, K.; Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Germany; email: karin.weber@lmu.de",,"Elsevier B.V.",01660934,,JVMED,"29540320","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85043981817 "Toftaker I., Toft N., Stokstad M., Sølverød L., Harkiss G., Watt N., O’ Brien A., Nødtvedt A.","57191266369;9037225200;6603435349;14010179100;7004034681;7004947705;57201269258;15136844500;","Evaluation of a multiplex immunoassay for bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk against two indirect ELISAs using latent class analysis",2018,"Preventive Veterinary Medicine","154",,,"1","8",,,"10.1016/j.prevetmed.2018.03.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044146668&doi=10.1016%2fj.prevetmed.2018.03.008&partnerID=40&md5=4c1f1b44e95ac37ed2ba3eb318b36ed7","Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, Norway; Technical University of Denmark, National Veterinary Institute, Kemitorvet Building 204Lyngby DK-2800, Denmark; Mastitis Laboratory, TINE SA, P.O. Box 2038, Molde, 6402, Norway; MV Diagnostics Ltd., Roslin Innovation Centre, University of Edinburgh, Easter Bush Campus, MidlothianEH25 9RG, United Kingdom; Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, Co. Kildare, Ireland","Toftaker, I., Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, Norway; Toft, N., Technical University of Denmark, National Veterinary Institute, Kemitorvet Building 204Lyngby DK-2800, Denmark; Stokstad, M., Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, Norway; Sølverød, L., Mastitis Laboratory, TINE SA, P.O. Box 2038, Molde, 6402, Norway; Harkiss, G., MV Diagnostics Ltd., Roslin Innovation Centre, University of Edinburgh, Easter Bush Campus, MidlothianEH25 9RG, United Kingdom; Watt, N., MV Diagnostics Ltd., Roslin Innovation Centre, University of Edinburgh, Easter Bush Campus, MidlothianEH25 9RG, United Kingdom; O’ Brien, A., Enfer Scientific, Unit T, M7 Business Park, Newhall, Naas, Co. Kildare, Ireland; Nødtvedt, A., Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Oslo, Norway","Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) are responsible for respiratory disease and diarrhea in cattle worldwide. The Norwegian control program against these infections is based on herd-level diagnosis using a new multiplex immunoassay. The objective of this study was to estimate sensitivity and specificity across different cut-off values for the MVD-Enferplex BCV/BRSV multiplex, by comparing them to a commercially available ELISA, the SVANOVIR® BCV-Ab and SVANOVIR® BRSV-Ab, respectively. We analyzed bulk tank milk samples from 360 herds in a low- and 360 herds in a high-prevalence area. As none of the tests were considered perfect, estimation of test characteristics was performed using Bayesian latent class models. At the manufacturers’ recommended cut-off values, the median sensitivity for the BRSV multiplex and the BRSV ELISA was 94.4 [89.8–98.7 95% Posterior Credibility Interval (PCI)] and 99.8 [98.7–100 95% PCI], respectively. The median specificity for the BRSV multiplex was 90.6 [85.5–94.4 95% PCI], but only 57.4 [50.5–64.4 95% PCI] for the BRSV ELISA. However, increasing the cut-off of the BRSV ELISA increased specificity without compromising sensitivity. For the BCV multiplex we found that by using only one of the three antigens included in the test, the specificity increased, without concurrent loss in sensitivity. At the recommended cut-off this resulted in a sensitivity of 99.9 [99.3–100 95% PCI] and specificity of 93.7 [88.8–97.8 95% PCI] for the multiplex and a sensitivity of 99.5 [98.1–100 95% PCI] and a specificity of 99.6 [97.6–100 95% PCI] for the BCV ELISA. © 2018 Elsevier B.V.","Bayesian analysis; BCV; BRSV; Diagnostic test evaluation; Sensitivity; Specificity","virus antibody; virus antibody; antibody detection; Article; Bayes theorem; Bovine coronavirus; Bovine respiratory syncytial virus; controlled study; enzyme linked immunosorbent assay; herd; immunoassay; intermethod comparison; latent class analysis; milk; multiplex immunoassay; nonhuman; prevalence; priority journal; sensitivity and specificity; animal; bovine; Bovine coronavirus; Bovine respiratory syncytial virus; cattle disease; Coronavirus infection; enzyme linked immunosorbent assay; immunology; Norway; procedures; respiratory syncytial virus infection; veterinary medicine; virology; Animals; Antibodies, Viral; Bayes Theorem; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Enzyme-Linked Immunosorbent Assay; Milk; Norway; Respiratory Syncytial Virus Infections; Respiratory Syncytial Virus, Bovine","Alenius, S., Niskanen, R., Juntti, N., Larsson, B., Bovine coronavirus as the causative agent of winter dysentery: serological evidence (1991) Acta Vet. Scand., 32, pp. 163-170; Anon, Key Numbers from the Norwegian Dairy Herd Recording System. Annual Report 2014 (2015), Tine Advisory Service Ås; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet. Clin. North Am. Food Anim. Pract., 26, pp. 123-146; Branscum, A.J., Gardner, I.A., Johnson, W.O., Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling (2005) Prev. Vet. Med., 68, pp. 145-163; Christensen, J., Gardner, I.A., Herd-level interpretation of test results for epidemiologic studies of animal diseases (2000) Prev. Vet. Med., 45, pp. 83-106; Clegg, T.A., Duignan, A., Whelan, C., Gormley, E., Good, M., Clarke, J., Toft, N., More, S.J., Using latent class analysis to estimate the test characteristics of the γ-interferon test, the single intradermal comparative tuberculin test and a multiplex immunoassay under Irish conditions (2011) Vet. Microbiol., 151, pp. 68-76; Elvander, M., Edwards, S., Näslund, K., Linde, N., Evaluation and application of an indirect ELISA for the detection of antibodies to bovine respiratory syncytial virus in milk, bulk milk, and serum (1995) J. Vet. Diagn. Invest., 7, pp. 177-182; Enøe, C., Georgiadis, M.P., Johnson, W.O., Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown (2000) Prev. Vet. Med., 45, pp. 61-81; Gardner, I.A., Stryhn, H., Lind, P., Collins, M.T., Conditional dependence between tests affects the diagnosis and surveillance of animal diseases (2000) Prev. Vet. Med., 45, pp. 107-122; Gulliksen, S.M., Jor, E., Lie, K.I., Løken, T., Åkerstedt, J., Østerås, O., Respiratory infections in Norwegian dairy calves (2009) J. Dairy Sci., 92, pp. 5139-5146; Hui, S.L., Walter, S.D., Estimating the error rates of diagnostic tests (1980) Biometrics, 36, pp. 167-171; Klem, T.B., Rimstad, E., Stokstad, M., Occurrence and phylogenetic analysis of bovine respiratory syncytial virus in outbreaks of respiratory disease in Norway (2014) BMC Vet. Res., 10, p. 15; Klem, T.B., Tollersrud, T., Østerås, O., Stokstad, M., Association between the level of antibodies in bulk tank milk and bovine respiratory syncytial virus exposure in the herd (2014) Vet. Rec., 175, p. 47; Kostoulas, P., Nielsen, S.S., Branscum, A.J., Johnson, W.O., Dendukuri, N., Dhand, N.K., Toft, N., Gardner, I.A., STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models (2017) Prev. Vet. Med., 138, pp. 37-47; Larsen, L.E., Bovine respiratory syncytial virus (BRSV): a review (2000) Acta Vet. Scand., 41, pp. 1-24; Lijmer, J.G., Mol, B.W., Heisterkamp, S., Bonsel, G.J., Prins, M.H., van der Meulen, J.H., Bossuyt, P.M., Empirical evidence of design-related bias in studies of diagnostic tests (1999) JAMA, 282, pp. 1061-1066; Muskens, J., van Engelen, E., van Maanen, C., Bartels, C., Lam, T.J., Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA (2011) Vet. Rec., 168, p. 79; Nekouei, O., Stryhn, H., VanLeeuwen, J., Kelton, D., Hanna, P., Keefe, G., Predicting within-herd prevalence of infection with bovine leukemia virus using bulk-tank milk antibody levels (2015) Prev. Vet. Med., 122, pp. 53-60; O'Brien, A., Whelan, C., Clarke, J.B., Hayton, A., Watt, N.J., Harkiss, G.D., Serological analysis of tuberculosis in goats by use of the Enferplex Caprine TB Multiplex Test (2017) Clin. Vaccine Immunol., 24; Oberst, R.D., Hays, M.P., Evermann, J.F., Kelling, C.L., Characteristic differences in reverse transcription-polymerase chain reaction products of ovine, bovine, and human respiratory syncytial viruses (1993) J. Vet. Diagn. Invest., 5, pp. 322-328; Saif, L.J., Bovine respiratory coronavirus: The Veterinary clinics of North America (2010) Food Anim. Pract., 26, pp. 349-364; Svanova, Svanova Manual. Bovine coronavirus Antibodytest (2018), http://www.svanova.com/content/dam/internet/ah/svanova/dk_EN/documents/Kit%20inserts/Insert%20BCV-Ab%2019-2400-00_08.pdf, Boehringer Ingelheim Svanova Uppsala, Sweden Available from: (Accessed 12 April, 2016); Svanova, Svanova Manual. Bovine Respiratory Syncytial Virus Antibody Test (2018), http://www.svanova.com/content/dam/internet/ah/svanova/dk_EN/documents/Kit%20inserts/Insert%20BRSV-Ab%2019-2500-00_09.pdf, Boehringer Ingelheim Svanova Uppsala, Sweden Available from: (Accessed 12 April, 2016); Toft, N., Jørgensen, E., Højsgaard, S., Diagnosing diagnostic tests: evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard (2005) Prev. Vet. Med., 68, pp. 19-33; Toft, N., Innocent, G.T., Gettinby, G., Reid, S.W., Assessing the convergence of Markov Chain Monte Carlo methods: an example from evaluation of diagnostic tests in absence of a gold standard (2007) Prev. Vet. Med., 79, pp. 244-256; Toftaker, I., Sanchez, J., Stokstad, M., Nødtvedt, A., Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk-risk factors and spatial analysis (2016) Prev. Vet. Med., 133, pp. 73-83; Toftaker, I., Holmøy, I., Nødtvedt, A., Østerås, O., Stokstad, M., A cohort study of the effect of winter dysentery on herd-level milk production (2017) J. Dairy Sci., 100, pp. 6483-6493; Tråvén, M., Björnerot, L., Larsson, B., Nationwide survey of antibodies to bovine coronavirus in bulk milk from Swedish dairy herds (1999) Vet. Rec., 144, pp. 527-529; Vacek, P.M., The effect of conditional dependence on the evaluation of diagnostic tests (1985) Biometrics, 41, pp. 959-968; Valarcher, J.F., Taylor, G., Bovine respiratory syncytial virus infection (2007) Vet. Res., 38, pp. 153-180; Valenstein, P.N., Evaluating diagnostic tests with imperfect standards (1990) Am. J. Clin. Pathol., 93, pp. 252-258","Toftaker, I.; Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, P.O. Box 8146 Dep, Norway; email: ingrid.toftaker@nmbu.no",,"Elsevier B.V.",01675877,,PVMEE,"29685432","English","Prev. Vet. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85044146668 "Hu H., Jung K., Wang Q., Saif L.J., Vlasova A.N.","56555521500;7402479954;55698230500;57205309530;16246782500;","Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian ‘fecal samples",2018,"Journal of Virological Methods","256",,,"116","122",,5,"10.1016/j.jviromet.2018.02.021","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044438472&doi=10.1016%2fj.jviromet.2018.02.021&partnerID=40&md5=c06ecfa17d991f278af258feed7766b2","Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, United States; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China","Hu, H., Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, United States, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China; Jung, K., Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, United States; Wang, Q., Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, United States; Saif, L.J., Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, United States; Vlasova, A.N., Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, United States","Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007–2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples. © 2018 Elsevier B.V.","Coronaviruses; Degenerate primers; Pancoronavirus RT-PCR; RNA-dependent RNA polymerase (RdRP) gene","RNA directed RNA polymerase; virus RNA; Alphacoronavirus; animal tissue; Article; Betacoronavirus; bird; blood analysis; controlled study; Coronavirinae; Delta coronavirus; feces analysis; Gammacoronavirus; nonhuman; pig; porcine deltacoronavirus; Porcine epidemic diarrhea virus; priority journal; reverse transcription polymerase chain reaction; RNA dependent RNA polymerase gene; sensitivity and specificity; Transmissible gastroenteritis virus; virus detection; virus nucleocapsid; animal; bird disease; classification; Coronavirinae; Coronavirus infection; feces; genetics; human; phylogeny; swine disease; veterinary medicine; virology; virus gene; Animals; Bird Diseases; Coronavirus; Coronavirus Infections; Feces; Genes, Viral; Humans; Phylogeny; Reverse Transcriptase Polymerase Chain Reaction; Sensitivity and Specificity; Swine; Swine Diseases","Bolles, M., Donaldson, E., Baric, R., SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission (2011) Curr. Opin. Virol., 1, pp. 624-634; Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Guan, Y., Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China (2007) J. Virol., 81, pp. 6920-6926; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Duraes-Carvalho, R., Caserta, L.C., Barnabe, A.C., Martini, M.C., Ferreira, H.L., Felippe, P.A., Santos, M.B., Arns, C.W., Coronaviruses detected in Brazilian wild birds reveal close evolutionary relationships with beta- and deltacoronaviruses isolated from mammals (2015) J. Mol. Evol., 81, pp. 21-23; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Halpin, R., Wang, S., Saif, L.J., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J. Virol., 81, pp. 4981-4990; Hasoksuz, M., Sreevatsan, S., Cho, K.O., Hoet, A.E., Saif, L.J., Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates (2002) Virus Res., 84, pp. 101-109; Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J. Virol., 82, pp. 1819-1826; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Arch. Virol., 161, pp. 3421-3434; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., Shi, Y., Gao, G.F., A bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) PLoS Pathog., 12; International Committee on Taxonomy of Viruses and King, A.M.Q., Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses (2012), Academic Press; Ismail, M.M., Cho, K.O., Hasoksuz, M., Saif, L.J., Saif, Y.M., Antigenic and genomic relatedness of turkey-origin coronaviruses, bovine coronaviruses, and infectious bronchitis virus of chickens (2001) Avian Dis., 45, pp. 978-984; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res., 226, pp. 50-59; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143; Kim, L., Chang, K.O., Sestak, K., Parwani, A., Saif, L.J., Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs (2000) J. Vet. Diagn. Invest., 12, pp. 385-388; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts (2016) Virus Res., 226, pp. 93-107; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Lee, C.H., Park, B.K., Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015 (2016) Transbound. Emerg. Dis., 63, pp. 248-252; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res., 226, pp. 20-39; Lohse, L., Krog, J.S., Strandbygaard, B., Rasmussen, T.B., Kjaer, J., Belsham, G.J., Botner, A., Experimental infection of young pigs with an early european strain of porcine epidemic diarrhoea virus and a recent US strain (2017) Transbound. Emerg. Dis., 64, pp. 1380-1386; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet. Microbiol., 173, pp. 258-269; Saif, L.J., Pensaert, M.B., Sestak, K., Yeo, S.G., Jung, K., Coronaviruses (2012) Diseases of Swine, pp. 501-524. , J.J. Zimmerman L.A. Karriker A. Ramirez K.J. Schwartz G.W. Stevenson Wiley-Blackwell; Song, D., Huang, D., Peng, Q., Huang, T., Chen, Y., Zhang, T., Nie, X., Tang, Y., Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013 (2015) PLoS One, 10; Torres, C.A., Listorti, V., Lupini, C., Franzo, G., Drigo, M., Catelli, E., Brandao, P.E., Cecchinato, M., Gamma and Deltacoronaviruses in quail and pheasants from Northern Italy1 (2017) Poult. Sci., 96, pp. 717-722; Vlasova, A.N., Halpin, R., Wang, S., Ghedin, E., Spiro, D.J., Saif, L.J., Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis (2011) J. Gen. Virol., 92, pp. 1369-1379; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008","Saif, L.J.; Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State UniversityUnited States; email: saif.2@osu.edu",,"Elsevier B.V.",01660934,,JVMED,"29499225","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85044438472 "Leber A.L., Everhart K., Daly J.A., Hopper A., Harrington A., Schreckenberger P., McKinley K., Jones M., Holmberg K., Kensinger B.","35590038500;57190874103;7401992507;57202339750;16303764300;7003303535;55625047900;56525683600;57202330803;57202340078;","Multicenter evaluation of BioFire FilmArray respiratory panel 2 for detection of viruses and bacteria in nasopharyngeal swab samples",2018,"Journal of Clinical Microbiology","56","6",,"","",,16,"10.1128/JCM.01945-17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047906538&doi=10.1128%2fJCM.01945-17&partnerID=40&md5=87de3b9e6e79f0e503fa6fb5d002c3ae","Nationwide Children's Hospital, Columbus, OH, United States; Primary Children's Medical Center, Salt Lake City, UT, United States; Loyola University Medical Center, Chicago, IL, United States; BioFire Diagnostics, LLC, Salt Lake City, UT, United States","Leber, A.L., Nationwide Children's Hospital, Columbus, OH, United States; Everhart, K., Nationwide Children's Hospital, Columbus, OH, United States; Daly, J.A., Primary Children's Medical Center, Salt Lake City, UT, United States; Hopper, A., Primary Children's Medical Center, Salt Lake City, UT, United States; Harrington, A., Loyola University Medical Center, Chicago, IL, United States; Schreckenberger, P., Loyola University Medical Center, Chicago, IL, United States; McKinley, K., Loyola University Medical Center, Chicago, IL, United States; Jones, M., BioFire Diagnostics, LLC, Salt Lake City, UT, United States; Holmberg, K., BioFire Diagnostics, LLC, Salt Lake City, UT, United States; Kensinger, B., BioFire Diagnostics, LLC, Salt Lake City, UT, United States","The FilmArray Respiratory Panel 2 (RP2) is a multiplex in vitro diagnostic test for the simultaneous and rapid (45-min) detection of 22 pathogens directly from nasopharyngeal swab (NPS) samples. It contains updated (and in some instances redesigned) assays that improve upon the FilmArray Respiratory Panel (RP; version 1.7), with a faster run time. The organisms identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus, human rhinovirus/enterovirus, influenza virus A, influenza virus A H1, influenza virus A H1-2009, influenza virus A H3, influenza virus B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, respiratory syncytial virus, Bordetella pertussis, Chlamydia pneumoniae, and Mycoplasma pneumoniae. Two new targets are included in the FilmArray RP2: Middle East respiratory syndrome coronavirus and Bordetella parapertussis. This study provides data from a multicenter evaluation of 1,612 prospectively collected NPS samples, with performance compared to that of the FilmArray RP or PCR and sequencing. The overall percent agreement between the FilmArray RP2 and the comparator testing was 99.2%. The RP2 demonstrated a positive percent agreement of 91.7% or greater for detection of all but three analytes: coronavirus OC43, B. parapertussis, and B. pertussis. The FilmArray RP2 also demonstrated a negative percent agreement of 93.8% for all analytes. Of note, the adenovirus assay detects all genotypes, with a demonstrated increase in sensitivity. The FilmArray RP2 represents a significant improvement over the FilmArray RP, with a substantially shorter run time that could aid in the diagnosis of respiratory infections in a variety of clinical scenarios. Copyright © 2018 Leber et al.","PCR; Respiratory pathogens; Syndromic testing","Adenoviridae; adolescent; adult; Article; bacterium detection; Bordetella parapertussis; Bordetella pertussis; child; Chlamydia pneumoniae; controlled study; Coronavirinae; diagnostic test; Enterovirus; female; FilmArray Respiratory Panel 2; genotype; human; Human metapneumovirus; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; Human rhinovirus; Influenza A virus; Influenza A virus H1; Influenza A virus H1 2009; Influenza A virus H3; Influenza B virus; male; microbiological examination; middle aged; Middle East respiratory syndrome coronavirus; Mycoplasma pneumoniae; nasopharyngeal swab; nonhuman; polymerase chain reaction; preschool child; priority journal; prospective study; sensitivity analysis; sequence analysis; virus detection; bacterial infection; clinical trial; devices; evaluation study; genetics; infant; Metapneumovirus; microbiology; molecular diagnosis; multicenter study; multiplex polymerase chain reaction; nasopharynx; Pneumovirus; procedures; respiratory tract infection; Rhinovirus; virology; virus infection; young adult; Adolescent; Adult; Bacterial Infections; Bordetella pertussis; Child; Child, Preschool; Female; Humans; Infant; Male; Metapneumovirus; Middle Aged; Molecular Diagnostic Techniques; Multiplex Polymerase Chain Reaction; Mycoplasma pneumoniae; Nasopharynx; Respiratory Syncytial Viruses; Respiratory Tract Infections; Rhinovirus; Virus Diseases; Young Adult","Molinari, N.A., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., Bridges, C.B., The annual impact of seasonal influenza in the US: Measuring disease burden and costs (2007) Vaccine, 25, pp. 5086-5096. , https://doi.org/10.1016/j.vaccine.2007.03.046; Fendrick, A.M., Monto, A.S., Nightengale, B., Sarnes, M., The economic burden of non-influenza-related viral respiratory tract infection in the United States (2003) Arch Intern Med, 163, pp. 487-494. , https://doi.org/10.1001/archinte.163.4.487; Rogers, B.B., Shankar, P., Jerris, R.C., Kotzbauer, D., Anderson, E.J., Watson, J.R., O’Brien, L.A., Bost, J.E., Impact of a rapid respiratory panel test on patient outcomes (2015) Arch Pathol Lab Med, 139, pp. 636-641. , https://doi.org/10.5858/arpa.2014-0257-OA; Lowe, C.F., Payne, M., Puddicombe, D., Mah, A., Wong, D., Kirkwood, A., Hull, M.W., Leung, V., Antimicrobial stewardship for hospitalized patients with viral respiratory tract infections (2017) Am J Infect Control, 45, pp. 872-875. , https://doi.org/10.1016/j.ajic.2017.03.025; Rappo, U., Schuetz, A.N., Jenkins, S.G., Calfee, D.P., Walsh, T.J., Wells, M.T., Hollenberg, J.P., Glesby, M.J., Impact of early detection of respiratory viruses by multiplex PCR assay on clinical outcomes in adult patients (2016) J Clin Microbiol, 54, pp. 2096-2103. , https://doi.org/10.1128/JCM.00549-16; Green, D.A., Hitoaliaj, L., Kotansky, B., Campbell, S.M., Peaper, D.R., Clinical utility of on-demand multiplex respiratory pathogen testing among adult outpatients (2016) J Clin Microbiol, 54, pp. 2950-2955. , https://doi.org/10.1128/JCM.01579-16; Santolaya, M.E., Alvarez, A.M., Acuna, M., Aviles, C.L., Salgado, C., Tordecilla, J., Varas, M., Torres, J.P., Efficacy and safety of withholding antimicrobial treatment in children with cancer, fever and neutropenia, with a demonstrated viral respiratory infection: A randomized clinical trial (2017) Clin Microbiol Infect, 23, pp. 173-178. , https://doi.org/10.1016/j.cmi.2016.11.001; Subramony, A., Zachariah, P., Krones, A., Whittier, S., Saiman, L., Impact of multiplex polymerase chain reaction testing for respiratory pathogens on healthcare resource utilization for pediatric inpatients (2016) J Pediatr, 173, pp. 196-201. , https://doi.org/10.1016/j.jpeds.2016.02.050; (2017) FilmArray Respiratory Panel 2 (RP2) Instruction Booklet RFIT-ASY-0129, , BioFire Diagnostics LLC Salt Lake City, UT; Song, E., Kajon, A.E., Wang, H., Salamon, D., Texter, K., Ramilo, O., Leber, A., Jaggi, P., Clinical and virologic characteristics may aid distinction of acute adenovirus disease from kawasaki disease with incidental adenovirus detection (2016) J Pediatr, 170, pp. 325-330. , https://doi.org/10.1016/j.jpeds.2015.11.021; Song, E., Wang, H., Kajon, A.E., Salamon, D., Dong, S., Ramilo, O., Leber, A., Jaggi, P., Diagnosis of pediatric acute adenovirus infections: Is a positive PCR sufficient? (2016) Pediatr Infect Dis J, 35, pp. 827-834. , https://doi.org/10.1097/INF.0000000000001119; Song, E., Wang, H., Salamon, D., Jaggi, P., Leber, A., Performance characteristics of FilmArray respiratory panel v1.7 for detection of adenovirus in a large cohort of pediatric nasopharyngeal samples: One test may not fit all (2016) J Clin Microbiol, 54, pp. 1479-1486. , https://doi.org/10.1128/JCM.00143-16; (2017) Microbiology Checklist, , College of American Pathologists. CAP, Northfield, IL; (2015) FilmArray Respiratory Panel (RP) Instruction Booklet RFIT-ASY-0125, , BioFire Diagnostics LLC, Salt Lake City, UT; Heinonen, S., Jartti, T., Garcia, C., Oliva, S., Smitherman, C., Anguiano, E., De Steenhuijsen Piters, W.A., Mejias, A., Rhinovirus detection in symptomatic and asymptomatic children: Value of host transcriptome analysis (2016) Am J Respir Crit Care Med, 193, pp. 772-782. , https://doi.org/10.1164/rccm.201504-0749OC; Jansen, R.R., Wieringa, J., Koekkoek, S.M., Visser, C.E., Pajkrt, D., Molenkamp, R., De Jong, M.D., Schinkel, J., Frequent detection of respiratory viruses without symptoms: Toward defining clinically relevant cutoff values (2011) J Clin Microbiol, 49, pp. 2631-2636. , https://doi.org/10.1128/JCM.02094-10; Jartti, T., Jartti, L., Peltola, V., Waris, M., Ruuskanen, O., Identification of respiratory viruses in asymptomatic subjects: Asymptomatic respiratory viral infections (2008) Pediatr Infect Dis J, 27, pp. 1103-1107. , https://doi.org/10.1097/INF.0b013e31817e695d; Doern, C.D., Lacey, D., Huang, R., Haag, C., Evaluation and implementation of FilmArray version 1.7 for improved detection of adenovirus respiratory tract infection (2013) J Clin Microbiol, 51, pp. 4036-4039. , https://doi.org/10.1128/JCM.02546-13; Echavarria, M., Maldonado, D., Elbert, G., Videla, C., Rappaport, R., Carballal, G., Use of PCR to demonstrate presence of adenovirus species b, c, or f as well as coinfection with two adenovirus species in children with flu-like symptoms (2006) J Clin Microbiol, 44, pp. 625-627. , https://doi.org/10.1128/JCM.44.2.625-627.2006; Alkhalaf, M.A., Guiver, M., Cooper, R.J., Prevalence and quantitation of adenovirus DNA from human tonsil and adenoid tissues (2013) J Med Virol, 85, pp. 1947-1954. , https://doi.org/10.1002/jmv.23678; Heininger, U., Burckhardt, M.A., Bordetella pertussis and concomitant viral respiratory tract infections are rare in children with cough illness (2011) Pediatr Infect Dis J, 30, pp. 640-644. , https://doi.org/10.1097/INF.0b013e3182152d28; Piedra, P.A., Mansbach, J.M., Jewell, A.M., Thakar, S.D., Grant, C.C., Sullivan, A.F., Espinola, J.A., Camargo, C.A., Jr., Bordetella pertussis is an uncommon pathogen in children hospitalized with bronchiolitis during the winter season (2015) Pediatr Infect Dis J, 34, pp. 566-570. , https://doi.org/10.1097/INF.0000000000000596; Jerris, R.C., Williams, S.R., MacDonald, H.J., Ingebrigtsen, D.R., Westblade, L.F., Rogers, B.B., Testing implications of varying targets for bordetella pertussis: Comparison of the FilmArray respiratory panel and the focus b. Pertussis PCR assay (2015) J Clin Pathol, 68, pp. 394-396. , https://doi.org/10.1136/jclinpath-2014-202833; Mattoo, S., Cherry, J.D., Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to bordetella pertussis and other bordetella subspecies (2005) Clin Microbiol Rev, 18, pp. 326-382. , https://doi.org/10.1128/CMR.18.2.326-382.2005; Spicer, K.B., Salamon, D., Cummins, C., Leber, A., Rodgers, L.E., Marcon, M.J., Occurrence of 3 bordetella species during an outbreak of cough illness in Ohio: Epidemiology, clinical features, laboratory findings and antimicrobial susceptibility (2014) Pediatr Infect Dis J, 33, pp. e162-e167. , https://doi.org/10.1097/INF.0000000000000262; Cherry, J.D., Seaton, B.L., Patterns of bordetella parapertussis respiratory illnesses: 2008-2010 (2012) Clin Infect Dis, 54, pp. 534-537. , https://doi.org/10.1093/cid/cir860; Zouari, A., Smaoui, H., Brun, D., Njamkepo, E., Sghaier, S., Zouari, E., Felix, R., Kechrid, A., Prevalence of bordetella pertussis and bordetella parapertussis infections in tunisian hospitalized infants: Results of a 4-year prospective study (2012) Diagn Microbiol Infect Dis, 72, pp. 303-317. , https://doi.org/10.1016/j.diagmicrobio.2012.01.002; Kakuya, F., Kinebuchi, T., Okubo, H., Matsuo, K., Comparison of oro-pharyngeal and nasopharyngeal swab specimens for the detection of mycoplasma pneumoniae in children with lower respiratory tract infection (2017) J Pediatr, 189, pp. 218-221. , https://doi.org/10.1016/j.jpeds.2017.06.038; Cho, M.C., Kim, H., An, D., Lee, M., Noh, S.A., Kim, M.N., Chong, Y.P., Woo, J.H., Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of mycoplasma pneumoniae, chlamydophila pneumoniae, and legionella pneumophila (2012) Ann Lab Med, 32, pp. 133-138. , https://doi.org/10.3343/alm.2012.32.2.133","Leber, A.L.; Nationwide Children's HospitalUnited States; email: amy.leber@nationwidechildrens.org",,"American Society for Microbiology",00951137,,JCMID,"29593057","English","J. Clin. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85047906538 "Andoh K., Ashikaga K., Suenaga K., Endo S., Yamazaki K.","56765556300;57202743210;56765401600;57202740062;39561631300;","Identification of novel linear epitopes located in the infectious bronchitis virus spike S2 Region",2018,"Avian Diseases","62","2",,"210","217",,1,"10.1637/11796-011518-Reg.1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049213326&doi=10.1637%2f11796-011518-Reg.1&partnerID=40&md5=a2eae6019c428d6f3e73c2331ef99aaf","Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto, 860-8568, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan","Andoh, K., Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto, 860-8568, Japan, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Ashikaga, K., Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto, 860-8568, Japan; Suenaga, K., Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto, 860-8568, Japan; Endo, S., Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto, 860-8568, Japan; Yamazaki, K., Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto, 860-8568, Japan","We identified novel linear epitopes on the infectious bronchitis virus (IBV) spike S2 region. The conformational structure of the IBV spike protein was predicted from a homologous protein, human coronavirus NL63 spike. Although the obtained structure was incomplete, most of the IBV spike protein structure was predicted; the N-terminus of the S1 region could not be predicted due to its variability. In the model, the region located in the proximity of the fusion peptide appeared to be well conserved, and we evaluated the antigenicity of these domains, which are involved in the membrane fusion machinery. Western blotting revealed that IBV TM86 spike residues 686-723 were antigenic. Epitope mapping analysis using synthesized peptides revealed that IBV TM86 spike 669-685 (SNFSTGAFNISLLLTPP), 686-697 (SNPRGRSFIEDL), and 692-703 (SFIEDLLFTSVE) residues were major linear epitopes; two identified epitopes (686-697 and 692-703) were covered by the fusion peptide, and the other epitope (669-685) was adjacent to the fusion peptide. Although the identified epitopes are identically located as the neutralizing epitope in severe acute respiratory syndrome coronavirus, the recombinant protein that includes those epitopes could not elicit neutralizing antibodies against IBV. This is the first report describing IBV spike S2 epitopes located in the proximity of the fusion peptide, and it is suggested that the spike fusion machinery of IBV may differ from that of severe acute respiratory syndrome coronavirus, or, alternatively, IBV may have another mechanism to penetrate the cell membrane. © 2018 by the American Association of Avian Pathologists, Inc.","coronavirus; epitope; fusion peptide; infectious bronchitis virus; S2; vaccine","coronavirus spike glycoprotein; epitope; neutralizing antibody; virus antibody; animal; Avian infectious bronchitis virus; bird disease; chemistry; chicken; Coronavirus infection; epitope mapping; genetics; immunology; protein motif; veterinary medicine; virology; Amino Acid Motifs; Animals; Antibodies, Neutralizing; Antibodies, Viral; Chickens; Coronavirus Infections; Epitope Mapping; Epitopes; Infectious bronchitis virus; Poultry Diseases; Spike Glycoprotein, Coronavirus","Andoh, K., Suenaga, K., Sakaguchi, M., Yamazaki, K., Honda, T., Decreased neutralizing antigenicity in IBV S1 protein expressed from mammalian cells (2015) Virus Res., 208, pp. 164-170; Ariyoshi, R., Kawai, T., Honda, T., Tokiyoshi, S., Classification of IBV S1 genotypes by direct reverse transcriptase-polymerase chain reaction (RTPCR) and relationship between serotypes and genotypes of strains isolated between 1998 and 2008 in Japan (2010) J. Vet. Med. Sci., 72, pp. 687-692; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 5871-5876; Belouzard, S., Millet, J.K., Licitra, G.R.B.N., Whittaker, Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Boltz, D.A., Nakai, M., Bahra, J.M., Avian infectious bronchitis virus: A possible cause of reduced fertility in the rooster (2004) Avian Dis., 48, pp. 909-915; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Cavanagh, D., Davis, P.J., Darbyshire, J.H., Peters, R.W., Coronavirus IBV: Virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection (1986) J. Gen. Virol., 67, pp. 1435-1442; Cavanagh, D., Davis, P.J., Mockett, A.P., Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes (1988) Virus Res., 11, pp. 141-150; Cavanagh, D., Elus, M.M., Cook, J.K., Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo (1997) Avian Pathol., 26, pp. 63-74; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J. Virol., 77, pp. 9084-9089; Daniel, C., Anderson, R., Buchmeier, M.J., Fleming, J., Spaan, W.J.M., Wege, H., Talbot, P.J., Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of a complex tridimensional structure (1993) J. Virol., 67, pp. 1185-1194; Deguchi, K., Honda, T., Matsuo, K., Fujikawa, H., Iwamoto, T., Sakanoue, Y., Influence of inoculation site of combined oil-adjuvanted vaccine on the antibody response in chickens (1998) J. Vet. Med. Sci., 60, pp. 831-835; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129; Ignjatovic, J., Galli, L., The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens (1994) Arch. Virol., 138, pp. 117-134; Ignjatovic, J., Sapats, S., Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus (2005) Arch. Virol., 150, pp. 1813-1831; Kant, A., Koch, G., Van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A., Van Der Zeijst, B.A., Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide (1992) J. Gen. Virol., 73, pp. 591-596; Kelly, L.A., Mezulis, S., Yates, C., Wass, M., Sternberg, M., The Phyre2 web portal for protein modelling, prediction, and analysis (2015) Nat. Protoc., 10, pp. 845-858; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Prefusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Koch, G., Hartog, L., Kant, A., Van Roozelaar, D.J., Antigenic domains on the peplomer protein of avian infectious bronchitis virus: Correlation with biological functions (1990) J. Gen. Virol., 71, pp. 1929-1935; Lenstra, J.A., Kusters, J.G., Koch, G., Van Der Zeijst, B.A., Antigenicity of the peplomer protein of infectious bronchitis virus (1989) Mol. Immunol., 26, pp. 7-15; Leyson, C.L., Jordan, B.J., Jackwood, M.W., Insights from molecular structure predictions of the infectious bronchitis virus S1 spike glycoprotein (2016) Infect. Genet. Evol., 46, pp. 124-129; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83, pp. 7411-7421; Mase, M., Tsukamoto, K., Imai, K., Yamaguchi, S., Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan (2004) Arch. Virol., 149, pp. 2069-2078; Promkuntod, N., Van Eijndhoven, R.E., De Vrieze, G., Grone, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32; Promkuntod, N., Wickramasinghe, I.N., De Vrieze, G., Grone, A., Verheije, M.H., Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus (2013) Virus Res., 177, pp. 127-137; De Wit, S.J.J., Cook, J.K., Van Der Heijden, H.M., Infectious bronchitis virus variants: A review of the history, current situation and control measures (2011) Avian Pathol., 40, pp. 223-235; Tian, L., Wang, H.N., Lu, D., Zhang, Y.F., Wang, T., Kang, R.M., The immunoreactivity of a chimeric multi-epitope DNA vaccine against IBV in chickens (2008) Biochem. Biophys. Res. Commun., 377, pp. 221-225; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy (2017) Protein Sci., 26, pp. 113-121; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Wang, C.H., Huang, Y.C., Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus (2000) Arch. Virol., 145, pp. 291-300; Watanabe, R., Matsuyama, S., Shirato, K., Maejima, M., Fukushi, S., Morikawa, S., Taguchi, F., Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein (2008) J. Virol., 82, pp. 11985-11991; Wickramasinghe, I.N., De Vries, R.P., Grone, A., De Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J. Virol., 85, pp. 8903-8912; Yang, T., Wang, H.N., Wang, W., Tang, J.N., Lu, D., Zhang, Y.F., Guo, Z.C., Kang, R.M., The protective immune response against infectious bronchitis virus induced by multi-epitope based peptide vaccines (2009) Biosci. Biotechnol. Biochem., 73, pp. 1500-1504; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERSCoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zhang, H., Wang, G., Li, J., Nie, Y., Shi, X., Lian, G., Wang, W., Deng, H., Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies (2004) J. Virol., 78, pp. 6938-6945; Zhang, Y., I-TASSER server for protein 3D structure prediction (2008) BMC Bioinform., 9, p. 40; Zhong, X., Yang, H., Guo, Z.F., Sin, W.Y.F., Chen, W., Xu, J., Fu, L., Guo, Z., B-Cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein (2005) J. Virol., 79, pp. 3401-3408","Andoh, K.; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Japan; email: andok237@affrc.go.jp",,"American Association of Avian Pathologists",00052086,,AVDIA,"29944406","English","Avian Dis.",Article,"Final",,Scopus,2-s2.0-85049213326 "David D., Rotenberg D., Khinich E., Erster O., Bardenstein S., van Straten M., Okba N.M.A., Raj S.V., Haagmans B.L., Miculitzki M., Davidson I.","7202770374;35186412500;56764582500;16480157100;7801623436;6701457518;56807221300;55552487100;6701371301;57202018067;7103403024;","Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels",2018,"One Health","5",,,"65","68",,7,"10.1016/j.onehlt.2018.05.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046750331&doi=10.1016%2fj.onehlt.2018.05.002&partnerID=40&md5=6bc803c8f9ff266316941d3942b46c68","Kimron Veterinary Institute, Bet Dagan, Israel; Hachaklait, Veterinary Services, Caesarea, Israel; Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Beer Sheva District Director of Veterinary Services, Israel","David, D., Kimron Veterinary Institute, Bet Dagan, Israel; Rotenberg, D., Kimron Veterinary Institute, Bet Dagan, Israel; Khinich, E., Kimron Veterinary Institute, Bet Dagan, Israel; Erster, O., Kimron Veterinary Institute, Bet Dagan, Israel; Bardenstein, S., Kimron Veterinary Institute, Bet Dagan, Israel; van Straten, M., Hachaklait, Veterinary Services, Caesarea, Israel; Okba, N.M.A., Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Raj, S.V., Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Haagmans, B.L., Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Miculitzki, M., Beer Sheva District Director of Veterinary Services, Israel; Davidson, I., Kimron Veterinary Institute, Bet Dagan, Israel","Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period. © 2018 The Authors","Alpacas; Antibodies; Dromedary camels; Israel; Llamas; MERS coronavirus","neutralizing antibody; virus RNA; alpaca; animal experiment; antibody specificity; Article; camel; controlled study; dromedary; enzyme linked immunosorbent assay; female; Israel; llama; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; reverse transcription polymerase chain reaction; serology; virus neutralization","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Ormani, A.S., Al-Tawfik, J., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-Cov): animal to human interaction (2015) Pathog. Glob. Health, 109, pp. 354-362; Azhar, E.I., El-Kafrawy, S.A., Suha, A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Infection, replication, and transmission of middle east respiratory syndrome coronavirus in alpacas (2016) Emerg. Infect. Dis., 22, pp. 1031-1037; Vergara-Alert, J., Van Den Brand, J.M.A., Widagdo, W., Susceptibility of different livestock animal species for Middle East respiratory syndrome coronavirus infection (2017) Emerg. Infect. Dis., 23, pp. 232-240; Crameri, G., Durr, P.A., Klein, R., Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus (2016) Emerg. Infect. Dis., 22, pp. 1071-1074; Perera, R.A., Wang, P., Gomaa, M.R., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralization assays reveal a high prevalence of antibody in dromedary camels in Egypt (2013) Euro Surveill., 18, p. 20574; Arabi, Y.M., Hajeer, A.H., Luke, T., Feasibility of using convalescent plasma immunotherapy for MERS CoV infection, Saudi Arabia (2016) Emerg. Infect. Dis., 22, pp. 1554-1561; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill., 17, p. 39; Cohen, J.A., Coefficient of agreement for nominal scales (1960) Educ. Psychol. Meas., 20, pp. 213-220; Doremalen, N.V., Hijazeen, Z.S.K., Holloway, P., High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic. Dis., 17, pp. 155-159; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20, pp. 1049-1053; Reusken, C.B., Messadi, L., Feyisa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Corman, V.M., Jores, J., Meyer, B., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322; Reusken, C.B., Schilp, C., Raj, V.S., De Bruin, E., MERS- CoV infection of alpaca in a region where MERS- CoV is endemic (2016) Emerg. Infect. Dis., 22, pp. 1129-1131","David, D.; Kimron Veterinary InstituteIsrael; email: dand@moag.gov.il",,"Elsevier B.V.",23527714,,,,"English","One Health",Article,"Final",Open Access,Scopus,2-s2.0-85046750331 "Choi S., Jung E., Choi B.Y., Hur Y.J., Ki M.","57213560552;7202854548;55663343300;57193991122;6603678673;","High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea",2018,"Journal of Hospital Infection","99","2",,"162","168",,11,"10.1016/j.jhin.2017.09.017","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034221632&doi=10.1016%2fj.jhin.2017.09.017&partnerID=40&md5=700fe25c1b9ed7f509a9d83f0141ebd9","Department of Preventive Medicine, Hanyang University Medical College, Seoul, South Korea; Department of Mathematics, Konkuk University, Seoul, South Korea; Centre for Infectious Disease Control, Korea Centre for Disease Control and Prevention, Cheongju, South Korea; Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Centre, Goyang, South Korea","Choi, S., Department of Preventive Medicine, Hanyang University Medical College, Seoul, South Korea, Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Centre, Goyang, South Korea; Jung, E., Department of Mathematics, Konkuk University, Seoul, South Korea; Choi, B.Y., Department of Preventive Medicine, Hanyang University Medical College, Seoul, South Korea; Hur, Y.J., Centre for Infectious Disease Control, Korea Centre for Disease Control and Prevention, Cheongju, South Korea; Ki, M., Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Centre, Goyang, South Korea","Background: Effective countermeasures against emerging infectious diseases require an understanding of transmission rate and basic reproduction number (R0). R0 for severe acute respiratory syndrome is generally considered to be >1, whereas that for Middle East respiratory syndrome (MERS) is considered to be <1. However, this does not explain the large-scale outbreaks of MERS that occurred in Kingdom of Saudi Arabia (KSA) and South Korean hospitals. Aim: To estimate R0 in nosocomial outbreaks of MERS. Methods: R0 was estimated using the incidence decay with an exponential adjustment model. The KSA and Korean outbreaks were compared using a line listing of MERS cases compiled using publicly available sources. Serial intervals to estimate R0 were assumed to be six to eight days. Study parameters [R0 and countermeasures (d)] were estimated by fitting a model to the cumulative incidence epidemic curves using Matlab. Findings: The estimated R0 in Korea was 3.9 in the best-fit model, with a serial interval of six days. The first outbreak cluster in a hospital in Pyeongtaek had an R0 of 4.04, and the largest outbreak cluster in a hospital in Samsung had an R0 of 5.0. Assuming a six-day serial interval, the KSA outbreaks in Jeddah and Riyadh had R0 values of 3.9 and 1.9, respectively. Conclusion: R0 for the nosocomial MERS outbreaks in KSA and South Korea was estimated to be in the range of 2–5, which is significantly higher than the previous estimate of <1. Therefore, more comprehensive countermeasures are needed to address these infections. © 2017 The Healthcare Infection Society","Basic reproduction number; Epidemiology; Mathematical modelling; Middle east respiratory syndrome coronavirus; Nosocomial infection; South Korea","Article; cluster analysis; controlled study; epidemic; hospital infection; human; incidence; major clinical study; mathematical model; Middle East respiratory syndrome; Saudi Arabia; South Korea; South Korean; virus transmission; basic reproduction number; Coronavirus infection; cross infection; isolation and purification; Middle East respiratory syndrome coronavirus; statistical model; Basic Reproduction Number; Coronavirus Infections; Cross Infection; Disease Outbreaks; Humans; Incidence; Middle East Respiratory Syndrome Coronavirus; Models, Statistical; Republic of Korea; Saudi Arabia","Chowell, G., Sattenspiel, L., Bansal, S., Viboud, C., Mathematical models to characterize early epidemic growth: a review (2016) Phys Life Rev, 18, pp. 66-97; Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J., Hedley, A.J., Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions (2003) Science, 300, pp. 1961-1966; Kaplan, E.H., Craft, D.L., Wein, L.M., Emergency response to a smallpox attack: the case for mass vaccination (2002) Proc Natl Acad Sci USA, 99, pp. 10935-10940; Velasco-Hernandez, J.X., Gershengorn, H.B., Blower, S.M., Could widespread use of combination antiretroviral therapy eradicate HIV epidemics? (2002) Lancet Infect Dis, 2, pp. 487-493; Kucharski, A.J., Althaus, C.L., The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission (2015) Euro Surveill, 20, pp. 14-18; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; Fisman, D.N., Leung, G.M., Lipsitch, M., Nuanced risk assessment for emerging infectious diseases (2014) Lancet, 383, pp. 189-190; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Nishiura, H., Endo, A., Saitoh, M., Kinoshita, R., Ueno, R., Nakaoka, S., Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis (2016) BMJ Open, 6; Majumder, M.S., Rivers, C., Lofgren, E., Fisman, D., Estimation of MERS-coronavirus reproductive number and case fatality rate for the Spring 2014 Saudi Arabia outbreak: insights from publicly available data (2014) PLOS Curr, 6. , https://doi.org/10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c, Edition 1; Fisman, D.N., Hauck, T.S., Tuite, A.R., Greer, A.L., An IDEA for short term outbreak projection: nearcasting using the basic reproduction number (2013) PLoS One, 8; Kim, K.M., Ki, M., Cho, S.I., Hong, J.K., Cheong, H.K., Kim, J.H., Epidemiologic features of the first MERS outbreak in Korea: focus on Pyeongtaek St. Mary's Hospital (2015) Epidemiol Health, 37; Majumder, M.S., Kluberg, S.A., Mekaru, S.R., Brownstein, J.S., Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea, 2015 (2015) Emerg Infect Dis, 21, pp. 2088-2090; Hsieh, Y.H., 2015 Middle East respiratory syndrome coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling (2015) PeerJ, 3; Lee, J., Chowell, G., Jung, E., A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events (2016) J Theor Biol, 408, pp. 118-126; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Fine, P.E., The interval between successive cases of an infectious disease (2003) Am J Epidemiol, 158, pp. 1039-1047; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Park, G.E., Ko, J.H., Peck, K.R., Lee, J.Y., Lee, J.Y., Cho, S.Y., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001","Ki, M.; Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Centre, 323 Ilsan-ro, Ilsandong-gu, South Korea; email: moranki@ncc.re.kr",,"W.B. Saunders Ltd",01956701,,JHIND,"28958834","English","J. Hosp. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85034221632 "Singh D.D., Pawaiya R.V.S., Gururaj K., Gangwar N.K., Mishra A.K., Singh R., Andani D., Kumar A.","57195764761;6603610897;45060902600;15765287000;57214672235;37562220900;57194587776;57203774508;","Detection of Clostridium perfringens toxinotypes, enteropathogenic e. coli, rota and corona viruses in the intestine of neonatal goat kids by molecular techniques",2018,"Indian Journal of Animal Sciences","88","6",,"655","661",,2,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049554892&partnerID=40&md5=98c1a224750c60049b51098571bdc24f","ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Department of Microbiology, College of Veterinary Sciences, Pt. Deen Dayal Upadhayay Pashu Chikitsha Vishwavidyalay Evam Go Anusandhan Sansthan, Mathura, Uttar Pradesh, India; Division of Animal Health, United States","Singh, D.D., ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Pawaiya, R.V.S., ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Gururaj, K., ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Gangwar, N.K., ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Mishra, A.K., ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Singh, R., Department of Microbiology, College of Veterinary Sciences, Pt. Deen Dayal Upadhayay Pashu Chikitsha Vishwavidyalay Evam Go Anusandhan Sansthan, Mathura, Uttar Pradesh, India; Andani, D., ICAR-Central Institute of Reserach on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh, 281 122, India; Kumar, A., Division of Animal Health, United States","The role of various pathogenic agents affecting gastro-intestinal tract of neonatal goat kids was studied. Intestinal tissue samples of 142 necropsied kids died due to enteritis, pneumo-enteritis, tapeworm's infestations and septicemia were collected for detection of toxinotypes of Clostridium perfringens, enteropathogenic E. coli (EPEC), Group-A rotavirus (GARV) and bovine coronavirus (BCV). C. perfringens toxinotyping was done by multiplex PCR using primers for cpa, cpb, cpb2, etx and iap gene. Further, identification of EPEC was done using SYBR green based real-Time PCR assay targeting bfpA gene. Detection of GARV and BCV was done by one-step RT-PCR (osRTPCR). The incidence of C. perfringens was 16.20% (47.83% toxinotype A and 52.17% toxinotype D), with b2-Toxin present in 30.43% of the samples. Incidence of EPEC in 0-1 and 1-3 month diarrhoeic kids was 36.62% and 25.35%, respectively. For viral aetiology, 11.97% were positive for GARV and 9.86% p sitive for BCV. Mixed infection of C. perfringens and EPEC was seen in 12.68% cases, while it was 2.11% for C. perfringens + GARV and 1.40% for C. perfringens + BCV. Similarly, the mixed occurrence of EPEC+GARV was 10.56% and that of EPEC+BCV was 7.04%. The combined infection of EPEC+GARV+BCV was 0.70%. The results suggested that C. perfringens type A and type D are the common toxinotypes affecting neonatal goat kids, with 2 toxin being an additional potential virulence factor. SYBR green based real-Time PCR assay can be used as quick lab-based technique for efficient screening of EPEC from enteritis affected kids.Group-A rotavirus and bovine coronavirus appeared to be instrumental in causing mixed infection enteritis in kids. © 2018 Indian Council of Agricultural Research. All rights reserved.","Bcv; Clostridium perfringens; Epec; Garv; Goat; Neonatal diarrhea; Toxinotypes","alpha toxin; beta toxin; Clostridium toxin; epsilon toxin; iota toxin; nucleocapsid protein; protein VP6; unclassified drug; virulence factor; animal tissue; Article; Bovine coronavirus; cestodiasis; Clostridium perfringens; cpa gene; cpb2 gene; diarrhea; enteritis; enteropathogenic Escherichia coli; etx gene; female; gastrointestinal tract; gene; incidence; intestine tissue; kid (goat); male; microorganism detection; mixed infection; multiplex polymerase chain reaction; newborn; nonhuman; prevalence; real time polymerase chain reaction; reverse transcription polymerase chain reaction; Rotavirus; septicemia; virus etiology; virus infection","Ammar, S.S., Mokhtaria, K., Tahar, B.B., Amar, A.A., Redha, B.A., Yuva, B., Mohamed, H.S., Laid, B., Prevalence of rotavirus (garv) and coronavirus (bcov) associated with neonatal diarrhoea in calves in western Algeria (2014) Asian Pacific Journal of Tropical Biomedicine, 4, pp. S318-S322; Agöero, M., Sánchez, A., San Miguel, E., Gómez-Tejedor, C., Angel Jiménez-Clavero, M., A real-Time taqman rt-PCR method for neuraminidase type 1 (n1) gene detection of h5n1 eurasian strains of avian influenza virus (2007) Avian Diseases, 51 (1), pp. 378-381; Bhat, M.A., Nishikawa, Y., Wani, S.A., Prevalence and virulence gene profiles of Shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli from diarrhoeic and healthy lambs in India (2008) Small Ruminant Research, 75 (1), pp. 65-70; Bischoff, C., Löthy, J., Altwegg, M., Baggi, F., (2005) Journal of Microbiological Methods, 61 (3), pp. 335-341. , Rapid detection of diarrheagenic e. coli by real-Time pcr; Bok, M., Miñoa, S., Rodrigueza, D., Badaraccoa, A., Nuñesc, I., Souzac, S.P., Bilbaod, G., Parreñoa, V., Molecular and antigenic characterization of bovine coronavirus circulating in Argentinean cattle during (1994) Veterinary Microbiology, 181 (3), pp. 221-229; Clark, M.A., Bovine coronavirus British Veterinary Journal Microbiology, 149, pp. 51-70; Cleary, J., Lai, L.C., Shaw, R.K., Straatman-Iwanowska, A., Donnenberg, M.S., Frankel, G., Knutton, S., Enteropathogenic Escherichia coli (epec) adhesion to intestinal epithelial cells: Role of bundle-forming pili (bfp), espa filaments and intimin (2004) Microbiology, 150 (3), pp. 527-538; Dey, B.K., Ahmed, M.S., Ahmed, M.U., Rota viral diarrhoea in kids of black bengal goats in mymensingh (2007) Bangladesh Journal of Veterinary Medicine, 5, pp. 59-62; Donnenberg, M.S., Kaper, J.B., Enteropathogenic Escherichia coli (1992) Infection and Immunity, 60 (10), p. 3953; Garmory, H.S., Chanter, N., French, N.P., Occurrence of clostridium perfringens beta2-Toxin amongst animals, determined using genotyping and subtyping PCR assays (2000) Epidemiology and Infection, 124 (1), pp. 61-67; Gibert, M., JolivetRenaud, C., Popoff, M.R., Beta2 toxin, a novel toxin produced by clostridium perfringens (1997) Gene, 203, pp. 65-73; Giron, J.A., Hoa, S.Y., Schoolnik, G.K., An inducible bundleforming pilus of enteropathogenic Escherichia coli (1991) Science, 254 (5032), pp. 710-714; Greco, G., Madio, A., Buonavoglia, D., Totaro, M., Corrente, M., Martella, V., Buonavoglia, C., Clostridium perfringens toxin-Types in lambs and kids affected with gastroenteric pathologies in Italy (2005) Veterinary Journal, 170, pp. 346-350; Habeeb, A.F.S.A., (1969) Archives of Biochemistry and Biophysics, 130, pp. 430-440. , Studies on e-prototoxin of clostridium perfringens type d. 1. Purification methods: Evidence for multiple forms of e-prototoxin; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt (1999) Nucleic Acids Symposium Series, 41, pp. 95-98; Kapikian, A.Z., Chanock, R.M., (1996) Rotaviruses, 2, pp. 1657-1707. , Fields Virology. (Eds) Fields B N, Knipe D M, Howley P M, Chanock R M, Melinick J L, Monath T P, Roizman B and Straus S E. 3rd ed, Lippincott-Raven, Philadelphia; Khafagi, M.H., Mahmoud, M.A., Habashi, A.R., Prevalence of rotavirus infections in small ruminants (2010) Global Veterinaria, 4, pp. 539-543; Knutton, S., Baldwin, T., Williams, P.H., McNeish, A.S., Actin accumulation at sites of bacterial adhesion to tissue culture cells: Basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli (1989) Infection and Immunity, 57 (4), pp. 1290-1298; McClane, B.A., Uzal, F.A., Miyakawa, M.F., Lyerly, D., Wilkins, T., The enterotoxic clostridia (2005) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 4, pp. 698-752. , (Eds) Dworkin M, Falkow S, Rosenberg E, Schleifer K H and Stackebrandt E. Springer-Verlag, New York; Matthijnssens, J., Rahman, M., Van Ranst, M., Two out of the 11 genes of an unusual human g6p[6] rotavirus isolate are of bovine origin (2008) Journal of General Virology, 89, pp. 2630-2635; Mayameei, A., Mohammadi, G., Yavari, S., Afshari, E., Omidi, A., Evaluation of relationship between rotavirus and coronavirus infections with calf diarrhoea by capture elisa (2009) Comparative Clinical Pathology, 19 (6), pp. 553-557; Mebus, C.A., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhoea: Propagation, attenuation, and characteristics of a coronavirus-like agent (1973) American Journal of Veterinary Research, 34 (2), pp. 145-150; Moon, H.W., Whipp, S.C., Argenzio, R.A., Levine, M.M., Giannella, R.A., Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines (1983) Infection and Immunity, 41 (3), pp. 1340-1351; Nataro, J.P., Kaper, J.B., Diarrheagenic Escherichia coli (1998) Clinical Microbiology Reviews, 11 (1), pp. 142-201; Niilo, L., Clostridium perfringens in animal disease: A review of current knowledge (1980) Canadian Veterinary Journal, 21 (5), pp. 141-148; Niilo, L., Enterotoxemic clostridium perfringens (1986) Pathogenesis of Bacterial Infections in Animals, pp. 80-86. , (Eds) Gyles C L and Thoen C O. Iowa State University Press, Ames; Rai, R.B., Hansha, A., Rai, S., Singh, B., Kumar, H., Singh, A.K., Damodaran, T., Dhama, K., Prevalence of rota and corona virus infections in calves of barabanki and raebareli districts of uttar pradesh (2011) Indian Journal of Veterinary Pathology, 35, pp. 73-74; Rekib, A., Vihan, V.S., Economic losses in goat production due to diseases (1997) Proceedings of the Third National Seminar on Small Ruminant Diseases. Central Institute for Research on Goats, pp. 1-9. , Makhdoom, Mathura, Uttar Pradesh, India; Rich, C., Alfidja, A., Sirot, J., Joly, B., Forestier, C., Identification of human enterovirulent Escherichia coli strains by multiplex PCR (2001) Journal of Clinical Laboratory Analysis, 15 (2), pp. 100-103; Sayeed, S., Fernandez-Miyakawa, M.E., Fisher, D.J., Adams, V., Poon, R., Rood, J.I., Uzal, F.A., McClane, B.A., Epsilon-Toxin is required for most clostridium perfringens type d vegetative culture supernatants to cause lethality in the mouse intravenous injection model (2005) Infection and Immunity, 73 (11), pp. 7413-7421; Songer, J.G., Clostridial enteric diseases of domestic animals (1996) Clinical Microbiology Reviews, 9 (2), pp. 216-234; Tsunemitsu, H., Smith, D.R., Saif, L.J., Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by rt-PCR (1999) Archives of Virology, 144 (1), pp. 167-175; Van Astena, J.A.M., Van Der Wiela, C.W., Nikolaoua, G., Houwersb, D.J., Gronea, A., A multiplex PCR for toxin typing of clostridium perfringens isolates (2009) Veterinary Microbiology, 136, pp. 411-412; Wani, S.A., Bhat, M.A., Nawchoo, R., Munshi, Z.H., Bach, A.S., Evidence of rotavirus associated with neonatal lamb diarrhea in India (2004) Tropical Animal Health Production, 36, pp. 27-32; Waters, M., Savoie, A., Garmory, H.S., Bueschel, D., Popoff, M.R., Songer, J.G., Titball, R.W., Sarker, M.R., Genotyping and phenotyping of beta2-Toxigenic clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets (2003) Journal of Clinical Microbiology, 41 (8), pp. 3584-3591",,,"Indian Council of Agricultural Research",03678318,,,,"English","Indian J. Anim. Sci.",Article,"Final",,Scopus,2-s2.0-85049554892 "Essaidi-Laziosi M., Brito F., Benaoudia S., Royston L., Cagno V., Fernandes-Rocha M., Piuz I., Zdobnov E., Huang S., Constant S., Boldi M.-O., Kaiser L., Tapparel C.","55973003400;57188846655;57196064824;57060397900;55359966200;57189302987;7801463105;35395664900;54585389100;36460778700;57190955873;57203230856;57203825273;","Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures",2018,"Journal of Allergy and Clinical Immunology","141","6",,"2074","2084",,15,"10.1016/j.jaci.2017.07.018","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028884957&doi=10.1016%2fj.jaci.2017.07.018&partnerID=40&md5=bee32b25f8f1e3e7580b0794bbb22d27","Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland; Epithelix Sàrl, Geneva, Switzerland; Division of Medical Specialties and Laboratory of Virology, University Hospital of Geneva, Geneva, Switzerland; Research Center for Statistics, Faculty GSEM, University of Geneva, Geneva, Switzerland","Essaidi-Laziosi, M., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Brito, F., Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland; Benaoudia, S., Epithelix Sàrl, Geneva, Switzerland; Royston, L., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Cagno, V., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Fernandes-Rocha, M., Division of Medical Specialties and Laboratory of Virology, University Hospital of Geneva, Geneva, Switzerland; Piuz, I., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Zdobnov, E., Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland; Huang, S., Epithelix Sàrl, Geneva, Switzerland; Constant, S., Epithelix Sàrl, Geneva, Switzerland; Boldi, M.-O., Research Center for Statistics, Faculty GSEM, University of Geneva, Geneva, Switzerland; Kaiser, L., Division of Medical Specialties and Laboratory of Virology, University Hospital of Geneva, Geneva, Switzerland; Tapparel, C., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland, Division of Medical Specialties and Laboratory of Virology, University Hospital of Geneva, Geneva, Switzerland","Background: The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. Objective: We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Methods: Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)–OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. Results: RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. Conclusion: Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. © 2017 American Academy of Allergy, Asthma & Immunology","cytokines; cytotoxicity; immune response; mucociliary clearance; pathogenesis; persistence; Respiratory virus; rhinovirus","beta interferon; gamma interferon; gamma interferon inducible protein 10; genomic RNA; granulocyte macrophage colony stimulating factor; interleukin 1beta; interleukin 25; interleukin 29; interleukin 33; interleukin 6; interleukin 8; lactate dehydrogenase; protein VP2; RANTES; thymic stromal lymphopoietin; transforming growth factor beta; virus RNA; adult; aged; Article; basal cell; cell death; child; ciliated epithelium cell; comparative study; controlled study; cytokine release; cytokine response; Enterovirus D68; goblet cell; human; human cell; Human coronavirus OC43; human tissue; immune response; infant; Influenza A virus (H3N2); innate immunity; mucociliary clearance; newborn; persistent virus infection; Pneumovirus; priority journal; respiratory epithelium; respiratory syncytial virus B; respiratory virus; Rhinovirus; Rhinovirus A49; Rhinovirus A55; Rhinovirus B48; Rhinovirus C15; Rhinovirus C8; RNA sequence; tissue metabolism; viral respiratory tract infection; viral tropism; virus isolation; virus load; virus replication; pathophysiology; respiratory mucosa; RNA virus; RNA virus infection; virology; Humans; Respiratory Mucosa; RNA Virus Infections; RNA Viruses","(2016), http://www.who.int/gho/child_health/mortality/causes/en/, Global Health Observatory (GHO) data—child mortality and causes of death 2015. Available at: Accessed December; Denny, F.W., Jr., The clinical impact of human respiratory virus infections (1995) Am J Respir Crit Care Med, 152, pp. S4-S12; Ambrosioni, J., Bridevaux, P.O., Wagner, G., Mamin, A., Kaiser, L., Epidemiology of viral respiratory infections in a tertiary care centre in the era of molecular diagnosis, Geneva, Switzerland, 2011-2012 (2014) Clin Microbiol Infect, 20, pp. O578-O584; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23, pp. 74-98; Khan, F., Enterovirus D68: acute respiratory illness and the 2014 outbreak (2015) Emerg Med Clin North Am, 33, pp. e19-32; Bertino, J.S., Cost burden of viral respiratory infections: issues for formulary decision makers (2002) Am J Med, 112, pp. 42S-49S; Nguyen, C., Kaku, S., Tutera, D., Kuschner, W.G., Barr, J., Viral respiratory infections of adults in the intensive care unit (2016) J Intensive Care Med, 31, pp. 427-441; Stokes, K.L., Chi, M.H., Sakamoto, K., Newcomb, D.C., Currier, M.G., Huckabee, M.M., Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice (2011) J Virol, 85, pp. 5782-5793; Bartlett, N.W., Walton, R.P., Edwards, M.R., Aniscenko, J., Caramori, G., Zhu, J., Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation (2008) Nat Med, 14, pp. 199-204; Margine, I., Krammer, F., Animal models for influenza viruses: implications for universal vaccine development (2014) Pathogens, 3, pp. 845-874; Bochkov, Y.A., Watters, K., Basnet, S., Sijapati, S., Hill, M., Palmenberg, A.C., Mutations in VP1 and 3A proteins improve binding and replication of rhinovirus C15 in HeLa-E8 cells (2016) Virology, 499, pp. 350-360; Villenave, R., Shields, M.D., Power, U.F., Respiratory syncytial virus interaction with human airway epithelium (2013) Trends Microbiol, 21, pp. 238-244; Mitchell, H., Levin, D., Forrest, S., Beauchemin, C.A., Tipper, J., Knight, J., Higher level of replication efficiency of 2009 (H1N1) pandemic influenza virus than those of seasonal and avian strains: kinetics from epithelial cell culture and computational modeling (2011) J Virol, 85, pp. 1125-1135; Bochkov, Y.A., Palmenberg, A.C., Lee, W.M., Rathe, J.A., Amineva, S.P., Sun, X., Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C (2011) Nat Med, 17, pp. 627-632; Hao, W., Bernard, K., Patel, N., Ulbrandt, N., Feng, H., Svabek, C., Infection and propagation of human rhinovirus C in human airway epithelial cells (2012) J Virol, 86, pp. 13524-13532; Tapparel, C., Sobo, K., Constant, S., Huang, S., Van Belle, S., Kaiser, L., Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro (2013) Virology, 446, pp. 1-8; Knight, D.A., Holgate, S.T., The airway epithelium: structural and functional properties in health and disease (2003) Respirology, 8, pp. 432-446; Roche, W.R., Montefort, S., Baker, J., Holgate, S.T., Cell adhesion molecules and the bronchial epithelium (1993) Am Rev Respir Dis, 148, pp. S79-S82; Smith, D.J., Gaffney, E.A., Blake, J.R., Modelling mucociliary clearance (2008) Respir Physiol Neurobiol, 163, pp. 178-188; Nakagome, K., Bochkov, Y.A., Ashraf, S., Brockman-Schneider, R.A., Evans, M.D., Pasic, T.R., Effects of rhinovirus species on viral replication and cytokine production (2014) J Allergy Clin Immunol, 134, pp. 332-341; Hothorn, T., Bretz, F., Westfall, P., Simultaneous inference in general parametric models (2008) Biom J, 50, pp. 346-363; Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y., IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth (2012) Bioinformatics, 28, pp. 1420-1428; Wilm, A., Aw, P.P., Bertrand, D., Yeo, G.H., Ong, S.H., Wong, C.H., LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets (2012) Nucleic Acids Res, 40, pp. 11189-11201; Wei, Z., Wang, W., Hu, P., Lyon, G.J., Hakonarson, H., SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data (2011) Nucleic Acids Res, 39, p. e132; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., The Sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079; Lupo, J., Schuffenecker, I., Morel-Baccard, C., Bardet, J., Payen, V., Kaiser, L., Disseminated rhinovirus C8 infection with infectious virus in blood and fatal outcome in a child with repeated episodes of bronchiolitis (2015) J Clin Microbiol, 53, pp. 1775-1777; Tapparel, C., Cordey, S., Junier, T., Farinelli, L., Van Belle, S., Soccal, P.M., Rhinovirus genome variation during chronic upper and lower respiratory tract infections (2011) PLoS One, 6, p. e21163; Essaidi-Laziosi, M., Lyon, M., Mamin, A., Fernandes Rocha M, Kaiser L, Tapparel C. A new real-time RT-qPCR assay for the detection, subtyping and quantification of human respiratory syncytial viruses positive- and negative-sense RNAs (2016) J Virol Methods, 235, pp. 9-14; L'Huillier, A.G., Kaiser, L., Petty, T.J., Kilowoko, M., Kyungu, E., Hongoa, P., Molecular epidemiology of human rhinoviruses and enteroviruses highlights their diversity in Sub-Saharan Africa (2015) Viruses, 7, pp. 6412-6423; Borg, I., Rohde, G., Loseke, S., Bittscheidt, J., Schultze-Werninghaus, G., Stephan, V., Evaluation of a quantitative real-time PCR for the detection of respiratory syncytial virus in pulmonary diseases (2003) Eur Respir J, 21, pp. 944-951; Esposito, S., Daleno, C., Scala, A., Castellazzi, L., Terranova, L., Sferrazza Papa, S., Impact of rhinovirus nasopharyngeal viral load and viremia on severity of respiratory infections in children (2014) Eur J Clin Microbiol Infect Dis, 33, pp. 41-48; Ngaosuwankul, N., Noisumdaeng, P., Komolsiri, P., Pooruk, P., Chokephaibulkit, K., Chotpitayasunondh, T., Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses (2010) Virol J, 7, p. 75; Zhang, L., Peeples, M.E., Boucher, R.C., Collins, P.L., Pickles, R.J., Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology (2002) J Virol, 76, pp. 5654-5666; Reed, S.E., Persistent respiratory virus infection in tracheal organ cultures (1969) Br J Exp Pathol, 50, pp. 378-388; Jakiela, B., Gielicz, A., Plutecka, H., Hubalewska-Mazgaj, M., Mastalerz, L., Bochenek, G., Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection (2014) Am J Respir Cell Mol Biol, 51, pp. 229-241; Griggs, T.F., Bochkov, Y.A., Basnet, S., Pasic, T.R., Brockman-Schneider, R.A., Palmenberg, A.C., Rhinovirus C targets ciliated airway epithelial cells (2017) Respir Res, 18, p. 84; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Deijs, M., Jonsdottir, H.R., Molenkamp, R., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J Virol, 87, pp. 6081-6090; Ibricevic, A., Pekosz, A., Walter, M.J., Newby, C., Battaile, J.T., Brown, E.G., Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells (2006) J Virol, 80, pp. 7469-7480; Persson, B.D., Jaffe, A.B., Fearns, R., Danahay, H., Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation (2014) PLoS One, 9, p. e102368; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13, p. e1006195; Wang, G., Deering, C., Macke, M., Shao, J., Burns, R., Blau, D.M., Human coronavirus 229E infects polarized airway epithelia from the apical surface (2000) J Virol, 74, pp. 9234-9239; Smith, C.M., Kulkarni, H., Radhakrishnan, P., Rutman, A., Bankart, M.J., Williams, G., Ciliary dyskinesia is an early feature of respiratory syncytial virus infection (2014) Eur Respir J, 43, pp. 485-496; Arruda, E., Boyle, T.R., Winther, B., Pevear, D.C., Gwaltney, J.M., Jr., Hayden, F.G., Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization (1995) J Infect Dis, 171, pp. 1329-1333; Winther, B., Effects on the nasal mucosa of upper respiratory viruses (common cold) (1994) Dan Med Bull, 41, pp. 193-204; Hendley, J.O., Clinical virology of rhinoviruses (1999) Adv Virus Res, 54, pp. 453-466; Tadokoro, T., Wang, Y., Barak, L.S., Bai, Y., Randell, S.H., Hogan, B.L., IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells (2014) Proc Natl Acad Sci U S A, 111, pp. E3641-E3649; Wu, N.H., Yang, W., Beineke, A., Dijkman, R., Matrosovich, M., Baumgartner, W., The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells (2016) Sci Rep, 6, p. 39668; Pittet, L.A., Hall-Stoodley, L., Rutkowski, M.R., Harmsen, A.G., Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae (2010) Am J Respir Cell Mol Biol, 42, pp. 450-460; Iravani, J., Melville, G.N., Horstmann, G., Tracheobronchial clearance in health and disease: with special reference to interciliary fluid (1978) Ciba Found Symp, 54, pp. 235-252; Wilson, R., Alton, E., Rutman, A., Higgins, P., Al Nakib, W., Geddes, D.M., Upper respiratory tract viral infection and mucociliary clearance (1987) Eur J Respir Dis, 70, pp. 272-279; Catley, M.C., Sukkar, M.B., Chung, K.F., Jaffee, B., Liao, S.M., Coyle, A.J., Validation of the anti-inflammatory properties of small-molecule IkappaB Kinase (IKK)-2 inhibitors by comparison with adenoviral-mediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle (2006) Mol Pharmacol, 70, pp. 697-705; Mazur, I., Wurzer, W.J., Ehrhardt, C., Pleschka, S., Puthavathana, P., Silberzahn, T., Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity (2007) Cell Microbiol, 9, pp. 1683-1694; Kalies, K.U., Romisch, K., Inhibitors of protein translocation across the ER membrane (2015) Traffic, 16, pp. 1027-1038; Heaton, N.S., Moshkina, N., Fenouil, R., Gardner, T.J., Aguirre, S., Shah, P.S., Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection (2016) Immunity, 44, pp. 46-58; Syedbasha, M., Egli, A., Interferon lambda: modulating immunity in infectious diseases (2017) Front Immunol, 8, p. 119; Lembo, D., Cagno, V., Civra, A., Poli, G., Oxysterols: An emerging class of broad spectrum antiviral effectors (2016) Mol Aspects Med, 49, pp. 23-30; Koszalka, P., Tilmanis, D., Hurt, A.C., Influenza antivirals currently in late-phase clinical trial (2017) Influenza Other Respir Viruses, 11, pp. 240-246; Abdelnabi, R., Morais, A.T.S., Leyssen, P., Imbert, I., Beaucourt, S., Blanc, H., Understanding the mechanism of the broad-spectrum antiviral activity of favipiravir (T-705): key role of the F1 motif of the viral polymerase (2017) J Virol, 91 (12)","Tapparel, C.; Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1 rue Michel-Servet, Switzerland; email: caroline.tapparel@unige.ch",,"Mosby Inc.",00916749,,JACIB,"28797733","English","J. Allergy Clin. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85028884957 "Mahallawi W.H.","55683366800;","Case report: Detection of the Middle East respiratory syndrome corona virus (MERS-CoV) in nasal secretions of a dead human",2018,"Journal of Taibah University Medical Sciences","13","3",,"302","304",,1,"10.1016/j.jtumed.2017.07.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027718095&doi=10.1016%2fj.jtumed.2017.07.004&partnerID=40&md5=b257e9a552c7c373c571db14a0642076","Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Saudi Arabia","Mahallawi, W.H., Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Almadinah Almunawwarah, Saudi Arabia","The Middle East respiratory syndrome coronavirus (MERS-CoV) has been recognized as a highly pathogenic virus that infects the human respiratory tract and has high morbidity and mortality. The MERS-CoV is a huge burden on Saudi Arabian health-care facilities, causing approximately 40% mortality. The transmission mechanism of the virus is still not well understood. Therefore, the prevention of any route of transmission is the best measure to arrest the spread of this disease. Using the real time polymerase chain reaction (RT-PCR), MERS-CoV was detected in the nasal secretions of a human cadaver. Full precautions should be applied and carefully followed to prevent the transmission of the virus, especially among health care workers. © 2017 The Author","Health care workers; Infection control; MERS-CoV; Postmortem; Prevention; Transmission","adult; Article; cadaver; case report; clinical article; female; human; Middle East respiratory syndrome coronavirus; nonhuman; nose secretion; nose smear; reverse transcription polymerase chain reaction; virus detection","Thomas, C., MERS-CoV: Where Are We Now? (2015) Ann Acad Med Singap, 44 (5), pp. 155-156; Almaghrabi, R.S., Omrani, A.S., Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Br J Hosp Med (Lond), 78 (1), pp. 23-26; Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV (2017) Antivir Res, 137, pp. 82-92; Al-Tawfiq, J.A., Memish, Z.A., Emerging respiratory viral infections: MERS-CoV and influenza (2014) Lancet Respir Med, 2 (1), pp. 23-25; Guan, Y., Peiris, J.S., Zheng, B., Poon, L.L., Chan, K.H., Zeng, F.Y., Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome (2004) Lancet, 363 (9403), pp. 99-104; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study (2013) Lancet, 382 (9909), pp. 1993-2002; Al-Tawfiq, J.A., Assiri, A., Memish, Z.A., Middle East respiratory syndrome novel corona MERS-CoV infection (2013) Epidemiology and outcome update. Saudi Med J, 34 (10), pp. 991-994; Mailles, A., Blanckaert, K., Chaud, P., van der Werf, S., Lina, B., Caro, V., First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013 (2013) Euro Surveill, 18 (24); Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) MBio, 5 (3). , e01146–14; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathog Glob Health, 109 (8), pp. 354-362; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) Lancet, 383 (9932), pp. 1869-1871; Kayali, G., Peiris, M., A more detailed picture of the epidemiology of Middle East respiratory syndrome coronavirus (2015) Lancet Infect Dis, 15 (5), pp. 495-497; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47, p. e181; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015 (2015) Euro Surveill, 20 (25), pp. 7-13; Leung, T.F., Ng, P.C., Cheng, F.W., Lyon, D.J., So, K.W., Hon, E.K., Infection control for SARS in a tertiary paediatric centre in Hong Kong (2004) J Hosp Infect, 56 (3), pp. 215-222; Kim, J.Y., Song, J.Y., Yoon, Y.K., Choi, S.H., Song, Y.G., Kim, S.R., Middle East respiratory syndrome infection control and prevention guideline for healthcare facilities (2015) Infect Chemother, 47 (4), pp. 278-302","Mahallawi, W.H.; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Prince Naif bin Abdulaziz Rd, Saudi Arabia; email: wmahallawi@taibahu.edu.sa",,"Elsevier B.V.",16583612,,,,"English","J. Taibah. Univ. Med. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85027718095 "Tsagarakis N.J., Sideri A., Makridis P., Triantafyllou A., Stamoulakatou A., Papadogeorgaki E.","26636202100;56781425300;57196193916;57196192882;57208978167;7801403637;","Age-related prevalence of common upper respiratory pathogens, based on the application of the FilmArray Respiratory panel in a tertiary hospital in Greece",2018,"Medicine (United States)","97","22", e10903,"","",,3,"10.1097/MD.0000000000010903","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048340449&doi=10.1097%2fMD.0000000000010903&partnerID=40&md5=e8fd142c7824db8e7bba8077533f2332","Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece","Tsagarakis, N.J., Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece; Sideri, A., Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece; Makridis, P., Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece; Triantafyllou, A., Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece; Stamoulakatou, A., Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece; Papadogeorgaki, E., Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Athens, Greece","The FilmArray Respiratory Panel (FA-RP) is an FDA certified multiplex PCR that can detect 17 viruses and 3 bacteria responsible for upper respiratory tract infections, thus it is potentially useful to the assessment of the age-related prevalence of these pathogens. In this observational study, we retrospectively analyzed the results of all the respiratory samples, which had been processed during 1 year-period (November 2015 to November 2016) with the FA-RP, in the Central Laboratories of Hygeia & Mitera General Hospitals of Athens, Greece. In order to have an age-related distribution, the following age groups were implemented: (<2), (≥2, <5), (≥5, <10), (≥10, <18), (≥18, <45), (≥45, <65), and (≥65) years old. Among 656 respiratory samples tested, 362 (55%) were from male and 294 (45%) from female patients, while 356 (54.3%) were positive and 300 (45.7%) negative. In the first age-group (<2), 41/121 samples (33.9%) revealed human rhinovirus/enterovirus (HRV) and 16 (13.2%) adenovirus (Adv), followed by respiratory syncytial virus (RSV), coronavirus, human metapneumovirus (Hmpv), and parainfluenza viruses (PIV). In the age-group (≥2, <5), Adv predominated with 37/147 samples (25.2%), followed by HRV, RSV, coronavirus (all types), and influenza, Hmpv and PIV. In the age-group (≥5, <10), HRV was identified in 25/80 samples (31.3%), Adv in 18 (22.5%), influenza in 11 (13.8%), and Hmpv in 6 (7.5%). Influenza predominated in the age-group (≥10, <18), with 4/22 samples (18.2%), while in the remaining age-groups (≥18), HRV was the commonest isolated pathogen, 33/286 (11.5%), followed by influenza with 20 (7%) (influenza A H1-2009, 11/20). In our patient series, HRV seemed to prevail in most age-groups, followed by Adv, although Influenza was the second most frequent pathogen isolated in the age-groups (≥18). Moreover, increasing age corresponded to increasing possibility of having a negative sample, indicating that FilmArray may be more useful before adolescence. © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.","age and respiratory infection; FilmArray; multiplex PCR; respiratory pathogen; respiratory virus","Adenoviridae; adult; age; aged; Article; child; Coronavirinae; Enterovirus; female; Greece; groups by age; human; Human respiratory syncytial virus; Human rhinovirus; infectious agent; major clinical study; male; Metapneumovirus; nonhuman; observational study; Paramyxovirinae; prevalence; priority journal; retrospective study; tertiary care center; adolescent; age distribution; infant; isolation and purification; middle aged; multiplex polymerase chain reaction; preschool child; procedures; respiratory tract infection; Rhinovirus; virology; virus; virus infection; young adult; Adolescent; Adult; Age Distribution; Aged; Child; Child, Preschool; Female; Greece; Humans; Infant; Male; Middle Aged; Multiplex Polymerase Chain Reaction; Prevalence; Respiratory Tract Infections; Retrospective Studies; Rhinovirus; Tertiary Care Centers; Virus Diseases; Viruses; Young Adult","Layman, C.P., Gordon, S.M., Elegino-Steffens, D.U., Rapid multiplex PCR assay to identify respiratory viral pathogens: Moving forward diagnosing the common cold (2013) Hawaii J Med Public Health, 72 (9), pp. 24-26; Babady, N.E., Mead, P., Stiles, J., Comparison of the Luminex xTAG RVP Fast assay and the Idaho Technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital (2012) J Clin Microbiol, 50, pp. 2282-2288; Andersson, M.E., Olofsson, S., Lindh, M., Comparison of the FilmArray assay and in-house real-Time PCR for detection of respiratory infection (2014) Scand J Infect Dis, 46, pp. 897-901; Chen, J.H., Lam, H.Y., Yip, C.C., Clinical evaluation of the new highthroughput Luminex NxTAG respiratory pathogen panel assay for multiplex respiratory pathogen detection (2016) J Clin Microbiol, 54, pp. 1820-1825; Lim, F.J., De Klerk, N., Blyth, C.C., Systematic review and meta-Analysis of respiratory viral coinfections in children (2016) Respirology, 21, pp. 648-655; Jain, N., Lodha, R., Kabra, S.K., Upper respiratory tract infections (2001) Indian J Pediatr, 68, pp. 1135-1138; Brendish, N.J., Malachira, A.K., Clark, T.W., Molecular point-of-care testing for respiratory viruses versus routine clinical care in adults with acute respiratory illness presenting to secondary care: A pragmatic randomised controlled trial protocol (ResPOC (2017) BMC Infect Dis, 17, p. 128; To, K.K.W., Yip, C.C.Y., Yuen, K.Y., Rhinovirus-from bench to bedside (2017) J Formos Med Assoc, 116, pp. 496-504; Bhuyan, G.S., Hossain, M.A., Sarker, S.K., Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city (2017) PLoS One, 12, p. e0174488; Finianos, M., Issa, R., Curran, M.D., Etiology, seasonality, and clinical characterization of viral respiratory infections among hospitalized children in Beirut, Lebanon (2016) J Med Virol, 88, pp. 1874-1881; Louie, J.K., Roy-Burman, A., Guardia-Labar, L., Rhinovirus associated with severe lower respiratory tract infections in children (2009) Pediatr Infect Dis J, 28, pp. 337-339; McGrath, E.J., Thomas, R., Asmar, B., Detection of respiratory coinfections in pediatric patients using a small volume polymerase chain reaction array respiratory panel: More evidence for combined droplet and contact isolation (2013) Am J Infect Control, 41, pp. 868-873; Morikawa, S., Kohdera, U., Hosaka, T., Seasonal variations of respiratory viruses and etiology of human rhinovirus infection in children (2015) J Clin Virol, 73, pp. 14-19; Anders, K.L., Nguyen, H.L., Nguyen, N.M., Epidemiology and virology of acute respiratory infections during the first year of life: A birth cohort study in Vietnam (2015) Pediatr Infect Dis J, 34, pp. 361-370; Chu, H.Y., Englund, J.A., Strelitz, B., Rhinovirus disease in children seeking care in a tertiary pediatric emergency department (2016) J Pediatric Infect Dis Soc, 5, pp. 29-38; Liu, W.K., Liu, Q., Chen, D.H., Epidemiology of acute respiratory infections in children in Guangzhou: A three-year study (2014) PLoS One, 9, p. e96674; Malekshahi, S.S., Azad, T.M., Yavarian, J., Molecular detection of respiratory viruses in clinical specimens from children with acute respiratory disease in Iran (2010) Pediatr Infect Dis J, 29, pp. 931-933; Wong-Chew, R.M., Espinoza, M.A., Taboada, B., Prevalence of respiratory virus in symptomatic children in private physician office settings in five communities of the state of Veracruz Mexico (2015) BMC Res Notes, 8, p. 261; Hall, C.B., The nosocomial spread of respiratory syncytial viral infections (1983) Annu Rev Med, 34, pp. 311-319; Hashem, M., Hall, C.B., Respiratory syncytial virus in healthy adults: The cost of a cold (2003) J Clin Virol, 27, pp. 14-21; Simoes, E.A., Respiratory syncytial virus infection (1999) Lancet, 354, pp. 847-852; Gamino-Arroyo, A.E., Moreno-Espinosa, S., Llamosas-Gallardo, B., Mexico Emerging Infectious Diseases Clinical Research Network (La Red)Epidemiology and clinical characteristics of respiratory syncytial virus infections among children and adults in Mexico (2017) Influenza Other Respir Viruses, 11, pp. 48-56; Clark, N.M., Lynch, J.P., III, Influenza: Epidemiology, clinical features, therapy, and prevention (2011) Semin Respir Crit Care Med, 32, pp. 373-392; Tramuto, F., Maida, C.M., Napoli, G., Burden and viral aetiology of influenza-like illness and acute respiratory infection in intensive care units (2016) Microbes Infect, 18, pp. 270-276; Principi, N., Esposito, S., Paediatric human metapneumovirus infection: Epidemiology, prevention and therapy (2014) J Clin Virol, 59, pp. 141-147; Liuwk Liu, Q., Chen, D.H., Epidemiology and clinical presentation of the four human parainfluenza virus types (2013) BMC Infect Dis, 13, p. 28; Pawelczyk, M., Kowalski, M.L., The role of human parainfluenza virus infections in the immunopathology of the respiratory tract (2017) Curr Allergy Asthma Rep, 17, p. 16; Trombetta, H., Faggion, H.Z., Leotte, J., Human coronavirus and severe acute respiratory infection in Southern Brazil (2016) Pathog Glob Health, 110, pp. 113-118; Marcone, D.N., Carballal, G., Ricarte, C., Respiratory viral diagnosis by using an automated system of multiplex PCR (FilmArray) compared to conventional methods (2015) Rev Argent Microbiol, 47, pp. 29-35; Adam, K., Pangesti, K.N., Setiawaty, V., Multiple viral infection detected from influenza-like illness cases in Indonesia (2017) Biomed Res Int, 2017, p. 9541619; O'Grady, K.F., Grimwood, K., Sloots, T.P., Prevalence, codetection and seasonal distribution of upper airway viruses and bacteria in children with acute respiratory illnesses with cough as a symptom (2016) Clin Microbiol Infect, 22, pp. 527-534; Litwin, C.M., Bosley, J.G., Seasonality and prevalence of respiratory pathogens detected by multiplex PCR at a tertiary care medical center (2014) Arch Virol, 159, pp. 65-72; Cebey-Lopez, M., Herberg, J., Pardo-Seco, J., Viral co-infections in pediatric patients hospitalized with lower tract acute respiratory infections (2015) PLoS One, 10, p. e0136526; Karppinen, S., Toivonen, L., Schuez-Havupalo, L., Interference between respiratory syncytial virus and rhinovirus in respiratory tract infections in children (2016) Clin Microbiol Infect, 22, pp. 208-216; Kono, J., Jonduo, M.H., Omena, M., Viruses associated with influenzalike-illnesses in Papua New Guinea 2010 (2014) J Med Virol, 86, pp. 899-904; Liu, T., Li, Z., Zhang, S., Viral Etiology of acute respiratory tract infections in hospitalized children and adults in Shandong Province China (2015) Virol J, 12, p. 168; Peng, D., Zhao, D., Liu, J., Multipathogen infections in hospitalized children with acute respiratory infections (2009) Virol J, 6, p. 155","Tsagarakis, N.J.; Central Laboratories, Hygeia General Hospital, G. Papadaki 13, Stamata (Dionysos), PO BOX 14575, Greece; email: nikolaostsagarakis@gmail.com",,"Lippincott Williams and Wilkins",00257974,,MEDIA,"29851817","English","Medicine",Article,"Final",Open Access,Scopus,2-s2.0-85048340449 "Omar A., Patil P.D., Hoshi S., Huang J., Collum E., Panchabhai T.S.","57189236239;57191520286;57202153383;56135596900;57202155970;15056764800;","A 68-Year-Old Lung Transplant Recipient With Shortness of Breath, Weight Loss, and Abnormal Chest CT",2018,"Chest","153","6",,"e153","e157",,,"10.1016/j.chest.2017.10.034","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047375559&doi=10.1016%2fj.chest.2017.10.034&partnerID=40&md5=4b57f14aee8cb53968a4f7603c352126","Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Department of Pathology, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States","Omar, A., Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Patil, P.D., Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States; Hoshi, S., Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Huang, J., Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Collum, E., Department of Pathology, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Panchabhai, T.S., Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States","Case Presentation: A 68-year-old man presented to our ED with shortness of breath, weakness, and a 25-lb unintentional weight loss. He had undergone bilateral lung transplantation (cytomegalovirus [CMV]: donor+, recipient+; Epstein-Barr virus: donor+; recipient+) for idiopathic pulmonary fibrosis (IPF) 18 months prior. His posttransplant course was fairly unremarkable until 1 month earlier, when he was admitted for breathlessness and weakness. CT of the chest during that admission revealed mild intralobular and interlobular septal thickening. A bronchoscopy with BAL and transbronchial biopsies did not show acute cellular rejection, but the BAL fluid was positive for coronavirus. His cortisol level was undetectable; he was diagnosed with adrenal insufficiency and fludrocortisone was initiated. He was taking prednisone, tacrolimus, and everolimus for immunosuppression and valganciclovir, itraconazole, and trimethoprim-sulfamethoxazole for antimicrobial prophylaxis. His 25-lb weight loss occurred over the span of just one month. © 2017 American College of Chest Physicians",,"cotrimoxazole; everolimus; fludrocortisone; hydrocortisone; itraconazole; prednisone; tacrolimus; valganciclovir; acute graft rejection; adrenal insufficiency; aged; Article; body weight loss; bronchoscopy; case report; clinical article; computer assisted tomography; Coronavirinae; Cytomegalovirus; dyspnea; Epstein Barr virus; fibrosing alveolitis; graft recipient; hospital admission; human; immunosuppressive treatment; lung adenocarcinoma; lung carcinoma; lung lavage; lung transplantation; lymphangitic carcinomatosis; male; physical examination; pleura effusion; priority journal; thoracocentesis; transbronchial biopsy; weakness; adverse event; biopsy; complication; diagnostic imaging; dyspnea; lung; lung adenocarcinoma; lung transplantation; lymph node; lymph node metastasis; pathology; procedures; x-ray computed tomography; Adenocarcinoma of Lung; Aged; Biopsy; Dyspnea; Humans; Lung; Lung Transplantation; Lymph Nodes; Lymphatic Metastasis; Male; Tomography, X-Ray Computed; Transplant Recipients; Weight Loss","Park, J., Kim, D.S., Shim, T.S., Lung cancer in patients with idiopathic pulmonary fibrosis (2001) Eur Respir J, 17 (6), pp. 1216-1219; De Perrot, M., Fischer, S., Waddell, T.K., Management of lung transplant recipients with bronchogenic carcinoma in the native lung (2003) J Heart Lung Transplant, 22 (1), pp. 87-89; Minai, O.A., Shah, S., Mazzone, P., Bronchogenic carcinoma after lung transplantation: characteristics and outcomes (2008) J Thorac Oncol, 3 (12), pp. 1404-1409; Prakash, P., Kalra, M.K., Sharma, A., Shepard, J.A., Digumarthy, S.R., FDG PET/CT in assessment of pulmonary lymphangitic carcinomatosis (2010) AJR Am J Roentgenol, 194 (1), pp. 231-236; Belli, E.V., Landolfo, K., Keller, C., Thomas, M., Odell, J., Lung cancer following lung transplant: single institution 10 year experience (2013) Lung Cancer, 81 (3), pp. 451-454; Kwak, N., Park, C.M., Lee, J., Lung cancer risk among patients with combined pulmonary fibrosis and emphysema (2014) Respir Med, 108 (3), pp. 524-530; Olland, A.B., Falcoz, P.E., Santelmo, N., Kessler, R., Massard, G., Primary lung cancer in lung transplant recipients (2014) Ann Thorac Surg, 98 (1), pp. 362-371; Grewal, A.S., Padera, R.F., Boukedes, S., Prevalence and outcome of lung cancer in lung transplant recipients (2015) Respir Med, 109 (3), pp. 427-431","Panchabhai, T.S.; Norton Thoracic Institute, St. Joseph's Hospital and Medical CenterUnited States; email: Tanmay.panchabhai@dignityhealth.org",,"Elsevier Inc",00123692,,CHETB,"29884278","English","Chest",Article,"Final",,Scopus,2-s2.0-85047375559 "Murphy B.G., Perron M., Murakami E., Bauer K., Park Y., Eckstrand C., Liepnieks M., Pedersen N.C.","14052522000;57215446484;7101923578;57204714898;55257073200;55341190000;56209031000;7202299909;","The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies",2018,"Veterinary Microbiology","219",,,"226","233",,8,"10.1016/j.vetmic.2018.04.026","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052331308&doi=10.1016%2fj.vetmic.2018.04.026&partnerID=40&md5=be93bb7d6b969f7f69674c7cb3748799","Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States; Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, United States; Gilead Sciences, Foster City, CA, United States","Murphy, B.G., Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States; Perron, M., Gilead Sciences, Foster City, CA, United States; Murakami, E., Gilead Sciences, Foster City, CA, United States; Bauer, K., Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States; Park, Y., Gilead Sciences, Foster City, CA, United States; Eckstrand, C., Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States; Liepnieks, M., Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States; Pedersen, N.C., Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Ave., Davis, CA, United States","Feline infectious peritonitis (FIP) is a common and highly lethal coronavirus disease of domestic cats. Recent studies of diseases caused by several RNA viruses in people and other species indicate that antiviral therapy may be effective against FIP in cats. The small molecule nucleoside analog GS-441524 is a molecular precursor to a pharmacologically active nucleoside triphosphate molecule. These analogs act as an alternative substrate and RNA-chain terminator of viral RNA dependent RNA polymerase. We determined that GS-441524 was non-toxic in feline cells at concentrations as high as 100 uM and effectively inhibited FIPV replication in cultured CRFK cells and in naturally infected feline peritoneal macrophages at concentrations as low as 1 uM. We determined the pharmacokinetics of GS-441524 in cats in vivo and established a dosage that would sustain effective blood levels for 24 h. In an experimental FIPV infection of cats, GS-441524 treatment caused a rapid reversal of disease signs and return to normality with as little as two weeks of treatment in 10/10 cats and with no apparent toxicity. © 2018 The Authors","Cell culture; EC50; Experimental infection; Feline infectious peritonitis (FIP); FIP virus (FIPV); GS-441524; Laboratory cats; Nucleoside analog; Pharmacokinetics; Tri-phosphorylation","gs 441524; meloxicam; nucleoside analog; nucleoside triphosphate; unclassified drug; antivirus agent; nucleoside; adolescent; animal cell; animal experiment; animal model; antiviral therapy; Article; controlled study; CRFK cell line; cytotoxicity; domestic cat; drug blood level; feline infectious peritonitis; gene expression; nonhuman; nucleotide sequence; peritoneum macrophage; RNA virus; tissue culture; virus replication; animal; ascites fluid; cat; cell culture; chemistry; Coronavirus infection; drug effect; Feline coronavirus; feline infectious peritonitis; immunology; macrophage; serotype; veterinary medicine; virology; Animals; Antiviral Agents; Ascitic Fluid; Cats; Cells, Cultured; Coronavirus Infections; Coronavirus, Feline; Feline Infectious Peritonitis; Macrophages; Nucleosides; Serogroup; Virus Replication","Bryan, A.K., Hecht, V.C., Shen, W., Payer, K., Grover, W.H., Manalis, S.R., Measuring single cell mass, volume, and density with dual suspended microchannel resonators (2014) Lab Chip, 14, pp. 569-576; Cho, A., Saunders, O.L., Butler, T., Zhang, L., Xu, J., Vela, J.E., Feng, J.Y., Kim, C.U., Synthesis and antiviral activity of a series of 1’-substituted 4-aza-7,9-dideazaadenosine C-nucleosides (2012) Bioorg. Med. Chem. Lett., 22, pp. 2705-2707; De Clercq, E., Antivirals and antiviral strategies (2004) Nat. Rev. Micro., 2, pp. 704-720; de Groot-Mijnes, J.D., van Dun, J.M., van der Most, R.G., de Groot, R.J., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2005) J. Virol., 79, pp. 1036-1044; de Wilde, A.H., Snijder, E.J., Kikkert, M., van Hemert, M.J., Host factors in coronavirus replication (2017) Current Topics in Microbiology and Immunology, pp. 1-42. , Springer Berlin, Heidelberg; Fischer, Y., Ritz, S., Weber, K., Sauter-Louis, C., Hartmann, K., Randomized, placebo controlled study of the effect of propentofylline on survival time and quality of life of cats with feline infectious peritonitis (2011) J. Vet. Int. Med., 25, pp. 1270-1276; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog., 12, p. e1005531; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Murphy, B., Vapniarsky, N., Hillman, C., Castillo, D., McDonnel, S., Moore, P., Luciw, P.A., Sparger, E.E., FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection (2012) Retrovirology, 9, p. 12; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., An update on feline infectious peritonitis: diagnostics and therapeutics (2014) Vet. J., 201, pp. 133-141; Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2017) J. Feline Med. Surg., 20, pp. 378-392; Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet. Micro., 175, pp. 157-166; Pedersen, N.C., Liu, H., Gandolfi, B., Lyons, L.A., The influence of age and genetics on natural resistance to experimentally induced feline infectious peritonitis (2014) Vet. Immunol. Immunopathol., 28, pp. 152-154; Ritz, S., Egberink, H., Hartmann, K., Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis (2007) J. Vet. Int. Med., 21, pp. 1193-1197; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci. Transl. Med., 9; Tekes, G., Thiel, H.J., Feline coronaviruses: pathogenesis of feline infectious peritonitis (2016) Adv. Virus Res., 96, pp. 193-218; Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 381-385","Pedersen, N.C.; Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Ave., United States; email: ncpedersen@ucdavis.edu",,"Elsevier B.V.",03781135,,VMICD,"29778200","English","Vet. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85052331308 "Kim S.-H., Cho B.-H., Lee K.-Y., Jang Y.-S.","36703047600;57194586596;35074308500;7201869082;","N-terminal domain of the spike protein of porcine epidemic diarrhea virus as a new candidate molecule for a mucosal vaccine",2018,"Immune Network","18","3", e21,"","",9,2,"10.4110/in.2018.18.e21","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049691465&doi=10.4110%2fin.2018.18.e21&partnerID=40&md5=6f1bcfa0bd4493b38e9d6cd1fe24fa9f","Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea; Department of Oral Microbiology, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, South Korea","Kim, S.-H., Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea; Cho, B.-H., Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea; Lee, K.-Y., Department of Oral Microbiology, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, South Korea; Jang, Y.-S., Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea, Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea","Porcine epidemic diarrhea virus (PEDV) is a contagious coronavirus infecting pigs that leads to significant economic losses in the swine industry. Given that PEDV infection occurs in gut epithelial cells mainly via the fecal-oral route, induction of PEDV-specific immune responses in the mucosal compartment is required for protective immunity against viral infection. However, an effective mucosal vaccine against the currently prevalent PEDV strain is not available. In this study, we demonstrated that the N-terminal domain (NTD) of the spike (S) protein of PEDV represents a new vaccine candidate molecule to be applied via the mucosal route. We first established an Escherichia coli expression system producing the partial NTD (NTD231–501) of the PEDV S protein. Orally administered NTD231–501 protein specifically interacted with the apical area of M cells in the follicle-associated epithelium of Peyer’s patch. Additionally, the NTD protein induced antigen-specific immune responses in both the systemic and mucosal immune compartments when administered orally. Collectively, we propose the NTD of the PEDV S protein to be a candidate mucosal vaccine molecule. © 2018. The Korean Association of Immunologists.","Mucosal immunity; N-terminal domain; Porcine epidemic diarrhea virus; Vaccine","virus spike protein; virus vaccine; amino terminal sequence; Article; Escherichia coli; gene expression system; immune response; mucosal immunity; nonhuman; Peyer patch; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; priority journal; Western blotting","Wood, E., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet Rec, 100, pp. 243-244; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch Virol, 58, pp. 243-247; Deng, F., Ye, G., Liu, Q., Navid, M.T., Zhong, X., Li, Y., Wan, C., Fu, Z.F., Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains (2016) Viruses, 8, p. 55; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Alonso, C., Goede, D.P., Morrison, R.B., Davies, P.R., Rovira, A., Marthaler, D.G., Torremorell, M., Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds (2014) Vet Res (Faisalabad), 45, p. 73; de Arriba, M.L., Carvajal, A., Pozo, J., Rubio, P., Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus (2002) Vet Immunol Immunopathol, 85, pp. 85-97; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Du, L., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125; Brandtzaeg, P., Kiyono, H., Pabst, R., Russell, M.W., Terminology: Nomenclature of mucosa-associated lymphoid tissue (2008) Mucosal Immunol, 1, pp. 31-37; Brandtzaeg, P., Pabst, R., Let's go mucosal: Communication on slippery ground (2004) Trends Immunol, 25, pp. 570-577; Kucharzik, T., Lügering, N., Rautenberg, K., Lügering, A., Schmidt, M.A., Stoll, R., Domschke, W., Role of M cells in intestinal barrier function (2000) Ann N Y Acad Sci, 915, pp. 171-183; Strugnell, R.A., Wijburg, O.L., The role of secretory antibodies in infection immunity (2010) Nat Rev Microbiol, 8, pp. 656-667; Frey, A., Neutra, M.R., Targeting of mucosal vaccines to Peyer's patch M cells (1997) Behring Inst Mitt, 98, pp. 376-389. , PUBMED; Hase, K., Kawano, K., Nochi, T., Pontes, G.S., Fukuda, S., Ebisawa, M., Kadokura, K., Kawano, S., Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response (2009) Nature, 462, pp. 226-230; Kim, S.H., Jung, D.I., Yang, I.Y., Kim, J., Lee, K.Y., Nochi, T., Kiyono, H., Jang, Y.S., M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery (2011) Eur J Immunol, 41, pp. 3219-3229; Nochi, T., Yuki, Y., Matsumura, A., Mejima, M., Terahara, K., Kim, D.Y., Fukuyama, S., Kohda, T., A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses (2007) J Exp Med, 204, pp. 2789-2796; Li, X., Chen, H., Evaluation of the porcine gastric mucin binding assay for high-pressure-inactivation studies using murine norovirus and tulane virus (2015) Appl Environ Microbiol, 81, pp. 515-521; Chung, H.C., Lee, J.H., Nguyen, V.G., Huynh, T.M., Lee, G.E., Moon, H.J., Park, S.J., Park, B.K., New emergence pattern with variant porcine epidemic diarrhea viruses, South Korea, 2012–2015 (2016) Virus Res, 226, pp. 14-19; Chung, H.C., Nguyen, V.G., Moon, H.J., Lee, J.H., Park, S.J., Lee, G.E., Kim, H.K., Goede, D., Isolation of porcine epidemic diarrhea virus during outbreaks in South Korea, 2013–2014 (2015) Emerg Infect Dis, 21, pp. 2238-2240; Kim, S.H., Lee, K.Y., Jang, Y.S., Mucosal immune system and M cell-targeting strategies for oral mucosal vaccination (2012) Immune Netw, 12, pp. 165-175; Gracie, J.A., Bradley, J.A., Interleukin-12 induces interferon-gamma-dependent switching of IgG alloantibody subclass (1996) Eur J Immunol, 26, pp. 1217-1221; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Vet Microbiol, 206, pp. 45-51; Harper, S., Speicher, D.W., Expression and purification of GST fusion proteins (2008) Curr Protoc Protein Sci, , Chapter 6:Unit 6.6; Li, W., Luo, R., He, Q., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13; Lycke, N., Recent progress in mucosal vaccine development: Potential and limitations (2012) Nat Rev Immunol, 12, pp. 592-605; Nochi, T., Yuki, Y., Katakai, Y., Shibata, H., Tokuhara, D., Mejima, M., Kurokawa, S., Ono, F., A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity (2009) J Immunol, 183, pp. 6538-6544; Huber, V.C., McKeon, R.M., Brackin, M.N., Miller, L.A., Keating, R., Brown, S.A., Makarova, N., McCullers, J.A., Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza (2006) Clin Vaccine Immunol, 13, pp. 981-990; Huber, V.C., Lynch, J.M., Bucher, D.J., Le, J., Metzger, D.W., Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections (2001) J Immunol, 166, pp. 7381-7388","Jang, Y.-S.; Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, South Korea; email: yongsuk@jbnu.ac.kr",,"Korean Association of Immunologists",15982629,,,,"English","Immune Netw.",Article,"Final",,Scopus,2-s2.0-85049691465 "Razavi S.M., Mardani M., Salamati P.","8357493000;56241072900;14045860600;","Infectious diseases and preventive measures during hajj mass gatherings: A review of the literature",2018,"Archives of Clinical Infectious Diseases","13","3", e62526,"","",7,1,"10.5812/archcid.62526","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051371108&doi=10.5812%2farchcid.62526&partnerID=40&md5=88bacad6381ba72a8427b8ed45d09ecb","Department of Community Medicine, Tehran University of Medical Sciences, Tehran, Iran; Infectious Diseases Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran","Razavi, S.M., Department of Community Medicine, Tehran University of Medical Sciences, Tehran, Iran; Mardani, M., Infectious Diseases Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Salamati, P., Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran","Context: Attention and taking care for communicable diseases are very important in mass gatherings. The aim of this study was to illustrate an overview about infectious diseases distribution among pilgrims in Hajj. Evidence Acquisition: This was a review article, in which the authors used all papers, which were indexed in PubMed and Irandoc from 2000 to 2015. The following key words were searched in the databases: hajj, infectious diseases, emerging and re-emerging diseases, vaccination, and chemoprevention. Three hundred and fifty-four papers were found and their contents were subsequently reviewed after abstract screening. Results: The results showed that the most frequent diseases in Hajj were respiratory infections. The most frequent causes of respiratory infections were upper respiratory viral infections and bacterial respiratory infections, respectively. In the recent years, emerging and reemerging diseases, such as Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome due to coronaviruses (MERS-CoV), and Ebola have imposed many stresses on the pilgrims and health policy managers. Conclusions: In this study, the researchers offered some effective recommendations for vaccinations, chemoprophylaxis, and other preventive measures for pilgrims. © 2018, Archives of Clinical Infectious Diseases.","Communicable Diseases; Preventive Medicine; Travel Medicine; Vaccination","ciprofloxacin; asthma; bronchitis; brucellosis; chemoprophylaxis; chronic obstructive lung disease; common cold; communicable disease; Ebola hemorrhagic fever; flu like syndrome; food poisoning; gastroenteritis; health care policy; hepatitis A; hepatitis E; human; latent tuberculosis; mass screening; meningitis; meningococcosis; Middle East respiratory syndrome; nonhuman; pertussis; pharyngitis; pneumonia; practice guideline; prevalence; prospective study; real time polymerase chain reaction; Review; Rift Valley fever; risk factor; severe acute respiratory syndrome; sinusitis; systematic review; vaccination; viral upper respiratory tract infection","Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20 (11), pp. 1821-1827; Meysamie, A., Ardakani, H.Z., Razavi, S.M., Doroodi, T., Comparison of mortality and morbidity rates among Iranian pilgrims in Hajj 2004 and 2005 (2006) Saudi Med J, 27 (7), pp. 1049-1053; Alborzi, A., Aelami, M.H., Ziyaeyan, M., Jamalidoust, M., Moeini, M., Pourabbas, B., Viral etiology of acute respiratory infections among Iranian Hajj pilgrims, 2006 (2009) J Travel Med, 16 (4), pp. 239-242. , 19674262; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Travel implications of emerging coronaviruses: SARS and MERS-CoV (2014) Travel Med Infect Dis, 12 (5), pp. 422-428. , 25047726; Balkhy, H.H., Memish, Z.A., Bafaqeer, S., Almuneef, M.A., Influenza a common viral infection among Hajj pilgrims: Time for routine surveillance and vaccination (2004) J Travel Med, 11 (2), pp. 82-86; Ashshi, A., Azhar, E., Johargy, A., Asghar, A., Momenah, A., Turkestani, A., Demographic distribution and transmission potential of influenza A and 2009 pandemic influenza A H1N1 in pilgrims (2014) J Infect Dev Ctries, 8 (9), pp. 1169-1175; Memish, Z.A., Charrel, R.N., Zaki, A.M., Fagbo, S.F., Alkhurma haemorrhagic fever–a viral haemorrhagic disease unique to the Arabian Peninsula (2010) Int J Antimicrob Agents, 36, pp. S53-S57; Fagbo, S.F., The evolving transmission pattern of Rift Valley fever in the Arabian Peninsula (2002) Ann N Y Acad Sci, 969, pp. 201-204. , 12381591; Al-Tawfiq, J.A., Memish, Z.A., The Hajj: Updated health hazards and current recommendations for 2012 (2012) Euro Surveill, 17 (41), p. 20295; Rafiq, S.M., Rashid, H., Haworth, E., Booy, R., Hazards of hepatitis at the Hajj (2009) Travel Med Infect Dis, 7 (4), pp. 239-246. , 19717108; Karsany, M.S., Elshayeb, A.A., Saeed, E.S., Elaagib, R., Ibrahim, S.A., Elsamani, E., Patterns of meningococcal infection in Sudan with emergence of Neisseria meningitidis serogroup W135 (2013) East Mediterr Health J, 19 (10), pp. 843-846. , 24313147; Razavi, S.M., Mohazzab Torabi, S., Salamati, P., Treatment and prevention of acute respiratory infections among Iranian hajj pilgrims: A 5-year follow up study and review of the literature (2014) Med J Islam Repub Iran, 28 (31); Wilder-Smith, A., Earnest, A., Ravindran, S., Paton, N.I., High incidence of pertussis among Hajj pilgrims (2003) Clin Infect Dis, 37 (9), pp. 1270-1272. , 14557975; Al-Mazrou, Y.Y., Food poisoning in Saudi Arabia. Potential for prevention? (2004) Saudi Med J, 25 (1), pp. 11-14; Gautret, P., Benkouiten, S., Sridhar, S., Al-Tawfiq, J.A., Memish, Z.A., Diarrhea at the Hajj and Umrah (2015) Travel Med Infect Dis, 13 (2), pp. 159-166. , 25765485; Memish, Z., Brucellosis control in Saudi Arabia: Prospects and challenges (2001) J Chemother., 13, pp. 11-17; Wilder-Smith, A., Foo, W., Earnest, A., Paton, N.I., High risk of Mycobacterium tuberculosis infection during the Hajj pilgrimage (2005) Trop Med Int Health, 10 (4), pp. 336-339. , 15807797; Razavy, S.M., Dabiran, S., Ziaee Ardekani, H., The incidence of influenza like illness and determination of the efficacy of flu vaccine in Iranian pilgrims during Hajj pilgrimage (2004) Acta Medica Iranica, 42 (6), pp. 397-401; Razavi, S.M., Sabouri-Kashani, A., Ziaee-Ardakani, H., Tabatabaei, A., Karbakhsh, M., Sadeghipour, H., Trend of diseases among Iranian pilgrims during five consecutive years based on a Syndromic Surveillance System in Hajj (2013) Med J Islam Repub Iran, 27 (4), pp. 179-185; Ridda, I., King, C., Rashid, H., Pneumococcal infections at Hajj: Current knowledge gaps (2014) Infect Disord Drug Targets, 14 (3), pp. 177-184; Gleason, J.A., McNabb, S.J., Abduljadayel, N., Abouzeid, M.S., Memish, Z.A., Tuberculosis trends in the Kingdom of Saudi Arabia, 2005 to 2009 (2012) Ann Epidemiol, 22 (4), pp. 264-269. , 22364964; Yezli, S., Memish, Z.A., Tuberculosis in Saudi Arabia: Prevalence and antimicrobial resistance (2012) J Chemother, 24 (1), pp. 1-5. , 22546717; Al-Orainey, I.O., Tuberculosis infection during Hajj pilgrimage. The risk to pilgrims and their communities (2013) Saudi Med J, 34 (7), pp. 676-680; Ceyhan, M., Celik, M., Demir, E.T., Gurbuz, V., Aycan, A.E., Unal, S., Acquisition of meningococcal serogroup W-135 carriage in Turkish Hajj pilgrims who had received the quadrivalent meningococcal polysaccharide vaccine (2013) Clin Vaccine Immunol, 20 (1), pp. 66-68; Wu, H.M., Harcourt, B.H., Hatcher, C.P., Wei, S.C., Novak, R.T., Wang, X., Emergence of ciprofloxacin-resistant Neisseria meningitidis in North America (2009) N Engl J Med, 360 (9), pp. 886-892; Wilder-Smith, A., W135 meningococcal carriage in association with the Hajj pilgrimage 2001: The Singapore experience (2003) Int J Antimicrob Agents, 21 (2), pp. 112-115. , 12615373; Radwan, A.I., Asmar, J.A., Frerichs, W.M., Bekairi, S.I., Al-Mukayel, A.A., Incidence of brucellosis in domestic livestock in Saudi Arabia (1983) Trop Anim Health Prod, 15 (3), pp. 139-143. , 6623644; Kelly, D., Pollard, A.J., W135 in Africa: Origins, problems and perspectives (2003) Travel Med Infect Dis, 1 (1), pp. 19-28. , 17291877; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20 (6), pp. 807-812. , 25688471; Lu, L., Liu, Q., Du, L., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV): Challenges in identifying its source and controlling its spread (2013) Microbes Infect, 15 (8-9), pp. 625-629. , 23791956; Husain, E.H., Dashti, A.A., Electricwala, Q.Y., Abdulsamad, A.M., Al-Sayegh, S., Absence of Neisseria meningitidis from throat swabs of Kuwaiti pilgrims after returning from the Hajj (2010) Med Princ Pract, 19 (4), pp. 321-323. , 20516711; Memish, Z.A., Yezli, S., Almasri, M., Assiri, A., Turkestani, A., Findlow, H., Meningococcal serogroup A, C, W, and Y serum bactericidal antibody profiles in Hajj pilgrims (2014) Int J Infect Dis, 28, pp. 171-175. , 25307887; Memish, Z., Al Hakeem, R., Al Neel, O., Danis, K., Jasir, A., Eibach, D., Laboratory-confirmed invasive meningococcal disease: Effect of the Hajj vaccination policy, Saudi Arabia, 1995 to 2011 (2013) Euro Surveill, 18 (37). , 24079399; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210 (7), pp. 1067-1072. , 24620019; Read, R.C., Baxter, D., Chadwick, D.R., Faust, S.N., Finn, A., Gordon, S.B., Effect of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: An observer-blind, phase 3 randomised clinical trial (2014) Lancet, 384 (9960), pp. 2123-2131. , 25145775; Dabiran, S., Razavi, S.M., Sabouri Kashani, A., Karbakhsh, M., Naser-Hodjati, H., Peyafarin, F., Effects of flu vaccine, solely or accompanied by pneumovax-23 vaccine on clinical consequences of the respiratory diseases among Iranian pilgrims in Hajj (2014) Health, 6 (1), pp. 123-127; Bowron, C.S., Maalim, S.M., (2016) Saudi Arabia: Hajj Pilgrimage. Traveler’s Health. Centers for Disease Control and Prevention (CDCP), , http://www.nc.cdc.gov/travel/yellowbook/2016/select-destinations/saudi-arabia-hajj-pilgrimage; Alborzi, A., Oskoee, S., Pourabbas, B., Alborzi, S., Astaneh, B., Gooya, M.M., Meningococcal carrier rate before and after hajj pilgrimage: Effect of single dose ciprofloxacin on carriage (2008) East Mediterr Health J, 14 (2), pp. 277-282; Wang, M., Barasheed, O., Rashid, H., Booy, R., El Bashir, H., Haworth, E., A cluster-randomised controlled trial to test the efficacy of face-masks in preventing respiratory viral infection among Hajj pilgrims (2015) J Epidemiol Glob Health, 5 (2), pp. 181-189. , 25922328; Gautret, P., Benkouiten, S., Gaillard, C., Parola, P., Brouqui, P., Camel milk-associated infection risk perception and knowledge in French Hajj pilgrims (2013) Vector Borne Zoonotic Dis, 13 (6), pp. 425-427. , 23725087; Razavi, S.M., Masoud, A., Ziaee Ardakani, H., Dabiran, S., Common infection and allergy induced biomarkers status in respiratory diseases among Iranian Hajj pilgrims (2014) Health, 6 (1), pp. 137-140; Razavi, M., Salamati, P., Sadeghi-Hasanabadi, M., The comparison of influenza vaccine efficacy on respiratory disease among Iranian pilgrims in the 2003 and 2004 seasons (2005) Acta Medica Iranica, 43 (4), pp. 279-281; Razavi, S.M., Ziaee, H., Mokhtari-Azad, T., Hamkar, R., Doroodi, T., Mirsale-Hian, A., Surveying respiratory infections among Iranian Hajj pilgrims (2007) Iran J Clin Infect Dis, 2 (2), pp. 67-70; Razavi, S.M., Salamati, P., Prevention of influenza at Hajj: Applications for mass gatherings (2013) J R Soc Med, 106 (10), p. 386; Salamati, P., Razavi, S.M., Establishment of a mass gathering department within health service systems (2015) Trav Med Infect Dis, 13 (1), pp. 110-111","Salamati, P.; Sina Trauma and Surgery Research Center, Sina Hospital, Hassan Abad Sq., Imam Khomeini Ave., Iran; email: psalamati@tums.ac.ir",,"Kowsar Medical Publishing Company",23452641,,,,"English","Arch. Clin. Infect. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85051371108 "Liu B.-J., Zuo Y.-Z., Gu W.-Y., Luo S.-X., Shi Q.-K., Hou L.-S., Zhong F., Fan J.-H.","57195528278;19639571000;56883667400;57195525699;57200369889;57200366849;56004321700;36779854000;","Isolation and phylogenetic analysis of porcine deltacoronavirus from pigs with diarrhoea in Hebei province, China",2018,"Transboundary and Emerging Diseases","65","3",,"874","882",,8,"10.1111/tbed.12821","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040985743&doi=10.1111%2ftbed.12821&partnerID=40&md5=5902a8c2ae0c46c2790f9bfe6e5450b1","College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China; College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China; Animal Diseases Control Center of Hebei, Shijiazhuang, China","Liu, B.-J., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China; Zuo, Y.-Z., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China; Gu, W.-Y., Animal Diseases Control Center of Hebei, Shijiazhuang, China; Luo, S.-X., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China; Shi, Q.-K., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China; Hou, L.-S., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China; Zhong, F., College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China; Fan, J.-H., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China","Porcine deltacoronavirus (PDCoV) is a recently identified coronavirus in the genus Deltacoronavirus that can cause enteric disease with clinical signs including diarrhoea, vomiting, dehydration and mortality in neonatal piglets. Although evidence of the prevalence of PDCoV in China is accumulating, little published information about Chinese PDCoV isolates is available. In this study, we investigated the presence of PDCoV in 49 faecal/intestinal samples from piglets with diarrhoea on different farms in Hebei province. Five samples (10.2%) were positive for PDCoV, but no coinfection of PDCoV with other enteropathogens was observed. A PDCoV strain named HB-BD was successfully isolated from the intestinal contents of a diarrhoeic piglet and serially propagated in swine testicular (ST) cells for >40 passages. The complete genome of the HB-BD strain was sequenced and analysed. Genomic analysis showed that the HB-BD strain had a closer relationship with Chinese strains than those from other countries and was grouped within the Chinese PDCoV cluster. The results of this study will be valuable for further research of PDCoV genetic evolution and development of effective diagnostic reagents, assays and potential vaccines against newly emerged PDCoV strains. © 2018 Blackwell Verlag GmbH","Hebei province; isolation; phylogenetic analysis; porcine deltacoronavirus","virus RNA; animal cell; animal experiment; Article; China; Coronavirinae; cytopathogenic effect; diarrhea; feces analysis; genome analysis; immunofluorescence test; nonhuman; nucleotide sequence; nucleotide sequence; phylogenetic tree; phylogeny; Porcine deltacoronavirus; reverse transcription polymerase chain reaction; RNA extraction; sequence alignment; sequence analysis; swine disease; testicular cell line; virus detection; virus genome; virus isolation; virus titration; animal; Coronavirinae; Coronavirus infection; diarrhea; feces; genetics; genomics; intestine; isolation and purification; molecular evolution; phylogeny; pig; swine disease; veterinary; virology; virus gene; Animals; China; Coronavirus; Coronavirus Infections; Diarrhea; Evolution, Molecular; Feces; Genes, Viral; Genomics; Intestines; Phylogeny; Swine; Swine Diseases","Brian, D., Baric, R., Coronavirus genome structure and replication (2005) Current Topics in Microbiology Immunology, 287, pp. 1-30; Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Huang, T.H., Modular organization of SARS coronavirus nucleocapsid protein (2006) Journal of Biomedical Science, 13, pp. 59-72. , https://doi.org/10.1007/s11373-005-9035-9; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59. , https://doi.org/10.1016/j.virol.2015.03.024; Chen, F., Zhu, Y., Wu, M., Ku, X., Yao, L., He, Q., Full-length genome characterization of Chinese porcine deltacoronavirus strain CH/SXD1/2015 (2015) Genome Announcements, 3 (5), pp. e01215-e01284; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Veterinary Microbiology, 196, pp. 98-106. , https://doi.org/10.1016/j.vetmic.2016.10.022; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in Mainland China (2015) Emerging Infectious Diseases, 21, pp. 2254-2255. , https://doi.org/10.3201/eid2112.150283; Fan, J.H., Zuo, Y.Z., Li, J.H., Pei, L.H., Heterogeneity in membrane protein genes of porcine epidemic diarrhea viruses isolated in China (2012) Virus Genes, 45, pp. 113-117. , https://doi.org/10.1007/s11262-012-0755-4; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) Journal of Virology, 84, pp. 3134-3146. , https://doi.org/10.1128/JVI.01394-09; Homwong, N., Jarvis, M.C., Lam, H.C., Diaz, A., Rovira, A., Nelson, M., Marthaler, D., Characterization and evolution of porcine deltacoronavirus in the United States (2016) Preventive Veterinary Medicine, 123, pp. 168-174. , https://doi.org/10.1016/j.prevetmed.2015.11.001; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) Journal of Clinical Microbiology, 53, pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15; Hu, X., Jr., Li, N., Jr., Tian, Z., Jr., Yin, X., Jr., Qu, L., Qu, J., Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China (2015) BMC Veterinary Research, 11, p. 72. , https://doi.org/10.1186/s12917-015-0387-8; Jeong, Y.J., Park, S.I., Hosmillo, M., Shin, D.J., Chun, Y.H., Kim, H.J., Cho, K.O., Detection and molecular characterization of porcine group C rotaviruses in South Korea (2009) Veterinary Microbiology, 138, pp. 217-224. , https://doi.org/10.1016/j.vetmic.2009.03.024; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Research, 226, pp. 50-59. , https://doi.org/10.1016/j.virusres.2016.04.009; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Park, B.K., Detection and phylogenetic analysis of porcine deltacoronavirus in Korean Swine Farms, 2015 (2016) Transboundary and Emerging Diseases, 63, pp. 248-252. , https://doi.org/10.1111/tbed.12490; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announcements, 2 (6), pp. e01114-e01191; Li, G., Chen, Q., Harmon, K.M., Yoon, K.J., Schwartz, K.J., Hoogland, M.J., Zhang, J., Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announcements, 2 (2), pp. e00214-e00278; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6; Ma, Y., Zhang, Y., Liang, X., Oglesbee, M., Krakowka, S., Niehaus, A., Li, J., Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Veterinary Microbiology, 186, pp. 90-96. , https://doi.org/10.1016/j.vetmic.2016.02.004; Madapong, A., Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Srijangwad, A., Tripipat, T., Nilubol, D., Complete genome sequence of porcine deltacoronavirus isolated in Thailand in 2015 (2016) Genome Announcements, 4, pp. e00408-e00416; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerging Infectious Diseases, 20, pp. 1347-1350; McCluskey, B.J., Haley, C., Rovira, A., Main, R., Zhang, Y., Barder, S., Retrospective testing and case series study of porcine delta coronavirus in U.S. Swine herds (2016) Preventive Veterinary Medicine, 123, pp. 185-191. , https://doi.org/10.1016/j.prevetmed.2015.10.018; Molenkamp, R., Spaan, W.J.M., Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal (1997) Virology, 239, pp. 78-86. , https://doi.org/10.1006/viro.1997.8867; Nan Dong, L.F., Zeng, S., Qianqian Sun, H.C., Xiao, S., Porcine deltacoronavirus in Mainland China (2015) Emerging Infectious Diseases, 21, pp. 2254-2255. , https://doi.org/10.3201/eid2112.150283; Park, S.J., Song, D.S., Ha, G.W., Park, B.K., Cloning and further sequence analysis of the spike gene of attenuated porcine epidemic diarrhea virus DR13 (2007) Virus Genes, 35, pp. 55-64. , https://doi.org/10.1007/s11262-006-0036-1; Sato, T., Takeyama, N., Katsumata, A., Tuchiya, K., Kodama, T., Kusanagi, K., Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo (2011) Virus Genes, 43, pp. 72-78. , https://doi.org/10.1007/s11262-011-0617-5; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated With diarrhoea in swine in China: Identification, prevalence and full-length genome sequence analysis (2015) Transboundary and Emerging Diseases, 62, pp. 575-580. , https://doi.org/10.1111/tbed.12399; Su, M., Li, C., Guo, D., Wei, S., Wang, X., Geng, Y., Sun, D., A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus (2016) The Journal of Veterinary Medical Science, 78, pp. 601-606. , https://doi.org/10.1292/jvms.15-0533; Sun, R., Leng, Z., Zhai, S.-L., Chen, D., Song, C., Genetic variability and phylogeny of current Chinese porcine epidemic diarrhea virus strains based on Spike, ORF3, and membrane genes (2014) The Scientific World Journal, 2014, pp. 1-8; Thachil, A., Gerber, P.F., Xiao, C.T., Huang, Y.W., Opriessnig, T., Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0124363; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging Infectious Diseases, 20, pp. 1227-1230; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from Mainland China (2015) Genome Announcements, 3, pp. e00915-e00945; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of Virology, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Zhai, S.L., Wei, W.K., Li, X.P., Wen, X.H., Zhou, X., Zhang, H., Wang, D., Occurrence and sequence analysis of porcine deltacoronaviruses in southern China (2016) Virology Journal, 13, p. 136. , https://doi.org/10.1186/s12985-016-0591-6; Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Research, 226, pp. 71-84. , https://doi.org/10.1016/j.virusres.2016.05.028; Zhang, J., Tsai, Y.L., Lee, P.Y., Chen, Q., Zhang, Y., Chiang, C.J., Wang, H.T., Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Journal of Virological Methods, 234, pp. 34-42. , https://doi.org/10.1016/j.jviromet.2016.03.016","Fan, J.-H.; College of Veterinary Medicine, Agricultural University of HebeiChina; email: jinghui76@163.com",,"Blackwell Publishing Ltd",18651674,,,"29363288","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85040985743 "Singh R.S., Walia A.K.","56376912100;55983371600;","Lectins from red algae and their biomedical potential",2018,"Journal of Applied Phycology","30","3",,"1833","1858",,18,"10.1007/s10811-017-1338-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034597623&doi=10.1007%2fs10811-017-1338-5&partnerID=40&md5=92d1e3d826f7276b1a84a62c11ed2735","Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002, India","Singh, R.S., Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002, India; Walia, A.K., Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002, India","Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities. © 2017, Springer Science+Business Media B.V., part of Springer Nature.","Anti-viral; Carbohydrate specificity; Haemagglutination; Lectins; Rhodophyceae",,"Abreu, T.M., Ribeiro, N.A., Chaves, H.V., Jorge, R.J., Bezerra, M.M., Monteiro, H.S., Vasconcelos, I.M., Benevides, N.M., Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis (2016) Planta Med, 82, pp. 596-605. , PID: 27093245; Abreu, T.M., Silva, L.M.C.M., Vanderlei, E.S.O., de Melo, C.M.L., Pereira, V.R.A., Benevides, N.M.B., Cytokine production induced by marine algae lectins in BALB/c mice splenocytes (2012) Protein Pept Lett, 19, pp. 975-981; Ainouz, I.L., Sampaio, A.H., Benevides, N.M.B., Feritas, A.L.P., Costa, F.H.F., Carvalho, M.R., Pinheiro-Joventino, F., Agglutination of enzyme treated erythrocytes by Brazalian marine algal extract (1992) Bot Mar, 35, pp. 475-479; Ainouz, I.L., Sampaio, A.H., Freitas, A.L.P., Benevides, N.M.B.B., Mapurunga, S., Comparative study on hemagglutinins from the red algae Bryothamnion seaforthii and Bryothamnion triquetrum (1995) R Bras Fisiol Veg, 7, pp. 15-19; Ainouz, L., Sampaio, H., Screening of Brazilian marine algae for hemagglutinins (1991) Bot Marina, 34, pp. 211-214; Akkouh, O., Ng, T.B., Singh, S.S., Yin, C., Dan, X., Chan, Y.S., Pan, W., Cheung, R.C., Lectins with anti-HIV activity: a review (2015) Molecules, 20, pp. 648-668. , PID: 25569520; Alexandre, K.B., Gray, E.S., Pantophlet, R., Moore, P.L., McMahon, J.B., Chakauya, E., O'Keefe, B.R., Morris, L., Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site (2011) J Virol, 85, pp. 9039-9050. , PID: 21697467; Alhogbani, T., Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus (2016) Ann Saudi Med, 36, pp. 78-80. , PID: 26922692; Ambrosi, M., Cameron, N.R., Davis, B.G., Lectins: tools for the molecular understanding of the glycocode (2005) Org Biomol Chem, 3, pp. 1593-1608. , PID: 15858635; Anam, C., Praseptiangga, D., Nugraheni, M.A., Nurhayati, T., Fajarningsih, N.D., Zilda, D.S., Chasanah, E., Yunus, A., Preliminary characterization of crude lectin fraction of the red alga, Acrocystis nana from wediombo beach of the southern coast of Java island, Gunung kidul, Yogyakarta, Indonesia (2017) IOP Conf Ser: Mater Sci Eng, 193, p. 012016; Anam, C., Chasanah, E., Perdhana, B.P., Fajarningsih, N.D., Yusro, N.F., Sari, A.M., Nursiwi, A., Yunus, A., Cytotoxicity of crude lectins from red macroalgae from the southern coast of Java island, Gunung Kidul Regency, Yogyakarta, Indonesia (2017) IOP Conf Ser: Mater Sci Eng, 193, p. 012017; Barton, C., Kouokam, J.C., Lasnik, A.B., Foreman, O., Cambon, A., Brock, G., Montefiori, D.C., Palmer, K.E., Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two lab rodent models (2014) Antimicrob Agents Chemother, 58, pp. 120-127. , PID: 24145548; Barton, C., Kouokam, J.C., Hurst, H., Palmer, K.E., Pharmacokinetics of the antiviral lectin griffithsin administered by different routes indicates multiple potential uses (2016) Viruses, 8, p. 12; Benevides, N.M.B., Holanda, M.L., Melo, F.R., Fieitas, A.L.P., Sampaio, A.H., Purification and partial characterization of the lectin from marine red alga Enatiocladia duperreyi (C. Agardh) Falkenberg (1998) Bot Mar, 41, pp. 521-525; Benevides, N.M.B., Leite, A.M., Freitas, A.L.P., Atividade hemaglutinante na alga vermelha Solieria filiformis (1996) R Bras Fisiol Veg, 8, pp. 117-122; Bies, C., Lehr, C., Woodley, J.F., Lectin-mediated drug targeting: history and applications (2004) Adv Drug Deliv Rev, 56, pp. 402-435; Bird, K.T., Chiles, T.C., Longley, R.E., Kendrick, A.F., Kinkema, M.D., Agglutinins from marine macroalgae of the south eastern United States (1993) J Appl Phycol, 5, pp. 213-218; Bitencourt, F., da, S., Figueiredo, J.G., Mota, M.R.L., Bezerra, C.C.R., Silvestre, P.P., Vale, M.R., de Alencar, N.M.N., Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis (2008) Naunyn Schmiedeberg's Arch Pharmacol, 377, pp. 139-148; Blunden, G., Rogers, D.J., Farnham, W.F., Survey of British seaweeds for hemagglutinins (1975) Lloydia, 38, pp. 162-168. , PID: 1134213; Boonsri, N., Rudtanatip, T., Withyachumnarnkul, B., Wongprasert, K., Protein extract from red seaweed Gracilaria fisheri prevents acute hepatopancreatic necrosis disease (AHPND) infection in shrimp (2017) J Appl Phycol, 29, pp. 1597-1608; Boyd, W.C., Almodovar, L.R., Boyd, L.G., Agglutinins in marine algae for human erythrocytes (1966) Transfusion, 6, pp. 82-83; Cabezas, J.A., The type of naturally occurring sialic acids (1973) Rev Esp Fisiol, 29, pp. 307-322. , PID: 4791172; Cabezas, M., Cabezas, J.A., Comparative study on the composition of platelets from the equine, bovine, ovine and porcine species (1973) Rev Esp Fisiol, 29, pp. 323-328. , PID: 4799656; Calvete, J.J., Costa, F.H.F., Saker-Sampio, S., Murciano, M.P.M., Nagano, C.S., Cavada, B.S., Grangeiro, T.B., Sampio, A.H., The amino acid sequence of the agglutinin isolated from the red marine algae Bryothamnion triquetrum defines a novel lectin structure (2000) Cell Mol Life Sci, 57, pp. 343-350. , PID: 10766029; Chahud, F., Ramalho, L.N.Z., Ramalho, F.S., Haddad, A., Roque-Barreira, M.C., The lectin KM+ induces corneal epithelial wound healing in rabbits (2009) Int J Exp Pathol, 90, pp. 166-173. , PID: 19335555; Chaves, R.P., da Silva, S.R., Nascimento Neto, L.G., Carneiro, R.F., Coelho da Silva, A.L., Sampaio, A.H., lopes de Sousa, B., Nagano, C.S., Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells (2017) Int J Biol Macromol, , https://doi.org/10.1016/j.ijbiomac.2017.09.116; Chen, X., Peng, L.H., Li, N., Li, Q.M., Li, P., Fung, K.P., Leung, P.C., Gao, J.Q., The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo (2012) J Ethnopharmacol, 139, pp. 721-727. , PID: 22143155; Chernikov, O.V., Chikalovets, I.V., Molchanova, V.I., Pavlova, M.A., Lukyanova, P.A., Algae of Peter the great bay of the sea of Japan as a source of lectins (2007) Russ J Mar Biol, 33, pp. 329-332; Cheung, R.C.F., Wong, J.H., Pan, W., Chan, Y.S., Yin, C., Dan, X., Ng, T.B., Marine lectins and their medicinal applications (2015) Appl Microbiol Biotechnol, 99, pp. 3755-3773. , PID: 25794876; Chiles, T.C., Bird, K.T., A comparative study of animal erythrocyte agglutinins from marine algae (1989) Comp Biochem Physiol, 94, pp. 107-111; Chiles, T.C., Bird, K.T., Gracilaria tikvahiae agglutinin. Partial purification and preliminary characterization of its carbohydrate specificity (1990) Carbohydr Res, 207, pp. 319-326. , PID: 2076522; Chung, C.-C., Lee, S.-J., Chen, Y.-S., Tsai, H.-C., Wann, S.-R., Kao, C.-H., Liu, Y.-C., Acute flaccid paralysis as an unusual presenting symptom of Japanese encephalitis: a case report and review of the literature (2007) Infection, 35, pp. 30-32. , PID: 17297587; Conrado, F.M., Furtado, L.E.T.A., Teixeira, A.H., Coutinho, N.L.P., Sampaio, A.H., Cavada, B.S., Bezerra, M.M., Pinto, V.P.T., Erythrina velutina and Bryothamnion seaforthii lectins binding to proteins of primary central nervous system tumors (2012) J Cancer Res Exp Oncol, 41, pp. 21-26; Cunliffe, D.A., Cox, K.O., Effects of bromelain and pronase on erythrocyte membranes (1979) Mol Immunol, 16, pp. 427-433. , PID: 573745; De Souza, B.W.S., Teixeria, D.I.A., Andrade, F.K., Melo, M.R.S., Munzo, A.M., Freitas, A.L.P., A survey of antartic algae for agglutinins (2007) Oceol Bras, 11, pp. 122-130; Diegelmann, R.F., Evans, M.C., Wound healing: an overview of acute, fibrotic and delayed healing (2004) Front Biosci, 9, pp. 283-289. , PID: 14766366; Dienstag, J.L., McHutchison, J.G., American gastroenterological association technical review on the management of hepatitis C (2006) Gastroenterol, 130, pp. 231-264; Dinh, H.L., Hori, K., Quang, N.H., Screening and preliminary characterization of hemagglutinins in Vietnamese marine algae (2009) J Appl Phycol, 21, pp. 89-97; Dixion, H.B.F., Defining a lectin (1981) Nature, 292, p. 192; Drickamer, K., Two distinct classes of carbohydrate-recognition domains in animal lectins (1988) J Biol Chem, 263, pp. 9557-9560. , PID: 3290208; Dubuisson, J., Cosset, F.L., Virology and cell biology of the hepatitis C virus life cycle—an update (2014) J Hepatol, 61, pp. S3-S13. , PID: 25443344; Dutta, K., Rangarajan, P.N., Vrati, S., Basu, A., Japanese encephalitis: pathogenesis, prophylactics and therapeutics (2010) Curr Sci, 98, pp. 326-334; Emau, P., Tina, B., O’feeke, B.K., Mori, T., McMohan, J.B., Palmer, K.C., Jiang, Y., Tsai, C.C., Griffithsin, a potent HIV entry inhibitor, is an excellent candidate for anti-HIV microbicide (2007) J Med Primatol, 36, pp. 244-253. , PID: 17669213; Eylar, E.H., Madoff, M.A., Brody, O.V., Oncley, J.L., The contribution of sialic acid to the surface charge of the erythrocyte (1962) J Biol Chem, 237, pp. 1992-2000. , PID: 13891108; Fabregas, J., Lopez, A., Llovo, J., Munoz, A., A comparative study of seafish erythrocytes and agglutinins from seaweeds (1992) Comp Biochem Physiol A, 103, pp. 307-313; Ferir, G., Palmer, K.E., Schols, D., Synergistic activity profile of griffithsin in combination with tenofovir, maravirus & enfuvirtide against HIV-1 clade C (2011) Virology, 47, pp. 253-258; Figueiredo, J.G., Bitencourt, F.S., Cunha, T.H., Luz, P.B., Nascimento, K.S., Mota, M.R.L., Sampaio, A.H., Alencar, N.M.N., Agglutinin isolated from the red marine alga Hypnea cervicornis J Agardh reduces inflammatory hypernociception: involvement of nitric oxide (2010) Pharmacol Biochem Behav, 96, pp. 371-377. , PID: 20600247; Fukuda, Y., Sugahara, T., Ueno, M., Fukuta, Y., Ochi, Y., Akiyama, K., Miyazaki, T., Kato, K., The anti-tumor effect of Euchema serra agglutinin on colon cancer cells in vitro and in vivo (2006) Anticancer Drugs, 17, pp. 943-947. , PID: 16940804; Fuqua, J.L., Hamorsky, K., Khalsa, G., Matoba, N., Palmer, K.E., Bulk production of the antiviral lectin griffithsin (2015) Plant Biotech J, 13, pp. 1160-1168; Furthmayr, H., Structural analysis of a membrane glycoprotein: glycophorin A (1977) Plant Biotech J, 7, pp. 121-134; Goldberg, S.R., Diegelmann, R.F., Wound healing primer (2010) Surg Clin N Am, 90, pp. 1133-1146. , PID: 21074032; Hara, T., Aramaki, Y., Takada, S., Koike, S., Tsuchiya, S., Receptor-mediated transfer of pSV2CAT DNA to mouse liver cells using asialofetuin-labeled liposomes (1995) Gene Ther, 2, pp. 784-788. , PID: 8750019; Hayashi, K., Walde, P., Miyazaki, T., Sakayama, K., Nakamura, A., Kameda, K., Masuda, S., Kato, K., Active targeting to osteosarcoma cells and apoptotic cell death induction by the novel lectin Eucheuma serra agglutinin isolated from a marine red alga (2012) J Drug Del, 2012, p. 842785; Hirayama, M., Shibata, H., Imamura, K., Takemasa Sakaguchi, T., Hori, K., High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120 (2016) Mar Biotechnol, 18, pp. 144-160. , PID: 26593063; Holanda, M.L., Melo, V.M.M., Silva, L.M.C.M., Amorim, R.C.N., Pereira, M.G., Benevides, N.M.B., Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria (2005) Braz J Med Biol Res, 38, pp. 1769-1773. , PID: 16302091; Hoorelbeke, B., Xue, J., LiWang, P.J., Balzarini, J., Role of the carbohydrate-binding sites of griffithsin in the prevention of DC-SIGN-mediated capture and transmission of HIV-1 (2013) PLoS One, 8. , PID: 23741304; Hori, K., Ikegam, S., Miyazawa, K., Mitogenic and antineoplastic isoagglutinins from the red alga Soleria robusta (1988) Phytochemistry, 27, pp. 2063-2067. , Ito k; Hori, K., Matsubara, K., Miyazawa, K., Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica (2000) Biochim Biophys Acta, 1474, pp. 226-236. , PID: 10742603; Hori, K., Miyazawa, K., Fusetani, N., Hashimoto, K., Ito, K., Hypnins, low molecular weight peptidic agglutinins from a marine red alga, Hypnea japonica (1986) Biochim Biophys Acta, 873, pp. 228-236; Hori, K., Miyazawa, K., Ito, K., Preliminary characrerization of agglutinins from seven marine algal species (1986) Bull J Soc Sci Fish, 52, pp. 323-331; Hori, K., Miyazawa, K., Ito, K., A mitogenic agglutinin from the red alga Carpopeltis flabellata (1987) Phytochemistry, 26, pp. 1335-1338; Hori, K., Miyazawa, K., Ito, K., Some common properties of lectins from marine algae (1990) Hydrobiologia, 204-205, pp. 561-566; Hori, K., Ogata, T., Kamiya, H., Mimuro, M., Lectin like compounds and lectin receptors in marine microalgae hemagglutination and reactivity with purified lectins (1996) J Phycol, 32, pp. 783-790; Hori, K., Oiwa, C., Miyazawa, K., Ito, K., Evidence for wide distribution of agglutinins in marine algae (1988) Bot Mar, 31, pp. 133-138; Hori, K., Sato, Y., Ito, K., Fujiwara, Y., Iwamoto, Y., Makino, H., Kawakubo, A., Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin (2007) Glycobiol, 17, pp. 479-491; Hung, L.D., Hirayama, M., Ly, B.M., Hori, K., Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum (2015) J Appl Phycol, 27, pp. 1657-1669; Hung, L.D., Hori, K., Nang, H.Q., Kha, T., Hoa, L.T., Seasonal changes in growth rate, carrageenan yield and lectin content in red alga Kappaphycus alvarezii cultivated in Camrah Bay, Vietnam (2009) J Appl Phycol, 21, pp. 265-272; Hung, L.D., Sato, Y., Hori, K., High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte) (2011) Phytochemistry, 72, pp. 855-861; Ishag, H.Z., Li, C., Wang, F., Mao, X., Griffithsin binds to the glycosylated proteins (E and prM) of Japanese encephalitis virus and inhibit its infection (2016) Virus Res, 215, pp. 50-54. , PID: 26820432; Ishag, H.Z.F., Li, C., Li, H., Ming-Xia, S., Wang, F., Bo, N., Matik, T., Mao, X., Griffithsin inhibits Japanese encephalitis virus infection in vitro and in vivo (2013) Arch Virol, 158, pp. 349-358. , PID: 23053519; Kakita, H., Fukuoka, S., Obika, H., Kamishima, H., Isolation and characterisation of a fourth hemagglutinin from the red alga, Gracilaria verrucosa, from Japan (1999) J Appl Phycol, 11, pp. 49-56; Kakita, H., Fukuoka, S., Obika, H., Li, Z.R., Kamishima, H., Purification and properties of a high molecular weight hemagglutinin from the red alga, Gracilaria verrucosa (1997) Bot Mar, 40, pp. 241-247; Kamiya, H., Ogata, K., Hori, K., Isolation and characterization of a new agglutinin in the red alga Palmaria palmata (L) O Kuntze (1982) Bot Mar, 25, pp. 537-540; Kamiya, H., Shiomi, K., Shimizu, Y., Marine biopolymers with cell specificity-III in the red algae Cystoclonium purpureum: isolation and characterization (1980) J Nat Prod, 43, pp. 136-139. , PID: 7400818; Kawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., Kanji, H., The marine alga Eucheuma serra J Agardh, a high yielding source of two isolectins (1997) J Appl Phycol, 9, pp. 331-338; Kawakubo, A., Makino, H., Ohnishi, J., Hirohara, H., Kanji, H., Occurrence of highly yielded lectins homologous within genus Eucheuma (1999) J Appl Phycol, 11, pp. 149-156; Khan, F., Khan, R.H., Sherwani, A., Mohmood, S., Azfer, M.A., Lectins as markers for blood grouping (2002) Med Sci Monit, 8, pp. RA293-RA300. , PID: 12503049; Kim, J.M., Yun, S.I., Song, B.H., Hahn, Y.S., Lee, C.H., Oh, H.W., Lee, Y.M., A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice (2008) J Virol, 82, pp. 7846-7862. , PID: 18524814; Kouokam, J.C., Huskens, D., Schols, D., Johannemann, A., Riedell, S.K., Walter, W., Walker, J.M., Palmer, K.E., Investigation of Griffithsin’s interactions with human cells confirms its outstanding safety and efficacy profile as a microbicide candidate (2011) PLoS One, 6. , e22635; Kouokam, J.C., Lasnik, A.B., Palmer, K.E., Studies in a murine model confirm the safety of Griffithsin and advocate its further development as a microbicide targeting HIV-1 and other enveloped viruses (2016) Viruses, 8, p. 311; Lambert, R., Edwards, J., Anstee, D.J., A simple method for the standardisation of proteolytic enzymes used in blood group serology (1977) Med Lab Sci, 35, pp. 233-238; Le, H.D., Sato, T., Shibata, H., Hori, K., Biochemical comparison of lectins among three different color strains of the red alga Kappaphycus alvarezii (2009) Fisheries Sci, 75, pp. 723-730; Leite, Y.F.M.M., Silva, L.M.C.M., Amorim, R.C.N.A., Freire, E.A., Jorge, D.M.M., Grangeiro, T.B., Benevides, N.M.B., Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculates (Coleoptera: Bruchidae) (2005) Biochim Biophys Acta, 1724, pp. 137-145. , PID: 15869843; Levendosky, K., Mizenina, O., Martinelli, E., Jean-Pierre, N., Kizima, L., Rodriguez, A., Kleinbeck, K., Fernández-Romero, J.A., Griffithsin and carrageenan combination to target HSV-2 and HPV (2015) Antimicrob Agents Chemother, 59, pp. 7290-7298. , PID: 26369967; Liao, W.R., Lin, J.Y., Shieh, W.Y., Jeng, W.L., Huang, R., Antibiotic activity of lectins from marine algae against marine vibrios (2003) J Ind Microbiol Biotech, 30, pp. 433-439; Liener, I.E., Sharon, N., Goldstein, I.J., (1986) The lectins: properties, functions, and applications in biology and medicine, , Academic Press, London; Lima, M.E.P., Carneiro, M.E., Nascimento, A.E., Grangeiro, T.B., Holanda, M.L., Amorim, R.C.N., Benevides, N.M.B., Purification of a lectin from the marine red alga Gracilaria cornea and its effects on the cattle tick Boophilus microplus (Acari: Ixodidae) (2005) J Agric Food Chem, 53, pp. 6414-6419. , PID: 16076127; Lindenbach, B.D., Thiel, H.-J.U., Rice, C.M., Flaviviridae: the viruses and their replication (2007) Fields virology, pp. 1108-1109. , Knipe DM, Howley PM, (eds), Lippincott-Raven, Philadelphia; Link, M.P., Goorin, A.M., Horowitz, M., Meyer, W.H., Belasco, J., Baker, A., Ayala, A., Shuster, J., Adjuvant chemotherapy of high-grade osteosarcoma of the extremity: updated results of the multi-institutional osteosarcoma study (1991) Clin Orthop Relat Res, 270, pp. 8-14; Lusvarghi, S., Bewley, C.A., Griffithsin: an antiviral lectin with outstanding therapeutic potential (2016) Viruses, 8, p. E296. , PID: 27783038; Marchesi, V.T., Furthmayr, H., Tomita, M., The red cell membrane (1976) Annu Rev Biochem, 45, pp. 667-698. , PID: 786159; Matsubara, K., Sumi, H., Hori, K., Platelet aggregation is inhibited by phycolectins (1996) Experientia, 52, pp. 540-543. , PID: 8698085; Melo, F.R., Norma, M.B., Benevides, N.M.B., Pereira, M.G., Holanda, M.L., Mendes, F.N.P., Oliveira, S.R.M., Silva, L.M.C.M., Purification and partial characterisation of a lectin from the red marine alga Vidalia obtusiloba C Agardh (2004) Rev Bras Bot, 27, pp. 263-269; Melo, V.M.M., Medeiros, D.A., Rios, E.J.B., Castelar, L.L.M., Carvalho A de, F.F.U., Antifungal properties of proteins (agglutinins) from the red alga Hypnea musciformis (Wulfen) Lamouroux (1997) Bot Mar, 40, pp. 281-284; Meuleman, P., Albecka, A., Belouzard, S., Vercauteren, K., Verhoye, L., Wychowski, C., Roels, G.L., Dubuisson, J., Griffithsin has antiviral activity against hepatitis C virus (2011) Antimicrob Agents Chemother, 55, pp. 5159-5162. , PID: 21896910; Micevicz, E.D., Cole, A.L., Jung, C.L., Luong, H., Phillips, M.L., Pratikhya, P., Sharma, S., Ruchala, P., Grifonin-1: a small HIV-1 entry inhibitor derived from the algal lectin, Griffithsin (2010) PLoS One, 5; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) PNAS, 111, pp. 15214-15219. , PID: 25288733; Millet, J.K., Seron, K., Labitt, R.N., Danneels, A., Palmer, K.E., Whittaker, G.R., Dubuisson, J., Belouzard, S., Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin (2016) Antivir Res, 133, pp. 1-8; Mirelman, D., (1986) Microbial lectins and agglutinins: properties and biological activity, , John Wiley & Sons, New York; Mo, H., Goldstein, I.J., Isolation and characterization of a Forssman antigen-binding lectin from velvet bean (Mucuna derrigiana) seeds (1994) Glycoconj J, 11, pp. 424-431. , PID: 7696847; Molchanova, V., Chernikov, O., Chikalovets, I., Lukyanov, P., Purification and partial characterization of the lectin from the marine alga Tichocarpus crinitus (Gmelin) Rupr (Rhodophyta) (2010) Bot Mar, 53, pp. 69-78; Mori, T., O’Keefe, B.R., Sowder, R.C., Bringans, S., Gardella, R., Berg, S., Cochran, P., Boyd, M.R., Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia spp (2005) J Biol Chem, 280, pp. 9345-9353. , PID: 15613479; Moulaei, T., Alexandre, K.B., Shenoy, S.R., Meyerson, J.R., Krumpe, L.R., Constantine, B., Wilson, J., O'Keefe, B.R., Griffithsin tandemers: flexible and potent lectin inhibitors of the human immunodeficiency virus (2015) Retrovirology, 12, p. 6. , PID: 25613831; Moulaei, T., Shenoy, S.R., Giomarelli, B., Thomas, C., McMahon, J.B., Dauter, Z., O’Keefe, B.R., Wlodawer, A., Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity (2010) Structure, 18, pp. 1104-1115. , PID: 20826337; Nagano, C.S., del Sol, F.G., Cavada, B.S., Nascimento, K.S.D., Nunes, E.V., Sampaio, A.H., Calvetea, J.J., Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis (2005) Acta Cryst F, 61, pp. 997-999; Nagano, C.S., Moreno, F.B.M.B., Bloch, C., Prates, M.V., Calvete, J.J., Sampaio, S.S., Farias, W.R.L., Sampaio, A.H., Purification and characterization of a new lectin from red marine alga Hypnea musciformis (2002) Protein Pept Lett, 9, pp. 159-165. , PID: 12141914; Nascimento, K.S., Nagano, C.S., Nunes, E.V., Rodrigues, G.V., Calvete, J.J., Saker, S., Sampaio, W.R.L., Farias, S.A.H., Isolation and characterization of a new agglutinin from red marine alga Hypnea cervicornis J Agardh (2006) Biochem Cell Biol, 84, pp. 49-54. , PID: 16462889; Nascimento, A.S.F., Serena, S., Beloqui, A., Arda, A., Sampaio, A.H., Walcher, J., Ott, D., Varrot, A., Algal lectin binding to core (α1-6) fucosylated N-glycans: structural basis for specificity and production of recombinant protein (2015) Glycobiol, 6, pp. 607-616; Nascimento-Neto, L.G., Carneiro, R.F., da Silva, S.R., da Silva, B.R., Arruda, F.V.S., Carneiro, V.A., do Nascimento, K.S., Nagano, C.S., Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect (2012) Mar Drugs, 10, pp. 1936-1954. , PID: 23118713; Nascimento-Neto, L.G., Pinto, L.S., Bastos, R.M., Evaristo, F.F.V., Vasconcelos, M.A., Carneiro, V.A., Arruda, F.V.S., Teixeira, E.H., Effect of lectin from Bauhinia variegata and its recombinant isoform on surgically induced skin wounds in a murine model (2011) Molecules, 16, pp. 9298-9315; Neumann, G., Kawaoka, Y., The first influenza pandemic of the new millennium (2011) Influenza Other Respir Viruses, 5, pp. 157-166. , PID: 21477134; Neves, S.A., Freitas, A.L.P., Souza, B.W.S., Rocha, M.L.A., Correia, M.V.O., Sampaio, D.A., Viana, G.S.B., Antinociceptive properties in mice of a lectin isolated from the marine alga Amansia multifida Lamouroux (2007) Braz J Med Biol Res, 40, pp. 127-134; Nixon, B., Stenfanidor, M., Mesquitai, M.M., Fakioglu, E., Segarra, T., Rohan, L., Halford, W., Herold, B.C., Griffithsin protects mice from genital herpes by preventing cell-to-cell spread (2013) J Virol, 87, pp. 6257-6269. , PID: 23536670; O’Keefe, B.R., Giomarelli, B., Barnard, D.L., Shenoy, S.R., Chan, P.K.S., McMahon, J.B., Palmer, K.E., McCray, P.B., Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein Griffithsin against emerging viruses of the family Coronaviridae (2010) J Virol, 84, pp. 2511-2521. , PID: 20032190; O’Keefe, B.R., Vojdani, F., Buffa, V., Shattock, R.J., Montefiori, D.C., Bakke, J., Mirsalis, J., Palmer, K.E., Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component (2009) PNAS, 106, pp. 6099-6104; Okamoto, R., Hori, K., Miyazawa, K., Ito, K., Isolation and characterization of a new hemagglutinin from the red alga Gracilaria bursa-pastoris (1990) Experientia, 46, pp. 975-977. , PID: 2209806; Okamura, M., Yokoyama, N., Takabatake, N., Okubo, K., Ikehara, Y., Igarashi, I., Modification of host erythrocyte membranes by trypsin and chymotrypsin treatments and effects on the in vitro growth of bovine and equine Babesia parasites (2007) J Parasitol, 93, pp. 208-211. , PID: 17436968; Okuyama, S., Nakamura-Tsuruta, S., Tateno, H., Hirabayashi, J., Matsubara, K., Hori, K., Strict binding specificity of small-sized lectins from the red marine alga Hypnea japonica for core (α-1, 6) fucosylated N-glycans (2009) Biosci Biotechnol Biochem, 73, pp. 912-920. , PID: 19352030; Oliveira, S.R.M., Nascimento, A.E., Lima, M.E.P., Leite, Y.F.M.M., Benevides, N.M.B., Purification and characterisation of a lectin from the red marine alga Pterocladiella capillacea (SG Gmel) Santel & Hommers (2002) Rev Brasil Bot, 25, pp. 397-403; Perdhana, B.P., (2017) Cytotoxicity and antibacterial effects of crude lectin fraction bioactive compound of red macroalgae from the Southern Coast of Java island, Gunungkidul regency, , Dissertation, Sebelas Maret University, Surakarta, Yogyakarta; Pfeil, R., Kamerling, J.P., Kuster, J.M., Schauer, R., O-acetylated sialic acids in erythrocyte membranes of different species (1980) Hoppe-Seylers Z Physiol Chem, 361, pp. 314-315; Pinto, V.P.T., Debray, H., Dus, D., Teixeira, E.H., de Oliveira, T.M., Carneiro, V.A., Teixeira, A.H., Cavada, B.S., Lectins from the red marine algal species Bryothamnion seaforthii and Bryothamnion triquetrum as tools to differentiate human colon carcinoma cells (2009) Adv Pharmacol Sci, 2009, p. 862162. , PID: 21152207; Praseptiangga, D., Algal lectins and their potential uses (2015) Squalen Bull Mar Fish Postharvest Biotech, 10, pp. 89-98; Praseptiangga, D., Development of seaweed-based biopolymers for edible films and lectins (2017) IOP Conf Ser: Mater Sci Eng, 193, p. 012003; Rabelo, L., Monteiro, N., Serquiz, R., Santos, P., Oliveira, R., Oliveira, A., Rocha, H., Santos, E., A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells (2012) Mar Drugs, 10, pp. 727-743. , PID: 22690140; Reuter, G., Vliegenthart, J.F.G., Wember, M., Schauer, R., Howard, R.J., Identification of 9-O-acetyl-N-acetylneuraminic acid on the surface of BALB/c mouse erythrocytes (1980) Biochem Biophys Res Commun, 94, pp. 567-572. , PID: 7396920; Rogers, D.J., Fish, B., Barwell, C.J., Isolation and properties of lectins from two red marine algae: Plumaria elegans and Ptilota serrata (1990) Lectins: biology, biochemistry, clinical biochemistry, pp. 49-52. , BogHansen TC, Freed DLJ, (eds), St. Louis, Sigma Chemical Company; Rogers, D.J., Hori, K., Marine algal lectins: new developments (1993) Hydrobiologia, 260-261, pp. 589-593; Rogers, D.J., Topliss, J.A., Purification and characterisation of an anti-sialic acid agglutinin from the red alga Solieria chordalis (C. Ag.) J. Ag (1983) Bot Mar, 16, pp. 301-305; Rüdiger, H., Gabius, H.J., Plant lectins: occurrence, biochemistry, functions and applications (2001) Glycoconj J, 18, pp. 589-613. , PID: 12376725; Sampaio, A.H., Rogers, D.J., Barwell, C.J., A galactose-specific lectin from the red alga Ptilota filicina (1998) Phytochemistry, 48, pp. 765-769. , PID: 9664706; Sampaio, A.H., Rogers, D.J., Barwell, C.J., Saker-Sampaio, S., Costa, F.H.F., Ramos, M.V., A new isolation procedure and further characterisation of the lectin from the red marine alga Ptilota serrata (1999) J Appl Phycol, 10, pp. 539-546; Sampaio, A.H., Rogers, D.J., Barwell, C.J., Saker-Sampaio, S., Nascimento, K.S., Nagano, C.S., Farias, W.R.L., New affinity procedure for the isolation and further characterization of the blood group B specific lectin from the red marine alga Ptilota plumosa (2002) J Appl Phycol, 14, pp. 489-495; Sato, Y., Morimoto, K., Hirayama, M., Hori, K., High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner (2011) Biochem Biophys Res Commun, 405, pp. 291-296. , PID: 21219864; Sato, Y., Morimoto, K., Kubo, T., Sakaguchi, T., Nishizono, A., Hirayama, M., Hori, K., Entry inhibition of influenza viruses with high mannose binding lectin ESA-2 from red alga Eucheuma serra through the recognition of viral hemagglutnin (2015) Mar Drugs, 13, pp. 3454-3465. , PID: 26035023; Scheie, A.A., Mechanisms of dental plaque formation (1994) Adv Dent Res, 8, pp. 246-253. , PID: 7865083; Schreml, S., Szeimies, R.-M., Prantl, L., Landthaler, M., Babilas, P., Wound healing in the 21st century (2010) J Am Acad Dermatol, 63, pp. 866-881. , PID: 20576319; Sharon, N., Lis, H., Lectins: cell agglutinating and sugar specific proteins (1972) Science, 177, pp. 949-959. , PID: 5055944; Sharon, N., Lis, H., History of lectins: from hemagglutinins to biological recognition molecules (2004) Glycobiology, 14, pp. 53R-62R. , PID: 15229195; Shim, E., Shim, J., Klochkova, T.A., Han, J.W., Hoon, G., Purification of a sex-specific lectin involved in gamete binding of Algaothamnion callophyllidiola (Rhodophyta) (2012) J Phycol, 48, pp. 916-924. , PID: 27009002; Shiomi, K., Kamiya, H., Shimizu, Y., Purification and characterization of an agglutinin in the red alga Agardhiella tenera (1979) Biochim Biophys Acta, 576, pp. 118-127. , PID: 760801; Shiomi, K., Yamanaka, H., Kikuchi, T., Purification and physiochemical properties of a hemagglutinin (GVA-1) in the red alga Gracilaria verrucosa (1981) Nippon Suisan Gakkaishi, 47, pp. 1079-1084; Shiomi, K., Yamanaka, H., Takeaki, K., Biochemical properties of hemagglutinins in the red alga Serraticardia maxima (1980) Bull J Soc Sci Fish, 46, pp. 1369-1373; Silva, L.M.C.M., Lima, V., Holanda, M.L., Pinheiro, P.G., Rodrigues, J.A.G., Lima, M.E.P., Benevides, N.M.B., Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea (2010) Biol Pharm Bull, 33, pp. 830-835. , PID: 20460762; Simmonds, P., The origin of hepatitis C virus (2013) Curr Top Microbiol Immunol, 369, pp. 1-15. , PID: 23463195; Singh, R.S., Bhari, R., Kaur, H.P., Mushroom lectins: current status and future perspectives (2010) Crit Rev Biotechnol, 30, pp. 99-126. , PID: 20105049; Singh, R.S., Bhari, R., Kaur, H.P., Current trends of lectins from microfungi (2011) Crit Rev Biotechnol, 31, pp. 193-210. , PID: 20919955; Singh, R.S., Kaur, H.P., Kanwar, J., Mushroom lectins as promising anticancer substances (2016) Curr Protein Pept Sci, 17, pp. 797-807. , PID: 26916164; Singh, R.S., Thakur, S.R., Bansal, P., Algal lectins as promising biomolecules for biomedical research (2015) Crit Rev Microbiol, 41, pp. 77-88. , PID: 23855360; Singh, R.S., Tiwary, A.K., Kennedy, J.F., Lectins: sources, activities and applications (1999) Crit Rev Biotechnol, 19, pp. 145-178; Singh, R.S., Walia, A.K., Khattar, J.S., Singh, D.P., Kennedy, J.F., Cyanobacterial lectins characteristics and their role as antiviral agents (2017) Int J Biol Macromol, 102, pp. 475-496. , PID: 28437766; Souza, B.W.S., Andrade, F.K., Texeira, D.I.A., Mansilla, A., Freitas, A.L.P., Haemagglutinin of the Antartic seaweed Georgiella confluens (Reinsch) Kylin: isolation and partial characterization (2010) Polar Biol, 33, pp. 1311-1318; Stastny, J.J., Gupta, T.K., Isolation and analysis of lectin-reactive sarcoma-associated membrane glycoproteins (1994) Anticancer Res, 14, pp. 587-591. , PID: 8017864; Sugahara, T., Ohama, Y., Fukuda, A., Hayashi, M., Kawakubo, A., Kato, K., The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its applications to molecular probe for drug delivery system using lipid vescicles (2001) Cytotechnology, 36, pp. 93-99. , PID: 19003319; Sumiyoshi, H., Mori, C., Fuke, I., Morita, K., Kuhara, S., Kondou, J., Kikuchi, Y., Igarashi, A., Complete nucleotide sequence of the Japanese encephalitis virus genome (1987) RNA Virol, 161, pp. 497-510; Takebe, Y., Saucedo, C.J., Lund, G., Uenishi, R., Hase, S., Tsuchiura, T., Kneteman, N., O'Keefe, B.R., Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus (2013) PLoS One, 8. , PID: 23700478; Teixeira, E.H., Arruda, F.V.S., da Silva, B.R., do Nascimento, K.S., Carneiro, V.A., Cavada, B.S., Nagano, C.S., Sampaio, A.H., Biological applications of plants and algae lectins: An overview (2012) Carbohydrates—comprehensive studies on glycobiology and glycotechnology, pp. 533-558. , Chang CF, (ed), In Tech, Croatia; Teixeira, E.H., Napimoga, M.H., Carneiro, V.A., de Oliveira, T.M., Nascimento, K.S., Nagano, C.S., Souza, J.B., Cavada, B.S., In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins (2007) J Appl Microbiol, 103, pp. 1001-1006. , PID: 17897204; Teixeira, E.H., Napimoga, M.H., Carneiro, V.A., Oliveira, T.M., Havt, A., Martins, J.L., Pinto, V.P.T., Cavada, B.S., In vitro inhibition of streptococci binding to enamel acquired pellicle by plant lectins (2006) J Appl Microbiol, 101, pp. 111-116. , PID: 16834597; Vasconcelos, M.A., Arruda, F.V.S., Carneiro, V.A., Silva, H.C., Nascimento, K.S., Sampaio, A.H., Cavada, B., Pereiro, M.O., Effect of algae and plant lectins on planktonic growth & biofilm formation in clinically relevant bacteria and yeasts (2014) Biomed Res Int, 2014, p. 365272. , PID: 24982871; Vieyres, G., Thomas, X., Descamps, V., Duverlie, G., Patel, A.H., Dubuisson, J., Characterization of the envelope glycoproteins associated with infectious hepatitis C virus (2010) J Virol, 84, pp. 10159-10168. , PID: 20668082; Xue, J., Gao, Y., Horrelbeke, B., Kagiampakis, I., Zhao, B., Demeler, B., Balzarini, J., Liwang, P.J., The role of individual charbohydrate binding sites in the function of the potent anti-HIV lectin griffithsin (2012) Mol Pharm, 9, pp. 2613-2625. , PID: 22827601; Xue, J., Hoorelbeke, B., Kagiampakis, I., Demeler, B., Balzarini, J., Liwang, P.J., The griffithsin dimer is required for high-potency inhibition of HIV-1: evidence for the manipulation of the structure of gp120 as part of the griffithsin dimer mechanism (2013) Antimicrob Agents Chemother, 57, pp. 3976-3989. , PID: 23752505; Yin, A., Margolis, H.C., Yao, Y., Grogan, J., Oppenheim, F.G., Multi-component adsorption model for pellicle formation: the influence of salivary proteins and nonsalivary phosphoproteins on the binding of histatin 5 onto hydroxyapatite (2005) Arch Oral Biol, 51, pp. 102-110. , PID: 16055080; Yoshima, H., Furthmayr, H., Kobata, A., Structures of the asparagine-linked sugar chains of glycophorin A (1980) J Biol Chem, 255, pp. 9713-9718. , PID: 7430095; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl J Med, 367, pp. 1814-1820. , PID: 23075143; Zheng, Y., Lai-Sheng, L., Screening of agglutinins in marine algae from Fujian coast of China (2002) Chin J Oceanol Limnol, 20, pp. 256-260; Ziolkowska, N.E., Keefe, B.R., Mori, T., Zhu, C., Giomarelli, B., Vojdani, F., Palmer, K.E., Wlodawer, A., Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding (2006) Structure, 14, pp. 1127-1135. , PID: 16843894; Ziolkowska, N.E., Shenoy, S.R., O’Keefe, B.R., McMohan, J.B., Palmer, K.E., Dwek, R.A., Wormald, M.R., Wlodawer, A., Crystallographic, thermodyanamic, and molecular modelling studies of the mode of binding of oligosaccharides to the potent antiviral protein griffithsin (2007) Proteins: Struct Funct Bioinf, 67, pp. 661-670; Ziolkowska, N.E., Shenoy, S.R., O’keefe, B.R., Wlodawer, A., Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine (2007) Prot Sci, 16, pp. 1485-1489","Singh, R.S.; Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi UniversityIndia; email: rssingh11@lycos.com",,"Springer Netherlands",09218971,,JAPPE,,"English","J. Appl. Phycol.",Review,"Final",Open Access,Scopus,2-s2.0-85034597623 "Agnihothram S., Menachery V.D., Yount B.L., Jr., Lindesmith L.C., Scobey T., Whitmore A., Schäfer A., Heise M.T., Baric R.S.","9249212400;24281639500;6603564156;6603638834;55874427200;7004148155;8599352200;7007179211;57205312930;","Development of a broadly accessible Venezuelan equine encephalitis virus replicon particle vaccine platform",2018,"Journal of Virology","92","11", e00027-18,"","",,4,"10.1128/JVI.00027-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046897752&doi=10.1128%2fJVI.00027-18&partnerID=40&md5=9ae4ae22513bbb82ff492216474b5226","Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Agnihothram, S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Menachery, V.D., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Yount, B.L., Jr., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lindesmith, L.C., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Scobey, T., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Whitmore, A., Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Schäfer, A., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Heise, M.T., Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Zoonotic viruses circulate as swarms in animal reservoirs and can emerge into human populations, causing epidemics that adversely affect public health. Portable, safe, and effective vaccine platforms are needed in the context of these outbreak and emergence situations. In this work, we report the generation and characterization of an alphavirus replicon vaccine platform based on a non-select agent, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain 3526 (VRP 3526). Using both noroviruses and coronaviruses as model systems, we demonstrate the utility of the VRP 3526 platform in the generation of recombinant proteins, production of virus-like particles, and in vivo efficacy as a vaccine against emergent viruses. Importantly, packaging under biosafety level 2 (BSL2) conditions distinguishes VRP 3526 from previously reported alphavirus platforms and makes this approach accessible to the majority of laboratories around the world. In addition, improved outcomes in the vulnerable aged models as well as against heterologous challenge suggest improved efficacy compared to that of previously attenuated VRP approaches. Taking these results together, the VRP 3526 platform represents a safe and highly portable system that can be rapidly deployed under BSL2 conditions for generation of candidate vaccines against emerging microbial pathogens. © 2018 American Society for Microbiology.","Aged; Coronavirus; Heterologous; Norovirus; Vaccine; VEE replicon; VRP","live vaccine; recombinant protein; unclassified drug; v 3000s; v 3014s; v 3526s; Venezuelan equine encephalitis virus vaccine; virus vaccine; vrp 3526; live vaccine; virus antibody; virus vaccine; animal cell; animal experiment; animal model; animal tissue; Article; clinical outcome; controlled study; Coronavirinae; drug efficacy; drug safety; female; in vivo study; intermethod comparison; mouse; nonhuman; Norovirus; pharmacological procedures; priority journal; protein synthesis; replicon; severe acute respiratory syndrome; vaccine production; Venezuelan equine encephalitis virus; virus like agent; virus particle; aging; animal; Bagg albino mouse; blood; cell line; Chlorocebus aethiops; genetics; human; immunology; SARS coronavirus; severe acute respiratory syndrome; Venezuelan equine encephalitis; Venezuelan equine encephalitis virus; Vero cell line; virology; zoonosis; Aging; Animals; Antibodies, Viral; Cell Line; Cercopithecus aethiops; Encephalitis Virus, Venezuelan Equine; Encephalomyelitis, Venezuelan Equine; Female; Humans; Mice; Mice, Inbred BALB C; SARS Virus; Severe Acute Respiratory Syndrome; Vaccines, Attenuated; Vero Cells; Viral Vaccines; Zoonoses","Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399. , https://doi.org/10.1126/science.1085952; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966. , https://doi.org/10.1056/NEJMoa030781; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8. , https://doi.org/10.1128/mBio.00373-17; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci U S A, 113, pp. 3048-3053. , https://doi.org/10.1073/pnas.1517719113; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , https://doi.org/10.1038/nm.3985; Sheahan, T., Rockx, B., Donaldson, E., Sims, A., Pickles, R., Corti, D., Baric, R., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) J Virol, 82, pp. 2274-2285. , https://doi.org/10.1128/JVI.02041-07; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat Med, 18, pp. 1820-1826. , https://doi.org/10.1038/nm.2972; Tonkin, D.R., Whitmore, A., Johnston, R.E., Barro, M., Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles (2012) Vaccine, 30, pp. 4532-4542. , https://doi.org/10.1016/j.vaccine.2012.04.030; Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A., Suthar, M., Baric, R., Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants (2006) PLoS Med, 3. , https://doi.org/10.1371/journal.pmed.0030525; MacDonald, G.H., Johnston, R.E., Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis (2000) J Virol, 74, pp. 914-922. , https://doi.org/10.1128/JVI.74.2.914-922.2000; Pushko, P., Parker, M., Ludwig, G.V., Davis, N.L., Johnston, R.E., Smith, J.F., Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo (1997) Virology, 239, pp. 389-401. , https://doi.org/10.1006/viro.1997.8878; Bernstein, D.I., Reap, E.A., Katen, K., Watson, A., Smith, K., Norberg, P., Olmsted, R.A., Chulay, J.D., Randomized, double-blind, phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers (2009) Vaccine, 28, pp. 484-493. , https://doi.org/10.1016/j.vaccine.2009.09.135; LoBue, A.D., Lindesmith, L., Yount, B., Harrington, P.R., Thompson, J.M., Johnston, R.E., Moe, C.L., Baric, R.S., Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains (2006) Vaccine, 24, pp. 5220-5234. , https://doi.org/10.1016/j.vaccine.2006.03.080; Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Murphy, B., Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice (2004) J Virol, 78, pp. 3572-3577. , https://doi.org/10.1128/JVI.78.7.3572-3577.2004; Sheahan, T., Whitmore, A., Long, K., Ferris, M., Rockx, B., Funkhouser, W., Donaldson, E., Baric, R.S., Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus (2011) J Virol, 85, pp. 217-230. , https://doi.org/10.1128/JVI.01805-10; White, L.J., Sariol, C.A., Mattocks, M.D., Wahala, W.M., Yingsiwaphat, V., Collier, M.L., Whitley, J., Johnston, R.E., An alphavirus vector based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection (2013) J Virol, 87, pp. 3409-3424. , https://doi.org/10.1128/JVI.02298-12; Kamrud, K.I., Alterson, K., Custer, M., Dudek, J., Goodman, C., Owens, G., Smith, J.F., Development and characterization of promoterless helper RNAs for the production of alphavirus replicon particle (2010) J Gen Virol, 91, pp. 1723-1727. , https://doi.org/10.1099/vir.0.020081-0; Bernard, K.A., Klimstra, W.B., Johnston, R.E., Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice (2000) Virology, 276, pp. 93-103. , https://doi.org/10.1006/viro.2000.0546; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog, 3. , https://doi.org/10.1371/journal.ppat.0030005; Fine, D.L., Roberts, B.A., Terpening, S.J., Mott, J., Vasconcelos, D., House, R.V., Neurovirulence evaluation of Venezuelan equine encephalitis (VEE) vaccine candidate V3526 in nonhuman primates (2008) Vaccine, 26, pp. 3497-3506. , https://doi.org/10.1016/j.vaccine.2008.04.044; Davis, N.L., Brown, K.W., Greenwald, G.F., Zajac, A.J., Zacny, V.L., Smith, J.F., Johnston, R.E., Attenuated mutants of Venezuelan equine encephalitis virus containing lethal mutations in the PE2 cleavage signal combined with a second-site suppressor mutation in E1 (1995) Virology, 212, pp. 102-110. , https://doi.org/10.1006/viro.1995.1458; Pratt, W.D., Davis, N.L., Johnston, R.E., Smith, J.F., Genetically engineered, live attenuated vaccines for Venezuelan equine encephalitis: testing in animal models (2003) Vaccine, 21, pp. 3854-3862. , https://doi.org/10.1016/S0264-410X(03)00328-1; Fauci, A.S., Johnston, M.I., Dieffenbach, C.W., Burton, D.R., Hammer, S.M., Hoxie, J.A., Martin, M., Greene, W.C., HIV vaccine research: the way forward (2008) Science, 321, pp. 530-532. , https://doi.org/10.1126/science.1161000; Martin, S.S., Bakken, R.R., Lind, C.M., Garcia, P., Jenkins, E., Glass, P.J., Parker, M.D., Fine, D.L., Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for Venezuelan equine encephalitis virus (2010) Vaccine, 28, pp. 3143-3151. , https://doi.org/10.1016/j.vaccine.2010.02.056; Fine, D.L., Roberts, B.A., Teehee, M.L., Terpening, S.J., Kelly, C.L., Raetz, J.L., Baker, D.C., Bowen, R.A., Venezuelan equine encephalitis virus vaccine candidate (V3526) safety, immunogenicity and efficacy in horses (2007) Vaccine, 25, pp. 1868-1876. , https://doi.org/10.1016/j.vaccine.2006.10.030; Rao, V., Hinz, M.E., Roberts, B.A., Fine, D., Toxicity assessment of Venezuelan equine encephalitis virus vaccine candidate strain V3526 (2006) Vaccine, 24, pp. 1710-1715; Rao, V., Hinz, M.E., Roberts, B.A., Fine, D., Environmental hazard assessment of Venezuelan equine encephalitis virus vaccine candidate strain V3526 (2004) Vaccine, 22, pp. 2667-2673. , https://doi.org/10.1016/j.vaccine.2003.09.041; Frieman, M., Yount, B., Agnihothram, S., Page, C., Donaldson, E., Roberts, A., Vogel, L., Baric, R.S., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J Virol, 86, pp. 884-897. , https://doi.org/10.1128/JVI.05957-11; Rockx, B., Donaldson, E., Frieman, M., Sheahan, T., Corti, D., Lanzavecchia, A., Baric, R.S., Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus (2010) J Infect Dis, 201, pp. 946-955. , https://doi.org/10.1086/651022; Rani, M., Bolles, M., Donaldson, E.F., Van Blarcom, T., Baric, R., Iverson, B., Georgiou, G., Increased antibody affinity confers broad in vitro protection against escape mutants of severe acute respiratory syndrome coronavirus (2012) J Virol, 86, pp. 9113-9121. , https://doi.org/10.1128/JVI.00233-12; Carroll, T.D., Matzinger, S.R., Barro, M., Fritts, L., McChesney, M.B., Miller, C.J., Johnston, R.E., Alphavirus replicon-based adjuvants enhance the immunogenicity and effectiveness of Fluzone in rhesus macaques (2011) Vaccine, 29, pp. 931-940. , https://doi.org/10.1016/j.vaccine.2010.11.024; Tews, B.A., Meyers, G., Self-replicating RNA (2017) Methods Mol Biol, 1499, pp. 15-35. , https://doi.org/10.1007/978-1-4939-6481-9_2; Pushko, P., Lukashevich, I.S., Weaver, S.C., Tretyakova, I., DNA-launched live-attenuated vaccines for biodefense applications (2016) Expert Rev Vaccines, 15, pp. 1223-1234. , https://doi.org/10.1080/14760584.2016.1175943; Zhao, J., Legge, K., Perlman, S., Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice (2011) J Clin Investig, 121, pp. 4921-4930. , https://doi.org/10.1172/JCI59777; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391. , https://doi.org/10.1016/j.immuni.2016.05.006; Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Denison, M.R., Baric, R.S., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc Natl Acad Sci U S A, 100, pp. 12995-13000. , https://doi.org/10.1073/pnas.1735582100; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J Virol, 79, pp. 14909-14922. , https://doi.org/10.1128/JVI.79.23.14909-14922.2005; Menachery, V.D., Yount, B.L., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of SARS-CoV mutant lacking 2= O methyltransferase activity (2014) J Virol, 88, pp. 4251-4264. , https://doi.org/10.1128/JVI.03571-13; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Baric, R.S., A doubleinactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J Virol, 85, pp. 12201-12215. , https://doi.org/10.1128/JVI.06048-11; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Donaldson, E.F., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J Virol, 86, pp. 12816-12825. , https://doi.org/10.1128/JVI.00906-12; Sheahan, T., Morrison, T.E., Funkhouser, W., Uematsu, S., Akira, S., Baric, R.S., Heise, M.T., MyD88 is required for protection from lethal infections with a mouse-adapted SARS-CoV (2008) PLoS Pathog, 4. , https://doi.org/10.1371/journal.ppat.1000240; Debbink, K., Costantini, V., Swanstrom, J., Agnihothram, S., Vinje, J., Baric, R., Lindesmith, L., Human norovirus detection and production, quantification, and storage of virus-like particles (2013) Curr Protoc Microbiol, 31; Lindesmith, L.C., Costantini, V., Swanstrom, J., Debbink, K., Donaldson, E.F., Vinje, J., Baric, R.S., Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes (2013) J Virol, 87, pp. 2803-2813. , https://doi.org/10.1128/JVI.03106-12","Baric, R.S.; Department of Epidemiology, University of North Carolina at Chapel HillUnited States; email: Rbaric@email.unc.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29540599","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85046897752 "Wang J., Wang J., Zhang R., Liu L., Shi R., Han Q., Yuan W.","57035487900;56323983500;57195957114;57034518400;55539074200;57193201103;15125310900;","Rapid detection of transmissible gastroenteritis virus in swine small intestine samples using real-time reverse transcription recombinase polymerase amplification",2018,"Journal of Virological Methods","256",,,"85","88",,3,"10.1016/j.jviromet.2018.03.005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044089138&doi=10.1016%2fj.jviromet.2018.03.005&partnerID=40&md5=39fe465678c012859671dcbc9d3c049c","Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang, 050051, China; Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China; College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Hebei Animal Disease Control Center, Shijiazhuang, 050050, China","Wang, J., Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang, 050051, China, Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China; Wang, J., Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang, 050051, China, Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China; Zhang, R., Hebei Animal Disease Control Center, Shijiazhuang, 050050, China; Liu, L., Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang, 050051, China, Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China; Shi, R., Hebei Academy of Science and Technology for Inspection and Quarantine, Shijiazhuang, 050051, China, Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, Shijiazhuang, 050051, China; Han, Q., Hebei Animal Disease Control Center, Shijiazhuang, 050050, China; Yuan, W., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China","A rapid and specific real-time reverse-transcription recombinase polymerase amplification assay (RT-RPA) was developed to detect the transmissible gastroenteritis virus (TGEV) in this study. The primers and exo probe were designed to be specific for a portion of spike (S) gene conserved in TGEV, but absent in the closely related porcine respiratory coronavirus (PRCV). The amplification was performed at 40 °C for 20 min. The assay could only detect the TGEV, and there was no cross-reaction with other pathogens tested. Using the in vitro transcribed TGEV RNA as template, the limit of detection of the developed RT-RPA was 100 copies per reaction. The assay performance was evaluated by testing 76 clinical samples by RT-RPA and a real-time RT-PCR. Fourteen samples were TGEV RNA positive in RT-RPA (18.4%, 14/76), which were also positive in the real-time RT-PCR. The diagnostic agreement between the two assays was 100% (76/76). The R2 value of RT-RPA and real-time RT-PCR was 0.959 by linear regression analysis. The developed RT-RPA assay provides a useful alternative tool for rapid, simple and reliable detection of TGEV in resource-limited diagnostic laboratories and on-site facilities. © 2018 Elsevier B.V.","Exo probe; RT-RPA; S gene; TGEV","Article; cross reaction; enzyme linked immunosorbent assay; genetic conservation; in vitro study; intermethod comparison; linear regression analysis; nonhuman; Porcine respiratory coronavirus; priority journal; real time polymerase chain reaction; reverse transcription polymerase chain reaction; reverse transcription recombinase polymerase amplification; sensitivity and specificity; Transmissible gastroenteritis virus; virus detection; animal; genetics; pig; real time polymerase chain reaction; small intestine; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; virology; Animals; Gastroenteritis, Transmissible, of Swine; Intestine, Small; Real-Time Polymerase Chain Reaction; Sensitivity and Specificity; Swine; Transmissible gastroenteritis virus","Abd El Wahed, A., El-Deeb, A., El-Tholoth, M., Abd El Kader, H., Ahmed, A., Hassan, S., Hoffmann, B., Weidmann, M., A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus (2013) PLoS One, 8, p. e71642; Abd El Wahed, A., Patel, P., Faye, O., Thaloengsok, S., Heidenreich, D., Matangkasombut, P., Manopwisedjaroen, K., Weidmann, M., Recombinase polymerase amplification assay for rapid diagnostics of dengue infection (2015) PLoS One, 10, p. e0129682; Abd El Wahed, A., Weidmann, M., Hufert, F.T., Diagnostics-in-a-suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus (2015) J. Clin. Virol., 69, pp. 16-21; Carman, S., Josephson, G., McEwen, B., Maxie, G., Antochi, M., Eernisse, K., Nayar, G., Nilsson, E., Field validation of a commercial blocking ELISA to differentiate antibody to transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus and to identify TGEV-infected swine herds (2002) J. Vet. Diagn. Invest., 14, pp. 97-105; Chen, Q., Li, J., Fang, X.E., Xiong, W., Detection of swine transmissible gastroenteritis coronavirus using loop-mediated isothermal amplification (2010) Virol. J., 7, p. 206; Costantini, V., Lewis, P., Alsop, J., Templeton, C., Saif, L.J., Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates (2004) Arch. Virol., 149, pp. 957-974; Daher, R.K., Stewart, G., Boissinot, M., Boudreau, D.K., Bergeron, M.G., Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology (2015) Mol. Cell. Probes., 29, pp. 116-121; Daher, R.K., Stewart, G., Boissinot, M., Bergeron, M.G., Recombinase polymerase amplification for diagnostic applications (2016) Clin. Chem., 62, pp. 947-958; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J. Am. Vet. Med. Assoc., pp. 257-259; Dulac, G.C., Ruckerbauer, G.M., Boulanger, P., Transmissible gastroenteritis: demonstration of the virus from field specimens by means of cell culture and pig inoculation (1977) Can. J. Comp. Med., 41, pp. 357-363; Garwes, D.J., Transmissible gastroenteritis (1988) Vet. Rec., 122, pp. 462-463; Kim, L., Chang, K.O., Sestak, K., Parwani, A., Saif, L.J., Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs (2000) J. Vet. Diagn. Invest., 12, pp. 385-388; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: molecular features and virus-host interactions (1993) Vet. Res., 24, pp. 125-150; Li, P., Ren, X., Reverse transcription loop-mediated isothermal amplification for rapid detection of transmissible gastroenteritis virus (2011) Curr. Microbiol., 62, pp. 1074-1080; Paton, D., Ibata, G., Sands, J., McGoldrick, A., Detection of transmissible gastroenteritis virus by RT-PCR and differentiation from porcine respiratory coronavirus (1997) J. Virol. Methods, 66, pp. 303-309; Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A., DNA detection using recombination proteins (2006) PLoS Biol., 4, p. e204; Saif, L.J., Wesley, R.D., Transmissible gastroenteritis and porcine respiratory coronavirus (1999) Diseases of Swine, pp. 295-325. , B.E. Straw Iowa State University Press Ames; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Invest., 25, pp. 649-654; van Nieuwstadt, A.P., Cornelissen, J.B., Vreeswijk, J., Solid phase immune electron microscopy for diagnosis of transmissible gastroenteritis in pigs (1988) Res. Vet. Sci., 44, pp. 286-294; Vemulapalli, R., Gulani, J., Santrich, C., A real-time TaqMan RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples (2009) J. Virol. Methods, 162, pp. 231-235; Wang, J.C., Liu, L.B., Han, Q.A., Wang, J.F., Yuan, W.Z., An exo probe-based recombinase polymerase amplification assay for the rapid detection of porcine parvovirus (2017) J. Virol. Methods, 248, pp. 145-147; Wang, J.C., Yuan, W.Z., Han, Q.A., Wang, J.F., Liu, L.B., Reverse transcription recombinase polymerase amplification assay for the rapid detection of type 2 porcine reproductive and respiratory syndrome virus (2017) J. Virol. Methods, 243, pp. 55-60; Zhu, Y., Liang, L., Luo, Y., Wang, G., Wang, C., Cui, Y., Ai, X., Cui, S., A sensitive duplex nanoparticle-assisted PCR assay for identifying porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus from clinical specimens (2017) Virus Genes, 53, pp. 71-76","Yuan, W.; College of Veterinary Medicine, Agricultural University of HebeiChina; email: yuanwanzhe2015@126.com",,"Elsevier B.V.",01660934,,JVMED,"29550352","English","J. Virol. Methods",Article,"Final",,Scopus,2-s2.0-85044089138 "Smail N.L., Rezali L., Abdelhadi S.A.","57202335146;57202338506;57202330339;","Preliminary study on the mortality of calves aged from 0 to 90 days in tiaret area western Algeria [Etude préliminaire sur la mortalité de veaux âgés de 0 à 90 jours en région de Tiaret Algérie Ouest]",2018,"Livestock Research for Rural Development","30","6",,"","",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047941992&partnerID=40&md5=adca42711f98c4e96cdbdd65201b8a75","Laboratoire de Reproduction des animaux de la ferme, Institut des Sciences Vétérinaires, Université Ibn Khaldoun, Tiaret, 14000, Algeria","Smail, N.L., Laboratoire de Reproduction des animaux de la ferme, Institut des Sciences Vétérinaires, Université Ibn Khaldoun, Tiaret, 14000, Algeria; Rezali, L., Laboratoire de Reproduction des animaux de la ferme, Institut des Sciences Vétérinaires, Université Ibn Khaldoun, Tiaret, 14000, Algeria; Abdelhadi, S.A., Laboratoire de Reproduction des animaux de la ferme, Institut des Sciences Vétérinaires, Université Ibn Khaldoun, Tiaret, 14000, Algeria","To determine the real importance of young calf pathologies in our cattle farms, 285 calves aged from 0 to 90 days were followed in twenty farms of 5 to 50 dairy cows distributed on the north of Tiaret area. During 2015 and the first trimester of 2016, 8,4% of the calves were still born or dead within 24 hours and the morbidity and mortality rates at 90 days were 45,6% and 27,0% of total born, respectively, and 49,8% and 29,5% of born alive. The factors that significantly influenced these rates (p< 005) were farm size, age of calf mortality, quality of breeding, birth weight and temperature at birth. The causes of mortality recorded were breastfeeding problems (20,8%), dystocia (14,3%), diarrhea (11,7%), respiratory problems (9,1%), arthritis (7,8%) and umbilical infection (6,0%). The analysis of 60 samples of calf faeces identified some infectious agents responsible of neonatal diarrhea; 68,3% were positive for at least one of the diarrhea agents searched: Cryptosporidium parvum alone accounted for 55% of affected samples, 16,7% were concerned by Clostridium perfringens, 13,3% by E-coli K99, 11,7% by Rotavirus and 10,0% by Coronavirus. No sample was identified as positive to Salmonella sp. Other bacteria such as Pasteurella multocida, Proteus vulgaris and Streptococcus sp. were not looked for. We insist on the breeders supervision to reduce these high levels. © 2018, Fundacion CIPAV. All rights reserved.","Cattle breeding; Diarrhea agent; Morbidity; New born; Septicemia",,"Abdelhadi, F.Z., (2015) Etude Sur Les Avortements rencontrés Chez Les Bovins Au Niveau De La région De Tiaret (Algérie), pp. 80-81. , Thèse de Doctorat en Sciences Vétérinaires, I.S.V. de Tiaret, Université Ibn Khaldoun de Tiaret, Algeria; Achá, S.J., Kühn, I., Jonsson, P., Mbazima, G., Katouli, M., Möllby, R., Studies on calf diarrhoea in Mozambique: Prevalence of bacterial pathogens (2004) Acta Vet Scand, 45 (1-2), pp. 27-36; Arzul, P., Maillard, R., Lebreton, P., Prévention médicale et maitrise des risques sanitaires en élevage. Les maladies néonatales du veau (de la naissance à 3 mois d'âge). Rappels physiologiques (2006) Dépêche vét, 101, pp. 3-11. , supplément technique; Asefa, A., Ashenafi Kiros, W., Dairy calf morbidity and mortality and associated risk factors in Sodo town and its suburbs, Wolaita zone, Ethiopia. Slovak (2016) J. Anim. Sci, 49 (1), pp. 44-56; Assie, S., Bouet, J.M., Seegers, H., Quillet, J.M., Impact économique des troubles respiratoires des veaux non sevrés en système allaitant naisseur-engraisseur de race Charolaise (2001) Revue. Rech. Ruminants, 8, pp. P145-P148; Boussenna, S., Sfaksi, A., Incidence and etiology of newborn calf neonatal diarrhea in Eastern Algeria (2009) Sciences & Technology C, pp. 16-21. , N°30 December; Bouzid, R., Aggad, H., Aichouni, A., Prevalence of primary calf diseases in Algeria. (2012) Global Veterinaria, 9 (4), pp. 416-420. , IDOSI Publications; Boyd, J.W., The relationship between serum immune globulin deficiency and disease in calves: A farm survey (1972) Vet Rec, 90, pp. 645-649; Bradford, P., Smith, D., (2008) Large Animal Internal Medicine, p. 1872. , 4th edition, Mosby; Brickell, J.S., McGowan, M.M., Pfeiffer, D.U., Wathes, D.C., Mortality in Holstein–Friesian calves and replacement heifers (2009) Relation to Body Weight and IGF-I Concentration, on 19 Farms in England. Animal, 3, pp. 1175-1182; Buttigieg, M., Gianesella, M., James, A., A benchmark study of dairy calf mortality rates on the Islands of Malta and Gozo (2016) Veterinar Ski Archive, 86 (2), pp. 183-196; Buczinski, S., (2002) Etude Clinique De Cas De Pathologie Ombilicale Chez Le Veau-Comparaison De La Palpation De l’examen échographique. Thèse De Doctorat Vétérinaire, p. 7. , Faculté de Médecine de Créteil, France; Cho, Y., Kim, W., Liu, S., Kinyon, J.M., Yoon, K.J., Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces (2010) J Vet Diagn Invest, 22, pp. 509-517; Cho, Y., Yoon, K.J., An overview of calf diarrhea-infectious etiology, diagnosis, and intervention (2014) J Vet Sci, 15, pp. 1-17; De Meijer, F., (2005) Dystocies d’origine fœtale Chez La Vache. Thèse De Doctorat Vétérinaire, p. 131. , Université Claude Bernard, Lyon; Dutil, L., Les caractéristiques d’une population: Impact sur la santé en élevage vache‐veau. Agriréseau: Bovins de boucherie (2001) [En Ligne] [Citation: 12 Juin 2014]; Esslemont, R.J., Kossaibati, M.A., (1997) Société Française De Buiatrie, pp. 22-29. , Paris, 26 & 27 novembre; Fallon, R.J., Harte, F.J., The occurrence of diarrhea in calves under different management systems (1983) Ann Rech Vet, 14, pp. 473-478; Fecteau, G., Bovine neonatology: A look at the future (2001) Méd.vét. Québ, 31 (2), pp. 80-81; Gebremedhin, R., Major Causes of Calf Mortality in Intensive Dairy Farms, Central Ethiopia - A Cohort Study (2014) International Journal of Livestock, p. 11; Gee, M., Drennan, M.J., Caffrey, P.J., Effect of suckler cow genotype on cow serum immunoglobulin (Ig) levels, colostrum yield, composition and Ig concentration and subsequent immune status of their progeny (2005) Irish J Agr Food Res, 44, pp. 173-183; Gee, M., Drennan, M.J., Caffrey, P.J., Effect of age and nutrient restriction pre partum on beef suckler cow serum immunoglobulin concentrations, colostrum yield, composition and immunoglobulin concentration and immune status of their progeny (2006) Irish J Agr Food Res, 45, pp. 157-171; Godden, S., Colostrum management for dairy calves. (2008) Vet Clin N Am: Food Animpract., 24, pp. 19-39; Gomez, D.E., Arroyo, L.G., Costa, M.C., Viel, L., Weese, J.S., Characterization of the Fecal Bacterial Microbiota of Healthy and Diarrheic Dairy Calves (2017) J Vet Intern Med. May-Jun, 31 (3), pp. 928-939; Gulliksen, S.M., Lie, K.I., Loken, T., Osteras, O., Calf mortality in Norwegian dairy herds (2008) J. Dairy Sci, 92, pp. 2782-2796; Gulliksen, S.M., Jor, E., Lie, K.I., Hamnes, I.S., Loken, T., Akerstedt, J., Osteras, O., Enteropathogens and risk factors for diarrhea in Norwegian dairy calves (2009) Journal of Dairy Science, 92 (10), pp. 5057-5066. , http://dx.doi.org/10.3168/jds.2009-2080G; Izzo, M.M., Kirkland, P.D., Mohler, V.L., Perkins, N.R., Gunna, A.A., Housea, J.K., Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea (2011) Aust Vet J, 89, pp. 167-173; Jarrige, R., (1984) Perinatal Physiology and Pathology in Farm Animals, pp. 172-173. , Editor INRA. 1 st edition; Jegou, V., Porhiel, J.Y., Brunschig, P., Jouanne, D., Mortalité des veaux d’élevage en Bretagne: Facteurs de risque de mortalité dans 80 élevages bretons (2006) Renc Rech Ruminants, 13, pp. 423-426; Johanson, J.M., Berger, P.J., Birth Weight as a Predictor of Calving Ease and Perinatal Mortality in Holstein Cattle (2003) Journal of Dairy Science, 86 (11), pp. 3745-3755. , November, Pages; Karayel, I., Fehér, E., Marton, S., Coskun, N., Bányai, K., Alkan, F., Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves (2017) Turkey, 2015.Vet Microbiol., 201, pp. 7-13; Kidane, Y.B., (2014) A Study on Major Enteropathogens of Calf Diarrhoea in Dairy Farms of Assela and Its Surroundings Arsi Zone Oromya Region, Ethiopia. Addis Ababa. a Thesis for the Degree of Master of Science in Veterinary Microbiology University, p. 8. , College of Veterinary Medicine and Agriculture, Department of Microbiology, Immunology and Veterinary Public Health; Lorenz, I., Mee, J.F., Earley, B., More, S.J., Calf health from birth to weaning I General aspects of disease prevention (2011) Irish Veterinary Journal the Official Journal of Veterinary Ireland, the Representative Body for the Veterinary Profession in Ireland, 64, p. 10; Marie-Vinciane, E.N., (2008) Facteurs De Risque De mortalité Des Veaux Non sevrés: Enquête En élevages Laitiers En Seine-Maritime En 2008, p. 69. , Doctorat Vétérinaire. Faculté de Médecine de Créteil, France; Mee, J., Managing the calf at calving time (2008) 41 Annual Conference Proceedings of the AABP, pp. 46-53. , Charlotte, 25-27 September; Mee, J.F., Berry, D.P., Cromie, A.R., Prevalence of, and risk factors associated with perinatal calf mortality in pasture-based Holstein-Friesian cows (2008) Animal, 2, pp. 613-620; Mee, J., Bovine Neonatal Survival – Is Improvement Possible? (2011) WCDS Advances in Dairy Technology, 23, pp. 16-174; Meganck, V., Hoflack, G., Opsomer, G., Advances in prevention and therapy of neonatal dairy calf diarrhea: A systematical review with emphasis on colostrum management and fluid therapy (2014) Acta Veterinaria Scandinavica, 56, p. 75; Mellado, M., Lopez, E., Veliz, F.G., De Santiago, M.A., Macias-Cruz, U., Avendaño-Reyes, L., Garcia, J.E., Factors associated with neonatal dairy calf mortality in a hot-arid environment (2014) Livestock Science, 159, pp. 149-155; Mounaix, B., Roussel, P., Assie, S., Mortaliveau: Outil web d’aide à l’analyse de la mortalité des veaux allaitants pour faciliter les démarches d’intervention en élevage. (2014) Renc. Rech. Ruminants, 21, pp. 301-304; Mushtaqa, M.H., Saleema, M.N., Ayyubb, R.M., Khattaka, I., 2013 Challenges due to early calf mortality in dairy industry of Pakistan and strategies for improvement (2013) Veterinaria, 1 (1), pp. 13-17; Olaogun, S.C., Jeremiah, O.T., Jubril, A.J., Adewuyi, O.O., Calf Diarrhea: Epidemiological Prevalence and Bacterial Load in Oyo and Ogun States, Nigeria (2016) Alexandria Journal of Veterinary Sciences, 51 (1), pp. 90-96; Paul, H., Wal, Z., Bovine Viral Diarrhea Virus. Food Animal Practice (Firth edition) (2009) Chapter, 4, pp. 96-106; Raboisson, D., Delor, F., Cahuzac, E., Gendre, C., Sans, P., Allaire, G., Perinatal, neonatal, and rearing period mortality of dairy calves and replacement heifers in France (2013) J. Dairy Sci, 96, pp. 1-12. , http://dx.doi.org/10.3168/jds.2012-6010; Razzaque, M.A., Abbas, S., Al-Mutawa, T., Bedair, M., Mortality of pre-weaned calves in Kuwait’s dairy herds, its causes and impact of interventions (2009) Int. J. Vet. Med, 5 (2), pp. 1-12; Roy, J., Factors affecting susceptibility of calves to disease (1980) J Dairy Sci, 63, pp. 650-664; Sartelet, A., (2007) Study on Principal Musculoskeletal Diseases in Belgian Blue Calves, p. 1. , http://hdl.handle.net/2268/5272, Université of Liège - ULg> Département of animal productions > GIGA-R: Génomique animale; Selles, S., Kouidri, M., Belhamiti, B.T., Ait Amrane, A., Benia, A.R., Bellik, Y., Hammoudi, S.M., Boukrâa, L., Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria (2014) Asian Pac J Trop Biomed, 4, pp. S318-S322; Sharp, C.P., Gregory, W.F., Mason, C., Bronsvoort, B.M., Beard, P.M., High prevalence and diversity of bovine astroviruses in the faeces of healthy and diarrheic calves in South West Scotland (2015) Veterinary Microbiology, 178, pp. 70-76. , www.elsevier.com/locate/vetmic; Silva Del Rio, N., Stewart, S., Rapnicki, P., Chang, Y.M., Fricke, P.M., An observational analysis of twin births, calf sex ratio, and calf mortality in Holstein dairy cattle (2007) J. Dairy Sci, 90 (3), pp. 1255-1264. , http://dx.doi.org/10.3168/jds.S0022-0302(07)71614-4; Schmitt, D., (2005) Les Dystocies D'origine Maternelle Chez Les Bovins. Thèse De Doctorat Vétérinaire, p. 66. , Université Claude Bernard, Lyon; Sorge, U., Kelton, D., Staufenbiel, R., Neonatal blood lactate concentration and calf morbidity (2009) Vet Rec, 164, pp. 533-534; Tao, S., Monteiro, A., Thompson, I.M., Hayen, M.J., Dahl, G.E., Effect of late-gestation maternal heat stress on growth and immune function of dairy calves (2012) J. Dairy Sci, 95, pp. 7128-7136; Tyler, J.W., Hancock, D.D., Wiksie, S.E., Holler, S.L., Gay, J.M., Gay, C.C., Use of serum protein concentration to predict mortality in mixed-source dairy replacement heifers (1998) J Vet Intern Med, 12, pp. 79-83; Uhde, F.L., Kaufmann, T., Sager, H., Albini, S., Zanoni, R., Schelling, E., Meylan, M., Prevalence of four enteropathogens in the faeces of young diarrheic dairy calves in Switzerland (2008) Vet Rec. Sep 20, 163 (12), pp. 362-366; Vaala, W.E., Lester, G.D., House, J.K., The peripartum period (2009) Smith BP, Large Animal Internal Medicine, pp. 243-251. , 4ème ed, Saint Louis: Mosby Elsevier; Vermorel, M., Vernet, J., Dardillat, C., Saido, D.C., Davicco, M.J., Energy metabolism and thermoregulation in the newborn calf. Effect of calving conditions (1989) Can. J. Anim. Sci., 69, pp. 113-122; Virtala, A., Mechor, G.D., Graher, Y.T., Erb, H.N., Morbidity from non respiratory diseases and mortality in dairy heifers during the first three month of life (1996) Journal of the American Medical Association, 208, pp. 2035-2042; Weber, B., (2014) Effets d’un Traitement Vincamine Papaverine, Sur Les Performances Zootechniques Des Veaux Charolais Lors De vêlages Eutociques, p. 25. , Thèse pour l’obtention du diplôme de Docteur Vétérinaire. Présentée à l’Université Claude-Bernard-Lyon I. France; Wudu, T., Kelay, B., Mekonnen, H.M., Tesfu, K., Calf morbidity and mortality in smallholder dairy farms in Ada’a Liben district of Oromia, Ethiopia (2008) Trop. Anim. Health. Prod, 40, pp. 369-376; Yang, M., Zou, Y., Wu, Z.H., Li, S.L., Cao, Z.J., Colostrum quality affects immune system establishment and intestinal development of neonatal calves (2015) J. Dairy Sci, 98, p. 1. , http://dx.doi.org/10.3168/jds.2014-9238",,,"Fundacion CIPAV",01213784,,,,"Spanish","Livest. Res. Rural Dev.",Article,"Final",,Scopus,2-s2.0-85047941992 "Wang B., Liu Y., Ji C.-M., Yang Y.-L., Liang Q.-Z., Zhao P., Xu L.-D., Lei X.-M., Luo W.-T., Qin P., Zhou J., Huang Y.-W.","57195253684;57202267588;57199174366;57195945518;57202265671;55262543200;57202265813;57196473123;57202267736;57195247636;54682580100;8291778500;","Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry",2018,"Journal of Virology","92","12", e00318-18,"","",,13,"10.1128/JVI.00318-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047660043&doi=10.1128%2fJVI.00318-18&partnerID=40&md5=010af7e29ae4330e7dc64a98c649aa39","Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China","Wang, B., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Liu, Y., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Ji, C.-M., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Yang, Y.-L., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Liang, Q.-Z., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhao, P., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Xu, L.-D., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Lei, X.-M., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Luo, W.-T., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Qin, P., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhou, J., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Huang, Y.-W., Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China","Identification of cellular receptors used by coronavirus (CoV) entry into the host cells is critical to an understanding of pathogenesis and to development of intervention strategies. The fourth CoV genus, Deltacoronavirus, evolutionarily related to the Gammacoronavirus, has just been defined recently. In the current study, we demonstrate that porcine aminopeptidase N (pAPN) acts as a cross-genus CoV functional receptor for both enteropathogenic porcine deltacoronovirus (PDCoV) and alphacoronovirus (AlphaCoV) (transmissible gastroenteritis virus [TGEV]) based upon three lines of evidence. First, the soluble S1 protein of PDCoV bound to the surface of target porcine cell lines known to express pAPN as efficiently as TGEV-S1, which could be blocked by soluble pAPN pretreatment. Second, both PDCoV-S1 and TGEV-S1 physically recognized and interacted with pAPN by coimmunoprecipitation in pAPN cDNA-transfected cells and by dot blot hybridization assay. Finally, exogenous expression of pAPN in refractory cells conferred susceptibility to PDCoV-S1 binding and to PDCoV entry and productive infection. PDCoV-S1 appeared to have a lower pAPN-binding affinity and likely consequent lower infection efficiency in pAPN-expressing refractory cells than TGEV-S1, suggesting that there may be differences between these two viruses in the virus-binding regions in pAPN. This study paves the way for dissecting the molecular mechanisms of PDCoV-host interactions and pathogenesis as well as facilitates future vaccine development and intervention strategies against PDCoV infection. © 2018 American Society for Microbiology.","Aminopeptidase N; APN; Cellular receptor; Coronavirus; Entry; PDCoV; Porcine deltacoronavirus; Virus entry","complementary DNA; microsomal aminopeptidase; viral protein; coronavirus receptor; microsomal aminopeptidase; virus receptor; Alphacoronavirus; animal cell; Article; binding affinity; controlled study; Coronavirinae; nonhuman; priority journal; protein binding; protein expression; Transmissible gastroenteritis virus; virus attachment; virus cell interaction; virus entry; animal; cell line; Chlorocebus aethiops; Coronavirinae; Coronavirus infection; genetics; hamster; host range; metabolism; pathology; pig; swine disease; Transmissible gastroenteritis virus; Vero cell line; virology; virus attachment; virus entry; Animals; CD13 Antigens; Cell Line; Cercopithecus aethiops; Coronavirus; Coronavirus Infections; Cricetinae; Host Specificity; Receptors, Virus; Swine; Swine Diseases; Transmissible gastroenteritis virus; Vero Cells; Virus Attachment; Virus Internalization","de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Coronaviridae (2011) Virus taxonomy, pp. 806-828. , King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed), Classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London, United Kingdom; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59. , https://doi.org/10.1016/j.virusres.2016.04.009; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6. , https://doi.org/10.1128/mBio.00064-15; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbiol, 211, pp. 15-21. , https://doi.org/10.1016/j.vetmic.2017.09.020; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) mBio, 4. , https://doi.org/10.1128/mBio.00737-13; Tian, P.F., Jin, Y.L., Xing, G., Qv, L.L., Huang, Y.W., Zhou, J.Y., Evidence of recombinant strains of porcine epidemic diarrhea virus, United States, 2013 (2014) Emerg Infect Dis, 20, pp. 1735-1738. , https://doi.org/10.3201/eid2010.131524; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from mainland China (2015) Genome Announc, 3. , https://doi.org/10.1128/genomeA.00945-15; Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420. , https://doi.org/10.1038/357417a0; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci U S A, 88, pp. 5533-5536; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pohlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci U S A, 102, pp. 7988-7993. , https://doi.org/10.1073/pnas.0409465102; Godet, M., Grosclaude, J., Delmas, B., Laude, H., Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein (1994) J Virol, 68, pp. 8008-8016; Delmas, B., Gelfi, J., Kut, E., Sjostrom, H., Noren, O., Laude, H., Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site (1994) J Virol, 68, pp. 5216-5224; Rossen, J.W., Bekker, C.P., Voorhout, W.F., Strous, G.J., van der Ende, A., Rottier, P.J., Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells (1994) J Virol, 68, pp. 7966-7973; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422. , https://doi.org/10.1038/357420a0; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J Virol, 70, pp. 8669-8674; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2018) J Virol, 92. , https://doi.org/10.1128/JVI.01628-17; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125. , https://doi.org/10.1128/JVI.00430-15; Li, W., Luo, R., He, Q., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13. , https://doi.org/10.1016/j.virusres.2017.03.018; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539. , https://doi.org/10.1099/jgv.0.000563; Ji, C.M., Wang, B., Zhou, J., Huang, Y.W., Aminopeptidase-Nindependent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells (2018) Virology, 517, pp. 16-23. , https://doi.org/10.1016/j.virol.2018.02.019; Qin, P., Li, H., Wang, J.W., Wang, B., Xie, R.H., Xu, H., Zhao, L.Y., Huang, Y.W., Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and seroepidemiological survey of MRV3 in diarrheic pigs from east China (2017) Vet Microbiol, 208, pp. 126-136. , https://doi.org/10.1016/j.vetmic.2017.07.021; Zhao, P., Wang, B., Ji, C.M., Cong, X., Wang, M., Huang, Y.W., Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies (2018) Antiviral Res, 150, pp. 1-8. , https://doi.org/10.1016/j.antiviral.2017.11.021; Kolb, A.F., Maile, J., Heister, A., Siddell, S.G., Characterization of functional domains in the human coronavirus HCV 229E receptor (1996) J Gen Virol, 77, pp. 2515-2521. , https://doi.org/10.1099/0022-1317-77-10-2515; Chen, L., Lin, Y.L., Peng, G., Li, F., Structural basis for multifunctional roles of mammalian aminopeptidase N (2012) Proc Natl Acad Sci U S A, 109, pp. 17966-17971. , https://doi.org/10.1073/pnas.1210123109; Wentworth, D.E., Holmes, K.V., Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of N-linked glycosylation (2001) J Virol, 75, pp. 9741-9752. , https://doi.org/10.1128/JVI.75.20.9741-9752.2001; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002859; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch Virol, 162, pp. 2357-2362. , https://doi.org/10.1007/s00705-017-3351-z; Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Guan, Y., Detection of a novel and highly divergent coronavirus from Asian leopard cats and Chinese ferret badgers in southern China (2007) J Virol, 81, pp. 6920-6926. , https://doi.org/10.1128/JVI.00299-07; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974. , https://doi.org/10.1073/pnas.0908837106; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868. , https://doi.org/10.1126/science.1116480; Huang, Y.W., Dryman, B.A., Li, W., Meng, X.J., Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics (2009) Dev Comp Immunol, 33, pp. 464-480. , https://doi.org/10.1016/j.dci.2008.09.010; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg Infect Dis, 20, pp. 1347-1350. , https://doi.org/10.3201/eid2008.140526; Wang, J., Lei, X., Qin, P., Zhao, P., Wang, B., Wang, Y., Li, Y., Huang, Y.W., Development and application of real-time RT-PCR and S1 proteinbased indirect ELISA for porcine deltacoronavirus (2017) Sheng Wu Gong Cheng Xue Bao, 33, pp. 1265-1275. , https://doi.org/10.13345/j.cjb.170119, (In Chinese.)","Huang, Y.-W.; Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityChina; email: yhuang@zju.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"29618640","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85047660043 "Sirichokchatchawan W., Temeeyasen G., Nilubol D., Prapasarakul N.","57194140954;55959966000;6506442324;6506671071;","Protective Effects of Cell-Free Supernatant and Live Lactic Acid Bacteria Isolated from Thai Pigs Against a Pandemic Strain of Porcine Epidemic Diarrhea Virus",2018,"Probiotics and Antimicrobial Proteins","10","2",,"383","390",,5,"10.1007/s12602-017-9281-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018803498&doi=10.1007%2fs12602-017-9281-y&partnerID=40&md5=49e66e69d935b24256153bffe94e8dd5","Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand","Sirichokchatchawan, W., Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand; Temeeyasen, G., Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand; Nilubol, D., Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand; Prapasarakul, N., Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand","Porcine epidemic diarrhea virus (PEDV) is a coronavirus which causes severe diarrhea and fatal dehydration in piglets. In general, probiotic supplements could enhance recovery and protect piglets against enteric pathogens. Seven local lactic acid bacteria (LAB), (Ent. faecium 79N and 40N, Lact. plantarum 22F, 25F and 31F, Ped. acidilactici 72N and Ped. pentosaceus 77F) from pig feces were well-characterized as high potential probiotics. Cell-free supernatants (CFS) and live LAB were evaluated for antiviral activities by co-incubation on Vero cells and challenged with a pandemic strain of PEDV isolated from pigs in Thailand. Cell survival and viral inhibition were determined by cytopathic effect (CPE) reduction assay and confirmed by immunofluorescence. At 1:16, CFS dilution (pH 6.3–6.8) showed no cytotoxicity in Vero cells and was therefore used as the dilution for antiviral assays. The diluted CFS of all Lact. plantarum showed the antiviral effect against PEDV; however, the same antiviral effect could not be observed in Ent. faecium and Pediococcus strains. In competitive experiment, only live Lact. plantarum 25F and Ped. pentosaceus 77F showed CPE reduction in the viral infected cells to <50% observed field area. This study concluded that the CFS of all tested lactobacilli, and live Lact. plantarum (22F and 25F) and Pediococcus strains 72N and 77F could reduce infectivity of the pandemic strain of PEDV from pigs in Thailand on the target Vero cells. © 2017, Springer Science+Business Media New York.","Antiviral activity; Cell-free supernatants; Lactic acid bacteria; Porcine epidemic diarrhea virus; Probiotics","lactic acid; neutral red; probiotic agent; animal cell; antiviral activity; Article; bacterial cell; bacterium adherence; bacterium isolation; controlled study; cytotoxicity; cytotoxicity assay; Enterococcus faecium; fluorescence microscopy; immunofluorescence test; Lactobacillus plantarum; nonhuman; pandemic; Pediococcus acidilactici; Pediococcus pentosaceus; Porcine epidemic diarrhea virus; priority journal; supernatant; virus infectivity; animal; Chlorocebus aethiops; classification; Coronavirus infection; hamster; Lactobacillales; physiology; pig; Porcine epidemic diarrhea virus; swine disease; Thailand; Vero cell line; veterinary medicine; virology; Animals; Cercopithecus aethiops; Coronavirus Infections; Cricetinae; Lactobacillales; Pandemics; Porcine epidemic diarrhea virus; Probiotics; Swine; Swine Diseases; Thailand; Vero Cells","Shen, H., Zhang, C., Guo, P., Liu, Z., Zhang, J., Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro (2015) Virus Genes, 51 (2), pp. 252-259; Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol J, 12 (1), p. 193; Di-qiu, L., Jun-wei, G., Xin-yuan, Q., Yan-ping, J., Song-mei, L., Yi-jing, L., High-level mucosal and systemic immune responses induced by oral administration with lactobacillus-expressed porcine epidemic diarrhea virus (PEDV) S1 region combined with lactobacillus-expressed N protein (2012) Appl Microbiol Biot, 93 (6), pp. 2437-2446; Acheson, D.W., Luccioli, S., Microbial-gut interactions in health and disease. Mucosal immune responses (2004) Best Pract Res Cl Ga, 18 (2), pp. 387-404; Kaila, M., Isolauri, E., Saxelin, M., Arvilommi, H., Vesikari, T., Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea (1995) Arch Dis Child, 72 (1), pp. 51-53; Cross, M.L., Immunoregulation by probiotic lactobacilli: pro-Th1 signals and their relevance to human health (2002) Clin Appl Immunol Rev, 3 (3), pp. 115-125; Tannock, G.W., Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D (1997) Trends Biotechnol, 15 (7), pp. 270-274; Choi, H.-J., Song, J.-H., Ahn, Y.-J., Baek, S.-H., Kwon, D.-H., Antiviral activities of cell-free supernatants of yogurts metabolites against some RNA viruses (2009) Eur Food Res Technol, 228 (6), pp. 945-950; Chang, T.L.-Y., Chang, C.-H., Simpson, D.A., Xu, Q., Martin, P.K., Lagenaur, L.A., Schoolnik, G.K., Holodniy, M., Inhibition of HIV infectivity by a natural human isolate of lactobacillus jensenii engineered to express functional two-domain CD4 (2003) P Natl A Sci, 100 (20), pp. 11672-11677; Isolauri, E., Probiotics for infectious diarrhoea (2003) Gut, 52 (3), pp. 436-437; Chai, W., Burwinkel, M., Wang, Z., Palissa, C., Esch, B., Twardziok, S., Rieger, J., Schmidt, M.F.G., Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus (2012) Arch Virol, 158 (4), pp. 799-807; Botić, T., Danø, T., Weingartl, H., Cencič, A., A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria (2007) Int J Food Microbiol, 115 (2), pp. 227-234; Maragkoudakis, P.A., Chingwaru, W., Gradisnik, L., Tsakalidou, E., Cencic, A., Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection (2010) Int J Food Microbiol, 141, pp. S91-S97; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J Clin Microbiol, 26 (11), pp. 2235-2239; Reed, L., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am J Hyg, 27, pp. 493-497; Wang, C.-Y., Lin, P.-R., Ng, C.-C., Shyu, Y.-T., Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage (2010) Anaerobe, 16 (6), pp. 578-585; Lin, W.-H., Hwang, C.-F., Chen, L.-W., Tsen, H.-Y., Viable counts, characteristic evaluation for commercial lactic acid bacteria products (2006) Food Microbiol, 23 (1), pp. 74-81; Borenfreund, E., Puerner, J.A., Toxicity determined in vitro by morphological alterations and neutral red absorption (1985) Toxicol Lett, 24 (2), pp. 119-124; Seo, B.J., Mun, M.R., Kim, C.-J., Lee, I., Kim, H., Park, Y.-H., Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens (2010) Trop Anim Health Pro, 42 (8), pp. 1855-1860; Fayol-Messaoudi, D., Berger, C.N., Coconnier-Polter, M.-H., Lievin-Le Moal, V., Servin, A.L., pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica serovar Typhimurium (2005) Appl Environ Microbiol, 71 (10), pp. 6008-6013; Ermolenko, E., Furaeva, V., Isakov, V., Ermolenko, D., Suvorov, A., Inhibition of herpes simplex virus type 1 reproduction by probiotic bacteria in vitro (2009) Vopr Virusol, 55 (4), pp. 25-28; Saarela, M., Mogensen, G., Fonden, R., Mättö, J., Mattila-Sandholm, T., Probiotic bacteria: safety, functional and technological properties (2000) J Biotech, 84 (3), pp. 197-215; Dembinski, J.L., Hungnes, O., Hauge, A.G., Kristoffersen, A.-C., Haneberg, B., Mjaaland, S., Hydrogen peroxide inactivation of influenza virus preserves antigenic structure and immunogenicity (2014) J Virol Methods, 207, pp. 232-237; Yang, S.-C., Lin, C.-H., Sung, C.T., Fang, J.-Y., Antibacterial activities of bacteriocins: application in foods and pharmaceuticals (2014) Front Microbiol, 5, p. 241; Aboubakr, H.A., El-Banna, A.A., Youssef, M.M., Al-Sohaimy, S.A., Goyal, S.M., Antiviral effects of Lactococcus lactis on feline calicivirus, a human norovirus surrogate (2014) Food Environ Virol, 6 (4), pp. 282-289; Allayeh, A.K., Dardeer, E.E., Kotb, N.S., Effects of cell-free supernatants of yogurts metabolites on Coxsackie B3 virus in vitro and in vivo (2015) Middle East J Appl Sci, 5, pp. 353-358; Charteris, W., Kelly, P., Morelli, L., Collins, J., Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract (1998) J Appl Microbiol, 84 (5), pp. 759-768; Lee, Y., Lim, C., Teng, W., Ouwehand, A., Tuomola, E., Salminen, S., Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria (2000) Appl Environ Microbiol, 66 (9), pp. 3369-3692","Prapasarakul, N.; Faculty of Veterinary Science, Department of Veterinary Microbiology, Chulalongkorn UniversityThailand; email: Nuvee.P@chula.ac.th",,"Springer New York LLC",18671306,,,"28434154","English","Probiotics Antimicrob. Proteins",Article,"Final",,Scopus,2-s2.0-85018803498 "Prussin A.J., II, Schwake D.O., Lin K., Gallagher D.L., Buttling L., Marr L.C.","23490029200;56612027300;57194494754;56575959200;57202300339;13308311400;","Survival of the enveloped virus Phi6 in droplets as a function of relative humidity, absolute humidity, and temperature",2018,"Applied and Environmental Microbiology","84","12", e00551-18,"","",,6,"10.1128/AEM.00551-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047814448&doi=10.1128%2fAEM.00551-18&partnerID=40&md5=62432b7f2fb924e06bba2f0d5020b9b1","Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States","Prussin, A.J., II, Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Schwake, D.O., Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Lin, K., Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Gallagher, D.L., Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Buttling, L., Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Marr, L.C., Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States","Infectious diseases caused by enveloped viruses, such as influenza, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), cause thousands of deaths and billions of dollars of economic losses per year. Studies have found a relationship among temperature, humidity, and influenza virus incidence, transmission, or survival; however, there are contradictory claims about whether absolute humidity (AH) or relative humidity (RH) is most important in mediating virus infectivity. Using the enveloped bacteriophage Phi6, which has been suggested as a surrogate for influenza viruses and coronaviruses, we designed a study to discern whether AH, RH, or temperature is a better predictor of virus survival in droplets. Our results show that Phi6 survived best at high (>85%) and low (<60%) RHs, with a significant decrease in infectivity at mid-range RHs (~60 to 85%). At an AH of less than 22 g · m-3, the loss in infectivity was less than 2 orders of magnitude; however, when the AH was greater than 22 g · m-3, the loss in infectivity was typically greater than 6 orders of magnitude. At a fixed RH of 75%, infectivity was very sensitive to temperature, decreasing two orders of magnitude between 19°C and 25°C. We used random forest modeling to identify the best environmental predictors for modulating virus infectivity. The model explained 83% of variation in Phi6 infectivity and suggested that RH is the most important factor in controlling virus infectivity in droplets. This research provides novel information about the complex interplay between temperature, humidity, and the survival of viruses in droplets. © 2018 American Society for Microbiology.","Coronavirus; Humidity; Influenza; MERS; SARS","Atmospheric humidity; Decision trees; Drops; Losses; Viruses; Coronaviruses; Infectious disease; Influenza; MERS; Orders of magnitude; Random forest modeling; SARS; Severe acute respiratory syndrome; Diseases; bacteriophage; disease incidence; disease transmission; infectious disease; infectivity; influenza; relative humidity; severe acute respiratory syndrome; temperature effect; virus; Coronavirus; Orthomyxoviridae; Pseudomonas phage phi-6; fat droplet; bacteriophage; humidity; physiology; temperature; viral phenomena and functions; virology; virus inactivation; Bacteriophages; Humidity; Lipid Droplets; Temperature; Virus Inactivation; Virus Physiological Phenomena","Reed, C., Chaves, S.S., Kirley, P.D., Emerson, R., Aragon, D., Hancock, E.B., Butler, L., Bennett, N.M., Estimating influenza disease burden from population-based surveillance data in the United States (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0118369; Molinari, N.-A.M., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., Bridges, C.B., The annual impact of seasonal influenza in the US: measuring disease burden and costs (2007) Vaccine, 25, pp. 5086-5096. , https://doi.org/10.1016/j.vaccine.2007.03.046; Keogh-Brown, M.R., Smith, R.D., The economic impact of SARS: how does the reality match the predictions? (2008) Health Policy, 88, pp. 110-120. , https://doi.org/10.1016/j.healthpol.2008.03.003; Lipsitch, M., Viboud, C., Influenza seasonality: lifting the fog (2009) Proc Natl Acad Sci U S A, 106, pp. 3645-3646. , https://doi.org/10.1073/pnas.0900933106; Dushoff, J., Plotkin, J.B., Levin, S.A., Earn, D.J., Dynamical resonance can account for seasonality of influenza epidemics (2004) Proc Natl Acad Sci U S A, 101, pp. 16915-16916. , https://doi.org/10.1073/pnas.0407293101; Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J., Naumova, E.N., Influenza seasonality: underlying causes and modeling theories (2007) J Virol, 81, pp. 5429-5436. , https://doi.org/10.1128/JVI.01680-06; Chong, K.C., Goggins, W., Zee, B.C.Y., Wang, M.H., Identifying meteorological drivers for the seasonal variations of influenza infections in a subtropical city-Hong Kong (2015) Int J Environ Res Public Health, 12, pp. 1560-1576. , https://doi.org/10.3390/ijerph120201560; Dowell, S.F., Ho, M.S., Seasonality of infectious diseases and severe acute respiratory syndrome-what we don't know can hurt us (2004) Lancet Infect Dis, 4, pp. 704-708. , https://doi.org/10.1016/S1473-3099(04)01177-6; Tamerius, J., Nelson, M.I., Zhou, S.Z., Viboud, C., Miller, M.A., Alonso, W.J., Global influenza seasonality: reconciling patterns across temperate and tropical regions (2011) Environ Health Perspect, 119, p. 439. , https://doi.org/10.1289/ehp.1002383; Viboud, C., Alonso, W.J., Simonsen, L., Influenza in tropical regions (2006) PLoS Med, 3. , https://doi.org/10.1371/journal.pmed.0030089; Moura, F.E., Perdigão, A.C., Siqueira, M.M., Seasonality of influenza in the tropics: a distinct pattern in northeastern Brazil (2009) Am J Trop Med Hyg, 81, pp. 180-183; Shaman, J., Kohn, M., Absolute humidity modulates influenza survival, transmission, and seasonality (2009) Proc Natl Acad Sci U S A, 106, pp. 3243-3248. , https://doi.org/10.1073/pnas.0806852106; Yang, W., Elankumaran, S., Marr, L.C., Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0046789; Yang, W., Marr, L.C., Mechanisms by which ambient humidity may affect viruses in aerosols (2012) Appl Environ Microbiol, 78, pp. 6781-6788. , https://doi.org/10.1128/AEM.01658-12; Shaman, J., Pitzer, V.E., Viboud, C., Grenfell, B.T., Lipsitch, M., Absolute humidity and the seasonal onset of influenza in the continental United States (2010) PLoS Biol, 8. , https://doi.org/10.1371/journal.pbio.1000316; Lowen, A.C., Mubareka, S., Steel, J., Palese, P., Influenza virus transmission is dependent on relative humidity and temperature (2007) PLoS Pathog, 3. , https://doi.org/10.1371/journal.ppat.0030151; Yang, W., Marr, L.C., Dynamics of airborne influenza A viruses indoors and dependence on humidity (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0021481; Deyle, E.R., Maher, M.C., Hernandez, R.D., Basu, S., Sugihara, G., Global environmental drivers of influenza (2016) Proc Natl Acad Sci U S A, 113, pp. 13081-13086. , https://doi.org/10.1073/pnas.1607747113; Lester, W., The influence of relative humidity on the infectivity of air-borne influenza A virus (PR8 strain) (1948) J Exp Med, 88, pp. 361-368. , https://doi.org/10.1084/jem.88.3.361; Loosli, C., Lemon, H., Robertson, O., Appel, E., Experimental air-borne influenza infection. I. Influence of humidity on survival of virus in air (1943) Exp Biol Med (Maywood), 53, pp. 205-206. , https://doi.org/10.3181/00379727-53-14251P; Schaffer, F., Soergel, M., Straube, D., Survival of airborne influenza virus: effects of propagating host, relative humidity, and composition of spray fluids (1976) Arch Virol, 51, pp. 263-273. , https://doi.org/10.1007/BF01317930; Shechmeister, I., Studies on the experimental epidemiology of respiratory infections. III. Certain aspects of the behavior of type A influenza virus as an air-borne cloud (1950) J Infect Dis, 87, pp. 128-132; Hemmes, J., Winkler, K., Kool, S., Virus survival as a seasonal factor in influenza and poliomyelitis (1960) Nature, 188, pp. 430-431. , https://doi.org/10.1038/188430a0; Harper, G.J., Airborne micro-organisms: survival tests with four viruses (1961) J Hyg (Lond), 59, pp. 479-486; Casanova, L.M., Jeon, S., Rutala, W.A., Weber, D.J., Sobsey, M.D., Effects of air temperature and relative humidity on coronavirus survival on surfaces (2010) Appl Environ Microbiol, 76, pp. 2712-2717. , https://doi.org/10.1128/AEM.02291-09; Chan, K., Peiris, J., Lam, S., Poon, L., Yuen, K., Seto, W., The effects of temperature and relative humidity on the viability of the SARS coronavirus (2011) Adv Virol, 2011. , https://doi.org/10.1155/2011/734690; McDevitt, J., Rudnick, S., First, M., Spengler, J., Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures (2010) Appl Environ Microbiol, 76, pp. 3943-3947. , https://doi.org/10.1128/AEM.02674-09; Irwin, C.K., Yoon, K.-J., Wang, C., Hoff, S.J., Zimmerman, J.J., Denagamage, T., O'Connor, A.M., Using the systematic review methodology to evaluate factors that influence the persistence of influenza virus in environmental matrices (2011) Appl Environ Microbiol, 77, pp. 1049-1060. , https://doi.org/10.1128/AEM.02733-09; Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Engelmann, W.H., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants (2001) J Expo Sci Environ Epidemiol, 11, pp. 231-252. , https://doi.org/10.1038/sj.jea.7500165; Nguyen, J.L., Schwartz, J., Dockery, D.W., The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity (2014) Indoor Air, 24, pp. 103-112. , https://doi.org/10.1111/ina.12052; Turgeon, N., Toulouse, M.-J., Martel, B., Moineau, S., Duchaine, C., Comparison of five bacteriophages as models for viral aerosol studies (2014) Appl Environ Microbiol, 80, pp. 4242-4250. , https://doi.org/10.1128/AEM.00767-14; Adcock, N.J., Rice, E.W., Sivaganesan, M., Brown, J.D., Stallknecht, D.E., Swayne, D.E., The use of bacteriophages of the family Cystoviridae as surrogates for H5N1 highly pathogenic avian influenza viruses in persistence and inactivation studies (2009) J Environ Sci Health A Tox Hazard Subst Environ Eng, 44, pp. 1362-1366. , https://doi.org/10.1080/10934520903217054; Casanova, L.M., Weaver, S.R., Evaluation of eluents for the recovery of an enveloped virus from hands by whole-hand sampling (2015) J Appl Microbiol, 118, pp. 1210-1216. , https://doi.org/10.1111/jam.12777; James, G., Witten, D., Hastie, T., Tibshirani, R., (2013) An introduction to statistical learning: with applications in R, , Springer Science & Business Media, New York, NY; Lindsley, W.G., Pearce, T.A., Hudnall, J.B., Davis, K.A., Davis, S.M., Fisher, M.A., Khakoo, R., Beezhold, D.H., Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness (2012) J Occup Environ Hyg, 9, pp. 443-449. , https://doi.org/10.1080/15459624.2012.684582; Milton, D.K., Fabian, M.P., Cowling, B.J., Grantham, M.L., McDevitt, J.J., Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003205; Weber, T.P., Stilianakis, N.I., Inactivation of influenza A viruses in the environment and modes of transmission: a critical review (2008) J Infect, 57, pp. 361-373. , https://doi.org/10.1016/j.jinf.2008.08.013; Aguilera, J., Karel, M., Preservation of biological materials under desiccation (1997) Crit Rev Food Sci Nutr, 37, pp. 287-309. , https://doi.org/10.1080/10408399709527776; Morgan, C.A., Herman, N., White, P., Vesey, G., Preservation of microorganisms by drying; a review (2006) J Microbiol Methods, 66, pp. 183-193. , https://doi.org/10.1016/j.mimet.2006.02.017; Greiff, D., Rightsel, W.A., Stability of suspensions of influenza virus dried to different contents of residual moisture by sublimation in vacuo (1968) Appl Microbiol, 16, pp. 835-840; Reynolds, S.J., Black, D.W., Borin, S.S., Breuer, G., Burmeister, L.F., Fuortes, L.J., Smith, T.F., Thorne, P.S., Indoor environmental quality in six commercial office buildings in the midwest United States (2001) Appl Occup Environ Hyg, 16, pp. 1065-1077. , https://doi.org/10.1080/104732201753214170; Dai, D., Prussin, A.J., II, Marr, L.C., Vikesland, P.J., Edwards, M.A., Pruden, A., Factors shaping the human exposome in the built environment: opportunities for engineering control (2017) Environ Sci Technol, 51, pp. 7759-7774. , https://doi.org/10.1021/acs.est.7b01097; Pasanen, A.-L., Kalliokoski, P., Pasanen, P., Jantunen, M., Nevalainen, A., Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity (1991) Environ Int, 17, pp. 225-228. , https://doi.org/10.1016/0160-4120(91)90006-C; Theunissen, H., Lemmens-den Toom, N.A., Burggraaf, A., Stolz, E., Michel, M., Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols (1993) Appl Environ Microbiol, 59, pp. 2589-2593; Mold course chapter 2: why and where mold grows, , U.S. EPA, Office of Radiation and Indoor Air Indoor Environments Division, Washington, DC; Aquino Carvalho, N., Stachler, E.N., Cimabue, N., Bibby, K., Evaluation of Phi6 persistence and suitability as an enveloped virus surrogate (2017) Environ Sci Technol, 51, pp. 8692-8700. , https://doi.org/10.1021/acs.est.7b01296; Brooke, C.B., Biological activities of 'noninfectious' influenza A virus particles (2014) Future Virol, 9, pp. 41-51. , https://doi.org/10.2217/fvl.13.118; Fonville, J.M., Marshall, N., Tao, H., Steel, J., Lowen, A.C., Influenza virus reassortment is enhanced by semi-infectious particles but can be suppressed by defective interfering particles (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005204; Pandis, S.N., Seinfeld, J.H., (2006) Atmospheric chemistry and physics: from air pollution to climate change, , John Wiley & Sons, Inc., Hoboken, NJ; Kormuth, K.A., Lin, K., Prussin, A.J., II, Vejerano, E.P., Tiwari, A.J., Cox, S.S., Myerburg, M.M., Marr, L.C., Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity J Infect Dis, in press; (2014) R: a language and environment for statistical computing, , R Foundation for Statistical Computing, Vienna, Austria","Prussin, A.J.; Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State UniversityUnited States; email: aprussin@vt.edu",,"American Society for Microbiology",00992240,,AEMID,"29625986","English","Appl. Environ. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85047814448 "Li P., Shan Y., Zheng W., Ou X., Mi D., Mu Z., Holmes K.V., Qian Z.","57202036412;57189491487;57189497402;56770753800;57202038136;55844934700;7201657724;7201384775;","Identification of H209 as essential for pH 8-triggered receptorindependent syncytium formation by S protein of mouse hepatitis virus A59",2018,"Journal of Virology","92","11", e00209-18,"","",,1,"10.1128/JVI.00209-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046889155&doi=10.1128%2fJVI.00209-18&partnerID=40&md5=70bac85afbd7568d2f20a25f2cb01c51","MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Microbiology, University of Colorado School of Medicine, Aurora, CO, United States","Li, P., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Shan, Y., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Zheng, W., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Ou, X., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Mi, D., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Mu, Z., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Holmes, K.V., Department of Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Qian, Z., MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China","The spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.0 has not yet been determined. Here, we show that MHV-A59 S protein is triggered by pH 8.0 at 37°C to induce receptor-independent syncytium (RIS) formation on 293T cells, and that the conformational changes in S proteins triggered by pH 8.0 are very similar to those triggered by receptor binding. We systemically mutated each of 15 histidine residues in S protein and found that H209 is essential for pH 8.0-triggered RIS formation, while H179, H441, H643, and H759 also play important roles in this process. Replacement of H209 with Ala had no effect on receptor binding, but in murine 17Cl.1 cells mutant H209A MHV-A59 showed delayed growth kinetics and was readily outcompeted by wild-type virus when mixed together, indicating that the H209A mutation caused a defect in virus fitness. Finally, the H209A mutation significantly increased the thermostability of S protein in its prefusion conformation, which may raise the energy barrier for conformational change of S protein required for membrane fusion and lead to a decrease in virus fitness in cell culture. Thus, MHV-A59 may have evolved to lower the stability of its S protein in order to increase virus fitness. © 2018 American Society for Microbiology.","Coronavirus receptor-independent syncytium formation; Coronavirus S glycoprotein thermal stability; Coronavirus spike glycoprotein; Mouse hepatitis virus; S protein conformational change","alanine; histidine; virus spike protein; CD66 antigens; cell adhesion molecule; coronavirus spike glycoprotein; leukocyte antigen; membrane protein; protein binding; amino acid substitution; animal cell; Article; conformational transition; controlled study; human; human cell; membrane fusion; Murine hepatitis virus (strain A59); mutation; nonhuman; pH; priority journal; receptor binding; receptor independent syncytium; syncytium; thermostability; virogenesis; virus cell interaction; 3T3 cell line; amino acid sequence; animal; cat; cell line; genetics; giant cell; growth, development and aging; HEK293 cell line; metabolism; mouse; Murine hepatitis virus; pH; physiology; virology; 3T3 Cells; Amino Acid Sequence; Amino Acid Substitution; Animals; Antigens, CD; Cats; Cell Adhesion Molecules; Cell Line; Giant Cells; HEK293 Cells; Humans; Hydrogen-Ion Concentration; Membrane Fusion; Membrane Glycoproteins; Mice; Murine hepatitis virus; Mutation; Protein Binding; Spike Glycoprotein, Coronavirus","White, J., Matlin, K., Helenius, A., Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses (1981) J Cell Biol, 89, pp. 674-679. , https://doi.org/10.1083/jcb.89.3.674; White, J.M., Delos, S.E., Brecher, M., Schornberg, K., Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme (2008) Crit Rev Biochem Mol Biol, 43, pp. 189-219. , https://doi.org/10.1080/10409230802058320; Srinivasakumar, N., Ogra, P.L., Flanagan, T.D., Characteristics of fusion of respiratory syncytial virus with HEp-2 cells as measured by R18 fluorescence dequenching assay (1991) J Virol, 65, pp. 4063-4069; Stein, B.S., Gowda, S.D., Lifson, J.D., Penhallow, R.C., Bensch, K.G., Engleman, E.G., pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane (1987) Cell, 49, pp. 659-668. , https://doi.org/10.1016/0092-8674(87)90542-3; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, pp. 825-858. , In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (ed), 6th ed, vol 1. Lippincott Williams & Wilkins, Philadelphia, PA; (2011) Virus taxonomy: 2011 release, , http://ictvonline.org/virusTaxonomy.asp?version2011, Elsevier Academic Press, San Diego, CA; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci U S A, 88, pp. 5533-5536. , https://doi.org/10.1073/pnas.88.13.5533; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J Virol, 77, pp. 8801-8811. , https://doi.org/10.1128/JVI.77.16.8801-8811.2003; de Haan, C.A., Stadler, K., Godeke, G.J., Bosch, B.J., Rottier, P.J., Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion (2004) J Virol, 78, pp. 6048-6054. , https://doi.org/10.1128/JVI.78.11.6048-6054.2004; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc Natl Acad Sci U S A, 108, pp. 10696-10701. , https://doi.org/10.1073/pnas.1104306108; Kubo, H., Yamada, Y.K., Taguchi, F., Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein (1994) J Virol, 68, pp. 5403-5410; Wicht, O., Burkard, C., de Haan, C.A., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Identification and characterization of a proteolytically primed form of the murine coronavirus spike proteins after fusion with the target cell (2014) J Virol, 88, pp. 4943-4952. , https://doi.org/10.1128/JVI.03451-13; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106, pp. 5871-5876. , https://doi.org/10.1073/pnas.0809524106; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113, pp. 12262-12267. , https://doi.org/10.1073/pnas.1608147113; Ou, X., Zheng, W., Shan, Y., Mu, Z., Dominguez, S.R., Holmes, K.V., Qian, Z., Identification of the fusion peptide-containing region in betacoronavirus spike glycoproteins (2016) J Virol, 90, pp. 5586-5600. , https://doi.org/10.1128/JVI.00015-16; Phillips, J.M., Gallagher, T., Weiss, S.R., Neurovirulent murine coronavirus JHM.SD uses cellular zinc metalloproteases for virus entry and cell-cell fusion (2017) J Virol, , https://doi.org/10.1128/JVI.01564-16, 1 February; Qiu, Z., Hingley, S.T., Simmons, G., Yu, C., Das Sarma, J., Bates, P., Weiss, S.R., Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry (2006) J Virol, 80, pp. 5768-5776. , https://doi.org/10.1128/JVI.00442-06; Sturman, L.S., Ricard, C.S., Holmes, K.V., Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion (1990) J Virol, 64, pp. 3042-3050; Zelus, B.D., Schickli, J.H., Blau, D.M., Weiss, S.R., Holmes, K.V., Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37°C either by soluble murine CEACAM1 receptors or by pH 8 (2003) J Virol, 77, pp. 830-840. , https://doi.org/10.1128/JVI.77.2.830-840.2003; Pu, Y., Zhang, X., Mouse hepatitis virus type 2 enters cells through a clathrin-mediated endocytic pathway independent of Eps15 (2008) J Virol, 82, pp. 8112-8123. , https://doi.org/10.1128/JVI.00837-08; Eifart, P., Ludwig, K., Bottcher, C., de Haan, C.A., Rottier, P.J., Korte, T., Herrmann, A., Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry (2007) J Virol, 81, pp. 10758-10768. , https://doi.org/10.1128/JVI.00725-07; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004502; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114, pp. 11157-11162. , https://doi.org/10.1073/pnas.1708727114; Nelson, D.L., Cox, M.M., (2012) Lehninger principles of biochemistry, , 6th ed W. H. Freeman & Co, New York, NY; Bressanelli, S., Stiasny, K., Allison, S.L., Stura, E.A., Duquerroy, S., Lescar, J., Heinz, F.X., Rey, F.A., Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation (2004) EMBO J, 23, pp. 728-738. , https://doi.org/10.1038/sj.emboj.7600064; Carneiro, F.A., Stauffer, F., Lima, C.S., Juliano, M.A., Juliano, L., Da Poian, A.T., Membrane fusion induced by vesicular stomatitis virus depends on histidine protonation (2003) J Biol Chem, 278, pp. 13789-13794. , https://doi.org/10.1074/jbc.M210615200; Mair, C.M., Meyer, T., Schneider, K., Huang, Q., Veit, M., Herrmann, A., A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion (2014) J Virol, 88, pp. 13189-13200. , https://doi.org/10.1128/JVI.01704-14; Kampmann, T., Mueller, D.S., Mark, A.E., Young, P.R., Kobe, B., The role of histidine residues in low-pH-mediated viral membrane fusion (2006) Structure, 14, pp. 1481-1487. , https://doi.org/10.1016/j.str.2006.07.011; Gallagher, T.M., Escarmis, C., Buchmeier, M.J., Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein (1991) J Virol, 65, pp. 1916-1928; Diehl, W.E., Lin, A.E., Grubaugh, N.D., Carvalho, L.M., Kim, K., Kyawe, P.P., McCauley, S.M., Luban, J., Ebola virus glycoprotein with increased infectivity dominated the 2013-2016 epidemic (2016) Cell, 167, pp. 1088-1098; Urbanowicz, R.A., McClure, C.P., Sakuntabhai, A., Sall, A.A., Kobinger, G., Muller, M.A., Holmes, E.C., Ball, J.K., Human adaptation of Ebola virus during the West African outbreak (2016) Cell, 167, pp. 1079-1087. , https://doi.org/10.1016/j.cell.2016.10.013; Wang, M.K., Lim, S.Y., Lee, S.M., Cunningham, J.M., Biochemical basis for increased activity of Ebola glycoprotein in the 2013-16 epidemic (2017) Cell Host Microbe, 21, pp. 367-375. , https://doi.org/10.1016/j.chom.2017.02.002; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , https://doi.org/10.1038/nature16988; Krueger, D.K., Kelly, S.M., Lewicki, D.N., Ruffolo, R., Gallagher, T.M., Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion (2001) J Virol, 75, pp. 2792-2802. , https://doi.org/10.1128/JVI.75.6.2792-2802.2001; Matsuyama, S., Taguchi, F., Communication between S1N330 and a region in S2 of murine coronavirus spike protein is important for virus entry into cells expressing CEACAM1b receptor (2002) Virology, 295, pp. 160-171. , https://doi.org/10.1006/viro.2002.1391; Ontiveros, E., Kim, T.S., Gallagher, T.M., Perlman, S., Enhanced virulence mediated by the murine coronavirus, mouse hepatitis virus strain JHM, is associated with a glycine at residue 310 of the spike glycoprotein (2003) J Virol, 77, pp. 10260-10269. , https://doi.org/10.1128/JVI.77.19.10260-10269.2003; Ambrose, C.S., Bright, H., Mallory, R., Letter to the editor: potential causes of the decreased effectiveness of the influenza A(H1N1)pdm09 strain in live attenuated influenza vaccines (2016) Euro Surveill, 21, p. 30394. , https://doi.org/10.2807/1560-7917.ES.2016.21.45.30394; Cotter, C.R., Jin, H., Chen, Z., A single amino acid in the stalk region of the H1N1pdm influenza virus HA protein affects viral fusion, stability and infectivity (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1003831; Di Lella, S., Herrmann, A., Mair, C.M., Modulation of the pH stability of influenza virus hemagglutinin: a host cell adaptation strategy (2016) Biophys J, 110, pp. 2293-2301. , https://doi.org/10.1016/j.bpj.2016.04.035; Farnsworth, A., Cyr, T.D., Li, C., Wang, J., Li, X., Antigenic stability of H1N1 pandemic vaccines correlates with vaccine strain (2011) Vaccine, 29, pp. 1529-1533. , https://doi.org/10.1016/j.vaccine.2010.12.120; Dessau, M., Goldhill, D., McBride, R., Turner, P.E., Modis, Y., Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme (2012) PLoS Genet, 8. , https://doi.org/10.1371/journal.pgen.1003102; Mair, C.M., Ludwig, K., Herrmann, A., Sieben, C., Receptor binding and pH stability-how influenza A virus hemagglutinin affects host-specific virus infection (2014) Biochim Biophys Acta, 1838, pp. 1153-1168. , https://doi.org/10.1016/j.bbamem.2013.10.004; Presloid, J.B., Mohammad, T.F., Lauring, A.S., Novella, I.S., Antigenic diversification is correlated with increased thermostability in a mammalian virus (2016) Virology, 496, pp. 203-214. , https://doi.org/10.1016/j.virol.2016.06.009; Wasik, B.R., Bhushan, A., Ogbunugafor, C.B., Turner, P.E., Delayed transmission selects for increased survival of vesicular stomatitis virus (2015) Evolution, 69, pp. 117-125. , https://doi.org/10.1111/evo.12544; Ou, X., Guan, H., Qin, B., Mu, Z., Wojdyla, J.A., Wang, M., Dominguez, S.R., Cui, S., Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1 (2017) Nat Commun, 8, p. 15216. , https://doi.org/10.1038/ncomms15216; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0076469; Qian, Z., Wang, H., Empig, C., Anderson, W.F., Albritton, L.M., Complementation of a binding-defective retrovirus by a host cell receptor mutant (2004) J Virol, 78, pp. 5766-5772. , https://doi.org/10.1128/JVI.78.11.5766-5772.2004; Masters, P.S., Koetzner, C.A., Kerr, C.A., Heo, Y., Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus (1994) J Virol, 68, pp. 328-337; Thackray, L.B., Turner, B.C., Holmes, K.V., Substitutions of conserved amino acids in the receptor-binding domain of the spike glycoprotein affect utilization of murine CEACAM1a by the murine coronavirus MHVA59 (2005) Virology, 334, pp. 98-110. , https://doi.org/10.1016/j.virol.2005.01.016; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier (2000) J Virol, 74, pp. 1393-1406. , https://doi.org/10.1128/JVI.74.3.1393-1406.2000","Qian, Z.; MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeChina; email: zqian2013@sina.com",,"American Society for Microbiology",0022538X,,JOVIA,"29514915","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85046889155 "Andersen L.A., Levy J.K., McManus C.M., McGorray S.P., Leutenegger C.M., Piccione J., Blackwelder L.K., Tucker S.J.","57197034884;56861630600;56190194200;18034123100;7006706489;57211247292;57201822379;7202406919;","Prevalence of enteropathogens in cats with and without diarrhea in four different management models for unowned cats in the southeast United States",2018,"Veterinary Journal","236",,,"49","55",,2,"10.1016/j.tvjl.2018.04.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046171426&doi=10.1016%2fj.tvjl.2018.04.008&partnerID=40&md5=14f49c7217cc943a9ea305b5c32e9d16","Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States; Department of Biostatistics, Colleges of Medicine and Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States; IDEXX Laboratories, Inc., West Sacramento, CA 95605, United States","Andersen, L.A., Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States; Levy, J.K., Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States; McManus, C.M., Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States; McGorray, S.P., Department of Biostatistics, Colleges of Medicine and Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States; Leutenegger, C.M., IDEXX Laboratories, Inc., West Sacramento, CA 95605, United States; Piccione, J., Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States; Blackwelder, L.K., Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States; Tucker, S.J., Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States","The objective of this study was to determine the prevalence of enteropathogens in cats with and without diarrhea in four different models for managing unowned cats: short-term animal shelter, long-term sanctuary, home-based foster care, and trap-neuter-return. Fecal samples from 482 cats, approximately half of the cats with normal fecal consistency and half with diarrhea, were tested by zinc sulfate centrifugation and by real-time PCR for a panel of enteropathogens. At least one enteropathogen of feline or zoonotic importance was detected in a majority of cats, regardless of management model. For most enteropathogens, the presence or absence of diarrhea was not significantly associated with infection, the exceptions being Tritrichomonas foetus in sanctuary cats with diarrhea (26%) and normal fecal consistency (10%), respectively (P ≤ 0.04), and feline coronavirus in foster cats (80% and 58%) (P ≤ 0.001). The types of enteropathogens detected were related to the type of management model, e.g., viral and protozoal infections were most common in shelters, sanctuaries, and foster homes (confinement systems), whereas helminth infections were most common in trap-neuter-return programs (free-roaming cats). These results suggest that management practices for unowned cats are inadequate for control of enteropathogens and that the presence of diarrhea is a poor indicator of enteropathogen carriage. Risk-management strategies to reduce transmission to people and other animals should focus on sanitation, housing, compliance with preventive care guidelines, periodic surveillance, response to specific enteropathogens, humane population management of free-roaming community cats, public health education, and minimizing the duration and number of cats in mass confinement. © 2018 Elsevier Ltd","Animal shelter; Diarrhea; Enteropathogens; Foster home; Sanctuary; Trap-neuter-return","zinc sulfate; animal cell; animal housing; animal trapping; animal welfare; Article; cat; centrifugation; clinical indicator; community care; diarrhea; disease association; disease control; disease transmission; enteropathogen; feces analysis; Feline coronavirus; foster care; health education; helminthiasis; home; long term sanctuary; nonhuman; polymerase chain reaction; prevalence; preventive health service; protozoal infection; real time polymerase chain reaction; risk management; sanitation; short term shelter; trap neuter return; Tritrichomonas foetus; United States; virus infection; animal; cat disease; diarrhea; feces; growth, development and aging; isolation and purification; microbiology; parasitology; prevalence; veterinary medicine; Animals; Cat Diseases; Cats; Coronavirus, Feline; Diarrhea; Feces; Prevalence; Tritrichomonas foetus; United States","Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Lutz, H., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) Journal of Feline Medicine and Surgery, 11, pp. 594-604; Anderson, T.C., Foster, G.W., Forrester, D.J., Hookworms of feral cats in Florida (2003) Veterinary Parasitology, 115, pp. 19-24; Arranz-Solís, D., Pedraza-Díaz, S., Miró, G., Rojo-Montejo, S., Hernández, L., Ortega-Mora, L.M., Collantes-Fernández, E., Tritrichomonas foetus infection in cats with diarrhea from densely housed origins (2016) Veterinary Parasitology, 221, pp. 118-122; Canadian Veterinary Medical Association, A Code of Practice for Canadian Cattery Operations (2009), pp. 1-35. , Canadian Veterinarr Medical Association Ottawa, ON; Castro, T.X., Cubel Garcia, R.D.C.N., Fumian, T.M., Costa, E.M., Mello, R., White, P.A., Leite, J.P., Detection and molecular characterization of caliciviruses (vesivirus and norovirus) in an outbreak of acute diarrhea in kittens from Brazil (2015) The Veterinary Journal, 206, pp. 115-117; Cave, T.A., Golder, M.C., Simpson, J., Addie, D.D., Risk factors for feline coronavirus seropositivity in cats relinquished to a UK rescue charity (2004) Journal of Feline Medicine and Surgery, 6, pp. 53-58; De Santis, A.C., Raghavan, M., Caldanaro, R.J., Glickman, N.W., Moore, G.E., Lewis, H.B., Schantz, P.M., Glickman, L.T., Estimated prevalence of nematode parasitism among pet cats in the United States (2006) Journal of the American Veterinary Medical Association, 228, pp. 885-892; German, A.C., Iturriza-Gómara, M., Dove, W., Sandrasegaram, M., Nakagomi, T., Nakagomi, O., Cunliffe, N., Morgan, K.L., Molecular epidemiology of rotavirus in cats in the United Kingdom (2015) Journal of Clinical Microbiology, 53, pp. 455-464; Gow, A.G., Gow, D.J., Hall, E.J., Langton, D., Clarke, C., Papasouliotis, K., Prevalence of potentially pathogenic enteric organisms in clinically healthy kittens in the UK (2009) Journal of Feline Medicine and Surgery, 11, pp. 655-662; Griffin, B., Bushby, P.A., McCobb, E., White, S.C., Rigdon-Brestle, Y.K., Appel, L.D., Makolinski, K.V., Eddlestone, S.M., The Association of Shelter Veterinarians’ 2016 veterinary medical care guidelines for spay-neuter programs (2016) Journal of the American Veterinary Medical Association, 249, pp. 165-188; Hill, S.L., Cheney, J.M., Taton-Allen, G.F., Reif, J.S., Bruns, C., Lappin, M.R., Prevalence of enteric zoonotic organisms in cats (2000) Journal of the American Veterinary Medical Association, 216, pp. 687-692; Hosie, M.J., Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Lutz, H., Matrix vaccination guidelines: ABCD recommendations for indoor/outdoor cats, rescue shelter cats and breeding catteries (2013) Journal of Feline Medicine and Surgery, 15, pp. 540-544; Leary, S., Underwood, W., Athony, R., Corey, D., Grandin, T., Greenacre, C., Gwaltney-Brant, S., Miller, D., AVMA Guidelines for the Euthanasia of Animals: 2013 Edition (2013), pp. 1-102. , American Veterinary Medical Association Schaumburg, IL; Levy, J., Crawford, C., Hartmann, K., Hofmann-Lehmann, R., Little, S., Sundahl, E., Thayer, V., 2008 American Association of Feline Practitioners’ feline retrovirus management guidelines (2008) Journal of Feline Medicine and Surgery, 10, pp. 300-316; Litster, A.L., Nichols, J., Hall, K., Camp, J., Mohamed, A.S., Use of ponazuril paste to treat coccidiosis in shelter-housed cats and dogs (2014) Veterinary Parasitology, 202, pp. 319-325; Little, S., Adolph, C., Downie, K., Snider, T., Reichard, M., High prevalence of covert infection with gastrointestinal helminths in cats (2015) Journal of the American Animal Hospital Association, 51, pp. 359-364; Martella, V., Bányai, K., Matthijnssens, J., Buonavoglia, C., Ciarlet, M., Zoonotic aspects of rotaviruses (2010) Veterinary Microbiology, 140, pp. 246-255; Mekaru, S.R., Marks, S.L., Felley, A.J., Chouicha, N., Kass, P.H., Comparison of direct immunofluorescence, immunoassays, and fecal flotation for detection of Cryptosporidium spp. and Giardia spp. in naturally exposed cats in 4 Northern California animal shelters (2007) Journal of Veterinary Internal Medicine, 21, pp. 959-965; Möstl, K., Egberink, H., Addie, D., Frymus, T., Boucraut-Baralon, C., Truyen, U., Hartmann, K., Radford, A.D., Prevention of infectious diseases in cat shelters: ABCD guidelines (2013) Journal of Feline Medicine and Surgery, 15, pp. 546-554; Newbury, S., Blinn, M.K., Bushby, P.A., Cox, C.B., Dinnage, J.D., Griffin, B., Hurley, K.F., Miller, L., Guidelines for Standards of Care in Animal Shelters (2010), The Association of Shelter Veterinarians Washington; Ng, T.F., Mesquita, J.R., Nascimento, M.S., Kondov, N.O., Wong, W., Reuter, G., Knowles, N.J., Deng, X., Feline fecal virome reveals novel and prevalent enteric viruses (2014) Veterinary Microbiology, 171, pp. 102-111; Otto, P.H., Rosenhain, S., Elschner, M.C., Hotzel, H., Machnowska, P., Trojnar, E., Hoffmann, K., Johne, R., Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains (2015) Veterinary Microbiology, 179, pp. 168-176; Palmer, C.S., Traub, R.J., Robertson, I.D., Devlin, G., Rees, R., Thompson, R.C., Determining the zoonotic significance of Giardia and Cryptosporidium in Australian dogs and cats (2008) Veterinary Parasitology, 154, pp. 142-147; Paris, J.K., Wills, S., Balzer, H.J., Shaw, D.J., Gunn-Moore, D.A., Enteropathogen co-infection in UK cats with diarrhoea (2014) BMC Veterinary Research, 10, p. 13; Pedersen, N.C., Sato, R., Foley, J.E., Poland, A.M., Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus (2004) Journal of Feline Medicine and Surgery, 6, pp. 83-88; Polak, K.C., Levy, J.K., Crawford, P.C., Leutenegger, C.M., Moriello, K.A., Infectious diseases in large-scale cat hoarding investigations (2014) The Veterinary Journal, 201, pp. 189-195; Queen, E.V., Marks, S.L., Farver, T.B., Prevalence of selected bacterial and parasitic agents in feces from diarrheic and healthy control cats from Northern California (2012) Journal of Veterinary Internal Medicine, 26, pp. 54-60; Raab, O., Greenwood, S., Vanderstichel, R., Gelens, H., A cross-sectional study of Tritrichomonas foetus infection in feral and shelter cats in Prince Edward Island, Canada (2016) Canadian Veterinary Journal, 57, pp. 265-270; Sabshin, S.J., Levy, J.K., Tupler, T., Tucker, S.J., Greiner, E.C., Leutenegger, C.M., Enteropathogens identified in cats entering a Florida animal shelter with normal feces or diarrhea (2012) Journal of the American Veterinary Medical Association, 241, pp. 331-337; Scherk, M.A., Ford, R.B., Gaskell, R.M., Hartmann, K., Hurley, K.F., Lappin, M.R., Levy, J.K., Sparkes, A.H., 2013 AAFP feline vaccination advisory panel report (2013) Journal of Feline Medicine and Surgery, 15, pp. 785-808; Silva, R.O., Lobato, F.C., Clostridium perfringens: a review of enteric diseases in dogs, cats and wild animals (2015) Anaerobe, 33, pp. 14-17; Smith, H., Holland, C., Taylor, M., Magnaval, J.F., Schantz, P., Maizels, R., How common is human toxocariasis? Towards standardizing our knowledge (2009) Trends in Parasitology, 25, pp. 182-188; Spada, E., Proverbio, D., Della Pepa, A., Domenichini, G., Bagnagatti De Giorgi, G., Traldi, G., Ferro, E., Prevalence of faecal-borne parasites in colony stray cats in northern Italy (2013) Journal of Feline Medicine and Surgery, 15, pp. 672-677; Spain, C.V., Scarlett, J.M., Wade, S.E., McDonough, P., Prevalence of enteric zoonotic agents in cats less than 1 year old in central New York State (2001) Journal of Veterinary Internal Medicine, 15, pp. 33-38; Sparkes, A.H., Bessant, C., Cope, K., Ellis, S.L., Finka, L., Halls, V., Hiestand, K., MacFarlaine, I., ISFM guidelines on population management and welfare of unowned domestic cats (Felis catus) (2013) Journal of Feline Medicine and Surgery, 15, pp. 811-817; Suchodolski, J.S., Foster, M.L., Sohail, M.U., Leutenegger, C., Queen, E.V., Steiner, J.M., Marks, S.L., The fecal microbiome in cats with diarrhea (2015) PLoS One, 10; Thompson, R.C., Palmer, C.S., O'Handley, R., The public health and clinical significance of Giardia and Cryptosporidium in domestic animals (2008) The Veterinary Journal, 177, pp. 18-25; Truyen, U., Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Lloret, A., Feline panleukopenia. ABCD guidelines on prevention and management (2009) Journal of Feline Medicine and Surgery, 11, pp. 538-546; Tuzio, H., Edwards, D., Elston, T., Jarboe, L., Kudrak, S., Richards, J., Rodan, I., Feline zoonoses guidelines from the American Association of Feline Practitioners (2005) Journal of Feline Medicine and Surgery, 7, pp. 243-274; Vasilopulos, R.J., Mackin, A.J., Rickard, L.G., Pharr, G.T., Huston, C.L., Prevalence and factors associated with fecal shedding of Giardia spp. in domestic cats (2006) Journal of the American Animal Hospital Association, 42, pp. 424-429; Weese, J.S., Bacterial enteritis in dogs and cats: diagnosis, therapy, and zoonotic potential (2011) Veterinary Clinics of North America Small Animal Practice, 41, pp. 287-309; Yao, C., Köster, L.S., Tritrichomonas foetus infection, a cause of chronic diarrhea in the domestic cat (2015) Veterinary Research, 46, p. 35","Levy, J.K.; Maddie's Shelter Medicine Program, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of FloridaUnited States; email: levyjk@ufl.edu",,"Bailliere Tindall Ltd",10900233,,VTJRF,"29871750","English","Vet. J.",Article,"Final",,Scopus,2-s2.0-85046171426 "Gikonyo S., Kimani T., Matere J., Kimutai J., Kiambi S.G., Bitek A.O., Juma Ngeiywa K.J.Z., Makonnen Y.J., Tripodi A., Morzaria S., Lubroth J., Rugalema G., Fasina F.O.","57193743397;56893884300;57201255813;57200034767;56771335800;56771464400;57201259728;55957694400;20436477600;57215474175;57191747595;6506838313;16416667800;","Mapping Potential Amplification and Transmission Hotspots for MERS-CoV, Kenya",2018,"EcoHealth","15","2",,"372","387",,3,"10.1007/s10393-018-1317-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044045686&doi=10.1007%2fs10393-018-1317-6&partnerID=40&md5=8afa8c50c8b08fadc6e77c86342eb6ac","Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Emergency Centre for Transboundary Animal Diseases – (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya; Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy; Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa","Gikonyo, S., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Kimani, T., Emergency Centre for Transboundary Animal Diseases – (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Matere, J., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Kimutai, J., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Kiambi, S.G., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Bitek, A.O., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Juma Ngeiywa, K.J.Z., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya; Makonnen, Y.J., Emergency Centre for Transboundary Animal Diseases – (ECTAD), Regional Office for East Africa Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Tripodi, A., Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy; Morzaria, S., Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy; Lubroth, J., Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the UN (FAO), Rome, Italy; Rugalema, G., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya; Fasina, F.O., Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in Nairobi, Gigiri, Kenya, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa","Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels. © 2018, EcoHealth Alliance.","camel; hotspot; Kenya; MERS-CoV; risk; transmission","animal; animal disease; camel; Coronavirus infection; disease carrier; geographic information system; geographic mapping; health survey; Kenya; Middle East respiratory syndrome coronavirus; prevalence; seroepidemiology; transmission; veterinary medicine; virology; Animal Diseases; Animals; Camelus; Coronavirus Infections; Disease Reservoirs; Geographic Information Systems; Geographic Mapping; Kenya; Middle East Respiratory Syndrome Coronavirus; Prevalence; Public Health Surveillance; Seroepidemiologic Studies","Adney, D.R., Brown, V.R., Porter, S.M., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding (2016) Viruses, 8, p. 230; Kenyan camels thrive where cattle cannot (2005) New Agriculturist, , http://www.new-ag.info/en/focus/focusItem.php?a=1273, Accessed 1 April 2017; Barrett, C.B., Bellemare, M.F., Osterloh, S.M., Household-level livestock marketing behavior among Northern Kenyan and Southern Ethiopian Pastoralists (2006) Pastoral Livestock Marketing in Eastern Africa Research and Policy Challenges, , https://doi.org/10.3362/9781780440323.002, McPeak J, Little P (editors); Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A.M., Said, M.Y., Gluecks, I., Müller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerging Infectious Diseases, 20 (8), pp. 1319-1322. , PID: 25075637; Deem, S.L., Fèvre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.-J., Koopmans, M., Reusken, C.B., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedaries) in Laikipia County (2015) Kenya. PLoS ONE, 10 (10); Dudas, G., Rambaut, A., MERS-CoV recombination: implications about the reservoir and potential for adaptation (2016) Virus Evolution, 2 (1), p. vev023; Fanoy, E.B., van Der Sande, M.A.B., Kraaij-Dirkzwager, M., Dirksen, K., Jonges, M., van Der Hoek, W., Koopmans, M.P.G., van Gageldonk-Lafeber, A.B., Travel-related MERS-CoV cases: An assessment of exposures and risk factors in a group of Dutch travellers returning from the Kingdom of Saudi Arabia, May 2014 (2014) Emerging Themes in Epidemiology, 11, p. 16. , http://www.ete-online.com/content/11/1/16; Farah, K.O., Nyariki, D.M., Ngugi, R.K., Noor, I.M., Guliye, A.Y., The Somali and the camel: ecology, management and economics (2004) Anthropologist, 6 (1), pp. 45-55; (2015) Food and Agriculture Data, , http://www.fao.org/faostat/en/#home, Accessed 23 June 2016; (2016) An Overview of Camel Production System and Value Chain in Kenya, , Unpublished report developed by ECTAD, FAO Kenya. Accessed 20 October 2017; (2017) MERS-CoV Situation Update, 22 March 2017, , http://www.fao.org/ag/againfo/programmes/en/empres/mers/situation_update.html, Accessed 28 March 2017; Guliye, A.Y., Noor, I.M., Bebe, B.O., Kosgey, I.S., Role of camels (Camelus dromedarius) in the traditional lifestyle of Somali pastoralists in northern Kenya (2007) Outlook on Agriculture, 36 (1), pp. 29-34; Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993; Jores, J., (2015) Middle east respiratory syndrome-coronavirus in camels: An overview for Sub-Saharan and North Africa, , http://dx.doi.org/10.12774/eod_cr.july2015.joresj; Kaufman, B.A., Binder, C., Production aims and functions of camels in Kenyan pastoral systems (2002) Proceedings of Collaborative Research Project on Camel Breed Differentiation and Pastoral Camel Breeding Strategies within the KARI/EU Agriculture/Livestock Research Support Programme for Kenya, , ARSPII; Project No. 6ACP KE0161-KE 6003/001; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I.A., Dalab, A.H.S., Al-Busadah, K.A.S., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels (2014) Saudi Arabia. Emerging Infectious Disease, 21 (7), pp. 1153-1158; (2009) National Population and Housing Census 2009, , https://international.ipums.org/international/resources/enum_materials_pdf/enum_instruct_ke2009a.pdf, Accessed 19 October 2017; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virology Journal, 12, p. 222; Mackay, I.M., Arden, K.E., Middle East respiratory syndrome: an emerging coronavirus infection tracked by the crowd (2015) Virus Research, 202, pp. 60-88; Mahmoud, H.A., Camel Marketing in the Northern Kenya/Southern Ethiopia Borderlands (2010) FAC Pastoralist Theme, , November 2010. FAC Pastoralist Theme; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Lipkin, W.I., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerging Infectious Deseases, 19, pp. 1819-1823; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A.M., Bosch, B.-J., Park, S.S., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerging Infectious Diseases, 20 (12), pp. 2093-2095. , PID: 25425139; Noor, I.M., (2013) Characteristics, Feeding and Marketing Practices of the Emerging Peri-Urban Camel Production System in Isiolo County, Kenya, , Unpublished Ph.D. Thesis, Egerton University, Kenya; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Eurosurveillance, 19 (16), p. 20781. , PID: 24786259; Olive, M.-M., Chevalier, V., Grosbois, V., Tran, A., Andriamandimby, S., Durand, B., Ravalohery, J.-P., Heraud, J.-M., Integrated analysis of environment, cattle and human serological data: risks and mechanisms of transmission of rift valley fever in Madagascar (2016) PLOS Neglected Tropical Diseases, 10 (7); Omrani, A., Al-Tawfiq, J., Memish, Z., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathogens and Global Health, 109 (8), pp. 354-362; Ouajd, S., Kamel, B., Physiological particularities of dromedary (Camelus dromedarius) and experimental implications (2009) Scandinavian Journal of Laboratory Animal Science, 36 (1), pp. 19-29; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS CoV) serology in major livestock species in an affected region in Jordan, June to September, 2013 (2013) Eurosurveillance, 18 (50), p. 20662. , PID: 24342516; Saaty, T.L., Decision making with the analytical hierarchy process (2008) International Journal of Services Sciences, 1, pp. 83-98; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Skidmore, J.A., The main challenges facing camel reproduction research in the 21st century (2003) Reproduction, 61, pp. 37-47. , PID: 14635925; Sombroek, W.G., Braun, H.M.H., van Der Pouw, B.J.A., (1982) Exploratory soil map and agro-climatic zone map of Kenya, 1980. Scale: 1:1,000,000, , Exploratory soil survey report no. E1. Kenya Soil Survey Ministry of Agriculture—National Agricultural Laboratories, Nairobi, Kenya; (2016), http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf?ua=1, WHO MERS-CoV Global Summary and risk assessment, Assessed 19 October 2017; Woolhouse, M., Gowtage-Sequeria, S., Host range and emerging and reemerging pathogens (2005) Emerging Infectious Diseases, 11 (12), pp. 1842-1847. , https://dx.doi.org/10.3201/eid1112.050997, PID: 16485468; Wasonga, O., Musembi, J., Rotich, K., Jarso, I., King-Okumu, C., (2016) Vegetation resources and their economic importance in Isiolo County, Kenya, , http://pubs.iied.org/pdfs/10141IIED.pdf, IIED, London, Accessed 24 February 2017; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367, pp. 1814-1820; (2015) Camel value chain in Kenya, , http://www.zoonotic-diseases.org/camel-value-chain-in-kenya/, Accessed 1 April 2017; Zumla, A., Dar, O., Kock, R., Muturi, M., Ntoumi, F., Kaleebu, P., Eusebio, M., Petersen, E., Taking forward a “One Health” approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential (2016) International Journal of Infectious Diseases, 47, pp. 5-9. , PID: 27321961","Fasina, F.O.; Emergency Centre for Transboundary Animal Diseases – (ECTAD) Kenya, Food and Agriculture Organization of the United Nations (FAO), UN Office in NairobiKenya; email: Folorunso.fasina@fao.org",,"Springer New York LLC",16129202,,,"29549589","English","EcoHealth",Article,"Final",Open Access,Scopus,2-s2.0-85044045686 "Eggers M., Koburger-Janssen T., Eickmann M., Zorn J.","7004065060;57202387636;55913596100;56850105800;","In Vitro Bactericidal and Virucidal Efficacy of Povidone-Iodine Gargle/Mouthwash Against Respiratory and Oral Tract Pathogens",2018,"Infectious Diseases and Therapy","7","2",,"249","259",,4,"10.1007/s40121-018-0200-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048310110&doi=10.1007%2fs40121-018-0200-7&partnerID=40&md5=6a96b9816b4208d4a481d9e9517d7cff","Labor Prof. Gisela Enders MVZ GbR, Stuttgart, Germany; Hygiene Nord GmbH, Greifswald, Germany; Institute for Virology, Philipps University of Marburg, Marburg, Germany; Mundipharma Research GmbH & Co.KG, Limburg, Germany","Eggers, M., Labor Prof. Gisela Enders MVZ GbR, Stuttgart, Germany; Koburger-Janssen, T., Hygiene Nord GmbH, Greifswald, Germany; Eickmann, M., Institute for Virology, Philipps University of Marburg, Marburg, Germany; Zorn, J., Mundipharma Research GmbH & Co.KG, Limburg, Germany","Introduction: Recent virus epidemics and rising antibiotic resistance highlight the importance of hygiene measures to prevent and control outbreaks. We investigated the in vitro bactericidal and virucidal efficacy of povidone-iodine (PVP-I) 7% gargle/mouthwash at defined dilution against oral and respiratory tract pathogens. Methods: PVP-I was tested against Klebsiella pneumoniae and Streptococcus pneumoniae according to bactericidal quantitative suspension test EN13727 and against severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses (SARS-CoV and MERS-CoV), rotavirus strain Wa and influenza virus A subtype H1N1 according to virucidal quantitative suspension test EN14476. PVP-I 7% gargle/mouthwash was diluted 1:30 with water to a concentration of 0.23% (the recommended concentration for “real-life” use in Japan) and tested at room temperature under clean conditions [0.3 g/l bovine serum albumin (BSA), viruses only] and dirty conditions (3.0 g/l BSA + 3.0 ml/l erythrocytes) as an interfering substance for defined contact times (minimum 15 s). Rotavirus was tested without protein load. A ≥ 5 log10 (99.999%) decrease of bacteria and ≥ 4 log10 (99.99%) reduction in viral titre represented effective bactericidal and virucidal activity, respectively, per European standards. Results: PVP-I gargle/mouthwash diluted 1:30 (equivalent to a concentration of 0.23% PVP-I) showed effective bactericidal activity against Klebsiella pneumoniae and Streptococcus pneumoniae and rapidly inactivated SARS-CoV, MERS-CoV, influenza virus A (H1N1) and rotavirus after 15 s of exposure. Conclusion: PVP-I 7% gargle/mouthwash showed rapid bactericidal activity and virucidal efficacy in vitro at a concentration of 0.23% PVP-I and may provide a protective oropharyngeal hygiene measure for individuals at high risk of exposure to oral and respiratory pathogens. Funding: Mundipharma Research GmbH & Co. KG (MRG). © 2018, The Author(s).","Anti-infective agents; Local; Microbial sensitivity tests; Mouthwashes; Povidone-iodine; Respiratory tract infections","mouthwash; povidone iodine; antimicrobial activity; Article; bacterial count; bactericidal activity; gargle; infectious agent; Influenza A virus (H1N1); Klebsiella pneumoniae; Middle East respiratory syndrome coronavirus; mouth; priority journal; respiratory system; Rotavirus; SARS coronavirus; Streptococcus pneumoniae; temperature; virucidal activity; virus strain","(2016) Antibiotic resistance fact sheet, , http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/, Accessed Mar 2018; (2013) Antibiotic resistance threats in the United States, , https://www.cdc.gov/drugresistance/threat-report-2013/, Accessed Mar 2018; (2001) Resistant pneumococcal infections; the burden of disease and challenges in monitoring and controlling antimicrobial resistance, , http://www.who.int/drugresistance/technicalguidance/en/resistantinfection.pdf, Accessed Mar 2018; (2016) Influenza (Seasonal) fact sheet, , http://www.who.int/mediacentre/factsheets/fs211/en/, Accessed Mar 2018; (2015) Frequently asked questions on Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/csr/disease/coronavirus_infections/faq/en/, Accessed Mar 2018; (2004) SARS basics fact sheet, , https://www.cdc.gov/sars/about/fs-sars.html, Accessed Mar 2018; Berry, M., Gamieldien, J., Fielding, B.C., Identification of new respiratory viruses in the new millennium (2015) Viruses, 7, pp. 996-1019. , PID: 25757061; Hsieh, Y.H., 2015 Middle East respiratory syndrome coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling (2015) PeerJ., 3; (2009) WHO guidelines on hand hygiene in health care, , http://www.who.int/gpsc/5may/tools/9789241597906/en/, Accessed Mar 2018; Boyce, J.M., Pittet, D., Guideline for hand hygiene in health-care settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America (2002) MMWR Recomm Rep., 51, pp. 1-45. , PID: 12418624; Gralton, J., Tovey, E.R., McLaws, M.L., Rawlinson, W.D., Respiratory virus RNA is detectable in airborne and droplet particles (2013) J Med Virol, 85, pp. 2151-2159. , PID: 23959825; (2003) Consensus document on the epidemiology of severe acute respiratory syndrome (SARS), , http://www.who.int/csr/sars/en/WHOconsensus.pdf, Accessed Mar 2018; (2013) Infection prevention and control during health care for probable or confirmed cases of novel coronavirus (NCoV) infection: interim guidance, , http://www.who.int/csr/disease/coronavirus_infections/ipc-mers-cov/en/, Accessed Mar 2018; Kitamura, T., Satomura, K., Kawamura, T., Can we prevent influenza-like illnesses by gargling? (2007) Intern Med, 46, pp. 1623-1624. , PID: 17878657; Sneader, W., (2005) Drug discovery: a history, p. 68. , Wiley, New York; McLure, A.R., Gordon, J., In-vitro evaluation of povidone-iodine and chlorhexidine against methicillin-resistant Staphylococcus aureus (1992) J Hosp Infect, 21, pp. 291-299. , PID: 1355784; Traoré, O., Fayard, S.F., Laveran, H., An in vitro evaluation of the activity of povidone-iodine against nosocomial bacterial strains (1996) J Hosp Infect, 34, pp. 217-222. , PID: 8923277; Shimizu, M., Okuzumi, K., Yoneyama, A., In vitro antiseptic susceptibility of clinical isolates from nosocomial infections (2002) Dermatology, 204, pp. 21-27. , PID: 12011516; Gorman, S.P., Scott, E.M., Hutchinson, E.P., Effects of aqueous and alcoholic povidone-iodine on spores of Bacillus subtilis (1985) J Appl Bacteriol, 59, pp. 99-105. , PID: 3928572; Rikimaru, T., Kondo, M., Kondo, S., Oizumi, K., Bactericidal activities of povidone-iodine against Mycobacterium (1997) Dermatology, 195, pp. 104-106. , PID: 9403266; Wutzler, P., Sauerbrei, A., Klöcking, R., Brögmann, B., Reimer, K., Virucidal activity and cytotoxicity of the liposomal formulation of povidone-iodine (2002) Antiviral Res, 54, pp. 89-97. , PID: 12062394; Kawana, R., Kitamura, T., Nakagomi, O., Inactivation of human viruses by povidone-iodine in comparison with other antiseptics (1997) Dermatology, 195, pp. 29-35. , PID: 9403252; Kariwa, H., Fujii, N., Takashima, I., Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents (2006) Dermatology, 212, pp. 119-123. , PID: 16490989; Eggers, M., Eickmann, M., Kowalski, K., Zorn, J., Reimer, K., Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses (2015) BMC Infect Dis, 15, p. 375. , PID: 26381737; Eggers, M., Eickmann, M., Zorn, J., Rapid and effective virucidal activity of povidone-iodine products against Middle East respiratory syndrome coronavirus (MERS-CoV) and modified vaccinia virus ankara (MVA) (2015) Infect Dis Ther., 4, pp. 491-501. , PID: 26416214; Prevention of hospital-acquired pneumonia (strategies for prevention of hospital-acquired infections) (2004) Respirology, 9, pp. S48-S50; Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Bactericidal Activity in the Medical Area, , EN 13727:2012 + A2@2015, Test method and requirements (Phase 2/Step 1). 2015; (2015) Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area. Test Method and Requirements (Phase 2/Step 1), , EN 14476:2013/FprA1:2015; (2017) Shiongi Healthcare Co., Ltd; Spearman, C., The method of ‘right and wrong cases’ (‘constant stimuli’) without Gauss’s formulae (1908) Br J Psychol, 2, pp. 227-242; Kärber, G., Beitrag zur Kollektiven Behandlung Pharmakologischer Reihenversuche [article in German] (1931) Arch Exp Path Pharm, 162, pp. 480-487; Yoneyama, A., Shimizu, M., Tabata, M., Yashiro, J., Takata, T., Hikida, M., In vitro short-time killing activity of povidone-iodine (Isodine Gargle) in the presence of oral organic matter (2006) Dermatology, 212, pp. 103-108. , PID: 16490985; Shiraishi, T., Nakagawa, Y., Evaluation of the bactericidal activity of povidone-iodine and commercially available gargle preparations (2002) Dermatology, 204, pp. 37-41. , PID: 12011519; Ito, H., Ito, T., Hikida, M., Outbreak of highly pathogenic avian influenza in Japan and ant-influenza virus activity of povidone-iodine products (2006) Dermatology, 212, pp. 115-118. , PID: 16490988; Sriwilaijaroen, N., Wilairat, P., Hiramatsu, H., Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities (2009) Virol J., 6, p. 124; Steinmann, J., Paulmann, D., Becker, B., Bischoff, B., Steinmann, E., Steinmann, J., Comparison of virucidal activity of alcohol-based hand sanitizers versus antimicrobial hand soaps in vitro and in vivo (2012) J Hosp Infect, 82, pp. 277-280. , PID: 23009803; Sauerbrei, A., Wutzler, P., Virucidal efficacy of povidone-iodine-containing disinfectants (2010) Lett Appl Microbiol, 51, pp. 158-163. , PID: 20536707; Gottardi, W., Iodine and iodine compounds (1991) Disinfection, sterilization and preservation, pp. 152-166. , Block SS, (ed), Lea & Febiger, Philadelphia; Kanagalingam, J., Feliciano, R., Hah, J.H., Labib, H., Le, T.A., Lin, J.C., Practical use of povidone-iodine antiseptic in the maintenance of oral health and in the prevention and treatment of common oropharyngeal infections (2015) Int J Clin Pract, 69 (11), pp. 1247-1256. , PID: 26249761; (2007) Pandemic Influenza Preparedness Action Plan of the Japanese Government, , http://www.mhlw.go.jp/english/topics/influenza/dl/pandemic02.pdf, Accessed Mar 2018; Nagatake, T., Ahmed, K., Oishi, K., Prevention of respiratory infections by povidone-iodine gargle (2002) Dermatology, 204, pp. 32-36. , PID: 12011518; Satomura, K., Kitamure, T., Kawamura, T., Prevention of upper respiratory tract infections by gargling: a randomized trial (2005) Am J Prev Med, 29, pp. 302-307. , PID: 16242593; Okuda, M., Kaneko, Y., Ichinohe, T., Ishihara, K., Okuda, K., Reduction of potential respiratory pathogens by oral hygienic treatment in patients undergoing endotracheal anesthesia (2003) J Anesth., 17, pp. 84-91. , PID: 12903918; Madan, P.D., Sequeira, P.S., Shenoy, K., Shetty, J., The effect of three mouthwashes on radiation-induced oral mucositis in patients with head and neck malignancies: a randomized control trial (2008) J Cancer Res Ther., 4, pp. 3-8. , PID: 18417894; Rahn, R., Adamietz, I.A., Boettcher, H.D., Schaefer, V., Reimer, K., Fleischer, W., Povidone-iodine to prevent mucositis in patients during antineoplastic radiochemotherapy (1997) Dermatology, 195, pp. 57-61. , PID: 9403257; Lanjri, S., Uwingabiye, J., Frikh, M., In vitro evaluation of the susceptibility of Acinetobacter baumannii isolates to antiseptics and disinfectants: comparison between clinical and environmental isolates (2017) Antimicrob Resist Infect Control., 6, p. 36. , PID: 28400958","Eggers, M.; Labor Prof. Gisela Enders MVZ GbRGermany; email: eggers@labor-enders.de",,"Springer Healthcare",21938229,,,,"English","Infect. Dis. Ther.",Article,"Final",Open Access,Scopus,2-s2.0-85048310110 "Vlčková R., Andrejčáková Z., Sopková D., Hertelyová Z., Kozioł K., Koziorowski M., Gancarčíková S.","24077259200;56518195000;6505542682;36863846300;56230398600;6602603704;6602657028;","Supplemental flaxseed modulates ovarian functions of weanling gilts via the action of selected fatty acids",2018,"Animal Reproduction Science","193",,,"171","181",,2,"10.1016/j.anireprosci.2018.04.066","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046167415&doi=10.1016%2fj.anireprosci.2018.04.066&partnerID=40&md5=c0cb0e6464480d05474944ec936bb81e","Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73041 81, Slovakia; Department of Experimental Medicine, Faculty ofMedicine, Pavol Jozef Šafarik University, Šrobárova 2, Košice, 041 80, Slovakia; Department of Physiology and Reproduction of Animals, Faculty of Biotechnology, University of Rzeszow, ul. Pigonia 1, Rzeszów, 35-310, Poland; Institute of Microbiology and Gnotobiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73041 81, Slovakia","Vlčková, R., Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73041 81, Slovakia; Andrejčáková, Z., Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73041 81, Slovakia; Sopková, D., Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73041 81, Slovakia; Hertelyová, Z., Department of Experimental Medicine, Faculty ofMedicine, Pavol Jozef Šafarik University, Šrobárova 2, Košice, 041 80, Slovakia; Kozioł, K., Department of Physiology and Reproduction of Animals, Faculty of Biotechnology, University of Rzeszow, ul. Pigonia 1, Rzeszów, 35-310, Poland; Koziorowski, M., Department of Physiology and Reproduction of Animals, Faculty of Biotechnology, University of Rzeszow, ul. Pigonia 1, Rzeszów, 35-310, Poland; Gancarčíková, S., Institute of Microbiology and Gnotobiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73041 81, Slovakia","The aim of this study was to examine the influence of dietary flaxseed on the endocrine and ovarian functions of weanling gilts challenged with E. coli and Coronavirus infections treated with dietary probiotic cheeses and to understand the possible mechanisms of its effects on ovarian function. Probiotics were used as a natural substitution for antibiotics and 10% dietary flaxseed is an effective prebiotic which supports the action of probiotics and has other beneficial effects on the organism. Probiotics with or without flaxseed were fed to weanling gilts starting 10 days before and lasting up until 14 days after weaning. The ovaries were measured and histologically analysed. The blood samples for the levels of steroid hormones and insulin-like growth factor I (IGF-I) were assessed using immunoassays and the levels of fatty acids were assessed using gas chromatography. All samples were collected on the day of weaning and 14 days after weaning. On the day of weaning, increased levels of linoleic acid and IGF-I was associated with higher body weight. The steroid hormones were not affected by the diet. The conversion of alpha-linolenic acid (ALA) to timodonic (EPA) and cervonic (DHA) acids were lower compared to controls, and together with high levels of myristic, palmitic and palmitoleic acids was associated with the higher proliferation and lower apoptosis in the primordial, primary and secondary follicles; although the inhibition of the cell cycle was observed in relation to the low level of eicosadienoic acid. The high levels of ALA, EPA and DHA and the low levels of myristic, palmitic and palmitoleic acids may have been the effect of flaxseed feeding 14 days post-weaning and may have had a reverse effect on the proliferation and apoptosis of ovarian follicles. These data suggest that flaxseed may suppress the follicle development in weanlings via the stimulation of apoptosis and the inhibition of proliferation via the modulation of the metabolism of selected fatty acids. © 2018 Elsevier B.V.","Apoptosis; Fatty acids; Flaxseed; Insulin-like growth factor I (IGF-I); Pig; Proliferation","fatty acid; animal; animal food; chemistry; cytology; dietary supplement; drug effect; female; flax; ovary; physiology; pig; weaning; Animal Feed; Animal Nutritional Physiological Phenomena; Animals; Dietary Supplements; Fatty Acids; Female; Flax; Ovary; Swine; Weaning","Andrejčáková, Z., Sopková, D., Vlčková, R., Kulichová, L., Gancarčíková, S., Almášiová, V., Holovská, K., Krešáková, L., Synbiotics suppress the release of lactate dehydrogenase, promote non-specific immunity and integrity of jejunum mucosa in piglets (2016) Anim. Sci. J., 87, pp. 1157-1166; Borovská, D., Nemcová, R., Gancarčíková, S., Koščová, J., The synbiotic effect of lactobacilli and flaxseed on selected intestinal microflora and organic acid levels in weaned piglets (2013) Microbiology, 2, pp. 82-86; Böttner, M., Thelen, P., Jarry, H., Estrogen receptor beta: tissue distribution and the still largely enigmatic physiological function (2013) J. Steroid Biochem. Mol. Biol., 139, pp. 245-251; Bourque, M., Dluzen, D.E., di Paolo, T., Signaling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson´s disease (2012) Front. Neuroendocrinol., 33, pp. 169-178; Butt, A.J., Firth, S.M., Baxter, R.C., The IGF axis and programmed cell death (1999) Immunol. Cell Biol., 77, pp. 256-262; Chen, J., Saggar, J.K., Corey, P., Thomson, L.U., Flaxseed cotyledon fraction reduces tumour growth and sensitisises tamoxifen treatment of human breast cancer xenograft (MCF-7) in athymic mice (2011) Br. J. Nutr., 105, pp. 339-347; Chytilová, M., Mudroňová, D., Nemcová, R., Gancarčíková, S., Buleca, V., Koščová, J., Tkáčiková, Ľ., Anti-inflammatory and immunoregulatory effects of flaxseed oil and Lactobacillus plantarum – Biocenol™ LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli (2013) Res. Vet. Sci., 95, pp. 103-109; Contreras, M.C., Fatty acids and emotional behavior (2012) ´Neuroscience - Dealing With Frontiers ´. (In Tech: Rijeka.), pp. 1-440; Dirandeh, E., Towhidi, A., Ansari, Z., Zeinoaldini, S., Ganjkhanlou, M., Effects of dietary supplementation with different polyunsaturated fatty acids on expression of genes related to somatotropic axis function in the liver, selected blood indicators, milk yield and fatty acids profile in dairy cows (2016) Ann. Anim. Sci., 16, pp. 1045-1058; Folch, J., Lees, M., Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues (1957) J. Biol. Chem., 226, pp. 497-509; Grofová, Z., Mastné kyseliny (In Czech) (2010) Medicína pro praxi, 7, pp. 388-390; Hajirahimkhan, A., Dietz, B.-M., Bolton, J.L., Botanical modulation of menopausal symptoms: mechanisms of action? (2013) Planta Med., 79, pp. 538-553; Hernández-Salazar, M., Guevara-González, R.G., Cruz-Hernández, A., Guevara-Olvera, L., Bello-Pérez, L.A., Castaño-Tostado, E., Loarca-Piña, G., Flaxseed (Linum usitatissimum L.) and its total non-digestible fraction influence the expression of genes involved in azoxymethane-induced colon cancer in rats (2013) Plant Foods Hum. Nutr., 68, pp. 259-267; Kádasi, A., Štochmaľová, A., Maruniaková, N., Kolesárová, A., Grossman, R., Sirotkin, A.V., Effect of natural plant extracts on porcine ovarianf unctions (2015) J. Microbiol. Biotechnol. Food Sci., 4, pp. 45-48; Kubašová, I., Mudroňová, D., The influence of probiotic Lactobacilli and flaxseed on the immune response of weaned piglets experimentally infected with enterotoxigenic E. coli (2014) Folia Vet., 58, pp. 122-126; Li, Q., Brendemuhl, J.H., Jeong, K.C., Badinga, L., Effects of dietary omega-3 polyunsaturated fatty acids on growth and immune response of weanling pigs (2014) J. Anim. Sci. Technol., 56, p. 7; Liu, Y.L., Li, D.F., Gong, L.M., Yi, G.F., Gaines, A.M., Carroll, J.A., Effects of fish oil supplementation on the performance and immunological, adrenal, and somatotropic responses of weaned pigs after Escherichia coli lipopolysaccharide challenge (2003) J. Anim. Sci., 81, pp. 2758-2765; Mattos, R., Staples, C.R., Thatcher, W.W., Effects of dietary fatty acids on reproduction in ruminants (2000) Rev. Reprod., 5, pp. 38-45; Mcllwain, D.R., Berger, T., Mak, T.W., Caspase functions in cell death and disease (2013) Cold Spring Harb. Perspect. Biol., 5, pp. 1-29; Michel, T., Halabalaki, M., Skatsounis, A.L., New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources (2013) Planta Med., 79, pp. 514-532; Ming, L.G., Chen, K.M., Xian, C.J., Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodelling (2013) J. Cell. Physiol., 228, pp. 513-521; Miyazaki, T., Arai, S., Two distinct controls of mitotic cdk1/cyclin B1 activity requisite for cell growth prior to cell division (2007) Cell Cycle, 6, pp. 1419-1425; Nemcová, R., Lauková, A., Gancarčíková, S., Kašteľ, R., In vitro studies of porcine lactobacilli for possible probiotic use (1997) Berliner und Munchener Tierarztliche Wochenschrift, 110, pp. 413-417; Nemcová, R., Guba, P., Gancarčíková, S., Bomba, A., Lauková, A., Štúdium probiotických vlastností laktobacilov u hydiny (In Slovak) (2003) Agriculture, 49, pp. 75-80; Nemcová, R., Gancarčíková, S., Mudroňová, D., Koščová, J., Buleca, V., (2010) Probiotiká a naturálne látky v chove hospodárskych zvierat (In Slovak), p. 77. , University of Veterinary Medicine and Pharmacy in Košice; Nemcová, R., Borovská, D., Koščová, J., Gancarčíková, S., Mudroňová, D., Buleca, V., Pistl, J., The effect of supplementation of flax-seed oil on interaction of Lactobacillus plantarum – Biocenol™ LP96 and Escherichia coli O8:K88ab:H9 in the gut of germ-free piglets (2012) Res. Vet. Sci., 93, pp. 39-41; Perini, J.A.L., Stevanato, F.B., Visentainer, J.E.L., Sargi, S.C., Oliveira, M.M., Souza, N.E., Matsushita, M., Visentainer, J.V., Incorporation of n-3 fatty acids by the liver of mice fed linseed oil as a function of feeding duration (2011) Braz. Arch. Biol. Technol., 54, pp. 307-313; Petit, H.V., Dewhurst, R.J., Proulx, J.G., Khalid, M., Haresign, W., Twagiramungu, H., Milk production, milk composition, and reproductive function of dairy cows fed different fats (2001) J. Anim. Sci., 81, pp. 263-271; Rahbar, B., Safdar, A.H.A., Kor, N.M., Mechanisms through which fat supplementation could enhance reproduction in farm animals (2014) Eur. J. Exp. Biol., 4, pp. 340-348; Riediger, N.D., Othman, R.A., Suh, M., Moghadasian, M.H., A systemic review of the roles of n-3 fatty acids in health and disease (2009) J. Am. Diet. Assoc., 109, pp. 668-679; Rietjens, I.M., Sotoca, A.M., Vervoort, I., Louisse, J., Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks (2013) Mol. Nutr. Food Res., 57, pp. 100-113; Rodriguez-Leyva, D., Dupasquier, C.M., McCullough, R., Pierce, G.N., The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid (2010) Can. J. Cardiol., 26, pp. 489-496; Saggar, J.K., Chen, J., Corey, P., Thompson, L.U., Dietary flaxseed lignan or oil combined with tamoxifen treatment affects MCF-7 tumor growth through estrogen receptor- and growth factor- signaling pathways (2010) Mol. Nutr. Food Res., 54, pp. 415-425; Singh, K.K., Mridula, D., Rehal, J., Barnwal, P., Flaxseed: a potential source of food, feed and fiber (2011) Crit. Rev. Food Sci. Nutr., 51, pp. 210-222; Sirotkin, A.V., Harrath, A.-H., Phytoestrogens and their effects (2014) Eur. J. Pharmacol., 741, pp. 230-236; Smolen, A.J., ´Image analytic techniques for quantification of immunocytochemical staining in the nervous system´ (1990) Methods in Neurosciences., pp. 208-229. , P.M. Conn Academic Press New York; Sopková, D., Hertelyová, Z., Andrejčáková, Z., Vlčková, R., Gancarčíková, S., Petrilla, V., Ondrašovičová, S., Krešáková, L., The application of probiotics and flaxseed promotes metabolism of n-3 polyunsaturated fatty acids in pigs (2017) J. Appl. Anim. Res., 45, pp. 93-98; Stoffel, W., Holz, B., Jenke, B., Binczek, E., Gunter, R.H., Kiss, C., Karakesisoglou, I., Addicks, K., Delta6-desaturase (FADS2) deficiency unveils the role of omeg a3- and omega 6-polyunsaturated fatty acids (2008) EMBO J., 27, pp. 2281-2292; Tourre, A., Xueming, X., Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits (2010) Comp. Rev. Food Sci. Food Saf., 9, pp. 261-269; Tvrzická, E., Stanková, B., Vecka, M., Žák, A., Fatty acids – 1. Occurence and biological significance (2009) Cas Lek Cesk, 148, pp. 16-24; Ulrich, H.D., Takahashi, T., Readers of PCNA modifications (2013) Chromosoma, 122, pp. 259-274; Willis, D.S., Mason, H.D., Watson, H., Franks, S., Developmentally regulated responses of human granulose cells to insulin-like growth factors (IGFs): IGF-I and IGF-II action mediated via the type-I IGF receptor (1998) J. Clin. Endocrinol. Metab., 83, pp. 1256-1259; Woodside, J.V., Campbell, M.J., Denholm, E.E., Newton, L., Honour, J.W., Morton, M.S., Young, I.S., Leathem, A.J., Short-term phytoestrogen supplementation alters insulin-like growth factor profile but not lipid or antioxidant status (2006) J. Nutr. Biochem., 17, pp. 211-215; Xiong, X.Y., Hu, X.J., Li, Y., Liu, C.M., Inhibitory effects of enterolactone on growth and metastasis in human breast cancer (2015) Nutr. Cancer, 67, pp. 1324-1332; Yanagihara, N., Zhang, H., Toyohira, Y., Takahashi, K., Ueno, S., Tsuitsui, M., Takahashi, K., New insights into the pharmacological potential of plant flavonoids in the catecholamine system (2014) J. Pharmacol. Sci., 124, pp. 123-128; Yu, H.N., Zhu, J., Pan, W.S., Shen, S.R., Shan, W.G., Das, U.N., Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota (2014) Arch. Med. Res., 45, pp. 195-202; Žák, A., Ateroskleróza: Nové Pohledy (In Czech) (2011), p. 183. , Praha: Grada, Czech Republic","Andrejčáková, Z.; Institute of Physiology, Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Slovakia; email: zuzana.andrejcakova@uvlf.sk",,"Elsevier B.V.",03784320,,ANRSD,"29685707","English","Anim. Reprod. Sci.",Article,"Final",,Scopus,2-s2.0-85046167415 "Hua X., Vijay R., Channappanavar R., Athmer J., Meyerholz D.K., Pagedar N., Tilley S., Perlman S.","15829508600;56665524100;35309748500;56491003300;6602303240;14029037100;7006059548;57204567845;","Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia",2018,"JCI insight","3","11",,"","",,2,"10.1172/jci.insight.99025","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062245943&doi=10.1172%2fjci.insight.99025&partnerID=40&md5=163ff075723ca682badf49a91e55c994","Department of Otolaryngology-Head and Neck Surgery; Interdisciplinary Program in Immunology; Department of Microbiology and Immunology, United Arab Emirates; Department of Pathology, University of Iowa, Iowa City, IA, United States; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Hua, X., Department of Otolaryngology-Head and Neck Surgery; Vijay, R., Interdisciplinary Program in Immunology, Department of Microbiology and Immunology, United Arab Emirates; Channappanavar, R., Department of Microbiology and Immunology, United Arab Emirates; Athmer, J., Department of Microbiology and Immunology, United Arab Emirates; Meyerholz, D.K., Department of Pathology, University of Iowa, Iowa City, IA, United States; Pagedar, N., Department of Otolaryngology-Head and Neck Surgery; Tilley, S., Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Perlman, S., Interdisciplinary Program in Immunology, Department of Microbiology and Immunology, United Arab Emirates","The nasal mucosa is an important component of mucosal immunity. Immunogenic particles in inspired air are known to activate the local nasal mucosal immune system and can lead to sinonasal inflammation; however, little is known about the effect of this activation on the lung immune environment. Here, we showed that nasal inoculation of murine coronavirus (CoV) in the absence of direct lung infection primes the lung immune environment by recruiting activated monocytes (Ly6C+ inflammatory monocytes) and NK cells into the lungs. Unlike infiltration of these cells into directly infected lungs, a process that requires type I IFN signaling, nasally induced infiltration of Ly6C+ inflammatory monocytes into the lungs is IFN-I independent. These activated macrophages ingested antigen and migrated to pulmonary lymph nodes, and enhanced both innate and adaptive immunity after heterologous virus infection. Clinically, such nasal-only inoculation of MHV-1 failed to cause pneumonia but significantly reduced mortality and morbidity of lethal pneumonia caused by severe acute respiratory syndrome CoV (SARS-CoV) or influenza A virus. Together, the data indicate that the nose and upper airway remotely prime the lung immunity to protect the lungs from direct viral infections.","Immunology; Innate immunity; Virology",,,,,"NLM (Medline)",23793708,,,"29875310","English","JCI Insight",Article,"Final",Open Access,Scopus,2-s2.0-85062245943 "Jung S.-Y., Kang K.W., Lee E.-Y., Seo D.-W., Kim H.-L., Kim H., Kwon T., Park H.-L., Kim H., Lee S.-M., Nam J.-H.","57191623785;57213355794;57203206527;56992152200;57206211617;57206211616;57203045322;57191625441;56181024800;36062712900;57200757613;","Heterologous prime–boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus",2018,"Vaccine","36","24",,"3468","3476",,8,"10.1016/j.vaccine.2018.04.082","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046705063&doi=10.1016%2fj.vaccine.2018.04.082&partnerID=40&md5=fa15a0ce1871d0c6c0ef3b7906963f0f","Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea; Division of Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea; Seoul St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Division of VAX R&D, Life Science Research Institute, SK Chemical, Seongnam, 12771, South Korea","Jung, S.-Y., Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea; Kang, K.W., Division of Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea; Lee, E.-Y., Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea; Seo, D.-W., Division of Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea; Kim, H.-L., Seoul St. Mary's Hospital, School of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Kim, H., Division of VAX R&D, Life Science Research Institute, SK Chemical, Seongnam, 12771, South Korea; Kwon, T., Division of VAX R&D, Life Science Research Institute, SK Chemical, Seongnam, 12771, South Korea; Park, H.-L., Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea; Kim, H., Division of VAX R&D, Life Science Research Institute, SK Chemical, Seongnam, 12771, South Korea; Lee, S.-M., Division of Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea; Nam, J.-H., Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea","The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic and zoonotic virus with a fatality rate in humans of over 35%. Although several vaccine candidates have been developed, there is still no clinically available vaccine for MERS-CoV. In this study, we developed two types of MERS-CoV vaccines: a recombinant adenovirus serotype 5 encoding the MERS-CoV spike gene (Ad5/MERS) and spike protein nanoparticles formulated with aluminum (alum) adjuvant. Next, we tested a heterologous prime–boost vaccine strategy, which compared priming with Ad5/MERS and boosting with spike protein nanoparticles and vice versa, with homologous prime–boost vaccination comprising priming and boosting with either spike protein nanoparticles or Ad5/MERS. Although both types of vaccine could induce specific immunoglobulin G against MERS-CoV, neutralizing antibodies against MERS-CoV were induced only by heterologous prime–boost immunization and homologous immunization with spike protein nanoparticles. Interestingly, Th1 cell activation was induced by immunization schedules including Ad5/MERS, but not by those including only spike protein nanoparticles. Heterologous prime–boost vaccination regimens including Ad5/MERS elicited simultaneous Th1 and Th2 responses, but homologous prime–boost regimens did not. Thus, heterologous prime–boost may induce longer-lasting immune responses against MERS-CoV because of an appropriate balance of Th1/Th2 responses. However, both heterologous prime–boost and homologous spike protein nanoparticles vaccinations could provide protection from MERS-CoV challenge in mice. Our results demonstrate that heterologous immunization by priming with Ad5/MERS and boosting with spike protein nanoparticles could be an efficient prophylactic strategy against MERS-CoV infection. © 2018 Elsevier Ltd","Adenovirus 5; Heterologous prime–boost; MERS-CoV; Th1; Th2; Vaccine","adenovirus vector; immunoglobulin G; Middle East respiratory syndrome coronavirus vaccine; nanoparticle; spike protein nanoparticle; unclassified drug; virus vaccine; aluminum potassium sulfate; coronavirus spike glycoprotein; immunoglobulin G; immunological adjuvant; nanoparticle; neutralizing antibody; virus antibody; virus vaccine; affinity chromatography; animal cell; animal experiment; animal model; Article; controlled study; enzyme linked immunosorbent assay; immunoblotting; lymphocyte activation; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; Th1 cell; Th2 cell; vaccination; virus strain; animal; Bagg albino mouse; biosynthesis; chemistry; Coronavirus infection; drug effect; female; genetics; human; Human adenovirus C; immunization; immunology; procedures; secondary immunization; Th1 cell; Th2 cell; vaccine immunogenicity; virology; Adenoviruses, Human; Adjuvants, Immunologic; Alum Compounds; Animals; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Female; Humans; Immunization Schedule; Immunization, Secondary; Immunogenicity, Vaccine; Immunoglobulin G; Lymphocyte Activation; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Nanoparticles; Spike Glycoprotein, Coronavirus; Th1 Cells; Th2 Cells; Viral Vaccines","Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract (2016) Am J Pathol, 186 (1), pp. 78-86; http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus [MERS-CoV]; 2016. [accessed 20 August 2017]; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.Y., Coronaviruses—drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: targets for vaccines and therapeutics (2016) Antiviral Res, 133, pp. 165-177; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87, pp. 11950-11954; Kim, E., Okada, K., Kenniston, T., Raj, V.S., AlHajri, M.M., Farag, E.A., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89 (16), pp. 8651-8656; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PLos ONE, 8, p. e81587; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., http://doi.org/10.1016/j.vaccine.2014.02.004, Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines. Vaccine 2014; 32(18):2100–8. doi; Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum Vaccin Immunother, 11, pp. 1244-1250; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res, 202, pp. 151-159; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35 (12), pp. 1586-1589; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., http://doi.org/10.1126/scitranslmed.aac7462, A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 2015; 7(301):301ra132. doi; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Naz, R.K., Dabir, P., Peptide vaccines against cancer, infectious diseases, and conception (2006) Front Biosci, 12, pp. 1833-1844; Cho, A., Seok, S.H., Ethical guidelines for use of experimental animals in biomedical research (2013) J Bacteriol Virol, 43, pp. 18-26; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) PNAS, 111 (13), pp. 4970-4975; Singh, V.K., Mehrotra, S., Agarwal, S.S., The paradigm of Thl and Th2 cytokines (1999) Immunol Res, 20 (3), pp. 147-161; Wang, R., Doolan, D.L., Le, T.P., Hedstrom, R.C., Coonan, K.M., Charoenvit, Y., Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine (1998) Science, 282 (5388), pp. 476-480; Tatsis, N., Fitzgerald, J.C., Reyes-Sandoval, A., Harris-McCoy, K.C., Hensley, S.E., Zhou, D., Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines (2007) Blood, 110, pp. 1916-1923; Lindsay, R.W., Darrah, P.A., Quinn, K.M., Wille-Reece, U., Mattei, L.M., Iwasaki, A., CD8+ T cell responses following replication-defective adenovirus serotype 5 immunization are dependent on CD11c+ dendritic cells but show redundancy in their requirement for TLR and nucleotide-binding oligomerization domain-like receptor signaling (2010) J Immunol, 185 (3), pp. 1513-1521; Ahi, Y.S., Bangari, D.S., Mittal, S.K., Adenoviral vector immunity: its implications and circumvention strategies (2011) Curr Gene Ther, 11 (4), pp. 307-320; Vogels, R., Zuijdgeest, D., van Rijnsoever, R., Hartkoorn, E., Damen, I., de Béthune, M.P., Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity (2003) J Virol, 77, pp. 8263-8271; Barouch, D.H., Pau, M.G., Custers, J.H., Koudstaal, W., Kostense, S., Havenga, M.J., Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity (2004) J Immunol, 172 (10), pp. 6290-6297; Shiver, J.W., Emini, E.A., Recent advances in the development of HIV-1 vaccines using replication incompetent adenovirus vectors (2004) Annu Rev Med, 55, pp. 355-372; Roberts, D.M., Nanda, A., Havenga, M.J., Abbink, P., Lynch, D.M., Ewald, B.A., Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity (2006) Nature, 441 (7090), pp. 239-243; Chillón, M., Lee, J.H., Fasbender, A., Welsh, M.J., Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro (1998) Gene Ther, 5, pp. 995-1002; Beer, S.J., Matthews, C.B., Stein, C.S., Ross, B.D., Hilfinger, J.M., Davidson, B.L., Poly [lactic-glycolic] acid copolymer encapsulation of recombinant adenovirus reduces immunogenicity in vivo (1998) Gene Ter, 5, pp. 740-746; Xiang, Z.Q., Gao, G.P., Reyes-Sandoval, A., Li, Y., Wilson, J.M., Ertl, H.C.J., Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier (2003) J Virol, 77 (20), pp. 10780-10789; Croyle, M.A., Patel, A., Tran, K.N., Gray, M., Zhang, Y., Strong, J.E., http://doi.org/10.1371/journal.pone.0003548, Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS ONE 3(10):e3548. doi; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., http://doi.org/10.1126/sciimmunol.aan5393, Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses. Science 2017; 2(14):eaan5393. doi; Tatsis, N., Lasaro, M.O., Lin, S.W., Haut, L.H., Xiang, Z.Q., Zhou, D., Adenovirus vector-induced immune responses in nonhuman primates: responses to prime boost regimens (2009) J Immunol, 182 (10), pp. 6587-6599; Harvey, B.G., Worgall, S., Ely, S., Leopold, P.L., Crystal, R.G., Cellular immune responses of healthy individuals to intradermal administration of an E1–E3- adenovirus gene transfer vector (1999) Hum Gene Ther, 10 (17), pp. 2823-2837; Santra, S., Seaman, M.S., Xu, L., Barouch, D.H., Lord, C.I., Lifton, M.A., Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates (2005) J Virol, 79 (10), pp. 6516-6522; Hoshino, T., Nakamura, H., Okamoto, M., Kato, S., Araya, S., Nomiyama, K., Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury (2003) Am J Respir Crit Care med, 1689 (9), pp. 1075-1083; Kim, H.W., Canchola, J.G., Brandt, C.D., Pyles, G., Chanock, R.M., Jensen, K., Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine (1969) Am J Epidemiol, 89 (4), pp. 422-434; Hwang, H.S., Lee, Y.T., Kim, K.H., Park, S., Kwon, Y.M., Lee, Y., Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease (2016) Virology, 494, pp. 215-224; Knudson, C.J., Hartwig, S.M., Meyerholz, D.K., Varga, S.M., RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets (2015) PLoS Pathog, 11 (3), p. e1004757","Lee, S.-M.; Department of Biotechnology, The Catholic University, of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, South Korea; email: leesangm@jbnu.ac.kr",,"Elsevier Ltd",0264410X,,VACCD,"29739720","English","Vaccine",Article,"Final",Open Access,Scopus,2-s2.0-85046705063 "Savarin C., Dutta R., Bergmann C.C.","24473502300;7102252870;35449739000;","Distinct gene profiles of bone marrow-derived macrophages and microglia during neurotropic coronavirus-induced demyelination",2018,"Frontiers in Immunology","9","JUN", 1325,"","",,3,"10.3389/fimmu.2018.01325","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048312040&doi=10.3389%2ffimmu.2018.01325&partnerID=40&md5=51c035cc8251dc9eb198bacfd5eba1a5","Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States","Savarin, C., Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Dutta, R., Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Bergmann, C.C., Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States","Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination and axonal loss. Demyelinating lesions are associated with infiltrating T lymphocytes, bone marrow-derived macrophages (BMDM), and activated resident microglia. Tissue damage is thought to be mediated by T cell produced cytokines and chemokines, which activate microglia and/or BMDM to both strip myelin and produce toxic factors, ultimately damaging axons and promoting disability. However, the relative contributions of BMDM and microglia to demyelinating pathology are unclear, as their identification in MS tissue is difficult due to similar morphology and indistinguishable surface markers when activated. The CD4 T cell-induced autoimmune murine model of MS, experimental autoimmune encephalitis (EAE), in which BMDM are essential for demyelination, has revealed pathogenic and repair-promoting phenotypes associated with BMDM and microglia, respectively. Using a murine model of demyelination induced by a gliatropic coronavirus, in which BMDM are redundant for demyelination, we herein characterize gene expression profiles of BMDM versus microglia associated with demyelination. While gene expression in CNS infiltrating BMDM was upregulated early following infection and subsequently sustained, microglia expressed a more dynamic gene profile with extensive mRNA upregulation coinciding with peak demyelination after viral control. This delayed microglia response comprised a highly pro-inflammatory and phagocytic profile. Furthermore, while BMDM exhibited a mixed phenotype of M1 and M2 markers, microglia repressed the vast majority of M2-markers. Overall, these data support a pro-inflammatory and pathogenic role of microglia temporally remote from viral control, whereas BMDM retained their gene expression profile independent of the changing environment. As demyelination is caused by multifactorial insults, our results highlight the plasticity of microglia in responding to distinct inflammatory settings, which may be relevant for MS pathogenesis. © 2018 Savarin, Dutta and Bergmann.","Central nervous system; Demyelination; Macrophages; Microglia; Viral encephalomyelitis","calgranulin A; calgranulin B; calvasculin; cathepsin S; CD11b antigen; CD74 antigen; cell surface receptor; chemokine receptor CCR2; chemokine receptor CX3CR1; CXCL9 chemokine; Fas ligand; gamma interferon inducible protein 10; interleukin 12; interleukin 1alpha; macrophage inflammatory protein 1beta; major histocompatibility antigen class 2; membrane protein; messenger RNA; mitogen activated protein kinase phosphatase 1; monocyte chemotactic protein 1; monocyte chemotactic protein 3; monocyte chemotactic protein 5; myelin; neutrophil collagenase; RANTES; receptor type tyrosine protein phosphatase C; toll like receptor 1; toll like receptor 9; tumor necrosis factor; tumor necrosis factor receptor associated factor 6; adaptive immunity; animal cell; animal experiment; animal model; animal tissue; Article; bone marrow derived macrophage; central nervous system; clinical evaluation; controlled study; Coronavirinae; Coronavirus infection; demyelination; disease association; encephalomyelitis; gene expression; gene expression profiling; genetic analysis; genetic association; microglia; mouse; multiple sclerosis; neurotropism; nonhuman; phenotypic plasticity; phenotypic variation; upregulation","Trapp, B.D., Bo, L., Mork, S., Chang, A., Pathogenesis of tissue injury in MS lesions (1999) J Neuroimmunol, 98 (1), pp. 49-56; Frohman, E.M., Racke, M.K., Raine, C.S., Multiple sclerosis-the plaque and its pathogenesis (2006) N Engl J Med, 354 (9), pp. 942-955; Sierra, A., Abiega, O., Shahraz, A., Neumann, H., Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis (2013) Front Cell Neurosci, 7, p. 6; Hanisch, U.K., Kettenmann, H., Microglia: active sensor and versatile effector cells in the normal and pathologic brain (2007) Nat Neurosci, 10 (11), pp. 1387-1394; Goldmann, T., Prinz, M., Role of microglia in CNS autoimmunity (2013) Clin Dev Immunol, 2013; Ransohoff, R.M., Perry, V.H., Microglial physiology: unique stimuli, specialized responses (2009) Annu Rev Immunol, 27, pp. 119-145; Rawji, K.S., Yong, V.W., The benefits and detriments of macrophages/microglia in models of multiple sclerosis (2013) Clin Dev Immunol, 2013; Streit, W.J., Microglia as neuroprotective, immunocompetent cells of the CNS (2002) Glia, 40 (2), pp. 133-139; Jung, S., Schwartz, M., Non-identical twins-microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation (2012) Front Immunol, 3, p. 89; Simmons, S.B., Pierson, E.R., Lee, S.Y., Goverman, J.M., Modeling the heterogeneity of multiple sclerosis in animals (2013) Trends Immunol, 34 (8), pp. 410-422; Codarri, L., Greter, M., Becher, B., Communication between pathogenic T cells and myeloid cells in neuroinflammatory disease (2013) Trends Immunol, 34 (3), pp. 114-119; Rangachari, M., Kuchroo, V.K., Using EAE to better understand principles of immune function and autoimmune pathology (2013) J Autoimmun, 45, pp. 31-39; Brosnan, C.F., Bornstein, M.B., Bloom, B.R., The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis (1981) J Immunol, 126 (2), pp. 614-620; Huitinga, I., van Rooijen, N., de Groot, C.J., Uitdehaag, B.M., Dijkstra, C.D., Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages (1990) J Exp Med, 172 (4), pp. 1025-1033; Lu, B., Rutledge, B.J., Gu, L., Fiorillo, J., Lukacs, N.W., Kunkel, S.L., Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice (1998) J Exp Med, 187 (4), pp. 601-608; Huang, D.R., Wang, J., Kivisakk, P., Rollins, B.J., Ransohoff, R.M., Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis (2001) J Exp Med, 193 (6), pp. 713-726; Yamasaki, R., Lu, H., Butovsky, O., Ohno, N., Rietsch, A.M., Cialic, R., Differential roles of microglia and monocytes in the inflamed central nervous system (2014) J Exp Med, 211 (8), pp. 1533-1549; Bennett, J.L., Elhofy, A., Charo, I., Miller, S.D., Dal Canto, M.C., Karpus, W.J., CCR2 regulates development of Theiler's murine encephalomyelitis virus-induced demyelinating disease (2007) Viral Immunol, 20 (1), pp. 19-33; Tsunoda, I., Fujinami, R.S., Neuropathogenesis of Theiler's murine encephalomyelitis virus infection, an animal model for multiple sclerosis (2010) J Neuroimmune Pharmacol, 5 (3), pp. 355-369; Karpus, W.J., Kennedy, K.J., Fife, B.T., Bennett, J.L., Dal Canto, M.C., Kunkel, S.L., Anti-CCL2 treatment inhibits Theiler's murine encephalomyelitis virus-induced demyelinating disease (2006) J Neurovirol, 12 (4), pp. 251-261; Bergmann, C.C., Marten, N.W., Hinton, D.R., Parra, B., Stohlman, S.A., CD8 T cell mediated immunity to neurotropic MHV infection (2001) Adv Exp Med Biol, 494, pp. 299-308; Kapil, P., Atkinson, R., Ramakrishna, C., Cua, D.J., Bergmann, C.C., Stohlman, S.A., Interleukin-12 (IL-12), but not IL-23, deficiency ameliorates viral encephalitis without affecting viral control (2009) J Virol, 83 (12), pp. 5978-5986; Phares, T.W., Stohlman, S.A., Hwang, M., Min, B., Hinton, D.R., Bergmann, C.C., CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis (2012) J Virol, 86 (5), pp. 2416-2427; Wu, G.F., Dandekar, A.A., Pewe, L., Perlman, S., CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination (2000) J Immunol, 165 (4), pp. 2278-2286; Puntambekar, S.S., Hinton, D.R., Yin, X., Savarin, C., Bergmann, C.C., Trapp, B.D., Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination (2015) Glia, 63 (11), pp. 2106-2120; Wu, G.F., Perlman, S., Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demyelination following murine infection with a neurotropic coronavirus (1999) J Virol, 73 (10), pp. 8771-8780; Bergmann, C.C., Parra, B., Hinton, D.R., Ramakrishna, C., Dowdell, K.C., Stohlman, S.A., Perforin and gamma interferon-mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells (2004) J Virol, 78 (4), pp. 1739-1750; Parra, B., Hinton, D.R., Marten, N.W., Bergmann, C.C., Lin, M.T., Yang, C.S., IFN-gamma is required for viral clearance from central nervous system oligodendroglia (1999) J Immunol, 162 (3), pp. 1641-1647; Templeton, S.P., Kim, T.S., O'Malley, K., Perlman, S., Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus (2008) Brain Pathol, 18 (1), pp. 40-51; Xue, S., Sun, N., Van Rooijen, N., Perlman, S., Depletion of blood-borne macrophages does not reduce demyelination in mice infected with a neurotropic coronavirus (1999) J Virol, 73 (8), pp. 6327-6334; Savarin, C., Stohlman, S.A., Atkinson, R., Ransohoff, R.M., Bergmann, C.C., Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis (2010) J Virol, 84 (10), pp. 4878-4888; Fleming, J.O., Trousdale, M.D., El-Zaatari, F.A., Stohlman, S.A., Weiner, L.P., Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies (1986) J Virol, 58 (3), pp. 869-875; Bergmann, C.C., Altman, J.D., Hinton, D., Stohlman, S.A., Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system (1999) J Immunol, 163 (6), pp. 3379-3387; Geiss, G.K., Bumgarner, R.E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D.L., Direct multiplexed measurement of gene expression with color-coded probe pairs (2008) Nat Biotechnol, 26 (3), pp. 317-325; Phares, T.W., Marques, C.P., Stohlman, S.A., Hinton, D.R., Bergmann, C.C., Factors supporting intrathecal humoral responses following viral encephalomyelitis (2011) J Virol, 85 (6), pp. 2589-2598; Savarin, C., Bergmann, C.C., Hinton, D.R., Ransohoff, R.M., Stohlman, S.A., Memory CD4+ T-cell-mediated protection from lethal coronavirus encephalomyelitis (2008) J Virol, 82 (24), pp. 12432-12440; Stohlman, S.A., Hinton, D.R., Parra, B., Atkinson, R., Bergmann, C.C., CD4 T cells contribute to virus control and pathology following central nervous system infection with neurotropic mouse hepatitis virus (2008) J Virol, 82 (5), pp. 2130-2139; Mizutani, M., Pino, P.A., Saederup, N., Charo, I.F., Ransohoff, R.M., Cardona, A.E., The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood (2012) J Immunol, 188 (1), pp. 29-36; Yeh, F.L., Hansen, D.V., Sheng, M., TREM2, microglia, and neurodegenerative diseases (2017) Trends Mol Med, 23 (6), pp. 512-533; Butovsky, O., Jedrychowski, M.P., Moore, C.S., Cialic, R., Lanser, A.J., Gabriely, G., Identification of a unique TGF-beta-dependent molecular and functional signature in microglia (2014) Nat Neurosci, 17 (1), pp. 131-143; Harrison, J.K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R.K., Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia (1998) Proc Natl Acad Sci U S A, 95 (18), pp. 10896-10901; Beers, C., Burich, A., Kleijmeer, M.J., Griffith, J.M., Wong, P., Rudensky, A.Y., Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo (2005) J Immunol, 174 (3), pp. 1205-1212; Zhao, P., Lieu, T., Barlow, N., Metcalf, M., Veldhuis, N.A., Jensen, D.D., Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4 (2014) J Biol Chem, 289 (39), pp. 27215-27234; Liu, Y.X., Wang, J., Guo, J., Wu, J., Lieberman, H.B., Yin, Y., DUSP1 is controlled by p53 during the cellular response to oxidative stress (2008) Mol Cancer Res, 6 (4), pp. 624-633; Ireland, D.D., Stohlman, S.A., Hinton, D.R., Atkinson, R., Bergmann, C.C., Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells (2008) J Virol, 82 (1), pp. 300-310; Hwang, M., Bergmann, C.C., Alpha/beta interferon (IFN-alpha/beta) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-gamma-dependent responses (2018) J Virol, 92 (10); Glabinski, A., Jalosinski, M., Ransohoff, R.M., Chemokines and chemokine receptors in inflammation of the CNS (2005) Expert Rev Clin Immunol, 1 (2), pp. 293-301; Haure-Mirande, J.V., Audrain, M., Fanutza, T., Kim, S.H., Klein, W.L., Glabe, C., Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology (2017) Acta Neuropathol, 134 (5), pp. 769-788; Martinez, F.O., Gordon, S., The M1 and M2 paradigm of macrophage activation: time for reassessment (2014) F1000Prime Rep, 6, p. 13; Ransohoff, R.M., A polarizing question: do M1 and M2 microglia exist? (2016) Nat Neurosci, 19 (8), pp. 987-991; Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., Lassmann, H., Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination (2000) Ann Neurol, 47 (6), pp. 707-717; Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M., Rossi, F.M., Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool (2011) Nat Neurosci, 14 (9), pp. 1142-1149; Mildner, A., Mack, M., Schmidt, H., Bruck, W., Djukic, M., Zabel, M.D., CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system (2009) Brain, 132, pp. 2487-2500; Bergmann, C.C., Lane, T.E., Stohlman, S.A., Coronavirus infection of the central nervous system: host-virus stand-off (2006) Nat Rev Microbiol, 4 (2), pp. 121-132; Ingram, G., Hakobyan, S., Robertson, N.P., Morgan, B.P., Complement in multiple sclerosis: its role in disease and potential as a biomarker (2009) Clin Exp Immunol, 155 (2), pp. 128-139; Liu, Y., Given, K.S., Harlow, D.E., Matschulat, A.M., Macklin, W.B., Bennett, J.L., Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination (2017) Acta Neuropathol Commun, 5 (1), p. 25; Walter, J., The triggering receptor expressed on myeloid cells 2: a molecular link of neuroinflammation and neurodegenerative diseases (2016) J Biol Chem, 291 (9), pp. 4334-4341; Piccio, L., Buonsanti, C., Cella, M., Tassi, I., Schmidt, R.E., Fenoglio, C., Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation (2008) Brain, 131, pp. 3081-3091; Piccio, L., Buonsanti, C., Mariani, M., Cella, M., Gilfillan, S., Cross, A.H., Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis (2007) Eur J Immunol, 37 (5), pp. 1290-1301; Cantoni, C., Bollman, B., Licastro, D., Xie, M., Mikesell, R., Schmidt, R., TREM2 regulates microglial cell activation in response to demyelination in vivo (2015) Acta Neuropathol, 129 (3), pp. 429-447; Poliani, P.L., Wang, Y., Fontana, E., Robinette, M.L., Yamanishi, Y., Gilfillan, S., TREM2 sustains microglial expansion during aging and response to demyelination (2015) J Clin Invest, 125 (5), pp. 2161-2170; Gudi, V., Gingele, S., Skripuletz, T., Stangel, M., Glial response during cuprizone-induced de-and remyelination in the CNS: lessons learned (2014) Front Cell Neurosci, 8, p. 73; Akassoglou, K., Bauer, J., Kassiotis, G., Pasparakis, M., Lassmann, H., Kollias, G., Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy (1998) Am J Pathol, 153 (3), pp. 801-813; Nakazawa, T., Nakazawa, C., Matsubara, A., Noda, K., Hisatomi, T., She, H., Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma (2006) J Neurosci, 26 (49), pp. 12633-12641; Selmaj, K., Raine, C.S., Cannella, B., Brosnan, C.F., Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions (1991) J Clin Invest, 87 (3), pp. 949-954; Spuler, S., Yousry, T., Scheller, A., Voltz, R., Holler, E., Hartmann, M., Multiple sclerosis: prospective analysis of TNF-alpha and 55 kDa TNF receptor in CSF and serum in correlation with clinical and MRI activity (1996) J Neuroimmunol, 66 (1-2), pp. 57-64; Greter, M., Heppner, F.L., Lemos, M.P., Odermatt, B.M., Goebels, N., Laufer, T., Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis (2005) Nat Med, 11 (3), pp. 328-334; McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H., Miller, S.D., Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis (2005) Nat Med, 11 (3), pp. 335-339; Savarin, C., Bergmann, C.C., Gaignage, M., Stohlman, S.A., Self-reactive CD4(+) T cells activated during viral-induced demyelination do not prevent clinical recovery (2015) J Neuroinflammation, 12, p. 207; Giles, D.A., Washnock-Schmid, J.M., Duncker, P.C., Dahlawi, S., Ponath, G., Pitt, D., Myeloid cell plasticity in the evolution of central nervous system autoimmunity (2018) Ann Neurol, 83 (1), pp. 131-141","Savarin, C.; Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic FoundationUnited States; email: savaric@ccf.org",,"Frontiers Media S.A.",16643224,,,,"English","Front. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85048312040 "Lau S.K.P., Zhang L., Luk H.K.H., Xiong L., Peng X., Li K.S.M., He X., Zhao P.S.-H., Fan R.Y.Y., Wong A.C.P., Ahmed S.S., Cai J.-P., Chan J.F.W., Sun Y., Jin D., Chen H., Lau T.C.K., Kok R.K.H., Li W., Yuen K.-Y., Woo P.C.Y.","7401596211;8852093300;56513568500;55856324800;57188733611;24759122500;57188747076;57189038172;15519269300;57196150074;56393567800;35557916700;24278817900;9235440900;7201973614;57215065142;36981810500;7006862631;55718630900;36078079100;7201801340;","Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of middle east respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding",2018,"Journal of Infectious Diseases","218","2",,"197","207",,19,"10.1093/infdis/jiy018","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050108555&doi=10.1093%2finfdis%2fjiy018&partnerID=40&md5=8ec52bbcf99dc380b5dd1c6bb6387c81","State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong; Department of Microbiology, University of Hong Kong, Hong Kong; Carol Yu Centre for Infection, University of Hong Kong, Hong Kong; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong","Lau, S.K.P., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Zhang, L., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China; Luk, H.K.H., Department of Microbiology, University of Hong Kong, Hong Kong; Xiong, L., Department of Microbiology, University of Hong Kong, Hong Kong; Peng, X., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China; Li, K.S.M., Department of Microbiology, University of Hong Kong, Hong Kong; He, X., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China; Zhao, P.S.-H., Department of Microbiology, University of Hong Kong, Hong Kong; Fan, R.Y.Y., Department of Microbiology, University of Hong Kong, Hong Kong; Wong, A.C.P., Department of Microbiology, University of Hong Kong, Hong Kong; Ahmed, S.S., Department of Microbiology, University of Hong Kong, Hong Kong; Cai, J.-P., Department of Microbiology, University of Hong Kong, Hong Kong; Chan, J.F.W., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Sun, Y., National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China; Jin, D., School of Biomedical Sciences, University of Hong Kong, Hong Kong; Chen, H., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Lau, T.C.K., Department of Biomedical Sciences, City University of Hong Kong, Hong Kong; Kok, R.K.H., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Li, W., National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China; Yuen, K.-Y., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; Woo, P.C.Y., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong","Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4. © The Author(s) 2018.","dipeptidyl peptidase 4; Hypsugo bat; Middle East Respiratory Syndrome coronavirus; spike glycoprotein","dipeptidyl peptidase IV; virus spike protein; coronavirus spike glycoprotein; dipeptidyl peptidase IV; DPP4 protein, human; protein binding; virus receptor; animal cell; Article; Betacoronavirus; China; controlled study; human; human cell; Hypsugo pulveratus; Middle East respiratory syndrome coronavirus; molecular evolution; nonhuman; nucleotide sequence; phylogeny; Pipistrellus; priority journal; protein binding; protein domain; protein expression; receptor binding; virus cell interaction; virus entry; virus identification; virus strain; animal; bat; Betacoronavirus; classification; DNA sequence; genetics; HEK293 cell line; isolation and purification; metabolism; physiology; virus entry; Animals; Betacoronavirus; Chiroptera; Dipeptidyl Peptidase 4; Evolution, Molecular; HEK293 Cells; Humans; Phylogeny; Protein Binding; Receptors, Virus; Sequence Analysis, DNA; Spike Glycoprotein, Coronavirus; Virus Internalization","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; De Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Reusken, C.B., Haagmans, B.L., Muller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Woo, P.C., Wang, M., Lau, S.K., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81, pp. 1574-1585; Woo, P.C., Lau, S.K., Li, K.S., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Lau, S.K., Li, K.S., Tsang, A.K., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 8638-8650; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg Microbes Infect, 1, p. e35; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Yang, L., Wu, Z., Ren, X., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg Infect Dis, 20, pp. 1260-1262; Anthony, S.J., Gilardi, K., Menachery, V.D., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Peiris, J.S., Lai, S.T., Poon, L.L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Woo, P.C., Lau, S.K., Lam, C.S., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Lau, S.K., Woo, P.C., Li, K.S., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2014) J Virol, 89, pp. 3076-3092; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30; De Groot, R.J., Baker, S.C., Baric, R., Coronaviridae (2011) Ninth Report of the International Committee on Taxonomy of Viruses, International Union of Microbiological Societies, pp. 806-828. , In: Virus Taxonomy, Classification and Nomenclature of Viruses. Virology Division; Van Boheemen, S., De Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3; Wang, Q., Qi, J., Yuan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Agnarsson, I., Zambrana-Torrelio, C.M., Flores-Saldana, N.P., May-Collado, L.J., A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) (2011) PLoS Curr, 3, p. RRN1212; Cai, Y., Yu, S.Q., Postnikova, E.N., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERSCoV) infection and evolution of persistent infection (2014) PLoS One, 9, p. e112060; Munster, V.J., Adney, D.R., Van Doremalen, N., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci Rep, 6, p. 21878; Lau, S.K., Woo, P.C., Li, K.S., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045; Yob, J.M., Field, H., Rashdi, A.M., Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia (2001) Emerg Infect Dis, 7, pp. 439-441; Lau, S.K., Woo, P.C., Yip, C.C., Isolation and characterization of a novel betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J Virol, 86, pp. 5481-5496; Huang, Y., Lau, S.K., Woo, P.C., Yuen, K.Y., CoVDB: A comprehensive database for comparative analysis of coronavirus genes and genomes (2008) Nucleic Acids Res, 36, pp. D504-D511; Lau, S.K., Wernery, R., Wong, E.Y., Polyphyletic origin of MERS coronaviruses and isolation of a novel clade A strain from dromedary camels in the United Arab Emirates (2016) Emerg Microbes Infect, 5, p. e128; Huang, X., Dong, W., Milewska, A., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J Virol, 89, pp. 7202-7213; Sun, Y., Qi, Y., Liu, C., Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus (2014) J Virol, 88, pp. 237-248; Xiong, L., Yang, Y., Ye, Y.N., Laribacter hongkongensis anaerobic adaptation mediated by arginine metabolism is controlled by the cooperation of FNR and ArgR (2017) Environ Microbiol, 19, pp. 1266-1280; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Yang, Y., Du, L., Liu, C., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521; Wang, N., Shi, X., Jiang, L., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Niemeyer, D., Zillinger, T., Muth, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type i interferon antagonist (2013) J Virol, 87, pp. 12489-12495; Thornbrough, J.M., Jha, B.K., Yount, B., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, p. e00258; Cotten, M., Watson, S.J., Zumla, A.I., Spread, circulation, and evolution of the middle East respiratory syndrome coronavirus (2014) MBio, 5; Sabir, J.S., Lam, T.T., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERSCoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Drosten, C., Seilmaier, M., Corman, V.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751; Lau, S.K., Li, K.S., Huang, Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J Virol, 84, pp. 2808-2819; Hon, C.C., Lam, T.Y., Shi, Z.L., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J Virol, 82, pp. 1819-1826; Lau, S.K., Feng, Y., Chen, H., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J Virol, 89, pp. 10532-10547; Song, H.D., Tu, C.C., Zhang, G.W., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc Natl Acad Sci U S A, 102, pp. 2430-2435","Woo, P.C.Y.; State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Department of Microbiology, Queen Mary Hospital, Room 423, University Pathology Building, Hong Kong; email: pcywoo@hku.hk",,"Oxford University Press",00221899,,JIDIA,"29346682","English","J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85050108555 "Lin Q., Chiu A.P.Y., Zhao S., He D.","56902109600;56902268400;57194229769;7403045834;","Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia",2018,"Statistical Methods in Medical Research","27","7",,"1968","1978",,7,"10.1177/0962280217746442","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047918339&doi=10.1177%2f0962280217746442&partnerID=40&md5=8380d32fc4c0b42a28e0fa7de1dae24d","Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong","Lin, Q., Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong; Chiu, A.P.Y., Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong; Zhao, S., Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong; He, D., Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong","Middle East respiratory syndrome coronavirus has been persistent in the Middle East region since 2012. Abundant scientific evidence showed that dromedary camels are the primary host of the virus. Majority of human cases (i.e., 75% or 88%) are due to human-to-human transmission, while the others are due to camel-to-human transmission. Mathematical modeling of Middle East respiratory syndrome coronavirus camel-to-camel transmission was lacking. Using the plug-and-play likelihood-based inference framework, we fitted a susceptible-exposed-infectious-recovered-susceptible model of camels to the reported human cases with a constant proportion of human cases from camels (i.e., either 25% or 12%). We considered two scenarios: (i) the transmission rate among camels is time-varying with a constant spill-over rate from camels to human or (ii) the spill-over rate is time-varying with a constant transmission rate among camels. Our estimated loss-of-immunity rate and prevalence of Middle East respiratory syndrome coronavirus infections among camels largely matched with previous serological or virological studies, shedding light on this issue. We recommended including dromedary camels in animal surveillance and control of Middle East respiratory syndrome coronavirus in Saudi Arabia which could help reduce their sporadic introductions to humans. © 2017, © The Author(s) 2017.","iterated filtering; Mathematical modeling; Middle East respiratory syndrome","Article; camel; disease surveillance; human versus nonhuman data; immunity; mathematical model; Middle East respiratory syndrome coronavirus; prevalence; Saudi Arabia; virus transmission; animal; camel; Coronavirus infection; human; isolation and purification; Middle East respiratory syndrome coronavirus; statistical model; zoonosis; Animals; Camelus; Coronavirus Infections; Humans; Likelihood Functions; Middle East Respiratory Syndrome Coronavirus; Prevalence; Saudi Arabia; Zoonoses","www.who.int/emergencies/mers-cov/en/, World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV), (accessed 7 July 2016); Memish, Z., Zumla, A., Alhakeem, R., Hajj: infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Khan, K., Sears, J., Hu, V.W., Potential for the international spread of middle East respiratory syndrome in association with mass gatherings in Saudi Arabia (2013) PLoS Curr, 5; Lessler, J., Rodriguez-Barraquer, I., Cummings, D.A., Estimating potential incidence of MERS-CoV associated with Hajj pilgrims to Saudi Arabia, 2014 (2014) PLoS Curr, 6; Poletto, C., Pelat, C., Levy-Bruhl, D., Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach (2014) Euro Surveill, 19, p. 20824; Diekmann, O., Heesterbeek, J.A.P., (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, , New York, John Wiley & Sons, LTD, Wiley Series in Mathematical and Computational Biology; Kucharski, A., Althaus, C., The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission (2015) Euro Surveill, 20, pp. 14-18; Hsieh, Y.H., 2015 Middle East respiratory syndrome coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling (2015) PeerJ, 3, p. e1505; Chowell, G., Blumberg, S., Simonsen, L., Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission (2014) Epidemics, 9, pp. 40-51; Poletto, C., Colizza, V., Boëlle, P.Y., Quantifying spatiotemporal heterogeneity of MERS-CoV transmission in the Middle East region: a combined modelling approach (2016) Epidemics, 15, pp. 1-9; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; Cauchemez, S., Nouvellet, P., Cor, A., Unraveling the drivers of MERS-CoV transmission (2016) Proc Natl Acad Sci U S A, 113, pp. 9081-9086; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Reusken, C.B., Haagmans, B.L., Müller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New Engl J Med, 370, pp. 2499-2505; Reusken, C.B., Messadi, L., Feyisa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374; Meyer, B., Müller, M.A., Corman, V.M., Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559; Farag, E.A., Reusken, C.B., Haagmans, B.L., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5, p. 28305; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) mBio, 5, pp. e01002-e01014; Hemida, M.G., Chu, D.K., Poon, L.L., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 1231-1234; http://aims.fao.org/activity/blog/empres-global-animal-disease-information-system, Food and Agriculture Organization of the United Nations. EMPRES Global Animal Disease Information System, (accessed 3 June 2016); Sabir, J.S., Lam, T.T.Y., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Kupferschmidt, K., Emerging diseases. Soaring MERS Cases in Saudi Arabia Raise Alarms (2014) Science, 344, pp. 457-458; http://faostat3.fao.org/download/Q/QA/E, United Nations. Food and Agriculture Organization of the United Nations Statistics Division, (accessed 3 June 2016); http://genomics.senescence.info/species/entry.php?species=Camelus_dromedarius, The animal ageing and longevity database, (accessed 3 June 2016); Hemida, M.G., Chu, D.K., Poon, L.L., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 1231-1234; Reusken, C.B., Raj, V.S., Koopmans, M.P., Cross host transmission in the emergence of MERS coronavirus (2016) Curr Opin Virol, 16, pp. 55-62; Wernery, U., Corman, V.M., Wong, E.Y., Acute Middle East respiratory syndrome coronavirus infection in livestock dromedaries, Dubai, 2014 (2015) Emerg Infect Dis, 21, pp. 1019-1022; Meyer, B., Juhasz, J., Barua, R., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerg Infect Dis, 22, pp. 2171-2173; Hemida, M., Perera, R., Wang, P., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18, p. 20659; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013–2014 (2015) Emerg Infect Dis, 21, pp. 1153-1158; www.emro.who.int/media/news/mers-developments.html, WHO vigilant on new Middle East respiratory syndrome developments, (2014, accessed 24 November 2017); Meyer, B., Juhasz, J., Barua, R., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerg Infect Dis, 22, pp. 2171-2173; https://knoema.com/SAFT2014/saudi-arabia-foreign-trade, Knoema. Saudi Arabia foreign trade, (2016, accessed 24 November 2017); He, D., Ionides, E., King, A., Plug-and-play inference for disease dynamics: measles in large and small populations as a case study (2010) J R Soc Interface, 7, pp. 271-283; Ionides, E., Bréto, C., King, A., Inference for nonlinear dynamical systems (2006) Proc Natl Acad Sci U S A, 103, pp. 18438-18443; King, A.A., Ionides, E.L., Pascual, M., Inapparent infections and cholera dynamics (2008) Nature, 454, pp. 877-880; Ionides, E., Bhadra, A., Atchade, Y., Iterated filtering (2011) Ann Stat, 39, pp. 1776-1802; King, A., Nguyen, D., Ionides, E., Statistical inference for partially observed Markov processes via the R package pomp (2016) J Stat Softw, 69, pp. 1-43; Iondies, E., Nguyen, D., Atchade, Y., Inference for dynamic and latent variable models via iterated, perturbed Bayes maps (2015) Proc Natl Acad Sci U S A, 112, pp. 719-724; http://kingaa.github.io/pomp, King A, Ionides E, Breto C, et al. pomp: statistical inference for partially observed Markov processes (R package, version 1.14), (accessed 24 November 2017); https://en.wikipedia.org/wiki/Iterated_filtering, Ionides E. Iterated filtering, (accessed 24 November 2017); Schwarz, G., Estimating the dimension of a model (1978) Ann Stat, 6, pp. 461-464; Earn, D., Rohani, P., Bolker, B., A simple model for complex dynamical transitions in epidemics (2000) Science, 287, pp. 667-670","He, D.; Department of Applied Mathematics, Hong Kong Polytechnic UniversityHong Kong; email: daihai.he@polyu.edu.hk",,"SAGE Publications Ltd",09622802,,SMMRF,"29846148","English","Stat. Methods Med. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85047918339 "Luo C.-M., Wang N., Yang X.-L., Liu H.-Z., Zhang W., Li B., Hu B., Peng C., Geng Q.-B., Zhu G.-J., Li F., Shi Z.-L.","55908846900;55908990800;35811468700;16425918800;56151953000;57077269800;55908560200;55729132200;57158970800;30567972400;26028899600;7403733955;","Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus",2018,"Journal of Virology","92","13", e00116-18,"","",,19,"10.1128/JVI.00116-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048464689&doi=10.1128%2fJVI.00116-18&partnerID=40&md5=07633095e37629999e6e286fb2282ec6","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; University of Chinese Academy of Sciences, Beijing, China; Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; EcoHealth Alliance, New York, NY, United States","Luo, C.-M., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China, University of Chinese Academy of Sciences, Beijing, China, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Wang, N., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China, University of Chinese Academy of Sciences, Beijing, China; Yang, X.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Liu, H.-Z., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Zhang, W., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Li, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Hu, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Peng, C., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Geng, Q.-B., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Zhu, G.-J., EcoHealth Alliance, New York, NY, United States; Li, F., Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China","Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4, Pipistrellus pipistrellus coronavirus HKU5, and MERSrelated CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io, from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV. © 2018 American Society for Microbiology.","Bat; Dipeptidyl peptidase 4; MERS-related coronavirus; Virus discovery","dipeptidyl peptidase IV; dipeptidyl peptidase IV receptor; receptor; unclassified drug; viral protein; virus receptor; Article; Betacoronavirus; China; controlled study; gene sequence; genetic variability; geographic distribution; Middle East respiratory syndrome coronavirus; molecular epidemiology; nonhuman; nucleotide sequence; Pipistrellus pipistrellus coronavirus; priority journal; protein protein interaction; receptor binding; rural area; species difference; strain identification; Tylonycteris pachypus coronavirus; Vespertilionidae; virus entry; virus gene; virus genome; virus identification; virus strain; amino acid sequence; animal; bat; classification; Coronavirus infection; genetics; host range; human; metabolism; Middle East respiratory syndrome coronavirus; molecular evolution; pathogenicity; phylogeny; sequence homology; transmission; veterinary; virology; virus genome; Amino Acid Sequence; Animals; Chiroptera; Coronavirus Infections; Evolution, Molecular; Genome, Viral; Host Specificity; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Receptors, Virus; Sequence Homology; Viral Proteins","Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, 6th ed, vol 2, pp. 825-858. , In Knipe DM, Howley PM (ed) Lippincott Williams & Wilkins, Philadelphia, PA; Lai, M.M.C., Recombination in large RNA viruses: coronaviruses (1996) Semin Virol, 7, pp. 381-388. , https://doi.org/10.1006/smvy.1996.0046; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261. , https://doi.org/10.1146/annurev-virology-110615-042301; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A.M., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group (2013) J Virol, 87, pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13; Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Lam, C.S.F., Ahmed, S., Chen, H.L., Chan, K.H., Yuen, K.Y., Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 8638-8650. , https://doi.org/10.1128/JVI.01055-13; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699. , https://doi.org/10.3201/eid1910.130946; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303. , https://doi.org/10.1128/JVI.01498-14; Yang, L., Wu, Z.Q., Ren, X.W., Yang, F., Zhang, J.P., He, G.M., Dong, J., Jin, Q., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg Infect Dis, 20, pp. 1260-1262. , https://doi.org/10.3201/eid2007.140318; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.K., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8. , https://doi.org/10.1128/mBio.00373-17; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Moreno, A., Boniotti, M.B., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689. , https://doi.org/10.3390/v5112679; Wacharapluesadee, S., Sintunawa, C., Kaewpom, T., Khongnomnan, K., Olival, K.J., Epstein, J.H., Rodpan, A., Hemachudha, T., Group C betacoronavirus in bat guano fertilizer, Thailand (2013) Emerg Infect Dis, 19, pp. 1349-1351. , https://doi.org/10.3201/eid1908.130119; Reusken, C., Lina, P.H.C., Pielaat, A., de Vries, A., Dam-Deisz, C., Adema, J., Drexler, J.F., Kooi, E.A., Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe (2010) Vector Borne Zoonotic Dis, 10, pp. 785-791. , https://doi.org/10.1089/vbz.2009.0173; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg Infect Dis, 19, pp. 456-459. , https://doi.org/10.3201/eid1903.121503; Anthony, S.J., Ojeda-Flores, R., Rico-Chavez, O., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Rostal, M.K., Epstein, J.H., Lipkin, W.I., Coronaviruses in bats from Mexico (2013) J Gen Virol, 94, pp. 1028-1038. , https://doi.org/10.1099/vir.0.049759-0; Falcon, A., Vazquez-Moron, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Perez-Brena, P., Echevarria, J.E., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch Virol, 156, pp. 1883-1890. , https://doi.org/10.1007/s00705-011-1057-1; Raj, V.S., Mou, H.H., Smits, S.L., Dekkers, D.H.W., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521. , https://doi.org/10.1073/pnas.1405889111; Li, W.D., Shi, Z.L., Yu, M., Ren, W.Z., Smith, C., Epstein, J.H., Wang, H.Z., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , https://doi.org/10.1126/science.1118391; de Souza Luna, K., Heiser, V., Regamey, N., Panning, M., Drexler, J.F., Mulangu, S., Poon, L., Drosten, C., Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray (2007) J Clin Microbiol, 45, pp. 1049-1052. , https://doi.org/10.1128/JCM.02426-06; Irwin, D.M., Kocher, T.D., Wilson, A.C., Evolution of the cytochrome b gene of mammals (1991) J Mol Evol, 32, pp. 128-144. , https://doi.org/10.1007/BF02515385; Mayer, F., von Helversen, O., Cryptic diversity in European bats (2001) Proc Biol Sci, 268, pp. 1825-1832. , https://doi.org/10.1098/rspb.2001.1744; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006698; Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , https://doi.org/10.1093/bioinformatics/btm404; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729. , https://doi.org/10.1093/molbev/mst197; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Ray, S.C., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J Virol, 73, pp. 152-160; Woo, P.C.Y., Wang, M., Lau, S.K.P., Xu, H.F., Poon, R.W.S., Guo, R.T., Wong, B.H.L., Yuen, K.Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81, pp. 1574-1585. , https://doi.org/10.1128/JVI.02182-06; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A., Fouchier, R.A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3. , https://doi.org/10.1128/mBio.00473-12; Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Bateman, A., The Pfam protein families database: towards a more sustainable future (2016) Nucleic Acids Res, 44, pp. D279-D285. , https://doi.org/10.1093/nar/gkv1344; Finn, R.D., Attwood, T.K., Babbitt, P.C., Bateman, A., Bork, P., Bridge, A.J., Chang, H.Y., Mitchell, A.L., InterPro in 2017-beyond protein family and domain annotations (2017) Nucleic Acids Res, 4, pp. D190-D199. , https://doi.org/10.1093/nar/gkw1107; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1. , https://doi.org/10.1093/ve/vev003; Wang, D., Zhang, Y., Zhang, Z., Zhu, J., Yu, J., KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies (2010) Genomics Proteomics Bioinformatics, 8, pp. 77-80. , https://doi.org/10.1016/S1672-0229(10)60008-3; Chen, Y.Q., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 10777-10783; Li, F., Li, W.H., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Du, L.Y., Zhao, G.Y., Yang, Y., Qiu, H.J., Wang, L.L., Kou, Z.H., Tao, X.R., Zhou, Y.S., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptorbinding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053; Cassel, J.A., Blass, B.E., Reitz, A.B., Pawlyk, A.C., Development of a novel nonradiometric assay for nucleic acid binding to TDP-43 suitable for high-throughput screening using AlphaScreen technology (2010) J Biomol Screen, 15, pp. 1099-1106; Peng, G.Q., Sun, D.W., Rajashankar, K.R., Qian, Z.H., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc Natl Acad Sci U S A, 108, pp. 10696-10701; Du, L.Y., Tai, W.B., Yang, Y., Zhao, G.Y., Zhu, Q., Sun, S.H., Liu, C., Li, F., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat Commun, 7; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Thabah, A., Li, G., Wang, Y.N., Liang, B., Hu, K.L., Zhang, S.Y., Jones, G., Diet, echolocation calls, and phylogenetic affinities of the great evening bat (Ia IO; Vespertilionidae): another carnivorous bat (2007) J Mammal, 88, pp. 728-735; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Woo, P.C.Y., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of MERSrelated coronavirus spike proteins for human DPP4 binding J Infect Dis, , https://doi.org/10.1093/infdis/jiy018, 16 January 2018","Li, F.; Department of Veterinary and Biomedical Sciences, University of MinnesotaUnited States; email: lifang@umn.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29669833","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85048464689 "Brandão P.E.","55916312600;","Could human coronavirus OC43 have co-evolved with early humans?",2018,"Genetics and Molecular Biology","41","3",,"692","698",,,"10.1590/1678-4685-gmb-2017-0192","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053237386&doi=10.1590%2f1678-4685-gmb-2017-0192&partnerID=40&md5=7a403b7318f8c8e8096565aba7dacde5","Departmento de Medicina Veterinaria Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil","Brandão, P.E., Departmento de Medicina Veterinaria Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil","This paper reports on an investigation of the role of codon usage evolution on the suggested bovine-to-human spillover of Bovine coronavirus (BCoV), an enteric/respiratory virus of cattle, resulting in the emergence of the exclusively respiratory Human coronavirus OC43 (HCoV-OC43). Analyses based on full genomes of BCoV and HCoV-OC43 and on both human and bovine mRNAs sequences of cholecystokinin (CCK) and surfactant protein 1 A (SFTP1-A), representing the enteric and respiratory tract codon usage, respectively, have shown natural selection leading to optimization or deoptimization of viral codon usage to the human enteric and respiratory tracts depending on the virus genes under consideration. A higher correlation was found for the nucleotide distance at the 3rd nucleotide position of codons and codon usage optimization to the human respiratory tract when BCoV and HCoV-OC43 were compared. An MCC tree based on relative synonymous codon usage (RSCU) data integrating data from both viruses and hosts into a same analysis indicated three putative host/virus contact dates ranging from 1.54E8 to 2.44E5 years ago, suggesting that an ancestor coronavirus might have followed human evolution. © 2018, Sociedade Brasileira de Genética.","Codon usage; Coevolution; Coronavirus; Spillover","cholecystokinin; messenger RNA; surfactant protein 1A; surfactant protein A; unclassified drug; Article; Bovine coronavirus; codon usage; gastrointestinal tract; genome analysis; human; Human coronavirus OC43; nonhuman; respiratory system; RNA sequence; virus genome; virus strain","Ajmone-Marsan, P., Garcia, J.F., Lenstra, J.A., On the origin of cattle: How aurochs became cattle and colonized the world (2010) Evol Anthropol, 19, pp. 148-157; Bahir, I., Fromer, M., Prat, Y., Linial, M., Viral adaptation to host: A proteome-based analysis of codon usage and amino acid preferences (2009) Mol Syst Biol, 5, p. 311; Bidokhti, M.R., Tråvén, M., Krishna, N.K., Munir, M., Belák, S., Alenius, S., Cortey, M., Evolutionary dynamics of bovine coronaviruses: Natural selection pattern of the spike gene implies adaptive evolution of the strains (2013) J Gen Virol, 94, pp. 2036-2049; Borucki, M.K., Allen, J.E., Chen-Harris, H., Zemla, A., Vanier, G., Mabery, S., Torres, C., Slezak, T., The role of viral population diversity in adaptation ofbovine coronavirusto new host environments (2013) Plos One, 8; Chantawannakul, P., Cutler, R.W., Convergent host-para-site codon usage between honeybee and bee associated viral genomes (2008) J Invertebr Pathol, 98, pp. 206-210; Dea, S., Michaud, L., Milane, G., Comparison of bovine coronavirus isolates associated with neonatal calf diarrhea and winter dysentery in adult dairy cattle in Québec (1995) J Gen Virol, 76, pp. 1263-1270; Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol, 8, pp. 270-279; Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol Biol, 7, p. 214; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol, 29, pp. 1969-1973; Gandon, S., Hochberg, M.E., Holt, R.D., Day, T., What limits the evolutionary emergence of pathogens? (2013) Philos Trans R Soc Lond B Biol Sci, 368; Gossner, C., Danielson, N., Grevelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Adlhoch, C., Coloumbier, D., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East Respiratory Syndrome Coronavirus Infection (2016) Zoonoses Public Health, 63, pp. 1-9; Hershberg, R., Petrov, D.A., General rules for optimal codon choice (2009) Plos Genet, 5; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version7.0 for Bigger Datasets (2016) Mol Biol Evol, 33, pp. 870-1874; Labonté, P., Mounir, S., Talbot, P.J., Sequence and expression of the ns2 protein gene of human coronavirus OC43 (1995) J Gen Virol, 76, pp. 431-435; Langer, M.C., Ezcurra, M.D., Bittencourt, J.S., Novas, F.E., The origin and early evolution of dinosaurs (2010) Biol Rev, 85, pp. 55-110; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Tsang, A.K.L., Fan, R.Y.Y., Luk, H.K.H., Cai, J., Wang, M., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J Virol, 89, pp. 3076-3092; Lee, S., Weon, S., Kang, C., Relative codon adaptation index, a sensitive measure of codon usage bias (2010) Evol Bioinform Online, 6, pp. 47-55; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Mäkelä, M.J., Puhakka, T., Ruuskanen, O., Leinonen, M., Saikku, P., Kimpimäki, M., Blomqvist, S., Arstila, P., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36, pp. 539-542; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292; McHenry, H.M., Tempo and mode in human evolution (1994) Proc Natl Acad Sci USA, 91, pp. 6780-6786; Munir, M., Cortey, M., Estimation of evolutionary dynamics and selection pressure (2015) Coronaviruses: Methods and Protocols, Methods in Molecular Biology, pp. 41-48. , Maier HJ, Britton P and Bickerton E (eds), Springer Science+Business Media, New York; Nei, M., Kumar, S., (2000) Molecular Evolution and Phylogenetics, p. 333. , Oxford University Press, New York; Popova, R., Zhang, X., The spike but not the hemagglu-tinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection (2002) Virology, 294, pp. 222-236; Puigbo, P., Bravo, I.G., Garcia-Vallve, S., CAIcal: A combined set of tools to assess codon usage adaptation (2008) Biol Direct, 3, p. 38; Roth, A., Anisimova, M., Cannarozzi, G.M., Measuring codon bias (2012) Codon Evolution, pp. 189-217. , Cannarozzi GM and Schneider A, Oxford University Press, New York; Saif, L.J., Bovine respiratory coronavirus (2010) Vet Clin North am Food Anim Pract, 26, pp. 349-364; Sharp, P.M., Li, W.H., The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications (1987) Nucleic Acids Res, 15, pp. 1281-1295; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Gorbalenya, A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004; Su, M.W., Lin, H.M., Yuan, H.S., Chu, W.C., Categorizing host-dependent RNA viruses by principal component analysis of their codon usage preferences (2009) J Comput Biol, 16, pp. 1539-1547; Vabret, A., Dina, J., Mourez, T., Gouarin, S., Petitjean, J., van der Werf, S., Freymuth, F., Inter-and intra-variant genetic heterogeneity of human coronavirus OC43 strains in France (2006) J Gen Virol, 87, pp. 3349-3353; Vetrivel, U., Arunkumar, V., Dorairaj, S., ACUA: A software tool for automated codon usage analysis (2007) Bioin-Formation, 2, pp. 62-63; Vijaykrishna, D., Smith, G.J., Zhang, J.X., Peiris, J.S., Chen, H., Guan, Y., Evolutionary insights into the ecology of coronaviruses (2007) J Virol, 81, pp. 4012-4020; Vijgen, L., Keyaerts, E., Lemey, P., Moës, E., Li, S., Vandamme, A.M., van Ranst, M., Circulation of genetically distinct contemporary human coronavirus OC43 strains (2005) Virology, 337, pp. 85-92; Vijgen, L., Keyaerts, E., Moës, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., van Ranst, M., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., van Reeth, K., Nauwynck, H., Pensaert, M., van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemag-glutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80, pp. 7270-7274; Weaver, T.D., Did a discrete event 200,000-100,000 years ago produce modern humans? (2012) J Hum Evol, 63, pp. 121-126; Wertheim, J.O., Chu, D.K., Peiris, J.S., Kosakovsky Pond, S.L., Poon, L.L., A case for the ancient origin of coronaviruses (2013) J Virol, 87, pp. 7039-7045; Wojdyla, J.A., Manolaridis, I., van Kasteren, P.B., Kikkert, M., Snijder, E.J., Gorbalenya, A.E., Tucker, P.A., Papain-like protease 1 from transmissible gastroenteritis virus: Crystal structure and enzymatic activity toward viral and cellular substrates (2010) J Virol, 84, pp. 10063-10073; Wright, F., The ‘effective number of codons’ used in a gene (1990) Gene, 87, pp. 23-29; Wu, G., Culley, D.E., Zhang, W., Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism (2005) Microbiology, 151, pp. 2175-2187; Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Vlasova, A., Janies, D., Saif, L.J., Quasi-species of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation (2007) Virology, 363, pp. 1-10; Ziebuhr, J., Snijder, E.J., The coronavirus replicase gene: Special enzymes for special viruses (2007) Coro-Naviurses Molecular and Cellular Biology, pp. 33-64. , Thiel V (ed), Caister Academic Press, Norfolk","Brandão, P.E.; Departamento de Medicina Veterinaria Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando M. Paiva, 87, Brazil; email: paulo7926@usp.br",,"Brazilian Journal of Genetics",14154757,,GMBIF,,"English","Genet. Mol. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85053237386 "Oguma K., Ohno M., Yoshida M., Sentsui H.","56402775200;57202953925;57202950723;7005853346;","Mutation of the S and 3c genes in genomes of feline coronaviruses",2018,"Journal of Veterinary Medical Science","80","7",,"1094","1100",,,"10.1292/jvms.17-0704","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049984999&doi=10.1292%2fjvms.17-0704&partnerID=40&md5=21858c7a3219c49c056291ce34d7f0fc","Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; Okinawa Zoo and Museum Foundation, 5-7-1 Goya, Okinawa-shi, Okinawa 904-0021, Japan","Oguma, K., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; Ohno, M., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; Yoshida, M., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan, Okinawa Zoo and Museum Foundation, 5-7-1 Goya, Okinawa-shi, Okinawa 904-0021, Japan; Sentsui, H., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan","Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments. © 2018 The Japanese Society of Veterinary Science.","3c gene; Feline coronavirus; Multi-cat environment; Mutation; S gene","animal; cat; feces; Feline coronavirus; feline infectious peritonitis; genetics; Japan; mutation; pathogenicity; virology; virus genome; Animals; Cats; Coronavirus, Feline; Feces; Feline Infectious Peritonitis; Genome, Viral; Japan; Mutation","Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; Bálint, Á., Farsang, A., Zádori, Z., Belák, S., Comparative in vivo analysis of recombinant type II feline coronaviruses with truncated and completed ORF3 region (2014) Plos One, 9; Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Moritz, A., Tekes, G., Thiel, H.J., Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis (2014) Vet. Microbiol., 173, pp. 177-188; Borschensky, C.M., Reinacher, M., Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats (2014) Res. Vet. Sci., 97, pp. 333-340; Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis., 18, pp. 1089-1095; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98; Hsieh, L.E., Huang, W.P., Tang, D.J., Wang, Y.T., Chen, C.T., Chueh, L.L., 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway (2013) Res. Vet. Sci., 95, pp. 1241-1247; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963−2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis (1981) Am. J. Vet. Res., 42, pp. 368-377; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res, 165, pp. 17-28; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Wang, Y.T., Su, B.L., Hsieh, L.E., Chueh, L.L., An outbreak of feline infectious peritonitis in a Taiwanese shelter: Epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus (2013) Vet. Res. (Faisalabad), 44, p. 57","Oguma, K.; Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Japan; email: oguma.keisuke@nihon-u.ac.jp",,"Japanese Society of Veterinary Science",09167250,,,"29769478","English","J. Vet. Med. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85049984999 "Li H.S., Kuok D.I.T., Cheung M.C., Ng M.M.T., Ng K.C., Hui K.P.Y., Peiris J.S.M., Chan M.C.W., Nicholls J.M.","56602386200;55993034200;57190002044;56602287900;57202073077;24492032000;7005486823;26654715500;7201463077;","Effect of interferon alpha and cyclosporine treatment separately and in combination on Middle East Respiratory Syndrome Coronavirus (MERS-CoV) replication in a human in-vitro and ex-vivo culture model",2018,"Antiviral Research","155",,,"89","96",,2,"10.1016/j.antiviral.2018.05.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047058929&doi=10.1016%2fj.antiviral.2018.05.007&partnerID=40&md5=3ce3dce43c4458c2691ed3057af356f4","School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong","Li, H.S., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Kuok, D.I.T., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Cheung, M.C., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Ng, M.M.T., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Ng, K.C., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Hui, K.P.Y., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Peiris, J.S.M., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Chan, M.C.W., School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Nicholls, J.M., Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has emerged as a coronavirus infection of humans in the past 5 years. Though confined to certain geographical regions of the world, infection has been associated with a case fatality rate of 35%, and this mortality may be higher in ventilated patients. As there are few readily available animal models that accurately mimic human disease, it has been a challenge to ethically determine what optimum treatment strategies can be used for this disease. We used in-vitro and human ex-vivo explant cultures to investigate the effect of two immunomodulatory agents, interferon alpha and cyclosporine, singly and in combination, on MERS-CoV replication. In both culture systems the combined treatment was more effective than either agent used alone in reducing MERS-CoV replication. PCR SuperArray analysis showed that the reduction of virus replication was associated with a greater induction of interferon stimulated genes. As these therapeutic agents are already licensed for clinical use, it may be relevant to investigate their use for therapy of human MERS-CoV infection. © 2018 Elsevier B.V.","Cyclosporine; Ex vivo explants; Middle East Respiratory Syndrome Coronavirus (MERS-CoV); Type I interferon","alpha interferon; cyclosporine; alpha interferon; antivirus agent; cyclosporine; animal cell; Article; bronchus; combination drug therapy; controlled study; ex vivo study; human; human cell; human tissue; in vitro study; lung; Middle East respiratory syndrome coronavirus; monotherapy; nonhuman; polymerase chain reaction; priority journal; Vero cell line; virus culture; virus replication; cell culture technique; DNA replication; drug effect; Middle East respiratory syndrome coronavirus; physiology; respiratory system; virology; virus replication; Antiviral Agents; Bronchi; Cell Culture Techniques; Cyclosporine; DNA Replication; Humans; Interferon-alpha; Lung; Middle East Respiratory Syndrome Coronavirus; Respiratory System; Virus Replication","Al-Tawfiq, J.A., Memish, Z.A., Update on therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Expert Rev. Anti Infect. Ther., 15 (3), pp. 269-275; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int. J. Infect. Dis., 20, pp. 42-46; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) N. Engl. J. Med., 376 (6), pp. 584-594; Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., Fong, J.H., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J. Virol., 87 (12), pp. 6604-6614; Chan, R.W., Hemida, M.G., Kayali, G., Chu, D.K., Poon, L.L., Alnaeem, A., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study (2014) Lancet Respir. Med., 2 (10), pp. 813-822; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J. Virol., 87 (14), pp. 7790-7792; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res., 228, pp. 7-13; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat. Med., 19 (10), pp. 1313-1317; Henry, S.D., Metselaar, H.J., Lonsdale, R.C.B., Kok, A., Haagmans, B.L., Tilanus, H.W., van der Laan, L.J.W., Mycophenolic acid inhibits hepatitis C virus replication and acts in synergy with cyclosporin a and interferon-α (2006) Gastroenterology, 131 (5), pp. 1452-1462; Hui, K.P.Y., Chan, L.L.Y., Kuok, D.I.T., Mok, C.K.P., Yang, Z.-F., Li, R.-F., Tropism and innate host responses of influenza A/H5N6 virus: an analysis of ex vivo and in vitro cultures of the human respiratory tract (2017) Eur. Respir. J., 49 (3); Inoue, K., Sekiyama, K., Yamada, M., Watanabe, T., Yasuda, H., Yoshiba, M., (2003) Combined Interferon Alpha2b and Cyclosporin A in the Treatment of Chronic Hepatitis C: Controlled Trial, 38; Ivashkiv, L.B., Donlin, L.T., Regulation of type I interferon responses (2014) Nat. Rev. Immunol., 14 (1), pp. 36-49; Kaur, S., Sassano, A., Dolniak, B., Joshi, S., Majchrzak-Kita, B., Baker, D.P., Role of the Akt pathway in mRNA translation of interferon-stimulated genes (2008) Proc. Natl. Acad. Sci. U. S. A., 105 (12), pp. 4808-4813; The same Middle East respiratory syndrome-coronavirus (MERS-CoV) yet different outbreak patterns and public health impacts on the far East expert opinion from the rapid response team of the Republic of Korea (2015) Infect. Chemother., 47 (4), pp. 247-251; Kroczynska, B., Kaur, S., Platanias, L.C., Growth suppressive cytokines and the AKT/mTOR pathway (2009) Cytokine, 48 (1-2), pp. 138-143; Lim, Y., Ng, Y., Tam, J., Liu, D., Human coronaviruses: a review of virus–host interactions (2016) Diseases, 4 (3), p. 26; Liu, J.P., Ye, L., Wang, X., Li, J.L., Ho, W.Z., Cyclosporin A inhibits hepatitis C virus replication and restores interferon-alpha expression in hepatocytes (2011) Transpl. Infect. Dis. Offic. J. Transplant. Soc., 13 (1), pp. 24-32; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect. Dis., 14 (11), pp. 1090-1095; Perlman, S., McCray, P.B., Jr., Person-to-person spread of the MERS coronavirus–an evolving picture (2013) N. Engl. J. Med., 369 (5), pp. 466-467; Platanias, L.C., Mechanisms of type-I- and type-II-interferon-mediated signalling (2005) Nat. Rev. Immunol., 5 (5), pp. 375-386; Saleiro, D., Mehrotra, S., Kroczynska, B., Beauchamp, E.M., Lisowski, P., Majchrzak-Kita, B., Central role of ULK1 in type I interferon signaling (2015) Cell Rep., 11 (4), pp. 605-617; Shen, Z., He, H., Wu, Y., Li, J., Cyclosporin a inhibits rotavirus replication and restores interferon-beta signaling pathway in vitro and in vivo (2013) Plos One, 8 (8); Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820","Chan, M.C.W.; School, of Public Health, LKS Faculty of Medicine, The University of Hong Kong, L6-39, Laboratory Block, Pokfulam, Hong Kong; email: mchan@hku.hk",,"Elsevier B.V.",01663542,,ARSRD,"29772254","English","Antiviral Res.",Article,"Final",Open Access,Scopus,2-s2.0-85047058929 "Bruning A.H.L., Aatola H., Toivola H., Ikonen N., Savolainen-Kopra C., Blomqvist S., Pajkrt D., Wolthers K.C., Koskinen J.O.","56452695300;57160045300;54404231800;6506707870;24512588600;7004588653;57198336859;6701327166;9941122700;","Rapid detection and monitoring of human coronavirus infections",2018,"New Microbes and New Infections","24",,,"52","55",,2,"10.1016/j.nmni.2018.04.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048491017&doi=10.1016%2fj.nmni.2018.04.007&partnerID=40&md5=9a2f1a69613d4083a35108ef0b697a01","Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands; ArcDia International Oy Ltd, Turku, Finland; National Institute for Health and Welfare (THL), Helsinki, Finland; Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands","Bruning, A.H.L., Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands; Aatola, H., ArcDia International Oy Ltd, Turku, Finland; Toivola, H., ArcDia International Oy Ltd, Turku, Finland; Ikonen, N., National Institute for Health and Welfare (THL), Helsinki, Finland; Savolainen-Kopra, C., National Institute for Health and Welfare (THL), Helsinki, Finland; Blomqvist, S., National Institute for Health and Welfare (THL), Helsinki, Finland; Pajkrt, D., Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands; Wolthers, K.C., Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands; Koskinen, J.O., ArcDia International Oy Ltd, Turku, Finland","Human coronaviruses (CoVs) are increasingly recognized as important respiratory pathogens associated with a broad range of clinical diseases. We sought to increase the insight into clinically relevant CoV infections by monitoring antigen concentrations in six confirmed CoV-positive patients using a newly developed assay for rapid detection of CoV OC43 infections. Antigen positivity lasted 3 to 6 days in secondary infections and 13 days in primary infection. CoV infections are clinically diverse, are common, and cannot be diagnosed from clinical symptoms alone. © 2018 The Author(s)","Human coronavirus; point-of-care test; rapid antigen test; rapid detection; respiratory tract infection","virus antigen; virus nucleoprotein; adult; allergic rhinitis; antigen detection; biological monitoring; child; clinical article; Coronavirus infection; coughing; fatigue; female; fever; human; Human coronavirus OC43; immunoassay; male; mariPOC assay; middle aged; myalgia; nonhuman; Note; otalgia; pharyngitis; preschool child; priority journal; real time polymerase chain reaction; respiratory tract infection; virus identification","Lin, B., Malanoski, A.P., Human coronaviruses (2010), CRC Press Boca Raton, FL; Outbreak of severe acute respiratory syndrome—worldwide, 2003 (2003) MMWR Morb Mortal Wkly Rep, 52, pp. 226-228; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Jean, A., Quach, C., Yung, A., Semret, M., Severity and outcome associated with human coronavirus OC43 infections among children (2013) Pediatr Infect Dis J, 32, pp. 325-329; Zhang, S.F., Tuo, J.L., Huang, X.B., Zhu, X., Zhang, D.M., Zhou, K., Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010–2015 in Guangzhou (2018) PLoS One, 13; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39), p. 20285; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Cho, C.H., Lee, C.K., Nam, M.H., Yoon, S.Y., Lim, C.S., Cho, Y., Evaluation of the AdvanSure real-time RT-PCR compared with culture and Seeplex RV15 for simultaneous detection of respiratory viruses (2014) Diagn Microbiol Infect Dis, 79, pp. 14-18; Sanbonmatsu-Gamez, S., Perez-Ruiz, M., Lara-Oya, A., Pedrosa-Corral, I., Riazzo-Damas, C., Navarro-Mari, J.M., Analytical performance of the automated multianalyte point-of-care mariPOC® for the detection of respiratory viruses (2015) Diagn Microbiol Infect Dis, 83, pp. 252-256; Gunell, M., Antikainen, P., Porjo, N., Irjala, K., Vakkila, J., Hotakainen, K., Comprehensive real-time epidemiological data from respiratory infections in Finland between 2010 and 2014 obtained from an automated and multianalyte mariPOC® respiratory pathogen test (2016) Eur J Clin Microbiol Infect Dis, 35, pp. 405-413; Koskinen, J.O., Vainionpaa, R., Meltola, N.J., Soukka, J., Hanninen, P.E., Soini, A.E., Rapid method for detection of influenza a and B virus antigens by use of a two-photon excitation assay technique and dry-chemistry reagents (2007) J Clin Microbiol, 45, pp. 3581-3588; Jansen, R.R., Schinkel, J., Koekkoek, S., Pajkrt, D., Beld, M., de Jong, M.D., Development and evaluation of a four-tube real time multiplex PCR assay covering fourteen respiratory viruses, and comparison to its corresponding single target counterparts (2011) J Clin Virol, 51, pp. 179-185; Trombetta, H., Faggion, H.Z., Leotte, J., Nogueira, M.B., Vidal, L.R., Raboni, S.M., Human coronavirus and severe acute respiratory infection in Southern Brazil (2016) Pathog Global Health, 110, pp. 113-118; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Human coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498; Bouvier, M., Chen, W.J., Arnold, J.C., Fairchok, M.P., Danaher, P.J., Lalani, T., Species-specific clinical characteristics of human coronavirus infection among otherwise healthy adolescents and adults (2018) Influenza Other Respir Viruses, 12, pp. 299-303; Inagaki, K., Song, M.S., Crumpton, J.C., DeBeauchamp, J., Jeevan, T., Tuomanen, E.I., Correlation between the interval of influenza virus infectivity and results of diagnostic assays in a ferret model (2016) J Infect Dis, 213, pp. 407-410; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005; Suryaprasad, A., Morgan, O.W., Peebles, P., Warner, A., Kerin, T.K., Esona, M.D., Virus detection and duration of illness among patients with 2009 pandemic influenza A (H1N1) virus infection in Texas (2011) Clin Infect Dis, 52, pp. S109-S115","Bruning, A.H.L.Meibergdreef 9, Netherlands; email: a.h.bruning@amc.uva.nl",,"Elsevier Ltd",20522975,,,,"English","New Microbes New Infect.",Note,"Final",Open Access,Scopus,2-s2.0-85048491017 "Ehmann R., Kristen-Burmann C., Bank-Wolf B., König M., Herden C., Hain T., Thiel H.-J., Ziebuhr J., Tekes G.","57195567382;57195570850;35298721100;7101762785;6601989994;7005249330;16154264400;7003783935;23487280300;","Reverse genetics for type I feline coronavirus field isolate to study the molecular pathogenesis of feline infectious peritonitis",2018,"mBio","9","4", e01422-18,"","",,2,"10.1128/mBio.01422-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055558401&doi=10.1128%2fmBio.01422-18&partnerID=40&md5=07e9263e387f65ac7989dafda1f1aa9f","Institute of Virology, Justus Liebig University Giessen, Giessen, Germany; Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany; Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany; Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany","Ehmann, R., Institute of Virology, Justus Liebig University Giessen, Giessen, Germany; Kristen-Burmann, C., Institute of Virology, Justus Liebig University Giessen, Giessen, Germany; Bank-Wolf, B., Institute of Virology, Justus Liebig University Giessen, Giessen, Germany; König, M., Institute of Virology, Justus Liebig University Giessen, Giessen, Germany; Herden, C., Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany; Hain, T., Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany; Thiel, H.-J., Institute of Virology, Justus Liebig University Giessen, Giessen, Germany; Ziebuhr, J., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Tekes, G., Institute of Virology, Justus Liebig University Giessen, Giessen, Germany","Feline infectious peritonitis (FIP), one of the most important lethal infections of cats, is caused by feline infectious peritonitis virus (FIPV), the high-virulence biotype of feline coronaviruses (FCoVs). FIPVs are suggested to emerge from feline enteric coronaviruses (FECVs) by acquiring mutations in specific genes in the course of persistent infections. Although numerous studies identified mutations predicted to be responsible for the FECV-FIPV biotype switch, the presumed roles of specific genetic changes in FIP pathogenesis have not been confirmed experimentally. Reverse genetics systems established previously for serotype I and the less common serotype II FCoVs were based on cell culture-adapted FIPV strains which, however, were shown to be unsuitable for FIP pathogenesis studies in vivo. To date, systems to produce and manipulate recombinant serotype I field viruses have not been developed, mainly because these viruses cannot be grown in vitro. Here, we report the first reverse genetics system based on a serotype I FECV field isolate that is suitable to produce high-titer stocks of recombinant FECVs. We demonstrate that these recombinant viruses cause productive persistent infections in cats that are similar to what is observed in natural infections. The system provides an excellent tool for studying FCoVs that do not grow in standard cell culture systems and will greatly facilitate studies into the molecular pathogenesis of FIP. Importantly, the system could also be adapted for studies of other RNA viruses with large genomes whose production and characterization in vivo are currently hampered by the lack of in vitro propagation systems. IMPORTANCE The availability of recombinant serotype I FCoV field isolates that are amenable to genetic manipulation is key to studying the molecular pathogenesis of FIP, especially since previous studies using cell culture-adapted FIPVs had proven unsuccessful. To our knowledge, we report the first serotype I FECV field isolate-based reverse genetics system that allows the production of high-titer recombinant virus stocks that can be used for subsequent in vivo studies in cats. The system represents a milestone in FCoV research. It provides an essential tool for studying the molecular pathogenesis of FIP and, more specifically, the functions of specific gene products in causing a fundamentally different progression of disease following acquisition of specific mutations. The system developed in this study will also be useful for studying other coronaviruses or more distantly related RNA viruses with large genomes for which suitable in vitro culture systems are not available. © 2018 Ehmann et al.","Feline coronavirus field isolates; Feline infectious peritonitis; Reverse genetics","complementary DNA; virus RNA; animal cell; animal experiment; animal tissue; Article; BHK-21 cell line; cat; controlled study; electron microscopy; Feline coronavirus; feline infectious peritonitis; gene sequence; in vitro study; in vivo study; molecular pathology; nonhuman; nucleotide sequence; plasmid; priority journal; reverse genetics; reverse transcription polymerase chain reaction; serotype I Feline coronavirus; virus genome; virus isolation; virus recombinant; Western blotting; animal; Feline coronavirus; feline infectious peritonitis; genetics; pathogenicity; pathology; procedures; reverse genetics; virology; Animals; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Reverse Genetics; Virology","Groot, R., Cowley, J., Enjuanes, L., Faaberg, K., Perlman, S., Rottier, P., Snijder, E., Gorbalenya, A., Order Nidovirales (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 785-795. , King AM, Carstens EB, Lefkowitz EJ (ed), Elsevier Academic, Amsterdam, the Netherlands; de Groot, R., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Family Coronaviridae, p 806 – 828 (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, , King AM, Carstens EB, Lefkowitz EJ (ed), Elsevier Academic, Amsterdam, the Netherlands; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J Vet Med Sci, 54, pp. 557-562. , https://doi.org/10.1292/jvms.54.557; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J Feline Med Surg, 11, pp. 225-258. , https://doi.org/10.1016/j.jfms.2008.09.008; Hohdatsu, T., Okada, S., Koyama, H., Characterization of monoclonal-antibodies against feline infectious peritonitis virus type-II and antigenic relationship between feline, porcine, and canine coronaviruses (1991) Arch Virol, 117, pp. 85-95. , https://doi.org/10.1007/BF01310494; Hohdatsu, T., Sasamoto, T., Okada, S., Koyama, H., Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): Preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683 (1991) Vet Microbiol, 28, pp. 13-24. , https://doi.org/10.1016/0378-1135(91)90096-X; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Adv Exp Med Biol, 173, pp. 365-380. , https://doi.org/10.1007/978-1-4615-9373-7_36; Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J Gen Virol, 84, pp. 2735-2744. , https://doi.org/10.1099/vir.0.19129-0; Amer, A., Siti Suri, A., Abdul Rahman, O., Mohd, H.B., Faruku, B., Saeed, S., Tengku Azmi, T.I., Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia (2012) Virol J, 9, p. 278. , https://doi.org/10.1186/1743-422X-9-278; Benetka, V., Kübber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Möstl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet Microbiol, 99, pp. 31-42. , https://doi.org/10.1016/j.vetmic.2003.07.010; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clin Diagn Lab Immunol, 12, pp. 1209-1215. , https://doi.org/10.1128/CDLI.12.10.1209-1215.2005; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: Viral evolution and pathobiology (2008) Vet Microbiol, 132, pp. 221-234. , https://doi.org/10.1016/j.vetmic.2008.06.007; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Lin, C.N., Chang, R.Y., Su, B.L., Chueh, L.L., Full genome analysis of a novel type II feline coronavirus NTU156 (2013) Virus Genes, 46. , https://doi.org/10.1007/s11262-012-0864-0; Terada, Y., Matsui, N., Noguchi, K., Kuwata, R., Shimoda, H., Soma, T., Mochizuki, M., Maeda, K., Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses (2014) Plos One, 9. , https://doi.org/10.1371/journal.pone.0106534; Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis (1981) Am J Vet Res, 42, pp. 368-377; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J Feline Med Surg, 10. , https://doi.org/10.1016/j.jfms.2008.02.006; Vogel, L., van der Lubben, M., Te Lintelo, E.G., Bekker, C.P., Geerts, T., Schuijff, L.S., Grinwis, G.C., Rottier, P.J., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet Res, 41, p. 71. , https://doi.org/10.1051/vetres/2010043; Hayashi, T., Goto, N., Takahashi, R., Fujiwara, K., Systemic vascular lesions in feline infectious peritonitis (1977) Nihon Juigaku Zasshi, 39, pp. 365-377. , https://doi.org/10.1292/jvms1939.39.365; Kipar, A., Bellmann, S., Kremendahl, J., Köhler, K., Reinacher, M., Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis (1998) Vet Immunol Immunopathol, 65, pp. 243-257. , https://doi.org/10.1016/S0165-2427(98)00158-5; Kipar, A., May, H., Menger, S., Weber, M., Leukert, W., Reinacher, M., Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis (2005) Vet Pathol, 42, pp. 321-330. , https://doi.org/10.1354/vp.42-3-321; Pedersen, N.C., Virologic and immunologic aspects of feline infec-tious peritonitis virus infection (1987) Adv Exp Med Biol, 218, pp. 529-550. , https://doi.org/10.1007/978-1-4684-1280-2_69; Weiss, R.C., Scott, F.W., Pathogenesis of feline infectious peritonitis: Pathologic changes and immunofluorescence (1981) Am J Vet Res, 42, pp. 2036-2048; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J Clin Microbiol, 34, pp. 3180-3184; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243. , https://doi.org/10.1006/viro.1998.9045; Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Moritz, A., Tekes, G., Thiel, H.J., Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis (2014) Vet Microbiol, 173, pp. 177-188. , https://doi.org/10.1016/j.vetmic.2014.07.020; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18. , https://doi.org/10.3201/eid1807.120143; Lewis, C.S., Porter, E., Matthews, D., Kipar, A., Tasker, S., Helps, C.R., Siddell, S.G., Genotyping coronaviruses associated with feline infectious peritonitis (2015) J Gen Virol, 96. , https://doi.org/10.1099/vir.0.000084; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg Infect Dis, 19. , https://doi.org/10.3201/eid1907.121094; Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis (2001) Vet Microbiol, 81, pp. 227-234. , https://doi.org/10.1016/S0378-1135(01)00354-6; Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., de Groot, R.J., The molecular genetics of feline coronaviruses: Comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes (1995) Virology, 212, pp. 622-631. , https://doi.org/10.1006/viro.1995.1520; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1. , https://doi.org/10.3390/v1020166; Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420. , https://doi.org/10.1099/vir.0.016485-0; Chang, H.W., Egberink, H.F., Rottier, P.J., Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory (2011) Emerg Infect Dis, 17. , https://doi.org/10.3201/eid1706.102027; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res, 165, pp. 17-28. , https://doi.org/10.1016/j.virusres.2011.12.020; Jaimes, J.A., Whittaker, G.R., Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function (2018) Virology, 517. , https://doi.org/10.1016/j.virol.2017.12.027; Thiel, V., Thiel, H.J., Tekes, G., Tackling feline infectious peritonitis via reverse genetics (2014) Bioengineered, 5. , https://doi.org/10.4161/bioe.32133; Tekes, G., Thiel, H.J., Feline coronaviruses: Pathogenesis of feline infectious peritonitis (2016) Adv Virus Res, 96, pp. 193-218. , https://doi.org/10.1016/bs.aivir.2016.08.002; Black, J.W., Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP) (1980) Vet Med Small Anim Clin, 75, pp. 811-814; Tekes, G., Spies, D., Bank-Wolf, B., Thiel, V., Thiel, H.J., A reverse genetics approach to study feline infectious peritonitis (2012) J Virol, 86. , https://doi.org/10.1128/JVI.00023-12; Pedersen, N.C., Boyle, J.F., Floyd, K., Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture (1981) Am J Vet Res, 42, pp. 363-367; Pedersen, N.C., Black, J.W., Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus (1983) Am J Vet Res, 44, pp. 229-234; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J Virol, 75. , https://doi.org/10.1128/JVI.75.24.12359-12369.2001; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J Gen Virol, 82, pp. 1273-1281. , https://doi.org/10.1099/0022-1317-82-6-1273; Coley, S.E., Lavi, E., Sawicki, S.G., Fu, L., Schelle, B., Karl, N., Siddell, S.G., Thiel, V., Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo (2005) J Virol, 79, pp. 3097-3106. , https://doi.org/10.1128/JVI.79.5.3097-3106.2005; Tekes, G., Hofmann-Lehmann, R., Stallkamp, I., Thiel, V., Thiel, H.J., Genome organization and reverse genetic analysis of a type I feline coronavirus (2008) J Virol, 82, pp. 1851-1859. , https://doi.org/10.1128/JVI.02339-07; Tekes, G., Hofmann-Lehmann, R., Bank-Wolf, B., Maier, R., Thiel, H.J., Thiel, V., Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage (2010) J Virol, 84, pp. 1326-1333. , https://doi.org/10.1128/JVI.01568-09; van den Worm, S.H., Eriksson, K.K., Zevenhoven, J.C., Weber, F., Züst, R., Kuri, T., Dijkman, R., Davidson, A.D., Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination (2012) Plos One, 7. , https://doi.org/10.1371/journal.pone.0032857; Nuanualsuwan, S., Cliver, D.O., Capsid functions of inactivated human picornaviruses and feline calicivirus (2003) Appl Environ Microbiol, 69. , https://doi.org/10.1128/AEM.69.1.350-357.2003; Desmarets, L.M., Vermeulen, B.L., Theuns, S., Conceição-Neto, N., Zeller, M., Roukaerts, I.D., Acar, D.D., Nauwynck, H.J., Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures (2016) Sci Rep, 6. , https://doi.org/10.1038/srep20022; de Groot-Mijnes, J.D., van Dun, J.M., van der Most, R.G., de Groot, R.J., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2005) J Virol, 79. , https://doi.org/10.1128/JVI.79.2.1036-1044.2005; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J Virol, 78, pp. 3863-3871. , https://doi.org/10.1128/JVI.78.8.3863-3871.2004; Meli, M., Kipar, A., Müller, C., Jenal, K., Gönczi, E., Borel, N., Gunn-Moore, D., Lutz, H., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats (2004) J Feline Med Surg, 6. , https://doi.org/10.1016/j.jfms.2003.08.007; Herrewegh, A.A., Mähler, M., Hedrich, H.J., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Persistence and evolution of feline coronavirus in a closed cat-breeding colony (1997) Virology, 234. , https://doi.org/10.1006/viro.1997.8663; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J Gen Virol, 91. , https://doi.org/10.1099/vir.0.020214-0; Haijema, B., Rottier, P., de Groot, R., Feline coronaviruses: A tale of two-faced types (2007) Coronaviruses—molecular and Cellular Biology, pp. 183-208. , Thiel V (ed), Caister Academic Press, Norfolk, United Kingdom; Pedersen, N.C., An update on feline infectious peritonitis: Virology and immunopathogenesis (2014) Vet J, 201, pp. 123-132. , https://doi.org/10.1016/j.tvjl.2014.04.017; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet Pathol, 51, pp. 505-526. , https://doi.org/10.1177/0300985814522077; Addie, D.D., Toth, S., Murray, G.D., Jarrett, O., Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus (1995) Am J Vet Res, 56, pp. 429-434; Haijema, B.J., Volders, H., Rottier, P.J., Switching species tropism: An effective way to manipulate the feline coronavirus genome (2003) J Virol, 77. , https://doi.org/10.1128/JVI.77.8.4528-4538.2003; Bálint, Á., Farsang, A., Zádori, Z., Hornyák, Á., Dencso, L., Almazán, F., Enjuanes, L., Belák, S., Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism (2012) J Virol, 86. , https://doi.org/10.1128/JVI.00189-12; Pedersen, N.C., Serologic studies of naturally occurring feline infectious peritonitis (1976) Am J Vet Res, 37, pp. 1449-1453; Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies J Virol, , https://doi.org/10.1128/JVI.00273-17, 26 May 2017; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., Dimaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23. , https://doi.org/10.1038/nsmb.3293; Kubo, H., Yamada, Y.K., Taguchi, F., Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein (1994) J Virol, 68, pp. 5403-5410; Reguera, J., Santiago, C., Mudgal, G., Ordoño, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) Plos Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002859; Wong, A.H.M., Tomlinson, A.C.A., Zhou, D., Satkunarajah, M., Chen, K., Sharon, C., Desforges, M., Rini, J.M., Receptor-binding loops in Alpha-coronavirus adaptation and evolution (2017) Nat Commun, 8, p. 1735. , https://doi.org/10.1038/s41467-017-01706-x; Eriksson, K.K., Makia, D., Thiel, V., Generation of recombinant corona-corona- viruses using vaccinia virus as the cloning vector and stable cell lines containing coronaviral replicon RNAs (2008) Methods Mol Biol, 454, pp. 237-254. , https://doi.org/10.1007/978-1-59745-181-9_18.viruses; Hertzig, T., Scandella, E., Schelle, B., Ziebuhr, J., Siddell, S.G., Ludewig, B., Thiel, V., Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA (2004) J Gen Virol, 85, pp. 1717-1725. , https://doi.org/10.1099/vir.0.80044-0; Florek, D., Ehmann, R., Kristen-Burmann, C., Lemmermeyer, T., Lochnit, G., Ziebuhr, J., Thiel, H.J., Tekes, G., Identification and characterization of a Golgi retention signal in feline coronavirus accessory protein 7b (2017) J Gen Virol, 98, pp. 2017-2029. , https://doi.org/10.1099/jgv.0.000879; Schägger, H., von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa (1987) Anal Biochem, 166. , https://doi.org/10.1016/0003-2697(87)90587-2; Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) J Clin Microbiol, 33, pp. 684-689","Tekes, G.; Institute of Virology, Justus Liebig University GiessenGermany; email: Gergelgergely.tekes@vetmed.uni-giessen",,"American Society for Microbiology",21612129,,,"30065095","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85055558401 "Hardick J., Metzgar D., Risen L., Myers C., Balansay M., Malcom T., Rothman R., Gaydos C.","6506735564;6701828372;57201129194;15760076900;23487691700;57201135120;35582243300;7006440649;","Initial performance evaluation of a spotted array Mobile Analysis Platform (MAP) for the detection of influenza A/B, RSV, and MERS coronavirus",2018,"Diagnostic Microbiology and Infectious Disease","91","3",,"245","247",,1,"10.1016/j.diagmicrobio.2018.02.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043492474&doi=10.1016%2fj.diagmicrobio.2018.02.011&partnerID=40&md5=eddb30b7911837c608f7af912f058c9f","Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, MD, United States; Ibis Biosciences, Carlsbad, CA, United States; Naval Health Research Center, San Diego, CA, United States; Johns Hopkins University Department of Emergency Medicine, Baltimore, MD, United States","Hardick, J., Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, MD, United States; Metzgar, D., Ibis Biosciences, Carlsbad, CA, United States; Risen, L., Ibis Biosciences, Carlsbad, CA, United States; Myers, C., Naval Health Research Center, San Diego, CA, United States; Balansay, M., Naval Health Research Center, San Diego, CA, United States; Malcom, T., Johns Hopkins University Department of Emergency Medicine, Baltimore, MD, United States; Rothman, R., Johns Hopkins University Department of Emergency Medicine, Baltimore, MD, United States; Gaydos, C., Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, MD, United States","Clinical samples were evaluated with the Mobile Analysis Platform (MAP) to determine platform performance for detecting respiratory viruses in samples previously characterized using clinical reverse transcriptase polymerase chain reaction assays. The percent agreement between MAP and clinical results was 97% for influenza A (73/75), 100% (21/21) for influenza B, 100% (6/6) for respiratory syncytial virus (RSV), and 80% (4/5) for negative specimens. The approximate limit of detection of the MAP was 30 copies/assay for RSV and 1500 copies/assay for Middle East respiratory syndrome coronavirus. © 2018","MERS; Point-of-care diagnostics; Respiratory viruses","adult; Article; human; Human respiratory syncytial virus; Influenza A virus; Influenza B virus; limit of detection; microfluidic analysis; Middle East respiratory syndrome coronavirus; Mobile Analysis Platform; nonhuman; nose smear; priority journal; reverse transcription polymerase chain reaction; throat culture; virus detection; adolescent; aged; comparative study; Coronavirus infection; devices; evaluation study; female; genetics; Human respiratory syncytial virus; influenza; Influenza A virus; Influenza B virus; isolation and purification; male; middle aged; Middle East respiratory syndrome coronavirus; molecular diagnosis; procedures; respiratory syncytial virus infection; very elderly; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Coronavirus Infections; Female; Humans; Influenza A virus; Influenza B virus; Influenza, Human; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Molecular Diagnostic Techniques; Respiratory Syncytial Virus Infections; Respiratory Syncytial Virus, Human; Reverse Transcriptase Polymerase Chain Reaction; Young Adult","Berry, M., Gamieldien, J., Fielding, B.C., Identification of new respiratory viruses in the new millennium (2015) Virus, pp. 996-1019; Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., Ellington, A.D., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) PLoS One, p. e0123126; Fendrick, A.M., Monto, A.S., Nightengale, B., Sarnes, M., The economic burden of non-influenza-related viral respiratory tract infection in the United States (2003) Arch Intern Med, pp. 487-494; Flannery, B., Zimmerman, R.K., Gubareva, L.V., Garten, R.J., Chung, J.R., Nowalk, M.P., Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014–2015 (2016) J Infect Dis, 214, pp. 1010-1019. , [pii: jiw181]; Mahony, J.B., Nucleic acid amplification-based diagnosis of respiratory virus infections (2010) Expert Rev Anti Infect Ther, pp. 1273-1292; Mahony, J.B., Petrich, A., Smieja, M., Molecular diagnosis of respiratory virus infections (2011) Crit Rev Clin Lab Sci, pp. 217-249; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., Haagmans, B.L., MERS: emergence of a novel human coronavirus (2014) Curr Opin Virol, pp. 58-62; Templeton, K.E., Scheltinga, S.A., Beersma, M.F., Kroes, A.C., Claas, E.C., Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4 (2004) J Clin Microbiol, pp. 1564-1569; Zimmerman, R.K., Rinaldo, C.R., Nowalk, M.P., Balasubramani, G.K., Moehling, K.K., Bullotta, A., Viral infections in outpatients with medically attended acute respiratory illness during the 2012–2013 influenza season (2015) BMC Infect Dis, 15, p. 87; Zumla, A., Al-Tawfiq, J.A., Enne, V.I., Kidd, M., Drosten, C., Breuer, J., Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections—needs, advances, and future prospects (2014) Lancet Infect Dis, pp. 1123-1135","Hardick, J.; Johns Hopkins University School of Medicine, Division of Infectious DiseasesUnited States; email: jhardic1@jhmi.edu",,"Elsevier Inc.",07328893,,DMIDD,"29550057","English","Diagn. Microbiol. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85043492474 "Wang Y., Sun J., Zhu A., Zhao J., Zhao J.","56590134700;57214929106;57215544365;57201372305;8584763700;","Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models",2018,"Journal of Thoracic Disease","10",,,"S2260","S2271",,2,"10.21037/jtd.2018.03.80","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050666255&doi=10.21037%2fjtd.2018.03.80&partnerID=40&md5=9a72221702388f7fbc64378b7f41237b","State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou, 510120, China; Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510120, China","Wang, Y., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou, 510120, China; Sun, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou, 510120, China; Zhu, A., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou, 510120, China; Zhao, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou, 510120, China; Zhao, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou, 510120, China, Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510120, China","Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a novel betacoronavirus (MERS coronavirus, MERS-CoV). Since its first emergence in 2012, multiple transmission events of MERS-CoV (dromedary to human and human to human) have been reported, indicating that MERS-CoV has the potential to cause widespread outbreak. However, the epidemiology of MERS as well as immune responses against the virus in animal models and patients are still not well understood, hindering the vaccine and therapeutic developments. In this review, we summarize recent genetic and epidemic findings of MERS-CoV and the progress in animal model development, immune response studies in both animals and humans. At last, we discussed the breakthrough on vaccine and therapeutic development which are important against potential future MERS outbreak. © Journal of Thoracic Disease.","Animal model; Antiviral therapy; Epidemiology; Immune response; Middle East respiratory syndrome coronavirus (MERS-CoV)","alpha2b interferon; antivirus agent; beta1a interferon; dipeptidyl peptidase IV; interferon; live vaccine; monoclonal antibody; remdesivir; ribavirin; antibody response; CD4+ T lymphocyte; cellular immunity; disease course; disease model; disease surveillance; epidemic; experimental mouse; gene deletion; gene mutation; genetic recombination; human; immunopathogenesis; innate immunity; memory T lymphocyte; Middle East respiratory syndrome; molecular evolution; mortality rate; New Zealand White (rabbit); nonhuman; phylogeny; primate; protein expression; Review; vaccine production; virology; virus cell interaction; virus genome; virus morphology; virus transmission","Almeida, J.D., Tyrrell, D., The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture (1967) J Gen Virol, 1, pp. 175-178; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Pyrc, K., Berkhout, B., van der Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) J Virol, 81, pp. 3051-3057; Peiris, J., Guan, Y., Yuen, K., Severe acute respiratory syndrome (2004) Nature medicine, 10, p. S88; Myint, S.H., (1995) Human coronavirus infections, pp. 389-401. , The Coronaviridae. Springer; Zhong, N.S., Zheng, B.J., Li, Y.M., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February (2003) 2003 Lancet, 362, pp. 1353-1358; de Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792; Kim, K.H., Tandi, T.E., Choi, J.W., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Briese, T., Mishra, N., Jain, K., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through wholegenome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) MBio, 5; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Yang, Y., Liu, C., Du, L., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 9119-9123; Ithete, N.L., Stoffberg, S., Corman, V.M., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, p. 1697; Wang, Q., Qi, J., Yuan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Sikkema, R.S., Farag, E.A., Himatt, S., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Infection in Camel Workers in Qatar During 2013-2014: A Case-Control Study (2017) J Infect Dis, 215, pp. 1702-1705; Hemida, M., Elmoslemany, A., Al-Hizab, F., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64, pp. 344-353; Wang, Y., Liu, D., Shi, W., Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis (2015) MBio, 6; Su, S., Wong, G., Shi, W., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Jenkins, G.M., Rambaut, A., Pybus, O.G., Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis (2002) J Mol Evol, 54, pp. 156-165; Cotten, M., Watson, S.J., Zumla, A.I., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, 5; Ren, L., Zhang, Y., Li, J., Genetic drift of human coronavirus OC43 spike gene during adaptive evolution (2015) Sci Rep, 5, p. 11451; Pyrc, K., Dijkman, R., Deng, L., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J Mol Biol, 364, pp. 964-973; Liu, D.X., Fung, T.S., Chong, K.K.-L., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res, 109, pp. 97-109; Lau, S.K., Lee, P., Tsang, A.K., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J Virol, 85, pp. 11325-11337; Woo, P.C., Lau, S.K., Huang, Y., Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia (2005) Arch Virol, 150, pp. 2299-2311; Stanhope, M.J., Brown, J.R., Amrine-Madsen, H., Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV (2004) Infect Genet Evol, 4, pp. 15-19; Sabir, J.S., Lam, T.T.-Y., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23; Monto, A.S., Cowling, B.J., Peiris, J.M., (2014) Coronaviruses, pp. 199-223. , Viral infections of humans Springer; Gerna, G., Campanini, G., Rovida, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78, pp. 938-949; Chan, J.F., Lau, S.K., To, K.K., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848; Vabret, A., Mourez, T., Dina, J., Human coronavirus NL63, France (2005) Emerg Infect Dis, 11, p. 1225; Vabret, A., Dina, J., Gouarin, S., Detection of the new human coronavirus HKU1: a report of 6 cases (2006) Clin Infect Dis, 42, pp. 634-639; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Simon, A., Völz, S., Fleischhack, G., Human coronavirus OC43 pneumonia in a pediatric cancer patient with down syndrome and acute lymphoblastic leukemia (2007) J Pediatr Hematol Oncol, 29, pp. 432-434; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; Jiang, L., Wang, N., Zuo, T., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Cockrell, A.S., Peck, K.M., Yount, B.L., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 5195-5199; Coleman, C.M., Matthews, K.L., Goicochea, L., Wildtype and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J Gen Virol, 95, pp. 408-412; Raj, V.S., Smits, S.L., Provacia, L.B., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838; de Wit, E., Feldmann, F., Horne, E., Domestic Pig Unlikely Reservoir for MERS-CoV (2017) Emerg Infect Dis, 23, p. 985; de Wit, E., Prescott, J., Baseler, L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PloS One, 8; Peck, K.M., Scobey, T., Swanstrom, J., Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants (2017) J Virol, 91; Haagmans, B.L., van den Brand, J.M., Provacia, L.B., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J Virol, 89, pp. 6131-6135; Haagmans, B.L., van den Brand, J.M., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerg Infect Dis, 22, p. 1031; Crameri, G., Durr, P.A., Klein, R., Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, p. 1071; Yao, Y., Bao, L., Deng, W., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209, pp. 236-242; Falzarano, D., de Wit, E., Feldmann, F., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10; Johnson, R.F., Via, L.E., Kumar, M.R., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci, 111, pp. 4970-4975; Zhao, G., Jiang, Y., Qiu, H., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) PloS One, 10; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci, 114, pp. E3119-E3128; Tseng, C.-T.K., Huang, C., Newman, P., Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor (2007) J Virol, 81, pp. 1162-1173; Cockrell, A.S., Yount, B.L., Scobey, T., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Fowler, R.A., Lapinsky, S.E., Hallett, D., Critically ill patients with severe acute respiratory syndrome (2003) JAMA, 290, pp. 367-373; de Wit, E., van Doremalen, N., Falzarano, D., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses (2017) Sci Immunol, p. 2; Chu, H., Zhou, J., Wong, B.H.-Y., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Zhou, J., Chu, H., Li, C., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2014) J Infect Dis, 209, pp. 1331-1342; Chu, H., Zhou, J., Wong, B.H.-Y., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213, pp. 904-914; Channappanavar, R., Zhao, J., Perlman, S., T cell-mediated immune response to respiratory coronaviruses (2014) Immunol Res, 59, pp. 118-128; Zhao, J., Zhao, J., Mangalam, A.K., Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391; Zhao, J., Zhao, J., Legge, K., Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice (2011) J Clin Invest, 121, p. 4921; Zuniga, E.I., Macal, M., Lewis, G.M., Innate and Adaptive Immune Regulation During Chronic Viral Infections (2015) Annu Rev Virol, 2, pp. 573-597; de Wilde, A.H., Raj, V.S., Oudshoorn, D., MERScoronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-a treatment (2013) J Gen Virol, 94, pp. 1749-1760; Falzarano, D., De Wit, E., Rasmussen, A.L., Treatment with interferon-a2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nature Med, 19, p. 1313; Shalhoub, S., Farahat, F., Al-Jiffri, A., IFN-a2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Spiegel, M., Pichlmair, A., Martinez-Sobrido, L., Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3 (2005) J Virol, 79, pp. 2079-2086; Zhao, J., Falcon, A., Zhou, H., Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication (2009) J Virol, 83, pp. 2368-2373; Zhou, H., Ferraro, D., Zhao, J., The N-terminal region of severe acute respiratory syndrome coronavirus protein 6 induces membrane rearrangement and enhances virus replication (2010) J Virol, 84, pp. 3542-3551; Frieman, M., Yount, B., Heise, M., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J Virol, 81, pp. 9812-9824; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12; Yang, Y., Zhang, L., Geng, H., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERSCoV) are potent interferon antagonists (2013) Protein Cell, 4, p. 951; Chan, K.H., Chan, J.F.W., Tse, H., Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) J Infect, 67, pp. 130-140; Simmons, G., Reeves, J.D., Rennekamp, A.J., Characterization of severe acute respiratory syndromeassociated coronavirus (SARS-CoV) spike glycoproteinmediated viral entry (2004) Proc Natl Acad Sci, 101, pp. 4240-4245; Tang, X.C., Agnihothram, S.S., Jiao, Y., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci, 111, pp. E2018-E2026; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res, 100, pp. 286-295; Tang, F., Quan, Y., Xin, Z.T., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study (2011) J Immunol, 186, pp. 7264-7268; Zhao, J., Zhao, J., Perlman, S., T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice (2010) J Virol, 84, pp. 9318-9325; Du, L., Yang, Y., Zhou, Y., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin Ther Targets, 21, pp. 131-143; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERSCoV infection (2015) Proc Natl Acad Sci, 112, pp. 8738-8743; Chi, H., Zheng, X., Wang, X., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein (2017) Sci Rep, 7, p. 44875; Tai, W., Wang, Y., Fett, C.A., Recombinant receptorbinding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce crossneutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2016) J Virol, 91; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Gilbert, S.C., Warimwe, G.M., Rapid development of vaccines against emerging pathogens: The replicationdeficient simian adenovirus platform technology (2017) Vaccine, 35, pp. 4461-4464; Kim, E., Okada, K., Kenniston, T., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Song, F., (2014) Characterization of recombinant Modified Vaccinia virus Ankara for delivery of Middle East Respiratory Syndrome Coronavirus spike protein antigens: lmu, , https://edoc.ub.unimuenchen.de/17246/1/Song_Fei.pdf; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34, pp. 2982-2987; Corti, D., Zhao, J., Pedotti, M., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci, 112, pp. 10473-10478; Chen, Y., Lu, S., Jia, H., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS CoV spike protein (2017) Emerg Microbes Infect, 6; Li, Y., Wan, Y., Liu, P., A humanized neutralizing antibody against MERS-CoV targeting the receptorbinding domain of the spike protein (2015) Cell Res, 25, p. 1237; Lu, L., Liu, Q., Zhu, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Liu, Q., Xia, S., Sun, Z., Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry (2015) Antimicrob Agents Chemother, 59, pp. 742-744; Chan, J.F.-W., Yao, Y., Yeung, M.-L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212, pp. 1904-1913; Sheahan, T.P., Sims, A.C., Graham, R.L., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, p. 9","Zhao, J.; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, 195 Dongfeng West Road, China; email: zhaojincun@gird.cn",,"AME Publishing Company",20721439,,,,"English","J. Thorac. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85050666255 "Kanno T., Ishihara R., Hatama S., Uchida I.","23004789800;35310409000;8911121500;7101701806;","A long-term animal experiment indicating persistent infection of bovine coronavirus in cattle",2018,"Journal of Veterinary Medical Science","80","7",,"1134","1137",,,"10.1292/jvms.18-0050","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049948155&doi=10.1292%2fjvms.18-0050&partnerID=40&md5=dcf4481a4549a467bd78bea85b2e4628","Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan; Division of Viral Disease and Epidemiology, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Division of Bacterial and Parasitic Disease, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan","Kanno, T., Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan; Ishihara, R., Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan; Hatama, S., Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan, Division of Viral Disease and Epidemiology, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Uchida, I., Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan, Division of Bacterial and Parasitic Disease, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan","A long-term animal experiment involving inoculation with bovine coronavirus (BCoV) was conducted to verify its persistent infection in cattle. Three colostrum-deprived Holstein calves were housed separately in individual rooms of a high-containment facility and inoculated with the BCoV strain Kumamoto/1/07. Until the end of the experiment (1,085, 700 and 280 days, respectively), viral RNAs were detected sporadically by RT-PCR and nested PCR from plasma, nasal discharge, and feces. Seroconversion and titer changes were validated by hemagglutination inhibition tests and neutralization tests. Among the samples, nasal discharge showed a higher viral positivity than feces, which seemed to be associated with positive detection in the plasma. These data demonstrate the existence of persistent infection of BCoV in the respiratory tissues of cattle. © 2018 The Japanese Society of Veterinary Science.","Bovine coronavirus; Long-term animal experiment; Persistent infection","animal; animal experiment; bovine; Bovine coronavirus; cattle disease; Coronavirus infection; feces; female; isolation and purification; veterinary medicine; virology; Animal Experimentation; Animals; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Feces; Female","Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009) (2010) Arch. Virol., 155, pp. 133-146; Clark, M.A., Bovine coronavirus (1993) Br. Vet. J., 149, pp. 51-70; Collins, J.K., Riegel, C.A., Olson, J.D., Fountain, A., Shedding of enteric coronavirus in adult cattle (1987) Am. J. Vet. Res., 48, pp. 361-365; Crouch, C.F., Raybould, T.J., Acres, S.D., Monoclonal antibody capture enzyme-linked immunosorbent assay for detection of bovine enteric coronavirus (1984) J. Clin. Microbiol., 19, pp. 388-393; Decaro, N., Mari, V., Desario, C., Campolo, M., Elia, G., Martella, V., Greco, G., Buonavoglia, C., Severe outbreak of bovine coronavirus infection in dairy cattle during the warmer season (2008) Vet. Microbiol., 126, pp. 30-39; Hasoksuz, M., Lathrop, S.L., Gadfield, K.L., Saif, L.J., Isolation of bovine respiratory coronaviruses from feedlot cattle and comparison of their biological and antigenic properties with bovine enteric coronaviruses (1999) Am. J. Vet. Res., 60, pp. 1227-1233; Heckert, R.A., Saif, L.J., Hoblet, K.H., Agnes, A.G., A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio (1990) Vet. Microbiol., 22, pp. 187-201; Hoshino, Y., Scott, F.W., Coronavirus-like particles in the feces of normal cats (1980) Arch. Virol., 63, pp. 147-152; Inaba, Y., Sato, K., Takahashi, E., Kurogi, H., Satoda, K., Hemagglutination with Nebraska calf diarrhea virus (1977) Microbiol. Immunol., 21, pp. 531-534; Kanno, T., Hatama, S., Ishihara, R., Uchida, I., Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006 (2007) J. Gen. Virol., 88, pp. 1218-1224; Kanno, T., Kamiyoshi, T., Ishihara, R., Hatama, S., Uchida, I., Phylogenetic studies of bovine coronaviruses isolated in Japan (2009) J. Vet. Med. Sci., 71, pp. 83-86; Lathrop, S.L., Wittum, T.E., Brock, K.V., Loerch, S.C., Perino, L.J., Bingham, H.R., McCollum, F.T., Saif, L.J., Association between infection of the respiratory tract attributable to bovine coronavirus and health and growth performance of cattle in feedlots (2000) Am. J. Vet. Res., 61, pp. 1062-1066; Park, S.J., Jeong, C., Yoon, S.S., Choy, H.E., Saif, L.J., Park, S.H., Kim, Y.J., Cho, K.O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) J. Clin. Microbiol., 44, pp. 3178-3188; Saif, L.J., Bovine respiratory coronavirus (2010) Vet. Clin. North Am. Food Anim. Pract., 26, pp. 349-364; Saif, L.J., Redman, D.R., Moorhead, P.D., Theil, K.W., Experimentally induced coronavirus infections in calves: Viral replication in the respiratory and intestinal tracts (1986) Am. J. Vet. Res., 47, pp. 1426-1432; Storz, J., Stine, L., Liem, A., Anderson, G.A., Coronavirus isolation from nasal swab samples in cattle with signs of respiratory tract disease after shipping (1996) J. Am. Vet. Med. Assoc., 208, pp. 1452-1455; Svensson, C., Lundborg, K., Emanuelson, U., Olsson, S.O., Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases (2003) Prev. Vet. Med., 58, pp. 179-197; Torsein, M., Lindberg, A., Sandgren, C.H., Waller, K.P., Törnquist, M., Svensson, C., Risk factors for calf mortality in large Swedish dairy herds (2011) Prev. Vet. Med., 99, pp. 136-147; Tråvén, M., Näslund, K., Linde, N., Linde, B., Silván, A., Fossum, C., Hedlund, K.O., Larsson, B., Experimental reproduction of winter dysentery in lactating cows using BCV — comparison with BCV infection in milk-fed calves (2001) Vet. Microbiol., 81, pp. 127-151; Tsunemitsu, H., Smith, D.R., Saif, L.J., Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR (1999) Arch. Virol., 144, pp. 167-175; Underdahl, N.R., Mebus, C.A., Torres-Medina, A., Recovery of transmissible gastroenteritis virus from chronically infected experimental pigs (1975) Am. J. Vet. Res., 36, pp. 1473-1476; Williams, F.P., Jr., Astrovirus-like, coronavirus-like, and parvovirus-like particles detected in the diarrheal stools of beagle pups (1980) Arch. Virol., 66, pp. 215-226","Kanno, T.; Division of Pathology and Pathophysiology, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Japan; email: kannot@affrc.go.jp",,"Japanese Society of Veterinary Science",09167250,,,"29780039","English","J. Vet. Med. Sci.",Note,"Final",Open Access,Scopus,2-s2.0-85049948155 "Kim Y.","57200941945;","Nurses’ experiences of care for patients with Middle East respiratory syndrome-coronavirus in South Korea",2018,"American Journal of Infection Control","46","7",,"781","787",,3,"10.1016/j.ajic.2018.01.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042639849&doi=10.1016%2fj.ajic.2018.01.012&partnerID=40&md5=dba335b3f3fa5892993d31568fa21f4f","Department of Nursing, Hoseo University, Asan-si, Chungcheongnam-do, South Korea","Kim, Y., Department of Nursing, Hoseo University, Asan-si, Chungcheongnam-do, South Korea","Background: This study aimed to identify nurses’ experiences of care for patients with Middle East respiratory syndrome-coronavirus (MERS-CoV). Their experiences can be useful to establish a safer healthcare system in preparation for infectious disease outbreaks. Methods: Data were collected through in-depth individual interviews and analyzed using Colaizzi's phenomenological method. Participants were 12 nurses. Results: Nurses’ experiences of care for patients with MERS-CoV were categorized as follows: “Going into a dangerous field,” “Strong pressure because of MERS-CoV,” “The strength that make me endure,” “Growth as a nurse,” and “Remaining task.” Conclusions: It is necessary to examine the difficulties and demands of healthcare providers for establishing a safe healthcare system to respond effectively when national disasters occur. In addition, it is necessary to develop strategies to protect healthcare providers from severe physical and psychological stress. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","Coronavirus infection; Disease outbreak; Nurses; Qualitative research","adult; Article; epidemic; fear; female; health care system; health hazard; human; male; mental stress; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nurse attitude; patient care; qualitative research; South Korea; work experience; Coronavirus infection; epidemic; epidemiology; health care delivery; Middle East respiratory syndrome coronavirus; nurse; physiology; psychology; virology; Adult; Coronavirus Infections; Delivery of Health Care; Disease Outbreaks; Female; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Nurses; Qualitative Research; Republic of Korea","Centers for Disease Control and Prevention, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) http://www.cdc.gov/coronavirus/mers/about/index.html, Available from: (Accessed 27 December 2016); World Health Organization, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) http://www.who.int/emergencies/mers-cov/en/, Available from: (Accessed 7 June 2017); Korea Centers for Disease Control and Prevention, Middle East Respiratory Syndrome Coronavirus guidance version 5 http://cdc.go.kr/CDC/notice/CdcKrTogether0302.jsp?menuIds=HOME001-MNU1154-MNU0005-MNU0088&cid=75416, Available from: (Accessed 24 May 2017); Jeong, G., Lee, T.R., Hwang, S.Y., Cha, W.C., Shin, T.G., Sim, M.S., Emergency department workers’ perceptions of effectiveness and reported compliance of infection control measures after Middle East respiratory syndrome outbreaks (2016) J Korean Soc Emerg Med, 27, pp. 328-335; Yang, S., Cho, S.I., Middle East respiratory syndrome risk perception among students at a university in South Korea (2017) Am J Infect Control, 45, pp. e53-e60; Choi, J.W., Kim, K.H., Moon, J.W., Kim, M.S., Public health crisis response and establishment of a crisis communication system in South Korea: lessons learned from the MERS outbreak (2015) J Korean Med Assoc, 58, pp. 624-634; Lam, K.K., Hung, S.Y., Perceptions emergency nurses during the human swine influenza outbreak: a qualitative study (2013) Int Emerg Nurs, 21, pp. 240-246; Tiwari, A., Chan, S., Wong, A., Tai, J., Cheng, K., Chan, J., Severe acute respiratory syndrome (SARS) in Hong Kong: patients’ experiences (2003) Nurs Outlook, 51, pp. 212-219; Torda, A., Ethical issue in pandemic planning (2006) Med J Aust, 185, pp. 73-76; Jung, H.J., Kim, J.Y., Jeong, S.Y., Factors affected with post-traumatic stress in nurses involved in direct care for Middle East Respiratory Syndrome patients (2016) Health Soc Welf Rev, 36, pp. 488-507; Maunder, R.G., Lancee, W.J., Balderson, K.E., Bennett, J.P., Borgundvaag, B., Evans, S., Long-term psychological and occupational effects of providing hospital healthcare during SARS outbreak (2006) Emerg Infect Dis, 12, pp. 1924-1932; Colaizzi, P.F., Psychological research as the phenomenologist views it (1978), Oxford University Press New York; Khalid, I., Khalid, T.J., Qabajah, M.R., Barnard, A.G., Qushmaq, I.A., Healthcare workers emotions, perceived stressors and coping strategies during MERS-CoV outbreak (2016) Clin Med Res, 1303, pp. 1-22; Kim, K.N., Lee, O.C., Knowledge, attitudes and perceptions of nurses on personal protective equipment: response to the Middle East respiratory syndrome coronavirus (2016) J Korean Acad Fundam Nurs, 23, pp. 402-410; Chen, C.S., Wu, H.Y., Yang, P., Yen, C.F., Psychological distress of nurses in Taiwan who worked during the outbreak of SARS (2005) Psychiatr Serv, 56, pp. 76-79; Choi, J.S., Kim, J.S., Factors influencing emergency nurses’ ethical problems during the outbreak of MERS-CoV (2018) Nurs Ethics, 25, pp. 335-345; Choi, J.S., Kim, J.S., Factors influencing preventive behavior against Middle East Respiratory Syndrome-Coronavirus among nursing students in South Korea (2016) Nurse Educ Today, 40, pp. 168-172; Guba, E.G., Lincoln, Y.S., Fourth generation evaluation (1989), SAGE Publications California [USA]; Lee, J.Y., Nurses’ experiences of caring for patients with Middle East Respiratory Syndrome (2016), Unpublished master's thesis; Seoul: Sungkyunkwan University; Aoyagi, Y., Beck, C.R., Dingwall, R., Nguyen-Van-Tam, J.S., Healthcare workers’ willingness to work during an influenza pandemic: a systematic review and meta-analysis (2015) Influenza Other Respir Viruses, 9, pp. 120-130; Chung, B.P.M., Wong, T.K.S., Suen, E.S.B., Chung, J.W.Y., SARS: caring for patients in Hong Kong (2005) J Clin Nurs, 14, pp. 510-517; Kim, J.S., Choi, J.S., Factors influencing emergency nurses’ burnout during an outbreak of Middle East Respiratory Syndrome Coronavirus in Korea (2016) Asian Nurs Res, 10, pp. 295-299; Schwartz, D., Shapira, S., Bar-Dayan, Y., Health care workers’ knowledge and confidence in personal protective equipment during the H1N1 pandemic in Israel (2014) Disaster Med Public Health Prep, 8, pp. 150-157; Lee, J.M., Comparative study about the clinical nurse's job stress and turnover intention between a nursing care system wards and a general wards (2016) J Soc Sci, 33, pp. 1-48; Im, S.B., Baumann, S.L., Ahn, M., Kim, H., Youn, B.H., Park, M., The experience of Korean nurses during the Middle East Respiratory Syndrome outbreak (2018) Nurs Sci Q, 31, pp. 72-76; Smith, M.W., Smith, P.W., Kratochvil, C.J., Schwedhelm, S., The psychosocial challenges of caring for patients with Ebola virus disease (2017) Health Secur, 15, pp. 104-109","Kim, Y.; Department of Nursing, Hoseo University, 79-20, Hoseo-ro, Baebang-eup, South Korea; email: cybericu@naver.com",,"Mosby Inc.",01966553,,AJICD,"29502886","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85042639849 "Park W.B., Poon L.L.M., Choi S.-J., Choe P.G., Song K.-H., Bang J.H., Kim E.S., Kim H.B., Park S.W., Kim N.J., Peiris M., Oh M.-D.","7402229219;7005441747;55915371600;15070608400;23398486700;15070169400;22938086900;35307429400;56108350600;35495869100;7005486823;7201600302;","Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection",2018,"International Journal of Infectious Diseases","72",,,"8","10",,1,"10.1016/j.ijid.2018.05.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047532188&doi=10.1016%2fj.ijid.2018.05.003&partnerID=40&md5=e085a173f0368e811195be2e4e610101","Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea; School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong","Park, W.B., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea, Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea; Poon, L.L.M., School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong; Choi, S.-J., Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea; Choe, P.G., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Song, K.-H., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Bang, J.H., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, E.S., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, H.B., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Park, S.W., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Kim, N.J., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea, Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea; Peiris, M., School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong; Oh, M.-D., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea, Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea","Background: Information on the duration of replicative Middle East respiratory syndrome coronavirus (MERS-CoV) shedding is important for infection control. The detection of MERS-CoV sub-genomic mRNAs indicates that the virus is replicative. This study examined the duration for detecting MERS-CoV sub-genomic mRNA compared with genomic RNA in diverse respiratory specimens. Methods: Upper and lower respiratory samples were obtained from 17 MERS-CoV-infected patients. MERS-CoV sub-genomic mRNA was detected by reverse transcription PCR (RT-PCR) and MERS-CoV genomic RNA by real-time RT-PCR. Results: In sputum and transtracheal aspirate, sub-genomic mRNA was detected for up to 4 weeks after symptoms developed, which correlated with the detection of genomic RNA. In oropharyngeal and nasopharyngeal swab specimens, the detection of sub-genomic mRNA and genomic RNA did not correlate. Conclusions: These findings suggest that MERS-CoV does not replicate well in the upper respiratory tract. © 2018 The Authors","Coronavirus infections; Messenger; Respiratory system; RNA","genomic RNA; messenger RNA; oxygen; virus RNA; 5' untranslated region; Article; clinical article; disease duration; human; limit of detection; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; oxygen therapy; real time polymerase chain reaction; reverse transcription polymerase chain reaction; sputum; tracheal aspiration procedure; virus detection; virus replication; virus shedding; Coronavirus infection; isolation and purification; pathophysiology; respiratory system; reverse transcription; virology; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Real-Time Polymerase Chain Reaction; Respiratory System; Reverse Transcription; Sputum; Virus Replication; Virus Shedding","Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Comparative and kinetic analysis of viral shedding and immunological responses in mers patients representing a broad spectrum of disease severity (2016) Sci Rep, 6; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305; Park, W.B., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Kinetics of serologic responses to mers coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J Virol, 81, pp. 20-29; WHO, Management of asymptomatic persons who are rt-PCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV). Interim guidance (2018), http://apps.who.int/iris/bitstream/10665/180973/1/WHO_MERS_IPC_15.2_eng.pdf?ua=1&ua=1, Updated 3 January 2018. Available at: [Aaccessed 21 March 2018]; Woo, P.C., Lau, S.K., Fan, R.Y., Lau, C.C., Wong, E.Y., Joseph, S., Isolation and characterization of dromedary camel coronavirus uae-hku 23 from dromedaries of the Middle East: minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus uae-hku 23 (2016) Int J Mol Sci","Oh, M.-D.; Department of Internal Medicine, Seoul National University College of MedicineSouth Korea; email: mdohmd@snu.ac.kr",,"Elsevier B.V.",12019712,,IJIDF,"29753119","English","Int. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85047532188 "Xie Q., He X., Yang F., Liu X., Li Y., Liu Y., Yang Z., Yu J., Zhang B., Zhao W.","56732344900;57189583638;56498182900;57194694257;57194684992;57194683268;57194830243;57191914947;7406903776;57193239826;","Analysis of the Genome Sequence and Prediction of B-Cell Epitopes of the Envelope Protein of Middle East Respiratory Syndrome-Coronavirus",2018,"IEEE/ACM Transactions on Computational Biology and Bioinformatics","15","4", 7935343,"1344","1350",,3,"10.1109/TCBB.2017.2702588","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85023171037&doi=10.1109%2fTCBB.2017.2702588&partnerID=40&md5=998e5478e1f46261556439784dbf327e","Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Nanfang Hospital, Southern Medical University, No. 1023, Shatai Road, Guangzhou, 510515, China; Key Laboratory of Liver Disease of Guangdong Province, Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510515, China","Xie, Q., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; He, X., Nanfang Hospital, Southern Medical University, No. 1023, Shatai Road, Guangzhou, 510515, China; Yang, F., Key Laboratory of Liver Disease of Guangdong Province, Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510515, China; Liu, X., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Li, Y., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Liu, Y., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Yang, Z., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Yu, J., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Zhang, B., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China; Zhao, W., Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, Guangzhou, 510515, China","The outbreak of Middle East respiratory syndrome-coronavirus (MERS-CoV) in South Korea in April 2015 led to 186 infections and 37 deaths by the end of October 2015. MERS-CoV was isolated from the imported patient in China. The envelope (E) protein, a small structural protein of MERS-CoV, plays an important role in host recognition and infection. To identify the conserved epitopes of the E protein, sequence analysis was performed by comparing the E proteins from 42 MERS-CoV strains that triggered severe pandemics and infected humans in the past. To predict the potential B cell epitopes of E protein, three most effective online epitope prediction programs, the ABCpred, Bepipred, and Protean programs from the LaserGene software were used. All the nucleotides and amino acids sequences were obtained from the NCBI Database. One potential epitope with a suitable length (amino acids 58-82) was confirmed and predicted to be highly antigenic. This epitope had scores of >0.80 in ABCpred and level 0.35 in Bepipred programs. Due to the lack of X-ray crystal structure of the E protein in the PDB database, the simulated 3D structure of the E protein were also predicted using PHYRE 2 and Pymol programs. In conclusion, using bioinformatics methods, we analyzed the genome sequence of MERS-CoV and identified a potential B-cell epitope of the E protein, which might significantly improve our current MERS vaccine development strategies. © 2004-2012 IEEE.","bioinformatics; linear B-cell epitope; MERS-CoV","Amino acids; Bioinformatics; Crystal structure; Cytology; Database systems; Epitopes; Forecasting; Genes; Genetic engineering; Strain; Three dimensional displays; B cells; Bioinformatics methods; Epitope predictions; Genomics; MERS-CoV; Structural proteins; Vaccine development; X ray crystal structures; Proteins; epitope; virus envelope protein; biology; chemistry; Coronavirus infection; genetics; human; immunology; Middle East respiratory syndrome coronavirus; molecular model; procedures; virology; Computational Biology; Coronavirus Infections; Epitopes, B-Lymphocyte; Humans; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Viral Envelope Proteins","Zaki, A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367 (19), pp. 1814-1820. , Nov, 8; Van Boheemen, S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio., 3 (6); King, A.M.Q., (2000) Virus Taxonomy Classification and Nomenclature of Viruses, pp. 835-849. , New York NY USA: Academic Press; Raamsman, M.J., Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E (2000) J. Virol., 74 (5), pp. 2333-2342. , Mar; Peiris, J.S., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325. , Apr. 19; Drosten, C., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) New Engl. J. Med., 348 (20), pp. 1967-1976. , May 15; Shen, X., Small envelope protein E of SARS: Cloning, expression, purification, CD determination, and bioinformatics analysis (2003) Acta Pharmacol Sin, 24 (6), pp. 505-511. , Jun; El-Manzalawy, Y., Dobbs, D., Honavar, V., Predicting linear B-cell epitopes using string kernels (2008) J. Mol. Recognit., 21 (4), pp. 243-255. , Jul.-Aug; Larsen, J.E., Lund, O., Nielsen, M., Improved method for predicting linear B-cell epitopes (2006) Immunome Res., 2; Parker, J.M., Guo, D., Hodges, R.S., New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with anti-genicity and X-ray-derived accessible sites (1986) Biochemistry, 25 (19), pp. 5425-5432. , Sep. 23; Nishikawa, K., Assessment of secondary-structure prediction of proteins. Comparison of computerized Chou-Fasman method with others (1983) Biochim. Biophys. Acta., 748 (2), pp. 285-299. , Oct. 28; Kyte, J., Doolittle, R.F., A simple method for displaying the hydropathic character of a protein (1982) J. Mol. Biol., 157 (1), pp. 105-132. , May 5; Jameson, B.A., Wolf, H., The antigenic index: A novel algorithm for predicting antigenic determinants (1988) Comput. Appl. Bio-sci., 4 (1), pp. 181-186. , Mar; Emini, E.A., Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide (1985) J. Virol., 55 (3), pp. 836-839. , Sep; Kelley, L.A., (2015) The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis, 10 (6), pp. 845-858. , Jun; Liang, M.P., WebFEATURE: An interactive web tool for identifying and visualizing functional sites on macromolecular structures (2003) Nucleic Acids Res., 31 (13), pp. 3324-3327. , Jul. 1; (2002) The PyMol Molecular Graphics System, , http://pymol.org/, W. D [Online] Accessed on: 3 June 2015; Hopp, T.P., Woods, K.R., Prediction of protein antigenic determinants from amino acid sequences (1981) Proc. Natl. Academy Sci. United State America, 78 (6), pp. 3824-3828. , Jun; Van Regenmortel, M.H., Daney de Marcillac, G., An assess-ment of prediction methods for locating continuous epitopes in proteins (1988) Immunol Lett., 17 (2), pp. 95-107. , Feb; Saha, S., Raghava, G.P., Prediction of continuous B-cell epito-pes in an antigen using recurrent neural network (2006) Proteins, 65 (1), pp. 40-48. , Oct. 1; Xie, Q., Genomic sequencing and analysis of the first imported Middle East Respiratory Syndrome Coronavirus (MERS CoV) in China (2015) Sci. China. Life Sci., 58 (8), pp. 818-820. , Aug; Zhou, P., Han, Z., Wang, L.F., Shi, Z., Identification of immu-nogenic determinants of the spike protein of SARS-like coro-navirus (2013) Virol Sin., 28 (2), pp. 92-96. , Apr; Cotten, M., Transmission and evolution of the middle east respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382 (9909), pp. 1993-2002. , Dec. 14; Surya, W., Li, Y., Verdia-Baguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res., 201, pp. 61-66. , Apr. 2; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respira-tory syndrome coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp. Mol. Med., 47. , Aug. 28","Zhang, B.; Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 Shatai Road, China; email: Zhangb@smu.edu.cn",,"Institute of Electrical and Electronics Engineers Inc.",15455963,,,"28574363","English","IEEE/ACM Trans. Comput. BioL. Bioinf.",Article,"Final",,Scopus,2-s2.0-85023171037 "Adler F.R., Stockmann C., Ampofo K., Pavia A.T., Byington C.L.","7006492816;57207605686;12779841500;7005214665;7003962116;","Transmission of rhinovirus in the Utah BIG-LoVE families: Consequences of age and household structure",2018,"PLoS ONE","13","7", e0199388,"","",,,"10.1371/journal.pone.0199388","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050820084&doi=10.1371%2fjournal.pone.0199388&partnerID=40&md5=db3dc651d322475fa6cb44b9a4aa7a8a","Department of Mathematics, Department of Biology, University of Utah, Salt Lake City, UT, United States; Department of Pediatrics Medicine, University of Utah, Salt Lake City, UT, United States; Health Sciences Center, Texas A and M University, College Station, TX, United States","Adler, F.R., Department of Mathematics, Department of Biology, University of Utah, Salt Lake City, UT, United States; Stockmann, C., Department of Pediatrics Medicine, University of Utah, Salt Lake City, UT, United States; Ampofo, K., Department of Pediatrics Medicine, University of Utah, Salt Lake City, UT, United States; Pavia, A.T., Department of Pediatrics Medicine, University of Utah, Salt Lake City, UT, United States; Byington, C.L., Health Sciences Center, Texas A and M University, College Station, TX, United States","Background Common cold viruses create significant health and financial burdens, and understanding key loci of transmission would help focus control strategies. This study (1) examines factors that influence when individuals transition from a negative to positive test (acquisition) or a positive to negative test (loss) of rhinovirus (HRV) and other respiratory tract viruses in 26 households followed weekly for one year, (2) investigates evidence for intrahousehold and interhousehold transmission and the characteristics of individuals implicated in transmission, and (3) builds data-based simulation models to identify factors that most strongly affect patterns of prevalence. Methods We detected HRV, coronavirus, paramyxovirus, influenza and bocavirus with the FilmArray polymerase chain reaction (PCR) platform (BioFire Diagnostics, LLC). We used logistic regression to find covariates affecting acquisition or loss of HRV including demographic characteristics of individuals, their household, their current infection status, and prevalence within their household and across the population. We apply generalized linear mixed models to test robustness of results. Results Acquisition of HRV was less probable in older individuals and those infected with a coronavirus, and higher with a higher proportion of other household members infected. Loss of HRV is reduced with a higher proportion of other household members infected. Within households, only children and symptomatic individuals show evidence for transmission, while between households only a higher number of infected older children (ages 5-19) increases the probability of acquisition. Coronaviruses, paramyxoviruses and bocavirus also show evidence of intrahousehold transmission. Simulations show that age-dependent susceptibility and transmission have the largest effects on mean HRV prevalence. Conclusions Children are most likely to acquire and most likely to transmit HRV both within and between households, with infectiousness concentrated in symptomatic children. Simulations predict that the spread of HRV and other respiratory tract viruses can be reduced but not eliminated by practices within the home. © 2018 Adler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adolescent; adult; age distribution; Article; Bocaparvovirus; childhood; Coronavirinae; Coronavirus infection; disease transmission; female; household; human; infant; infection sensitivity; major clinical study; male; nonhuman; Paramyxoviridae; prevalence; Rhinovirus; Rhinovirus infection; risk assessment; risk factor; statistical model; symptomatology; Utah; virus transmission; age; child; family size; middle aged; newborn; odds ratio; picornavirus infection; preschool child; regression analysis; transmission; young adult; Adolescent; Adult; Age Factors; Child; Child, Preschool; Family Characteristics; Female; Humans; Infant; Infant, Newborn; Male; Middle Aged; Odds Ratio; Picornaviridae Infections; Regression Analysis; Rhinovirus; Utah; Young Adult","Byington, C.L., Ampofo, K., Stockmann, C., Adler, F.R., Herbener, A., Miller, T., Community surveillance of respiratory viruses among families in the Utah better identification of germs-longitudinal viral epidemiology (BIG-LoVE) study (2015) Clin Infect Dis, 61, pp. 1217-1224. , https://doi.org/10.1093/cid/civ486, PMID: 26245665; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Seminars in Respiratory and Critical Care Medicine, 37, pp. 555-571; Hershenson, M.B., Johnston, S.L., Rhinovirus infections: More than a common cold (2006) Am J Crit Care Respir Med, 174, pp. 1284-1285. , https://doi.org/10.1164/rccm.200609-1387ED; Monto, A.S., Bryan, E.R., Ohmit, S., Rhinovirus infections in Tecumseh, Michigan: Frequency of illness and number of serotypes (1987) J Infect Dis, 156, pp. 43-49. , https://doi.org/10.1093/infdis/156.1.43, PMID: 3036962; Taylor, S., Lopez, P., Weckx, L., Borja-Tabora, C., Ulloa-Gutierrez, R., Lazcano-Ponce, E., Respiratory viruses and influenza-like illness: Epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample (2017) Journal of Infection, 74, pp. 29-41. , https://doi.org/10.1016/j.jinf.2016.09.003, PMID: 27667752; Heikkinen, T., Jarvinen, A., The common cold (2003) Lancet, 361, pp. 51-59. , https://doi.org/10.1016/S0140-6736(03)12162-9, PMID: 12517470; Mackay, I., Human rhinoviruses: The cold wars resume (2008) J Clin Virol, 42, p. 297. , https://doi.org/10.1016/j.jcv.2008.04.002, PMID: 18502684; Monto, A.S., Fendrick, A.M., Sarnes, M.W., Respiratory illness caused by picornavirus infection: A review of clinical outcomes (2001) Clinical Therapeutics, 23, pp. 1615-1627. , https://doi.org/10.1016/S0149-2918(01)80133-8, PMID: 11726001; Gern, J.E., How rhinovirus infections cause exacerbations of asthma (2015) Clinical & Experimental Allergy, 45, pp. 32-42. , https://doi.org/10.1111/cea.12428; Jackson, D.J., Evans, M.D., Anderson, E.L., Salazar, L., DaSilva, D.F., Pappas, T.E., Wheezing rhinovirus illnesses during early childhood and the subsequent development of asthma (2008) J Allergy Clin Immunol, 121, pp. 667-672. , https://doi.org/10.1016/j.jaci.2007.12.249; Mallia, P., Johnston, S.L., How viral infections cause exacerbation of airway diseases (2006) Chest, 130, pp. 1203-1210. , https://doi.org/10.1378/chest.130.4.1203, PMID: 17035457; Piotrowska, Z., Vázquez, M., Shapiro, E.D., Weibel, C., Ferguson, D., Landry, M.L., Rhinoviruses are a major cause of wheezing and hospitalization in children less than 2 years of age (2009) The Pediatric Infectious Disease Journal, 28, pp. 25-29. , https://doi.org/10.1097/INF.0b013e3181861da0, PMID: 19057454; Asner, S., Waters, V., Solomon, M., Yau, Y., Richardson, S.E., Grasemann, H., Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis (2012) J Cystic Fibrosis, 11, pp. 433-439. , https://doi.org/10.1016/j.jcf.2012.04.006; Cousin, M., Molinari, N., Foulongne, V., Caimmi, D., Vachier, I., Abely, M., Rhinovirus-associated pulmonary exacerbations show a lack of FEV1 improvement in children with cystic fibrosis (2016) Influenza and Other Respiratory Viruses, 10, pp. 109-112. , https://doi.org/10.1111/irv.12353, PMID: 26493783; Wat, D., Gelder, C., Hibbitts, S., Cafferty, F., Bowler, I., Pierrepoint, M., The role of respiratory viruses in cystic fibrosis (2008) J Cystic Fibrosis, 7, pp. 320-328. , https://doi.org/10.1016/j.jcf.2007.12.002; Louie, J.K., Yagi, S., Nelson, F.A., Kiang, D., Glaser, C.A., Rosenberg, J., Rhinovirus outbreak in a long term care facility for elderly persons associated with unusually high mortality (2005) Clin Infect Dis, 41, pp. 262-265. , https://doi.org/10.1086/430915, PMID: 15983926; Hung, I.F., Zhang, A.J., To, K.K., Chan, J.F., Zhu, S.H., Zhang, R., Unexpectedly higher morbidity and mortality of hospitalized elderly patients associated with rhinovirus compared with influenza virus respiratory tract infection (2017) International Journal of Molecular Sciences, 18, p. 259. , https://doi.org/10.3390/ijms18020259; Miller, E.K., Lu, X., Erdman, D.D., Poehling, K.A., Zhu, Y., Griffin, M.R., Rhinovirus-associated hospitalizations in young children (2007) J Infect Dis, 195, pp. 773-781. , https://doi.org/10.1086/511821, PMID: 17299706; Greer, R.M., McErlean, P., Arden, K.E., Faux, C.E., Nitsche, A., Lambert, S.B., Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? (2009) J Clin Virol, 45, pp. 10-15. , https://doi.org/10.1016/j.jcv.2009.03.008, PMID: 19376742; Martin, E.T., Fairchok, M.P., Stednick, Z.J., Kuypers, J., Englund, J.A., Epidemiology of multiple respiratory viruses in childcare attendees (2013) J Infect Dis, 207, pp. 982-989. , https://doi.org/10.1093/infdis/jis934PMID, 23288925; Arden, K.E., McErlean, P., Nissen, M.D., Sloots, T.P., Mackay, I.M., Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections (2006) J Med Virol, 78, pp. 1232-1240. , https://doi.org/10.1002/jmv.20689, PMID: 16847968; Karppinen, S., Toivonen, L., Schuez-Havupalo, L., Waris, M., Peltola, V., Interference between respiratory syncytial virus and rhinovirus in respiratory tract infections in children (2016) Clinical Microbiology and Infection, 22, pp. 208–e1. , https://doi.org/10.1016/j.cmi.2015.10.002, PMID: 26482269; Hendley, J.O., Clinical virology of rhinoviruses (1999) Adv Virus Res, 54, pp. 453-466. , https://doi.org/10.1016/S0065-3527(08)60375-9, PMID: 10547683; Badger, G.F., Dingle, J.H., Feller, A.E., Hodges, R.G., Jordan, W.S., Jr, Rammelkamp, C.H., Jr, A study of illness in a group of Cleveland families. II. Incidence of the common respiratory diseases (1953) American Journal of Hygiene, 58, pp. 31-40. , PMID: 13065269; Hendley, J.O., Gwaltney, J.M., Mechanisms of transmission of rhinovirus infections (1988) Epidemiological Reviews, 10, pp. 243-258. , https://doi.org/10.1093/oxfordjournals.epirev.a036024; Monto, A.S., Malosh, R.E., Petrie, J.G., Thompson, M.G., Ohmit, S.E., Frequency of acute respiratory illnesses and circulation of respiratory viruses in households with children over three surveillance seasons (2014) J Infect Dis, p. jiu327; Harris, J.M., Gwaltney, J.M., Incubation periods of experimental rhinovirus infection and illness (1996) Clin Infect Dis, 23, p. 1287. , https://doi.org/10.1093/clinids/23.6.1287, PMID: 8953073; Granados, A., Goodall, E.C., Luinstra, K., Smieja, M., Mahony, J., Comparison of asymptomatic and symptomatic rhinovirus infections in university students: Incidence, species diversity, and viral load (2015) Diagnostic Microbiology and Infectious Disease, 82, pp. 292-296. , https://doi.org/10.1016/j.diagmicrobio.2015.05.001, PMID: 25999242; Winther, B., Hayden, F.G., Hendley, J.O., Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season (2006) J Med Virol, 78, pp. 644-650. , https://doi.org/10.1002/jmv.20588, PMID: 16555289; Douglas, R., Jr, Cate, T., Gerone, P., Couch, R., Quantitative rhinovirus shedding patterns in volunteers (1966) The American Review of Respiratory Disease, 94, p. 159. , https://doi.org/10.1164/arrd.1966.94.2.159PMID, 4288100; Peltola, V., Waris, M., Kainulainen, L., Kero, J., Ruuskanen, O., Virus shedding after human rhinovirus infection in children, adults and patients with hypogammaglobulinaemia (2013) Clinical Microbiology and Infection, 19. , https://doi.org/10.1111/1469-0691.12193, PMID: 23490188; Arden, K.E., Mackay, I.M., Newly identified human rhinoviruses: Molecular methods heat up the cold viruses (2010) Rev Med Virol, 20, pp. 156-176. , https://doi.org/10.1002/rmv.644, PMID: 20127751; Howard, L.M., Johnson, M., Gil, A.I., Griffin, M.R., Edwards, K.M., Lanata, C.F., Molecular epidemiology of rhinovirus detections in young children (2016) Open Forum Infectious Diseases, 3, p. ofw001. , https://doi.org/10.1093/ofid/ofw001, PMID: 26900577; Loeffelholz, M.J., Trujillo, R., Pyles, R.B., Miller, A.L., Alvarez-Fernandez, P., Pong, D.L., Duration of rhinovirus shedding in the upper respiratory tract in the first year of life (2014) Pediatrics, 134, pp. 1144-1150. , https://doi.org/10.1542/peds.2014-2132, PMID: 25404719; Van Der Zalm, M.M., Wilbrink, B., Van Ewijk, B.E., Overduin, P., Wolfs, T.F., Van Der Ent, C.K., Highly frequent infections with human rhinovirus in healthy young children: A longitudinal cohort study (2011) J Clin Virol, 52, pp. 317-320. , https://doi.org/10.1016/j.jcv.2011.09.003, PMID: 21982210; Couch, R.B., Rhinoviruses (1996) Fields Virology, pp. 713-734. , Fields BN, Knipe DM, Howley PM, editors. 3rd ed. Lippin-cott-Raven Publishers, Philadelphia; Jacobs, S.E., Lamson, D.M., George, K.S., Walsh, T.J., Human rhinoviruses (2013) Clinical Microbiology Reviews, 26, pp. 135-162. , https://doi.org/10.1128/CMR.00077-12, PMID: 23297263; Badger, G.F., Dingle, J.H., Feller, A.E., Hodges, R.G., Jordan, W.S., Jr, Rammelkamp, C.H., Jr, A study of illness in a group of Cleveland families. III. Introduction of respiratory infections into families (1953) American Journal of Hygiene, 58, pp. 41-46. , PMID: 13065270; Tsang, T.K., Lau, L.L., Cauchemez, S., Cowling, B.J., Household transmission of influenza virus (2015) Trends in Microbiology, 24, pp. 123-133. , https://doi.org/10.1016/j.tim.2015.10.012, PMID: 26612500; McCaw, J.M., Howard, P.F., Richmond, P.C., Nissen, M., Sloots, T., Lambert, S.B., Household transmission of respiratory viruses–assessment of viral, individual and household characteristics in a population study of healthy Australian adults (2012) BMC Infectious Diseases, 12, p. 345. , https://doi.org/10.1186/1471-2334-12-345, PMID: 23231698; Peltola, V., Waris, M., Österback, R., Susi, P., Ruuskanen, O., Hyypiä, T., Rhinovirus transmission within families with children: Incidence of symptomatic and asymptomatic infections (2008) J Infect Dis, 197, pp. 382-389. , https://doi.org/10.1086/525542, PMID: 18248302; Sacri, A.S., De Serres, G., Quach, C., Boulianne, N., Valiquette, L., Skowronski, D.M., Transmission of acute gastroenteritis and respiratory illness from children to parents (2014) The Pediatric Infectious Disease Journal, 33, pp. 583-588. , https://doi.org/10.1097/INF.0000000000000220, PMID: 24476955; Fox, J.P., Cooney, M.K., Hall, C.E., The Seattle virus watch. V. Epidemiologic observations of rhinovirus infections, 1965-1969, in families with young children (1975) Am J Epidemiol, 101, pp. 122-143. , https://doi.org/10.1093/oxfordjournals.aje.a112078, PMID: 164769; Cauchemez, S., Ferguson, N.M., Fox, A., Thai, P.Q., Thoang, D.D., Duong, T.N., Determinants of influenza transmission in South East Asia: Insights from a household cohort study in Vietnam (2014) PLoS Pathogens, 10. , https://doi.org/10.1371/journal.ppat.1004310, PMID: 25144780; Hendley, J.O., Gwaltney, J.M., Jr, Jordan, W.S., Jr, Rhinovirus infections in an industrial population. IV. Infections within families of employees during two fall peaks of respiratory illness (1969) Am J Epidemiol, 89, pp. 185-196. , https://doi.org/10.1093/oxfordjournals.aje.a120928; Ketler, A., Hall, C.E., Fox, J.P., Elveback, L., Cooney, M.K., The virus watch program: A continuing surveillance of viral infections in metropolitan New York families. 8 (1969) Am J Epidemiol, 90, pp. 244-254. , https://doi.org/10.1093/oxfordjournals.aje.a121067, PMID: 4309412; Yang, Y., Zhang, Y., Fang, L., Halloran, M., Ma, M., Liang, S., Household transmissibility of avian influenza A (H7N9) virus, China, February to May 2013 and October 2013 to March 2014 (2015) Euro Surveill, 20, p. 21056. , https://doi.org/10.2807/1560-7917.ES2015.20.10.21056, PMID: 25788253; Kwok, K.O., Leung, G.M., Riley, S., Modelling the proportion of influenza infections within households during pandemic and non-pandemic years (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone. 0022089, PMID: 21779380; (2015) R: A Language and Environment for Statistical Computing, , http://www.R-project.org, Vienna, Austria; Hosmer, D.W., Lemeshow, S., (2000) Applied Logistic Regression, , Wiley-Interscience; Broström, G., Holmberg, H., (2011) glmmML: Generalized Linear Models with Clustering, , https://CRAN.R-project.org/package = glmmML, R package version 0.82-1; Hastie, T., (2013) Gam: Generalized Additive Models, , https://CRAN.R-project.org/package = gam, R package version 1.08; Jennings, V., Lloyd-Smith, B., Ironmonger, D., Household size and the Poisson distribution (1999) Journal of The Australian Population Association, 16, pp. 65-84. , https://doi.org/10.1007/BF03029455; Bolker, B., Team, R.D.C., (2016) Bbmle: Tools for General Maximum Likelihood Estimation, , https://CRAN.R-project.org/package = bbmle, R package version 1.0.18; McCallum, H., Barlow, N.D., Hone, J., How should pathogen transmission be modelled? (2001) Trends Ecol Evol, 16, pp. 295-300. , https://doi.org/10.1016/S0169-5347(01)02144-9, PMID: 11369107; Sly, P.D., Kusel, M.M., De Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study (2006) The Pediatric Infectious Disease Journal, 25, pp. 680-686. , https://doi.org/10.1097/01.inf.0000226912.88900.a3, PMID: 16874165; Canini, L., Woolhouse, M.E., Maines, T.R., Carrat, F., Heterogeneous shedding of influenza by human subjects and its implications for epidemiology and control (2016) Scientific Reports, 6; Glass, K., McCaw, J.M., McVernon, J., Incorporating population dynamics into household models of infectious disease transmission (2011) Epidemics, 3, pp. 152-158. , https://doi.org/10.1016/j.epidem.2011.05.001PMID, 22094338","Adler, F.R.; Department of Mathematics, Department of Biology, University of UtahUnited States; email: adler@math.utah.edu",,"Public Library of Science",19326203,,POLNC,"30044794","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85050820084 "Bevins S.N., Lutman M., Pedersen K., Barrett N., Gidlewski T., Deliberto T.J., Franklin A.B.","22949896900;44161089400;25031932400;57203090189;6602922602;6506864902;35909909000;","Spillover of swine coronaviruses, United States",2018,"Emerging Infectious Diseases","24","7",,"1390","1392",,2,"10.3201/eid2407.172077","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050496855&doi=10.3201%2feid2407.172077&partnerID=40&md5=c1359d3835e48239749211517b9efd52","US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States; US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center and affiliate faculty, Colorado State University, United States","Bevins, S.N., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States, US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center and affiliate faculty, Colorado State University, United States; Lutman, M., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States; Pedersen, K., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States; Barrett, N., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States; Gidlewski, T., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States; Deliberto, T.J., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States; Franklin, A.B., US Department of Agriculture Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, CO, United States","Porcine epidemic diarrhea virus, a pathogen first detected in US domestic swine in 2013, has rapidly spilled over into feral swine populations. A better understanding of the factors associated with pathogen emergence is needed to better manage, and ultimately prevent, future spillover events from domestic to nondomestic animals. © 2018, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"animal experiment; domestic pig; infectious agent; letter; nonhuman; Porcine epidemic diarrhea virus; United States; animal; Coronavirinae; Coronavirus infection; pig; seroepidemiology; swine disease; United States; veterinary medicine; virology; Animals; Coronavirus; Coronavirus Infections; Seroepidemiologic Studies; Swine; Swine Diseases; United States","Power, A.G., Mitchell, C.E., Pathogen spillover in disease epidemics (2004) Am Nat, 164, pp. S79-S89. , http://dx.doi.org/10.1086/424610; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204, pp. 134-143. , http://dx.doi.org/10.1016/j.tvjl.2015.02.017; Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., Role of transportation in spread of porcine epidemic diarrhea virus infection, United States (2014) Emerg Infect Dis, 20, pp. 872-874. , http://dx.doi.org/10.3201/eid2005.131628; Bevins, S.N., Pedersen, K., Lutman, M.W., Gidlewski, T., Deliberto, T.J., Consequences associated with the recent range expansion of nonnative feral swine (2014) Bioscience, 64, pp. 291-299. , http://dx.doi.org/10.1093/biosci/biu015; Glazier, N., Brucellosis—USA: (New York) Swine, Human, 2016, , http://www.pro-medmail.org,archiveno.20170321.4912122, ProMED mail. 2017 Mar 17 [cited 2077 Dec 2]; Lee, D.U., Kwon, T., Je, S.H., Yoo, S.J., Seo, S.W., Sunwoo, S.Y., Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir (2016) Vet Microbiol, 192, pp. 90-94. , http://dx.doi.org/10.1016/j.vetmic.2016.07.003; Bowman, A.S., Krogwold, R.A., Price, T., Davis, M., Moeller, S.J., Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation (2015) BMC Vet Res, 11, p. 38. , http://dx.doi.org/10.1186/s12917-015-0348-2; Scott, A., McCluskey, B., Brown-Reid, M., Grear, D., Pitcher, P., Ramos, G., Porcine epidemic diarrhea virus introduction into the United States: Root cause investigation (2016) Prev Vet Med, 123, pp. 192-201. , http://dx.doi.org/10.1016/j.prevetmed.2015.11.013; Kim, Y., Yang, M., Goyal, S.M., Cheeran, M.-J., Torremorell, M., Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus (2017) BMC Vet Res, 13, p. 89. , http://dx.doi.org/10.1186/s12917-017-1017-4","Bevins, S.N.; USDA National Wildlife Research Center, 4101 Laporte Ave, United States; email: sarah.n.bevins@aphis.usda.gov",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"29912697","English","Emerg. Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85050496855 "Zhu Z., Zhang Z., Chen W., Cai Z., Ge X., Zhu H., Jiang T., Tan W., Peng Y.","57201482070;57201478370;57201479816;57201486618;35781787600;7404664537;7402148439;7401959748;36673675100;","Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein",2018,"Infection, Genetics and Evolution","61",,,"183","184",,2,"10.1016/j.meegid.2018.03.028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045039335&doi=10.1016%2fj.meegid.2018.03.028&partnerID=40&md5=6d4cb298312f1742de3702aca4f00e7e","College of Biology, Hunan University, Changsha, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China; National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China","Zhu, Z., College of Biology, Hunan University, Changsha, China; Zhang, Z., College of Biology, Hunan University, Changsha, China; Chen, W., College of Biology, Hunan University, Changsha, China; Cai, Z., College of Biology, Hunan University, Changsha, China; Ge, X., College of Biology, Hunan University, Changsha, China; Zhu, H., College of Biology, Hunan University, Changsha, China, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Jiang, T., Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China, Suzhou Institute of Systems Medicine, Suzhou, China; Tan, W., National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, China; Peng, Y., College of Biology, Hunan University, Changsha, China",[No abstract available],,"virus spike protein; coronavirus spike glycoprotein; protein binding; binding site; Coronavirinae; genetic parameters; kmer frequency; Letter; nonhuman; prediction; priority journal; receptor binding; chemistry; Coronavirus infection; genetics; human; metabolism; molecular model; physiology; virology; virus genome; Coronavirus; Coronavirus Infections; Genome, Viral; Humans; Models, Molecular; Protein Binding; Spike Glycoprotein, Coronavirus","Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Ann. Rev. Virol., 3, pp. 237-261; Lu, G.W., Wang, Q.H., Gao, G.F., Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; Peck, K.M., Burch, C.L., Heise, M.T., Baric, R.S., Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives (2015) Ann. Rev. Virol., 2 (2), pp. 95-117; Peng, G.Q., Sun, D.W., Rajashankar, K.R., Qian, Z.H., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 10696-10701; Qian, Z.H., Ou, X.Y., Goes, L.G.B., Osborne, C., Castano, A., Holmes, K.V., Dominguez, S.R., Identification of the receptor-binding domain of the spike glycoprotein of human betacoronavirus HKU1 (2015) J. Virol., 89, pp. 8816-8827; Smith, R.D., Responding to global infectious disease outbreaks: lessons from SARS on the role of risk perception, communication and management (2006) Soc. Sci. Med., 63, pp. 3113-3123; Tang, Q., Song, Y.L., Shi, M.J., Cheng, Y.Y., Zhang, W.T., Xia, X.Q., Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition (2015) Sci. Rep., 5; World Health Organization, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, Available at; Yang, Y., Zhang, L., Geng, H.Y., Deng, Y., Huang, B.Y., Guo, Y., Zhao, Z.D., Tan, W.J., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961","Tan, W.; National Institute for Viral Disease Control and Prevention, China CDCChina; email: tanwj28@163.com",,"Elsevier B.V.",15671348,,IGENC,"29625240","English","Infec. Genet. Evol.",Letter,"Final",Open Access,Scopus,2-s2.0-85045039335 "Abdoli A., Alirezaei M., Mehrbod P., Forouzanfar F.","55744046400;20336830000;35088483300;57191611442;","Autophagy: The multi-purpose bridge in viral infections and host cells",2018,"Reviews in Medical Virology","28","4", e1973,"","",,7,"10.1002/rmv.1973","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046121137&doi=10.1002%2frmv.1973&partnerID=40&md5=796fa5e381d47224cff1c11c664922b6","Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States; Influenza and Other Respiratory Viruses Dept., Pasteur Institute of Iran, Tehran, Iran; University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology Strasbourg, France","Abdoli, A., Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Alirezaei, M., Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States; Mehrbod, P., Influenza and Other Respiratory Viruses Dept., Pasteur Institute of Iran, Tehran, Iran; Forouzanfar, F., University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology Strasbourg, France","Autophagy signaling pathway is involved in cellular homeostasis, developmental processes, cellular stress responses, and immune pathways. The aim of this review is to summarize the relationship between autophagy and viruses. It is not possible to be fully comprehensive, or to provide a complete “overview of all viruses”. In this review, we will focus on the interaction of autophagy and viruses and survey how human viruses exploit multiple steps in the autophagy pathway to help viral propagation and escape immune response. We discuss the role that macroautophagy plays in cells infected with hepatitis C virus, hepatitis B virus, rotavirus gastroenteritis, immune cells infected with human immunodeficiency virus, and viral respiratory tract infections both influenza virus and coronavirus. Copyright © 2018 John Wiley & Sons, Ltd.","autophagy; host cell; interaction; virus","pattern recognition receptor; autophagy; Coronavirinae; Coronavirus infection; gastroenteritis; health survey; hepatitis B; Hepatitis B virus; hepatitis C; Hepatitis C virus; host cell; human; Human immunodeficiency virus; Human immunodeficiency virus infection; immune response; immunocompetent cell; influenza; Influenza virus; macroautophagy; neurologic disease; respiratory virus; Review; Rotavirus; signal transduction; viral respiratory tract infection; virus cell interaction; virus infection; animal; host pathogen interaction; immunology; innate immunity; metabolism; virus infection; virus replication; Animals; Autophagy; Host-Pathogen Interactions; Humans; Immunity, Innate; Signal Transduction; Virus Diseases; Virus Replication","Cao, Y., Klionsky, D.J., Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein (2007) Cell Res, 17 (10), pp. 839-849; Yang, Z., Klionsky, D.J., Eaten alive: a history of macroautophagy (2010) Nat Cell Biol, 12 (9), pp. 814-822; Levine, B., Klionsky, D.J., Development by self-digestion: molecular mechanisms and biological functions of autophagy (2004) Dev Cell, 6 (4), pp. 463-477; Eskelinen, E.-L., Maturation of autophagic vacuoles in mammalian cells (2005) Autophagy, 1 (1), pp. 1-10; Axe, E.L., Walker, S.A., Manifava, M., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum (2008) J Cell Biol, 182 (4), pp. 685-701; Glick, D., Barth, S., Macleod, K.F., Autophagy: cellular and molecular mechanisms (2010) J Pathol, 221 (1), pp. 3-12; Kroemer, G., Levine, B., Autophagic cell death: the story of a misnomer (2008) Nat Rev Mol Cell Biol, 9 (12), pp. 1004-1010; Kroemer, G., Galluzzi, L., Vandenabeele, P., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 (2009) Cell Death Differ, 16 (1), pp. 3-11; Ashford, T.P., Porter, K.R., Cytoplasmic components in hepatic cell lysosomes (1962) J Cell Biol, 12 (1), pp. 198-202; de Reuck, A.V.S., Cameron, M.P., (2008) Ciba Foundation Symposium on Lysosomes. 1963, , London, JA Churchill; Takeshige, K., Baba, M., Tsuboi, S., Noda, T., Ohsumi, Y., Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction (1992) J Cell Biol, 119 (2), pp. 301-311; Lee, Y.J., Jang, B.K., The role of autophagy in hepatocellular carcinoma (2015) Int J Mol Sci, 16 (11), pp. 26629-26643; Singh, R., Cuervo, A.M., Lipophagy: connecting autophagy and lipid metabolism (2012) Int J Cell Biol, 2012, pp. 1-12; Kim, I., Rodriguez-Enriquez, S., Lemasters, J.J., Selective degradation of mitochondria by mitophagy (2007) Arch Biochem Biophys, 462 (2), pp. 245-253; Rodriguez-Enriquez, S., Kim, I., Currin, R.T., Lemasters, J.J., Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes (2006) Autophagy, 2 (1), pp. 39-46; Reggiori, F., Klionsky, D.J., Autophagic processes in yeast: mechanism, machinery and regulation (2013) Genetics, 194 (2), pp. 341-361; Nakatogawa, H., Suzuki, K., Kamada, Y., Ohsumi, Y., Dynamics and diversity in autophagy mechanisms: lessons from yeast (2009) Nat Rev Mol Cell Biol, 10 (7), pp. 458-467; Mizushima, N., Autophagy: process and function (2007) Genes Dev, 21 (22), pp. 2861-2873; Hay, N., Sonenberg, N., Upstream and downstream of mTOR (2004) Genes Dev, 18 (16), pp. 1926-1945; Shrivastava, S., Bhanja Chowdhury, J., Steele, R., Ray, R., Ray, R.B., Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling (2012) J Virol, 86 (16), pp. 8705-8712; Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., Kim, D.H., mTOR regulation of autophagy (2010) FEBS Lett, 584 (7), pp. 1287-1295; Kim, J., Kundu, M., Viollet, B., Guan, K.L., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 (2011) Nat Cell Biol, 13 (2), pp. 132-141; Xie, Z., Klionsky, D.J., Autophagosome formation: core machinery and adaptations (2007) Nat Cell Biol, 9 (10), pp. 1102-1109; Backer, J.M., The regulation and function of class III PI3Ks: novel roles for Vps34 (2008) Biochem J, 410 (1), pp. 1-17; Furuya, N., Yu, J., Byfield, M., Pattingre, S., Levine, B., The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy, and tumor suppressor function (2005) Autophagy, 1 (1), pp. 46-52; Kuballa, P., Nolte, W.M., Castoreno, A.B., Xavier, R.J., Autophagy and the immune system (2012) Annu Rev Immunol, 30 (1), pp. 611-646; Matsunaga, K., Saitoh, T., Tabata, K., Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages (2009) Nat Cell Biol, 11 (4), pp. 385-396; Liang, C., Feng, P., Ku, B., Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG (2006) Nat Cell Biol, 8 (7), pp. 688-698; Fimia, G.M., Stoykova, A., Romagnoli, A., Ambra1 regulates autophagy and development of the nervous system (2007) Nature, 447 (7148), pp. 1121-1125; Hanada, T., Noda, N.N., Satomi, Y., The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy (2007) J Biol Chem, 282 (52), pp. 37298-37302; Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., Yoshimori, T., The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy (2008) Mol Biol Cell, 19 (5), pp. 2092-2100; Mann, S.S., Hammarback, J.A., Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B (1994) J Biol Chem, 269 (15), pp. 11492-11497; Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., Yoshimori, T., LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation (2004) J Cell Sci, 117 (13), pp. 2805-2812; Kabeya, Y., Mizushima, N., Ueno, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing (2000) The EMBO J, 19 (21), pp. 5720-5728; Rubinsztein, D.C., Cuervo, A.M., Ravikumar, B., (2009) In search of an “autophagomometer”, 5, pp. 585-589. , Taylor & Francis; Schmid, D., (2007) Autophagy delivers viral antigens for MHC class II presentation and is regulated by viral infection, p. 205. , The Rockefeller University; Cheng, J., Ohsaki, Y., Tauchi-Sato, K., Fujita, A., Fujimoto, T., Cholesterol depletion induces autophagy (2006) Biochem Biophys Res Commun, 351 (1), pp. 246-252; Rubinsztein, D.C., Cuervo, A.M., Ravikumar, B., In search of an autophagomometer (2009) Autophagy, 5 (5), pp. 585-589; Levine, B., Kroemer, G., Autophagy in the pathogenesis of disease (2008) Cell, 132 (1), pp. 27-42; Alexander, D., Leib, D.A., Xenophagy in herpes simplex virus replication and pathogenesis (2008) Autophagy, 4 (1), pp. 101-103; Orvedahl, A., MacPherson, S., Sumpter, R., Jr., Tallóczy, Z., Zou, Z., Levine, B., Autophagy protects against Sindbis virus infection of the central nervous system (2010) Cell Host Microbe, 7 (2), pp. 115-127; Jackson, W.T., Viruses and the autophagy pathway (2015) Virology, 479-480, pp. 450-456; Lennemann, N.J., Coyne, C.B., Catch me if you can: the link between autophagy and viruses (2015) PLoS Pathog, 11 (3); Shi, J., Luo, H., Interplay between the cellular autophagy machinery and positive-stranded RNA viruses (2012) Acta Biochim Biophys Sin, 44 (5), pp. 375-384; Rubinsztein, D.C., DiFiglia, M., Heintz, N., Autophagy and its possible roles in nervous system diseases, damage and repair (2005) Autophagy, 1 (1), pp. 11-22; Munz, C., Autophagy and antigen presentation (2006) Cell Microbiol, 8 (6), pp. 891-898; Deretic, V., Singh, S., Master, S., Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism (2006) Cell Microbiol, 8 (5), pp. 719-727; Rossman, J.S., Lamb, R.A., Autophagy, apoptosis, and the influenza virus M2 protein (2009) Cell Host Microbe, 6 (4), pp. 367-380; Wileman, T., Aggresomes and autophagy generate sites for virus replication (2006) Science, 312 (5775), pp. 875-878; Matarrese, P., Nencioni, L., Checconi, P., Pepstatin A alters host cell autophagic machinery and leads to a decrease in influenza A virus production (2011) J Cell Physiol, 226 (12), pp. 3368-3377; Shintani, T., Klionsky, D.J., Autophagy in health and disease: a double-edged sword (2004) Science, 306 (5698), pp. 990-995; Kemball, C.C., Alirezaei, M., Flynn, C.T., Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo (2010) J Virol, 84 (23), pp. 12110-12124; Alirezaei, M., Flynn, C.T., Wood, M.R., Harkins, S., Whitton, J.L., Coxsackievirus can exploit LC3 in both autophagy-dependent and-independent manners in vivo (2015) Autophagy, 11 (8), pp. 1389-1407; Iwasaki, A., Role of autophagy in innate viral recognition (2007) Autophagy, 3 (4), pp. 354-356; Blanchet, F.P., Moris, A., Nikolic, D.S., Human immunodeficiency Virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses (2010) Immunity, 32 (5), pp. 654-669; Gannage, M., Münz, C., MHC presentation via autophagy and how viruses escape from it (2010) Semin Immunopathol, 32 (4), pp. 373-381; Chan, S.T., Jing-hsiung, J.O., Hepatitis C virus-induced autophagy and host innate immune response (2017) Virus, 9 (8), p. 224; Desai, M., Fang, R., Sun, J., The role of autophagy in microbial infection and immunity (2015) Immunotargets and Therapy, 4, pp. 13-26; Lee, H.K., Iwasaki, A., Autophagy and antiviral immunity (2008) Curr Opin Immunol, 20 (1), pp. 23-29; Grol, J.V., Subauste, C., Andrade, R.M., Fujinaga, K., Nelson, J., Subauste, C.S., HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3 (2010) PLoS One, 5 (7); Oh, J.E., Lee, H.K., Autophagy in innate recognition of pathogens and adaptive immunity (2012) Yonsei Med J, 53 (2), pp. 241-247; Grégoire, I.P., Richetta, C., Meyniel-Schicklin, L., IRGM is a common target of RNA viruses that subvert the autophagy network (2011) PLoS Pathog, 7 (12); Uhl, M., Kepp, O., Jusforgues-Saklani, H., Vicencio, J.M., Kroemer, G., Albert, M.L., Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells (2009) Cell Death Differ, 6 (7), pp. 991-1005; Crawford, S.E., Hyser, J.M., Utama, B., Estes, M.K., Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication (2012) Proc Natl Acad Sci U S A, 109 (50), pp. E3405-E3413; Alavian, S., Ande, S.R., Coombs, K.M., Virus-triggered autophagy in viral hepatitis—possible novel strategies for drug development (2011) J Viral Hepat, 18 (12), pp. 821-830; Choo, Q., Weiner, A.J., Overby, L.R., Kuo, G., Houghton, M., Bradley, D.W., Hepatitis C virus: the major causative agent of viral non-A, non-B hepatitis (1990) Br Med Bull, 46 (2), pp. 423-441; Ke, P.-Y., Chen, S.S., Autophagy in hepatitis C virus-host interactions: potential roles and therapeutic targets for liver-associated diseases (2014) World J Gastroenterol, 20 (19), pp. 5773-5793; Blanchard, E., Belouzard, S., Goueslain, L., Hepatitis C virus entry depends on clathrin-mediated endocytosis (2006) J Virol, 80 (14), pp. 6964-6972; Tscherne, D.M., Jones, C.T., Evans, M.J., Lindenbach, B.D., McKeating, J.A., Rice, C.M., Time-and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry (2006) J Virol, 80 (4), pp. 1734-1741; Romero-Brey, I., Merz, A., Chiramel, A., Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication (2012) PLoS Pathog, 8 (12); Ke, P.-Y., Chen, S.S.-L., Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro (2011) J Clin Invest, 121 (1), pp. 37-56; Dreux, M., Gastaminza, P., Wieland, S.F., Chisari, F.V., The autophagy machinery is required to initiate hepatitis C virus replication (2009) Proc Natl Acad Sci U S A, 106 (33), pp. 14046-14051; Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond (2012) Nat Rev Mol Cell Biol, 13 (2), pp. 89-102; Walter, P., Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation (2011) Science, 334 (6059), pp. 1081-1086; Vescovo, T., Refolo, G., Romagnoli, A., Autophagy in HCV infection: keeping fat and inflammation at bay (2014) Biomed Res Int, 2014, pp. 1-10; Kim, S.-J., Syed, G.H., Siddiqui, A., Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy (2013) PLoS Pathog, 9 (3); Kim, S.-J., Syed, G.H., Khan, M., Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence (2014) Proc Natl Acad Sci U S A, 111 (17), pp. 6413-6418; Wang, J., Kang, R., Huang, H., Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression (2014) Autophagy, 10 (5), pp. 766-784; Guévin, C., Manna, D., Bélanger, C., Konan, K.V., Mak, P., Labonté, P., Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection (2010) Virology, 405 (1), pp. 1-7; Wang, L., Tian, Y., Ou, J.-H., HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication (2015) PLoS Pathog, 11 (3); Wang, L., Ou, J.-H.J., Hepatitis C virus and autophagy (2015) Biol Chem, 396 (11), pp. 1215-1222; Huang, H., Kang, R., Wang, J., Luo, G., Yang, W., Zhao, Z., Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy (2013) Autophagy, 9 (2), pp. 175-195; Tanida, I., Fukasawa, M., Ueno, T., Kominami, E., Wakita, T., Hanada, K., Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles (2009) Autophagy, 5 (7), pp. 937-945; Liu, K., Czaja, M., Regulation of lipid stores and metabolism by lipophagy (2013) Cell Death Differ, 20 (1), pp. 3-11; Vescovo, T., Romagnoli, A., Perdomo, A.B., Autophagy protects cells from HCV-induced defects in lipid metabolism (2012) Gastroenterology, 142 (3), pp. 644-653; Chandra, P.K., Bao, L., Song, K., HCV infection selectively impairs type I but not type III IFN signaling (2014) Am J Pathol, 184 (1), pp. 214-229; Desai, M.M., Gong, B., Chan, T., Differential, type I interferon-mediated autophagic trafficking of hepatitis C virus proteins in mouse liver (2011) Gastroenterology, 141 (2), pp. 674-685; Sir, D., Tian, Y., Chen, W.L., Ann, D.K., Yen, T.S.B., Ou, J.H.J., The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication (2010) Proc Natl Acad Sci U S A, 107 (9), pp. 4383-4388; Lavanchy, D., Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention (2005) J Clin Virol, 34, pp. S1-S3; Li, J., Liu, Y., Wang, Z., Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment (2011) J Virol, 85 (13), pp. 6319-6333; Lazar, C., Macovei, A., Petrescu, S., Branza-Nichita, N., Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production (2012) PLoS One, 7 (3); Lan, S.H., Wu, S.Y., Zuchini, R., Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224 (2014) Hepatology, 59 (2), pp. 505-517; Zhang, B., Halder, S.K., Kashikar, N.D., Antimetastatic role of Smad4 signaling in colorectal cancer (2010) Gastroenterology, 138 (3), pp. 969-980; Wickner, R., Double-stranded RNA Virus replication and packaging (1993) J Biol Chem, 268, p. 3797; Ball, J.M., Tian, P., Zeng, C.Q.Y., Morris, A.P., Estes, M.K., Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein (1996) Science, 272 (5258), pp. 101-104; Estes, M.K., Kang, G., Zeng, C.Q.-Y., Crawford, S.E., Ciarlet, M., (2001) Pathogenesis of Rotavirus Gastroenteritis. in Novartis Foundation Symposium, 1999. , Chichester; New York, John Wiley; Berkova, Z., Crawford, S.E., Trugnan, G., Yoshimori, T., Morris, A.P., Estes, M.K., Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms (2006) J Virol, 80 (12), pp. 6061-6071; Crawford, S.E., Estes, M.K., Viroporin-mediated calcium-activated autophagy (2013) Autophagy, 9 (5), pp. 797-798; Mizushima, N., The role of the Atg1/ULK1 complex in autophagy regulation (2010) Curr Opin Cell Biol, 22 (2), pp. 132-139; Yang, W., McCrae, M.A., The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network (2012) Virus Res, 163 (1), pp. 269-274; Martin, D., Duarte, M., Lepault, J., Poncet, D., Sequestration of free tubulin molecules by the viral protein NSP2 induces microtubule depolymerization during rotavirus infection (2010) J Virol, 84 (5), pp. 2522-2532; Jahreiss, L., Menzies, F.M., Rubinsztein, D.C., The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes (2008) Traffic, 9 (4), pp. 574-587; Cuadras, M.A., Feigelstock, D.A., An, S., Greenberg, H.B., Gene expression pattern in Caco-2 cells following rotavirus infection (2002) J Virol, 76 (9), pp. 4467-4482; Campagna, M., Eichwald, C., Vascotto, F., Burrone, O.R., RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle (2005) J Gen Virol, 86 (5), pp. 1481-1487; Arnoldi, F., de Lorenzo, G., Mano, M., Rotavirus increases levels of lipidated LC3 supporting accumulation of infectious progeny virus without inducing autophagosome formation (2014) PLoS One, 9 (4); Alexaki, A., Liu, Y., Wigdahl, B., Cellular reservoirs of HIV-1 and their role in viral persistence (2008) Curr HIV Res, 6 (5), pp. 388-400; Svicher, V., Ceccherini-Silberstein, F., Antinori, A., Aquaro, S., Perno, C.F., Understanding HIV compartments and reservoirs (2014) Curr HIV/AIDS Rep, 11 (2), pp. 186-194; Hong, F.F., Mellors, J.W., Changes in HIV reservoirs during long-term antiretroviral therapy (2015) Curr Opin HIV AIDS, 10 (1), pp. 43-48; Perng, G.-C., Jones, C., Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle (2010) Interdiscip Perspect Infect Dis, 2010, pp. 1-18; Siliciano, R.F., Greene, W.C., HIV latency (2011) Cold Spring Harb Perspect Med, 1 (1); Delgado, M., Singh, S., de Haro, S., Autophagy and pattern recognition receptors in innate immunity (2009) Immunol Rev, 227 (1), pp. 189-202; Shi, C.-S., Kehrl, J.H., TRAF6 and A20 regulate lysine 63–linked ubiquitination of beclin-1 to control TLR4-induced autophagy (2010) Sci Signal, 3 (123), p. ra42. , p. ra42-ra42); Dupont, N., Jiang, S., Pilli, M., Ornatowski, W., Bhattacharya, D., Deretic, V., Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β (2011) The EMBO J, 30 (23), pp. 4701-4711; Shi, C.-S., Shenderov, K., Huang, N.N., Activation of autophagy by inflammatory signals limits IL-1 [beta] production by targeting ubiquitinated inflammasomes for destruction (2012) Nat Immunol, 13 (3), pp. 255-263; Deretic, V., Saitoh, T., Akira, S., Autophagy in infection, inflammation and immunity (2013) Nat Rev Immunol, 13 (10), pp. 722-737; Kyei, G.B., Dinkins, C., Davis, A.S., Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages (2009) J Cell Biol, 186 (2), pp. 255-268; Ameisen, J.C., Capron, A., Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis (1991) Immunol Today, 12 (4), pp. 102-105; Terai, C., Kornbluth, R.S., Pauza, C.D., Richman, D.D., Carson, D.A., Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1 (1991) J Clin Invest, 87 (5), pp. 1710-1715; Doitsh, G., Galloway, N.L.K., Geng, X., Pyroptosis drives CD4 T-cell depletion in HIV-1 infection (2014) Nature, 505 (7484), pp. 509-514; Garg, H., Mohl, J., Joshi, A., HIV-1 induced bystander apoptosis (2012) Virus, 4 (11), pp. 3020-3043; Kumar, V., (2012) Robbins Basic Pathology, , http://store.elsevier.com/Robbins-Basic-Pathology/Vinay-Kumar/isbn-9781437717815/, 9th Edition | Vinay Kumar, Abul Abbas, Jon Aster | 2012, ed.;, 2016/12/15/174737; Available from; Denizot, M., Varbanov, M., Espert, L., HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells (2008) Autophagy, 4 (8), pp. 998-1008; Espert, L., Varbanov, M., Robert-Hebmann, V., Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection (2009) PLoS One, 4 (6); Zhou, D., Spector, S.A., Human immunodeficiency virus type-1 infection inhibits autophagy (2008) AIDS, 22 (6), pp. 695-699; Castedo, M., Roumier, T., Blanco, J., Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope (2002) The EMBO J, 21 (15), pp. 4070-4080; Nardacci, R., Amendola, A., Ciccosanti, F., Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients (2014) Autophagy, 10 (7), pp. 1167-1178; Sagnier, S., Daussy, C.F., Borel, S., Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes (2015) J Virol, 89 (1), pp. 615-625; Borel, S., Robert-Hebmann, V., Alfaisal, J., HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy (2015) AIDS, 29 (3), pp. 275-286; Badou, A., Bennasser, Y., Moreau, M., Leclerc, C., Benkirane, M., Bahraoui, E., Tat protein of human immunodeficiency virus type 1 induces interleukin-10 in human peripheral blood monocytes: implication of protein kinase C-dependent pathway (2000) J Virol, 74 (22), pp. 10551-10562; Li, J.C.B., Au, K.Y., Fang, J.W., HIV-1 trans-activator protein dysregulates IFN-γ signaling and contributes to the suppression of autophagy induction (2011) AIDS, 25 (1), pp. 15-25; Piguet, V., Blauvelt, A., Essential roles for dendritic cells in the pathogenesis and potential treatment of HIV disease (2002) J Invest Dermatol, 119 (2), pp. 365-369; Lee, H.K., Lund, J.M., Ramanathan, B., Mizushima, N., Iwasaki, A., Autophagy-dependent viral recognition by plasmacytoid dendritic cells (2007) Science, 315 (5817), pp. 1398-1401; Zhou, D., Kang, K.H., Spector, S.A., Production of interferon α by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy (2012) J Infect Dis, 205 (8), pp. 1258-1267; Alter, G., Suscovich, T.J., Teigen, N., Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells (2007) J Immunol, 178 (12), pp. 7658-7666; Hervas-Stubbs, S., Perez-Gracia, J.L., Rouzaut, A., Sanmamed, M.F., le Bon, A., Melero, I., Direct effects of type I interferons on cells of the immune system (2011) Clin Cancer Res, 17 (9), pp. 2619-2627; Cory, T.J., Schacker, T.W., Stevenson, M., Fletcher, C.V., Overcoming pharmacologic sanctuaries (2013) Curr Opin HIV AIDS, 8 (3), pp. 190-195; Eisfeld, C., Reichelt, D., Evers, S., Husstedt, I., CSF penetration by antiretroviral drugs (2013) CNS Drugs, 27 (1), pp. 31-55; Letendre, S., Marquie-Beck, J., Capparelli, E., Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system (2008) Arch Neurol, 65 (1), pp. 65-70; Kramer-Hämmerle, S., Rothenaigner, I., Wolff, H., Bell, J.E., Brack-Werner, R., Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus (2005) Virus Res, 111 (2), pp. 194-213; Valcour, V., Chalermchai, T., Sailasuta, N., Central nervous system viral invasion and inflammation during acute HIV infection (2012) J Infect Dis, 206 (2), pp. 275-282; García-Arencibia, M., Hochfeld, W.E., Toh, P.P.C., Rubinsztein, D.C., Autophagy, a guardian against neurodegeneration (2010) Semin Cell Dev Biol, 21 (7), pp. 691-698; Rubinsztein, D.C., Codogno, P., Levine, B., Autophagy modulation as a potential therapeutic target for diverse diseases (2012) Nat Rev Drug Discov, 11 (9), pp. 709-730; Zhou, D., Masliah, E., Spector, S.A., Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis (2011) J Infect Dis, 203 (11), pp. 1647-1657; Alirezaei, M., Kiosses, W.B., Fox, H.S., Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity (2008) Autophagy, 4 (7), pp. 963-966; Fields, J., Dumaop, W., Rockenstein, E., Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer (2013) J Neurovirol, 19 (1), pp. 89-101; Fields, J., Dumaop, W., Elueteri, S., HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders (2015) J Neurosci, 35 (5), pp. 1921-1938; Espert, L., Denizot, M., Grimaldi, M., Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4 (2006) J Clin Invest, 116 (8), pp. 2161-2172; Levine, B., Packer, M., Codogno, P., Development of autophagy inducers in clinical medicine (2015) J Clin Invest, 125 (1), pp. 14-24; Mostowy, S., Autophagy and bacterial clearance: a not so clear picture (2013) Cell Microbiol, 15 (3), pp. 395-402; Webster, R., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y., Evolution and ecology of influenza A viruses (1992) Microbiol Rev, 56 (1), pp. 152-179; Haidari, M., Zhang, W., Ganjehei, L., Ali, M., Chen, Z., Inhibition of MLC phosphorylation restricts replication of influenza virus—a mechanism of action for anti-influenza agents (2011) PLoS One, 6 (6); Whittaker, G.R., Intracellular trafficking of influenza virus: clinical implications for molecular medicine (2001) Expert Rev Mol Med, 3, pp. 1-13; Zhou, Z., Jiang, X., Liu, D., Autophagy is involved in influenza A virus replication (2009) Autophagy, 5 (3), pp. 321-328; Ochiai, H., Sakai, S., Hirabayashi, T., Shimizu, Y., Terasawa, K., Inhibitory effect of bafilomycin A1, a specific inhibitor of vacuolar-type proton pump, on the growth of influenza A and B viruses in MDCK cells (1995) Antiviral Res, 27 (4), pp. 425-430; Yeganeh, B., Ghavami, S., Kroeker, A.L., Suppression of influenza a virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1 (2015) Am J Physiol Gastrointest Liver Physiol, 308 (3), pp. L270-L286; Sumpter, R., Levine, B., Autophagy and innate immunity: triggering, targeting and tuning (2010) Semin Cell Dev Biol, , Elsevier; Ghavami, S., Mutawe, M.M., Hauff, K., Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c (2010) Biochim Biophys Acta, 1803 (4), pp. 452-467; Codogno, P., Meijer, A.J., Autophagy and signaling: their role in cell survival and cell death (2005) Cell Death Differ, 12 (2), pp. 1509-1518; Pattingre, S., Tassa, A., Qu, X., Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy (2005) Cell, 122 (6), pp. 927-939; Gannagé, M., Dormann, D., Albrecht, R., Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes (2009) Cell Host Microbe, 6 (4), pp. 367-380; Dai, J.P., Li, W.Z., Zhao, X.F., A drug screening method based on the autophagy pathway and studies of the mechanism of evodiamine against influenza A virus (2012) PLoS One, 7 (8); Mehrbod, P., Hair-Bejo, M., Tengku Ibrahim, T.A., Simvastatin modulates cellular components in influenza A virus-infected cells (2014) Int J Mol Med, 34 (1), pp. 61-73; Hale, B.G., Jackson, D., Chen, Y.H., Lamb, R.A., Randall, R.E., Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling (2006) Proc Natl Acad Sci U S A, 103 (38), pp. 14194-14199; Esghaei, M., Monavari, S.H.R., Tavassoti-Kheiri, M., Expression of the influenza M2 protein in three different eukaryotic cell lines (2012) J Virol Methods, 179 (1), pp. 161-165; Betakova, T., Hay, J.A., Stability and function of the influenza A virus M2 ion channel protein is determined by both extracellular and cytoplasmic domains (2009) Arch Virol, 154 (1), pp. 147-151; Zebedee, S.L., Lamb, R.A., Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions (1988) J Virol, 62 (8), pp. 2762-2772; Lamb, R.A., Zebedee, S.L., Richardson, C.D., Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface (1985) Cell, 40, pp. 627-633; Ciampor, F., Thompson, C.A., Grambas, S., Hay, A.J., Regulation of pH by the M2 protein of influenza A viruses (1992) Virus Res, 22 (3), pp. 247-258; Egan, D.F., Kim, J., Shaw, R.J., Guan, K.L., The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR (2011) Autophagy, 7 (6), pp. 645-646; Liu, G., Zhong, M., Guo, C., Autophagy is involved in regulating influenza A virus RNA and protein synthesis associated with both modulation of Hsp90 induction and mTOR/p70S6K signaling pathway (2016) Int J Biochem Cell Biol, 72, pp. 100-108; Klionsky, D.J., Emr, S.D., Autophagy as a regulated pathway of cellular degradation (2000) Science, 290, pp. 1717-1721; Ma, J., Sun, Q., Mi, R., Zhang, H., Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling (2011) J Genet Genomics, 38 (11), pp. 533-537; Datan, E., Shirazian, A., Benjamin, S., mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza a infection (2014) Virology, 452-453, pp. 175-190; Pan, H., Zhang, Y., Luo, Z., Autophagy mediates avian influenza H5N1 pseudotyped particle-induced lung inflammation through NF-κB and p38 MAPK signaling pathways (2014) Am J Physiol Lung Cell Mol Physiol, 306 (2), pp. L183-L195; Law, A.H.-Y., Lee, D.C.W., Yuen, K.Y., Peiris, M., Lau, A.S.Y., Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-alpha induction (2010) Cell Mol Immunol, 7 (4), pp. 263-270; Zhao, H., Zhao, Y.G., Wang, X., Mice deficient in EPG5 exhibit selective neuronal vulnerability to degeneration (2013) J Cell Biol, 200 (6), pp. 731-741; Lu, Q., Yokoyama, C.C., Williams, J.W., Homeostatic control of innate lung inflammation by Vici Syndrome Gene Epg5 and additional autophagy genes promotes influenza pathogenesis (2016) Cell Host Microbe, 19 (1), pp. 102-113; Ehrhardt, C., Marjuki, H., Wolff, T., Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence (2006) Cell Microbiol, 8 (8), pp. 1336-1348; Puleston, D.J., Zhang, H., Powell, T.J., Autophagy is a critical regulator of memory CD8(+) T cell formation (2014) Elife, 3; Zhirnov, O.P., Klenk, H.D., Influenza a virus proteins NS1 and hemagglutinin along with M2 are involved in stimulation of autophagy in infected cells (2013) J Virol, 87, pp. 13107-13114; Zhu, H.-Y., Han, L., Shi, X.L., Baicalin inhibits autophagy induced by influenza A virus H3N2 (2015) Antiviral Res, 113, pp. 62-70; Nakahira, K., Haspel, J.A., Rathinam, V.A.K., Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release (2011) Nat Immunol, 12 (3), pp. 222-230; Lupfer, C., Thomas, P.G., Anand, P.K., Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection (2013) Nat Immunol, 14 (5), pp. 480-488; Beale, R., Wise, H., Stuart, A., Ravenhill, B.J., Digard, P., Randow, F., A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability (2014) Cell Host Microbe, 15 (2), pp. 239-247; Bouvier, P.P., The biology of influenza viruses (2008) Vaccine, 26 (4), pp. D49-D53; Haque, K.V., Axelsen, P.H., Lentz, B.R., Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion (2005) Biophys J, 89, pp. 3183-3194; Maier, H., Britton, P., Involvement of autophagy in coronavirus replication (2012) Virus, 4 (12), pp. 3440-3451; Chen, X., Wang, K., Xing, Y., Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity (2014) Protein Cell, 5 (12), pp. 912-927; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10 (8), pp. 1426-1441; Klein, K.A., Jackson, W.T., Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells (2011) J Virol, 85 (18), pp. 9651-9654; Feizi, N., Mehrbod, P., Romani, B., Autophagy induction regulates influenza virus replication in a time-dependent manner (2017) J Med Microbiol, 66 (4), pp. 536-541; Park, Y.M., Choi, J.Y., Byun, B.H., Cho, C.H., Kim, H.S., Kim, B.S., Telomerase is strongly activated in hepatocellular carcinoma but not in chronic hepatitis and cirrhosis (1998) Exp Mol Med, 30 (1), pp. 35-40; Liu, H., Shi, W., Luan, F., Hepatitis B virus X protein upregulates transcriptional activation of human telomerase reverse transcriptase (2010) Virus Genes, 40 (2), pp. 174-182; Zhu, Z., Wilson, A.T., Gopalakrishna, K., Brown, K.E., Luxon, B.A., Schmidt, W.N., Hepatitis C virus core protein enhances telomerase activity in Huh7 cells (2010) J Med Virol, 82 (2), pp. 239-248; Taji, F., Kouchesfahani, H.M., Sheikholeslami, F., Autophagy induction reduces telomerase activity in HeLa cells (2016) Mech Ageing Dev; Hu, D., Wu, J., Zhang, R., Autophagy-targeted vaccine of LC3–LpqH DNA and its protective immunity in a murine model of tuberculosis (2014) Vaccine, 32 (20), pp. 2308-2314; Naziri, H., Naziri, H., Abdoli, A., Enhancement of hepatitis E virus DNA vaccine immunity by beclin-1-mediated autophagy (2018) Jundishapur J Microbiol, , in press; Khateri, M., Abdoli, A., Motevalli, F., Evaluation of autophagy induction on HEV 239 vaccine immune response in a mouse model (2018) IUBMB Life, , In Press; Jagannath, C., Lindsey, D.R., Dhandayuthapani, S., Xu, Y., Hunter, R.L., Eissa, N.T., Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells (2009) Nat Med, 15 (3), pp. 267-276; Hu, L., Jiang, K., Ding, C., Meng, S., Targeting autophagy for oncolytic immunotherapy (2017) Biomedicine, 5 (1), p. 5; Wu, S.-Y., Lan, S.-H., Liu, H.-S., Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma (2016) World J Gastroenterol, 22 (1), p. 176; Liu, B., Fang, M., Hu, Y., Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation (2014) Autophagy, 10 (3), pp. 416-430; Saribas, A.S., Khalili, K., Sariyer, I.K., Dysregulation of autophagy by HIV-1 Nef in human astrocytes (2015) Cell Cycle, 14 (18), pp. 2899-2904","Abdoli, A.; Department of Hepatitis and AIDS, Pasteur Institute of IranIran; email: a_abdoli@pasteur.ac.ir",,"John Wiley and Sons Ltd",10529276,,RMVIE,"29709097","English","Rev. Med. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85046121137 "Bruening J., Lasswitz L., Banse P., Kahl S., Marinach C., Vondran F.W., Kaderali L., Silvie O., Pietschmann T., Meissner F., Gerold G.","56728293400;57201777157;57201779581;57189037218;24759202800;9271138100;57210104492;6602670377;6603512440;24438163700;55599526800;","Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB",2018,"PLoS Pathogens","14","7", e1007111,"","",,8,"10.1371/journal.ppat.1007111","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051065480&doi=10.1371%2fjournal.ppat.1007111&partnerID=40&md5=12a31ee4ec1e46f68320c19586ba3f42","Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France; Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany; Department of Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden","Bruening, J., Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Lasswitz, L., Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Banse, P., Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Kahl, S., Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Marinach, C., Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France; Vondran, F.W., Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; Kaderali, L., Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany; Silvie, O., Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France; Pietschmann, T., Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Meissner, F., Department of Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany; Gerold, G., Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany, Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden, Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden","Hepatitis C virus (HCV) and the malaria parasite Plasmodium use the membrane protein CD81 to invade human liver cells. Here we mapped 33 host protein interactions of CD81 in primary human liver and hepatoma cells using high-resolution quantitative proteomics. In the CD81 protein network, we identified five proteins which are HCV entry factors or facilitators including epidermal growth factor receptor (EGFR). Notably, we discovered calpain-5 (CAPN5) and the ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene B (CBLB) to form a complex with CD81 and support HCV entry. CAPN5 and CBLB were required for a post-binding and pre-replication step in the HCV life cycle. Knockout of CAPN5 and CBLB reduced susceptibility to all tested HCV genotypes, but not to other enveloped viruses such as vesicular stomatitis virus and human coronavirus. Furthermore, Plasmodium sporozoites relied on a distinct set of CD81 interaction partners for liver cell entry. Our findings reveal a comprehensive CD81 network in human liver cells and show that HCV and Plasmodium highjack selective CD81 interactions, including CAPN5 and CBLB for HCV, to invade cells. © 2018 Bruening et al. http://creativecommons.org/licenses/by/4.0/.",,"activated leukocyte cell adhesion molecule; alpha1 integrin; alpha5 integrin; apolipoprotein; apolipoprotein E; beta1 integrin; calpain 5; CD151 antigen; CD81 antigen; claudin 1; concanamycin A; DNA fragment; epidermal growth factor receptor; genomic DNA; glutathione transferase; glycoprotein; guanine nucleotide binding protein alpha subunit; membrane cofactor protein; membrane protein; protein; scavenger receptor B; scavenger receptor BI; SHC transforming protein 1; ubiquitin ligase Casitas B lineage lymphoma proto oncogene B; ubiquitin protein ligase E3; unclassified drug; unindexed drug; virus envelope protein; virus fusion protein; virus hemagglutinin; zinc transporter; calpain; Capn5 protein, human; Cbl protein; CBLB protein, human; CD81 antigen; CD81 protein, human; signal transducing adaptor protein; affinity chromatography; Article; binding site; bioinformatics; cell cloning; cell lysate; controlled study; Coronaviridae; CRISPR-CAS9 system; flow cytometry; fluorescence microscopy; gene inactivation; Hepatitis C virus; Huh-7-Lunet cell line; human; human cell; immunoblotting; immunofluorescence microscopy; immunohistochemistry; immunoprecipitation; life cycle stage; liquid chromatography-mass spectrometry; liver cell; nonhuman; protein analysis; protein binding; protein degradation; protein expression; protein interaction; proteomics; sporozoite; Vesiculovirus; virus entry; virus envelope; virus infectivity; whole cell; cell line; Hepacivirus; hepatitis C; host pathogen interaction; metabolism; physiology; Adaptor Proteins, Signal Transducing; Calpain; Cell Line; Hepacivirus; Hepatitis C; Host-Pathogen Interactions; Humans; Proto-Oncogene Proteins c-cbl; Tetraspanin 28; Virus Internalization","Scarselli, E., Ansuini, H., Cerino, R., Roccasecca, R.M., Acali, S., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus (2002) EMBO J, 21, pp. 5017-5025. , pmid:12356718; Yalaoui, S., Huby, T., Franetich, J.-F., Gego, A., Rametti, A., Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection (2008) Cell Host Microbe, 4, pp. 283-292. , pmid:18779054; Rodrigues, C.D., Hannus, M., Prudêncio, M., Martin, C., Gonçalves, L.A., Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection (2008) Cell Host Microbe, 4, pp. 271-282. , pmid:18779053; Silvie, O., Rubinstein, E., Franetich, J.-F., Prenant, M., Belnoue, E., Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity (2003) Nat Med, 9, pp. 93-96. , pmid:12483205; Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Binding of hepatitis C virus to CD81 (1998) Science, 282, pp. 938-941. , pmid:9794763; Dorner, M., Horwitz, J.A., Robbins, J.B., Barry, W.T., Feng, Q., A genetically humanized mouse model for hepatitis C virus infection (2011) Nature, 474, pp. 208-211. , pmid:21654804; Farquhar, M.J., Hu, K., Harris, H.J., Davis, C., Brimacombe, C.L., Hepatitis C virus induces CD81 and claudin-1 endocytosis (2012) J Virol, 86, pp. 4305-4316. , pmid:22318146; Yalaoui, S., Zougbédé, S., Charrin, S., Silvie, O., Arduise, C., Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain (2008) PLoS Pathog, 4, p. e1000010. , pmid:18389082; Brazzoli, M., Bianchi, A., Filippini, S., Weiner, A., Zhu, Q., CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes (2008) J Virol, 82, pp. 8316-8329. , pmid:18579606; Harris, H.J., Farquhar, M.J., Mee, C.J., Davis, C., Reynolds, G.M., CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry (2008) J Virol, 82, pp. 5007-5020. , pmid:18337570; Ploss, A., Evans, M.J., Gaysinskaya, V.A., Panis, M., You, H., Human occludin is a hepatitis C virus entry factor required for infection of mouse cells (2009) Nature, 457, pp. 882-886. , pmid:19182773; Evans, M.J., von Hahn, T., Tscherne, D.M., Syder, A.J., Panis, M., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry (2007) Nature, 446, pp. 801-805. , pmid:17325668; Baktash, Y., Madhav, A., Coller, K.E., Randall, G., Single Particle Imaging of Polarized Hepatoma Organoids upon Hepatitis C Virus Infection Reveals an Ordered and Sequential Entry Process (2018) Cell Host Microbe, 23, pp. 382-394.e5. , pmid:29544098; Lupberger, J., Zeisel, M.B., Xiao, F., Thumann, C., Fofana, I., EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy (2011) Nat Med, 17, pp. 589-595. , pmid:21516087; Zona, L., Lupberger, J., Sidahmed-Adrar, N., Thumann, C., Harris, H.J., HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex (2013) Cell Host Microbe, 13, pp. 302-313. , pmid:23498955; Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles (2003) Proc Natl Acad Sci U S A, 100, pp. 7271-7276. , pmid:12761383; Tscherne, D.M., Jones, C.T., Evans, M.J., Lindenbach, B.D., McKeating, J.A., Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry (2006) J Virol, 80, pp. 1734-1741. , pmid:16439530; Sharma, N.R., Mateu, G., Dreux, M., Grakoui, A., Cosset, F.-L., Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion (2011) J Biol Chem, 286, pp. 30361-30376. , pmid:21737455; Gerold, G., Meissner, F., Bruening, J., Welsch, K., Perin, P.M., Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry (2015) Cell Rep, 12, pp. 864-878. , pmid:26212323; Fénéant, L., Levy, S., Cocquerel, L., CD81 and hepatitis C virus (HCV) infection (2014) Viruses, 6, pp. 535-572. , pmid:24509809; Mercer, J., Schelhaas, M., Helenius, A., Virus entry by endocytosis (2010) Annu Rev Biochem, 79, pp. 803-833. , pmid:20196649; Gerold, G., Bruening, J., Pietschmann, T., Decoding protein networks during virus entry by quantitative proteomics (2016) Virus Res, 218, pp. 25-39. , pmid:26365680; Budayeva, H.G., Cristea, I.M., A mass spectrometry view of stable and transient protein interactions (2014) Adv Exp Med Biol, 806, pp. 263-282. , pmid:24952186; Keilhauer, E.C., Hein, M.Y., Mann, M., Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS) (2015) Mol Cell Proteomics, 14, pp. 120-135. , pmid:25363814; Koutsoudakis, G., Herrmann, E., Kallis, S., Bartenschlager, R., Pietschmann, T., The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells (2007) J Virol, 81, pp. 588-598. , pmid:17079281; Bitzegeio, J., Bankwitz, D., Hueging, K., Haid, S., Brohm, C., Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors (2010) PLoS Pathog, 6, p. e1000978. , pmid:20617177; Zhang, J., Randall, G., Higginbottom, A., Monk, P., Rice, C.M., CD81 is required for hepatitis C virus glycoprotein-mediated viral infection (2004) J Virol, 78, pp. 1448-1455. , pmid:14722300; Martin, D.N., Uprichard, S.L., Identification of transferrin receptor 1 as a hepatitis C virus entry factor (2013) Proc Natl Acad Sci U S A, 110, pp. 10777-10782. , pmid:23754414; Coller, K.E., Berger, K.L., Heaton, N.S., Cooper, J.D., Yoon, R., RNA interference and single particle tracking analysis of hepatitis C virus endocytosis (2009) PLoS Pathog, 5, p. e1000702. , pmid:20041214; Rudnicka, A., Yamauchi, Y., Ubiquitin in influenza virus entry and innate immunity (2016) Viruses, 8. , pmid:27783058; Marvin, S.A., Wiethoff, C.M., Emerging roles for ubiquitin in adenovirus cell entry (2012) Biol Cell, 104, pp. 188-198. , pmid:22251092; Silvie, O., Greco, C., Franetich, J.-F., Dubart-Kupperschmitt, A., Hannoun, L., Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species (2006) Cell Microbiol, 8, pp. 1134-1146. , pmid:16819966; Manzoni, G., Marinach, C., Topçu, S., Briquet, S., Grand, M., Plasmodium P36 determines host cell receptor usage during sporozoite invasion (2017) elife, 6. , pmid:28506360; Bartosch, B., Vitelli, A., Granier, C., Goujon, C., Dubuisson, J., Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor (2003) J Biol Chem, 278, pp. 41624-41630. , pmid:12913001; Bartosch, B., Dubuisson, J., Cosset, F.-L., Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes (2003) J Exp Med, 197, pp. 633-642. , pmid:12615904; Perin, P.M., Haid, S., Brown, R.J.P., Doerrbecker, J., Schulze, K., Flunarizine prevents hepatitis C virus membrane fusion in a genotype-dependent manner by targeting the potential fusion peptide within E1 (2016) Hepatology, 63, pp. 49-62. , pmid:26248546; Levy, S., Todd, S.C., Maecker, H.T., CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system (1998) Annu Rev Immunol, 16, pp. 89-109. , pmid:9597125; Shoham, T., Rajapaksa, R., Kuo, C.-C., Haimovich, J., Levy, S., Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments (2006) Mol Cell Biol, 26, pp. 1373-1385. , pmid:16449649; Brimacombe, C.L., Wilson, G.K., Hübscher, S.G., McKeating, J.A., Farquhar, M.J., A role for CD81 and hepatitis C virus in hepatoma mobility (2014) Viruses, 6, pp. 1454-1472. , pmid:24662676; Negrete, O.A., Levroney, E.L., Aguilar, H.C., Bertolotti-Ciarlet, A., Nazarian, R., EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus (2005) Nature, 436, pp. 401-405. , pmid:16007075; Dutta, D., Chakraborty, S., Bandyopadhyay, C., Valiya Veettil, M., Ansari, M.A., EphrinA2 regulates clathrin mediated KSHV endocytosis in fibroblast cells by coordinating integrin-associated signaling and c-Cbl directed polyubiquitination (2013) PLoS Pathog, 9, p. e1003510. , pmid:23874206; Rorsman, C., Tsioumpekou, M., Heldin, C.-H., Lennartsson, J., The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling (2016) J Biol Chem, 291, pp. 11608-11618. , pmid:27048651; Xu, L., Zhang, Y., Qu, X., Che, X., Guo, T., E3 Ubiquitin Ligase Cbl-b Prevents Tumor Metastasis by Maintaining the Epithelial Phenotype in Multiple Drug-Resistant Gastric and Breast Cancer Cells (2017) Neoplasia, 19, pp. 374-382. , pmid:28334634; Ettenberg, S.A., Magnifico, A., Cuello, M., Nau, M.M., Rubinstein, Y.R., Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex (2001) J Biol Chem, 276, pp. 27677-27684. , pmid:11375397; Veselits, M., Tanaka, A., Lipkowitz, S., O’Neill, S., Sciammas, R., Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes (2014) PLoS ONE, 9, p. e89792. , pmid:24651487; Pennock, S., Wang, Z., A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation (2008) Mol Cell Biol, 28, pp. 3020-3037. , pmid:18316398; Kim, T.Y., Siesser, P.F., Rossman, K.L., Goldfarb, D., Mackinnon, K., Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase (2015) Mol Cell Biol, 35, pp. 167-181. , pmid:25332235; Eierhoff, T., Hrincius, E.R., Rescher, U., Ludwig, S., Ehrhardt, C., The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells (2010) PLoS Pathog, 6, p. e1001099. , pmid:20844577; Gordón-Alonso, M., Yañez-Mó, M., Barreiro, O., Alvarez, S., Muñoz-Fernández, M.A., Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion (2006) J Immunol, 177, pp. 5129-5137. , pmid:17015697; Hochdorfer, D., Florin, L., Sinzger, C., Lieber, D., Tetraspanin CD151 promotes initial events in human cytomegalovirus infection (2016) J Virol, 90, pp. 6430-6442. , pmid:27147745; Scheffer, K.D., Gawlitza, A., Spoden, G.A., Zhang, X.A., Lambert, C., Tetraspanin CD151 mediates papillomavirus type 16 endocytosis (2013) J Virol, 87, pp. 3435-3446. , pmid:23302890; Spoden, G., Kühling, L., Cordes, N., Frenzel, B., Sapp, M., Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry (2013) J Virol, 87, pp. 7765-7773. , pmid:23616662; Li, Q., Sodroski, C., Lowey, B., Schweitzer, C.J., Cha, H., Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition (2016) Proc Natl Acad Sci U S A, 113, pp. 7620-7625. , pmid:27298373; Ono, Y., Saido, T.C., Sorimachi, H., Calpain research for drug discovery: challenges and potential (2016) Nat Rev Drug Discov, 15, pp. 854-876. , pmid:27833121; Waghray, A., Wang, D., McKinsey, D., Hayes, R.L., Wang, K.K.W., Molecular cloning and characterization of rat and human calpain-5 (2004) Biochem Biophys Res Commun, 324, pp. 46-51. , pmid:15464980; Lindenbach, B.D., Rice, C.M., The ins and outs of hepatitis C virus entry and assembly (2013) Nat Rev Microbiol, 11, pp. 688-700. , pmid:24018384; Paul, D., Madan, V., Bartenschlager, R., Hepatitis C virus RNA replication and assembly: living on the fat of the land (2014) Cell Host Microbe, 16, pp. 569-579. , pmid:25525790; Chatel-Chaix, L., Bartenschlager, R., Dengue virus- and hepatitis C virus-induced replication and assembly compartments: the enemy inside—caught in the web (2014) J Virol, 88, pp. 5907-5911. , pmid:24623440; Pasqual, G., Rojek, J.M., Masin, M., Chatton, J.-Y., Kunz, S., Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport (2011) PLoS Pathog, 7, p. e1002232. , pmid:21931550; Mazzon, M., Mercer, J., Lipid interactions during virus entry and infection (2014) Cell Microbiol, 16, pp. 1493-1502. , pmid:25131438; Scott, C.C., Vacca, F., Gruenberg, J., Endosome maturation, transport and functions (2014) Semin Cell Dev Biol, 31, pp. 2-10. , pmid:24709024; Rajesh, S., Sridhar, P., Tews, B.A., Fénéant, L., Cocquerel, L., Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81 (2012) J Virol, 86, pp. 9606-9616. , pmid:22740401; Meola, A., Sbardellati, A., Bruni Ercole, B., Cerretani, M., Pezzanera, M., Binding of hepatitis C virus E2 glycoprotein to CD81 does not correlate with species permissiveness to infection (2000) J Virol, 74, pp. 5933-5938. , pmid:10846074; Kitadokoro, K., Bordo, D., Galli, G., Petracca, R., Falugi, F., CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs (2001) EMBO J, 20, pp. 12-18. , pmid:11226150; Kaushansky, A., Douglass, A.N., Arang, N., Vigdorovich, V., Dambrauskas, N., Malaria parasites target the hepatocyte receptor EphA2 for successful host infection (2015) Science, 350, pp. 1089-1092. , pmid:26612952; Akhouri, R.R., Sharma, A., Malhotra, P., Sharma, A., Role of Plasmodium falciparum thrombospondin-related anonymous protein in host-cell interactions (2008) Malar J, 7, p. 63. , pmid:18426606; Ettenberg, S.A., Rubinstein, Y.R., Banerjee, P., Nau, M.M., Keane, M.M., cbl-b inhibits EGF-receptor-induced apoptosis by enhancing ubiquitination and degradation of activated receptors (1999) Mol Cell Biol Res Commun, 2, pp. 111-118. , pmid:10542134; Enard, D., Cai, L., Gwennap, C., Petrov, D.A., Viruses are a dominant driver of protein adaptation in mammals (2016) elife, 5. , pmid:27187613; Cherukuri, A., Shoham, T., Sohn, H.W., Levy, S., Brooks, S., The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts (2004) J Immunol, 172, pp. 370-380. , pmid:14688345; Reynolds, G.M., Harris, H.J., Jennings, A., Hu, K., Grove, J., Hepatitis C virus receptor expression in normal and diseased liver tissue (2008) Hepatology, 47, pp. 418-427. , pmid:18085708; Law, G.L., Korth, M.J., Benecke, A.G., Katze, M.G., Systems virology: host-directed approaches to viral pathogenesis and drug targeting (2013) Nat Rev Microbiol, 11, pp. 455-466. , pmid:23728212; Cox, J., Mann, M., Quantitative, high-resolution proteomics for data-driven systems biology (2011) Annu Rev Biochem, 80, pp. 273-299. , pmid:21548781; Kleine, M., Riemer, M., Krech, T., DeTemple, D., Jäger, M.D., Explanted diseased livers—a possible source of metabolic competent primary human hepatocytes (2014) PLoS ONE, 9, p. e101386. , pmid:24999631; Pietschmann, T., Kaul, A., Koutsoudakis, G., Shavinskaya, A., Kallis, S., Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras (2006) Proc Natl Acad Sci U S A, 103, pp. 7408-7413. , pmid:16651538; Gottwein, J.M., Scheel, T.K.H., Hoegh, A.M., Lademann, J.B., Eugen-Olsen, J., Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses (2007) Gastroenterology, 133, pp. 1614-1626. , pmid:17983807; Gottwein, J.M., Scheel, T.K.H., Jensen, T.B., Lademann, J.B., Prentoe, J.C., Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs (2009) Hepatology, 49, pp. 364-377. , pmid:19148942; Jensen, T.B., Gottwein, J.M., Scheel, T.K.H., Hoegh, A.M., Eugen-Olsen, J., Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection (2008) J Infect Dis, 198, pp. 1756-1765. , pmid:19032070; Scheel, T.K.H., Gottwein, J.M., Jensen, T.B., Prentoe, J.C., Hoegh, A.M., Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization (2008) Proc Natl Acad Sci U S A, 105, pp. 997-1002. , pmid:18195353; Yi, M., Ma, Y., Yates, J., Lemon, S.M., Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus (2007) J Virol, 81, pp. 629-638. , pmid:17079282; Reiss, S., Rebhan, I., Backes, P., Romero-Brey, I., Erfle, H., Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment (2011) Cell Host Microbe, 9, pp. 32-45. , pmid:21238945; Haid, S., Novodomská, A., Gentzsch, J., Grethe, C., Geuenich, S., A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes (2012) Gastroenterology, 143, pp. 213-22.e5. , pmid:22465429; Koutsoudakis, G., Kaul, A., Steinmann, E., Kallis, S., Lohmann, V., Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses (2006) J Virol, 80, pp. 5308-5320. , pmid:16699011; Hoffmann, M., Wu, Y.-J., Gerber, M., Berger-Rentsch, M., Heimrich, B., Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity (2010) J Gen Virol, 91, pp. 2782-2793. , pmid:20631091; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C.C., Müller, M.A., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog, 7, p. e1002331. , pmid:22046132; Pietschmann, T., Heinkelein, M., Heldmann, M., Zentgraf, H., Rethwilm, A., Foamy virus capsids require the cognate envelope protein for particle export (1999) J Virol, 73, pp. 2613-2621. , pmid:10074106; Schneider, C., Newman, R.A., Sutherland, D.R., Asser, U., Greaves, M.F., A one-step purification of membrane proteins using a high efficiency immunomatrix (1982) J Biol Chem, 257, pp. 10766-10769. , pmid:6955305; Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., Andromeda: a peptide search engine integrated into the MaxQuant environment (2011) J Proteome Res, 10, pp. 1794-1805. , pmid:21254760; Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification (2008) Nat Biotechnol, 26, pp. 1367-1372. , pmid:19029910; Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ (2014) Mol Cell Proteomics, 13, pp. 2513-2526. , pmid:24942700; Cox, J., Mann, M., 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data (2012) BMC Bioinformatics, 13, p. S12. , pmid:23176165; Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., STRING v10: protein-protein interaction networks, integrated over the tree of life (2015) Nucleic Acids Res, 43, pp. D447-D452. , pmid:25352553; Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Cytoscape: a software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 13, pp. 2498-2504. , pmid:14597658; Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.-L., Ideker, T., Cytoscape 2.8: new features for data integration and network visualization (2011) Bioinformatics, 27, pp. 431-432. , pmid:21149340; Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases (2014) Nucleic Acids Res, 42, pp. D358-D363. , pmid:24234451; Rieber, N., Knapp, B., Eils, R., Kaderali, L., RNAither, an automated pipeline for the statistical analysis of high-throughput RNAi screens (2009) Bioinformatics, 25, pp. 678-679. , pmid:19168909; Manzoni, G., Briquet, S., Risco-Castillo, V., Gaultier, C., Topçu, S., A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites (2014) Sci Rep, 4, p. 4760. , pmid:24755823; Mueller, A.-K., Camargo, N., Kaiser, K., Andorfer, C., Frevert, U., Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface (2005) Proc Natl Acad Sci U S A, 102, pp. 3022-3027. , pmid:15699336; Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M., Valen, E., CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing (2014) Nucleic Acids Res, 42, pp. W401-W407. , pmid:24861617; Sanjana, N.E., Shalem, O., Zhang, F., Improved vectors and genome-wide libraries for CRISPR screening (2014) Nat Methods, 11, pp. 783-784. , pmid:25075903; Shalem, O., Sanjana, N.E., Zhang, F., High-throughput functional genomics using CRISPR-Cas9 (2015) Nat Rev Genet, 16, pp. 299-311. , pmid:25854182; Kärber, G., Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche (1931) Archiv fuer experimentelle Pathologie und Pharmakologie, 162, pp. 480-487; Spearman, C., The method of “right and wrong cases” (“constant stimuli”) without Gauss’s formulae (1908) Br J Psychol, 2, pp. 227-242","Gerold, G.; Insitute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection ResearchGermany; email: gisa.gerold@twincore.de",,"Public Library of Science",15537366,,,"30024968","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85051065480 "Alves C.D.B.T., Budaszewski R.F., Torikachvili M., Streck A.F., Weber M.N., Cibulski S.P., Ravazzolo A.P., Lunge V.R., Canal C.W.","56015234800;55589554200;57201402124;7801336508;55589002700;26631866000;54965090300;6602527034;7003463241;","Detection and genetic characterization of Mamastrovirus 5 from Brazilian dogs",2018,"Brazilian Journal of Microbiology","49","3",,"575","583",,1,"10.1016/j.bjm.2017.09.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044636130&doi=10.1016%2fj.bjm.2017.09.008&partnerID=40&md5=199a34d4efceb56d245ac4ec749b3752","Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil; Universidade de Caxias do Sul (UCS), Faculdade de Medicina Veterinária, Laboratório de Imunologia, Caxias do Sul, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Imunologia e Biologia Molecular, Porto Alegre, RS, Brazil; Universidade Luterana do Brasil, Pró Reitoria de Pesquisa e Pós Graduação, Laboratório de Diagnóstico Molecular, Canoas, RS, Brazil","Alves, C.D.B.T., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil; Budaszewski, R.F., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil; Torikachvili, M., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil; Streck, A.F., Universidade de Caxias do Sul (UCS), Faculdade de Medicina Veterinária, Laboratório de Imunologia, Caxias do Sul, RS, Brazil; Weber, M.N., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil; Cibulski, S.P., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil; Ravazzolo, A.P., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Imunologia e Biologia Molecular, Porto Alegre, RS, Brazil; Lunge, V.R., Universidade Luterana do Brasil, Pró Reitoria de Pesquisa e Pós Graduação, Laboratório de Diagnóstico Molecular, Canoas, RS, Brazil; Canal, C.W., Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de Virologia, Porto Alegre, RS, Brazil","Mamastrovirus 5 (MAstV5), belonging to the Astroviridae (AstV) family, previously known as canine astrovirus or astrovirus-like particles, has been reported in several countries to be associated with viral enteric disease in dogs since the 1980s. Astroviruses have been detected in fecal samples from a wide variety of mammals and birds that are associated with gastroenteritis and extra enteric manifestations. In the present study, RT-PCR was used to investigate the presence of MAstV5 in 269 dog fecal samples. MAstV5 was detected in 26% (71/269) of the samples. Interestingly, all MAstV5-positive samples derived from dogs displaying clinical signs suggestive of gastroenteritis, other enteric viruses were simultaneously detected (canine parvovirus, canine distemper virus, canine coronavirus, canine adenovirus and canine rotavirus). Based on genomic sequence analysis of MAstV5 a novel classification of the species into four genotypes, MAstV5a-MAstV5d, is proposed. Phylogenetic analyses based on the ORF2 amino acid sequences, samples described herein grouped into the putative genotype ‘a’ closed related with Chinese samples. Other studies are required to attempt the clinical and antigenic implications of these astrovirus genotypes in dogs. © 2018 Sociedade Brasileira de Microbiologia","Canine astrovirus; Dog; Gastroenteritis; Mamastrovirus 5; MAstV5","animal; astrovirus infection; classification; dog; dog disease; feces; gastroenteritis; genetics; genotype; isolation and purification; Mamastrovirus; open reading frame; phylogeny; veterinary medicine; virology; Animals; Astroviridae Infections; Dog Diseases; Dogs; Feces; Gastroenteritis; Genotype; Mamastrovirus; Open Reading Frames; Phylogeny","Madeley, C.R., Cosgrove, B.P., Letter: 28 nm particles in faeces in infantile gastroenteritis (1975) Lancet, 2 (7932), pp. 451-452; De Benedictis, P., Schultz-Cherry, S., Burnham, A., Cattoli, G., Astrovirus infections in humans and animals – molecular biology, genetic diversity, and interspecies transmissions (2011) Infect Genet Evol, 11 (7), pp. 1529-1544; Jiang, B., Monroe, S.S., Koonin, E.V., Stine, S.E., Glass, R.I., RNA sequence of astrovirus: distinctive genomic organization and a putative retrovirus-like ribosomal frameshifting signal that directs the viral replicase synthesis (1993) Proc Natl Acad Sci U S A, 90 (22), pp. 10539-10543; Monroe, S.S., Jiang, B., Stine, S.E., Koopmans, M., Glass, R.I., Subgenomic RNA sequence of human astrovirus supports classification of Astroviridae as a new family of RNA viruses (1993) J Virol, 67 (6), pp. 3611-3614; Bosch, A., Guix, S., Krishna, N.K., Family Astroviridae (2011) Virus Taxonomy: Classification and Nomenclature of Viruses (Ninth Report of the International Committee on the Taxonomy of Viruses), , A.M.Q. King E. Lefkowitz M.J. Adams E.B. Carstens 9th ed. New York; Finkbeiner, S.R., Li, Y., Ruone, S., Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis (2009) J Virol, 83 (20), pp. 10836-10839; Lewis, D.C., Lightfoot, N.F., Cubitt, W.D., Wilson, S.A., Outbreaks of astrovirus type 1 and rotavirus gastroenteritis in a geriatric in-patient population (1989) J Hosp Infect, 14 (1), pp. 9-14; Wunderli, W., Meerbach, A., Güngör, T., Astrovirus infection in hospitalized infants with severe combined immunodeficiency after allogeneic hematopoietic stem cell transplantation (2011) PLoS ONE, 6 (11), p. e27483; Gallimore, C.I., Taylor, C., Gennery, A.R., Use of a heminested reverse transcriptase PCR assay for detection of astrovirus in environmental swabs from an outbreak of gastroenteritis in a pediatric primary immunodeficiency unit (2005) J Clin Microbiol, 43 (8), pp. 3890-3894; Fu, Y., Pan, M., Wang, X., Complete sequence of a duck astrovirus associated with fatal hepatitis in ducklings (2009) J Gen Virol, 90 (5), pp. 1104-1108; Imada, T., Yamaguchi, S., Mase, M., Tsukamoto, K., Kubo, M., Morooka, A., Avian nephritis virus (ANV) as a new member of the family Astroviridae and construction of infectious ANV cDNA (2000) J Virol, 74 (18), pp. 8487-8493; Biđin, M., Lojkić, I., Tišljar, M., Biđin, Z., Majnarić, D., Astroviruses associated with stunting and pre-hatching mortality in duck and goose embryos (2012) Avian Pathol, 41 (1), pp. 91-97; Blomström, A.L., Widén, F., Hammer, A.S., Belák, S., Berg, M., Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics (2010) J Clin Microbiol, 48 (12), pp. 4392-4396; Bouzalas, I.G., Wuthrich, D., Walland, J., Neurotropic astrovirus in cattle with nonsuppurative encephalitis in Europe (2014) J Clin Microbiol, 52 (9), pp. 3318-3324; Williams, F.P., Astrovirus-like, coronavirus-like, and parvovirus-like particles detected in the diarrheal stools of beagle pups (1980) Arch Virol, 66 (3), pp. 215-226; Vieler, E., Herbst, W., Electron microscopic demonstration of viruses in feces of dogs with diarrhea (1995) Tierarztl Prax, 23 (1), pp. 66-69; Marshall, J.A., Healey, D.S., Studdert, M.J., Viruses and virus-like particles in the faeces of dogs with and without diarrhoea (1984) Aust Vet J, 61 (2), pp. 33-38; Toffan, A., Jonassen, C.M., De Battisti, C., Genetic characterization of a new astrovirus detected in dogs suffering from diarrhoea (2009) Vet Microbiol, 139 (1-2), pp. 147-152; Zhu a, L., Zhao, W., Yin, H., Isolation and characterization of canine astrovirus in China (2011) Arch Virol, 156 (9), pp. 1671-1675; Castro, T.X., Cubel Garcia, R.C.N., Costa, E.M., Leal, R.M., Xavier, M.D.P.T., Leite, J.P.G., Molecular characterisation of calicivirus and astrovirus in puppies with enteritis (2013) Vet Rec, 172 (21), p. 557; Grellet, A., De Battisti, C., Feugier, A., Prevalence and risk factors of astrovirus infection in puppies from French breeding kennels (2012) Vet Microbiol, 157 (1-2), pp. 214-219; Caddy, S.L., Goodfellow, I., Complete genome sequence of canine astrovirus with molecular and epidemiological characterization of UK strains (2015) Vet Microbiol, 177 (1-2), pp. 206-213; Takano, T., Takashina, M., Doki, T., Hohdatsu, T., Detection of canine astrovirus in dogs with diarrhea in Japan (2015) Arch Virol, 160 (6), pp. 1549-1553; Choi, S., Lim, S.-I., Kim, Y.K., Cho, Y.-Y., Song, J.-Y., An, D.-J., Phylogenetic analysis of astrovirus and kobuvirus in Korean dogs (2014) J Vet Med Sci, 76 (8), pp. 1141-1145; Mihalov-Kovács, E., Martella, V., Lanave, G., Genome analysis of canine astroviruses reveals genetic heterogeneity and suggests possible inter-species transmission (2016) Virus Res; Martella, V., Moschidou, P., Catella, C., Enteric disease in dogs naturally infected by a novel canine astrovirus (2012) J Clin Microbiol, 50 (3), pp. 1066-1069; Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-van Dillen, P.M., van der Noordaa, J., Rapid and simple method for purification of nucleic acids (1990) J Clin Microbiol, 28 (3), pp. 495-503; Chu, D.K.W., Poon, L.L.M., Guan, Y., Peiris, J.S.M., Novel astroviruses in insectivorous bats (2008) J Virol, 82 (18), pp. 9107-9114; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., Leunissen, J.A.M., Primer3 Plus, an enhanced web interface to Primer3 (2007) Nucleic Acids Res, 35, pp. W71-W74; Gontang, E.A., Fenical, W., Jensen, P.R., Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments (2007) Appl Environ Microbiol, 73 (10), pp. 3272-3282; Burland, T.G., DNASTAR's Lasergene sequence analysis software (2000) Methods Mol Biol, 132, pp. 71-91; Martella, V., Moschidou, P., Lorusso, E., Detection and characterization of canine astroviruses (2011) J Gen Virol, 92, pp. 1880-1887; Walter, J.E., Briggs, J., Guerrero, M.L., Molecular characterization of a novel recombinant strain of human astrovirus associated with gastroenteritis in children (2001) Arch Virol, 146 (12), pp. 2357-2367; Buonavoglia, C., Martella, V., Pratella, A., Evidence for evolution of canine parvovirus type 2 in Italy (2001) J Gen Virol, 82 (12), pp. 3021-3025; Linné, T., Differences in the E3 regions of the canine adenovirus type 1 and type 2 (1992) Virus Res, 23, pp. 119-133; Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., De Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Gouvea, V., Glass, R.I., Woods, P., Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens (1990) J Clin Microbiol, 28, pp. 276-282; Castilho, J.G., Brandão, P.E., Carnieli, P., Molecular analysis of the N gene of canine distemper virus in dogs in Brazil (2007) Arq Bras Med Vet Zootec, 59, pp. 654-659; Frisk, A.L., König, M., Moritz, A., Baumgärtner, W., Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper (1999) J Clin Microbiol, 37, pp. 3634-3643","Canal, C.W.; Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Veterinária, Laboratório de VirologiaBrazil; email: claudio.canal@ufrgs.br",,"Elsevier Editora Ltda",15178382,,,"29456114","English","Braz. J. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85044636130 "Liu H., Yang X., Zhang Z.-K., Zou W.-C., Wang H.-N.","57190845229;56780798600;55721643000;57193416102;37021979000;","miR-146a-5p promotes replication of infectious bronchitis virus by targeting IRAK2 and TNFRSF18",2018,"Microbial Pathogenesis","120",,,"32","36",,3,"10.1016/j.micpath.2018.04.046","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046168219&doi=10.1016%2fj.micpath.2018.04.046&partnerID=40&md5=b087625725989e67b375514aae3174f9","Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China","Liu, H., Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Yang, X., Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Zhang, Z.-K., Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Zou, W.-C., Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; Wang, H.-N., Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China","Avian infectious bronchitis virus (IBV) is a coronavirus which infects chickens (Gallus gallus) of all ages and causes significant economic losses to the poultry industry worldwide. The present study aims to analyze the miRNAs related to pathogenicity of nephropathogenic IBVs. It was found that four miRNAs (miR-1454, miR-3538, miR-146a-5p and miR-215-5p) were related to the infection of virulent nephropathogenic IBV with transcript per million (TPM) > 500 and more than a 2-fold alteration. In vitro study results showed that the alterations of these four miRNAs were consistent with in vivo data. In vitro, we found that high levels of miR-146a-5p could enhance the replication of IBV at the early stage of infection, and its down regulated level could slow down the replication of IBV. Finally, high levels of exogenous miR-146a-5p in HD11 cells led to down regulation of IL-1 receptor associated kinase-2 (IRAK2) and Tumor necrosis factor receptor superfamily member 18 (TNFRSF18) genes. Luciferase reporter assays revealed that miR-146a-5p could bind to the 3′-UTRs of IRAK2 and TNFRSF18. This is the first study demonstrating that IBV induced miR-146a-5p is related to virus pathogenesis by down regulating IRAK2 and TNFRSF18, which may serve as a therapeutic strategy for the prevention of IBV infections. © 2018","IBV; IRAK2; miR-146a-5p; TNFRSF18","microRNA; microRNA 1454; microRNA 146a 5p; microRNA 215 5p; microRNA 3538; unclassified drug; glucocorticoid induced tumor necrosis factor receptor; interleukin 1 receptor associated kinase; microRNA; MIRN146 microRNA, human; TNFRSF18 protein, human; transcriptome; 3' untranslated region; animal tissue; Article; Avian infectious bronchitis virus; controlled study; down regulation; gene; gene function; gene targeting; in vitro study; in vivo study; IRAK2 gene; LSCC-HD11 cell line; nonhuman; priority journal; TNFRSF18 gene; virus infection; virus pathogenesis; virus replication; virus virulence; animal; Avian infectious bronchitis virus; bird disease; Chlorocebus aethiops; Coronavirus infection; drug effect; gene expression regulation; genetics; HEK293 cell line; human; metabolism; pathogenicity; Vero cell line; virology; virus replication; Animals; Cercopithecus aethiops; Coronavirus Infections; Down-Regulation; Gene Expression Regulation, Viral; Glucocorticoid-Induced TNFR-Related Protein; HEK293 Cells; Humans; Infectious bronchitis virus; Interleukin-1 Receptor-Associated Kinases; MicroRNAs; Poultry Diseases; Transcriptome; Vero Cells; Virus Replication","Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Zhang, Z., Zhou, Y., Wang, H., Zeng, F., Yang, X., Zhang, Y., Molecular detection and smoothing spline clustering of the IBV strains detected in China during 2011-2012 (2016) Virus Res., 211, pp. 145-150; Wu, X., Yang, X., Xu, P., Zhou, L., Zhang, Z., Wang, H., Genome sequence and origin analyses of the recombinant novel IBV virulent isolate SAIBK2 (2016) Virus Gene., 52, pp. 509-520; Han, X., Tian, Y., Guan, R., Gao, W., Yang, X., Zhou, L., Infectious bronchitis virus infection induces apoptosis during replication in chicken macrophage HD11 cells (2017) Viruses, 9, p. 198; Fung, T.S., Liao, Y., Liu, D.X., The endoplasmic reticulum stress sensor IRE1α protects cells from apoptosis induced by the coronavirus infectious bronchitis virus (2014) J. Virol., 88, pp. 12752-12764; Liu, H., Yang, X., Zhang, Z., Li, J., Zou, W., Zeng, F., Comparative transcriptome analysis reveals induction of apoptosis in chicken kidney cells associated with the virulence of nephropathogenic infectious bronchitis virus (2017) Microb. Pathog., 113, pp. 451-459; Chhabra, R., Kuchipudi, S.V., Chantrey, J., Ganapathy, K., Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune responses (2016) Virology, 488, pp. 232-241; Feng Cong, X.L., Han, Z., Shao, Y., Kong, X., Liu, S., Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection (2013) BMC Genom., p. 14; Bartel, D., MicroRNAs: target recognition and regulatory functions (2009) Cell, 136, pp. 215-233; Bellare, P., Ganem, D., Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation (2009) Cell Host Microbe, 6, pp. 570-575; Zhu, Z., Qi, Y., Ge, A., Zhu, Y., Xu, K., Ji, H., Comprehensive characterization of serum microRNA profile in response to the emerging avian influenza A (H7N9) virus infection in humans (2014) Viruses, 6, pp. 1525-1539; Luna, J.M., Scheel, T.K., Danino, T., Shaw, K.S., Mele, A., Fak, J.J., Hepatitis C virus RNA functionally sequesters miR-122 (2015) Cell, 160, pp. 1099-1110; Zhai, A., Qian, J., Kao, W., Li, A., Li, Y., He, J., Borna disease virus encoded phosphoprotein inhibits host innate immunity by regulating miR-155 (2013) Antivir. Res., 98, pp. 66-75; Bhanja Chowdhury, J., Shrivastava, S., Steele, R., Di Bisceglie, A.M., Ray, R., Ray, R.B., Hepatitis C virus infection modulates expression of interferon stimulatory gene IFITM1 by upregulating miR-130A (2012) J. Virol., 86, pp. 10221-10225; Li, Z., Chen, B., Feng, M., Ouyang, H., Zheng, M., Ye, Q., MicroRNA-23b promotes avian leukosis virus subgroup J (ALV-J) replication by targeting IRF1 (2015) Sci. Rep., 5, p. 10294; Yang, X., Gao, W., Liu, H., Li, J., Chen, D., Yuan, F., MicroRNA transcriptome analysis in chicken kidneys in response to differing virulent infectious bronchitis virus infections (2017) Arch. Virol., 162, pp. 3397-3405; Deng, M., Du, G., Zhao, J., Du, X., miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells (2017) Arch. Virol., 162, pp. 1495-1505; Deng, Y., Yan, Y., Tan, K.S., Liu, J., Chow, V.T., Tao, Z.Z., MicroRNA-146a induction during influenza H3N2 virus infection targets and regulates TRAF6 levels in human nasal epithelial cells (hNECs) (2017) Exp. Cell Res., 352, pp. 184-192; Fan, W.Q., Wang, H.N., Zhang, Y., Zhang, A.Y., Evaluation of the suitability of five housekeeping genes as internal control for quantitative real-time RT-PCR assays in chickens acutely infected with IBV M41 strain (2012) J. Anim. Vet. Adv., 11, pp. 3064-3067; Trobaugh, D.W., Klimstra, W.B., MicroRNA regulation of RNA virus replication and pathogenesis (2017) Trends Mol. Med., 23, pp. 80-93; Bayry, J., Goudar, M.S., Nighot, P.K., Kshirsagar, S.G., Ladman, B.S., Gelb, J., Jr., Emergence of a nephropathogenic avian infectious bronchitis virus with a novel genotype in India (2005) J. Clin. Microbiol., 43, pp. 916-918; Fan, W.Q., Wang, H.N., Zhang, Y., Guan, Z.B., Wang, T., Xu, C.W., Comparative dynamic distribution of avian infectious bronchitis virus M41, H120, and SAIBK strains by quantitative real-time RT-PCR in SPF chickens (2012) Biosci. Biotechnol. Biochem., 76, pp. 2255-2260; Wu, S., He, L., Li, Y., Wang, T., Feng, L., Jiang, L., miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6 (2013) J. Infect., 67, pp. 329-341; Punj, V., Matta, H., Schamus, S., Tamewitz, A., Anyang, B., Chaudhary, P.M., Kaposi's sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a (2010) Oncogene, 29, pp. 1835-1844; Stewart, C.R., Marsh, G.A., Jenkins, K.A., Gantier, M.P., Tizard, M.L., Middleton, D., Promotion of Hendra virus replication by microRNA 146a (2013) J. Virol., 87, pp. 3782-3791; Muzio, M., Ni, J., Feng, P., Dixit, V.M., IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling (1997) Science, 278, pp. 1612-1615; Hou, J., Wang, P., Lin, L., Liu, X., Ma, F., An, H., MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2 (2009) J. Immunol., 183, pp. 2150-2158","Wang, H.-N.; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan UniversityChina; email: whongning@163.com",,"Academic Press",08824010,,MIPAE,"29702211","English","Microb. Pathog.",Article,"Final",,Scopus,2-s2.0-85046168219 "Bruning A.H.L., De Kruijf W.B., Van Weert H.C.P.M., Vrakking A., De Jong M.D., Wolthers K.C., Pajkrt D.","56452695300;57201726885;57192412875;57202919285;7201366838;6701327166;57198336859;","Respiratory Viruses in a Primary Health Care Facility in Amsterdam, the Netherlands",2018,"Infectious Diseases in Clinical Practice","26","4",,"211","215",,1,"10.1097/IPC.0000000000000604","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049776743&doi=10.1097%2fIPC.0000000000000604&partnerID=40&md5=43d05c35d028d793c4b2bc5faa8c75d9","Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands; Department of Pediatric Infectious Diseases and Immunology, Emma Children's Hospital, Netherlands; Department of General Practice, Academic Medical Center, Netherlands; Health Center Gein, GAZO, Amsterdam, Netherlands","Bruning, A.H.L., Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands; De Kruijf, W.B., Department of Pediatric Infectious Diseases and Immunology, Emma Children's Hospital, Netherlands; Van Weert, H.C.P.M., Department of General Practice, Academic Medical Center, Netherlands; Vrakking, A., Health Center Gein, GAZO, Amsterdam, Netherlands; De Jong, M.D., Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands; Wolthers, K.C., Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands; Pajkrt, D., Department of Pediatric Infectious Diseases and Immunology, Emma Children's Hospital, Netherlands","Background Laboratory testing for respiratory tract infections (RTIs) is not routinely performed in primary care. Their etiology is usually unknown, and although RTIs are mainly of viral origin, the contribution of different respiratory viruses is uncertain. Our study aims to increase our insight into the epidemiology of respiratory viruses in primary care and to evaluate the accuracy of the general practitioner's (GP's) clinical diagnosis of influenza virus infection. Methods We prospectively recruited patients who presented with RTI symptoms at a primary care facility in Amsterdam, the Netherlands, during the 2015-2016 winter season. Demographic and clinical characteristics of patients were summarized using a questionnaire. Nasopharyngeal swabs were collected and tested with a multiplex polymerase chain reaction assay detecting 14 respiratory viruses. Results One or more respiratory viruses were present in 42.5% of the patients (n = 353). The most frequently detected viruses were rhinovirus (11.6%), human coronavirus (8.8%), and influenza A virus (7.6%). Sensitivity of GP's clinical diagnosis for influenza virus infection was 52.6% and specificity was 78.3%. Conclusions Despite the use of a sensitive polymerase chain reaction, a respiratory virus could be detected in less than half of the patients visiting the GP with RTI symptoms. It is difficult to clinically distinguish influenza from other causes of RTIs. Correct etiological diagnosis of RTIs is needed because it contributes to differential diagnosis, might give direction to development of specific antiviral therapies and vaccines, reduce unnecessary prescription of antibiotics, and clarifies the clinical spectrum of the different respiratory viruses. © Wolters Kluwer Health, Inc. All rights reserved.","PCR; primary health care; respiratory tract infection; respiratory virus","influenza vaccine; Adenoviridae; adolescent; adult; aged; antiviral therapy; Article; Bocavirus infection; child; clinical evaluation; controlled study; Coronaviridae; coughing; diagnostic test accuracy study; differential diagnosis; female; fever; general practitioner; headache; health status; human; Human metapneumovirus; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; infant; influenza; Influenza A virus; Influenza B virus; major clinical study; male; multiplex polymerase chain reaction; Netherlands; newborn; nonhuman; preschool child; primary medical care; prospective study; questionnaire; rhinorrhea; Rhinovirus; sensitivity and specificity; viral respiratory tract infection; wheezing; winter","Centre for Clinical Practice at N. National Institute for Health and Clinical Excellence: Guidance. Respiratory Tract Infections-Antibiotic Prescribing: Prescribing of Antibiotics for Self-Limiting Respiratory Tract Infections in Adults and Children in Primary Care. London,UK: National Institute for Health and Clinical Excellence; 2008; Shi, T., McLean, K., Campbell, H., Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis (2015) J GlobHealth, 5 (1), p. 010408; Self, W.H., Williams, D.J., Zhu, Y., Respiratory viral detection in children and adults: Comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J Infect Dis, 213 (4), pp. 584-591; Van Elden, L.J., Van Essen, G.A., Boucher, C.A., Clinical diagnosis of influenza virus infection: Evaluation of diagnostic tools in general practice (2001) Br J Gen Pract, 51 (469), pp. 630-634; Donker, G.A., (2015) NIVEL Primary Care Database-Sentinel Practice 2014, 195p. , https://www.nivel.nl/, NIVEL. Accessed July 4, 2017; Harnden, A., Perera, R., Brueggemann, A.B., Respiratory infections for which general practitioners consider prescribing an antibiotic: A prospective study (2007) Arch Dis Child, 92 (7), pp. 594-597; VanGageldonk-Lafeber, A.B., Heijnen, M.L., Bartelds, A.I., A case-control study of acute respiratory tract infection in general practice patients in the Netherlands (2005) Clin Infect Dis, 41 (4), pp. 490-497; Kool, M., Monteny, M., Van Doornum, G.J., Respiratory virus infections in febrile children presenting to a general practice out-of-hours service (2015) Eur J Gen Pract, 21 (1), pp. 5-11; Wei, L., Chan, K.H., Ip, D.K., Burden, seasonal pattern and symptomatology of acute respiratory illnesses with different viral aetiologies in children presenting at outpatient clinics in Hong Kong (2015) Clin Microbiol Infect, 21 (9), pp. 861-866; Caliendo, A.M., Gilbert, D.N., Ginocchio, C.C., Better tests, better care: Improved diagnostics for infectious diseases (2013) Clin Infect Dis, 57, pp. S139-S170; Jansen, R.R., Schinkel, J., Koekkoek, S., Development and evaluation of a four-tube real time multiplex PCR assay covering fourteen respiratory viruses, and comparison to its corresponding single target counterparts (2011) J Clin Virol, 51 (3), pp. 179-185; Van Gageldonk-Lafeber, A.B., Van Der Sande, M.A., Heijnen, M.L., Risk factors for acute respiratory tract infections in general practitioner patients in the Netherlands: A case-control study (2007) BMC Infect Dis, 7, p. 35; Cheng, C.K., Cowling, B.J., Chan, K.H., Factors affecting QuickVue Influenza A + B rapid test performance in the community setting (2009) Diagn Microbiol Infect Dis, 65 (1), pp. 35-41; Antón, A., Marcos, M.A., Torner, N., Virological surveillance of influenza and other respiratory viruses during six consecutive seasons from 2006 to 2012 in Catalonia, Spain (2016) Clin Microbiol Infect, 22 (6), pp. 564e1-564e9; Falsey, A.R., McElhaney, J.E., Beran, J., Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness (2014) J Infect Dis, 209 (12), pp. 1873-1881; Chughtai, A.A., Wang, Q., Dung, T.C., The presence of fever in adults with influenza and other viral respiratory infections (2016) Epidemiol Infect, pp. 1-8; RIVM. National Institute for Public Health and the Environment. Annual Report Surveillance of Influenza and Other Respiratory Infections in the Netherlands: Winter 2015/2016. Bilthoven: National Institute for Public Health and the Environment; 2016; Van Vugt, S.F., Broekhuizen, B.D., Zuithoff, N.P., Validity of a clinical model to predict influenza in patients presenting with symptoms of lower respiratory tract infection in primary care (2015) Fam Pract, 32 (4), pp. 408-414; Claus, J.A., Hodowanec, A.C., Singh, K., Poor positive predictive value of influenza-like illness criteria in adult transplant patients: A case for multiplex respiratory virus PCR testing (2015) Clin Transplant, 29 (10), pp. 938-943; Ebell, M.H., Afonso, A., A systematic review of clinical decision rules for the diagnosis of influenza (2011) Ann Fam Med, 9 (1), pp. 69-77; Wang, D., Chen, L., Ding, Y., Viral etiology of medically attended influenza-like illnesses in children less than five years old in Suzhou, China, 2011-2014 (2016) J Med Virol, 88 (8), pp. 1334-1340","Bruning, A.H.L.; Department of Medical Microbiology, Academic Medical Center, Meibergdreef 9, Netherlands; email: a.h.bruning@amc.uva.nl",,"Lippincott Williams and Wilkins",10569103,,IDCPE,,"English","Infect. Dis. Clin. Pract.",Article,"Final",,Scopus,2-s2.0-85049776743 "Kim J.-M., Jung H.-D., Cheong H.-M., Lee A., Lee N.-J., Chu H., Lee J.-Y., Kim S.S., Choi J.-H.","57192934192;56049676600;7102495826;57198976637;55469303000;57201311095;7601455784;57196231328;23984211200;","Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea",2018,"Journal of Medical Virology","90","7",,"1177","1183",,6,"10.1002/jmv.25069","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044308888&doi=10.1002%2fjmv.25069&partnerID=40&md5=9aacafb50ac01d4cfb0d8197772e3d51","Division of Emerging Infectious Disease and Vector Research, Cheongju-si, South Korea; Division of Research Planning, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Vaccine Research, Cheongju-si, South Korea; Division of Viral Disease, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Bacterial Disease Research, Cheongju-si, South Korea; Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea","Kim, J.-M., Division of Emerging Infectious Disease and Vector Research, Cheongju-si, South Korea; Jung, H.-D., Division of Research Planning, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Cheong, H.-M., Vaccine Research, Cheongju-si, South Korea; Lee, A., Division of Viral Disease, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Lee, N.-J., Division of Viral Disease, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea; Chu, H., Bacterial Disease Research, Cheongju-si, South Korea; Lee, J.-Y., Division of Emerging Infectious Disease and Vector Research, Cheongju-si, South Korea; Kim, S.S., Vaccine Research, Cheongju-si, South Korea; Choi, J.-H., Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea","The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians. © 2018 Wiley Periodicals, Inc.","acute respiratory infections; respiratory viruses; surveillance","nucleic acid; adolescent; adult; age distribution; aged; Article; child; clinical feature; Coronaviridae; coughing; disease surveillance; female; fever; human; human acute respiratory virus infection; Human adenovirus C; Human bocavirus; Human metapneumovirus; Human respiratory syncytial virus; Human rhinovirus; infant; Influenza virus; major clinical study; male; mixed infection; nonhuman; nose smear; Paramyxovirinae; real time polymerase chain reaction; respiratory tract infection; reverse transcription polymerase chain reaction; rhinorrhea; seasonal variation; South Korea; symptom; throat culture; age; epidemiological monitoring; Korea; middle aged; mixed infection; newborn; nose cavity; pharynx; preschool child; prevalence; respiratory tract infection; season; very elderly; virology; virus infection; young adult; Adolescent; Adult; Age Factors; Aged; Aged, 80 and over; Child; Child, Preschool; Coinfection; Epidemiological Monitoring; Female; Humans; Infant; Infant, Newborn; Korea; Male; Middle Aged; Nasal Cavity; Pharynx; Prevalence; Real-Time Polymerase Chain Reaction; Respiratory Tract Infections; Seasons; Virus Diseases; Young Adult","Williams, B.G., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; Druce, J., Tran, T., Kelly, H., Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002-2003 (2005) J Med Virol, 75, pp. 122-129; Pierangeli, A., Gentile, M., Di Marco, P., Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy (2007) J Med Virol, 79, pp. 463-468; Ren, L., Gonzalez, R., Wang, Z., Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005–2007 (2009) Clin Microbiol Infect, 15, pp. 1146-1153; Fry, A.M., Lu, X., Chittaganpitch, M., Human bocavirus: a novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand (2007) J Infect Dis, 195, pp. 1038-1045; Koetz, A., Nilsson, P., Linden, M., van der Hoek, L., Ripa, T., Detection of human coronavirus NL63, human metapneumovirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden (2006) Clin Microbiol Infect, 12, pp. 1089-1096; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1978; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Frouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Jin, Y., Zhang, R., Xie, Z., Newly identified respiratory viruses associated with acute lower respiratory tract infections in children in Lanzou, China, from 2006 to 2009 (2012) Clin Microbiol Infect, 18, pp. 74-80; Peltola, V., Waris, M., Kainulainen, L., Kero, J., Ruuskanen, O., Virus shedding after human rhinovirus infection in children, adults and patients with hypogammaglobulinaemia (2013) Clin Microbiol Infect, 19, pp. E322-E327; Bautista, E., Chotpitayasunondh, T., Gao, Z., Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection (2010) N Engl J Med, 362, pp. 1708-1719; Yu, X., Lu, R., Wang, Z., Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing (2012) PLoS ONE, 7; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; Arnold, J.C., Singh, K.K., Spector, S.A., Sawyer, M.H., Human bocavirus: prevalence and clinical spectrum at a children's hospital (2006) Clin Infect Dis, 43, pp. 283-288; Kim, Y.K., Kim, J.W., Wee, Y.S., Yoo, E.G., Han, M.Y., Clinical features of human metapneumovirus and respiratory syncytial virus infection in hospitalized children (2009) Pediatr Allergy Respir Dis, 19, pp. 12-19; Manoha, C., Espinosa, S., Aho, S.L., Huet, F., Pothier, P., Epidemiological and clinical features of hMPV, RSV and RVs infections in young children (2007) J Clin Virol, 38, pp. 221-226; Bharaj, P., Sullender, W.M., Kabra, S.K., Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007 (2009) Virol J, 6, p. 89; Liu, W.K., Liu, Q., Chen, D.H., Epidemiology and clinical presentation of the four human parainfluenza virus types (2013) BMC Infect Dis, 13, p. 28; Yano, T., Fukuta, M., Maeda, C., Epidemiological investigation and seroprevalence of human parainfluenza virus in Mie prefecture in Japan during 2009-2013 (2014) Jpn J Infect Dis, 67, pp. 506-508; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Falsey, A.R., Walsh, E.E., Hayden, F.G., Rhinovirus and coronavirus infection-associated hospitalizations among older adults (2002) J Infect Dis, 185, pp. 1338-1341; Calvo, C., Garcia-Garcia, M.L., Blanco, C., Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain (2008) J Clin Virol, 42, pp. 268-272; Nascimento, M.S., Souza, A.V., Ferreira, A.V., Rodrigues, J.C., Abramovici, S., Silva Filho, L.V., High rate of viral identification and coinfections in infants with acute bronchiolitis (2010) Clinics, 65, pp. 1133-1137; Seo, Y.B., Song, J.Y., Choi, M.J., Etiology and clinical outcomes of acute respiratory virus infection in hospitalized adults (2014) Infect Chemother, 46, pp. 67-76","Choi, J.-H.; Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Korea Centers for Disease Control and PreventionSouth Korea; email: jhchoi@nih.go.kr",,"John Wiley and Sons Inc.",01466615,,JMVID,"29488229","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85044308888 "Elfving K., Shakely D., Andersson M., Baltzell K., Msellem M.I., Björkman A., Mårtensson A., Petzold M., Trollfors B., Lindh M.","6602535873;55387950600;56381956300;12793306000;8212017000;7006344603;8983786500;7003628893;7005111380;7004425032;","Pathogen Clearance and New Respiratory Tract Infections Among Febrile Children in Zanzibar Investigated With Multitargeting Real-Time Polymerase Chain Reaction on Paired Nasopharyngeal Swab Samples",2018,"The Pediatric infectious disease journal","37","7",,"643","648",,,"10.1097/INF.0000000000001876","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064950638&doi=10.1097%2fINF.0000000000001876&partnerID=40&md5=474ca94896d3d66aae1880678cf94c35","From the Department of Infectious Diseases; Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Malaria Research, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden; Swedish National Data Service and Health Metrics unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medicine, Kungälv Hospital, Kungälv, Sweden; Department of Family Health Care Nursing; School of Nursing Center for Global Health, University of California San Francisco, San Francisco, CA, United States; Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania; Department of Women's and Children's Health, International Maternal and Child Health Unit (IMCH), Uppsala UniversityUppsala, Sweden","Elfving, K., From the Department of Infectious Diseases, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Shakely, D., Malaria Research, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden, Swedish National Data Service and Health Metrics unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Department of Medicine, Kungälv Hospital, Kungälv, Sweden; Andersson, M., From the Department of Infectious Diseases; Baltzell, K., Department of Family Health Care Nursing, School of Nursing Center for Global Health, University of California San Francisco, San Francisco, CA, United States; Msellem, M.I., Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania; Björkman, A., Malaria Research, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden; Mårtensson, A., Department of Women's and Children's Health, International Maternal and Child Health Unit (IMCH), Uppsala UniversityUppsala, Sweden; Petzold, M., Swedish National Data Service and Health Metrics unit, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Trollfors, B., Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Lindh, M., From the Department of Infectious Diseases","BACKGROUND: New molecular methods have revealed frequent and often polymicrobial respiratory infections in children in low-income settings. It is not known whether presence of multiple pathogens is due to prolonged infections or to frequent exposure. The aim of this study was to analyze short-term pathogen clearance from nasopharynx and the rate of new respiratory tract infections in febrile preschool children. METHODS: Children (n = 207) with uncomplicated acute febrile illness 2-59 months of age presenting to a health center in Zanzibar, Tanzania, April-July 2011, were included. Paired nasopharyngeal swab samples, collected at enrolment and after 14 days, were analyzed by multiple real-time polymerase chain reaction for Adenovirus, bocavirus, Bordetella pertussis, Chlamydophila pneumoniae, Coronaviruses, Enterovirus, influenza A and B virus, metapneumovirus, measles virus, Mycoplasma pneumoniae, parainfluenza virus, Parechovirus, respiratory syncytial virus and Rhinovirus. An age-matched and geographically matched healthy control group (n = 166) underwent nasopharyngeal sampling on 1 occasion. RESULTS: At baseline, 157/207 (76%) patients had at least 1 pathogen detected, in total 199 infections. At follow-up (day 14), 162/199 (81%) of these infections were not detected, including >95% of the previously detected infections with Enterovirus, influenza A virus, influenza B virus, metapneumovirus or parainfluenza virus. Still 115 (56%) children were positive for at least 1 pathogen at follow-up, of which 95/115 (83%) were not found at baseline. Detection of influenza B on day 14 was significantly associated with fever during follow-up. CONCLUSION: The results suggest that children with acute febrile illness in Zanzibar rapidly clear respiratory tract infections but frequently acquire new infections within 14 days.",,"epidemiology; female; fever; genetics; human; Human respiratory syncytial virus; infant; Influenza A virus; isolation and purification; longitudinal study; male; microbiology; mixed infection; multiplex polymerase chain reaction; Mycoplasma pneumoniae; nasopharynx; preschool child; prospective study; respiratory tract infection; Rhinovirus; Tanzania; virology; virus; Child, Preschool; Coinfection; Female; Fever; Humans; Infant; Influenza A virus; Longitudinal Studies; Male; Multiplex Polymerase Chain Reaction; Mycoplasma pneumoniae; Nasopharynx; Prospective Studies; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Rhinovirus; Tanzania; Viruses",,,,"NLM (Medline)",15320987,,,"29889810","English","Pediatr. Infect. Dis. J.",Article,"Final",,Scopus,2-s2.0-85064950638 "Segura-Wang M., Görzer I., Jaksch P., Puchhammer-Stöckl E.","36239584100;12775073300;6602347191;7004072273;","Temporal dynamics of the lung and plasma viromes in lung transplant recipients",2018,"PLoS ONE","13","7", e0200428,"","",,2,"10.1371/journal.pone.0200428","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049531257&doi=10.1371%2fjournal.pone.0200428&partnerID=40&md5=d8a49aeb0e8cecc2286c84b529c7d46b","Center for Virology, Medical University of Vienna, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria","Segura-Wang, M., Center for Virology, Medical University of Vienna, Vienna, Austria; Görzer, I., Center for Virology, Medical University of Vienna, Vienna, Austria; Jaksch, P., Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Puchhammer-Stöckl, E., Center for Virology, Medical University of Vienna, Vienna, Austria","The human virome plays an important role for the clinical outcome of lung transplant recipients (LTRs). While pathogenic viruses may cause severe infections, non-pathogenic viruses may serve as potential markers for the level of immunosuppression. However, neither the complexity of the virome in different compartments nor the dynamics of the virus populations posttransplantation are yet understood. Therefore, in this study the virome was analyzed by metagenomic sequencing in simultaneously withdrawn bronchoalveolar lavage (BAL) and plasma samples of 15 LTRs. In seven patients, also follow-up samples were investigated for abundance and dynamics of virus populations posttransplantation. Five eukaryotic and two prokaryotic virus families were identified in BAL, and nine eukaryotic and two prokaryotic families in plasma. Anelloviruses were the most abundant in both compartments, followed by Herpes- and Coronaviruses. Virus abundance was significantly higher in LTRs than in healthy controls (Kruskal-Wallis test, p<0.001). Up to 48 different anellovirus strains were identified within a single LTR. Analyses in the follow-up patients revealed for the first time a highly complex and unique dynamics of individual anellovirus strains in the posttransplantation period. The abundance of anelloviruses in plasma was inversely correlated with that of other eukaryotic viruses (Pearson correlation coefficient r = −0.605; p<0.05). A broad spectrum of virus strains co-exists in BAL and plasma of LTRs. Especially for the anelloviruses, a high degree of co-infections and a highly individual and complex dynamics after transplantation was observed. The biological impact of these findings and their relation to clinical variables remain to be elucidated by future analyses. © 2018 Segura-Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adult; Anelloviridae; Article; blood sampling; clinical article; controlled study; Coronavirinae; dynamics; female; follow up; graft recipient; Herpesviridae; human; lung lavage; lung transplantation; male; metagenomics; microbiome; nonhuman; phylogeny; population abundance; retrospective study; virome; virus identification; virus strain; biodiversity; bronchoalveolar lavage fluid; graft recipient; lung; metagenome; middle aged; plasma; time factor; virology; young adult; Adult; Biodiversity; Bronchoalveolar Lavage Fluid; Female; Follow-Up Studies; Humans; Lung; Lung Transplantation; Male; Metagenome; Metagenomics; Middle Aged; Phylogeny; Plasma; Retrospective Studies; Time Factors; Transplant Recipients; Young Adult","Lloyd-Price, J., Abu-Ali, G., Huttenhower, C., The healthy human microbiome (2016) Genome Med, 8, p. 51. , https://doi.org/10.1186/s13073-016-0307-y, PMID: 27122046; Pflughoeft, K.J., Versalovic, J., Human microbiome in health and disease (2012) Annu Rev Pathol, 7, pp. 99-122. , https://doi.org/10.1146/annurev-pathol-011811-132421, December 2011: PMID: 21910623; Snyder, L.D., Chan, C., Kwon, D., Yi, J.S., Martissa, J.A., Copeland, C.A.F., Polyfunctional T-cell signatures to predict protection from cytomegalovirus after lung transplantation (2016) Am J Respir Crit Care Med, 193 (1), pp. 78-85. , https://doi.org/10.1164/rccm.201504-0733OC, PMID: 26372850; Dickson, R.P., Martinez, F.J., Huffnagle, G.B., The role of the microbiome in exacerbations of chronic lung diseases (2014) Lancet, 384 (9944), pp. 691-702. , https://doi.org/10.1016/S0140-6736(14)61136-3, PMID: 25152271; De Vlaminck, I., Khush, K.K., Strehl, C., Kohli, B., Luikart, H., Neff, N.F., Temporal response of the human virome to immunosuppression and antiviral therapy (2013) Cell, 155 (5), pp. 1178-1187. , https://doi.org/10.1016/j.cell.2013.10.034, PMID: 24267896; Hirsch, H.H., Randhawa, P., BK polyomavirus in solid organ transplantation (2013) Am J Transplant, 13, pp. 179-188; Razonable, R.R., Humar, A., Cytomegalovirus in solid organ transplantation (2013) Am J Transplant, 13 (s4), pp. 93-106. , Mar; Görzer, I., Haloschan, M., Jaksch, P., Klepetko, W., Puchhammer-Stöckl, E., Plasma DNA levels of torque teno virus and immunosuppression after lung transplantation (2014) J Hear Lung Transplant, 33 (3), pp. 320-323; Görzer, I., Jaksch, P., Strassl, R., Klepetko, W., Puchhammer-Stöckl, E., Association between plasma torque teno virus level and chronic lung allograft dysfunction after lung transplantation (2017) J Hear Lung Transplant, 36 (3), pp. 366-368. , Mar; Görzer, I., Jaksch, P., Kundi, M., Seitz, T., Klepetko, W., Puchhammer-Stöckl, E., Pre-transplant plasma torque teno virus load and increase dynamics after lung transplantation (2015) PLoS One, 10 (4), pp. 1-10; Béland, K., Dore-Nguyen, M., Gagné, M.-J., Patey, N., Brassard, J., Alvarez, F., Torque teno virus in children who underwent orthotopic liver transplantation: New insights about a common pathogen (2014) J Infect Dis, 209 (2), pp. 247-254. , https://doi.org/10.1093/infdis/jit423, Jan 15; PMID: 23922368; Focosi, D., Macera, L., Pistello, M., Maggi, F., Torque teno virus viremia correlates with intensity of maintenance immunosuppression in adult orthotopic liver transplant (2014) J Infect Dis, 210 (4), pp. 667-668. , https://doi.org/10.1093/infdis/jiu209, Aug 15; PMID: 24688076; Gerber, G.K., The dynamic microbiome (2014) FEBS Lett, 588 (22), pp. 4131-4139. , https://doi.org/10.1016/j.febslet.2014.02.037, PMID: 24583074; Minot, S., Bryson, A., Rapid evolution of the human gut virome (2013) Proc Natl Acad Sci USA, 110 (30), pp. 12450-12455. , https://doi.org/10.1073/pnas.1300833110, PMID: 23836644; Lewandowska, D.W., Zagordi, O., Zbinden, A., Schuurmans, M.M., Schreiber, P., Geissberger, F.D., Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains (2015) Diagn Microbiol Infect Dis, 83 (2), pp. 133-138. , https://doi.org/10.1016/j.diagmicrobio.2015.06.017, PMID: 26231254; Froussard, P., A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA (1992) Nucleic Acids Res, 20 (11), p. 2900. , PMID: 1614887; Victoria, J.G., Kapoor, A., Dupuis, K., Schnurr, D.P., Delwart, E.L., Rapid identification of known and new RNA viruses from animal tissues (2008) PLoS Pathog, 4 (9). , https://doi.org/10.1371/journal.ppat.1000163, PMID: 18818738; Lewandowska, D.W., Zagordi, O., Geissberger, F.-D., Kufner, V., Schmutz, S., Böni, J., Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples (2017) Microbiome, 5 (1), p. 94. , https://doi.org/10.1186/s40168-017-0317-z, PMID: 28789678; Li, H., Durbin, R., Fast and accurate short read alignment with burrows-wheeler transform (2009) Bioinformatics, 25 (14), pp. 1754-1760. , https://doi.org/10.1093/bioinformatics/btp324, PMID: 19451168; Langmead, B., Salzberg, S.L., Fast gapped-read alignment with bowtie 2 (2012) Nat Methods, 9 (4), pp. 357-359. , https://doi.org/10.1038/nmeth.1923, PMID: 22388286; Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., GenBank (2016) Nucleic Acids Res, 44 (D1), pp. D67-D72. , https://doi.org/10.1093/nar/gkv1276, PMID: 26590407; Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., (2016) Vegan: Community Ecology Package, , R package version 2.4–0; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054, Jul; PMID: 27004904; Letunic, I., Bork, P., Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees (2016) Nucleic Acids Res, 44 (W1), pp. W242-W245. , https://doi.org/10.1093/nar/gkw290, Jul 8; PMID: 27095192; (2015) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing, Vienna, Austria; Young, J.C., Chehoud, C., Bittinger, K., Bailey, A., Diamond, J.M., Cantu, E., Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients (2015) Am J Transplant, 15 (1), pp. 200-209. , https://doi.org/10.1111/ajt.13031, PMID: 25403800; Abbas, A.A., Diamond, J.M., Chehoud, C., Chang, B., Kotzin, J.J., Young, J.C., The perioperative lung transplant virome: Torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction (2016) Am J Transplant, 3, pp. 1-12; Fishman, J.A., Overview: Cytomegalovirus and the herpesviruses in transplantation (2013) Am J Transplant, 13 (s3), pp. 1-8. , Feb; Lewandowska, D.W., Schreiber, P.W., Schuurmans, M.M., Ruehe, B., Zagordi, O., Bayard, C., Metagenomic sequencing complements routine diagnostics in identifying viral pathogens in lung transplant recipients with unknown etiology of respiratory infection (2017) PLoS One, 12 (5), pp. 1-16; Vu, D.L., Bridevaux, P.O., Aubert, J.D., Soccal, P.M., Kaiser, L., Respiratory viruses in lung transplant recipients: A critical review and pooled analysis of clinical studies (2011) Am J Transplant, 11 (5), pp. 1071-1078. , https://doi.org/10.1111/j.1600-6143.2011.03490.x, PMID: 21521473; Norman, J.M., Handley, S.A., Baldridge, M.T., Droit, L., Liu, C.Y., Keller, B.C., Disease-specific alterations in the enteric virome in inflammatory bowel disease (2015) Cell, 160 (3), pp. 447-460. , https://doi.org/10.1016/j.cell.2015.01.002, PMID: 25619688; Okamoto, H., History of discoveries and pathogenicity of TT viruses (2009) Curr Top Microbiol Immunol, 331, pp. 1-20. , PMID: 19230554; Maggi, F., Bendinelli, M., Immunobiology of the torque teno viruses and other anelloviruses (2009) Curr Top Microbiol Immunol, 331, pp. 65-90. , February; Blatter, J.A., Sweet, S.C., Conrad, C., Danziger-Isakov, L.A., Faro, A., Goldfarb, S.B., Anellovirus loads are associated with outcomes in pediatric lung transplantation (2018) Pediatr Transplant, 22 (e13069), pp. 1-9; Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., Strains, functions and dynamics in the expanded human microbiome project (2017) Nature, 550 (7674), pp. 61-66. , https://doi.org/10.1038/nature23889, PMID: 28953883; Maggi, F., Andreoli, E., Lanini, L., Fornai, C., Vatteroni, M., Pistello, M., Relationships between total plasma load of torquetenovirus (TTV) and TTV genogroups carried (2005) J Clin Microbiol, 43 (9), pp. 4807-4810. , https://doi.org/10.1128/JCM.43.9.4807-4810.2005, PMID: 16145145; Pinho-Nascimento, C.A., Leite, J.P.G., Niel, C., Diniz-Mendes, L., Torque teno virus in fecal samples of patients with gastroenteritis: Prevalence, genogroups distribution, and viral load (2011) J Med Virol, 83 (6), pp. 1107-1111. , https://doi.org/10.1002/jmv.22024, Jun; PMID: 21503927; Görzer, I., Kerschner, H., Jaksch, P., Bauer, C., Seebacher, G., Klepetko, W., Virus load dynamics of individual CMV-genotypes in lung transplant recipients with mixed-genotype infections (2008) J Med Virol, 80 (8), pp. 1405-1414. , https://doi.org/10.1002/jmv.21225, Aug; PMID: 18551598; Görzer, I., Guelly, C., Trajanoski, S., Puchhammer-Stöckl, E., Deep sequencing reveals highly complex dynamics of human cytomegalovirus genotypes in transplant patients over time (2010) J Virol, 84 (14), pp. 7195-7203. , https://doi.org/10.1128/JVI.00475-10, PMID: 20463084; Nishizawa, Y., Tanaka, E., Orii, K., Rokuhara, A., Ichijo, T., Yoshizawa, K., Clinical impact of genotype 1 TT virus infection in patients with chronic hepatitis C and response of TT virus to alpha-interferon (2000) J Gastroenterol Hepatol, 15 (11), pp. 1292-1297. , PMID: 11129224","Puchhammer-Stöckl, E.; Center for Virology, Medical University of ViennaAustria; email: elisabeth.puchhammer@meduniwien.ac.at",,"Public Library of Science",19326203,,POLNC,"29979780","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85049531257 "Borkenhagen L.K., Mallinson K.A., Tsao R.W., Ha S.-J., Lim W.-H., Toh T.-H., Anderson B.D., Fieldhouse J.K., Philo S.E., Chong K.-S., Lindsley W.G., Ramirez A., Lowe J.F., Coleman K.K., Gray G.C.","57202112710;57203429845;57203431927;57203435186;57203432671;57193489148;7404263295;57203434839;57203437020;57203435580;6602762177;57105883800;7401790214;57203436946;16425441400;","Surveillance for respiratory and diarrheal pathogens at the human-pig interface in Sarawak, Malaysia",2018,"PLoS ONE","13","7", e0201295,"","",,7,"10.1371/journal.pone.0201295","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051714898&doi=10.1371%2fjournal.pone.0201295&partnerID=40&md5=0fdf4bbef7ff861aa659a0de75451166","Duke Global Health Institute, Duke University, Durham, NC, United States; Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, United States; SEGi University Sibu Clinical Campus, Sibu, Sarawak, Malaysia; Department of Paediatrics, Sibu Hospital, Sibu, Sarawak, Malaysia; Clinical Research Center, Sibu Hospital, Sibu, Sarawak, Malaysia; Divisional Health Office, Sibu, Sarawak, Malaysia; National Institute for Occupational Safety and Health, Morgantown, WV, United States; Department of Veterinary Diagnostics and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Duke-NUS Medical School, Singapore, Singapore","Borkenhagen, L.K., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, United States; Mallinson, K.A., Duke Global Health Institute, Duke University, Durham, NC, United States; Tsao, R.W., Duke Global Health Institute, Duke University, Durham, NC, United States; Ha, S.-J., SEGi University Sibu Clinical Campus, Sibu, Sarawak, Malaysia, Department of Paediatrics, Sibu Hospital, Sibu, Sarawak, Malaysia; Lim, W.-H., Clinical Research Center, Sibu Hospital, Sibu, Sarawak, Malaysia; Toh, T.-H., SEGi University Sibu Clinical Campus, Sibu, Sarawak, Malaysia, Department of Paediatrics, Sibu Hospital, Sibu, Sarawak, Malaysia, Clinical Research Center, Sibu Hospital, Sibu, Sarawak, Malaysia; Anderson, B.D., Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, United States; Fieldhouse, J.K., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, United States; Philo, S.E., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, United States; Chong, K.-S., SEGi University Sibu Clinical Campus, Sibu, Sarawak, Malaysia, Divisional Health Office, Sibu, Sarawak, Malaysia; Lindsley, W.G., National Institute for Occupational Safety and Health, Morgantown, WV, United States; Ramirez, A., Department of Veterinary Diagnostics and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Lowe, J.F., Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Coleman, K.K., Duke-NUS Medical School, Singapore, Singapore; Gray, G.C., Duke Global Health Institute, Duke University, Durham, NC, United States, Division of Infectious Disease, School of Medicine, Duke University, Durham, NC, United States, Duke-NUS Medical School, Singapore, Singapore","Background The large livestock operations and dense human population of Southeast Asia are considered a hot-spot for emerging viruses. Objectives To determine if the pathogens adenovirus (ADV), coronavirus (CoV), encephalomyocarditis virus (EMCV), enterovirus (EV), influenza A-D (IAV, IBV, ICV, and IDV), porcine circovirus 2 (PCV2), and porcine rotaviruses A and C (RVA and RVC), are aerosolized at the animal-interface, and if humans working in these environments are carrying these viruses in their nasal airways. Study This cross-sectional study took place in Sarawak, Malaysia among 11 pig farms, 2 abattoirs, and 3 animal markets in June and July of 2017. Pig feces, pig oral secretions, bioaerosols, and worker nasal wash samples were collected and analyzed via rPCR and rRT-PCR for respiratory and diarrheal viruses. Results In all, 55 pig fecal, 49 pig oral or water, 45 bioaerosol, and 78 worker nasal wash samples were collected across 16 sites. PCV2 was detected in 21 pig fecal, 43 pig oral or water, 3 bioaerosol, and 4 worker nasal wash samples. In addition, one or more bioaerosol or pig samples were positive for EV, IAV, and RVC, and one or more worker samples were positive for ADV, CoV, IBV, and IDV. Conclusions This study demonstrates that nucleic acids from a number of targeted viruses were present in pig oral secretions and pig fecal samples, and that several viruses were detected in bioaerosol samples or in the nasal passages of humans with occupational exposure to pigs. These results demonstrate the need for future research in strengthening viral surveillance at the human-animal interface, specifically through expanded bioaerosol sampling efforts and a seroepidemiological study of individuals with exposure to pigs in this region for PCV2 infection. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.",,"Adenoviridae; aerosol; Article; controlled study; Coronavirinae; cross-sectional study; diarrhea; disease surveillance; Encephalomyocarditis virus; feces analysis; human; human animal interface; Influenza virus; Malaysia; nasal lavage fluid; nonhuman; occupational exposure; organismal interaction; pig; Porcine circovirus 2; porcine rotavirus; respiratory virus; reverse transcription polymerase chain reaction; water sampling; work environment; agricultural worker; animal; diarrhea; female; male; respiratory tract infection; swine disease; transmission; virology; virus; virus infection; Animals; Cross-Sectional Studies; Diarrhea; Farmers; Female; Humans; Malaysia; Male; Occupational Exposure; Respiratory Tract Infections; Swine; Swine Diseases; Virus Diseases; Viruses","Sarkar, A., Aronson, K.J., Patil, S., Hugar, L.B., Emerging health risks associated with modern agriculture practices: A comprehensive study in India (2012) Environmental Research, 115, pp. 37-50. , https://doi.org/10.1016/j.envres.2012.03.005, PMID: 22480534; Jones, B.A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M.Y., Zoonosis emergence linked to agricultural intensification and environmental change (2013) Proceedings of the National Academy of Sciences, 110 (21), pp. 8399-8404; Bird, B.H., Mazet, J.A., Detection of emerging zoonotic pathogens: An integrated one health Approach (2017) Annual Review of Animal Biosciences, 16. , Nov; Dawood, F.S., Iuliano, A.D., Reed, C., Meltzer, M.I., Shay, D.K., Cheng, P.Y., Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study (2012) The Lancet Infectious Diseases, 12 (9), pp. 687-695. , https://doi.org/10.1016/S1473-3099(12)70121-4, Sep 1; PMID: 22738893; Coker, R.J., Hunter, B.M., Rudge, J.W., Liverani, M., Hanvoravongchai, P., Emerging infectious diseases in southeast Asia: Regional challenges to control (2011) The Lancet, 377 (9765), pp. 599-609; Ahuja, V., (2013) Asian Livestock: Challenges, Opportunities and the Response, , https://cgspace.cgiar.org/bitstream/handle/10568/25140/FAOAsiaLivestock.pdf?sequence=1, Accessed 11 January 2018; Prickett, J., Simer, R., Christopher-Hennings, J., Yoon, K.-J., Evans, R.B., Zimmerman, J.J., Detection of porcine reproductive and respiratory syndrome virus infection in porcine oral fluid samples: A longitudinal study under experimental conditions (2008) Journal of Veterinary Diagnostic Investigation, 20 (2), pp. 156-163. , https://doi.org/10.1177/104063870802000203, PMID: 18319427; Detmer, S.E., Patnayak, D.P., Jiang, Y., Gramer, M.R., Goyal, S.M., Detection of Influenza A virus in porcine oral fluid samples (2011) Journal of Veterinary Diagnostic Investigation, 23 (2), pp. 241-247. , https://doi.org/10.1177/104063871102300207, PMID: 21398442; Anderson, B.D., Ma, M., Xia, Y., Wang, T., Shu, B., Lednicky, J.A., Bioaerosol sampling in modern agriculture: A novel approach for emerging pathogen surveillance? (2016) The Journal of Infectious Diseases, 214 (4), pp. 537-545. , https://doi.org/10.1093/infdis/jiw180, PMID: 27190187; Blachere, F.M., Lindsley, W.G., Pearce, T.A., Anderson, S.E., Fisher, M., Khakoo, R., Measurement of airborne influenza virus in a hospital emergency department (2009) Clinical Infectious Diseases, 48 (4), pp. 438-440. , https://doi.org/10.1086/596478, PMID: 19133798; O’Brien, K.M., Nonnenmann, M.W., Airborne influenza A is detected in the personal breathing zone of swine veterinarians (2016) PloS ONE, 11 (2). , https://doi.org/10.1371/journal.pone.0149083, PMID: 26867129; Bil-Lula, I., De Franceschi, N., Pawlik, K., WoŸniak, M., Improved real-time PCR assay for detection and quantification of all 54 known types of human adenoviruses in clinical samples (2012) Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 18 (6), pp. BR221-BR228; Loens, K., Van Loon, A.M., Coenjaerts, F., Van Aarle, Y., Goossens, H., Wallace, P., Performance of different mono-and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel (2012) Journal of Clinical Microbiology, 50 (3), pp. 977-987. , https://doi.org/10.1128/JCM.00200-11, PMID: 22170925; Yuan, W., Zheng, Y., Sun, M., Zhang, X., Qi, Y., Sun, J., Development of a TaqMan-based real-time reverse transcription polymerase chain reaction assay for the detection of encephalomyocarditis virus (2014) Journal of Virological Methods, 207, pp. 60-65. , https://doi.org/10.1016/j.jviromet.2014.06.004, PMID: 24996131; Oberste, M.S., Feeroz, M.M., Maher, K., Nix, W.A., Engel, G.A., Hasan, K.M., Characterizing the picornavirus landscape among synanthropic nonhuman primates in Bangladesh, 2007–2008 (2013) Journal of Virology, 87 (1), pp. 558-571. , https://doi.org/10.1128/JVI.00837-12, PMID: 23097448; Guidance for Clinicians on the Use of RT-PCR and Other Molecular Assays for Diagnosis of Influenza Virus Infection, , https://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm, Accessed 11 January 2018; Pabbaraju, K., Wong, S., Wong, A., May-Hadford, J., Tellier, R., Fonseca, K., Detection of influenza C virus by a real-time RT-PCR assay (2013) Influenza and Other Respiratory Viruses, 7 (6), pp. 954-960. , https://doi.org/10.1111/irv.12099, PMID: 23445084; Hause, B.M., Ducatez, M., Collin, E.A., Ran, Z., Liu, R., Sheng, Z., Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses (2013) PLoS Pathogens, 9 (2). , https://doi.org/10.1371/journal.ppat.1003176, PMID: 23408893; Pal, N., Huang, Y.W., Madson, D.M., Kuster, C., Meng, X.J., Halbur, P.G., Development and validation of a duplex real-time PCR assay for the simultaneous detection and quantification of porcine circovirus type 2 and an internal control on porcine semen samples (2008) Journal of Virological Methods, 149 (2), pp. 217-225. , https://doi.org/10.1016/j.jviromet.2008.02.002, PMID: 18355929; Marthaler, D., Homwong, N., Rossow, K., Culhane, M., Goyal, S., Collins, J., Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples (2014) Journal of Virological Methods, 209, pp. 30-34. , https://doi.org/10.1016/j.jviromet.2014.08.018, PMID: 25194889; Patterson, A., Madson, D., Halbur, P., Opriessnig, T., Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after natural exposure (2011) Veterinary Microbiology, 149 (1), pp. 225-229; Patterson, A., Ramamoorthy, S., Madson, D., Meng, X., Halbur, P., Opriessnig, T., Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after experimental infection (2011) Veterinary Microbiology, 149 (1), pp. 91-98; Lindsley, W.G., Green, B.J., Blachere, F.M., Martin, S.B., Law, B.F., Jensen, P.A., Sampling and characterization of bioaerosols (2017) NIOSH Manual of Analytical Methods, pp. BA1-BA115. , https://www.cdc.gov/niosh/nmam/pdf/chapter-ba.pdf, K. Ashley and F. O’Connor. Cincinnati, OH, National Institute for Occupational Safety and Health Accessed 23 May 2018; Lindsley, W.G., Blachere, F.M., Davis, K.A., Pearce, T.A., Fisher, M.A., Khakoo, R., Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic (2010) Clinical Infectious Diseases, 50 (5), pp. 693-698. , https://doi.org/10.1086/650457, PMID: 20100093; Neira, V., Rabinowitz, P., Rendahl, A., Paccha, B., Gibbs, S.G., Torremorell, M., Characterization of viral load, viability and persistence of influenza A virus in air and on surfaces of swine production facilities (2016) PloS ONE, 11 (1). , https://doi.org/10.1371/journal.pone.0146616, PMID: 26757362; Torremorell, M., Alonso, C., Davies, P.R., Raynor, P.C., Patnayak, D., Torchetti, M., Investigation into the airborne dissemination of H5N2 highly pathogenic avian influenza virus during the 2015 spring outbreaks in the Midwestern United States (2016) Avian Diseases, 60 (3), pp. 637-643. , https://doi.org/10.1637/11395-021816-Reg.1, PMID: 27610723; Rose, N., Opriessnig, T., Grasland, B., Jestin, A., Epidemiology and transmission of porcine circovirus type 2 (PCV2) (2012) Virus Research, 164 (1), pp. 78-89; Wilson, I.G., Inhibition and facilitation of nucleic acid amplification (1997) Applied and Environmental Microbiology, 63 (10), p. 3741. , Oct; PMID: 9327537; Burbelo, P.D., Ragheb, J.A., Kapoor, A., Zhang, Y., The serological evidence in humans supports a negligible risk of zoonotic infection from porcine circovirus type 2 (2013) Biologicals, 41 (6), pp. 430-434. , https://doi.org/10.1016/j.biologicals.2013.09.005, PMID: 24120888; Allan, G.M., McNeilly, F., McNair, I., Curran, M.D., Walker, I., Ellis, J., Absence of evidence for porcine circovirus type 2 in cattle and humans, and lack of seroconversion or lesions in experimentally infected sheep (2000) Archives of Virology, 145 (4), pp. 853-857. , PMID: 10893163; Ellis, J.A., Wiseman, B.M., Allan, G., Konoby, C., Krakowka, S., Meehan, B.M., Analysis of seroconversion to porcine circovirus 2 among veterinarians from the United States and Canada (2000) Journal of the American Veterinary Medical Association, 217 (11), pp. 1645-1646. , PMID: 11110452; Tischer, I., Bode, L., Apodaca, J., Timm, H., Peters, D., Rasch, R., Presence of antibodies reacting with porcine circovirus in sera of humans, mice, and cattle (1995) Archives of Virology, 140 (8), pp. 1427-1439. , PMID: 7544971; Li, L., Kapoor, A., Slikas, B., Bamidele, O.S., Wang, C., Shaukat, S., Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces (2010) Journal of Virology, 84 (4), pp. 1674-1682. , https://doi.org/10.1128/JVI.02109-09, PMID: 20007276; Ronald, B., (2011) Biosecurity in Pig Farming, , http://krishikosh.egranth.ac.in/bitstream/1/5810000458/1/TNV_Y2011-12_BIOSEC-LVSTK-POULT_Pg084-091.pdf, Accessed 11 January 2018; Takemae, N., Shobugawa, Y., Nguyen, P.T., Nguyen, T., Nguyen, T.N., To, T.L., Effect of herd size on sub-clinical infection of swine in Vietnam with influenza A viruses (2016) BMC Veterinary Research, 12 (1), p. 227. , https://doi.org/10.1186/s12917-016-0844-z, PMID: 27724934; Lőrincz, M., Cságola, A., Biksi, I., Szeredi, L., Dán, Á., Tuboly, T., Detection of porcine circovirus in rodents (2010) Acta Veterinaria Hungarica, 58 (2), pp. 265-268. , https://doi.org/10.1556/AVet.58.2010.2.12, PMID: 20460225; Zhai, S.L., Chen, S.N., Liu, W., Li, X.P., Deng, S.F., Wen, X.H., Molecular detection and genome characterization of porcine circovirus type 2 in rats captured on commercial swine farms (2016) Archives of Virology, 161 (11), pp. 3237-3244. , https://doi.org/10.1007/s00705-016-3004-7, PMID: 27530112; Casal, J., De Manuel, A., Mateu, E., Martin, M., Biosecurity measures on swine farms in Spain: Perceptions by farmers and their relationship to current on-farm measures (2007) Preventive Veterinary Medicine, 82 (1), pp. 138-150; Good practices for biosecurity in the pig sector — Issues and options in developing and transition countries (2010) FAO Animal Production and Health Paper No. 169, , Food and Agriculture Organization of the United Nations/World Organisation for Animal Health/World Bank. Rome, FAO; Ramirez, A., Capuano, A.W., Wellman, D.A., Lesher, K.A., Setterquist, S.F., Gray, G.C., Preventing zoonotic influenza virus infection (2006) Emerging Infectious Diseases, 12 (6), p. 997","Borkenhagen, L.K.; Duke Global Health Institute, Duke UniversityUnited States; email: laura.borkenhagen@duke.edu",,"Public Library of Science",19326203,,POLNC,"30052648","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85051714898 "Tao R.-J., Luo X.-L., Xu W., Mao B., Dai R.-X., Li C.-W., Yu L., Gu F., Liang S., Lu H.-W., Chen K.-B., Bai J.-W., Ji X.-B., Gu S.-Y., Sun X.-L., Dai F.-H., Jiang P., Cao W.-J., Xu J.-F.","57189514634;57216102743;56566982600;56530199700;57200329544;56547730000;7404164372;56602304400;16025120600;55842996400;57203391286;55609252300;56108158100;56626311400;57203400612;57203394267;57203400673;55469474500;14119255300;","Viral infection in community acquired pneumonia patients with fever: A prospective observational study",2018,"Journal of Thoracic Disease","10","7",,"4387","4395",,3,"10.21037/jtd.2018.06.33","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051457675&doi=10.21037%2fjtd.2018.06.33&partnerID=40&md5=dbd029d9f178cd763b7ce7c2335d0ce6","Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201058, China","Tao, R.-J., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Luo, X.-L., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Xu, W., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Mao, B., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Dai, R.-X., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Li, C.-W., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Yu, L., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Gu, F., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Liang, S., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Lu, H.-W., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Chen, K.-B., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Bai, J.-W., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Ji, X.-B., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Gu, S.-Y., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Sun, X.-L., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Dai, F.-H., Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201058, China; Jiang, P., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Cao, W.-J., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China; Xu, J.-F., Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China","Background: Patients with community acquired pneumonia (CAP) caused by viruses can develop severe complications, which result in hospitalization and death. The purpose of this study was to analyse the aetiology, incidence, clinical characteristics, and outcomes of CAP patients with fever during non-pandemics, and then to provide theoretical basis for accurate diagnosis and treatment in CAP patients. Methods: An enrolment system was established for monitoring the CAP patients with fever. Multiplex polymerase chain reaction (mPCR) kits were used to detect 10 viruses [influenza A and B, adenovirus (ADV), respiratory syncytial virus (RSV) A and B, picornavirus, parainfluenza virus (PIV), coronavirus, human metapneumovirus (HMPV), and bocavirus]. Data on age, gender, underlying diseases, complications, laboratory indexes, and outcomes were collected by physicians. Results: This prospective study included 320 patients with fever. Among them, 23.4% were viralpositive by mPCR, with influenza virus most prominent followed by picornavirus. Strong variation in seasonal distribution was shown in viral infections, with peak months from December to February. Patients with influenza infection were likely to be taken to emergency rooms and have respiratory failure with higher creatinine kinase levels and lower white blood cell counts. Streptococcus pneumoniae followed by haemophilus influenzae were the most common bacteria in viral co-infections, which accounted for one third of virus-positive patients. Viral CAP and mixed CAP were not independent factors for death. In addition, lactate dehydrogenase (LDH) >246 IU/L [odds ratio (OR) =7.06, 95% confidence interval (CI): 2.15-23.2, P=0.001], and serum calcium <2.18 mmol/L (OR =6.67, 95% CI: 1.42-31.3, P=0.016) were associated with death. Conclusions: Viruses play an important role in CAP patients with fever, a systematic clinical, radiological and biological analysis of these patients can contribute to effective therapy that may prevent the development of CAP and improve the outcomes. The present work showed an elaborate analysis evidence of viral infection among fever CAP inpatients. ©Journal of Thoracic Disease.","Community acquired pneumonia (CAP); Fever; Multiplex polymerase chain reaction (mPCR); Viruses","calcium; creatine kinase; lactate dehydrogenase; Adenoviridae; adult; adult respiratory distress syndrome; age; aged; Article; Bocaparvovirus; clinical feature; community acquired pneumonia; controlled study; Coronavirinae; diagnostic accuracy; emergency ward; female; fever; gender; Haemophilus influenzae; hospital mortality; human; Human metapneumovirus; Human respiratory syncytial virus; Human respiratory syncytial virus A; incidence; infection risk; influenza; Influenza A virus; Influenza B virus; laboratory test; leukocyte count; major clinical study; male; mixed infection; multiplex polymerase chain reaction; nonhuman; observational study; outcome assessment; Paramyxovirinae; patient monitoring; Picornaviridae; pleura effusion; prospective study; respiratory failure; respiratory syncytial virus B; seasonal variation; Streptococcus pneumoniae; thrombocytopenia; treatment planning; virus detection; virus pneumonia","Song, J.H., Oh, W.S., Kang, C.I., Epidemiology and clinical outcomes of community-acquired pneumonia in adult patients in Asian countries: a prospective study by the Asian network for surveillance of resistant pathogens (2008) Int J Antimicrob Agents, 31, pp. 107-114; Welte, T., Kohnlein, T., Global and local epidemiology of community-acquired pneumonia: the experience of the CAPNETZ Network (2009) Semin Respir Crit Care Med, 30, pp. 127-135; Kumar, A., Zarychanski, R., Pinto, R., Critically ill patients with 2009 influenza A(H1N1) infection in Canada (2009) JAMA, 302, pp. 1872-1879; Estenssoro, E., Rios, F.G., Apezteguia, C., Pandemic 2009 influenza A in Argentina: a study of 337 patients on mechanical ventilation (2010) Am J Respir Crit Care Med, 182, pp. 41-48; Rozencwajg, S., Brechot, N., Schmidt, M., Coinfection with influenza-associated acute respiratory distress syndrome requiring extracorporeal membrane oxygenation (2018) Int J Antimicrob Agents, 51, pp. 427-433; Huang, L., Zhang, W., Yang, Y., Application of extracorporeal membrane oxygenation in patients with severe acute respiratory distress syndrome induced by avian influenza A (H7N9) viral pneumonia: national data from the Chinese multicentre collaboration (2018) BMC Infect Dis, 18, p. 23; Poritz, M.A., Blaschke, A.J., Byington, C.L., FilmArray, an automated nested multiplex PCR system for multipathogen detection: development and application to respiratory tract infection (2011) PLoS One, 6, p. e26047; Stockton, J., Ellis, J.S., Saville, M., Multiplex PCR for typing and subtyping influenza and respiratory syncytial viruses (1998) J Clin Microbiol, 36, pp. 2990-2995; van Elden, L.J.R., van Kraaij, M.G.J., Nijhuis, M., Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia (2002) Clin Infect Dis, 34, pp. 177-183; Voiriot, G., Visseaux, B., Cohen, J., Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia (2016) Crit Care, 20, p. 375; Das, D., Le Floch, H., Houhou, N., Viruses detected by systematic multiplex polymerase chain reaction in adults with suspected community-acquired pneumonia attending emergency departments in France (2015) Clin Microbiol Infect, 21, pp. 608.e1-8; Lim, W.S., Baudouin, S.V., George, R.C., BTS guidelines for the management of community acquired pneumonia in adults: update 2009 (2009) Thorax, 64, pp. iii1-55; Lim, W.S., van der Eerden, M.M., Laing, R., Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study (2003) Thorax, 58, pp. 377-382; Gadsby, N.J., Russell, C.D., McHugh, M.P., Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired Pneumonia (2016) Clin Infect Dis, 62, pp. 817-823; Angeles Marcos, M., Camps, M., Pumarola, T., The role of viruses in the aetiology of community-acquired pneumonia in adults (2006) Antivir Ther, 11, pp. 351-359; Huijskens, E.G., van Erkel, A.J., Palmen, F.M., Viral and bacterial aetiology of community-acquired pneumonia in adults (2013) Influenza Other Respir Viruses, 7, pp. 567-573; de Roux, A., Ewig, S., Garcia, E., Mixed communityacquired pneumonia in hospitalised patients (2006) Eur Respir J, 27, pp. 795-800; Madhi, S.A., Klugman, K.P., Vaccine Trialist, G., A role for Streptococcus pneumoniae in virus-associated pneumonia (2004) Nat Med, 10, pp. 811-813; Casiano-Colon, A.E., Hulbert, B.B., Mayer, T.K., Lack of sensitivity of rapid antigen tests for the diagnosis of respiratory syncytial virus infection in adults (2003) J Clin Virol, 28, pp. 169-174; Yoshii, Y., Shimizu, K., Morozumi, M., Identification of pathogens by comprehensive real-time PCR versus conventional methods in community-acquired pneumonia in Japanese adults (2016) Infect Dis (Lond), 48, pp. 782-788; Jennings, L.C., Anderson, T.P., Beynon, K.A., Incidence and characteristics of viral community-acquired pneumonia in adults (2008) Thorax, 63, pp. 42-48; Louie, J.K., Acosta, M., Winter, K., Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California (2009) JAMA, 302, pp. 1896-1902; Lee, N., Chan, P.K.S., Lui, G.C.Y., Complications and Outcomes of Pandemic 2009 Influenza A (H1N1) Virus Infection in Hospitalized Adults: How Do They Differ From Those in Seasonal Influenza? (2011) J Infect Dis, 203, pp. 1739-1747; Laterre, P.F., Garber, G., Levy, H., Severe communityacquired pneumonia as a cause of severe sepsis: Data from the PROWESS study (2005) Crit Care Med, 33, pp. 952-961; Voiriot, G., Dury, S., Parrot, A., Nonsteroidal Antiinflammatory Drugs May Affect the Presentation and Course of Community-Acquired Pneumonia (2011) Chest, 139, pp. 387-394; Peltola, V.T., Murti, K.G., McCullers, J.A., Influenza virus neuraminidase contributes to secondary bacterial pneumonia (2005) J Infect Dis, 192, pp. 249-257; McCullers, J.A., Insights into the interaction between influenza virus and pneumococcus (2006) Clin Microbiol Rev, 19, pp. 571-582","Xu, J.-F.; Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of MedicineChina; email: jfxucn@gmail.com",,"AME Publishing Company",20721439,,,,"English","J. Thorac. Dis.",Article,"Final",,Scopus,2-s2.0-85051457675 "Szczepanski A., Owczarek K., Milewska A., Baster Z., Rajfur Z., Mitchell J.A., Pyrc K.","57200300836;57200288997;55200074700;55774276900;6602347295;7406515136;8869026100;","Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells",2018,"Veterinary Research","49","1", 55,"","",,3,"10.1186/s13567-018-0551-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049482300&doi=10.1186%2fs13567-018-0551-9&partnerID=40&md5=49294e7f9b30d25040c57f1afedd2540","Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, United Kingdom","Szczepanski, A., Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Owczarek, K., Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Milewska, A., Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Baster, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Rajfur, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Mitchell, J.A., Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, United Kingdom; Pyrc, K., Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland","Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization. © 2018 The Author(s).",,"5 (n ethyl n isopropyl)amiloride; ammonium chloride; bafilomycin A1; caveolin 1; cell marker; chlorpromazine; cytochalasin D; dynamin; early endosome antigen 1; filipin; nocodazole; nystatin; small interfering RNA; virus antibody; wortmannin; caveolin 1; Article; bioinformatics; Canine coronavirus; Canine respiratory coronavirus; cellular distribution; confocal microscopy; controlled study; Coronavirus infection; endocytosis; fluorescence activated cell sorting; genetic transfection; HRT-18 cell line; human; human cell; immunofluorescence test; nonhuman; signal transduction; virus entry; virus inhibition; virus particle; virus replication; XTT assay; Canine coronavirus; metabolism; physiology; tumor cell line; virology; Caveolin 1; Cell Line, Tumor; Coronavirus Infections; Coronavirus, Canine; Endocytosis; Humans; Virus Internalization","King, M.Q.A., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., (2012) Virus Taxonomy Classification and Nomenclature of Viruses; Burkard, C., Verheije, M.H., Wicht, O., Van Kasteren, S.I., Van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., De Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10, p. e1004502. , 25375324 4223067; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , 23075143; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222. , 26695637 4687373; Erles, K., Toomey, C., Brooks, H.W., Brownlie, J., Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease (2003) Virology, 310, pp. 216-223. , 12781709; Mitchell, J.A., Brooks, H.W., Szladovits, B., Erles, K., Gibbons, R., Shields, S., Brownlie, J., Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV) (2013) Vet Microbiol, 162, pp. 582-594. , 23280006; Priestnall, S.L., Brownlie, J., Dubovi, E.J., Erles, K., Serological prevalence of canine respiratory coronavirus (2006) Vet Microbiol, 115, pp. 43-53. , 16551493; Erles, K., Brownlie, J., Canine respiratory coronavirus: An emerging pathogen in the canine infectious respiratory disease complex (2008) Vet Clin North Am Small Anim Pract, 38, pp. 815-825. , 18501280; Heikkila, O., Susi, P., Tevaluoto, T., Harma, H., Marjomaki, V., Hyypia, T., Kiljunen, S., Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin (2010) J Virol, 84, pp. 3666-3681. , 20089652 2838097; Marsh, M., Helenius, A., Virus entry: Open sesame (2006) Cell, 124, pp. 729-740. , 16497584; Li, G.M., Li, Y.G., Yamate, M., Li, S.M., Ikuta, K., Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle (2007) Microbes Infect, 9, pp. 96-102. , 17194611; Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., Jiang, C., SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway (2008) Cell Res, 18, pp. 290-301. , 18227861; Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T., Sugamura, K., Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted (2007) J Virol, 81, pp. 8722-8729. , 17522231 1951348; Van Hamme, E., Dewerchin, H.L., Cornelissen, E., Verhasselt, B., Nauwynck, H.J., Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin (2008) J Gen Virol, 89, pp. 2147-2156. , 18753224; Nomura, R., Kiyota, A., Suzaki, E., Kataoka, K., Ohe, Y., Miyamoto, K., Senda, T., Fujimoto, T., Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae (2004) J Virol, 78, pp. 8701-8708. , 15280478 479086; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pohlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160. , 23536651 3648130; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Pohlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511. , 23468491 3648152; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J Virol, 91, pp. e01387-e01416. , 27733646; Mainou, B.A., Dermody, T.S., Transport to late endosomes is required for efficient reovirus infection (2012) J Virol, 86, pp. 8346-8358. , 22674975 3421701; Girard, E., Chmiest, D., Fournier, N., Johannes, L., Paul, J.L., Vedie, B., Lamaze, C., Rab7 is functionally required for selective cargo sorting at the early endosome (2014) Traffic, 15, pp. 309-326. , 24329906; Somsel Rodman, J., Wandinger-Ness, A., Rab GTPases coordinate endocytosis (2000) J Cell Sci, 113, pp. 183-192. , 10633070; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Epidemiol, 27, pp. 493-497; Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Cardona, A., Fiji: An open-source platform for biological-image analysis (2012) Nat Methods, 9, pp. 676-682. , 22743772; Bolte, S., Cordelieres, F.P., A guided tour into subcellular colocalization analysis in light microsc (2006) J Microscopy, 224, pp. 213-232; Duckert, P., Brunak, S., Blom, N., Prediction of proprotein convertase cleavage sites (2004) Protein Eng des Sel, 17, pp. 107-112. , 14985543; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8, p. e76469. , 24098509 3789674; Bowman, E.J., Siebers, A., Altendorf, K., Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells (1988) Proc Natl Acad Sci U S A, 85, pp. 7972-7976. , 2973058 282335; Huang, I.C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Choe, H., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells (2006) J Biol Chem, 281, pp. 3198-3203. , 16339146; Shirato, K., Kawase, M., Matsuyama, S., Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry (2018) Virology, 517, pp. 9-15. , 29217279; Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Li, F., Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases (2016) J Biol Chem, 291, pp. 24779-24786. , 27729455 5114425; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , 25288733 4210292; Pelkmans, L., Helenius, A., Endocytosis via caveolae (2002) Traffic, 3, pp. 311-320. , 11967125; Phonphok, Y., Rosenthal, K.S., Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines (1991) FEBS Lett, 281, pp. 188-190. , 1901801; Wang, L.H., Rothberg, K.G., Anderson, R.G., Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation (1993) J Cell Biol, 123, pp. 1107-1117. , 8245121; Lim, J.P., Gleeson, P.A., Macropinocytosis: An endocytic pathway for internalising large gulps (2011) Immunol Cell Biol, 89, pp. 836-843. , 21423264; Liu, C., Wang, J., Zhang, X., The involvement of MiR-1-clathrin pathway in the regulation of phagocytosis (2014) PLoS One, 9, p. e98747. , 24932654 4059620; Ares, G.R., Ortiz, P.A., Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs (2012) J Biol Chem, 287, pp. 37824-37834. , 22977238 3488056; Dutta, D., Williamson, C.D., Cole, N.B., Donaldson, J.G., Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis (2012) PLoS One, 7, p. e45799. , 23029248 3448704; Von Kleist, L., Stahlschmidt, W., Bulut, H., Gromova, K., Puchkov, D., Robertson, M.J., Macgregor, K.A., Haucke, V., Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition (2011) Cell, 146, pp. 471-484; Henley, J.R., Krueger, E.W., Oswald, B.J., McNiven, M.A., Dynamin-mediated internalization of caveolae (1998) J Cell Biol, 141, pp. 85-99. , 9531550 2132718; Oh, P., McIntosh, D.P., Schnitzer, J.E., Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium (1998) J Cell Biol, 141, pp. 101-114. , 9531551 2132716; Hill, T.A., Mariana, A., Gordon, C.P., Odell, L.R., Robertson, M.J., McGeachie, A.B., Chau, N., McCluskey, A., Iminochromene inhibitors of dynamins i and II GTPase activity and endocytosis (2010) J Med Chem, 53, pp. 4094-4102. , 20426422; Preta, G., Cronin, J.G., Sheldon, I.M., Dynasore - Not just a dynamin inhibitor (2015) Cell Commun Signal, 13, p. 24. , 25889964 4396812; Quan, A., McGeachie, A.B., Keating, D.J., Van Dam, E.M., Rusak, J., Chau, N., Malladi, C.S., Robinson, P.J., Myristyl trimethyl ammonium bromide and octadecyl trimethyl ammonium bromide are surface-active small molecule dynamin inhibitors that block endocytosis mediated by dynamin i or dynamin II (2007) Mol Pharmacol, 72, pp. 1425-1439. , 17702890; Xu, Q., Cao, M., Song, H., Chen, S., Qian, X., Zhao, P., Ren, H., Qi, Z., Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization (2016) Future Microbiol, 11, pp. 1227-1248. , 26986451; Dietzel, E., Kolesnikova, L., Maisner, A., Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms (2013) Virol J, 10, p. 249. , 23914985 3750272; Samson, F., Donoso, J.A., Heller-Bettinger, I., Watson, D., Himes, R.H., Nocodazole action on tubulin assembly, axonal ultrastructure and fast axoplasmic transport (1979) J Pharmacol Exp Ther, 208, pp. 411-417. , 85702; Hernaez, B., Alonso, C., Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry (2010) J Virol, 84, pp. 2100-2109. , 19939916; Vincent, M.J., Bergeron, E., Benjannet, S., Erickson, B.R., Rollin, P.E., Ksiazek, T.G., Seidah, N.G., Nichol, S.T., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread (2005) Virol J, 2, p. 69. , 16115318 1232869; Dille, B.J., Johnson, T.C., Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine (1982) J Gen Virol, 62, pp. 91-103. , 6290597; Wudiri, G.A., Nicola, A.V., Cellular cholesterol facilitates the postentry replication cycle of herpes simplex virus 1 (2017) J Virol, 91, pp. e00445-e00517. , 28446672 5487575; Jancekova, B., Ondrouskova, E., Knopfova, L., Smarda, J., Benes, P., Enzymatically active cathepsin D sensitizes breast carcinoma cells to TRAIL (2016) Tumour Biol, 37, pp. 10685-10696. , 26867770; Achour, O., Bridiau, N., Kacem, M., Delatouche, R., Bordenave-Juchereau, S., Sannier, F., Thiery, V., Arnaudin, I., Cathepsin D activity and selectivity in the acidic conditions of a tumor microenvironment: Utilization in the development of a novel Cathepsin D substrate for simultaneous cancer diagnosis and therapy (2013) Biochimie, 95, pp. 2010-2017. , 23871913; Geisow, M.J., Evans, W.H., PH in the endosome. Measurements during pinocytosis and receptor-mediated endocytosis (1984) Exp Cell Res, 150, pp. 36-46. , 6198190; Wang, J.L., Zhang, J.L., Chen, W., Xu, X.F., Gao, N., Fan, D.Y., An, J., Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection (2010) PLoS Negl Trop Dis, 4, p. e809. , 20824170 2930870; Lin, H., Li, B., Chen, L., Ma, Z., He, K., Fan, H., Differential protein analysis of IPEC-J2 cells infected with porcine epidemic diarrhea virus pandemic and classical strains elucidates the pathogenesis of infection (2017) J Proteome Res, 16, pp. 2113-2120. , 28506058; Li, J., Jin, Z., Gao, Y., Zhou, L., Ge, X., Guo, X., Han, J., Yang, H., Development of the full-length cDNA clones of two porcine epidemic diarrhea disease virus isolates with different virulence (2017) PLoS One, 12, p. e0173998. , 28301551 5354467; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Yau, E., Peiris, M., Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerg Microbes Infect, 6, p. e56. , 28634355 5520318; Blau, D.M., Holmes, K.V., Human coronavirus HCoV-229E enters susceptible cells via the endocytic pathway (2001) Adv Exp Med Biol, 494, pp. 193-198. , 11774468; Milewska, A., Nowak, P., Owczarek, K., Szczepanski, A., Zarebski, M., Hoang, A., Berniak, K., Pyrc, K., Entry of human coronavirus NL63 to the cell (2017) J Virol, 92, pp. e01933-e02017; Ren, X., Glende, J., Yin, J., Schwegmann-Wessels, C., Herrler, G., Importance of cholesterol for infection of cells by transmissible gastroenteritis virus (2008) Virus Res, 137, pp. 220-224. , 18727942; Pratelli, A., Colao, V., Role of the lipid rafts in the life cycle of canine coronavirus (2015) J Gen Virol, 96, pp. 331-337. , 25381058; Kooi, C., Cervin, M., Anderson, R., Differentiation of acid-pH-dependent and -nondependent entry pathways for mouse hepatitis virus (1991) Virology, 180, pp. 108-119. , 1845820; Eifart, P., Ludwig, K., Bottcher, C., De Haan, C.A., Rottier, P.J., Korte, T., Herrmann, A., Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry (2007) J Virol, 81, pp. 10758-10768. , 17626088 2045462; Choi, K.S., Aizaki, H., Lai, M.M., Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release (2005) J Virol, 79, pp. 9862-9871. , 16014947 1181594; Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L., Jingqiang, Z., The life cycle of SARS coronavirus in Vero E6 cells (2004) J Med Virol, 73, pp. 332-337. , 15170625; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J Virol, 84, pp. 12658-12664. , 20926566 3004351; Owczarek, K., Szczepanski, A., Milewska, A., Baster, Z., Rajfur, Z., Sarna, M., Pyrc, K., Early events during human coronavirus OC43 entry to the cell (2018) Sci Rep, 8, p. 7124. , 29740099 5940804; Chu, V.C., McElroy, L.J., Chu, V., Bauman, B.E., Whittaker, G.R., The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells (2006) J Virol, 80, pp. 3180-3188. , 16537586 1440383; Imhoff, H., Von Messling, V., Herrler, G., Haas, L., Canine distemper virus infection requires cholesterol in the viral envelope (2007) J Virol, 81, pp. 4158-4165. , 17267508 1866149","Pyrc, K.; Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian UniversityPoland; email: k.a.pyrc@uj.edu.pl",,"BioMed Central Ltd.",09284249,,VEREE,"29970183","English","Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85049482300 "Zhang S., Zhou P., Wang P., Li Y., Jiang L., Jia W., Wang H., Fan A., Wang D., Shi X., Fang X., Hammel M., Wang S., Wang X., Zhang L.","36629744200;57203264246;57200821797;57202788529;55523647000;57202779613;57202788520;57202780231;56994305900;49861925000;54976474600;6701408382;57154864900;36497607000;56542860200;","Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein",2018,"Cell Reports","24","2",,"441","452",,11,"10.1016/j.celrep.2018.06.041","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049315642&doi=10.1016%2fj.celrep.2018.06.041&partnerID=40&md5=50b3c7f0937ab05c3e4d45266b01d785","The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, 701, Taiwan; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China","Zhang, S., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Zhou, P., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Wang, P., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Li, Y., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Jiang, L., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Jia, W., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Wang, H., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Fan, A., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Wang, D., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Shi, X., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Fang, X., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Hammel, M., Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Wang, S., Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, 701, Taiwan; Wang, X., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China, Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China; Zhang, L., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China","Zhang et al. report the structural and functional analysis of the potent MERS-CoV neutralizing antibody MERS-4. MERS-4 recognizes a unique epitope and indirectly disrupts interaction between the receptor binding domain and the receptor DPP4. This mechanism provides a valuable addition for the combined use of antibodies against MERS-CoV infection.The major mechanism of antibody-mediated neutralization of the Middle East respiratory syndrome coronavirus (MERS-CoV) involves competition with the cellular receptor dipeptidyl peptidase 4 (DPP4) for binding to the receptor-binding domain (RBD) of the spike (S) glycoprotein. Here, we report a unique epitope and unusual neutralizing mechanism of the isolated human antibody MERS-4. Structurally, MERS-4 approached the RBD from the outside of the RBD-DPP4 binding interface. Such binding resulted in the folding of the β5-β6 loop toward a shallow groove on the RBD interface critical for accommodating DPP4. The key residues for binding are identified through site-directed mutagenesis. Structural modeling revealed that MERS-4 binds to RBD only in the “up” position in the S trimer. Furthermore, MERS-4 demonstrated synergy with several reported antibodies. These results indicate that MERS-4 neutralizes MERS-CoV by indirect rather than direct competition with DPP4. This mechanism provides a valuable addition for the combined use of antibodies against MERS-CoV infection. © 2018 The Authors","antibody epitope; coronavirus; crystal structure; Middle East respiratory syndrome; neutralizing antibody","coronavirus spike glycoprotein; dipeptidyl peptidase IV; epitope; neutralizing antibody; neutralizing antibody MERS 4; unclassified drug; coronavirus spike glycoprotein; epitope; neutralizing antibody; protein binding; Article; binding affinity; crystal structure; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein binding; protein conformation; protein domain; protein folding; site directed mutagenesis; structural model; structure analysis; virus neutralization; binding site; chemistry; genetics; human; metabolism; Middle East respiratory syndrome coronavirus; molecular model; mutation; protein multimerization; Antibodies, Neutralizing; Binding Sites; Epitopes; Humans; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Mutation; Protein Binding; Protein Domains; Protein Multimerization; Spike Glycoprotein, Coronavirus","Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., PHENIX: building new software for automated crystallographic structure determination (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 1948-1954; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Barnes, C.O., Gristick, H.B., Freund, N.T., Escolano, A., Lyubimov, A.Y., Hartweger, H., West, A.P., Jr., Bjorkman, P.J., Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope (2018) Nat. Commun., 9, p. 1251; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Myers, R., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill., 17, p. 20290; Chen, P.R., Groff, D., Guo, J., Ou, W., Cellitti, S., Geierstanger, B.H., Schultz, P.G., A facile system for encoding unnatural amino acids in mammalian cells (2009) Angew. Chem. Int. Engl., 48, pp. 4052-4055; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.-L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., Yu, Y., Lou, Y., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect., 6, p. e37; Chen, Z., Bao, L., Chen, C., Zou, T., Xue, Y., Li, F., Lv, Q., Cui, S., Human neutralizing monoclonal antibody inhibition of Middle East respiratory syndrome coronavirus replication in the common marmoset (2017) J. Infect. Dis., 215, pp. 1807-1815; Choi, J.Y., An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med. J., 56, pp. 1174-1176; Chou, T.C., Drug combination studies and their synergy quantification using the Chou-Talalay method (2010) Cancer Res., 70, pp. 440-446; Chou, T.C., Talalay, P., Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors (1984) Adv. Enzyme Regul., 22, pp. 27-55; Classen, S., Hura, G.L., Holton, J.M., Rambo, R.P., Rodic, I., McGuire, P.J., Dyer, K., Tainer, J.A., Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source (2013) J. Appl. Cryst., 46, pp. 1-13; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60, pp. 2126-2132; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129; Guinier, A., Fournet, F., Small Angle Scattering of X-rays (1955), Wiley Interscience; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis., 20, pp. 1231-1234; Hura, G.L., Menon, A.L., Hammel, M., Rambo, R.P., Poole, F.L., 2nd, Tsutakawa, S.E., Jenney, F.E., Jr., Hopkins, R.C., Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) (2009) Nat. Methods, 6, pp. 606-612; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6, p. 234ra59; Keck, Z., Wang, W., Wang, Y., Lau, P., Carlsen, T.H., Prentoe, J., Xia, J., Foung, S.K., Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein (2013) J. Virol., 87, pp. 37-51; Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J. Appl. Crystallogr., 26, pp. 283-291; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res., 25, pp. 1237-1249; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J. Appl. Cryst., 40, pp. 658-674; Mouquet, H., Scharf, L., Euler, Z., Liu, Y., Eden, C., Scheid, J.F., Halper-Stromberg, A., Seaman, M.S., Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies (2012) Proc. Natl. Acad. Sci. USA, 109, pp. E3268-E3277; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; Peiris, J.S., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat. Med., 10, pp. S88-S97; Pejchal, R., Doores, K.J., Walker, L.M., Khayat, R., Huang, P.S., Wang, S.K., Stanfield, R.L., Crispin, M., A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield (2011) Science, 334, pp. 1097-1103; Pelikan, M., Hura, G.L., Hammel, M., Structure and flexibility within proteins as identified through small angle X-ray scattering (2009) Gen. Physiol. Biophys., 28, pp. 174-189; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Ren, H., Zhou, P., Epitope-focused vaccine design against influenza A and B viruses (2016) Curr. Opin. Immunol., 42, pp. 83-90; Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815; Schneidman-Duhovny, D., Hammel, M., Tainer, J.A., Sali, A., Accurate SAXS profile computation and its assessment by contrast variation experiments (2013) Biophys. J., 105, pp. 962-974; Schneidman-Duhovny, D., Hammel, M., Tainer, J.A., Sali, A., FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles (2016) Nucleic Acids Res., 44 (W1), pp. W424-W429; Shang, H., Han, X., Shi, X., Zuo, T., Goldin, M., Chen, D., Han, B., Zhang, L., Genetic and neutralization sensitivity of diverse HIV-1 env clones from chronically infected patients in China (2011) J. Biol. Chem., 286, pp. 14531-14541; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E2018-E2026; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Wang, Q.S., Yu, F., Huang, S., Sun, B., Zhang, K.H., Liu, K., Wang, Z.J., Yang, L.F., The macromolecular crystallography beamline of SSRF (2015) Nucl. Sci. Tech., 26, pp. 12-17; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Wang, N., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J. Virol., 92. , e02002-17; Wu, X., Kong, X.P., Antigenic landscape of the HIV-1 envelope and new immunological concepts defined by HIV-1 broadly neutralizing antibodies (2016) Curr. Opin. Immunol., 42, pp. 56-64; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Zhou, T., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6, p. 8223; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Li, Z., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep., 5, p. 13133; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses—drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347","Wang, X.; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan UniversityChina; email: xinquanwang@mail.tsinghua.edu.cn",,"Elsevier B.V.",22111247,,,"29996104","English","Cell Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85049315642 "Birger R., Morita H., Comito D., Filip I., Galanti M., Lane B., Ligon C., Rosenbloom D., Shittu A., Ud-Dean M., Desalle R., Planet P., Shaman J.","14027791500;57201295094;56399289300;56840469000;57204685741;57201293492;57201288760;37054621700;57204690064;57190049156;10240465000;6603245247;57203074277;","Asymptomatic Shedding of Respiratory Virus among an Ambulatory Population across Seasons",2018,"mSphere","3","4",,"","",,7,"10.1128/mSphere.00249-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056735947&doi=10.1128%2fmSphere.00249-18&partnerID=40&md5=b699881b949a960373b3737caa9033ad","Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Department of Biomedical Informatics, Columbia UniversityNY, United States; Sackler Institute of Comparative Genomics, American Museum of Natural HistoryNY, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Children's Hospital of Philadelphia, Philadelphia, PA, United States","Birger, R., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Morita, H., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Comito, D., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Filip, I., Department of Biomedical Informatics, Columbia UniversityNY, United States; Galanti, M., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Lane, B., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Ligon, C., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Rosenbloom, D., Department of Biomedical Informatics, Columbia UniversityNY, United States; Shittu, A., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Ud-Dean, M., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States; Desalle, R., Sackler Institute of Comparative Genomics, American Museum of Natural HistoryNY, United States; Planet, P., Sackler Institute of Comparative Genomics, American Museum of Natural HistoryNY, United States, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Shaman, J., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityNY, United States, Sackler Institute of Comparative Genomics, American Museum of Natural HistoryNY, United States","Most observation of human respiratory virus carriage is derived from medical surveillance; however, the infections documented by this surveillance represent only a symptomatic fraction of the total infected population. As the role of asymptomatic infection in respiratory virus transmission is still largely unknown and rates of asymptomatic shedding are not well constrained, it is important to obtain more-precise estimates through alternative sampling methods. We actively recruited participants from among visitors to a New York City tourist attraction. Nasopharyngeal swabs, demographics, and survey information on symptoms, medical history, and recent travel were obtained from 2,685 adults over two seasonal arms. We used multiplex PCR to test swab specimens for a selection of common respiratory viruses. A total of 6.2% of samples (168 individuals) tested positive for at least one virus, with 5.6% testing positive in the summer arm and 7.0% testing positive in the winter arm. Of these, 85 (50.6%) were positive for human rhinovirus (HRV), 65 (38.7%) for coronavirus (CoV), and 18 (10.2%) for other viruses (including adenovirus, human metapneumovirus, influenza virus, and parainfluenza virus). Depending on the definition of symptomatic infection, 65% to 97% of infections were classified as asymptomatic. The best-fit model for prediction of positivity across all viruses included a symptom severity score, Hispanic ethnicity data, and age category, though there were slight differences across the seasonal arms. Though having symptoms is predictive of virus positivity, there are high levels of asymptomatic respiratory virus shedding among the members of an ambulatory population in New York City.IMPORTANCE Respiratory viruses are common in human populations, causing significant levels of morbidity. Understanding the distribution of these viruses is critical for designing control methods. However, most data available are from medical records and thus predominantly represent symptomatic infections. Estimates for asymptomatic prevalence are sparse and span a broad range. In this study, we aimed to measure more precisely the proportion of infections that are asymptomatic in a general, ambulatory adult population. We recruited participants from a New York City tourist attraction and administered nasal swabs, testing them for adenovirus, coronavirus, human metapneumovirus, rhinovirus, influenza virus, respiratory syncytial virus, and parainfluenza virus. At recruitment, participants completed surveys on demographics and symptomology. Analysis of these data indicated that over 6% of participants tested positive for shedding of respiratory virus. While participants who tested positive were more likely to report symptoms than those who did not, over half of participants who tested positive were asymptomatic. Copyright © 2018 Birger et al.","asymptomatic infection; population health; respiratory viruses","adult; aged; asymptomatic disease; classification; female; genetics; human; isolation and purification; male; middle aged; multiplex polymerase chain reaction; nasopharynx; New York; prevalence; respiratory tract infection; season; very elderly; virology; virus; virus infection; virus shedding; young adult; Adult; Aged; Aged, 80 and over; Asymptomatic Diseases; Female; Humans; Male; Middle Aged; Multiplex Polymerase Chain Reaction; Nasopharynx; New York City; Prevalence; Respiratory Tract Infections; Seasons; Virus Diseases; Virus Shedding; Viruses; Young Adult",,,,,23795042,,,"29997120","English","mSphere",Article,"Final",Open Access,Scopus,2-s2.0-85056735947 "Lee Y.J., Lee C.","35740892400;55700560700;","Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway",2018,"Virus Research","253",,,"112","123",,8,"10.1016/j.virusres.2018.06.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049089431&doi=10.1016%2fj.virusres.2018.06.008&partnerID=40&md5=10ea5c9d4ad33078506fd853c109c60f","Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea","Lee, Y.J., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; Lee, C., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea","Porcine deltacoronavirus (PDCoV), a newly discovered enteric coronavirus, is a causative agent of severe clinical diarrhea and intestinal pathological damage in piglets. As a first step toward understanding the effect of PDCoV on host cells, we elucidated mechanisms underlying the process of apoptotic cell death after PDCoV infection. The use of a pan-caspase inhibitor resulted in the inhibition of PDCoV-induced apoptosis and reduction of PDCoV replication, suggestive of the association of a caspase-dependent pathway. Furthermore, PDCoV infection necessitated the activation of the initiator caspase-9 responsible for the intrinsic mitochondrial apoptosis pathway. Experimental data indicated that PDCoV infection led to Bax-mediated mitochondrial outer membrane permeabilization (MOMP), resulting in specific relocation of the mitochondrial cytochrome c (cyt c) into the cytoplasm. Treatment with cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore (MPTP) opening, significantly suppressed PDCoV-triggered apoptosis and viral replication. Moreover, cyt c release was completely abrogated in PDCoV-infected cells in the presence of CsA, suggesting the critical role of MPTP in intrinsic apoptosis in response to PDCoV infection. Altogether, our results indicate that PDCoV infection stimulates MOMP either via Bax recruitment or MPTP opening to permit the release of apoptogenic cyt c into the cytoplasm, thereby leading to execution of the caspase-dependent intrinsic apoptosis pathway to facilitate viral replication in vitro. © 2018 Elsevier B.V.","Apoptotic cell death; Caspase-dependent intrinsic pathway; Cytochrome c; MOMP; PDCoV","caspase; caspase 9; cyclosporine; cytochrome c; mitochondrial permeability transition pore; protein Bax; carrier protein; caspase; cytochrome c; mitochondrial permeability transition pore; apoptosis; Article; controlled study; Coronavirinae; Coronavirus infection; cytoplasm; enzyme activation; enzyme release; in vitro study; membrane permeability; mitochondrial membrane; mitochondrion; nonhuman; outer membrane; Porcine deltacoronavirus; Porcine deltacoronavirus infection; priority journal; virus inhibition; virus replication; animal; Coronavirinae; enzymology; genetics; metabolism; mitochondrion; pathophysiology; physiology; pig; swine disease; veterinary medicine; virology; Animals; Apoptosis; Caspases; Coronavirus; Coronavirus Infections; Cytochromes c; Mitochondria; Mitochondrial Membrane Transport Proteins; Swine; Swine Diseases; Virus Replication","Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Molkentin, J.D., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death (2005) Nature, 434, pp. 658-662; Brenner, C., Grimm, S., The permeability transition pore complex in cancer cell death (2006) Oncogene, 25, pp. 4744-4756; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Clarke, P., Tyler, K.L., Apoptosis in animal models of virus-induced disease (2009) Nat. Rev. Microbiol., 7, pp. 144-155; Clarke, P., Beckham, J.D., Leser, J.S., Hoyt, C.C., Tyler, K.L., Fas-mediated apoptotic signaling in the mouse brain following reovirus infection (2009) J. Virol., 83, pp. 6161-6170; de Wilde, A.H., Li, Y., van der Meer, Y., Vuagniaux, G., Lysek, R., Fang, Y., Snijder, E.J., van Hemert, M.J., Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis (2013) J. Virol., 87, pp. 1454-1464; DeDiego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Alvarez, E., OliSTs, J.C., Zhao, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLoS Pathog., 7, p. e1002315; Ding, L., Zhao, X., Huang, Y., Du, Q., Dong, F., Zhang, H., Song, X., Tong, D., Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling (2013) Biochem. Biophys. Res. Commun., 442, pp. 33-37; Doley, J., Singh, L.V., Kumar, G.R., Sahoo, A.P., Saxena, L., Chaturvedi, U., Saxena, S., Tiwari, A.K., Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways (2014) Appl. Biochem. Biotechnol., 172, pp. 497-508; Eleouet, J.F., Chilmonczyk, S., Besnardeau, L., Laude, H., Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway (1998) J. Virol., 72, pp. 4918-4924; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable (2012) J. Virol., 86, pp. 81-93; Galluzzi, L., Kepp, O., Trojel-Hansen, C., Kroemer, G., Mitochondrial control of cellular life, stress, and death (2012) Circ. Res., 111, pp. 1198-1207; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Jang, G., Kim, S.H., Lee, Y.J., Kim, S., Lee, D.S., Lee, K.K., Lee, C., Isolation and characterization of a Korean porcine deltacoronavirus strain KNU16-07 (2018) J. Vet. Sci., , in press; Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Penninger, J.M., Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death (2001) Nature, 410, pp. 549-554; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo (2016) Vet. Microbiol., 182, pp. 57-63; Kambara, H., Tani, H., Mori, Y., Abe, T., Katoh, H., Fukuhara, T., Taguwa, S., Matsuura, Y., Involvement of cyclophilin B in the replication of Japanese encephalitis virus (2011) Virology, 412, pp. 211-219; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology 460-461, pp. 180-193; Kumarswamy, R., Chandna, S., Putative partners in Bax mediated cytochrome-c release: ANT, CypD, VDAC or none of them? (2009) Mitochondrion, 9, pp. 1-8; Lan, Y., Zhao, K., Wang, G., Dong, B., Zhao, J., Tang, B., Lu, H., He, W., Porcine hemagglutinating encephalomyelitis virus induces apoptosis in a porcine kidney cell line via caspase-dependent pathways (2013) Virus Res., 176, pp. 292-297; Lee, S.M., Kleiboeker, S.B., Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway (2007) Virology, 365, pp. 419-434; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc., 2, pp. e01191-e01214; Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade (1997) Cell, 91, pp. 479-489; Li, G., Chen, Q., Harmon, K.M., Yoon, K.J., Schwartz, K.J., Hoogland, M.J., Gauger, P.C., Zhang, J., Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announc., 2, pp. e00278-14; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio., 6, p. e00064; Madapong, A., Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Srijangwad, A., Tripipat, T., Wegner, M., Nilubol, D., Complete genome sequence of porcine deltacoronavirus isolated in Thailand in 2015 (2016) Genome Announc., 4, pp. e00408-e00416; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350; Mathupala, S.P., Ko, Y.H., Pedersen, P.L., Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria (2006) Oncogene, 25, pp. 4777-4786; Nakagawa, M., Sakamoto, N., Enomoto, N., Tanabe, Y., Kanazawa, N., Koyama, T., Kurosaki, M., Watanabe, M., Specific inhibition of hepatitis C virus replication by cyclosporin A (2004) Biochem. Biophys. Res. Commun., 313, pp. 42-47; Oka, N., Wang, L., Mi, W., Zhu, W., Honjo, O., Caldarone, C.A., Cyclosporine A prevents apoptosis-related mitochondrial dysfunction after neonatal cardioplegic arrest (2008) J. Thorac. Cardiovasc. Surg., 135, pp. 123-130; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C.C., Müller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog., 7, p. e1002331; Qing, M., Yang, F., Zhang, B., Zou, G., Robida, J.M., Yuan, Z., Tang, H., Shi, P.Y., Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein (2009) Antimicrob. Agents Chemother., 53, pp. 3226-3235; Reed, L.J., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Saeng-Chuto, K., Stott, C.J., Wegner, M., Senasuthum, R., Tantituvanont, A., Nilubol, D., Retrospective investigation and evolutionary analysis of a novel porcine deltacoronavirus strain detected in Thailand from 2008 to 2015 (2017) Arch. Virol., 162, pp. 2103-2108; Sarmento, L., Tseggai, T., Dhingra, V., Fu, Z.F., Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways (2006) Virus Res., 121, pp. 144-151; Schinzel, A.C., Takeuchi, O., Huang, Z., Fisher, J.K., Zhou, Z., Rubens, J., Hetz, C., Korsmeyer, S.J., Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 12005-12010; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; St-Louis, M.C., Archambault, D., The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation (2007) Virology, 367, pp. 147-155; Suh, D.H., Kim, M.K., Kim, H.S., Chung, H.H., Song, Y.S., Mitochondrial permeability transition pore as a selective target for anti-cancer therapy (2013) Front. Oncol., 3, p. 41; Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Kroemer, G., Bcl-2 inhibits the mitochondrial release of an apoptogenic protease (1996) J. Exp. Med., 184, pp. 1331-1341; Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Kroemer, G., Molecular characterization of mitochondrial apoptosis-inducing factor (1999) Nature, 397, pp. 441-446; Suzuki, K., Matsui, Y., Miura, Y., Sentsui, H., Equine coronavirus induces apoptosis in cultured cells (2008) Vet. Microbiol., 129, pp. 390-395; Tait, S.W., Green, D.R., Mitochondrial regulation of cell death (2013) Cold Spring Harb. Perspect. Biol., 5, p. a008706; Thomson, B.J., Viruses and apoptosis (2001) Int. J. Exp. Pathol., 82, pp. 65-76; Wang, M.J., Liu, S., Liu, Y., Zheng, D., Actinomycin D enhances TRAIL-induced caspase-dependent and -independent apoptosis in SH-SY5Y neuroblastoma cells (2007) Neurosci. Res., 59, pp. 40-46; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from Mainland China (2015) Genome Announc., 3. , e00945–15; Woo, P.C., Lau, S.K., Tsang, C.C., Lau, C.C., Wong, P.C., Chow, F.W., Fong, J.Y., Yuen, K.Y., Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5’-untranslated region (2012) Emerg. Microbes Infect., 6, p. e53; Zhang, H., Huang, Y., Du, Q., Luo, X., Zhang, L., Zhao, X., Tong, D., Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway (2015) Biochem. Biophys. Res. Commun., 456, pp. 649-655","Lee, C.; School of Life Sciences, College of Natural Sciences, Kyungpook National UniversitySouth Korea; email: changhee@knu.ac.kr",,"Elsevier B.V.",01681702,,VIRED,"29940190","English","Virus Res.",Article,"Final",Open Access,Scopus,2-s2.0-85049089431 "Bleibtreu A., Jaureguiberry S., Houhou N., Boutolleau D., Guillot H., Vallois D., Lucet J.C., Robert J., Mourvillier B., Delemazure J., Jaspard M., Lescure F.X., Rioux C., Caumes E., Yazdanapanah Y.","50260937600;24069273800;56769614100;6602690019;6505857733;55538203200;7006655229;55613929600;15042349000;56347716100;57189986480;7003588461;16643650100;7102414982;57202995587;","Clinical management of respiratory syndrome in patients hospitalized for suspected Middle East respiratory syndrome coronavirus infection in the Paris area from 2013 to 2016",2018,"BMC Infectious Diseases","18","1", 331,"","",,3,"10.1186/s12879-018-3223-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050117547&doi=10.1186%2fs12879-018-3223-5&partnerID=40&md5=50a725f256ad23919b04cca49aedab98","Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude Bernard, Paris, France; Service des Maladies Infectieuses et Tropicales, APHP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France; APHP-Bichat-Claude Bernard Hospital, Virology Department, Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, et Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI, INSERM U1135, Paris, France; Paris Diderot University, APHP, Infection control unit, Bichat Claude Bernard hospital, Paris, France; INSERM, IAME, UMR 1137, Paris, France; Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Bactériologie-Hygiène Hospitalière, Paris, France; Centre d'Immunologie et des Maladies Infectieuses (CIMI) - E13, Faculté de Médecine P. and M. Curie Paris-6 - Site Pitié, Paris, France; Service de Réanimation médicale et Infectieuse, APHP- Hôpital Bichat Claude Bernard, Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, unité de Soin de Réadaptation Post Réanimation (SRPR), Service de pneumologie et réanimation Département R3S, Paris, France","Bleibtreu, A., Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude Bernard, Paris, France, Service des Maladies Infectieuses et Tropicales, APHP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France, INSERM, IAME, UMR 1137, Paris, France, Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France; Jaureguiberry, S., Service des Maladies Infectieuses et Tropicales, APHP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France; Houhou, N., APHP-Bichat-Claude Bernard Hospital, Virology Department, Paris, France; Boutolleau, D., AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, et Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI, INSERM U1135, Paris, France; Guillot, H., Service des Maladies Infectieuses et Tropicales, APHP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France; Vallois, D., Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude Bernard, Paris, France; Lucet, J.C., Paris Diderot University, APHP, Infection control unit, Bichat Claude Bernard hospital, Paris, France, INSERM, IAME, UMR 1137, Paris, France, Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France; Robert, J., AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Bactériologie-Hygiène Hospitalière, Paris, France, Centre d'Immunologie et des Maladies Infectieuses (CIMI) - E13, Faculté de Médecine P. and M. Curie Paris-6 - Site Pitié, Paris, France; Mourvillier, B., INSERM, IAME, UMR 1137, Paris, France, Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France, Service de Réanimation médicale et Infectieuse, APHP- Hôpital Bichat Claude Bernard, Paris, France; Delemazure, J., AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, unité de Soin de Réadaptation Post Réanimation (SRPR), Service de pneumologie et réanimation Département R3S, Paris, France; Jaspard, M., Service des Maladies Infectieuses et Tropicales, APHP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France; Lescure, F.X., Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude Bernard, Paris, France, INSERM, IAME, UMR 1137, Paris, France, Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France; Rioux, C., Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude Bernard, Paris, France; Caumes, E., Service des Maladies Infectieuses et Tropicales, APHP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France; Yazdanapanah, Y., Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude Bernard, Paris, France, INSERM, IAME, UMR 1137, Paris, France, Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France","Background: Patients with suspected Middle East respiratory syndrome coronavirus (MERS-CoV) infection should be hospitalized in isolation wards to avoid transmission. This suspicion can also lead to medical confusion and inappropriate management of acute respiratory syndrome due to causes other than MERS-CoV. Methods: We studied the characteristics and outcome of patients hospitalized for suspected MERS-CoV infection in the isolation wards of two referral infectious disease departments in the Paris area between January 2013 and December 2016. Results: Of 93 adult patients (49 male (52.6%), median age 63.4 years) hospitalized, 82 out of 93 adult patients had returned from Saudi Arabia, and 74 of them were pilgrims (Hajj). Chest X-ray findings were abnormal in 72 (77%) patients. The 93 patients were negative for MERS-CoV RT-PCR, and 70 (75.2%) patients had documented infection, 47 (50.5%) viral, 22 (23.6%) bacterial and one Plasmodium falciparum malaria. Microbiological analysis identified Rhinovirus (27.9%), Influenza virus (26.8%), Legionella pneumophila (7.5%), Streptococcus pneumoniae (7.5%), and non-MERS-coronavirus (6.4%). Antibiotics were initiated in 81 (87%) cases, with two antibiotics in 63 patients (67.7%). The median duration of hospitalization and isolation was 3 days (1-33) and 24 h (8-92), respectively. Time of isolation decreased over time (P < 0.01). Two patients (2%) died. Conclusion: The management of patients with possible MERS-CoV infection requires medical facilities with trained personnel, and rapid access to virological results. Empirical treatment with neuraminidase inhibitors and an association of antibiotics effective against S. pneumoniae and L. pneumophila are the cornerstones of the management of patients hospitalized for suspected MERS-CoV infection. © 2018 The Author(s).","Isolation ward; Legionella; Middle East respiratory syndrome coronavirus (MERS-CoV); Pilgrims; Respiratory tract infection; Saudi Arabia","aminopenicillin; amoxicillin; amoxicillin plus clavulanic acid; antibiotic agent; cephalosporin; doxycycline; levofloxacin; macrolide; oseltamivir; oxygen; piperacillin plus tazobactam; quinoline derived antiinfective agent; rifampicin; spiramycin; antiinfective agent; antivirus agent; adult; aged; antibiotic therapy; Article; bacterial infection; controlled study; death; female; France; hospital patient; human; influenza; legionnaire disease; length of stay; lung auscultation; major clinical study; malaria falciparum; male; Middle East respiratory syndrome; oxygen therapy; patient isolation; pneumococcal infection; religion; retrospective study; reverse transcription polymerase chain reaction; Rhinovirus infection; Saudi Arabia; thorax radiography; Coronavirus infection; hospitalization; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; Streptococcus pneumoniae; travel; treatment outcome; virology; Aged; Anti-Bacterial Agents; Antiviral Agents; Coronavirus Infections; Female; Hospitalization; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Oseltamivir; Oxygen Inhalation Therapy; Paris; Patient Isolation; Retrospective Studies; Saudi Arabia; Streptococcus pneumoniae; Travel; Treatment Outcome","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; http://www.who.int/emergencies/mers-cov/en/, Who; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group (2013) J Virol, 87, pp. 7790-7792; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect, 6; Wernery, U., Lau, S.K.P., Woo, P.C.Y., Middle East respiratory syndrome (MERS) coronavirus and dromedaries (2017) Vet J Lond Engl 1997, 220, pp. 75-79; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 3099 (18), pp. 30120-30127. , https://doi.org/10.1016/S1473-3099(18)30127-0, [Epub ahead of print] Review. PubMed PMID: 29680581; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Lim, P.L., Middle East respiratory syndrome (MERS) in Asia: lessons gleaned from the South Korean outbreak (2015) Trans R Soc Trop Med Hyg, 109, pp. 541-542; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Alhamlan, F.S., Majumder, M.S., Brownstein, J.S., Hawkins, J., Al-Abdely, H.M., Alzahrani, A., Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (2017) BMJ Open, 7; http://www.promedmail.org/, ProMED-mail [Internet]. [cited 2017 Feb 20]; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J Rev Sante Mediterr Orient Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit, 19, pp. S12-S18; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; (2015), https://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=506, Avis du Haut conseil de la santé publique relatif à la définition et au classement des cas possibles et confirmés d'infection à MERS- CoV ainsi qu'aux précautions à mettre en œuvre lors de la prise en charge de ces patient. HCSP; Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet Lond Engl, 381, pp. 2265-2272; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14, pp. 464-470; Bleibtreu, A., Arias, P., Vallois, D., Debit, A., Lermuzeaux, M., Rioux, C., Delayed management of Staphyloccocus aureus infective endocarditis in a Middle East respiratory syndrome coronavirus possible case hospitalized in 2015 in Paris, France (2017) Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis, 23, pp. 416-417; http://www.who.int/csr/disease/coronavirus_infections/mers_cov_interim_case_definition_Jul2015.pdf?ua=1,mers_cov_interim_case_definition_Jul2015.pdf, [Internet]. [cited 2017 Apr; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Drosten, C., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39); Thomas, H.L., Zhao, H., Green, H.K., Boddington, N.L., Carvalho, C.F.A., Osman, H.K., Enhanced MERS coronavirus surveillance of travelers from the Middle East to England (2014) Emerg Infect Dis, 20, pp. 1562-1564; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Drali, T., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Shahkarami, M., Yen, C., Glaser, C., Xia, D., Watt, J., Wadford, D.A., Laboratory testing for Middle East respiratory syndrome coronavirus, California, USA, 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1664-1666; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian Hajj pilgrims returning to Shiraz, Fars province, Iran (2012) Influenza Other Respir Viruses, 6; http://invs.santepubliquefrance.fr, BEH-hors-serie-Recommandations-sanitaires-pour-les-voyageurs-2016) [Internet]; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health TM IH, 20, pp. 807-812; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin Respir Crit Care Med, 37, pp. 555-571; Sridhar, S., Belhouchat, K., Drali, T., Benkouiten, S., Parola, P., Brouqui, P., French Hajj pilgrims' experience with pneumococcal infection and vaccination: a knowledge, attitudes and practice (KAP) evaluation (2015) Travel Med Infect Dis, 13, pp. 251-255; http://ecdc.europa.eu/en/publications/Publications/20-Dec-2016-RRA-Legionella-United%20Arab%20Emirates.pdf, Increase of cases of Legionnaires' disease in EU travellers returning from Dubai, October-December 2016. 22 Dec 2016 [Internet]; Saeed, A.A.B., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015-February 2016 (2017) Emerg Infect Dis, 23, pp. 682-685; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; Jauréguiberry, S., Boutolleau, D., Grandsire, E., Kofman, T., Deback, C., Aït-Arkoub, Z., Clinical and microbiological evaluation of travel-associated respiratory tract infections in travelers returning from countries affected by pandemic A(H1N1) 2009 influenza (2012) J Travel Med, 19, pp. 22-27","Bleibtreu, A.; Service des Maladies Infectieuses et Tropicales, Paris Diderot University, APHP, Hôpital Bichat Claude BernardFrance; email: alexandre.bleibtreu@aphp.fr",,"BioMed Central Ltd.",14712334,,BIDMB,"30012113","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85050117547 "Byukusenge M., Nissly R.H., Kasibhatla S.M., Li L., Russell R., Springer H., Barry R., Van Saun R., Wolfgang D., Hovingh E., Kulkarni-Kale U., Kuchipudi S.V.","56436667700;56191285100;52563561500;56109577200;57202304283;57202304334;57194761265;7004514036;6603450490;23018812100;6507581306;36059411000;","Erratum: Complete genome sequences of four bovine coronavirus isolates from Pennsylvania (Microbiology Resource Announcements (2018) 6:22 (e00467-18) DOI: 10.1128/genomeA.00467-18)",2018,"Microbiology Resource Announcements","7","2", e00845-18,"","",,,"10.1128/MRA.00845-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056267309&doi=10.1128%2fMRA.00845-18&partnerID=40&md5=11ef1849153324b2444b51930d298f00","Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Bioinformatics Centre, Savitribai Phule Pune University, Pune, India; HPC-Medical and Bioinformatics Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University, Pune, India; Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States","Byukusenge, M., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Nissly, R.H., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Kasibhatla, S.M., Bioinformatics Centre, Savitribai Phule Pune University, Pune, India, HPC-Medical and Bioinformatics Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University, Pune, India; Li, L., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Russell, R., Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Springer, H., Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Barry, R., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Van Saun, R., Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Wolfgang, D., Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States, Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States; Hovingh, E., Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States; Kulkarni-Kale, U., Bioinformatics Centre, Savitribai Phule Pune University, Pune, India; Kuchipudi, S.V., Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States","Volume 6, no. 22, e00467-18, 2018, https://doi.org/10.1128/genomeA.00467-18. Page 1: The author affiliations should appear as given in this erratum. © 2018 Byukusenge et al.",,"erratum",,"Kuchipudi, S.V.; Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State UniversityUnited States; email: skuchipudi@psu.edu",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Erratum,"Final",Open Access,Scopus,2-s2.0-85056267309 "Amarelle L., Lecuona E.","57191861058;6602985721;","The Antiviral Effects of Na,K-ATPase Inhibition: A Minireview",2018,"International journal of molecular sciences","19","8",,"","",,,"10.3390/ijms19082154","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057239170&doi=10.3390%2fijms19082154&partnerID=40&md5=4b79c4a9dc2f948ed14414c03cb916e8","Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la RepúblicaMontevideo 11600, Uruguay","Amarelle, L., Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la RepúblicaMontevideo 11600, Uruguay; Lecuona, E., Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States","Since being first described more than 60 years ago, Na,K-ATPase has been extensively studied, while novel concepts about its structure, physiology, and biological roles continue to be elucidated. Cardiac glycosides not only inhibit the pump function of Na,K-ATPase but also activate intracellular signal transduction pathways, which are important in many biological processes. Recently, antiviral effects have been described as a novel feature of Na,K-ATPase inhibition with the use of cardiac glycosides. Cardiac glycosides have been reported to be effective against both DNA viruses such as cytomegalovirus and herpes simplex and RNA viruses such as influenza, chikungunya, coronavirus, and respiratory syncytial virus, among others. Consequently, cardiac glycosides have emerged as potential broad-spectrum antiviral drugs, with the great advantage of targeting cell host proteins, which help to minimize resistance to antiviral treatments, making them a very promising strategy against human viral infections. Here, we review the effect of cardiac glycosides on viral biology and the mechanisms by which these drugs impair the replication of this array of different viruses.","antiviral treatment; cardiac glycosides; Na,K-ATPase; virus","adenosine triphosphatase (potassium sodium); antivirus agent; cardiac glycoside; DNA virus; enzyme inhibitor; antagonists and inhibitors; DNA virus infection; drug effect; human; RNA virus; RNA virus infection; signal transduction; Antiviral Agents; Cardiac Glycosides; DNA Virus Infections; DNA Viruses; Enzyme Inhibitors; Humans; RNA Virus Infections; RNA Viruses; Signal Transduction; Sodium-Potassium-Exchanging ATPase",,,,,14220067,,,"30042322","English","Int J Mol Sci",Review,"Final",Open Access,Scopus,2-s2.0-85057239170 "Ismail Z.M., El-Deeb A.H., El-Safty M.M., Hussein H.A.","57204202190;35190310600;40261363100;57204064983;","Enhanced pathogenicity of low-pathogenic H9N2 avian influenza virus after vaccination with infectious bronchitis live attenuated vaccine",2018,"Veterinary World","11","7",,"977","985",,3,"10.14202/vetworld.2018.977-985","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054935673&doi=10.14202%2fvetworld.2018.977-985&partnerID=40&md5=08a540f45f4384eb84878ebf678f2a1c","Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Central Laboratory for Evaluation of Veterinary Biologics, Abassia, Egypt","Ismail, Z.M., Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; El-Deeb, A.H., Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; El-Safty, M.M., Central Laboratory for Evaluation of Veterinary Biologics, Abassia, Egypt; Hussein, H.A., Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt","Aim: In the present study, two experiments were carried out for studying the pathogenicity of H9N2 avian influenza virus (AIV) in broiler chickens after vaccination with different live respiratory viral vaccines. Materials and Methods: One-day-old specific pathogen-free (SPF) chicks were divided into four groups in each experiment. In experiment 1, Groups 1 and 2 were inoculated with H9N2 AIV through nasal route in 1 day old, Groups 1 and 3 were vaccinated with live infectious bronchitis coronavirus (IBV) vaccine in 5 days old, and Group 4 was left as a negative control. In experiment 2, Groups 5 and 6 were inoculated with AIV subtype H9N2 through nasal route in 1 day old, Group 5 was vaccinated with live IBV vaccine and live Newcastle disease virus (NDV) vaccine in 5 and 18 days old, respectively, Groups 6 and 7 were vaccinated with live NDV vaccine in 18 days old, and Group 8 was left as a negative control. Chicks were kept in isolators for 18 days in the first experiment and 35 days in the second experiment. Tracheal and cloacal swabs were collected from 3, 5, 7, 10, 12, and 15 day's old chicks from all groups in experiment 1 and 21, 23, 25, and 28 days old from all groups in experiment 2. Quantitative real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) was applied on the collected tracheal swabs for detecting RNA copies of H9N2 AIV. Cloacal swabs and the positive rRT-PCR tracheal swabs were inoculated in 10-day-old SPF embryonated chicken eggs (ECE) to confirm rRT-PCR results. Internal organs (kidney, trachea, and spleen) from all chicken groups were collected weekly for histopathological examination to determine severity of the lesions. Serum samples were collected on a weekly basis for the detection of humoral immune response against H9N2, NDV, and IBV from all chicken groups. Results: rRT-PCR results with virus titration in ECEs revealed a significant increase in H9N2 AIV titer with extension in the period of viral shedding in Groups 1 and 5. Severe lesion score was observed for Groups 1 and 5. The humoral immune response against H9N2 AIV, NDV, and IBV revealed a significant increase in H9N2 AIV titer in Groups 1 and 5, NDV titer showed a significant increase in Group 7, and IBV titer increased in Groups 1, 3, and 5. Conclusion: Results demonstrated the increase in pathogenicity of H9N2 AIV, especially when H9N2-infected chicks vaccinated with live IBV vaccine. © Ismail, et al.","Coinfection; Infectious bronchitis virus; Low pathogenic H9N2","live vaccine; Newcastle disease vaccine; animal experiment; animal model; animal tissue; Article; Avian infectious bronchitis virus; broiler; bronchitis; controlled study; enzyme linked immunosorbent assay; gene sequence; highly pathogenic avian influenza virus; histopathology; humoral immunity; Influenza A virus (H9N2); Newcastle disease virus; nonhuman; real time polymerase chain reaction; reverse transcription polymerase chain reaction; serology; vaccination; virus shedding; virus titration","Luczo, J.M., Stambas, J., Durr, P.A., Michalski, W.P., Bingham, J., Molecular pathogenesis of H5 highly pathogenic avian influenza: The role of the haemagglutinin cleavage site motif (2015) Rev. Med. Virol, 25 (6), pp. 406-430; Cui, J., Qu, N., Guo, Y., Cao, L., Wu, S., Mei, K., Sun, H., Liao, M., Phylogeny, pathogenicity, and transmission of H5N1 avian influenza viruses in chickens (2017) Front Cell Infect. Microbiol, 7, p. 328; Munir, M., Zohari, S., Abbas, M., Shabbir, M.Z., Zahid, M.N., Latif, M.S., Iqbal, M., Berg, M., Isolation and characterization of low pathogenic H9N2 avian influenza a virus from a healthy flock and its comparison to other H9N2 isolates (2013) Indian J. Virol, 24 (3), pp. 342-348; Al-Garib, S., Agha, A., Al-Mesilaty, L., Low pathogenic avian influenza H9N2: Worldwide distribution (2016) Worlds Poult. Sci. J, 72 (1), pp. 125-136; Lee, D.H., Swayne, D.E., Sharma, P., Rehmani, S.F., Wajid, A., Suarez, D.L., Afonso, C.L., H9N2 low pathogenic avian influenza in Pakistan (2012-2015) (2016) Vet. Rec. Open, 3 (1); Dadras, H., Nazifi, S., Shakibainia, M., Evaluation of the effect of simultaneous infection with E. coli O2 and H9N2 influenza virus on inflammatory factors in broiler chickens (2014) Vet. Sci. Dev, 4 (2), p. 4; Umar, S., Younus, M., Rehman, M.U., Aslam, A., Shah, M.A.A., Munir, M.T., Hussain, S., Ullah, S., Role of aflatoxin toxicity on transmissibility and pathogenicity of H9N2 avian influenza virus in Turkeys (2015) Avian Pathol, 44 (4), pp. 305-310; Hassan, K.E., Ali, A., Shany, S.A., El-Kady, M.F., Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens (2017) Res. Vet. Sci, 115, pp. 356-362; Afifi, M.A., El-Kady, M.F., Zoelfakar, S.A., Abddel-Moneim, A.S., Serological surveillance reveals widespread influenza A H7 and H9 subtypes among chicken flocks in Egypt (2013) Trop. Anim. Health Prod, 45 (2), pp. 687-690; Hussien, H.A., El-Azab, M., Evidence for the presence of H6 and H9 among broiler and layer breeders in Egypt (2001) In: Proceedings XII International Congress World Veterinary Poultry Association, pp. 227-235. , Cairo-Egypt; Abdel-Moneim, A.S., Afifi, M.A., El-Kady, M.F., Isolation and mutation trend analysis of influenza a virus subtype H9N2 in Egypt (2012) Virol. J, 9, pp. 173-192; Adel, A., Arafa, A., Hussein, H.A., El-Sanousi, A.A., Molecular and antigenic traits on hemagglutinin gene of avian influenza H9N2 viruses: Evidence of a new escape mutant in Egypt adapted in quails (2017) Res. Vet. Sci, 112, pp. 132-140; Reed, L.J., Muench, H., A simple method for estimating fifty percent endpoints (1938) Am. J. Hyg, 27, pp. 493-497; (2015) International Health Code Chapter 2.1.5, , Newcastle Disease. OIE 'Office International Des Epizooties', Paris, France; (2015) Avian Influenza (Infection with Avian Influenza Viruses), pp. 1-23. , OIE Terrestrial Manual, Paris, France; Banchroft, J.D., Stevens, A., Turner, D.R., (1996) Theory and Practice of Histological Techniques, , 4th ed. Churchill Livingstone, New York, London, San Francisco, Tokyo; Lee, D.H., Song, C.S., H9N2 avian influenza virus in Korea: Evolution and vaccination (2013) Clin. Exp. Vaccine Res, 2 (1), pp. 26-33; Parvin, R., Heenemann, K., Halami, M.Y., Chowdhury, E.H., Islam, M.R., Vahlenkamp, T.W., Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses (2014) Arch. Virol, 159 (7), pp. 1651-1661; Parvin, R., Shehata, A.A., Heenemann, K., Gac, M., Rueckner, A., Halami, M.Y., Vahlenkamp, T.W., Differential replication properties among H9N2 avian influenza viruses of Eurasian origin (2015) Vet. Res, 46 (1), p. 75; Swayne, D.E., Halvorson, D.A., Influenza (2008) Diseases of Poultry, pp. 153-184. , In: Saif, Y.M., Glisson, J.R., McDougald, L.R., Nolan, L.K. and Swayne, D.E, editors. 12th ed. Blackwell Publishing, Ames, Iowa, USA; Hassan, K.E., Shany, S.A., Ali, A., Dahshan, A.H.M., El-Sawah, A.A., El-Kady, M.F., Prevalence of avian respiratory viruses in broiler flocks in Egypt (2016) Poult. Sci, 95 (6), pp. 1271-1280; Beerlage, C., Greb, J., Kretschmer, D., Assaggaf, M., Trackman, P.C., Hansmann, M.L., Bonin, M., Kempf, V.A., Hypoxiainducible factor 1-regulated lysyl oxidase is involved in Staphylococcus aureus abscess formation (2013) Infect Immun, 81 (7), pp. 2562-2573; Mosleh, N., Dadras, H., Asasi, K., Taebipour, M.J., Tohidifar, S.S., Farjanikish, G., Evaluation of the timing of the Escherichia coli co-infection on pathogenicity of H9N2 avian influenza virus in broiler chickens (2017) Iran. J. Vet. Res, 18 (2), pp. 86-91; Böttcher-Friebertshäuser, E., Klenk, H.D., Garten, W., Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium (2013) Pathog. Dis, 69 (2), pp. 87-100; Wibawa, H., Bingham, J., Nuradji, H., Lowther, S., Payne, J., Harper, J., Wong, F., Meers, J., The pathobiology of two Indonesian H5N1 avian influenza viruses representing different clade 2.1 sublineages in chickens and ducks (2013) Comp. Immunol. Microbiol. Infect Dis, 36 (2), pp. 175-191; Longping, V.T., Whittaker, G.R., Modification of the hemagglutinin cleavage site allows indirect activation of avian influenza virus H9N2 by bacterial staphylokinase (2015) Virology, 482, pp. 1-8; Vey, M., Orlich, M., Adler, S., Klenk, H.D., Rott, R., Garten, W., Haemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the recognition motif R-X-R/K-R (1992) Virology, 188 (1), pp. 408-413; Senne, D.A., Panigrahy, B., Kawaoka, Y., Pearson, J.E., Süss, J., Lipkind, M., Kida, H., Webster, R.G., Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: Amino acid sequence at the HA cleavage site as a marker of pathogenicity potential (1996) Avian Dis, 40 (2), pp. 425-437; Bosch, F.X., Orlich, M., Klenk, H.D., Rott, R., The structure of haemagglutinin a determinant for the pathogenicity of influenza viruses (1979) Virology, 95 (1), pp. 197-207; Klenk, H.D., Garten, W., Host cell proteases controlling virus pathogenicity (1994) Trends Microbial, 2 (2), pp. 39-43; Swayne, D.E., Slemons, R.D., Renal pathology in specific-pathogen-free chickens with a waterfowl-origin type an influenza virus (1990) Avian Dis, 34 (2), pp. 285-294; Slemons, R.D., Swayne, D.E., Replication of a water fowl-origin influenza virus in the kidney and intestine of chicken (1990) Avian Dis, 34 (2), pp. 227-284; Slemons, R.D., Locke, L.N., Sheerar, M.G., Duncan, R.M., Hinshaw, V.S., Easterday, B.C., Kidney lesions associated with mortality in chickens inoculated with waterfowl influenza viruses (1990) Avian Dis, 34 (1), pp. 120-128; Mutinelly, F., Capua, I., Bozza, M.A., Grossele, B., Furlanttini, V., Comparative Intravenous Pathogenicity for Turkey and Chickens of Low-Pathogenic Avian Influenza A/Tu/ltaly/3675/99 (2000) In Proceeding of the 3rd International Symposium on Turkey Disease, pp. 146-170; Swayne, D.E., Slemons, R.D., Comparative pathology of intravenously inoculated wild duck and turkey origin type an influenza virus in chickens (1995) Avian Dis, 39 (1), pp. 74-84; Capua, I., Alexander, D.J., Avian influenza infection in birds: A challenge and opportunity for the poultry veterinarian (2009) Poult. Sci, 88 (4), pp. 842-846; Tavakkoli, H., Asasi, K., Mohammadi, A., Effectiveness of two H9N2 low pathogenic avian influenza conventional inactivated oil emulsion vaccine on H9N2 viral replication and shedding in broiler chickens (2011) Iran. J. Vet. Res, 12 (3), pp. 214-221; Karimi-Madab, M., Ansari-Lari, M., Asasi, K., Nili, H., Risk factors for detection of bronchial casts, most frequently seen in endemic H9N2 avian influenza infection, in poultry flocks in Iran (2010) Prev. Vet. Med, 95 (3-4), pp. 275-280; Cook, J.K., Darbyshire, J.H., Peters, R.W., The use of chicken tracheal organ cultures for the isolation of avian infectious bronchitis virus (1976) Arch. Virol, 50 (1-2), pp. 109-118; Liu, D.X., Brierley, I., Brown, T.D.K., Identification of a trypsin-like serine proteinase domain encoded by ORF 1a of the coronavirus IBV (1995) Adv. Exp. Med. Biol, 380, pp. 405-411; Ng, L.F., Liu, D.X., Further characterization of the coronavirus infectious bronchitis virus C-like proteinase and determination of a new cleavage site (2000) Virology, 272 (1), pp. 27-39; Mancini, D.A.P., Mendonça, R.M.Z., Dias, A.L.F., Mendonça, R.Z., Pinto, J.R., Co-infection between influenza virus and flagellated bacteria (2005) Rev. Med. Trop. Sao Paulo, 47 (5), pp. 275-280; Costa-Hurtado, M., Afonso, C.L., Miller, P.J., Spackman, E., Kapczynski, D.R., Swayne, D.E., Shepherd, E., Pantin-Jackwood, M., Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys (2014) Vet. Res, 45 (1), p. 1; França, M., Howerth, E.W., Carter, D., Byas, A., Poulson, R., Afonso, C.L., Stallknecht, D.E., Co-infection of mallards with low-virulence Newcastle disease virus and low-pathogenic avian influenza virus (2014) Avian Pathol, 43 (1), pp. 96-104; Umar, S., Azeem, T., Abid, S.A., Mushtaq, A., Aqil, K., Qayyum, M.R., Rehman, A., Effect of lentogenic Newcastle disease virus (Lasota) on low pathogenic avian influenza virus (H9N2) infection in Fayoumi chicken (2015) J. Avian Res, 1 (1), pp. 1-4; Mahdavi, S., Pourbakhsh, S., Tavasoli, A., Momayez, R., Experimental histopathologic study of the lesions induced by serotype 793/B (4/91) infectious bronchitis virus (2007) Arch. Inst. Razi, 62 (1), pp. 15-22; Pillai, S.P.S., Pantin-Jackwood, M., Yassine, H.M., Saif, Y.M., Lee, C.W., The high susceptibility of Turkeys to influenza viruses of different origins implies their importance as potential intermediate hosts (2010) Avian Dis, 54, pp. 522-526; Shortridge, K.F., King, A.P., Cocultivation of avian Orthomyxoviruses and Paramyxoviruses in embryonated eggs: Implications for surveillance studies (1938) Appl. Environ. Microbiol, 45 (2), pp. 463-467; Ge, S., Zheng, D., Zhao, Y., Liu, H., Liu, W., Sun, Q., Li, J., Li, L., Evaluating viral interference between influenza virus and Newcastle disease virus using real-time reverse transcription polymerase chain reaction in chicken eggs (2012) Virol. J, 9 (1), p. 128; Carr, J.H., Inoculation time differentials for expression of interference of Newcastle disease virus by swine influenza virus in chick embryos (1960) Trans. Kans. Acad. Sci, 63 (3), pp. 141-146; Dianzani, F., Viral interference and interferon (1975) Ric. Clin. Lab, 5 (3), pp. 196-213; Kimura, Y., Norrby, E., Nagata, I., Ito, Y., Shimokata, K., Nishiyama, Y., Homologous interference induced by a temperature-sensitive mutant derived from an HVJ (Sendai virus) carrier culture (1976) J. Gen. Virol, 33 (2), pp. 333-343; Rott, R., Molecular basis of infectivity and pathogenicity of myxovirus (1979) Arch. Virol, 59 (4), pp. 285-298; Ben Shabat, M., Meir, R., Haddas, R., Lapin, E., Shkoda, I., Raibstein, I., Perk, S., Davidson, I., Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza Viruses (2010) J Virol Methods, 138 (1-2), pp. 72-77","Hussein, H.A.; Department of Virology, Faculty of Veterinary Medicine, Cairo UniversityEgypt; email: Husvirol@cu.edu.eg",,"Veterinary World",09728988,,,,"English","Vet. World",Article,"Final",Open Access,Scopus,2-s2.0-85054935673 "Rihan F.A., Al-Salti N.S., Anwar M.-N.Y.","8257451900;26435112100;7202759406;","Dynamics of coronavirus infection in human",2018,"AIP Conference Proceedings","1982",, 020009,"","",,,"10.1063/1.5045415","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051112141&doi=10.1063%2f1.5045415&partnerID=40&md5=167fe1790bedf4a8e5682488fbdb392b","Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Oman; Basic Sciences Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt","Rihan, F.A., Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Al-Salti, N.S., Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Oman; Anwar, M.-N.Y., Basic Sciences Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt","Middle East Respiratory Syndrome Coronavirus (MERS-CorV), was discovered in humans with lower respiratory tract infection, causes a range of illnesses in humans, from the common cold to the Severe Acute Respiratory Syndrome (SARS). Scientists give much attention to study the CorV infection among groups and travelers. In this paper, we utilize a mathematical model governed by a system of differential equations, which incorporate target cell limitation and the innate interferon response, investigate the innate and adaptive immune responses to primary CorV infection in an individual. We also investigate the sensitivity analysis of the model to determine the most sensitive parameters and informative subintervals. This study may promote clearance of virus and host recovery from infection. © 2018 Author(s).","Coronavirus; Immunological barrier; Infectious disease; Mathematical modeling; Sensitivity",,"Althaus, C.L., Ganusov, V.V., Boer, R.J.D., Dynamics of cd8+ t-cell responses during acute and chronic lymphocytic choriomeningitis virus infection1 (2007) J. Immuno., 179, pp. 2944-2951; Jiang, X., Yuan, Z., Yu, P., Zou, X., Dynamics of a hiv-1 therapy model of fighting a virus with another virus (2009) J. Biol. Dynamics, 3, pp. 387-409; Marchuk, G., (1997) Mathematical Modelling of Immune Response in Infectious Diseases, , Dordrecht: Kluwer Academic Publishers; Anderson, R., May, R., (1991) Infectious Diseases of Humans: Dynamics and Control, , Oxford: OUP; Burić, N., Totorović, D., Dynamics of delay-differential equations modelling immunology of tumer growth, Chaos (2002) Sol. Frac., 13, pp. 645-654; Rihan, F.A., Delay differential models in dynamic diseases (2010) The Proceedings of the International Conference on Bioinformatics and Computational Biology 2010, pp. 73-79; Bermingham, A., Severe respiratory illness caused by a novel coronavirus (2012) Euro Surveill, 17, p. 20290; Zinkernagel, R.M., (1996) Immunology Taught by Viruses, Science, 271, pp. 173-178; Zaki, A., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in saudi arabia (2012) N. Engl. J, 367, pp. 1814-1820; Antibodies Against Mers Coronavirus in Dromedary Camels, United Arab Emirates, 2003 and 2013, Emerging Infectious Diseases 20, , B. M. et al; (2013) World Health Organization. Middle East Respiratory Syndrome Coronavirus Update, , www.who.int/csr/don/2013_06_26/en/index.htm; Ferguson, N.M., Wolf, F.D., Ghani, A.C., Fraser, C., Donnelly, R.C., Lange, J.M.A., Danner, S.A., Anderson, R.M., Antigen-driven cd4+ t-cell and hiv-1 dynamics: Residual viral replication under highly antiretroviral therapy (1999) Proc. Nat. Acad. Sci. USA, 96, pp. 15167-15172; Hethcote, H., Den Driessche, P.V., An sis epidemic model with variable population size and a delay (1995) J. Math. Biol., 34, pp. 177-194; Cai, L., Guo, S., Li, X., Ghosh, M., Global dynamics of a dengue epidemic mathematical model (2009) Chaos Solitons Fractals, 42, pp. 2297-2304; Kermack, W., McKendrick, A., Contributions to the mathematical theory epidemics (1927) Proc. Roy. Soc. A, 115, pp. 700-721. , (Part I); Kar, T., Mondal, P.K., Global dynamics and bifurcation in delayed sir epidemic model (2011) Nonlinear Anal.: RWA, 12; Zhang, T., Teng, Z., On a nonautonomous seirs model in epidemiology (2007) Bull. Math. Biol., 69, pp. 2537-2559; Drosten, C., Gnther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Tamura, S., Kurata, T., Defense mechanisms against in?uenza virus infection in the respiratory tract mucosa (2004) Jpn. J. Infect. Dis., 57, pp. 236-247; Tamura, S., Tanimoto, T., Kurata, T., Mechanisms of broad cross-protection provided by in?uenza virus infection and their application to vaccines Jpn. J. Infect. Dis., 58, pp. 195-207; Rihan, F.A., Abdelrahman, D., Lakshmanan, S., Alkhajaeh, A., A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis (2014) Appl. Math. Comput., 232, pp. 606-623; Rihan, F.A., Rihan, B.F., Numerical modelling of biological systems with memory using delay differential equations (2014) Appl. Math. Inf. Sci., 9, pp. 1645-1658; Bocharov, G., Romanyukha, A., Mathematical model of antiviral immune response iii: Influenza-a virus infection (1994) J. Theor. Biol., 167, pp. 323-360; Rihan, F.A., Abdelrahman, D., Sensitivity of best-fit parameters in neutral differential equations with cell growth dynamics (2011) Inet. J. Math. Comput., 10, pp. 65-78; Rihan, F.A., Azamov, A.A., Al-Sakaji, H.J., An inverse problem for delay differential equations: Parameter estimation, nonlinearity, sensitivity (2018) Appl. Math. Inf. Sci, 12 (1), pp. 1-12","Rihan, F.A.; Department of Mathematical Sciences, College of Science, United Arab Emirates UniversityUnited Arab Emirates; email: frihan@uaeu.ac.ae","Bardis N.","American Institute of Physics Inc.",0094243X,9780735416987,,,"English","AIP Conf. Proc.",Conference Paper,"Final",,Scopus,2-s2.0-85051112141 [No author name available],[No author id available],"AIP Conference Proceedings",2018,"AIP Conference Proceedings","1982",,,"","",325,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051118532&partnerID=40&md5=32c37c9d7bdafe30d4fbf84802b9c1ae",,"","The proceedings contain 47 papers. The topics discussed include: direct mixed multistep block method for solving second-order differential equations; estimation of the maximum permissible injections of the distributed generation in the LV networks based on power quality considerations; multilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized area; comparison of artificial neural network, random forest and random perceptron forest for forecasting the spatial impurity distribution; a method for language attribution based on assessment of text irregularity; Fourier transform in elliptic coordinates: case of axial symmetry; investigating the effect of non-performing loans on technical efficiency in Malaysian banking sector; dynamics of coronavirus infection in human; entropy-weighted similarity measures for collaborative recommender systems; comparison of plant alternatives in a freight-terminal using stochastic discrete event simulation; a study of android calculator based on Lemoine's conjecture; an efficient method for solving integro-differential boundary value problems; proposal of multivariate control chart using exponentially log-likelihood for detection of change in mean and variability; regression analysis on high-dimensional, block diagonal structure data with focus on latent variables; effective calculation methods of the gas flow characteristics and offshore gas pipeline glaciation; and BMA probabilistic forecasting of the 500hPa geopotential height over northern hemisphere using TIGGE multimodel ensemble forecasts.",,,,,"Bardis N.","American Institute of Physics Inc.",0094243X,9780735416987,,,"English","AIP Conf. Proc.",Conference Review,"Final",,Scopus,2-s2.0-85051118532 "Kudagammana H.D.W.S., Thevanesam V., Chu D.K.W., Eriyagama N.B., Peiris J.S.M., Noordeen F.","57189759989;6602413790;7201734326;6507526324;7005486823;6507962779;","Coronaviruses in guano from Pteropus medius bats in Peradeniya, Sri Lanka",2018,"Transboundary and Emerging Diseases","65","4",,"1122","1124",,1,"10.1111/tbed.12851","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042740684&doi=10.1111%2ftbed.12851&partnerID=40&md5=e60e652b4eaa346a52e8ece7cd33e3eb","Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka; Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; School of Public Health, University of Hong Kong, Hong Kong","Kudagammana, H.D.W.S., Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka, Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Thevanesam, V., Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Chu, D.K.W., School of Public Health, University of Hong Kong, Hong Kong; Eriyagama, N.B., Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; Peiris, J.S.M., School of Public Health, University of Hong Kong, Hong Kong; Noordeen, F., Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka","Bats are a unique group of mammals well suited to be hosts for emerging viruses. With current rates of deforestation and urbanization, redistribution of bat habitats to urban and suburban areas may bring bats into closer contact with livestock and humans. Common flying fox, Pteropus medius (previously known as Pteropus giganteus), forms large communal roosts on treetops, often in close proximity to human habitation in Sri Lanka. This report describes the detection of coronavirus RNA in P. medius bat guano collected in Peradeniya, Sri Lanka. These viruses had >97% nucleotide identity with coronaviruses detected in Cynopterus sphinx, Scotophilus heathii and S. kuhlii bats in Thailand. Pteropus medius is widespread in Asia and appears to excrete group D coronaviruses, which are hitherto confined to bats; however, these findings may have public health implications in the future. © 2018 Blackwell Verlag GmbH","coronavirus; flying fox; Sri Lanka","virus RNA; virus RNA; Alphacoronavirus; Article; Betacoronavirus; controlled study; Coronavirinae; Coronavirus infection; DNA sequence; nonhuman; phylogeny; Pteropus; Pteropus medius; reverse transcription polymerase chain reaction; Sri Lanka; tree; virus detection; virus isolation; animal; bat; Coronavirus infection; feces; genetics; isolation and purification; Thailand; veterinary medicine; virology; virus genome; Animals; Chiroptera; Coronavirus; Coronavirus Infections; Feces; Genome, Viral; Phylogeny; RNA, Viral; Sri Lanka; Thailand","de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) Journal of Virology, 87, pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13; Gunawardena, P.S., Marston, D.A., Ellis, R.J., Wise, E.L., Karawita, A.C., Breed, A.C., Fooks, A.R., Lyssavirus in Indian FlyingFoxes, Sri Lanka (2016) Emerging Infectious Diseases, 22, pp. 1456-1459. , https://doi.org/10.3201/eid2208.151986; Han, H.J., Wen, H.L., Zhou, C.M., Chen, F.F., Luo, L.M., Liu, J.W., Yu, X.J., Bats as reservoirs of severe emerging infectious diseases (2015) Virus Research, 205, pp. 1-6. , https://doi.org/10.1016/j.virusres.2015.05.006; Hemida, M.G., Chu, D.K., Perera, R.A., Ko, R.L., So, R.T., Ng, B.C., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transboundary and Emerging Diseases, 64, pp. 2093-2103. , https://doi.org/10.1111/tbed.12630, [Epub ahead of print]; Mendenhall, I.H., Borthwick, S., Neves, E.S., Low, D., Linster, M., Liang, B., Smith, G.J.D., Identification of a lineage D betacoronavirus in cave nectar bats (Eonycteris spelaea) in Singapore and an overview of lineage D reservoir ecology in SE Asian bats (2017) Transboundary and Emerging Diseases, 64, pp. 1790-1800. , https://doi.org/10.1111/tbed.12568; Newman, S.H., Field, H.E., Jong, C.E., Epstein, J.H., (2011) Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests, , 1st Ed, Rome, Italy, FAO of the United Nations, Animal Production and Health Manual No 12; Pyrc, K., Berkhout, B., Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) Journal of Virology, 81, pp. 3051-3057. , https://doi.org/10.1128/JVI.01466-06; Wacharapluesadee, S., Duengkae, P., Rodpan, A., Kaewpom, T., Maneeorn, P., Kanchanasaka, B., Hemachudha, T., Diversity of coronavirus in bats from Eastern Thailand (2015) Virol Journal, 11, pp. 12-57. , https://doi.org/10.1186/s12985-015-0289-1; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) Journal of Virology, 2005 (79), pp. 884-895. , https://doi.org/10.1128/JVI.79.2.884-895.2005; Yapa, W.B., Randeniya, P.V., Ratnasooriya, W.D., (2002) Ecology and biology of bats in Sri Lanka. A survey on the distribution of bats in Sri Lanka, , http://archive.cmb.ac.lk:8080/research/bitstream/70130/1081/1/YapaRathna_Review%20article%20on%20Sri%20Lankan%20Bats.pdf, Final report, Colombo NSF","Kudagammana, H.D.W.S.; Faculty of Allied Health Sciences, University of PeradeniyaSri Lanka; email: wasanakudagammana@yahoo.co.uk",,"Blackwell Publishing Ltd",18651674,,,"29498228","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85042740684 "Ahmed S.R., Kang S.W., Oh S., Lee J., Neethirajan S.","34874640400;57194941742;56402198600;8577036400;14024586000;","Chiral zirconium quantum dots: A new class of nanocrystals for optical detection of coronavirus",2018,"Heliyon","4","8", e00766,"","",,2,"10.1016/j.heliyon.2018.e00766","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052516966&doi=10.1016%2fj.heliyon.2018.e00766&partnerID=40&md5=a4a3d1b3bc71377e2b7f5da43c24dc26","BioNano Laboratory, School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 609-735, South Korea","Ahmed, S.R., BioNano Laboratory, School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Kang, S.W., Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 609-735, South Korea; Oh, S., Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 609-735, South Korea; Lee, J., Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 609-735, South Korea; Neethirajan, S., BioNano Laboratory, School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada","A synthetic way of chiral zirconium quantum dots (Zr QDs) was presented for the first time using L(+)-ascorbic acid acts as a surface as well as chiral ligands. Different spectroscopic and microscopic analysis was performed for thorough characterization of Zr QDs. As-synthesized QDs exhibited fluorescence and circular dichroism properties, and the peaks were located at 412 nm and 352 nm, respectively. MTT assay was performed to test the cytotoxicity of the synthesized Zr QDs against rat brain glioma C6 cells. Synthesized QDs was further conjugated with anti-infectious bronchitis virus (IBV) antibodies of coronavirus to form an immunolink at the presence of the target analyte and anti-IBV antibody-conjugated magneto-plasmonic nanoparticles (MPNPs). The fluorescence properties of immuno-conjugated QD–MP NPs nanohybrids through separation by an external magnetic field enabled biosensing of coronavirus with a limit of detection of 79.15 EID/50 μL. © 2018 The Authors","Biomedical engineering; Materials chemistry; Materials science; Nanotechnology",,"Ahmed, S.R., Nagy, É., Neethirajan, S., Self-assembled star-shaped chiroplasmonic gold nanoparticles for an ultrasensitive chiro-immunosensor for viruses (2017) RSC Adv., 7, pp. 40849-40857; Ahmed, S.R., Mogus, J., Chand, R., Nagy, É., Neethirajan, S., Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid (2018) Biosens. Bioelectron., 103, pp. 45-53; Ali, G., Park, Y.J., Kim, H.J., Cho, S.O., Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization (2014) Nanoscale Res. Lett., 9, p. 553; Almyras, G.A., Matenoglou, G.M., Komninou, P., Kosmidis, C., Patsalas, P., Evangelakis, G.A., On the deposition mechanisms and the formation of glassy Cu–Zr thin films (2010) J. Appl. Phys., 107, p. 084313; Baimuratov, A.S., Rukhlenko, I.D., Noskov, R.E., Ginzburg, P., Gu'no, Y.K., Baranov, A.V., Fedorov, A.V., Giant optical activity of quantum dots, rods, and disks with screw dislocations (2015) Sci. Rep., 5, p. 14712; Bakradze, G., Jeurgens, L.P.H., Mittemeijer, E.J., Valence-band and chemical-state analyses of Zr and O in thermally grown thin zirconium-oxide films: an XPS study (2011) J. Phys. Chem. C, 115, pp. 19841-19848; Bao, J., Bawendi, M.G., A colloidal quantum dot spectrometer (2015) Nature, 523, pp. 67-70; Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Bawendi, M.G., Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking (2013) Nat. Mater., 12, pp. 445-451; Cho, E., Jang, H., Lee, J., Jang, E., Modeling on the size dependent properties of InP quantum dots: a hybrid functional study (2013) Nanotechnology, 24. , 215201−215201; Corazzari, I., Gilardino, A., Dalmazzo, S., Fubini, B., Lovisolo, D., Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: potential role of ion release (2013) Toxicol. Vitro, 27, pp. 752-759; Cui, R., Liu, H.H., Xie, H.Y., Zhang, Z.L., Yang, Y.R., Pang, D.W., Xie, Z.X., Shen, P., Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots (2009) Adv. Funct. Mater., 19, pp. 2359-2364; de Azevedo, W.M., Menezes, F.D., A new and straightforward synthesis route for preparing Cds quantum dots (2012) JOL, 132, pp. 1740-1743; Deng, Z.T., Samanta, A., Nangreave, J., Yan, H., Liu, Y., Robust DNA-functionalized core/shell quantum dots with fluorescent emission spanning from UV–vis to near-IR and compatible with DNA-directed self-assembly (2012) J. Am. Chem. Soc., 134, pp. 17424-17427; Eshed, M., Pol, S., Gedanken, A., Balasubramanian, M., Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method (2011) Beilstein J. Nanotechnol., 2, pp. 198-203; Filippone, S., Maroto, E.E., Martin-Domenech, Á., Suarez, M., Martin, N., An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1, 3-dipolar cycloadditions (2009) Nat. Chem., 1, pp. 578-582; Gelb, J.J., The American Association of Avian Pathologists (1998), pp. 69-175. , fourth ed. Kendall/Hunt Publ Dubuque, Iowa; Grgić, H., Hunter, D.B., Hunton, P., Nagy, É., Pathogenicity of infectious bronchitis virus isolates from Ontario chickens (2008) Can. J. Vet. Res., 72, pp. 403-410; Hinds, S., Taft, B.J., Levina, L., Sukhovatkin, V., Dooley, C.J., Roy, M.D., MacNeil, D.D., Kelley, S.O., Nucleotide-directed growth of semiconductor nanocrystals (2006) J. Am. Chem. Soc., 128, pp. 64-65; Howes, P.D., Chandrawati, R., Stevens, M.M., Colloidal nanoparticles as advanced biological sensors (2014) Science, 346, p. 1247390; Jiang, P., Zhu, C.-N., Zhang, Z.-L., Tianand, Z.-Q., Pang, D.-W., Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo (2012) Biomaterials, 33, pp. 5130-5135; Kershaw, S.V., Rogach, A.L., Infrared emitting HgTe quantum dots and their waveguide and optoelectronic devices (2015) J. Phys. Chem., 229, pp. 23-64; Koneswaran, M., Narayanaswamy, R., Ultrasensitive detection of vitamin B6 using functionalised CdS/ZnS core–shell quantum dots (2015) Sens. Actuators B Chem., 210, pp. 811-816; Li, K.G., Chen, J.T., Bai, S.S., Wen, X., Song, S.Y., Yu, Q., Li, J., Wang, Y.Q., Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots (2009) Toxicol. Vitro, 23, pp. 1007-1013; Liu, Q., Guo, B., Rao, Z., Zhang, B., Gong, J.R., Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging (2013) Nano Lett., 13, pp. 2436-2441; Liu, C., Hajagos, T.J., Chen, D., Chen, Y., Kishpaugh, D., Pei, Q., Efficient one-pot synthesis of colloidal zirconium oxide nanoparticles for high-refractive-index nanocomposites (2016) ACS Appl. Mater. Interfaces, 8, pp. 4795-4802; Ma, N., Sargent, E.H., Kelley, S.O., Non-equilibrium oxidation states of zirconium during early stages of metal oxidation (2009) Nat. Nanotechnol., 4, pp. 121-125; Ma, W., Herbert, F.W., Senanayake, S.D., Yildiz, B., Non-equilibrium oxidation states of zirconium during early stages of metal oxidation (2015) Appl. Phys. Lett., 106, p. 101603; Montalti, M., Cantelli, A., Battistelli, G., Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging (2015) Chem. Soc. Rev., 44, pp. 4853-4921; Puigdollers, A.R., Illasand, F., Pacchioni, G., Structure and properties of zirconia nanoparticles from density functional theory calculations (2016) J. Phys. Chem. C, 120, pp. 4392-4402; Rosenthal, S.J., Chang, J.C., Kovtun, O., McBride, J.R., Tomlinson, I.D., Biocompatible quantum dots for biological applications (2011) Chem. Biol., 18, pp. 10-24; Sturzenbaum, S.R., Hockner, M., Panneerselvam, A., Levitt, J., Bouillard, J.S., Taniguchi, S., Dailey, L.A., Thanou, M., Biosynthesis of luminescent quantum dots in an earthworm (2013) Nat. Nanotechnol., 8, pp. 57-60; Suzuki, N., Wang, Y., Elvati, P., Qu, Z., Kim, K., Jiang, S., Baumeister, E., Kotov, N.A., Chiral graphene quantum dots (2016) ACS Nano, 10, pp. 1744-1755; Tikhomirov, G., Hoogland, S., Lee, P.E., Fischer, A., Sargent, E.H., Kelley, S.O., DNA-based programming of quantum dot valency, self-assembly and luminescence (2011) Nat. Nanotechnol., 6, pp. 485-490; Tohgha, U., Deol, K.K., Porter, A.G., Bartko, S.G., Choi, J.K., Leonard, B.M., Varga, K., Balaz, M., Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots (2013) ACS Nano, 7, pp. 11094-11102; Vanmaekelbergh, D.I., Van Vugt, L.K., Bakker, H.E., Rabouw, F.T., Nijs, B.D., van Dijk-Moes, R.J., van Huis, M.A., van Blaaderen, A., Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots (2015) ACS Nano, 9, pp. 3942-3950; Vazquez-Nakagawa, M., Rodriguez-Perez, L., Herranz, M.A., Martin, N., Chirality transfer from graphene quantum dots (2016) Chem. Commun., 52, pp. 665-668; Vennemann, A., Alessandrini, F., Wiemann, M., Differential effects of surface-functionalized zirconium oxide nanoparticles on alveolar macrophages, rat lung, and a mouse allergy model (2017) Nanomaterials, 7, p. 280; Wang, J., Yin, W., He, X., Wang, Q., Guo, M., Chen, S., Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis (2016) Sci. Rep., 6, p. 35020; Xu, G., Zeng, S., Zhang, B., Swihart, M.T., Yong, K., Prasad, P.N., Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: exploring the photoluminescence behavior across the visible spectrum (2016) Chem. Rev., 116, pp. 12234-12327; Yang, F., Wang, X., Zhang, D., Yang, J., Luo, D., Xu, Z., Wei, J., Li, Y., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts (2014) Nature, 510, pp. 522-524; Yong, K.-T., Law, W.-C., Hu, R., Ye, L., Liu, L., Swihart, M.T., Prasad, P.N., Nanotoxicity assessment of quantum dots: from cellular to primate studies (2013) Chem. Soc. Rev., 42, pp. 1236-1250; Zhang, B., Wang, Y., Yang, C., Hu, S., Gao, Y., Zhang, Y., Wang, Y., Yong, K.-T., The composition effect on the optical properties of aqueous synthesized Cu–In–S and Zn–Cu–In–S quantum dot nanocrystals (2015) Phys. Chem. Chem. Phys., 17, pp. 25133-25141; Zhou, Y., Yang, M., Sun, K., Tang, Z., Kotov, N.A., Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals (2010) J. Am. Chem. Soc., 132, pp. 6006-6013; Zhou, Y., Zhu, Z., Huang, W., Liu, W., Wu, S., Liu, X., Yan Gao, Y., Tang, Z.Y., Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption (2011) Angew. Chem. Int. Ed., 50, pp. 11456-11459; Zhou, H., Kim, J., Bahng, J.H., Kotov, N.A., Lee, J., Self-assembly mechanism of spiky magnetoplasmonic supraparticles (2014) Adv. Funct. Mater., 24, pp. 1439-1448; Zhu, J., Peng, H., Marshall, A.F., Barnett, D.M., Nix, W.D., Cui, Y., Formation of chiral branched nanowires by the Eshelby Twist (2008) Nat. Nano, 3, pp. 477-481","Neethirajan, S.; BioNano Laboratory, School of Engineering, University of GuelphCanada; email: sneetirajan@gmail.com",,"Elsevier Ltd",24058440,,,,"English","Heliyon",Article,"Final",Open Access,Scopus,2-s2.0-85052516966 "Harrath R., Abu Duhier F.M.","6507407720;35597221700;","Sero-prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) specific antibodies in dromedary camels in Tabuk, Saudi Arabia",2018,"Journal of Medical Virology","90","8",,"1285","1289",,5,"10.1002/jmv.25186","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046016303&doi=10.1002%2fjmv.25186&partnerID=40&md5=248c961ffdbd233b7e5a5591914bac32","Prince Fahd Bin Sultan Research Chair (PFBSRC), Faculty of Applied Medical Sciences, Medical Laboratory Technology Department, University of Tabuk, Tabuk, Saudi Arabia; Laboratory of Communicable Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia","Harrath, R., Prince Fahd Bin Sultan Research Chair (PFBSRC), Faculty of Applied Medical Sciences, Medical Laboratory Technology Department, University of Tabuk, Tabuk, Saudi Arabia, Laboratory of Communicable Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia; Abu Duhier, F.M., Prince Fahd Bin Sultan Research Chair (PFBSRC), Faculty of Applied Medical Sciences, Medical Laboratory Technology Department, University of Tabuk, Tabuk, Saudi Arabia","The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a novel Coronavirus which was responsible of the first case of human acute respiratory syndrome in the Kingdom of Saudi Arabia (KSA), 2012. Dromedary camels are considered as potential reservoirs for the virus and seem to be the only animal host which may transmit the infection to human. Further studies are required to better understand the animal sources of zoonotic transmission route and the risks of this infection. A primary sero-prevalence study of MERS-CoV preexisting neutralizing antibodies in Dromedary camel serum was conducted in Tabuk, western north region of KSA, in order to assess the seopositivity of these animals and to explain their possible role in the transmission of the infection to Human. One hundred seventy one (171) serum samples were collected from healthy dromedary camels with different ages and genders in Tabuk city and tested for specific serum IgG by ELISA using the receptor-binding S1 subunits of spike proteins of MERS-CoV. 144 (84,21%) of the total camel sera shown the presence of protein-specific antibodies against MERS-CoV. These results may provide evidence that MERS-CoV has previously infected dromedary camels in Tabuk and may support the possible role of camels in the human infection. © 2018 Wiley Periodicals, Inc.","blood; Coronavirus; enzyme assays; immunoglobulin; reservoir","immunoglobulin G antibody; neutralizing antibody; virus antibody; coronavirus spike glycoprotein; immunoglobulin G; virus antibody; adult; age; antibody blood level; antibody detection; Article; controlled study; dromedary; enzyme linked immunosorbent assay; female; juvenile animal; male; Middle East respiratory syndrome coronavirus; nonhuman; Saudi Arabia; seroprevalence; animal; blood; camel; Coronavirus infection; immunology; Middle East respiratory syndrome coronavirus; seroepidemiology; veterinary medicine; Animals; Antibodies, Viral; Camelus; Coronavirus Infections; Enzyme-Linked Immunosorbent Assay; Female; Immunoglobulin G; Male; Middle East Respiratory Syndrome Coronavirus; Saudi Arabia; Seroepidemiologic Studies; Spike Glycoprotein, Coronavirus","Middle East respiratory syndrome coronavirus (MERS-CoV) update, , https://www.moh.gov.sa, Middle East respiratory syndrome coronavirus (MERS-CoV) update; Bermingham, A., Chand, M.A., Brown, C.S., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17, p. 20290; (2013) Middle East respiratory syndrome coronavirus (MERS-CoV) summary and literature update; Annan, A., Baldwin, H.J., Corman, V.M., Human betacoronavirus 2c EMC/2012- related viruses in bats, Ghana and Europe (2013) Emerg Infect Dis, 19, pp. 456-459; Ithete, N.L., Stoffberg, S., Corman, V.M., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699; Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e01002-e01004; Cotten, M., Watson, S.J., Kellam, P., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveill, 19, p. 20781; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Memish, Z.A., Cotten, M., Meyer, B., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015; Reusken, C.B., Haagmans, B.L., Muller, M.A., Middle East respiratory syndrome coronavirus neutralizing serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Cao, W.C., Liu, W., Zhang, P.H., Zhang, F., Richardus, J.H., Disappearance of antibodies to SARS-associated coronavirus after recovery (2007) N Engl J Med, 357, pp. 1162-1163; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; Reusken, C., Mou, H., Godeke, G.J., Specific serology for emerging human coronaviruses by protein microarray (2013) Euro Surveill, 18, p. 20441; Müller, M.A., Corman, V.M., Jores, J., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Corman, V.M., Jores, J., Meyer, B., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg Infect Dis, 20, pp. 1319-1322; Meyer, B., Müller, M.A., Corman, V.M., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559; Perera, R.A., Wang, P., Gomaa, M., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574; Reusken, C.B., Messadi, L., Feyisa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374; Crameri, G., Durr, P., Barr, J., Absence of MERS-CoV antibodies in feral camels in Australia: implications for the pathogen's origin and spread (2015) One Health, 1, pp. 76-82; Gutiérrez, C., Tejedor-Junco, M.T., González, M., Lattwein, E., Renneker, S., Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the Canary Islands (2015) Euro Surveill, 20; Benjamin, M., Judit, J., Rajib, B., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerg Infect Dis, 22, pp. 2171-2173; Hemida, M.G., Perera, R.A., Wang, P., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18, p. 20659; Kamber, R., Farah, Z., Rusch, P., Hassig, M., Studies on the supply of immunoglobulin G to newborn camel calves (Camelus dromedarius) (2001) J Dairy Res, 68, pp. 1-7","Harrath, R.; Prince Fahd Bin Sultan Research Chair (PFBSRC), Faculty of Applied Medical Sciences, Medical Laboratory Technology Department, University of TabukSaudi Arabia; email: r_harrath@ut.edu.sa",,"John Wiley and Sons Inc.",01466615,,JMVID,"29663439","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85046016303 "Bodmer B.S., Fiedler A.H., Hanauer J.R.H., Prüfer S., Mühlebach M.D.","56771348600;57195547425;55929480000;37034863700;6602166683;","Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model",2018,"Virology","521",,,"99","107",,6,"10.1016/j.virol.2018.05.028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048251583&doi=10.1016%2fj.virol.2018.05.028&partnerID=40&md5=887237e321ae809a9f447c1e12e43bae","Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen, D-63225, Germany; German Center for Infection Research, Langen, Germany","Bodmer, B.S., Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen, D-63225, Germany, German Center for Infection Research, Langen, Germany; Fiedler, A.H., Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen, D-63225, Germany, German Center for Infection Research, Langen, Germany; Hanauer, J.R.H., Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen, D-63225, Germany; Prüfer, S., Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen, D-63225, Germany; Mühlebach, M.D., Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Langen, D-63225, Germany, German Center for Infection Research, Langen, Germany","Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to occur, making it one of the WHO´s targets for accelerated vaccine development. One vaccine candidate is based on live-attenuated measles virus (MV) vaccine encoding the MERS-CoV spike glycoprotein (MERS-S). MV vac2 -MERS-S(H) induces robust humoral and cellular immunity against MERS-S mediating protection. Here, the induction and nature of immunity after vaccination with MV vac2 -MERS-S(H) or novel MV vac2 -MERS-N were further characterized. We focused on the necessity for vector replication and the nature of induced T cells, since functional CD8 + T cells contribute importantly to clearance of MERS-CoV. While no immunity against MERS-CoV or MV was detected in MV-susceptible mice after immunization with UV-inactivated virus, replication-competent MV vac2 -MERS-S(H) triggered robust neutralizing antibody titers also in adult mice. Furthermore, a significant fraction of MERS CoV-specific CD8 + T cells and MV-specific CD4 + T cells simultaneously expressing IFN-γ and TNF-α were induced, revealing that MV vac2 -MERS-S(H) induces multifunctional cellular immunity. © 2018 Elsevier Inc.","Antibody responses; Measles Virus; MERS Coronavirus; Multifunctional T cells; Vaccine platform","coronavirus spike glycoprotein; gamma interferon; lentivirus vector; measles vaccine; neutralizing antibody; tumor necrosis factor; coronavirus spike glycoprotein; live vaccine; neutralizing antibody; virus antibody; virus vaccine; adult; animal cell; animal experiment; animal model; antibody titer; Article; CD4+ T lymphocyte; CD8+ T lymphocyte; cellular immunity; controlled study; enzyme linked immunospot assay; flow cytometry; measles; measles vaccination; Measles virus; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; protein expression; T lymphocyte; ultraviolet radiation; vaccine immunogenicity; viral clearance; virus replication; animal; Bagg albino mouse; blood; cellular immunity; Coronavirus infection; disease model; genetics; immunology; Animals; Antibodies, Neutralizing; Antibodies, Viral; CD8-Positive T-Lymphocytes; Coronavirus Infections; Disease Models, Animal; Immunity, Cellular; Measles virus; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Vaccines, Attenuated; Viral Vaccines","Agnihothram, S., Gopal, R., Yount, B.L., Donaldson, E.F., Menachery, V.D., Graham, R.L., Scobey, T.D., Baric, R.S., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J. Infect. Dis., 209 (7), pp. 995-1006; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Wit, E.D., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) mBio, 5 (2). , (e00884-14); Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Slayton, R.B., Estivariz, C.F., Geller, A.I., Al-Turkistani, H.H., Madani, T.A., Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel (2016) Emerg. Infect. Dis., 22 (11), pp. 1915-1920; Arabi, Y.M., Hajeer, A.H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., Al-Dawood, A., Alahmadi, M., Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia (2016) Emerg. Infect. Dis., 22 (9), pp. 1554-1561; Betts, M.R., Nason, M.C., West, S.M., Rosa, S.C., de, Migueles, S.A., Abraham, J., Lederman, M.M., Koup, R.A., HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells (2006) Blood, 107 (12), pp. 4781-4789; Channappanavar, R., Zhao, J., Perlman, S., T cell-mediated immune response to respiratory coronaviruses (2014) Immunol. Res., 59 (1-3), pp. 118-128; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., Beck, S.E., Matthews, K.L., Venkataraman, T., Frieman, M.B., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J. Virol., 91 (1); del Valle, J.R., Devaux, P., Hodge, G., Wegner, N.J., McChesney, M.B., Cattaneo, R., A vectored measles virus induces hepatitis B surface antigen antibodies while protecting macaques against measles virus challenge (2007) J. Virol., 81 (19), pp. 10597-10605; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Memish, Z.A., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371 (9), pp. 828-835; Funke, S., Maisner, A., Mühlebach, M.D., Koehl, U., Grez, M., Cattaneo, R., Cichutek, K., Buchholz, C.J., Targeted cell entry of lentiviral vectors (2008) Mol. Ther.: J. Am. Soc. Gene Ther., 16 (8), pp. 1427-1436; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Godeke, G.-J., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14 (2), pp. 140-145; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D.M.E., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science (N. Y., N. Y.), 351 (6268), pp. 77-81; Hewett, J.W., Tannous, B., Niland, B.P., Nery, F.C., Zeng, J., Li, Y., Breakefield, X.O., Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells (2007) Proc. Natl. Acad. Sci. USA, 104 (17), pp. 7271-7276; Hubert, J., (1984) Bioassays: Spearman-Karber Method, pp. 65-66. , 2nd ed. Hunt Publishing Dubuque, IA; Kärber, G., Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Archiv f. experiment (1931) Pathol. U. Pharmakol., 162 (4), pp. 480-483; Lichterfeld, M., Yu, X.G., Waring, M.T., Mui, S.K., Johnston, M.N., Cohen, D., Addo, M.M., Altfeld, M., HIV-1-specific cytotoxicity is preferentially mediated by a subset of CD8(+) T cells producing both interferon-gamma and tumor necrosis factor-alpha (2004) Blood, 104 (2), pp. 487-494; Malczyk, A.H., Kupke, A., Prüfer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Mühlebach, M.D., A highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J. Virol., 89 (22), pp. 11654-11667; Martin, A., Staeheli, P., Schneider, U., RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication (2006) J. Virol., 80 (12), pp. 5708-5715; Mrkic, B., Pavlovic, J., Rülicke, T., Volpe, P., Buchholz, C.J., Hourcade, D., Atkinson, J.P., Cattaneo, R., Measles virus spread and pathogenesis in genetically modified mice (1998) J. Virol., 72 (9), pp. 7420-7427; Mühlebach, M.D., Vaccine platform recombinant measles virus (2017) Virus Genes, 53 (5), pp. 733-740; Ndhlovu, Z.M., Oelke, M., Schneck, J.P., Griffin, D.E., Dynamic regulation of functionally distinct virus-specific T cells (2010) Proc. Natl. Acad. Sci. USA, 107 (8), pp. 3669-3674; Nelson, A.N., Putnam, N., Hauer, D., Baxter, V.K., Adams, R.J., Griffin, D.E., Evolution of T cell responses during measles virus infection and RNA clearance (2017) Sci. Rep., 7 (1), p. 11474; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches (2017) Curr. Opin. Virol., 23, pp. 49-58; Precopio, M.L., Betts, M.R., Parrino, J., Price, D.A., Gostick, E., Ambrozak, D.R., Asher, T.E., Koup, R.A., Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses (2007) J. Exp. Med., 204 (6), pp. 1405-1416; Ramsauer, K., Schwameis, M., Firbas, C., Müllner, M., Putnak, R.J., Thomas, S.J., Desprès, P., Tangy, F., Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial (2015) Lancet Infect. Dis., 15 (5), pp. 519-527; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Eur. Surveill.: Bull. Eur. sur Les. Mal. Transm. = Eur. Commun. Dis. Bull., 18 (50), p. 20662; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13 (10), pp. 859-866; Sandberg, J.K., Fast, N.M., Nixon, D.F., Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes (2001) J. Immunol. (Baltim., Md.: 1950), 167 (1), pp. 181-187; Shen, Z., Reznikoff, G., Dranoff, G., Rock, K.L., Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules (1997) J. Immunol. (Baltim., Md.: 1950), 158 (6), pp. 2723-2730; Stebbings, R., Février, M., Li, B., Lorin, C., Koutsoukos, M., Mee, E., Rose, N., Tangy, F., Immunogenicity of a recombinant measles-HIV-1 clade B candidate vaccine (2012) PLoS One, 7 (11), p. e50397; Stebbings, R., Li, B., Lorin, C., Koutsoukos, M., Février, M., Mee, E.T., Page, M., Voss, G., Immunogenicity of a recombinant measles HIV-1 subtype C vaccine (2013) Vaccine, 31 (51), pp. 6079-6086; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Sutter, G., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J. Virol., 89 (16), pp. 8651-8656; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Williams, M.A., Tyznik, A.J., Bevan, M.J., Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells (2006) Nature, 441 (7095), pp. 890-893; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Zhao, J., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci. Immunol., 2 (14); Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Perlman, S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111 (13), pp. 4970-4975; Zhao, J., Perera, R.A.P.M., Kayali, G., Meyerholz, D., Perlman, S., Peiris, M., Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection (2015) J. Virol., 89 (11), pp. 6117-6120","Mühlebach, M.D.; Product Testing of IVMPs, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, Germany; email: Michael.Muehlebach@pei.de",,"Academic Press Inc.",00426822,,VIRLA,"29902727","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85048251583 "Beidas M., Chehadeh W.","57201467628;6603132175;","Effect of Human Coronavirus OC43 Structural and Accessory Proteins on the Transcriptional Activation of Antiviral Response Elements",2018,"Intervirology","61","1",,"30","35",,1,"10.1159/000490566","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051715681&doi=10.1159%2f000490566&partnerID=40&md5=dc5a162cf6586179eb6e1e399030b89d","Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Jabriya, 13310, Kuwait","Beidas, M., Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Jabriya, 13310, Kuwait; Chehadeh, W., Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Jabriya, 13310, Kuwait","Objectives: The molecular mechanisms underlying the pathogenesis of human coronavirus OC43 (HCoV-OC43) infection are poorly understood. In this study, we investigated the ability of HCoV-OC43 to antagonize the transcriptional activation of antiviral response elements. Methods: HCoV-OC43 structural (membrane M and nucleocapsid N) and accessory proteins (ns2a and ns5a) were expressed individually in human embryonic kidney 293 (HEK-293) cells. The transcriptional activation of antiviral response elements was assessed by measuring the levels of firefly luciferase expressed under the control of interferon (IFN)-stimulated response element (ISRE), IFN-β promoter, or nuclear factor kappa B response element (NF-κB-RE). The antiviral gene expression profile in HEK-293 cells was determined by PCR array. Results: The transcriptional activity of ISRE, IFN-β promoter, and NF-κB-RE was significantly reduced in the presence of HCoV-OC43 ns2a, ns5a, M, or N protein, following the challenge of cells with Sendai virus, IFN-α or tumor necrosis factor-α. The expression of antiviral genes involved in the type I IFN and NF-κB signaling pathways was also downregulated in the presence of HCoV-OC43 structural or accessory proteins. Conclusion: Both structural and accessory HCoV-OC43 proteins are able to inhibit antiviral response elements in HEK-293 cells, and to block the activation of different antiviral signaling pathways. © 2018 S. Karger AG, Basel. All rights reserved.",,"beta interferon; firefly luciferase; immunoglobulin enhancer binding protein; interferon; membrane protein; nonstructural protein 2; nonstructural protein 2A; nonstructural protein 5A; nucleocapsid protein; tumor necrosis factor; unclassified drug; viral protein; M protein, Coronavirus; matrix protein; nucleocapsid protein; nucleocapsid protein, Coronavirus; viral protein; antiviral response element; Article; controlled study; DNA responsive element; down regulation; embryo; gene expression profiling; HEK293 cell line; human; human cell; Human coronavirus OC43; nonhuman; polymerase chain reaction; priority journal; promoter region; protein expression; Sendai virus; signal transduction; transcription initiation; Coronavirus infection; DNA responsive element; genetics; Human coronavirus OC43; metabolism; pathogenicity; reporter gene; transcription initiation; virology; Coronavirus Infections; Coronavirus OC43, Human; Down-Regulation; Genes, Reporter; HEK293 Cells; Humans; Interferons; NF-kappa B; Nucleocapsid Proteins; Promoter Regions, Genetic; Response Elements; Signal Transduction; Transcriptional Activation; Viral Matrix Proteins; Viral Regulatory and Accessory Proteins","Pitkaranta, A., Jero, J., Arruda, E., Virolainen, A., Hayden, F.G., Polymerase chain reaction-based detection of rhinovirus, respiratory syncytial virus, and coronavirus in otitis media with effusion (1998) J Pediatr, 133, pp. 390-394; Lepiller, Q., Barth, H., Lefebvre, F., Herbrecht, R., Lutz, P., Kessler, R., High incidence but low burden of coronaviruses and preferential associations between respiratory viruses (2013) J Clin Microbiol, 51, pp. 3039-3046; Razuri, H., Malecki, M., Tinoco, Y., Ortiz, E., Guezala, M.C., Romero, C., Human coronavirus-associated influenza-like illness in the community setting in Peru (2015) Am J Trop Med Hyg, 93, pp. 1038-1040; Talbot, H.K., Shepherd, B.E., Crowe, J.E.J., Griffin, M.R., Edwards, K.M., Podsiad, A.B., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-e76; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Human coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498; Cavanagh, D., Nidovirales: A new order comprising Coronaviridae and Arteriviridae (1997) Arch Virol, 142, pp. 629-633; Vijgen, L., Keyaerts, E., Lemey, P., Moes, E., Li, S., Vandamme, A.-M., Circulation of genetically distinct contemporary human coronavirus OC43 strains (2005) Virology, 337, pp. 85-92; McBride, R., Fielding, B.C., The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis (2012) Viruses, 4, pp. 2902-2923; Schreiber, G., The molecular basis for differential type i interferon signaling (2017) J Biol Chem, 292, pp. 7285-7294; Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type i interferon induction (2005) Nat Immunol, 6, pp. 981-988; Perry, A.K., Chen, G., Zheng, D., Tang, H., Cheng, G., The host type i interferon response to viral and bacterial infections (2005) Cell Res, 15, pp. 407-422; Lawrence, T., The nuclear factor NF-kappaB pathway in inflammation (2009) Cold Spring Harb Perspect Biol, 1, p. a001651; Levy, D.E., Darnell, J.E.J., Stats: Transcriptional control and biological impact (2002) Nat Rev Mol Cell Biol, 3, pp. 651-662; Stark, G.R., Darnell, J.E.J., The JAK-STAT pathway at twenty (2012) Immunity, 36, pp. 503-514; Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions (2011) Curr Opin Virol, 1, pp. 519-525; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol, 81, pp. 548-557; Siu, K.-L., Chan, C.-P., Kok, K.-H., Chiu-Yat Woo, P., Jin, D.-Y., Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain (2014) Cell Mol Immunol, 11, pp. 141-149; Lui, P.-Y., Wong, L.-Y.R., Fung, C.-L., Siu, K.-L., Yeung, M.-L., Yuen, K.-S., Middle East respiratory syndrome coronavirus M protein suppresses type i interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg Microbes Infect, 5, p. e39; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Middle East respiratory syndrome coronavirus accessory protein 4a is a type i interferon antagonist (2013) J Virol, 87, pp. 12489-12495; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type i interferon production through both cytoplasmic and nuclear targets (2015) Sci Rep, 5, p. 17554; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Fang, X., Gao, J., Zheng, H., Li, B., Kong, L., Zhang, Y., The membrane protein of SARS-CoV suppresses NF-kappaB activation (2007) J Med Virol, 79, pp. 1431-1439; Siu, K.-L., Kok, K.-H., Ng, M.-H.J., Poon, V.K.M., Yuen, K.-Y., Zheng, B.-J., Severe acute respiratory syndrome coronavirus M protein inhibits type i interferon production by impeding the formation of TRAF3.TANK.TBK1/ IKKepsilon complex (2009) J Biol Chem, 284, pp. 16202-16209; Lee, H.K., Tang, J.W.T., Kong, D.H.L., Koay, E.S.C., Simplified large-scale sanger genome sequencing for influenza A/H3N2 virus (2013) PLoS One, 8, p. e64785; Hayman, A., Comely, S., Lackenby, A., Murphy, S., McCauley, J., Goodbourn, S., Variation in the ability of human influenza A viruses to induce and inhibit the IFN-beta pathway (2006) Virology, 347, pp. 52-64; Li, W., Wang, G., Zhang, H., Xin, G., Zhang, D., Zeng, J., Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNF a response and p53 activity (2010) Cell Mol Immunol, 7, pp. 235-242; Koetzner, C.A., Kuo, L., Goebel, S.J., Dean, A.B., Parker, M.M., Masters, P.S., Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus (2010) J Virol, 84, pp. 8262-8274; Locker, J.K., Rose, J.K., Horzinek, M.C., Rottier, P.J., Membrane assembly of the triple-spanning coronavirus M protein (1992) Individual Transmembrane Domains Show Preferred Orientation. J Biol Chem, 267, pp. 21911-21918; Parker, M.M., Masters, P.S., Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein (1990) Virology, 179, pp. 463-468; Kuo, L., Masters, P.S., Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus (2002) J Virol, 76, pp. 4987-4999; Liao, Q.-J., Ye, L.-B., Timani, K.A., Zeng, Y.-C., She, Y.-L., Ye, L., Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus (2005) Acta Biochim Biophys Sin (Shanghai), 37, pp. 607-612; Lai, F.W., Stephenson, K.B., Mahony, J., Lichty, B.D., Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation (2014) J Virol, 88, pp. 54-65; Bazzoni, F., Rossato, M., Fabbri, M., Gaudiosi, D., Mirolo, M., Mori, L., Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals (2009) Proc Natl Acad Sci USA, 106, pp. 5282-5287; Gao, S., Song, L., Li, J., Zhang, Z., Peng, H., Jiang, W., Influenza A virus-encoded NS1 virulencefactor protein inhibits innate immune response by targeting IKK (2012) Cell Microbiol, 14, pp. 1849-1866; Ruckle, A., Haasbach, E., Julkunen, I., Planz, O., Ehrhardt, C., Ludwig, S., The NS1 protein of influenza A virus blocks RIG-I-mediated activation of the noncanonical NF-kappaB pathway and p52/RelB-dependent gene expression in lung epithelial cells (2012) J Virol, 86, pp. 10211-10217; Dong, C., Sun, X., Guan, Z., Zhang, M., Duan, M., Modulation of influenza A virus replication by microRNA-9 through targeting MCPIP1 (2017) J Med Virol, 89, pp. 41-48","Chehadeh, W.; Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Kuwait; email: wchehadeh@hsc.edu.kw",,"S. Karger AG",03005526,,IVRYA,"30041172","English","Intervirology",Article,"Final",,Scopus,2-s2.0-85051715681 "Beidas M., Chehadeh W.","57201467628;6603132175;","PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins",2018,"Archives of Virology","163","8",,"2065","2072",,1,"10.1007/s00705-018-3832-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044966670&doi=10.1007%2fs00705-018-3832-8&partnerID=40&md5=2b53b53c3c3da0c1820394c2f2f27f0a","Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat, 13310, Kuwait","Beidas, M., Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat, 13310, Kuwait; Chehadeh, W., Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat, 13310, Kuwait","Human coronavirus OC43 (HCoV-OC43) is a respiratory virus that usually causes a common cold. However, it has the potential to cause severe infection in young children and immunocompromised adults. Both SARS-CoV and MERS-CoV were shown to express proteins with the potential to evade early innate immune responses. However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences has not yet been investigated. The potential role of the HCoV-OC43 structural (M and N) and accessory proteins (ns2a and ns5a) in the alteration of antiviral gene expression was investigated in this study. HCoV-OC43M, N, ns2a and ns5a proteins were expressed in human embryonic kidney 293 (HEK-293) cells before challenge with Sendai virus. The Human Antiviral Response PCR array was used to profile the antiviral gene expression in HEK-293 cells. Over 30 genes were downregulated in the presence of one of the HCoV-OC43 proteins, e.g. genes representing mitogen-activated protein kinases, toll-like receptors, interferons, interleukins, and signaling transduction proteins. Our findings suggest that similarly to SARS-CoV and MERS-CoV, HCoV-OC43 has the ability to downregulate the transcription of genes critical for the activation of different antiviral signaling pathways. Further studies are needed to confirm the role of HCoV-OC43 structural and accessory proteins in antagonising antiviral gene expression. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"viral protein; cell line; Coronavirus infection; cytology; down regulation; genetics; host pathogen interaction; human; Human coronavirus OC43; immunology; innate immunity; isolation and purification; kidney; metabolism; physiology; polymerase chain reaction; procedures; virology; virus replication; Cell Line; Coronavirus Infections; Coronavirus OC43, Human; Down-Regulation; Host-Pathogen Interactions; Humans; Immunity, Innate; Kidney; Polymerase Chain Reaction; Viral Nonstructural Proteins; Viral Regulatory and Accessory Proteins; Virus Replication","Cavanagh, D., Nidovirales: a new order comprising Coronaviridae and Arteriviridae (1997) Arch Virol, 142, pp. 629-633. , PID: 9349308; Vijgen, L., Keyaerts, E., Lemey, P., Circulation of genetically distinct contemporary human coronavirus OC43 strains (2005) Virology, 337, pp. 85-92; Larson, H.E., Reed, S.E., Tyrrell, D.A., Isolation of rhinoviruses and coronaviruses from 38 colds in adults (1980) J Med Virol, 5, pp. 221-229. , PID: 6262450; Lepiller, Q., Barth, H., Lefebvre, F., High incidence but low burden of coronaviruses and preferential associations between respiratory viruses (2013) J Clin Microbiol, 51, pp. 3039-3046; Razuri, H., Malecki, M., Tinoco, Y., Human coronavirus-associated influenza-like illness in the community setting in Peru (2015) Am J Trop Med Hyg, 93, pp. 1038-1040; Talbot, H.K., Shepherd, B.E., Crowe, J.E.J., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Geller, C., Varbanov, M., Duval, R.E., Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies (2012) Viruses, 4, pp. 3044-3068; Arbour, N., Cote, G., Lachance, C., Acute and persistent infection of human neural cell lines by human coronavirus OC43 (1999) J Virol, 73, pp. 3338-3350. , PID: 10074188; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by human respiratory coronaviruses (2000) J Virol, 74, pp. 8913-8921. , PID: 10982334; Yeh, E.A., Collins, A., Cohen, M.E., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-e76. , PID: 14702500; Morfopoulou, S., Brown, J.R., Davies, E.G., Human coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498; Ye, J., Zhang, B., Xu, J., Molecular pathology in the lungs of severe acute respiratory syndrome patients (2007) Am J Pathol, 170, pp. 538-545; Fang, X., Gao, J., Zheng, H., The membrane protein of SARS-CoV suppresses NF-kappaB activation (2007) J Med Virol, 79, pp. 1431-1439; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol, 81, pp. 548-557; Siu, K.-L., Chan, C.-P., Kok, K.-H., Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain (2014) Cell Mol Immunol, 11, pp. 141-149; Niemeyer, D., Zillinger, T., Muth, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87, pp. 12489-12495; Yang, Y., Zhang, L., Geng, H., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Lee, H.K.K., Tso, E.Y.K., Chau, T.N., Asymptomatic severe acute respiratory syndrome-associated coronavirus infection (2003) Emerg Infect Dis, 9, pp. 1491-1492. , PID: 14725258; Li, G., Zhao, Z., Chen, L., Zhou, Y., Mild severe acute respiratory syndrome (2003) Emerg Infect Dis, 9, pp. 1182-1183. , PID: 14531381; Lai, F.W., Stephenson, K.B., Mahony, J., Lichty, B.D., Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation (2014) J Virol, 88, pp. 54-65; Zhao, X., Guo, F., Liu, F., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43 (2014) Proc Natl Acad Sci USA, 111, pp. 1-6; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious (2013) Virus, 87, pp. 3097-3107; Lee, H.K., Tang, J.W.T., Kong, D.H.L., Koay, E.S.C., Simplified large-scale sanger genome sequencing for influenza A/H3N2 Virus (2013) PLoS One; Hatada, E., Fukuda, R., Binding of influenza A virus NS1 protein to dsRNA in vitro (1992) J Gen Virol, 73, pp. 3325-3329; Bergmann, M., Garcia-Sastre, A., Carnero, E., Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication (2000) J Virol, 74, pp. 6203-6206. , PID: 10846107; Lu, Y., Wambach, M., Katze, M.G., Krug, R.M., Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor (1995) Virology, 214, pp. 222-228. , PID: 8525619; McBride, R., Fielding, B.C., The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis (2012) Viruses, 4, pp. 2902-2923; Zhang, R., Wang, K., Ping, X., The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis (2015) J Virol, 89, pp. 11383-11395; Koetzner, C.A., Kuo, L., Goebel, S.J., Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus (2010) J Virol, 84, pp. 8262-8274; Das, K.C., Muniyappa, H., c-Jun-NH2 terminal kinase (JNK)-mediates AP-1 activation by thioredoxin: phosphorylation of cJun, JunB, and Fra-1 (2010) Mol Cell Biochem, 337, pp. 53-63; Krishna, M., Narang, H., The complexity of mitogen-activated protein kinases (MAPKs) made simple (2008) Cell Mol Life Sci, 65, pp. 3525-3544; Locker, J.K., Rose, J.K., Horzinek, M.C., Rottier, P.J., Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation (1992) J Biol Chem, 267, pp. 21911-21918. , PID: 1400501; Lui, P.-Y., Wong, L.-Y.R., Fung, C.-L., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg Microbes Infect, 5; Mak, T.W., Yeh, W.-C., Signaling for survival and apoptosis in the immune system (2002) Arthritis Res, 4, p. S243; Parker, M.M., Masters, P.S., Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein (1990) Virology, 179, pp. 463-468. , PID: 2171216; Kuo, L., Masters, P.S., Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus (2002) J Virol, 76, pp. 4987-4999. , PID: 11967315; Yan, X., Hao, Q., Mu, Y., Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein (2006) Int J Biochem Cell Biol, 38, pp. 1417-1428; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450; Dai, L., Aye Thu, C., Liu, X.-Y., TAK1, more than just innate immunity (2012) IUBMB Life, 64, pp. 825-834; Jiang, Z., Zamanian-Daryoush, M., Nie, H., Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR (2003) J Biol Chem, 278, pp. 16713-16719; Ogolla, P.S., Portillo, J.-A.C., White, C.L., The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen (2013) PLoS Pathog, 9; Cheung, C.Y., Poon, L.L.M., Ng, I.H.Y., Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis (2005) J Virol, 79, pp. 7819-7826; Lau, S.K.P., Lau, C.C.Y., Chan, K.-H., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment (2013) J Gen Virol, 94, pp. 2679-2690","Chehadeh, W.; Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, Kuwait; email: wchehadeh@hsc.edu.kw",,"Springer-Verlag Wien",03048608,,ARVID,"29619598","English","Arch. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85044966670 "Nassar M.S., Bakhrebah M.A., Meo S.A., Alsuabeyl M.S., Zaher W.A.","37085370000;56557112100;7003732623;57203283976;24767240800;","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics",2018,"European review for medical and pharmacological sciences","22","15",,"4956","4961",,5,"10.26355/eurrev_201808_15635","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066470054&doi=10.26355%2feurrev_201808_15635&partnerID=40&md5=5a3b44bbfe0be2779e00b434af85203a","King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia","Nassar, M.S., King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; Bakhrebah, M.A.; Meo, S.A.; Alsuabeyl, M.S.; Zaher, W.A.","OBJECTIVE: Middle East Respiratory Syndrome Coronavirus-(MERS-CoV) infection is an evolving worldwide health crisis. The early diagnosis and management of the disease remains a major challenge. This study designed to discuss the epidemiology, pathogenesis and clinical appearances of MERS-CoV infections. MATERIALS AND METHODS: We conducted a broad search of the English-language literature in ""PubMed"" ""Medline"" ""Web of knowledge"", ""EMBASE"" and ""Google Scholar"" World Health Organization-WHO"" using the key words ""Middle East Respiratory Syndrome"", ""MERS"", ""MERS-CoV"" ""Epidemiology"" ""Transmission"" ""Pathogenesis"" ""Clinical Characteristics"". We reviewed the literature on epidemiology, pathogenesis and clinical appearances of MERS-CoV infection and the required information was documented. RESULTS: The global prevalence of MERS-CoV infection from June 2012 to April 2018 is 2206 people. The number of cases reported from Saudi Arabia is 1831 (83%) with mortality rate of 787 (35.67%). The main clinical manifestations are fever, chills, generalized myalgia, cough, shortness of breath, nausea, vomiting and diarrhea. The age-allied prevalence of MERS-CoV was highest amongst elderly people with chronic debilitating diseases such as pulmonary diseases, end-stage renal illness, diabetes mellitus and malignancy. CONCLUSIONS: MERS-CoV infection is an emerging global health concern, affected people in 27 countries in the various continents. MERS-CoV infection has been identified mainly in the Middle East, Europe, Africa, Asia and North America. Early detection and management of MERS-CoV infection is of critical importance to minimize the burden of the disease.",,"adult; aged; complication; Coronavirus infection; diarrhea; factual database; female; fever; global health; human; isolation and purification; male; middle aged; Middle East respiratory syndrome coronavirus; mortality; pathology; prevalence; Saudi Arabia; survival rate; vomiting; Adult; Aged; Coronavirus Infections; Databases, Factual; Diarrhea; Female; Fever; Global Health; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Prevalence; Saudi Arabia; Survival Rate; Vomiting",,,,"NLM (Medline)",22840729,,,"30070331","English","Eur Rev Med Pharmacol Sci",Article,"Final",,Scopus,2-s2.0-85066470054 "Song W., Gui M., Wang X., Xiang Y.","56395837800;57147117900;36497607000;36112393500;","Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2",2018,"PLoS Pathogens","14","8", e1007236,"","",,23,"10.1371/journal.ppat.1007236","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053079712&doi=10.1371%2fjournal.ppat.1007236&partnerID=40&md5=abef009d783d19264109e91646b9c82e","The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China; Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China","Song, W., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China; Gui, M., Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Wang, X., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China, Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China; Xiang, Y., Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China","The trimeric SARS coronavirus (SARS-CoV) surface spike (S) glycoprotein consisting of three S1-S2 heterodimers binds the cellular receptor angiotensin-converting enzyme 2 (ACE2) and mediates fusion of the viral and cellular membranes through a pre- to postfusion conformation transition. Here, we report the structure of the SARS-CoV S glycoprotein in complex with its host cell receptor ACE2 revealed by cryo-electron microscopy (cryo-EM). The complex structure shows that only one receptor-binding domain of the trimeric S glycoprotein binds ACE2 and adopts a protruding “up” conformation. In addition, we studied the structures of the SARS-CoV S glycoprotein and its complexes with ACE2 in different in vitro conditions, which may mimic different conformational states of the S glycoprotein during virus entry. Disassociation of the S1-ACE2 complex from some of the prefusion spikes was observed and characterized. We also characterized the rosette-like structures of the clustered SARS-CoV S2 trimers in the postfusion state observed on electron micrographs. Structural comparisons suggested that the SARS-CoV S glycoprotein retains a prefusion architecture after trypsin cleavage into the S1 and S2 subunits and acidic pH treatment. However, binding to the receptor opens up the receptor-binding domain of S1, which could promote the release of the S1-ACE2 complex and S1 monomers from the prefusion spike and trigger the pre- to postfusion conformational transition. © 2018 Song et al. http://creativecommons.org/licenses/by/4.0/.",,"angiotensin converting enzyme 2; trypsin; virus spike protein; angiotensin converting enzyme 2; coronavirus spike glycoprotein; dipeptidyl carboxypeptidase; protein binding; virus receptor; animal cell; Article; comparative study; conformational transition; controlled study; cryoelectron microscopy; host cell; human; in vitro study; negative staining; nonhuman; protein cleavage; protein conformation; protein protein interaction; protein structure; receptor binding; SARS coronavirus; virus entry; chemistry; cryoelectron microscopy; metabolism; molecular model; protein domain; protein multimerization; protein quaternary structure; SARS coronavirus; severe acute respiratory syndrome; virology; Cryoelectron Microscopy; Models, Molecular; Peptidyl-Dipeptidase A; Protein Binding; Protein Interaction Domains and Motifs; Protein Multimerization; Protein Structure, Quaternary; Receptors, Virus; SARS Virus; Severe Acute Respiratory Syndrome; Spike Glycoprotein, Coronavirus; Virus Internalization","Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279 (2), pp. 371-374. , Jan, pmid:11162792, Epub 2001/02/13; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses (2016) Trends Microbiol, 24 (6), pp. 490-502. , Jun, pmid:27012512, Epub 2016/03/26; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23 (8), pp. 468-478. , Aug, pmid:26206723, Epub 2015/07/25; Li, F., Structure, Function, and Evolution of Coronavirus Spike Proteins (2016) Annual review of virology, 3 (1), pp. 237-261. , pmid:27578435, 08/25; PubMed PMID: PMC5457962; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein (2012) Viruses, 4 (6); Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , Apr, pmid:25445340, PMCID: PMC4465284. Epub 2014/12/03; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci U S A, , Aug, pmid:28807998; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proceedings of the National Academy of Sciences of the United States of America, 106 (14), pp. 5871-5876. , pmid:19321428, 03/24. 09/26/received; PubMed PMID: PMC2660061; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proceedings of the National Academy of Sciences, 111 (42), p. 15214; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Prefusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), pp. 118-121. , pmid:26935699, PubMed PMID: PMC4860016; Walls, A.C., Tortorici, M., Bosch, B.-J., Frenz, B., Rottier, P.J.M., DiMaio, F., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117. , pmid:26855426, 02/08; PubMed PMID: PMC5018210; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nature structural & molecular biology, 23 (10), pp. 899-905. , 09/12; PubMed PMID: PMC5515730; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27 (1), pp. 119-129. , Jan, pmid:28008928, PMCID: PMC5223232; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J Virol, , Oct, pmid:29070693, Epub 2017/10/27; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J Virol, , Nov, pmid:29093093, Epub 2017/11/03; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , Apr, pmid:28393837, PMCID: PMC5394239; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathogens, 14 (4), p. e1007009. , pmid:29684066, 04/23. 01/30/received. 04/03/accepted; PubMed PMID: PMC5933801; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114 (42), pp. 11157-11162. , Oct, pmid:29073020, PMCID: PMC5651768. Epub 2017/10/27; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426 (6965), pp. 450-454. , pmid:14647384, 11/27/print;; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309 (5742), pp. 1864-1868. , Sep, pmid:16166518; Li, F., Berardi, M., Li, W., Farzan, M., Dormitzer, P.R., Harrison, S.C., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain (2006) J Virol, 80 (14), pp. 6794-6800. , Jul, pmid:16809285, PMCID: PMC1489032; Song, H.C., Seo, M.Y., Stadler, K., Yoo, B.J., Choo, Q.L., Coates, S.R., Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein (2004) J Virol, 78 (19), pp. 10328-10335. , Oct, pmid:15367599, PMCID: PMC516425. Epub 2004/09/16; Xiao, X., Chakraborti, S., Dimitrov, A.S., Gramatikoff, K., Dimitrov, D.S., The SARS-CoV S glycoprotein: expression and functional characterization (2003) Biochem Biophys Res Commun, 312 (4), pp. 1159-1164. , Dec, pmid:14651994, Epub 2003/12/04; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc Natl Acad Sci U S A, 102 (35), pp. 12543-12547. , Aug, pmid:16116101, PMCID: PMC1194915. Epub 2005/08/24; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (33), pp. 11876-11881. , pmid:16081529, 08/04. 05/05/received; PubMed PMID: PMC1188015; Xu, Y., Zhu, J., Liu, Y., Lou, Z., Yuan, F., Liu, Y., Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus (2004) Biochemistry, 43 (44), pp. 14064-14071. , Nov, pmid:15518555, Epub 2004/11/03; Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., Agard, D.A., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy (2017) Nat Methods, 14 (4), pp. 331-332. , Apr, pmid:28250466, PMCID: PMC5494038. Epub 2017/03/03; Zhang, K., Gctf: Real-time CTF determination and correction (2016) J Struct Biol, 193 (1), pp. 1-12. , Jan, pmid:26592709, PMCID: PMC4711343. Epub 2015/11/26; https://www.mrc-lmb.cam.ac.uk/kzhang/Gautomatch/; Scheres, S.H., RELION: implementation of a Bayesian approach to cryo-EM structure determination (2012) J Struct Biol, 180 (3), pp. 519-530. , Dec, pmid:23000701, PMCID: PMC3690530. Epub 2012/09/25; Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., EMAN2: an extensible image processing suite for electron microscopy (2007) J Struct Biol, 157 (1), pp. 38-46. , Jan, pmid:16859925, Epub 2006/07/25; Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., PHENIX: a comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 213-221. , Feb, pmid:20124702, PMCID: PMC2815670. Epub 2010/02/04; Kucukelbir, A., Sigworth, F.J., Tagare, H.D., Quantifying the local resolution of cryo-EM density maps (2014) Nat Methods, 11 (1), pp. 63-65. , Jan, pmid:24213166, PMCID: PMC3903095. Epub 2013/11/12; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., UCSF Chimera—a visualization system for exploratory research and analysis (2004) J Comput Chem, 25 (13), pp. 1605-1612. , Oct, pmid:15264254, Epub 2004/07/21; DiMaio, F., Tyka, M.D., Baker, M.L., Chiu, W., Baker, D., Refinement of Protein Structures into Low-Resolution Density Maps using Rosetta (2009) Journal of molecular biology, 392 (1), pp. 181-190. , pmid:19596339, 07/08; PubMed PMID: PMC3899897; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501. , Apr, pmid:20383002, PMCID: PMC2852313. Epub 2010/04/13; Rossmann, M.G., Bernal, R., Pletnev, S.V., Combining Electron Microscopic with X-Ray Crystallographic Structures (2001) Journal of Structural Biology, 136 (3), pp. 190-200. , pmid:12051899, 2001/12/01; Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 12-21. , Jan, pmid:20057044, PMCID: PMC2803126. Epub 2010/01/09; Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res, 42, pp. W252-W258. , Jul, pmid:24782522, (Web Server issue) PMCID: PMC4086089. Epub 2014/05/02","Wang, X.; The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua UniversityChina; email: xinquanwang@mail.tsinghua.edu.cn",,"Public Library of Science",15537366,,,"30102747","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85053079712 "Shirato K., Semba S., El-Kafrawy S.A., Hassan A.M., Tolah A.M., Takayama I., Kageyama T., Notomi T., Kamitani W., Matsuyama S., Azhar E.I.","7101969487;57202248496;12545932500;7402686960;57188767465;35197138300;24074709600;7004626926;6603075332;7201442043;23090055800;","Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus",2018,"Journal of Virological Methods","258",,,"41","48",,10,"10.1016/j.jviromet.2018.05.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047615357&doi=10.1016%2fj.jviromet.2018.05.006&partnerID=40&md5=b688bdd50a24cd0ec0aa9a3a43c05cbe","Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo, 110-8408, Japan; Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia; Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia","Shirato, K., Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Semba, S., Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo, 110-8408, Japan; El-Kafrawy, S.A., Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia; Hassan, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia; Tolah, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia; Takayama, I., Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Kageyama, T., Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Notomi, T., Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo, 110-8408, Japan; Kamitani, W., Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Matsuyama, S., Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Center, Jeddah, 21589, Saudi Arabia, Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia","Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections. © 2018 The Authors","MERS coronavirus; Middle East respiratory syndrome; Quenching probe; RT-LAMP","virus RNA; primer DNA; Article; controlled study; fluorescence analysis; gene sequence; human; intermethod comparison; Middle East respiratory syndrome coronavirus; molecular probe; nonhuman; open reading frame; priority journal; quenching probe; reverse transcription loop mediated isothermal amplification; Saudi Arabia; virus detection; virus nucleocapsid; animal; camel; Coronavirus infection; evaluation study; fluorescence; genetics; isolation and purification; Middle East respiratory syndrome coronavirus; molecular diagnosis; nucleic acid amplification; oligonucleotide probe; procedures; sensitivity and specificity; veterinary medicine; Animals; Camelus; Coronavirus Infections; DNA Primers; Fluorescence; Humans; Middle East Respiratory Syndrome Coronavirus; Molecular Diagnostic Techniques; Nucleic Acid Amplification Techniques; Oligonucleotide Probes; Saudi Arabia; Sensitivity and Specificity","Adhikari, B.R., Pandey, B.D., Ghimire, P., Shrestha, B., Khadka, M., Yoda, T., Suzuki, Y., Loop-mediated isothermal amplification (LAMP) for the direct detection of human pulmonary infections with environmental (nontuberculosis) mycobacteria (2009) Jpn. J. Infect. Dis., 62, pp. 212-214; Arimatsu, Y., Kaewkes, S., Laha, T., Hong, S.J., Sripa, B., Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification (LAMP) (2012) Parasitol. Int., 61, pp. 178-182; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Team, K.M.-C.I., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New Engl. J. Med., 369, pp. 407-416; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New Engl. J. Med., 370, pp. 2499-2505; Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., Ellington, A.D., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) PLoS One, 10, p. e0123126; Corman, V., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Drosten, C., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill., 17, p. 20285; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill., 17, p. 20334; Do, D.H., Laus, S., Leber, A., Marcon, M.J., Jordan, J.A., Martin, J.M., Wadowsky, R.M., A one-step, real-time PCR assay for rapid detection of rhinovirus (2010) J. Mol. Diagn., 12, pp. 102-108; Fowler, V.L., Howson, E.L., Madi, M., Mioulet, V., Caiusi, C., Pauszek, S.J., Rodriguez, L.L., King, D.P., Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: use of rapid molecular assays to differentiate between vesicular disease viruses (2016) J. Virol. Methods, 234, pp. 123-131; Geojith, G., Dhanasekaran, S., Chandran, S.P., Kenneth, J., Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting (2011) J. Microbiol. Methods, 84, pp. 71-73; Hong, T.C., Mai, Q.L., Cuong, D.V., Parida, M., Minekawa, H., Notomi, T., Hasebe, F., Morita, K., Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus (2004) J. Clin. Microbiol., 42, pp. 1956-1961; Imai, M., Ninomiya, A., Minekawa, H., Notomi, T., Ishizaki, T., Tashiro, M., Odagiri, T., Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection (2006) Vaccine, 24, pp. 6679-6682; Kaida, A., Kubo, H., Takakura, K., Sekiguchi, J., Yamamoto, S.P., Kohdera, U., Togawa, M., Iritani, N., Associations between co-detected respiratory viruses in children with acute respiratory infections (2014) Jpn. J. Infect. Dis., 67, pp. 469-475; Kurata, S., Kanagawa, T., Yamada, K., Torimura, M., Yokomaku, T., Kamagata, Y., Kurane, R., Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probe or primer (2001) Nucleic Acids Res., 29, p. E34; Kurosaki, Y., Martins, D.B.G., Kimura, M., Catena, A.D.S., Borba, M., Mattos, S.D.S., Abe, H., Yasuda, J., Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification (2017) Sci. Rep., 7, p. 13503; Lee, S.H., Baek, Y.H., Kim, Y.H., Choi, Y.K., Song, M.S., Ahn, J.Y., One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV (2016) Front. Microbiol., 7, p. 2166; Mahony, J., Chong, S., Bulir, D., Ruyter, A., Mwawasi, K., Waltho, D., Multiplex loop-mediated isothermal amplification (M-LAMP) assay for the detection of influenza A/H1, A/H3 and influenza B can provide a specimen-to-result diagnosis in 40 min with single genome copy sensitivity (2013) J. Clin. Virol., 58, pp. 127-131; Mori, Y., Nagamine, K., Tomita, N., Notomi, T., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation (2001) Biochem. Biophys. Res. Commun., 289, pp. 150-154; Nagamine, K., Hase, T., Notomi, T., Accelerated reaction by loop-mediated isothermal amplification using loop primers (2002) Mol. Cell. Probes, 16, pp. 223-229; Njiru, Z.K., Loop-mediated isothermal amplification technology: towards point of care diagnostics (2012) PLoS Negl. Trop. Dis., 6, p. e1572; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res., 28, p. E63; Peyrefitte, C.N., Boubis, L., Coudrier, D., Bouloy, M., Grandadam, M., Tolou, H.J., Plumet, S., Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of rift valley Fever virus (2008) J. Clin. Microbiol., 46, pp. 3653-3659; Shirato, K., Kawase, M., Watanabe, O., Hirokawa, C., Matsuyama, S., Nishimura, H., Taguchi, F., Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein (2012) J. Gen. Virol., 93, pp. 1908-1917; Shirato, K., Nishimura, H., Saijo, M., Okamoto, M., Noda, M., Tashiro, M., Taguchi, F., Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification (2007) J. Virol. Methods, 139, pp. 78-84; Shirato, K., Yano, T., Senba, S., Akachi, S., Kobayashi, T., Nishinaka, T., Notomi, T., Matsuyama, S., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP) (2014) Virol. J., 11, p. 139; Shirogane, Y., Takeda, M., Iwasaki, M., Ishiguro, N., Takeuchi, H., Nakatsu, Y., Tahara, M., Yanagi, Y., Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2 (2008) J. Virol., 82, pp. 8942-8946; Tani, H., Miyata, R., Ichikawa, K., Morishita, S., Kurata, S., Nakamura, K., Tsuneda, S., Noda, N., Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method (2009) Anal. Chem., 81, pp. 5678-5685; Ueda, S., Kuwabara, Y., The rapid detection of salmonella from food samples by loop-mediated isothermal amplification (LAMP) (2009) Biocontrol Sci., 14, pp. 73-76; Ushio, M., Yui, I., Yoshida, N., Fujino, M., Yonekawa, T., Ota, Y., Notomi, T., Nakayama, T., Detection of respiratory syncytial virus genome by subgroups-A, B specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) (2005) J. Med. Virol., 77, pp. 121-127; Wahed, A.A.E., Patel, P., Heidenreich, D., Hufert, F.T., Weidmann, M., Reverse transcription recombinase polymerase amplification assay for the detection of Middle East respiratory syndrome coronavirus (2013) PLOS Curr. Outbreaks Ed., 1; Wang, D., Effect of internal primer–template mismatches on loop-mediated isothermal amplification (2016) Biotechnol. Biotechnol. Equip., 30, pp. 314-318; Wang, L.X., He, L., Fang, R., Song, Q.Q., Tu, P., Jenkins, A., Zhou, Y.Q., Zhao, J.L., Loop-mediated isothermal amplification (LAMP) assay for detection of Theileria sergenti infection targeting the p33 gene (2010) Vet. Parasitol., 171, pp. 159-162","Shirato, K.; Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Japan; email: shirato@nih.go.jp",,"Elsevier B.V.",01660934,,JVMED,"29763640","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85047615357 "Kandeel M., Al-Taher A., Li H., Schwingenschlogl U., Al-Nazawi M.","22937486100;6506090106;57202721234;6602305023;12765916000;","Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers",2018,"Computational Biology and Chemistry","75",,,"205","212",,2,"10.1016/j.compbiolchem.2018.05.020","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047250420&doi=10.1016%2fj.compbiolchem.2018.05.020&partnerID=40&md5=f5b0e16ad3021952a2ecae6d33531d5d","Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt; Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia","Kandeel, M., Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia, Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt; Al-Taher, A., Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia; Li, H., Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia; Schwingenschlogl, U., Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia; Al-Nazawi, M., Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia","Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition. © 2018 Elsevier Ltd","Bioinformatics; Contact score; Coronavirus; Molecular dynamics; Viral membrane fusion","Bioinformatics; Cell membranes; Molecular dynamics; Monomers; Oligomers; Phase equilibria; Coronaviruses; Hydrophobic residues; Inter-residue contact; Interaction energies; Membrane fusion; Molecular dynamics simulations; Root mean square deviations; Structural studies; Cobalt alloys; virus fusion protein; chemistry; human; Middle East respiratory syndrome coronavirus; molecular dynamics; protein conformation; Humans; Middle East Respiratory Syndrome Coronavirus; Molecular Dynamics Simulation; Protein Conformation; Viral Fusion Proteins","Abagyan, R.A., Totrov, M.M., Contact area difference (CAD): a robust measure to evaluate accuracy of protein models (1997) J. Mol. Biol., 268 (3), pp. 678-685; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3 (2017) Biol. Pharm. Bull., 40 (3), pp. 345-351; Alnazawi, M., Altaher, A., Kandeel, M., Comparative genomic analysis MERS CoV isolated from humans and camels with special reference to virus encoded helicase (2017) Biol. Pharm. Bull., 40 (8), pp. 1289-1298; Banik, G., Khandaker, G., Rashid, H., Middle East respiratory syndrome coronavirus MERS-CoV: current knowledge gaps (2015) Paediatr. Respir. Rev., 16 (3), pp. 197-202; Bernini, A., Spiga, O., Ciutti, A., Chiellini, S., Bracci, L., Yan, X., Zheng, B., Song, H.-D., Prediction of quaternary assembly of SARS coronavirus peplomer (2004) Biochem. Biophys. Res. Commun., 325 (4), pp. 1210-1214; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77 (16), pp. 8801-8811; Carravilla, P., Nieva, J.L., HIV antivirals: targeting the functional organization of the lipid envelope (2018) Future Virol., 13 (2), pp. 129-140; Choe, P.G., Perera, R., Park, W.B., Song, K.-H., Bang, J.H., Kim, E.S., Kim, H.B., Kim, N.-J., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg. Infect. Dis., 23 (7), p. 1079; Delmas, B., Laude, H., Assembly of coronavirus spike protein into trimers and its role in epitope expression (1990) J. Virol., 64 (11), pp. 5367-5375; Deng, Y., Liu, J., Zheng, Q., Yong, W., Lu, M., Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein (2006) Structure, 14 (5), pp. 889-899; Forni, D., Filippi, G., Cagliani, R., De Gioia, L., Pozzoli, U., Al-Daghri, N., Clerici, M., Sironi, M., The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses (2015) Sci. Rep., 5, p. 14480; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Xiao, H., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87 (24), pp. 13134-13140; Grzybkowska, A., Jędrzejczyk, D., Rostkowski, M., Chworos, A., Dybala-Defratyka, A., RNA model evaluation based on MD simulation of four tRNA analogs (2016) RSC Adv., 6 (104), pp. 101778-101789; Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 1983, p. 79; Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Schulten, K., NAMD2: greater scalability for parallel molecular dynamics (1999) J. Comput. Phys., 151 (1), pp. 283-312; Kandeel, M., Altaher, A., Synonymous and biased codon usage by MERS CoV papain-like and 3CL-proteases (2017) Biol. Pharm. Bull., , b17-00168; Kandeel, M., Kitade, Y., Molecular dynamics and binding selectivity of nucleotides and polynucleotide substrates with EIF2C2/Ago2 PAZ domain (2018) Int. J. Biol. Macromol., 107, pp. 2566-2573; Kandeel, M., Miyamoto, T., Kitade, Y., Bioinformatics, enzymologic properties, and comprehensive tracking of Plasmodium falciparum nucleoside diphosphate kinase (2009) Biol. Pharm. Bull., 32 (8), pp. 1321-1327; Kandeel, M., Elaiziz, M., Kandeel, A., Altaher, A., Kitade, Y., Association of host tropism of Middle East syndrome coronavirus with the amino acid structure of host cell receptor dipeptidyl peptidase 4 (2014) Acta Virol., 58 (4), pp. 359-363; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Prefusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), p. 118; Kufareva, I., Abagyan, R., Methods of protein structure comparison (2012) Homol. Model.: Methods Protoc., pp. 231-257; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Tien, P., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363 (9413), pp. 938-947; Liu, I.-J., Kao, C.-L., Hsieh, S.-C., Wey, M.-T., Kan, L.-S., Wang, W.-K., Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors (2009) Antiviral Res., 81 (1), pp. 82-87; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; MacKerell, A.D., Jr., Bashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck, J.D., Field, M.J., Fischer, S., Ha, S., All-atom empirical potential for molecular modeling and dynamics studies of proteins (1998) J. Phys. Chem. B, 102 (18), pp. 3586-3616; Mackman, R.L., Sangi, M., Sperandio, D., Parrish, J.P., Eisenberg, E., Perron, M., Hui, H., Yang, H., Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study (2015) J. Med. Chem., 58 (4), pp. 1630-1643; Moore, P.B., Zhong, Q., Husslein, T., Klein, M.L., Simulation of the HIV-1 Vpu transmembrane domain as a pentameric bundle (1998) FEBS Lett., 431 (2), pp. 143-148; Olechnovič, K., Venclovas, Č., The CAD-score web server: contact area-based comparison of structures and interfaces of proteins, nucleic acids and their complexes (2014) Nucleic Acids Res., 42 (W1), pp. W259-W263; Olechnovic, K., Kulberkyte, E., Venclovas, C., CAD-score: a new contact area difference-based function for evaluation of protein structural models (2013) Proteins, 81 (1), pp. 149-162; Pande, V.S., Rokhsar, D.S., Is the molten globule a third phase of proteins? (1998) Proc. Natl. Acad. Sci. U. S. A., 95 (4), pp. 1490-1494; Perilla, J.R., Goh, B.C., Cassidy, C.K., Liu, B., Bernardi, R.C., Rudack, T., Yu, H., Schulten, K., Molecular dynamics simulations of large macromolecular complexes (2015) Curr. Opin. Struct. Biol., 31, pp. 64-74; Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23 (3), pp. 327-341; Seong, M.-W., Kim, S.Y., Corman, V.M., Kim, T.S., Im Cho, S., Kim, M.J., Lee, S.J., Ahn, J.S., Microevolution of outbreak-associated middle east respiratory syndrome coronavirus, South Korea, 2015 (2016) Emerg. Infect. Dis., 22 (2), p. 327; Shen, L., Shen, J., Luo, X., Cheng, F., Xu, Y., Chen, K., Arnold, E., Jiang, H., Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT (2003) Biophys. J., 84 (6), pp. 3547-3563; Vanderlinden, E., Göktaş, F., Cesur, Z., Froeyen, M., Reed, M.L., Russell, C.J., Cesur, N., Naesens, L., Novel inhibitors of influenza virus fusion: structure-activity relationship and interaction with the viral hemagglutinin (2010) J. Virol., 84 (9), pp. 4277-4288; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23 (8), p. 986; Wicht, O., Burkard, C., de Haan, C.A., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Identification and characterization of a proteolytically primed form of the murine coronavirus spike proteins after fusion with the target cell (2014) J. Virol., 88 (9), pp. 4943-44952; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210; Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion CRYSTAL STRUCTURE OF MOUSE HEPATITIS VIRUS SPIKE PROTEIN FUSION CORE (2004) J. Biol. Chem., 279 (29), pp. 30514-30522; Yao, Q., Compans, R.W., Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection (1996) Virology, 223 (1), pp. 103-112; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J. Virol., 87 (14), pp. 7790-7792","Kandeel, M.; Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal UniversitySaudi Arabia; email: mkandeel@kfu.edu.sa",,"Elsevier Ltd",14769271,,,"29803965","English","Comput. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85047250420 "Cockrell A.S., Leist S.R., Douglas M.G., Baric R.S.","57170359900;55846755300;57192182270;57205312930;","Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice",2018,"Mammalian Genome","29","7-8",,"367","383",,2,"10.1007/s00335-018-9760-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050646753&doi=10.1007%2fs00335-018-9760-9&partnerID=40&md5=28d36a5d6647d3a6ab9ddefad2646468","Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States","Cockrell, A.S., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Leist, S.R., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Douglas, M.G., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Baric, R.S., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States, Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States","The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV–host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV–host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus–host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV–host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions. © 2018, The Author(s).",,"Coronaviridae; Coronavirus infection; human; mammal; morbidity; mortality rate; mouse model; nonhuman; pandemic; phenotype; predictive value; reverse genetics; Review; virus cell interaction; virus pathogenesis; virus transmission; animal; communicable disease; Coronavirinae; Coronavirus infection; disease model; disease predisposition; genetics; host pathogen interaction; immunology; mouse; physiology; virology; Animals; Communicable Diseases, Emerging; Coronavirus; Coronavirus Infections; Disease Models, Animal; Disease Susceptibility; Host-Pathogen Interactions; Humans; Mice","Agnihothram, S., Yount, B.L., Donaldson, E.F., Huynh, J., Menachery, V.D., Gralinski, L.E., Graham, R.L., Baric, R.S., A mouse model for betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant (2014) mBio; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , PID: 25589660; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., AlJohani, S., Arabi, Y.M., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection—clinicopathological and ultrastructural study (2017) Histopathology; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Al-Omari, A., Fowler, R.A., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594. , PID: 28177862; Becker, M.M., Graham, R.L., Donaldson, E.F., Rockx, B., Sims, A.C., Sheahan, T., Pickles, R.J., Denison, M.R., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc Natl Acad Sci USA, 105, pp. 19944-19949. , PID: 19036930; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Baric, R.S., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J Virol, 85, pp. 12201-12215. , PID: 21937658; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Walmsley, S.L., Detsky, A.S., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area (2003) JAMA, 289, pp. 2801-2809. , PID: 12734147; Bottomly, D., Ferris, M.T., Aicher, L.D., Rosenzweig, E., Whitmore, A., Aylor, D.L., Haagmans, B.L., McWeeney, S.K., Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice (2012) G3 (Bethesda), 2, pp. 213-221; Brinkmeyer-Langford, C.L., Rech, R., Amstalden, K., Kochan, K.J., Hillhouse, A.E., Young, C., Welsh, C.J., Threadgill, D.W., Host genetic background influences diverse neurological responses to viral infection in mice (2017) Sci Rep, 7, p. 12194. , PID: 28939838; Chan, V.S., Chan, K.Y., Chen, Y., Poon, L.L., Cheung, A.N., Zheng, B., Chan, K.H., Lin, C.L., Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection (2006) Nat Genet, 38, pp. 38-46. , PID: 16369534; Chan, K.Y., Ching, J.C., Xu, M.S., Cheung, A.N., Yip, S.P., Yam, L.Y., Lai, S.T., Khoo, U.S., Association of ICAM3 genetic variant with severe acute respiratory syndrome (2007) J Infect Dis, 196, pp. 271-280. , PID: 17570115; Ching, J.C., Chan, K.Y., Lee, E.H., Xu, M.S., Ting, C.K., So, T.M., Sham, P.C., Khoo, U.S., Significance of the myxovirus resistance A (MxA) gene – 123C > a single-nucleotide polymorphism in suppressed interferon beta induction of severe acute respiratory syndrome coronavirus infection (2010) J Infect Dis, 201, pp. 1899-1908. , PID: 20462354; Churchill, G.A., Airey, D.C., Allayee, H., Angel, J.M., Attie, A.D., Beatty, J., Beavis, W.D., Zou, F., The collaborative cross, a community resource for the genetic analysis of complex traits (2004) Nat Genet, 36, pp. 1133-1137. , PID: 15514660; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Baric, R.S., Heise, M.T., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 5195-5199. , PID: 24574399; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , PID: 27892925; Cockrell, A.S., Beall, A., Yount, B., Baric, R., Efficient reverse genetic systems for rapid genetic manipulation of emergent and preemergent infectious coronaviruses (2017) Methods Mol Biol (Clifton NJ), 1602, pp. 59-81; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J Gen Virol, 95, pp. 408-412. , PID: 24197535; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., Beck, S.E., Matthews, K.L., Venkataraman, T., Frieman, M.B., CD8 + T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol; Day, C.W., Baric, R., Cai, S.X., Frieman, M., Kumaki, Y., Morrey, J.D., Smee, D.F., Barnard, D.L., A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo (2009) Virology, 395, pp. 210-222. , PID: 19853271; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Munster, V.J., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS ONE, 8. , PID: 23844250; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Munster, V.J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci USA, 110, pp. 16598-16603. , PID: 24062443; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , PID: 27344959; Deng, X., Agnihothram, S., Mielech, A.M., Nichols, D.B., Wilson, M.W., StJohn, S.E., Larsen, S.D., Baker, S.C., A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses (2014) J Virol, 88, pp. 11825-11833. , PID: 25100850; Doench, J.G., Am I ready for CRISPR? A user’s guide to genetic screens (2018) Nat Rev Genet, 19, pp. 67-80. , PID: 29199283; Donnelly, C.A., Ghani, A.C., Leung, G.M., Hedley, A.J., Fraser, C., Riley, S., Abu-Raddad, L.J., Anderson, R.M., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong (2003) Lancet, 361, pp. 1761-1766. , PID: 12781533; Dornemann, J., Burzio, C., Ronsse, A., Sprecher, A., De Clerck, H., Van Herp, M., Kolie, M.C., Antierens, A., First newborn baby to receive experimental therapies survives Ebola virus disease (2017) J Infect Dis, 215, pp. 171-174. , PID: 28073857; Douglas, M.G., Kocher, J.F., Scobey, T., Baric, R.S., Cockrell, A.S., Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease (2018) Virology, 517, pp. 98-107. , PID: 29277291; Dyall, J., Gross, R., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Hensley, L.E., Frieman, M.B., Jahrling, P.B., Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies (2017) Drugs, 77, pp. 1935-1966. , PID: 29143192; Everitt, A.R., Clare, S., Pertel, T., John, S.P., Wash, R.S., Smith, S.E., Chin, C.R., Kellam, P., IFITM3 restricts the morbidity and mortality associated with influenza (2012) Nature, 484, pp. 519-523. , PID: 22446628; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Munster, V.J., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10. , PID: 25144235; Feng, J., Zhang, Z., Wallace, M.B., Stafford, J.A., Kaldor, S.W., Kassel, D.B., Navre, M., Gwaltney, S.L., 2nd, Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV (2007) J Med Chem, 50, pp. 2297-2300. , PID: 17441705; Ferris, M.T., Aylor, D.L., Bottomly, D., Whitmore, A.C., Aicher, L.D., Bell, T.A., Bradel-Tretheway, B., Heise, M.T., Modeling host genetic regulation of influenza pathogenesis in the collaborative cross (2013) PLoS Pathog, 9. , PID: 23468633; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol, 25, pp. 35-48. , PID: 27743750; Forton, J.T., Rowlands, K., Rockett, K., Hanchard, N., Herbert, M., Kwiatkowski, D.P., Hull, J., Genetic association study for RSV bronchiolitis in infancy at the 5q31 cytokine cluster (2009) Thorax, 64, pp. 345-352. , PID: 19131452; Frieman, M.B., Chen, J., Morrison, T.E., Whitmore, A., Funkhouser, W., Ward, J.M., Lamirande, E.W., Baric, R.S., SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism (2010) PLoS Pathog, 6. , PID: 20386712; Frieman, M., Yount, B., Agnihothram, S., Page, C., Donaldson, E., Roberts, A., Vogel, L., Baric, R.S., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J Virol, 86, pp. 884-897. , PID: 22072787; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Shi, Z., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J Virol, 86, pp. 4620-4630. , PID: 22345464; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , PID: 24172901; Glass, W.G., Subbarao, K., Murphy, B., Murphy, P.M., Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice (2004) J Immunol, 173, pp. 4030-4039. , PID: 15356152; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146. , PID: 19906932; Gralinski, L.E., Ferris, M.T., Aylor, D.L., Whitmore, A.C., Green, R., Frieman, M.B., Deming, D., Baric, R.S., Genome wide identification of SARS-CoV susceptibility loci using the collaborative cross (2015) PLoS Genet, 11. , PID: 26452100; Gralinski, L.E., Menachery, V.D., Morgan, A.P., Totura, A.L., Beall, A., Kocher, J., Plante, J., Baric, R.S., Allelic variation in the toll-like receptor adaptor protein Ticam2 contributes to SARS-coronavirus pathogenesis in mice (2017) G3 (Bethesda), 7, pp. 1653-1663; Green, R., Wilkins, C., Thomas, S., Sekine, A., Hendrick, D.M., Voss, K., Ireton, R.C., Gale, M., Jr., Oas1b-dependent immune transcriptional profiles of West Nile virus infection in the collaborative cross (2017) G3 (Bethesda), 7, pp. 1665-1682; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81. , PID: 26678878; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Tu, C., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J Virol, 88, pp. 7070-7082. , PID: 24719429; Hogan, R.J., Gao, G., Rowe, T., Bell, P., Flieder, D., Paragas, J., Kobinger, G.P., Wilson, J.M., Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1 (2004) J Virol, 78, pp. 11416-11421. , PID: 15452265; Johnson, R.F., Via, L.E., Kumar, M.R., Cornish, J.P., Yellayi, S., Huzella, L., Postnikova, E., Jahrling, P.B., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430. , PID: 26342468; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Marasco, W.A., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , PID: 26828465; Kalter, S.S., Hemagglutinating behavior of mouse and egg-adapted type A (PR8) influenza virus (1949) Science (New York), 110, p. 184; Kenney, A.D., Dowdle, J.A., Bozzacco, L., McMichael, T.M., St Gelais, C., Panfil, A.R., Sun, Y., Yount, J.S., Human genetic determinants of viral diseases (2017) Annu Rev Genet, 51, pp. 241-263. , PID: 28853921; Kim, H., Kim, J.S., A guide to genome engineering with programmable nucleases (2014) Nat Rev Genet, 15, pp. 321-334. , PID: 24690881; Klemann, C., Wagner, L., Stephan, M., von Horsten, S., Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system (2016) Clin Exp Immunol, 185, pp. 1-21. , PID: 26919392; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045. , PID: 16169905; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Yuen, K.Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J Virol, 84, pp. 2808-2819. , PID: 20071579; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Woo, P.C., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J Virol, 89, pp. 10532-10547. , PID: 26269185; Lee, S.I., Costly lessons from the 2015 Middle East respiratory syndrome coronavirus outbreak in Korea (2015) J Prev Med Public Health, 48, pp. 274-276. , PID: 26639740; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray, P.B., Jr., Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J Infect Dis, 213, pp. 712-722. , PID: 26486634; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., McCray, P.B., Jr., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114, pp. E3119-E3128. , PID: 28348219; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , PID: 23831647; McCray, P.B., Jr., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., Netland, J., Perlman, S., Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus (2007) J Virol, 81, pp. 813-821. , PID: 17079315; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , PID: 26552008; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci USA, 113, pp. 3048-3053. , PID: 26976607; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species-a mechanism for coronavirus persistence and survival (2017) Curr Opin Virol, 23, pp. 1-7. , PID: 28214731; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., 3rd, Leist, S.R., Yount, B.L., Jr., Graham, R.L., Baric, R.S., Middle East Respiratory Syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) mBio; Mills, T.C., Rautanen, A., Elliott, K.S., Parks, T., Naranbhai, V., Ieven, M.M., Butler, C.C., Hill, A.V., IFITM3 and susceptibility to respiratory viral infections in the community (2014) J Infect Dis, 209, pp. 1028-1031. , PID: 23997235; Munster, V.J., de Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N Engl J Med, 368, pp. 1560-1562. , PID: 23550601; Munster, V.J., Wells, D., Lambe, T., Wright, D., Fischer, R.J., Bushmaker, T., Saturday, G., Warimwe, G.M., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28. , PID: 29263883; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Weiner, D.B., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132. , PID: 26290414; Netland, J., Meyerholz, D.K., Moore, S., Cassell, M., Perlman, S., Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2 (2008) J Virol, 82, pp. 7264-7275. , PID: 18495771; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Tong, S., Zaki, S.R., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658. , PID: 26857507; Niu, D., Wei, H.J., Lin, L., George, H., Wang, T., Lee, I.H., Zhao, H.Y., Yang, L., Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 (2017) Science (New York), 357, pp. 1303-1307; Ohnuma, K., Dang, N.H., Morimoto, C., Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function (2008) Trends Immunol, 29, pp. 295-301. , PID: 18456553; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches (2017) Curr Opin Virol, 23, pp. 49-58. , PID: 28412285; Pasanen, A., Karjalainen, M.K., Bont, L., Piippo-Savolainen, E., Ruotsalainen, M., Goksor, E., Kumawat, K., Korppi, M., Genome-wide association study of polymorphisms predisposing to bronchiolitis (2017) Sci Rep, 7, p. 41653. , PID: 28139761; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci USA, 112, pp. 8738-8743. , PID: 26124093; Patarcic, I., Gelemanovic, A., Kirin, M., Kolcic, I., Theodoratou, E., Baillie, K.J., de Jong, M.D., Polasek, O., The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis (2015) Sci Rep, 5, p. 16119. , PID: 26524966; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J Virol, 89, pp. 4696-4699. , PID: 25653445; Peck, K.M., Scobey, T., Swanstrom, J., Jensen, K.L., Burch, C.L., Baric, R.S., Heise, M.T., Permissivity of Dipeptidyl peptidase 4 orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants (2017) J Virol; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , PID: 23486063; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Haagmans, B.L., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838. , PID: 24257613; Rasmussen, A.L., Okumura, A., Ferris, M.T., Green, R., Feldmann, F., Kelly, S.M., Scott, D.P., Katze, M.G., Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance (2014) Science (New York), 346, pp. 987-991; Roberts, A., Paddock, C., Vogel, L., Butler, E., Zaki, S., Subbarao, K., Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans (2005) J Virol, 79, pp. 5833-5838. , PID: 15827197; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog, 3. , PID: 17222058; Roberts, A., Pardo-Manuel de Villena, F., Wang, W., McMillan, L., Threadgill, D.W., The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics (2007) Mamm Genome, 18, pp. 473-481. , PID: 17674098; Roberts, A., Lamirande, E.W., Vogel, L., Jackson, J.P., Paddock, C.D., Guarner, J., Zaki, S.R., Subbarao, K., Animal models and vaccines for SARS-CoV infection (2008) Virus Res, 133, pp. 20-32. , PID: 17499378; Rockx, B., Sheahan, T., Donaldson, E., Harkema, J., Sims, A., Heise, M., Pickles, R., Baric, R., Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice (2007) J Virol, 81, pp. 7410-7423. , PID: 17507479; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med; Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Murphy, B., Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice (2004) J Virol, 78, pp. 3572-3577. , PID: 15016880; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Zhou, Y., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382. , PID: 27750111; Threadgill, D.W., Hunter, K.W., Williams, R.W., Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort (2002) Mamm Genome, 13, pp. 175-178. , PID: 11956758; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol, 2, pp. 264-275. , PID: 22572391; Totura, A.L., Whitmore, A., Agnihothram, S., Schafer, A., Katze, M.G., Heise, M.T., Baric, R.S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) mBio, 6; Towler, P., Staker, B., Prasad, S.G., Menon, S., Tang, J., Parsons, T., Ryan, D., Pantoliano, M.W., ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis (2004) J Biol Chem, 279, pp. 17996-18007. , PID: 14754895; Tseng, C.T., Huang, C., Newman, P., Wang, N., Narayanan, K., Watts, D.M., Makino, S., Peters, C.J., Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor (2007) J Virol, 81, pp. 1162-1173. , PID: 17108019; Tsui, P.T., Kwok, M.L., Yuen, H., Lai, S.T., Severe acute respiratory syndrome: clinical outcome and prognostic correlates (2003) Emerg Infect Dis, 9, pp. 1064-1069. , PID: 14519241; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88, pp. 9220-9232. , PID: 24899185; van Doremalen, N., Falzarano, D., Ying, T., de Wit, E., Bushmaker, T., Feldmann, F., Okumura, A., Munster, V.J., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antivir Res, 143, pp. 30-37. , PID: 28389142; Wang, S., Wei, M., Han, Y., Zhang, K., He, L., Yang, Z., Su, B., Hui, W., Roles of TNF-alpha gene polymorphisms in the occurrence and progress of SARS-Cov infection: a case-control study (2008) BMC Infect Dis, 8, p. 27. , PID: 18312678; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993. , PID: 23835475; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , PID: 25211075; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J Virol; Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Bavari, S., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 381-385. , PID: 26934220; Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S., Jin, Q., ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J Infect Dis, 213, pp. 579-583. , PID: 26433221; Yang, X.H., Deng, W., Tong, Z., Liu, Y.X., Zhang, L.F., Zhu, H., Gao, H., Qin, C., Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection (2007) Comp Med, 57, pp. 450-459. , PID: 17974127; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci USA, 111, pp. 12516-12521. , PID: 25114257; Yang, L., Guell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Church, G., Genome-wide inactivation of porcine endogenous retroviruses (PERVs) (2015) Science (New York), 350, pp. 1101-1104; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2016) J Virol, 90, pp. 3253-3256; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , PID: 28393837; Zhao, J., Wohlford-Lenane, C., Zhao, J., Fleming, E., Lane, T.E., McCray, P.B., Jr., Perlman, S., Intranasal treatment with poly(I*C) protects aged mice from lethal respiratory virus infections (2012) J Virol, 86, pp. 11416-11424. , PID: 22915814; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Perlman, S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111, pp. 4970-4975. , PID: 24599590; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Zhou, Y., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) PLoS ONE, 10. , PID: 26701103; Zhou, J., To, K.K., Dong, H., Cheng, Z.S., Lau, C.C., Poon, V.K., Fan, Y.H., Yuen, K.Y., A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection (2012) J Infect Dis, 206, pp. 495-503. , PID: 22693232; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , PID: 29618817; Zhu, X., Wang, Y., Zhang, H., Liu, X., Chen, T., Yang, R., Shi, Y., Cao, C., Genetic variation of the human alpha-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection (2011) PLoS ONE, 6. , PID: 21904596; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses—drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347. , PID: 26868298","Cockrell, A.S.; Department of Epidemiology, University of North Carolina-Chapel HillUnited States; email: adam_cockrell@unc.edu",,"Springer New York LLC",09388990,,MAMGE,"30043100","English","Mamm. Genome",Review,"Final",Open Access,Scopus,2-s2.0-85050646753 "Da'Ar O.B., Ahmed A.E.","56267642000;35278332600;","Underlying trend, seasonality, prediction, forecasting and the contribution of risk factors: An analysis of globally reported cases of Middle East Respiratory Syndrome Coronavirus",2018,"Epidemiology and Infection","146","11",,"1343","1349",,2,"10.1017/S0950268818001541","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048306956&doi=10.1017%2fS0950268818001541&partnerID=40&md5=3ec58d23698b2f77b4327233c2cc3846","King Abdullah International Medical Research Centre (KAIMRC), College of Public Health and Health Informatics, King Saud Bin Abdulaziz University of Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia","Da'Ar, O.B., King Abdullah International Medical Research Centre (KAIMRC), College of Public Health and Health Informatics, King Saud Bin Abdulaziz University of Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia; Ahmed, A.E., King Abdullah International Medical Research Centre (KAIMRC), College of Public Health and Health Informatics, King Saud Bin Abdulaziz University of Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia","This study set out to identify and analyse trends and seasonal variations of monthly global reported cases of the Middle East respiratory syndrome coronavirus (MERS-CoV). It also made a prediction based on the reported and extrapolated into the future by forecasting the trend. Finally, the study assessed contributions of various risk factors in the reported cases. The motivation for this study is that MERS-CoV remains among the list of blueprint priority and potential pandemic diseases globally. Yet, there is a paucity of empirical literature examining trends and seasonality as the available evidence is generally descriptive and anecdotal. The study is a time series analysis using monthly global reported cases of MERS-CoV by the World Health Organisation between January 2015 and January 2018. We decomposed the series into seasonal, irregular and trend components and identified patterns, smoothened series, generated predictions and employed forecasting techniques based on linear regression. We assessed contributions of various risk factors in MERS-CoV cases over time. Successive months of the MERS-CoV cases suggest a significant decreasing trend (P = 0.026 for monthly series and P = 0.047 for Quarterly series). The MERS-CoV cases are forecast to wane by end 2018. Seasonality component of the cases oscillated below or above the baseline (the centred moving average), but no association with the series over time was noted. The results revealed contributions of risk factors such as camel contact, male, old age and being from Saudi Arabia and Middle East regions to the overall reported cases of MERS-CoV. The trend component and several risk factors for global MERS-CoV cases, including camel contact, male, age and geography/region significantly affected the series. Our statistical models appear to suggest significant predictive capacity and the findings may well inform healthcare practitioners and policymakers about the underlying dynamics that produced the globally reported MERS-CoV cases. © 2018 Cambridge University Press.","Forecasting; MERS-COV cases; prediction; risk factors; seasonality; trend","adult; age; Article; camel; controlled study; evidence based medicine; female; forecasting; geographic distribution; human; infection risk; major clinical study; male; Middle East; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; pandemic; prediction; risk factor; Saudi Arabia; seasonal variation; statistical model; time series analysis; trend study; virus transmission; world health organization; animal; Coronavirus infection; forecasting; global health; Middle East respiratory syndrome coronavirus; risk factor; season; sex factor; time factor; Age Factors; Animals; Camelus; Coronavirus Infections; Female; Forecasting; Global Health; Humans; Linear Models; Male; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Seasons; Sex Factors; Time Factors","Zyoud, S.H., Global research trends of Middle East respiratory syndrome coronavirus: A bibliometric analysis (2016) BMC Infectious Diseases, 16, p. 255; He, D., Differences in the seasonality of MERS-CoV and influenza in the Middle East (2015) International Journal of Infectious Diseases, 40, pp. 15-16; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infectious Diseases, 17, p. 615; Ahmed, A.E., Development of a risk-prediction model for Middle East respiratory syndrome coronavirus infection in dialysis patients (2018) Hemodialysis International, , 2018 Apr 14. [Epub ahead of print]; Assiri, A.J., Epidemiological, demographic, clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infectious Diseases, 13, pp. 752-761; Mahallawi, W.H., MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile (2018) Cytokine, 104, pp. 8-13; Sherbini, N.A., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data (2017) Journal of Epidemiology and Glob Health, 7, pp. 29-36; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Current Opinion in Pulmonary Medicine, 20, pp. 233-241; Corman, V.M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clinical Infectious Diseases, 62, pp. 477-483; Middle East respiratory syndrome coronavirus (MERS-CoV) (2018) Fact Sheet, 8, p. 2018. , World Health Organization Retrieved April; Khan, M.A., Middle East respiratory syndrome corona virus alert verification in Mirpur, Azad Kashmir (2017) Journal Ayub Medical College Abbottabad, 29, pp. 173-175; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: An update (2016) Journal of Infection and Public Health, 9, pp. 216-219; Sung, H., Comparative evaluation of three homogenization methods for isolating Middle East respiratory syndrome coronavirus nucleic acids from sputum samples for real-time reverse transcription PCR (2016) Annals Laboratory Medicine, 36, pp. 457-462; (2018) Regional Office for the Eastern Mediterranean, , http://www.emro.who.int/pandemicepidemic-diseases/mers-cov/mers-situation-update-january-2018.html, World Health Organization Epidemic and pandemic-prone diseases. MERS situation update, January 2018; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: A worldwide study (2018) Epidemiology and Infection, 146, pp. 489-495; Al-Turaiki, I., Alshahrani, M., Almutairi, T., Building predictive models for MERS-CoV infections using data mining techniques (2016) Journal of Infection and Public Health, 9, pp. 744-748; Choi, W.S., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infection & Chemotherapy, 48, pp. 118-126; Banik, G.R., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virologica Sinica, 31, pp. 81-84; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012-2015 (2016) American Journal of Epidemiology, 184, pp. 460-464; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis (2016) International Journal of Infectious Diseases, 49, pp. 129-133; State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Currents, 5, pp. 1-40. , Who Mers-Cov Research Group; Arabi, Y.M., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Annals of Internal Medicine, 160, pp. 389-397; Assiri, A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New England Journal of Medicine, 369, pp. 407-416; Al Ghamdi, M., Treatment outcomes for patients with Middle Eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia (2016) BMC Infectious Diseases, 16, p. 174; Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013 (2013) Euro Surveillance, 18, p. 20427. , Health Protection Agency (HPA) UK Novel Coronavirus Investigation team; Alsahafi, A.J., Cheng, C.A., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012-2015 (2016) International Journal of Infectious Diseases, 45, pp. 1-4; Drosten, C., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infectious Diseases, 13, pp. 745-751; Drosten, C., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia 2014 (2015) Clinical Infectious Diseases, 60, pp. 369-377; Zhou, J., Middle East respiratory syndrome coronavirus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virology Journal, 12, p. 218; Harriman, K., Brosseau, L., Trivedi, K., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) New England Journal of Medicine, 369, p. 1761; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) New England Journal of Medicine, 369, pp. 1761-1762; Oboho, I.K., 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) New England Journal of Medicine, 372, pp. 846-854; Gossner, C., Human-Dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses and Public Health, 63, pp. 1-9; Ahmed, A.E., Early identification of pneumonia patients at increased risk of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2018) International Journal of Infectious Diseases, 70, pp. 51-56; Memish, Z.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia 2013 (2014) Emerging Infectious Diseases, 20, pp. 1012-1015","Da'Ar, O.B.; King Abdullah International Medical Research Centre (KAIMRC), College of Public Health and Health Informatics, King Saud Bin Abdulaziz University of Health Sciences, National Guard Health AffairsSaudi Arabia; email: odaar@smumn.edu",,"Cambridge University Press",09502688,,EPINE,"29886854","English","Epidemiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85048306956 "Hui D.S., Azhar E.I., Kim Y.-J., Memish Z.A., Oh M.-D., Zumla A.","7101862411;23090055800;7410198066;7005059350;7201600302;7006170723;","Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission",2018,"The Lancet Infectious Diseases","18","8",,"e217","e227",,43,"10.1016/S1473-3099(18)30127-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043521307&doi=10.1016%2fS1473-3099%2818%2930127-0&partnerID=40&md5=98136de6f1eff81c705e3014c5439e32","Department of Medicine and Therapeutics and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administration Region, Hong Kong; Special Infectious Agents Unit, King Fahd Medical Research Centre and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Division of Infectious Diseases, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Division of Infectious Diseases, Department of Internal Medicine, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Rollins School of Public Health, Emory University, Atlanta, GA, United States; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom; NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom","Hui, D.S., Department of Medicine and Therapeutics and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administration Region, Hong Kong; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Centre and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Kim, Y.-J., Division of Infectious Diseases, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Division of Infectious Diseases, Department of Internal Medicine, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Oh, M.-D., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Zumla, A., Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom, NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom","Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonosis that causes death in 35·7% of cases. As of Feb 28, 2018, 2182 cases of MERS-CoV infection (with 779 deaths) in 27 countries were reported to WHO worldwide, with most being reported in Saudi Arabia (1807 cases with 705 deaths). MERS-CoV features prominently in the WHO blueprint list of priority pathogens that threaten global health security. Although primary transmission of MERS-CoV to human beings is linked to exposure to dromedary camels (Camelus dromedarius), the exact mode by which MERS-CoV infection is acquired remains undefined. Up to 50% of MERS-CoV cases in Saudi Arabia have been classified as secondary, occurring from human-to-human transmission through contact with asymptomatic or symptomatic individuals infected with MERS-CoV. Hospital outbreaks of MERS-CoV are a hallmark of MERS-CoV infection. The clinical features associated with MERS-CoV infection are not MERS-specific and are similar to other respiratory tract infections. Thus, the diagnosis of MERS can easily be missed, unless the doctor or health-care worker has a high degree of clinical awareness and the patient undergoes specific testing for MERS-CoV. The largest outbreak of MERS-CoV outside the Arabian Peninsula occurred in South Korea in May, 2015, resulting in 186 cases with 38 deaths. This outbreak was caused by a traveller with undiagnosed MERS-CoV infection who became ill after returning to Seoul from a trip to the Middle East. The traveller visited several health facilities in South Korea, transmitting the virus to many other individuals long before a diagnosis was made. With 10 million pilgrims visiting Saudi Arabia each year from 182 countries, watchful surveillance by public health systems, and a high degree of clinical awareness of the possibility of MERS-CoV infection is essential. In this Review, we provide a comprehensive update and synthesis of the latest available data on the epidemiology, determinants, and risk factors of primary, household, and nosocomial transmission of MERS-CoV, and suggest measures to reduce risk of transmission. © 2018 Elsevier Ltd",,"awareness; clinical feature; death; disease severity; disease transmission; global health; health care personnel; health education; household; human; infection control; infection prevention; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; Review; risk assessment; risk factor; risk reduction; travel; viral contamination; virus load; virus transmission; animal; camel; Coronavirus infection; cross infection; epidemic; family size; isolation and purification; Middle East respiratory syndrome coronavirus; mortality; pathogenicity; risk factor; Saudi Arabia; zoonosis; Animals; Camelus; Coronavirus Infections; Cross Infection; Disease Outbreaks; Disease Transmission, Infectious; Family Characteristics; Global Health; Humans; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Saudi Arabia; Zoonoses","Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stöhr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441; Severe acute respiratory syndrome http://www.who.int/topics/sars/en/, (accessed March 28, 2018); Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs the Middle East respiratory syndrome (2014) Curr Opin Pulm Med, 20, pp. 233-241; Middle East respiratory syndrome coronavirus (MERS-CoV) http://www.who.int/emergencies/mers-cov/en/, (accessed Jan 16, 2018); Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Lee, J.Y., Kim, Y.J., Chung, E.H., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis, 17, p. 498; Majumder, M.S., Brownstein, J.S., Finkelstein, S.N., Larson, R.C., Bourouiba, L., Nosocomial amplification of MERS-coronavirus in South Korea, 2015 (2017) Trans R Soc Trop Med Hyg, 111, pp. 261-269; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-327; WHO statement on the ninth meeting of the IHR Emergency Committee regarding MERS-CoV (2015), http://www.who.int/mediacentre/news/statements/2015/ihr-ec-mers/en/, (accessed Oct 15, 2017); List of blueprint priority diseases http://www.who.int/blueprint/priority-diseases/en/, (accessed March 28, 2018); Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; MERS-CoV daily update https://www.moh.gov.sa/en/CCC/PressReleases/Pages/statistics-2018-01-14-001.aspx, (accessed March 19, 2018); Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823; Reusken, C.B., Farag, E.A., Jonges, M., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill, 19, p. 20829; Ali, M.A., Shehata, M.M., Gomaa, M.R., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect, 6, p. e1; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18, p. 20590; Sikkema, R.S., Farag, E.A., Himatt, S., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013–2014: a case-control study (2017) J Infect Dis, 215, pp. 1702-1705; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Arwady, M.A., Alraddadi, B., Basler, C., Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 1395-1402; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Memish, Z.A., Cotten, M., Meyer, B., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerg Infect Dis, 21, pp. 2197-2200; Kasem, S., Qasim, I., Al-Hufofi, A., Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia (2017) J Infect Public Health, , published online Oct 6; Hemida, M.G., Al-Naeem, A., Perera, R.A., Chin, A.W., Poon, L.L., Peiris, M., Lack of Middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerg Infect Dis, 21, pp. 699-701; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) ELife, , published online Jan 16; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369, pp. 884-886; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 369, pp. 1761-1762; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Garbati, M.A., Fagbo, S.F., Fang, V.J., A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PLoS One, 11, p. e0165978; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14, pp. 464-470; Oh, M.D., Park, W.B., Choe, P.G., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Zhou, J., Li, C., Zhao, G., Human intestinal tract serves an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci Adv, 3, p. eaao4966; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17, p. 615; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012–2015 (2016) Am J Epidemiol, 184, pp. 460-464; Yang, Y.M., Hsu, C.Y., Lai, C.C., Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome (2017) Sci Rep, 7, p. 11307; Hong, K.H., Choi, J.P., Hong, S.H., Predictors of mortality in Middle East respiratory syndrome (MERS) (2017) Thorax, , published online July 19; Seys, L.J., Widagdo, W., Verhamme, F.M., DPP4, the MERS coronavirus receptor, is upregulated in lungs of smokers and COPD patients (2018) Clin Infect Dis, 66, pp. 45-53; Lee, J.Y., Kim, Y.J., Chung, E.H., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis, 17, p. 498; Al-Gethamy, M., Corman, V.M., Hussain, R., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Omrani, A.S., Matin, M.A., Haddad, Q., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Nam, H.S., Park, J.W., Ki, M., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int J Infect Dis, 58, pp. 37-42; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Alenazi, T.H., Al Arbash, H., El-Saed, A., Identified transmission dynamics of Middle East respiratory syndrome coronavirus infection during an outbreak: implications of an overcrowded emergency department (2017) Clin Infect Dis, 65, pp. 675-679; Al Hosani, F.I., Pringle, K., Al Mulla, M., Response to emergence of Middle East respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014 (2016) Emerg Infect Dis, 22, pp. 1162-1168; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2017) Am J Infect Control, , published online Sept 25; Kim, S.W., Park, J.W., Jung, H.D., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Bin, S.Y., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Kang, C.K., Song, K.H., Choe, P.G., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; Kim, S.H., Chang, S.Y., Sung, M., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369; Hunter, J.C., Nguyen, D., Aden, B., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; Cho, S.Y., Kang, J.-M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; WHO MERS-CoV global summary and assessment of risk (2017), http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1, (accessed Nov 5, 2017); Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel (2016) Emerg Infect Dis, 22, pp. 1915-1920; Majumder, M.S., Brownstein, J.S., Finkelstein, S.N., Larson, R.C., Bourouiba, L., Nosocomial amplification of MERS-coronavirus in South Korea, 2015 (2017) Trans R Soc Trop Med Hyg, 111, pp. 261-269; Choi, S., Jung, E., Choi, B.Y., Hur, Y.J., Ki, M., High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea (2017) J Hosp Infect, , published online Sept 25; Song, J.Y., Cheong, H.J., Choi, M.J., Viral shedding and environmental cleaning in Middle East respiratory syndrome coronavirus infection (2015) Infect Chemother, 47, pp. 252-255; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Park, G.E., Ko, J.H., Peck, K.R., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Moon, S.Y., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458; Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection Interim guidance (2015), http://www.who.int/csr/disease/coronavirus_infections/ipc-mers-cov/en/, World Health Organization Geneva (accessed Jan 17, 2018); WHO guidelines on natural ventilation for infection control in health-care settings (2009), http://whqlibdoc.who.int/publications/2009/9789241547857_eng.pdf, World Health Organization Geneva (accessed Nov 11, 2017); Management of asymptomatic persons who are RTPCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV) http://apps.who.int/iris/bitstream/10665/180973/1/WHO_MERS_IPC_15.2_eng.pdf?ua=1&ua=1, Interim Guidance. Updated Jan 3, 2018 (accessed Jan 16, 2018); Middle East respiratory syndrome coronavirus (MERS-CoV) http://www.who.int/mediacentre/factsheets/mers-cov/en/, Fact sheet. Updated May 2017 (accessed Jan 16, 2018); Chu, D.K., Chan, S.M., Perera, R.A., MERS-CoV in Arabian camels in Africa and Central Asia (2017) Virus Evol, 3. , vew036.045; Miguel, E., Perera, R.A., Baubekova, Absence of Middle East respiratory syndrome coronavirus in camelids, Kazakhstan, 2015 (2016) Emerg Infect Dis, 22, pp. 555-557; Tran, K., Cimon, K., Severn, M., Pessoa-Silva, C.L., Conly, J., Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review (2012) PLoS One, 7, p. e35797; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers (2014) Curr Opin Infect Dis, 27, pp. 411-417; Hui, D.S., Perlman, S., Zumla, A., Spread of MERS to South Korea and China (2015) Lancet Respir Med, 3, pp. 509-510; Memish, Z.A., Zumla, A., Alhakeem, R.F., Hajj: infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Zumla, A., Rustomjee, R., Ntoumi, F., Middle East respiratory syndrome—need for increased vigilance and watchful surveillance for MERS-CoV in sub-Saharan Africa (2015) Int J Infect Dis, 37, pp. 77-79; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) Lancet, 383, pp. 1869-1871; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses—drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347; Hui, D.S., Zumla, A., Advancing priority research on the Middle East respiratory syndrome coronavirus (2014) J Infect Dis, 209, pp. 173-176","Zumla, A.; Centre for Clinical Microbiology, UCL Division of Infection and Immunity, University College London Hospitals NHS Foundation TrustUnited Kingdom; email: a.zumla@ucl.ac.uk",,"Lancet Publishing Group",14733099,,LIDAB,"29680581","English","Lancet Infect. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85043521307 "Lau S.K.P., Wong E.Y.M., Tsang C.-C., Ahmed S.S., Au-Yeung R.K.H., Yuen K.-Y., Wernery U., Woo P.C.Y.","7401596211;56073366500;56347374900;56393567800;22833521900;36078079100;7005483197;7201801340;","Discovery and sequence analysis of four deltacoronaviruses from birds in the Middle East reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission",2018,"Journal of Virology","92","15", e00265-18,"","",,9,"10.1128/JVI.00265-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050153372&doi=10.1128%2fJVI.00265-18&partnerID=40&md5=f705fc248a6b88f5c17bd939a8a5f438","Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Central Veterinary Research Laboratory, Dubai, United Arab Emirates","Lau, S.K.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong; Wong, E.Y.M., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Tsang, C.-C., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Ahmed, S.S., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Au-Yeung, R.K.H., Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Yuen, K.-Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong; Wernery, U., Central Veterinary Research Laboratory, Dubai, United Arab Emirates; Woo, P.C.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong","The emergence of Middle East respiratory syndrome showed once again that coronaviruses (CoVs) in animals are potential source for epidemics in humans. To explore the diversity of deltacoronaviruses in animals in the Middle East, we tested fecal samples from 1,356 mammals and birds in Dubai, The United Arab Emirates. Four novel deltacoronaviruses were detected from eight birds of four species by reverse transcription-PCR (RT-PCR): FalCoV UAE-HKU27 from a falcon, HouCoV UAE-HKU28 from a houbara bustard, PiCoV UAE-HKU29 from a pigeon, and QuaCoV UAE-HKU30 from five quails. Complete genome sequencing showed that FalCoV UAE-HKU27, HouCoV UAE-HKU28, and PiCoV UAEHKU29 belong to the same CoV species, suggesting recent interspecies transmission between falcons and their prey, houbara bustards and pigeons, possibly along the food chain. Western blotting detected specific anti-FalCoV UAE-HKU27 antibodies in 33 (75%) of 44 falcon serum samples, supporting genuine infection in falcons after virus acquisition. QuaCoV UAE-HKU30 belongs to the same CoV species as porcine coronavirus HKU15 (PorCoV HKU15) and sparrow coronavirus HKU17 (SpCoV HKU17), discovered previously from swine and tree sparrows, respectively, supporting avian-to-swine transmission. Recombination involving the spike protein is common among deltacoronaviruses, which may facilitate crossspecies transmission. FalCoV UAE-HKU27, HouCoV UAE-HKU28, and PiCoV UAEHKU29 originated from recombination between white-eye coronavirus HKU16 (WECoV HKU16) and magpie robin coronavirus HKU18 (MRCoV HKU18), QuaCoV UAE-HKU30 from recombination between PorCoV HKU15/SpCoV HKU17 and munia coronavirus HKU13 (MunCoV HKU13), and PorCoV HKU15 from recombination between SpCoV HKU17 and bulbul coronavirus HKU11 (BuCoV HKU11). Birds in the Middle East are hosts for diverse deltacoronaviruses with potential for interspecies transmission. © 2018 American Society for Microbiology.","Coronavirus; Deltacoronavirus; Falcon; Houbara bustard; Interspecies jumping; Middle East; Pigeon; Quail","amino acid sequence; Article; blood sampling; Columbidae; controlled study; Coronavirinae; Deltacoronavirus; falcon; food chain; gene sequence; genetic code; genome analysis; genome size; Middle East; molecular phylogeny; nonhuman; nucleotide sequence; open reading frame; priority journal; quail; reverse transcription polymerase chain reaction; sequence analysis; sparrow; species diversity; virus genome; virus identification; virus recombination; virus strain; virus transmission; Western blotting; animal; bird; bird disease; classification; Coronaviridae infection; genetics; high throughput sequencing; isolation and purification; pathogenicity; pig; Saudi Arabia; transmission; veterinary; virology; Animals; Bird Diseases; Birds; Coronaviridae Infections; Coronavirus; High-Throughput Nucleotide Sequencing; Saudi Arabia; Swine","Lai, M.M.C., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100; Ziebuhr, J., Molecular biology of severe acute respiratory syndrome coronavirus (2004) Curr Opin Microbiol, 7, pp. 412-419. , https://doi.org/10.1016/j.mib.2004.06.007; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Family Coronaviridae (2012) Virus taxonomy, pp. 806-828. , In King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (ed). Classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, CA; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Woo, P.C.Y., Lau, S.K.P., Yip, C.C.Y., Huang, Y., Tsoi, H.-W., Chan, K.-H., Yuen, K.-Y., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) J Virol, 80, pp. 7136-7145. , https://doi.org/10.1128/JVI.00509-06; Lau, S.K.P., Woo, P.C.Y., Yip, C.C.Y., Fan, R.Y.Y., Huang, Y., Wang, M., Guo, R., Yuen, K.-Y., Isolation and characterization of a novel betacoronavirus subgroup a coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J Virol, 86, pp. 5481-5496. , https://doi.org/10.1128/JVI.06927-11; Lau, S.K.P., Wernery, R., Wong, E.Y.M., Joseph, S., Tsang, A.K.L., Patteril, N.A.G., Elizabeth, S.K., Woo, P.C.Y., Polyphyletic origin of MERS coronaviruses and isolation of a novel clade A strain from dromedary camels in the United Arab Emirates (2016) Emerg Microbes Infect, 5. , https://doi.org/10.1038/emi.2016.129; Moreno, A., Franzo, G., Massi, P., Tosi, G., Blanco, A., Antilles, N., Biarnes, M., Cecchinato, M., A novel variant of the infectious bronchitis virus resulting from recombination events in Italy and Spain (2017) Avian Pathol, 46, pp. 28-35. , https://doi.org/10.1080/03079457.2016.1200011; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , https://doi.org/10.1126/science.1087139; Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Roper, R.L., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404. , https://doi.org/10.1126/science.1085953; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , https://doi.org/10.1016/S0140-6736(03)13077-2; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399. , https://doi.org/10.1126/science.1085952; Woo, P.C.Y., Lau, S.K.P., Tsoi, H.-W., Chan, K.-H., Wong, B.H.L., Che, X.-Y., Tam, V.K.P., Yuen, K.-Y., Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia (2004) Lancet, 363, pp. 841-845. , https://doi.org/10.1016/S0140-6736(04)15729-2; Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin Microbiol Rev, 20, pp. 660-694. , https://doi.org/10.1128/CMR.00023-07; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., de Jong, J.C., Simon, J.H., Osterhaus, A.D., A previously undescribed coronavirus associ-ated with respiratory disease in humans (2004) Proc Natl Acad Sci U S A, 101, pp. 6212-6216. , https://doi.org/10.1073/pnas.0400762101; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373. , https://doi.org/10.1038/nm1024; Woo, P.C.Y., Lau, S.K.P., Chu, C.-M., Chan, K.-H., Tsoi, H.-W., Huang, Y., Wong, B.H.L., Yuen, K.-Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895. , https://doi.org/10.1128/JVI.79.2.884-895.2005; Woo, P.C.Y., Lau, S.K.P., Tsoi, H.-W., Huang, Y., Poon, R.W.S., Chu, C.-M., Lee, R.A., Yuen, K.-Y., Clinical and molecular epidemiological features of coronavirus HKU1-associated communityacquired pneumonia (2005) J Infect Dis, 192, pp. 1898-1907. , https://doi.org/10.1086/497151; Lau, S.K.P., Woo, P.C.Y., Yip, C.C.Y., Tse, H., Tsoi, H.-W., Cheng, V.C.C., Lee, P., Yuen, K.-Y., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071. , https://doi.org/10.1128/JCM.02614-05; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.-W., Wong, B.H.L., Wong, S.S.Y., Yuen, K.-Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , https://doi.org/10.1126/science.1118391; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Wong, B.H.L., Tsoi, H.-W., Yip, B.C.K., Yuen, K.-Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187. , https://doi.org/10.1016/j.virol.2006.02.041; Woo, P.C.Y., Wang, M., Lau, S.K.P., Xu, H., Poon, R.W.S., Guo, R., Wong, B.H.L., Yuen, K.-Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81, pp. 1574-1585. , https://doi.org/10.1128/JVI.02182-06; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Woo, P.C.Y., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of MERS-related coronavirus spike proteins for human DPP4 binding (2018) J Infect Dis, , https://doi.org/10.1093/infdis/jiy018; Chu, D.K.W., Peiris, J.S.M., Chen, H., Guan, Y., Poon, L.L.M., Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats (2008) J Gen Virol, 89, pp. 1282-1287. , https://doi.org/10.1099/vir.0.83605-0; Mihindukulasuriya, K.A., Wu, G., St Leger, J., Nordhausen, R.W., Wang, D., Identification of a novel coronavirus from a beluga whale by using a panviral microarray (2008) J Virol, 82, pp. 5084-5088. , https://doi.org/10.1128/JVI.02722-07; Corman, V.M., Kallies, R., Philipps, H., Göpner, G., Müller, M.A., Eckerle, I., Brünink, S., Drexler, J.F., Characterization of a novel betacoronavirus related to Middle East respiratory syndrome coronavirus in European hedgehogs (2014) J Virol, 88, pp. 717-724. , https://doi.org/10.1128/JVI.01600-13; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Tsang, A.K.L., Fan, R.Y.Y., Luk, H.K.H., Cai, J.-P., Yuen, K.-Y., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J Virol, 89, pp. 3076-3092. , https://doi.org/10.1128/JVI.02420-14; Li, K.S., Guan, Y., Wang, J., Smith, G.J.D., Xu, K.M., Duan, L., Rahardjo, A.P., Peiris, J.S.M., Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia (2004) Nature, 430, pp. 209-213. , https://doi.org/10.1038/nature02746; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lai, K.K.Y., Huang, Y., Lee, P., Luk, G.S.M., Yuen, K.-Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J Virol, 83, pp. 908-917. , https://doi.org/10.1128/JVI.01977-08; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K.-Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Kochhar, H.S., Porcine epidemic diarrhea in Canada: an emerging disease case study (2014) Can Vet J, 55, pp. 1048-1049; Lee, S., Lee, C., Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013 (2014) Emerg Infect Dis, 20, pp. 1223-1226. , https://doi.org/10.3201/eid2007.140294; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20, pp. 1227-1230. , https://doi.org/10.3201/eid2007.140296; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg Infect Dis, 21, pp. 2254-2255. , https://doi.org/10.3201/eid2112.150283; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15; Vui, D.T., Thanh, T.L., Tung, N., Srijangwad, A., Tripipat, T., Chuanasa, T., Nilubol, D., Complete genome characterization of porcine epidemic diarrhea virus in Vietnam (2015) Arch Virol, 160, pp. 1931-1938. , https://doi.org/10.1007/s00705-015-2463-6; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., Amonsin, A., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg Infect Dis, 20, pp. 757-759. , https://doi.org/10.3201/eid2204.151852; Lorsirigool, A., Saeng-chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., Tuntituvanont, A., Nilubol, D., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch Virol, 161, pp. 2909-2911. , https://doi.org/10.1007/s00705-016-2983-8; Trujillo-Ortega, M.E., Beltran-Figueroa, R., Garcia-Hernandez, M.E., Juarez-Ramirez, M., Sotomayor-Gonzalez, A., Hernandez-Villegas, E.N., Becerra-Hernandez, J.F., Sarmiento-Silva, R.E., Isolation and characterization of porcine epidemic diarrhea virus associated with the 2014 disease outbreak in Mexico: case report (2016) BMC Vet Res, 12, p. 132. , https://doi.org/10.1186/s12917-016-0763-z; Woo, P.C.Y., Lau, S.K.P., Tsang, C.-C., Lau, C.C.Y., Wong, P.-C., Chow, F.W.N., Fong, J.Y.H., Yuen, K.-Y., Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5=-untranslated region (2017) Emerg Microbes Infect, 6. , https://doi.org/10.1038/emi.2017.37; Lauring, A.S., Frydman, J., Andino, R., The role of mutational robustness in RNA virus evolution (2013) Nat Rev Microbiol, 11, pp. 327-336. , https://doi.org/10.1038/nrmicro3003; Palleroni, A., Miller, C.T., Hauser, M., Marler, P., Predation: prey plumage adaptation against falcon attack (2005) Nature, 434, pp. 973-974; Kane, S.A., Zamani, M., Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras (2014) J Exp Biol, 217, pp. 225-234. , https://doi.org/10.1242/jeb.092403; Woo, P.C.Y., Lau, S.K.P., Wernery, U., Wong, E.Y.M., Tsang, A.K.L., Johnson, B., Yip, C.C.Y., Yuen, K.-Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg Infect Dis, 20, pp. 560-572. , https://doi.org/10.3201/eid2004.131769; Gallagher, T., Perlman, S., Broad reception for coronavirus (2013) Nature, 495, pp. 176-177. , https://doi.org/10.1038/495176a; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , https://doi.org/10.1038/nature12711; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221. , https://doi.org/10.1186/s12985-015-0422-1; Lau, S.K.P., Feng, Y., Chen, H., Luk, H.K.H., Yang, W.-H., Li, K.S.M., Zhang, Y.-Z., Woo, P.C.Y., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J Virol, 89, pp. 10532-10547. , https://doi.org/10.1128/JVI.01048-15; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronavi-ruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006698; Lau, S.K.P., Lee, P., Tsang, A.K.L., Yip, C.C.Y., Tse, H., Lee, R.A., So, L.-Y., Yuen, K.-Y., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J Virol, 85, pp. 11325-11337. , https://doi.org/10.1128/JVI.05512-11; Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Finn, R.D., The Pfam protein families database (2012) Nucleic Acids Res, 40, pp. D290-D301. , https://doi.org/10.1093/nar/gkr1065; Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Hunter, S., InterProScan 5: genome-scale protein function classification (2014) Bioinformatics, 30, pp. 1236-1240. , https://doi.org/10.1093/bioinformatics/btu031; Sonnhammer, E.L., von Heijne, G., Krogh, A., A hidden Markov model for predicting transmembrane helices in protein sequences (1998) Proc Int Conf Intell Syst Mol Biol, 6, pp. 175-182; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Ray, S.C., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J Virol, 73, pp. 152-160; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular evolution of MERS coronavirus: dromedaries as a recent intermediate host or longtime animal reservoir? (2017) Int J Mol Sci, 18, p. 2138. , https://doi.org/10.3390/ijms18102138; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Tsang, A.K.L., Hui, S.-W., Fan, R.Y.Y., Martelli, P., Yuen, K.-Y., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus (2014) J Virol, 88, pp. 1318-1331. , https://doi.org/10.1128/JVI.02351-13; Wernery, U., Tsang, C.-C., Hebel, C., Damerau, A., Kinne, J., Cai, J.-P., Küspert, H., Woo, P.C.Y., Serodiagnosis of aspergillosis in falcons (Falco spp.) by an Afmp1p-based enzyme-linked immunosorbent assay (2018) Mycoses, , https://doi.org/10.1111/myc.12776","Wernery, U.; Central Veterinary Research LaboratoryUnited Arab Emirates; email: cvrl@cvrl.ae",,"American Society for Microbiology",0022538X,,JOVIA,"29769348","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85050153372 "Fu X., Fang B., Liu Y., Cai M., Jun J., Ma J., Bu D., Wang L., Zhou P., Wang H., Zhang G.","55982794700;56799844700;57201822539;57200815204;57201820434;56278781100;57200821900;55983760500;55614521400;55874235900;55974030100;","Newly emerged porcine enteric alphacoronavirus in southern China: Identification, origin and evolutionary history analysis",2018,"Infection, Genetics and Evolution","62",,,"179","187",,11,"10.1016/j.meegid.2018.04.031","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046170222&doi=10.1016%2fj.meegid.2018.04.031&partnerID=40&md5=86f27ce3db15a531be9b27fc3c616948","College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China","Fu, X., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Fang, B., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Liu, Y., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Cai, M., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Jun, J., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Ma, J., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China; Bu, D., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China; Wang, L., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China; Zhou, P., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China; Wang, H., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China; Zhang, G., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China","Coronaviruses have a wide host range and can cause a variety of diseases with varying severity in different animals. Several enteric coronaviruses have been identified that are associated with diarrhea in swine and that have caused substantial economic losses. In this study, a newly emerged porcine enteric alphacoronavirus (PEAV), PEAV-GD-CH/2017, was identified from suckling piglets with diarrhea in southern China, and a full-length genome sequence of PEAV was obtained for systematic analysis. The novel PEAV sequence was most identical to that of bat-HKU2, and the differences between them were comprehensively compared, especially the uniform features of the S protein, which was shown to have a close relationship with betacoronaviruses and to perhaps represent unrecognized betacoronaviruses. In addition, Bayesian analysis was conducted to address the origin of PEAV, and the divergence time between PEAV and bat-HKU2 was estimated at 1926, which indicates that PEAV is not newly emerged and may have circulated in swine herds for several decades since the interspecies transmission of this coronavirus from bat to swine. The evolutionary rate of coronaviruses was estimated to be 1.93 × 10−4 substitutions per site per year for the RdRp gene in our analysis. For the origin of PEAV, we suspect that it is the result of the interspecies transmission of bat-HKU2 from bat to swine. Our results provide valuable information about the uniform features, origin and evolution of the novel PEAV, which will facilitate further investigations of this newly emerged pathogen. © 2018 Elsevier B.V.","Coronavirus; Diarrhea; Evolutionary analysis; Origin; PEAV","vitronectin; Alphacoronavirus; animal tissue; Article; Bayes theorem; Betacoronavirus; China; diarrhea; epidemic; gene sequence; gene structure; genetic variability; herd; nonhuman; phylogenetic tree; piglet; porcine enteric alphacoronavirus; priority journal; RdRp gene; retrospective study; virus gene; virus genome; virus identification; virus transmission; Alphacoronavirus; animal; communicable disease; Coronavirus infection; evolution; genetics; isolation and purification; phylogeny; pig; swine disease; veterinary medicine; virology; Alphacoronavirus; Animals; Biological Evolution; China; Communicable Diseases, Emerging; Coronavirus Infections; Genome, Viral; Phylogeny; Swine; Swine Diseases","Adlhoch, C., Wolf, A., Meisel, H., Kaiser, M., Ellerbrok, H., Pauli, G., High HEV presence in four different wild boar populations in East and West Germany (2009) Vet. Microbiol., 139, pp. 270-278; Amimo, J.O., Vlasova, A.N., Saif, L.J., Detection and genetic diversity of porcine group A rotaviruses in historic (2004) and recent (2011 and 2012) swine fecal samples in Ohio: predominance of the G9P[13] genotype in nursing piglets (2013) J. Clin. Microbiol., 51, pp. 1142-1151; Chinese, S.M.E.C., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Chu, D.K., Peiris, J.S., Chen, H., Guan, Y., Poon, L.L., Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats (2008) J. Gen. Virol., 89, pp. 1282-1287; Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Guan, Y., Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China (2007) J. Virol., 81, pp. 6920-6926; Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol. Biol., 7, p. 214; Firth, C., Charleston, M.A., Duffy, S., Shapiro, B., Holmes, E.C., Insights into the evolutionary history of an emerging livestock pathogen: porcine circovirus 2 (2009) J. Virol., 83, pp. 12813-12821; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., de Jong, J.C., Simon, J.H., Osterhaus, A.D., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 6212-6216; Fu, X., Fang, B., Ma, J., Liu, Y., Bu, D., Zhou, P., Wang, H., Zhang, G., Insights into the epidemic characteristics and evolutionary history of the novel porcine circovirus type 3 in southern China (2018) Transbound. Emerg. Dis., 65, pp. e296-e303; Goller, K.V., Gabriel, C., Dimna, M.L., Le Potier, M.F., Rossi, S., Staubach, C., Merboth, M., Blome, S., Evolution and molecular epidemiology of classical swine fever virus during a multi-annual outbreak amongst European wild boar (2016) J. Gen. Virol., 97, pp. 639-645; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1063-1069; Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J. Virol., 82, pp. 1819-1826; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4; Kim, L., Chang, K.O., Sestak, K., Parwani, A., Saif, L.J., Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs (2000) J. Vet. Diagnostic Invest., 12, pp. 385-388; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 14040-14045; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Yuen, K.Y., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Yuen, K.Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819; Liu, X., Wang, Q., Reverse transcription-PCR assays for the differentiation of various US porcine epidemic diarrhea virus strains (2016) J. Virol. Methods, 234, pp. 137-141; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Pensaert, M.B., Callebaut, P.E., Characteristics of a coronavirus causing vomition and wasting in pigs (1974) Archiv fur die gesamte Virusforschung, 44, pp. 35-50; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, pp. 243-247; Pyrc, K., Jebbink, M.F., Berkhout, B., van der Hoek, L., Genome structure and transcriptional regulation of human coronavirus NL63 (2004) Virol. J., 1, p. 7; Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., van der Hoek, L., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J. Mol. Biol., 364, pp. 964-973; Rho, S., Moon, H.J., Park, S.J., Kim, H.K., Keum, H.O., Han, J.Y., Van Nguyen, G., Park, B.K., Detection and genetic analysis of porcine hemagglutinating encephalomyelitis virus in South Korea (2011) Virus Genes, 42, pp. 90-96; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 2430-2435; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J. Virol., 79, pp. 1595-1604; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J. Virol., 80, pp. 7270-7274; Wang, J., Zhao, P., Guo, L., Liu, Y., Du, Y., Ren, S., Li, J., Wu, J., Porcine epidemic diarrhea virus variants with high pathogenicity, China (2013) Emerg. Infect. Dis., 19, pp. 2048-2049; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1594-1595; Wang, W., Lin, X.D., Guo, W.P., Zhou, R.H., Wang, M.R., Wang, C.Q., Ge, S., Zhang, Y.Z., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Woo, P.C., Lau, S.K., Li, K.S., Poon, R.W., Wong, B.H., Tsoi, H.W., Yip, B.C., Yuen, K.Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Woo, P.C., Lau, S.K., Tsang, C.C., Lau, C.C., Wong, P.C., Chow, F.W., Fong, J.Y., Yuen, K.Y., Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region (2017) Emerg. Microbes Infect., 6; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhang, X., Zhu, Y., Zhu, X., Shi, H., Chen, J., Shi, D., Yuan, J., Feng, L., Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China (2017) Emerg. Microbes Infect., 6","Wang, H.; College of Veterinary Medicine, South China Agricultural UniversityChina; email: wangheng2009@scau.edu.cn",,"Elsevier B.V.",15671348,,IGENC,"29704627","English","Infec. Genet. Evol.",Article,"Final",Open Access,Scopus,2-s2.0-85046170222 "Xue M., Fu F., Ma Y., Zhang X., Li L., Feng L., Liu P.","55496438000;7201607918;57193746534;55851450100;57116608200;55792011500;36804440700;","The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type I interferon production",2018,"Journal of Virology","92","15", e00431-18,"","",,16,"10.1128/JVI.00431-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050142311&doi=10.1128%2fJVI.00431-18&partnerID=40&md5=262b7e7e8ec1f368fd1e3ac2adcb380c","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China","Xue, M., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Fu, F., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Ma, Y., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Zhang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Li, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Feng, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Liu, P., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China","Coronavirus replication is closely associated with the endoplasmic reticulum (ER), the primary cellular organelle for protein synthesis, folding, and modification. ER stress is a common consequence in coronavirus-infected cells. However, how the virus-induced ER stress influences coronavirus replication and pathogenesis remains controversial. Here, we demonstrated that infection with the alphacoronavirus transmissible gastroenteritis virus (TGEV) induced ER stress and triggered the unfolded protein response (UPR) in vitro and in vivo, and ER stress negatively regulated TGEV replication in vitro. Although TGEV infection activated all three UPR pathways (activating transcription factor 6 [ATF6], inositol-requiring enzyme 1 [IRE1], and protein kinase R-like ER kinase [PERK]), the virus-triggered UPR suppressed TGEV replication in both swine testicular (ST) and IPEC-J2 cells primarily through activation of the PERK-eukaryotic initiation factor 2α (eIF2α) axis, as shown by functional studies with overexpression, small interfering RNA (siRNA), or specific chemical inhibitors. Moreover, we demonstrated that PERK-eIF2α axis-mediated inhibition of TGEV replication occurs through phosphorylated eIF2α-induced overall attenuation of protein translation. In addition to direct inhibition of viral production, the PERK-eIF2α pathway activated NF-κB and then facilitated type I IFN production, resulting in TGEV suppression. Taken together, our results suggest that the TGEV-triggered PERK-eIF2α pathway negatively regulates TGEV replication and represents a vital aspect of host innate responses to invading pathogens. © 2018 American Society for Microbiology.","Endoplasmic reticulum stress; Interferon; Protein kinase R-like ER kinase; Translation attenuation; Transmissible gastroenteritis virus; Unfolded protein response","activating transcription factor 6; alpha interferon; beta interferon; glucose regulated protein 78; immunoglobulin enhancer binding protein; initiation factor 2alpha; interferon; protein kinase R like ER kinase; small interfering RNA; unclassified drug; viral protein; activating transcription factor 6; initiation factor 2; interferon; PERK kinase; protein kinase R; animal cell; animal experiment; animal tissue; Article; cell viability; controlled study; Coronaviridae infection; endoplasmic reticulum stress; in vitro study; in vivo study; interferon production; male; nonhuman; piglet; priority journal; protein expression; protein phosphorylation; protein processing; protein targeting; RNA interference; signal transduction; testicular cell line; Transmissible gastroenteritis virus; unfolded protein response; upregulation; virus replication; virus titration; animal; biosynthesis; cell line; genetics; metabolism; physiology; pig; protein synthesis; Transmissible gastroenteritis virus; virus replication; Activating Transcription Factor 6; Animals; Cell Line; eIF-2 Kinase; Eukaryotic Initiation Factor-2; Interferon Type I; Protein Biosynthesis; Swine; Transmissible gastroenteritis virus; Unfolded Protein Response; Virus Replication","Hetz, C., Papa, F.R., The unfolded protein response and cell fate control (2018) Mol Cell, 69, pp. 169-181. , https://doi.org/10.1016/j.molcel.2017.06.017; Fung, T.S., Huang, M., Liu, D.X., Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions (2014) Virus Res, 194, pp. 110-123. , https://doi.org/10.1016/j.virusres.2014.09.016; Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response (2007) Nat Rev Mol Cell Biol, 8, pp. 519-529. , https://doi.org/10.1038/nrm2199; Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., Walter, P., On the mechanism of sensing unfolded protein in the endoplasmic reticulum (2005) Proc Natl Acad Sci U S A, 102, pp. 18773-18784. , https://doi.org/10.1073/pnas.0509487102; Karagoz, G.E., Acosta-Alvear, D., Nguyen, H.T., Lee, C.P., Chu, F., Walter, P., An unfolded protein-induced conformational switch activates mammalian IRE1 (2017) Elife, 6. , https://doi.org/10.7554/eLife.30700; Pincus, D., Chevalier, M.W., Aragon, T., van Anken, E., Vidal, S.E., El-Samad, H., Walter, P., BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response (2010) PLoS Biol, 8. , https://doi.org/10.1371/journal.pbio.1000415; Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L., Wek, R.C., Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control (1998) Mol Cell Biol, 18, pp. 7499-7509. , https://doi.org/10.1128/MCB.18.12.7499; Pavio, N., Romano, P.R., Graczyk, T.M., Feinstone, S.M., Taylor, D.R., Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK (2003) J Virol, 77, pp. 3578-3585. , https://doi.org/10.1128/JVI.77.6.3578-3585.2003; Wek, R.C., Jiang, H.Y., Anthony, T.G., Coping with stress: eIF2 kinases and translational control (2006) Biochem Soc Trans, 34, pp. 7-11. , https://doi.org/10.1042/BST0340007; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J Virol, 76, pp. 3697-3708. , https://doi.org/10.1128/JVI.76.8.3697-3708.2002; Gallagher, T., Perlman, S., Public health: broad reception for coronavirus (2013) Nature, 495, pp. 176-177. , https://doi.org/10.1038/495176a; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front Microbiol, 5, p. 296. , https://doi.org/10.3389/fmicb.2014.00296; Chan, C.P., Siu, K.L., Chin, K.T., Yuen, K.Y., Zheng, B., Jin, D.Y., Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein (2006) J Virol, 80, pp. 9279-9287. , https://doi.org/10.1128/JVI.00659-06; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J Virol, 80, pp. 5927-5940. , https://doi.org/10.1128/JVI.02501-05; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292. , https://doi.org/10.1016/S0065-3527(06)66005-3; Versteeg, G.A., van de Nes, P.S., Bredenbeek, P.J., Spaan, W.J., The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations (2007) J Virol, 81, pp. 10981-10990. , https://doi.org/10.1128/JVI.01033-07; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J Virol, 87, pp. 8124-8134. , https://doi.org/10.1128/JVI.00626-13; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Alvarez, E., Oliveros, J.C., Zhao, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002315; Krahling, V., Stein, D.A., Spiegel, M., Weber, F., Muhlberger, E., Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity (2009) J Virol, 83, pp. 2298-2309. , https://doi.org/10.1128/JVI.01245-08; Datan, E., Roy, S.G., Germain, G., Zali, N., McLean, J.E., Golshan, G., Harbajan, S., Zakeri, Z., Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation (2016) Cell Death Dis, 7. , https://doi.org/10.1038/cddis.2015.409; Wang, X., Liao, Y., Yap, P.L., Png, K.J., Tam, J.P., Liu, D.X., Inhibition of protein kinase R activation and upregulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells (2009) J Virol, 83, pp. 12462-12472. , https://doi.org/10.1128/JVI.01546-09; van Nieuwstadt, A.P., Zetstra, T., Boonstra, J., Infection with porcine respiratory coronavirus does not fully protect pigs against intestinal transmissible gastroenteritis virus (1989) Vet Rec, 125, pp. 58-60. , https://doi.org/10.1136/vr.125.3.58; Cruz, J.L., Sola, I., Becares, M., Alberca, B., Plana, J., Enjuanes, L., Zuniga, S., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002090; Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., Laude, H., Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes (1998) J Virol, 72, pp. 8636-8643; La Bonnardiere, C., Laude, H., High interferon titer in newborn pig intestine during experimentally induced viral enteritis (1981) Infect Immun, 32, pp. 28-31; Riffault, S., Carrat, C., van Reeth, K., Pensaert, M., Charley, B., Interferonalpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets (2001) Vet Res, 32, pp. 71-79. , https://doi.org/10.1051/vetres:2001111; Zhou, Y., Wu, W., Xie, L., Wang, D., Ke, Q., Hou, Z., Wu, X., Fang, L., Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production (2017) Front Immunol, 8, p. 940. , https://doi.org/10.3389/fimmu.2017.00940; Vallabhapurapu, S., Karin, M., Regulation and function of NF-kappaB transcription factors in the immune system (2009) Annu Rev Immunol, 27, pp. 693-733. , https://doi.org/10.1146/annurev.immunol.021908.132641; Jiang, H.Y., Wek, S.A., McGrath, B.C., Scheuner, D., Kaufman, R.J., Cavener, D.R., Wek, R.C., Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses (2003) Mol Cell Biol, 23, pp. 5651-5663. , https://doi.org/10.1128/MCB.23.16.5651-5663.2003; Jiang, H.Y., Wek, R.C., GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation (2005) Biochem J, 385, pp. 371-380. , https://doi.org/10.1042/BJ20041164; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Liu, F., Li, G., Wen, K., Bui, T., Cao, D., Zhang, Y., Yuan, L., Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics (2010) Viral Immunol, 23, pp. 135-149. , https://doi.org/10.1089/vim.2009.0088; Geens, M.M., Niewold, T.A., Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization (2011) Cytotechnology, 63, pp. 415-423. , https://doi.org/10.1007/s10616-011-9362-9; Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., Ron, D., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA (2002) Nature, 415, pp. 92-96. , https://doi.org/10.1038/415092a; Yu, C.Y., Hsu, Y.W., Liao, C.L., Lin, Y.L., Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress (2006) J Virol, 80, pp. 11868-11880. , https://doi.org/10.1128/JVI.00879-06; Lee, A.H., Iwakoshi, N.N., Glimcher, L.H., XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response (2003) Mol Cell Biol, 23, pp. 7448-7459. , https://doi.org/10.1128/MCB.23.21.7448-7459.2003; Haze, K., Yoshida, H., Yanagi, H., Yura, T., Mori, K., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress (1999) Mol Biol Cell, 10, pp. 3787-3799. , https://doi.org/10.1091/mbc.10.11.3787; Galindo, I., Hernaez, B., Munoz-Moreno, R., Cuesta-Geijo, M.A., Dalmau-Mena, I., Alonso, C., The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection (2012) Cell Death Dis, 3. , https://doi.org/10.1038/cddis.2012.81; Hassan, I.H., Zhang, M.S., Powers, L.S., Shao, J.Q., Baltrusaitis, J., Rutkowski, D.T., Legge, K., Monick, M.M., Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway (2012) J Biol Chem, 287, pp. 4679-4689. , https://doi.org/10.1074/jbc.M111.284695; Nair, V.P., Anang, S., Subramani, C., Madhvi, A., Bakshi, K., Srivastava, A., Shalimar Nayak, B., Surjit, M., Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis e virus (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005521; Reid, S.P., Shurtleff, A.C., Costantino, J.A., Tritsch, S.R., Retterer, C., Spurgers, K.B., Bavari, S., HSPA5 is an essential host factor for Ebola virus infection (2014) Antiviral Res, 109, pp. 171-174. , https://doi.org/10.1016/j.antiviral.2014.07.004; Su, Y.C., Wu, J.L., Hong, J.R., Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death (2011) Apoptosis, 16, pp. 272-287. , https://doi.org/10.1007/s10495-010-0565-x; Prostko, C.R., Brostrom, M.A., Malara, E.M., Brostrom, C.O., Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78 (1992) J Biol Chem, 267, pp. 16751-16754; Ozcan, U., Ozcan, L., Yilmaz, E., Duvel, K., Sahin, M., Manning, B.D., Hotamisligil, G.S., Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis (2008) Mol Cell, 29, pp. 541-551. , https://doi.org/10.1016/j.molcel.2007.12.023; Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R.O., Gorgun, C.Z., Hotamisligil, G.S., Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes (2006) Science, 313, pp. 1137-1140. , https://doi.org/10.1126/science.1128294; Cross, B.C., Bond, P.J., Sadowski, P.G., Jha, B.K., Zak, J., Goodman, J.M., Silverman, R.H., Harding, H.P., The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule (2012) Proc Natl Acad Sci U S A, 109, pp. E869-E878. , https://doi.org/10.1073/pnas.1115623109; Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Yuan, J., A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress (2005) Science, 307, pp. 935-939. , https://doi.org/10.1126/science.1101902; Guo, L., Yu, H., Gu, W., Luo, X., Li, R., Zhang, J., Xu, Y., Wang, Y., Autophagy negatively regulates transmissible gastroenteritis virus replication (2016) Sci Rep, 6, p. 23864. , https://doi.org/10.1038/srep23864; Yeomans, A., Thirdborough, S.M., Valle-Argos, B., Linley, A., Krysov, S., Hidalgo, M.S., Leonard, E., Packham, G., Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYCspecific mRNA translation (2016) Blood, 127, pp. 449-457. , https://doi.org/10.1182/blood-2015-07-660969; Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., Vedantham, P., Hearn, B.R., Li, H., Gamache, K., Walter, P., Pharmacological brake-release of mRNA translation enhances cognitive memory (2013) Elife, 2. , https://doi.org/10.7554/eLife.00498; Sidrauski, C., McGeachy, A.M., Ingolia, N.T., Walter, P., The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly (2015) Elife, p. 4. , https://doi.org/10.7554/eLife.05033, 26 February; Zhu, L., Yang, X., Mou, C., Yang, Q., Transmissible gastroenteritis virus does not suppress IFN-beta induction but is sensitive to IFN in IPEC-J2 cells (2017) Vet Microbiol, 199, pp. 128-134. , https://doi.org/10.1016/j.vetmic.2016.12.031; Cruz, J.L., Becares, M., Sola, I., Oliveros, J.C., Enjuanes, L., Zuniga, S., Alphacoronavirus protein 7 modulates host innate immune response (2013) J Virol, 87, pp. 9754-9767. , https://doi.org/10.1128/JVI.01032-13; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuniga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NFkappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178. , https://doi.org/10.1016/j.virol.2017.04.024; Jordan, L.T., Derbyshire, J.B., Antiviral action of interferon-alpha against porcine transmissible gastroenteritis virus (1995) Vet Microbiol, 45, pp. 59-70. , https://doi.org/10.1016/0378-1135(94)00118-G; Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 (2001) Nature, 413, pp. 732-738. , https://doi.org/10.1038/35099560; Minakshi, R., Padhan, K., Rani, M., Khan, N., Ahmad, F., Jameel, S., The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor (2009) PLoS One, 4. , https://doi.org/10.1371/journal.pone.0008342; Favreau, D.J., Desforges, M., St-Jean, J.R., Talbot, P.J., A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus (2009) Virology, 395, pp. 255-267. , https://doi.org/10.1016/j.virol.2009.09.026; Wang, Y., Li, J.R., Sun, M.X., Ni, B., Huan, C., Huang, L., Li, C., Mao, X., Triggering unfolded protein response by 2-deoxy-D-glucose inhibits porcine epidemic diarrhea virus propagation (2014) Antiviral Res, 106, pp. 33-41. , https://doi.org/10.1016/j.antiviral.2014.03.007; Raaben, M., Groot Koerkamp, M.J., Rottier, P.J., de Haan, C.A., Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and pro-transmissible gastroenteritis virus (TGEV) infected piglets (2007) Vet Res, 32, pp. 71-79. , https://doi.org/10.1051/vetres:2001111; Zhou, Y., Wu, W., Xie, L., Wang, D., Ke, Q., Hou, Z., Wu, X., Fang, L., Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production (2017) Front Immunol, 8, p. 940. , https://doi.org/10.3389/fimmu.2017.00940; Vallabhapurapu, S., Karin, M., Regulation and function of NF-kappaB transcription factors in the immune system (2009) Annu Rev Immunol, 27, pp. 693-733. , https://doi.org/10.1146/annurev.immunol.021908.132641; Jiang, H.Y., Wek, S.A., McGrath, B.C., Scheuner, D., Kaufman, R.J., Cavener, D.R., Wek, R.C., Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses (2003) Mol Cell Biol, 23, pp. 5651-5663. , https://doi.org/10.1128/MCB.23.16.5651-5663.2003; Jiang, H.Y., Wek, R.C., GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation (2005) Biochem J, 385, pp. 371-380. , https://doi.org/10.1042/BJ20041164; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Liu, F., Li, G., Wen, K., Bui, T., Cao, D., Zhang, Y., Yuan, L., Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics (2010) Viral Immunol, 23, pp. 135-149. , https://doi.org/10.1089/vim.2009.0088; Geens, M.M., Niewold, T.A., Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization (2011) Cytotechnology, 63, pp. 415-423. , https://doi.org/10.1007/s10616-011-9362-9; Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., Ron, D., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA (2002) Nature, 415, pp. 92-96. , https://doi.org/10.1038/415092a; Yu, C.Y., Hsu, Y.W., Liao, C.L., Lin, Y.L., Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress (2006) J Virol, 80, pp. 11868-11880. , https://doi.org/10.1128/JVI.00879-06; Lee, A.H., Iwakoshi, N.N., Glimcher, L.H., XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response (2003) Mol Cell Biol, 23, pp. 7448-7459. , https://doi.org/10.1128/MCB.23.21.7448-7459.2003; Haze, K., Yoshida, H., Yanagi, H., Yura, T., Mori, K., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress (1999) Mol Biol Cell, 10, pp. 3787-3799. , https://doi.org/10.1091/mbc.10.11.3787; Galindo, I., Hernaez, B., Munoz-Moreno, R., Cuesta-Geijo, M.A., Dalmau-Mena, I., Alonso, C., The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection (2012) Cell Death Dis, 3. , https://doi.org/10.1038/cddis.2012.81; Hassan, I.H., Zhang, M.S., Powers, L.S., Shao, J.Q., Baltrusaitis, J., Rutkowski, D.T., Legge, K., Monick, M.M., Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway (2012) J Biol Chem, 287, pp. 4679-4689. , https://doi.org/10.1074/jbc.M111.284695; Nair, V.P., Anang, S., Subramani, C., Madhvi, A., Bakshi, K., Srivastava, A., Shalimar Nayak, B., Surjit, M., Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis e virus (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005521; Reid, S.P., Shurtleff, A.C., Costantino, J.A., Tritsch, S.R., Retterer, C., Spurgers, K.B., Bavari, S., HSPA5 is an essential host factor for Ebola virus infection (2014) Antiviral Res, 109, pp. 171-174. , https://doi.org/10.1016/j.antiviral.2014.07.004; Su, Y.C., Wu, J.L., Hong, J.R., Betanodavirus up-regulates chaperone GRP78 via ER stress: roles of GRP78 in viral replication and host mitochondria-mediated cell death (2011) Apoptosis, 16, pp. 272-287. , https://doi.org/10.1007/s10495-010-0565-x; Prostko, C.R., Brostrom, M.A., Malara, E.M., Brostrom, C.O., Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78 (1992) J Biol Chem, 267, pp. 16751-16754; Ozcan, U., Ozcan, L., Yilmaz, E., Duvel, K., Sahin, M., Manning, B.D., Hotamisligil, G.S., Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis (2008) Mol Cell, 29, pp. 541-551. , https://doi.org/10.1016/j.molcel.2007.12.023; Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R.O., Gorgun, C.Z., Hotamisligil, G.S., Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes (2006) Science, 313, pp. 1137-1140. , https://doi.org/10.1126/science.1128294; Cross, B.C., Bond, P.J., Sadowski, P.G., Jha, B.K., Zak, J., Goodman, J.M., Silverman, R.H., Harding, H.P., The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule (2012) Proc Natl Acad Sci U S A, 109, pp. E869-E878. , https://doi.org/10.1073/pnas.1115623109; Boyce, M., Bryant, K.F., Jousse, C., Long, K., Harding, H.P., Scheuner, D., Kaufman, R.J., Yuan, J., A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress (2005) Science, 307, pp. 935-939. , https://doi.org/10.1126/science.1101902; Guo, L., Yu, H., Gu, W., Luo, X., Li, R., Zhang, J., Xu, Y., Wang, Y., Autophagy negatively regulates transmissible gastroenteritis virus replication (2016) Sci Rep, 6, p. 23864. , https://doi.org/10.1038/srep23864; Yeomans, A., Thirdborough, S.M., Valle-Argos, B., Linley, A., Krysov, S., Hidalgo, M.S., Leonard, E., Packham, G., Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYCspecific mRNA translation (2016) Blood, 127, pp. 449-457. , https://doi.org/10.1182/blood-2015-07-660969; Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., Vedantham, P., Hearn, B.R., Li, H., Gamache, K., Walter, P., Pharmacological brake-release of mRNA translation enhances cognitive memory (2013) Elife, 2. , https://doi.org/10.7554/eLife.00498; Sidrauski, C., McGeachy, A.M., Ingolia, N.T., Walter, P., The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly (2015) Elife, p. 4. , https://doi.org/10.7554/eLife.05033, 26 February; Zhu, L., Yang, X., Mou, C., Yang, Q., Transmissible gastroenteritis virus does not suppress IFN-beta induction but is sensitive to IFN in IPEC-J2 cells (2017) Vet Microbiol, 199, pp. 128-134. , https://doi.org/10.1016/j.vetmic.2016.12.031; Cruz, J.L., Becares, M., Sola, I., Oliveros, J.C., Enjuanes, L., Zuniga, S., Alphacoronavirus protein 7 modulates host innate immune response (2013) J Virol, 87, pp. 9754-9767. , https://doi.org/10.1128/JVI.01032-13; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuniga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NFkappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178. , https://doi.org/10.1016/j.virol.2017.04.024; Jordan, L.T., Derbyshire, J.B., Antiviral action of interferon-alpha against porcine transmissible gastroenteritis virus (1995) Vet Microbiol, 45, pp. 59-70. , https://doi.org/10.1016/0378-1135(94)00118-G; Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor. 3 (2001) Nature, 413, pp. 732-738. , https://doi.org/10.1038/35099560; Minakshi, R., Padhan, K., Rani, M., Khan, N., Ahmad, F., Jameel, S., The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor (2009) PLoS One, 4. , https://doi.org/10.1371/journal.pone.0008342; Favreau, D.J., Desforges, M., St-Jean, J.R., Talbot, P.J., A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus (2009) Virology, 395, pp. 255-267. , https://doi.org/10.1016/j.virol.2009.09.026; Wang, Y., Li, J.R., Sun, M.X., Ni, B., Huan, C., Huang, L., Li, C., Mao, X., Triggering unfolded protein response by 2-deoxy-D-glucose inhibits porcine epidemic diarrhea virus propagation (2014) Antiviral Res, 106, pp. 33-41. , https://doi.org/10.1016/j.antiviral.2014.03.007; Raaben, M., Groot Koerkamp, M.J., Rottier, P.J., de Haan, C.A., Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and pro-cessing bodies (2007) Cell Microbiol, 9, pp. 2218-2229. , https://doi.org/10.1111/j.1462-5822.2007.00951.x; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.T., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J Virol, 82, pp. 4471-4479. , https://doi.org/10.1128/JVI.02472-07; Connor, J.H., Lyles, D.S., Inhibition of host and viral translation during vesicular stomatitis virus infection. eIF2 is responsible for the inhibition of viral but not host translation (2005) J Biol Chem, 280, pp. 13512-13519. , https://doi.org/10.1074/jbc.M501156200; Desmet, E.A., Anguish, L.J., Parker, J.S., Virus-mediated compartmentalization of the host translational machinery (2014) MBio, 5. , https://doi.org/10.1128/mBio.01463-14; Zhang, C., Guo, L., Jia, X., Wang, T., Wang, J., Sun, Z., Wang, L., Tian, K., Construction of a triple gene-deleted Chinese pseudorabies virus variant and its efficacy study as a vaccine candidate on suckling piglets (2015) Vaccine, 33, pp. 2432-2437. , https://doi.org/10.1016/j.vaccine.2015.03.094","Feng, L.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: fengli_h@163.com",,"American Society for Microbiology",0022538X,,JOVIA,"29769338","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85050142311 "Mitchell A.B., Glanville A.R.","57192705341;7003295143;","Coronavirus and chronic lung allograft dysfunction: Hiding in plain sight?",2018,"Transplantation Direct","4","8", e371,"","",,,"10.1097/TXD.0000000000000809","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064178505&doi=10.1097%2fTXD.0000000000000809&partnerID=40&md5=0686cf42382997be1955900fbdbf5bc4","Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia","Mitchell, A.B., Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia; Glanville, A.R., Lung Transplant Unit, St. Vincent's Hospital, Sydney, NSW, Australia",[No abstract available],,,"Kumar, D., Erdman, D., Keshavjee, S., Clinical impact of community-acquired respiratory viruses on bronchiolitis obliterans after lung transplant (2005) Am J Transplant, 5, pp. 2031-2036; Kumar, D., Husain, S., Chen, M.H., A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients (2010) Transplantation, 89, pp. 1028-1033; Gottlieb, J., Schulz, T.F., Welte, T., Community-acquired respiratory viral infections in lung transplant recipients: A single season cohort study (2009) Transplantation, 87, pp. 1530-1537; Khalifah, A.P., Hachem, R.R., Chakinala, M.M., Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death (2004) Am J Respir Crit Care Med, 170, pp. 181-187; Meyer, K.C., Raghu, G., Verleden, G.M., An international ISHLT/ATS/ERS clinical practice guideline: Diagnosis and management of bronchiolitis obliterans syndrome (2014) Eur Respir J, 44, pp. 1479-1503; Bridevaux, P.O., Aubert, J.D., Soccal, P.M., Incidence and outcomes of respiratory viral infections in lung transplant recipients: A prospective study (2014) Thorax, 69, pp. 32-38; Sayah, D.M., Koff, J.L., Leard, L.E., Rhinovirus and other respiratory viruses exert different effects on lung allograft function that are not mediated through acute rejection (2013) Clin Transplant, 27 (1), pp. E64-E71; Fisher, C.E., Preiksaitis, C.M., Lease, E.D., Symptomatic respiratory virus infection and chronic lung allograft dysfunction (2016) Clin Infect Dis, 62, pp. 313-319; Soccal, P.M., Aubert, J.D., Bridevaux, P.O., Upper and lower respiratory tract viral infections and acute graft rejection in lung transplant recipients (2010) Clin Infect Dis, 51, pp. 163-170; Vilchez, R.A., Dauber, J., McCurry, K., Parainfluenza virus infection in adult lung transplant recipients: An emergent clinical syndrome with implications on allograft function (2003) Am J Transplant, 3, pp. 116-120; Fuehner, T., Dierich, M., Duesberg, C., Single-centre experience with oral ribavirin in lung transplant recipients with paramyxovirus infections (2011) Antivir Ther, 16, pp. 733-740; Burrows, F.S., Carlos, L.M., Benzimra, M., Oral ribavirin for respiratory syncytial virus infection after lung transplantation: Efficacy and cost-efficiency (2015) J Heart Lung Transplant, 34, pp. 958-962; Glanville, A.R., Scott, A.I., Morton, J.M., Intravenous ribavirin is a safe and cost-effective treatment for respiratory syncytial virus infection after lung transplantation (2005) J Heart Lung Transplant, 24, pp. 2114-2119; Gottlieb, J., Zamora, M.R., Hodges, T., ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients (2016) J Heart Lung Transplant, 35, pp. 213-221; Zamora, M.R., Budev, M., Rolfe, M., RNA interference therapy in lung transplant patients infected with respiratory syncytial virus (2011) Am J Respir Crit Care Med, 183, pp. 531-538; Hopkins, P., McNeil, K., Kermeen, F., Human metapneumovirus in lung transplant recipients and comparison to respiratory syncytial virus (2008) Am J Respir Crit Care Med, 178, pp. 876-881; Garbino, J., Gerbase, M.W., Wunderli, W., Lower respiratory viral illnesses: Improved diagnosis by molecular methods and clinical impact (2004) Am J Respir Crit Care Med, 170, pp. 1197-1203; Allyn, P.R., Duffy, E.L., Humphries, R.M., Graft loss and CLAD-onset is hastened by viral pneumonia after lung transplantation (2016) Transplantation, 100, pp. 2424-2431; Billings, J.L., Hertz, M.I., Savik, K., Respiratory viruses and chronic rejection in lung transplant recipients (2002) J Heart Lung Transplant, 21, pp. 559-566; Magnusson, J., Westin, J., Andersson, L.-M., Viral respiratory tract infection during the first postoperative year is a risk factor for chronic rejection after lung transplantation (2018) Transplant Direct, , press; Verleden, G.M., Raghu, G., Meyer, K.C., A new classification system for chronic lung allograft dysfunction (2014) J Heart Lung Transplant, 33, pp. 127-133; Zumla, A., Al-Tawfiq, J.A., Enne, V.I., Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections—needs, advances, and future prospects (2014) The Lancet Infect Dis, 14, pp. 1123-1135; Abbas, A.A., Diamond, J.M., Chehoud, C., The perioperative lung transplant virome: Torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction (2017) Am J Transplant, 17, pp. 1313-1324; Young, J.C., Chehoud, C., Bittinger, K., Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients (2015) Am J Transplant, 15, pp. 200-209; Mitchell, A.B., Oliver, B.G., Glanville, A.R., Translational aspects of the human respiratory virome (2016) Am J Respir Crit Care Med, 194, pp. 1458-1464","Glanville, A.R.; Lung Transplant Unit, St. Vincent's HospitalAustralia; email: allan.glanville@svha.org.au",,"Wolters Kluwer Health",23738731,,,,"English","Transplantation Direct",Note,"Final",Open Access,Scopus,2-s2.0-85064178505 "Magnusson J., Westin J., Andersson L.-M., Lindh M., Brittain-Long R., Nordén R., Riise G.C.","57197059781;7005136305;7403059761;7004425032;23059810000;36943350900;7005813727;","Viral respiratory tract infection during the first postoperative year is a risk factor for chronic rejection after lung transplantation",2018,"Transplantation Direct","4","8", e370,"","",,6,"10.1097/TXD.0000000000000808","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058941139&doi=10.1097%2fTXD.0000000000000808&partnerID=40&md5=a04082ffd57b2957c4dbdd537cacf4dd","Institute of Internal Medicine, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Bruna Stråket 11, Göteborg, SE-413 46, Sweden; Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sweden; Department of Infectious Diseases, Aberdeen Royal Infirmary, Aberdeen, United Kingdom","Magnusson, J., Institute of Internal Medicine, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Bruna Stråket 11, Göteborg, SE-413 46, Sweden; Westin, J., Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sweden; Andersson, L.-M., Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sweden; Lindh, M., Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sweden; Brittain-Long, R., Department of Infectious Diseases, Aberdeen Royal Infirmary, Aberdeen, United Kingdom; Nordén, R., Department of Infectious Diseases/Clinical Virology, Institute of Biomedicine, University of Gothenburg, Sweden; Riise, G.C., Institute of Internal Medicine, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Bruna Stråket 11, Göteborg, SE-413 46, Sweden","Background. Chronic lung allograft dysfunction (CLAD) is the major limiting factor for long-term survival in lung transplant recipients. Viral respiratory tract infection (VRTI) has been previously associated with CLAD development. The main purpose of this study was to evaluate the long-term effects of VRTI during the first year after lung transplantation in relation to CLAD development. Method. Ninety-eight patients undergoing lung transplantation were prospectively enrolled between 2009 and 2012. They were monitored for infections with predefined intervals and on extra visits during the first year, the total follow-up period ranged between 5 and 8 years. Nasopharyngeal swab and bronchoalveolar lavage samples were analyzed using a multiplex polymerase chain reaction panel for respiratory pathogens. Data regarding clinical characteristics and infectious events were recorded. Results. Viral respiratory tract infection during the first year was identified as a risk factor for long-term CLAD development (P = 0.041, hazard ratio 1.94 [1.03-3.66]) in a time-dependent multivariate Cox regression analysis. We also found that coronavirus in particular was associated with increased risk for CLAD development. Other identified risk factors were acute rejection and cyclosporine treatment. Conclusions. This study suggests that VRTI during the first year after lung transplantation is associated with long-term CLAD development and that coronavirus infections in particular might be a risk factor. Copyright © 2018 The Author(s). Transplantation Direct. Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.",,,"Yusen, R.D., Edwards, L.B., Dipchand, A.I., The Registry of the International Society for Heart and Lung Transplantation: Thirty-third adult lung and heart-lung transplant report—2016; focus theme: Primary diagnostic indications for transplant (2016) J Heart Lung Transplant, 35, pp. 1170-1184; Sato, M., Waddell, T.K., Wagnetz, U., Restrictive allograft syndrome (RAS): A novel form of chronic lung allograft dysfunction (2011) J Heart Lung Transplant, 30, pp. 735-742; Verleden, G.M., Vos, R., Vanaudenaerde, B., Current views on chronic rejection after lung transplantation (2015) Transpl Int, 28, pp. 1131-1139; Meyer, K.C., Raghu, G., Verleden, G.M., An international ISHLT/ATS/ERS clinical practice guideline: Diagnosis and management of bronchiolitis obliterans syndrome (2014) Eur Respir J, 44, pp. 1479-1503; Billings, J.L., Hertz, M.I., Wendt, C.H., Community respiratory virus infections following lung transplantation (2001) Transpl Infect Dis, 3, pp. 138-148; Khalifah, A.P., Hachem, R.R., Chakinala, M.M., Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death (2004) Am J Respir Crit Care Med, 170, pp. 181-187; Milstone, A.P., Brumble, L.M., Barnes, J., A single-season prospective study of respiratory viral infections in lung transplant recipients (2006) Eur Respir J, 28, pp. 131-137; Gottlieb, J., Schulz, T.F., Welte, T., Community-acquired respiratory viral infections in lung transplant recipients: A single season cohort study (2009) Transplantation, 87, pp. 1530-1537; Vu, D.L., Bridevaux, P.O., Aubert, J.D., Respiratory viruses in lung transplant recipients: A critical review and pooled analysis of clinical studies (2011) Am J Transplant, 11, pp. 1071-1078; Leland, D.S., Ginocchio, C.C., Role of cell culture for virus detection in the age of technology (2007) Clin Microbiol Rev, 20, pp. 49-78; Magnusson, J., Westin, J., Andersson, L.M., The impact of viral respiratory tract infections on long-term morbidity and mortality following lung transplantation: A retrospective cohort study using a multiplex PCR panel (2013) Transplantation, 95, pp. 383-388; Fisher, C.E., Preiksaitis, C.M., Lease, E.D., Symptomatic respiratory virus infection and chronic lung allograft dysfunction (2016) Clin Infect Dis, 62, pp. 313-319; Fisher, C.E., Mohanakumar, T., Limaye, A.P., Respiratory virus infections and chronic lung allograft dysfunction: Assessment of virology determinants (2016) J Heart Lung Transplant, 35, pp. 946-947; Verleden, G.M., Raghu, G., Meyer, K.C., A new classification system for chronic lung allograft dysfunction (2014) J Heart Lung Transplant, 33, pp. 127-133; Stewart, S., Fishbein, M.C., Snell, G.I., Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection (2007) J Heart Lung Transplant, 26, pp. 1229-1242; Kullberg-Lindh, C., Olofsson, S., Brune, M., Comparison of serum and whole blood levels of cytomegalovirus and Epstein-Barr virus DNA (2008) Transpl Infect Dis, 10, pp. 308-315; Andersson, M.E., Olofsson, S., Lindh, M., Comparison of the FilmArray assay and in-house real-time PCR for detection of respiratory infection (2014) Scand J Infect Dis, 46, pp. 897-901; Wallinder, A., Ricksten, S.E., Hansson, C., Transplantation of initially rejected donor lungs after ex vivo lung perfusion (2012) J Thorac Cardiovasc Surg, 144, pp. 1222-1228; Allyn, P.R., Duffy, E.L., Humphries, R.M., Graft loss and CLAD-onset is hastened by viral pneumonia after lung transplantation (2016) Transplantation, 100, pp. 2424-2431; Bridevaux, P.O., Aubert, J.D., Soccal, P.M., Incidence and outcomes of respiratory viral infections in lung transplant recipients: A prospective study (2014) Thorax, 69, pp. 32-38; Kumar, D., Husain, S., Chen, M.H., A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients (2010) Transplantation, 89, pp. 1028-1033; Peghin, M., Hirsch, H.H., Len, O., Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: A 5-year prospective study (2017) Am J Transplant, 17, pp. 1304-1312; Mandell, G., Bennett, J., Dolin, R., (2010) Principles and Practice of Infectious Diseases 7th Edition, , Churchill Livingston Elsevier; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin Infect Dis, 64, pp. 1532-1539; Dominguez, S.R., Travanty, E.A., Qian, Z., Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: Cytopathic effects and innate immune response (2013) PLoS One, 8; Funk, C.J., Wang, J., Ito, Y., Infection of human alveolar macrophages by human coronavirus strain 229E (2012) J Gen Virol, 93, pp. 494-503; Treede, H., Glanville, A.R., Klepetko, W., Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: Results of a prospective, randomized international trial in lung transplantation (2012) J Heart Lung Transplant, 31, pp. 797-804; Braciale, T.J., Sun, J., Kim, T.S., Regulating the adaptive immune response to respiratory virus infection (2012) Nat Rev Immunol, 12, pp. 295-305; Palmer, S.M., Flake, G.P., Kelly, F.L., Severe airway epithelial injury, aberrant repair and bronchiolitis obliterans develops after diacetyl instillation in rats (2011) PLoS One, 6; Husain, S., Mooney, M.L., Danziger-Isakov, L., A 2010 working formulation for the standardization of definitions of infections in cardiothoracic transplant recipients (2011) J Heart Lung Transplant, 30, pp. 361-374","Magnusson, J.; Institute of Internal Medicine, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Bruna Stråket 11, Sweden; email: jesper.magnusson@vgregion.se",,"Wolters Kluwer Health",23738731,,,,"English","Transplantation Direct",Article,"Final",Open Access,Scopus,2-s2.0-85058941139 "Lapin B.A., Shevtsova Z.V.","7006373204;55965148600;","Monkey viral pathology in the Sukhum colony and modeling human viral infections",2018,"Journal of Medical Primatology","47","4",,"273","277",,,"10.1111/jmp.12351","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047645415&doi=10.1111%2fjmp.12351&partnerID=40&md5=ddc3942dbe7800519baef77c1d9afa67","Research Institute of Medical Primatology, Sochi, Russian Federation; Research Institute of Experimental Pathology and Therapy of the Abkhazian Academy of Sciences, Sukhum, Abkhazia, Australia","Lapin, B.A., Research Institute of Medical Primatology, Sochi, Russian Federation; Shevtsova, Z.V., Research Institute of Experimental Pathology and Therapy of the Abkhazian Academy of Sciences, Sukhum, Abkhazia, Australia","The data characterizing spontaneous infections of Old World monkeys: measles, poliomyelitis, hepatitis A (HPA), encephalomyocarditis, coronavirus infection, simian hemorrhagic fever (SHF), are presented. The experimental infections were reproduced with the isolated pathogens. On these models, pathogenesis and epidemiology of these diseases were studied. The efficiency of poliomyelitis, measles and HPA vaccines is shown. The priority of data on the discovery of earlier unknown disease—SHF and “Sukhumi” virus—are emphasized. Several important pathogenic mechanisms common for various hemorrhagic fevers were studied on experimental SHF of macaques. This model is uniquely safe and adequate for the assessment of therapy of hemorrhagic fevers dangerous for humans. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd","encephalomyocarditis; hepatitis A; measles; poliomyelitis; simian hemorrhagic fever","hepatitis A vaccine; measles vaccine; poliomyelitis vaccine; Abkhazia; Adenoviridae; Coronavirinae; disease assessment; disease model; Encephalomyocarditis virus; Enterovirus; experimental infection; experimental viral infection; hemorrhagic fever; hepatitis A; Herpesviridae; human; human versus animal comparison; macaque model; measles; monkey disease; nonhuman; organism colony; pathogenesis; poliomyelitis; priority journal; prophylaxis; Review; Simian hemorrhagic fever virus; Sukhumi virus; virus infection","Ryazantseva, N.E., Measles outbreak among monkeys (1956) Zh Mikrobiol Epidemiol Immunobiol, 4, p. 88; Lapin, B.A., Krylova, R.I., Viral infections in monkeys of Sukhumi colony (1981) Verhandlungsbericht des XXII. International Symposium über die Erkrankkunden der Zootiere, pp. 65-68. , Ippen R, Schröder H-D, eds., Berlin, Germany, Acad-Verl; Lapin, B.A., Jakovleva, L.A., (1964) Vergleichende Pathologie der Affen, , Jena, Germany, Fischer; Lapin, B.A., Pekerman, S.M., Iakovleva, L.A., Hemorrhagic fever in monkeys (1967) Vopr Virusol, 12, pp. 168-173; Lapin, B.A., Shevtsova, Z.V., Research of viral simian hemorrhagic fever (1966) Materials of IX International Congress on Microbiology, pp. 465-466. , Krupovnickas VA, ed., Vilnus, USSR, Vaizdas; Shevtsova, Z.V., Research of simian hemorrhagic fever etiology (1967) Vopr Virusol, 12, pp. 47-51; Shevtsova, Z.V., A further study of simian hemorrhagic fever virus (1969) Vopr Virusol, 5, pp. 604-607; Palmer, A.E., Allen, A.M., Tauraso, N.M., Shelokov, A., Simian hemorrhagic fever. I. Clinical and epizootologic aspects of an outbreak among quarantined monkeys (1968) Am J Trop Med Hyg, 17, pp. 404-412; Tauraso, N.M., Shelokov, A., Palmer, A.E., Allen, A.M., Simian hemorrhagic fever. III. Isolation of viral agent (1968) Am J Trop Med Hyg, 17, pp. 422-431; Madden, D.L., Fuccillo, D.A., Dorosz, J.A., London, W.T., Palmer, A.E., Castellano, G.A., Antigenic relationship of two strains of SHFV (1978) Lab Anim Sci, 28, pp. 422-427; Lapin, B.A., Shevtsova, Z.V., On the identity of two simian hemorrhagic fever virus strains (Sukhumi and NIH) (1971) Z Versuchstierkd, 13, pp. 21-24; Lauck, M., Alkhovsky, S.V., Bào, Y., Historical outbreaks of simian hemorrhagic fever in captive macaques were caused by distinct arteriviruses (2015) J Virol, 89, pp. 8082-8087; Lapin, B.A., Shevtsova, Z.V., To the 50th anniversary of the discovery of the simian hemorrhagic fever and SHF virus (2015) Vopr Virusol, 60, pp. 5-11; Kuhn, J.H., Lauck, M., Bailey, A.L., Reorganization and expansion of the nidoviral family Arteriviridae (2016) Arch Virol, 161, pp. 755-768; Dzhikidze, E.K., Shevtsova, Z.V., Krylova, R.I., Balaeva, E.Y., Voskanian, N.A., Uvarova, V.I., Zur Äthiologie der Encephalomyocarditis von Rhesusaffen (1974) Z Versuchstierkd, 16, pp. 142-149; Shevtsova, Z.V., Dzhikidze, E.K., Voroshilova, M.K., Uvarova, V.I., Ivanov, M.T., Characteristics of encephalomyocarditis virus isolated from sick monkeys (1976) Vopr Virusol, 5, pp. 531-536; Krylova, R.I., Dzhikidze, E.K., Encephalomyocarditis in monkeys (2005) Bull Exp Biol Med, 139, pp. 350-359; Gaskin, J.M., Jorge, M.A., Simpson, C.F., The tragedy of encephalomyocarditis virus infection in zoological parks of Florida (1980) Proc Annu Am Assoc Zoo Vet, pp. 1-7; Vasileva, V.A., Ivanov, M.T., Rumel, N.B., Dyachenko, A.G., Kakubava, V.V., Danelyan, G.A., Isolation and biological characterization of an adenovirus of rhesus macaques (1978) Acta Biol Med Ger, 37, pp. 1281-1287; Vasileva, V.A., Ivanov, M.T., Dyachenko, A.G., Study of herpes virus isolated from rhesus macaques (1976) Biology (Biologia), 10, p. 268; Shevtsova, Z.V., Korzaia, L.I., Lapin, B.A., Krylova, R.I., Sazhchenko, L.A., Materials from a disease outbreak among rhesus macaques associated with monkey enterovirus (1986) Vestn Akad Med Nauk SSSR, 3, pp. 28-30; Goncharuk, E.I., Shevtsova, Z.V., Rumel', N.B., Krylova, R.I., Spontaneous coronavirus infection in monkeys (1994) Zh Mikrobiol Epidemiol Immunobiol, pp. 109-114; Shevtsova, Z.V., Krylova, R.I., Belova, E.G., Korzaia, L.I., Andzhaparidze, A.G., Spontaneous hepatitis A with a fatal outcome in rhesus monkeys (1987) Vopr Virusol, 6, pp. 686-690; Lapin, B.A., Shevtsova, Z.V., Doroshenko, N.V., Spontaneous and experimental hepatitis A in Old World monkeys (1988) J Med Primatol, 17, pp. 177-194; Korzaia, L.I., Shevtsova, Z.V., Lapin, B.A., D'iachenko, A.G., Krylova, R.I., Preparation and characteristics of cultured strains of hepatitis A virus from humans and monkeys (1997) Vopr Virusol, 42, pp. 60-63; Voroshilova, M.K., Experimental poliomyelitis in monkeys (1956) Theoretical and Practical Questions of Medicine and Biology in Experiments in Monkeys, pp. 165-178. , Utkin IA, ed., Moscow, Russia, Medgis; Sergiev, P.G., Shroit, I.G., Chelysheva, K.M., Materials on measles pathogenesis and vaccinal process (1966) Acta Virol, 5, pp. 430-439; Goncharuk, E.I., Shevtsova, Z.V., Krylova, R.I., Rumel', N.B., Coronavirus infection of monkey as a model of human disease (1992) Dokl Akad Nauk, 325, pp. 845-848; Dzhikidze, E.К., Shevtsova, Z.V., Krylova, R.I., Experimental encephalomyocarditis in some monkey species (1976) Exp Pathol, 12, pp. 242-249; Emerson, C.L., Wagner, J.L., Antibody responses in two encephalomyocarditis virus vaccines in rhesus macaques (1996) J Med Primatol, 25, pp. 42-45; Lapin, B.A., Shevtsova, Z.V., Krylova, R.I., Spontaneous and experimental hepatitis A in Old World monkeys and their use for studying this infection (2006) World Viral Hepat, 6, pp. 3-9; Shevtsova, Z.V., Flehmig, B., Lapin, B.A., A trial of a hepatitis A cultured inactivated vaccine on rhesus macaques (1995) Zh Mikrobiol Epidemiol Immunobiol, 2, pp. 55-59; Lapin, B.A., Shevtsova, Z.V., Krylova, R.I., Experimental hemorrhagic fever of monkeys (1969) Proceedings of the 2nd International Congress of Primatol, pp. 196-203. , Hofer HO, ed., Atlanta, GA, Karger/Basel; Lapin, B.A., Shevtsova, Z.V., Experimental hemorrhagic fever of macaques as a model of human hemorrhagic fever (2016) Fundamental and Applied Problems of Medical Primatology, 1, pp. 121-132. , Lapin BA, Vyshemirskii OI, Klots IN, eds., Sochi, Russia, Sterkh; Geisbert, T.W., Young, H.A., Jahrling, P.B., Davis, K.J., Kagan, E., Hensley, L.E., Mechanisms underlying coagulation abnormalities in Ebola hemorrhagic fever (2003) J Infect Dis, 188, pp. 1618-1629; Markin, V.V., Markov, V.I., Viral hemorrhagic fevers – evolution of epidemical potential (2002) Zh Mikrobiol Epidemiol Immunobiol, 1, pp. 91-98; Ebola virus devastates Central African ape population (2003) IPPL News, 30, pp. 13-14; Semina, N.A., Kovaleva, E.P., Infection of medical workers with highly infectious disease associated with laboratory introduction (2005) Epidemiol Vaccine Prophylaxis, 20, pp. 23-28; Johnson, R.F., Dodd, L.E., Yellayi, S., Simian hemorrhagic fever virus infection of rhesus macaques as a model of hemorrhagic fever: clinical characterization and risk factors for severe disease (2011) Virology, 421, pp. 129-140","Lapin, B.A.; Research Institute of Medical PrimatologyRussian Federation; email: blapin@yandex.ru",,"Blackwell Publishing Ltd",00472565,,JMPMA,,"English","J. Med. Primatol.",Review,"Final",Open Access,Scopus,2-s2.0-85047645415 "Chang Z., Wang Y., Zhou X., Long J.-E.","57195430455;57164086800;57208416736;9245968800;","STAT3 roles in viral infection: Antiviral or proviral?",2018,"Future Virology","13","8",,"557","574",,,"10.2217/fvl-2018-0033","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051994769&doi=10.2217%2ffvl-2018-0033&partnerID=40&md5=4b935ea89aaa01a1c22d12fc8cdebf04","Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China; Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai, 200032, China; Kunshan Center for Disease Control and Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, China","Chang, Z., Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China, Kunshan Center for Disease Control and Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, China; Wang, Y., Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai, 200032, China; Zhou, X., Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China; Long, J.-E., Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China, Department of Medical Microbiology and Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai, 200032, China","Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which can be activated by cytokines, growth factor receptors, and nonreceptor-like tyrosine kinase. An activated STAT3 translocates into the nucleus and combines with DNA to regulate the expression of target genes involved in cell proliferation, differentiation, apoptosis and metastasis. Recent studies have shown that STAT3 plays important roles in viral infection and pathogenesis. STAT3 exhibits a proviral function in several viral infections, including those of HBV, HCV, HSV-1, varicella zoster virus, human CMV and measles virus. However, in some circumstances, STAT3 has an antiviral function in other viral infections, such as enterovirus 71, severe acute respiratory syndrome coronavirus and human metapneumovirus. This review summarizes the roles of STAT3 in viral infection and pathogenesis, and briefly discusses the molecular mechanisms involved in these processes. © 2018 2018 Future Medicine Ltd.","JAK/STAT; STAT3; viral infection","STAT3 protein; Article; cytomegalovirus infection; Enterovirus infection; Epstein Barr virus infection; hepatitis B; hepatitis C; herpes virus infection; herpes zoster; human; Human cytomegalovirus; influenza A; Kaposi sarcoma; measles; mumps; nonhuman; priority journal; protein function; regulatory mechanism; respiratory tract infection; retrovirus infection; signal transduction; viral respiratory tract infection; virus infection; virus pathogenesis","Duncan, S.A., Zhong, Z., Wen, Z., Darnell, J.E., Jr., STAT signaling is active during early mammalian development (1997) Dev. Dyn., 208 (2), pp. 190-198; Johnston, P.A., Grandis, J.R., STAT3 signaling: Anticancer strategies and challenges (2011) Mol. Interv., 11 (1), pp. 18-26; Levy, D.E., Darnell, J.E., Jr., Stats: Transcriptional control and biological impact (2002) Nat. Rev. Mol. Cell Biol., 3 (9), pp. 651-662; Gotthardt, D., Sexl, V., STATs in NK-cells: The good, the bad, and the ugly (2017) Front. Immunol., 18 (7), p. 694; Xiong, A.L., Yang, Z.D., Shen, Y.C., Zhou, J., Shen, Q., Transcription factor STAT3 as a novel molecular target for cancer prevention (2014) Cancers, 6 (2), pp. 926-957; Akira, S., Nishio, Y., Inoue, M., Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway (1994) Cell, 77 (1), pp. 63-71; Yu, H., Pardoll, D., Jove, R., STATs in cancer inflammation and immunity: A leading role for STAT3 (2009) Nat. Rev. Cancer, 9 (11), pp. 798-809; Kortylewski, M., Xin, H., Kujawski, M., Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment (2009) Cancer Cell, 15 (2), pp. 114-123; Gerosa, F., Baldani-Guerra, B., Lyakh, L.A., Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells (2008) J. Exp. Med., 205 (6), pp. 1447-1461; Aggarwal, B.B., Kunnumakkara, A.B., Harikumar, K.B., Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? (2009) Ann. NY Acad. Sci., 1171, pp. 59-76; McCartney, E.M., Helbig, K.J., Narayana, S.K., Eyre, N.S., Aloia, A.L., Beard, M.R., Signal transducer and activator of transcription 3 is a proviral host factor for hepatitis C virus (2013) Hepatology, 58 (5), pp. 1558-1568; Mizutani, T., Fukushi, S., Saijo, M., Kurane, I., Morikawa, S., Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells (2004) Virology, 327 (2), pp. 169-174; Sen, N., Che, X., Rajamani, J., Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis (2012) Proc. Natl Acad. Sci .USA, 109 (2), pp. 600-605; Waris, G., Siddiqui, A., Interaction between STAT-3 and HNF-3 leads to the activation of liver-specific hepatitis B virus enhancer 1 function (2002) J .Virol., 76 (6), pp. 2721-2729; Oh, Y.M., Kim, J.K., Choi, Y., Choi, S., Yoo, J.Y., Prediction and experimental validation of novel STAT3 target genes in human cancer cells (2009) PLoS ONE, 4 (9), p. e6911; Subramaniam, A., Shanmugam, M.K., Perumal, E., Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma (2013) Biochim. Biophys. Acta, 1835 (1), pp. 46-60; Zammarchi, F., De Stanchina, E., Bournazou, E., Antitumorigenic potential of STAT3 alternative splicing modulation (2011) Proc. Natl Acad. Sci. USA, 108 (43), pp. 17779-17784; Takeda, K., Akira, S., STAT family of transcription factors in cytokine-mediated biological responses (2000) Cytokine Growth Factor Rev., 11 (3), pp. 199-207; Leaman, D.W., Leung, S., Li, X., Stark, G.R., Regulation of STAT-dependent pathways by growth factors and cytokines (1996) FASEB J., 10 (14), pp. 1578-1588; Lee, H., Herrmann, A., Deng, J.H., Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors (2009) Cancer Cell, 15 (4), pp. 283-293; Tworkoski, K., Singhal, G., Szpakowski, S., Phosphoproteomic screen identifies potential therapeutic targets in melanoma (2011) Mol. Cancer Res., 9 (6), pp. 801-812; Yang, J., Stark, G.R., Roles of unphosphorylated STATs in signaling (2008) Cell Res., 18 (4), pp. 443-451; Yuan, Z.L., Guan, Y.J., Chatterjee, D., Chin, Y.E., Stat3 dimerization regulated by reversible acetylation of a single lysine residue (2005) Science, 307 (5707), pp. 269-273; Takeda, K., Noguchi, K., Shi, W., Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality (1997) Proc. Natl Acad. Sci. USA, 94 (8), pp. 3801-3804; Niwa, H., Burdon, T., Chambers, I., Smith, A., Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3 (1998) Genes Dev., 12 (13), pp. 2048-2060; Eddahri, F., Denanglaire, S., Bureau, F., Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities (2009) Blood, 113 (11), pp. 2426-2433; Nurieva, R.I., Chung, Y., Hwang, D., Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages (2008) Immunity, 29 (1), pp. 138-149; Vogelzang, A., McGuire, H.M., Yu, D., Sprent, J., MacKay, C.R., King, C., A fundamental role for interleukin-21 in the generation of T follicular helper cells (2008) Immunity, 29 (1), pp. 127-137; Yang, X.O., Panopoulos, A.D., Nurieva, R., STAT3 regulates cytokine-mediated generation of inflammatory helper T cells (2007) J. Biol. Chem., 282 (13), pp. 9358-9363; Alonzi, T., Middleton, G., Wyatt, S., Role of STAT3 and PI 3-kinase/Akt in mediating the survival actions of cytokines on sensory neurons (2001) Mol. Cell Neurosci., 18 (3), pp. 270-282; Hauser, P.J., Agrawal, D., Hackney, J., Pledger, W.J., STAT3 activation accompanies keratinocyte differentiation (1998) Cell Growth Differ., 9 (10), pp. 847-855; Sano, S., Itami, S., Takeda, K., Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis (1999) EMBO J., 18 (17), pp. 4657-4668; Humphreys, R.C., Bierie, B., Zhao, L., Raz, R., Levy, D., Hennighausen, L., Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli (2002) Endocrinology, 143 (9), pp. 3641-3650; Grivennikov, S.I., Karin, M., Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer (2010) Cytokine Growth Factor Rev., 21 (1), pp. 11-19; Ray, J.P., Marshall, H.D., Laidlaw, B.J., Staron, M.M., Kaech, S.M., Craft, J., Transcription factor STAT3 and type i interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells (2014) Immunity, 40 (3), pp. 367-377; Siegel, A.M., Heimall, J., Freeman, A.F., A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory (2011) Immunity, 35 (5), pp. 806-818; Waris, G., Huh, K.W., Siddiqui, A., Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress (2001) Mol. Cell Biol., 21 (22), pp. 7721-7730; Li, C.H., Xu, F., Chow, S., Hepatitis B virus X protein promotes hepatocellular carcinoma transformation through interleukin-6 activation of microRNA-21 expression (2014) Eur. J. Cancer, 50 (15), pp. 2560-2569; Fang, Z., Li, J., Yu, X., Polarization of monocytic myeloid-derived suppressor cells by hepatitis B surface antigen is mediated via ERK/IL-6/STAT3 signaling feedback and restrains the activation of T cells in chronic hepatitis B virus infection (2015) J. Immunol., 195 (10), pp. 4873-4883; Xiong, Q., Wu, S., Wang, J., Hepatitis B virus promotes cancer cell migration by downregulating MIR-340-5p expression to induce STAT3 overexpression (2017) Cell Biosci., 7, p. 16; Chou, C.H., Chen, P.J., Jeng, Y.M., Cheng, A.L., Huang, L.R., Cheng, J.C., Synergistic effect of radiation and interleukin-6 on hepatitis B virus reactivation in liver through STAT3 signaling pathway (2009) Int. J. Radiat. Oncol. Biol. Phys., 75 (5), pp. 1545-1552; Ching, R.H.H., Sze, K.M.F., Lau, E.Y.T., C-terminal truncated hepatitis B virus X protein regulates tumorigenicity, self-renewal and drug resistance via STAT3/Nanog signaling pathway (2017) Oncotarget, 8 (14), pp. 23507-23516; He, P., Zhang, D., Li, H., Hepatitis B virus X protein modulates apoptosis in human renal proximal tubular epithelial cells by activating the JAK2/STAT3 signaling pathway (2013) Int. J. Mol. Med., 31 (5), pp. 1017-1029; Gong, G., Waris, G., Tanveer, R., Siddiqui, A., Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B (2001) Proc. Natl Acad. Sci. USA, 98 (17), pp. 9599-9604; Waris, G., Turkson, J., Hassanein, T., Siddiqui, A., Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: Role of STAT-3 in HCV replication (2005) J. Virol., 79 (3), pp. 1569-1580; Tacke, R.S., Tosello-Trampont, A., Nguyen, V., Mullins, D.W., Hahn, Y.S., Extracellular hepatitis C virus core protein activates STAT3 in human monocytes/macrophages/dendritic cells via an IL-6 autocrine pathway (2011) J. Biol. Chem., 286 (12), pp. 10847-10855; Machida, K., Cheng, K.T., Lai, C.K., Jeng, K.S., Sung, V.M., Lai, M.M., Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation (2006) J.Virol., 80 (14), pp. 7199-7207; Xiong, Y., Jia, M., Yuan, J., STAT3 regulated long noncoding RNAs lnc7SK and lncIGF2AS promote hepatitis C virus replication (2015) Mol. Med. Rep., 12 (5), pp. 6738-6744; Xiong, Y., Zhang, C., Yuan, J., Hepatitis C virus represses the cellular antiviral response by upregulating the expression of signal transducer and activator of transcription 3 through sponging microRNA122 (2015) Mol. Med. Rep., 11 (3), pp. 1733-1737; Zhai, N., Li, H., Song, H., Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling (2017) PLoS ONE, 12 (1), p. e0170516; Yoshida, T., Hanada, T., Tokuhisa, T., Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation (2002) J. Exp. Med., 196 (5), pp. 641-653; Sarcar, B., Ghosh, A.K., Steele, R., Ray, R., Ray, R.B., Hepatitis C virus NS5A mediated STAT3 activation requires co-operation of Jak1 kinase (2004) Virology, 322 (1), pp. 51-60; Zhou, J.J., Chen, R.F., Deng, X.G., Hepatitis C virus core protein regulates NANOG expression via the stat3 pathway (2014) FEBS Lett., 588 (4), pp. 566-573; Kong, L., Li, S., Yu, X., Hepatitis C virus and its protein NS4B activate the cancer-related STAT3 pathway via the endoplasmic reticulum overload response (2016) Arch. Virol., 161 (8), pp. 2149-2159; Li, Y., Wu, R., Liu, Z., Fan, J., Yang, H., Enforced expression of microRNA-21 influences the replication of varicella-zoster virus by triggering signal transducer and activator of transcription 3 (2014) Exp. Ther. Med., 7 (5), pp. 1291-1296; Reitsma, J.M., Sato, H., Nevels, M., Terhune, S.S., Paulus, C., Human cytomegalovirus IE1 protein disrupts interleukin-6 signaling by sequestering STAT3 in the nucleus (2013) J. Virol., 87 (19), pp. 10763-10776; Lepiller, Q., Abbas, W., Kumar, A., Tripathy, M.K., Herbein, G., HCMV activates the IL-6-JAK-STAT3 axis in HepG2 cells and primary human hepatocytes (2013) PLoS ONE, 8 (3), p. e59591; Liu, Y.P., Tan, Y.N., Wang, Z.L., Phosphorylation and nuclear translocation of STAT3 regulated by the Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma (2008) Int. J. Mol. Med., 21 (2), pp. 153-162; Kung, C.P., Raab-Traub, N., Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor through effects on Bcl-3 and STAT3 (2008) J. Virol., 82 (11), pp. 5486-5493; Kung, C.P., Meckes, D.G., Jr., Raab-Traub, N., Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta (2011) J. Virol., 85 (9), pp. 4399-4408; Muromoto, R., Ikeda, O., Okabe, K., Epstein-Barr virus-derived EBNA2 regulates STAT3 activation (2009) Biochem. Biophys. Res. Commun., 378 (3), pp. 439-443; Incrocci, R., Barse, L., Stone, A., Epstein-Barr virus latent membrane protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton's tyrosine kinase and STAT3 (2017) Virology, 500, pp. 96-102; Lui, V.W., Wong, E.Y., Ho, Y., STAT3 activation contributes directly to Epstein-Barr virus-mediated invasiveness of nasopharyngeal cancer cells in vitro (2009) Int. J. Cancer., 125 (8), pp. 1884-1893; Wang, Z., Luo, F., Li, L., STAT3 activation induced by Epstein-Barr virus latent membrane protein1 causes vascular endothelial growth factor expression and cellular invasiveness via JAK3 and ERK signaling (2010) Eur. J. Cancer, 46 (16), pp. 2996-3006; Xu, Y., Shi, Y., Yuan, Q., Epstein-Barr virus encoded LMP1 regulates cyclin D1 promoter activity by nuclear EGFR and STAT3 in CNE1 cells (2013) J. Exp. Clin. Cancer Res., 32, p. 90; Ma, L., Deng, X., Wu, M., Zhang, G., Huang, J., Down-regulation of miRNA-204 by LMP-1 enhances CDC42 activity and facilitates invasion of EBV-associated nasopharyngeal carcinoma cells (2014) FEBS Lett., 588 (9), pp. 1562-1570; Daigle, D., Megyola, C., El-Guindy, A., Upregulation of STAT3 marks Burkitt lymphoma cells refractory to Epstein-Barr virus lytic cycle induction by HDAC inhibitors (2010) J. Virol., 84 (2), pp. 993-1004; Hill, E.R., Koganti, S., Zhi, J., Signal transducer and activator of transcription 3 limits Epstein-Barr virus lytic activation in B lymphocytes (2013) J. Virol., 87 (21), pp. 11438-11446; Koganti, S., Clark, C., Zhi, J., Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes (2015) J. Virol., 89 (9), pp. 5002-5011; Punjabi, A.S., Carroll, P.A., Chen, L., Lagunoff, M., Persistent activation of STAT3 by latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells (2007) J. Virol., 81 (5), pp. 2449-2458; Kong, X., San, J.H., Kumar, M., Respiratory syncytial virus infection activates STAT signaling in human epithelial cells (2003) Biochem. Biophys. Res. Commun., 306 (2), pp. 616-622; Percario, Z., Olivetta, E., Fiorucci, G., Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: Involvement of Nef domains interacting with the cell endocytotic machinery (2003) J. Leukoc. Biol., 74 (5), pp. 821-832; Liu, R., Huang, L., Li, J., HIV infection in gastric epithelial cells (2013) J. Infect. Dis., 208 (8), pp. 1221-1230; Del, C.M., Donninelli, G., Varano, B., Da, S.L., Masotti, A., Gessani, S., HIV-1 gp120 activates the STAT3/interleukin-6 axis in primary human monocyte-derived dendritic cells (2014) J. Virol., 88 (19), pp. 11045-11055; Horiuchi, S., Yamamoto, N., Dewan, M.Z., Human T-cell leukemia virus type-I Tax induces expression of interleukin-6 receptor (IL-6R): Shedding of soluble IL-6R and activation of STAT3 signaling (2006) Int. J. Cancer., 119 (4), pp. 823-830; Sawada, L., Nagano, Y., Hasegawa, A., IL-10-mediated signals act as a switch for lymphoproliferation in human T-cell leukemia virus type-1 infection by activating the STAT3 and IRF4 pathways (2017) PLoS Pathog., 13 (9), p. e1006597; Chua, J.J., Bhuvanakantham, R., Chow, V.T., Ng, M.L., Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3beta protein (2005) Virus Res., 112 (1-2), pp. 85-94; Tsai, Y.T., Chen, Y.H., Chang, D.M., Chen, P.C., Lai, J.H., Janus kinase/signal transducer and activator of transcription 3 signaling pathway is crucial in chemokine production from hepatocytes infected by dengue virus (2011) Exp. Biol. Med., 236 (10), pp. 1156-1165; Hou, W., Jin, Y.H., Kang, H.S., Kim, B.S., Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function (2014) J. Virol., 88 (15), pp. 8479-8489; Du, T., Zhou, G., Roizman, B., Modulation of reactivation of latent herpes simplex virus 1 in ganglionic organ cultures by p300/CBP and STAT3 (2013) Proc. Natl Acad. Sci. USA, 110 (28), pp. E2621-E2628; Chucair-Elliott, A.J., Conrady, C., Zheng, M., Kroll, C.M., Lane, T.E., Carr, D.J., Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells (2014) Glia, 62 (9), pp. 1418-1434; Hsia, H.C., Stopford, C.M., Zhang, Z., Damania, B., Baldwin, A.S., Signal transducer and activator of transcription 3 (Stat3) regulates host defense and protects mice against herpes simplex virus-1 (HSV-1) infection (2017) J. Leukoc. Biol., 101 (4), pp. 1053-1064; Jia, D., Rahbar, R., Chan, R.W., Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling (2010) PLoS ONE, 5 (11), p. e13927; Mahony, R., Gargan, S., Roberts, K.L., A novel anti-viral role for STAT3 in IFN-alpha signalling responses (2017) Cell Mol. Life Sci., 74 (9), pp. 1755-1764; Hui, K.P., Li, H.S., Cheung, M.C., Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3 (2016) Sci Rep., 6, p. 28593; Ulane, C.M., Rodriguez, J.J., Parisien, J.P., Horvath, C.M., STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling (2003) J. Virol., 77 (11), pp. 6385-6393; Palosaari, H., Parisien, J.P., Rodriguez, J.J., Ulane, C.M., Horvath, C.M., STAT protein interference and suppression of cytokine signal transduction by measles virus v protein (2003) J. Virol., 77 (13), pp. 7635-7644; Mizutani, T., Fukushi, S., Murakami, M., Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells (2004) FEBS Lett., 577 (1-2), pp. 187-192; Mitzel, D.N., Jaramillo, R.J., Stout-Delgado, H., Senft, A.P., Harrod, K.S., Human metapneumovirus inhibits the IL-6-induced JAK/STAT3 signalling cascade in airway epithelium (2014) J. Gen. Virol., 95, pp. 26-37; Yang, L., Wang, R., Ma, Z., Porcine reproductive and respiratory syndrome virus antagonizes JAK/STAT3 signaling via nsp5, which induces STAT3 degradation (2017) J. Virol., 91 (3), pp. e02087-e02116; Lindner, D., Hilbrandt, M., Marggraf, K., Protective function of STAT3 in CVB3-induced myocarditis (2012) Cardiol. Res. Pract., 2012, p. 437623; Chang, Z., Wang, Y., Bian, L., Liu, Q., Long, J.E., Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced MIR-124 (2017) J. Gen. Virol., 98 (12), pp. 3008-3025; Lieu, K.G., Brice, A., Wiltzer, L., The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling (2013) J Virol., 87 (14), pp. 8261-8265; Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D., Global cancer statistics (2011) CA Cancer J. Clin., 61 (2), pp. 69-90; Kim, J.H., Park, J.W., Kim, T.H., Koh, D.W., Lee, W.J., Kim, C.M., Hepatitis B virus reactivation after three-dimensional conformal radiotherapy in patients with hepatitis B virus-related hepatocellular carcinoma (2007) Int. J. Radiat. Oncol. Biol. Phys., 69 (3), pp. 813-819; Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., Patel, T., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer (2007) Gastroenterology, 133 (2), pp. 647-658; Qiu, X., Dong, S., Qiao, F., HBx-mediated MIR-21 upregulation represses tumor-suppressor function of PDCD4 in hepatocellular carcinoma (2013) Oncogene, 32 (27), pp. 3296-3305; Yang, Y., Zheng, B., Han, Q., Zhang, C., Tian, Z., Zhang, J., Targeting blockage of STAT3 inhibits hepatitis B virus-related hepatocellular carcinoma (2016) Cancer Biol. Ther., 17 (4), pp. 449-456; Ma, N.F., Lau, S.H., Hu, L., COOH-terminal truncated HBV X protein plays key role in hepatocarcinogenesis (2008) Clin. Cancer Res., 14 (16), pp. 5061-5068; Silva, J., Nichols, J., Theunissen, T.W., Nanog is the gateway to the pluripotent ground state (2009) Cell, 138 (4), pp. 722-737; Mattison, J., Kool, J., Uren, A.G., Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach (2010) Cancer Res., 70 (3), pp. 883-895; Zhang, Y., Xu, X., He, P., Tubeimoside-1 inhibits proliferation and induces apoptosis by increasing the Bax to Bcl-2 ratio and decreasing COX-2 expression in lung cancer A549 cells (2011) Mol. Med. Rep., 4 (1), pp. 25-29; Dienstag, J.L., Hepatitis B virus infection (2008) N. Engl. J. Med., 359 (14), pp. 1486-1500; Ehata, T., Omata, M., Yokosuka, O., Hosoda, K., Ohto, M., Variations in codons 84-101 in the core nucleotide sequence correlate with hepatocellular injury in chronic hepatitis B virus infection (1992) J. Clin. Invest., 89 (1), pp. 332-338; Hoechst, B., Voigtlaender, T., Ormandy, L., Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor (2009) Hepatology, 50 (3), pp. 799-807; Yamashita, D., Kondo, T., Ohue, S., MiR340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator (2015) Cancer Res., 75 (6), pp. 1123-1133; Yuan, J., Ji, H., Xiao, F., MicroRNA-340 inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting JAK1 (2017) Biochem. Biophys. Res. Commun., 483 (1), pp. 578-584; Saito, I., Miyamura, T., Ohbayashi, A., Hepatitis C virus infection is associated with the development of hepatocellular carcinoma (1990) Proc. Natl Acad. Sci. USA, 87 (17), pp. 6547-6549; Jitschin, R., Braun, M., Buttner, M., CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs (2014) Blood, 124 (5), pp. 750-760; Pang, X., Song, H., Zhang, Q., Tu, Z., Niu, J., Hepatitis C virus regulates the production of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells through PI3K pathway and autocrine signaling (2016) Clin. Immunol., 164, pp. 57-64; Whitley, R.J., Roizman, B., Herpes simplex virus infections (2001) Lancet, 357 (9267), pp. 1513-1518; Du, T., Zhou, G., Roizman, B., HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAs (2011) Proc. Natl Acad. Sci. USA, 108 (46), pp. 18820-18824; Koganti, S., De La Paz, A., Freeman, A.F., Bhaduri-McIntosh, S., B lymphocytes from patients with a hypomorphic mutation in STAT3 resist Epstein-Barr virus-driven cell proliferation (2014) J. Virol., 88 (1), pp. 516-524; Muromoto, R., Okabe, K., Fujimuro, M., Physical and functional interactions between STAT3 and Kaposi's sarcoma-associated herpesvirus-encoded LANA (2006) FEBS Lett., 580 (1), pp. 93-98; Wang, J., Wang, Q., Han, T., Soluble interleukin-6 receptor is elevated during influenza A virus infection and mediates the IL-6 and IL-32 inflammatory cytokine burst (2015) Cell Mol. Immunol., 12 (5), pp. 633-644; Puri, M., Lemon, K., Duprex, W.P., Rima, B.K., Horvath, C.M., A point mutation, E95D, in the mumps virus v protein disengages STAT3 targeting from STAT1 targeting (2009) J. Virol., 83 (13), pp. 6347-6356; Messmer, D., Bromberg, J., Devgan, G., Jacque, J.M., Granelli-Piperno, A., Pope, M., Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells (2002) AIDS Res. Hum. Retroviruses, 18 (14), pp. 1043-1050; Vultur, A., Arulanandam, R., Turkson, J., Niu, G., Jove, R., Raptis, L., Stat3 is required for full neoplastic transformation by the Simian Virus 40 large tumor antigen (2005) Mol. Biol. Cell, 16 (8), pp. 3832-3846; Ni, S., Zhao, C., Feng, G.S., Paulson, R.F., Correll, P.H., A novel Stat3 binding motif in Gab2 mediates transformation of primary hematopoietic cells by the Stk/Ron receptor tyrosine kinase in response to Friend virus infection (2007) Mol. Cell Biol., 27 (10), pp. 3708-3715","Long, J.-E.; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan UniversityChina; email: longjianer@fudan.edu.cn",,"Future Medicine Ltd.",17460794,,,,"English","Future Virol.",Article,"Final",,Scopus,2-s2.0-85051994769 "Keep S., Bickerton E., Armesto M., Britton P.","54880051000;55841113600;27170115100;57203302770;","The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated beaudette strain",2018,"Journal of General Virology","99","8", 001098,"1097","1102",,4,"10.1099/jgv.0.001098","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051240751&doi=10.1099%2fjgv.0.001098&partnerID=40&md5=af61b332eb83b33dabddf064ee2b5e32","The Pirbright Institute, Surrey, United Kingdom","Keep, S., The Pirbright Institute, Surrey, United Kingdom; Bickerton, E., The Pirbright Institute, Surrey, United Kingdom; Armesto, M., The Pirbright Institute, Surrey, United Kingdom; Britton, P., The Pirbright Institute, Surrey, United Kingdom","The replicase gene of the coronavirus infectious bronchitis virus (IBV) encodes 15 non-structural proteins (nsps). Nsp 3 is a multi-functional protein containing a conserved ADP-ribose-1†-phosphatase (ADRP) domain. The crystal structures of the domain from two strains of IBV, M41 (virulent) and Beaudette (avirulent), identified a key difference; M41 contains a conserved triple-glycine motif, whilst Beaudette contains a glycine-to-serine mutation that is predicted to abolish ADRP activity. Although ADRP activity has not been formally demonstrated for IBV nsp 3, Beaudette fails to bind ADP-ribose. The role of ADRP in virulence was investigated by generating rIBVs, based on Beaudette, containing either a restored tripleglycine motif or the complete M41 ADRP domain. Replication in vitro was unaffected by the ADRP modifications and the in vivo phenotype of the rIBVs was found to be apathogenic, indicating that restoration of the triple-glycine motif is not sufficient to restore virulence to the apathogenic Beaudette strain. © 2018 The Authors.","ADRP; Coronavirus; Infectious bronchitis virus; Macrodomain; Nsp3; Pathogenicity","adenosine diphosphate ribose; ADP ribose 1 '' phosphatase; glycine; phosphatase; serine; unclassified drug; protein binding; RNA directed RNA polymerase; viral protein; amino acid substitution; animal cell; Article; Avian infectious bronchitis virus; controlled study; crystal structure; enzyme activity; in vitro study; nonhuman; phenotype; point mutation; priority journal; protein domain; protein motif; virus gene; virus genome; virus replication; virus strain; virus virulence; amino acid sequence; animal; Avian infectious bronchitis virus; cell line; chemistry; chicken; gene expression regulation; genetics; metabolism; mutation; pathogenicity; virulence; Adenosine Diphosphate Ribose; Amino Acid Motifs; Amino Acid Sequence; Animals; Cell Line; Chickens; Gene Expression Regulation, Viral; Infectious bronchitis virus; Mutation; Protein Binding; RNA Replicase; Viral Proteins; Virulence","Armesto, M., Cavanagh, D., Britton, P., The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity (2009) Plos One, 4; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antiviral Res, 149, pp. 58-74; Egloff, M.P., Malet, H., Putics, A., Heinonen, M., Dutartre, H., Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains (2006) J Virol, 80, pp. 8493-8502; Gorbalenya, A.E., Koonin, E.V., Lai, M.M., Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubiand aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses (1991) FEBS Lett, 288, pp. 201-205; Putics, A., Filipowicz, W., Hall, J., Gorbalenya, A.E., Ziebuhr, J., ADPribose- 1""-monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture (2005) J Virol, 79, pp. 12721-12731; Saikatendu, K.S., Joseph, J.S., Subramanian, V., Clayton, T., Griffith, M., Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1’’-phosphate dephosphorylation by a conserved domain of nsP3 (2005) Structure, 13, pp. 1665-1675; Eriksson, K.K., Cervantes-Barragán, L., Ludewig, B., Thiel, V., Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1’’- phosphatase, a viral function conserved in the alpha-like supergroup (2008) J Virol, 82, pp. 12325-12334; Kuri, T., Eriksson, K.K., Putics, A., Züst, R., Snijder, E.J., The ADPribose- 1’’-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses (2011) J Gen Virol, 92, pp. 1899-1905; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) Mbio, 7, pp. e01716-e01716; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J Virol, 89, pp. 1523-1536; Li, C., Debing, Y., Jankevicius, G., Neyts, J., Ahel, I., Viral macro domains reverse protein ADP-ribosylation (2016) J Virol, 90, pp. 8478-8486; Grunewald, M.E., Fehr, A.R., Athmer, J., Perlman, S., The coronavirus nucleocapsid protein is ADP-ribosylated (2018) Virology, 517, pp. 62-68; Xu, Y., Cong, L., Chen, C., Wei, L., Zhao, Q., Crystal structures of two coronavirus ADP-ribose-1’’-monophosphatases and their complexes with ADP-ribose: A systematic structural analysis of the viral ADRP domain (2009) J Virol, 83, pp. 1083-1092; Piotrowski, Y., Hansen, G., Boomaars-van der Zanden, A.L., Snijder, E.J., Gorbalenya, A.E., Crystal structures of the X-domains of a group-1 and a group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property (2009) Prot Sci, 18, pp. 6-16; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J Virol, 75, pp. 12359-12369; Hodgson, T., Casais, R., Dove, B., Britton, P., Cavanagh, D., Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity (2004) J Virol, 78, pp. 13804-13811; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J Virol, 77, pp. 9084-9089; Armesto, M., Evans, S., Cavanagh, D., Abu-Median, A.B., Keep, S., A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype (2011) Plos One, 6","Bickerton, E.; The Pirbright InstituteUnited Kingdom; email: erica.bickerton@pirbright.ac.uk",,"Microbiology Society",00221317,,JGVIA,"29893665","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85051240751 "Amarelle L., Lecuona E.","57191861058;6602985721;","The antiviral effects of na,K-ATPase inhibition: A minireview",2018,"International Journal of Molecular Sciences","19","8", 2154,"","",,4,"10.3390/ijms19072154","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051947379&doi=10.3390%2fijms19072154&partnerID=40&md5=f0b1772d1a3543420939647ae96033e3","Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States; Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, 11600, Uruguay","Amarelle, L., Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, 11600, Uruguay; Lecuona, E., Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States","Since being first described more than 60 years ago, Na,K-ATPase has been extensively studied, while novel concepts about its structure, physiology, and biological roles continue to be elucidated. Cardiac glycosides not only inhibit the pump function of Na,K-ATPase but also activate intracellular signal transduction pathways, which are important in many biological processes. Recently, antiviral effects have been described as a novel feature of Na,K-ATPase inhibition with the use of cardiac glycosides. Cardiac glycosides have been reported to be effective against both DNA viruses such as cytomegalovirus and herpes simplex and RNA viruses such as influenza, chikungunya, coronavirus, and respiratory syncytial virus, among others. Consequently, cardiac glycosides have emerged as potential broad-spectrum antiviral drugs, with the great advantage of targeting cell host proteins, which help to minimize resistance to antiviral treatments, making them a very promising strategy against human viral infections. Here, we review the effect of cardiac glycosides on viral biology and the mechanisms by which these drugs impair the replication of this array of different viruses. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Antiviral treatment; Cardiac glycosides; K-ATPase; Na; Virus","cardiac glycoside; genomic DNA; antiviral activity; Cytomegalovirus; hand foot and mouth disease; human; protein synthesis; Review; signal transduction; virus infection; virus replication","Skou, J.C., The influence of some cations on an adenosine triphosphatase from peripheral nerves (1957) Biochim. Biophys. Acta, 23, pp. 394-401; Huang, L., Xie, Z., Huang, W.H., Askari, A., Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes (1996) J. Biol. Chem., 271, pp. 10372-10378; Huang, L., Li, H., Xie, Z., Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes (1997) J. Mol. Cell. Cardiol., 29, pp. 429-437; Huang, L., Kometiani, P., Xie, Z., Differential regulation of Na/K-ATPaseα-subunit isoform gene expressions in cardiac myocytes by ouabain and other hypertrophic stimuli (1997) J. Mol. Cell. Cardiol., 29, pp. 3157-3167; Mohammadi, K., Kometiani, P., Xie, Z., Askari, A., Role of protein kinase c in the signal pathways that link Na+/K+-atpase to ERK1/2 (2001) J. Biol. Chem., 276, pp. 42050-42056; Liu, J., Tian, J., Haas, M., Shapiro, J.I., Askari, A., Xie, Z., Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations (2000) J. Biol. Chem., 275, pp. 27838-27844. , PubMed; Tian, J., Cai, T., Yuan, Z., Wang, H., Liu, L., Haas, M., Maksimova, E., Xie, Z.J., Binding of Src to Na+/K+-ATPase forms a functional signaling complex (2006) Mol. Biol. Cell, 17, pp. 317-326; Haas, M., Askari, A., Xie, Z., Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase (2000) J. Biol. Chem, 275, pp. 27832-27837; Boulant, S., Stanifer, M., Lozach, P.Y., Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis (2015) Viruses, 7, pp. 2794-2815; Gubareva, L.V., Besselaar, T.G., Daniels, R.S., Fry, A., Gregory, V., Huang, W., Hurt, A.C., Leang, S.K., Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015–2016 (2017) Antivir. Res., 146, pp. 12-20; Burrel, S., Aime, C., Hermet, L., Ait-Arkoub, Z., Agut, H., Boutolleau, D., Surveillance of herpes simplex virus resistance to antivirals: A 4-year survey (2013) Antivir. Res., 100, pp. 365-372; Zhang, Q., Liao, Y., Chen, J., Cai, B., Su, Z., Ying, B., Lu, X., Wang, L., Epidemiology study of hbv genotypes and antiviral drug resistance in multi-ethnic regions from western China (2015) Sci. Rep., 5, p. 17413; Zur Hausen, H., The search for infectious causes of human cancers: Where and why (nobel lecture) (2009) Angew. Chem. Int. Ed., 48, pp. 5798-5808; Xie, Z., Molecular mechanisms of Na/K-ATPase-mediated signal transduction (2003) Ann. N. Y. Acad. Sci., 986, pp. 497-503; Kapoor, A., Cai, H., Forman, M., He, R., Shamay, M., Arav-Boger, R., Human cytomegalovirus inhibition by cardiac glycosides: Evidence for involvement of the herg gene (2012) Antimicrob. Agents Chemother., 56, pp. 4891-4899; Cai, H., Kapoor, A., He, R., Venkatadri, R., Forman, M., Posner, G.H., Arav-Boger, R., In vitro combination of anti-cytomegalovirus compounds acting through different targets: Role of the slope parameter and insights into mechanisms of action (2014) Antimicrob. Agents Chemother., 58, pp. 986-994; Cohen, T., Williams, J.D., Opperman, T.J., Sanchez, R., Lurain, N.S., Tortorella, D., Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication (2016) J. Virol., 90, pp. 10715-10727; Dodson, A.W., Taylor, T.J., Knipe, D.M., Coen, D.M., Inhibitors of the sodium potassium atpase that impair herpes simplex virus replication identified via a chemical screening approach (2007) Virology, 366, pp. 340-348; Su, C.T., Hsu, J.T., Hsieh, H.P., Lin, P.H., Chen, T.C., Kao, C.L., Lee, C.N., Chang, S.Y., Anti-HSV activity of digitoxin and its possible mechanisms (2008) Antivir. Res., 79, pp. 62-70; Ganesan, V.K., Duan, B., Reid, S.P., Chikungunya virus: Pathophysiology, mechanism, and modeling (2017) Viruses, 9, p. 368; Bailey, E.S., Fieldhouse, J.K., Choi, J.Y., Gray, G.C., A mini review of the zoonotic threat potential of influenza viruses, coronaviruses, adenoviruses, and enteroviruses (2018) Front. Public Health, 6, p. 104; Burkard, C., Verheije, M.H., Haagmans, B.L., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., de Haan, C.A., ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells (2015) J. Virol., 89, pp. 4434-4448; Stein, R.T., Bont, L.J., Zar, H., Polack, F.P., Park, C., Claxton, A., Borok, G., Wegzyn, C., Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis (2017) Pediatr. Pulmonol., 52, pp. 556-569; Garcia-Dorival, I., Wu, W., Dowall, S., Armstrong, S., Touzelet, O., Wastling, J., Barr, J.N., Hewson, R., Elucidation of the ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function (2014) J. Proteome Res, 13, pp. 5120-5135; Dowall, S.D., Bewley, K., Watson, R.J., Vasan, S.S., Ghosh, C., Konai, M.M., Gausdal, G., Barclay, W., Antiviral screening of multiple compounds against ebola virus (2016) Viruses, 8, p. 277; Mi, S., Li, Y., Yan, J., Gao, G.F., Na+/K+-ATPase beta1 subunit interacts with M2 proteins of influenza a and B viruses and affects the virus replication (2010) Sci. China Life Sci., 53, pp. 1098-1105; Laird, G.M., Eisele, E.E., Rabi, S.A., Nikolaeva, D., Siliciano, R.F., A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides (2014) J. Antimicrob. Chemother., 69, pp. 988-994; Wong, R.W., Balachandran, A., Ostrowski, M.A., Cochrane, A., Digoxin suppresses HIV-1 replication by altering viral RNA processing (2013) Plos Pathog, 9; Bonvicini, F., Bua, G., Gallinella, G., Parvovirus b19 infection in pregnancy-awareness and opportunities (2017) Curr. Opin. Virol., 27, pp. 8-14; Almilaji, A., Szteyn, K., Fein, E., Pakladok, T., Munoz, C., Elvira, B., Towhid, S.T., Bock, C.T., Down-regulation of Na+/K+ ATPase activity by human parvovirus b19 capsid protein VP1 (2013) Cell Physiol. Biochem., 31, pp. 638-648; Chiu, C.C., Shi, Y.F., Yang, J.J., Hsiao, Y.C., Tzang, B.S., Hsu, T.C., Effects of human parvovirus b19 and bocavirus VP1 unique region on tight junction of human airway epithelial a549 cells (2014) Plos ONE, 9; Chan, M.C., Kuok, D.I., Leung, C.Y., Hui, K.P., Valkenburg, S.A., Lau, E.H., Nicholls, J.M., Lee, J.W., Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3621-3626; Peteranderl, C., Morales-Nebreda, L., Selvakumar, B., Lecuona, E., Vadasz, I., Morty, R.E., Schmoldt, C., Pleschka, S., Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection (2016) J. Clin. Investig., 126, pp. 1566-1580; Ulug, E.T., Garry, R.F., Bose, H.R., Jr., Inhibition of Na+K+ATPase activity in membranes of sindbis virus-infected chick cells (1996) Virology, 216, pp. 299-308; Nikonov, O.S., Chernykh, E.S., Garber, M.B., Nikonova, E.Y., Enteroviruses: Classification, diseases they cause, and approaches to development of antiviral drugs (2017) Biochemistry, 82, pp. 1615-1631; Modalsli, K., Bukholm, G., Mikalsen, S.O., Degre, M., Coxsackie b1 virus-induced changes in cell membrane-associated functions are not responsible for altered sensitivity to bacterial invasiveness (1992) Arch. Virol., 124, pp. 321-332; Lu, Y., Hou, H., Wang, F., Qiao, L., Wang, X., Yu, J., Liu, W., Sun, Z., Atp1b3: A virus-induced host factor against EV71 replication by up-regulating the production of type-I interferons (2016) Virology, 496, pp. 28-34; Prassas, I., Diamandis, E.P., Novel therapeutic applications of cardiac glycosides (2008) Nat. Rev. Drug Discov., 7, pp. 926-935; Grosso, F., Stoilov, P., Lingwood, C., Brown, M., Cochrane, A., Suppression of adenovirus replication by cardiotonic steroids (2017) J. Virol, 91, pp. e01623-16; Ashbrook, A.W., Lentscher, A.J., Zamora, P.F., Silva, L.A., May, N.A., Bauer, J.A., Morrison, T.E., Dermody, T.S., Antagonism of the sodium-potassium atpase impairs chikungunya virus infection (2016) Mbio, 7, pp. e00693-16; Yang, C.W., Chang, H.Y., Hsu, H.Y., Lee, Y.Z., Chang, H.S., Chen, I.S., Lee, S.J., Identification of anti-viral activity of the cardenolides, Na+/K+-ATPase inhibitors, against porcine transmissible gastroenteritis virus (2017) Toxicol. Appl. Pharmacol., 332, pp. 129-137; Cui, R., Wang, Y., Wang, L., Li, G., Lan, K., Altmeyer, R., Zou, G., Cyclopiazonic acid, an inhibitor of calcium-dependent atpases with antiviral activity against human respiratory syncytial virus (2016) Antivir. Res., 132, pp. 38-45; Hoffmann, H., Palese, P., Shaw, M., Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase c activity (2008) Antivir. Res., 80, pp. 124-134; Amarelle, L.K.J., Lecuona, E., Shigemura, M., Welch, L.C., Peteranderl, C., Herold, S.V., Sznajder, J.I., Na,K-ATPase inhibition inhibits influenza a viral replication (2017) Proceedings of the American Thoracic Society 2017 International Conference, p. A2793. , Washington, DC, USA, 19–24 May; Hui, E.K., Nayak, D.P., Role of atp in influenza virus budding (2001) Virology, 290, pp. 329-341; http://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf, World Aids Day 2017 Fact Sheet, accessed on 12 June 2018; Wong, R.W., Lingwood, C.A., Ostrowski, M.A., Cabral, T., Cochrane, A., Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling (2018) Sci. Rep., 8, p. 850; Williamson, J.R., Really exasperating viral protein from HIV (2015) Elife, 4","Lecuona, E.; Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern UniversityUnited States; email: e-lecuona@northwestern.edu",,"MDPI AG",16616596,,,,"English","Int. J. Mol. Sci.",Review,"Final",,Scopus,2-s2.0-85051947379 "Michalska K., Quan Nhan D., Willett J.L.E., Stols L.M., Eschenfeldt W.H., Jones A.M., Nguyen J.Y., Koskiniemi S., Low D.A., Goulding C.W., Joachimiak A., Hayes C.S.","8711940600;57203683658;55543325400;57201608858;55402434600;8313450300;56442078100;8835675300;7202083586;7003330133;57204346328;7202656764;","Functional plasticity of antibacterial EndoU toxins",2018,"Molecular Microbiology","109","4",,"509","527",,6,"10.1111/mmi.14007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052637849&doi=10.1111%2fmmi.14007&partnerID=40&md5=a05c4e63cfd14fcd330521a6fc0e9559","Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, United States; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, United States; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States; Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, United States; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States; Pharmaceutical Sciences, University of California, Irvine, CA, United States; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, United States","Michalska, K., Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, United States, Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, United States; Quan Nhan, D., Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States; Willett, J.L.E., Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, United States; Stols, L.M., Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, United States; Eschenfeldt, W.H., Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, United States; Jones, A.M., Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States; Nguyen, J.Y., Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States; Koskiniemi, S., Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Low, D.A., Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, United States; Goulding, C.W., Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States, Pharmaceutical Sciences, University of California, Irvine, CA, United States; Joachimiak, A., Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, United States, Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, United States, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States; Hayes, C.S., Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, United States","Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CT STECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CT STECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNA Glu between nucleotides C37 and m 2 A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems. © 2018 John Wiley & Sons Ltd",,"bacterial enzyme; bacterial toxin; EndoU toxin; transfer RNA; unclassified drug; antiinfective agent; bacterial toxin; Escherichia coli protein; ribonuclease; transfer RNA; amino acid sequence; amino terminal sequence; Article; Coronavirinae; correlational study; enzyme activity; enzyme analysis; enzyme mechanism; enzyme structure; Escherichia coli; nonhuman; priority journal; protein domain; protein folding; sequence analysis; structural homology; genetics; metabolism; Amino Acid Sequence; Anti-Bacterial Agents; Bacterial Toxins; Endoribonucleases; Escherichia coli; Escherichia coli Proteins; RNA, Transfer; Sequence Analysis, Protein","Aoki, S.K., Diner, E.J., de Roodenbeke, C.T., Burgess, B.R., Poole, S.J., Braaten, B.A., A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria (2010) Nature, 468, pp. 439-442; Aoki, S.K., Malinverni, J.C., Jacoby, K., Thomas, B., Pamma, R., Trinh, B.N., Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB (2008) Mol. Microbiol., 70, pp. 323-340; Aoki, S.K., Pamma, R., Hernday, A.D., Bickham, J.E., Braaten, B.A., Low, D.A., Contact-dependent inhibition of growth in Escherichia coli (2005) Science, 309, pp. 1245-1248; Arenas, J., Schipper, K., van Ulsen, P., van der Ende, A., Tommassen, J., end of the gene encoding the fratricide meningococcal two-partner secretion protein A (2013) BMC Genomics, 14, p. 622. , Domain exchange at the 3′; Basler, M., Pilhofer, M., Henderson, G.P., Jensen, G.J., Mekalanos, J.J., Type VI secretion requires a dynamic contractile phage tail-like structure (2012) Nature, 483, pp. 182-186; Beck, C.M., Morse, R.P., Cunningham, D.A., Iniguez, A., Low, D.A., Goulding, C.W., Hayes, C.S., CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria (2014) Structure, 22, pp. 707-718; Beck, C.M., Willett, J.L., Cunningham, D.A., Kim, J.J., Low, D.A., Hayes, C.S., CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria (2016) PLoS Pathog, 12; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J Virol, 78, pp. 12218-12224; Bhardwaj, K., Palaninathan, S., Alcantara, J.M., Yi, L.L., Guarino, L., Sacchettini, J.C., Kao, C.C., Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15 (2008) J Biol Chem, 283, pp. 3655-3664; Caffarelli, E., Arese, M., Santoro, B., Fragapane, P., Bozzoni, I., In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis (1994) Mol Cell Biol, 14, pp. 2966-2974; Caffarelli, E., Maggi, L., Fatica, A., Jiricny, J., Bozzoni, I., A novel Mn++-dependent ribonuclease that functions in U16 snoRNA processing in X. laevis (1997) Biochem Biophys Res Commun, 233, pp. 514-517; Cao, Z., Casabona, M.G., Kneuper, H., Chalmers, J.D., Palmer, T., The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria (2016) Nat Microbiol, 2, p. 16183; Cascales, E., Buchanan, S.K., Duche, D., Kleanthous, C., Lloubes, R., Postle, K., Colicin biology (2007) Microbiol Mol Biol Rev, 71, pp. 158-229; Cowtan, K., (1994) DM: an automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM newsletter on protein crystallography, 31, pp. 34-38; Cowtan, K., The Buccaneer software for automated model building. 1. Tracing protein chains (2006) Acta Crystallogr D Biol Crystallogr, 62, pp. 1002-1011; Cuchillo, C.M., Nogues, M.V., Raines, R.T., Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism (2011) Biochemistry, 50, pp. 7835-7841; Davis, I.W., Murray, L.W., Richardson, J.S., Richardson, D.C., MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes (2004) Nucleic Acids Res, 32, pp. W615-619; Deavin, A., Mathias, A.P., Rabin, B.R., Mechanism of action of bovine pancreatic ribonuclease (1966) Nature, 211, pp. 252-255; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci USA, 114, pp. E4251-E4260; Dey, A., Vassallo, C.N., Conklin, A.C., Pathak, D.T., Troselj, V., Wall, D., Sibling rivalry in Myxococcus xanthus Is mediated by kin recognition and a polyploid prophage (2016) Journal of bacteriology, 198, pp. 994-1004; Diner, E.J., Beck, C.M., Webb, J.S., Low, D.A., Hayes, C.S., Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI) (2012) Genes Dev, 26, pp. 515-525; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132; Eschenfeldt, W.H., Lucy, S., Millard, C.S., Joachimiak, A., Mark, I.D., A family of LIC vectors for high-throughput cloning and purification of proteins (2009) Methods Mol Biol, 498, pp. 105-115; Eschenfeldt, W.H., Makowska-Grzyska, M., Stols, L., Donnelly, M.I., Jedrzejczak, R., Joachimiak, A., New LIC vectors for production of proteins from genes containing rare codons (2013) J Struct Funct Genomics, 14, pp. 135-144; Eschenfeldt, W.H., Maltseva, N., Stols, L., Donnelly, M.I., Gu, M., Nocek, B., Cleavable C-terminal His-tag vectors for structure determination (2010) J Struct Funct Genomics, 11, pp. 31-39; Findlay, D., Herries, D.G., Mathias, A.P., Rabin, B.R., Ross, C.A., The active site and mechanism of action of bovine pancreatic ribonuclease. 7. The catalytic mechanism (1962) Biochem J, 85, pp. 152-153; French, S., Wilson, K., On the treatment of negative intensity observations (1978) Acta Crystallogr A, A34, pp. 517-525; Garcia-Bayona, L., Guo, M.S., Laub, M.T., Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins (2017) Elife, 6; Garza-Sánchez, F., Janssen, B.D., Hayes, C.S., Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA (2006) J Biol Chem, 281, pp. 34258-34268; Ghequire, M.G., De Mot, R., Ribosomally encoded antibacterial proteins and peptides from Pseudomonas (2014) FEMS Microbiol Rev, 38, pp. 523-568; Gioia, U., Laneve, P., Dlakic, M., Arceci, M., Bozzoni, I., Caffarelli, E., Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis (2005) J Biol Chem, 280, pp. 18996-19002; Guarino, L.A., Bhardwaj, K., Dong, W., Sun, J., Holzenburg, A., Kao, C., Mutational analysis of the SARS virus Nsp15 endoribonuclease: identification of residues affecting hexamer formation (2005) J Mol Biol, 353, pp. 1106-1117; Hayes, C.S., Sauer, R.T., Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control (2003) Mol. Cell, 12, pp. 903-911; Ho, B.T., Dong, T.G., Mekalanos, J.J., A view to a kill: the bacterial type VI secretion system (2014) Cell Host Microbe, 15, pp. 9-21; Holberger, L.E., Garza-Sanchez, F., Lamoureux, J., Low, D.A., Hayes, C.S., A novel family of toxin/antitoxin proteins in Bacillus species (2012) FEBS Lett, 586, pp. 132-136; Holm, L., Rosenstrom, P., Dali server: conservation mapping in 3D (2010) Nucleic Acids Res, 38, pp. W545-549; Hood, R.D., Singh, P., Hsu, F., Guvener, T., Carl, M.A., Trinidad, R.R., A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria (2010) Cell Host Microbe, 7, pp. 25-37; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E., Ziebuhr, J., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc Natl Acad Sci USA, 101, pp. 12694-12699; Jamet, A., Jousset, A.B., Euphrasie, D., Mukorako, P., Boucharlat, A., Ducousso, A., Charbit, A., Nassif, X., A new family of secreted toxins in pathogenic Neisseria species (2015) PLoS Pathog, 11; Johnson, P.M., Beck, C.M., Morse, R.P., Garza-Sanchez, F., Low, D.A., Hayes, C.S., Goulding, C.W., Unraveling the essential role of CysK in CDI toxin activation (2016) Proc Natl Acad Sci USA, 113, pp. 9792-9797; Jones, A.M., Garza-Sanchez, F., So, J., Hayes, C.S., Low, D.A., Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors (2017) Proc Natl Acad Sci USA, 114, pp. E1951-E1957; Jones, A.M., Low, D.A., Hayes, C.S., Can't you hear me knocking: contact-dependent competition and cooperation in bacteria (2017) Emerg Top Life Sci, 1, pp. 75-83; Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Buchmeier, M.J., Stevens, R.C., Kuhn, P., Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch (2007) J Virol, 81, pp. 6700-6708; Kang, H., Bhardwaj, K., Li, Y., Palaninathan, S., Sacchettini, J., Guarino, L., Leibowitz, J.L., Kao, C.C., Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease (2007) J Virol, 81, pp. 13587-13597; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13; Koskiniemi, S., Garza-Sanchez, F., Sandegren, L., Webb, J.S., Braaten, B.A., Poole, S.J., Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium (2014) PLoS Genet, 10; Koskiniemi, S., Lamoureux, J.G., Nikolakakis, K.C., t'Kint de Roodenbeke, C., Kaplan, M.D., Low, D.A., Hayes, C.S., Rhs proteins from diverse bacteria mediate intercellular competition (2013) Proc Natl Acad Sci USA, 110, pp. 7032-7037; Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J Mol Biol, 372, pp. 774-797; Laneve, P., Altieri, F., Fiori, M.E., Scaloni, A., Bozzoni, I., Caffarelli, E., Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis (2003) J Biol Chem, 278, pp. 13026-13032; MacIntyre, D.L., Miyata, S.T., Kitaoka, M., Pukatzki, S., The Vibrio cholerae type VI secretion system displays antimicrobial properties (2010) Proc Natl Acad Sci USA, 107, pp. 19520-19524; McGinness, K.E., Baker, T.A., Sauer, R.T., Engineering controllable protein degradation (2006) Mol. Cell, 22, pp. 701-707; Michalska, K., Gucinski, G.C., Garza-Sanchez, F., Johnson, P.M., Stols, L.M., Eschenfeldt, W.H., Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs (2017) Nucleic Acids Res, 45, pp. 10306-10320; Minor, W., Cymborowski, M., Otwinowski, Z., Chruszcz, M., HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes (2006) Acta Crystallogr D Biol Crystallogr, 62, pp. 859-866; Morse, R.P., Nikolakakis, K.C., Willett, J.L., Gerrick, E., Low, D.A., Hayes, C.S., Goulding, C.W., Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems (2012) Proc Natl Acad Sci USA, 109, pp. 21480-21485; Murshudov, G.N., Vagin, A.A., Dodson, E.J., Refinement of macromolecular structures by the maximum-likelihood method (1997) Acta Crystallogr D Biol Crystallogr, 53, pp. 240-255; Nedialkova, D.D., Ulferts, R., van den Born, E., Lauber, C., Gorbalenya, A.E., Ziebuhr, J., Snijder, E.J., Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease (2009) J Virol, 83, pp. 5671-5682; Ng, W.L., Bassler, B.L., Bacterial quorum-sensing network architectures (2009) Annu Rev Genet, 43, pp. 197-222; Nikolakakis, K., Amber, S., Wilbur, J.S., Diner, E.J., Aoki, S.K., Poole, S.J., The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems (2012) Mol Microbiol, 84, pp. 516-529; Ohr, R.J., Anderson, M., Shi, M., Schneewind, O., Missiakas, D., EssD, a nuclease effector of the Staphylococcus aureus ESS pathway (2017) Journal of bacteriology, 199; Otwinowski, Z., (1991) Maximum likelihood refinement of heavy atom parameters, pp. 80-85. , In Proceedings of the CCP4 Study Weekend 25–26 January 1991., Daresbury Laboratory, Warrington; Padilla, J.E., Yeates, T.O., A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning (2003) Acta Crystallogr D Biol Crystallogr, 59, pp. 1124-1130; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera–a visualization system for exploratory research and analysis (2004) J Comput Chem, 25, pp. 1605-1612; Poole, S.J., Diner, E.J., Aoki, S.K., Braaten, B.A., T'Kint de Roodenbeke, C., Low, D.A., Hayes, C.S., Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems (2011) PLoS Genet., 7; Renzi, F., Caffarelli, E., Laneve, P., Bozzoni, I., Brunori, M., Vallone, B., The structure of the endoribonuclease XendoU: From small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication (2006) Proc Natl Acad Sci USA, 103, pp. 12365-12370; Ricagno, S., Egloff, M.P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family (2006) Proc Natl Acad Sci USA, 103, pp. 11892-11897; Robert, X., Gouet, P., Deciphering key features in protein structures with the new ENDscript server (2014) Nucleic Acids Res, 42, pp. W320-324; Ruhe, Z.C., Nguyen, J.Y., Chen, A.J., Leung, N.Y., Hayes, C.S., Low, D.A., CDI systems are stably maintained by a cell-contact mediated surveillance mechanism (2016) PLoS Genet, 12; Ruhe, Z.C., Nguyen, J.Y., Xiong, J., Koskiniemi, S., Beck, C.M., Perkins, B.R., Low, D.A., Hayes, C.S., CdiA effectors use modular receptor-binding domains to recognize (2017) Target Bacteria., MBio, p. 8; Russell, A.B., Peterson, S.B., Mougous, J.D., Type VI secretion system effectors: poisons with a purpose (2014) Nat Rev Microbiol, 12, pp. 137-148; Schwarz, D.S., Blower, M.D., The calcium-dependent ribonuclease XendoU promotes ER network formation through local RNA degradation (2014) J Cell Biol, 207, pp. 41-57; Sheldrick, G.M., A short history of SHELX (2008) Acta Crystallogr A, 64, pp. 112-122; Shi, Y., Li, Y., Lei, Y., Ye, G., Shen, Z., Sun, L., A dimerization-dependent mechanism drives the endoribonuclease function of porcine reproductive and respiratory syndrome virus nsp11 (2016) J Virol, 90, pp. 4579-4592; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004; Souza, D.P., Oka, G.U., Alvarez-Martinez, C.E., Bisson-Filho, A.W., Dunger, G., Hobeika, L., Bacterial killing via a type IV secretion system (2015) Nat Commun, 6, p. 6453; Tan, K., Johnson, P.M., Stols, L., Boubion, B., Eschenfeldt, W., Babnigg, G., The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58 (2015) Acta Crystallogr F Struct Biol Commun, 71, pp. 702-709; Thomason, L., Court, D.L., Bubunenko, M., Costantino, N., Wilson, H., Datta, S., Oppenheim, A., (2007) Recombineering: genetic engineering in bacteria using homologous recombination, , Current protocols in molecular biology / edited by Frederick M. Ausubel … [et al Chapter 1 Unit 1 16; Unterweger, D., Miyata, S.T., Bachmann, V., Brooks, T.M., Mullins, T., Kostiuk, B., Provenzano, D., Pukatzki, S., The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition (2014) Nat Commun, 5, p. 3549; Vassallo, C.N., Cao, P., Conklin, A., Finkelstein, H., Hayes, C.S., Wall, D., Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria (2017) . Elife, p. 6; Whitney, J.C., Beck, C.M., Goo, Y.A., Russell, A.B., Harding, B.N., De Leon, J.A., Genetically distinct pathways guide effector export through the type VI secretion system (2014) Mol Microbiol, 92, pp. 529-542; Whitney, J.C., Peterson, S.B., Kim, J., Pazos, M., Verster, A.J., Radey, M.C., A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria (2017) eLife, 6; Willett, J.L., Gucinski, G.C., Fatherree, J.P., Low, D.A., Hayes, C.S., Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways (2015) Proc Natl Acad Sci USA, 112, pp. 11341-11346; Willett, J.L., Ruhe, Z.C., Goulding, C.W., Low, D.A., Hayes, C.S., Contact-dependent growth inhibition (CDI) and CdiB/CdiA two-partner secretion proteins (2015) J Mol Biol, 427, pp. 3754-3765; Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Overview of the CCP4 suite and current developments (2011) Acta Crystallogr D Biol Crystallogr, 67, pp. 235-242; Xu, X., Zhai, Y., Sun, F., Lou, Z., Su, D., Xu, Y., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 (2006) J Virol, 80, pp. 7909-7917; Zhang, D., de Souza, R.F., Anantharaman, V., Iyer, L.M., Aravind, L., Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics (2012) Biol Direct, 7, p. 18; Zhang, D., Iyer, L.M., Aravind, L., A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems (2011) Nucleic Acids Res, 39, pp. 4532-4552; Zhang, M., Li, X., Deng, Z., Chen, Z., Liu, Y., Gao, Y., Wu, W., Chen, Z., Structural biology of the arterivirus nsp11 endoribonucleases (2017) J Virol, 91","Hayes, C.S.; Department of Molecular, Cellular and Developmental Biology, University of CaliforniaUnited States; email: chayes@lifesci.ucsb.edu",,"Blackwell Publishing Ltd",0950382X,,MOMIE,"29923643","English","Mol. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85052637849 "de Mira Fernandes A., Brandão P.E., dos Santos Lima M., de Souza Nunes Martins M., da Silva T.G., da Silva Cardoso Pinto V., de Paula L.T., Vicente M.E.S., Okuda L.H., Pituco E.M.","57163757300;55916312600;56246488100;56247162600;57202009247;56856851200;57203371594;57203369634;36640368400;6603091154;","Genetic diversity of BCoV in Brazilian cattle herds",2018,"Veterinary Medicine and Science","4","3",,"183","189",,2,"10.1002/vms3.102","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051417129&doi=10.1002%2fvms3.102&partnerID=40&md5=0eec97b0bf6be7420abec917d2469d8a","Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; Department of Preventative Veterinary Medicine and Animal Health, Faculty of Veterinary and Zootechnical Medicine, University of São Paulo, São Paulo, Brazil","de Mira Fernandes, A., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; Brandão, P.E., Department of Preventative Veterinary Medicine and Animal Health, Faculty of Veterinary and Zootechnical Medicine, University of São Paulo, São Paulo, Brazil; dos Santos Lima, M., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; de Souza Nunes Martins, M., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; da Silva, T.G., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; da Silva Cardoso Pinto, V., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; de Paula, L.T., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; Vicente, M.E.S., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; Okuda, L.H., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil; Pituco, E.M., Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São Paulo, São Paulo, Brazil","Bovine coronavirus (BCoV) is one of the main aetiological agents of gastroenteritis in calves, causing significant economic damage to livestock. This study aims to characterise BCoV genetically on the basis of the N gene. A total of 114 faecal samples from beef and dairy calves with or without clinical symptoms of diarrhoea from five Brazilian states (São Paulo, Minas Gerais, Santa Catarina, Mato Grosso and Bahia) were evaluated between 2008 and 2015 by technique of Semi-nested RT-PCR for gene N and genealogical analysis. Of the 114 samples analysed, 14.91% (17/114) were positive. BCoV was detected in 22.72% (10/44) of the animals with diarrhoea and in 10% (7/70) of asymptomatic animals. BCoV was identified in calves from rural properties located in all of the regions sampled. Genealogical analysis showed that the Brazilian sequences of BCoV for the gene which codes for the N protein can be broken down into two distinct clusters, and the samples from this study were closely linked to Asian strains. These results contribute to the molecular characterization of BCoV in Brazil and are the first report of the circulation of BCoV in the states of Santa Catarina and Bahia. © 2018 The Authors. Veterinary Medicine and Science Published by John Wiley & Sons Ltd","bovine coronavirus; gene N; genealogy; sequencing",,"Akashi, H., Inaba, Y., Miura, Y., Tokuhisha, S., Sato, K., Satoda, K., Properties of a coronavirus isolated from a cow with epizootic diarrhea (1980) Veterinary Microbiology, 5, pp. 265-276. , &; Asadi, H.A., Baghinezhad, M., Asadi, H., Neonatal calf diarrhea by rotavirus and coronavirus: a review (2015) International Journal of Bioscience, 6, pp. 230-236; Asano, K.M., Souza, S.P., Silva, S.O.S., Richtzehain, L.J., Brandão, P.E., Rapid detection of bovine coronavirus by a Semi-nested RT-PCR (2009) Pesquisa Veterinária Brasileira, 29, pp. 869-873. , &; Barros, N.I., Silva, S.O.S., Neto, F.S.N., Asano, K.M., Souza, S.P., Richtzenhain, L.J., Brandão, P.E., A multigene approach for comparing genealogy of betacoronavirus from cattle and horses (2013) The Scientific World Journal, 2013, pp. 1-6. , &; Barry, A.F., Alfieri, A.F., Stipp, D.T., Alfieri, A.A., Bovine coronavirus detection in a collection of diarrheic stool samples positive for group A bovine rotavirus (2009) Brazilian Archives Biology Technology, 52, pp. 45-49. , &; Bidokhiti, M.R.M., Travén, M., Krishna, N.K., Munir, M., Belák, S., Alenius, S., Cortney, M., Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptative evolution of the strains (2013) Journal of General Virology, 94, pp. 2036-2049. , &; Bok, M., Miño, S., Rodriguez, D., Badaracco, A., Nunes, I., Souza, S.P., Molecular and antigenic characteriza- tion of bovine coronavirus circulating in argentinean cattle during 1994-2010 (2015) Veteri- Nary Microbiology, 181, pp. 221-229; Bolieau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Veterinary Clinics of North America, Food Animal Practice, 26, pp. 123-146. , &; Borucki, M.K., Allen, J.E., Chen-Harris, H., Zemla, A., Vanier, G., Mabery, S., The role of viral population diversity in adaptation of bovine coronavirus to new host environments (2013) PLoS ONE, 8, pp. 1-11; Brandão, P.E., Birgel, E.H., Gregori, F., Rosales, C.A.R., Ruiz, V.L.A., Jerez, J.A., Bovine coronavirus detection in adults cows in Brazil (2002) Arquivos do Instituto Biológico, 69, pp. 103-104. , www.biologico.sp.gov.br; Coura, F.M., Freitas, M.D., Ribeiro, J., Leme, R.A., de Souza, C., Alfieri, A.A., Longitudinal study of Salmonella spp., Escherichia coli, rotavirus, and coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd (2015) Tropical Animal Health and Production, 47, pp. 3-11; Gunn, L., Collins, P.J., Connell, O., Shea, O., Phylogenetic investigation of enteric bovine coronavirus in ireland reveals partitioning between european and global strains (2015) Irish Veterinary Journal, 68, pp. 2-7. , &; Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symposium Series, 41, pp. 95-98; Hercket, R.A., Saif, L.J., Hoblet, K.H., Agnes, A.G., A longitudinal study of bovine coronavirus enteric and respiratory infection in dairy calves in two herds in Ohio (1991) Veterinary Microbiology, 22, pp. 187-201; Jerez, J.A., Brandão, P.E., Buzinaro, M.G., Gregori, F., Rosales, C.A.R., Ito, F.H., Sakai, T., Detection of coronavirus and rotavirus in the faeces of neonatal calves with diarrhoea being raised in various municipalities of the of São Paulo, Brazil (2002) Arquivos do Instituto Biológico, 69, pp. 19-23. , &; Kapil, S., Richardson, K.L., Maag, T.R., Goyal, S.M., Characterization of bovine coronavirus isolates/from eight different states in the USA (1999) Veterinary Microbiology, 67, pp. 221-223; Lojkic, I., Kresic, N., Simic, I., Bedekovic, V., Detection and molecular characterisation of bovine corona and toroviruses from Croatian cattle (2015) Biomed Central Veterinary Research, 11, pp. 202-210; Lorenzetti, E., Leme, R.A., Ribeiro, J., De Souza, V.R.A., Alfieri, A.F., Alfieri, A.A., Neonatal diarrhea by bovine coronavirus (BCoV) in beef cattle herds (2013) Semina: CiênciasAgrárias, 34, pp. 3795-3800; Saif, L.J., Bovine respiratory coronavirus (2010) Veterinary Clinics of North America, Food Animal Practice, 26, pp. 349-364; Stipp, D.T., Barry, A.F., Alfieri, A.F., Takiuchi, E., Amude, A.M., Alfieri, A.A., Frequency of BCoV detection by a Semi-Nested PCR assay in faeces of calves from brazilian cattle herds (2009) Tropical Animal Health and Production, 41, pp. 1563-1567. , &; Wentworth, D.E., Holmes, K.V., (2007) Coronaviruses: Molecular and Cellular Biology, , &, 1st edn, Caister Academic Press, Norfolk","de Mira Fernandes, A.; Laboratory of Bovine Viruses, Center of Research and Development of Animal Health, Biological Institute of São PauloBrazil; email: adelinedemira@hotmail.com",,"Wiley-Blackwell",20531095,,,,"English","Vet. Med. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85051417129 "Ferlin J., Farhat R., Belouzard S., Cocquerel L., Bertin A., Hober D., Dubuisson J., Rouillé Y.","57148223900;55857446500;6507480311;6602878534;56514912900;7005990749;7102542575;7003412978;","Investigation of the role of GBF1 in the replication of positivesense single-stranded RNA viruses",2018,"Journal of General Virology","99","8", 001099,"1086","1096",,4,"10.1099/jgv.0.001099","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051207185&doi=10.1099%2fjgv.0.001099&partnerID=40&md5=7c9250855660e8460197a99444632c34","Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France; Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France; Inserm U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR-5286, Centre Léon Bérard, Lyon, France","Ferlin, J., Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France; Farhat, R., Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France, Inserm U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR-5286, Centre Léon Bérard, Lyon, France; Belouzard, S., Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France; Cocquerel, L., Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France; Bertin, A., Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France; Hober, D., Université de Lille, Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, France; Dubuisson, J., Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France; Rouillé, Y., Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, Lille, France","GBF1 has emerged as a host factor required for the replication of positive-sense single-stranded RNA viruses of different families, but its mechanism of action is still unknown. GBF1 is a guanine nucleotide exchange factor for Arf family members. Recently, we identified Arf4 and Arf5 (class II Arfs) as host factors required for the replication of hepatitis C virus (HCV), a GBF1-dependent virus. To assess whether a GBF1/class II Arf pathway is conserved among positive-sense single-stranded RNA viruses, we investigated yellow fever virus (YFV), Sindbis virus (SINV), coxsackievirus B4 (CVB4) and human coronavirus 229E (HCoV-229E). We found that GBF1 is involved in the replication of these viruses. However, using siRNA or CRISPR-Cas9 technologies, it was seen that the depletion of Arf1, Arf3, Arf4 or Arf5 had no impact on viral replication. In contrast, the depletion of Arf pairs suggested that class II Arfs could be involved in HCoV-229E, YFV and SINV infection, as for HCV, but not in CVB4 infection. In addition, another Arf pair, Arf1 and Arf4, appears to be essential for YFV and SINV infection, but not for infection by other viruses. Finally, CVB4 infection was not inhibited by any combination of Arf depletion. We conclude that the mechanism of action of GBF1 in viral replication appears not to be conserved, and that a subset of positive-sense singlestranded RNA viruses from different families might require class II Arfs for their replication. © 2018 The Authors.","ADP-ribosylation factor; Coxsackievirus B4; Hepatitis C virus; Human coronavirus 229E; Sindbis virus; Yellow fever virus","adenosine diphosphate ribosylation factor 1; adenosine diphosphate ribosylation factor 3; adenosine diphosphate ribosylation factor 4; adenosine diphosphate ribosylation factor 5; GBF1; guanine nucleotide exchange factor; host factor; small interfering RNA; unclassified drug; brefeldin A; GBF1 protein, human; golgicide A; guanine nucleotide exchange factor; pyridine derivative; quinoline derivative; Article; Coxsackievirus B4; CRISPR-CAS9 system; Human coronavirus 229E; MTS assay; nonhuman; positive-strand RNA virus; priority journal; protein depletion; RNA virus infection; Sindbis virus; virus replication; Yellow fever virus; animal; cell line; cell survival; drug effect; gene expression regulation; gene knockdown; genetics; human; metabolism; mouse; physiology; RNA interference; RNA virus; virus replication; Animals; Brefeldin A; Cell Line; Cell Survival; Gene Expression Regulation; Gene Knockdown Techniques; Guanine Nucleotide Exchange Factors; Humans; Mice; Pyridines; Quinolines; RNA Interference; RNA Viruses; Virus Replication","Belov, G.A., Feng, Q., Nikovics, K., Jackson, C.L., Ehrenfeld, E., A critical role of a cellular membrane traffic protein in poliovirus RNA replication (2008) Plos Pathog, 4; Lanke, K.H., van der Schaar, H.M., Belov, G.A., Feng, Q., Duijsings, D., GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication (2009) J Virol, 83, pp. 11940-11949; Wang, J., Du, J., Jin, Q., Class I ADP-ribosylation factors are involved in enterovirus 71 replication (2014) Plos One, 9; Verheije, M.H., Raaben, M., Mari, M., Te Lintelo, E.G., Reggiori, F., Mouse hepatitis coronavirus RNA replication depends on GBF1- mediated ARF1 activation (2008) Plos Pathog, 4; Goueslain, L., Alsaleh, K., Horellou, P., Roingeard, P., Descamps, V., Identification of GBF1 as a cellular factor required for hepatitis C virus RNA replication (2010) J Virol, 84, pp. 773-787; Carpp, L.N., Rogers, R.S., Moritz, R.L., Aitchison, J.D., Quantitative proteomic analysis of host-virus interactions reveals a role for Golgi brefeldin A resistance factor 1 (GBF1) in dengue infection (2014) Mol Cell Proteomics, 13, pp. 2836-2854; Farhat, R., Ankavay, M., Lebsir, N., Gouttenoire, J., Jackson, C.L., Identification of GBF1 as a cellular factor required for hepatitis (2018) E Virus RNA Replication. Cell Microbiol, 20; Claude, A., Zhao, B.P., Kuziemsky, C.E., Dahan, S., Berger, S.J., GBF1: A novel golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5 (1999) J Cell Biol, 146, pp. 71-84; Donaldson, J.G., Jackson, C.L., ARF family G proteins and their regulators: Roles in membrane transport, development and disease (2011) Nat Rev Mol Cell Biol, 12, pp. 362-375; Wright, J., Kahn, R.A., Sztul, E., Regulating the large Sec7 ARF guanine nucleotide exchange factors: The when, where and how of activation (2014) Cell Mol Life Sci, 71, pp. 3419-3438; Bui, Q.T., Golinelli-Cohen, M.P., Jackson, C.L., Large Arf1 guanine nucleotide exchange factors: Evolution, domain structure, and roles in membrane trafficking and human disease (2009) Mol Genet Genomics, 282, pp. 329-350; Szul, T., Grabski, R., Lyons, S., Morohashi, Y., Shestopal, S., Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in golgi biogenesis and protein trafficking (2007) J Cell Sci, 120, pp. 3929-3940; Bouvet, S., Golinelli-Cohen, M.P., Contremoulins, V., Jackson, C.L., Targeting of the Arf-GEF GBF1 to lipid droplets and golgi membranes (2013) J Cell Sci, 126, pp. 4794-4805; Richards, A.L., Soares-Martins, J.A., Riddell, G.T., Jackson, W.T., Generation of unique poliovirus RNA replication organelles (2014) Mbio, 5, pp. e00813-e00833; Gazina, E.V., Mackenzie, J.M., Gorrell, R.J., Erson, D.A., Differential requirements for COPI coats in formation of replication complexes among three genera of Picornaviridae (2002) J Virol, 76, pp. 11113-11122; Cherry, S., Kunte, A., Wang, H., Coyne, C., Rawson, R.B., COPI activity coupled with fatty acid biosynthesis is required for viral replication (2006) Plos Pathog, 2; Tai, A.W., Benita, Y., Peng, L.F., Kim, S.S., Sakamoto, N., A functional genomic screen identifies cellular cofactors of hepatitis C virus replication (2009) Cell Host Microbe, 5, pp. 298-307; Wang, J., Wu, Z., Jin, Q., COPI is required for enterovirus 71 replication (2012) Plos One, 7; de Wilde, A.H., Wannee, K.F., Scholte, F.E., Goeman, J.J., Ten Dijke, P., A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNAactivated protein kinase and early secretory pathway proteins (2015) J Virol, 89, pp. 8318-8333; Belov, G.A., Altan-Bonnet, N., Kovtunovych, G., Jackson, C.L., Lippincott-Schwartz, J., Hijacking components of the cellular secretory pathway for replication of poliovirus RNA (2007) J Virol, 81, pp. 558-567; Matto, M., Sklan, E.H., David, N., Melamed-Book, N., Casanova, J.E., Role for ADP ribosylation factor 1 in the regulation of hepatitis C virus replication (2011) J Virol, 85, pp. 946-956; Belov, G.A., Kovtunovych, G., Jackson, C.L., Ehrenfeld, E., Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfGEF GBF1 (2010) Cell Microbiol, 12, pp. 1463-1479; Farhat, R., Séron, K., Ferlin, J., Fénéant, L., Belouzard, S., Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication (2016) Cell Microbiol, 18, pp. 1121-1133; Farhat, R., Goueslain, L., Wychowski, C., Belouzard, S., Fénéant, L., Hepatitis C virus replication and Golgi function in brefeldin a-resistant hepatoma-derived cells (2013) Plos One, 8; Renault, L., Guibert, B., Cherfils, J., Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor (2003) Nature, 426, pp. 525-530; Sáenz, J.B., Sun, W.J., Chang, J.W., Li, J., Bursulaya, B., Golgicide A reveals essential roles for GBF1 in Golgi assembly and function (2009) Nat Chem Biol, 5, pp. 157-165; Volpicelli-Daley, L.A., Li, Y., Zhang, C.J., Kahn, R.A., Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic (2005) Mol Biol Cell, 16, pp. 4495-4508; Kudelko, M., Brault, J.B., Kwok, K., Li, M.Y., Pardigon, N., Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses (2012) J Biol Chem, 287, pp. 767-777; Iglesias, N.G., Mondotte, J.A., Byk, L.A., de Maio, F.A., Samsa, M.M., Dengue virus uses a non-canonical function of the host GBF1-Arf- COPI system for capsid protein accumulation on lipid droplets (2015) Traffic, 16, pp. 962-977; Reiling, J.H., Olive, A.J., Sanyal, S., Carette, J.E., Brummelkamp, T.R., A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens (2013) Nat Cell Biol, 15, pp. 1473-1485; Dubuisson, J., Hsu, H.H., Cheung, R.C., Greenberg, H.B., Russell, D.G., Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses (1994) J Virol, 68, pp. 6147-6160; Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., Sato, J., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium (1982) Cancer Res, 42, pp. 3858-3863; Duvet, S., Chirat, F., Mir, A.M., Verbert, A., Dubuisson, J., Reciprocal relationship between alpha1,2 mannosidase processing and reglucosylation in the rough endoplasmic reticulum of Man-P-Dol deficient cells (2000) Eur J Biochem, 267, pp. 1146-1152; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious, R., Transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J Gen Virol, 82, pp. 1273-1281; Engelmann, I., Alidjinou, E.K., Bertin, A., Bossu, J., Villenet, C., Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells (2017) Cell Mol Life Sci, 74, pp. 3851-3861; Rouillé, Y., Helle, F., Delgrange, D., Roingeard, P., Voisset, C., Subcellular localization of hepatitis C virus structural proteins in a cell culture system that efficiently replicates the virus (2006) J Virol, 80, pp. 2832-2841; Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Genome engineering using the CRISPR-Cas9 system (2013) Nat Protoc, 8, pp. 2281-2308","Rouillé, Y.; Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de LilleFrance; email: yves.rouille@ibl.cnrs.fr",,"Microbiology Society",00221317,,JGVIA,"29923822","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85051207185 "Boda B., Benaoudia S., Huang S., Bonfante R., Wiszniewski L., Tseligka E.D., Tapparel C., Constant S.","35546825600;57196064824;54585389100;57202422108;6505984007;57189356520;57203825273;36460778700;","Antiviral drug screening by assessing epithelial functions and innate immune responses in human 3D airway epithelium model",2018,"Antiviral Research","156",,,"72","79",,4,"10.1016/j.antiviral.2018.06.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048308154&doi=10.1016%2fj.antiviral.2018.06.007&partnerID=40&md5=c3b868c7af10b66092653815896d65f3","Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland","Boda, B., Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland; Benaoudia, S., Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland; Huang, S., Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland; Bonfante, R., Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland; Wiszniewski, L., Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland; Tseligka, E.D., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Tapparel, C., Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland; Constant, S., Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Geneva, CH-1228, Switzerland","Respiratory viral infections cause mild to severe diseases, such as common cold, bronchiolitis and pneumonia and are associated with substantial burden for society. To test new molecules for shortening, alleviating the diseases or to develop new therapies, relevant human in vitro models are mandatory. MucilAir™ a human standardized air-liquid interface 3D airway epithelial culture holds in vitro specific mechanisms to counter invaders comparable to the in vivo situation, such as mucus production, mucociliary clearance, and secretion of defensive molecules. The objective of this study was to test the relevance of such a model for the discovery and validation of antiviral drugs. Fully differentiated 3D nasal epithelium cultures were inoculated with picornaviruses, a coronavirus and influenza A viruses in the absence or in the presence of reference antiviral drugs. Results showed that, rupintrivir efficiently inhibits the replication of respiratory picornaviruses in a dose dependent manner and prevents the impairment of the mucociliary clearance. Similarly, oseltamivir reduced the replication of influenza A viruses in a dose dependent manner and prevented the impairment of the epithelial barrier function and cytotoxicity until 4 days of infection. In addition we found that Rhinovirus B14, C15 and influenza A(H1N1) induce significant increase of β Defensins 2 and Cathelicidin release with different time course. These results reveal that a large panel of epithelial functions is modified upon viral infection and validate MucilAir™ as a pertinent tool for pre-clinical antiviral drug testing. © 2018 Elsevier B.V.","Antiviral screening; Human in vitro airway model; Innate immune response; Respiratory infection","beta defensin 2; cathelicidin; oseltamivir; rupintrivir; antivirus agent; airway cell; animal cell; animal cell culture; antiviral activity; Article; Coronavirinae; dose response; drug screening; gene dosage; human; human cell; human cell culture; Human rhinovirus A16; Human rhinovirus B14; in vitro study; Influenza A virus; innate immunity; inoculation; MDCK cell line; model; mucociliary clearance; nonhuman; nose epithelium; Picornaviridae; priority journal; three dimensional imaging; virus genome; virus replication; biological model; drug effect; epithelium; immunology; isolation and purification; organ culture technique; physiology; preclinical study; procedures; respiratory tract infection; virus infection; Antiviral Agents; Coronavirus; Drug Evaluation, Preclinical; Epithelium; Humans; Immunity, Innate; Influenza A virus; Models, Biological; Organ Culture Techniques; Picornaviridae; Respiratory Tract Infections; Virus Diseases; Virus Replication","Arruda, E., Boyle, T.R., Winther, B., Pevear, D.C., Gwaltney, J.M., Jr., Hayden, F.G., Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization (1995) J. Infect. Dis., 171, pp. 1329-1333; Balogh Sivars, K., Sivars, U., Hornberg, E., Zhang, H., Branden, L., Bonfante, R., Huang, S., Aberg, P., A 3D human airway model enables prediction of respiratory toxicity of inhaled drugs in vitro (2018) Toxicol. Sci. Off. J. Soc. Toxicol., 162 (1), pp. 301-308; Baxter, A., Thain, S., Banerjee, A., Haswell, L., Parmar, A., Phillips, G., Minet, E., Targeted omics analyses, and metabolic enzyme activity assays demonstrate maintenance of key mucociliary characteristics in long term cultures of reconstituted human airway epithelia (2015) Toxicol. Vitro Inter. J. Publ. Assoc. BIBRA, 29, pp. 864-875; Berman, R., Jiang, D., Wu, Q., Chu, H.W., alpha1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke (2016) Int. J. Chronic Obstr. Pulm. Dis., 11, pp. 1279-1286; Chiu, S.S., Chan, K.H., Chu, K.W., Kwan, S.W., Guan, Y., Poon, L.L., Peiris, J.S., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am., 40, pp. 1721-1729; Davies, B.E., Pharmacokinetics of oseltamivir: an oral antiviral for the treatment and prophylaxis of influenza in diverse populations (2010) J. Antimicrob. Chemother., 65, pp. ii5-ii10; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Deijs, M., Jonsdottir, H.R., Molenkamp, R., Ieven, M., van der Hoek, L., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J. Virol., 87, pp. 6081-6090; Esposito, S., Daleno, C., Scala, A., Castellazzi, L., Terranova, L., Sferrazza Papa, S., Longo, M.R., Principi, N., Impact of rhinovirus nasopharyngeal viral load and viremia on severity of respiratory infections in children (2014) Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol., 33, pp. 41-48; Essaidi-Laziosi, M., Brito, F., Benaoudia, S., Royston, L., Cagno, V., Fernandes-Rocha, M., Piuz, I., Tapparel, C., Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures (2018) J. Allergy Clin. Immunol., 141 (6), pp. 2074-2084; Farsani, S.M., Deijs, M., Dijkman, R., Molenkamp, R., Jeeninga, R.E., Ieven, M., Goossens, H., van der Hoek, L., Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses (2015) Influenza Other Respir. Viruses, 9, pp. 51-57; Flint, S.J.R., V.R., Rall, G.F., Skalka, A.M., Enquist, L.W., Principles of Virology (2015), fourth ed. ASM Press Washington, DC; Gizurarson, S., The effect of cilia and the mucociliary clearance on successful drug delivery (2015) Biol. Pharm. Bull., 38, pp. 497-506; Griggs, T.F., Bochkov, Y.A., Basnet, S., Pasic, T.R., Brockman-Schneider, R.A., Palmenberg, A.C., Gern, J.E., Rhinovirus C targets ciliated airway epithelial cells (2017) Respir. Res., 18, p. 84; Hariri, B.M., Cohen, N.A., New insights into upper airway innate immunity (2016) Am. J. Rhinol. Allergy, 30, pp. 319-323; Hayden, F.G., Turner, R.B., Gwaltney, J.M., Chi-Burris, K., Gersten, M., Hsyu, P., Patick, A.K., Zalman, L.S., Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers (2003) Antimicrob. Agents Chemother., 47, pp. 3907-3916; Huang, S., Boda, B., Vernaz, J., Ferreira, E., Wiszniewski, L., Constant, S., Establishment and characterization of an in vitro human small airway model (SmallAir) (2017) Eur. J. Pharm. Biopharm. Off. J. Arbeitsgem. Pharm. Verfahrenstech. E.V., 118, pp. 68-72; Huang, S., Wiszniewski, L., Constant, S., The use of in vitro 3D cell models in drug development for respiratory diseases (2011) Drug Discov. Develop. Present Futur., 8; Imai, Y., Kuba, K., Neely, G.G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., Ermolaeva, M., Penninger, J.M., Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury (2008) Cell, 133, pp. 235-249; Jackson, D.J., Johnston, S.L., The role of viruses in acute exacerbations of asthma (2010) J. Allergy Clin. Immunol., 125, pp. 1178-1187. , quiz 1188–1179; Jha, A., Jarvis, H., Fraser, C., Openshaw, P.J.M., Respiratory syncytial virus (2016) SARS, MERS and Other Viral Lung Infections, Sheffield UK, , D.S. Hui G.A. Rossi S.L. Johnston; Jones, J.C., Marathe, B.M., Lerner, C., Kreis, L., Gasser, R., Pascua, P.N., Najera, I., Govorkova, E.A., A novel endonuclease inhibitor exhibits broad-spectrum anti-influenza virus activity in vitro (2016) Antimicrob. Agents Chemother., 60, pp. 5504-5514; Kennedy, J.L., Shaker, M., McMeen, V., Gern, J., Carper, H., Murphy, D., Lee, W.M., Heymann, P.W., Comparison of viral load in individuals with and without asthma during infections with rhinovirus (2014) Am. J. Respir. Crit. Care Med., 189, pp. 532-539; Lai, Y., Gallo, R.L., AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense (2009) Trends Immunol., 30, pp. 131-141; Mosser, A.G., Brockman-Schneider, R., Amineva, S., Burchell, L., Sedgwick, J.B., Busse, W.W., Gern, J.E., Similar frequency of rhinovirus-infectible cells in upper and lower airway epithelium (2002) J. infect. dis., 185, pp. 734-743; Ngaosuwankul, N., Noisumdaeng, P., Komolsiri, P., Pooruk, P., Chokephaibulkit, K., Chotpitayasunondh, T., Sangsajja, C., Puthavathana, P., Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses (2010) Virol. J., 7, p. 75; Patick, A.K., Binford, S.L., Brothers, M.A., Jackson, R.L., Ford, C.E., Diem, M.D., Maldonado, F., Worland, S.T., In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease (1999) Antimicrob. Agents Chemother., 43, pp. 2444-2450; Pittet, L.A., Hall-Stoodley, L., Rutkowski, M.R., Harmsen, A.G., Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae (2010) Am. J. Respir. Cell Mol. Biol., 42, pp. 450-460; Proud, D., Sanders, S.P., Wiehler, S., Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo (2004) J. Immunol., 172, pp. 4637-4645; Reus, A.A., Maas, W.J., Jansen, H.T., Constant, S., Staal, Y.C., van Triel, J.J., Kuper, C.F., Feasibility of a 3D human airway epithelial model to study respiratory absorption (2014) Toxicol. Vitro Inter. J. Publ. Assoc. BIBRA, 28, pp. 258-264; Rocca, J., Manin, S., Hulin, A., Aissat, A., Verbecq-Morlot, W., Pruliere-Escabasse, V., Wohlhuter-Haddad, A., Tarze, A., New use for an old drug: COX-independent anti-inflammatory effects of sulindac in models of cystic fibrosis (2016) Br. J. Pharmacol., 173, pp. 1728-1741; Sajjan, U., Wang, Q., Zhao, Y., Gruenert, D.C., Hershenson, M.B., Rhinovirus disrupts the barrier function of polarized airway epithelial cells (2008) Am. J. Respir. Crit. Care Med., 178, pp. 1271-1281; Schibler, M., Yerly, S., Vieille, G., Docquier, M., Turin, L., Kaiser, L., Tapparel, C., Critical analysis of rhinovirus RNA load quantification by real-time reverse transcription-PCR (2012) J. Clin. Microbiol., 50, pp. 2868-2872; Seemungal, T.A., Harper-Owen, R., Bhowmik, A., Jeffries, D.J., Wedzicha, J.A., Detection of rhinovirus in induced sputum at exacerbation of chronic obstructive pulmonary disease (2000) Eur. Respir. J., 16, pp. 677-683; Sonneville, F., Ruffin, M., Coraux, C., Rousselet, N., Le Rouzic, P., Blouquit-Laye, S., Corvol, H., Tabary, O., MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology (2017) Nat. Commun., 8, p. 710; Tapparel, C., Sobo, K., Constant, S., Huang, S., Van Belle, S., Kaiser, L., Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro (2013) Virology, 446, pp. 1-8; Tripathi, S., Tecle, T., Verma, A., Crouch, E., White, M., Hartshorn, K.L., The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins (2013) J. Gen. Virol., 94, pp. 40-49; Wat, D., Gelder, C., Hibbitts, S., Cafferty, F., Bowler, I., Pierrepoint, M., Evans, R., Doull, I., The role of respiratory viruses in cystic fibrosis (2008) J. Cyst. Fibros. Off. J. Euro. Cystic Fibros. Soc., 7, pp. 320-328; Wilson, S.S., Wiens, M.E., Smith, J.G., Antiviral mechanisms of human defensins (2013) J. Mol. Biol., 425, pp. 4965-4980; Yeo, N.K., Jang, Y.J., Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells (2010) Laryngoscope, 120, pp. 346-352; Zalman, L.S., Brothers, M.A., Dragovich, P.S., Zhou, R., Prins, T.J., Worland, S.T., Patick, A.K., Inhibition of human rhinovirus-induced cytokine production by AG7088, a human rhinovirus 3C protease inhibitor (2000) Antimicrob. Agents Chemother., 44, pp. 1236-1241","Boda, B.; Epithelix, 18 Chemin des Aulx, Plan-les-Ouates, Switzerland; email: bernadett.boda@epithelix.com",,"Elsevier B.V.",01663542,,ARSRD,"29890184","English","Antiviral Res.",Article,"Final",,Scopus,2-s2.0-85048308154 "Deng X., Zhang J., Su J., Liu H., Cong Y., Zhang L., Zhang K., Shi N., Lu R., Yan X.","56522119500;57201690725;57201692217;56200869200;13906217500;57215850339;57201689579;56747344000;57189507913;35358183500;","A multiplex PCR method for the simultaneous detection of three viruses associated with canine viral enteric infections",2018,"Archives of Virology","163","8",,"2133","2138",,4,"10.1007/s00705-018-3828-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045752971&doi=10.1007%2fs00705-018-3828-4&partnerID=40&md5=d1c9ba5dbe5e85234d295b0e140d2cfe","Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Animal Hospital of Jilin Agricultural University, Changchun, 130118, China; Jilin Business and Technology College, Changchun, 130507, China; Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Division of Infectious Diseases of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China","Deng, X., Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Zhang, J., Animal Hospital of Jilin Agricultural University, Changchun, 130118, China; Su, J., Jilin Business and Technology College, Changchun, 130507, China; Liu, H., Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Cong, Y., Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, China, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China; Zhang, L., Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Zhang, K., Animal Hospital of Jilin Agricultural University, Changchun, 130118, China; Shi, N., Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Lu, R., Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Yan, X., Key Laboratory of Special Animal Epidemic Disease, Institute of Special Economic Animal and Plant Sciences, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Changchun, 130122, China, State Key Laboratory for Molecular Biology of Special Economic Animals, Division of Infectious Diseases of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China","The aim of this study was to establish a multiplex PCR (mPCR) method that can simultaneously detect canine parvovirus (CPV-2), canine coronavirus (CCoV) and canine adenovirus (CAV), thereby eliminating the need to detect these pathogens individually. Based on conserved regions in the genomes of these three viruses, the VP2 gene of CPV-2, the endoribonuclease nsp15 gene of CCoV, and the 52K gene of CAV were selected for primer design. The specificity of the mPCR results showed no amplification of canine distemper virus (CDV), canine parainfluenza virus (CPIV), or pseudorabies virus (PRV), indicating that the method had good specificity. A sensitivity test showed that the detection limit of the mPCR method was 1 × 104 viral copies. A total of 63 rectal swabs from dogs with diarrheal symptoms were evaluated using mPCR and routine PCR. The ratio of positive samples to total samples for CPV-2, CCoV, and CAV was 55.6% (35/63) for mPCR and 55.6% (35/63) for routine PCR. Thirty-five positive samples were detected by both methods, for a coincidence ratio of 100%. This mPCR method can simultaneously detect CCoV (CCoV-II), CAV (CAV-1, CAV-2) and CPV-2 (CPV-2a, CPV-2b, CPV-2c), which are associated with viral enteritis, thereby providing an efficient, inexpensive, specific, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"animal; Canine adenovirus; Canine coronavirus; Canine parvovirus; classification; diarrhea; dog; dog disease; evaluation study; genetics; isolation and purification; physiology; sensitivity and specificity; veterinary; virology; Adenoviruses, Canine; Animals; Coronavirus, Canine; Diarrhea; Dog Diseases; Dogs; Parvovirus, Canine; Sensitivity and Specificity","Cargnelutti, J.F., Weiblen, R., Flores, E.F., A multiplex PCR for viruses associated with exanthematic and vesicular disease in cattle (2017) J Virol Methods, 239, pp. 38-41. , PID: 27793645; Carman, P.S., Povey, R.C., Pathogenesis of canine parvovirus-2 in dogs: haematology, serology and virus recovery (1985) Res Vet Sci, 38, pp. 134-140. , PID: 2988089; Elnifro, E.M., Ashshi, A.M., Cooper, R.J., Klapper, P.E., Multiplex PCR: optimization and application in diagnostic virology (2000) Clin Microbiol Rev, 13, pp. 559-570. , PID: 11023957; Gao, Q., Yun, B.L., Wang, Q., Jiang, L.L., Zhu, H.B., Gao, Y.N., Qin, L.T., Gao, Y.L., Development and application of a multiplex PCR method for rapid differential detection of subgroup A, B, and J avian leukosis viruses (2014) J Clin Microbiol, 52, pp. 37-44. , PID: 24131697; Hamelin, C., Jouvenne, P., Assaf, R., Association of a type-2 canine adenovirus with an outbreak of diarrhoeal disease among a large dog congregation (1985) J Diarrhoeal Dis Res, 3, pp. 84-87. , PID: 2999217; Hu, R.L., Huang, G., Qiu, W., Zhong, Z.H., Xia, X.Z., Yin, Z., Detection and differentiation of CAV-1 and CAV-2 by polymerase chain reaction (2001) Vet Res Commun, 25, pp. 77-84. , PID: 11214675; Macartney, L., Cavanagh, H.M., Spibey, N., Isolation of canine adenovirus-2 from the faeces of dogs with enteric disease and its unambiguous typing by restriction endonuclease mapping (1988) Res Vet Sci, 44, pp. 9-14. , PID: 2836923; Miranda, C., Thompson, G., Canine parvovirus: the worldwide occurrence of antigenic variants (2016) J Gen Virol, 97, pp. 2043-2057. , PID: 27389721; Mochizuki, M., Hashimoto, M., Ishida, T., Recent epidemiological status of canine viral enteric infections and Giardia infection in Japan (2001) J Vet Med Sci, 63, pp. 573-575. , PID: 11411507; Parrish, C.R., Pathogenesis Of Feline Panleukopenia Virus And Canine Parvovirus (1995) Bailliere Clin Haem, 8, pp. 57-71; Pratelli, A., Martella, V., Elia, G., Tempesta, M., Guarda, F., Capucchio, M.T., Carmichael, L.E., Buonavoglia, C., Severe enteric disease in an animal shelter associated with dual infections by canine adenovirus type 1 and canine coronavirus (2001) J Vet Med B, 48, pp. 385-392; Pratelli, A., Tempesta, M., Greco, G., Martella, V., Buonavoglia, C., Development of a nested PCR assay for the detection of canine coronavirus (1999) J Virol Methods, 80, pp. 11-15. , PID: 10403671; Senda, M., Parrish, C.R., Harasawa, R., Gamoh, K., Muramatsu, M., Hirayama, N., Itoh, O., Detection by Pcr Of wild-type canine parvovirus which contaminates dog vaccines (1995) J Clin Microbiol, 33, pp. 110-113. , PID: 7699026; Tennant, B.J., Gaskell, R.M., Kelly, D.F., Carter, S.D., Gaskell, C.J., Canine coronavirus infection in the dog following oronasal inoculation (1991) Res Vet Sci, 51, pp. 11-18. , PID: 1654584; Wang, X., Li, C., Guo, D., Wang, X., Wei, S., Geng, Y., Wang, E., Sun, D., Co-Circulation of Canine Coronavirus I and IIa/b with High Prevalence and Genetic Diversity in Heilongjiang Province, Northeast China (2016) PloS One, 11. , PID: 26771312; Zeng, Z.Y., Liu, Z.J., Wang, W.C., Tang, D.Y., Liang, H.Y., Liu, Z., Establishment and application of a multiplex PCR for rapid and simultaneous detection of six viruses in swine (2014) J Virol Methods, 208, pp. 102-106. , PID: 25116201; Zhou, G., Cai, W.B., Liu, X.L., Niu, C.M., Gao, C.X., Si, C.D., Zhang, W., Han, L.X., A duplex real-time reverse transcription polymerase chain reaction for the detection and quantitation of avian leukosis virus subgroups A and B (2011) J Virol Methods, 173, pp. 275-279. , PID: 21349288","Yan, X.; State Key Laboratory for Molecular Biology of Special Economic Animals, Division of Infectious Diseases of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural SciencesChina; email: tcsyxj@126.com",,"Springer-Verlag Wien",03048608,,ARVID,"29675651","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85045752971 "Coughtrie A.L., Morris D.E., Anderson R., Begum N., Cleary D.W., Faust S.N., Jefferies J.M., Kraaijeveld A.R., Moore M.V., Mullee M.A., Roderick P.J., Tuck A., Whittaker R.N., Yuen H.M., Doncaster C.P., Clarke S.C.","57073801800;56230849700;56420886900;56421669800;56501666700;7006081265;11440773500;7003793076;15023021300;7005298098;7004396543;7005243534;57214541059;13402637500;55664708700;57206753847;","Ecology and diversity in upper respiratory tract microbial population structures from a cross-sectional community swabbing study",2018,"Journal of Medical Microbiology","67","8", 000773,"1096","1108",,,"10.1099/jmm.0.000773","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051140677&doi=10.1099%2fjmm.0.000773&partnerID=40&md5=a88cf62005484aac53b68433bd3bb580","Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; NIHR Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom; NIHR Research Design Service South Central, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom","Coughtrie, A.L., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Morris, D.E., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Anderson, R., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Begum, N., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Cleary, D.W., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom, NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; Faust, S.N., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom, NIHR Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; Jefferies, J.M., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; Kraaijeveld, A.R., Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom; Moore, M.V., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Mullee, M.A., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom, NIHR Research Design Service South Central, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom; Roderick, P.J., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom, Global Health Research Institute, University of Southampton, Southampton, United Kingdom; Tuck, A., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Whittaker, R.N., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Yuen, H.M., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Doncaster, C.P., Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom; Clarke, S.C., Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom, NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom, NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom, Global Health Research Institute, University of Southampton, Southampton, United Kingdom","Purpose. Respiratory tract infections (RTIs) are responsible for over 2.8 million deaths per year worldwide with pathobiont carriage a required precursor to infection. We sought to determine carriage epidemiology for both bacterial and viral respiratory pathogens as part of a large population-based cross-sectional carriage study. Methodology. Nose self-swab samples were collected in two separate time-points, May to August 2012 (late spring/summer) and February to April 2013 (winter/early spring). The presence of six bacterial species: S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, P. aeruginosa and N. meningitidis in addition to respiratory syncytial virus, influenza viruses A and B, rhinovirus/enterovirus, coronavirus, parainfluenza viruses 1–3 and adenovirus was determined using culture and PCR methods. Results/Key findings. Carriage was shown to vary with age, recent RTI and the presence of other species. Spatial structures of microbial communities were more disordered in the 0–4 age group and those with recent RTI. Species frequency distributions were flatter than random expectation in young individuals (X2=20.42, P=0.002), indicating spatial clumping of species consistent with facilitative relationships. Deviations from a neutral model of ecological niches were observed in summer samples and from older individuals but not in the winter or younger individuals (0–4 years), suggesting the presence of seasonal and age-dependent niche processes in respiratory community assembly. Conclusion. The application of epidemiological methods and ecological theory to respiratory tract samples has yielded novel insights into the factors that drive microbial community composition. © 2018 The Authors.","Carriage; Ecology; Epidemiology; Microbial communities; Respiratory infection","antibiotic agent; genomic DNA; Adenoviridae; adolescent; adult; aged; Article; bacterium culture; child; community ecology; controlled study; Coronavirinae; cross-sectional study; female; groups by age; Haemophilus influenzae; human; Human respiratory syncytial virus; infant; Influenza A virus; Influenza B virus; major clinical study; male; Moraxella catarrhalis; Neisseria meningitidis; nonhuman; nose smear; Paramyxovirinae; polymerase chain reaction; priority journal; Pseudomonas aeruginosa; species diversity; spring; Staphylococcus aureus; Streptococcus pneumonia; summer; winter; age; bacterial infection; bacterium; classification; heterozygote; isolation and purification; microbiological examination; microbiology; middle aged; newborn; nose mucosa; preschool child; respiratory tract infection; very elderly; virology; virus; virus infection; young adult; Adolescent; Adult; Age Factors; Aged; Aged, 80 and over; Bacteria; Bacterial Infections; Carrier State; Child; Child, Preschool; Cross-Sectional Studies; Female; Humans; Infant; Infant, Newborn; Male; Microbiological Techniques; Middle Aged; Nasal Mucosa; Polymerase Chain Reaction; Respiratory Tract Infections; Virus Diseases; Viruses; Young Adult","Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010 (2012) Lancet, 380, pp. 2095-2128; (2008) Respiratory Tract Infections -Antibiotic Prescribing Costing Report, , London, UK: NHS; Weiss-Salz, I., Yagupsky, P., Asymptomatic Carriage of Respiratory Pathogens: “The Wolf shall Dwell with the Lamb…and a Little Child shall Lead them” (Isaiah 11: 6) (2010) Open Infect Dis J, 4, pp. 11-15; Bosch, A.A., Biesbroek, G., Trzcinski, K., Sanders, E.A., Bogaert, D., Viral and bacterial interactions in the upper respiratory tract (2013) Plos Pathog, 9; Hubbell, S.P., (2001) The Unified Theory of Biodiversity and Biogeography, , Priceton, USA: Princeton University Press; Tuttle, M.S., Mostow, E., Mukherjee, P., Hu, F.Z., Melton-Kreft, R., Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods (2011) J Clin Microbiol, 49, pp. 3812-3819; Dollhopf, S.L., Hashsham, S.A., Tiedje, J.M., Interpreting 16S rDNA TRFLP Data: Application of self-organizing maps and principal component analysis to describe community dynamics and convergence (2001) Microb Ecol, 42, pp. 495-505; Mackay, I.M., Real-time PCR in the microbiology laboratory (2004) Clin Microbiol Infect, 10, pp. 190-212; Pai, R., Gertz, R.E., Beall, B., Sequential Multiplex, P., Approach for determining capsular serotypes of Streptococcus pneumoniae isolates (2006) J Clin Microbiol, 44, pp. 124-131; Laclaire, L.L., Tondella, M.L., Beall, D.S., Noble, C.A., Raghunathan, P.L., Identification of Haemophilus influenzae serotypes by standard slide agglutination serotyping and PCR-based capsule typing (2003) J Clin Microbiol, 41, pp. 393-396; Mothershed, E.A., Sacchi, C.T., Whitney, A.M., Barnett, G.A., Ajello, G.W., Use of real-time PCR to resolve slide agglutination discrepancies in serogroup identification of Neisseria meningitidis (2004) J Clin Microbiol, 42, pp. 320-328; Maiden, M.C., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms (1998) Proc Natl Acad Sci USA, 95, pp. 3140-3145; Sheppard, S.K., Jolley, K.A., Maiden, M.C., A gene-by-gene approach to bacterial population genomics: Whole genome MLST of campylobacter (2012) Genes, 3, pp. 261-277; Jolley, K.A., Bliss, C.M., Bennett, J.S., Bratcher, H.B., Brehony, C., Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain (2012) Microbiology, 158, pp. 1005-1015; Doncaster, C.P., Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory (2009) Plos One, 4; Elton, C.S., Ecological methods (1927) Animal Ecology, p. 207. , Huxley JS (editor), London, UK: Sidgwick & Jackson Limited; Schoener, T.W., Resource partitioning in ecological communities (1974) Science, 185, pp. 27-39; McGill, B.J., A test of the unified neutral theory of biodiversity (2003) Nature, 422, pp. 881-885; Southwood, T.R.E., The number of species of insect associated with various trees (1961) J Anim Ecol, 30, pp. 1-8; Verbruggen, E., Van Der Heijden, M.G., Weedon, J.T., Kowalchuk, G.A., Röling, W.F., Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils (2012) Mol Ecol, 21, pp. 2341-2353; Rohde, K., Worthen, W.B., Heap, M., Hugueny, B., Guégan, J.F., Nestedness in assemblages of metazoan ecto-and endoparasites of marine fish (1998) Int J Parasitol, 28, pp. 543-549; Coughtrie, A.L., Whittaker, R.N., Begum, N., Erson, R., Tuck, A., Evaluation of swabbing methods for estimating the prevalence of bacterial carriage in the upper respiratory tract: A cross sectional study (2014) BMJ Open, 4; Zerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res, 18, pp. 821-829; (2017) A Language and Environment for Statistical Computing, , R, Vienna, Austria; Macarthur, R.H., On the relative abundance of bird species (1957) Proc Natl Acad Sci USA, 43, pp. 293-295; King, C.E., Relative abundance of species and MacArthur’s model (1964) Ecology, 45, pp. 716-727; Tocheva, A.S., Jefferies, J.M., Rubery, H., Bennett, J., Afimeke, G., Declining serotype coverage of new pneumococcal conjugate vaccines relating to the carriage of Streptococcus pneumoniae in young children (2011) Vaccine, 29, pp. 4400-4404; Miller, E., Rews, N.J., Waight, P.A., Slack, M.P., George, R.C., Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: An observational cohort study (2011) Lancet Infect Dis, 11, pp. 760-768; Hanage, W.P., Finkelstein, J.A., Huang, S.S., Pelton, S.I., Stevenson, A.E., Evidence that pneumococcal serotype replacement in Massachusetts following conjugate vaccination is now complete (2010) Epidemics, 2, pp. 80-84; Feikin, D.R., Kagucia, E.W., Loo, J.D., Link-Gelles, R., Puhan, M.A., Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: A pooled analysis of multiple surveillance sites (2013) Plos Med, 10; Jeraldo, P., Sipos, M., Chia, N., Brulc, J.M., Dhillon, A.S., Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes (2012) Proc Natl Acad Sci USA, 109, pp. 9692-9698; Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C., Fitter, A.H., Relative roles of niche and neutral processes in structuring a soil microbial community (2010) ISME J, 4, pp. 337-345; Costello, E.K., Lauber, C.L., Hamady, M., Fierer, N., Gordon, J.I., Bacterial community variation in human body habitats across space and time (2009) Science, 326, pp. 1694-1697; Cobey, S., Lipsitch, M., Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes (2012) Science, 335, pp. 1376-1380; Mikkelson, G.M., Ecological niches: Linking classical and contemporary approaches (2005) Biol Philos, 20, pp. 557-566; Chase, J.M., Leibold, M.A., (2003) Ecological Niches: Linking Classical and Contemporary Approaches, , Chicago, USA: University of Chicago Press","Clarke, S.C.; Faculty of Medicine and Institute for Life Sciences, University of SouthamptonUnited Kingdom; email: scc1@soton.ac.uk",,"Microbiology Society",00222615,,JMMIA,"29927372","English","J. Med. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85051140677 "Zhang S.M., Liao Y., Neo T.L., Lu Y., Liu D.X., Vahlne A., Tam J.P.","56542004600;13606722600;18437588500;57198798778;57190128771;7004389032;35218286300;","Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein",2018,"International Journal of Biochemistry and Cell Biology","101",,,"103","112",,1,"10.1016/j.biocel.2018.05.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048111699&doi=10.1016%2fj.biocel.2018.05.012&partnerID=40&md5=87601241f4102c5b12db25b24d6bc6c0","School of Biological Sciences, Nanyang Technological University, Singapore; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China","Zhang, S.M., School of Biological Sciences, Nanyang Technological University, Singapore, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden; Liao, Y., Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Neo, T.L., School of Biological Sciences, Nanyang Technological University, Singapore; Lu, Y., School of Biological Sciences, Nanyang Technological University, Singapore; Liu, D.X., School of Biological Sciences, Nanyang Technological University, Singapore; Vahlne, A., Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Sweden; Tam, J.P., School of Biological Sciences, Nanyang Technological University, Singapore","Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg's 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection. © 2018 Elsevier Ltd","Class I viral fusion glycoprotein; SARS-CoV spike protein; self-binding peptides; Steric β-zipper; viral detection","amyloid; coronavirus spike glycoprotein; octapeptide; self binding beta zipper forming peptide; unclassified drug; vitronectin; amyloid protein; coronavirus spike glycoprotein; fusion protein; hemagglutinin; peptide; protein binding; S protein, severe acute respiratory syndrome coronavirus; Article; comparative study; consensus sequence; controlled study; embryo; human; human cell; immunofluorescence; in vitro study; nonhuman; oligomerization; peptide library; peptide mapping; protein binding; protein expression; SARS coronavirus; virus detection; amino acid sequence; animal; chemistry; gene expression; genetics; HEK293 cell line; metabolism; protein secondary structure; SARS coronavirus; Sf9 cell line; solid phase synthesis; Spodoptera; synthesis; Amino Acid Sequence; Amyloidogenic Proteins; Animals; Gene Expression; HEK293 Cells; Hemagglutinins; Humans; Peptide Library; Peptides; Protein Binding; Protein Structure, Secondary; Recombinant Fusion Proteins; SARS Virus; Sf9 Cells; Solid-Phase Synthesis Techniques; Spike Glycoprotein, Coronavirus; Spodoptera","Azriel, R., Gazit, E., Analysis of the M inimal amyloid-form ing fragment of the Islet amyloid polypeptide: an experimental support for the key role of the phenylal an ine residue in amyloid formation (2001) J. Biol. Chem., 276 (36), pp. 34156-34161; Azzarito, V., Long, K., Murphy, N.S., Wilson, A.J., Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules (2013) Nat. Chem., 5 (3), pp. 161-173; Balbach, J.J., Ishii, Y., Antzutkin, O.N., Leapman, R.D., Rizzo, N.W., Dyda, F., Reed, J., Tycko, R., Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid State NMR† (2000) Biochemistry, 39 (45), pp. 13748-13759; Balbirnie, M., Grothe, R., Eisenberg, D.S., An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid (2001) Proc. Natl. Acad. Sci. U. S. A., 98 (5), pp. 2375-2380; Beisswenger, M., Cabrele, C., Self-recognition behavior of a helix-loop-helix domain by a fragment scan (2014) Biochim. Biophys. Acta, 1844 (9), pp. 1675-1683; Biancalana, M., Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils (2010) Biochim. Biophys. Acta, 1804 (7), pp. 1405-1412; Borrego, P., Calado, R., Marcelino, J.M., Pereira, P., Quintas, A., Barroso, H., Taveira, N., An ancestral HIV-2/simian immunodeficiency virus peptide with potent HIV-1 and HIV-2 fusion inhibitor activity (2013) Aids, 27 (7), pp. 1081-1090; Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J., Rottier, P.J., Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (22), pp. 8455-8460; Bosch, B.J., van der Zee, R., de Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a Class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77 (16), pp. 8801-8811; Bowie, J.U., Luthy, R., Eisenberg, D., A method to identify protein sequences that fold into a known three-dimensional structure (1991) Science, 253 (5016), pp. 164-170; Celigoy, J., Ramirez, B., Caffrey, M., SARS-CoV heptad repeat 2 is a trimer of parallel helices (2011) Protein Sci. : Publ. Protein Soc., 20 (12), pp. 2125-2129; Chen, Z., Zhang, L., Qin, C., Ba, L., Yi, C.E., Zhang, F., Wei, Q., Ho, D.D., Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region (2005) J. Virol., 79 (5), pp. 2678-2688; Cochran, A.G., Skelton, N.J., Starovasnik, M.A., Tryptophan zippers: stable, monomeric beta -hairpins (2001) Proc. Natl. Acad. Sci. U. S. A., 98 (10), pp. 5578-5583; Duan, J., Yan, X., Guo, X., Cao, W., Han, W., Qi, C., Feng, J., Jin, G., A human SARS-CoV neutralizing antibody against epitope on S2 protein (2005) Biochem. Biophys. Res. Commun., 333 (1), pp. 186-193; Frank, R., The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications (2002) J. Immunol. Methods, 267 (1), pp. 13-26; Frank, R., Overwin, H., SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes (1996) Methods Mol. Biol., 66, pp. 149-169; Giannecchini, S., Alcaro, M.C., Isola, P., Sichi, O., Pistello, M., Papini, A.M., Rovero, P., Bendinelli, M., Feline immunodeficiency virus plasma load reduction by a retroinverso octapeptide reproducing the Trp-rich motif of the transmembrane glycoprotein (2005) Antivir. Ther., 10 (5), pp. 671-680; Gillim-Ross, L., Taylor, J., Scholl, D.R., Ridenour, J., Masters, P.S., Wentworth, D.E., Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR (2004) J. Clin. Microbiol., 42 (7), pp. 3196-3206; Goldschmidt, L., Teng, P.K., Riek, R., Eisenberg, D., Identifying the amylome, proteins capable of forming amyloid-like fibrils (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (8), pp. 3487-3492; Greenough, T.C., Babcock, G.J., Roberts, A., Hernandez, H.J., Thomas, W.D., Jr., Coccia, J.A., Graziano, R.F., Ambrosino, D.M., Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice (2005) J. Infect. Dis., 191 (4), pp. 507-514; Guillen, J., Perez-Berna, A.J., Moreno, M.R., Villalain, J., A second SARS-CoV S2 glycoprotein internal membrane-active peptide. Biophysical characterization and membrane interaction (2008) Biochemistry, 47 (31), pp. 8214-8224; Hakansson-McReynolds, S., Jiang, S., Rong, L., Caffrey, M., Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state (2006) J. Biol. Chem., 281 (17), pp. 11965-11971; Hakoshima, T., Leucine Zippers, eLS (2001), John Wiley & Sons, Ltd; Hard, T., Lendel, C., Inhibition of amyloid formation (2012) J. Mol. Biol, 421 (4-5), pp. 441-465; He, Y., Li, J., Heck, S., Lustigman, S., Jiang, S., Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design (2006) J. Virol., 80 (12), pp. 5757-5767; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J. Immunol., 174 (8), pp. 4908-4915; He, Y., Zhou, Y., Wu, H., Luo, B., Chen, J., Li, W., Jiang, S., Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines (2004) J. Immunol., 173 (6), pp. 4050-4057; Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Holmes, K.V., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (44), pp. 15748-15753; Jiang, S., Lin, K., Effect of amino acid replacements, additions and deletions on the antiviral activity of a peptide derived from the HIV-1 GP41 sequence (1995) Pept Res., 8 (6), pp. 345-348; Kaukinen, P., Vaheri, A., Plyusnin, A., Mapping of the regions involved in homotypic interactions of Tula hantavirus N protein (2003) J. Virol., 77 (20), pp. 10910-10916; Liao, Y., Zhang, S.M., Neo, T.L., Tam, J.P., Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein (2015) Biochemistry, 54 (9), pp. 1819-1830; Liu, S., Lu, H., Niu, J., Xu, Y., Wu, S., Jiang, S., Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120 (2005) J. Biol. Chem., 280 (12), pp. 11259-11273; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Jiang, S., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363 (9413), pp. 938-947; Lu, Y., Liu, D.X., Tam, J.P., Lipid rafts are involved in SARS-CoV entry into Vero E6 cells (2008) Biochem. Biophys. Res. Commun., 369 (2), pp. 344-349; Lu, Y., Neo, T.L., Liu, D.X., Tam, J.P., Importance of SARS-CoV spike protein Trp-rich region in viral infectivity (2008) Biochem. Biophys. Res. Commun., 371 (3), pp. 356-360; Medinas, R.J., Lambert, D.M., Tompkins, W.A., C-Terminal gp40 peptide analogs inhibit feline immunodeficiency virus: cell fusion and virus spread (2002) J. Virol., 76 (18), pp. 9079-9086; Mortola, E., Roy, P., Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system (2004) FEBS Lett., 576 (1-2), pp. 174-178; Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., Eisenberg, D., Structure of the cross-beta spine of amyloid-like fibrils (2005) Nature, 435 (7043), pp. 773-778; Nilsson, M.R., Techniques to study amyloid fibril formation in vitro (2004) Methods, 34 (1), pp. 151-160; Parry, D.A., Structural and functional implications of sequence repeats in fibrous proteins (2005) Adv. Protein Chem., 70, pp. 11-35; Perutz, M., Polar zippers: their role in human disease (1994) Protein Sci. : Publ. Protein Soc., 3 (10), pp. 1629-1637; Reches, M., Porat, Y., Gazit, E., Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin (2002) J. Biol. Chem., 277 (38), pp. 35475-35480; Rigter, A., Langeveld, J.P., Timmers-Parohi, D., Jacobs, J.G., Moonen, P.L., Bossers, A., Mapping of possible prion protein self-interaction domains using peptide arrays (2007) BMC Biochem., 8, p. 6; Sawaya, M.R., Sambashivan, S., Nelson, R., Ivanova, M.I., Sievers, S.A., Apostol, M.I., Thompson, M.J., Eisenberg, D., Atomic structures of amyloid cross-beta spines reveal varied steric zippers (2007) Nature, 447 (7143), pp. 453-457; Spiga, O., Bernini, A., Ciutti, A., Chiellini, S., Menciassi, N., Finetti, F., Causarono, V., Niccolai, N., Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein (2003) Biochem. Biophys. Res. Commun., 310 (1), pp. 78-83; Supekar, V.M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., Carfí, A., Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein (2004) Proc. Natl. Acad. Sci., 101 (52), pp. 17958-17963; Tam, J.P., Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system (1988) Proc. Natl. Acad. Sci. U. S. A., 85 (15), pp. 5409-5413; Tam, J.P., Lu, Y.A., Yang, J.L., Antimicrobial dendrimeric peptides (2002) Eur. J. Biochem. / FEBS, 269 (3), pp. 923-932; Teng, P.K., Eisenberg, D., Short protein segments can drive a non-fibrillizing protein into the amyloid state (2009) Protein Eng. Des. Sel. : PEDS, 22 (8), pp. 531-536; Tenidis, K., Waldner, M., Bernhagen, J., Fischle, W., Bergmann, M., Weber, M., Merkle, M.L., Kapurniotu, A., Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties (2000) J. Mol. Biol., 295 (4), pp. 1055-1071; Thompson, M.J., Sievers, S.A., Karanicolas, J., Ivanova, M.I., Baker, D., Eisenberg, D., The 3D profile method for identifying fibril-forming segments of proteins (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (11), pp. 4074-4078; Uttamchandani, M., Yao, S.Q., Peptide microarrays: next generation biochips for detection, diagnostics and high-throughput screening (2008) Curr. Pharm. Des., 14 (24), pp. 2428-2438; Wang, X.J., Li, C.G., Chi, X.J., Wang, M., Characterisation and evaluation of antiviral recombinant peptides based on the heptad repeat regions of NDV and IBV fusion glycoproteins (2011) Virology, 416 (1-2), pp. 65-74; Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B., Matthews, T.J., Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection (1994) Proc. Natl. Acad. Sci. U. S. A., 91 (21), pp. 9770-9774; von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E.-M., Mandelkow, E., Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure (2000) Proc. Natl. Acad. Sci., 97 (10), pp. 5129-5134; Wouters, M.A., Curmi, P.M., An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs (1995) Proteins, 22 (2), pp. 119-131; Xiao, X., Dimitrov, D.S., The SARS-CoV S glycoprotein (2004) Cell. Mol. Life Sci. : CMLS, 61 (19-20), pp. 2428-2430; Xu, Y., Zhu, J., Liu, Y., Lou, Z., Yuan, F., Liu, Y., Cole, D.K., Rao, Z., Characterization of the heptad repeat regions, HR1 and HR2, and design of a fusion core structure model of the spike protein from severe acute respiratory syndrome (SARS) coronavirus (2004) Biochemistry, 43 (44), pp. 14064-14071; Yao, Q., Compans, R.W., Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection (1996) Virology, 223 (1), pp. 103-112; Ying, W., Hao, Y., Zhang, Y., Peng, W., Qin, E., Cai, Y., Wei, K., He, F., Proteomic analysis on structural proteins of severe acute respiratory syndrome coronavirus (2004) Proteomics, 4 (2), pp. 492-504; Young, J.K., Li, D., Abramowitz, M.C., Morrison, T.G., Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions (1999) J. Virol., 73 (7), pp. 5945-5956; Zhang, S.M., Jejcic, A., Tam, J.P., Vahlne, A., Membrane-active sequences within gp41 Membrane Proximal External Region (MPER) modulate MPER-containing peptidyl fusion inhibitor activity and the biosynthesis of HIV-1 structural proteins (2015) PloS One, 10 (7), p. e0134851","Tam, J.P.; School of Biological Sciences, Nanyang Technological UniversitySingapore; email: jptam@ntu.edu.sg",,"Elsevier Ltd",13572725,,IJBBF,"29800727","English","Int. J. Biochem. Cell Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85048111699 "Cho E.B., Choi S.-H., Chung J.-W., Lee M.-K.","57201742744;57216110126;54892853700;57204244110;","Usefulness of national respiratory virus surveillance data for clinicians who manage adult patients",2018,"Journal of Medical Virology","90","8",,"1304","1309",,,"10.1002/jmv.25199","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046018637&doi=10.1002%2fjmv.25199&partnerID=40&md5=66b933bb3167be3e979d046a2a174e89","Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea; Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea","Cho, E.B., Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea; Choi, S.-H., Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea; Chung, J.-W., Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea; Lee, M.-K., Department of Laboratory Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea","The Korean Centers for Disease Control and Prevention (KCDC) provides weekly respiratory virus (RV) surveillance reports on its website (the KCDC data). Clinicians in clinical settings wherein the use of PCR for RVs is not a routine laboratory test for adult patients with acute respiratory illness (ARI) may question the clinical utility of such a national RV surveillance dataset in predicting RV outbreaks among their adult patients. We compared the KCDC data to the RV PCR data of adult patients who visited a tertiary care center. During a period of 108 weeks, a total of 6955 (5598 pediatric and 1257 adult) patients underwent RV PCR tests for ARI; most of these tests were administered while the patients were admitted (n = 6,920; 99.5%). From the KCDC website, we collected the RV PCR test results of 22 540 patients. Three graphs of weekly positivity rates were made for adults, children, and the KCDC data per each RV, and these graphs were then compared with one another. Whereas RV outbreaks were coincident between the KCDC and the adult graph with respect to influenza virus, respiratory syncytial virus, human metapneumovirus, and human coronavirus, the same was not true for human bocavirus, parainfluenza virus, rhinovirus, and adenovirus. However, a negative predictive value of the KCDC data in the prediction of the occurrence of an outbreak in the adult graph was high for the respective eight RVs (85-100%). A national RV surveillance dataset may be useful in identifying RV outbreaks in adult patients with severe ARI. © 2018 Wiley Periodicals, Inc.","adult; respiratory tract infections; sentinel surveillance; viruses","Adenoviridae; adult; Article; child; Coronaviridae; disease surveillance; epidemic; female; human; Human metapneumovirus; Human respiratory syncytial virus; Influenza virus; major clinical study; male; middle aged; nonhuman; polymerase chain reaction; preschool child; respiratory tract infection; respiratory virus; Rhinovirus; sex ratio; spring; tertiary care center; viral respiratory tract infection; virus detection; winter; adolescent; aged; classification; epidemiological monitoring; incidence; infant; isolation and purification; respiratory tract infection; South Korea; very elderly; virus; virus infection; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Child; Child, Preschool; Epidemiological Monitoring; Humans; Incidence; Infant; Middle Aged; Republic of Korea; Respiratory Tract Infections; Tertiary Care Centers; Virus Diseases; Viruses; Young Adult","Cesario, T.C., Viruses associated with pneumonia in adults (2012) Clin Infect Dis, 55, pp. 107-113; Ahn, M.Y., Choi, S.H., Chung, J.W., Kim, H.R., Utilization of the respiratory virus multiplex reverse transcription-polymerase chain reaction test for adult patients at a Korean tertiary care center (2015) Korean J Intern Med, 30, pp. 96-130; Jain, S., Self, W.H., Wunderink, R.G., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N Engl J Med, 373, pp. 415-427; Karhu, J., Ala-Kokko, T.I., Vuorinen, T., Ohtonen, P., Syrjälä, H., Lower respiratory tract virus findings in mechanically ventilated patients with severe community-acquired pneumonia (2014) Clin Infect Dis, 59, pp. 62-70; Choi, S.H., Hong, S.B., Ko, G.B., Viral infection in patients with severe pneumonia requiring intensive care unit admission (2012) Am J Resp Crit Care Med, 186, pp. 325-332; Harper, S.A., Bradley, J.S., Englund, J.A., Seasonal influenza in adults and children—diagnosis, treatment, chemoprophylaxis, and institutional outbreak management: clinical practice guidelines of the Infectious Diseases Society of America (2009) Clin Infect Dis, 48, pp. 1003-1032; In, H.K., Lee, D.H., Kang, M.G., Chu, H., Lee, J.Y., Kim, K.S., (2017), http://www.cdc.go.kr/CDC/eng/info/CdcKeWreport.jsp?menuIds=HOME002-MNU0576-MNU0586, Korea influenza and respiratory surveillance report, 2015–2016., Public Health Weekly Report, 2017;10185–193. Korean center for disease control and prevention homepage (,). Accessed 6 November; (2017) Korean center for disease control and prevention homepage, , http://cdc.go.kr/CDC/info/CdcKrInfo0502.jsp?menuIds=HOME001-MNU1154-MNU0005-MNU0048-MNU0050, (,). Accessed 6 November","Choi, S.-H.; Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University HospitalSouth Korea; email: tobeserve@gmail.com",,"John Wiley and Sons Inc.",01466615,,JMVID,"29663437","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85046018637 "Li Z., Zhao K., Lv X., Lan Y., Hu S., Shi J., Guan J., Yang Y., Lu H., He H., Gao F., He W.","56364739300;56565933600;56364728900;36554399700;57196946337;57191526462;56096313500;57196955570;56687911900;55267766000;56565862900;24306126900;","Ulk1 governs nerve growth factor/TrkA signaling by mediating Rab5 GTPase activation in porcine hemagglutinating encephalomyelitis virus-induced neurodegenerative disorders",2018,"Journal of Virology","92","16", e00325-18,"","",,2,"10.1128/JVI.00325-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050801290&doi=10.1128%2fJVI.00325-18&partnerID=40&md5=2f608ffacf2c2c70879ee72f2d3a411d","Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China; Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, China","Li, Z., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Zhao, K., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Lv, X., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Lan, Y., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Hu, S., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Shi, J., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Guan, J., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Yang, Y., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Lu, H., Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China; He, H., Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, China; Gao, F., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; He, W., Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China","Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus and causes neurological dysfunction in the central nervous system (CNS), but the neuropathological mechanism of PHEV remains poorly understood. We report that Unc51-like kinase 1 (Ulk1/Unc51.1) is a pivotal regulator of PHEV-induced neurological disorders and functions to selectively control the initiation of nerve growth factor (NGF)/TrkA endosome trafficking. We first identified the function of Ulk1 by histopathologic evaluation in a PHEV-infected mouse model in which neuronal loss was accompanied by the suppression of Ulk1 expression. Morphogenesis assessments in the primary cortical neurons revealed that overexpression or mutations of Ulk1 modulated neurite outgrowth, collateral sprouting, and endosomal transport. Likewise, Ulk1 expression was decreased following PHEV infection, suggesting that there was a correlation between the neurodegeneration and functional Ulk1 deficiency. We then showed that Ulk1 forms a multiprotein complex with TrkA and the early endosome marker Rab5 and that Ulk1 defects lead to either blocking of NGF/TrkA endocytosis or premature degradation of pTrkA via constitutive activation of the Rab5 GTPase. Further investigation determined that the ectopic expression of Rab5 mutants induces aberrant endosomal accumulation of activated pTrkA, proving that targeting of Ulk1-TrkA-NGF signaling to the retrograde transport route in the neurodegenerative process that underlies PHEV infection is dependent on Rab5 GTPase activity. Therefore, we described a long-distance signaling mechanism of PHEV-driven deficits in neurons and suggested that such Ulk1 repression may result in limited NGF/TrkA retrograde signaling within activated Rab5 endosomes, explaining the progressive failure of neurite outgrowth and survival. © 2018 American Society for Microbiology.","Neurodegeneration; Neurovirulent coronavirus; NGF; Porcine hemagglutinating encephalomyelitis virus; Rab5; Ulk1","multiprotein complex; mutant protein; nerve growth factor; protein Rab5; protein tyrosine kinase A; Rab protein; serine threonine protein kinase ULK1; unclassified drug; nerve growth factor; protein tyrosine kinase A; Rab protein; serine threonine protein kinase ULK1; Ulk1 protein, mouse; animal cell; animal experiment; animal model; animal tissue; Article; brain cell; cell loss; cell survival; cell transport; controlled study; Coronavirinae; degenerative disease; ectopic expression; endocytosis; endosome; enzyme activation; histopathology; male; mouse; nerve degeneration; nerve sprouting; neurite outgrowth; nonhuman; porcine hemagglutinating encephalomyelitis virus; priority journal; protein degradation; protein expression; protein function; protein targeting; signal transduction; virus infection; animal; Betacoronavirus 1; Coronavirus infection; degenerative disease; disease model; growth, development and aging; host pathogen interaction; metabolism; pathology; signal transduction; veterinary; Animals; Autophagy-Related Protein-1 Homolog; Betacoronavirus 1; Coronavirus Infections; Disease Models, Animal; Host-Pathogen Interactions; Mice; Nerve Growth Factor; Neurodegenerative Diseases; rab5 GTP-Binding Proteins; Receptor, trkA; Signal Transduction","Greig, A.S., Mitchell, D., Corner, A.H., Bannister, G.L., Meads, E.B., Julian, R.J., A hemagglutinating virus producing encephalomyelitis in baby pigs (1962) Can J Comp Med Vet Sci, 26, pp. 49-56; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80, pp. 7270-7274. , https://doi.org/10.1128/JVI.02675-05; Alsop, J.E., A presumptive case of vomiting and wasting disease in a swine nucleus herd (2006) J Swine Health Production, 14, pp. 97-100; Quiroga, M.A., Cappuccio, J., Pineyro, P., Basso, W., More, G., Kienast, M., Schonfeld, S., Perfumo, C.J., Hemagglutinating encephalomyelitis coronavirus infection in pigs, Argentina (2008) Emerg Infect Dis, 14, pp. 484-486. , https://doi.org/10.3201/eid1403.070825; Mengeling, W.L., Incidence of antibody for hemagglutinating encephalomyelitis virus in serums from swine in the United States (1975) Am J Vet Res, 36, pp. 821-823; Li, Z., He, W., Lan, Y., Zhao, K., Lv, X., Lu, H., Ding, N., Gao, F., The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets (2016) PeerJ, 4. , https://doi.org/10.7717/peerj.2443; Hirano, N., Haga, S., Sada, Y., Tohyama, K., Susceptibility of rats of different ages to inoculation with swine haemagglutinating encephalomyelitis virus (a coronavirus) by various routes (2001) J Comp Pathol, 125, pp. 8-14. , https://doi.org/10.1053/jcpa.2001.0471; Li, Z., Zhao, K., Lan, Y., Lv, X., Hu, S., Guan, J., Lu, H., He, W., Porcine hemagglutinating encephalomyelitis virus enters Neuro-2a cells via clathrin-mediated endocytosis in a Rab5-, cholesterol-, and pH-dependent manner (2017) J Virol, 91. , https://doi.org/10.1128/JVI.01083-17; Li, Y.C., Bai, W.Z., Hirano, N., Hayashida, T., Taniguchi, T., Sugita, Y., Tohyama, K., Hashikawa, T., Neurotropic virus tracing suggests a membranouscoating-mediated mechanism for transsynaptic communication (2013) J Comp Neurol, 521, pp. 203-212. , https://doi.org/10.1002/cne.23171; Lorbach, J.N., Wang, L., Nolting, J.M., Benjamin, M.G., Killian, M.L., Zhang, Y., Bowman, A.S., Porcine hemagglutinating encephalomyelitis virus and respiratory disease in exhibition swine, Michigan, USA, 2015 (2017) Emerg Infect Dis, 23, pp. 1168-1171. , https://doi.org/10.3201/eid2307.170019; Buchmeier, M.J., Lane, T.E., Viral-induced neurodegenerative disease (1999) Curr Opin Microbiol, 2, pp. 398-402. , https://doi.org/10.1016/S1369-5274(99)80070-8; Ludlow, M., Kortekaas, J., Herden, C., Hoffmann, B., Tappe, D., Trebst, C., Griffin, D.E., Osterhaus, A.D.M.E., Neurotropic virus infections as the cause of immediate and delayed neuropathology (2016) Acta Neuropathol, 131, pp. 159-184. , https://doi.org/10.1007/s00401-015-1511-3; Oleszak, E.L., Chang, J.R., Friedman, H., Katsetos, C.D., Platsoucas, C.D., Theiler's virus infection: a model for multiple sclerosis (2004) Clin Microbiol Rev, 17, pp. 174-207. , https://doi.org/10.1128/CMR.17.1.174-207.2004; Schneider, R., Neuronal degeneration in a viral model of multiple sclerosis (2009) J Neurosci, 29, pp. 15353-15354. , https://doi.org/10.1523/JNEUROSCI.5198-09.2009; Das Sarma, J., Kenyon, L.C., Hingley, S.T., Shindler, K.S., Mechanisms of primary axonal damage in a viral model of multiple sclerosis (2009) J Neurosci, 29, pp. 10272-10280. , https://doi.org/10.1523/JNEUROSCI.1975-09.2009; Hardy, J., Gwinn-Hardy, K., Genetic classification of primary neurodegenerative disease (1998) Science, 282, pp. 1075-1079. , https://doi.org/10.1126/science.282.5391.1075; Urdinguio, R.G., Sanchez-Mut, J.V., Esteller, M., Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies (2009) Lancet Neurol, 8, pp. 1056-1072. , https://doi.org/10.1016/S1474-4422(09)70262-5; Lan, Y., Zhao, K., Zhao, J., Lv, X., Wang, G., Lu, H., Tang, B., Gao, F., Gene-expression patterns in the cerebral cortex of mice infected with porcine haemagglutinating encephalomyelitis virus detected using microarray (2014) J Gen Virol, 95, pp. 2192-2203. , https://doi.org/10.1099/vir.0.066845-0; Toda, H., Mochizuki, H., Flores, R., III, Josowitz, R., Krasieva, T.B., Lamorte, V.J., Suzuki, E., Tomoda, T., UNC-51/ ATG1 kinase regulates axonal transport by mediating motor-cargo assembly (2008) Genes Dev, 22, pp. 3292-3307. , https://doi.org/10.1101/gad.1734608; Mochizuki, H., Toda, H., Ando, M., Kurusu, M., Tomoda, T., Furukubo-Tokunaga, K., Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0019632; Zhou, X., Babu, J.R., da Silva, S., Shu, Q., Graef, I.A., Oliver, T., Tomoda, T., Wang, F., Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons (2007) Proc Natl Acad Sci U S A, 104, pp. 5842-5847. , https://doi.org/10.1073/pnas.0701402104; Zhao, Y.G., Zhang, H., The incredible ULKs: autophagy and beyond (2016) Mol Cell, 62, pp. 475-476. , https://doi.org/10.1016/j.molcel.2016.05.005; Tomoda, T., Kim, J.H., Zhan, C., Hatten, M.E., Role of Unc51.1 and its binding partners in CNS axon outgrowth (2004) Genes Dev, 18, pp. 541-558. , https://doi.org/10.1101/gad.1151204; Liu, J., Lamb, D., Chou, M.M., Liu, Y.J., Li, G., Nerve growth factormediated neurite outgrowth via regulation of Rab5 (2007) Mol Biol Cell, 18, pp. 1375-1384. , https://doi.org/10.1091/mbc.e06-08-0725; Raab-Traub, N., Dittmer, D.P., Viral effects on the content and function of extracellular vesicles (2017) Nat Rev Microbiol, 15, pp. 559-572. , https://doi.org/10.1038/nrmicro.2017.60; Joo, J.H., Wang, B., Frankel, E., Ge, L., Xu, L., Iyengar, R., Li-Harms, X., Kundu, M., The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis (2016) Mol Cell, 62, pp. 491-506. , https://doi.org/10.1016/j.molcel.2016.04.020; Villarroel-Campos, D., Gastaldi, L., Conde, C., Caceres, A., Gonzalez-Billault, C., Rab-mediated trafficking role in neurite formation (2014) J Neurochem, 129, pp. 240-248. , https://doi.org/10.1111/jnc.12676; Carney, D.S., Davies, B.A., Horazdovsky, B.F., Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons (2006) Trends Cell Biol, 16, pp. 27-35. , https://doi.org/10.1016/j.tcb.2005.11.001; Hirano, N., Nomura, R., Tawara, T., Tohyama, K., Neurotropism of swine haemagglutinating encephalomyelitis virus (coronavirus) in mice depending upon host age and route of infection (2004) J Comp Pathol, 130, pp. 58-65. , https://doi.org/10.1016/S0021-9975(03)00083-5; Noda, N.N., Fujioka, Y., Atg1 family kinases in autophagy initiation (2015) Cell Mol Life Sci, 72, pp. 3083-3096. , https://doi.org/10.1007/s00018-015-1917-z; Joo, J.H., Dorsey, F.C., Joshi, A., Hennessy-Walters, K.M., Rose, K.L., McCastlain, K., Zhang, J., Kundu, M., Hsp90-Cdc37 chaperone complex regulates Ulk1-and Atg13-mediated mitophagy (2011) Mol Cell, 43, pp. 572-585. , https://doi.org/10.1016/j.molcel.2011.06.018; Hieke, N., Loffler, A.S., Kaizuka, T., Berleth, N., Bohler, P., Driessen, S., Stuhldreier, F., Stork, B., Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells (2015) Autophagy, 11, pp. 1471-1483. , https://doi.org/10.1080/15548627.2015.1068488; Lee, E.J., Tournier, C., The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy (2011) Autophagy, 7, pp. 689-695. , https://doi.org/10.4161/auto.7.7.15450; Cheong, H., Lindsten, T., Wu, J., Lu, C., Thompson, C.B., Ammoniainduced autophagy is independent of ULK1/ULK2 kinases (2011) Proc Natl Acad Sci U S A, 108, pp. 11121-11126. , https://doi.org/10.1073/pnas.1107969108; Ding, N., Zhao, K., Lan, Y., Li, Z., Lv, X., Su, J., Lu, H., He, W., Induction of atypical autophagy by porcine hemagglutinating encephalomyelitis virus contributes to viral replication (2017) Front Cell Infect Microbiol, 7, p. 56. , https://doi.org/10.3389/fcimb.2017.00056; Ogura, K., Wicky, C., Magnenat, L., Tobler, H., Mori, I., Muller, F., Ohshima, Y., Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase (1994) Genes Dev, 8, pp. 2389-2400. , https://doi.org/10.1101/gad.8.20.2389; Sakamoto, R., Byrd, D.T., Brown, H.M., Hisamoto, N., Matsumoto, K., Jin, Y., The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization (2005) Mol Biol Cell, 16, pp. 483-496. , https://doi.org/10.1091/mbc.e04-07-0553; Ogura, K., Goshima, Y., The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans (2006) Development, 133, pp. 3441-3450. , https://doi.org/10.1242/dev.02503; Watari-Goshima, N., Ogura, K., Wolf, F.W., Goshima, Y., Garriga, G., C elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations (2007) Nat Neurosci, 10, pp. 169-176. , https://doi.org/10.1038/nn1834; Levy-Strumpf, N., Culotti, J.G., VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C elegans (2007) Nat Neurosci, 10, pp. 161-168. , https://doi.org/10.1038/nn1835; Xu, Y., Taru, H., Jin, Y., Quinn, C.C., SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) function interdependently to promote axon guidance by regulating the MIG-2 GTPase (2015) PLoS Genet, 11. , https://doi.org/10.1371/journal.pgen.1005185; Aloe, L., Rocco, M.L., Balzamino, B.O., Micera, A., Nerve growth factor: a focus on neuroscience and therapy (2015) Curr Neuropharmacol, 13, pp. 294-303. , https://doi.org/10.2174/1570159X13666150403231920; Harrington, A.W., St Hillaire, C., Zweifel, L.S., Glebova, N.O., Philippidou, P., Halegoua, S., Ginty, D.D., Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival (2011) Cell, 146, pp. 421-434. , https://doi.org/10.1016/j.cell.2011.07.008; Sharma, N., Deppmann, C.D., Harrington, A.W., St Hillaire, C., Chen, Z.Y., Lee, F.S., Ginty, D.D., Long-distance control of synapse assembly by targetderived NGF (2010) Neuron, 67, pp. 422-434. , https://doi.org/10.1016/j.neuron.2010.07.018; Pazyra-Murphy, M.F., Hans, A., Courchesne, S.L., Karch, C., Cosker, K.E., Heerssen, H.M., Watson, F.L., Segal, R.A., A retrograde neuronal survival response: target-derived neurotrophins regulate MEF2D and bcl-w (2009) J Neurosci, 29, pp. 6700-6709. , https://doi.org/10.1523/JNEUROSCI.0233-09.2009; Delcroix, J.D., Valletta, J.S., Wu, C.B., Hunt, S.J., Kowal, A.S., Mobley, W.C., NGF signaling in sensory neurons: Evidence that early endosomes carry NGF retrogradesignals (2003) Neuron, 39, pp. 69-84. , https://doi.org/10.1016/S0896-6273(03)00397-0; Newbern, J.M., Li, X., Snider, W.D., Signaling endosomes trigger synapse assembly (2010) Neuron, 67, pp. 352-354. , https://doi.org/10.1016/j.neuron.2010.07.025; Eggert, A., Ikegaki, N., Liu, X., Chou, T.T., Lee, V.M., Trojanowski, J.Q., Brodeur, G.M., Molecular dissection of TrkA signal transduction pathways mediating differentiation in human neuroblastoma cells (2000) Oncogene, 19, pp. 2043-2051. , https://doi.org/10.1038/sj.onc.1203518; Lakadamyali, M., Rust, M.J., Zhuang, X.W., Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes (2006) Cell, 124, pp. 997-1009. , https://doi.org/10.1016/j.cell.2005.12.038; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292. , https://doi.org/10.1016/S0065-3527(06)66005-3; Kazi, L., Lissenberg, A., Watson, R., de Groot, R.J., Weiss, S.R., Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence (2005) J Virol, 79, pp. 15064-15073. , https://doi.org/10.1128/JVI.79.24.15064-15073.2005","He, W.; Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChina; email: hewq@jlu.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"29875237","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85050801290 "Lee S., Lee C.","57202327364;55700560700;","Genomic and antigenic characterization of porcine epidemic diarrhoea virus strains isolated from South Korea, 2017",2018,"Transboundary and Emerging Diseases","65","4",,"949","956",,6,"10.1111/tbed.12904","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049557273&doi=10.1111%2ftbed.12904&partnerID=40&md5=621809875daae9654d5482189546f2ca","Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea","Lee, S., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea; Lee, C., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea","Porcine epidemic diarrhoea virus (PEDV) is a globally emerging and re-emerging enteric coronavirus in pigs causing serious economic threats to the world swine industry. Since the re-emergence of massive PEDV outbreaks in South Korea in 2013−2014, domestic pig farms have continued to experience PED epidemics or endemics. This study represents the molecular characterization of PEDV isolates identified in diarrhoeic animals collected across the country in 2017. Initial sequencing analysis of the full-length S genes revealed that 70% of the 2017 isolates (7/10) belong to the G2b subgroup, while the remaining isolates were classified as G1b. The data indicated that both variant G1b and global epidemic G2b strains were responsible for current PED outbreaks in South Korea. The 2017 G1b and G2b isolates shared 98.7%–99.4% and 98.1%–99.2% amino acid sequence identity at the S gene level and 99.3% and 99.0%–99.6% nucleotide sequence homology at the genome level compared to the corresponding Korean prototype G1b and G2b strains, respectively. In an interesting manner, one G2b-like KNU-1705 strain was found to possess a large 39-nucleotide deletion in the ORF1a region theoretically encoding nonstructural protein 3. Phylogenetic analysis based on the entire genome and spike protein sequences indicated that the 2017 isolates were most closely related to other global G1b or G2b strains but formed different branches within the same genogroup. These results indicate that PEDVs undergo continuous evolution in the field. In addition, one 2017 PEDV strain, KOR/KNU-1705/2017, was successfully isolated and propagated in Vero cells. The antisera raised against the Korean prototype 2014 G2b strain efficiently neutralized KNU-1705 virus infection, suggesting antigenic homology between the 2014 and 2017 PEDV strains. Our data advance the understanding of the molecular epidemiology and antigenicity of PEDV circulating in South Korea. © 2018 Blackwell Verlag GmbH","antigenicity; full-length genome; phylogenetic analysis; porcine epidemic diarrhoea virus; prevalence","animal experiment; animal tissue; antigenic variation; antigenicity; Article; controlled study; cytopathology; enzyme linked immunosorbent assay; gene sequence; genetic analysis; genetic variability; guinea pig; immunofluorescence test; mortality; nonhuman; nucleotide sequence; open reading frame; phylogenetic tree; phylogeny; Porcine epidemic diarrhea virus; reverse transcription polymerase chain reaction; sequence alignment; sequence analysis; South Korea; vaccination; virus gene; virus isolation; virus replication; amino acid sequence; animal; Chlorocebus aethiops; Coronavirus infection; epidemic; genetics; genomics; genotype; immunology; isolation and purification; molecular epidemiology; pig; Porcine epidemic diarrhea virus; sequence homology; swine disease; Vero cell line; veterinary medicine; virology; virus genome; Amino Acid Sequence; Animals; Cercopithecus aethiops; Coronavirus Infections; Disease Outbreaks; Genome, Viral; Genomics; Genotype; Molecular Epidemiology; Phylogeny; Porcine epidemic diarrhea virus; Republic of Korea; Sequence Homology; Swine; Swine Diseases; Vero Cells","Baek, P.S., Choi, H.W., Lee, S., Yoon, I.J., Lee, Y.J., Lee, D.S., Lee, C., Efficacy of an inactivated genotype 2b porcine epidemic diarrhea virus vaccine in neonatal piglets (2016) Veterinary Immunology Immunopathology, 174, pp. 45-49. , https://doi.org/10.1016/j.vetimm.2016.04.009; Cavanagh, D., Nidovirales: A new order comprising Coronaviridae and Arteriviridae (1997) Archives of Virology, 142, pp. 629-633; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Zhang, J., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) Journal of Clinical Microbiology, 52, pp. 234-243. , https://doi.org/10.1128/JCM.02820-13; Chen, J.F., Sun, D.B., Wang, C.B., Shi, H.Y., Cui, X.C., Liu, S.W., Feng, L., Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China (2008) Virus Genes, 36, pp. 355-364. , https://doi.org/10.1007/s11262-007-0196-7; Duarte, M., Tobler, K., Bridgen, A., Rasschaert, D., Ackermann, M., Laude, H., Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF (1994) Virology, 198, pp. 466-476. , https://doi.org/10.1006/viro.1994.1058; Gerber, P.F., Gong, Q., Huang, Y.W., Wang, C., Holtkamp, D., Opriessnig, T., Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA (2014) Veterinary Journal, 202, pp. 33-36. , https://doi.org/10.1016/j.tvjl.2014.07.018; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Research, 117, pp. 17-37. , https://doi.org/10.1016/j.virusres.2006.01.017; Kim, S.H., Lee, J.M., Jung, J., Kim, I.J., Hyun, B.H., Kim, H.I., Lee, K.K., Genetic characterization of porcine epidemic diarrhea virus in Korea from 1998 to 2013 (2015) Archives of Virology, 160, pp. 1055-1064. , https://doi.org/10.1007/s00705-015-2353-y; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144. , https://doi.org/10.1023/A:1011831902219; Kweon, C.H., Kwon, B.J., Jung, T.S., Kee, Y.J., Hur, D.H., Hwang, E.K., An, S.H., Isolation of porcine epidemic diarrhea virus (PEDV) in Korea (1993) Korean Journal of Veterinary Research, 33, pp. 249-254; Lai, M.C., Perlman, S., Anderson, L.J., Coronaviridae (2007) Fields virology, pp. 1305-1336. , D. M. Knipe, P. M. Howley, D. E. Griffin, M. A. Martin, R. A. Lamb, B. Roizman, &, S. E. Straus, (Eds),, 5th edition, Philadelphia, PA, USA, Williams, LippincottWilkins; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus Research, 226, pp. 93-107. , https://doi.org/10.1016/j.virusres.2016.05.016; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virology Journal, 12, p. 193. , https://doi.org/10.1186/s12985-015-0421-2; Lee, S., Kim, Y., Lee, C., Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112 (2015) Virus Research, 208, pp. 215-224. , https://doi.org/10.1016/j.virusres.2015.07.010; Lee, S., Ko, D.H., Kwak, S.K., Lim, C.H., Moon, S.U., Lee, D.S., Lee, C., Reemergence of porcine epidemic diarrhea virus on Jeju Island (2014) Korean Journal of Veterinary Research, 54, pp. 185-188. , https://doi.org/10.14405/kjvr.2014.54.3.185; Lee, Y.N., Lee, C., Complete genome sequence of a novel porcine parainfluenza virus 5 isolate in Korea (2013) Archives of Virology, 158, pp. 1765-1772. , https://doi.org/10.1007/s00705-013-1770-z; Lee, S., Lee, C., Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013 (2014) Emerging Infectious Diseases, 20, pp. 1223-1226. , https://doi.org/10.3201/eid2007.140294; Lee, S., Lee, C., Complete genome sequence of a novel S-insertion variant of porcine epidemic diarrhea virus from South Korea (2017) Archives of Virology, 162, pp. 2919-2922. , https://doi.org/10.1007/s00705-017-3441-y; Lee, D.K., Park, C.K., Kim, S.H., Lee, C., Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea (2010) Virus Research, 149, pp. 175-182. , https://doi.org/10.1016/j.virusres.2010.01.015; Lee, S., Park, G.S., Shin, J.H., Lee, C., Full-genome sequence analysis of a variant strain of porcine epidemic diarrhea virus in South Korea (2014) Genome Announcements, 2, pp. e01114-e01116; Lee, S., Son, K.Y., Noh, Y.H., Lee, S.C., Choi, H.W., Yoon, I.J., Lee, C., Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus (2017) Veterinary Microbiology, 207, pp. 248-258. , https://doi.org/10.1016/j.vetmic.2017.06.019; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antiviral Research, 149, pp. 58-74. , https://doi.org/10.1016/j.antiviral.2017.11.001; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerging Infectious Diseases, 8, pp. 1350-1353. , https://doi.org/10.3201/eid1803.120002; Lin, C.N., Chung, W.B., Chang, S.W., Wen, C.C., Liu, H., Chien, C.H., Chiou, M.T., US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014 (2014) Journal of Veterinary Medical Science, 76, pp. 1297-1299. , https://doi.org/10.1292/jvms.14-0098; (2018) Ministry of agriculture, Forestry, and Fisheries, Japan, , http://www.maff.go.jp/j/syouan/douei/ped/ped.html; Mole, B., Deadly pig virus slips through US borders (2013) Nature, 499, p. 388. , https://doi.org/10.1038/499388a; Oh, J., Lee, K.W., Choi, H.W., Lee, C., Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein (2014) Archives of Virology, 159, pp. 2977-2987. , https://doi.org/10.1007/s00705-014-2163-7; Ojkic, D., Hazlett, M., Fairles, J., Marom, A., Slavic, D., Maxie, G., Burlatschenko, S., The first case of porcine epidemic diarrhea in Canada (2015) Canadian Veterinary Journal, 56, pp. 149-152; Oldham, J., (1972) Letter to the editor. Pig Farming, 10, pp. 72-73; Opriessnig, T., Porcine epidemic diarrhea (PED) in Europe and strategies to control outbreaks (2016) Japanese Journal of Veterinary Research, 64, pp. S35-S38; Pensaert, M.B., Debouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Archives of Virology, 58, pp. 243-247. , https://doi.org/10.1007/BF01317606; Puranaveja, S., Poolperm, P., Lertwatcharasarakul, P., Kesdaengsakonwut, S., Boonsoongnern, A., Urairong, K., Thanawongnuwech, R., Chinese-like strain of porcine epidemic diarrhea virus, Thailand (2009) Emerging Infectious Diseases, 15, pp. 1112-1115. , https://doi.org/10.3201/eid1507.081256; Saif, L.J., Pensaert, M.B., Sestack, K., Yeo, S.G., Jung, K., (2012) Diseases of Swine, pp. 501-524. , Coronaviruses. In, B. E. Straw, J. J. Zimmerman, L. A. Karriker, A. Ramirez, K. J. Schwartz, &, G. W. Stevenson, (Eds),, Ames, IA, Wiley-Blackwell; Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Molecular Biology and Evolution, 4, pp. 406-425; Sambrook, J., Russell, D.W., (2001) Molecular cloning: A laboratory manual, , 3rd ed., NY, USA, Cold Spring Harbor; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Yoon, K.J., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) Journal of Veterinary Diagnostic Investigation, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Takahashi, K., Okada, K., Ohshima, K., An outbreak of swine diarrhea of a new- type associated with coronavirus-like particles in Japan (1983) Japanese Journal of Veterinary Science, 45, pp. 829-832. , https://doi.org/10.1292/jvms1939.45.829; Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Molecular Biology and Evolution, 24, pp. 1596-1599. , https://doi.org/10.1093/molbev/msm092; Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Research, 25, pp. 4876-4882. , https://doi.org/10.1093/nar/25.24.4876; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Saif, L.J., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014 (2014) Emerging Infectious Diseases, 20, pp. 1620-1628","Lee, C.; Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National UniversitySouth Korea; email: changhee@knu.ac.kr",,"Blackwell Publishing Ltd",18651674,,,"29770590","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85049557273 "Nascimento-Carvalho A.C., Vilas-Boas A.-L., Fontoura M.-S.H., Vuorinen T., Nascimento-Carvalho C.M., the PNEUMOPAC-Efficacy Study Group","57190343450;6505921506;36460744800;7005778445;55882198400;","Respiratory viruses among children with non-severe community-acquired pneumonia: A prospective cohort study",2018,"Journal of Clinical Virology","105",,,"77","83",,4,"10.1016/j.jcv.2018.06.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048453956&doi=10.1016%2fj.jcv.2018.06.003&partnerID=40&md5=992f7a517f9b5ea72fe8c08c7fcc22b8","Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Brazil; Bahiana School of Medicine, Bahiana Foundation for Science Development, Salvador, Brazil; Department of Clinical Virology, Turku University Hospital, Department of Virology, Turku University, Turku, Finland","Nascimento-Carvalho, A.C., Bahiana School of Medicine, Bahiana Foundation for Science Development, Salvador, Brazil; Vilas-Boas, A.-L., Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Brazil; Fontoura, M.-S.H., Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Brazil; Vuorinen, T., Department of Clinical Virology, Turku University Hospital, Department of Virology, Turku University, Turku, Finland; Nascimento-Carvalho, C.M., Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Brazil; the PNEUMOPAC-Efficacy Study Group","Background: Community-acquired pneumonia (CAP) causes a major burden to the health care system among children under-5 years worldwide. Information on respiratory viruses in non-severe CAP cases is scarce. Objectives: To estimate the frequency of respiratory viruses among non-severe CAP cases. Study design: Prospective study conducted in Salvador, Brazil. Out of 820 children aged 2–59 months with non-severe CAP diagnosed by pediatricians (respiratory complaints and radiographic pulmonary infiltrate/consolidation), recruited in a clinical trial (ClinicalTrials.gov Identifier NCT01200706), nasopharyngeal aspirate samples were obtained from 774 (94.4%) patients and tested for 16 respiratory viruses by PCRs. Results: Viruses were detected in 708 (91.5%; 95%CI: 89.3–93.3) cases, out of which 491 (69.4%; 95%CI: 65.9–72.7) harbored multiple viruses. Rhinovirus (46.1%; 95%CI: 42.6–49.6), adenovirus (38.4%; 95%CI: 35.0–41.8), and enterovirus (26.5%; 95%CI: 23.5–29.7) were the most commonly found viruses. The most frequent combination comprised rhinovirus plus adenovirus. No difference was found in the frequency of RSVA (16.1% vs. 14.6%; P = 0.6), RSVB (10.9% vs. 13.2%; P = 0.4) influenza (Flu) A (6.3% vs. 5.1%; P = 0.5), FluB (4.5% vs. 1.8%; P = 0.09), parainfluenza virus (PIV) 1 (5.1% vs. 2.8%; P = 0.2), or PIV4 (7.7% vs. 4.1%; P = 0.08), when children with multiple or sole virus detection were compared. Conversely, rhinovirus, adenovirus, enterovirus, bocavirus, PIV2, PIV3, metapneumovirus, coronavirus OC43, NL63, 229E were significantly more frequent among cases with multiple virus detection. Conclusions: Respiratory viruses were detected in over 90% of the cases, out of which 70% had multiple viruses. Several viruses are more commonly found in multiple virus detection whereas other viruses are similarly found in sole and in multiple virus detection. © 2018 Elsevier B.V.","Acute respiratory infection; Children; Lower tract respiratory infection; Respiratory virus; Viral infection","Adenoviridae; Article; Bocaparvovirus; Brazil; child; community acquired pneumonia; Enterovirus; female; human; infant; lung infiltrate; major clinical study; male; Metapneumovirus; nasopharyngeal aspiration; Paramyxovirinae; polymerase chain reaction; priority journal; prospective study; respiratory virus; Rhinovirus; virus detection; community acquired infection; Coronavirinae; genetics; isolation and purification; mixed infection; nasopharynx; Pneumovirus; preschool child; randomized controlled trial (topic); respiratory tract infection; virology; virus; virus infection; virus pneumonia; Brazil; Child, Preschool; Coinfection; Community-Acquired Infections; Coronavirus; Female; Humans; Infant; Male; Metapneumovirus; Nasopharynx; Pneumonia, Viral; Prospective Studies; Randomized Controlled Trials as Topic; Respiratory Syncytial Viruses; Respiratory Tract Infections; Rhinovirus; Virus Diseases; Viruses","Walker, C.L.F., Rudan, I., Liu, L., Nair, H., Theodoratou, E., Bhutta, Z.A., Global burden of childhood pneumonia and diarrhoea (2013) Lancet, 381, pp. 1405-1416; Rudan, I., Boschi-Pinto, C., Biloglav, Z., Mulholland, K., Campbell, H., Epidemiology and etiology of childhood pneumonia (2008) Bull. World Health Organ., 86 (5), pp. 408-416; Lu, G., Li, J., Xie, Z., Liu, C., Guo, L., Vernet, G., Human metapneumovirus associated with community-acquired pneumonia in children in Beijing, China (2013) J. Med. Virol., 85, pp. 138-143; Lieberman, D., Shimoni, A., Shemer-Avni, Y., Keren, N., Shtainberg, R., Respiratory viruses in adults with community acquired-pneumonia (2010) Chest, 138, pp. 811-816; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; World Health Organization, Management of the Child With a Serious Infection or Severe Malnutrition: Guidelines for Care at the First-Referral Level in Developing Countries (2000), http://apps.who.int/iris/bitstream/10665/42335/1/WHO_FCH_CAH_00.1.pdf, Page 20 (Accessed 2 May 2003); Vilas-Boas, A.L., Fontoura, M.S., Xavier-Souza, G., Araújo-Neto, C.A., Andrade, S.C., Brim, R.V., Comparison of oral amoxicillin given thrice or twice daily to children between 2 and 59 months old with non-severe pneumonia: a randomized controlled trial (2014) J. Antimicrob. Chemother., 69, pp. 1954-1959; World Health Organization, Integrated Management of Childhood Illness Chart Booklet (WC 503.2) (2008), http://www.whqlibdoc.who.int/publications/2008/9789241597289_eng.pdf, (Accessed 15 January 2009); World Health Organization, Training Course on Child Growth Assessment (2008), http://www.whqlibdoc.who.int/publications/2008/9789241595070_A_eng.pdf, (Accessed 13 July 2009); Cherian, T., Mulholland, E.K., Carlin, J.B., Ostensen, H., Amin, R., de Campo, M., Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies (2005) Bull. World Health Organ., 83, pp. 353-359; Huh, H.J., Park, K.S., Kim, J.Y., Kwon, H.J., Kim, J.W., Ki, C.S., Comparison of the Anyplex(TM) II RV16 and Seeplex(®) RV12 ACE assays for the detection of respiratory viruses (2014) Diagn. Microbiol. Infect. Dis., 79, pp. 419-421; Peltola, V., Waris, M., Österback, R., Susi, P., Ruuskanen, O., Hyypiä, T., Rhinovirus transmission within families with children: incidence of symptomatic and asymptomatic infections (2008) J. Infect. Dis., 197, pp. 382-389; Nascimento-Carvalho, A.C., Vilas-Boas, A.-L., Fontoura, M.-S., Xu, M., Vuorinen, T., Söderlund-Venermo, M., Serologically diagnosed acute human Bocavirus 1 infection in childhood community-acquired pneumonia (2018) Pediatr. Pulmonol., 53, pp. 88-94; Rhendin, S., Lindstrand, A., Hjelmgren, A., Ryd-Rinder, M., Öhrmalm, L., Tolfvenstam, T., Respiratory viruses associated with community-acquired pneumonia in children: matched case-control study (2015) Thorax, 70, pp. 847-853; García-García, M.L., Calvo, C., Pozo, F., Villadangos, P.A., Pérez-Breña, P., Casas, I., Spectrum of respiratory viruses in children with community-acquired pneumonia (2012) Pediatr. Infect. Dis. J., 31, pp. 808-813; Deng, J., Ma, Z., Huang, W., Li, C., Wang, H., Zheng, Y., Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infection (2013) Virol. Sin., 28, pp. 7-102; Turunen, R., Koistinen, A., Vuorinen, T., Arku, B., Söderlund-Venermo, M., Ruuskanen, O., The first wheezing episode respiratory virus etiology, atopic characteristics, and illness severity (2014) Pediatr. Allergy Immunol., 25, pp. 796-803; Honkinen, M., Lahti, E., Österback, R., Ruuskanen, O., Warris, M., Viruses and bacteria in sputum samples of children with community-acquired pneumonia (2012) Clin. Microbiol. Infect., 18, pp. 300-307; Pavia, A.T., What if the role of respiratory viruses in community-acquired pneumonia?: What is the best therapy for influenza and other viral causes of community-acquired pneumonia? (2013) Infect. Dis. Clin. N. Am., 27, pp. 157-175; Self, W.H., Williams, D.J., Zhu, Y., Ampofo, K., Pavia, A.T., Chappell, J.D., Respiratory viral detection in children and adults: comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J. Infect. Dis., 213, pp. 584-591; Bénet, T., Picot, V.S., Messaoundi, M., Chou, M., Eap, T., Wang, J., Microorganisms associated with pneumonia in children <5 years of age in developing and emerging countries: the GABRIEL pneumonia multicenter, prospective, case-control study (2017) Clin. Infect. Dis., 65, pp. 604-612; Goka, E.A., Valley, P.J., Mutton, K.J., Klapper, P.E., Single and multiple respiratory virus infections and severity of disease: a systematic review (2014) Paediatr. Respir. Rev., 15, pp. 363-370; Choi, S.H., Chung, J.W., Kim, H.R., Clinical relevance of multiple respiratory virus detection in adult patients with acute respiratory illness (2015) J. Clin. Microbiol., 53, pp. 1172-1177; Hulley, S.B., Cummings, S.R., Designing Clinical Research (1988), Williams & Wilkins Baltimore; Vuori-Holopainen, E., Peltola, H., Reappraisal of lung tap: review of an old method for better etiologic diagnosis of childhood pneumonia (2001) Clin. Infect. Dis., 32, pp. 715-726; Higdon, M.M., Hammitt, L.L., Knoll, M.D., Baggett, H.C., Brooks, W.A., Howie, S.R., Should controls with respiratory symptoms be excluded from case-control studies of pneumonia etiology? Reflections from the PERCH study (2017) Clin. Infect. Dis., 64, pp. S205-S212; Zhang, Y., Sakthivel, S.K., Bramley, A., Jain, S., Haynes, A., Chappell, J.D., Serology enhances molecular diagnosis of respiratory virus infections other than influenza in children and adults hospitalized with community-acquired pneumonia (2016) J. Clin. Microbiol., 55, pp. 79-89; Gerretsen, H.E., Sande, C.J., Development of respiratory syncytial virus (RSV) vaccines for infants (2017) J. Infect., 74, pp. S143-S144","Nascimento-Carvalho, A.C.; Rua Prof. Aristides Novis, 105/1201B, Brazil; email: carvalhoacn@hotmail.com",,"Elsevier B.V.",13866532,,JCVIF,"29908521","English","J. Clin. Virol.",Article,"Final",,Scopus,2-s2.0-85048453956 "Marenzoni M.L., Lauzi S., Miglio A., Coletti M., Arbia A., Paltrinieri S., Antognoni M.T.","6505818631;6508381103;36015574000;14055485200;57200853678;7003879241;6603170011;","Comparison of three blood transfusion guidelines applied to 31 feline donors to minimise the risk of transfusion-transmissible infections",2018,"Journal of Feline Medicine and Surgery","20","8",,"663","673",,3,"10.1177/1098612X17727233","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042537762&doi=10.1177%2f1098612X17727233&partnerID=40&md5=8575b265ec4ea6fafa6f578c996d2b21","Department of Veterinary Medicine, University of Perugia, Perugia, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy; Veterinary Teaching Hospital, University of Milan, Lodi, Italy; Veterinary Transfusion Unit (EMOVET-UNIPG), Department of Veterinary Medicine, University of Perugia, Perugia, Italy","Marenzoni, M.L., Department of Veterinary Medicine, University of Perugia, Perugia, Italy; Lauzi, S., Department of Veterinary Medicine, University of Milan, Milan, Italy, Veterinary Teaching Hospital, University of Milan, Lodi, Italy; Miglio, A., Veterinary Transfusion Unit (EMOVET-UNIPG), Department of Veterinary Medicine, University of Perugia, Perugia, Italy; Coletti, M., Department of Veterinary Medicine, University of Perugia, Perugia, Italy; Arbia, A., Veterinary Teaching Hospital, University of Milan, Lodi, Italy; Paltrinieri, S., Department of Veterinary Medicine, University of Milan, Milan, Italy, Veterinary Teaching Hospital, University of Milan, Lodi, Italy; Antognoni, M.T., Veterinary Transfusion Unit (EMOVET-UNIPG), Department of Veterinary Medicine, University of Perugia, Perugia, Italy","Objectives: The increased demand for animal blood transfusions creates the need for an adequate number of donors. At the same time, a high level of blood safety must be guaranteed and different guidelines (GLs) deal with this topic. The aim of this study was to evaluate the appropriateness of different GLs in preventing transfusion-transmissible infections (TTI) in Italian feline blood donors. Methods: Blood samples were collected from 31 cats enrolled as blood donors by the owners’ voluntary choice over a period of approximately 1 year. Possible risk factors for TTI were recorded. Based on Italian, European and American GLs, specific TTI, including haemoplasmas, feline leukaemia virus (FeLV), feline immunodeficiency virus (FIV), Anaplasma phagocytophilum, Ehrlichia species, Bartonella species, Babesia species, Theileria species, Cytauxzoon species, Leishmania donovani sensu lato and feline coronavirus (FCoV), were screened. Rapid antigen and serological tests and biomolecular investigations (PCR) were used. Several PCR protocols for haemoplasma and FeLV DNA were compared. Results: The presence of at least one recognised risk factor for TTI was reported in all cats. Results for FIV and FeLV infections were negative using rapid tests, whereas five (16.1%) cats were positive for FCoV antibodies. Four (12.9%) cats were PCR positive for haemoplasma DNA and one (3.2%) for FeLV provirus, the latter being positive only using the most sensitive PCR protocol applied. Other TTI were not detected using PCR. Conclusions and relevance: Blood safety increases by combining the recommendations of different GLs. To reduce the risk of TTI, sensitive tests are needed and the choice of the best protocol is a critical step in improving blood safety. The cost and time of the screening procedures may be reduced if appropriate tests are selected. To this end, the GLs should include appropriate recruitment protocols and questionnaire-based risk profiles to identify suitable donors. © The Author(s) 2017.",,"Anaplasma phagocytophilum; Anaplasmataceae; Article; Babesia; Bartonella; blood bank; blood donor; blood safety; blood sampling; blood transfusion; cat; communicable disease; comparative study; Cytauxzoon; Ehrlichia; Feline coronavirus; Feline immunodeficiency virus; Feline leukemia virus; haemoplasma; Leishmania donovani; Leishmania donovani sensu lato; nonhuman; practice guideline; risk factor; serology; Theileria; transfusion transmissible infection; animal; blood transfusion; blood transfusion reaction; cat disease; donor; microbiology; parasitology; veterinary medicine; Animals; Blood Transfusion; Cat Diseases; Cats; Risk Factors; Tissue Donors; Transfusion Reaction","Stefanetti, V., Miglio, A., Cappelli, K., Detection of bacterial contamination and DNA quantification in stored blood units in 2 veterinary hospital blood banks (2016) Vet Clin Pathol, 45, pp. 406-410; Gary, A.T., Richmond, H.L., Tasker, S., Survival of Mycoplasma haemofelis and ‘Candidatus Mycoplasma haemominutum’ in blood of cats used for transfusions (2006) J Feline Med Surg, 8, pp. 321-326; Reine, N.J., Infection and blood transfusion: a guide to donor screening (2004) Clin Tech Small Anim Pract, 19, pp. 68-74; Spada, E., Miglio, A., Proverbio, D., Signalment and blood types in cats being evaluated as blood donors at two Italian university blood banks (2014) Vet Med Int, 2014, p. 704836; (2012) Blood donor selection: guidelines on assessing donor suitability for blood donation, , http://apps.who.int/iris/bitstream/10665/76724/1/9789241548519_eng.pdf, accessed 28 April 2017; Hackett, T.B., Jensen, W.A., Lehman, T.L., Prevalence of DNA of Mycoplasma haemofelis, ‘Candidatus Mycoplasma haemominutum,’ Anaplasma phagocytophilum, and species of Bartonella, Neorickettsia, and Ehrlichia in cats used as blood donors in the United States (2006) J Am Vet Med Assoc, 229, pp. 700-705; Jagodich, T.A., Holowaychuk, M.K., Transfusion practice in dogs and cats: an internet-based survey (2016) J Vet Emerg Crit Care (San Antonio), 26, pp. 360-372; Wardrop, K.J., Reine, N., Birkenheuer, A., Canine and feline blood donor screening for infectious disease (2005) J Vet Intern Med, 19, pp. 135-142; Wardrop, K.J., Birkenheuer, A., Blais, M.C., Update on canine and feline blood donor screening for blood-borne pathogens (2016) J Vet Intern Med, 30, pp. 15-35; Pennisi, M.G., Hartmann, K., Addie, D.D., Blood transfusion in cats: ABCD guidelines for minimising risks of infectious iatrogenic complications (2015) J Feline Med Surg, 17, pp. 588-593; (2008) Linea guida relativa all’esercizio delle attività riguardanti la medicina trasfusionale in campo veterinario, , http://www.salute.gov.it/imgs/C_17_pubblicazioni_852_allegato.pdf, accessed April 29, 2017, 2008, Sulemento ordinario alla Gazzetta Ufficiale 32, 2008; (2016) Linea guida relativa all’esercizio delle attività riguardanti la medicina trasfusionale in campo veterinario, , http://www.gazzettaufficiale.it/do/atto/serie_generale/caricaPdf?cdimg=16A0061100100010110001&dgu=2016-02-01&art.dataPubblicazioneGazzetta=2016-02-01&art.codiceRedazionale=16A00611&art.num=1&art.tiposerie=SG, accessed 29 April 2017, 2016, Gazzetta Ufficiale Serie Generale n 25 del 1-2-2016; Criado-Fornelio, A., Martinez-Marcos, A., Buling-Sarana, A., Presence of Mycoplasma haemofelis, Mycoplasma haemominutum and piroplasmids in cats from southern Europe: a molecular study (2003) Vet Microbiol, 93, pp. 307-317; Gentilini, F., Novacco, M., Turba, M.E., Use of combined conventional and real-time PCR to determine the epidemiology of feline haemoplasma infections in northern Italy (2009) J Feline Med Surg, 11, pp. 277-285; Jensen, W.A., Lappin, M.R., Kamkar, S., Use of a polymerase chain reaction assay to detect and differentiate two strains of Haemobartonella felis in naturally infected cats (2001) Am J Vet Res, 62, pp. 604-608; Willi, B., Boretti, F.S., Baumgartner, C., Prevalence, risk factor analysis, and follow-up of infections caused by three feline hemoplasma species in cats in Switzerland (2006) J Clin Microbiol, 44, pp. 961-969; Willi, B., Boretti, F.S., Cattori, V., Identification, molecular characterization, and experimental transmission of a new hemoplasma isolate from a cat with hemolytic anemia in Switzerland (2005) J Clin Microbiol, 43, pp. 2581-2585; Arjona, A., Barquero, N., Domenech, A., Evaluation of a novel nested PCR for the routine diagnosis of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) (2007) J Feline Med Surg, 9, pp. 14-22; Hofmann-Lehmann, R., Huder, J.B., Gruber, S., Feline leukaemia provirus load during the course of experimental infection and in naturally infected cats (2001) J Gen Virol, 82, pp. 1589-1596; Jackson, M.L., Haines, D.M., Meric, S.M., Feline leukemia virus detection by immunohistochemistry and polymerase chain reaction in formalin-fixed, paraffin-embedded tumor tissue from cats with lymphosarcoma (1993) Can J Vet Res, 57, pp. 269-276; Herrewegh, A.A., de Groot, R.J., Cepica, A., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) J Clin Microbiol, 33, pp. 684-689; Parola, P., Roux, V., Camicas, J.L., Detection of ehrlichiae in African ticks by polymerase chain reaction (2000) Trans R Soc Trop Med Hyg, 94, pp. 707-708; Beck, R., Vojta, L., Mrljak, V., Diversity of Babesia and Theileria species in symptomatic and asymptomatic dogs in Croatia (2009) Int J Parasitol, 39, pp. 843-848; Jensen, W.A., Fall, M.Z., Rooney, J., Rapid identification and differentiation of Bartonella species using a single-step PCR assay (2000) J Clin Microbiol, 38, pp. 1717-1722; Lachaud, L., Chabbert, E., Dubessay, P., Value of two PCR methods for the diagnosis of canine visceral leishmaniasis and the detection of asymptomatic carriers (2002) Parasitology, 125, pp. 197-207; (2017) Sequence Alignment Editor for Windows 95/98/NT/XP/Vista/7, , http://www.mbio.ncsu.edu/BioEdit/bioedit.html, accessed 28 April 2017; Altschul, S.F., Gish, W.M., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410; (2009), www.cdc.gov/epiinfo/, accessed 30 August 2016; (2009) OpenEpi epidemiologic calculators, , www.cdc.gov/epiinfo/OpenEpi.htm, accessed 30 August 2016; Spada, E., Proverbio, D., della Pepa, A., Seroprevalence of feline immunodeficiency virus, feline leukaemia virus and Toxoplasma gondii in stray cat colonies in northern Italy and correlation with clinical and laboratory data (2012) J Feline Med Surg, 14, pp. 369-377; Spada, E., Proverbio, D., Galluzzo, P., Molecular study on selected vector-borne infections in urban stray colony cats in northern Italy (2014) J Feline Med Surg, 16, pp. 684-688; Spada, E., Proverbio, D., Galluzzo, P., Frequency of piroplasms Babesia microti and Cytauxzoon felis in stray cats from northern Italy (2014) Biomed Res Int, 2014, p. 943754; Pennisi, M.G., Persichetti, M.F., Serrano, L., Ticks and associated pathogens collected from cats in Sicily and Calabria (Italy) (2015) Parasit Vectors, 8, p. 512; Persichetti, M.F., Solano-Gallego, L., Serrano, L., Detection of vector-borne pathogens in cats and their ectoparasites in southern Italy (2016) Parasit Vectors, 9, p. 247; Spada, E., Canzi, I., Baggiani, L., Prevalence of Leishmania infantum and co-infections in stray cats in northern Italy (2016) Comp Immunol Microbiol Infect Dis, 45, pp. 53-58; Veronesi, F., Ravagnan, S., Cerquetella, M., First detection of Cytauxzoon spp. infection in European wildcats (Felis silvestris silvestris) of Italy (2016) Ticks Tick Borne Dis, 7, pp. 853-858; Ravagnan, S., Carli, E., Piseddu, E., Prevalence and molecular characterization of canine and feline hemotropic mycoplasmas (hemoplasmas) in northern Italy (2017) Parasit Vectors, 10, p. 132; Nesina, S., Katrin Helfer-Hungerbuehler, A., Riond, B., Retroviral DNA–the silent winner: blood transfusion containing latent feline leukemia provirus causes infection and disease in naive recipient cats (2015) Retrovirology, 12, p. 105; Levy, J., Crawford, C., Hartmann, K., American Association of Feline Practitioners’ feline retrovirus management guidelines (2008) J Feline Med Surg, 10, pp. 300-316. , 2008; Barker, E., Tasker, S., Haemoplasmas: lessons learnt from cats (2013) N Z Vet J, 61, pp. 184-192; Weingart, C., Tasker, S., Kohn, B., Infection with haemoplasma species in 22 cats with anaemia (2016) J Feline Med Surg, 18, pp. 129-136; Santos, A.P., Conrado Fde, O., Messick, J.B., Hemoplasma prevalence and hematological abnormalities associated with infection in three different cat populations from Southern Brazil (2014) Rev Bras Parasitol Vet, 23, pp. 428-434; Messick, J.B., Hemotrophic mycoplasmas (hemoplasmas): a review and new insights into pathogenic potential (2004) Vet Clin Pathol, 33, pp. 2-13; Sykes, J.E., Drazenovich, N.L., Ball, L.M., Use of conventional and real-time polymerase chain reaction to determine the epidemiology of hemoplasma infections in anemic and nonanemic cats (2007) J Vet Intern Med, 21, pp. 685-693; Paltrinieri, S., Rossi, G., Giordano, A., Relationship between rate of infection and markers of inflammation/immunity in Holy Birman cats with feline coronavirus (2014) Res Vet Sci, 97, pp. 263-270; Addie, D.D., le Poder, S., Burr, P., Utility of feline coronavirus antibody tests (2015) J Feline Med Surg, 17, pp. 152-162; Pedersen, N.C., Boyle, J.F., Immunologic phenomena in the effusive form of feline infectious peritonitis (1980) Am J Vet Res, 41, pp. 868-876; Takano, T., Kawakami, C., Yamada, S., Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection (2008) J Vet Med Sci, 70, pp. 1315-1321; Bálint, Á., Farsang, A., Szeredi, L., (2014) Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats, 169, pp. 154-162. , Vet Microbiol; Addie, D.D., Jarrett, O., Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats (2001) Vet Rec, 148, pp. 649-653; (2016) Manual of diagnostic tests and vaccines for terrestrial animals, , http://www.oie.int/international-standard-setting/terrestrial-manual/access-online/, accessed 26 January 2017","Marenzoni, M.L.; Department of Veterinary Medicine, University of Perugia, via S Costanzo 4, Italy; email: marialuisa.marenzoni@unipg.it",,"SAGE Publications Ltd",1098612X,,,"28840782","English","J. Feline Med. Surg.",Article,"Final",,Scopus,2-s2.0-85042537762 "Raabis S.M., Ollivett T.L., Cook M.E., Sand J.M., McGuirk S.M.","56112643000;26531615600;56566013400;18635314600;7003305156;","Health benefits of orally administered anti-IL-10 antibody in milk-fed dairy calves",2018,"Journal of Dairy Science","101","8",,"7375","7382",,1,"10.3168/jds.2017-14270","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047217236&doi=10.3168%2fjds.2017-14270&partnerID=40&md5=5ba5800f14655e94c878fe4e2c945262","Department of Medical Sciences, School of Veterinary Medicine, Madison, 53706, United States; Department of Animal Science, University of Wisconsin, Madison, 53706, United States","Raabis, S.M., Department of Medical Sciences, School of Veterinary Medicine, Madison, 53706, United States; Ollivett, T.L., Department of Medical Sciences, School of Veterinary Medicine, Madison, 53706, United States; Cook, M.E., Department of Animal Science, University of Wisconsin, Madison, 53706, United States; Sand, J.M., Department of Animal Science, University of Wisconsin, Madison, 53706, United States; McGuirk, S.M., Department of Medical Sciences, School of Veterinary Medicine, Madison, 53706, United States","The primary objective of this randomized controlled trial was to determine whether anti-IL-10 egg yolk antibodies fed upon arrival to a calf ranch would lower the prevalence of Cryptosporidium parvum shedding in naturally challenged preweaned dairy calves. The secondary objectives included measuring the effect of anti-IL-10 antibodies on calf health, performance, and shedding of less common diarrheal pathogens. A total of 133 calves, enrolled at 24 to 72 h of age, received a daily dose of 0.96 g of egg yolk powder with anti-IL-10 antibodies (MAB, n = 71) or without anti-IL-10 antibodies (MEP, n = 62) split between 2 feedings for the first 11 d on feed at a calf ranch. Daily health evaluations were completed for 15 d after arrival and on d 56. Digital weights were collected at enrollment and d 56, and hipometer weights were collected at enrollment and d 7 and 56. Packed cell volume and serum total protein concentration were measured at enrollment and on d 7 and 14. Fecal pH was measured at enrollment and on d 5 and 14, and fecal pathogen (C. parvum, coronavirus, rotavirus, and Salmonella spp.) shedding was assessed at d 5 and 14. Continuous outcomes were compared between groups using a Student's t-test or Wilcoxon rank sum test. Fecal pathogen shedding at d 14, respiratory disease at d 56, and antibiotic usage were compared using relative risk (RR) and chi-squared test. Fecal pH (median and interquartile range) on d 14 was 6.65 (6.39–6.99) and 6.52 (5.97–6.81) for MAB and MEP, respectively. On d 56, the risk of respiratory disease was lower for MAB compared with MEP (RR = 0.40; confidence interval = 0.16–0.99). The risk for antibiotic treatment was lower for MAB- compared with MEP-treated calves (RR = 0.38; confidence interval = 0.17–0.88). The risk of shedding rotavirus was higher in MAB (RR = 1.38; confidence interval = 1.10–1.81) calves. After multivariable analyses, hipometer weights (least squares means ± standard error) were 1.7 ± 0.8 kg greater on d 56 in MAB compared with MEP; however, ADG was 0.04 ± 0.02 kg/d lower in MAB calves. Total health score, diarrhea days, average respiratory score, packed cell volume, and serum total protein were not affected by feeding anti-IL-10 egg antibodies. In summary, feeding anti-IL-10 antibodies was associated with increased fecal pH, reduced risk of respiratory disease later in the preweaning period, and decreased antibiotic usage despite higher rotavirus infection. These findings might be associated with improved mucosal immunity, enhanced host defenses, or reduced susceptibility and warrant further investigation. © 2018 American Dairy Science Association","antibiotic alternative; bovine respiratory disease; Cryptosporidium parvum; fecal pH; neonatal calf diarrhea","interleukin 10; animal; bovine; cattle disease; Cryptosporidium parvum; feces; growth, development and aging; immunology; milk; parasitology; Animals; Cattle; Cattle Diseases; Cryptosporidium parvum; Feces; Interleukin-10; Milk","Berge, A.C., Moore, D.A., Sischo, W.M., Field trial evaluating the influence of prophylactic and therapeutic antimicrobial administration on antimicrobial resistance of fecal Escherichia coli in dairy calves (2006) Appl. Environ. Microbiol., 72, pp. 3872-3878. , 16751491; Campbell, L.D., Stewart, J.N., Mead, J.R., Susceptibility to Cryptosporidium parvum infections in cytokine- and chemokine-resistant knockout mice (2002) J. Parasitol., 88, pp. 1014-1016. , 12435147; Cho, Y.I., Kim, W.I., Lui, S., Kinyon, J.M., Yoon, K.J., Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces (2010) J. Vet. Diagn. Invest., 22, pp. 509-517. , 20622219; Cook, M.E., Trott, D.L., IgY—Immune component of eggs as a source of passive immunity for animals and humans (2010) Worlds Poult. Sci. J., 66, pp. 215-225; Cramer, M.C., Stanton, A.L., Associations between health status and the probability of approaching a novel object or stationary human in preweaned group-housed dairy calves (2015) J. Dairy Sci., 98, pp. 7298-7308. , 26254525; Dickinson Gibbons, J., Chakraborti, S., Nonparametric Statistical Inferences (2003), 4th Marcel Dekker Inc. New York, NY; Dingwell, R.T., Wallace, M.M., McLaren, C.J., Leslie, C.F., Leslie, K.E., An evaluation of two indirect methods of estimating body weight in Holstein calves and heifers (2006) J. Dairy Sci., 89, pp. 3992-3998. , 16960075; Diraviyam, T., Zhao, B., Wang, Y., Schade, R., Michael, A., Zhang, X., Effect of chicken egg yolk antibodies (IgY) against diarrhea in domesticated animals: A systematic review and meta-analysis (2014) PLoS One, 9, p. e97716. , 24846286; Keely, S., Talley, N.J., Hansbro, P.M., Pulmonary-intestinal cross-talk in mucosal inflammatory disease (2012) Mucosal Immunol., 5, pp. 7-18. , 22089028; Lee, J., Kang, H.E., Woo, J., Stability of orally administered immunoglobulins in the gastrointestinal tract (2012) J. Immunol. Methods, 384, pp. 143-147. , 22691618; McGhee, J.R., Fujihashi, K., Inside the mucosal immune system (2012) PLoS Biol., 10, p. e1001397; McGuirk, S.M., Disease management of dairy calves and heifers (2008) Vet. Clin. North Am. Food Anim. Pract., 24, pp. 139-153. , 18299036; McGuirk, S.M., Peek, S.F., Timely diagnosis of dairy calf respiratory disease using a standardized scoring system (2014) Anim. Health Res. Rev., 15, pp. 145-147. , 25410122; Mine, Y., Kovacs-Nolan, J., Chicken egg yolk antibodies as therapeutics in enteric infectious disease: A review (2002) J. Med. Food, 5, pp. 159-169; Nydam, D.V., Mohammed, H.O., Quantitative risk assessment of Cryptosporidium species infection in dairy calves (2005) J. Dairy Sci., 88, pp. 3932-3943. , 16230699; Sand, J.M., Arendt, M.K., Repasy, A., Deniz, G., Cook, M.E., Oral antibody to interleukin-10 reduces growth rate depression due to Eimeria spp. infection in broiler chickens (2016) Poult. Sci., 95, pp. 439-446. , 26772659; Sato, H., Fecal trimethylamine, lactate, and volatile fatty acid concentrations and their relationships with diarrhea in newborn dairy calves (2010) J. Vet. Med. Sci., 72, pp. 1551-1555. , 20675964; Shimomura, Y., Sato, H., Fecal D- and L-lactate, succinate, and volatile fatty acid levels in young dairy calves (2006) J. Vet. Med. Sci., 68, pp. 973-977. , 17019068; Smith, G., Antimicrobial decision making for enteric diseases of cattle (2015) Vet. Clin. North Am. Food Anim. Pract., 31, pp. 47-60. , 25705025; Vega, C., Bok, M., Chacana, P., Saif, L., Fernandez, F., Parreno, V., Egg yolk IgY: Protection against rotavirus induced diarrhea and modulatory effect on the systemic and mucosal antibody responses in newborn calves (2011) Vet. Immunol. Immunopathol., 142, pp. 156-169. , 21652087; Weaver, D.M., Tyler, J.W., Van Metre, D.C., Hostetler, D.E., Barrington, G.M., Passive transfer of colostral immunoglobulins in calves (2000) J. Vet. Intern. Med., 14, pp. 569-577. , 11110376; Windeyer, M.C., Leslie, K.E., Godden, S.M., Hodgins, D.C., Lissemore, K.D., LeBlanc, S.J., Factors associated with morbidity, mortality and growth of dairy calves up to 3 months of age (2014) Prev. Vet. Med., 113, pp. 231-240. , 24269039; Wyatt, C.R., Barrett, W.J., Brackett, E.J., Schaefer, D.A., Riggs, M.W., Association of IL-10 expression by mucosal lymphocytes with increased expression of Cryptosporidium parvum epitopes in infected epithelium (2002) J. Parasitol., 88, pp. 281-286. , 12053998; Wyatt, C.R., Brackett, E.J., Savidge, J., Evidence for the emergence of a Type-1-like immune response in intestinal mucosa of calves recovering from cryptosporidiosis (2001) J. Parasitol., 87, pp. 90-95. , 11227908; Wyatt, C.R., Riggs, M.W., Fayer, R., Cryptosporidiosis in neonatal calves (2010) Vet. Clin. North Am. Food Anim. Pract., 26, pp. 89-103. , 20117545; Yokoyama, H., Peralta, R.C., Umeda, K., Hashi, T., Icatlo, F.C., Jr., Kuroki, M., Ikemori, Y., Kodama, Y., Prevention of fatal salmonellosis in neonatal calves, using orally administered chicken egg yolk Salmonella-specific antibodies (1998) Am. J. Vet. Res., 59, pp. 416-420. , 9563623","McGuirk, S.M.; Department of Medical Sciences, School of Veterinary MedicineUnited States; email: sheila.mcguirk@wisc.edu",,"Elsevier Inc.",00220302,,,"29778481","English","J. Dairy Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85047217236 "Zhou Y., Jiang S., Du L.","57191653017;56491898300;8686996200;","Prospects for a MERS-CoV spike vaccine",2018,"Expert Review of Vaccines","17","8",,"677","686",,9,"10.1080/14760584.2018.1506702","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052958867&doi=10.1080%2f14760584.2018.1506702&partnerID=40&md5=7d3b3ee933b8337c4274b8e5dab68c7f","State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China","Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Jiang, S., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States","Introduction: Six years have passed since Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), a newly emerging infectious virus, was first reported in 2012. Although MERS-CoV has had a consistently high mortality rate in humans, no vaccines have been approved to prevent MERS-CoV infection in humans. MERS-CoV spike (S) protein is a key target for development of MERS vaccines. Areas covered: In this review, we illustrate the structure and function of S protein as a vaccine target, describe available animal models for evaluating MERS vaccines, and summarize recent progress on MERS-CoV S-based vaccines, focusing on their ability to elicit antibody and/or cellular immune responses, neutralizing antibodies, and protection against MERS-CoV infection in different models. Prospects for future MERS-CoV S-based vaccines are discussed. Expert commentary: The majority of MERS vaccines under development are based on MERS-CoV S protein, including full-length S, S1, and receptor-binding domain (RBD). While it is essential to evaluate the safety of full-length S and S1-based MERS vaccines, further improvement of the efficacy of RBD-based vaccines using novel strategies would be necessary. Overall, this review provides informative guidance for designing and developing safe and effective MERS vaccines based on viral S protein. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.","immune responses; MERS; MERS-CoV; neutralizing antibodies; protection; receptor-binding domain; spike protein; vaccine","neutralizing antibody; virus spike protein; virus vaccine; vitronectin; coronavirus spike glycoprotein; neutralizing antibody; protein binding; virus vaccine; animal model; cellular immunity; clinical evaluation; drug efficacy; human; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; nonhuman; priority journal; Review; virus spike; animal; Coronavirus infection; immunology; Middle East respiratory syndrome coronavirus; virology; Animals; Antibodies, Neutralizing; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Protein Binding; Spike Glycoprotein, Coronavirus; Viral Vaccines","Zaki, A.M., van, B.S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, cited 2018, Available from; Chen, X., Chughtai, A.A., Dyda, A., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg Microbes Infect, 6 (6), p. e51; Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015-February 2016 (2017) Emerg Infect Dis, 23 (4), pp. 682-685; List of Blueprint priority diseases, , http://www.who.int/blueprint/priority-diseases/en/, cited 2018, Available from; Munster, V.J., Adney, D.R., van, D.N., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci Rep, 6, p. 21878; Anthony, S.J., Gilardi, K., Menachery, V.D., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8 (2); Ali, M.A., Shehata, M.M., Gomaa, M.R., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect, 6 (1), p. e1; Falzarano, D., Kamissoko, B., de, W.E., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Ali, M., El-Shesheny, R., Kandeil, A., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22 (11); Sikkema, R.S., Farag, E.A.B.A., Himatt, S., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013–2014: A case-control study (2017) J Infect Dis, 215 (11), pp. 1702-1705; Alhakeem, R.F., Midgley, C.M., Assiri, A.M., Exposures among MERS case-patients, Saudi Arabia, january-february 2016 (2016) Emerg Infect Dis, 22 (11), pp. 2020-2022; Yusof, M.F., Queen, K., Eltahir, Y.M., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg Microbes Infect, 6 (11), p. e101; Du, L., He, Y., Zhou, Y., The spike protein of SARS-CoV–a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7 (3), pp. 226-236; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2018) Am J Infect Control, 46 (2), pp. 165-168; Hunter, J.C., Nguyen, D., Aden, B., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22 (4), pp. 647-656; Azhar, E.I., Lanini, S., Ippolito, G., The Middle East respiratory syndrome coronavirus - A continuing risk to global health security (2017) Adv Exp Med Biol, 972, pp. 49-60; Du, L., Yang, Y., Zhou, Y., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin Ther Targets, 21 (2), pp. 131-143; Du, L., Tai, W., Zhou, Y., Vaccines for the prevention against the threat of MERS-CoV (2016) Expert Rev Vaccines, 15 (9), pp. 1123-1134; Batool, M., Shah, M., Patra, M.C., Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism (2017) Sci Rep, 7 (1), p. 11362; Hao, W., Wojdyla, J.A., Zhao, R., Crystal structure of Middle East respiratory syndrome coronavirus helicase (2017) PLoS Pathog, 13 (6), p. e1006474; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere, 2, p. 6; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, p. 4; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89 (4), pp. 1954-1964; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Chen, Y., Rajashankar, K.R., Yang, Y., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, pp. 10777-10783. , 87(19; Wang, N., Shi, X., Jiang, L., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Lu, L., Liu, Q., Zhu, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Pallesen, J., Wang, N., Corbett, K.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci U S A, 114 (35), pp. E7348-E7357; Haagmans, B.L., van den Brand, J.M., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (6268), pp. 77-81; Zhang, N., Channappanavar, R., Ma, C., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13 (2), pp. 180-190; Tai, W., Zhao, G., Sun, S., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Luke, T., Wu, H., Zhao, J., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Transl Med, 8 (326), p. 326ra21; Beigel, J.H., Voell, J., Kumar, P., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect Dis, , 18(4):410–418; Houser, K.V., Gretebeck, L., Ying, T., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213 (10), pp. 1557-1561; van, D.N., Falzarano, D., Ying, T., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37; Zhao, G., He, L., Sun, S., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J Virol; van, D.N., Hijazeen, Z.S., Holloway, P., High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis, 17 (2), pp. 155-159; Adney, D.R., Brown, V.R., Porter, S.M., Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding (2016) Viruses, 8, p. 8; Adney, D.R., van, D.N., Brown, V.R., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20 (12), pp. 1999-2005; Yao, Y., Bao, L., Deng, W., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209 (2), pp. 236-242; Falzarano, D., de, W.E., Feldmann, F., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10 (8), p. e1004250; de, W.E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110 (41), pp. 16598-16603; Yu, P., Xu, Y., Deng, W., Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus (2017) PLoS One, 12 (2); Agrawal, A.S., Garron, T., Tao, X., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89 (7), pp. 3659-3670; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112 (28), pp. 8738-8743; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111 (13), pp. 4970-4975; Tao, X., Garron, T., Agrawal, A.S., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory dyndrome coronavirus infection and disease (2015) J Virol, 90 (1), pp. 57-67; Zhao, G., Jiang, Y., Qiu, H., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) PLoS One, 10 (12); Cockrell, A.S., Yount, B.L., Scobey, T., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci U S A, 114 (15), pp. E3119-E3128; Coleman, C.M., Venkataraman, T., Liu, Y.V., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35 (12), pp. 1586-1589; Jiaming, L., Yanfeng, Y., Yao, D., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35 (1), pp. 10-18; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Sci Rep, 7, p. 44875; Kim, E., Okada, K., Kenniston, T., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32 (45), pp. 5975-5982; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7 (301), p. 301ra132; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Wang, C., Zheng, X., Gai, W., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8 (8), pp. 12686-12694; Coleman, C.M., Liu, Y.V., Mu, H., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32 (26), pp. 3169-3174; Munster, V.J., Wells, D., Lambe, T., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28; Volz, A., Kupke, A., Song, F., Protective efficacy of recombinant modified vaccinia virus Ankara (MVA) delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89 (16), pp. 8651-8656; Phase, I., Open label dose ranging safety study of GLS-5300 in healthy volunteers, , https://clinicaltrials.gov/ct2/show/NCT02670187?cond=MERS&rank=21, cited 2016 Jul27, Available from; Safety and immunogenicity of a candidate MERS-CoV vaccine (MERS001), , https://clinicaltrials.gov/ct2/show/NCT03399578?cond=mers-cov&rank=6, cited 2018 Jan16, Available from; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35 (30), pp. 3780-3788; Guo, X., Deng, Y., Chen, H., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484; Song, F., Fux, R., Provacia, L.B., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87 (21), pp. 11950-11954; Malczyk, A.H., Kupke, A., Prufer, S., A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant Measles virus vaccine platform (2015) J Virol, 89 (22), pp. 11654-11667; Liu, R., Wang, J., Shao, Y., A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization (2018) Antiviral Res, 150, pp. 30-38; Wirblich, C., Coleman, C.M., Kurup, D., One-health: a safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus (2017) J Virol, 91, p. 2; Chi, H., Zheng, X., Wang, X., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35 (16), pp. 2069-2075; Wang, C., Zheng, X., Gai, W., Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antiviral Res, 140, pp. 55-61; Lan, J., Yao, Y., Deng, Y., Recombinant receptor binding domain protein induces partial protective immunity in Rhesus Macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, , 2(10):1438-1446; Tai, W., Wang, Y., Fett, C.A., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91, p. 1; Du, L., Tai, W., Yang, Y., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat Commun, 7, p. 13473; Ma, C., Wang, L., Tao, X., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32 (46), pp. 6170-6176; Du, L., Zhao, G., Kou, Z., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J Virol, 87 (17), pp. 9939-9942; Zhang, N., Tang, J., Lu, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res, 202, pp. 151-159; Mou, H., Raj, V.S., van Kuppeveld, F.J., The receptor binding domain of the new MERS coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87 (16), pp. 9379-9383; Lan, J., Deng, Y., Chen, H., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS One, 9 (11); Nyon, M.P., Du, L., Tseng, C.K., Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen (2018) Vaccine, 36 (14), pp. 1853-1862; Tang, J., Zhang, N., Tao, X., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum Vaccin Immunother, 11 (5), pp. 1244-1250; Wang, Y., Tai, W., Yang, J., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum Vaccin Immunother, , 13(7):1615-1624; Ma, C., Li, Y., Wang, L., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108; Yang, Y., Deng, Y., Wen, B., The amino acids 736-761 of the MERS-CoV spike protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents (2014) Viral Immunol, 27 (10), pp. 543-550; Jaume, M., Yip, M.S., Kam, Y.W., SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement (2012) Hong Kong Med J, 18, pp. 31-36; Weingartl, H., Czub, M., Czub, S., Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets (2004) J Virol, 78 (22), pp. 12672-12676; Czub, M., Weingartl, H., Czub, S., Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets (2005) Vaccine, 23 (17-18), pp. 2273-2279; Wang, Q., Zhang, L., Kuwahara, K., Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates (2016) ACS Infect Dis, 2 (5), pp. 361-376; He, Y., Lu, H., Siddiqui, P., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J Immunol, 174 (8), pp. 4908-4915; He, Y., Li, J., Li, W., Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein (2006) J Immunol, 176 (10), pp. 6085-6092; Wang, L., Shi, W., Chappell, J.D., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape (2018) J Virol; Sekaly, R.P., The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? (2008) J Exp Med, 205 (1), pp. 7-12; Clinical alert: Immunizations are discontinued in two HIV vaccine trials, , https://www.nlm.nih.gov/databases/alerts/hiv_step_study.html, cited 2018, Available from; Knox, R., Failure of latest HIV vaccine test: A ‘huge disappointment’, , https://www.npr.org/sections/health-shots/2013/04/26/179231916/, cited 2013 Apr26, Available from; Zhao, J., Zhao, J., Mangalam, A.K., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44 (6), pp. 1379-1391; Coleman, C.M., Sisk, J.M., Halasz, G., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91 (1)","Du, L.; Lindsley F. Kimball Research Institute, New York Blood CenterUnited States; email: ldu@nybc.org",,"Taylor and Francis Ltd",14760584,,ERVXA,"30058403","English","Expert Rev. Vaccines",Review,"Final",,Scopus,2-s2.0-85052958867 "Watanabe R., Eckstrand C., Liu H., Pedersen N.C.","56036804700;55341190000;36480358500;7202299909;","Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq",2018,"Veterinary Research","49","1", 81,"","",,2,"10.1186/s13567-018-0578-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051198505&doi=10.1186%2fs13567-018-0578-y&partnerID=40&md5=f044697d8dd6192824c2d892b726f481","Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States; Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States","Watanabe, R., Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States; Eckstrand, C., Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States; Liu, H., Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States; Pedersen, N.C., Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States","Laboratory cats were infected with a serotype I cat-passaged field strain of FIP virus (FIPV) and peritoneal cells harvested 2-3 weeks later at onset of lymphopenia, fever and serositis. Comparison peritoneal cells were collected from four healthy laboratory cats by peritoneal lavage and macrophages predominated in both populations. Differential mRNA expression analysis identified 5621 genes as deregulated in peritoneal cells from FIPV infected versus normal cats; 956 genes showed > 2.0 Log2 Fold Change (Log2FC) and 1589 genes showed < −2.0 Log2FC. Eighteen significantly upregulated pathways were identified by InnateDB enrichment analysis. These pathways involved apoptosis, cytokine-cytokine receptor interaction, pathogen recognition, Jak-STAT signaling, NK cell mediated cytotoxicity, several chronic infectious diseases, graft versus host disease, allograft rejection and certain autoimmune disorders. Infected peritoneal macrophages were activated M1 type based on pattern of RNA expression. Apoptosis was found to involve large virus-laden peritoneal macrophages more than less mature macrophages, suggesting that macrophage death played a role in virus dissemination. Gene transcripts for MHC I but not II receptors were upregulated, while mRNA for receptors commonly associated with virus attachment and identified in other coronaviruses were either not detected (APN, L-SIGN), not deregulated (DDP-4) or down-regulated (DC-SIGN). However, the mRNA for FcγRIIIA (CD16A/ADCC receptor) was significantly upregulated, supporting entry of virus as an immune complex. Analysis of KEGG associated gene transcripts indicated that Th1 polarization overshadowed Th2 polarization, but the addition of relevant B cell associated genes previously linked to FIP macrophages tended to alter this perception. © 2018 The Author(s).",,"B cell lymphoma/leukemia 10; caspase 10; caspase 8; CD18 antigen; colony stimulating factor; colony stimulating factor 1; Fas ligand; gamma interferon receptor 1; I kappa B; interferon regulatory factor 3; interferon regulatory factor 5; interleukin 10; interleukin 12p40; interleukin 13 receptor alpha2; interleukin 4; interleukin 4 receptor; interleukin 6; Janus kinase 2; major histocompatibility antigen class 1; major histocompatibility antigen class 2; mannose receptor; messenger RNA; mitogen activated protein kinase 14; peroxisome proliferator activated receptor; protein BAD; STAT1 protein; STAT2 protein; toll like receptor 4; tumor necrosis factor receptor associated factor 2; unindexed drug; animal cell; animal experiment; animal model; animal tissue; apoptosis; Article; autoimmune disease; controlled study; cytotoxicity; down regulation; feline infectious peritonitis; Feline infectious peritonitis virus; feline model; fluorometry; gene expression regulation; genetic transcription; histopathology; immune response; immunofluorescence test; immunohistochemistry; infection; inflammation; JAK-STAT signaling; lymphocytopenia; mRNA expression level; nonhuman; peritoneum cell; phagocytosis; real time polymerase chain reaction; RNA sequence; signal transduction; TUNEL assay; upregulation; virus entry; animal; cat; cat disease; cell culture; epithelium cell; Feline coronavirus; feline infectious peritonitis; pathophysiology; physiology; polymerase chain reaction; sequence analysis; veterinary medicine; virology; Animals; Cat Diseases; Cats; Cells, Cultured; Coronavirus, Feline; Epithelial Cells; Feline Infectious Peritonitis; Polymerase Chain Reaction; Sequence Analysis, RNA","Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet Microbiol, 175, pp. 157-166. , 25532961; Foley, J.E., Lapointe, J.M., Koblik, P., Poland, A., Pedersen, N.C., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J Vet Intern Med, 12, pp. 415-423. , 9857333; Mesquita, L.P., Hora, A.S., De Siqueira, A., Salvagni, F.A., Brandão, P.E., Maiorka, P.C., Glial response in the central nervous system of cats with feline infectious peritonitis (2016) J Feline Med Surg, 18, pp. 1023-1030. , 26581471; Van Hamme, E., Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., Attachment and internalization of feline infectious peritonitis virus in feline blood monocytes and Crandell feline kidney cells (2007) J Gen Virol, 88, pp. 2527-2532. , 17698663; Tekes, G., Thiel, H.J., Feline coronaviruses: pathogenesis of feline infectious peritonitis (2016) Adv Virus Res, 96, pp. 193-218. , 27712624; Dewerchin, H.L., Desmarets, L.M., Noppe, Y., Nauwynck, H.J., Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes (2014) Vet Res, 45, p. 17. , 24517254 3937040; Olsen, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., Scott, F.W., Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages (1992) J Virol, 66, pp. 956-965. , 1309922 240797; Petersen, N.C., Boyle, J.F., Immunologic phenomena in the effusive form of feline infectious peritonitis (1980) Am J Vet Res, 41, pp. 868-876. , 6254400; Takano, T., Tomiyama, Y., Katoh, Y., Nakamura, M., Satoh, R., Hohdatsu, T., Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats (2011) Virus Res, 156, pp. 72-80. , 21211540; Dean, G.A., Olivry, T., Stanton, C., Pedersen, N.C., In vivo cytokine response to experimental feline infectious peritonitis virus infection (2003) Vet Microbiol, 97, pp. 1-12. , 14637034; Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Apoptosis and T-cell depletion during feline infectious peritonitis (1996) J Virol, 70, pp. 8977-8983. , 8971027 190995; Kim, Y., Liu, H., Kankanamalage, A.C.G., Weersekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog, 12, p. e1005531. , 27027316 4814111; Pedersen, N.C., Kim, Y., Liu, H., Kankanamalage, A.C.G., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2018) J Feline Med Surg, 20, pp. 378-392. , 28901812; Jenner, R.G., Young, R.A., Insights into host responses against pathogens from transcriptional profiling (2005) Nat Rev Microbiol, 3, pp. 281-294. , 15806094; Harun, M.S., Kuan, C., Selvarajah, G., Wei, T.S., Arshad, S.S., Bejo, M.H., Omar, A.R., Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats (2013) Virol J, 10, p. 3299; Wilk, E., Pandey, A.K., Leist, S.R., Hatesuer, B., Preusse, M., Pommerenke, C., Wang, J., Schughart, K., RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection (2015) BMC Genomics, 16, p. 655. , 26329040 4557482; Moore, P.F., A review of histiocytic diseases of dogs and cats (2014) Vet Pathol, 51, pp. 167-184. , 24395976; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data (2014) Bioinformatics, 30, pp. 2114-2120. , 24695404 4103590; Dobin, A., Gingeras, T.R., Mapping RNA-seq reads with STAR (2015) Curr Protoc Bioinform, 51, pp. 11.14.1-11.14.19; Trapnell, C., Roberts, A., Goff, L., Pertea, F., Kim, D., Kelley, D.R., Pimentel, H., Pachter, L., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks (2012) Nat Protoc, 7, pp. 562-578. , 22383036 3334321; Anders, S., Huber, W., Differential expression analysis for sequence count data (2010) Genome Biol, 11, p. R106. , 20979621 3218662; Breuer, K., Foroushani, A.K., Laird, M.R., Chen, C., Sribnaia, A., Lo, R., Winsor, G.L., Lynn, D.J., InnateDB: systems biology of innate immunity and beyond - recent updates and continuing curation (2013) Nucleic Acids Res, 41, pp. D1228-D1233. , 23180781; Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., KEGG: new perspectives on genomes, pathways, diseases and drugs (2017) Nucleic Acids Res, 45, pp. D353-D361. , 27899662; Mehrbod, P., Harun, M.S.R., Shuid, A.N., Omar, A.R., Transcriptome analysis of feline infectious peritonitis virus infection (2015) Methods Mol Biol, 1282, pp. 241-250. , 25720485; Shuid, A.N., Safi, N., Haghani, A., Mehrbod, P., Haron, M.S., Tan, S.W., Omar, A.R., Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells (2015) Apoptosis, 20, pp. 1457-1470. , 26386572; Koussounadis, A., Langdon, S.P., Um, I.H., Harrison, D.J., Smith, V.A., Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system (2015) Sci Rep, 5, p. 10775. , 26053859 4459080; Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., Tyagi, S., Stochastic mRNA synthesis in mammalian cells (2006) PLoS Biol, 4, p. e309. , 17048983 1563489; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet J, 201, pp. 123-132. , 24837550; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J Feline Med Surg, 11, pp. 225-258. , 19254859; Snider, R.W., Tuberculosis in canine and feline populations. Review of the literature (1971) Am Rev Respir Dis, 104, pp. 877-887. , 4942216; Benoit, M., Desnues, B., Mege, J.L., Macrophage polarization in bacterial infections (2008) J Immunol, 181, pp. 3733-3739. , 18768823; Lee, J., Remold, H.G., Ieong, M.H., Kornfeld, H., Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway (2006) J Immunol, 176, pp. 4267-4274. , 16547264; McBride, R., Van Zyl, M., Fielding, B., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018. , 25105276 4147684; Verheije, M.H., Hagemeijer, M.C., Ulasli, M., Reggiori, F., Rottier, P.J., Masters, P.S., De Haan, C.A., The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes (2010) J Virol, 84, pp. 11575-11579. , 20739524 2953146; Lee, J., Repasy, T., Papavinasasundaram, K., Sassetti, C., Kornfeld, H., Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages (2011) PLoS ONE, 6, p. e18367. , 21483832 3069075; Liu, C.H., Liu, H., Ge, B., Innate immunity in tuberculosis: host defense vs pathogen evasion (2017) Cell Mol Immunol, 14, pp. 963-975. , 28890547; Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., Absence of antibody-dependent, complement-mediated lysis of feline infectious peritonitis virus-infected cells (2009) Virus Res, 144, pp. 285-289. , 19720244; Hewitt, E.W., The MHC class I antigen presentation pathway: strategies for viral immune evasion (2003) Immunology, 110, pp. 163-169. , 14511229 1783040; Frei, R., Steinle, J., Birchler, T., Loeliger, S., Roduit, C., Steinhoff, D., Seibl, R., Lauener, R.P., MHC class II molecules enhance Toll-like receptor mediated innate immune responses (2010) PLoS ONE, 5, p. e8808. , 20098705 2808354; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89, pp. 1954-1964. , 25428871; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J Virol, 70, pp. 8669-8674. , 8970993 190961; Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., Differences in virus receptor for type I and type II feline infectious peritonitis virus (1998) Arch Virol, 143, pp. 839-850. , 9645192; Dye, C., Temperton, N., Siddell, S.G., Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) J Gen Virol, 88, pp. 1753-1760. , 17485536 2584236; Takano, T., Katada, Y., Moritoh, S., Ogasawara, M., Satoh, K., Satoh, R., Tanabe, M., Hohdatsu, T., Analysis of the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection: aminopeptidase N is not important and a process of acidification of the endosome is necessary (2008) J Gen Virol, 89, pp. 1025-1029. , 18343845; Van Hamme, E., Desmarets, L., Dewerchin, H.L., Nauwynck, H.J., Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes (2011) Virus Res, 160, pp. 32-39. , 21600938; Regan, A.D., Whittaker, G.R., Utilization of DC-SIGN for entry of feline coronaviruses into host cells (2008) J Virol, 82, pp. 11992-11996. , 18799586 2583691; Jeffers, S.A., Hemmila, E.M., Holmes, K.V., Human coronavirus 229E can use CD209L (L-Sign) to enter cells (2006) Adv Exp Med Biol, 581, pp. 265-269. , 17037540; Gardner, J.P., Durso, R.J., Arrigale, R.R., Donovan, G.P., Maddon, P.J., Dragic, T., Olson, W.C., L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus (2003) Proc Natl Acad Sci USA, 100, pp. 4498-4503. , 12676990; Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houlès, C., Fieschi, F., Déchanet-Merville, J., Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection (2002) Immunity, 17, pp. 653-664. , 12433371; Geijtenbeek, T.B., Kwon, D.S., Torensma, R., Van Duijnhoven, G.C., Middel, J., Comelissen, I.L., Nottet, H.S., Van Kooyk, Y., DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells (2000) Cell, 100, pp. 587-597. , 10721995; Engering, A., Geijtenbeek, T.B.H., Van Vliet, S.J., Wijers, M., Van Liempt, E., Demaurex, N., Lanzacecchia, A., Van Kooyk, Y., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells (2002) J Immunol, 168, pp. 2118-2126. , 11859097; Ludwig, I.S., Lekkerkerker, A.N., Depla, E., Bosman, F., Musters, R.J., Depraetere, S., Van Kooyk, Y., Geijtebeek, T.B., Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation (2004) J Virol, 78, pp. 8322-8332. , 15254204 446128; Van Kooyk, Y., Geijtenbeek, T.B.H., DC-SIGN: escape mechanism for pathogens (2003) Nat Rev Immunol, 3, pp. 697-709. , 12949494; Okano, M., Satoskar, A.R., Nishizaki, K., Abe, M., Harn, D.A., Jr., Induction of Th2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens (1999) J Immunol, 163, pp. 6712-6717. , 10586068; Tailleux, L., Schwartz, O., Herrmann, J.L., Pivert, E., Jackson, M., Amara, A., Legres, L., Neyrolles, O., DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells (2003) J Exp Med, 197, pp. 121-127. , 12515819 2193794; Nimmerjahn, F., Ravetch, J.V., Fcγ receptors as regulators of immune responses (2008) Nat Rev Immunol, 8, pp. 34-47. , 18064051; Anderson, R., Manipulation of cell surface macromolecules by flaviviruses (2003) Adv Virus Res, 159, pp. 229-274; Pedersen, N.C., Virologic and immunologic aspects of feline infectious peritonitis virus infection (1987) Adv Exp Med Biol, 218, pp. 529-550. , 2829567; Medzhitov, R., Recognition of microorganisms and activation of the immune response (2007) Nature, 449, pp. 819-826. , 17943118; Thi, E.P., Lambertz, U., Reiner, N.E., Sleeping with the enemy: how intracellular pathogens cope with a macrophage lifestyle (2012) PLoS Pathog, 8, p. e100255; Rossi, G., Cornaro, C., Battilani, M., Pocacqua, V., Paltrinieri, S., Production of IFN-γ in feline whole blood after incubation with potential T-cell epitopes of the nucleocapsid protein of feline coronavirus (2011) Vet Microbiol, 150, pp. 248-256. , 21376481; Weiss, R.C., Cox, N.R., Evaluation of immunity to feline infectious peritonitis in cats with cutaneous viral-induced delayed hypersensitivity (1989) Vet Immunol Immunopathol, 21, pp. 293-309. , 2552650; Pedersen, N.C., Theilen, G., Keane, M.A., Fairbanks, L., Mason, T., Orser, B., Che, C.H., Allison, C., Studies of naturally transmitted feline leukemia virus infection (1977) Am J Vet Res, 38, pp. 1523-1531. , 201187; Homberger, F.R., Enterotropic mouse hepatitis virus (1997) Lab Anim, 31, pp. 97-115. , 9175007; Kyuwa, S., Tagawa, Y., Shibata, S., Doi, K., Machii, K., Iwakura, Y., Murine coronavirus-induced subacute fatal peritonitis in C57BL/6 mice deficient in gamma interferon (1998) J Virol, 72, pp. 9286-9290. , 9765476 110348; Compton, S.R., Ball-Goodrich, L.J., Johnson, L.K., Johnson, E.A., Paturzo, F.X., Macy, J.D., Pathogenesis of enterotropic mouse hepatitis virus in immunocompetent and immunodeficient mice (2004) Comp Med, 54, pp. 681-689. , 15679267; Takano, T., Azuma, N., Hashida, Y., Satoh, R., Hohdatsu, T., B-cell activation in cats with feline infectious peritonitis (FIP) by FIP-virus-induced B-cell differentiation/survival factors (2009) Arch Virol, 154, pp. 27-35. , 19043660; Wykes, M., Why do B cells produce CD40 ligand? (2003) Immunol Cell Biol, 81, pp. 328-331. , 12848855; Schneider, P., MacKay, F., Steiner, V., Hofmann, K., Bodmer, J.L., Holler, N., Ambrose, C., Tschopp, J., BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth (1999) J Exp Med, 189, pp. 1747-1756. , 10359578 2193079; Minnich, M., Tagoh, H., Bönelt, P., Axelsson, E., Fischer, M., Cebolla, B., Tarakhovsky, A., Busslinger, M., Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation (2016) Nat Immunol, 17, pp. 331-343. , 26779602 5790184","Pedersen, N.C.; Center for Companion Animal Health, School of Veterinary Medicine, University of CaliforniaUnited States; email: ncpedersen@ucdavis.edu",,"BioMed Central Ltd.",09284249,,VEREE,"30086792","English","Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85051198505 "Raj V.S., Okba N.M.A., Gutierrez-Alvarez J., Drabek D., van Dieren B., Widagdo W., Lamers M.M., Widjaja I., Fernandez-Delgado R., Sola I., Bensaid A., Koopmans M.P., Segalés J., Osterhaus A.D.M.E., Bosch B.J., Enjuanes L., Haagmans B.L.","55552487100;56807221300;57191845034;6602828815;57195938065;56387603500;56303249700;26026520100;55986933600;7003336781;7005940684;7006736989;7005525215;55533604400;7003681993;7006565392;6701371301;","Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection",2018,"Science Advances","4","8", eaas9667,"","",,12,"10.1126/sciadv.aas9667","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051389156&doi=10.1126%2fsciadv.aas9667&partnerID=40&md5=676d4bc3b2923bda157cb245b74916d7","Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Department of Molecular and Cell Biology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain; Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal [CReSA, IRTA–Universitat Autònoma de Barcelona (UAB)], Campus de la UAB, Bellaterra, 08193, Spain; UAB, CReSA (IRTA-UAB), Campus de la UAB, Bellaterra, 08193, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, 08193, Spain; Artemis One Health, Utrecht, Netherlands; Center for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany; School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Kerala, India","Raj, V.S., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Kerala, India; Okba, N.M.A., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Gutierrez-Alvarez, J., Department of Molecular and Cell Biology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain; Drabek, D., Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands; van Dieren, B., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Widagdo, W., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Lamers, M.M., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Widjaja, I., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Fernandez-Delgado, R., Department of Molecular and Cell Biology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain; Sola, I., Department of Molecular and Cell Biology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain; Bensaid, A., Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal [CReSA, IRTA–Universitat Autònoma de Barcelona (UAB)], Campus de la UAB, Bellaterra, 08193, Spain; Koopmans, M.P., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Segalés, J., UAB, CReSA (IRTA-UAB), Campus de la UAB, Bellaterra, 08193, Spain, Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, 08193, Spain; Osterhaus, A.D.M.E., Artemis One Health, Utrecht, Netherlands, Center for Infection Medicine and Zoonoses Research, University of Veterinary Medicine, Hannover, Germany; Bosch, B.J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Enjuanes, L., Department of Molecular and Cell Biology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain; Haagmans, B.L., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands","Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause outbreaks in humans as a result of spillover events from dromedaries. In contrast to humans, MERS-CoV–exposed dromedaries develop only very mild infections and exceptionally potent virus-neutralizing antibody responses. These strong antibody responses may be caused by affinity maturation as a result of repeated exposure to the virus or by the fact that dromedaries—apart from conventional antibodies—have relatively unique, heavy chain–only antibodies (HCAbs). These HCAbs are devoid of light chains and have long complementarity-determining regions with unique epitope binding properties, allowing them to recognize and bind with high affinity to epitopes not recognized by conventional antibodies. Through direct cloning and expression of the variable heavy chains (VHHs) of HCAbs from the bone marrow of MERS-CoV–infected dromedaries, we identified several MERS-CoV–specific VHHs or nanobodies. In vitro, these VHHs efficiently blocked virus entry at picomolar concentrations. The selected VHHs bind with exceptionally high affinity to the receptor binding domain of the viral spike protein. Furthermore, camel/human chimeric HCAbs—composed of the camel VHH linked to a human Fc domain lacking the CH1 exon—had an extended half-life in the serum and protected mice against a lethal MERS-CoV challenge. HCAbs represent a promising alternative strategy to develop novel interventions not only for MERS-CoV but also for other emerging pathogens. Copyright © 2018 The Authors.",,"Binding energy; Chains; Epitopes; Viruses; Affinity maturation; Antibody response; Binding properties; Complementarity-determining regions; Direct cloning; Heavy-chain antibodies; Neutralizing antibodies; Receptor-binding domains; Antibodies; nanobody; neutralizing antibody; protein binding; virus antibody; animal; biosynthesis; camel; Coronavirus infection; drug effect; female; human; immunology; male; Middle East respiratory syndrome coronavirus; mouse; serodiagnosis; virology; virus entry; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelus; Coronavirus Infections; Female; Humans; Male; Mice; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Protein Binding; Single-Domain Antibodies; Virus Internalization","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Cauchemez, S., Nouvellet, P., Cori, A., Jombart, T., Garske, T., Clapham, H., Moore, S., Ferguson, N.M., Unraveling the drivers of MERS-CoV transmission (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 9081-9086; Raj, V.S., Farag, E.A.B.A., Reusken, C.B.E.M., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Haagmans, B.L., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Al-Tawfiq, J.A., Memish, Z.A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Tang, X.-C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Marasco, W.A., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. E2018-E2026; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 10473-10478; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre- And postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 8738-8743; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Mou, H., Raj, V.S., Van Kuppeveld, F.J.M., Rottier, P.J.M., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Alhabbab, R.Y., Hashem, A.M., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Sci. Rep., 7, p. 44875; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Yan, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.-M.V., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6, p. 234ra59; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Tseng, C.-T.K., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci. Rep., 6, p. 31629; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Wang, X., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep., 5, p. 13133; Chames, P., Van Regenmortel, M., Weiss, E., Baty, D., Therapeutic antibodies: Successes, limitations and hopes for the future (2009) Br. J. Pharmacol., 157, pp. 220-233; Spadiut, O., Capone, S., Krainer, F., Glieder, A., Herwig, C., Microbials for the production of monoclonal antibodies and antibody fragments (2014) Trends Biotechnol, 32, pp. 54-60; Irani, V., Guy, A.J., Andrew, D., Beeson, J.G., Ramsland, P.A., Richards, J.S., Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases (2015) Mol. Immunol., 67, pp. 171-182; Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers, C., Songa, E.B., Bendahman, N., Hammers, R., Naturally occurring antibodies devoid of light chains (1993) Nature, 363, pp. 446-448; Muyldermans, S., Nanobodies: Natural single-domain antibodies (2013) Annu. Rev. Biochem., 82, pp. 775-797; De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S., Wyns, L., Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 4586-4591; Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., Backmann, N., Leonhardt, H., Targeting and tracing antigens in live cells with fluorescent nanobodies (2006) Nat. Methods, 3, pp. 887-889; Hassanzadeh-Ghassabeh, G., Devoogdt, N., De Pauw, P., Vincke, C., Muyldermans, S., Nanobodies and their potential applications (2013) Nanomedicine, 8, pp. 1013-1026; Peyvandi, F., Scully, M., Kremer Hovinga, J.A., Cataland, S., Knöbl, P., Wu, H., Artoni, A., Tersago, D., Caplacizumab for acquired thrombotic thrombocytopenic purpura (2016) N. Engl. J. Med., 374, pp. 511-522; Vanlandschoot, P., Stortelers, C., Beirnaert, E., Ibañez, L.I., Schepens, B., Depla, E., Saelens, X., Nanobodies®: New ammunition to battle viruses (2011) Antiviral Res, 92, pp. 389-407; Farag, E.A.B.A., Reusken, C.B.E.M., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Voermans, J., Koopmans, M.P.G., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect. Ecol. Epidemiol., 5, p. 28305; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A.M., Bosch, B.-J., Park, S.S., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Haagmans, B.L., van den Brand, J.M.A., Stalin Raj, V., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D.M.E., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Pardon, E., Laeremans, T., Triest, S., Rasmussen, S.G.F., Wohlkönig, A., Ruf, A., Muyldermans, S., Steyaert, J., A general protocol for the generation of nanobodies for structural biology (2014) Nat. Protoc., 9, pp. 674-693; Hassanzadeh-Ghassabeh, G., Saerens, D., Muyldermans, S., (2011) Nanoproteomics, 790, pp. 239-259. , S. A. Toms, R. J. Weil, Eds. Humana Press; Chakravarty, R., Goel, S., Cai, W., Nanobody: The “magic bullet” for molecular imaging? (2014) Theranostics, 4, pp. 386-398; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray, P.B., Jr, Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J. Infect. Dis., 213, pp. 712-722; Schmidt, F.I., Hanke, L., Morin, B., Brewer, R., Brusic, V., Whelan, S.P.J., Ploegh, H.L., Phenotypic lentivirus screens to identify functional single domain antibodies (2016) Nat. Microbiol., 1, p. 16080; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Stalin Raj, V., Galiano, M., Myers, R., Godeke, G.-J., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Radbruch, A., Muehlinghaus, G., Luger, E.O., Inamine, A., Smith, K.G.C., Dörner, T., Hiepe, F., Competence and competition: The challenge of becoming a long-lived plasma cell (2006) Nat. Rev. Immunol., 6, pp. 741-750; Ellyard, J.I., Avery, D.T., Phan, T.G., Hare, N.J., Hodgkin, P.D., Tangye, S.G., Antigen-selected, immunoglobulin-secreting cells persist in human spleen and bone marrow (2004) Blood, 103, pp. 3805-3812; Paramithiotis, E., Cooper, M.D., Memory B lymphocytes migrate to bone marrow in humans (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 208-212; Manz, R.A., Hauser, A.E., Hiepe, F., Radbruch, A., Maintenance of serum antibody levels (2005) Annu. Rev. Immunol., 23, pp. 367-386; Nguyen, V.K., Hamers, R., Wyns, L., Muyldermans, S., Camel heavy-chain antibodies: Diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire (2000) EMBO J, 19, pp. 921-930; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C.Y., Lu, L., Liu, Q., Dimitrov, D.S., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Sok, D., Le, K.M., Vadnais, M., Saye-Francisco, K.L., Jardine, J.G., Torres, J.L., Berndsen, Z.T., Burton, D.R., Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows (2017) Nature, 548, pp. 108-111; Simões, E.A.F., DeVincenzo, J.P., Boeckh, M., Bont, L., Crowe, J.E., Jr, Griffiths, P., Hayden, F.G., Whitley, R.J., Challenges and opportunities in developing respiratory syncytial virus therapeutics (2015) J. Infect. Dis., 211, pp. S1-S20; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D.M.E., Sutter, G., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J. Virol., 87, pp. 11950-11954; Raj, V.S., Lamers, M.M., Smits, S.L., Demmers, J.A.A., Mou, H., Bosch, B.-J., Haagmans, B.L., (2015) Coronaviruses, 1282, pp. 165-182. , H. J. Maier, E. Bickerton, Britton, Eds. Springer New York; Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., Sato, J., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium (1982) Cancer Res, 42, pp. 3858-3863; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Stalin Raj, V., Zaki, A.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3, pp. e00473-e00512; Smits, S.L., de Lang, A., van den Brand, J.M.A., Leijten, L.M., Van IJcken, W.F., Eijkemans, M.J.C., Van Amerongen, G., Haagmans, B.L., Exacerbated innate host response to SARS-CoV in aged non-human primates (2010) PLOS Pathog, 6; Van Kuppeveld, F.J., van der Logt, J.T., Angulo, A.F., Van Zoest, M.J., Quint, W.G., Niesters, H.G., Galama, J.M., Melchers, W.J., Genus- And species-specific identification of mycoplasmas by 16S rRNA amplification (1992) Appl. Environ. Microbiol., 58, pp. 2606-2615; Haagmans, B.L., van den Brand, J.M.A., Provacia, L.B., Stalin Raj, V., Stittelaar, K.J., Getu, S., De Waal, L., Osterhaus, A.D.M.E., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135; Abdiche, Y.N., Malashock, D.S., Pinkerton, A., Pons, J., Exploring blocking assays using Octet, ProteOn, and Biacore biosensors (2009) Anal. Biochem., 386, pp. 172-180","Raj, V.S.; Department of Viroscience, Erasmus Medical CenterNetherlands; email: stalin@iisertvm.ac.in",,"American Association for the Advancement of Science",23752548,,,"30101189","English","Sci. Adv.",Article,"Final",Open Access,Scopus,2-s2.0-85051389156 "Kim J., Yang Y.L., Jang S.-H., Jang Y.-S.","7601388100;57203310838;8358263700;7201869082;","Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity",2018,"Virology Journal","15","1", 124,"","",,4,"10.1186/s12985-018-1035-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051214375&doi=10.1186%2fs12985-018-1035-2&partnerID=40&md5=8e3c6c6f644b9c170c37f9d486456a65","Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea; Department of Bioactive Material Sciences, Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea","Kim, J., Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea; Yang, Y.L., Department of Bioactive Material Sciences, Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea; Jang, S.-H., Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea; Jang, Y.-S., Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, South Korea, Department of Bioactive Material Sciences, Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54896, South Korea","Background: Antimicrobial peptides (AMPs) are primarily known for their innate immune defense against invading microorganisms, including viruses. In addition, recent research has suggested their modulatory activity in immune induction. Given that most subunit vaccines require an adjuvant to achieve effective immune induction through the activation of innate immunity, AMPs are plausible candidate molecules for stimulating not only innate immune but also adaptive immune responses. Results: In this study, we investigated the ability of human β-defensin (HBD) 2 to promote antiviral immunity in vitro and in vivo using a receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) spike protein (S RBD) as a model antigen (Ag). When HBD 2-conjugated S RBD was used to treat THP-1 human monocytic cells, the expression levels of antiviral (IFN-β, IFN-γ, MxA, PKR, and RNaseL) and primary immune-inducing (NOD2, TNF-α, IL-1β, and IL-6) molecules were enhanced compared to those expressed after treatment with S RBD only. The expression of chemokines capable of recruiting leukocytes, including monocytes/macrophages, natural killer cells, granulocytes, T cells, and dendritic cells, was also increased following HBD 2-conjugated S RBD treatment. More important, immunization of mice with HBD 2-conjugated S RBD enhanced the immunogenicity of the S RBD and elicited a higher S RBD-specific neutralizing antibody response than S RBD alone. Conclusions: We conclude that HBD 2 activates the primary antiviral innate immune response and may also mediate the induction of an effective adaptive immune response against a conjugated Ag. © 2018 The Author(s).","Adjuvant; Antibody; Antigen; Human β-defensin; MERS-CoV","beta defensin 2; beta interferon; caspase recruitment domain protein 15; gamma interferon; interleukin 1beta; interleukin 6; Myxovirus resistance protein A; neutralizing antibody; protein kinase R; ribonuclease; RNaseL protein; tumor necrosis factor; unclassified drug; virus antigen; virus spike protein; antivirus agent; beta defensin; coronavirus spike glycoprotein; DEFB4A protein, human; immunological adjuvant; neutralizing antibody; subunit vaccine; virus antibody; virus antigen; virus vaccine; animal cell; animal experiment; antibody response; antibody specificity; antigen specificity; Article; controlled study; dendritic cell; female; granulocyte; human; human cell; immunization; immunoregulation; immunostimulation; in vitro study; in vivo study; innate immunity; leukocyte migration; lymphocyte migration; macrophage migration; Middle East respiratory syndrome coronavirus; monocyte; mouse; natural killer cell; nonhuman; protein binding; protein domain; protein expression; protein function; receptor binding; T lymphocyte; THP-1 cell line; vaccine immunogenicity; virus cell interaction; adaptive immunity; animal; blood; C57BL mouse; chemistry; Chlorocebus aethiops; Coronavirus infection; immunology; innate immunity; macrophage; tumor cell line; Vero cell line; Adaptive Immunity; Adjuvants, Immunologic; Animals; Antibodies, Neutralizing; Antibodies, Viral; Antigens, Viral; Antiviral Agents; beta-Defensins; Cell Line, Tumor; Cercopithecus aethiops; Coronavirus Infections; Female; Humans; Immunity, Innate; Macrophages; Mice; Mice, Inbred C57BL; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; THP-1 Cells; Vaccines, Subunit; Vero Cells; Viral Vaccines","Lee, S., Nguyen, M.T., Recent advances of vaccine adjuvants for infectious diseases (2015) Immune Netw, 15, pp. 51-57. , 25922593 4411509; Aoshi, T., Modes of action for mucosal vaccine adjuvants (2017) Viral Immunol, 30, pp. 463-470. , 28436755 5512297; Ko, E.J., Lee, Y.T., Lee, Y., Kim, K.H., Kang, S.M., Distinct effects of monophosphoryl lipid a, oligodeoxynucleotide CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza vaccination (2017) Immune Netw, 17, pp. 326-342. , 29093654 5662782; Kuroda, E., Coban, C., Ishii, K.J., Particulate adjuvant and innate immunity: Past achievements, present findings, and future prospects (2013) Int Rev Immunol, 32, pp. 209-220. , 23570316 3632271; Castañeda-Sánchez, J.I., Domínguez-Martínez, D.A., Olivar-Espinosa, N., García-Pérez, B.E., Loroño-Pino, M.A., Luna-Herrera, J., Salazar, M.I., Expression of antimicrobial peptides in human monocytic cells and neutrophils in response to dengue virus type 2 (2016) Intervirology, 59, pp. 8-19. , 27318958; Diamond, G., Beckloff, N., Weinberg, A., Kisich, K.O., The roles of antimicrobial peptides in innate host defense (2009) Curr Pharm des, 15, pp. 2377-2392. , 19601838 2750833; Wilson, S.S., Wiens, M.E., Smith, J.G., Antiviral mechanisms of human defensins (2013) J Mol Biol, 425, pp. 4965-4980. , 24095897; Oppenheim, J.J., Yang, D., Alarmins: Chemotactic activators of immune responses (2005) Curr Opin Immunol, 17, pp. 359-365. , 15955682; Yang, D., Chertov, O., Bykovskaia, S.N., Chen, Q., Buffo, M.J., Shogan, J., Anderson, M., Oppenheim, J.J., Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6 (1999) Science, 286, pp. 525-528. , 10521347; Chertov, O., Michiel, D.F., Xu, L., Wang, J.M., Tani, K., Murphy, W.J., Longo, D.L., Oppenheim, J.J., Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils (1996) J Biol Chem, 271, pp. 2935-2940. , 8621683; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.K., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176. , 25240756 4194190; Daigneault, M., Preston, J.A., Marriott, H.M., Whyte, M.K., Dockrell, D.H., The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages (2010) PLoS One, 5, p. e8668. , 20084270 2800192; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Jiang, S., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS One, 8, p. e81587. , 24324708 3852489; Lu, X., Whitaker, B., Sakthivel, S.K., Kamili, S., Rose, L.E., Lowe, L., Mohareb, E., Erdman, D.D., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75. , 24153118 3911421; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , 25589660 4403411; Tseng, C.T., Huang, C., Newman, P., Wang, N., Narayanan, K., Watts, D.M., Makino, S., Peters, C.J., Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor (2007) J Virol, 81, pp. 1162-1173. , 17108019; Yoshikawa, N., Yoshikawa, T., Hill, Y., Huang, C., Watts, D.M., Makino, S., Milligan, G., Tseng, C.T., Differential virological and immunological outcome of severe acute respiratory syndrome coronavirus infection in susceptible and resistant transgenic mice expressing human angiotensin-converting enzyme 2 (2009) J Virol, 83, pp. 5451-5465. , 19297479 2681954; Belshe, R.B., Newman, F.K., Cannon, J., Duane, C., Treanor, J., Van Hoecke, C., Howe, B.J., Dubin, G., Serum antibody responses after intradermal vaccination against influenza (2004) N Engl J Med, 351, pp. 2286-2294. , 15525713; Quan, F.S., Yoo, D.G., Song, J.M., Clements, J.D., Compans, R.W., Kang, S.M., Kinetics of immune responses to influenza virus-like particles and dose-dependence of protection with a single vaccination (2009) J Virol, 83, pp. 4489-4497. , 19211762 2668456; Lehrer, R.I., Lu, W., α-Defensins in human innate immunity (2012) Immunol Rev, 245, pp. 84-112. , 22168415; Nandre, R.M., Ruan, X., Duan, Q., Sack, D.A., Zhang, W., Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA (2016) Vaccine, 34, pp. 3620-3625. , 27228947 4929850; Nandre, R., Ruan, X., Lu, T., Duan, Q., Sack, D., Zhang, W., Enterotoxigenic Escherichia coli adhesin-toxoid multiepitope fusion antigen CFA/I/II/IV-3xSTaN12S-mnLTG192G/L211A-derived antibodies inhibit adherence of seven adhesins, neutralize enterotoxicity of LT and STa toxins, and protect piglets against diarrhea (2018) Infect Immun, 86, pp. e00517-e00550. , 29263112; Kotenko, S.V., Gallagher, G., Baurin, V.V., Lewis-Antes, A., Shen, M., Shah, N.K., Langer, J.A., Donnelly, R.P., 2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex (2003) Nat Immunol, 4, pp. 69-77. , 12483210; Müller, U., Steinhoff, U., Reis, L.F., Hemmi, S., Pavlovic, J., Zinkernagel, R.M., Aguet, M., Functional role of type i and type II interferons in antiviral defense (1994) Science, 264, pp. 1918-1921. , 8009221; Goodbourn, S., Didcock, L., Randall, R.E., Interferons: Cell signalling, immune modulation, antiviral response and virus countermeasures (2000) J Gen Virol, 81, pp. 2341-2364. , 10993923; Haller, O., Frese, M., Kochs, G., Mx proteins: Mediators of innate resistance to RNA viruses (1998) Rev Sci Technol, 17, pp. 220-230; Gutierrez, O., Pipaon, C., Inohara, N., Fontalba, A., Ogura, Y., Prosper, F., Nunez, G., Fernandez-Luna, J.L., Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation (2002) J Biol Chem, 277, pp. 41701-41705. , 12194982; Kobayashi, K.S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nuñez, G., Flavell, R.A., Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract (2005) Science, 307, pp. 731-734. , 15692051; Sabbah, A., Chang, T.H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P.H., Xiang, Y., Bose, S., Activation of innate immune antiviral responses by Nod2 (2009) Nat Immunol, 10, pp. 1073-1080. , 19701189 2752345; Ogura, Y., Inohara, N., Benito, A., Chen, F.F., Yamaoka, S., Nunez, G., Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB (2001) J Biol Chem, 276, pp. 4812-4818. , 11087742; Ogura, Y., Lala, S., Xin, W., Smith, E., Dowds, T.A., Chen, F.F., Zimmermann, E., Nuñez, G., Expression of NOD2 in Paneth cells: A possible link to Crohn's ileitis (2003) Gut, 52, pp. 1591-1597. , 14570728 1773866; Tani, K., Murphy, W.J., Chertov, O., Salcedo, R., Koh, C.Y., Utsunomiya, I., Funakoshi, S., Oppenheim, J.J., Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens (2000) Int Immunol, 12, pp. 691-700. , 10784615; Oppenheim, J.J., Biragyn, A., Kwak, L.W., Yang, D., Roles of antimicrobial peptides such as defensins in innate and adaptive immunity (2003) Ann Rheum Dis, 622, pp. ii17-ii21. , 14532141; Biragyn, A., Surenhu, M., Yang, D., Ruffini, P.A., Haines, B.A., Klyushnenkova, E., Oppenheim, J.J., Kwak, L.W., Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens (2001) J Immunol, 167, pp. 6644-6653. , 11714836; Röhrl, J., Yang, D., Oppenheim, J.J., Hehlgans, T., Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2 (2010) J Immunol, 184, pp. 6688-6694. , 20483750; Biragyn, A., Ruffini, P.A., Leifer, C.A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A.K., Kwak, L.W., Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2 (2002) Science, 298, pp. 1025-1029. , 12411706; Biragyn, A., Coscia, M., Nagashima, K., Sanford, M., Young, H.A., Olkhanud, P., Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-κB-dependent atypical death of APCs via activation of TNFR2 (2008) J Leukoc Biol, 83, pp. 998-1008. , 18192488 2365917","Jang, Y.-S.; Department of Molecular Biology, Institute for Molecular Biology and Genetics, Chonbuk National UniversitySouth Korea; email: yongsuk@jbnu.ac.kr",,"BioMed Central Ltd.",1743422X,,,"30089512","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85051214375 "So Ray T.Y., Perera Ranawaka A.P.M., Oladipo Jamiu O., Chu Daniel K.W., Kuranga Sulyman A., Kin-Ho C., Lau Eric H.Y., Cheng Samuel M.S., Poon Leo L.M., Webby Richard J., Malik P.","57203635691;43861730800;57203635451;7201734326;57203635720;57203640650;57203637376;57203637589;7005441747;35448064800;7005486823;","Lack of serological evidence of middle east respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016",2018,"Eurosurveillance","23","32", 1800175,"","",,6,"10.2807/1560-7917.ES.2018.23.32.1800175","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052541087&doi=10.2807%2f1560-7917.ES.2018.23.32.1800175&partnerID=40&md5=fab969d57493e911900be9219bbc6d3f","School of Public Health, The University of Hong Kong, Hong Kong; Faculty of Clinical Sciences, Department of Surgery, University of Ilorin, Old Jebba Road, Ilorin, Nigeria; Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, United States","So Ray, T.Y., School of Public Health, The University of Hong Kong, Hong Kong; Perera Ranawaka, A.P.M., School of Public Health, The University of Hong Kong, Hong Kong; Oladipo Jamiu, O., School of Public Health, The University of Hong Kong, Hong Kong, Faculty of Clinical Sciences, Department of Surgery, University of Ilorin, Old Jebba Road, Ilorin, Nigeria; Chu Daniel, K.W., School of Public Health, The University of Hong Kong, Hong Kong; Kuranga Sulyman, A., Faculty of Clinical Sciences, Department of Surgery, University of Ilorin, Old Jebba Road, Ilorin, Nigeria; Kin-Ho, C., School of Public Health, The University of Hong Kong, Hong Kong; Lau Eric, H.Y., School of Public Health, The University of Hong Kong, Hong Kong; Cheng Samuel, M.S., School of Public Health, The University of Hong Kong, Hong Kong; Poon Leo, L.M., School of Public Health, The University of Hong Kong, Hong Kong; Webby Richard, J., Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, United States; Malik, P., School of Public Health, The University of Hong Kong, Hong Kong","Background:Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic threat of global public health concern and dromedary camels are the source of zoonotic infection. Although MERS-CoV is enzootic in dromedaries in Africa as well as the Middle East, zoonotic disease has not been reported in Africa. Methods: In an abattoir in Kano, Nigeria, we tested nasal swabs from camels and investigated 261 humans with repeated occupational exposure to camels, many of whom also reported drinking fresh camel milk (n = 138) or urine (n = 94) or using camel urine for medicinal purposes (n = 96). Results: Weekly MERS-CoV RNA detection in January–February 2016 ranged from 0–8.4% of camels sampled. None of the abattoir workers with exposure to camels had evidence of neutralising antibody to MERS-CoV. Conclusion: There is a need for more studies to investigate whether or not zoonotic transmission of MERS-CoV does take place in Africa. © 2018, European Centre for Disease Prevention and Control (ECDC). All rights reserved.",,"neutralizing antibody; virus RNA; abattoir worker; animal urine; Article; camel; camel milk; human; human tissue; Middle East respiratory syndrome; Nigeria; nonhuman; nose smear; occupational exposure; RNA analysis; serology; urine; virus detection; virus transmission; animal; Coronavirinae; Coronavirus infection; disease carrier; genetics; isolation and purification; Middle East respiratory syndrome coronavirus; slaughterhouse; veterinary medicine; virology; zoonosis; Abattoirs; Animals; Camelus; Coronavirus; Coronavirus Infections; Disease Reservoirs; Humans; Middle East Respiratory Syndrome Coronavirus; Nigeria; Occupational Exposure; Zoonoses","(2018) Countries Agree Next Steps to Combat Global Health Threat by Mers-Cov, , http://www.who.int/emergencies/mers-cov/accelerating-response/en/; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill, 20 (49). , https://doi.org/10.2807/1560-7917.ES.2015.20.49.30086; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20 (6), pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, 22 (13). , https://doi.org/10.2807/1560-7917.ES.2017.22.13.30498; Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr Opin Virol, 16, pp. 55-62. , https://doi.org/10.1016/j.coviro.2016.01.004; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012-2015 (2017) Emerg Infect Dis, 23 (3), pp. 550-551. , https://doi.org/10.3201/eid2303.161285; Chu, D., Hui, K., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci USA, 115 (12), pp. 3144-3149. , https://doi.org/10.1073/pnas.1718769115; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (5), pp. 559-564. , https://doi.org/10.1016/S1473-3099(15)70090-3; Munyua, P., Corman, V.M., Bitek, A., Osoro, E., Meyer, B., Müller, M.A., No Serologic Evidence of Middle East Respiratory Syndrome Coronavirus Infection Among Camel Farmers Exposed to Highly Seropositive Camel Herds: A Household Linked Study, Kenya, 2013 (2017) Am J Trop Med Hyg, 96 (6), pp. 1318-1324. , https://doi.org/10.4269/ajtmh.16-0880; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., MERS-CoV Antibodies in Humans, Africa, 2013-2014 (2016) Emerg Infect Dis, (6), pp. 1086-1089. , https://doi.org/10.3201/eid2206.160064; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39). , https://doi.org/10.2807/ese.17.39.20285-en; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt (2013) Euro Surveill, 18 (36). , https://doi.org/10.2807/1560-7917.ES2013.18.36.20574; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect, 6 (1), p. e1. , https://doi.org/10.1038/emi.2016.130; Park, S.W., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Comparison of serological assays in human Middle East respiratory syndrome (MERS)-coronavirus infection (2015) Euro Surveill, 20 (41). , https://doi.org/10.2807/1560-7917.ES.2015.20.41.30042; Reusken, C.B., Farag, E.A., Haagmans, B.L., Mohran, K.A., Godeke, G.J., V, Raj, S., Occupational Exposure to Dromedaries and Risk for MERS-CoV Infection, Qatar, 2013-2014 (2015) Emerg Infect Dis, 21 (8), pp. 1422-1425. , https://doi.org/10.3201/eid2108.150481; Choe, P.G., Perera, R., Park, W.B., Song, K.H., Bang, J.H., Kim, E.S., MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015 (2017) Emerg Infect Dis, 23 (7), pp. 1079-1084. , https://doi.org/10.3201/eid2307.170310; Ko, J.H., Müller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89 (2), pp. 106-111. , https://doi.org/10.1016/j.diagmicrobio.2017.07.006; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2 (14), pp. eaan5393. , https://doi.org/10.1126/sciimmunol.aan5393","Malik, P.; School of Public Health, The University of Hong KongHong Kong; email: malik@hku.hk",,"European Centre for Disease Prevention and Control (ECDC)",1025496X,,,"30107872","English","Eurosurveillance",Article,"Final",Open Access,Scopus,2-s2.0-85052541087 "Conzade R., Grant R., Malik M.R., Elkholy A., Elhakim M., Samhouri D., Ben Embarek P.K., Van Kerkhove M.D.","57197871040;57202636854;37031425300;57191446321;56806803800;55777854700;6507130584;15761388700;","Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases",2018,"Viruses","10","8", 425,"","",,18,"10.3390/v10080425","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052061506&doi=10.3390%2fv10080425&partnerID=40&md5=6f85cbbf4d7c48b72465385a08fb52f5","Department of Infectious Hazard Management, World Health Organization, Geneva, 1202, Switzerland; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, D-85764, Germany; Institut Pasteur, Centre for Global Health Research and Education, Paris, 75015, France; Department of Infectious Hazard Management, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 11371, Egypt; Department of Country Preparedness and International Health Regulations, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 11371, Egypt; Department of Food Safety and Zoonoses, World Health Organization, Geneva, 1201, Switzerland","Conzade, R., Department of Infectious Hazard Management, World Health Organization, Geneva, 1202, Switzerland, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, D-85764, Germany; Grant, R., Department of Infectious Hazard Management, World Health Organization, Geneva, 1202, Switzerland, Institut Pasteur, Centre for Global Health Research and Education, Paris, 75015, France; Malik, M.R., Department of Infectious Hazard Management, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 11371, Egypt; Elkholy, A., Department of Infectious Hazard Management, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 11371, Egypt; Elhakim, M., Department of Infectious Hazard Management, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 11371, Egypt; Samhouri, D., Department of Country Preparedness and International Health Regulations, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, 11371, Egypt; Ben Embarek, P.K., Department of Food Safety and Zoonoses, World Health Organization, Geneva, 1201, Switzerland; Van Kerkhove, M.D., Department of Infectious Hazard Management, World Health Organization, Geneva, 1202, Switzerland","Dromedary camels (Camelus dromedarius) are now known to be the vertebrate animal reservoir that intermittently transmits the Middle East respiratory syndrome coronavirus (MERS-CoV) to humans. Yet, details as to the specific mechanism(s) of zoonotic transmission from dromedaries to humans remain unclear. The aim of this study was to describe direct and indirect contact with dromedaries among all cases, and then separately for primary, non-primary, and unclassified cases of laboratory-confirmed MERS-CoV reported to the World Health Organization (WHO) between 1 January 2015 and 13 April 2018. We present any reported dromedary contact: direct, indirect, and type of indirect contact. Of all 1125 laboratory-confirmed MERS-CoV cases reported to WHO during the time period, there were 348 (30.9%) primary cases, 455 (40.4%) non-primary cases, and 322 (28.6%) unclassified cases. Among primary cases, 191 (54.9%) reported contact with dromedaries: 164 (47.1%) reported direct contact, 155 (44.5%) reported indirect contact. Five (1.1%) non-primary cases also reported contact with dromedaries. Overall, unpasteurized milk was the most frequent type of dromedary product consumed. Among cases for whom exposure was systematically collected and reported to WHO, contact with dromedaries or dromedary products has played an important role in zoonotic transmission. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Dromedary camels; MERS-CoV; Zoonotic transmission","article; dromedary; human; Middle East respiratory syndrome coronavirus; milk; nonhuman; world health organization; adult; aged; animal; camel; Coronavirus infection; disease carrier; female; isolation and purification; male; middle aged; Middle East respiratory syndrome coronavirus; retrospective study; Saudi Arabia; transmission; veterinary medicine; virology; World Health Organization; zoonosis; Adult; Aged; Animals; Camelus; Coronavirus Infections; Disease Reservoirs; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Retrospective Studies; Saudi Arabia; World Health Organization; Zoonoses","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820; WHO Mers-Cov Global Summary and Assessment of Risk, , http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1; Arwady, M.A., Alraddadi, B., Basler, C., Azhar, E.I., Abuelzein, E., Sindy, A.I., Sadiq, B.M., Banjar, A., Middle East Respiratory Syndrome Coronavirus Transmission in Extended Family, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis, 22, pp. 1395-1402; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Alsheikh, S., Alsanouri, T., Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation (2013) East. Mediterr. Health J., 19, pp. S12-S18; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med, 369, pp. 407-416; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al Nsour, M., Farag, N.H., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis, 59, pp. 1225-1233; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., Hajomar, W., Landt, O., Al Shangiti, A., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin. Infect. Dis, 60, pp. 369-377; Al Hosani, F.I., Pringle, K., Al Mulla, M., Kim, L., Pham, H., Alami, N.N., Khudhair, A., El Saleh, F., Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014 (2016) Emerg. Infect. Dis, 22, pp. 1162-1168; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol. Health, 37; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Yi, S.J., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 Euro Surveill, 2015 (20), pp. 1-6; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated Infections: The Hallmark of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) With Review of the Literature (2018) J. Hosp. Infect; Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr. Opin. Virol, 16, pp. 55-62; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Khazanehdari, K., Nagy, P., Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014 (2015) Emerg. Infect. Dis, 21, pp. 1019-1022; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., De Wit, E., Zalmout, I.S., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5, pp. e01002-e01014; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis, 20, pp. 1231-1234; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Webby, R.J., MERS coronaviruses in dromedary camels (2014) Egypt. Emerg. Infect. Dis, 20, pp. 1049-1053; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis, 14, pp. 140-145; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveill, 19, p. 20781; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis, 20, pp. 1339-1342; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis, 20, pp. 1999-2005; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 370, pp. 2499-2505; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis, 20, pp. 1012-1015; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 371, pp. 1359-1360; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Voermans, J., Al-Hajri, M.M., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect. Ecol. Epidemiol, 5, p. 28305; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Chu, K.W., Alnaeem, A., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19, p. 20828; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., El Berbri, I., Fekadu, G., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, 22, p. 30498; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Sobhy, H., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22, p. 30487; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Muller, M.A., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18, p. 20662; Van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., Talafha, H.A., Amarin, N., High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan (2017) Vector Borne Zoonotic Dis, 17, pp. 155-159; Miguel, E., Perera, R.A., Baubekova, A., Chevalier, V., Faye, B., Akhmetsadykov, N., Ng, C.Y., Peiris, M., Absence of Middle East Respiratory Syndrome Coronavirus in Camelids, Kazakhstan, 2015 (2016) Emerg. Infect. Dis., 22, pp. 555-557; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Drexler, J.F., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg. Infect. Dis, 20, pp. 1319-1322; Hemida, M.G., Al-Naeem, A., Perera, R.A., Chin, A.W., Poon, L.L., Peiris, M., Lack of middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerg. Infect. Dis, 21, pp. 699-701; Falzarano, D., Kamissoko, B., De Wit, E., Maiga, O., Cronin, J., Samake, K., Traore, A., Sogoba, N., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis, 20, pp. 1370-1374; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Raj, V.S., Ghobashy, H., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill, 19, p. 20829; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Muller, M.A., Corman, V.M., Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012-2015 (2017) Emerg. Infect. Dis, 23, pp. 550-551; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg. Infect. Dis, 20, pp. 2093-2095; Muhairi, S.A., Hosani, F.A., Eltahir, Y.M., Mulla, M.A., Yusof, M.F., Serhan, W.S., Hashem, F.M., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52, pp. 848-854; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Adlhoch, C., Coulombier, D., Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection (2016) Zoonoses Public Health, 63, pp. 1-9; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014. Emerg. Infect (2016) Dis, 22, pp. 49-55; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: From discovery to intervention (2017) One Health, 3, pp. 11-16; (2018) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, Interim Guidance, , http://www.who.int/csr/disease/coronavirus_infections/merslaboratory-testing/en/, WHO/MERS/LAB/15.1/Rev1/2018. Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med, 6; Update on Mers-Cov Transmission from Animals to Humans, and Interim Recommendations for At-Risk Groups, , http://www.Who.Int/csr/disease/coronavirus_infections/transmission-and-recommendations/en/; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Traore, A., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 3144-3149; Sikkema, R.S., Farag, E., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Al-Thani, M., Haagmans, B.L., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Infection in Camel Workers in Qatar During 2013-2014: A Case-Control Study (2017) J. Infect. Dis, 215, pp. 1702-1705; WHO Updated Guidance: Investigation of Cases of Human Infection with Mers-Cov, , http://www.who.int/csr/disease/coronavirus_infections/mers-investigationcases/en; WHO Guidance: Mers-Cov Intitial Interview Questionnaire of Cases, , http://www.who.int/csr/disease/coronavirus_infections/MERS_case_investigation_questionnaire.pdf?ua=1","Van Kerkhove, M.D.; Department of Infectious Hazard Management, World Health OrganizationSwitzerland; email: vankerkhovem@who.int",,"MDPI AG",19994915,,,"30104551","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85052061506 "Letko M., Miazgowicz K., McMinn R., Seifert S.N., Sola I., Enjuanes L., Carmody A., van Doremalen N., Munster V.","55240038400;56270137700;57191490984;57203181978;7003336781;7006565392;6602405699;36009447200;9332531900;","Adaptive Evolution of MERS-CoV to Species Variation in DPP4",2018,"Cell Reports","24","7",,"1730","1737",,20,"10.1016/j.celrep.2018.07.045","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050876135&doi=10.1016%2fj.celrep.2018.07.045&partnerID=40&md5=022833978ecdcf404e9e59ecd1393eba","Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO 80523, United States; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain","Letko, M., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Miazgowicz, K., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States, Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; McMinn, R., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States, Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO 80523, United States; Seifert, S.N., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Sola, I., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Enjuanes, L., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Carmody, A., Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; van Doremalen, N., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Munster, V., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) likely originated in bats and passed to humans through dromedary camels; however, the genetic mechanisms underlying cross-species adaptation remain poorly understood. Variation in the host receptor, dipeptidyl peptidase 4 (DPP4), can block the interaction with the MERS-CoV spike protein and form a species barrier to infection. To better understand the species adaptability of MERS-CoV, we identified a suboptimal species-derived variant of DPP4 to study viral adaption. Passaging virus on cells expressing this DPP4 variant led to accumulation of mutations in the viral spike which increased replication. Parallel passages revealed distinct paths of viral adaptation to the same DPP4 variant. Structural analysis and functional assays showed that these mutations enhanced viral entry with suboptimal DPP4 by altering the surface charge of spike. These findings demonstrate that MERS-CoV spike can utilize multiple paths to rapidly adapt to novel species variation in DPP4. MERS-CoV is a zoonotic pathogen capable of infecting numerous species. However, our understanding of how this virus adapts to new species remains unclear. Letko et al. experimentally observe several different routes in the stepwise, adaptive evolution of MERS-CoV to a unique host-species variant of the viral receptor. © 2018","Adaptation; Bat; Coronavirus; Desmodus rotundus; Dipeptidyl peptidase IV; DPP4; Evolution; MERS; Species barrier; Spike; Zoonosis","dipeptidyl peptidase IV; coronavirus spike glycoprotein; dipeptidyl peptidase IV; protein binding; virus receptor; animal tissue; Article; controlled study; Desmodus rotundus; evolutionary adaptation; gene identification; genetic variability; genetic variation; host range; human; human cell; Middle East respiratory syndrome coronavirus; mutation accumulation; nonhuman; priority journal; protein expression; protein function; species diversity; structure analysis; surface charge; virus characterization; virus culture; virus entry; virus mutation; virus replication; virus spike; adaptation; alpha helix; amino acid sequence; animal; bat; beta sheet; binding site; chemistry; Chlorocebus aethiops; coevolution; Cricetulus; gene expression; genetics; host pathogen interaction; metabolism; Middle East respiratory syndrome coronavirus; molecular model; mutation; protein domain; sequence alignment; sequence homology; Vero cell line; Adaptation, Physiological; Amino Acid Sequence; Animals; Binding Sites; Biological Coevolution; Cercopithecus aethiops; Chiroptera; Cricetulus; Dipeptidyl Peptidase 4; Gene Expression; Host Specificity; Host-Pathogen Interactions; Humans; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Mutation; Protein Binding; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Protein Interaction Domains and Motifs; Receptors, Virus; Sequence Alignment; Sequence Homology, Amino Acid; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Internalization","Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20, pp. 1999-2005; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670; Almazán, F., DeDiego, M.L., Sola, I., Zuñiga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andrés, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4. , e00650–13; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A., Electrostatics of nanosystems: application to microtubules and the ribosome (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10037-10041; Baric, R.S., Sullivan, E., Hensley, L., Yount, B., Chen, W., Persistent infection promotes cross-species transmissibility of mouse hepatitis virus (1999) J. Virol., 73, pp. 638-649; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; Caì, Y., Yú, S.Q., Postnikova, E.N., Mazur, S., Bernbaum, J.G., Burk, R., Zhāng, T., Jordan, I., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PLoS ONE, 9, p. e112060; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Baric, R.S., Heise, M.T., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 5195-5199; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Bestebroer, T.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill., 17, p. 20285; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Chang, J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16598-16603; Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations (2004) Nucleic Acids Res., 32. , W665-7; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Nagy, L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog., 10, p. e1004250; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Letko, M., Booiman, T., Kootstra, N., Simon, V., Ooms, M., Identification of the HIV-1 Vif and Human APOBEC3G Protein Interface (2015) Cell Rep., 13, pp. 1789-1799; Li, F., Receptor recognition and cross-species infections of SARS coronavirus (2013) Antiviral Res., 100, pp. 246-254; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; McRoy, W.C., Baric, R.S., Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion (2008) J. Virol., 82, pp. 1414-1424; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6, p. 21878; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Dang, N.H., Morimoto, C., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J. Virol., 87, pp. 13892-13899; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J. Virol., 89, pp. 4696-4699; Peck, K.M., Scobey, T., Swanstrom, J., Jensen, K.L., Burch, C.L., Baric, R.S., Heise, M.T., Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants (2017) J. Virol., 91. , e00534-17; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Genrich, G.L., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog., 3, p. e5; Sheahan, T., Rockx, B., Donaldson, E., Sims, A., Pickles, R., Corti, D., Baric, R., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) J. Virol., 82, pp. 2274-2285; Song, W., Wang, Y., Wang, N., Wang, D., Guo, J., Fu, L., Shi, X., Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry (2014) Virology, 471-473, pp. 49-53; Takada, A., Robison, C., Goto, H., Sanchez, A., Murti, K.G., Whitt, M.A., Kawaoka, Y., A system for functional analysis of Ebola virus glycoprotein (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 14764-14769; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; van Doremalen, N., Miazgowicz, K.L., Munster, V.J., Mapping the Specific Amino Acid Residues That Make Hamster DPP4 Functional as a Receptor for Middle East Respiratory Syndrome Coronavirus (2016) J. Virol., 90, pp. 5499-5502; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; World Health Organization, East respiratory syndrome coronavirus (2018), http://www.who.int/emergencies/mers-cov/en/, MERS-CoV; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg. Microbes Infect., 1, p. e35; Wu, K., Peng, G., Wilken, M., Geraghty, R.J., Li, F., Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus (2012) J. Biol. Chem., 287, pp. 8904-8911; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820","Letko, M.; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: michael.letko@nih.gov",,"Elsevier B.V.",22111247,,,"30110630","English","Cell Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85050876135 "Shirato K., Chang H.-W., Rottier P.J.M.","7101969487;56133800800;7006145490;","Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein",2018,"Virus Research","255",,,"14","23",,2,"10.1016/j.virusres.2018.06.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049486450&doi=10.1016%2fj.virusres.2018.06.010&partnerID=40&md5=52cc0e0936d3d5cf87f3cc886ce62e28","Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, CL 3584, Netherlands; Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan","Shirato, K., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, CL 3584, Netherlands, Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan; Chang, H.-W., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, CL 3584, Netherlands, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan; Rottier, P.J.M., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, CL 3584, Netherlands","The ability to infect and replicate in monocytes/macrophages is a critically distinguishing feature between the two feline coronavirus (FCoV) pathotypes: feline enteric coronavirus (FECV; low-virulent) and feline infectious peritonitis virus (FIPV; lethal). Previously, by comparing serotype II strains FIPV 79-1146 and FECV 79-1683 and recombinant chimeric forms thereof in cultured feline bone marrow macrophages, we mapped this difference to the C-terminal part of the viral spike (S) protein (S2). In view of the later identified diagnostic difference in this very part of the S protein of serotype I FCoV pathotypes, the present study aimed to further define the contribution of the earlier observed ten amino acids difference to the serotype II virus phenotype in macrophages. Using targeted RNA recombination as a reverse genetics system we introduced the mutations singly and in combinations into the S gene and evaluated their effects on the infection characteristics of the mutant viruses in macrophages. While some of the single mutations had a significant effect, none of them fully reverted the infection phenotype. Only by combining five specific mutations the infections mediated by the FIPV and FECV spike proteins could be fully blocked or potentiated, respectively. Hence, the differential macrophage infection phenotype is caused by the cooperative effect of five mutations, which occur in five functionally different domains of the spike fusion subunit S2. The significance of these observations will be discussed, taking into account also some questions related to the identity of the virus strains used. © 2018 Elsevier B.V.","Feline coronavirus; Feline infectious peritonitis; Macrophage; Pathogenesis; Spike protein; Susceptibility; Virus cell entry","amino acid; virus spike protein; vitronectin; coronavirus spike glycoprotein; fusion protein; virus RNA; amino acid substitution; antiviral susceptibility; Article; carboxy terminal sequence; correlational study; Feline coronavirus; feline infectious peritonitis; macrophage; nonhuman; pathogenesis; primary infection; priority journal; reverse genetics; RNA recombination; serotype; site directed mutagenesis; viral tropism; virus recombinant; virus strain; animal; cat; cell culture; chemistry; Feline coronavirus; feline infectious peritonitis; genetic recombination; genetics; macrophage; mouse; pathogenicity; physiology; protein domain; serotype; virology; virus entry; virus replication; Amino Acid Substitution; Animals; Cats; Cells, Cultured; Coronavirus, Feline; Feline Infectious Peritonitis; Macrophages; Mice; Protein Domains; Recombinant Fusion Proteins; Recombination, Genetic; RNA, Viral; Serogroup; Spike Glycoprotein, Coronavirus; Viral Tropism; Virus Internalization; Virus Replication","Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M.C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J. Feline Med. Surg., 11 (7), pp. 594-604; An, D.J., Jeoung, H.Y., Jeong, W., Park, J.Y., Lee, M.H., Park, B.K., Prevalence of Korean cats with natural feline coronavirus infections (2011) Virol. J., 8, p. 455; Balint, A., Farsang, A., Zadori, Z., Hornyak, A., Dencso, L., Almazan, F., Enjuanes, L., Belak, S., Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism (2012) J. Virol., 86 (11), pp. 6258-6267; Barker, E.N., Stranieri, A., Helps, C.R., Porter, E.L., Davidson, A.D., Day, M.J., Knowles, T., Tasker, S., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Vet. Res., 48 (1), p. 60; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci. U. S. A., 106 (14), pp. 5871-5876; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Mostl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet. Microbiol., 99 (1), pp. 31-42; Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., O'Brien, S.J., Genetics and pathogenesis of feline infectious peritonitis virus (2009) Emerg. Infect. Dis., 15 (9), pp. 1445-1452; Campolo, M., Desario, C., Ricci, D., Elia, G., Decaro, N., Martella, V., Tempesta, M., Buonavoglia, C., Identification of a feline coronavirus type I strain from a cat with feline infectious peritonitis by RT-pCR and phylogenetic analysis (2005) New Microbiol., 28 (2), pp. 127-133; Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis., 18 (7), pp. 1089-1095; de Groot, R.J., Horzinek, M.C., Feline infectious peritonitis (1995) The Coronaviridae., pp. 293-309. , S.G. Siddell Plenum Press New York; de Haan, C.A., Haijema, B.J., Schellen, P., Wichgers Schreur, P., te Lintelo, E., Vennema, H., Rottier, P.J., Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation (2008) J. Virol., 82 (12), pp. 6078-6083; Desmarets, L.M., Vermeulen, B.L., Theuns, S., Conceicao-Neto, N., Zeller, M., Roukaerts, I.D., Acar, D.D., Nauwynck, H.J., Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures (2016) Sci. Rep., 6, p. 20022; Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., Replication of feline coronaviruses in peripheral blood monocytes (2005) Arch. Virol., 150 (12), pp. 2483-2500; Drechsler, Y., Alcaraz, A., Bossong, F.J., Collisson, E.W., Diniz, P.P., Feline coronavirus in multicat environments (2011) Vet. Clin. North Am. Small Anim. Pract., 41 (6), pp. 1133-1169; Evermann, J.F., Baumgartener, L., Ott, R.L., Davis, E.V., McKeirnan, A.J., Characterization of a feline infectious peritonitis virus isolate (1981) Vet. Pathol., 18 (2), pp. 256-265; Haijema, B.J., Volders, H., Rottier, P.J., Switching species tropism: an effective way to manipulate the feline coronavirus genome (2003) J. Virol., 77 (8), pp. 4528-4538; Haijema, B.J., Rottier, P.J.M., de Groot, R.J., Feline coronaviruses: a tale of two-faced types (2007) Coronaviruses: Molecular and Cellular Biology, pp. 183-203. , V. Thiel Caister Academic Press Norfolk, UK; Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., de Groot, R.J., The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes (1995) Virology, 212 (2), pp. 622-631; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72 (5), pp. 4508-4514; Hohdatsu, T., Okada, S., Koyama, H., Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses (1991) Arch. Virol., 117 (1-2), pp. 85-95; Hohdatsu, T., Sasamoto, T., Okada, S., Koyama, H., Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683 (1991) Vet. Microbiol., 28 (1), pp. 13-24; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci., 54 (3), pp. 557-562; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2009) J. Virol., 83 (2), pp. 712-721; Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis (2001) Vet. Microbiol., 81 (3), pp. 227-234; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51 (2), pp. 505-526; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland (2005) Clin. Diagn. Lab. Immunol., 12 (10), pp. 1209-1215; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier (2000) J. Virol., 74 (3), pp. 1393-1406; Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Res., 226, pp. 117-127; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19 (7), pp. 1066-1073; Lin, C.N., Su, B.L., Huang, H.P., Lee, J.J., Hsieh, M.W., Chueh, L.L., Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis (2009) J. Feline Med. Surg., 11 (6), pp. 413-419; Lin, C.N., Su, B.L., Wang, C.H., Hsieh, M.W., Chueh, T.J., Chueh, L.L., Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan (2009) Vet. Microbiol., 136 (3-4), pp. 233-239; Lorusso, E., Mari, V., Losurdo, M., Lanave, G., Trotta, A., Dowgier, G., Colaianni, M.L., Decaro, N., Discrepancies between feline coronavirus antibody and nucleic acid detection in effusions of cats with suspected feline infectious peritonitis (2017) Res. Vet. Sci.; McKeirnan, A.J., Everman, J.F., Hargis, A., Miller, L.M., Ott, R.L., Isolation of feline coronaviruses from two cats with diverse disease manifestations (1981) Feline Pract., 11, pp. 16-20; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; Myrrha, L.W., Silva, F.M., Peternelli, E.F., Junior, A.S., Resende, M., de Almeida, M.R., The paradox of feline coronavirus pathogenesis: a review (2011) Adv. Virol., 2011; Park, J.E., Cruz, D.J., Shin, H.J., Receptor-bound porcine epidemic diarrhea virus spike protein cleaved by trypsin induces membrane fusion (2011) Arch. Virol., 156 (10), pp. 1749-1756; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11 (4), pp. 225-258; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201 (2), pp. 123-132; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Adv. Exp. Med. Biol., 173, pp. 365-380; Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683 (1984) Am. J. Vet. Res., 45 (12), pp. 2580-2585; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10, pp. 529-541; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10 (6), pp. 529-541; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1 (2), pp. 166-184; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res., 165 (1), pp. 17-28; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34 (12), pp. 3180-3184; Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G., Helps, C.R., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet. Res., 45, p. 49; Regan, A.D., Whittaker, G.R., Utilization of DC-SIGN for entry of feline coronaviruses into host cells (2008) J. Virol., 82 (23), pp. 11992-11996; Regan, A.D., Shraybman, R., Cohen, R.D., Whittaker, G.R., Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses (2008) Vet. Microbiol., 132 (3-4), pp. 235-248; Regan, A.D., Ousterout, D.G., Whittaker, G.R., Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus (2010) J. Virol., 84 (15), pp. 7917-7921; Rottier, P.J., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein (2005) J. Virol., 79 (22), pp. 14122-14130; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J. Virol., 91 (1); Stoddart, C.A., Scott, F.W., Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence (1989) J. Virol., 63 (1), pp. 436-440; van der Meer, F.J., Schuurman, N.M., Egberink, H.F., Feline immunodeficiency virus infection is enhanced by feline bone marrow-derived dendritic cells (2007) J Gen. Virol., 88, pp. 251-258; Van Hamme, E., Desmarets, L., Dewerchin, H.L., Nauwynck, H.J., Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes (2011) Virus Res., 160 (1-2), pp. 32-39; Vennema, H., Genetic drift and genetic shift during feline coronavirus evolution (1999) Vet. Microbiol., 69 (1-2), pp. 139-141; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243 (1), pp. 150-157; Vogel, L., Van der Lubben, M., te Lintelo, E.G., Bekker, C.P., Geerts, T., Schuijff, L.S., Grinwis, G.C., Rottier, P.J., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet. Res., 41 (5), p. 71; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J. Virol., 88 (14), pp. 7952-7961","Rottier, P.J.M.; Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Netherlands; email: p.rottier@uu.nl",,"Elsevier B.V.",01681702,,VIRED,"29936068","English","Virus Res.",Article,"Final",Open Access,Scopus,2-s2.0-85049486450 "Wu M., Cong F., Zhu Y., Lian Y., Chen M., Huang R., Guo P.","57190377491;57195918992;57190370864;57190381228;57195917353;36183347600;55433605900;","Multiplex detection of five canine viral pathogens for dogs as laboratory animals by the luminex xTAG assay",2018,"Frontiers in Microbiology","9","AUG", 1783,"","",,1,"10.3389/fmicb.2018.01783","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051657787&doi=10.3389%2ffmicb.2018.01783&partnerID=40&md5=afe690c24a0a2282002003ae9e08c00d","Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China; Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China","Wu, M., Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Cong, F., Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Zhu, Y., Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Lian, Y., Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China; Chen, M., Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China; Huang, R., Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Guo, P., Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China","More and more dogs have been used as a disease model for medical research and drug safety evaluation. Therefore, it is important to make sure that the dogs and their living houses are special pathogen free. In this study, the development and evaluation of a Luminex xTAG assay for simultaneous detection of five canine viruses was carried out, including canine distemper virus, canine parvovirus, canine parainfluenza virus, canine adenovirus, and rabies virus. Assay specificity was accomplished by targeting conserved genomic regions for each virus. Hybridization between multiplexed PCR products and the labeled fluorescence microspheres was detected in a high throughput format using a Luminex fluorescence reader. The Luminex xTAG assay showed high sensitivity with limits of detection for the five viruses was 100 copies/μL. Specificity of the xTAG assay showed no amplification of canine coronavirus, pseudorabies virus and canine influenza virus indicating that the xTAG assay was specific. Seventy-five clinical samples were tested to evaluate the xTAG assay. The results showed 100% coincidence with the conventional PCR method. This is the first report of a specific and sensitive multiplex Luminex xTAG assay for simultaneous detection of five major canine viral pathogens. This assay will be a useful tool for quality control and environmental monitoring for dogs used as laboratory animals, may even be applied in laboratory epidemiological investigations. © 2018 Wu, Cong, Zhu, Lian, Chen, Huang and Guo.","Canine adenovirus; Canine distemper virus; Canine parainfluenza virus; Canine parvovirus; Multiplex PCR; Rabies virus; XTAG","canine adenovirus plus canine distemper virus plus canine parainfluenza virus plus canine parvovirus vaccine; colloidal gold; microsphere; animal experiment; Article; Canine adenovirus; Canine coronavirus; Canine distemper virus; Canine parvovirus; conserved sequence; controlled study; DNA hybridization; dog disease; fluorescence analysis; limit of detection; mixed infection; multiplex polymerase chain reaction; nonhuman; Pseudorabies virus; quality control; Rabies virus; recombinant plasmid; reproducibility; reverse transcription polymerase chain reaction; saliva analysis; sensitivity and specificity; throat culture; urinalysis; virus detection; virus genome; virus infection","Abdelmegeed, S.M., Mohammed, S., Canine mammary tumors as a model for human disease (2018) Oncol. Lett, 15, pp. 8195-8205; Afifi, M.M., Kotry, G.S., El-Kimary, G.I., Youssef, H.A., Immuno-histopathologic evaluation of Drynaria fortunei rhizome extract in the management of grade II furcation defects in a canine model (2018) J. Periodontol, , [Epub ahead of print]; Chen, J., Iannone, M.A., Li, M.S., Taylor, J.D., Rivers, P., Nelsen, A.J., A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension (2000) Genome Res, 10, pp. 549-557; Chen, R., Yu, X.L., Gao, X.B., Xue, C.Y., Song, C.X., Li, Y., Bead-based suspension array for simultaneous differential detection of five major swine viruses (2015) Appl. Microbiol. Biotechnol, 99, pp. 919-928; Dangoudoubiyam, S., Vemulapalli, R., Ndao, M., Kazacos, K.R., Recombinant antigen-based enzyme-linked immunosorbent assay for diagnosis of Baylisascaris procyonis larva migrans (2011) Clin. Vaccine Immunol, 18, pp. 1650-1655; Dunbar, S.A., Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection (2006) Clin. Chim. Acta, 363, pp. 71-82; Dunbar, S.A., Ritchie, V.B., Hoffmeyer, M.R., Rana, G.S., Zhang, H., Luminex((R)) multiplex bead suspension arrays for the detection and serotyping of Salmonella spp (2015) Methods Mol. Biol, 1225, pp. 1-27; Duong, V.T., Phat, V.V., Tuyen, H.T., Dung, T.T., Trung, P.D., Minh, P.V., Evaluation of Luminex xTAG gastrointestinal pathogen panel assay for detection of multiple diarrheal pathogens in fecal samples in Vietnam (2016) J. Clin. Microbiol, 54, pp. 1094-1100; Jiang, L., Ren, H., Zhou, H., Qin, T., Chen, Y., Simultaneous detection of nine key bacterial respiratory pathogens using Luminex xTAG(R) technology (2017) Int. J. Environ. Res. Public Health, 14, p. 223; Laamiri, N., Fallgren, P., Zohari, S., Ben Ali, J., Ghram, A., Leijon, M., Accurate detection of avian respiratory viruses by use of multiplex PCR-based Luminex suspension microarray assay (2016) J. Clin. Microbiol, 54, pp. 2716-2725; Lee, Y.M., Conlon, T.J., Specht, A., Coleman, K.E., Brown, L.M., Estrella, A.M., Long-term safety and efficacy of AAV gene therapy in the canine model of glycogen storage disease type Ia (2018) J. Inherit. Metab. Dis, , [Epub ahead of print]; Liu, Y., Xu, Z.Q., Zhang, Q., Jin, M., Yu, J.M., Li, J.S., Simultaneous detection of seven enteric viruses associated with acute gastroenteritis by a multiplexed Luminex-based assay (2012) J. Clin. Microbiol, 50, pp. 2384-2389; Luo, J., Lu, G., Ye, S., Ou, J., Fu, C., Zhang, X., Comparative pathogenesis of H3N2 canine influenza virus in beagle dogs challenged by intranasal and intratracheal inoculation (2018) Virus Res, , [Epub ahead of print]; Ocheretina, O., Merveille, Y.M., Mabou, M.M., Escuyer, V.E., Dunbar, S.A., Johnson, W.D., Use of Luminex MagPlex magnetic microspheres for high-throughput spoligotyping of Mycobacterium tuberculosis isolates in Port-au-Prince, Haiti (2013) J. Clin. Microbiol, 51, pp. 2232-2237; Pabbaraju, K., Wong, S., Tokaryk, K.L., Fonseca, K., Drews, S.J., Comparison of the Luminex xTAG respiratory viral panel with xTAG respiratory viral panel fast for diagnosis of respiratory virus infections (2011) J. Clin. Microbiol, 49, pp. 1738-1744; Piewbang, C., Rungsipipat, A., Poovorawan, Y., Techangamsuwan, S., Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs (2017) J. Vet. Med. Sci, 78, pp. 1847-1854; Ponzoni, E., Breviario, D., Mautino, A., Giani, S., Morello, L., A multiplex, bead-based array for profiling plant-derived components in complex food matrixes (2013) Anal. Bioanal. Chem, 405, pp. 9849-9858; Reslova, N., Michna, V., Kasny, M., Mikel, P., Kralik, P., xMAP technology: applications in detection of pathogens (2017) Front. Microbiol, 8, p. 55; Schlottau, K., Freuling, C.M., Muller, T., Beer, M., Hoffmann, B., Development of molecular confirmation tools for swift and easy rabies diagnostics (2017) Virol. J, 14, p. 184; Wells, D.J., Tracking progress: an update on animal models for Duchenne muscular dystrophy (2018) Dis. Model Mech, 11; Wessels, E., Rusman, L.G., van Bussel, M.J., Claas, E.C., Added value of multiplex Luminex Gastrointestinal Pathogen Panel (xTAG(R) GPP) testing in the diagnosis of infectious gastroenteritis (2014) Clin. Microbiol. Infect, 20, pp. O182-O187; Xiong, L., Liu, Y., Zhou, M., Wang, G., Quan, D., Shen, C., Targeted ablation of cardiac sympathetic neurons improves ventricular electrical remodelling in a canine model of chronic myocardial infarction (2018) Europace, , [Epub ahead of print]; Zhang, H., Brankovics, B., van der Lee, T.A., Waalwijk, C., van Diepeningen, A.A., Xu, J., A single-nucleotide-polymorphism-based genotyping assay for simultaneous detection of different carbendazim-resistant genotypes in the Fusarium graminearum species complex (2016) PeerJ, 4","Guo, P.; Guangdong Provincial Key Laboratory of Laboratory AnimalsChina; email: vetbio2016@hotmail.com",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85051657787 "Ikonen N., Savolainen-Kopra C., Enstone J.E., Kulmala I., Pasanen P., Salmela A., Salo S., Nguyen-Van-Tam J.S., Ruutu P., Gotcheva N., Koivisto R., Veijalainen A.-M., Poirot N., Laajail N., Bennett E., Walters C., Hall I., Bastier S., Lapeyre Y., Berthier A., PANDHUB consortium","6506707870;24512588600;16165513400;6701818017;7006522995;56306243200;7005876710;7003371567;7006636910;24447997000;6602092470;8582949200;57203638374;57203634408;7201460384;57202223229;16052686000;41261187900;41261680100;36765483900;","Deposition of respiratory virus pathogens on frequently touched surfaces at airports",2018,"BMC Infectious Diseases","18","1", 437,"","",,4,"10.1186/s12879-018-3150-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052533100&doi=10.1186%2fs12879-018-3150-5&partnerID=40&md5=7383ff941641b2188d11d4b7953bd7e0","National Institute for Health and Welfare, Department of Health Security, P.O.Box 30, Helsinki, 00271, Finland; University of Nottingham, School of Medicine, Division of Epidemiology and Public Health, Nottingham, United Kingdom; VTT Technical Research Centre of Finland Ltd, Espoo and Tampere, Finland; University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland; VTT Technical Research Centre of Finland Ltd., Tampere, Finland; University of Eastern Finland, UEF, Kuopio, Finland; Assistance Publique, Paris, France; Public Health England, Porton Down, United Kingdom; MEDES, Toulouse, France","Ikonen, N., National Institute for Health and Welfare, Department of Health Security, P.O.Box 30, Helsinki, 00271, Finland; Savolainen-Kopra, C., National Institute for Health and Welfare, Department of Health Security, P.O.Box 30, Helsinki, 00271, Finland; Enstone, J.E., University of Nottingham, School of Medicine, Division of Epidemiology and Public Health, Nottingham, United Kingdom; Kulmala, I., VTT Technical Research Centre of Finland Ltd, Espoo and Tampere, Finland; Pasanen, P., University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland; Salmela, A., University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland; Salo, S., VTT Technical Research Centre of Finland Ltd, Espoo and Tampere, Finland; Nguyen-Van-Tam, J.S., University of Nottingham, School of Medicine, Division of Epidemiology and Public Health, Nottingham, United Kingdom; Ruutu, P., National Institute for Health and Welfare, Department of Health Security, P.O.Box 30, Helsinki, 00271, Finland; Gotcheva, N., VTT Technical Research Centre of Finland Ltd., Tampere, Finland; Koivisto, R., VTT Technical Research Centre of Finland Ltd., Tampere, Finland; Veijalainen, A.-M., University of Eastern Finland, UEF, Kuopio, Finland; Poirot, N., Assistance Publique, Paris, France; Laajail, N., Assistance Publique, Paris, France; Bennett, E., Public Health England, Porton Down, United Kingdom; Walters, C., Public Health England, Porton Down, United Kingdom; Hall, I., Public Health England, Porton Down, United Kingdom; Bastier, S., MEDES, Toulouse, France; Lapeyre, Y., MEDES, Toulouse, France; Berthier, A., MEDES, Toulouse, France; PANDHUB consortium","Background: International and national travelling has made the rapid spread of infectious diseases possible. Little information is available on the role of major traffic hubs, such as airports, in the transmission of respiratory infections, including seasonal influenza and a pandemic threat. We investigated the presence of respiratory viruses in the passenger environment of a major airport in order to identify risk points and guide measures to minimize transmission. Methods: Surface and air samples were collected weekly at three different time points during the peak period of seasonal influenza in 2015-16 in Finland. Swabs from surface samples, and air samples were tested by real-time PCR for influenza A and B viruses, respiratory syncytial virus, adenovirus, rhinovirus and coronaviruses (229E, HKU1, NL63 and OC43). Results: Nucleic acid of at least one respiratory virus was detected in 9 out of 90 (10%) surface samples, including: a plastic toy dog in the children's playground (2/3 swabs, 67%); hand-carried luggage trays at the security check area (4/8, 50%); the buttons of the payment terminal at the pharmacy (1/2, 50%); the handrails of stairs (1/7, 14%); and the passenger side desk and divider glass at a passport control point (1/3, 33%). Among the 10 respiratory virus findings at various sites, the viruses identified were: rhinovirus (4/10, 40%, from surfaces); coronavirus (3/10, 30%, from surfaces); adenovirus (2/10, 20%, 1 air sample, 1 surface sample); influenza A (1/10, 10%, surface sample). Conclusions: Detection of pathogen viral nucleic acids indicates respiratory viral surface contamination at multiple sites associated with high touch rates, and suggests a potential risk in the identified airport sites. Of the surfaces tested, plastic security screening trays appeared to pose the highest potential risk, and handling these is almost inevitable for all embarking passengers. © 2018 The Author(s).","Airport; Influenza virus; Respiratory virus; Surface contamination","virus DNA; virus RNA; Adenoviridae; air sampling; airport; Article; construction work and architectural phenomena; controlled study; Coronavirinae; environmental exposure; Finland; Human respiratory syncytial virus; infection risk; Influenza A virus; Influenza B virus; microbiological examination; nonhuman; nucleic acid analysis; real time polymerase chain reaction; recreation; respiratory virus; Rhinovirus; seasonal influenza; touch; viral contamination; virus detection; virus identification; virus infection; virus strain; virus transmission; Coronavirus infection; epidemiology; genetics; human; influenza; isolation and purification; medical device contamination; respiratory tract infection; standards; statistics and numerical data; transmission; travel; travel related disease; virology; virus; Adenoviridae; Airports; Coronavirus; Coronavirus Infections; Equipment Contamination; Finland; Humans; Influenza, Human; Real-Time Polymerase Chain Reaction; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Rhinovirus; Touch; Travel; Travel-Related Illness; Viruses","https://data.worldbank.org/indicator/IS.AIR.PSGR?end=2016&start=1970&view=chart; Goubar, A., Bitar, D., Cao, W.C., Feng, D., Fang, L.Q., Desenclos, J.C., An approach to estimate the number of SARS cases imported by international air travel (2009) Epidemiol Infect, 137 (7), pp. 1019-1031; Neatherlin, J., Cramer, E.H., Dubray, C., Marienau, K.J., Russell, M., Sun, H., Whaley, M., Kirking, H.L., Influenza a(H1N1)pdm09 during air travel (2013) Travel Med Infect Dis, 11 (2), pp. 110-118; Jennings, L.C., Priest, P.C., Psutka, R.A., Duncan, A.R., Anderson, T., Mahagamasekera, P., Strathdee, A., Baker, M.G., Respiratory viruses in airline travellers with influenza symptoms: results of an airport screening study (2015) J Clin Virol, 67, pp. 8-13; Browne, A., Ahmad, S.S., Beck, C.R., Nguyen-Van-Tam, J.S., The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review (2016) J Travel. Med, 23 (1), pp. 1-7; http://www.who.int/tb/publications/2008/WHO_HTM_TB_2008.399_eng.pdf, Tuberculosis and air travel: guidelines for prevention and control, third edition Reviewed by 2013; https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/influenza-RAGIDA-2014.pdf, Published April 2014; https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/Ebola-outbreak-technicalreport-exit-entry-screening-13Oct2014.pdf, Accessed 12 Oct 2014; https://www.gov.uk/government/publications/west-africa-ebola-outbreak-guidance-to-uk-airlines-and-aerodromes, Published 25 Sept 2014, Updated 9 Dec 2014; Brotherton, J.M., Delpech, V.C., Gilbert, G.L., Hatzi, S., Paraskevopoulos, P.D., McAnulty, J.M., A large outbreak of influenza A and B on a cruise ship causing widespread morbidity (2003) Epidemiol Infect, 130 (2), pp. 263-271; Bell, T.R., Kornylo Duong, K., Finelli, L., Slaten, D.D., Influenza surveillance on cruise ships (2014) Am J Prev Med, 46 (3), pp. 327-329; Cui, F., Luo, H., Zhou, L., Yin, D., Zheng, C., Wang, D., Gong, J., McFarland, J., Transmission of pandemic influenza a (H1N1) virus in a train in China (2011) J Epidemiol, 21 (4), pp. 271-277; Lawyer, G., Measuring the potential of individual airports for pandemic spread over the world airline network (2016) BMC Infect Dis, 16, p. 70; Mao, L., Wu, X., Huang, Z., Tatemefg, A.J., Modeling monthly flows of global air travel passengers: an open-access data resource (2015) J Transp Geogr, 48, pp. 52-60; http://www.aci.aero/News/Releases/Most-Recent/2017/04/19/ACI-releases-preliminary-2016-world-airport-traffic-rankingsRobust-gains-in-passenger-traffic-at-hub-airports-serving-transPacific-and-East-Asian-routes; Nic Lochlainn, L., Mandal, S., de Sousa, R., Paranthaman, K., van Binnendijk, R., Ramsay, M., Hahne, S., Brown, K.E., A unique measles B3 cluster in the United Kingdom and the Netherlands linked to air travel and transit at a large international airport, February to April 2014 (2016) Euro Surveill, 21 (13), pp. 1-8; Killingley, B., Greatorex, J., Digard, P., Wise, H., Garcia, F., Varsani, H., Cauchemez, S., Curran, M.D., The environmental deposition of influenza virus from patients infected with influenza a(H1N1)pdm09: implications for infection prevention and control (2016) Journal of infection and public health, 9 (3), pp. 278-288; Simmerman, J.M., Suntarattiwong, P., Levy, J., Gibbons, R.V., Cruz, C., Shaman, J., Jarman, R.G., Chotpitayasunondh, T., Influenza virus contamination of common household surfaces during the 2009 influenza a (H1N1) pandemic in Bangkok, Thailand: implications for contact transmission (2010) Clin Infect Dis, 51 (9), pp. 1053-1061; Boone, S.A., Gerba, C.P., The occurrence of influenza a virus on household and day care center fomites (2005) J Inf Secur, 51 (2), pp. 103-109; Winther, B., McCue, K., Ashe, K., Rubino, J., Hendley, J.O., Rhinovirus contamination of surfaces in homes of adults with natural colds: transfer of virus to fingertips during normal daily activities (2011) J Med Virol, 83 (5), pp. 906-909; Winther, B., McCue, K., Ashe, K., Rubino, J.R., Hendley, J.O., Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity (2007) J Med Virol, 79 (10), pp. 1606-1610; Memish, Z.A., Almasri, M., Assirri, A., Al-Shangiti, A.M., Gray, G.C., Lednicky, J.A., Yezli, S., Environmental sampling for respiratory pathogens in Jeddah airport during the 2013 hajj season (2014) Am J Infect Control, 42 (12), pp. 1266-1269; http://urn.fi/; Zhao, Y., Aarnink, A., Wang, W., Fabri, T., Groot Koerkamp, P., de Jong, M.C., Airborne virus sampling - efficiencies of samplers and their detection limits for infectious bursal disease virus (IBDV) (2014) Ann Agric Environ Med, 21 (3), pp. 464-471; Ward, C.L., Dempsey, M.H., Ring, C.J., Kempson, R.E., Zhang, L., Gor, D., Snowden, B.W., Tisdale, M., Design and performance testing of quantitative real time PCR assays for influenza a and B viral load measurement (2004) J Clin Virol, 29 (3), pp. 179-188; Munster, V.J., Wallensten, A., Baas, C., Rimmelzwaan, G.F., Schutten, M., Olsen, B., Osterhaus, A.D., Fouchier, R.A., Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe (2005) Emerg Infect Dis, 11 (10), pp. 1545-1551; Ronkko, E., Ikonen, N., Kontio, M., Haanpaa, M., Kallio-Kokko, H., Mannonen, L., Lappalainen, M., Ziegler, T., Validation and diagnostic application of NS and HA gene-specific real-time reverse transcription-PCR assays for detection of 2009 pandemic influenza a (H1N1) viruses in clinical specimens (2011) J Clin Microbiol, 49 (5), pp. 2009-2011; Templeton, K.E., Scheltinga, S.A., Beersma, M.F., Kroes, A.C., Claas, E.C., Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4 (2004) J Clin Microbiol, 42 (4), pp. 1564-1569; Damen, M., Minnaar, R., Glasius, P., van der Ham, A., Koen, G., Wertheim, P., Beld, M., Real-time PCR with an internal control for detection of all known human adenovirus serotypes (2008) J Clin Microbiol, 46 (12), pp. 3997-4003; Lu, X., Holloway, B., Dare, R.K., Kuypers, J., Yagi, S., Williams, J.V., Hall, C.B., Erdman, D.D., Real-time reverse transcription-PCR assay for comprehensive detection of human rhinoviruses (2008) J Clin Microbiol, 46 (2), pp. 533-539; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48 (8), pp. 2940-2947; Bean, B., Moore, B.M., Sterner, B., Peterson, L.R., Gerding, D.N., Balfour, H.H., Survival of influenza viruses on environmental surfaces (1982) J Infect Dis, 146 (1), pp. 47-51; Greatorex, J.S., Digard, P., Curran, M.D., Moynihan, R., Wensley, H., Wreghitt, T., Varsani, H., Nguyen-Van-Tam, J.S., Survival of influenza a(H1N1) on materials found in households: implications for infection control (2011) PLoS One, 6 (11); Mukherjee, P., Lim, P.L., Chow, A., Barkham, T., Seow, E., Win, M.K., Chua, A., Cheng Chen, M.I., Epidemiology of travel-associated pandemic (H1N1) 2009 infection in 116 patients, Singapore (2010) Emerg Infect Dis, 16 (1), pp. 21-26; Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., Weber, D.J., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination (2016) J Hosp Infect, 92 (3), pp. 235-250; Lai, M.Y., Cheng, P.K., Lim, W.W., Survival of severe acute respiratory syndrome coronavirus (2005) Clin Infect Dis, 41 (7); Dowell, S.F., Simmerman, J.M., Erdman, D.D., Wu, J.S., Chaovavanich, A., Javadi, M., Yang, J.Y., Ho, M.S., Severe acute respiratory syndrome coronavirus on hospital surfaces (2004) Clin Infect Dis, 39 (5), pp. 652-657; Booth, T.F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y., Henry, B., Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units (2005) J Infect Dis, 191 (9), pp. 1472-1477; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18 (38), pp. 1-4; Savolainen-Kopra, C., Korpela, T., Simonen-Tikka, M.L., Amiryousefi, A., Ziegler, T., Roivainen, M., Hovi, T., Single treatment with ethanol hand rub is ineffective against human rhinovirus--hand washing with soap and water removes the virus efficiently (2012) J Med Virol, 84 (3), pp. 543-547; Tuladhar, E., Hazeleger, W.C., Koopmans, M., Zwietering, M.H., Duizer, E., Beumer, R.R., Reducing viral contamination from finger pads: handwashing is more effective than alcohol-based hand disinfectants (2015) J Hosp Infect, 90 (3), pp. 226-234; Grayson, M.L., Melvani, S., Druce, J., Barr, I.G., Ballard, S.A., Johnson, P.D., Mastorakos, T., Birch, C., Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers (2009) Clin Infect Dis, 48 (3), pp. 285-291; Tellier, R., Aerosol transmission of influenza a virus: a review of new studies (2009) J R Soc Interface, 6, pp. S783-S790; Carrer, P., Wargocki, P., Fanetti, A., Bischof, W., De Oliveira, F.E., Hartmann, T., Kephalopoulos, S., Seppänen, O., What does the scientific literature tell us about the ventilation - health relationship in public and residential buildings? (2015) Build Environ, 94, pp. 273-286; file:///C:/Users/csac/AppData/Local/Temp/Airport_preparedness_guidelines_for_outbreaks_of_communicable.pdf; https://www.icao.int/safety/aviation-medicine/guidelines/AvInfluenza_guidelines.pdf; Gostic, K.M., Kucharski, A.J., Lloyd-Smith, J.O., Effectiveness of traveller screening for emerging pathogens is shaped by epidemiology and natural history of infection (2015) elife, 4, pp. 1-16; Greatorex, J.S., Page, R.F., Curran, M.D., Digard, P., Enstone, J.E., Wreghitt, T., Powell, P.P., Nguyen-Van-Tam, J.S., Effectiveness of common household cleaning agents in reducing the viability of human influenza a/H1N1 (2010) PLoS One, 5 (2); Troko, J., Myles, P., Gibson, J., Hashim, A., Enstone, J., Kingdon, S., Packham, C., Nguyen Van-Tam, J., Is public transport a risk factor for acute respiratory infection? (2011) BMC Infect Dis, 11, p. 16","Ikonen, N.; National Institute for Health and Welfare, Department of Health Security, P.O.Box 30, Finland; email: niina.ikonen@thl.fi",,"BioMed Central Ltd.",14712334,,BIDMB,"30157776","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85052533100 "Brandão P.E., Hora A.S., Silva S.O.S., Berg M., Taniwaki S.A.","55916312600;57204665565;57199416411;7202002557;23973987000;","Complete genome sequence of Avian Coronavirus strain D274",2018,"Microbiology Resource Announcements","7","8", e01003-18,"","",,,"10.1128/MRA.01003-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056118220&doi=10.1128%2fMRA.01003-18&partnerID=40&md5=f687a50619ddc034c88c6abeb831e890","Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil; Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden","Brandão, P.E., Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil; Hora, A.S., School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil; Silva, S.O.S., Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil; Berg, M., Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Taniwaki, S.A., Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil","Avian coronavirus, the causative agent of avian infectious bronchitis, occurs as multiple genotypes and lineages, and full genomes are not available for the majority of them. This paper reports the (previously unknown) complete genome sequence of strain D274 of this virus (27,599 nucleotides), isolated from chickens in The Netherlands in 1979. © 2018 Brandão et al.",,"complementary DNA; deoxyribonuclease; double stranded DNA; inactivated vaccine; ribonuclease; 3' untranslated region; 5' untranslated region; animal tissue; Article; Avian coronavirus; Avian coronavirus D274; chicken; gene sequence; genetic variability; Netherlands; nonhuman; nucleotide sequence; open reading frame; polymerase chain reaction; RNA analysis; virus genome; virus isolation","Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis, 56, pp. 634-641; Jiang, L., Zhao, W., Han, Z., Chen, Y., Zhao, Y., Sun, J., Li, H., Liu, S., Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from South China (2017) Infect Genet Evol, 54, pp. 437-446; Jackwood, M.W., Hall, D., Handel, A., Molecular evolution and emergence of avian gammacoronaviruses (2012) Infect Genet Evol, 12, pp. 1305-1311; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet Res, 38, pp. 281-297; Davelaar, F.G., Kouwenhoven, B., Burger, A.G., Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands (1984) Vet Q, 6, pp. 114-120; Callison, S.A., Hilt, D.A., Boynton, T.O., Sample, B.F., Robison, R., Swayne, D.E., Jackwood, M.W., Development and evaluation of a real-time TaqMan RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) J Virol Methods, 138, pp. 60-65; Chacón, J.L., Assayag, M.S., Jr., Revolledo, L., Astolfi-Ferreira, C.S., Vejarano, M.P., Jones, R.C., Piantino Ferreira, A.J., Pathogenicity and molecular characteristics of infectious bronchitis virus (IBV) strains isolated from broilers showing diarrhoea and respiratory disease (2014) Br Poult Sci, 55, pp. 271-283; Han, Z., Zhao, F., Shao, Y., Liu, X., Kong, X., Song, Y., Liu, S., Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein (2013) Virus Res, 171, pp. 54-64; Okino, C.H., Dos Santos, I.L., Fernando, F.S., Alessi, A.C., Wang, X., Montassier, H.J., Inflammatory and cell-mediated immune responses in the respiratory tract of chickens to infection with avian infectious bronchitis virus (2014) Viral Immunol, 27, pp. 383-391","Brandão, P.E.; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São PauloBrazil; email: paulo7926@usp.br",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Article,"Final",Open Access,Scopus,2-s2.0-85056118220 "Gong L., Lin Y., Qin J., Li Q., Xue C., Cao Y.","57195944977;57193956631;57193958554;56723073800;24400445400;36039272800;","Neutralizing antibodies against porcine epidemic diarrhea virus block virus attachment and internalization",2018,"Virology Journal","15","1", 133,"","",,2,"10.1186/s12985-018-1042-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052737441&doi=10.1186%2fs12985-018-1042-3&partnerID=40&md5=87afa486850106108cfcd9b58eeac0c4","State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China","Gong, L., State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Lin, Y., State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Qin, J., State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Li, Q., State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Xue, C., State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Cao, Y., State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China","Background: Porcine epidemic diarrhea virus (PEDV) is emerging as a pathogenic coronavirus that causes a huge economic burden to the swine industry. Interaction of the viral spike (S) surface glycoprotein with the host cell receptor is recognized as the first step of infection and is the main determinant of virus tropism. The mechanisms by which neutralizing antibodies inhibit PEDV have not been defined. Isolating PEDV neutralizing antibodies are crucial to identifying the receptor-binding domains of the viral spike and elucidating the mechanism of protection against PEDV infection. Methods: B cell hybridoma technique was used to generate hybridoma cells that secrete specific antibodies. E.coli prokaryotic expression system and Bac-to-Bac expression system were used to identify the target protein of each monoclonal antibody. qPCR was performed to analyze PEDV binding to Vero E6 cells with neutralizing antibody. Results: We identified 10 monoclonal antibodies using hybridoma technology. Remarkably, 4 mAbs (designed 2G8, 2B11, 3D9, 1E3) neutralized virus infection potently, of which 2B11 and 1E3 targeted the conformational epitope of the PEDV S protein. qPCR results showed that both 2B11 and 2G8 blocked virus entry into Vero cells. Conclusion: The data suggested that PEDV neutralizing antibody inhibited virus infection by binding to infectious virions, which could work as a tool to find the receptor-binding domains. © 2018 The Author(s).","Attachment; Neutralizing antibody; Porcine epidemic diarrhea virus; S protein","guanine nucleotide binding protein; monoclonal antibody; monoclonal antibody 1E3; monoclonal antibody 2B11; monoclonal antibody 2G8; monoclonal antibody 3D9; neutralizing antibody; unclassified drug; vitronectin; neutralizing antibody; virus antibody; virus RNA; animal cell; animal experiment; Article; cell surface; controlled study; enzyme linked immunosorbent assay; female; hybridoma cell culture; in vitro study; molecular cloning; mouse; nonhuman; plasmid; Porcine epidemic diarrhea virus; protein expression; protein purification; real time polymerase chain reaction; ultracentrifugation; Vero C1008 cell line; virus attachment; virus entry; virus neutralization; virus strain; animal; Chlorocebus aethiops; drug effect; genetics; immunology; isolation and purification; Porcine epidemic diarrhea virus; Vero cell line; virus attachment; virus entry; Animals; Antibodies, Monoclonal; Antibodies, Neutralizing; Antibodies, Viral; Cercopithecus aethiops; Porcine epidemic diarrhea virus; Real-Time Polymerase Chain Reaction; RNA, Viral; Vero Cells; Virus Attachment; Virus Internalization","Song, D., Park, B., Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175. , 22270324; Pensaert, M.B., Martelli, P., Porcine epidemic diarrhea: A retrospect from Europe and matters of debate (2016) Virus Res, 226, pp. 1-6. , 27317168; Debouck, P., Pensaert, M., Experimental infection of pigs with a new porcine enteric coronavirus, CV 777 (1980) Am J Vet Res, 41, pp. 219-223. , 6245603; Pritchard, G.C., Paton, D.J., Wibberley, G., Ibata, G., Transmissible gastroenteritis and porcine epidemic diarrhoea in Britain (1999) Vet Rec, 144, pp. 616-618. , 10390802; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., A New Bat-HKU2-like Coronavirus in Swine, China (2017) Emerg Infect Dis, 2017, p. 23; Oldham, J., (1972) Pig Farming, pp. 72-73. , Letter to the editor; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) Mbio, 4, pp. e713-e737; Mole, B., Deadly pig virus slips through US borders (2013) Nature, 499, p. 388. , 23887408; Li, C., Li, W., Lucio, D.E.E., Guo, H., Van Den Elzen, P., Aarts, E., Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies (2017) J Virol, 91, pp. E00217-E00273. , 28381581 5446644; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144. , 11724265; Sun, D., Feng, L., Shi, H., Chen, J., Cui, X., Chen, H., Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein (2008) Vet Microbiol, 131, pp. 73-81. , 18400422; Oh, J., Lee, K.W., Choi, H.W., Lee, C., Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein (2014) Arch Virol, 159, pp. 2977-2987. , 25008896; Park, S.J., Moon, H.J., Yang, J.S., Lee, C.S., Song, D.S., Kang, B.K., Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea (2007) Virus Genes, 35, pp. 321-332. , 17436070; Burton, D.R., Antibodies, viruses and vaccines (2002) Curr Opin Virol, 2, pp. 706-713; Zhao, H., Fernandez, E., Dowd, K.A., Speer, S.D., Platt, D.J., Gorman, M.J., Structural basis of Zika virus-specific antibody protection (2016) Cell, 166, pp. 1016-1027. , 27475895 4983199; Kong, L., Giang, E., Nieusma, T., Kadam, R.U., Cogburn, K.E., Hua, Y., Hepatitis C virus E2 envelope glycoprotein core structure (2013) Science, 342, pp. 1090-1094. , 24288331 3954638; Aiyegbo, M.S., Sapparapu, G., Spiller, B.W., Eli, I.M., Williams, D.R., Kim, R., Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore (2013) PLoS One, 8, p. e61101. , 23671563 3650007; Ishii, Y., Tanaka, K., Kondo, K., Takeuchi, T., Mori, S., Kanda, T., Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody (2010) Virology, 406, pp. 181-188. , 20684966; Varghese, R., Mikyas, Y., Stewart, P.L., Ralston, R., Postentry neutralization of adenovirus type 5 by an antihexon antibody (2004) J Virol, 78, pp. 12320-12332. , 15507619 525062; Zhou, D., Zhang, Y., Li, Q., Chen, Y., He, B., Yang, J., Matrix protein-specific IgA antibody inhibits measles virus replication by intracellular neutralization (2011) J Virol, 85, pp. 11090-11097. , 21865386 3194966; Chang, S.H., Bae, J.L., Kang, T.J., Kim, J., Chung, G.H., Lim, C.W., Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus (2002) Mol Cells, 14, pp. 295-299. , 12442904; Fu, F., Li, L., Shan, L., Yang, B., Shi, H., Zhang, J., A spike-specific whole-porcine antibody isolated from a porcine B cell that neutralizes both genogroup 1 and 2 PEDV strains (2017) Vet Microbiol, 205, pp. 99-105. , 28622871; Li, C., Li, W., Lucio, D.E., Guo, H., Van, E.P., Aarts, E., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J Virol, 91, pp. e00217-e00273. , 28381581 5446644; Liu, J., Shi, H., Chen, J., Zhang, X., Ji, Z., Yuan, J., Zhu, X., Dong, H., Neutralization of genotype 2 porcine epidemic diarrhea virus strains by a novel monoclonal antibody (2017) Virology, 507, pp. 257-262. , 28463713; Okda, F.A., Lawson, S., Singrey, A., Nelson, J., Hain, K.S., Joshi, L.R., The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes (2017) Virology, 509, pp. 185-194. , 28647506; Zhang, Y., Yao, Y., Gao, X., Wang, Y., Jia, X., Xiao, Y., Development of a neutralizing monoclonal antibody against porcine epidemic diarrhea virus S1 protein (2016) Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 35, pp. 37-40. , 26771404; Hofmann, M., Wyler, R., Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV) (1989) Vet Microbiol, 20, pp. 131-142. , 2549681; Kohler, G., Milstein, C., Continuous cultures of fused cells secreting antibody of predefined specificity (1975) Nature, 256, pp. 495-497. , 1172191; Hao, J., Zhang, Y., Fang, S., Wen, Z., Zhang, X., Xue, C., Evaluation of purified recombinant spike fragments for assessment of the presence of serum neutralizing antibodies against a variant strain of porcine epidemic diarrhea virus (2017) Virol Sin, 32, pp. 307-316. , 28744726; Lefebvre, D.J., Costers, S., Van Doorsselaere, J., Misinzo, G., Delputte, P.L., Nauwynck, H.J., Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies (2008) J Gen Virol, 89, pp. 177-187. , 18089741; Delmas, B., Gelfi, J., L'Haridon, R., Sjostrom, H., Laude, H., Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420. , 1350661; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422. , 1350662; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172. , 17467767; Nam, E., Lee, C., Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection (2010) Vet Microbiol, 144, pp. 41-50. , 20074871; Navari, M., Zare, M., Javanmardi, M., Asadi-Ghalehni, M., Modjtahedi, H., Rasaee, M.J., Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope (2014) Immunopharmacol Immunotoxicol, 36, pp. 309-315. , 25070131; Li, W., Luo, R., He, Q., Van, K.F., Rottier, P., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13. , 28363778; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539. , 27449937; Zeng, S., Zhang, H., Ding, Z., Luo, R., An, K., Liu, L., Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells (2015) Proteomics, 15, pp. 1819-1828. , 25604190; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125. , 25787280 4442452; Park, J.E., Cruz, D.J., Shin, H.J., Clathrin- and serine proteases-dependent uptake of porcine epidemic diarrhea virus into Vero cells (2014) Virus Res, 191, pp. 21-29. , 25086180; Sayers, C.L., Elliott, G., Herpes simplex virus 1 enters human keratinocytes by a Nectin-1-dependent, rapid plasma membrane fusion pathway that functions at low temperature (2016) J Virol, 90, pp. 10379-10389. , 27630229 5105671","Xue, C.; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen UniversityChina; email: xuechy@mail.sysu.edu.cn",,"BioMed Central Ltd.",1743422X,,,"30165871","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85052737441 "Zeng Z., Deng F., Shi K., Ye G., Wang G., Fang L., Xiao S., Fu Z., Peng G.","57195235981;57206759976;7101852486;57141715200;57200632379;7402470374;7402022567;7403347700;56651662900;","Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity",2018,"Journal of Virology","92","17", e00692-18,"","",,1,"10.1128/JVI.00692-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051766203&doi=10.1128%2fJVI.00692-18&partnerID=40&md5=69666f9a2548d93d99ac58b5c051bfb9","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States","Zeng, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Deng, F., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Shi, K., Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Ye, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Wang, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Fu, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China","Coronaviruses pose serious health threats to humans and other animals. Understanding the mechanisms of their replication has important implications for global health and economic stability. Nonstructural protein 9 (nsp9) is an essential RNA binding protein for coronavirus replication. However, the mechanisms of the dimerization and nucleic acid binding of nsp9 remain elusive. Here, we report four crystal structures, including wild-type porcine delta coronavirus (PDCoV) nsp9, PDCoV nsp9-ΔN7 (N-terminal 7 amino acids deleted), wild-type porcine epidemic diarrhea virus (PEDV) nsp9, and PEDV nsp9-C59A mutant. These structures reveal the diverse dimerization forms of coronavirus nsp9. We first found that the N-finger of nsp9 from PDCoV plays a critical role in dimerization. Meanwhile, PEDV nsp9 is distinguished by the presence of a disulfide bond in the dimer interface. Interestingly, size exclusion chromatography and analytical ultracentrifugation analyses indicate that the PDCoV nsp9-ΔN7 and PEDV nsp9-C59A mutants are monomeric in solution. In addition, electrophoretic mobility shift assays and microscale thermophoresis analysis indicate that the monomeric forms of PDCoV nsp9 and PEDV nsp9 still have nucleic acid binding affinity, although it is lower than that of the wild type. Our results show that the diverse dimerization forms of coronavirus nsp9 proteins enhance their nucleic acid binding affinity. © 2018 American Society for Microbiology.","Coronavirus nsp9; Dimerization; Disulfide bond; N-finger; Nucleic acid binding","nonstructural protein 9; unclassified drug; viral protein; nucleic acid; RNA binding protein; viral protein; Article; assay; binding affinity; controlled study; Coronavirinae; crystal structure; dimerization; disulfide bond; gel mobility shift assay; human; human cell; microscale thermophoresis assay; porcine delta coronavirus; Porcine epidemic diarrhea virus; priority journal; size exclusion chromatography; ultracentrifugation; animal; chemistry; metabolism; molecular model; physiology; pig; protein conformation; protein multimerization; virus replication; X ray crystallography; Animals; Coronavirus; Crystallography, X-Ray; Models, Molecular; Nucleic Acids; Protein Conformation; Protein Multimerization; RNA-Binding Proteins; Swine; Viral Nonstructural Proteins; Virus Replication","Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med (Maywood, NJ), 234, pp. 1117-1127. , https://doi.org/10.3181/0903-MR-94; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555. , https://doi.org/10.1016/j.tim.2013.05.005; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966. , https://doi.org/10.1056/NEJMoa030781; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Mai, K., Feng, J., Chen, G., Li, D., Zhou, L., Bai, Y., Wu, Q., Ma, J., The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China (2017) Transbound Emerg Dis, 65, pp. 166-173. , https://doi.org/10.1111/tbed.12644; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Tripipat, T., Nilubol, D., Different lineage of porcine deltacoronavirus in Thailand, Vietnam, and Lao PDR in 2015 (2017) Transbound Emerg Dis, 64, pp. 3-10. , https://doi.org/10.1111/tbed.12585; Scott, A., McCluskey, B., Brown-Reid, M., Grear, D., Pitcher, P., Ramos, G., Spencer, D., Singrey, A., Porcine epidemic diarrhea virus introduction into the United States: root cause investigation (2016) Prev Vet Med, 123, pp. 192-201. , https://doi.org/10.1016/j.prevetmed.2015.11.013; Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Ziebuhr, J., Mechanisms and enzymes involved in SARS coronavirus genome expression (2003) J Gen Virol, 84, pp. 2305-2315. , https://doi.org/10.1099/vir.0.19424-0; Liu, D.X., Tibbles, K.W., Cavanagh, D., Brown, T.D., Brierley, I., Identification, expression, and processing of an 87-kDa polypeptide encoded by ORF 1a of the coronavirus infectious bronchitis virus (1995) Virology, 208, pp. 48-57. , https://doi.org/10.1006/viro.1995.1128; Lim, K.P., Ng, L.F., Liu, D.X., Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products (2000) J Virol, 74, pp. 1674-1685. , https://doi.org/10.1128/JVI.74.4.1674-1685.2000; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100. , https://doi.org/10.1016/S0065-3527(08)60286-9; Herold, J., Gorbalenya, A.E., Thiel, V., Schelle, B., Siddell, S.G., Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate (1998) J Virol, 72, pp. 910-918; Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S., Denison, M.R., The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication (2005) J Virol, 79, pp. 13399-13411. , https://doi.org/10.1128/JVI.79.21.13399-13411.2005; Hurst-Hess, K.R., Kuo, L., Masters, P.S., Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3 (2015) J Virol, 89, pp. 6033-6047. , https://doi.org/10.1128/JVI.00197-15; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66. , https://doi.org/10.1016/j.virusres.2013.12.004; Bost, A.G., Carnahan, R.H., Lu, X.T., Denison, M.R., Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly (2000) J Virol, 74, pp. 3379-3387. , https://doi.org/10.1128/JVI.74.7.3379-3387.2000; Deming, D.J., Graham, R.L., Denison, M.R., Baric, R.S., Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication (2007) J Virol, 81, pp. 10280-10291. , https://doi.org/10.1128/JVI.00017-07; Frieman, M., Yount, B., Agnihothram, S., Page, C., Donaldson, E., Roberts, A., Vogel, L., Baric, R.S., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J Virol, 86, pp. 884-897. , https://doi.org/10.1128/JVI.05957-11; Miknis, Z.J., Donaldson, E.F., Umland, T.C., Rimmer, R.A., Baric, R.S., Schultz, L.W., Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth (2009) J Virol, 83, pp. 3007-3018. , https://doi.org/10.1128/JVI.01505-08; Egloff, M.P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., Snijder, E.J., Canard, B., The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world (2004) Proc Natl Acad Sci U S A, 101, pp. 3792-3796. , https://doi.org/10.1073/pnas.0307877101; Ponnusamy, R., Moll, R., Weimar, T., Mesters, J.R., Hilgenfeld, R., Variable oligomerization modes in coronavirus nonstructural protein 9 (2008) J Mol Biol, 383, pp. 1081-1096. , https://doi.org/10.1016/j.jmb.2008.07.071; Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow, N., Stuart, D.I., The nsp9 replicase protein of SARS-coronavirus, structure and functional insights (2004) Structure, 12, pp. 341-353. , https://doi.org/10.1016/j.str.2004.01.016; Hu, T., Chen, C., Li, H., Dou, Y., Zhou, M., Lu, D., Zong, Q., Su, D., Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9 (2017) Protein Sci, 26, pp. 1037-1048. , https://doi.org/10.1002/pro.3150; Gimpelev, M., Forrest, L.R., Murray, D., Honig, B., Helical packing patterns in membrane and soluble proteins (2004) Biophys J, 87, pp. 4075-4086. , https://doi.org/10.1529/biophysj.104.049288; Munter, L.M., Voigt, P., Harmeier, A., Kaden, D., Gottschalk, K.E., Weise, C., Pipkorn, R., Multhaup, G., GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42 (2007) EMBO J, 26, pp. 1702-1712. , https://doi.org/10.1038/sj.emboj.7601616; Schneider, D., Engelman, D.M., Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions (2004) J Mol Biol, 343, pp. 799-804. , https://doi.org/10.1016/j.jmb.2004.08.083; Bessette, P.H., Aslund, F., Beckwith, J., Georgiou, G., Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm (1999) Proc Natl Acad Sci U S A, 96, pp. 13703-13708. , https://doi.org/10.1073/pnas.96.24.13703; Theobald, D.L., Mitton-Fry, R.M., Wuttke, D.S., Nucleic acid recognition by OB-fold proteins (2003) Annu Rev Biophys Biomol Struct, 32, pp. 115-133. , https://doi.org/10.1146/annurev.biophys.32.110601.142506; Chen, B., Fang, S., Tam, J.P., Liu, D.X., Formation of stable homodimer via the C-terminal alpha-helical domain of coronavirus nonstructural protein 9 is critical for its function in viral replication (2009) Virology, 383, pp. 328-337. , https://doi.org/10.1016/j.virol.2008.10.032; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu Rev Virol, 2, pp. 265-288. , https://doi.org/10.1146/annurev-virology-100114-055218; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., PHENIX: building new software for automated crystallographic structure determination (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 1948-1954. , https://doi.org/10.1107/S0907444902016657; Minor, W., Cymborowski, M., Otwinowski, Z., Chruszcz, M., HKL-3000: the integration of data reduction and structure solution-from diffraction images to an initial model in minutes (2006) Acta Crystallogr D Biol Crystallogr, 62, pp. 859-866. , https://doi.org/10.1107/S0907444906019949; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132. , https://doi.org/10.1107/S0907444904019158; Laskowski, R.A., Swindells, M.B., LigPlot+: multiple ligand-protein interaction diagrams for drug discovery (2011) J Chem Infect Model, 51, pp. 2778-2786. , https://doi.org/10.1021/ci200227u; Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., Mc-William, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , https://doi.org/10.1093/bioinformatics/btm404; Robert, X., Gouet, P., Deciphering key features in protein structures with the new ENDscript server (2014) Nucleic Acids Res, 42, pp. W320-W324. , https://doi.org/10.1093/nar/gku316; Schuck, P., Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling (2000) Biophys J, 78, pp. 1606-1619. , https://doi.org/10.1016/S0006-3495(00)76713-0; Min, B., Collins, K., Multiple mechanisms for elongation processivity within the reconstituted tetrahymena telomerase holoenzyme (2010) J Biol Chem, 285, pp. 16434-16443. , https://doi.org/10.1074/jbc.M110.119172; Singh, S., Katzer, K., Lambert, J., Cerri, M., Parniske, M., CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development (2014) Cell Host Microbe, 15, pp. 139-152. , https://doi.org/10.1016/j.chom.2014.01.011; Wienken, C.J., Baaske, P., Rothbauer, U., Braun, D., Duhr, S., Proteinbinding assays in biological liquids using microscale thermophoresis (2010) Nat Commun, 1, p. 100. , https://doi.org/10.1038/ncomms1093; Zacharias, J., Knapp, E.W., Protein secondary structure classification revisited: processing DSSP information with PSSC (2014) J Chem Infect Model, 54, pp. 2166-2179. , https://doi.org/10.1021/ci5000856","Peng, G.; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityChina; email: penggq@mail.hzau.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"29925659","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85051766203 "Menachery V.D., Gralinski L.E., Mitchell H.D., Dinnon K.H., III, Leist S.R., Yount B.L., Jr., McAnarney E.T., Graham R.L., Waters K.M., Baric R.S.","24281639500;6505609367;7202670454;57194186788;55846755300;6603564156;57195605429;57203199836;7102277063;57205312930;","Combination attenuation offers strategy for live attenuated coronavirus vaccines",2018,"Journal of Virology","92","17", e00710-18,"","",,9,"10.1128/JVI.00710-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051814705&doi=10.1128%2fJVI.00710-18&partnerID=40&md5=5acd25efe2088478eb695f91da8217b8","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States","Menachery, V.D., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Gralinski, L.E., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Mitchell, H.D., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States; Dinnon, K.H., III, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Leist, S.R., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Yount, B.L., Jr., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; McAnarney, E.T., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Graham, R.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Waters, K.M., Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","With an ongoing threat posed by circulating zoonotic strains, new strategies are required to prepare for the next emergent coronavirus (CoV). Previously, groups had targeted conserved coronavirus proteins as a strategy to generate live attenuated vaccine strains against current and future CoVs. With this in mind, we explored whether manipulation of CoV NSP16, a conserved 2'O methyltransferase (MTase), could provide a broad attenuation platform against future emergent strains. Using the severe acute respiratory syndrome-CoV mouse model, an NSP16 mutant vaccine was evaluated for protection from heterologous challenge, efficacy in the aging host, and potential for reversion to pathogenesis. Despite some success, concerns for virulence in the aged and potential for reversion makes targeting NSP16 alone an untenable approach. However, combining a 2'O MTase mutation with a previously described CoV fidelity mutant produced a vaccine strain capable of protection from heterologous virus challenge, efficacy in aged mice, and no evidence for reversion. Together, the results indicate that targeting the CoV 2'O MTase in parallel with other conserved attenuating mutations may provide a platform strategy for rapidly generating live attenuated coronavirus vaccines. © 2018 American Society for Microbiology.","Aged; Coronavirus; Live attenuated; MERS-CoV; SARS-CoV; Vaccine","2' o methyltransferase; exonuclease; live vaccine; methyltransferase; protein methyltransferase; unclassified drug; archaeal protein; live vaccine; methylcobalamin-coenzyme M methyltransferase; methyltransferase; Nsp16 protein, SARS virus; viral protein; virus vaccine; adaptive immunity; animal cell; animal experiment; animal model; Article; controlled study; Coronavirus infection; enzyme activity; mouse; nonhuman; open reading frame; pathogenesis; preventive medicine; principal component analysis; priority journal; protein motif; sequence alignment; sequence homology; severe acute respiratory syndrome; Vero cell line; virus load; virus replication; virus titration; virus viability; aging; animal; Bagg albino mouse; Chlorocebus aethiops; Coronavirinae; Coronavirus infection; disease model; genetics; immunocompromised patient; immunology; methylation; mutation; SARS coronavirus; virology; Aging; Animals; Archaeal Proteins; Cercopithecus aethiops; Coronavirus; Coronavirus Infections; Disease Models, Animal; Immunocompromised Host; Methylation; Methyltransferases; Mice; Mice, Inbred BALB C; Mutation; SARS Virus; Vaccines, Attenuated; Vero Cells; Viral Nonstructural Proteins; Viral Vaccines; Virus Replication","Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Cunningham, A.A., Daszak, P., Wood, J.L.N., One Health, emerging infectious diseases and wildlife: two decades of progress? (2017) Philos Trans R Soc Lond B Biol Sci, 372. , https://doi.org/10.1098/rstb.2016.0167; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species-a mechanism for coronavirus persistence and survival (2017) Curr Opin Virol, 23, pp. 1-7. , https://doi.org/10.1016/j.coviro.2017.01.002; Fehr, A.R., Channappanavar, R., Perlman, S., Middle East respiratory syndrome: emergence of a pathogenic human coronavirus (2017) Annu Rev Med, 68, pp. 387-399. , https://doi.org/10.1146/annurev-med-051215-031152; Stockman, L.J., Bellamy, R., Garner, P., SARS: systematic review of treatment effects (2006) PLoS Med, 3. , https://doi.org/10.1371/journal.pmed.0030343; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , https://doi.org/10.1038/nm.3985; Kilianski, A., Baker, S.C., Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors (2014) Antiviral Res, 101, pp. 105-112. , https://doi.org/10.1016/j.antiviral.2013.11.004; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, 9. , https://doi.org/10.1126/scitranslmed.aal3653; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848. , https://doi.org/10.1038/nrmicro3143; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses: drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347. , https://doi.org/10.1038/nrd.2015.37; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8. , https://doi.org/10.1128/mBio.00665-17; Chafekar, A., Fielding, B.C., MERS-CoV: understanding the latest human coronavirus threat (2018) Viruses, 10, p. E93. , https://doi.org/10.3390/v10020093; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Baric, R.S., A doubleinactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J Virol, 85, pp. 12201-12215. , https://doi.org/10.1128/JVI.06048-11; Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A., Suthar, M., Baric, R., Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants (2006) PLoS Med, 3. , https://doi.org/10.1371/journal.pmed.0030525; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat Med, 18, pp. 1820-1826. , https://doi.org/10.1038/nm.2972; Jimenez-Guardeno, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castano-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005215; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Thiel, V., Ribose 2=-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat Immunol, 12, pp. 137-143. , https://doi.org/10.1038/nrm3071; Menachery, V.D., Yount, B.L., Jr., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2=-Omethyltransferase activity (2014) J Virol, 88, pp. 4251-4264. , https://doi.org/10.1128/JVI.03571-13; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., III, Leist, S.R., Yount, B.L., Jr., Graham, R.L., Baric, R.S., Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) MSphere, 2. , https://doi.org/10.1128/mSphere.00346-17; Menachery, V.D., Gralinski, L., Mitchell, H.D., Dennon, K., III, Leist, S.R., Yount, B., McAnarney, E.T., Baric, R.S., Combination attenuation offers strategy for live attenuated coronavirus vaccines (2018) BioRxiv, , https://doi.org/10.1101/309591; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Usera, F., Enjuanes, L., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res, 194, pp. 124-137. , https://doi.org/10.1016/j.virusres.2014.07.024; Menachery, V.D., Debbink, K., Baric, R.S., Coronavirus nonstructural protein 16: evasion, attenuation, and possible treatments (2014) Virus Res, 194, pp. 191-199. , https://doi.org/10.1016/j.virusres.2014.09.009; Netland, J., DeDiego, M.L., Zhao, J., Fett, C., Alvarez, E., Nieto-Torres, J.L., Enjuanes, L., Perlman, S., Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease (2010) Virology, 399, pp. 120-128. , https://doi.org/10.1016/j.virol.2010.01.004; Almazan, F., DeDiego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replicationcompetent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4. , https://doi.org/10.1128/mBio.00650-13; Fett, C., DeDiego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirusmediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein (2013) J Virol, 87, pp. 6551-6559. , https://doi.org/10.1128/JVI.00087-13; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Fernandez-Delgado, R., Fett, C., Castano-Rodriguez, C., Perlman, S., DeDiego, M.L., Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates (2015) J Virol, 89, pp. 3870-3887. , https://doi.org/10.1128/JVI.03566-14; Roberts, A., Paddock, C., Vogel, L., Butler, E., Zaki, S., Subbarao, K., Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans (2005) J Virol, 79, pp. 5833-5838. , https://doi.org/10.1128/JVI.79.9.5833-5838.2005; Sheahan, T., Whitmore, A., Long, K., Ferris, M., Rockx, B., Funkhouser, W., Donaldson, E., Baric, R.S., Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus (2011) J Virol, 85, pp. 217-230. , https://doi.org/10.1128/JVI.01805-10; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog, 3. , https://doi.org/10.1371/journal.ppat.0030005; Modjarrad, K., MERS-CoV vaccine candidates in development: the current landscape (2016) Vaccine, 34, pp. 2982-2987. , https://doi.org/10.1016/j.vaccine.2016.03.104; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; Cockrell, A.Y.B., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.-C., Marasco, W.A., Baric, R.S., A mouse model for MERS coronavirus induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , https://doi.org/10.1038/nmicrobiol.2016.226; Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Denison, M.R., Baric, R.S., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc Natl Acad Sci U S A, 100, pp. 12995-13000. , https://doi.org/10.1073/pnas.1735582100; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Denison, M.R., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog, 6. , https://doi.org/10.1371/journal.ppat.1000896; Gralinski, L.E., Bankhead, A., III, Jeng, S., Menachery, V.D., Proll, S., Belisle, S.E., Matzke, M., Baric, R.S., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) MBio, 4. , https://doi.org/10.1128/mBio.00271-13; Hosack, D.A., Dennis, G., Jr., Sherman, B.T., Lane, H.C., Lempicki, R.A., Identifying biological themes within lists of genes with EASE (2003) Genome Biol, 4, p. R70. , https://doi.org/10.1186/gb-2003-4-10-r70; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc Natl Acad Sci U S A, 113, pp. 3048-3053. , https://doi.org/10.1073/pnas.1517719113; Sims, A.C., Tilton, S.C., Menachery, V.D., Gralinski, L.E., Schafer, A., Matzke, M.M., Webb-Robertson, B.J., Baric, R.S., Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells (2013) J Virol, 87, pp. 3885-3902. , https://doi.org/10.1128/JVI.02520-12","Baric, R.S.; Department of Epidemiology, University of North Carolina at Chapel HillUnited States; email: Rbaric@email.unc.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29976657","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85051814705 "Davis B.M., Foxman B., Monto A.S., Baric R.S., Martin E.T., Uzicanin A., Rainey J.J., Aiello A.E.","26535718800;7005876427;7004552306;57205312930;35321462900;6603299036;7006325861;57203233119;","Human coronaviruses and other respiratory infections in young adults on a university campus: Prevalence, symptoms, and shedding",2018,"Influenza and other Respiratory Viruses","12","5",,"582","590",,4,"10.1111/irv.12563","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050470521&doi=10.1111%2firv.12563&partnerID=40&md5=65435a53fc60d3ec095dc102444a29fb","Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States; Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, GA, United States; Division Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States","Davis, B.M., Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States; Foxman, B., Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States; Monto, A.S., Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States; Baric, R.S., Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States; Martin, E.T., Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States; Uzicanin, A., Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, GA, United States; Rainey, J.J., Division Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, United States; Aiello, A.E., Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, United States","Background: The prevalence, symptom course, and shedding in persons infected with the 4 most common human coronaviruses (HCoV)-229E, HKU1, NL63, and OC43 are poorly described. Objectives: We estimate their prevalence and associated symptoms among college students identified via a social network study design. Patients/Methods: We collected 1-3 samples (n = 250 specimens) from 176 participants between October 2012 and January 17, 2013: participants with acute respiratory infection (ARI; cough and body aches or chills or fever/feverishness) and their social contacts. Virus was detected using RT-PCR. Results: 30.4% (76/250) of specimens tested positive for any virus tested, and 4.8% (12/250) were positive for 2 or more viruses. Human coronaviruses (HCoVs [22.0%; 55/250]), rhinovirus (7.6%; 19/250), and influenza A (6.4%; 16/250) were most prevalent. Symptoms changed significantly over time among ARI participants with HCoV: the prevalence of cough and chills decreased over 6 days (P =.04, and P =.01, respectively), while runny nose increased over the same period (P =.02). HCoV-NL63 was the most frequent virus detected 6 days following symptom onset (8.9%), followed by rhinovirus (6.7%). Conclusions: During a 3-month period covering a single season, HCoVs were common, even among social contacts without respiratory symptoms; specific symptoms may change over the course of HCoV-associated illness and were similar to symptoms from influenza and rhinovirus. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","acute respiratory infection; coronavirus; human; influenza; symptoms; university","influenza vaccine; adult; Article; chill; cohort analysis; controlled study; Coronaviridae; Coronavirus infection; coughing; female; fever; human; Human coronavirus 229E; Human coronavirus HKU1; Human coronavirus NL63; Human coronavirus OC43; influenza A; Influenza A virus; major clinical study; male; microbiological examination; nonhuman; prevalence; priority journal; reverse transcription polymerase chain reaction; rhinorrhea; Rhinovirus; Rhinovirus infection; seasonal influenza; social interaction; social network; symptom; university; viral respiratory tract infection; virus detection; virus shedding; classification; isolation and purification; pathology; prevalence; questionnaire; respiratory tract infection; student; virology; virus; virus infection; young adult; Female; Humans; Male; Prevalence; Respiratory Tract Infections; Students; Surveys and Questionnaires; Universities; Virus Diseases; Viruses; Young Adult","de Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis, 36, pp. 985-989; Vabret, A., Mourez, T., Dina, J., Human coronavirus NL63, France (2005) Emerg Infect Dis, 11, pp. 1225-1229; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729; Kuypers, J., Martin, E.T., Heugel, J., Wright, N., Morrow, R., Englund, J.A., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119, pp. e70-e76; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) BMJ, 1, pp. 1467-1470; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121, pp. 190-193; Huynh, J., Li, S., Yount, B., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J Virol, 86, pp. 12816-12825; Pfefferle, S., Oppong, S., Drexler, J.F., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg Infect Dis, 15, pp. 1377-1384; Vijgen, L., Keyaerts, E., Moes, E., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604; Corman, V.M., Eckerle, I., Memish, Z.A., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci USA, 113, pp. 9864-9869; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Esper, F., Ou, Z., Huang, Y.T., Human coronaviruses are uncommon in patients with gastrointestinal illness (2010) J Clin Virol, 48, pp. 131-133; Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Corbet, S., Freymuth, F., Detection of the new human coronavirus HKU1: a report of 6 cases (2006) Clin Infect Dis, 42, pp. 634-639; van der Hoek, L., Sure, K., Ihorst, G., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2; Falsey, A.R., Walsh, E.E., Hayden, F.G., Rhinovirus and coronavirus infection-associated hospitalizations among older adults (2002) J Infect Dis, 185, pp. 1338-1341; Talbot, H.K., Crowe, J.E., Jr., Edwards, K.M., Coronavirus infection and hospitalizations for acute respiratory illness in young children (2009) J Med Virol, 81, pp. 853-856; Monto, A.S., Cowling, B.J., Peiris, J.S.M., Coronaviruses (2014) Viral Infections of Humans: Epidemiology and Control, pp. 199-224. , Kaslow RA, Stanberry LR, Le Duc JW, eds., 5 edn, New York, NY, Springer; Aiello, A.E., Simanek, A.M., Eisenberg, M.C., Design and methods of a social network isolation study for reducing respiratory infection transmission: the eX-FLU cluster randomized trial (2016) Epidemics, 15, pp. 38-55; Monto, A.S., Malosh, R.E., Petrie, J.G., Thompson, M.G., Ohmit, S.E., Frequency of acute respiratory illnesses and circulation of respiratory viruses in households with children over 3 surveillance seasons (2014) J Infect Dis, 210, pp. 1792-1799; Cabeca, T.K., Granato, C., Bellei, N., Epidemiological and clinical features of human coronavirus infections among different subsets of patients (2013) Influenza Other Respir Viruses, 7, pp. 1040-1047; Kaslow, R.A., Stanberry, L.R., Le Duc, J.W., (2014) Viral Infections of Humans Epidemiology and Control, , Boston, MA, Springer US, Imprint Springer;; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Esper, F.P., Spahlinger, T., Zhou, L., Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease (2011) J Infect, 63, pp. 260-266; Lambert, S.B., Allen, K.M., Druce, J.D., Community epidemiology of human metapneumovirus, human coronavirus NL63, and other respiratory viruses in healthy preschool-aged children using parent-collected specimens (2007) Pediatrics, 120, pp. e929-e937; Martin, E.T., Fairchok, M.P., Stednick, Z.J., Kuypers, J., Englund, J.A., Epidemiology of multiple respiratory viruses in childcare attendees (2013) J Infect Dis, 207, pp. 982-989; Graham, N.M., Burrell, C.J., Douglas, R.M., Debelle, P., Davies, L., Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers (1990) J Infect Dis, 162, pp. 1277-1282; Heikkinen, T., Jarvinen, A., The common cold (2003) Lancet, 361, pp. 51-59","Aiello, A.E.; Department of Epidemiology, Gillings School of Global Public HealthUnited States; email: aaiello@unc.edu",,"Blackwell Publishing Ltd",17502640,,,"29660826","English","Influ. Other Respir. Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85050470521 "Yan L., Meng B., Xiang J., Wilson I.A., Yang B.","57195980948;57210695177;57203837934;56743978000;56306616200;","Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution",2018,"Acta Crystallographica Section D: Structural Biology","74","9",,"841","851",,2,"10.1107/S2059798318008318","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053136804&doi=10.1107%2fS2059798318008318&partnerID=40&md5=da1de5872b7f100cc1bf06565720cb03","Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, La Jolla, CA 92037, United States","Yan, L., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Meng, B., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Xiang, J., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Wilson, I.A., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, La Jolla, CA 92037, United States; Yang, B., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China","Human coronavirus 229E (HCoV-229E) usually causes mild upper respiratory infections in heathy adults, but may lead to severe complications or mortality in individuals with weakened immune systems. Virus entry of HCoV-229E is mediated by its spike (S) protein, where the S1 domain facilitates attachment to host cells and the S2 domain is involved in subsequent fusion of the virus and host membranes. During the fusion process, two heptad repeats, HR1 and HR2, in the S2 domain assemble into a six-helix membrane-fusion structure termed the fusion core. Here, the complete fusion-core structure of HCoV-229E has been determined at 1.86 Å resolution, representing the most complete post-fusion conformation thus far among published human alphacoronavirus (α-HCoV) fusion-core structures. The overall structure of the HCoV-229E fusion core is similar to those of SARS, MERS and HCoV-NL63, but the packing of its 3HR1 core differs from those of SARS and MERS in that it contains more noncanonical ‘x’ and ‘da’ layers. Side-by-side electrostatic surface comparisons reveal that the electrostatic surface potentials are opposite in α-HCoVs and β-HCoVs at certain positions and that the HCoV-229E surface also appears to be the most hydrophobic among the various HCoVs. In addition to the highly conserved hydrophobic interactions between HR1 and HR2, some polar and electrostatic interactions are also well preserved across different HCoVs. This study adds to the structural profiling of HCoVs to aid in the structure-based design of pan-coronavirus small molecules or peptides to inhibit viral fusion. © 2018 International Union of Crystallography.","Coronavirus; HCoV-229E; MERS; Post-fusion core; SARS; Spike protein; X-ray structure","coronavirus spike glycoprotein; fusion protein; amino acid sequence; chemistry; Coronavirus infection; human; Human coronavirus 229E; isolation and purification; molecular model; physiology; protein conformation; sequence alignment; virology; X ray crystallography; Amino Acid Sequence; Coronavirus 229E, Human; Coronavirus Infections; Crystallography, X-Ray; Humans; Models, Molecular; Protein Conformation; Recombinant Fusion Proteins; Sequence Alignment; Spike Glycoprotein, Coronavirus","Adams, P.D., (2010) Acta Cryst, D66, pp. 213-221; Aydin, H., Al-Khooly, D., Lee, J.E., (2014) Protein Sci, 23, pp. 603-617; Baquero, E., Albertini, A.A., Vachette, P., Lepault, J., Bressanelli, S., Gaudin, Y., (2013) Curr. Opin. Virol, 3, pp. 143-150; Belouzard, S., Chu, V.C., Whittaker, G.R., (2009) Proc. Natl Acad. Sci. USA, 106, pp. 5871-5876; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., (2012) Viruses, 4, pp. 1011-1033; Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J., Rottier, P.J., (2004) Proc. Natl Acad. Sci. USA, 101, pp. 8455-8460; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., (2015) J. Infect. Dis, 212, pp. 1894-1903; Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., (2010) Acta Cryst, D66, pp. 12-21; Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A., (2004) Nucleic Acids Res, 32, pp. W665-W667; Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J., (2006) Nucleic Acids Res, 34, pp. W116-W118; Duquerroy, S., Vigouroux, A., Rottier, P.J.M., Rey, F.A., Bosch, B.J., (2005) Virology, 335, pp. 276-285; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., (2010) Acta Cryst, D66, pp. 486-501; Enjuanes, L., Almazán, F., Sola, I., Zuñiga, S., (2006) Annu. Rev. Microbiol, 60, pp. 211-230; Forgie, S., Marrie, T.J., (2009) Semin. Respir. Crit. Care Med, 30, pp. 67-85; Forni, D., Cagliani, R., Clerici, M., Sironi, M., (2017) Trends Microbiol, 25, pp. 35-48; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Gao, G.F., (2013) J. Virol., 87, pp. 13134-13140; Ge, X.-Y., (2013) Nature (London), 503, pp. 535-538; Greenberg, S.B., (2016) Semin. Respir. Crit. Care Med, 37, pp. 555-571; De Groot, R.J., (2013) J. Virol, 87, pp. 7790-7792; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., (2017) Cell Res, 27, pp. 119-129; Hamre, D., Procknow, J.J., (1966) Proc. Soc. Exp. Biol. Med, 121, pp. 190-193; Han, D.P., Penn-Nicholson, A., Cho, M.W., (2006) Virology, 350, pp. 15-25; Heald-Sargent, T., Gallagher, T., (2012) Viruses, 4, pp. 557-580; Van Der Hoek, L., (2007) Antivir. Ther, 12, pp. 651-658; Hu, H., (2005) J. Comb. Chem, 7, pp. 648-656; Hulswit, R.J., De Haan, C.A., Bosch, B.J., (2016) Adv. Virus Res, 96, pp. 29-57; Jartti, L., Langen, H., Söderlund-Venermo, M., Vuorinen, T., Ruuskanen, O., Jartti, T., (2011) Open Respir. Med. J., 5, pp. 61-69; Julien, J.-P., Cupo, A., Sok, D., Stanfield, R.L., Lyumkis, D., Deller, M.C., Klasse, P.-J., Wilson, I.A., (2013) Science, 342, pp. 1477-1483; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., (2016) Nature (London), 531, pp. 118-121; Ksiazek, T.G., (2003) N. Engl. J. Med, 348, pp. 1953-1966; Li, F., (2016) Annu. Rev. Virol, 3, pp. 237-261; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Jiang, S., (2004) Lancet, 363, pp. 938-947; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Wang, Q., Jiang, S., (2014) Nature Commun, 5, p. 3067; Lu, L., Xia, S., Ying, T., Jiang, S., (2015) Microbes Infect, 4; Lyumkis, D., Julien, J.-P., De Val, N., Cupo, A., Potter, C.S., Klasse, P.J., Burton, D.R., Ward, A.B., (2013) Science, 342, pp. 1484-1490; Marra, M.A., (2003) Science, 300, pp. 1399-1404; Matsuyama, S., Taguchi, F., (2002) J. Virol, 76, pp. 11819-11826; Menachery, V.D., Yount, B.L., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., (2015) Nature Med, 21, pp. 1508-1513; Menachery, V.D., (2016) Proc. Natl Acad. Sci. USA, 113, pp. 3048-3053; Millet, J.K., Whittaker, G.R., (2014) Proc. Natl Acad. Sci. USA, 111, pp. 15214-15219; Millet, J.K., Whittaker, G.R., (2015) Virus Res, 202, pp. 120-134; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., (2016) Proc. Natl Acad. Sci. USA, 113, pp. 12262-12267; Peiris, J.S.M., Lai, S.T., (2003) Lancet, 361, pp. 1319-1325; Peiris, J.S.M., Yuen, K.Y., Osterhaus, A.D.M.E., Stöhr, K., (2003) N. Engl. J. Med, 349, pp. 2431-2441; Perlman, S., Netland, J., (2009) Nature Rev. Microbiol, 7, pp. 439-450; Rota, P.A., (2003) Science, 300, pp. 1394-1399; Seo, J., Cohen, C., (1993) Proteins, 15, pp. 223-234; Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R., (2003) Nature Rev. Microbiol, 1, pp. 209-218; Strelkov, S.V., Burkhard, P., (2002) J. Struct. Biol, 137, pp. 54-64; Supekar, V.M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., Carfí, A., (2004) Proc. Natl Acad. Sci. USA, 101, pp. 17958-17963; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., Dimaio, F., Rey, F.A., Veesler, D., (2016) Nature (London), 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., Dimaio, F., Veesler, D., (2016) Nature Struct. Mol. Biol, 23, pp. 899-905; De Wilde, A.H., Snijder, E.J., Kikkert, M., Van Hemert, M.J., (2017) Curr. Top. Microbiol. Immunol, , https://doi.org/10.1007/82_2017_25; Wilson, I.A., Skehel, J.J., Wiley, D.C., (1981) Nature (London), 289, pp. 366-373; Wong, A.H.M., Tomlinson, A.C.A., Zhou, D., Satkunarajah, M., Chen, K., Sharon, C., Desforges, M., Rini, J.M., (2017) Nature Commun, 8, p. 1735; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., (2009) Exp. Biol. Med. (Maywood), 234, pp. 1117-1127; (2016) WHO Mers-Cov Global Summary and Risk Assessment, , Geneva: World Health Organization; Xia, S., Xu, W., Wang, Q., Wang, C., Hua, C., Li, W., Lu, L., Jiang, S., (2018) Int. J. Mol. Sci, 19, p. 487; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., (2004) J. Biol. Chem, 279, pp. 49414-49419; Yao, H., Lee, M., Liao, S.-Y., Hong, M., (2016) Biochemistry, 55, pp. 6787-6800; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., (1992) Nature (London), 357, pp. 420-422; Yi, L., (2004) J. Virol, 78, pp. 11334-11339; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., (2017) Nature Commun, 8, p. 15092; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., (2012) N. Engl. J. Med, 367, pp. 1814-1820; Zelus, B.D., Schickli, J.H., Blau, D.M., Weiss, S.R., Holmes, K.V., (2003) J. Virol, 77, pp. 830-840; Zhang, W., Zheng, Q., Yan, M., Chen, X., Yang, H., Zhou, W., Rao, Z., (2018) Biochem. Biophys. Res. Commun, 497, pp. 705-712; Zheng, Q., Deng, Y., Liu, J., Van Der Hoek, L., Berkhout, B., Lu, M., (2006) Biochemistry, 45, pp. 15205-15215","Wilson, I.A.; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, China; email: wilson@scripps.edu",,"Wiley-Blackwell",20597983,,,"30198895","English","Acta Crystallogr. Sect. D Str. Bio.",Article,"Final",Open Access,Scopus,2-s2.0-85053136804 "Niemeyer D., Mösbauer K., Klein E.M., Sieberg A., Mettelman R.C., Mielech A.M., Dijkman R., Baker S.C., Drosten C., Müller M.A.","50361719200;57204092416;57204097123;55790537200;56512278300;55568002700;13807789300;7403307881;7003813990;24068857400;","The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species",2018,"PLoS Pathogens","14","9", e1007296,"","",,3,"10.1371/journal.ppat.1007296","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054430397&doi=10.1371%2fjournal.ppat.1007296&partnerID=40&md5=41e47a213a5f03d7f16064809d184d17","Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research associated partner Charité, Berlin, Germany; Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, United States; Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland","Niemeyer, D., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Bonn, Germany, German Centre for Infection Research associated partner Charité, Berlin, Germany; Mösbauer, K., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Klein, E.M., Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; Sieberg, A., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; Mettelman, R.C., Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, United States; Mielech, A.M., Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, United States; Dijkman, R., Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland; Baker, S.C., Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, IL, United States; Drosten, C., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Bonn, Germany, German Centre for Infection Research associated partner Charité, Berlin, Germany; Müller, M.A., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Bonn, Germany, German Centre for Infection Research associated partner Charité, Berlin, Germany","SARS-coronavirus (CoV) is a zoonotic agent derived from rhinolophid bats, in which a plethora of SARS-related, conspecific viral lineages exist. Whereas the variability of virulence among reservoir-borne viruses is unknown, it is generally assumed that the emergence of epidemic viruses from animal reservoirs requires human adaptation. To understand the influence of a viral factor in relation to interspecies spillover, we studied the papain-like protease (PLP) of SARS-CoV. This key enzyme drives the early stages of infection as it cleaves the viral polyprotein, deubiquitinates viral and cellular proteins, and antagonizes the interferon (IFN) response. We identified a bat SARS-CoV PLP, which shared 86% amino acid identity with SARS-CoV PLP, and used reverse genetics to insert it into the SARS-CoV genome. The resulting virus replicated like SARS-CoV in Vero cells but was suppressed in IFN competent MA-104 (3.7-fold), Calu-3 (2.6-fold) and human airway epithelial cells (10.3-fold). Using ectopically-expressed PLP variants as well as full SARS-CoV infectious clones chimerized for PLP, we found that a protease-independent, anti-IFN function exists in SARS-CoV, but not in a SARS-related, bat-borne virus. This PLP-mediated anti-IFN difference was seen in primate, human as well as bat cells, thus independent of the host context. The results of this study revealed that coronavirus PLP confers a variable virulence trait among members of the species SARS-CoV, and that a SARS-CoV lineage with virulent PLPs may have pre-existed in the reservoir before onset of the epidemic. © 2018 Niemeyer et al. http://creativecommons.org/licenses/by/4.0/.",,"3C-like protease, SARS coronavirus; cysteine proteinase; interferon; ubiquitin; viral protein; amino acid sequence; animal; antagonists and inhibitors; bat; Chlorocebus aethiops; disease carrier; enzymology; genetics; HEK293 cell line; host pathogen interaction; host range; human; metabolism; pathogenicity; phylogeny; physiology; SARS coronavirus; sequence homology; severe acute respiratory syndrome; Vero cell line; virology; virulence; virus replication; zoonosis; Amino Acid Sequence; Animals; Cercopithecus aethiops; Chiroptera; Cysteine Endopeptidases; Disease Reservoirs; HEK293 Cells; Host Specificity; Host-Pathogen Interactions; Humans; Interferons; Phylogeny; SARS Virus; Sequence Homology, Amino Acid; Severe Acute Respiratory Syndrome; Ubiquitin; Vero Cells; Viral Proteins; Virulence; Virus Replication; Zoonoses","Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80 (14), pp. 7270-7274. , pmid:16809333; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79 (3), pp. 1595-1604. , pmid:15650185; Han, M.G., Cheon, D.S., Zhang, X., Saif, L.J., Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves (2006) J Virol, 80 (24), pp. 12350-12356. , pmid:16971444; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci U S A, 113 (35), pp. 9864-9869. , pmid:27528677; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , pmid:23075143; Liljander, A., Meyer, B., Jores, J., Muller, M.A., Lattwein, E., Njeru, I., MERS-CoV Antibodies in Humans, Africa, 2013–2014 (2016) Emerg Infect Dis, 22 (6), pp. 1086-1089. , pmid:27071076; Seong, M.W., Kim, S.Y., Corman, V.M., Kim, T.S., Cho, S.I., Kim, M.J., Microevolution of Outbreak-Associated Middle East Respiratory Syndrome Coronavirus, South Korea, 2015 (2016) Emerg Infect Dis, 22 (2), pp. 327-330. , pmid:26814649; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (6), p. 629; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866. , pmid:23933067; http://www.who.int/csr/sars/country/table2004_04_21/en/, WHO. WHO Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. (Based on data as of the 31 December 2003.) 2004;Available from; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349 (25), pp. 2431-2441. , pmid:14681510; Chinese, S.M.E.C., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303 (5664), pp. 1666-1669. , pmid:14752165; Che, X.Y., Di, B., Zhao, G.P., Wang, Y.D., Qiu, L.W., Hao, W., A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003–2004 community outbreak of SARS in Guangzhou, China (2006) Clin Infect Dis, 43 (1), pp. e1-e5. , pmid:16758408; Becker, M.M., Graham, R.L., Donaldson, E.F., Rockx, B., Sims, A.C., Sheahan, T., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc Natl Acad Sci U S A, 105 (50), pp. 19944-19949. , pmid:19036930; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21 (12), pp. 1508-1513. , pmid:26552008; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13 (11), p. e1006698. , pmid:29190287; Cyranoski, D., Bat cave solves mystery of deadly SARS virus—and suggests new outbreak could occur (2017) Nature, 552 (7683), pp. 15-16. , pmid:29219990; Wang, L., Fu, S., Cao, Y., Zhang, H., Feng, Y., Yang, W., Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China (2017) Emerg Microbes Infect, 6 (3), p. e14. , pmid:28352124; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84 (7), pp. 3134-3146. , pmid:19906932; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538. , pmid:24172901; Ren, W., Qu, X., Li, W., Han, Z., Yu, M., Zhou, P., Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin (2008) J Virol, 82 (4), pp. 1899-1907. , pmid:18077725; Drosten, C., Virus ecology: a gap between detection and prediction (2013) Emerging Microbes & Infections, 2, p. e31; Haller, O., Kochs, G., Weber, F., The interferon response circuit: induction and suppression by pathogenic viruses (2006) Virology, 344 (1), pp. 119-130. , pmid:16364743; Randall, R.E., Goodbourn, S., Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J Gen Virol, 89, pp. 1-47. , pmid:18089727; Roth-Cross, J.K., Bender, S.J., Weiss, S.R., Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia (2008) J Virol, 82 (20), pp. 9829-9838. , pmid:18667505; Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation (2008) Immunity, 29 (4), pp. 538-550. , pmid:18818105; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol, 81 (2), pp. 548-557. , pmid:17108024; Tohya, Y., Narayanan, K., Kamitani, W., Huang, C., Lokugamage, K., Makino, S., Suppression of host gene expression by nsp1 proteins of group 2 bat coronaviruses (2009) J Virol, 83 (10), pp. 5282-5288. , pmid:19264783; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res, 194, pp. 184-190. , pmid:24512893; Chen, X., Yang, X., Zheng, Y., Yang, Y., Xing, Y., Chen, Z., SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex (2014) Protein Cell, 5 (5), pp. 369-381. , pmid:24622840; Sun, L., Xing, Y., Chen, X., Zheng, Y., Yang, Y., Nichols, D.B., Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling (2012) PLoS One, 7 (2), p. e30802. , pmid:22312431; Komander, D., Rape, M., The ubiquitin code (2012) Annu Rev Biochem, 81, pp. 203-229. , pmid:22524316; Nicholson, B., Leach, C.A., Goldenberg, S.J., Francis, D.M., Kodrasov, M.P., Tian, X., Characterization of ubiquitin and ubiquitin-like-protein isopeptidase activities (2008) Protein Sci, 17 (6), pp. 1035-1043. , pmid:18424514; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J Virol, 84 (9), pp. 4619-4629. , pmid:20181693; van Kasteren, P.B., Bailey-Elkin, B.A., James, T.W., Ninaber, D.K., Beugeling, C., Khajehpour, M., Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells (2013) Proc Natl Acad Sci U S A, 110 (9), pp. E838-E847. , pmid:23401522; Frias-Staheli, N., Giannakopoulos, N.V., Kikkert, M., Taylor, S.L., Bridgen, A., Paragas, J., Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses (2007) Cell Host & Microbe, 2 (6), pp. 404-416; Baez-Santos, Y.M., Mielech, A.M., Deng, X., Baker, S., Mesecar, A.D., Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus (2014) J Virol, 88 (21), pp. 12511-12527. , pmid:25142582; Bekes, M., van der Heden van Noort, G.J., Ekkebus, R., Ovaa, H., Huang, T.T., Lima, C.D., Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease (2016) Mol Cell, 62 (4), pp. 572-585. , pmid:27203180; Clasman, J.R., Baez-Santos, Y.M., Mettelman, R.C., O'Brien, A., Baker, S.C., Mesecar, A.D., X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design (2017) Sci Rep, 7, p. 40292. , pmid:28079137; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70. , pmid:24503068; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J Biol Chem, 289 (50), pp. 34667-34682. , pmid:25320088; Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) MBio, 4 (1), pp. e00611-e00612. , pmid:23422412; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J Virol, 87 (9), pp. 5300-5304. , pmid:23449793; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J Virol, 84 (21), pp. 11336-11349. , pmid:20686038; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg Infect Dis, 15 (9), pp. 1377-1384. , pmid:19788804; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J Virol, 78 (24), pp. 13600-13612. , pmid:15564471; Rawlings, N.D., Barrett, A.J., (1994) Methods in Enzymology, 244, pp. 461-486. , pmid:7845226, Academic Press p; Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., Baker, S.C., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity (2005) J Virol, 79 (24), pp. 15189-15198. , pmid:16306590; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling (2009) J Virol, 83 (13), pp. 6689-6705. , pmid:19369340; Kilianski, A., Mielech, A.M., Deng, X., Baker, S.C., Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors (2013) J Virol, 87 (21), pp. 11955-11962. , pmid:23986593; Baez-Santos, Y.M., Barraza, S.J., Wilson, M.W., Agius, M.P., Mielech, A.M., Davis, N.M., X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases (2014) J Med Chem, 57 (6), pp. 2393-2412. , pmid:24568342; Kuri, T., Habjan, M., Penski, N., Weber, F., Species-independent bioassay for sensitive quantification of antiviral type I interferons (2010) Virol J, 7, p. 50. , pmid:20187932; Habjan, M., Andersson, I., Klingstrom, J., Schumann, M., Martin, A., Zimmermann, P., Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction (2008) PLoS One, 3 (4), p. e2032. , pmid:18446221; Ratia, K., Kilianski, A., Baez-Santos, Y.M., Baker, S.C., Mesecar, A., Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease (2014) PLoS Pathog, 10 (5), p. e1004113. , pmid:24854014; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25 (4), pp. 402-408. , pmid:11846609; Muller, M.A., Raj, V.S., Muth, D., Meyer, B., Kallies, S., Smits, S.L., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) MBio, 3 (6); Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56. , pmid:24184128; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J Biol Chem, 282 (44), pp. 32208-32221. , pmid:17761676; Menachery, V.D., Yount, B.L., Jr., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity (2014) J Virol, 88 (8), pp. 4251-4264. , pmid:24478444; Daczkowski, C.M., Dzimianski, J.V., Clasman, J.R., Goodwin, O., Mesecar, A.D., Pegan, S.D., Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species (2017) J Mol Biol, 429 (11), pp. 1661-1683. , pmid:28438633; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc Natl Acad Sci U S A, 102 (7), pp. 2430-2435. , pmid:15695582; Gloza-Rausch, F., Ipsen, A., Seebens, A., Gottsche, M., Panning, M., Drexler, J.F., Detection and prevalence patterns of group I coronaviruses in bats, northern Germany (2008) Emerg Infect Dis, 14 (4), pp. 626-631. , pmid:18400147; Sikes, R.S., Gannon, W.L., mammalogists AcaucotAso. Guidelines of the American Society of Mammalogists for the use of wild mammals in research (2011) Journal of Mammalogy, 92 (1), pp. 235-253; Dijkman, R., Koekkoek, S.M., Molenkamp, R., Schildgen, O., van der Hoek, L., Human bocavirus can be cultured in differentiated human airway epithelial cells (2009) J Virol, 83 (15), pp. 7739-7748. , pmid:19474096; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87 (22), pp. 12489-12495. , pmid:24027320; Pfefferle, S., Krahling, V., Ditt, V., Grywna, K., Muhlberger, E., Drosten, C., Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo (2009) Virol J, 6, p. 131. , pmid:19698190; Childs, K., Randall, R., Goodbourn, S., Paramyxovirus V proteins interact with the RNA Helicase LGP2 to inhibit RIG-I-dependent interferon induction (2012) J Virol, 86 (7), pp. 3411-3421. , pmid:22301134; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (49); Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1967-1976. , pmid:12690091; Biesold, S.E., Ritz, D., Gloza-Rausch, F., Wollny, R., Drexler, J.F., Corman, V.M., Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum (2011) PLoS One, 6 (11), p. e28131. , pmid:22140523; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., UCSF Chimera—a visualization system for exploratory research and analysis (2004) J Comput Chem, 25 (13), pp. 1605-1612. , pmid:15264254; Cornish-Bowden, A., Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984 (1985) Nucleic Acids Res, 13 (9), pp. 3021-3030. , pmid:2582368","Drosten, C.; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of HealthGermany; email: christian.drosten@charite.de",,"Public Library of Science",15537366,,,"30248143","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85054430397 "Harcourt J.L., Rudoler N., Tamin A., Leshem E., Rasis M., Giladi M., Haynes L.M.","7006241346;55413985800;6602551546;11839920600;15754910500;55918159000;7101765135;","The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel",2018,"Zoonoses and Public Health","65","6",,"749","754",,9,"10.1111/zph.12482","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047793986&doi=10.1111%2fzph.12482&partnerID=40&md5=967afd0d8e7e3ad4a064f736ff24aeae","National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Koret School of Veterinary Medicine, Faculty of Agriculture, Hebrew University, Rehovot, Israel; National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Epidemiology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Bernard Pridan Laboratory for Molecular Biology of Infectious Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States","Harcourt, J.L., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Rudoler, N., Koret School of Veterinary Medicine, Faculty of Agriculture, Hebrew University, Rehovot, Israel; Tamin, A., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Leshem, E., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Epidemiology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Rasis, M., Bernard Pridan Laboratory for Molecular Biology of Infectious Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Giladi, M., Bernard Pridan Laboratory for Molecular Biology of Infectious Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Haynes, L.M., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States","Middle East respiratory syndrome coronavirus, MERS-CoV, was identified in Saudi Arabia in 2012, and as of January 29, 2018, there were 2,123 laboratory-confirmed MERS-CoV cases reported to WHO (WHO, 2018, https://www.who.int/emergencies/mers-cov/en/). Multiple studies suggest that dromedary camels are a source for human MERS-CoV infection. MERS-CoV-specific antibodies have been detected in the serum of dromedary camels across Northern Africa and across the Arabian Peninsula. Israel's geographic location places Israel at risk for MERS-CoV infection. To date, MERS-CoV-related illness has not been reported and the burden of MERS-CoV infection in the Israeli population is unknown. The seroprevalence of MERS-CoV-specific antibodies in Israeli dromedary camels is unknown. The objective of this study was to determine the prevalence of MERS-CoV seropositivity in dromedary camels in Israel. The prevalence of MERS-CoV antibodies in Israeli camels was examined in 71 camel sera collected from four farms across Israel by MERS-CoV-specific microneutralization (Mnt) assay and confirmed by MERS-CoV-specific immunofluorescence assay (IFA). Although this study cannot rule out potential antibody cross-reactivity by IFA, the presence of bovine coronavirus-specific antibodies do not appear to impact detection of MERS-CoV antibodies by Mnt. MERS-CoV neutralizing antibodies were detectable in 51 (71.8%) camel sera, and no association was observed between the presence of neutralizing antibodies and camel age or gender. These findings extend the known range of MERS-CoV circulation in Middle Eastern camels. The high rate of MERS-CoV-specific antibody seropositivity in dromedary camels in the absence of any reported human MERS cases suggests that there is still much to be learned about the dynamics of camel-to-human transmission of MERS-CoV. © 2018 Blackwell Verlag GmbH","coronavirus; dromedary camels; MERS-CoV; Middle East respiratory syndrome coronavirus","neutralizing antibody; virus antibody; animal experiment; animal model; antibody detection; antibody titer; Article; disease transmission; dromedary; female; immunofluorescence test; Israel; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; prevalence; priority journal; virus transmission; zoonosis; animal; blood; camel; Coronavirus infection; immunology; isolation and purification; seroepidemiology; veterinary medicine; virology; zoonosis; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelus; Coronavirus Infections; Female; Israel; Male; Middle East Respiratory Syndrome Coronavirus; Prevalence; Seroepidemiologic Studies; Zoonoses","Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) mBio, 5. , https://doi.org/10.1128/mBio.00884-14; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Madani, T.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) mBio, 5. , https://doi.org/10.1128/mBio.01450-14; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveillance, 20 (49). , https://doi.org/10.2807/1560-7917.ES.2015.20.49.30086; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Muller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerging Infectious Diseases, 20, pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveillance, p. 17; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) The Lancet. Infectious Diseases, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Peiris, M., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveillance, 19 (23); Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveillance, 18, p. 20659; Kasem, S., Qasim, I., Al-Hufofi, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Peiris, M., Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia (2017) Journal of Infection and Public Health, 11 (3), pp. 331-338. , https://doi.org/10.1016/j.jiph.2017.09.022; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Drosten, C., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerging Infectious Diseases, 20, pp. 552-559. , https://doi.org/10.3201/eid2004.131746; Muhairi, S.A., Hosani, F.A., Eltahir, Y.M., Mulla, M.A., Yusof, M.F., Serhan, W.S., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52, pp. 848-854. , https://doi.org/10.1007/s11262-016-1367-1; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Drosten, C., MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983–1997 (2014) Emerging Infectious Diseases, 20, pp. 1983-1997.. , https://doi.org/10.3201/eid2012.141026; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Al Muhairi, S.S.M., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2017) Zoonoses Public Health, 65 (3), pp. 322-333. , https://doi.org/10.1111/zph.12435; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveillance, 18, p. pii=20574; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Haagmans, B.L., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerging Infectious Diseases, 20, pp. 1339-1342. , https://doi.org/10.3201/eid2008.140663; Rasis, M., Rudoler, N., Schwartz, D., Giladi, M., Bartonella dromedarii sp. nov. isolated from domesticated camels (Camelus dromedarius) in Israel (2014) Vector Borne and Zoonotic Diseases, 14, pp. 775-782. , https://doi.org/10.1089/vbz.2014.1663; Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L.J., Wong, S.K., Marasco, W.A., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 2536-2541. , https://doi.org/10.1073/pnas.0307140101; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, Retrieved from","Harcourt, J.L.; National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC)United States; email: zaq6@cdc.gov",,"Wiley-VCH Verlag",18631959,,,"29855166","English","Zoonoses Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85047793986 "Abbag H.F., El-Mekki A.A., Al Bshabshe A.A.A., Mahfouz A.A., Al-Dosry A.A., Mirdad R.T., AlKhttabi N.F., Abbag L.F.","57201034268;6602563879;34871328100;7005808048;57201024713;57201024989;57201031944;57201024999;","Knowledge and attitude towards the Middle East respiratory syndrome coronavirus among healthcare personnel in the southern region of Saudi Arabia",2018,"Journal of Infection and Public Health","11","5",,"720","722",,1,"10.1016/j.jiph.2018.02.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042937809&doi=10.1016%2fj.jiph.2018.02.001&partnerID=40&md5=a9f56e687fa1c91372cb22765ed451f7","College of Medicine, King Khalid University, Abha, Saudi Arabia; Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abba, Saudi Arabia; Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia; Department of Family and Community Medicine, College of Medicine, King Khalid University Supervisor Joint Program, Saudi Board of Community Medicine, Abha, Saudi Arabia","Abbag, H.F., College of Medicine, King Khalid University, Abha, Saudi Arabia; El-Mekki, A.A., Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abba, Saudi Arabia; Al Bshabshe, A.A.A., Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia; Mahfouz, A.A., Department of Family and Community Medicine, College of Medicine, King Khalid University Supervisor Joint Program, Saudi Board of Community Medicine, Abha, Saudi Arabia; Al-Dosry, A.A., College of Medicine, King Khalid University, Abha, Saudi Arabia; Mirdad, R.T., College of Medicine, King Khalid University, Abha, Saudi Arabia; AlKhttabi, N.F., College of Medicine, King Khalid University, Abha, Saudi Arabia; Abbag, L.F., College of Medicine, King Khalid University, Abha, Saudi Arabia","Introduction: Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to the family Coronaviridae, and is named for the crown-like spikes on its surface. The clinical presentation of MERS-CoV infection ranges from asymptomatic to very severe disease, and the classical presentation includes fever, cough chills, sore throat, myalgia, and arthralgia. Methods: A cross-sectional study of 339 healthcare personnel was conducted over an 8-month period in the Aseer region of Saudi Arabia using a structured survey that included demographic information and questions testing participant's knowledge. Results: Approximately two-thirds of the respondents properly identified the causative agent of MERS-CoV as an RNA virus (66.4%, n = 225) that is enveloped (68.1%, n = 231). On the other hand, few respondents identified the proper number of strains or the genus (16.5% and 17.4%, respectively). More than half of the study sample identified the disease as zoonotic (57.2%, n = 194). Similarly, 89.1% (n = 302) identified that camels and bats are prone to infection with coronaviruses. Only 23.9% (n = 81) properly identified March through May as the season with the highest transmission rate. There was a massive lack of adequate knowledge regarding prevalence of antibodies. Only 18.3% (n = 62) of respondents identified PCR as the proper diagnostic confirmatory test for MERS-CoV infection. Regarding MERS-CoV clinical features, 76.4% (n = 259) recognized the presence of sub-clinical infection, 64.7% (n = 218) indicated that cases should be immediately isolated, and 46.9% (n = 159) identified the main cause of mortality as respiratory failure. Conclusions: There is limited microbiological and virological knowledge of MERS-CoV infection among healthcare personnel in the southern region of Saudi Arabia, although the clinical aspects are known. © 2018 The Authors","Attitude; Coronavirus; Healthcare personnel; Knowledge; Middle East respiratory syndrome","abattoir worker; adult; antibody titer; Article; bat; camel; clinical feature; cross-sectional study; female; health care personnel; health personnel attitude; human; infection sensitivity; knowledge; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality; nonhuman; polymerase chain reaction; priority journal; respiratory failure; Saudi Arabia; season; virus isolation; virus transmission; adolescent; animal; attitude to health; Coronavirus infection; disease transmission; middle aged; prevalence; professional competence; Saudi Arabia; transmission; young adult; zoonosis; Adolescent; Adult; Animals; Coronavirus Infections; Cross-Sectional Studies; Disease Transmission, Infectious; Female; Health Knowledge, Attitudes, Practice; Health Personnel; Humans; Male; Middle Aged; Prevalence; Professional Competence; Saudi Arabia; Young Adult; Zoonoses","http://apps.who.int/iris/bitstream/10665/179184/2/WHO_MERS_RA_15.1_eng.pdf; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12 (December), p. 222. , http://www.ncbi.nlm.nih.gov/pubmed/26695637, [Internet] [Cited 31 March 2017]; http://www.who.int/emergencies/mers-cov/en/; Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the Middle East respiratory syndrome coronavirus (2014) Pathog Dis, 71 (July (2)), pp. 121-136. , http://www.ncbi.nlm.nih.gov/pubmed/24585737, [Internet] [Cited 31 March 2017]; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88 (October (19)), pp. 11297-11303. , http://www.ncbi.nlm.nih.gov/pubmed/25031349, [Internet] [Cited 2 April 2017]; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (September (9997)), pp. 995-1007. , http://www.ncbi.nlm.nih.gov/pubmed/26049252, [Internet] [Cited 2 April 2017]; Reusken, C., Farag, E., Jonges, M., Godeke, G., El-Sayed, A., Pas, S., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Eurosurveillance, 19 (June (23)). , http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20829, [Internet] [Cited 2 April 2017]; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (August (5)), pp. 407-416. , http://www.ncbi.nlm.nih.gov/pubmed/23782161, [Internet] [Cited 2 April 2017]; https://www.cdc.gov/coronavirus/about/index.html; Who Mers-Cov Research Group TWM-CR, State of knowledge and data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans (2013) PLoS Curr, 5 (November). , http://www.ncbi.nlm.nih.gov/pubmed/24270606, [Internet] [Cited 2 April 2017]; http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20290; http://www.who.int/csr/disease/coronavirus_infections/WHO_interim_recommendations_lab_detection_MERSCoV_092014.pdf?ua=1; http://apps.who.int/iris/bitstream/10665/178529/1/WHO_MERS_Clinical_15.1_eng.pdf; http://www.cdc.gov/coronavirus/mers/case-def.html; Khan, M.U., Shah, S., Ahmad, A., Fatokun, O., Knowledge and attitude of healthcare workers about middle east respiratory syndrome in multispecialty hospitals of Qassim, Saudi Arabia (2014) BMC Public Health, 14 (December (1)), p. 1281. , http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-1281, [Internet] [Cited 22 July 2017]","Abbag, H.F.; College of Medicine, King Khalid UniversitySaudi Arabia; email: Huda-fuad@hotmail.com",,"Elsevier Ltd",18760341,,,"29525570","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85042937809 "Amin M., Bakhtiar A., Subarjo M., Aksono E.B., Widiyanti P., Shimizu K., Mori Y.","7403041197;57202198186;57202194010;57202200329;55983395900;57206580801;57206590410;","Screening for Middle East respiratory syndrome coronavirus among febrile Indonesian Hajj pilgrims: A study on 28,197 returning pilgrims",2018,"Journal of Infection Prevention","19","5",,"236","239",,1,"10.1177/1757177418765634","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047405774&doi=10.1177%2f1757177418765634&partnerID=40&md5=da143a2463a0c66d3d9f5ac6ff75c6d6","Department of Pulmonology and Respiratory Medicine Faculty of Medicine, Universitas Airlangga, Universitas Airlangga Hospital, Surabaya, Indonesia; Tropical Disease Diagnostic Center, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga and Faculty of Science and Technology, Universitas Airlangga, Indonesia; Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases (CRC-ERID), Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia; Kobe University, Japan","Amin, M., Department of Pulmonology and Respiratory Medicine Faculty of Medicine, Universitas Airlangga, Universitas Airlangga Hospital, Surabaya, Indonesia; Bakhtiar, A., Department of Pulmonology and Respiratory Medicine Faculty of Medicine, Universitas Airlangga, Universitas Airlangga Hospital, Surabaya, Indonesia; Subarjo, M., Department of Pulmonology and Respiratory Medicine Faculty of Medicine, Universitas Airlangga, Universitas Airlangga Hospital, Surabaya, Indonesia; Aksono, E.B., Tropical Disease Diagnostic Center, Universitas Airlangga, Surabaya, Indonesia; Widiyanti, P., Institute of Tropical Disease, Universitas Airlangga and Faculty of Science and Technology, Universitas Airlangga, Indonesia; Shimizu, K., Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases (CRC-ERID), Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia, Kobe University, Japan; Mori, Y., Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases (CRC-ERID), Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia, Kobe University, Japan","There were 211,000 Indonesian Hajj pilgrims going to Mecca through 11 main airports in 2015 who were at risk of contracting the Middle East respiratory syndrome coronavirus (MERS-CoV). We aimed to find out whether there was any occurrence of MERS-CoV by performing screening on 28,197 returning pilgrims. Those with a body temperature of > 38 °C and respiratory symptoms were sent to the airport clinic to have an oropharyngeal swab and a bacterial culture. Fifteen pilgrims had fever (> 38 °C) accompanied by respiratory symptoms; of these, 12 patients were diagnosed with upper and lower respiratory tract infections and three patients with pneumonia. However, none of them were found to be infected with MERS-CoV. The bacterial cultures showed evidence of normal flora growth. © The Author(s) 2018.","Indonesia; MERS-CoV; pilgrims; screening",,"Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual Hajj: potential risks and mitigation strategies (2013) Current Opinion in Pulmonary Medicine, 19, pp. 192-197; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Memish, Z.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New England Journal of Medicine, 369, pp. 407-416. , and; Buchholz, U., Muller, M.A., Nitsche, A., Sanewski, A., Wevering, N., Bauer-Balci, T., Bonin, F., Haas, W., Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012 (2013) Euro Surveillance, 18, p. 20406; Updated Information on the Epidemiology of Middle East Respiratory Syndrome Corona virus (MERS- CoV) Infection and Guidance for the Public, Clinicians, and Public Health Authorities, 2012–2013 (2013) Morbidity and Mortality Weekly Report, 62, pp. 793-796; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Kim, Y.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Drosten, C., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveillance, 17, p. 20285; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: A systematic review (2016) Travel Medicine and Infectious Disease, 14, pp. 92-109; Gautret, P., Charrel, R., Belhouchat, K., Drali, T., Benkouiten, S., Nougairede, A., Zandotti, C., Parola, P., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clinical Microbiology and Infection, 19, pp. E315-E317; Hashim, S., Ayub, Z.N., Mohamed, Z., Hasan, H., Harun, A., Ismail, N., Rahman, Z.A., Aziz, A.A., The prevalence and preventive measures of the respiratory illness among Malaysian pilgrims in 2013 Hajj season (2016) Journal of Travel Medicine, 23. , tav019; (2013) Laporan Siskohat Kesehatan Embarkasi Haji Surabaya tahun 2013, , Surabaya, Indonesia, Kantor Kesehatan Pelabuhan Klas I Surabaya; Liu, C.C., Chang, R.E., Chang, W.C., Limitations of forehead infrared body temperature detection for fever screening for severe acute respiratory syndrome (2004) Infect Control Hosp Epidemiol, 25, pp. 1109-1111; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Drali, T., Gautret, P., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clinical Microbiology and Infection, 571, pp. e571-e578; Memish, Z.A., Zumla, A., Al-Tawfiq, J.A., How great is the risk of Middle East respiratory syndrome coronavirus to the global population? (2013) Expert Review of Anti-Infective Therapy, 11, pp. 979-981; (2015) Middle East Respiratory Syndrome, , http://www.nih.go.jp/niid/ja/diseases/alphabet/mers.html, NIH, Japan; Ng, E.Y., Kaw, G.J., Chang, W.M., Analysis of IR thermal imager for mass blind fever screening (2004) Microvasc Res, 68, pp. 104-109; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Madani, T.A., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) New England Journal of Medicine, 372, pp. 846-854; Perlman, S., The Middle East respiratory syndrome–how worried should we be? (2013) MBio, 4, p. e00531; Priest, P.C., Duncan, A.R., Jennings, L.C., Thermal image scanning for influenza border screening: results of an airport screening study (2011) PLoS One, 6, p. e14490; Wacker, M.J., Godard, M.P., Analysis of one-step and two-step real-time RT-PCR using SuperScript III (2005) Journal of Biomolecular Techniques, 16, pp. 266-271; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, Geneva, WHO","Amin, M.; Department of Pulmonology and Respiratory Medicine Faculty of Medicine, Faculty of Medicine, Universitas Airlangga, Kampus C UNAIR, Indonesia; email: muh.amin@fk.unair.ac.id",,"SAGE Publications Ltd",17571774,,,,"English","J. Infect. Prevent.",Article,"Final",Open Access,Scopus,2-s2.0-85047405774 "El Zein S., Khraibani J., Zahreddine N., Mahfouz R., Ghosn N., Kanj S.S.","57203000430;57204358885;36668096800;9245453500;24173282600;7003794354;","Atypical presentation of middle east respiratory syndrome coronavirus in a Lebanese patient returning from Saudi Arabia",2018,"Journal of Infection in Developing Countries","12","9",,"808","811",,1,"10.3855/jidc.9979","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055269513&doi=10.3855%2fjidc.9979&partnerID=40&md5=fd61d10449d49c02bb4581de080b00d3","Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon; American University of Beirut Medical Center, Beirut, Lebanon; Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Lebanese Ministry of Public Health, Beirut, Lebanon","El Zein, S., Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Khraibani, J., Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Zahreddine, N., American University of Beirut Medical Center, Beirut, Lebanon; Mahfouz, R., Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Ghosn, N., Lebanese Ministry of Public Health, Beirut, Lebanon; Kanj, S.S., Division of Infectious Diseases, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon","Around 2090 confirmed cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) from 27 countries have been reported to the World Health Organization (WHO) between September 2012 and October 2017, the majority of whom occurring in countries in the Arabian Peninsula, mainly in Saudi Arabia. MERS-CoV can have atypical and misleading presentations resulting in delays in diagnosis and is associated with a high mortality rate especially in elderly patients with multiple comorbidities. Herein, we present the first case of confirmed MERS-CoV infection diagnosed at the American University of Beirut Medical Center (AUBMC)-Lebanon in June 2017 presenting without any respiratory symptoms. This is the second confirmed case of MERS-CoV infection in Lebanon since 2014. The first case presented with a febrile respiratory infection with persistent symptoms despite antibiotic treatment. © 2018 El Zein et al. T.","Atypical presentation; Lebanon; MERS-CoV; Middle east respiratory syndrome","alanine aminotransferase; aspartate aminotransferase; bilirubin; ciprofloxacin; gamma glutamyltransferase; metronidazole; adult; anorexia; arterial oxygen saturation; Article; case report; clinical article; comorbidity; computer assisted tomography; fatigue; fever; human; leukocyte count; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; neutrophil; platelet count; pulse oximetry; real time polymerase chain reaction; reverse transcription polymerase chain reaction; thorax radiography","Sharif-Yakan, A., Kanj, S.S., Emergence of MERS-CoV in the Middle East: Origins, transmission, treatment, and perspectives (2014) Plos Pathog, 10; Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the Middle East respiratory syndrome coronavirus (2014) Pathog Dis, 71, pp. 121-136; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., Haagmans, B.L., MERS: Emergence of a novel human coronavirus (2014) Curr Opin Virol, 5, pp. 58-62; (2017) Mers-Cov Global Summary and Assessment of Risk-Geneva, , http://www.who.int/csr/disease/coronavirus_infections/archive_updates/en/, 21 July 2017, Accessed 08 August 2017; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) The Lancet, 386, pp. 995-1007; Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Vuotto, F., van der Werf, S., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) The Lancet, 381, pp. 2265-2272; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Memish, Z.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Assiri, A., Alharby, K.D., Almahallawi, M.S., Alkhallawi, M., Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases (2015) Travel Med Infect Dis, 13, pp. 311-314; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Yi, S.J., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Euro Surveill, 20, pp. 1-6; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Team, K.-C., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J., Bosch, B.J., Bensaid, A., Haagmans, B.L., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90, pp. 4838-4842; Moon, S.Y., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; (2017) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) – Saudi Arabia, United Arab Emirates, , http://www.who.int/csr/don/06-june-2017-mers/en/, Qatar-Geneva, 6 June 2017, Accessed 08 August 2017; Lessler, J., Salje, H., van Kerkhove, M.D., Ferguson, N.M., Cauchemez, S., Rodriquez-Barraquer, I., Hakeem, R., Turkistani, A., Estimating the severity and subclinical burden of Middle East respiratory syndrome coronavirus infection in the Kingdom of Saudi Arabia (2016) Am J Epidemiol, 183, pp. 657-663; Kim, S.H., Ko, J.H., Park, G.E., Cho, S.Y., Ha, Y.E., Kang, J.M., Kim, Y.J., Peck, K.R., Atypical presentations of MERS-CoV infection in immunocompromised hosts (2017) J Infect Chemother, 23, pp. 769-773; (2017) Infection Prevention and Control Guidelines for the Middle East Respiratory Syndrome Coronavirus (Mers-Cov) Infection, 53p. , 4th edition. Kingdom of Saudi Arabia: Command and Control Center; Fagbo, S., Hakawi, A.M., Mukahal, M., Skakni, L., Santos, A., Garbati, M., Alao, K., Atypical presentation and nosocomial spread-intensifying the MERS mystery and misery (2016) Int J Infect Dis, 45. , Suppl 1: 209; (2017) Implementing Home Care and Isolation Or Quarantine of People Not Requiring Hospitalization for Mers-Cov-Atlanta (GA), , www.cdc.gov/coronavirus/mers/hcp/home-care.html, July 2016, Accessed 15 October 2017; (2017) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) – Lebanon-Geneva, , http://www.who.int/csr/don/04-july-2017-mers-lebanon/en/, July 2017, Accessed 15 October 2017","Kanj, S.S.; American University of Beirut Medical Center, PO Box 11-0236 Riad El Solh, Lebanon; email: sk11@aub.edu.lb",,"Journal of Infection in Developing Countries",20366590,,,"31999642","English","J. Infect. Dev. Ctries.",Article,"Final",Open Access,Scopus,2-s2.0-85055269513 "Mandelik R., Sarvas M., Jackova A., Salamunova S., Novotny J., Vilcek S.","55900661100;57204294255;6603118535;57192933176;7202755728;7006293473;","First outbreak with chimeric swine enteric coronavirus (SECOV) on pig farms in Slovakia - Lessons to learn",2018,"Acta Veterinaria Hungarica","66","3",,"488","492",,4,"10.1556/004.2018.043","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055091172&doi=10.1556%2f004.2018.043&partnerID=40&md5=fddf2223c44d12ee1686794d2b521ddf","University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia; Private veterinarian, Bojnice, Slovakia","Mandelik, R., University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia; Sarvas, M., Private veterinarian, Bojnice, Slovakia; Jackova, A., University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia; Salamunova, S., University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia; Novotny, J., University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia; Vilcek, S., University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia","This report describes the first disease outbreak caused by chimeric swine enteric coronavirus (SeCoV) on two pig farms in Slovakia in early 2015. The infection was introduced by import of two breeding boars which were placed in provisional quarantine in a unit not strictly separated from other healthy pigs in the same building. Subsequently, loss of appetite and diarrhoea were observed in both boars during the first three days in the isolation unit. The infection gradually spread to the farrowing area and throughout the farm in two weeks and later to another nearby farm. Yellow watery diarrhoea accompanied by dehydration and death was observed in piglets with a mortality ranging from 30 to 35%. In the absence of an available vaccine, the pregnant sows were dosed by mouth with a 10% suspension prepared from the intestine and faeces of infected piglets in warm water. Three weeks after dosing, new litters of piglets were born which remained healthy with no development of diarrhoea. © 2018 Akadémiai Kiadó, Budapest","Outbreak; Porcine epidemic diarrhoea virus; Recombinant swine coronavirus","animal; Coronavirus infection; epidemic; female; male; pig; Porcine epidemic diarrhea virus; Slovakia; swine disease; veterinary medicine; virology; Animals; Coronavirus Infections; Disease Outbreaks; Female; Male; Porcine epidemic diarrhea virus; Slovakia; Swine; Swine Diseases","Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenekel, M., Pohlmann, A., New chimeric porcine coronavirus strain found in swine feces collected in Germany, 2012 (2016) Emerg. Infect. Dis., 22, pp. 1314-1315; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in Central Eastern Europe in 2015 (2016) Transbound. Emerg. Dis., 63, pp. 595-601; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Faccini, S., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg. Infect. Dis., 22, pp. 83-87; Dastjerdi, A., Carr, J., Ellis, R.J., Steinbach, F., Williamson, S., Porcine epidemic diarrhea virus among farmed pigs, Ukraine (2015) Emerg. Infect. Dis., 21, pp. 2235-2237; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143; Kim, S.Y., Song, D.S., Park, B.K., Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR (2001) J. Vet. Diagn. Invest., 13, pp. 516-520; Valkó, A., Biksi, I., Cságola, A., Tuboly, T., Kiss, K., Ursu, K., Dán, A., Porcine epidemic diarrhoea virus with a recombinant S gene detected in Hungary, 2016 (2017) Acta Vet. Hung., 65, pp. 253-261","Vilcek, S.; University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Slovakia; email: Stefan.Vilcek@uvlf.sk",,"Akademiai Kiado Rt.",02366290,,,"30264613","English","Acta Vet. Hung.",Article,"Final",Open Access,Scopus,2-s2.0-85055091172 "Gralinski L.E., Sheahan T.P., Morrison T.E., Menachery V.D., Jensen K., Leist S.R., Whitmore A., Heise M.T., Baric R.S.","6505609367;15756255200;7101728102;24281639500;57215679316;55846755300;7004148155;7007179211;57205312930;","Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis",2018,"mBio","9","5", e01753-18,"","",,4,"10.1128/mBio.01753-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054776105&doi=10.1128%2fmBio.01753-18&partnerID=40&md5=5571207786c86c76591b574fa71553e0","Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Department of Genetics, University of North Carolina, Chapel Hill, NC, United States","Gralinski, L.E., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Sheahan, T.P., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Morrison, T.E., Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Menachery, V.D., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Jensen, K., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Leist, S.R., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Whitmore, A., Department of Genetics, University of North Carolina, Chapel Hill, NC, United States; Heise, M.T., Department of Genetics, University of North Carolina, Chapel Hill, NC, United States; Baric, R.S., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States","Acute respiratory distress syndrome (ARDS) is immune-driven patholo-gies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. Using this model, we investigated the role of the complement system during SARS-CoV infection. We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection. To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3–/–), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected C3–/– mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of C3–/– mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemo-kine levels in both the lungs and the sera of C3–/– mice than in controls. These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection. Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic. IMPORTANCE The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection. © 2018 Gralinski et al.","Animal models; Complement; Coronavirus; Respiratory viruses; SARS-CoV","chemokine; complement; cytokine; chemokine; complement component C3; cytokine; animal experiment; animal model; animal tissue; Article; body weight loss; complement activation; complement system; controlled study; female; infant; inflammation; monocyte; mouse; neutrophil; nonhuman; priority journal; respiratory failure; SARS coronavirus; signal transduction; virus load; virus pathogenesis; animal; blood; C57BL mouse; deficiency; disease model; genetics; host pathogen interaction; immunology; innate immunity; lung; pathogenicity; pathology; SARS coronavirus; severe acute respiratory syndrome; virology; virus replication; Animals; Chemokines; Complement Activation; Complement C3; Cytokines; Disease Models, Animal; Female; Host-Pathogen Interactions; Immunity, Innate; Lung; Mice; Mice, Inbred C57BL; SARS Virus; Severe Acute Respiratory Syndrome; Viral Load; Virus Replication","Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669. , https://doi.org/10.1126/science.1092002; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Peñaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1999. , https://doi.org/10.1126/science.1085952; Christian, M.D., Poutanen, S.M., Loutfy, M.R., Muller, M.P., Low, D.E., Severe acute respiratory syndrome (2004) Clin Infect Dis, 38, pp. 1420-1427. , https://doi.org/10.1086/420743; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr Opin Pulm Med, 20, pp. 233-241. , https://doi.org/10.1097/MCP.0000000000000046; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513. , https://doi.org/10.1038/nm.3985; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , https://doi.org/10.1038/nature12711; Cheng, V.C., Lau, S.K., Woo, P.C., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin Microbiol Rev, 20, pp. 660-694. , https://doi.org/10.1128/CMR.00023-07; Ip, W.K., Chan, K.H., Law, H.K., Tso, G.H., Kong, E.K., Wong, W.H., To, Y.F., Lau, Y.L., Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection (2005) J Infect Dis, 191, pp. 1697-1704. , https://doi.org/10.1086/429631; Yuan, F.F., Tanner, J., Chan, P.K., Biffin, S., Dyer, W.B., Geczy, A.F., Tang, J.W., Sullivan, J.S., Influence of FcγRIIA and MBL polymorphisms on severe acute respiratory syndrome (2005) Tissue Antigens, 66, pp. 291-296. , https://doi.org/10.1111/j.1399-0039.2005.00476.x; Zhou, Y., Lu, K., Pfefferle, S., Bertram, S., Glowacka, I., Drosten, C., Pohlmann, S., Simmons, G., A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms (2010) J Virol, 84, pp. 8753-8764. , https://doi.org/10.1128/JVI.00554-10; Leth-Larsen, R., Zhong, F., Chow, V.T., Holmskov, U., Lu, J., The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages (2007) Immunobiology, 212, pp. 201-211. , https://doi.org/10.1016/j.imbio.2006.12.001; Wang, Y., Yan, J., Shi, Y., Li, P., Liu, C., Ma, Q., Yang, R., Cao, C., Lack of association between polymorphisms of MASP2 and susceptibility to SARS coronavirus infection (2009) BMC Infect Dis, 9, p. 51. , https://doi.org/10.1186/1471-2334-9-51; Mathern, D.R., Heeger, P.S., Molecules great and small: The complement system (2015) Clin J am Soc Nephrol, 10, pp. 1636-1650. , https://doi.org/10.2215/CJN.06230614; Ricklin, D., Hajishengallis, G., Yang, K., Lambris, J.D., Complement: A key system for immune surveillance and homeostasis (2010) Nat Immunol, 11, pp. 785-797. , https://doi.org/10.1038/ni.1923; Jiang, Y., Zhao, G., Song, N., Li, P., Chen, Y., Guo, Y., Li, J., Zhou, Y., Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV (2018) Emerg Microbes Infect, 7, p. 77. , https://doi.org/10.1038/s41426-018-0063-8; Stoermer, K.A., Morrison, T.E., Complement and viral pathogenesis (2011) Virology, 411, pp. 362-373. , https://doi.org/10.1016/j.virol.2010.12.045; Sarma, V.J., Huber-Lang, M., Ward, P.A., Complement in lung disease (2006) Autoimmunity, 39, pp. 387-394. , https://doi.org/10.1080/08916930600739456; Chang, W.C., White, M.R., Moyo, P., McClear, S., Thiel, S., Hartshorn, K.L., Takahashi, K., Lack of the pattern recognition molecule mannose-binding lectin increases susceptibility to influenza A virus infection (2010) BMC Immunol, 11, p. 64. , https://doi.org/10.1186/1471-2172-11-64; Thielens, N.M., Tacnet-Delorme, P., Arlaud, G.J., Interaction of C1q and mannan-binding lectin with viruses (2002) Immunobiology, 205, pp. 563-574. , https://doi.org/10.1078/0171-2985-00155; Bera, M.M., Lu, B., Martin, T.R., Cui, S., Rhein, L.M., Gerard, C., Gerard, N.P., Th17 cytokines are critical for respiratory syncytial virus-associated airway hyper-reponsiveness through regulation by complement C3a and tachykinins (2011) J Immunol, 187, pp. 4245-4255. , https://doi.org/10.4049/jimmunol.1101789; O’Brien, K.B., Morrison, T.E., Dundore, D.Y., Heise, M.T., Schultz-Cherry, S., A protective role for complement C3 protein during pandemic 2009 H1N1 and H5N1 influenza A virus infection (2011) Plos One, 6. , https://doi.org/10.1371/journal.pone.0017377; Gralinski, L.E., Bankhead, A., Jeng, S., Menachery, V.D., Proll, S., Belisle, S.E., Matzke, M., Baric, R.S., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) Mbio, 4. , https://doi.org/10.1128/mBio.00271-13; Menachery, V.D., Gralinski, L.E., Baric, R.S., Ferris, M.T., New metrics for evaluating viral respiratory pathogenesis (2015) Plos One, 10. , https://doi.org/10.1371/journal.pone.0131451; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Sung, J.J., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1986-1994. , https://doi.org/10.1056/NEJMoa030685; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193. , https://doi.org/10.1016/j.chom.2016.01.007.infected; van den Brand, J.M., Haagmans, B.L., van Riel, D., Osterhaus, A.D., Kuiken, T., The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models (2014) J Comp Pathol, 151, pp. 83-112. , https://doi.org/10.1016/j.jcpa.2014.01.004; Zhao, J., Zhao, J., Perlman, S., T cell responses are required for protection from clinical disease and for virus clearance in SARS-CoV-infected mice (2010) J Virol, 84, pp. 9318-9932. , https://doi.org/10.1128/JVI.01049-10; Nesargikar, P.N., Spiller, B., Chavez, R., The complement system: History, pathways, cascade and inhibitors (2012) Eur J Microbiol Immunol, 2, pp. 103-111. , https://doi.org/10.1556/EuJMI.2.2012.2.2; Merle, N.S., Church, S.E., Fremeaux-Bacchi, V., Roumenina, L.T., Complement system part I—molecular mechanisms of activation and regulation (2015) Front Immunol, 6, p. 262. , https://doi.org/10.3389/fimmu.2015.00262; Berends, E.T., Kuipers, A., Ravesloot, M.M., Urbanus, R.T., Rooijakkers, S.H., Bacteria under stress by complement and coagulation (2014) FEMS Microbiol Rev, 38, pp. 1146-1171. , https://doi.org/10.1111/1574-6976.12080; Fuchs, A., Lin, T.Y., Beasley, D.W., Stover, C.M., Schwaeble, W.J., Pierson, T.C., Diamond, M.S., Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin (2010) Cell Host Microbe, 8, pp. 186-195. , https://doi.org/10.1016/j.chom.2010.07.007; Mehlhop, E., Diamond, M.S., Protective immune responses against West Nile virus are primed by distinct complement activation pathways (2006) J Exp Med, 203, pp. 1371-1381. , https://doi.org/10.1084/jem.20052388; Sun, S., Zhao, G., Liu, C., Wu, X., Guo, Y., Yu, H., Song, H., Zhou, Y., Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection (2013) Am J Respir Cell Mol Biol, 49, pp. 221-230. , https://doi.org/10.1165/rcmb.2012-0428OC; Bosmann, M., Ward, P.A., Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis (2012) Adv Exp Med Biol, 946, pp. 147-159. , https://doi.org/10.1007/978-1-4614-0106-3_9; Wang, R., Xiao, H., Guo, R., Li, Y., Shen, B., The role of C5a in acute lung injury induced by highly pathogenic viral infections (2015) Emerg Microbes Infect, 4, p. e28. , https://doi.org/10.1038/emi.2015.28; Johnson, J.B., Capraro, G.A., Parks, G.D., Differential mechanisms of complement-mediated neutralization of the closely related paramyxo-viruses simian virus 5 and mumps virus (2008) Virology, 376, pp. 112-123. , https://doi.org/10.1016/j.virol.2008.03.022; Avirutnan, P., Hauhart, R.E., Marovich, M.A., Garred, P., Atkinson, J.P., Diamond, M.S., Complement-mediated neutralization of dengue virus requires mannose-binding lectin (2011) Mbio, 2, pp. e00276-11. , https://doi.org/10.1128/mBio.00276-11; Ikeda, F., Haraguchi, Y., Jinno, A., Iino, Y., Morishita, Y., Shiraki, H., Hoshino, H., Human complement component C1q inhibits the infectivity of cell-free HTLV-I (1998) J Immunol, 161, pp. 5712-5719; Morrison, T.E., Fraser, R.J., Smith, P.N., Mahalingam, S., Heise, M.T., Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease (2007) J Virol, 81, pp. 5132-5143. , https://doi.org/10.1128/JVI.02799-06; Gunn, B.M., Morrison, T.E., Whitmore, A.C., Blevins, L.K., Hueston, L., Fraser, R.J., Herrero, L.J., Heise, M.T., Mannose binding lectin is required for alphavirus-induced arthritis/myositis (2012) Plos Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002586; Chen, M., Daha, M.R., Kallenberg, C.G., The complement system in systemic autoimmune disease (2010) J Autoimmun, 34, pp. J276-J286. , https://doi.org/10.1016/j.jaut.2009.11.014; Zhang, H., Zhou, G., Zhi, L., Yang, H., Zhai, Y., Dong, X., Zhang, X., He, F., Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory coronavirus infection (2005) J Infect Dis, 192, pp. 1355-1361. , https://doi.org/10.1086/491479; Abi Abdallah, D.S., Egan, C.E., Butcher, B.A., Denkers, E.Y., Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation (2011) Int Immunol, 23, pp. 317-326. , https://doi.org/10.1093/intimm/dxr007; Tsui, P.T., Kwok, M.L., Yuen, H., Lai, S.T., Severe acute respiratory syndrome: Clinical outcome and prognostic correlates (2003) Emerg Infect Dis, 9, pp. 1064-1069. , https://doi.org/10.3201/eid0909.030362; Haick, A.K., Rzepka, J.P., Brandon, E., Balemba, O.B., Miura, T.A., Neutrophils are needed for an effective immune response against pulmonary rat coronavirus infection, but also contribute to pathology (2014) J Gen Virol, 95, pp. 578-590. , https://doi.org/10.1099/vir.0.061986-0; Evans, S.S., Repasky, E.A., Fisher, D.T., Fever and the thermal regulation of immunity: The immune system feels the heat (2015) Nat Rev Immunol, 15, pp. 335-349. , https://doi.org/10.1038/nri3843; Gorski, J.P., Hugli, T.E., Muller-Eberhard, H.J., C4a: The third anaphylatoxin of the human complement system (1979) Proc Natl Acad Sci USA, 76, pp. 5299-5302. , https://doi.org/10.1073/pnas.76.10.5299; Guo, R.F., Ward, P.A., Role of C5a in inflammatory responses (2005) Annu Rev Immunol, 23, pp. 821-852. , https://doi.org/10.1146/annurev.immunol.23.021704.115835; Peng, Q., Li, K., Sacks, S.H., Zhou, W., The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses (2009) Inflamm Allergy Drug Targets, 8, pp. 236-246. , https://doi.org/10.2174/187152809788681038; Hu, Y., Jin, Y., Han, D., Zhang, G., Cao, S., Xie, J., Xue, J., Wang, M., Mast cell-induced lung injury in mice infected with H5N1 influenza virus (2012) J Virol, 86, pp. 3347-3356. , https://doi.org/10.1128/JVI.06053-11; Ram, S., Lewis, L.A., Rice, P.A., Infections of people with complement deficiencies and patients who have undergone splenectomy (2010) Clin Microbiol Rev, 23, pp. 740-780. , https://doi.org/10.1128/CMR.00048-09; Gralinski, L.E., Menachery, V.D., Morgan, A.P., Totura, A.L., Beall, A., Kocher, J., Plante, J., Baric, R.S., Allelic variation in the Toll-like receptor adaptor protein Ticam2 contributes to SARS-coronavirus pathogenesis in mice (2017) G3 (Bethesda), 7, pp. 1653-1663. , https://doi.org/10.1534/g3.117.041434; Totura, A.L., Whitmore, A., Agnihothram, S., Schafer, A., Katze, M.G., Heise, M.T., Baric, R.S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) Mbio, 6, pp. e00638-15. , https://doi.org/10.1128/mBio.00638-15; Poltorak, A., He, X., Smirnova, I., Liu, M.Y., van Huffel, C., Du, X., Birdwell, D., Beutler, B., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene (1998) Science, 282, pp. 2085-2088. , https://doi.org/10.1126/science.282.5396.2085; Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., Akira, S., Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the lps gene product (1999) J Immunol, 162, pp. 3749-3752; Gralinski, L.E., Ferris, M.T., Aylor, D.L., Whitmore, A.C., Green, R., Frieman, M.B., Deming, D., Baric, R.S., Genome wide identification of SARS-CoV susceptibility loci using the collaborative cross (2015) Plos Genet, 11. , https://doi.org/10.1371/journal.pgen.1005504; Fett, C., Dediego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirus-coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein (2013) J Virol, 87, pp. 6551-6559. , https://doi.org/10.1128/JVI.00087-13.mediated; Franks, T.J., Chong, P.Y., Chui, P., Galvin, J.R., Lourens, R.M., Reid, A.H., Selbs, E., Travis, W.D., Lung pathology of severe acute respiratory syndrome (SARS): A study of 8 autopsy cases from Singapore (2003) Hum Pathol, 34, pp. 743-748. , https://doi.org/10.1016/S0046-8177(03)00367-8; Naito, A.T., Sumida, T., Nomura, S., Liu, M.L., Higo, T., Nakagawa, A., Okada, K., Komuro, I., Complement C1q activates canonical wnt signaling and promotes aging-related phenotypes (2012) Cell, 149, pp. 1298-1313. , https://doi.org/10.1016/j.cell.2012.03.047; McGeer, E.G., Klegeris, A., McGeer, P.L., Inflammation, the complement system and the diseases of aging (2005) Neurobiol Aging, 26, pp. 94-97. , https://doi.org/10.1016/j.neurobiolaging.2005.08.008; Hammerschmidt, D.E., Weaver, L.J., Hudson, L.D., Craddock, P.R., Jacob, H.S., Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome. Pathophysiological relevance and possible prognostic value (1980) Lancet, i, pp. 947-949; Hosea, S., Brown, E., Hammer, C., Frank, M., Role of complement activation in a model of adult respiratory distress syndrome (1980) J Clin Invest, 66, pp. 375-382. , https://doi.org/10.1172/JCI109866; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, 9. , https://doi.org/10.1126/scitranslmed.aal3653; Roberts, A., Deming, D., Paddock, C., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse adapted SARS coronavirus causes disease and mortality in BALB/c mice (2007) Plos Pathog, 3, p. e5. , https://doi.org/10.1371/journal.ppat.0030005; Yount, B., Curtis, K., Fritz, E., Hensley, L., Jahrling, P., Prentice, E., Denison, M., Baric, R., Reverse genetics with a full length infectious cDNA of the severe acute respiratory syndrome coronavirus (2003) Proc Natl Acad Sci U S A, 100, pp. 12995-13000. , https://doi.org/10.1073/pnas.1735582100; Sheahan, T., Rockx, B., Donaldson, E., Sims, A., Pickles, R., Corti, D., Baric, R., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) J Virol, 82, pp. 2274-2285. , https://doi.org/10.1128/JVI.02041-07; Misharin, A.V., Morales-Nebreda, L., Mutlu, G.M., Budinger, G.R., Perlman, H., Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung (2013) Am J Respir Cell Mol Biol, 49, pp. 503-510. , https://doi.org/10.1165/rcmb.2013-0086MA","Baric, R.S.; Department of Epidemiology, University of North CarolinaUnited States; email: rbaric@email.unc.edu",,"American Society for Microbiology",21612129,,,"30301856","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85054776105 "Eickmann M., Gravemann U., Handke W., Tolksdorf F., Reichenberg S., Müller T.H., Seltsam A.","55913596100;6506175653;57201130452;53868455500;6507350124;7403045563;55942944100;","Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively",2018,"Transfusion","58","9",,"2202","2207",,8,"10.1111/trf.14652","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046463418&doi=10.1111%2ftrf.14652&partnerID=40&md5=41b776f912ee0c6580aa83e64bcf5bf2","Institute for Virology, Philipps University Marburg, Marburg, Germany; German Red Cross Blood Service NSTOB, Springe, Germany; Macopharma International GmbH, Langen, Germany","Eickmann, M., Institute for Virology, Philipps University Marburg, Marburg, Germany; Gravemann, U., German Red Cross Blood Service NSTOB, Springe, Germany; Handke, W., German Red Cross Blood Service NSTOB, Springe, Germany; Tolksdorf, F., Macopharma International GmbH, Langen, Germany; Reichenberg, S., Macopharma International GmbH, Langen, Germany; Müller, T.H., German Red Cross Blood Service NSTOB, Springe, Germany; Seltsam, A., German Red Cross Blood Service NSTOB, Springe, Germany","BACKGROUND: Ebola virus (EBOV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have been identified as potential threats to blood safety. This study investigated the efficacy of the THERAFLEX UV-Platelets and THERAFLEX MB-Plasma pathogen inactivation systems to inactivate EBOV and MERS-CoV in platelet concentrates (PCs) and plasma, respectively. STUDY DESIGN AND METHODS: PCs and plasma were spiked with high titers of cell culture–derived EBOV and MERS-CoV, treated with various light doses of ultraviolet C (UVC; THERAFLEX UV-Platelets) or methylene blue (MB) plus visible light (MB/light; THERAFLEX MB-Plasma), and assessed for residual viral infectivity. RESULTS: UVC reduced EBOV (≥4.5 log) and MERS-CoV (≥3.7 log) infectivity in PCs to the limit of detection, and MB/light decreased EBOV (≥4.6 log) and MERS-CoV (≥3.3 log) titers in plasma to nondetectable levels. CONCLUSIONS: Both THERAFLEX UV-Platelets (UVC) and THERAFLEX MB-Plasma (MB/light) effectively reduce EBOV and MERS-CoV infectivity in platelets and plasma, respectively. © 2018 AABB",,"methylene blue; thrombocyte concentrate; methylene blue; Article; cell culture; controlled study; Ebolavirus; light; limit of detection; Middle East respiratory syndrome coronavirus; nonhuman; plasma; ultraviolet C radiation; virus inactivation; virus infectivity; virus load; animal; blood; Chlorocebus aethiops; comparative study; Coronavirus infection; drug effect; Ebola hemorrhagic fever; Ebolavirus; human; isolation and purification; light; Middle East respiratory syndrome coronavirus; radiation response; thrombocyte; ultraviolet radiation; Vero cell line; viremia; virology; virus inactivation; Animals; Blood Platelets; Cercopithecus aethiops; Coronavirus Infections; Ebolavirus; Hemorrhagic Fever, Ebola; Humans; Light; Methylene Blue; Middle East Respiratory Syndrome Coronavirus; Plasma; Ultraviolet Rays; Vero Cells; Viremia; Virus Inactivation","Stramer, S.L., Hollinger, F.B., Katz, L.M., Emerging infectious disease agents and their potential threat to transfusion safety (2009) Transfusion, 49 Suppl 2, pp. 1S-29S; Stramer, S.L., Current perspectives in transfusion-transmitted infectious diseases: emerging and re-emerging infections (2014) ISBT Sci Ser, 9, pp. 30-36; Rabaan, A.A., Middle East respiratory syndrome coronavirus: five years later (2017) Exp Rev Resp Med, 11, pp. 901-912; Rha, B., Rudd, J., Feikin, D., Update on the epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, and guidance for the public, clinicians, and public health authorities—January 2015 (2015) MMWR Morb Mortal Wkly Rep, 64, pp. 61-62; Drosten, C., Günther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; (2018) WHO: Ebola situation report 12 May 2016, , http://www.who.int/iris/handle/10665/206313, [cited, Apr 16]. Available from; Seltsam, A., Müller, T.H., Update on the use of pathogen-reduced human plasma and platelet concentrates (2013) Br J Haematol, 162, pp. 442-454; Mohr, H., Steil, L., Gravemann, U., A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light (2009) Transfusion, 49, pp. 2612-2624; Seltsam, A., Müller, T.H., UVC irradiation for pathogen reduction of platelet concentrates and plasma (2011) Transfus Med Hemother, 38, pp. 43-54; Kim, S., Handke, W., Gravemann, U., Mitochondrial DNA multiplex real-time polymerase chain reaction inhibition assay for quality control of pathogen inactivation by ultraviolet C light in platelet concentrates (2018) Transfusion, 58, pp. 758-765; Douki, T., Laporte, G., Cadet, J., Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation (2003) Nucleic Acids Res, 31, pp. 3134-3142; Seghatchian, J., Struff, W.G., Reichenberg, S., Main properties of the THERAFLEX MB-plasma system for pathogen reduction (2011) Transfus Med Hemother, 38, pp. 55-64; Williamson, L.M., Cardigan, R., Prowse, C.V., Methylene blue-treated fresh-frozen plasma: what is its contribution to blood safety? (2003) Transfusion, 43, pp. 1322-1329; Mohr, H., Lambrecht, B., Selz, A., Photodynamic virus inactivation of blood components (1995) Immunol Invest, 24, pp. 73-85; Seghatchian, J., Walker, W.H., Reichenberg, S., Updates on pathogen inactivation of plasma using Theraflex methylene blue system (2008) Transfus Apher Sci, 38, pp. 271-280; Wagner, S.J., Virus inactivation in blood components by photoactive phenothiazine dyes (2002) Transfus Med Rev, 16, pp. 61-66; Faddy, H.M., Fryk, J.J., Prow, N.A., Inactivation of dengue, chikungunya, and Ross River viruses in platelet concentrates after treatment with ultraviolet C light (2016) Transfusion, 56, pp. 1548-1555; Fryk, J.J., Marks, D.C., Hobson-Peters, J., Reduction of Zika virus infectivity in platelet concentrates after treatment with ultraviolet C light and in plasma after treatment with methylene blue and visible light (2017) Transfusion, 57, pp. 2677-2682; (2010) Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Hämotherapie). Gesamtnovelle 2005 mit Richtlinienanpassung 2010 ed, , Köln, Deutscher Ärzte-Verlag; Eriksson, L., Shanwell, A., Gulliksson, H., Platelet concentrates in an additive solution prepared from pooled buffy coats. In vivo studies (1993) Vox Sang, 64, pp. 133-138; Gulliksson, H., Larsson, S., Kumlien, G., Storage of platelets in additive solutions: effects of phosphate (2000) Vox Sang, 78, pp. 176-184; Steinmann, E., Gravemann, U., Friesland, M., Two pathogen reduction technologies—methylene blue plus light and shortwave ultraviolet light—effectively inactivate hepatitis C virus in blood products (2013) Transfusion, 53, pp. 1010-1018; Castro, E., Girones, N., Guerrero, N., The effectiveness of UVC pathogen inactivation system on reducing the Trypansosoma cruzi and Leishmania infantum burden in platelets (2008) Vox Sang, 95, p. 290; Castro, E., González, L.M., Rubio, J.M., The efficacy of the ultraviolet C pathogen inactivation system in the reduction of Babesia divergens in pooled buffy coat platelets (2014) Transfusion, 54, pp. 2207-2216; Reichenberg, S., Gravemann, U., Sumian, C., Challenge study of the pathogen reduction capacity of the THERAFLEX MB-Plasma technology (2015) Vox Sang, 109, pp. 129-137; Gironés, N., Bueno, J.L., Carrión, J., The efficacy of photochemical treatment with methylene blue and light for the reduction of Trypanosoma cruzi in infected plasma (2006) Vox Sang, 91, pp. 285-291; Woolhouse, M.E., Haydon, D.T., Antia, R., Emerging pathogens: the epidemiology and evolution of species jumps (2005) Trend Ecol Evol, 20, pp. 238-244; Cap, A.P., Pidcoke, H.F., Keil, S.D., Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates Ebola virus in vitro (2016) Transfusion, 56 Suppl 1, pp. S6-15; Ji, X., Olinger, G.G., Aris, S., Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization (2005) J Gen Virol, 86, pp. 2535-2542; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Li, J., Duan, H.J., Chen, H.Y., Age and Ebola viral load correlate with mortality and survival time in 288 Ebola virus disease patients (2016) Int J Infect Dis, 42, pp. 34-39; Franz, D.R., Jahrling, P.B., Friedlander, A.M., Clinical recognition and management of patients exposed to biological warfare agents (1997) JAMA, 278, pp. 399-411","Seltsam, A.; German Red Cross Blood Service NSTOBGermany; email: axel.seltsam@bsd-nstob.de",,"Blackwell Publishing Inc.",00411132,,TRANA,"29732571","English","Transfusion",Article,"Final",Open Access,Scopus,2-s2.0-85046463418 "Mészáros I., Olasz F., Kádár-Hürkecz E., Bálint Á., Hornyák Á., Belák S., Zádori Z.","56650232100;6603925927;57194722939;8308795400;6603555279;56053373800;6602902322;","Cellular localisation of the proteins of region 3 of feline enteric coronavirus",2018,"Acta Veterinaria Hungarica","66","3",,"493","508",,,"10.1556/004.2018.044","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055088296&doi=10.1556%2f004.2018.044&partnerID=40&md5=5fbb6a863410fa86319eaa8814dfb16c","Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary; National Institute of Environmental Health, Budapest, Hungary; National Food Chain Safety Office Veterinary Diagnostic Directorate, Budapest, Hungary; Department of Biomedical Sciences, Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden","Mészáros, I., Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary; Olasz, F., Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary; Kádár-Hürkecz, E., Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary, National Institute of Environmental Health, Budapest, Hungary; Bálint, Á., National Food Chain Safety Office Veterinary Diagnostic Directorate, Budapest, Hungary; Hornyák, Á., National Food Chain Safety Office Veterinary Diagnostic Directorate, Budapest, Hungary; Belák, S., Department of Biomedical Sciences, Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden; Zádori, Z., Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary","Feline enteric coronaviruses have three open reading frames (ORFs) in region 3 (3a, 3b, and 3c). All three ORFs were expressed with C-terminal eGFP and 3xFLAG tags in different cell lines and their localisation was determined. ORF 3a is predicted to contain DNA-binding and transcription activator domains, and it is localised in the nucleus and in the cytoplasm. ORF 3b is also predicted to contain DNA-binding and activator domains, and was found to localise in the mitochondrion. Besides that, in some of the non-infected and FIPV-infected cells nucleolar, perinuclear or nuclear membrane accumulation of the eGFP-tagged 3b was observed. The exact compartmental localisation of ORF 3c is yet to be determined. However, based on our co-localisation studies 3c does not seem to be localised in the ER-Golgi network, ERGIC or peroxisomes. The expression of 3c-eGFP is clearly cell type dependent, it is more stable in MARC 145 cells than in Fcwf-4 or CrFK cells, which might reflect in vivo stability differences of 3c in natural target cells (enterocytes vs. monocytes/macrophages). © 2018 Akadémiai Kiadó, Budapest","Coronavirus; FECV; FIPV; Mitochondrial localisation; Nucleolar localisation; ORF","viral protein; amino acid sequence; animal; cat; cell line; chemistry; Feline coronavirus; gene expression regulation; genetics; metabolism; physiology; protein transport; Amino Acid Sequence; Animals; Cats; Cell Line; Coronavirus, Feline; Gene Expression Regulation, Viral; Protein Transport; Viral Proteins","Bálint, Á., Farsang, A., Zádori, Z., Hornyák, Á., Dencso, L., Almazán, F., Enjuanes, L., Belák, S., Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism (2012) J. Virol., 86, pp. 6258-6267; Bálint, Á., Farsang, A., Zádori, Z., Belák, S., Comparative in vivo analysis of recombinant type II feline coronaviruses with truncated and completed ORF3 region (2014) PLoS One, 9; Benedict, C.A., Norris, P.S., Ware, C.F., To kill or be killed: Viral evasion of apoptosis (2002) Nat. Immunol., 3, pp. 1013-1018; Borschensky, C.M., Reinacher, M., Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats (2014) Res. Vet. Sci., 97, pp. 333-340; Brameier, M., Krings, A., MacCallum, R.M., Nucpred - Predicting nuclear localization of proteins (2007) Bioinformatics, 23, pp. 1159-1160; Chang, H.W., De Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Chung, Y.L., Sheu, M.L., Yen, S.H., Hepatitis C virus NS5A as a potential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in hepatocellular carcinoma (2003) Int. J. Cancer, 107, pp. 65-73; Cibulka, J., Fraiberk, M., Forstova, J., Nuclear actins and lamins in viral infections (2012) Viruses, 4, pp. 325-347; Claros, M.G., Vincens, P., Computational method to predict mitochondrially imported proteins and their targeting sequences (1996) Eur. J. Biochem., 241, pp. 779-786; Firth, A.E., Brierley, I., Non-canonical translation in RNA viruses (2012) J. Gen. Virol., 93, pp. 1385-1409; Haijema, B.J., Rottier, P.J., De Groot, J.R., Feline coronaviruses: A tale of two-faced types (2007) Coronaviruses: Molecular and Cellular Biology, pp. 183-203. , Thiel, ed Caister Academic Press, Norfolk, United Kingdom; Henkler, F., Hoare, J., Waseem, N., Goldin, R.D., McGarvey, M.J., Koshy, R., King, I.A., Intracellular localization of the hepatitis B virus HBx protein (2001) J. Gen. Virol., 82, pp. 871-882; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., De Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514; Hsieh, L.E., Huang, W.P., Tang, D.J., Wang, Y.T., Chen, C.T., Chueh, L.L., 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway (2013) Res. Vet. Sci., 95, pp. 1241-1247; Hwang, S., Gou, Z., Kuznetsov, I.B., DP-BinD: A web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins (2007) Bioinformatics, 23, pp. 634-636; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Kosugi, S., Hasebe, M., Tomita, M., Yanagawa, H., Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs (2009) Proc. Natl Acad. Sci. USA, 106, pp. 10171-10176; Kuznetsov, I.B., Gou, Z., Li, R., Hwang, S., Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins (2006) Proteins: Struct. Funct. Bioinf., 64, pp. 19-27; Le Sage, V., Mouland, A.J., Viral subversion of the nuclear pore complex (2013) Viruses, 5, pp. 2019-2042; Ma, J., Sun, T., Park, S., Shen, G., Liu, J., The role of hepatitis B virus X protein is related to its differential intracellular localization (2011) Acta Biochim. Biophys. Sin. (Shanghai), 43, pp. 583-588; Mbisa, J.L., Becker, M.M., Zou, S., Dermody, T.S., Brown, E.G., Reovirus mu2 protein determines strain-specific differences in the rate of viral inclusion formation in L929 cells (2000) Virology, 272, pp. 16-26; Nguyen Ba, A.N., Pogoutse, A., Provart, N., Moses, A.M., NLStradamus: A simple hidden markov model for nuclear localization signal prediction (2009) BMC Bioinformatics, 29, p. 202; O'Connor, J.B., Brian, D.A., The major product of porcine transmissible gastroenteritis coronavirus gene 3b is an integral membrane glycoprotein of 31 kDa (1999) Virology, 256, pp. 152-161; O'Connor, J.B., Brian, D.A., Downstream ribosomal entry for translation of coronavirus TGEV gene 3b (2000) Virology, 269, pp. 172-182; Olasz, F., Dénes, B., Bálint, Á., Magyar, T., Belák, S., Zádori, Z., Immunological and biochemical characterisation of 7ap, a short protein translated from an alternative frame of ORF7 of PRRSV (2016) Acta Vet. Hung., 64, pp. 273-287; Olasz, F., Dénes, B., Bálint, Á., Magyar, T., Belák, S., Zádori, Z., Characterisation of the nucleic acid binding features of the PRRSV 7ap and its ability to induce antinuclear antibodies (2017) Acta Vet. Hung., 65, pp. 124-134; Olasz, F., Kádár-Hürkecz, E., Bálint, Á., Lakatos, B., Zádori, Z., The biology of the feline infectious peritonitis virus (FIPV) (2017) Magy. Allatorvosok, 139, pp. 361-376; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Piskacek, S., Gregor, M., Nemethova, M., Grabner, M., Kovarik, P., Piskacek, M., Nine-amino-acid transactivation domain: Establishment and prediction utilities (2007) Genomics, 89, pp. 756-768; Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G., Helps, C.R., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet. Res., 45, p. 49; Rivera-Serrano, E.E., Fritch, E.J., Scholl, E.H., Sherry, B., A cytoplasmic RNA virus alters the function of the cell splicing protein SRSF2 (2017) J. Virol., 91, pp. e02488-e02516; White, E., Regulation of apoptosis by adenovirus E1A and E1B oncogenes (1998) Semin. Virol., 8, pp. 505-513; Yan, J., Kurgan, L.A., DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- And RNA-binding residues (2017) Nucl. Acids Res., 45, p. e84; Yarbrough, M.L., Mata, M.A., Sakthivel, R., Fontoura, B.M., Viral subversion of nucleocytoplasmic trafficking (2014) Traffic, 15, pp. 127-140; Yeganeh, B., Ghavami, S., Rahim, M.N., Klonisch, T., Halayko, A.J., Coombs, K.M., Autophagy activation is required for influenza A virus-induced apoptosis and replication (2018) Biochim. Biophys. Acta, 1865, pp. 364-378; You, Y., Cheng, A.C., Wang, M.S., Jia, R.Y., Sun, K.F., Yang, Q., Wu, Y., Chen, X.Y., The suppression of apoptosis by α-herpesvirus (2017) Cell Death Dis, 8, p. e2749; Younessi, P., Jans, O.A., Ghildyal, R., Modulation of host cell nucleocytoplasmic trafficking during picornavirus infection (2012) Infect. Disorders Drug Targets, 12, pp. 59-67; Yuan, X., Shan, Y., Yao, Z., Li, J., Zhao, Z., Chen, J., Cong, Y., Mitochondrial location of severe acute respiratory syndrome coronavirus 3b protein (2006) Mol. Cells, 21, pp. 186-191; Zhang, J., Liu, B., PSFM-DBT: Identifying DNA-binding proteins by combing position specific frequency matrix and distance-bigram transformation (2017) Int. J. Mol. Sci., 18, p. E1856","Zádori, Z.; Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Hungary; email: zadori.zoltan@agrar.mta.hu",,"Akademiai Kiado Rt.",02366290,,,"30264619","English","Acta Vet. Hung.",Article,"Final",Open Access,Scopus,2-s2.0-85055088296 "Lee K., Ko H.L., Lee E.-Y., Park H.-J., Kim Y.S., Kim Y.-S., Cho N.-H., Park M.-S., Lee S.-M., Kim J., Kim H., Seong B.L., Nam J.-H.","57203927557;56652510900;57203206527;57210194091;57200249338;35976040800;34973855600;7404491121;36062712900;57203325064;56181024800;7006077026;57200757613;","Development of a diagnostic system for detection of specific antibodies and antigens against Middle East respiratory syndrome coronavirus",2018,"Microbiology and Immunology","62","9",,"574","584",,2,"10.1111/1348-0421.12643","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053623478&doi=10.1111%2f1348-0421.12643&partnerID=40&md5=a3ad5c064e24cb538cbf906b6f2f1548","Department of Biotechnology, Catholic University of Korea, Bucheon, 14662, South Korea; Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, South Korea; Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Department of, Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea; Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 446-701, South Korea","Lee, K., Department of Biotechnology, Catholic University of Korea, Bucheon, 14662, South Korea, Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, South Korea; Ko, H.L., Department of Biotechnology, Catholic University of Korea, Bucheon, 14662, South Korea; Lee, E.-Y., Department of Biotechnology, Catholic University of Korea, Bucheon, 14662, South Korea; Park, H.-J., Department of Biotechnology, Catholic University of Korea, Bucheon, 14662, South Korea; Kim, Y.S., Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea; Kim, Y.-S., Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, South Korea; Cho, N.-H., Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, South Korea; Park, M.-S., Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Lee, S.-M., Department of, Biotechnology, Chonbuk National University, Iksan, 570-752, South Korea; Kim, J., Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 446-701, South Korea; Kim, H., Bio Research and Development, SK Chemicals, Seongnam, Gyeonggi-do 13493, South Korea; Seong, B.L., Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea; Nam, J.-H., Department of Biotechnology, Catholic University of Korea, Bucheon, 14662, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) is a single-stranded RNA virus that causes severe respiratory disease in humans with a high fatality rate. Binding of the receptor binding domain (RBD) of the spike (S) glycoprotein to dipeptidyl peptidase 4 is the critical step in MERS-CoV infection of a host cell. No vaccines or clinically applicable treatments are currently available for MERS-CoV. Therefore, rapid diagnosis is important for improving patient outcomes through prompt treatment and protection against viral outbreaks. In this study, the aim was to establish two ELISA systems for detecting antigens and antibodies against MERS-CoV. Using a recombinant full-length S protein, an indirect ELISA was developed and found to detect MERS-CoV-specific antibodies in animal sera and sera of patient with MERS. Moreover, MAbs were induced with the recombinant S protein and RBD and used for sandwich ELISA to detect the MERS-CoV S protein. Neither ELISA system exhibited significant intra-assay or inter-assay variation, indicating good reproducibility. Moreover, the inter-day precision and sensitivity were adequate for use as a diagnostic kit. Thus, these ELISAs can be used clinically to diagnose MERS-CoV. © 2018 The Societies and John Wiley & Sons Australia, Ltd","ELISA; Middle East respiratory syndrome coronavirus; receptor binding domain; spike protein","monoclonal antibody; recombinant protein; virus spike protein; coronavirus spike glycoprotein; matrix protein; monoclonal antibody; protein binding; recombinant protein; virus antibody; virus antigen; virus receptor; accuracy; animal cell; animal experiment; antibody detection; antigen detection; Article; controlled study; enzyme linked immunosorbent assay; human; indirect enzyme linked immunosorbent assay; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; protein structure; rat; receptor binding; receptor binding domain; reproducibility; sandwich enzyme linked immunosorbent assay; virus detection; animal; Baculoviridae; blood; Coronavirus infection; enzyme linked immunosorbent assay; Escherichia coli; gene expression; genetics; immunological procedures; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; procedures; protein domain; sensitivity and specificity; Sf9 cell line; virology; Wistar rat; Animals; Antibodies, Monoclonal; Antibodies, Viral; Antigens, Viral; Baculoviridae; Coronavirus Infections; Enzyme-Linked Immunosorbent Assay; Escherichia coli; Gene Expression; Humans; Immunologic Tests; Middle East Respiratory Syndrome Coronavirus; Protein Binding; Protein Interaction Domains and Motifs; Rats; Rats, Wistar; Receptors, Virus; Recombinant Proteins; Reproducibility of Results; Sensitivity and Specificity; Sf9 Cells; Spike Glycoprotein, Coronavirus; Viral Matrix Proteins","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17, p. 20290; Van Den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235, pp. 175-184; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Pohlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 10777-10783; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev Vaccines, 13, pp. 761-774; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Cockrell, A.S., Baric, R.S., An effective DNA vaccine platform for Middle East respiratory syndrome coronavirus (2016) Ann Transl Med, 4, p. 499; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: An update (2016) J Infect Public Health, 9, pp. 216-219; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; Meyer, B., Drosten, C., Muller, M.A., Serological assays for emerging coronaviruses: Challenges and pitfalls (2014) Virus Res, 194, pp. 175-183; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Koulouris, N.G., Tsakris, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44, pp. 528-532; Cooper, H.M., Paterson, Y., Production of polyclonal antisera (2009) Curr Protoc Neurosci, , Chapter 5 Unit 5.5; Cho, A., Seok, S.H., Ethical guidelines for use of experimental animals in biomedical research (2013) J Bacterial Virol, 43, pp. 18-26; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J Immunol, 174, pp. 4908-4915; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Smith, G.E., Frieman, M.B., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Choi, S.I., Han, K.S., Kim, C.W., Ryu, K.S., Kim, B.H., Kim, K.H., Kim, S.I., Seong, B.L., Protein solubility and folding enhancement by interaction with RNA (2008) PLoS ONE, 3; Yang, S.W., Jang, Y.H., Kwon, S.B., Lee, Y.J., Chae, W., Byun, Y.H., Kim, P., Seong, B.L., Harnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation (2018) FASEB J, 32, pp. 2658-2675; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, Y.S., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Chafekar, A., Fielding, B.C., MERS-CoV: Understanding the latest human coronavirus threat (2018) Viruses, 10, p. 93; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Chu, K.W., Peiris, M., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19, p. 20828; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18, p. 20662; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Iwata-Yoshikawa, N., Saijo, M., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA (2018) J Virol Methods, 251, pp. 22-29; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Weiner, D.B., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., Frieman, M.B., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35, pp. 1586-1589","Nam, J.-H.; Department of Biotechnology, Catholic University of KoreaSouth Korea; email: jhnam@catholic.ac.kr",,"Blackwell Publishing Asia",03855600,,MIIMD,"30117617","English","Microbiol. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85053623478 "Dubé M., Le Coupanec A., Wong A.H.M., Rini J.M., Desforges M., Talbot P.J.","23110008700;54583844300;55443364700;7003834680;6701643379;7102670281;","Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43",2018,"Journal of Virology","92","17", e00404-18,"","",,3,"10.1128/JVI.00404-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051769750&doi=10.1128%2fJVI.00404-18&partnerID=40&md5=68e875a49b337e181dc3bcf7079cf86c","Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada","Dubé, M., Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada; Le Coupanec, A., Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada; Wong, A.H.M., Department of Biochemistry, University of Toronto, Toronto, ON, Canada, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Rini, J.M., Department of Biochemistry, University of Toronto, Toronto, ON, Canada, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Desforges, M., Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada; Talbot, P.J., Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada","Human coronaviruses (HCoVs) are recognized respiratory pathogens for which accumulating evidence indicates that in vulnerable patients the infection can cause more severe pathologies. HCoVs are not always confined to the upper respiratory tract and can invade the central nervous system (CNS) under still unclear circumstances. HCoV-induced neuropathologies in humans are difficult to diagnose early enough to allow therapeutic interventions. Making use of our already described animal model of HCoV neuropathogenesis, we describe the route of neuropropagation from the nasal cavity to the olfactory bulb and piriform cortex and then the brain stem. We identified neuron-to-neuron propagation as one underlying mode of virus spreading in cell culture. Our data demonstrate that both passive diffusion of released viral particles and axonal transport are valid propagation strategies used by the virus. We describe for the first time the presence along axons of viral platforms whose static dynamism is reminiscent of viral assembly sites. We further reveal that HCoV OC43 modes of propagation can be modulated by selected HCoV OC43 proteins and axonal transport. Our work, therefore, identifies processes that may govern the severity and nature of HCoV OC43 neuropathogenesis and will make possible the development of therapeutic strategies to prevent occurrences. © 2018 American Society for Microbiology.","Central nervous system; Coronavirus; Encephalitis; Neuroinvasion; Neuropathogenesis; Neuropropagation","paclitaxel; viral protein; animal cell; animal experiment; animal model; antiviral susceptibility; Article; cell density; confocal microscopy; controlled study; copy number variation; Coronavirus infection; hippocampus; human; human cell; Human coronavirus OC43; immunofluorescence; in vitro study; in vivo study; membrane permeability; mouse; nerve fiber transport; neuroepithelium; neuropathology; nonhuman; olfactory bulb; olfactory receptor neuron; priority journal; progeny; protein localization; smelling; viral clearance; virus load; virus nucleocapsid; virus particle; virus titration; animal; axon; Coronavirus infection; Human coronavirus OC43; metabolism; nose cavity; physiology; pyriform cortex; virology; virus assembly; Animals; Axons; Coronavirus Infections; Coronavirus OC43, Human; Humans; Mice; Nasal Cavity; Olfactory Bulb; Piriform Cortex; Viral Proteins; Virus Assembly","Talbot, P., Jacomy, H., Desforges, M., Pathogenesis of human coronaviruses other than severe acute respiratory syndrome coronavirus (2008) Nidoviruses, pp. 313-324. , Perlman S, Gallagher T, Snijder EJ. (ed.). ASM Press, Washington, DC; Forgie, S., Marrie, T.J., Healthcare-associated atypical pneumonia (2009) Semin Respir Crit Care Med, 30, pp. 67-85. , https://doi.org/10.1055/s-0028-1119811; Freymuth, F., Vabret, A., Dina, J., Cuvillon-Nimal, D., Lubin, C., Vaudecrane, A., Guillois, B., Brouard, J., Bronchiolitis viruses (2010) Arch Pediatr, 17, pp. 1192-1201. , https://doi.org/10.1016/j.arcped.2010.05.006; Vabret, A., Dina, J., Brison, E., Brouard, J., Freymuth, F., Human coronaviruses (2009) Pathol Biol (Paris), 57, pp. 149-160. , https://doi.org/10.1016/j.patbio.2008.02.018, (In French.); Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., Osterhaus, A.D., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270. , https://doi.org/10.1016/S0140-6736(03)13967-0; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399. , https://doi.org/10.1126/science.1085952; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Leong, A.S., Multiple organ infection and the pathogenesis of SARS (2005) J Exp Med, 202, pp. 415-424. , https://doi.org/10.1084/jem.20050828; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Chong, W.K., Breuer, J., Human coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498. , https://doi.org/10.1056/NEJMc1509458; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by human respiratory coronaviruses (2000) J Virol, 74, pp. 8913-8921. , https://doi.org/10.1128/JVI.74.19.8913-8921.2000; Stewart, J.N., Mounir, S., Talbot, P.J., Human coronavirus gene expression in the brains of multiple sclerosis patients (1992) Virology, 191, pp. 502-505. , https://doi.org/10.1016/0042-6822(92)90220-J; Turgay, C., Emine, T., Ozlem, K., Muhammet, S.P., Haydar, A.T., A rare cause of acute flaccid paralysis: human coronaviruses (2015) J Pediatr Neurosci, 10, pp. 280-281. , https://doi.org/10.4103/1817-1745.165716; Algahtani, H., Subahi, A., Shirah, B., Neurological complications of Middle East respiratory syndrome coronavirus: a report of two cases and review of the literature (2016) Case Rep Neurol Med, 2016. , https://doi.org/10.1155/2016/3502683; Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Saeed, B.T., Balkhy, H., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501. , https://doi.org/10.1007/s15010-015-0720-y; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am J Pathol, 170, pp. 1136-1147. , https://doi.org/10.2353/ajpath.2007.061088; Lau, K.K., Yu, W.C., Chu, C.M., Lau, S.T., Sheng, B., Yuen, K.Y., Possible central nervous system infection by SARS coronavirus (2004) Emerg Infect Dis, 10, pp. 342-344. , https://doi.org/10.3201/eid1002.030638; Li, Y., Li, H., Fan, R., Wen, B., Zhang, J., Cao, X., Wang, C., Liu, W., Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children (2016) Intervirology, 59, pp. 163-169. , https://doi.org/10.1159/000453066; Principi, N., Bosis, S., Esposito, S., Effects of coronavirus infections in children (2010) Emerg Infect Dis, 16, pp. 183-188. , https://doi.org/10.3201/eid1602.090469; Tsai, L.K., Hsieh, S.T., Chang, Y.C., Neurological manifestations in severe acute respiratory syndrome (2005) Acta Neurol Taiwan, 14, pp. 113-119; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113. , https://doi.org/10.1542/peds.113.1.e73; Cristallo, A., Gambaro, F., Biamonti, G., Ferrante, P., Battaglia, M., Cereda, P.M., Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients (1997) New Microbiol, 20, pp. 105-114; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice (2006) Virology, 349, pp. 335-346. , https://doi.org/10.1016/j.virol.2006.01.049; Jacomy, H., St-Jean, J.R., Brison, E., Marceau, G., Desforges, M., Talbot, P.J., Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination (2010) J Neurovirol, 16, pp. 279-293. , https://doi.org/10.3109/13550284.2010.497806; Arbour, N., Cote, G., Lachance, C., Tardieu, M., Cashman, N.R., Talbot, P.J., Acute and persistent infection of human neural cell lines by human coronavirus OC43 (1999) J Virol, 73, pp. 3338-3350; St-Jean, J.R., Desforges, M., Talbot, P.J., Genetic evolution of human coronavirus OC43 in neural cell culture (2006) Adv Exp Med Biol, 581, pp. 499-502. , https://doi.org/10.1007/978-0-387-33012-9_88; Fazzini, E., Fleming, J., Fahn, S., Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson's disease (1992) Mov Disord, 7, pp. 153-158; Johnson-Lussenburg, C.M., Zheng, Q., Coronavirus and multiple sclerosis: results of a case/control longitudinal serological study (1987) Adv Exp Med Biol, 218, pp. 421-429. , https://doi.org/10.1007/978-1-4684-1280-2_51; Sibley, W.A., Bamford, C.R., Clark, K., Clinical viral infections and multiple sclerosis (1985) Lancet, 1, pp. 1313-1315; Brison, E., Jacomy, H., Desforges, M., Talbot, P.J., Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein (2011) J Virol, 85, pp. 12464-12473. , https://doi.org/10.1128/JVI.05576-11; Brison, E., Jacomy, H., Desforges, M., Talbot, P.J., Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus (2014) J Virol, 88, pp. 1548-1563. , https://doi.org/10.1128/JVI.02972-13; Do Carmo, S., Jacomy, H., Talbot, P.J., Rassart, E., Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice (2008) J Neurosci, 28, pp. 10330-10338. , https://doi.org/10.1523/JNEUROSCI.2644-08.2008; Le Coupanec, A., Desforges, M., Meessen-Pinard, M., Dube, M., Day, R., Seidah, N.G., Talbot, P.J., Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005261; Jean, A., Quach, C., Yung, A., Semret, M., Severity and outcome associated with human coronavirus OC43 infections among children (2013) Pediatr Infect Dis J, 32, pp. 325-329. , https://doi.org/10.1097/INF.0b013e3182812787; Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children >5 years of age (2014) Pediatr Infect Dis J, 33, pp. 814-820. , https://doi.org/10.1097/INF.0000000000000292; Charles, P.C., Walters, E., Margolis, F., Johnston, R.E., Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse (1995) Virology, 208, pp. 662-671. , https://doi.org/10.1006/viro.1995.1197; Rochel, S., Margolis, F.L., The response of ornithine decarboxylase during neuronal degeneration and regeneration in olfactory epithelium (1980) J Neurochem, 35, pp. 850-860. , https://doi.org/10.1111/j.1471-4159.1980.tb07082.x; Jacomy, H., Talbot, P.J., Vacuolating encephalitis in mice infected by human coronavirus OC43 (2003) Virology, 315, pp. 20-33. , https://doi.org/10.1016/S0042-6822(03)00323-4; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus OC43: genetic stability and neuroinvasion (2004) J Virol, 78, pp. 8824-8834. , https://doi.org/10.1128/JVI.78.16.8824-8834.2004; Barnett, E.M., Perlman, S., The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM (1993) Virology, 194, pp. 185-191. , https://doi.org/10.1006/viro.1993.1248; Mori, I., Transolfactory neuroinvasion by viruses threatens the human brain (2015) Acta Virol, 59, pp. 338-349. , https://doi.org/10.4149/av_2015_04_338; Perlman, S., Evans, G., Afifi, A., Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain (1990) J Exp Med, 172, pp. 1127-1132. , https://doi.org/10.1084/jem.172.4.1127; Perlman, S., Jacobsen, G., Afifi, A., Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves (1989) Virology, 170, pp. 556-560. , https://doi.org/10.1016/0042-6822(89)90446-7; van Riel, D., Verdijk, R., Kuiken, T., The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system (2015) J Pathol, 235, pp. 277-287. , https://doi.org/10.1002/path.4461; Hansen, L.F., Hammer, M., Petersen, S.H., Nielsen, G.D., Effects of intranasal ZnSO4 irrigation on olfactory and trigeminal cues (1994) Physiol Behav, 55, pp. 699-704; Katsetos, C.D., Legido, A., Perentes, E., Mork, S.J., Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology (2003) J Child Neurol, 18, pp. 851-866. , https://doi.org/10.1177/088307380301801205; Favreau, D.J., Desforges, M., St-Jean, J.R., Talbot, P.J., A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus (2009) Virology, 395, pp. 255-267. , https://doi.org/10.1016/j.virol.2009.09.026; Hill, D.P., Robertson, K.A., Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction (1998) Brain Res Brain Res Protoc, 2, pp. 183-190. , https://doi.org/10.1016/S1385-299X(97)00041-X; Bosch, B.J., de Haan, C.A., Rottier, P.J., Coronavirus spike glycoprotein, extended at the carboxy terminus with green fluorescent protein, is assembly competent (2004) J Virol, 78, pp. 7369-7378. , https://doi.org/10.1128/JVI.78.14.7369-7378.2004; Verheije, M.H., Hagemeijer, M.C., Ulasli, M., Reggiori, F., Rottier, P.J., Masters, P.S., de Haan, C.A., The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes (2010) J Virol, 84, pp. 11575-11579. , https://doi.org/10.1128/JVI.00569-10; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J Virol, 87, pp. 3097-3107. , https://doi.org/10.1128/JVI.02699-12; Mounir, S., Talbot, P.J., Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation (1992) J Gen Virol, 73, pp. 2731-2736; Alfson, K.J., Avena, L.E., Beadles, M.W., Staples, H., Nunneley, J.W., Ticer, A., Dick, E.J., Jr., Griffiths, A., Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques (2015) J Virol, 89, pp. 6773-6781. , https://doi.org/10.1128/JVI.00649-15; Juarez, D., Long, K.C., Aguilar, P., Kochel, T.J., Halsey, E.S., Assessment of plaque assay methods for alphaviruses (2013) J Virol Methods, 187, pp. 185-189. , https://doi.org/10.1016/j.jviromet.2012.09.026; Watanabe, T., Horikawa, Y., Sato, K., Saito, H., Methylcellulose media for plaque assay of murine leukemia virus (1982) J Clin Microbiol, 16, pp. 542-544; Zurbach, K.A., Moghbeli, T., Snyder, C.M., Resolving the titer of murine cytomegalovirus by plaque assay using the M2-10B4 cell line and a low viscosity overlay (2014) Virol J, 11, p. 71. , https://doi.org/10.1186/1743-422X-11-71; Krempl, C., Schultze, B., Herrler, G., Analysis of cellular receptors for human coronavirus OC43 (1995) Adv Exp Med Biol, 380, pp. 371-374. , https://doi.org/10.1007/978-1-4615-1899-0_60; Kunkel, F., Herrler, G., Structural and functional analysis of the S proteins of two human coronavirus OC43 strains adapted to growth in different cells (1996) Arch Virol, 141, pp. 1123-1131. , https://doi.org/10.1007/BF01718615; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc Natl Acad Sci U S A, 85, pp. 4526-4529; de Groot, R.J., Structure, function and evolution of the hemagglutininesterase proteins of corona-and toroviruses (2006) Glycoconj J, 23, pp. 59-72. , https://doi.org/10.1007/s10719-006-5438-8; Rottier, P.J., Background paper Coronavirus M and HE: two peculiar glycoproteins (1990) Adv Exp Med Biol, 276, pp. 91-94; Smits, S.L., Gerwig, G.J., van Vliet, A.L., Lissenberg, A., Briza, P., Kamerling, J.P., Vlasak, R., de Groot, R.J., Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptordestroying enzymes (2005) J Biol Chem, 280, pp. 6933-6941. , https://doi.org/10.1074/jbc.M409683200; Vlasak, R., Luytjes, W., Leider, J., Spaan, W., Palese, P., The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity (1988) J Virol, 62, pp. 4686-4690; Meessen-Pinard, M., Le Coupanec, A., Desforges, M., Talbot, P.J., Pivotal role of receptor-interacting protein kinase 1 and mined lineage kinase domain-like in neuronal cell death induced by the human neuroinvasive coronavirus OC43 (2017) J Virol, 91. , https://doi.org/10.1128/JVI.01513-16; Lochhead, J.J., Thorne, R.G., Intranasal delivery of biologics to the central nervous system (2012) Adv Drug Deliv Rev, 64, pp. 614-628. , https://doi.org/10.1016/j.addr.2011.11.002; Taylor, M.P., Enquist, L.W., Axonal spread of neuroinvasive viral infections (2015) Trends Microbiol, 23, pp. 283-288. , https://doi.org/10.1016/j.tim.2015.01.002; Frana, M.F., Behnke, J.N., Sturman, L.S., Holmes, K.V., Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion (1985) J Virol, 56, pp. 912-920; Pasick, J.M., Kalicharran, K., Dales, S., Distribution and trafficking of JHM coronavirus structural proteins and virions in primary neurons and the OBL-21 neuronal cell line (1994) J Virol, 68, pp. 2915-2928; Bauer, A., Nolden, T., Schroter, J., Romer-Oberdorfer, A., Gluska, S., Perlson, E., Finke, S., Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons (2014) J Virol, 88, pp. 14172-14183. , https://doi.org/10.1128/JVI.02254-14; Howard, P.W., Wright, C.C., Howard, T., Johnson, D.C., Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells (2014) J Virol, 88, pp. 11178-11186. , https://doi.org/10.1128/JVI.01627-14; Saksena, M.M., Wakisaka, H., Tijono, B., Boadle, R.A., Rixon, F., Takahashi, H., Cunningham, A.L., Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons (2006) J Virol, 80, pp. 3592-3606. , https://doi.org/10.1128/JVI.80.7.3592-3606.2006; Taylor, M.P., Kramer, T., Lyman, M.G., Kratchmarov, R., Enquist, L.W., Visualization of an alphaherpesvirus membrane protein that is essential for anterograde axonal spread of infection in neurons (2012) MBio, 3. , https://doi.org/10.1128/mBio.00063-12; De Regge, N., Nauwynck, H.J., Geenen, K., Krummenacher, C., Cohen, G.H., Eisenberg, R.J., Mettenleiter, T.C., Favoreel, H.W., Alpha-herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites (2006) J Cell Biol, 174, pp. 267-275. , https://doi.org/10.1083/jcb.200510156; Sattentau, Q.J., The direct passage of animal viruses between cells (2011) Curr Opin Virol, 1, pp. 396-402. , https://doi.org/10.1016/j.coviro.2011.09.004; Bender, S.J., Phillips, J.M., Scott, E.P., Weiss, S.R., Murine coronavirus receptors are differentially expressed in the central nervous system and play virus strain-dependent roles in neuronal spread (2010) J Virol, 84, pp. 11030-11044. , https://doi.org/10.1128/JVI.02688-09; Vijgen, L., Keyaerts, E., Moes, E., Maes, P., Duson, G., Van Ranst, M., Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E (2005) J Clin Microbiol, 43, pp. 5452-5456. , https://doi.org/10.1128/JCM.43.11.5452-5456.2005; Lambert, F., Jacomy, H., Marceau, G., Talbot, P.J., Titration of human coronaviruses using an immunoperoxidase assay (2008) J Vis Exp, 2008, p. 751. , https://doi.org/10.3791/751; Li, Z., Michael, I.P., Zhou, D., Nagy, A., Rini, J.M., Simple piggyBac transposonbased mammalian cell expression system for inducible protein production (2013) Proc Natl Acad Sci U S A, 110, pp. 5004-5009. , https://doi.org/10.1073/pnas.1218620110","Desforges, M.; Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Université du QuébecCanada; email: marc.desforges@iaf.inrs.ca",,"American Society for Microbiology",0022538X,,JOVIA,"29925652","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85051769750 "Zhao G., He L., Sun S., Qiu H., Tai W., Chen J., Li J., Chen Y., Guo Y., Wang Y., Shang J., Ji K., Fan R., Du E., Jiang S., Li F., Du L., Zhou Y.","8684553000;57194204279;35171536200;55801817000;57188879191;57203804806;57203801477;57201432379;57102095900;57189874587;57191992928;57203807351;36080374500;54417109800;56491898300;26028899600;8686996200;57191653017;","A novel nanobody targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV",2018,"Journal of Virology","92","18", e00837,"","",,18,"10.1128/JVI.00837-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052935582&doi=10.1128%2fJVI.00837-18&partnerID=40&md5=2945e6fa144bcbbe5314f89cf8f6f63b","State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; ShanXi Agricultural University, Shanxi, China; Northwest AandF University, Shaanxi, China; Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China","Zhao, G., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; He, L., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Sun, S., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Qiu, H., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Tai, W., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Chen, J., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Li, J., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Chen, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Guo, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China; Wang, Y., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Shang, J., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Ji, K., ShanXi Agricultural University, Shanxi, China; Fan, R., ShanXi Agricultural University, Shanxi, China; Du, E., Northwest AandF University, Shaanxi, China; Jiang, S., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States; Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China","The newly emerged Middle East respiratory syndrome coronavirus (MERSCoV) continues to infect humans and camels, calling for efficient, cost-effective, and broad-spectrum strategies to control its spread. Nanobodies (Nbs) are single-domain antibodies derived from camelids and sharks and are potentially cost-effective antivirals with small size and great expression yield. In this study, we developed a novel neutralizing Nb (NbMS10) and its human-Fc-fused version (NbMS10-Fc), both of which target the MERS-CoV spike protein receptor-binding domain (RBD). We further tested their receptor-binding affinity, recognizing epitopes, cross-neutralizing activity, half-life, and efficacy against MERS-CoV infection. Both Nbs can be expressed in yeasts with high yield, bind to MERS-CoV RBD with high affinity, and block the binding of MERS-CoV RBD to the MERS-CoV receptor. The binding site of the Nbs on the RBD was mapped to be around residue Asp539, which is part of a conserved conformational epitope at the receptor-binding interface. NbMS10 and NbMS10-Fc maintained strong cross-neutralizing activity against divergent MERS-CoV strains isolated from humans and camels. Particularly, NbMS10-Fc had significantly extended half-life in vivo; a single-dose treatment of NbMS10-Fc exhibited high prophylactic and therapeutic efficacy by completely protecting humanized mice from lethal MERS-CoV challenge. Overall, this study proves the feasibility of producing cost-effective, potent, and broad-spectrum Nbs against MERS-CoV and has produced Nbs with great potentials as anti-MERS-CoV therapeutics. © 2018 American Society for Microbiology. All Rights Reserved.","Cross-neutralization; MERS-CoV; Nanobody; Protective efficacy; Receptor-binding domain; Spike protein","aspartic acid; epitope; immunoglobulin Fc fragment; nanobody; NbMS10; NbMS10 Fc; trastuzumab; unclassified drug; virus receptor; virus spike protein; coronavirus spike glycoprotein; nanobody; neutralizing antibody; protein binding; virus antibody; amino acid sequence; animal experiment; animal model; Article; binding affinity; binding site; camel; controlled study; cost effectiveness analysis; drug blood level; drug efficacy; drug half life; drug potency; female; human; in vivo study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; protein conformation; protein domain; protein expression; receptor binding; virus attachment; virus isolation; virus neutralization; yeast; animal; Bagg albino mouse; chemistry; Coronavirus infection; economics; genetics; immunology; isolation and purification; metabolism; Middle East respiratory syndrome coronavirus; serodiagnosis; Animals; Antibodies, Neutralizing; Antibodies, Viral; Binding Sites; Coronavirus Infections; Epitopes; Humans; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Protein Binding; Single-Domain Antibodies; Spike Glycoprotein, Coronavirus","Konning, D., Zielonka, S., Grzeschik, J., Empting, M., Valldorf, B., Krah, S., Schroter, C., Kolmar, H., Camelid and shark single domain antibodies: Structural features and therapeutic potential (2017) Curr Opin Struct Biol, 45, pp. 10-16. , https://doi.org/10.1016/j.sbi.2016.10.019; De, M.T., Muyldermans, S., Depicker, A., Nanobody-based products as research and diagnostic tools (2014) Trends Biotechnol, 32, pp. 263-270. , https://doi.org/10.1016/j.tibtech.2014.03.001; Noel, F., Malpertuy, A., De Brevern, A.G., Global analysis of VHHs framework regions with a structural alphabet (2016) Biochimie, 131, pp. 11-19. , https://doi.org/10.1016/j.biochi.2016.09.005; Wilken, L., McPherson, A., Application of camelid heavy-chain variable domains (VHHs) in prevention and treatment of bacterial and viral infections (2017) Int Rev Immunol, 37, pp. 69-76. , https://doi.org/10.1080/08830185.2017.1397657; Van, H.G., Allosery, K., De, B.V., De, S.T., Detalle, L., De, F.A., Nanobodies® as inhaled biotherapeutics for lung diseases (2017) Pharmacol Ther, 169, pp. 47-56. , https://doi.org/10.1016/j.pharmthera.2016.06.012; Detalle, L., Stohr, T., Palomo, C., Piedra, P.A., Gilbert, B.E., Mas, V., Millar, A., Allosery, K., Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection (2015) Antimicrob Agents Chemother, 60, pp. 6-13. , https://doi.org/10.1128/AAC.01802-15; Steeland, S., Vandenbroucke, R.E., Libert, C., Nanobodies as therapeutics: Big opportunities for small antibodies (2016) Drug Discov Today, 21, pp. 1076-1113. , https://doi.org/10.1016/j.drudis.2016.04.003; Muyldermans, S., Nanobodies: Natural single-domain antibodies (2013) Annu Rev Biochem, 82, pp. 775-797. , https://doi.org/10.1146/annurev-biochem-063011-092449; Peyvandi, F., Scully, M., Kremer Hovinga, J.A., Cataland, S., Knobl, P., Wu, H., Artoni, A., Jilma, B., Caplacizumab for acquired thrombotic thrombocytopenic purpura (2016) N Engl J Med, 374, pp. 511-522. , https://doi.org/10.1056/NEJMoa1505533; Keyaerts, M., Xavier, C., Heemskerk, J., Devoogdt, N., Everaert, H., Ackaert, C., Vanhoeij, M., Simon, P., Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma (2016) J Nucl Med, 57, pp. 27-33. , https://doi.org/10.2967/jnumed.115.162024; Holz, J.B., The TITAN trial-assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura (2012) Transfus Apher Sci, 46, pp. 343-346. , https://doi.org/10.1016/j.transci.2012.03.027; Zaki, A.M., Van, B.S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction (2015) Pathog Glob Health, 109, pp. 354-362. , https://doi.org/10.1080/20477724.2015.1122852; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular evolution of MERS coronavirus: Dromedaries as a recent intermediate host or longtime animal reservoir? (2017) Int J Mol Sci, 18, p. E2138. , https://doi.org/10.3390/ijms18102138; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin Ther Targets, 21, pp. 131-143. , https://doi.org/10.1080/14728222.2017.1271415; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: Targets for vaccines and therapeutics (2016) Antiviral Res, 133, pp. 165-177. , https://doi.org/10.1016/j.antiviral.2016.07.015; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J Virol, 89, pp. 1954-1964. , https://doi.org/10.1128/JVI.02615-14; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067. , https://doi.org/10.1038/ncomms4067; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , https://doi.org/10.1038/nature12328; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993. , https://doi.org/10.1038/cr.2013.92; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261. , https://doi.org/10.1146/annurev-virology-110615-042301; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce crossneutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91, pp. e01651-e01716. , https://doi.org/10.1128/JVI.01651-16; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108. , https://doi.org/10.1016/j.vaccine.2014.02.004; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Tseng, C.T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13, pp. 180-190. , https://doi.org/10.1038/cmi.2015.03; Du, L., Tai, W., Zhou, Y., Jiang, S., Vaccines for the prevention against the threat of MERS-CoV (2016) Expert Rev Vaccines, 15, pp. 1123-1134. , https://doi.org/10.1586/14760584.2016.1167603; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Perlman, S., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat Commun, 7, p. 13473. , https://doi.org/10.1038/ncomms13473; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053. , https://doi.org/10.1128/JVI.00433-14; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res, 132, pp. 141-148. , https://doi.org/10.1016/j.antiviral.2016.06.003; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci U S A, 112, pp. 10473-10478. , https://doi.org/10.1073/pnas.1510199112; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112, pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249. , https://doi.org/10.1038/cr.2015.113; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Bohorova, N., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , https://doi.org/10.1016/j.virol.2016.01.004; Van, D.N., Falzarano, D., Ying, T., De, W.E., Bushmaker, T., Feldmann, F., Okumura, A., Hanley, P.W., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERSCoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37. , https://doi.org/10.1016/j.antiviral.2017.03.025; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, p. 234ra59. , https://doi.org/10.1126/scitranslmed.3008140; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805. , https://doi.org/10.1128/JVI.00912-14; Bannas, P., Hambach, J., Koch-Nolte, F., Nanobodies and nanobodybased human heavy chain antibodies as antitumor therapeutics (2017) Front Immunol, 8, p. 1603. , https://doi.org/10.3389/fimmu.2017.01603; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Du, L., Multi-Organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) PLoS One, 10, p. e0145561. , https://doi.org/10.1371/journal.pone.0145561; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Dimitrov, D.S., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6, p. 8223. , https://doi.org/10.1038/ncomms9223; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111, pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111; Gonzalez-Sapienza, G., Rossotti, M.A., Tabares-Da, R.S., Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications (2017) Front Immunol, 8, p. 977. , https://doi.org/10.3389/fimmu.2017.00977; Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., Cauerhff, A., Scheuplein, F., Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity (2009) Med Microbiol Immunol, 198, pp. 157-174. , https://doi.org/10.1007/s00430-009-0116-7; Muyldermans, S., Single domain camel antibodies: Current status (2001) J Biotechnol, 74, pp. 277-302; Chan, P.H., Pardon, E., Menzer, L., De, G.E., Kumita, J.R., Christodoulou, J., Saerens, D., Archer, D.B., Engineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion into amyloid fibrils (2008) Biochemistry, 47, pp. 11041-11054. , https://doi.org/10.1021/bi8005797; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Li, Z., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci Rep, 5, p. 13133. , https://doi.org/10.1038/srep13133; Frenken, L.G., Van Der Linden, R.H., Hermans, P.W., Bos, J.W., Ruuls, R.C., De, G.B., Verrips, C.T., Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae (2000) J Biotechnol, 78, pp. 11-21. , https://doi.org/10.1016/S0168-1656(99)00228-X; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.T., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments: The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176. , https://doi.org/10.1016/j.vaccine.2014.08.086; Saerens, D., Kinne, J., Bosmans, E., Wernery, U., Muyldermans, S., Conrath, K., Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen (2004) J Biol Chem, 279, pp. 51965-51972. , https://doi.org/10.1074/jbc.M409292200; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J Immunol, 174, pp. 4908-4915. , https://doi.org/10.4049/jimmunol.174.8.4908; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Du, L., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382. , https://doi.org/10.1016/j.virol.2016.10.005; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Jiang, S., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol J, 10, p. 266. , https://doi.org/10.1186/1743-422X-10-266; Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol Rev, 58, pp. 621-681. , https://doi.org/10.1124/pr.58.3.10; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Jiang, S., Gao, J., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum Vaccin Immunother, 13, pp. 1615-1624. , https://doi.org/10.1080/21645515.2017.1296994; Biacchesi, S., Skiadopoulos, M.H., Yang, L., Murphy, B.R., Collins, P.L., Buchholz, U.J., Rapid human metapneumovirus microneutralization assay based on green fluorescent protein expression (2005) J Virol Methods, 128, pp. 192-197. , https://doi.org/10.1016/j.jviromet.2005.05.005","Du, L.; Lindsley F. Kimball Research Institute, New York Blood CenterUnited States; email: ldu@nybc.org",,"American Society for Microbiology",0022538X,,JOVIA,"29950421","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85052935582 "Amer H., Alqahtani A.S., Alzoman H., Aljerian N., Memish Z.A.","57201583437;57193667170;57201587307;55844031600;7005059350;","Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017",2018,"American Journal of Infection Control","46","9",,"1022","1025",,11,"10.1016/j.ajic.2018.02.023","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045332189&doi=10.1016%2fj.ajic.2018.02.023&partnerID=40&md5=da97010993f4bd3c1eb9ce35cdf2030a","Infection Control Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Department of Community Medicine, National Research Center, Egypt; Medical Affairs, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Department of Emergency Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Amer, H., Infection Control Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia, Department of Community Medicine, National Research Center, Egypt; Alqahtani, A.S., Medical Affairs, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Alzoman, H., Infection Control Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; Aljerian, N., Department of Emergency Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Memish, Z.A., Department of Emergency Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia, College of Medicine, Alfaisal University, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Background: The hallmark of Middle East respiratory syndrome coronavirus (MERS-CoV) disease is the ability to cause major health care-associated nosocomial outbreaks with superspreading events leading to massive numbers of cases and excessive morbidity and mortality. In this report, we describe a patient who presented with acute renal failure requiring hemodialysis and became a MERS-CoV superspreader, igniting a recent multihospital outbreak in Riyadh. Material and Results: Between May 31 and June 15, 2017, 44 cases of MERS-CoV infection were reported from 3 simultaneous clusters from 3 health care facilities in Riyadh, Saudi Arabia, including 11 fatal cases. Out of the total reported cases, 29 cases were reported from King Saud Medical City. The cluster at King Saud Medical City was ignited by a single superspreader patient who presented with acute renal failure. After 14 hours in the open area of the emergency department and 2 hemodialysis sessions he was diagnosed with MERS-CoV. One hundred twenty contacts who had direct unprotected exposure were screened. Among those contacts, 9 out of 107 health care workers (5 nurses, 3 physicians, and 1 paramedic) and 7 out of 13 patients tested positive for MERS-CoV. Conclusions: This hospital outbreak demonstrated the difficulties in diagnosing pneumonia in patients with renal and cardiac failure, which leads to delayed suspicion of MERS-CoV and hence delay in applying the proper infection control procedures. In MERS-CoV endemic countries there is an urgent need for developing rapid point-of-care testing that would assist emergency department staff in triaging suspected cases of MERS-CoV to ensure timely isolation and management of their primary illness and prevent major MERS-CoV outbreaks. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","hemodialysis; Kingdom of Saudi Arabia; renal failure; superspreading; viral load","acute kidney failure; adult; Article; case report; clinical article; coughing; disease notification; dyspnea; emergency health service; emergency ward; epidemic; health care facility; hemodialysis; hospital admission; human; hypoxia; intubation; lung edema; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nurse; paramedical personnel; patient transport; physician; real time polymerase chain reaction; respiratory distress; reverse transcription polymerase chain reaction; Saudi Arabia; scoring system; thorax radiography; throat culture; Yemeni; cluster analysis; Coronavirus infection; cross infection; disease transmission; kidney failure; mortality; pathology; survival analysis; Cluster Analysis; Coronavirus Infections; Cross Infection; Disease Outbreaks; Disease Transmission, Infectious; Humans; Male; Middle Aged; Renal Insufficiency; Saudi Arabia; Survival Analysis","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) updates (2017), http://www.who.int/emergencies/mers-cov/en/, Available from (Accessed 28 January 2018); Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Lee, J., Chowell, G., Jung, E., A dynamic compartmental model for the MERS outbreak in the Republic of Korea: a retrospective analysis on control interventions and superspreading events (2016) J Theor Biol, 406, pp. 118-126; Park, S.H., Kim, Y.S., Jung, Y., Choi, S.Y., Cho, N.H., Jeong, H.W., Outbreaks of MERS in Two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect Chemother, 48, pp. 99-107; Kucharski, A.J., Althaus, C.L., The role of superspreading in Middle East Respiratory Syndrome coronavirus (MERS-CoV) transmission (2015) Euro Surveill, 20, pp. 14-18; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Dong, S.L., Bullard, M.J., Meurer, D.P., Colman, I., Blitz, S., Emergency triage: comparing a novel computer triage program with standard triage (2005) Acad Emerg Med, 12, pp. 502-507; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Park, G.E., Ko, J.H., Peck, K.R., Lee, J.Y., Lee, J.Y., Cho, S.Y., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Kwan, B.C., Leung, C.B., Szeto, C.C., Wang, A.Y.-M., Li, P.K.-T., SARS in a patient on haemodialysis (2003) Am J Kidney Dis, 42, pp. 1069-1074; Kwan, B.C., Leung, C.B., Szeto, C.C., Wong, V.W., Cheng, Y.L., Yu, A.W., SARS in dialysis patients (2004) J Am Soc Nephrol, 15, pp. 1883-1888; Yu, I.T., Qiu, H., Tse, L.A., Wong, T.W., Severe acute respiratory syndrome beyond Amoy Gardens: completing the incomplete legacy (2014) Clin Infect Dis, 58, pp. 683-686; Ghazal, H.S., Ghazal, S., Alharbi, T.M., Al Nujaidi, M., Memish, Z.A., Middle-East respiratory syndrome-coronavirus: putting emergency departments in the spotlight (2017) J Health Spec, 5, pp. 51-54; Memish, Z.A., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus infection control: the missing piece? (2014) Am J Infect Control, 42, pp. 1258-1260; Chen, Y., Chan, K.H., Hong, C., Kang, Y., Ge, S., Chen, H., A highly specific rapid antigen detection assay for on-site diagnosis of MERS (2016) J Infect, 73; Lee, S.H., Baek, Y.H., Kim, Y.H., Choi, Y.K., Song, M.S., Ahn, J.Y., One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV (2017) Front Microbiol, 7, p. 2166; Nijhuis, R.H.T., Guerendiain, D., Claas, E.C.J., Templeton, K.E., Comparison of ePlex respiratory pathogen panel with laboratory-developed real-time PCR assays for detection of respiratory pathogens (2017) J Clin Microbiol, 55, pp. 1938-1945; Galvani, A.P., May, R.M., Epidemiology: dimensions of superspreading (2005) Nature, 438, pp. 293-295; Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F., MERS, SARS, and Ebola: the role of super-spreaders in infectious disease (2015) Cell Host Microbe, 18, pp. 398-401; Yu, I.T., Xie, Z.H., Tsoi, K.K., Chiu, Y.L., Lok, S.W., Why did outbreaks of severe acute respiratory syndrome occur in some hospital wards but not in others? (2007) Clin Infect Dis, 44, pp. 1017-1025; Joob, B., Wiwanitkit, V., Middle East respiratory syndrome coronavirus infection: a short note on cases with renal failure problem (2016) Ren Fail, 38, pp. 1749-1750; AlGhamdi, M., Mushtaq, F., Awn, N., Shalhoub, S., MERS CoV infection in two renal transplant recipients: case report (2015) Am J Transplant, 15, pp. 1101-1104","Memish, Z.A.; College of Medicine, Alfaisal University, Infectious Diseases and Research Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, P.O. Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Mosby Inc.",01966553,,AJICD,"29661625","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85045332189 "Doyle N., Neuman B.W., Simpson J., Hawes P.C., Mantell J., Verkade P., Alrashedi H., Maier H.J.","36183228800;8263558000;57188586590;24528127600;34971572300;6701641490;57189588960;56219677100;","Infectious bronchitis virus nonstructural protein 4 alone induces membrane pairing",2018,"Viruses","10","9", 477,"","",,2,"10.3390/v10090477","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054709675&doi=10.3390%2fv10090477&partnerID=40&md5=d58399a39e25b9701ba29f5a355c89cf","The Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom; School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom; School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom; College of STEM, Texas A&M University-Texarkana, Texarkana, TX 75503, United States","Doyle, N., The Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom; Neuman, B.W., School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom, College of STEM, Texas A&M University-Texarkana, Texarkana, TX 75503, United States; Simpson, J., The Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom; Hawes, P.C., The Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom; Mantell, J., School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom; Verkade, P., School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom; Alrashedi, H., School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom; Maier, H.J., The Pirbright Institute, Pirbright, Surrey, GU24 0NF, United Kingdom","Positive-strand RNA viruses, such as coronaviruses, induce cellular membrane rearrangements during replication to form replication organelles allowing for efficient viral RNA synthesis. Infectious bronchitis virus (IBV), a pathogenic avian Gammacoronavirus of significant importance to the global poultry industry, has been shown to induce the formation of double membrane vesicles (DMVs), zippered endoplasmic reticulum (zER) and tethered vesicles, known as spherules. These membrane rearrangements are virally induced; however, it remains unclear which viral proteins are responsible. In this study, membrane rearrangements induced when expressing viral non-structural proteins (nsps) from two different strains of IBV were compared. Three non-structural transmembrane proteins, nsp3, nsp4, and nsp6, were expressed in cells singularly or in combination and the effects on cellular membranes investigated using electron microscopy and electron tomography. In contrast to previously studied coronaviruses, IBV nsp4 alone is necessary and sufficient to induce membrane pairing; however, expression of the transmembrane proteins together was not sufficient to fully recapitulate DMVs. This indicates that although nsp4 is able to singularly induce membrane pairing, further viral or host factors are required in order to fully assemble IBV replicative structures. This study highlights further differences in the mechanism of membrane rearrangements between members of the coronavirus family. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Electron tomography; Infectious bronchitis virus; Membrane rearrangements; Non-structural protein; Nsp3; Nsp4; Paired membranes; Zippered ER","nonstructural protein 3; nonstructural protein 4; nonstructural protein 6; protein disulfide isomerase; unclassified drug; viral protein; viral protein; animal cell; Article; Avian infectious bronchitis virus; confocal microscopy; controlled study; electron microscopy; electron tomography; endoplasmic reticulum; expression vector; genetic transfection; immunofluorescence; membrane vesicle; nonhuman; phenotype; plasmid; polyacrylamide gel electrophoresis; protein expression; protein localization; transmission electron microscopy; virus genome; virus replication; Western blotting; animal; Avian infectious bronchitis virus; cell line; cell membrane; chicken; fibroblast; host pathogen interaction; metabolism; physiology; ultrastructure; virology; Animals; Cell Line; Cell Membrane; Chickens; Fibroblasts; Host-Pathogen Interactions; Infectious bronchitis virus; Microscopy, Electron; Viral Nonstructural Proteins","Miller, S., Krijnse-Locker, J., Modification of intracellular membrane structures for virus replication (2008) Nat. Rev. Microbiol., 6, p. 363; Netherton, C.L., Wileman, T., Virus factories, double membrane vesicles and viroplasm generated in animal cells (2011) Curr. Opin. Virol., 1, pp. 381-387; Boon, J.A.D., Ahlquist, P., Organelle-Like Membrane Compartmentalization of Positive-Strand RNA Virus Replication Factories (2010) Annu. Rev. Microbiol., 64, pp. 241-256; Neufeldt, C.J., Joyce, M.A., van Buuren, N., Levin, A., Kirkegaard, K., Gale, M., Jr., Tyrrell, D.L.J., Wozniak, R.W., The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites (2016) Plos Pathog, 12; Harak, C., Lohmann, V., Ultrastructure of the replication sites of positive-strand RNA viruses (2015) Virology, pp. 479–480, 418–433; Paul, D., Bartenschlager, R., Architecture and biogenesis of plus-strand RNA virus replication factories (2013) World J. Virol., 2, pp. 32-48; Bienz, K., Egger, D., Pfister, T., Troxler, M., Structural and functional characterization of the poliovirus replication complex (1992) J. Virol., 66, pp. 2740-2747; Belov, G.A., Nair, V., Hansen, B.T., Hoyt, F.H., Fischer, E.R., Ehrenfeld, E., Complex Dynamic Development of Poliovirus Membranous Replication Complexes (2012) J. Virol., 86, pp. 302-312; Gosert, R., Egger, D., Lohmann, V., Bartenschlager, R., Blum, H.E., Bienz, K., Moradpour, D., Identification of the Hepatitis C Virus RNA Replication Complex in Huh-7 Cells Harboring Subgenomic Replicons (2003) J. Virol., 77, pp. 5487-5492; Ferraris, P., Beaumont, E., Uzbekov, R., Brand, D., Gaillard, J., Blanchard, E., Roingeard, P., Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection (2013) Cell. Mol. Life Sci., 70, pp. 1297-1306; Doerflinger, S.Y., Cortese, M., Romero-Brey, I., Menne, Z., Tubiana, T., Schenk, C., White, P.A., Hansman, G.S., Membrane alterations induced by nonstructural proteins of human norovirus (2017) Plos Pathog, 13; Ávila-Pérez, G., Rejas, M.T., Rodríguez, D., Ultrastructural characterization of membranous torovirus replication factories (2016) Cell. Microbiol., 18, pp. 1691-1708; Kujala, P., Ikäheimonen, A., Ehsani, N., Vihinen, H., Auvinen, P., Kääriäinen, L., Biogenesis of the Semliki Forest Virus RNA Replication Complex (2001) J. Virol., 75, pp. 3873-3884; Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K.E., Walther, P., Fuller, S.D., Bartenschlager, R., Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites (2009) Cell Host Microbe, 5, pp. 365-375; Gillespie, L.K., Hoenen, A., Morgan, G., Mackenzie, J.M., The Endoplasmic Reticulum Provides the Membrane Platform for Biogenesis of the Flavivirus Replication Complex (2010) J. Virol., 84, pp. 10438-10447; Westaway, E.G., Mackenzie, J.M., Kenney, M.T., Jones, M.K., Khromykh, A.A., Ultrastructure of Kunjin virus-infected cells: Colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures (1997) J. Virol., 71, pp. 6650-6661; Cortese, M., Goellner, S., Acosta, E.G., Neufeldt, C.J., Oleksiuk, O., Lampe, M., Haselmann, U., Ronchi, P., Ultrastructural Characterization of Zika Virus Replication Factories (2017) Cell Rep, 18, pp. 2113-2123; Schwartz, M., Chen, J., Janda, M., Sullivan, M., Den Boon, J., Ahlquist, P., A Positive-Strand RNA Virus Replication Complex Parallels Form and Function of Retrovirus Capsids (2002) Mol. Cell, 9, pp. 505-514; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J.M., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex (2006) J. Virol., 80, pp. 5927-5940; Goldsmith, C.S., Tatti, K.M., Ksiazek, T.G., Rollin, P.E., Comer, J.A., Lee, W.W., Rota, P.A., Zaki, S.R., Ultrastructural Characterization of SARS Coronavirus (2004) Emerg. Infect. Dis., 10, pp. 320-326; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA Replication of Mouse Hepatitis Virus Takes Place at Double-Membrane Vesicles (2002) J. Virol., 76, pp. 3697-3708; Ulasli, M., Verheije, M.H., de Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell. Microbiol., 12, pp. 844-861; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W.A.L., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; Zhou, X., Cong, Y., Veenendaal, T., Klumperman, J., Shi, D., Mari, M., Reggiori, F., Ultrastructural Characterization of Membrane Rearrangements Induced by Porcine Epidemic Diarrhea Virus Infection (2017) Viruses, 9, p. 251; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., Britton, P., Infectious Bronchitis Virus Generates Spherules from Zippered Endoplasmic Reticulum Membranes (2013) Mbio, 4; Oudshoorn, D., Rijs, K., Limpens, R.W.A.L., Groen, K., Koster, A.J., Snijder, E.J., Kikkert, M., Bárcena, M., Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication (2017) Mbio, 8; Neuman, B.W., Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles (2016) Antiviral Res, 135, pp. 97-107; Clementz, M.A., Kanjanahaluethai, A., O’Brien, T.E., Baker, S.C., Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles (2008) Virology, 375, pp. 118-129; Gadlage, M.J., Sparks, J.S., Beachboard, D.C., Cox, R.G., Doyle, J.D., Stobart, C.C., Denison, M.R., Murine Hepatitis Virus Nonstructural Protein 4 Regulates Virus-Induced Membrane Modifications and Replication Complex Function (2010) J. Virol., 84, pp. 280-290; Beachboard, D.C., Anderson-Daniels, J.M., Denison, M.R., Mutations across Murine Hepatitis Virus nsp4 Alter Virus Fitness and Membrane Modifications (2015) J. Virol., 89, pp. 2080-2089; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum (2008) Plos Biol, 6; Posthuma, C.C., Pedersen, K.W., Lu, Z., Joosten, R.G., Roos, N., Zevenhoven-Dobbe, J.C., Snijder, E.J., Formation of the Arterivirus Replication/Transcription Complex: A Key Role for Nonstructural Protein 3 in the Remodeling of Intracellular Membranes (2008) J. Virol., 82, pp. 4480-4491; Pedersen, K.W., van der Meer, Y., Roos, N., Snijder, E.J., Open Reading Frame 1a-Encoded Subunits of the Arterivirus Replicase Induce Endoplasmic Reticulum-Derived Double-Membrane Vesicles Which Carry the Viral Replication Complex (1999) J. Virol., 73, pp. 2016-2026; Snijder, E.J., van Tol, H., Roos, N., Pedersen, K.W., Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex (2001) J. Gen. Virol., 82, pp. 985-994; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37; Hagemeijer, M.C., Monastyrska, I., Griffith, J., van der Sluijs, P., Voortman, J.B.M., Vonk, A.M., Rottier, P.J.M., de Haan, C.A.M., Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 (2014) Virology, pp. 458–459, 125–135; Hagemeijer, M.C., Ulasli, M., Vonk, A.M., Reggiori, F., Rottier, P.J.M., de Haan, C.A.M., Mobility and Interactions of Coronavirus Nonstructural Protein 4 (2011) J. Virol., 85, pp. 4572-4577; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles (2013) Mbio, 4; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Kint, J., Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus (2014) Plos Pathog, 10; Maier, H.J., Neuman, B.W., Bickerton, E., Keep, S.M., Alrashedi, H., Hall, R., Britton, P., Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity (2016) Sci. Rep., 6; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse Genetics System for the Avian Coronavirus Infectious Bronchitis Virus (2001) J. Virol., 75, pp. 12359-12369; Darbyshire, J.H., Rowell, J.G., Cook, J.K.A., Peters, R.W., Taxonomic studies on strains of avian infectious bronchitis virus using neutralisation tests in tracheal organ cultures (1979) Arch. Virol., 61, pp. 227-238; Kremer, J.R., Mastronarde, D.N., McIntosh, J.R., Computer Visualization of Three-Dimensional Image Data Using IMOD (1996) J. Struct. Biol., 116, pp. 71-76; Fang, S.G., Shen, S., Tay, F.P.L., Liu, D.X., Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells (2005) Biochem. Biophys. Res. Commun., 336, pp. 417-423; Promkuntod, N., Wickramasinghe, I.N.A., de Vrieze, G., Gröne, A., Verheije, M.H., Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus (2013) Virus Res, 177, pp. 127-137; Almazán, F., González, J.M., Pénzes, Z., Izeta, A., Calvo, E., Plana-Durán, J., Enjuanes, L., Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 5516-5521; Yount, B., Curtis, K.M., Baric, R.S., Strategy for Systematic Assembly of Large RNA and DNA Genomes: Transmissible Gastroenteritis Virus Model (2000) J. Virol., 74, pp. 10600-10611; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic Assembly of a Full-Length Infectious cDNA of Mouse Hepatitis Virus Strain A59 (2002) J. Virol., 76, pp. 11065-11078; Cottam, E.M., Maier, H.J., Manifava, M., Vaux, L.C., Chandra-Schoenfelder, P., Gerner, W., Britton, P., Wileman, T., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7, pp. 1335-1347; Baliji, S., Cammer, S.A., Sobral, B., Baker, S.C., Detection of Nonstructural Protein 6 in Murine Coronavirus-Infected Cells and Analysis of the Transmembrane Topology by Using Bioinformatics and Molecular Approaches (2009) J. Virol., 83, pp. 6957-6962; Kanjanahaluethai, A., Chen, Z., Jukneliene, D., Baker, S.C., Membrane topology of murine coronavirus replicase nonstructural protein 3 (2007) Virology, 361, pp. 391-401; Oostra, M., Hagemeijer, M.C., van Gent, M., Bekker, C.P.J., Te Lintelo, E.G., Rottier, P.J.M., de Haan, C.A.M., Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning (2008) J. Virol., 82, pp. 12392-12405; Oostra, M., Te Lintelo, E.G., Deijs, M., Verheije, M.H., Rottier, P.J.M., de Haan, C.A.M., Localization and Membrane Topology of Coronavirus Nonstructural Protein 4: Involvement of the Early Secretory Pathway in Replication (2007) J. Virol., 81, pp. 12323-12336; Maier, H.J., Cottam, E.M., Stevenson-Leggett, P., Wilkinson, J.A., Harte, C.J., Wileman, T., Britton, P., Visualizing the autophagy pathway in avian cells and its application to studying infectious bronchitis virus (2013) Autophagy, 9, pp. 496-509; Pan, J.A., Peng, X., Gao, Y., Li, Z., Lu, X., Chen, Y., Ishaq, M., Enjuanes, L., Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication (2008) Plos ONE, 3; von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Roberts, R., Haas, J., Analysis of Intraviral Protein-Protein Interactions of the SARS Coronavirus ORFeome (2007) Plos ONE, 2; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Bárcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res, 220, pp. 70-90; Sakai, Y., Kawachi, K., Terada, Y., Omori, H., Matsuura, Y., Kamitani, W., Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication (2017) Virology, 510, pp. 165-174; Kallio, K., Hellström, K., Balistreri, G., Spuul, P., Jokitalo, E., Ahola, T., Template RNA Length Determines the Size of Replication Complex Spherules for Semliki Forest Virus (2013) J. Virol., 87, pp. 9125-9134; Hellström, K., Kallio, K., Utt, A., Quirin, T., Jokitalo, E., Merits, A., Ahola, T., Partially Uncleaved Alphavirus Replicase Forms Spherule Structures in the Presence and Absence of RNA Template (2017) J. Virol., 91; Kopek, B.G., Settles, E.W., Friesen, P.D., Ahlquist, P., Nodavirus-Induced Membrane Rearrangement in Replication Complex Assembly Requires Replicase Protein A, RNA Templates, and Polymerase Activity (2010) J. Virol., 84, pp. 12492-12503","Maier, H.J.; The Pirbright InstituteUnited Kingdom; email: helena.maier@pirbright.ac.uk",,"MDPI AG",19994915,,,"30200673","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85054709675 "Naskalska A., Dabrowska A., Nowak P., Szczepanski A., Jasik K., Milewska A., Ochman M., Zeglen S., Rajfur Z., Pyrc K.","35389200500;57203821204;56399057400;57200300836;6602601631;55200074700;35781903100;6602292170;6602347295;8869026100;","Novel coronavirus-like particles targeting cells lining the respiratory tract",2018,"PLoS ONE","13","9", e0203489,"","",,1,"10.1371/journal.pone.0203489","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053030815&doi=10.1371%2fjournal.pone.0203489&partnerID=40&md5=44d850407c4fb94ba8c5ec9cb09c0f5a","Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Skin Structural Studies, Medical University of Silesia in Katowice, School of Pharmacy, Division of Laboratory Medicine, Sosnowiec, Poland; Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland; Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland","Naskalska, A., Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Dabrowska, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Nowak, P., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Szczepanski, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Jasik, K., Department of Skin Structural Studies, Medical University of Silesia in Katowice, School of Pharmacy, Division of Laboratory Medicine, Sosnowiec, Poland; Milewska, A., Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Ochman, M., Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland; Zeglen, S., Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland; Rajfur, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland; Pyrc, K., Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland","Virus like particles (VLPs) produced by the expression of viral structural proteins can serve as versatile nanovectors or potential vaccine candidates. In this study we describe for the first time the generation of HCoV-NL63 VLPs using baculovirus system. Major structural proteins of HCoV-NL63 have been expressed in tagged or native form, and their assembly to form VLPs was evaluated. Additionally, a novel procedure for chromatography purification of HCoV-NL63 VLPs was developed. Interestingly, we show that these nanoparticles may deliver cargo and selectively transduce cells expressing the ACE2 protein such as ciliated cells of the respiratory tract. Production of a specific delivery vector is a major challenge for research concerning targeting molecules. The obtained results show that HCoV-NL63 VLPs may be efficiently produced, purified, modified and serve as a delivery platform. This study constitutes an important basis for further development of a promising viral vector displaying narrow tissue tropism. © 2018 Naskalska et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"baculovirus vector; beta secretase 2; nanoparticle; protein ACE2; unclassified drug; viral protein; angiotensin converting enzyme 2; dipeptidyl carboxypeptidase; virus like particle vaccine; airway epithelium cell; Article; baculovirus expression system; cell transport; chromatography; controlled study; human; human cell; Human coronavirus NL63; human tissue; nonhuman; protein analysis; protein expression; protein modification; protein purification; viral tropism; virus like agent; animal; cell line; chemistry; cytology; drug delivery system; isolation and purification; metabolism; procedures; respiratory mucosa; rhesus monkey; Spodoptera; Animals; Cell Line; Coronavirus NL63, Human; Drug Delivery Systems; Humans; Macaca mulatta; Nanoparticles; Peptidyl-Dipeptidase A; Respiratory Mucosa; Spodoptera; Vaccines, Virus-Like Particle","Kushnir, N., Streatfield, S.J., Yusibov, V., Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development (2012) Vaccine, 31 (1), pp. 58-83. , https://doi.org/10.1016/j.vaccine.2012.10.083, PMID: 23142589; Zeltins, A., Construction and characterization of virus-like particles: A review (2013) Mol Biotechnol, 53 (1), pp. 92-107. , https://doi.org/10.1007/s12033-012-9598-4, PMID: 23001867; Naskalska, A., Pyrć, K., Virus like particles as immunogens and universal nanocarriers (2015) Pol J Microbiol, 64 (1), pp. 3-13. , PMID: 26094310; Mortola, E., Roy, P., Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system (2004) FEBS Lett, 576 (1-2), pp. 174-178. , https://doi.org/10.1016/j.febslet.2004.09.009, PMID: 15474033; Hsieh, P.K., Chang, S.C., Huang, C.C., Lee, T.T., Hsiao, C.W., Kou, Y.H., Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent (2005) J Virol, 79 (22), pp. 13848-13855. , https://doi.org/10.1128/JVI.79.22.13848-13855.2005, PMID: 16254320; Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles (2008) J Virol, 82 (22), pp. 11318-11330. , https://doi.org/10.1128/JVI.01052-08, Epub 2008/08/27. PMID: 18753196; Ho, Y., Lin, P.H., Liu, C.Y., Lee, S.P., Chao, Y.C., Assembly of human severe acute respiratory syndrome coronavirus-like particles (2004) Biochem Biophys Res Commun, 318 (4), pp. 833-838. , https://doi.org/10.1016/j.bbrc.2004.04.111, PMID: 15147946; Nakauchi, M., Kariwa, H., Kon, Y., Yoshii, K., Maeda, A., Takashima, I., Analysis of severe acute respiratory syndrome coronavirus structural proteins in virus-like particle assembly (2008) Microbiol Immunol, 52 (12), pp. 625-630. , https://doi.org/10.1111/j.1348-0421.2008.00079.x, PMID: 19120977; Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBO J, 15 (8), pp. 2020-2028. , PMID: 8617249; De Haan, C.A., Kuo, L., Masters, P.S., Vennema, H., Rottier, P.J., Coronavirus particle assembly: Primary structure requirements of the membrane protein (1998) J Virol, 72 (8), pp. 6838-6850. , PMID: 9658133; Narayanan, K., Maeda, A., Maeda, J., Makino, S., Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells (2000) J Virol, 74 (17), pp. 8127-8134. , PMID: 10933723; Arndt, A.L., Larson, B.J., Hogue, B.G., A conserved domain in the coronavirus membrane protein tail is important for virus assembly (2010) J Virol, 84 (21), pp. 11418-11428. , https://doi.org/10.1128/JVI.01131-10, Epub 2010/08/18. PMID: 20719948; Boscarino, J.A., Logan, H.L., Lacny, J.J., Gallagher, T.M., Envelope protein palmitoylations are crucial for murine coronavirus assembly (2008) J Virol, 82 (6), pp. 2989-2999. , https://doi.org/10.1128/JVI.01906-07, Epub 2008/01/09. PMID: 18184706; Corse, E., Machamer, C.E., Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J Virol, 74 (9), pp. 4319-4326. , PMID: 10756047; Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., Laude, H., Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes (1998) J Virol, 72 (11), pp. 8636-8643. , PMID: 9765403; Gelhaus, S., Thaa, B., Eschke, K., Veit, M., Schwegmann-Weßels, C., Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction (2014) Virology, 464-465, pp. 397-405. , https://doi.org/10.1016/j.virol.2014.07.035, PMID: Epub 2014/08/09. 25113909; Wang, C., Yan, F., Zheng, X., Wang, H., Jin, H., Zhao, Y., Porcine epidemic diarrhea virus virus-like particles produced in insect cells induce specific immune responses in mice (2017) Virus Genes, , https://doi.org/10.1007/s11262-017-1450-2, Epub 2017/03/29. PMID: 28357676; Tseng, Y.T., Chang, C.H., Wang, S.M., Huang, K.J., Wang, C.T., Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly (2013) PLoS One, 8 (5). , https://doi.org/10.1371/journal.pone.0064013, PMID: 23700447; Thorp, E.B., Boscarino, J.A., Logan, H.L., Goletz, J.T., Gallagher, T.M., Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity (2006) J Virol, 80 (3), pp. 1280-1289. , https://doi.org/10.1128/JVI.80.3.1280-1289.2006, PMID: 16415005; Liu, G., Lv, L., Yin, L., Li, X., Luo, D., Liu, K., Assembly and immunogenicity of coronavirus-like particles carrying infectious bronchitis virus M and S proteins (2013) Vaccine, 31 (47), pp. 5524-5530. , https://doi.org/10.1016/j.vaccine.2013.09.024, PMID: 24099870; Xu, P.W., Wu, X., Wang, H.N., Ma, B.C., Ding, M.D., Yang, X., Assembly and immunogenicity of baculovirus-derived infectious bronchitis virus-like particles carrying membrane, envelope and the recombinant spike proteins (2016) Biotechnol Lett, 38 (2), pp. 299-304. , https://doi.org/10.1007/s10529-015-1973-3, Epub 2015/10/13. PMID: 26463372; Lu, B., Huang, Y., Huang, L., Li, B., Zheng, Z., Chen, Z., Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice (2010) Immunology, 130 (2), pp. 254-261. , https://doi.org/10.1111/j.1365-2567.2010.03231.x, Epub 2010/04/06. PMID: 20406307; Lu, X., Chen, Y., Bai, B., Hu, H., Tao, L., Yang, J., Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice (2007) Immunology, 122 (4), pp. 496-502. , https://doi.org/10.1111/j.1365-2567.2007.02676.x, Epub 2007/08/03. PMID: 17680799; Lander, G.C., Baudoux, A.C., Azam, F., Potter, C.S., Carragher, B., Johnson, J.E., Capsomer dynamics and stabilization in the T = 12 marine bacteriophage SIO-2 and its procapsid studied by CryoEM (2012) Structure, 20 (3), pp. 498-503. , https://doi.org/10.1016/j.str.2012.01.007, PMID: 22405008; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Feng, N., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8 (8), pp. 12686-12694. , https://doi.org/10.18632/oncotarget.8475, PMID: 27050368; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Identification of a new human coronavirus (2004) Nat Med, 10 (4), pp. 368-373. , https://doi.org/10.1038/nm1024, Epub 2004/03/21. PMID: 15034574; Pyrc, K., Jebbink, M.F., Berkhout, B., van der Hoek, L., Genome structure and transcriptional regulation of human coronavirus NL63 (2004) Virol J, 1, p. 7. , https://doi.org/10.1186/1743-422X-1-7, PMID: 15548333; Müller, M.A., van der Hoek, L., Voss, D., Bader, O., Lehmann, D., Schulz, A.R., Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein (2010) Virol J, 7, p. 6. , https://doi.org/10.1186/1743-422X-7-6, Epub 2010/01/15. PMID: 20078868; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., A structural analysis of M protein in coronavirus assembly and morphology (2011) J Struct Biol, 174 (1), pp. 11-22. , https://doi.org/10.1016/j.jsb.2010.11.021, Epub 2010/12/03. PMID: 21130884; Ruch, T.R., Machamer, C.E., The coronavirus E protein: Assembly and beyond (2012) Viruses, 4 (3), pp. 363-382. , https://doi.org/10.3390/v4030363, Epub 2012/03/08. PMID: 22590676; Ye, Y., Hogue, B.G., Role of the coronavirus E viroporin protein transmembrane domain in virus assembly (2007) J Virol, 81 (7), pp. 3597-3607. , https://doi.org/10.1128/JVI.01472-06, Epub 2007/01/17. PMID: 17229680; Zheng, Q., Deng, Y., Liu, J., van der Hoek, L., Berkhout, B., Lu, M., Core structure of S2 from the human coronavirus NL63 spike glycoprotein (2006) Biochemistry, 45 (51), pp. 15205-15215. , https://doi.org/10.1021/bi061686w, Epub 2006/12/01. PMID: 17176042; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279 (2), pp. 371-374. , https://doi.org/10.1006/viro.2000.0757, PMID: 11162792; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pohlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci U S A, 102 (22), pp. 7988-7993. , https://doi.org/10.1073/pnas.0409465102, PMID: 15897467; Milewska, A., Ciejka, J., Kaminski, K., Karewicz, A., Bielska, D., Zeglen, S., Novel polymeric inhibitors of HCoV-NL63 (2013) Antiviral Res, 97 (2), pp. 112-121. , https://doi.org/10.1016/j.antiviral.2012.11.006, Epub 2012/11/29. PMID: 23201315; Lai, Z.W., Hanchapola, I., Steer, D.L., Smith, A.I., Angiotensin-converting enzyme 2 ectodomain shedding cleavage-site identification: Determinants and constraints (2011) Biochemistry, 50 (23), pp. 5182-5194. , https://doi.org/10.1021/bi200525y, Epub 2011/05/20. PMID: 21563828; Lambert, D.W., Yarski, M., Warner, F.J., Thornhill, P., Parkin, E.T., Smith, A.I., Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) (2005) J Biol Chem, 280 (34), pp. 30113-30119. , https://doi.org/10.1074/jbc.M505111200, Epub 2005/06/27. PMID: 15983030; Fernandes, F., Teixeira, A.P., Carinhas, N., Carrondo, M.J., Alves, P.M., Insect cells as a production platform of complex virus-like particles (2013) Expert Rev Vaccines, 12 (2), pp. 225-236. , https://doi.org/10.1586/erv.12.153, PMID: 23414412; Liu, F., Wu, X., Li, L., Liu, Z., Wang, Z., Use of baculovirus expression system for generation of virus-like particles: Successes and challenges (2013) Protein Expr Purif, 90 (2), pp. 104-116. , https://doi.org/10.1016/j.pep.2013.05.009, PMID: 23742819; Cavanagh, D., Coronavirus IBV glycopolypeptides: Size of their polypeptide moieties and nature of their oligosaccharides (1983) J Gen Virol, 64, pp. 1187-1191. , https://doi.org/10.1099/0022-1317-64-5-1187, PMID: 6302214; Niemann, H., Geyer, R., Klenk, H.D., Linder, D., Stirm, S., Wirth, M., The carbohydrates of mouse hepatitis virus (MHV) A59: Structures of the O-glycosidically linked oligosaccharides of glycoprotein E1 (1984) EMBO J, 3 (3), pp. 665-670. , PMID: 6325180; Lapps, W., Hogue, B.G., Brian, D.A., Deduced amino acid sequence and potential O-glycosylation sites for the bovine coronavirus matrix protein (1987) Adv Exp Med Biol, 218, pp. 123-129. , PMID: 3434434; Hogue, B.G., Nayak, D.P., Expression of the porcine transmissible gastroenteritis coronavirus M protein (1990) Adv Exp Med Biol, 276, pp. 121-126. , PMID: 1966402; Mounir, S., Talbot, P.J., Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation (1992) J Gen Virol, 73, pp. 2731-2736. , https://doi.org/10.1099/0022-1317-73-10-2731, PMID: 1402806; Hu, Y., Wen, J., Tang, L., Zhang, H., Zhang, X., Li, Y., The M protein of SARS-CoV: Basic structural and immunological properties (2003) Genomics Proteomics Bioinformatics, 1 (2), pp. 118-130. , https://doi.org/10.1016/S1672-0229(03)01016-7, PMID: 15626342; Jouvenne, P., Richardson, C.D., Schreiber, S.S., Lai, M.M., Talbot, P.J., Sequence analysis of the membrane protein gene of human coronavirus 229E (1990) Virology, 174 (2), pp. 608-612. , PMID: 2305554; Burden, C.S., Jin, J., Podgornik, A., Bracewell, D.G., A monolith purification process for virus-like particles from yeast homogenate (2012) J Chromatogr B Analyt Technol Biomed Life Sci, 880 (1), pp. 82-89. , https://doi.org/10.1016/j.jchromb.2011.10.044, PMID: 22134039; Zaveckas, M., Snipaitis, S., Pesliakas, H., Nainys, J., Gedvilaite, A., Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography (2015) J Chromatogr B Analyt Technol Biomed Life Sci, 991, pp. 21-28. , https://doi.org/10.1016/j.jchromb.2015.04.004, Epub 2015/04/09. PMID: 25910233; Urbas, L., Jarc, B.L., Barut, M., Zochowska, M., Chroboczek, J., Pihlar, B., Purification of recombinant ade-novirus type 3 dodecahedric virus-like particles for biomedical applications using short monolithic columns (2011) J Chromatogr A, 1218 (17), pp. 2451-2459. , https://doi.org/10.1016/j.chroma.2011.01.032, Epub 2011/01/19. PMID: 21295784; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J Virol, 88 (22), pp. 13221-13230. , https://doi.org/10.1128/JVI.02078-14, PMID: 25187545; Huang, Y., Yang, Z.Y., Kong, W.P., Nabel, G.J., Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production (2004) J Virol, 78 (22), pp. 12557-12565. , https://doi.org/10.1128/JVI.78.22.12557-12565.2004, PMID: 15507643; Lee, Y.N., Chen, L.K., Ma, H.C., Yang, H.H., Li, H.P., Lo, S.Y., Thermal aggregation of SARS-CoV membrane protein (2005) J Virol Methods, 129 (2), pp. 152-161. , https://doi.org/10.1016/j.jviromet.2005.05.022, PMID: 16023741; Ujike, M., Taguchi, F., Incorporation of spike and membrane glycoproteins into coronavirus virions (2015) Viruses, 7 (4), pp. 1700-1725. , https://doi.org/10.3390/v7041700, Epub 2015/04/03. PMID: 25855243; Corse, E., Machamer, C.E., The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction (2003) Virology, 312 (1), pp. 25-34. , PMID: 12890618; De Haan, C.A., Vennema, H., Rottier, P.J., Assembly of the coronavirus envelope: Homotypic interactions between the M proteins (2000) J Virol, 74 (11), pp. 4967-4978. , PMID: 10799570; Kuo, L., Koetzner, C.A., Masters, P.S., A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging (2016) Virology, 494, pp. 100-107. , https://doi.org/10.1016/j.virol.2016.04.009, Epub 2016/04/ 19. PMID: 27105451; Chen, S.C., Lo, S.Y., Ma, H.C., Li, H.C., Expression and membrane integration of SARS-CoV E protein and its interaction with M protein (2009) Virus Genes, 38 (3), pp. 365-371. , https://doi.org/10.1007/s11262-009-0341-6, Epub 2009/03/19. PMID: 19322648; Hsieh, Y.C., Li, H.C., Chen, S.C., Lo, S.Y., Interactions between M protein and other structural proteins of severe, acute respiratory syndrome-associated coronavirus (2008) J Biomed Sci, 15 (6), pp. 707-717. , https://doi.org/10.1007/s11373-008-9278-3, Epub 2008/09/16. PMID: 18792806; Risco, C., Antón, I.M., Suñé, C., Pedregosa, A.M., Martín-Alonso, J.M., Parra, F., Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion (1995) J Virol, 69 (9), pp. 5269-5277. , PMID: 7636969; Steppert, P., Burgstaller, D., Klausberger, M., Tover, A., Berger, E., Jungbauer, A., Quantification and characterization of virus-like particles by size-exclusion chromatography and nanoparticle tracking analysis (2017) J Chromatogr A, 1487, pp. 89-99. , https://doi.org/10.1016/j.chroma.2016.12.085, PMID: Epub 2017/01/04. 28110946; Ladd Effio, C., Oelmeier, S.A., Hubbuch, J., High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography (2016) Vaccine, 34 (10), pp. 1259-1267. , https://doi.org/10.1016/j.vaccine.2016.01.035, Epub 2016/02/01. PMID: 26845741; Szurgot, I., Jedynak, M., Podsiadla-Bialoskorska, M., Piwowarski, J., Szolajska, E., Chroboczek, J., Adenovirus dodecahedron, a VLP, can be purified by size exclusion chromatography instead of time-consuming sucrose density gradient centrifugation (2015) Mol Biotechnol, 57 (6), pp. 565-573. , https://doi.org/10.1007/s12033-015-9850-9, PMID: 25711740; Du, P., Sun, S., Dong, J., Zhi, X., Chang, Y., Teng, Z., Purification of foot-and-mouth disease virus by heparin as ligand for certain strains (2017) J Chromatogr B Analyt Technol Biomed Life Sci, 1049-1050, pp. 16-23. , https://doi.org/10.1016/j.jchromb.2016.12.033, Epub 2016/12/26. PMID: 28260627; Liu, J., Moon, Y.A., Simple purification of Adeno-associated virus-DJ for liver-specific gene expression (2016) Yonsei Med J, 57 (3), pp. 790-794. , https://doi.org/10.3349/ymj.2016.57.3.790, PMID: 26996583; Kim, H.J., Lim, S.J., Kwag, H.L., The choice of resin-bound ligand affects the structure and immunogenicity of column-purified human papillomavirus type 16 virus-like particles (2012) PLoS One, 7 (4). , https://doi.org/10.1371/journal.pone.0035893, Epub 2012/04/26. PMID: 22563414; Nasimuzzaman, M., Lynn, D., van der Loo, J.C., Malik, P., Purification of baculovirus vectors using heparin affinity chromatography (2016) Mol Ther Methods Clin Dev, 3, p. 16071. , https://doi.org/10.1038/mtm.2016.71, Epub 2016/12/07. PMID: 27933303; Yu, Y.T., Chien, S.C., Chen, I.Y., Lai, C.T., Tsay, Y.G., Chang, S.C., Surface vimentin is critical for the cell entry of SARS-CoV (2016) Journal of Biomedical Science, 23, p. 14. , https://doi.org/10.1186/s12929-016-0234-7, PMID: 26801988; Fender, P., Schoehn, G., Foucaud-Gamen, J., Gout, E., Garcel, A., Drouet, E., Adenovirus dodecahedron allows large multimeric protein transduction in human cells (2003) J Virol, 77 (8), pp. 4960-4964. , https://doi.org/10.1128/JVI.77.8.4960-4964.2003, PMID: 12663801; Bosch, B.J., De Haan, C.A., Rottier, P.J., Coronavirus spike glycoprotein, extended at the carboxy terminus with green fluorescent protein, is assembly competent (2004) J Virol, 78 (14), pp. 7369-7378. , https://doi.org/10.1128/JVI.78.14.7369-7378.2004, PMID: 15220410","Naskalska, A.; Malopolska Centre of Biotechnology, Jagiellonian UniversityPoland; email: antonina.naskalska@uj.edu.pl",,"Public Library of Science",19326203,,POLNC,"30183777","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85053030815 "Yue Y., Nabar N.R., Shi C.-S., Kamenyeva O., Xiao X., Hwang I.-Y., Wang M., Kehrl J.H.","57202060894;54943565900;36136238400;25937398200;57191157914;9637449400;55553730457;7005076525;","SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death",2018,"Cell Death and Disease","9","9", 904,"","",,9,"10.1038/s41419-018-0917-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052855092&doi=10.1038%2fs41419-018-0917-y&partnerID=40&md5=8e5bf6740f9a4d0cd492db07f04f92ee","State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Department of Molecular, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden; Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States","Yue, Y., State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China, B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Nabar, N.R., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States, Department of Molecular, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden; Shi, C.-S., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Kamenyeva, O., Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Xiao, X., State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China, B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Hwang, I.-Y., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Wang, M., State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Kehrl, J.H., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States","The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways. We show that SARS 3a interacts with Receptor Interacting Protein 3 (Rip3), which augments the oligomerization of SARS 3a helping drive necrotic cell death. In addition, by inserting into lysosomal membranes SARS 3a triggers lysosomal damage and dysfunction. Consequently, Transcription Factor EB (TFEB) translocates to the nucleus increasing the transcription of autophagy- and lysosome-related genes. Finally, SARS 3a activates caspase-1 either directly or via an enhanced potassium efflux, which triggers NLRP3 inflammasome assembly. In summary, Rip3-mediated oligomerization of SARS 3a causes necrotic cell death, lysosomal damage, and caspase-1 activation—all likely contributing to the clinical manifestations of SARS-CoV infection. © 2018, The Author(s).",,"cryopyrin; interleukin 1beta converting enzyme; open reading frame 3a protein; potassium; receptor interacting protein 3; transcription factor IIIB; unclassified drug; viral protein; inflammasome; receptor interacting protein serine threonine kinase; A-549 cell line; Article; autophagy; cell death; controlled study; enzyme activation; human; human cell; lysosome membrane; necrosis; nonhuman; oligomerization; open reading frame; potassium transport; priority journal; protein interaction; protein targeting; SARS coronavirus; apoptosis; cell line; genetics; HEK293 cell line; HeLa cell line; intracellular membrane; lysosome; metabolism; necrosis; open reading frame; pathogenicity; pathology; physiology; SARS coronavirus; severe acute respiratory syndrome; tumor cell line; virology; A549 Cells; Apoptosis; Autophagy; Cell Line; Cell Line, Tumor; HEK293 Cells; HeLa Cells; Humans; Inflammasomes; Intracellular Membranes; Lysosomes; Necrosis; Open Reading Frames; Receptor-Interacting Protein Serine-Threonine Kinases; SARS Virus; Severe Acute Respiratory Syndrome","de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534. , PID: 27344959; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg. Microbes Infect., 6. , PID: 28588290; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am. J. Pathol., 170, pp. 1136-1147. , PID: 17392154; Donnelly, C.A., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong (2003) Lancet, 361, pp. 1761-1766. , PID: 12781533; Franks, T.J., Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore (2003) Hum. Pathol., 34, pp. 743-748. , PID: 14506633; Nicholls, J., Dong, X.P., Jiang, G., Peiris, M., SARS: clinical virology and pathogenesis (2003) Respirology, 8, pp. S6-S8. , PID: 15018126; Channappanavar, R., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193. , PID: 26867177; Narayanan, K., Huang, C., Makino, S., SARS coronavirus accessory proteins (2008) Virus Res., 133, pp. 113-121. , PID: 18045721; Kanzawa, N., Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation (2006) FEBS Lett., 580, pp. 6807-6812. , PID: 17141229; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J. Virol., 81, pp. 548-557. , PID: 17108024; Varshney, B., Agnihothram, S., Tan, Y.J., Baric, R., Lal, S.K., SARS coronavirus 3b accessory protein modulates transcriptional activity of RUNX1b (2012) PLoS ONE, 7. , PID: 22253733; Huang, S.H., Phage display technique identifies the interaction of severe acute respiratory syndrome coronavirus open reading frame 6 protein with nuclear pore complex interacting protein NPIPB3 in modulating type I interferon antagonism (2015) J. Microbiol. Immunol. Infect., 50, pp. 277-285; Chen, C.Y., Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis (2007) J. Infect. Dis., 196, pp. 405-415. , PID: 17597455; Keng, C.T., SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway (2011) Microbes Infect., 13, pp. 179-188. , PID: 21035562; Shi, C.S., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome (2014) J. Immunol., 193, pp. 3080-3089. , PID: 25135833; Elmore, S., Apoptosis: a review of programmed cell death (2007) Toxicol. Pathol., 35, pp. 495-516. , PID: 17562483; Henson, P.M., Bratton, D.L., Antiinflammatory effects of apoptotic cells (2013) J. Clin. Invest., 123, pp. 2773-2774. , PID: 23863635; Rock, K.L., Kono, H., The inflammatory response to cell death (2008) Annu. Rev. Pathol., 3, pp. 99-126. , PID: 18039143; Chen, D., Yu, J., Zhang, L., Necroptosis: an alternative cell death program defending against cancer (2016) Biochim. Biophys. Acta, 1865, pp. 228-236. , PID: 26968619; Sun, L., Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase (2012) Cell, 148, pp. 213-227. , PID: 22265413; Yuan, J., Najafov, A., Py, B.F., Roles of caspases in necrotic cell death (2016) Cell, 167, pp. 1693-1704. , PID: 27984721; Harris, J., Autophagy and inflammasomes (2017) Mol. Immunol., 86, pp. 10-15. , PID: 28249679; Kroemer, G., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 (2009) Cell Death Differ., 16, pp. 3-11. , PID: 18846107; Lu, W., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 12540-12545. , PID: 16894145; Freundt, E.C., The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death (2010) J. Virol., 84, pp. 1097-1109. , PID: 19889773; Castano-Rodriguez, C., Role of severe acute respiratory syndrome Coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis (2018) Mbio, 9, pp. e02317-e02325; Wang, H., Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3 (2014) Mol. Cell, 54, pp. 133-146. , PID: 24703947; He, S., Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha (2009) Cell, 137, pp. 1100-1111. , PID: 19524512; Li, D., A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 5017-5022. , PID: 25852146; Koo, G.B., Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics (2015) Cell Res., 25, pp. 707-725. , PID: 25952668; Aits, S., Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay (2015) Autophagy, 11, pp. 1408-1424. , PID: 26114578; Martina, J.A., Diab, H.I., Brady, O.A., Puertollano, R., TFEB and TFE3 are novel components of the integrated stress response (2016) EMBO J., 35, pp. 479-495. , PID: 26813791; Bennett, C.F., Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans (2017) PLoS Genet., 13. , PID: 28355222; Song, J.X., A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition (2016) Autophagy, 12, pp. 1372-1389. , PID: 27172265; Medina, D.L., Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB (2015) Nat. Cell Biol., 17, pp. 288-299. , PID: 25720963; He, Y., Zeng, M.Y., Yang, D., Motro, B., Nunez, G., NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux (2016) Nature, 530, pp. 354-357. , PID: 26814970; Pearson Jaclyn, S., Murphy James, M., Down the rabbit hole: is necroptosis truly an innate response to infection? (2017) Cell Microbiol., 19; Downey, J., RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to Influenza A virus infection (2017) PLoS Pathog., 13. , PID: 28410401; Orzalli, M.H., Kagan, J.C., Apoptosis and necroptosis as host defense strategies to prevent viral infection (2017) Trends Cell Biol., 27, pp. 800-809. , PID: 28642032; Moriwaki, K., Chan, F.K., RIP3: a molecular switch for necrosis and inflammation (2013) Genes Dev., 27, pp. 1640-1649. , PID: 23913919; Zhang, D.W., RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis (2009) Science, 325, pp. 332-336. , PID: 19498109; Lin, J., A role of RIP3-mediated macrophage necrosis in atherosclerosis development (2013) Cell Rep., 3, pp. 200-210. , PID: 23333278; Vitner, E.B., RIPK3 as a potential therapeutic target for Gaucher’s disease (2014) Nat. Med., 20, pp. 204-208. , PID: 24441827; Duprez, L., RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome (2011) Immunity, 35, pp. 908-918. , PID: 22195746; Newton, K., Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis (2014) Science, 343, pp. 1357-1360. , PID: 24557836; Cheung, C.Y., Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis (2005) J. Virol., 79, pp. 7819-7826. , PID: 15919935; Law, H.K., Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells (2005) Blood, 106, pp. 2366-2374. , PID: 15860669; Mandal, P., RIP3 induces apoptosis independent of pronecrotic kinase activity (2014) Mol. Cell, 56, pp. 481-495. , PID: 25459880; Serbina, N.V., Jia, T., Hohl, T.M., Pamer, E.G., Monocyte-mediated defense against microbial pathogens (2008) Annu. Rev. Immunol., 26, pp. 421-452. , PID: 18303997; Yang, J., Zhang, L., Yu, C., Yang, X.F., Wang, H., Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases (2014) Biomark. Res., 2, p. 1. , PID: 24398220; Pastore, N., TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages (2016) Autophagy, 12, pp. 1240-1258. , PID: 27171064; Nabar, N.R., Kehrl, J.H., The transcription factor EB links cellular stress to the immune response (2017) Yale J. Biol. Med., 90, pp. 301-315. , PID: 28656016; Chen, I.Y., Ichinohe, T., Response of host inflammasomes to viral infection (2015) Trends Microbiol., 23, pp. 55-63. , PID: 25456015; Hirota, J.A., The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter (2012) J. Allergy Clin. Immunol., 129, pp. 1116-1125.e1116. , PID: 22227418","Nabar, N.R.; B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: neel.nabar@nih.gov",,"Nature Publishing Group",20414889,,,"30185776","English","Cell Death Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85052855092 "Koul P.A., Mir H., Saha S., Chadha M.S., Potdar V., Widdowson M.-A., Lal R.B., Krishnan A.","55395891200;56289073800;55947755500;7005351475;23470509100;26429004600;35495076000;7102443593;","Respiratory viruses in returning Hajj & Umrah pilgrims with acute respiratory illness in 2014-2015",2018,"Indian Journal of Medical Research","148","3",,"329","333",,2,"10.4103/ijmr.IJMR_890_17","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056554986&doi=10.4103%2fijmr.IJMR_890_17&partnerID=40&md5=4c4373e5dd6ec983adb579cda634d31d","Department of Internal & Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India; Influenza Group, ICMR-National Institute of Virology, Pune, India; Center for Community Medicine, All India Institute of Medical Sciences, New Delhi, India; Influenza Division, US Centers for Disease Control & Prevention, Atlanta, GA, United States","Koul, P.A., Department of Internal & Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India; Mir, H., Department of Internal & Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India; Saha, S., Influenza Division, US Centers for Disease Control & Prevention, Atlanta, GA, United States; Chadha, M.S., Influenza Group, ICMR-National Institute of Virology, Pune, India; Potdar, V., Influenza Group, ICMR-National Institute of Virology, Pune, India; Widdowson, M.-A., Influenza Division, US Centers for Disease Control & Prevention, Atlanta, GA, United States; Lal, R.B., Influenza Division, US Centers for Disease Control & Prevention, Atlanta, GA, United States; Krishnan, A., Center for Community Medicine, All India Institute of Medical Sciences, New Delhi, India","Background & objectives: Respiratory tract infections are common among Hajj and Umrah pilgrims which pose a public health risk of spread of respiratory infections. Influenza has been reported from Indian Hajj and Umrah returning pilgrims, but data on other respiratory pathogens are sparse in India. Here we report the presence of common respiratory viral pathogens in returning Hajj and Umrah pilgrims suffering from acute respiratory illness (ARI) in 2014-2015.Methods: Respiratory specimens (nasopharyngeal and throat swabs) were collected from 300 consenting pilgrims with ARI in the past one week and tested for influenza and Middle East Respiratory Syndrome coronavirus (MERS-CoV) and other respiratory viruses using in-house standardized quantitative real-time reverse-transcription polymerase chain reaction. Clinical features among the pathogen positive and negative patients were compared. The patients received symptomatic treatment and antivirals where appropriate and were followed telephonically to collect data on illness outcome.Results: Ninety seven (32.3%) of the 300 participants were tested positive for any virus, most common being influenza viruses (n=33, 11%). Other respiratory viruses that were detected included human coronaviruses [n=26, 8.7%; OC43 (n=19, 6.3%) and C229E (n=7, 2.3%)], rhinovirus (n=20, 6%), adenoviruses (n=8, 2.6%), parainfluenza viruses (n=7, 2.3%), respiratory syncytial virus (n=3, 1%) and bocaviruses (n=2, 0.6%). Clinical features observed in pathogen positive and pathogen negative patients did not differ significantly. Eighteen influenza positive patients were treated with oseltamivir.Interpretation & conclusions: Pilgrims returning from mass gatherings are often afflicted with respiratory pathogens with a potential to facilitate transmission of respiratory pathogens across international borders. The study reinforces the need for better infection prevention and control measures such as vaccination, health education on cough etiquette and hand hygiene. © 2018 Indian Journal of Medical Research.","Acute respiratory infection; Coronavirus; Hajj pilgrims; Influenza virus; Respiratory syncytial virus; Respiratory viruse","antivirus agent; Adenoviridae; adult; aged; Article; Bocaparvovirus; chill; Coronavirinae; coughing; diarrhea; dyspnea; fatigue; female; fever; headache; hemoptysis; human; Human respiratory syncytial virus; influenza; major clinical study; male; Paramyxovirinae; real time polymerase chain reaction; respiratory tract disease; respiratory virus; reverse transcription polymerase chain reaction; Rhinovirus; rigor; seizure; sore throat; vomiting; communicable disease control; community care; disease transmission; India; isolation and purification; middle aged; Orthomyxoviridae; prevention and control; procedures; public health; respiratory tract infection; statistics and numerical data; travel; virology; Adult; Communicable Disease Control; Coronavirus; Disease Transmission, Infectious; Female; Humans; India; Male; Middle Aged; Orthomyxoviridae; Public Health; Religious Missions; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Travel","Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Hajj: Infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Ahmed, Q.A., Arabi, Y.M., Memish, Z.A., Health risks at the Hajj (2006) Lancet, 367, pp. 1008-1015; Alzahrani, A.G., Choudhry, A.J., Al Mazroa, M.A., Turkistani, A.H., Nouman, G.S., Memish, Z.A., Pattern of diseases among visitors to Mina health centers during the Hajj season, 1429 H (2008 G) (2012) J Infect Public Health, 5, pp. 22-34; Al-Tawfiq, J.A., Gautret, P., Benkouiten, S., Memish, Z.A., Mass gatherings and the spread of respiratory infections. Lessons from the Hajj (2016) Ann am Thorac Soc, 13, pp. 759-765; Haworth, E., Barasheed, O., Memish, Z.A., Rashid, H., Booy, R., Prevention of influenza at Hajj: Applications for mass gatherings (2013) J R Soc Med, 106, pp. 215-223; Alfelali, M., Barasheed, O., Badahdah, A.M., Bokhary, H., Azeem, M.I., Habeebullah, T., Influenza vaccination among Saudi Hajj pilgrims: Revealing the uptake and vaccination barriers (2018) Vaccine, 36, pp. 2112-2118; WHO MERS-CoV Global Summary and Assessment of Risk, August 2018 (WHO/MERS/RA/August18) (2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) Summary of Current Situation, , August 2018. Geneva, Switzerland: WHO; Soliman, T., Cook, A.R., Coker, R.J., Pilgrims and MERS-coV: What’s the risk? (2015) Emerg Themes Epidemiol, 12, p. 3; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., MERS-coV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.A., Influenza not MERS coV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, North India, 2014-15 (2017) Travel Med Infect Dis, 15, pp. 45-47; Brittain-Long, R., Nord, S., Olofsson, S., Westin, J., Anderson, L.M., Lindh, M., Multiplex real-time PCR for detection of respiratory tract infections (2008) J Clin Virol, 41, pp. 53-56; Maertzdorf, J., Wang, C.K., Brown, J.B., Quinto, J.D., Chu, M., de Graaf, M., Real-time reverse transcriptase PCR assay for detection of human metapneumoviruses from all known genetic lineages (2004) J Clin Microbiol, 42, pp. 981-986; Wang, C.Y., Arden, K.E., Greer, R., Sloots, T.P., Mackay, I.M., A novel duplex real-time PCR for HPIV-4 detects co-circulation of both viral subtypes among ill children during 2008 (2012) J Clin Virol, 54, pp. 83-85; Wong, S., Pabbaraju, K., Pang, X.L., Lee, B.E., Fox, J.D., Detection of a broad range of human adenoviruses in respiratory tract samples using a sensitive multiplex real-time PCR assay (2008) J Med Virol, 80, pp. 856-865; Deng, Y., Gu, X., Zhao, X., Luo, J., Luo, Z., Wang, L., High viral load of human bocavirus correlates with duration of wheezing in children with severe lower respiratory tract infection (2012) Plos One, 7; van Elden, L.J., van Loon, A.M., van Alphen, F., Hendriksen, K.A., Hoepelman, A.I., van Kraaij, M.G., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction (2004) J Infect Dis, 189, pp. 652-657; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: A systematic review (2016) Travel Med Infect Dis, 14, pp. 92-109; Koul, P.A., Khan, U.H., Asad, R., Yousuf, R., Broor, S., Lal, R.B., Contribution of influenza to acute exacerbations of chronic obstructive pulmonary disease in Kashmir, India, 2010-2012 (2015) Influenza Other Respir Viruses, 9, pp. 40-42; Koul, P.A., Mir, H., Akram, S., Potdar, V., Chadha, M.S., Respiratory viruses in acute exacerbations of chronic obstructive pulmonary disease (2017) Lung India, 34, pp. 29-33; Koul, P.A., Broor, S., Saha, S., Barnes, J., Smith, C., Shaw, M., Differences in influenza seasonality by latitude, Northern India (2014) Emerg Infect Dis, 20, pp. 1723-1726; Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013 (2013) Euro Surveill, 18; Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; (2016) Health Requirements for Travellers to Saudi Arabia for Pilgrimage to Makkah (2016/1437H Hajj), , http://www.moh.gov.sa/en/hajj/pages/healthregulations.aspx, Ministry of Health – Kingdom of Saudi Arabia, accessed on April 30, 2017","Koul, P.A.; Department of Internal & Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, India; email: parvaizk@gmail.com",,"Wolters Kluwer Medknow Publications",09715916,,IMIRE,"30425224","English","Indian J. Med. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85056554986 "de Wilde A.H., Pham U., Posthuma C.C., Snijder E.J.","24474438300;57202974751;6507457020;7006058325;","Cyclophilins and cyclophilin inhibitors in nidovirus replication",2018,"Virology","522",,,"46","55",,6,"10.1016/j.virol.2018.06.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049755960&doi=10.1016%2fj.virol.2018.06.011&partnerID=40&md5=bb797226f805c11a274e439b3eb69a7a","Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","de Wilde, A.H., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Pham, U., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Posthuma, C.C., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Snijder, E.J., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. © 2018 The Authors","Alisporivir; Arterivirus; Coronavirus; Cyclophilin A; Cyclosporin A; FK-506-binding proteins; NIM-811; Parvulins; RNA virus","cyclophilin; cyclophilin A; cyclophilin B; cyclophilin D; cyclophilin inhibitor; cyclosporine; cytochrome P450; fk 506 binding protein; parvulin; peptides and proteins; transcription factor NFAT; unclassified drug; cyclophilin; peptidylprolyl isomerase; Arterivirus; Coronavirus infection; economic aspect; Flavivirus; Hepatitis C virus; human; Human immunodeficiency virus 1; Influenza virus; molecular biology; Nidovirales; nonhuman; priority journal; Review; signal transduction; virus cell interaction; virus replication; animal; antagonists and inhibitors; host pathogen interaction; metabolism; Nidovirales; physiology; Animals; Cyclophilins; Host-Pathogen Interactions; Humans; Nidovirales; Peptidylprolyl Isomerase; Virus Replication","Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Molkentin, J.D., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death (2005) Nature, 434, pp. 658-662; Barik, S., Immunophilins: for the love of proteins (2006) Cell. Mol. Life Sci., 63, pp. 2889-2900; Baugh, J., Gallay, P., Cyclophilin involvement in the replication of hepatitis C virus and other viruses (2012) Biol. Chem., 393, pp. 579-587; Billich, A., Hammerschmid, F., Peichl, P., Wenger, R., Zenke, G., Quesniaux, V., Rosenwirth, B., Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein-cyclophilin A interactions (1995) J. Virol., 69, pp. 2451-2461; Borel, J.F., Feurer, C., Gubler, H.U., Stahelin, H., Biological effects of cyclosporin A: a new antilymphocytic agent (1976) Agents Actions, 6, pp. 468-475; Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I., Kern, D., Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 5247-5252; von Brunn, A., Ciesek, S., von Brunn, B., Carbajo-Lozoya, J., Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication (2015) Curr. Opin. Virol., 14, pp. 56-61; Bukrinsky, M., Extracellular cyclophilins in health and disease (2015) Biochim. Biophys. Acta, 1850, pp. 2087-2095; Campbell, E.M., Hope, T.J., HIV-1 capsid: the multifaceted key player in HIV-1 infection (2015) Nat. Rev. Microbiol., 13, pp. 471-483; Carbajo-Lozoya, J., Muller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A., Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506 (2012) Virus Res., 165, pp. 112-117; Carbajo-Lozoya, J., Ma-Lauer, Y., Malesevic, M., Theuerkorn, M., Kahlert, V., Prell, E., von Brunn, B., von Brunn, A., Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir (2014) Virus Res., 184C, pp. 44-53; Chatterji, U., Bobardt, M., Selvarajah, S., Yang, F., Tang, H., Sakamoto, N., Vuagniaux, G., Gallay, P., The isomerase active site of cyclophilin A is critical for hepatitis C virus replication (2009) J. Biol. Chem., 284, pp. 16998-17005; Chatterji, U., Bobardt, M., Tai, A., Wood, M., Gallay, P.A., Cyclophilin and NS5A inhibitors, but not other anti-hepatitis C virus (HCV) agents, preclude HCV-mediated formation of double-membrane-vesicle viral factories (2015) Antimicrob. Agents Chemother., 59, pp. 2496-2507; Chen, Z., Mi, L., Xu, J., Yu, J., Wang, X., Jiang, J., Xing, J., Zhu, P., Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus (2005) J. Infect. Dis., 191, pp. 755-760; Ciechomska, I., Legat, M., Golab, J., Wesolowska, A., Kurzaj, Z., Mackiewicz, A., Kaminska, B., Cyclosporine A and its non-immunosuppressive derivative NIM811 induce apoptosis of malignant melanoma cells in in vitro and in vivo studies (2005) Int. J. Cancer, 117, pp. 59-67; Ciesek, S., Steinmann, E., Wedemeyer, H., Manns, M.P., Neyts, J., Tautz, N., Madan, V., Pietschmann, T., Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A (2009) Hepatology, 50, pp. 1638-1645; Coelmont, L., Hanoulle, X., Chatterji, U., Berger, C., Snoeck, J., Bobardt, M., Lim, P., Neyts, J., DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A (2010) PLoS One, 5, p. e13687; Colgan, J., Asmal, M., Yu, B., Luban, J., Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine (2005) J. Immunol., 174, pp. 6030-6038; Davis, T.L., Walker, J.R., Campagna-Slater, V., Finerty, P.J., Paramanathan, R., Bernstein, G., MacKenzie, F., Dhe-Paganon, S., Structural and biochemical characterization of the human cyclophilin family of peptidyl-prolyl isomerases (2010) PLoS Biol., 8, p. e1000439; Dorner, M., Horwitz, J.A., Donovan, B.M., Labitt, R.N., Budell, W.C., Friling, T., Vogt, A., Ploss, A., Completion of the entire hepatitis C virus life cycle in genetically humanized mice (2013) Nature, 501, pp. 237-241; Elrod, J.W., Molkentin, J.D., Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore (2013) Circ. J., 77, pp. 1111-1122; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable (2012) J. Virol., 86, pp. 81-93; Fearon, P., Lonsdale-Eccles, A.A., Ross, O.K., Todd, C., Sinha, A., Allain, F., Reynolds, N.J., Keratinocyte secretion of cyclophilin B via the constitutive pathway is regulated through its cyclosporin-binding site (2011) J. Invest. Dermatol., 131, pp. 1085-1094; Fernandes, F., Ansari, I.U., Striker, R., Cyclosporine inhibits a direct interaction between cyclophilins and hepatitis C NS5A (2010) PLoS One, 5, p. e9815; Fischer, G., Bang, H., Mech, C., Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides (1984) Biomed. Biochim. Acta, 43, pp. 1101-1111; Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., Schmid, F.X., Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins (1989) Nature, 337, pp. 476-478; Flegel, T.W., Historic emergence, impact and current status of shrimp pathogens in Asia (2012) J. Invertebr. Pathol., 110, pp. 166-173; Foster, T.L., Gallay, P., Stonehouse, N.J., Harris, M., Cyclophilin A interacts with domain II of hepatitis C virus NS5A and stimulates RNA binding in an isomerase-dependent manner (2011) J. Virol., 85, pp. 7460-7464; Franke, E.K., Luban, J., Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction (1996) Virology, 222, pp. 279-282; Franke, E.K., Yuan, H.E., Luban, J., Specific incorporation of cyclophilin A into HIV-1 virions (1994) Nature, 372, pp. 359-362; Frausto, S.D., Lee, E., Tang, H., Cyclophilins as modulators of viral replication (2013) Viruses, 5, pp. 1684-1701; Fricke, T., Brandariz-Nunez, A., Wang, X., Smith, A.B., Diaz-Griffero, F., 3rd, Human cytosolic extracts stabilize the HIV-1 core (2013) J. Virol., 87, pp. 10587-10597; Gamble, T.R., Vajdos, F.F., Yoo, S., Worthylake, D.K., Houseweart, M., Sundquist, W.I., Hill, C.P., Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid (1996) Cell, 87, pp. 1285-1294; Garcia-Rivera, J.A., Bobardt, M., Chatterji, U., Hopkins, S., Gregory, M.A., Wilkinson, B., Lin, K., Gallay, P.A., Multiple mutations in hepatitis C virus NS5A domain II are required to confer a significant level of resistance to alisporivir (2012) Antimicrob. Agents Chemother., 56, pp. 5113-5121; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res., 117, pp. 17-37; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Goto, T., Kino, T., Hatanaka, H., Nishiyama, M., Okuhara, M., Kohsaka, M., Aoki, H., Imanaka, H., Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis (1987) Transplant. Proc., 19, pp. 4-8; Gray, K.A., Yates, B., Seal, R.L., Wright, M.W., Bruford, E.A., Genenames.org: the HGNC resources in 2015 (2015) Nucleic Acids Res., 43, pp. D1079-D1085; Hagemeijer, M.C., Vonk, A.M., Monastyrska, I., Rottier, P.J., de Haan, C.A., Visualizing coronavirus RNA synthesis in time by using click chemistry (2012) J. Virol., 86, pp. 5808-5816; Hamamoto, I., Harazaki, K., Inase, N., Takaku, H., Tashiro, M., Yamamoto, N., Cyclosporin A inhibits the propagation of influenza virus by interfering with a late event in the virus life cycle (2013) Jpn. J. Infect. Dis., 66, pp. 276-283; Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J., Speicher, D.W., Cyclophilin: a specific cytosolic binding protein for cyclosporin A (1984) Science, 226, pp. 544-547; Hanes, S.D., Prolyl isomerases in gene transcription (2015) Biochim. Biophys. Acta, 1850, pp. 2017-2034; Hanoulle, X., Badillo, A., Wieruszeski, J.M., Verdegem, D., Landrieu, I., Bartenschlager, R., Penin, F., Lippens, G., Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B (2009) J. Biol. Chem., 284, pp. 13589-13601; Harding, M.W., Handschumacher, R.E., Speicher, D.W., Isolation and amino acid sequence of cyclophilin (1986) J. Biol. Chem., 261, pp. 8547-8555; Ho, S., Clipstone, N., Timmermann, L., Northrop, J., Graef, I., Fiorentino, D., Nourse, J., Crabtree, G.R., The mechanism of action of cyclosporin A and FK506 (1996) Clin. Immunol. Immunopathol., 80, pp. S40-S45; Holtkamp, D.J., Kliebenstein, J.B., Neumann, E.J., Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers (2013) JSHAP, 21, pp. 72-84; Hopkins, S., Gallay, P., Cyclophilin inhibitors: an emerging class of therapeutics for the treatment of chronic hepatitis C infection (2012) Viruses, 4, pp. 2558-2577; Hopkins, S., Gallay, P.A., The role of immunophilins in viral infection (2015) Biochim. Biophys. Acta, 1850, pp. 2103-2110; Hopkins, S., Scorneaux, B., Huang, Z., Murray, M.G., Wring, S., Smitley, C., Harris, R., Ribeill, Y., SCY-635, a novel nonimmunosuppressive analog of cyclosporine that exhibits potent inhibition of hepatitis C virus RNA replication in vitro (2010) Antimicrob. Agents Chemother., 54, pp. 660-672; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol. J., 12, p. 221; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13, p. e1006698; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. the Middle East respiratory syndrome (2014) Curr. Opin. Pulm. Med., 20, pp. 233-241; Ishii, N., Watashi, K., Hishiki, T., Goto, K., Inoue, D., Hijikata, M., Wakita, T., Shimotohno, K., Diverse effects of cyclosporine on hepatitis C virus strain replication (2006) J. Virol., 80, pp. 4510-4520; Kambara, H., Tani, H., Mori, Y., Abe, T., Katoh, H., Fukuhara, T., Taguwa, S., Matsuura, Y., Involvement of cyclophilin B in the replication of Japanese encephalitis virus (2011) Virology, 412, pp. 211-219; Kaul, A., Stauffer, S., Berger, C., Pertel, T., Schmitt, J., Kallis, S., Zayas, M., Bartenschlager, R., Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics (2009) PLoS Pathog., 5, p. e1000546; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology, 460-461, pp. 180-193; Landrieu, I., Hanoulle, X., Bonachera, F., Hamel, A., Sibille, N., Yin, Y., Wieruszeski, J.M., Lippens, G., Structural basis for the non-immunosuppressive character of the cyclosporin A analogue Debio 025 (2010) Biochemistry, 49, pp. 4679-4686; Lane, W.S., Galat, A., Harding, M.W., Schreiber, S.L., Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus (1991) J. Protein Chem., 10, pp. 151-160; Lang, K., Schmid, F.X., Fischer, G., Catalysis of protein folding by prolyl isomerase (1987) Nature, 329, pp. 268-270; Li, J., Chen, C., Wong, G., Dong, W., Zheng, W., Li, Y., Sun, L., Liu, W., Cyclophilin A protects mice against infection by influenza A virus (2016) Sci. Rep., 6, p. 28978; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Lim, Y.S., Tran, H.T., Park, S.J., Yim, S.A., Hwang, S.B., Peptidyl-prolyl isomerase Pin1 is a cellular factor required for hepatitis C virus propagation (2011) J. Virol., 85, pp. 8777-8788; Lin, C.H., Li, H.Y., Lee, Y.C., Calkins, M.J., Lee, K.H., Yang, C.N., Lu, P.J., Landscape of Pin1 in the cell cycle (2015) Exp. Biol. Med., 240, pp. 403-408; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res., 226, pp. 20-39; Lin, K., Gallay, P., Curing a viral infection by targeting the host: the example of cyclophilin inhibitors (2013) Antivir. Res., 99, pp. 68-77; Linkermann, A., Green, D.R., Necroptosis (2014) New Engl. J. Med., 370, pp. 455-465; Liu, C., Perilla, J.R., Ning, J., Lu, M., Hou, G., Ramalho, R., Himes, B.A., Zhang, P., Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site (2016) Nat. Commun., 7, p. 10714; Liu, J., Farmer, J.D., Jr., Lane, W.S., Friedman, J., Weissman, I., Schreiber, S.L., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes (1991) Cell, 66, pp. 807-815; Liu, X., Sun, L., Yu, M., Wang, Z., Xu, C., Xue, Q., Zhang, K., Liu, W., Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication (2009) Cell. Microbiol., 11, pp. 730-741; Liu, X., Zhao, Z., Li, Z., Xu, C., Sun, L., Chen, J., Liu, W., Cyclosporin A inhibits the influenza virus replication through cyclophilin A-dependent and -independent pathways (2012) PLoS One, 7, p. e37277; Liu, X., Zhao, Z., Xu, C., Sun, L., Chen, J., Zhang, L., Liu, W., Cyclophilin A restricts influenza A virus replication through degradation of the M1 protein (2012) PLoS One, 7, p. e31063; Liu, X., Zhao, Z., Liu, W., Insights into the roles of cyclophilin A during influenza virus infection (2013) Viruses, 5, pp. 182-191; Liu, Z., Yang, F., Robotham, J.M., Tang, H., Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex (2009) J. Virol., 83, pp. 6554-6565; Luban, J., Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection (2007) J. Virol., 81, pp. 1054-1061; Luo, C., Luo, H., Zheng, S., Gui, C., Yue, L., Yu, C., Sun, T., Jiang, H., Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A (2004) Biochem. Biophys. Res. Commun., 321, pp. 557-565; Ma, C., Li, F., Musharrafieh, R.G., Wang, J., Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance (2016) Antivir. Res., 133, pp. 62-72; Ma, S., Boerner, J.E., TiongYip, C., Weidmann, B., Ryder, N.S., Cooreman, M.P., Lin, K., NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon (2006) Antimicrob. Agents Chemother., 50, pp. 2976-2982; Madan, V., Paul, D., Lohmann, V., Bartenschlager, R., Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation (2014) Gastroenterology, 146, pp. 1361-1372. , (e1361-e1369); Martinez-Martinez, S., Redondo, J.M., Inhibitors of the calcineurin/NFAT pathway (2004) Curr. Med. Chem., 11, pp. 997-1007; Membreno, F.E., Espinales, J.C., Lawitz, E.J., Cyclophilin inhibitors for hepatitis C therapy (2013) Clin. Liver Dis., 17, pp. 129-139; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Nakagawa, M., Sakamoto, N., Enomoto, N., Tanabe, Y., Kanazawa, N., Koyama, T., Kurosaki, M., Watanabe, M., Specific inhibition of hepatitis C virus replication by cyclosporin A (2004) Biochem. Biophys. Res. Commun., 313, pp. 42-47; Nakagawa, M., Sakamoto, N., Tanabe, Y., Koyama, T., Itsui, Y., Takeda, Y., Chen, C.H., Watanabe, M., Suppression of hepatitis C virus replication by cyclosporin a is mediated by blockade of cyclophilins (2005) Gastroenterology, 129, pp. 1031-1041; Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Tsujimoto, Y., Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death (2005) Nature, 434, pp. 652-658; Naoumov, N.V., Cyclophilin inhibition as potential therapy for liver diseases (2014) J. Hepatol., 61, pp. 1166-1174; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Liao, L., Kuhn, P., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J. Virol., 82, pp. 5279-5294; Nga, P.T., Parquet Mdel, C., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Thuy, N.T., Gorbalenya, A.E., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) PLoS Pathog., 7, p. e1002215; Ngure, M., Issur, M., Shkriabai, N., Liu, H.W., Cosa, G., Kvaratskhelia, M., Gotte, M., Interactions of the disordered domain II of Hepatitis C Virus NS5A with Cyclophilin A, NS5B, and Viral RNA show extensive overlap (2016) ACS Infect Dis., 2, pp. 839-851; Nigro, P., Pompilio, G., Capogrossi, M.C., Cyclophilin A: a key player for human disease (2013) Cell Death Dis., 4, p. e888; Nisole, S., Lynch, C., Stoye, J.P., Yap, M.W., A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1 (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 13324-13328; Paeshuyse, J., Kaul, A., De Clercq, E., Rosenwirth, B., Dumont, J.M., Scalfaro, P., Bartenschlager, R., Neyts, J., The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro (2006) Hepatology, 43, pp. 761-770; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: how to make sense…? (2006) J. Gen. Virol., 87, pp. 1403-1421; Pedersen, K.W., van der, M.Y., Roos, N., Snijder, E.J., Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex (1999) J. Virol., 73, pp. 2016-2026; Pfefferle, S., Schopf, J., Kogl, M., Friedel, C.C., Muller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host Interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog., 7, p. e1002331; Price, E.R., Zydowsky, L.D., Jin, M.J., Baker, C.H., McKeon, F.D., Walsh, C.T., Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 1903-1907; Price, E.R., Jin, M., Lim, D., Pati, S., Walsh, C.T., McKeon, F.D., Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 3931-3935; Pyrc, K., Berkhout, B., van der Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) J. Virol., 81, pp. 3051-3057; Qing, M., Yang, F., Zhang, B., Zou, G., Robida, J.M., Yuan, Z., Tang, H., Shi, P.Y., Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein (2009) Antimicrob. Agents Chemother., 53, pp. 3226-3235; Rahfeld, J.U., Schierhorn, A., Mann, K., Fischer, G., A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli (1994) FEBS Lett., 343, pp. 65-69; Rasola, A., Bernardi, P., Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis (2011) Cell Calcium, 50, pp. 222-233; Romero-Brey, I., Bartenschlager, R., Endoplasmic reticulum: the favorite intracellular niche for viral replication and assembly (2016) Viruses, 8, p. E160; Ryffel, B., Woerly, G., Greiner, B., Haendler, B., Mihatsch, M.J., Foxwell, B.M., Distribution of the cyclosporine binding protein cyclophilin in human tissues (1991) Immunology, 72, pp. 399-404; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J. Virol., 81, pp. 20-29; Sayah, D.M., Sokolskaja, E., Berthoux, L., Luban, J., Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 (2004) Nature, 430, pp. 569-573; Schiene-Fischer, C., Multidomain peptidyl prolyl cis/trans isomerases (2015) Biochim. Biophys. Acta, 1850, pp. 2005-2016; Schiene‐Fischer, C., Peptidyl Prolyl cis/trans Isomerases, Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine (2006), pp. 1378-1381. , Springer Berlin Heidelberg Berlin, Heidelberg; Schiltknecht, E., Ada, G.L., In vivo effects of cyclosporine on influenza A virus-infected mice (1985) Cell. Immunol., 91, pp. 227-239; Schmid, F.X., Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions (1993) Annu Rev. Biophys. Biomol. Struct., 22, pp. 123-142; Schreiber, S.L., Crabtree, G.R., The mechanism of action of cyclosporin A and FK506 (1992) Immunol. Today, 13, pp. 136-142; Shah, V.B., Shi, J., Hout, D.R., Oztop, I., Krishnan, L., Ahn, J., Shotwell, M.S., Aiken, C., The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating (2013) J. Virol., 87, pp. 422-432; Shirota, Y., Luo, H., Qin, W., Kaneko, S., Yamashita, T., Kobayashi, K., Murakami, S., Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity (2002) J. Biol. Chem., 277, pp. 11149-11155; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J. Gen. Virol., 94, pp. 2141-2163; Sola, I., Mateos-Gomez, P.A., Almazan, F., Zuniga, S., Enjuanes, L., RNA-RNA and RNA-protein interactions in coronavirus replication and transcription (2011) RNA Biol., 8, pp. 237-248; Spik, G., Haendler, B., Delmas, O., Mariller, C., Chamoux, M., Maes, P., Tartar, A., Kocher, H.P., A novel secreted cyclophilin-like protein (SCYLP) (1991) J. Biol. Chem., 266, pp. 10735-10738; Takahashi, N., Hayano, T., Suzuki, M., Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin (1989) Nature, 337, pp. 473-475; Tanaka, Y., Sato, Y., Osawa, S., Inoue, M., Tanaka, S., Sasaki, T., Suppression of feline coronavirus replication in vitro by cyclosporin A (2012) Vet. Res., 43, p. 41; Tanaka, Y., Amano, A., Morisaki, M., Sato, Y., Sasaki, T., Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus (2015) Antivir. Res.; Tanaka, Y., Sato, Y., Sasaki, T., Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B (2017) J. Gen. Virol., 98, pp. 190-200; Tedesco, D., Haragsim, L., Cyclosporine: a review (2012) J. Transplant., 2012, p. 230386; Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C.T., Sodroski, J., Gottlinger, H.G., Functional association of cyclophilin A with HIV-1 virions (1994) Nature, 372, pp. 363-365; Towers, G.J., Hatziioannou, T., Cowan, S., Goff, S.P., Luban, J., Bieniasz, P.D., Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors (2003) Nat. Med., 9, pp. 1138-1143; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res., 220, pp. 70-90; van Hemert, M.J., de Wilde, A.H., Gorbalenya, A.E., Snijder, E.J., The in vitro RNA synthesizing activity of the isolated arterivirus replication/transcription complex is dependent on a host factor (2008) J. Biol. Chem., 283, pp. 16525-16536; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) PLoS Pathog., 4, p. e1000054; Vidotto, A., Morais, A.T., Ribeiro, M.R., Pacca, C.C., Terzian, A.C., Gil, L.H., Mohana-Borges, R., Nogueira, M.L., Systems biology reveals NS4B-Cyclophilin A interaction: a new target to inhibit YFV replication (2017) J. Proteome Res., 16, pp. 1542-1555; Vijay, R., Perlman, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr. Opin. Virol., 16, pp. 70-76; Wang, P., Heitman, J., The cyclophilins (2005) Genome Biol., 6, p. 226; Wat, D., The common cold: a review of the literature (2004) Eur. J. Intern. Med., 15, pp. 79-88; Watashi, K., Hijikata, M., Hosaka, M., Yamaji, M., Shimotohno, K., Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes (2003) Hepatology, 38, pp. 1282-1288; Watashi, K., Khan, M., Yedavalli, V.R., Yeung, M.L., Strebel, K., Jeang, K.T., Human immunodeficiency virus type 1 replication and regulation of APOBEC3G by peptidyl prolyl isomerase Pin1 (2008) J. Virol., 82, pp. 9928-9936; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, M.J., Cyclosporin A inhibits the replication of diverse coronaviruses (2011) J. Gen. Virol., 92, pp. 2542-2548; de Wilde, A.H., Li, Y., van der Meer, Y., Vuagniaux, G., Lysek, R., Fang, Y., Snijder, E.J., van Hemert, M.J., Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis (2013) J. Virol., 87, pp. 1454-1464; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Posthuma, C.C., Snijder, E.J., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13; de Wilde, A.H., Snijder, E.J., Kikkert, M., van Hemert, M.J., Host factors in coronavirus replication (2017) Curr. Top. Microbiol. Immunol.; de Wilde, A.H., Zevenhoven-Dobbe, J.C., Beugeling, C., Chatterji, U., de Jong, D., Gallay, P., Szuhai, K., Snijder, E.J., Coronaviruses and arteriviruses display striking differences in their cyclophilin A-dependence during replication in cell culture (2017) Virology; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Yang, F., Robotham, J.M., Nelson, H.B., Irsigler, A., Kenworthy, R., Tang, H., Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro (2008) J. Virol., 82, pp. 5269-5278","Snijder, E.J.; Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: E.J.Snijder@lumc.nl",,"Academic Press Inc.",00426822,,VIRLA,"30014857","English","Virology",Review,"Final",Open Access,Scopus,2-s2.0-85049755960 "Durzynska I., Sauerwald M., Karl N., Madhugiri R., Ziebuhr J.","57188652539;57203806253;7004162467;26654846800;7003783935;","Characterization of a bafinivirus exoribonuclease activity",2018,"Journal of General Virology","99","9", 001120,"1253","1260",,2,"10.1099/jgv.0.001120","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052988693&doi=10.1099%2fjgv.0.001120&partnerID=40&md5=cb43af1d417cba7fa4810788e1a818f9","Centre for Infection and Immunity, Queen’s University, Belfast, United Kingdom; Institute of Medical Virology, Justus Liebig University, Giessen, Germany","Durzynska, I., Centre for Infection and Immunity, Queen’s University, Belfast, United Kingdom; Sauerwald, M., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Karl, N., Centre for Infection and Immunity, Queen’s University, Belfast, United Kingdom, Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Madhugiri, R., Institute of Medical Virology, Justus Liebig University, Giessen, Germany; Ziebuhr, J., Centre for Infection and Immunity, Queen’s University, Belfast, United Kingdom, Institute of Medical Virology, Justus Liebig University, Giessen, Germany","White bream virus (WBV), a poorly characterized plus-strand RNA virus infecting freshwater fish of the Cyprinidae family, is the prototype species of the genus Bafinivirus in the subfamily Torovirinae (family Coronaviridae, order Nidovirales). In common with other nidoviruses featuring >20 kilobase genomes, bafiniviruses have been predicted to encode an exoribonuclease (ExoN) in their replicase gene. Here, we used information on the substrate specificity of bafinivirus 3C-like proteases to express WBV ExoN in an active form in Escherichia coli. The 374-residue protein displayed robust 3¢-to-5¢ exoribonuclease activity in the presence of Mg2+ ions and, unlike its coronavirus homologues, did not require a protein cofactor for activity. Characterization of mutant forms of ExoN provided support for predictions on putative active-site and conserved zinc-binding residues. WBV ExoN was revealed to be most active on double-stranded RNA substrates containing one or two non-paired 3¢-terminal nucleotides, supporting its presumed role in increasing the fidelity of the bafinivirus RNA-dependent RNA polymerase. © 2018 The Authors.","Bafinivirus; Exoribonuclease; Nidovirus; Torovirinae; Torovirus","double stranded RNA; exoribonuclease; magnesium ion; proteinase; zinc binding protein; double stranded RNA; exoribonuclease; viral protein; virus RNA; 3' untranslated region; Article; Bafinivirus; Coronavirinae; enzyme activity; enzyme specificity; Escherichia coli; exon; nonhuman; predictive value; priority journal; protein expression; Torovirinae; Coronaviridae; enzymology; gene expression regulation; genetics; metabolism; virus replication; Coronaviridae; Exoribonucleases; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Viral; RNA, Double-Stranded; RNA, Viral; Substrate Specificity; Viral Proteins; Virus Replication","Granzow, H., Weiland, F., Fichtner, D., Schütze, H., Karger, A., Identification and ultrastructural characterization of a novel virus from fish (2001) J Gen Virol, 82, pp. 2849-2859; Schütze, H., Ulferts, R., Schelle, B., Bayer, S., Granzow, H., Characterization of White bream virus reveals a novel genetic cluster of nidoviruses (2006) J Virol, 80, pp. 11598-11609; Batts, W.N., Goodwin, A.E., Winton, J.R., Genetic analysis of a novel nidovirus from fathead minnows (2012) J Gen Virol, 93, pp. 1247-1252; Zhang, Q., Standish, I., Winters, A.D., Puzach, C., Ulferts, R., Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of the fathead minnow nidovirus (2014) J Virol Methods, 202, pp. 39-45; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., (2012) Family Coronaviridae, pp. 806-828. , King AMQ, Adams MJ, Carstens EB and Lefkowitz EJ (editors). Virus Taxonomy. Amsterdam: Elsevier; Bodewes, R., Lempp, C., Schürch, A.C., Habierski, A., Hahn, K., Novel divergent nidovirus in a python with pneumonia (2014) J Gen Virol, 95, pp. 2480-2485; Stenglein, M.D., Jacobson, E.R., Wozniak, E.J., Wellehan, J.F., Kincaid, A., Ball python nidovirus: A candidate etiologic agent for severe respiratory disease in Python regius (2014) Mbio, 5, pp. 4-14; Weiss, M., Steck, F., Horzinek, M.C., Purification and partial characterization of a new enveloped RNA virus (Berne virus) (1983) J Gen Virol, 64, pp. 1849-1858; Hoet, A., Saif, L.J., Torovirus pathogenesis and immune responses (2008) Nidoviruses, pp. 351-359. , Perlman S, Gallagher T and Snijder EJ (editors), Washington, DC: ASM Press; Siddell, S.G., Ziebuhr, J., Snijder, E.J., Coronaviruses, toroviruses, and arteriviruses (2005) Topley and Wilson’s Microbiology and Microbial Infections, pp. 823-856. , Mahy BWJ and ter Meulen V (editors), London: Hodder Arnold; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-858. , Knipe DM and Howley PM (editors), Philadelphia, PA: Lippincott Williams & Wilkins; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23; Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M., Ruben, M., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses (2015) Nucleic Acids Res, 43, pp. 8416-8434; Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., Blinov, V.M., Coronavirus genome: Prediction of putative functional domains in the nonstructural polyprotein by comparative amino acid sequence analysis (1989) Nucleic Acids Res, 17, pp. 4847-4861; Gorbalenya, A.E., Koonin, E.V., Helicases: Amino acid sequence comparisons and structure-function relationships (1993) Curr Opin Struct Biol, 3, pp. 419-429; Seybert, A., Hegyi, A., Siddell, S.G., Ziebuhr, J., The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5’-to-3’ polarity (2000) RNA, 6, pp. 1056-1068; Seybert, A., Posthuma, C.C., van Dinten, L.C., Snijder, E.J., Gorbalenya, A.E., A complex zinc finger controls the enzymatic activities of nidovirus helicases (2005) J Virol, 79, pp. 696-704; van Dinten, L.C., van Tol, H., Gorbalenya, A.E., Snijder, E.J., The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis (2000) J Virol, 74, pp. 5213-5223; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc Natl Acad Sci USA, 106, pp. 3484-3489; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc Natl Acad Sci USA, 112, pp. 9436-9441; Nga, P.T., Parquet, M.C., Lauber, C., Parida, M., Nabeshima, T., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) Plos Pathog, 7; Zirkel, F., Roth, H., Kurth, A., Drosten, C., Ziebuhr, J., Identification and characterization of genetically divergent members of the newly established family Mesoniviridae (2013) J Virol, 87, pp. 6346-6358; Lauber, C., Ziebuhr, J., Junglen, S., Drosten, C., Zirkel, F., Mesoniviridae: A proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses (2012) Arch Virol, 157, pp. 1623-1628; Blanck, S., Ziebuhr, J., Proteolytic processing of mesonivirus replicase polyproteins by the viral 3C-like protease (2016) J Gen Virol, 97, pp. 1439-1445; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004; Steitz, T.A., Steitz, J.A., A general two-metal-ion mechanism for catalytic RNA (1993) Proc Natl Acad Sci USA, 90, pp. 6498-6502; Beese, L.S., Steitz, T.A., Structural basis for the 3’-5’ exonuclease activity of Escherichia coli DNA polymerase I: A two metal ion mechanism (1991) EMBO J, 10, pp. 25-33; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Discovery of an RNA virus 3’->5’ exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci USA, 103, pp. 5108-5113; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) Plos Pathog, 6; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81, pp. 12135-12144; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics (2013) Plos Pathog, 9; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414; Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., RNA 3’-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex (2012) Proc Natl Acad Sci USA, 109, pp. 9372-9377; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37; Smith, E.C., Sexton, N.R., Denison, M.R., Thinking outside the triangle: Replication fidelity of the largest RNA viruses (2014) Annu Rev Virol, 1, pp. 111-132; Ulferts, R., Ziebuhr, J., Nidovirus ribonucleases: Structures and functions in viral replication (2011) RNA Biol, 8, pp. 295-304; Lauber, C., Goeman, J.J., Parquet, M.C., Nga, P.T., Snijder, E.J., The footprint of genome architecture in the largest genome expansion in RNA viruses (2013) Plos Pathog, 9; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2018) J Virol, 92, pp. 1-17; Ulferts, R., Mettenleiter, T.C., Ziebuhr, J., Characterization of Bafinivirus main protease autoprocessing activities (2011) J Virol, 85, pp. 1348-1359; Zuo, Y., Deutscher, M.P., Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution (2001) Nucleic Acids Res, 29, pp. 1017-1026; Bouvet, M., Lugari, A., Posthuma, C.C., Zevenhoven, J.C., Bernard, S., Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes (2014) J Biol Chem, 289, pp. 25783-25796; Smith, E.C., Case, J.B., Blanc, H., Isakov, O., Shomron, N., Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity (2015) J Virol, 89, pp. 6418-6426; Snijder, E.J., Decroly, E., Ziebuhr, J., The nonstructural proteins directing coronavirus RNA synthesis and processing (2016) Adv Virus Res, 96, pp. 59-126; Ferron, F., Subissi, L., Silveira de Morais, A.T., Le, N.T.T., Sevajol, M., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Natl Acad Sci USA, 115, pp. E162-E171; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc Natl Acad Sci USA, 111, pp. E3900-E3909; Deng, Z., Lehmann, K.C., Li, X., Feng, C., Wang, G., Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase (2014) Nucleic Acids Res, 42, pp. 3464-3477; Hao, W., Wojdyla, J.A., Zhao, R., Han, R., Das, R., Crystal structure of Middle East respiratory syndrome coronavirus helicase (2017) Plos Pathog, 13; Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., Blinov, V.M., Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes (1989) Nucleic Acids Res, 17, pp. 4713-4730; Seybert, A., van Dinten, L.C., Snijder, E.J., Ziebuhr, J., Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases (2000) J Virol, 74, pp. 9586-9593; Ivanov, K.A., Thiel, V., Dobbe, J.C., van der Meer, Y., Snijder, E.J., Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase (2004) J Virol, 78, pp. 5619-5632; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J Virol, 78, pp. 12218-12224; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc Natl Acad Sci USA, 101, pp. 12694-12699","Ziebuhr, J.; Centre for Infection and Immunity, Queen’s UniversityUnited Kingdom; email: john.ziebuhr@viro.med.uni-giessen.de",,"Microbiology Society",00221317,,JGVIA,"30058998","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85052988693 "Fan C., Wu X., Liu Q., Li Q., Liu S., Lu J., Yang Y., Cao Y., Huang W., Liang C., Ying T., Jiang S., Wang Y.","56763242600;56762975500;56734680600;57193797995;56763081500;55701387100;55193737500;56143103800;27168568700;57203575997;55236384900;56491898300;35278497400;","A human DPP4-knockin mouse’s susceptibility to infection by authentic and pseudotyped MERS-CoV",2018,"Viruses","10","9", 448,"","",,9,"10.3390/v10090448","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052317704&doi=10.3390%2fv10090448&partnerID=40&md5=0e2755caeb1c25bee0dd868797d7123f","Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China; Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China; National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China; Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, 200032, China","Fan, C., Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China; Wu, X., Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China; Liu, Q., Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China; Li, Q., Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China; Liu, S., Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China; Lu, J., National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China; Yang, Y., National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing, 100176, China; Cao, Y., Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China; Huang, W., Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China; Liang, C., Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China; Ying, T., Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Jiang, S., Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Wang, Y., Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, 100050, China","Infection by the Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory illness and has a high mortality rate (~35%). The requirement for the virus to be manipulated in a biosafety level three (BSL-3) facility has impeded development of urgently-needed antiviral agents. Here, we established anovel mouse model by inserting human dipeptidyl peptidase 4 (hDPP4) into the Rosa26 locus using CRISPR/Cas9, resulting in global expression of the transgene in a genetically stable mouse line. The mice were highly susceptible to infection by MERS-CoV clinical strain hCoV-EMC, which induced severe diffuse pulmonary disease in the animals, and could also be infected by an optimized pseudotyped MERS-CoV. Administration of the neutralizing monoclonal antibodies, H111-1 and m336, as well as a fusion inhibitor peptide, HR2P-M2, protected mice from challenge with authentic and pseudotyped MERS-CoV. These results confirmed that the hDPP4-knockin mouse is a novel model for studies of MERS-CoV pathogenesis and anti-MERS-CoV antiviral agents in BSL-3 and BSL-2facilities, respectively. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Authentic virus; hDPP4; MERS-CoV; Mouse model; Pseudotyped virus","antivirus agent; dipeptidyl peptidase IV; monoclonal antibody; monoclonal antibody H111 1; monoclonal antibody m336; unclassified drug; bacterial protein; Cas9 endonuclease Streptococcus pyogenes; dipeptidyl peptidase IV; DPP4 protein, human; endonuclease; neutralizing antibody; virus antibody; animal experiment; animal model; Article; central nervous system; central nervous system infection; controlled study; CRISPR-CAS9 system; female; gene; gene editing; gene expression; gene locus; genetic stability; genetic susceptibility; genome analysis; human; human cell; infection sensitivity; lung disease; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; rosa26 gene; transgene; virus isolation; animal; clustered regularly interspaced short palindromic repeat; Coronavirus infection; disease model; disease predisposition; gene knock-in; genetic recombination; genetics; growth, development and aging; immunology; metabolism; Middle East respiratory syndrome coronavirus; mouse; virology; Animals; Antibodies, Neutralizing; Antibodies, Viral; Bacterial Proteins; Clustered Regularly Interspaced Short Palindromic Repeats; Coronavirus Infections; Dipeptidyl Peptidase 4; Disease Models, Animal; Disease Susceptibility; Endonucleases; Gene Knock-In Techniques; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Recombination, Genetic","Du, L., Zhao, G., Chan, C.C., Sun, S., Chen, M., Liu, Z., Guo, H., Zheng, B.-J., Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. Coli cells elicits potent neutralizing antibody and protective immunity (2009) Virology, 393, pp. 144-150; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Jiang, S., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10, p. 266; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Chang, J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16598-16603; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Nagy, L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) Plos Pathog, 10; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.-C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2017) Nat. Microbiol., 2; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray, P.B., Jr., Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2015) J. Infect. Dis., 213, pp. 712-722; Agrawal, A.S., Garron, T., Tao, X., Peng, B.-H., Wakamiya, M., Chan, T.-S., Couch, R.B., Tseng, C.-T.K., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.-E., Earnest, J.T., Bair, T.B., Bates, A.M., Gallagher, T., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E3119-E3128; Lambeir, A.-M., Durinx, C., Scharpé, S., de Meester, I., Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV (2003) Crit. Rev. Clin. Lab. Sci., 40, pp. 209-294; Simeoni, L., Rufini, A., Moretti, T., Forte, P., Aiuti, A., Fantoni, A., Human cd26 expression in transgenic mice affects murine t-cell populations and modifies their subset distribution (2002) Hum. Immunol., 63, pp. 719-730; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Zhou, Y., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) Plos ONE, 8; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.-T.K., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Tang, X.-C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E2018-E2026; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Dimitrov, D.S., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6, p. 8223; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.-H., Wakamiya, M., Chan, T.-S., Jiang, S., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2016) J. Virol., 90, pp. 57-67; Nie, J., Wu, X., Ma, J., Cao, S., Huang, W., Liu, Q., Li, X., Wang, Y., Development of In Vitro and In Vivo rabies virus neutralization assays based on a high-titer pseudovirus system (2017) Sci. Rep., 7; Grehan, K., Ferrara, F., Temperton, N., An optimised method for the production of MERS-CoV spike expressing viral pseudotypes (2015) Methodsx, 2, pp. 379-384; Liu, Q., Huang, W., Nie, J., Zhu, R., Gao, D., Song, A., Meng, S., Wang, Y., A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in china (2012) Plos ONE, 7; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Dimitrov, D.S., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci. Rep., 6, p. 31629; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J. Infect. Dis., 212, pp. 1894-1903; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Steinberger, P., Sutton, J.K., Rader, C., Elia, M., Barbas, C.F., Generation and characterization of a recombinant human ccr5-specific antibody a phage display approach for rabbit antibody humanization (2000) J. Biol. Chem, 275, pp. 36073-36078; Yu, Y., Lee, P., Ke, Y., Zhang, Y., Yu, Q., Lee, J., Li, M., Dai, J., A humanized anti-VEGF rabbit monoclonal antibody inhibits angiogenesis and blocks tumor growth in xenograft models (2010) Plos ONE, 5; Zhou, S., Liu, Q., Wu, X., Chen, P., Wu, X., Guo, Y., Liu, S., Wang, Y., A safe and sensitive enterovirus A71 infection model based on human SCARB2 knock-in mice (2016) Vaccine, 34, pp. 2729-2736; Zaitseva, M., Kapnick, S.M., Scott, J., King, L.R., Manischewitz, J., Sirota, L., Kodihalli, S., Golding, H., Application of bioluminescence imaging to the prediction of lethality in vaccinia virus-infected mice (2009) J. Virol., 83, pp. 10437-10447; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2013) J. Infect. Dis., 209, pp. 236-242; Zambrowicz, B.P., Imamoto, A., Fiering, S., Herzenberg, L.A., Kerr, W.G., Soriano, P., Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 3789-3794; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Cha, R.-H., Yang, S.H., Moon, K.C., Joh, J.-S., Lee, J.Y., Shin, H.-S., Kim, D.K., Kim, Y.S., A case report of a Middle East respiratory syndrome survivor with kidney biopsy results (2016) J. Korean Med. Sci., 31, pp. 635-640; Liu, Q., Zhou, S., Fan, C., Huang, W., Li, Q., Liu, S., Wu, X., Wang, Y., Biodistribution and residence time of adenovector serotype 5 in normal and immunodeficient mice and rats detected with bioluminescent imaging (2017) Sci. Rep., 7, p. 3597; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Munster, V.J., de Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N. Engl. J. Med., 368, pp. 1560-1562; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre-and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; Arabi, Y., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A., Saeed, B., Aldabbagh, T., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.-A., Matsushita, H., Ork, B.L., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV In Vivo (2016) Sci. Transl. Med., 8; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antivir. Res., 132, pp. 141-148; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Morimoto, C., Schlossman, S.F., The structure and function of cd26 in the t-cell immune response (1998) Immunol. Rev., 161, pp. 55-70; Cauchemez, S., Fraser, C., van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Enouf, V., Ferguson, N.M., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect. Dis., 14, pp. 50-56; Lu, Y., Jiang, T., Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations (2013) Protein Cell, 4, pp. 356-363","Wang, Y.; Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug ControlChina; email: wangyc@nifdc.org.cn",,"MDPI AG",19994915,,,"30142928","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85052317704 "Rabaan A.A., Alshaikh S.A., Bazzi A.M.","56049830800;57200222837;56567837900;","Influenza A(H1N1)pdm09 epidemiology in the Eastern Province of Saudi Arabia",2018,"Journal of Infection and Public Health","11","5",,"636","639",,1,"10.1016/j.jiph.2018.05.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048864866&doi=10.1016%2fj.jiph.2018.05.014&partnerID=40&md5=c3443446cda677319fb383f85db289ef","Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia; Molecular Diagnostic Laboratory, Dammam Regional Laboratory, Ministry of Health, Dammam31675, Saudi Arabia; Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia","Rabaan, A.A., Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia; Alshaikh, S.A., Molecular Diagnostic Laboratory, Dammam Regional Laboratory, Ministry of Health, Dammam31675, Saudi Arabia; Bazzi, A.M., Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia","Objectives: The influenza A(H1N1)pdm09 virus caused a worldwide pandemic in 2009–2010 and has since remained in seasonal circulation. This study was conducted to determine any variations in the influenza A(H1N1)pdm09 status according to sex, age group, sample type, or location within the Eastern Province of the Kingdom of Saudi Arabia. Methods: Samples from 749 patients with suspected Middle East respiratory coronavirus who presented to Johns Hopkins Aramco Healthcare facilities in the Eastern Province of Saudi Arabia were tested reflexively for influenza A/H1N1 2009 by the Ministry of Health using the RealTime ready Influenza A/H1N1 Detection Set for real-time PCR. The sample types included nasopharyngeal swabs (n = 677), expectorated deep cough sputum (n = 32), induced sputum (n = 17), and tracheal aspirates (n = 23). Results: The incidence of influenza A(H1N1)pdm09 was higher among younger patients; 27.94% of patients in the 0–19-year age group tested positive compared to only 3.51% of patients in the ≥80-year age group. The incidence of influenza A(H1N1)pdm09 was higher in Ras Tanura city compared to other locations in the Eastern Province. Conclusions: Younger individuals in the Eastern Province of the Kingdom of Saudi Arabia had a relatively higher risk of influenza A(H1N1)pdm09 infection. Additionally, an outbreak of influenza A(H1N1)pdm09 may have occurred in Ras Tanura city between April 2015 and February 2016. © 2018 The Authors","Eastern Province; Influenza A(H1N1)pdm09; Ras Tanura; Real-time PCR; Saudi Arabia","adolescent; adult; aged; Article; child; coughing; female; geographic distribution; groups by age; health care facility; human; infant; influenza A (H1N1); major clinical study; male; Middle East respiratory syndrome coronavirus; newborn; nose smear; priority journal; real time polymerase chain reaction; Saudi Arabia; sputum analysis; tracheal aspiration procedure; very elderly; age; incidence; influenza; Influenza A virus (H1N1); isolation and purification; middle aged; nasopharynx; preschool child; risk assessment; Saudi Arabia; sputum; topography; trachea; virology; young adult; Adolescent; Adult; Age Factors; Aged; Aged, 80 and over; Child; Child, Preschool; Female; Humans; Incidence; Infant; Infant, Newborn; Influenza A Virus, H1N1 Subtype; Influenza, Human; Male; Middle Aged; Nasopharynx; Real-Time Polymerase Chain Reaction; Risk Assessment; Saudi Arabia; Sputum; Topography, Medical; Trachea; Young Adult","Influenza (Seasonal) (2016), http://www.who.int/mediacentre/factsheets/fs211/en/, Fact sheet November 2016, [Accessed 19 December 2016]; Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood, F.S., Jain, S., Finelli, L., Shaw, M.W., Lindstrom, S., Emergence of a novel swine-origin influenza A (H1N1) virus in humans (2009) N Engl J Med, 360 (25), pp. 2605-2615; Al-Tawfiq, J., Abed, M., Saadeh, B.M., Ghandour, J., Shaltaf, M., Babiker, M.M., Pandemic influenza A (2009 H1N1) in hospitalized patients in a Saudi Arabian hospital: epidemiology and clinical comparison with H1N1-negative patients (2011) J Infect Public Health, 4 (5-6), pp. 228-234; Balkhy, H.H., El-Saed, A., Sallah, M., Epidemiology of H1N1 (2009) influenza among healthcare workers in a tertiary care center in Saudi Arabia: a 6-month surveillance study (2010) Infect Control Hosp Epidemiol, 31 (10), pp. 1004-1010; Uthman, N.A., Sohrab, S.S., Kamal, I.H., Farraj, S.A., Masri, B.E., Ashshi, A.M., Genetic diversity of the pandemic influenza A (H1N1) virus in Saudi Arabia (2014) J Infect Dev Ctries, 8 (12), pp. 1563-1573; H1N1: Overview of a pandemic. impact of 2009 H1N1 (2009), https://www.cdc.gov/h1n1flu/yearinreview/yir5.html, 2010 [Accessed 16 March 2017]; Dawood, F.S., Iuliano, A.D., Reed, C., Meltzer, M.I., Shay, D.K., Cheng, P.Y., Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study (2012) Lancet Infect Dis, 12 (9), pp. 687-695; AlMazroa, M.A., Memish, Z.A., AlWadey, A.M., Pandemic influenza A (H1N1) in Saudi Arabia: description of the first one hundred cases (2010) Ann Saudi Med, 30 (1), pp. 11-14; BinSaeed, A.A., Characteristics of pandemic influenza A (H1N1) infection in patients presenting to a university hospital in Riyadh, Saudi Arabia (2010) Ann Saudi Med, 30 (1), pp. 59-62; Herzallah, H.K., Bubshait, S.A., Antony, A.K., Al-Otaibi, S., Incidence of influenza A H1N1 2009 infection in Eastern Saudi Arabian hospitals (2011) Saudi Med J, 32 (6), pp. 598-602; Mady, A., Ramadan, O.S., Yousef, A., Mandourah, Y., Amr, A.A., Kherallah, M., Clinical experience with severe 2009 H1N1 influenza in the intensive care unit at King Saud Medical City, Saudi Arabia (2012) J Infect Public Health, 5 (1), pp. 52-56; Agha, A., Alrawi, A., Munayco, C.V., Alayed, M.S., Al-Hakami, M., Korairi, H., Characteristics of patients hospitalized with 2009 H1N1 influenza in a Tertiary Care Hospital in Southern Saudi Arabia (2012) Mediterr J Hematol Infect Dis, 4 (1), p. 1; Lam, W., Leung, T., Lee, N., Cheung, J.L.K., Yeung, A.C.M., Ho, Y.I.I., Development and comparison of molecular assays for the rapid detection of the pandemic influenza A (H1N1) 2009 virus (2010) J Med Virol, 82 (4), pp. 675-683; Choi, Y.J., Nam, H.S., Park, J.S., Kim, H.J., Park, K.B., Jeon, M.H., Comparative analysis of the multiple test methods for the detection of Pandemic Influenza A/H1N1 2009 virus (2010) J Microbiol Biotechnol Res, 20 (10), pp. 1450-1456; thi Tham, N., Khanh, T.H., Hien, T.T., Farrar, J., van Vinh Chau, N., van Doorn, H.R., Comparison of the Roche RealTime ready Influenza A/H1N1 detection set with CDC A/H1N1pdm09 RT-PCR on samples from three hospitals in Ho Chi Minh City, Vietnam (2012) Diagn Microbiol Infect Dis, 74 (2), pp. 131-136; Wenzel, J.J., Panning, M., Kaul, K.L., Mangold, K.A., Revell, P.A., Luna, R.A., Analytical performance determination and clinical validation of the novel Roche RealTime Ready Influenza A/H1N1 Detection Set (2010) J Clin Microbiol, 48 (9), pp. 3088-3094; Kingdom of Saudi Arabia Ministry of Health, Infection prevention and control guidelines for the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection. (2017), 4th ed. Ministry of Health Riyadh, Kingdom of Saudi Arabia; Kerkhove, M.D., Hirve, S., Koukounari, A., Mounts, A.W., Estimating age-specific cumulative incidence forthe 2009 influenza pandemic: a meta-analysis of A (H1N1) pdm09 serological studies from 19 countries (2013) Influenza Other Respir Viruses, 7 (5), pp. 872-886; Karageorgopoulos, D.E., Vouloumanou, E.K., Korbila, I.P., Kapaskelis, A., Falagas, M.E., Age distribution of cases of 2009 (H1N1) pandemic influenza in comparison with seasonal influenza (2011) PLoS One, 6 (7); Klein, S.L., Passaretti, C., Anker, M., Olukoya, P., Pekosz, A., The impact of sex, gender and pregnancy on 2009 H1N1 disease (2010) Biol Sex Differ, 1, p. 5","Rabaan, A.A.P.O. Box 76, Room 230, Building 62, Johns Hopkins Aramco Healthcare, Saudi Arabia; email: arabaan@gmail.com",,"Elsevier Ltd",18760341,,,"29937408","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85048864866 "Kurskaya O., Ryabichenko T., Leonova N., Shi W., Bi H., Sharshov K., Kazachkova E., Sobolev I., Prokopyeva E., Kartseva T., Alekseev A., Shestopalov A.","57202582282;6504764271;57201656863;55662158800;26029718600;22954704400;57203897878;57190948436;57112435800;57191976891;8256203100;35568294500;","Viral etiology of acute respiratory infections in hospitalized children in Novosibirsk City, Russia (2013 – 2017)",2018,"PLoS ONE","13","9", e0200117,"","",,5,"10.1371/journal.pone.0200117","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053479373&doi=10.1371%2fjournal.pone.0200117&partnerID=40&md5=e53025efc72acd324b6885e145cec8e4","Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russian Federation; Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital, №6, Novosibirsk, Russian Federation; Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases, Universities of Shandong, Taishan Medical College, Taian, Shandong, China; Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, Xining, China","Kurskaya, O., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Ryabichenko, T., Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russian Federation; Leonova, N., Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital, №6, Novosibirsk, Russian Federation; Shi, W., Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases, Universities of Shandong, Taishan Medical College, Taian, Shandong, China; Bi, H., Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, Xining, China; Sharshov, K., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Kazachkova, E., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Sobolev, I., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Prokopyeva, E., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Kartseva, T., Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russian Federation; Alekseev, A., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation; Shestopalov, A., Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russian Federation","Background Acute respiratory infections (ARIs) cause a considerable morbidity and mortality worldwide especially in children. However, there are few studies of the etiological structure of ARIs in Russia. In this work, we analyzed the etiology of ARIs in children (0–15 years old) admitted to Novosibirsk Children’s Municipal Clinical Hospital in 2013–2017. Methods We tested nasal and throat swabs of 1560 children with upper or lower respiratory infection for main respiratory viruses (influenza viruses A and B, parainfluenza virus types 1–4, respiratory syncytial virus, metapneumovirus, four human coronaviruses, rhinovirus, adenovirus and bocavirus) using a RT-PCR Kit. Results We detected 1128 (72.3%) samples were positive for at least one virus. The most frequently detected pathogens were respiratory syncytial virus (358/1560, 23.0%), influenza virus (344/1560, 22.1%), and rhinovirus (235/1560, 15.1%). Viral co-infections were found in 163 out of the 1128 (14.5%) positive samples. We detected significant decrease of the respiratory syncytial virus-infection incidence in children with increasing age, while the reverse relationship was observed for influenza viruses. Conclusions We evaluated the distribution of respiratory viruses in children with ARIs and showed the prevalence of respiratory syncytial virus and influenza virus in the etiological structure of infections. This study is important for the improvement and optimization of diagnostic tactics, control and prevention of the respiratory viral infections. © 2018 Kurskaya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"Adenoviridae; adolescent; age distribution; Bocaparvovirus; child; controlled study; Coronaviridae; female; hospitalized child; human; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; incidence; infant; Influenza A virus; Influenza B virus; lower respiratory tract infection; major clinical study; male; Metapneumovirus; mixed infection; nonhuman; nose smear; preschool child; real time polymerase chain reaction; Review; Rhinovirus; Russian Federation; seasonal variation; sex ratio; throat culture; viral respiratory tract infection; viral upper respiratory tract infection; virus detection; virus etiology; acute disease; clinical trial; hospitalization; influenza; mixed infection; newborn; Pneumovirus; respiratory syncytial virus infection; respiratory tract infection; virology; Acute Disease; Adolescent; Child; Child, Preschool; Coinfection; Female; Hospitalization; Humans; Infant; Infant, Newborn; Influenza A virus; Influenza B virus; Influenza, Human; Male; Respiratory Syncytial Virus Infections; Respiratory Syncytial Viruses; Respiratory Tract Infections; Siberia","Wang, H., Yu, Z., Deng, J., Wang, W., Liu, P., Yang, F., Prevalence of respiratory viruses among children hospitalized from respiratory infections in Shenzhen, China (2016) Virol J, 13, p. 39. , https://doi.org/10.1186/s12985-016-0493-7, PMID: 26952107; Williams, B.G., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32. , PMID: 11892493; Kusel, M.M., de Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., Sly, P.D., Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study (2006) Pediatr Infect Dis J, 25, pp. 680-686. , https://doi.org/10.1097/01.inf.0000226912.88900.a3, PMID: 16874165; Brittain-Long, R., Nord, S., Olofsson, S., Westin, J., Anderson, L.M., Lindh, M., Multiplex real-time PCR for detection of respiratory tract infections (2008) J Clin Virol, 41, pp. 53-56. , https://doi.org/10.1016/j.jcv.2007.10.029, PMID: 18093871; Lu, Y., Wang, S., Zhang, L., Xu, C., Bian, C., Wang, Z., Epidemiology of human respiratory viruses in children with acute respiratory tract infections in Jinan, China (2013) Clin Dev Immunol, 2013, p. 210490. , https://doi.org/10.1155/2013/210490, PMID: 24363757; Sentilhes, A.C., Choumlivong, K., Celhay, O., Sisouk, T., Phonekeo, D., Vongphrachanh, P., Respiratory virus infections in hospitalized children and adults in Lao PDR (2013) Influenza Other Respir Viruses, 7 (6), pp. 1070-1078. , https://doi.org/10.1111/irv.12135, PMID: 23796419; Tecu, C., Mihai, M.E., Alexandrescu, V.I., Orăşeanu, D., Zapucioiu, C., Ivanciuc, A.E., Single and multi-pathogen viral infections in hospitalized children with acute respiratory infections (2013) Roum Arch Microbiol Immunol, 72 (4), pp. 242-249. , PMID: 24923107; van den Hoogen, B.G., de Jong, J.C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R.A., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat Med, 7 (6), pp. 719-724. , https://doi.org/10.1038/89098, Jun; PMID: 11385510; Feuillet, F., Lina, B., Rosa-Calatrava, M., Boivin, G., Ten years of human metapneumovirus research (2012) J Clin Virol, 53 (2), pp. 97-105. , https://doi.org/10.1016/j.jcv.2011.10.002, Feb; Epub 2011 Nov 9; PMID: 22074934; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci U S A, 102 (36), pp. 12891-12896. , https://doi.org/10.1073/pnas.0504666102, Sep; Epub 2005 Aug 23. PMID: 16118271; Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747, May 15; Epub 2003 Apr 10; PMID: 12690091; Pyrc, K., Berkhout, B., van der Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) J Virol, 81 (7), pp. 3051-3057. , https://doi.org/10.1128/JVI.01466-06, Apr; Epub 2006 Nov 1; PMID: 17079323; Coleman, C.M., Frieman, M.B., Coronaviruses: Important emerging human pathogens (2014) J Virol, 88 (10), pp. 5209-5212. , https://doi.org/10.1128/JVI.03488-13, May; Epub 2014 Mar 5; PMID: 24600003; Dong, W., Chen, Q., Hu, Y., He, D., Liu, J., Yan, H., Epidemiological and clinical characteristics of respiratory viral infections in children in Shanghai, China (2016) Arch Virol, 161 (7), pp. 1907-1913. , https://doi.org/10.1007/s00705-016-2866-z, Jul; Epub 2016 May 2; PMID: 27138548; Harper, S.A., Bradley, J.S., Englund, J.A., File, T.M., Gravenstein, S., Hayden, F.G., Seasonal influenza in adults and children—diagnosis, treatment, chemoprophylaxis, and institutional outbreak management: Clinical practice guidelines of the Infectious Diseases Society of America (2009) Clin Infect Dis, 48, pp. 1003-1032. , https://doi.org/10.1086/598513, PMID: 19281331; Low, D., Reducing antibiotic use in influenza: Challenges and rewards (2008) Clin Microbiol Infect, 14 (4), pp. 298-306. , https://doi.org/10.1111/j.1469-0691.2007.01910.x, Apr; PMID: 18093237; Sharshov, K., Romanovskaya, A., Uzhachenko, R., Durymanov, A., Zaykovskaya, A., Kurskaya, O., Ilinykh, P., Drozdov, I., Genetic and biological characterization of avian influenza H5N1 viruses isolated from wild birds and poultry in Western Siberia (2010) Arch Virol, 155 (7), pp. 1145-1150. , https://doi.org/10.1007/s00705-010-0676-2, Jul; PMID: 20432047; Lee, D.H., Sharshov, K., Swayne, D.E., Kurskaya, O., Sobolev, I., Kabilov, M., Alekseev, A., Shestopalov, A., Novel reassortant clade 2.3.4.4 avian influenza A(H5N8) virus in wild aquatic birds, Russia, 2016 (2017) Emerg Infect Dis, 23 (2), pp. 359-360. , https://doi.org/10.3201/eid2302.161252, Feb; Epub 2017 Feb 15; PMID: 27875109; Ilyicheva, T., Sobolev, I., Susloparov, I., Kurskaya, O., Durymanov, A., Sharshov, K., Shestopalov, A., Monitoring of influenza viruses in Western Siberia in 2008–2012 (2013) Infect Genet Evol, 20, pp. 177-187. , https://doi.org/10.1016/j.meegid.2013.08.025, Dec; Epub 2013 Sep 5; PMID: 24012948; De Marco, M.A., Delogu, M., Sivay, M., Sharshov, K., Yurlov, A., Cotti, C., Shestopalov, A., Virological evaluation of avian influenza virus persistence in natural and anthropic ecosystems of Western Siberia (Novosibirsk Region, summer 2012) (2014) PLoS One, 9 (6). , https://doi.org/10.1371/journal.pone.0100859, Jun 27; eCollection 2014; PMID: 24972026; Zhang, G., Hu, Y., Wang, H., Zhang, L., Bao, Y., Zhou, X., High incidence of multiple viral infections identified in upper respiratory tract infected children under three years of age in Shanghai, China (2012) PLoS One, 7 (9). , https://doi.org/10.1371/journal.pone.0044568, Epub 2012 Sep 7; PMID: 22970251; Huang, G., Yu, D., Mao, N., Zhu, Z., Zhang, H., Jiang, Z., Viral etiology of acute respiratory infection in Gansu Province, China, 2011 (2013) PLoS One, 8 (5). , https://doi.org/10.1371/journal.pone.0064254, May 14; PMID: 23691184; Cai, X.Y., Wang, Q., Lin, G.Y., Cai, Z.W., Lin, C.X., Chen, P.Z., Respiratory virus infections among children in South China (2014) J Med Virol, 86 (7), pp. 1249-1255. , https://doi.org/10.1002/jmv.23931, Jul; Epub 2014 Mar 12; PMID: 24619492; Richter, J., Panayiotou, C., Tryfonos, C., Koptides, D., Koliou, M., Kalogirou, N., Aetiology of acute respiratory tract infections in hospitalised children in Cyprus (2016) PLoS One, 11 (1). , https://doi.org/10.1371/journal.pone.0147041, Jan 13; eCollection 2016; PMID: 26761647; Khor, C.S., Sam, I.C., Hooi, P.S., Quek, K.F., Chan, Y.F., Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: A retrospective study of 27 years (2012) BMC Pediatr, 12, p. 32. , https://doi.org/10.1186/1471-2431-12-32, Mar 20; PMID: 22429933; Tsukagoshi, H., Ishioka, T., Noda, M., Kozawa, K., Kimura, H., Molecular epidemiology of respiratory viruses in virus-induced asthma (2013) Front Microbiol, 4, p. 278. , https://doi.org/10.3389/fmicb.2013.00278, Sep 12; PMID: 24062735; Pierangeli, A., Gentile, M., Di, M.P., Pagnotti, P., Scagnolari, C., Trombetti, S., Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy (2007) J Med Virol, 79, pp. 463-468. , https://doi.org/10.1002/jmv.20832, PMID: 17311326; Hombrouck, A., Sabbe, M., Van Casteren, V., Wuillaume, F., Hue, D., Reynders, M., Viral aetiology of influenza-like illness in Belgium during the influenza A(H1N1)2009 pandemic (2012) Eur J Clin Microbiol Infect Dis, 31 (6), pp. 999-1007. , https://doi.org/10.1007/s10096-011-1398-4, Jun; Epub 2011 Sep 8; PMID: 21901635; Schlaudecker, E.P., Heck, J.P., Macintyre, E.T., Martinez, R., Dodd, C.N., McNeal, M.M., Etiology and seasonality of viral respiratory infections in rural Honduran children (2012) Pediatr Infect Dis J, 31, pp. 1113-1118. , https://doi.org/10.1097/INF.0b013e31826052eb, PMID: 22653487; Peng, J., Kong, W., Guo, D., Liu, M., Wang, Y., Zhu, H., The epidemiology and etiology of influenza-like illness in Chinese children from 2008 to 2010 (2012) J Med Virol, 84 (4), pp. 672-678. , https://doi.org/10.1002/jmv.22247, Apr; PMID: 22337308; Li, H., Wei, Q., Tan, A., Wang, L., Epidemiological analysis of respiratory viral etiology for influenza-like illness during 2010 in Zhuhai, China (2013) Virol J, 10, p. 143. , https://doi.org/10.1186/1743-422X-10-143, May 7; PMID: 23651577; Lvov, N.I., Pisareva, M.M., Maltsev, O.V., Buzitskaya, J.V., Afanasieva, V.S., Mikhailova, M.A., The features of ARVD etiological structure in different age and professional population groups in Saint-Petersburg during 2013–2014 epidemic season] (2014) Journal of Infectology, 6 (3), pp. 62-70. , Russian; Ju, X., Fang, Q., Zhang, J., Xu, A., Liang, L., Ke, C., Viral etiology of influenza-like illnesses in Huizhou, China, from 2011 to 2013 (2014) Arch Virol, 159 (8), pp. 2003-2010. , https://doi.org/10.1007/s00705-014-2035-1, Aug; Epub 2014 Mar 9; PMID: 24610554; Hasman, H., Pachucki, C.T., Unal, A., Nguyen, D., Devlin, T., Peeples, M.E., Aetiology of influenza-like illness in adults includes parainfluenzavirus type 4 (2009) J Med Microbiol, 58, pp. 408-413. , https://doi.org/10.1099/jmm.0.006098-0, Apr; PMID: 19273634; Falchi, A., Turbelin, C., Andreoletti, L., Arena, C., Blanchon, T., Bonmarin, I., Nationwide surveillance of 18 respiratory viruses in patients with influenzalike illnesses. A pilot feasibility study in the French Sentinel network (2011) J Med Virol, 83 (8), pp. 1451-1457. , https://doi.org/10.1002/jmv.22113, Aug; Epub 2011 Jun 2; PMID: 21638286; Do, A.H., van Doorn, H.R., Nghiem, M.N., Bryant, J.E., Hoang, T.H., Do, Q.H., Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004–2008 (2011) PLoS One, 6 (3). , https://doi.org/10.1371/journal.pone.0018176, Mar 24; PMID: 21455313; He, Y., Lin, G.Y., Wang, Q., Cai, X.Y., Zhang, Y.H., Lin, C.X., A 3-year prospective study of the epidemiology of acute respiratory viral infections in hospitalized children in Shenzhen (2014) China Influenza Other Respir Viruses, 8 (4), pp. 443-451. , https://doi.org/10.1111/irv.12257, Jul; Epub 2014 May 14; PMID: 24828783; Gurgel, R.Q., Bezerra, P.G., Duarte Mdo, C., Moura, A.Á., Souza, E.L., Silva, L.S., Relative frequency, possible risk factors, viral codetection rates, and seasonality of respiratory syncytial virus among children with lower respiratory tract infection in northeastern Brazil (2016) Medicine (Baltimore), 95 (15). , https://doi.org/10.1097/MD.0000000000003090, Apr; PMID: 27082548; Homaira, N., Luby, S.P., Hossain, K., Islam, K., Ahmed, M., Rahman, M., Respiratory viruses associated hospitalization among children aged< 5 years in Bangladesh: 2010–2014 (2016) PLoS One, 11 (2). , https://doi.org/10.1371/journal.pone.0147982, Feb 3; eCollection 2016; PMID: 26840782; Delangue, J., Roca Sanchez, Y., Piorkowski, G., Bessaud, M., Baronti, C., Thirion-Perrier, L., Viral aetiology influenza like illnesses in Santa Cruz, Bolivia (2010–2012) (2014) Virol J, 11, p. 35. , https://doi.org/10.1186/1743-422X-11-35, Feb 24; PMID: 24564892; Eccles, R., Understanding the symptoms of the common cold and influenza (2005) Lancet Infect Dis, 5 (11), pp. 718-725. , https://doi.org/10.1016/S1473-3099(05)70270-X, Nov; PMID: 16253889; On The Outcome of The Epidemic Season of Influenza and ARIs, , http://www.rospotrebnadzor.ru/deyatelnost/epidemiological-surveillance/, rospotrebnadzor.ru Internet. cited 2018 June 3; Cebey-López, M., Herberg, J., Pardo-Seco, J., Gómez-Carballa, A., Martinón-Torres, N., Salas, A., Viral co-infections in pediatric patients hospitalized with lower tract acute respiratory infections (2015) PLoS One, 10 (9). , https://doi.org/10.1371/journal.pone.0136526, Sep 2; eCollection 2015; PMID: 26332375; Asner, S.A., Science, M.E., Tran, D., Smieja, M., Merglen, A., Mertz, D., Clinical disease severity of respiratory viral co-infection versus single viral infection: A systematic review and meta-analysis (2014) PLoS One, 9 (6). , https://doi.org/10.1371/journal.pone.0099392, Jun 16; eCollection 2014; PMID: 24932493; Huo, X., Qin, Y., Qi, X., Zu, R., Tang, F., Li, L., Surveillance of 16 respiratory viruses in patients with influenza-like illness in Nanjing, China (2012) J Med Virol, 84 (12), pp. 1980-1984. , https://doi.org/10.1002/jmv.23401, Dec; PMID: 23080506","Kurskaya, O.; Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational MedicineRussian Federation; email: kurskaya_og@mail.ru",,"Public Library of Science",19326203,,POLNC,"30226876","English","PLoS ONE",Review,"Final",Open Access,Scopus,2-s2.0-85053479373 "Ziegler T., Mamahit A., Cox N.J.","7202121309;57192868760;57203054779;","65 years of influenza surveillance by a World Health Organization-coordinated global network",2018,"Influenza and other Respiratory Viruses","12","5",,"558","565",,12,"10.1111/irv.12570","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051283884&doi=10.1111%2firv.12570&partnerID=40&md5=0464757c3da73a7645f9642ac04b2191","Research Center for Child Psychiatry, University of Turku, Turku, Finland; Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, World Health Organization, Geneva, Switzerland; Consultant and retired affiliate of the Centers for Disease Control and Prevention, Atlanta, GA, United States","Ziegler, T., Research Center for Child Psychiatry, University of Turku, Turku, Finland; Mamahit, A., Global Influenza Programme, Infectious Hazards Management, WHO Emergency Programme, World Health Organization, Geneva, Switzerland; Cox, N.J., Consultant and retired affiliate of the Centers for Disease Control and Prevention, Atlanta, GA, United States","The 1918 devastating influenza pandemic left a lasting impact on influenza experts and the public, and the importance of global influenza surveillance was soon recognized. The World Health Organization (WHO) Global Influenza Surveillance Network (GISN) was founded in 1952 and renamed to Global Influenza Surveillance and Response System in 2011 upon the adoption by the World Health Assembly, of the Pandemic Influenza Preparedness Framework for the Sharing of Influenza Viruses and Access to Vaccines and Other Benefits (“PIP Framework”). The importance of influenza surveillance had been recognized and promoted by experts prior to the years leading up to the establishment of WHO. In the 65 years of its existence, the Network has grown to comprise 143 National Influenza Centers recognized by WHO, 6 WHO Collaborating Centers, 4 Essential Regulatory Laboratories, and 13 H5 Reference Laboratories. The Network has proven its excellence throughout these 65 years, providing detailed information on circulating seasonal influenza viruses, as well as immediate response to the influenza pandemics in 1957, 1968, and 2009, and to threats caused by animal influenza viruses and by zoonotic transmission of coronaviruses. For its central role in global public health, the Network has been highly recognized by its many partners and by international bodies. Several generations of world-renowned influenza scientists have brought the Network to where it is now and they will take it forward to the future, as influenza will remain a preeminent threat to humans and to animals. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","global surveillance; influenza; laboratory network; World Health Organization Global Influenza Program","influenza vaccine; sialidase inhibitor; antiviral resistance; Coronavirinae; disease surveillance; global disease burden; health care access; health care organization; health hazard; human; influenza; Influenza A virus (H1N1); Influenza B virus; Influenza virus; international cooperation; nonhuman; pandemic influenza; priority journal; public health; Review; seasonal influenza; systematic review; treatment planning; virus transmission; world health organization; zoonosis; communicable disease control; epidemic; epidemiological monitoring; global health; history; influenza; organization and management; World Health Organization; Communicable Disease Control; Epidemics; Epidemiological Monitoring; Global Health; History, 20th Century; History, 21st Century; Humans; Influenza, Human; World Health Organization","Bedford, T., Riley, S., Barr, I.G., Global circulation patterns of seasonal influenza viruses vary with antigenic drift (2015) Nature, 523, pp. 217-220; Li, C., Hatta, M., Burke, D.F., Selection of antigenically advanced variants of seasonal influenza viruses (2016) Nat Microbiol, 1, p. 16058; Hampson, A., Barr, I., Cox, N., Improving the selection and development of influenza vaccine viruses – report of a WHO informal consultation on improving influenza vaccine virus selection, Hong Kong SAR, China, 18–20 November 2015 (2017) Vaccine, 35, pp. 1104-1109; Joseph, U., Su, Y.C., Vijaykrishna, D., Smith, G.J., The ecology and adaptive evolution of influenza A interspecies transmission (2017) Influenza Other Respir Viruses, 11, pp. 74-84; Villa, M., Lässig, M., Fitness cost of reassortment in human influenza (2017) PLoS Pathog, 13; Petrova, V.N., Russell, C.A., The evolution of seasonal influenza viruses (2018) Nat Rev Microbiol, 16, pp. 47-60; Morens, D.M., Taubenberger, J.K., Historical thoughts on influenza viral ecosystems, or behold a pale horse, dead dogs, failing fowl, and sick swine (2010) Influenza Other Respir Viruses, 4, pp. 327-337; Barberis, I., Myles, P., Ault, S.K., Bragazzi, N.L., Martini, M., History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines (2016) J Prev Med Hyg, 57, pp. E115-E120; Kilbourne, E.D., Smith, C., Brett, I., Pokorny, B.A., Johansson, B., Cox, N., The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic (2002) Proc Natl Acad Sci USA, 99, pp. 10748-10752; (2017) Into the history of influenza control, , http://www.who.int/influenza/gip-anniversary/en/, Accessed November 27, 2017; (1953) The influenza programme of WHO, pp. 755-792. , Bull World Health Organ; (1953) Expert committee on influenza – first report, , http://apps.who.int/iris/bitstream/10665/40208/1/WHO_TRS_64.pdf, Accessed November 14, 2017; (1953) Influenza – La Grippe, , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2554194/pdf/bullwho00626-0001.pdf, Accessed November 14, 2017; (1957) Epidemiological notes – influenza, 32. , http://apps.who.int/iris/bitstream/10665/211021/1/WER3219.PDF, WHO Weekly Epidemiological Record 19, Accessed November 27, 2017; Kilbourne, E.D., Influenza pandemics of the 20th century (2006) Emerg Infect Dis, 12, pp. 9-14; (1969) Influenza, , http://apps.who.int/iris/bitstream/10665/216974/1/WER4401.PDF, Accessed November 14, 2017; Zakstelskaja, L.J., Yakhno, M.A., Isacenko, V.A., Influenza in the USSR in 1977: recurrence of influenzavirus A subtype H1N1 (1978) Bull World Health Organ, 56, pp. 919-922; Kung, H.C., Jen, K.F., Yuan, W.C., Tien, S.F., Chu, C.M., Influenza in China in 1977: recurrence of influenzavirus A subtype H1N1 (1978) Bull World Health Organ, 56, pp. 913-918; Gaush, C.R., Smith, T.F., Replication and plaque assay of influenza virus in an established line of canine kidney cells (1968) Appl Microbiol, 16, pp. 588-594; Rota, P.A., Wallis, T.R., Harmon, M.W., Rota, J.S., Kendal, A.P., Nerome, K., Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983 (1990) Virology, 175, pp. 59-68; Saiki, R.K., Gelfand, D.H., Stoffel, S., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase (1988) Science, 239, pp. 487-491; Bressoud, A., Whitcomb, J., Pourzand, C., Haller, O., Cerutti, P., Rapid detection of influenza virus H1 by the polymerase chain reaction (1990) Biochem Biophys Res Commun, 167, pp. 425-430; Pisareva, M., Bechtereva, T., Plyusnin, A., Dobretsova, A., Kisselev, O., PCR-amplification of influenza A virus specific sequences (1992) Arch Virol, 125, pp. 313-318; Claas, E.C., Osterhaus, A.D., van Beek, R., Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus (1998) Lancet, 351, pp. 472-477; Subbarao, K., Klimov, A., Katz, J., Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness (1998) Science, 279, pp. 393-396; Peiris, J.S., Yu, W.C., Leung, C.W., Re-emergence of fatal human influenza A subtype H5N1 disease (2004) Lancet, 363, pp. 617-619; Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome (2004) Proc Natl Acad Sci USA, 101, pp. 1356-1361; Peiris, J.S., Lai, S.T., Poon, L.L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Shu, Y., McCauley, J., GISAID: Global initiative on sharing all influenza data – from vision to reality (2017) Euro Surveill, 22, p. pii: 30494; Bright, R.A., Medina, M.J., Xu, X., Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern (2005) Lancet, 366, pp. 1175-1181; Bright, R.A., Shay, D.K., Shu, B., Cox, N.J., Kilmov, A.I., Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States (2006) JAMA, 295, pp. 891-894; Lackenby, A., Hungnes, O., Dudman, S.G., Emergence of resistance to oseltamivir among influenza A(H1N1) viruses in Europe (2008) Euro Surveill, 13, p. pii: 8026; (2017) Pandemic Influenza Risk Management – A WHO guide to inform & harmonize national & international pandemic preparedness and response, , http://www.who.int/influenza/preparedness/pandemic/PIRM_withCoverPage_201710_FINAL.pdf?ua=1, Accessed November 14, 2017; FluNet, , http://www.who.int/influenza/gisrs_laboratory/flunet/en/, Available from, Accessed November 27, 2017; (2011) Report of the Review Committee on the functioning of the International Health Regulations (2005) in relation to Pandemic (H1N1) 2009, , http://apps.who.int/gb/ebwha/pdf_files/WHA64/A64_10-en.pdf, Accessed November 14, 2017; (2017) Berlin Declaration of the G20 Health Ministers – together today for a healthy tomorrow; Kapczynski, A., (2017) Order without intellectual property law: open science in influenza, , http://cornelllawreview.org/files/2017/10/Kapczynskifinal.pdf, Accessed November 14, 2017; Zhang, W., Webster, R.G., Can we beat influenza? (2017) Science, 357, p. 111","Ziegler, T.; Research Center for Child Psychiatry, University of TurkuFinland; email: thedi.ziegler@utu.fi",,"Blackwell Publishing Ltd",17502640,,,"29727518","English","Influ. Other Respir. Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85051283884 "Chan M., Koo S.H., Jiang B., Lim P.Q., Tan T.Y.","57188856193;57202849318;56937537600;57202859516;23475824500;","Comparison of the Biofire FilmArray Respiratory Panel, Seegene AnyplexII RV16, and Argene for the detection of respiratory viruses",2018,"Journal of Clinical Virology","106",,,"13","17",,4,"10.1016/j.jcv.2018.07.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049586998&doi=10.1016%2fj.jcv.2018.07.002&partnerID=40&md5=b662c9620344c1889c9629a6a6ed1466","Department of Laboratory Medicine, Changi General Hospital, Singapore; Clinical Trials & Research Unit, Changi General Hospital, Singapore","Chan, M., Department of Laboratory Medicine, Changi General Hospital, Singapore; Koo, S.H., Clinical Trials & Research Unit, Changi General Hospital, Singapore; Jiang, B., Department of Laboratory Medicine, Changi General Hospital, Singapore; Lim, P.Q., Clinical Trials & Research Unit, Changi General Hospital, Singapore; Tan, T.Y., Department of Laboratory Medicine, Changi General Hospital, Singapore","Background: Respiratory infections are common reasons for hospital admission, and are associated with enormous economic burden due to significant morbidity and mortality. The wide spectrum of microbial agents underlying the pathology renders the diagnosis of respiratory infections challenging. Molecular diagnostics offer an advantage to the current serological and culture-based methods in terms of sensitivity, coverage, hands-on time, and time to results. Objectives: This study aimed to compare the clinical performance of three commercial kits for respiratory viral detection. Study design: The performance of FilmArray Respiratory Panel, AnyplexII RV16, and Argene was compared using clinical respiratory samples (n = 224, comprising 189 nasopharyngeal swabs in Universal Transport Medium (UTM) and 35 endotracheal aspirates), based on common overlapping targets across the platforms. Influenza A “equivocal” and “no-subtype” samples by FilmArray were further compared to a laboratory-developed Influenza A/B test. Results and Conclusions: The overall performance of all three platforms appeared to be comparable with regards to sensitivities (95.8–97.9%) and specificities (96.1–98.0%), detection of coinfections, and distinguishment of influenza from non-influenza cases. “Equivocal” and “no-subtype” samples by FilmArray mostly represented weak Influenza A by laboratory-developed test. Lower respiratory tract samples had comparable final-run success-rates and discordant-rates as compared to UTM. Coronavirus HKU1, which was not targeted by AnyplexII RV16, were detected as OC43. The expected test volume would be the main determinant for the selection of platform. Among the platforms, the FilmArray is the most automated but is of the lowest-throughput and has the highest reagent cost. © 2018 Elsevier B.V.","Molecular diagnostics; Respiratory infections; Viruses","Adenoviridae; Article; Bocaparvovirus; controlled study; Coronavirinae; Enterovirus; human; human cell; Human rhinovirus; human tissue; influenza A; intermethod comparison; lower respiratory tract; major clinical study; mixed infection; Paramyxovirinae; priority journal; real time polymerase chain reaction; respiratory virus; Rhinovirus; sensitivity and specificity; throat culture; tracheal aspiration procedure; viral respiratory tract infection; virus detection; classification; comparative study; diagnostic kit; economics; genetics; hospitalization; influenza; isolation and purification; mixed infection; molecular diagnosis; multiplex polymerase chain reaction; nasopharynx; respiratory tract infection; standards; virology; virus; Coinfection; Enterovirus; Hospitalization; Humans; Influenza, Human; Molecular Diagnostic Techniques; Multiplex Polymerase Chain Reaction; Nasopharynx; Reagent Kits, Diagnostic; Respiratory Tract Infections; Rhinovirus; Sensitivity and Specificity; Viruses","Templeton, K.E., Why diagnose respiratory viral infection? (2007) J. Clin. Virol., 40 (November Suppl. 1), pp. S2-S4; Pillet, S., Lardeux, M., Dina, J., Grattard, F., Verhoeven, P., Le Goff, J., Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections (2013) PLoS One, 8 (8); Popowitch, E.B., O'Neill, S.S., Miller, M.B., Comparison of the ofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses (2013) J. Clin. Microbiol., 51 (May (5)), pp. 1528-1533; Fox, J.D., Respiratory virus surveillance and outbreak investigation (2007) J. Clin. Virol., 40 (November Suppl. 1), pp. S24-S30; Chen, J.H., Lam, H.Y., Yip, C.C., Wong, S.C., Chan, J.F., Ma, E.S., Clinical evaluation of the new high-throughput Luminex NxTAG respiratory pathogen panel assay for multiplex respiratory pathogen detection (2016) J. Clin. Microbiol., (April (27)); Bollani, L., Baraldi, E., Chirico, G., Dotta, A., Lanari, M., Del Vecchio, A., Revised recommendations concerning palivizumab prophylaxis for respiratory syncytial virus (RSV) (2015) Ital. J. Pediatr., 41, p. 97; Gorisek Miksic, N., Ursic, T., Simonovic, Z., Lusa, L., Lobnik Rojko, P., Petrovec, M., Oseltamivir prophylaxis in controlling influenza outbreak in nursing homes: a comparison between three different approaches (2015) Infection, 43 (February (1)), pp. 73-81; Zhang, Z.Y., Liu, C., Zhu, Y.Z., Wei, Y.X., Tian, F., Zhao, G.P., Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome (2012) Int. J. Food Microbiol., 153 (February (1–2)), pp. 166-170; Uyeki, T.M., Prasad, R., Vukotich, C., Stebbins, S., Rinaldo, C.R., Ferng, Y.H., Low sensitivity of rapid diagnostic test for influenza (2009) Clin. Infect. Dis., 48 (May (9)), pp. e89-e92; Goodrich, J.S., Miller, M.B., Comparison of Cepheid's analyte-specific reagents with BD directigen for detection of respiratory syncytial virus (2007) J. Clin. Microbiol., 45 (February (2)), pp. 604-606; Branche, A.R., Walsh, E.E., Formica, M.A., Falsey, A.R., Detection of respiratory viruses in sputum from adults by use of automated multiplex PCR (2014) J. Clin. Microbiol., 52 (October (10)), pp. 3590-3596; Kim, H.K., Oh, S.H., Yun, K.A., Sung, H., Kim, M.N., Comparison of anyplex II RV16 with the xTAG respiratory viral panel and seeplex RV15 for detection of respiratory viruses (2013) J. Clin. Microbiol., 51 (April (4)), pp. 1137-1141; Doern, C.D., Lacey, D., Huang, R., Haag, C., Evaluation and implementation of FilmArray version 1.7 for improved detection of adenovirus respiratory tract infection (2013) J. Clin. Microbiol., 51 (Decenber (12)), pp. 4036-4039; Andersson, M.E., Olofsson, S., Lindh, M., Comparison of the FilmArray assay and in-house real-time PCR for detection of respiratory infection (2014) Scand. J. Infect. Dis., 46 (12), pp. 897-901. , 2014/12/01; Hammond, S.P., Gagne, L.S., Stock, S.R., Marty, F.M., Gelman, R.S., Marasco, W.A., Respiratory virus detection in immunocompromised patients with FilmArray Respiratory Panel compared to conventional methods (2012) J. Clin. Microbiol., 50 (October (10)), pp. 3216-3221; Rand, K.H., Rampersaud, H., Houck, H.J., Comparison of two multiplex methods for detection of respiratory viruses: FilmArray RP and xTAG RVP (2011) J. Clin. Microbiol., 49 (July (7)), pp. 2449-2453","Tan, T.Y.; Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore; email: thean_yen_tan@cgh.com.sg",,"Elsevier B.V.",13866532,,JCVIF,"30007137","English","J. Clin. Virol.",Article,"Final",,Scopus,2-s2.0-85049586998 "Powers J.A., Chiu E.S., Kraberger S.J., Roelke-Parker M., Lowery I., Erbeck K., Troyer R., Carver S., VandeWoude S.","57203804048;57193213854;37057713200;6603020361;57203802515;57203800834;6603198217;7003773446;6603018116;","Feline leukemia virus (FeLV) disease outcomes in a domestic cat breeding colony: Relationship to endogenous FeLV and other chronic viral infections",2018,"Journal of Virology","92","18", e00649,"","",,13,"10.1128/JVI.00649-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040767121&doi=10.1128%2fJVI.00649-18&partnerID=40&md5=6c05529a68b4159bc2caa6fb3f2b7013","Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States; Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States; Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada; School of Biological Sciences, University of Tasmania, Sandy Bay, TAS, Australia; Colorado State University, Fort Collins, CO, United States","Powers, J.A., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States; Chiu, E.S., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States; Kraberger, S.J., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States; Roelke-Parker, M., Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States; Lowery, I., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States; Erbeck, K., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States; Troyer, R., Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada; Carver, S., School of Biological Sciences, University of Tasmania, Sandy Bay, TAS, Australia; VandeWoude, S., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States, Colorado State University, Fort Collins, CO, United States","Exogenous feline leukemia virus (FeLV) is a feline gammaretrovirus that results in a variety of disease outcomes. Endogenous FeLV (enFeLV) is a replicationdefective provirus found in species belonging to the Felis genus, which includes the domestic cat (Felis catus). There have been few studies examining interaction between enFeLV genotype and FeLV progression. We examined point-in-time enFeLV and FeLV viral loads, as well as occurrence of FeLV/enFeLV recombinants (FeLV-B), to determine factors relating to clinical disease in a closed breeding colony of cats during a natural infection of FeLV. Coinfections with feline foamy virus (FFV), feline gammaherpesvirus 1 (FcaGHV-1), and feline coronavirus (FCoV) were also documented and analyzed for impact on cat health and FeLV disease. Correlation analysis and structural equation modeling techniques were used to measure interactions among disease parameters. Progressive FeLV disease and FeLV-B presence were associated with higher FeLV proviral and plasma viral loads. Female cats were more likely to have progressive disease and FeLV-B. Conversely, enFeLV copy number was higher in male cats and negatively associated with progressive FeLV disease. Males were more likely to have abortive FeLV disease. FFV proviral load was found to correlate positively with higher FeLV proviral and plasma viral load, detection of FeLV-B, and FCoV status. Male cats were much more likely to be infected with FcaGHV-1 than female cats. This analysis provides insights into the interplay between endogenous and exogenous FeLV during naturally occurring disease and reveals striking variation in the infection patterns among four chronic viral infections of domestic cats. © 2018 American Society for Microbiology. All Rights Reserved.","Endogenous; Feline foamy virus; Feline leukemia virus","animal cell; Article; breeding; chronic disease; controlled study; correlation analysis; disease association; disease course; domestic cat; Feline coronavirus; Feline foamy virus; feline gammaherpesvirus 1; Feline leukemia virus; Feline leukemia virus infection; female; gene dosage; male; mathematical model; mixed infection; nonhuman; priority journal; retrovirus infection; sex difference; virus load; virus recombinant; animal; cat; endogenous retrovirus; feline leukemia; Feline leukemia virus; genetics; genotype; isolation and purification; physiology; veterinary medicine; virology; virus infection; Animals; Breeding; Cats; Chronic Disease; Coinfection; Endogenous Retroviruses; Female; Genotype; Leukemia Virus, Feline; Leukemia, Feline; Male; Tumor Virus Infections; Viral Load","Hoover, E.A., Mullins, J.I., Feline leukemia virus infection and diseases (1991) J Am Vet Med Assoc, 199, pp. 1287-1297; Miyazawa, T., Infections of feline leukemia virus and feline immunodeficiency virus (2002) Front Biosci, 7, pp. d504-d518; Benveniste, R.E., Todaro, G.J., Segregation of RD-114 and FeLV-related sequences in crosses between domestic cat and leopard cat (1975) Nature, 257, pp. 506-508. , https://doi.org/10.1038/257506a0; Driscoll, C.A., Menotti-Raymond, M., Roca, A.L., Hupe, K., Johnson, W.E., Geffen, E., Harley, E.H., Macdonald, D.W., The Near Eastern origin of cat domestication (2007) Science, 317, pp. 519-523. , https://doi.org/10.1126/science.1139518; Johnson, W.E., Eizirik, E., Pecon-Slattery, J., Murphy, W.J., Antunes, A., Teeling, E., O'Brien, S.J., The late Miocene radiation of modern Felidae: A genetic assessment (2006) Science, 311, pp. 73-77. , https://doi.org/10.1126/science.1122277; Coffin, J.M., Evolution of retroviruses: Fossils in our DNA (2004) Proc Am Philos Soc, 148, pp. 264-280; Roca, A.L., Pecon-Slattery, J., O'Brien, S.J., Genomically intact endogenous feline leukemia viruses of recent origin (2004) J Virol, 78, pp. 4370-4375. , https://doi.org/10.1128/JVI.78.8.4370-4375.2004; Weiss, R.A., The discovery of endogenous retroviruses (2006) Retrovirology, 3, p. 67. , https://doi.org/10.1186/1742-4690-3-67; Rasmussen, H.B., Interactions between exogenous and endogenous retroviruses (1997) J Biomed Sci, 4, pp. 1-8; Tandon, R., Cattori, V., Willi, B., Meli, M.L., Gomes-Keller, M.A., Lutz, H., Hofmann-Lehmann, R., Copy number polymorphism of endogenous feline leukemia virus-like sequences (2007) Mol Cell Probes, 21, pp. 257-266. , https://doi.org/10.1016/j.mcp.2007.01.003; Tandon, R., Cattori, V., Pepin, A.C., Riond, B., Meli, M.L., McDonald, M., Doherr, M.G., Hofmann-Lehmann, R., Association between endogenous feline leukemia virus loads and exogenous feline leukemia virus infection in domestic cats (2008) Virus Res, 135, pp. 136-143. , https://doi.org/10.1016/j.virusres.2008.02.016; Jarrett, O., Hardy, W.D., Golder, M.C., Hay, D., The frequency of occurrence of feline leukaemia virus subgroups in cats (1978) Int J Cancer, 21, pp. 334-337. , https://doi.org/10.1002/ijc.2910210314; Dunham, S.P., Graham, E., Retroviral infections of small animals (2008) Vet Clin North Am Small Anim Pract, 38, pp. 879-901. , https://doi.org/10.1016/j.cvsm.2008.03.005; Gomes-Keller, M.A., Gönczi, E., Grenacher, B., Tandon, R., Hofman-Lehmann, R., Lutz, H., Fecal shedding of infectious feline leukemia virus and its nucleic acids: A transmission potential (2009) Vet Microbiol, 134, pp. 208-217. , https://doi.org/10.1016/j.vetmic.2008.08.011; Pacitti, A.M., Jarrett, O., Hay, D., Transmission of feline leukaemia virus in the milk of a non-viraemic cat (1986) Vet Rec, 118, pp. 381-384. , https://doi.org/10.1136/vr.118.14.381; Cattori, V., Tandon, R., Riond, B., Pepin, A.C., Lutz, H., Hofmann-Lehmann, R., The kinetics of feline leukaemia virus shedding in experimentally infected cats are associated with infection outcome (2009) Vet Microbiol, 133, pp. 292-296. , https://doi.org/10.1016/j.vetmic.2008.07.001; Overbaugh, J., Riedel, N., Hoover, E.A., Mullins, J.I., Transduction of endogenous envelope genes by feline leukaemia virus in vitro (1988) Nature, 332, pp. 731-734. , https://doi.org/10.1038/332731a0; Stewart, M., Warnock, M., Wheeler, A., Wilkie, N., Mullins, J., Onions, D., Neil, J., Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses (1986) J Virol, 58, pp. 825-834; Sarma, P.S., Log, T., Subgroup classification of feline leukemia and sarcoma viruses viral interference and neutralization tests (1973) Virology, 64, pp. 160-169. , https://doi.org/10.1016/0042-6822(73)90125-6; Jarrett, O., Russell, P.H., Differential growth and transmission in cats of feline leukaemia viruses of subgroups A and B (1978) Int J Cancer, 21, pp. 466-472; Donahue, P.R., Hoover, E.A., Beltz, G.A., Riedel, N., Hirsch, V.M., Overbaugh, J., Mullins, J.I., Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses (1988) J Virol, 62, pp. 722-731; Neil, J.C., Fulton, R., Rigby, M., Stewart, M., Feline leukaemia virus: Generation of pathogenic and oncogenic variants (1991) Curr Top Microbiol Immunol, 171, pp. 67-93; Abkowitz, J.L., Holly, R.D., Grant, C.K., Retrovirus-induced feline pure red cell aplasia (1987) J Clin Invest, 80, pp. 1056-1063. , https://doi.org/10.1172/JCI113160; Gleich, S., Hartmann, K., Hematology and serum biochemistry of feline immunodeficiency virus-infected and feline leukemia virusinfected cats (2009) J Vet Intern Med, 23, pp. 552-558. , https://doi.org/10.1111/j.1939-1676.2009.0303.x; Levy, J., Crawford, C., Hartmann, K., Hofmann-Lehmann, R., Little, S., Sundahl, E., Thayer, V., (2008) 2008 American Association of Feline Practitioners Feline Retrovirus Management Guidelines, , American Association of Feline Practitioners, Hillsborough, NJ; Chiu, E.S., Hoover, E.A., VandeWoude, S., A retrospective examination of feline leukemia subgroup characterization: Viral interference assays to deep sequencing (2018) Viruses, 10, p. 29. , https://doi.org/10.3390/v10010029; Stutzman-Rodriguez, K., Rovnak, J., VandeWoude, S., Troyer, R.M., Domestic cats seropositive for Felis catus gammaherpesvirus 1 are often qPCR negative (2016) Virology, 498, pp. 23-30. , https://doi.org/10.1016/j.virol.2016.07.027; Troyer, R.M., Beatty, J.A., Stutzman-Rodriguez, K.R., Carver, S., Lozano, C.C., Lee, J.S., Lappin, M.R., VandeWoude, S., Novel gammaherpesviruses in North American domestic cats, bobcats, and pumas: Identification, prevalence, and risk factors (2014) J Virol, 88, pp. 3914-3924. , https://doi.org/10.1128/JVI.03405-13; Ertl, R., Korb, M., Langbein-Detsch, I., Klein, D., Prevalence and risk factors of gammaherpesvirus infection in domestic cats in Central Europe (2015) Virol J, 12, p. 146. , https://doi.org/10.1186/s12985-015-0381-6; Beatty, J.A., Troyer, R.M., Carver, S., Barrs, V.R., Espinasse, F., Conradi, O., Stutzman-Rodriguez, K., VandeWoude, S., Felis catus gammaherpesvirus 1; A widely endemic potential pathogen of domestic cats (2014) Virology, 460-461, pp. 100-107; McLuckie, A., Tasker, S., Dhand, N.K., Spencer, S., Beatty, J.A., High prevalence of Felis catus gammaherpesvirus 1 infection in haemoplasma-infected cats supports co-transmission (2016) Vet J, 214, pp. 117-121. , https://doi.org/10.1016/j.tvjl.2016.06.001; German, A.C., Harbour, D.A., Helps, C.R., Gruffydd-Jones, T.J., Is feline foamy virus really apathogenic? (2008) Vet Immunol Immunopathol, 123, pp. 114-118. , https://doi.org/10.1016/j.vetimm.2008.01.035; Winkler, I.G., Löchelt, M., Flower, R.L.P., Epidemiology of feline foamy virus and feline immunodeficiency virus infections in domestic and feral cats: A seroepidemiological study (1999) J Clin Microbiol, 37, pp. 2848-2851; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clin Diagn Lab Immunol, 12, pp. 1209-1215; Hofmann-Lehmann, R., Cattori, V., Tandon, R., Boretti, F.S., Meli, M.L., Riond, B., Pepin, A.C., Lutz, H., Vaccination against the feline leukaemia virus: Outcome and response categories and long-term follow-up (2007) Vaccine, 25, pp. 5531-5539. , https://doi.org/10.1016/j.vaccine.2006.12.022; Torres, A.N., Mathiason, C.K., Hoover, E.A., Re-examination of feline leukemia virus: Host relationships using real-time PCR (2005) Virology, 332, pp. 272-283. , https://doi.org/10.1016/j.virol.2004.10.050; Carver, S., Beatty, J.A., Troyer, R.M., Harris, R.L., Stutzman-Rodriguez, K., Barrs, V.R., Chan, C.C., VandeWoude, S., Closing the gap on causal processes of infection risk from cross-sectional data: Structural equation models to understand infection and co-infection (2015) Parasit Vectors, 8, p. 658. , https://doi.org/10.1186/s13071-015-1274-7; Roca, A.L., Nash, W.G., Menninger, J.C., Murphy, W.J., O'Brien, S.J., Insertional polymorphisms of endogenous feline leukemia viruses (2005) J Virol, 79, pp. 3979-3986. , https://doi.org/10.1128/JVI.79.7.3979-3986.2005; Koshy, R., Gallo, R.C., Wong-Staal, F., Characterization of the endogenous feline leukemia virus-related DNA sequences in cats and attempts to identify exogenous viral sequences in tissues of virus-negative leukemic animals (1980) Virology, 103, pp. 434-445; Niman, H.L., Akhavi, M., Gardner, M.B., Stephenson, J.R., Roy-Burman, P., Differential expression of two distinct endogenous retrovirus genomes in developing tissues of the domestic cat (1980) J Natl Cancer Inst, 64, pp. 587-594; Tandon, R., Cattori, V., Willi, B., Lutz, H., Hofmann-Lehmann, R., Quantification of endogenous and exogenous feline leukemia virus sequences by real-time PCR assays (2008) Vet Immunol Immunopathol, 123, pp. 129-133. , https://doi.org/10.1016/j.vetimm.2008.01.027; Helfer-Hungerbuehler, A.K., Widmer, S., Hofmann-Lehmann, R., GAPDH pseudogenes and the quantification of feline genomic DNA equivalents (2013) Mol Biol Int, 2013, p. 587680. , https://doi.org/10.1155/2013/587680; Howard, K.E., Reckling, S.K., Egan, E.A., Dean, G.A., Acute mucosal pathogenesis of feline immunodeficiency virus is independent of viral dose in vaginally infected cats (2010) Retrovirology, 7, p. 2. , https://doi.org/10.1186/1742-4690-7-2; Kjellman, C., Sjögren, H.O., Widegren, B., The y chromosome: A graveyard for endogenous retroviruses (1995) Gene, 161, pp. 163-170; Charlesworth, B., The organization and evolution of the human y chromosome (2003) Genome Biol, 4, p. 226. , https://doi.org/10.1186/gb-2003-4-9-226; Murphy, W.J., Sun, S., Chen, Z.Q., Pecon-Slattery, J., O'Brien, S.J., Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping (1999) Genome Res, 9, pp. 1223-1230; Casey, J.W., Roach, A., Mullins, J.I., Burck, K.B., Nicolson, M.O., Gardner, M.B., Davidson, N., The U3 portion of feline leukemia virus DNA identifies horizontally acquired proviruses in leukemic cats (1981) Proc Natl Acad Sci U S A, 78, pp. 7778-7782; Berry, B.T., Ghosh, A.K., Kumar, D.V., Spodick, D.A., Roy-Burman, P., Structure and function of endogenous feline leukemia virus long terminal repeats and adjoining regions (1988) J Virol, 62, pp. 3631-3641; Schilthuizen, M., Giesbers, M.C.W.G., Beukeboom, L.W., Haldane's rule in the 21st century (2011) Heredity (Edinb), 107, p. 95. , https://doi.org/10.1038/hdy.2010.170; Hardy, W.D., McClelland, A.J., Zuckerman, E.E., Hess, P.W., Essex, M., Cotter, S.M., MacEwen, E.G., Hayes, A.A., Prevention of the contagious spread of feline leukaemia virus and the development of leukaemia in pet cats (1976) Nature, 263, pp. 326-328; Hoover, E.A., Rojko, J.L., Wilson, P.L., Olsen, R.G., Determinants of susceptibility and resistance to feline leukemia virus infection (1981) I. Role of Macrophages. J Natl Cancer Inst, 67, pp. 889-898; Rojko, J.L., Hoover, E.A., Mathes, L.E., Olsen, R.G., Schaller, J.P., Pathogenesis of experimental feline leukemia virus infection (1979) J Natl Cancer Inst, 63, pp. 759-768; Jarrett, O., Laird, H.M., Hay, D., Determinants of the host range of feline leukaemia viruses (1973) J Gen Virol, 20, pp. 69-75; Buller, R.S., Wehrly, K., Portis, J.L., Chesebro, B., Host genes conferring resistance to a central nervous system disease induced by a polytropic recombinant Friend murine retrovirus (1990) J Virol, 64, pp. 493-498; Buller, R.S., Sitbon, M., Portis, J.L., The endogenous mink cell focusforming (MCF) gp70 linked to the Rmcf gene restricts MCF virus replication in vivo and provides partial resistance to erythroleukemia induced by Friend murine leukemia virus (1988) J Exp Med, 167, pp. 1535-1546; Gardner, M.B., Genetic control of retroviral disease in aging wild mice (1993) Genetica, 91, pp. 199-209; Gardner, M.B., Kozak, C.A., O'Brien, S.J., The Lake Casitas wild mouse: Evolving genetic resistance to retroviral disease (1991) Trends Genet, 7, pp. 22-27; McDougall, A.S., Terry, A., Tzavaras, T., Cheney, C., Rojko, J., Neil, J.C., Defective endogenous proviruses are expressed in feline lymphoid cells: Evidence for a role in natural resistance to subgroup B feline leukemia viruses (1994) J Virol, 68, pp. 2151-2160; Buller, R.S., Ahmed, A., Portis, J.L., Identification of two forms of an endogenous murine retroviral env gene linked to the Rmcf locus (1987) J Virol, 61, pp. 29-34; Mura, M., Murcia, P., Caporale, M., Spencer, T.E., Nagashima, K., Rein, A., Palmarini, M., Late viral interference induced by transdominant Gag of an endogenous retrovirus (2004) Proc Natl Acad Sci U S A, 101, pp. 11117-11122. , https://doi.org/10.1073/pnas.0402877101; Miyazawa, M., Fujisawa, R., Physiology and pathology of host immune responses to exogenous and endogenous murine retroviruses - From gene fragments to epitopes (1994) Tohoku J Exp Med, 173, pp. 91-103; Smith, E.J., Endogenous avian leukemia viruses, p 101-120 (1986) Developments in Veterinary Virology, 4. , de Boer GF (ed), Avian leukosis. Springer, Boston, MA; Wainberg, M.A., Halpern, M.S., Avian sarcomas: Immune responsiveness and pathology (1986) Developments in Veterinary Virology, 4, pp. 131-152. , de Boer GF (ed), Avian leukosis. Springer, Boston, MA; Roy-Burman, P., Endogenous env elements: Partners in generation of pathogenic feline leukemia viruses (1995) Virus Genes, 11, pp. 147-161; Phipps, A.J., Hayes, K.A., Al-Dubaib, M., Roy-Burman, P., Mathes, L.E., Inhibition of feline leukemia virus subgroup A infection by coinoculation with subgroup B (2000) Virology, 277, pp. 40-47. , https://doi.org/10.1006/viro.2000.0606; Stewart, H., Jarrett, O., Hosie, M.J., Willett, B.J., Complete genome sequences of two feline leukemia virus subgroup B isolates with novel recombination sites (2013) Genome Announc, 1, pp. e00036-e00112. , https://doi.org/10.1128/genomeA.00036-12; Anderson, M.M., Lauring, A.S., Robertson, S., Dirks, C., Overbaugh, J., Feline Pit2 functions as a receptor for subgroup B feline leukemia viruses (2001) J Virol, 75, pp. 10563-11057. , https://doi.org/10.1128/JVI.75.22.10563-10572.2001; Bleiholder, A., Mühle, M., Hechler, T., Bevins, S., VandeWoude, S., Denner, J., Löchelt, M., Pattern of seroreactivity against feline foamy virus proteins in domestic cats from Germany (2011) Vet Immunol Immunopathol, 143, pp. 292-300. , https://doi.org/10.1016/j.vetimm.2011.06.007; Nakamura, K., Miyazawa, T., Ikeda, Y., Sato, E., Nishimura, Y., Nguyen, N.T., Takahashi, E., Mikami, T., Contrastive prevalence of feline retrovirus infections between northern and southern Vietnam (2000) J Vet Med Sci, 62, pp. 921-923. , https://doi.org/10.1292/jvms.62.921; Dye, C., Helps, C.R., Siddell, S.G., Evaluation of real-time RT-PCR for the quantification of FCoV shedding in the faeces of domestic cats (2008) J Feline Med Surg, 10, pp. 167-174. , https://doi.org/10.1016/j.jfms.2007.10.010; Kurissio, J.K., Rodrigues, M.V., Taniwaki, S.A., De Zanutto, M.S., Filoni, C., Galdino, M.V., Araújo Júnior, J.P., Felis catus gammaherpesvirus 1 (FcaGHV1) and coinfections with feline viral pathogens in domestic cats in Brazil (2018) Cienc Rural, , https://doi.org/10.1590/0103-8478cr20170480, 15 March; Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus (1997) J Am Vet Med Assoc, 210, pp. 1313-1318; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet Pathol, 51, pp. 505-526. , https://doi.org/10.1177/0300985814522077; (2014) FIP - Feline Infectious Peritonitis, , https://www2.vet.cornell.edu/departments-centers-and-institutes/cornell-feline-health-center/health-information/feline-health-topics/feline-infectious-peritonitis, Cornell University College of Veterinary Medicine. Cornell University College of Veterinary Medicine, Ithaca, NY; Lee, J.S., Mackie, R.S., Harrison, T., Shariat, B., Kind, T., Kehl, T., Löchelt, M., VandeWoude, S., Targeted enrichment for pathogen detection and characterization in three felid species (2017) J Clin Microbiol, 55, pp. 1658-1670. , https://doi.org/10.1128/JCM.01463-16; Feline infectious peritonitis/feline coronavirus (FIP/FCoV) (2015) Information Sheet, , http://www.sheltermedicine.com/library/resources/feline-infectious-peritonitis-feline-coronavirus-fip-fcov, UC Davis Koret Shelter Medicine Program. 1 September","VandeWoude, S.; Colorado State UniversityUnited States; email: sue.vandewoude@colostate.edu",,"American Society for Microbiology",0022538X,,JOVIA,"29976676","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85040767121 "Ma X., Conrad T., Alchikh M., Reiche J., Schweiger B., Rath B.","57207304079;15044055600;57189995293;26644281200;6603810126;57211032027;","Can we distinguish respiratory viral infections based on clinical features? A prospective pediatric cohort compared to systematic literature review",2018,"Reviews in Medical Virology","28","5", e1997,"","",,4,"10.1002/rmv.1997","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050810876&doi=10.1002%2frmv.1997&partnerID=40&md5=2eba538e9edc7c9a6f81dd36e438bae0","Department of Pediatrics, Charité University Berlin, Berlin, Germany; National Reference Centre for Influenza, Robert Koch Institute, Berlin, Germany; Capital Institute of Pediatrics, Beijing, China; Department of Mathematics and Computer Sciences, Freie Universität Berlin, Berlin, Germany; Vienna Vaccine Safety Initiative, Berlin, Germany; University of Nottingham School of Medicine, Nottingham, United Kingdom; Université Bourgogne Franche-Comte, Besançon, France","Ma, X., Department of Pediatrics, Charité University Berlin, Berlin, Germany, National Reference Centre for Influenza, Robert Koch Institute, Berlin, Germany, Capital Institute of Pediatrics, Beijing, China; Conrad, T., Department of Mathematics and Computer Sciences, Freie Universität Berlin, Berlin, Germany; Alchikh, M., Department of Pediatrics, Charité University Berlin, Berlin, Germany, Vienna Vaccine Safety Initiative, Berlin, Germany; Reiche, J., National Reference Centre for Influenza, Robert Koch Institute, Berlin, Germany; Schweiger, B., National Reference Centre for Influenza, Robert Koch Institute, Berlin, Germany; Rath, B., Vienna Vaccine Safety Initiative, Berlin, Germany, University of Nottingham School of Medicine, Nottingham, United Kingdom, Université Bourgogne Franche-Comte, Besançon, France","Studies have shown that the predictive value of “clinical diagnoses” of influenza and other respiratory viral infections is low, especially in children. In routine care, pediatricians often resort to clinical diagnoses, even in the absence of robust evidence-based criteria. We used a dual approach to identify clinical characteristics that may help to differentiate infections with common pathogens including influenza, respiratory syncytial virus, adenovirus, metapneumovirus, rhinovirus, bocavirus-1, coronaviruses, or parainfluenza virus: (a) systematic review and meta-analysis of 47 clinical studies published in Medline (June 1996 to March 2017, PROSPERO registration number: CRD42017059557) comprising 49 858 individuals and (b) data-driven analysis of an inception cohort of 6073 children with ILI (aged 0-18 years, 56% male, December 2009 to March 2015) examined at the point of care in addition to blinded PCR testing. We determined pooled odds ratios for the literature analysis and compared these to odds ratios based on the clinical cohort dataset. This combined analysis suggested significant associations between influenza and fever or headache, as well as between respiratory syncytial virus infection and cough, dyspnea, and wheezing. Similarly, literature and cohort data agreed on significant associations between HMPV infection and cough, as well as adenovirus infection and fever. Importantly, none of the abovementioned features were unique to any particular pathogen but were also observed in association with other respiratory viruses. In summary, our “real-world” dataset confirmed published literature trends, but no individual feature allows any particular type of viral infection to be ruled in or ruled out. For the time being, laboratory confirmation remains essential. More research is needed to develop scientifically validated decision models to inform best practice guidelines and targeted diagnostic algorithms. © 2018 John Wiley & Sons, Ltd.","children; clinical symptoms; respiratory viruses","Bocaparvovirus; clinical feature; Coronavirinae; coughing; dyspnea; fever; headache; human; Human respiratory syncytial virus; influenza; Influenza virus; Medline; Metapneumovirus; nonhuman; Paramyxovirinae; respiratory syncytial virus infection; Review; Rhinovirus; systematic review; viral respiratory tract infection; wheezing; adolescent; age; child; clinical study; cohort analysis; differential diagnosis; infant; meta analysis; newborn; odds ratio; preschool child; respiratory tract infection; symptom assessment; virology; virus infection; Adolescent; Age Factors; Child; Child, Preschool; Clinical Studies as Topic; Cohort Studies; Diagnosis, Differential; Humans; Infant; Infant, Newborn; Odds Ratio; Respiratory Tract Infections; Symptom Assessment; Virus Diseases","Rudan, I., Chan, K.Y., Zhang, J.S., Causes of deaths in children younger than 5 years in China in 2008 (2010) Lancet, 375 (9720), pp. 1083-1089; Liu, L., Oza, S., Hogan, D., Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: An updated systematic analysis (2015) Lancet, 385 (9966), pp. 430-440; Tang, J.W., Lam, T.T., Zaraket, H., Global epidemiology of non-influenza RNA respiratory viruses: Data gaps and a growing need for surveillance (2017) Lancet Infect Dis, 17 (10), pp. e320-e326; Shi, T., McAllister, D.A., O'Brien, K.L., Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study (2017) Lancet, 390 (10098), pp. 946-958; Walker, C.L., Rudan, I., Liu, L., Global burden of childhood pneumonia and diarrhoea (2013) Lancet, 381 (9875), pp. 1405-1416; Thompson, W.W., Shay, D.K., Weintraub, E., Influenza-associated hospitalizations in the United States (2004) JAMA, 292 (11), pp. 1333-1340; Peltola, V., Reunanen, T., Ziegler, T., Silvennoinen, H., Heikkinen, T., Accuracy of clinical diagnosis of influenza in outpatient children (2005) Clin Infect Dis, 41 (8), pp. 1198-1200; Monto, A.S., Gravenstein, S., Elliott, M., Colopy, M., Schweinle, J., Clinical signs and symptoms predicting influenza infection (2000) Arch Intern Med, 160 (21), pp. 3243-3247; Jefferson, T., Smith, S., Demicheli, V., Harnden, A., Rivetti, A., Di Pietrantonj, C., Assessment of the efficacy and effectiveness of influenza vaccines in healthy children: Systematic review (2005) Lancet, 365 (9461), pp. 773-780; Rath, B., Conrad, T., Myles, P., Influenza and other respiratory viruses: Standardizing disease severity in surveillance and clinical trials (2017) Expert Rev Anti Infect Ther, 15 (6), pp. 545-568; Tuttle, R., Weick, A., Schwarz, W.S., Evaluation of novel second-generation RSV and influenza rapid tests at the point of care (2015) Diagn Microbiol Infect Dis, 81 (3), pp. 171-176; Chen, X., Pouran Yousef, K., Duwe, S., Quantitative influenza follow-up testing (QIFT)—a novel biomarker for the monitoring of disease activity at the point-of-care (2014) PLoS One, 9 (3); Rath, B., Tief, F., Obermeier, P., Early detection of influenza A and B infection in infants and children using conventional and fluorescence-based rapid testing (2012) J Clin Virol, 55 (4), pp. 329-333; Rath, B., von Kleist, M., Tief, F., Virus load kinetics and resistance development during oseltamivir treatment in infants and children infected with influenza A (H1N1) 2009 and influenza B viruses (2012) Pediatr Infect Dis J, 31 (9), pp. 899-905; Tief, F., Hoppe, C., Seeber, L., An inception cohort study assessing the role of pneumococcal and other bacterial pathogens in children with influenza and ILI and a clinical decision model for stringent antibiotic use (2016) Antivir Ther, 21 (5), pp. 413-424; Schulze, M., Nitsche, A., Schweiger, B., Biere, B., Diagnostic approach for the differentiation of the pandemic influenza a (H1N1) v virus from recent human influenza viruses by real-time PCR (2010) PLoS One, 5 (4); Biere, B., Bauer, B., Schweiger, B., Differentiation of influenza B virus lineages Yamagata and Victoria by real-time PCR (2010) J Clin Microbiol, 48 (4), pp. 1425-1427; Chmielewicz, B., Nitsche, A., Schweiger, B., Ellerbrok, H., Development of a PCR-based assay for detection, quantification, and genotyping of human adenoviruses (2005) Clin Chem, 51 (8), pp. 1365-1373; Reiche, J., Jacobsen, S., Neubauer, K., Human metapneumovirus: Insights from a ten-year molecular and epidemiological analysis in Germany (2014) PLoS One, 9 (2); Viechtbauer, W., Conducting meta-analyses in R with the metafor package (2010) J Statistic Softw, 36, pp. 1-48; Higgins, J.P., Thompson, S.G., Deeks, J.J., Altman, D.G., Measuring inconsistency in meta-analyses (2003) BMJ, 327 (7414), pp. 557-560; Sterne, J.A., Egger, M., Smith, G.D., Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis (2001) BMJ, 323 (7304), pp. 101-105; Kenneth, J., Rothman, S.G., (1998) Modern epidemiology, , 2nd, ed., Philadelphia, United States, Lippincott-Raven; Ahn, J.G., Choi, S.Y., Kim, D.S., Kim, K.H., Human bocavirus isolated from children with acute respiratory tract infections in Korea, 2010-2011 (2014) J Med Virol, 86 (12), pp. 2011-2018; Akhras, N., Weinberg, J.B., Newton, D., Human metapneumovirus and respiratory syncytial virus: Subtle differences but comparable severity (2010) Infect Dis Rep, 2; Ali, S.A., Williams, J.V., Chen, Q., Human metapneumovirus in hospitalized children in Amman, Jordan (2010) J Med Virol, 82 (6), pp. 1012-1016; Annamalay, A.A., Lanaspa, M., Khoo, S.K., Rhinovirus species and clinical features in children hospitalised with pneumonia from Mozambique (2016) Trop Med Int Health, 21 (9), pp. 1171-1180; Bhandary, R., Boloor, R., Detection of respiratory syncytial virus using direct fluorescent antibody assay in paediatric patients with acute respiratory tract infection (2016) J Clin Diagn Res, 10. , Dc10-12; Broor, S., Dawood, F.S., Pandey, B.G., Rates of respiratory virus-associated hospitalization in children aged <5 years in rural northern India (2014) J Infect, 68 (3), pp. 281-289; Bryant, P.A., Tebruegge, M., Papadakis, G., Clinical and microbiologic features associated with novel swine-origin influenza A pandemic 2009 (H1N1) virus in children: A prospective cohort study (2010) Pediatr Infect Dis J, 29 (8), pp. 694-698; Carballal, G., Videla, C., Misirlian, A., Requeijo, P.V., Aguilar, M.C., Adenovirus type 7 associated with severe and fatal acute lower respiratory infections in Argentine children (2002) BMC Pediatr, 2 (1), p. 6; Chang, M.L., Jordan-Villegas, A., Evans, A., Respiratory viruses identified in an urban children's hospital emergency department during the 2009 influenza A (H1N1) pandemic (2012) Pediatr Emerg Care, 28 (10), pp. 990-997; Chano, F., Rousseau, C., Laferriere, C., Couillard, M., Charest, H., Epidemiological survey of human metapneumovirus infection in a large pediatric tertiary care center (2005) J Clin Microbiol, 43 (11), pp. 5520-5525; Chen, X., Zhang, Z.Y., Zhao, Y., Liu, E.M., Zhao, X.D., Acute lower respiratory tract infections by human metapneumovirus in children in Southwest China: A 2-year study (2010) Pediatr Pulmonol, 45 (8), pp. 824-831; Cuevas, L.E., Nasser, A.M., Dove, W., Gurgel, R.Q., Greensill, J., Hart, C.A., Human metapneumovirus and respiratory syncytial virus, Brazil (2003) Emerg Infect Dis, 9 (12), pp. 1626-1628; Esposito, S., Zampiero, A., Bianchini, S., Epidemiology and clinical characteristics of respiratory infections due to adenovirus in children living in Milan, Italy, during 2013 and 2014 (2016) PLoS One, 11 (4). , e0152375; Fairchok, M.P., Martin, E.T., Chambers, S., Epidemiology of viral respiratory tract infections in a prospective cohort of infants and toddlers attending daycare (2010) J Clin Virol, 49 (1), pp. 16-20; Farng, K.T., Wu, K.G., Lee, Y.S., Lin, Y.H., Hwang, B.T., Comparison of clinical characteristics of adenovirus and non-adenovirus pneumonia in children (2002) J Microbiol Immunol Infect, 35, pp. 37-41; Fischer Langley, G., McCracken, J., Arvelo, W., The epidemiology and clinical characteristics of young children hospitalized with respiratory syncytial virus infections in Guatemala (2007-2010) (2013) Pediatr Infect Dis J, 32 (6), pp. 629-635; Flores, P., Rebelo-de-Andrade, H., Goncalves, P., Bronchiolitis caused by respiratory syncytial virus in an area of portugal: Epidemiology, clinical features, and risk factors (2004) Eur J Clin Microbiol Infect Dis, 23 (1), pp. 39-45; Giamberardin, H.I., Homsani, S., Bricks, L.F., Clinical and epidemiological features of respiratory virus infections in preschool children over two consecutive influenza seasons in southern Brazil (2016) J Med Virol, 88 (8), pp. 1325-1333; Halasa, N., Williams, J., Faouri, S., Natural history and epidemiology of respiratory syncytial virus infection in the Middle East: Hospital surveillance for children under age two in Jordan (2015) Vaccine, 33 (47), pp. 6479-6487; Hite, L.K., Glezen, W.P., Demmler, G.J., Munoz, F.M., Medically attended pediatric influenza during the resurgence of the Victoria lineage of influenza B virus (2007) Int J Infect Dis, 11 (1), pp. 40-47; Hombrouck, A., Sabbe, M., Van Casteren, V., Viral aetiology of influenza-like illness in Belgium during the influenza A (H1N1) 2009 pandemic (2012) Eur J Clin Microbiol Infect Dis, 31 (6), pp. 999-1007; Hsieh, Y.H., Tsai, C.A., Lin, C.Y., Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan (2014) BMC Infect Dis, 14 (1), p. 80; Huai, Y., Guan, X., Liu, S., Clinical characteristics and factors associated with severe acute respiratory infection and influenza among children in Jingzhou, China (2017) Influenza Other Respi Viruses, 11 (2), pp. 148-156; Jevsnik, M., Ursic, T., Zigon, N., Lusa, L., Krivec, U., Petrovec, M., Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease (2012) BMC Infect Dis, 12 (1), p. 365; Jin, Y., Song, J.R., Xie, Z.P., Prevalence and clinical characteristics of human CoV-HKU1 in children with acute respiratory tract infections in China (2010) J Clin Virol, 49 (2), pp. 126-130; Khamis, F.A., Al-Kobaisi, M.F., Al-Areimi, W.S., Al-Kindi, H., Al-Zakwani, I., Epidemiology of respiratory virus infections among infants and young children admitted to hospital in Oman (2012) J Med Virol, 84 (8), pp. 1323-1329; Kuo, C.Y., Huang, Y.C., Huang, C.G., Tsao, K.C., Lin, T.Y., Symptomatic predictors for 2009 influenza A virus (H1N1) infection with an emphasis for patients with a negative rapid diagnostic test (2011) PLoS One, 6 (12); Lamarao, L.M., Ramos, F.L., Mello, W.A., Prevalence and clinical features of respiratory syncytial virus in children hospitalized for community-acquired pneumonia in northern Brazil (2012) BMC Infect Dis, 12 (1), p. 119; Landa-Cardena, A., Morales-Romero, J., Garcia-Roman, R., Clinical characteristics and genetic variability of human rhinovirus in Mexico (2012) Viruses, 4 (2), pp. 200-210; Leung, T.F., Li, C.Y., Lam, W.Y., Epidemiology and clinical presentations of human coronavirus NL63 infections in Hong Kong children (2009) J Clin Microbiol, 47 (11), pp. 3486-3492; Martin, E.T., Kuypers, J., McRoberts, J.P., Englund, J.A., Zerr, D.M., Human Bocavirus 1 primary infection and shedding in infants (2015) J Infect Dis, 212 (4), pp. 516-524; Moreno-Valencia, Y., Hernandez-Hernandez, V.A., Romero-Espinoza, J.A., Detection and characterization of respiratory viruses causing acute respiratory illness and asthma exacerbation in children during three different season (2011-2014) in Mexico City (2015) Influenza Other Respi Viruses, 9 (6), pp. 287-292. , https://doi.org/10.1111/irv.12346; Nitsch-Osuch, A., Wozniak-Kosek, A., Korzeniewski, K., Zycinska, K., Wardyn, K., Brydak, L.B., Clinical features and outcomes of influenza A and B infections in children (2013) Adv Exp Med Biol, 788, pp. 89-96; Nokes, D.J., Ngama, M., Bett, A., Incidence and severity of respiratory syncytial virus pneumonia in rural Kenyan children identified through hospital surveillance (2009) Clin Infect Dis, 49 (9), pp. 1341-1349; Nyawanda, B.O., Mott, J.A., Njuguna, H.N., Evaluation of case definitions to detect respiratory syncytial virus infection in hospitalized children below 5 years in rural western Kenya, 2009-2013 (2016) BMC Infect Dis, 16 (1), p. 218; Pecchini, R., Berezin, E.N., Felicio, M.C., Incidence and clinical characteristics of the infection by the respiratory syncytial virus in children admitted in Santa Casa de Sao Paulo Hospital (2008) Braz J Infect, 12 (6), pp. 476-479; Pierangeli, A., Scagnolari, C., Selvaggi, C., Virological and clinical characterization of respiratory infections in children attending an emergency department during the first autumn-winter circulation of pandemic A (H1N1) 2009 influenza virus (2012) Clin Microbiol Infect, 18 (4), pp. 366-373; Ramagopal, G., Brow, E., Mannu, A., Vasudevan, J., Umadevi, L., Demographic, clinical and hematological profile of children with bronchiolitis: A comparative study between respiratory synctial virus [RSV] and [non RSV] groups (2016) J Clin Diagn Res, 10. , Sc05-08; Saha, A., Jha, N., Dubey, N.K., Gupta, V.K., Kalaivani, M., Swine-origin influenza A (H1N1) in Indian children (2010) Ann Trop Paediatr, 30 (1), pp. 51-55; Schuster, J.E., Khuri-Bulos, N., Faouri, S., Human Metapneumovirus infection in Jordanian children: Epidemiology and risk factors for severe disease (2015) Pediatr Infect Dis J, 34 (12), pp. 1335-1341; Smit, P.M., Bongers, K.M., Kuiper, R.J., von Rosenstiel, I.A., Smits, P.H., Brandjes, D.P., Characterization of 2009 H1N1 pandemic influenza in a population of Dutch children with influenza-like signs and symptoms (2012) Acta Paediatr, 101 (1), pp. 67-72; Smuts, H.E., Workman, L.J., Zar, H.J., Human rhinovirus infection in young African children with acute wheezing (2011) BMC Infect Dis, 11 (1), p. 65; Tresoldi, A.T., Pereira, R.M., Fraga, A.M., Clinical features and outcome of children and adolescents hospitalized with influenza A (H1N1) virus infection compared with flu-like symptoms and negative rapid tests for influenza A (H1N1) admitted in the same period of time (2011) J Trop Pediatr, 57 (6), pp. 481-483; von Linstow, M.L., Larsen, H.H., Eugen-Olsen, J., Human metapneumovirus and respiratory syncytial virus in hospitalized Danish children with acute respiratory tract infection (2004) Scand J Infect Dis, 36 (8), pp. 578-584; Weigl, J.A., Puppe, W., Schmitt, H.J., Can respiratory syncytial virus etiology be diagnosed clinically? A hospital-based case-control study in children under two years of age (2003) Eur J Epidemiol, 18 (5), pp. 431-439; Yan, X.L., Li, Y.N., Tang, Y.J., Clinical characteristics and viral load of respiratory syncytial virus and human metapneumovirus in children hospitaled for acute lower respiratory tract infection (2017) J Med Virol, 89 (4), pp. 589-597; Zimmerman, R.K., Rinaldo, C.R., Nowalk, M.P., Influenza and other respiratory virus infections in outpatients with medically attended acute respiratory infection during the 2011-12 influenza season (2014) Influenza Other Respi Viruses, 8 (4), pp. 397-405; Ebell, M.H., White, L.L., Casault, T., A systematic review of the history and physical examination to diagnose influenza (2004) J Am Board Fam Pract, 17 (1), pp. 1-5; Thornton, H.V., Blair, P.S., Lovering, A.M., Muir, P., Hay, A.D., Clinical presentation and microbiological diagnosis in paediatric respiratory tract infection: A systematic review (2015) Br J Gen Pract, 65 (631), pp. E69-E81; Macaubas, C., Nguyen, K.D., Peck, A., Alternative activation in systemic juvenile idiopathic arthritis monocytes (2012) Clin Immunol, 142 (3), pp. 362-372; Kliegman, R.M.S.B., St. Geme, J., Schor, N.F., Behrman, R.E., Nelson Textbook of Pediatrics (2011) Influenza Viruses, pp. 1121-1125. , 19th, ed., Philadelphia, United States, Elsevier-Health Sciences Division; Kliegman, R.M.S.B., St. Geme, J., Schor, N.F., Behrman, R.E., Nelson Textbook of Pediatrics (2011) Respiratory Syncytial Viruses, pp. 1126-1129. , 19th, ed., Philadelphia, United States, Elsevier-Health Sciences Division; Kliegman, R.M.S.B., St. Geme, J., Schor, N.F., Behrman, R.E., Nelson Textbook of Pediatrics (2011) Adenoviruses, pp. 1131-1132. , 19th, ed., Philadelphia, United States, Elsevier-Health Sciences Division; Scutti, S., If it's not the flu, you might be sick because of this virus, , https://edition.cnn.com/2018/01/30/health/adenoviruses-mimic-flu/index.html, Accessed January 30, 2018; Fox, M., Virus looks like flu, acts like flu, but it's not influenza, , https://www.aol.com/article/news/2018/01/29/virus-looks-like-flu-acts-like-flu-but-its-not-influenza/23346369/, Accessed January 29, 2018; Scotti, A., It Feels like the Flu but isn't: Meet the Adenovirus, , http://www.nydailynews.com/life-style/feels-flu-isn-meet-adenovirus-article-1.3791501, Accessed January 31, 2018; Alchikh, M., Hoppe, C., Papagrigoriou-Theorodridou, M.A., Harmonizing disease severity assessments in infants and children: The PEDSIDEA Consortium, , In Options for The Control of Influenza IX Conference, Chicago IL, USA; 2016 August 24-28; Kajon, A.E., Lamson, D.M., Bair, C.R., Adenovirus type 4 respiratory infections among civilian adults, Northeastern United States (2018) Emerg Infect Dis, 2011-2015 (1), pp. 201-209. , 24; Lamson, D.M., Kajon, A., Shudt, M., Girouard, G., St George, K., Detection and genetic characterization of adenovirus type 14 strain in students with influenza-like illness, New York, USA, 2014-2015 (2017) Emerg Infect Dis, 23 (7), pp. 1194-1197","Rath, B.; Vienna Vaccine Safety InitiativeGermany; email: barbara.rath@gmail.com",,"John Wiley and Sons Ltd",10529276,,RMVIE,"30043515","English","Rev. Med. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85050810876 "Ahmed A.E., Al-Jahdali H., Alaqeel M., Siddiq S.S., Alsaab H.A., Sakr E.A., Alyahya H.A., Alandonisi M.M., Subedar A.T., Ali Y.Z., Al Otaibi H., Aloudah N.M., Baharoon S., Al Johani S., Alghamdi M.G.","35278332600;6603777947;57192714520;57201396297;57201390059;57201398195;57201397225;55989163300;57201393771;55991355300;57201723840;57214293420;24477253100;26648040700;55936106800;","Factors associated with recovery delay in a sample of patients diagnosed by MERS-CoV rRT-PCR: A Saudi Arabian multicenter retrospective study",2018,"Influenza and other Respiratory Viruses","12","5",,"656","661",,1,"10.1111/irv.12560","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045877456&doi=10.1111%2firv.12560&partnerID=40&md5=f78ae4bf2aa268d499e409b5b6292851","King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia; Medical Records Department, Ministry of Health, Jeddah, Saudi Arabia; King Saud University, Riyadh, Saudi Arabia","Ahmed, A.E., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Al-Jahdali, H., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Alaqeel, M., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Siddiq, S.S., King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia; Alsaab, H.A., Medical Records Department, Ministry of Health, Jeddah, Saudi Arabia; Sakr, E.A., King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia; Alyahya, H.A., King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia; Alandonisi, M.M., King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia; Subedar, A.T., King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia; Ali, Y.Z., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Al Otaibi, H., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Aloudah, N.M., King Saud University, Riyadh, Saudi Arabia; Baharoon, S., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Al Johani, S., King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Alghamdi, M.G., King Fahad General Hospital - Jeddah, Jeddah, Saudi Arabia","Background: Research evidence exists that poor prognosis is common in Middle East respiratory syndrome coronavirus (MERS-CoV) patients. Objectives: This study estimates recovery delay intervals and identifies associated factors in a sample of Saudi Arabian patients admitted for suspected MERS-CoV and diagnosed by rRT-PCR assay. Methods: A multicenter retrospective study was conducted on 829 patients admitted between September 2012 and June 2016 and diagnosed by rRT-PCR procedures to have MERS-CoV and non-MERS-CoV infection in which 396 achieved recovery. Detailed medical charts were reviewed for each patient who achieved recovery. Time intervals in days were calculated from presentation to the initial rRT-PCR diagnosis (diagnosis delay) and from the initial rRT-PCR diagnosis to recovery (recovery delay). Results: The median recovery delay in our sample was 5 days. According to the multivariate negative binomial model, elderly (age ≥ 65), MERS-CoV infection, ICU admission, and abnormal radiology findings were associated with longer recovery delay (adjusted relative risk (aRR): 1.741, 2.138, 2.048, and 1.473, respectively). Camel contact and the presence of respiratory symptoms at presentation were associated with a shorter recovery delay (expedited recovery) (aRR: 0.267 and 0.537, respectively). Diagnosis delay is a positive predictor for recovery delay (r =.421; P =.001). Conclusions: The study evidence supports that longer recovery delay was seen in patients of older age, MERS-CoV infection, ICU admission, and abnormal radiology findings. Shorter recovery delay was found in patients who had camel contact and respiratory symptoms at presentation. These findings may help us understand clinical decision making on directing hospital resources toward prompt screening, monitoring, and implementing clinical recovery and treatment strategies. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","camel contact; diagnosis delay; MERS-CoV; PCR; recovery delay","adolescent; adult; aged; aging; Article; camel; child; delayed diagnosis; disease course; female; human; intensive care unit; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; polymerase chain reaction; priority journal; prognosis; radiography; real time reverse transcription polymerase chain reaction; respiratory tract disease; retrospective study; risk factor; Saudi Arabia; very elderly; animal; clinical trial; Coronavirus infection; genetics; infant; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; multicenter study; pathology; preschool child; real time polymerase chain reaction; remission; reverse transcription polymerase chain reaction; time factor; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Animals; Child; Child, Preschool; Coronavirus Infections; Female; Humans; Infant; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Real-Time Polymerase Chain Reaction; Remission, Spontaneous; Retrospective Studies; Reverse Transcriptase Polymerase Chain Reaction; Saudi Arabia; Time Factors; Young Adult","Middle East respiratory syndrome coronavirus (MERS-CoV): summary of current situation, literature update and risk assessment, , http://www.who.int/emergencies/mers-cov/en/, Accessed 31 September, 2017; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17, p. 615; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2017) Epidemiol Infect, pp. 1-7; Noorwali, A.A., Turkistani, A.M., Asiri, S.I., Descriptive epidemiology and characteristics of confirmed cases of Middle East respiratory syndrome coronavirus infection in the Makkah Region of Saudi Arabia, March to June 2014 (2015) Ann Saudi Med, 35, p. 203; Majumder, M.S., Rivers, C., Lofgren, E., Fisman, D., (2014) Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia Outbreak: insights from Publicly Available Data, , https://doi.org/10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c, PLOS Currents Outbreaks., Edition 1; El Bushra, H.E., Abdalla, M.N., Al Arbash, H., An outbreak of Middle East respiratory syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia, 2015 (2016) East Mediterr Health J, 22, p. 468; Coleman, C.M., Sisk, J.M., Halasz, G., CD8 +  T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91, pp. 1816-1825; Sha, J., Li, Y., Chen, X., Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea (2016) Arch Virol, 23, pp. 1-2; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14, pp. 464-470; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Critically Ill patients with the Middle East respiratory syndrome: a multicenter retrospective cohort study (2017) Crit Care Med, 45, pp. 1683-1695; Adegboye, O.A., Gayawan, E., Hanna, F., Spatial modelling of contribution of individual level risk factors for mortality from Middle East respiratory syndrome coronavirus in the Arabian Peninsula (2017) PLoS ONE, 12; Banik, G.R., Alqahtani, A.S., Booy, R., Rashid, H., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virol Sin, 31, pp. 81-84; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012–2015 (2016) Am J Epidemiol, 184, pp. 460-464; Kim, S.W., Yang, T.U., Jeong, Y., Park, J.W., Lee, K.J., Kim, K.M., Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278; Shalhoub, S., AlZahrani, A., Simhairi, R., Mushtaq, A., Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report (2015) J Clin Virol, 62, pp. 69-71; Al-Turaiki, I., Alshahrani, M., Almutairi, T., Building predictive models for MERS-CoV infections using data mining techniques (2016) J Infect Public Health, 9, pp. 744-748; Ahmed, A.E., Diagnostic delays in 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2017) Int J Infect Dis, 62, pp. 47-51; Lee, J.Y., Kim, Y.J., Chung, E.H., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis, 17, p. 498; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Case definition and surveillance guidance - updated June 2015, , www.moh.gov.sa/en/CCC/Regulations/Case%20Definition.pdf, Accessed September 28, 2017; Ahmed, A.E., Al-Jahdali, H., Alshukairi, A.N., Early identification of pneumonia patients at increased risk of MERS-CoV infection in Saudi Arabia (2018) Int J Infect Dis, 70, pp. 51-56; Fialkow, L., Farenzena, M., Wawrzeniak, I.C., Mechanical ventilation in patients in the intensive care unit of a general university hospital in southern Brazil: an epidemiological study (2016) Clinics, 71, pp. 144-151; Al-Dorzi, H.M., Aldawood, A.S., Khan, R., The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study (2016) Ann Intensive care, 6, p. 101; Ahmed, A.E., McClish, D.K., Schubert, C.M., Accuracy and cost comparison in medical testing using sequential testing strategies (2011) Stat Med, 30, pp. 3416-3430; Ahmed, A.E., Schubert, C.M., McClish, D.K., Reducing cost in sequential testing: a limit of indifference approach (2013) Stat Med, 32, pp. 2715-2727; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22, p. 1113; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses (2017) Sci Immunol, 2, p. 5393","Ahmed, A.E.; King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health AffairsSaudi Arabia; email: ahmeda5@vcu.edu",,"Blackwell Publishing Ltd",17502640,,,"29624866","English","Influ. Other Respir. Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85045877456 "Sowman H.R., Cave N.J., Dunowska M.","57203034617;57192935658;6602358317;","A survey of canine respiratory pathogens in New Zealand dogs",2018,"New Zealand Veterinary Journal","66","5",,"236","242",,3,"10.1080/00480169.2018.1490214","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050366298&doi=10.1080%2f00480169.2018.1490214&partnerID=40&md5=66871ebb6c6a2c7d039c7e49c5704cc6","School of Veterinary Science, Massey University, Palmerston North, New Zealand; Ministry for Primary Industries, Wallaceville, New Zealand","Sowman, H.R., School of Veterinary Science, Massey University, Palmerston North, New Zealand, Ministry for Primary Industries, Wallaceville, New Zealand; Cave, N.J., School of Veterinary Science, Massey University, Palmerston North, New Zealand; Dunowska, M., School of Veterinary Science, Massey University, Palmerston North, New Zealand","AIMS: To determine which of the common canine respiratory pathogens circulate among selected populations of healthy and diseased dogs in New Zealand. METHODS: Coagulated blood samples for serology and oropharyngeal swabs for virology were collected from healthy dogs (n=47) and from dogs with acute respiratory disease (n=49). For diseased dogs a convalescent blood sample was also collected 3–4 weeks later. Oropharyngeal swabs were subjected to virus isolation and tested for canine parainfluenza virus (CPIV), canine adenovirus (CAdV) 2, canine herpesvirus (CHV), canine respiratory coronavirus (CRCoV), canine influenza virus (CIV), canine distemper virus (CDV), Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, and Mycoplasma cynos nucleic acids by quantitative PCR (qPCR). Sera were tested for CRCoV antibody using competitive ELISA and results expressed as percent of inhibition (POI). RESULTS: The mean age of diseased dogs (2.7, min <0.5, max 8.5 years) was lower than the mean age of healthy dogs (5.3, min <0.5, max 17 years) (p<0.001). In total, 20/94 (21%) dogs were positive for at least one agent by qPCR. Diseased dogs were most commonly positive for M. cynos (8/47, 17%), followed by CPIV (3/47, 6%) and B. bronchiseptica (3/47, 6%), while healthy dogs were most commonly positive for CAdV-2 (6/47, 13%), followed by M. cynos (2/47, 4%). All samples were negative for CIV, CRCoV, CDV and S. equi subsp. zooepidemicus. Viruses were not isolated from any of the samples tested. In total, 47/93 (50%) dogs were seropositive for CRCoV on at least one sampling occasion. Samples from diseased dogs were more frequently seropositive for CRCoV, with higher POI, than samples from healthy dogs. CONCLUSIONS AND CLINICAL RELEVANCE: We showed that CAdV-2, CPIV, CHV, CRCoV, B. bronchiseptica and M. cynos circulated among sampled dogs. The convenience sampling methodology, with a poor match between the populations of diseased and healthy dogs in terms of age, breed and use, together with the relatively small sample size precluded inference of any causal relationships between infection with a given pathogen and development of disease. None-the-less, our data suggest that further investigation into epidemiology and disease association of CRCoV and M. cynos is warranted. In addition, circulation of novel respiratory pathogens among dogs in New Zealand should be considered in future studies, as 70/94 (74%) diseased dogs were negative for all the pathogens tested. © 2018, © 2018 New Zealand Veterinary Association.","canine coronavirus; canine respiratory viruses; infectious canine tracheobronchitis; Kennel cough; Mycoplasma cynos","animal; dog; dog disease; microbiology; New Zealand; questionnaire; respiratory tract infection; veterinary; virology; Animals; Dog Diseases; Dogs; New Zealand; Respiratory Tract Infections; Surveys and Questionnaires","Virus Taxonomy: The Classification and Nomenclature of Viruses. The Online (10th) Report of the ICTV, , https://talk.ictvonline.org/ictv-reports/ictv_online_report/, accessed 12 June 2018). International Committee for the Taxonomy of Viruses, 2017; Appel, M.J., Binn, L.N., Canine infectious tracheobronchitis short review: kennel cough (1987) Virus Infections of Vertebrates I: Virus Infections of Carnivores, pp. 201-211. , Appel M.J., (ed), Elsevier, Amsterdam, The Netherlands:. In:, (ed; Bemis, D.A., Carmichael, L.E., Appel, M.J., Naturally occurring respiratory disease in a kennel caused by Bordetella bronchiseptica (1977) Cornell Veterinarian, 67, pp. 282-293; Binn, L.N., Marchwicki, R.H., Keenan, K.P., Strano, A.J., Engler, W.F., Recovery of reovirus type 2 from an immature dog with respiratory tract disease (1977) American Journal of Veterinary Research, 38, pp. 927-929; Bukh, J., Hepatitis C homolog in dogs with respiratory illness (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 12563-12564; Bulut, O., Yapici, O., Avci, O., Simsek, A., Atli, K., Dik, I., Yavru, S., Mamak, N., The serological and virological investigation of canine adenovirus infection on the dogs (2013) The Scientific World Journal, 2013, p. 587024; Bunpapong, N., Nonthabenjawan, N., Chaiwong, S., Tangwangvivat, R., Boonyapisitsopa, S., Jairak, W., Tuanudom, R., Thanawongnuwech, R., Genetic characterization of canine influenza A virus (H3N2) in Thailand (2014) Virus Genes, 48, pp. 56-63; Buonavoglia, C., Martella, V., Canine respiratory viruses (2007) Veterinary Research, 38, pp. 355-373; Carter, M.E., Hunter, R., Isolation of parainfluenza type 3 virus from sheep in New Zealand (1970) New Zealand Veterinary Journal, 18, pp. 226-227; Cave, N.J., Jackson, R., Bridges, J.P., Policies for the vaccination of cats and dogs in New Zealand veterinary practices (2016) New Zealand Veterinary Journal, 64, pp. 145-153; Chalker, V.J., Owen, W.M., Paterson, C., Barker, E., Brooks, H., Rycroft, A.N., Brownlie, J., Mycoplasmas associated with canine infectious respiratory disease (2004) Microbiology, 150, pp. 3491-3497; Chalker, V.J., Waller, A., Webb, K., Spearing, E., Crosse, P., Brownlie, J., Erles, K., Genetic diversity of Streptococcus equi subsp. zooepidemicus and doxycycline resistance in kennelled dogs (2012) Journal of Clinical Microbiology, 50, pp. 2134-2136; Chatziandreou, N., Stock, N., Young, D., Andrejeva, J., Hagmaier, K., McGeoch, D.J., Randall, R.E., Relationships and host range of human, canine, simian and porcine isolates of simian virus 5 (parainfluenza virus 5) (2004) Journal of General Virology, 85, pp. 3007-3016; Choppin, P.W., Isolation of paramyxoviruses from patients with chronic neurologic diseases (1981) Journal of Infectious Diseases, 143, pp. 501-503; Collins, P.J., Vachieri, S.G., Haire, L.F., Ogrodowicz, R.W., Martin, S.R., Walker, P.A., Xiong, X., Skehel, J.J., Recent evolution of equine influenza and the origin of canine influenza (2014) Proceedings of the National Academy of Sciences of the United States of America, 111, pp. 11175-11180; Crawford, P.C., Dubovi, E.J., Castleman, W.L., Stephenson, I., Gibbs, E.P., Chen, L., Smith, C., Pompey, J., Transmission of equine influenza virus to dogs (2005) Science, 310, pp. 482-485; Day, M.J., Horzinek, M.C., Schultz, R.D., Squires, R.A., WSAVA guidelines for the vaccination of dogs and cats (2016) Journal of Small Animal Practice, 57, pp. E1-E45; Decaro, N., Desario, C., Elia, G., Mari, V., Lucente, M.S., Cordioli, P., Colaianni, M.L., Buonavoglia, C., Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy (2007) Veterinary Microbiology, 121, pp. 225-230; Decaro, N., Mari, V., Larocca, V., Losurdo, M., Lanave, G., Lucente, M.S., Corrente, M., Elia, G., Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease (2016) Veterinary Microbiology, 192, pp. 21-25; Ditchfield, J., Macpherson, L.W., Zbitnew, A., Association of canine adenovirus (Toronto A 26/61) with an outbreak of laryngotracheitis (“kennel cough”): a preliminary report (1962) Canadian Veterinary Journal, 3, pp. 238-247; Durham, P.J., Poole, W.S., Experimental canine herpesvirus infection in newborn puppies, using a New Zealand isolate (1979) New Zealand Veterinary Journal, 27, pp. 14-16; El-Attar, L.M., Mitchell, J.A., Brooks Brownlie, H., Priestnall, S.L., Brownlie, J., Detection of non-primate hepaciviruses in UK dogs (2015) Virology, 484, pp. 93-102; Ellis, J.A., Krakowka, G.S., A review of canine parainfluenza virus infection in dogs (2012) Journal of the American Veterinary Medical Association, 240, pp. 273-284; Erles, K., Brownlie, J., Investigation into the causes of canine infectious respiratory disease: antibody responses to canine respiratory coronavirus and canine herpesvirus in two kennelled dog populations (2005) Archives of Virology, 150, pp. 1493-1504; Erles, K., Brownlie, J., Canine respiratory coronavirus: an emerging pathogen in the canine infectious respiratory disease complex (2008) Veterinary Clinics of North America: Small Animal Practice, 38, pp. 815-825; Erles, K., Toomey, C., Brooks, H.W., Brownlie, J., Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease (2003) Virology, 310, pp. 216-223; Erles, K., Dubovi, E.J., Brooks, H.W., Brownlie, J., Longitudinal study of viruses associated with canine infectious respiratory disease (2004) Journal of Clinical Microbiology, 42, pp. 4524-4529; Erles, K., Shiu, K.B., Brownlie, J., Isolation and sequence analysis of canine respiratory coronavirus (2007) Virus Research, 124, pp. 78-87; Frank, A.L., Couch, R.B., Griffis, C.A., Baxter, B.D., Comparison of different tissue cultures for isolation and quantitation of influenza and parainfluenza viruses (1979) Journal of Clinical Microbiology, 10, pp. 32-36; Freshney, R.I., (2010) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, , 6th Edtn, Wiley-Blackwell, Hoboken, NJ, USA; Hill, F., Infectious and parasitic diseases of dogs in New Zealand (1999) Surveillance, 26 (1), pp. 3-5; Joffe, D.J., Lelewski, R., Weese, J.S., McGill-Worsley, J., Shankel, C., Mendonca, S., Sager, T., Poljak, Z., Factors associated with development of canine infectious respiratory disease complex (CIRDC) in dogs in 5 Canadian small animal clinics (2016) Canadian Veterinary Journal, 57, pp. 46-51; Kapoor, A., Mehta, N., Dubovi, E.J., Simmonds, P., Govindasamy, L., Medina, J.L., Street, C., Lipkin, W.I., Characterization of novel canine bocaviruses and their association with respiratory disease (2012) Journal of General Virology, 93, pp. 341-346; Karpas, A., Garcia, F.G., Calvo, F., Cross, R.E., Experimental production of canine tracheobronchitis (kennel cough) with canine herpesvirus isolated from naturally infected dogs (1968) American Journal of Veterinary Research, 29, pp. 1251-1257; Keil, D.J., Fenwick, B., Role of Bordetella bronchiseptica in infectious tracheobronchitis in dogs (1998) Journal of the American Veterinary Medical Association, 212, pp. 200-207; Knesl, O., Allan, F.J., Shields, S., The seroprevalence of canine respiratory coronavirus and canine influenza virus in dogs in New Zealand (2009) New Zealand Veterinary Journal, 57, pp. 295-298; Lavan, R., Knesl, O., Prevalence of canine infectious respiratory pathogens in asymptomatic dogs presented at US animal shelters (2015) Journal of Small Animal Practice, 56, pp. 572-576; Ledbetter, E.C., Hornbuckle, W.E., Dubovi, E.J., Virologic survey of dogs with naturally acquired idiopathic conjunctivitis (2009) Journal of the American Veterinary Medical Association, 235, pp. 954-959; Lee, E., Kim, E.J., Kim, B.H., Song, J.Y., Cho, I.S., Shin, Y.K., Molecular analyses of H3N2 canine influenza viruses isolated from Korea during 2013–2014 (2016) Virus Genes, 52, pp. 204-217; Liu, C., Li, X., Zhang, J., Yang, L., Li, F., Deng, J., Tan, F., Tian, K., Isolation and genomic characterization of a canine parainfluenza virus type 5 strain in China (2017) Archives of Virology, 162, pp. 2337-2344; McGavin, D.R., Mellows, A.J., Choice, L., Evidence for Australia-wide canine parainfluenza infection (1989) Australian Veterinary Journal, 66, p. 221; Mitchell, J.A., Cardwell, J.M., Leach, H., Walker, C.A., Le Poder, S., Decaro, N., Rusvai, M., Fernandez, M., European surveillance of emerging pathogens associated with canine infectious respiratory disease (2017) Veterinary Microbiology, 212, pp. 31-38; Mochizuki, M., Yachi, A., Ohshima, T., Ohuchi, A., Ishida, T., Etiologic study on upper respiratory infections of household dogs (2008) Journal of Veterinary Medical Science, 70, pp. 563-569; Monteiro, F.L., Cargnelutti, J.F., Martins, M., Anziliero, D., Erhardt, M.M., Weiblen, R., Flores, E.F., Detection of respiratory viruses in shelter dogs maintained under varying environmental conditions (2016) Brazilian Journal of Microbiology, 47, pp. 876-881; Norby, E.E., Jarman, R.G., Keiser, P.B., Binn, L.N., Hang, J., Genome sequence of a novel canine picornavirus isolated from an American foxhound (2017) Genome Announcements, 5, pp. e17-e00338; Oem, J.K., Kim, S.H., Kim, Y.H., Lee, M.H., Lee, K.K., Molecular characteristics of canine parainfluenza viruses type 5 (CPIV-5) isolated in Korea (2015) Canadian Journal of Veterinary Research, 79, pp. 64-67; Payungporn, S., Crawford, P.C., Kouo, T.S., Chen, L.M., Pompey, J., Castleman, W.L., Dubovi, E.J., Donis, R.O., Influenza A virus (H3N8) in dogs with respiratory disease, Florida (2008) Emerging Infectious Diseases, 14, pp. 902-908; Priestnall, S.L., Brownlie, J., Dubovi, E.J., Erles, K., Serological prevalence of canine respiratory coronavirus (2006) Veterinary Microbiology, 115, pp. 43-53; Priestnall, S.L., Mitchell, J.A., Walker, C.A., Erles, K., Brownlie, J., New and emerging pathogens in canine infectious respiratory disease (2014) Veterinary Pathology, 51, pp. 492-504; Renshaw, R.W., Zylich, N.C., Laverack, M.A., Glaser, A.L., Dubovi, E.J., Pneumovirus in dogs with acute respiratory disease (2010) Emerging Infectious Diseases, 16, pp. 993-995; Rima, B.K., Gatherer, D., Young, D.F., Norsted, H., Randall, R.E., Davison, A.J., Stability of the parainfluenza virus 5 genome revealed by deep sequencing of strains isolated from different hosts and following passage in cell culture (2014) Journal of Virology, 88, pp. 3826-3836; Rycroft, A.N., Tsounakou, E., Chalker, V., Serological evidence of Mycoplasma cynos infection in canine infectious respiratory disease (2007) Veterinary Microbiology, 120, pp. 358-362; Schulz, B.S., Kurz, S., Weber, K., Balzer, H.J., Hartmann, K., Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections (2014) The Veterinary Journal, 201, pp. 365-369; Su, S., Chen, Y., Zhao, F.R., Chen, J.D., Xie, J.X., Chen, Z.M., Huang, Z., Zhang, M.Z., Avian-origin H3N2 canine influenza virus circulating in farmed dogs in Guangdong, China (2013) Infection, Genetics and Evolution, 19, pp. 251-256; Tham, K.M., Homer, G.W., Hunter, R., Isolation and identification of canine adenovirus type-2 from the upper respiratory tract of a dog (1998) New Zealand Veterinary Journal, 46, pp. 102-105; Weese, J.S., Stull, J., Respiratory disease outbreak in a veterinary hospital associated with canine parainfluenza virus infection (2013) Canadian Veterinary Journal, 54, pp. 79-82; Woo, P.C., Lau, S.K., Choi, G.K., Huang, Y., Teng, J.L., Tsoi, H.W., Tse, H., Jin, D.Y., Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily (2012) Journal of Virology, 86, pp. 2797-2808; Yang, X., Liu, C., Liu, F., Liu, D., Chen, Y., Zhang, H., Qu, L., Liu, M., Identification and genetic characterization of avian-origin H3N2 canine influenza viruses isolated from the Liaoning province of China in 2012 (2014) Virus Genes, 49, pp. 342-347","Dunowska, M.; School of Veterinary Science, Massey UniversityNew Zealand; email: M.Dunowska@massey.ac.nz",,"Taylor and Francis Ltd.",00480169,,NEZTA,"29924957","English","New Zealand Vet. J.",Article,"Final",,Scopus,2-s2.0-85050366298 "Liu C., Chen Z., Hu Y., Ji H., Yu D., Shen W., Li S., Ruan J., Bu W., Gao S.","57209169218;55565880800;57202668672;57203861173;57203866463;56020789300;57203866410;56023743300;8637642800;36078986900;","Complemented palindromic small RNAs first discovered from SARS Coronavirus",2018,"Genes","9","9", 442,"","",,5,"10.3390/genes9090442","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053265442&doi=10.3390%2fgenes9090442&partnerID=40&md5=ca024ec89884b0a6eb2b8a04b697fbc9","Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, China; Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; College of Life Sciences, Nankai University, Tianjin, 300071, China; Institute of Statistics, Nankai University, Tianjin, 300071, China; School of Mathematical Sciences, Nankai University, Tianjin, 300071, China","Liu, C., Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Chen, Z., State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, 730046, China, Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Hu, Y., Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Ji, H., College of Life Sciences, Nankai University, Tianjin, 300071, China, Institute of Statistics, Nankai University, Tianjin, 300071, China; Yu, D., College of Life Sciences, Nankai University, Tianjin, 300071, China; Shen, W., Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Li, S., College of Life Sciences, Nankai University, Tianjin, 300071, China; Ruan, J., School of Mathematical Sciences, Nankai University, Tianjin, 300071, China; Bu, W., College of Life Sciences, Nankai University, Tianjin, 300071, China; Gao, S., College of Life Sciences, Nankai University, Tianjin, 300071, China, Institute of Statistics, Nankai University, Tianjin, 300071, China","In this study, we report for the first time the existence of complemented palindromic small RNAs (cpsRNAs) and propose that cpsRNAs and palindromic small RNAs (psRNAs) constitute a novel class of small RNAs. The first discovered 19-nt cpsRNA UUAACAAGCUUGUUAAAGA, named SARS-CoV-cpsR-19, was detected from a 22-bp DNA complemented palindrome TCTTTAACAAGCTTGTTAAAGA in the severe acute respiratory syndrome coronavirus (SARS-CoV) genome. The phylogenetic analysis supported that this DNA complemented palindrome originated from bat betacoronavirus. The results of RNA interference (RNAi) experiments showed that one 19-nt segment corresponding to SARS-CoV-cpsR-19 significantly induced cell apoptosis. Using this joint analysis of the molecular function and phylogeny, our results suggested that SARS-CoV-cpsR-19 could play a role in SARS-CoV infection or pathogenesis. The discovery of cpsRNAs has paved a way to find novel markers for pathogen detection and to reveal the mechanisms underlying infection or pathogenesis from a different point of view. Researchers can use cpsRNAs to study the infection or pathogenesis of pathogenic viruses when these viruses are not available. The discovery of psRNAs and cpsRNAs, as a novel class of small RNAs, also inspire researchers to investigate DNA palindromes and DNA complemented palindromes with lengths of psRNAs and cpsRNAs in viral genomes. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Complemented palindromic small RNA; DNA complemented palindrome; Palindromic small RNA; Severe acute respiratory syndrome coronavirus; Small RNA","biological marker; complemented palindromic small RNA; palindromic DNA; palindromic small RNA; small interfering RNA; small RNA; unclassified drug; virus RNA; xcomplemented palindromic DNA; apoptosis; Article; bat; Betacoronavirus; controlled study; nonhuman; phylogeny; RNA interference; RNA sequence; SARS coronavirus; severe acute respiratory syndrome; virus cell interaction; virus detection; virus genome; virus pathogenesis","Chen, Z., Sun, Y., Yang, X., Wu, Z., Guo, K., Niu, X., Wang, Q., Gao, S., Two featured series of rRNA-derived RNA fragments (RRFs) constitute a novel class of small RNAs (2017) Plos ONE, 12; Kreuze, J.F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., Simon, R., Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses (2009) Virology, 388, pp. 1-7; Li, R., Gao, S., Hernandez, A.G., Wechter, W.P., Fei, Z., Ling, K., Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation (2012) Plos ONE, 7; Zheng, Y., Gao, S., Chellappan, P., Li, R., Marco, G., Dina, G., Segundo, F., Fei, Z., VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs (2017) Virology, 500, pp. 130-138; Nayak, A., Tassetto, M., Kunitomi, M., Andino, R., (2013) RNA Interference-Mediated Intrinsic Antiviral Immunity in Invertebrates, 371, pp. 183-200. , Springer: Berlin/Heidelberg, Germany; Wang, F., Sun, Y., Ruan, J., Chen, R., Chen, X., Chen, C., Kreuze, J.F., Gao, S., Using small RNA deep sequencing to detect human viruses (2016) Biomed Res. Int., 2016; Niu, X., Sun, Y., Chen, Z., Li, R., Padmanabhan, C., Ruan, J., Kreuze, J.F., Gao, S., Using small RNA-seq data to detect siRNA duplexes induced by plant viruses (2017) Genes, 8, p. 163; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Genrich, G.L., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) Plos Pathog, 3; Gao, S., Tian, X., Chang, H., Sun, Y., Wu, Z., Cheng, Z., Dong, P., Bu, W., Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data (2017) Mitochondrion, p. 36; Elbashir, S.M., Harborth, J., Weber, K., Tuschl, T., Analysis of gene function in somatic mammalian cells using small interfering RNAs (2002) Methods, 26, pp. 199-213; Peng, X., Gralinski, L., Ferris, M.T., Frieman, M.B., Thomas, M.J., Proll, S., Korth, M.J., Luo, S., Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection (2011) Mbio, 2; Zhang, M., Zhan, F., Sun, H., Gong, X., Fei, Z., Gao, S., Fastq_clean: An optimized pipeline to clean the Illumina sequencing data with quality control Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), , Belfast, UK, 2-5 November 2014; Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol, 10, p. R25; Gao, S., Ou, J., Xiao, K., (2014) R Language and Bioconductor in Bioinformatics Applications, , Chinese ed.; Tianjin Science and Technology Translation Publishing Co., Ltd.: Tianjin, China; http://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 18th May 2014; Srivastava, S.K., Robins, H.S., Palindromic nucleotide analysis in human T cell receptor rearrangements (2012) Plos ONE, 7; Enserink, M., Clues to the animal origins of SARS (2003) Science, 300, p. 1351; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Chew, D.S.H., Choi, K.P., Heidner, H., Leung, M.Y., Palindromes in SARS and other coronaviruses (2004) Informs J. Comput., 16, pp. 331-340; Morales, L., Oliveros, J.C., Fernandez-Delgado, R., Tenoever, B.R., Enjuanes, L., Sola, I., SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology (2017) Cell Host Microbe, 21, pp. 344-355","Bu, W.; College of Life Sciences, Nankai UniversityChina; email: wenjunbu@nankai.edu.cn",,"MDPI AG",20734425,,,,"English","Genes",Article,"Final",Open Access,Scopus,2-s2.0-85053265442 "Szűcs Z., Kelemen V., Le Thai S., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., Borbás A.","57197252605;57201090663;56396986100;6507119015;56646909600;7004957937;55070704100;26028210900;7005160225;57189695652;6602182335;","Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents",2018,"European Journal of Medicinal Chemistry","157",,,"1017","1030",,1,"10.1016/j.ejmech.2018.08.058","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052300271&doi=10.1016%2fj.ejmech.2018.08.058&partnerID=40&md5=aefd0b994f1ddc8d7712d0b74d116a8a","Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Department of Organic Chemistry, University of Debrecen, Debrecen, H-4032, Hungary; Rega Institute for Medical Research, KU Leuven, Leuven, B-3000, Belgium","Szűcs, Z., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Kelemen, V., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Le Thai, S., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Csávás, M., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Rőth, E., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Batta, G., Department of Organic Chemistry, University of Debrecen, Debrecen, H-4032, Hungary; Stevaert, A., Rega Institute for Medical Research, KU Leuven, Leuven, B-3000, Belgium; Vanderlinden, E., Rega Institute for Medical Research, KU Leuven, Leuven, B-3000, Belgium; Naesens, L., Rega Institute for Medical Research, KU Leuven, Leuven, B-3000, Belgium; Herczegh, P., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary; Borbás, A., Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary","Six series of semisynthetic lipophilic glycopeptide antibiotic derivatives were evaluated for in vitro activity against influenza A and B viruses. The new teicoplanin pseudoaglycon-derived lipoglycopeptides were prepared by coupling one or two side chains to the N-terminus of the glycopeptide core, using various conjugation methods. Three series of derivatives bearing two lipophilic groups were synthesized by attaching bis-alkylthio maleimides directly or through linkers of different lengths to the glycopeptide. Access to the fourth and fifth series of compounds was achieved by click chemistry, introducing single alkyl/aryl chains directly or through a tetraethylene glycol linker to the same position. A sixth group of semisynthetic derivatives was obtained by sulfonylation of the N-terminus. Of the 42 lipophilic teicoplanin pseudoaglycon derivatives tested, about half showed broad activity against influenza A and B viruses, with some of them having reasonable or no cytotoxicity. Minor differences in the side chain length as well as lipophilicity appeared to have significant impact on antiviral activity and cytotoxicity. Several lipoglycopeptides were also found to be active against human coronavirus. © 2018 Elsevier Masson SAS","Coronavirus; Influenza virus inhibitor; Lipoglycopeptide; Maleimide; Sulfonamide; Teicoplanin","alkyl group; amantadine; antivirus agent; glycol; glycopeptide; maleimide derivative; polycyclic aromatic hydrocarbon derivative; ribavirin; rimantadine; sulfonamide; teicoplanin derivative; triazole derivative; zanamivir; antivirus agent; teicoplanin; amino terminal sequence; animal cell; antiviral activity; Article; click chemistry; controlled study; Coronaviridae; cytotoxicity; drug conjugation; drug screening; drug synthesis; human; human cell; Influenza A virus; Influenza A virus (H1N1); Influenza A virus (H3N2); Influenza B virus; Influenza virus; lipophilicity; nonhuman; reaction analysis; structure activity relation; analogs and derivatives; cell line; cell proliferation; cell survival; chemical structure; chemistry; dose response; drug effect; microbial sensitivity test; structure activity relation; synthesis; Antiviral Agents; Cell Line; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Humans; Influenza A virus; Influenza B virus; Microbial Sensitivity Tests; Molecular Structure; Structure-Activity Relationship; Teicoplanin","Coleman, B.L., Fadel, S.A., Fitzpatrick, T., Thomas, S.M., Risk factors for serious outcomes associated with influenza illness in high- versus low- and middle-income countries: systematic literature review and meta-analysis (2018) Influenza Other Respir. Viruses., 12, pp. 22-29; Vanderlinden, E., Naesens, L., Emerging antiviral strategies to interfere with influenza virus entry (2014) Med. Res. Rev., 34, pp. 301-339; Naesens, L., Stevaert, A., Vanderlinden, E., Antiviral therapies on the horizon for influenza (2016) Curr. Opin. Pharmacol., 30, pp. 106-115; Dong, G., Peng, C., Luo, J., Wang, C., Han, L., Wu, B., Ji, G., He, H., Adamantane-resistant influenza A viruses in the world (1902-2013): frequency and distribution of M2 gene mutations (2015) PLoS One, 10; Samson, M., Pizzorno, A., Abed, Y., Boivin, G., Influenza virus resistance to neuraminidase inhibitors (2013) Antivir. Res., 98, pp. 174-185; Moscona, A., Global transmission of oseltamivir-resistant influenza (2009) N. Engl. J. Med., 360, pp. 953-956; Zeng, L.Y., Yang, J., Liu, S., Investigational hemagglutinin-targeted influenza virus inhibitors (2017) Expet Opin. Invest. Drugs, 26, pp. 63-73; Havers, F.P., Campbell, A.P., Uyeki, T.M., Fry, A.M., Commentary: a historical review of Centers for Disease Control and Prevention antiviral treatment and postexposure chemoprophylaxis guidance for human infections with novel influenza A viruses associated with severe human disease (2017) J. Infect. Dis., 216, pp. S575-S580; Pintér, G., Batta, G., Kéki, S., Mándi, A., Komáromi, I., Takács-Novák, K., Sztaricskai, F., Herczegh, P., Diazo transfer−click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study (2009) J. Med. Chem., 52, pp. 6053-6061; Balzarini, J., Keyaerts, E., Vijgen, L., Egberink, H., De Clercq, E., Van Ranst, M., Printsevskaya, S.S., Preobrazhenskaya, M.N., Inhibition of feline (FIPV) and human (SARS) coronavirus by semisynthetic derivatives of glycopeptide antibiotics (2006) Antivir. Res., 72, pp. 20-33; Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Huang, F., Zhang, H., Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) (2016) J. Biol. Chem., 291, pp. 9218-9232; Wang, Y., Cui, R., Li, G., Gao, Q., Yuan, S., Altmeyer, R., Teicoplanin inhibits Ebola pseudovirus infection in cell culture (2016) Antivir. Res., 125, pp. 1-7; Balzarini, J., Pannecouque, C., De Clercq, E., Pavlov, A.Y., Printsevskaya, S.S., Miroshnikova, O.V., Reznikova, M.I., Preobrazhenskaya, M.N., Antiretroviral activity of semisynthetic derivatives of glycopeptide antibiotics (2003) J. Med. Chem., 46, pp. 2755-2764; Obeid, S., Printsevskaya, S.S., Olsufyeva, E.N., Dallmeier, K., Durantel, D., Zoulim, F., Preobrazhenskaya, M.N., Paeshuyse, J., Inhibition of hepatitis C virus replication by semi-synthetic derivatives of glycopeptide antibiotics (2011) J. Antimicrob. Chemother., 66, pp. 1287-1294; Naesens, L., Vanderlinden, E., Rőth, E., Jekő, J., Andrei, G., Snoeck, R., Pannecouque, C., Sztaricskai, F., Anti-influenza virus activity and structure–activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains (2009) Antivir. Res., 82, pp. 89-94; Vanderlinden, E., Vanstreels, E., Boons, E., ter Veer, W., Huckriede, A., Daelemans, D., Van Lommel, A., Naesens, L., Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin (2012) J. Virol., 86, pp. 9416-9431; Sipos, A., Máté, G., Rőth, E., Borbás, A., Batta, G., Bereczki, I., Kéki, S., Herczegh, P., Synthesis of fluorescent ristocetin aglycon derivatives with remarkable antibacterial and antiviral activities (2012) Eur. J. Med. Chem., 58, pp. 361-367; Sipos, A., Török, Z., Rőth, E., Kiss-Szikszai, A., Batta, G., Bereczki, I., Fejes, Z., Herczegh, P., Synthesis of isoindole and benzoisoindole derivatives of teicoplanin pseudoaglycon with remarkable antibacterial and antiviral activities (2012) Bioorg. Med. Chem. Lett, 22, pp. 7092-7096; Bereczki, I., Mándi, A., Rőth, E., Borbás, A., Fizil, Á., Komáromi, I., Sipos, A., Herczegh, P., A few atoms make the difference: synthetic, CD, NMR and computational studies on antiviral and antibacterial activities of glycopeptide antibiotic aglycon derivatives (2015) Eur. J. Med. Chem., 94, pp. 73-86; Bereczki, I., Kicsák, M., Dobray, L., Borbás, A., Batta, G., Kéki, S., Nemes Nikodém, É., Herczegh, P., Semisynthetic teicoplanin derivatives as new influenza virus binding inhibitors: synthesis and antiviral studies (2014) Bioorg. Med. Chem. Lett, 24, pp. 3251-3254; Szűcs, Z., Csávás, M., Rőth, E., Borbás, A., Batta, G., Perret, F., Ostorházi, E., Herczegh, P., Synthesis and biological evaluation of lipophilic teicoplanin pseudoaglycon derivatives containing a substituted triazole function (2017) J. Antibiot., 70, pp. 152-157; Smith, M.E.B., Schumacher, F.F., Ryan, C.P., Tedaldi, L.M., Papaioannou, D., Waksman, G., Caddick, S., Baker, J.R., Protein modification, bioconjugation, and disulfide bridging using bromomaleimides (2010) J. Am. Chem. Soc., 132, pp. 1960-1965; Castañeda, L., Wright, Z.V.F., Marculescu, C., Tran, T.M., Chudasama, V., Maruani, A., Hull, E.A., Baker, J.R., A mild synthesis of N-functionalised bromomaleimides, thiomaleimides and bromopyridazinediones (2013) Tetrahedron Lett., 54, pp. 3493-3495; Csávás, M., Miskovics, A., Szűcs, Z., Rőth, E., Nagy, Z.L., Bereczki, I., Herczeg, M., Herczegh, P., Synthesis and antibacterial evaluation of some teicoplanin pseudoaglycon derivatives containing alkyl- and arylthiosubstituted maleimides (2015) J. Antibiot., 68, pp. 579-585; Vanderlinden, E., Göktas, F., Cesur, Z., Froeyen, M., Reed, M.L., Russell, C.J., Cesur, N., Naesens, L., Novel inhibitors of influenza virus fusion: structure-activity relationship and interaction with the viral hemagglutinin (2010) J. Virol., 84, pp. 4277-4288; Leiva, R., Barniol-Xicota, M., Codony, S., Ginex, T., Vanderlinden, E., Montes, M., Caffrey, M., Vázquez, S., Aniline-based inhibitors of influenza H1N1 virus acting on hemagglutinin-mediated fusion (2018) J. Med. Chem., 61, pp. 98-118; Colson, P., Raoult, D., Fighting viruses with antibiotics: an overlooked path (2016) Int. J. Antimicrob. Agents, 48, pp. 349-352; Bahrami, K., Khodaei, M.M., Soheilizad, M., A novel, practical synthesis of sulfonyl chlorides from thiol and disulfide derivatives (2009) Synlett, 17, pp. 2773-2776; Tran, F., Odell, A.V., Ward, G.E., Westwood, N.J., A modular approach to triazole-containing chemical inducers of dimerization for yeast three-hybrid screening (2013) Molecules, 18, pp. 11639-11657; Lau, J.L., Baksh, M.M., Fiedler, J.D., Brown, S.D., Kussrow, A., Bornhop, D.J., Ordoukhanian, P., Finn, M.G., Evolution and protein packaging of small-molecule RNA aptamers (2011) ACS Nano, 5, pp. 7722-7729; Bollini, M., Frey, K.M., Cisneros, J.A., Spasov, K.A., Das, K., Bauman, J.D., Arnold, E., Jorgensen, W.L., Extension into the entrance channel of HIV-1 reverse transcriptase-Crystallography and enhanced solubility (2013) Bioorg. Med. Chem. Lett, 23, pp. 5209-5212; Marminon, C., Pierré, A., Pfeiffer, B., Pérez, V., Léonce, S., Renard, P., Prudhomme, M., Syntheses and antiproliferative activities of rebeccamycin analogues bearing two 7-azaindole moieties (2003) Bioorg. Med. Chem., 11, pp. 679-687; Ulm, J.W., Perron, M., Sodroski, J., Mulligan, R.C., Complex determinants within the Moloney murine leukemia virus capsid modulate susceptibility of the virus to Fv1 and Ref1-mediated restriction (2007) Virology, 363, pp. 245-255; Matsuda, T., Cepko, C., Electroporation and RNA interference in the rodent retina in vivo and in vitro (2004) Proc. Natl. Acad. Sci. Unit. States Am., 101, pp. 16-22; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Trybala, E., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog., 10","Naesens, L.; Rega Institute for Medical Research, KU Leuven, Belgium; email: lieve.naesens@kuleuven.be",,"Elsevier Masson SAS",02235234,,EJMCA,"30170320","English","Eur. J. Med. Chem.",Article,"Final",,Scopus,2-s2.0-85052300271 "Niu P., Zhang S., Zhou P., Huang B., Deng Y., Qin K., Wang P., Wang W., Wang X., Zhou J., Zhang L., Tan W.","56096165800;36629744200;57203264246;35082078200;36238838100;57197273710;57200821797;7501755105;36497607000;34871165300;56542860200;7401959748;","Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient",2018,"Journal of Infectious Diseases","218","8",,"1249","1260",,12,"10.1093/infdis/jiy311","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055422707&doi=10.1093%2finfdis%2fjiy311&partnerID=40&md5=0b5953f0ca3c5a994ba9a72552592e92","MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, China; MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China","Niu, P., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Zhang, S., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, China; Zhou, P., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, China; Huang, B., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Deng, Y., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Qin, K., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Wang, P., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, China; Wang, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Wang, X., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, China; Zhou, J., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China; Zhang, L., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, China; Tan, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China, MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping district, Beijing, China","Background. The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infection with a high (~35%) mortality rate. Neutralizing antibodies targeting the spike of MERS-CoV have been shown to be a therapeutic option for treatment of lethal disease. Methods. We describe the germline diversity and neutralizing activity of 13 potent human monoclonal antibodies (mAbs) that target the MERS-CoV spike (S) protein. Biological functions were assessed by live MERS-CoV, pseudotype particle and its variants, and structural basis was also determined by crystallographic analysis. Results. Of the 13 mAbs displaying strong neutralizing activity against MERS-CoV, two with the immunoglobulin heavy-chain variable region (IGHV)1-69-derived heavy chain (named MERS-GD27 and MERS-GD33) showed the most potent neutralizing activity against pseudotyped and live MERS-CoV in vitro. Mutagenesis analysis suggested that MERS-GD27 and MERS-GD33 recognized distinct regions in S glycoproteins, and the combination of 2 mAbs demonstrated a synergistic effect in neutralization against pseudotyped MERS-CoV. The structural basis of MERS-GD27 neutralization and recognition revealed that its epitope almost completely overlapped with the receptor-binding site. Conclusions. Our data provide new insights into the specific antibody repertoires and the molecular determinants of neutralization during natural MERS-CoV infection in humans. This finding supports additional efforts to design and develop novel therapies to combat MERS-CoV infections in humans. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.","Crystallographic analysis; Human monoclonal antibody; MERS-CoV; Neutralizing antibody repertoires","monoclonal antibody; neutralizing antibody; virus spike protein; coronavirus spike glycoprotein; monoclonal antibody; neutralizing antibody; virus antibody; amino acid substitution; Article; binding site; controlled study; drug isolation; drug potentiation; epitope mapping; immunoglobulin variable region; Middle East respiratory syndrome coronavirus; mutagenesis; nonhuman; priority journal; somatic hypermutation; virus neutralization; adult; antibody specificity; case report; Coronavirus infection; enzyme linked immunosorbent assay; human; immunology; male; Middle East respiratory syndrome coronavirus; molecular model; protein conformation; virology; Adult; Antibodies, Monoclonal; Antibodies, Neutralizing; Antibodies, Viral; Antibody Specificity; Coronavirus Infections; Enzyme-Linked Immunosorbent Assay; Epitope Mapping; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Protein Conformation; Spike Glycoprotein, Coronavirus","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Corti, D., Zhao, J., Pedotti, M., Prophylactic and postex-posure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci U S A, 112, pp. 10473-10478; Wang, Y., Liu, D., Shi, W., Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: Phyloge-netics and coalescence analysis (2015) MBio, 6, pp. e01280-e01315; Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823; Ithete, N.L., Stoffberg, S., Corman, V.M., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Crowe, J.E., Jr., Principles of broad and potent antiviral human antibodies: Insights for vaccine design (2017) Cell Host Microbe, 22, pp. 193-206; Magnani, D.M., Silveira, C.T., Ricciardi, M.J., Potent plasmablast-derived antibodies elicited by the national institutes of health dengue vaccine (2017) J Virol, 91; Ying, T., Du, L., Ju, T.W., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805; Ying, T., Prabakaran, P., Du, L., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6, p. 8223; Corti, D., Passini, N., Lanzavecchia, A., Zambon, M., Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome (2016) J Infect Public Health, 9, pp. 231-235; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre- And post-exposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112, pp. 8738-8743; Johnson, R.F., Bagci, U., Keith, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Jiang, L., Wang, N., Zuo, T., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, p. 234ra59; Du, L., Zhao, G., Yang, Y., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053; Tang, X.C., Agnihothram, S.S., Jiao, Y., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111, pp. E2018-E2026; Li, Y., Wan, Y., Liu, P., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Luke, T., Wu, H., Zhao, J., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Transl Med, 8, p. 326ra21; Chen, Z., Bao, L., Chen, C., Human neutralizing monoclonal antibody inhibition of Middle East respiratory syndrome coronavirus replication in the common marmoset (2017) J Infect Dis, 215, pp. 1807-1815; Van Doremalen, N., Falzarano, D., Ying, T., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37; Dimitrov, D.S., Therapeutic antibodies, vaccines and anti-bodyomes (2010) MAbs, 2, pp. 347-356; Wang, W., Wang, H., Deng, Y., Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China (2016) Emerg Microbes Infect, 5, p. e113; Smith, K., Garman, L., Wrammert, J., Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen (2009) Nat Protoc, 4, pp. 372-384; Wang, Q.S., Yu, F., Huang, S., The macromolecular crystallography beamline of SSRF (2015) Nucl Sci Tech, 26, pp. 12-17; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Phenix: Building new software for automated crystallographic structure determination (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 1948-1954; Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132; Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., Procheck: A program to check the stereochemical quality of protein structures (1993) J Appl Crystallogr, 26, pp. 283-291; Chou, T.C., Drug combination studies and their synergy quantification using the Chou-Talalay method (2010) Cancer Res, 70, pp. 440-446; Chou, T.C., Talalay, P., Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors (1984) Adv Enzyme Regul, 22, pp. 27-55; Prabakaran, P., Zhu, Z., Chen, W., Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing (2012) Front Microbiol, 3, p. 277; Ohshima, N., Iba, Y., Kubota-Koketsu, R., Asano, Y., Okuno, Y., Kurosawa, Y., Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5 (2011) J Virol, 85, pp. 11048-11057; Chan, C.H., Hadlock, K.G., Foung, S.K., Levy, S., V(H)1-69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen (2001) Blood, 97, pp. 1023-1026; Yu, F., Song, H., Wu, Y., A potent germline-like human monoclonal antibody targets a pH-sensitive epitope on H7N9 influenza hemagglutinin (2017) Cell Host Microbe, 22, pp. 471e5-483e5; Zhou, T., Zhu, J., Wu, X., Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies (2013) Immunity, 39, pp. 245-258; Cotten, M., Watson, S.J., Kellam, P., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Li, W., Zhang, C., Sui, J., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; Bermingham, A., Chand, M.A., Brown, C.S., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17, p. 20290; Tang, X.C., Marasco, W.A., Human neutralizing antibodies against MERS coronavirus: Implications for future immu-notherapy (2015) Immunotherapy, 7, pp. 591-594; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712",,,"Oxford University Press",00221899,,JIDIA,"29846635","English","J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85055422707 "Tine R.C., Ndiaye L.A., Niang M.N., Kiori D.E., Dia N., Gaye O., Broutin H.","23471191500;55967369100;9632395100;55604814600;57211111420;34975070700;8603261200;","Upper respiratory infections in a rural area with reduced malaria transmission in Senegal: a pathogens community study",2018,"BMC infectious diseases","18","1",,"459","",,,"10.1186/s12879-018-3362-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055073464&doi=10.1186%2fs12879-018-3362-8&partnerID=40&md5=23cd9fce02081a247839cda53ff20226","Service de Parasitologie, Université Cheikh Anta Diop de Dakar (UCAD), Faculté de Médecine, Dakar-Fann, BP5005, Senegal; Laboratoire des Virus respiratoires, Institut Pasteur de Dakar, Dakar, Senegal; MIVEGEC, UMR CNRS -IRD -University of Montpellier - 911, Avenue Agropolis BP 64501, Montpellier, France","Tine, R.C., Service de Parasitologie, Université Cheikh Anta Diop de Dakar (UCAD), Faculté de Médecine, Dakar-Fann, BP5005, Senegal; Ndiaye, L.A., Service de Parasitologie, Université Cheikh Anta Diop de Dakar (UCAD), Faculté de Médecine, Dakar-Fann, BP5005, Senegal; Niang, M.N., Laboratoire des Virus respiratoires, Institut Pasteur de Dakar, Dakar, Senegal; Kiori, D.E., Laboratoire des Virus respiratoires, Institut Pasteur de Dakar, Dakar, Senegal; Dia, N., Laboratoire des Virus respiratoires, Institut Pasteur de Dakar, Dakar, Senegal; Gaye, O., Service de Parasitologie, Université Cheikh Anta Diop de Dakar (UCAD), Faculté de Médecine, Dakar-Fann, BP5005, Senegal; Broutin, H., Service de Parasitologie, Université Cheikh Anta Diop de Dakar (UCAD), Faculté de Médecine, Dakar-Fann, BP5005, Senegal, MIVEGEC, UMR CNRS -IRD -University of Montpellier - 911, Avenue Agropolis BP 64501, Montpellier, France","BACKGROUND: Acute Respiratory Infections (ARI) are common causes of febrile illnesses in many settings in Senegal. These infections are usually managed presumptively due to lack of appropriate diagnostic tools. This situation, can lead to poor management of febrile illness or antibiotic misuse. In addition, there are limited data on the spectrum of pathogens commonly responsible for these ARI. This study was conducted to explore the pathogens community among patients with acute respiratory infection in a rural area in Senegal.METHODS: A cross sectional study was conducted from August to December 2015. Children and adult patients attending Keur Socé health post for signs suggestive of acute respiratory infection were enrolled after providing inform consent. Eligible participants were recruited using a consecutive sampling method. Paired nose and throat swabs were collected for pathogen detection. Samples were processed using a multiplex PCR designed to identify 21 pathogens including both virus and bacteria.RESULTS: Two hundred and fifty patients participated in the study. Samples positivity rate was evaluated at 95.2% (238/250). Streptococcus pneumoniae was the predominant pathogen (74%) and was present in all months and all age-groups, followed by Staphylococcus aureus (28,8%) and rhinovirus (28,4%). Respiratory syncytial virus (RSV) was detected only among children under 5 years old in August and September while coronavirus was present in all age groups, during the months of October and December.CONCLUSION: This pilot study revealed a diversity of pathogens over the time and across all age groups, highlighting the need for further exploration. A pathogen community approach including both virus and bacteria at a larger scale becomes crucial for a better understanding of transmission dynamics at population level in order to help shape ARI control strategies.","ARI; Influenza; Pathogen community; RSV; Senegal; Streptococcus pneumoniae","bacterial DNA; virus RNA; adolescent; child; complication; cross-sectional study; female; genetics; human; Human respiratory syncytial virus; infant; isolation and purification; malaria; male; metabolism; microbiology; multiplex polymerase chain reaction; preschool child; respiratory tract infection; Rhinovirus; rural population; season; Senegal; Staphylococcus aureus; Streptococcus pneumoniae; transmission; virology; Adolescent; Child; Child, Preschool; Cross-Sectional Studies; DNA, Bacterial; Female; Humans; Infant; Malaria; Male; Multiplex Polymerase Chain Reaction; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Rhinovirus; RNA, Viral; Rural Population; Seasons; Senegal; Staphylococcus aureus; Streptococcus pneumoniae",,,,,14712334,,,"30200897","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85055073464 "Lazov C.M., Chriél M., Baagøe H.J., Fjederholt E., Deng Y., Kooi E.A., Belsham G.J., Bøtner A., Rasmussen T.B.","57203945287;6603424819;7801441743;57203940386;57203942040;55538670000;7005351600;7004532046;35307937000;","Detection and characterization of distinct alphacoronaviruses in five different bat species in Denmark",2018,"Viruses","10","9", 486,"","",,1,"10.3390/v10090486","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053684942&doi=10.3390%2fv10090486&partnerID=40&md5=5aa5f2b1a3f225398e37023ef707d1d6","DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark; The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 2100, Denmark; School of Animal Science, Xichang College, Xichang, 615013, China; Wageningen Bioveterinary Research, Lelystad, 8221 RA, Netherlands","Lazov, C.M., DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark; Chriél, M., DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark; Baagøe, H.J., The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 2100, Denmark; Fjederholt, E., The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 2100, Denmark; Deng, Y., DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark, School of Animal Science, Xichang College, Xichang, 615013, China; Kooi, E.A., Wageningen Bioveterinary Research, Lelystad, 8221 RA, Netherlands; Belsham, G.J., DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark; Bøtner, A., DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark; Rasmussen, T.B., DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Lindholm, DK-4771, Denmark","Bat populations harbour a multitude of viruses; some of these are pathogenic or potentially pathogenic in other animals or humans. Therefore, it is important to monitor the populations and characterize these viruses. In this study, the presence of coronaviruses (CoVs) in different species of Danish bats was investigated using active surveillance at different geographical locations in Denmark. Faecal samples were screened for the presence of CoVs using pan-CoV real-time RT-PCR assays. The amplicons, obtained from five different species of bats, were sequenced. Phylogenetic analysis revealed a species-specific clustering with the samples from Myotis daubentonii, showing a close resemblance to coronavirus sequences obtained from the same species of bat in Germany and the United Kingdom. Our results show, for the first time, that multiple, distinct alphacoronaviruses are present in the Danish bat populations. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Europe; Host restriction; Nucleotide sequencing; Phylogenetic analysis; Vespertilionidae","amino acid; Alphacoronavirus; Article; controlled study; Eptesicus serotinus; female; gene sequence; genetic variability; male; Myotis; Myotis dasycneme; Myotis daubentonii; Myotis emarginatus; Myotis nattereri; nonhuman; phylogenetic tree; phylogeny; Plecotus auritus; Pongo abelii; prevalence; real time polymerase chain reaction; reverse transcription polymerase chain reaction; sequence analysis; species difference; virus characterization; virus detection; Alphacoronavirus; animal; bat; classification; cluster analysis; Coronavirus infection; Denmark; DNA sequence; feces; genetic variation; genetics; isolation and purification; sequence homology; veterinary medicine; virology; Alphacoronavirus; Animals; Chiroptera; Cluster Analysis; Coronavirus Infections; Denmark; Feces; Genetic Variation; Phylogeny; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; Sequence Analysis, DNA; Sequence Homology","Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Wang, M., Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi (2012) J. Virol, 86, pp. 3995-4008; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, Evolution and Classification of Bat Coronaviruses in the Aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56; Baagøe, H.J., Danish Bats (Mammalia: Chiroptera): Atlas and Analysis of Distribution, Occurrence and Abundance, , Steenstrupia: Copenhagen, Denmark, 2001; ISSN 0375-2909; Baagøe, H.J., Flagermus, Chiroptera (2007) Dansk Pattedyratlas, pp. 38-98. , Baagøe, H.J., Jensen, T.S., Eds.; Gyldendal: Copenhagen, Denmark; Baagøe, H.J., Degn, H.J., Flagermusene i Daugbjerg og Mønsted Kalkgruber i Udflyvningsperioden 2009 (2009) Danish Forest and Nature Agency: Midtjylland, Denmark; Møller, J.D., Baagøe, H.J., Degn, H.J., (2013) Forvaltningsplan for Flagermus, , Naturstyrelsen, Miljøministeriet: Copenhagen, Denmark, 9788772794075; Constantine, D.G., An Automatic Bat-Collecting Device (1958) J. Wildl. Manag., 22, pp. 17-22; Tuttle, M.D., An Improved Trap for Bats (1974) J. Mammal., 55, pp. 475-477; Baagøe, H.J., Degn, H.J., Flagermusene i Daugbjerg og Mønsted Kalkgruber i Udflyvningsperioden 2003 (2004) National Environmental Research Institute of Denmark: Roskilde, Denmark; Escutenaire, S., Mohamed, N., Isaksson, M., Thorén, P., Klingeborn, B., Belák, S., Berg, M., Blomberg, J., SYBR Green Real-Time Reverse Transcription-Polymerase Chain Reaction Assay for the Generic Detection of Coronaviruses (2007) Arch. Virol., 152, pp. 41-58; Vijgen, L., Moës, E., Keyaerts, E., Li, S., van Ranst, M., A Pancoronavirus RT-PCR Assay for Detection of All Known Coronaviruses (2008) Methods Mol. Biol., 454, pp. 3-12; de Souza Luna, L.K., Heiser, V., Regamey, N., Panning, M., Drexler, J.F., Mulangu, S., Poon, L., Kaiser, L., Generic Detection of Coronaviruses and Differentiation at the Prototype Strain Level by Reverse Transcription-PCR and Nonfluorescent Low-Density Microarray (2007) J. Clin. Microbiol., 45, pp. 1049-1052; Virus Metadata Repository, , https://talk.ictvonline.org/taxonomy/vmr/, Version 21 March 2018; MSL32, accessed on 15 May 2018; R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria, 2017; Aragon, T.J., Epitools: Epidemiology Tools, , https://cran.r-project.org/package=epitools, accessed on 15 May 2018; Schlegel, M., Ali, H.S., Stieger, N., Groschup, M.H., Wolf, R., Ulrich, R.G., Molecular Identification of Small Mammal Species Using Novel Cytochrome b Gene-Derived Degenerated Primers (2012) Biochem. Genet., 50, pp. 440-447; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Yordanov, S., Genomic Characterization of Severe Acute Respiratory Syndrome-Related Coronavirus in European Bats and Classification of Coronaviruses Based on Partial RNA-Dependent RNA Polymerase Gene Sequences (2010) J. Virol., 84, pp. 11336-11349; Gloza-Rausch, F., Ipsen, A., Seebens, A., Göttsche, M., Panning, M., Drexler, J.F., Petersen, N., Müller, M., Detection and Prevalence Patterns of Group I Coronaviruses in Bats, Northern Germany (2008) Emerg. Infect. Dis., 14, pp. 626-631; Falcón, A., Vázquez-Morón, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Perez-Breña, P., Garin, I., Detection of Alpha and Betacoronaviruses in Multiple Iberian Bat Species (2011) Arch. Virol., 156, pp. 1883-1890; August, T.A., Mathews, F., Nunn, M.A., Alphacoronavirus Detected in Bats in the United Kingdom (2012) Vector-Borne Zoonotic Dis, 12, pp. 530-533; Goffard, A., Demanche, C., Arthur, L., Pinçon, C., Michaux, J., Dubuisson, J., Alphacoronaviruses detected in french bats are phylogeographically linked to coronaviruses of european bats (2015) Viruses, 7, pp. 6279-6290; Kemenesi, G., Dallos, B., Gorfol, T., Boldogh, S., Estok, P., Kurucz, K., Kutas, A., Nemeth, V., Molecular survey of RNA viruses in hungarian bats: Discovering novel astroviruses, coronaviruses, and caliciviruses (2014) Vector-Borne Zoonotic Dis, 14, pp. 846-855; Drexler, J.F., Corman, V.M., Wegner, T., Tateno, A.F., Zerbinati, R.M., Gloza-Rausch, F., Seebens, A., Drosten, C., Amplification of Emerging Viruses in a Bat Colony (2011) Emerg. Infect. Dis., 17, pp. 449-456; Rizzo, F., Edenborough, K.M., Toffoli, R., Culasso, P., Zoppi, S., Dondo, A., Robetto, S., Kurth, A., Coronavirus and Paramyxovirus in Bats from Northwest Italy (2017) BMC Vet. Res, 13, pp. 1-11; Jeong, J., Smith, C.S., Peel, A.J., Plowright, R.K., Kerlin, D.H., McBroom, J., McCallum, H., Persistent Infections Support Maintenance of a Coronavirus in a Population of Australian Bats (Myotis macropus) (2017) Epidemiol. Infect., 145, pp. 2053-2061; Corman, V.M., Rasche, A., Diallo, T.D., Cottontail, V.M., Stöcker, A., Souza, B.F.D.C.D., Corrêa, J.I., Franke, C.R., Highly Diversified Coronaviruses in Neotropical Bats (2013) J. Gen. Virol, 94, pp. 1984-1994; Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Hu, Z., Guan, Y., Evolutionary Relationships between Bat Coronaviruses and Their Hosts (2007) Emerg. Infect. Dis., 13, pp. 1526-1532; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Cheung, C.L., Prevalence and Genetic Diversity of Coronaviruses in Bats from China (2006) J. Virol., 80, pp. 7481-7490; Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., Ding, J., Molecular Model of SARS Coronavirus Polymerase: Implications for Biochemical Functions and Drug Design (2003) Nucleic Acids Res, 31, pp. 7117-7130; Gaisler, J., Hanak, V., Hanzal, V., Jarský, V., Results of bat banding in the Czech and Slovak Republics, 1948–2000 (2003) Vespertilio, 7, pp. 3-61; Dietz, C., von Helversen, O., Nill, D., (2009) Bats of Britain, Europe and Northwest Africa, , 1st ed.; A & C Black Publishers Ltd.: London, UK, 9781408105313; Steffens, R., Zöphel, U., Brockmann, D., (2004) 40Th Anniversary Bat Marking Centre Dresden—Evaluation of Methods and Overview of Results, , Saxon State Office for Environment and Geology: Dresden, Germany; Ahlén, I., Baagøe, H.J., Bach, L., Behavior of Scandinavian Bats during Migration and Foraging at Sea (2009) J. Mammal., 90, pp. 1318-1323; Egsbæk, W., Jensen, B., Results of bat banding in Denmark (1963) Vidensk. Medd. Dansk Naturh. Foren., 125, pp. 269-296; Baagøe, H.J., Bornholms flagermus-status 2010 (2011) Nat. Bornh., 9, pp. 22-30; Borkenhagen, P., (2011) Die Säugetiere Schleswig-Holsteins, , 1st ed.; Husum Druck-und Verlagsgesellschaft: Husum, Germany, 978-3898765619; Reusken, C.C.B.E.M., Lina, P.H.C.C., Pielaat, A., de Vries, A., Dam-Deisz, C., Adema, J., Drexler, J.F., Kooi, E.A., Circulation of Group 2 Coronaviruses in a Bat Species Common to Urban Areas in Western Europe (2010) Vector-Borne Zoonotic Dis, 10, pp. 785-791; de Benedictis, P., Marciano, S., Scaravelli, D., Priori, P., Zecchin, B., Capua, I., Monne, I., Cattoli, G., Alpha and Lineage C BetaCoV Infections in Italian Bats (2014) Virus Genes, 48, pp. 366-371; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Meyer, B., Human Betacoronavirus 2c EMC/2012-Related Viruses in Bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, pp. 456-459","Rasmussen, T.B.; DTU National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark; email: tbrur@vet.dtu.dk",,"MDPI AG",19994915,,,"30208582","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85053684942 "Xia L., Dai L., Yang Q.","57191973061;57191980552;24336700600;","Transmissible gastroenteritis virus infection decreases arginine uptake by downregulating CAT-1 expression",2018,"Veterinary Research","49","1", 95,"","",,,"10.1186/s13567-018-0591-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055120594&doi=10.1186%2fs13567-018-0591-1&partnerID=40&md5=0b9507b26861c2a564862e388a4d128d","MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing Jiangsu, 210095, China","Xia, L., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing Jiangsu, 210095, China; Dai, L., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing Jiangsu, 210095, China; Yang, Q., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing Jiangsu, 210095, China","Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes severe diarrhea in suckling piglets. TGEV primarily targets and infects porcine intestinal epithelial cells, which play an important role in nutrient absorption. However, the effects of TGEV infection on nutrient absorption in swine have not yet been investigated. In this study, we evaluated the impact of TGEV infection on arginine uptake using the porcine small intestinal epithelial cell line IPEC-J2 as a model system. High performance liquid chromatography (HPLC) analyses showed that TGEV infection leads to reduced arginine uptake at 48 hours post-infection (hpi). Expression of cationic amino acid transporter 1 (CAT-1) was attenuated as well. TGEV infection induced activation of phospho-protein kinase C α (p-PKC α), phospho-epidermal growth factor receptor (p-EGFR), and enhanced the expression of caveolin-1, all of which appear to be involved in down-regulating arginine uptake and CAT-1 expression. These results illuminate the relationship between TGEV infection and nutrient absorption, and further our understanding of the mechanisms of TGEV infection. © 2018 The Author(s).",,"amino acid transporter; arginine; beta actin; beta tubulin; caveolin 1; epidermal growth factor receptor; messenger RNA; protein kinase C alpha; amino acid transporter; arginine; amino acid transport; animal cell; animal experiment; animal model; animal tissue; Article; controlled study; down regulation; enzyme activation; IPEC-J2 cell line; nonhuman; protein expression; protein phosphorylation; RNA interference; signal transduction; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; animal; cell line; down regulation; gene expression regulation; genetics; metabolism; pathophysiology; physiology; pig; small intestine; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; virology; Animals; Arginine; Cationic Amino Acid Transporter 1; Cell Line; Down-Regulation; Gastroenteritis, Transmissible, of Swine; Gene Expression Regulation; Intestine, Small; Signal Transduction; Swine; Transmissible gastroenteritis virus","Hou, Y., Yue, X., Cai, X., Wang, S., Liu, Y., Yuan, C., Cui, L., Yang, Z., Complete genome of transmissible gastroenteritis virus AYU strain isolated in Shanghai, China (2012) J Virol, 86, p. 11935. , 1:CAS:528:DC%2BC38XhsFCmurrL; Man, C.L., Yu, X.L., New mutations existing in the nucleocapsid (N) gene of non-porcine TGEV strains isolated in China (2011) Afr J Microbiol Res, 5, pp. 5325-5332. , 1:CAS:528:DC%2BC38Xms1yktg%3D%3D; Zhou, J., Huang, F., Hua, X., Cui, L., Zhang, W., Shen, Y., Yan, Y., Yang, Z., Inhibition of porcine transmissible gastroenteritis virus (TGEV) replication in mini-pigs by shRNA (2010) Virus Res, 149, pp. 51-55. , 1:CAS:528:DC%2BC3cXjtVSkurk%3D; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis, 18, pp. 161-163; Brosnahan, A.J., Brown, D.R., Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations (2012) Vet Microbiol, 156, pp. 229-237. , 1:CAS:528:DC%2BC38XktlGmu7w%3D; Zhao, S., Gao, J., Zhu, L., Yang, Q., Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells (2014) Virus Res, 192, pp. 34-45. , 1:CAS:528:DC%2BC2cXhsVKnu73P; Xia, M., Ye, L., Hou, Q., Yu, Q., Effects of arginine on intestinal epithelial cell integrity and nutrient uptake (2016) Br J Nutr, 14, pp. 1-7; Hatzoglou, M., Fernandez, J., Yaman, I., Closs, E., Regulation of cationic amino acid transport: The story of the CAT-1 transporter (2004) Annu Rev Nutr, 24, pp. 377-399. , 1:CAS:528:DC%2BD2cXlvFKks7Y%3D; Bronte, V., Zanovello, P., Regulation of immune responses by l-arginine metabolism (2005) Nat Rev Immunol, 5, pp. 641-654. , 1:CAS:528:DC%2BD2MXmvVClsLc%3D; Wu, G., Functional amino acids in growth, reproduction, and health (2010) Adv Nutr, 1, pp. 31-37. , 1:CAS:528:DC%2BC3MXpsF2lur8%3D; Wu, G., Amino acids: Metabolism, functions, and nutrition (2009) Amino Acids, 37, pp. 1-17; Tesseraud, S., Metayer Coustard, S., Collin, A., Seiliez, I., Role of sulfur amino acids in controlling nutrient metabolism and cell functions: Implications for nutrition (2009) Br J Nutr, 101, pp. 1132-1139. , 1:CAS:528:DC%2BD1MXlvVCktro%3D; Wu, G.Y., Bazer, F.W., Davis, T.A., Jaeger, L.A., Johnson, G.A., Kim, S.W., Knabe, D.A., Yin, Y.L., Important roles for the arginine family of amino acids in swine nutrition and production (2007) Livest Sci, 112, pp. 8-22; Wijnands, K.A., Castermans, T.M., Hommen, M.P., Meesters, D.M., Poeze, M., Arginine and citrulline and the immune response in sepsis (2015) Nutrients, 7, pp. 1426-1463. , 1:CAS:528:DC%2BC2MXktl2nt7w%3D; Fotiadis, D., Kanai, Y., Palacin, M., The SLC3 and SLC7 families of amino acid transporters (2013) Mol Aspects Med, 34, pp. 139-158. , 1:CAS:528:DC%2BC3sXksV2js7g%3D; Poncet, N., Taylor, P.M., The role of amino acid transporters in nutrition (2013) Curr Opin Clin Nutr Metab Care, 16, pp. 57-65. , 1:CAS:528:DC%2BC38XhvVWht7fP; He, L.Q., Yang, H.S., Hou, Y.Q., Li, T.J., Fang, J., Zhou, X.H., Yin, Y.L., Wu, G.Y., Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets (2013) Amino Acids, 45, pp. 383-391. , 1:CAS:528:DC%2BC3sXhtFeltLbF; Rotmann, A., Strand, D., Martine, U., Closs, E.I., Protein kinase C activation promotes the internalization of the human cationic amino acid transporter hCAT-1. A new regulatory mechanism for hCAT-1 activity (2004) J Biol Chem, 279, pp. 54185-54192. , 1:CAS:528:DC%2BD2cXhtVyltb%2FM; Kim, M.O., Lee, Y.J., Park, J.H., Ryu, J.M., Yun, S.P., Han, H.J., PKA and cAMP stimulate proliferation of mouse embryonic stem cells by elevating GLUT1 expression mediated by the NF-kappaB and CREB/CBP signaling pathways (2012) Biochim Biophy Acta, 1820, pp. 1636-1646. , 1:CAS:528:DC%2BC38XhtVymsr3N; Leventhal, P.S., Bertics, P.J., Activation of protein kinase C by selective binding of arginine-rich polypeptides (1993) J Biol Chem, 268, pp. 13906-13913. , 1:CAS:528:DyaK3sXltFajs74%3D 8390981; Krotova, K.Y., Zharikov, S.I., Block, E.R., Classical isoforms of PKC as regulators of CAT-1 transporter activity in pulmonary artery endothelial cells (2003) Am J Physiol Lung Cell Mol Physiol, 284, pp. L1037-L1044. , 1:CAS:528:DC%2BD3sXltVensrg%3D; Mann, G.E., Yudilevich, D.L., Sobrevia, L., Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells (2003) Physiol Rev, 83, pp. 183-252. , 1:CAS:528:DC%2BD3sXntlGgtg%3D%3D; Laplante, M., Sabatini David, M., MTOR signaling in growth control and disease (2012) Cell, 149, pp. 274-293. , 1:CAS:528:DC%2BC38Xls1eguro%3D; Pan, M., Meng, Q., Wolfgang, C.L., Lin, C., Karinch, A.M., Vary, T.C., Souba, W.W., Activation of intestinal arginine transport by protein kinase c is mediated by mitogen-activated protein kinases (2002) J Gastrointest Surg, 6, pp. 876-882; Kanashiro Celia, A., Khalil Raouf, A., Signal transduction by protein kinase C in mammalian cells (2007) Clin Exp Pharmacol Physiol, 25, pp. 974-985; Pan, M., Stevens, B.R., Protein kinase C-dependent regulation of l-arginine transport activity in Caco-2 intestinal cells (1995) Biochim Biophys Acta, 1239, pp. 27-32; Hu, W., Zhu, L., Yang, X., Lin, J., Yang, Q., The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells (2016) Oncotarget, 7, pp. 12206-12221. , 26933809 4914279; Hu, W., Zhang, S., Shen, Y., Yang, Q., Epidermal growth factor receptor is a co-factor for transmissible gastroenteritis virus entry (2018) Virology, 521, pp. 33-43. , 1:CAS:528:DC%2BC1cXhtVOltr7L; Weiwei, H., Qinghua, Y., Liqi, Z., Haofei, L., Shanshan, Z., Qi, G., Kongwang, H., Qian, Y., Complete genomic sequence of the coronavirus transmissible gastroenteritis virus SHXB isolated in China (2014) Arch Virol, 159, pp. 2295-2302; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method (2001) Methods, 25, pp. 402-408. , 1:CAS:528:DC%2BD38XhtFelt7s%3D; Martens-Lobenhoffer, J., Bode-Boger, S.M., Fast and efficient determination of arginine, symmetric dimethylarginine, and asymmetric dimethylarginine in biological fluids by hydrophilic-interaction liquid chromatography-electrospray tandem mass spectrometry (2006) Clin Chem, 52, pp. 488-493. , 1:CAS:528:DC%2BD28Xit1ShtLk%3D; Elkin, R.G., Wasynczuk, A.M., Amino acid analysis of feedstuff hydrolysates by precolumn derivatization with phenylisothiocyanate and reversed-phase high-performance liquid chromatography (1987) Cereal Chem, 64, pp. 226-229. , 1:CAS:528:DyaL2sXlslCnu7Y%3D; Vina-Vilaseca, A., Bender-Sigel, J., Sorkina, T., Closs, E.I., Sorkin, A., Protein kinase C-dependent ubiquitination and clathrin-mediated endocytosis of the cationic amino acid transporter CAT-1 (2011) J Biol Chem, 286, pp. 8697-8706. , 1:CAS:528:DC%2BC3MXislyksrs%3D; Bae, J.H., Kim, S.J., Kim, M.J., Oh, S.O., Chung, J.S., Kim, S.H., Kang, C.D., Susceptibility to natural killer cell-mediated lysis of colon cancer cells is enhanced by treatment with epidermal growth factor receptor inhibitors through UL16-binding protein-1 induction (2012) Cancer Sci, 103, pp. 7-16. , 1:CAS:528:DC%2BC38Xhtlahtr8%3D; Lee, H.Y., Crawley, S., Hokari, R., Kwon, S., Kim, Y.S., Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/I kappa B/NF-kappa B and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway (2010) Int J Oncol, 36, pp. 941-953. , 1:CAS:528:DC%2BC3cXksl2gsLg%3D 20198339; Kanda, M., Matthaei, H., Wu, J., Hong, S.M., Yu, J., Borges, M., Hruban, R.H., Goggins, M., Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia (2012) Gastroenterology, 142, p. 730. , 1:CAS:528:DC%2BC38XltVyrt7Y%3D; Parekh, D.B., Ziegler, W., Parker, P.J., Multiple pathways control protein kinase C phosphorylation (2000) EMBO J, 19, pp. 496-503. , 1:CAS:528:DC%2BD3cXhsFKnu7Y%3D; Schwartz, I.F., Grupper, A., Soetendorp, H., Hillel, O., Laron, I., Chernichovski, T., Ingbir, M., Schwartz, D., Attenuated glomerular arginine transport prevents hyperfiltration and induces HIF-1alpha in the pregnant uremic rat (2012) Am J Physiol Renal Physiol, 303, pp. F396-F404. , 1:CAS:528:DC%2BC38XhtlSlurfI; Kung, C.P., Raab-Traub, N., Epstein-Barr virus latent membrane protein 1 modulates distinctive NF-kappaB pathways through C-terminus-activating region 1 to regulate epidermal growth factor receptor expression (2010) J Virol, 84, pp. 6605-6614. , 1:CAS:528:DC%2BC3cXptVehu7w%3D; Grahovac, J., Wells, A., Matrikine and matricellular regulators of EGF receptor signaling on cancer cell migration and invasion (2014) Lab Invest, 94, pp. 31-40. , 1:CAS:528:DC%2BC3sXhvVSgtrzN; Dai, L., Hu, W.W., Xia, L., Xia, M., Yang, Q., Transmissible gastroenteritis virus infection enhances SGLT1 and GLUT2 expression to increase glucose uptake (2016) PLoS One, 11, p. e0165585; Frank, P.G., Endothelial caveolae and caveolin-1 as key regulators of atherosclerosis (2010) Am J Pathol, 177, pp. 544-546. , 1:CAS:528:DC%2BC3cXhtFCrtbfF","Yang, Q.; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, China; email: zxbyq@njau.edu.cn",,"BioMed Central Ltd.",09284249,,VEREE,"30236161","English","Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85055120594 "Mandl J.N., Schneider C., Schneider D.S., Baker M.L.","18536525200;57204084418;56220453400;56753420600;","Going to bat(s) for studies of disease tolerance",2018,"Frontiers in Immunology","9","SEP", 2112,"","",,8,"10.3389/fimmu.2018.02112","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054467260&doi=10.3389%2ffimmu.2018.02112&partnerID=40&md5=aa1901160fdb82bb355a849e0f526333","Department of Physiology, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States; Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia","Mandl, J.N., Department of Physiology, McGill University, Montreal, QC, Canada, Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada, McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada; Schneider, C., Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada, McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada; Schneider, D.S., Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States; Baker, M.L., Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia","A majority of viruses that have caused recent epidemics with high lethality rates in people, are zoonoses originating from wildlife. Among them are filoviruses (e.g., Marburg, Ebola), coronaviruses (e.g., SARS, MERS), henipaviruses (e.g., Hendra, Nipah) which share the common features that they are all RNA viruses, and that a dysregulated immune response is an important contributor to the tissue damage and hence pathogenicity that results from infection in humans. Intriguingly, these viruses also all originate from bat reservoirs. Bats have been shown to have a greater mean viral richness than predicted by their phylogenetic distance from humans, their geographic range, or their presence in urban areas, suggesting other traits must explain why bats harbor a greater number of zoonotic viruses than other mammals. Bats are highly unusual among mammals in other ways as well. Not only are they the only mammals capable of powered flight, they have extraordinarily long life spans, with little detectable increases in mortality or senescence until high ages. Their physiology likely impacted their history of pathogen exposure and necessitated adaptations that may have also affected immune signaling pathways. Do our life history traits make us susceptible to generating damaging immune responses to RNA viruses or does the physiology of bats make them particularly tolerant or resistant? Understanding what immune mechanisms enable bats to coexist with RNA viruses may provide critical fundamental insights into how to achieve greater resilience in humans. © 2007-2018 Frontiers Media S.A. All Rights Reserved.","Bats (Chiroptera); Comparative genome analyses; Disease tolerance; Host pathogen interaction; Innate immunity; Viral immunology","adaptation; bat; community; diseases; echolocation; flight; hibernation; host pathogen interaction; immune response; life history trait; lifespan; longevity; mammal; metabolic rate; mortality; nonhuman; Review; RNA virus; Rousettus; senescence; social interaction; animal; bat; disease carrier; disease resistance; human; immunology; RNA virus infection; virology; zoonosis; Animals; Chiroptera; Disease Reservoirs; Disease Resistance; Host-Pathogen Interactions; Humans; RNA Virus Infections; RNA Viruses; Zoonoses","Taylor, L.H., Latham, S.M., Woolhouse, M.E., Risk factors for human disease emergence (2001) Philos Trans R Soc Lond B Biol Sci, 356, pp. 983-989; Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993; Smith, K.F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., Global rise in human infectious disease outbreaks (2014) J R Soc Interface, 11, p. 20140950; Morse, S.S., Mazet, J.A., Woolhouse, M., Parrish, C.R., Carroll, D., Karesh, W.B., Prediction and prevention of the next pandemic zoonosis (2012) Lancet, 380, pp. 1956-1965; Haydon, D.T., Cleaveland, S., Taylor, L.H., Laurenson, M.K., Identifying reservoirs of infection: A conceptual and practical challenge (2002) Emerg Infect Dis, 8, pp. 1468-1473; Drexler, J.F., Corman, V.M., Muller, M.A., Maganga, G.D., Vallo, P., Binger, T., Bats host major mammalian paramyxoviruses (2012) Nat Commun, 3, p. 796; Bean, A.G., Baker, M.L., Stewart, C.R., Cowled, C., Deffrasnes, C., Wang, L.F., Studying immunity to zoonotic diseases in the natural host-keeping it real (2013) Nat Rev Immunol, 13, pp. 851-861; Mandl, J.N., Ahmed, R., Barreiro, L.B., Daszak, P., Epstein, J.H., Virgin, H.W., Reservoir host immune responses to emerging zoonotic viruses (2015) Cell, 160, pp. 20-35; Streicker, D.G., Turmelle, A.S., Vonhof, M.J., Kuzmin, I.V., McCracken, G.F., Rupprecht, C.E., Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats (2010) Science, 329, pp. 676-679; Fisher, C.R., Streicker, D.G., Schnell, M.J., The spread and evolution of rabies virus: Conquering new frontiers (2018) Nat Rev Microbiol, 16, pp. 241-255; Towner, J.S., Amman, B.R., Sealy, T.K., Carroll, S.A., Comer, J.A., Kemp, A., Isolation of genetically diverse Marburg viruses from Egyptian fruit bats (2009) PLoS Pathog, 5, p. e1000536; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576; Hassanin, A., Nesi, N., Marin, J., Kadjo, B., Pourrut, X., Leroy, E., Comparative phylogeography of African fruit bats (Chiroptera, Pteropodidae) provide new insights into the outbreak of Ebola virus disease in West Africa, 2014-2016 (2016) C R Biol, 339, pp. 517-528; Halpin, K., Young, P.L., Field, H.E., Mackenzie, J.S., Isolation of hendra virus from pteropid bats: A natural reservoir of hendra virus (2000) J Gen Virol, 81, pp. 1927-1932; Chua, K.B., Koh, C.L., Hooi, P.S., Wee, K.F., Khong, J.H., Chua, B.H., Isolation of Nipah virus from Malaysian Island flying-foxes (2002) Microbes Infect, 4, pp. 145-151; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; Amman, B.R., Albarino, C.G., Bird, B.H., Nyakarahuka, L., Sealy, T.K., Balinandi, S., A recently discovered pathogenic paramyxovirus, sosuga virus, is present in Rousettus aegyptiacus fruit bats at multiple locations in Uganda (2015) J Wildl Dis, 51, pp. 774-779; Barr, J., Smith, C., Smith, I., De Jong, C., Todd, S., Melville, D., Isolation of multiple novel paramyxoviruses from pteropid bat urine (2015) J Gen Virol, 96, pp. 24-29; Drexler, J.F., Geipel, A., Konig, A., Corman, V.M., Van Riel, D., Leijten, L.M., Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes (2013) Proc Natl Acad Sci USA, 110, pp. 16151-16156; Epstein, J.H., Quan, P.L., Briese, T., Street, C., Jabado, O., Conlan, S., Identification of GbV-D, a novel Gb-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh (2010) PLoS Pathog, 6, p. e1000972; Quan, P.L., Firth, C., Conte, J.M., Williams, S.H., Zambrana-Torrelio, C.M., Anthony, S.J., Bats are a major natural reservoir for hepaciviruses and pegiviruses (2013) Proc Natl Acad Sci USA, 110, pp. 8194-8199; Dobson, A.P., Virology. What links bats to emerging infectious diseases? (2005) Science, 310, pp. 628-629; Wang, L.F., Walker, P.J., Poon, L.L., Mass extinctions, biodiversity and mitochondrial function: Are bats 'special' as reservoirs for emerging viruses? (2011) Curr Opin Virol, 1, pp. 649-657; Olival, K., Epstein, J.H., Wang, L.F., Field, H.E., Daszak, P., Are bats exceptional viral reservoirs? (2012) New Directions in Conservation Medicine, pp. 195-212. , Aguirre AA, Ostfeld R, Daszak P, editors. Oxford, UK: Oxford University Press; Luis, A.D., Hayman, D.T., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc Biol Sci, 280, p. 20122753; Brook, C.E., Dobson, A.P., Bats as 'special' reservoirs for emerging zoonotic pathogens (2015) Trends Microbiol, 23, pp. 172-180; Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O'Brien, S.J., Murphy, W.J., A molecular phylogeny for bats illuminates biogeography and the fossil record (2005) Science, 307, pp. 580-584; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650; Plourde, B.T., Burgess, T.L., Eskew, E.A., Roth, T.M., Stephenson, N., Foley, J.E., Are disease reservoirs special? Taxonomic and life history characteristics (2017) PLoS ONE, 12, p. e0180716; Holmes, E.C., The evolutionary genetics of emerging viruses (2009) Annu Rev Eco Evol Syst, 40, pp. 353-372; Baker, M.L., Schountz, T., Wang, L.F., Antiviral immune responses of bats: A review (2013) Zoonoses Pub Health, 60, pp. 104-116; Malmlov, A., Seetahal, J., Carrington, C., Ramkisson, V., Foster, J., Miazgowicz, K.L., Serological evidence of arenavirus circulation among fruit bats in Trinidad (2017) PLoS ONE, 12, p. e0185308; Stamm, D.D., Kissling, R.E., Eidson, M.E., Experimental rabies infection in insectivorous bats (1956) J Infect Dis, 98, pp. 10-14; Suu-Ire, R., Begeman, L., Banyard, A.C., Breed, A.C., Drosten, C., Eggerbauer, E., Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus (2018) PLoS Negl Trop Dis, 12, p. e0006311; McColl, K.A., Chamberlain, T., Lunt, R.A., Newberry, K.M., Middleton, D., Westbury, H.A., Pathogenesis studies with Australian bat lyssavirus in grey-headed flying foxes (Pteropus poliocephalus (2002) Aust Vet J, 80, pp. 636-641; Aguilar-Setien, A., Loza-Rubio, E., Salas-Rojas, M., Brisseau, N., Cliquet, F., Pastoret, P.P., Salivary excretion of rabies virus by healthy vampire bats (2005) Epidemiol Infect, 133, pp. 517-522; Allendorf, S.D., Cortez, A., Heinemann, M.B., Harary, C.M., Antunes, J.M., Peres, M.G., Rabies virus distribution in tissues and molecular characterization of strains from naturally infected non-hematophagous bats (2012) Virus Res, 165, pp. 119-125; Black, F.L., Infectious diseases in primitive societies (1975) Science, 187, pp. 515-518; Kunz, T.H., Fenton, M.B., (2003) Bat Ecology, , Chicago: The University of Chicago Press; Gaillard, J.M., Yoccoz, N.G., Lebreton, J., Bonenfant, C., Devillard, S., Loison, A., Generation time: A reliable metric to measure life-history variation among mammalian populations (2005) Am Nat, 166, pp. 119-123; Fleischer, T., Gampe, J., Scheuerlein, A., Kerth, G., Rare catastrophic events drive population dynamics in a bat species with negligible senescence (2017) Sci Rep, 7, p. 7370; Holmes, D.J., Ottinger, M.A., Birds as long-lived animal models for the study of aging (2003) Exp Gerontol, 38, pp. 1365-1375; Austad, S.N., Fischer, K.E., Mammalian aging, metabolism, and ecology: Evidence from the bats and marsupials (1991) J Gerontol, 46, pp. B47-B53; Holmes, D.J., Austad, S.N., Fly now, die later: Life-history correlates of gliding and flying in mammals (1994) Am Soc Mammalo, 75, pp. 224-226; Brunet-Rossinni, A.K., Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals (2004) Mech Ageing Dev, 125, pp. 11-20; Barclay, M.R., Constraints on reproduction by flying vertebrates: Energy and calcium (1994) Am Soc Nat, 144, pp. 1021-1031; Heppell, S.S., Caswell, H., Crowder, L.B., Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data (2000) Ecology, 81, pp. 654-665; Seim, I., Fang, X., Xiong, Z., Lobanov, A.V., Huang, Z., Ma, S., Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii (2013) Nat Commun, 4, p. 2212; O'Shea, T.J., Ellison, L.E., Stanley, T.R., Survival estimation in bats: Historical overview, critical appraisal, and suggestions for new approaches (2004) Sampling Rare or Elusive Species: Concepts, Designs and Techniques for Estimating Population Parameters, pp. 297-336. , Thompson WL, editor. Washington, DC: Island Press; Hedenström, A., Johansson, L.C., Bat flight (2015) Curr Biol, 25, pp. R399-R402; Ollivier, F.J., Samuelson, D.A., Brooks, D.E., Lewis, P.A., Kallberg, M.E., Komáromy, A.M., Comparative morphology of the tapetum lucidum (among selected species (2004) Vet Opthalmol, 7, pp. 11-22; Jones, G., Teeling, E.C., The evolution of echolocation in bats (2006) Trends Ecol Evol, 21, pp. 149-156; Constantine, D.G., Emmons, R.W., Woodie, J.D., Rabies virus in nasal mucosa of naturally infected bats (1972) Science, 175, pp. 1255-1256; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin Microbiol Rev, 19, pp. 531-545; Hedenström, A., Johansson, L.C., Bat flight: Aerodynamics, kinematics and flight morphology (2015) J Exp Biol, 218, pp. 653-663; Thomas, S.P., Suthers, R.A., The physiology and energetics of bat fligth (1972) J Exp Biol, 57, pp. 317-335; Shen, Y.Y., Liang, L., Zhu, Z.H., Zhou, W.P., Irwin, D.M., Zhang, Y.P., Adaptive evolution of energy metabolism genes and the origin of flight in bats (2010) Proc Natl Acad Sci USA, 107, pp. 8666-8671; Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K.A., Fang, X., Comparative analysis of bat genomes provides insight into the evolution of flight and immunity (2013) Science, 339, pp. 456-460; Prat, Y., Taub, M., Yovel, Y., Everyday bat vocalizations contain information about emitter, addressee, context, and behavior (2016) Sci Rep, 6, p. 39419; Kerth, G., Van Schaik, J., Causes and consequences of living in closed societies: Lessons from a long-term socio-genetic study on Bechstein's bats (2012) Mol Ecol, 21, pp. 633-646; Schneider, D.S., Ayres, J.S., Two ways to survive infection: What resistance and tolerance can teach us about treating infectious diseases (2008) Nat Rev Immunol, 8, pp. 889-895; Ayres, J.S., Schneider, D.S., Tolerance of infections (2012) Annu Rev Immunol, 30, pp. 271-294; Martinez Gomez, J.M., Periasamy, P., Dutertre, C.A., Irving, A.T., Ng, J.H., Crameri, G., Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto (2016) Sci Rep, 6, p. 37796; Zhou, P., Chionh, Y.T., Irac, S.E., Ahn, M., Jia Ng, J.H., Fossum, E., Unlocking bat immunology: Establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages (2016) Sci Rep, 6, p. 38597; Ahn, M., Cui, J., Irving, A.T., Wang, L.F., Unique loss of the PYHIN gene family in bats amongst mammals: Implications for inflammasome sensing (2016) Sci Rep, 6, p. 21722; Li, N., Parrish, M., Chan, T.K., Yin, L., Rai, P., Yoshiyuki, Y., Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration (2015) Cell Mol Life Sci, 72, pp. 2973-2988; Crameri, G., Todd, S., Grimley, S., McEachern, J.A., Marsh, G.A., Smith, C., Establishment, immortalisation and characterisation of pteropid bat cell lines (2009) PLoS ONE, 4, p. e8266; Kepler, T., Sample, C., Hudak, K., Roach, J., Haines, A., Walsh, A., Chiropteran types i and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler (2010) BMC Genomics, 11, p. 444; Virtue, E.R., Marsh, G.A., Baker, M.L., Wang, L.-F., Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines (2011) PLoS ONE, 6, p. e22488; Zhou, P., Cowled, C., Todd, S., Crameri, G., Virtue, E.R., Marsh, G.A., Type III IFNs in pteropid bats: Differential expression patterns provide evidence for distinct roles in antiviral immunity (2011) J Immunol, 186, pp. 3138-3147; Zhou, P., Cowled, C., Mansell, A., Monaghan, P., Green, D., Wu, L., IRF7 in the Australian black flying fox, Pteropus alecto: Evidence for a unique expression pattern and functional conservation (2014) PLoS ONE, 9, p. e103875; Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats (2016) Proc Nat Acad Sci USA, 113, pp. 2696-2701; Broggi, A., Tan, Y., Granucci, F., Zanoni, I., IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function (2017) Nat Immunol, 18, pp. 1084-1093; De La Cruz-Rivera, P.C., Kanchwala, M., Liang, H., Kumar, A., Wang, L.-F., Xing, C., The IFN response in bat cells consists of canonical and non-canonical ISGs with unique temporal expression kinetics (2017) BioRxiv, , Preprint; Kuzmin, I.V., Schwarz, T.M., Ilinykh, P.A., Jordan, I., Ksiazek, T.G., Sachidanandam, R., Innate immune responses of bat and human cells to filoviruses: Commonalities and distinctions (2017) J Virol, 91, pp. e02471-e02516; Zanoni, I., Granucci, F., Broggi, A., Interferon (IFN)-λ takes the helm: Immunomodulatory roles of Type III IFNs (2017) Front Immunol, 8, p. 1661; Zhang, Q., Zeng, L.-P., Zhou, P., Irving, A.T., Li, S., Shi, Z.-L., IFNAR2-dependent gene expression profile induced by IFN-α in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection (2017) PLoS ONE, 12, p. e0182866; Pavlovich, S.S., Lovett, S.P., Koroleva, G., Guito, J.C., Arnold, C.E., Nagle, E.R., The Egyptian rousette genome reveals unexpected features of bat antiviral immunity (2018) Cell, 173, pp. 1098-109818; Xie, J., Li, Y., Shen, X., Goh, G., Zhu, Y., Cui, J., Dampened STING-dependent interferon activation in bats (2018) Cell Host Microbe, 23, pp. 297-2974; Jones, G., Jacobs, D.S., Kunz, T.H., Willig, M.R., Racey, P.A., Carpe noctem: The importance of bats as bioindicators (2009) Endangered Species Res, 8, pp. 93-115; Seltmann, A., Czirjak, G.A., Courtiol, A., Bernard, H., Struebig, M.J., Voigt, C.C., Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats (2017) Conserv Physiol, 5, p. cox020; Middleton, D.J., Weingartl, H.M., Henipaviruses in their natural animal hosts (2012) Curr Top Microbiol Immunol, 359, pp. 105-121; (2018) Outbreak of Nipah Virus Encephalitis in Kerala State of India, , http://www.searo.who.int/entity/emerging_diseases/links/nipah_virus/en/; Williamson, M.M., Hooper, P.T., Selleck, P.W., Gleeson, L.J., Daniels, P.W., Westbury, H.A., Transmission studies of Hendra virus (equine morbilli-virus) in fruit bats, horses and cats (1998) Australian Vet J, 76, pp. 813-818; Williamson, M.M., Hooper, P.T., Selleck, P.W., Westbury, H.A., Slocombe, R.F., Experimental Hendra virus infection in pregnant Guinea-pigs and fruit bats (Pteropus poliocephalus (1999) J Comp Pathol, 122, pp. 201-207; Middleton, D.J., Morrissy, C.J., Van Der Heide, B.M., Russell, G.M., Braun, M.A., Westbury, H.A., Experimental nipah virus infection in pteropid bats (Pteropus poliocephalus (2007) J Comp Pathol, 136, pp. 266-272; Halpin, K., Hyatt, A.D., Fogarty, R., Middleton, D., Bingham, J., Epstein, J.H., Pteropid bats are confirmed as the reservoir hosts of henipaviruses: A comprehensive experimental study of virus transmission (2011) Am J Trop Med Hyg, 85, pp. 946-951; Peter, L.Y., Kim, H., Paul, W.S., Hume, E.F., Jenny, L.G., Mark, A.K., Serologic evidence for the presence in pteropus bats of a paramyxovirus related to equine morbillivirus (1996) Emer Infect Dis, 2, pp. 239-240; Field, H., Jordan, D., Edson, D., Morris, S., Melville, D., Parry-Jones, K., Spatiotemporal aspects of hendra virus infection in pteropid bats (Flying-Foxes) in Eastern Australia (2015) PLoS ONE, 10, p. e0144055; Johara Mohd, Y., Hume, F., Azmin Mohd, R., Christopher, M., Brenda Van Der, H., Paul, R., Nipah virus infection in bats (Order Chiroptera) in Peninsular Malaysia (2001) Emer Infect Dis, 7, pp. 439-441; Hayward, J.A., Tachedjian, M., Cui, J., Cheng, A.Z., Johnson, A., Baker, M.L., Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 Gene complexity (2018) Mol Biol Evol, 35, pp. 1626-1637; Jhj, N., Tachedjian, M., Deakin, J., Wynne, J.W., Cui, J., Haring, V., Evolution and comparative analysis of the bat MHC-I region (2016) Sci Rep, 6, p. 21256; Hayward, J.A., Tachedjian, M., Cui, J., Field, H., Holmes, E.C., Wang, L.F., Identification of diverse full-length endogenous betaretroviruses in megabats and microbats (2013) Retrovirology, 10, p. 35; Cui, J., Tachedjian, G., Wang, L.-F., Bats and rodents shape mammalian retroviral phylogeny (2015) Sci Rep, 5, p. 16561; Chen, H., Lilley, C.E., Yu, Q., Lee, D.V., Chou, J., Narvaiza, I., APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons (2006) Curr Biol, 16, pp. 480-485; Renard, M., Henry, M., Guétard, D., Vartanian, J.-P., Wain-Hobson, S., APOBEC1 and APOBEC3 cytidine deaminases as restriction factors for hepadnaviral genomes in non-humans in vivo (2010) J Mol Biol, 400, pp. 323-334; Refsland, E.W., Harris, R.S., The APOBEC3 family of retroelement restriction factors (2013) Curr Top Microbiol Immunol, 371, pp. 1-27; Narvaiza, I., Linfesty, D.C., Greener, B.N., Hakata, Y., Pintel, D.J., Logue, E., Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase (2009) PLoS Pathog, 5, p. e1000439; Mohanram, V., Skold, A.E., Bachle, S.M., Pathak, S.K., Spetz, A.L., IFN-alpha induces APOBEC3G, F, and A in immature dendritic cells and limits HIV-1 spread to CD4+ T cells (2013) J Immunol, 190, pp. 3346-3353; Banerjee, A., Rapin, N., Bollinger, T., Misra, V., Lack of inflammatory gene expression in bats: A unique role for a transcription repressor (2017) Sci Rep, 7, p. 2232; Ishikawa, H., Barber, G.N., STING an endoplasmic reticulum adaptor that facilitates innate immune signaling (2008) Nature, 455, pp. 674-678; Amman, B.R., Carroll, S.A., Reed, Z.D., Sealy, T.K., Balinandi, S., Swanepoel, R., Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection (2012) PLoS Pathog, 8, p. e1002877; Pourrut, X., Souris, M., Towner, J.S., Rollin, P.E., Nichol, S.T., Gonzalez, J.P., Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus (2009) BMC Infect Dis, 9, p. 159; Jordan, I., Horn, D., Oehmke, S., Leendertz, F.H., Sandig, V., Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara (2009) Virus Res, 145, pp. 54-62; Jones, M.E., Schuh, A.J., Amman, B.R., Sealy, T.K., Zaki, S.R., Nichol, S.T., Experimental inoculation of egyptian rousette bats (Rousettus aegyptiacus) with viruses of the ebolavirus and marburgvirus genera (2015) Viruses, 7, pp. 3420-3442; Paweska, J.T., Storm, N., Grobbelaar, A.A., Markotter, W., Kemp, A., Jansen Van Vuren, P., Experimental inoculation of Egyptian fruit bats (Rousettus aegyptiacus) with ebola virus (2016) Viruses, 8, p. E29; Paweska, J.T., Jansen Van Vuren, P., Masumu, J., Leman, P.A., Grobbelaar, A.A., Birkhead, M., Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with vero cells-adapted hogan strain of Marburg virus (2012) PLoS ONE, 7, p. e45479; Amman, B.R., Jones, M.E., Sealy, T.K., Uebelhoer, L.S., Schuh, A.J., Bird, B.H., Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus (2015) J Wildl Dis, 51, pp. 113-124; Paweska, J.T., Jansen Van Vuren, P., Fenton, K.A., Graves, K., Grobbelaar, A.A., Moolla, N., Lack of marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats (2015) J Infect Dis, 212, pp. S109-S118; Schuh, A.J., Amman, B.R., Jones, M.E., Sealy, T.K., Uebelhoer, L.S., Spengler, J.R., Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats (2017) Nat Commun, 8, p. 14446; Schuh, A.J., Amman, B.R., Sealy, T.K., Spengler, J.R., Nichol, S.T., Towner, J.S., Egyptian rousette bats maintain long-term protective immunity against Marburg virus infection despite diminished antibody levels (2017) Sci Rep, 7, p. 8763; Deschamps, M., Laval, G., Fagny, M., Itan, Y., Abel, L., Casanova, J.L., Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes (2016) Am J Hum Genet, 98, pp. 5-21; Lee, A.K., Kulcsar, K.A., Elliott, O., Khiabanian, H., Nagle, E.R., Jones, M.E., De novo transcriptome reconstruction and annotation of the Egyptian rousette bat (2015) BMC Genomics, 16, p. 1033; Lawrence, T., The nuclear factor NF-κB pathway in inflammation (2009) Cold Spring Harbor Persp Biol, 1, p. a001651; Guivier, E., Galan, M., Salvador, A.R., Xuéreb, A., Chaval, Y., Olsson, G.E., TNF-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations (2010) Infect Genet Evol, 10, pp. 1208-1217; Kacprzyk, J., Hughes, G.M., Palsson-McDermott, E.M., Quinn, S.R., Puechmaille, S.J., Laj, O., A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance (2017) Acta Chiropterol, 19, pp. 219-228; Cryan, P.M., Meteyer, C.U., Boyles, J.G., Blehert, D.S., White-nose syndrome in bats: Illuminating the darkness (2013) BioMed Central Biol, 11, pp. 1-4; Hoyt, J.R., Cheng, T.L., Langwig, K.E., Hee, M.M., Frick, W.F., Kilpatrick, A.M., Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome (2015) PLoS ONE, 10, p. e0121329; (2018) United States Geological Survey, , https://www.nwhc.usgs.gov/disease_information/white-nose_syndrome/, United States Geological Survey; Wibbelt, G., Puechmaille, S.J., Ohlendorf, B., Muhldorfer, K., Bosch, T., Gorfol, T., Skin lesions in European hibernating bats associated with Geomyces destructans, the etiologic agent of white-nose syndrome (2013) PLoS ONE, 8, p. e74105; Zukal, J., Bandouchova, H., Brichta, J., Cmokova, A., Jaron, K.S., Kolarik, M., White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America (2016) Sci Rep, 6, p. 19829; Verant, M., Meteyer, C.U., Speakman, J.R., Cryan, P.M., Lorch, J.M., Blehert, D.S., White-nose syndrome initiates a casacde of physiological disturbances in the hibernating bat host (2014) BioMed Central Physiol, 14, pp. 1-11; Reeder, D.M., Frank, C.L., Turner, G.G., Meteyer, C.U., Kurta, A., Britzke, E.R., Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome (2012) PLoS ONE, 7, p. e38920; Cryan, P.M., Meteyer, C.U., Blehert, D.S., Lorch, J.M., Reeder, D.M., Turner, G.G., Electrolyte depletion in white-nose syndrome bats (2013) J Wildl Dis, 49, pp. 398-402; Cryan, P.M., Meteyer, C.U., Boyles, J.G., Blehert, D.S., Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology (2010) BioMed Central Biol, 8, pp. 1-8; Willis, C.K., Menzies, A.K., Boyles, J.G., Wojciechowski, M.S., Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome (2011) Integr Comp Biol, 51, pp. 364-373; Meteyer, C.U., Barber, D., Mandl, J.N., Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome (2012) Virulence, 3, pp. 583-588; Field, K.A., Johnson, J.S., Lilley, T.M., Reeder, S.M., Rogers, E.J., Behr, M.J., The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown myotis (2015) PLoS Pathog, 11, p. e1005168; Lilley, T.M., Prokkola, J.M., Johnson, J.S., Rogers, E.J., Gronsky, S., Kurta, A., Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome (2017) Proc Biol Sci, 284, p. 20162232; Schneeberger, K., Czirjak, G.A., Voigt, C.C., Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal (2013) J Exp Biol, 216, pp. 4514-4519; Stockmaier, S., Dechmann, D.K., Page, R.A., O'Mara, M.T., No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat (2015) Biol Lett, 11, p. 20150576; Otalora-Ardila, A., Herrera, M.L., Flores-Martinez, J.J., Welch, K.C., Jr., Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response (2016) PLoS ONE, 11, p. e0164938; Weise, P., Czirjak, G.A., Lindecke, O., Bumrungsri, S., Voigt, C.C., Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaerephon plicatus (2017) PeerJ, 5, p. e3570; Mühldorfer, K., Speck, S., Wibbelt, G., Diseases in free-ranging bats from Germany (2011) BioMed Central Vet Res, 7, pp. 1-11; Mandl, J.N., Akondy, R., Lawson, B., Kozyr, N., Staprans, S.I., Ahmed, R., Distinctive TLR7 signaling, type i IFN production, and attenuated innate and adaptive immune responses to yellow fever virus in a primate reservoir host (2011) J Immunol, 186, pp. 6406-6416","Mandl, J.N.; Department of Physiology, McGill UniversityCanada; email: judith.mandl@mcgill.ca",,"Frontiers Media S.A.",16643224,,,"30294323","English","Front. Immunol.",Review,"Final",Open Access,Scopus,2-s2.0-85054467260 "Piñeyro P.E., Lozada M.I., Alarcón L.V., Sanguinetti R., Cappuccio J.A., Pérez E.M., Vannucci F., Armocida A., Madson D.M., Perfumo C.J., Quiroga M.A.","23988268000;56411798000;57203975650;26435564700;23987658200;56411579300;35219394300;57203968599;23978540100;6603860118;7005283281;","First retrospective studies with etiological confirmation of porcine transmissible gastroenteritis virus infection in Argentina",2018,"BMC Veterinary Research","14","1", 292,"","",,1,"10.1186/s12917-018-1615-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053821671&doi=10.1186%2fs12917-018-1615-9&partnerID=40&md5=64bf378d6a789568ee1deb0afddb9e9f","Veterinary Diagnostic Laboratory, 1655 Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, United States; Laboratorio de Patología Especial Veterinaria FCV-UNLP, Calle 60 y 118 S/N (1900), La Plata, Buenos Aires, Argentina; HIPRA Argentina, Saenz Peña R. Pte. Av 1110, Capital Federal, Argentina; DILACOT-SENASA, Av A Fleming 1653, Martinez, Buenos Aires, Argentina; EEA Marcos Juaréz, INTA, CONICET, Ruta 12 km. 3 (2580), Marcos Juárez, Córdoba, Argentina; Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Ave, St Paul, MN, United States","Piñeyro, P.E., Veterinary Diagnostic Laboratory, 1655 Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, United States; Lozada, M.I., Laboratorio de Patología Especial Veterinaria FCV-UNLP, Calle 60 y 118 S/N (1900), La Plata, Buenos Aires, Argentina; Alarcón, L.V., HIPRA Argentina, Saenz Peña R. Pte. Av 1110, Capital Federal, Argentina; Sanguinetti, R., DILACOT-SENASA, Av A Fleming 1653, Martinez, Buenos Aires, Argentina; Cappuccio, J.A., EEA Marcos Juaréz, INTA, CONICET, Ruta 12 km. 3 (2580), Marcos Juárez, Córdoba, Argentina; Pérez, E.M., Laboratorio de Patología Especial Veterinaria FCV-UNLP, Calle 60 y 118 S/N (1900), La Plata, Buenos Aires, Argentina; Vannucci, F., Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Ave, St Paul, MN, United States; Armocida, A., Laboratorio de Patología Especial Veterinaria FCV-UNLP, Calle 60 y 118 S/N (1900), La Plata, Buenos Aires, Argentina; Madson, D.M., Veterinary Diagnostic Laboratory, 1655 Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, United States; Perfumo, C.J., Laboratorio de Patología Especial Veterinaria FCV-UNLP, Calle 60 y 118 S/N (1900), La Plata, Buenos Aires, Argentina; Quiroga, M.A., Laboratorio de Patología Especial Veterinaria FCV-UNLP, Calle 60 y 118 S/N (1900), La Plata, Buenos Aires, Argentina","Background: In 2014, a notification of porcine transmissible gastroenteritis virus (TGEV) was made by the National Services of Animal Health of Argentina (SENASA) to the World Organization of Animal Health (OIE). The notification was based on a serological diagnosis in a small farm with a morbidity rate of 2.3% without enteric clinical signs. In order to determine if TGEV was circulating before the official report, a retrospective study on cases of neonatal diarrhea was performed. The selection criteria was a sudden increase in mortality in 1- to 21-day-old piglets with watery diarrhea that did not respond to antibiotics. Based on these criteria, three clinical cases were identified during 2010-2015. Results: All animals that were evaluated presented histological lesions consistent with enteric viral infection. The feces and ultrathin sections of intestine that were evaluated by electron microscopy confirmed the presence of round particles of approximately 80 nm in size and characterized by finely granular electrodense nucleoids consistent with complete particles of coronavirus. The presence of the TGEV antigen was confirmed by monoclonal specific immunohistochemistry, and final confirmation of a metabolically-active virus was performed by in situ hybridization to detect a TGE mRNA encoding spike protein. All sections evaluated in this case were negative for PEDV and rotavirus A. Conclusions: This is the first case series describing neonatal mortality with etiological confirmation of TGEV in Argentina. The clinical diagnosis of TGEV infections in endemic regions is challenging due to the epidemiological distribution and coinfection with other enteric pathogens that mask the clinical presentation. © 2018 The Author(s).","Diarrhea; Mortality; Piglets; Porcine transmissible gastroenteritis virus","peroxidase; uranyl acetate; abortion; animal experiment; animal tissue; anorexia; antigen retrieval; Argentina; Article; autopsy; cell vacuole; clinical feature; controlled study; dehydration; diarrhea; edema; electron microscopy; female; histopathology; immunohistochemistry; in situ hybridization; intestine cell; lymphangiectasis; lymphocytic infiltration; mortality rate; nonhuman; parity; pig; piglet; retrospective study; sow (swine); Transmissible gastroenteritis virus; Transmissible gastroenteritis virus infection; viral gastroenteritis; virus transmission; vomiting; animal; isolation and purification; male; swine disease; transmissible gastroenteritis of swine; Animals; Argentina; Female; Gastroenteritis, Transmissible, of Swine; Male; Retrospective Studies; Swine; Swine Diseases; Transmissible gastroenteritis virus","Saif, L.J., Pensaert, M.B., Sestak, K., Yeo, S.G., Jung, K., Coronaviruses (2012) Diseases of Swine, pp. 501-523. , J.J. Zimmerman L.A. Karriker A. Ramirez K.J. Schwartz G.W. Stevenson (eds) 10 Willey Ames; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg Infect Dis, 20 (5), pp. 917-919; Quiroga, M.A., Cappuccio, J., Pineyro, P., Basso, W., More, G., Kienast, M., Schonfeld, S., Pintos, M.E., Hemagglutinating encephalomyelitis coronavirus infection in pigs, Argentina (2008) Emerg Infect Dis, 14 (3), pp. 484-486. , 1:CAS:528:DC%2BD1cXkt1Krtro%3D; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: Molecular features and virus-host interactions (1993) Vet Res, 24 (2), pp. 125-150. , 1:CAS:528:DyaK3sXltlGjt7o%3D 8393722; González, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch Virol, 148 (11), pp. 2207-2235; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Derscheid, R., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59. , 1:CAS:528:DC%2BC2MXks1aks7o%3D; McCluskey, B.J., Haley, C., Rovira, A., Main, R., Zhang, Y., Barder, S., Retrospective testing and case series study of porcine delta coronavirus in U.S. Swine herds (2016) Prev Vet Med, 123, pp. 185-191; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: A review of current epidemiology and available vaccines (2015) Clin Exp Vaccin Res, 4 (2), pp. 166-176; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Schmitt, B.J., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Investig, 25 (5), pp. 649-654; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204 (2), pp. 134-143; Poonsuk, K., Giménez-Lirola, L.G., Zhang, J., Arruda, P., Chen, Q., Correa Da Silva Carrion, L., Magtoto, R., Wang, C., Does circulating antibody play a role in the protection of piglets against porcine epidemic diarrhea virus? (2016) PLoS One, 11 (4), p. e0153041; Kim, L., Hayes, J., Lewis, P., Parwani, A.V., Chang, K.O., Saif, L.J., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Arch Virol, 145 (6), pp. 1133-1147. , 1:CAS:528:DC%2BD3cXlsFCqsL8%3D; Woods, R.D., Development of PCR-based techniques to identify porcine transmissible gastroenteritis coronavirus isolates (1997) Can J Vet Res, 61 (3), pp. 167-172. , 1:CAS:528:DyaK2sXlt1Cqs7s%3D 9242995 1189399; Sestak, K., Saif, L.J., Porcine coronavirus (2002) Trends in Emerging Viral Infections of Swine, pp. 321-330. , Edited by Morilla A, Yoon K-J, Zimmerman JJ. Ames: Iowa State Press; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J Am Vet Med Assoc, 108, pp. 257-259. , 1:STN:280:DyaH28%2FjvVGnug%3D%3D 21020443; Piñeros, R., Mogollón Galvis, J.D., Coronavirus en porcinos: Importancia y presentación del virus de la diarrea epidémica porcina (PEDV) en Colombia (2015) Rev Med Vet, 29, pp. 73-89; Marin, C., Rolo, M., López, N., Álvarez, L., Castaños, H., Sifontes, S., Detección de focos de gastroenteritis transmisible en Venezuela (1985) Vet Trop, 10, pp. 35-42; Martins, A.M.C.R., Bersano, J.G., Ogata, R., Amante, G., Nastari, B.D.B., Catroxo, M.H.B., Diagnosis to detect porcine transmissible gastroenteritis virus (TGEV) by optical and transmission electron microscopy techniques (2013) Int J Morphol, 31, pp. 706-715; Perfumo, C., Venturini, L., Sanguinetti, H., Aguirre, J., Armocida, A., Petruccelli, M., Moredo, F., Infección por Isospora suis sola o asociada a virus entéricos como causa de alta morbimortalidad en lechones lactantes (1998) Revta Med Vet, 79, pp. 264-268; Aguirre, J.I., Ma, P., Armocida, A.D., Moredo, F.S., Risso, M., Venturini, L., Idiart, J.R., Perfumo, C.J., Diarrea en lechones lactantes y posdestete de cuatro criaderos intensivos de la provincia de Buenos Aires, Argentina: Identificación e índice de detección de partículas virales en materia fecal por microscopía electrónica (2000) Analecta Vet, 20 (2), pp. 16-21; Chavez, F., Pérez, E., Barrales, H., Zignago, F., Lozada, M., Quiroga, M., Machuca, M., Perfumo, C., Análisis de los cuadros entéricos en cerdos remitidos al Laboratorio de Patología Especial Veterinaria (2013) (2014) Proceeding Of: Memorias XII Congreso Nacional de Producción Porcina, p. 178. , 12-15 agosto 2014. Mardel Plata; 2014; Carné, L.A., Transmissible gastroenteritis, Argentina (2014) Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), , OIE, editor Ministerio de Agricultura, Ganadería y Pesca: World Organization of Animal health; Dewey, C.E., Carman, S., Hazlett, M., Dreumel, T.V., Smart, N.E., Endemic transmissible gastroenteritis: Difficulty in diagnosis and attempted confirmation using a transmission trial (1999) J Swine Health Prod, 7 (2), pp. 73-78; Sanz, M.G., Venturini, L., Assis, R.A., Uzal, F., Risso, M.A., Idiart, J.R., Perfumo, C.J., Fibrinonecrotic enteritis of piglets in a commercial farm: A postmortem study of the prevalence and the role of lesion associated agents Isospora suis and Clostridium perfringens (2007) Pesqui Vet Bras, 27, pp. 297-300; Cappuccio, J.A., Quiroga, M.A., Moredo, F.A., Canigia, L.F., Machuca, M., Capponi, O., Bianchini, A., Ibar, M., Neonatal piglets mesocolon edema and colitis due to Clostridium difficile infection: Prevalence, clinical disease and pathological studies (2009) Braz J Vet Pathol, 2 (1), pp. 35-40; Sanz, M., Sernia, C., Viale, G., Bustos, L., Sanguinetti, H., Risso, M., Venturini, L., Perfumo, C., Why Should Piglets Dead at the Pre-weaning Period be Post-mortem Examined and Statistically Analysed at Weekly Intervals? (2001) Proceeding Of: 32nd Annual Meeting American Association of Swine Practitioners, pp. 69-74. , February 24-27 Nashville; 2001; Hooper, B.E., Haelterman, E.O., Lesions of the gastrointestinal tract of pigs infected with transmissible gastroenteritis (1969) Can J Comp Med, 33 (1), pp. 29-36. , 1:STN:280:DyaF1M7isFalsQ%3D%3D 4237292 1319318; Moeser, A.J., Blikslager, A.T., Mechanisms of porcine diarrheal disease (2007) J Am Vet Med Assoc, 231 (1), pp. 56-67. , 1:CAS:528:DC%2BD2sXotl2lur8%3D; Pritchard, G.C., Transmissible gastroenteritis in endemically infected breeding herds of pigs in East Anglia, 1981-85 (1987) Vet Rec, 120 (10), pp. 226-230. , 1:STN:280:DyaL2s3gslGgtw%3D%3D; Shoup, D.I., Swayne, D.E., Jackwood, D.J., Saif, L.J., Immunohistochemistry of transmissible gastroenteritis virus antigens in fixed paraffin-embedded tissues (1996) J Vet Diagn Investig, 8 (2), pp. 161-167. , 1:STN:280:DyaK28zmtl2rsw%3D%3D; Kim, O., Chae, C., Kweon, C.-H., Monoclonal antibody-based Immunohistochemical detection of porcine epidemic diarrhea virus antigen in formalin-fixed, paraffin-embedded intestinal tissues (1999) J Vet Diagn Investig, 11 (5), pp. 458-462. , 1:STN:280:DC%2BD3svivVShug%3D%3D; Magar, R., Larochelle, R., Immunohistochemical detection of porcine rotavirus using Immunogold silver staining (IGSS) (1992) J Vet Diagn Investig, 4 (1), pp. 3-7. , 1:STN:280:DyaK383gvVSgsA%3D%3D; Wang, F., Flanagan, J., Su, N., Wang, L.-C., Bui, S., Nielson, A., Wu, X., Luo, Y., RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues (2012) J Mol Diagn, 14 (1), pp. 22-29. , 1:CAS:528:DC%2BC38XhvVCrtL0%3D","Piñeyro, P.E.; Veterinary Diagnostic Laboratory, 1655 Veterinary Medicine, Iowa State University, 1850 Christensen Drive, United States; email: pablop@iastate.edu",,"BioMed Central Ltd.",17466148,,,"30249258","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85053821671 "Hand J., Rose E.B., Salinas A., Lu X., Sakthivel S.K., Schneider E., Watson J.T.","35603309700;57200296801;57203926717;57216109714;55414566800;57207907236;55374101200;","Severe respiratory illness outbreak associated with human coronavirus NL63 in a long-term care facility",2018,"Emerging Infectious Diseases","24","10",,"1964","1966",,4,"10.3201/eid2410.180862","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053613648&doi=10.3201%2feid2410.180862&partnerID=40&md5=0dc1203bea56232ef3b1823a336deba4","Louisiana Department of Health, Baton Rouge, LA, United States; Centers for Disease Control and Prevention, Atlanta, GA, United States","Hand, J., Louisiana Department of Health, Baton Rouge, LA, United States; Rose, E.B., Centers for Disease Control and Prevention, Atlanta, GA, United States; Salinas, A., Louisiana Department of Health, Baton Rouge, LA, United States; Lu, X., Centers for Disease Control and Prevention, Atlanta, GA, United States; Sakthivel, S.K., Centers for Disease Control and Prevention, Atlanta, GA, United States; Schneider, E., Centers for Disease Control and Prevention, Atlanta, GA, United States; Watson, J.T., Centers for Disease Control and Prevention, Atlanta, GA, United States","We describe an outbreak of severe respiratory illness associated with human coronavirus NL63 in a long-term care facility in Louisiana in November 2017. Six of 20 case-patients were hospitalized with pneumonia, and 3 of 20 died. Clinicians should consider human coronavirus NL63 for patients in similar settings with respiratory disease. © 2018, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"aged; clinical article; coughing; dyspnea; female; fever; hospitalization; human; Human coronavirus NL63; Human parainfluenza virus 1; Letter; long term care; male; mental health; nursing care; pneumonia; real time polymerase chain reaction; respiratory tract disease; Rhinovirus; thorax radiography; wheezing; Coronavirus infection; cross infection; epidemic; health care facility; health survey; long term care; Louisiana; polymerase chain reaction; respiratory tract infection; very elderly; virology; virus RNA; Aged; Aged, 80 and over; Coronavirus Infections; Coronavirus NL63, Human; Cross Infection; Disease Outbreaks; Female; Health Facilities; Humans; Long-Term Care; Louisiana; Male; Polymerase Chain Reaction; Public Health Surveillance; Respiratory Tract Infections; RNA, Viral","Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age (2014) Pediatr Infect Dis J, 33, pp. 814-820. , http://dx.doi.org/10.1097/INF.0000000000000292; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations (2013) J Infect Dis, 208, pp. 1634-1642. , http://dx.doi.org/10.1093/infdis/jit393; Englund, J., Feuchtinger, T., Ljungman, P., Viral infections in im-munocompromised patients (2011) Biol Blood Marrow Transplant, 17, pp. S2-S5. , http://dx.doi.org/10.1016/j.bbmt.2010.11.008; Falsey, A.R., Dallal, G.E., Formica, M.A., Andolina, G.G., Hamer, D.H., Leka, L.L., Long-term care facilities: A cornucopia of viral pathogens (2008) J am Geriatr Soc, 56, pp. 1281-1285. , http://dx.doi.org/10.1111/j.1532-5415.2008.01775.x; Birch, C.J., Clothier, H.J., Seccull, A., Tran, T., Catton, M.C., Lambert, S.B., Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia (2005) Epidemiol Infect, 133, pp. 273-277. , http://dx.doi.org/10.1017/S0950268804003346; Killerby, M.E., Biggs, H.M., Haynes, A., Dahl, R.M., Mustaquim, D., Gerber, S.I., Human coronavirus circulation in the United States 2014-2017 (2018) J Clin Virol, 101, pp. 52-56. , http://dx.doi.org/10.1016/j.jcv.2018.01.019","Watson, J.T.; Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop A34, United States; email: acq4@cdc.gov",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"30226169","English","Emerg. Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85053613648 "Wang H., Cong F., Zeng F., Lian Y., Liu X., Luo M., Guo P., Ma J.","56685941000;57195918992;57202942871;57190381228;57203493340;35724316700;55433605900;57205222918;","Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV)",2018,"Journal of Virological Methods","260",,,"45","48",,5,"10.1016/j.jviromet.2018.06.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049905784&doi=10.1016%2fj.jviromet.2018.06.010&partnerID=40&md5=c6318693c1db70ead6ceb79488608cb1","Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China; College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China","Wang, H., Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Cong, F., Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China; Zeng, F., Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China; Lian, Y., Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China; Liu, X., Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China; Luo, M., Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510640, China; Guo, P., Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China; Ma, J., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China","A novel swine acute diarrhea syndrome Coronavirus (SADS-CoV) that causes severe diarrhea in suckling piglets was identified in southern China in 2017. A simple and rapid detection test was developed for this virus using real-time RT-LAMP based on the conserved N gene of the virus. The method had a detection limit of 1.0 × 101 copies/μL with no cross-reactions with classical swine fever virus, porcine and respiratory syndrome virus NA, porcine and respiratory syndrome virus EU, transmissible gastroenteritis coronavirus, foot and mouth disease virus, porcine epidemic diarrhea virus (S-INDEL and non-S-INDEL), swine influenza virus subtype H1N1, porcine circovirus type 2, seneca valley virus, porcine parvovirus, porcine deltacoronavirus and rotavirus. This method was also reproducible. Twenty of 24 clinical samples were identified as SADS-CoV RNA-positive by the real-time RT-LAMP and the results were consistent with that of the real time RT-PCR method. This new method for detecting SADS-CoV is specific and sensitive for the detection of SADS-CoV. © 2018 Elsevier B.V.","Diagnosis; Real-time LAMP; SADS-CoV","Article; controlled study; Coronavirinae; cross reaction; diarrhea; disease severity; limit of detection; N gene; nonhuman; piglet; priority journal; real time polymerase chain reaction; real time reverse transcription loop mediated isothermal amplification; reproducibility; reverse transcription loop mediated isothermal amplification; sensitivity and specificity; suckling animal; swine acute diarrhea syndrome coronavirus; virus detection; virus gene; acute disease; animal; China; classification; Coronavirinae; Coronavirus infection; diarrhea; genetics; isolation and purification; molecular diagnosis; nucleic acid amplification; pig; reverse transcription; swine disease; syndrome; veterinary medicine; nucleocapsid protein; nucleocapsid protein, Coronavirus; Acute Disease; Animals; China; Coronavirus; Coronavirus Infections; Diarrhea; Limit of Detection; Molecular Diagnostic Techniques; Nucleic Acid Amplification Techniques; Nucleocapsid Proteins; Reproducibility of Results; Reverse Transcription; Sensitivity and Specificity; Swine; Swine Diseases; Syndrome","de Souza, D.K., Quaye, C., Mosi, L., Addo, P., Boakye, D.A., A quick and cost effective method for the diagnosis of mycobacterium ulcerans infection (2012) BMC Infect. Dis., 12, p. 8; Gong, L., Li, J., Zhou, Q.F., Xu, Z.C., Chen, L., Zhang, Y., Xue, C.Y., Cao, Y.C., A New Bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Huang, C., Wen, F., Yue, L., Chen, R., Zhou, W., Hu, L., Chen, M., Wang, S., Exploration of fluorescence-based real-time loop-mediated isothermal amplification (LAMP) assay for detection of Isospora suis oocysts (2016) Exp. Parasitol., 165, pp. 1-6; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res., 226, pp. 50-59; Kurosaki, Y., Martins, D.B.G., Kimura, M., Catena, A.D.S., Borba, M., Mattos, S.D.S., Abe, H., Yasuda, J., Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification (2017) Sci. Rep., 7, p. 13503; Li, B., Ma, J.J., Xiao, S.B., Zhang, X.H., Wen, L.B., Mao, L., Ni, Y.X., He, K.W., Development of a loop-mediated isothermal amplification method for rapid detection of porcine boca-like virus (2012) J. Virol. Methods, 179, pp. 390-395; Niessen, L., Luo, J., Denschlag, C., Vogel, R.F., The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants (2013) Food Microbiol., 36, pp. 191-206; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res., 28, p. E63; Oscorbin, I.P., Belousova, E.A., Zakabunin, A.I., Boyarskikh, U.A., Filipenko, M.L., Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP) (2016) Biotechniques, 61, pp. 20-25; Pan, Y.F., Tian, X.Y., Qin, P., Wang, B., Zhao, P.W., Yang, Y.L., Wang, L.X., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Parida, M., Shukla, J., Sharma, S., Ranghia Santhosh, S., Ravi, V., Mani, R., Thomas, M., Vijayaraghavan, R., Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for rapid and real-time detection of the swine-origin influenza a H1N1 virus (2011) J. Mol. Diagnostics JMD, 13, pp. 100-107; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, pp. 243-247; Sahoo, P.R., Sethy, K., Mohapatra, S., Panda, D., Loop mediated isothermal amplification: an innovative gene amplification technique for animal diseases (2016) Vet. World, 9, pp. 465-469; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Invest., 25, pp. 649-654; Yu, X.W., Shi, L., Lv, X.P., Yao, W., Cao, M.H., Yu, H.X., Wang, X.R., Zheng, S.M., Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus (2015) Virol. J., 12; Yuan, W.Z., Wang, J.C., Zheng, Y.S., Li, L.M., Zhang, X.Y., Sun, J.G., Rapid detection of encephalomyocarditis virus by one-step reverse transcription loop-mediated isothermal amplification method (2014) Virus Res., 189, pp. 75-78; Zhao, K., Shi, W., Han, F.T., Xu, Y., Zhu, L.L., Zou, Y., Wu, X.A., Tang, X.M., Specific, simple and rapid detection of porcine circovirus type 2 using the loop-mediated isothermal amplification method (2011) Virol. J., 8; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J. Virol. Methods, 255, pp. 66-70; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556. , 255-+","Luo, M.; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityChina; email: 710510116@qq.com",,"Elsevier B.V.",01660934,,JVMED,"29936095","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85049905784 "Friedman N., Alter H., Hindiyeh M., Mendelson E., Avni Y.S., Mandelboim M.","56375064000;57200290594;6603217268;7005699332;36797776600;7801547586;","Human coronavirus infections in Israel: Epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1",2018,"Viruses","10","10", 515,"","",,3,"10.3390/v10100515","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053831334&doi=10.3390%2fv10100515&partnerID=40&md5=d0fd818d3e682447f9fbabdde6cc0dee","Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan, 5290002, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv, 69978, Israel; Department of Microbiology, Immunology and Genetics, Clinical Virology Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva, 84105, Israel","Friedman, N., Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan, 5290002, Israel, Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv, 69978, Israel; Alter, H., Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan, 5290002, Israel; Hindiyeh, M., Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan, 5290002, Israel, Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv, 69978, Israel; Mendelson, E., Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan, 5290002, Israel, Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv, 69978, Israel; Avni, Y.S., Department of Microbiology, Immunology and Genetics, Clinical Virology Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva, 84105, Israel; Mandelboim, M., Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Ramat-Gan, 5290002, Israel, Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, P.O.B. 39040, Tel-Aviv, 69978, Israel","Human coronaviruses (HCoVs) cause mild to severe respiratory diseases. Six types of HCoVs have been discovered, the most recent one termed the Middle East respiratory syndrome coronavirus (MERS-CoV). The aim of this study is to monitor the circulation of HCoV types in the population during 2015–2016 in Israel. HCoVs were detected by real-time PCR analysis in 1910 respiratory samples, collected from influenza-like illness (ILI) patients during the winter sentinel influenza survey across Israel. Moreover, 195 HCoV-positive samples from hospitalized patients were detected during one year at Soroka University Medical Center. While no MERS-CoV infections were detected, 10.36% of patients in the survey were infected with HCoV-OC43 (43.43%), HCoV-NL63 (44.95%), and HCoV-229E (11.62%) viruses. The HCoVs were shown to co-circulate with respiratory syncytial virus (RSV) and to appear prior to influenza virus infections. HCoV clinical symptoms were more severe than those of RSV infections but milder than influenza symptoms. Hospitalized patients had similar HCoV types percentages. However, while it was absent from the public winter survey, 22.6% of the patients were HCoV-HKU1 positives, mainly during the spring-summer period. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","HCoV-229E; HCoV-HKU1; HCoV-NL63; HCoV-OC43; Human coronavirus; Israel","age distribution; Article; Coronavirus infection; diarrhea; fatigue; hospitalization; Human respiratory syncytial virus; Influenza virus; myalgia; nonhuman; pneumonia; prevalence; real time polymerase chain reaction; respiratory tract disease; respiratory tract infection; reverse transcription polymerase chain reaction; seasonal variation; upper respiratory tract infection; virus genome; virus infection; winter; adolescent; adult; aged; chi square distribution; child; Coronavirinae; Coronavirus infection; genetics; human; infant; isolation and purification; Israel; middle aged; Pneumovirus; preschool child; questionnaire; season; Adolescent; Adult; Aged; Chi-Square Distribution; Child; Child, Preschool; Coronavirus; Coronavirus Infections; Genome, Viral; Humans; Infant; Israel; Middle Aged; Prevalence; Respiratory Syncytial Viruses; Seasons; Surveys and Questionnaires","Geller, C., Varbanov, M., Duval, R.E., Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies (2012) Viruses, 4, pp. 3044-3068; Razuri, H., Malecki, M., Tinoco, Y., Ortiz, E., Guezala, M.C., Romero, C., Estela, A., Reaves, E.J., Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru (2015) Am. J. Trop. Med. Hyg, 93, pp. 1038-1040; Gerna, G., Campanini, G., Rovida, F., Percivalle, E., Sarasini, A., Marchi, A., Baldanti, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J. Med. Virol., 78, pp. 938-949; Gerna, G., Percivalle, E., Sarasini, A., Campanini, G., Piralla, A., Rovida, F., Genini, E., Baldanti, F., Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients (2007) J. Clin. Virol., 38, pp. 244-250; Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Tripey, V., Brouard, J., Freymuth, F., Human (Non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France (2008) J. Paediatr. Child Health, 44, pp. 176-181; King, A.M., Lefkowitz, E., Adams, M.J., Carstens, E.B., (2011) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, , Elsevier: Oxford, UK; Almeida, J.D., Tyrrell, D.A., The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture (1967) J. Gen. Virol., 1, pp. 175-178; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; (2015) WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome (SARS), , http://www.who.int/csr/resources/publications/WHO_CDS_CSR_ARO_2004_1/en/, Updated Recommendations, October 2004, accessed on 7 December 2004; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-Van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Luk, W.K., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Alsheikh, S., Alsanouri, T., Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation (2013) East. Mediterr. Health J., 19, pp. S12-S18; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Brown, C., MERS differs from SARS, say experts (2014) CMAJ, 186, pp. E303-E304; (2017) Center for Disease Control and Prevention, , Middle East Respiratory Syndrome (MERS); Center for Disease Control and Prevention: Atlanta, GA, USA; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; MERS Situation Update, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-may-2018.html, May 2018, accessed on 7 June 2018; Hindiyeh, M., Levy, V., Azar, R., Varsano, N., Regev, L., Shalev, Y., Grossman, Z., Mendelson, E., Evaluation of a multiplex real-time reverse transcriptase PCR assay for detection and differentiation of influenza viruses A and B during the 2001-2002 influenza season in Israel (2005) J. Clin. Microbiol., 43, pp. 589-595; Meningher, T., Hindiyeh, M., Regev, L., Sherbany, H., Mendelson, E., Mandelboim, M., Relationships between A(H1N1)pdm09 influenza infection and infections with other respiratory viruses (2014) Influenza Other Respir. Viruses, 8, pp. 422-430; Lieberman, D., Shimoni, A., Keren-Naus, A., Steinberg, R., Shemer-Avni, Y., Identification of respiratory viruses in adults: Nasopharyngeal versus oropharyngeal sampling (2009) J. Clin. Microbiol., 47, pp. 3439-3443; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Bestebroer, T.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Eurosurveillance, 17; Taubenberger, J.K., Kash, J.C., Influenza virus evolution, host adaptation, and pandemic formation (2010) Cell Host Microbe, 7, pp. 440-451; Glezen, W.P., Taber, L.H., Frank, A.L., Kasel, J.A., Risk of primary infection and reinfection with respiratory syncytial virus (1986) Am. J. Dis. Child., 140, pp. 543-546; About Coronavirus, , https://www.cdc.gov/coronavirus/about/index.html, accessed on 9 November 2017; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., van der Hoek, L., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J. Clin. Virol., 53, pp. 135-139; Dare, R.K., Fry, A.M., Chittaganpitch, M., Sawanpanyalert, P., Olsen, S.J., Erdman, D.D., Human coronavirus infections in rural Thailand: A comprehensive study using real-time reverse-transcription polymerase chain reaction assays (2007) J. Infect. Dis., 196, pp. 1321-1328; Theamboonlers, A., Samransamruajkit, R., Thongme, C., Amonsin, A., Chongsrisawat, V., Poovorawan, Y., Human coronavirus infection among children with acute lower respiratory tract infection in Thailand (2007) Intervirology, 50, pp. 71-77; Chiu, S.S., Chan, K.H., Chu, K.W., Kwan, S.W., Guan, Y., Poon, L.L., Peiris, J.S., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin. Infect. Dis., 40, pp. 1721-1729; Mackay, I.M., Arden, K.E., Speicher, D.J., O’Neil, N.T., McErlean, P.K., Greer, R.M., Nissen, M.D., Sloots, T.P., Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004 (2012) Viruses, 4, pp. 637-653; Esper, F., Weibel, C., Ferguson, D., Landry, M.L., Kahn, J.S., Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children (2005) J. Infect. Dis., 191, pp. 492-498; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Lee, P., Lee, R.A., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J. Clin. Microbiol., 44, pp. 2063-2071; Bastien, N., Anderson, K., Hart, L., van Caeseele, P., Brandt, K., Milley, D., Hatchette, T., Li, Y., Human coronavirus NL63 infection in Canada (2005) J. Infect. Dis., 191, pp. 503-506; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin. Infect. Dis., 36, pp. 985-989; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J. Clin. Microbiol., 48, pp. 2940-2947; Vabret, A., Brouard, J., Petitjean, J., Eugene-Ruellan, G., Freymuth, F., Human coronavirus infections: Importance and diagnosis (1998) Presse Med, 27, pp. 1813-1817; van der Hoek, L., Pyrc, K., Berkhout, B., Human coronavirus NL63, a new respiratory virus (2006) FEMS Microbiol. Rev., 30, pp. 760-773","Mandelboim, M.; Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel-Hashomer, P.O.B. 5265601, Israel; email: michalman@sheba.health.gov.il",,"MDPI AG",19994915,,,"30241410","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85053831334 "Doki T., Yabe M., Takano T., Hohdatsu T.","55758877000;57203963067;55251249800;57197786893;","Differential induction of type I interferon by type I and type II feline coronaviruses in vitro",2018,"Research in Veterinary Science","120",,,"57","62",,1,"10.1016/j.rvsc.2018.09.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053809222&doi=10.1016%2fj.rvsc.2018.09.002&partnerID=40&md5=b30d4375919078f1463771f3d3717df7","Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan","Doki, T., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Yabe, M., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Takano, T., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan; Hohdatsu, T., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan","Feline infectious peritonitis (FIP) is a feline coronavirus (FCoV)-induced fatal disease in wild and domestic cats. There are two FCoV serotypes. Both type I and II FCoV can replicate in Felis catus whole fetus (fcwf)-4 cells, but the replicability of type I FCoV in feline cell lines is lower than that of type II FCoV, the reason for which is unclear. Inhibition of IFNβ production by non-structural and structural proteins, excluding spike protein has been reported in many coronavirus infections. In this study, we investigated whether IFNβ is involved in the difference in replicability in feline cell lines between types I and II FCoV. When fcwf-4 cells were infected with FCoV, the virus titer of type II FCoV in the culture supernatant was higher than that of type I FIPV. When the IFNβ expression level in FCoV-infected fcwf-4 cells was semi-quantitatively analyzed, infection with type I FIPV, excluding type I FIPV UCD-1, highly induced IFNβ expression. In contrast, induction of IFNβ by type II FCoV infection was significantly lower than that by type I FIPV. In addition, when fcwf-4 cells were adsorbed by FIPV and then stimulated with Poly(I:C), type II FCoV infection inhibited Poly(I:C)-induced IFNβ gene expression. Also, the proliferation of type I FIPV was enhanced by a IFN inhibitor. These findings clarified that, unlike type I FIPV, type II FCoV strongly inhibits IFNβ expression in infected cells. It was also suggested that the IFNβ-inducing ability is different among type I FIPV strains. © 2018 Elsevier Ltd",,"polyinosinic polycytidylic acid; ruxolitinib; coronavirus spike glycoprotein; interferon; animal cell; Article; cell proliferation; controlled study; cytokine production; FCoV N gene; Feline coronavirus; Feline coronavirus type I; Feline coronavirus type II; GAPDH gene; gene; IFN beta gene; Mx gene; nonhuman; protein blood level; protein expression; protein induction; quantitative analysis; RNA isolation; virus attachment; virus strain; animal; cat; cell line; classification; drug effect; Feline coronavirus; gene expression regulation; genetics; metabolism; physiology; serotype; Animals; Cats; Cell Line; Coronavirus, Feline; Gene Expression Regulation; Interferon Type I; Serogroup; Spike Glycoprotein, Coronavirus","Avery, P.R., Hoover, E.A., Gamma interferon/interleukin 10 balance in tissue lymphocytes correlates with down modulation of mucosal feline immunodeficiency virus infection (2004) J. Virol., 78, pp. 4011-4019; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis of S -Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome translation and Resistance to Innate Immunity (2016) J. Virol., 90, pp. 7248-7256; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Sexton, N.R., Smith, E.C., Denison, M.R., Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2018) J. Virol., 92, pp. e01517-e01531; Coccia, E.M., Battistini, A., Early IFN type I response: Learning from microbial evasion strategies (2015) Semin. Immunol., 27, pp. 85-101; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs (2009) J. Virol., 83, pp. 1532-1537; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc. Natl. Acad. Sci., 114, pp. E4251-E4260; Ding, Z., Fang, L., Yuan, S., Zhao, L., Wang, X., Long, S., Wang, M., Xiao, S., The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: attenuation of PACT-mediated RIG-I/MDA5 activation (2017) Oncotarget, 8, pp. 49655-49670; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514; Hu, X., Tian, J., Kang, H., Guo, D., Liu, J., Liu, D., Jiang, Q., Qu, L., Transmissible gastroenteritis virus papain-like protease 1 antagonizes production of interferon-β through its deubiquitinase activity (2017) Biomed. Res. Int., 2017, pp. 1-8; Kawai, T., Akira, S., Antiviral signaling through pattern recognition receptors (2006) J. Biochem., 141, pp. 137-145; Lee, S.-M., Schommer, S.K., Kleiboeker, S.B., Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes (2004) Vet. Immunol. Immunopathol., 102, pp. 217-231; Li, S.-W., Wang, C.-Y., Jou, Y.-J., Huang, S.-H., Hsiao, L.-H., Wan, L., Lin, Y.-J., Lin, C.-W., SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6 (2016) Int. J. Mol. Sci., 17, p. 678; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Lui, P.-Y., Wong, L.-Y.R., Fung, C.-L., Siu, K.-L., Yeung, M.-L., Yuen, K.-S., Chan, C.-P., Jin, D.-Y., Middle east respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg. Microbes Infect., 5, p. e39; Menachery, V.D., Yount, B.L., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-O-methyltransferase activity (2014) J. Virol., 88, pp. 4251-4264; Motokawa, K., Hohdatsu, T., Aizawa, C., Koyama, H., Hashimoto, H., Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I (1995) Arch. Virol., 140, pp. 469-480; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Adv. Exp. Med. Biol., 173, pp. 365-380; Raftery, N., Stevenson, N.J., Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway (2017) Cell. Mol. Life Sci., 74, pp. 2525-2535; Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula (2016) World J. Virol., 5, pp. 85-86; Robert-Tissot, C., Rüegger, V.L., Cattori, V., Meli, M.L., Riond, B., Gomes-Keller, M.A., Vögtlin, A., Lutz, H., The innate antiviral immune system of the cat: molecular tools for the measurement of its state of activation (2011) Vet. Immunol. Immunopathol., 143, pp. 269-281; Stewart, C.E., Randall, R.E., Adamson, C.S., Inhibitors of the interferon response enhance virus replication in vitro (2014) PLoS One, 9; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Tekes, G., Thiel, H.-J., Feline coronaviruses: pathogenesis of feline infectious peritonitis (2016) Adv. Virus Res., 96, pp. 193-218; Terada, Y., Matsui, N., Noguchi, K., Kuwata, R., Shimoda, H., Soma, T., Mochizuki, M., Maeda, K., Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses (2014) PLoS One, 9; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zhou, Y., Wu, W., Xie, L., Wang, D., Ke, Q., Hou, Z., Wu, X., Fang, L., Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production (2017) Front. Immunol., 8","Hohdatsu, T.; Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato UniversityJapan; email: hohdatsu@vmas.kitasato-u.ac.jp",,"Elsevier B.V.",00345288,,RVTSA,"30265871","English","Res. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85053809222 "Nakagawa K., Narayanan K., Wada M., Makino S.","35754942900;7101933409;36674132900;7403067550;","Inhibition of stress granule formation by middle east respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication",2018,"Journal of Virology","92","20", e00902,"","",,7,"10.1128/JVI.00902-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054767678&doi=10.1128%2fJVI.00902-18&partnerID=40&md5=bbca806db530983b5be79d86d5e56418","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; UTMB Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States","Nakagawa, K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Narayanan, K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Wada, M., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Makino, S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States, UTMB Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States","Stress granule (SG) formation is generally triggered as a result of stressinduced translation arrest. The impact of SG formation on virus replication varies among different viruses, and the significance of SGs in coronavirus (CoV) replication is largely unknown. The present study examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV replication. The MERS-CoV 4a accessory protein is known to inhibit SG formation in cells in which it was expressed by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Replication of MERSCoV lacking the genes for 4a and 4b (MERS-CoV-Δp4), but not MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific differences in MERS-CoV-Δp4-induced SG formation. MERS-CoV-Δp4 replicated less efficiently than MERS-CoV in HeLa/CD26 cells, and inhibition of SG formation by small interfering RNA-mediated depletion of the SG components promoted MERS-CoV-Δp4 replication, demonstrating that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV-Δp4 replication was not due to either the induction of type I and type III interferons or the accumulation of viral mRNAs in the SGs. Rather, it was due to the inefficient translation of viral proteins, which was caused by high levels of PKR-mediated eIF2α phosphorylation and likely by the confinement of various factors that are required for translation in the SGs. Finally, we established that deletion of the 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV replication. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not available. Stress granule (SG) formation is one of the cellular stress responses to virus infection and is generally triggered as a result of stressinduced translation arrest. SGs can be beneficial or detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The present study showed that the MERS-CoV 4a accessory protein, which was reported to block SG formation in cells in which it was expressed, inhibited SG formation in infected cells. Our data suggest that 4a-mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in efficient virus replication. To our knowledge, this report is the first to show the biological significance of SG in CoV replication and provides insight into the interplay between MERS-CoV and antiviral stress responses. © 2018 American Society for Microbiology. All Rights Reserved.","Accessory protein; MERS coronavirus; Stress granules","double stranded RNA; initiation factor 2alpha; protein kinase R; small interfering RNA; viral protein; virus messenger RNA; virus RNA; viral protein; 4a gene; Article; cell granule; cellular stress response; controlled study; enzyme inhibition; gene deletion; HeLa cell line; human; human cell; Middle East respiratory syndrome coronavirus; nonhuman; open reading frame; priority journal; protein phosphorylation; stress granule; stress granule formation; Vero cell line; virus gene; virus replication; virus transcription; animal; Chlorocebus aethiops; genetics; metabolism; Middle East respiratory syndrome coronavirus; physiology; protein synthesis; Animals; Cercopithecus aethiops; Gene Deletion; HeLa Cells; Humans; Middle East Respiratory Syndrome Coronavirus; Protein Biosynthesis; Vero Cells; Viral Regulatory and Accessory Proteins; Virus Replication","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., De Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e00914. , https://doi.org/10.1128/mBio.00884-14; Wernery, U., Lau, S.K., Woo, P.C., Middle East respiratory syndrome (MERS) coronavirus and dromedaries (2017) Vet J, 220, pp. 75-79. , https://doi.org/10.1016/j.tvjl.2016.12.020; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20, pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 371, pp. 1359-1360. , https://doi.org/10.1056/NEJMc1409847; Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747; Lee, H.J., Shieh, C.K., Gorbalenya, A.E., Koonin, E.V., La Monica, N., Tuler, J., Bagdzhadzhyan, A., Lai, M.M., The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase (1991) Virology, 180, pp. 567-582. , https://doi.org/10.1016/0042-6822(91)90071-I; Lomniczi, B., Biological properties of avian coronavirus RNA (1977) J Gen Virol, 36, pp. 531-533. , https://doi.org/10.1099/0022-1317-36-3-531; Lomniczi, B., Kennedy, I., Genome of infectious bronchitis virus (1977) J Virol, 24, pp. 99-107; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Hurst-Hess, K.R., Kuo, L., Masters, P.S., Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3 (2015) J Virol, 89, pp. 6033-6047. , https://doi.org/10.1128/JVI.00197-15; Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S., Denison, M.R., The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication (2005) J Virol, 79, pp. 13399-13411. , https://doi.org/10.1128/JVI.79.21.13399-13411.2005; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66. , https://doi.org/10.1016/j.virusres.2013.12.004; Lai, M.M., Baric, R.S., Brayton, P.R., Stohlman, S.A., Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus (1984) Proc Natl Acad Sci U S A, 81, pp. 3626-3630; Lai, M.M., Patton, C.D., Baric, R.S., Stohlman, S.A., Presence of leader sequences in the mRNA of mouse hepatitis virus (1983) J Virol, 46, pp. 1027-1033; Leibowitz, J.L., Wilhelmsen, K.C., Bond, C.W., The virus-specific intracellular RNA species of two murine coronaviruses: MHV-a59 and MHV-JHM (1981) Virology, 114, pp. 39-51. , https://doi.org/10.1016/0042-6822(81)90250-6; Spaan, W.J., Rottier, P.J., Horzinek, M.C., Van Der Zeijst, B.A., Sequence relationships between the genome and the intracellular RNA species 1, 3, 6, and 7 of mouse hepatitis virus strain A59 (1982) J Virol, 42, pp. 432-439; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e00717. , https://doi.org/10.1128/mBio.00665-17; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, pp. e00258-e00316. , https://doi.org/10.1128/mBio.00258-16; Matthews, K.L., Coleman, C.M., Van Der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882. , https://doi.org/10.1099/vir.0.062059-0; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type i interferon antagonist (2013) J Virol, 87, pp. 12489-12495. , https://doi.org/10.1128/JVI.01845-13; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., Garcia-Sastre, A., Perlman, S., Sola, I., MERSCoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) PLoS Pathog, 14, p. e1006838. , https://doi.org/10.1371/journal.ppat.1006838; Holcik, M., Sonenberg, N., Translational control in stress and apoptosis (2005) Nat Rev Mol Cell Biol, 6, pp. 318-327. , https://doi.org/10.1038/nrm1618; Garcia, M.A., Meurs, E.F., Esteban, M., The dsRNA protein kinase PKR: Virus and cell control (2007) Biochimie, 89, pp. 799-811. , https://doi.org/10.1016/j.biochi.2007.03.001; Farrell, P.J., Balkow, K., Hunt, T., Jackson, R.J., Trachsel, H., Phosphorylation of initiation factor eIF-2 and the control of reticulocyte protein synthesis (1977) Cell, 11, pp. 187-200. , https://doi.org/10.1016/0092-8674(77)90330-0; Wek, R.C., Jiang, H.Y., Anthony, T.G., Coping with stress: EIF2 kinases and translational control (2006) Biochem Soc Trans, 34, pp. 7-11. , https://doi.org/10.1042/BST0340007; Anderson, P., Kedersha, N., Stress granules: The Tao of RNA triage (2008) Trends Biochem Sci, 33, pp. 141-150. , https://doi.org/10.1016/j.tibs.2007.12.003; Anderson, P., Kedersha, N., Stress granules (2009) Curr Biol, 19, pp. R397-R398. , https://doi.org/10.1016/j.cub.2009.03.013; Kedersha, N., Anderson, P., Regulation of translation by stress granules and processing bodies (2009) Prog Mol Biol Transl Sci, 90, pp. 155-185. , https://doi.org/10.1016/S1877-1173(09)90004-7; Kedersha, N.L., Gupta, M., Li, W., Miller, I., Anderson, P., RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules (1999) J Cell Biol, 147, pp. 1431-1442. , https://doi.org/10.1083/jcb.147.7.1431; Onomoto, K., Jogi, M., Yoo, J.S., Narita, R., Morimoto, S., Takemura, A., Sambhara, S., Fujita, T., Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity (2012) PLoS One, 7, p. e43031. , https://doi.org/10.1371/journal.pone.0043031; Reineke, L.C., Lloyd, R.E., The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses (2015) J Virol, 89, pp. 2575-2589. , https://doi.org/10.1128/JVI.02791-14; Langereis, M.A., Feng, Q., Van Kuppeveld, F.J., MDA5 localizes to stress granules, but this localization is not required for the induction of type i interferon (2013) J Virol, 87, pp. 6314-6325. , https://doi.org/10.1128/JVI.03213-12; Onomoto, K., Yoneyama, M., Fung, G., Kato, H., Fujita, T., Antiviral innate immunity and stress granule responses (2014) Trends Immunol, 35, pp. 420-428. , https://doi.org/10.1016/j.it.2014.07.006; Okonski, K.M., Samuel, C.E., Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1 (2013) J Virol, 87, pp. 756-766. , https://doi.org/10.1128/JVI.02270-12; Ng, C.S., Jogi, M., Yoo, J.S., Onomoto, K., Koike, S., Iwasaki, T., Yoneyama, M., Fujita, T., Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses (2013) J Virol, 87, pp. 9511-9522. , https://doi.org/10.1128/JVI.03248-12; White, J.P., Lloyd, R.E., Regulation of stress granules in virus systems (2012) Trends Microbiol, 20, pp. 175-183. , https://doi.org/10.1016/j.tim.2012.02.001; Poblete-Duran, N., Prades-Perez, Y., Vera-Otarola, J., Soto-Rifo, R., Valiente-Echeverria, F., Who regulates whom? An overview of RNA granules and viral infections (2016) Viruses, 8, p. E180. , https://doi.org/10.3390/v8070180; Khaperskyy, D.A., Hatchette, T.F., McCormick, C., Influenza A virus inhibits cytoplasmic stress granule formation (2012) FASEB J, 26, pp. 1629-1639. , https://doi.org/10.1096/fj.11-196915; Sciortino, M.T., Parisi, T., Siracusano, G., Mastino, A., Taddeo, B., Roizman, B., The virion host shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with herpes simplex virus 1 (2013) J Virol, 87, pp. 3271-3276. , https://doi.org/10.1128/JVI.03049-12; Cassady, K.A., Gross, M., The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain (2002) J Virol, 76, pp. 2029-2035. , https://doi.org/10.1128/jvi.76.5.2029-2035.2002; He, B., Gross, M., Roizman, B., The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase (1997) Proc Natl Acad Sci U S A, 94, pp. 843-848; Mulvey, M., Arias, C., Mohr, I., Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor (2007) J Virol, 81, pp. 3377-3390. , https://doi.org/10.1128/JVI.02191-06; Simpson-Holley, M., Kedersha, N., Dower, K., Rubins, K.H., Anderson, P., Hensley, L.E., Connor, J.H., Formation of antiviral cytoplasmic granules during orthopoxvirus infection (2011) J Virol, 85, pp. 1581-1593. , https://doi.org/10.1128/JVI.02247-10; White, J.P., Cardenas, A.M., Marissen, W.E., Lloyd, R.E., Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase (2007) Cell Host Microbe, 2, pp. 295-305. , https://doi.org/10.1016/j.chom.2007.08.006; Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Ding, C., Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation (2017) FASEB J, 31, pp. 1337-1353. , https://doi.org/10.1096/fj.201600980R; Heinrich, B.S., Cureton, D.K., Rahmeh, A.A., Whelan, S.P., Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions (2010) PLoS Pathog, 6, p. e1000958. , https://doi.org/10.1371/journal.ppat.1000958; Dinh, P.X., Beura, L.K., Das, P.B., Panda, D., Das, A., Pattnaik, A.K., Induction of stress granule-like structures in vesicular stomatitis virus-infected cells (2013) J Virol, 87, pp. 372-383. , https://doi.org/10.1128/JVI.02305-12; Garaigorta, U., Heim, M.H., Boyd, B., Wieland, S., Chisari, F.V., Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress (2012) J Virol, 86, pp. 11043-11056. , https://doi.org/10.1128/JVI.07101-11; Ruggieri, A., Dazert, E., Metz, P., Hofmann, S., Bergeest, J.P., Mazur, J., Bankhead, P., Bartenschlager, R., Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection (2012) Cell Host Microbe, 12, pp. 71-85. , https://doi.org/10.1016/j.chom.2012.05.013; Sola, I., Galan, C., Mateos-Gomez, P.A., Palacio, L., Zuniga, S., Cruz, J.L., Almazan, F., Enjuanes, L., The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites (2011) J Virol, 85, pp. 5136-5149. , https://doi.org/10.1128/JVI.00195-11; Raaben, M., Groot Koerkamp, M.J., Rottier, P.J., De Haan, C.A., Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies (2007) Cell Microbiol, 9, pp. 2218-2229. , https://doi.org/10.1111/j.1462-5822.2007.00951.x; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., Van Kuppeveld, F.J., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12, p. e1005982. , https://doi.org/10.1371/journal.ppat.1005982; Park, S.H., Choi, J., Kang, J.I., Choi, S.Y., Hwang, S.B., Kim, J.P., Ahn, B.Y., Attenuated expression of interferon-induced protein kinase PKR in a simian cell devoid of type i interferons (2006) Mol Cells, 21, pp. 21-28; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89, pp. 10970-10981. , https://doi.org/10.1128/JVI.01352-15; Dauber, B., Poon, D., Dos Santos, T., Duguay, B.A., Mehta, N., Saffran, H.A., Smiley, J.R., The herpes simplex virus virion host shutoff protein enhances translation of viral true late mRNAs independently of suppressing protein kinase R and stress granule formation (2016) J Virol, 90, pp. 6049-6057. , https://doi.org/10.1128/JVI.03180-15; Emeny, J.M., Morgan, M.J., Regulation of the interferon system: Evidence that Vero cells have a genetic defect in interferon production (1979) J Gen Virol, 43, pp. 247-252. , https://doi.org/10.1099/0022-1317-43-1-247; Wathelet, M.G., Berr, P.M., Huez, G.A., Regulation of gene expression by cytokines and virus in human cells lacking the type-I interferon locus (1992) Eur JBiochem, 206, pp. 901-910. , https://doi.org/10.1111/j.1432-1033.1992.tb16999.x; Baric, R.S., Nelson, G.W., Fleming, J.O., Deans, R.J., Keck, J.G., Casteel, N., Stohlman, S.A., Interactions between coronavirus nucleocapsid protein and viral RNAs: Implications for viral transcription (1988) J Virol, 62, pp. 4280-4287; Compton, S.R., Rogers, D.B., Holmes, K.V., Fertsch, D., Remenick, J., McGowan, J.J., In vitro replication of mouse hepatitis virus strain A59 (1987) J Virol, 61, pp. 1814-1820; Panas, M.D., Varjak, M., Lulla, A., Eng, K.E., Merits, A., Hedestam, K.G.B., McInerney, G.M., Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection (2012) Mol Biol Cell, 23, pp. 4701-4712. , https://doi.org/10.1091/mbc.e12-08-0619; Emara, M.M., Liu, H., Davis, W.G., Brinton, M.A., Mutation of mapped TIA-1/TIAR binding sites in the 3= terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification (2008) J Virol, 82, pp. 10657-10670. , https://doi.org/10.1128/JVI.00991-08; Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K.M., Moreno, G.T., Brinton, M.A., Cell proteins TIA-1 and TIAR interact with the 3= stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication (2002) J Virol, 76, pp. 11989-12000. , https://doi.org/10.1128/JVI.76.23.11989-12000.2002; Scholte, F.E., Tas, A., Albulescu, I.C., Zusinaite, E., Merits, A., Snijder, E.J., Van Hemert, M.J., Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication (2015) J Virol, 89, pp. 4457-4469. , https://doi.org/10.1128/JVI.03612-14","Makino, S.; Department of Microbiology and Immunology, University of Texas Medical BranchUnited States; email: shmakino@utmb.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30068649","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85054767678 "Zohaib A., Saqib M., Athar M.A., Chen J., Sial A.-U.-R., Khan S., Taj Z., Sadia H., Tahir U., Tayyab M.H., Qureshi M.A., Mansoor M.K., Naeem M.A., Hu B.-J., Khan B.A., Ujjan I.D., Li B., Zhang W., Luo Y., Zhu Y., Waruhiu C., Khan I., Yang X.-L., Sajid M.S., Corman V.M., Yan B., Shi Z.-L.","55627754200;55041396300;57194266017;57203334768;55625800400;35487659200;57199853518;57204354618;35226614200;55765162000;56501404900;13610729000;56304541900;57201335027;57206266430;35489542400;57077269800;56151953000;57201338288;55723768200;57193360957;54385364500;35811468700;56351927600;34876424800;57204351774;7403733955;","Countrywide Survey for MERS-Coronavirus Antibodies in Dromedaries and Humans in Pakistan",2018,"Virologica Sinica","33","5",,"410","417",,7,"10.1007/s12250-018-0051-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055267044&doi=10.1007%2fs12250-018-0051-0&partnerID=40&md5=cd4b88c3882bafd2fbc8f70f9837426c","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Faculty of Veterinary Medicine, University of Agriculture, Faisalabad, 38040, Pakistan; Laboratory of Cancer Biomarkers and Liquid Biopsy, College of Pharmacy, Henan University, Henan, 475004, China; Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46000, Pakistan; Dow University of Health Science, Karachi, 74200, Pakistan; Department of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Livestock and Dairy Development Department (L&DD), Lahore, 54000, Pakistan; College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Liaqat University of Medical and Health Science, Jamshoro, 76090, Pakistan; Section of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore subcampus, Jhang, 35200, Pakistan; Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Free University, Humboldt-University and Berlin Institute of Health, Berlin, 10117, Germany; German Center for Infection Research (DZIF), Berlin, 10117, Germany","Zohaib, A., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Saqib, M., Faculty of Veterinary Medicine, University of Agriculture, Faisalabad, 38040, Pakistan; Athar, M.A., Laboratory of Cancer Biomarkers and Liquid Biopsy, College of Pharmacy, Henan University, Henan, 475004, China; Chen, J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sial, A.-U.-R., Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46000, Pakistan; Khan, S., Dow University of Health Science, Karachi, 74200, Pakistan; Taj, Z., Department of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Sadia, H., Livestock and Dairy Development Department (L&DD), Lahore, 54000, Pakistan; Tahir, U., Livestock and Dairy Development Department (L&DD), Lahore, 54000, Pakistan; Tayyab, M.H., Faculty of Veterinary Medicine, University of Agriculture, Faisalabad, 38040, Pakistan; Qureshi, M.A., Dow University of Health Science, Karachi, 74200, Pakistan; Mansoor, M.K., College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan; Naeem, M.A., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Hu, B.-J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Khan, B.A., Dow University of Health Science, Karachi, 74200, Pakistan; Ujjan, I.D., Liaqat University of Medical and Health Science, Jamshoro, 76090, Pakistan; Li, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhang, W., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Luo, Y., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Zhu, Y., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Waruhiu, C., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Khan, I., Section of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore subcampus, Jhang, 35200, Pakistan; Yang, X.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Sajid, M.S., Faculty of Veterinary Medicine, University of Agriculture, Faisalabad, 38040, Pakistan; Corman, V.M., Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Free University, Humboldt-University and Berlin Institute of Health, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, 10117, Germany; Yan, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic pathogen capable of causing severe respiratory disease in humans. Although dromedary camels are considered as a major reservoir host, the MERS-CoV infection dynamics in camels are not fully understood. Through surveillance in Pakistan, nasal (n = 776) and serum (n = 1050) samples were collected from camels between November 2015 and February 2018. Samples were collected from animal markets, free-roaming herds and abattoirs. An in-house ELISA was developed to detect IgG against MERS-CoV. A total of 794 camels were found seropositive for MERS-CoV. Prevalence increased with the age and the highest seroprevalence was recorded in camels aged > 10 years (81.37%) followed by those aged 3.1–10 years (78.65%) and ≤ 3 years (58.19%). Higher prevalence was observed in female (78.13%) as compared to male (70.70%). Of the camel nasal swabs, 22 were found to be positive by RT-qPCR though with high Ct values. Moreover, 2,409 human serum samples were also collected from four provinces of Pakistan during 2016–2017. Among the sampled population, 840 humans were camel herders. Although we found a high rate of MERS-CoV antibody positive dromedaries (75.62%) in Pakistan, no neutralizing antibodies were detected in humans with and without contact to camels. © 2018, Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd.","Camel; Human; Middle East Respiratory Syndrome Coronavirus (MERS-CoV); Pakistan","immunoglobulin G; virus antibody; neutralizing antibody; virus antibody; Article; blood sampling; child; controlled study; cross-sectional study; dromedary; enzyme linked immunosorbent assay; female; human; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; Pakistan; preschool child; prevalence; quantitative analysis; reverse transcription polymerase chain reaction; school child; seroprevalence; animal; blood; camel; Coronavirus infection; epidemiological monitoring; nose; questionnaire; real time polymerase chain reaction; seroepidemiology; veterinary medicine; virology; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelus; Child; Child, Preschool; Coronavirus Infections; Cross-Sectional Studies; Enzyme-Linked Immunosorbent Assay; Epidemiological Monitoring; Female; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Nose; Pakistan; Real-Time Polymerase Chain Reaction; Seroepidemiologic Studies; Surveys and Questionnaires","Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Madani, T.A., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55. , COI: 1:CAS:528:DC%2BC2sXmvFWgsQ%3D%3D; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Dada, A.M., Bayumi, D.T., Malic, L.S., Althawadi, S., Perlman, S., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22, pp. 1113-1115. , COI: 1:CAS:528:DC%2BC2sXns1ensbw%3D; Assiri, A.M., Midgley, C.M., Abedi, G.R., Saeed, A.B., Almasri, M.M., Lu, X., Al-Abdely, H.M., Gerber, S.I., Epidemiology of a novel recombinant middle east respiratory syndrome coronavirus in humans in Saudi Arabia (2016) J Infect Dis, 214, pp. 712-721; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115, pp. 3144-3149. , COI: 1:CAS:528:DC%2BC1cXht1Chs7jK; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (pii), p. 20334. , PID: 23231891; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Müller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg Infect Dis, 20, pp. 1319-1322. , COI: 1:CAS:528:DC%2BC28XitVGksL7E; Crameri, G., Durr, P.A., Barr, J., Yu, M., Graham, K., Williams, O.J., Kayali, G., Wang, L.-F., Absence of MERS-CoV antibodies in feral camels in Australia: implications for the pathogen’s origin and spread (2015) One Health, 1, pp. 76-82; Falzarano, D., Kamissoko, B., de Wit, E., Maïga, O., Cronin, J., Samaké, K., Traoré, A., Feldmann, H., Dromedary camels in northern mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Adlhoch, C., Coulombier, D., Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection (2016) Zoonoses Public Health, 63, pp. 1-9. , COI: 1:STN:280:DC%2BC2MvitFKruw%3D%3D; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Godeke, G.-J., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , COI: 1:CAS:528:DC%2BC3sXitVWjtrbO; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., Bett, B., Corman, V.M., MERS-CoV Antibodies in Humans, Africa, 2013–2014 (2016) Emerg Infect Dis, 22, pp. 1086-1089. , COI: 1:CAS:528:DC%2BC2sXns1entb4%3D; Liu, R., Wen, Z., Wang, J., Ge, J., Chen, H., Bu, Z., Absence of Middle East respiratory syndrome coronavirus in Bactrian camels in the West Inner Mongolia Autonomous Region of China: surveillance study results from July 2015 (2015) Emerg Microbes Infect, 4; Lu, X., Whitaker, B., Sakthivel, S.K.K., Kamili, S., Rose, L.E., Lowe, L., Mohareb, E., Erdman, D.D., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Miguel, E., Perera, R.A.P.M., Baubekova, A., Chevalier, V., Faye, B., Akhmetsadykov, N., Ng, C.Y., Peiris, M., Absence of Middle East respiratory syndrome coronavirus in camelids, Kazakhstan, 2015 (2016) Emerg Infect Dis, 22, pp. 555-557. , COI: 1:CAS:528:DC%2BC2sXhtVyis7o%3D; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in Camels, Eastern Africa, 1983–1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Memish, Z.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Munyua, P., Corman, V.M., Bitek, A., Osoro, E., Meyer, B., Müller, M.A., Lattwein, E., Njenga, M.K., No Serologic Evidence of Middle East Respiratory Syndrome Coronavirus Infection Among Camel Farmers Exposed to Highly Seropositive Camel Herds: A Household Linked Study, Kenya, 2013 (2017) Am J Trop Med Hyg, 96, pp. 1318-1324; Park, J.W., Lee, K.J., Lee, K.H., Lee, S.H., Cho, J.R., Mo, J.W., Choi, S.Y., Nam, H.-S., Hospital Outbreaks of Middle East Respiratory Syndrome, Daejeon, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 898-905; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18 (pii), p. 20574; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , COI: 1:CAS:528:DC%2BC3sXht1Ggt7nM; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Müller, M.A., Corman, V.M., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg Infect Dis, 23, pp. 550-551; Wernery, U., Corman, V.M., Wong, E.Y.M., Tsang, A.K.L., Muth, D., Lau, S.K.P., Khazanehdari, K., Drosten, C., Acute Middle East respiratory syndrome coronavirus infection in livestock dromedaries, Dubai, 2014 (2015) Emerg Infect Dis, 21, pp. 1019-1022. , COI: 1:CAS:528:DC%2BC2sXivVGntw%3D%3D; Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/, In: WHO, Accessed 29 May 2018","Shi, Z.-L.; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"Science Press",16740769,,,"30311100","English","Virol. Sin.",Article,"Final",Open Access,Scopus,2-s2.0-85055267044 "Laconi A., van Beurden S.J., Berends A.J., Krämer-Kühl A., Jansen C.A., Spekreijse D., Chénard G., Philipp H.-C., Mundt E., Rottier P.J.M., Hélène Verheije M.","55960093400;36060522500;57194493485;55668059700;57213666391;36158829700;7801425522;14042281700;7004238027;7006145490;57064420700;","Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo",2018,"Journal of General Virology","99","10", 001130,"1381","1390",,7,"10.1099/jgv.0.001130","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055033929&doi=10.1099%2fjgv.0.001130&partnerID=40&md5=51194bd0ac1e396be9dcf9ef645a25f7","Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht University, Utrecht, 3584CL, Netherlands; Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Faculty of Veterinary Medicine, Department Infectious Diseases and Immunology, Immunology Division, Utrecht University, Utrecht, 3584CL, Netherlands; Boehringer Ingelheim Animal Health Operations BV, Weesp, Netherlands; Faculty of Veterinary Medicine, Department Infectious Diseases and Immunology, Virology Division, Utrecht University, Utrecht, 3584CL, Netherlands; Gupta Strategists, Ophemert, Netherlands; Intravacc Animal Research Centre, Ponwalla Science Park, Netherlands; Thermo Fisher Scientific, Lelystad, 8211AR, Netherlands","Laconi, A., Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht University, Utrecht, 3584CL, Netherlands; van Beurden, S.J., Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht University, Utrecht, 3584CL, Netherlands, Gupta Strategists, Ophemert, Netherlands; Berends, A.J., Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht University, Utrecht, 3584CL, Netherlands; Krämer-Kühl, A., Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Jansen, C.A., Faculty of Veterinary Medicine, Department Infectious Diseases and Immunology, Immunology Division, Utrecht University, Utrecht, 3584CL, Netherlands; Spekreijse, D., Boehringer Ingelheim Animal Health Operations BV, Weesp, Netherlands, Intravacc Animal Research Centre, Ponwalla Science Park, Netherlands; Chénard, G., Boehringer Ingelheim Animal Health Operations BV, Weesp, Netherlands, Thermo Fisher Scientific, Lelystad, 8211AR, Netherlands; Philipp, H.-C., Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Mundt, E., Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany; Rottier, P.J.M., Faculty of Veterinary Medicine, Department Infectious Diseases and Immunology, Virology Division, Utrecht University, Utrecht, 3584CL, Netherlands; Hélène Verheije, M., Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht University, Utrecht, 3584CL, Netherlands","Avian coronavirus infectious bronchitis virus (IBV) infects domestic fowl, resulting in respiratory disease and causing serious losses in unprotected birds. Its control is mainly achieved by using live attenuated vaccines. Here we explored the possibilities for rationally attenuating IBV to improve our knowledge regarding the function of IBV accessory proteins and for the development of next-generation vaccines with the recently established reverse genetic system for IBV H52 based on targeted RNA recombination and selection of recombinant viruses in embryonated eggs. To this aim, we selectively removed accessory genes 3a, 3b, 5a and 5b individually, and rescued the resulting recombinant (r) rIBV-D3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b. In vitro inoculation of chicken embryo kidney cells with recombinant and wild-type viruses demonstrated that the accessory protein 5b is involved in the delayed activation of the interferon response of the host after IBV infection. Embryo mortality after the inoculation of 8-day-old embryonated chicken eggs with recombinant and wild-type viruses showed that rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b had an attenuated phenotype in ovo, with reduced titres at 6 h p.i. and 12 h p.i. for all viruses, while growing to the same titre as wild-type rIBV at 48 h p.i. When administered to 1-day-old chickens, rIBV-Δ3a, rIBV-Δ3b, rIBV-Δ5a and rIBV-Δ5b showed reduced ciliostasis in comparison to the wild-type viruses. In conclusion, individual deletion of accessory genes in IBV H52 resulted in mutant viruses with an attenuated phenotype. © 2018 The Authors.","Accessory genes; Accessory proteins; Chicken; Coronavirus; Infectious bronchitis virus; Live attenuated virus","DNA fragment; interferon; live vaccine; amnion fluid; animal cell; Article; avian infectious bronchitis; Avian infectious bronchitis virus; chorioallantois; ciliary dyskinesia; ciliary motility; deletion mutant; embryo mortality; gene deletion; gene sequence; germfree chicken; immune system; immunohistochemistry; in vitro study; in vivo study; nonhuman; phenotype; plasmid; priority journal; regulatory sequence; RNA recombination; start codon; stop codon; virus gene; virus load; virus recombinant; virus replication; zygote","Jackwood, M., de Wit, J.J., Infectious bronchitis (2013) In: Diseases of Poultry, pp. 139-159. , 13th ed; Cavanagh, D., Casais, R., Armesto, M., Hodgson, T., Izadkhasti, S., Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins (2007) Vaccine, 25, pp. 5558-5562; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res, 109, pp. 97-109; Casais, R., Davies, M., Cavanagh, D., Britton, P., Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication (2005) J Virol, 79, pp. 8065-8078; de Haan, C.A., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J., The groupspecific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J Virol, 78, pp. 3863-3871; Hodgson, T., Britton, P., Cavanagh, D., Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication (2006) J Virol, 80, pp. 296-305; Shen, S., Wen, Z.L., Liu, D.X., Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: Functional characterization of the 3b protein in pathogenesis and replication (2003) Virology, 311, pp. 16-27; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J Virol, 75, pp. 12359-12369; van Beurden, S.J., Berends, A.J., Krämer-Kühl, A., Spekreijse, D., Chénard, G., A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination (2017) Virol J, 14, p. 109; van Beurden, S.J., Berends, A.J., Krämer-Kühl, A., Spekreijse, D., Chenard, G., Recombinant live attenuated avian coronavirus vaccines with deletions in the accessory genes 3ab and/or 5ab protect against infectious bronchitis in chickens (2018) Vaccine, 36, pp. 1085-1092; Youn, S., Leibowitz, J.L., Collisson, E.W., In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication (2005) Virology, 332, pp. 206-215; Samuel, C.E., Antiviral actions of interferons (2001) Clin Microbiol Rev, 14, pp. 778-809; Dedeurwaerder, A., Olyslaegers, D.A., Desmarets, L.M., Roukaerts, I.D., Theuns, S., ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-ainduced antiviral response (2014) J Gen Virol, 95, pp. 393-402; Koetzner, C.A., Kuo, L., Goebel, S.J., Dean, A.B., Parker, M.M., Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus (2010) J Virol, 84, pp. 8262-8274; Abdul-Careem, M.F., Hunter, D.B., Lambourne, M.D., Barta, J., Sharif, S., Ontogeny of cytokine gene expression in the chicken spleen (2007) Poult Sci, 86, pp. 1351-1355; Leitão, J.M., Esteves Da Silva, J.C., Firefly luciferase inhibition (2010) J Photochem Photobiol B, 101, pp. 1-8; Thorne, N., Shen, M., Lea, W.A., Simeonov, A., Lovell, S., Firefly luciferase in chemical biology: A compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter (2012) Chem Biol, 19, pp. 1060-1072; Kint, J., Langereis, M.A., Maier, H.J., Britton, P., van Kuppeveld, F.J., Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b (2016) J Virol, 90, pp. 7519-7528; Kint, J., Dickhout, A., Kutter, J., Maier, H.J., Britton, P., Infectious bronchitis coronavirus inhibits STAT1 signaling and requires accessory proteins for resistance to type I interferon activity (2015) J Virol, 89, pp. 12047-12057; Kint, J., Fernandez-Gutierrez, M., Maier, H.J., Britton, P., Langereis, M.A., Activation of the chicken type I interferon response by infectious bronchitis coronavirus (2015) J Virol, 89, pp. 1156-1167; Zhao, J., Falcón, A., Zhou, H., Netland, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication (2009) J Virol, 83, pp. 2368-2373; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: Crossing the host cell species barrier (2000) J Virol, 74, pp. 1393-1406; Schwarz, H., Harlin, O., Ohnemus, A., Kaspers, B., Staeheli, P., Synthesis of IFN-beta by virus-infected chicken embryo cells demonstrated with specific antisera and a new bioassay (2004) J Interferon Cytokine Res, 24, pp. 179-184; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) American Journal of Hygiene, 493, pp. 493-497; Cavanagh, D., Elus, M.M., Cook, J.K., Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo (1997) Avian Pathol, 26, pp. 63-74","Hélène Verheije, M.; Faculty of Veterinary Medicine, Department Pathobiology, Pathology Division, Utrecht UniversityNetherlands; email: m.h.verheije@uu.nl",,"Microbiology Society",00221317,,JGVIA,,"English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85055033929 "Cha M.J., Chung M.J., Kim K., Lee K.S., Kim T.J., Kim T.S.","55881780400;55728272500;12767292800;7501514146;57203495178;6701398465;","Clinical implication of radiographic scores in acute Middle East respiratory syndrome coronavirus pneumonia: Report from a single tertiary-referral center of South Korea",2018,"European Journal of Radiology","107",,,"196","202",,1,"10.1016/j.ejrad.2018.09.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053406200&doi=10.1016%2fj.ejrad.2018.09.008&partnerID=40&md5=2a7260e805e377695317ed353a1e9bd3","Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea; Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Radiology, Chung-Ang university hospital, Chung-Ang University College of Medicine, Seoul, 06973, South Korea","Cha, M.J., Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea, Department of Radiology, Chung-Ang university hospital, Chung-Ang University College of Medicine, Seoul, 06973, South Korea; Chung, M.J., Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Kim, K., Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Lee, K.S., Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Kim, T.J., Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Kim, T.S., Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea","The aim of this study is to determine the earliest cutoff of radiographic score as a potential prognostic indicator of fatal outcomes in patients with acute Middle East respiratory syndrome coronavirus (MERS-CoV) pneumonia. The institutional review board approved this retrospective study. Serial chest radiographies (CXRs) were obtained from viral exposure until death or discharge in 35 patients with laboratory confirmed MERS-CoV infection. Radiographic scores were calculated by multiplying a four-point scale of involved lung area and three-point scale of abnormal opacification, in each of the six lung zones. Receiver operating characteristics (ROC) analyses were performed to identify optimal day and radiographic score for the prediction of respiratory distress, and univariate and multivariate logistic regression analyses were performed to assess significant predictive factors for intubation or tracheostomy. Among 35 patients (22 men, 13 women; median age: 48 years), 25 demonstrated abnormal opacity on CXR (MERS pneumonia), whereas no abnormality was detected in 10 patients (MERS upper respiratory tract infection). Seven patients required ventilator support (intubation group) and three of them eventually expired. The average incubation period was 5.4 days (standard deviation, ±2.8; range, 2–11). Patients in the intubation group had a higher incidence of diffuse lung involvement, higher radiographic scores, and fibrosing sequela on follow up study compared with those in the non-intubation group. However, patients’ age and comorbidity did not differ significantly between the two groups. The ROC analysis revealed an area under curve of 0.726 for the radiographic score on day 10 with an optimal cutoff score of 10 for prediction of intubation, with a sensitivity of 71% and specificity of 67%. Our study suggest that MERS patients with radiographic score > 10 on day 10 from viral exposure require aggressive therapy with careful surveillance and follow-up evaluation. © 2018","Chest radiograph; Chest radiographic score; Middle East respiratory syndrome coronavirus (MERS-CoV); Prognostic indicator","adult; age; area under the curve; Article; clinical article; clinical feature; comorbidity; female; follow up; human; image analysis; incidence; male; middle aged; Middle East respiratory syndrome; prediction; priority journal; prognosis; receiver operating characteristic; respiratory distress; respiratory tract intubation; retrospective study; risk factor; sensitivity and specificity; South Korea; tertiary care center; thorax radiography; tracheostomy; virus pneumonia; aged; Coronavirus infection; diagnostic imaging; disease exacerbation; epidemiology; Middle East respiratory syndrome coronavirus; mortality; patient referral; radiography; virus pneumonia; young adult; Adult; Aged; Coronavirus Infections; Disease Progression; Female; Follow-Up Studies; Humans; Incidence; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Pneumonia, Viral; Radiography; Referral and Consultation; Republic of Korea; Retrospective Studies; Tertiary Care Centers; Young Adult","Ajlan, A.M., Ahyad, R.A., Jamjoom, L.G., Alharthy, A., Madani, T.A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection: chest CT findings (2014) AJR Am. J. Roentgenol., 203 (4), pp. 782-787; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; Organization, W.H., Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/; Korea Ministry of Health and Welfare KCfDCaP, Summary of MERS Statistics in the Republic of Korea (2015), http://www.mers.go.kr/mers/html/jsp/Menu_C/list_C4.jsp; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis., 59 (9), pp. 1225-1233; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J Med., 369 (5), pp. 407-416; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N. Engl. J Med., 372 (9), pp. 846-854; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388 (10048), pp. 994-1001; Al-Tawfiq, J.A., Memish, Z.A., Managing MERS-CoV in the healthcare setting (2015) Hosp. Pract. (1995), 43 (3), pp. 158-163; Lee, J.H., Lee, C.S., Lee, H.B., An appropriate Lower respiratory tract specimen is essential for diagnosis of Middle East Respiratory Syndrome (MERS) (2015) J. Korean Med. Sci., 30 (8), pp. 1207-1208; Hansell, D.M., Bankier, A.A., MacMahon, H., McLoud, T.C., Muller, N.L., Remy, J., Fleischner Society: glossary of terms for thoracic imaging (2008) Radiology, 246 (3), pp. 697-722; Feng, F., Jiang, Y., Yuan, M., Association of radiologic findings with mortality in patients with avian influenza H7N9 pneumonia (2014) PLoS One, 9 (4); Wong, K.T., Antonio, G.E., Hui, D.S., Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients (2003) Radiology, 228 (2), pp. 401-406; Das, K.M., Lee, E.Y., Enani, M.A., CT correlation with outcomes in 15 patients with acute Middle East respiratory syndrome coronavirus (2015) AJR Am. J. Roentgenol., 204 (4), pp. 736-742; Das, K.M., Lee, E.Y., Al Jawder, S.E., Acute Middle East respiratory syndrome coronavirus: temporal lung changes observed on the chest radiographs of 55 patients (2015) AJR Am. J. Roentgenol., 205 (3), pp. W267-W274; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr. Opin. Pulm. Med., 20 (3), pp. 233-241; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Ko, J.H., Park, G.E., Lee, J.Y., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J. Infect., 73 (5), pp. 468-475; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect. Dis., 13 (9), pp. 752-761; Kim, I., Lee, J.E., Kim, K.H., Lee, S., Lee, K., Mok, J.H., Successful treatment of suspected organizing pneumonia in a patient with Middle East respiratory syndrome coronavirus infection: a case report (2016) J. Thorac. Dis., 8 (10), pp. E1190-E1194","Chung, M.J.; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Kangnam-Ku, South Korea; email: mj1.chung@samsung.com",,"Elsevier Ireland Ltd",0720048X,,EJRAD,"30292266","English","Eur. J. Radiol.",Article,"Final",Open Access,Scopus,2-s2.0-85053406200 "Matsuyama S., Shirato K., Kawase M., Terada Y., Kawachi K., Fukushi S., Kamitani W.","7201442043;7101969487;25958099400;55338925400;57195058453;7004841901;6603075332;","Middle east respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells",2018,"Journal of Virology","92","19", e00683,"","",,7,"10.1128/JVI.00683-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053381071&doi=10.1128%2fJVI.00683-18&partnerID=40&md5=776eb9fe5e6fffb6067426534b361c00","Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan","Matsuyama, S., Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Shirato, K., Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Kawase, M., Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Terada, Y., Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan; Kawachi, K., Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan; Fukushi, S., Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Kamitani, W., Laboratory of Clinical Research on Infectious Diseases, Osaka University, Osaka, Japan","Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes host cellular proteases to enter cells. A previous report shows that furin, which is distributed mainly in the Golgi apparatus and cycled to the cell surface and endosomes, proteolytically activates the MERS-CoV spike (S) protein following receptor binding to mediate fusion between the viral and cellular membranes. In this study, we reexamined furin usage by MERS-CoV using a real-time PCR-based virus cell entry assay after inhibition of cellular proteases. We found that the furin inhibitor dec-RVKR-CMK blocked entry of MERS-CoV harboring an S protein lacking furin cleavage sites; it even blocked entry into furin-deficient LoVo cells. In addition, dec-RVKR-CMK inhibited not only the enzymatic activity of furin but also those of cathepsin L, cathepsin B, trypsin, papain, and TMPRSS2. Furthermore, a virus cell entry assay and a cell-cell fusion assay provided no evidence that the S protein was activated by exogenous furin. Therefore, we conclude that furin does not play a role in entry of MERS-CoV into cells and that the inhibitory effect of dec-RVKR-CMK is specific for TMPRSS2 and cathepsin L rather than furin. IMPORTANCE Previous studies using the furin inhibitor dec-RVKR-CMK suggest that MERS-CoV utilizes a cellular protease, furin, to activate viral glycoproteins during cell entry. However, we found that dec-RVKR-CMK inhibits not only furin but also other proteases. Furthermore, we found no evidence that MERS-CoV uses furin. These findings suggest that previous studies in the virology field based on dec-RVKR-CMK should be reexamined carefully. Here we describe appropriate experiments that can be used to assess the effect of protease inhibitors on virus cell entry. Copyright © 2018 American Society for Microbiology. All Rights Reserved.","Cathepsin L; Coronavirus; Dec-RVKR-CMK; Furin; TMPRSS2","cathepsin B; cathepsin L; coronavirus spike glycoprotein; CTSB protein, human; CTSL1 protein, human; decanoylRVKRchloromethylketone; furin; FURIN protein, human; papain; peptide chloromethyl ketone; serine proteinase; TMPRSS2 protein, human; animal; antagonists and inhibitors; Chlorocebus aethiops; genetics; human; metabolism; Middle East respiratory syndrome coronavirus; protein degradation; Vero cell line; virus entry; Amino Acid Chloromethyl Ketones; Animals; Cathepsin B; Cathepsin L; Cercopithecus aethiops; Furin; Humans; Middle East Respiratory Syndrome Coronavirus; Papain; Proteolysis; Serine Endopeptidases; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Internalization","White, J.M., Whittaker, G.R., Fusion of enveloped viruses in endosomes (2016) Traffic, 17, pp. 593-614. , https://doi.org/10.1111/tra.12389; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580. , https://doi.org/10.3390/v4040557; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , https://doi.org/10.1016/j.virusres.2014.11.021; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Pöhlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511. , https://doi.org/10.1128/JVI.00128-13; Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., Bates, P., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry (2004) Proc Natl Acad Sci U S A, 101, pp. 4240-4245. , https://doi.org/10.1073/pnas.0306446101; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106, pp. 5871-5876. , https://doi.org/10.1073/pnas.0809524106; Watanabe, R., Matsuyama, S., Shirato, K., Maejima, M., Fukushi, S., Morikawa, S., Taguchi, F., Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein (2008) J Virol, 82, pp. 11985-11991. , https://doi.org/10.1128/JVI.01412-08; Park, J.-E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113, pp. 12262-12267. , https://doi.org/10.1073/pnas.1608147113; Reinke, L.M., Spiegel, M., Plegge, T., Hartleib, A., Nehlmeier, I., Gierer, S., Hoffmann, M., Pöhlmann, S., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12 (6). , https://doi.org/10.1371/journal.pone.0179177; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561. , https://doi.org/10.1128/JVI.01890-13; Thomas, G., Furin at the cutting edge: From protein traffic to embryogenesis and disease (2002) Nat Rev Mol Cell Biol, 3, pp. 753-766. , https://doi.org/10.1038/nrm934; Burkard, C., Verheije, M.H., Wicht, O., Van Kasteren, S.I., Van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., De Haan, C.A.M., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004502; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; Gierer, S., Muller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pohlmann, S., Inhibition of proprotein convertases abrogates processing of the Middle Eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J Infect Dis, 211, pp. 889-897. , https://doi.org/10.1093/infdis/jiu407; Coppola, J.M., Bhojani, M.S., Ross, B.D., Rehemtulla, A., A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness (2008) Neoplasia, 10, pp. 363-370. , https://doi.org/10.1593/neo.08166; Becker, G.L., Lu, Y., Hardes, K., Strehlow, B., Levesque, C., Lindberg, I., Sandvig, K., Steinmetzer, T., Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases (2012) J Biol Chem, 287, pp. 21992-22003. , https://doi.org/10.1074/jbc.M111.332643; Basak, A., Inhibitors of proprotein convertases (2005) J Mol Med, 83, pp. 844-855. , https://doi.org/10.1007/s00109-005-0710-0; Shirogane, Y., Takeda, M., Iwasaki, M., Ishiguro, N., Takeuchi, H., Nakatsu, Y., Tahara, M., Yanagi, Y., Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2 (2008) J Virol, 82, pp. 8942-8946. , https://doi.org/10.1128/JVI.00676-08; Takahashi, S., Kasai, K., Hatsuzawa, K., Kitamura, N., Misumi, Y., Ikehara, Y., Murakami, K., Nakayama, K., A mutation of furin causes the lack of precursor-processing activity in human colon carcinoma LoVo cells (1993) Biochem Biophys Res Commun, 195, pp. 1019-1026. , https://doi.org/10.1006/bbrc.1993.2146; Takahashi, S., Nakagawa, T., Kasai, K., Banno, T., Duguay, S.J., Ven Van De, W.J.M., Murakami, K., Nakayama, K., A second mutant allele of furin in the processing-incompetent cell line, LoVo (1995) J Biol Chem, 270, pp. 26565-26569. , https://doi.org/10.1074/jbc.270.44.26565; Tao, X., Hill, T.E., Morimoto, C., Peters, C.J., Ksiazek, T.G., Tseng, C.-T.K., Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells (2013) J Virol, 87, pp. 9953-9958. , https://doi.org/10.1128/JVI.01562-13; Terada, Y., Kawachi, K., Matsuura, Y., Kamitani, W., MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA (2017) Virology, 511, pp. 95-105. , https://doi.org/10.1016/j.virol.2017.08.026; De Haan, C.A.M., Stadler, K., Godeke, G., Bosch, B.J., Rottier, P.J.M., Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion (2004) J Virol, 78, pp. 6048-6054. , https://doi.org/10.1128/JVI.78.11.6048-6054.2004; Couture, F., D’Anjou, F., Day, R., On the cutting edge of proprotein convertase pharmacology: From molecular concepts to clinical applications (2011) Biomol Concepts, 2, pp. 421-438. , https://doi.org/10.1515/BMC.2011.034; Klein-Szanto, A.J., Bassi, D.E., Proprotein convertase inhibition: Paralyzing the cell’s master switches (2017) Biochem Pharmacol, 140, pp. 8-15. , https://doi.org/10.1016/j.bcp.2017.04.027; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W.A.L., Posthuma, C.C., Van Den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon- Treatment (2013) J Gen Virol, 94, pp. 1749-1760. , https://doi.org/10.1099/vir.0.052910-0; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 4953-4961. , https://doi.org/10.1128/JVI.00161-14; Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J., Matsuda, Z., Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay (2016) Antimicrob Agents Chemother, 60, pp. 6532-6539. , https://doi.org/10.1128/AAC.01043-16; Bosch, B.J., Bartelink, W., Rottier, P.J.M., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide (2008) J Virol, 82, pp. 8887-8890. , https://doi.org/10.1128/JVI.00415-08; Matsuyama, S., Taguchi, F., Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis (2009) J Virol, 83, pp. 11133-11141. , https://doi.org/10.1128/JVI.00959-09; Fukuma, A., Tani, H., Taniguchi, S., Shimojima, M., Saijo, M., Fukushi, S., Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein (2015) Arch Virol, 160, pp. 2293-2300. , https://doi.org/10.1007/s00705-015-2506-z; Komiyama, T., Coppola, J.M., Larsen, M.J., Van Dort, M.E., Ross, B.D., Day, R., Rehemtulla, A., Fuller, R.S., Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules (2009) J Biol Chem, 284, pp. 15729-15738. , https://doi.org/10.1074/jbc.M901540200","Matsuyama, S.; Department of Virology III, National Institute of Infectious DiseasesJapan; email: matuyama@nih.go.jp",,"American Society for Microbiology",0022538X,,JOVIA,"30021905","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85053381071 "Ahmed A.E., Alshukairi A.N., Al-Jahdali H., Alaqeel M., Siddiq S.S., Alsaab H.A., Sakr E.A., Alyahya H.A., Alandonisi M.M., Subedar A.T., Aloudah N.M., Baharoon S., Alsalamah M.A., Al Johani S., Alghamdi M.G.","35278332600;15821823600;6603777947;57192714520;57201396297;57201390059;57201398195;57201397225;55989163300;57201393771;57214293420;24477253100;57194152353;26648040700;55936106800;","Development of a risk-prediction model for Middle East respiratory syndrome coronavirus infection in dialysis patients",2018,"Hemodialysis International","22","4",,"474","479",,4,"10.1111/hdi.12661","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045386656&doi=10.1111%2fhdi.12661&partnerID=40&md5=26092ff3f956b1b5d34c4cb3e979457a","King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia; King Fahad General Hospital, Jeddah, Saudi Arabia; Medical Records Department, Ministry of Health, Jeddah, Saudi Arabia; King Saud University, Riyadh, Saudi Arabia","Ahmed, A.E., King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Alshukairi, A.N., King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia; Al-Jahdali, H., King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Alaqeel, M., King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Siddiq, S.S., King Fahad General Hospital, Jeddah, Saudi Arabia; Alsaab, H.A., Medical Records Department, Ministry of Health, Jeddah, Saudi Arabia; Sakr, E.A., King Fahad General Hospital, Jeddah, Saudi Arabia; Alyahya, H.A., King Fahad General Hospital, Jeddah, Saudi Arabia; Alandonisi, M.M., King Fahad General Hospital, Jeddah, Saudi Arabia; Subedar, A.T., King Fahad General Hospital, Jeddah, Saudi Arabia; Aloudah, N.M., King Saud University, Riyadh, Saudi Arabia; Baharoon, S., King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Alsalamah, M.A., King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Al Johani, S., King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; Alghamdi, M.G., King Fahad General Hospital, Jeddah, Saudi Arabia","Introduction The Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause transmission clusters and high mortality in hemodialysis facilities. We attempted to develop a risk-prediction model to assess the early risk of MERS-CoV infection in dialysis patients. Methods This two-center retrospective cohort study included 104 dialysis patients who were suspected of MERS-CoV infection and diagnosed with rRT-PCR between September 2012 and June 2016 at King Fahd General Hospital in Jeddah and King Abdulaziz Medical City in Riyadh. We retrieved data on demographic, clinical, and radiological findings, and laboratory indices of each patient. Findings A risk-prediction model to assess early risk for MERS-CoV in dialysis patients has been developed. Independent predictors of MERS-CoV infection were identified, including chest pain (OR = 24.194; P = 0.011), leukopenia (OR = 6.080; P = 0.049), and elevated aspartate aminotransferase (AST) (OR = 11.179; P = 0.013). The adequacy of this prediction model was good (P = 0.728), with a high predictive utility (area under curve [AUC] = 76.99%; 95% CI: 67.05% to 86.38%). The prediction of the model had optimism-corrected bootstrap resampling AUC of 71.79%. The Youden index yielded a value of 0.439 or greater as the best cut-off for high risk of MERS infection. Discussion This risk-prediction model in dialysis patients appears to depend markedly on chest pain, leukopenia, and elevated AST. The model accurately predicts the high risk of MERS-CoV infection in dialysis patients. This could be clinically useful in applying timely intervention and control measures to prevent clusters of infections in dialysis facilities or other health care settings. The predictive utility of the model warrants further validation in external samples and prospective studies. © 2018 International Society for Hemodialysis","aminotransferase (AST); chest pain; Hemodialysis; leukopenia; Middle East respiratory syndrome coronavirus (MERS-CoV); Saudi Arabia","aspartate aminotransferase; adolescent; adult; aged; Article; aspartate aminotransferase blood level; bootstrapping; clinical feature; cohort analysis; confidence interval; controlled study; demography; diagnostic accuracy; diagnostic test accuracy study; early diagnosis; female; general hospital; hemodialysis patient; high risk patient; human; hypertransaminasemia; infection risk; leukopenia; major clinical study; male; Middle East respiratory syndrome; odds ratio; prediction; predictive value; quantitative analysis; receiver operating characteristic; retrospective study; reverse transcription polymerase chain reaction; risk assessment; Saudi Arabia; sensitivity and specificity; thorax pain; very elderly; virus detection; Youden index; Coronavirus infection; hemodialysis; middle aged; Middle East respiratory syndrome coronavirus; pathogenicity; pathology; procedures; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Coronavirus Infections; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Renal Dialysis; Retrospective Studies; Saudi Arabia; Young Adult","Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med., 369, pp. 407-416; Al-Tawfiq, J.A., Memish, Z.A., Managing MERS-CoV in the healthcare setting (2015) Hosp Pract (1995)., 43, pp. 158-163; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases (2015) Travel Med Infect Dis., 13, pp. 311-314; Lee, H., Ki, C.S., Sung, H., Guidelines for the laboratory diagnosis of Middle East respiratory syndrome coronavirus in Korea (2016) Infect Chemother., 48, pp. 61-69; Hastings, D.L., Tokars, J.I., Aziz, I.Z., Outbreak of Middle East respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis., 22, p. 794; Assiri, A., Abedi, G.R., Saeed, A.A., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis., 22, p. 32; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis., 17, p. 615; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics, and regions: A worldwide study (2018) Epidemiol Infect., 146, pp. 489-495; Park, H.C., Lee, Y.K., Lee, S.H., Middle East respiratory syndrome clinical practice guideline for hemodialysis facilities (2017) Kidney Res Clin Pract., 36, p. 111; Ahmed, A.E., Diagnostic delays in 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2017) Int J Infect Dis., 62, pp. 47-51; Koenig, K.L., Identify-Isolate-Inform: A modified tool for initial detection and management of Middle East respiratory syndrome patients in the emergency department (2015) West J Emerg Med., 16, p. 619; Ahmed, A.E., McClish, D.K., Schubert, C.M., Accuracy and cost comparison in medical testing using sequential testing strategies (2011) Statist Med., 30, pp. 3416-3430; Ahmed, A.E., Schubert, C.M., McClish, D.K., Reducing cost in sequential testing: a limit of indifference approach (2013) Statist Med., 32, pp. 2715-2727; www.moh.gov.sa/en/CCC/Regulations/Case%20Definition.pdf, - Updated June 2015. Available from, (accessed date March 15, 2017); Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah—A link to health care facilities (2015) N Engl J Med., 372, pp. 846-854; Al-Dorzi, H.M., Aldawood, A.S., Khan, R., The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study (2016) Ann Intensive Care., 6, p. 101; Ahmed, A.E., Early identification of pneumonia patients at increased risk of MERS-CoV infection in Saudi Arabia (2018) Int J Infect Dis., 69, pp. 68-74; Moniri, A., Marjani, M., Tabarsi, P., Yadegarynia, D., Nadji, S.A., Health care associated Middle East respiratory syndrome (MERS): A Case from Iran (2015) Tanaffos., 14, p. 262; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis., 14, pp. 464-470; Choi, W.S., Kang, C.I., Kim, Y., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother., 48, pp. 118-126; Yousefi, M., Dehesh, M.M., Farokhnia, M., Epidemiological and clinical characteristics of patients with Middle East respiratory syndrome coronavirus in Iran in 2014 (2017) Jpn J Infect Dis., 70, pp. 115-118; Ajlan, A.M., Ahyad, R.A., Jamjoom, L.G., Alharthy, A., Madani, T.A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection: Chest CT findings (2014) Ajr Am J Roentgenol., 203, pp. 782-787","Ahmed, A.E.; King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)/King Abdullah International Medical Research Center (KAIMRC)/King Abdulaziz Medical City (KAMC), Ministry of National Guard - Health AffairsSaudi Arabia; email: ahmeda5@vcu.edu",,"Blackwell Publishing Inc.",14927535,,HIENA,"29656480","English","Hemodial. Int.",Article,"Final",Open Access,Scopus,2-s2.0-85045386656 "Yuan P., Yang Z., Song H., Wang K., Yang Y., Xie L., Huang S., Liu J., Ran L., Song Z.","57203822029;57191963197;57191965414;57203814888;57203827123;57202009255;57202003567;57203817112;57203815487;23468010300;","Three Main Inducers of Alphacoronavirus Infection of Enterocytes: Sialic Acid, Proteases, and Low pH",2018,"Intervirology","61","2",,"53","63",,,"10.1159/000492424","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053065063&doi=10.1159%2f000492424&partnerID=40&md5=8850d898f6091ba1751ad6c0c586f4e8","Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China","Yuan, P., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Yang, Z., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Song, H., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Wang, K., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Yang, Y., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Xie, L., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Huang, S., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Liu, J., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Ran, L., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China; Song, Z., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, China","Transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are similar coronaviruses, causing diseases characterized by vomiting, diarrhea, and death from severe dehydration in piglets. Thus, they have caused huge losses to the swine-breeding industry worldwide. Nowadays, they are easily transmitted among the continents via vehicles, equipment, and cargo. Both viruses establish an infection in porcine enterocytes in the small intestine, and their spike (S) proteins play a key role in the virus-cell binding process under unfavorable conditions when the intestine with a low pH is filled with a thick layer of mucus and proteases. Sialic acid, proteases, and low pH are three main inducers of coronavirus infection. However, the details of how sialic acid and low pH affect virus binding to the host cell are not determined, and the functions of the proteases are unknown. This review emphasizes the role of three factors in the invasion of TGEV and PEDV into porcine enterocytes and offers more insights into Alphacoronavirus infection in the intestinal environment. © 2018 S. Karger AG, Basel.","Epithelial cells; Low pH; Porcine epidemic diarrhea virus; Porcine small intestine; Protease; Sialic acid; Transmissible gastroenteritis virus","cell receptor; proteinase; sialic acid; viral protein; virus spike protein; coronavirus spike glycoprotein; n acetylneuraminic acid; peptide hydrolase; protein binding; virus receptor; alphacoronavirus infection; animal cell; cell invasion; Coronavirus infection; enzyme activity; host cell; infectious agent; intestine cell; intestine epithelium cell; intestine infection; nonhuman; pH; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; priority journal; protein conformation; protein structure; receptor binding domain; Review; small intestine epithelium; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; virogenesis; virus activation; virus attachment; virus cell interaction; virus entry; Alphacoronavirus; animal; chemistry; classification; Coronavirus infection; host pathogen interaction; intestine cell; metabolism; pH; phylogeny; physiology; pig; Porcine epidemic diarrhea virus; structure activity relation; swine disease; Transmissible gastroenteritis virus; virology; Alphacoronavirus; Animals; Coronavirus Infections; Enterocytes; Host-Pathogen Interactions; Hydrogen-Ion Concentration; N-Acetylneuraminic Acid; Peptide Hydrolases; Phylogeny; Porcine epidemic diarrhea virus; Protein Binding; Receptors, Virus; Spike Glycoprotein, Coronavirus; Structure-Activity Relationship; Swine; Swine Diseases; Transmissible gastroenteritis virus","Kim, L., Hayes, J., Lewis, P., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Arch Virol, 145, pp. 1133-1147; Song, D., Park, B., Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, vaccines (2012) Virus Genes, 44, pp. 167-175; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J Am Vet Med Assoc, 108, pp. 257-259; Reguera, J., Ordono, D., Santiago, C., Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein (2011) J Gen Virol, 92, pp. 1117-1126; Chasey, D., Cartwright, S.F., Virus-like particles associated with porcine epidemic diarrhoea (1978) Res Vet Sci, 25, pp. 255-256; Pensaert, M.B., De Bouck, P., A new coronaviruslike particle associated with diarrhea in swine (1978) Arch Virol, 58, pp. 243-247; Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292; Schwegmann-Wessels, C., Bauer, S., Winter, C., The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus (2011) Virol J, 8, p. 435; Woo, P.C., Lau, S.K., Lam, C.S., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Reguera, J., Mudgal, G., Santiago, C., A structural view of coronavirus-receptor interactions (2014) Virus Res, 194, pp. 3-15; Belouzard, S., Millet, J.K., Licitra, B.N., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Li, F., Structure, Function, Evolution of Coronavirus Spike Proteins (2016) Annu Rev Virol, 3, pp. 237-261; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J Virol, 89, pp. 1954-1964; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279, pp. 371-374; Wang, J., Deng, F., Ye, G., Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses (2016) Virol Sin, 31, pp. 49-56; Beniac, D.R., Andonov, A., Grudeski, E., Architecture of the SARS coronavirus prefusion spike (2006) Nat Struct Mol Biol, 13, pp. 751-752; Sanchez, C.M., Izeta, A., Sanchez-Morgado, J.M., Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence (1999) J Virol, 73, pp. 7607-7618; Lee, D.K., Cha, S.Y., Lee, C., The N-terminal region of the porcine epidemic diarrhea virus spike protein is important for the receptor binding (2011) Korean J Microbiol Biotechnol, 39, pp. 140-145; Liu, C., Tang, J., Ma, Y., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125; Deng, F., Ye, G., Liu, Q., Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains (2016) Viruses, 8, p. 55; Reguera, J., Santiago, C., Mudgal, G., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8, p. e1002859; Wu, K., Li, W., Peng, G., Crystal structure of NL63 respiratory coronavirus receptorbinding domain complexed with its human receptor (2009) Proc Natl Acad Sci USA, 106, pp. 19970-19974; Delmas, B., Gelfi, J., L'Haridon, R., Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Li, W., Moore, M.J., Vasilieva, N., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci USA, 88, pp. 5533-5536; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Godet, M., Grosclaude, J., Delmas, B., Laude, H., Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein (1994) J Virol, 68, pp. 8008-8016; Yeager, C.L., Ashmun, R.A., Williams, R.K., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Li, W., Zhang, C., Sui, J., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; Wentworth, D.E., Tresnan, D.B., Turner, B.C., Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo (2005) Virology, 335, pp. 185-197; Kenny, A.J., Maroux, S., Topology of microvillar membrance hydrolases of kidney and intestine (1982) Physiol Rev, 62, pp. 91-128; Rangel, R., Sun, Y., Guzman-Rojas, L., Impaired angiogenesis in aminopeptidase Nnull mice (2007) Proc Natl Acad Sci USA, 104, pp. 4588-4593; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range (2007) J Virol, 81, pp. 1261-1273; Hoffmann, M., Muller, M.A., Drexler, J.F., Differential sensitivity of bat cells to infection by enveloped RNA viruses: Coronaviruses, paramyxoviruses, filoviruses, influenza viruses (2013) PLoS One, 8, p. e72942; Schwegmann-Wessels, C., Herrler, G., Sialic acids as receptor determinants for coronaviruses (2006) Glycoconj J, 23, pp. 51-58; Schultze, B., Krempl, C., Ballesteros, M.L., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity (1996) J Virol, 70, pp. 5634-5637; Shahwan, K., Hesse, M., Mork, A.K., Sialic acid binding properties of soluble coronavirus spike (S1) proteins: Differences between infectious bronchitis virus and transmissible gastroenteritis virus (2013) Viruses, 5, pp. 1924-1933; Schwegmann-Wessels, C., Herrler, G., Identification of sugar residues involved in the binding of TGEV to porcine brush border membranes (2008) Methods Mol Biol, 454, pp. 319-329; Malykh, Y.N., King, T.P., Logan, E., Regulation of N-glycolylneuraminic acid biosynthesis in developing pig small intestine (2003) Biochem J, 370, pp. 601-607; Wojdyla, J.A., Manolaridis, I., Van Kasteren, P.B., Papain-like protease 1 from transmissible gastroenteritis virus: Crystal structure and enzymatic activity toward viral and cellular substrates (2010) J Virol, 84, pp. 10063-10073; Dessens, J.T., Lomonossoff, G.P., Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease (1991) Virology, 184, pp. 738-746; Dougherty, W.G., Parks, T.D., Cary, S.M., Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase (1989) Virology, 172, pp. 302-310; Margis, R., Pinck, L., Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase (1992) Virology, 190, pp. 884-888; Bhoj, V.G., Chen, Z.J., Ubiquitylation in innate and adaptive immunity (2009) Nature, 458, pp. 430-437; Kawai, T., Akira, S., Toll-like receptors and their crosstalk with other innate receptors in infection and immunity (2011) Immunity, 34, pp. 637-650; La Bonnardiere, C., Laude, H., High interferon titer in newborn pig intestine during experimentally induced viral enteritis (1981) Infect Immun, 32, pp. 28-31; Deal, E.M., Lahl, K., Narvaez, C.F., Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses (2013) J Clin Invest, 123, pp. 2464-2474; Zhang, Q., Yoo, D., Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling (2016) Virus Res, 226, pp. 128-141; Xue, M., Zhao, J., Ying, L., IL-22 suppresses the infection of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway (2017) Antiviral Res, 142, pp. 68-75; Hu, X., Tian, J., Kang, H., Transmissible gastroenteritis virus papain-like protease 1 antagonizes production of interferon- through its deubiquitinase activity (2017) Biomed Res Int, 2017, p. 7089091; Zamolodchikova, T.S., Serine proteases of small intestine mucosa-localization, functional properties, physiological role (2012) Biochemistry, 77, pp. 820-829; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J Clin Microbiol, 26, pp. 2235-2239; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Wicht, O., Li, W., Willems, L., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J Virol, 88, pp. 7952-7961; Shirato, K., Matsuyama, S., Ujike, M., Role of proteases in the release of porcine epidemic diarrhea virus from infected cells (2011) J Virol, 85, pp. 7872-7880; Shi, W., Fan, W., Bai, J., TMPRSS2 and MSPL facilitate trypsin-independent porcine epidemic diarrhea virus replication in Vero cells (2017) Viruses, 9, p. E114; Kusanagi, K., Kuwahara, H., Katoh, T., Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate (1992) J Vet Med Sci, 54, pp. 313-318; Sturman, L.S., Ricard, C.S., Holmes, K.V., Conformational change of the coronavirus peplomer glycoprotein at pH 8.0 and 37 degrees C correlates with virus aggregation and virus-induced cell fusion (1990) J Virol, 64, p. 3042; Cong, Y., Li, X., Bai, Y., Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells (2015) Virology, 478, pp. 1-8; Park, J.E., Cruz, D.J., Shin, H.J., Clathrin- A nd serine proteases-dependent uptake of porcine epidemic diarrhea virus into Vero cells (2014) Virus Res, 191, pp. 21-29; Weismiller, D.G., Sturman, L.S., Buchmeier, M.J., Monoclonal antibodies to the peplomer glycoprotein of coronavirus mouse hepatitis virus identify two subunits and detect a conformational change in the subunit released under mild alkaline conditions (1990) J Virol, 64, pp. 3051-3055; Pocock, D.H., Garwes, D.J., The influence of pH on the growth and stability of transmissible gastroenteritis virus in vitro (1975) Arch Virol, 49, pp. 239-247; Weingartl, H.M., Derbyshire, J.B., Evidence for a putative second receptor for porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs (1994) J Virol, 68, pp. 7253-7259; Hansen, G.H., Delmas, B., Besnardeau, L., The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment (1998) J Virol, 72, pp. 527-534; Paul, A., Trincone, A., Siewert, S., A lysinemethionine exchange in a coronavirus surface protein transforms a retention motif into an endocytosis signal (2014) Biol Chem, 395, pp. 657-665; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci USA, 102, pp. 11876-11881","Song, Z.; Department of Veterinary Medicine, College of Animal Science, Southwest UniversityChina; email: szh7678@126.com",,"S. Karger AG",03005526,,IVRYA,"30176660","English","Intervirology",Review,"Final",,Scopus,2-s2.0-85053065063 "Lan J., Deng Y., Song J., Huang B., Wang W., Tan W.","24376550300;36238838100;23098159000;35082078200;7501755105;7401959748;","Significant Spike-Specific IgG and Neutralizing Antibodies in Mice Induced by a Novel Chimeric Virus-Like Particle Vaccine Candidate for Middle East Respiratory Syndrome Coronavirus",2018,"Virologica Sinica","33","5",,"453","455",,2,"10.1007/s12250-018-0064-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055973361&doi=10.1007%2fs12250-018-0064-8&partnerID=40&md5=393fd2d32b8f29d28342d136821e8629","MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, 050017, China","Lan, J., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China, Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, 050017, China; Deng, Y., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Song, J., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Huang, B., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Wang, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Tan, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China",[No abstract available],,"immunoglobulin G; neutralizing antibody; virus like particle vaccine; coronavirus spike glycoprotein; immunoglobulin G; neutralizing antibody; virus antibody; virus like particle vaccine; virus vaccine; antibody titer; chimera; fatality; human; humoral immunity; Letter; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; morbidity; mouse; nonhuman; vaccine immunogenicity; virion; virus like agent; virus morphology; animal; Bagg albino mouse; blood; Coronavirus infection; female; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; Animals; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Female; Immunity, Humoral; Immunogenicity, Vaccine; Immunoglobulin G; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Vaccines, Virus-Like Particle; Viral Vaccines","Deng, Y., Lan, J., Bao, L., Huang, B., Ye, F., Chen, Y., Yao, Y., Tan, W., Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus (2018) Emerg Microbes Infect, 7, p. 60; Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Tan, W., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS ONE, 9; Liu, Y.V., Massare, M.J., Barnard, D.L., Kort, T., Nathan, M., Wang, L., Smith, G., Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV (2011) Vaccine, 29, pp. 6606-6613. , COI: 1:CAS:528:DC%2BC3MXhtVelsrzF; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches (2017) Curr Opin Virol, 23, pp. 49-58. , COI: 1:CAS:528:DC%2BC2sXlsFKqs74%3D; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3, pp. 12-e00473; Wang, C., Zhang, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Xia, X., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694. , PID: 27050368","Tan, W.; MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionChina; email: tanwj28@163.com",,"Science Press",16740769,,,"30374826","English","Virol. Sin.",Letter,"Final",Open Access,Scopus,2-s2.0-85055973361 "Da'Ar O.B., Ahmed A.E.","56267642000;35278332600;","Corrigendum: Underlying trend, seasonality, prediction, forecasting and the contribution of risk factors: An analysis of globally reported cases of Middle East Respiratory Syndrome Coronavirus (Epidemiology and Infection (2018) DOI: 10.1017/S0950268818001541)",2018,"Epidemiology and Infection","146","14",,"1878","",,,"10.1017/S0950268818001905","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049328205&doi=10.1017%2fS0950268818001905&partnerID=40&md5=8ebea3a38ec8f4e78753c73582ed6d74",,"Da'Ar, O.B.; Ahmed, A.E.","The above published article was submitted to Epidemiology and Infection with an incorrect corresponding author email. © 2018 Cambridge University Press.",,"erratum; Erratum; error",,,,"Cambridge University Press",09502688,,EPINE,"29945686","English","Epidemiol. Infect.",Erratum,"Final",Open Access,Scopus,2-s2.0-85049328205 "Spencer H., Ustianowski A., Farooq H.","57204091334;6602482250;57204095268;","Assessment of fever in the returning traveller",2018,"British Journal of Hospital Medicine","79","10",,"560","566",,,"10.12968/hmed.2018.79.10.560","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054445288&doi=10.12968%2fhmed.2018.79.10.560&partnerID=40&md5=3c518f3e488b55afc7c4995ee5a468b8","ST3 Registrar, Department of Infectious Diseases, Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, M8 5RB, United Kingdom; Consultant in Infectious Diseases and Tropical Medicine, Department of Infectious Diseases, Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, United Kingdom","Spencer, H., ST3 Registrar, Department of Infectious Diseases, Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, M8 5RB, United Kingdom; Ustianowski, A., ST3 Registrar, Department of Infectious Diseases, Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, M8 5RB, United Kingdom; Farooq, H., Consultant in Infectious Diseases and Tropical Medicine, Department of Infectious Diseases, Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, United Kingdom","Evaluation of people returning from trips abroad with fever is an important skill for all general physicians given the increasing trend in foreign travel. This evaluation should comprise a detailed travel history, thorough clinical examination, appropriate initial tests and a knowledge of when to ask for further advice. An understanding of the incubation periods of common imported infections and a syndromic approach to patients' symptoms is helpful in order to narrow down the likely diagnosis. The need to implement relevant infection control precautions has been highlighted by the recent Middle East respiratory syndrome coronavirus and Ebola virus disease outbreaks. © 2018 MA Healthcare Ltd. All rights reserved.",,"anamnesis; bacterial infection; central nervous system infection; diagnostic test; differential diagnosis; eosinophilia; fever; human; infection control; parasitosis; physical examination; procedures; respiratory tract infection; risk factor; travel related disease; virus infection; Bacterial Infections; Central Nervous System Infections; Diagnosis, Differential; Diagnostic Tests, Routine; Eosinophilia; Fever; Humans; Infection Control; Medical History Taking; Parasitic Diseases; Physical Examination; Respiratory Tract Infections; Risk Factors; Travel-Related Illness; Virus Diseases","Aryee, A., Thwaites, G., Viral encephalitis in travellers (2015) Clin Med (Northfield Ill), 15 (1), pp. 86-90. , https://doi.org/10.7861/clinmedicine.15-1-86, Feb 01; Bottieau, E., Clerinx, J., Schrooten, W., Etiology and outcome of fever after a stay in the tropics (2006) Arch Intern Med, 166 (15), pp. 1642-1648. , https://doi.org/10.1001/archinte.166.15.1642, Aug 14; Update: Management of patients with suspected viral hemorrhagic fever-United States (1995) MMWR Morb Mortal Wkly Rep, 44 (25), pp. 475-479. , Centers for Disease Control and Prevention (CDC); Checkley, A.M., Chiodini, P.L., Dockrell, D.H., British Infection Society and Hospital for Tropical Diseases. Eosinophilia in returning travellers and migrants from the tropics: UK recommendations for investigation and initial management (2010) J Infect, 60 (1), pp. 1-20. , https://doi.org/10.1016/j.jinf.2009.11.003, Jan; Dewitt, S., Chavez, S.A., Perkins, J., Long, B., Koyfman, A., Evaluation of fever in the emergency department (2017) Am J Emerg Med, 35 (11), pp. 1755-1758. , https://doi.org/10.1016/j.ajem.2017.08.030, Nov; Fink, D., Wani, R.S., Johnston, V., Fever in the returning traveller (2018) BMJ, 360, p. j5773. , htts://doi.org/10.1136/bmj.j5773, Jan 25; Freedman, D.O., Weld, L.H., Kozarsky, P.E., GeoSentinel Surveillance Network. Spectrum of disease and relation to place of exposure among ill returned travelers (2006) N Engl J Med, 354 (2), pp. 119-130. , https://doi.org/10.1056/NEJMoa051331, Jan 12; Gautret, P., Schlagenhauf, P., Gaudart, J., GeoSentinel Surveillance Network. Multicenter EuroTravNet/GeoSentinel study of travel-related infectious diseases in Europe (2009) Emerg Infect Dis, 15 (11), pp. 1783-1790. , https://doi.org/10.3201/eid1511.091147, Nov; Goodman, A.L., Masuet-Aumatell, C., Halbert, J., Zuckerman, J.N., Awareness of meningococcal disease among travelers from the United Kingdom to the meningitis belt in Africa (2014) Am J Trop Med Hyg, 91 (2), pp. 281-286. , https://doi.org/10.4269/ajtmh.13-0763, Aug 06; Jensenius, M., Han, P.V., Schlagenhauf, P., GeoSentinel Surveillance Network. Acute and potentially life-threatening tropical diseases in western travelers-a GeoSentinel multicenter study 1996-2011 (2013) Am J Trop Med Hyg, 88 (2), pp. 397-404. , https://doi.org/10.4269/ajtmh.12-0551, Feb 06; Johnston, V., Stockley, J.M., Dockrell, D., British Infection Society and the Hospital for Tropical Diseases. Fever in returned travellers presenting in the United Kingdom: Recommendations for investigation and initial management (2009) J Infect, 59 (1), pp. 1-18. , https://doi.org/10.1016/j.jinf.2009.05.005, Jul; Leblebicioglu, H., Rodriguez-Morales, A.J., Rossolini, G.M., López-Vélez, R., Zahar, J.R., Rello, J., ESGCIP and ESGITM. Management of infections in critically ill returning travellers in the intensive care unit - I: Considerations on infection control and transmission of resistance (2016) Int J Infect Dis, 48, pp. 113-117. , https://doi.org/10.1016/j.ijid.2016.04.019, Jul; Leder, K., Torresi, J., Libman, M.D., GeoSentinel Surveillance Network. GeoSentinel surveillance of illness in returned travelers 2007-2011 (2013) Ann Intern Med, 158 (6), pp. 456-468. , https://doi.org/10.7326/0003-4819-158-6-201303190-00005, Mar 19; Milali, M.P., Sikulu-Lord, M.T., Govella, N.J., Bites before and after bedtime can carry a high risk of human malaria infection (2017) Malar J, 16 (1), p. 91. , https://doi.org/10.1186/s12936-017-1740-0, Dec; (2015) Travel Trends: 2015, , https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/articles/traveltrends/2015#travel-trends-2015-main-findings, Office for National Statistics. (accessed 6 May 2017); Phillips-Howard, P.A., Radalowicz, A., Mitchell, J., Bradley, D.J., Risk of malaria in British residents returning from malarious areas (1990) BMJ, 300 (6723), pp. 499-503. , https://doi.org/10.1136/bmj.300.6723.499, Feb 24; (2010) Notifiable Diseases and Causative Organisms: How to Report, , https://www.gov.uk/guidance/notifiable-diseases-and-causative-organisms-how-to-report, Public Health England. (accessed 21 April 2017); (2015) Viral Haemorrhagic Fever: ACDP Algorithm and Guidance on Management of Patients, , https://www.gov.uk/government/publications/viral-haemorrhagic-fever-algorithm-and-guidance-on-management-of-patients, Public Health England. (accessed 23 May 2017); (2017) Avian Influenza: Guidance and Algorithms for Managing Human Cases, , https://www.gov.uk/government/publications/avian-influenza-guidance-and-algorithms-for-managing-incidents-in-birds, Public Health England. (accessed 9 June 2018); (2018) Risk Assessment of MERS-CoV to Residents in the UK and Guidance for Travellers to the Middle East on Reducing the Risk of Getting MERS-CoV, , https://www.gov.uk/government/publications/mers-cov-risk-assessment, Public Health England. (accessed 28 May 2017); Rello, J., Manuel, O., Eggimann, P., ESGCIP and ESGITM. Management of infections in critically ill returning travellers in the intensive care unit - II: Clinical syndromes and special considerations in immunocompromised patients (2016) Int J Infect Dis, 48, pp. 104-112. , https://doi.org/10.1016/j.ijid.2016.04.020, Jul; Steffen, R., Debernardis, C., Baños, A., Travel epidemiology - A global perspective (2003) Int J Antimicrob Agents, 21 (2), pp. 89-95. , https://doi.org/10.1016/S0924-8579, Feb; Svenson, J.E., Maclean, J.D., Gyorkos, T.W., Keystone, J., Imported Malaria (1995) Arch Intern Med, 155 (8), pp. 861-868. , https://doi.org/10.1001/archinte.1995.00430080109013, Apr 24; Tefferi, A., Patnaik, M.M., Pardanani, A., Eosinophilia: Secondary, clonal and idiopathic (2006) Br J Haematol, 133 (5), pp. 468-492. , https://doi.org/10.1111/j.1365-2141.2006.06038.x, Jun; Visser, L.G., Polderman, A.M., Stuiver, P.C., Outbreak of schistosomiasis among travelers returning from Mali, West Africa (1995) Clin Infect Dis, 20 (2), pp. 280-285. , https://doi.org/10.1093/clinids/20.2.280, Feb 01; Wilson, M., Pearson, R., Fever and systemic symptoms (2005) Tropical Infectious Diseases; Principles, Pathogens and Practice, , Guerrant RL, Walker DH, Weller PF eds. London: Churchill Livingstone; Wilson, M.E., Weld, L.H., Boggild, A., Keystone, J.S., Kain, K.C., Von Sonnenburg, F., Schwartz, E., GeoSentinel Surveillance Network. Fever in returned travelers: Results from the GeoSentinel Surveillance Network (2007) Clin Infect Dis, 44 (12), pp. 1560-1568. , https://doi.org/10.1086/518173, Jun 15; Winters, R.A., Murray, H.W., Malaria - The mime revisited: Fifteen more years of experience at a New York City teaching hospital (1992) Am J Med, 93 (3), pp. 243-246. , https://doi.org/10.1016/0002-9343(92)90228-4, Se","Spencer, H.; ST3 Registrar, Department of Infectious Diseases, Regional Infectious Diseases Unit, North Manchester General HospitalUnited Kingdom; email: hannahspencer@doctors.org.uk",,"MA Healthcare Ltd",17508460,,,"30290751","English","Br. J. Hosp. Med.",Conference Paper,"Final",,Scopus,2-s2.0-85054445288 "Yang W.-T., Li Q.-Y., Ata E.B., Jiang Y.-L., Huang H.-B., Shi C.-W., Wang J.-Z., Wang G., Kang Y.-H., Liu J., Yang G.-L., Wang C.-F.","55938041700;57203006421;57202470874;56937264300;56604377500;54785092700;56414620200;57196344516;55940058500;57192818190;35084741600;8388947300;","Immune response characterization of mice immunized with Lactobacillus plantarum expressing spike antigen of transmissible gastroenteritis virus",2018,"Applied Microbiology and Biotechnology","102","19",,"8307","8318",,3,"10.1007/s00253-018-9238-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050828211&doi=10.1007%2fs00253-018-9238-4&partnerID=40&md5=872cf695d3a06b666d10adf5edbca7da","College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Centre, 12622 Dokki, Cairo, Egypt","Yang, W.-T., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Li, Q.-Y., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Ata, E.B., Parasitology and Animal Diseases Department, Veterinary Research Division, National Research Centre, 12622 Dokki, Cairo, Egypt; Jiang, Y.-L., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Huang, H.-B., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Shi, C.-W., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Wang, J.-Z., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Wang, G., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Kang, Y.-H., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Liu, J., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Yang, G.-L., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Wang, C.-F., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China","The highly infectious porcine transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets, resulting in severe economic losses in the pork industry worldwide. In this study, we used Lactobacillus plantarum (L. plantarum) to anchor the expression of TGEV antigen (S) to dendritic cells (DCs) via dendritic cell-targeting peptides (DCpep). The results show that S antigen could be detected on the surface of L. plantarum by different detection methods. Furthermore, flow cytometry and ELISA techniques were used to measure the cellular, mucosal, and humoral immune responses of the different orally gavaged mouse groups. The obtained results demonstrated the significant effect of the constructed L. plantarum expressing S-DCpep fusion proteins in inducing high expression levels of B7 molecules on DCs, as well as high levels of IgG, secretory IgA, and IFN-γ and IL-4 cytokines compared with the other groups. Accordingly, surface expression of DC-targeted antigens successfully induced cellular, mucosal, and humoral immunity in mice and could be used as a vaccine. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.","DCpep; L. plantarum; Mucosal immune response; S protein; TGEV","Antigens; Bacilli; Cells; Losses; Mammals; Proteins; Viruses; DCpep; Humoral immune response; Immune response characterization; L. plantarum; Lactobacillus plantarum; Mucosal immune response; TGEV; Transmissible gastroenteritis virus; Immune system; dendritic cell vaccine; fusion protein; gamma interferon; immunoglobulin G; interleukin 4; RNA 16S; s dcpep fusion protein; secretory immunoglobulin; unclassified drug; virus antigen; virus vaccine; bacterial antigen; secretory immunoglobulin; virus antibody; virus vaccine; antigen; bacterium; cell; flow cytometry; gastroenteritis; gene expression; immune response; immunity; molecular analysis; peptide; protein; rodent; animal experiment; animal model; Article; cellular immunity; controlled study; cytokine production; dendritic cell; enzyme linked immunosorbent assay; gene amplification; humoral immunity; immune response; immunoglobulin production; in vitro study; in vivo study; Lactobacillus plantarum; mouse; mucosal immunity; nonhuman; protein expression; Transmissible gastroenteritis virus; vaccination; vaccine immunogenicity; animal; immunization; immunology; Lactobacillus plantarum; pig; procedures; Transmissible gastroenteritis virus; vaccination; Lactobacillus plantarum; Mus; Transmissible gastroenteritis virus; Animals; Antibodies, Viral; Antigens, Bacterial; Dendritic Cells; Immunity, Humoral; Immunization; Immunoglobulin A, Secretory; Lactobacillus plantarum; Mice; Swine; Transmissible gastroenteritis virus; Vaccination; Viral Vaccines","Almazan, F., Gonzalez, J.M., Penzes, Z., Izeta, A., Calvo, E., Plana-Duran, J., Enjuanes, L., Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome (2000) Proc Natl Acad Sci U S A, 97 (10), pp. 5516-5521. , COI: 1:CAS:528:DC%2BD3cXjsVWms7o%3D; Cai, R., Jiang, Y., Yang, W., Yang, W., Shi, S., Shi, C., Hu, J., Wang, C., Surface-displayed IL-10 by recombinant Lactobacillus plantarum reduces Th1 responses of RAW264.7 cells stimulated with poly(I:C) or LPS (2016) J Microbiol Biotechnol, 26 (2), pp. 421-431; Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu Rev Anim Biosci, 3, pp. 375-395; Cruz, J.L., Becares, M., Sola, I., Oliveros, J.C., Enjuanes, L., Zuniga, S., Alphacoronavirus protein 7 modulates host innate immune response (2013) J Virol, 87 (17), pp. 9754-9767; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J Am Vet Med Assoc, 108, pp. 257-259. , COI: 1:STN:280:DyaH28%2FjvVGnug%3D%3D; Gelhaus, S., Thaa, B., Eschke, K., Veit, M., Schwegmann-Wessels, C., Palmitoylation of the alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction (2014) Virology, 464-465, pp. 397-405; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Vet Microbiol, 206, pp. 45-51; Horton, R.E., Vidarsson, G., Antibodies and their receptors: different potential roles in mucosal defense (2013) Front Immunol, 4, p. 200; Huang, K.Y., Yang, G.L., Jin, Y.B., Liu, J., Chen, H.L., Wang, P.B., Jiang, Y.L., Wang, C.F., Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide (2018) Virus Res, 247, pp. 84-93; Jiang, X., Hou, X., Tang, L., Jiang, Y., Ma, G., Li, Y., A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection (2016) Appl Microbiol Biotechnol, 100 (17), pp. 7457-7469; Jiang, Y., Ye, L., Cui, Y., Yang, G., Yang, W., Wang, J., Hu, J., Wang, C., Effects of Lactobacillus rhamnosus GG on the maturation and differentiation of dendritic cells in rotavirus-infected mice (2017) Benef Microbes, 8 (4), pp. 645-656; Kathania, M., Zadeh, M., Lightfoot, Y.L., Roman, R.M., Sahay, B., Abbott, J.R., Mohamadzadeh, M., Colonic immune stimulation by targeted oral vaccine (2013) PLoS One, 8 (1); Kaur, M., Singh, H., Jangra, M., Kaur, L., Jaswal, P., Dureja, C., Nandanwar, H., Pinnaka, A.K., Lactic acid bacteria isolated from yak milk show probiotic potential (2017) Appl Microbiol Biotechnol, 101, pp. 7635-7652; Kikuchi, Y., Kunitoh-Asari, A., Hayakawa, K., Imai, S., Kasuya, K., Abe, K., Adachi, Y., Hachimura, S., Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice (2014) PLoS One, 9 (1); Landete, J.M., Langa, S., Revilla, C., Margolles, A., Medina, M., Arques, J.L., Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria (2015) Appl Microbiol Biotechnol, 99 (16), pp. 6865-6877; Lee, Y.K., Mukasa, R., Hatton, R.D., Weaver, C.T., Developmental plasticity of Th17 and Treg cells (2009) Curr Opin Immunol, 21 (3), pp. 274-280; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Saif, L.J., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89 (6), pp. 3332-3342; Maldonado-Lopez, R., Moser, M., Dendritic cell subsets and the regulation of Th1/Th2 responses (2001) Semin Immunol, 13 (5), pp. 275-282; Meng, F., Ren, Y., Suo, S., Sun, X., Li, X., Li, P., Yang, W., Ren, X., Evaluation on the efficacy and immunogenicity of recombinant DNA plasmids expressing spike genes from porcine transmissible gastroenteritis virus and porcine epidemic diarrhea virus (2013) PLoS One, 8 (3); Mohamadzadeh, M., Olson, S., Kalina, W.V., Ruthel, G., Demmin, G.L., Warfield, K.L., Bavari, S., Klaenhammer, T.R., Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization (2005) Proc Natl Acad Sci U S A, 102 (8), pp. 2880-2885; Mohamadzadeh, M., Duong, T., Sandwick, S.J., Hoover, T., Klaenhammer, T.R., Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge (2009) Proc Natl Acad Sci U S A, 106 (11), pp. 4331-4336; Mosmann, T.R., Coffman, R.L., TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties (1989) Annu Rev Immunol, 7, pp. 145-173; Mou, C., Zhu, L., Xing, X., Lin, J., Yang, Q., Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs (2016) Antivir Res, 131, pp. 74-84; Narita, J., Okano, K., Kitao, T., Ishida, S., Sewaki, T., Sung, M.H., Fukuda, H., Kondo, A., Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch (2006) Appl Environ Microbiol, 72 (1), pp. 269-275; Nguyen, V.P., Hogue, B.G., Protein interactions during coronavirus assembly (1997) J Virol, 71 (12), pp. 9278-9284. , COI: 1:CAS:528:DyaK2sXnsVClu7k%3D; Owen, J.L., Sahay, B., Mohamadzadeh, M., New generation of oral mucosal vaccines targeting dendritic cells (2013) Curr Opin Chem Biol, 17 (6), pp. 918-924; Posman, K.M., DeRito, C.M., Madsen, E.L., Benzene degradation by a Variovorax species within a coal tar-contaminated groundwater microbial community (2017) Appl Environ Microbiol, 83 (4), pp. e02616-e02658; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8 (8); Riaz Rajoka, M.S., Shi, J., Zhu, J., Shao, D., Huang, Q., Yang, H., Jin, M., Capacity of lactic acid bacteria in immunity enhancement and cancer prevention (2017) Appl Microbiol Biotechnol, 101 (1), pp. 35-45; Sanchez, C.M., Izeta, A., Sanchez-Morgado, J.M., Alonso, S., Sola, I., Balasch, M., Plana-Duran, J., Enjuanes, L., Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence (1999) J Virol, 73 (9), pp. 7607-7618. , COI: 1:CAS:528:DyaK1MXltlKhtLg%3D; Shi, S.H., Yang, W.T., Yang, G.L., Cong, Y.L., Huang, H.B., Wang, Q., Cai, R.P., Li, Y., Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice (2014) Virology, 464-465, pp. 166-176; Shi, S.H., Yang, W.T., Yang, G.L., Zhang, X.K., Liu, Y.Y., Zhang, L.J., Ye, L.P., Wang, C.F., Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection (2016) Virus Res, 211, pp. 46-57; Sorvig, E., Mathiesen, G., Naterstad, K., Eijsink, V.G., Axelsson, L., High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors (2005) Microbiology, 151, pp. 2439-2449; Subramaniam, S., Cao, D., Tian, D., Cao, Q.M., Overend, C., Yugo, D.M., Matzinger, S.R., Meng, X.J., Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs (2017) Virus Res, 227, pp. 212-219; Sung, M.H., Park, C., Kim, C.J., Poo, H., Soda, K., Ashiuchi, M., Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications (2005) Chem Rec, 5 (6), pp. 352-366; Tian, L., Zhao, P., Ma, B., Guo, G., Sun, Y., Xing, M., Cloning, expression and antiviral bioactivity of red-crowned crane interferon-alpha (2014) Gene, 544 (1), pp. 49-55; Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Rottier, P.J., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBOJ, 15 (8), pp. 2020-2028. , COI: 1:CAS:528:DyaK28XivVanur8%3D; Voets, M.T., Pensaert, M., Rondhuis, P.R., Vaccination of pregnant sows against transmissible gastroenteritis with two attenuated virus strains and different inoculation routes (1980) Vet Q, 2 (4), pp. 211-219; Wang, C., Chen, J., Shi, H., Qiu, H.J., Xue, F., Liu, S., Liu, C., Feng, L., Rapid differentiation of vaccine strain and Chinese field strains of transmissible gastroenteritis virus by restriction fragment length polymorphism of the N gene (2010) Virus Genes, 41 (1), pp. 47-58; Wang, X., Wang, Z., Xu, H., Xiang, B., Dang, R., Yang, Z., Orally administrated whole yeast vaccine against porcine epidemic diarrhea virus induced high levels of IgA response in mice and piglets (2016) Viral Immunol, 29 (9), pp. 526-531; Wang, X., Wang, L., Huang, X., Ma, S., Yu, M., Shi, W., Qiao, X., Li, Y., Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV (2017) Viruses, 9 (11), p. 312; Wanker, E., Leer, R.J., Pouwels, P.H., Schwab, H., Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei (1995) Appl Microbiol Biotechnol, 43 (2), pp. 297-303. , COI: 1:CAS:528:DyaK2MXmtl2qs7k%3D; Xia, L., Dai, L., Yu, Q., Yang, Q., Persistent transmissible gastroenteritis virus infection enhances enterotoxigenic Escherichia coli K88 adhesion by promoting epithelial-mesenchymal transition in intestinal epithelial cells (2017) J Virol, 91 (21), pp. e01217-e01256; Xia, L., Dai, L., Zhu, L., Hu, W., Yang, Q., Proteomic Analysis of IPEC-J2 Cells in Response to Coinfection by Porcine Transmissible Gastroenteritis Virus and Enterotoxigenic Escherichia coli K88 (2017) PROTEOMICS - Clinical Applications, 11 (11-12), p. 1600137; Xu, Y.G., Guan, X.T., Liu, Z.M., Tian, C.Y., Cui, L.C., Immunogenicity in swine of orally administered recombinant Lactobacillus plantarum expressing classical swine fever virus E2 protein in conjunction with thymosin alpha-1 as an adjuvant (2015) Appl Environ Microbiol, 81 (11), pp. 3745-3752; Yang, W.T., Shi, S.H., Yang, G.L., Jiang, Y.L., Zhao, L., Li, Y., Wang, C.F., Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum (2016) Sci Rep, 6; Yang, G., Yao, J., Yang, W., Jiang, Y., Du, J., Huang, H., Gu, W., Wang, C., Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide (2017) Vet Parasitol, 236, pp. 7-13; Yang, W.T., Yang, G.L., Wang, Q., Huang, H.B., Jiang, Y.L., Shi, C.W., Wang, J.Z., Wang, C.F., Protective efficacy of Fc targeting conserved influenza virus M2e antigen expressed by Lactobacillus plantarum (2017) Antivir Res, 138, pp. 9-21; Yang, W.T., Yang, G.L., Yang, X., Shonyela, S.M., Zhao, L., Jiang, Y.L., Huang, H.B., Wang, C.F., Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens (2017) Appl Microbiol Biotechnol, 101 (23-24), pp. 8475-8484; Yu, M., Qi, R., Chen, C., Yin, J., Ma, S., Shi, W., Wu, Y., Tang, L., Immunogenicity of recombinant Lactobacillus casei-expressing F4 (K88) fimbrial adhesin FaeG in conjunction with a heat-labile enterotoxin A (LTAK63) and heat-labile enterotoxin B (LTB) of enterotoxigenic Escherichia coli as an oral adjuvant in mice (2017) J Appl Microbiol, 122 (2), pp. 506-515; Yu, M., Wang, L., Ma, S., Wang, X., Wang, Y., Xiao, Y., Jiang, Y., Li, Y., Immunogenicity of eGFP-Marked Recombinant Lactobacillus casei against Transmissible Gastroenteritis Virus and Porcine Epidemic Diarrhea Virus (2017) Viruses, 9 (10), p. 274; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zhang, Y., Zhang, X., Liao, X., Huang, X., Cao, S., Wen, X., Wen, Y., Liu, W., Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium (2016) Virus Genes, 52 (3), pp. 354-364; Zhang, X., Zhu, Y., Zhu, X., Shi, H., Chen, J., Shi, D., Yuan, J., Feng, L., Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China (2017) Emerg Microbes Infect, 6 (8)","Yang, G.-L.; College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, China; email: yangguilian@jlau.edu.cn",,"Springer Verlag",01757598,,AMBID,"30056514","English","Appl. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85050828211 "Jin Y.-B., Yang W.-T., Shi C.-W., Feng B., Huang K.-Y., Zhao G.-X., Li Q.-Y., Xie J., Huang H.-B., Jiang Y.-L., Wang J.-Z., Wang G., Kang Y.-H., Yang G.-L., Wang C.-F.","57192273748;55938041700;54785092700;56583386300;57089479200;56246503200;57203006421;57203000727;56604377500;56937264300;56414620200;57196344516;55940058500;35084741600;8388947300;","Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets",2018,"Applied Microbiology and Biotechnology","102","19",,"8403","8417",,2,"10.1007/s00253-018-9205-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050243809&doi=10.1007%2fs00253-018-9205-0&partnerID=40&md5=2fc5cee879170e94e1ad3e28158c4424","College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China","Jin, Y.-B., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Yang, W.-T., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Shi, C.-W., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Feng, B., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Huang, K.-Y., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Zhao, G.-X., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Li, Q.-Y., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Xie, J., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Huang, H.-B., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Jiang, Y.-L., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Wang, J.-Z., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Wang, G., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Kang, Y.-H., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Yang, G.-L., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China; Wang, C.-F., College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China","Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.","B cells; DCpep; Immune response; Lactobacillus plantarum; Oral immunization; TGEV S protein","Bacilli; Cytology; Immune system; Recombinant proteins; Vaccines; Viruses; B cells; DCpep; Immune response; Lactobacillus plantarum; Lamina propria; Research results; Targeting peptides; Transmissible gastroenteritis virus; T-cells; B7 antigen; gamma interferon; immunoglobulin A; immunoglobulin G; interleukin 4; major histocompatibility antigen class 2; recombinant vaccine; secretory immunoglobulin; virus fusion protein; virus spike protein; virus vaccine; bacterial protein; immunoglobulin G; secretory immunoglobulin; signal peptide; virus antibody; virus vaccine; bacterium; cell; feces; gastroenteritis; gene expression; immune response; immunization; peptide; protein; research work; serum; vaccine; virus; animal cell; animal experiment; animal tissue; antibody titer; Article; B lymphocyte; CD3+ T lymphocyte; CD4+ T lymphocyte; cell surface display; controlled study; cytokine release; dendritic cell; feces; ileum; immune response; immunoglobulin production; interferon production; Lactobacillus plantarum; lamina propria; lymphocyte count; nonhuman; piglet; protein expression; swine disease; Transmissible gastroenteritis virus; Transmissible gastroenteritis virus infection; vaccine immunogenicity; viral gastroenteritis; animal; immunology; Lactobacillus plantarum; pig; T lymphocyte; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; Coronavirus; Lactobacillus plantarum; Suidae; Transmissible gastroenteritis virus; Animals; Antibodies, Viral; B-Lymphocytes; Bacterial Proteins; Gastroenteritis, Transmissible, of Swine; Immunoglobulin A, Secretory; Immunoglobulin G; Intracellular Signaling Peptides and Proteins; Lactobacillus plantarum; Swine; T-Lymphocytes; Transmissible gastroenteritis virus; Viral Vaccines","Adler, L.N., Jiang, W., Bhamidipati, K., Millican, M., Macaubas, C., Hung, S.C., Mellins, E.D., The other function: class II-restricted antigen presentation by B cells (2017) Front Immunol, 8, p. 319; Axelsson, L., Rud, I., Naterstad, K., Blom, H., Renckens, B., Boekhorst, J., Kleerebezem, M., Siezen, R.J., Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730) (2012) J Bacteriol, 194 (9), pp. 2391-2392. , COI: 1:CAS:528:DC%2BC38XmtFGrsbs%3D; Boneparth, A., Davidson, A., B-cell activating factor targeted therapy and lupus (2012) Arthritis Res Ther, 14 (4), p. S2; Cai, R., Jiang, Y., Yang, W., Yang, W., Shi, S., Shi, C., Hu, J., Zhou, F., Surface-displayed IL-10 by recombinant Lactobacillus plantarum reduces Th1 responses of RAW264.7 cells stimulated with poly(I:C) or LPS (2016) J Microbiol Biotechnol, 26 (2), pp. 421-431. , COI: 1:CAS:528:DC%2BC28Xht1OjtLfI; Chen, C.Y., Liu, H.J., Tsai, C.P., Chung, C.Y., Shih, Y.S., Chang, P.C., Chiu, Y.T., Hu, Y.C., Baculovirus as an avian influenza vaccine vector: differential immune responses elicited by different vector forms (2010) Vaccine, 28 (48), pp. 7644-7651. , COI: 1:CAS:528:DC%2BC3cXhsVWmtbjN; Chen, X., Tu, C., Qin, T., Zhu, L., Yin, Y., Yang, Q., Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8+ T-cell migration to the porcine gut (2016) Sci Rep, 6. , COI: 1:CAS:528:DC%2BC28Xmt1Sit7o%3D; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J Am Vet Med Assoc, 108 (3), pp. 257-259. , COI: 1:STN:280:DyaH28%2FjvVGnug%3D%3D; Fagarasan, S., Kawamoto, S., Kanagawa, O., Suzuki, K., Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis (2010) Annu Rev Immunol, 28 (1), pp. 243-273. , COI: 1:CAS:528:DC%2BC3cXlsVSms7w%3D; Huang, K.Y., Yang, G.L., Jin, Y.B., Liu, J., Chen, H.L., Wang, P.B., Jiang, Y.L., Wang, J.Z., Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide (2017) Virus Res, 247, pp. 84-93; Jiang, X., Yu, M., Qiao, X., Min, L., Tang, L., Jiang, Y., Wen, C., Li, Y., Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus (2014) Appl Microbiol Biotechnol, 98 (19), pp. 554-555; Jiang, Y., Hu, J., Guo, Y., Yang, W., Ye, L., Shi, C., Liu, Y., Wang, C., Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing HN of Newcastle disease virus and DC-targeting peptide fusion protein (2015) J Biotechnol, 216, pp. 82-89. , COI: 1:CAS:528:DC%2BC2MXhslanu7fE; Jiang, X., Hou, X., Tang, L., Jiang, Y., Ma, G., Li, Y., A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection (2016) Appl Microbiol Biotechnol, 100 (17), pp. 7457-7469. , COI: 1:CAS:528:DC%2BC28XkvFGktrs%3D; Jiang, Y., Yang, G., Qi, W., Wang, Z., Yang, W., Wei, G., Shi, C., Wang, C., Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB (2017) J Biotechnol, 259, pp. 6-14. , COI: 1:CAS:528:DC%2BC2sXhtlyitL3P; Jin, Y.B., Yang, W.T., Huang, K.Y., Chen, H.L., Shonyela, S.M., Liu, J., Liu, Q., Zhi, S.L., Expression and purification of swine RAG2 in E. coli for production of porcine RAG2 polyclonal antibodies (2017) Biosci Biotechnol Biochem, 26 (20), p. 1; Kandasamy, S., Chattha, K.S., Vlasova, A.N., Rajashekara, G., Saif, L.J., Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model (2014) Gut Microbes, 5 (5), pp. 639-651; Kathania, M., Zadeh, M., Lightfoot, Y.L., Roman, R.M., Sahay, B., Abbott, J.R., Mohamadzadeh, M., Colonic immune stimulation by targeted oral vaccine (2013) PLoS One, 8 (1). , COI: 1:CAS:528:DC%2BC3sXis1aru7k%3D; König, H., Fröhlich, J., Lactic acid bacteria (2017) Biology of microorganisms on grapes, in must and in wine, pp. 3-41. , König H, Unden G, Fröhlich J, (eds), Springer International Publishing, Cham; Krimmling, T., Beineke, A., Schwegmann-Weßels, C., Infection of porcine precision cut intestinal slices by transmissible gastroenteritis coronavirus demonstrates the importance of the spike protein for enterotropism of different virus strains (2017) Vet Microbiol, 205, pp. 1-5. , COI: 1:CAS:528:DC%2BC2sXntlajsrk%3D; Kuczkowska, K., Kleiveland, C.R., Minic, R., Moen, L.F., Øverland, L., Tjåland, R., Carlsen, H., Eijsink, V.G., Immunogenic properties of Lactobacillus plantarum producing surface-displayed Mycobacterium tuberculosis antigens (2016) Appl Environ Microbiol, 83 (2). , AEM.02782–16; Kurashima, Y., Kiyono, H., Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing (2017) Annu Rev Immunol, 35, pp. 119-147. , COI: 1:CAS:528:DC%2BC2sXhs1eqtL0%3D; Lahoud, M.H., Ahmet, F., Kitsoulis, S., Wan, S.S., Vremec, D., Lee, C.N., Phipson, B., Caminschi, I., Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype (2011) J Immunol (Baltimore, Md: 1950), 187 (2), p. 842. , COI: 1:CAS:528:DC%2BC3MXos1ehsrk%3D; Lei, H., Peng, X., Zhao, D., Ouyang, J., Jiao, H., Shu, H., Ge, X., Lactococcus lactis displayed neuraminidase confers cross protective immunity against influenza a viruses in mice (2015) Virology, 476, pp. 189-195. , COI: 1:CAS:528:DC%2BC2cXitFygsLfP; Liu, D., Wang, X., Ge, J., Liu, S., Li, Y., Comparison of the immune responses induced by oral immunization of mice with Lactobacillus casei-expressing porcine parvovirus VP2 and VP2 fused to Escherichia coli heat-labile enterotoxin B subunit protein (2011) Comp Immunol Microbiol Infect Dis, 34 (1), pp. 73-81; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method (2001) Methods, 25 (4), pp. 402-408; Mizoguchi, A., Bhan, A.K., Immunobiology of B Cells in Inflammatory Bowel Disease (2017) Crohn's Disease and Ulcerative Colitis, pp. 111-117. , Springer International Publishing, Cham; Mohamadzadeh, M., Duong, T., Hoover, T., Klaenhammer, T.R., Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria (2008) Expert Rev Vaccines, 7 (2), pp. 163-174. , COI: 1:CAS:528:DC%2BD1cXjtFOgtLc%3D; Mou, C., Zhu, L., Xing, X., Qian, Y., Expression of major antigenic sites a and D in S gene of transmissible gastroenteritis virus of swine (TGEV) in Escherichia coli and development of indirect ELISA for detection of the antibody against TGEV (2015) Chin Vet Sci, 45, pp. 356-360. , COI: 1:CAS:528:DC%2BC28XitVShtbw%3D; Narita, J., Okano, K., Tateno, T., Tanino, T., Sewaki, T., Sung, M.H., Fukuda, H., Kondo, A., Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion (2006) Appl Microbiol Biotechnol, 70 (5), pp. 564-572. , COI: 1:CAS:528:DC%2BD28XjtlWgt7g%3D; Noack, M., Miossec, P., Th17 and regulatory T cell balance in autoimmune and inflammatory diseases (2014) Autoimmun Rev, 13 (6), pp. 668-677. , COI: 1:CAS:528:DC%2BC2cXhtlKltb0%3D; Olivares, M., Díaz-Ropero, M.P., Sierra, S., Lara-Villoslada, F., Fonollá, J., Navas, M., Rodríguez, J.M., Xaus, J., Oral intake of lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination (2007) Nutrition, 23 (3), pp. 254-260. , COI: 1:CAS:528:DC%2BD2sXislWgurg%3D; Peng, J.-Y., Jian, C.-Z., Chang, C.-Y., Chang, H.-W., Porcine Epidemic Diarrhea (2017) Emerging and Re-emerging Infectious Diseases of Livestock, pp. 273-283. , Springer International Publishing, Cham; Raha, A.R., Varma, N.R.S., Yusoff, K., Ross, E., Foo, H.L., Cell surface display system for lactococcus lactis: a novel development for oral vaccine (2005) Appl Microbiol Biotechnol, 68 (1), pp. 75-81. , COI: 1:CAS:528:DC%2BD2MXosVantrk%3D; Rios, D., Wood, M.B., Li, J., Chassaing, B., Gewirtz, A.T., Williams, I.R., Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria (2016) Mucosal Immunol, 9 (4), pp. 907-916. , COI: 1:CAS:528:DC%2BC2MXhvFWitL7F; Saad, N., Delattre, C., Urdaci, M., Schmitter, J.M., Bressollier, P., An overview of the last advances in probiotic and prebiotic field (2013) LWT Food Sci Technol, 50 (1), pp. 1-16. , COI: 1:CAS:528:DC%2BC38XhtlKrs7bK; Sahay, B., Owen, J.L., Yang, T., Zadeh, M., Lightfoot, Y.L., Ge, J.W., Mohamadzadeh, M., Activation of B cells by a dendritic cell-targeted oral vaccine (2013) Curr Pharm Biotechnol, 14 (10), pp. 867-877. , COI: 1:CAS:528:DC%2BC2cXktVSjsLw%3D; Schroder, K., Hertzog, P.J., Ravasi, T., Hume, D.A., Interferon-gamma: an overview of signals, mechanisms and functions (2004) J Leukoc Biol, 75 (2), pp. 163-189. , COI: 1:CAS:528:DC%2BD2cXhsFKntrk%3D; Sewaki, T., Generation of mucosal vaccine utilizing lactobacillus display system (2010) Yakugaku Zasshi, 41 (18), p. 1327; Shao-Hua, S., Wen-Tao, Y., Gui-Lian, Y., Xu-Ke, Z., Yu-Ying, L., Li-Jiao, Z., Li-Ping, Y., Yu, L., Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection (2016) Virus Res, 211, pp. 46-57; Shonyela, S.M., Wang, G., Yang, W.T., Yang, G.L., Wang, C.F., New progress regarding the use of lactic acid bacteria as live delivery vectors, treatment of diseases and induction of immune responses in different host species focusing on lactobacillus species (2017) WJV, 7 (4), pp. 43-75; Sinkora, M., Sinkorova, J., B cell lymphogenesis in swine is located in the bone marrow (2014) J Immunol, 193 (10), pp. 5023-5032. , COI: 1:CAS:528:DC%2BC2cXhvVyjtbnI; Steinman, R.M., Idoyaga, J., Features of the dendritic cell lineage (2010) Immunol Rev, 234 (1), pp. 5-17. , COI: 1:CAS:528:DC%2BC3cXjslarsbs%3D; Subramaniam, S., Cao, D., Tian, D., Cao, Q.M., Overend, C., Yugo, D.M., Matzinger, S.R., Meng, X.-J., Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs (2017) Virus Res, 227, pp. 212-219; Tokunaga, M., Fujii, K., Saito, K., Nakayamada, S., Tsujimura, S., Nawata, M., Tanaka, Y., Down-regulation of CD40 and CD80 on B cells in patients with life-threatening systemic lupus erythematosus after successful treatment with rituximab (2005) Rheumatology, 44 (2), pp. 176-182. , COI: 1:CAS:528:DC%2BD2MXovVynsA%3D%3D; Trombert, A., Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination? (2015) Benefic Microbes, 6 (3), pp. 1-12; Vlasova, A.N., Chattha, K.S., Kandasamy, S., Liu, Z., Esseili, M., Shao, L., Rajashekara, G., Saif, L.J., Lactobacilli and Bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs (2013) PLoS One, 8 (10). , COI: 1:CAS:528:DC%2BC3sXhsFyrurzI; Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13. , COI: 1:CAS:528:DC%2BC28XpvFehtrs%3D; Wen, K., Azevedo, M.S.P., Gonzalez, A., Zhang, W., Saif, L.J., Li, G.H., Yousef, A., Yuan, L.J., Toll-like receptor and innate cytokine responses induced by Lactobacilli colonization and human rotavirus infection in gnotobiotic pigs (2009) Vet Immunol Immunopathol, 127 (3-4), pp. 304-315. , COI: 1:CAS:528:DC%2BD1MXhtFemur8%3D; Yang, W.T., Shi, S.H., Yang, G.L., Jiang, Y.L., Zhao, L., Li, Y., Wang, C.F., Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum (2016) Sci Rep, 6; Yang, G., Yao, J., Yang, W., Jiang, Y., Du, J., Huang, H., Gu, W., Shi, C., Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide (2017) Vet Parasitol, 236, pp. 7-13. , COI: 1:CAS:528:DC%2BC2sXivFWiu7k%3D; Yang, W.-T., Yang, G.-L., Shi, S.-H., Liu, Y.-Y., Huang, H.-B., Jiang, Y.-L., Wang, J.-Z., Wang, C.-F., Protection of chickens against H9N2 avian influenza virus challenge with recombinant Lactobacillus plantarum expressing conserved antigens (2017) Appl Microbiol Biotechnol, 101 (11), pp. 4593-4603. , COI: 1:CAS:528:DC%2BC2sXlt1SrsLY%3D; Yang, W.-T., Yang, G.-L., Yang, X., Shonyela, S.-M., Zhao, L., Jiang, Y.-L., Huang, H.-B., Wang, G., Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens (2017) Appl Microbiol Biotechnol, 101 (23-24), pp. 8475-8484. , COI: 1:CAS:528:DC%2BC2sXhslCmtr3I; Zhao, S., Gao, Q., Qin, T., Yin, Y., Lin, J., Yu, Q., Yang, Q., Effects of virulent and attenuated transmissible gastroenteritis virus on the ability of porcine dendritic cells to sample and present antigen (2014) Vet Microbiol, 171 (1-2), pp. 74-86. , COI: 1:CAS:528:DC%2BC2cXmtlCitLY%3D","Yang, G.-L.; College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, China; email: yangguilian@jlau.edu.cn",,"Springer Verlag",01757598,,AMBID,"30022263","English","Appl. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85050243809 "Chu H.-F., Chen C.-C., Moses D.C., Chen Y.-H., Lin C.-H., Tsai Y.-C., Chou C.-Y.","57203566851;56190452200;57195314283;7601427720;25925139100;56559175100;7403593375;","Porcine epidemic diarrhea virus papain-like protease 2 can be noncompetitively inhibited by 6-thioguanine",2018,"Antiviral Research","158",,,"199","205",,1,"10.1016/j.antiviral.2018.08.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052329766&doi=10.1016%2fj.antiviral.2018.08.011&partnerID=40&md5=9c6e4c7971700a9fb9aea85fd40190a5","Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan; Probiotic Research Center, National Yang-Ming University, Taipei, 112, Taiwan","Chu, H.-F., Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, 112, Taiwan, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Chen, C.-C., Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Moses, D.C., Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan; Chen, Y.-H., Department of Chemistry, Tamkang University, Tamsui, 251, Taiwan; Lin, C.-H., Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan; Tsai, Y.-C., Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan, Probiotic Research Center, National Yang-Ming University, Taipei, 112, Taiwan; Chou, C.-Y., Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112, Taiwan","Porcine epidemic diarrhea virus (PEDV) is a coronavirus (CoV) discovered in the 1970s that infects the intestinal tract of pigs, resulting in diarrhea and vomiting. It can cause extreme dehydration and death in neonatal piglets. In Asia, modified live attenuated vaccines have been used to control PEDV infection in recent years. However, a new strain of PEDV that belongs to genogroup 2a appeared in the USA in 2013 and then quickly spread to Canada and Mexico as well as Asian and European countries. Due to the less effective protective immunity provided by the vaccines against this new strain, it has caused considerable agricultural and economic loss worldwide. The emergence of this new strain increases the importance of understanding PEDV as well as strategies for inhibiting it. Coronaviral proteases, including main proteases and papain-like proteases, are ideal antiviral targets because of their essential roles in viral maturation. Here we provide a first description of the expression, purification and structural characteristics of recombinant PEDV papain-like protease 2, moreover present our finding that 6-thioguanine, a chemotherapeutic drug, in contrast to its competitive inhibition on SARS- and MERS-CoV papain-like proteases, is a noncompetitive inhibitor of PEDV papain-like protease 2. © 2018 Elsevier B.V.","6-Thioguanine; Alpha coronavirus; Noncompetitive inhibition; Papain-like protease; PEDV","2 amino 6 methylmercaptopurine; antivirus agent; deubiquitinase; disulfiram; grl 0617; hypoxanthine; mercaptopurine; mycophenolic acid; papain like protease 2; proteinase; proteinase inhibitor; recombinant enzyme; tioguanine; unclassified drug; virus enzyme; antivirus agent; papain; papain-like proteinase 2; recombinant protein; tioguanine; antiviral activity; Article; chemical structure; circular dichroism; competitive inhibition; conformational transition; controlled study; drug binding site; drug efficacy; drug mechanism; drug potency; enzyme activity; enzyme analysis; enzyme conformation; enzyme inhibition; enzyme purification; enzyme structure; IC50; kinetic parameters; Middle East respiratory syndrome coronavirus; molecular docking; molecular model; nonhuman; Porcine epidemic diarrhea virus; priority journal; protein degradation; protein expression; protein quaternary structure; protein secondary structure; protein tertiary structure; SARS coronavirus; spectrofluorometry; steady state; structure activity relation; substrate concentration; ultracentrifugation; binding site; chemistry; Coronavirinae; Coronavirus infection; drug effect; genetics; isolation and purification; kinetics; Porcine epidemic diarrhea virus; protein conformation; Antiviral Agents; Binding Sites; Coronavirus; Coronavirus Infections; Kinetics; Molecular Docking Simulation; Papain; Porcine epidemic diarrhea virus; Protein Conformation; Recombinant Proteins; Thioguanine","Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., Hilgenfeld, R., Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs (2003) Science, 300, pp. 1763-1767; Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201; Avvakumov, G.V., Walker, J.R., Xue, S., Finerty, P.J., Jr., Mackenzie, F., Newman, E.M., Dhe-Paganon, S., Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8) (2006) J. Biol. Chem., 281, pp. 38061-38070; Bacha, U., Barrila, J., Gabelli, S.B., Kiso, Y., Mario Amzel, L., Freire, E., Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CL(pro) (2008) Chem. Biol. Drug Des., 72, pp. 34-49; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J. Biol. Chem., 289, pp. 34667-34682; Bullock, A.N., Henckel, J., DeDecker, B.S., Johnson, C.M., Nikolova, P.V., Proctor, M.R., Lane, D.P., Fersht, A.R., Thermodynamic stability of wild-type and mutant p53 core domain (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 14338-14342; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Chasey, D., Cartwright, S.F., Virus-like particles associated with porcine epidemic diarrhoea (1978) Res. Vet. Sci., 25, pp. 255-256; Chaudhuri, R., Tang, S., Zhao, G., Lu, H., Case, D.A., Johnson, M.E., Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications (2011) J. Mol. Biol., 414, pp. 272-288; Chen, X., Chou, C.Y., Chang, G.G., Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme (2009) Antivir. Chem. Chemother., 19, pp. 151-156; Cheng, K.W., Cheng, S.C., Chen, W.Y., Lin, M.H., Chuang, S.J., Cheng, I.H., Sun, C.Y., Chou, C.Y., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus (2015) Antivir. Res., 115, pp. 9-16; Chou, C.Y., Chien, C.H., Han, Y.S., Prebanda, M.T., Hsieh, H.P., Turk, B., Chang, G.G., Chen, X., Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus (2008) Biochem. Pharmacol., 75, pp. 1601-1609; Chou, C.Y., Lai, H.Y., Chen, H.Y., Cheng, S.C., Cheng, K.W., Chou, Y.W., Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease (2014) Acta Crystallogr. D Biol. Crystallogr., 70, pp. 572-581; Chou, Y.W., Cheng, S.C., Lai, H.Y., Chou, C.Y., Differential domain structure stability of the severe acute respiratory syndrome coronavirus papain-like protease (2012) Arch. Biochem. Biophys., 520, pp. 74-80; Chuang, S.J., Cheng, S.C., Tang, H.C., Sun, C.Y., Chou, C.Y., 6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2 (2018) Sci. Rep., 8, p. 3102; Clasman, J.R., Baez-Santos, Y.M., Mettelman, R.C., O'Brien, A., Baker, S.C., Mesecar, A.D., X-ray structure and enzymatic activity profile of a core papain-like protease of MERS coronavirus with utility for structure-based drug design (2017) Sci. Rep., 7, p. 40292; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Baez-Santos, Y.M., Baker, S.C., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J. Virol., 84, pp. 4619-4629; Han, Y.S., Chang, G.G., Juo, C.G., Lee, H.J., Yeh, S.H., Hsu, J.T., Chen, X., Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition (2005) Biochemistry, 44, pp. 10349-10359; Ho, B.L., Cheng, S.C., Shi, L., Wang, T.Y., Ho, K.I., Chou, C.Y., Critical assessment of the important residues involved in the dimerization and catalysis of MERS coronavirus main protease (2015) PLoS One, 10; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4. , e00737-00713; Kumar, V., Shin, J.S., Shie, J.J., Ku, K.B., Kim, C., Go, Y.Y., Huang, K.F., Liang, P.H., Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CL(Pro) inhibitors (2017) Antivir. Res., 141, pp. 101-106; Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol. J., 12, p. 193; Lee, C.D., Sun, H.C., Hu, S.M., Chiu, C.F., Homhuan, A., Liang, S.M., Leng, C.H., Wang, T.F., An improved SUMO fusion protein system for effective production of native proteins (2008) Protein Sci., 17, pp. 1241-1248; Lei, J., Hilgenfeld, R., Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin (2016) Virol. Sin., 31, pp. 288-299; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: structures and functions of a large multi-domain protein (2018) Antivir. Res., 149, pp. 58-74; Lei, J., Mesters, J.R., Drosten, C., Anemuller, S., Ma, Q., Hilgenfeld, R., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antivir. Res., 109, pp. 72-82; Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J. Virol., 91; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Lin, M.H., Chuang, S.J., Chen, C.C., Cheng, S.C., Cheng, K.W., Lin, C.H., Sun, C.Y., Chou, C.Y., Structural and functional characterization of MERS coronavirus papain-like protease (2014) J. Biomed. Sci., 21, p. 54; Lin, M.H., Moses, D.C., Hsieh, C.H., Cheng, S.C., Chen, Y.H., Sun, C.Y., Chou, C.Y., Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes (2018) Antivir. Res., 150, pp. 155-163; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Park, J.Y., Jeong, H.J., Kim, J.H., Kim, Y.M., Park, S.J., Kim, D., Park, K.H., Ryu, Y.B., Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus (2012) Biol. Pharm. Bull., 35, pp. 2036-2042; Ratia, K., Pegan, S., Takayama, J., Sleeman, K., Coughlin, M., Baliji, S., Chaudhuri, R., Mesecar, A.D., A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 16119-16124; Ratia, K., Saikatendu, K.S., Santarsiero, B.D., Barretto, N., Baker, S.C., Stevens, R.C., Mesecar, A.D., Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5717-5722; Renatus, M., Parrado, S.G., D'Arcy, A., Eidhoff, U., Gerhartz, B., Hassiepen, U., Pierrat, B., Kroemer, M., Structural basis of ubiquitin recognition by the deubiquitinating protease USP2 (2006) Structure, 14, pp. 1293-1302; Schuck, P., Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling (2000) Biophys. J., 78, pp. 1606-1619; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: a review of current epidemiology and available vaccines (2015) Clin. Exp. Vaccine Res., 4, pp. 166-176; Song, D., Park, B., Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Investig., 25, pp. 649-654; Trott, O., Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) J. Comput. Chem., 31, pp. 455-461; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Whitmore, L., Wallace, B.A., Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases (2008) Biopolymers, 89, pp. 392-400; Wojdyla, J.A., Manolaridis, I., van Kasteren, P.B., Kikkert, M., Snijder, E.J., Gorbalenya, A.E., Tucker, P.A., Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates (2010) J. Virol., 84, pp. 10063-10073; Wu, C.Y., King, K.Y., Kuo, C.J., Fang, J.M., Wu, Y.T., Ho, M.Y., Liao, C.L., Wong, C.H., Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease (2006) Chem. Biol., 13, pp. 261-268; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 19970-19974; Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., Baker, S.C., Chen, Z., The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase (2013) J. Gen. Virol., 94, pp. 1554-1567; Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Rao, Z., The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 13190-13195; Zheng, D., Chen, G., Guo, B., Cheng, G., Tang, H., PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production (2008) Cell Res., 18, pp. 1105-1113","Chou, C.-Y.155 Li-Nong St., Sec. 2, Taiwan; email: cychou@ym.edu.tw",,"Elsevier B.V.",01663542,,ARSRD,"30138642","English","Antiviral Res.",Article,"Final",,Scopus,2-s2.0-85052329766 "Sun Y.-G., Li R., Jiang L., Qiao S., Zhi Y., Chen X.-X., Xie S., Wu J., Li X., Deng R., Zhang G.","57202264198;57193115811;26651680400;12240965100;9843203800;55546640300;56767404100;57202339748;14622736400;8376345000;7405271571;","Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus",2018,"International Journal of Biological Macromolecules","117",,,"704","712",,4,"10.1016/j.ijbiomac.2018.05.167","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047937189&doi=10.1016%2fj.ijbiomac.2018.05.167&partnerID=40&md5=24e55f25740178a454456e9cb553985d","College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China; GE Healthcare Life Sciences, Beijing, 100176, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China","Sun, Y.-G., College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Li, R., Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Jiang, L., College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Qiao, S., Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Zhi, Y., Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Chen, X.-X., Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Xie, S., College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China; Wu, J., GE Healthcare Life Sciences, Beijing, 100176, China; Li, X., Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Deng, R., Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China; Zhang, G., College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China, College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China","Porcine epidemic diarrhea (PED) has caused huge economic losses to the global pork industry. Infection by its causative agent PED virus (PEDV), an Alpha-coronavirus, was previously proven to be mediated by its spike (S) glycoprotein and a cellular receptor porcine aminopeptidase N (pAPN). Interestingly, some recent studies have indicated that pAPN is not a functional receptor for PEDV. To date, there is a lack of a direct evidence for the interaction between pAPN and PEDV S protein in vitro. Here, we prepared pAPN ectodomain and the truncated variants of PEDV S protein in Drosophila S2 cells. These recombinant proteins were homogeneous after purification by metal-affinity and size-exclusion chromatography. We then assayed the purified target proteins through immunogenicity tests, PEDV binding interference assays, circular dichroism (CD) measurements, pAPN activity assay and structural determination, demonstrating that they were biologically functional. Finally, we characterized their interactions by gel filtration chromatography, native-polyacrylamide gel electrophoresis (PAGE) and surface plasmon resonance (SPR) analyses. The results showed that their affinities were too low to form complexes, which suggest that pAPN may be controversial as the genuine receptor for PEDV. Therefore, further research needs to be carried out to elucidate the interaction between PEDV and its genuine receptor. © 2018","Interaction; Porcine aminopeptidase N; Porcine epidemic diarrhea virus","glycoprotein; microsomal aminopeptidase; coronavirus spike glycoprotein; microsomal aminopeptidase; recombinant protein; animal cell; Article; binding affinity; centrifugation; circular dichroism; controlled study; Drosophila; Drosophila schneider; enzyme kinetics; gel filtration chromatography; immunogenicity; nonhuman; polyacrylamide gel electrophoresis; Porcine epidemic diarrhea virus; protein analysis; protein binding; protein degradation; protein determination; protein domain; protein expression; protein function; protein protein interaction; size exclusion chromatography; surface plasmon resonance; animal; chemistry; Chlorocebus aethiops; Coronavirus infection; genetics; host pathogen interaction; pig; Porcine epidemic diarrhea virus; Vero cell line; veterinary medicine; virology; Animals; CD13 Antigens; Cercopithecus aethiops; Coronavirus Infections; Host-Pathogen Interactions; Porcine epidemic diarrhea virus; Recombinant Proteins; Spike Glycoprotein, Coronavirus; Swine; Vero Cells","Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2 (8), pp. 1804-1820; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., S.W. Group, A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348 (20), pp. 1953-1966; Gallagher, T., Perlman, S., Public health: broad reception for coronavirus (2013) Nature, 495 (7440), pp. 176-177; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., S.S. Group, Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Roper, R.L., The Genome sequence of the SARS-associated coronavirus (2003) Science, 300 (5624), pp. 1399-1404; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bellini, W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300 (5624), pp. 1394-1399; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill., 17 (40), p. 20290; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J. Virol., 87 (14), pp. 7790-7792; Guery, B., Poissy, J., el Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., M.E.-C.s. Group, Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272; Enjuanes, L., Smerdou, C., Sanchez, C.M., Sune, C., Kelly, S., Curtiss, R., 3rd, Torres, J.M., Induction of transmissible gastroenteritis coronavirus specific immune responses using vectors with enteric tropism (1995) Adv. Exp. Med. Biol., 371B, pp. 1535-1541; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4 (6), pp. 1011-1033; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J. Virol., 89 (4), pp. 1954-1964; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Ann. Rev. Virol., 3 (1), pp. 237-261; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426 (6965), pp. 450-454; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309 (5742), pp. 1864-1868; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23 (8), pp. 986-993; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357 (6377), pp. 420-422; Wong, A.H.M., Tomlinson, A.C.A., Zhou, D., Satkunarajah, M., Chen, K., Sharon, C., Desforges, M., Rini, J.M., Receptor-binding loops in alphacoronavirus adaptation and evolution (2017) Nat. Commun., 8 (1), p. 1735; Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357 (6377), pp. 417-420; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog., 8 (8); Li, R., Qiao, S., Yang, Y., Su, Y., Zhao, P., Zhou, E., Zhang, G., Phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in central China based on the ORF3 gene and the main neutralization epitopes (2014) Arch. Virol., 159 (5), pp. 1057-1065; Bi, J., Zeng, S., Xiao, S., Chen, H., Fang, L., Complete genome sequence of porcine epidemic diarrhea virus strain AJ1102 isolated from a suckling piglet with acute diarrhea in China (2012) J. Virol., 86 (19), pp. 10910-10911; Tian, Y., Yu, Z., Cheng, K., Liu, Y., Huang, J., Xin, Y., Li, Y., Xia, X., Molecular characterization and phylogenetic analysis of new variants of the porcine epidemic diarrhea virus in Gansu, China in 2012 (2013) Viruses, 5 (8), pp. 1991-2004; Cima, G., Viral disease affects U.S. pigs: porcine epidemic diarrhea found in at least 11 states (2013) J. Am. Vet. Med. Assoc., 243 (1), pp. 30-31; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Collins, J., Saif, L.J., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014 (2014) Emerg. Infect. Dis., 20 (10), pp. 1620-1628; Park, S., Kim, S., Song, D., Park, B., Novel porcine epidemic diarrhea virus variant with large genomic deletion, South Korea (2014) Emerg. Infect. Dis., 20 (12), pp. 2089-2092; Oh, J.S., Song, D.S., Park, B.K., Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes (2003) J. Vet. Sci., 4 (3), pp. 269-275; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365 (1), pp. 166-172; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J. Virol., 89 (11), pp. 6121-6125; Park, J.E., Park, E.S., Yu, J.E., Rho, J., Paudel, S., Hyun, B.H., Yang, D.K., Shin, H.J., (2015), 197, pp. 108-15. , Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus, Virus Res; Nam, E., Lee, C., Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection (2010) Vet. Microbiol., 144 (1-2), pp. 41-50; Deng, F., Ye, G., Liu, Q., Navid, M.T., Zhong, X., Li, Y., Wan, C., Peng, G., Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains (2016) Viruses, 8 (3), p. 55; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J. Gen. Virol., 97 (10), pp. 2528-2539; Li, W., Luo, R., He, Q., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res., 235, pp. 6-13; Ma, H., Jiang, L., Qiao, S., Zhi, Y., Chen, X.X., Yang, Y., Huang, X., Zhang, G.P., The crystal structure of the fifth scavenger receptor cysteine-rich domain of porcine CD163 reveals an important residue involved in porcine reproductive and respiratory syndrome virus infection (2017) J. Virol., 91 (3); Li, R., Ma, H., Jiang, L., Qiao, S., Zhi, Y., Huang, M., Deng, R., Zhang, G., The CD163 long-range scavenger receptor cysteine-rich repeat: expression, purification and X-ray crystallographic characterization (2018) Acta Crystallogr. F Struct. Biol. Commun., 74, pp. 322-326; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J. Clin. Microbiol., 26 (11), pp. 2235-2239; Su, Y., Liu, Y., Chen, Y., Xing, G., Hao, H., Wei, Q., Liang, Y., Zhang, G., A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses (2018) Mol. Cell. Probes, 37, pp. 6-11; Chen, L., Lin, Y.L., Peng, G., Li, F., Structural basis for multifunctional roles of mammalian aminopeptidase N (2012) Proc. Natl. Acad. Sci. U. S. A., 109 (44), pp. 17966-17971; The CCP4 suite: programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60 (Pt 12 Pt 1), pp. 2126-2132; DeLano, W.L., The PyMOL molecular graphics system (2002), http://pymol.org; Majka, J., Speck, C., Analysis of protein-DNA interactions using surface plasmon resonance (2007) Adv. Biochem. Eng. Biotechnol., 104, pp. 13-36; Ritchie, G., Harvey, D.J., Feldmann, F., Stroeher, U., Feldmann, H., Royle, L., Dwek, R.A., Rudd, P.M., Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein (2010) Virology, 399 (2), pp. 257-269; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23 (10), pp. 899-905; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J. Virol., 92 (4); Alam, P., Rabbani, G., Badr, G., Badr, B.M., Khan, R.H., The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase (2015) Cell Biochem. Biophys., 71 (2), pp. 1199-1206; Alam, P., Abdelhameed, A.S., Rajpoot, R.K., Khan, R.H., Interplay of multiple interaction forces: binding of tyrosine kinase inhibitor nintedanib with human serum albumin (2016) J. Photochem. Photobiol. B, 157, pp. 70-76; Laskar, K., Alam, P., Khan, R.H., Rauf, A., Synthesis, characterization and interaction studies of 1,3,4-oxadiazole derivatives of fatty acid with human serum albumin (HSA): a combined multi-spectroscopic and molecular docking study (2016) Eur. J. Med. Chem., 122, pp. 72-78; Alam, M.M., Abul Qais, F., Ahmad, I., Alam, P., Hasan Khan, R., Naseem, I., Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin (2018) J. Biomol. Struct. Dyn., 36 (3), pp. 795-809; Abdelhameed, A.S., Alam, P., Khan, R.H., Binding of Janus kinase inhibitor tofacitinib with human serum albumin: multi-technique approach (2016) J. Biomol. Struct. Dyn., 34 (9), pp. 2037-2044; Alam, P., Chaturvedi, S.K., Anwar, T., Siddiqi, M.K., Ajmal, M.R., Badr, G., Mahmoud, M.H., Khan, R.H., Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin (2015) J. Lumin., 164 (12), pp. 123-130; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27 (1), pp. 119-129; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J. Virol., 94 (4); Mina-Osorio, P., The moonlighting enzyme CD13: old and new functions to target (2008) Trends Mol. Med., 14 (8), pp. 361-371; Luan, Y., Xu, W., The structure and main functions of aminopeptidase N (2007) Curr. Med. Chem., 14 (6), pp. 639-647; Wong, A.H., Zhou, D., Rini, J.M., The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing (2012) J. Biol. Chem., 287 (44), pp. 36804-36813; Santiago, C., Mudgal, G., Reguera, J., Recacha, R., Albrecht, S., Enjuanes, L., Casasnovas, J.M., Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection (2017) Sci. Rep., 7; Kusanagi, K., Kuwahara, H., Katoh, T., Nunoya, T., Ishikawa, Y., Samejima, T., Tajima, M., Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate (1992) J. Vet. Med. Sci., 54 (2), pp. 313-318; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet. Microbiol., 173 (3-4), pp. 258-269; Lee, S., Kim, Y., Lee, C., Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112 (2015) Virus Res., 208, pp. 215-224; Wang, Y., Gao, X., Yao, Y., Zhang, Y., Lv, C., Sun, Z., Wang, Y., Tian, K., The dynamics of Chinese variant porcine epidemic diarrhea virus production in Vero cells and intestines of 2-day old piglets (2015) Virus Res., 208, pp. 82-88; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc. Natl. Acad. Sci. U. S. A., 106 (47), pp. 19970-19974; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (26), pp. 10696-10701","Zhang, G.; College of Animal Science and Veterinary Medicine, Henan Agricultural UniversityChina; email: zhanggaiping2003@163.com",,"Elsevier B.V.",01418130,,IJBMD,"29802920","English","Int. J. Biol. Macromol.",Article,"Final",,Scopus,2-s2.0-85047937189 "Alves C.D.B.T., Granados O.F.O., Budaszewski R.D.F., Streck A.F., Weber M.N., Cibulski S.P., Pinto L.D., Ikuta N., Canal C.W.","56015234800;57201323849;55589554200;7801336508;55589002700;26631866000;35095356600;7006362008;7003463241;","Identification of enteric viruses circulating in a dog population with low vaccine coverage",2018,"Brazilian Journal of Microbiology","49","4",,"790","794",,6,"10.1016/j.bjm.2018.02.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044275050&doi=10.1016%2fj.bjm.2018.02.006&partnerID=40&md5=9b2a677c8f8c9e6ca719228ec7ed4f6c","Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Universidade de Caxias do Sul (UCS), Faculdade de Medicina Veterinária, Laboratório de Imunologia, Caxias do Sul, RS, Brazil; Universidade Luterana do Brasil (ULBRA), Laboratório de Diagnóstico Molecular, Canoas, RS, Brazil","Alves, C.D.B.T., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Granados, O.F.O., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Budaszewski, R.D.F., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Streck, A.F., Universidade de Caxias do Sul (UCS), Faculdade de Medicina Veterinária, Laboratório de Imunologia, Caxias do Sul, RS, Brazil; Weber, M.N., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Cibulski, S.P., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Pinto, L.D., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil; Ikuta, N., Universidade Luterana do Brasil (ULBRA), Laboratório de Diagnóstico Molecular, Canoas, RS, Brazil; Canal, C.W., Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de Veterinária, Porto Alegre, RS, Brazil","Although the use of vaccines has controlled enteric diseases in dogs in many developed countries, vaccine coverage is still under optimal situation in Brazil. There is a large population of nonimmunized dogs and few studies about the identification of the viruses associated with diarrhea. To address this situation, stool samples from 325 dogs were analyzed by polymerase chain reaction for the detection of common enteric viruses such as Canine adenovirus (CAdV), Canine coronavirus (CCoV), Canine distemper virus (CDV), Canine rotavirus (CRV) and Carnivorous protoparvovirus 1 (canine parvovirus 2; CPV-2). At least one of these species was detected in 56.6% (184/325) of the samples. The viruses detected most frequently in either diarrheic or nondiarrheic dog feces were CPV-2 (54.3% of the positive samples), CDV (45.1%) and CCoV (30.4%), followed by CRV (8.2%) and CAdV (4.9%). Only one agent was detected in the majority of the positive samples (63%), but co-infections were present in 37% of the positive samples and mainly included CDV and CPV-2. The data presented herein can improve the clinical knowledge in regions with low vaccine coverage and highlight the need to improve the methods used to control these infectious diseases in domestic dogs. © 2018 Sociedade Brasileira de Microbiologia","Co-infection; Diarrhea; Distemper; Dog; Parvovirus","virus vaccine; animal; Brazil; classification; dog; dog disease; Enterovirus; Enterovirus infection; feces; genetics; immunology; isolation and purification; phylogeny; veterinary medicine; virology; Animals; Brazil; Dog Diseases; Dogs; Enterovirus; Enterovirus Infections; Feces; Phylogeny; Viral Vaccines","Hubbard, K., Skelly, B.J., McKelvie, J., Wood, J.L.N., Risk of vomiting and diarrhoea in dogs (2007) Vet Rec, 161, pp. 755-757; Greene, C.E., Decaro, N., Canine viral enteritis (2012) Infectious Diseases of the Dog and Cat, pp. 67-80; Adam, F., Infectious diseases of the dog and cat (2014) Journal of Small Animal Practice, 55, pp. 25-42. , 4th ed. C.E. Greene M. Vandevelde Elsevier St Louis; Decaro, N., Desario, C., Billi, M., Western European epidemiological survey for parvovirus and coronavirus infections in dogs (2011) Vet J, 187, pp. 195-199; Pinto, L.D., Streck, A.F., Gonçalves, K.R., Typing of canine parvovirus strains circulating in Brazil between 2008 and 2010 (2012) Virus Res, 165, pp. 29-33; Pinto, L.D., Barros, I.N., Budaszewski, R.F., (2014) Characterization of Pantropic Canine Coronavirus from Brazil, 202; Decaro, N., Buonavoglia, C., Canine parvovirus – a review of epidemiological and diagnostic aspects, with emphasis on type 2c (2012) Vet Microbiol, 155, pp. 1-12; Budaszewski, R.D.F., Pinto, L.D., Weber, M.N., Genotyping of canine distemper virus strains circulating in Brazil from 2008 to 2012 (2014) Virus Res, 180, pp. 76-83; Fischer, C.D.B., Ikuta, N., Canal, C.W., Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis (2013) J Virol Methods, 194, pp. 39-45; Calderon, M.G., Remorini, P., Periolo, O., Iglesias, M., Mattion, N., La Torre, J., Detection by RT-PCR and genetic characterization of canine distemper virus from vaccinated and non-vaccinated dogs in Argentina (2007) Vet Microbiol, 125, pp. 341-349; Headley, S.A.A., Amude, A.M., Alfieri, A.F.A.A., Bracarense, A.P.F.R.L., Alfieri, A.F.A.A., Epidemiological features and the neuropathological manifestations of canine distemper virus-induced infections in Brazil: a review (2012) Semin Ciências Agrárias, 33, pp. 1945-1978; Pratelli, A., Martella, V., Elia, G., Severe enteric disease in an animal shelter associated with dual infections by canine adenovirus type 1 and canine coronavirus (2001) J Vet Med, 48, pp. 385-392; Luchs, A., Cilli, A., Morillo, S.G., Carmona R.d.C.C., Timenetsky M.d.C.S.T., Rare G3P[3] rotavirus strain detected in Brazil: possible human–canine interspecies transmission (2012) J Clin Virol, 54, pp. 89-92; Khamrin, P., Maneekarn, N., Peerakome, S., Yagyu, F., Okitsu, S., Ushijima, H., Molecular characterization of a rare G3P[3] human rotavirus reassortant strain reveals evidence for multiple human-animal interspecies transmissions (2006) J Med Virol, 78, pp. 986-994; Gizzi, A.B.D.R., Oliveira, S.T., Leutenegger, C.M., Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel (2014) BMC Vet Res, 10, p. 23; Duijvestijn, M., Mughini-Gras, L., Schuurman, N., Schijf, W., Wagenaar, J.A., Egberink, H., Enteropathogen infections in canine puppies: (co-)occurrence, clinical relevance and risk factors (2016) Vet Microbiol, 195, pp. 115-122; Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-van Dillen, P.M., van der Noordaa, J., Rapid and simple method for purification of nucleic acids (1990) J Clin Microbiol, 28, pp. 495-503; Buonavoglia, C., Martella, V., Pratella, A., Evidence for evolution of canine parvovirus type 2 in Italy (2001) J Gen Virol, 82, pp. 3021-3025; Linné, T., Differences in the E3 regions of the canine adenovirus type 1 and type 2 (1992) Virus Res, 23, pp. 119-133; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Gouvea, V., Glass, R.I., Woods, P., Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens (1990) J Clin Microbiol, 28, pp. 276-282; Schulz, B.S., Strauch, C., Mueller, R.S., Eichhorn, W., Hartmann, K., Comparison of the prevalence of enteric viruses in healthy dogs and those with acute haemorrhagic diarrhoea by electron microscopy (2008) J Small Anim Pract, 49, pp. 84-88; Headley, S.A., Amude, A.M., Alfieri, A.F., Bracarense, A.P.F.R.L., Alfieri, A.A., Summers, B.A., Molecular detection of Canine distemper virus and the immunohistochemical characterization of the neurologic lesions in naturally occurring old dog encephalitis (2009) J Vet Diagn Invest, 21, pp. 588-597; Viana, M., Cleaveland, S., Matthiopoulos, J., Dynamics of a morbillivirus at the domestic–wildlife interface: canine distemper virus in domestic dogs and lions (2015) Proc Natl Acad Sci U S A, 112, pp. 1464-1469; Pratelli, A., Tempesta, M., Roperto, F.P., Sagazio, P., Carmichael, L., Buonavoglia, C., Fatal coronavirus infection in puppies following canine parvovirus 2b infection (1999) J Vet Diagn Invest, 11, pp. 550-553","Canal, C.W.; Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Virologia, Faculdade de VeterináriaBrazil; email: claudio.canal@ufrgs.br",,"Elsevier Editora Ltda",15178382,,,"29588198","English","Braz. J. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85044275050 "Rhim H., Han J.-I.","57202716477;56319425800;","Suspected case of exocrine pancreatic insufficiency in a bengal tiger (Panthera tigris tigris)",2018,"Journal of Veterinary Clinics","35","5",,"240","242",,,"10.17555/jvc.2018.10.35.5.240","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063488247&doi=10.17555%2fjvc.2018.10.35.5.240&partnerID=40&md5=ea385f23ad42b56ede4460e8c4d6018b","Laboratory of Wildlife Medicine/Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea","Rhim, H., Laboratory of Wildlife Medicine/Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; Han, J.-I., Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea","A 1-year-old, female Bengal tiger (Panthera tigris tigris) presented signs of weight loss and dark browncolored diarrhea. On fecal examination, numerous intact and broken red blood cells were found, but both parasites and inflammatory signs were absent. No significant findings were seen in serum biochemistry profiles, including electrolytes, with negative feline pancreatic lipase immunoreactivity (fPLI). Diagnostic kits using feces or peripheral blood were negative for feline parvovirus, feline coronavirus, feline immunodeficiency virus, and feline leukemia virus. Based on the result of feline trypsin-like immunoreactivity (fTLI) concentration (4.6 μg/L), the tiger was provisionally diagnosed to have exocrine pancreatic insufficiency (EPI). After this diagnosis, pancreatic enzymes were prescribed. The feces of the tiger returned to normal form and her weight was increasing. EPI is uncommon and not described extensively in Felidae, including domestic cats. Feline EPI is associated with a variety of non-specific signs and it should be considered in the differential diagnosis of cases presenting with weight loss, diarrhea, and other gastrointestinal signs. In this case, the patient was strongly suspected to have EPI based on the very low fTLI concentration, though the concentration of fTLI in tigers has not yet been determined. This is the first report to present a suspected EPI case in Bengal tigers. © 2018, Korean Society of Veterinary Clinics. All rights reserved.","Diarrhea; EPI; Tiger; TLI; Weight loss","bromelain; cobalamin; electrolyte; ketamine; pancreas enzyme; rozyme; xylazine; appetite; Article; biochemistry; body weight loss; cat; diarrhea; enzyme linked immunosorbent assay; exocrine pancreatic insufficiency; feces analysis; Feline coronavirus; Feline immunodeficiency virus; female; gastrointestinal symptom; immunoreactivity; lethargy; nonhuman; parvovirus infection; tiger","Steiner, J.M., Exocrine Pancreatic Insufficiency in the Cat (2012) Top Companion Anim Med, 27, pp. 113-116; Thompson, K.A., Parnell, N.K., Hohenhaus, A.E., Moore, G.E., Rondeau, M.P., Feline exocrine pancreatic insufficiency: 16 cases (1992-2007) (2009) J Feline Med. Surg, 11, pp. 935-940; Steiner, J.M., Williams, D.A., Serum feline trypsin-like immunoreactivity in cats with exocrine pancreatic insufficiency (2000) J Vet Intern Med, 14, pp. 627-629; Steiner, J.M., Washabau, R.J., Canine and Feline pancreatic diseases (2010) Textbook of Veterinary Internal Medicin, 2, pp. 1296-1325. , Ettinger SJ, Feldman EC, St Louis, Missouri, USA: Saunders Elsevier; Williams, D.A., Feline exocrine pancreatic insufficiency (1995) Current Veterinary Therapy Xii: Small Animal Practice, pp. 732-735. , Kirk RW, Bonagura JD, Philadelphia, USA: WB Saunders; Kennedy, O.C., Williams, D.A., Exocrine Pancreatic Insufficiency in Dogs and Cats: Online Support for Veterinarians and Owners (2012) Top Companion Anim Med, 27, pp. 117-122; Steiner, J.M., Exocrine pancreatic insufficiency (2010) Consultations in Feline Medicine, pp. 225-231. , August JR, St Louis, Missouri, Saunders Elsevier; Dimagno, E.P., Go, V.L., Summerskill, W.H., Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency (1973) N Engl J Med, 288, pp. 813-815; Xenoulis, P.G., Fradkin, J.M., Rapp, S.W., Suchodolski, J.S., Steiner, J.M., Suspected isolated pancreatic lipase deficiency in a dog (2007) J Vet Intern Med, 21, pp. 1113-1116; Steiner, J.M., Williams, D.A., Validation of a radioimmunoassay for feline trypsin-like immunoreactivity (FTLI) and serum cobalamin and folate concentrations in cats with exocrine pancreatic insufficiency (1995) J Vet Intern Med, 9, p. 193; Kook, P.H., Zerbe, P., Reusch, C.E., Exocrine pancreatic insufficiency in the cat (2011) Schweiz Arch Tierheilkd, 153, pp. 19-25; Simpson, K.W., Fyfe, J., Cornetta, A., Sachs, A., Strauss-Ayali, D., Lamb, S.V., Reimers, T.J., Subnormal concentrations of serum cobalamin (Vitamin B12) in cats with gastrointestinal disease (2001) J Vet Intern Med, 15, pp. 26-32; Ruaux, C.G., Steiner, J.M., Williams, D.A., Metabolism of amino acids in cats with severe cobalamin deficiency (2001) Am J Vet Res, 62, pp. 1852-1858; Larsen, S., Diabetes mellitus secondary to chronic pancreatitis (1993) Dan Med Bull, 40, pp. 153-162; Fleeman, L.M., Rand, J.S., Steiner, J.M., Williams, D.A., Chronic, subclinical, exocrine pancreatic disease is common in diabetic dogs (2004) J Vet Intern Med, 18, p. 402; Steiner, J.M., Williams, D.A., Moeller, E.M., Melgarejo, T., Development and validation of an enzyme-linked immunosorbent assay for feline trypsin-like immunoreactivity (2000) Am J Vet Res, 61, pp. 620-623; Packer, R.A., Cohn, L.A., Wohlstadter, D.R., Shelton, G.D., Naylor, J.M., Zello, G.A., Ewaschuk, J.B., O’Brien, D.P., D-lactic acidosis secondary to exocrine pancreatic insufficiency in a cat (2005) J Vet Intern Med, 19, pp. 106-110; Williams, D.A., Reed, S.D., Comparison of methods for assay of fecal proteolytic activity (1990) Vet Clin Pathol, 19, pp. 20-24; Williams, D.A., Reed, S.D., Perry, L.A., Fecal proteolytic activity in clinically normal cats and in a cat with exocrine pancreatic insufficiency (1990) J am Vet Med Assoc, 197, pp. 210-212","Han, J.-I.; Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National UniversitySouth Korea; email: jihan@jbnu.ac.kr",,"Korean Society of Veterinary Clinics",1598298X,,,,"English","J. Vet. Clin.",Article,"Final",,Scopus,2-s2.0-85063488247 "Yang C.-W., Chang H.-Y., Lee Y.-Z., Hsu H.-Y., Lee S.-J.","55706692600;57050731900;24825079100;54779848200;8241902600;","The cardenolide ouabain suppresses coronaviral replication via augmenting a Na + /K + -ATPase-dependent PI3K_PDK1 axis signaling",2018,"Toxicology and Applied Pharmacology","356",,,"90","97",,1,"10.1016/j.taap.2018.07.028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050992140&doi=10.1016%2fj.taap.2018.07.028&partnerID=40&md5=3c573d018c71f8ad50979e0a587c3ef8","Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan","Yang, C.-W., Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan; Chang, H.-Y., Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan; Lee, Y.-Z., Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan; Hsu, H.-Y., Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan; Lee, S.-J., Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053, Taiwan","Cardenolides are plant-derived toxic substances. Their cytotoxicity and the underlying mechanistic signaling axes have been extensively documented, but only a few anti-viral activities of cardenolides and the associated signaling pathways have been reported. Previously, we reported that a variety of cardenolides impart anti-transmissible gastroenteritis coronavirus (TGEV) activity in swine testicular (ST) cells, through targeting of the cell membrane sodium/potassium pump, Na + /K + -ATPase. Herein, we further explore the potential signaling cascades associated with this anti-TGEV activity in ST cells. Ouabain, a representative cardenolide, was found to potently diminish TGEV titers and inhibit the TGEV-induced production of IL-6 in a dose dependent manner, with 50% inhibitory concentrations of 37 nM and 23 nM respectively. By pharmacological inhibition and gene silencing, we demonstrated that PI3K_PDK1_RSK2 signaling was induced in TGEV-infected ST cells, and ouabain imparted a degree of anti-TGEV activity via further augmentation of this existing PI3K_PDK1 axis signaling, in a manner dependent upon its association with the Na + /K + -ATPase. Finally, inhibition of PI3K by LY294002 or PDK1 by BX795 antagonized the anti-viral activity of ouabain and restored the TGEV virus titer and yields. This finding is the first report of a PI3K_PDK1 signaling axis further induced by ouabain and implicated in the suppression of TGEV activity and replication; greatly illuminates the underlying mechanism of cardenolide toxicity; and is expected to result in one or more anti-viral applications for the cardenolides in the future. © 2018 Elsevier Inc.","Cardenolide; Coronavirus; Na + /K + -ATPase; Ouabain; PDK1; PI3K","2 morpholino 8 phenylchromone; adenosine triphosphatase (potassium sodium); antivirus agent; interleukin 6; ouabain; phosphoinositide dependent protein kinase 1; 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; adenosine triphosphatase (potassium sodium); antivirus agent; BX795; chromone derivative; interleukin 6; interleukin-6, mouse; morpholine derivative; ouabain; phosphatidylinositol 3 kinase; protein serine threonine kinase; pyrimidine derivative; pyruvate dehydrogenase (acetyl-transferring) kinase; thiophene derivative; ACC-LC-71 cell line; antiviral activity; Article; controlled study; Coronavirinae; cytokine production; gene silencing; IC50; nonhuman; Transmissible gastroenteritis virus; virus replication; animal; antagonists and inhibitors; biosynthesis; cell line; DNA replication; dose response; drug effect; genetics; mouse; signal transduction; Animals; Antiviral Agents; Cell Line; Chromones; Coronavirus; DNA Replication; Dose-Response Relationship, Drug; Gene Silencing; Interleukin-6; Mice; Morpholines; Ouabain; Phosphatidylinositol 3-Kinases; Protein-Serine-Threonine Kinases; Pyrimidines; Signal Transduction; Sodium-Potassium-Exchanging ATPase; Thiophenes; Virus Replication","Agrawal, A.A., Petschenka, G., Bingham, R.A., Weber, M.G., Rasmann, S., Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions (2012) New Phytol., 194, pp. 28-45; Baker Bechmann, M., Rotoli, D., Morales, M., Maeso Mdel, C., Garcia Mdel, P., Avila, J., Mobasheri, A., Martin-Vasallo, P., Na,K-ATPase isozymes in colorectal cancer and liver metastases (2016) Front. Physiol., 7, p. 9; Burkard, C., Verheije, M.H., Haagmans, B.L., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., de Haan, C.A., ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells (2015) J. Virol., 89, pp. 4434-4448; Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Diederich, M., Muller, F., Cerella, C., Cardiac glycosides: from molecular targets to immunogenic cell death (2017) Biochem. Pharmacol., 125, pp. 1-11; Habeck, M., Tokhtaeva, E., Nadav, Y., Zeev, E.B., Ferris, S.P., Kaufman, R.J., Bab-Dinitz, E., Karlish, S.J.D., Selective assembly of Na,K-ATPase α2β2 heterodimers in the heart: distinct functional properties and isoform-selective inhibitors (2016) J. Biol. Chem., 291, pp. 23159-23174; Hao, Y., Samuels, Y., Li, Q., Krokowski, D., Guan, B.J., Wang, C., Jin, Z., Wang, Z., Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer (2016) Nat. Commun., 7, p. 11971; Hauptman, P.J., McCann, P., Romero, J.M., Mayo, M., Reference laboratory values for digoxin following publication of Digitalis Investigation Group (DIG) trial data (2013) JAMA Intern. Med., 173, pp. 1552-1554; Katz, A., Tal, D.M., Heller, D., Habeck, M., Ben Zeev, E., Rabah, B., Bar Kana, Y., Karlish, S.J., Digoxin derivatives with selectivity for the alpha2beta3 isoform of Na,K-ATPase potently reduce intraocular pressure (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 13723-13728; Liu, L., Zhao, X., Pierre, S.V., Askari, A., Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes (2007) Am. J. Phys. Cell Phys., 293, pp. C1489-C1497; Nagai, Y., Maeno, K., Iinuma, M., Yoshida, T., Matsumoto, T., Inhibition of virus growth by ouabain: effect of ouabain on the growth of HVJ in chick embryo cells (1972) J. Virol., 9, pp. 234-243; Newman, R.A., Yang, P., Pawlus, A.D., Block, K.I., Cardiac glycosides as novel cancer therapeutic agents (2008) Mol. Interv., 8, pp. 36-49; Nguyen, A.N., Jansson, K., Sanchez, G., Sharma, M., Reif, G.A., Wallace, D.P., Blanco, G., Ouabain activates the Na-K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation (2011) Am. J. Physiol. Ren. Physiol., 301, pp. F897-F906; No, Y.R., He, P., Yoo, B.K., Yun, C.C., Regulation of NHE3 by lysophosphatidic acid is mediated by phosphorylation of NHE3 by RSK2 (2015) Am. J. Physiol. Cell Physiol., 309, pp. C14-C21; Oh, J.S., Song, D.S., Park, B.K., Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes (2003) J. Vet. Sci., 4, pp. 269-275; Platz, E.A., Yegnasubramanian, S., Liu, J.O., Chong, C.R., Shim, J.S., Kenfield, S.A., Stampfer, M.J., Nelson, W.G., A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment (2011) Cancer Discov., 1, pp. 68-77; Prassas, I., Diamandis, E.P., Novel therapeutic applications of cardiac glycosides (2008) Nat. Rev. Drug Discov., 7, pp. 926-935; Su, C.T., Hsu, J.T., Hsieh, H.P., Lin, P.H., Chen, T.C., Kao, C.L., Lee, C.N., Chang, S.Y., Anti-HSV activity of digitoxin and its possible mechanisms (2008) Antivir. Res., 79, pp. 62-70; Sun, C., Sun, Y., Jiang, D., Bao, G., Zhu, X., Xu, D., Wang, Y., Cui, Z., PDK1 promotes the inflammatory progress of fibroblast-like synoviocytes by phosphorylating RSK2 (2017) Cell. Immunol., 315, pp. 27-33; Tian, J., Li, X., Liang, M., Liu, L., Xie, J.X., Ye, Q., Kometiani, P., Xie, Z., Changes in sodium pump expression dictate the effects of ouabain on cell growth (2009) J. Biol. Chem., 284, pp. 14921-14929; Tomita, Y., Kuwata, T., Suppression of murine leukaemia virus production by ouabain and interferon in mouse cells (1978) J. Gen. Virol., 38, pp. 223-230; Utepbergenov, D., Hennig, P.M., Derewenda, U., Artamonov, M.V., Somlyo, A.V., Derewenda, Z.S., Bacterial expression, purification and in vitro phosphorylation of full-length ribosomal S6 kinase 2 (RSK2) (2016) PLoS One, 11; Weingartl, H.M., Derbyshire, J.B., Cellular receptors for transmissible gastroenteritis virus on porcine enterocytes (1995) Adv. Exp. Med. Biol., 380, pp. 325-329; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664; Wu, J., Akkuratov, E.E., Bai, Y., Gaskill, C.M., Askari, A., Liu, L., Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src (2013) Biochemistry, 52, pp. 9059-9067; Yang, C.W., Yang, Y.N., Liang, P.H., Chen, C.M., Chen, W.L., Chang, H.Y., Chao, Y.S., Lee, S.J., Novel small-molecule inhibitors of transmissible gastroenteritis virus (2007) Antimicrob. Agents Chemother., 51, pp. 3924-3931; Yang, C.W., Chang, H.Y., Hsu, H.Y., Lee, Y.Z., Chang, H.S., Chen, I.S., Lee, S.J., Identification of anti-viral activity of the cardenolides, Na+/K+-ATPase inhibitors, against porcine transmissible gastroenteritis virus (2017) Toxicol. Appl. Pharmacol., 332, pp. 129-137; Yang, C.W., Lee, Y.Z., Hsu, H.Y., Shih, C., Chao, Y.S., Chang, H.Y., Lee, S.J., Targeting Coronaviral replication and cellular JAK2 mediated dominant NF-kappaB activation for comprehensive and ultimate inhibition of coronaviral activity (2017) Sci. Rep., 7, p. 4105; Zhang, L., Zhang, Z., Guo, H., Wang, Y., Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation (2008) Fundam. Clin. Pharmacol., 22, pp. 615-621","Lee, S.-J.; Institute of Biotechnology and Pharmaceutical Research, National Health Research InstitutesTaiwan; email: slee@nhri.org.tw",,"Academic Press Inc.",0041008X,,TXAPA,"30053394","English","Toxicol. Appl. Pharmacol.",Article,"Final",Open Access,Scopus,2-s2.0-85050992140 "Albanese G.A., Lee D.-H., Cheng I.-H.N., Hilt D.A., Jackwood M.W., Jordan B.J.","57203549144;55554985200;57203781076;7004853799;7003643324;55268422700;","Biological and molecular characterization of ArkGA: A novel Arkansas serotype vaccine that is highly attenuated, efficacious, and protective against homologous challenge",2018,"Vaccine","36","41",,"6077","6086",,,"10.1016/j.vaccine.2018.08.078","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052938064&doi=10.1016%2fj.vaccine.2018.08.078&partnerID=40&md5=be45caea0f7a9b8b1b74f0a0be4c5274","Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, Athens, GA 30605, United States; Department of Poultry Science, College of Agricultural and Environmental Sciences, The University of Georgia, Athens, GA 30602, United States","Albanese, G.A., Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; Lee, D.-H., Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, Athens, GA 30605, United States; Cheng, I.-H.N., Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; Hilt, D.A., Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; Jackwood, M.W., Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States; Jordan, B.J., Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States, Department of Poultry Science, College of Agricultural and Environmental Sciences, The University of Georgia, Athens, GA 30602, United States","Almost all commercial poultry are vaccinated against avian coronavirus infectious bronchitis virus (IBV) using live attenuated vaccines mass administered by spray at day of hatch. Although many different types of IBV vaccines are used successfully, the ArkDPI serotype vaccine, when applied by spray, does not infect and replicate sufficiently to provide protection against homologous challenge. In this study, we examined a different Ark vaccine strain (Ark99), which is no longer used commercially due to its reactivity in one day old chicks, to determine if it could be further attenuated by passage in embryonated eggs but still provide adequate protection. Further attenuation of the Ark99 vaccine was achieved by passage in embryonated eggs but ArkGA P1, P20, and P40 (designated ArkGA after P1) were still too reactive to be suitable vaccine candidates. However, ArkGA P60 when given by spray had little or no vaccine reaction in one day old broiler chicks, and it induced protection from clinical signs and ciliostasis following homologous challenge. In addition, vaccinated and challenged birds had significantly less challenge virus, an important measure of protection, compared to non-vaccinated and challenged controls. The full-length genomes of viruses from egg passages 1, 20, 40, and 60 were sequenced using the Illumina platform and the data showed single nucleotide polymorphisms (SNPs) had accumulated in regions of the genome associated with viral replication, pathogenicity, and cell tropism. ArkGA P60 accumulated the most SNPs in key genes associated with pathogenicity (polyprotein gene 1ab) and cell tropism (spike gene), compared to previous passages, which likely resulted in its more attenuated phenotype. These results indicate that the ArkGA P60 vaccine is safe for spray vaccination of broiler chicks and induces suitable protection against challenge with pathogenic Ark-type virus. © 2018 Elsevier Ltd","Arkansas DPI serotype vaccine; Arkansas GA serotype vaccine; Infectious bronchitis virus","Arkansas serotype vaccine; live vaccine; unclassified drug; live vaccine; animal cell; animal experiment; Article; Avian infectious bronchitis virus; broiler; ciliary dyskinesia; controlled study; drug efficacy; drug safety; embryo; gene sequence; immunoreactivity; infection prevention; molecular biology; nonhuman; nucleotide sequence; phenotype; polyprotein gene 1ab; priority journal; single nucleotide polymorphism; spike gene; tropism; virus gene; virus genome; virus replication; virus virulence; zygote; animal; chicken; Coronavirus infection; genetics; immunology; pathogenicity; real time polymerase chain reaction; reverse transcription polymerase chain reaction; serotype; vaccination; Animals; Chickens; Coronavirus Infections; Infectious bronchitis virus; Polymorphism, Single Nucleotide; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; Serogroup; Vaccination; Vaccines, Attenuated; Virus Replication","(2016), Economic Data. U.S. Poultry & Egg Association;; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet Res, 38, pp. 281-297; Jordan, B., (2017), Vaccination against infectious bronchitis virus: a continuous challenge. Vet Micro;; Britton, P., Armesto, M., Cavanagh, D., Keep, S., Modification of the avian coronavirus infectious bronchitis virus for vaccine development (2012) Bioengineered Bugs, 3, pp. 114-119; Fabricant, J., The early history of infectious bronchitis (1998) Avian Dis, 42, pp. 648-650; Bijlenga, G., Cook, J.K.A., Gelb, J., Jr., de Wit, J.J., Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review (2004) Avian Pathol: J WVPA, 33, pp. 550-557; Saif, Y.M., Fadly, A.M., Diseases of poultry (2008), 12th ed. Blackwell Pub Ames, Iowa; Jackwood, M.W., Hilt, D.A., Lee, C.W., Kwon, H.M., Callison, S.A., Moore, K.M., Data from 11 years of molecular typing infectious bronchitis virus field isolates (2005) Avian Dis., 49, pp. 614-618; Ndegwa, E.N., Toro, H., Santen, V.L.V., Comparison of vaccine subpopulation selection, viral loads, vaccine virus persistence in trachea and cloaca, and mucosal antibody responses after vaccination with two different Arkansas Delmarva Poultry Industry–derived infectious bronchitis virus vaccines (2014) Avian Dis, 58, pp. 102-110; Toro, H., van Santen, V.L., Li, L., Lockaby, S.B., van Santen, E., Hoerr, F.J., Epidemiological and experimental evidence for immunodeficiency affecting avian infectious bronchitis (2006) Avian Pathol, 35, pp. 455-464; Jackwood, M.W., Hilt, D.A., McCall, A.W., Polizzi, C.N., McKinley, E.T., Williams, S.M., Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers (2009) Avian Dis, 53, pp. 175-183; Leyson, C.M., Hilt, D.A., Jordan, B.J., Jackwood, M.W., (2017), Minimum infectious dose determination of the ArkDPI infectious bronchitis virus vaccine delivered by hatchery spray cabinet. Avian Dis;; Roh, H.J., Hilt, D.A., Williams, S.M., Jackwood, M.W., Evaluation of infectious bronchitis virus Arkansas-type vaccine failure in commercial broilers (2013) Avian Dis, 57, pp. 248-259; Jackwood, M.W., Lee, D.H., Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry (2017) PLoS ONE, 12, p. e0176709; McKinley, E.T., Hilt, D.A., Jackwood, M.W., Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination (2008) Vaccine, 26, pp. 1274-1284; Leyson, C., Franca, M., Jackwood, M., Jordan, B., Polymorphisms in the S1 spike glycoprotein of Arkansas-type infectious bronchitis virus (IBV) show differential binding to host tissues and altered antigenicity (2016) Virology, 498, pp. 218-225; Van Santen, V.L., Toro, H., Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines (2008) Avian Pathol, 37, p. 293; Zegpi, R.A., Breedlove, C., van Santen, V.L., Rasmussen-Ivey, C.R., Toro, H., Kidney cell-adapted infectious bronchitis ArkDPI vaccine is stable and protective (2017) Avian Dis, 61, pp. 221-228; Fields, D.B., Case Report: Arkansas 99, a new infectious bronchitis serotype (1973) Avian Dis, 17, pp. 659-661; Johnson, R.B., Marquardt, W.W., Newman, J.A., A new serotype of infectious bronchitis virus responsible for respiratory disease in Arkansas broiler flocks (1973) Avian Dis, 17, pp. 518-523; Dufour-Zavala, L., (2008), A laboratory manual for the isolation, identification and characterization of avian pathogens. 5th ed. Jacksonville, Fl.: American Association of Avian Pathologists;; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Hygiene, 27, pp. 493-497; Callison, S.A., Hilt, D.A., Boynton, T.O., Sample, B.F., Robison, R., Swayne, D.E., Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) J Virol Meth, 138, pp. 60-65; Roh, H.J., Jordan, B.J., Hilt, D.A., Jackwood, M.W., Detection of infectious bronchitis virus with the use of real-time quantitative reverse transcriptase-PCR and correlation with virus detection in embryonated eggs (2014) Avian Dis, 58, pp. 398-403; Jackwood, M.W., Rosenbloom, R., Petteruti, M., Hilt, D.A., McCall, A.W., Williams, S.M., Avian coronavirus infectious bronchitis virus susceptibility to botanical oleoresins and essential oils in vitro and in vivo (2010) Virus Res, 149, pp. 86-94; Cook, J.K., Darbyshire, J.H., Peters, R.W., The use of chicken tracheal organ cultures for the isolation and assay of avian infectious bronchitis virus (1976) Arch Virol, 50, pp. 109-118; (2011), Service AaPHI. Title 9, code of federal regulations, standard requirements for IBV vaccines. In: Animal and Plant Health Inspection Service USDoA, editor. Washington, D.C.;; Chrzastek, K., D-h, L., Smith, D., Sharma, P., Suarez, D.L., Pantin-Jackwood, M., Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses (2017) Virology, 509, pp. 159-166; Jackwood, M.W., Yousef, N.M.H., Hilt, D.A., Further development and use of a molecular serotype identification test for infectious bronchitis virus (1997) Avian Dis, pp. 105-110; Lee, C.-W., Hilt, D.A., Jackwood, M.W., Redesign of primer and application of the reverse transcriptase-polymerase chain reaction and restriction fragment length polymorphism test to the DE072 strain of infectious bronchitis virus (2000) Avian Dis, pp. 650-654; Ammayappan, A., Upadhyay, C., Gelb, J., Jr., Vakharia, V.N., Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI (2009) Arch Virol, 154, pp. 495-499; Yu, K., Ming, Z., Li, Y., Chen, C., Bao, Z., Ren, Z., Purification, crystallization and preliminary X-ray analysis of nonstructural protein 2 (nsp2) from avian infectious bronchitis virus (2012) Acta Crystallogr, Sect F: Struct Biol Cryst Commun, 68, pp. 716-719; Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S., Denison, M.R., The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication (2005) J Virol., 79, pp. 13399-13411; von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome (2007) PLoS ONE, 2, p. e459; Graham, R.L., Denison, M.R., Replication of murine hepatitis virus is regulated by papain-like proteinase 1 processing of nonstructural proteins 1, 2, and 3 (2006) J Virol, 80, pp. 11610-11620; Pan, J.A., Peng, X., Gao, Y., Li, Z., Lu, X., Chen, Y., Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication (2008) PLoS ONE, 3, p. e3299; Zhao, F., Han, Z., Zhang, T., Shao, Y., Kong, X., Ma, H., Genomic characteristics and changes of avian infectious bronchitis virus strain CK/CH/LDL/97I after serial passages in chicken embryos (2014) Intervirology, 57, pp. 319-330; Phillips, J.E., Jackwood, M.W., McKinley, E.T., Thor, S.W., Hilt, D.A., Acevedol, N.D., Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus (2012) Virus Genes, 44, pp. 63-74; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J Virol, 77, pp. 9084-9089; Huang, Y.-P., Wang, C.-H., Sequence changes of infectious bronchitis virus isolates in the 3′ 7.3 kb of the genome after attenuating passage in embryonated eggs (2007) Avian Pathol, 36, pp. 59-67; Youn, S., Collisson, E.W., Machamer, C.E., Contribution of trafficking signals in the cytoplasmic tail of the infectious bronchitis virus spike protein to virus infection (2005) J Virol, 79, pp. 13209-13217; Bosch, B.J., de Haan, C.A., Rottier, P.J., Coronavirus spike glycoprotein, extended at the carboxy terminus with green fluorescent protein, is assembly competent (2004) J Virol, 78, pp. 7369-7378; Petit, C.M., Melancon, J.M., Chouljenko, V.N., Colgrove, R., Farzan, M., Knipe, D.M., Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion (2005) Virology, 341, pp. 215-230","Jordan, B.J.; Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of GeorgiaUnited States; email: brian89@uga.edu",,"Elsevier Ltd",0264410X,,VACCD,"30197283","English","Vaccine",Article,"Final",,Scopus,2-s2.0-85052938064 "Ajayi T., Dara R., Misener M., Pasma T., Moser L., Poljak Z.","57201425285;35726812900;57201428582;24077121300;57200110106;8966822700;","Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada",2018,"Transboundary and Emerging Diseases","65","5",,"1197","1207",,14,"10.1111/tbed.12858","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044730263&doi=10.1111%2ftbed.12858&partnerID=40&md5=f93f30eb96af31a95af3c0cddb1f9647","Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; School of Computer Science, University of Guelph, Guelph, ON, Canada; Ontario Swine Health Advisory Board (OSHAB), Stratford, ON, Canada; Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Guelph, ON, Canada; Swine Health Ontario, Guelph, ON, Canada","Ajayi, T., Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; Dara, R., School of Computer Science, University of Guelph, Guelph, ON, Canada; Misener, M., Ontario Swine Health Advisory Board (OSHAB), Stratford, ON, Canada; Pasma, T., Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Guelph, ON, Canada; Moser, L., Swine Health Ontario, Guelph, ON, Canada; Poljak, Z., Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada","Porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) were first identified in Canada in 2014. Surveillance efforts have been instrumental in controlling both diseases. In this study, we provide an overview of surveillance components for the two diseases in Ontario (Canada), as well as PEDV and PDCoV incidence and prevalence measures. Swine herds located in the Province of Ontario, of any type, whose owners agreed to participate in a voluntary industry-led disease control programme (DCP) and with associated diagnostic or epidemiological information about the two swine coronaviruses, were eligible to be included for calculation of disease frequency at the provincial level. PEDV and PDCoV data stored in the industry DCP database were imported into the R statistical software and analysed to produce weekly frequency of incidence counts and prevalence counts, in addition to yearly herd-level incidence risk and prevalence between 2014 and 2016. The yearly herd-level incidence risk of PEDV, based on industry data, was 13.5%, 3.0% and 1.4% (95% CI: 11.1–16.2, 2.0–4.2, 0.8–2.3), while the yearly herd-level incidence risk of PDCoV was 1.1%, 0.3%, and 0.1% (95% CI: 0.5–2.2, 0.1–0.9, 0.0–0.5), for 2014, 2015 and 2016, respectively. Herd-level prevalence estimates for PEDV in the last week of 2014, 2015 and 2016 were 4.4%, 2.3% and 1.4%, respectively (95% CI: 3.1–6.0, 1.5–3.3, 0.8–2.2), while herd-level prevalence estimates for PDCoV in the last week of 2014, 2015 and 2016 were 0.5%, 0.2% and 0.2%, respectively (95% CI: 0.1–1.2, 0.0–0.6, 0.0–0.6). Collectively, our results point to low and decreasing incidence risk and prevalence for PEDV and PDCoV in Ontario, making both diseases possible candidates for disease elimination at the provincial level. © 2018 Blackwell Verlag GmbH","disease surveillance; herd-level incidence; herd-level prevalence; porcine deltacoronavirus (PDCoV); porcine epidemic diarrhoea virus (PEDV)","animal experiment; Article; Canada; Coronaviridae; Coronaviridae infection; disease surveillance; herd; incidence; morbidity; nonhuman; polymerase chain reaction; population movement pattern; Porcine deltacoronavirus; Porcine deltacoronavirus infection; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; prevalence; reverse transcription polymerase chain reaction; risk assessment; sensitivity and specificity; virus identification; animal; Coronavirinae; Coronavirus infection; female; genetics; isolation and purification; male; Ontario; pig; real time polymerase chain reaction; swine disease; veterinary medicine; virology; virus RNA; Animals; Coronavirus; Coronavirus Infections; Female; Incidence; Male; Ontario; Porcine epidemic diarrhea virus; Prevalence; Real-Time Polymerase Chain Reaction; RNA, Viral; Swine; Swine Diseases","Arruda, A.G., Poljak, Z., Friendship, R., Carpenter, J., Hand, K., Descriptive analysis and spatial epidemiology of porcine reproductive and respiratory syndrome (PRRS) for swine sites participating in area regional control and elimination programs from 3 regions of Ontario (2015) Canadian Journal of Veterinary Research, 79, p. 268; Aubry, P., Thompson, J.L., Pasma, T., Furness, M.C., Tataryn, J., Weight of the evidence linking feed to an outbreak of porcine epidemic diarrhea in Canadian swine herds (2017) Journal of Swine Health and Production, 25 (2), pp. 69-72. , https://www.aasv.org/shap/issues/v25n2/v25n2p69.pdf; Brisson, Y., (2014) The changing face of the Canadian hog industry. Canadian Agriculture at a Glance, , http://www.statcan.gc.ca/pub/96-325-x/2014001/article/14027-eng.pdf, Retrieved from; (2014) Porcine Epidemic Diarrhea (PED) situation in Canada - Animals, , http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/eng/1392762503272/1392762576176, March 3)., Retrieved from; (2017) Reportable Diseases – Animals, , http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/reportable/eng/1303768471142/1303768544412, Retrieved March 25, 2017, from; Carvajal, A., Argüello, H., Martínez-Lobo, F.J., Costillas, S., Miranda, R., de Nova, P.J., Rubio, P., Porcine epidemic diarrhoea: New insights into an old disease (2015) Porcine Health Management, 1 (1), p. 12. , https://doi.org/10.1186/s40813-015-0007-9; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Zhang, J., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) Journal of Clinical Microbiology, 52 (1), pp. 234-243. , https://doi.org/10.1128/jcm.02820-13; Christensen, J., Danish swine salmonellosis control program: 1993 to 2001 (2003) Animal disease surveillance and survey systems: Methods and applications, pp. 185-207. , M. D. Salman, (Ed.),, Ames, Iowa, Iowa State Press; (2016) R: A language and environment for statistical computing, , https://doi.org/10.1038/sj.hdy.6800737, Vienna, Austria, R Foundation for Statistical Computing; Dohoo, I., Martin, W., Stryhn, H., (2003) Veterinary epidemiologic research, pp. 69-72. , Charlottetown, PE, Canada, Atlantic Veterinary College Inc; (2009) Animal Health Act, 2009, S.O. 2009, c. 31, Pub. L. No. 09a31, , https://www.ontario.ca/laws/statute/09a31, Government of Ontario. Retrieved from; Hill, C., Raizman, E., Snider, T., Goyal, S., Torremorell, M., Perez, A.M., Emergence of porcine epidemic diarrhoea in North America (2014) Focus on, 9 (July), pp. 1-8; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Veterinary Journal, 204 (2), pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017; Kochhar, H.S., Canada: Porcine epidemic diarrhea in Canada: an emerging disease case study (2014) The Canadian Veterinary Journal, 55 (11), pp. 1048-1049. , http://www.ncbi.nlm.nih.gov/pubmed/25392546, Retrieved from; Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., Main, R., Role of transportation in spread of porcine epidemic diarrhea virus infection, United States (2014) Emerging Infectious Diseases, 20 (5), pp. 1-5; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6 (2); Misener, M., (2015) PED – A Canadian Update, , April)., Paper presented at the 15th London Swine Conference, London, Ontario; (2017) OIE-Listed diseases 2017, , http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2017/, Retrieved March 25, 2017 from; (2014) Swine DeltaCoronavirus Disease Advisory, , https://www.opic.on.ca/images/pdfs/2014-03-18_Swinedeltacoronavirus_Advisory.pdf, March 18)., Retrieved from; (2017) Herd Health: Porcine Epidemic Diarrhea Virus (PED) On-Farm Testing - Total Confirmed Cases, , http://www.ontariopork.on.ca/Producers/Herd-Health#PED, Retrieved March 25, 2017, from; (2015) OSHAB ARC&E Progress Update – August 15, 2015, , http://opic.on.ca/images/ARCE_Interim_report_August_2015.pdf, Retrieved from; (2017) The Ontario Swine Health Advisory Board (OSHAB), Porcine Epidemic Diarrhea Virus (PEDV) and Porcine Delta Coronavirus (PDCoV) Position Statement, , https://www.opic.on.ca/images/OSHAB_PED_position_statement_final.pdf, Retrieved from; O'Sullivan, T., (2015) Investigation of Factors That Led to Emergence of PEDV through Feed During Early Phase of Canadian Outbreak, , June)., Paper presented at the 7th International Symposium on Emerging and Re-Emerging Pig Diseases, Kyoto, Japan; Pasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury-Hyatt, C., Swekla, K., Alexandersen, S., Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada (2014) Transboundary and Emerging Diseases, 61 (5), pp. 397-410. , https://doi.org/10.1111/tbed.12269; Pasma, T., Furness, M.C., Alves, D., Aubry, P., Outbreak investigation of porcine epidemic diarrhea in swine in Ontario (2016) The Canadian Veterinary Journal, 57 (1), pp. 84-89. , http://www.ncbi.nlm.nih.gov/pubmed/26740705, Retrieved from; Ripley, B., Lapsley, M., (2016) RODBC: ODBC Database Access. R package version 1.3-14, , https://cran.r-project.org/package=RODBC, Retrieved from; Salman, M., Surveillance and monitoring systems for animal health programs and disease surveys (2003) Animal disease surveillance and survey systems: Methods and applications, pp. 3-13. , M. D. Salman, (Ed.),, Ames, Iowa, Iowa State Press; Williamson, S., Strugnell, B., Thomson, J., Webster, G., McOrist, S., Clarke, H., Emergence of severe porcine epidemic diarrhoea in pigs in the USA (2013) Veterinary Record, 173 (6), pp. 146-148. , https://doi.org/10.1136/vr.f4947; Zeileis, A., Grothendieck, G., zoo: S3 infrastructure for regular and irregular time series (2005) Journal of Statistical Software, 14 (6), pp. 1-27. , https://doi.org/10.18637/jss.v014.i06","Poljak, Z.; Department of Population Medicine, Ontario Veterinary College, University of GuelphCanada; email: zpoljak@uoguelph.ca",,"Blackwell Publishing Ltd",18651674,,,"29607611","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85044730263 "Wang C., Zhao L., Xia S., Zhang T., Cao R., Liang G., Li Y., Meng G., Wang W., Shi W., Zhong W., Jiang S., Liu K.","55448261100;57203572875;56410369000;56491811000;36167910100;56413931600;57203976281;57194340788;57193552464;23006579600;35424990900;56491898300;8561320700;","De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery",2018,"Journal of Medicinal Chemistry","61","19",,"8734","8745",,3,"10.1021/acs.jmedchem.8b00890","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053834319&doi=10.1021%2facs.jmedchem.8b00890&partnerID=40&md5=7c2e507764559c139ed8310e7b3ee5b8","State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai, Fudan University, 130 Dong An Road, Shanghai, 200032, China; Key Laboratory of Structure-Based Drug Design, Shenyang Pharmaceutical University, Shenyang, 110016, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Department of Clinical Trial Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, 100050, China","Wang, C., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Zhao, L., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Xia, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai, Fudan University, 130 Dong An Road, Shanghai, 200032, China; Zhang, T., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Cao, R., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Liang, G., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Li, Y., Key Laboratory of Structure-Based Drug Design, Shenyang Pharmaceutical University, Shenyang, 110016, China; Meng, G., Key Laboratory of Structure-Based Drug Design, Shenyang Pharmaceutical University, Shenyang, 110016, China; Wang, W., Department of Clinical Trial Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, 100050, China; Shi, W., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Zhong, W., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China; Jiang, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai, Fudan University, 130 Dong An Road, Shanghai, 200032, China, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Liu, K., State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China","Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif. © 2018 American Chemical Society.",,"antivirus agent; favipiravir; hydrocarbon; lipopeptide; oseltamivir; virus fusion protein; antivirus agent; lipopeptide; virus fusion protein; antiviral activity; area under the curve; Article; CC50; circular dichroism; controlled study; drug clearance; drug design; drug potency; EC50; embryo; human; human cell; IC50; Influenza A virus; limit of quantitation; liquid chromatography-mass spectrometry; maximum plasma concentration; MDCK cell line; mean residence time; Middle East respiratory syndrome coronavirus; native polyacrylamide gel electrophoresis; nonhuman; pharmacokinetic parameters; plasma concentration-time curve; plasma half life; protein conformation; protein targeting; rat; virus load; virus replication; volume of distribution; alpha helix; amino acid sequence; chemistry; Coronavirus infection; drug development; drug effect; HEK293 cell line; influenza; Influenzavirus A; virology; virus entry; Amino Acid Sequence; Antiviral Agents; Coronavirus Infections; Drug Discovery; HEK293 Cells; Humans; Influenza, Human; Influenzavirus A; Lipopeptides; Middle East Respiratory Syndrome Coronavirus; Protein Conformation, alpha-Helical; Viral Fusion Proteins; Virus Internalization","De Clercq, E., Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV (2009) Int. J. Antimicrob. Agents, 33, pp. 307-320; Mendes-Correa, M., Nunez, M., Management of HIV and hepatitis virus coinfection (2010) Expert Opin. Pharmacother., 11, pp. 2497-2516; Yen, H.L., Current and novel antiviral strategies for influenza infection (2016) Curr. Opin. Virol., 18, pp. 126-134; Zhu, J.D., Meng, W., Wang, X.J., Wang, H.C., Broad-spectrum antiviral agents (2015) Front. Microbiol., 6, pp. 517-531; Dimitrov, D.S., Virus entry: Molecular mechanism and biomedical applications (2004) Nat. Rev. Microbiol., 2, pp. 109-122; Harrison, S.C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698; Colman, P.M., Lawrence, M.C., The structural biology of type i viral membrane fusion (2003) Nat. Rev. Mol. Cell Biol., 4, pp. 309-319; Wang, C., Shi, W., Cai, L., Lu, L., Yu, F., Wang, Q., Jiang, X., Liu, K., Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains (2014) J. Antimicrob. Chemother., 69, pp. 1537-1545; Wang, C., Lai, W., Yu, F., Zhang, T., Lu, L., Jiang, X., Zhang, Z., Liu, K., De novo Design of isopeptide bond-tethered triple-stranded coiled coils with exceptional resistance to unfolding and proteolysis: Implication for developing antiviral therapeutics (2015) Chem. Sci., 6, pp. 6505-6509; Wang, C., Shi, W., Cai, L., Lu, L., Wang, Q., Zhang, T., Li, J., Liu, K., Design, synthesis, and biological evaluation of highly potent small molecule-peptide conjugates as new HIV-1 fusion inhibitors (2013) J. Med. Chem., 56, pp. 2527-2539; Qi, Q., Wang, Q., Chen, W., Du, L., Dimitrov, D.S., Lu, L., Jiang, S., HIV-1 gp41-targeting fusion inhibitory peptides enhance the gp120-targeting protein-mediated inactivation of HIV-1 virions (2017) Emerging Microbes Infect., 6, p. e59; Lee, K.K., Pessi, A., Gui, L., Santoprete, A., Talekar, A., Moscona, A., Porotto, M., Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus (2011) J. Biol. Chem., 286, pp. 42141-42149; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Jiang, S., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, pp. 3067-3078; Miller, E.H., Harrison, J.S., Radoshitzky, S.R., Higgins, C.D., Chi, X., Dong, L., Kuhn, J.H., Chandran, K., Inhibition of Ebola virus entry by a C-peptide targeted to endosomes (2011) J. Biol. Chem., 286, pp. 15854-15861; Porotto, M., Yokoyama, C.C., Palermo, L.M., Mungall, B., Aljofan, M., Cortese, R., Pessi, A., Moscona, A., Viral entry inhibitors targeted to the membrane site of action (2010) J. Virol., 84, pp. 6760-6768; Cai, L., Jiang, S., Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41 (2010) ChemMedChem, 5, pp. 1813-1824; Jiang, S., Lin, K., Strick, N., Neurath, A.R., HIV-1 inhibition by a peptide (1993) Nature, 365, p. 113; Wild, C., Shugars, D.C., Greenwell, T.K., McDanal, C.B., Matthews, T.J., Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 9770-9774; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Gao, G.F., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 13134-13140; Wang, C., Xia, S., Zhang, P., Zhang, T., Wang, W., Tian, Y., Meng, G., Liu, K., Discovery of hydrocarbon-stapled short α-helical peptides as promising Middle East respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors (2018) J. Med. Chem., 61, pp. 2018-2026; Apostolovic, B., Danial, M., Klok, H.A., Coiled coils: Attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials (2010) Chem. Soc. Rev., 39, pp. 3541-3575; Fletcher, J.M., Boyle, A.L., Bruning, M., Bartlett, G.J., Vincent, T.L., Zaccai, N.R., Armstrong, C.T., Woolfson, D.N., A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology (2012) ACS Synth. Biol., 1, pp. 240-250; Gochin, M., Zhou, G., Amphipathic properties of HIV-1 gp41 fusion inhibitors (2011) Curr. Top. Med. Chem., 11, pp. 3022-3032; Lu, M., Blacklow, S.C., Kim, P.S., A trimeric structural domain of the HIV-1 transmembrane glycoprotein (1995) Nat. Struct. Mol. Biol., 2, pp. 1075-1082; Lai, W., Wang, C., Yu, F., Lu, L., Wang, Q., Jiang, X., Xu, X., Liu, K., An effective strategy for recapitulating N-terminal heptad repeat trimers in enveloped virus surface glycoproteins for therapeutic applications (2016) Chem. Sci., 7, pp. 2145-2150; Su, S., Wang, Q., Xu, W., Yu, F., Hua, C., Zhu, Y., Jiang, S., Lu, L., A novel HIV-1 gp41 tripartite model for rational design of HIV-1 fusion inhibitors with improved antiviral activity (2017) AIDS, 31, pp. 885-894; Crespillo, S., Camara-Artigas, A., Casares, S., Morel, B., Cobos, E.S., Mateo, P.L., Mouz, N., Conejero-Lara, F., Single-chain protein mimetics of the N-terminal heptad-repeat region of gp41 with potential as anti-HIV-1 drugs (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 18207-18212; Nishikawa, H., Nakamura, S., Kodama, E., Ito, S., Kajiwara, K., Izumi, K., Sakagami, Y., Matsuoka, M., Electrostatically constrained alpha-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide (2009) Int. J. Biochem. Cell Biol., 41, pp. 891-899; Dwyer, J.J., Wilson, K.L., Davison, D.K., Freel, S.A., Seedorff, J.E., Wring, S.A., Tvermoes, N.A., Delmedico, M.K., Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 12772-12777; Sia, S.K., Carr, P.A., Cochran, A.G., Malashkevich, V.N., Kim, P.S., Short constrained peptides that inhibit HIV-1 entry (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 14664-14669; Zheng, B., Wang, K., Lu, L., Yu, F., Cheng, M., Jiang, S., Liu, K., Cai, L., Hydrophobic mutations in buried polar residues enhance HIV-1 gp41 N-terminal heptad repeat-C-terminal heptad repeat interactions and C-peptides' anti-HIV activity (2014) AIDS, 28, pp. 1251-1260; Chong, H., Wu, X., Su, Y., He, Y., Development of potent and long-acting HIV-1 fusion inhibitors (2016) AIDS, 30, pp. 1187-1196; Ding, X., Zhang, X., Chong, H., Zhu, Y., Wei, H., Wu, X., He, J., He, Y., Enfuvirtide (T20)-based lipopeptide is a potent HIV-1 cell fusion inhibitor: Implication for viral entry and inhibition (2017) J. Virol., 91, pp. e00831-e00917; Liu, W., Tan, J., Mehryar, M.M., Teng, Z., Zeng, Y., Peptide HIV fusion inhibitors: Modifications and conjugations (2014) MedChemComm, 5, pp. 1472-1482; Park, J.E., Gallagher, T., Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides (2017) Virology, 511, pp. 9-18; Wang, C., Lu, L., Na, H., Li, X., Wang, Q., Jiang, X., Xu, X., Liu, K., Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: A promising strategy for discovering new antiviral therapeutics (2014) J. Med. Chem., 57, pp. 7342-7354; Wexler-Cohen, Y., Shai, Y., Demonstrating the C-terminal boundary of the HIV 1 fusion conformation in a dynamic ongoing fusion process and implication for fusion inhibition (2007) FASEB J., 21, pp. 3677-3684; Spek, E.J., Bui, A.H., Lu, M., Kallenbach, N.R., Surface salt bridges stabilize the GCN4 leucine zipper (1998) Protein Sci., 7, pp. 2431-2437; Pal, G., Fong, S.Y., Kossiakoff, A.A., Sidhu, S.S., Alternative views of functional protein binding epitopes obtained by combinatorial shotgun scanning mutagenesis (2005) Protein Sci., 14, pp. 2405-2413; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210; Dou, X., Zhu, X., Wang, J., Dong, N., Shan, A., Novel design of heptad amphiphiles to enhance cell selectivity, salt resistance, antibiofilm properties and their membrane-disruptive mechanism (2017) J. Med. Chem., 60, pp. 2257-2270; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J. Infect. Dis., 212, pp. 1894-1903; Cai, L.F., Pan, C.G., Xu, L., Shui, Y., Liu, K.L., Jiang, S.B., Interactions between different generation HIV-1 fusion inhibitors and the putative mechanism underlying the synergistic anti-HIV-1 effect resulting from their combination (2012) FASEB J., 26, pp. 1018-1026; Yu, M., Si, L., Wang, Y., Wu, Y., Yu, F., Jiao, P., Shi, Y., Zhou, D., Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses (2014) J. Med. Chem., 57, pp. 10058-10071; Li, R., Liu, T., Liu, M., Chen, F., Liu, S., Yang, J., Anti-influenza A virus activity of dendrobine and its mechanism of action (2017) J. Agric. Food Chem., 65, pp. 3665-3674; Kadam, R.U., Juraszek, J., Brandenburg, B., Buyck, C., Schepens, W.B.G., Kesteleyn, B., Stoops, B., Wilson, I.A., Potent peptidic fusion inhibitors of influenza virus (2017) Science, 358, pp. 496-502; Dawes, B.E., Kalveram, B., Ikegami, T., Juelich, T., Smith, J.K., Zhang, L., Park, A., Freiberg, A.N., Favipiravir (T-705) protects against Nipah virus infection in the hamster model (2018) Sci. Rep., 8, p. 7604; Lin, D., Luo, Y., Yang, G., Li, F., Xie, X., Chen, D., He, L., He, J., Potent influenza A virus entry inhibitors targeting a conserved region of hemagglutinin (2017) Biochem. Pharmacol., 144, pp. 35-51; Bullough, P.A., Hughson, F.M., Skehel, J.J., Wiley, D.C., Structure of influenza haemagglutinin at the pH of membrane fusion (1994) Nature, 371, pp. 37-43; Lawless, M.K., Barney, S., Guthrie, K.I., Bucy, T.B., Petteway, S.R., Jr., Merutka, G., HIV-1 membrane fusion mechanism: Structural studies of the interactions between biologically-active peptides from gp41 (1996) Biochemistry, 35, pp. 13697-13708; Qi, Z., Shi, W.G., Xue, N., Pan, C.G., Jing, W.G., Liu, K.L., Jiang, S.B., Rationally designed anti-HIV peptides containing multifunctional domains as molecule probes for studying the mechanisms of action of the first and second generation HIV fusion inhibitors (2008) J. Biol. Chem., 283, pp. 30376-30384; Luan, L., Meng, Q., Xu, L., Meng, Z., Yan, H., Liu, K., Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors (2015) J. Mater. Chem. B, 3, pp. 1068-1078; He, B., Fu, Y., Xia, S., Yu, F., Wang, Q., Lu, L., Jiang, S., Intranasal application of polyethyleneimine suppresses influenza virus infection in mice (2016) Emerging Microbes Infect., 5, p. e41","Zhong, W.; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, China; email: zhongwu@bmi.ac.cn",,"American Chemical Society",00222623,,JMCMA,"30192544","English","J. Med. Chem.",Article,"Final",,Scopus,2-s2.0-85053834319 "Aboagye J.O., Yew C.-W., Ng O.-W., Monteil V.M., Mirazimi A., Tan Y.-J.","57204293842;57209436196;55910060300;57204276866;6602224342;7402139791;","Overexpression of the nucleocapsid protein of Middle East respiratory syndrome coronavirus up-regulates CXCL10",2018,"Bioscience Reports","38","5", BSR20181059,"","",,1,"10.1042/BSR20181059","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055073935&doi=10.1042%2fBSR20181059&partnerID=40&md5=7de5ba9886750460b69b5ad1be60af2f","Institute of Molecular and Cell Biology Technology and Research, Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Department for Laboratory Medicine, Karolinska Institute and Karolinska, Hospital University, Solna, Sweden; Public Health Agency of Sweden, Stockholm, Sweden","Aboagye, J.O., Institute of Molecular and Cell Biology Technology and Research, Singapore, Singapore, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Yew, C.-W., Institute of Molecular and Cell Biology Technology and Research, Singapore, Singapore; Ng, O.-W., Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Monteil, V.M., Department for Laboratory Medicine, Karolinska Institute and Karolinska, Hospital University, Solna, Sweden, Public Health Agency of Sweden, Stockholm, Sweden; Mirazimi, A., Department for Laboratory Medicine, Karolinska Institute and Karolinska, Hospital University, Solna, Sweden, Public Health Agency of Sweden, Stockholm, Sweden; Tan, Y.-J., Institute of Molecular and Cell Biology Technology and Research, Singapore, Singapore, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore","Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory diseases in humans and has a high mortality rate. During infection, MERS-CoV regulates several host cellular processes including antiviral response genes. In order to determine if the nucleocapsid protein of MERS-CoV (MERS-N) plays a role in viral-host interactions, a murine monoclonal antibody was generated so as to allow detection of the protein in infected cells as well as in overexpression system. Then, MERS-N was stably overexpressed in A549 cells, and a PCR array containing 84 genes was used to screen for genes transcriptionally regulated by it. Several up-regulated antiviral genes, namely TNF, IL6, IL8, and CXCL10, were selected for independent validation in transiently transfected 293FT cells. Out of these, the overexpression of MERS-N was found to up-regulate CXCL10 at both transcriptional and translational levels. Interestingly, CXCL10 has been reported to be up-regulated in MERS-CoV infected airway epithelial cells and lung fibroblast cells, as well as monocyte-derived macrophages and dendritic cells. High secretions and persistent increase of CXCL10 in MERS-CoV patients have been also associated with severity of disease. To our knowledge, this is the first report showing that the MERS-N protein is one of the contributing factors for CXCL10 up-regulation during infection. In addition, our results showed that a fragment consisting of residues 196-413 in MERS-N is sufficient to up-regulate CXCL10, while the N-terminal domain and serine-arginine (SR)-rich motif of MERS-N do not play a role in this up-regulation. © 2018 The Author(s).",,"CXCL10 protein, human; gamma interferon inducible protein 10; nucleocapsid protein; A-549 cell line; Coronavirus infection; gene expression regulation; genetics; host pathogen interaction; human; Middle East respiratory syndrome coronavirus; pathogenicity; pathology; protein domain; transcription initiation; virology; A549 Cells; Chemokine CXCL10; Coronavirus Infections; Gene Expression Regulation, Viral; Host-Pathogen Interactions; Humans; Middle East Respiratory Syndrome Coronavirus; Nucleocapsid Proteins; Protein Domains; Transcriptional Activation","http://www.who.int/mediacentre/factsheets/mers-cov/en/, WHO. MERS-CoV Fact Sheet date of access 18 June 2018; Channappanavar, R., Perlman, S., Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology (2017) Semin Immunopathol, 39, pp. 529-539. , https://doi.org/10.1007/s00281-017-0629-x; Zhou, J., Chu, H., Li, C., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis, 209, pp. 1331-1342. , https://doi.org/10.1093/infdis/jit504; Vanden Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol, 235, pp. 175-184. , https://doi.org/10.1002/path.4458; Zhou, J., Chu, H., Chan, J.F., Middle East respiratory syndrome coronavirus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virol. J, 12, p. 218. , https://doi.org/10.1186/s12985-015-0446-6; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Chan, J.F., Lau, S.K., To, K.K., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev, 28, pp. 465-522. , https://doi.org/10.1128/CMR.00102-14; Verheije, M.H., Hagemeijer, M.C., Ulasli, M., The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes (2010) J. Virol, 84, pp. 11575-11579. , https://doi.org/10.1128/JVI.00569-10; Lin, S.Y., Liu, C.L., Chang, Y.M., Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target (2014) J. Med. Chem, 57, pp. 2247-2257. , https://doi.org/10.1021/jm500089r; McBride, R., Van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018. , https://doi.org/10.3390/v6082991; Ding, B., Qin, Y., Chen, M., Nucleocapsid proteins: Roles beyond viral RNA packaging (2016) Wiley Interdiscip. Rev. RNA, 7, pp. 213-226. , https://doi.org/10.1002/wrna.1326; Papageorgiou, N., Lichiere, J., Baklouti, A., Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering (2016) Acta Crystallogr. D Struct. Biol, 72, pp. 192-202. , https://doi.org/10.1107/S2059798315024328; Grunewald, M.E., Fehr, A.R., Athmer, J., The coronavirus nucleocapsid protein is ADP-ribosylated (2018) Virology, 517, pp. 62-68. , https://doi.org/10.1016/j.virol.2017.11.020; Cui, L., Wang, H., Ji, Y., The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells (2015) J. Virol, 89, pp. 9029-9043. , https://doi.org/10.1128/JVI.01331-15; Hsin, W.C., Chang, C.H., Chang, C.Y., Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus (2018) J. Biomed. Sci, 25, p. 47. , https://doi.org/10.1186/s12929-018-0449-x; Mo, Y., Fisher, D., A review of treatment modalities for Middle East respiratory syndrome (2016) J. Antimicrob. Chemother, 71, pp. 3340-3350. , https://doi.org/10.1093/jac/dkw338; Lau, S.K., Lau, C.C., Chan, K.H., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol, 94, pp. 2679-2690. , https://doi.org/10.1099/vir.0.055533-0; Faure, E., Poissy, J., Goffard, A., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside (2014) PLoS ONE, 9, p. e88716. , https://doiorg/10.1371/journal.pone.0088716; Kim, E.S., Choe, P.G., Park, W.B., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) J. Korean Med. Sci, 31, pp. 1717-1725. , https://doi.org/10.3346/jkms.2016.31.11.1717; Chu, H., Zhou, J., Wong, B.H., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205. , https://doi.org/10.1016/j.virol.2014.02.018; Oh, H.L., Akerstrom, S., Shen, S., An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses (2010) J. Virol, 84, pp. 8275-8286. , https://doi.org/10.1128/JVI.02593-09; Chan, J.F., Chan, K.H., Choi, G.K., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis, 207, pp. 1743-1752. , https://doi.org/10.1093/infdis/jit123; Tynell, J., Westenius, V., Ronkko, E., Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells (2016) J. Gen. Virol, 97, pp. 344-355. , https://doi.org/10.1099/jgv.0.000351; Liu, M., Guo, S., Hibbert, J.M., CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications (2011) Cytokine Growth Factor Rev, 22, pp. 121-130","Tan, Y.-J.; Institute of Molecular and Cell Biology Technology and ResearchSingapore; email: yee_joo_tan@nuhs.edu.sg",,"Portland Press Ltd",01448463,,BRPTD,"30242057","English","Biosci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85055073935 "Wada M., Lokugamage K.G., Nakagawa K., Narayanan K., Makino S.","36674132900;6507712340;35754942900;7101933409;7403067550;","Interplay between coronavirus, a cytoplasmic RNA virus, and nonsense-mediated mRNA decay pathway",2018,"Proceedings of the National Academy of Sciences of the United States of America","115","43",,"E10157","E10166",,3,"10.1073/pnas.1811675115","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055601012&doi=10.1073%2fpnas.1811675115&partnerID=40&md5=84ed1926f1e89df81aabb9a568addd21","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1019, United States","Wada, M., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Lokugamage, K.G., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Nakagawa, K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Narayanan, K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, United States; Makino, S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, United States, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-1019, United States, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-1019, United States, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1019, United States, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1019, United States","Coronaviruses (CoVs), including severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, are enveloped RNA viruses that carry a large positive-sense single-stranded RNA genome and cause a variety of diseases in humans and domestic animals. Very little is known about the host pathways that regulate the stability of CoV mRNAs, which carry some unusual features. Nonsense-mediated decay (NMD) is a eukaryotic RNA surveillance pathway that detects mRNAs harboring aberrant features and targets them for degradation. Although CoV mRNAs are of cytoplasmic origin, the presence of several NMD-inducing features (including multiple ORFs with internal termination codons that create a long 3' untranslated region) in CoV mRNAs led us to explore the interplay between the NMD pathway and CoVs. Our study using murine hepatitis virus as a model CoV showed that CoV mRNAs are recognized by the NMD pathway as a substrate, resulting in their degradation. Furthermore, CoV replication induced the inhibition of the NMD pathway, and N protein (a viral structural protein) had an NMD inhibitory function that protected viral mRNAs from rapid decay. Our data further suggest that the NMD pathway interferes with optimal viral replication by degrading viral mRNAs early in infection, before sufficient accumulation of N protein. Our study presents clear evidence for the biological importance of the NMD pathway in controlling the stability of mRNAs and the efficiency of replication of a cytoplasmic RNA virus. © 2018 National Academy of Sciences. All rights reserved.","Coronavirus; Cytoplasmic RNA virus; Inhibition of NMD; Long 3' UTR; Nonsense-mediated mRNA decay","genomic RNA; guanine nucleotide binding protein; messenger RNA; animal cell; Article; bioaccumulation; controlled study; fibroblast; mouse; Murine hepatitis virus; nonhuman; nonsense mediated mRNA decay; priority journal; RNA degradation; RNA synthesis; virus replication; 3' untranslated region; animal; Coronavirinae; cytoplasm; genetics; nonsense mediated mRNA decay; open reading frame; RNA stability; RNA virus; 3' Untranslated Regions; Animals; Coronavirus; Cytoplasm; Mice; Nonsense Mediated mRNA Decay; Open Reading Frames; RNA Stability; RNA Viruses; RNA, Messenger; Virus Replication","Memish, Z.A., Middle east respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045; Li, W., Bats are natural reservoirs of sars-like coronaviruses (2005) Science, 310, pp. 676-679; Fendrick, A.M., Monto, A.S., Nightengale, B., Sarnes, M., The economic burden of non-influenza-related viral respiratory tract infection in the United States (2003) Arch Intern Med, 163, pp. 487-494; Keogh-Brown, M.R., Smith, R.D., The economic impact of sars: How does the reality match the predictions? (2008) Health Policy, 88, pp. 110-120; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66; Narayanan, K., Huang, C., Makino, S., Sars coronavirus accessory proteins (2008) Virus Res, 133, pp. 113-121; Menachery, V.D., Mers-cov accessory orfs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e00717; Schweingruber, C., Rufener, S.C., Zünd, D., Yamashita, A., Mühlemann, O., Nonsensemediated mRNA decay-mechanisms of substrate mRNA recognition and degradation in mammalian cells (2013) Biochim Biophys Acta, 1829, pp. 612-623; Isken, O., Maquat, L.E., The multiple lives of nmd factors: Balancing roles in gene and genome regulation (2008) Nat Rev Genet, 9, pp. 699-712; Durand, S., Lykke-Andersen, J., Nonsense-mediated mRNA decay occurs during eif4f-dependent translation in human cells (2013) Nat Struct Mol Biol, 20, pp. 702-709; Garcia, D., Garcia, S., Voinnet, O., Nonsense-mediated decay serves as a general viral restriction mechanism in plants (2014) Cell Host Microbe, 16, pp. 391-402; Withers, J.B., Beemon, K.L., The structure and function of the rous sarcoma virus RNA stability element (2011) J Cell Biochem, 112, pp. 3085-3092; Hurt, J.A., Robertson, A.D., Burge, C.B., Global analyses of upf1 binding and function reveal expanded scope of nonsense-mediated mRNA decay (2013) Genome Res, 23, pp. 1636-1650; Balistreri, G., The host nonsense-mediated mRNA decay pathway restricts mammalian RNA virus replication (2014) Cell Host Microbe, 16, pp. 403-411; Ramage, H.R., A combined proteomics/genomics approach links hepatitis c virus infection with nonsense-mediated mRNA decay (2015) Mol Cell, 57, pp. 329-340; Sturman, L.S., Takemoto, K.K., Enhanced growth of a murine coronavirus in transformed mouse cells (1972) Infect Immun, 6, pp. 501-507; Boelz, S., Neu-Yilik, G., Gehring, N.H., Hentze, M.W., Kulozik, A.E., A chemiluminescencebased reporter system to monitor nonsense-mediated mRNA decay (2006) Biochem Biophys Res Commun, 349, pp. 186-191; Hug, N., Longman, D., Cáceres, J.F., Mechanism and regulation of the nonsensemediated decay pathway (2016) Nucleic Acids Res, 44, pp. 1483-1495; Popp, M.W., Maquat, L.E., Organizing principles of mammalian nonsensemediated mRNA decay (2013) Annu Rev Genet, 47, pp. 139-165; Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., Ohno, S., Human smg-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsensemediated mRNA decay (2001) Genes Dev, 15, pp. 2215-2228; Brumbaugh, K.M., The mRNA surveillance protein hsmg-1 functions in genotoxic stress response pathways in mammalian cells (2004) Mol Cell, 14, pp. 585-598; Beaty, S.M., Efficient and robust paramyxoviridae reverse genetics systems (2017) MSphere, 2, pp. e00376-e00416; Kanai, Y., Entirely plasmid-based reverse genetics system for rotaviruses (2017) Proc Natl Acad Sci USA, 114, pp. 2349-2354; Morgan, J.R., Cohen, L.K., Roberts, B.E., Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus (1984) J Virol, 52, pp. 206-214; Niles, E.G., Lee-Chen, G.J., Shuman, S., Moss, B., Broyles, S.S., Vaccinia virus gene d12l encodes the small subunit of the viral mRNA capping enzyme (1989) Virology, 172, pp. 513-522; Ensinger, M.J., Martin, S.A., Paoletti, E., Moss, B., Modification of the 5'-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus (1975) Proc Natl Acad Sci USA, 72, pp. 2525-2529; Elroy-Stein, O., Moss, B., Cytoplasmic expression system based on constitutive synthesis of bacteriophage t7 RNA polymerase in mammalian cells (1990) Proc Natl Acad Sci USA, 87, pp. 6743-6747; Karam, R., The unfolded protein response is shaped by the nmd pathway (2015) EMBO Rep, 16, pp. 599-609; Cuccurese, M., Russo, G., Russo, A., Pietropaolo, C., Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression (2005) Nucleic Acids Res, 33, pp. 5965-5977; Maquat, L.E., Tarn, W.Y., Isken, O., The pioneer round of translation: Features and functions (2010) Cell, 142, pp. 368-374; Carter, M.S., A regulatory mechanism that detects premature nonsense codons in t-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro (1995) J Biol Chem, 270, pp. 28995-29003; Noensie, E.N., Dietz, H.C., A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition (2001) Nat Biotechnol, 19, pp. 434-439; Banerjee, S., An, S., Zhou, A., Silverman, R.H., Makino, S., Rnase l-independent specific 28s rrna cleavage in murine coronavirus-infected cells (2000) J Virol, 74, pp. 8793-8802; Siddell, S., Wege, H., Barthel, A., Ter Meulen, V., Coronavirus jhm: Intracellular protein synthesis (1981) J Gen Virol, 53, pp. 145-155; Huang, C., Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free hela cell extracts but not in rabbit reticulocyte lysate (2011) J Virol, 85, pp. 638-643; Kim, J.C., Spence, R.A., Currier, P.F., Lu, X., Denison, M.R., Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor e64d (1995) Virology, 208, pp. 1-8; Balistreri, G., Bognanni, C., Mühlemann, O., Virus escape and manipulation of cellular nonsense-mediated mRNA decay (2017) Viruses, 9, p. E24; Weil, J.E., Beemon, K.L., A 3' utr sequence stabilizes termination codons in the unspliced RNA of rous sarcoma virus (2006) RNA, 12, pp. 102-110; Nakano, K., Viral interference with host mRNA surveillance, the nonsensemediated mRNA decay (nmd) pathway, through a new function of htlv-1 rex: Implications for retroviral replication (2013) Microbes Infect, 15, pp. 491-505; Mocquet, V., The human t-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with int6/eif3e and upf1 (2012) J Virol, 86, pp. 7530-7543; Serquiña, A.K., Upf1 is crucial for the infectivity of human immunodeficiency virus type 1 progeny virions (2013) J Virol, 87, pp. 8853-8861; Ajamian, L., HIV-1 recruits upf1 but excludes upf2 to promote nucleocytoplasmic export of the genomic RNA (2015) Biomolecules, 5, pp. 2808-2839; Ajamian, L., Unexpected roles for upf1 in HIV-1 RNA metabolism and translation (2008) RNA, 14, pp. 914-927; Matsuda, D., Hosoda, N., Kim, Y.K., Maquat, L.E., Failsafe nonsense-mediated mRNA decay does not detectably target eif4e-bound mRNA (2007) Nat Struct Mol Biol, 14, pp. 974-979; Li, Y., Masaki, T., Yamane, D., McGivern, D.R., Lemon, S.M., Competing and noncompeting activities of miR-122 and the 5' exonuclease xrn1 in regulation of hepatitis c virus replication (2013) Proc Natl Acad Sci USA, 110, pp. 1881-1886; Yount, B., Reverse genetics with a full-length infectious cdna of severe acute respiratory syndrome coronavirus (2003) Proc Natl Acad Sci USA, 100, pp. 12995-13000; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J Virol, 75, pp. 12359-12369; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cdna of mouse hepatitis virus strain a59 (2002) J Virol, 76, pp. 11065-11078; Curtis, K.M., Yount, B., Baric, R.S., Heterologous gene expression from transmissible gastroenteritis virus replicon particles (2002) J Virol, 76, pp. 1422-1434; Emmott, E., The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology (2013) J Virol, 87, pp. 9486-9500; Jourdan, S.S., Osorio, F., Hiscox, J.A., An interactome map of the nucleocapsid protein from a highly pathogenic north American porcine reproductive and respiratory syndrome virus strain generated using silac-based quantitative proteomics (2012) Proteomics, 12, pp. 1015-1023; Hirano, N., Fujiwara, K., Hino, S., Matumoto, M., Replication and plaque formation of mouse hepatitis virus (mhv-2) in mouse cell line dbt culture (1974) Arch Gesamte Virusforsch, 44, pp. 298-302; Huang, C., Sars coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage (2011) PLoS Pathog, 7, p. e1002433; Makino, S., Taguchi, F., Fujiwara, K., Defective interfering particles of mouse hepatitis virus (1984) Virology, 133, pp. 9-17","Makino, S.; Department of Microbiology and Immunology, University of Texas Medical BranchUnited States; email: shmakino@utmb.edu",,"National Academy of Sciences",00278424,,PNASA,"30297408","English","Proc. Natl. Acad. Sci. U. S. A.",Article,"Final",Open Access,Scopus,2-s2.0-85055601012 "Zhang D., Lou X., Yan H., Pan J., Mao H., Tang H., Shu Y., Zhao Y., Liu L., Li J., Chen J., Zhang Y., Ma X.","56185648300;56485152100;57202749708;57203494498;23991347500;40662086100;36906610100;25423303000;57199085752;57204395453;57204393523;53879012600;35800071500;","Metagenomic analysis of viral nucleic acid extraction methods in respiratory clinical samples 11 Medical and Health Sciences 1108 Medical Microbiology",2018,"BMC Genomics","19","1", 773,"","",,6,"10.1186/s12864-018-5152-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055435627&doi=10.1186%2fs12864-018-5152-5&partnerID=40&md5=a527b75ef8ecfa22f5a7fc732d56a06c","Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China; Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310013, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310013, China","Zhang, D., Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China, Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Lou, X., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Yan, H., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Pan, J., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Mao, H., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Tang, H., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310013, China; Shu, Y., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310013, China; Zhao, Y., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310013, China; Liu, L., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310013, China; Li, J., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310013, China; Chen, J., College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310013, China; Zhang, Y., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China; Ma, X., Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China","Background: Numerous protocols for viral enrichment and genome amplification have been created. However, the direct identification of viral genomes from clinical specimens using next-generation sequencing (NGS) still has its challenges. As a selected viral nucleic acid extraction method may determine the sensitivity and reliability of NGS, it is still valuable to evaluate the extraction efficiency of different extraction kits using clinical specimens directly. Results: In this study, we performed qRT-PCR and viral metagenomic analysis of the extraction efficiency of four commonly used Qiagen extraction kits: QIAamp Viral RNA Mini Kit (VRMK), QIAamp MinElute Virus Spin Kit (MVSK), RNeasy Mini Kit (RMK), and RNeasy Plus Micro Kit (RPMK), using a mixed respiratory clinical sample without any pre-treatment. This sample contained an adenovirus (ADV), influenza virus A (Flu A), human parainfluenza virus 3 (PIV3), human coronavirus OC43 (OC43), and human metapneumovirus (HMPV). The quantity and quality of the viral extracts were significantly different among these kits. The highest threshold cycle(Ct)values for ADV and OC43 were obtained by using the RPMK. The MVSK had the lowest Ct values for ADV and PIV3. The RMK revealed the lowest detectability for HMPV and PIV3. The most effective rate of NGS data at 67.47% was observed with the RPMK. The other three kits ranged between 12.1-26.79% effectiveness rates for the NGS data. Most importantly, compared to the other three kits the highest proportion of non-host reads was obtained by the RPMK. The MVSK performed best with the lowest Ct value of 20.5 in the extraction of ADV, while the RMK revealed the best extraction efficiency by NGS analysis. Conclusions: The evaluation of viral nucleic acid extraction efficiency is different between NGS and qRT-PCR analysis. The RPMK was most applicable for the metagenomic analysis of viral RNA and enabled more sensitive identification of the RNA virus genome in respiratory clinical samples. In addition, viral RNA extraction kits were also applicable for metagenomic analysis of the DNA virus. Our results highlighted the importance of nucleic acid extraction kit selection, which has a major impact on the yield and number of viral reads by NGS analysis. Therefore, the choice of extraction method for a given viral pathogen needs to be carefully considered. © 2018 The Author(s).","Illumina Hiseq; Metagenomic analysis; Respiratory clinical samples; Viral nucleic acid extraction methods","virus RNA; virus RNA; Adenoviridae; Article; controlled study; Human coronavirus OC43; Human metapneumovirus; Human parainfluenza virus 3; Influenza A virus; intermethod comparison; metagenomics; next generation sequencing; nonhuman; nucleic acid analysis; QIAamp MinElute virus spin kit; QIAamp Viral RNA mini kit; reverse transcription polymerase chain reaction; RNA analysis; RNA extraction; RNeasy mini kit; RNeasy plus micro kit; sensitivity analysis; virus detection; virus genome; diagnostic kit; genetics; human; isolation and purification; metagenome; procedures; real time polymerase chain reaction; Respirovirus; Respirovirus infection; virology; virus genome; Genome, Viral; Humans; Metagenome; Metagenomics; Reagent Kits, Diagnostic; Real-Time Polymerase Chain Reaction; Respirovirus; Respirovirus Infections; RNA, Viral","Delwart, E.L., Viral metagenomics (2007) Rev Med Virol, 17 (2), pp. 115-131. , 1:CAS:528:DC%2BD2sXltlSnsr4%3D; Mokili, J.L., Rohwer, F., Dutilh, B.E., Metagenomics and future perspectives in virus discovery (2012) Curr Opin Virol, 2 (1), pp. 63-77. , 1:CAS:528:DC%2BC38XislSksbw%3D; Yang, J., Yang, F., Ren, L., Xiong, Z., Wu, Z., Dong, J., Sun, L., Du, J., Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach (2011) J Clin Microbiol, 49 (10), pp. 3463-3469. , 1:CAS:528:DC%2BC3MXhsVOrsbzM; Mokili, J.L., Dutilh, B.E., Lim, Y.W., Schneider, B.S., Taylor, T., Haynes, M.R., Metzgar, D., Nosrat, B., Identification of a novel human papillomavirus by metagenomic analysis of samples from patients with febrile respiratory illness (2013) PLoS One, 8 (3), p. e58404. , 1:CAS:528:DC%2BC3sXltVKhsL8%3D; Lewandowska, D.W., Zagordi, O., Geissberger, F.D., Kufner, V., Schmutz, S., Boni, J., Metzner, K.J., Huber, M., Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples (2017) Microbiome, 5 (1), p. 94; Li, L., Deng, X., Mee, E.T., Collot-Teixeira, S., Anderson, R., Schepelmann, S., Minor, P.D., Delwart, E., Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent (2015) J Virol Methods, 213, pp. 139-146. , 1:CAS:528:DC%2BC2cXitFOrurfP; Hjelmso, M.H., Hellmer, M., Fernandez-Cassi, X., Timoneda, N., Lukjancenko, O., Seidel, M., Elsasser, D., Bofill-Mas, S., Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing (2017) PLoS One, 12 (1), p. e0170199; Wang, C., Zhou, S., Xue, W., Shen, L., Huang, W., Zhang, Y., Li, X., Ma, X., Comprehensive virome analysis reveals the complexity and diversity of the viral spectrum in pediatric patients diagnosed with severe and mild hand-foot-and-mouth disease (2018) Virology, 518, pp. 116-125. , 1:CAS:528:DC%2BC1cXjtFCms7s%3D; Klenner, J., Kohl, C., Dabrowski, P., Nitsche, A., Comparing viral metagenomic extraction methods (2017) Curr Issues Mol Biol, 24, pp. 59-70; Zhou, Y., Fernandez, S., Yoon, I.K., Simasathien, S., Watanaveeradej, V., Yang, Y., Marte-Salcedo, O.A., Hang, J., Metagenomics study of viral pathogens in undiagnosed respiratory specimens and identification of human enteroviruses at a Thailand hospital (2016) Am J Trop Med Hyg, 95 (3), pp. 663-669. , 1:CAS:528:DC%2BC28XhvFakur%2FP; Gong, Y.N., Yang, S.L., Chen, G.W., Chen, Y.W., Huang, Y.C., Ning, H.C., Tsao, K.C., A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: An application of the iterative mapping approach (2017) Arch Virol, 162 (7), pp. 2003-2012. , 1:CAS:528:DC%2BC2sXmtlaltrk%3D; Schlaberg, R., Queen, K., Simmon, K., Tardif, K., Stockmann, C., Flygare, S., Kennedy, B., Zhang, J., Viral pathogen detection by metagenomics and Pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology (2017) J Infect Dis, 215 (9), pp. 1407-1415; Alquezar-Planas, D., Mourier, T., Bruhn, C., Hansen, A., Vitcetz, S., Mørk, S., Gorodkin, J., Sethuraman, A., Discovery of a divergent HPIV4 from respiratory secretions using second and third generation metagenomic sequencing (2013) Sci Rep, 3, p. 2468; Xu, L., Zhu, Y., Ren, L., Xu, B., Liu, C., Xie, Z., Shen, K., Characterization of the nasopharyngeal viral microbiome from children with community-acquired pneumonia but negative for Luminex xTAG respiratory viral panel assay detection (2017) J Med Virol, 89 (12), pp. 2098-2107. , 1:CAS:528:DC%2BC2sXhs1ylsL7F; Graf, E.H., Simmon, K.E., Tardif, K.D., Hymas, W., Flygare, S., Eilbeck, K., Yandell, M., Caliendo, A.M., Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: A systematic comparison to a commercial PCR panel (2016) J Clin Microbiol, 54 (4), pp. 1000-1007. , 1:CAS:528:DC%2BC2sXisVGqurc%3D; Wang, Y., Zhu, N., Li, Y., Lu, R., Wang, H., Liu, G., Zou, X., Tan, W., Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China (2016) Clin Microbiol Infect, 22 (5), p. 458. , 1:CAS:528:DC%2BC28Xhs1Oju7%2FI e451-459; Zou, X., Tang, G., Zhao, X., Huang, Y., Chen, T., Lei, M., Chen, W., Zhuang, L., Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique (2017) Sci China Life Sci, 60 (3), pp. 279-286; Pei, N., Zhang, J., Ma, J., Li, L., Li, M., Li, J., Sun, Y., Hou, Y., First report of human salivirus/klassevirus in respiratory specimens of a child with fatal adenovirus infection (2016) Virus Genes, 52 (5), pp. 620-624. , 1:CAS:528:DC%2BC28XhtVSkt77N; Cheval, J., Sauvage, V., Frangeul, L., Dacheux, L., Guigon, G., Dumey, N., Pariente, K., Berthet, N., Evaluation of high-throughput sequencing for identifying known and unknown viruses in biological samples (2011) J Clin Microbiol, 49 (9), pp. 3268-3275. , 1:CAS:528:DC%2BC3MXhs1Gltb7L; Rosseel, T., Ozhelvaci, O., Freimanis, G., Van Borm, S., Evaluation of convenient pretreatment protocols for RNA virus metagenomics in serum and tissue samples (2015) J Virol Methods, 222, pp. 72-80. , 1:CAS:528:DC%2BC2MXpt1Smurw%3D; Chen, Y., Trovão, N., Wang, G., Zhao, W., He, P., Zhou, H., Mo, Y., Huang, W., Emergence and evolution of novel Reassortant influenza a viruses in canines in southern China (2018) MBio., 9 (3); Franzo, G., Legnardi, M., Hjulsager, C., Klaumann, F., Larsen, L., Segales, J., Drigo, M., Full-genome sequencing of porcine circovirus 3 field strains from Denmark, Italy and Spain demonstrates a high within-Europe genetic heterogeneity (2018) Transbound Emerg Dis, 65 (3), pp. 602-606. , 1:CAS:528:DC%2BC1cXoslyks7c%3D; Zhang, D., Mao, H., Lou, X., Pan, J., Yan, H., Tang, H., Shu, Y., Tao, H., Clinical evaluation of a panel of multiplex quantitative real-time reverse transcription polymerase chain reaction assays for the detection of 16 respiratory viruses associated with community-acquired pneumonia (2018) Arch Virol, 163 (10), pp. 2855-2860. , 1:CAS:528:DC%2BC1cXht1ers7zN; Li, Y., Wang, H., Nie, K., Zhang, C., Zhang, Y., Wang, J., Niu, P., Ma, X., VIP: An integrated pipeline for metagenomics of virus identification and discovery (2016) Sci Rep, 6, p. 23774. , 1:CAS:528:DC%2BC28Xlt1Gnu7c%3D","Zhang, Y.; Institute of Microbiology, Zhejiang Provincial Center for Disease Control and PreventionChina; email: yjzhang@cdc.zj.cn",,"BioMed Central Ltd.",14712164,,BGMEE,"30359242","English","BMC Genomics",Article,"Final",Open Access,Scopus,2-s2.0-85055435627 "Ting D., Dong N., Fang L., Lu J., Bi J., Xiao S., Han H.","57214213048;56966232400;7402470374;57195956699;37030537900;7402022567;57210966199;","Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin",2018,"ACS Applied Nano Materials","1","10",,"5451","5459",,3,"10.1021/acsanm.8b00779","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061128990&doi=10.1021%2facsanm.8b00779&partnerID=40&md5=e50b695f7f9a585c7d382273bfed28e8","State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Department of Immunology and Aetology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China","Ting, D., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Dong, N., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Lu, J., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Bi, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Department of Immunology and Aetology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Han, H., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China","The research of carbon-based antivirals is still in its infancy, and their development into safe and effective carbon dots (CDs) with antiviral activity at multiple points in the life cycle of the virus remains to be explored. Here, we report a one-step method to apply curcumin in order to prepare of uniform and stable cationic carbon dots (CCM-CDs) with antiviral properties. The inhibitory effect of CCM-CDs on viral replication was studied by using porcine epidemic diarrhea virus (PEDV) as a coronavirus model. PEDV is applied as a coronavirus model to study the antiviral effect of as-prepared CCM-CDs on its replication. The cationic CCM-CDs treatment is found obviously to inhibit the proliferation of PEDV compared with the common CDs (EDA-CDs). The CCM-CDs treatment can change the structure of surface protein in viruses, thereby inhibiting viral entry. It can also suppresses the synthesis of negative-strand RNA of the virus, the budding of the virus, and the accumulation of reactive oxygen species by PEDV. Furthermore, CCM-CDs treatment is also found to suppress viral replication by stimulating the production of interferon-stimulating genes (ISGs) and proinflammatory cytokines. These results offer theoretical support for the development of CCM-CDs as a hopeful antiviral drug for the treatment of coronavirus infections, including PEDV. Copyright © 2018 American Chemical Society.","antiviral; carbon dots; curcumin; interferon-stimulating genes; proinflammatory cytokines","Antibiotics; Genes; Glycoproteins; Life cycle; Viruses; antiviral; Antiviral properties; Carbon dots; Curcumin; Porcine epidemic diarrhea virus; Pro-inflammatory cytokines; Reactive oxygen species; Structure of surfaces; Carbon","Lv, Y.L., Gong, L.L., Wang, Z.H., Han, F.F., Liu, H., Lu, X.C., Liu, L.H., Curcumin Inhibits Human Cytomegalovirus by Downregulating Heat Shock Protein 90 (2015) Mol. Med. Rep., 12, pp. 4789-4793; Teymouri, M., Pirro, M., Johnston, T.P., Sahebkar, A., Curcumin as a Multifaceted Compound against Human Papilloma Virus Infection and Cervical Cancers: A Review of Chemistry, Cellular, Molecular, and Preclinical Features (2017) BioFactors, 43, pp. 331-346; Zheng, M., Liu, S., Guan, X.G., Xie, Z.G., One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer (2015) ACS Appl. Mater. Interfaces, 7, pp. 22181-22187; Mouler Rechtman, M., Har Noy, O., Bar Yishay, I., Fishman, S., Adamovich, Y., Shaul, Y., Halpern, Z., Shlomai, A., Curcumin Inhibits Hepatitis B Virus via Down-Regulation of the Metabolic Coactivator PGC-1α (2010) FEBS Lett., 584, pp. 2485-2490; Ali, A., Banerjea, A.C., Curcumin Inhibits HIV-1 by Promoting Tat Protein Degradation (2016) Sci. Rep., 6, pp. 27539-27548; Narayanan, A., Kehn Hall, K., Senina, S., Lundberg, L., Van Duyne, R., Guendel, I., Das, R., Kashanchi, F., Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells (2012) J. Biol. Chem., 287, pp. 33198-33214; Yang, X.X., Li, C.M., Huang, C.Z., Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection (2016) Nanoscale, 8, pp. 3040-3048; Yang, X.X., Li, C.M., Li, Y.F., Wang, J., Huang, C.Z., Synergistic Antiviral Effect of Curcumin Functionalized Graphene Oxide against Respiratory Syncytial Virus Infection (2017) Nanoscale, 9, pp. 16086-16092; Lembo, D., Cavalli, R., Nanoparticulate Delivery Systems for Antiviral Drugs (2010) Antivir. Chem. Chemoth., 21, pp. 53-70; Szunerits, S., Barras, A., Khanal, M., Pagneux, Q., Boukherroub, R., Nanostructures for the Inhibition of Viral Infections (2015) Molecules, 20, pp. 14051-14081; Yadavalli, T., Shukla, D., Role of Metal and Metal Oxide Nanoparticles as Diagnostic and Therapeutic Tools for Highly Prevalent Viral Infections (2017) Nanomedicine, 13, pp. 219-230; Singh, L., Kruger, H.G., Maguire, G.E.M., Govender, T., Parboosing, R., The Role of Nanotechnology in the Treatment of Viral Infections (2017) Ther. Adv. Infect. Dis., 4, pp. 105-131; Draz, M.S., Wang, Y.J., Chen, F.F., Xu, Y.H., Shafiee, H., Electrically Oscillating Plasmonic Nanoparticles for Enhanced DNA Vaccination against Hepatitis C Virus (2017) Adv. Funct. Mater., 27, pp. 1604139-1604149; Vonnemann, J., Sieben, C., Wolff, C., Ludwig, K., Bottcher, C., Herrmann, A., Haag, R., Virus Inhibition Induced by Polyvalent Nanoparticles of Different Sizes (2014) Nanoscale, 6, pp. 2353-2360; Li, L., Fu, F., Xue, M., Chen, W., Liu, J., Shi, H., Chen, J., Liu, P., IFN-Lambda Preferably Inhibits PEDV Infection of Porcine Intestinal Epithelial Cells Compared with IFN-Alpha (2017) Antiviral Res., 140, pp. 76-82; Bhatia, S., Lauster, D., Bardua, M., Ludwig, K., Angioletti-Uberti, S., Popp, N., Hoffmann, U., Haag, R., Linear Polysialoside Outperforms Dendritic Analogs for Inhibition of Influenza Virus Infection in Vitro and in Vivo (2017) Biomaterials, 138, pp. 22-34; Ziem, B., Azab, W., Gholami, M.F., Rabe, J.P., Osterrieder, N., Haag, R., Size-Dependent Inhibition of Herpesvirus Cellular Entry by Polyvalent Nanoarchitectures (2017) Nanoscale, 9, pp. 3774-3783; Ziem, B., Rahn, J., Donskyi, I., Silberreis, K., Cuellar, L., Dernedde, J., Keil, G., Haag, R., Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus (2017) Macromol. Biosci., 17, p. 1600499; Kwon, S.J., Na, D.H., Kwak, J.H., Douaisi, M., Zhang, F., Park, E.J., Park, J.H., Linhardt, R.J., Nanostructured Glycan Architecture is Important in the Inhibition of Influenza A Virus Infection (2016) Nat. Nanotechnol., 12, pp. 48-54; Castro-Mayorga, J.L., Randazzo, W., Fabra, M.J., Lagaron, J.M., Aznar, R., Sánchez, G., Antiviral Properties of Silver Nanoparticles against Norovirus Surrogates and Their Efficacy in Coated Polyhydroxyalkanoates Systems (2017) LWT Food Sci. Technol., 79, pp. 503-510; Lv, X., Wang, P., Bai, R., Cong, Y., Suo, S., Ren, X., Chen, C., Inhibitory Effect of Silver Nanomaterials on Transmissible Virus-Induced Host Cell Infections (2014) Biomaterials, 35, pp. 4195-4203; Akbarzadeh, A., Kafshdooz, L., Razban, Z., Dastranj Tbrizi, A., Rasoulpour, S., Khalilov, R., Kavetskyy, T., Kafshdooz, T., An Overview Application of Silver Nanoparticles in Inhibition of Herpes Simplex Virus (2018) Artif. Cells, Nanomed., Biotechnol., 46, pp. 263-267; Nagy, A., Steinbrück, A., Gao, J., Doggett, N., Hollingsworth, J.A., Iyer, R., Comprehensive Analysis of the Effects of CdSe Quantum Dot Size, Surface Charge, and Functionalization on Primary Human Lung Cells (2012) ACS Nano, 6, pp. 4748-4762; Liu, X., Huang, N., Li, H., Jin, Q., Ji, J., Surface and Size Effects on Cell Interaction of Gold Nanoparticles with both Phagocytic and Nonphagocytic Cells (2013) Langmuir, 29, pp. 9138-9148; Deokar, A.R., Nagvenkar, A.P., Kalt, I., Shani, L., Yeshurun, Y., Gedanken, A., Sarid, R., Graphene-Based ″hot Plate″ for the Capture and Destruction of the Herpes Simplex Virus Type 1 (2017) Bioconjugate Chem., 28, pp. 1115-1122; Barras, A., Pagneux, Q., Sane, F., Wang, Q., Boukherroub, R., Hober, D., Szunerits, S., High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1 (2016) ACS Appl. Mater. Interfaces, 8, pp. 9004-9013; Liu, Y., Yan, B., Winkler, D.A., Fu, J., Zhang, A., Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C60 Nanoparticles via in Vitro and in Silico Assays (2017) ACS Appl. Mater. Interfaces, 9, pp. 18626-18638; Sametband, M., Kalt, I., Gedanken, A., Sarid, R., Herpes Simplex Virus Type-1 Attachment Inhibition by Functionalized Graphene Oxide (2014) ACS Appl. Mater. Interfaces, 6, pp. 1228-1235; Du, T., Liang, J.G., Dong, N., Liu, L., Fang, L.R., Xiao, S.B., Han, H.Y., Carbon Dots as Inhibitors of Virus by Activation of Type i Interferon Response (2016) Carbon, 110, pp. 278-285; Zhang, H., Chen, Y., Liang, M., Xu, L., Qi, S., Chen, H., Chen, X., Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots for Sensitive and Selective Probing Ferric Ions in Living Cells (2014) Anal. Chem., 86, pp. 9846-9852; Li, F., Liu, C., Yang, J., Wang, Z., Liu, W., Tian, F., Mg/N Double Doping Strategy to Fabricate Extremely High Luminescent Carbon Dots for Bioimaging (2014) RSC Adv., 4, pp. 3201-3205; Yang, S.T., Wang, X., Wang, H., Lu, F., Luo, P.G., Cao, L., Meziani, M.J., Sun, Y.P., Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents (2009) J. Phys. Chem. C, 113, pp. 18110-18114; Alvarez, A.L., Melon, S., Dalton, K.P., Nicieza, I., Roque, A., Suarez, B., Parra, F., Apple Pomace, a by-Product from the Asturian Cider Industry, Inhibits Herpes Simplex Virus Types 1 and 2 in Vitro Replication: Study of its Mechanisms of Action (2012) J. Med. Food, 15, pp. 581-587; Gescher, K., Hensel, A., Hafezi, W., Derksen, A., Kühn, J., Oligomeric Proanthocyanidins from Rumex Acetosa L. Inhibit the Attachment of Herpes Simplex Virus Type-1 (2011) Antiviral Res., 89, pp. 9-18; Duan, E., Wang, D., Fang, L., Ma, J., Luo, J., Chen, H., Li, K., Xiao, S., Suppression of Porcine Reproductive and Respiratory Syndrome Virus Proliferation by Glycyrrhizin (2015) Antiviral Res., 120, pp. 122-125; Li, Y.H., Lin, Z.F., Zhao, M.Q., Xu, T.T., Wang, C.B., Hua, L., Wang, H.Z., Zhu, B., Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways (2016) ACS Appl. Mater. Interfaces, 8, pp. 24385-24393; Gao, T., Wang, X., Yang, L.Y., He, H., Ba, X.X., Zhao, J., Jiang, F.L., Liu, Y., Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging (2017) ACS Appl. Mater. Interfaces, 9, pp. 24846-24856; Bera, D., Qian, L., Tseng, T.K., Holloway, P.H., Quantum Dots and Their Multimodal Applications: A Review (2010) Materials, 3, pp. 2260-2345; Leng, C., Hung, H.-C., Sun, S., Wang, D., Li, Y., Jiang, S., Chen, Z., Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins (2015) ACS Appl. Mater. Interfaces, 7, pp. 16881-16888; Fu, Y.Y., Guan, E.L., Liang, J.G., Ren, G.L., Chen, L., Probing the Effect of Ag2S Quantum Dots on Human Serum Albumin Using Spectral Techniques (2017) J. Nanomater., 2017, pp. 1-7; Fan, R.J., Sun, Q., Zhang, L., Zhang, Y., Lu, A.H., Photoluminescent Carbon Dots Directly Derived from Polyethylene Glycol and their Application for Cellular Imaging (2014) Carbon, 71, pp. 87-93; Xiao, D., Pan, R., Li, S., He, J., Qi, M., Kong, S., Gu, Y., He, H., Porous Carbon Quantum Dots: One Step Green Synthesis Vial-Cysteine and Applications in Metal Ion Detection (2015) RSC Adv., 5, pp. 2039-2046; Bao, L., Zhang, Z.L., Tian, Z.Q., Zhang, L., Liu, C., Lin, Y., Qi, B., Pang, D.W., Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism (2011) Adv. Mater., 23, pp. 5801-5806; Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Wei, F., Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide (2011) ACS Nano, 5, pp. 191-198; Zhang, H.J., Chen, Y.L., Liang, M.J., Xu, L.F., Qi, S.D., Chen, H.L., Chen, X.G., Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots for Sensitive and Selective Probing Ferric Ions in Living Cells (2014) Anal. Chem., 86, pp. 9846-9852; Li, C.M., Zheng, L.L., Yang, X.X., Wan, X.Y., Wu, W.B., Zhen, S.J., Li, Y.F., Huang, C.Z., DNA-AuNP Networks on Cell Membranes as a Protective Barrier to Inhibit Viral Attachment, Entry and Budding (2016) Biomaterials, 77, pp. 216-226; Lin, N., Hu, F., Sun, Y., Wu, C., Xu, H., Liu, X.Y., Construction of White-Light-Emitting Silk Protein Hybrid Films by Molecular Recognized Assembly among Hierarchical Structures (2014) Adv. Funct. Mater., 24, pp. 5284-5290; Chan, J.W., Taylor, D.S., Zwerdling, T., Lane, S.M., Ihara, K., Huser, T., Micro-Raman Spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells (2006) Biophys. J., 90, pp. 648-656; Stone, N., Kendall, C., Shepherd, N., Crow, P., Barr, H., Near-Infrared Raman Spectroscopy for the Classification of Epithelial Pre-Cancers and Cancers (2002) J. Raman Spectrosc., 33, pp. 564-573; Salman, A., Shufan, E., Zeiri, L., Huleihel, M., Characterization and Detection of Vero Cells Infected with Herpes Simplex Virus Type 1 using Raman Spectroscopy and Advanced Statistical Methods (2014) Methods, 68, pp. 364-370; Gonzalez-Navajas, J.M., Lee, J., David, M., Raz, E., Immunomodulatory Functions of Type i Interferons (2012) Nat. Rev. Immunol., 12, pp. 125-135; Gomez, C.R., Boehmer, E.D., Kovacs, E.J., The Aging Innate Immune System (2005) Curr. Opin. Immunol., 17, pp. 457-462; Schoggins, J.W., Rice, C.M., Interferon-Stimulated Genes and Their Antiviral Effector Functions (2011) Curr. Opin. Virol., 1, pp. 519-525; Yu, Y., Huang, X., Liu, J., Zhang, J., Hu, Y., Yang, Y., Huang, Y., Qin, Q., Fish TRIM32 Functions as a Critical Antiviral Molecule against Iridovirus and Nodavirus (2017) Fish Shellfish Immunol., 60, pp. 33-43","Xiao, S.; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityChina; email: hyhan@mail.hzau.edu.cn",,"American Chemical Society",25740970,,,,"English","ACS Appl. Nano Mat.",Article,"Final",,Scopus,2-s2.0-85061128990 "Bohmwald K., Gálvez N.M.S., Ríos M., Kalergis A.M.","40260992400;57197367510;57213515269;6601943684;","Neurologic alterations due to respiratory virus infections",2018,"Frontiers in Cellular Neuroscience","12",, 386,"","",,3,"10.3389/fncel.2018.00386","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056855752&doi=10.3389%2ffncel.2018.00386&partnerID=40&md5=26336b78ae9d08e10d678cd716bd6dbe","Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile","Bohmwald, K., Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Gálvez, N.M.S., Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Ríos, M., Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Kalergis, A.M., Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile","Central Nervous System (CNS) infections are one of the most critical problems in public health, as frequently patients exhibit neurologic sequelae. Usually, CNS pathologies are caused by known neurotropic viruses such as measles virus (MV), herpes virus and human immunodeficiency virus (HIV), among others. However, nowadays respiratory viruses have placed themselves as relevant agents responsible for CNS pathologies. Among these neuropathological viruses are the human respiratory syncytial virus (hRSV), the influenza virus (IV), the coronavirus (CoV) and the human metapneumovirus (hMPV). These viral agents are leading causes of acute respiratory infections every year affecting mainly children under 5 years old and also the elderly. Up to date, several reports have described the association between respiratory viral infections with neurological symptoms. The most frequent clinical manifestations described in these patients are febrile or afebrile seizures, status epilepticus, encephalopathies and encephalitis. All these viruses have been found in cerebrospinal fluid (CSF), which suggests that all these pathogens, once in the lungs, can spread throughout the body and eventually reach the CNS. The current knowledge about the mechanisms and routes used by these neuro-invasive viruses remains scarce. In this review article, we describe the most recent findings associated to neurologic complications, along with data about the possible invasion routes of these viruses in humans and their various effects on the CNS, as studied in animal models. © 2018 Bohmwald, Gálvez, Ríos and Kalergis.","CNS pathologies; HCoV; HMPV; HRSV; Influenza virus; Respiratory virus","interleukin 6; astrocyte; blood brain barrier; brain disease; cerebrospinal fluid; cognition; Coronaviridae; diarrhea; encephalitis; enzyme linked immunosorbent assay; epileptic state; febrile convulsion; Guillain Barre syndrome; headache; Herpesviridae; hippocampus; hospitalization; human; Human metapneumovirus; Human respiratory syncytial virus; immune response; Influenza virus; Measles virus; mental disease; microglia; mortality; nerve cell; nervous system inflammation; nonhuman; nuclear magnetic resonance imaging; peripheral nerve; pneumonia; respiratory tract infection; respiratory virus; Review; virus infection; virus replication","Afonso, C.L., Amarasinghe, G.K., Bányai, K., Bào, Y., Basler, C.F., Bavari, S., Taxonomy of the order Mononegavirales: update 2016 (2016) Arch. Virol, 161, pp. 2351-2360. , 27216929; Akins, P.T., Belko, J., Uyeki, T.M., Axelrod, Y., Lee, K.K., Silverthorn, J., H1N1 encephalitis with malignant edema and review of neurologic complications from influenza (2010) Neurocrit. Care, 13, pp. 396-406. , 20811962; Algahtani, H., Subahi, A., Shirah, B., Neurological complications of middle east respiratory syndrome coronavirus: a report of two cases and review of the literature (2016) Case Rep. Neurol. Med, 2016, p. 3502683. , 27239356; Alvarez, R., Harrod, K.S., Shieh, W.-J., Zaki, S., Tripp, R.A., Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies (2004) J. Virol, 78, pp. 14003-14011. , 15564507; Amarasinghe, G.K., Aréchiga Ceballos, N.G., Banyard, A.C., Basler, C.F., Bavari, S., Bennett, A.J., Taxonomy of the order Mononegavirales: update 2018 (2018) Arch. Virol, 163, pp. 2283-2294. , 29637429; Antonucci, R., Chiappe, S., Porcella, A., Rosatelli, D., Fanos, V., Bronchiolitis-associated encephalopathy in critically-ill infants: an underestimated complication? (2010) J. Matern. Fetal Neonatal. Med, 23, pp. 431-436. , 19701864; Antonucci, R., Fanos, V., Acute encephalopathy associated with respiratory syncytial virus infections in childhood. A literature review (2005) Minerva Pediatr, 57, pp. 137-142. , 16170298; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by human respiratory coronaviruses (2000) J. Virol, 74, pp. 8913-8921. , 10982334; Arnold, J.C., Singh, K.K., Milder, E., Spector, S.A., Sawyer, M.H., Gavali, S., Human metapneumovirus associated with central nervous system infection in children (2009) Pediatr. Infect. Dis. J, 28, pp. 1057-1060. , 19755929; Asadi-Pooya, A.A., Yaghoubi, E., Nikseresht, A., Moghadami, M., Honarvar, B., The neurological manifestations of H1N1 influenza infection; diagnostic challenges and recommendations (2011) Iran. J. Med. Sci, 36, pp. 36-39. , 23365476; Barthold, S.W., de Souza, M.S., Smith, A.L., Susceptibility of laboratory mice to intranasal and contact infection with coronaviruses of other species (1990) Lab. Anim. Sci, 40, pp. 481-485. , 2170746; Bergmann, C.C., Lane, T.E., Stohlman, S.A., Coronavirus infection of the central nervous system: host-virus stand-off (2006) Nat. Rev. Microbiol, 4, pp. 121-132. , 16415928; Bouvier, N.M., Palese, P., The biology of influenza viruses (2008) Vaccine, 26, pp. D49-D53. , 19230160; Burks, J.S., DeVald, B.L., Jankovsky, L.D., Gerdes, J.C., Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients (1980) Science, 209, pp. 933-934. , 7403860; Cabeça, T.K., Granato, C., Bellei, N., Epidemiological and clinical features of human coronavirus infections among different subsets of patients (2013) Influenza Other Respir. Viruses, 7, pp. 1040-1047. , 23462106; Cappel, R., Thiry, L., Clinet, G., Viral antibodies in the CSF after acute CNS infections (1975) Arch. Neurol, 32, pp. 629-631. , 1164214; Cavallaro, J.J., Maassab, H.F., Adaptation of respiratory syncytial (RS) virus to brain of suckling mice (1966) Proc. Soc. Exp. Biol. Med, 121, pp. 37-41. , 5323239; Cavallaro, J.J., Maassab, H.F., Abrams, G.D., An immunofluorescent and histopathological study of respiratory syncytial (RS) virus encephalitis in suckling mice (1967) Proc. Soc. Exp. Biol. Med, 124, pp. 1059-1064. , 5337605; Chiu, S.S., Tse, C.Y.C., Lau, Y.L., Peiris, M., Influenza a infection is an important cause of febrile seizures (2001) Pediatrics, 108. , 11581471; Dahm, T., Rudolph, H., Schwerk, C., Schroten, H., Tenenbaum, T., Neuroinvasion and inflammation in viral central nervous system infections (2016) Mediators Inflamm, 2016, p. 8562805. , 27313404; Desforges, M., Le Coupanec, A., Brison, É., Meessen-Pinard, M., Talbot, P.J., Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans (2014) Infectious Diseases and Nanomedicine I, pp. 75-96. , a, Adhikari R., Thapa S., (eds), India, Springer, “,”, eds; Desforges, M., Le Coupanec, A., Stodola, J.K., Meessen-Pinard, M., Talbot, P.J., Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis (2014) Virus Res, 194, pp. 145-158. , b, 25281913; Ding, Y.Q., He, L., Zhang, Q.L., Huang, Z.X., Che, X.Y., Hou, J.L., Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways (2004) J. Pathol, 203, pp. 622-630. , 15141376; Edwards, K.M., Zhu, Y., Griffin, M.R., Weinberg, G.A., Hall, C.B., Szilagyi, P.G., Burden of human metapneumovirus infection in young children (2013) N. Engl. J. Med, 368, pp. 633-643. , 23406028; Eisenhut, M., Extrapulmonary manifestations of severe respiratory syncytial virus infection—a systematic review (2006) Crit. Care, 10, p. R107. , 16859512; Englund, J., Feuchtinger, T., Ljungman, P., Viral infections in immunocompromised patients (2011) Biol. Blood Marrow Transplant, 17, pp. S2-S5. , 21195305; Espinoza, J.A., Bohmwald, K., Céspedes, P.F., Gómez, R.S., Riquelme, S.A., Cortés, C.M., Impaired learning resulting from respiratory syncytial virus infection (2013) Proc. Natl. Acad. Sci. U S A, 110, pp. 9112-9117. , 23650398; Esposito, S., Salice, P., Bosis, S., Ghiglia, S., Tremolati, E., Tagliabue, C., Altered cardiac rhythm in infants with bronchiolitis and respiratory syncytial virus infection (2010) BMC Infect. Dis, 10, p. 305. , 20969802; Fok, A., Mateevici, C., Lin, B., Chandra, R.V., Chong, V.H.T., Encephalitis-associated human metapneumovirus pneumonia in adult, australia (2015) Emerg. Infect. Dis, 21, pp. 2074-2076. , 26488420; Gaunt, E.R., Hardie, A., Claas, E.C.J., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J. Clin. Microbiol, 48, pp. 2940-2947. , 20554810; Glass, W.G., Subbarao, K., Murphy, B., Murphy, P.M., Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice (2004) J. Immunol, 173, pp. 4030-4039. , 15356152; Goenka, A., Michael, B.D., Ledger, E., Hart, I.J., Absoud, M., Chow, G., Neurological manifestations of influenza infection in children and adults: results of a national british surveillance study (2014) Clin. Infect. Dis, 58, pp. 775-784. , 24352349; Gonzalez-Scarano, F., Tyler, K.L., Molecular pathogenesis of neurotropic viral infections (1987) Ann. Neurol, 22, pp. 565-574. , 3322182; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37. , 16503362; Hamelin, M.E., Prince, G.A., Gomez, A.M., Kinkead, R., Boivin, G., Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice (2006) J. Infect. Dis, 193, pp. 1634-1642. , 16703506; Hanna, S., Tibby, S., Durward, A., Murdoch, I., Incidence of hyponatraemia and hyponatraemic seizures in severe respiratory syncytial virus bronchiolitis (2003) Acta Paediatr, 92, pp. 430-434. , 12801108; Hata, M., Ito, M., Kiyosawa, S., Kimpara, Y., Tanaka, S., Yamashita, T., A fatal case of encephalopathy possibly associated with human Metapneumovirus infection (2007) Jpn. J. Infect. Dis, 60, pp. 328-329. , 17881883; Hirayama, K., Sakazaki, H., Murakami, S., Yonezawa, S., Fujimoto, K., Seto, T., Sequential MRI, SPECT and PET in respiratory syncytial virus encephalitis (1999) Pediatr. Radiol, 29, pp. 282-286. , 10199908; Hosseini, S., Wilk, E., Michaelsen-Preusse, K., Gerhauser, I., Baumgärtner, W., Geffers, R., Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function (2018) J. Neurosci, 38, pp. 3060-3080. , 29487124; Hung, E.C.W., Chim, S.S.C., Chan, P.K.S., Tong, Y.K., Ng, E.K.O., Chiu, R.W.K., Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome (2003) Clin. Chem, 49, pp. 2108-2109. , 14633896; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice (2006) Virology, 349, pp. 335-346. , 16527322; Jacomy, H., Talbot, P.J., Vacuolating encephalitis in mice infected by human coronavirus OC43 (2003) Virology, 315, pp. 20-33. , 14592756; Jang, H., Boltz, D., McClaren, J., Pani, A.K., Smeyne, M., Korff, A., Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice (2012) J. Neurosci, 32, pp. 1545-1559. , 22302798; Jang, H., Boltz, D., Sturm-Ramirez, K., Shepherd, K.R., Jiao, Y., Webster, R., Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration (2009) Proc. Natl. Acad. Sci. U S A, 106, pp. 14063-14068. , 19667183; Jeannet, N., van den Hoogen, B.G., Schefold, J.C., Suter-Riniker, F., Sommerstein, R., Cerebrospinal fluid findings in an adult with human metapneumovirus-associated encephalitis (2017) Emerg. Infect. Dis, 23, p. 370. , 28098534; Jurgens, H.A., Amancherla, K., Johnson, R.W., Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice (2012) J. Neurosci, 32, pp. 3958-3968. , 22442063; Kaida, A., Iritani, N., Kubo, H., Shiomi, M., Kohdera, U., Murakami, T., Seasonal distribution and phylogenetic analysis of human metapneumovirus among children in Osaka City, Japan (2006) J. Clin. Virol, 35, pp. 394-399. , 16460998; Kapila, C.C., Kaul, S., Kapur, S.C., Kalayanam, T.S., Banerjee, D., Neurological and hepatic disorders associated with influenza (1958) Br. Med. J, 2, pp. 1311-1314. , 13596594; Kawashima, H., Ioi, H., Ushio, M., Yamanaka, G., Matsumoto, S., Nakayama, T., Cerebrospinal fluid analysis in children with seizures from respiratory syncytial virus infection (2009) Scand. J. Infect. Dis, 41, pp. 228-231. , 19117245; Kawashima, H., Kashiwagi, Y., Ioi, H., Morichi, S., Oana, S., Yamanaka, G., Production of chemokines in respiratory syncytial virus infection with central nervous system manifestations (2012) J. Infect. Chemother, 18, pp. 827-831. , 22572852; Kho, N., Kerrigan, J.F., Tong, T., Browne, R., Knilans, J., Respiratory syncytial virus infection and neurologic abnormalities: retrospective cohort study (2004) J. Child Neurol, 19, pp. 859-864. , 15658790; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Classification and nomenclature of viruses (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 1326-1327. , San Diego, Elsevier, (Eds). “,”; King, A.M.Q., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Gorbalenya, A.E., Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2018) (2018) Arch. Virol, 163, pp. 2601-2631. , 29754305; Kirin, B.K., Topić, R.Z., Dodig, S., Hepatitis during respiratory syncytial virus infection—a case report (2013) Biochem. Med, 23, pp. 112-116. , 23457772; Koyuncu, O.O., Hogue, I.B., Enquist, L.W., Virus infections in the nervous system (2013) Cell Host Microbe, 13, pp. 379-393. , 23601101; Kutter, J.S., Spronken, M.I., Fraaij, P.L., Fouchier, R.A.M., Herfst, S., Transmission routes of respiratory viruses among humans (2018) Curr. Opin. Virol, 28, pp. 142-151. , 29452994; Landau, Y.E., Grisaru-Soen, G., Reif, S., Fattal-Valevski, A., Pediatric neurologic complications associated with influenza A H1N1 (2011) Pediatr. Neurol, 44, pp. 47-51. , 21147387; Lau, K.-K., Yu, W.-C., Chu, C.-M., Lau, S.-T., Sheng, B., Yuen, K.Y., Possible central nervous system infection by SARS coronavirus (2004) Emerg. Infect. Dis, 10, pp. 342-344. , 15030709; Li, X.-Q., Fu, Z.F., Alvarez, R., Henderson, C., Tripp, R.A., Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein (2006) J. Virol, 80, pp. 537-540. , 16352577; Li, Y., Fu, L., Gonzales, D.M., Lavi, E., Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia (2004) J. Virol, 78, pp. 3398-3406. , 15016862; Li, Y., Li, H., Fan, R., Wen, B., Zhang, J., Cao, X., Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children (2016) Intervirology, 59, pp. 163-169. , 28103598; Li, F., Wang, Y., Yu, L., Cao, S., Wang, K., Yuan, J., Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during japanese encephalitis virus infection (2015) J. Virol, 89, pp. 5602-5614. , 25762733; Liang, C.-Y., Yang, C.-H., Lin, J.-N., Focal encephalitis, meningitis, and acute respiratory distress syndrome associated with influenza A infection (2018) Med. Princ. Pract, 27, pp. 193-196. , 29402867; Liu, Y.R., Haas, D.L., Poore, S., Isakovic, S., Gahan, M., Mahalingam, S., Human metapneumovirus establishes persistent infection in the lungs of mice and is reactivated by glucocorticoid treatment (2009) J. Virol, 83, pp. 6837-6848. , 19357175; Louten, J., Chapter 10—influenza viruses (2016) Essential Human Virology, pp. 171-191. , Louten J., (ed), Boston, Academic Press, “,”, ed; Manjunatha, N., Math, S., Kulkarni, G., Chaturvedi, S., The neuropsychiatric aspects of influenza/swine flu: a selective review (2011) Ind. Psychiatry J, 20, pp. 83-90. , 23271861; Matoba, Y., Aoki, Y., Tanaka, S., Yahagi, K., Shimotai, Y., Matsuzaki, Y., An outbreak of human coronavirus OC43 during the 2014–2015 influenza season in yamagata, Japan (2015) Jpn. J. Infect. Dis, 68, pp. 442-445. , 26399927; Matsuda, K., Park, C.H., Sunden, Y., Kimura, T., Ochiai, K., Kida, H., The vagus nerve is one route of transneural invasion for intranasally inoculated influenza A virus in mice (2004) Vet. Pathol, 41, pp. 101-107. , 15017022; Matsuda, K., Shibata, T., Sakoda, Y., Kida, H., Kimura, T., Ochiai, K., In vitro demonstration of neural transmission of avian influenza A virus (2005) J. Gen. Virol, 86, pp. 1131-1139. , 15784907; McGavern, D.B., Kang, S.S., Illuminating viral infections in the nervous system (2011) Nat. Rev. Immunol, 11, pp. 318-329. , 21508982; Meijer, W.J., Linn, F.H.H., Wensing, A.M.J., Leavis, H.L., van Riel, D., GeurtsvanKessel, C.H., Acute influenza virus-associated encephalitis and encephalopathy in adults: a challenging diagnosis (2016) JMM Case Rep, 3. , 28348797; Miner, J.J., Diamond, M.S., Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier (2016) Curr. Opin. Immunol, 38, pp. 18-23. , 26590675; Miyamoto, K., Fujisawa, M., Hozumi, H., Tsuboi, T., Kuwashima, S., Hirao, J.-I., Systemic inflammatory response syndrome and prolonged hypoperfusion lesions in an infant with respiratory syncytial virus encephalopathy (2013) J. Infect. Chemother, 19, pp. 978-982. , 23354937; Mizuguchi, M., Influenza encephalopathy and related neuropsychiatric syndromes (2013) Influenza Other Respir. Viruses, 7, pp. 67-71. , 24215384; Mizuguchi, M., Yamanouchi, H., Ichiyama, T., Shiomi, M., Acute encephalopathy associated with influenza and other viral infections (2007) Acta Neurol. Scand, 115, pp. 45-56. , 17362276; Morichi, S., Kawashima, H., Ioi, H., Ushio, M., Yamanaka, G., Kashiwagi, Y., Cerebrospinal fluid NOx (nitrite/nitrate) in RSV-infected children with CNS symptoms (2009) J. Infect, 59, pp. 299-301. , 19665802; Morichi, S., Kawashima, H., Ioi, H., Yamanaka, G., Kashiwagi, Y., Hoshika, A., Classification of acute encephalopathy in respiratory syncytial virus infection (2011) J. Infect. Chemother, 17, pp. 776-781. , 21647570; Morichi, S., Morishita, N., Ishida, Y., Oana, S., Yamanaka, G., Kashiwagi, Y., Examination of neurological prognostic markers in patients with respiratory syncytial virus-associated encephalopathy (2017) Int. J. Neurosci, 127, pp. 44-50. , 26732732; Morton, R.E., Dinwiddie, R., Marshall, W.C., Matthew, D.J., Respiratory syncytial virus infection causing neurological disorder in neonates (1981) Lancet, 317, pp. 1426-1427. , 6113386; Muhammad Ismail, H.I., Teh, C.M., Lee, Y.L., Neurologic manifestations and complications of pandemic influenza A H1N1 in Malaysian children: what have we learnt from the ordeal? (2015) Brain Dev, 37, pp. 120-129. , 24746706; Murray, R.S., Brown, B., Brain, D., Cabirac, G.F., Detection of coronavirus RNA and antigen in multiple sclerosis brain (1992) Ann. Neurol, 31, pp. 525-533. , 1596089; Newland, J.G., Romero, J.R., Varman, M., Drake, C., Holst, A., Safranek, T., Encephalitis associated with influenza B virus infection in 2 children and a review of the literature (2003) Clin. Infect. Dis, 36, pp. e87-e95. , 12652406; Ng, Y.T., Cox, C., Atkins, J., Butler, I.J., Encephalopathy associated with respiratory syncytial virus bronchiolitis (2001) J. Child Neurol, 16, pp. 105-108. , 11292214; Nichols, W.G., Peck Campbell, A.J., Boeckh, M., Respiratory viruses other than influenza virus: impact and therapeutic advances (2008) Clin. Microbiol. Rev, 21, pp. 274-290. , 18400797; Niizuma, T., Okumura, A., Kinoshita, K., Shimizu, T., Acute encephalopathy associated with human metapneumovirus infection (2014) Jpn. J. Infect. Dis, 67, pp. 213-215. , 24858612; Otake, Y., Yamagata, T., Morimoto, Y., Imi, M., Mori, M., Aihara, T., Elevated CSF IL-6 in a patient with respiratory syncytial virus encephalopathy (2007) Brain Dev, 29, pp. 117-120. , 16920309; Paisley, J.W., Bruhn, F.W., Lauer, B.A., McIntosh, K., Type a2 influenza viral infections in children (1978) Am. J. Dis. Child, 132, pp. 34-36. , 623060; Paiva, T.M., Theotonio, G., Paulino, R.S., Benega, M.A., Silva, D.B.B., Borborema, S.E.T., Influenza virus A(H3N2) strain isolated from cerebrospinal fluid from a patient presenting myelopathy post infectious (2013) J. Clin. Virol, 58, pp. 283-285. , 23809474; Paksu, M.S., Aslan, K., Kendirli, T., Akyildiz, B.N., Yener, N., Yildizdas, R.D., Neuroinfluenza: evaluation of seasonal influenza associated severe neurological complications in children (a multicenter study) (2018) Childs Nerv. Syst, 34, pp. 335-347. , 28762041; Park, C.H., Ishinaka, M., Takada, A., Kida, H., Kimura, T., Ochiai, K., The invasion routes of neurovirulent A Hong Kong 483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice (2002) Arch. Virol, 147, pp. 1425-1436. , 12111416; Peiris, J.S., Tang, W.H., Chan, K.H., Khong, P.L., Guan, Y., Lau, Y.L., Children with respiratory disease associated with metapneumovirus in Hong Kong (2003) Emerg. Infect. Dis, 9, pp. 628-633. , 12781000; Perlman, S., Evans, G., Afifi, A., Effect of olfactory-bulb ablation on spread of a neurotropic coronavirus into the mouse-brain (1990) J. Exp. Med, 172, pp. 1127-1132. , 1698910; Popescu, C.P., Florescu, S.A., Lupulescu, E., Zaharia, M., Tardei, G., Lazar, M., Neurologic complications of influenza B virus infection in adults, Romania (2017) Emerg. Infect. Dis, 23, pp. 574-581. , 28322689; Resa-Infante, P., Recuero-Checa, M.Á., Zamarreño, N., Llorca, Ó., Ortín, J., Structural and functional characterization of an influenza virus RNA polymerase-genomic RNA complex (2010) J. Virol, 84, pp. 10477-10487. , 20702645; Roe, K., Kumar, M., Lum, S., Orillo, B., Nerurkar, V.R., Verma, S., West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases (2012) J. Gen. Virol, 93, pp. 1193-1203. , 22398316; Ruisanchez-Nieva, A., Martinez-Arroyo, A., Gomez-Beldarrain, M., Bocos Portillo, J., Garcia-Monco, J.C., Influenza-associated seizures in healthy adults: report of 3 cases (2017) Epilepsy Behav. Case Rep, 8, pp. 12-13. , 28652973; Sadasivan, S., Zanin, M., O’Brien, K., Schultz-Cherry, S., Smeyne, R.J., Induction of microglia activation after infection with the non-neurotropic A/CA/04/2009 H1N1 influenza virus (2015) PLoS One, 10. , 25861024; Salonen, O., Koskiniemi, M., Saari, A., Myllylä, V., Pyhälä, R., Airaksinen, L., Myelitis associated with influenza A virus infection (1997) J. Neurovirol, 3, pp. 83-85. , 9147826; Sánchez Fernández, I., Rebollo Polo, M., Muñoz-Almagro, C., Monfort Carretero, L., Fernández Ureña, S., Rueda Muñoz, A., Human metapneumovirus in the cerebrospinal fluid of a patient with acute encephalitis (2012) Arch. Neurol, 69, pp. 649-652. , 22232205; Schildgen, O., Glatzel, T., Geikowski, T., Scheibner, B., Matz, B., Bindl, L., Human metapneumovirus RNA in encephalitis patient (2005) Emerg. Infect. Dis, 11, pp. 467-470. , 15757568; Schildgen, V., van den Hoogen, B., Fouchier, R., Tripp, R.A., Alvarez, R., Manoha, C., Human metapneumovirus: lessons learned over the first decade (2011) Clin. Microbiol. Rev, 24, pp. 734-754. , 21976607; Shinya, K., Shimada, A., Ito, T., Otsuki, K., Morita, T., Tanaka, H., Avian influenza virus intranasally inoculated infects the central nervous system of mice through the general visceral afferent nerve (2000) Arch. Virol, 145, pp. 187-195. , 10664417; Shinya, K., Silvano, F.D., Morita, T., Shimada, A., Nakajima, M., Ito, T., Encephalitis in mice inoculated intranasally with an influenza virus strain originated from a water bird (1998) J. Vet. Med. Sci, 60, pp. 627-629. , 9637299; Simon, M., Hernu, R., Cour, M., Casalegno, J.S., Lina, B., Argaud, L., Fatal influenza A(H1N1)pdm09 encephalopathy in immunocompetent man (2013) Emerg. Infect. Dis, 19, pp. 1005-1007. , 23735733; Sivadon-Tardy, V., Orlikowski, D., Porcher, R., Sharshar, T., Durand, M.-C., Enouf, V., Guillain-barré syndrome and influenza virus infection (2009) Clin. Infect. Dis, 48, pp. 48-56. , 19025491; Skowronski, D.M., Chambers, C., De Serres, G., Dickinson, J.A., Winter, A.-L., Hickman, R., Early season co-circulation of influenza A(H3N2) and B(Yamagata): interim estimates of 2017/18 vaccine effectiveness, Canada, January 2018 (2018) Eurosurveillance, 23, p. 5. , 29409570; Steininger, C., Popow-Kraupp, T., Laferl, H., Seiser, A., Gödl, I., Djamshidian, S., Acute encephalopathy associated with influenza A virus infection (2003) Clin. Infect. Dis, 36, pp. 567-574. , 12594636; Stewart, J.N., Mounir, S., Talbot, P.J., Human coronavirus gene-expression in the brains of multiple-sclerosis patients (1992) Virology, 191, pp. 502-505. , 1413524; St-Jean, J.R., Desforges, M., Almazán, F., Jacomy, H., Enjuanes, L., Talbot, P.J., Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone (2006) J. Virol, 80, pp. 3670-3674. , 16537637; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus oc43: genetic stability and neuroinvasion (2004) J. Virol, 78, pp. 8824-8834. , 15280490; Su, S., Fu, X., Li, G., Kerlin, F., Veit, M., Novel influenza D virus: epidemiology, pathology, evolution and biological characteristics (2017) Virulence, 8, pp. 1580-1591. , 28812422; Suen, W.W., Prow, N.A., Hall, R.A., Bielefeldt-Ohmann, H., Mechanism of west nile virus neuroinvasion: a critical appraisal (2014) Viruses, 6, pp. 2796-2825. , 25046180; Swanson, P.A., II, McGavern, D.B., Chapter 2. Portals of viral entry into the central nervous system (2015) The Blood-Brain Barrier in Health and Disease, pp. 23-47. , a, Dorovini-Zis K., (ed), Boca Raton, FL, CRC Press, “,”, ed; Swanson, P.A., II, McGavern, D.B., Viral diseases of the central nervous system (2015) Curr. Opin. Virol, 11, pp. 44-54. , b, 25681709; Sweetman, L.L., Ng, Y.T., Butler, I.J., Bodensteiner, J.B., Neurologic complications associated with respiratory syncytial virus (2005) Pediatr. Neurol, 32, pp. 307-310. , 15866430; Talbot, H.K., Falsey, A.R., The diagnosis of viral respiratory disease in older adults (2010) Clin. Infect. Dis, 50, pp. 747-751. , 20121411; Tan, Y.L., Wee, T.C., Adult human metapneumovirus encephalitis: a case report highlighting challenges in clinical management and functional outcome (2017) Med. J. Malaysia, 72, pp. 372-373. , 29308778; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology (2010) Clin. Microbiol. Rev, 23, pp. 74-98. , 20065326; Turner, E.B., Discussion on influenza (1919) Proc. R. Soc. Med, 12, pp. 76-90. , 19980438; van den Hoogen, B.G., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Analysis of the genomic sequence of a human metapneumovirus (2002) Virology, 295, pp. 119-132. , 12033771; van den Hoogen, B.G., de Jong, J., Groen, J., Kuiken, T., de Groot, R., Fouchier, R.A.M., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat. Med, 7, pp. 719-724. , 11385510; Vehapoglu, A., Turel, O., Uygur Sahin, T., Kutlu, N.O., Iscan, A., Clinical significance of human metapneumovirus in refractory status epilepticus and encephalitis: case report and review of the literature (2015) Case Rep. Neurol. Med, 2015, p. 131780. , 26664779; Wallace, S.J., Zealley, H., Neurological, electroencephalographic, and virological findings in febrile children (1970) Arch. Dis. Child, 45, pp. 611-623. , 4320122; Webster, D.L., Gardner, A.H., Dye, T.J., Chima, R.S., Status epilepticus: a possible association with human metapneumovirus infection (2014) Pediatrics, 133, pp. e747-e750. , 24515507; Wheeler, D.L., Sariol, A., Meyerholz, D.K., Perlman, S., Microglia are required for protection against lethal coronavirus encephalitis in mice (2018) J. Clin. Invest, 128, pp. 931-943. , 29376888; Williams, R.K., Jiang, G.S., Snyder, S.W., Frana, M.F., Holmes, K.V., Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis-virus (MHV)-A59 from mouse-liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice (1990) J. Virol, 64, pp. 3817-3823. , 2164599; Xia, J.-B., Zhu, J., Hu, J., Wang, L.-M., Zhang, H., H7N9 influenza A-induced pneumonia associated with acute myelitis in an adult (2014) Intern. Med, 53, pp. 1093-1095. , 24827492; Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis (2005) Clin. Infect. Dis, 41, pp. 1089-1096. , 16163626; Xu, L., Gao, H., Zeng, J., Liu, J., Lu, C., Guan, X., A fatal case associated with respiratory syncytial virus infection in a young child (2018) BMC Infect. Dis, 18, p. 217. , 29751747; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-e76. , 14702500; Yu, J.E., Kim, M., Lee, J.-H., Chang, B.-J., Song, C.-S., Nahm, S.-S., Neonatal influenza infection causes pathological changes in the mouse brain (2014) Vet. Res, 45, p. 63. , 24917271; Yuan, X., Hu, T., He, H., Qiu, H., Wu, X., Chen, J., Respiratory syncytial virus prolifically infects N2a neuronal cells, leading to TLR4 and nucleolin protein modulations and RSV F protein co-localization with TLR4 and nucleolin (2018) J. Biomed. Sci, 25, p. 13. , 29427996; Zlateva, K.T., Van Ranst, M., Detection of subgroup B respiratory syncytial virus in the cerebrospinal fluid of a patient with respiratory syncytial virus pneumonia (2004) Pediatr. Infect. Dis. J, 23, pp. 1065-1066. , 15545869","Kalergis, A.M.; Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileChile; email: akalergis@bio.puc.cl",,"Frontiers Media S.A.",16625102,,,,"English","Front. Cell. Neurosci.",Review,"Final",Open Access,Scopus,2-s2.0-85056855752 "Uddin S.M.I., Englund J.A., Kuypers J.Y., Chu H.Y., Steinhoff M.C., Khatry S.K., Leclerq S.C., Tielsch J.M., Mullany L.C., Shrestha L., Katz J.","57204453345;35227211100;7006787102;55695142500;57200155143;6701362978;6603954652;57195524035;6602908826;6603027037;7403970085;","Burden and risk factors for coronavirus infections in infants in rural Nepal",2018,"Clinical Infectious Diseases","67","10",,"1507","1514",,3,"10.1093/cid/ciy317","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055643514&doi=10.1093%2fcid%2fciy317&partnerID=40&md5=e4bcfcccba5a495b3307fc9479d72b50","Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205-2103, United States; Seattle Children's Hospital and Research Institute, Seattle, United States; Molecular Virology Laboratory, School of Medicine, Seattle, United States; Harborview Medical Center, University of Washington, Seattle, United States; Global Health Center, Cincinnati Children's Hospital Medical Center, Ohio, United States; Nepal Nutrition Intervention Project-Sarlahi, Kathmandu, Nepal; Department of Global Health, Milken Institute School of Public Health, George Washington UniversityDC, United States; Department of Pediatrics and Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal","Uddin, S.M.I., Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205-2103, United States; Englund, J.A., Seattle Children's Hospital and Research Institute, Seattle, United States; Kuypers, J.Y., Molecular Virology Laboratory, School of Medicine, Seattle, United States; Chu, H.Y., Harborview Medical Center, University of Washington, Seattle, United States; Steinhoff, M.C., Global Health Center, Cincinnati Children's Hospital Medical Center, Ohio, United States; Khatry, S.K., Nepal Nutrition Intervention Project-Sarlahi, Kathmandu, Nepal; Leclerq, S.C., Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205-2103, United States, Nepal Nutrition Intervention Project-Sarlahi, Kathmandu, Nepal; Tielsch, J.M., Department of Global Health, Milken Institute School of Public Health, George Washington UniversityDC, United States; Mullany, L.C., Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205-2103, United States; Shrestha, L., Department of Pediatrics and Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal; Katz, J., Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205-2103, United States","Background Knowledge of risk factors for symptomatic human coronavirus (HCoV) infections in children in community settings is limited. We estimated the disease burden and impact of birth-related, maternal, household, and seasonal factors on HCoV infections among children from birth to 6 months old in rural Nepal. Methods Prospective, active, weekly surveillance for acute respiratory infections (ARIs) was conducted in infants over a period of 3 years during 2 consecutive, population-based randomized trials of maternal influenza immunization. Midnasal swabs were collected for acute respiratory symptoms and tested for HCoV and other viruses by reverse-transcription polymerase chain reaction. Association between HCoV incidence and potential risk factors was modeled using Poisson regression. Results Overall, 282 of 3505 (8%) infants experienced an HCoV ARI within the first 6 months of life. HCoV incidence overall was 255.6 (95% confidence interval [CI], 227.3-286.5) per 1000 person-years, and was more than twice as high among nonneonates than among neonates (incidence rate ratio [IRR], 2.53; 95% CI, 1.52-4.21). HCoV ARI incidence was also positively associated with the number of children <5 years of age per room in a household (IRR, 1.13; 95% CI, 1.01-1.28). Of the 296 HCoV infections detected, 46% were coinfections with other respiratory viruses. While HCoVs were detected throughout the study period, seasonal variation was also observed, with incidence peaking in 2 winters (December-February) and 1 autumn (September-November). Conclusions HCoV is associated with a substantial proportion of illnesses among young infants in rural Nepal. There is an increased risk of HCoV infection beyond the first month of life. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.","acute respiratory infection; coronavirus; epidemiology; infants; respiratory virus","influenza vaccine; Article; autumn; Bocaparvovirus; controlled study; Coronavirus infection; coughing; crowding (area); disease burden; dyspnea; feeding difficulty; female; fever; household; human; Human rhinovirus; incidence; infant; infection risk; influenza; influenza vaccination; Influenza virus; major clinical study; male; mixed infection; Nepal; newborn; newborn period; nose smear; parvovirus infection; pregnant woman; priority journal; prospective study; randomized controlled trial; respiratory syncytial virus infection; respiratory tract infection; reverse transcription polymerase chain reaction; Rhinovirus infection; risk factor; rural area; seasonal variation; wheezing; adult; Coronavirinae; Coronavirus infection; cost of illness; epidemiological monitoring; genetics; isolation and purification; pregnancy; preschool child; regression analysis; respiratory tract infection; risk factor; rural population; season; virology; young adult; Adult; Child, Preschool; Coinfection; Coronavirus; Coronavirus Infections; Cost of Illness; Epidemiological Monitoring; Female; Humans; Incidence; Infant; Infant, Newborn; Male; Nepal; Pregnancy; Pregnant Women; Prospective Studies; Regression Analysis; Respiratory Tract Infections; Risk Factors; Rural Population; Seasons; Young Adult","Liu, L., Oza, S., Hogan, D., Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: An updated systematic analysis (2015) Lancet, 385, pp. 430-440; The Top 10 Causes of Death, , http://www.who.int/mediacentre/factsheets/fs310/en/, World Health Organization. Accessed 26 April 2018; Pneumonia, , http://www.who.int/mediacentre/factsheets/fs331/en/, World Health Organization. Accessed 26 April 2018; Mäkelä, M.J., Puhakka, T., Ruuskanen, O., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36, pp. 539-542; Arden, K.E., McErlean, P., Nissen, M.D., Sloots, T.P., Mackay, I.M., Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections (2006) J Med Virol, 78, pp. 1232-1240; Su, S., Wong, G., Shi, W., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Jean, A.M.D., Quach, C.M.D., Yung, A.B.S., Semret, M.M.D., Severity and outcome associated with human coronavirus OC43 infections among children (2013) Pediatr Infect Dis J, 32, p. 329; Greenberg, S.B., Update on rhinovirus and coronavirus infections (2011) Semin Respir Crit Care Med, 32, pp. 433-446; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Gorse, G.J., Donovan, M.M., Patel, G.B., Balasubramanian, S., Lusk, R.H., Coronavirus and other respiratory illnesses comparing older with young adults (2015) Am J Med, 128, p. 1251e20; Cabeça, T.K., Granato, C., Bellei, N., Epidemiological and clinical features of human coronavirus infections among different subsets of patients (2013) Influenza Other Respir Viruses, 7, pp. 1040-1047; Steinhoff, M.C., Katz, J., Englund, J.A., Year-round influenza immunisation during pregnancy in Nepal: A phase 4, randomised, placebo-controlled trial (2017) Lancet Infect Dis, 17, pp. 981-989; Tielsch, J.M., Steinhoff, M., Katz, J., Designs of two randomized, community-based trials to assess the impact of influenza immunization during pregnancy on respiratory illness among pregnant women and their infants and reproductive outcomes in rural Nepal (2015) BMC Pregnancy Childbirth, 15, p. 40; Kuypers, J., Martin, E.T., Heugel, J., Wright, N., Morrow, R., Englund, J.A., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119, pp. e70-e76; Chu, H.Y., Katz, J., Tielsch, J., Respiratory syncytial virus infection in infants in rural Nepal (2016) J Infect, 73, pp. 145-154; Villar, J., Cheikh Ismail, L., Victora, C.G., International standards for newborn weight, length, and head circumference by gestational age and sex: The newborn cross-sectional study of the INTERGROWTH-21st project (2014) Lancet, 384, pp. 857-868; Hughes, M., Katz, J., Englund, J.A., Infant vaccination timing: Beyond traditional coverage metrics for maximizing impact of vaccine programs, an example from southern Nepal (2016) Vaccine, 34, pp. 933-941; Dijkman, R., Jebbink, M.F., Gaunt, E., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Gagneur, A., Sizun, J., Vallet, S., Legr, M.C., Picard, B., Talbot, P.J., Coronavirus-related nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: A prospective study (2002) J Hosp Infect, 51, pp. 59-64; Mathew, J.L., Patwari, A.K., Gupta, P., Acute respiratory infection and pneumonia in India: A systematic review of literature for advocacy and action: UNICEF-PHFI series on newborn and child health, India (2011) Indian Pediatr, 48, pp. 191-218; Kumar, S.G., Majumdar, A., Kumar, V., Naik, B.N., Selvaraj, K., Balajee, K., Prevalence of acute respiratory infection among under-five children in urban and rural areas of Puducherry, India (2015) J Nat Sci Biol Med, 6, pp. 3-6; Taylor, S., Lopez, P., Weckx, L., Respiratory viruses and influenza-like illness: Epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample (2017) J Infect, 74, pp. 29-41; Ali, A., Akhund, T., Warraich, G.J., Respiratory viruses associated with severe pneumonia in children under 2 years old in a rural community in Pakistan (2016) J Med Virol, 88, pp. 1882-1890; Van Der Zalm, M.M., Uiterwaal, C.S., Wilbrink, B., Respiratory pathogens in respiratory tract illnesses during the first year of life: A birth cohort study (2009) Pediatr Infect Dis J, 28, pp. 472-476; Regamey, N., Kaiser, L., Roiha, H.L., Viral etiology of acute respiratory infections with cough in infancy: A community-based birth cohort study (2008) Pediatr Infect Dis J, 27, pp. 100-105; Kusel, M.M., De Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., Sly, P.D., Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study (2006) Pediatr Infect Dis J, 25, pp. 680-686; Talbot, H.K., Crowe, J.E., Edwards, K.M., Coronavirus infection and hospitalizations for acute respiratory illness in young children (2009) J Med Virol, 81, pp. 853-856; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729; Van Der Hoek, L., Ihorst, G., Sure, K., Burden of disease due to human coronavirus NL63 infections and periodicity of infection (2010) J Clin Virol, 48, pp. 104-108; Ogimi, C., Englund, J.A., Bradford, M.C., Qin, X., Boeckh, M., Waghmare, A.A., Characteristics and outcomes of coronavirus infection in children: The role of viral factors and immunocompromised state [manuscript published online ahead of print 13 February 2018] (2018) J Pediatr Infect Dis Soc; Jin, Y., Zhang, R.F., Xie, Z.P., Newly identified respiratory viruses associated with acute lower respiratory tract infections in children in Lanzou, China, from 2006 to 2009 (2012) Clin Microbiol Infect, 18, pp. 74-80; Wu, P.S., Chang, L.Y., Berkhout, B., Clinical manifestations of human coronavirus NL63 infection in children in Taiwan (2008) Eur J Pediatr, 167, pp. 75-80; Van Den Bergh, M.R., Biesbroek, G., Rossen, J.W., Associations between pathogens in the upper respiratory tract of young children: Interplay between viruses and bacteria (2012) PLoS One, 7, p. e47711; Greer, R.M., McErlean, P., Arden, K.E., Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? (2009) J Clin Virol, 45, pp. 10-15; Martin, E.T., Kuypers, J., Wald, A., Englund, J.A., Multiple versus single virus respiratory infections: Viral load and clinical disease severity in hospitalized children (2012) Influenza Other Respir Viruses, 6, pp. 71-77; Brunstein, J.D., Cline, C.L., McKinney, S., Thomas, E., Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections (2008) J Clin Microbiol, 46, pp. 97-102; Chonmaitree, T., Alvarez-Fernandez, P., Jennings, K., Symptomatic and asymptomatic respiratory viral infections in the first year of life: Association with acute otitis media development (2015) Clin Infect Dis, 60, pp. 1-9; Katz, J., West, K.P., Jr., LeClerq, S.C., Agreement between clinical examination and parental morbidity histories for children in Nepal (1998) J Trop Pediatr, 44, pp. 225-229","Katz, J.; Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, United States; email: jkatz1@jhu.edu",,"Oxford University Press",10584838,,CIDIE,"29668900","English","Clin. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85055643514 "Alshukairi A.N., Zheng J., Zhao J., Nehdi A., Baharoon S.A., Layqah L., Bokhari A., Al Johani S.M., Samman N., Boudjelal M., Ten Eyck P., Al-Mozaini M.A., Zhao J., Perlman S., Alagaili A.N.","15821823600;57210471516;57201372305;12244410500;24477253100;57204154021;57204164094;26648040700;57197857337;6603301455;57191839056;15836442400;8584763700;57204567845;37096779300;","High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia",2018,"mBio","9","5",,"","",,22,"10.1128/mBio.01985-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055670877&doi=10.1128%2fmBio.01985-18&partnerID=40&md5=b7e86b497e455d5dd538a28697291fe2","Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Department of Critical Care, King Saud Bin Abdulaziz for Health Sciences University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Kingdom of Saudi Arabia, Jeddah, Saudi Arabia; College of Science and Health Professions, King Saud Bin Abdulaziz for Health Sciences University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States; Department of Infection and Immunology, King Faisal Specialist Hospital and Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; KSU Mammals Research Chair, Zoology Department, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia","Alshukairi, A.N., Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Zheng, J., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Zhao, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Nehdi, A., Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Baharoon, S.A., Department of Critical Care, King Saud Bin Abdulaziz for Health Sciences University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Layqah, L., Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Bokhari, A., Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Kingdom of Saudi Arabia, Jeddah, Saudi Arabia; Al Johani, S.M., College of Science and Health Professions, King Saud Bin Abdulaziz for Health Sciences University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Samman, N., Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Boudjelal, M., Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Ten Eyck, P., Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States; Al-Mozaini, M.A., Department of Infection and Immunology, King Faisal Specialist Hospital and Research Center, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia; Zhao, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China; Perlman, S., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China, Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Alagaili, A.N., KSU Mammals Research Chair, Zoology Department, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia","Middle East respiratory syndrome (MERS), a highly lethal respiratory disease caused by a novel coronavirus (MERS-CoV), is an emerging disease with high potential for epidemic spread. It has been listed by the WHO and the Coalition for Epidemic Preparedness Innovations (CEPI) as an important target for vaccine development. While initially the majority of MERS cases were hospital acquired, continued emergence of MERS is attributed to community acquisition, with camels likely being the direct or indirect source. However, the majority of patients do not describe camel exposure, making the route of transmission unclear. Here, using sensitive immunological assays and a cohort of camel workers (CWs) with well-documented camel exposure, we show that approximately 50% of camel workers (CWs) in the Kingdom of Saudi Arabia (KSA) and 0% of controls were previously infected. We obtained blood samples from 30 camel herders, truck drivers, and handlers with well-documented camel exposure and from healthy donors, and measured MERS-CoV-specific enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay (IFA), and neutralizing antibody titers, as well as T cell responses. Totals of 16/30 CWs and 0/30 healthy control donors were seropositive by MERS-CoV-specific ELISA and/or neutralizing antibody titer, and an additional four CWs were seronegative but contained virus-specific T cells in their blood. Although virus transmission from CWs has not been formally demonstrated, a possible explanation for repeated MERS outbreaks is that CWs develop mild disease and then transmit the virus to uninfected individuals. Infection of some of these individuals, such as those with comorbidities, results in severe disease and in the episodic appearance of patients with MERS.IMPORTANCE The Middle East respiratory syndrome (MERS) is a coronavirus (CoV)-mediated respiratory disease. Virus transmission occurs within health care settings, but cases also appear sporadically in the community. Camels are believed to be the source for community-acquired cases, but most patients do not have camel exposure. Here, we assessed whether camel workers (CWs) with high rates of exposure to camel nasal and oral secretions had evidence of MERS-CoV infection. The results indicate that a high percentage of CWs were positive for virus-specific immune responses but had no history of significant respiratory disease. Thus, a possible explanation for repeated MERS outbreaks is that CWs develop mild or subclinical disease. These CWs then transmit the virus to uninfected individuals, some of whom are highly susceptible, develop severe disease, and are detected as primary MERS cases in the community. Copyright © 2018 Alshukairi et al.","antibody; camel workers; coronavirus; human Middle East respiratory syndrome; Middle East respiratory syndrome; T cells; virus-specific antibody response; virus-specific T cell response","neutralizing antibody; virus antibody; animal; blood; camel; cohort analysis; Coronavirus infection; disease transmission; enzyme linked immunosorbent assay; fluorescent antibody technique; human; immunology; Middle East respiratory syndrome coronavirus; occupational disease; occupational exposure; Saudi Arabia; serodiagnosis; seroepidemiology; T lymphocyte; zoonosis; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelus; Cohort Studies; Coronavirus Infections; Disease Transmission, Infectious; Enzyme-Linked Immunosorbent Assay; Fluorescent Antibody Technique; Humans; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Occupational Diseases; Occupational Exposure; Saudi Arabia; Seroepidemiologic Studies; T-Lymphocytes; Zoonoses",,,,"NLM (Medline)",21507511,,,"30377284","English","MBio",Article,"Final",Open Access,Scopus,2-s2.0-85055670877 "Munywoki P.K., Koech D.C., Agoti C.N., Cane P.A., Medley G.F., Nokes D.J.","26533067900;55601764600;36489084300;7004646930;7005195578;7006232828;","Continuous invasion by respiratory viruses observed in rural households during a respiratory syncytial virus seasonal outbreak in coastal Kenya",2018,"Clinical Infectious Diseases","67","10",,"1559","1567",,3,"10.1093/cid/ciy313","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055642125&doi=10.1093%2fcid%2fciy313&partnerID=40&md5=4e0c5059e6a4f56484c6de386758b58c","Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Hospital Road, Kilifi, Kenya; Department of Nursing and Public Health, Pwani University, Kilifi, Kenya; High Containment Microbiology, Public Health England, Salisbury, United Kingdom; Department of Global Health and Development, London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom; School of Life Sciences, Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom","Munywoki, P.K., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Hospital Road, Kilifi, Kenya, Department of Nursing and Public Health, Pwani University, Kilifi, Kenya; Koech, D.C., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Hospital Road, Kilifi, Kenya; Agoti, C.N., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Hospital Road, Kilifi, Kenya, Department of Nursing and Public Health, Pwani University, Kilifi, Kenya; Cane, P.A., High Containment Microbiology, Public Health England, Salisbury, United Kingdom; Medley, G.F., Department of Global Health and Development, London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom; Nokes, D.J., Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Hospital Road, Kilifi, Kenya, School of Life Sciences, Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom","Background Households are high-intensity close-contact environments favorable for transmission of respiratory viruses, yet little is known for low-income settings. Methods Active surveillance was completed on 47 households in rural coastal Kenya over 6 months during a respiratory syncytial virus (RSV) season. Nasopharyngeal swabs (NPSs) were taken from 483 household members twice weekly irrespective of symptoms. Using molecular diagnostics, NPSs from 6 households were screened for 15 respiratory viruses and the remainder of households only for the most frequent viruses observed: Rhinovirus (RV), human coronavirus (HCoV; comprising strains 229E, OC43, and NL63), adenovirus (AdV), and RSV (A and B). Results Of 16928 NPSs tested for the common viruses, 4259 (25.2%) were positive for ≥1 target; 596 (13.8%) had coinfections. Detection frequencies were 10.5% RV (1780), 7.5% HCoV (1274), 7.3% AdV (1232), and 3.2% RSV (537). On average, each household and individual had 6 and 3 different viruses detected over the study period, respectively. Rhinovirus and HCoV were detected in all the 47 households while AdV and RSV were detected in 45 (95.7%) and 40 (85.1%) households, respectively. The individual risk of infection over the 6-month period was 93.4%, 80.1%, 71.6%, 61.5%, and 37.1% for any virus, RV, HCoV, AdV, and RSV, respectively. NPSs collected during symptomatic days and from younger age groups had higher prevalence of virus detection relative to respective counterparts. RSV was underrepresented in households relative to hospital admission data. Conclusions In this household setting, respiratory virus infections and associated illness are ubiquitous. Future studies should address the health and economic implications of these observations. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.","developing countries; household; Kenya; respiratory viruses; transmission","Adenoviridae; adolescent; adult; age; Article; child; cohort analysis; controlled study; Coronaviridae; epidemic; female; household; human; infant; infection risk; Kenya; male; mixed infection; newborn; nonhuman; preschool child; priority journal; respiratory syncytial virus infection; respiratory virus; Rhinovirus; rural area; seashore; throat culture; virus detection; family size; genetics; health survey; Human respiratory syncytial virus; isolation and purification; middle aged; mixed infection; multiplex polymerase chain reaction; nasopharynx; respiratory syncytial virus infection; respiratory tract infection; rural population; season; virology; virus; young adult; Adolescent; Adult; Child; Child, Preschool; Cohort Studies; Coinfection; Disease Outbreaks; Family Characteristics; Female; Humans; Infant; Kenya; Male; Middle Aged; Multiplex Polymerase Chain Reaction; Nasopharynx; Public Health Surveillance; Respiratory Syncytial Virus Infections; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Rural Population; Seasons; Viruses; Young Adult","Munywoki, P.K., Hamid, F., Mutunga, M., Welch, S., Cane, P., Nokes, D.J., Improved detection of respiratory viruses in pediatric outpatients with acute respiratory illness by real-time PCR using nasopharyngeal flocked swabs (2011) J Clin Microbiol, 49, pp. 3365-3367; Falsey, A.R., Formica, M.A., Treanor, J.J., Walsh, E.E., Comparison of quantitative reverse transcription-PCR to viral culture for assessment of respiratory syncytial virus shedding (2003) J Clin Microbiol, 41, pp. 4160-4165; Liao, R.S., Tomalty, L.L., Majury, A., Zoutman, D.E., Comparison of viral isolation and multiplex real-time reverse transcription-PCR for confirmation of respiratory syncytial virus and influenza virus detection by antigen immunoassays (2009) J Clin Microbiol, 47, pp. 527-532; Munywoki, P.K., Koech, D.C., Agoti, C.N., Frequent asymptomatic respiratory syncytial virus infections during an epidemic in a rural Kenyan household cohort (2015) J Infect Dis, 212, pp. 1711-1718; Munywoki, P.K., Koech, D.C., Agoti, C.N., Influence of age, severity of infection, and co-infection on the duration of respiratory syncytial virus (RSV) shedding (2015) Epidemiol Infect, 143, pp. 804-812; Munywoki, P.K., Koech, D.C., Agoti, C.N., The source of respiratory syncytial virus infection in infants: A household cohort study in rural Kenya (2014) J Infect Dis, 209, pp. 1685-1692; Wathuo, M., Medley, G.F., Nokes, D.J., Munywoki, P.K., Quantification and determinants of the amount of respiratory syncytial virus (RSV) shed using real time PCR data from a longitudinal household study (2016) Wellcome Open Res, 1, p. 27; Scott, J.A., Bauni, E., Moisi, J.C., Profile: The Kilifi Health and Demographic Surveillance System (KHDSS) (2012) Int J Epidemiol, 41, pp. 650-657; Gunson, R.N., Collins, T.C., Carman, W.F., Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions (2005) J Clin Virol, 33, pp. 341-344; Gwaltney, J.M., Jr., Hendley, J.O., Simon, G., Jordan, W.S., Jr., Rhinovirus infections in an industrial population. I. the occurrence of illness (1966) N Engl J Med, 275, pp. 1261-1268; Monto, A.S., Bryan, E.R., Ohmit, S., Rhinovirus infections in Tecumseh, Michigan: Frequency of illness and number of serotypes (1987) J Infect Dis, 156, pp. 43-49; Monto, A.S., Napier, J.A., Metzner, H.L., The Tecumseh study of respiratory illness. I. Plan of study and observations on syndromes of acute respiratory disease (1971) Am J Epidemiol, 94, pp. 269-279; Monto, A.S., Koopman, J.S., Bryan, E.R., The Tecumseh study of illness. XIV. Occurrence of respiratory viruses, 1976-1981 (1986) Am J Epidemiol, 124, pp. 359-367; Cooney, M.K., Hall, C.E., Fox, J.P., The Seattle virus watch. 3. Evaluation of isolation methods and summary of infections detected by virus isolations (1972) Am J Epidemiol, 96, pp. 286-305; Monto, A.S., Lim, S.K., The Tecumseh study of respiratory illness. VI. Frequency of and relationship between outbreaks of coronavirus infection (1974) J Infect Dis, 129, pp. 271-276; Monto, A.S., Malosh, R.E., Petrie, J.G., Thompson, M.G., Ohmit, S.E., Frequency of acute respiratory illnesses and circulation of respiratory viruses in households with children over 3 surveillance seasons (2014) J Infect Dis, 210, pp. 1792-1799; Emukule, G.O., Mott, J.A., Spreeuwenberg, P., Influenza activity in Kenya, 2007-2013: Timing, association with climatic factors, and implications for vaccination campaigns (2016) Influenza Other Respir Viruses, 10, pp. 375-385; Onyango, C.O., Njeru, R., Kazungu, S., Influenza surveillance among children with pneumonia admitted to a district hospital in coastal Kenya, 2007-2010 (2012) J Infect Dis, 206, pp. S61-S67; Semple, M.G., Cowell, A., Dove, W., Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis (2005) J Infect Dis, 191, pp. 382-386; Fairchok, M.P., Martin, E.T., Chambers, S., Epidemiology of viral respiratory tract infections in a prospective cohort of infants and toddlers attending daycare (2010) J Clin Virol, 49, pp. 16-20; Marcone, D.N., Ellis, A., Videla, C., Viral etiology of acute respiratory infections in hospitalized and outpatient children in Buenos Aires, Argentina (2013) Pediatr Infect Dis J, 32, pp. e105-e110; Bonzel, L., Tenenbaum, T., Schroten, H., Schildgen, O., Schweitzer-Krantz, S., Adams, O., Frequent detection of viral coinfection in children hospitalized with acute respiratory tract infection using a real-time polymerase chain reaction (2008) Pediatr Infect Dis J, 27, pp. 589-594; Fowlkes, A., Giorgi, A., Erdman, D., Viruses associated with acute respiratory infections and influenza-like illness among outpatients from the Influenza Incidence Surveillance Project, 2010-2011 (2014) J Infect Dis, 209, pp. 1715-1725; Hall, C.B., Geiman, J.M., Biggar, R., Kotok, D.I., Hogan, P.M., Douglas, G.R., Jr., Respiratory syncytial virus infections within families (1976) N Engl J Med, 294, pp. 414-419","Munywoki, P.K.; Epidemiology and Demography Department, Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Hospital Road, Kenya; email: pmunywoki@gmail.com",,"Oxford University Press",10584838,,CIDIE,"29668861","English","Clin. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85055642125 "Ma Y., Wang C., Xue M., Fu F., Zhang X., Li L., Yin L., Xu W., Feng L., Liu P.","57193746534;55534754200;55496438000;7201607918;55851450100;57116608200;57204446785;55487632000;55792011500;36804440700;","The coronavirus transmissible gastroenteritis virus evades the type i interferon response through IRE1α-mediated manipulation of the MicroRNA miR-30a-5p/SOCS1/3 Axis",2018,"Journal of Virology","92","22", e00728-18,"","",,8,"10.1128/JVI.00728-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055617906&doi=10.1128%2fJVI.00728-18&partnerID=40&md5=4be8459db4a5eecf9c459ec3a25edde5","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Department of Urology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China","Ma, Y., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Wang, C., Department of Urology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; Xue, M., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Fu, F., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Zhang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Li, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Yin, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Xu, W., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Feng, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Liu, P., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China","In host innate immunity, type I interferons (IFN-I) are major antiviral molecules, and coronaviruses have evolved diverse strategies to counter the IFN-I response during infection. Transmissible gastroenteritis virus (TGEV), a member of the Alphacoronavirus family, induces endoplasmic reticulum (ER) stress and significant IFN-I production after infection. However, how TGEV evades the IFN-I antiviral response despite the marked induction of endogenous IFN-I has remained unclear. Inositol-requiring enzyme 1 α (IRE1α), a highly conserved ER stress sensor with both kinase and RNase activities, is involved in the IFN response. In this study, IRE1α facilitated TGEV replication via downmodulating the host microRNA (miR) miR-30a-5p abundance. miR-30a-5p normally enhances IFN-I antiviral activity by directly targeting the negative regulators of Janus family kinase (JAK)-signal transducer and activator of transcription (STAT), the suppressor of cytokine signaling protein 1 (SOCS1), and SOCS3. Furthermore, TGEV infection increased SOCS1 and SOCS3 expression, which dampened the IFN-I antiviral response and facilitated TGEV replication. Importantly, compared with mock infection, TGEV infection in vivo resulted in decreased miR-30a-5p levels and significantly elevated SOCS1 and SOCS3 expression in the piglet ileum. Taken together, our data reveal a new strategy used by TGEV to escape the IFN-I response by engaging the IRE1α miR-30a-5p/SOCS1/3 axis, thus improving our understanding of how TGEV escapes host innate immune defenses. IMPORTANCE Type I interferons (IFN-I) play essential roles in restricting viral infections. Coronavirus infection induces ER stress and the interferon response, which reflects different adaptive cellular processes. An understanding of how coronavirus-elicited ER stress is actively involved in viral replication and manipulates the host IFN-I response has remained elusive. Here, TGEV inhibited host miR-30a-5p via the ER stress sensor IRE1α, which led to the increased expression of negative regulators of JAK-STAT signaling cascades, namely, SOCS1 and SOCS3. Increased SOCS1 or SOCS3 expression impaired the IFN-I antiviral response, promoting TGEV replication. These findings enhance our understanding of the strategies used by coronaviruses to antagonize IFN-I innate immunity via IRE1α-mediated manipulation of the miR-30a-5p/SOCS axis, highlighting the crucial role of IRE1α in innate antiviral resistance and the potential of IRE1α as a novel target against coronavirus infection. © 2018 American Society for Microbiology. All Rights Reserved.","IRE1α; Mir-30a-5p; SOCS; Transmissible gastroenteritis virus (TGEV); Type I interferon","inositol requiring enzyme 1 alpha; interferon; Janus kinase; microRNA; microRNA 30a 5p; protein serine threonine kinase; STAT protein; suppressor of cytokine signaling 1; suppressor of cytokine signaling 3; unclassified drug; interferon; Janus kinase; microRNA; ribonuclease; suppressor of cytokine signaling 1; suppressor of cytokine signaling 3; animal experiment; animal model; animal tissue; antiviral activity; Article; controlled study; down regulation; endoplasmic reticulum stress; ileum; immune evasion; in vivo study; innate immunity; nonhuman; piglet; priority journal; protein expression; protein function; signal transduction; Transmissible gastroenteritis virus; unfolded protein response; viral gastroenteritis; virus replication; animal; cell line; genetics; host pathogen interaction; immune evasion; immunology; metabolism; physiology; pig; Transmissible gastroenteritis virus; Animals; Cell Line; Endoplasmic Reticulum Stress; Endoribonucleases; Host-Pathogen Interactions; Immune Evasion; Immunity, Innate; Interferon Type I; Janus Kinases; MicroRNAs; Suppressor of Cytokine Signaling 1 Protein; Suppressor of Cytokine Signaling 3 Protein; Sus scrofa; Transmissible gastroenteritis virus; Virus Replication","Cruz, J.L., Sola, I., Becares, M., Alberca, B., Plana, J., Enjuanes, L., Zuniga, S., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) PLoS Pathog, 7, p. e1002090. , https://doi.org/10.1371/journal.ppat.1002090; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front Microbiol, 5, p. 296. , https://doi.org/10.3389/fmicb.2014.00296; Favreau, D.J., Desforges, M., St-Jean, J.R., Talbot, P.J., A human coronavirus OC43 variant harboring persistence-Associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-Type virus (2009) Virology, 395, pp. 255-267. , https://doi.org/10.1016/j.virol.2009.09.026; Versteeg, G.A., Van De Nes, P.S., Bredenbeek, P.J., Spaan, W.J., The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations (2007) J Virol, 81, pp. 10981-10990. , https://doi.org/10.1128/JVI.01033-07; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Alvarez, E., Oliveros, J.C., Zhao, J., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLoS Pathog, 7, p. e1002315. , https://doi.org/10.1371/journal.ppat.1002315; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J Virol, 87, pp. 8124-8134. , https://doi.org/10.1128/JVI.00626-13; Wang, Y., Li, J.R., Sun, M.X., Ni, B., Huan, C., Huang, L., Li, C., Mao, X., Triggering unfolded protein response by 2-deoxy-D-glucose inhibits porcine epidemic diarrhea virus propagation (2014) Antiviral Res, 106, pp. 33-41. , https://doi.org/10.1016/j.antiviral.2014.03.007; Xue, M., Fu, F., Ma, Y., Zhang, X., Li, L., Feng, L., Liu, P., The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type i interferon production (2018) J Virol, 92, pp. e00431-e00518. , https://doi.org/10.1128/JVI.00431-18; Oikawa, D., Tokuda, M., Hosoda, A., Iwawaki, T., Identification of a consensus element recognized and cleaved by IRE1 alpha (2010) Nucleic Acids Res, 38, pp. 6265-6273. , https://doi.org/10.1093/nar/gkq452; Fung, T.S., Liao, Y., Liu, D.X., The endoplasmic reticulum stress sensor IRE1alpha protects cells from apoptosis induced by the coronavirus infectious bronchitis virus (2014) J Virol, 88, pp. 12752-12764. , https://doi.org/10.1128/JVI.02138-14; Safra, M., Ben-Hamo, S., Kenyon, C., Henis-Korenblit, S., The ire-1 ER stress-response pathway is required for normal secretory-protein metabolism in C. elegans (2013) J Cell Sci, 126, pp. 4136-4146. , https://doi.org/10.1242/jcs.123000; Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., Ron, D., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA (2002) Nature, 415, pp. 92-96. , https://doi.org/10.1038/415092a; Kimmig, P., Diaz, M., Zheng, J., Williams, C.C., Lang, A., Aragon, T., Li, H., Walter, P., The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis (2012) Elife, 1, p. e00048. , https://doi.org/10.7554/eLife.00048; Cross, B.C., Bond, P.J., Sadowski, P.G., Jha, B.K., Zak, J., Goodman, J.M., Silverman, R.H., Harding, H.P., The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule (2012) Proc Natl Acad Sci U S A, 109, pp. E869-E878. , https://doi.org/10.1073/pnas.1115623109; Heindryckx, F., Binet, F., Ponticos, M., Rombouts, K., Lau, J., Kreuger, J., Gerwins, P., Endoplasmic reticulum stress enhances fibrosis through IRE1alpha-mediated degradation of miR-150 and XBP-1 splicing (2016) EMBO Mol Med, 8, pp. 729-744. , https://doi.org/10.15252/emmm.201505925; Belmadani, S., Matrougui, K., The unraveling truth about IRE1 and microRNAs in diabetes (2017) Diabetes, 66, pp. 23-24. , https://doi.org/10.2337/dbi16-0058; Hassan, I.H., Zhang, M.S., Powers, L.S., Shao, J.Q., Baltrusaitis, J., Rutkowski, D.T., Legge, K., Monick, M.M., Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway (2012) J Biol Chem, 287, pp. 4679-4689. , https://doi.org/10.1074/jbc.M111.284695; Bhattacharyya, S., Sen, U., Vrati, S., Regulated IRE1-dependent decay pathway is activated during Japanese encephalitis virus-induced unfolded protein response and benefits viral replication (2014) J Gen Virol, 95, pp. 71-79. , https://doi.org/10.1099/vir.0.057265-0; Porritt, R.A., Hertzog, P.J., Dynamic control of type i IFN signalling by an integrated network of negative regulators (2015) Trends Immunol, 36, pp. 150-160. , https://doi.org/10.1016/j.it.2015.02.002; Zhang, Q., Yoo, D., Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling (2016) Virus Res, 226, pp. 128-141. , https://doi.org/10.1016/j.virusres.2016.05.015; Menachery, V.D., Eisfeld, A.J., Schafer, A., Josset, L., Sims, A.C., Proll, S., Fan, S., Baric, R.S., (2014) Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches to Control Interferon-stimulated Gene Responses. MBio 5:e01174-14, , https://doi.org/10.1128/mBio.01174-14; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Zust, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13, p. e1006195. , https://doi.org/10.1371/journal.ppat.1006195; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc Natl Acad Sci U S A, 103, pp. 12885-12890. , https://doi.org/10.1073/pnas.0603144103; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol, 81, pp. 548-557. , https://doi.org/10.1128/JVI.01782-06; Zhou, Y., Wu, W., Xie, L., Wang, D., Ke, Q., Hou, Z., Wu, X., Fang, L., Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production (2017) Front Immunol, 8, p. 940. , https://doi.org/10.3389/fimmu.2017.00940; Riffault, S., Carrat, C., Van Reeth, K., Pensaert, M., Charley, B., Interferonalpha-producing cells are localized in gut-Associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets (2001) Vet Res, 32 (71-79), p. 2001111. , https://doi.org/10.1051/vetres; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuniga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Forster, S.C., Tate, M.D., Hertzog, P.J., MicroRNA as type i interferonregulated transcripts and modulators of the innate immune response (2015) Front Immunol, 6, p. 334. , https://doi.org/10.3389/fimmu.2015.00334; O'Neill, L.A., Sheedy, F.J., McCoy, C.E., MicroRNAs: The fine-Tuners of Toll-like receptor signalling (2011) Nat Rev Immunol, 11, pp. 163-175. , https://doi.org/10.1038/nri2957; Zhang, Q., Huang, C., Yang, Q., Gao, L., Liu, H.C., Tang, J., Feng, W.H., MicroRNA-30c modulates type i IFN responses to facilitate porcine reproductive and respiratory syndrome virus infection by targeting JAK1 (2016) J Immunol, 196, pp. 2272-2282. , https://doi.org/10.4049/jimmunol.1502006; Xu, G., Yang, F., Ding, C.L., Wang, J., Zhao, P., Wang, W., Ren, H., MiR-221 accentuates IFNs anti-HCV effect by downregulating SOCS1 and SOCS3 (2014) Virology 462-463, pp. 343-350. , https://doi.org/10.1016/j.virol.2014.06.024; Sharma, N., Kumawat, K.L., Rastogi, M., Basu, A., Singh, S.K., Japanese encephalitis virus exploits the microRNA-432 to regulate the expression of suppressor of cytokine signaling (SOCS) 5 (2016) Sci Rep, 6, p. 27685. , https://doi.org/10.1038/srep27685; Trobaugh, D.W., Klimstra, W.B., MicroRNA regulation of RNA virus replication and pathogenesis (2017) Trends Mol Med, 23, pp. 80-93. , https://doi.org/10.1016/j.molmed.2016.11.003; Wang, C., Cai, L., Liu, J., Wang, G., Li, H., Wang, X., Xu, W., Zhang, C., MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression (2017) Cell Physiol Biochem, 43, pp. 2405-2419. , https://doi.org/10.1159/000484394; Upton, J.P., Wang, L., Han, D., Wang, E.S., Huskey, N.E., Lim, L., Truitt, M., Oakes, S.A., IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2 (2012) Science, 338, pp. 818-822. , https://doi.org/10.1126/science.1226191; Jia, Z., Wang, K., Wang, G., Zhang, A., Pu, P., MiR-30a-5p antisense oligonucleotide suppresses glioma cell growth by targeting SEPT7 (2013) PLoS One, 8, p. e55008. , https://doi.org/10.1371/journal.pone.0055008; Fu, Y., Xu, W., Chen, D., Feng, C., Zhang, L., Wang, X., Lv, X., Wu, Z., Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication (2015) Antiviral Res, 124, pp. 43-53. , https://doi.org/10.1016/j.antiviral.2015.09.016; Hassler, J., Cao, S.S., Kaufman, R.J., IRE1, a double-edged sword in pre-miRNA slicing and cell death (2012) Dev Cell, 23, pp. 921-923. , https://doi.org/10.1016/j.devcel.2012.10.025; Emde, A., Eitan, C., Liou, L.L., Libby, R.T., Rivkin, N., Magen, I., Reichenstein, I., Hornstein, E., Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: A new mechanism for ALS (2015) EMBO J, 34, pp. 2633-2651. , https://doi.org/10.15252/embj.201490493; Yu, C.Y., Hsu, Y.W., Liao, C.L., Lin, Y.L., Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress (2006) J Virol, 80, pp. 11868-11880. , https://doi.org/10.1128/JVI.00879-06; Bechill, J., Chen, Z., Brewer, J.W., Baker, S.C., Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression (2008) J Virol, 82, pp. 4492-4501. , https://doi.org/10.1128/JVI.00017-08; Jordan, L.T., Derbyshire, J.B., Antiviral action of interferon-Alpha against porcine transmissible gastroenteritis virus (1995) Vet Microbiol, 45, pp. 59-70. , https://doi.org/10.1016/0378-1135(94)00118-G; Zhu, L., Yang, X., Mou, C., Yang, Q., Transmissible gastroenteritis virus does not suppress IFN-beta induction but is sensitive to IFN in IPEC-J2 cells (2017) Vet Microbiol, 199, pp. 128-134. , https://doi.org/10.1016/j.vetmic.2016.12.031; Vlotides, G., Sorensen, A.S., Kopp, F., Zitzmann, K., Cengic, N., Brand, S., Zachoval, R., Auernhammer, C.J., SOCS-1 and SOCS-3 inhibit IFN-Alphainduced expression of the antiviral proteins 2, 5-OAS and MxA (2004) Biochem Biophys Res Commun, 320, pp. 1007-1014. , https://doi.org/10.1016/j.bbrc.2004.06.051; Minakshi, R., Padhan, K., Rani, M., Khan, N., Ahmad, F., Jameel, S., The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor (2009) PLoS One, 4, p. e8342. , https://doi.org/10.1371/journal.pone.0008342; Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., Walter, P., On the mechanism of sensing unfolded protein in the endoplasmic reticulum (2005) Proc Natl Acad Sci U S A, 102, pp. 18773-18784. , https://doi.org/10.1073/pnas.0509487102; Fink, S.L., Jayewickreme, T.R., Molony, R.D., Iwawaki, T., Landis, C.S., Lindenbach, B.D., Iwasaki, A., IRE1alpha promotes viral infection by conferring resistance to apoptosis (2017) Sci Signal 10:eaai7814, , https://doi.org/10.1126/scisignal.aai7814; Charley, B., Laude, H., Induction of alpha interferon by transmissible gastroenteritis coronavirus: Role of transmembrane glycoprotein E1 (1988) J Virol, 62, pp. 8-11; Okabayashi, T., Kariwa, H., Yokota, S., Iki, S., Indoh, T., Yokosawa, N., Takashima, I., Fujii, N., Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections (2006) J Med Virol, 78, pp. 417-424. , https://doi.org/10.1002/jmv.20556; Yokota, S., Yokosawa, N., Okabayashi, T., Suzutani, T., Miura, S., Jimbow, K., Fujii, N., Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway (2004) J Virol, 78, pp. 6282-6286. , https://doi.org/10.1128/JVI.78.12.6282-6286.2004; Zheng, J., Yang, P., Tang, Y., Pan, Z., Zhao, D., Respiratory syncytial virus nonstructural proteins upregulate SOCS1 and SOCS3 in the different manner from endogenous IFN signaling (2015) J Immunol Res 2015, p. 738547. , https://doi.org/10.1155/2015/738547; Pauli, E.K., Schmolke, M., Wolff, T., Viemann, D., Roth, J., Bode, J.G., Ludwig, S., Influenza A virus inhibits type i IFN signaling via NF-kappaBdependent induction of SOCS-3 expression (2008) PLoS Pathog, 4, p. e1000196. , https://doi.org/10.1371/journal.ppat.1000196; Babon, J.J., Kershaw, N.J., Murphy, J.M., Varghese, L.N., Laktyushin, A., Young, S.N., Lucet, I.S., Nicola, N.A., Suppression of cytokine signaling by SOCS3: Characterization of the mode of inhibition and the basis of its specificity (2012) Immunity, 36, pp. 239-250. , https://doi.org/10.1016/j.immuni.2011.12.015; Yang, Y., Yang, L., Liang, X., Zhu, G., MicroRNA-155 promotes atherosclerosis inflammation via targeting SOCS1 (2015) Cell Physiol Biochem, 36, pp. 1371-1381. , https://doi.org/10.1159/000430303; Xu, Z., Ji, J., Xu, J., Li, D., Shi, G., Liu, F., Ding, L., Hou, Y., MiR-30a increases MDSC differentiation and immunosuppressive function by targeting SOCS3 in mice with B-cell lymphoma (2017) FEBS J, 284, pp. 2410-2424. , https://doi.org/10.1111/febs.14133; Xue, M., Zhao, J., Ying, L., Fu, F., Li, L., Ma, Y., Shi, H., Liu, P., IL-22 suppresses the infection of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway (2017) Antiviral Res, 142, pp. 68-75. , https://doi.org/10.1016/j.antiviral.2017.03.006; Fu, F., Li, L., Shan, L., Yang, B., Shi, H., Zhang, J., Wang, H., Liu, P., A spike-specific whole-porcine antibody isolated from a porcine B cell that neutralizes both genogroup 1 and 2 PEDV strains (2017) Vet Microbiol, 205, pp. 99-105. , https://doi.org/10.1016/j.vetmic.2017.05.013","Feng, L.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: fengli@caas.cn",,"American Society for Microbiology",0022538X,,JOVIA,"30185587","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85055617906 "Zhang L., Li L., Yan L., Ming Z., Jia Z., Lou Z., Rao Z.","57204450684;57200989893;55461189200;57193347594;57201518411;7101735895;55891591900;","Structural and biochemical characterization of endoribonuclease nsp15 encoded by middle east respiratory syndrome coronavirus",2018,"Journal of Virology","92","22", e00893-18,"","",,6,"10.1128/JVI.00893-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055613139&doi=10.1128%2fJVI.00893-18&partnerID=40&md5=660b72037b541e04bb989ecd4b6aa826","Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China; College of Life Sciences, Nankai University, Tianjin, China","Zhang, L., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China; Li, L., State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Yan, L., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China; Ming, Z., State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China; Jia, Z., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China; Lou, Z., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China; Rao, Z., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China, College of Life Sciences, Nankai University, Tianjin, China","Nonstructural protein 15 (Nsp15) encoded by coronavirus (CoV) is a nidoviral uridylate-specific endoribonuclease (NendoU) that plays an essential role in the life cycle of the virus. Structural information on this crucial protein from the Middle East respiratory syndrome CoV (MERS-CoV), which is lethally pathogenic and has caused severe respiratory diseases worldwide, is lacking. Here, we determined the crystal structure of MERS-CoV Nsp15 at a 2.7-A resolution and performed the relevant biochemical assays to study how NendoU activity is regulated. Although the overall structure is conserved, MERS-CoV Nsp15 shows unique and novel features compared to its homologs. Serine substitution of residue F285, which harbors an aromatic side chain that disturbs RNA binding compared with that of other homologs, increases catalytic activity. Mutations of residues residing on the oligomerization interfaces that distort hexamerization, namely, N38A, Y58A, and N157A, decrease thermostability, decrease affinity of binding with RNA, and reduce the NendoU activity of Nsp15. In contrast, mutant D39A exhibits increased activity and a higher substrate binding capacity. Importantly, Nsp8 was found to interact with both monomeric and hexameric Nsp15. The Nsp7/Nsp8 complex displays a higher binding affinity for Nsp15. Furthermore, Nsp8 and the Nsp7/Nsp8 complex also enhance the NendoU activity of hexameric Nsp15 in vitro. Taking the findings together, this work first provides evidence on how the activity of Nsp15 may be functionally mediated by catalytic residues, oligomeric assembly, RNA binding efficiency, or the possible association with other nonstructural proteins. IMPORTANCE The lethally pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARSCoV) pose serious threats to humans. Endoribonuclease Nsp15 encoded by coronavirus plays an important role in viral infection and pathogenesis. This study determines the structure of MERS-CoV Nsp15 and demonstrates how the catalytic activity of this protein is potentially mediated, thereby providing structural and functional evidence for developing antiviral drugs. We also hypothesize that the primase-like protein Nsp8 and the Nsp7/Nsp8 complex may interact with Nsp15 and affect enzymatic activity. This contributes to the understanding of the association of Nsp15 with the viral replication and transcription machinery. © 2018 American Society for Microbiology. All Rights Reserved.","Crystal structure; Endoribonuclease; MERS-CoV; Oligomerization","alanine; aspartic acid; nonstructural protein 15; nonstructural protein 7; nonstructural protein 8; ribonuclease; serine; unclassified drug; viral protein; virus RNA; nonstructural protein, coronavirus; ribonuclease; RNA binding protein; RNA directed RNA polymerase; viral protein; amino acid substitution; Article; binding affinity; catalysis; controlled study; enzyme activity; enzyme substrate complex; hexamerization; in vitro study; Middle East respiratory syndrome coronavirus; nonhuman; oligomerization; priority journal; protein analysis; protein protein interaction; protein stability; protein structure; RNA binding; virus mutation; amino acid sequence; chemistry; genetics; human; Middle East respiratory syndrome coronavirus; protein multimerization; sequence alignment; virus replication; X ray crystallography; Amino Acid Sequence; Crystallography, X-Ray; Endoribonucleases; Humans; Middle East Respiratory Syndrome Coronavirus; Protein Multimerization; RNA Replicase; RNA-Binding Proteins; Sequence Alignment; Viral Nonstructural Proteins; Virus Replication","Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res, 100, pp. 286-295. , https://doi.org/10.1016/j.antiviral.2013.08.015; Fehr, A.R., Channappanavar, R., Perlman, S., Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus (2017) Annu Rev Med, 68, pp. 387-399. , https://doi.org/10.1146/annurev-med-051215-031152; Cavanagh, D., Nidovirales: A new order comprising Coronaviridae and Arteriviridae (1997) Arch Virol, 142, pp. 629-633; Sawicki, S.G., Sawicki, D.L., Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands (1995) Adv Exp Med Biol, 380, pp. 499-506. , https://doi.org/10.1007/978-1-4615-1899-0_79; Prentice, E., McAuliffe, J., Lu, X., Subbarao, K., Denison, M.R., Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins (2004) J Virol, 78, p. 9977. , https://doi.org/10.1128/JVI.78.18.9977-9986.2004; Gao, F., Ou, H.Y., Chen, L.L., Zheng, W.X., Zhang, C.T., Prediction of proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes (2003) FEBS Lett, 553, pp. 451-456. , https://doi.org/10.1016/S0014-5793.03.01091-3; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription how to make sense.? (2006) J Gen Virol, 87, pp. 1403-1421. , https://doi.org/10.1099/vir.0.81611-0; Sawicki, S.G., Sawicki, D.L., Coronavirus transcription: A perspective (2005) Curr Top Microbiol Immunol, 287, p. 31; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E., Ziebuhr, J., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc Natl Acad Sci U S A, 101, p. 12694. , https://doi.org/10.1073/pnas.0403127101; Bhardwaj, K., Palaninathan, S., Alcantara, J.M., Yi, L.L., Guarino, L., Sacchettini, J.C., Kao, C.C., Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15 (2008) J Biol Chem, 283, p. 3655. , https://doi.org/10.1074/jbc.M708375200; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J Virol, 78, p. 12218. , https://doi.org/10.1128/JVI.78.22.12218-12224.2004; Xu, X., Zhai, Y., Sun, F., Lou, Z., Su, D., Xu, Y., Zhang, R., Bartlam, M., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 (2006) J Virol, 80, pp. 7909-7917. , https://doi.org/10.1128/JVI.00525-06; Ricagno, S., Egloff, M.P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Cambillau, C., Canard, B., Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family (2006) Proc Natl Acad Sci U S A, 103, pp. 11892-11897. , https://doi.org/10.1073/pnas.0601708103; Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Buchmeier, M.J., Stevens, R.C., Kuhn, P., Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch (2007) J Virol, 81, pp. 6700-6708. , https://doi.org/10.1128/JVI.02817-06; Kang, H., Bhardwaj, K., Li, Y., Palaninathan, S., Sacchettini, J., Guarino, L., Leibowitz, J.L., Kao, C.C., Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease (2007) J Virol, 81, pp. 13587-13597. , https://doi.org/10.1128/JVI.00547-07; Deng, X., Hackbart, M., Mettelman, R.C., OBrien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, p. E4251. , https://doi.org/10.1073/pnas.1618310114; Posthuma, C.C., Nedialkova, D.D., Zevenhoven-Dobbe, J.C., Blokhuis, J.H., Gorbalenya, A.E., Snijder, E.J., Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle (2006) J Virol, 80, pp. 1653-1661. , https://doi.org/10.1128/JVI.80.4.1653-1661.2006; Lei, Y., Moore, C.B., Liesman, R.M., OConnor, B.P., Bergstralh, D.T., Chen, Z.J., Pickles, R.J., Jpy, T., MAVS-mediated apoptosis and its inhibition by viral proteins (2009) PLoS One, 4, p. e5466. , https://doi.org/10.1371/journal.pone.0005466; Bhardwaj, K., Liu, P., Leibowitz, J.L., Kao, C.C., The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein (2012) J Virol, 86, p. 4294. , https://doi.org/10.1128/JVI.07012-11; Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., Situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-Associated proteins (2017) MBio, 8, pp. e02320-e02416. , https://doi.org/10.1128/mBio.02320-16; Hoover, H.S., Wang, C.Y., Middleton, S., Ni, P., Zlotnick, A., Vaughan, R.C., Kao, C.C., Phosphorylation of the brome mosaic virus capsid regulates the timing of viral infection (2016) J Virol, 90, p. 7748. , https://doi.org/10.1128/JVI.00833-16; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Imbert, I., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc Natl Acad Sci U S A, 111, pp. E3900-E3909. , https://doi.org/10.1073/pnas.1401995111; Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., Rao, Z., Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer (2005) Nat Struct Mol Biol, 12, p. 980. , https://doi.org/10.1038/nsmb999; Sai, S., Dijkman, P.M., Lea, W.A., Gvd, B., Jerabek-Willemsen, M., Lazic, A., Joseph, J.S., Simeonov, A., Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions (2013) Methods, 59, pp. 301-315. , https://doi.org/10.1016/j.ymeth.2012.12.005; Kabsch, W., XDS (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 125-132. , https://doi.org/10.1107/S0907444909047337; McCoy, A.J., Grossekunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J Appl Crystallogr, 40, pp. 658-674. , https://doi.org/10.1107/S0021889807021206; Potterton, E., McNicholas, S., Krissinel, E., Cowtan, K., Noble, M., The CCP4 molecular-graphics project (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 1955-1957. , https://doi.org/10.1107/S0907444902015391; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., PHENIX: Building new software for automated crystallographic structure determination (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 1948-1954. , https://doi.org/10.1107/S0907444902016657; Delano, W.L., The PyMOL molecular graphics system (2002) Proteins Struct Funct Bioinform, 30, pp. 442-454; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680. , https://doi.org/10.1093/nar/22.22.4673; Gouet, P., Courcelle, E., Stuart, D.I., Metoz, F., ESPript: Analysis of multiple sequence alignments in PostScript (1999) Bioinformatics, 15, pp. 305-308. , https://doi.org/10.1093/bioinformatics/15.4.305","Rao, Z.; Laboratory of Structural Biology, School of Medicine, Tsinghua UniversityChina; email: raozh@mail.tsinghua.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"30135128","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85055613139 "Chefer S., Seidel J., Cockrell A.S., Yount B., Solomon J., Hagen K.R., Liu D.X., Huzella L.M., Kumar M.R., Postnikova E., Kyle Bohannon J., Lackemeyer M.G., Cooper K., Endlich-Frazier A., Sharma H., Thomasson D., Bartos C., Sayre P.J., Sims A., Dyall J., Holbrook M.R., Jahrling P.B., Baric R.S., Johnson R.F.","6603393269;55861555300;57170359900;6603564156;7201787212;57191041950;56173038300;7801516934;56658174100;6507557282;57205319698;8918260300;55329044200;55609474400;57205110292;7004278913;56816795100;56963884000;7102763252;6507103339;7006036112;7004533817;57205312930;57209870019;","The human sodium iodide symporter as a reporter gene for studying Middle East respiratory syndrome coronavirus pathogenesis",2018,"mSphere","3","6", e00540-18,"","",,1,"10.1128/mSphereDirect.00540-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058605018&doi=10.1128%2fmSphereDirect.00540-18&partnerID=40&md5=2c5747f8a50b878b8f14e262c55a22e3","Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States; Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States","Chefer, S., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Seidel, J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Cockrell, A.S., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Yount, B., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Solomon, J., Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States; Hagen, K.R., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Liu, D.X., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Huzella, L.M., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Kumar, M.R., Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Postnikova, E., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Kyle Bohannon, J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Lackemeyer, M.G., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Cooper, K., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Endlich-Frazier, A., Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Sharma, H., Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Thomasson, D., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Bartos, C., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Sayre, P.J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Sims, A., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Dyall, J., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Holbrook, M.R., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Jahrling, P.B., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States, Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States; Baric, R.S., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Johnson, R.F., Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States","Single photon emission computed tomography (SPECT) is frequently used in oncology and cardiology to evaluate disease progression and/or treatment efficacy. Such technology allows for real-time evaluation of disease progression and when applied to studying infectious diseases may provide insight into pathogenesis. Insertion of a SPECT-compatible reporter gene into a virus may provide insight into mechanisms of pathogenesis and viral tropism. The human sodium iodide symporter (hNIS), a SPECT and positron emission tomography reporter gene, was inserted into Middle East respiratory syndrome coronavirus (MERS-CoV), a recently emerged virus that can cause severe respiratory disease and death in afflicted humans to obtain a quantifiable and sensitive marker for viral replication to further MERS-CoV animal model development. The recombinant virus was evaluated for fitness, stability, and reporter gene functionality. The recombinant and parental viruses demonstrated equal fitness in terms of peak titer and replication kinetics, were stable for up to six in vitro passages, and were functional. Further in vivo evaluation indicated variable stability, but resolution limits hampered in vivo functional evaluation. These data support the further development of hNIS for monitoring infection in animal models of viral disease. © 2018 Chefer et al.","Coronavirus; Medical imaging; MERS; Reporter gene","cotransporter; sodium iodide symporter; animal; Chlorocebus aethiops; Coronavirus infection; disease model; gene expression regulation; genetics; genomic instability; growth, development and aging; metabolism; Middle East respiratory syndrome coronavirus; pathology; procedures; reporter gene; single photon emission computed tomography-computed tomography; transgenic mouse; Vero cell line; Animals; Cercopithecus aethiops; Coronavirus Infections; Disease Models, Animal; Genes, Reporter; Genomic Instability; Mice, Transgenic; Middle East Respiratory Syndrome Coronavirus; Mutagenesis, Insertional; Single Photon Emission Computed Tomography Computed Tomography; Symporters; Vero Cells","Hoenen, T., Groseth, A., Callison, J., Takada, A., Feldmann, H., A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals (2013) Antiviral Res, 99, pp. 207-213. , https://doi.org/10.1016/j.antiviral.2013.05.017; Marsh, G.A., Virtue, E.R., Smith, I., Todd, S., Arkinstall, R., Frazer, L., Monaghan, P., Wang, L.F., Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets (2013) Virol J, 10, p. 95. , https://doi.org/10.1186/1743-422X-10-95; Rennick, L.J., de Vries, R.D., Carsillo, T.J., Lemon, K., van Amerongen, G., Ludlow, M., Nguyen, D.T., de Swart, R.L., Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates (2015) J Virol, 89, pp. 2192-2200. , https://doi.org/10.1128/JVI.02924-14; Rozelle, D.K., Filone, C.M., Dower, K., Connor, J.H., Vaccinia reporter viruses for quantifying viral function at all stages of gene expression (2014) J Vis Exp, 15; Altenburg, A.F., van de Sandt, C.E., Li, B.W.S., MacLoughlin, R.J., Fouchier, R.A.M., van Amerongen, G., Volz, A., de Vries, R.D., Modified vaccinia virus Ankara preferentially targets antigen presenting cells in vitro, ex vivo and in vivo (2017) Sci Rep, 7, p. 8580. , https://doi.org/10.1038/s41598-017-08719-y; Goff, A., Twenhafel, N., Garrison, A., Mucker, E., Lawler, J., Paragas, J., In vivo imaging of cidofovir treatment of cowpox virus infection (2007) Virus Res, 128, pp. 88-98. , https://doi.org/10.1016/j.virusres.2007.04.014; Kato, S.I., Nagata, K., Takeuchi, K., Cell tropism and pathogenesis of measles virus in monkeys (2012) Front Microbiol, 3, p. 14. , https://doi.org/10.3389/fmicb.2012.00014; Ahn, B.C., Sodium iodide symporter for nuclear molecular imaging and gene therapy: from bedside to bench and back (2012) Theranostics, 2, pp. 392-402. , https://doi.org/10.7150/thno.3722; Penheiter, A.R., Russell, S.J., Carlson, S.K., The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies (2012) Curr Gene Ther, 12, pp. 33-47. , https://doi.org/10.2174/156652312799789235; Dohan, O., Carrasco, N., Advances in Na(+)/I(-) symporter (NIS) research in the thyroid and beyond (2003) Mol Cell Endocrinol, 213, pp. 59-70. , https://doi.org/10.1016/j.mce.2003.10.059; Haddad, D., Chen, N.G., Zhang, Q., Chen, C.H., Yu, Y.A., Gonzalez, L., Carpenter, S.G., Szalay, A.A., Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus (2011) J Transl Med, 9, p. 36. , https://doi.org/10.1186/1479-5876-9-36; Kang, J.H., Chung, J.K., Molecular-genetic imaging based on reporter gene expression (2008) J Nucl Med, 49, pp. 164S-179S. , https://doi.org/10.2967/jnumed.107.045955; Sun, C., Gardner, C.L., Watson, A.M., Ryman, K.D., Klimstra, W.B., Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease (2014) J Virol, 88, pp. 2035-2046. , https://doi.org/10.1128/JVI.02990-13; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Memish, Z.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Guery, B., Poissy, J., el Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., van der Werf, S., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272. , https://doi.org/10.1016/S0140-6736(13)60982-4; Bhatia, P.K., Sethi, P., Gupta, N., Biyani, G., Middle East respiratory syndrome: a new global threat (2016) Indian J Anaesth, 60, pp. 85-88. , https://doi.org/10.4103/0019-5049.176286; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Munster, V.J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110, pp. 16598-16603. , https://doi.org/10.1073/pnas.1310744110; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Qin, C., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209, pp. 236-242. , https://doi.org/10.1093/infdis/jit590; Johnson, R.F., Via, L.E., Kumar, M.R., Cornish, J.P., Yellayi, S., Huzella, L., Postnikova, E., Jahrling, P.B., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430. , https://doi.org/10.1016/j.virol.2015.07.013; Haagmans, B.L., van den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., de Waal, L., Osterhaus, A.D., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J Virol, 89, pp. 6131-6135. , https://doi.org/10.1128/JVI.00661-15; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213, pp. 1557-1561. , https://doi.org/10.1093/infdis/jiw080; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , https://doi.org/10.1128/JVI.03427-14; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112, pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Perlman, S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111, pp. 4970-4975. , https://doi.org/10.1073/pnas.1323279111; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , https://doi.org/10.1038/nmicrobiol.2016.226; Khoshnevisan, A., Jauregui-Osoro, M., Shaw, K., Torres, J.B., Young, J.D., Ramakrishnan, N.K., Jackson, A., Blower, P.J., [(18)F]tetrafluoroborate as a PET tracer for the sodium/iodide symporter: the importance of specific activity (2016) EJNMMI Res, 6, p. 34. , https://doi.org/10.1186/s13550-016-0188-5; Niu, G., Gaut, A.W., Ponto, L.L., Hichwa, R.D., Madsen, M.T., Graham, M.M., Domann, F.E., Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter (2004) J Nucl Med, 45, pp. 445-449; Zuckier, L.S., Dohan, O., Li, Y., Chang, C.J., Carrasco, N., Dadachova, E., Dohan, O., Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter-expressing tissues in vivo (2004) J Nucl Med, 45, pp. 500-507; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8. , https://doi.org/10.1128/mBio.00665-17; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Marasco, W.A., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , https://doi.org/10.1016/j.virol.2016.01.004; Kumar, M., Mazur, S., Ork, B.L., Postnikova, E., Hensley, L.E., Jahrling, P.B., Johnson, R., Holbrook, M.R., Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus (2015) J Virol Methods, 223, pp. 13-18. , https://doi.org/10.1016/j.jviromet.2015.07.002; de Kok Mercado, F., Kutlak, F., Jahrling, P.B., The NIAID Integrated Research Facility at Fort Detrick (2011) Appl Biosaf, 16, pp. 58-66. , https://doi.org/10.1177/153567601101600202; (2011) Guide for the care and use of laboratory animals, , 8th ed National Academies Press, Washington, DC","Johnson, R.F.; Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: johnsonreed@niaid.nih.gov",,"American Society for Microbiology",23795042,,,"30541777","English","mSphere",Article,"Final",,Scopus,2-s2.0-85058605018 "Gunaratne G.S., Yang Y., Li F., Walseth T.F., Marchant J.S.","57198816842;57192214076;26028899600;7005424273;7103241145;","NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system",2018,"Cell Calcium","75",,,"30","41",,9,"10.1016/j.ceca.2018.08.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051524070&doi=10.1016%2fj.ceca.2018.08.003&partnerID=40&md5=02c03aafcdf36bccb356a047ec698d0a","Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, United States","Gunaratne, G.S., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Yang, Y., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, United States; Walseth, T.F., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Marchant, J.S., Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, United States","Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections are associated with a significant mortality rate, and existing drugs show poor efficacy. Identifying novel targets/pathways required for MERS infectivity is therefore important for developing novel therapeutics. As an enveloped virus, translocation through the endolysosomal system provides one pathway for cellular entry of MERS-CoV. In this context, Ca2+-permeable channels within the endolysosomal system regulate both the luminal environment and trafficking events, meriting investigation of their role in regulating processing and trafficking of MERS-CoV. Knockdown of endogenous two-pore channels (TPCs), targets for the Ca2+ mobilizing second messenger NAADP, impaired infectivity in a MERS-CoV spike pseudovirus particle translocation assay. This effect was selective as knockdown of the lysosomal cation channel mucolipin-1 (TRPML1) was without effect. Pharmacological inhibition of NAADP-evoked Ca2+ release using several bisbenzylisoquinoline alkaloids also blocked MERS pseudovirus translocation. Knockdown of TPC1 (biased endosomally) or TPC2 (biased lysosomally) decreased the activity of furin, a protease which facilitates MERS fusion with cellular membranes. Pharmacological or genetic inhibition of TPC1 activity also inhibited endosomal motility impairing pseudovirus progression through the endolysosomal system. Overall, these data support a selective, spatially autonomous role for TPCs within acidic organelles to support MERS-CoV translocation. © 2018 Elsevier Ltd","Ca2+ signaling; Endosomes; Infectious disease; Lysosomes; NAADP","bisbenzylisoquinoline alkaloid; calcium ion; furin; nicotinic acid adenine dinucleotide phosphate; transient receptor potential channel M; benzylisoquinoline derivative; coronavirus spike glycoprotein; fangquinoline; furin; ion channel; nicotinamide adenine dinucleotide phosphate; nicotinic acid adenine dinucleotide phosphate; voltage gated sodium channel; Article; bioassay; calcium signaling; calcium transport; cell membrane permeability; cell migration; cell motility; controlled study; drug effect; endosome; enzyme inhibition; gene knockdown; human; human cell; lysosome; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein targeting; species translocation; virus infectivity; analogs and derivatives; calcium signaling; cell line; drug effect; endosome; lysosome; metabolism; pathogenicity; reproducibility; virology; Benzylisoquinolines; Calcium Signaling; Cell Line; Endosomes; Furin; Gene Knockdown Techniques; Humans; Ion Channels; Lysosomes; Middle East Respiratory Syndrome Coronavirus; NADP; Reproducibility of Results; Spike Glycoprotein, Coronavirus; Voltage-Gated Sodium Channels","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 12262-12267; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 15214-15219; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10. , e1004502; Burkard, C., Verheije, M.H., Haagmans, B.L., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., de Haan, C.A., ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells (2015) J. Virol., 89, pp. 4434-4448; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., van den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; Marchant, J.S., Patel, S., Two-pore channels at the intersection of endolysosomal membrane traffic (2015) Biochem. Soc. Trans., 43, pp. 434-441; Shen, D., Wang, X., Xu, H., Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes (2011) Bioessays, 33, pp. 448-457; Shen, D., Wang, X., Li, X., Zhang, X., Yao, Z., Dibble, S., Dong, X.P., Xu, H., Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release (2012) Nat. Commun., 3, p. 731; Lin-Moshier, Y., Keebler, M.V., Hooper, R., Boulware, M.J., Liu, X., Churamani, D., Abood, M.E., Marchant, J.S., The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 13087-13092; Ruas, M., Rietdorf, K., Arredouani, A., Davis, L.C., Lloyd-Evans, E., Koegel, H., Funnell, T.M., Galione, A., Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking (2010) Curr. Biol., 20, pp. 703-709; Ruas, M., Chuang, K.T., Davis, L.C., Al-Douri, A., Tynan, P.W., Tunn, R., Teboul, L., Parrington, J., TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2 (2014) Mol. Cell. Biol., 34, pp. 3981-3992; Grimm, C., Holdt, L.M., Chen, C.C., Hassan, S., Muller, C., Jors, S., Cuny, H., Wahl-Schott, C., High susceptibility to fatty liver disease in two-pore channel 2-deficient mice (2014) Nat. Commun., 5, p. 4699; Wang, X., Zhang, X., Dong, X.P., Samie, M., Li, X., Cheng, X., Goschka, A., Xu, H., TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes (2012) Cell, 151, pp. 372-383; Lu, Y., Hao, B.X., Graeff, R., Wong, C.W., Wu, W.T., Yue, J., Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH (2013) J. Biol. Chem., 288, pp. 24247-24263; Hockey, L., Kilpatrick, B.S., Eden, E.R., Lin-Moshier, Y., Brailoiu, G.C., Brailoiu, E., Futter, C.E., Patel, S., Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel inhibition (2015) J Cell Sci., 128, pp. 232-238; Sakurai, Y., Kolokoltsov, A.A., Chen, C.C., Tidwell, M.W., Bauta, W.E., Klugbauer, N., Grimm, C., Davey, R.A., Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment (2015) Science, 347, pp. 995-998; Simmons, J.A., D'Souza, R.S., Ruas, M., Galione, A., Casanova, J.E., White, J.M., Ebolavirus glycoprotein directs fusion through NPC1+ endolysosomes (2016) J. Virol., 90, pp. 605-610; Lin-Moshier, Y., Walseth, T.F., Churamani, D., Davidson, S.M., Slama, J.T., Hooper, R., Brailoiu, E., Marchant, J.S., Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells (2012) J. Biol. Chem., 287, pp. 2296-2307; Brailoiu, E., Churamani, D., Cai, X., Schrlau, M.G., Brailoiu, G.C., Gao, X., Hooper, R., Patel, S., Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling (2009) J. Cell Biol., 186, pp. 201-209; Brailoiu, E., Rahman, T., Churamani, D., Prole, D.L., Brailoiu, G.C., Hooper, R., Taylor, C.W., Patel, S., An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals (2010) J. Biol. Chem., 285, pp. 38511-38516; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Zhou, Y., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10, p. 266; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 12516-12521; Hussain, K.M., Leong, K.L., Ng, M.M., Chu, J.J., The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71 (2011) J. Biol. Chem., 286, pp. 309-321; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8. , e76469; Li, X., Garrity, A.G., Xu, H., Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes (2013) J. Physiol., 591, pp. 4389-4401; Grimm, C., Hassan, S., Wahl-Schott, C., Biel, M., Role of TRPML and two-pore channels in endolysosomal cation homeostasis (2012) J. Pharmacol. Exp. Ther., 342, pp. 236-244; Calcraft, P.J., Ruas, M., Pan, Z., Cheng, X., Arredouani, A., Hao, X., Tang, J., Zhu, M.X., NAADP mobilizes calcium from acidic organelles through two-pore channels (2009) Nature, 459, pp. 596-600; Rahman, T., Cai, X., Brailoiu, G.C., Abood, M.E., Brailoiu, E., Patel, S., Two-pore channels provide insight into the evolution of voltage-gated Ca2+ and Na+ channels (2014) Sci. Signal., 7. , ra109; Ruas, M., Davis, L.C., Chen, C.C., Morgan, A.J., Chuang, K.T., Walseth, T.F., Grimm, C., Galione, A., Expression of Ca(2)(+)-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells (2015) EMBO J., 34, pp. 1743-1758; Jha, A., Ahuja, M., Patel, S., Brailoiu, E., Muallem, S., Convergent regulation of the lysosomal two-pore channel-2 by Mg(2)(+), NAADP, PI(3,5)P(2) and multiple protein kinases (2014) EMBO J., 33, pp. 501-511; Zong, X., Schieder, M., Cuny, H., Fenske, S., Gruner, C., Rotzer, K., Griesbeck, O., Wahl-Schott, C., The two-pore channel TPCN2 mediates NAADP-dependent Ca(2+)-release from lysosomal stores (2009) Pflugers Arch., 458, pp. 891-899; Gunaratne, G., Johns, M.E., Walseth, T.F., Marchant, J.S., A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signals in human cells, Companion paper (2018); Naylor, E., Arredouani, A., Vasudevan, S.R., Lewis, A.M., Parkesh, R., Mizote, A., Rosen, D., Churchill, G.C., Identification of a chemical probe for NAADP by virtual screening (2009) Nat. Chem. Biol., 5, pp. 220-226; Hoglinger, D., Haberkant, P., Aguilera-Romero, A., Riezman, H., Porter, F.D., Platt, F.M., Galione, A., Schultz, C., Intracellular sphingosine releases calcium from lysosomes (2015) eLife, 4; Miller, M.E., Adhikary, S., Kolokoltsov, A.A., Davey, R.A., Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection (2012) J. Virol., 86, pp. 7473-7483; Gulbins, E., Palmada, M., Reichel, M., Luth, A., Bohmer, C., Amato, D., Muller, C.P., Kornhuber, J., Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs (2013) Nat. Med., 19, pp. 934-938; Kornhuber, J., Muehlbacher, M., Trapp, S., Pechmann, S., Friedl, A., Reichel, M., Muhle, C., Tripal, P., Identification of novel functional inhibitors of acid sphingomyelinase (2011) PLoS One, 6. , e23852; Dunn, K.W., Kamocka, M.M., McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy (2011) Am. J. Physiol. Cell Physiol., 300, pp. C723-742; Morgan, A.J., Galione, A., Fertilization and nicotinic acid adenine dinucleotide phosphate induce pH changes in acidic Ca(2+) stores in sea urchin eggs (2007) J. Biol. Chem., 282, pp. 37730-37737; Cosker, F., Cheviron, N., Yamasaki, M., Menteyne, A., Lund, F.E., Moutin, M.J., Galione, A., Cancela, J.M., The ecto-enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells (2010) J. Biol. Chem., 285, pp. 38251-38259; Thomas, G., Furin at the cutting edge: from protein traffic to embryogenesis and disease (2002) Nat. Rev. Mol. Cell Biol., 3, pp. 753-766; Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Huang, F., Zhang, H., Glycopeptide antibiotics potently inhibit cathepsin l in the late Endosome/Lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) (2016) J. Biol. Chem., 291, pp. 9218-9232; Gehring, G., Rohrmann, K., Atenchong, N., Mittler, E., Becker, S., Dahlmann, F., Pohlmann, S., von Hahn, T., The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry (2014) J. Antimicrob. Chemother., 69, pp. 2123-2131; Johansen, L.M., DeWald, L.E., Shoemaker, C.J., Hoffstrom, B.G., Lear-Rooney, C.M., Stossel, A., Nelson, E., Olinger, G.G., A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity (2015) Sci. Transl. Med., 7; Genazzani, A.A., Mezna, M., Dickey, D.M., Michelangeli, F., Walseth, T.F., Galione, A., Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg (1997) Br. J. Pharmacol., 121, pp. 1489-1495; Guo, J., Zeng, W., Chen, Q., Lee, C., Chen, L., Yang, Y., Cang, C., Jiang, Y., Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana (2016) Nature, 531, pp. 196-201; Kintzer, A.F., Stroud, R.M., Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana (2016) Nature, 531, pp. 258-262; She, J., Guo, J., Chen, Q., Zeng, W., Jiang, Y., Bai, X.C., Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel (2018) Nature, 556, pp. 130-134; Marshall, S.J., Russell, P.F., Wright, C.W., Anderson, M.M., Phillipson, J.D., Kirby, G.C., Warhurst, D.C., Schiff, P.L., Jr., In vitro antiplasmodial, antiamoebic, and cytotoxic activities of a series of bisbenzylisoquinolgulation of the lysosomal two-pore channel-2 bine alkaloids (1994) Antimicrob. Agents Chemother., 38, pp. 96-103; Sureram, S., Senadeera, S.P., Hongmanee, P., Mahidol, C., Ruchirawat, S., Kittakoop, P., Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis (2012) Bioorg. Med. Chem. Lett., 22, pp. 2902-2905; Buck, K.T., The bisbenzylisoquinoline alkaloids (1987) The Alkaloids, pp. 1-202. , A. Brossi Academic Press; Guha, K.P., Mukherjee, B., Mukherjee, R., Bisbenzylisoquinoline alkaloikds - a review (1979) J. Nat. Prod., 42, pp. 1-84; Schiff, P.L., Jr, Bisbezylisoquinoline alkaloids (1991) J. Nat. Prod., 54, pp. 645-749","Marchant, J.S.; Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinUnited States; email: JMarchant@mcw.edu",,"Elsevier Ltd",01434160,,CECAD,"30121440","English","Cell Calcium",Article,"Final",Open Access,Scopus,2-s2.0-85051524070 "Alfaraj S.H., Al-Tawfiq J.A., Gautret P., Alenazi M.G., Asiri A.Y., Memish Z.A.","57191595182;9436438200;36893462000;57203851248;57200450036;7005059350;","Evaluation of visual triage for screening of Middle East respiratory syndrome coronavirus patients",2018,"New Microbes and New Infections","26",,,"49","52",,2,"10.1016/j.nmni.2018.08.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053218388&doi=10.1016%2fj.nmni.2018.08.008&partnerID=40&md5=37a8626cac34868387cfeb26627e9c97","Corona Center, Infectious Diseases Division, Department of Pediatrics, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; Pediatric Emergency Medicine, Emergency Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; Critical Care Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; University of British Columbia, Vancouver, Canada; Indiana University School of Medicine, Indianapolis, IN, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Marseille, France","Alfaraj, S.H., Corona Center, Infectious Diseases Division, Department of Pediatrics, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia, University of British Columbia, Vancouver, Canada; Al-Tawfiq, J.A., Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indianapolis, IN, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Gautret, P., Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Marseille, France; Alenazi, M.G., Pediatric Emergency Medicine, Emergency Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; Asiri, A.Y., Critical Care Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; Memish, Z.A., Infectious Diseases Division, Department of Medicine, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia","The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in September 2012 in Saudi Arabia had attracted the attention of the global health community. In 2017 the Saudi Ministry of Health released a visual triage system with scoring to alert healthcare workers in emergency departments (EDs) and haemodialysis units for the possibility of occurrence of MERS-CoV infection. We performed a retrospective analysis of this visual score to determine its sensitivity and specificity. The study included all cases from 2014 to 2017 in a MERS-CoV referral centre in Riyadh, Saudi Arabia. During the study period there were a total of 2435 suspected MERS cases. Of these, 1823 (75%) tested negative and the remaining 25% tested positive for MERS-CoV by PCR assay. The application of the visual triage score found a similar percentage of MERS-CoV and non–MERS-CoV patients, with each score from 0 to 11. The percentage of patients with a cutoff score of ≥4 was 75% in patients with MERS-CoV infection and 85% in patients without MERS-CoV infection (p 0.0001). The sensitivity and specificity of this cutoff score for MERS-CoV infection were 74.1% and 18.6%, respectively. The sensitivity and specificity of the scoring system were low, and further refinement of the score is needed for better prediction of MERS-CoV infection. © 2018 The Author(s)","Middle East respiratory syndrome coronavirus (MERS-CoV); Saudi Arabia; Scoring; Visual triage","Article; chronic kidney failure; controlled study; coronary artery disease; diabetes mellitus; emergency health service; health care personnel; heart failure; hemodialysis; human; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; point of care testing; priority journal; real time polymerase chain reaction; retrospective study; reverse transcription polymerase chain reaction; risk factor; scoring system; sensitivity and specificity; triage score","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Penttinen, P.M., Kaasik-Aaslav, K., Friaux, A., Donachie, A., Sudre, B., Amato-Gauci, A.J., Taking stock of the first 133 mers coronavirus cases globally—is the epidemic changing? (2013) Euro Surveill, 18, p. 20596; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Al-Tawfiq, J.A., Memish, Z.A., An update on Middle East respiratory syndrome: 2 years later (2015) Expert Rev Respir Med, 9, pp. 327-335; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution (2014) Trends Microbiol, 22, pp. 573-579; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Heal J, 19, pp. S12-S18; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Health Res Perspect, 7, pp. 49-55; Seong, M.W., Kim, S.Y., Corman, V.M., Kim, T.S., Cho, S.I., Kim, M.J., Microevolution of outbreak-associated Middle East respiratory syndrome coronavirus, South Korea, 2015 (2016) Emerg Infect Dis, 22, pp. 327-330; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome–coronavirus (MERS-CoV): a case–control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14, pp. 464-470; Garbati, M.A., Fagbo, S.F., Fang, V.J., Skakni, L., Joseph, M., Wani, T.A., A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PLoS One, 11; Command and Control Center Ministry of Health Kingdom of Saudi Arabia Scientific Advisory Board, Infection prevention and control guidelines for the Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017), http://www.moh.gov.sa/endepts/Infection/Documents/Guidelines-for-MERS-CoV.PDF, 4th ed. Available at:; Al-Tawfiq, J.A., Hinedi, K., Abbasi, S., Babiker, M., Sunji, A., Eltigani, M., Hematologic, hepatic, and renal function changes in hospitalized patients with Middle East respiratory syndrome coronavirus (2017) Int J Lab Hematol, 39, pp. 272-278; Singh, K., Hsu, L.Y., Villacian, J.S., Habib, A., Fisher, D., Tambyah, P.A., Severe acute respiratory syndrome: lessons from Singapore (2003) Emerg Infect Dis, 9, pp. 1294-1298; Bin Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015–February 2016 (2017) Emerg Infect Dis, 23, pp. 682-685; Foote, M.M.K., Styles, T.S., Quinn, C.L., Assessment of hospital emergency department response to potentially infectious diseases using unannounced mystery patient drills—New York City, 2016 (2017) MMWR Morb Mortal Wkly Rep, 66, pp. 945-949; Huh, H.J., Kim, J.Y., Kwon, H.J., Yun, S.A., Lee, M.K., Ki, C.S., Performance evaluation of the PowerChek MERS (upE & ORF1a) real-time PCR kit for the detection of Middle East respiratory syndrome coronavirus RNA (2017) Ann Lab Med, 37, pp. 494-498; Lee, S.H., Baek, Y.H., Kim, Y.H., Choi, Y.K., Song, M.S., Ahn, J.Y., One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for cetecting MERS-CoV (2017) Front Microbiol, p. 2166; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213","Memish, Z.A.; College of Medicine, Alfaisal University, P.O. Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Elsevier Ltd",20522975,,,,"English","New Microbes New Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85053218388 "Schaefer E., Harms C., Viner M., Barnum S., Pusterla N.","57204429709;56425648900;57192117888;57195680555;7005591152;","Investigation of an experimental infection model of equine coronavirus in adult horses",2018,"Journal of Veterinary Internal Medicine","32","6",,"2099","2104",,2,"10.1111/jvim.15318","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055492699&doi=10.1111%2fjvim.15318&partnerID=40&md5=d02d14b3c49c7ccf1fb485026a41dbaf","William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States","Schaefer, E., William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States; Harms, C., William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States; Viner, M., William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States; Barnum, S., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States; Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States","Background: Equine coronavirus (ECoV) is a recently reported enteric disease of adult horses. Natural infection by ECoV has been reported in adult horses worldwide, whereas experimental infection has only been reported in juvenile horses. An experimental infection model is needed to study the clinical presentation, laboratory abnormalities, and pathophysiological changes associated with ECoV. Objectives: To investigate the clinical, hematologic, molecular, and serological features of adult horses experimentally infected with ECoV. Animals: Eight adult horses. Methods: Four horses were intragastrically infected with fecal material containing 109 genome equivalents of ECoV. Four additional horses were exposed daily to the feces from the experimentally-infected horses. Monitoring included physical examinations, as well as daily nasal swab, whole blood, and fecal collection for molecular detection of ECoV. Blood was collected every other day for hematologic analysis and weekly for serologic analysis. Results: All 8 horses shed ECoV in feces. Six of the 8 horses (75%) exhibited mild, clinical disease with soft, formed manure; 1 horse exhibited transient pyrexia. All horses maintained total white cell counts within normal limits, but 3 horses developed transient lymphopenia. No statistically significant differences (P =.20) were observed in quantity of fecal shedding of ECoV between the 2 groups. Conclusions and Clinical Importance: Experimental infection of adult horses with ECoV was associated with mild and self-limiting clinical signs, transient lymphopenia, and fecal shedding of ECoV, which mimics natural infection. No differences between experimentally-infected horses and horses exposed to ECoV-containing feces were identified. Results of our study support a fecal-oral route of transmission. © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.","enteric; experimental infection; polymerase chain reaction; serology","RNA 16S; adult; animal behavior; animal experiment; animal model; anorexia; appetitive behavior; Article; controlled study; Coronavirinae; Coronavirus infection; electron microscopy; enzyme linked immunosorbent assay; experimental infection; feces analysis; fever; gastrointestinal motility disorder; horse; intestine flora; lethargy; leukocyte count; loose feces; lymphocyte count; lymphocytopenia; nonhuman; randomized controlled trial; real time polymerase chain reaction; rectal temperature; RNA extraction; serology; viremia; virus detection; virus shedding; animal; Betacoronavirus 1; Coronavirus infection; disease model; feces; female; horse disease; male; pathology; transmission; veterinary medicine; virology; Animals; Betacoronavirus 1; Coronavirus Infections; Disease Models, Animal; Feces; Female; Horse Diseases; Horses; Lymphocyte Count; Male; Real-Time Polymerase Chain Reaction; Virus Shedding","Davis, E., Rush, B.R., Cox, J., DeBey, B., Kapil, S., Neonatal enterocolitis associated with coronavirus infection in a foal: a case report (2000) J Vet Diagn Invest, 32, pp. 2099-2104; Giannitti, F., Diab, S., Mete, A., Necrotizing enteritis and Hyperammonemic encephalopathy associated with equine coronavirus infection in equids (2015) Vet Path, 52 (6), pp. 1148-1156; Miszczak, F., Tesson, V., Kin, N., Dina, J., Balasuriya, U.B.R., First detection of equine coronavirus (ECoV) in Europe (2014) Vet Microbiol, 171 (1-2), pp. 206-209. , Jun 25;; Oue, Y., Morita, Y., Kondo, T., Nemoto, M., Epidemic of equine coronavirus at Obihiro racecourse, Hokkaido, Japan in 2012 (2013) J Vet Med Sci, 75 (9), pp. 1261-1265; Fielding, C.L., Higgins, J.K., Higgins, J.C., Disease associated with equine coronavirus infection and high case fatality rate (2015) J Vet Intern Med, 29, pp. 307-310; Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S., Smith, L.G., Characterization of a coronavirus isolated for a diarrheic foal (2000) J Clin Microbiol, 38 (12), pp. 4523-4526; Zaki, A.M., van Boheeman, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Pusterla, N., Mapes, S., Wademan, C., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet Microbiol, 162 (1), pp. 228-231; Nemoto, M., Oue, Y., Morita, Y., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Arch Virol, 159 (12), pp. 3329-3334; Kooijman, L.F., Mapes, S., Pusterla, N., Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses (2016) J Vet Diagn Invest, 28 (4), pp. 414-418; Pusterla, N., Holzenkaempfer, N., Mapes, S., Kass, P., Prevalence of equine coronavirus in nasal secretions from horses with fever and upper respiratory tract infection (2015) Vet Rec, 177 (11), p. 289; Magdesian, G., Dwyer, R.M., Arguedas, M.G., Diarrhea, V., Viral diarrhea (2014) Equine. Infectious Diseases, pp. 198-203. , Sellon DC, Long MT, eds., 2nd, ed., St Louis, Elsevier; Saif, L.J., Bovine respiratory coronavirus (2010) Vet Clin North Am, 26 (2), pp. 349-364; Zhang, J., Guy, J.S., Snijder, E.H., Denniston, D.A., Timoney, P.G., Balasuriya, U.B., Genomic characterization of equine coronavirus (2007) Virology, 369, pp. 92-104","Schaefer, E.; William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, DavisUnited States; email: emily84@vt.edu",,"Blackwell Publishing Inc.",08916640,,,"30353949","English","J. Vet. Intern. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85055492699 "Nakagawa K., Narayanan K., Wada M., Popov V.L., Cajimat M., Baric R.S., Makino S.","35754942900;7101933409;36674132900;7404534315;6506583537;57205312930;7403067550;","The endonucleolytic RNA cleavage function of nsp1 of middle east respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines",2018,"Journal of Virology","92","21", e01157,"","",,3,"10.1128/JVI.01157-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054898355&doi=10.1128%2fJVI.01157-18&partnerID=40&md5=964848e78bb153fbee7bbea5d334a9fd","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; UTMB Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Nakagawa, K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Narayanan, K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Wada, M., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Popov, V.L., Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Cajimat, M., Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Baric, R.S., Department of Epidemiology and Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Makino, S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States, UTMB Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce IFN-β and IFN-γ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding. IMPORTANCE MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies. © 2018 American Society for Microbiology. All Rights Reserved.","MERS coronavirus; Nsp1; Virus assembly/budding","beta interferon; nsp1 protein; RNA; unclassified drug; viral protein; virus receptor; beta interferon; gamma interferon; IFNG protein, human; messenger RNA; viral protein; 293 derived cell; Article; biological functions; cells; controlled study; GAPDH gene; gene; gene repression; HeLa cell line; Huh-7 cell line; human; human cell; IFN beta gene; IFN lambda gene; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein expression; protein function; RNA cleavage; RNA degradation; Vero cell line; virus assembly; virus particle; virus release; virus replication; virus titration; animal; biosynthesis; cell line; Chlorocebus aethiops; Coronavirus infection; gene expression; genetics; HEK293 cell line; metabolism; Middle East respiratory syndrome coronavirus; pathology; physiology; RNA cleavage; RNA stability; Animals; Cell Line; Cercopithecus aethiops; Coronavirus Infections; Gene Expression; HEK293 Cells; HeLa Cells; Humans; Interferon-beta; Interferon-gamma; Middle East Respiratory Syndrome Coronavirus; RNA Cleavage; RNA Stability; RNA, Messenger; Vero Cells; Viral Nonstructural Proteins; Virus Assembly","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227. , https://doi.org/10.1016/S1473-3099(18)30127-0; Lee, H.J., Shieh, C.K., Gorbalenya, A.E., Koonin, E.V., La Monica, N., Tuler, J., Bagdzhadzhyan, A., Lai, M.M., The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase (1991) Virology, 180, pp. 567-582. , https://doi.org/10.1016/0042-6822(91)90071-I; Lomniczi, B., Biological properties of avian coronavirus RNA (1977) J Gen Virol, 36, pp. 531-533. , https://doi.org/10.1099/0022-1317-36-3-531; Lomniczi, B., Kennedy, I., Genome of infectious bronchitis virus (1977) J Virol, 24, pp. 99-107; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Burkard, C., Verheije, M.H., Wicht, O., Van Kasteren, S.I., Van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., De Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10, p. e1004502. , https://doi.org/10.1371/journal.ppat.1004502; Snijder, E.J., Decroly, E., Ziebuhr, J., The nonstructural proteins directing coronavirus RNA synthesis and processing (2016) Adv Virus Res, 96, pp. 59-126. , https://doi.org/10.1016/bs.aivir.2016.08.008; Hurst-Hess, K.R., Kuo, L., Masters, P.S., Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3 (2015) J Virol, 89, pp. 6033-6047. , https://doi.org/10.1128/JVI.00197-15; Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S., Denison, M.R., The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication (2005) J Virol, 79, pp. 13399-13411. , https://doi.org/10.1128/JVI.79.21.13399-13411.2005; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66. , https://doi.org/10.1016/j.virusres.2013.12.004; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292. , https://doi.org/10.1016/S0065-3527(06)66005-3; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J Virol, 81, pp. 20-29. , https://doi.org/10.1128/JVI.01358-06; Lai, M.M., Baric, R.S., Brayton, P.R., Stohlman, S.A., Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus (1984) Proc Natl Acad Sci U S A, 81, pp. 3626-3630. , https://doi.org/10.1073/pnas.81.12.3626; Lai, M.M., Patton, C.D., Baric, R.S., Stohlman, S.A., Presence of leader sequences in the mRNA of mouse hepatitis virus (1983) J Virol, 46, pp. 1027-1033; Lai, M.M., Patton, C.D., Stohlman, S.A., Replication of mouse hepatitis virus: Negative-stranded RNA and replicative form RNA are of genome length (1982) J Virol, 44, pp. 487-492; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res, 109, pp. 97-109. , https://doi.org/10.1016/j.antiviral.2014.06.013; Narayanan, K., Huang, C., Makino, S., SARS coronavirus accessory proteins (2008) Virus Res, 133, pp. 113-121. , https://doi.org/10.1016/j.virusres.2007.10.009; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e00717. , https://doi.org/10.1128/mBio.00665-17; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martinez-Sobrido, L., Garcia-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315. , https://doi.org/10.1016/j.virol.2006.11.027; Tooze, J., Tooze, S., Warren, G., Replication of coronavirus MHV-A59 in sac-cells: Determination of the first site of budding of progeny virions (1984) Eur J Cell Biol, 33, pp. 281-293; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P.J., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding (1994) J Virol, 68, pp. 6523-6534; Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Rottier, P.J., Nucleocapsid-independent assembly of coronavirus-like particles by coexpression of viral envelope protein genes (1996) EMBO J, 15, pp. 2020-2028; De Haan, C.A., Smeets, M., Vernooij, F., Vennema, H., Rottier, P.J., Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein (1999) J Virol, 73, pp. 7441-7452; Escors, D., Ortego, J., Laude, H., Enjuanes, L., The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability (2001) J Virol, 75, pp. 1312-1324. , https://doi.org/10.1128/JVI.75.3.1312-1324.2001; Escors, D., Camafeita, E., Ortego, J., Laude, H., Enjuanes, L., Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core (2001) J Virol, 75, pp. 12228-12240. , https://doi.org/10.1128/JVI.75.24.12228-12240.2001; Kuo, L., Masters, P.S., Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus (2002) J Virol, 76, pp. 4987-4999. , https://doi.org/10.1128/JVI.76.10.4987-4999.2002; Nguyen, V.P., Hogue, B.G., Protein interactions during coronavirus assembly (1997) J Virol, 71, pp. 9278-9284; Opstelten, D.J., Raamsman, M.J., Wolfs, K., Horzinek, M.C., Rottier, P.J., Envelope glycoprotein interactions in coronavirus assembly (1995) J Cell Biol, 131, pp. 339-349. , https://doi.org/10.1083/jcb.131.2.339; Corse, E., Machamer, C.E., Infectious bronchitis virus e protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J Virol, 74, pp. 4319-4326. , https://doi.org/10.1128/JVI.74.9.4319-4326.2000; Bos, E.C., Luytjes, W., Van Der Meulen, H.V., Koerten, H.K., Spaan, W.J., The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus (1996) Virology, 218, pp. 52-60. , https://doi.org/10.1006/viro.1996.0165; Fischer, F., Stegen, C.F., Masters, P.S., Samsonoff, W.A., Analysis of constructed e gene mutants of mouse hepatitis virus confirms a pivotal role for e protein in coronavirus assembly (1998) J Virol, 72, pp. 7885-7894; DeDiego, M.L., Alvarez, E., Almazan, F., Rejas, M.T., Lamirande, E., Roberts, A., Shieh, W.J., Enjuanes, L., A severe acute respiratory syndrome coronavirus that lacks the e gene is attenuated in vitro and in vivo (2007) J Virol, 81, pp. 1701-1713. , https://doi.org/10.1128/JVI.01467-06; Narayanan, K., Ramirez, S.I., Lokugamage, K.G., Makino, S., Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression (2015) Virus Res, 202, pp. 89-100. , https://doi.org/10.1016/j.virusres.2014.11.019; Connor, R.F., Roper, R.L., Unique SARS-CoV protein nsp1: Bioinformatics, biochemistry, and potential effects on virulence (2007) Trends Microbiol, 15, pp. 51-53. , https://doi.org/10.1016/j.tim.2006.12.005; Jansson, A.M., Structure of alphacoronavirus transmissible gastroenteritis virus nsp1 has implications for coronavirus nsp1 function and evolution (2013) J Virol, 87, pp. 2949-2955. , https://doi.org/10.1128/JVI.03163-12; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Gorbalenya, A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004. , https://doi.org/10.1016/S0022-2836(03)00865-9; Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Ziebuhr, J., Mechanisms and enzymes involved in SARS coronavirus genome expression (2003) J Gen Virol, 84, pp. 2305-2315. , https://doi.org/10.1099/vir.0.19424-0; Tohya, Y., Narayanan, K., Kamitani, W., Huang, C., Lokugamage, K., Makino, S., Suppression of host gene expression by nsp1 proteins of group 2 bat coronaviruses (2009) J Virol, 83, pp. 5282-5288. , https://doi.org/10.1128/JVI.02485-08; Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K.G., Makino, S., A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein (2009) Nat Struct Mol Biol, 16, pp. 1134-1140. , https://doi.org/10.1038/nsmb.1680; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc Natl Acad Sci U S A, 103, pp. 12885-12890. , https://doi.org/10.1073/pnas.0603144103; Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., Makino, S., Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate (2011) J Virol, 85, pp. 638-643. , https://doi.org/10.1128/JVI.01806-10; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89, pp. 10970-10981. , https://doi.org/10.1128/JVI.01352-15; Gaglia, M.M., Covarrubias, S., Wong, W., Glaunsinger, B.A., A common strategy for host RNA degradation by divergent viruses (2012) J Virol, 86, pp. 9527-9530. , https://doi.org/10.1128/JVI.01230-12; Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., Makino, S., SARS coronavirus nsp1 protein induces templatedependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage (2011) PLoS Pathog, 7, p. e1002433. , https://doi.org/10.1371/journal.ppat.1002433; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.T., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type i interferon, in infected cells (2008) J Virol, 82, pp. 4471-4479. , https://doi.org/10.1128/JVI.02472-07; Wathelet, M.G., Orr, M., Frieman, M.B., Baric, R.S., Severe acute respiratory syndrome coronavirus evades antiviral signaling: Role of nsp1 and rational design of an attenuated strain (2007) J Virol, 81, pp. 11620-11633. , https://doi.org/10.1128/JVI.00702-07; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2018) J Virol, 92, pp. e01677-e01717. , https://doi.org/10.1128/JVI.01677-17; Zust, R., Cervantes-Barragan, L., Kuri, T., Blakqori, G., Weber, F., Ludewig, B., Thiel, V., Coronavirus nonstructural protein 1 is a major pathogenicity factor: Implications for the rational design of coronavirus vaccines (2007) PLoS Pathog, 3, p. e109. , https://doi.org/10.1371/journal.ppat.0030109; Zhang, R., Li, Y., Cowley, T.J., Steinbrenner, A.D., Phillips, J.M., Yount, B.L., Baric, R.S., Weiss, S.R., The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU (2015) J Virol, 89, pp. 3598-3609. , https://doi.org/10.1128/JVI.03535-14; Jimenez-Guardeno, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castano-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLoS Pathog, 11, p. e1005215. , https://doi.org/10.1371/journal.ppat.1005215; Tanaka, T., Kamitani, W., DeDiego, M.L., Enjuanes, L., Matsuura, Y., Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA (2012) J Virol, 86, pp. 11128-11137. , https://doi.org/10.1128/JVI.01700-12; Terada, Y., Kawachi, K., Matsuura, Y., Kamitani, W., MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA (2017) Virology, 511, pp. 95-105. , https://doi.org/10.1016/j.virol.2017.08.026; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; Tseng, C.T., Tseng, J., Perrone, L., Worthy, M., Popov, V., Peters, C.J., Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells (2005) J Virol, 79, pp. 9470-9479. , https://doi.org/10.1128/JVI.79.15.9470-9479.2005; Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., Sato, J., Growth of human hepatoma cells lines with differentiated functions in chemically defined medium (1982) Cancer Res, 42, pp. 3858-3863; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87, pp. 9379-9383. , https://doi.org/10.1128/JVI.01277-13; Hume, A.J., Ames, J., Rennick, L.J., Duprex, W.P., Marzi, A., Tonkiss, J., Muhlberger, E., Inactivation of RNA viruses by gamma irradiation: A study on mitigating factors (2016) Viruses, 8, p. E204. , https://doi.org/10.3390/v8070204; Lomax, M.E., Folkes, L.K., O'Neill, P., Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy (2013) Clin Oncol, 25, pp. 578-585. , https://doi.org/10.1016/j.clon.2013.06.007; Ohshima, H., Iida, Y., Matsuda, A., Kuwabara, M., Damage induced by hydroxyl radicals generated in the hydration layer of gamma-irradiated frozen aqueous solution of DNA (1996) J Radiat Res, 37, pp. 199-207. , https://doi.org/10.1269/jrr.37.199; Summers, W.C., Szybalski, W., Gamma-irradiation of deoxyribonucleic acid in dilute solutions II. Molecular mechanisms responsible for inactivation of phage, its transfecting DNA, and of bacterial transforming activity (1967) J Mol Biol, 26, pp. 227-235; Ward, R.L., Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation (1980) Radiat Res, 83, pp. 330-344. , https://doi.org/10.2307/3575284; Ruch, T.R., Machamer, C.E., The coronavirus e protein: Assembly and beyond (2012) Viruses, 4, pp. 363-382. , https://doi.org/10.3390/v4030363; Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., Laude, H., Coronavirus pseudoparticles formed with recombinant M and e proteins induce alpha interferon synthesis by leukocytes (1998) J Virol, 72, pp. 8636-8643; Wang, S.M., Huang, K.J., Wang, C.T., BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface (2014) Virology, 449, pp. 287-296. , https://doi.org/10.1016/j.virol.2013.11.030; Neil, S.J., Zang, T., Bieniasz, P.D., Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu (2008) Nature, 451, pp. 425-430. , https://doi.org/10.1038/nature06553; Kaletsky, R.L., Francica, J.R., Agrawal-Gamse, C., Bates, P., Tetherinmediated restriction of filovirus budding is antagonized by the Ebola glycoprotein (2009) Proc Natl Acad Sci U S A, 106, pp. 2886-2891. , https://doi.org/10.1073/pnas.0811014106; Mansouri, M., Viswanathan, K., Douglas, J.L., Hines, J., Gustin, J., Moses, A.V., Fruh, K., Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (2009) J Virol, 83, pp. 9672-9681. , https://doi.org/10.1128/JVI.00597-09; Jouvenet, N., Neil, S.J., Zhadina, M., Zang, T., Kratovac, Z., Lee, Y., McNatt, M., Bieniasz, P.D., Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin (2009) J Virol, 83, pp. 1837-1844. , https://doi.org/10.1128/JVI.02211-08; Hayashi, T., MacDonald, L.A., Takimoto, T., Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses (2015) J Virol, 89, pp. 6442-6452. , https://doi.org/10.1128/JVI.00319-15; Xu, G., Zhang, X., Liu, Q., Bing, G., Hu, Z., Sun, H., Xiong, X., Sun, Y., PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine (2017) Virology, 508, pp. 45-53. , https://doi.org/10.1016/j.virol.2017.05.002; Lee, J., Yu, H., Li, Y., Ma, J., Lang, Y., Duff, M., Henningson, J., Ma, W., Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses (2017) Virology, 504, pp. 25-35. , https://doi.org/10.1016/j.virol.2017.01.015; Tigges, M.A., Leng, S., Johnson, D.C., Burke, R.L., Human herpes simplex virus (HSV)-specific CD8 CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled (1996) J Immunol, 156, pp. 3901-3910; Pasieka, T.J., Lu, B., Crosby, S.D., Wylie, K.M., Morrison, L.A., Alexander, D.E., Menachery, V.D., Leib, D.A., Herpes simplex virus virion host shutoff attenuates establishment of the antiviral state (2008) J Virol, 82, pp. 5527-5535. , https://doi.org/10.1128/JVI.02047-07; Murphy, J.A., Duerst, R.J., Smith, T.J., Morrison, L.A., Herpes simplex virus type 2 virion host shutoff protein regulates alpha/beta interferon but not adaptive immune responses during primary infection in vivo (2003) J Virol, 77, pp. 9337-9345. , https://doi.org/10.1128/JVI.77.17.9337-9345.2003; Finnen, R.L., Zhu, M., Li, J., Romo, D., Banfield, B.W., Herpes simplex virus 2 virion host shutoff endoribonuclease activity is required to disrupt stress granule formation (2016) J Virol, 90, pp. 7943-7955. , https://doi.org/10.1128/JVI.00947-16; Dauber, B., Pelletier, J., Smiley, J.R., The herpes simplex virus 1 Vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner (2011) J Virol, 85, pp. 5363-5373. , https://doi.org/10.1128/JVI.00115-11; Finnen, R.L., Hay, T.J., Dauber, B., Smiley, J.R., Banfield, B.W., The herpes simplex virus 2 virion-associated ribonuclease Vhs interferes with stress granule formation (2014) J Virol, 88, pp. 12727-12739. , https://doi.org/10.1128/JVI.01554-14; Dauber, B., Poon, D., Dos Santos, T., Duguay, B.A., Mehta, N., Saffran, H.A., Smiley, J.R., The herpes simplex virus virion host shutoff protein enhances translation of viral true late mRNAs independently of suppressing protein kinase R and stress granule formation (2016) J Virol, 90, pp. 6049-6057. , https://doi.org/10.1128/JVI.03180-15; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , https://doi.org/10.1128/JVI.03427-14; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Feldmann, H., Treatment with interferon-2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19, pp. 1313-1317. , https://doi.org/10.1038/nm.3362; Falzarano, D., De Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Munster, V.J., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10, p. e1004250. , https://doi.org/10.1371/journal.ppat.1004250; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , https://doi.org/10.1038/nmicrobiol.2016.226; Abernathy, E., Glaunsinger, B., Emerging roles for RNA degradation in viral replication and antiviral defense (2015) Virology, 479-480, pp. 600-608. , https://doi.org/10.1016/j.virol.2015.02.007; Read, G.S., Virus-encoded endonucleases: Expected and novel functions (2013) Wiley Interdiscip Rev RNA, 4, pp. 693-708. , https://doi.org/10.1002/wcs.1258","Makino, S.; Department of Microbiology and Immunology, University of Texas Medical BranchUnited States; email: shmakino@utmb.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30111568","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85054898355 "Bukhari K., Mulley G., Gulyaeva A.A., Zhao L., Shu G., Jiang J., Neuman B.W.","57203800828;36523742900;56841599800;57189689335;57193898095;55731793400;8263558000;","Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus",2018,"Virology","524",,,"160","171",,3,"10.1016/j.virol.2018.08.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052986180&doi=10.1016%2fj.virol.2018.08.010&partnerID=40&md5=6a459225ad416f3183d7dbc52a1eab00","University of Reading, Reading, United Kingdom; Dept. Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China; Texas A&M University-Texarkana, 7101 University Ave, Texarkana, TX 75503, United States","Bukhari, K., University of Reading, Reading, United Kingdom; Mulley, G., University of Reading, Reading, United Kingdom; Gulyaeva, A.A., Dept. Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Zhao, L., Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China; Shu, G., Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China; Jiang, J., Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China; Neuman, B.W., Texas A&M University-Texarkana, 7101 University Ave, Texarkana, TX 75503, United States","Transcriptomics has the potential to discover new RNA virus genomes by sequencing total intracellular RNA pools. In this study, we have searched publicly available transcriptomes for sequences similar to viruses of the Nidovirales order. We report two potential nidovirus genomes, a highly divergent 35.9 kb likely complete genome from the California sea hare Aplysia californica, which we assign to a nidovirus named Aplysia abyssovirus 1 (AAbV), and a coronavirus-like 22.3 kb partial genome from the ornamented pygmy frog Microhyla fissipes, which we assign to a nidovirus named Microhyla alphaletovirus 1 (MLeV). AAbV was shown to encode a functional main proteinase, and a translational readthrough signal. Phylogenetic analysis suggested that AAbV represents a new family, proposed here as Abyssoviridae. MLeV represents a sister group to the other known coronaviruses. The importance of MLeV and AAbV for understanding nidovirus evolution, and the origin of terrestrial nidoviruses are discussed. © 2018 Elsevier Inc.","Nidovirales; Protease; Protein expression; Proteinase; Readthrough; Transcriptome; Translation; Virus discovery","proteinase; viral protein; peptide hydrolase; transcriptome; Abyssoviridae; Alphaletovirus; Anura; Aplysia abyssovirus 1; Aplysia californica; Article; bioinformatics; controlled study; Coronavirinae; gene sequence; genome analysis; Microhyla alphaletovirus 1; new species; Nidovirales; nonhuman; phylogeny; priority journal; protein structure; signal transduction; transcriptomics; translation termination; virus genome; biology; California; classification; Coronaviridae; genetics; isolation and purification; molecular evolution; Nidovirales; Nidovirales infection; virion; virology; virus genome; California; Computational Biology; Coronaviridae; Evolution, Molecular; Genome, Viral; Nidovirales; Nidovirales Infections; Peptide Chain Termination, Translational; Peptide Hydrolases; Phylogeny; Transcriptome; Viral Proteins; Virion","Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410; Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., Hilgenfeld, R., Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain (2002) EMBO J., 21, pp. 3213-3224; Bailey-Elkin, B.A., Knaap, R.C.M., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., Van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the middle east respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J. Biol. Chem., 289, pp. 34667-34682; Birktoft, J.J., Blow, D.M., Structure of crystalline α-chymotrypsin. V. The atomic structure of tosyl-α-chymotrypsin at 2 Å resolution (1972) J. Mol. Biol., 68, pp. 187-240; Brinton, M.A., Gulyaeva, A., Balasuriya, U.B.R., Dunowska, M., Faaberg, K.S., Goldberg, T., Leung, F.-C., Gorbalenya, A.E., (2017), ICTV Pending proposal 2017.012S. Expansion of the rank structure of the family Arteriviridae and renaming its taxa; Buchan, D.W.A., Minneci, F., Nugent, T.C.O., Bryson, K., Jones, D.T., Scalable web services for the PSIPRED Protein Analysis Workbench (2013) Nucleic Acids Res., p. 41; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 3484-3489; Chernomor, O., Von Haeseler, A., Minh, B.Q., Terrace aware data structure for phylogenomic inference from supermatrices (2016) Syst. Biol., 65, pp. 997-1008; Cridge, A.G., Crowe-Mcauliffe, C., Mathew, S.F., Tate, W.P., Eukaryotic translational termination efficiency is influenced by the 3′ nucleotides within the ribosomal mRNA channel (2018) Nucleic Acids Res., 46, pp. 1927-1944; Debat, H.J., Expanding the size limit of RNA viruses: Evidence of a novel divergent nidovirus in California sea hare, with a ~ 35.9 kb virus genome (2018) bioRxiv; Deng, Z., Lehmann, K.C., Li, X., Feng, C., Wang, G., Zhang, Q., Qi, X., Chen, Z., Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase (2014) Nucleic Acids Res., 42, pp. 3464-3477; Feng, Y.X., Yuan, H., Rein, A., Levin, J.G., Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot (1992) J. Virol., 66, pp. 5127-5132; Fiedler, T.J., Hudder, A., McKay, S.J., Shivkumar, S., Capo, T.R., Schmale, M.C., Walsh, P.J., The transcriptome of the early life history stages of the California Sea Hare Aplysia californica (2010) Comp. Biochem. Physiol. Part D Genom. Proteom., 5, pp. 165-170; Furuya, T., Macnaughton, T.B., La Monica, N., Lai, M.M.C., Natural evolution of coronavirus defective-interfering rna involves rna recombination (1993) Virology, 194, pp. 408-413; Gorbalenya, A.E., Brinton, M.A., Cowley, J., de Groot, R., Gulyaeva, A., Lauber, C., Neuman, B.W., (2017), Ziebuhr, J.a. ICTV Pending Proposal 2017.015S. Reorganization and expansion of the order Nidovirales at the family and sub-order ranks; Gorbalenya, A.E., Brinton, M.A., Cowley, J., de Groot, R., Gulyaeva, A., Lauber, C., Neuman, B.W., (2017), Ziebuhr, J.b. ICTV Pending Proposal 2017.014S. Establishing taxa at the ranks of subfamily, genus, sub-genus and species in six families of invertebrate nidoviruses; Gorbalenya, A.E., Lieutaud, P., Harris, M.R., Coutard, B., Canard, B., Kleywegt, G.J., Kravchenko, A.A., Jones, T.A., Practical application of bioinformatics by the multidisciplinary VIZIER consortium (2010) Antivir. Res.; Heyland, A., Vue, Z., Voolstra, C.R., Medina, M., Moroz, L.L., Developmental transcriptome of Aplysia californica’ (2011) J. Exp. Zool. Part B Mol. Dev. Evol., 316 (B), pp. 113-134; Ivanov, K.A., Thiel, V., Dobbe, J.C., van der Meer, Y., Snijder, E.J., Ziebuhr, J., Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase (2004) J. Virol., 78, pp. 5619-5632; Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., Jermiin, L.S., ModelFinder: fast model selection for accurate phylogenetic estimates (2017) Nat. Methods, 14, pp. 587-589; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Togaviridae (2012) Virus Taxonomy, pp. 1103-1110; Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes (2001) J. Mol. Biol., 305, pp. 567-580; Langmead, B., Salzberg, S.L., Fast gapped-read alignment with Bowtie 2 (2012) Nat. Methods, 9, pp. 357-359; Lauber, C., Goeman, J.J., de Parquet, M.C., Thi Nga, P., Snijder, E.J., Morita, K., Gorbalenya, A.E., The footprint of genome architecture in the largest genome expansion in RNA viruses (2013) PLoS Pathog., p. 9; Lauck, M., Alkhovsky, S.V., Bào, Y., Bailey, A.L., Shevtsova, Z.V., Shchetinin, A.M., Vishnevskaya, T.V., Kuhn, J.H., Historical outbreaks of simian hemorrhagic fever in captive macaques were caused by distinct arteriviruses (2015) J. Virol., 89, pp. 8082-8087; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Sam, T., The sequence alignment/map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.-T.K., Makino, S., Middle east respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of Cytoplasmic Origin (2015) J. Virol., 89, pp. 10970-10981; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Rao, Z., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 9436-9441; Melancont, P., Garoff, H., Processing of the Semliki forest virus structural polyprotein: role of the capsid protease (1987) J. Virol., 61, pp. 1301-1309; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res., 194, pp. 184-190; Miranda, J.A., Culley, A.I., Schvarcz, C.R., Steward, G.F., RNA viruses as major contributors to Antarctic virioplankton (2016) Environ. Microbiol.; Moroz, L.L., Edwards, J.R., Puthanveettil, S.V., Kohn, A.B., Ha, T., Heyland, A., Knudsen, B., Kandel, E.R., Neuronal transcriptome of aplysia: neuronal compartments and circuitry (2006) Cell, 127, pp. 1453-1467; Neuman, B.W., Buchmeier, M.J., Supramolecular architecture of the coronavirus particle (2016) Adv. Virus Res., pp. 1-27; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res., 194, pp. 49-66; Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies (2015) Mol. Biol. Evol., 32, pp. 268-274; Nga, P.T., Parquet, M., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes (2011) PLoS Pathog, 7 (9), p. e1002215; O'Dea, M.A., Jackson, B., Jackson, C., Xavier, P., Warren, K., Discovery and partial genomic characterisation of a novel nidovirus associated with respiratory disease in wild shingleback lizards (Tiliqua rugosa) (2016) PLoS One, p. 11; Paradis, E., Claude, J., Strimmer, K., APE: analyses of phylogenetics and evolution in R language (2004) Bioinformatics, 20, pp. 289-290; Petersen, T.N., Brunak, S., Von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat. Methods; Prince, J.S., A presumptive alphavirus in the gastropod mollusc, Aplysia californica (2003) Bull. Mar. Sci., 73, pp. 673-677; (2011), https://doi.org/10.1007/978-3-540-74686-7, R Development Core Team, R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. 〈〉; Saberi, A., Gulyaeva, A.A., Brubacher, J., Newmark, P.A., Gorbalenya, A., A planarian nidovirus expands the limits of RNA genome size (2018) bioRxiv; Sapay, N., Guermeur, Y., Deléage, G., Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier (2006) BMC Bioinform., p. 7; Schliep, K.P., phangorn: phylogenetic analysis in R (2011) Bioinformatics, 27, pp. 592-593; Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., Wang, W., Zhang, Y.Z., The evolutionary history of vertebrate RNA viruses (2018) Nature, 556, pp. 197-202; Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Qin, X.C., Zhang, Y.Z., Redefining the invertebrate RNA virosphere (2016) Nature, 540, pp. 539-543; Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., Higgins, D.G., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega (2011) Mol. Syst. Biol., p. 7; Skuzeski, J.M., Nichols, L.M., Gesteland, R.F., Atkins, J.F., The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons (1991) J. Mol. Biol., 218, pp. 365-373; Söding, J., Biegert, A., Lupas, A.N., The HHpred interactive server for protein homology detection and structure prediction (2005) Nucleic Acids Res., p. 33; Sola, I., Almazán, F., Zúñiga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu. Rev. Virol., 2, pp. 265-288; te Velthuis, A.J.W., Arnold, J.J., Cameron, C.E., van den Worm, S.H.E., Snijder, E.J., The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent (2009) Nucleic Acids Res., 38, pp. 203-214; Tokarz, R., Sameroff, S., Hesse, R.A., Hause, B.M., Desai, A., Jain, K., Ian Lipkin, W., Discovery of a novel nidovirus in cattle with respiratory disease (2015) J. Gen. Virol., 96, pp. 2188-2193; Vasilakis, N., Guzman, H., Firth, C., Forrester, N.L., Widen, S.G., Wood, T.G., Rossi, S.L., Tesh, R.B., Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range (2014) Virol. J., p. 11; Wahl-Jensen, V., Johnson, J.C., Lauck, M., Weinfurter, J.T., Moncla, L.H., Weiler, A.M., Charlier, O., Kuhn, J.H., Divergent simian arteriviruses cause simian hemorrhagic fever of differing severities in macaques (2016) MBio, p. 7; Zeng, C., Wu, A., Wang, Y., Xu, S., Tang, Y., Jin, X., Wang, S., Guo, D., Identification and characterization of a ribose 2′-O-methyltransferase encoded by the ronivirus branch of nidovirales (2016) J. Virol., 90, pp. 6675-6685; Zhao, L., Liu, L., Wang, S., Wang, H., Jiang, J., Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis (2016) Sci. Rep., p. 6; Ziebuhr, J., Baric, R.S., Baker, S., de Groot, R.J., Drosten, C., Gulyaeva, A., Haagmans, B.L., Sola, I., (2017), Gorbalenya, A.E. ICTV Pending Proposal 2017.013S. Reorganization of the family Coronaviridae into two families, Coronaviridae (including the current subfamily Coronavirinae and the new subfamily Letovirinae) and the new family Tobaniviridae (accommodating the current subf); Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res., 31, pp. 3406-3415","Neuman, B.W.; Texas A&M University-Texarkana, 7101 University Ave, United States; email: bneuman@tamut.edu",,"Academic Press Inc.",00426822,,VIRLA,"30199753","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85052986180 "Hsu T.-H., Liu H.-P., Chin C.-Y., Wang C., Zhu W.-Z., Wu B.-L., Chang Y.-C.","35268773700;55719298200;57203149261;7501632658;57203142448;57203143725;55712988500;","Detection, sequence analysis, and antibody prevalence of porcine deltacoronavirus in Taiwan",2018,"Archives of Virology","163","11",,"3113","3117",,4,"10.1007/s00705-018-3964-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050656199&doi=10.1007%2fs00705-018-3964-x&partnerID=40&md5=77ae232e018c1c386a80d801983ea142","Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States; Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan","Hsu, T.-H., Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan; Liu, H.-P., Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan; Chin, C.-Y., Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan; Wang, C., Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States; Zhu, W.-Z., Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan; Wu, B.-L., Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan; Chang, Y.-C., Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan","Porcine deltacoronavirus (PDCoV) was initially documented in Hong Kong and later in the United States, South Korea, and Thailand. To investigate if PDCoV is also present in Taiwan, three swine coronaviruses—PDCoV, porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV)—were tested using real-time reverse transcription polymerase chain reaction (rRT-PCR) in 172 rectal swab samples from piglets exhibiting diarrhea between January 2016 and May 2017 on 68 pig farms in Taiwan. The rRT-PCR results were positive for PDCoV (29/172, 16.9%), PEDV (36/172, 20.9%), TGEV (2/172, 1.2%), and coinfections (16/172, 9.3%). After cloning and sequencing, PDCoV nucleocapsid genes were analyzed. Phylogeny results indicated that the nucleotide sequences of all isolates were like those reported in other countries. To further trace PDCoV in the period of 2011 to 2015, an enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies against PDCoV. The results showed that 279 of 1,039 (26.9%) sera were positive for the PDCoV nucleocapsid protein, implying that PDCoV might have existed in Taiwan before 2011. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"virus antibody; animal; blood; classification; Coronavirinae; Coronavirus infection; diarrhea; DNA sequence; enzyme linked immunosorbent assay; female; genetics; immunology; isolation and purification; male; phylogeny; pig; swine disease; Taiwan; veterinary medicine; virology; Animals; Antibodies, Viral; Coronavirus; Coronavirus Infections; Diarrhea; Enzyme-Linked Immunosorbent Assay; Female; Male; Phylogeny; Sequence Analysis, DNA; Swine; Swine Diseases; Taiwan","Woo, P.C.Y., Lau, S.K., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , COI: 1:CAS:528:DC%2BC38XktlOrsr8%3D; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg Infect Dis, 20, pp. 1347-1350. , PID: 25075556; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20, pp. 1227-1230. , COI: 1:CAS:528:DC%2BC2cXhslaks73J, PID: 24964136; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerg Infect Dis, 20, pp. 1594-1595; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/ (2014) Genome Announc, 2, pp. e001191-e001204; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., Amonsin, A., Porcine deltacoronavirus, Thailand, 2015 (2015) Emerg Infect Dis, 22, pp. 757-759; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in Mainland China (2015) Emerg Infect Dis, 21, pp. 2254-2255. , COI: 1:CAS:528:DC%2BC2sXivVGrtQ%3D%3D; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenecity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg Infect Dis, 21, pp. 650-654. , COI: 1:CAS:528:DC%2BC28XitVOisLjL; Lin, C.N., Chung, W.B., Chang, S.W., Wen, C.C., Liu, H., Chien, C.H., Chiou, M.T., US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014 (2014) J Vet Med Sci, 76, pp. 1297-1299; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , COI: 1:CAS:528:DC%2BC28XhsF2ltrzN; Su, M., Li, C., Guo, D., Wei, S., Wang, S., Gene, Y., Yao, S., Sun, D., A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus (2016) J Vet Med Sci, 78, pp. 601-606. , COI: 1:CAS:528:DC%2BC2sXjtFOqsrw%3D; Zhai, S., Wei, W., Li, X., Wen, X., Zhou, X., Zhang, H., Lv, D., Wang, D., Occurrence and sequence analysis of porcine deltacoronaviruses in southern China (2016) Virol J, 13, p. 136; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saifa, L.J., Isolation and characterization of Porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548. , COI: 1:CAS:528:DC%2BC2MXntFOru7g%3D; Thachil, A., Gerber, P.F., Xiao, C.T., Huang, Y.W., Opriessnig, T., Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies (2015) PLoS One, 10; McClusky, B.J., Haley, C., Rovira, A., Main, R., Zhang, Y., Barder, S., Retrospective testing and case series study of porcine delta coronavirus in US swine herds (2016) Prev Vet Med, 123, pp. 185-191; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Saif, L.J., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342. , COI: 1:CAS:528:DC%2BC2MXktF2nsLg%3D; Ma, Y., Zhang, Y., Liang, X., Oglesbee, M., Krakowka, S., Niehaus, A., Wang, G., Li, J., Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Vet Microbiol, 186, pp. 90-96. , COI: 1:CAS:528:DC%2BC28XjsFKgurw%3D; Chen, Q., Thomas, J.T., Gemenez-Lirola, L.G., Hardham, J.M., Gao, Q., GerBer, P.F., Opriessnig, T., Zhang, J., Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains (2016) BMC Vet Res, 12, p. 70; Gimenez-Lirola, L.G., Zhang, J., Carrillo-Avila, J.A., Chen, Q., Magtoto, R., Poonsuk, K., Baum, D.H., Zimmerman, J., Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications (2017) J Clin Microbiol, 55, pp. 1426-1436. , COI: 1:CAS:528:DC%2BC1cXhtVWrsbvI","Chang, Y.-C.; Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taiwan; email: d80106@mail.mcu.edu.tw",,"Springer-Verlag Wien",03048608,,ARVID,"30051342","English","Arch. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85050656199 "Tyan K., Kang J., Jin K., Kyle A.M.","56606257500;57200554892;57200544378;23976033900;","Evaluation of the antimicrobial efficacy and skin safety of a novel color additive in combination with chlorine disinfectants",2018,"American Journal of Infection Control","46","11",,"1254","1261",,3,"10.1016/j.ajic.2018.04.223","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047354375&doi=10.1016%2fj.ajic.2018.04.223&partnerID=40&md5=9aea5d55313309d6918d50d57b73e7fe","Kinnos Inc., 760 Parkside Avenue, Suite 215, Brooklyn, NY 11226, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States","Tyan, K., Kinnos Inc., 760 Parkside Avenue, Suite 215, Brooklyn, NY 11226, United States; Kang, J., Kinnos Inc., 760 Parkside Avenue, Suite 215, Brooklyn, NY 11226, United States; Jin, K., Kinnos Inc., 760 Parkside Avenue, Suite 215, Brooklyn, NY 11226, United States; Kyle, A.M., Department of Biomedical Engineering, Columbia University, New York, NY, United States","Objective: A novel color additive colorizes chlorine disinfectants blue to improve visibility and enhance spray surface coverage, and it fades to colorless to indicate elapsed contact time. We investigated its interactions with 3 chlorine disinfectants to determine if the additive would adversely affect the disinfectants’ antimicrobial efficacy or skin safety. Methods: We tested 0.5% sodium hypochlorite, 0.2% calcium hypochlorite, and 0.5% sodium dichloroisocyanurate (NaDCC) alone versus with color additive. An independent laboratory tested efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae, and human coronavirus 229E. An independent laboratory also tested direct skin irritation. Results: Chlorine disinfectants with and without color additive achieved equal levels of efficacy against the tested pathogens. Against S. aureus, 0.5% sodium hypochlorite with and without color additive met Environmental Protection Agency criteria for disinfection success. Against human coronavirus 229E, 0.5% sodium hypochlorite alone failed disinfection success criteria, whereas 0.5% sodium hypochlorite with color additive achieved full viral inactivation (≥4.50 log10 reduction). Against V. cholerae, 0.2% calcium hypochlorite alone and with color additive achieved 5.99 log10 and >6.03 log10 reductions, respectively. Against S. aureus and P. aeruginosa, 0.5% NaDCC with and without color additive achieved >4.9 log10 and >3.54 log10 reductions, respectively. All 3 chlorine disinfectants with color additive tested as negligible skin irritants. Conclusions: This color additive can be combined with chlorine disinfectants without adversely affecting antimicrobial efficacy or skin safety. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","Antimicrobial efficacy; Chlorine disinfectant; Color additive; Efficacy test; Skin irritation; Skin safety","calcium hypochlorite; coloring agent; disinfectant agent; hypochlorite sodium; troclosene; unclassified drug; calcium derivative; calcium hypochlorite; coloring agent; disinfectant agent; hypochlorite sodium; antimicrobial activity; Article; chemical interaction; cutaneous parameters; Human coronavirus 229E; nonhuman; Pseudomonas aeruginosa; safety; skin irritation; skin safety; Staphylococcus aureus; Vibrio cholerae; virus inactivation; bacterium; chemistry; Coronavirinae; drug effect; human; skin; Bacteria; Calcium Compounds; Coloring Agents; Coronavirus; Disinfectants; Humans; Skin; Sodium Hypochlorite","Donskey, C.J., Does improving surface cleaning and disinfection reduce health care-associated infections? (2013) Am J Infect Control, 41, pp. S12-S19; Boyce, J.M., Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals (2016) Antimicrob Resist Infect Control, 5, p. 10; Han, J.H., Sullivan, N., Leas, B.F., Pegues, D.A., Kaczmarek, J.L., Umscheid, C.A., Cleaning hospital room surfaces to prevent health care-associated infections. A technical brief (2015) Ann Intern Med, 163, pp. 598-607; Tyan, K., Jin, K., Kang, J., Kyle, A.M., Novel color additive for chlorine disinfectants corrects deficiencies in spray surface coverage and wet-contact time, and checks for correct chlorine concentration (2018) Am J Infect Control, 46, pp. 624-627; Rutala, W.A., Weber, D.J., Selection of the ideal disinfectant (2014) Infect Control Hosp Epidemiol, 35, pp. 855-865; Carling, P.C., Bartley, J.M., Evaluating hygienic cleaning in healthcare settings: what you do not know can harm your patients (2010) Am J Infect Control, 38, pp. S41-S50; Eckstein, B.C., Adams, D.A., Eckstein, E.C., Rao, A., Sethi, A.K., Yadavalli, G.K., Reduction of Clostridium difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods (2007) BMC Infect Dis, 7, p. 61; Ramphal, L., Suzuki, S., McCracken, I.M., Addai, A., Improving hospital staff compliance with environmental cleaning behavior (2014) Proc (Bayl Univ Med Cent), 27, pp. 88-91; Watson, P.A., Watson, L.R., Torress-Cook, A., Efficacy of a hospital-wide environmental cleaning protocol on hospital-acquired methicillin-resistant Staphylococcus aureus rates (2016) J Infect Prev, 17, pp. 171-176; Kang, J., Tyan, K.S., Jin, K., Kyle, A.M., Field-testing of a novel color indicator added to chlorine solutions used for decontamination of surfaces in Ebola Treatment Units (2018) J Hosp Infect, 99, pp. 188-191; United States Environmental Protection Agency, Inert Ingredient Frequently Asked Questions (2014), https://www.epa.gov/sites/production/files/2014-05/documents/faqs.pdf, Published; Available from: (Accessed 23 January 2018); AOAC International, AOAC Official Method 961.02 Germicidal spray products as disinfectants (2016) Official methods of analysis of AOAC International, , Chapter 6; Grant, K., GLP1550: GLP AOAC Germicidal Spray Products Test (2016), Microchem Laboratory, Round Rock, TX; Grant, K., GLP1540: GLP AOAC Germicidal Spray Products Test (2016), Microchem Laboratory, Round Rock, TX; US EPA, Pesticide Product Label, CLOROX BLEACH. United States Environmental Protection Agency website (2011), https://www3.epa.gov/pesticides/chem_search/ppls/005813-00001-20110913.pdf, Published; Available from: (Accessed 23 January 2018); (2011), www.astm.org, ASTM E1053-11 Standard Test Method to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces ASTM International, West Conshohocken, PA; Available from: Accessed March 8, 2018; Guin, E., GLP1536: GLP ASTM E1053 Modified for Spray Products (2017), Microchem Laboratory, Round Rock, TX; Guin, E., GLP1538: GLP ASTM E1053 Modified for Spray Products (2017), Microchem Laboratory, Round Rock, TX; www.astm.org, ASTM E2315-03 Standard Guide for Assessment of Antimicrobial Activity Using a Time-Kill Procedure, 2008 ASTM International, West Conshohocken, PA; Available from: Accessed March 8, 2018; Saad, C., NG8285: Antibacterial Efficacy of Kinnos's Test Substances Using a Suspension Time-Kill Procedure (2017), Microchem Laboratory, Round Rock, TX; Weeks, C., NG9676: Antibacterial Efficacy of Kinnos’ Test Substances Using a Suspension Time-Kill Procedure (2017), Microchem Laboratory, Round Rock, TX; International Medical Corps, Haiti, Feedback on the Use of the “Highlights” at two Cholera Treatment Units in Haiti (2017); United States Centers for Disease Control and Prevention, Infection Control for Cholera in Health Care Settings (2017), https://www.cdc.gov/cholera/infection-control-hcp.html, Updated; Available from: (Accessed 23 January 2018); World Health Organization, Essential environmental health standards in health care (2008), World Health Organization Geneva; Jones, M.V., Wood, M.A., Herd, T.M., Comparative sensitivity of Vibrio cholerae 01 E1 Tor and Escherichia coli to disinfectants (1992) Lett Appl Microbiol, 14, pp. 51-53; www.astm.org, ASTM E1153-14 Standard Test Method for Efficacy of Sanitizers Recommended for Inanimate, Hard, Nonporous Non-Food Contact Surfaces, 2014 ASTM International, West Conshohocken, PA; Available from: Accessed March 8, 2018; Saad, C., NG8156: Antibacterial Activity and Sanitizing Efficacy of Kinnos Inc.'s Test Substances against S. aureus & P. aeruginosa (2017), Microchem Laboratory, Round Rock, TX; Lutz, I., NG8698: Antibacterial Activity and Sanitizing Efficacy of Kinnos Inc.'s Test Substances against P. aeruginosa (2017), Microchem Laboratory, Round Rock, TX; Grant, K., NG9375: Antibacterial Activity and Sanitizing Efficacy of Kinnos, Inc.'s Test Substances (2017), Microchem Laboratory, Round Rock, TX; US EPA, Pesticide Product Label, XHC-S. United States Environmental Protection Agency website (2016), https://www3.epa.gov/pesticides/chem_search/ppls/001677-00255-20160629.pdf, Published; Available from: (Accessed 23 January 2018); ISO 10993-10:2010, Biological evaluation of medical devices – Part 10: Tests for irritation and skin sensitization. International Organization for Standardization website (2010), https://www.iso.org/standard/40884.html, Published; Available from: (Accessed 23 January 2018); Lister, S., Final GLP Reports (2016), Toxikon Corporation, Bedford, MA; Omidbakhsh, N., Theoretical and experimental aspects of microbicidal activities of hard surface disinfectants: are their label claims based on testing under field conditions? (2010) J AOAC Int, 93, pp. 1944-1951; Stingni, L., Lapomarda, V., Lisi, P., Occupational hand dermatitis in hospital environments (1995) Contact Dermatitis, 33, pp. 172-176; Singgih, S.I.R., Lantinga, H., Nater, J.P., Woest, T.E., Kruyt-Gaspersz, J.A., Occupational hand dermatoses in hospital cleaning personnel (1986) Contact Dermatitis, 14, pp. 14-19; Quinn, M.M., Henneberger, P.K., Cleaning and disinfecting environmental surfaces in health care: toward an integrated framework for infection and occupational illness prevention (2015) Am J Infect Control, 43, pp. 424-434; Dick, A.W., Perencevich, E.N., Pogorzelska-Maziarz, M., Zwanziger, J., Larson, E.L., Stone, P.W., A decade of investment in infection prevention: a cost-effectiveness analysis (2015) Am J Infect Control, 43, pp. 4-9; Zoutman, D.E., Ford, B.D., Sopha, K., Environmental cleaning resources and activities in Canadian acute care hospitals (2014) Am J Infect Control, 42, pp. 490-494; Appelbaum, E., Berg, P., Frost, A., Preuss, G., Appelbaum, E., The effects of work restructuring on low-wage, low-skilled workers in U.S. hospitals (2003) Low-wage America: how employers are reshaping opportunity in the workplace, pp. 77-117. , A. Bernhadt R. Murnane Russel Sage Foundation New York (NY); Mustapha, A., Cadnum, J.L., Alhmidi, H., Donskey, C.J., Evaluation of novel chemical additive that colorizes chlorine-based disinfectants to improve visualization of surface coverage (2018) Am J Infect Control, 46, pp. 119-121","Tyan, K.; Kinnos Inc., 760 Parkside Avenue, Suite 215, United States; email: kevin@kinnos.us",,"Mosby Inc.",01966553,,AJICD,"29803593","English","Am. J. Infect. Control",Article,"Final",,Scopus,2-s2.0-85047354375 "Fusco F.M., Brouqui P., Ippolito G., Vetter N., Kojouharova M., Parmakova K., Skinhoej P., Siikamaki H., Perronne C., Schilling S., Gottschalk R., Brodt H.R., Maltezou H.C., Adrami O., Lambert J., Puro V., De Iaco G., Hemmer R., Borg M., Fjellet A.L., Brantsæter A.B., Horban A., Strle F., Trilla A., Bannister B., Carson G., the EuroNHID Working Group","7006608225;7005522769;7102706668;26427366300;6603239284;28567983900;12799271200;56571496600;7006736339;7006292661;7005111532;7003657741;35587014800;35180941900;57202825141;7006616239;56702873800;7005513302;7006012840;55356992500;6507235683;57200769993;7006165846;35485787100;7007006514;57192177004;","Highly infectious diseases in the Mediterranean Sea area: Inventory of isolation capabilities and recommendations for appropriate isolation",2018,"New Microbes and New Infections","26",,,"S65","S73",,,"10.1016/j.nmni.2018.08.013","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054551145&doi=10.1016%2fj.nmni.2018.08.013&partnerID=40&md5=17fdff89e8ed30341e39611498265c69","Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases, ‘L. Spallanzani’, Rome, Italy; Scientific Direction, National Institute for Infectious Diseases, ‘L. Spallanzani’, Rome, Italy; Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France","Fusco, F.M., Epidemiology and Preclinical Research Department, National Institute for Infectious Diseases, ‘L. Spallanzani’, Rome, Italy; Brouqui, P., Aix-Marseille Université, IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France; Ippolito, G., Scientific Direction, National Institute for Infectious Diseases, ‘L. Spallanzani’, Rome, Italy; Vetter, N.; Kojouharova, M.; Parmakova, K.; Skinhoej, P.; Siikamaki, H.; Perronne, C.; Schilling, S.; Gottschalk, R.; Brodt, H.R.; Maltezou, H.C.; Adrami, O.; Lambert, J.; Puro, V.; De Iaco, G.; Hemmer, R.; Borg, M.; Fjellet, A.L.; Brantsæter, A.B.; Horban, A.; Strle, F.; Trilla, A.; Bannister, B.; Carson, G.; the EuroNHID Working Group","Epidemics such as viral haemorrhagic fevers, severe acute respiratory syndrome, Middle East respiratory syndrome coronavirus or yet unknown ones have few chances of disappearing. Globalization, worldwide travel, climate change, social conflicts and wars, among others, are likely to favor the emergence of epidemics. Preparedness of hospitals to prevent the spread of these outbreaks is among the prioritized political programmes of many countries. The EuroNHID network has in the past drawn a map of features and equipment of hospitals across Europe to take care of highly contagious patients. We update the data regarding isolation capabilities and recommendations, with an emphasis on Mediterranean countries. © 2018","Epidemics; highly infectious diseases; isolation capabilities; Mediterranean Sea; outbreak; preparedness","Article; biosafety; climate change; clinical outcome; communicable disease; cross-sectional study; decontamination; disease control; disease transmission; disinfection; echography; genotype; health program; hospital waste; human; infection; isolation; Mediterranean Sea; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; multicenter study; nonhuman; patient transport; Peptoclostridium difficile; priority journal; severe acute respiratory syndrome; thorax radiography; vertical transmission; virus hemorrhagic fever; waste water management","Morens, D.M., Fauci, A.S., Emerging infectious diseases: threats to human health and global stability (2013) PLoS Pathog, 9, p. e1003467; Morens, D.M., Folkers, G.K., Fauci, A.S., Emerging infections: a perpetual challenge (2008) Lancet Infect Dis, 8, pp. 710-719; Brouqui, P., Puro, V., Fusco, F.M., Bannister, B., Schilling, S., Follin, P., Infection control in the management of highly pathogenic infectious diseases: consensus of the European Network of Infectious Disease (2009) Lancet Infect Dis, 9, pp. 301-311; Bannister, B., Puro, V., Fusco, F.M., Heptonstall, J., Ippolito, G., Framework for the design and operation of high-level isolation units: consensus of the European Network of Infectious Diseases (2009) Lancet Infect Dis, 9, pp. 45-56; Di Caro, A., Puro, V., Fusco, F.M., Capobianchi, M.R., Ippolito, G., Hospital preparedness for knowledge-based response to Ebola and other emerging infectious diseases: a continuous challenge (2015) Eur J Intern Med, 26, pp. 454-455; Mora-Rillo, M., Arsuaga, M., Ramírez-Olivencia, G., de la Calle, F., Borobia, A.M., Sánchez-Seco, P., Acute respiratory distress syndrome after convalescent plasma use: treatment of a patient with Ebola virus disease contracted in Madrid, Spain (2015) Lancet Respir Med, 3, pp. 554-562; Schilling, S., Fusco, F.M., De Iaco, G., Bannister, B., Maltezou, H.C., Carson, G., Isolation facilities for highly infectious diseases in Europe—a cross-sectional analysis in 16 countries (2014) PLoS One, 9, p. e100401; Fusco, F.M., Schilling, S., Puro, V., Brodt, H.R., Follin, P., Jarhall, B., EuroNHID checklists for the assessment of high-level isolation units and referral centres for highly infectious diseases: results from the pilot phase of a European survey (2009) Clin Microbiol Infect, 15, pp. 711-719; Bataille, J., Brouqui, P., Building an Intelligent hospital to fight contagion (2017) Clin Infect Dis, 65, pp. S4-S11; Smith, P.W., Anderson, A.O., Christopher, G.W., Cieslak, T.J., Devreede, G.J., Fosdick, G.A., Designing a biocontainment unit to care for patients with serious communicable diseases: a consensus statement (2006) Biosecur Bioterror, 4, pp. 351-365","Brouqui, P.; MEPHI, IHU-Méditerranée Infection, 19-21 Bd Jean Moulin, France; email: philippe.brouqui@univ-amu.fr",,"Elsevier Ltd",20522975,,,,"English","New Microbes New Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85054551145 "Kasem S., Qasim I., Al-Doweriej A., Hashim O., Alkarar A., Abu-Obeida A., Saleh M., Al-Hofufi A., Al-Ghadier H., Hussien R., AL-Sahaf A., Bayoumi F., Magouz A.","25723316800;57195995101;57195993549;57195996573;57195998383;57195999848;57200394805;57200390880;57200392105;57195997832;57195994731;57195998238;57195474777;","The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons",2018,"Journal of Infection and Public Health","11","6",,"884","888",,8,"10.1016/j.jiph.2018.01.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041110789&doi=10.1016%2fj.jiph.2018.01.004&partnerID=40&md5=d050aa578a15612b1bc0ef17a8729e9e","Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516, Egypt; Department of Veterinary Services, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia","Kasem, S., Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia, Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516, Egypt; Qasim, I., Department of Veterinary Services, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Al-Doweriej, A., Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Hashim, O., Department of Veterinary Services, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Alkarar, A., Department of Veterinary Services, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Abu-Obeida, A., Department of Veterinary Services, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Saleh, M., Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Al-Hofufi, A., Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Al-Ghadier, H., Department of Veterinary Laboratory, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Hussien, R., Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; AL-Sahaf, A., Department of Veterinary Services, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Bayoumi, F., Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Riyadh, 11195, Saudi Arabia; Magouz, A., Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, 33516, Egypt","Background: The Middle East respiratory syndrome (MERS) has been reported for the first time infecting a human being since 2012. The WHO was notified of 27 countries have reported cases of MERS, the majority of these cases occur in the Arabian Peninsula, particularly in Saudi Arabia. Dromedary camels are likely to be the main source of Middle East respiratory syndrome virus (MERS-CoV) infection in humans. Methods: MERS-CoV infection rates among camels in livestock markets and slaughterhouses were investigated in Saudi Arabia. A total of 698 nasal swabs were collected and examined with Rapid assay and rtRT-PCR. Ten MERS-CoV positive samples were subjected to full genomic sequencing. In addition, the sensitivity and specificity of the Rapid immunochromatographic assay (BioNote, South Korea) was evaluated as a diagnostic tool for MERS-CoV compared to rtRT-PCR. Results: The results showed a high percentage of dromedaries (56.4%) had evidence for nasal MERS-CoV infection. Phylogenetic analysis of the ten MERS-CoV isolates showed that the sequences were closely related to the other MERS-CoV strains recovered from camels and human cases. Moreover, the results showed that 195 samples were positive for MERS-CoV by rapid assay compared to 394 positive samples of rtRT-PCR, which showed low rapid assay sensitivity (49.49%) while, the specificity were found to be 100%. Conclusion: These findings indicate that these sites are a highly-hazardous to zoonotic diseases. © 2018 The Authors","Livestock markets; MERS; Saudi Arabia; Slaughterhouses","virus RNA; Article; camel; child; comparative study; controlled study; dromedary; gene sequence; human; immunoaffinity chromatography; livestock; major clinical study; Middle East respiratory syndrome; molecular phylogeny; nonhuman; nose smear; phylogeny; preschool child; prevalence; priority journal; rapid immunochromatographic assay; real time polymerase chain reaction; Saudi Arabia; seasonal variation; sensitivity and specificity; slaughterhouse; virus genome; virus isolation; virus strain; animal; Coronavirus infection; diagnostic test; evaluation study; immunoassay; isolation and purification; livestock; Middle East respiratory syndrome coronavirus; nose cavity; procedures; reverse transcription polymerase chain reaction; season; topography; veterinary medicine; virology; whole genome sequencing; Animals; Camelus; Coronavirus Infections; Diagnostic Tests, Routine; Immunoassay; Livestock; Middle East Respiratory Syndrome Coronavirus; Nasal Cavity; Prevalence; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; Saudi Arabia; Seasons; Sensitivity and Specificity; Topography, Medical; Whole Genome Sequencing","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/merscov/, WHO Geneva, Switzerland Available at; Bermingham, A., Chand, M.A., Brown, C.S., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East (2012) EuroSurveill, 17, p. 20290; ECDC, Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV) _ seventeenth update, 11 June 2015 (2015), ECDC Stockholm; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg Infect Dis, 20, pp. 1319-1322; Kasem, S., Qasim, I., Al-Hufofi, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia (2017) J Infect Public Health, , pii: S1876-0341(17)30257-5 [Epub ahead of print]; Ali, M.A., Shehata, M.M., Gomaa, M.R., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect, 6 (1), p. e1-; Saqib, M., Sieberg, A., Hussain, M., Mansoor, M., Zohaib, A., Lattwein, E., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg Infect Dis, 23 (3), pp. 550-551; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., deWit, E., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M.M.T., Evidence for camel-to-human transmission of MERS coronavirus (2014) New Engl J Med., 370, pp. 2499-2505. , pmid:24896817; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Middle East respiratory syndrome coronavirus quasi species that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) mBio, 5 (3). , e01146-14; OIE, Register of diagnostic kits certified by the OIE as validated as fit for purpose (2016), http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/OIEGS2016_Resolution15_eng.pdf, Available at; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20334; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17; Graham, R., https://doi.org/10.1038/protex.2014.022, 10 July 2014. MERS-CoV PCR/sequencing primers. Protocol Exchange; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874; Khalafalla, A.I., Lu, X., Al-Mubarak, A., Dalab, A.S., Al-Busadah, K., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013–2014 (2015) Emerg Infect Dis, 21 (7), pp. 1153-1158; Farag, E.A., Reusken, C.B., Haagmans, B.H., Khaled Mohran, A.K.A., Raj, V.S., Pas, S.D., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5; Song, D., Ha, G., Serhan, W., Eltahir, Y., Yusof, M., Hashem, F., Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels (2015) J Clin Microbiol, 53, pp. 1178-1182","Kasem, S.; Department of Veterinary Health and Monitoring, Ministry of Environment, Water and Agriculture, 65 King Abdulaziz Road, Saudi Arabia; email: Samy.kassem@vet.kfs.edu.eg",,"Elsevier Ltd",18760341,,,"29396257","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85041110789 "Faridi U.","23049831600;","Middle East respiratory syndrome coronavirus (MERS-CoV): Impact on Saudi Arabia, 2015",2018,"Saudi Journal of Biological Sciences","25","7",,"1402","1405",,3,"10.1016/j.sjbs.2016.09.020","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85002374695&doi=10.1016%2fj.sjbs.2016.09.020&partnerID=40&md5=40eaba4d334b5d506455e610c50e92f8","Department of Biochemistry, Tabuk University, Tabuk, Saudi Arabia","Faridi, U., Department of Biochemistry, Tabuk University, Tabuk, Saudi Arabia","Middle East respiratory syndrome is the acute respiratory syndrome caused by betacoronavirus MERS-CoV. The first case of this disease was reported from Saudi Arabia in 2012. This virus is lethal and is a close relative of a severe acute respiratory syndrome (SARS), which is responsible for more than 3000 deaths in 2002–2003. According to Ministry of Health, Saudi Arabia. The number of new cases is 457 in 2015. Riyadh has the highest number of reports in comparison to the other cities. According to this report, males are more susceptible than female, especially after the age of 40. Because of the awareness and early diagnosis the incidence is falling gradually. The pre-existence of another disease like cancer or diabetic etc. boosts the infection. MERS is a zoonotic disease and human to human transmission is low. The MERS-CoV is a RNA virus with protein envelope. On the outer surface, virus has spike like glycoprotein which is responsible for the attachment and entrance inside host cells. There is no specific treatment for the MERS-CoV till now, but drugs are in pipeline which bind with the spike glycoprotein and inhibit its entrance host cells. MERS-CoV and SAR-CoV are from the same genus, so it was thought that the drugs which inhibit the growth of SARS-CoV can also inhibit the growth of MERS-CoV but those drugs are not completely inhibiting virus activity. Until we don't have proper structure and the treatment of MERS-CoV, We should take precautions, especially the health care workers, Camel owners and Pilgrims during Hajj and Umrah, because they are at a higher risk of getting infected. © 2016 The Authors","Betacoronavirus; MERS-CoV; SARS; Saudi Arabia",,"Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370 (26), pp. 2499-2505; Bermingham, A., Chand, M.A., Brown, C.S., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill., 17, p. 20290; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Drosten, W.C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., pp. 11297-11303; Gorbalenya, A.E., Snijder, E.J., Spaan, W.J., Severe acute respiratory syndrome coronavirus phylogeny: toward consensus (2004) J. Virol., 78, pp. 7863-7866; Groot, R.J., Baker, S.C., Baric, R.S., Brown, C., Enjuanes, S.L., Fouchier, R.A.M., Galiano, M., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group (2013) J. Virol., 87 (14), pp. 7790-7792; Lei, J., Mesters, J.R., Anemüller, C.D.S., Hilgenfeld, Q., Ma, R., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antiviral Res., 109, pp. 72-82; http://www.moh.gov.sa, MOH, Saudi Arabia 2015 report; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Inf. Dis., 14 (11), pp. 1090-1095; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Reusken, C.B., Lina, P.H., Pielaat, A., de Vries, A., Dam-Deisz, C., Adema, J., Drexler, J.F., Kooi, E.A., Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe (2010) Vector Borne Zoonotic Dis., 10, pp. 785-791; Sharif-Yakan, A., Kanj, S.S., Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives (2014) PLoS Pathog., 10 (12); Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; http://www.who.int/csr/sars/en/WHOconsensus.pdf, World Health Organization 2014. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). (WHO 2014); Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zumlaa, A., Rustomjeeb, R., Ntoumic, F., Mwabad, P., Batesd, M., Maeurere, M., Huif, D.S., Peterseng, E., Middle East Respiratory Syndrome-need for increased vigilance and watchful surveillance for MERS-CoV in sub-Saharan Africa (2015) Int. J. Infect. Dis., 37, pp. 77-79",,,"Elsevier B.V.",1319562X,,,,"English","Saudi J. Biol. Sci.",Review,"Final",Open Access,Scopus,2-s2.0-85002374695 "Heddergott M., Steeb S., Osten-Sacken N., Steinbach P., Schneider S., Pir J.P., Müller F., Pigneur L.-M., Frantz A.C.","9240002300;57189386003;57190738577;56611498400;57203228376;35248979500;22234855600;35759240400;7006656184;","Serological survey of feline viral pathogens in free-living European wildcats (Felis s. silvestris) from Luxembourg",2018,"Archives of Virology","163","11",,"3131","3134",,,"10.1007/s00705-018-3972-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050958219&doi=10.1007%2fs00705-018-3972-x&partnerID=40&md5=164b095fdc92f294c3f387f9b68d3e0d","Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg, 2160, Luxembourg; Arbeitskreis Wildbiologie an der Justus-Liebig-Universität Gießen e.V., Leihgesterner Weg 217, Giessen, 35392, Germany; Fondation Fauna-Flora, 25, rue Münster, Luxembourg, 2160, Luxembourg; Faculty of Chemistry, University of Göttingen, Tammannstraße 4, Göttingen, 37077, Germany; Biological Station SICONA, 12, rue de Capellen, Olm, 8393, Luxembourg; Hauptstraße 22, Gersfeld, 36129, Germany; Laboratoire de génétique de la conservation (GeCoLAB), Université de Liège, quartier vallée 1, chemin de la Vallée 4, Liège, 4000, Belgium","Heddergott, M., Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg, 2160, Luxembourg; Steeb, S., Arbeitskreis Wildbiologie an der Justus-Liebig-Universität Gießen e.V., Leihgesterner Weg 217, Giessen, 35392, Germany; Osten-Sacken, N., Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg, 2160, Luxembourg, Fondation Fauna-Flora, 25, rue Münster, Luxembourg, 2160, Luxembourg; Steinbach, P., Faculty of Chemistry, University of Göttingen, Tammannstraße 4, Göttingen, 37077, Germany; Schneider, S., Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg, 2160, Luxembourg, Biological Station SICONA, 12, rue de Capellen, Olm, 8393, Luxembourg; Pir, J.P., Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg, 2160, Luxembourg; Müller, F., Arbeitskreis Wildbiologie an der Justus-Liebig-Universität Gießen e.V., Leihgesterner Weg 217, Giessen, 35392, Germany, Hauptstraße 22, Gersfeld, 36129, Germany; Pigneur, L.-M., Laboratoire de génétique de la conservation (GeCoLAB), Université de Liège, quartier vallée 1, chemin de la Vallée 4, Liège, 4000, Belgium; Frantz, A.C., Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg, 2160, Luxembourg","European populations of free-living wildcats have been shown to be exposed to cat viruses. Luxembourg has a high degree of habitat fragmentation, and hybridisation rates between domestic cats and wildcats are high. We therefore assessed the seroprevalence of six viruses in 34 serum samples collected between 2001 and 2016 from wildcats in Luxembourg. The values for feline leukemia virus (FeLV; 52.9%) and feline coronavirus (FCoV; 47.1%) were amongst the highest reported for wildcats. We found evidence for the cumulative likelihood of exposure to FCoV affecting its seroprevalence. Routine monitoring of viral agents in this strictly protected species should be considered. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"virus antibody; animal; blood; cat; cat disease; classification; genetics; immunology; isolation and purification; Luxembourg; phylogeny; seroepidemiology; veterinary medicine; virology; virus; virus infection; wild animal; Animals; Animals, Wild; Antibodies, Viral; Cat Diseases; Cats; Luxembourg; Phylogeny; Seroepidemiologic Studies; Virus Diseases; Viruses","Ansorge, H., Notizen zur Altersbestimmung nach Wachstumslinien an Säugetierschädeln (1995) Methoden feldökol. Säugetierforsch, pp. 95-102. , Stubbe M, Stubbe A, Heidecke D, (eds), Wiss Beitr Univ Halle, Halle; Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J Gen Virol, 84, pp. 2735-2744. , COI: 1:CAS:528:DC%2BD3sXotF2gtb8%3D; Artois, M., Remond, M., Viral diseases as a threat to free-living wild cats (Felis silvestris) in continental Europe (1994) Vet Rec, 134, pp. 651-652. , COI: 1:STN:280:DyaK2M%2FmsFCmsw%3D%3D; Birlenbach, K., Klar, N., Aktionsplan zum Schutz der Europäischen Wildkatze in Deutschland—Schutzkonzept für eine Zielart des überregionalen Waldverbunds (2009) Naturschutz und Landschaftsplanung, 41, pp. 325-332; Daniels, M.J., Golder, M.C., Jarett, O., MacDonald, D.W., Feline viruses in wildcats from Scotland (1999) J Wildl Dis, 35, pp. 121-124. , COI: 1:STN:280:DyaK1M7ntlSitA%3D%3D; Duarte, A., Fernandes, M., Santos, N., Tavares, L., Virological survey in free-ranging wildcats (Felis silvestris) and feral domestic cats in Portugal (2012) Vet Microbiol, 158, pp. 400-404. , COI: 1:STN:280:DC%2BC38vnt1ejsQ%3D%3D; Fromont, E., Sager, A., Leger, F., Bourgemestre, F., Jouquelet, E., Stahl, P., Pontier, D., Artois, M., Prevalence and pathogenicity of retroviruses in wildcats in France (2000) Vet Rec, 146, pp. 317-319. , COI: 1:STN:280:DC%2BD3c3islWrsQ%3D%3D; Greene, C.E., Scott, F.W., Feline Panleukopenia (1990) Infectious diseases of the dog and cat, pp. 291-299. , Greene CE, (ed), W. B. Saunders Company, Philadelphia; Hartmann, K., (2003) Virale Infektionskrankheiten, pp. 157-252. , Kraft W, Dürr U (Hrsg) Katzenkrankheiten, 5 Auflage. Verlag M.&H. Schaper, Alfeld-Hannover; Hartmann, K., Clinical aspects of feline immunodeficiency and feline leukemia virus infection (2011) Vet Immunol Immunopathol, 143, pp. 190-201; Herrmann, M., Kitchener, A., Meinig, H., Stubbe, M., Fernandes, M., Conroy, J., Giannatos, G., Olszanska, A., Felis silvestris (2007) The IUCN Red List of Threatened Species 2007: E, , T60354712A112955994, Downloaded on 11 April; Ihaka, R., Gentleman, R., R: a language for data analysis and graphics (1996) J Comput Graph Stat, 5, pp. 299-314; Jaeger, J.A.G., Madrinan, L.F., Landscape fragmentation in Europe (2011) Joint EEA-FOEN Report, European Environmental Agency, Publications Office of the European Union, Luxembourg, , (1725-9177); Kolbl, S., (1998) Diagnostik der Hunde- und Katzenvirosen, , Enke Verlag, Stuttgart; Klar, N., Fernández, N., Kramer-Schadt, S., Herrmann, M., Trinzen, M., Büttner, I., Niemitz, C., Habitat selection models for European wildcat conservation (2008) Biol Conserv, 141, pp. 308-319; Léger, F., Stahl, P., Ruette, S., Wilhelm, J.L., La répartition du chat forestier en France: évolutions récentes (2008) Faune Sauvage, 280, pp. 24-39; Leutenegger, C., Hofmann-Lehmann, R., Riols, C., Liberek, M., Worel, G., Lups, P., Fehr, D., Lutz, H., Viral infections in free-living populations of the European wildcat (1999) J Wildl Dis, 35, pp. 678-686. , COI: 1:STN:280:DC%2BD3c%2FjvFKrsQ%3D%3D; Lutz, H., Virusinfektionen (2005) Krankheiten der Katze, pp. 107-156. , Horzinek M, Schmidt V, Lutz H, (eds), Enke Verlag, Stuttgart; McOrist, S., Boid, R., Jones, T.W., Easterbee, N., Hubbard, A.L., Jarrett, O., Some viral and protozool diseases in the European wildcat (Felis silvestris) (1991) J Wildl Dis, 27, pp. 693-696. , COI: 1:STN:280:DyaK38%2FpvFeqtw%3D%3D; Meli, M.L., Cattori, V., Martínez, F., López, G., Vargas, A., Simón, M.A., Zorrilla, I., Lutz, H., Feline leukemiavirus and other pathogens as important threats to the survival of the critically endangered Iberian lynx (Lynx pardinus) (2009) PLoS One, 4; Millán, J., Rodriguez, A., A serological survey of common feline pathogens in free-living European wildcats (Felis silvestris) in Central Spain (2009) Eur J Wildl Res, 55, pp. 285-291; Murray, D.L., Kapke, C.A., Evermann, J.F., Fuller, T.K., Infectious disease and the conservation of free-ranging carnivores (1999) Anim Conserv, 2, pp. 241-254; Newcombe, R.G., Two-sided confidence intervals for the single proportion: comparison of seven methods (1998) Stat Med, 17, pp. 857-872. , COI: 1:STN:280:DyaK1c3lsl2rsg%3D%3D; Piechocki, R., Stiefel, A., Über die Altersstruktur der Verluste der Wildkatze (Felis s. silvestris Schreber 1777) (1988) Hercynia N F, 25, pp. 235-258; Poirson, C., Dutilleul, S., (2014), p. 161. , Plan régional de restauration du chat forestier (Felis silvestris) et de la martre des pins (Martes martes) en Nord—Pas de Calais. Coordination Mammalogique du Nord de la France, pour le Conseil Régional Nord-Pas de Calais; Račnik, J., Skribinšek, T., Potočnik, H., Kljun, F., Kos, I., Tozon, N., Viral infections in wild-living European wildcats in Slovenia (2008) Eur J Wildl Res, 54, pp. 767-770; Steeb, S., (2015) Postmortale Untersuchungen an der Europäischen Wildkatze (Felis silvestris silvestris) (Schreber, 1777), p. 230. , PhD thesis, Justus Liebig Universität, Fachbereich Veterinärmedizin, Gießen, VVB Laufersweiler Verlag Gießen; Steinel, A., Parrish, C.R., Bloom, M.E., Truyen, U., Parvovirus infections in wild carnivores (2001) J Wildl Dis, 37, pp. 594-607. , COI: 1:STN:280:DC%2BD3MvlvVWmtw%3D%3D; Steyer, K., Kraus, R.H.S., Mölich, T., Anders, O., Cocchiararo, B., Frosch, C., Geib, A., Nowak, C., Large-scale genetic census of an elusive carnivore, the European wildcat (Felis s. silvestris) (2016) Conserv Genet, 17, pp. 1183-1199; Steyer, K., Tiesmeyer, A., Muñoz-Fuentes, V., Nowak, C., Low rates of hybridization between European wildcats and domestic cats in a human-dominated landscape (2018) Ecol Evol, 8, pp. 2290-2304. , PID: 29468044; Watt, N.J., Mac Intyre, N.J., McOrist, S., An extended outbreak of infections peritonitis in a closed colony of European wildcats (Felis silvestris) (1993) J Comp Pathol, 108, pp. 73-79. , COI: 1:STN:280:DyaK3s3jt1emuw%3D%3D","Heddergott, M.; Musée National d’Histoire Naturelle, 25, rue Münster, Luxembourg; email: mike-heddergott@web.de",,"Springer-Verlag Wien",03048608,,ARVID,"30062638","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85050958219 "Ieven M., Coenen S., Loens K., Lammens C., Coenjaerts F., Vanderstraeten A., Henriques-Normark B., Crook D., Huygen K., Butler C.C., Verheij T.J.M., Little P., Zlateva K., van Loon A., Claas E.C.J., Goossens H., GRACE consortium","8760308500;6701920264;6603106522;6602667579;6603943051;57201076228;8693654200;7102132600;7004521054;55814434300;7003426567;7201984993;6506695618;35476145800;7005382224;7101668890;","Aetiology of lower respiratory tract infection in adults in primary care: a prospective study in 11 European countries",2018,"Clinical Microbiology and Infection","24","11",,"1158","1163",,17,"10.1016/j.cmi.2018.02.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043345619&doi=10.1016%2fj.cmi.2018.02.004&partnerID=40&md5=7432a7900b1061600ecb1c7a8e8c90ae","Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium; Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Primary and Interdisciplinary Care (ELIZA), University of Antwerp, Antwerp, Belgium; Department of Epidemiology and Social Medicine (ESOC), University of Antwerp, Antwerp, Belgium; Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands; Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Nuffield Department of Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom; Department of Communicable and Infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands; University of Southampton, Southampton, United Kingdom; Leiden University Medical Centre, Leiden, Netherlands","Ieven, M., Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Coenen, S., Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium, Department of Primary and Interdisciplinary Care (ELIZA), University of Antwerp, Antwerp, Belgium, Department of Epidemiology and Social Medicine (ESOC), University of Antwerp, Antwerp, Belgium; Loens, K., Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Lammens, C., Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Coenjaerts, F., Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands; Vanderstraeten, A., Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Henriques-Normark, B., Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden, Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Crook, D., Nuffield Department of Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom; Huygen, K., Department of Communicable and Infectious Diseases, Scientific Institute of Public Health, Brussels, Belgium; Butler, C.C., Nuffield Department of Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom; Verheij, T.J.M., Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands; Little, P., University of Southampton, Southampton, United Kingdom; Zlateva, K., Leiden University Medical Centre, Leiden, Netherlands; van Loon, A., Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands; Claas, E.C.J., Leiden University Medical Centre, Leiden, Netherlands; Goossens, H., Department of Medical Microbiology, Antwerp University Hospital, Antwerp, Belgium, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; GRACE consortium","Objectives: To describe the role of bacteria (including bacterial resistance), viruses (including those recently described) and mixed bacterial–viral infections in adults presenting to primary care with lower respiratory tract infection (LRTI). Methods: In all, 3104 adults with LRTI were enrolled, of whom 141 (4.5%) had community-acquired pneumonia (CAP), and 2985 matched controls in a prospective study in 16 primary care networks in Europe, and followed patients up at 28–35 days. We detected Streptococcus pneumoniae and Haemophilus influenzae and assessed susceptibility, atypical bacteria and viruses. Results: A potential pathogen was detected in 1844 (59%) (in 350 (11%) bacterial pathogens only, in 1190 (38%) viral pathogens only, and in 304 (10%) both bacterial and viral pathogens). The most common bacterial pathogens isolated were S. pneumoniae (5.5% overall, 9.2% in CAP patients) and H. influenzae (5.4% overall, 14.2% in CAP patients). Less than 1% of S. pneumoniae were highly resistant to penicillin and 12.6% of H. influenzae were β-lactamase positive. The most common viral pathogens detected were human rhinovirus (20.1%), influenza viruses (9.9%), and human coronavirus (7.4%). Influenza virus, human parainfluenza viruses and human respiratory syncytial virus as well as human rhinovirus, human coronavirus and human metapneumovirus were detected significantly more frequently in LRTI patients than in controls. Conclusions: A bacterial pathogen is identified in approximately one in five adult patients with LRTI in primary care, and a viral pathogen in just under half, with mixed infections in one in ten. Penicillin-resistant pneumococci and β-lactamase-producing H. influenzae are uncommon. These new findings support a restrictive approach to antibiotic prescribing for LRTI and the use of first-line, narrow-spectrum agents in primary care. © 2018 European Society of Clinical Microbiology and Infectious Diseases","Aetiology; Lower respiratory tract infection; Respiratory","clindamycin; erythromycin; levofloxacin; penicillin G; tetracycline; adult; aged; antibiotic sensitivity; Article; bacterium detection; Bordetella pertussis; case control study; Chlamydia pneumoniae; community acquired pneumonia; controlled study; Coronavirinae; female; Haemophilus influenzae; human; Human respiratory syncytial virus; Influenza virus; Legionella pneumophila; lower respiratory tract infection; major clinical study; male; Metapneumovirus; Mycoplasma pneumoniae; nonhuman; Paramyxovirinae; primary medical care; priority journal; prospective study; Rhinovirus; Streptococcus pneumoniae; virus; virus detection; adolescent; bacterium; community acquired infection; drug effect; Europe; isolation and purification; microbiology; middle aged; pneumonia; very elderly; virology; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Bacteria; Community-Acquired Infections; Europe; Female; Humans; Male; Middle Aged; Pneumonia; Prospective Studies; Viruses; Young Adult","Woodhead, M., Blasi, F., Ewig, S., Garau, J., Huchon, G., Ieven, M., Guidelines for the management of adult lower respiratory tract infections–full version (2011) Clin Microbiol Infect, 17, pp. E1-E59; Little, P., Stuart, B., Moore, M., Coenen, S., Butler, C.C., Godycki-Cwirko, M., Amoxicillin for acute lower-respiratory-tract infection in primary care when pneumonia is not suspected: a 12-country, randomised, placebo-controlled trial (2013) Lancet Infect Dis, 13, pp. 123-129; Moore, M., Stuart, B., Coenen, S., Butler, C.C., Goossens, H., Verheij, T.J., Amoxicillin for acute lower respiratory tract infection in primary care: subgroup analysis of potential high-risk groups (2014) Br J Gen Pract, 64, pp. e75-80; Butler, C.C., Hood, K., Verheij, T., Little, P., Melbye, H., Nuttall, J., Variation in antibiotic prescribing and its impact on recovery in patients with acute cough in primary care: prospective study in 13 countries (2009) BMJ, 338, p. b2242; Malhotra-Kumar, S., Van Heirstraeten, L., Coenen, S., Lammens, C., Adriaenssens, N., Kowalczyk, A., Impact of amoxicillin therapy on resistance selection in patients with community-acquired lower respiratory tract infections: a randomized, placebo-controlled study (2016) J Antimicrob Chemother, 71, pp. 3258-3267; van Vugt, S.F., Broekhuizen, B.D., Lammens, C., Zuithoff, N.P., de Jong, P.A., Coenen, S., Use of serum C reactive protein and procalcitonin concentrations in addition to symptoms and signs to predict pneumonia in patients presenting to primary care with acute cough: diagnostic study (2013) BMJ, 346, p. f2450; Loens, K., van Loon, A.M., Coenjaerts, F., van, A.Y., Goossens, H., Wallace, P., Performance of different mono- and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel (2012) J Clin Microbiol, 50, pp. 977-987; de Melker, H.E., Versteegh, F.G., Conyn-Van Spaendonck, M.A., Elvers, L.H., Berbers, G.A., van der, Z.A., Specificity and sensitivity of high levels of immunoglobulin G antibodies against pertussis toxin in a single serum sample for diagnosis of infection with Bordetella pertussis (2000) J Clin Microbiol, 38, pp. 800-806; Huygen, K., Rodeghiero, C., Govaerts, D., Leroux-Roels, I., Melin, P., Reynders, M., Bordetella pertussis seroprevalence in Belgian adults aged 20–39 years (2012) Epidemiol Infect, 2014 (142), pp. 724-728; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; Creer, D.D., Dilworth, J.P., Gillespie, S.H., Johnston, A.R., Johnston, S.L., Ling, C., Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care (2006) Thorax, 61, pp. 75-79; Johansson, N., Kalin, M., Tiveljung-Lindell, A., Giske, C.G., Hedlund, J., Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods (2010) Clin Infect Dis, 50, pp. 202-209; Lieberman, D., Shimoni, A., Shemer-Avni, Y., Keren-Naos, A., Shtainberg, R., Lieberman, D., Respiratory viruses in adults with community-acquired pneumonia (2010) Chest, 138, pp. 811-816; Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., Community-acquired pneumonia requiring hospitalization among US adults (2015) N Engl J Med, 373, pp. 415-427; Chalker, V.J., Stocki, T., Mentasti, M., Fleming, D., Sadler, C., Ellis, J., Mycoplasma pneumoniae infection in primary care investigated by real-time PCR in England and Wales (2011) Eur J Clin Microbiol Infect Dis, 30, pp. 915-921; Rasmussen, J.N., Voldstedlund, M., Andersen, R.L., Ellermann-Eriksen, S., Jensen, T.G., Johansen, H.K., Increased incidence of Mycoplasma pneumoniae infections detected by laboratory-based surveillance in Denmark in 2010 (2010) Euro Surveill, 15 (45). , pii:19708; Teepe, J., Broekhuizen, B., Ieven, M., Loens, K., Huygen, K., Kretzschmar, M., Prevalence, diagnosis, and disease course of pertussis in adults with acute cough in primary care (2015) Br J Gen Pract, 65, pp. e662-e667; Hernes, S.S., Quarsten, H., Hagen, E., Lyngroth, A.L., Pripp, A.H., Bjorvatn, B., Swabbing for respiratory viral infections in older patients: a comparison of rayon and nylon flocked swabs (2011) Eur J Clin Microbiol Infect Dis, 30, pp. 159-165; Greenberg, S.B., Rhinovirus and coronavirus infections (2007) Semin Respir Crit Care Med, 28, pp. 182-192; Hicks, L.A., Shepard, C.W., Britz, P.H., Erdman, D.D., Fischer, M., Flannery, B.L., Two outbreaks of severe respiratory disease in nursing homes associated with rhinovirus (2006) J Am Geriatr Soc, 54, pp. 284-289; Falsey, A.R., McElhaney, J.E., Beran, J., van Essen, G.A., Duval, X., Esen, M., Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness (2014) J Infect Dis, 209, pp. 1873-1881; Zlateva, K.T., Crusio, K.M., Leontovich, A.M., Lauber, C., Claas, E., Kravchenko, A.A., Design and validation of consensus-degenerate hybrid oligonucleotide primers for broad and sensitive detection of corona- and toroviruses (2011) J Virol Methods, 177, pp. 174-183; Falsey, A.R., Criddle, M.C., Walsh, E.E., Detection of respiratory syncytial virus and human metapneumovirus by reverse transcription polymerase chain reaction in adults with and without respiratory illness (2006) J Clin Virol, 35, pp. 46-50; Zlateva, K.T., de Vries, J.J., Coenjaerts, F.E., van Loon, A.M., Verheij, T., Little, P., Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness (2014) Eur Respir J, 44, pp. 169-177; Chow, B.D., Huang, Y.T., Esper, F.P., Evidence of human bocavirus circulating in children and adults, Cleveland, Ohio (2008) J Clin Virol, 43, pp. 302-306; Ghietto, L.M., Majul, D., Ferreyra, S.P., Baumeister, E., Avaro, M., Insfran, C., Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection (2015) Arch Virol, 160, pp. 117-127; Schildgen, O., Muller, A., Allander, T., Mackay, I.M., Volz, S., Kupfer, B., Human bocavirus: passenger or pathogen in acute respiratory tract infections? (2008) Clin Microbiol Rev, 21, pp. 291-304; Babakir-Mina, M., Ciccozzi, M., Perno, C.F., Ciotti, M., The novel KI, WU, MC polyomaviruses: possible human pathogens? (2011) New Microbiol, 34, pp. 1-8; Norja, P., Ubillos, I., Templeton, K., Simmonds, P., No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease (2007) J Clin Virol, 40, pp. 307-311; Babakir-Mina, M., Ciccozzi, M., Perno, C.F., Ciotti, M., The human polyomaviruses KI and WU: virological background and clinical implications (2013) APMIS, 121, pp. 746-754","Ieven, M.; Department of Medical Microbiology, Antwerp University HospitalBelgium; email: greet.ieven@uza.be",,"Elsevier B.V.",1198743X,,CMINF,"29447989","English","Clin. Microbiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85043345619 "Gunaratne G.S., Johns M.E., Hintz H.M., Walseth T.F., Marchant J.S.","57198816842;57189601176;57203501115;7005424273;7103241145;","A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signaling in human cells",2018,"Cell Calcium","75",,,"42","52",,6,"10.1016/j.ceca.2018.08.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051976642&doi=10.1016%2fj.ceca.2018.08.002&partnerID=40&md5=83dac93d3cd2ea7bc749f900272da9c1","Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, United States","Gunaratne, G.S., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Johns, M.E., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Hintz, H.M., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Walseth, T.F., Department of Pharmacology, University of Minnesota Medical SchoolMN 55455, United States; Marchant, J.S., Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, United States","The Ca2+ mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) regulates intracellular trafficking events, including translocation of certain enveloped viruses through the endolysosomal system. Targeting NAADP-evoked Ca2+ signaling may therefore be an effective strategy for discovering novel antivirals as well as therapeutics for other disorders. To aid discovery of novel scaffolds that modulate NAADP-evoked Ca2+ signaling in human cells, we have investigated the potential of using the sea urchin egg homogenate system for a screening campaign. Known pharmacological inhibitors of NAADP-evoked Ca2+ release (but not cADPR- or IP3-evoked Ca2+ release) in this invertebrate system strongly correlated with inhibition of MERS-pseudovirus infectivity in a human cell line. A primary screen of 1534 compounds yielded eighteen ‘hits’ exhibiting >80% inhibition of NAADP-evoked Ca2+ release. A validation pipeline for these candidates yielded seven drugs that inhibited NAADP-evoked Ca2+ release without depleting acidic Ca2+ stores in a human cell line. These candidates displayed a similar penetrance of inhibition in both the sea urchin system and the human cell line, and the extent of inhibition of NAADP-evoked Ca2+ signals correlated well with observed inhibition of infectivity of a Middle East Respiratory syndrome coronavirus (MERS-CoV) pseudovirus. These experiments support the potential of this simple, homogenate system for screening campaigns to discover modulators of NAADP, cADPR and IP3-dependent Ca2+ signaling with potential therapeutic value. © 2018 Elsevier Ltd","Ca2+release; Drug screening; Endosomes; Lysosomes; NAADP","calcium ion; cyclic adenosine diphosphate ribose; nicotinic acid adenine dinucleotide phosphate; calcium; nicotinamide adenine dinucleotide phosphate; nicotinic acid adenine dinucleotide phosphate; Article; calcium signaling; calcium transport; cell free system; egg; human; human cell; invertebrate; mammal cell; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; sea urchin; virus infectivity; analogs and derivatives; animal; calcium signaling; cell line; drug effect; lysosome; metabolism; ovum; preclinical study; reproducibility; sea urchin; Animals; Calcium; Calcium Signaling; Cell Line; Drug Evaluation, Preclinical; Humans; Lysosomes; NADP; Ovum; Reproducibility of Results; Sea Urchins","Morgan, A.J., Platt, F.M., Lloyd-Evans, E., Galione, A., Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease (2011) Biochem. J., 439, pp. 349-374; Lee, H.C., Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling (2005) J. Biol. Chem., 280, pp. 33693-33696; Galione, A., A primer of NAADP-mediated Ca(2+) signalling: from sea urchin eggs to mammalian cells (2015) Cell Calcium, 58, pp. 27-47; Brailoiu, E., Churamani, D., Cai, X., Schrlau, M.G., Brailoiu, G.C., Gao, X., Hooper, R., Patel, S., Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling (2009) J. Cell Biol., 186, pp. 201-209; Calcraft, P.J., Ruas, M., Pan, Z., Cheng, X., Arredouani, A., Hao, X., Tang, J., Zhu, M.X., NAADP mobilizes calcium from acidic organelles through two-pore channels (2009) Nature, 459, pp. 596-600; Zong, X., Schieder, M., Cuny, H., Fenske, S., Gruner, C., Rotzer, K., Griesbeck, O., Wahl-Schott, C., The two-pore channel TPCN2 mediates NAADP-dependent Ca(2+)-release from lysosomal stores (2009) Pflugers Arch., 458, pp. 891-899; Jha, A., Ahuja, M., Patel, S., Brailoiu, E., Muallem, S., Convergent regulation of the lysosomal two-pore channel-2 by Mg(2)(+), NAADP, PI(3,5)P(2) and multiple protein kinases (2014) EMBO J., 33, pp. 501-511; Ruas, M., Davis, L.C., Chen, C.C., Morgan, A.J., Chuang, K.T., Walseth, T.F., Grimm, C., Galione, A., Expression of Ca(2)(+)-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells (2015) EMBO J., 34, pp. 1743-1758; Morgan, A.J., Davis, L.C., Ruas, M., Galione, A., TPC: the NAADP discovery channel? (2015) Biochem. Soc. Trans., 43, pp. 384-389; Wang, X., Zhang, X., Dong, X.P., Samie, M., Li, X., Cheng, X., Goschka, A., Xu, H., TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes (2012) Cell, 151, pp. 372-383; Cang, C., Zhou, Y., Navarro, B., Seo, Y.J., Aranda, K., Shi, L., Battaglia-Hsu, S., Ren, D., mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state (2013) Cell, 152, pp. 778-790; Brailoiu, E., Hooper, R., Cai, X., Brailoiu, G.C., Keebler, M.V., Dun, N.J., Marchant, J.S., Patel, S., An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles (2009) J. Biol. Chem., 285, pp. 2897-2901; Rahman, T., Cai, X., Brailoiu, G.C., Abood, M.E., Brailoiu, E., Patel, S., Two-pore channels provide insight into the evolution of voltage-gated Ca2+ and Na+ channels (2014) Sci. Signal., 7, p. ra109; Grimm, C., Chen, C.C., Wahl-Schott, C., Biel, M., Two-pore channels: catalyzers of endolysosomal transport and function (2017) Front. Pharmacol., 8, p. 45; Grimm, C., Butz, E., Chen, C.C., Wahl-Schott, C., Biel, M., From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease (2017) Cell Calcium, 67, pp. 148-155; Patel, S., Function and dysfunction of two-pore channels (2015) Sci. Signal., 8, p. re7; Sakurai, Y., Kolokoltsov, A.A., Chen, C.C., Tidwell, M.W., Bauta, W.E., Klugbauer, N., Grimm, C., Davey, R.A., Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment (2015) Science, 347, pp. 995-998; Hockey, L., Kilpatrick, B.S., Eden, E.R., Lin-Moshier, Y., Brailoiu, G.C., Brailoiu, E., Futter, C.E., Patel, S., Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel inhibition (2015) J Cell Science, 128, pp. 232-238; Kelu, J.J., Webb, S.E., Parrington, J., Galione, A., Miller, A.L., Ca(2+) release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos (2017) Dev. Biol., 425, pp. 109-129; Capel, R.A., Bolton, E.L., Lin, W.K., Aston, D., Wang, Y., Liu, W., Wang, X., Terrar, D.A., Two-pore channels (TPC2s) and nicotinic acid adenine dinucleotide phosphate (NAADP) at lysosomal-sarcoplasmic reticular junctions contribute to acute and chronic beta-adrenoceptor signaling in the heart (2015) J. Biol. Chem., 290, pp. 30087-30098; Lin, P.H., Duann, P., Komazaki, S., Park, K.H., Li, H., Sun, M., Sermersheim, M., Ma, J., Lysosomal two-pore channel subtype 2 (TPC2) regulates skeletal muscle autophagic signaling (2014) J. Biol. Chem.; Lear, P.V., Gonzalez-Touceda, D., Porteiro Couto, B., Viano, P., Guymer, V., Remzova, E., Tunn, R., Dieguez, C., Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue (2015) Endocrinology, 156, pp. 975-986; Grimm, C., Holdt, L.M., Chen, C.C., Hassan, S., Muller, C., Jors, S., Cuny, H., Wahl-Schott, C., High susceptibility to fatty liver disease in two-pore channel 2-deficient mice (2014) Nat. Commun., 5, p. 4699; Suarez-Cortes, P., Gambara, G., Favia, A., Palombi, F., Alano, P., Filippini, A., Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum (2017) Malar. J., 16, p. 366; Gunaratne, G., Yang, Y., Li, F., Walseth, T.F., Marchant, J.S., Inhibition of Two-Pore channels blocks Middle East Respiratory Syndrome Coronavirus translocation through the endolysosomal system (2018) Companion Pap.; Favia, A., Desideri, M., Gambara, G., D'Alessio, A., Ruas, M., Esposito, B., Del Bufalo, D., Filippini, A., VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. E4706-E4715; Pafumi, I., Festa, M., Papacci, F., Lagostena, L., Giunta, C., Gutla, V., Cornara, L., Carpaneto, A., Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis (2017) Sci. Rep., 7, p. 5121; de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., Van Hoof, F., Commentary. Lysosomotropic agents (1974) Biochem. Pharmacol., 23, pp. 2495-2531; Lemieux, B., Percival, M.D., Falgueyret, J.P., Quantitation of the lysosomotropic character of cationic amphiphilic drugs using the fluorescent basic amine Red DND-99 (2004) Anal. Biochem., 327, pp. 247-251; Naylor, E., Arredouani, A., Vasudevan, S.R., Lewis, A.M., Parkesh, R., Mizote, A., Rosen, D., Churchill, G.C., Identification of a chemical probe for NAADP by virtual screening (2009) Nat. Chem. Biol., 5, pp. 220-226; Billington, R.A., Genazzani, A.A., PPADS is a reversible competitive antagonist of the NAADP receptor (2007) Cell Calcium, 41, pp. 505-511; Genazzani, A.A., Mezna, M., Dickey, D.M., Michelangeli, F., Walseth, T.F., Galione, A., Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg (1997) Br. J. Pharmacol., 121, pp. 1489-1495; Dowden, J., Berridge, G., Moreau, C., Yamasaki, M., Churchill, G.C., Potter, B.V., Galione, A., Cell-permeant small-molecule modulators of NAADP-mediated Ca2+ release (2006) Chem. Biol., 13, pp. 659-665; Lee, H.C., Aarhus, R., Walseth, T.F., Calcium mobilization by dual receptors during fertilization of sea-urchin eggs (1993) Science, 261, pp. 352-355; Lee, H.C., Aarhus, R., A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose (1995) J. Biol. Chem., 270, pp. 2152-2157; Galione, A., Chuang, K.T., Funnell, T.M., Davis, L.C., Morgan, A.J., Ruas, M., Parrington, J., Churchill, G.C., Preparation and use of sea urchin egg homogenates for studying NAADP-mediated Ca(2)(+) release (2014) Cold Spring Harb. Protoc., 2014, pp. 988-992; Morgan, A.J., Bampali, K., Ruas, M., Factor, C., Back, T.G., Chen, S.R.W., Galione, A., Carvedilol inhibits cADPR- and IP3-induced Ca(2+) release (2016) Messenger (Los Angel), 5, pp. 92-99; Vasudevan, S.R., Singh, N., Churchill, G.C., Scaffold hopping with virtual screening from IP3 to a drug-like partial agonist of the inositol trisphosphate receptor (2014) Chembiochem, 15, pp. 2774-2782; Billington, R.A., Bak, J., Martinez-Coscolla, A., Debidda, M., Genazzani, A.A., Triazine dyes are agonists of the NAADP receptor (2004) Br. J. Pharmacol., 142, pp. 1241-1246; Jain, P., Slama, J.T., Perez-Haddock, L.A., Walseth, T.F., Nicotinic Acid Dinucleotide Phosphate Analogs containing substituted nicotinic acid: effect of modification on Ca2+ release (2010) J. Med. Chem., 53, pp. 7599-7612; Rosen, D., Lewis, A.M., Mizote, A., Thomas, J.M., Aley, P.K., Vasudevan, S.R., Parkesh, R., Churchill, G.C., Analogues of the nicotinic acid adenine dinucleotide phosphate (NAADP) antagonist Ned-19 indicate two binding sites on the NAADP receptor (2009) J. Biol. Chem., 284, pp. 34930-34934; Ali, R.A., Zhelay, T., Trabbic, C.J., Walseth, T.F., Slama, J.T., Giovannucci, D.R., Wall, K.A., Activity of nicotinic acid substituted nicotinic acid adenine dinucleotide phosphate (NAADP) analogs in a human cell line: difference in specificity between human and sea urchin NAADP receptors (2014) Cell Calcium, 55, pp. 93-103; Walseth, T.F., Lee, H.C., Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+ release (1993) Biochim. Biophys. Acta, 1178, pp. 235-242; Clapper, D.L., Walseth, T.F., Dargie, P.J., Lee, H.C., Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate (1987) J. Biol. Chem., 262, pp. 9561-9568; Walseth, T.F., Lin-Moshier, Y., Jain, P., Ruas, M., Parrington, J., Galione, A., Marchant, J.S., Slama, J.T., Photoaffinity labeling of high affinity nicotinic acid adenine dinucleotide phosphate (NAADP)-binding proteins in sea urchin egg (2012) J. Biol. Chem., 287, pp. 2308-2315; Aarhus, R., Dickey, D.M., Graeff, R.M., Gee, K.R., Walseth, T.F., Lee, H.C., Activation and inactivation of Ca2+ release by NAADP+ (1996) J. Biol. Chem., 271, pp. 8513-8516; Zhang, J.H., Chung, T.D., Oldenburg, K.R., A simple statistical parameter for use in evaluation and validation of high throughput screening assays (1999) J. Biomol. Screen., 4, pp. 67-73; Dickey, D.M., Aarhus, R., Walseth, T.F., Lee, H.C., Thio-NADP is not an antagonist of NAADP (1998) Cell Biochem. Biophys., 28, pp. 63-73; Schnute, M.E., McReynolds, M.D., Kasten, T., Yates, M., Jerome, G., Rains, J.W., Hall, T., Nagiec, M.M., Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1 (2012) Biochem. J., 444, pp. 79-88; Singh, A., Hildebrand, M.E., Garcia, E., Snutch, T.P., The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels (2010) Br. J. Pharmacol., 160, pp. 1464-1475; Merritt, J.E., Armstrong, W.P., Benham, C.D., Hallam, T.J., Jacob, R., Jaxa-Chamiec, A., Leigh, B.K., Rink, T.J., SK&F 96365, a novel inhibitor of receptor-mediated calcium entry (1990) Biochem. J., 271, pp. 515-522; Lin-Moshier, Y., Walseth, T.F., Churamani, D., Davidson, S.M., Slama, J.T., Hooper, R., Brailoiu, E., Marchant, J.S., Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells (2012) J. Biol. Chem., 287, pp. 2296-2307; Walseth, T.F., Lin-Moshier, Y., Weber, K., Marchant, J.S., Slama, J.T., Guse, A.H., Nicotinic acid adenine dinucleotide 2’-phosphate binding proteins in t lymphocytes (2012) Messenger, 1, pp. 86-94; Marchant, J.S., Lin-Moshier, Y., Walseth, T., Patel, S., The molecular basis for Ca2+ signalling by NAADP: two-pore channels in a complex? (2012) Messenger, 1, pp. 63-76; Berg, T.O., Stromhaug, E., Lovdal, T., Seglen, O., Berg, T., Use of glycyl-L-phenylalanine 2-naphthylamide, a lysosome-disrupting cathepsin C substrate, to distinguish between lysosomes and prelysosomal endocytic vacuoles (1994) Biochem. J., 300, pp. 229-236; Padamsey, Z., McGuinness, L., Bardo, S.J., Reinhart, M., Tong, R., Hedegaard, A., Hart, M.L., Emptage, N.J., Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines (2017) Neuron, 93, pp. 132-146; Strange, K., Drug discovery in fish, flies, and worms (2016) ILAR J., 57, pp. 133-143; Gunaratne, G., Johns, M.E., Walseth, T.F., Marchant, J.S., A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signals in human cells (2018) Companion Pap.; Brailoiu, E., Rahman, T., Churamani, D., Prole, D.L., Brailoiu, G.C., Hooper, R., Taylor, C.W., Patel, S., An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals (2010) J. Biol. Chem., 285, pp. 38511-38516; Guo, J., Zeng, W., Chen, Q., Lee, C., Chen, L., Yang, Y., Cang, C., Jiang, Y., Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana (2016) Nature, 531, pp. 196-201; Kintzer, A.F., Stroud, R.M., Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana (2016) Nature, 531, pp. 258-262; She, J., Guo, J., Chen, Q., Zeng, W., Jiang, Y., Bai, X.C., Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel (2018) Nature, 556, pp. 130-134; Kornhuber, J., Muehlbacher, M., Trapp, S., Pechmann, S., Friedl, A., Reichel, M., Muhle, C., Tripal, P., Identification of novel functional inhibitors of acid sphingomyelinase (2011) PLoS One, 6; Kornhuber, J., Tripal, P., Reichel, M., Muhle, C., Rhein, C., Muehlbacher, M., Groemer, T.W., Gulbins, E., Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications (2010) Cell. Physiol. Biochem., 26, pp. 9-20; Villamil Giraldo, A.M., Appelqvist, H., Ederth, T., Ollinger, K., Lysosomotropic agents: impact on lysosomal membrane permeabilization and cell death (2014) Biochem. Soc. Trans., 42, pp. 1460-1464; Nadanaciva, S., Lu, S., Gebhard, D.F., Jessen, B.A., Pennie, W.D., Will, Y., A high content screening assay for identifying lysosomotropic compounds (2011) Toxicol. In Vitro, 25, pp. 715-723; Gulbins, E., Palmada, M., Reichel, M., Luth, A., Bohmer, C., Amato, D., Muller, C.P., Kornhuber, J., Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs (2013) Nat. Med., 19, pp. 934-938; Chung, H.Y., Witt, C.J., Jbeily, N., Hurtado-Oliveros, J., Giszas, B., Lupp, A., Graler, M.H., Claus, R.A., Acid sphingomyelinase inhibition prevents development of Sepsis sequelae in the murine liver (2017) Sci. Rep., 7, p. 12348; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Johnson, R.F., Frieman, M.B., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob. Agents Chemother., 58, pp. 4885-4893; Ali, R.A., Camick, C., Wiles, K., Walseth, T.F., Slama, J.T., Bhattacharya, S., Giovannucci, D.R., Wall, K.A., Nicotinic acid adenine dinucleotide phosphate plays a critical role in naive and effector murine t cells but not natural regulatory t cells (2016) J. Biol. Chem., 291, pp. 4503-4522; Lloyd-Evans, E., Morgan, A.J., He, X., Smith, D.A., Elliot-Smith, E., Sillence, D.J., Churchill, G.C., Platt, F.M., Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium (2008) Nat. Med., 14, pp. 1247-1255; Hoglinger, D., Haberkant, P., Aguilera-Romero, A., Riezman, H., Porter, F.D., Platt, F.M., Galione, A., Schultz, C., Intracellular sphingosine releases calcium from lysosomes (2015) eLife, 4; Belinson, H., Lev, D., Masliah, E., Michaelson, D.M., Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits (2008) J. Neurosci., 28, pp. 4690-4701","Marchant, J.S.; Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinUnited States; email: JMarchant@mcw.edu",,"Elsevier Ltd",01434160,,CECAD,"30145428","English","Cell Calcium",Article,"Final",,Scopus,2-s2.0-85051976642 "Chan C.Y., Low J.G., Wyone W., Oon L.L., Tan B.H.","56978486900;57193304581;56502244800;57205178360;7402833831;","Survey of Respiratory Virus in Patients Hospitalised for Acute Exacerbations of Heart Failure - A Prospective Observational Study",2018,"Annals of the Academy of Medicine, Singapore","47","11",,"445","450",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058919865&partnerID=40&md5=1e7e57ee808cf62a9728abd8dfd36ee8","Department of Infectious Diseases, Singapore General Hospital, Singapore","Chan, C.Y., Department of Infectious Diseases, Singapore General Hospital, Singapore; Low, J.G.; Wyone, W.; Oon, L.L.; Tan, B.H.","INTRODUCTION: Respiratory virus (RV) infections have been implicated in acute exacerbation cardiopulmunary conditions. This study aimed to determine the prevalence of RV infections in patients admitted to the cardiology unit with acute decompensated heart failure (ADHF) in a tertiary hospitals in Singapore. MATERIALS AND METHODS: This was a single-centre, prospective observational study. A total of 194 adults (aged >21) admitted to the Singapore General Hospital with ADHF were recruited. A nasopharyngeal swab was taken for multiplex polymerase chain reaction (PCR) detection of influenza virus, rhinovirus, parainfluenza virus (HPIV), human coronavirus (HcoV), adenoviurs, human bocavirus (HboV), human metapneumovirus (hMPV), and respiratory syncytial virus (RSV). RESULTS: Twenty-five (13%) had RVs detected by RV multiplex PCR. There comprised 9 rhinoviruses (36%), 4 influenza A viruses (16%), 3 HPIV (12%), 3 HCoV (12%), 2 adenoviruses (8%), 1 human HBoV (4%), 1 hMPV (4%), and 1 RSV (4%). Symptoms-wise, cough was significantly more common in the PCR-positive group (48% vs 24%, P = 0.02). There were no statistically significant differences in laboratory investigations (haemoglobin, leukocytes, platelets, creatine kinase, creatine kinase-muscle/brain, troponin T), and radiology findings between RV PCR-positive and -negative groups. The PCR-positive group did not have increased mortality or length of hospital stay. CONCLUSION: This study identified a considerable burden of RVs in our ADHF cohort, and highlights the need for prevention of RVs in this group of patients. We also recognised the difficulty with clinical diagnosis of RVs in ADHF patients.",,"adult; classification; comorbidity; differential diagnosis; female; heart failure; human; isolation and purification; length of stay; male; nasopharynx; outcome assessment; pathogenicity; pathophysiology; prospective study; recurrent disease; respiratory tract infection; Singapore; statistics and numerical data; survival analysis; virology; virus; Adult; Comorbidity; Diagnosis, Differential; Female; Heart Failure; Humans; Length of Stay; Male; Nasopharynx; Outcome Assessment (Health Care); Prospective Studies; Respiratory Tract Infections; Singapore; Survival Analysis; Symptom Flare Up; Viruses",,,,"NLM (Medline)",03044602,,,"30578423","English","Ann. Acad. Med. Singap.",Article,"Final",,Scopus,2-s2.0-85058919865 "García-Nicolás O., V’kovski P., Vielle N.J., Ebert N., Züst R., Portmann J., Stalder H., Gaschen V., Vieyres G., Stoffel M., Schweizer M., Summerfield A., Engler O., Pietschmann T., Todt D., Alves M.P., Thiel V., Pfaender S.","54997974800;55807132400;55943237300;57192167156;15842730800;57210652503;7103223413;6507131103;16837687700;57193409980;7102501894;7006459820;7005459858;6603512440;56136972100;13404198600;35238592100;55320564800;","The small-compound inhibitor K22 displays broad antiviral activity against different members of the family Flaviviridae and offers potential as a panviral inhibitor",2018,"Antimicrobial Agents and Chemotherapy","62","11", e01206-18,"","",,3,"10.1128/AAC.01206-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055601934&doi=10.1128%2fAAC.01206-18&partnerID=40&md5=353ba9cc1533b0c1dd7ef98f0b9237a9","Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Spiez Laboratory, Spiez, Switzerland; Division of Veterinary Anatomy, Department of Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany","García-Nicolás, O., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; V’kovski, P., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Vielle, N.J., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Ebert, N., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Züst, R., Spiez Laboratory, Spiez, Switzerland; Portmann, J., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Stalder, H., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Gaschen, V., Division of Veterinary Anatomy, Department of Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Vieyres, G., Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany; Stoffel, M., Division of Veterinary Anatomy, Department of Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Schweizer, M., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Summerfield, A., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Engler, O., Spiez Laboratory, Spiez, Switzerland; Pietschmann, T., Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany; Todt, D., Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; Alves, M.P., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Thiel, V., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Pfaender, S., Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland","The virus family Flaviviridae encompasses several viruses, including (re)emerging viruses which cause widespread morbidity and mortality throughout the world. Members of this virus family are positive-strand RNA viruses and replicate their genome in close association with reorganized intracellular host cell membrane compartments. This evolutionarily conserved strategy facilitates efficient viral genome replication and contributes to evasion from host cell cytosolic defense mechanisms. We have previously described the identification of a small-compound inhibitor, K22, which exerts a potent antiviral activity against a broad range of coronaviruses by targeting membrane-bound viral RNA replication. To analyze the antiviral spectrum of this inhibitor, we assessed the inhibitory potential of K22 against several members of the Flaviviridae family, including the reemerging Zika virus (ZIKV). We show that ZIKV is strongly affected by K22. Time-of-addition experiments revealed that K22 acts during a postentry phase of the ZIKV life cycle, and combination regimens of K22 together with ribavirin (RBV) or interferon alpha (IFN-) further increased the extent of viral inhibition. Ultrastructural electron microscopy studies revealed severe alterations of ZIKV-induced intracellular replication compartments upon infection of K22-treated cells. Importantly, the antiviral activity of K22 was demonstrated against several other members of the Flaviviridae family. It is tempting to speculate that K22 exerts its broad antiviral activity against several positive-strand RNA viruses via a similar mechanism and thereby represents an attractive candidate for development as a panviral inhibitor. Copyright © 2018 García-Nicolás et al.","Antiviral; Flaviviridae; Flavivirus; Hepacivirus; K22; Panviral inhibitor; Pestivirus","antivirus agent; k 22; recombinant alpha interferon AD; ribavirin; unclassified drug; alpha interferon; antivirus agent; ribavirin; virus RNA; antiviral activity; Article; Bovine viral diarrhea virus 1; CC50; cell proliferation; cell viability; concentration response; controlled study; cytotoxicity; Flaviviridae; Hepacivirus; IC50; Japanese encephalitis virus; nonhuman; Pestivirus; priority journal; selectivity index; Usutu virus; Vero cell line; virus genome; virus infectivity; virus inhibition; virus load; virus replication; West Nile virus; Yellow fever virus; Zika fever; Zika virus; Aedes; animal; cell line; cell membrane; Chlorocebus aethiops; drug effect; Flaviviridae; Flaviviridae infection; genetics; human; virology; Aedes; Animals; Antiviral Agents; Cell Line; Cell Membrane; Cercopithecus aethiops; Flaviviridae; Flaviviridae Infections; Humans; Interferon-alpha; Ribavirin; RNA, Viral; Vero Cells; Virus Replication","(2017) Virus Taxonomy: 2017 Release, , https://talk.ictvonline.org/taxonomy, Accessed 21 May 2018; Hartlage, A.S., Cullen, J.M., Kapoor, A., The strange, expanding world of animal hepaciviruses (2016) Annu Rev Virol, 3, pp. 53-75. , https://doi.org/10.1146/annurev-virology-100114-055104; Manns, M.P., Buti, M., Gane, E., Pawlotsky, J.M., Razavi, H., Terrault, N., Younossi, Z., Hepatitis C virus infection (2017) Nat Rev Dis Primers, 3, p. 17006. , https://doi.org/10.1038/nrdp.2017.6; Mackenzie, J.S., Gubler, D.J., Petersen, L.R., Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses (2004) Nat Med, 10, pp. S98-S109. , https://doi.org/10.1038/nm1144; Lazear, H.M., Diamond, M.S., Zika virus: New clinical syndromes and its emergence in the Western Hemisphere (2016) J Virol, 90, pp. 4864-4875. , https://doi.org/10.1128/JVI.00252-16; Weissenböck, H., Hubálek, Z., Bakonyi, T., Nowotny, N., Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases (2010) Vet Microbiol, 140, pp. 271-280. , https://doi.org/10.1016/j.vetmic.2009.08.025; Stapleton, J.T., Foung, S., Muerhoff, A.S., Bukh, J., Simmonds, P., The Gb viruses: A review and proposed classification of GbV-A, GbV-C (HGV), and GbV-D in genus Pegivirus within the family Flaviviridae (2011) J Gen Virol, 92, pp. 233-246. , https://doi.org/10.1099/vir.0.027490-0; Houe, H., Epidemiological features and economical importance of bovine virus diarrhoea virus (BVDV) infections (1999) Vet Microbiol, 64, pp. 89-107. , https://doi.org/10.1016/S0378-1135(98)00262-4; Schweizer, M., Peterhans, E., Pestiviruses (2014) Annu Rev Anim Biosci, 2, pp. 141-163. , https://doi.org/10.1146/annurev-animal-022513-114209; Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G., A structural perspective of the flavivirus life cycle (2005) Nat Rev Microbiol, 3, pp. 13-22. , https://doi.org/10.1038/nrmicro1067; Romero-Brey, I., Bartenschlager, R., Membranous replication factories induced by plus-strand RNA viruses (2014) Viruses, 6, pp. 2826-2857. , https://doi.org/10.3390/v6072826; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Trybala, E., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004166; Rappe, J.C.F., de Wilde, A., Di, H., Müller, C., Stalder, H., V’Kovski, P., Snijder, E., Thiel, V., Antiviral activity of K22 against members of the order Nidovirales (2018) Virus Res, 246, pp. 28-34. , https://doi.org/10.1016/j.virusres.2018.01.002; Manns, M.P., von Hahn, T., Novel therapies for hepatitis C—one pill fits all? (2013) Nat Rev Drug Discov, 12, pp. 595-610. , https://doi.org/10.1038/nrd4050; Crance, J.M., Scaramozzino, N., Jouan, A., Garin, D., Interferon, ribavirin, 6-azauridine and glycyrrhizin: Antiviral compounds active against pathogenic flaviviruses (2003) Antiviral Res, 58, pp. 73-79. , https://doi.org/10.1016/S0166-3542(02)00185-7; Cortese, M., Goellner, S., Acosta, E.G., Neufeldt, C.J., Oleksiuk, O., Lampe, M., Haselmann, U., Bartenschlager, R., Ultrastructural characterization of Zika virus replication factories (2017) Cell Rep, 18, pp. 2113-2123. , https://doi.org/10.1016/j.celrep.2017.02.014; Morse, S.S., Factors in the emergence of infectious diseases (1995) Emerg Infect Dis, 1, pp. 7-15. , https://doi.org/10.3201/eid0101.950102; Pawlotsky, J.M., Feld, J.J., Zeuzem, S., Hoofnagle, J.H., From non-A, non-B hepatitis to hepatitis C virus cure (2015) J Hepatol, 62, pp. S87-S99. , https://doi.org/10.1016/j.jhep.2015.02.006; Furuta, Y., Takahashi, K., Shiraki, K., Sakamoto, K., Smee, D.F., Barnard, D.L., Gowen, B.B., Morrey, J.D., T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections (2009) Antiviral Res, 82, pp. 95-102. , https://doi.org/10.1016/j.antiviral.2009.02.198; Pawlotsky, J.M., Flisiak, R., Sarin, S.K., Rasenack, J., Piratvisuth, T., Chuang, W.L., Peng, C.Y., Naoumov, N.V., Alisporivir plus ribavirin, interferon free or in combination with pegylated interferon, for hepatitis C virus genotype 2 or 3 infection (2015) Hepatology, 62, pp. 1013-1023. , https://doi.org/10.1002/hep.27960; Zeuzem, S., Flisiak, R., Vierling, J.M., Mazur, W., Mazzella, G., Thongsawat, S., Abdurakhmanov, D., Naoumov, N.V., Randomised clinical trial: Alisporivir combined with peginterferon and ribavirin in treatment-naive patients with chronic HCV genotype 1 infection (ESSENTIAL II) (2015) Aliment Pharmacol Ther, 42, pp. 829-844. , https://doi.org/10.1111/apt.13342; Watanabe, S., Chan, K.W., Dow, G., Ooi, E.E., Low, J.G., Vasudevan, S.G., Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy (2016) Antiviral Res, 127, pp. 10-19. , https://doi.org/10.1016/j.antiviral.2015.12.008; Ishikawa, T., Yamanaka, A., Konishi, E., A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available (2014) Vaccine, 32, pp. 1326-1337. , https://doi.org/10.1016/j.vaccine.2014.01.040; Guy, B., Barrere, B., Malinowski, C., Saville, M., Teyssou, R., Lang, J., From research to phase III: Preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine (2011) Vaccine, 29, pp. 7229-7241. , https://doi.org/10.1016/j.vaccine.2011.06.094; Hadinegoro, S.R., Arredondo-García, J.L., Capeding, M.R., Deseda, C., Chotpitayasunondh, T., Dietze, R., Muhammad Ismail, H.I., Saville, M., Efficacy and long-term safety of a dengue vaccine in regions of endemic disease (2015) N Engl J Med, 373, pp. 1195-1206. , https://doi.org/10.1056/NEJMoa1506223; Scherwitzl, I., Mongkolsapaja, J., Screaton, G., Recent advances in human flavivirus vaccines (2017) Curr Opin Virol, 23, pp. 95-101. , https://doi.org/10.1016/j.coviro.2017.04.002; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) mBio, 4, pp. e00524-e00613. , https://doi.org/10.1128/mBio.00524-13; Neufeldt, C.J., Cortese, M., Acosta, E.G., Bartenschlager, R., Rewiring cellular networks by members of the Flaviviridae family (2018) Nat Rev Microbiol, 16, pp. 125-142. , https://doi.org/10.1038/nrmicro.2017.170; Paul, D., Bartenschlager, R., Flaviviridae replication organelles: Oh, what a tangled web we weave (2015) Annu Rev Virol, 2, pp. 289-310. , https://doi.org/10.1146/annurev-virology-100114-055007; Neufeldt, C.J., Joyce, M.A., Van Buuren, N., Levin, A., Kirkegaard, K., Gale, M., Jr, Tyrrell, D.L., Wozniak, R.W., The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005428; Överby, A.K., Popov, V.L., Niedrig, M., Weber, F., Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles (2010) J Virol, 84, pp. 8470-8483. , https://doi.org/10.1128/JVI.00176-10; Miorin, L., Romero-Brey, I., Maiuri, P., Hoppe, S., Krijnse-Locker, J., Bartenschlager, R., Marcello, A., Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA (2013) J Virol, 87, pp. 6469-6481. , https://doi.org/10.1128/JVI.03456-12; Haid, S., Windisch, M.P., Bartenschlager, R., Pietschmann, T., Mouse-specific residues of claudin-1 limit hepatitis C virus genotype 2a infection in a human hepatocyte cell line (2010) J Virol, 84, pp. 964-975. , https://doi.org/10.1128/JVI.01504-09; Pietschmann, T., Kaul, A., Koutsoudakis, G., Shavinskaya, A., Kallis, S., Steinmann, E., Abid, K., Bartenschlager, R., Construction and characterization of infectious intragenotypic and in-tergenotypic hepatitis C virus chimeras (2006) Proc Natl Acad Sci U S A, 103, pp. 7408-7413. , https://doi.org/10.1073/pnas.0504877103; Schmitt, M., Scrima, N., Radujkovic, D., Caillet-Saguy, C., Simister, P.C., Friebe, P., Wicht, O., Bressanelli, S., A comprehensive structure-function comparison of hepatitis C virus strain JFH1 and J6 polymerases reveals a key residue stimulating replication in cell culture across genotypes (2011) J Virol, 85, pp. 2565-2581. , https://doi.org/10.1128/JVI.02177-10; Marques Antunes de Oliveira, A., Stalder, H., Peterhans, E., Sauter, K.S., Schweizer, M., Complete genome sequences of both biotypes of a virus pair of bovine viral diarrhea virus subgenotype 1k (2013) Genome An-Nounc, 1 (4), pp. e00287-e00313. , https://doi.org/10.1128/genomeA.00287-13; Kaiser, V., Nebel, L., Schüpbach-Regula, G., Zanoni, R.G., Schweizer, M., Influence of border disease virus (BDV) on serological surveillance within the bovine virus diarrhea (BVD) eradication program in Switzerland (2017) BMC Vet Res, 13, p. 21. , https://doi.org/10.1186/s12917-016-0932-0; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Hyg, 27, pp. 493-497; Vieyres, G., Pietschmann, T., Entry and replication of recombinant hepatitis C viruses in cell culture (2013) Methods, 59, pp. 233-248. , https://doi.org/10.1016/j.ymeth.2012.09.005; Steinmann, E., Brohm, C., Kallis, S., Bartenschlager, R., Pietschmann, T., Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus-like particles (2008) J Virol, 82, pp. 7034-7046. , https://doi.org/10.1128/JVI.00118-08; Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative CT method (2008) Nat Protoc, 3, pp. 1101-1108. , https://doi.org/10.1038/nprot.2008.73; Braun, U., Janett, F., Züblin, S., von Büren, M., Hilbe, M., Zanoni, R., Schweizer, M., Insemination with border disease virus-infected semen results in seroconversion in cows but not persistent infection in fetuses (2018) BMC Vet Res, 14, p. 159. , https://doi.org/10.1186/s12917-018-1472-6; Schätz, G., Schneiter, M., Rička, J., Kühni-Boghenbor, K., Tschanz, S.A., Doherr, M.G., Frenz, M., Stoffel, M.H., Ciliary beating plane and wave propagation in the bovine oviduct (2013) Cells Tissues Organs, 198, pp. 457-469. , https://doi.org/10.1159/000360155; Chou, T., Martin, N., (2005) A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and The Determination of IC50 and ED50 and LD50 Values, , ComboSyn Inc., Paramus, NJ","Thiel, V.; Institute of Virology and ImmunologySwitzerland; email: volker.thiel@vetsuisse.unibe.ch",,"American Society for Microbiology",00664804,,AMACC,"30181371","English","Antimicrob. Agents Chemother.",Article,"Final",Open Access,Scopus,2-s2.0-85055601934 "Álvarez-Argüelles M.E., Rojo-Alba S., Pérez Martínez Z., Leal Negredo Á., Boga Riveiro J.A., Alonso Álvarez M.A., Rodríguez Súarez J., de Oña Navarro M., Melón García S.","23003586600;55631936300;57196346802;57199688428;57203572353;57188952058;6604065405;16169341700;6508230973;","New clinical and seasonal evidence of infections by Human Parainfluenzavirus",2018,"European Journal of Clinical Microbiology and Infectious Diseases","37","11",,"2211","2217",,3,"10.1007/s10096-018-3363-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052327309&doi=10.1007%2fs10096-018-3363-y&partnerID=40&md5=ae6a431c3d8b5faf1612ed8f266d8a38","Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Morphology and Cellular Biology Department, Oviedo University, Oviedo, Spain; Pediatric Department, Hospital Universitario Central de Asturias, Oviedo, Spain","Álvarez-Argüelles, M.E., Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Rojo-Alba, S., Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Pérez Martínez, Z., Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain, Morphology and Cellular Biology Department, Oviedo University, Oviedo, Spain; Leal Negredo, Á., Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain; Boga Riveiro, J.A., Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Alonso Álvarez, M.A., Pediatric Department, Hospital Universitario Central de Asturias, Oviedo, Spain; Rodríguez Súarez, J., Pediatric Department, Hospital Universitario Central de Asturias, Oviedo, Spain; de Oña Navarro, M., Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Melón García, S., Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain","Human Parainfluenzaviruses (PIVs) account for a significant proportion of viral acute respiratory infections (ARIs) in children, and are also associated with morbidity and mortality in adults, including nosocomial infections. This work aims to describe PIV genotypes and their clinical and epidemiological distribution. Between December 2016 and December 2017, 6121 samples were collected, and submitted to viral culture and genomic quantification, specifically Parainfluenza 1–4 (PIV1–4), Influenza A and B, Respiratory Syncytial Virus (RSV) A and B, Adenovirus, Metapneumovirus, Coronavirus, Rhinovirus, and Enterovirus. Normalized viral load, as (log10) copies/103 cells, was calculated as virus Ct, determined by multiple qRT-PCR, as a function of the Ct of β-globin. PIV was confirmed in 268 cases (4.37%), and linked to both upper and lower respiratory tract disease, being more frequent in children than in adults (5.23 and 2.43%, respectively). PIV1 and PIV3 were most common (31 and 32.5%, of total PIV positive samples, respectively), with distribution being similar in children and adults, as was viral load. PIV type was correlated with seasonality: PIV3 being more frequent in winter and spring, PIV1 in summer, and PIV 4 in fall. No correlation between vial load and clinical severity was found. Novel findings were that PIV viral load was higher in fall than in other seasons, and PIV4, classically linked to mild respiratory symptoms, was circulating, in children and adults, at all levels of symptoms throughout the year. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.","Acute respiratory infections; Parainfluenzavirus; Season; Viral load","hemoglobin beta chain; Adenoviridae; adolescent; aged; Article; autumn; Coronavirinae; Enterovirus; genotype; human; Human parainfluenza virus 1; Human respiratory syncytial virus; Human respiratory syncytial virus A; Human respiratory syncytial virus B; Influenza A virus; Influenza B virus; lower respiratory tract infection; major clinical study; Metapneumovirus; nonhuman; Parainfluenza virus infection; Paramyxovirinae; priority journal; Rhinovirus; seasonal variation; spring; viral genetics; viral upper respiratory tract infection; virus culture; virus load; winter; adult; child; classification; female; genetics; incidence; male; molecular typing; respiratory tract infection; Respirovirus; Respirovirus infection; season; virology; virus genome; young adult; Adolescent; Adult; Child; Female; Genome, Viral; Humans; Incidence; Male; Molecular Typing; Respiratory Tract Infections; Respirovirus; Respirovirus Infections; Seasons; Viral Load; Young Adult","Clark, T.W., Medina, M.J., Batham, S., Parmar, S., Nicholson, K.G., Adults hospitalised with acute respiratory illness rarely have detectable bacteria in the absence of COPD or pneumonia; viral infection predominates in a large prospective UK sample (2014) J Inf Secur, 69, pp. 507-515; Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., Reed, C., Study Team, C.D.C.E.P.I.C., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N Engl J Med, 373, pp. 415-427. , COI: 1:CAS:528:DC%2BC2MXhtlyktLvK; Berman, S., Epidemiology of acute respiratory infections in children of developing countries (1991) Rev Infect Dis, 13, pp. S454-S462; Pecchini, R., Berezin, E.N., Souza, M.C., Vaz-de-Lima Lde, A., Sato, N., Salgado, M., Ueda, M., Catebelota, A., Parainfluenza virus as a cause of acute respiratory infection in hospitalized children (2015) Braz J Infect Dis, 19 (4), pp. 358-362; Spahr, Y., Tschudin-Sutter, S., Baettig, V., Compagno, F., Tamm, M., Halter, J., Gerull, S., Khanna, N., Community-acquired respiratory Paramyxovirus infection after allogeneic hematopoietic cell transplantation: a single-center experience (2018) Open Forum Infect Dis, 5 (5), p. ofy077; Villaran, M.V., Garcia, J., Gomez, J., Arango, A.E., Gonzales, M., Chicaiza, W., Alemán, W., Halsey, E.S., Human parainfluenza virus in patients with influenza-like illness from central and South America during 2006–2010 (2014) Influenza Other Respir Viruses, 8 (2), pp. 217-227; Aguilar, J.C., Perez-Brena, M.P., Garcia, M.L., Cruz, N., Erdman, D.D., Echevarria, J.E., Detection and identifi cation of human parainfl uenza viruses 1, 2, 3, and 4 in clinical samples of pediatric patients by multiplex reverse transcription-PCR (2000) J Clin Microbiol, 38 (3), pp. 1191-1195. , COI: 1:CAS:528:DC%2BD3cXitVels7s%3D, PID: 10699020; Mao, N., Ji, Y., Xie, Z., Wang, H., Wang, H., An, J., Zhang, X., Xu, W., Human parainfl uenza virus-associated respiratory tract infection among children and genetic analysis of HPIV-3 strains in Beijing, China (2012) PLoS One, 7 (8). , COI: 1:CAS:528:DC%2BC38Xht1yktLbN; Álvarez-Argüelles, M.E., de Oña-Navarro, M., Rojo-Alba, S., Torrens-Muns, M., Junquera-Llaneza, M.L., Antonio-Boga, J., Pérez-Castro, S., Melón-García, S., Quantification of human papilloma virus (HPV) DNA using the Cobas 4800 system in women with and without pathological alterations attributable to the virus (2015) J Virol Methods, 222, pp. 95-102; Gómez-Novo, M., Boga, J.A., Álvarez-Argüelles, M.E., Rojo-Alba, S., Fernández, A., Menéndez, M.J., de Oña, M., Melón, S., Human respiratory syncytial virus load normalized by cell quantification as predictor of acute respiratory tract infection (2018) J Med Virol, 90 (5), pp. 861-866; Abedi, G.R., Prill, M.M., Langley, G.E., Wikswo, M.E., Weinberg, G.A., Curns, A.T., Schneider, E., Estimates of Parainfl uenza virus-associated hospitalizations and cost among children aged less than 5 years in the United States, 1998–2010 (2016) J Pediatric Infect Dis Soc, 5 (1), pp. 7-13; Hall, C.B., Respiratory syncytial virus and parainfluenza virus (2001) N Engl J Med, 344, p. 1917. , COI: 1:STN:280:DC%2BD3MzlvVCjtw%3D%3D; Fry, A.M., Curns, A.T., Harbour, K., Hutwagner, L., Holman, R.C., Anderson, L.J., Seasonal trends of human parainfluenza viral infections: United States, 1990-2004 (2006) Clin Infect Dis, 43, p. 1016; Ison, M.G., Respiratory viral infections in transplant recipients (2007) Antivir Ther, 12, p. 627. , PID: 17944270; Russell, E., Ison, M.G., Parainfluenza virus in the hospitalized adult (2017) Clin Infect Dis, 65, p. 1570; Whimbey, E., Champlin, R.E., Couch, R.B., Englund, J.A., Goodrich, J.M., Raad, I., Przepiorka, D., Mirza, N., Other authors. Community respiratory virus infections among hospitalized adult bone marrow transplant recipients (1996) Clin Infect Dis, 22, pp. 778-782. , COI: 1:STN:280:DyaK28zgvFSnsA%3D%3D; Glasgow, K.W., Tamblyn, S.E., Blair, G., A respiratory outbreak due to parainfluenza virus type 3 in a home for the aged – Ontario (1995) Can Commun Dis Rep, 21, pp. 57-61. , COI: 1:STN:280:DyaK2M3mvVCjtA%3D%3D, PID: 7749396; Park, S.Y., Baek, S., Lee, S.O., Choi, S.H., Kim, Y.S., Woo, J.H., Sung, H., Kim, S.H., Efficacy of oral ribavirin in hematologic disease patients with paramyxovirus infection: analytic strategy using propensity scores (2013) Antimicrob Agents Chemother, 57 (2), pp. 983-989. , COI: 1:CAS:528:DC%2BC3sXntVCru7w%3D; Choudhary, M.L., Anand, S.P., Heydari, M., Rane, G., Potdar, V.A., Chadha, M.S., Mishra, A.C., Development of a multiplex one step RT-PCR that detects eighteen respiratory viruses in clinical specimens and comparison with real time RT-PCR (2013) J Virol Methods, 189 (1), pp. 15-19. , COI: 1:CAS:528:DC%2BC3sXktlOnsrw%3D; Boivin, G., Abed, Y., Pelletier, G., Ruel, L., Moisan, D., Côté, S., Peret, T.C., Anderson, L.J., Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups (2002) J Infect Dis, 186, pp. 1330-1334; Henderson, F.W., Pulmonary infections with respiratory syncytial virus and the parainfluenza viruses (1997) Semin Respir Infect, 2, pp. 112-121; Sharova, N.K., Kubinova, I., Vorkunova, G.K., Tumova, B., Bukrinskaia, A.G., Conservativism of the matrix protein of paramyxoviruses (1989) Vopr Virusol, 34, pp. 573-575. , COI: 1:CAS:528:DyaK3cXjtlSnuw%3D%3D, PID: 2609644; Rodríguez-Serrano, D.A., Nieto-Cabrera, M., Conesa, J., Culebras-López, E., Neumonía por virus parainfluenza tipo 4 y púrpura trombótica trombocitopénica (2012) Med Int, 36 (3), p. 235; McFarlane, H.J., MacDonald, J., Collins, T.C., Molyneaux, P.J., Carman, W.F., Severe pneumonia after cardiac surgery as a result of infection with parainfluenza virus type 4 (2009) J Cardiothorac Vasc Anesth, 23, pp. 84-86; Lau, S.K., Li, K.S., Chau, K.Y., So, L.Y., Lee, R.A., Lau, L.Y., Clinical and molecular epidemiology of human parainfluenza virus 4 infections in Hong Kong: subtype 4B as common as subtype 4A (2009) J Clin Microbiol, 47, pp. 1549-1552; Wright, P.F., Parainfluenza viruses (2005) Principles and practice of infectious diseases, p. 1998. , Mandell GL, Bennett JE, Dolin R, (eds), 6, Elsevier Churchill Livingstone, Philadelphia; Kim, Y.J., Boeckh, M., Englund, J.A., Community respiratory virus infections in immunocompromised patients: hematopoietic stem cell and solid organ transplant recipients, and individuals with human immunodeficiency virus infection (2007) Semin Respir Crit Care Med, 28, p. 222","Álvarez-Argüelles, M.E.; Instituto de Investigación Sanitaria del Principado de AsturiasSpain; email: martaealvarez@gmail.com",,"Springer Verlag",09349723,,EJCDE,"30143939","English","Eur. J. Clin. Microbiol. Infect. Dis.",Article,"Final",,Scopus,2-s2.0-85052327309 "Hoang V.-T., Gautret P.","57202332027;36893462000;","Infectious Diseases and Mass Gatherings",2018,"Current Infectious Disease Reports","20","11", 44,"","",,15,"10.1007/s11908-018-0650-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052527253&doi=10.1007%2fs11908-018-0650-9&partnerID=40&md5=11586ceacab3ad8925d3bbdbdbe830d1","IRD, AP-HM, SSA, VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, Marseille Cedex 05, 13385, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam","Hoang, V.-T., IRD, AP-HM, SSA, VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, Marseille Cedex 05, 13385, France, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Gautret, P., IRD, AP-HM, SSA, VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, Marseille Cedex 05, 13385, France","Purpose of Review: Mass gatherings (MGs) are characterized by a high concentration of people at a specific time and location. Infectious diseases are of particular concern at MGs. The aim of this review was to summarize findings in the field of infectious diseases with a variety of pathogens associated with international MGs in the last 5 years. Recent Findings: In the context of Hajj, one of the largest religious MGs at Mecca, Saudi Arabia, respiratory tract infections are the leading cause of infectious diseases in pilgrims with a prevalence of 50–93%. The most commonly acquired respiratory viruses were human rhinovirus, followed by human coronaviruses and influenza A virus, in decreasing order. Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae were the predominant bacteria. The prevalence of Hajj-related diarrhea ranged from 1.1 to 23.3% and etiologies included Salmonella spp., and Escherichia coli, with evidence of acquisition of antimicrobial-resistant bacteria. In other MGs such as Muslim, Christian, and Hindu religious events, sports events, and large-scale open-air festivals, outbreaks have been reported less frequently. The most common outbreaks at these events involved diseases preventable by vaccination, notably measles and influenza. Gastrointestinal infections caused by a variety of pathogens were also recorded. Summary: Because social distancing and contact avoidance are difficult measures to implement in the context of many MGs, individual preventive measures including vaccination, use of face mask, disposable handkerchief and hand hygiene may be recommended. Nevertheless, the effectiveness of these measures has been poorly investigated in the context of MGs. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.","Festival; Hajj; Infectious diseases; Mass gatherings; Outbreaks; Sport","antibiotic prophylaxis; antibiotic resistance; athlete; bacterium carrier; bacterium isolate; Coronaviridae; crowding (area); diarrhea; disease association; drug use; epidemic; Escherichia coli; football; gastrointestinal infection; Haemophilus influenzae; human; Human rhinovirus; India; infection; infectious agent; Influenza A virus; influenza vaccination; mass gathering; measles; measles vaccination; methicillin resistant Staphylococcus aureus; nonhuman; prevalence; recreational game; religious group; respiratory tract infection; Review; risk factor; Salmonella; Saudi Arabia; social behavior; sport; Staphylococcus aureus; Streptococcus pneumoniae","(2015) Public health for mass gatherings: key considerations, , WHO, Geneva; (2008) Communicable disease alert and response for mass gatherings: key considerations, , WHO, Geneva; Al-Tawfiq, J.A., Memish, Z.A., Mass gatherings and infectious diseases: prevention, detection, and control (2012) Infect Dis Clin N Am, 26 (3), pp. 725-737; Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Hajj: infectious disease surveillance and control (2014) Lancet, 383 (9934), pp. 2073-2082; Abubakar, I., Gautret, P., Brunette, G.W., Blumberg, L., Johnson, D., Poumerol, G., Memish, Z.A., Khan, A.S., Global perspectives for prevention of infectious diseases associated with mass gatherings (2012) Lancet Infect Dis, 12, pp. 66-74; Ahmed, Q.A., Arabi, Y.M., Memish, Z.A., Health risks at the Hajj (2006) Lancet, 367 (9515), pp. 1008-1015; Zumla, A., McCloskey, B., Endericks, T., Azhar, E.I., Petersen, E., The challenges of cholera at the 2017 Hajj pilgrimage (2017) Lancet Infect Dis, (9), pp. 895-897. , https://doi.org/10.1016/S1473-3099(17)30454-1; Yezli, S., Assiri, A.M., Alhakeem, R.F., Turkistani, A.M., Alotaibi, B., Meningococcal disease during the Hajj and Umrah mass gatherings (2016) Int J Infect Dis, 47, pp. 60-64; Yezli, S., The threat of meningococcal disease during the Hajj and Umrah mass gatherings: a comprehensive review (2018) Travel Med Infect Dis, , https://doi.org/10.1016/j.tmaid.2018.05.003; Marashi, S.A., Rusta, H., Tabatabaei, A., Chief complaints and diagnosis of patients visited by caravan physicians during hajj 2010 (2014) Iran Red Crescent Med J, 16; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Petersen, E., Zumla, A., Osman, H., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013-2015 (2016) Int J Infect Dis, 47, pp. 10-14; Muraduzzaman, A.K.M., Khan, M.H., Parveen, R., Sultana, S., Alam, A.N., Akram, A., Rahman, M., Shirin, T., Event based surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in Bangladesh among pilgrims and travelers from the Middle East: an update for the period 2013-2016 (2018) PLoS One, 13 (1); Al-Abdallat, M.M., Rha, B., Alqasrawi, S., Payne, D.C., Iblan, I., Binder, A.M., Acute respiratory infections among returning Hajj pilgrims-Jordan, 2014 (2017) J Clin Virol, 89, pp. 34-37; Marglani, O.A., Alherabi, A.Z., Herzallah, I.R., Saati, F.A., Tantawy, E.A., Alandejani, T.A., Faidah, H.S., Madani, T.A., Acute rhinosinusitis during Hajj season 2014: prevalence of bacterial infection and patterns of antimicrobial susceptibility (2016) Travel Med Infect Dis, 14, pp. 583-587; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.A., Lal, R.B., Krishnan, A., Influenza not MERS CoV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, north India, 2014-15 (2017) Travel Med Infect Dis, 15, pp. 45-47; Khan, I.D., Khan, S.A., Asima, B., Hussaini, S.B., Zakiuddin, M., Faisal, F.A., Morbidity and mortality amongst Indian Hajj pilgrims: a 3-year experience of Indian Hajj medical mission in mass-gathering medicine (2018) J Infect Public Health, 11, pp. 165-170; Yavarian, J., Shafiei Jandaghi, N.Z., Naseri, M., Hemmati, P., Dadras, M., Gouya, M.M., Influenza virus but not MERS coronavirus circulation in Iran, 2013-2016: comparison between pilgrims and general population (2018) Travel Med Infect Dis, 2018 (21), pp. 51-55; Shirah, B.H., Zafar, S.H., Alferaidi, O.A., Sabir, A.M.M., Mass gathering medicine (Hajj Pilgrimage in Saudi Arabia): the clinical pattern of pneumonia among pilgrims during Hajj (2017) J Infect Public Health, 10 (3), pp. 277-286; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Yezli, S., Etiology of severe community-acquired pneumonia during the 2013 Hajj-part of the MERS-CoV surveillance program (2014) Int J Infect Dis, (25), pp. 186-190. , https://doi.org/10.1016/j.ijid.2014.06.003; AlBarrak, A., Alotaibi, B., Yassin, Y., Mushi, A., Maashi, F., Seedahmed, Y., Proportion of adult community-acquired pneumonia cases attributable to Streptococcus pneumoniae among Hajj pilgrims in 2016 (2018) Int J Infect Dis, 69, pp. 68-74. , This study shows the high prevalence ofS. pneumoniaeamong patients with community-acquired pneumonia hospitalized Saudi hospitals during the Hajj; Razavi, S.M., Mohazzab Torabi, S., Salamati, P., Treatment and prevention of acute respiratory infections among Iranian hajj pilgrims: a 5-year follow up study and review of the literature (2014) Med J Islam Repub Iran, 28, p. 31. , PID: 25250272; Razavi, S.M., Sabouri-Kashani, A., Ziaee-Ardakani, H., Tabatabaei, A., Karbakhsh, M., Sadeghipour, H., Trend of diseases among Iranian pilgrims during five consecutive years based on a Syndromic Surveillance System in Hajj (2013) Med J Islam Repub Iran, 27 (4), pp. 179-185. , PID: 24926178; Al-Jasser, F.S., Kabbash, I.A., AlMazroa, M.A., Memish, Z.A., Patterns of diseases and preventive measures among domestic hajjis from Central, Saudi Arabia (2012) Saudi Med J, 33 (8), pp. 879-886. , PID: 22886122; Ashshi, A., Azhar, E., Johargy, A., Asghar, A., Momenah, A., Turkestani, A., Alghamdi, S., Barbour, E.K., Demographic distribution and transmission potential of influenza A and 2009 pandemic influenza A H1N1 in pilgrims (2014) J Infect Dev Ctries, 8 (9), pp. 1169-1175; Verhoeven, P.O., Gautret, P., Haddar, C.H., Benkouiten, S., Gagnaire, J., Belhouchat, K., Molecular dynamics of Staphylococcus aureus nasal carriage in Hajj pilgrims (2015) Clin Microbiol Infect, 21 (7), pp. 650.e5-650.e8; Gautret, P., Benkouiten, S., Griffiths, K., Sridhar, S., The inevitable Hajj cough: surveillance data in French pilgrims, 2012–2014 (2015) Travel Med Infect Dis, 13 (6), pp. 485-489. , This 3-year surveillance survey evidences the high prevalence of respiratory symptoms French pilgrims; Refaey, S., Amin, M.M., Roguski, K., Azziz-Baumgartner, E., Uyeki, T.M., Labib, M., Kandeel, A., Cross-sectional survey and surveillance for influenza viruses and MERS-CoV among Egyptian pilgrims returning from Hajj during 2012-2015 (2017) Influenza Other Respir Viruses, 11 (1), pp. 57-60; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Memish, Z.A., Gautret, P., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Memish, Z.A., Al-Tawfiq, J.A., Almasri, M., Akkad, N., Yezli, S., Turkestani, A., A cohort study of the impact and acquisition of naspharyngeal carriage of Streptococcus pneumoniae during the Hajj (2016) Travel Med Infect Dis, 14 (3), pp. 242-247; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Azeem, M., Bokhary, H., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29 (6), pp. 364-371; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect, 21 (6), pp. 571.e1-571.e8. , This large cohort study describes the acquisition of respiratory pathogens by pilgrims from 13 different countries; Hashim, S., Ayub, Z.N., Mohamed, Z., Hasan, H., Harun, A., Ismail, N., The prevalence and preventive measures of the respiratory illness among Malaysian pilgrims in 2013 Hajj season (2016) J Travel Med, 23, p. tav019; Ma, X., Liu, F., Liu, L., Zhang, L., Lu, M., Abudukadeer, A., Wang, L., Hu, K., No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China, 2013-2015 (2017) BMC Infect Dis, 17 (1), p. 715; Ganaie, F., Nagaraj, G., Govindan, V., Basha, R., Hussain, M., Ashraf, N., Impact of Hajj on the S. pneumoniae carriage among Indian pilgrims during 2016 - a longitudinal molecular surveillance study (2018) Travel Med Infect Dis, 23, pp. 64-71. , This study shows that 65.9% Indian pilgrims were positive forS. pneumoniaeby qPCR (59% were symptomatic; Pane, M., Imari, S., Alwi, Q., Nyoman Kandun, I., Cook, A.R., Samaan, G., Causes of mortality for Indonesian Hajj Pilgrims: comparison between routine death certificate and verbal autopsy findings (2013) PLoS One, 8 (8); Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: a systematic review (2016) Travel Med Infect Dis, 14 (2), pp. 92-109; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Travel Med Infect Dis, 23, pp. 6-13; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., Amankwa, J., Eckerle, I., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Tropical Med Int Health, 20, pp. 807-812; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., The spectrum of respiratory pathogens among returning Hajj pilgrims: myths and reality (2016) Int J Infect Dis, 47, pp. 83-85; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B viruses but Not MERS-CoV in Hajj Pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21 (4), pp. 726-727; Lessler, J., Rodriguez-Barraquer, I., Cummings, D.A., Garske, T., Van Kerkhove, M., Mills, H., Estimating potential incidence of MERS-CoV associated with Hajj Pilgrims to Saudi Arabia, 2014 (2014) PLoS Curr, 24, p. 6; Zumla, A., Mwaba, P., Bates, M., Al-Tawfiq, J.A., Maeurer, M., Memish, Z.A., The Hajj pilgrimage and surveillance for Middle East respiratory syndrome coronavirus in pilgrims from African countries (2014) Tropical Med Int Health, 19 (7), pp. 838-840; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Drali, T., Salez, N., Parola, P., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20 (4), pp. 728-730; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210 (7), pp. 1067-1072; Gautret, P., Charrel, R., Belhouchat, K., Drali, T., Benkouiten, S., Nougairede, A., Zandotti, C., Parola, P., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19 (7), pp. 315-317; Hashem, A.M., Azhar, E.I., Shalhoub, S., Abujamel, T.S., Othman, N.A., Al Zahrani, A.B., Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015 (2018) Arch Virol, 163 (5), pp. 1219-1230; Zumla, A., Saeed, A.B., Alotaibi, B., Yezli, S., Dar, O., Bieh, K., Bates, M., Azhar, E.I., Tuberculosis and mass gatherings-opportunities for defining burden, transmission risk, and the optimal surveillance, prevention, and control measures at the annual Hajj pilgrimage (2016) Int J Infect Dis, 47, pp. 86-91; Yezli, S., Zumla, A., Yassin, Y., Al-Shangiti, A.M., Mohamed, G., Turkistani, A.M., Undiagnosed active pulmonary tuberculosis among pilgrims during the 2015 Hajj mass gathering: a prospective cross-sectional study (2017) Am J Trop Med Hyg, 97 (5), pp. 1304-1309. , This study shows the high prevalence of undiaged active pulmonary tuberculosis among pilgrims; Gautret, P., Benkouiten, S., Sridhar, S., Al-Tawfiq, J.A., Memish, Z.A., Diarrhea at the Hajj and Umrah (2015) Travel Med Infect Dis, 13 (2), pp. 159-166. , This review paper describes the available data about gastrointestinal diseases among pilgrims; Emamian, M.H., Mohammad Mohammadi, G., An outbreak of gastroenteritis among Iranian pilgrims of Hajj during 2011 (2013) Iran Red Crescent Med J, 15 (4), pp. 317-319; Gautret, P., Benkouiten, S., Parola, P., Brouqui, P., Memish, Z., Raoult, D., Occurrence of Tropheryma whipplei during diarrhea in Hajj pilgrims: a PCR analysis of paired rectal swabs (2014) Travel Med Infect Dis, 12 (5), pp. 481-484; Sow, D., Dogue, F., Edouard, S., Drali, T., Prades, S., Battery, E., Acquisition of enteric pathogens by pilgrims during the 2016 Hajj pilgrimage: A prospective cohort study (2018) Travel Med Infect Dis, , https://doi.org/10.1016/j.tmaid.2018.05.017; Abd El Ghany, M., Alsomali, M., Almasri, M., Padron Regalado, E., Naeem, R., Tukestani, A., Enteric Infections Circulating during Hajj Seasons, 2011–2013 (2017) Emerg Infect Dis, 23 (10). , https://doi.org/10.3201/eid2310.161642; Metanat, M., Sharifi-Mood, B., Sanei-Moghaddam, S., Rad, N.S., Pharyngeal carriage rate of Neisseria meningitidis before and after the Hajj pilgrimage, in Zahedan (southeastern Iran), 2012 (2015) Turk J Med Sci, 45 (6), pp. 1317-1320. , PID: 26775389; Leangapichart, T., Tissot-Dupont, H., Raoult, D., Memish, Z.A., Rolain, J.M., Gautret, P., Risk factors for acquisition of CTX-M genes in pilgrims during Hajj 2013 and 2014 (2017) J Antimicrob Chemother, 72 (9), pp. 2627-2635; Bawazir, S.A., Prescribing pattern at community pharmacies in Saudi Arabia (1992) Int Pharm J, 6 (5), pp. 222-224; Azeem, M., Tashani, M., Barasheed, O., Knowledge, attitude and practice (KAP) survey concerning antimicrobial use among Australian Hajj pilgrims (2014) Infect Disord Drug Targets, 14, pp. 125-132. , PID: 25019233; Haseeb, A., Faidah, H.S., Bakhsh, A.R., Malki, W.H., Elrggal, M.E., Saleem, F., Antimicrobial resistance among pilgrims: a retrospective study from two hospitals in Makkah, Saudi Arabia (2016) Int J Infect Dis, 47, pp. 92-94. , This study evidence a high prevalence of antimicrobial resistance bacteria pilgrims hospitalized Saudi Arabia; Alyamani, E.J., Khiyami, A.M., Booq, R.Y., Majrashi, M.A., Bahwerth, F.S., Rechkina, E., The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia (2017) Ann Clin Microbiol Antimicrob, 16, p. 1; Leangapichart, T., Dia, N.M., Olaitan, A.O., Gautret, P., Brouqui, P., Rolain, J.-M., Acquisition of extended-spectrum b-lactamases by Escherichia coli and Klebsiella pneumoniae in gut microbiota of pilgrims during the hajj pilgrimage of 2013 (2016) Antimicrob Agents Chemother, 60, pp. 3222-3226; Leangapichart, T., Gautret, P., Griffiths, K., Belhouchat, K., Memish, Z., Raoult, D., Rolain, J.M., Acquisition of a high diversity of bacteria during the Hajj pilgrimage, including Acinetobacter baumannii with blaOXA-72 and Escherichia coli with blaNDM-5 carbapenemase genes (2016) Antimicrob Agents Chemother, 60, pp. 5942-5948; Olaitan, A.O., Dia, N.M., Gautret, P., Benkouiten, S., Belhouchat, K., Drali, T., Parola, P., Rolain, J.M., Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj (2015) Int J Antimicrob Agents, 45 (6), pp. 600-604; Leangapichart, T., Gautret, P., Brouqui, P., Memish, Z.A., Raoult, D., Rolain, J.-M., Acquisition of mcr-1 plasmid-mediated colistin resistance in Escherichia coli and Klebsiella pneumoniae during Hajj 2013 and 2014 (2016) Antimicrob Agents Chemother, 60 (11), pp. 6998-6999; Al-Tawfiq, J.A., Memish, Z.A., Potential risk for drug resistance globalization at the Hajj (2015) Clin Microbiol Infect, 21 (2), pp. 109-114; (2017) Health conditions for travelers to Saudi Arabia for the pilgrimage to Mecca (Hajj), , http://www.who.int/ith/updates/20170408/en/, 4 August; Yezli, S., Wilder-Smith, A., Bin Saeed, A.A., Carriage of Neisseria meningitidis in the Hajj and Umrah mass gatherings (2016) Int J Infect Dis, 47, pp. 65-70; Memish, Z.A., Yezli, S., Almasri, M., Assiri, A., Turkestani, A., Findlow, H., Bai, X., Borrow, R., Meningococcal serogroup A, C, W, and Y serum bactericidal antibody profiles in Hajj pilgrims (2014) Int J Infect Dis, 28, pp. 171-175; Ceyhan, M., Celik, M., Demir, E.T., Gurbuz, V., Aycan, A.E., Unal, S., Acquisition of meningococcal serogroup W-135 carriage in Turkish Hajj pilgrims who had received the quadrivalent meningococcal polysaccharide vaccine (2013) Clin Vaccine Immunol, 20 (1), pp. 66-68. , https://doi.org/10.1128/CVI.00314-12; Memish, Z.A., Al-Tawfiq, J.A., Almasri, M., Azhar, E.I., Yasir, M., Al-Saeed, M.S., Neisseria meningitidis nasopharyngeal carriage during the Hajj: a cohort study evaluating the need for ciprofloxacin prophylaxis (2017) Vaccine, 35 (18), pp. 2473-2478; Sokhna, C., Mboup, B.M., Sow, P.G., Camara, G., Dieng, M., Sylla, M., Communicable and non-communicable disease risks at the Grand Magal of Touba: The largest mass gathering in Senegal (2017) Travel Med Infect Dis, 19, pp. 56-60. , The study is the first one conducted among pilgrims at the Grand Magal Senegal and shows the frequency of infectious diseases among participants; Sridhar, S., Gautret, P., Brouqui, P., A comprehensive review of the Kumbh Mela: identifying risks for spread of infectious diseases (2015) Clin Microbiol Infect, 21 (2), pp. 128-133; Cariappa, M.P., Singh, B.P., Mahen, A., Bansal, A.S., Kumbh Mela 2013: Healthcare for the millions (2015) Med J Armed Forces India, 71 (3), pp. 278-281; Al-Lami, F., Al-Fatlawi, A., Bloland, P., Nawwar, A., Jetheer, A., Hantoosh, H., Pattern of morbidity and mortality in Karbala hospitals during Ashura mass gathering at Karbala, Iraq, 2010 (2013) East Mediterr Health J, 19, pp. S13-S20. , PID: 24673093; Youbi, M., Dghoughi, N., Akrim, M., Essolbi, A., Barkia, A., Azami, A.I., Preparedness and health risks associated with Moulay Abdellah Amghar Moussem, Morocco, 2009–2010 (2013) East Mediterr Health J, 19, pp. S19-S20. , PID: 24673094; Hassan, S., Imtiaz, R., Ikram, N., Baig, M.A., Safdar, R., Salman, M., Public health surveillance at a mass gathering: Urs of Baba Farid, Pakpattan district, Punjab, Pakistan, December 2010 (2013) East Mediterr Health J, 19, pp. S24-S30. , PID: 24673095; Abdullah, S., Sharkas, G., Sabri, N., Iblan, I., Abdallat, M., Jriesat, S., Mass gathering in Aqaba, Jordan, during Eid Al Adha, 2010 (2013) East Mediterr Health J, 19, pp. S29-S30. , PID: 24673096; Outbreak of salmonellosis associated with consumption of pulled pork at a church festival-Hamilton County, Ohio, 2010 (2014) MMWR Morb Mortal Wkly Rep, 62, pp. 1045-1047; Botelho-Nevers, E., Gautret, P., Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012 (2013) Euro Surveill, 18, p. 20426. , PID: 23517872; Tabunga, T., Utiera, M., Tekoaua, R., Tibwe, T., Tira, T., Toatu, T., Duituturaga, S.E., Craig, A., Response to a large rotavirus outbreak on South Tarawa, Kiribati, 2013 (2014) Western Pac Surveill Response J, 5 (2), pp. 9-14; Grgič-Vitek, M., Frelih, T., Ucakar, V., Fafangel, M., Jordan Markocic, O., Prosenc, K., An outbreak of measles associated with an international dog show in Slovenia, November 2014 (2015) Euro Surveill, 20 (3); McCarthy, M., Measles outbreak linked to Disney theme parks reaches five states and Mexico (2015) BMJ, 350, p. h436; Kanai, M., Kamiya, H., Smith-Palmer, A., Takahashi, H., Hachisu, Y., Fukusumi, M., Meningococcal disease outbreak related to the World Scout Jamboree in Japan, 2015 (2017) Western Pac Surveill Response J, 8 (2), pp. 25-30. , This study describes the high incidence of meningococcal disease a large-scale open-air festival, far exceeding the annual incidence rate the host country; Le Polain De Waroux, O., Saliba, V., Cottrell, S., Young, N., Perry, M., Bukasa, A., Summer music and arts festivals as hot spots for measles transmission: Experience from England and Wales (2016) Euro Surveill, 21 (44). , https://doi.org/10.2807/1560-7917.ES.2016.21.44.30390, June to October 2016; Gautret, P., Steffen, R., Communicable diseases as health risks at mass gatherings other than Hajj: what is the evidence? (2016) Int J Infect Dis, 47, pp. 46-52. , This review paper describes the available data about infectious diseases at mass gathering other than Hajj; Gardy, J.L., Naus, M., Amlani, A., Chung, W., Kim, H., Tan, M., Whole-genome sequencing of measles virus genotypes H1 and D8 during outbreaks of infection following the 2010 Olympic Winter Games reveals viral transmission routes (2015) J Infect Dis, 212, pp. 1574-1578. , https://doi.org/10.1093/infdis/jiv271; Santibanez, S., Prosenc, K., Lohr, D., Pfaff, G., Jordan Markocic, O., Mankertz, A., Measles virus spread initiated at international mass gatherings in Europe, 2011 (2014) Euro Surveill, 19 (35); McCloskey, B., Endericks, T., Catchpole, M., Zambon, M., McLauchlin, J., Shetty, N., Manuel, R., Zumla, A., London 2012 Olympic and Paralympic Games: public health surveillance and epidemiology (2014) Lancet, 383 (9934), pp. 2083-2089; Sile, B., Mohammed, H., Crook, P., Hughes, G., Mercer, C., Cassel, J., Coyne, K., Brook, G., Epidemiology of sexually transmitted infections in visitors for the London 2012 Olympic games: a review of attendees at sexual health services (2015) Sex Transm Dis, 42 (12), pp. 710-716; Smallwood, C.A.H., Arbuthnott, K.G., Banczak-Mysiak, B., Borodina, M., Coutinho, A.P., Payne-Hallström, L., Lipska, E., Barbeschi, M., Euro 2012 European football championship finals: planning for a health legacy (2014) Lancet, 383 (9934), pp. 2090-2097; van Beijsterveldt, A.M., Thijs, K.M., Backx, F.J., Steffen, K., Brozičević, V., Stubbe, J.H., Sports injuries and illnesses during the European Youth Olympic Festival 2013 Br J Sports Med, 49 (7), pp. 448-452. , https://doi.org/10.1136/bjsports-2014-094035; Soligard, T., Steffen, K., Palmer-Green, D., Aubry, M., Grant, M.E., Meeuwisse, W., Mountjoy, M., Engebretsen, L., Sports injuries and illnesses in the Sochi 2014 Olympic Winter Games (2015) Br J Sports Med, 49 (7), pp. 441-447; Aguiar, M., Coelho, G.E., Rocha, F., Mateus, L., Pessanha, J.E., Stollenwerk, N., Dengue transmission during the 2014 FIFA World Cup in Brazil (2015) Lancet Infect Dis, 15 (7), pp. 765-766; Pesola, A.K., Parn, T., Huusko, S., Perevoscˇikovs, J., Ollgren, J., Salmenlinna, S., Multinational outbreak of Salmonella enteritidis infection during an international youth ice hockey competition in Riga, Latvia, preliminary report, March and April 2015 (2015) Euro Surveill, 20 (20); Soligard, T., Steffen, K., Palmer, D., Alonso, J.M., Bahr, R., Lopes, A.D., Dvorak, J., Engebretsen, L., Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: a prospective study of 11274 athletes from 207 countries (2017) Br J Sports Med, 51 (17), pp. 1265-1271; Hamilton, B., Exeter, D., Beable, S., Coleman, L., Milne, C., Zika virus and the Rio Olympic Games (2017) Clin J Sport Med, , https://doi.org/10.1097/JSM.0000000000000551; (2016), https://www.nytimes.com/2016/09/03/health/zika-rio-olympics.html, Tavernise. No Zika cases reported during Rio Olympics, W.H.O. Says. New York Times, Accessed September 5, 2016; Sheridan (2018) Multiple Outbreaks Threaten the 2018 Winter Olympics, , http://www.healthmap.org/site/diseasedaily/article/multiple-outbreaks-threaten-2018-winter-olympics-21418, The disease Daily 14 February; Benkouiten, S., Brouqui, P., Gautret, P., Non-pharmaceutical interventions for the prevention of RTIs during Hajj pilgrimage (2014) Travel Med Infect Dis, 12 (5), pp. 429-442; Al-Tawfiq, J.A., Gautret, P., Memish, Z.A., Expected immunizations and health protection for Hajj and Umrah 2018 -an overview (2017) Travel Med Infect Dis, 2017 (19), pp. 2-7","Gautret, P.; IRD, AP-HM, SSA, VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, France; email: philippe.gautret@club-internet.fr",,"Current Medicine Group LLC 1",15233847,,CIDRC,,"English","Curr. Infect. Dis. Rep.",Review,"Final",,Scopus,2-s2.0-85052527253 "Shalhoub S., Al-Hameed F., Mandourah Y., Balkhy H.H., Al-Omari A., Al Mekhlafi G.A., Kharaba A., Alraddadi B., Almotairi A., Khatib K.A., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Harthy A.A., Qasim E.A., Jose J., Al-Ghamdi G., Merson L., Fowler R., Hayden F.G., Arabi Y.M.","56381466300;6507857242;54385796100;6701797249;55883902400;57195951594;50161809700;56563960000;57188964531;57204648406;55385682500;13409875600;54583983000;55386448900;16232591900;57203397490;57195950548;57200451335;57195951483;57192669117;8420656300;10639152700;7102786298;7103233446;57211811296;","Critically ill healthcare workers with the middle east respiratory syndrome (MERS): A multicenter study",2018,"PLoS ONE","13","11", e0206831,"","",,2,"10.1371/journal.pone.0206831","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056513992&doi=10.1371%2fjournal.pone.0206831&partnerID=40&md5=4cca8d0b410d965e633ee4c71bcf1b38","Department of Medicine, Division of Infectious Diseases, University of Western Ontario, London, Canada; Department of Medicine, Division of Infectious Diseases, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Department of Intensive Care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Infection Prevention and Control, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Department of Intensive Care, Alfaisal University, Dr Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia; Department of Critical Care, King Fahad Hospital, Ohoud Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Department of Medicine, Alfaisal University, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Department of Critical Care Medicine, King Fahad Medical City, Riyadh, Saudi Arabia; Intensive Care Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia; Department of Critical Care Medicine, King Saud University, Riyadh, Saudi Arabia; Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; Intensive Care Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Intensive Care Department, King Abdulaziz Hospital, Al Ahsa, Saudi Arabia; Department of Family and Community Medicine, King Abdulaziz University Hospital, Ministry of Health, Jeddah, Saudi Arabia; Intensive Care Department, King Fahd Hospital, Jeddah, Saudi Arabia; Department of intensive care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Infectious Diseases Data Observatory, Oxford University, Headiington, United Kingdom; Department of Critical Care Medicine, Department of Medicine, Sunnybrook Hospital, Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada; Department of Medicine, Division of Infectious Diseases, International Health University of Virginia School of Medicine, Charlottesville, VA, United States","Shalhoub, S., Department of Medicine, Division of Infectious Diseases, University of Western Ontario, London, Canada, Department of Medicine, Division of Infectious Diseases, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Al-Hameed, F., Department of Intensive Care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Mandourah, Y., Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Balkhy, H.H., Department of Infection Prevention and Control, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al-Omari, A., Department of Intensive Care, Alfaisal University, Dr Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia; Al Mekhlafi, G.A., Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Kharaba, A., Department of Critical Care, King Fahad Hospital, Ohoud Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Alraddadi, B., Department of Medicine, Alfaisal University, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Almotairi, A., Department of Critical Care Medicine, King Fahad Medical City, Riyadh, Saudi Arabia; Khatib, K.A., Intensive Care Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia; Abdulmomen, A., Department of Critical Care Medicine, King Saud University, Riyadh, Saudi Arabia; Qushmaq, I., Department of Medicine, Alfaisal University, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Mady, A., Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; Solaiman, O., Intensive Care Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Al-Aithan, A.M., Intensive Care Department, King Abdulaziz Hospital, Al Ahsa, Saudi Arabia; Al-Raddadi, R., Department of Family and Community Medicine, King Abdulaziz University Hospital, Ministry of Health, Jeddah, Saudi Arabia; Ragab, A., Intensive Care Department, King Fahd Hospital, Jeddah, Saudi Arabia; Harthy, A.A., Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; Qasim, E.A., Department of intensive care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Jose, J., Department of intensive care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al-Ghamdi, G., Department of intensive care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Merson, L., Infectious Diseases Data Observatory, Oxford University, Headiington, United Kingdom; Fowler, R., Department of Critical Care Medicine, Department of Medicine, Sunnybrook Hospital, Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada; Hayden, F.G., Department of Medicine, Division of Infectious Diseases, International Health University of Virginia School of Medicine, Charlottesville, VA, United States; Arabi, Y.M., Department of intensive care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia","Background Middle East Respiratory Syndrome Coronavirus (MERS-CoV) leads to healthcare-associated transmission to patients and healthcare workers with potentially fatal outcomes. Aim We aimed to describe the clinical course and functional outcomes of critically ill healthcare workers (HCWs) with MERS. Methods Data on HCWs was extracted from a multi-center retrospective cohort study on 330 critically ill patients with MERS admitted between (9/2012–9/2015). Baseline demographics, interventions and outcomes were recorded and compared between survivors and non-survivors. Survivors were approached with questionnaires to elucidate their functional outcomes using Karnofsky Performance Status Scale. Findings Thirty-Two HCWs met the inclusion criteria. Comorbidities were recorded in 34% (11/32) HCW. Death resulted in 8/32 (25%) HCWs including all 5 HCWs with chronic renal impairment at baseline. Non-surviving HCW had lower PaO2/FiO2 ratios 63.5 (57, 116.2) vs 148 (84, 194.3), p = 0.043, and received more ECMO therapy compared to survivors, 9/32 (28%) vs 4/24 (16.7%) respectively (p = 0.02).Thirteen of the surviving (13/24) HCWs responded to the questionnaire. Two HCWs confirmed functional limitations. Median number of days from hospital discharge until the questionnaires were filled was 580 (95% CI 568, 723.5) days. Conclusion Approximately 10% of critically ill patients with MERS were HCWs. Hospital mortality rate was substantial (25%). Patients with chronic renal impairment represented a particularly high-risk group that should receive extra caution during suspected or confirmed MERS cases clinical care assignment and during outbreaks. Long-term repercussions of critical illness due to MERS on HCWs in particular, and patients in general, remain unknown and should be investigated in larger studies. © 2018 Shalhoub et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adult; Article; chronic kidney failure; clinical article; clinical feature; cohort analysis; controlled study; critically ill patient; death; demography; epidemic; extracorporeal oxygenation; female; health care personnel; health care quality; high risk population; hospital discharge; hospital mortality; human; Karnofsky Performance Status; male; Middle East respiratory syndrome; mortality rate; outcome assessment; patient care; questionnaire; retrospective study; survivor; clinical trial; comorbidity; Coronavirus infection; critical illness; cross infection; health care personnel; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; multicenter study; occupational disease; Saudi Arabia; statistics and numerical data; survival rate; virology; Adult; Comorbidity; Coronavirus Infections; Critical Illness; Cross Infection; Disease Outbreaks; Extracorporeal Membrane Oxygenation; Female; Health Personnel; Hospital Mortality; Humans; Karnofsky Performance Status; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Occupational Diseases; Retrospective Studies; Saudi Arabia; Survival Rate","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) The New England Journal of Medicine, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, Epub 2012/10/19. PMID: 23075143; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) The New England Journal of Medicine, 376 (6), pp. 584-594. , https://doi.org/10.1056/NEJMsr1408795, Epub 2017/02/09. PMID: 28177862; PubMed Central PMCID: PMCPMC5362064; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) The Lancet Infectious Diseases, 13 (9), pp. 752-761. , https://doi.org/10.1016/S1473-3099(13)70204-4, Epub 2013/07/31. PMID: 23891402; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Annals of Internal Medicine, 160 (6), pp. 389-397. , https://doi.org/10.7326/M13-2486, Epub 2014/01/30. PMID: 24474051; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) The Journal of Antimicrobial Chemotherapy, 70 (7), pp. 2129-2132. , https://doi.org/10.1093/jac/dkv085, Epub 2015/04/23. PMID: 25900158; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) The New England Journal of Medicine, 369 (5), pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742, Epub 2013/06/21. PMID: 23782161; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infection Control and Hospital Epidemiology, 37 (10), pp. 1147-1155. , https://doi.org/10.1017/ice.2016.132, Epub 2016/07/19. PMID: 27426423; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 18 (38). , Epub 2013/10/03. PMID: 24084338; Shalhoub, S., Abdraboh, S., Palma, R., AlSharif, H., Assiri, N., MERS-CoV in a healthcare worker in Jeddah, Saudi Arabia: An index case investigation (2016) The Journal of Hospital Infection, 93 (3), pp. 309-312. , https://doi.org/10.1016/j.jhin.2016.04.002, Epub 2016/05/24. PMID: 27210272; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically ill patients with the Middle East respiratory syndrome: A multicenter retrospective cohort study (2017) Critical Care Medicine, , https://doi.org/10.1097/ccm.0000000000002621, Epub 2017/08/09. PMID: 28787295; Karnofsky, D.A., The clinical evaluation of chemotherapeutic agents in cancer (1949) Evaluation of Chemotherapeutic Agents; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 17 (39). , Epub 2012/10/09. PMID: 23041020; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Annals of Thoracic Medicine, 11 (2), pp. 128-131. , https://doi.org/10.4103/1817-1737.180027, Epub 2016/05/12. PMID: 27168861; PubMed Central PMCID: PMCPmc4854059; Garbati, M.A., Fagbo, S.F., Fang, V.J., Skakni, L., Joseph, M., Wani, T.A., A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PloS One, 11 (11). , https://doi.org/10.1371/journal.pone.0165978, Epub 2016/ 11/05. PMID: 27812197; PubMed Central PMCID: PMCPmc5094725; Eleftheriadis, T., Antoniadi, G., Liakopoulos, V., Kartsios, C., Stefanidis, I., Disturbances of acquired immunity in hemodialysis patients (2007) Seminars in Dialysis, 20 (5), pp. 440-451. , https://doi.org/10.1111/j.1525-139X.2007.00283.x, Epub 2007/09/28. PMID: 17897251; Kuroki, Y., Tsuchida, K., Go, I., Aoyama, M., Naganuma, T., Takemoto, Y., A study of innate immunity in patients with end-stage renal disease: Special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients (2007) International Journal of Molecular Medicine, 19 (5), pp. 783-790. , Epub 2007/03/29. PMID: 17390084; Assiri, A., Abedi, G.R., Al Masri, M., Bin Saeed, A., Gerber, S.I., Watson, J.T., Middle East respiratory syndrome coronavirus infection during pregnancy: A report of 5 cases from Saudi Arabia (2016) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 63 (7), pp. 951-953. , https://doi.org/10.1093/cid/ciw412, Epub 2016/07/01. PMID: 27358348; Lam, C.M., Wong, S.F., Leung, T.N., Chow, K.M., Yu, W.C., Wong, T.Y., A case-controlled study comparing clinical course and outcomes of pregnant and non-pregnant women with severe acute respiratory syndrome (2004) BJOG: An International Journal of Obstetrics and Gynaecology, 111 (8), pp. 771-774. , https://doi.org/10.1111/j.1471-0528.2004.00199.x, Epub 2004/ 07/24. PMID: 15270922; Suarez-Varela, M.M., Gonzalez-Candelas, F., Astray, J., Alonso, J., Garin, O., Castro, A., Pandemic influenza A (H1N1) infection in pregnant and nonpregnant women in Spain (2009–2010) (2014) Japanese Journal of Infectious Diseases, 67 (3), pp. 163-171. , Epub 2014/05/27. PMID: 24858604; Tempia, S., Walaza, S., Cohen, A.L., Von Mollendorf, C., Moyes, J., McAnerney, J.M., Mortality associated with seasonal and pandemic influenza among pregnant and nonpregnant women of childbearing age in a high-HIV-prevalence setting-South Africa, 1999–2009 (2015) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 61 (7), pp. 1063-1070. , https://doi.org/10.1093/cid/civ448, Epub 2015/06/11. PMID: 26060287; Bakas, T., McLennon, S.M., Carpenter, J.S., Buelow, J.M., Otte, J.L., Hanna, K.M., Systematic review of health-related quality of life models (2012) Health and Quality of Life Outcomes, 10, p. 134. , https://doi.org/10.1186/1477-7525-10-134, Epub 2012/11/ 20. PMID: 23158687; PubMed Central PMCID: PMCPmc3548743; Terret, C., Albrand, G., Moncenix, G., Droz, J.P., Karnofsky performance Scale (KPS) or physical performance test (PPT)? That is the question (2011) Critical Reviews in Oncology/Hematology, 77 (2), pp. 142-147. , https://doi.org/10.1016/j.critrevonc.2010.01.015, Epub 2010/02/27. PMID: 20185330; Tansey, C.M., Louie, M., Loeb, M., Gold, W.L., Muller, M.P., De Jager, J., One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome (2007) Archives of Internal Medicine, 167 (12), pp. 1312-1320. , https://doi.org/10.1001/archinte.167.12.1312, Epub 2007/06/27. PMID: 17592106; Almutairi, A.F., Adlan, A.A., Balkhy, H.H., Abou Abbas, O., Clark, A.M., It feels like I’m the dirtiest person in the world."": Exploring the experiences of healthcare providers who survived MERS-CoV in Saudi Arabia (2017) Journal of Infection and Public Health, , https://doi.org/10.1016/j.jiph.2017.06.011, Epub 2017/07/06. PMID: 28676285; McAlonan, G.M., Lee, A.M., Cheung, V., Cheung, C., Tsang, K.W., Sham, P.C., Immediate and sustained psychological impact of an emerging infectious disease outbreak on health care workers (2007) Canadian Journal of Psychiatry Revue Canadienne De Psychiatrie, 52 (4), pp. 241-247. , https://doi.org/10.1177/070674370705200406, Epub 2007/05/16. PMID: 17500305","Arabi, Y.M.; Department of intensive care, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical CitySaudi Arabia; email: Arabi@ngha.med.sa",,"Public Library of Science",19326203,,POLNC,"30439974","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85056513992 "Saberi A., Gulyaeva A.A., Brubacher J.L., Newmark P.A., Gorbalenya A.E.","36867655100;56841599800;6701493830;7102403834;7005626044;","A planarian nidovirus expands the limits of RNA genome size",2018,"PLoS Pathogens","14","11", e1007314,"","",,6,"10.1371/journal.ppat.1007314","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055906532&doi=10.1371%2fjournal.ppat.1007314&partnerID=40&md5=31d2fa0eee655cc5942e8bb33f65a1cf","Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Department of Biology, Canadian Mennonite University, Winnipeg, Canada; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation; Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Howard Hughes Medical Institute, Morgridge Institute for Research, Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, United States","Saberi, A., Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Gulyaeva, A.A., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Brubacher, J.L., Department of Biology, Canadian Mennonite University, Winnipeg, Canada; Newmark, P.A., Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, Howard Hughes Medical Institute, Morgridge Institute for Research, Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, United States; Gorbalenya, A.E., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation","RNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication (albeit within a permissive host environment). A 33.5 kilobase (kb) nidovirus has been considered close to the upper size limit for such entities; conversely, the minimal cellular DNA genome is in the 100–300 kb range. This large difference presents a daunting gap for the transition from primordial RNP to contemporary DNA-RNP-based life. Whether or not RNA viruses represent transitional steps towards DNA-based life, studies of larger RNA viruses advance our understanding of the size constraints on RNP entities and the role of genome size in virus adaptation. For example, emergence of the largest previously known RNA genomes (20–34 kb in positive-stranded nidoviruses, including coronaviruses) is associated with the acquisition of a proofreading exoribonuclease (ExoN) encoded in the open reading frame 1b (ORF1b) in a monophyletic subset of nidoviruses. However, apparent constraints on the size of ORF1b, which encodes this and other key replicative enzymes, have been hypothesized to limit further expansion of these viral RNA genomes. Here, we characterize a novel nidovirus (planarian secretory cell nidovirus; PSCNV) whose disproportionately large ORF1b-like region including unannotated domains, and overall 41.1-kb genome, substantially extend the presumed limits on RNA genome size. This genome encodes a predicted 13,556-aa polyprotein in an unconventional single ORF, yet retains canonical nidoviral genome organization and expression, as well as key replicative domains. These domains may include functionally relevant substitutions rarely or never before observed in highly conserved sites of RdRp, NiRAN, ExoN and 3CLpro. Our evolutionary analysis suggests that PSCNV diverged early from multi-ORF nidoviruses, and acquired additional genes, including those typical of large DNA viruses or hosts, e.g. Ankyrin and Fibronectin type II, which might modulate virus-host interactions. PSCNV's greatly expanded genome, proteomic complexity, and unique features–impressive in themselves–attest to the likelihood of still-larger RNA genomes awaiting discovery. © 2018 Saberi et al. http://creativecommons.org/licenses/by/4.0/.",,"ankyrin; exoribonuclease; fibronectin; genomic DNA; genomic RNA; polyprotein; RNA polymerase; transcriptome; viral protein; virus RNA; amino acid sequence; Article; gene cluster; gene mapping; genetic variability; genome analysis; genome size; histology; in situ hybridization; Nidovirales; nidovirus; nonhuman; open reading frame; phylogeny; protein analysis; protein RNA binding; reverse transcription polymerase chain reaction; ribosomal frameshifting; RNA sequence; RNA translation; Schmidtea mediterranea; sequence alignment; sequence analysis; stoichiometry; transmission electron microscopy; virus assembly; virus cell interaction; virus expression; virus genome; virus particle; virus replication; virus transmission; animal; evolution; genetics; genome; genome size; molecular evolution; Nidovirales; procedures; proteomics; RNA virus; Turbellaria; virology; virus genome; Amino Acid Sequence; Animals; Biological Evolution; Evolution, Molecular; Genome; Genome Size; Genome, Viral; Nidovirales; Open Reading Frames; Phylogeny; Planarians; Proteomics; RNA Viruses; RNA, Viral","Joyce, G.F., The antiquity of RNA-based evolution (2002) Nature, 418 (6894), pp. 214-221. , pmid:12110897; Leipe, D.D., Aravind, L., Koonin, E.V., Did DNA replication evolve twice independently? (1999) Nucleic Acids Res, 27 (17), pp. 3389-3401. , pmid:10446225, PubMed Central PMCID: PMCPMC148579; Poole, A.M., Logan, D.T., Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? (2005) Mol Biol Evol, 22 (6), pp. 1444-1455. , pmid:15774424; Xavier, J.C., Patil, K.R., Rocha, I., Systems biology perspectives on minimal and simpler cells (2014) Microbiol Mol Biol Rev, 78 (3), pp. 487-509. , pmid:25184563, PubMed Central PMCID: PMCPMC4187685; Li, S., Guo, W., Dewey, C.N., Greaser, M.L., Rbm20 regulates titin alternative splicing as a splicing repressor (2013) Nucleic Acids Res, 41 (4), pp. 2659-2672. , pmid:23307558, PubMed Central PMCID: PMCPMC3575840; Holmes, E.C., Error thresholds and the constraints to RNA virus evolution (2003) Trends Microbiol, 11 (12), pp. 543-546. , pmid:14659685; Lauber, C., Gorbalenya, A.E., Weaver, S.C., Denison, M., Roossinck, M., Vignuzzi, M., (2016) Virus Evolution: Current Research and Future Directions, pp. 215-232. , Caister Academic Press In p; Belshaw, R., Gardner, A., Rambaut, A., Pybus, O.G., Pacing a small cage: mutation and RNA viruses (2008) Trends Ecol Evol, 23 (4), pp. 188-193. , pmid:18295930; Chirico, N., Vianelli, A., Belshaw, R., Why genes overlap in viruses (2010) Proc Biol Sci, 277 (1701), pp. 3809-3817. , pmid:20610432, PubMed Central PMCID: PMCPMC2992710; Gorbalenya, A.E., Host-related sequences in RNA viral genomes (1992) Seminars in Virology, 3, pp. 359-371; Koonin, E.V., Dolja, V.V., A virocentric perspective on the evolution of life (2013) Curr Opin Virol, 3 (5), pp. 546-557. , pmid:23850169, PubMed Central PMCID: PMCPMC4326007; Forterre, P., Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain (2006) Proc Natl Acad Sci U S A, 103 (10), pp. 3669-3674. , pmid:16505372, PubMed Central PMCID: PMCPMC1450140; Agol, V.I., Which came first, the virus or the cell? (2010) Paleontological Journal, 44 (7), pp. 728-736; Nga, P.T., Parquet, M.C., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) PLoS Pathog, 7 (9), p. e1002215. , pmid:21931546, PPATHOGENS-D-11-00548 [pii]; Eigen, M., Selforganization of matter and the evolution of biological macromolecules (1971) Naturwissenschaften, 58 (10), pp. 465-523. , pmid:4942363; Steinhauer, D.A., Domingo, E., Holland, J.J., Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase (1992) Gene, 122 (2), pp. 281-288. , pmid:1336756; Drake, J.W., Holland, J.J., Mutation rates among RNA viruses (1999) Proc Natl Acad Sci U S A, 96 (24), pp. 13910-13913. , pmid:10570172, PubMed Central PMCID: PMCPMC24164; Bull, J.J., Sanjuan, R., Wilke, C.O., Theory of lethal mutagenesis for viruses (2007) J Virol, 81 (6), pp. 2930-2939. , pmid:17202214, PubMed Central PMCID: PMCPMC1865999; Eigen, M., Error catastrophe and antiviral strategy (2002) Proc Natl Acad Sci U S A, 99 (21), pp. 13374-13376. , pmid:12370416, PubMed Central PMCID: PMCPMC129678; den Boon, J.A., Snijder, E.J., Chirnside, E.D., de Vries, A.A., Horzinek, M.C., Spaan, W.J., Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily (1991) J Virol, 65 (6), pp. 2910-2920. , pmid:1851863, PubMed Central PMCID: PMCPMC240924; Stenglein, M.D., Jacobson, E.R., Wozniak, E.J., Wellehan, J.F., Kincaid, A., Gordon, M., Ball python nidovirus: a candidate etiologic agent for severe respiratory disease in Python regius (2014) MBio, 5 (5), pp. e01414-e01484. , pmid:25205093, PubMed Central PMCID: PMCPMC4173777; Bodewes, R., Lempp, C., Schurch, A.C., Habierski, A., Hahn, K., Lamers, M., Novel divergent nidovirus in a python with pneumonia (2014) J Gen Virol, 95, pp. 2480-2485. , pmid:25063552; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res, 117 (1), pp. 17-37. , pmid:16503362; de Groot, R.J., Cowley, J.A., Enjuanes, L., Faaberg, K.S., Perlman, S., Rottier, P.J.M., King, A.M.Q., Lefkowitz, E.J., (2012) Virus Taxonomy, the 9th Report of the International Committee on Taxonomy of Viruses, pp. 785-795. , Elsevier In p; Lauber, C., Ziebuhr, J., Junglen, S., Drosten, C., Zirkel, F., Nga, P.T., Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses (2012) Arch Virol, 157 (8), pp. 1623-1628. , pmid:22527862, PubMed Central PMCID: PMCPMC3407358; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J Gen Virol, 94, pp. 2141-2163. , pmid:23939974; Masters, P.S., Perlman, S., Knipe, D.M., Howley, P.M., (2013) Fields Virology. 1, pp. 825-858. , Philadelphia Wolters Kluwer Health/Lippincott Williams and Wilkins In p; Cowley, J.A., Dimmock, C.M., Wongteerasupaya, C., Boonsaeng, V., Panyim, S., Walker, P.J., Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses (1999) Dis Aquat Organ, 36 (2), pp. 153-157. , pmid:10399042; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258. , pmid:29618817; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution (2014) Trends Microbiol, 22 (10), pp. 573-579. , pmid:25178651; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331 (5), pp. 991-1004. , pmid:12927536; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci U S A, 103 (13), pp. 5108-5113. , pmid:16549795, PubMed Central PMCID: PMCPMC1458802; Ferron, F., Subissi, L., Silveira De Morais, A.T., Le, N.T.T., Sevajol, M., Gluais, L., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Natl Acad Sci U S A, 115 (2), pp. E162-E171. , pmid:29279395, PubMed Central PMCID: PMCPMC5777078; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81 (22), pp. 12135-12144. , pmid:17804504, PubMed Central PMCID: PMCPMC2169014; Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Redefining the invertebrate RNA virosphere (2016) Nature, 540, pp. 539-543. , pmid:27880757; Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., The evolutionary history of vertebrate RNA viruses (2018) Nature, 556, pp. 197-202. , pmid:29618816; Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., The 1.2-megabase genome sequence of Mimivirus (2004) Science, 306 (5700), pp. 1344-1350. , pmid:15486256; Philippe, N., Legendre, M., Doutre, G., Coute, Y., Poirot, O., Lescot, M., Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes (2013) Science, 341 (6143), pp. 281-286. , pmid:23869018; Schulz, F., Yutin, N., Ivanova, N.N., Ortega, D.R., Lee, T.K., Vierheilig, J., Giant viruses with an expanded complement of translation system components (2017) Science, 356 (6333), pp. 82-85. , pmid:28386012; Plant, E.P., Dinman, J.D., The role of programmed-1 ribosomal frameshifting in coronavirus propagation (2008) Front Biosci, 13, pp. 4873-4881. , pmid:18508552, PubMed Central PMCID: PMCPMC2435135; Firth, A.E., Brierley, I., Non-canonical translation in RNA viruses (2012) J Gen Virol, 93, pp. 1385-1409. , pmid:22535777, PubMed Central PMCID: PMCPMC3542737; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J Gen Virol, 81, pp. 853-879. , pmid:10725411; Neuman, B.W., Angelini, M.M., Buchmeier, M.J., Does form meet function in the coronavirus replicative organelle? (2014) Trends Microbiol, 22 (11), pp. 642-647. , pmid:25037114; Snijder, E.J., Decroly, E., Ziebuhr, J., The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing (2016) Adv Virus Res, 96, pp. 59-126. , pmid:27712628; Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M., Ruben, M., Overkleeft, H.S., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses (2015) Nucleic Acids Res, 43 (17), pp. 8416-8434. , pmid:26304538; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc Natl Acad Sci U S A, 111 (37), pp. E3900-E3909. , pmid:25197083, PubMed Central PMCID: PMCPMC4169972; Lehmann, K.C., Snijder, E.J., Posthuma, C.C., Gorbalenya, A.E., What we know but do not understand about nidovirus helicases (2015) Virus Res, 202, pp. 12-32. , pmid:25497126; Deng, Z., Lehmann, K.C., Li, X., Feng, C., Wang, G., Zhang, Q., Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase (2014) Nucleic Acids Res, 42 (5), pp. 3464-3477. , pmid:24369429; Hao, W., Wojdyla, J.A., Zhao, R., Han, R., Das, R., Zlatev, I., Crystal structure of Middle East respiratory syndrome coronavirus helicase (2017) PLoS Pathog, 13 (6), p. e1006474. , pmid:28651017, PubMed Central PMCID: PMCPMC5501694; Seybert, A., Hegyi, A., Siddell, S.G., Ziebuhr, J., The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity (2000) RNA, 6 (7), pp. 1056-1068. , pmid:10917600, PubMed Central PMCID: PMCPMC1369980; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: how to make sense …? (2006) J Gen Virol, 87, pp. 1403-1421. , pmid:16690906; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and Discontinuous RNA Synthesis in Coronaviruses (2015) Annu Rev Virol, 2 (1), pp. 265-288. , pmid:26958916, PubMed Central PMCID: PMCPMC6025776; Di, H., Madden, J.C., Jr., Morantz, E.K., Tang, H.Y., Graham, R.L., Baric, R.S., Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus (2017) Proc Natl Acad Sci U S A, 114 (42), pp. E8895-E8904. , pmid:29073030, PubMed Central PMCID: PMCPMC5651751; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7 (6), pp. 439-450. , pmid:19430490, PubMed Central PMCID: PMCPMC2830095; Tian, D., Wei, Z., Zevenhoven-Dobbe, J.C., Liu, R., Tong, G., Snijder, E.J., Arterivirus minor envelope proteins are a major determinant of viral tropism in cell culture (2012) J Virol, 86 (7), pp. 3701-3712. , pmid:22258262, PubMed Central PMCID: PMCPMC3302522; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89 (4), pp. 1954-1964. , pmid:25428871, PubMed Central PMCID: PMCPMC4338876; de Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses (2006) Glycoconj J, 23 (1-2), pp. 59-72. , pmid:16575523; Veit, M., Matczuk, A.K., Sinhadri, B.C., Krause, E., Thaa, B., Membrane proteins of arterivirus particles: structure, topology, processing and function (2014) Virus Res, 194, pp. 16-36. , pmid:25278143; Ujike, M., Taguchi, F., Incorporation of spike and membrane glycoproteins into coronavirus virions (2015) Viruses, 7 (4), pp. 1700-1725. , pmid:25855243, PubMed Central PMCID: PMCPMC4411675; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23. , pmid:25720466, PubMed Central PMCID: PMCPMC4369385; Kindler, E., Thiel, V., Weber, F., Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response (2016) Adv Virus Res, 96, pp. 219-243. , pmid:27712625; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol, 2 (3), pp. 264-275. , pmid:22572391; Silverman, R.H., Weiss, S.R., Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A (2014) J Interferon Cytokine Res, 34 (6), pp. 455-463. , pmid:24905202, PubMed Central PMCID: PMCPMC4046343; Deng, X., Baker, S.C., An ""Old"" protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses (2018) Virology, 517, pp. 157-163. , pmid:29307596, PubMed Central PMCID: PMCPMC5869138; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) MBio, 8 (4). , pmid:28830941, PubMed Central PMCID: PMCPMC5565963; Lauber, C., Goeman, J.J., Parquet, M.C., Nga, P.T., Snijder, E.J., Morita, K., The footprint of genome architecture in the largest genome expansion in RNA viruses (2013) PLoS Pathog, 9 (7), p. e1003500. , pmid:23874204, PPATHOGENS-D-12-01878 [pii]; Saberi, A., Jamal, A., Beets, I., Schoofs, L., Newmark, P.A., GPCRs Direct Germline Development and Somatic Gonad Function in Planarians (2016) PLoS Biol, 14 (5), p. e1002457. , pmid:27163480, PubMed Central PMCID: PMCPMC4862687; Newmark, P.A., Sanchez Alvarado, A., Not your father's planarian: a classic model enters the era of functional genomics (2002) Nat Rev Genet, 3 (3), pp. 210-219. , pmid:11972158; Zayas, R.M., Hernandez, A., Habermann, B., Wang, Y., Stary, J.M., Newmark, P.A., The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain (2005) Proc Natl Acad Sci U S A, 102 (51), pp. 18491-18496. , pmid:16344473, PubMed Central PMCID: PMCPMC1317986; Grohme, M.A., Schloissnig, S., Rozanski, A., Pippel, M., Young, G.R., Winkler, S., The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms (2018) Nature, 554 (7690), pp. 56-61. , pmid:29364871, PubMed Central PMCID: PMCPMC5797480; Newmark, P.A., Sanchez Alvarado, A., Bromodeoxyuridine specifically labels the regenerative stem cells of planarians (2000) Dev Biol, 220 (2), pp. 142-153. , pmid:10753506; Lazaro, E.M., Harrath, A.H., Stocchino, G.A., Pala, M., Baguna, J., Riutort, M., Schmidtea mediterranea phylogeography: an old species surviving on a few Mediterranean islands? (2011) BMC Evol Biol, 11, p. 274. , pmid:21943163, PubMed Central PMCID: PMCPMC3203090; Zayas, R.M., Cebria, F., Guo, T., Feng, J., Newmark, P.A., The use of lectins as markers for differentiated secretory cells in planarians (2010) Dev Dyn, 239 (11), pp. 2888-2897. , pmid:20865784, PubMed Central PMCID: PMCPMC3004010; Ortego, J., Ceriani, J.E., Patino, C., Plana, J., Enjuanes, L., Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway (2007) Virology, 368 (2), pp. 296-308. , pmid:17692883; Thuy, N.T., Huy, T.Q., Nga, P.T., Morita, K., Dunia, I., Benedetti, L., A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line (2013) Virology, 444 (1-2), pp. 337-342. , pmid:23891522; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6 (9), p. e226. , pmid:18798692, PubMed Central PMCID: PMCPMC2535663; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) MBio, 4 (5), pp. e00801-e00813. , pmid:24149513, PubMed Central PMCID: PMCPMC3812713; Boursnell, M.E., Brown, T.D., Foulds, I.J., Green, P.F., Tomley, F.M., Binns, M.M., Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus (1987) J Gen Virol, 68, pp. 57-77. , pmid:3027249; Shi, M., Lin, X.D., Vasilakis, N., Tian, J.H., Li, C.X., Chen, L.J., Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses (2016) J Virol, 90 (2), pp. 659-669. , pmid:26491167, PubMed Central PMCID: PMCPMC4702705; Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., Blinov, V.M., Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis (1989) Nucleic Acids Res, 17 (12), pp. 4847-4861. , pmid:2526320; Gulyaeva, A., Dunowska, M., Hoogendoorn, E., Giles, J., Samborskiy, D., Gorbalenya, A.E., Domain organization and evolution of the highly divergent 5' coding region of genomes of arteriviruses including the novel possum nidovirus (2017) J Virol, p. 91. , pmid:28053107, (6); Neuman, B.W., Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles (2016) Antiviral Res, 135, pp. 97-107. , pmid:27743916; Bosch, B.J., Rottier, P.J.M., Perlman, S., Gallagher, T., Snijder, E.J., (2008) Nidoviruses, pp. 157-178. , Washington, DC ASM Press In p; Hogue, B.G., Machamer, C.E., Perlman, S., Gallagher, T., Snijder, E.J., (2008) Nidoviruses, pp. 179-200. , Washington, DC ASM Press In p; Faaberg, K.S., Perlman, S., Gallagher, T., Snijder, E.J., (2008) Nidoviruses, pp. 211-234. , Washington, DC ASM Press In p; Barrette-Ng, I.H., Ng, K.K., Mark, B.L., Van Aken, D., Cherney, M.M., Garen, C., Structure of arterivirus nsp4. The smallest chymotrypsin-like proteinase with an alpha/beta C-terminal extension and alternate conformations of the oxyanion hole (2002) J Biol Chem, 277 (42), pp. 39960-39966. , pmid:12163505; Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., Hilgenfeld, R., Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain (2002) EMBO J, 21 (13), pp. 3213-3224. , pmid:12093723, PubMed Central PMCID: PMCPMC126080; Ziebuhr, J., Bayer, S., Cowley, J.A., Gorbalenya, A.E., The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs (2003) J Virol, 77 (2), pp. 1415-1426. , pmid:12502857; Blanck, S., Stinn, A., Tsiklauri, L., Zirkel, F., Junglen, S., Ziebuhr, J., Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases (2014) J Virol, 88 (23), pp. 13747-13758. , pmid:25231310; Smits, S.L., Snijder, E.J., de Groot, R.J., Characterization of a torovirus main proteinase (2006) J Virol, 80 (8), pp. 4157-4167. , pmid:16571831; Ulferts, R., Mettenleiter, T.C., Ziebuhr, J., Characterization of Bafinivirus main protease autoprocessing activities (2011) J Virol, 85 (3), pp. 1348-1359. , pmid:21068254; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc Natl Acad Sci U S A, 112 (30), pp. 9436-9441. , pmid:26159422; Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., Decroly, E., RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex (2012) Proc Natl Acad Sci U S A, 109 (24), pp. 9372-9377. , pmid:22635272; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9 (8), p. e1003565. , pmid:23966862, PubMed Central PMCID: PMCPMC3744431; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc Natl Acad Sci U S A, 106 (9), pp. 3484-3489. , pmid:19208801; von Grotthuss, M., Wyrwicz, L.S., Rychlewski, L., mRNA cap-1 methyltransferase in the SARS genome (2003) Cell, 113 (6), pp. 701-702. , pmid:12809601; Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity (2008) J Virol, 82 (16), pp. 8071-8084. , pmid:18417574; Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex (2011) PLoS Pathog, 7 (10), p. e1002294. , pmid:22022266, PPATHOGENS-D-11-00791 [pii]; Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E.J., Canard, B., In vitro reconstitution of SARS-coronavirus mRNA cap methylation (2010) PLoS Pathog, 6 (4), p. e1000863. , pmid:20421945; Zeng, C., Wu, A., Wang, Y., Xu, S., Tang, Y., Jin, X., Identification and Characterization of a Ribose 2'-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales (2016) J Virol, 90 (15), pp. 6675-6685. , pmid:27170751, PubMed Central PMCID: PMCPMC4944298; Irie, M., Structure-function relationships of acid ribonucleases: lysosomal, vacuolar, and periplasmic enzymes (1999) Pharmacol Ther, 81 (2), pp. 77-89. , pmid:10190580; Robb, S.M., Gotting, K., Ross, E., Sanchez, A.A., SmedGD 2.0: The Schmidtea mediterranea genome database (2015) Genesis, 53 (8), pp. 535-546. , pmid:26138588; Egger, B., Lapraz, F., Tomiczek, B., Muller, S., Dessimoz, C., Girstmair, J., A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms (2015) Curr Biol, 25 (10), pp. 1347-1353. , pmid:25866392, PubMed Central PMCID: PMCPMC4446793; Soowannayan, C., Cowley, J.A., Michalski, W.P., Walker, P.J., RNA-binding domain in the nucleocapsid protein of gill-associated nidovirus of penaeid shrimp (2011) PLoS One, 6 (8), p. e22156. , pmid:21857914, PubMed Central PMCID: PMCPMC3153931; Rahaman, J., Siltberg-Liberles, J., Avoiding Regions Symptomatic of Conformational and Functional Flexibility to Identify Antiviral Targets in Current and Future Coronaviruses (2016) Genome Biol Evol, 8 (11), pp. 3471-3484. , pmid:27797946, PubMed Central PMCID: PMCPMC5203785; Cowley, J.A., Walker, P.J., The complete genome sequence of gill-associated virus of Penaeus monodon prawns indicates a gene organisation unique among nidoviruses (2002) Arch Virol, 147 (10), pp. 1977-1987. , pmid:12376758; Yu, I.M., Oldham, M.L., Zhang, J., Chen, J., Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae (2006) J Biol Chem, 281 (25), pp. 17134-17139. , pmid:16627473; Krupovic, M., Koonin, E.V., Multiple origins of viral capsid proteins from cellular ancestors (2017) Proc Natl Acad Sci U S A, 114 (12), pp. E2401-E2410. , pmid:28265094, PubMed Central PMCID: PMCPMC5373398; Zirkel, F., Kurth, A., Quan, P.L., Briese, T., Ellerbrok, H., Pauli, G., An insect nidovirus emerging from a primary tropical rainforest (2011) MBio, 2 (3), pp. e00011-e00077. , pmid:21673192, PubMed Central PMCID: PMCPMC3111606; Thomas, G., Furin at the cutting edge: from protein traffic to embryogenesis and disease (2002) Nat Rev Mol Cell Biol, 3 (10), pp. 753-766. , pmid:12360192, PubMed Central PMCID: PMCPMC1964754; Hijikata, M., Kato, N., Ootsuyama, Y., Nakagawa, M., Shimotohno, K., Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis (1991) Proc Natl Acad Sci U S A, 88 (13), pp. 5547-5551. , pmid:1648221, PubMed Central PMCID: PMCPMC51914; de Haan, C.A., Rottier, P.J., Molecular interactions in the assembly of coronaviruses (2005) Adv Virus Res, 64, pp. 165-230. , pmid:16139595; Snijder, E.J., Den Boon, J.A., Spaan, W.J., Weiss, M., Horzinek, M.C., Primary structure and post-translational processing of the Berne virus peplomer protein (1990) Virology, 178 (2), pp. 355-363. , pmid:2219698; Jitrapakdee, S., Unajak, S., Sittidilokratna, N., Hodgson, R.A., Cowley, J.A., Walker, P.J., Identification and analysis of gp116 and gp64 structural glycoproteins of yellow head nidovirus of Penaeus monodon shrimp (2003) J Gen Virol, 84, pp. 863-873. , pmid:12655087; Méndez, E.A., Arias, C.F., Knipe, D.M., Howley, P.M., Cohen, J.I., Griffin, D.E., Lamb, R.A., Martin, M.A., (2013) Fields virology, 1. , Philadelphia, PA Lippincott Williams & Wilkins In editors; Zirkel, F., Roth, H., Kurth, A., Drosten, C., Ziebuhr, J., Junglen, S., Identification and characterization of genetically divergent members of the newly established family Mesoniviridae (2013) J Virol, 87 (11), pp. 6346-6358. , pmid:23536661, PubMed Central PMCID: PMCPMC3648093; Pagel, M., Meade, A., Barker, D., Bayesian estimation of ancestral character states on phylogenies (2004) Syst Biol, 53 (5), pp. 673-684. , pmid:15545248; Plant, E.P., Perez-Alvarado, G.C., Jacobs, J.L., Mukhopadhyay, B., Hennig, M., Dinman, J.D., A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal (2005) PLoS Biol, 3 (6), p. e172. , pmid:15884978, PubMed Central PMCID: PMCPMC1110908; Brandl, H., Moon, H., Vila-Farre, M., Liu, S.Y., Henry, I., Rink, J.C., PlanMine—a mineable resource of planarian biology and biodiversity (2016) Nucleic Acids Res, 44 (D1), pp. D764-D773. , pmid:26578570, PubMed Central PMCID: PMCPMC4702831; Li, C.X., Shi, M., Tian, J.H., Lin, X.D., Kang, Y.J., Chen, L.J., Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses (2015) Elife, 4. , pmid:25633976, PubMed Central PMCID: PMCPMC4384744; Lachnit, T., Thomas, T., Steinberg, P., Expanding our Understanding of the Seaweed Holobiont: RNA Viruses of the Red Alga Delisea pulchra (2015) Front Microbiol, 6, p. 1489. , pmid:26779145, Epub 2016/01/19 PubMed Central PMCID: PMCPMC4705237; Webster, C.L., Longdon, B., Lewis, S.H., Obbard, D.J., Twenty-Five New Viruses Associated with the Drosophilidae (Diptera) (2016) Evol Bioinform Online, 12, pp. 13-25. , pmid:27375356, Epub 2016/07/05 PubMed Central PMCID: PMCPMC4915790; Marzano, S.Y., Nelson, B.D., Ajayi-Oyetunde, O., Bradley, C.A., Hughes, T.J., Hartman, G.L., Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens (2016) J Virol, 90 (15), pp. 6846-6863. , pmid:27194764, PubMed Central PMCID: PMCPMC4944287; Fauver, J.R., Grubaugh, N.D., Krajacich, B.J., Weger-Lucarelli, J., Lakin, S.M., Fakoli, L.S., West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses (2016) Virology, 498, pp. 288-299. , pmid:27639161; Shi, M., Neville, P., Nicholson, J., Eden, J.S., Imrie, A., Holmes, E.C., High-Resolution Metatranscriptomics Reveals the Ecological Dynamics of Mosquito-Associated RNA Viruses in Western Australia (2017) J Virol, 91 (17). , pmid:28637756, PubMed Central PMCID: PMCPMC5553174; Remnant, E.J., Shi, M., Buchmann, G., Blacquiere, T., Holmes, E.C., Beekman, M., A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations (2017) J Virol, 91 (16). , pmid:28515299, PubMed Central PMCID: PMCPMC5533899; Dolja, V.V., Koonin, E.V., Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer (2018) Virus Res, 244, pp. 36-52. , pmid:29103997, PubMed Central PMCID: PMCPMC5801114; Zhang, Y.Z., Shi, M., Holmes, E.C., Using Metagenomics to Characterize an Expanding Virosphere (2018) Cell, 172 (6), pp. 1168-1172. , pmid:29522738; Tokarz, R., Sameroff, S., Hesse, R.A., Hause, B.M., Desai, A., Jain, K., Discovery of a novel nidovirus in cattle with respiratory disease (2015) J Gen Virol, 96 (8), pp. 2188-2193. , pmid:25918239, PubMed Central PMCID: PMCPMC4681066; Gorbalenya, A.E., Brinton, M.A., Cowley, J., de Groot, R., Gulyaeva, A., Lauber, C., (2017) ICTV Pending proposal 2017.015S Reorganization and expansion of the order Nidovirales at the family and sub-order ranks; Gorbalenya, A.E., Pringle, F.M., Zeddam, J.L., Luke, B.T., Cameron, C.E., Kalmakoff, J., The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage (2002) J Mol Biol, 324 (1), pp. 47-62. , pmid:12421558; Olendraite, I., Lukhovitskaya, N.I., Porter, S.D., Valles, S.M., Firth, A.E., Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses (2017) J Gen Virol, 98 (9), pp. 2368-2378. , pmid:28857036, PubMed Central PMCID: PMCPMC5656759; Le Gall, O., Christian, P., Fauquet, C.M., King, A.M., Knowles, N.J., Nakashima, N., Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture (2008) Arch Virol, 153 (4), pp. 715-727. , pmid:18293057; Napthine, S., Ling, R., Finch, L.K., Jones, J.D., Bell, S., Brierley, I., Protein-directed ribosomal frameshifting temporally regulates gene expression (2017) Nat Commun, 8, p. 15582. , pmid:28593994, PubMed Central PMCID: PMCPMC5472766; Enjuanes, L., Almazan, F., Sola, I., Zuniga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu Rev Microbiol, 60, pp. 211-230. , pmid:16712436; Belshaw, R., Pybus, O.G., Rambaut, A., The evolution of genome compression and genomic novelty in RNA viruses (2007) Genome Res, 17 (10), pp. 1496-1504. , pmid:17785537, PubMed Central PMCID: PMCPMC1987338; Gorbalenya, A.E., Big nidovirus genome. When count and order of domains matter (2001) Adv Exp Med Biol, 494, pp. 1-17. , pmid:11774451; Luhtala, N., Parker, R., T2 Family ribonucleases: ancient enzymes with diverse roles (2010) Trends Biochem Sci, 35 (5), pp. 253-259. , pmid:20189811; Krey, T., Bontems, F., Vonrhein, C., Vaney, M.C., Bricogne, G., Rumenapf, T., Crystal structure of the pestivirus envelope glycoprotein E(rns) and mechanistic analysis of its ribonuclease activity (2012) Structure, 20 (5), pp. 862-873. , pmid:22579253; Park, B.K.Y., Immunosuppression induced by expression of a viral RNase enhances susceptibility of Plutella xylostella to microbial pesticides (2012) Insect Science, 19 (1), pp. 47-54; Wang, Z., Nie, Y., Wang, P., Ding, M., Deng, H., Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry (2004) Virology, 330 (1), pp. 332-341. , pmid:15527858; Ozhogina, O.A., Trexler, M., Banyai, L., Llinas, M., Patthy, L., Origin of fibronectin type II (FN2) modules: structural analyses of distantly-related members of the kringle family idey the kringle domain of neurotrypsin as a potential link between FN2 domains and kringles (2001) Protein Sci, 10 (10), pp. 2114-2122. , pmid:11567102; Chalmers, I.W., Hoffmann, K.F., Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum (2012) Parasitology, 139 (10), pp. 1231-1245. , pmid:22717097; Napper, C.E., Drickamer, K., Taylor, M.E., Collagen binding by the mannose receptor mediated through the fibronectin type II domain (2006) Biochem J, 395 (3), pp. 579-586. , pmid:16441238; Tam, E.M., Moore, T.R., Butler, G.S., Overall, C.M., Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin c domains and the MMP-2 fibronectin type II modules in collagen triple helicase activities (2004) J Biol Chem, 279 (41), pp. 43336-43344. , pmid:15292230; Rauceo, J.M., De Armond, R., Otoo, H., Kahn, P.C., Klotz, S.A., Gaur, N.K., Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p (2006) Eukaryot Cell, 5 (10), pp. 1664-1673. , pmid:16936142, PubMed Central PMCID: PMCPMC1595330; Hevia, A., Martinez, N., Ladero, V., Alvarez, M.A., Margolles, A., Sanchez, B., An extracellular Serine/Threonine-rich protein from Lactobacillus plantarum NCIMB 8826 is a novel aggregation-promoting factor with affinity to mucin (2013) Appl Environ Microbiol, 79 (19), pp. 6059-6066. , pmid:23892754, PubMed Central PMCID: PMCPMC3811371; Al-Khodor, S., Price, C.T., Kalia, A., Abu, K.Y., Functional diversity of ankyrin repeats in microbial proteins (2010) Trends Microbiol, 18 (3), pp. 132-139. , pmid:19962898; Mosavi, L.K., Cammett, T.J., Desrosiers, D.C., Peng, Z.Y., The ankyrin repeat as molecular architecture for protein recognition (2004) Protein Sci, 13 (6), pp. 1435-1448. , pmid:15152081, 13/6/1435 [pii]; Chen, D.Y., Fabrizio, J.A., Wilkins, S.E., Dave, K.A., Gorman, J.J., Gleadle, J.M., Ankyrin Repeat Proteins of Orf Virus Influence the Cellular Hypoxia Response Pathway (2017) J Virol, 91 (1). , pmid:27795413, PubMed Central PMCID: PMCPMC5165212; Rahman, M.M., McFadden, G., Modulation of NF-kappaB signalling by microbial pathogens (2011) Nat Rev Microbiol, 9 (4), pp. 291-306. , pmid:21383764, PubMed Central PMCID: PMCPMC3611960; Camus-Bouclainville, C., Fiette, L., Bouchiha, S., Pignolet, B., Counor, D., Filipe, C., A virulence factor of myxoma virus colocalizes with NF-kappaB in the nucleus and interferes with inflammation (2004) J Virol, 78 (5), pp. 2510-2516. , pmid:14963153, PubMed Central PMCID: PMCPMC369233; Gilmore, T.D., Wolenski, F.S., NF-kappaB: where did it come from and why? (2012) Immunol Rev, 246 (1), pp. 14-35. , pmid:22435545; Falabella, P., Varricchio, P., Provost, B., Espagne, E., Ferrarese, R., Grimaldi, A., Characterization of the IkappaB-like gene family in polydnaviruses associated with wasps belonging to different Braconid subfamilies (2007) J Gen Virol, 88, pp. 92-104. , pmid:17170441; Tait, S.W., Reid, E.B., Greaves, D.R., Wileman, T.E., Powell, P.P., Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa b alpha. Signal-induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B (2000) J Biol Chem, 275 (44), pp. 34656-34664. , pmid:10934190, M000320200 [pii]; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., Garcia-Sastre, A., MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) PLoS Pathog, 14 (1), p. e1006838. , pmid:29370303, PubMed Central PMCID: PMCPMC5800688; Shackelton, L.A., Holmes, E.C., The evolution of large DNA viruses: combining genomic information of viruses and their hosts (2004) Trends Microbiol, 12 (10), pp. 458-465. , pmid:15381195; Smith, E.C., Sexton, N.R., Denison, M.R., Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses (2014) Annu Rev Virol, 1 (1), pp. 111-132. , pmid:26958717; Sanjuan, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R., Viral mutation rates (2010) J Virol, 84 (19), pp. 9733-9748. , pmid:20660197, PubMed Central PMCID: PMCPMC2937809; Sniegowski, P.D., Gerrish, P.J., Johnson, T., Shaver, A., The evolution of mutation rates: separating causes from consequences (2000) Bioessays, 22 (12), pp. 1057-1066. , pmid:11084621; Lynch, M., Evolution of the mutation rate (2010) Trends Genet, 26 (8), pp. 345-352. , pmid:20594608, PubMed Central PMCID: PMCPMC2910838; Beese, L.S., Steitz, T.A., Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism (1991) EMBO J, 10 (1), pp. 25-33. , pmid:1989886, PubMed Central PMCID: PMCPMC452607; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215 (3), pp. 403-410. , pmid:2231712; Wang, Y., Stary, J.M., Wilhelm, J.E., Newmark, P.A., A functional genomic screen in planarians identifies novel regulators of germ cell development (2010) Genes Dev, 24 (18), pp. 2081-2092. , pmid:20844018, PubMed Central PMCID: PMCPMC2939369; Silvester, N., Alako, B., Amid, C., Cerdeno-Tarraga, A., Clarke, L., Cleland, I., The European Nucleotide Archive in 2017 (2017) Nucleic Acids Res, , pmid:29140475; Langmead, B., Salzberg, S.L., Fast gapped-read alignment with Bowtie 2 (2012) Nat Methods, 9 (4), pp. 357-359. , pmid:22388286, PubMed Central PMCID: PMCPMC3322381; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., The Sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25 (16), pp. 2078-2079. , pmid:19505943, PubMed Central PMCID: PMCPMC2723002; Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data (2011) Bioinformatics, 27 (21), pp. 2987-2993. , pmid:21903627, PubMed Central PMCID: PMCPMC3198575; King, R.S., Newmark, P.A., In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea (2013) BMC Dev Biol, 13, p. 8. , pmid:23497040, PubMed Central PMCID: PMCPMC3610298; Brubacher, J.L., Vieira, A.P., Newmark, P.A., Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy (2014) Nat Protoc, 9 (3), pp. 661-673. , pmid:24556788, PubMed Central PMCID: PMCPMC4097191; Venable, J.H., Coggeshall, R., A Simplified Lead Citrate Stain for Use in Electron Microscopy (1965) J Cell Biol, 25, pp. 407-408. , pmid:14287192, PubMed Central PMCID: PMCPMC2106628; Andreeva, A., Howorth, D., Chandonia, J.M., Brenner, S.E., Hubbard, T.J., Chothia, C., Data growth and its impact on the SCOP database: new developments (2008) Nucleic Acids Res, 36, pp. D419-D425. , pmid:18000004, (Database issue) PubMed Central PMCID: PMCPMC2238974; Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., The Protein Data Bank (2000) Nucleic Acids Res, 28 (1), pp. 235-242. , pmid:10592235, PubMed Central PMCID: PMCPMC102472; Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Pfam: the protein families database (2014) Nucleic Acids Res, 42, pp. D222-D230. , pmid:24288371, (Database issue); UniProt: a hub for protein information (2015) Nucleic Acids Res, 43, pp. D204-D212. , pmid:25348405, (Database issue); Lauber, C., Gorbalenya, A.E., Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses (2012) J Virol, 86 (7), pp. 3890-3904. , pmid:22278230; Adams, M.J., Lefkowitz, E.J., King, A.M., Harrach, B., Harrison, R.L., Knowles, N.J., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016) (2016) Arch Virol, 161, pp. 2921-2949. , pmid:27424026; Brister, J.R., Ako-Adjei, D., Bao, Y., Blinkova, O., NCBI viral genomes resource (2015) Nucleic Acids Res, 43, pp. D571-D577. , pmid:25428358, (Database issue) PubMed Central PMCID: PMCPMC4383986; Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K.D., GenBank (2017) Nucleic Acids Res, 45 (D1), pp. D37-D42. , pmid:27899564; O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation (2016) Nucleic Acids Res, 44 (D1), pp. D733-D745. , pmid:26553804, PubMed Central PMCID: PMCPMC4702849; Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31 (13), pp. 3406-3415. , pmid:12824337, PubMed Central PMCID: PMCPMC169194; Janssen, S., Giegerich, R., The RNA shapes studio (2015) Bioinformatics, 31 (3), pp. 423-425. , pmid:25273103, PubMed Central PMCID: PMCPMC4308662; Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B., Protein disorder prediction: implications for structural proteomics (2003) Structure, 11 (11), pp. 1453-1459. , pmid:14604535; Drozdetskiy, A., Cole, C., Procter, J., Barton, G.J., JPred4: a protein secondary structure prediction server (2015) Nucleic Acids Res, 43 (W1), pp. W389-W394. , pmid:25883141, PubMed Central PMCID: PMCPMC4489285; Petersen, T.N., Brunak, S., von, H.G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat Methods, 8 (10), pp. 785-786. , pmid:21959131; Duckert, P., Brunak, S., Blom, N., Prediction of proprotein convertase cleavage sites (2004) Protein Eng Des Sel, 17 (1), pp. 107-112. , pmid:14985543; Gorbalenya, A.E., Lieutaud, P., Harris, M.R., Coutard, B., Canard, B., Kleywegt, G.J., Practical application of bioinformatics by the multidisciplinary VIZIER consortium (2010) Antiviral Res, 87 (2), pp. 95-110. , pmid:20153379; Eddy, S.R., A new generation of homology search tools based on probabilistic inference (2009) Genome Inform, 23 (1), pp. 205-211. , pmid:20180275; Soding, J., Protein homology detection by HMM-HMM comparison (2005) Bioinformatics, 21 (7), pp. 951-960. , pmid:15531603; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol, 29 (8), pp. 1969-1973. , pmid:2236774; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., ProtTest 3: fast selection of best-fit models of protein evolution (2011) Bioinformatics, 27 (8), pp. 1164-1165. , pmid:21335321; Kass, R.E., Raftery, A.E., Bayes Factors (1995) J Am Stat Assoc, 90 (430), pp. 773-795; Gouet, P., Robert, X., Courcelle, E., ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins (2003) Nucleic Acids Res, 31 (13), pp. 3320-3323. , pmid:12824317; Heled, J., Bouckaert, R.R., Looking for trees in the forest: summary tree from posterior samples (2013) BMC Evol Biol, 13, p. 221. , pmid:24093883; (2013) R: A Language and Environment for Statistical Computing, , Vienna, Austria R Foundation for Statistical Computing; Pedersen, K.J., Slime-secreting cells of planarians (1963) Ann N Y Acad Sci, 106, pp. 424-443. , pmid:13942330","Newmark, P.A.; Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUnited States; email: pnewmark@morgridge.org",,"Public Library of Science",15537366,,,"30383829","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85055906532 "Thanthrige-Don N., Lung O., Furukawa-Stoffer T., Buchanan C., Joseph T., Godson D.L., Gilleard J., Alexander T., Ambagala A.","23570119400;6602410548;6507187344;56519316300;7101924334;6701614362;6701331951;7101893824;6508305445;","A novel multiplex PCR-electronic microarray assay for rapid and simultaneous detection of bovine respiratory and enteric pathogens",2018,"Journal of Virological Methods","261",,,"51","62",,2,"10.1016/j.jviromet.2018.08.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051382198&doi=10.1016%2fj.jviromet.2018.08.010&partnerID=40&md5=0e548132318a229d79742d6a6611caf4","Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB, Canada; Virology and Molecular Diagnostics, Animal Health Centre, Ministry of Agriculture, Abbotsford, BC, Canada; Prairie Diagnostic Services, Saskatoon, SK, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada; Canadian Food Inspection Agency, Ottawa Animal Health Laboratory (Fallowfield), Ottawa, ON, Canada; Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada","Thanthrige-Don, N., Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, Canadian Food Inspection Agency, Ottawa Animal Health Laboratory (Fallowfield), Ottawa, ON, Canada; Lung, O., Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB, Canada, Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada; Furukawa-Stoffer, T., Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB, Canada; Buchanan, C., Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB, Canada; Joseph, T., Virology and Molecular Diagnostics, Animal Health Centre, Ministry of Agriculture, Abbotsford, BC, Canada; Godson, D.L., Prairie Diagnostic Services, Saskatoon, SK, Canada; Gilleard, J., Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Alexander, T., Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada; Ambagala, A., Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB, Canada, Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada","Respiratory and enteric diseases continue to be two major causes of economic losses to the cattle industry worldwide. Despite their multifactorial etiology, the currently available diagnostic tests for bovine respiratory disease complex (BRDC) and bovine enteric disease (BED) are single-pathogen-tests. DNA microarray when combined with multiplex polymerase chain reaction (PCR) is a powerful tool in detection and differentiation of multiple pathogens in a single sample. This study reports development and initial validation of two independent highly sensitive and specific multiplex PCR-electronic microarray assays, one for the detection and differentiation of pathogens of the BRDC and the other for detection and differentiation of pathogens of the BED. The BRDC multiplex PCR-microarray assay was able to detect and differentiate four bacteria (Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis) and five viruses [bovine parainfluenza virus-3, bovine respiratory syncytial virus, bovine herpesvirus-1, bovine coronavirus (BCoV), and bovine viral diarrhea virus (BVDV)] associated with BRDC. The BED multiplex PCR- microarray- assay was able to detect and differentiate four bacteria (Clostridium perfringens, Escherichia coli, Salmonella enterica Dublin, and Salmonella enterica Typhimurium), three protozoa (Eimeria zuernii, Eimeria bovis, and Cryptosporidium parvum), and four viruses (bovine torovirus, bovine rotavirus, BCoV, and BVDV) associated with the BED. Both assays detected their respective targets individually or in combination when present. The limit-of-detection of each assay at the PCR amplification and DNA microarray levels was determined using previously titrated laboratory amplified target pathogens or using quantified synthetic nucleotides. Both assays showed very high analytical sensitivity and specificity, and were validated using a limited number of clinical samples. The BRDC and BED multiplex PCR- microarray-assays developed in this study, with further clinical validation, could be used in veterinary diagnostic laboratories for the rapid and simultaneous identification of pathogens to facilitate quick and accurate decision making for the control and treatment of these two economically important disease complexes. Furthermore, these assays could be very effective tools in epidemiological studies as well as for screening of healthy animals to identify carriers that may potentially develop BRDC or BED. © 2018","Bovine enteric diseases; Bovine respiratory disease complex; DNA microarray; Multiplex PCR","nucleotide; Article; Bovine coronavirus; Bovine herpesvirus 1; Bovine parainfluenza virus 3; Bovine respiratory syncytial virus; Bovine viral diarrhea virus 1; cattle disease; Clostridium perfringens; Cryptosporidium parvum; disease association; Eimeria bovis; Escherichia coli; Histophilus somni; limit of detection; Mannheimia haemolytica; microarray analysis; microorganism detection; multiplex polymerase chain reaction; Mycoplasma bovis; nonhuman; Pasteurella multocida; priority journal; real time polymerase chain reaction; Salmonella enterica serovar Dublin; Salmonella enterica serovar Typhimurium; sensitivity and specificity; animal; bacterium; bovine; cattle disease; Coccidia; evaluation study; gastrointestinal disease; genetics; isolation and purification; microarray analysis; molecular diagnosis; multiplex polymerase chain reaction; procedures; respiratory tract infection; time factor; veterinary medicine; virus; Animals; Bacteria; Cattle; Cattle Diseases; Coccidia; Gastrointestinal Diseases; Microarray Analysis; Molecular Diagnostic Techniques; Multiplex Polymerase Chain Reaction; Respiratory Tract Infections; Sensitivity and Specificity; Time Factors; Veterinary Medicine; Viruses","Angen, O., Ahrens, P., Tegtmeier, C., Development of a PCR test for identification of Haemophilus somnus in pure and mixed cultures (1998) Vet. Microbiol., 63, pp. 39-48; Angen, O., Thomsen, J., Larsen, L.E., Larsen, J., Kokotovic, B., Heegaard, P.M., Enemark, J.M., Respiratory disease in calves: microbiological investigations on trans-tracheally aspirated bronchoalveolar fluid and acute phase protein response (2009) Vet. Microbiol., 137, pp. 165-171; Asano, K.M., de Souza, S.P., de Barros, I.N., Ayres, G.R., Silva, S.O., Richtzenhain, L.J., Brandao, P.E., Multiplex semi-nested RT-PCR with exogenous internal control for simultaneous detection of bovine coronavirus and group A rotavirus (2010) J. Virol. Methods, 169, pp. 375-379; Azizzadeh, M., Shooroki, H.F., Kamalabadi, A.S., Stevenson, M.A., Factors affecting calf mortality in Iranian Holstein dairy herds (2012) Prev. Vet. Med., 104, pp. 335-340; Bell, C.J., Blackburn, P., Elliott, M., Patterson, T.I., Ellison, S., Lahuerta-Marin, A., Ball, H.J., Investigation of polymerase chain reaction assays to improve detection of bacterial involvement in bovine respiratory disease (2014) J. Vet. Diagn. Invest., 26, pp. 631-634; Blais, B.W., Gauthier, M., Descheenes, M., Huszczynski, G., Polyester cloth-based hybridization array system for identification of enterohemorrhagic Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157 (2012) J. Food Prot., 75, pp. 1691-1697; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet. Clin. North Am. Food Anim. Pract., 26, pp. 123-146; Cho, Y.-I., Yoon, K.-J., An overview of calf diarrhea - infectious etiology, diagnosis, and intervention (2014) J. Vet. Sci., 15, p. 1; Cho, Y.I., Kim, W.I., Liu, S., Kinyon, J.M., Yoon, K.J., Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces (2010) J. Vet. Diagn. Invest., 22, pp. 509-517; Decaro, N., Sciarretta, R., Lucente, M.S., Mari, V., Amorisco, F., Colaianni, M.L., Cordioli, P., Buonavoglia, C., A nested PCR approach for unambiguous typing of pestiviruses infecting cattle (2012) Mol. Cell. Probes, 26, pp. 42-46; Deregt, D., Gilbert, S.A., Dudas, S., Pasick, J., Baxi, S., Burton, K.M., Baxi, M.K., A multiplex DNA suspension microarray for simultaneous detection and differentiation of classical swine fever virus and other pestiviruses (2006) J. Virol. Methods, 136, pp. 17-23; Dhama, K., Chauhan, R.S., Mahendran, M., Malik, S.V., Rotavirus diarrhea in bovines and other domestic animals (2009) Vet. Res. Commun., 33, pp. 1-23; Foster, D.M., Smith, G.W., Pathophysiology of diarrhea in calves (2009) Vet. Clin. North Am. Food Anim. Pract., 25, pp. 13-36. , xi; Frank, S.M., Bosworth, B.T., Moon, H.W., Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains from calves (1998) J. Clin. Microbiol., 36, pp. 1795-1797; Fukuda, M., Kuga, K., Miyazaki, A., Suzuki, T., Tasei, K., Aita, T., Mase, M., Tsunemitsu, H., Development and application of one-step multiplex reverse transcription PCR for simultaneous detection of five diarrheal viruses in adult cattle (2012) Arch. Virol., 157, pp. 1063-1069; Gomez, D.E., Weese, J.S., Viral enteritis in calves (2017) Can. Vet. J., 58 (December (12)), pp. 1267-1274; Griffin, D., Chengappa, M.M., Kuszak, J., McVey, D.S., Bacterial pathogens of the bovine respiratory disease complex (2010) Vet. Clin. North Am. Food Anim. Pract., 26, pp. 381-394; Guy, R.A., Payment, P., Krull, U.J., Horgen, P.A., Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage (2003) Appl. Environ. Microbiol., 69, pp. 5178-5185; Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT (1999) Nucleic Acids Symposium Series, pp. c1979-c2000. , Information Retrieval Ltd. London; Hilton, W.M., BRD in 2014: where have we been, where are we now, and where do we want to go? (2014) Anim. Health Res. Rev., 15, pp. 120-122; Hoet, A.E., Saif, L.J., Bovine torovirus (Breda virus) revisited (2004) Anim. Health Res. Rev., 5, pp. 157-171; Horwood, P.F., Mahony, T.J., Multiplex real-time RT-PCR detection of three viruses associated with the bovine respiratory disease complex (2011) J. Virol. Methods, 171, pp. 360-363; Huang, Y., Tang, H., Duffy, S., Hong, Y., Norman, S., Ghosh, M., He, J., Mather, E.L., Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray (2009) J. Clin. Microbiol., 47, pp. 390-396; Hur, T.Y., Jung, Y.H., Choe, C.Y., The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea (2013) Korean J. Vet. Res., 53, pp. 103-108; Johnson, K.K., Pendell, D.L., Market impacts of reducing the prevalence of bovine respiratory disease in United States beef cattle feedlots (2017) Front. Vet. Sci., 4, p. 189; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability (2013) Mol. Biol. Evol., 30 (4), pp. 772-780; Kawahara, F., Zhang, G., Mingala, C.N., Tamura, Y., Koiwa, M., Onuma, M., Nunoya, T., Genetic analysis and development of species-specific PCR assays based on ITS-1 region of rRNA in bovine Eimeria parasites (2010) Vet. Parasitol., 174, pp. 49-57; Keen-Kim, D., Grody, W.W., Richards, C.S., Microelectronic array system for molecular diagnostic genotyping: nanogen NanoChip 400 and molecular biology workstation (2006) Expert Rev. Mol. Diagn., 6, pp. 287-294; Kishimoto, M., Tsuchiaka, S., Rahpaya, S.S., Hasebe, A., Otsu, K., Sugimura, S., Kobayashi, S., Mizutani, T., Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex (2017) J. Vet. Med. Sci., 79, pp. 517-523; Klima, C.L., Alexander, T.W., Hendrick, S., McAllister, T.A., Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease (2014) Can. J. Vet. Res., 78, pp. 38-45; Klima, C.L., Zaheer, R., Cook, S.R., Booker, C.W., Hendrick, S., Alexander, T.W., McAllister, T.A., Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements (2014) J. Clin. Microbiol., 52, pp. 438-448; Koressaar, T., Remm, M., Enhancements and modifications of primer design program Primer3 (2007) Bioinformatics, 23, pp. 1289-1291; Kostrzynska, M., Bachand, A., Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens (2006) Can. J. Microbiol., 52, pp. 1-8; Liu, D., Lawrence, M.L., Austin, F.W., Specific PCR identification of Pasteurella multocida based on putative transcriptional regulator genes (2004) J. Microbiol. Methods, 58, pp. 263-267; Loa, C.C., Lin, T.L., Wu, C.C., Bryan, T.A., Hooper, T.A., Schrader, D.L., Differential detection of turkey coronavirus, infectious bronchitis virus, and bovine coronavirus by a multiplex polymerase chain reaction (2006) J. Virol. Methods, 131, pp. 86-91; Lung, O., Beeston, A., Ohene-Adjei, S., Pasick, J., Hodko, D., Hughes, K.B., Furukawa-Stoffer, T., Deregt, D., Electronic microarray assays for avian influenza and Newcastle disease virus (2012) J. Virol. Methods, 185, pp. 244-253; Lung, O., Ohene-Adjei, S., Buchanan, C., Joseph, T., King, R., Erickson, A., Detmer, S., Ambagala, A., Multiplex PCR and microarray for detection of swine respiratory pathogens (2015) Transbound. Emerg. Dis., 64, pp. 834-848; Lung, O., Furukawa-Stoffer, T., Burton Hughes, K., Pasick, J., King, D.P., Hodko, D., Multiplex RT-PCR and automated microarray for detection of eight bovine viruses (2016) Transbound. Emerg. Dis.; Marley, M.S., Givens, M.D., Galik, P.K., Riddell, K.P., Stringfellow, D.A., Development of a duplex quantitative polymerase chain reaction assay for detection of bovine herpesvirus 1 and bovine viral diarrhea virus in bovine follicular fluid (2008) Theriogenology, 70, pp. 153-160; Miller, J.H., Determination of viable cell counts: bacterial growth curves. Experiments in molecular genetics (1972) Experiments in Molecular Genetics, pp. 31-36. , J.H. Miller Cold Spring Harbor New York; Mosier, D., Review of BRD pathogenesis: the old and the new (2014) Anim. Health Res. Rev., 15, pp. 166-168; Murray, G.M., O'Neill, R.G., More, S.J., McElroy, M.C., Earley, B., Cassidy, J.P., Evolving views on bovine respiratory disease: an appraisal of selected key pathogens - Part 1 (2016) Vet. J., 217, pp. 95-102; ). Health Bulletin: Respiratory Disease in Cattle (2007), pp. 1-3. , NADIS UK; Ok, M., Guler, L., Turgut, K., Ok, U., Sen, I., Gunduz, I.K., Birdane, M.F., Guzelbektes, H., The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR (2009) Zoonoses Public Health, 56, pp. 94-101; Papatheodorou, A., Makrythanasis, P., Kaliakatsos, M., Dimakou, A., Orfanidou, D., Roussos, C., Kanavakis, E., Tzetis, M., Development of novel microarray methodology for the study of mutations in the SERPINA1 and ADRB2 genes–their association with obstructive pulmonary disease and disseminated bronchiectasis in Greek patients (2010) Clin. Biochem., 43, pp. 43-50; Shanthalingam, S., Goldy, A., Bavananthasivam, J., Subramaniam, R., Batra, S.A., Kugadas, A., Raghavan, B., Srikumaran, S., PCR assay detects Mannheimia haemolytica in culture-negative pneumonic lung tissues of bighorn sheep (Ovis canadensis) from outbreaks in the western USA, 2009-2010 (2014) J. Wildl. Dis., 50, pp. 1-10; Sharma, V.K., Real-time reverse transcription-multiplex PCR for simultaneous and specific detection of rfbE and eae genes of Escherichia coli O157:H7 (2006) Mol. Cell. Probes, 20, pp. 298-306; Sharma, V.K., Dean-Nystrom, E.A., Detection of enterohemorrhagic Escherichia coli O157:H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins (2003) Vet. Microbiol., 93, pp. 247-260; Snowder, G.D., Van Vleck, L.D., Cundiff, L.V., Bennett, G.L., Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors (2006) J. Anim. Sci., 84, pp. 1999-2008; Srikumaran, S., Kelling, C.L., Ambagala, A., Immune evasion by pathogens of bovine respiratory disease complex (2007) Anim. Health Res. Rev., 8, pp. 215-229; Sudiro, T.M., Ishiko, H., Green, S., Vaughn, D.W., Nisalak, A., Kalayanarooj, S., Rothman, A.L., Kurane, I., Rapid diagnosis of dengue viremia by reverse transcriptase-polymerase chain reaction using 3′-noncoding region universal primers (1997) Am. J. Trop. Med. Hyg., 56, pp. 424-429; Takahashi, H., Norman, S.A., Mather, E.L., Patterson, B.K., Evaluation of the NanoChip 400 system for detection of influenza A and B, respiratory syncytial, and parainfluenza viruses (2008) J. Clin. Microbiol., 46, pp. 1724-1727; Thonur, L., Maley, M., Gilray, J., Crook, T., Laming, E., Turnbull, D., Nath, M., Willoughby, K., One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3 (2012) BMC Vet. Res., 8, p. 37; Tsuchiaka, S., Masuda, T., Sugimura, S., Kobayashi, S., Komatsu, N., Nagai, M., Omatsu, T., Mizutani, T., Development of a novel detection system for microbes from bovine diarrhea by real-time PCR (2016) J. Vet. Med. Sci., 78, pp. 383-389; Tsunemitsu, H., Smith, D., Saif, L., Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR (1999) Arch. Virol., 144, pp. 167-175; Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G., Primer3–new capabilities and interfaces (2012) Nucleic Acids Res., 40, p. e115; USDA–APHIS-VS, Part IV: Health and Health Management on U.S. Feedlots With a Capacity of 1,000 or More Head (2013), https://www.aphis.usda.gov/animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_dr_PartIV.pdf, National Animal Health Monitoring System Beef Feedlot Study 2011; Vilcek, S., Elvander, M., Ballagi-Pordany, A., Belak, S., Development of nested PCR assays for detection of bovine respiratory syncytial virus in clinical samples (1994) J. Clin. Microbiol., 32, pp. 2225-2231; West, D.M., Sprigings, K.A., Cassar, C., Wakeley, P.R., Sawyer, J., Davies, R.H., Rapid detection of Escherichia coli virulence factor genes using multiplex real-time TaqMan PCR assays (2007) Vet. Microbiol., 122, pp. 323-331; Wiggins, M.C., Woolums, A.R., Sanchez, S., Hurley, D.J., Cole, D.J., Ensley, D.T., Pence, M.E., Prevalence of Mycoplasma bovis in backgrounding and stocker cattle operations (2007) J. Am. Vet. Med. Assoc., 230, pp. 1514-1518; Yadav, B.S., Pokhriyal, M., Ratta, B., Kumar, A., Saxena, M., Sharma, B., Viral diagnosis in Indian livestock using customized microarray chips (2015) Bioinformation, 11, pp. 489-492","Ambagala, A.; Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington Street, Canada; email: Aruna.Ambagala@canada.ca",,"Elsevier B.V.",01660934,,JVMED,"30102924","English","J. Virol. Methods",Article,"Final",,Scopus,2-s2.0-85051382198 "Hirsch A., Katz M.A., Laufer Peretz A., Greenberg D., Wendlandt R., Shemer Avni Y., Newes-Adeyi G., Gofer I., Leventer-Roberts M., Davidovitch N., Rosenthal A., Gur-Arie R., Hertz T., Glatman-Freedman A., Monto A.S., Azziz-Baumgartner E., Ferdinands J.M., Martin E.T., Malosh R.E., Neyra Quijandría J.M., Levine M., Campbell W., Balicer R., Thompson M.G.","57204545853;15843727200;57204549816;26643487800;56303248200;6701529173;7801434278;57200363589;55521372300;9939110900;55346975600;57204543607;6701622592;6701452194;7004552306;10045986800;16047254000;35321462900;55680861700;57204547609;7404035140;57204544654;6603332644;55465186700;","Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI): Study protocol 11 Medical and Health Sciences 1117 Public Health and Health Services 11 Medical and Health Sciences 1103 Clinical Sciences",2018,"BMC Infectious Diseases","18","1", 550,"","",,,"10.1186/s12879-018-3444-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056105120&doi=10.1186%2fs12879-018-3444-7&partnerID=40&md5=a7229664e9fa49ffcb48cdc4bf1e47ce","Chief Physician's Office, Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel; School of Public Health, Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Epidemiology, University of Michigan, School of Public Health, Ann Arbor, MI, United States; Rabin Medical Center, Occupational Medicine Department, Petah Tikva, Israel; Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel; Abt Associates, Inc, Atlanta, GA, United States; Clinical Virology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, United States; Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Ramat Gan, Israel; Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; U.S. Naval Medical Research Unit No 6 - Lima, Lima, Peru; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel","Hirsch, A., Chief Physician's Office, Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel; Katz, M.A., Chief Physician's Office, Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel, School of Public Health, Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel, Department of Epidemiology, University of Michigan, School of Public Health, Ann Arbor, MI, United States; Laufer Peretz, A., Rabin Medical Center, Occupational Medicine Department, Petah Tikva, Israel; Greenberg, D., Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel; Wendlandt, R., Abt Associates, Inc, Atlanta, GA, United States; Shemer Avni, Y., Clinical Virology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel; Newes-Adeyi, G., Abt Associates, Inc, Atlanta, GA, United States; Gofer, I., Chief Physician's Office, Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel; Leventer-Roberts, M., Chief Physician's Office, Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel; Davidovitch, N., Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; Rosenthal, A., Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; Gur-Arie, R., Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel; Hertz, T., Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel, Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, United States; Glatman-Freedman, A., Israel Center for Disease Control, Ministry of Health, Tel Hashomer, Ramat Gan, Israel, Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Monto, A.S., Department of Epidemiology, University of Michigan, School of Public Health, Ann Arbor, MI, United States; Azziz-Baumgartner, E., Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Ferdinands, J.M., Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Martin, E.T., Department of Epidemiology, University of Michigan, School of Public Health, Ann Arbor, MI, United States; Malosh, R.E., Department of Epidemiology, University of Michigan, School of Public Health, Ann Arbor, MI, United States; Neyra Quijandría, J.M., U.S. Naval Medical Research Unit No 6 - Lima, Lima, Peru; Levine, M., Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Campbell, W., Abt Associates, Inc, Atlanta, GA, United States; Balicer, R., Chief Physician's Office, Clalit Health Services, Clalit Research Institute, Tel Aviv, Israel; Thompson, M.G., Influenza Division, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States","Background: The Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI) prospectively follows a cohort of healthcare personnel (HCP) in two hospitals in Israel. SHIRI will describe the frequency of influenza virus infections among HCP, identify predictors of vaccine acceptance, examine how repeated influenza vaccination may modify immunogenicity, and evaluate influenza vaccine effectiveness in preventing influenza illness and missed work. Methods: Cohort enrollment began in October, 2016; a second year of the study and a second wave of cohort enrollment began in June 2017. The study will run for at least 3 years and will follow approximately 2000 HCP (who are both employees and members of Clalit Health Services [CHS]) with routine direct patient contact. Eligible HCP are recruited using a stratified sampling strategy. After informed consent, participants complete a brief enrollment survey with questions about occupational responsibilities and knowledge, attitudes, and practices about influenza vaccines. Blood samples are collected at enrollment and at the end of influenza season; HCP who choose to be vaccinated contribute additional blood one month after vaccination. During the influenza season, participants receive twice-weekly short message service (SMS) messages asking them if they have acute respiratory illness or febrile illness (ARFI) symptoms. Ill participants receive follow-up SMS messages to confirm illness symptoms and duration and are asked to self-collect a nasal swab. Information on socio-economic characteristics, current and past medical conditions, medical care utilization and vaccination history is extracted from the CHS database. Information about missed work due to illness is obtained by self-report and from employee records. Respiratory specimens from self-collected nasal swabs are tested for influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, and coronaviruses using validated multiplex quantitative real-time reverse transcription polymerase chain reaction assays. The hemagglutination inhibition assay will be used to detect the presence of neutralizing influenza antibodies in serum. Discussion: SHIRI will expand our knowledge of the burden of respiratory viral infections among HCP and the effectiveness of current and repeated annual influenza vaccination in preventing influenza illness, medical utilization, and missed workdays among HCP who are in direct contact with patients. Trial registration: NCT03331991. Registered on November 6, 2017. © 2018 The Author(s).",,"influenza vaccine; neutralizing antibody; absenteeism; Article; attitude to health; blood sampling; clinical protocol; cohort analysis; controlled study; Coronavirinae; disease burden; disease duration; follow up; health care personnel; health care utilization; health personnel attitude; health survey; hemagglutination inhibition test; human; Human metapneumovirus; Human respiratory syncytial virus; immune response; incidence; Influenza A virus; Influenza B virus; influenza vaccination; informed consent; Israel; multiplex polymerase chain reaction; nose smear; quantitative analysis; real time polymerase chain reaction; reverse transcription polymerase chain reaction; seasonal influenza; self report; socioeconomics; symptom; vaccine immunogenicity; viral respiratory tract infection; adult; clinical trial; female; hospital; immunology; influenza; male; middle aged; questionnaire; respiratory tract infection; statistics and numerical data; treatment outcome; vaccination; virology; virus infection; young adult; Absenteeism; Adult; Cohort Studies; Female; Health Personnel; Hospitals; Humans; Influenza Vaccines; Influenza, Human; Israel; Male; Middle Aged; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Surveys and Questionnaires; Treatment Outcome; Vaccination; Virus Diseases; Young Adult","Kuster, S.P., Shah, P.S., Coleman, B.L., Lam, Po.-Po., Tong, A., Wormsbecker, A., McGeer, A., Incidence of Influenza in Healthy Adults and Healthcare Workers: A Systematic Review and Meta-Analysis (2011) PLoS ONE, 6 (10), p. e26239. , 1:CAS:528:DC%2BC3MXhsVCjur7M; Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C., Gardam, M., Transmission of influenza a in human beings (2007) Lancet Infect Dis, 7, pp. 257-265; Thomas, R.E., Do we have enough evidence how seasonal influenza is transmitted and can be prevented in hospitals to implement a comprehensive policy? (2016) Vaccine, 34, pp. 3014-3021; Tran, K., Cimon, K., Severn, M., Pessoa-Silva, C.L., Conly, J., Aerosol Generating Procedures and Risk of Transmission of Acute Respiratory Infections to Healthcare Workers: A Systematic Review (2012) PLoS ONE, 7 (4), p. e35797. , 1:CAS:528:DC%2BC38XntFWks7o%3D; Molinari, N.A.M., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., The annual impact of seasonal influenza in the US: Measuring disease burden and costs (2007) Vaccine, 25, pp. 5086-5096; Pearson, M.L., Bridges, C.B., Harper, S.A., Influenza vaccination of health-care personnel: Recommendations of the healthcare infection control practices advisory committee (HICPAC) and the advisory committee on immunization practices (ACIP) (2006) MMWR Recomm Rep, 55, pp. 1-16. , 16498385; Vanhems, P., Voirin, N., Roche, S., Escuret, V., Regis, C., Gorain, C., Risk of influenza-like illness in an acute health care setting during community influenza epidemics in 2004-2005, 2005-2006, and 2006-2007: A prospective study (2011) Arch Intern Med, 171, pp. 151-157; De Serres, G., Skowronski, D.M., Ward, B.J., Gardam, M., Lemieux, C., Yassi, A., Patrick, D.M., Carrat, F., Influenza Vaccination of Healthcare Workers: Critical Analysis of the Evidence for Patient Benefit Underpinning Policies of Enforcement (2017) PLOS ONE, 12 (1), p. e0163586; Carrat, F., Vergu, E., Ferguson, N.M., Lemaitre, M., Cauchemez, S., Leach, S., Time lines of infection and disease in human influenza: A review of volunteer challenge studies (2008) Am J Epidemiol, 167, pp. 775-785; Poland, G.A., Tosh, P., Jacobson, R.M., Requiring influenza vaccination for health care workers: Seven truths we must accept (2005) Vaccine, 23, pp. 2251-2255; Rakita, R.M., Hagar, B.A., Crome, P., Lammert, J.K., Mandatory influenza vaccination of healthcare workers: A 5-year study (2010) Infect Control Hosp Epidemiol, 31, pp. 881-888; Abu-Gharbieh, E., Fahmy, S., Rasool, B.A., Khan, S., Influenza vaccination: Healthcare workers attitude in three Middle East countries (2010) Int J Med Sci, 7, pp. 319-325; Hollmeyer, H., Hayden, F., Mounts, A., Buchholz, U., Review: Interventions to increase influenza vaccination among healthcare workers in hospitals (2013) Influenza Other Respir Viruses, 7, pp. 604-621; Hollmeyer, H.G., Hayden, F., Poland, G., Buchholz, U., Influenza vaccination of health care workers in hospitals-A review of studies on attitudes and predictors (2009) Vaccine, 27, pp. 3935-3944; Naleway, A.L., Henkle, E.M., Ball, S., Bozeman, S., Gaglani, M.J., Kennedy, E.D., Barriers and facilitators to influenza vaccination and vaccine coverage in a cohort of health care personnel (2014) Am J Infect Control, 42, pp. 371-375; Thompson, M.G., Gaglani, M.J., Naleway, A., Ball, S., Henkle, E.M., Sokolow, L.Z., The expected emotional benefits of influenza vaccination strongly affect pre-season intentions and subsequent vaccination among healthcare personnel (2012) Vaccine, 30, pp. 3557-3565; Influenza Vaccination of Medical Teams N.d, , https://www.health.gov.il/PublicationsFiles/Flu_stuff2015_2016.pdf; Osterholm, M.T., Kelley, N.S., Sommer, A., Belongia, E.A., Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis (2012) Lancet Infect Dis, 12, pp. 36-44; Wilde, J.A., McMillan, J.A., Serwint, J., Butta, J., O'Riordan, M.A., Steinhoff, M.C., Effectiveness of influenza vaccine in health care professionals: A randomized trial (1999) JAMA, 281, pp. 908-913; Petrie, J.G., Ohmit, S.E., Johnson, E., Cross, R.T., Monto, A.S., Efficacy studies of influenza vaccines: Effect of end points used and characteristics of vaccine failures (2011) J Infect Dis, 203, pp. 1309-1315; Thompson, M.G., Gaglani, M.J., Naleway, A.L., Dowell, S.H., Spencer, S., Ball, S., Reduced serologic sensitivity to influenza a virus illness among inactivated influenza vaccinees (2016) Vaccine, 34, pp. 3443-3446; Thomas, R.E., Jefferson, T., Lasserson, T.J., Influenza vaccination for healthcare workers who work with the elderly: Systematic review (2010) Vaccine, 29, pp. 344-356; Thomas, R.E., Jefferson, T., Lasserson, T.J., Influenza vaccination for healthcare workers who care for people aged 60 or older living in long-term care institutions (2013) Cochrane Database Syst Rev, 7. , CD005187 10.1002/14651858.CD005187.pub4; Henkle, E., Irving, S.A., Naleway, A.L., Gaglani, M.J., Ball, S., Spencer, S., Comparison of laboratory-confirmed influenza and noninfluenza acute respiratory illness in healthcare personnel during the 2010-2011 influenza season (2014) Infect Control Hosp Epidemiol, 35, pp. 538-546; Ng, A.N., Lai, C.K.Y., Effectiveness of seasonal influenza vaccination in healthcare workers: A systematic review (2011) J Hosp Infect, 79, pp. 279-286; Kenah, E., Chao, D.L., Matrajt, L., Halloran, M.E., Longini, I.M., The Global Transmission and Control of Influenza (2011) PLoS ONE, 6 (5), p. e19515. , 1:CAS:528:DC%2BC3MXmtFKju7c%3D; McLean, H.Q., Thompson, M.G., Sundaram, M.E., Meece, J.K., McClure, D.L., Friedrich, T.C., Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons (2014) Clin Infect Dis, 59, pp. 1375-1385; Gaglani, M., Spencer, S., Ball, S., Song, J., Naleway, A., Henkle, E., Antibody response to influenza A(H1N1)pdm09 among healthcare personnel receiving trivalent inactivated vaccine: Effect of prior monovalent inactivated vaccine (2014) J Infect Dis, 209, pp. 1705-1714; Belongia, E.A., Skowronski, D.M., McLean, H.Q., Chambers, C., Sundaram, M.E., De Serres, G., Repeated annual influenza vaccination and vaccine effectiveness: Review of evidence (2017) Expert Review of Vaccines, 16 (7), pp. 723-736. , 1:CAS:528:DC%2BC2sXps1entrs%3D; Melia, M., O'Neill, S., Calderon, S., Hewitt, S., Orlando, K., Bithell-Taylor, K., Development of a flexible, computerized database to prioritize, record, and report influenza vaccination rates for healthcare personnel (2009) Infect Control Hosp Epidemiol, 30, pp. 361-369; Thompson, M.G., Ferber, J.R., Odouli, R., David, D., Shifflett, P., Meece, J.K., Results of a pilot study using self-collected mid-turbinate nasal swabs for detection of influenza virus infection among pregnant women (2015) Influenza Other Respir Viruses, 9, pp. 155-160; Lieberman, D., Lieberman, D., Shimoni, A., Keren-Naus, A., Steinberg, R., Shemer-Avni, Y., Identification of respiratory viruses in adults: Nasopharyngeal versus oropharyngeal sampling (2009) J Clin Microbiol, 47, pp. 3439-3443; Manual for the laboratory diagnosis and virological surveillance of influenza (2011) World Heal Organ, 2011, p. 153. , Who; Thompson, M.G., Naleway, A., Fry, A.M., Ball, S., Spencer, S.M., Reynolds, S., Effects of repeated annual inactivated influenza vaccination among healthcare personnel on serum hemagglutinin inhibition antibody response to a/Perth/16/2009 (H3N2)-like virus during 2010-11 (2016) Vaccine, 34, pp. 981-988; Hertz, T., Shagal, A., Ohmit, S., Immune history to influenza infection and vaccination predicts antibody responses to the seasonal influenza vaccine (2016) J Immunol, 196 (1); Couch, R.B., Atmar, R.L., Franco, L.M., Quarles, J.M., Wells, J., Arden, N., Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase (2013) J Infect Dis, 207, pp. 974-981; Monto, A.S., Petrie, J.G., Cross, R.T., Johnson, E., Liu, M., Zhong, W., Antibody to influenza virus neuraminidase: An independent correlate of protection (2015) J Infect Dis, 212, pp. 1191-1199; Laguio-Vila, M.R., Thompson, M.G., Reynolds, S., Spencer, S.M., Gaglani, M., Naleway, A., Ball, S., Treanor, J.J., Comparison of Serum Hemagglutinin and Neuraminidase Inhibition Antibodies after 2010-2011 Trivalent Inactivated Influenza Vaccination in Healthcare Personnel (2014) Open Forum Infectious Diseases, 2 (1), pp. ofu115-ofu115; Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., Conde, J.G., Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support (2009) J Biomed Inform, 42, pp. 377-381; D'Agostino, R.B., Jr., D'Agostino, R.B.S., Estimating treatment effects using observational data (2007) JAMA, 297, pp. 314-316; Coudeville, L., Bailleux, F., Riche, B., Megas, F., Andre, P., Ecochard, R., Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: Development and application of a bayesian random-effects model (2010) BMC Med Res Methodol, 10. , https://doi.org/10.1186/1471-2288-10-18; Greenberg, D., Givon-Lavi, N., Newman, N., Bar-Ziv, J., Dagan, R., Nasopharyngeal carriage of individual Streptococcus pneumoniae serotypes during pediatric pneumonia as a means to estimate serotype disease potential (2011) Pediatr Infect Dis J, 30, pp. 227-233; Abuhazira, Y.S., The Bedouin population in IsraelPopulation register compared with population estimation as basis of demographic indexes (2010) Jerusalem: CBS, , http://cbs.gov.il/www/publications/pw50.pdf","Hirsch, A.; Chief Physician's Office, Clalit Health Services, Clalit Research InstituteIsrael; email: avitalhi@clalit.org.il",,"BioMed Central Ltd.",14712334,,BIDMB,"30400834","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85056105120 "Chen Y., Zhang Z., Li J., Gao Y., Zhou L., Ge X., Han J., Guo X., Yang H.","57204627460;36614885200;57193676289;57198712905;55710638200;16303743600;57051666300;15843464800;35739455500;","Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis",2018,"Virology Journal","15","1", 170,"","",,3,"10.1186/s12985-018-1078-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056391719&doi=10.1186%2fs12985-018-1078-4&partnerID=40&md5=2e467ca0f51ec19d6b8ad1def9c47b2b","Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Animal Medicine Research Center, DBN Group, DBN Daxing Science Park, South Crossroad of Xiangrui Street and Huatuo Road, Daxing Distract, Beijing, 102600, China","Chen, Y., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China, Animal Medicine Research Center, DBN Group, DBN Daxing Science Park, South Crossroad of Xiangrui Street and Huatuo Road, Daxing Distract, Beijing, 102600, China; Zhang, Z., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Li, J., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Gao, Y., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Zhou, L., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Ge, X., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Han, J., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Guo, X., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China; Yang, H., Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, China","Background: Porcine Epidemic Diarrhea (PED) is an acute and highly contagious enteric disease caused by PED virus (PEDV), characterized by vomitting, watery diarrhea and fatal dehydration with high mortality in sucking piglets of one week of age. Although PEDV induced cell apoptosis has been established in vitro and in vivo, the functional protein that contributes to this event remains unclear. Methods: The activation or cleavage of main apoptosis-associated molecular such as AIFM1, caspase-3, caspase-8, caspase-9 and PARP in PEDV infected host cells were analyzed by western blotting. The nuclear change of infected cell was monitored by confocal immunofluorescence assay. The overexpressing plasmids of 16 non-structural proteins (Nsp1-16) and 6 structural proteins (M, N, E, ORF3, S1 and S2) were constructed by cloning. Cell apoptosis induced by PEDV or overexpression non-structural or structural proteins was measured by the flow cytometry assay. Results: PEDV could infect various host cells including Vero, Vero-E6 and Marc-145 and cause obvious cytopathic effects, including roundup, cell fusion, cell membrane vacuolation, syncytium formation and cause apparent apoptosis. In infected cells, PEDV-induced apoptosis is accompanied by nuclear concentration and fragmentation as a result of caspase-3 and caspase-8 activation and AIFM1 and PARP cleavage. Overexpression of S1 Spike protein of PEDV SM98 strain effectively induced host cell apoptosis, while the expression of the other non-structure proteins (Nsp1-16) and structural proteins (M, N, E, S2 and ORF3) has no or less effect on cell apoptosis. Similarly, expression of S1 protein from wild-type strain BJ2011 or cell-adapted strain CV777, also induce apoptosis in transfected cells. Finally, we demonstrated that the S1 proteins from various coronavirus family members such as TGEV, IBV, CCoV, SARS and MERS could also induce Vero-E6 cells apoptosis. Conclusion: S1 Spike protein is one of the most critical functional proteins that contribute to cell apoptosis. Expression of S1 proteins of the coronavirus tested in this study could all induce cell apoptosis suggesting S1 maybe is an effective inducer in Coronavirus-induced cell apoptosis and targeting S1 protein expression probably is a promising strategy to inhibit coronavirus infection and thus mediated apoptosis on host cells. © 2018 The Author(s).","Apoptosis; Apoptosis-inducing factor mitochondria associated 1 (AIFM1); Porcine epidemic diarrhea virus (PEDV); Spike S1 protein","apoptosis inducing factor; caspase 3; caspase 8; caspase 9; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase; protein AIFM1; S1 protein; unclassified drug; viral protein; apoptosis inducing factor; caspase; coronavirus spike glycoprotein; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase; apoptosis; Article; cell fusion; cell vacuole; controlled study; cytopathogenic effect; nonhuman; Porcine epidemic diarrhea virus; protein cleavage; syncytium; virus cell interaction; animal; Chlorocebus aethiops; Coronavirus infection; genetics; metabolism; pathogenicity; pig; Porcine epidemic diarrhea virus; swine disease; Vero cell line; virology; Animals; Apoptosis; Apoptosis Inducing Factor; Caspases; Cercopithecus aethiops; Coronavirus Infections; Cytopathogenic Effect, Viral; Poly(ADP-ribose) Polymerases; Porcine epidemic diarrhea virus; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases; Vero Cells","Chasey, D., Cartwright, S.F., Virus-like particles associated with porcine epidemic diarrhoea (1978) Research in Veterinary Science., 25 (2), pp. 255-256. , 1:STN:280:DyaE1M%2Fns1SgtQ%3D%3D 103154; Pensaert, M.B., De Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Archives of Virology, 58 (3), pp. 243-247. , 1:STN:280:DyaE1M%2FotFKqtg%3D%3D; Kusanagi, K., Kuwahara, H., Katoh, T., Nunoya, T., Ishikawa, Y., Samejima, T., Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate (1992) The Journal of Veterinary Medical Science / the Japanese Society of Veterinary Science., 54 (2), pp. 313-318. , 1:STN:280:DyaK383pslynsQ%3D%3D; Lee, H.M., Lee, B.J., Tae, J.H., Kweon, C.H., Lee, Y.S., Park, J.H., Detection of porcine epidemic diarrhea virus by immunohistochemistry with recombinant antibody produced in phages (2000) The Journal of Veterinary Medical Science / the Japanese Society of Veterinary Science., 62 (3), pp. 333-337. , 1:STN:280:DC%2BD3czptFehsw%3D%3D; Chen, J., Wang, C., Shi, H., Qiu, H.J., Liu, S., Shi, D., Complete genome sequence of a Chinese virulent porcine epidemic diarrhea virus strain (2011) Journal of Virology., 85 (21), pp. 11538-11539. , 1:CAS:528:DC%2BC3MXhtlCltrvE; Bi, J., Zeng, S., Xiao, S., Chen, H., Fang, L., Complete genome sequence of porcine epidemic diarrhea virus strain AJ1102 isolated from a suckling piglet with acute diarrhea in China (2012) Journal of Virology., 86 (19), pp. 10910-10911. , 1:CAS:528:DC%2BC38XhtlOmtbbK; Chen, F., Pan, Y., Zhang, X., Tian, X., Wang, D., Zhou, Q., Complete genome sequence of a variant porcine epidemic diarrhea virus strain isolated in China (2012) Journal of Virology., 86 (22), p. 12448. , 1:CAS:528:DC%2BC38Xhs1ahsbjM; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerging Infectious Diseases., 18 (8), pp. 1350-1353; Davies, P.R., The dilemma of rare events: Porcine epidemic diarrhea virus in North America (2015) Preventive Veterinary Medicine, 122 (1-2), pp. 235-241; Hoang, H., Killian, M.L., Madson, D.M., Arruda, P.H., Sun, D., Schwartz, K.J., Full-Length Genome Sequence of a Plaque-Cloned Virulent Porcine Epidemic Diarrhea Virus Isolate (USA/Iowa/18984/2013) from a Midwestern U.S. Swine Herd (2013) Genome Announc, 1 (6); Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4 (5), p. e00737; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) Journal of Veterinary Diagnostic Investigation, 25 (5), pp. 649-654; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerging Infectious Diseases., 20 (5), pp. 917-919; Jaru-Ampornpan, P., Jengarn, J., Wanitchang, A., Jongkaewwattana, A., Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability (2017) Journal of virology, 91 (2); Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes., 23 (2), pp. 137-144. , 1:CAS:528:DC%2BD3MXosVGmt7w%3D; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virology Journal., 12 (1), p. 193; Bosch, B.J., Van Der Zee, R., De Haan, C.A.M., Rottier, P.J.M., The Coronavirus Spike Protein Is a Class i Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex (2003) Journal of Virology, 77 (16), pp. 8801-8811. , 1:CAS:528:DC%2BD3sXmt1Sit7k%3D; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proceedings of the National Academy of Sciences of the United States of America., 108 (26), pp. 10696-10701. , 1:CAS:528:DC%2BC3MXovFenu7g%3D; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology., 460-461, pp. 180-193; Gao, Y., Kou, Q., Ge, X., Zhou, L., Guo, X., Yang, H., Phylogenetic analysis of porcine epidemic diarrhea virus field strains prevailing recently in China (2013) Archives of Virology., 158 (3), pp. 711-715. , 1:CAS:528:DC%2BC3sXjsFGgsbY%3D; Eleouet, J.F., Slee, E.A., Saurini, F., Castagne, N., Poncet, D., Garrido, C., The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis (2000) Journal of Virology., 74 (9), pp. 3975-3983. , 1:CAS:528:DC%2BD3cXislGrtLk%3D; Liu, C., Xu, H.Y., Liu, D.X., Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus (2001) Journal of Virology., 75 (14), pp. 6402-6409. , 1:CAS:528:DC%2BD3MXkvFSitro%3D; Ruggieri, A., Di Trani, L., Gatto, I., Franco, M., Vignolo, E., Bedini, B., Canine coronavirus induces apoptosis in cultured cells (2007) Veterinary Microbiology., 121 (1-2), pp. 64-72. , 1:CAS:528:DC%2BD2sXisVCgu74%3D; De Martino, L., Marfe, G., Longo, M., Fiorito, F., Montagnaro, S., Iovane, V., Bid cleavage, cytochrome c release and caspase activation in canine coronavirus-induced apoptosis (2010) Veterinary Microbiology., 141 (1-2), pp. 36-45. , 1:CAS:528:DC%2BC3cXhtlGgsL0%3D; Ren, L., Yang, R., Guo, L., Qu, J., Wang, J., Hung, T., Apoptosis induced by the SARS-associated coronavirus in Vero cells is replication-dependent and involves caspase (2005) DNA and Cell Biology., 24 (8), pp. 496-502. , 1:CAS:528:DC%2BD2MXnsl2lu7o%3D; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Middle East Respiratory Syndrome Coronavirus Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and Intrinsic Apoptosis Pathways (2015) The Journal of Infectious Diseases; Lin, C.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Veterinary Research., 46 (1), p. 134; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) Journal of Virology., 89 (6), pp. 3332-3342. , 1:CAS:528:DC%2BC2MXktF2nsLg%3D; Park, S.J., Moon, H.J., Yang, J.S., Lee, C.S., Song, D.S., Kang, B.K., Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea (2007) Virus Genes., 35 (2), pp. 321-332. , 1:CAS:528:DC%2BD2sXnvFeju7o%3D; Wang, J., Zhao, P., Guo, L., Liu, Y., Du, Y., Ren, S., Porcine epidemic diarrhea virus variants with high pathogenicity, China (2013) Emerging Infectious Diseases., 19 (12), pp. 2048-2049; Wang, D., Ge, X., Chen, D., Li, J., Cai, Y., Deng, J., The S Gene Is Necessary but Not Sufficient for the Virulence of Porcine Epidemic Diarrhea Virus Novel Variant Strain BJ2011C (2018) Journal of Virology, 92, p. 13; Zhang, Z., Chen, J., Shi, H., Chen, X., Shi, D., Feng, L., Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus (2012) Virology Journal., 9, p. 225. , 1:CAS:528:DC%2BC3sXlvFOrsA%3D%3D; Chan, C.M., Ma, C.W., Chan, W.Y., Chan, H.Y., The SARS-Coronavirus Membrane protein induces apoptosis through modulating the Akt survival pathway (2007) Archives of Biochemistry and Biophysics., 459 (2), pp. 197-207. , 1:CAS:528:DC%2BD2sXislWktLg%3D; Tsoi, H., Li, L., Chen, Z.S., Lau, K.F., Tsui, S.K., Chan, H.Y., The SARS-coronavirus membrane protein induces apoptosis via interfering with PDK1-PKB/Akt signalling (2014) The Biochemical Journal., 464 (3), pp. 439-447. , 1:CAS:528:DC%2BC2cXitVaqsrrN; Lin, C.W., Lin, K.H., Hsieh, T.H., Shiu, S.Y., Li, J.Y., Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis (2006) FEMS Immunology and Medical Microbiology., 46 (3), pp. 375-380. , 1:CAS:528:DC%2BD28XktVCksLY%3D; Ziebuhr, J., The coronavirus replicase (2005) Current Topics in Microbiology and Immunology., 287, pp. 57-94. , 1:CAS:528:DC%2BD2MXht1Kgtg%3D%3D 15609509; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proceedings of the National Academy of Sciences of the United States of America., 103 (34), pp. 12885-12890. , 1:CAS:528:DC%2BD28XptVyqs7k%3D; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling (2018) Journal of Virology, 92 (4); Reguera, J., Mudgal, G., Santiago, C., Casasnovas, J.M., A structural view of coronavirus-receptor interactions (2014) Virus Research., 194, pp. 3-15. , 1:CAS:528:DC%2BC2cXhslOkt7rP; Zhao, G., Shi, S.Q., Yang, Y., Peng, J.P., M and N proteins of SARS coronavirus induce apoptosis in HPF cells (2006) Cell Biology and Toxicology., 22 (5), pp. 313-322. , 1:CAS:528:DC%2BD28XnsVCgu7k%3D","Guo, X.; Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, China; email: guoxincau@cau.edu.cn",,"BioMed Central Ltd.",1743422X,,,"30404647","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85056391719 "Schildgen O.","6507523521;","The human coronaviruses",2018,"Advanced Techniques in Diagnostic Microbiology","2",,,"269","280",,,"10.1007/978-3-319-95111-9_11","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079828416&doi=10.1007%2f978-3-319-95111-9_11&partnerID=40&md5=4b55a66fd791661b6d2f5c96760d799a","Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Cologne/Köln, Germany","Schildgen, O., Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in Köln, Cologne/Köln, Germany",[No abstract available],,,"Lambert, S., Mackay, I.M., Sloots, T.P., Nissen, M.D., Human coronavirus nomenclature (2006) Pediatr Infect Dis J, 25 (7), p. 662; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, pp. 825-858. , Knipe DM, Howley PM, editors. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; Langereis, M.A., van Vliet, A.L., Boot, W., de Groot, R.J., Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein (2010) J Virol, 84 (17), pp. 8970-8974; Lauber, C., Goeman, J.J., Parquet Mdel, C., The footprint of genome architecture in the larg-est genome expansion in RNA viruses (2013) PLoS Pathog, 9 (7); Riski, H., Hovi, T., Coronavirus infections of man associated with diseases other than the com-mon cold (1980) J Med Virol, 6 (3), pp. 259-265; Falsey, A.R., Mccann, R.M., Hall, W.J., The ""common cold"" in frail older persons: Impact of rhinovirus and coronavirus in a senior daycare center (1997) J Am Geriatr Soc, 45 (6), pp. 706-711; Nokso-Koivisto, J., Kinnari, T.J., Lindahl, P., Hovi, T., Pitkaranta, A., Human picornavirus and coro-navirus RNA in nasopharynx of children without concurrent respiratory symptoms (2002) J Med Virol, 66 (3), pp. 417-420; Li, L., Wang, Z., Lu, Y., Severe acute respiratory syndrome-associated coronavirus genotype and its characterization (2003) Chin Med J, 116 (9), pp. 1288-1292; Peiris, J.S., Lai, S.T., Poon, L.L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Boivin, G., Baz, M., Cote, S., Infections by human coronavirus-NL in hospitalized children (2005) Pediatr Infect Dis J, 24 (12), pp. 1045-1048; Kaiser, L., Regamey, N., Roiha, H., Deffernez, C., Frey, U., Human coronavirus NL63 associated with lower respiratory tract symptoms in early life (2005) Pediatr Infect Dis J, 24 (11), pp. 1015-1017; Abdul-Rasool, S., Fielding, B.C., Understanding human coronavirus HCoV-NL63 (2010) Open Virol J, 4, pp. 76-84; Fielding, B.C., Human coronavirus NL63: A clinically important virus (2011) Future Microbiol, 6 (2), pp. 153-159; Assiri, A., Mcgeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Al-Hameed, F., Wahla, A.S., Siddiqui, S., Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia (2016) J Intensive Care Med, 31 (5), pp. 344-348; Juang, J.L., Chen, T.C., Jiang, S.S., Coupling multiplex RT-PCR to a gene chip assay for sen-sitive and semiquantitative detection of severe acute respiratory syndrome-coronavirus (2004) Lab Invest (A Journal of Technical Methods and Pathology), 84 (9), pp. 1085-1091; Asano, K.M., de Souza, S.P., de Barros, I.N., Multiplex semi-nested RT-PCR with exog-enous internal control for simultaneous detection of bovine coronavirus and group A rotavirus (2010) J Virol Methods, 169 (2), pp. 375-379; Hadjinicolaou, A.V., Farcas, G.A., Demetriou, V.L., Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): A general methodology for detecting rapidly mutating viruses (2011) Arch Virol, 156 (4), pp. 671-680; Costa, E., Rodriguez-Dominguez, M., Clari, M.A., Gimenez, E., Galan, J.C., Navarro, D., Comparison of the performance of 2 commercial multiplex PCR platforms for detection of respira-tory viruses in upper and lower tract respiratory specimens (2015) Diagn Microbiol Infect Dis, 82 (1), pp. 40-43; de Vos, N., Vankeerberghen, A., Vaeyens, F., van Vaerenbergh, K., Boel, A., de Beenhouwer, H., Simultaneous detection of human bocavirus and adenovirus by multiplex real-time PCR in a Belgian paediatric population (2009) Eur J Clin Microbiol Infect Dis, 28 (11), pp. 1305-1310; Huguenin, A., Moutte, L., Renois, F., Broad respiratory virus detection in infants hospital-ized for bronchiolitis by use of a multiplex RT-PCR DNA microarray system (2012) J Med Virol, 84 (6), pp. 979-985; Lassauniere, R., Kresfelder, T., Venter, M., A novel multiplex real-time RT-PCR assay with FRET hybridization probes for the detection and quantitation of 13 respiratory viruses (2010) J Virol Methods, 165 (2), pp. 254-260; Leung, T.F., Li, C.Y., Lam, W.Y., Epidemiology and clinical presentations of human coronavi-rus NL63 infections in Hong Kong children (2009) J Clin Microbiol, 47 (11), pp. 3486-3492; Gerna, G., Percivalle, E., Sarasini, A., Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients (2007) J Clin Virol (The Official Publication of the Pan American Society for Clinical Virology), 38 (3), pp. 244-250; Lambert, S.B., Allen, K.M., Druce, J.D., Community epidemiology of human metapneumo-virus, human coronavirus NL63, and other respiratory viruses in healthy preschool-aged chil-dren using parent-collected specimens (2007) Pediatrics, 120 (4); Gorse, G.J., O'connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J Infect Dis, 199 (6), pp. 847-857; Al Hajjar, S., Al Thawadi, S., Al Seraihi, A., Al Muhsen, S., Imambaccus, H., Human metapneumo-virus and human coronavirus infection and pathogenicity in Saudi children hospitalized with acute respiratory illness (2011) Ann Saudi Med, 31 (5), pp. 523-527; Lee, W.J., Chung, Y.S., Yoon, H.S., Kang, C., Kim, K., Prevalence and molecular epidemiol-ogy of human coronavirus HKU1 in patients with acute respiratory illness (2013) J Med Virol, 85 (2), pp. 309-314; Razuri, H., Malecki, M., Tinoco, Y., Human coronavirus-associated influenza-like illness in the community setting in Peru (2015) Am J Trop Med Hyg, 93 (5), pp. 1038-1040; Abdulhaq, A.A., Basode, V.K., Hashem, A.M., Patterns of human respiratory viruses and lack of MERS-coronavirus in patients with acute upper respiratory tract infections in Southwestern Province of Saudi Arabia (2017) Adv Virol, 2017. , 4247853; Kim, K.Y., Han, S.Y., Kim, H.S., Cheong, H.M., Kim, S.S., Kim, D.S., Human coronavirus in the 2014 winter season as a cause of lower respiratory tract infection (2017) Yonsei Med J, 58 (1), pp. 174-179; Hamre, D., Connelly, A.P., Jr., Procknow, J.J., Virologic studies of acute respiratory disease in young adults. IV. Virus isolations during four years of surveillance (1966) Am J Epidemiol, 83 (2), pp. 238-249; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med (Society for Experimental Biology and Medicine), 121 (1), pp. 190-193; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis (An Official Publication of the Infectious Diseases Society of America), 36 (8), pp. 985-989; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavi-rus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin infect Dis (An Official Publication of the Infectious Diseases Society of America), 40 (12), pp. 1721-1729; Principi, N., Bosis, S., Esposito, S., Effects of coronavirus infections in children (2010) Emerg Infect Dis, 16 (2), pp. 183-188; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Clinical significance of human coronavirus in Bronchoalveolar Lavage samples from hematopoietic cell transplantation recipients and patients with Hematologic Malignancies (2017) Clin Infect Dis (An Official Publication of the Infectious Diseases Society of America), , https://doi.org/10.1093/cid/cix160; Corman, V.M., Eckerle, I., Memish, Z.A., Link of a ubiquitous human coronavirus to drom-edary camels (2016) Proc Natl Acad Sci U S A, 113 (35), pp. 9864-9869; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10 (4), pp. 368-373; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., A previously undescribed coronavirus asso-ciated with respiratory disease in humans (2004) Proc Natl Acad Sci U S A, 101 (16), pp. 6212-6216; Arden, K.E., Nissen, M.D., Sloots, T.P., Mackay, I.M., New human coronavirus, HCoV-NL63, associ-ated with severe lower respiratory tract disease in Australia (2005) J Med Virol, 75 (3), pp. 455-462; Ebihara, T., Endo, R., Ma, X., Ishiguro, N., Kikuta, H., Detection of human coronavirus NL63 in young children with bronchiolitis (2005) J Med Virol, 75 (3), pp. 463-465; Smuts, H., Workman, L., Zar, H.J., Role of human metapneumovirus, human coronavirus NL63 and human bocavirus in infants and young children with acute wheezing (2008) J Med Virol, 80 (5), pp. 906-912; Wu, P.S., Chang, L.Y., Berkhout, B., Clinical manifestations of human coronavirus NL63 infection in children in Taiwan (2008) Eur J Pediatr, 167 (1), pp. 75-80; van der Hoek, L., Sure, K., Ihorst, G., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2 (8); Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79 (2), pp. 884-895; Woo, P.C., Lau, S.K., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., Phylogenetic and recombination analysis of coronavirus HKU1, a novel coronavirus from patients with pneumonia (2005) Arch Virol, 150 (11), pp. 2299-2311; Woo, P.C., Lau, S.K., Tsoi, H.W., Clinical and molecular epidemiological features of coronavi-rus HKU1-associated community-acquired pneumonia (2005) J Infect Dis, 192 (11), pp. 1898-1907; Esper, F., Weibel, C., Ferguson, D., Landry, M.L., Kahn, J.S., Coronavirus HKU1 infection in the United States (2006) Emerg Infect Dis, 12 (5), pp. 775-779; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44 (6), pp. 2063-2071; Sloots, T.P., Mcerlean, P., Speicher, D.J., Arden, K.E., Nissen, M.D., Mackay, I.M., Evidence of human coronavirus HKU1 and human bocavirus in Australian children (2006) J Clin Virol (The Official Publication of the Pan American Society for Clinical Virology), 35 (1), pp. 99-102; Woo, P.C., Lau, S.K., Yip, C.C., Huang, Y., Yuen, K.Y., More and more coronaviruses: Human corona-virus HKU1 (2009) Viruses, 1 (1), pp. 57-71; Pyrc, K., Sims, A.C., Dijkman, R., Culturing the unculturable: Human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cul-tures (2010) J Virol, 84 (21), pp. 11255-11263; Amini, R., Jahanshiri, F., Amini, Y., Sekawi, Z., Jalilian, F.A., Detection of human coronavirus strain HKU1 in a 2 years old girl with asthma exacerbation caused by acute pharyngitis (2012) Virol J, 9, p. 142; Mcintosh, K., Becker, W.B., Chanock, R.M., Growth in suckling-mouse brain of ""IBV-like"" viruses from patients with upper respiratory tract disease (1967) Proc Natl Acad Sci U S A, 58 (6), pp. 2268-2273; Mcintosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc Natl Acad Sci U S A, 57 (4), pp. 933-940; Reilley, B., van Herp, M., Sermand, D., Dentico, N., SARS and Carlo Urbani (2003) N Engl J Med, 348 (20), pp. 1951-1952; Chan, H.L., Tsui, S.K., Sung, J.J., Coronavirus in severe acute respiratory syndrome (SARS) (2003) Trends Mol Med, 9 (8), pp. 323-325; Ding, Y., He, L., Zhang, Q., Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways (2004) J Pathol, 203 (2), pp. 622-630; Lu, H., Zhao, Y., Zhang, J., Date of origin of the SARS coronavirus strains (2004) BMC Infect Dis, 4, p. 3; Kuiken, T., Fouchier, R.A., Schutten, M., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362 (9380), pp. 263-270; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1967-1976; Statement on the third meeting of the IHR Emergency committee concerning Middle East respiratory syndrome coronavirus (MERS-CoV) (2013) Releve Epidemiologique Hebdomadaire, 88 (40), pp. 435-436; Coronavirus has low pandemic potential, so far (2013) BMJ 347 f4371; Bennet, N., Alarm bells over MERS coronavirus (2013) Lancet Infect Dis, 13 (7), pp. 573-574; Cauchemez, S., van Kerkhove, M.D., Riley, S., Donnelly, C.A., Fraser, C., Ferguson, N.M., Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart (2013) Euro surveill (Bulletin Europeen sur les maladies transmissibles = European com-municable disease bulletin), 18 (24); (2012) Updated information on the epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) infection and guidance for the pub-lic, clinicians, and public health authorities, 62 (38), pp. 793-796. , MMWR Morb Mortal Wkly Rep. 2013; Update: Recommendations for Middle East respiratory syndrome coronavirus (MERS-CoV) (2013) MMWR Morb Mortal Wkly Rep, 62 (27), p. 557; Prevention (2012) Update: Severe respiratory illness associated with Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-worldwide, 62 (23), pp. 480-483. , MMWR Morb Mortal Wkly Rep. 2013; de Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J Virol, 87 (14), pp. 7790-7792; de Wilde, A.H., Raj, V.S., Oudshoorn, D., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J Gen Virol, 94, pp. 1749-1760; de Wit, E., Prescott, J., Baseler, L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS One, 8 (7); de Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110 (41), pp. 16598-16603; Devitt, E., Lack of small animal model hinders MERS coronavirus research (2013) Nat Med, 19 (8), p. 952; Eckerle, I., Muller, M.A., Kallies, S., Gotthardt, D.N., Drosten, C., In-vitro renal epithelial cell infec-tion reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) coronavirus infection (2013) Virol J, 10, p. 359; Hsieh, Y.H., Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial out-break in South Korea: Insights from modeling (2015) Peer J, 3; Kim, T.H., Lee, H.H., Considerations left behind Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks in Republic of Korea (2015) J Menopausal Med, 21 (2), pp. 63-64; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21 (12), pp. 2186-2189; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome corona-virus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95 (2), pp. 207-213; Vijgen, L., Keyaerts, E., Moes, E., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79 (3), pp. 1595-1604; Huynh, J., Li, S., Yount, B., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J Virol, 86 (23), pp. 12816-12825; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Gossner, C., Danielson, N., Gervelmeyer, A., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63 (1), pp. 1-9; Han, H.J., Yu, H., Yu, X.J., Evidence for zoonotic origins of Middle East respiratory syndrome coronavirus (2016) J Gen Virol, 97 (2), pp. 274-280; Hon, C.C., Lam, T.Y., Shi, Z.L., Evidence of the recombinant origin of a bat severe acute respi-ratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J Virol, 82 (4), pp. 1819-1826; Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.P., Teeling, E., Kittayapong, P., Manuguerra, J.C., SARS-coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory (2011) Infect Genet Evol (Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases), 11 (7), pp. 1690-1702; Balboni, A., Battilani, M., Prosperi, S., The SARS-like coronaviruses: The role of bats and evolu-tionary relationships with SARS coronavirus (2012) New Microbiol, 35 (1), pp. 1-16; Lu, G., Liu, D., SARS-like virus in the Middle East: A truly bat-related coronavirus causing human diseases (2012) Protein Cell, 3 (11), pp. 803-805; Wang, M., Hu, Z., Bats as animal reservoirs for the SARS coronavirus: Hypothesis proved after 10 years of virus hunting (2013) Virol Sin, 28 (6), pp. 315-317; Ng, O.W., Tan, Y.J., Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks-implications for coronavirus vaccine development (2017) Hum Vaccin Immunother, 13 (1), pp. 186-189; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill (Bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin), 17 (39); de Vries, M., Deijs, M., Canuti, M., A sensitive assay for virus discovery in respiratory clini-cal samples (2011) PLoS One, 6 (1)","Schildgen, O.; Kliniken der Stadt Köln gGmbH, Institut für Pathologie, Klinikum der Privaten Universität Witten/Herdecke mit Sitz in KölnGermany; email: schildgeno@kliniken-koeln.de",,"Springer International Publishing",,9783319951119; 9783319951102,,,"English","Adv. Tech. in Diagn. Microbiol.",Book Chapter,"Final",Open Access,Scopus,2-s2.0-85079828416 "Karypidou K., Ribone S.R., Quevedo M.A., Persoons L., Pannecouque C., Helsen C., Claessens F., Dehaen W.","55933270600;23980717800;7005128330;25628078900;35421205200;24779239200;56601682400;7005455325;","Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents",2018,"Bioorganic and Medicinal Chemistry Letters","28","21",,"3472","3476",,3,"10.1016/j.bmcl.2018.09.019","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054134439&doi=10.1016%2fj.bmcl.2018.09.019&partnerID=40&md5=3358904290a867ac0e9b16fe245776be","Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET), Dpto. Farmacia, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina; Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium","Karypidou, K., Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium; Ribone, S.R., Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET), Dpto. Farmacia, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina; Quevedo, M.A., Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET), Dpto. Farmacia, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina; Persoons, L., Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium; Pannecouque, C., Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium; Helsen, C., Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium; Claessens, F., Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium; Dehaen, W., Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium","Synthesis and biological evaluation of a novel library of fused 1,2,3-triazole derivatives are described. The in-house developed multicomponent reaction based on commercially available starting materials was applied and broad biological screening against various viruses was performed, showing promising antiviral properties for compounds 14d, 14n, 14q, 18f and 18i against human coronavirus 229E. Further in silico studies identified the key molecular interactions between those compounds and the 3-chymotrypsin-like protease, which is essential to the intracellular replication of the virus, supporting the hypothesis that the protease is the target molecule of the potential antiviral derivatives. © 2018 Elsevier Ltd","1,2,3-triazole; 3CL protease; Biological evaluation; Coronavirus; Respiratory syndrome","1,2,3 triazole derivative; 3 chymotrypsin like protease; 3' fluorothymidine; 5 (2 bromovinyl) 2' deoxyuridine; aciclovir; antivirus agent; chymotrypsin; cidofovir; ganciclovir; unclassified drug; zalcitabine; zidovudine; 3C-like protease, SARS coronavirus; antivirus agent; cysteine proteinase; cysteine proteinase inhibitor; protein binding; triazole derivative; viral protein; antiviral activity; Article; computer model; controlled study; Coronavirinae; drug screening; drug structure; drug synthesis; Human coronavirus 229E; molecular model; nonhuman; virus replication; antagonists and inhibitors; chemical structure; chemistry; Coronavirinae; drug effect; enzyme active site; human; metabolism; microbial sensitivity test; molecular docking; structure activity relation; synthesis; tumor cell line; Antiviral Agents; Catalytic Domain; Cell Line, Tumor; Coronavirus; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Docking Simulation; Molecular Structure; Protein Binding; Structure-Activity Relationship; Triazoles; Viral Proteins","Bradburne, A.F., Bynoe, M.L., Tyrrell, D.A.J., Effects of a “New” human respiratory virus in volunteers (1967) Br Med J, 3, pp. 767-769; Drosten, C., Günther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Kuiken, T., Fouchier, R.A.M., Schutten, M., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270; (2003), http://www.who.int/csr/sars/archive/2003_05_07a/en/, Communicable Disease Surveillance and response; WHO. SARS case fatality ratio, incubation period. Published 7 May; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Woo, P.C.Y., Lau, S.K.P., Chu, C., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.Y., Middle East Respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347; Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., Jung, S.H., An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy (2016) J Med Chem, 59, pp. 6595-6628; Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., Hilgenfeld, R., Coronavirus main proteinase (3CL pro) structure : basis for design of anti-SARS drugs (2003) Science, 300, pp. 1763-1767; Thomas, J., Jana, S., John, J., Liekens, S., Dehaen, W., A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones (2016) Chem Commun, 52, pp. 2885-2888; Yang, S., Chen, S.J., Hsu, M.F., Wu, J.D., Tseng, C.T.K., Liu, Y.F., Chen, H.C., Hsu, M.C., Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor (2006) J Med Chem, 49, pp. 4971-4980; Chen, L.R., Wang, Y.C., Lin, Y.W., Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors (2005) Bioorg Med Chem Lett, 15, pp. 3058-3062; Wu, C.Y., King, K.Y., Kuo, C.J., Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease (2006) Chem Biol, 13, pp. 261-268; Ghosh, A.K., Gong, G., Grum-Tokars, V., Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors (2008) Bioorg Med Chem Lett, 18, pp. 5684-5688; Zhang, J., Huitema, C., Niu, C., Aryl methylene ketones and fluorinated methylene ketones as reversible inhibitors for severe acute respiratory syndrome (SARS) 3Clike proteinase (2008) Bioorg Chem, 36, pp. 229-240; Jacobs, J., Grum-Tokars, V., Zhou, Y., Discovery, synthesis, and structure-based optimization of a series of N -(tert -Butyl)-2-(N -arylamido)-2(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL (2013) J Med Chem, 56, pp. 534-546; Turlington, M., Chun, A., Tomar, S., Discovery of N(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding (2013) Bioorg Med Chem Lett, 23, pp. 6172-6177; Gallagher, M.J., Mann, F.G., The structure and properties of certain polycyclic indolo- and quinolinoderivatives. Part XV. Derivatives of 1-phenyl-4-piperidone and its phosphorus and arsenic analogues (1962) J Chem Soc, 23, p. 5110; Schön, U., Messinger, J., Buckendahl, M., Prabhu, M.S., Konda, A., An improved synthesis of N-aryl and Nheteroaryl substituted piperidones (2007) Tetrahedron Lett, 48, pp. 2519-2525","Dehaen, W.; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Belgium; email: wim.dehaen@kuleuven.be",,"Elsevier Ltd",0960894X,,BMCLE,"30286952","English","Bioorg. Med. Chem. Lett.",Article,"Final",Open Access,Scopus,2-s2.0-85054134439 "Koo B., Hong K.H., Jin C.E., Kim J.Y., Kim S.-H., Shin Y.","57192113584;57193917330;57192109516;57192118471;55133790400;55542139800;","Arch-shaped multiple-target sensing for rapid diagnosis and identification of emerging infectious pathogens",2018,"Biosensors and Bioelectronics","119",,,"79","85",,4,"10.1016/j.bios.2018.08.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85051408504&doi=10.1016%2fj.bios.2018.08.007&partnerID=40&md5=23c15b3f24509fdc59fcd3374b4e7e77","Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, South Korea; Department of Laboratory Medicine, Seoul Medical Center, Seoul, South Korea; Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea","Koo, B., Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, South Korea; Hong, K.H., Department of Laboratory Medicine, Seoul Medical Center, Seoul, South Korea; Jin, C.E., Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, South Korea; Kim, J.Y., Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Kim, S.-H., Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Shin, Y., Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, South Korea","Rapid identification of emerging infectious pathogens is crucial for preventing public health threats. Various pathogen detection techniques have been introduced; however, most techniques are time-consuming and lack multiple-target detection specificity. Although multiple-target detection techniques can distinguish emerging infectious pathogens from related pathogens, direct amplification methods have not been widely examined. Here, we present a novel arch-shaped multiple-target sensor capable of rapid pathogen identification using direct amplification in clinical samples. In this study, an arch-shaped amplification containing primer sequences was designed to rapidly amplify multiple targets. Further, the sensing platform allowed for sensitive and specific detection of human coronavirus, Middle East respiratory syndrome, Zika virus, and Ebola virus down to several copies. This platform also simultaneously distinguished between Middle East respiratory syndrome and human coronavirus in clinical specimens within 20 min. This arch-shaped multiple-target sensing assay can provide rapid, sensitive, and accurate diagnoses of emerging infectious diseases in clinical applications. © 2018 Elsevier B.V.","Diagnosis; Ebola; Emerging infectious pathogen; Middle East respiratory syndrome; Pathogens identification; Zika","Arches; Diagnosis; Health risks; Viruses; Ebola; Emerging infectious disease; Infectious pathogens; Middle East; Multiple-target detections; Rapid identification; Rapid pathogen identifications; Zika; Pathogens; RNA; Article; Coronaviridae; Coronavirus infection; diagnostic accuracy; Ebola hemorrhagic fever; Ebolavirus; gene targeting; genotype; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nucleic acid amplification; reverse transcription polymerase chain reaction; sensitivity and specificity; silicon microring resonator; virus detection; Zika fever; Zika virus; communicable disease; genetic procedures; genetics; human; procedures; virology; virus; Biosensing Techniques; Communicable Diseases; Communicable Diseases, Emerging; Humans; Nucleic Acid Amplification Techniques; Sensitivity and Specificity; Viruses","Adessi, C., Matton, G., Ayala, G., Turcatti, G., Mermod, J.J., Mayer, P., Kawashima, E., Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms (2000) Nucleic Acids Res., 28 (20). , (e87-e87); Allegranzi, B., Nejad, S.B., Combescure, C., Graafmans, W., Attar, H., Donaldson, L., Pittet, D., Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis (2011) Lancet, 377 (9761), pp. 228-241; Barken, K.B., Haagensen, J.A., Tolker-Nielsen, T., Advances in nucleic acid-based diagnostics of bacterial infections (2007) Clin. Chim. Acta, 384 (1-2), pp. 1-11; Biava, M., Colavita, F., Marzorati, A., Russo, D., Pirola, D., Cocci, A., Petrocelli, A., Di Caro, A., Evaluation of a rapid and sensitive RT-qPCR assay for the detection of Ebola Virus (2018) J. Virol. Methods, 252, pp. 70-74; Brinkmann, A., Ergünay, K., Radonić, A., Tufan, Z.K., Domingo, C., Nitsche, A., Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics (2017) PLoS Negl. Trop. Dis., 11 (11), p. e0006075; Chung, H.J., Castro, C.M., Im, H., Lee, H., Weissleder, R., A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria (2013) Nat. Nanotechnol., 8 (5), p. 369; Fedurco, M., Romieu, A., Williams, S., Lawrence, I., Turcatti, G., BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies (2006) Nucleic Acids Res., 34 (3). , (e22-e22); Guo, Z., Guilfoyle, R.A., Thiel, A.J., Wang, R., Smith, L.M., Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports (1994) Nucleic Acids Res., 22 (24), pp. 5456-5465; Huang, F.C., Liao, C.S., Lee, G.B., An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on‐line optical detection (2006) Electrophoresis, 27 (16), pp. 3297-3305; Kim, J.Y., Koo, B., Jin, C.E., Kim, M.C., Chong, Y.P., Lee, S.O., Choi, S.H., Kim, S.H., Rapid diagnosis of tick-borne illnesses by use of one-step isothermal nucleic acid amplification and bio-optical sensor detection (2018) Clin. Chem., 64 (3), pp. 556-565; Koo, B., Jin, C.E., Lee, T.Y., Lee, J.H., Park, M.K., Sung, H., Park, S.Y., Shin, Y., An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections (2017) Biosens. Bioelectron., 90, pp. 187-194; (2016), 〈www.cdc.gov〉, MERS-CoV | Prevention and Treatment of MERS | Coronavirus | CDC. 〈www.cdc.gov〉. 13 July 2016; Mori, Y., Notomi, T., Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases (2009) J. Infect. Chemother., 15 (2), pp. 62-69; Munoz-Jordan, J.L., Diagnosis of Zika virus infections: challenges and opportunities (2017) J. Infect. Dis., 216, pp. S951-S956; Piepenburg, O., Williams, C.H., Stemple, D.L., Armes, N.A., DNA detection using recombination proteins (2006) PLoS Biol., 4 (7), p. e204; Rao, S., Nyquist, A.C., Respiratory viruses and their impact in healthcare (2014) Curr. Opin. Infect. Dis., 27 (4), pp. 342-347; Sands, P., Mundaca-Shah, C., Dzau, V.J., The neglected dimension of global security—a framework for countering infectious-disease crises (2016) N. Engl. J. Med., 374 (13), pp. 1281-1287; Shendure, J., Ji, H., Next-generation DNA sequencing (2008) Nat. Biotechnol., 26 (10), p. 1135; Shin, Y., Kim, J., Lee, T.Y., A solid phase-bridge based DNA amplification technique with fluorescence signal enhancement for detection of cancer biomarkers (2014) Sens. Actuators B: Chem., 199, pp. 220-225; World Health Organization, Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Summary of Current Situation, Literature Update And Risk Assessment (2015), WHO Geneva, Switzerland; World Health Organization, Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Interim Guidance (2015), World Health Organization Geneva; World Health Organization, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2016), WHO Geneva, Switzerland; Yang, S., Rothman, R.E., PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings (2004) Lancet Infect. Dis., 4 (6), pp. 337-348; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007","Kim, S.-H.; Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of MedicineSouth Korea; email: kimsunghanmd@hotmail.com",,"Elsevier Ltd",09565663,,BBIOE,"30103157","English","Biosens. Bioelectron.",Article,"Final",,Scopus,2-s2.0-85051408504 "Hong S.-M., An S.-H., Lee C.-Y., Song C.-S., Choi K.-S., Kim J.-H., Kwon H.-J.","55512474800;57195539685;57195422071;55555239800;35798047900;55922388300;57196596247;","Pathobiological and genomic characterization of a cold-adapted infectious bronchitis virus (BP-caKII)",2018,"Viruses","10","11", 652,"","",,,"10.3390/v10110652","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056967082&doi=10.3390%2fv10110652&partnerID=40&md5=674a3615b9b0762a3f76e8ff75fe1637","Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea; Avian Disease Division, animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-Do 39660, South Korea; Reseach Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, 08826, South Korea; Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Farm Animal Clinical Training and Research Center, Seoul National University, Seoul, 08826, South Korea","Hong, S.-M., Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; An, S.-H., Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Lee, C.-Y., Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Song, C.-S., Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea; Choi, K.-S., Avian Disease Division, animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-Do 39660, South Korea; Kim, J.-H., Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea, Reseach Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, 08826, South Korea; Kwon, H.-J., Reseach Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul, 08826, South Korea, Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea, Farm Animal Clinical Training and Research Center, Seoul National University, Seoul, 08826, South Korea","We established a cold-adapted infectious bronchitis virus (BP-caKII) by passaging a field virus through specific pathogen-free embryonated eggs 20 times at 32° C. We characterized its growth kinetics and pathogenicity in embryonated eggs, and its tropism and persistence in different tissues from chickens; then, we evaluated pathogenicity by using a new premature reproductive tract pathogenicity model. Furthermore, we determined the complete genomic sequence of BP-caKII to understand the genetic changes related to cold adaptation. According to our results, BP-caKII clustered with the KII genotype viruses K2 and KM91, and showed less pathogenicity than K2, a live attenuated vaccine strain. BP-caKII showed delayed viremia, resulting in its delayed dissemination to the kidneys and cecal tonsils compared to K2 and KM91, the latter of which is a pathogenic field strain. A comparative genomics study revealed similar nucleotide sequences between BP-caKII, K2 and KM91 but clearly showed different mutations among them. BP-caKII shared several mutations with K2 (nsp13, 14, 15 and 16) following embryo adaptation but acquired multiple additional mutations in nonstructural proteins (nsp3, 4 and 12), spike proteins and nucleocapsid proteins following cold adaptation. Thus, the establishment of BP-caKII and the identified mutations in this study may provide insight into the genetic background of embryo and cold adaptations, and the attenuation of coronaviruses. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Cold adaptation; Comparative genomics; Infectious bronchitis virus; Persistent infection; Premature reproductive tract pathogenicity model","nonstructural protein 3; nonstructural protein 4; nucleocapsid protein; virus spike protein; absolute lethal dose; amnion fluid; Article; Avian infectious bronchitis virus; cecal tonsil; cold acclimatization; gene mutation; gene sequence; genital system; genome analysis; genotype; kidney cell; lethal dose; mean death time; mortality rate; nonhuman; nucleotide sequence; phylogeny; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; time of death; viral tropism; viremia; virogenesis; virus infection; virus virulence; adaptation; animal; Avian infectious bronchitis virus; bird disease; chick embryo; chicken; cold; Coronavirus infection; genetics; genomics; mutation; pathology; physiology; radiation response; veterinary medicine; virology; virus culture; whole genome sequencing; Adaptation, Biological; Animals; Chick Embryo; Chickens; Cold Temperature; Coronavirus Infections; Genomics; Infectious bronchitis virus; Mutation; Poultry Diseases; Serial Passage; Whole Genome Sequencing","Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Jones, R.C., Ambali, A.G., Re-excretion of an enterotropic infectious bronchitis virus by hens at point of lay after experimental infection at day old (1987) Vet. Rec., 120, pp. 617-618; Naqi, S., Gay, K., Patalla, P., Mondal, S., Liu, R., Establishment of persistent avian infectious bronchitis virus infection in antibody-free and antibody-positive chickens (2003) Avian Dis, 47, pp. 594-601; Armesto, M., Cavanagh, D., Britton, P., The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity (2009) Plos ONE, 4; Fang, S.G., Shen, H., Wang, J., Tay, F.P., Liu, D.X., Proteolytic processing of polyproteins 1a and 1ab between non-structural proteins 10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable for viral replication in cultured cells (2008) Virology, 379, pp. 175-180; Hong, S.M., Kwon, H.J., Kim, I.H., Mo, M.L., Kim, J.H., Comparative genomics of Korean infectious bronchitis viruses (IBVs) and an animal model to evaluate pathogenicity of IBVs to the reproductive organs (2012) Viruses, 4, pp. 2670-2683; Lee, E.K., Jeon, W.J., Lee, Y.J., Jeong, O.M., Choi, J.G., Kwon, J.H., Choi, K.S., Genetic diversity of avian infectious bronchitis virus isolates in Korea between 2003 and 2006 (2008) Avian Dis, 52, pp. 332-337; Lee, H.J., Youn, H.N., Kwon, J.S., Lee, Y.J., Kim, J.H., Lee, J.B., Park, S.Y., Song, C.S., Characterization of a novel live attenuated infectious bronchitis virus vaccine candidate derived from a Korean nephropathogenic strain (2010) Vaccine, 28, pp. 2887-2894; Belshe, R.B., Mendelman, P.M., Treanor, J., King, J., Gruber, W.C., Piedra, P., Bernstein, D.I., Zangwill, K., The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children (1998) N. Engl. J. Med., 338, pp. 1405-1412; Maassab, H.F., Bryant, M.L., The development of live attenuated cold-adapted influenza virus vaccine for humans (1999) Rev. Med. Virol., 9, pp. 237-244; Gelb, J., Jr., Lunt, R.L., Metz, A.L., Fries, P.A., Attenuation of avian infectious bronchitis virus by cold-adaptation (1991) Avian Dis, 35, pp. 847-853; Shen, S., Liu, D.X., Characterization of temperature-sensitive (Ts) mutants of Coronavirus infectious bronchitis virus (IBV) (2001) Adv. Exp. Med. Biol., 494, pp. 557-562; Kim, J.H., (1995) Serological Differentiation, Pathogenicity and Immunogenicity of Avian Infectious Bronchitis Viruses Isolated in Korea, , Seoul National University: Seoul, Korea; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739; Reed, L.J., Muench, H., A Simple Method of Estimating Fifty per Cent Endpoints12 (1938) Am. J. Epidemiol., 27, pp. 493-497; Alexander, D.J., Allan, W.H., Newcastle disease virus pathotypes (1974) Avian Pathol, 3, pp. 269-278; (1963) Methods for the Examination of Poultry Biologics, , National Academies: Washington, DC, USA; Orsi, M., Doretto Júnior, L., Reischak, D., Silva, L.D., Spilki, F., Buzinaro, M., Arns, C., Newcastle disease virus vaccine strains: Immunogenicity is not influenced by ICPI (2009) Braz. J. Poult. Sci., 11, pp. 129-133; Mo, M.L., Hong, S.M., Kwon, H.J., Kim, I.H., Song, C.S., Kim, J.H., Genetic diversity of spike, 3a, 3b and e genes of infectious bronchitis viruses and emergence of new recombinants in Korea (2013) Viruses, 5, pp. 550-567; Hong, S.M., Kwon, H.J., Choi, K.S., Kim, J.H., Comparative genomics of QX-like infectious bronchitis virus in Korea (2017) Arch. Virol., 162, pp. 1237-1250; Bijlenga, G., Cook, J.K., Gelb, J., Jr., de Wit, J.J., Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: A review (2004) Avian Pathol, 33, pp. 550-557; Feng, K., Xue, Y., Wang, J., Chen, W., Chen, F., Bi, Y., Xie, Q., Development and efficacy of a novel live-attenuated QX-like nephropathogenic infectious bronchitis virus vaccine in China (2015) Vaccine, 33, pp. 1113-1120; Lim, T.H., Kim, M.S., Jang, J.H., Lee, D.H., Park, J.K., Youn, H.N., Lee, J.B., Song, C.S., Live attenuated nephropathogenic infectious bronchitis virus vaccine provides broad cross protection against new variant strains (2012) Poult. Sci., 91, pp. 89-94; Khanh, N.P., Tan, S.W., Yeap, S.K., Lee, H.J., Choi, K.S., Hair-Bejo, M., Bich, T.N., Omar, A.R., Comparative pathogenicity of Malaysian QX-like and variant infectious bronchitis virus strains in chickens at different age of exposure to the viruses (2018) J. Comp. Pathol., 161, pp. 43-54; McLachlan, J.A., Newbold, R.R., Bullock, B.C., Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol (1980) Cancer Res, 40, pp. 3988-3999; Hao, W., Wojdyla, J.A., Zhao, R., Han, R., Das, R., Zlatev, I., Manoharan, M., Cui, S., Crystal structure of Middle East respiratory syndrome coronavirus helicase (2017) Plos Pathog, 13; Ivanov, K.A., Thiel, V., Dobbe, J.C., van der Meer, Y., Snijder, E.J., Ziebuhr, J., Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase (2004) J. Virol., 78, pp. 5619-5632; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 3484-3489; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 5108-5113; Snijder, E.J., Decroly, E., Ziebuhr, J., The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing (2016) Adv. Virus Res., 96, pp. 59-126. , PubMed; Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Gorbalenya, A.E., Canard, B., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (Nucleoside-2′ O)-methyltransferase activity (2008) J. Virol., 82, pp. 8071-8084; Deng, X., Hackbart, M., Mettelman, R.C., O'brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E4251-E4260; Phillips, J.E., Jackwood, M.W., McKinley, E.T., Thor, S.W., Hilt, D.A., Acevedol, N.D., Williams, S.M., Robertson, J.S., Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus (2012) Virus Genes, 44, pp. 63-74; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antiviral Res, 149, pp. 58-74; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) Plos Pathog, 14; Cox, N.J., Kitame, F., Kendal, A.P., Maassab, H.F., Naeve, C., Identification of sequence changes in the cold-adapted, live attenuated influenza vaccine strain, A/Ann Arbor/6/60 (H2N2) (1988) Virology, 167, pp. 554-567; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J. Virol., 87, pp. 9159-9172; Jayaram, H., Fan, H., Bowman, B.R., Ooi, A., Jayaram, J., Collisson, E.W., Lescar, J., Prasad, B.V., X-ray structures of the N-and C-terminal domains of a coronavirus nucleocapsid protein: Implications for nucleocapsid formation (2006) J. Virol., 80, pp. 6612-6620; Chen, C.Y., Chang, C.K., Chang, Y.W., Sue, S.C., Bai, H.I., Riang, L., Hsiao, C.D., Huang, T.H., Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA (2007) J. Mol. Biol., 368, pp. 1075-1086","Kwon, H.-J.; Reseach Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary ScienceSouth Korea; email: kwonhj01@snu.ac.kr",,"MDPI AG",19994915,,,"30463206","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85056967082 "Baek Y.H., Cheon H.-S., Park S.-J., Lloren K.K.S., Ahn S.J., Jeong J.H., Choi W.-S., Yu M.-A., Kwon H.-I., Kwon J.-J., Kim E.-H., Kim Y.-I., Antigua K.J.C., Kim S.-Y., Jeong H.W., Choi Y.K., Song M.-S.","26435129000;57205165346;57192114687;57195597977;57199404825;57193002330;57205170579;57201089542;35748768600;57190273915;55636392000;57203809499;57205165613;7601584716;13103042700;7404776658;35091634600;","Simple, rapid and sensitive portable molecular diagnosis of sfts virus using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP)",2018,"Journal of Microbiology and Biotechnology","28","11",,"1928","1936",,4,"10.4014/jmb.1806.06016","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058882037&doi=10.4014%2fjmb.1806.06016&partnerID=40&md5=10866a8559b56ba62e739f460c1ec6e5","Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, 28644, South Korea","Baek, Y.H., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Cheon, H.-S., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Park, S.-J., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Lloren, K.K.S., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Ahn, S.J., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Jeong, J.H., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Choi, W.-S., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Yu, M.-A., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Kwon, H.-I., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Kwon, J.-J., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Kim, E.-H., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Kim, Y.-I., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Antigua, K.J.C., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Kim, S.-Y., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Jeong, H.W., Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, 28644, South Korea; Choi, Y.K., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea; Song, M.-S., Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, 28644, South Korea","Recently, human infections caused by severe fever with thrombocytopenia syndrome virus (SFTSV), which can lead to fatality, have dramatically increased in East Asia. With the unavailability of vaccines or antiviral drugs to prevent and/or treat SFTSV infection, early rapid diagnosis is critical for prevention and control of the disease. Here, we report the development of a simple, rapid and sensitive portable detection method for SFTSV infection applying reverse transcription–loop mediated isothermal amplification (RT-LAMP) combined with one-pot colorimetric visualization and electro-free reaction platform. This method utilizes a pocket warmer to facilitate diagnosis in a resource-limited setting. Specific primers were designed to target the highly-conserved region of L gene of SFTSV. The detection limit of the RT-LAMP assay was approximately 10 0 viral genome copies from three different SFTSV strains. This assay exhibited comparable sensitivity to qRT-PCR and 10-fold more sensitivity than conventional RT-PCR, with a rapid detection time of 30 to 60 minutes. The RT-LAMP assay using SFTSV clinical specimens has demonstrated a similar detection rate to qRT-PCR and a higher detection rate compared to conventional RT-PCR. Moreover, there was no observed cross-reactive amplification of other human infectious viruses including Japanese Encephalitis Virus (JEV), Dengue, Enterovirus, Zika, Influenza and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This highly sensitive, electro-and equipment-free rapid colorimetric visualization method is feasible for resource-limited SFTSV field diagnosis. © 2018 by The Korean Society for Microbiology and Biotechnology.","Colorimetric visualization; Pocket warmer; RT-LAMP; SFTSV","Article; Bunyaviridae; colorimetry; controlled study; cross reaction; Dengue virus; Enterovirus; gene dosage; gene sequence; Influenza virus; Japanese encephalitis virus; limit of detection; Middle East respiratory syndrome coronavirus; molecular diagnosis; nonhuman; quantitative analysis; reverse transcription loop mediated isothermal amplification; reverse transcription polymerase chain reaction; sensitivity analysis; sequence alignment; sequence analysis; severe fever with thrombocytopenia syndrome; severe fever with thrombocytopenia syndrome virus; virus detection; virus gene; virus genome; virus titration; Zika virus; comparative study; genetics; human; isolation and purification; molecular diagnosis; nucleic acid amplification; Phlebovirus; procedures; sandfly fever; sensitivity and specificity; South Korea; university hospital; virus RNA; Colorimetry; Genes, Viral; Hospitals, University; Humans; Limit of Detection; Molecular Diagnostic Techniques; Nucleic Acid Amplification Techniques; Phlebotomus Fever; Phlebovirus; Republic of Korea; RNA, Viral; Sensitivity and Specificity","Yu, X.-J., Liang, M.-F., Zhang, S.-Y., Liu, Y., Li, J.-D., Sun, Y.-L., Fever with thrombocytopenia associated with a novel bunyavirus in China (2011) N Engl. J. Me, 364, pp. 1523-1532; Zhan, J., Wang, Q., Cheng, J., Hu, B., Li, J., Zhan, F., Current status of severe fever with thrombocytopenia syndrome in China (2017) Virol. Sin., 32, pp. 51-62; Park, S.-W., Ryou, J., Choi, W.-Y., Han, M.-G., Lee, W.-J., Epidemiological and clinical features of severe fever with thrombocytopenia syndrome during an outbreak in South Korea, 2013-2015 (2016) Am. J. Trop. Med. Hyg., 95, pp. 1358-1361; Niu, G., Li, J., Liang, M., Jiang, X., Jiang, M., Yin, H., Severe fever with thrombocytopenia syndrome virus among domesticated animals, China (2013) Emerg. Infect. Dis., 19, p. 756; Zhang, Y.-Z., Xu, J., The emergence and cross species transmission of newly discovered tick-borne Bunyavirus in China (2016) Curr. Opin. Virol., 16, pp. 126-131; Kim, W.Y., Choi, W., Park, S.-W., Wang, E.B., Lee, W.-J., Jee, Y., Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea (2015) Clin. Infect. Dis., 60, pp. 1681-1683; Liu, Y., Li, Q., Hu, W., Wu, J., Wang, Y., Mei, L., Person-to-person transmission of severe fever with thrombocytopenia syndrome virus (2012) Vector Borne Zoonotic Dis, 12, pp. 156-160; C-J, B., X-L, G., Qi, X., J-L, H., Zhou, M.-H., Varma, J.K., A family cluster of infections by a newly recognized bunyavirus in eastern China, 2007: Further evidence of person-to-person transmission (2011) Clin. Infect. Dis., 53, pp. 1208-1214; Li, S., Xue, C., Fu, Y., Wang, J., Ding, X., Liu, R., Sporadic case infected by severe fever with thrombocytopenia syndrome bunyavirus in a non-epidemic region of China (2011) Biosci. Trends, 5, pp. 273-276; Xu, B., Liu, L., Huang, X., Ma, H., Zhang, Y., Du, Y., Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan Province, China: Discovery of a new bunyavirus (2011) Plos Pathog, 7; Zhang, Y.-Z., Zou, Y., Fu, Z.F., Plyusnin, A., Hantavirus infections in humans and animals, China (2010) Emerg. Infect. Dis., 16, p. 1195; Sun, Y., Liang, M., Qu, J., Jin, C., Zhang, Q., Li, J., Early diagnosis of novel SFTS bunyavirus infection by quantitative real-time RT-PCR assay (2012) J. Clin. Virol., 53, pp. 48-53; Jiao, Y., Zeng, X., Guo, X., Qi, X., Zhang, X., Shi, Z., Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay (2012) J. Clin. Microbiol., 50, pp. 372-377; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Loop-mediated isothermal amplification of DNA (2000) Nucleic Acids Res, 28, pp. e63-e63; Fukuta, S., Iida, T., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M., Detection of Japanese yam mosaic virus by RT-LAMP (2003) Arch. Virol., 148, pp. 1713-1720; Hatano, B., Goto, M., Fukumoto, H., Obara, T., Maki, T., Suzuki, G., Mobile and accurate detection system for infection by the 2009 pandemic influenza A (H1N1) virus with a pocket-warmer reverse-transcriptase loop-mediated isothermal amplification (2011) J. Med. Virol., 83, pp. 568-573; Hatano, B., Maki, T., Obara, T., Fukumoto, H., Hagisawa, K., Matsushita, Y., LAMP using a disposable pocket warmer for anthrax detection, a highly mobile and reliable method for anti-bioterrorism (2010) Jpn. J. Infect. Dis., 63, pp. 36-40; Xu, H., Zhang, L., Shen, G., Feng, C., Wang, X., Yan, J., Establishment of a novel one-step reverse transcription loop-mediated isothermal amplification assay for rapid identification of RNA from the severe fever with thrombocytopenia syndrome virus (2013) J. Virol. Methods, 194, pp. 21-25; Kim, K.-H., Yi, J., Kim, G., Choi, S.J., Jun, K.I., Kim, N.-H., Severe fever with thrombocytopenia syndrome, South Korea, 2012 (2013) Emerg. Infect. Dis., 19, p. 1892; Li, Z., Hu, J., Bao, C., Li, P., Qi, X., Qin, Y., Seroprevalence of antibodies against SFTS virus infection in farmers and animals, Jiangsu, China (2014) J. Clin. Virol., 60, pp. 185-189; Park, J.-S., Um, J., Choi, Y.-K., Lee, Y.S., Ju, Y.R., Kim, S.Y., Immunostained plaque assay for detection and titration of rabies virus infectivity (2016) J. Virol. Methods, 228, pp. 21-25; Wang, S., Li, J., Niu, G., Wang, X., Ding, S., Jiang, X., SFTS virus in ticks in an endemic area of China (2015) Am. J. Trop. Med. Hyg., 92, pp. 684-689; Huang, X.-Y., Hu, X.-N., Ma, H., Du, Y.-H., Ma, H.-X., Kang, K., Detection of new bunyavirus rna by reverse transcription– loop-mediated isothermal amplification (2014) J. Clin. Microbiol., (2), pp. 531-535; Yang, G., Li, B., Liu, L., Huang, W., Zhang, W., Liu, Y., Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for rapid detection of a new SFTS bunyavirus (2012) Arch. Virol., 157, pp. 1779-1783; Ablordey, A., Amissah, D.A., Aboagye, I.F., Hatano, B., Yamazaki, T., Sata, T., Detection of Mycobacterium ulcerans by the loop mediated isothermal amplification method (2012) Plos Negl. Trop. Dis., 6; Priye, A., Bird, S.W., Light, Y.K., Ball, C.S., Negrete, O.A., Meagher, R.J., A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses (2017) Sci. Rep., 7; Lanciotti, R.S., Calisher, C.H., Gubler, D.J., Chang, G.J., Vorndam, A.V., Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction (1992) J. Clin. Microbiol., 30, pp. 545-551","Choi, Y.K.; Department of Microbiology, Chungbuk National University College of Medicine and Medical Research InstituteSouth Korea; email: choiki55@chungbuk.ac.kr",,"Korean Society for Microbiology and Biotechnology",10177825,,JOMBE,"30270605","English","J. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85058882037 "Zheng Y., Shang J., Yang Y., Liu C., Wan Y., Geng Q., Wang M., Baric R., Li F.","57191993071;57191992928;57192214076;57191676713;55620829000;57158970800;57204808529;7004350435;26028899600;","Lysosomal proteases are a determinant of coronavirus tropism",2018,"Journal of Virology","92","24", e0150418,"","",,5,"10.1128/JVI.01504-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057258096&doi=10.1128%2fJVI.01504-18&partnerID=40&md5=f67fd4e69efb261aa84f906b8774b80d","Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States","Zheng, Y., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Shang, J., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Yang, Y., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Liu, C., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Wan, Y., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Geng, Q., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Wang, M., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Baric, R., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Li, F.","Cell entry by coronaviruses involves two principal steps, receptor binding and membrane fusion; the latter requires activation by host proteases, particularly lysosomal proteases. Despite the importance of lysosomal proteases in both coronavirus entry and cell metabolism, the correlation between lysosomal proteases and cell tropism of coronaviruses has not been established. Here, we examined the roles of lysosomal proteases in activating coronavirus surface spike proteins for membrane fusion, using the spike proteins from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) as the model system. To this end, we controlled the contributions from receptor binding and other host proteases, thereby attributing coronavirus entry solely or mainly to the efficiency of lysosomal proteases in activating coronavirus spike-mediated membrane fusion. Our results showed that lysosomal proteases from bat cells support coronavirus spike-mediated pseudovirus entry and cell-cell fusion more effectively than their counterparts from human cells. Moreover, purified lysosomal extracts from bat cells cleave cell surface-expressed coronavirus spikes more efficiently than their counterparts from human cells. Overall, our study suggests that different lysosomal protease activities from different host species and tissue cells are an important determinant of the species and tissue tropism of coronaviruses. IMPORTANCE Coronaviruses are capable of colonizing new species, as evidenced by the recent emergence of SARS and MERS coronaviruses; they can also infect multiple tissues in the same species. Lysosomal proteases play critical roles in coronavirus entry by cleaving coronavirus surface spike proteins and activating the fusion of host and viral membranes; they also play critical roles in cell physiology by processing cellular products. How do different lysosomal protease activities from different cells impact coronavirus entry? Here, we controlled the contributions from known factors that function in coronavirus entry so that lysosomal protease activities became the only or the main determinant of coronavirus entry. Using pseudovirus entry, cell-cell fusion, and biochemical assays, we showed that lysosomal proteases from bat cells activate coronavirus spike-mediated membrane fusion more efficiently than their counterparts from human cells. Our study provides the first direct evidence supporting lysosomal proteases as a determinant of the species and tissue tropisms of coronaviruses. Copyright © 2018 American Society for Microbiology. All Rights Reserved.","Coronavirus spike protein; Lysosomal proteases; Species tropism; Tissue tropism","lysosomal protease; proteinase; unclassified drug; virus spike protein; coronavirus spike glycoprotein; peptide hydrolase; animal cell; Article; cell fusion; cell surface; controlled study; Coronavirinae; human; human cell; membrane fusion; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; receptor binding; SARS-related coronavirus; viral tropism; virus entry; A-549 cell line; animal; bat; cell culture; Chlorocebus aethiops; Coronavirus infection; enzymology; HEK293 cell line; HeLa cell line; lysosome; metabolism; physiology; SARS coronavirus; Vero cell line; viral tropism; A549 Cells; Animals; Cells, Cultured; Cercopithecus aethiops; Chiroptera; Coronavirus Infections; HEK293 Cells; HeLa Cells; Humans; Lysosomes; Middle East Respiratory Syndrome Coronavirus; Peptide Hydrolases; SARS Virus; Spike Glycoprotein, Coronavirus; Vero Cells; Viral Tropism; Virus Internalization","Nomaguchi, M., Fujita, M., Miyazaki, Y., Adachi, A., Viral tropism (2012) Front Microbiol, 3, p. 281. , https://doi.org/10.3389/fmicb.2012.00281; Dimitrov, D.S., Virus entry: Molecular mechanisms and biomedical applications (2004) Nat Rev Microbiol, 2, pp. 109-122. , https://doi.org/10.1038/nrmicro817; Skehel, J.J., Wiley, D.C., Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin (2000) Annu Rev Biochem, 69, pp. 531-569. , https://doi.org/10.1146/annurev.biochem.69.1.531; Li, W.H., Wong, S.K., Li, F., Kuhn, J.H., Huang, I.C., Choe, H., Farzan, M., Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions (2006) J Virol, 80, pp. 4211-4219. , https://doi.org/10.1128/JVI.80.9.4211-4219.2006; Luzio, J.P., Pryor, P.R., Bright, N.A., Lysosomes: Fusion and function (2007) Nat Rev Mol Cell Biol, 8, pp. 622-632. , https://doi.org/10.1038/nrm2217; Lim, C.Y., Zoncu, R., The lysosome as a command-and-control center for cellular metabolism (2016) J Cell Physiol, 214, pp. 653-664. , https://doi.org/10.1083/jcb.201607005; Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., Turk, D., Cysteine cathepsins: From structure, function and regulation to new frontiers (2012) Biochim Biophys Acta, 1824, pp. 68-88. , https://doi.org/10.1016/j.bbapap.2011.10.002; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , https://doi.org/10.1016/j.virusres.2014.11.021; Hunt, C.L., Lennemann, N.J., Maury, W., Filovirus entry: A novelty in the viral fusion world (2012) Viruses, 4, pp. 258-275. , https://doi.org/10.3390/v4020258; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci U S A, 102, pp. 11876-11881. , https://doi.org/10.1073/pnas.0505577102; Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., Bates, P., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry (2004) Proc Natl Acad Sci U S A, 101, pp. 4240-4245. , https://doi.org/10.1073/pnas.0306446101; Enjuanes, L., Almazan, F., Sola, I., Zuniga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu Rev Microbiol, 60, pp. 211-230. , https://doi.org/10.1146/annurev.micro.60.080805.142157; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nature Rev Microbiology, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S.X., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966. , https://doi.org/10.1056/NEJMoa030781; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , https://doi.org/10.1016/S0140-6736(03)13077-2; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group (2013) J Virol, 87, pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J Virol, 89, pp. 1954-1964. , https://doi.org/10.1128/JVI.02615-14; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261. , https://doi.org/10.1146/annurev-virology-110615-042301; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106, pp. 5871-5876. , https://doi.org/10.1073/pnas.0809524106; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Pohlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511. , https://doi.org/10.1128/JVI.00128-13; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561. , https://doi.org/10.1128/JVI.01890-13; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521. , https://doi.org/10.1073/pnas.1405889111; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0076469; Gierer, S., Muller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pohlmann, S., Inhibition of proprotein convertases abrogates processing of the Middle Eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J Infect Dis, 211, pp. 889-897. , https://doi.org/10.1093/infdis/jiu407; Matsuyama, S., Shirato, K., Kawase, M., Terada, Y., Kawachi, K., Fukushi, S., Kamitani, W., Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells (2018) J Virol, 92, pp. e00683-e00718. , https://doi.org/10.1128/JVI.00683-18; Belouzard, S., Madu, I., Whittaker, G.R., Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain (2010) J Biol Chem, 285, pp. 22758-22763. , https://doi.org/10.1074/jbc.M110.103275; Bertram, S., Glowacka, I., Muller, M.A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., Pohlmann, S., Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease (2011) J Virol, 85, pp. 13363-13372. , https://doi.org/10.1128/JVI.05300-11; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc Natl Acad Sci U S A, 102, pp. 12543-12547. , https://doi.org/10.1073/pnas.0503203102; Kam, Y.W., Okumura, Y., Kido, H., Ng, L.F., Bruzzone, R., Altmeyer, R., Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro (2009) PLoS One, 4. , https://doi.org/10.1371/journal.pone.0007870; Li, W.D., Shi, Z.L., Yu, M., Ren, W.Z., Smith, C., Epstein, J.H., Wang, H.Z., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , https://doi.org/10.1126/science.1118391; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.W., Wong, B.H.L., Wong, S.S.Y., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102; Hou, Y.X., Peng, C., Yu, M., Li, Y., Han, Z.G., Li, F., Wang, L.F., Shi, Z.L., Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry (2010) Arch Virol, 155, pp. 1563-1569. , https://doi.org/10.1007/s00705-010-0729-6; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , https://doi.org/10.1038/nature12711; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg Infect Dis, 19, pp. 456-459. , https://doi.org/10.3201/eid1903.121503; Holmes, K.V., Dominguez, S.R., The new age of virus discovery: Genomic analysis of a novel human betacoronavirus isolated from a fatal case of pneumonia (2013) Mbio, 4, pp. e00548-e00612. , https://doi.org/10.1128/mBio.00548-12; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 8638-8650. , https://doi.org/10.1128/JVI.01055-13; Li, W.H., Moore, M.J., Vasilieva, N., Sui, J.H., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Raj, V.S., Mou, H.H., Smits, S.L., Dekkers, D.H.W., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , https://doi.org/10.1016/j.chom.2014.08.009; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Shi, Z.L., Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus (2018) J Virol, , https://doi.org/10.1128/jvi.00116-18; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Woo, P.C.Y., Receptor usage of a novel bat lineage c betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J Infect Dis, 218, pp. 197-207. , https://doi.org/10.1093/infdis/jiy018; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 9119-9123. , https://doi.org/10.1128/JVI.01279-15; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113, pp. 12262-12267. , https://doi.org/10.1073/pnas.1608147113; Hofmann, H., Hattermann, K., Marzi, A., Gramberg, T., Geier, M., Krumbiegel, M., Kuate, S., Pohlmann, S., S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients (2004) J Virol, 78, pp. 6134-6142. , https://doi.org/10.1128/JVI.78.12.6134-6142.2004; Gillim-Ross, L., Taylor, J., Scholl, D.R., Ridenour, J., Masters, P.S., Wentworth, D.E., Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR (2004) J Clin Microbiol, 42, pp. 3196-3206. , https://doi.org/10.1128/JCM.42.7.3196-3206.2004; Cai, Y., Yu, S.Q., Postnikova, E.N., Mazur, S., Bernbaum, J.G., Burk, R., Zhang, T., Kuhn, J.H., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0112060; Xu, X., Yuan, X., Li, N., Dewey, W.L., Li, P.L., Zhang, F., Lysosomal cholesterol accumulation in macrophages leading to coronary atherosclerosis in CD38(-/-) mice (2016) J Cell Mol Med, 20, pp. 1001-1013. , https://doi.org/10.1111/jcmm.12788; Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Li, F., Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases (2016) J Biol Chem, 291, pp. 24779-24786. , https://doi.org/10.1074/jbc.M116.740746; Lambeir, A.M., Durinx, C., Scharpe, S., De Meester, I., Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV (2003) Crit Rev Clin Lab Sci, 40, pp. 209-294. , https://doi.org/10.1080/713609354; Clarke, N.E., Turner, A.J., Angiotensin-converting enzyme 2: The first decade (2012) Int J Hypertens, 2012, p. 307315. , https://doi.org/10.1155/2012/307315; Ou, X., Zheng, W., Shan, Y., Mu, Z., Dominguez, S.R., Holmes, K.V., Qian, Z., Identification of the fusion peptide-containing region in betacoronavirus spike glycoproteins (2016) J Virol, 90, pp. 5586-5600. , https://doi.org/10.1128/JVI.00015-16","Li, F.email: lifang@umn.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30258004","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85057258096 "Perera K.D., Galasiti Kankanamalage A.C., Rathnayake A.D., Honeyfield A., Groutas W., Chang K.-O., Kim Y.","57204455854;55908089500;57192253855;57204457935;7005127415;56155853500;55747316900;","Protease inhibitors broadly effective against feline, ferret and mink coronaviruses",2018,"Antiviral Research","160",,,"79","86",,,"10.1016/j.antiviral.2018.10.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055671504&doi=10.1016%2fj.antiviral.2018.10.015&partnerID=40&md5=19940b445648ced05f68c292793e79d6","Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Department of Chemistry, Wichita State University, Wichita, KS, United States; The Scripps Research Institute, La Jolla, CA, United States; Anaconda Veterinary Clinic, Anaconda, Montana, United States","Perera, K.D., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Galasiti Kankanamalage, A.C., Department of Chemistry, Wichita State University, Wichita, KS, United States, The Scripps Research Institute, La Jolla, CA, United States; Rathnayake, A.D., Department of Chemistry, Wichita State University, Wichita, KS, United States; Honeyfield, A., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States, Anaconda Veterinary Clinic, Anaconda, Montana, United States; Groutas, W., Department of Chemistry, Wichita State University, Wichita, KS, United States; Chang, K.-O., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Kim, Y., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States","Ferret and mink coronaviruses typically cause catarrhal diarrhea in ferrets and minks, respectively. In recent years, however, systemic fatal coronavirus infection has emerged in ferrets, which resembles feline infectious peritonitis (FIP) in cats. FIP is a highly fatal systemic disease caused by a virulent feline coronavirus infection in cats. Despite the importance of coronavirus infections in these animals, there are no effective commercial vaccines or antiviral drugs available for these infections. We have previously reported the efficacy of a protease inhibitor in cats with FIP, demonstrating that a virally encoded 3C-like protease (3CLpro) is a valid target for antiviral drug development for coronavirus infections. In this study, we extended our previous work on coronavirus inhibitors and investigated the structure-activity relationships of a focused library of protease inhibitors for ferret and mink 3CLpro. Using the fluorescence resonance energy transfer assay, we identified potent inhibitors broadly effective against feline, ferret and mink coronavirus 3CLpro. Multiple amino acid sequence analysis and modelling of 3CLpro of ferret and mink coronaviruses were conducted to probe the structural basis for these findings. The results of this study provide support for further research to develop broad-spectrum antiviral agents for multiple coronavirus infections. To the best of our knowledge, this is the first report on small molecule inhibitors of ferret and mink coronaviruses. © 2018 Elsevier B.V.","3C-like protease; Feline coronavirus; Ferret coronavirus; Mink coronavirus; Protease inhibitor","antivirus agent; gc 376; gc 523; gc 543; gc 551; gc 583; gc 587; gc 591; gc 597; gc 772; gc 774; proteinase inhibitor; unclassified drug; 3C proteases; antivirus agent; cysteine proteinase; proteinase inhibitor; viral protein; amino acid sequence; antiviral activity; Article; cat; controlled study; Coronaviridae infection; drug identification; drug synthesis; EC50; Feline coronavirus; fluorescence resonance energy transfer; Mustela putorius furo; Neovison vison; nonhuman; priority journal; structure activity relation; virus strain; animal; chemistry; Coronavirinae; drug effect; enzymology; molecular docking; Animals; Antiviral Agents; Cats; Coronavirus; Cysteine Endopeptidases; Ferrets; Fluorescence Resonance Energy Transfer; Mink; Molecular Docking Simulation; Protease Inhibitors; Structure-Activity Relationship; Viral Proteins","Adams, M.J., Lefkowitz, E.J., King, A.M.Q., Harrach, B., Harrison, R.L., Knowles, N.J., Kropinski, A.M., Davison, A.J., Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2017) (2017) Arch. Virol., 162, pp. 2505-2538; Adedeji, A.O., Sarafianos, S.G., Antiviral drugs specific for coronaviruses in preclinical development (2014) Curr. Opin. Virol., 8, pp. 45-53; Autieri, C.R., Miller, C.L., Scott, K.E., Kilgore, A., Papscoe, V.A., Garner, M.M., Haupt, J.L., Fox, J.G., Systemic coronaviral disease in 5 ferrets (2015) Comp. Med., 65, pp. 508-516; Barker, E.N., Tasker, S., Gruffydd-Jones, T.J., Tuplin, C.K., Burton, K., Porter, E., Day, M.J., Siddell, S.G., Phylogenetic analysis of feline coronavirus strains in an epizootic outbreak of feline infectious peritonitis (2013) J. Vet. Intern. Med., 27, pp. 445-450; Belser, J.A., Katz, J.M., Tumpey, T.M., The ferret as a model organism to study influenza A virus infection (2011) Dis. Model. Mech., 4, pp. 575-579; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion Peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis., 18, pp. 1089-1095; Chang, K.O., Takahashi, D., Prakash, O., Kim, Y., Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay (2012) Virology, 423, pp. 125-133; De Clercq, E., Potential antivirals and antiviral strategies against SARS coronavirus infections (2006) Expert Rev. Anti Infect. Ther., 4, pp. 291-302; DeLano, W.L., The PyMOL Molecular Graphics System (2010), http://www.pymol.org, DeLano Scientific LLC San Carlos, CA; Deng, X., Agnihothram, S., Mielech, A.M., Nichols, D.B., Wilson, M.W., StJohn, S.E., Larsen, S.D., Baker, S.C., A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses (2014) J. Virol., 88, pp. 11825-11833; Galasiti Kankanamalage, A.C., Kim, Y., Damalanka, V.C., Rathnayake, A.D., Fehr, A.R., Mehzabeen, N., Battaile, K.P., Groutas, W.C., Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element (2018) Eur. J. Med. Chem., 150, pp. 334-346; Galasiti Kankanamalage, A.C., Kim, Y., Rathnayake, A.D., Damalanka, V.C., Weerawarna, P.M., Doyle, S.T., Alsoudi, A.F., Groutas, W.C., Structure-based exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design of potent and permeable inhibitors (2017) Eur. J. Med. Chem., 126, pp. 502-516; Galasiti Kankanamalage, A.C., Kim, Y., Weerawarna, P.M., Uy, R.A., Damalanka, V.C., Mandadapu, S.R., Alliston, K.R., Groutas, W.C., Structure-guided design and optimization of dipeptidyl inhibitors of norovirus 3CL protease. Structure-activity relationships and biochemical, X-ray crystallographic, cell-based, and in vivo studies (2015) J. Med. Chem., 58, pp. 3144-3155; Garner, M.M., Ramsell, K., Morera, N., Juan-Salles, C., Jimenez, J., Ardiaca, M., Montesinos, A., Kiupel, M., Clinicopathologic features of a systemic coronavirus-associated disease resembling feline infectious peritonitis in the domestic ferret (Mustela putorius) (2008) Vet. Pathol., 45, pp. 236-246; Gnirs, K., Quinton, J.F., Dally, C., Nicolier, A., Ruel, Y., Cerebral pyogranuloma associated with systemic coronavirus infection in a ferret (2016) J. Small Anim. Pract., 57, pp. 36-39; Gorham, J.R., Evermann, J.F., Ward, A., Pearson, R., Shen, D., Hartsough, G.R., Leathers, C., Detection of coronavirus-like particles from mink with epizootic catarrhal gastroenteritis (1990) Can. J. Vet. Res., 54, pp. 383-384; Graham, E., Lamm, C., Denk, D., Stidworthy, M.F., Carrasco, D.C., Kubiak, M., Systemic coronavirus-associated disease resembling feline infectious peritonitis in ferrets in the UK (2012) Vet. Rec., 171, pp. 200-201; Gretebeck, L.M., Subbarao, K., Animal models for SARS and MERS coronaviruses (2015) Curr. Opin. Virol., 13, pp. 123-129; Have, P., Moving, V., Svansson, V., Uttenthal, A., Bloch, B., Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus (1992) Vet. Microbiol., 31, pp. 1-10; Hilgenfeld, R., From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design (2014) FEBS J., 281, pp. 4085-4096; Jacobs, J., Grum-Tokars, V., Zhou, Y., Turlington, M., Saldanha, S.A., Chase, P., Eggler, A., Stauffer, S.R., Discovery, synthesis, and structure-based optimization of a series of N-(tert-Butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the Severe Acute respiratory Syndrome coronavirus (SARS-CoV) 3CL protease (2013) J. Med. Chem., 56, pp. 534-546; Kim, Y., Kankanamalage, A.C., Damalanka, V.C., Weerawarna, P.M., Groutas, W.C., Chang, K.O., Potent inhibition of enterovirus D68 and human rhinoviruses by dipeptidyl aldehydes and alpha-ketoamides (2016) Antivir. Res., 125, pp. 84-91; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor (2016) PLoS Pathog., 12; Kim, Y., Lovell, S., Tiew, K.C., Mandadapu, S.R., Alliston, K.R., Battaile, K.P., Groutas, W.C., Chang, K.O., Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses (2012) J. Virol., 86, pp. 11754-11762; Kim, Y., Mandadapu, S.R., Groutas, W.C., Chang, K.O., Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease (2013) Antivir. Res., 97, pp. 161-168; Kim, Y., Shivanna, V., Narayanan, S., Prior, A.M., Weerasekara, S., Hua, D.H., Kankanamalage, A.C., Chang, K.O., Broad-spectrum inhibitors against 3C-Like proteases of feline coronaviruses and feline caliciviruses (2015) J. Virol., 89, pp. 4942-4950; Konno, S., Thanigaimalai, P., Yamamoto, T., Nakada, K., Kakiuchi, R., Takayama, K., Yamazaki, Y., Hayashi, Y., Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety (2013) Bioorg. Med. Chem., 21, pp. 412-424; Kumar, V., Jung, Y.S., Liang, P.H., Anti-SARS coronavirus agents: a patent review (2008 - present) (2013) Expert Opin. Ther. Pat., 23, pp. 1337-1348; Larsen, A.E., Gorham, J.R., A new mink enteritis: an initial report (1975) Vet. Med. Small Anim. Clin., 70, pp. 291-292; Li, T.C., Yoshizaki, S., Kataoka, M., Doan, Y.H., Ami, Y., Suzaki, Y., Nakamura, T., Wakita, T., Determination of ferret enteric coronavirus genome in laboratory ferrets (2017) Emerg. Infect. Dis., 23, pp. 1568-1570; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19, pp. 1066-1073; Lindemann, D.M., Eshar, D., Schumacher, L.L., Almes, K.M., Rankin, A.J., Pyogranulomatous panophthalmitis with systemic coronavirus disease in a domestic ferret (Mustela putorius furo) (2016) Vet. Ophthalmol., 19, pp. 167-171; Mandadapu, S.R., Gunnam, M.R., Tiew, K.C., Uy, R.A., Prior, A.M., Alliston, K.R., Hua, D.H., Groutas, W.C., Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors (2013) Bioorg. Med. Chem. Lett, 23, pp. 62-65; Mandadapu, S.R., Weerawarna, P.M., Gunnam, M.R., Alliston, K.R., Lushington, G.H., Kim, Y., Chang, K.O., Groutas, W.C., Potent inhibition of norovirus 3CL protease by peptidyl alpha-ketoamides and alpha-ketoheterocycles (2012) Bioorg. Med. Chem. Lett, 22, pp. 4820-4826; Mandadapu, S.R., Weerawarna, P.M., Prior, A.M., Uy, R.A.Z., Aravapalli, S., Alliston, K.R., Lushington, G.H., Groutas, W.C., Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus (2013) Bioorg. Med. Chem. Lett, 23, pp. 3709-3712; McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R., Analysis tool web services from the EMBL-EBI (2013) Nucleic Acids Res., 41, pp. W597-W600; Michimae, Y., Mikami, S., Okimoto, K., Toyosawa, K., Matsumoto, I., Kouchi, M., Koujitani, T., Seki, T., The first case of feline infectious peritonitis-like pyogranuloma in a ferret infected by coronavirus in Japan (2010) J. Toxicol. Pathol., 23, pp. 99-101; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2018) J. Feline Med. Surg., 20 (4), pp. 378-392. , 1098612X17729626; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res., 165, pp. 17-28; Prior, A.M., Kim, Y., Weerasekara, S., Moroze, M., Alliston, K.R., Uy, R.A., Groutas, W.C., Hua, D.H., Design, synthesis, and bioevaluation of viral 3C and 3C-like protease inhibitors (2013) Bioorg. Med. Chem. Lett, 23, pp. 6317-6320; Provacia, L.B., Smits, S.L., Martina, B.E., Raj, V.S., Doel, P.V., Amerongen, G.V., Moorman-Roest, H., Haagmans, B.L., Enteric coronavirus in ferrets, The Netherlands (2011) Emerg. Infect. Dis., 17, pp. 1570-1571; Reed, L.J., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am. J. Hyg., 27, pp. 493-497; Terada, Y., Minami, S., Noguchi, K., Mahmoud, H.Y.A.H., Shimoda, H., Mochizuki, M., Une, Y., Maeda, K., Genetic characterization of coronaviruses from domestic ferrets, Japan (2014) Emerg. Infect. Dis., 20, pp. 284-287; Thomson, A.P.D., A history of the ferret (1951) J. Hist. Med. Allied Sci. VI, pp. 471-480; Vlasova, A.N., Halpin, R., Wang, S., Ghedin, E., Spiro, D.J., Saif, L.J., Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis (2011) J. Gen. Virol., 92, pp. 1369-1379; Williams, B.H., Kiupel, M., West, K.H., Raymond, J.T., Grant, C.K., Glickman, L.T., Coronavirus-associated epizootic catarrhal enteritis in ferrets (2000) J. Am. Vet. Med. Assoc., 217, pp. 526-530; Wise, A.G., Kiupel, M., Garner, M.M., Clark, A.K., Maes, R.K., Comparative sequence analysis of the distal one-third of the genomes of a systemic and an enteric ferret coronavirus (2010) Virus Res., 149, pp. 42-50; Wise, A.G., Kiupel, M., Maes, R.K., Molecular characterization of a novel coronavirus associated with epizootic catarrhal enteritis (ECE) in ferrets (2006) Virology, 349, pp. 164-174; Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Rao, Z., Design of wide-spectrum inhibitors targeting coronavirus main proteases (2005) PLoS Biol., 3, p. e324; Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y., The I-TASSER Suite: protein structure and function prediction (2015) Nat. Methods, 12, pp. 7-8","Kim, Y.; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State UniversityUnited States; email: ykim@vet.ksu.edu",,"Elsevier B.V.",01663542,,ARSRD,"30342822","English","Antiviral Res.",Article,"Final",Open Access,Scopus,2-s2.0-85055671504 "Chamings A., Nelson T.M., Vibin J., Wille M., Klaassen M., Alexandersen S.","56652209600;55460344900;57201640159;36572831000;7004383496;7004604515;","Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds",2018,"Scientific Reports","8","1", 5980,"","",,7,"10.1038/s41598-018-24407-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045438456&doi=10.1038%2fs41598-018-24407-x&partnerID=40&md5=297655cbfa4b830a186a387fe3e6cb64","Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia; Deakin University, School of Medicine, Geelong, VIC, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia; Barwon Health, University Hospital Geelong, Geelong, VIC, Australia","Chamings, A., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia, Deakin University, School of Medicine, Geelong, VIC, Australia; Nelson, T.M., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia, Deakin University, School of Medicine, Geelong, VIC, Australia; Vibin, J., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia, Deakin University, School of Medicine, Geelong, VIC, Australia; Wille, M., WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Klaassen, M., Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia; Alexandersen, S., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia, Deakin University, School of Medicine, Geelong, VIC, Australia, Barwon Health, University Hospital Geelong, Geelong, VIC, Australia","We evaluated the presence of coronaviruses by PCR in 918 Australian wild bird samples collected during 2016-17. Coronaviruses were detected in 141 samples (15.3%) from species of ducks, shorebirds and herons and from multiple sampling locations. Sequencing of selected positive samples found mainly gammacoronaviruses, but also some deltacoronaviruses. The detection rate of coronaviruses was improved by using multiple PCR assays, as no single assay could detect all coronavirus positive samples. Sequencing of the relatively conserved Orf1 PCR amplicons found that Australian duck gammacoronaviruses were similar to duck gammacoronaviruses around the world. Some sequenced shorebird gammacoronaviruses belonged to Charadriiformes lineages, but others were more closely related to duck gammacoronaviruses. Australian duck and heron deltacoronaviruses belonged to lineages with other duck and heron deltacoronaviruses, but were almost 20% different in nucleotide sequence to other deltacoronavirus sequences available. Deltacoronavirus sequences from shorebirds formed a lineage with a deltacoronavirus from a ruddy turnstone detected in the United States. Given that Australian duck gammacoronaviruses are highly similar to those found in other regions, and Australian ducks rarely come into contact with migratory Palearctic duck species, we hypothesise that migratory shorebirds are the important vector for moving wild bird coronaviruses into and out of Australia. © 2018 The Author(s).",,"amplicon; article; Australia; Charadriiformes; duck; Gammacoronavirus; human; major clinical study; nonhuman; nucleotide sequence; Palearctic; polymerase chain reaction; sampling; shorebird; United States; animal; bird; bird disease; Coronavirinae; Coronavirus infection; pathogenicity; phylogeny; virology; wild animal; Animals; Animals, Wild; Australia; Bird Diseases; Birds; Coronavirus; Coronavirus Infections; Phylogeny; United States","(2012) People, Pathogens and Our Planet: The Economics of One Health, , World Bank, World Bank., Washington, DC; Lee, S., Costly Lessons from the Middle East Respiratory Syndrome Coronavirus Outbreak in Korea (2015) Journal of Preventive Medicine and Public Health, 48, pp. 274-276. , https://doi.org/10.3961/jpmph.15.064; Lee, J.-W., McKibbin, W.J., (2004) Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary the National Academies Collection: Reports Funded by National Institutes of Health, , (eds Knobler, S. et al.); Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol., 34, pp. 439-448. , https://doi.org/10.1080/03079450500367682; Ignjatovic, J., Ashton, D.F., Reece, R., Scott, P., Hooper, P., Pathogenicity of Australian Strains of Avian Infectious Bronchitis Virus (2002) J. Comp. Pathol., 126, pp. 115-123. , https://doi.org/10.1053/jcpa.2001.0528; Ma, Y., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) American Society for Microbiology, 6, p. e00064. , https://doi.org/10.1128/mBio.00064-15; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol J., 12, p. 193. , https://doi.org/10.1186/s12985-015-0421-2; Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , https://doi.org/10.1126/science.1087139; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proceedings of the National Academy of Science, 102, pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102; Ferguson, N.M., Van Kerkhove, M.D., Identification of MERS-CoV in dromedary camels (2014) Lancet Infect. Dis., 14, pp. 93-94. , https://doi.org/10.1016/S1473-3099(13)70691-1; Kin, N., Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect. Genet. Evol., 40, pp. 186-191. , https://doi.org/10.1016/j.meegid.2016.03.006; Vijgen, L., Complete Genomic Sequence of Human Coronavirus OC43: Molecular Clock Analysis Suggests a Relatively Recent Zoonotic Coronavirus Transmission Event (2005) J. Virol., 79, pp. 1595-1604. , https://doi.org/10.1128/jvi.79.3.1595-1604.2005; Lu, S., Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1 (2017) Virus Res., 237, pp. 7-13. , https://doi.org/10.1016/j.virusres.2017.05.006; Verhagen, J.H., Herfst, S., Fouchier, R.A., Infectious disease. How a virus travels the world (2015) Science, 347, pp. 616-617. , https://doi.org/10.1126/science.aaa6724; Olsen, B., Global patterns of influenza a virus in wild birds (2006) Science, 312, pp. 384-388. , https://doi.org/10.1126/science.1122438; Chu, D.K., Avian coronavirus in wild aquatic birds (2011) J. Virol., 85, pp. 12815-12820. , https://doi.org/10.1128/jvi.05838-11; Duraes Carvalho, R., Phylogenetic and phylogeographic mapping of the avian coronavirus spike protein-encoding gene in wild and synanthropic birds (2015) Virus Res., 201, pp. 101-112. , https://doi.org/10.1016/j.virusres.2015.03.002; Lima, F.E.D., Diverse gammacoronaviruses detected in wild birds from Madagascar (2015) European Journal of Wildlife Research, 61, pp. 635-639. , https://doi.org/10.1007/s10344-015-0931-7; Wille, M., Muradrasoli, S., Nilsson, A., Jarhult, J.D., High Prevalence and Putative Lineage Maintenance of Avian Coronaviruses in Scandinavian Waterfowl (2016) PLoS One, 11, p. e0150198. , https://doi.org/10.1371/journal.pone.0150198; Muradrasoli, S., Prevalence and Phylogeny of Coronaviruses in Wild Birds from the Bering Strait Area (Beringia) (2010) PLoS One, 5, p. e13640. , https://doi.org/10.1371/journal.pone.0013640; Honkavuori, K.S., Novel Coronavirus and Astrovirus in Delaware Bay Shorebirds (2014) PLoS One, 9, p. e93395. , https://doi.org/10.1371/journal.pone.0093395; Amery-Gale, J., (2016) Investigations into Pathogens of Potential Public Health and Biosecurity Significance in Australian Native Birds Masters of Veterinary Science Thesis, , The Univeristy of Melbourne; Hughes, L.A., Genetically Diverse Coronaviruses in Wild Bird Populations of Northern England (2009) Emerg. Infect. Dis., 15, pp. 1091-1094. , https://doi.org/10.3201/eid1507.090067; Muradrasoli, S., Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos) (2009) J. Virol. Methods, 159, pp. 277-287. , https://doi.org/10.1016/j.jviromet.2009.04.022; Wille, M., Temporal dynamics, diversity, and interplay in three components of the virodiversity of a Mallard population: Influenza A virus, avian paramyxovirus and avian coronavirus (2015) Infect. Genet. Evol., 29, pp. 129-137. , https://doi.org/10.1016/j.meegid.2014.11.014; Duraes-Carvalho, R., Coronaviruses Detected in Brazilian Wild Birds Reveal Close Evolutionary Relationships with Beta-and Deltacoronaviruses Isolated from Mammals (2015) J. Mol. Evol., 21. , https://doi.org/10.1007/s00239-015-9693-9; Zhuang, Q.Y., Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China (2015) PLoS One, 10, p. e0129256. , https://doi.org/10.1371/journal.pone.0129256; Roshier, D.A., Heinsohn, R., Adcock, G.J., Beerli, P., Joseph, L., Biogeographic models of gene flow in two waterfowl of the Australo-Papuan tropics (2012) Ecol. Evol., 2, pp. 2803-2814. , https://doi.org/10.1002/ece3.393; Ignjatovic, J., Gould, G., Sapats, S., Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emerging strains (2006) Arch. Virol., 151, pp. 1567-1585. , https://doi.org/10.1007/s00705-006-0726-y; Quinteros, J.A., Full genome analysis of Australian infectious bronchitis viruses suggests frequent recombination events between vaccine strains and multiple phylogenetically distant avian coronaviruses of unknown origin (2016) Vet. Microbiol., 197, pp. 27-38. , https://doi.org/10.1016/j.vetmic.2016.11.003; Bamford, M., Watkins, D., Bancroft, W., Tischler, G., Wahl, J., (2008) Migratory Shorebirds of the East Asian-Australasian Flyway; Population Estimates and Important Sites, , Camberra, Australia; Kim, H.R., Oem, J.K., Surveillance of avian coronaviruses in wild bird populations of Korea (2014) J. Wildl. Dis., 50, pp. 964-968. , https://doi.org/10.7589/2013-11-298; Pizzey, G., Knight, F., (2007) A Field Guid to the Birds of Australia, , 8th Edition edn, Harper Collins Publishers; Haynes, L., Australian surveillance for avian influenza viruses in wild birds between July 2005 and June 2007 (2009) Aust. Vet. J., 87, pp. 266-272. , https://doi.org/10.1111/j.1751-0813.2009.00446.x; Callison, S.A., Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) J. Virol. Methods, 138, pp. 60-65. , https://doi.org/10.1016/j.jviromet.2006.07.018; Poon, L.L.M., Identification of a Novel Coronavirus in Bats (2005) J. Virol., 79, pp. 2001-2009. , https://doi.org/10.1128/jvi.79.4.2001-2009.2005; Marshall, O.J., PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR (2004) Bioinformatics, 20, pp. 2471-2472. , https://doi.org/10.1093/bioinformatics/bth254; Vibin, J., (2018) Detection and Characterisation of Viruses in Australian Wild Bird's Faeces: Metagenomics Method Optimisation and Initial Results, , (Submitted); Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7. 0 for Bigger Datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054; Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H., Frost, S.D.W., GARD: A genetic algorithm for recombination detection (2006) Bioinformatics, 22, pp. 3096-3098. , https://doi.org/10.1093/bioinformatics/btl474; Delport, W., Poon, A.F., Frost, S.D., Kosakovsky Pond, S.L., Datamonkey 2010: A suite of phylogenetic analysis tools for evolutionary biology (2010) Bioinformatics, 26, pp. 2455-2457. , https://doi.org/10.1093/bioinformatics/btq429; Alexandersen, S., Nelson, T.M., Hodge, J., Druce, J., Evolutionary and network analysis of virus sequences from infants infected with an Australian recombinant strain of human parechovirus type 3 (2017) Sci. Rep., 7, p. 3861. , https://doi.org/10.1038/s41598-017-04145-2; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Mol. Biol. Evol., 10, pp. 512-526; Tamura, K., Estimation of the Number of Nucleotide Substitutions When There Are Strong Transition-Transversion and G + C-Content Biases (1992) Mol. Biol. Evol., 9, pp. 678-687; Petrie, A., Watson, P., (2013) Statistics for Veterinary and Animal Science, , 3rd Edition edn, John Wiley & Sons","Alexandersen, S.; Geelong Centre for Emerging Infectious DiseasesAustralia; email: soren.alexandersen@deakin.edu.au",,"Nature Publishing Group",20452322,,,"29654248","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85045438456 "Graham R.L., Deming D.J., Deming M.E., Yount B.L., Baric R.S.","57203199836;9240056400;57209911117;6603564156;57205312930;","Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform",2018,"Communications Biology","1","1", 179,"","",,2,"10.1038/s42003-018-0175-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061268931&doi=10.1038%2fs42003-018-0175-7&partnerID=40&md5=303935554b051b9e586291b236e3a061","Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Food and Drug Administration, 10933 New Hampshire Avenue, Bldg 22, Rm 6170, Silver Spring, MD 20993, United States; University of Maryland Medical Center, Department of Medicine, Division of Infectious Disease, Institute of Human Virology, 725 West Lombard Street, Room 211A, Baltimore, MD 21201, United States","Graham, R.L., Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC 27599, United States; Deming, D.J., Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC 27599, United States, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, Food and Drug Administration, 10933 New Hampshire Avenue, Bldg 22, Rm 6170, Silver Spring, MD 20993, United States; Deming, M.E., Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States, University of Maryland Medical Center, Department of Medicine, Division of Infectious Disease, Institute of Human Virology, 725 West Lombard Street, Room 211A, Baltimore, MD 21201, United States; Yount, B.L., Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC 27599, United States; Baric, R.S., Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, Chapel Hill, NC 27599, United States, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States","Emerging and re-emerging zoonotic viral diseases are major threats to global health, economic stability, and national security. Vaccines are key for reducing coronaviral disease burden; however, the utility of live-attenuated vaccines is limited by risks of reversion or repair. Because of their history of emergence events due to their prevalence in zoonotic pools, designing live-attenuated coronavirus vaccines that can be rapidly and broadly implemented is essential for outbreak preparedness. Here, we show that coronaviruses with completely rewired transcription regulatory networks (TRNs) are effective vaccines against SARS-CoV. The TRN-rewired viruses are attenuated and protect against lethal SARS-CoV challenge. While a 3-nt rewired TRN reverts via second-site mutation upon serial passage, a 7-nt rewired TRN is more stable, suggesting that a more extensively rewired TRN might be essential for avoiding growth selection. In summary, rewiring the TRN is a feasible strategy for limiting reversion in an effective live-attenuated coronavirus vaccine candidate that is potentially portable across the Nidovirales order. © 2018, The Author(s).",,,"Graham, R.L., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med, 18, pp. 1820-1826. , COI: 1:CAS:528:DC%2BC38Xhs1CktLvF; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848. , COI: 1:CAS:528:DC%2BC3sXhslCrt7bN; Jones, K.E., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993. , COI: 1:CAS:528:DC%2BD1cXit1ygurg%3D; Li, Y., On the origin of smallpox: correlating variola phylogenics with historical smallpox records (2007) Proc. Natl Acad. Sci. USA, 104, pp. 15787-15792. , COI: 1:CAS:528:DC%2BD2sXhtFGns7zI; Morens, D.M., Fauci, A.S., The 1918 influenza pandemic: insights for the 21st century (2007) J. Infect. Dis., 195, pp. 1018-1028; Sessa, R., Palagiano, C., Scifoni, M.G., di Pietro, M., Del Piano, M., The major epidemic infections: a gift from the Old World to the New? (1999) Panminerva Med., 41, pp. 78-84. , COI: 1:STN:280:DyaK1M3ks1ykuw%3D%3D, PID: 10230264; Karesh, W.B., Ecology of zoonoses: natural and unnatural histories (2012) Lancet, 380, pp. 1936-1945; Kreuder Johnson, C., Spillover and pandemic properties of zoonotic viruses with high host plasticity (2015) Sci. Rep., 5. , COI: 1:CAS:528:DC%2BC2MXhs1elu7zN; Al-Tawfiq, J.A., Surveillance for emerging respiratory viruses (2014) Lancet Infect. Dis., 14, pp. 992-1000; Menachery, V.D., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl Acad. Sci. USA, 113, pp. 3048-3053. , COI: 1:CAS:528:DC%2BC28XktV2msr8%3D; Peiris, J.S., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat. Med., 10, pp. S88-S97. , COI: 1:CAS:528:DC%2BD2cXhtVeht7fJ; Sola, I., Moreno, J.L., Zuniga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) J. Virol., 79, pp. 2506-2516. , COI: 1:CAS:528:DC%2BD2MXitleju7c%3D; Yount, B., Roberts, R.S., Lindesmith, L., Baric, R.S., Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome (2006) Proc. Natl Acad. Sci. USA, 103, pp. 12546-12551. , COI: 1:CAS:528:DC%2BD28Xos1KkurY%3D; Zuniga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J. Virol., 78, pp. 980-994. , COI: 1:CAS:528:DC%2BD2cXjvFehtg%3D%3D; Sheahan, T., Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus (2011) J. Virol., 85, pp. 217-230. , COI: 1:CAS:528:DC%2BC3MXitlCjtLk%3D; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J. Virol., 84, pp. 3134-3146. , COI: 1:CAS:528:DC%2BC3cXktFOgsLk%3D; Consortium, C.S.M.E., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Sci. (New Y., N. Y.), 303, pp. 1666-1669; Tang, J.W., The large 386-nt deletion in SARS-associated coronavirus: evidence for quasispecies? (2006) J. Infect. Dis., 194, pp. 808-813; Mateos-Gomez, P.A., Zuniga, S., Palacio, L., Enjuanes, L., Sola, I., Gene N proximal and distal RNA motifs regulate coronavirus nucleocapsid mRNA transcription (2011) J. Virol., 85, pp. 8968-8980. , COI: 1:CAS:528:DC%2BC3MXhtVKqtbnE; Mateos-Gomez, P.A., Morales, L., Zuniga, S., Enjuanes, L., Sola, I., Long-distance RNA-RNA interactions in the coronavirus genome form high-order structures promoting discontinuous RNA synthesis during transcription (2013) J. Virol., 87, pp. 177-186. , COI: 1:CAS:528:DC%2BC3sXltV2jsrs%3D; Lauring, A.S., Jones, J.O., Andino, R., Rationalizing the development of live attenuated virus vaccines (2010) Nat. Biotechnol., 28, pp. 573-579. , COI: 1:CAS:528:DC%2BC3cXntVSrtbg%3D; Vignuzzi, M., Wendt, E., Andino, R., Engineering attenuated virus vaccines by controlling replication fidelity (2008) Nat. Med, 14, pp. 154-161. , COI: 1:CAS:528:DC%2BD1cXhs1KhsL8%3D; Feng, K., Epidemiology and characterization of avian infectious bronchitis virus strains circulating in southern China during the period from 2013-2015 (2017) Sci. Rep., 7; Quinteros, J.A., Full genome analysis of Australian infectious bronchitis viruses suggests frequent recombination events between vaccine strains and multiple phylogenetically distant avian coronaviruses of unknown origin (2016) Vet. Microbiol., 197, pp. 27-38. , COI: 1:CAS:528:DC%2BC28XhvVarsLfI; Sun, R.Q., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg. Infect. Dis., 18, pp. 161-163; Zhang, Y., Complete genome sequence and recombination analysis of infectious bronchitis virus attenuated vaccine strain H120 (2010) Virus Genes, 41, pp. 377-388. , COI: 1:CAS:528:DC%2BC3cXhtlaitbvJ; Wang, L., Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China (2017) Emerg. Microbes Infect., 6; Wang, L., Junker, D., Collisson, E.W., Evidence of natural recombination within the S1 gene of infectious bronchitis virus (1993) Virology, 192, pp. 710-716. , COI: 1:CAS:528:DyaK3sXhtFyjur8%3D; Menachery, V.D., Combination attenuation offers strategy for live-attenuated coronavirus vaccines (2018) J. Virol., 92, pp. e00710-e00718; Xiao, Y., RNA recombination enhances adaptability and is required for virus spread and virulence (2016) Cell Host Microbe, 19, pp. 493-503. , COI: 1:CAS:528:DC%2BC28XlsFOnsLc%3D; Runckel, C., Westesson, O., Andino, R., DeRisi, J.L., Identification and manipulation of the molecular determinants influencing poliovirus recombination (2013) PLoS Pathog., 9. , COI: 1:CAS:528:DC%2BC3sXktlWjtL8%3D; Cheng, C.P., Serviene, E., Nagy, P.D., Suppression of viral RNA recombination by a host exoribonuclease (2006) J. Virol., 80, pp. 2631-2640. , COI: 1:CAS:528:DC%2BD28Xis1Cqs7Y%3D; Figlerowicz, M., Nagy, P.D., Bujarski, J.J., A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in an RNA virus (1997) Proc. Natl Acad. Sci. USA, 94, pp. 2073-2078. , COI: 1:CAS:528:DyaK2sXhslCitbg%3D; Nagy, P.D., Pogany, J., Simon, A.E., RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus (1999) EMBO J., 18, pp. 5653-5665. , COI: 1:CAS:528:DyaK1MXntFCmsL0%3D; Nagy, P.D., Simon, A.E., New insights into the mechanisms of RNA recombination (1997) Virology, 235, pp. 1-9. , COI: 1:CAS:528:DyaK2sXlsFGjtrs%3D; Terada, Y., Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses (2014) PloS ONE, 9; Truyen, U., Parrish, C.R., Harder, T.C., Kaaden, O.R., There is nothing permanent except change (1995) Émerg. New Virus Dis. Vet. Microbiol., 43, pp. 103-122. , COI: 1:STN:280:DyaK2M3lvFaqsQ%3D%3D; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13; Tang, X.C., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490. , COI: 1:CAS:528:DC%2BD28XnsVWgtL8%3D; Tao, Y., Surveillance of Bat coronaviruses in kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91, pp. e01953-16; Di, H., Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus (2017) Proc. Natl Acad. Sci. USA, 114, pp. E8895-E8904. , COI: 1:CAS:528:DC%2BC2sXhs1SksLjN; Frieman, M., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J. Virol., 86, pp. 884-897. , COI: 1:CAS:528:DC%2BC38XovVOisw%3D%3D; Goldstein, D.R., Aging, imbalanced inflammation and viral infection (2010) Virulence, 1, pp. 295-298; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr. Opin. Virol., 2, pp. 264-275. , COI: 1:CAS:528:DC%2BC38XovVGrsrY%3D; Rockx, B., Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection (2009) J. Virol., 83, pp. 7062-7074. , COI: 1:CAS:528:DC%2BD1MXosFKltL8%3D; Menachery, V.D., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity (2014) J. Virol., 88, pp. 4251-4264; Zust, R., Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines (2007) PLoS Pathog., 3; Beall, A., Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A (2016) MBio, 7. , COI: 1:CAS:528:DC%2BC2sXmvV2gtg%3D%3D, 01415; Gonzalez, J.M., Penzes, Z., Almazan, F., Calvo, E., Enjuanes, L., Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by insertion of an intron (2002) J. Virol., 76, pp. 4655-4661. , COI: 1:CAS:528:DC%2BD38XivFGitrY%3D; Meulenberg, J.J., Bos-de Ruijter, J.N., van de Graaf, R., Wensvoort, G., Moormann, R.J., Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus (1998) J. Virol., 72, pp. 380-387. , COI: 1:CAS:528:DyaK1cXhvVGgtA%3D%3D, PID: 9420236; Youn, S., Leibowitz, J.L., Collisson, E.W., In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication (2005) Virology, 332, pp. 206-215. , COI: 1:CAS:528:DC%2BD2MXmslCrtQ%3D%3D; Zhou, H., Identification of a novel recombinant virulent avian infectious bronchitis virus (2017) Vet. Microbiol., 199, pp. 120-127. , COI: 1:CAS:528:DC%2BC2sXmslentQ%3D%3D; Zhou, Y.S., Establishment of reverse genetics system for infectious bronchitis virus attenuated vaccine strain H120 (2013) Vet. Microbiol., 162, pp. 53-61. , COI: 1:CAS:528:DC%2BC38Xhtl2ksbzN; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF; Ge, X.Y., Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft (2016) Virol. Sin., 31, pp. 31-40. , COI: 1:CAS:528:DC%2BC28XjslOqsbc%3D; Yang, X.L., Isolation and characterization of a novel Bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J. Virol., 90, pp. 3253-3256; Menachery, V.D., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med, 21, pp. 1508-1513. , COI: 1:CAS:528:DC%2BC2MXhslKgt7nO; Yount, B., Reverse genetics with a full length infectious cDNA of the severe acute respiratory syndrome coronavirus (2003) Proc. Natl Acad. Sci. USA, 100, pp. 12995-13000. , COI: 1:CAS:528:DC%2BD3sXoslKms74%3D; Becker, M.M., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl Acad. Sci. USA, 105, pp. 19944-19949. , COI: 1:CAS:528:DC%2BD1cXhsFCmtbfN","Baric, R.S.; Department of Epidemiology, The University of North Carolina at Chapel Hill, 2107 McGavran-Greenberg, CB 7435, United States; email: rbaric@ad.unc.edu",,"Nature Research",23993642,,,"30393776","English","Commun. Biolog.",Article,"Final",Open Access,Scopus,2-s2.0-85061268931 "van Doremalen N., Schäfer A., Menachery V.D., Letko M., Bushmaker T., Fischer R.J., Figueroa D.M., Hanley P.W., Saturday G., Baric R.S., Munster V.J.","36009447200;8599352200;24281639500;55240038400;54881271400;55458514900;57205176899;23473125000;8227616500;57205312930;9332531900;","SARS-Like coronavirus WIV1-CoV does not replicate in Egyptian fruit bats (Rousettus aegyptiacus)",2018,"Viruses","10","12", 727,"","",,,"10.3390/v10120727","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058911008&doi=10.3390%2fv10120727&partnerID=40&md5=319ff97be695c89a43185c2c4e12c956","Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States","van Doremalen, N., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Schäfer, A., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Menachery, V.D., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Letko, M., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Bushmaker, T., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Fischer, R.J., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Figueroa, D.M., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Hanley, P.W., Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Saturday, G., Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Munster, V.J., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States","Severe acute respiratory syndrome (SARS)-like WIV1-coronavirus (CoV) was first isolated from Rhinolophus sinicus bats and can use the human angiotensin converting enzyme 2 (ACE2) receptor. In the current study, we investigate the ability of WIV1-CoV to infect Rousettus aegyptiacus bats. No clinical signs were observed throughout the experiment. Furthermore, only four oropharyngeal swabs and two respiratory tissues, isolated on day 3 post inoculation, were found positive for viral RNA. Two out of twelve bats showed a modest increase in coronavirus specific antibodies post challenge. In conclusion, WIV1-CoV was unable to cause a robust infection in Rousettus aegyptiacus bats. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Animal model; Coronavirus; Emerging infectious diseases; WIV1-CoV","angiotensin converting enzyme 2; virus RNA; virus antibody; adult; animal cell; animal experiment; animal model; animal tissue; Article; autopsy; body weight; cell isolation; cytopathogenic effect; enzyme linked immunosorbent assay; flying fox; genetic transfection; histopathology; ID50 (median infectious dose); immunohistochemistry; immunoreactivity; leukocyte count; male; nonhuman; protein expression; real time polymerase chain reaction; reverse transcription polymerase chain reaction; Rousettus aegyptiacus; SARS-related coronavirus; severe acute respiratory syndrome; virus load; virus neutralization; virus replication; Western blotting; animal; bat; blood; Coronavirinae; Coronavirus infection; disease model; genetics; immunology; oropharynx; physiology; SARS coronavirus; virology; virus replication; Animals; Antibodies, Viral; Chiroptera; Coronavirus; Coronavirus Infections; Disease Models, Animal; Male; Oropharynx; RNA, Viral; SARS Virus; Virus Replication","de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Becker, M.M., Graham, R.L., Donaldson, E.F., Rockx, B., Sims, A.C., Sheahan, T., Pickles, R.J., Baric, R.S., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 19944-19949; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Royal, S.R., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3048-3053; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Iha, K., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Sola, I., Enjuanes, L., Carmody, A., Munster, V., Adaptive Evolution of MERS-CoV to Species Variation in DPP4 (2018) Cell Rep, 24, pp. 1730-1737; Li, W., Greenough, T.C., Moore, M.J., Vasilieva, N., Somasundaran, M., Sullivan, J.L., Farzan, M., Choe, H., Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2 (2004) J. Virol., 78, pp. 11429-11433; Hamming, I., Timens, W., Bulthuis, M.L., Lely, A.T., Navis, G., van Goor, H., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis (2004) J. Pathol., 203, pp. 631-637; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134; Bertram, S., Glowacka, I., Muller, M.A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., Drosten, C., Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease (2011) J. Virol., 85, pp. 13363-13372; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) Plos Pathog, 4; Pavlovich, S.S., Lovett, S.P., Koroleva, G., Guito, J.C., Arnold, C.E., Nagle, E.R., Kulcsar, K., Hume, A.J., The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity (2018) Cell, 173, pp. 1098-1110; Jones, M.E., Schuh, A.J., Amman, B.R., Sealy, T.K., Zaki, S.R., Nichol, S.T., Towner, J.S., Experimental Inoculation of Egyptian Rousette Bats (Rousettus aegyptiacus) with Viruses of the Ebolavirus and Marburgvirus Genera (2015) Viruses, 7, pp. 3420-3442; Schuh, A.J., Amman, B.R., Jones, M.E., Sealy, T.K., Uebelhoer, L.S., Spengler, J.R., Martin, B.E., Towner, J.S., Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats (2017) Nat. Commun., 8; Gierer, S., Muller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pohlmann, S., Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J. Infect. Dis., 211, pp. 889-897; Bergeron, E., Vincent, M.J., Wickham, L., Hamelin, J., Basak, A., Nichol, S.T., Chretien, M., Seidah, N.G., Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus (2005) Biochem. Biophys. Res. Commun., 326, pp. 554-563","Munster, V.J.; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: Vincent.munster@nih.gov",,"MDPI AG",19994915,,,"30572566","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85058911008 "Davy C.M., Donaldson M.E., Subudhi S., Rapin N., Warnecke L., Turner J.M., Bollinger T.K., Kyle C.J., Dorville N.A.S.-Y., Kunkel E.L., Norquay K.J.O., Dzal Y.A., Willis C.K.R., Misra V.","26639217500;24338024400;57195720394;6508287195;55980065900;55447581800;7004920792;7006068882;57200549226;57204278502;55037546500;35572961500;7103066660;7201897411;","White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats",2018,"Scientific Reports","8","1", 15508,"","",,5,"10.1038/s41598-018-33975-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055079899&doi=10.1038%2fs41598-018-33975-x&partnerID=40&md5=95c71e1ebb73217905b5c1fc2dce77cc","Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada; Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Peterborough, ON, Canada; Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biology, University of WinnipegMB, Canada; Department of Animal Ecology and Conservation, University Hamburg, Hamburg, Hamburg, Germany; Institute for Land Water and Society, Charles Sturt University, Albury, NSW, Australia; Canadian Wildlife Health Cooperative and Department of Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Forensic Science Department, Trent University, Peterborough, ON, Canada","Davy, C.M., Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada, Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Peterborough, ON, Canada; Donaldson, M.E., Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada; Subudhi, S., Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Rapin, N., Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Warnecke, L., Department of Biology, University of WinnipegMB, Canada, Department of Animal Ecology and Conservation, University Hamburg, Hamburg, Hamburg, Germany; Turner, J.M., Department of Biology, University of WinnipegMB, Canada, Institute for Land Water and Society, Charles Sturt University, Albury, NSW, Australia; Bollinger, T.K., Canadian Wildlife Health Cooperative and Department of Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Kyle, C.J., Forensic Science Department, Trent University, Peterborough, ON, Canada; Dorville, N.A.S.-Y., Department of Biology, University of WinnipegMB, Canada; Kunkel, E.L., Department of Biology, University of WinnipegMB, Canada; Norquay, K.J.O., Department of Biology, University of WinnipegMB, Canada; Dzal, Y.A., Department of Biology, University of WinnipegMB, Canada; Willis, C.K.R., Department of Biology, University of WinnipegMB, Canada; Misra, V., Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada","Spillover of viruses from bats to other animals may be associated with increased contact between them, as well as increased shedding of viruses by bats. Here, we tested the prediction that little brown bats (Myotis lucifugus) co-infected with the M. lucifugus coronavirus (Myl-CoV) and with Pseudogymnoascus destructans (Pd), the fungus that causes bat white-nose syndrome (WNS), exhibit different disease severity, viral shedding and molecular responses than bats infected with only Myl-CoV or only P. destructans. We took advantage of the natural persistence of Myl-CoV in bats that were experimentally inoculated with P. destructans in a previous study. Here, we show that the intestines of virus-infected bats that were also infected with fungus contained on average 60-fold more viral RNA than bats with virus alone. Increased viral RNA in the intestines correlated with the severity of fungus-related pathology. Additionally, the intestines of bats infected with fungus exhibited different expression of mitogen-activated protein kinase pathway and cytokine related transcripts, irrespective of viral presence. Levels of coronavirus antibodies were also higher in fungal-infected bats. Our results suggest that the systemic effects of WNS may down-regulate anti-viral responses in bats persistently infected with M. lucifugus coronavirus and increase the potential of virus shedding. © 2018, The Author(s).",,"virus antibody; virus RNA; animal; Ascomycetes; bat; biological model; Coronavirinae; gene expression regulation; genetics; immunology; innate immunity; intestine; male; metabolism; microbiology; mixed infection; mycosis; physiology; veterinary medicine; virology; virus replication; Animals; Antibodies, Viral; Ascomycota; Chiroptera; Coinfection; Coronavirus; Gene Expression Regulation; Immunity, Innate; Intestines; Male; Models, Biological; Mycoses; RNA, Viral; Virus Replication","Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Corman, V.M., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Ithete, N.L., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699; Yang, L., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg Infect Dis, 20, pp. 1260-1262; Anthony, S.J., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) MBio, 8. , https://doi.org/10.1128/mBio.00373-17; Huang, Y.W., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. 00713-e00737; Zhou, P., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Halpin, K., Young, P.L., Field, H.E., Mackenzie, J.S., Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus (2000) J Gen Virol, 81, pp. 1927-1932. , COI: 1:CAS:528:DC%2BD3cXlsFOhtLo%3D; Yob, J.M., Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia (2001) Emerg Infect Dis, 7, pp. 439-441; Towner, J.S., Isolation of genetically diverse Marburg viruses from Egyptian fruit bats (2009) PLoS Pathog, 5; Leroy, E.M., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576; Vijaykrishna, D., Evolutionary insights into the ecology of coronaviruses (2007) J Virol, 81, pp. 4012-4020; Drexler, J.F., Bats host major mammalian paramyxoviruses (2012) Nat Commun, 3; Freuling, C., Vos, A., Johnson, N., Fooks, A.R., Muller, T., Bat rabies–a Gordian knot? (2009) Berl Munch Tierarztl Wochenschr, 122, pp. 425-433. , PID: 19999377; Gonzalez, J.P., Pourrut, X., Leroy, E., Ebolavirus and other filoviruses (2007) Curr Top Microbiol Immunol, 315, pp. 363-387. , COI: 1:STN:280:DC%2BD2srjsVSntw%3D%3D, PID: 17848072; Chu, D.K., Coronaviruses in bent-winged bats (Miniopterus spp.) (2006) J Gen Virol, 87, pp. 2461-2466; Halpin, K., Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission (2011) Am J Trop Med Hyg, 85, pp. 946-951; Middleton, D.J., Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus) (2007) J Comp Pathol, 136, pp. 266-272; Baker, M.L., Schountz, T., Wang, L.F., Antiviral immune responses of bats: a review (2013) Zoonoses Public Health, 60, pp. 104-116; O’Shea, T.J., Bat flight and zoonotic viruses (2014) Emerg Infect Dis, 20, pp. 741-745; Plowright, R.K., Ecological dynamics of emerging bat virus spillover (2015) Proc Biol Sci, 282, p. 20142124; Plowright, R.K., Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.) (2011) Proc Biol Sci, 278, pp. 3703-3712; Webber, Q.M.R., Social network characteristics and predicted pathogen transmission in summer colonies of female big brown bats (Eptesicus fuscus) (2016) Behavioral Ecology and Sociobiology, 70, pp. 701-712; Drexler, J.F., Amplification of emerging viruses in a bat colony (2011) Emerg Infect Dis, 17, pp. 449-456; Field, H., Hendra virus infection dynamics in Australian fruit bats (2011) PLoS One, 6; Plowright, R.K., Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus) (2008) Proc Biol Sci, 275, pp. 861-869; Pourrut, X., Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species (2007) J Infect Dis, 196, pp. S176-S183; Rahman, S.A., Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia (2010) Emerg Infect Dis, 16, pp. 1990-1993; McMichael, L., Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), Australia (2017) PLoS One, 12; Roizman, B., Sears, A.E., (1996) Fields Virology, 2, pp. 2231-2295. , eds Fields, B. N., Knipe, D. M. & Howley, P. M, Lippincott-Raven; Amman, B.R., Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection (2012) PLoS Pathog, 8; Subudhi, S., A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat (2017) J Gen Virol, 98, pp. 2297-2309; Dominguez, S.R., O’Shea, T.J., Oko, L.M., Holmes, K.V., 1 coronaviruses in bats in North America (2007) Emerg Infect Dis, 13, pp. 1295-1300. , Detection of group; Blehert, D.S., Bat white-nose syndrome: an emerging fungal pathogen? (2009) Science, 323, p. 227; Frick, W.F., An emerging disease causes regional population collapse of a common North American bat species (2010) Science, 329, pp. 679-682; Lorch, J.M., Experimental infection of bats with Geomyces destructans causes white-nose syndrome (2011) Nature, 480, pp. 376-378; Warnecke, L., Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome (2012) Proc Natl Acad Sci USA, 109, pp. 6999-7003; Field, K.A., The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis (2015) PLoS Pathog, 11; Davy, C.M., The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen (2017) Ecol Evol, 7, pp. 7161-7170; Verant, M.L., White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host (2014) BMC Physiol, 14; Warnecke, L., Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality (2013) Biol Lett, 9, p. 20130177; McGuire, L.P., Mayberry, H.W., Willis, C.K.R., White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats (2017) Am J Physiol Regul Integr Comp Physiol, 313, pp. R680-R686; Rapin, N., Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans (2014) PLoS One, 9; Pauli, G., Moura Mascarin, G., Eilenberg, J., Delalibera Júnior, I., Within-Host Competition between Two Entomopathogenic Fungi and a Granulovirus in Diatraea saccharalis (Lepidoptera: Crambidae) (2018) Insects, 9 (2), p. 64; Whitfield, S.M., Infection and co-infection by the amphibian chytrid fungus and ranavirus in wild Costa Rican frogs (2013) Dis Aquat Organ, 104, pp. 173-178; Osborne, C., Alphacoronaviruses in New World bats: prevalence, persistence, phylogeny, and potential for interaction with humans (2011) PLoS One, 6; Strong, J.E., Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway (2008) Proc Natl Acad Sci USA, 105, pp. 17982-17987; Mizutani, T., Mechanisms of establishment of persistent SARS-CoV-infected cells (2006) Biochem Biophys Res Commun, 347, pp. 261-265; Mizutani, T., Fukushi, S., Saijo, M., Kurane, I., Characterization of persistent SARS-CoV infection in Vero E6 cells (2006) Adv Exp Med Biol, 581, pp. 323-326. , COI: 1:CAS:528:DC%2BD1MXpvFyisw%3D%3D; Palacios, G., Jabado, O., Renwick, N., Briese, T., Lipkin, W.I., Severe acute respiratory syndrome coronavirus persistence in Vero cells (2005) Chin Med J (Engl), 118, pp. 451-459. , COI: 1:CAS:528:DC%2BD2MXjslCqsL0%3D; Ng, C.T., Oldstone, M.B., IL-10: achieving balance during persistent viral infection (2014) Curr Top Microbiol Immunol, 380, pp. 129-144; Puntambekar, S.S., Shifting hierarchies of interleukin-10-producing T cell populations in the central nervous system during acute and persistent viral encephalomyelitis (2011) J Virol, 85, pp. 6702-6713; Wilson, E.B., Brooks, D.G., The role of IL-10 in regulating immunity to persistent viral infections (2011) Curr Top Microbiol Immunol, 350, pp. 39-65; Hernández, P.P., Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection (2015) Nat Immunol, 16, pp. 698-707; Wolk, K., Sabat, R., Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells (2006) Cytokine Growth Factor Rev, 17, pp. 367-380; Krebs, D.L., SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation (2002) Mol Cell Biol, 22, pp. 4567-4578. , COI: 1:CAS:528:DC%2BD38Xks1yrsLk%3D; Hensley, L.E., Interferon-beta 1a and SARS coronavirus replication (2004) Emerg Infect Dis, 10, pp. 317-319; Falzarano, D., Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin (2013) Sci Rep, 3; Finlin, B.S., RERG is a novel ras-related, estrogen-regulated and growth-inhibitory gene in breast cancer (2001) J Biol Chem, 276, pp. 42259-42267; Langwig, K.E., Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome (2012) Ecol Lett, 15, pp. 1050-1057; Andrews, S., Fastqc a Quality Control Tool for High Throughput Sequence Data, , http://www.bioinformatics.babraham.ac.uk/projects/fastqc/citeulike-article-id:11583827; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data (2014) Bioinformatics, 30, pp. 2114-2120; Kim, D., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions (2013) Genome Biol, 14; Cunningham, F., Ensembl 2015 (2015) Nucleic Acids Res, 43, pp. D662-D669; Liao, Y., Smyth, G.K., Shi, W., featureCounts: an efficient general purpose program for assigning sequence reads to genomic features (2014) Bioinformatics, 30, pp. 923-930; Varet, H., Brillet-Guéguen, L., Coppée, J.Y., Dillies, M.A., SARTools: A DESeq. 2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data (2016) PLoS One, 11; Benjamini, Y., Hochberg, Y., Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society (1995) Series B (Methodological), 57, pp. 289-300; Reimand, J., g:Profiler-a web server for functional interpretation of gene lists (2016 update) (2016) Nucleic Acids Res, 44, pp. W83-W89; Supek, F., Bošnjak, M., Škunca, N., Šmuc, T., REVIGO summarizes and visualizes long lists of gene ontology terms (2011) PLoS One, 6","Misra, V.; Department of Microbiology, Western College of Veterinary Medicine, University of SaskatchewanCanada; email: vikram.misra@usask.ca",,"Nature Publishing Group",20452322,,,"30341341","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85055079899 "Theis T., Lau K.A., Gray J.L., Oxenford C.J., Walker G.J., Rawlinson W.D.","57193496490;57193504639;57193500297;57202053582;57203590121;7005245886;","Proficiency testing for the detection of Middle East respiratory syndrome coronavirus demonstrates global capacity to detect Middle East respiratory syndrome coronavirus",2018,"Journal of Medical Virology","90","12",,"1827","1833",,,"10.1002/jmv.25266","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052387077&doi=10.1002%2fjmv.25266&partnerID=40&md5=ae06f2da4efe6fd2a3dfe876db415aa0","Royal College of Pathologists of Australasia Quality Assurance Programs, Biosecurity Department, Sydney, NSW, Australia; Laboratory and Surveillance Strengthening Team, Country Health Emergency Preparedness and IHR, World Health Organization, Lyon, France; Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, SOMS and BABS, University of NSW, Sydney, NSW, Australia; Department of Medicine, Faculty of Science, SOMS and BABS, University of NSW, Sydney, NSW, Australia","Theis, T., Royal College of Pathologists of Australasia Quality Assurance Programs, Biosecurity Department, Sydney, NSW, Australia; Lau, K.A., Royal College of Pathologists of Australasia Quality Assurance Programs, Biosecurity Department, Sydney, NSW, Australia; Gray, J.L., Royal College of Pathologists of Australasia Quality Assurance Programs, Biosecurity Department, Sydney, NSW, Australia; Oxenford, C.J., Laboratory and Surveillance Strengthening Team, Country Health Emergency Preparedness and IHR, World Health Organization, Lyon, France; Walker, G.J., Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia; Rawlinson, W.D., Serology and Virology Division (SAViD), NSW Health Pathology, SOMS and BABS, University of NSW, Sydney, NSW, Australia, Department of Medicine, Faculty of Science, SOMS and BABS, University of NSW, Sydney, NSW, Australia","The first reported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection was identified in Saudi Arabia in September 2012, since which time there have been over 2000 laboratory-confirmed cases, including 750 deaths in 27 countries. Nucleic acid testing (NAT) is the preferred method for the detection of MERS-CoV. A single round of a Proficiency Testing Program (PTP) was used to assess the capability of laboratories globally to accurately detect the presence of MERS-CoV using NAT. A panel of eleven lyophilized specimens containing different viral loads of MERS-CoV, common coronaviruses, and in vitro RNA transcripts was distributed to laboratories in all six World Health Organization regions. A total of 96 laboratories from 79 countries participating in the PTP, with 76 of 96 (79.2%) reporting correct MERS-CoV results for all nine scored specimens. A further 10 laboratories (10.4%) scored correctly in eight of nine specimens of the PTP. The majority of laboratories demonstrated satisfactory performance in detecting the presence of MERS-CoV using NAT. However, some laboratories require improved assay sensitivity, reduced cross contamination of samples, and improved speciation of coronavirus subtypes for potentially complex clinical specimens. Further PTP and enhanced links with expert laboratories globally may improve the laboratory performance. © 2018 Wiley Periodicals, Inc.","Middle East respiratory syndrome coronavirus; nucleic acid testing; quality assessment; quality assurance; World Health Organization","nucleic acid; Article; controlled study; Coronavirinae; good laboratory practice; health care; human; in vitro study; limit of detection; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; real time polymerase chain reaction; RNA transcription; Saudi Arabia; sensitivity analysis; virus detection; virus load; world health organization; Coronavirus infection; global health; good laboratory practice; isolation and purification; Middle East respiratory syndrome coronavirus; sensitivity and specificity; Coronavirus Infections; Global Health; Humans; Laboratory Proficiency Testing; Middle East Respiratory Syndrome Coronavirus; Sensitivity and Specificity","Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med (Maywood), 234 (10), pp. 1117-1127; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; (2018), http://www.who.int/emergencies/mers-cov/en/, WHO. Middle East respiratory syndrome coronavirus (MERS-CoV)., Accessed 1 March 2018; Palm, D., Pereyaslov, D., Vaz, J., Laboratory capability for molecular detection and confirmation of novel coronavirus in Europe, November 2012 (2012) Euro Surveill, 17 (49), p. 20335; Pebody, R.G., Chand, M.A., Thomas, H.L., The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012 (2012) Euro Surveill, 17 (40), p. 20292; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (49), p. 20334; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39), p. 20285; (2015), http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/, WHO. Laboratory testing for Middle East respiratory syndrome coronavirus Interim guidance., Accessed 1 March 2018; Lau, K.A., Theis, T., Gray, J., Rawlinson, W.D., Ebola preparedness: Diagnosis improvement using rapid approaches for proficiency testing (2017) J Clin Microbiol, 55, pp. 783-790; Lu, X., Whitaker, B., Sakthivel, S.K.K., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52 (1), pp. 67-75; Zhang, L., Hao, M., Zhang, K., External quality assessment for the molecular detection of MERS-CoV in China (2016) J Clin Virol, 75, pp. 5-9; Pas, S.D., Patel, P., Reusken, C., First international external quality assessment of molecular diagnostics for Mers-CoV (2015) J Clin Virol, 69, pp. 81-85; Seong, M.-W., Lee, S.J., Cho, S.I., External quality assessment of MERS-CoV molecular diagnostics during the 2015 Korean outbreak (2016) Ann Lab Med, 36 (3), pp. 230-234","Rawlinson, W.D.; Serology and Virology Division (SAViD), NSW Health Pathology, SOMS and BABS, University of NSWAustralia; email: w.rawlinson@unsw.edu.au",,"John Wiley and Sons Inc.",01466615,,JMVID,"30016543","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85052387077 "Hu D., Zhu C., Ai L., He T., Wang Y., Ye F., Yang L., Ding C., Zhu X., Lv R., Zhu J., Hassan B., Feng Y., Tan W., Wang C.","56984981800;57195607307;57195603814;57203863527;57194694454;57195605333;57195605637;57195604984;57201344306;57203860500;56328762200;45461096000;24474351100;57194340850;56599972400;","Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats",2018,"Emerging Microbes and Infections","7","1", 154,"","",,11,"10.1038/s41426-018-0155-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053273048&doi=10.1038%2fs41426-018-0155-5&partnerID=40&md5=791264ed917a2fab5b5af2cca3088048","Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China; Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province 214064, China; Stony Brook University, Stony Brook, 11794, United States; Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China","Hu, D., Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China, Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Zhu, C., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Ai, L., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; He, T., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Wang, Y., Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province 214064, China; Ye, F., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Yang, L., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Ding, C., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Zhu, X., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Lv, R., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Zhu, J., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Hassan, B., Stony Brook University, Stony Brook, 11794, United States; Feng, Y., Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Tan, W., Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China; Wang, C., Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China, Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China","SARS coronavirus (SARS-CoV), the causative agent of the large SARS outbreak in 2003, originated in bats. Many SARS-like coronaviruses (SL-CoVs) have been detected in bats, particularly those that reside in China, Europe, and Africa. To further understand the evolutionary relationship between SARS-CoV and its reservoirs, 334 bats were collected from Zhoushan city, Zhejiang province, China, between 2015 and 2017. PCR amplification of the conserved coronaviral protein RdRp detected coronaviruses in 26.65% of bats belonging to this region, and this number was influenced by seasonal changes. Full genomic analyses of the two new SL-CoVs from Zhoushan (ZXC21 and ZC45) showed that their genomes were 29,732 nucleotides (nt) and 29,802 nt in length, respectively, with 13 open reading frames (ORFs). These results revealed 81% shared nucleotide identity with human/civet SARS CoVs, which was more distant than that observed previously for bat SL-CoVs in China. Importantly, using pathogenic tests, we found that the virus can reproduce and cause disease in suckling rats, and further studies showed that the virus-like particles can be observed in the brains of suckling rats by electron microscopy. Thus, this study increased our understanding of the genetic diversity of the SL-CoVs carried by bats and also provided a new perspective to study the possibility of cross-species transmission of SL-CoVs using suckling rats as an animal model. © 2018, The Author(s).",,"amino acid; guanine nucleotide binding protein; nucleotide; unclassified drug; vitronectin; zc45 protein; zxc21 protein; viral protein; adult; amino acid sequence; amplicon; animal tissue; Article; bat; brain tissue; China; controlled study; Coronavirus infection; gene sequence; genetic variability; genomics; intestine tissue; lung parenchyma; nonhuman; nucleotide sequence; nucleotide sequence; phylogenetic tree; prevalence; priority journal; reverse transcription polymerase chain reaction; SARS-related coronavirus; suckling animal; transmission electron microscopy; virus; virus detection; virus load; virus particle; virus transmission; Western blotting; animal; chemistry; classification; Coronavirinae; female; genetics; isolation and purification; male; metabolism; open reading frame; pathogenicity; phylogeny; rat; virology; virulence; virus genome; Animals; China; Chiroptera; Coronavirus; Female; Genome, Viral; Male; Open Reading Frames; Phylogeny; Rats; Viral Proteins; Virulence","Cui, J., Evolutionary relationships between bat coronaviruses and their hosts (2007) Emerg. Infect. Dis., 13, pp. 1526-1532. , PID: 18258002; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, pp. 439-450. , PID: 19430490; Chinese, S.M.E.C., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Zhong, N.S., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003 (2003) Lancet, 362, pp. 1353-1358. , PID: 14585636; Marra, M.A., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404. , PID: 12730501; Xu, Y., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 49414-49419. , PID: 15345712; Song, H.D., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 2430-2435. , PID: 15695582; Kan, B., Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms (2005) J. Virol., 79, pp. 11892-11900. , PID: 16140765; Poon, L.L., Identification of a novel coronavirus in bats (2005) J. Virol., 79, pp. 2001-2009. , PID: 15681402; Wynne, J.W., Wang, L.F., Bats and viruses: friend or foe? (2013) PLoS. Pathog., 9. , PID: 24204253; Wong, S., Lau, S., Woo, P., Yuen, K.Y., Bats as a continuing source of emerging infections in humans (2007) Rev. Med. Virol., 17, pp. 67-91. , PID: 17042030; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 14040-14045. , PID: 16169905; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , PID: 24172901; Yang, X.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J. Virol., 90, pp. 3253-3256. , PID: 26719272; Drexler, J.F., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349. , PID: 20686038; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Arch. Virol., 155, pp. 507-514. , PID: 20217155; Balboni, A., Palladini, A., Bogliani, G., Battilani, M., Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats (2011) Epidemiol. Infect., 139, pp. 216-219. , PID: 20478089; Tong, S., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg. Infect. Dis., 15, pp. 482-485. , PID: 19239771; Quan, P.L., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) mBio, 1, pp. e00208-e00210; Woo, P.C., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187. , PID: 16647731; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol. J., 12, p. 221. , PID: 26689940; Hu, D., Virome analysis for identification of novel mammalian viruses in bats from Southeast China (2017) Sci. Rep., 7. , PID: 28883450; Irwin, D.M., Kocher, T.D., Wilson, A.C., Evolution of the cytochrome b gene of mammals (1991) J. Mol. Evol., 32, pp. 128-144. , PID: 1901092; Lau, S.K., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J. Virol., 89, pp. 10532-10547. , PID: 26269185; Tong, S., Chern, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) J. Clin. Microbiol., 46, pp. 2652-2658. , PID: 18579717; Fouchier, R.A., Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene (2000) J. Clin. Microbiol., 38, pp. 4096-4101. , PID: 11060074; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56. , PID: 24184128; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS. Pathog., 13. , PID: 29190287; Wu, Z., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) Isme. J., 10, pp. 609-620. , PID: 26262818; Lau, S.K., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819. , PID: 20071579; Li, W., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643. , PID: 15791205; Li, F., Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits (2012) J. Virol., 86, pp. 2856-2858. , PID: 22205743; Menachery, V.D., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3048-3053. , PID: 26976607; Ksiazek, T.G., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966. , PID: 12690092; Lau, S.K., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439. , PID: 17617433; Falcon, A., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch. Virol., 156, pp. 1883-1890. , PID: 21766197; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874. , PID: 27004904; Martin, D.P., RDP3: a flexible and fast computer program for analyzing recombination (2010) Bioinformatics, 26, pp. 2462-2463. , PID: 20798170; Lole, K.S., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J. Virol., 73, pp. 152-160. , PID: 9847317","Wang, C.; Department of Epidemiology, College of Preventive Medicine, Third Military Medical UniversityChina; email: science2008@hotmail.com",,"Nature Publishing Group",22221751,,,"30209269","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85053273048 "Kirchdoerfer R.N., Wang N., Pallesen J., Wrapp D., Turner H.L., Cottrell C.A., Corbett K.S., Graham B.S., McLellan J.S., Ward A.B.","16068684500;55782500200;35070274500;57189031611;57077956900;57000139800;36500702900;7201610365;11140034400;55945233700;","Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis",2018,"Scientific Reports","8","1", 15701,"","",,12,"10.1038/s41598-018-34171-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055462603&doi=10.1038%2fs41598-018-34171-7&partnerID=40&md5=5476377725502813c3e8f1fce6a14d37","Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, Germany; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, United States","Kirchdoerfer, R.N., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Wang, N., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, Germany, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Pallesen, J., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Wrapp, D., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, Germany, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Turner, H.L., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Cottrell, C.A., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Corbett, K.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, United States; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, United States; McLellan, J.S., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, Germany, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Ward, A.B., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States","Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2′. © 2018, The Author(s).",,"angiotensin converting enzyme 2; coronavirus spike glycoprotein; dipeptidyl carboxypeptidase; peptide hydrolase; proline; trypsin; virus receptor; binding site; chemistry; cryoelectron microscopy; genetics; glycosylation; HEK293 cell line; human; mutation; protein degradation; protein secondary structure; protein stability; SARS coronavirus; viral tropism; virus entry; Binding Sites; Cryoelectron Microscopy; Glycosylation; HEK293 Cells; Humans; Mutation; Peptide Hydrolases; Peptidyl-Dipeptidase A; Proline; Protein Stability; Protein Structure, Secondary; Proteolysis; Receptors, Virus; SARS Virus; Spike Glycoprotein, Coronavirus; Trypsin; Viral Tropism; Virus Internalization","de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nature reviews. Microbiology, 14, pp. 523-534; Menachery, V.D., SARS-like WIV1-CoV poised for human emergence (2016) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 3048-3053; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Matsuyama, S., Taguchi, F., Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis (2009) Journal of virology, 83, pp. 11133-11141; Park, J.E., Cruz, D.J., Shin, H.J., Receptor-bound porcine epidemic diarrhea virus spike protein cleaved by trypsin induces membrane fusion (2011) Archives of virology, 156, pp. 1749-1756; Park, J.E., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 12262-12267; Simmons, G., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 11876-11881; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) Journal of virology, 77, pp. 8801-8811. , COI: 1:CAS:528:DC%2BD3sXmt1Sit7k%3D; Bullough, P.A., Hughson, F.M., Skehel, J.J., Wiley, D.C., Structure of influenza haemagglutinin at the pH of membrane fusion (1994) Nature, 371, pp. 37-43; Walls, A.C., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proceedings of the National Academy of Sciences of the United States of America, 114, pp. 11157-11162; Zhu, M., SARS Immunity and Vaccination (2004) Cellular & molecular immunology, 1, pp. 193-198. , COI: 1:CAS:528:DC%2BD2cXmvFKmu7s%3D; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) Journal of virology, 84, pp. 3134-3146; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Wong, S.K., Li, W., Moore, M.J., Choe, H., Farzan, M., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 (2004) The Journal of biological chemistry, 279, pp. 3197-3201; Gui, M., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell research, 27, pp. 119-129; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Pallesen, J., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proceedings of the National Academy of Sciences of the United States of America, 114, pp. E7348-e7357; Shang, J., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) Journal of virology, , https://doi.org/10.1128/jvi.01556-17; Walls, A.C., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nature structural & molecular biology, 23, pp. 899-905; Xiong, X., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) Journal of virology; Yuan, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nature communications, 8; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science (New York, N.Y.), 309, pp. 1864-1868; Lai, A.L., Millet, J.K., Daniel, S., Freed, J.H., Whittaker, G.R., The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner (2017) Journal of Molecular Biology, 429 (24), pp. 3875-3892; Fukushi, S., Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein (2005) The Journal of general virology, 86, pp. 2269-2274; Miura, H.S., Nakagaki, K., Taguchi, F., N-terminal domain of the murine coronavirus receptor CEACAM1 is responsible for fusogenic activation and conformational changes of the spike protein (2004) Journal of virology, 78, pp. 216-223. , COI: 1:CAS:528:DC%2BD3sXhtVWnsrbF; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 5871-5876; Matsuyama, S., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) Journal of virology, 84, pp. 12658-12664; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 12543-12547; Millet, J.K., Whittaker, G.R., Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells (2018) Virology, 517, pp. 3-8; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus research, 202, pp. 120-134; Millhauser, G.L., Views of helical peptides: a proposal for the position of 3(10)-helix along the thermodynamic folding pathway (1995) Biochemistry, 34, pp. 3873-3877. , COI: 1:CAS:528:DyaK2MXktlertbo%3D; Vieira-Pires, R.S., Morais-Cabral, J.H., 3(10) helices in channels and other membrane proteins (2010) J Gen Physiol, 136, pp. 585-592; Sanders, R.W., A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies (2013) PLoS pathogens, 9; Sanders, R.W., Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1 (2002) Journal of virology, 76, pp. 8875-8889. , COI: 1:CAS:528:DC%2BD38Xmt1eqsr4%3D; Liu, J., Bartesaghi, A., Borgnia, M.J., Sapiro, G., Subramaniam, S., Molecular architecture of native HIV-1 gp120 trimers (2008) Nature, 455, pp. 109-113; Harris, A., Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 11440-11445; Khayat, R., Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers (2013) Journal of virology, 87, pp. 9865-9872; Ozorowski, G., Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike (2017) Nature, 547, pp. 360-363; Gong, X., Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection (2016) Cell, 165, pp. 1467-1478; Wang, H., Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1 (2016) Cell, 164, pp. 258-268; Suloway, C., Automated molecular microscopy: the new Leginon system (2005) Journal of structural biology, 151, pp. 41-60; Zheng, S.Q., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy (2017) Nature methods, 14, pp. 331-332; Lander, G.C., Appion: an integrated, database-driven pipeline to facilitate EM image processing (2009) Journal of structural biology, 166, pp. 95-102. , COI: 1:CAS:528:DC%2BD1MXisFSktLY%3D; Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S., & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy (2009) Journal of structural biology, 166, pp. 205-213. , COI: 1:CAS:528:DC%2BD1MXksVeisbw%3D; Berndsen, Z., Bowman, C., Jang, H., Ward, A.B., EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing (2017) Bioinformatics (Oxford, England), 33, pp. 3824-3826; Zhang, K., Gctf: Real-time CTF determination and correction (2016) Journal of structural biology, 193, pp. 1-12; Kimanius, D., Forsberg, B.O., Scheres, S.H., Lindahl, E., Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 (2016) Elife, 5. , https://doi.org/10.7554/eLife.18722; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta crystallographica. Section D, Biological crystallography, 60, pp. 2126-2132; DiMaio, F., Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement (2015) Nature methods, 12, pp. 361-365; Adams, P.D., PHENIX: a comprehensive Python-based system for macromolecular structure solution (2010) Acta crystallographica. Section D, Biological crystallography, 66, pp. 213-221; Sievers, F., Higgins, D.G., Clustal omega (2014) Current protocols in bioinformatics, 48, pp. 3.13.11-16","Ward, A.B.; Department of Integrative Structural and Computational Biology, The Scripps Research InstituteUnited States; email: andrew@scripps.edu",,"Nature Publishing Group",20452322,,,"30356097","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85055462603 "Haverkamp A.-K., Lehmbecker A., Spitzbarth I., Widagdo W., Haagmans B.L., Segalés J., Vergara-Alert J., Bensaid A., Van Den Brand J.M.A., Osterhaus A.D.M.E., Baumgärtner W.","57202726084;24450846500;14016746000;56387603500;6701371301;7005525215;37121040100;7005940684;25625734400;55533604400;7203023235;","Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase",2018,"Scientific Reports","8","1", 9778,"","",,5,"10.1038/s41598-018-28109-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049142249&doi=10.1038%2fs41598-018-28109-2&partnerID=40&md5=9766ca095b2bf1e5033919e659fdf0cf","Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany; Center for Systems Neuroscience, Hannover, 30559, Germany; Department of Viroscience, Erasmus Medical Center, Rotterdam CN, 3015, Netherlands; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, 08193, Spain; Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht JE, 3512, Netherlands; Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany","Haverkamp, A.-K., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany; Lehmbecker, A., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany, Center for Systems Neuroscience, Hannover, 30559, Germany; Spitzbarth, I., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany, Center for Systems Neuroscience, Hannover, 30559, Germany; Widagdo, W., Department of Viroscience, Erasmus Medical Center, Rotterdam CN, 3015, Netherlands; Haagmans, B.L., Department of Viroscience, Erasmus Medical Center, Rotterdam CN, 3015, Netherlands; Segalés, J., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain, Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, 08193, Spain; Vergara-Alert, J., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Bensaid, A., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Van Den Brand, J.M.A., Department of Pathobiology, Faculty of Veterinary Science, Utrecht University, Utrecht JE, 3512, Netherlands; Osterhaus, A.D.M.E., Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany; Baumgärtner, W., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany, Center for Systems Neuroscience, Hannover, 30559, Germany","Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one-third of human patients. Recent data indicate that dromedaries represent an important source of infection, although information regarding viral cell tropism and pathogenesis is sparse. In the current study, tissues of eight dromedaries receiving inoculation of MERS-Coronavirus (MERS-CoV) after recombinant Modified-Vaccinia-Virus-Ankara (MVA-S)-vaccination (n = 4), MVA-vaccination (mock vaccination, n = 2) and PBS application (mock vaccination, n = 2), respectively, were investigated. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence, and scanning electron microscopy. MERS-CoV infection in mock-vaccinated dromedaries revealed high numbers of MERS-CoV-nucleocapsid positive cells, T cells, and macrophages within nasal turbinates and trachea at day four post infection. Double immunolabeling demonstrated cytokeratin (CK) 18 expressing epithelial cells to be the prevailing target cell of MERS-CoV, while CK5/6 and CK14 expressing cells did not co-localize with virus. In addition, virus was occasionally detected in macrophages. The acute disease was further accompanied by ciliary loss along with a lack of dipeptidyl peptidase 4 (DPP4), known to mediate virus entry. DPP4 was mainly expressed by human lymphocytes and dromedary monocytes, but overall the expression level was lower in dromedaries. The present study underlines significant species-specific manifestations of MERS and highlights ciliary loss as an important finding in dromedaries. The obtained results promote a better understanding of coronavirus infections, which pose major health challenges. © 2018 The Author(s).",,"cytokeratin 14; cytokeratin 18; cytokeratin 4; cytokeratin 5; dipeptidyl peptidase IV; animal; camel; cell culture; Coronavirus infection; fluorescent antibody technique; immunohistochemistry; metabolism; Middle East respiratory syndrome coronavirus; pathogenicity; scanning electron microscopy; ultrastructure; Animals; Camelus; Cells, Cultured; Coronavirus Infections; Dipeptidyl Peptidase 4; Fluorescent Antibody Technique; Immunohistochemistry; Keratin-14; Keratin-18; Keratin-4; Keratin-5; Microscopy, Electron, Scanning; Middle East Respiratory Syndrome Coronavirus","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367, pp. 1814-1820; De Groot, R.J., Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol, 87, pp. 7790-7792; Corman, V.M., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Cui, J., Eden, J.-S., Holmes, E.C., Wang, L.-F., Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): Implications for the origin and emergence of Middle East respiratory syndrome coronavirus (2013) Virol. J, 10, p. 304; De Wit, E., Munster, V.J., MERS-CoV: The intermediate host identified (2013) Lancet Infect. Dis., 13, pp. 827-828; Memish, Z.A., Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Munster, V.J., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6, p. 21878; Van Boheemen, S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) M Bio, 3, pp. e00473-e00512; De Wit, E., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16598-16603; Li, W., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Guan, Y., Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China (2003) Science, 302, p. 276; Reusken, C.B.E.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis. Infect. Dis., 13, pp. 859-866; Drosten, C., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13, pp. 745-751; Reusken, C.B., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill., 18, p. 20662; Raj, V.S., Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Hemida, M.G., Dromedary Camels and the Transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2017) Transbound, Emerg. Dis., 64, pp. 344-353; Saqib, M., Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012-2015 (2017) Emerg. Infect. Dis., 23, pp. 550-551; Falzarano, D., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Reusken, C.B., MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic (2016) Emerg. Infect. Dis., 22, pp. 1129-1131; Adney, D.R., Replication and Shedding of MERS-CoV in Upper Respiratory Tract of Inoculated Dromedary Camels (2014) Emerg. Infect. Dis., 20, pp. 1999-2005; Haagmans, B.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Van Doremalen, N., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol, 88, pp. 9220-9232; Widagdo, W., Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels (2016) J. Virol., 90, pp. 4838-4842; Chan, C.M., Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus (2016) J. Virol., 90, pp. 9114-9127; Li, W., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E8508-E8517; Uhde, A.K., Lehmbecker, A., Baumgartner, W., Spitzbarth, I., Evaluation of a panel of antibodies for the immunohistochemical identification of immune cells in paraffin-embedded lymphoid tissues of new-and old-world camelids (2017) Vet. Immunol. Immunopathol., 184, pp. 42-53; Broughan, J.M., Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 1: Review of epidemiology and laboratory submissions in Great Britain 2004-2010 (2013) Vet. J., 198, pp. 339-345; Ng, D.L., Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014 (2016) Am. J. Pathol., 186, pp. 652-658; Alsaad, K.O., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection-clinicopathological and ultrastructural study (2018) Histopathology, 72, pp. 516-524; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Mentlein, R., Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides (1999) Regul. Pept., 85, pp. 9-24; Munkholm, M., Mortensen, J., Mucociliary clearance: Pathophysiological aspects (2014) Clin Physiol. Funct. Imaging, 34, pp. 171-177; Rautiainen, M., Nuutinen, J., Kiukaanniemi, H., Collan, Y., Ultrastructural changes in human nasal cilia caused by the common cold and recovery of ciliated epithelium (1992) Ann. Otol. Rhinol. Laryngol., 101, pp. 982-987; Afzelius, B.A., Ultrastructure of human nasal epithelium during an episode of coronavirus infection (1994) Virchows Arch., 424, pp. 295-300; Mitchell, J.A., Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV) (2013) Vet. Microbiol., 162, pp. 582-594; Chu, H., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454, pp. 197-205; Zhou, J., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342; Zhong, J., A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation (2013) Diabetes, 62, pp. 149-157; Al-Qahtani, A.A., Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PPAR? (2017) Oncotarget, 8, pp. 9053-9066; Hashimoto, Y., Moki, T., Takizawa, T., Shiratsuchi, A., Nakanishi, Y., Evidence for Phagocytosis of Influenza Virus-Infected, Apoptotic Cells by Neutrophils and Macrophages in Mice (2007) J. Immunol., 178, pp. 2448-2457; Rigden, R.C., Carrasco, C.P., Summerfield, A., Macrophage phagocytosis of foot-and-mouth disease virus may create infectious carriers (2002) Immunology, 106, pp. 537-548; Chu, H., Middle East Respiratory Syndrome Coronavirus Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and Intrinsic Apoptosis Pathways (2016) J. Infect. Dis., 213, pp. 904-914; Tanaka, T., Kameoka, J., Yaron, A., Schlossman, S.F., Morimoto, C., The costimulatory activity of the CD26 antigen requires dipeptidyl peptidase IV enzymatic activity (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 4586-4590; Wang, W., Discovery of a highly divergent coronavirus in the Asian house shrew from China illuminates the origin of the alphacoronaviruses (2017) J. Virol; Omran, H., Loges, N.T., Immunofluorescence staining of ciliated respiratory epithelial cells (2009) Meth. Cell Biol., 91, pp. 123-133; Baumgärtner, W., Krakowka, S., Gorham, J.R., Canine parainfluenza virus-induced encephalitis in ferrets (1989) J. Comp. Pathol., 100, pp. 67-76; Durchfeld, B., Baumgärtner, W., Krakowka, S., Intranasal infection of ferrets (Mustela putorius furo) with canine parainfluenza virus (1991) Zentralbl. Veterinarmed. B., 38, pp. 505-512","Baumgärtner, W.; Department of Pathology, University of Veterinary Medicine Hannover FoundationGermany; email: Wolfgang.Baumgaertner@tiho-hannover.de",,"Nature Publishing Group",20452322,,,"29950581","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85049142249 "Lau S.K.P., Fan R.Y.Y., Luk H.K.H., Zhu L., Fung J., Li K.S.M., Wong E.Y.M., Ahmed S.S., Chan J.F.W., Kok R.K.H., Chan K.-H., Wernery U., Yuen K.-Y., Woo P.C.Y.","7401596211;15519269300;56513568500;57204954740;57204950810;24759122500;56073366500;56393567800;24278817900;7006862631;57207851346;7005483197;36078079100;7201801340;","Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins",2018,"Emerging Microbes and Infections","7","1", 209,"","",,6,"10.1038/s41426-018-0208-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058138984&doi=10.1038%2fs41426-018-0208-9&partnerID=40&md5=04c58b52b13fbe7500f6a8f71a6359d5","State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Central Veterinary Research Laboratory, Dubai, United Arab Emirates","Lau, S.K.P., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Fan, R.Y.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Luk, H.K.H., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Zhu, L., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Fung, J., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Li, K.S.M., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Wong, E.Y.M., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Ahmed, S.S., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Chan, J.F.W., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Kok, R.K.H., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Chan, K.-H., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Wernery, U., Central Veterinary Research Laboratory, Dubai, United Arab Emirates; Yuen, K.-Y., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Woo, P.C.Y., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong","Previous findings of Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses in bats, and the ability of Tylonycteris-BatCoV HKU4 spike protein to utilize MERS-CoV receptor, human dipeptidyl peptidase 4 hDPP4, suggest a bat ancestral origin of MERS-CoV. We developed 12 primary bat cell lines from seven bat species, including Tylonycteris pachypus, Pipistrellus abramus and Rhinolophus sinicus (hosts of Tylonycteris-BatCoV HKU4, Pipistrellus-BatCoV HKU5, and SARS-related-CoV respectively), and tested their susceptibilities to MERS-CoVs, SARS-CoV, and human coronavirus 229E (HCoV-229E). Five cell lines, including P. abramus and R. sinicus but not T. pachypus cells, were susceptible to human MERS-CoV EMC/2012. However, three tested camel MERS-CoV strains showed different infectivities, with only two strains capable of infecting three and one cell lines respectively. SARS-CoV can only replicate in R. sinicus cells, while HCoV-229E cannot replicate in any bat cells. Bat dipeptidyl peptidase 4 (DPP4) sequences were closely related to those of human and non-human primates but distinct from dromedary DPP4 sequence. Critical residues for binding to MERS-CoV spike protein were mostly conserved in bat DPP4. DPP4 was expressed in the five bat cells susceptible to MERS-CoV, with significantly higher mRNA expression levels than those in non-susceptible cells (P = 0.0174), supporting that DPP4 expression is critical for MERS-CoV infection in bats. However, overexpression of T. pachypus DPP4 failed to confer MERS-CoV susceptibility in T. pachypus cells, suggesting other cellular factors in determining viral replication. The broad cellular tropism of MERS-CoV should prompt further exploration of host diversity of related viruses to identify its ancestral origin. © 2018, The Author(s).",,"amino acid; dipeptidyl peptidase IV; messenger RNA; coronavirus spike glycoprotein; dipeptidyl peptidase IV; animal cell; animal tissue; Article; bat; controlled study; cytopathogenic effect; dromedary; Middle East respiratory syndrome; mRNA expression level; nonhuman; phylogeny; Pipistrellus abramus; priority journal; Rhinolophus sinicus; sequence analysis; severe acute respiratory syndrome; tropism; Tylonycteris pachypus; Vero cell line; virus replication; animal; camel; cell culture; cell line; genetics; human; metabolism; Middle East respiratory syndrome coronavirus; physiology; primate; SARS coronavirus; viral tropism; virology; virus attachment; Animals; Camelus; Cell Line; Cells, Cultured; Chiroptera; Dipeptidyl Peptidase 4; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Primates; SARS Virus; Spike Glycoprotein, Coronavirus; Viral Tropism; Virus Attachment; Virus Replication","de Groot, R.J., Coronaviridae (2011) Virus Taxonomy, Classification and Nomenclature of Viruses, pp. 806-828; Woo, P.C., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008. , COI: 1:CAS:528:DC%2BC38XktlOrsr8%3D; Woo, P.C., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585. , COI: 1:CAS:528:DC%2BD2sXhslKjsr0%3D; Gorbalenya, A.E., Snijder, E.J., Spaan, W.J.M., Severe acute respiratory syndrome coronavirus phylogeny: toward consensus (2004) J. Virol., 78, pp. 7863-7866. , COI: 1:CAS:528:DC%2BD2cXmtFequrc%3D; Drosten, C., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) New Engl. J. Med., 348, pp. 1967-1976. , COI: 1:CAS:528:DC%2BD3sXjslajurw%3D; Fouchier, R.A.M., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc. Natl. Acad. Sci., 101, pp. 6212-6216. , COI: 1:CAS:528:DC%2BD2cXjsFKntLs%3D; Ksiazek, T.G., A novel coronavirus associated with severe acute respiratory syndrome (2003) New Engl. J. Med., 348, pp. 1953-1966. , COI: 1:CAS:528:DC%2BD3sXjslajtbk%3D; Peiris, J.S.M., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , COI: 1:STN:280:DC%2BD3s3gvF2rsA%3D%3D; van der Hoek, L., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Woo, P.C., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895. , COI: 1:CAS:528:DC%2BD2MXlt12hsA%3D%3D; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P; de Groot, R.J., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Woo, P.C.Y., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) J. Virol., 80, pp. 7136-7145. , COI: 1:CAS:528:DC%2BD28XmvVait7o%3D; Kottier, S.A., Cavanagh, D., Britton, P., Experimental (1995) Virology, 213, pp. 569-580. , COI: 1:CAS:528:DyaK2MXpsVGhs74%3D; Lau, S.K.P., Isolation and characterization of a novel betacoronavirus subgroup a coronavirus, rabbit coronavirus HKU14, from (2012) J. Virol., 86, pp. 5481-5496. , COI: 1:CAS:528:DC%2BC38XmslOisb4%3D; Lau, S.K.P., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related rhinolophus bat coronavirus in china reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819. , COI: 1:CAS:528:DC%2BC3cXjt1eis7w%3D; Lau, S.K.P., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337. , COI: 1:CAS:528:DC%2BC3MXhtlCltr3E; Lau, S.K.P., Coexistence of different genotypes in the same bat and serological characterization of rousettus bat coronavirus HKU9 belonging to a novel betacoronavirus subgroup (2010) J. Virol., 84, pp. 11385-11394. , COI: 1:CAS:528:DC%2BC3cXhsVeisbzN; Lau, S.K.P., Discovery of a novel coronavirus, China Rattus Coronavirus HKU24, from Norway rats supports the murine origin of betacoronavirus 1 and has implications for the ancestor of betacoronavirus lineage A (2014) J. Virol., 89, pp. 3076-3092; Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , COI: 1:CAS:528:DC%2BD3sXnvFWgtL0%3D; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045. , COI: 1:CAS:528:DC%2BD2MXhtVOqsbbO; Li, W., Bats are natural Reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjO; Lau, S.K., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J. Virol., 89, pp. 10532-10547. , COI: 1:CAS:528:DC%2BC2MXhs1enu7%2FF; Song, H.D., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci., 102, pp. 2430-2435. , COI: 1:CAS:528:DC%2BD2MXhvFKitLs%3D; Chinese, S.M.E.C., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Lau, S.K.P., Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s Rousettes to Pomona Leaf-Nosed Bats: first evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J. Virol., 86, pp. 11906-11918. , COI: 1:CAS:528:DC%2BC38XhsFCmurrP; Woo, P.C., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus (2014) J. Virol., 88, pp. 1318-1331; Zhang, J., Genomic characterization of equine coronavirus (2007) Virology, 369, pp. 92-104. , COI: 1:CAS:528:DC%2BD2sXht1KrsrjN; Hasoksuz, M., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J. Virol., 81, pp. 4981-4990. , COI: 1:CAS:528:DC%2BD2sXls1Grs70%3D; Jin, L., Analysis of the genome sequence of an alpaca coronavirus (2007) Virology, 365, pp. 198-203. , COI: 1:CAS:528:DC%2BD2sXmsFyns7Y%3D; Reusken, C.B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866. , COI: 1:CAS:528:DC%2BC3sXht1Ggt7nM; Chan, J.F.W., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522. , COI: 1:CAS:528:DC%2BC1cXltlyhs74%3D; Woo, P.C.Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187. , COI: 1:CAS:528:DC%2BD28XntVyrtbY%3D; Lau, S.K., Genetic characterization of betacoronavirus Lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 8638-8650. , COI: 1:CAS:528:DC%2BC3sXhtFCmtbjF; Yang, L., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg. Infect. Dis., 20, pp. 1260-1262; Corman, V.M., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Anthony, S.J., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8; Geldenhuys, M., A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa (2018) PloS One, 13; Lau, S.K.P., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of MERS-related coronavirus spike proteins for human DPP4 binding (2018) J. Infect. Dis., 218, pp. 197-207; Corman, V.M., Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs (2014) J. Virol., 88, pp. 717-724; Yang, Y., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521. , COI: 1:CAS:528:DC%2BC2cXhtlCju7rI; Wang, Q., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell host & Microbe, 16, pp. 328-337. , COI: 1:CAS:528:DC%2BC2cXhsV2ntb3J; Cai, Y., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PloS One, 9; Munster, V.J., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28XivFGrsL8%3D; Chan, J.F., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752. , COI: 1:CAS:528:DC%2BC3sXntVOrs7g%3D; Eckerle, I., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerg. Infect. Dis., 20, pp. 276-279; Vergara-Alert, J., Livestock susceptibility to infection with Middle East (2017) Emerg. Infect. Dis., 23, pp. 232-240. , COI: 1:CAS:528:DC%2BC1cXjt1antb4%3D; Banerjee, A., Generation and characterization of eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the myotis polyomavirus large T-antigen (2016) J. Virol. Methods, 237, pp. 166-173. , COI: 1:CAS:528:DC%2BC28XhsFarur%2FK; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular evolution of MERS coronavirus: dromedaries as a recent intermediate host or long-time animal reservoir? (2017) Int. J. Mol. Sci., 18. , &; Cotten, M., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Lau, S.K., Polyphyletic origin of MERS coronaviruses and isolation of a novel clade A strain from dromedary camels in the United Arab Emirates (2016) Emerg. Microbes Infect., 5. , COI: 1:CAS:528:DC%2BC28XitFCmtr7L; Chu, D.K.W., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 3144-3149. , COI: 1:CAS:528:DC%2BC1cXht1Chs7jK; Lu, G., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , COI: 1:CAS:528:DC%2BC3sXhtVKhtbfK; Wang, N., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993. , COI: 1:CAS:528:DC%2BC3sXht1Wltb%2FM; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , COI: 1:CAS:528:DC%2BD3sXpt1GlsLs%3D; Corman, V.M., Evidence for an ancestral association of human coronavirus 229E with (2015) J. Virol., 89, pp. 11858-11870. , COI: 1:CAS:528:DC%2BC28XktlOhu7o%3D; Corman, V.M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9864-9869. , COI: 1:CAS:528:DC%2BC28XhtlChsLnN; Tao, Y., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91; Crameri, G., Establishment, immortalisation and characterisation of pteropid bat cell lines (2009) PloS One, 4; Lau, S.K., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690","Lau, S.K.P.; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong; email: skplau@hku.hk",,"Nature Publishing Group",22221751,,,"30531999","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85058138984 "Owczarek K., Szczepanski A., Milewska A., Baster Z., Rajfur Z., Sarna M., Pyrc K.","57200288997;57200300836;55200074700;55774276900;6602347295;35103384200;8869026100;","Early events during human coronavirus OC43 entry to the cell",2018,"Scientific Reports","8","1", 7124,"","",,7,"10.1038/s41598-018-25640-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046884595&doi=10.1038%2fs41598-018-25640-0&partnerID=40&md5=428974614b086348dc532b920985cb1f","Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland","Owczarek, K., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Szczepanski, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Milewska, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Baster, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Rajfur, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Sarna, M., Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland, Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland; Pyrc, K., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland","The Coronaviridae family clusters a number of large RNA viruses, which share several structural and functional features. However, members of this family recognize different cellular receptors and exploit different entry routes, what affects their species specificity and virulence. The aim of this study was to determine how human coronavirus OC43 enters the susceptible cell. Using confocal microscopy and molecular biology tools we visualized early events during infection. We found that the virus employs caveolin-1 dependent endocytosis for the entry and the scission of virus-containing vesicles from the cell surface is dynamin-dependent. Furthermore, the vesicle internalization process requires actin cytoskeleton rearrangements. With our research we strove to broaden the understanding of the infection process, which in future may be beneficial for the development of a potential therapeutics. © 2018 The Author(s).",,"caveolin 1; clathrin; dynamin; actin filament; cell line; Coronavirus infection; endocytosis; genetics; human; Human coronavirus OC43; pathogenicity; species difference; virology; virulence; virus entry; Actin Cytoskeleton; Caveolin 1; Cell Line; Clathrin; Coronavirus Infections; Coronavirus OC43, Human; Dynamins; Endocytosis; Humans; Species Specificity; Virulence; Virus Internalization","Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis, 36, pp. 985-989. , https://doi.org/10.1086/374222; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947. , https://doi.org/10.1128/JCM.00636-10; Vijgen, L., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604. , https://doi.org/10.1128/JVI.79.3.1595-1604.2005; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc Natl Acad Sci USA, 85, pp. 4526-4529; Huang, X., Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme (2015) J Virol, 89, pp. 7202-7213. , https://doi.org/10.1128/JVI.00854-15; Milewska, A., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J Virol, 88, pp. 13221-13230. , https://doi.org/10.1128/JVI.02078-14; Lang, J., Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans (2011) PLoS One, 6, p. e23710. , https://doi.org/10.1371/journal.pone.0023710; Kroschewski, H., Allison, S.L., Heinz, F.X., Mandl, C.W., Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus (2003) Virology, 308, pp. 92-100; Connell, B.J., Lortat-Jacob, H., Human immunodeficiency virus and heparan sulfate: From attachment to entry inhibition (2013) Front Immunol, 4, p. 385. , https://doi.org/10.3389/fimmu.2013.00385; Plochmann, K., Heparan sulfate is an attachment factor for foamy virus entry (2012) J Virol, 86, pp. 10028-10035. , https://doi.org/10.1128/JVI.00051-12; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Collins, A.R., HLA class i antigen serves as a receptor for human coronavirus OC43 (1993) Immunol Invest, 22, pp. 95-103; Krempl, C., Schultze, B., Herrler, G., Analysis of cellular receptors for human coronavirus OC43 (1995) Adv Exp Med Biol, 380, pp. 371-374; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Kido, H., Okumura, Y., Yamada, H., Le, T.Q., Yano, M., Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents (2007) Curr Pharm des, 13, pp. 405-414; Krzyzaniak, M.A., Zumstein, M.T., Gerez, J.A., Picotti, P., Helenius, A., Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein (2013) PLoS Pathog, 9, p. e1003309. , https://doi.org/10.1371/journal.ppat.1003309; Simmons, G., Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion (2011) Virology, 413, pp. 265-274. , https://doi.org/10.1016/j.virol.2011.02.020; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci USA, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; Hussain, K.M., Leong, K.L., Ng, M.M., Chu, J.J., The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71 (2011) J Biol Chem, 286, pp. 309-321. , https://doi.org/10.1074/jbc.M110.168468; Cox, R.G., Human metapneumovirus is capable of entering cells by fusion with endosomal membranes (2015) PLoS Pathog, 11, p. e1005303. , https://doi.org/10.1371/journal.ppat.1005303; Xu, H., Real-time imaging of rabies virus entry into living vero cells (2015) Sci Rep, 5, p. 11753. , https://doi.org/10.1038/srep11753; Henne, W.M., FCHo proteins are nucleators of clathrin-mediated endocytosis (2010) Science, 328, pp. 1281-1284. , https://doi.org/10.1126/science.1188462; Rappoport, J.Z., Kemal, S., Benmerah, A., Simon, S.M., Dynamics of clathrin and adaptor proteins during endocytosis (2006) Am J Physiol Cell Physiol, 291, pp. C1072-1081. , https://doi.org/10.1152/ajpcell.00160.2006; Ehrlich, M., Endocytosis by random initiation and stabilization of clathrin-coated pits (2004) Cell, 118, pp. 591-605. , https://doi.org/10.1016/j.cell.2004.08.017; Cocucci, E., Gaudin, R., Kirchhausen, T., Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit (2014) Mol Biol Cell, 25, pp. 3595-3609. , https://doi.org/10.1091/mbc.E14-07-1240; Takei, K., Slepnev, V.I., Haucke, V., De Camilli, P., Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis (1999) Nat Cell Biol, 1, pp. 33-39. , https://doi.org/10.1038/9004; Nabi, I.R., Le, P.U., Caveolae/raft-dependent endocytosis (2003) J Cell Biol, 161, pp. 673-677. , https://doi.org/10.1083/jcb.200302028; Pelkmans, L., Püntener, D., Helenius, A., Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae (2002) Science, 296, pp. 535-539. , https://doi.org/10.1126/science.1069784; Marjomäki, V., Internalization of echovirus 1 in caveolae (2002) J Virol, 76, pp. 1856-1865; Pelkmans, L., Kartenbeck, J., Helenius, A., Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER (2001) Nat Cell Biol, 3, pp. 473-483. , https://doi.org/10.1038/35074539; Montesano, R., Roth, J., Robert, A., Orci, L., Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins (1982) Nature, 296, pp. 651-653; Pelkmans, L., Helenius, A., Endocytosis via caveolae (2002) Traffic, 3, pp. 311-320; Harper, C.B., Popoff, M.R., McCluskey, A., Robinson, P.J., Meunier, F.A., Targeting membrane trafficking in infection prophylaxis: Dynamin inhibitors (2013) Trends Cell Biol, 23, pp. 90-101. , https://doi.org/10.1016/j.tcb.2012.10.007; Araki, N., Hatae, T., Furukawa, A., Swanson, J.A., Phosphoinositide-3-kinase-independent contractile activities associated with Fcgamma-receptor-mediated phagocytosis and macropinocytosis in macrophages (2003) J Cell Sci, 116, pp. 247-257; Li, L., The effect of the size of fluorescent dextran on its endocytic pathway (2015) Cell Biol Int, 39, pp. 531-539. , https://doi.org/10.1002/cbin.10424; Al-Ayed, M.S., Asaad, A.M., Qureshi, M.A., Ameen, M.S., Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction (2014) Saudi Med J, 35, pp. 1348-1353; Pu, Y., Zhang, X., Mouse hepatitis virus type 2 enters cells through a clathrin-mediated endocytic pathway independent of Eps15 (2008) J Virol, 82, pp. 8112-8123. , https://doi.org/10.1128/JVI.00837-08; Qinfen, Z., The life cycle of SARS coronavirus in Vero E6 cells (2004) J Med Virol, 73, pp. 332-337. , https://doi.org/10.1002/jmv.20095; Inoue, Y., Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted (2007) J Virol, 81, pp. 8722-8729. , https://doi.org/10.1128/JVI.00253-07; Lu, Y., Liu, D.X., Tam, J.P., Lipid rafts are involved in SARS-CoV entry into Vero E6 cells (2008) Biochem Biophys Res Commun, 369, pp. 344-349. , https://doi.org/10.1016/j.bbrc.2008.02.023; Ares, G.R., Ortiz, P.A., Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs (2012) J Biol Chem, 287, pp. 37824-37834. , https://doi.org/10.1074/jbc.M112.386425; Subtil, A., Acute cholesterol depletion inhibits clathrin-coated pit budding (1999) Proc Natl Acad Sci USA, 96, pp. 6775-6780; Dutta, D., Donaldson, J.G., Search for inhibitors of endocytosis: Intended specificity and unintended consequences (2012) Cell Logist, 2, pp. 203-208. , https://doi.org/10.4161/cl.23967; Kosaka, T., Ikeda, K., Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila (1983) J Neurobiol, 14, pp. 207-225. , https://doi.org/10.1002/neu.480140305; Chen, M.S., Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis (1991) Nature, 351, pp. 583-586. , https://doi.org/10.1038/351583a0; Van Der Bliek, A.M., Meyerowitz, E.M., Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic (1991) Nature, 351, pp. 411-414. , https://doi.org/10.1038/351411a0; Henley, J.R., Krueger, E.W., Oswald, B.J., McNiven, M.A., Dynamin-mediated internalization of caveolae (1998) J Cell Biol, 141, pp. 85-99; Oh, P., McIntosh, D.P., Schnitzer, J.E., Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTPdriven fission from the plasma membrane of endothelium (1998) J Cell Biol, 141, pp. 101-114; Parton, R.G., Joggerst, B., Simons, K., Regulated internalization of caveolae (1994) J Cell Biol, 127, pp. 1199-1215; Xu, Q., Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization (2016) Future Microbiol, 11, pp. 1227-1248. , https://doi.org/10.2217/fmb-2016-0002; Freeman, M.C., Peek, C.T., Becker, M.M., Smith, E.C., Denison, M.R., Coronaviruses induce entry-independent, continuous macropinocytosis (2014) MBio, 5, p. 1340. , https://doi.org/10.1128/mBio.01340-14; Lai, F.W., Stephenson, K.B., Mahony, J., Lichty, B.D., Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-kB activation (2014) J Virol, 88, pp. 54-65. , https://doi.org/10.1128/JVI.02678-13; Gorse, G.J., O'Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J Infect Dis, 199, pp. 847-857. , https://doi.org/10.1086/597122; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229e bypass the endosome for cell entry (2017) J Virol, 91. , https://doi.org/10.1128/JVI.01387-16; Shirato, K., Kawase, M., Matsuyama, S., Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry (2017) Virology, , https://doi.org/10.1016/j.virol.2017.11.012; Shen, L.W., Mao, H.J., Wu, Y.L., Tanaka, Y., Zhang, W., TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections (2017) Biochimie, 142, pp. 1-10. , https://doi.org/10.1016/j.biochi.2017.07.016; Earnest, J.T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog, 13, p. e1006546. , https://doi.org/10.1371/journal.ppat.1006546; Reinke, L.M., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12, p. e0179177. , https://doi.org/10.1371/journal.pone.0179177; Milewska, A., Entry of human coronavirus NL63 to the cell (2017) J Virol, , https://doi.org/10.1128/JVI.01933-17; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints12 (1938) American Journal of Epidemiology, 27, pp. 493-497. , https://doi.org/10.1093/oxfordjournals.aje.a118408","Pyrc, K.; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Poland; email: k.a.pyrc@uj.edu.pl",,"Nature Publishing Group",20452322,,,"29740099","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85046884595 "Han H.-J., Liu J.-W., Yu H., Yu X.-J.","56678208200;56109591700;57138861800;7404115052;","Neutralizing monoclonal antibodies as promising therapeutics against middle east respiratory syndrome coronavirus infection",2018,"Viruses","10","12", 680,"","",,3,"10.3390/v10120680","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058278105&doi=10.3390%2fv10120680&partnerID=40&md5=fbff083c22f92d87bdf91b81366f0122","School of Health Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Fudan University School of Medicine, Shanghai, 200032, China","Han, H.-J., School of Health Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Liu, J.-W., School of Health Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Yu, H., Fudan University School of Medicine, Shanghai, 200032, China; Yu, X.-J., School of Health Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China","Since emerging in 2012, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has been a global public health threat with a high fatality rate and worldwide distribution. There are no approved vaccines or therapies for MERS until now. Passive immunotherapy with neutralizing monoclonal antibodies (mAbs) is an effective prophylactic and therapeutic reagent against emerging viruses. In this article, we review current advances in neutralizing mAbs against MERS-CoV. The receptor-binding domain (RBD) in the spike protein of MERS-CoV is a major target, and mouse, camel, or human-derived neutralizing mAbs targeting RBD have been developed. A major problem with neutralizing mAb therapy is mutant escape under selective pressure, which can be solved by combination of neutralizing mAbs targeting different epitopes. Neutralizing mAbs are currently under preclinical evaluation, and they are promising candidate therapeutic agents against MERS-CoV infection. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","MERS-CoV; Middle East Respiratory Syndrome Virus; Neutralizing monoclonal antibodies","2 e6; 3 b11; 4 c2; dipeptidyl peptidase; dipeptidyl peptidase IV; epitope; hcab 83; immunoglobulin G; lca 60; lymphocyte antibody; m 336; mca 1; mers 27; mers 4; mers gd 27; mers gd 33; mersmab1; monoclonal antibody; nanobody; nbms 10; nbms 10fc; neutralizing antibody; regn 3048; regn 3051; single stranded RNA; structural protein; unclassified drug; vaccine; virus spike protein; vitronectin; antivirus agent; coronavirus spike glycoprotein; monoclonal antibody; neutralizing antibody; virus antigen; virus vaccine; antibody secreting cell; competitive binding assay; cost effectiveness analysis; crystal structure; disease severity; DNA library; gene mutation; human; hybridoma cell line; immunotherapy; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; nonhuman; permeability; receptor binding; Review; spleen cell; transgenic mouse; virus entry; virus load; virus replication; animal; camel; Coronavirus infection; disease model; drug effect; immunology; molecularly targeted therapy; mouse; Animals; Antibodies, Monoclonal; Antibodies, Neutralizing; Antigens, Viral; Antiviral Agents; Camelus; Coronavirus Infections; Disease Models, Animal; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Molecular Targeted Therapy; Spike Glycoprotein, Coronavirus; Viral Vaccines","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Han, H.J., Yu, H., Yu, X.J., Evidence for zoonotic origins of Middle East respiratory syndrome coronavirus (2016) J. Gen. Virol., 97, pp. 274-280; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect. Dis., 18, pp. E217-E227; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int. J. Infect. Dis., 38, pp. 65-67; Jin, Y.J., Lei, C., Hu, D., Dimitrov, D.S., Ying, T.L., Human monoclonal antibodies as candidate therapeutics against emerging viruses (2017) Front. Med., 11, pp. 462-470; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D.M.E., Snijder, E.J., Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans (2012) Mbio, 3; Du, L.Y., Yang, Y., Zhou, Y.S., Lu, L., Li, F., Jiang, S.B., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Wang, N.S., Shi, X.L., Jiang, L.W., Zhang, S.Y., Wang, D.L., Tong, P., Guo, D.X., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Raj, V.S., Mou, H.H., Smits, S.L., Dekkers, D.H.W., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A.M., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Li, Y., Wan, Y.H., Liu, P.P., Zhao, J.C., Lu, G.W., Qi, J.X., Wang, Q.H., Liu, W.J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Du, L.Y., Zhao, G.Y., Yang, Y., Qiu, H.J., Wang, L.L., Kou, Z.H., Tao, X.R., Tseng, C.T.K., A Conformation-Dependent Neutralizing Monoclonal Antibody Specifically Targeting Receptor-Binding Domain in Middle East Respiratory Syndrome Coronavirus Spike Protein (2014) J. Virol., 88, pp. 7045-7053; Tang, X.C., Agnihothram, S.S., Jiao, Y.J., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. USA, 111, p. 6863; Johnson, R.F., Bagci, U., Keith, L., Tang, X.C., Mollura, D.J., Zeitlin, L., Qin, J., Bohorova, N., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Ying, T.L., Du, L.Y., Ju, T.W., Prabakaran, P., Lau, C.C.Y., Lu, L., Liu, Q., Wang, Y.P., Exceptionally Potent Neutralization of Middle East Respiratory Syndrome Coronavirus by Human Monoclonal Antibodies (2014) J. Virol., 88, pp. 7796-7805; Houser, K.V., Gretebeck, L., Ying, T.L., Wang, Y.P., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis with a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection (2016) J. Infect. Dis., 213, pp. 1557-1561; Agrawal, A.S., Ying, T.L., Tao, X.R., Garron, T., Algaissi, A., Wang, Y.P., Wang, L.L., Dimitrov, D.S., Passive Transfer of a Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection (2016) Sci. Rep., 6; van Doremalen, N., Falzarano, D., Ying, T.L., de Wit, E., Bushmaker, T., Feldmann, F., Okumura, A., Hanley, P.W., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antivir. Res., 143, pp. 30-37; Corti, D., Zhao, J.C., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; Zhao, J.C., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J.X., Gale, M.J., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Corti, D., Passini, N., Lanzavecchia, A., Zambon, M., Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome (2016) J. Infect. Public Health, 9, pp. 231-235; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; de Wit, E., Feldmann, F., Okumura, A., Horne, E., Haddock, E., Saturday, G., Scott, D., Lipsich, L., Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets (2018) Antivir. Res., 156, pp. 64-71; Chen, Z., Bao, L.L., Chen, C., Zou, T.T., Xue, Y., Li, F.D., Lv, Q., Cui, S., Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset (2017) J. Infect. Dis., 215, pp. 1807-1815; Jiang, L.W., Wang, N.S., Zuo, T., Shi, X.L., Poon, K.M.V., Wu, Y.K., Gao, F., Guo, J.Y., Potent Neutralization of MERS-CoV by Human Neutralizing Monoclonal Antibodies to the Viral Spike Glycoprotein (2014) Sci. Transl. Med., 6, p. 234ra59; Zhang, S.Y., Zhou, P.P., Wang, P.F., Li, Y.Y., Jiang, L.W., Jia, W.X., Wang, H., Shi, X.L., Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein (2018) Cell Rep., 24, pp. 441-452; Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Wang, P., Zhou, J., Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus from a Recovered Patient (2018) J. Infect. Dis., 218, pp. 1249-1260; Niu, P., Zhao, G., Deng, Y., Sun, S., Wang, W., Zhou, Y., Tan, W., A novel human mAb (MERS-GD27) provides prophylactic and postexposure efficacy in MERS-CoV susceptible mice (2018) Sci. China Life Sci., 61, pp. 1280-1282; Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N., Hamers, R., Naturally-Occurring Antibodies Devoid of Light-Chains (1993) Nature, 363, pp. 446-448; de Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S., Wyns, L., Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies (2016) Proc. Natl. Acad. Sci. USA, 103, pp. 4586-4591; Muyldermans, S., Nanobodies: Natural Single-Domain Antibodies (2013) Annu. Rev. Biochem., 82, pp. 775-797; Wilken, L., McPherson, A., Application of camelid heavy-chain variable domains (VHHs) in prevention and treatment of bacterial and viral infections (2018) Int. Rev. Immunol., 37, pp. 69-76; van Heeke, G., Allosery, K., de Brabandere, V., de SmedtDetalle, T., de Fougerolles, L.A., Nanobodies(R) as inhaled biotherapeutics for lung diseases (2017) Pharmacol. Ther., 169, pp. 47-56; Detalle, L., Stohr, T., Palomo, C., Piedra, P.A., Gilbert, B.E., Mas, V., Millar, A., Allosery, K., Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection (2016) Antimicrob. Agents Chemother., 60, pp. 6-13; Stalin Raj, V., Okba, N.M.A., Gutierrez-Alvarez, J., Drabek, D., van Dieren, B., Widagdo, W., Lamers, M.M., Sola, I., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci. Adv., 4; Lu, G.W., Hu, Y.W., Wang, Q.H., Qi, J.X., Gao, F., Li, Y., Zhang, Y.F., Bao, J.K., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, p. 227; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., Li, J., Wang, Y., A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV (2018) J. Virol., 92; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Wang, N., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J. Virol.; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Myers, R., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Eurosurveillance, 17; Song, W.F., Wang, Y., Wang, N.S., Wang, D.L., Guo, J.Y., Fu, L.L., Shi, X.L., Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry (2014) Virology, 471, pp. 49-53; Chen, Y.Z., Lu, S., Jia, H., Deng, Y., Zhou, J.F., Huang, B.Y., Yu, Y.Y., Lou, Y.L., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect., 6; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Haagmans, B.L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) Plos ONE, 8; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; Haagmans, B.L., van den Brand, J.M.A., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., de Waal, L., Verjans, G.M.G.M., Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits (2015) J. Virol., 89, pp. 6131-6135; Haverkamp, A.K., Lehmbecker, A., Spitzbarth, I., Widagdo, W., Haagmans, B.L., Segales, J., Vergara-Alert, J., Osterhaus, A., Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4 (2018) Sci. Rep., 8, p. 9778; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis., 209, pp. 236-242; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X.X., Thomas, M.J., Nagy, L., Infection with MERS-CoV Causes Lethal Pneumonia in the Common Marmoset (2014) Plos Pathog, 10; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Du, L., Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus (2015) Plos ONE, 10","Yu, X.-J.; School of Health Sciences, State Key Laboratory of Virology, Wuhan UniversityChina; email: yuxuejie@whu.edu.cn",,"MDPI AG",19994915,,,"30513619","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85058278105 "Cockrell A.S., Johnson J.C., Moore I.N., Liu D.X., Bock K.W., Douglas M.G., Graham R.L., Solomon J., Torzewski L., Bartos C., Hart R., Baric R.S., Johnson R.F.","57170359900;55494725500;55863517400;56173038300;56473332100;57192182270;57203199836;7201787212;57195063655;56816795100;57200322517;57205312930;57209870019;","A spike-modified Middle East respiratory syndrome coronavirus (MERS-CoV) infectious clone elicits mild respiratory disease in infected rhesus macaques",2018,"Scientific Reports","8","1", 10727,"","",,4,"10.1038/s41598-018-28900-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050408837&doi=10.1038%2fs41598-018-28900-1&partnerID=40&md5=a19c11c24f1b7f3b64c3572f223b3a0c","Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Frederick, MD 21702, United States; Infectious Disease Pathogenesis Section Comparative Medicine Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States; Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States; Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, 8200 Research Plaza, Frederick, MD 21702, United States","Cockrell, A.S., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Johnson, J.C., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Frederick, MD 21702, United States; Moore, I.N., Infectious Disease Pathogenesis Section Comparative Medicine Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States; Liu, D.X., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Frederick, MD 21702, United States; Bock, K.W., Infectious Disease Pathogenesis Section Comparative Medicine Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States; Douglas, M.G., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Graham, R.L., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Solomon, J., Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States; Torzewski, L., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Frederick, MD 21702, United States; Bartos, C., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Frederick, MD 21702, United States; Hart, R., Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Frederick, MD 21702, United States; Baric, R.S., Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Johnson, R.F., Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, 8200 Research Plaza, Frederick, MD 21702, United States","The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-Type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models. © 2018 The Author(s).",,"virus RNA; animal; Coronavirus infection; diagnostic imaging; disease model; genetics; human; image processing; isolation and purification; lung; Middle East respiratory syndrome coronavirus; pathogenicity; pathology; physiology; rhesus monkey; severity of illness index; virology; virus load; virus replication; x-ray computed tomography; Animals; Coronavirus Infections; Disease Models, Animal; Humans; Image Processing, Computer-Assisted; Lung; Macaca mulatta; Middle East Respiratory Syndrome Coronavirus; RNA, Viral; Severity of Illness Index; Tomography, X-Ray Computed; Viral Load; Virus Replication","Arabi, Y.M., Middle East Respiratory Syndrome (2017) The New England Journal of Medicine, 376, pp. 584-594. , https://doi.org/10.1056/NEJMsr1408795; Cockrell, A.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nature Microbiology, 2, p. 16226. , https://doi.org/10.1038/nmicrobiol.2016.226; Li, K., Mouse-Adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proceedings of the National Academy of Sciences of the United States of America, 114, pp. E3119-E3128. , https://doi.org/10.1073/pnas.1619109114; Kim, S.Y., Viral RNA in Blood as Indicator of Severe Outcome in Middle East Respiratory Syndrome Coronavirus Infection (2016) Emerg Infect Dis, 22, pp. 1813-1816. , https://doi.org/10.3201/eid2210.160218; Oh, M.D., Viral Load Kinetics of MERS Coronavirus Infection (2016) The New England Journal of Medicine, 375, pp. 1303-1305. , https://doi.org/10.1056/NEJMc1511695; Zhao, J., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2. , https://doi.org/10.1126/sciimmunol.aan5393; Ng, D.L., Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658. , https://doi.org/10.1016/j.ajpath.2015.10.024; Alsaad, K.O., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection-clinicopathological and ultrastructural study (2017) Histopathology; Chan, J.F., Treatment with Lopinavir/Ritonavir or Interferon-beta1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset (2015) J Infect Dis, 212, pp. 1904-1913. , https://doi.org/10.1093/infdis/jiv392; Johnson, R.F., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , https://doi.org/10.1016/j.virol.2016.01.004; Johnson, R.F., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430. , https://doi.org/10.1016/j.virol.2015.07.013; Munster, V.J., De Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) The New England Journal of Medicine, 368, pp. 1560-1562. , https://doi.org/10.1056/NEJMc1215691; Yao, Y., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209, pp. 236-242. , https://doi.org/10.1093/infdis/jit590; De Wit, E., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 16598-16603. , https://doi.org/10.1073/pnas.1310744110; Falzarano, D., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10, p. e1004250. , https://doi.org/10.1371/journal.ppat.1004250; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Van Doremalen, N., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Research, 143, pp. 30-37. , https://doi.org/10.1016/j.antiviral.2017.03.025; Solomon, J., Douglas, D., Johnson, R., Hammoud, D., (2014) 2014 IEEE 27th International Symposium on Computer-Based Medical Systems, pp. 169-172; Johnson, R.F., Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease (2015) Virology, 481, pp. 124-135. , https://doi.org/10.1016/j.virol.2015.02.044; Johnson, R.F., Exposure of rhesus monkeys to cowpox virus Brighton Red by large-particle aerosol droplets results in an upper respiratory tract disease (2016) The Journal of General Virology, 97, pp. 1942-1954. , https://doi.org/10.1099/jgv.0.000501; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome (2016) Am J Pathol, 186, pp. 78-86. , https://doi.org/10.1016/j.ajpath.2015.09.014; Van Der Velden, V.H., Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus (1998) Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 28, pp. 110-120. , https://doi.org/10.1046/j.1365-2222.1998.00198.x; Hatziioannou, T., HIV-1-induced AIDS in monkeys (2014) Science (New York, N.Y.), 344, pp. 1401-1405. , https://doi.org/10.1126/science.1250761","Cockrell, A.S.; Department of Epidemiology, University of North Carolina-Chapel HillUnited States; email: adam_cockrell@unc.edu",,"Nature Publishing Group",20452322,,,"30013082","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85050408837 "Muth D., Corman V.M., Roth H., Binger T., Dijkman R., Gottula L.T., Gloza-Rausch F., Balboni A., Battilani M., Rihtarič D., Toplak I., Ameneiros R.S., Pfeifer A., Thiel V., Drexler J.F., Müller M.A., Drosten C.","22135222000;34876424800;55747620800;26024630800;13807789300;57204167526;24068495200;36026447200;56059625300;35727164500;55992040800;57204168964;7005761209;35238592100;15753438200;24068857400;7003813990;","Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission",2018,"Scientific Reports","8","1", 15177,"","",,5,"10.1038/s41598-018-33487-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054772697&doi=10.1038%2fs41598-018-33487-8&partnerID=40&md5=bc649fe8258f705c5c1c4a24648b4dba","Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany; German Center for Infection Research (DZIF), Berlin, Germany; Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, Mittelhäusern, 3147, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Noctalis, Centre for Bat Protection and Information, Oberbergstraße 27, Bad Segeberg, 23795, Germany; Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, Ozzano Emilia, (BO) 40064, Italy; Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia; Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm, 89069, Germany; Group Morcegos de Galicia, Drosera Society, Pdo. Magdalena, G-2, 2° esq, As Pontes, 15320, Spain; Institute for Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127, Germany","Muth, D., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Corman, V.M., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Roth, H., Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Binger, T., Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Dijkman, R., Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, Mittelhäusern, 3147, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Gottula, L.T., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Gloza-Rausch, F., Noctalis, Centre for Bat Protection and Information, Oberbergstraße 27, Bad Segeberg, 23795, Germany; Balboni, A., Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, Ozzano Emilia, (BO) 40064, Italy; Battilani, M., Dipartimento di Scienze Mediche Veterinarie, Facoltà di Medicina Veterinaria, Alma Mater Studiorum-Università di Bologna, Via Tolara di Sopra 50, Ozzano Emilia, (BO) 40064, Italy; Rihtarič, D., Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia; Toplak, I., Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, 1000, Slovenia; Ameneiros, R.S., Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm, 89069, Germany, Group Morcegos de Galicia, Drosera Society, Pdo. Magdalena, G-2, 2° esq, As Pontes, 15320, Spain; Pfeifer, A., Institute for Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Thiel, V., Federal Department of Home Affairs, Institute of Virology and Immunology IVI, Bern and Mittelhäusern, Sensemattstrasse 293, Mittelhäusern, 3147, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland; Drexler, J.F., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Müller, M.A., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany; Drosten, C., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Berlin, 10117, Germany, German Center for Infection Research (DZIF), Berlin, Germany, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, Bonn, 53127, Germany","A 29 nucleotide deletion in open reading frame 8 (ORF8) is the most obvious genetic change in severe acute respiratory syndrome coronavirus (SARS-CoV) during its emergence in humans. In spite of intense study, it remains unclear whether the deletion actually reflects adaptation to humans. Here we engineered full, partially deleted (−29 nt), and fully deleted ORF8 into a SARS-CoV infectious cDNA clone, strain Frankfurt-1. Replication of the resulting viruses was compared in primate cell cultures as well as Rhinolophus bat cells made permissive for SARS-CoV replication by lentiviral transduction of the human angiotensin-converting enzyme 2 receptor. Cells from cotton rat, goat, and sheep provided control scenarios that represent host systems in which SARS-CoV is neither endemic nor epidemic. Independent of the cell system, the truncation of ORF8 (29 nt deletion) decreased replication up to 23-fold. The effect was independent of the type I interferon response. The 29 nt deletion in SARS-CoV is a deleterious mutation acquired along the initial human-to-human transmission chain. The resulting loss of fitness may be due to a founder effect, which has rarely been documented in processes of viral emergence. These results have important implications for the retrospective assessment of the threat posed by SARS. © 2018, The Author(s).",,"matrix protein; recombinant protein; sars7a protein, SARS virus; virus RNA; animal; bat; cell culture; cell line; disease carrier; gene deletion; genetics; host pathogen interaction; human; metabolism; physiology; SARS coronavirus; severe acute respiratory syndrome; virology; virus replication; Animals; Cell Line; Cells, Cultured; Chiroptera; Disease Reservoirs; Host-Pathogen Interactions; Humans; Recombinant Proteins; RNA, Viral; SARS Virus; Sequence Deletion; Severe Acute Respiratory Syndrome; Viral Matrix Proteins; Virus Replication","Jones, K.E., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993. , COI: 1:CAS:528:DC%2BD1cXit1ygurg%3D; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral research, 101, pp. 45-56. , COI: 1:CAS:528:DC%2BC3sXhvFyksrnP; Wolfe, N.D., Dunavan, C.P., Diamond, J., Origins of major human infectious diseases (2007) Nature, 447, pp. 279-283. , COI: 1:CAS:528:DC%2BD2sXltlWhs7w%3D; Holmes, E.C., Dudas, G., Rambaut, A., Andersen, K.G., The evolution of Ebola virus: Insights from the 2013-2016 epidemic (2016) Nature, 538, pp. 193-200. , COI: 1:CAS:528:DC%2BC28Xhs1yitL7O; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nature reviews. Microbiology, 11, pp. 836-848. , COI: 1:CAS:528:DC%2BC3sXhslCrt7bN; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF; Yang, X.L., Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus (2015) Journal of virology, 90, pp. 3253-3256; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS pathogens, 13; Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Chiu, R.W., Tracing SARS-coronavirus variant with large genomic deletion (2005) Emerging infectious diseases, 11, pp. 168-170; Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , COI: 1:CAS:528:DC%2BD3sXnvFWgtL0%3D; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 14040-14045. , COI: 1:CAS:528:DC%2BD2MXhtVOqsbbO; Drexler, J.F., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J Virol, 84, pp. 11336-11349. , COI: 1:CAS:528:DC%2BC3cXhsVeisb%2FL; Lau, S.K., Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination (2015) Journal of virology, 89, pp. 10532-10547. , COI: 1:CAS:528:DC%2BC2MXhs1enu7%2FF; Wu, Z., ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus (2016) The Journal of infectious diseases, 213, pp. 579-583. , COI: 1:CAS:528:DC%2BC1cXktFCjsbk%3D; Chen, C.Y., Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis (2007) The Journal of infectious diseases, 196, pp. 405-415. , COI: 1:CAS:528:DC%2BD2sXpt1Glurw%3D; Wong, H.H., Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 (2018) Virology, 515, pp. 165-175. , COI: 1:CAS:528:DC%2BC1cXitlanuw%3D%3D; Keng, C.T., The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells (2006) Virology, 354, pp. 132-142. , COI: 1:CAS:528:DC%2BD28XhtVWqtLrO; Law, P.Y., Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus (2006) FEBS letters, 580, pp. 3643-3648. , COI: 1:CAS:528:DC%2BD28XmtVOmt7o%3D; Sung, S.C., Chao, C.Y., Jeng, K.S., Yang, J.Y., Lai, M.M., The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 (2009) Virology, 387, pp. 402-413. , COI: 1:CAS:528:DC%2BD1MXltVyltbs%3D; Oostra, M., de Haan, C.A., Rottier, P.J., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) Journal of virology, 81, pp. 13876-13888. , COI: 1:CAS:528:DC%2BD2sXhsValsbfO; Yount, B., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) Journal of virology, 79, pp. 14909-14922. , COI: 1:CAS:528:DC%2BD2MXht1CgsbrN; Payne, D.C., Multihospital Outbreak of a Middle East Respiratory Syndrome Coronavirus Deletion Variant, Jordan: A Molecular, Serologic, and Epidemiologic Investigation (2018) Open Forum Infect Di, 5; Lamers, M.M., Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015 (2016) Emerging infectious diseases, 22, pp. 716-719. , COI: 1:CAS:528:DC%2BC2sXivVSrsLs%3D; Pfefferle, S., Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo (2009) Virology journal, 6; Schelle, B., Karl, N., Ludewig, B., Siddell, S.G., Thiel, V., Selective replication of coronavirus genomes that express nucleocapsid protein (2005) Journal of virology, 79, pp. 6620-6630. , COI: 1:CAS:528:DC%2BD2MXksFKhtbk%3D; Sola, I., Moreno, J.L., Zuniga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) Journal of virology, 79, pp. 2506-2516. , COI: 1:CAS:528:DC%2BD2MXitleju7c%3D; McKimm-Breschkin, J.L., Holmes, I.H., Conditions required for induction of interferon by rotaviruses and for their sensitivity to its action (1982) Infect Immun, 36, pp. 857-863. , COI: 1:CAS:528:DyaL38Xkt1Wqsrc%3D, PID: 6178689; Emeny, J.M., Morgan, M.J., Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production (1979) The Journal of general virology, 43, pp. 247-252. , COI: 1:CAS:528:DyaE1MXkslejsLg%3D; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , COI: 1:CAS:528:DC%2BD1MXls1Cmt7k%3D; Biesold, S.E., Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum (2011) PloS one, 6. , COI: 1:CAS:528:DC%2BC3MXhs1GgtbzJ; Kuhl, A., Comparative analysis of Ebola virus glycoprotein interactions with human and bat cells (2011) The Journal of infectious diseases, 204, pp. S840-S849; Hofmann, A., Epigenetic regulation of lentiviral transgene vectors in a large animal model (2006) Mol Ther, 13, pp. 59-66. , COI: 1:CAS:528:DC%2BD2MXhtlShsrnI; Ehlen, L., Epithelial cell lines of the cotton rat (Sigmodon hispidus) are highly susceptible in vitro models to zoonotic Bunya-, Rhabdo-, and Flaviviruses (2016) Virology journal, 13; Lau, S.K., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) Journal of virology, 84, pp. 2808-2819. , COI: 1:CAS:528:DC%2BC3cXjt1eis7w%3D; Drosten, C., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) The New England journal of medicine, 348, pp. 1967-1976. , COI: 1:CAS:528:DC%2BD3sXjslajurw%3D; Zwart, M.P., Elena, S.F., Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution (2015) Annu Rev Virol, 2, pp. 161-179. , COI: 1:CAS:528:DC%2BC2MXhvVSgtrrL; Varble, A., Influenza A virus transmission bottlenecks are defined by infection route and recipient host (2014) Cell Host Microbe, 16, pp. 691-700. , COI: 1:CAS:528:DC%2BC2cXhvVSlt7zO; Bergstrom, C.T., McElhany, P., Real, L.A., Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens (1999) Proceedings of the National Academy of Sciences of the United States of America, 96, pp. 5095-5100. , COI: 1:CAS:528:DyaK1MXjtVKmt7o%3D; Novella, I.S., Elena, S.F., Moya, A., Domingo, E., Holland, J.J., Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness (1995) Journal of virology, 69, pp. 2869-2872. , COI: 1:CAS:528:DyaK2MXltVaitro%3D, PID: 7707510; McCrone, J.T., Lauring, A.S., Genetic bottlenecks in intraspecies virus transmission (2018) Curr Opin Virol, 28, pp. 20-25; Xie, Q., Two deletion variants of Middle East respiratory syndrome coronavirus found in a patient with characteristic symptoms (2017) Archives of virology, 162, pp. 2445-2449. , COI: 1:CAS:528:DC%2BC2sXmtlSis74%3D; Lu, X., Spike gene deletion quasispecies in serum of patient with acute MERS-CoV infection (2017) Journal of medical virology, 89, pp. 542-545. , COI: 1:CAS:528:DC%2BC2sXlt1OhsQ%3D%3D; Niemeyer, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87, pp. 12489-12495. , COI: 1:CAS:528:DC%2BC3sXhslSqsL7O; Kindler, E., Efficient Replication of the Novel Human Betacoronavirus EMC on Primary Human Epithelium Highlights Its Zoonotic Potential (2013) mBio, 4; Diehl, W.E., Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic (2016) Cell, 167, pp. 1088-1098 e1086. , COI: 1:CAS:528:DC%2BC28XhvVWitrnK; Urbanowicz, R.A., Human Adaptation of Ebola Virus during the West African Outbreak (2016) Cell, 167, pp. 1079-1087 e1075. , COI: 1:CAS:528:DC%2BC28XhvVWitrbO; Dietzel, E., Schudt, G., Krahling, V., Matrosovich, M., Becker, S., Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak (2017) Journal of virology, 91. , &; Ueda, M.T., Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency (2017) Genes Cells, 22, pp. 148-159. , COI: 1:CAS:528:DC%2BC2sXos1OjsQ%3D%3D; Wang, M.K., Lim, S.Y., Lee, S.M., Cunningham, J.M., Biochemical Basis for Increased Activity of Ebola Glycoprotein in the 2013–16 Epidemic (2017) Cell Host Microbe, 21, pp. 367-375. , COI: 1:CAS:528:DC%2BC2sXjtlGqs7Y%3D; Marzi, A., Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models (2018) Cell Rep, 23, pp. 1806-1816. , COI: 1:CAS:528:DC%2BC1cXptFCqsLc%3D; Balboni, A., Palladini, A., Bogliani, G., Battilani, M., Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats (2011) Epidemiol Infect, 139, pp. 216-219. , COI: 1:STN:280:DC%2BC3M%2FptVKiug%3D%3D; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Archives of virology, 155, pp. 507-514. , COI: 1:CAS:528:DC%2BC3cXktVSnsrc%3D; Vallo, P., Guillen-Servent, A., Benda, P., Pires, D.B., Koubek, P., Variation of mitochondrial DNA in the Hipposideros caffer complex (Chiroptera: Hipposideridae) and its taxonomic implications (2008) Acta Chiropterol, 10, pp. 193-206; Eckerle, I., Replicative Capacity of MERS Coronavirus in Livestock Cell Lines (2014) Emerging infectious diseases, 20, pp. 276-279; Eckerle, I., Bat airway epithelial cells: a novel tool for the study of zoonotic viruses (2014) PloS one, 9; Dijkman, R., Isolation and characterization of current human coronavirus strains in primary human epithelia cultures reveals differences in target cell tropism (2013) Journal of virology; Muller, M.A., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) MBio, 3; Muller, M.A., Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein (2010) Virology journal, 7; Hofmann, H., Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor (2004) Biochem Biophys Res Commun, 319, pp. 1216-1221. , COI: 1:CAS:528:DC%2BD2cXkvVClurk%3D; Morris, D.W., An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis (2014) Hum Mol Genet, 23, pp. 3316-3326. , COI: 1:CAS:528:DC%2BC2cXosVOmtrw%3D; Matrosovich, M., Matrosovich, T., Garten, W., Klenk, H.D., New low-viscosity overlay medium for viral plaque assays (2006) Virology journal, 3","Drosten, C.; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Charitéplatz 1, Germany; email: christian.drosten@charite.de",,"Nature Publishing Group",20452322,,,"30310104","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85054772697 "Veit S., Jany S., Fux R., Sutter G., Volz A.","57205137858;56333497100;55314860600;56503318200;42762529900;","CD8+ T cells responding to the middle east respiratory syndrome coronavirus nucleocapsid protein delivered by vaccinia virus MVA in mice",2018,"Viruses","10","12", 718,"","",,3,"10.3390/v10120718","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058759282&doi=10.3390%2fv10120718&partnerID=40&md5=39a98516b0c7d0607568cb0bcf4d8b63","Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, 80539, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, 80539, Germany","Veit, S., Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, 80539, Germany; Jany, S., Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, 80539, Germany; Fux, R., Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, 80539, Germany; Sutter, G., Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, 80539, Germany, German Center for Infection Research (DZIF), partner site Munich, Munich, 80539, Germany; Volz, A., Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, 80539, Germany, German Center for Infection Research (DZIF), partner site Munich, Munich, 80539, Germany","Middle East respiratory syndrome coronavirus (MERS-CoV), a novel infectious agent causing severe respiratory disease and death in humans, was first described in 2012. Antibodies directed against the MERS-CoV spike (S) protein are thought to play a major role in controlling MERS-CoV infection and in mediating vaccine-induced protective immunity. In contrast, relatively little is known about the role of T cell responses and the antigenic targets of MERS-CoV that are recognized by CD8+ T cells. In this study, the highly conserved MERS-CoV nucleocapsid (N) protein served as a target immunogen to elicit MERS-CoV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for generating MVA-MERS-N expressing recombinant N protein. Overlapping peptides spanning the whole MERS-CoV N polypeptide were used to identify major histocompatibility complex class I/II-restricted T cell responses in BALB/c mice immunized with MVA-MERS-N. We have identified a H2-d restricted decamer peptide epitope in the MERS-N protein with CD8+ T cell antigenicity. The identification of this epitope, and the availability of the MVA-MERS-N candidate vaccine, will help to evaluate MERS-N-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of MERS-CoV infection. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","MERS-CoV; MERS-CoV nucleocapsid protein; Murine CD8+ T cell epitope; MVA vaccine","gamma interferon; modified vaccinia virus Ankara 5T4 vaccine; modified vaccinia virus Ankara Middle East respiratory syndrome coronavirus N protein vaccine; nucleocapsid protein; recombinant protein; synthetic peptide; unclassified drug; virus spike protein; epitope; neutralizing antibody; nucleocapsid protein; virus antibody; virus vaccine; animal cell; animal experiment; animal model; antigenicity; Article; CD8+ T lymphocyte; cell selection; controlled study; enzyme linked immunospot assay; female; flow cytometry; gene expression; gene sequence; genetic stability; histocompatibility complex; homologous recombination; human; human cell; immune response; immunization; immunogenicity; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; polymerase chain reaction; virogenesis; Western blotting; animal; Bagg albino mouse; CD8+ T lymphocyte; cellular immunity; Coronavirus infection; genetics; immunology; vaccination; Vaccinia virus; Animals; Antibodies, Neutralizing; Antibodies, Viral; CD8-Positive T-Lymphocytes; Coronavirus Infections; Epitopes, T-Lymphocyte; Female; Immunity, Cellular; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Nucleocapsid Proteins; Recombinant Proteins; Vaccination; Vaccinia virus; Viral Vaccines","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/, accessed on 22 November 2018; Park, J.E., Jung, S., Kim, A., Park, J.E., MERS transmission and risk factors: A systematic review (2018) BMC Public Health, 18, p. 574; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 49-55; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia (2018) Mbio, 9; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol. Health, 37; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: The hallmark of Middle East respiratory syndrome coronavirus with review of the literature (2018) J. Hosp. Infect.; Oh, M.-D., Park, W.B., Park, S.-W., Choe, P.G., Bang, J.H., Song, K.-H., Kim, E.S., Kim, N.J., Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J. Int. Med., 33, pp. 233-246; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Leyten, E., Groeneveld, P., Jansen, C., Thurkow, I., Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014 (2014) Eurosurveillance, 19; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis., 20, pp. 1012-1015; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: Epidemiology and disease control measures (2014) Infect. Drug Resist., 7, pp. 281-287; Rottingen, J.A., Gouglas, D., Feinberg, M., Plotkin, S., Raghavan, K.V., Witty, A., Draghia-Akli, R., Piot, P., New Vaccines against Epidemic Infectious Diseases (2017) N. Engl. J. Med., 376, pp. 610-613; Cho, H., Excler, J.L., Kim, J.H., Yoon, I.K., Development of Middle East Respiratory Syndrome Coronavirus vaccines—Advances and challenges (2018) Hum. Vaccin. Immunother., 14, pp. 304-313; Volz, A., Sutter, G., Modified Vaccinia Virus Ankara (2017) History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv. Virus Res, 97, pp. 187-243. , CrossRef, PubMed; Kolb, A.F., Pewe, L., Webster, J., Perlman, S., Whitelaw, C.B., Siddell, S.G., Virus-neutralizing monoclonal antibody expressed in milk of transgenic mice provides full protection against virus-induced encephalitis (2001) J. Virol., 75, pp. 2803-2809; Sune, C., Smerdou, C., Anton, I.M., Abril, P., Plana, J., Enjuanes, L., A conserved coronavirus epitope, critical in virus neutralization, mimicked by internal-image monoclonal anti-idiotypic antibodies (1991) J. Virol., 65, pp. 6979-6984; Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P.L., Murphy, B.R., Subbarao, K., Moss, B., Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 6641-6646; Yang, Z.Y., Kong, W.P., Huang, Y., Roberts, A., Murphy, B.R., Subbarao, K., Nabel, G.J., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice (2004) Nature, 428, pp. 561-564; Malczyk, A.H., Kupke, A., Prufer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Tondera, C., A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform (2015) J. Virol., 89, pp. 11654-11667; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7, p. 301ra132; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D., Sutter, G., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J. Virol., 87, pp. 11950-11954; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Becker, S., Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein (2015) J. Virol., 89, pp. 8651-8656; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., Hensley, L.E., Schnell, M.J., One-Health: A Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus (2017) J. Virol, 91, p. e02040. , [CrossRef]; Lau, S.K., Woo, P.C., Wong, B.H., Tsoi, H.W., Woo, G.K., Poon, R.W., Chan, K.H., Yuen, K.Y., Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in sars patients by enzyme-linked immunosorbent assay (2004) J. Clin. Microbiol., 42, pp. 2884-2889; Timani, K.A., Ye, L., Ye, L., Zhu, Y., Wu, Z., Gong, Z., Cloning, sequencing, expression, and purification of SARS-associated coronavirus nucleocapsid protein for serodiagnosis of SARS (2004) J. Clin. Virol., 30, pp. 309-312; Chen, Y., Chan, K.H., Kang, Y., Chen, H., Luk, H.K., Poon, R.W., Chan, J.F., Lau, S.K., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg. Microbes Infect., 4; He, Q., Du, Q., Lau, S., Manopo, I., Lu, L., Chan, S.W., Fenner, B.J., Kwang, J., Characterization of monoclonal antibody against SARS coronavirus nucleocapsid antigen and development of an antigen capture ELISA (2005) J. Virol. Methods, 127, pp. 46-53; Yamaoka, Y., Matsuyama, S., Fukushi, S., Matsunaga, S., Matsushima, Y., Kuroyama, H., Kimura, H., Ryo, A., Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen (2016) Front. Microbiol., 7, p. 509; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Hsin, W.-C., Chang, C.-H., Chang, C.-Y., Peng, W.-H., Chien, C.-L., Chang, M.-F., Chang, S.C., Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus (2018) J. Biomed. Sci., 25, p. 47; Almazan, F., Galan, C., Enjuanes, L., The nucleoprotein is required for efficient coronavirus genome replication (2004) J. Virol., 78, pp. 12683-12688; Zuniga, S., Cruz, J.L., Sola, I., Mateos-Gomez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J. Virol., 84, pp. 2169-2175; Spiegel, M., Pichlmair, A., Martinez-Sobrido, L., Cros, J., Garcia-Sastre, A., Haller, O., Weber, F., Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3 (2005) J. Virol., 79, pp. 2079-2086; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J. Virol., 81, pp. 548-557; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Aboagye, J.O., Yew, C.W., Ng, O.W., Monteil, V.M., Mirazimi, A., Tan, Y.J., Overexpression of the nucleocapsid protein of Middle East respiratory syndrome coronavirus up-regulates CXCL10 (2018) Biosci. Rep., 38; Tang, F., Quan, Y., Xin, Z.T., Wrammert, J., Ma, M.J., Lv, H., Wang, T.B., Liu, W., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study (2011) J. Immunol., 186, pp. 7264-7268; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., Perlman, S., Xia, X., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., Frieman, M.B., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35, pp. 1586-1589; Jung, S.Y., Kang, K.W., Lee, E.Y., Seo, D.W., Kim, H.L., Kim, H., Kwon, T., Lee, S.M., Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus (2018) Vaccine, 36, pp. 3468-3476. , [CrossRef] [PubMed]; Liu, W.J., Lan, J., Liu, K., Deng, Y., Yao, Y., Wu, S., Chen, H., Zhao, M., Protective T Cell Responses Featured by Concordant Recognition of Middle East Respiratory Syndrome Coronavirus-Derived CD8+ T Cell Epitopes and Host MHC (2017) J. Immunol., 198, pp. 873-882; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Kremer, M., Volz, A., Kreijtz, J.H., Fux, R., Lehmann, M.H., Sutter, G., Easy and efficient protocols for working with recombinant vaccinia virus MVA (2012) Methods Mol. Biol., 890, pp. 59-92; Wyatt, L.S., Shors, S.T., Murphy, B.R., Moss, B., Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model (1996) Vaccine, 14, pp. 1451-1458; Fiore-Gartland, A., Manso, B.A., Friedrich, D.P., Gabriel, E.E., Finak, G., Moodie, Z., Hertz, T., Gilbert, P.B., Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials (2016) Plos ONE, 11; Malm, M., Tamminen, K., Vesikari, T., Blazevic, V., Norovirus-Specific Memory T Cell Responses in Adult Human Donors (2016) Front. Microbiol., 7, p. 1570; Tscharke, D.C., Woo, W.P., Sakala, I.G., Sidney, J., Sette, A., Moss, D.J., Bennink, J.R., Yewdell, J.W., Poxvirus CD8+ T-cell determinants and cross-reactivity in BALB/c mice (2006) J. Virol., 80, pp. 6318-6323; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Drosten, C., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Song, Y.-J., Yang, J.-S., Yoon, H.J., Nam, H.-S., Lee, S.Y., Cheong, H.-K., Park, W.-J., Kim, S.S., Asymptomatic Middle East Respiratory Syndrome coronavirus infection using a serologic survey in Korea (2018) Epidemiol. Health, 40; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Hall, A.J., Peiris, J.S., Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015 (2015) Emerg. Infect. Dis., 21, pp. 2197-2200; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Narayanan, K., Maeda, A., Maeda, J., Makino, S., Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells (2000) J. Virol., 74, pp. 8127-8134; Zhao, P., Cao, J., Zhao, L.J., Qin, Z.L., Ke, J.S., Pan, W., Ren, H., Qi, Z.T., Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine (2005) Virology, 331, pp. 128-135; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses (2016) Immunity, 44, pp. 1379-1391; Zhao, J., Zhao, J., Perlman, S., T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice (2010) J. Virol., 84, pp. 9318-9325; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Dada, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci. Immunol, 2, p. 14. , CrossRef; Haagmans, B.L., van den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., de Waal, L., Verjans, G.M., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135; Ascough, S., Paterson, S., Chiu, C., Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus (2018) Front. Immunol, 9, p. 323. , [CrossRef]; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Nagy, L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) Plos Pathog, 10; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Chang, J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16598-16603; Papageorgiou, N., Lichiere, J., Baklouti, A., Ferron, F., Sevajol, M., Canard, B., Coutard, B., Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering (2016) Acta Crystallogr. Sect. D Struct. Biol., 72, pp. 192-202; Lee, J.Y., Kim, Y.J., Chung, E.H., Kim, D.W., Jeong, I., Kim, Y., Yun, M.R., Joh, J.S., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect. Dis., 17, p. 498; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Sui, J., Deming, M., Rockx, B., Liddington, R.C., Zhu, Q.K., Baric, R.S., Marasco, W.A., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J. Virol., 88, pp. 13769-13780; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants (2017) J. Virol, 91, p. e01651","Sutter, G.; Institute for Infectious Diseases and Zoonoses, LMU MunichGermany; email: gerd.sutter@lmu.de",,"MDPI AG",19994915,,,"30558354","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85058759282 "Elrggal M.E., Karami N.A., Rafea B., Alahmadi L., Al Shehri A., Alamoudi R., Koshak H., Alkahtani S., Cheema E.","57189852546;56613590700;57204623854;57204618928;57204628152;57204622245;57204618603;57091437300;56453380000;","Evaluation of preparedness of healthcare student volunteers against Middle East respiratory syndrome coronavirus (MERS-CoV) in Makkah, Saudi Arabia: a cross-sectional study",2018,"Journal of Public Health (Germany)","26","6",,"607","612",,1,"10.1007/s10389-018-0917-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056431264&doi=10.1007%2fs10389-018-0917-5&partnerID=40&md5=fd1b9d62e8f9b90cc11aeb937e0573bd","Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia; College of Dentistry, Alfarabi College, Jeddah, Saudi Arabia; Clinical Pharmacy Department, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia; Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, United Kingdom","Elrggal, M.E., Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia; Karami, N.A., Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia; Rafea, B., Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia; Alahmadi, L., Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia; Al Shehri, A., Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia; Alamoudi, R., College of Dentistry, Alfarabi College, Jeddah, Saudi Arabia; Koshak, H., College of Dentistry, Alfarabi College, Jeddah, Saudi Arabia; Alkahtani, S., Clinical Pharmacy Department, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia; Cheema, E., Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Makkah, Saudi Arabia, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, United Kingdom","Aim: To assess the knowledge and attitude of senior medical, dental, nursing and pharmacy students toward Middle East respiratory syndrome-corona virus (MERS-CoV) in Saudi Arabia. Subjects and methods: A cross-sectional survey using a 21-item questionnaire was conducted for a 3-month period from November 2015–January 2016 in Makkah, Saudi Arabia. The questionnaire was designed to evaluate students’ understanding and perception of MERS-CoV. An ANOVA test was used to determine the association of study discipline and academic year with the student knowledge score on MERS. Results: A total of 364 students were assessed during the study. The majority (62%) of the participants were in the 20–22-year age group. More than half (53%) were pharmacy students followed by (22%) medical students. More than two thirds (71%) of the participants were aware that MERS is caused by the coronavirus. More than half (59%) of the participants believed that MERS can be transmitted through direct or indirect contact with infected camels. A statistically significant association was reported between the study discipline and mean knowledge score (p < 0.0001) with medical students achieving an overall better knowledge score compared with students from other study disciplines. Conclusion: Overall, students had good knowledge about MERS epidemiology, transmission and the recommended protective measures. However, students expressed their reluctance to work in healthcare facilities with inadequate MERS infection control isolation policies. © 2018, The Author(s).","Attitude; Knowledge; MERS-CoV; Questionnaire","adult; Article; cross-sectional study; dental student; evaluation study; female; health care personnel; health student; human; knowledge; male; medical student; Middle East respiratory syndrome; nursing student; pharmacy student; Saudi Arabia; structured questionnaire; student attitude; virus transmission; volunteer","Abubakar, I., Gautret, P., Brunette, G.W., Blumberg, L., Johnson, D., Poumerol, G., Memish, Z.A., Khan, A.S., Global perspectives for prevention of infectious diseases associated with mass gatherings (2012) Lancet Infect Dis, 12, pp. 66-74; Ahmed, Q.A., Barbeschi, M., Memish, Z.A., The quest for public health security at Hajj: the WHO guidelines on communicable disease alert and response during mass gatherings (2009) Travel Med Infect Dis, 7, pp. 226-230; Al-Mohrej, A., Agha, S., Are Saudi medical students aware of middle east respiratory syndrome coronavirus during an outbreak? (2017) J Infect Public Health, 10, pp. 388-395; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual Hajj: potential risks and mitigation strategies (2013) Curr Opin Pulm Med, 19, pp. 192-197; Alborzi, A., Oskoee, S., Pourabbas, B., Alborzi, S., Astaneh, B., Gooya, M.M., Kaviani, M.J., Meningococcal carrier rate before and after hajj pilgrimage: effect of single dose ciprofloxacin on carriage (2008) East Mediterr Health J, 14, pp. 277-282. , COI: 1:STN:280:DC%2BD1czptl2rsA%3D%3D, PID: 18561718; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Memish, Z.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Baseer, M.A., Ansari, S.H., AlShamrani, S.S., Alakras, A.R., Mahrous, R., Alenazi, A.M., Awareness of droplet and airborne isolation precautions among dental health professionals during the outbreak of corona virus infection in Riyadh city, Saudi Arabia (2016) J Clin Exp Dent, 8, pp. e379-e387; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17, p. 20290. , COI: 1:STN:280:DC%2BC3s%2Fmtlaqtg%3D%3D, PID: 23078800; Brug, J., Aro, A.R., Oenema, A., de Zwart, O., Richardus, J.H., Bishop, G.D., SARS risk perception, knowledge, precautions, and information sources, the Netherlands (2004) Emerg Infect Dis, 10, pp. 1486-1489; Butt, T.S., Koutlakis-Barron, I., AlJumaah, S., AlThawadi, S., AlMofada, S., Infection control and prevention practices implemented to reduce transmission risk of Middle East respiratory syndrome-coronavirus in a tertiary care institution in Saudi Arabia (2016) Am J Infect Control, 44, pp. 605-611; (2016) Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS), , https://www.cdc.gov/coronavirus/mers/hcp/home-care-patient.html#people, Centers for disease control and prevention (cdc), Available Online, Accessed 18 August 2017; Gatrad, A.R., Sheikh, A., Hajj: journey of a lifetime (2005) BMJ, 330, pp. 133-137; Hoda, J., Identification of information types and sources by the public for promoting awareness of Middle East respiratory syndrome coronavirus in Saudi Arabia (2016) Health Educ Res, 31, pp. 12-23; Khan, M.U., Shah, S., Ahmad, A., Fatokun, O., Knowledge and attitude of healthcare workers about Middle East respiratory syndrome in multispecialty hospitals of Qassim, Saudi Arabia (2014) BMC Public Health, 14, p. 1281; Kharma, M.Y., Alalwani, M.S., Amer, M.F., Tarakji, B., Aws, G., Assessment of the awareness level of dental students toward Middle East respiratory syndrome-coronavirus (2015) J Int Soc Prev Community Dent, 5, pp. 163-169; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369, pp. 884-886; (2014) Infection Prevention/Control and Management Guidelines for Patients with Middle East Respiratory Syndrome Coronavirus (Mers-Cov) Infection, , http://www.moh.gov.sa/en/CCC/StaffRegulations/Corona/Documents/GuidelinesforCoronaPatients.pdf, Available Online, Accessed 20 August 2017; (2008) Communicable Disease Alert and Response for Mass Gatherings: Technical Workshop, , http://www.who.int/csr/resources/publications/WHO_HSE_EPR_2008_8c.pdf, Geneva. Available Online, Accessed 18 Feburary 2017; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007","Cheema, E.; Clinical Pharmacy Department, College of Pharmacy, Umm-ul-Qura University, Taif Road, P.O. Box 13578, Saudi Arabia; email: E.Cheema.1@warwick.ac.uk",,"Springer Verlag",09431853,,JPHHA,,"English","J. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85056431264 "Alfieri A.A., Ribeiro J., de Carvalho Balbo L., Lorenzetti E., Alfieri A.F.","56216806200;53878373200;57201665235;54412731700;24450006600;","Dairy calf rearing unit and infectious diseases: diarrhea outbreak by bovine coronavirus as a model for the dispersion of pathogenic microorganisms",2018,"Tropical Animal Health and Production","50","8",,"1937","1940",,,"10.1007/s11250-018-1592-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045612129&doi=10.1007%2fs11250-018-1592-9&partnerID=40&md5=f64708d04632ffe052dfe71dd6fc61bb","Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil; National Institute of Science and Technology for Dairy Production Chain (INCT – LEITE), Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Brazil","Alfieri, A.A., Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil, National Institute of Science and Technology for Dairy Production Chain (INCT – LEITE), Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil; Ribeiro, J., Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil; de Carvalho Balbo, L., Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil; Lorenzetti, E., Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil, Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Brazil; Alfieri, A.F., Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Parana 86057-970, Brazil, Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Londrina, Brazil","Dairy calf rearing unit is a management system that is only recently being implemented by some milk producer’s cooperatives in southern Brazil. However, aspects related to the health profile of the heifer calves that arrive in the rearing unit as well as about biosecurity practices and microbiological challenges have not yet been evaluated in this rearing system in a tropical country. Diarrhea is the main and most frequent consequence of enteric infections in newborn calves. This study, through some etiological and epidemiological characteristics of an outbreak of neonatal diarrhea, has the aim to alert to the possibility of pathogenic microorganism spread in a dairy heifer calf rearing unit. The diarrhea outbreak presented some non-regular characteristics observed in bovine coronavirus (BCoV) enteric infections in dairy calves. The spread of infection was extremely rapid (1 week); the attack rate (> 50%) was much higher than that observed in calves subjected to conventional rearing; and the age range (5 to 90 days) of the affected heifer calves was much broader than that often observed in the BCoV diarrhea worldwide. These unusual epidemiological characteristics observed in this BCoV diarrhea outbreak raise awareness of the health threat present in calf rearing units as well as of the easy and rapid viral spread in a population of young animals from different dairy herds and, therefore, with very distinct immunological status. © 2018, Springer Science+Business Media B.V., part of Springer Nature.","BCoV; Biosecurity; Dairy calf; Enteric infection; Risk infection","animal; bovine; Bovine coronavirus; Brazil; cattle disease; Coronavirus infection; dairying; diarrhea; epidemic; female; immune system; incidence; procedures; time factor; veterinary medicine; virology; Animals; Brazil; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Dairying; Diarrhea; Disease Outbreaks; Female; Immune System; Incidence; Time Factors","Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., French, N., Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms (2015) Veterinary Journal, 203, pp. 155-160; Alfieri, A.A., Leite, J.P., Alfieri, A.F., Jiang, B., Glass, R.I., Gentsch, J.R., Detection of field isolates of human and animal group C rotavirus by reverse transcription-polymerase chain reaction and digoxigenin-labeled oligonucleotide probes (1999) Journal Virology Methods, 83, pp. 35-43. , COI: 1:CAS:528:DC%2BD3cXhslWi; Alfieri, A.A., Parazzi, M.E., Takiuchi, E., Medici, K.C., Alfieri, A.F., Frequency of group A rotavirus in diarrhoeic calves in Brazilian cattle herds, 1998-2002 (2006) Tropical Animal Health and Production, 38, pp. 521-526. , COI: 1:STN:280:DC%2BD2s%2FmtFGhuw%3D%3D; Ammar, S.S., Mokhtaria, K., Tahar, B.B., Amar, A.A., Redha, B.A., Yuva, B., Mohamed, H.S., Laid, B., Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria (2014) Asian Pacific Journal of Tropical Biomedicine, 4, pp. 318-322; Barry, A.F., Alfieri, A.F., Stipp, D.T., Alfieri, A.A., Bovine coronavirus detection in a collection of diarrheic stool samples positive for group A bovine rotavirus (2009) Brazilian Archives of Biology and Technology, 52, pp. 45-49; Coura, F.M., Freitas, M.D., Ribeiro, J., de Leme, R.A., de Souza, C., Alfieri, A.A., Facury Filho, E.J., Heinemann, M.B., Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd (2015) Tropical Animal Health and Production, 47, pp. 3-11; Gentsch, J.R., Glass, R.I., Woods, P., Gouvea, V., Gorziglia, M., Flores, J., Das, B.K., Bhan, M.K., Identification of group A rotavirus gene 4 types by polymerase chain reaction (1992) Journal of Clinical Microbiology, 30, pp. 1365-1373. , COI: 1:CAS:528:DyaK3sXnsVCiug%3D%3D, PID: 1320625; Gouvea, V., Glass, R.I., Woods, P., Taniguchi, K., Clark, H.F., Forrester, B., Fang, Z.Y., Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens (1990) Journal of Clinical Microbiology, 28, pp. 276-282. , COI: 1:CAS:528:DyaK3cXhvFClsbY%3D, PID: 2155916; Gouvea, V., Allen, J.R., Glass, R.I., Fang, Z.Y., Bremont, M., Cohen, J., McCrae, M.A., Caul, E.O., Detection of group B and C rotaviruses by polymerase chain reaction (1991) Journal of Clinical Microbiology, 29, pp. 519-523. , COI: 1:STN:280:DyaK3M3ksV2rsA%3D%3D, PID: 1645368; Henriksen, S.A., Pohlenz, J.F.L., (1981) Staining of Cryptosporidia by a Modified Ziehl-Neelsen Technique, Acta Veterinaria Scandinavica, pp. 594-596; Jerez, J.A., Brandão, P.E., Buzinaro, M.G., Gregori, F., Rosales, C.A.R., Ito, F.H., Sakai, T., Detecção de rotavírus e coronavírus em fezes de bezerros neonatos com diarreia criados em vários municípios do Estado de São Paulo, Brasil. [in Portugues] (2002) Arquivos do Instituto Biológico, 69, pp. 19-23; Koutny, H., Joachim, A., Tichy, A., Baumgartner, W., Bovine Eimeria species in Austria (2012) Parasitology Research, 110, pp. 1893-1901. , COI: 1:STN:280:DC%2BC38zovVSgsg%3D%3D; Lorenzetti, E., Leme, R.A., Ribeiro, J., Souza, V.R.A., Alfieri, A.F., Alfieri, A.A., Neonatal diarrhea by bovine coronavirus (BCoV) in beef cattle herds (2013) Semina: Ciências Agrárias, 34, pp. 3795-3800; Martella, V., Banyai, K., Matthijnssens, J., Buonavoglia, C., Ciarlet, M., Zoonotic aspects of rotaviruses (2010) Veterinary Microbiology, 140, pp. 246-255. , COI: 1:STN:280:DC%2BC3c%2Fpt12msQ%3D%3D; Meganck, V., Hoflack, G., Opsomer, G., Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy (2014) Acta Veterinaria Scandinavica, 56, p. 75; Park, S.J., Jeong, C., Yoon, S.S., Choy, H.E., Saif, L.J., Park, S.H., Kim, Y.J., Cho, K.O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) Journal of Clinical Microbiology, 44, pp. 3178-3188. , COI: 1:CAS:528:DC%2BD28XhtVGnt7zJ; Rocha, T.G., Silva, F.D., Gregori, F., Alfieri, A.A., Buzinaro, M.D., Fagliari, J.J., Longitudinal study of bovine rotavirus group A in newborn calves from vaccinated and unvaccinated dairy herds (2017) Tropical Animal Health and Production, 49, pp. 783-790; Stipp, D.T., Barry, A.F., Alfieri, A.F., Takiuchi, E., Amude, A.M., Alfieri, A.A., Frequency of BCoV detection by a semi-nested PCR assay in faeces of calves from Brazilian cattle herds (2009) Tropical Animal Health and Production, 41, pp. 1563-1567; Suler, D., Mullins, D., Rudge, T., Ashurst, J., Cryptosporidium parvum Infection Following Contact with Livestock (2016) North American Journal of Medical Sciences, 8, pp. 323-325; Takiuchi, E., Stipp, D.T., Alfieri, A.F., Alfieri, A.A., Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control (2006) Journal of Virological Methods, 131 (2), pp. 148-154. , COI: 1:CAS:528:DC%2BD28XksVShug%3D%3D; Walker, W.L., Epperson, W.B., Wittum, T.E., Lord, L.K., Rajala-Schultz, P.J., Lakritz, J., Characteristics of dairy calf ranches: Morbidity, mortality, antibiotic use practices, and biosecurity and biocontainment practices (2012) Journal of Dairy Science, 95, pp. 2204-2214. , COI: 1:CAS:528:DC%2BC38Xkslaktrs%3D","Alfieri, A.A.; National Institute of Science and Technology for Dairy Production Chain (INCT – LEITE), Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitario, PO Box 10011, Brazil; email: alfieri@uel.br",,"Springer Netherlands",00494747,,TAHPA,"29671238","English","Trop. Anim. Health Prod.",Article,"Final",Open Access,Scopus,2-s2.0-85045612129 "Deng Y., Lan J., Bao L., Huang B., Ye F., Chen Y., Yao Y., Wang W., Qin C., Tan W.","36238838100;24376550300;35314489100;35082078200;56992108600;57188840805;55373035900;7501755105;7102688076;7401959748;","Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus",2018,"Emerging Microbes and Infections","7","1", 56,"","",,5,"10.1038/s41426-018-0056-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044961392&doi=10.1038%2fs41426-018-0056-7&partnerID=40&md5=e7dd39bc8b25496cbf030897b40677e9","MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Heibei Province, 050017, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical Collage (PUMC), MOH Key Laboratory of Human Disease Comparative Medicine, Beijing, 100021, China","Deng, Y., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Lan, J., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China, Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Heibei Province, 050017, China; Bao, L., Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical Collage (PUMC), MOH Key Laboratory of Human Disease Comparative Medicine, Beijing, 100021, China; Huang, B., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Ye, F., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Chen, Y., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Yao, Y., Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical Collage (PUMC), MOH Key Laboratory of Human Disease Comparative Medicine, Beijing, 100021, China; Wang, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Qin, C., Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical Collage (PUMC), MOH Key Laboratory of Human Disease Comparative Medicine, Beijing, 100021, China; Tan, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China","The persistent public health threat of infection with Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the need for an effective and safe MERS-CoV vaccine. In this study, we prepared and vaccinated mice with either a Spike (S) protein or inactivated whole MERS-CoV (IV) with a combined adjuvant (alum+CpG) as a vaccine formulation. Similar levels of the anti-S protein IgG response and neutralizing activity were induced by both the S protein and IV vaccines. In addition, immune responses against three other structural proteins, the envelope (E), membrane (M), and nucleocapsid (N) proteins, were also detected in sera of mice that received IV. No antigen-specific T-cell immunity was detected after vaccination based on the interferon-γ ELISpot assay. Mice were transduced with Ad5-hDPP4 after the final immunization and were then challenged with MERS-CoV (1 × 105 plaque-forming units). Compared with the control group (adjuvant alone), mice immunized with the S protein or IV showed slightly lower pathological damage in the lung, as well as reduced antigen expression and lung virus titers. Mice that received IV formulations also showed increased protective immunity (almost no live virus was isolated from the lung). In conclusion, our data indicate that immunization with our IV formulation induced enhanced protection in mice compared to immunization with the S protein against MERS-CoV, which should be further tested in camels and clinical trials. © 2018 The Author(s).",,"CpG oligodeoxynucleotide; immunoglobulin G; immunological adjuvant; inactivated virus vaccine; Middle East respiratory syndrome coronavirus vaccine; recombinant protein; recombinant s protein; unclassified drug; virus spike protein; virus vaccine; coronavirus spike glycoprotein; immunoglobulin G; immunological adjuvant; inactivated vaccine; neutralizing antibody; virus antibody; virus envelope protein; virus vaccine; adult; animal experiment; animal model; animal tissue; antigen specificity; Article; cellular immunity; comparative study; controlled study; drug formulation; enzyme linked immunosorbent assay; enzyme linked immunospot assay; female; immune response; immunohistochemistry; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; polyacrylamide gel electrophoresis; priority journal; prokaryotic cell; vaccination; virus envelope; virus isolation; virus neutralization; virus nucleocapsid; Western blotting; animal; blood; Coronavirus infection; human; immunization; immunology; lung; virology; Adjuvants, Immunologic; Animals; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Female; Humans; Immunity, Cellular; Immunization; Immunoglobulin G; Lung; Mice; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Vaccines, Inactivated; Viral Envelope Proteins; Viral Vaccines","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367, pp. 1814-1820; Van Boheemen, S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3. , https://doi.org/10.1128/mBio.00473-12; Chan, J.F., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: Current status and novel approaches (2017) Curr. Opin. Virol., 23, pp. 49-58; Modjarrad, K., A roadmap for MERS-CoV research and product development: Report from a World Health Organization consultation (2016) Nat. Med., 22, pp. 701-705; Agnihothram, S., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J. Infect. Dis., 209, pp. 995-1006; Haagmans, B.L., An orthopoxvirus-based vaccine reduces virus excretion after mers-cov infection in dromedary camels (2016) Science, 351, pp. 77-81; Chi, H., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075; Muthumani, K., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7, p. 301ra132; Coleman, C.M., MERS-CoV spike nanoparticles protect mice from MERSCoV infection (2017) Vaccine, 35, pp. 1586-1589; Wang, L., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Lu, G., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Liu, W.J., Protective T cell responses featured by concordant recognition of middle east respiratory syndrome coronavirus-derived CD8+ T cell epitopes and host MHC (2017) J. Immunol., 198, pp. 873-882. , https://doi.org/10.4049/jimmunol.1601542; Tai, W., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Lan, J., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS ONE, 9, p. e112602; Jiaming, L., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Lan, J., Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against middle east respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2, pp. 1438-1446; Gü, X., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Zhang, N., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2015) Cell. Mol. Immunol., 13, pp. 180-190; Agrawal, A.S., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Human Vaccines & Immunotherapeutics, pp. 1-6. , https://doi.org/10.1080/21645515.2016.1177688; Bolles, M., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J. Virol., 85, pp. 12201-12215; Honda-Okubo, Y., Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology (2015) J. Virol., 89, pp. 2995-3007; Iwata-Yoshikawa, N., Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALBc mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine (2014) J. Virol., 88, pp. 8597-8614; Tseng, C.T., Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus (2012) PLoS ONE, 7, p. e35421; Deming, D., Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants (2006) PLoS Med., 3, p. e525; Yasui, F., Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV (2008) J. Immunol., 181, pp. 6337-6348; Shirota, H., Klinman, D.M., Recent progress concerning CpG DNA and its use as a vaccine adjuvant (2014) Expert Rev. Vaccin., 13, pp. 299-312; Kapikian, A.Z., Mitchell, R.H., Chanock, R.M., Shvedoff, R.A., Stewart, C.E., An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine (1969) Am. J. Epidemiol, 89, p. 405; Chuai, X., Poly(I:C)/alum mixed adjuvant priming enhances HBV subunit vaccine-induced immunity in mice when combined with recombinant adenoviral-based HBV vaccine boosting (2013) PLoS ONE, 8, p. e54126; Chen, H., Impact of different adjuvants on immunogenicity of the HBV particle vaccine containing the S + preS1 fusion antigen in Balb/C mice (2010) Chin. J. Biotechnol., 26, p. 74; Chen, Y., A novel neutralizing monoclonal antibody targeting the Nterminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect., 6, p. e37; Wang, Y., Prokaryotic expression, purification and identification of the N protein of middle east respiratory syndrome coronavirus (2014) Chinese Journal of Microbiology and Immunology, 10, pp. 764-769; Song, F., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virusneutralizing antibodies (2013) J. Virol., 87, pp. 11950-11954; Du, L., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Peng, H., Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients (2006) Virology, 351, pp. 466-475; Pang, H., Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: Implications for the design of an effective protein-based vaccine (2004) J. Gen. Virol., 85, pp. 3109-3113; Buchholz, U.J., Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity (2004) Proc. Natl Acad. Sci. USA, 101, pp. 9804-9809; Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., Warren, G., Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus (1984) Nature, 308, pp. 751-752; Pervushin, K., Structure and inhibition of the SARS coronavirus envelope protein ion channel (2009) PLoS Pathog., 5, p. e1000511; Liu, J., The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes (2010) J. Infect. Dis., 202, pp. 1171-1180; Liu, W.J., T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV (2017) Antivir. Res., 137, pp. 82-92; Yang, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl Acad. Sci. USA, 111, pp. 4970-4975","Tan, W.; MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionChina; email: tanwj28@163.com",,"Nature Publishing Group",22221751,,,"29618723","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85044961392 "Alshahrani M.S., Sindi A., Alshamsi F., Al-Omari A., El Tahan M., Alahmadi B., Zein A., Khatani N., Al-Hameed F., Alamri S., Abdelzaher M., Alghamdi A., Alfousan F., Tash A., Tashkandi W., Alraddadi R., Lewis K., Badawee M., Arabi Y.M., Fan E., Alhazzani W.","55178192500;26039585200;55993032000;55883902400;16432748300;57195297154;57194486506;57200440045;6507857242;57210668696;57188669979;57200436321;57200449626;24537988900;56422374100;56925496100;57190671106;57200447875;57211811296;7006443489;55090169700;","Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus",2018,"Annals of Intensive Care","8","1", 3,"","",,7,"10.1186/s13613-017-0350-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041343358&doi=10.1186%2fs13613-017-0350-x&partnerID=40&md5=62c256e5e2025fcc77ecfadf134382d9","Department of Emergency and Critical Care, King Fahad Hospital of the University-Dammam University, PO Box 40236, Al Khobar, 31952, Saudi Arabia; Department of Medicine/Intensive Care, King Abdulaziz University, Jeddah, Saudi Arabia; King Abdulaziz University, Jeddah, Saudi Arabia; King Abdulaziz Medical City, NGHA, Jeddah, Saudi Arabia; Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Medical Director of Critical Care, Dr. Suliman Al-Habib Group, AlFaisal University, Riyadh, Saudi Arabia; Department of Anesthesiology, Dammam University, Dammam, Saudi Arabia; Department of ICU, King Fahad Hospital, Jeddah, Saudi Arabia; Intensive Care Department, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; Department of ICU National Hospital, Internal Medicine and Critical Care, Riyadh, Saudi Arabia; Critical Care Medicine Department, Cairo University Hospitals, Cairo, Egypt; Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Cardiac Surgery, King Abdullah Medical City, Makkah, Saudi Arabia; Department of Surgery/Intensive Care, King Abdulaziz University, Jeddah, Saudi Arabia; Community Medicine Department, Ministry of Health, Jeddah, Saudi Arabia; Department of Medicine, Division of Critical Care, McMaster University, Hamilton, Canada; Department of Critical Care, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada","Alshahrani, M.S., Department of Emergency and Critical Care, King Fahad Hospital of the University-Dammam University, PO Box 40236, Al Khobar, 31952, Saudi Arabia; Sindi, A., Department of Medicine/Intensive Care, King Abdulaziz University, Jeddah, Saudi Arabia; Alshamsi, F., Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Al-Omari, A., Medical Director of Critical Care, Dr. Suliman Al-Habib Group, AlFaisal University, Riyadh, Saudi Arabia; El Tahan, M., Department of Anesthesiology, Dammam University, Dammam, Saudi Arabia; Alahmadi, B., King Abdulaziz University, Jeddah, Saudi Arabia; Zein, A., Department of ICU, King Fahad Hospital, Jeddah, Saudi Arabia; Khatani, N., King Abdulaziz University, Jeddah, Saudi Arabia; Al-Hameed, F., King Abdulaziz Medical City, NGHA, Jeddah, Saudi Arabia, Intensive Care Department, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; Alamri, S., Department of ICU National Hospital, Internal Medicine and Critical Care, Riyadh, Saudi Arabia; Abdelzaher, M., Critical Care Medicine Department, Cairo University Hospitals, Cairo, Egypt; Alghamdi, A., Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Alfousan, F., Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Tash, A., Department of Cardiac Surgery, King Abdullah Medical City, Makkah, Saudi Arabia; Tashkandi, W., Department of Surgery/Intensive Care, King Abdulaziz University, Jeddah, Saudi Arabia; Alraddadi, R., Community Medicine Department, Ministry of Health, Jeddah, Saudi Arabia; Lewis, K., Department of Medicine, Division of Critical Care, McMaster University, Hamilton, Canada; Badawee, M., Department of Critical Care, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Arabi, Y.M., King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Fan, E., Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Alhazzani, W., Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada","Background: Middle East respiratory syndrome (MERS) is caused by a coronavirus (MERS‐CoV) and is characterized by hypoxemic respiratory failure. The objective of this study is to compare the outcomes of MERS-CoV patients before and after the availability of extracorporeal membrane oxygenation (ECMO) as a rescue therapy in severely hypoxemic patients who failed conventional strategies. Methods: We collected data retrospectively on MERS-CoV patients with refractory respiratory failure from April 2014 to December 2015 in 5 intensive care units (ICUs) in Saudi Arabia. Patients were classified into two groups: ECMO versus conventional therapy. Our primary outcome was in-hospital mortality; secondary outcomes included ICU and hospital length of stay. Results: Thirty-five patients were included; 17 received ECMO and 18 received conventional therapy. Both groups had similar baseline characteristics. The ECMO group had lower in-hospital mortality (65 vs. 100%, P = 0.02), longer ICU stay (median 25 vs. 8 days, respectively, P < 0.01), and similar hospital stay (median 41 vs. 31 days, P = 0.421). In addition, patients in the ECMO group had better PaO2/FiO2 at days 7 and 14 of admission to the ICU (124 vs. 63, and 138 vs. 36, P < 0.05), and less use of norepinephrine at days 1 and 14 (29 vs. 80%; and 36 vs. 93%, P < 0.05). Conclusions: ECMO use, as a rescue therapy, was associated with lower mortality in MERS patients with refractory hypoxemia. The results of this, largest to date, support the use of ECMO as a rescue therapy in patients with severe MERS-CoV. © 2018, The Author(s).","Coronavirus infection; Extracorporeal membrane oxygenation; Rescue therapy; Signs and symptoms respiratory","noradrenalin; adult; arterial oxygen tension; Article; clinical article; controlled study; extracorporeal oxygenation; female; gas analysis parameters; hospital mortality; human; inspired oxygen fraction; intensive care unit; length of stay; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; priority journal; Saudi Arabia; treatment outcome","(2017) http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf, 12. , http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf, Assessed; (2017) http://www.moh.gov.sa/en/CCC/PressReleases/Pages/default.aspx, 12. , http://www.moh.gov.sa/en/CCC/PressReleases/Pages/default.aspx, Assessed; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P, PID: 23075143; State of knowledge and data gaps of middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr., 5 (1), pp. 1-32; Brower, R., Matthay, M., Morris, A., Schoenfeld, D., Thompson, B.T., Wheeler, A., Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network (2000) N Engl J Med., 342 (18), pp. 1301-1308. , PID: 10793162; Guerin, C., Reignier, J., Richard, J.C., Beuret, P., Gacouin, A., Boulain, T., Prone positioning in severe acute respiratory distress syndrome (2013) N Engl J Med, 368 (23), pp. 2159-2168. , COI: 1:CAS:528:DC%2BC3sXpt1Oqu7s%3D, PID: 23688302; Papazian, L., Forel, J.M., Gacouin, A., Penot-Ragon, C., Perrin, G., Loundou, A., Neuromuscular blockers in early acute respiratory distress syndrome (2010) N Engl J Med, 363 (12), pp. 1107-1116. , COI: 1:CAS:528:DC%2BC3cXhtFOlsbjI, PID: 20843245; https://www.elso.org/Portals/0/IGD/Archive/FileManager/929122ae88cusersshyerdocumentselsoguidelinesgeneralalleclsversion1.3.pdf; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 49; Guery, B., Poissy, J., el Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272. , PID: 23727167; Morris, A.H., Wallace, C.J., Menlove, R.L., Clemmer, T.P., Orme, J.F., Jr., Weaver, L.K., Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome (1994) Am J Respir Crit Care Med, 149 (2), pp. 295-305. , COI: 1:STN:280:DyaK2c7jvVGrtA%3D%3D, PID: 8306022; Zapol, W.M., Snider, M.T., Hill, J.D., Fallat, R.J., Bartlett, R.H., Edmunds, L.H., Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study (1979) JAMA, 242 (20), pp. 2193-2196. , COI: 1:STN:280:DyaL3c%2FivF2muw%3D%3D, PID: 490805; Peek, G.J., Mugford, M., Tiruvoipati, R., Wilson, A., Allen, E., Thalanany, M.M., Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial (2009) Lancet, 374 (9698), pp. 1351-1363. , PID: 19762075; Chong, Y.P., Song, J.Y., Seo, Y.B., Choi, J.P., Shin, H.S., Rapid, R.T., Antiviral treatment guidelines for middle East respiratory syndrome (2015) Infect Chemother, 47 (3), pp. 212-222. , PID: 26483999; Holzgraefe, B., Broome, M., Kalzen, H., Konrad, D., Palmer, K., Frenckner, B., Extracorporeal membrane oxygenation for pandemic H1N1 2009 respiratory failure (2010) Minerva Anestesiol, 76 (12), pp. 1043-1051. , COI: 1:STN:280:DC%2BC3M%2FmtFOrsA%3D%3D, PID: 21178913; Noah, M.A., Peek, G.J., Finney, S.J., Griffiths, M.J., Harrison, D.A., Grieve, R., Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1) (2011) JAMA, 306 (15), pp. 1659-1668. , COI: 1:CAS:528:DC%2BC3MXhtlKgs73O, PID: 21976615; Takeda, S., Kotani, T., Nakagawa, S., Ichiba, S., Aokage, T., Ochiai, R., Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) severe respiratory failure in Japan (2012) J Anesth, 26 (5), pp. 650-657. , PID: 22618953; Davies, A., Jones, D., Bailey, M., Beca, J., Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome (2009) JAMA, 302 (17), pp. 188-195; Cianchi, G., Bonizzoli, M., Pasquini, A., Bonacchi, M., Zagli, G., Ciapetti, M., Ventilatory and ECMO treatment of H1N1-induced severe respiratory failure: results of an Italian referral ECMO center (2011) BMC Pulm Med, 11, p. 2. , PID: 21223541; Zangrillo, A., Biondi-Zoccai, G., Landoni, G., Frati, G., Patroniti, N., Pesenti, A., Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: a systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO (2013) Crit Care, 17 (1), p. R30. , PID: 23406535; Pham, T., Combes, A., Roze, H., Chevret, S., Mercat, A., Roch, A., Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis (2013) Am J Respir Crit Care Med, 187 (3), pp. 276-285. , COI: 1:CAS:528:DC%2BC3sXjs1OrsLw%3D, PID: 23155145; Hodgson, C.L., Hayes, K., Everard, T., Nichol, A., Davies, A.R., Bailey, M.J., Long-term quality of life in patients with acute respiratory distress syndrome requiring extracorporeal membrane oxygenation for refractory hypoxaemia (2012) Crit Care, 16 (5), p. R202. , PID: 23082772; Beurtheret, S., Mastroianni, C., Pozzi, M., D’Alessandro, C., Luyt, C.E., Combes, A., Extracorporeal membrane oxygenation for 2009 influenza A (H1N1) acute respiratory distress syndrome: single-centre experience with 1-year follow-up (2012) Eur J Cardiothorac Surg, 41 (3), pp. 691-695. , PID: 22228837; Hou, X., Guo, L., Zhan, Q., Jia, X., Mi, Y., Li, B., Extracorporeal membrane oxygenation for critically ill patients with 2009 influenza A (H1N1)-related acute respiratory distress syndrome: preliminary experience from a single center (2012) Artif Organs, 36 (9), pp. 780-786. , PID: 22747918; Roch, A., Lepaul-Ercole, R., Grisoli, D., Bessereau, J., Brissy, O., Castanier, M., Extracorporeal membrane oxygenation for severe influenza A (H1N1) acute respiratory distress syndrome: a prospective observational comparative study (2010) Intensive Care Med, 36 (11), pp. 1899-1905. , PID: 20721530; Bonastre, J., Suberviola, B., Pozo, J.C., Guerrero, J.E., Torres, A., Rodriguez, A., Extracorporeal lung support in patients with severe respiratory failure secondary to the 2010–2011 winter seasonal outbreak of influenza A (H1N1) in Spain (2012) Med Intensiva, 36 (3), pp. 193-199. , COI: 1:STN:280:DC%2BC38vjt1KjtQ%3D%3D, PID: 22341559; Patroniti, N., Zangrillo, A., Pappalardo, F., Peris, A., Cianchi, G., Braschi, A., The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks (2011) Intensive Care Med, 37 (9), pp. 1447-1457. , PID: 21732167; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients (2014) Clin Infect Dis, 59 (2), pp. 160-165. , PID: 24723278; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397. , PID: 24474051; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761. , PID: 23891402; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416. , COI: 1:CAS:528:DC%2BC3sXht1GmsrrL, PID: 23782161; Pappalardo, F., Pieri, M., Greco, T., Patroniti, N., Pesenti, A., Arcadipane, A., Predicting mortality risk in patients undergoing venovenous ECMO for ARDS due to influenza A (H1N1) pneumonia: the ECMOnet score (2013) Intensive Care Med, 39 (2), pp. 275-281. , PID: 23160769; Barbaro, R.P., Odetola, F.O., Kidwell, K.M., Paden, M.L., Bartlett, R.H., Davis, M.M., Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the Extracorporeal Life Support Organization registry (2015) Am J Respir Crit Care Med, 191 (8), pp. 894-901. , PID: 25695688; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the middle East respiratory syndrome oronavirus:an observational study (2014) Int J Infect Dis, 20, pp. 42-46. , COI: 1:CAS:528:DC%2BC2cXhtlGmsLg%3D, PID: 24406736; Omrani, A.S., Ribavirin and interferon alfa-2a for severe middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Inf Dis, 14 (11), pp. 1090-1095. , COI: 1:CAS:528:DC%2BC2cXhs1KltbnL; Shalboub, S., IFN-α2a or IFN-β1a in combination with ribavirin to treat middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70 (7), pp. 2129-2132; Arabi, Y.M., et al Effect of Ribavirin and Interferon on the Outcome of Critically Ill patients with MERS., , http://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2017.195.1_MeetingAbstracts.A6067; Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gotzsche, P.C., Vandenbroucke, J.P., The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies (2008) J Clin Epidemiol, 61 (4), pp. 344-349","Alshahrani, M.S.; Department of Emergency and Critical Care, King Fahad Hospital of the University-Dammam University, PO Box 40236, Saudi Arabia; email: msshahrani@uod.edu.sa",,"Springer Verlag",21105820,,,,"English","Ann. Intensive Care",Article,"Final",Open Access,Scopus,2-s2.0-85041343358 "Woo P.C.Y., Lau S.K.P., Chen Y., Wong E.Y.M., Chan K.-H., Chen H., Zhang L., Xia N., Yuen K.-Y.","7201801340;7401596211;56295195200;56073366500;57207851346;57215065142;8852093300;35187953700;36078079100;","Rapid detection of MERS coronavirus-like viruses in bats: Pote1ntial for tracking MERS coronavirus transmission and animal origin article",2018,"Emerging Microbes and Infections","7","1", 18,"","",,7,"10.1038/s41426-017-0016-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042933416&doi=10.1038%2fs41426-017-0016-7&partnerID=40&md5=f0796166d054701c52ab97df53af4136","State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong; Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, Hong Kong; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong; Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China","Woo, P.C.Y., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong; Lau, S.K.P., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong; Chen, Y., State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; Wong, E.Y.M., Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong; Chan, K.-H., Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong; Chen, H., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong; Zhang, L., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China; Xia, N., State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; Yuen, K.-Y., State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, Hong Kong, Department of Microbiology, University of Hong Kong, Hong Kong, Hong Kong","Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species. © 2018 The Author(s).",,"nucleocapsid protein; RNA; coronavirus spike glycoprotein; amino acid sequence; Article; bat; controlled study; Hipposideros; limit of detection; Middle East respiratory syndrome coronavirus; Miniopterus; Myotis; nonhuman; phylogeny; Pipistrellus; Pipistrellus abramus; priority journal; protein determination; real time polymerase chain reaction; Rhinolophus; Rousettus; Tylonycteris pachypus; virus detection; virus load; virus transmission; animal; bat; classification; Coronavirus infection; genetics; isolation and purification; metabolism; Middle East respiratory syndrome coronavirus; transmission; veterinary; virology; Animals; Chiroptera; Coronavirus Infections; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Spike Glycoprotein, Coronavirus","Chan, J.F., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Van Boheemen, S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00412-e00473; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Alagaili, A.N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00814-e00884; Reusken, C.B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Wernery, U., Acute Middle East respiratory syndrome coronavirus infection in livestock dromedaries, Dubai, 2014 (2015) Emerg. Infect. Dis., 21, pp. 1019-1022; Woo, P.C., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Corman, V.M., Characterization of a novel betacoronavirus related to Middle East respiratory syndrome coronavirus in European hedgehogs (2014) J. Virol., 88, pp. 717-724; Chen, Y., A highly specific rapid antigen detection assay for on-site diagnosis of MERS (2016) J. Infect., 73, pp. 82-84; Lau, S.K., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J. Virol., 84, pp. 11385-11394; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl Acad. Sci. USA, 102, pp. 14040-14045; Lau, S.K., Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: First evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J. Virol., 86, pp. 11906-11918; Lau, S.K., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Woo, P.C., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Chu, D.K., Peiris, J.S., Chen, H., Guan, Y., Poon, L.L., Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats (2008) J. Gen. Virol., 89, pp. 1282-1287; Lau, S.K., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J. Virol., 89, pp. 3076-3092; Woo, P.C., Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia (2004) Lancet, 363, pp. 841-845; Woo, P.C., Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the middle east: Minimal serological crossreactivity between MERS coronavirus and dromedary camel coronavirus UAEHKU23 (2016) Int. J. Mol. Sci., 17, p. E691; Chen, Y., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg. Microbes Infect., 4, p. e26; Wang, Q., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host. Microbe, 16, pp. 328-337; Yang, Y., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl Acad. Sci. USA, 111, pp. 12516-12521; Corman, V.M., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Eur. Surveill., 17, p. 20334; Corman, V.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Eur. Surveill., 17, p. 20285","Woo, P.C.Y.; State Key Laboratory of Emerging Infectious Diseases, University of Hong KongHong Kong; email: pcywoo@hku.hk",,"Nature Publishing Group",22221751,,,"29511173","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85042933416 "Elfadil A.A., Ahmed A.G., Abdalla M.O., Gumaa E., Osman O.H., Younis A.E., Al-Hafufi A.N., Saif L.J., Zaki A., Al-Rumaihi A., Al-Harbi N., Kasem S., Al-Brahim R.H., Al-Sahhaf A., Bayoumi F.E., Qasim I.A., Abu-Obeida A., Al-Dowairij A.","57195286148;57214309997;57208341044;57208347846;57208347690;57208346306;57208345258;57213015497;57196614759;57208342887;57214416864;25723316800;57208340943;57208341485;57195998238;57195995101;57195999848;57208348149;","Epidemiological study of Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia, April-May 2015",2018,"Revue scientifique et technique (International Office of Epizootics)","37","3",,"985","997",,2,"10.20506/rst.37.3.2901","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064553512&doi=10.20506%2frst.37.3.2901&partnerID=40&md5=afcf35a4d2a5bacaab388bba2792cd19",,"Elfadil, A.A.; Ahmed, A.G.; Abdalla, M.O.; Gumaa, E.; Osman, O.H.; Younis, A.E.; Al-Hafufi, A.N.; Saif, L.J.; Zaki, A.; Al-Rumaihi, A.; Al-Harbi, N.; Kasem, S.; Al-Brahim, R.H.; Al-Sahhaf, A.; Bayoumi, F.E.; Qasim, I.A.; Abu-Obeida, A.; Al-Dowairij, A.","A cross-sectional study was conducted in five regions in Saudi Arabia to investigate the epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in dromedary camels (Camelus dromedarius) during April and May2015. Serum and nasal swab samples were tested for MERS-CoV antibodies andribonucleic acid (RNA) using a recombinant enzyme-linked immunosorbent assay (rELISA) and real-time reverse-transcription polymerase chain reaction (rRT-PCR), respectively. The overall MERS-CoV antibody seroprevalence was 80.5%, whereas the overall viral RNA prevalence was 2.4%. The associations of risk factors with each prevalence were quantified using univariate and multivariate analyses. The multivariate models identified region, age, grazing system, exposure to wild animals and dung removal as factors significantly associated with seroprevalence (p ??0.05). A higher seroprevalence was more likely to occur in camels from the Riyadh, Eastern, Northern and Makkah regions than those from the Jazan region; camels ??4 and 1-3 years of age (marginally significant) than calves < 1 year; and camels raised in zero grazing and semi-open grazing systems than those raised in an open grazing system. However, the presence of wild animals and daily dung removal were negatively associated with seroprevalence. On the other hand, region and sex were significantly associated with MERS-CoV RNA prevalence(p ??0.05). A higher viral RNA prevalence was more likely to occur in camels from the Riyadh region and Eastern region (marginally significant) than in those from the Makkah region, and in male camels than female camels. In conclusion, the risk factors identified in this study can be considered to be predictors of MERS-CoV infection in camels and should be taken into account when developing an efficient and cost-effective control strategy.Une étude transversale a été réalisée au cours des mois d’avril et de mai 2015 dans cinq régions d’Arabie saoudite afin d’élucider l’épidémiologie de l’infection par le coronavirus responsable du syndrome respiratoire du Moyen-Orient(MERS–CoV) chez les dromadaires (Camelus dromedarius). Des échantillons de sérum et des écouvillons nasaux prélevés de dromadaires ont été analysés afin de détecter la présence d’anticorps dirigés contre le MERS-CoV ou d’ARN de ce même virus, en utilisant respectivement une épreuve immuno-enzymatique recombinante (ELISAr) et une amplification en chaîne par polymérase couplée à une transcription inverse (PCR–RT) en temps réel. La prévalence sérologique globale des anticorps dirigés contre le MERS-CoV s’élevait à 80,5 %, tandis que la prévalence globale de l’ARN viral était de 2,4 %. Les corrélations entre les facteurs de risque et les prévalences obtenues ont été quantifiées au moyen d’analyses à une seule et à plusieurs variables. Les modèles à plusieurs variables ont fait apparaître une association significative (p ??0,05) entre la prévalence sérologique et les facteurs suivants : la région, l’âge des animaux, le système pastoral pratiqué, l’exposition à la faune sauvage et l’élimination du fumier. La probabilité d’une forte prévalence sérologique était plus élevée chez les dromadaires provenant des régions de Riyad, de l’Est, du Nord et de la Mecque que chez ceux de la région de Jizan ; chez les dromadaires âgés de plus de quatre ans, ou âgés d’un à trois ans (différence marginalement significative) plutôt que chez les jeunes de moins d’un an ; et enfin chez les dromadaires nourris en stabulation (zéro pâturage) ou en pâturage semi-ouvert plutôt que chez ceux nourris dans des systèmes de pâturage ouvert. En revanche, une corrélation négative a été constatée entre la prévalence sérologique d’une part et la présence d’animaux sauvages et/ou l’élimination quotidienne du fumier, d’autre part. En ce qui concerne la détection virale, une corrélation significative (p ??0,05) a été constatée entre la région et le sexe des animaux et la prévalence de l’ARN du MERS-CoV. La probabilité d’une prévalence plus élevée de l’ARN viral était plus prononcée chez les dromadaires des régions de Riyad et de l’Est (différence marginalement significative) que chez ceux de la région de La Mecque, et chez les mâles que chez les chamelles. En conclusion, les facteurs de risque identifiés dans cette étude peuvent servir d’annonciateurs de l’infection par le MERS-CoV chez les dromadaires et devraient être pris en compte pour élaborer une stratégie efficace et rentable de lutte contre cette maladie.Los autores describen un estudio transversal efectuado en abril y mayo de 2015 en cinco regiones de Arabia Saudí con objeto de investigar la epidemiologia de la infección de dromedarios (Camelus dromedarius) por el coronavirus del síndrome respiratorio de Oriente Medio (MERS–CoV). A tal efecto se analizaron muestras de suero y exudado nasal para detectar en ellas anticuerpos contra el MERS–CoV y ácido ribonucleico (ARN) del virus, empleando para ello, respectivamente, una técnica de ensayo inmunoenzimático recombinante (ELISAr) y una de reacción en cadena de la polimerasa acoplada a transcripción inversa en tiempo real (rRT–PCR, por sus siglas en inglés). Se calculó que la seroprevalencia global de anticuerpos contra el virus era del 80,5% y que la prevalencia global de ARN vírico era del 2,4%. Utilizando análisis multifactoriales y de una sola variable se cuantificó también la correlación de cada una de esas prevalencias con una serie de factores de riesgo. Con los modelos multifactoriales se observó que la región, la edad, el régimen de pastoreo, la exposición a animales salvajes y la retirada de estiércol eran factores que presentaban una asociación significativa con la seroprevalencia (p ??0,05): era más probable encontrar niveles elevados de seroprevalencia en dromedarios de las regiones de Riad y La Meca y las regiones oriental y septentrional del país que en los de la región de Jizán; en los de 4 o más años y entre 1 y 3 años de edad (correlación ligeramente significativa) que en las crías menores de 1 año; y en los animales estabulados o criados en sistemas de pasto semiabierto que en los criados con regímenes de pasto al aire libre. La presencia de animales salvajes y la retirada cotidiana del estiércol, por su parte, presentaban una correlación negativa con la seroprevalencia. Por otro lado, los factores asociados significativamente con la prevalencia de ARN vírico (p ??0,05) eran la región y el sexo: había mayor probabilidad de encontrar niveles elevados de prevalencia de ARN vírico en dromedarios de la región de Riad y la región oriental (correlación ligeramente significativa) que en los de la región de La Meca, y en machos más que en hembras. En conclusión, los factores de riesgo detectados con este estudio pueden ser considerados predictivos de la infección de dromedarios por el MERS–CoV y deben ser tenidos en cuenta para elaborar una estrategia de lucha que ofrezca a la vez eficacia y rentabilidad.","Camel; Dromedary camel; Epidemiology; MERS-CoV; Middle East respiratory syndrome coronavirus; Prevalence; Risk factor; Saudi Arabia","animal; camel; Coronavirus infection; cross-sectional study; female; male; Middle East respiratory syndrome coronavirus; Saudi Arabia; seroepidemiology; veterinary medicine; Animals; Camelus; Coronavirus Infections; Cross-Sectional Studies; Female; Male; Middle East Respiratory Syndrome Coronavirus; Saudi Arabia; Seroepidemiologic Studies",,,,"NLM (Medline)",02531933,,,"30964454","English","Rev. - Off. Int. Epizoot.",Article,"Final",,Scopus,2-s2.0-85064553512 "Kleine-Weber H., Elzayat M.T., Hoffmann M., Pöhlmann S.","57204592347;57204581159;35080416400;7003508167;","Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein",2018,"Scientific Reports","8","1", 16597,"","",,6,"10.1038/s41598-018-34859-w","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056261416&doi=10.1038%2fs41598-018-34859-w&partnerID=40&md5=a8e390d7e5c5df6115d4121f6f412ec6","Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany; Faculty of Biology and Psychology, Wilhelm-Weber-Str. 2, University Göttingen, Göttingen, 37073, Germany","Kleine-Weber, H., Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany, Faculty of Biology and Psychology, Wilhelm-Weber-Str. 2, University Göttingen, Göttingen, 37073, Germany; Elzayat, M.T., Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany; Hoffmann, M., Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany; Pöhlmann, S., Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany, Faculty of Biology and Psychology, Wilhelm-Weber-Str. 2, University Göttingen, Göttingen, 37073, Germany","The Middle East respiratory syndrome-related coronavirus (MERS-CoV) can cause severe disease and has pandemic potential. Therefore, development of antiviral strategies is an important task. The activation of the viral spike protein (S) by host cell proteases is essential for viral infectivity and the responsible enzymes are potential therapeutic targets. The cellular proteases furin, cathepsin L and TMPRSS2 can activate MERS-S and may cleave the S protein at two distinct sites, termed S1/S2 and S2′. Moreover, a potential cathepsin L cleavage site in MERS-S has been reported. However, the relative importance of these sites for MERS-S activation is incompletely understood. Here, we used mutagenic analysis and MERS-S-bearing vectors to study the contribution of specific cleavage sites to S protein-driven entry. We found that an intact S1/S2 site was only required for efficient entry into cells expressing endogenous TMPRSS2. In keeping with a previous study, pre-cleavage at the S1/S2 motif (RSVR) was important although not essential for subsequent MERS-S activation by TMPRSS2, and indirect evidence was obtained that this motif is processed by a protease depending on an intact RXXR motif, most likely furin. In contrast, the S2′ site (RSAR) was required for robust viral entry into all cell lines tested and the integrity of one of the two arginines was sufficient for efficient entry. These findings suggest that cleavage at S2′ is carried out by proteases recognizing a single arginine, most likely TMPRSS2 and cathepsin L. Finally, mutation of the proposed cathepsin L site did not impact viral entry and double mutation of S1/S2 and S2′ site was compatible with cathepsin L- but not TMPRSS2-dependent host cell entry, indicating that cathepsin L can process the S protein at auxiliary sites. Collectively, our results indicate a rigid sequence requirement for S protein activation by TMPRSS2 but not cathepsin L. © 2018, The Author(s).",,"cathepsin L; coronavirus spike glycoprotein; furin; FURIN protein, human; serine proteinase; TMPRSS2 protein, human; animal; Chlorocebus aethiops; Coronavirus infection; genetics; human; metabolism; Middle East respiratory syndrome coronavirus; mutation; physiology; protein degradation; Vero cell line; virology; virus entry; Animals; Cathepsin L; Chlorocebus aethiops; Coronavirus Infections; Furin; Humans; Middle East Respiratory Syndrome Coronavirus; Mutation; Proteolysis; Serine Endopeptidases; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Internalization","Lai, M.M.C., Perlman, S., Anderson, L.J., (2007) Fields Virology, 1, pp. 1305-1336. , eds D. M. Knipe & P. M. Howley, Lippincott, Wiliams & Wilkins; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res., 100, pp. 286-295. , COI: 1:CAS:528:DC%2BC3sXhvVWltbbK; Zaki, A.M., van, B.S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N.Engl.J.Med., 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; (2018), http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-march-2018.html, World Health, O. MERS situation update, March 2018; Oh, M.D., Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J Intern Med, 33, pp. 233-246; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134. , COI: 1:CAS:528:DC%2BC2cXhvFyjsbjN; Simmons, G., Zmora, P., Gierer, S., Heurich, A., Pohlmann, S., Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research (2013) Antiviral Res, 100, pp. 605-614; Gierer, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511; Kawase, M., Shirato, K., van der Hoek, L., Taguchi, F., Matsuyama, S., Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry (2012) J.Virol., 86, pp. 6537-6545. , COI: 1:CAS:528:DC%2BC38XosFegurs%3D; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8; Burkard, C., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci USA, 111, pp. 15214-15219; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561; Park, J.E., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci USA, 113, pp. 12262-12267; Bertram, S., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts (2012) PLoS.One., 7. , COI: 1:CAS:528:DC%2BC38XntlWiur0%3D; Zhou, Y., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res., 116, pp. 76-84. , COI: 1:CAS:528:DC%2BC2MXisVOrs7Y%3D; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry (2017) J Virol, 91. , https://doi.org/10.1128/JVI.01387-16; Shirato, K., Kawase, M., Matsuyama, S., Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry (2018) Virology, 517, pp. 9-15; Gierer, S., Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J Infect Dis, 211, pp. 889-897; Matsuyama, S., Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells (2018) J Virol, , https://doi.org/10.1128/JVI.00683-18; Yang, Y., Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus (2015) J Virol, 89, pp. 9119-9123; Berger Rentsch, M., Zimmer, G., A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon (2011) PLoS One, 6; Glende, J., Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2 (2008) Virology, 381, pp. 215-221; Chan, J.F., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation (2013) J Infect Dis, 207, pp. 1743-1752; Kramer, L., Turk, D., Turk, B., The Future of Cysteine Cathepsins in Disease Management (2017) Trends Pharmacol Sci, 38, pp. 873-898; Seidah, N.G., Sadr, M.S., Chretien, M., Mbikay, M., The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions (2013) J Biol Chem, 288, pp. 21473-21481; Bertram, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160; Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P., Cunningham, J.M., Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection (2005) Science, 308, pp. 1643-1645. , COI: 1:CAS:528:DC%2BD2MXltFemsLc%3D; Reinke, L.M., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12; Hoffmann, M., A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry (2017) J Virol, 91. , https://doi.org/10.1128/JVI.00177-17","Hoffmann, M.; Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, Germany; email: mhoffmann@dpz.eu",,"Nature Publishing Group",20452322,,,"30413791","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85056261416 "Wanitchang A., Saenboonrueng J., Srisutthisamphan K., Jongkaewwattana A.","25824516500;6508363658;57003681700;25824320100;","Characterization of influenza A virus pseudotyped with the spike protein of porcine epidemic diarrhea virus",2018,"Archives of Virology","163","12",,"3255","3264",,1,"10.1007/s00705-018-4001-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052313650&doi=10.1007%2fs00705-018-4001-9&partnerID=40&md5=de47717e05ee46b7ee9847dd86ab5ce2","Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand","Wanitchang, A., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand; Saenboonrueng, J., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand; Srisutthisamphan, K., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand; Jongkaewwattana, A., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand","The coronavirus spike protein and the influenza virus hemagglutinin are class I viral membrane fusion proteins. While the two proteins display strong structural conservation and the mechanisms underlying membrane fusion are similar, they share no sequence similarity. Whether they are functionally interchangeable is currently unknown. In this study, we constructed scIAV-S, a single-cycle influenza A virus pseudotyped with the spike protein of porcine epidemic diarrhea virus (PEDV), and demonstrated that this virus could infect cultured cells and trigger massive syncytium formation. Treatment with endocytosis inhibitors did not affect syncytium formation by infected cells. Moreover, the infectivity of scIAV-S was associated with the degree of cell adaptation of PEDV-S. Intriguingly, scIAV-S lacking functional neuraminidase (NA) exhibited substantially higher infectivity, suggesting a pivotal role of the sialic acid in the binding/entry of PEDV. Together, scIAV-S offers a robust platform for the investigation of the entry mechanism of PEDV or, possibly, of other coronaviruses. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"coronavirus spike glycoprotein; fusion protein; animal; cell line; Coronavirus infection; genetics; Influenza A virus; metabolism; physiology; pig; Porcine epidemic diarrhea virus; swine disease; veterinary medicine; virology; Animals; Cell Line; Coronavirus Infections; Influenza A virus; Porcine epidemic diarrhea virus; Recombinant Fusion Proteins; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases","Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci USA, 106, pp. 5871-5876. , COI: 1:CAS:528:DC%2BD1MXkvFejtrY%3D; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033. , COI: 1:CAS:528:DC%2BC38XpvFyltrk%3D; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J Virol, 77, pp. 8801-8811. , COI: 1:CAS:528:DC%2BD3sXmt1Sit7k%3D; Carpentier, J.L., Sawano, F., Geiger, D., Gorden, P., Perrelet, A., Orci, L., Potassium depletion and hypertonic medium reduce “non-coated” and clathrin-coated pit formation, as well as endocytosis through these two gates (1989) J Cell Physiol, 138, pp. 519-526. , COI: 1:CAS:528:DyaL1MXhslSluro%3D; Chen, F., Zhu, Y., Wu, M., Ku, X., Ye, S., Li, Z., Guo, X., He, Q., Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus (2015) Viruses, 7, pp. 5525-5538. , COI: 1:CAS:528:DC%2BC28XhtFOntbbN; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Gauger, P.C., Zhang, J., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) J Clin Microbiol, 52, pp. 234-243. , COI: 1:CAS:528:DC%2BC2MXjtlarsr8%3D; Huang, I.C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Choe, H., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells (2006) J Biol Chem, 281, pp. 3198-3203. , COI: 1:CAS:528:DC%2BD28XhtFSmsr4%3D; Jengarn, J., Wongthida, P., Wanasen, N., Frantz, P.N., Wanitchang, A., Jongkaewwattana, A., Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone (2015) J Gen Virol, 96, pp. 2206-2218. , COI: 1:CAS:528:DC%2BC28XjtlyitLw%3D; Kamau, A.N., Park, J.E., Park, E.S., Yu, J.E., Rho, J., Shin, H.J., Porcine amino peptidase N domain VII has critical role in binding and entry of porcine epidemic diarrhea virus (2017) Virus Res, 227, pp. 150-157. , COI: 1:CAS:528:DC%2BC28XhslSmsr%2FJ; Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol J, 12, p. 193; Lee, S., Son, K.Y., Noh, Y.H., Lee, S.C., Choi, H.W., Yoon, I.J., Lee, C., Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus (2017) Vet Microbiol, 207, pp. 248-258. , COI: 1:CAS:528:DC%2BC2sXhtFGmsL%2FI; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172. , COI: 1:CAS:528:DC%2BD2sXmsFyns7w%3D; Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J Virol; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261. , COI: 1:CAS:528:DC%2BC28XhsVegsb%2FF; Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Res, 226, pp. 117-127. , COI: 1:CAS:528:DC%2BC28XhtFSit7jM; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci USA, 114, pp. E8508-E8517. , COI: 1:CAS:528:DC%2BC2sXhsFajsbvF; Li, W., Luo, R., He, Q., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13. , COI: 1:CAS:528:DC%2BC2sXmtVylsLw%3D; Lin, C.M., Hou, Y., Marthaler, D.G., Gao, X., Liu, X., Zheng, L., Saif, L.J., Wang, Q., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet Microbiol, 201, pp. 62-71. , COI: 1:CAS:528:DC%2BC2sXhtlGltbg%3D; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125. , COI: 1:CAS:528:DC%2BC2MXosFSjt7k%3D; Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Li, F., Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases (2016) J Biol Chem, 291, pp. 24779-24786. , COI: 1:CAS:528:DC%2BC28XhvV2gu77L; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc Natl Acad Sci USA, 102, pp. 12543-12547. , COI: 1:CAS:528:DC%2BD2MXhtVSjsrvP; Nam, E., Lee, C., Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection (2010) Vet Microbiol, 144, pp. 41-50. , COI: 1:CAS:528:DC%2BC3cXntV2qtL0%3D; Nogales, A., Baker, S.F., Domm, W., Martinez-Sobrido, L., Development and applications of single-cycle infectious influenza A virus (sciIAV) (2016) Virus Res, 216, pp. 26-40. , COI: 1:CAS:528:DC%2BC2MXhtlCqsrvJ; Oh, J.S., Song, D.S., Park, B.K., Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes (2003) J Vet Sci, 4, pp. 269-275. , PID: 14685034; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet Microbiol, 173, pp. 258-269; Park, J.E., Cruz, D.J., Shin, H.J., Clathrin- and serine proteases-dependent uptake of porcine epidemic diarrhea virus into Vero cells (2014) Virus Res, 191, pp. 21-29. , COI: 1:CAS:528:DC%2BC2cXht1Klu7nM; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci USA, 113, pp. 12262-12267. , COI: 1:CAS:528:DC%2BC28Xhs1elur3F; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity (1996) J Virol, 70, pp. 5634-5637. , COI: 1:CAS:528:DyaK28Xktleiuro%3D, PID: 8764078; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539. , COI: 1:CAS:528:DC%2BC2sXktlWhsLo%3D; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci USA, 102, pp. 11876-11881. , COI: 1:CAS:528:DC%2BD2MXpsFGgurw%3D; Sun, M., Ma, J., Yu, Z., Pan, Z., Lu, C., Yao, H., Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways (2017) Vet Res, 48, p. 44; Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., Jiang, C., SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway (2008) Cell Res, 18, pp. 290-301. , COI: 1:CAS:528:DC%2BD1cXhs1OmtLc%3D; Wang, J., Deng, F., Ye, G., Dong, W., Zheng, A., He, Q., Peng, G., Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses (2016) Virol Sin, 31, pp. 49-56. , COI: 1:CAS:528:DC%2BC28XjsFGkt7o%3D; Wanitchang, A., Jengarn, J., Jongkaewwattana, A., The N terminus of PA polymerase of swine-origin influenza virus H1N1 determines its compatibility with PB2 and PB1 subunits through a strain-specific amino acid serine 186 (2011) Virus Res, 155, pp. 325-333. , COI: 1:CAS:528:DC%2BC3cXhs1agtbjM; Wanitchang, A., Narkpuk, J., Jaru-ampornpan, P., Jengarn, J., Jongkaewwattana, A., Inhibition of influenza A virus replication by influenza B virus nucleoprotein: an insight into interference between influenza A and B viruses (2012) Virology, 432, pp. 194-203. , COI: 1:CAS:528:DC%2BC38XpvFGjtLc%3D; Wanitchang, A., Wongthida, P., Jongkaewwattana, A., Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication (2016) Virology, 498, pp. 99-108. , COI: 1:CAS:528:DC%2BC28XhsVWmsbrJ; Wongthida, P., Liwnaree, B., Wanasen, N., Narkpuk, J., Jongkaewwattana, A., The role of ORF3 accessory protein in replication of cell-adapted porcine epidemic diarrhea virus (PEDV) (2017) Arch Virol, 162, pp. 2553-2563. , COI: 1:CAS:528:DC%2BC2sXntVyhsrg%3D","Jongkaewwattana, A.; Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Thailand; email: anan.jon@biotec.or.th",,"Springer-Verlag Wien",03048608,,ARVID,"30136251","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85052313650 "Li H., Sun F.","57202836846;7401804190;","Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences",2018,"Scientific Reports","8","1", 10032,"","",,3,"10.1038/s41598-018-28308-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049536604&doi=10.1038%2fs41598-018-28308-x&partnerID=40&md5=83b3c61ad127890011f67271c4ee883f","Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States; Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China","Li, H., Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States; Sun, F., Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China","Predicting the hosts of newly discovered viruses is important for pandemic surveillance of infectious diseases. We investigated the use of alignment-based and alignment-free methods and support vector machine using mononucleotide frequency and dinucleotide bias to predict the hosts of viruses, and applied these approaches to three datasets: rabies virus, coronavirus, and influenza A virus. For coronavirus, we used the spike gene sequences, while for rabies and influenza A viruses, we used the more conserved nucleoprotein gene sequences. We compared the three methods under different scenarios and showed that their performances are highly correlated with the variability of sequences and sample size. For conserved genes like the nucleoprotein gene, longer k-mers than mono- and dinucleotides are needed to better distinguish the sequences. We also showed that both alignment-based and alignment-free methods can accurately predict the hosts of viruses. When alignment is difficult to achieve or highly time-consuming, alignment-free methods can be a promising substitute to predict the hosts of new viruses. © 2018 The Author(s).",,"coronavirus spike glycoprotein; virus DNA; Coronavirinae; DNA sequence; genetics; Influenza A virus; Middle East respiratory syndrome coronavirus; pandemic; phylogeny; physiology; procedures; Rabies virus; sequence alignment; support vector machine; theoretical model; virus genome; Coronavirus; DNA, Viral; Genome, Viral; Host Microbial Interactions; Influenza A virus; Middle East Respiratory Syndrome Coronavirus; Models, Theoretical; Pandemics; Phylogeny; Rabies virus; Sequence Alignment; Sequence Analysis, DNA; Spike Glycoprotein, Coronavirus; Support Vector Machine","Chan, J.F.W., To, K.K.W., Chen, H., Yuen, K.Y., Cross-species transmission and emergence of novel viruses from birds (2015) Curr Opin Virol, 10, pp. 63-69; Longdon, B., Brockhurst, M.A., Russell, C.A., Welch, J.J., Jiggins, F.M., The evolution and genetics of virus host shifts (2014) Plos Pathog, 10, p. e1004395; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Li, W., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Streicker, D.G., Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats (2010) Science, 329, pp. 676-679; Smith, T.F., Waterman, M.S., Identification of common molecular subsequences (1981) J. Mol. Biol, 147, pp. 195-197; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol, 215, pp. 403-410; Kapoor, A., Simmonds, P., Lipkin, W., Zaidi, S., Delwart, E., Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses (2010) J. Virol, 84, pp. 10322-10328; Aguas, R., Ferguson, N.M., Feature selection methods for identifying genetic determinants of host species in RNA viruses (2013) Plos Comput. Biol, 9, p. e1003254; Tang, Q., Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition (2015) Sci. Rep, 5; Kargarfard, F., Sami, A., Mohammadi-Dehcheshmeh, M., Ebrahimie, E., Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments (2016) BMC Genomics, 17, p. 925; Wan, L., Reinert, G., Sun, F., Waterman, M.S., Alignment-free sequence comparison (II): Theoretical power of comparison statistics (2010) J. Comput. Biol, 17, pp. 1467-1490; Reinert, G., Chew, D., Sun, F., Waterman, M.S., Alignment-free sequence comparison (I): Statistics and power (2009) J. Comput. Biol, 16, pp. 1615-1634; Ren, J., Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics (2015) Bioinformatics, 32, pp. 993-1000; Lu, Y.Y., CAFE: Accelerated alignment-free sequence analysis (2017) Nucleic Acids Res, 45, pp. W554-W559; Zhang, C.Y., Wei, J.F., He, S.H., Adaptive evolution of the spike gene of SARS coronavirus: Changes in positively selected sites in different epidemic groups (2006) BMC Microbiol, 6, p. 88; Holmes, E.C., Woelk, C.H., Kassis, R., Bourhy, H., Genetic constraints and the adaptive evolution of rabies virus in nature (2002) Virology, 292, pp. 247-257; Gorman, O.T., Bean, W.J., Kawaoka, Y., Webster, R.G., Evolution of the nucleoprotein gene of influenza A virus (1990) J. Virol, 64, pp. 1487-1497; Zhang, Y., Influenza research database: An integrated bioinformatics resource for influenza virus research (2016) Nucleic Acids Res, 45, pp. D466-D474; Sievers, F., Higgins, D.G., Clustal Omega accurate alignment of very large numbers of sequences (2014) Methods Mol. Biol, pp. 105-116; Felsenstein, J., (1993) PHYLIP: Phylogenetic Inference Package, Version 3.5 C; Qi, J., Luo, H., Hao, B., CVTree: A phylogenetic tree reconstruction tool based on whole genomes (2004) Nucleic Acids Res, 32, pp. W45-W47; Kruskal, J.B., Wish, M., (1978) Multidimensional Scaling, 11. , Sage; Larose, D.T., K-nearest neighbor algorithm (2005) Discovering Knowledge in Data: An Introduction to Data Mining, pp. 90-106; Efron, B., The Jackknife (1982) The Bootstrap and Other Resampling Plans, 38. , SIAM","Sun, F.; Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern CaliforniaUnited States; email: fsun@usc.edu",,"Nature Publishing Group",20452322,,,"29968780","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85049536604 "Liang R., Wang L., Zhang N., Deng X., Su M., Su Y., Hu L., He C., Ying T., Jiang S., Yu F.","57205172266;57201266398;56167373100;57205162584;57205164406;57205171268;57205163612;57205167774;57205480302;56491898300;57085672500;","Development of small-molecule MERS-CoV inhibitors",2018,"Viruses","10","12", 721,"","",,6,"10.3390/v10120721","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058875739&doi=10.3390%2fv10120721&partnerID=40&md5=4497017694699e11631788916a0f6986","College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, China; Department of Clinical Medicine, Faculty of Medicine, Zhejiang University City College, Hangzhou, 310015, China; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China","Liang, R., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; Wang, L., Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071001, China; Zhang, N., Department of Clinical Medicine, Faculty of Medicine, Zhejiang University City College, Hangzhou, 310015, China; Deng, X., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; Su, M., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; Su, Y., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; Hu, L., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; He, C., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China; Ying, T., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Jiang, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Yu, F., College of Life and Science, Hebei Agricultural University, Baoding, 071001, China","Middle East respiratory syndrome coronavirus (MERS-CoV) with potential to cause global pandemics remains a threat to the public health, security, and economy. In this review, we focus on advances in the research and development of small-molecule MERS-CoV inhibitors targeting different stages of the MERS-CoV life cycle, aiming to prevent or treat MERS-CoV infection. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Mechanism of action; MERS-CoV; Small-molecule inhibitor","aloxistatin; amodiaquine; anisomycin; antivirus agent; astemizole; benzatropine mesilate; chloroquine; chlorphenoxamine; chlorpromazine; clomipramine; cycloheximide; emetine; fluphenazine; fluspirilene; gemcitabine; gs 441524; homoharringtonine; hydroxychloroquine sulfate; mefloquine; promethazine; remdesivir; resveratrol; ribavirin; silvestrol; tamoxifen citrate; terconazole; tiotixene; triflupromazine; triparanol; unclassified drug; unindexed drug; antivirus agent; cell fusion; drug development; gene mutation; life cycle; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; Review; virogenesis; virus entry; virus inhibition; virus replication; animal; Coronavirus infection; drug development; drug effect; human; molecular library; mouse; pandemic; pharmacology; physiology; Animals; Antiviral Agents; Coronavirus Infections; Drug Discovery; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Pandemics; Small Molecule Libraries; Virus Replication","Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the middle east respiratory syndrome coronavirus (2014) Mbio, 5, pp. e01062-e01113; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel middle east respiratory syndrome coronavirus: The “knowns” and “unknowns” (2013) J. Formos. Med. Assoc., 112, pp. 372-381; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al Raiy, B., Clinical course and outcomes of critically ill patients with middle east respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of mers-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Lu, L., Liu, Q., Du, L., Jiang, S., Middle east respiratory syndrome coronavirus (Mers-cov): Challenges in identifying its source and controlling its spread (2013) Microbes Infect, 15, pp. 625-629; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-alpha2b and ribavirin improves outcome in mers-cov-infected rhesus macaques (2013) Nat. Med., 19, pp. 1313-1317; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Johnson, R.F., Laidlaw, M., Repurposing of clinically developed drugs for treatment of middle east respiratory syndrome coronavirus infection (2014) Antimicrob. Agents Chemother., 58, pp. 4885-4893; Lu, L., Xia, S., Ying, T., Jiang, S., Urgent development of effective therapeutic and prophylactic agents to control the emerging threat of middle east respiratory syndrome (Mers) (2015) Emerg. Microbes Infect., 4, p. 37; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Drosten, C., The spike protein of the emerging betacoronavirus emc uses a novel coronavirus receptor for entry, can be activated by tmprss2, and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Hofmann-Winkler, H., Tmprss2 activates the human coronavirus 229e for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87, pp. 6150-6160; Du, L.Y., Yang, Y., Zhou, Y.S., Lu, L., Li, F., Jiang, S.B., Mers-cov spike protein: A key target for antivirals (2017) Expert Opin. Ther. Target, 21, pp. 131-143; Xia, S., Liu, Q., Wang, Q., Sun, Z.W., Su, S., Dub, L.Y., Ying, T.L., Jiang, S.B., Middle east respiratory syndrome coronavirus (Mers-cov) entry inhibitors targeting spike protein (2014) Virus Res, 194, pp. 200-210; Forni, D., Filippi, G., Cagliani, R., de Gioia, L., Pozzoli, U., Al-Daghri, N., Clerici, M., Sironi, M., The heptad repeat region is a major selection target in mers-cov and related coronaviruses (2015) Sci. Rep., 5; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Xiao, H., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the s protein of middle east respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 13134-13140; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-emc (2013) Nature, 495, pp. 251-254; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of middle east respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J. Boil. Chem., 279, pp. 49414-49419; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective effect of intranasal regimens containing peptidic middle east respiratory syndrome coronavirus fusion inhibitor against mers-cov infection (2015) J. Infect. Dis., 212, pp. 1894-1903; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Chan, T.S., Jiang, S., Characterization and demonstration of the value of a lethal mouse model of middle east respiratory syndrome coronavirus infection and disease (2016) J. Virol., 90, pp. 57-67; Wang, C., Xia, S., Zhang, P., Zhang, T., Wang, W., Tian, Y., Meng, G., Liu, K., Discovery of hydrocarbon-stapled short alpha-helical peptides as promising middle east respiratory syndrome coronavirus (Mers-cov) fusion inhibitors (2018) J. Med. Chem., 61, pp. 2018-2026; Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V.K., Chan, C.C., Lin, Y.P., A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses (2016) Sci. Rep., 6, p. 22008; Wang, C., Zhao, L., Xia, S., Zhang, T., Cao, R., Liang, G., Li, Y., Shi, W., De novo design of alpha-helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery (2018) J. Med. Chem., 61, pp. 8734-8745; Wang, X., Zou, P., Wu, F., Lu, L., Jiang, S., Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses (2017) Front. Med., 11, pp. 449-461; Jiang, S.B., Tao, X.R., Xia, S., Garron, T., Yu, F., Du, L.Y., Lu, L., Tseng, C.T.K., Intranasally administered peptidic viral fusion inhibitor protected hdpp4 transgenic mice from mers-cov infection (2015) Lancet, 386. , S44. [CrossRef; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses—Drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Liu, Q., Xia, S., Sun, Z., Wang, Q., Du, L., Lu, L., Jiang, S., Testing of middle east respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry (2015) Antimicrob. Agents Chemother., 59, pp. 742-744; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Jiang, S., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus mers-cov (2013) Virol. J., 10, p. 266; Bertram, S., Glowacka, I., Blazejewska, P., Soilleux, E., Allen, P., Danisch, S., Steffen, I., Schneider, H., Tmprss2 and tmprss4 facilitate trypsin-independent spread of influenza virus in caco-2 cells (2010) J. Virol., 84, pp. 10016-10025; Shirogane, Y., Takeda, M., Iwasaki, M., Ishiguro, N., Takeuchi, H., Nakatsu, Y., Tahara, M., Yanagi, Y., Efficient multiplication of human metapneumovirus in vero cells expressing the transmembrane serine protease tmprss2 (2008) J. Virol., 82, pp. 8942-8946; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease tmprss2 (2010) J. Virol., 84, pp. 12658-12664; Shirato, K., Kawase, M., Matsuyama, S., Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease tmprss2 (2013) J. Virol., 87, pp. 12552-12561; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr., Nunneley, J.W., Barnard, D., Renslo, A.R., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antivir. Res., 116, pp. 76-84; Engel, J.C., Doyle, P.S., Hsieh, I., McKerrow, J.H., Cysteine protease inhibitors cure an experimental trypanosoma cruzi infection (1998) J. Exp. Med., 188, pp. 725-734; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., van den Hoogen, B.G., Snijder, E.J., Screening of an fda-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; Burkard, C., Verheije, M.H., Haagmans, B.L., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., de Haan, C.A., Atp1a1-mediated src signaling inhibits coronavirus entry into host cells (2015) J. Virol., 89, pp. 4434-4448; Kim, J.Y., Kim, Y.I., Park, S.J., Kim, I.K., Choi, Y.K., Kim, S.H., Safe, high-throughput screening of natural compounds of mers-cov entry inhibitors using a pseudovirus expressing mers-cov spike protein (2018) Int. J. Antimicrob. Agents, 52, pp. 730-732; Millet, J.K., Whittaker, G.R., Host cell entry of middle east respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Chou, C.Y., Lai, H.Y., Chen, H.Y., Cheng, S.C., Cheng, K.W., Chou, Y.W., Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease (2014) Acta Crystallogr. Sect. D Biol. Crystallogr., 70, pp. 572-581; Han, Y.S., Chang, G.G., Juo, C.G., Lee, H.J., Yeh, S.H., Hsu, J.T., Chen, X., Papain-like protease 2 (Plp2) from severe acute respiratory syndrome coronavirus (sars-cov): Expression, purification, characterization, and inhibition (2005) Biochemistry, 44, pp. 10349-10359; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Patel, K., Ghosh, A.K., Inhibitor recognition specificity of mers-cov papain-like protease may differ from that of sars-cov (2015) ACS Chem. Biol., 10, pp. 1456-1465; Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Doerr, H.W., Mechanisms and enzymes involved in sars coronavirus genome expression (2003) J. Gen. Virol, 84, pp. 2305-2315. , CrossRef, PubMed; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Rota, P.A., Baker, S.C., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J. Virol., 78, pp. 13600-13612; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., Mers-cov papain-like protease has deisgylating and deubiquitinating activities (2014) Virology, pp. 450–451, 64–70; Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., Chen, Z., Proteolytic processing, deubiquitinase and interferon antagonist activities of middle east respiratory syndrome coronavirus papain-like protease (2014) J. Gen. Virol., 95, pp. 614-626; Galkin, A., Kulakova, L., Lim, K., Chen, C.Z., Zheng, W., Turko, I.V., Herzberg, O., Structural basis for inactivation of giardia lamblia carbamate kinase by disulfiram (2014) J. Boil. Chem., 289, pp. 10502-10509; Paranjpe, A., Zhang, R., Ali-Osman, F., Bobustuc, G.C., Srivenugopal, K.S., Disulfiram is a direct and potent inhibitor of human o6-methylguanine-DNA methyltransferase (Mgmt) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage (2014) Carcinogenesis, 35, pp. 692-702; Lin, M.H., Moses, D.C., Hsieh, C.H., Cheng, S.C., Chen, Y.H., Sun, C.Y., Chou, C.Y., Disulfiram can inhibit mers and sars coronavirus papain-like proteases via different modes (2018) Antivir. Res, 150, pp. 155-163; Kumar, V., Tan, K.P., Wang, Y.M., Lin, S.W., Liang, P.H., Identification, synthesis and evaluation of sars-cov and mers-cov 3c-like protease inhibitors (2016) Bioorg. Med. Chem., 24, pp. 3035-3042; Needle, D., Lountos, G.T., Waugh, D.S., Structures of the middle east respiratory syndrome coronavirus 3c-like protease reveal insights into substrate specificity (2015) Acta Crystallogr. Sect. D Biol. Crystallogr., 71, pp. 1102-1111; Hsu, M.F., Kuo, C.J., Chang, K.T., Chang, H.C., Chou, C.C., Ko, T.P., Shr, H.L., Liang, P.H., Mechanism of the maturation process of sars-cov 3cl protease (2005) J. Biol. Chem., 280, pp. 31257-31266; Hu, T., Zhang, Y., Li, L., Wang, K., Chen, S., Chen, J., Ding, J., Shen, X., Two adjacent mutations on the dimer interface of sars coronavirus 3c-like protease cause different conformational changes in crystal structure (2009) Virology, 388, pp. 324-334; Galasiti Kankanamalage, A.C., Kim, Y., Damalanka, V.C., Rathnayake, A.D., Fehr, A.R., Mehzabeen, N., Battaile, K.P., Perlman, S., Structure-guided design of potent and permeable inhibitors of mers coronavirus 3cl protease that utilize a piperidine moiety as a novel design element (2018) Eur. J. Med. Chem., 150, pp. 334-346; Kilianski, A., Mielech, A.M., Deng, X., Baker, S.C., Assessing activity and inhibition of middle east respiratory syndrome coronavirus papain-like and 3c-like proteases using luciferase-based biosensors (2013) J. Virol., 87, pp. 11955-11962; Kumar, V., Shin, J.S., Shie, J.J., Ku, K.B., Kim, C., Go, Y.Y., Huang, K.F., Liang, P.H., Identification and evaluation of potent middle east respiratory syndrome coronavirus (Mers-cov) 3cl(pro) inhibitors (2017) Antivir. Res., 141, pp. 101-106; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) Plos Pathog, 12; Ren, Z., Yan, L., Zhang, N., Guo, Y., Yang, C., Lou, Z., Rao, Z., The newly emerged sars-like coronavirus hcov-emc also has an “achilles’ heel”: Current effective inhibitor targeting a 3c-like protease (2013) Protein Cell, 4, pp. 248-250; Muller, C., Schulte, F.W., Lange-Grunweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Grunweller, A., Broad-spectrum antiviral activity of the eif4a inhibitor silvestrol against corona-and picornaviruses (2018) Antivir. Res., 150, pp. 123-129; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Jordan, R., Coronavirus susceptibility to the antiviral remdesivir (Gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) Mbio, 9; Cong, Y., Hart, B.J., Gross, R., Zhou, H., Frieman, M., Bollinger, L., Wada, J., Dyall, J., Mers-cov pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells (2018) Plos ONE, 13; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Jahrling, P.B., Interferon-beta and mycophenolic acid are potent inhibitors of middle east respiratory syndrome coronavirus in cell-based assays (2014) J. Gen. Virol., 95, pp. 571-577; Tao, X., Mei, F., Agrawal, A., Peters, C.J., Ksiazek, T.G., Cheng, X., Tseng, C.T., Blocking of exchange proteins directly activated by camp leads to reduced replication of middle east respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 3902-3910; Warren, T.K., Wells, J., Panchal, R.G., Stuthman, K.S., Garza, N.L., van Tongeren, S.A., Dong, L., Pegoraro, G., Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue bcx4430 (2014) Nature, 508, pp. 402-405; Peters, H.L., Jochmans, D., de Wilde, A.H., Posthuma, C.C., Snijder, E.J., Neyts, J., Seley-Radtke, K.L., Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity (2015) Bioorg. Med. Chem. Lett., 25, pp. 2923-2926; Shin, J.S., Jung, E., Saracatinib inhibits middle east respiratory syndrome-coronavirus replication in vitro (2018) Viruses, 10, p. 283; Cheung, N.N., Lai, K.K., Dai, J., Kok, K.H., Chen, H., Chan, K.H., Yuen, K.Y., Kao, R.Y.T., Broad-spectrum inhibition of common respiratory rna viruses by a pyrimidine synthesis inhibitor with involvement of the host antiviral response (2017) J. Gen. Virol., 98, pp. 946-954; Lin, S.C., Ho, C.T., Chuo, W.H., Li, S., Wang, T.T., Lin, C.C., Effective inhibition of mers-cov infection by resveratrol (2017) BMC Infect. Dis., 17, p. 144; Gupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R.A., Lander, E.S., Identification of selective inhibitors of cancer stem cells by high-throughput screening (2009) Cell, 138, pp. 645-659; Huczynski, A., Polyether ionophores-promising bioactive molecules for cancer therapy (2012) Bioorg. Med. Chem. Lett., 22, pp. 7002-7010; McFadden, G., Gleevec casts a pox on poxviruses (2005) Nat. Med., 11, pp. 711-712; Adedeji, A.O., Singh, K., Kassim, A., Coleman, C.M., Elliott, R., Weiss, S.R., Frieman, M.B., Sarafianos, S.G., Evaluation of ssya10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and middle east respiratory syndrome coronaviruses (2014) Antimicrob. Agents Chemother., 58, pp. 4894-4898; Lundin, A., Dijkman, R., Bergstrom, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Kint, J., Targeting membrane-bound viral rna synthesis reveals potent inhibition of diverse coronaviruses including the middle east respiratory syndrome virus (2014) Plos Pathog, 10; Li, H.S., Kuok, D.I.T., Cheung, M.C., Ng, M.M.T., Ng, K.C., Hui, K.P.Y., Peiris, J.S.M., Nicholls, J.M., Effect of interferon alpha and cyclosporine treatment separately and in combination on middle east respiratory syndrome coronavirus (Mers-cov) replication in a human in-vitro and ex-vivo culture model (2018) Antivir. Res., 155, pp. 89-96; Clasman, J.R., Baez-Santos, Y.M., Mettelman, R.C., O’Brien, A., Baker, S.C., Mesecar, A.D., X-ray structure and enzymatic activity profile of a core papain-like protease of mers coronavirus with utility for structure-based drug design (2017) Sci. Rep, 7; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Yount, B.L., Katze, M.G., Cell host response to infection with novel human coronavirus emc predicts potential antivirals and important differences with sars coronavirus (2013) Mbio, 4","Yu, F.; College of Life and Science, Hebei Agricultural UniversityChina; email: shmyf@hebau.edu.cn",,"MDPI AG",19994915,,,"30562987","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85058875739 "Tsai T.-L., Su C.-C., Hsieh C.-C., Lin C.-N., Chang H.-W., Lo C.-Y., Lin C.-H., Wu H.-Y.","57191610762;56970220800;57205073133;36707995900;56133800800;57191609693;57191612041;57129133800;","Gene variations in cis-acting elements between the taiwan and prototype strains of porcine epidemic diarrhea virus alter viral gene expression",2018,"Genes","9","12", 591,"","",,,"10.3390/genes9120591","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058443395&doi=10.3390%2fgenes9120591&partnerID=40&md5=3161449f0951d1a24b0cce5399b48bf1","Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, 505, Taiwan; Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan; Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan","Tsai, T.-L., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; Su, C.-C., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; Hsieh, C.-C., Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, 505, Taiwan; Lin, C.-N., Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, 91201, Taiwan; Chang, H.-W., Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan; Lo, C.-Y., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; Lin, C.-H., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; Wu, H.-Y., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan","In 2013, the outbreak of porcine epidemic diarrhea (PED) in Taiwan caused serious economic losses. In this study, we examined whether the variations of the cis-acting elements between the porcine epidemic diarrhea virus (PEDV) Taiwan (TW) strain and the prototype strain CV777 alter gene expression. For this aim, we analyzed the variations of the cis-acting elements in the 5’ and 3’ untranslated regions (UTRs) between the PEDV TW, CV777, and other reference strains. We also determined the previously unidentified transcription regulatory sequence (TRS), a sequence motif required for coronavirus transcription, and found that a nucleotide deletion in the TW strain, in comparison with CV777 strain, immediately downstream of the leader core sequence alters the identity between the leader TRS and the body TRS. Functional analyses using coronavirus defective interfering (DI) RNA revealed that such variations in cis-acting elements for the TW strain compared with the CV777 strain have an influence on the efficiency of gene expression. The current data show for the first time the evolution of PEDV in terms of cis-acting elements and their effects on gene expression, and thus may contribute to our understanding of recent PED outbreaks worldwide. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Cis-acting element; Gene evolution; Gene expression; Nucleotide composition; Porcine epidemic diarrhea virus","cis acting element; 3' untranslated region; 5' untranslated region; Article; comparative study; controlled study; defective virus; downstream processing; epidemic; gene deletion; gene expression; gene mutation; gene structure; genetic variation; nonhuman; Porcine epidemic diarrhea virus; regulatory sequence; RNA interference; sequence alignment; Taiwan; virus gene; virus strain","King, A.M.Q., (2012) Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, 1327p. , Academic Press: London, UK; Waltham, MA, USA; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr. Top. Microbiol. Immunol., 287, pp. 1-30; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) Mbio, 4; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., Coronavirus cis-acting RNA elements (2016) Adv. Virus Res., 96, pp. 127-163; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu. Rev. Virol., 2, pp. 265-288; Wu, H.Y., Guan, B.J., Su, Y.P., Fan, Y.H., Brian, D.A., Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5′-untranslated-region mutants (2014) J. Virol., 88, pp. 846-858; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., RNA structure analysis of Alphacoronavirus terminal genome regions (2014) Virus Res, 194, pp. 76-89; Yang, D., Leibowitz, J.L., The structure and functions of coronavirus genomic 3′ and 5′ ends (2015) Virus Res, 206, pp. 120-133; Hsue, B., Hartshorne, T., Masters, P.S., Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome (2000) J. Virol., 74, pp. 6911-6921; Hsue, B., Masters, P.S., A bulged stem-loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication (1997) J. Virol., 71, pp. 7567-7578; Williams, G.D., Chang, R.Y., Brian, D.A., A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication (1999) J. Virol., 73, pp. 8349-8355; Goebel, S.J., Miller, T.B., Bennett, C.J., Bernard, K.A., Masters, P.S., A hypervariable region within the 3′ cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis (2007) J. Virol., 81, pp. 1274-1287; Sola, I., Mateos-Gomez, P.A., Almazan, F., Zuniga, S., Enjuanes, L., RNA-RNA and RNA-protein interactions in coronavirus replication and transcription (2011) RNA Biol, 8, pp. 237-248; Sawicki, S.G., Sawicki, D.L., A new model for coronavirus transcription (1998) Adv. Exp. Med. Biol., 440, pp. 215-219; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J. Virol., 81, pp. 20-29; Alonso, S., Izeta, A., Sola, I., Enjuanes, L., Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus (2002) J. Virol., 76, pp. 293-1308; Sola, I., Moreno, J.L., Zuniga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking, the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) J. Virol., 79, pp. 2506-2516; Rasmussen, T.B., Boniotti, M.B., Papetti, A., Grasland, B., Frossard, J.P., Dastjerdi, A., Hulst, M., Blome, S., Full-length genome sequences of porcine epidemic diarrhoea virus strain CV777; Use of NGS to analyse genomic and sub-genomic RNAs (2018) Plos ONE, 13; Song, D.P., Huang, D.Y., Peng, Q., Huang, T., Chen, Y.J., Zhang, T.S., Nie, X.W., Liu, Q.L., Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013 (2015) Plos ONE, 10; Debouck, P., Pensaert, M., Experimental infection of pigs with a new porcine enteric coronavirus, CV 777 (1980) Am. J. Vet. Res., 41, pp. 219-223; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, pp. 243-247; Zimmerman, J.J., (2012) Diseases of Swine, 983p. , 10th ed.; Wiley-Blackwell: Chichester: West Sussex, UK; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol. J., 12 (193), p. 13. , 2016; Lin, C.N., Chung, W.B., Chang, S.W., Wen, C.C., Liu, H., Chien, C.H., Chiou, M.T., US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014 (2014) J. Vet. Med. Sci., 76, pp. 1297-1299; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Nam, E., Lee, C., Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection (2010) Vet. Microbiol., 144, pp. 41-50; Chang, S.H., Bae, J.L., Kang, T.J., Kim, J., Chung, G.H., Lim, C.W., Laude, H., Jang, Y.S., Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus (2002) Mol. Cells, 14, pp. 295-299; Kang, T.J., Kang, K.H., Kim, J.A., Kwon, T.H., Jang, Y.S., Yang, M.S., High-level expression of the neutralizing epitope of porcine epidemic diarrhea virus by a tobacco mosaic virus-based vector (2004) Protein Expres Purif, 38, pp. 129-135; Oszvald, M., Kang, T.J., Tomoskozi, S., Tamas, C., Tamas, L., Kim, T.G., Yang, M.S., Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm (2007) Mol. Biotechnol., 35, pp. 215-223; Chiou, H.Y., Huang, Y.L., Deng, M.C., Chang, C.Y., Jeng, C.R., Tsai, P.S., Yang, C., Chang, H.W., Phylogenetic analysis of the spike (S) gene of the new variants of porcine epidemic diarrhoea virus in Taiwan (2017) Transbound. Emerg. Dis., 64, pp. 157-166; Chen, Q., Li, G.W., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Gauger, P.C., Yoon, K.J., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) J. Clin. Microbiol., 52, pp. 234-243; Liao, W.Y., Ke, T.Y., Wu, H.Y., The 3′-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative-and positive-strand RNA synthesis (2014) Plos ONE, 9; Chang, Y.C., Kao, C.F., Chang, C.Y., Jeng, C.R., Tsai, P.S., Pang, V.F., Chiou, H.Y., Chang, H.W., Evaluation and comparison of the pathogenicity and host immune responses induced by a G2b Taiwan porcine epidemic diarrhea virus (Strain Pintung 52) and its highly cell-culture passaged strain in conventional 5-week-old pigs (2017) Viruses, 9; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J. Clin. Microbiol., 26, pp. 2235-2239; Kweon, C.H., Kwon, B.J., Lee, J.G., Kwon, G.O., Kang, Y.B., Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate (1999) Vaccine, 17, pp. 2546-2553; Zuker, M., Prediction of RNA secondary structure by energy minimization (1994) Methods Mol. Biol., 25, pp. 267-294; Cruz, J.L.G., Sola, I., Becares, M., Alberca, B., Plana, J., Enjuanes, L., Zuniga, S., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) Plos Pathogens, 7; Brown, C.G., Nixon, K.S., Senanayake, S.D., Brian, D.A., An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication (2007) J. Virol., 81, pp. 7716-7724; Chang, R.Y., Hofmann, M.A., Sethna, P.B., Brian, D.A., A cis-acting function for the coronavirus leader in defective interfering RNA replication (1994) J. Virol., 68, pp. 8223-8231; Raman, S., Brian, D.A., Stem-loop IV in the 5′ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication (2005) J. Virol., 79, pp. 12434-12446; Spagnolo, J.F., Hogue, B.G., Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication (2000) J. Virol., 74, pp. 5053-5065; Wu, H.Y., Brian, D.A., 5′-proximal hot spot for an inducible positive-to-negative-strand template switch by coronavirus RNA-dependent RNA polymerase (2007) J. Virol., 81, pp. 3206-3215; Chang, R.Y., Krishnan, R., Brian, D.A., The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA (1996) J. Virol., 70, pp. 2720-2729; Wu, H.Y., Guy, J.S., Yoo, D., Vlasak, R., Urbach, E., Brian, D.A., Common RNA replication signals exist among group 2 coronaviruses: Evidence for in vivo recombination between animal and human coronavius molecules (2003) Virology, 315, pp. 174-183; Johnson, R.F., Feng, M., Liu, P.H., Millership, J.J., Yount, B., Baric, R.S., Leibowitz, J.L., Effect of mutations in the mouse hepatitis virus 3‘(+)42 protein binding element on RNA replication (2005) J. Virol., 79, pp. 14570-14585; Tobler, K., Ackermann, M., PEDV leader sequence and junction sites (1995) Adv. Exp. Med. Biol., 380, pp. 541-542; Li, C., Li, Z., Zou, Y., Wicht, O., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination (2013) Plos ONE, 8; Ozdarendeli, A., Ku, S., Rochat, S., Williams, G.D., Senanayake, S.D., Brian, D.A., Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis (2001) J. Virol., 75, pp. 7362-7374; Pasternak, A.O., Gultyaev, A.P., Spaan, W.J., Snijder, E.J., Genetic manipulation of arterivirus alternative mRNA leader-body junction sites reveals tight regulation of structural protein expression (2000) J. Virol., 74, pp. 11642-11653; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Regulation of relative abundance of arterivirus subgenomic mRNAs (2004) J. Virol., 78, pp. 8102-8113","Wu, H.-Y.; Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing UniversityTaiwan; email: hwu2@dragon.nchu.edu.tw",,"MDPI AG",20734425,,,,"English","Genes",Article,"Final",Open Access,Scopus,2-s2.0-85058443395 "Coleman K.K., Nguyen T.T., Yadana S., Hansen-Estruch C., Lindsley W.G., Gray G.C.","57203436946;57208893817;57204876024;56033471200;6602762177;16425441400;","Bioaerosol Sampling for Respiratory Viruses in Singapore’s Mass Rapid Transit Network",2018,"Scientific Reports","8","1", 17476,"","",,2,"10.1038/s41598-018-35896-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057615001&doi=10.1038%2fs41598-018-35896-1&partnerID=40&md5=1fb65391fd2286714eb852a8714afa1f","Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore; Duke University School of Medicine, Durham, United States; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, United States; Global Health Research Center, Duke Kunshan University, Kunshan, China","Coleman, K.K., Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore; Nguyen, T.T., Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore; Yadana, S., Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore; Hansen-Estruch, C., Duke University School of Medicine, Durham, United States; Lindsley, W.G., Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States; Gray, G.C., Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore, Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, United States, Global Health Research Center, Duke Kunshan University, Kunshan, China","As a leading global city with a high population density, Singapore is at risk for the introduction of novel biological threats. This risk has been recently reinforced by human epidemics in Singapore of SARS coronavirus, 2009 pandemic H1N1 influenza A virus, and enterovirus 71. Other major threats to Singapore include MERS-coronavirus and various avian and swine influenza viruses. The ability to quickly identify and robustly track such threats to initiate an early emergency response remains a significant challenge. In an effort to enhance respiratory virus surveillance in Singapore, our team conducted a pilot study employing a noninvasive bioaerosol sampling method to detect respiratory viruses in Singapore’s Mass Rapid Transit (MRT) network. Over a period of 52 weeks, 89 aerosol samples were collected during peak MRT ridership hours. Nine (10%) tested positive for adenovirus, four (4.5%) tested positive for respiratory syncytial virus type A, and one (1%) tested positive for influenza A virus using real-time RT-PCR/PCR. To our knowledge, this is the first time molecular evidence for any infectious respiratory agent has been collected from Singapore’s MRT. Our pilot study data support the possibility of employing bioaerosol samplers in crowded public spaces to noninvasively monitor for respiratory viruses circulating in communities. © 2018, The Author(s).",,"aerosol; genetics; Influenza A virus (H1N1); isolation and purification; microbiology; real time polymerase chain reaction; Singapore; traffic and transport; virus gene; Aerosols; Air Microbiology; Genes, Viral; Influenza A Virus, H1N1 Subtype; Real-Time Polymerase Chain Reaction; Singapore; Transportation","Epidemiology and control of SARS in Singapore (2003) Epidemiological News Bulletin, 29, p. 7. , https://www.moh.gov.sg/content/dam/moh_web/Statistics/Epidemiological_News_Bulletin/2003/enb07_03w_0.pdf, Accessed 27 April 2018; Cutter, J.L., Outbreak of pandemic influenza A (H1N1- 2009) in Singapore, May to September 2009 (2010) Ann Acad Med Singapore, 39, pp. 273-282. , PID: 20473451; Communicable Diseases Surveillance in Singapore 2012, , https://www.moh.gov.sg/content/moh_web/home/Publications/Reports/2013/Communicable_Diseases_Surveillance:in_Singapore_2012.html, Accessed 27 April 2018; Chan, K.P., Epidemic Hand, Foot and Mouth Disease caused by human enterovirus 71, Singapore (2003) Emerg Infect Dis., 9 (1), pp. 78-85; Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2018) Health Advisory, , https://www.moh.gov.sg/content/moh_web/home/pressRoom/Current_Issues/2014/middle-east-respiratory-syndrome-coronavirus–mers-cov-.html, January, Accessed 27April 2018; Azhar, E.I., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) MBio., 5 (4), pp. 1414-1450; Wong, T.Y., A cross-sectional study of primary-care physicians in Singapore on their concerns and preparedness for an Avian Influenza outbreak (2008) Ann Acad Med Singapore., 37, pp. 458-464. , PID: 18618056; Lee, H.K., Diagnostic testing for pandemic influenza in Singapore (2010) The Journal of Molecular Diagnostics, 12 (5), pp. 636-643. , COI: 1:CAS:528:DC%2BC3cXht1eqsrzI; (2018) Human Infection with Avian Influenza A(H7n4)Virus – China, , http://www.who.int/csr/don/22-february-2018-ah7n4-china/en/, Accessed 27April 2018; (2018) H7N9 Situation Update, , http://www.fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update.html, Accessed 27 April 2018; Disease Outbreak News, , http://www.who.int/csr/don/en/, Accessed 27 April 2018; Roos, R., (2013) Study Puts Global 2009 Pandemic H1N1 Infection Rate at 24%, , http://www.cidrap.umn.edu/news-perspective/2013/01/study-puts-global-2009-pandemic-h1n1-infection-rate-24, University of Minnesota CIDRAP News, Accessed 20 October 2017; (2017) China’s New H7N9 Bird Flu Strain has Pandemic Potential: US Study, , http://www.straitstimes.com/world/united-states/chinas-new-h7n9-bird-flu-strain-has-pandemic-potential-us-study, Accessed 20 October 2017; Ke, C., Mok, C.K.P., Zhu, W., Zhou, H., He, J., Guan, W., Wu, J., Peiris, J.S.M., Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China (2017) Emerging Infectious Diseases, 23 (8), pp. 1332-1340; Khan, K., Spread of a novel influenza A (H1N1) virus via global airline transportation (2009) N Engl J Med., 361, pp. 212-214. , COI: 1:CAS:528:DC%2BD1MXosVOisb8%3D; Imai, M., Watanabe, T., Kiso, M., Nakajima, N., Yamayoshi, S., Iwatsuki-Horimoto, K., Hatta, M., Kawaoka, Y., A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets (2017) Cell Host & Microbe, 22 (5); Afshinnekoo, E., Geospatial resolution of human and bacterial diversity with city-scale metagenomics (2015) Cell Systems., 1 (1), pp. 72-87. , COI: 1:CAS:528:DC%2BC2sXhtFaltrk%3D; The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report (2016) Microbiome., 4; (2018) The Characteristics of Pandemic Pathogens, , http://www.centerforhealthsecurity.org/about-the-center/pressroom/press_releases/2018-05-10_characteristics-of-pandemic-pathogens.html, May. Retrieved 2018 June 11 from; Heo, K.J., Lee, B.U., Seasonal variation in the concentrations of culturable bacterial and fungal aerosols in underground subway systems (2016) Journal of Aerosol Science., 92, pp. 122-129. , COI: 1:CAS:528:DC%2BC2MXhvFWhu7rM; Heo, K.J., Lim, C.E., Kim, H.B., Lee, B.U., Effects of human activities on concentrations of culturable bioaerosols in indoor air environments (2017) Journal of Aerosol Science., 104, pp. 58-65. , COI: 1:CAS:528:DC%2BC28XhvFOgsr%2FK; Nasir, Z.A., Campos, L.C., Christie, N., Colbeck, I., Airborne biological hazards and urban transport infrastructure: current challenges and future directions (2016) Environmental Science and Pollution Research, 23 (15), pp. 15757-15766; Mohr, O., Evidence for airborne infectious disease transmission in public ground transport–a literature review (2012) Eurosurveillance, 17 (35), p. 20255. , Aug 30; Browne, A., St-Onge Ahmad, S., Beck, C.R., Nguyen-Van-Tam, J.S., The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review (2016) Journal of Travel Medicine, 23 (1), p. tav002; Triadó‐Margarit, X., Bioaerosols in the Barcelona subway system (2017) Indoor air. May, 27 (3), pp. 564-575; Zhu, S., Srebric, J., Spengler, J.D., Demokritou, P., An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments (2012) Building and Environment., 47, pp. 67-75; Hertzberg, V.S., Weiss, H., Elon, L., Si, W., Norris, S.L., Behaviors, movements, and transmission of droplet-mediated respiratory diseases during transcontinental airline flights (2018) Proceedings of the National Academy of Sciences, , Mar 14:201711611; Mei, S., Simulating city-level airborne infectious diseases (2015) Computers, Environment and Urban Systems, 1 (51), pp. 97-105. , May; Noti, J.D., High humidity leads to loss of infectious influenza virus from simulated coughs (2013) PLoS One., 8 (2). , COI: 1:CAS:528:DC%2BC3sXjvV2gs74%3D; Harper, G.J., Airborne micro-organisms: survival tests with four viruses (1961) J Hyg (Lond)., 59, pp. 479-486. , COI: 1:STN:280:DyaF38%2Fks1Wmsw%3D%3D; Tang, J.W., The effect of environmental parameters on the survival of airborne infectious agents (2009) Journal of The Royal Society Interface, 6, pp. S737-S746; Kormuth, K.A., Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity (2018) The Journal of Infectious Diseases, , Jun 7; Blachere, F.M., Measurement of airborne influenza virus in a hospital emergency department (2009) Clin Infect Dis., 48 (4), pp. 438-440; Cao, G., Noti, J.D., Blachere, F.M., Lindsley, W.G., Beezhold, D.H., Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler (2011) Journal of Environmental Monitoring: JEM. Dec, 13 (12), p. 3321. , COI: 1:CAS:528:DC%2BC3MXhsFegsLzF; Lindsley, W.G., Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic (2010) Clinical Infectious Diseases, 50 (5), pp. 693-698; Weekly Infectious Diseases Bulletin, , https://www.moh.gov.sg/resources-statistics/infectious-disease-statistics/2018/weekly-infectious-diseases-bulletin, Accessed2 November 2018; Rule, A.M., Apau, O., Ahrenholz, S.H., Brueck, S.E., Lindsley, W.G., de Perio, M.A., Noti, J.D., Fisher, E.M., Healthcare personnel exposure in an emergency department during influenza season (2018) PLOS ONE, 13 (8); Borkenhagen, L.K., Surveillance for respiratory and diarrheal pathogens at the human-pig interface in Sarawak, Malaysia (2018) PLOS ONE, 13 (7); Van de Pol, A.C., Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms (2007) Journal of Clinical Microbiology., 1 (457), pp. 2260-2262; (2009) CDC Protocol of Realtime RT-PCR for Influenza H1N1, , World Health Organization, Geneva: Switzerland; Selvaraju, S.B., Selvarangan, R., Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses (2010) J Clin Microbiol., 48 (11), pp. 3870-3875. , COI: 1:CAS:528:DC%2BC3MXjtVSks74%3D; Loens, K., van Loon, A.M., Coenjaerts, F., van Aarle, Y., Goossens, H., Wallace, P., Claas, E.J.C., Ieven, M., Performance of Different Mono- and Multiplex Nucleic Acid Amplification Tests on a Multipathogen External Quality Assessment Panel (2011) Journal of Clinical Microbiology, 50 (3), pp. 977-987; Bil-Lula, I., De Franceschi, N., Pawlik, K., WoŸniak, M., Improved real-time PCR assay for detection and quantification of all 54 known types of human adenoviruses in clinical samples (2012) Medical science monitor: international medical journal of experimental and clinical research., 18 (6), p. BR221. , COI: 1:CAS:528:DC%2BC38XhsVWntrbK","Coleman, K.K.; Emerging Infectious Diseases Programme, Duke-NUS Medical SchoolSingapore; email: Kristen.coleman@duke-nus.edu.sg",,"Nature Publishing Group",20452322,,,"30504827","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85057615001 "Al-Mubarak A.I.A.","23481404600;","Differential expression of the coronavirus (mers-cov) receptor, dipeptidyl peptidase 4, on normal and stimulated leukocytes of dromedary camels",2018,"Journal of Camel Practice and Research","25","3",,"249","253",,,"10.5958/2277-8934.2018.00033.4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064391080&doi=10.5958%2f2277-8934.2018.00033.4&partnerID=40&md5=d95aa0cde59a689b940767187cfea612","Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia","Al-Mubarak, A.I.A., Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia","The present current study was dune to evaluate the expression pattern of DPP4 on unstimulated and lipopolysaccharide (LPS)-stimulated peripheral blood leukocytes of dromedary came! using flow cytometry. Unstimulated camel blood monocytes showed the highest expression of DDP4 in comparison to unstimulated lymphocytes and granulocytes. The mean fluorescence intensity of DPP4 on unstimulated lymphocytes was significantly higher than that on unstimulated granulocytes. In vitro stimulation of whole blood with LPS induced a selective upregulation of DPP4 on monocytes. Together, these results imply that camel monocytes may play a central role in pathogenesis or immune response to MERS-CoV. © 2018 Camel Publishing House.All Rights Reserved.","Camel; Coronavirus; Dipeptidy! peptidase 4; Leukocytes; Middle east respiratory syndrome (mers-cov)",,"Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De, W.E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20, pp. 1999-2005; Cal, Y., Yu, S.Q., Postnikova, E.N., Mazur, S., Bernbaum, J.G., Burk, R., Zhang, T., Kuhn, J.H., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PLoS One, 9 (11), p. ell2060; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik, A.K., Adlhoch, C., Coulombier, D., Human-dromedary camel interactions and the risk of acquiring zoonotic middle east respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63 (1), pp. 1-9; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camel (2016) Science, 351 (6268), pp. 77-81; Harcourt, J.L., Rudoler, N., Tamin, A., Leshem, E., Rasis, M., Giladi, M., Haynes, L.M., The prevalence of middle east respiratory syndrome coronavirus (mers-cov) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health; Hussen, J., Shawaf, T., Al-Herz, A.I., Alturaifi, H.R., Alluwaimi, A.M., Reactivity of commercially available monoclonal antibodies to human CD antigens with peripheral blood leucocytes of dromedary camels (Camelus dromedarius) (2017) Open Veterinary Journal, 7 (2), pp. 150-153; Ibegbu, C.C., Xu, Y.X., Fillos, D., Radziewicz, H., Grakoui, A., Kourtis, A.P., Differential expression of CD26 on virus-specific CD8(+) T cells during active, latent and resolved infection (2009) Immunology, 126 (3), pp. 346-353; Inn, K.S., Kim, Y., Aigerim, A., Park, U., Hwang, E.S., Choi, M.S., Kim, Y.S., Cho, N.H., Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus (2018) Virology, 518, pp. 324-327; Lambeir, A.M., Durinx, C., Scharpe, S., De Meester, I., Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions and clinical aspects of the enzyme DPP 4 (2003) Critical Reviews in Clinical Laboratory Sciences, 40 (3), pp. 209-294; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl Peptidase 4 distribution in the human respiratory tract: Implications for the middle east respiratory syndrome (2016) American Journal of Pathology, 1861, pp. 78-86; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Dang, N.H., Morimoto, C., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) Journal of Virology, 87 (24), pp. 13892-13899; Pierson, D.M., Jones, D., Muzzafar, T., Kersh, M.J., Challagundla, P., Medeiros, L.J., Jorgensen, J.L., Utility of CD26 in flow cytometric immunophenotyping of Tell lymphomas in tissue and body fluid specimens (2008) Cytometry Part B: Clinical Cytometry, 74 (6), pp. 341-348; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Mttller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Reusken, C., Haagmans, B.L., Koopmans, M.P., Dromedary camels and Middle East respiratory syndrome: MERS coronavirus in the ship of the desert (2014) Ned Tijdschr Geneeskd, 158, p. A7806; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Raj, V.S., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA Journal of Camel Practice and Research and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Eurosurveill, 19; Reusken, C.B., Haagmans, B.L., Miiller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infection Diseases, 13 (10), pp. 859-866; Van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) Journal of Virology, 88 (16), pp. 9220-9232; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., Van Leenders, J.L.H., Bosch, B.J., Bensaid, A., Haagmans, B.L., Differential expression of the middle east respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) Journal of Virology, 90 (9), pp. 4838-4842; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367 (19), pp. 1814-1820; Zhong, J., Rao, X., Deiuliis, J., Braunstein, Z., Narula, V., Hazey, J., Mikami, D., Rajagopalan, S., A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation (2013) Diabetes, 62 (1), pp. 149-157","Al-Mubarak, A.I.A.; Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal UniversitySaudi Arabia; email: aialmubark@kfu.edu.sa",,"Camel Publishing House",09716777,,,,"English","J. Camel Pract. Res.",Article,"Final",,Scopus,2-s2.0-85064391080 "Kirchdoerfer R.N., Wang N., Pallesen J., Wrapp D., Turner H.L., Cottrell C.A., Corbett K.S., Graham B.S., McLellan J.S., Ward A.B.","16068684500;55782500200;35070274500;57189031611;57077956900;57000139800;36500702900;7201610365;11140034400;55945233700;","Erratum to: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (Scientific Reports, (2018), 8, 1, (15701), 10.1038/s41598-018-34171-7)",2018,"Scientific Reports","8","1", 17823,"","",,1,"10.1038/s41598-018-36918-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058397522&doi=10.1038%2fs41598-018-36918-8&partnerID=40&md5=f78c41819e89cb8ec83fa360c2b2532f","Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, United States","Kirchdoerfer, R.N., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Wang, N., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Pallesen, J., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Wrapp, D., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Turner, H.L., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Cottrell, C.A., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Corbett, K.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, United States; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814, United States; McLellan, J.S., Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States, Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Ward, A.B., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States","A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper. © 2018, The Author(s).",,"erratum; error",,"Ward, A.B.; Department of Integrative Structural and Computational Biology, The Scripps Research InstituteUnited States; email: andrew@scripps.edu",,"Nature Publishing Group",20452322,,,"30531867","English","Sci. Rep.",Erratum,"Final",Open Access,Scopus,2-s2.0-85058397522 "Kiambi S., Corman V.M., Sitawa R., Githinji J., Ngoci J., Ozomata A.S., Gardner E., von Dobschuetz S., Morzaria S., Kimutai J., Schroeder S., Njagi O., Simpkin P., Rugalema G., Tadesse Z., Lubroth J., Makonnen Y., Drosten C., Müller M.A., Fasina F.O.","56771335800;34876424800;57204807029;25927901800;57204799554;57204799262;57193719177;20436883300;57215474175;57200034767;57196021608;6506453648;57204798151;6506838313;57204809877;57191747595;55957694400;7003813990;24068857400;16416667800;","Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017",2018,"Emerging Microbes and Infections","7","1", 195,"","",,6,"10.1038/s41426-018-0193-z","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057231006&doi=10.1038%2fs41426-018-0193-z&partnerID=40&md5=228f53ff45f1acfdb2022f97281d8194","Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany; Directorate of Veterinary Services, Nairobi, Kenya; University of Nairobi, Nairobi, Kenya","Kiambi, S., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Corman, V.M., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Centre for Infection Research, associated partner Charité, Berlin, Germany; Sitawa, R., Directorate of Veterinary Services, Nairobi, Kenya; Githinji, J., Directorate of Veterinary Services, Nairobi, Kenya; Ngoci, J., Directorate of Veterinary Services, Nairobi, Kenya; Ozomata, A.S., University of Nairobi, Nairobi, Kenya; Gardner, E., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; von Dobschuetz, S., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Morzaria, S., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Kimutai, J., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Schroeder, S., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; Njagi, O., Directorate of Veterinary Services, Nairobi, Kenya; Simpkin, P., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Rugalema, G., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Tadesse, Z., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Lubroth, J., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Makonnen, Y., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Drosten, C., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Centre for Infection Research, associated partner Charité, Berlin, Germany; Müller, M.A., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Centre for Infection Research, associated partner Charité, Berlin, Germany; Fasina, F.O., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy",[No abstract available],,"disease severity; dromedary; human; Kenya; Letter; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; phylogeny; priority journal; reverse transcription polymerase chain reaction; RNA extraction; single nucleotide polymorphism; virus neutralization; virus pneumonia; water supply; world health organization; animal; camel; Coronavirus infection; genetics; genotype; isolation and purification; nose; phenotype; veterinary medicine; virology; virus load; virus RNA; Animals; Camelus; Coronavirus Infections; Genotype; Kenya; Middle East Respiratory Syndrome Coronavirus; Nose; Phenotype; Phylogeny; RNA, Viral; Viral Load","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367 (19), pp. 1814-1820; (2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/, Accessed 28 September 2018; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between Africa and the Middle East (2016) Trop. Anim. Health Prod., 48, pp. 1277-1282; Chu, D.K.W., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl Acad. Sci. USA, A115, pp. 3144-3149; Ali, M., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt (2017) Euro Surveill., 22. , https://doi.org/10.2807/1560-7917.ES.2017.22.11.30487, August 2015 to January 2016; Corman, V.M., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322; Liljander, A., MERS-CoV Antibodies in Humans, Africa, 2013-2014 (2016) Emerg. Infect. Dis., 22, pp. 1086-1089; Corman, V.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, p. 17; Meyer, B., Time Course of MERS-CoV Infection and Immunity in Dromedary Camels (2016) Emerg. Infect. Dis., 22, pp. 2171-2173; Corman, V.M., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Sabir, J.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Wang, N., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993. , COI: 1:CAS:528:DC%2BC3sXht1Wltb%2FM; Canton, J., MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) PLoS Pathog., 14; Niemeyer, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495; Muth, D., Meyer, B., Niemeyer, D., Schroeder, S., Osterrieder, N., Müller, M.A., Drosten, C., Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning (2017) Journal of General Virology, 98 (10), pp. 2461-2469","Müller, M.A.; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of VirologyGermany; email: marcel.mueller@charite.de",,"Nature Publishing Group",22221751,,,"30482895","English","Emerg. Microbes Infect.",Letter,"Final",Open Access,Scopus,2-s2.0-85057231006 "Zhu Y., Li C., Chen L., Xu B., Zhou Y., Cao L., Shang Y., Fu Z., Chen A., Deng L., Bao Y., Sun Y., Ning L., Liu C., Yin J., Xie Z., Shen K.","57201342548;26643623900;57204452955;55475549100;55359762300;57204456414;8280633800;57209944753;7403391788;57201284979;32867529000;57204454928;57204463146;55680737600;41763063400;7402267422;55641765700;","A novel human coronavirus OC43 genotype detected in mainland China",2018,"Emerging Microbes and Infections","7","1", 173,"","",,2,"10.1038/s41426-018-0171-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055631432&doi=10.1038%2fs41426-018-0171-5&partnerID=40&md5=cc1b1479cd2d106533e2bf2accf507b8","Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China; Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; The Children’s Hospital-Zhejiang University School of Medicine, Hangzhou, China; Children’s Hospital Capital Institute of Pediatrics, Beijing, China; Shengjing Hospital of China Medical University, Shenyang, China; Children’s Hospital of Chongqing Medical University, Chongqing, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Women and Children’s Medical Center, Guangzhou, China; Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Yinchuan Women and Children Healthcare Hospital, Yinchuan, China; Children’s hospital of Changchun, Changchun, China","Zhu, Y., Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; Li, C., The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China; Chen, L., Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; Xu, B., Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; Zhou, Y., The Children’s Hospital-Zhejiang University School of Medicine, Hangzhou, China; Cao, L., Children’s Hospital Capital Institute of Pediatrics, Beijing, China; Shang, Y., Shengjing Hospital of China Medical University, Shenyang, China; Fu, Z., Children’s Hospital of Chongqing Medical University, Chongqing, China; Chen, A., The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Deng, L., Guangzhou Women and Children’s Medical Center, Guangzhou, China; Bao, Y., Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Sun, Y., Yinchuan Women and Children Healthcare Hospital, Yinchuan, China; Ning, L., Children’s hospital of Changchun, Changchun, China; Liu, C., Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; Yin, J., Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; Xie, Z., Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China; Shen, K., Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China",[No abstract available],,"China; community acquired pneumonia; genotype; human; Human coronavirus OC43; Letter; molecular phylogeny; nonhuman; priority journal; serology; virus detection; virus genome; virus replication; virus strain; child; classification; Coronavirus infection; female; genetics; genotype; Human coronavirus OC43; infant; isolation and purification; male; phylogeny; preschool child; prospective study; virology; viral protein; Child; Child, Preschool; China; Coronavirus Infections; Coronavirus OC43, Human; Female; Genome, Viral; Genotype; Humans; Infant; Male; Phylogeny; Prospective Studies; Viral Proteins","Masters, P.S., Perlman, S., (2013) Fields Virology, 1. , 6th edn, eds Knipe & Howley: Wolters Kluwer, Lippincott Williams & Wilkins, Ch. 28, Philadelphia; Morfopoulou, S., Human coronavirus OC43 associated with fatal encephalitis (2016) N. Engl. J. Med., 375, pp. 497-498; St-Jean, J.R., Human respiratory coronavirus OC43: genetic stability and neuroinvasion (2004) J. Virol., 78, pp. 8824-8834. , COI: 1:CAS:528:DC%2BD2cXmslWqs7k%3D; Coleman, C.M., Frieman, M.B., Coronaviruses: important emerging human pathogens (2014) J. Virol., 88, pp. 5209-5212. , COI: 1:CAS:528:DC%2BC2cXhsVGnu7bP; Woo, P.C., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008. , COI: 1:CAS:528:DC%2BC38XktlOrsr8%3D; (2017), https://talk.ictvonline.org/taxonomy/, International Committee on Taxonomy of Viruses. Virus taxonomy: 2017 release, EC 49, Singapore; Su, S., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502. , COI: 1:CAS:528:DC%2BC28XksVWmsbc%3D; Zhang, Y., Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination (2014) J. Infect., 70, pp. 641-650; Kin, N., Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in France from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes (2015) Viruses, 7, pp. 2358-2377. , COI: 1:CAS:528:DC%2BC2MXpvFOisrc%3D; Vijgen, L., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J. Virol., 79, pp. 1595-1604. , COI: 1:CAS:528:DC%2BD2MXhtFCjtLc%3D; Vijgen, L., Circulation of genetically distinct contemporary human coronavirus OC43 strains (2005) Virology, 337, pp. 85-92. , COI: 1:CAS:528:DC%2BD2MXks1Cru7o%3D; Lau, S.K., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337. , COI: 1:CAS:528:DC%2BC3MXhtlCltr3E; Oong, X.Y., Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: phylogenetic, spatiotemporal and transmission network analyses (2017) Emerg. Microbe., 6. , COI: 1:CAS:528:DC%2BC2sXislemtA%3D%3D; Tamura, K., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739. , COI: 1:CAS:528:DC%2BC3MXht1eiu73K","Xie, Z.; Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s HealthChina; email: xiezhengde@bch.com.cn",,"Nature Publishing Group",22221751,,,"30377292","English","Emerg. Microbes Infect.",Letter,"Final",Open Access,Scopus,2-s2.0-85055631432 "Cui T., Theuns S., Desmarets L.M.B., Xie J., De Gryse G.M.A., Yang B., Van den Broeck W., Nauwynck H.J.","57195568219;55809044500;38561112500;57195563104;56841633600;57195567856;7004519198;7007141390;","Establishment of porcine enterocyte/myofibroblast co-cultures for the growth of porcine rota- and coronaviruses",2018,"Scientific Reports","8","1", 15195,"","",,2,"10.1038/s41598-018-33305-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054889966&doi=10.1038%2fs41598-018-33305-1&partnerID=40&md5=6d3fe599f1e08a37a53e6b6dd0043db9","Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium","Cui, T., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Theuns, S., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Desmarets, L.M.B., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Xie, J., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; De Gryse, G.M.A., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Yang, B., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Van den Broeck, W., Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium; Nauwynck, H.J., Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium","A stable culture of primary porcine enterocytes is necessary to study porcine enteric virus replication characteristics. Because the direct cultivation of primary porcine enterocytes is difficult, alternatives have to be considered. As subepithelial myofibroblasts secrete extracellular matrix and growth factors contributing to the attachment, proliferation and differentiation of epithelial cells, co-cultures of primary porcine enterocytes (ileocytes and colonocytes) with myofibroblasts were developed and evaluated for their susceptibility to enteric viruses. First, it was demonstrated that the co-cultured ileocytes and colonocytes were susceptible to an archival rotavirus strain RVA/pig-tc/BEL/RV277/1977/G1P[7] and different other rotavirus genotypes (fecal samples containing G5P[7], G5P[13], G9P[23], G4P[6]). Next, the TGEV Purdue strain infected both ileocytes and colonocytes whereas the Miller strain only infected ileocytes. Last, the PEDV CV777 Vero adapted and non-adapted (fecal suspension) strains could infect co-cultured ileocytes but not colonocytes. The infectivity of the CV777 Vero adapted strain was higher when the cells were cultured without fetal bovine serum and the CV777 fecal suspension only infected the ileocytes cultured without fetal bovine serum. In conclusion, a novel co-culture of porcine enterocytes with myofibroblasts was established, which can be used for the investigation of the replication of enteric viruses. © 2018, The Author(s).",,"animal; coculture; colon; Coronavirinae; diarrhea; epithelium cell; feces; genetics; genotype; growth, development and aging; ileum; intestine cell; kinetics; myofibroblast; pathology; pig; procedures; Rotavirus; ultrastructure; virology; virus replication; Animals; Coculture Techniques; Colon; Coronavirus; Diarrhea; Enterocytes; Epithelial Cells; Feces; Genotype; Ileum; Kinetics; Myofibroblasts; Rotavirus; Swine; Virus Replication","Matthijnssens, J., Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG) (2011) Arch. Virol., 156, pp. 1397-1413. , COI: 1:CAS:528:DC%2BC3MXpsVWqsbc%3D; Mihalov-Kovács, E., Candidate new rotavirus species in sheltered dogs, Hungary (2015) Emerg. Infect. Dis., 21, p. 660; Matthijnssens, J., VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation (2012) Arch. Virol., 157, pp. 1177-1182. , COI: 1:CAS:528:DC%2BC38XnvVSrs7s%3D; Molinari, B.L., Lorenzetti, E., Otonel, R., Alfieri, A.F., Alfieri, A.A., Species H rotavirus detected in piglets with diarrhea, Brazil, 2012 (2014) Emerg. Infect. Dis., 20, pp. 1019-1022; Nyaga, M.M., Complete genome analyses of the first porcine rotavirus group H identified from a South African pig does not provide evidence for recent interspecies transmission events (2016) Infect. Genet. Evol., 38, pp. 1-7. , COI: 1:CAS:528:DC%2BC2MXitVenu7jE; Marthaler, D., Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples (2014) J. Virol. Methods., 209, pp. 30-34. , COI: 1:CAS:528:DC%2BC2cXhsFWltrrO; Theuns, S., Presence and characterization of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets (2016) Virus Res., 213, pp. 172-183. , COI: 1:CAS:528:DC%2BC2MXitVGrtLfO; Theuns, S., Porcine group A rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms (2014) Vet. Microbiol., 172, pp. 23-34. , COI: 1:CAS:528:DC%2BC2cXosFSku7w%3D; Matthijnssens, J., Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments (2008) Arch. Virol., 153, pp. 1621-1629. , COI: 1:CAS:528:DC%2BD1cXos1Wisrc%3D; Papp, H., Review of group A rotavirus strains reported in swine and cattle (2013) Vet. Microbiol., 165, pp. 190-199. , COI: 1:CAS:528:DC%2BC3sXntVaksr8%3D; Vlasova, A.N., Amimo, J.O., Saif, L.J., Porcine rotaviruses: Epidemiology, immune responses and control strategies (2017) Viruses., 9, p. 48; Hu, X., Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China (2015) BMC Vet. Res., 11, p. 72; Liu, X., Zhu, L., Liao, S., Xu, Z., Zhou, Y., The porcine microRNA transcriptome response to transmissible gastroenteritis virus infection (2015) PLoS One., 10; Song, Z., Morphogenesis and proliferative rule of porcine transmissible gastroenteritis virus in porcine intestinal epithelial cells (2016) J. Virol. Methods., 238, pp. 6-12; Laude, H., Molecular biology of transmissible gastroenteritis virus (1990) Vet. Microbiol., 23, pp. 147-154. , COI: 1:CAS:528:DyaK3cXmtVGmsb4%3D; Pensaert, M.B., Martelli, P., Porcine epidemic diarrhea: a retrospect from Europe and matters of debate (2016) Virus Res., 226, pp. 1-6. , COI: 1:CAS:528:DC%2BC28XhtFSitbzE; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J. Clin. Microbiol., 26, pp. 2235-2239. , COI: 1:STN:280:DyaL1M7nsFeltw%3D%3D, PID: 2853174; Zhang, X., Zhu, Y., Zhu, X., Shi, H., Chen, J., Shi, D., Yuan, J., Feng, L., Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China (2017) Emerging Microbes & Infections, 6 (8); Wang, J., Characteristic and functional analysis of a newly established porcine small intestinal epithelial cell line (2014) PLoS One., 9; Sato, T., Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche (2009) Nature., 459, pp. 262-265. , COI: 1:CAS:528:DC%2BD1MXjslartrg%3D; Saxena, K., Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology (2015) J. Virol., 90, pp. 43-56; Ettayebi, K., Replication of human noroviruses in stem cell–derived human enteroids (2016) Science., 353, pp. 1387-1393; Drummond, C.G., Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 1672-1677; Powell, D., Adegboyega, P., Di Mari, J., Mifflin, R., Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer (2005) Am. J. Physiol. Gastrointest. Liver Physiol., 289, pp. G2-G7. , COI: 1:CAS:528:DC%2BD2MXmvVeru7g%3D; Farin, H.F., Van, E.J.H., Clevers, H., Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells (2012) Gastroenterology., 143, pp. 1518-1529.e1517. , COI: 1:CAS:528:DC%2BC38XhsVyqu7vE; Plateroti, M., Subepithelial fibroblast cell lines from different levels of gut axis display regional characteristics (1998) Am. J. Physiol. Gastrointest. Liver Physiol., 274, pp. G945-G954. , COI: 1:CAS:528:DyaK1cXjsFSitb4%3D; Hirokawa, Y., Yip, K.H.Y., Tan, C.W., Burgess, A.W., Colonic myofibroblast cell line stimulates colonoid formation (2014) Am. J. Physiol. Gastrointest. Liver Physiol., 306, pp. G547-G556. , COI: 1:CAS:528:DC%2BC2cXns1Gks7k%3D; Lahar, N., Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium (2011) PLoS One., 6. , COI: 1:CAS:528:DC%2BC3MXhs1SjsrjJ; Desmarets, L.M., Establishment of feline intestinal epithelial cell cultures for the propagation and study of feline enteric coronaviruses (2013) Vet. Res., 44, p. 71; Hinz, B., The myofibroblast: one function, multiple origins (2007) Am. J. Pathol., 170, pp. 1807-1816. , COI: 1:CAS:528:DC%2BD2sXntlOhtrk%3D; Tamaoki, M., Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury (2005) Am. J. Pathol., 167, pp. 71-80. , COI: 1:CAS:528:DC%2BD2MXms1eisbk%3D; Hinz, B., Formation and function of the myofibroblast during tissue repair (2007) J. Invest. Dermatol., 127, pp. 526-537. , COI: 1:CAS:528:DC%2BD2sXhs1Crt7o%3D; Marenholz, I., Heizmann, C.W., Fritz, G., S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature) (2004) Biochem. Biophys. Res. Commun., 322, pp. 1111-1122. , COI: 1:CAS:528:DC%2BD2cXntFeqtbo%3D; Fritsch, C., Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis (2002) J. Clin. Investig., 110, pp. 1629-1641. , COI: 1:CAS:528:DC%2BD38Xptlarsrk%3D; Díaz-Salinas, M.A., The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells (2013) J. Virol., 87, pp. 1658-1663; Zhao, Y., Effect of 25-hydroxyvitamin D3 on rotavirus replication and gene expressions of RIG-I signalling molecule in porcine rotavirus–infected IPEC-J2 cells (2015) Arch. Anim. Nutr., 69, pp. 227-235. , COI: 1:CAS:528:DC%2BC2MXntFersLk%3D; Bautista, D., Rodríguez, L.-S., Franco, M.A., Angel, J., Barreto, A., Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes (2015) Cell Stress Chaperones., 20, pp. 697-708. , COI: 1:CAS:528:DC%2BC2MXoslOisrY%3D; Debouck, P., Pensaert, M., Experimental infection of pigs with Belgian isolates of the porcine rotavirus (1979) Zbl. Vet. Med. B., 26, pp. 517-526. , COI: 1:STN:280:DyaL3c7kvFOksg%3D%3D; Do, L.P., Phylogenetic inference of the porcine Rotavirus A origin of the human G1 VP7 gene (2016) Infect. Genet. Evol., 40, pp. 205-213. , COI: 1:CAS:528:DC%2BC28Xkt1Wls7g%3D; Do, L.P., Nakagomi, T., Nakagomi, O., A rare G1P [6] super-short human rotavirus strain carrying an H2 genotype on the genetic background of a porcine rotavirus (2014) Infect. Genet. Evol., 21, pp. 334-350. , COI: 1:CAS:528:DC%2BC2cXisFChsL4%3D; Ramig, R.F., Pathogenesis of intestinal and systemic rotavirus infection (2004) J. Virol., 78, pp. 10213-10220. , COI: 1:CAS:528:DC%2BD2cXotVemsrs%3D; Nelli, R.K., Comparative distribution of human and avian type sialic acid influenza receptors in the pig (2010) BMC Vet. Res., 6, p. 4; Liu, Y., Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens (2012) J. Virol., 86, pp. 9899-9910. , COI: 1:CAS:528:DC%2BC38XhtlChsL%2FF; Martella, V., Relationships among porcine and human P[6] rotaviruses: Evidence that the different human P[6] lineages have originated from multiple interspecies transmission events (2006) Virology., 344, pp. 509-519; Chang, K.-O., George, D.W., Bile acids promote the expression of hepatitis C virus in replicon-harboring cells (2007) J. Virol., 81, pp. 9633-9640. , COI: 1:CAS:528:DC%2BD2sXhtVeht7jJ; Chang, K.-O., Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1 (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 8733-8738. , COI: 1:CAS:528:DC%2BD2cXltFKksbg%3D; Delmas, B., Aminopeptidase-N Is a Major Receptor for the Enteropathogenic Coronavirus TGEV (1992) Nature., 357, pp. 417-420; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology., 365, pp. 166-172; Cong, Y.Y., Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells (2015) Virology., 478, pp. 1-8; Callebaut, P., Pensaert, M.B., Hooyberghs, J., A competitive inhibition ELISA for the differentiation of serum antibodies from pigs infected with transmissible gastroenteritis virus (TGEV) or with the TGEV-related porcine respiratory coronavirus (1989) Vet. Microbiol., 20, pp. 9-19. , COI: 1:STN:280:DyaL1Mzksl2ltg%3D%3D; Godet, M., Grosclaude, J., Delmas, B., Laude, H., Major Receptor-Binding and Neutralization Determinants Are Located within the Same Domain of the Transmissible Gastroenteritis Virus (Coronavirus) Spike Protein (1994) J. Virol., 68, pp. 8008-8016. , COI: 1:CAS:528:DyaK2MXitFylsrk%3D, PID: 7525985; Misinzo, G.M., Delputte, P.L., Nauwynck, H.J., Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages (2008) Vet. Res., 39, p. 1; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2017) J. Virol, pp. 01617-01677; Glorieux, S., In vitro culture of porcine respiratory nasal mucosa explants for studying the interaction of porcine viruses with the respiratory tract (2007) J. Virol. Methods., 142, pp. 105-112. , COI: 1:CAS:528:DC%2BD2sXksFWlsL4%3D; Hoshino, Y., Wyatt, R.G., Greenberg, H.B., Flores, J., Kapikian, A.Z., Serotypic similarity and diversity of rotaviruses of mammalian and avian origin as studied by plaque-reduction neutralization (1984) J. Infect. Dis., 149, pp. 694-702. , COI: 1:CAS:528:DyaL2cXks12jsr8%3D; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497","Cui, T.; Department of Virology, Parasitology and Immunology, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Belgium; email: tingting.cui@ugent.be",,"Nature Publishing Group",20452322,,,"30315177","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85054889966 "Wang J., Luo Y., Liang L., Li J., Cui S.","57206678495;56226765300;56583274500;54380449300;55640664700;","A fast and simple one-step duplex PCR assay for canine distemper virus (CDV) and canine coronavirus (CCoV) detection",2018,"Archives of Virology","163","12",,"3345","3349",,2,"10.1007/s00705-018-3982-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052301388&doi=10.1007%2fs00705-018-3982-8&partnerID=40&md5=993862cb21edc7e770bcfc6abc81e7ba","Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, Beijing, 100193, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China; Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Haidian District, Beijing, 100081, China","Wang, J., Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, Beijing, 100193, China, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China; Luo, Y., Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, Beijing, 100193, China, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China; Liang, L., Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, Beijing, 100193, China, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China; Li, J., Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, Beijing, 100193, China, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Haidian District, Beijing, 100081, China; Cui, S., Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, Beijing, 100193, China, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, 100193, China","The one-step polymerase chain reaction (one-step PCR) detection assay is an innovative PCR detection method, eliminating nucleic acid extraction steps, in which samples can be directly added to PCR reagents for testing. For simultaneous detection of CDV and CCoV, a sensitive and specific one-step duplex PCR (one-step dPCR) assay was developed with two pairs of primers that were designed based on H and M gene sequences of CDV and CCoV, respectively. The one-step dPCR with optimized detection conditions has high specificity and sensitivity; independent sequencing assays further verified these results. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature.",,"primer DNA; virus RNA; animal; Canine coronavirus; canine distemper; Canine distemper virus; classification; Coronavirus infection; dog; evaluation study; genetics; isolation and purification; polymerase chain reaction; procedures; sensitivity and specificity; veterinary medicine; virology; Animals; Coronavirus Infections; Coronavirus, Canine; Distemper; Distemper Virus, Canine; DNA Primers; Dogs; Polymerase Chain Reaction; RNA, Viral; Sensitivity and Specificity","Harder, T.C., Kenter, M., Vos, H., Siebelink, K., Huisman, W., van Amerongen, G., Orvell, C., Osterhaus, A.D., Canine distemper virus from diseased large felids: biological properties and phylogenetic relationships (1996) J Gen Virol, 77, pp. 397-405. , COI: 1:CAS:528:DyaK28Xht12nsbo%3D; Martella, V., Bianchi, A., Bertoletti, I., Pedrotti, L., Gugiatti, A., Catella, A., Cordioli, P., Buonavoglia, C., Canine distemper epizootic among red foxes, Italy, 2009 (2010) Emerg Infect Dis, 16, pp. 2007-2009; Munson, L., Terio, K.A., Kock, R., Mlengeya, T., Roelke, M.E., Dubovi, E., Summers, B., Packer, C., Climate extremes promote fatal co-infections during canine distemper epidemics in African lions (2008) PLoS One, 3; Zhao, J.J., Yan, X.J., Chai, X.L., Martella, V., Luo, G.L., Zhan, H.L., Gao, H., Cheng, S.P., Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from breeding foxes, raccoon dogs and minks in China (2010) Vet Microbiol, 140, pp. 34-42. , COI: 1:CAS:528:DC%2BD1MXhsVentL%2FJ; Nikolin, V.M., Wibbelt, G., Michler, F.U., Wolf, P., East, M.L., Susceptibility of carnivore hosts to strains of canine distemper virus from distinct genetic lineages (2011) Vet Microbiol, 156, pp. 45-53; Soma, T., Ohinata, T., Ishii, H., Takahashi, T., Taharaguchi, S., Hara, M., Detection and genotyping of canine coronavirus RNA in diarrheic dogs in Japan (2011) Res Vet Sci, 90, pp. 205-207. , COI: 1:CAS:528:DC%2BC3MXisFehsL8%3D; Binn, L.N., Lazar, E.C., Keenan, K.P., Huxsoll, D.L., Marchwicki, R.H., Strano, A.J., Recovery and characterization of a coronavirus from military dogs with diarrhea (1974) Proc Annu Meet US Anim Health Assoc, 78, pp. 359-366; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: viral evolution and pathobiology (2008) Vet Microbiol, 132, pp. 221-234. , COI: 1:CAS:528:DC%2BD1cXht1Knt7jK; Ntafis, V., Mari, V., Decaro, N., Papanastassopoulou, M., Pardali, D., Rallis, T.S., Kanellos, T., Xylouri, E., Canine coronavirus, Greece. Molecular analysis and genetic diversity characterization (2013) Infect Genet Evol, 16, pp. 129-136. , COI: 1:CAS:528:DC%2BC3sXosVOgt7w%3D; Stavisky, J., Pinchbeck, G., Gaskell, R.M., Dawson, S., German, A.J., Radford, A.D., Cross sectional and longitudinal surveys of canine enteric coronavirus infection in kenneled dogs: a molecular marker for biosecurity (2012) Infect Genet Evol, 12, pp. 1419-1426; Pratelli, A., Tempesta, M., Roperto, F.P., Sagazio, P., Carmichael, L., Buonavoglia, C., Fatal coronavirus infection in puppies following canine parvovirus 2b infection (1999) J Vet Diagn Invest, 11, pp. 550-553. , COI: 1:STN:280:DC%2BD3svivVSisg%3D%3D; Buonavoglia, C., Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Castagnaro, M., Tempesta, M., Canine coronavirus highly pathogenic for dogs (2006) Emerg Infect Dis, 12, pp. 492-494; Zicola, A., Jolly, S., Mathijs, E., Ziant, D., Decaro, N., Mari, V., Thiry, E., Fatal outbreaks in dogs associated with pantropic canine coronavirus in France and Belgium (2012) J Small Anim Pract, 53, pp. 297-300. , COI: 1:STN:280:DC%2BC38visVyqtg%3D%3D; Decaro, N., Cordonnier, N., Demeter, Z., Egberink, H., Elia, G., Grellet, A., Le Poder, S., Buonavoglia, C., European surveillance for pantropic canine coronavirus (2013) J Clin Microbiol, 51, pp. 83-88. , COI: 1:CAS:528:DC%2BC3sXlvFyrt7Y%3D; Erles, K., Brownlie, J., Sequence analysis of divergent canine coronavirus strains present in a UK dog population (2009) Virus Res, 141, pp. 21-25. , COI: 1:CAS:528:DC%2BD1MXivVCrt7Y%3D; Rottier, P.J.M., The coronavirus membrane protein (1995) The Coronaviridae, pp. 115-139. , Siddell SG, (ed), Plenum Press, New York; Woods, R.D., Wesley, R.D., Kapke, P.A., Complement-dependent neutralization of transmissible gastroenteritis virus by monoclonal antibodies (1987) Adv Exp Med Biol, 218, pp. 493-500. , COI: 1:CAS:528:DyaL1cXltVyksr8%3D; Ralston, S.H., Afzal, M.A., Helfrich, M.H., Fraser, W.D., Gallagher, J.A., Mee, A., Rima, B., Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget’s disease of bone (2007) J Bone Miner Res, 22, pp. 569-577. , COI: 1:CAS:528:DC%2BD2sXpt1Grtrc%3D; Coleman, J.W., Wright, K.J., Wallace, O.L., Sharma, P., Arendt, H., Martinez, J., DeStefano, J., Parks, C.L., Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag (2015) J Virol Methods, 213, pp. 26-37. , COI: 1:CAS:528:DC%2BC2cXitVygsb7J; Gray, L.K., Crawford, P.C., Levy, J.K., Dubovi, E.J., Comparison of two assays for detection of antibodies against canine parvovirus and canine distemper virus in dogs admitted to a Florida animal shelter (2012) J Am Vet Med Assoc, 240, pp. 1084-1087; Gaedke, K., Zurbriggen, A., Baumgärtner, W., In vivo and in vitro detection of canine distemper virus nucleoprotein gene with digoxigenin-labelled RNA, double-stranded DNA probes and oligonucleotides by in situ hybridization (1997) Zentralbl Veterinarmed B, 44, pp. 329-340. , COI: 1:STN:280:DyaK2svivV2gsA%3D%3D, PID: 9283284; Rzezutka, A., Mizak, B., Application of N-PCR for diagnosis of distemper in dogs and fur animals (2002) Vet Microbiol, 88, pp. 95-103. , COI: 1:CAS:528:DC%2BD38Xlt1OmtLY%3D","Li, J.; Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road 2, Haidian District, China; email: lijinxiang@caas.cn",,"Springer-Verlag Wien",03048608,,ARVID,"30141131","English","Arch. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85052301388 "Patrono L.V., Samuni L., Corman V.M., Nourifar L., Röthemeier C., Wittig R.M., Drosten C., Calvignac-Spencer S., Leendertz F.H.","55546870700;56019293200;34876424800;57202732963;57189852193;8617029400;7003813990;57201346166;6602340558;","Human coronavirus OC43 outbreak in wild chimpanzees, Côte d'Ivoire, 2016 correspondence",2018,"Emerging Microbes and Infections","7","1", 118,"","",,1,"10.1038/s41426-018-0121-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049138241&doi=10.1038%2fs41426-018-0121-2&partnerID=40&md5=c83ef51537c3e80678a6950ed9865fd0","Robert Koch-Institute, Berlin, 13353, Germany; Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany; Taï Chimpanzee Project, Swiss Centre for Scientific Research, Abidjan, Cote d'Ivoire; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany; German Centre for Infection Research (DZIF), Berlin, 10117, Germany","Patrono, L.V., Robert Koch-Institute, Berlin, 13353, Germany; Samuni, L., Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany, Taï Chimpanzee Project, Swiss Centre for Scientific Research, Abidjan, Cote d'Ivoire; Corman, V.M., Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, 10117, Germany; Nourifar, L., Robert Koch-Institute, Berlin, 13353, Germany; Röthemeier, C., Robert Koch-Institute, Berlin, 13353, Germany; Wittig, R.M., Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany, Taï Chimpanzee Project, Swiss Centre for Scientific Research, Abidjan, Cote d'Ivoire; Drosten, C., Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, 10117, Germany; Calvignac-Spencer, S., Robert Koch-Institute, Berlin, 13353, Germany; Leendertz, F.H., Robert Koch-Institute, Berlin, 13353, Germany",[No abstract available],,"Coronavirus infection; Cote d'Ivoire; Enterovirus; epidemic; Human coronavirus OC43; Human metapneumovirus; Human respiratory syncytial virus; Influenza A virus; Influenza B virus; Letter; nonhuman; Pan troglodytes; Paramyxovirinae; polymerase chain reaction; priority journal; Rhinovirus; virus detection","Kondgen, S., Pandemic human viruses cause decline of endangered great apes (2008) Curr. Biol, 18, pp. 260-264; Scully, E.J., Lethal respiratory disease associated with human rhinovirus c in wild chimpanzees, Uganda, 2013 (2018) Emerg. Infect. Dis, 24, pp. 267-274; Gilardi, K.V., (2015) Best Practice Guidelines for Health Monitoring and Disease Control in Great Ape Populations, , https://doi.org/10.2305/IUCN.CH.2015.SSCOP.56.en; Campbell, G., Kuehl, H., Diarrassouba, A., N'Goran, P.K., Boesch, C., Long-term research sites as refugia for threatened and over-harvested species (2011) Biol. Lett, 7, pp. 723-726; Boesch, C., Boesch-Achermann, H., (2000) The Chimpanzees of the Tai Forest, p. 316. , http://ukcatalogue.oup.com/product/9780198505075.do, (Oxford University Press: New York,); Kondgen, S., Schenk, S., Pauli, G., Boesch, C., Leendertz, F.H., Noninvasive monitoring of respiratory viruses in wild chimpanzees (2010) Ecohealth, 7, pp. 332-341; Grützmacher, K.S., Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak (2016) Ecohealth, 13, pp. 499-510; Vijgen, L., Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E (2005) J. Clin. Microbiol, 43, pp. 5452-5456; Wevers, D., Novel adenoviruses in wild primates: A high level of genetic diversity and evidence of zoonotic transmissions (2011) J. Virol, 85, pp. 10774-10784; Grützmacher, K., Human quarantine: Toward reducing infectious pressure on chimpanzees at the Taï Chimpanzee Chimpanzee Project, Côte d'Ivoire (2017) Am. J. Primatol, pp. 1-6. , https://doi.org/10.1002/ajp.22619; Mackay, I.M., Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004 (2012) Viruses, 4, pp. 637-653; Corman, V.M., Muth, D., Niemeyer, D., Drosten, C., Hosts and sources of endemic human coronaviruses (2018) Adv. Virus Res, , https://doi.org/10.1016/bs.aivir.2018.01.001; Santiago, M.L., SIVcpz in wild chimpanzees (2002) Science, 295, p. 465; Kondgen, S., Evidence for Human Streptococcus pneumoniae in wild and captive chimpanzees: A potential threat to wild populations (2017) Sci. Rep, 7, pp. 1-8; McCullers, J.A., The co-pathogenesis of influenza viruses with bacteria in the lung (2014) Nat. Rev. Microbiol, 12, pp. 252-262","Leendertz, F.H.; Robert Koch-InstituteGermany; email: Leendertzf@rki.de",,"Nature Publishing Group",22221751,,,"29950583","English","Emerg. Microbes Infect.",Letter,"Final",Open Access,Scopus,2-s2.0-85049138241 "Toizumi M., Suzuki M., Nguyen H.A.T., Le M.N., Ariyoshi K., Moriuchi H., Hashizume M., Dang D.A., Yoshida L.-M.","56303145800;55554170300;35741460100;55770023800;7005434354;7005563073;7102046632;15764595800;23101889700;","Viral Acute Respiratory Illnesses in Young Infants Increase the Risk of Respiratory Readmission",2018,"Pediatric Infectious Disease Journal","37","12",,"1217","1222",,1,"10.1097/INF.0000000000001998","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056376115&doi=10.1097%2fINF.0000000000001998&partnerID=40&md5=d5a98447ec2c3cad08773eef0e15310d","Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan","Toizumi, M., Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Suzuki, M., Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Nguyen, H.A.T., Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; Le, M.N., Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Ariyoshi, K., Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Moriuchi, H., Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan, Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan; Hashizume, M., Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Dang, D.A., Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; Yoshida, L.-M., Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan","Background: Respiratory viruses cause acute respiratory illness (ARI) in early childhood, but their effect on subsequent ARI admissions is not fully understood. This study aimed to determine the association between initial ARI admission because of viruses including human rhinovirus (HRV), respiratory syncytial virus (RSV), human adenovirus (HAdV) and human metapneumovirus (hMPV) and the risk of ARI readmission in children. Methods: Clinical information and nasopharyngeal swab samples were collected from children <2 years old at their initial ARI admission in Nha Trang, Vietnam, from January 2007 to April 2012. The incidence of ARI readmission during the follow-up period (initial admission to 5 years of age) was compared between children with and without 1 of 13 respiratory viruses (influenza virus A, influenza virus B, RSV, hMPV, parainfluenza virus-1, parainfluenza virus-2, parainfluenza virus-3 and parainfluenza virus-4, HRV, human coronavirus-229E, human coronavirus-OC43, HAdV and human bocavirus) at initial admission. Results: A total of 1941 children were enrolled in the study. Viruses were detected in 1254 (64.6%) children at enrollment; HRV, RSV, HAdV and hMPV were detected in 499 (25.7%), 439 (22.6%), 156 (8.0%) and 47 (2.4%) children, respectively. During the follow-up period (4572.7 person-years), 277 children were readmitted with ARI. Virus-related ARI initial admission was associated with an increased risk of ARI readmission for children who were initially admitted before 6 months of age (adjusted rate ratio, 1.6; 95% confidence interval: 1.1-2.5). HAdV (4.6; 1.8-11.9), hMPV (20.4; 6.2-66.9) and HRV (1.6; 1.0-2.4) were independently associated with the outcome. These associations were not observed for children whose initial admission occurred after 6 months of age. Conclusions: HAdV-, hMPV- and HRV-related initial ARI admissions, when occurring during early infancy, increased the risk of subsequent ARI-related readmission. © 2019 Wolters Kluwer Health, Inc. All rights reserved.","adenoviridae; human metapneumovirus; human rhinovirus; pediatrics; Vietnam","acute respiratory tract disease; Article; child; coughing; dyspnea; female; follow up; hospital readmission; human; Human adenovirus C; Human bocavirus; Human coronavirus 229E; Human coronavirus OC43; Human metapneumovirus; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; Human rhinovirus; infant; Influenza A virus; Influenza B virus; major clinical study; male; medical history; nonhuman; preschool child; priority journal; social status; throat culture; Viet Nam; viral respiratory tract infection; virus detection; virus pneumonia; acute disease; complication; cross-sectional study; hospital readmission; incidence; respiratory tract infection; risk factor; statistics and numerical data; virology; virus infection; Acute Disease; Cross-Sectional Studies; Female; Humans; Incidence; Infant; Male; Patient Readmission; Respiratory Tract Infections; Risk Factors; Vietnam; Virus Diseases","Rudan, I., Boschi-Pinto, C., Biloglav, Z., Epidemiology and etiology of childhood pneumonia (2008) Bull World Health Organ, 86, pp. 408-416; Weber, M.W., Mulholland, E.K., Greenwood, B.M., Respiratory syncytial virus infection in tropical and developing countries (1998) Trop Med Int Health, 3, pp. 268-280; Juvén, T., Mertsola, J., Waris, M., Etiology of community-acquired pneumonia in 254 hospitalized children (2000) Pediatr Infect Dis J, 19, pp. 293-298; Yoshida, L.M., Suzuki, M., Nguyen, H.A., Respiratory syncytial virus: Co-infection and paediatric lower respiratory tract infections (2013) Eur Respir J, 42, pp. 461-469; Weber, M.W., Milligan, P., Giadom, B., Respiratory illness after severe respiratory syncytial virus disease in infancy in the Gambia (1999) J Pediatr, 135, pp. 683-688; Singleton, R.J., Redding, G.J., Lewis, T.C., Sequelae of severe respiratory syncytial virus infection in infancy and early childhood among Alaska Native children (2003) Pediatrics, 112, pp. 285-290; Munywoki, P.K., Ohuma, E.O., Ngama, M., Severe lower respiratory tract infection in early infancy and pneumonia hospitalizations among children, Kenya (2013) Emerg Infect Dis, 19, pp. 223-229; Lemanske, R.F., Jr., Jackson, D.J., Gangnon, R.E., Rhinovirus illnesses during infancy predict subsequent childhood wheezing (2005) J Allergy Clin Immunol, 116, pp. 571-577; Jackson, D.J., Gangnon, R.E., Evans, M.D., Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children (2008) Am J Respir Crit Care Med, 178, pp. 667-672; Kotaniemi-Syrjänen, A., Vainionpää, R., Reijonen, T.M., Rhinovirus-induced wheezing in infancy-the first sign of childhood asthma? (2003) J Allergy Clin Immunol, 111, pp. 66-71; García-García, M.L., Calvo, C., Casas, I., Human metapneumovirus bronchiolitis in infancy is an important risk factor for asthma at age 5 (2007) Pediatr Pulmonol, 42, pp. 458-464; Suzuki, M., Thiem, V.D., Yanai, H., Association of environmental tobacco smoking exposure with an increased risk of hospital admissions for pneumonia in children under 5 years of age in Vietnam (2009) Thorax, 64, pp. 484-489; Vu, H.T., Yoshida, L.M., Suzuki, M., Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children (2011) Pediatr Infect Dis J, 30, pp. 11-18; Le, M.N., Yoshida, L.M., Suzuki, M., Impact of 2009 pandemic influenza among Vietnamese children based on a population-based prospective surveillance from 2007 to 2011 (2014) Influenza Other Resp, 8, pp. 389-396; (2005) Handbook: IMCI Integrated Management of Childhood Illness, , http://apps.who.int/iris/bitstream/handle/10665/42939/9241546441.pdf?sequence=1, Geneva, Switzerland: World Health Organization; Accessed April 17, 2018; Filmer, D., Pritchett, L.H., Estimating wealth effects without expenditure data-or tears: An application to educational enrollments in states of India (2001) Demography, 38, pp. 115-132; Cox, D.W., Bizzintino, J., Ferrari, G., Human rhinovirus species C infection in young children with acute wheeze is associated with increased acute respiratory hospital admissions (2013) Am J Respir Crit Care Med, 188, pp. 1358-1364; Lewis, D.B., Tu, W., Stiehm, E.R., Ochs, H.D., Winkelstein, J.A., The physiologic immunodeficiency of immaturity (2004) Immunologic Disorders in Infants and Children, pp. 687-760. , 5th ed. Philadelphia, PA: Elsevier/Saunders; Kusel, M.M., De Klerk, N.H., Kebadze, T., Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma (2007) J Allergy Clin Immunol, 119, pp. 1105-1110; Siegrist, C.A., Neonatal and early life vaccinology (2001) Vaccine, 19, pp. 3331-3346; Lee, W.M., Lemanske, R.F., Jr., Evans, M.D., Human rhinovirus species and season of infection determine illness severity (2012) Am J Respir Crit Care Med, 186, pp. 886-891; Wold, W.S.M., Ison, M.G., Knipe, D.M., Howley, P.M., Adenoviruses (2013) Fields Virology, pp. 1732-1767. , 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; Sigurs, N., A cohort of children hospitalised with acute RSV bronchiolitis: Impact on later respiratory disease (2002) Paediatr Respir Rev, 3, pp. 177-183; Sigurs, N., Gustafsson, P.M., Bjarnason, R., Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13 (2005) Am J Respir Crit Care Med, 171, pp. 137-141; Szabo, S.M., Levy, A.R., Gooch, K.L., Elevated risk of asthma after hospitalization for respiratory syncytial virus infection in infancy (2013) Paediatr Respir Rev, 132, pp. S9-S15; Stein, R.T., Sherrill, D., Morgan, W.J., Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years (1999) Lancet, 354, pp. 541-545; Collins, P.L., Karron, R.A., Knipe, D.M., Howley, P.M., Respiratory syncytial virus and metapneumovirus (2013) Fields Virology, pp. 1086-1123. , 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; Ren, J., Phan, T., Bao, X., Recent vaccine development for human metapneumovirus (2015) J Gen Virol, 96, pp. 1515-1520; Wen, S.C., Williams, J.V., New approaches for immunization and therapy against human metapneumovirus (2015) Clin Vaccine Immunol, 22, pp. 858-866; Glanville, N., Johnston, S.L., Challenges in developing a cross-serotype rhinovirus vaccine (2015) Curr Opin Virol, 11, pp. 83-88; Renois, F., Lévêque, N., Deliège, P.G., Enteroviruses as major cause of microbiologically unexplained acute respiratory tract infections in hospitalized pediatric patients (2013) J Infect, 66, pp. 494-502","Yoshida, L.-M.; Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Japan; email: lmyoshi@nagasaki-u.ac.jp",,"Lippincott Williams and Wilkins",08913668,,PIDJE,"30408004","English","Pediatr. Infect. Dis. J.",Article,"Final",,Scopus,2-s2.0-85056376115 "Li Y., Wu Q., Huang L., Yuan C., Wang J., Yang Q.","57196712362;57203913288;57214087289;56979751500;57196747430;24336700600;","An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine",2018,"Nature Communications","9","1", 3811,"","",,14,"10.1038/s41467-018-06056-w","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053564287&doi=10.1038%2fs41467-018-06056-w&partnerID=40&md5=ee8abeee5a130e162c43504130dcf641","MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China","Li, Y., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China; Wu, Q., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China; Huang, L., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China; Yuan, C., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China; Wang, J., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China; Yang, Q., MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, China","Porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. Although the fecal–oral route is generally accepted, an increased number of reports indicate that airborne transmission may contribute to PEDV outbreak. Here, we show that PEDV could cause typical diarrhea in piglets through a nasal spray. Firstly, PEDV can develop a transient nasal epithelium infection. Subsequently, PEDV-carrying dendritic cells (DCs) allow the virus to be transferred to CD3+ T cells via the virological synapse. Finally, virus-loaded CD3+ T cells reach the intestine through the blood circulation, leading to intestinal infection via cell-to-cell contact. Our study provides evidence for airborne transmission of a gastrointestinal infected coronavirus and illustrates the mechanism of its transport from the entry site to the pathogenic site. © 2018, The Author(s).",,"immunoglobulin enhancer binding protein; nose spray; virus RNA; beta chemokine; immunoglobulin enhancer binding protein; blood; cell; diarrheal disease; digestive system; epidemic; feces; mucus; pig; virus; animal cell; animal experiment; animal model; Article; CD3+ T lymphocyte; cell contact; coculture; confocal laser scanning microscopy; controlled study; dendritic cell; depression; diarrhea; epithelium cell; female; fluorescence activated cell sorting; in vitro study; in vivo study; intestine infection; intestine mucosa; intestine villus atrophy; lethargy; nonhuman; nose cavity; nose infection; piglet; Porcine epidemic diarrhea virus; quantitative analysis; reverse transcription polymerase chain reaction; scanning electron microscopy; T lymphocyte; transmission electron microscopy; upregulation; Vero cell line; viral tropism; virus load; virus replication; virus transmission; Western blotting; animal; biological model; blood; cell culture; Coronavirus infection; immunology; intestine mucosa; intranasal drug administration; metabolism; newborn; nose cavity; pathology; physiology; pig; Porcine epidemic diarrhea virus; signal transduction; ultrastructure; virology; Coronavirus; Porcine epidemic diarrhea virus; Suidae; Administration, Intranasal; Animals; Animals, Newborn; Cells, Cultured; Chemokines, CC; Coronavirus Infections; Dendritic Cells; Intestinal Mucosa; Models, Biological; Nasal Cavity; NF-kappa B; Porcine epidemic diarrhea virus; Signal Transduction; Swine; T-Lymphocytes; Virus Replication","Huang, Y.W., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) mBio, 4. , PID: 24129257; Hanke, D., Porcine epidemic diarrhea in Europe: in-detail analyses of disease dynamics and molecular epidemiology (2017) Viruses, 9, p. E177. , PID: 28684708; Sun, R.Q., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg. Infect. Dis., 18, pp. 161-163. , PID: 22261231; Choudhury, B., Dastjerdi, A., Doyle, N., Frossard, J.P., Steinbach, F., From the field to the lab—an European view on the global spread of PEDV (2016) Virus Res., 226, pp. 40-49. , PID: 27637348; Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol. J., 12, p. 193. , PID: 26689811; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res., 226, pp. 20-39. , PID: 27288724; Ribbens, S., A survey on biosecurity and management practices in Belgian pig herds (2008) Prev. Vet. Med., 83, pp. 228-241. , PID: 17850906; Reeves, D.E., The application of biotechnical and epidemiologic tools for pig health (2006) Anim. Biotechnol., 17, pp. 177-187. , PID: 17127528; Bonifait, L., Detection and quantification of airborne norovirus during outbreaks in healthcare facilities (2015) Clin. Infect. Dis., 61, pp. 299-304. , PID: 25900175; Marks, P.J., A school outbreak of Norwalk-like virus: evidence for airborne transmission (2003) Epidemiol. Infect., 131, pp. 727-736. , PID: 12948373; Alvarez, J., Goede, D., Morrison, R., Perez, A., Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States (2016) Prev. Vet. Med., 123, pp. 155-160. , PID: 26586344; Beam, A., A porcine epidemic diarrhea virus outbreak in one geographic region of the United States: descriptive epidemiology and investigation of the possibility of airborne virus spread (2015) PLoS ONE, 10. , PID: 26709512; Alonso, C., Raynor, P.C., Davies, P.R., Torremorell, M., Concentration, size distribution, and infectivity of airborne particles carrying swine viruses (2015) PLoS ONE, 10. , PID: 26287616; Alonso, C., Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds (2014) Vet. Res., 45, p. 73. , PID: 25017790; Tun, H.M., Cai, Z., Khafipour, E., Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDV) in the infected on-farm Earthen Manure Storages (EMS) (2016) Front. Microbiol., 7, p. 265. , PID: 27014197; Niederwerder, M.C., Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs (2016) J. Vet. Diagn. Invest., 28, pp. 671-678. , PID: 27698163; Yang, J., Dai, L., Yu, Q., Yang, Q., Histological and anatomical structure of the nasal cavity of Bama minipigs (2017) PLoS ONE, 12. , PID: 28339502; Shen, Y., Hu, W., Wei, Y., Feng, Z., Yang, Q., Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells (2017) Vet. Microbiol., 198, pp. 1-8. , PID: 28061998; Gao, Q., Zhao, S.S., Qin, T., Yin, Y.Y., Yang, Q., Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells (2015) Vet. Microbiol., 179, pp. 131-141. , PID: 26065617; Niess, J.H., CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance (2005) Science, 307, pp. 254-258. , PID: 15653504; Banchereau, J., Steinman, R.M., Dendritic cells and the control of immunity (1998) Nature, 392, pp. 245-252. , PID: 9521319; Lambrecht, B.N., Hammad, H., Opinion—taking our breath away: dendritic cells in the pathogenesis of asthma (2003) Nat. Rev. Immunol., 3, pp. 994-1003. , PID: 14647481; Sewell, A.K., Price, D.A., Dendritic cells and transmission of HIV-1 (2001) Trends Immunol., 22, pp. 173-175. , PID: 11274909; Ouwendijk, W.J., T-Cell tropism of simian varicella virus during primary infection (2013) PLoS Pathog., 9. , PID: 23675304; Schönrich, G., Raftery, M.J., Dendritic cells as Achilles’ heel and Trojan horse during varicella zoster virus infection (2015) Front. Microbiol., 6, p. 417. , PID: 26005438; Cunningham, A.L., Harman, A.N., Nasr, N., Initial HIV mucosal infection and dendritic cells (2013) EMBO Mol. Med., 5, pp. 658-660. , PID: 23653303; Harman, A.N., Kim, M., Nasr, N., Sandgren, K.J., Cameron, P.U., Tissue dendritic cells as portals for HIV entry (2013) Rev. Med. Virol., 23, pp. 319-333. , PID: 23908074; Yavlovich, A., Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4(+) target cells (2012) Blood, 120, pp. 1246-1253. , PID: 22753871; Murooka, T.T., HIV-infected T cells are migratory vehicles for viral dissemination (2012) Nature, 490, pp. 283-287. , PID: 22854780; Chu, H., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205. , PID: 24725946; Manches, O., Frleta, D., Bhardwaj, N., Dendritic cells in progression and pathology of HIV infection (2014) Trends Immunol., 35, pp. 114-122. , PID: 24246474; Pierson, T.C., Kielian, M., Flaviviruses: braking the entering (2013) Curr. Opin. Virol., 3, pp. 3-12. , PID: 23352692; Dale, B.M., Alvarez, R.A., Chen, B.K., Mechanisms of enhanced HIV spread through T-cell virological synapses (2013) Immunol. Rev., 251, pp. 113-124. , PID: 23278744; Gan, L., Wang, M., Chen, J.J., Gershon, M.D., Gershon, A.A., Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system (2014) J. Neurovirol., 20, pp. 442-456. , PID: 24965252; Jung, K., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg. Infect. Dis., 20, pp. 662-665. , PID: 24795932; Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., Gerdts, V., The pig: a model for human infectious diseases (2012) Trends Microbiol., 20, pp. 50-57. , PID: 22153753; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review (2016) J. Vet. Med. Sci., 78, pp. 355-363. , PID: 26537549; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143. , PID: 25841898; Vareille, M., Kieninger, E., Edwards, M.R., Regamey, N., The airway epithelium: soldier in the fight against respiratory viruses (2011) Clin. Microbiol. Rev., 24, pp. 210-229. , PID: 21233513; Rescigno, M., Rotta, G., Valzasina, B., Ricciardi-Castagnoli, P., Dendritic cells shuttle microbes across gut epithelial monolayers (2001) Immunobiology, 204, pp. 572-581. , PID: 11846220; Jahnsen, F.L., Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus (2006) J. Immunol., 177, pp. 5861-5867. , PID: 17056510; Coughlin, M.M., Bellini, W.J., Rota, P.A., Contribution of dendritic cells to measles virus induced immunosuppression (2013) Rev. Med. Virol., 23, pp. 126-138. , PID: 23280948; Halary, F., Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection (2002) Immunity, 17, pp. 653-664. , PID: 12433371; Palucka, A.K., Dengue virus and dendritic cells (2000) Nat. Med., 6, pp. 748-749. , PID: 10888920; Stumptner-Cuvelette, P., HIV-1 Nef impairs MHC class II antigen presentation and surface expression (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 12144-12149. , PID: 11593029; Harman, A.N., HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells (2006) J. Immunol., 177, pp. 7103-7113. , PID: 17082627; Mackay, C.R., Chemokines: immunology’s high impact factors (2001) Nat. Immunol., 2, p. 95. , PID: 11175800; Hansdottir, S., Vitamin D decreases respiratory syncytial virus induction of NF-κB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state (2010) J. Immunol., 184, pp. 965-974. , PID: 20008294; Felts, R.L., 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 13336-13341. , PID: 20624966; Sattentau, Q., Avoiding the void: cell-to-cell spread of human viruses (2008) Nat. Rev. Microbiol., 6, pp. 815-826. , PID: 18923409; Girard, J.P., Springer, T.A., High endothelial venules (HEVs): specialized endothelium for lymphocyte migration (1995) Immunol. Today, 16, pp. 449-457. , PID: 7546210; Li, G.H., Cell-to-cell contact facilitates HIV transmission from lymphocytes to astrocytes via CXCR4 (2015) AIDS, 29, pp. 755-766. , PID: 25985398; Do, T., Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission (2014) J. Virol., 88, pp. 10327-10339. , PID: 24965444; Zhong, P., Agosto, L.M., Munro, J.B., Mothes, W., Cell-to-cell transmission of viruses (2013) Curr. Opin. Virol., 3, pp. 44-50. , PID: 23219376; Hartshorn, K.L., Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses (1994) J. Clin. Invest., 94, pp. 311-319. , PID: 8040272; Müller, L., Brighton, L.E., Carson, J.L., Fischer, W.A., Culturing of human nasal epithelial cells at the air liquid interface (2013) J. Vis. Exp., , https://doi.org/10.3791/50646","Yang, Q.; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, China; email: zxbyq@njau.edu.cn",,"Nature Publishing Group",20411723,,,"30232333","English","Nat. Commun.",Article,"Final",Open Access,Scopus,2-s2.0-85053564287 "Han M., Rajput C., Ishikawa T., Jarman C.R., Lee J., Hershenson M.B.","55199324900;57188969309;57203784207;57205019952;57205028767;7006745687;","Small animal models of respiratory viral infection related to asthma",2018,"Viruses","10","12", 682,"","",,3,"10.3390/v10120682","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058345748&doi=10.3390%2fv10120682&partnerID=40&md5=c16ef54dea59683ad0b00c4b492c9c8b","Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States","Han, M., Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rajput, C., Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Ishikawa, T., Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Jarman, C.R., Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Lee, J., Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Hershenson, M.B., Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, United States, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, United States","Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.","Animal model; Asthma; Respiratory disease; Rhinovirus; Viral infection","allergen; beta interferon; chemokine; CXCL1 chemokine; eotaxin; gamma interferon inducible protein 10; house dust allergen; immunoglobulin E; intercellular adhesion molecule 1; interferon induced helicase C domain containing protein 1; interferon regulatory factor 7; interleukin 12; interleukin 13; interleukin 1alpha; interleukin 25; interleukin 33; interleukin 4; interleukin 5; interleukin 6; interleukin 8; mucin; mucin 5AC; mucin 5B; toll like receptor 2; toll like receptor 3; transcription factor FOXP3; tumor necrosis factor; tumor necrosis factor receptor 1; tumor necrosis factor related apoptosis inducing ligand; unindexed drug; animal model; asthma; bleeding; chronic obstructive lung disease; Coronavirinae; coughing; dyspnea; Enterovirus D68; eosinophilia; experimental model; extracellular trap; genetic manipulation; guinea pig; hamster; human; Human parainfluenza virus 1; Human respiratory syncytial virus; immune response; inflammation; Metapneumovirus; Middle East respiratory syndrome; Mustela putorius furo; myelitis; nonhuman; protein expression; respiratory tract allergy; Review; Rhinovirus; severe acute respiratory syndrome; viral respiratory tract infection; virus load; virus pathogenesis; virus replication; wheezing; animal; asthma; complication; disease model; microflora; mouse; pathogenicity; rat; respiratory tract infection; virology; virus infection; Animals; Asthma; Cricetinae; Disease Models, Animal; Ferrets; Guinea Pigs; Humans; Metapneumovirus; Mice; Microbiota; Rats; Respiratory Syncytial Virus, Human; Respiratory Tract Infections; Rhinovirus; Virus Diseases","Wenzel, S., Severe asthma in adults (2005) Am. J. Respir. Crit. Care Med., 172, pp. 149-160; Robinson, D.S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A.M., Corrigan, C., Kay, A.B., Predominant TH2-like Bronchoalveolar T-Lymphocyte Population in Atopic Asthma (1992) N. Engl. J. Med., 326, pp. 298-304; Woodruff, P.G., Modrek, B., Choy, D.F., Jia, G., Abbas, A.R., Ellwanger, A., Arron, J.R., Fahy, J.V., T-helper Type 2–driven Inflammation Defines Major Subphenotypes of Asthma (2009) Am. J. Respir. Crit. Care Med., 180, pp. 388-395; Bartlett, N.W., Walton, R.P., Edwards, M.R., Aniscenko, J., Caramori, G., Zhu, J., Glanville, N., Burnet, J., Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation (2008) Nat. Med., 14, pp. 199-204; Newcomb, D.C., Sajjan, U.S., Nagarkar, D.R., Wang, Q., Nanua, S., Zhou, Y., McHenry, C.L., Bentley, J.K., Human rhinovirus 1B exposure induces phosphatidylinositol 3-kinase-dependent airway inflammation in mice (2008) Am. J. Respir. Crit. Care Med., 177, pp. 1111-1121; Blanco, J.C., Core, S., Pletneva, L.M., March, T.H., Boukhvalova, M.S., Kajon, A.E., Prophylactic Antibody Treatment and Intramuscular Immunization Reduce Infectious Human Rhinovirus 16 Load in the Lower Respiratory Tract of Challenged Cotton Rats (2014) Trials Vaccinol, 3, pp. 52-60; Patel, M.C., Pletneva, L.M., Boukhvalova, M.S., Vogel, S.N., Kajon, A.E., Blanco, J.C.G., Immunization with Live Human Rhinovirus (HRV) 16 Induces Protection in Cotton Rats against HRV14 Infection (2017) Front. Microbiol., 8, p. 1646; Wei, W., Guo, H.R., Chang, J.L., Yu, Y.Z., Liu, G.C., Zhang, N.N., Willard, S.H., Yu, X.F., ICAM-5/Telencephalin Is a Functional Entry Receptor for Enterovirus D68 (2016) Cell Host Microbe, 20, pp. 631-641; Rajput, C., Han, M., Bentley, J.K., Lei, J., Ishikawa, T., Wu, Q., Hinde, J.L., Jackson, W.T., Enterovirus D68 infection induces IL-17-dependent neutrophilic airway inflammation and hyperresponsiveness (2018) JCI Insight, 3, p. 121882; Hixon, A.M., Yu, G., Leser, J.S., Yagi, S., Clarke, P., Chiu, C.Y., Tyler, K.L., A mouse model of paralytic myelitis caused by enterovirus D68 (2017) Plos Pathog, 13; Patel, M.C., Wang, W., Pletneva, L.M., Rajagopala, S.V., Tan, Y., Hartert, T.V., Boukhvalova, M.S., Blanco, J.C., Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus) (2016) Plos ONE, 11; Zheng, H.W., Sun, M., Guo, L., Wang, J.J., Song, J., Li, J.Q., Li, H.Z., Fan, H.T., Nasal Infection of Enterovirus D68 Leading to Lower Respiratory Tract Pathogenesis in Ferrets (Mustela putorius furo) (2017) Viruses, 9; Prince, G.A., Horswood, R.L., Berndt, J., Suffin, S.C., Chanock, R.M., Respiratory syncytial virus infection in inbred mice (1979) Infect. Immun., 26, pp. 764-766; Prince, G.A., Jenson, A.B., Horswood, R.L., Camargo, E., Chanock, R.M., The pathogenesis of respiratory syncytial virus infection in cotton rats (1978) Am. J. Pathol., 93, pp. 771-791; Hegele, R.G., Robinson, P.J., Gonzalez, S., Hogg, J.C., Production of acute bronchiolitis in guinea-pigs by human respiratory syncytial virus (1993) Eur. Respir. J., 6, pp. 1324-1331; Liang, B., Surman, S., Amaro-Carambot, E., Kabatova, B., Mackow, N., Lingemann, M., Yang, L., Kwong, P.D., Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate (2015) J. Virol., 89, pp. 9499-9510; Prince, G.A., Porter, D.D., The pathogenesis of respiratory syncytial virus infection in infant ferrets (1976) Am. J. Pathol., 82, pp. 339-352; Dyer, K.D., Garcia-Crespo, K.E., Glineur, S., Domachowske, J.B., Rosenberg, H.F., The Pneumonia Virus of Mice (PVM) model of acute respiratory infection (2012) Viruses, 4, pp. 3494-3510; Alvarez, R., Harrod, K.S., Shieh, W.J., Zaki, S., Tripp, R.A., Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies (2004) J. Virol., 78, pp. 14003-14011; Wyde, P.R., Chetty, S.N., Jewell, A.M., Schoonover, S.L., Piedra, P.A., Development of a cotton rat-human metapneumovirus (HMPV) model for identifying and evaluating potential hMPV antivirals and vaccines (2005) Antivir. Res., 66, pp. 57-66; Williams, J.V., Tollefson, S.J., Johnson, J.E., Crowe, J.E., The cotton rat (Sigmodon hispidus) is a permissive small animal model of human metapneumovirus infection, pathogenesis, and protective immunity (2005) J. Virol., 79, pp. 10944-10951; Macphail, M., Schickli, J.H., Tang, R.S., Kaur, J., Robinson, C., Fouchier, R.A., Osterhaus, A.D., Haller, A.A., Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (HMPV) and implications for hMPV vaccine design (2004) J. Gen. Virol., 85, pp. 1655-1663; Hussell, T., Openshaw, P.J., Intracellular IFN-gamma expression in natural killer cells precedes lung CD8+ T cell recruitment during respiratory syncytial virus infection (1998) J. Gen. Virol., 79, pp. 2593-2601; Porter, D.D., Prince, G.A., Hemming, V.G., Porter, H.G., Pathogenesis of human parainfluenza virus 3 infection in two species of cotton rats: Sigmodon hispidus develops bronchiolitis, while Sigmodon fulviventer develops interstitial pneumonia (1991) J. Virol., 65, pp. 103-111; Buckner, C.K., Clayton, D.E., Ain-Shoka, A.A., Busse, W.W., Dick, E.C., Shult, P., Parainfluenza 3 infection blocks the ability of a beta adrenergic receptor agonist to inhibit antigen-induced contraction of guinea pig isolated airway smooth muscle (1981) J. Clin. Investig., 67, pp. 376-384; Buthala, D.A., Soret, M.G., Parainfluenza Type 3 Virus Infection in Hamsters: Virologic, Serologic, and Pathologic Studies (1964) J. Infect. Dis., 114, pp. 226-234; Metzgar, D.P., Gower, T.A., Larson, E.J., Fuscaldo, A.A., Mascoli, C.C., Effect of Parainfluenza Virus Type-3 on Newborn Ferrets (1974) J. Biol. Stand., 2, pp. 273-282; Walter, M.J., Morton, J.D., Kajiwara, N., Agapov, E., Holtzman, M.J., Viral induction of a chronic asthma phenotype and genetic segregation from the acute response (2002) J. Clin. Investig., 110, pp. 165-175; Uhl, E.W., Castleman, W.L., Sorkness, R.L., Busse, W.W., Lemanske, R.F., Jr., McAllister, P.K., Parainfluenza virus-induced persistence of airway inflammation, fibrosis, and dysfunction associated with TGF-beta 1 expression in brown Norway rats (1996) Am. J. Respir. Crit. Care Med., 154, pp. 1834-1842; Carr, M.J., Hunter, D.D., Jacoby, D.B., Undem, B.J., Expression of tachykinins in nonnociceptive vagal afferent neurons during respiratory viral infection in guinea pigs (2002) Am. J. Respir. Crit. Care Med., 165, pp. 1071-1075; Percy, D.H., Palmer, D.J., Pathogenesis of Sendai virus infection in the Syrian hamster (1997) Lab. Anim. Sci., 47, pp. 132-137; Teo, S.M., Mok, D., Pham, K., Kusel, M., Serralha, M., Troy, N., Holt, B.J., Hollams, E., The Infant Nasopharyngeal Microbiome Impacts Severity of Lower Respiratory Infection and Risk of Asthma Development (2015) Cell Host Microbe, 17, pp. 704-715; Jackson, D.J., Evans, M.D., Gangnon, R.E., Tisler, C.J., Pappas, T.E., Lee, W.M., Gern, J.E., Lemanske, R.F., Evidence for a Causal Relationship between Allergic Sensitization and Rhinovirus Wheezing in Early Life (2012) Am. J. Respir. Crit. Care Med., 185, pp. 281-285; Caliskan, M., Bochkov, Y.A., Kreiner-Moller, E., Bonnelykke, K., Stein, M.M., Du, G.X., Bisgaard, H., Lemanske, R.F., Rhinovirus Wheezing Illness and Genetic Risk of Childhood-Onset Asthma (2013) N. Engl. J. Med., 368, pp. 1398-1407; Johnston, S.L., Pattemore, P.K., Sanderson, G., Smith, S., Lampe, F., Josephs, L., Symington, P., Tyrrell, D.A., Community study of role of viral infections in exacerbations of asthma in 9–11 year old children (1995) BMJ, 310, pp. 1225-1229; Wark, P.A., Johnston, S.L., Moric, I., Simpson, J.L., Hensley, M.J., Gibson, P.G., Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma (2002) Eur. Respir. J., 19, pp. 68-75; Heymann, P.W., Carper, H.T., Murphy, D.D., Platts-Mills, T.A.E., Patrie, J., McLaughlin, A.P., Erwin, E.A., Peerzada, J., Viral infections in relation to age, atopy, and season of admission among children hospitalized for wheezing (2004) J. Allergy Clin. Immunol., 114, pp. 239-247; Roberts, N., Al Mubarak, R., Francisco, D., Kraft, M., Chu, H.W., Comparison of paired human nasal and bronchial airway epithelial cell responses to rhinovirus infection and IL-13 treatment (2018) Clin. Transl. Med., 7, p. 13; Terajima, M., Yamaya, M., Sekizawa, K., Okinaga, S., Suzuki, T., Yamada, N., Nakayama, K., Numazaki, Y., Rhinovirus infection of primary cultures of human tracheal epithelium: Role of ICAM-1 and IL-1beta (1997) Am. J. Physiol., 273, pp. 749-759; Proud, D., Sanders, S.P., Wiehler, S., Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo (2004) J. Immunol., 172, pp. 4637-4645; Gern, J.E., Dick, E.C., Lee, W.M., Murray, S., Meyer, K., Handzel, Z.T., Busse, W.W., Rhinovirus enters but does not replicate inside monocytes and airway macrophages (1996) J. Immunol., 156, pp. 621-627; Akoto, C., Davies, D.E., Swindle, E.J., Mast cells are permissive for rhinovirus replication: Potential implications for asthma exacerbations (2017) Clin. Exp. Allergy, 47, pp. 351-360; Villenave, R., Thavagnanam, S., Sarlang, S., Parker, J., Douglas, I., Skibinski, G., Heaney, L.G., Shields, M.D., In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 5040-5045; Proud, D., Turner, R.B., Winther, B., Wiehler, S., Tiesman, J.P., Reichling, T.D., Juhlin, K.D., Walanski, A.A., Gene Expression Profiles during In Vivo Human Rhinovirus Infection: Insights into the Host Response (2008) Am. J. Respir. Crit. Care Med., 178, pp. 962-968; Yoon, H.J., Zhu, Z., Gwaltney, J.M., Elias, J.A., Rhinovirus Regulation of IL-1 Receptor Antagonist In Vivo and In Vitro: A Potential Mechanism of Symptom Resolution (1999) J. Immunol., 162, pp. 7461-7469; Schneider, D., Hong, J.Y., Bowman, E.R., Chung, Y., Nagarkar, D.R., McHenry, C.L., Goldsmith, A.M., Hershenson, M.B., Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease (2013) Am. J. Physiol. Lung Cell. Mol. Physiol., 304, pp. L162-L169; Nagarkar, D.R., Bowman, E.R., Schneider, D., Wang, Q., Shim, J., Zhao, Y., Linn, M.J., Bentley, J.K., Rhinovirus infection of allergen-sensitized and-challenged mice induces eotaxin release from functionally polarized macrophages (2010) J. Immunol., 185, pp. 2525-2535; Toussaint, M., Jackson, D.J., Swieboda, D., Guedan, A., Tsourouktsoglou, T.D., Ching, Y.M., Radermecker, C., Bartlett, N.W., Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation (2017) Nat. Med., 23, pp. 681-691; Collison, A., Hatchwell, L., Verrills, N., Wark, P.A., de Siqueira, A.P., Tooze, M., Carpenter, H., Zimmermann, N., The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity (2013) Nat. Med., 19, pp. 232-237; Girkin, J.L., Hatchwell, L.M., Collison, A.M., Starkey, M.R., Hansbro, P.M., Yagita, H., Foster, P.S., Mattes, J., TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection (2017) Am. J. Physiol. Lung Cell. Mol. Physiol., 312, pp. L89-L99; Mukherjee, S., Rasky, A.J., Lundy, P.A., Kittan, N.A., Kunkel, S.L., Maillard, I.P., Kowalski, P.E., Lukacs, N.W., STAT5-induced lunatic fringe during Th2 development alters delta-like 4-mediated Th2 cytokine production in respiratory syncytial virus-exacerbated airway allergic disease (2014) J. Immunol., 192, pp. 996-1003; John, A.E., Berlin, A.A., Lukacs, N.W., Respiratory syncytial virus-induced CCL5/RANTES contributes to exacerbation of allergic airway inflammation (2003) Eur. J. Immunol., 33, pp. 1677-1685; Schneider, D., Hong, J.Y., Popova, A.P., Bowman, E.R., Linn, M.J., McLean, A.M., Zhao, Y., Weinberg, J.B., Neonatal rhinovirus infection induces mucous metaplasia and airways hyperresponsiveness (2012) J. Immunol., 188, pp. 2894-2904; You, D., Siefker, D.T., Shrestha, B., Saravia, J., Cormier, S.A., Building a better neonatal mouse model to understand infant respiratory syncytial virus disease (2015) Respir. Res., 16, p. 91; Han, M., Rajput, C., Hong, J.Y., Lei, J., Hinde, J.L., Wu, Q., Bentley, J.K., Hershenson, M.B., The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice (2017) J. Immunol., 199, pp. 1308-1318; Hong, J.Y., Bentley, J.K., Chung, Y.T., Lei, J., Steenrod, J.M., Chen, Q., Sajjan, U.S., Hershenson, M.B., Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells (2014) J. Allergy Clin. Immunol., 134, pp. 429-439; Stark, J.M., McDowell, S.A., Koenigsknecht, V., Prows, D.R., Leikauf, J.E., Le Vine, A.M., Leikauf, G.D., Genetic susceptibility to respiratory syncytial virus infection in inbred mice (2002) J. Med. Virol., 67, pp. 92-100; Taylor, G., Stott, E.J., Hughes, M., Collins, A.P., Respiratory syncytial virus infection in mice (1984) Infect. Immun., 43, pp. 649-655; Anderson, J.J., Norden, J., Saunders, D., Toms, G.L., Scott, R., Analysis of the local and systemic immune responses induced in BALB/c mice by experimental respiratory syncytial virus infection (1990) J. Gen. Virol., 71, pp. 1561-1570; Graham, B.S., Perkins, M.D., Wright, P.F., Karzon, D.T., Primary respiratory syncytial virus infection in mice (1988) J. Med. Virol., 26, pp. 153-162; Culley, F.J., Pollott, J., Openshaw, P.J.M., Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood (2002) J. Exp. Med., 196, pp. 1381-1386; Hussell, T., Baldwin, C.J., O’Garra, A., Openshaw, P.J.M., CD8(+) T cells control Th2-driven pathology during pulmonary respiratory syncytial virus infection (1997) Eur. J. Immunol., 27, pp. 3341-3349; Openshaw, P.J.M., Clarke, S.L., Record, F.M., Pulmonary Eosinophilic Response to Respiratory Syncytial Virus-Infection in Mice Sensitized to the Major Surface Glycoprotein-G (1992) Int. Immunol., 4, pp. 493-500; Connors, M., Giese, N.A., Kulkarni, A.B., Firestone, C.Y., Morse, H.C., Murphy, B.R., Enhanced Pulmonary Histopathology Induced by Respiratory Syncytial Virus (Rsv) Challenge of Formalin-Inactivated Rsv-Immunized Balb/C Mice Is Abrogated by Depletion of Interleukin-4 (Il-4) and Il-10 (1994) J. Virol., 68, pp. 5321-5325; Stokes, K.L., Chi, M.H., Sakamoto, K., Newcomb, D.C., Currier, M.G., Huckabee, M.M., Lee, S., Williams, J.V., Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice (2011) J. Virol., 85, pp. 5782-5793; Stier, M.T., Bloodworth, M.H., Toki, S., Newcomb, D.C., Goleniewska, K., Boyd, K.L., Quitalig, M., Hartert, T.V., Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin (2016) J. Allergy Clin. Immunol., 138, pp. 814-824; Liu, Y.R., Haas, D.L., Poore, S., Isakovic, S., Gahan, M., Mahalingam, S., Fu, Z.F., Tripp, R.A., Human Metapneumovirus Establishes Persistent Infection in the Lungs of Mice and Is Reactivated by Glucocorticoid Treatment (2009) J. Virol., 83, pp. 6837-6848; Hamelin, M.E., Yim, K., Kuhn, K.H., Cragin, R.P., Boukhvalova, M., Blanco, J.C.G., Prince, G.A., Boivin, G., Pathogenesis of human metapneumovirus lung infection in BALB/c mice and cotton rats (2005) J. Virol., 79, pp. 8894-8903; Hamelin, M.E., Prince, G.A., Gomez, A.M., Kinkead, R., Boivin, G., Human metapneumovirus infection induces long-term pulmonary inflammation associated with airway obstruction and hyperresponsiveness in mice (2006) J. Infect. Dis., 193, pp. 1634-1642; Walter, M.J., Kajiwara, N., Karanja, P., Castro, M., Holtzman, M.J., Interleukin 12 p40 production by barrier epithelial cells during airway inflammation (2001) J. Exp. Med., 193, pp. 339-351; Tyner, J.W., Uchida, O., Kajiwara, N., Kim, E.Y., Patel, A.C., O’Sullivan, M.P., Walter, M.J., Danoff, T.M., CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection (2005) Nat. Med., 11, pp. 1180-1187; Stephens, R., Randolph, D.A., Huang, G.M., Holtzman, M.J., Chaplin, D.D., Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma (2002) J. Immunol., 169, pp. 5458-5467; Hegele, R.G., Hayashi, S., Bramley, A.M., Hogg, J.C., Persistence of respiratory syncytial virus genome and protein after acute bronchiolitis in guinea pigs (1994) Chest, 105, pp. 1848-1854; Castleman, W.L., Brundage-Anguish, L.J., Kreitzer, L., Neuenschwander, S.B., Pathogenesis of bronchiolitis and pneumonia induced in neonatal and weanling rats by parainfluenza (Sendai) virus (1987) Am. J. Pathol., 129, pp. 277-286; Castleman, W.L., Owens, S.B., Brundage-Anguish, L.J., Acute and persistent alterations in pulmonary inflammatory cells and airway mast cells induced by Sendai virus infection in neonatal rats (1989) Vet. Pathol., 26, pp. 18-25; Sorkness, R., Clough, J.J., Castleman, W.L., Lemanske, R.F., Jr., Virus-induced airway obstruction and parasympathetic hyperresponsiveness in adult rats (1994) Am. J. Respir. Crit. Care Med., 150, pp. 28-34; Sorkness, R., Lemanske, R.F., Castleman, W.L., Persistent Airway Hyperresponsiveness after Neonatal Viral Bronchiolitis in Rats (1991) J. Appl. Physiol., 70, pp. 375-383; Hadfield, A.T., Lee, W.M., Zhao, R., Oliveira, M.A., Minor, I., Rueckert, R.R., Rossmann, M.G., The refined structure of human rhinovirus 16 at 2.15 angstrom resolution: Implications for the viral life cycle (1997) Structure, 5, pp. 427-441; Stanway, G., Hughes, P.J., Mountford, R.C., Minor, P.D., Almond, J.W., The Complete Nucleotide-Sequence of a Common Cold Virus—Human Rhinovirus 14 (1984) Nucleic Acids Res, 12, pp. 7859-7875; Palmenberg, A.C., Gern, J.E., Classification and Evolution of Human Rhinoviruses (2015) Rhinoviruses: Methods and Protocols, pp. 1-10. , Jans, D.A., Ghildyal, R., Eds.; Springer: New York, NY, USA; Greve, J.M., Davis, G., Meyer, A.M., Forte, C.P., Yost, S.C., Marior, C.W., Kamarck, M.E., McClelland, A., The Major Human Rhinovirus Receptor Is Icam-1 (1989) Cell, 56, pp. 839-847; Staunton, D.E., Merluzzi, V.J., Rothlein, R., Barton, R., Marlin, S.D., Springer, T.A., A Cell-Adhesion Molecule, Icam-1, Is the Major Surface-Receptor for Rhinoviruses (1989) Cell, 56, pp. 849-853; Tomassini, J.E., Graham, D., Dewitt, C.M., Lineberger, D.W., Rodkey, J.A., Colonno, R.J., Cdna Cloning Reveals That the Major Group Rhinovirus Receptor on Hela-Cells Is Intercellular-Adhesion Molecule-1 (1989) Proc. Natl. Acad. Sci. USA, 86, pp. 4907-4911; Vlasak, M., Roivainen, M., Reithmayer, M., Goesler, I., Laine, P., Snyers, L., Hovi, T., Blaas, D., The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 HI loop is not sufficient for receptor binding (2005) J. Virol., 79, pp. 7389-7395; Lau, S.K., Yip, C.C., Woo, P.C., Yuen, K.Y., Human rhinovirus C: A newly discovered human rhinovirus species. Emerg (2010) Health Threats J, 3; Bochkov, Y.A., Watters, K., Ashraf, S., Griggs, T.F., Devries, M.K., Jackson, D.J., Palmenberg, A.C., Gern, J.E., Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 5485-5490; Jacobs, S.E., Lamson, D.M., St George, K., Walsh, T.J., Human rhinoviruses (2013) Clin. Microbiol. Rev., 26, pp. 135-162; Arruda, E., Pitkaranta, A., Witek, T.J., Doyle, C.A., Hayden, F.G., Frequency and natural history of rhinovirus infections in adults during autumn (1997) J. Clin. Microbiol., 35, pp. 2864-2868; Arruda, E., Boyle, T.R., Winther, B., Pevear, D.C., Gwaltney, J.M., Hayden, F.G., Localization of Human Rhinovirus Replication in the Upper Respiratory Tract by In Situ Hybridization (1995) J. Infect. Dis., 171, pp. 1329-1333; Gern, J.E., Galagan, D.M., Jarjour, N.N., Dick, E.C., Busse, W.W., Detection of rhinovirus RNA in lower airway cells during experimentally induced infection (1997) Am. J. Respir. Crit. Care Med., 155, pp. 1159-1161; Gern, J.E., Calhoun, W., Swenson, C., Shen, G., Busse, W.W., Rhinovirus infection preferentially increases lower airway responsiveness in allergic subjects (1997) Am. J. Respir. Crit. Care Med., 155, pp. 1872-1876; Mosser, A.G., Vrtis, R., Burchell, L., Lee, W.-M., Dick, C.R., Weisshaar, E., Bock, D., Meyer, K.C., Quantitative and Qualitative Analysis of Rhinovirus Infection in Bronchial Tissues (2005) Am. J. Respir. Crit. Care Med., 171, pp. 645-651; Papadopoulos, N.G., Bates, P.J., Bardin, P.G., Papi, A., Leir, S.H., Fraenkel, D.J., Meyer, J., Holgate, S.T., Rhinoviruses infect the lower airways (2000) J. Infect. Dis., 181, pp. 1875-1884; Wos, M., Sanak, M., Soja, J., Olechnowicz, H., Busse, W.W., Szczeklik, A., The Presence of Rhinovirus in Lower Airways of Patients with Bronchial Asthma (2008) Am. J. Respir. Crit. Care Med., 177, pp. 1082-1089; Mosser, A.G., Brockman-Schneider, R., Amineva, S., Burchell, L., Sedgwick, J.B., Busse, W.W., Gern, J.E., Similar frequency of rhinovirus-infectible cells in upper and lower airway epithelium (2002) J. Infect. Dis., 185, pp. 734-743; Demore, J.P., Weisshaar, E.H., Vrtis, R.F., Swenson, C.A., Evans, M.D., Morin, A., Hazel, E., Sorkness, R., Similar colds in subjects with allergic asthma and nonatopic subjects after inoculation with rhinovirus-16 (2009) J. Allergy Clin. Immunol., 124, pp. 245-252; Johnston, N.W., Johnston, S.L., Duncan, J.M., Greene, J.M., Kebadze, T., Keith, P.K., Roy, M., Sears, M.R., The September epidemic of asthma exacerbations in children: A search for etiology (2005) J. Allergy Clin. Immunol., 115, pp. 132-138; Nicholson, K.G., Kent, J., Ireland, D.C., Respiratory viruses and exacerbations of asthma in adults (1993) BMJ, 307, pp. 982-986; Tan, W.C., Xiang, X., Qiu, D., Ng, T.P., Lam, S.F., Hegele, R.G., Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease (2003) Am. J. Med., 115, pp. 272-277; Green, R.H., Brightling, C.E., McKenna, S., Hargadon, B., Parker, D., Bradding, P., Wardlaw, A.J., Pavord, I.D., Asthma exacerbations and sputum eosinophil counts: A randomised controlled trial (2002) Lancet, 360, pp. 1715-1721; Kistler, A., Avila, P.C., Rouskin, S., Wang, D., Ward, T., Yagi, S., Schnurr, D., Boushey, H.A., Pan-Viral Screening of Respiratory Tract Infections in Adults with and without Asthma Reveals Unexpected Human Coronavirus and Human Rhinovirus Diversity (2007) J. Infect. Dis., 196, pp. 817-825; Harju, T.H., Leinonen, M., Nokso-Koivisto, J., Korhonen, T., Räty, R., He, Q., Hovi, T., Rytilä, P., Pathogenic bacteria and viruses in induced sputum or pharyngeal secretions of adults with stable asthma (2006) Thorax, 61, pp. 579-584; Atmar, R.L., Guy, E., Guntupalli, K.K., Zimmerman, J.L., Bandi, V.D., Baxter, B.D., Greenberg, S.B., Respiratory tract viral infections in inner-city asthmatic adults (1998) Arch. Intern. Med., 158, pp. 2453-2459; Khetsuriani, N., Kazerouni, N.N., Erdman, D.D., Lu, X., Redd, S.C., Anderson, L.J., Teague, W.G., Prevalence of viral respiratory tract infections in children with asthma (2007) J. Allergy Clin. Immunol., 119, pp. 314-321; Greenberg, S.B., Allen, M., Wilson, J., Atmar, R.L., Respiratory viral infections in adults with and without chronic obstructive pulmonary disease (2000) Am. J. Respir. Crit. Care Med., 162, pp. 167-173; Seemungal, T., Harper-Owen, R., Bhowmik, A., Moric, I., Sanderson, G., Message, S., Maccallum, P., Johnston, S.L., Respiratory Viruses, Symptoms, and Inflammatory Markers in Acute Exacerbations and Stable Chronic Obstructive Pulmonary Disease (2001) Am. J. Respir. Crit. Care Med., 164, pp. 1618-1623; Rohde, G., Wiethege, A., Borg, I., Kauth, M., Bauer, T.T., Gillissen, A., Bufe, A., Schultze-Werninghaus, G., Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: A case-control study (2003) Thorax, 58, pp. 37-42; Ko, F.W.S., Ip, M., Chan, P.K.S., Fok, J.P.C., Chan, M.C.H., Ngai, J.C., Chan, D.P.S., Hui, D.S.C., A 1-Year Prospective Study of the Infectious Etiology in Patients Hospitalized with Acute Exacerbations of COPD (2007) Chest, 131, pp. 44-52; McManus, T.E., Marley, A.-M., Baxter, N., Christie, S.N., O’Neill, H.J., Elborn, J.S., Coyle, P.V., Kidney, J.C., Respiratory viral infection in exacerbations of COPD (2008) Respir. Med., 102, pp. 1575-1580; Kling, S., Donninger, H., Williams, Z., Vermeulen, J., Weinberg, E., Latiff, K., Ghildyal, R., Bardin, P., Persistence of rhinovirus RNA after asthma exacerbation in children (2005) Clin. Exp. Allergy, 35, pp. 672-678; Corne, J.M., Marshall, C., Smith, S., Schreiber, J., Sanderson, G., Holgate, S.T., Johnston, S.L., Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: A longitudinal cohort study (2002) Lancet, 359, pp. 831-834; Kotaniemi-Syrjanen, A., Vainionpaa, R., Reijonen, T.M., Waris, M., Korhonen, K., Korppi, M., Rhinovirus-induced wheezing in infancy–the first sign of childhood asthma? (2003) J. Allergy Clin. Immunol., 111, pp. 66-71; Lemanske, R.F., Jr., Jackson, D.J., Gangnon, R.E., Evans, M.D., Li, Z., Shult, P.A., Kirk, C.J., Anderson, E.L., Rhinovirus illnesses during infancy predict subsequent childhood wheezing (2005) J. Allergy Clin. Immunol., 116, pp. 571-577; Jackson, D.J., Gangnon, R.E., Evans, M.D., Roberg, K.A., Anderson, E.L., Pappas, T.E., Printz, M.C., Reisdorf, E., Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children (2008) Am. J. Respir. Crit. Care Med., 178, pp. 667-672; Rubner, F.J., Jackson, D.J., Evans, M.D., Gangnon, R.E., Tisler, C.J., Pappas, T.E., Gern, J.E., Lemanske, R.F., Early life rhinovirus wheezing, allergic sensitization, and asthma risk at adolescence (2017) J. Allergy Clin. Immunol., 139, pp. 501-507; Harris, J.R., Racaniello, V.R., Changes in rhinovirus protein 2C allow efficient replication in mouse cells (2003) J. Virol., 77, pp. 4773-4780; Tuthill, T.J., Papadopoulos, N.G., Jourdan, P., Challinor, L.J., Sharp, N.A., Plumpton, C., Shah, K., Burnet, J., Mouse respiratory epithelial cells support efficient replication of human rhinovirus (2003) J. Gen. Virol., 84, pp. 2829-2836; Reithmayer, M., Reischl, A., Snyers, L., Blaas, D., Species-specific receptor recognition by a minor-group human rhinovirus (HRV): HRV serotype 1A distinguishes between the murine and the human low-density lipoprotein receptor (2002) J. Virol., 76, pp. 6957-6965; Rasmussen, A.L., Racaniello, V.R., Selection of rhinovirus 1A variants adapted for growth in mouse lung epithelial cells (2011) Virology, 420, pp. 82-88; Foxman, E.F., Storer, J.A., Fitzgerald, M.E., Wasik, B.R., Hou, L., Zhao, H.Y., Turner, P.E., Iwasaki, A., Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 827-832; Nagarkar, D.R., Wang, Q., Shim, J., Zhao, Y., Tsai, W.C., Lukacs, N.W., Sajjan, U., Hershenson, M.B., CXCR2 Is Required for Neutrophilic Airway Inflammation and Hyperresponsiveness in a Mouse Model of Human Rhinovirus Infection (2009) J. Immunol., 183, pp. 6698-6707; Wang, Q., Miller, D.J., Bowman, E.R., Nagarkar, D.R., Schneider, D., Zhao, Y., Linn, M.J., Sajjan, U.S., MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness (2011) Plos Pathog, 7; Girkin, J., Hatchwell, L., Foster, P., Johnston, S.L., Bartlett, N., Collison, A., Mattes, J., CCL7 and IRF-7 Mediate Hallmark Inflammatory and IFN Responses following Rhinovirus 1B Infection (2015) J. Immunol., 194, pp. 4924-4930; Han, M., Chung, Y., Young Hong, J., Rajput, C., Lei, J., Hinde, J.L., Chen, Q., Hershenson, M.B., Toll-like receptor 2-expressing macrophages are required and sufficient for rhinovirus-induced airway inflammation (2016) J. Allergy Clin. Immunol., 138, pp. 1619-1630; Glanville, N., Peel, T.J., Schroder, A., Aniscenko, J., Walton, R.P., Finotto, S., Johnston, S.L., Tbet Deficiency Causes T Helper Cell Dependent Airways Eosinophilia and Mucus Hypersecretion in Response to Rhinovirus Infection (2016) Plos Pathog, 12; Chung, Y., Hong, J.Y., Lei, J., Chen, Q., Bentley, J.K., Hershenson, M.B., Rhinovirus Infection Induces IL-13 Production from CD11b-positive, Exudative M2-polarized Exudative Macrophages (2015) Am. J. Respir. Cell Mol. Biol., 52, pp. 205-216; Bentley, J.K., Sajjan, U.S., Dzaman, M.B., Jarjour, N.N., Lee, W.M., Gern, J.E., Hershenson, M.B., Rhinovirus colocalizes with CD68-and CD11b-positive macrophages following experimental infection in humans (2013) J. Allergy Clin. Immunol., 132, pp. 758-761; Mehta, A.K., Duan, W., Doerner, A.M., Traves, S.L., Broide, D.H., Proud, D., Zuraw, B.L., Croft, M., Rhinovirus infection interferes with induction of tolerance to aeroantigens through OX40 ligand, thymic stromal lymphopoietin, and IL-33 (2016) J. Allergy Clin. Immunol., 137, pp. 278-288; Chairakaki, A.-D., Saridaki, M.-I., Pyrillou, K., Mouratis, M.-A., Koltsida, O., Walton, R.P., Bartlett, N.W., Rovina, N., Plasmacytoid dendritic cells drive acute asthma exacerbations (2018) J. Allergy Clin. Immunol., 142, pp. 542-556; Phan, J.A., Kicic, A., Berry, L.J., Fernandes, L.B., Zosky, G.R., Sly, P.D., Larcombe, A.N., Rhinovirus exacerbates house-dust-mite induced lung disease in adult mice (2014) Plos ONE, 9; Hatchwell, L., Collison, A., Girkin, J., Parsons, K., Li, J.Y., Zhang, J., Phipps, S., Johnston, S.L., Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia (2015) Thorax, 70, pp. 854-861; Han, M., Hong, J.Y., Jaipalli, S., Rajput, C., Lei, J., Hinde, J.L., Chen, Q., Hershenson, M.B., IFN-gamma Blocks Development of an Asthma Phenotype in Rhinovirus-Infected Baby Mice by Inhibiting Type 2 Innate Lymphoid Cells (2017) Am. J. Respir. Cell Mol. Biol., 56, pp. 242-251. , PubMed; Lachowicz-Scroggins, M.E., Boushey, H.A., Finkbeiner, W.E., Widdicombe, J.H., Interleukin-13-Induced Mucous Metaplasia Increases Susceptibility of Human Airway Epithelium to Rhinovirus Infection (2010) Am. J. Respir. Cell Mol. Biol., 43, pp. 652-661; Rajput, C., Cui, T., Han, M.Y., Lei, J., Hinde, J.L., Wu, Q., Bentley, J.K., Hershenson, M.B., ROR alpha-dependent type 2 innate lymphoid cells are required and sufficient for mucous metaplasia in immature mice (2017) Am. J. Physiol. Lung Cell. Mol. Physiol., 312, pp. L983-L993; Schieble, J.H., Fox, V.L., Lennette, E.H., A probable new human picornavirus associated with respiratory diseases (1967) Am. J. Epidemiol., 85, pp. 297-310; Tokarz, R., Firth, C., Madhi, S.A., Howie, S.R.C., Wu, W., Sall, A.A., Haq, S., Lipkin, W.I., Worldwide emergence of multiple clades of enterovirus 68 (2012) J. Gen. Virol., 93, pp. 1952-1958; Ikeda, T., Mizuta, K., Abiko, C., Aoki, Y., Itagaki, T., Katsushima, F., Katsushima, Y., Imamura, T., Acute respiratory infections due to enterovirus 68 in Yamagata, Japan between 2005 and 2010 (2012) Microbiol. Immunol., 56, pp. 139-143; Lu, Q.B., Wo, Y., Wang, H.Y., Wei, M.T., Zhang, L., Yang, H., Liu, E.M., Liu, W., Detection of enterovirus 68 as one of the commonest types of enterovirus found in patients with acute respiratory tract infection in China (2014) J. Med. Microbiol., 63, pp. 408-414; Meijer, A., Benschop, K.S., Donker, G.A., van der Avoort, H.G., Continued seasonal circulation of enterovirus D68 in the Netherlands, 2011–2014 (2014) Eurosurveillance, 19, pp. 2-7; Meijer, A., van der Sanden, S., Snijders, B.E.P., Jaramillo-Gutierrez, G., Bont, L., van der Ent, C.K., Overduin, P., van der Avoort, H.G.A.M., Emergence and epidemic occurrence of enterovirus 68 respiratory infections in The Netherlands in 2010 (2012) Virology, 423, pp. 49-57; Imamura, T., Suzuki, A., Meijer, A., Niesters, H.G.M., Rahamat-Langendoen, J.C., Lojo, J., Hodinka, R.L., Kraft, C.S., Clusters of Acute Respiratory Illness Associated with Human Enterovirus 68-Asia, Europe, and United States, 2008–2010 (Reprinted from MMWR, vol 60, pg 1301–1304, 2011) (2011) JAMA J. Am. Med. Assoc., 306, pp. 1971-1973; Midgley, C.M., Watson, J.T., Nix, W.A., Curns, A.T., Rogers, S.L., Brown, B.A., Conover, C., Gray, S., Severe respiratory illness associated with a nationwide outbreak of enterovirus D68 in the USA (2014): A descriptive epidemiological investigation (2015) Lancet Respir. Med., 3, pp. 879-887; Messacar, K., Abzug, M.J., Dominguez, S.R., 2014 outbreak of enterovirus D68 in North America (2016) J. Med. Virol., 88, pp. 739-745; Rao, S., Messacar, K., Torok, M.R., Rick, A.M., Holzberg, J., Montano, A., Bagdure, D., Nix, W.A., Enterovirus D68 in Critically Ill Children: A Comparison with Pandemic H1N1 Influenza (2016) Pediatr. Crit. Care Med., 17, pp. 1023-1031; Abedi, G.R., Watson, J.T., Nix, W.A., Oberste, M.S., Gerber, S.I., Enterovirus and Parechovirus Surveillance—United States, 2014–2016 (2018) MMWR Morb. Mortal. Wkly. Rep., 67, pp. 515-518; Leshem, E., Acute Flaccid Myelitis among Persons Aged <= 21 Years—United States, August 1–November 13, 2014 (2015) MMWR Morb. Mortal. Wkly. Rep., 63, pp. 1243-1244; Greninger, A.L., Naccache, S.N., Messacar, K., Clayton, A., Yu, G.X., Somasekar, S., Federman, S., Yagi, S., A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–14): A retrospective cohort study (2015) Lancet Infect. Dis., 15, pp. 671-682; Aliabadi, N., Messacar, K., Pastula, D.M., Robinson, C.C., Leshem, E., Sejvar, J.J., Nix, W.A., Dominguez, S.R., Enterovirus D68 Infection in Children with Acute Flaccid Myelitis, Colorado, USA, 2014 (2016) Emerg. Infect. Dis., 22, pp. 1387-1394; Du, J., Zheng, B., Zheng, W., Li, P., Kang, J., Hou, J., Markham, R., Yu, X.F., Analysis of Enterovirus 68 Strains from the 2014 North American Outbreak Reveals a New Clade, Indicating Viral Evolution (2015) Plos ONE, 10; Liu, Y., Sheng, J., Fokine, A., Meng, G., Shin, W.H., Long, F., Kuhn, R.J., Rossmann, M.G., Structure and inhibition of EV-D68, a virus that causes respiratory illness in children (2015) Science, 347, pp. 71-74; Oberste, M.S., Maher, K., Schnurr, D., Flemister, M.R., Lovchik, J.C., Peters, H., Sessions, W., Fuller, S., Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses (2004) J. Gen. Virol., 85, pp. 2577-2584; Savolainen, C., Blomqvist, S., Mulders, M.N., Hovi, T., Genetic clustering of all 102 human rhinovirus prototype strains: Serotype 87 is close to human enterovirus 70 (2002) J. Gen. Virol., 83, pp. 333-340; Ishiko, H., Miura, R., Shimada, Y., Hayashi, A., Nakajima, H., Yamazaki, S., Takeda, N., Human Rhinovirus 87 Identified as Human Enterovirus 68 by VP4-Based Molecular Diagnosis (2002) Intervirology, 45, pp. 136-141; Blomqvist, S., Savolainen, C., Raman, L., Roivainen, M., Hovi, T., Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features (2002) J. Clin. Microbiol., 40, pp. 4218-4223; Liu, Y., Sheng, J., Baggen, J., Meng, G., Xiao, C., Thibaut, H.J., van Kuppeveld, F.J., Rossmann, M.G., Sialic acid-dependent cell entry of human enterovirus D68 (2015) Nat. Commun., 6, p. 8865; Baggen, J., Thibaut, H.J., Staring, J., Jae, L.T., Liu, Y., Guo, H., Slager, J.J., Blomen, V.A., Enterovirus D68 receptor requirements unveiled by haploid genetics (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 1399-1404; Zhang, C., Zhang, X., Dai, W., Liu, Q., Xiong, P., Wang, S., Geng, L., Huang, Z., A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine (2018) Viruses, 10, p. 58; Morrey, J.D., Wang, H., Hurst, B.L., Zukor, K., Siddharthan, V., van Wettere, A.J., Sinex, D.G., Tarbet, E.B., Causation of Acute Flaccid Paralysis by Myelitis and Myositis in Enterovirus-D68 Infected Mice Deficient in Interferon/Receptor Deficient Mice (2018) Viruses, 10, p. 33; McIntosh, K., Ellis, E.F., Hoffman, L.S., Lybass, T.G., Eller, J.J., Fulginiti, V.A., The association of viral and bacterial respiratory infections with exacerbations of wheezing in young asthmatic children (1973) J. Pediatr., 82, pp. 578-590; Glezen, P., Denny, F.W., Epidemiology of acute lower respiratory disease in children (1973) N. Engl. J. Med., 288, pp. 498-505; Leader, S., Kohlhase, K., Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000 (2003) J. Pediatr., 143, pp. S127-S132; Glezen, W.P., Taber, L.H., Frank, A.L., Kasel, J.A., Risk of Primary Infection and Reinfection with Respiratory Syncytial Virus (1986) Am. J. Dis. Child., 140, pp. 543-546; Stein, R., Sherrill, D., Morgan, W.J., Holberg, C.J., Halonen, M., Taussig, L.M., Wright, A.L., Martinez, F.D., Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years (1999) Lancet, 354, pp. 541-545; Sigurs, N., Bjarnason, R., Sigurbergsson, F., Kjellman, B., Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7 (2000) Am. J. Respir. Crit. Care Med., 161, pp. 1501-1507; Sigurs, N., Gustafsson, P.M., Bjarnason, R., Lundberg, F., Schmidt, S., Sigurbergsson, F., Kjellman, B., Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13 (2005) Am. J. Respir. Crit. Care Med., 171, pp. 137-141; Rima, B., Collins, P., Easton, A., Fouchier, R., Kurath, G., Lamb, R.A., Lee, B., Wang, L.F., ICTV Virus Taxonomy Profile: Pneumoviridae (2017) J. Gen. Virol., 98, pp. 2912-2913; Tayyari, F., Marchant, D., Moraes, T.J., Duan, W.M., Mastrangelo, P., Hegele, R.G., Identification of nucleolin as a cellular receptor for human respiratory syncytial virus (2011) Nat. Med., 17, pp. 1132-1135; Cirino, N.M., Panuska, J.R., Villani, A., Taraf, H., Rebert, N.A., Merolla, R., Tsivitse, P., Gilbert, I.A., Restricted Replication of Respiratory Syncytial Virus in Human Alveolar Macrophages (1993) J. Gen. Virol., 74, pp. 1527-1537; Blount, R.E., Jr., Morris, J.A., Savage, R.E., Recovery of cytopathogenic agent from chimpanzees with coryza (1956) Proc. Soc. Exp. Biol. Med., 92, pp. 544-549; Belshe, R.B., Richardson, L.S., London, W.T., Sly, D.L., Lorfeld, J.H., Camargo, E., Prevar, D.A., Chanock, R.M., Experimental respiratory syncytial virus infection of four species of primates (1977) J. Med. Virol., 1, pp. 157-162; Richardson, L.S., Belshe, R.B., Sly, D.L., London, W.T., Prevar, D.A., Camargo, E., Chanock, R.M., Experimental respiratory syncytial virus pneumonia in cebus monkeys (1978) J. Med. Virol., 2, pp. 45-59; Richardson, L.S., Belshe, R.B., London, W.T., Sly, D.L., Prevar, D.A., Camargo, E., Chanock, R.M., Evaluation of five temperature-sensitive mutants of respiratory syncytial virus in primates: I. Viral shedding, immunologic response, and associated illness (1978) J. Med. Virol., 3, pp. 91-100; Taylor, G., Animal models of respiratory syncytial virus infection (2017) Vaccine, 35, pp. 469-480; Dakhama, A., Vitalis, T.Z., Hegele, R.G., Persistence of respiratory syncytial virus (RSV) infection and development of RSV-specific IgG1 response in a guinea-pig model of acute bronchiolitis (1997) Eur. Respir. J., 10, pp. 20-26; Bramley, A.M., Khan, M.A., Manson, H.E., Hegele, R.G., Development of respiratory syncytial virus “bronchiolitis” in guinea pigs does not reflect an allergic predisposition in the host (2003) Chest, 124, pp. 671-681; Robinson, P.J., Hegele, R.G., Schellenberg, R.R., Allergic sensitization increases airway reactivity in guinea pigs with respiratory syncytial virus bronchiolitis (1997) J. Allergy Clin. Immunol., 100, pp. 492-498; Chan, K.F., Carolan, L.A., Druce, J., Chappell, K., Watterson, D., Young, P., Korenkov, D., Laurie, K.L., Pathogenesis, Humoral Immune Responses, and Transmission between Cohoused Animals in a Ferret Model of Human Respiratory Syncytial Virus Infection (2018) J. Virol, 92, p. e01322; Prince, G.A., Hemming, V.G., Horswood, R.L., Baron, P.A., Chanock, R.M., Effectiveness of topically administered neutralizing antibodies in experimental immunotherapy of respiratory syncytial virus infection in cotton rats (1987) J. Virol., 61, pp. 1851-1854; Cullen, L.M., Blanco, J.C.G., Morrison, T.G., Cotton rat immune responses to virus-like particles containing the pre-fusion form of respiratory syncytial virus fusion protein (2015) J. Transl. Med, 13, p. 350; Stobart, C.C., Rostad, C.A., Ke, Z.L., Dillard, R.S., Hampton, C.M., Strauss, J.D., Yi, H., Pickles, R.J., A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat (2016) Commun, 7; Horsfall, F.L., Hahn, R.G., A Latent Virus in Normal Mice Capable of Producing Pneumonia in Its Natural Host (1940) J. Exp. Med., 71, pp. 391-408; Taylor, G., Thomas, L.H., Wyld, S.G., Furze, J., Sopp, P., Howard, C.J., Role of T-lymphocyte subsets in recovery from respiratory syncytial virus infection in calves (1995) J. Virol., 69, pp. 6658-6664; Sacco, R.E., Durbin, R.K., Durbin, J.E., Animal models of respiratory syncytial virus infection and disease (2015) Curr. Opin. Virol., 13, pp. 117-122; Bem, R.A., Domachowske, J.B., Rosenberg, H.F., Animal models of human respiratory syncytial virus disease (2011) Am. J. Physiol. Lung Cell. Mol. Physiol., 301, pp. L148-L156; Rameix-Welti, M.A., Le Goffic, R., Herve, P.L., Sourimant, J., Remot, A., Riffault, S., Yu, Q., Eleouet, J.F., Visualizing the replication of respiratory syncytial virus in cells and in living mice (2014) Nat. Commun., 5, p. 5104; Fuentes, S., Arenas, D., Moore, M.M., Golding, H., Khurana, S., Development of bioluminescence imaging of respiratory syncytial virus (RSV) in virus-infected live mice and its use for evaluation of therapeutics and vaccines (2017) Vaccine, 35, pp. 694-702; High, M., Cho, H.Y., Marzec, J., Wiltshire, T., Verhein, K.C., Caballero, M.T., Acosta, P.L., Kobzik, L., Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants (2016) Ebiomedicine, 11, pp. 73-84; Ruckwardt, T.J., Malloy, A.M.W., Gostick, E., Price, D.A., Dash, P., McClaren, J.L., Thomas, P.G., Graham, B.S., Neonatal CD8 T-cell Hierarchy Is Distinct from Adults and Is Influenced by Intrinsic T cell Properties in Respiratory Syncytial Virus Infected Mice (2011) Plos Pathog, 7; Cormier, S.A., You, D.H., Honnegowda, S., The use of a neonatal mouse model to study respiratory syncytial virus infections (2010) Expert Rev. Anti-Infect. Ther., 8, pp. 1371-1380; Empey, K.M., Orend, J.G., Peebles, R.S., Egana, L., Norris, K.A., Oury, T.D., Kolls, J.K., Stimulation of Immature Lung Macrophages with Intranasal Interferon Gamma in a Novel Neonatal Mouse Model of Respiratory Syncytial Virus Infection (2012) Plos ONE, 7; Li, F.A., Zhu, H.Q., Sun, R., Wei, H.M., Tian, Z.G., Natural Killer Cells Are Involved in Acute Lung Immune Injury Caused by Respiratory Syncytial Virus Infection (2012) J. Virol., 86, pp. 2251-2258; Liu, J., Haddad, E.K., Marceau, J., Morabito, K.M., Rao, S.S., Filali-Mouhim, A., Sekaly, R.P., Graham, B.S., A Numerically Subdominant CD8 T Cell Response to Matrix Protein of Respiratory Syncytial Virus Controls Infection with Limited Immunopathology (2016) Plos Pathog, 12; Schmidt, M.E., Knudson, C.J., Hartwig, S.M., Pewe, L.L., Meyerholz, D.K., Langlois, R.A., Harty, J.T., Varga, S.M., Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection (2018) Plos Pathog, 14; Kinnear, E., Lambert, L., McDonald, J.U., Cheeseman, H.M., Caproni, L.J., Tregoning, J.S., Airway T cells protect against RSV infection in the absence of antibody (2018) Mucosal Immunol, 11, pp. 249-256; Jozwik, A., Habibi, M.S., Paras, A., Zhu, J., Guvenel, A., Dhariwal, J., Almond, M., Maybeno, M., RSV-specific airway resident memory CD8+T cells and differential disease severity after experimental human infection (2015) Nat. Commun., 6, p. 10224; Zhang, L., Li, H.Y., Hai, Y., Yin, W., Li, W.J., Zheng, B.Y., Du, X.M., Deng, Y.Q., CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs (2017) J. Virol., 91; Fulton, R.B., Meyerholz, D.K., Varga, S.M., Foxp3(+) CD4 Regulatory T Cells Limit Pulmonary Immunopathology by Modulating the CD8 T Cell Response during Respiratory Syncytial Virus Infection (2010) J. Immunol., 185, pp. 2382-2392; Ruckwardt, T.J., Bonaparte, K.L., Nason, M.C., Graham, B.S., Regulatory T Cells Promote Early Influx of CD8(+) T Cells in the Lungs of Respiratory Syncytial Virus-Infected Mice and Diminish Immunodominance Disparities (2009) J. Virol., 83, pp. 3019-3028; Lee, D.C.P., Harker, J.A.E., Tregoning, J.S., Atabani, S.F., Johansson, C., Schwarze, J., Openshaw, P.J.M., CD25(+) Natural Regulatory T Cells Are Critical in Limiting Innate and Adaptive Immunity and Resolving Disease following Respiratory Syncytial Virus Infection (2010) J. Virol., 84, pp. 8790-8798; Durant, L.R., Makris, S., Voorburg, C.M., Loebbermann, J., Johansson, C., Openshaw, P.J., Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice (2013) J. Virol., 87, pp. 10946-10954; Ruckwardt, T.J., Malloy, A.M.W., Morabito, K.M., Graham, B.S., Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8+T Cell Response (2014) Plos Pathog, 10; Lynch, J.P., Werder, R.B., Loh, Z.X., Sikder, M.A., Curren, B., Zhang, V.V., Rogers, M.J., Mazzone, S.B., Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion (2018) J. Exp. Med., 215, pp. 537-557; Roman, M., Calhoun, W.J., Hinton, K.L., Avendano, L.F., Simon, V., Escobar, A.M., Gaggero, A., Diaz, P.V., Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response (1997) Am. J. Respir. Crit. Care Med., 156, pp. 190-195; Pala, P., Bjarnason, R., Sigurbergsson, F., Metcalfe, C., Sigurs, N., Openshaw, P.J.M., Enhanced IL-4 responses in children with a history of respiratory syncytial virus bronchiolitis in infancy (2002) Eur. Respir. J., 20, pp. 376-382; Srikiatkhachorn, A., Braciale, T.J., Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection (1997) J. Exp. Med., 186, pp. 421-432; Hussell, T., Openshaw, P.J., IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions (2000) J. Immunol., 165, pp. 7109-7115; Herlocher, M.L., Ewasyshyn, M., Sambhara, S., Gharaee-Kermani, M., Cho, D., Lai, J., Klein, M., Maassab, H.F., Immunological properties of plaque purified strains of live attenuated respiratory syncytial virus (RSV) for human vaccine (1999) Vaccine, 17, pp. 172-181; Lukacs, N.W., Moore, M.L., Rudd, B.D., Berlin, A.A., Collins, R.D., Olson, S.J., Ho, S.B., Peebles, R.S., Jr., Differential immune responses and pulmonary pathophysiology are induced by two different strains of respiratory syncytial virus (2006) Am. J. Pathol., 169, pp. 977-986; Moore, M.L., Chi, M.H., Luongo, C., Lukacs, N.W., Polosukhin, V.V., Huckabee, M.M., Newcomb, D.C., Goleniewska, K., A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction (2009) J. Virol., 83, pp. 4185-4194; Fujimura, K.E., Demoor, T., Rauch, M., Faruqi, A.A., Jang, S., Johnson, C.C., Boushey, H.A., Lukacs, N.W., House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 805-810; Petersen, B.C., Dolgachev, V., Rasky, A., Lukacs, N.W., IL-17E (IL-25) and IL-17RB promote respiratory syncytial virus-induced pulmonary disease (2014) J. Leukoc. Biol., 95, pp. 809-815; Lee, H.C., Headley, M.B., Loo, Y.M., Berlin, A., Gale, M., Debley, J.S., Lukacs, N.W., Ziegler, S.F., Thymic stromal lymphopoietin is induced by respiratory syncytial virus-infected airway epithelial cells and promotes a type 2 response to infection (2012) J. Allergy Clin. Immunol., 130, pp. 1187-1196; Stier, M.T., Goleniewska, K., Cephus, J.Y., Newcomb, D.C., Sherrill, T.P., Boyd, K.L., Bloodworth, M.H., Kolls, J.K., STAT1 Represses Cytokine-Producing Group 2 and Group 3 Innate Lymphoid Cells during Viral Infection (2017) J. Immunol., 199, pp. 510-519; Peebles, R.S., Sheller, J.R., Johnson, J.E., Mitchell, D.B., Graham, B.S., Respiratory syncytial virus infection prolongs methacholine-induced airway hyperresponsiveness in ovalbumin-sensitized mice (1999) J. Med. Virol., 57, pp. 186-192; Hashimoto, K., Graham, B.S., Ho, S.B., Adler, K.B., Collins, R.D., Olson, S.J., Zhou, W., Goleniewska, K., Respiratory syncytial virus in allergic lung inflammation increases Muc5ac and gob-5 (2004) Am. J. Respir. Crit. Care Med., 170, pp. 306-312; Newcomb, D.C., Boswell, M.G., Reiss, S., Zhou, W., Goleniewska, K., Toki, S., Harintho, M.T., Peebles, R.S., IL-17A inhibits airway reactivity induced by respiratory syncytial virus infection during allergic airway inflammation (2013) Thorax, 68, pp. 717-723; Mori, H., Parker, N.S., Rodrigues, D., Hulland, K., Chappell, D., Hincks, J.S., Bright, H., Lamb, D.J., Differences in respiratory syncytial virus and influenza infection in a house-dust-mite-induced asthma mouse model: Consequences for steroid sensitivity (2013) Clin. Sci., 125, pp. 565-574; Lukacs, N.W., Tekkanat, K.K., Berlin, A., Hogaboam, C.M., Miller, A., Evanoff, H., Lincoln, P., Maassab, H., Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms (2001) J. Immunol., 167, pp. 1060-1065; Knudson, C.J., Weiss, K.A., Hartwig, S.M., Varga, S.M., The Pulmonary Localization of Virus-Specific T Lymphocytes Is Governed by the Tissue Tropism of Infection (2014) J. Virol., 88, pp. 9010-9016; Eichinger, K.M., Kosanovich, J.L., Empey, K.M., Localization of the T-cell response to RSV infection is altered in infant mice (2018) Pediatr. Pulmonol., 53, pp. 145-153; Fulton, R.B., Weiss, K.A., Pewe, L.L., Harty, J.T., Varga, S.M., Aged Mice Exhibit a Severely Diminished CD8 T Cell Response following Respiratory Syncytial Virus Infection (2013) J. Virol., 87, pp. 12694-12700; Malloy, A.M., Ruckwardt, T.J., Morabito, K.M., Lau-Kilby, A.W., Graham, B.S., Pulmonary Dendritic Cell Subsets Shape the Respiratory Syncytial Virus-Specific CD8+ T Cell Immunodominance Hierarchy in Neonates (2017) J. Immunol., 198, pp. 394-403; Ruckwardt, T.J., Morabito, K.M., Bar-Haim, E., Nair, D., Graham, B.S., Neonatal mice possess two phenotypically and functionally distinct lung-migratory CD103(+) dendritic cell populations following respiratory infection (2018) Mucosal Immunol, 11, pp. 186-198; Dakhama, A., Park, J.W., Taube, C., Joetham, A., Balhorn, A., Miyahara, N., Takeda, K., Gelfand, E.W., The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production (2005) J. Immunol., 175, pp. 1876-1883; Saravia, J., You, D., Shrestha, B., Jaligama, S., Siefker, D., Lee, G.I., Harding, J.N., Bagga, B., Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33 (2015) Plos Pathog, 11; Harker, J.A., Yamaguchi, Y., Culley, F.J., Tregoning, J.S., Openshaw, P.J.M., Delayed Sequelae of Neonatal Respiratory Syncytial Virus Infection Are Dependent on Cells of the Innate Immune System (2014) J. Virol., 88, pp. 604-611; Tregoning, J.S., Yamaguchi, Y., Harker, J., Wang, B., Openshaw, P.J.M., The role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice (2008) J. Virol., 82, pp. 4115-4124; Pribul, P.K., Harker, J., Wang, B., Wang, H., Tregoning, J.S., Schwarze, J., Openshaw, P.J., Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development (2008) J. Virol., 82, pp. 4441-4448; Tregoning, J.S., Yamaguchi, Y., Wang, B., Mihm, D., Harker, J.A., Bushell, E.S.C., Zheng, M., Openshaw, P.J.M., Genetic Susceptibility to the Delayed Sequelae of Neonatal Respiratory Syncytial Virus Infection Is MHC Dependent (2010) J. Immunol., 185, pp. 5384-5391; Cormier, S.A., Shrestha, B., Saravia, J., Lee, G.I., Shen, L., Devincenzo, J.P., Kim, Y.I., You, D.H., Limited Type I Interferons and Plasmacytoid Dendritic Cells during Neonatal Respiratory Syncytial Virus Infection Permit Immunopathogenesis upon Reinfection (2014) J. Virol., 88, pp. 9350-9360; Srinivasa, B.T., Restori, K.H., Shan, J.C., Cyr, L., Xing, L., Lee, S., Ward, B.J., Fixman, E.D., STAT6 inhibitory peptide given during RSV infection of neonatal mice reduces exacerbated airway responses upon adult reinfection (2017) J. Leukoc. Biol., 101, pp. 519-529; You, D.H., Becnel, D., Wang, K., Ripple, M., Daly, M., Cormier, S.A., Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults (2006) Respir. Res., 7, p. 107; Wang, D., Bai, S., Cui, Y., Zhao, N., Qi, F., Liu, J., Zeng, S., Liu, B., Respiratory syncytial virus prevents the subsequent development of ovalbumin-induced allergic responses by inhibiting ILC2 via the IL-33/ST2 pathway (2018) Immunotherapy, 10, pp. 1065-1076; Krishnamoorthy, N., Khare, A., Oriss, T.B., Raundhal, M., Morse, C., Yarlagadda, M., Wenzel, S.E., Ray, A., Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma (2012) Nat. Med., 18, pp. 1525-1530; Davidson, S., Kaiko, G., Loh, Z., Lalwani, A., Zhang, V., Spann, K., Foo, S.Y., Akira, S., Plasmacytoid dendritic cells promote host defense against acute pneumovirus infection via the TLR7-MyD88-dependent signaling pathway (2011) J. Immunol., 186, pp. 5938-5948; Lynch, J.P., Werder, R.B., Simpson, J., Loh, Z., Zhang, V., Haque, A., Spann, K., Upham, J.W., Aeroallergen-induced IL-33 predisposes to respiratory virus-induced asthma by dampening antiviral immunity (2016) J. Allergy Clin. Immunol., 138, pp. 1326-1337; van den Hoogen, B.G., de Jong, J.C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R.A., Osterhaus, A.D., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat. Med., 7, pp. 719-724; Jartti, T., van den Hoogen, B., Garofalo, R.P., Osterhaus, A.D., Ruuskanen, O., Metapneumovirus and acute wheezing in children (2002) Lancet, 360, pp. 1393-1394; Boivin, G., Abed, Y., Pelletier, G., Ruel, L., Moisan, D., Cote, S., Peret, T.C.T., Anderson, L.J., Virological features and clinical manifestations associated with human metapneumovirus: A new paramyxovirus responsible for acute respiratory-tract infections in all age groups (2002) J. Infect. Dis., 186, pp. 1330-1334; van den Hoogen, B.G., van Doornum, G.J.J., Fockens, J.C., Cornelissen, J.J., Beyer, W.E.P., de Groot, R., Osterhaus, A.D.M.E., Fouchier, R.A.M., Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients (2003) J. Infect. Dis., 188, pp. 1571-1577; Falsey, A.R., Erdman, D., Anderson, L.J., Walsh, E.E., Human metapneumovirus infections in young and elderly adults (2003) J. Infect. Dis., 187, pp. 785-790; Williams, J.V., Crowe, J.E., Jr., Enriquez, R., Minton, P., Peebles, R.S., Jr., Hamilton, R.G., Higgins, S., Hartert, T.V., Human metapneumovirus infection plays an etiologic role in acute asthma exacerbations requiring hospitalization in adults (2005) J. Infect. Dis., 192, pp. 1149-1153; Williams, J.V., Harris, P.A., Tollefson, S.J., Halburnt-Rush, L.L., Pingsterhaus, J.M., Edwards, K.M., Wright, P.F., Crowe, J.E., Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children (2004) N. Engl. J. Med., 350, pp. 443-450; van den Hoogen, B.G., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Analysis of the genomic sequence of a human metapneumovirus (2002) Virology, 295, pp. 119-132; Kuiken, T., van den Hoogen, B.G., van Riel, D.A., Laman, J.D., van Amerongen, G., Sprong, L., Fouchier, R.A., Osterhaus, A.D., Experimental human metapneumovirus infection of cynomolgus macaques (Macaca fascicularis) results in virus replication in ciliated epithelial cells and pneumocytes with associated lesions throughout the respiratory tract (2004) Am. J. Pathol., 164, pp. 1893-1900; Alvarez, R., Tripp, R.A., The immune response to human metapneumovirus is associated with aberrant immunity and impaired virus clearance in BALB/c mice (2005) J. Virol., 79, pp. 5971-5978; Darniot, M., Petrella, T., Aho, S., Pothier, P., Manoha, C., Immune response and alteration of pulmonary function after primary human metapneumovirus (HMPV) infection of BALB/c mice (2005) Vaccine, 23, pp. 4473-4480; Herd, K.A., Nelson, M., Mahalingam, S., Tindle, R.W., Pulmonary infection of mice with human metapneumovirus induces local cytotoxic T-cell and immunoregulatory cytokine responses similar to those seen with human respiratory syncytial virus (2010) J. Gen. Virol., 91, pp. 1302-1310; Cheemarla, N.R., Banos-Lara, M.D., Naidu, S., Guerrero-Plata, A., Neutrophils regulate the lung inflammatory response via gamma delta T cell infiltration in an experimental mouse model of human metapneumovirus infection (2017) J. Leukoc. Biol., 101, pp. 1383-1392; Kolli, D., Bataki, E.L., Spetch, L., Guerrero-Plata, A., Jewell, A.M., Piedra, P.A., Milligan, G.N., Casola, A., T lymphocytes contribute to antiviral immunity and pathogenesis in experimental human metapneumovirus infection (2008) J. Virol., 82, pp. 8560-8569; Darniot, M., Pitoiset, C., Petrella, T., Aho, S., Pothier, P., Manoha, C., Age-Associated Aggravation of Clinical Disease after Primary Metapneumovirus Infection of BALB/c Mice (2009) J. Virol., 83, pp. 3323-3332; Huck, B., Neumann-Haefelin, D., Schmitt-Graeff, A., Weckmann, M., Mattes, J., Ehl, S., Falcone, V., Human metapneumovirus induces more severe disease and stronger innate immune response in BALB/c mice as compared with respiratory syncytial virus (2007) Respir. Res., 8, p. 6; Hamelin, M.E., Couture, C., Sackett, M.K., Boivin, G., Enhanced lung disease and Th2 response following human metapneumovirus infection in mice immunized with the inactivated virus (2007) J. Gen. Virol., 88, pp. 3391-3400; Lay, M.K., Céspedes, P.F., Palavecino, C.E., León, M.A., Díaz, R.A., Salazar, F.J., Méndez, G.P., Kalergis, A.M., Human metapneumovirus infection activates the TSLP pathway that drives excessive pulmonary inflammation and viral replication in mice (2015) Eur. J. Immunol., 45, pp. 1680-1695; Amarasinghe, G.K., Bao, Y., Basler, C.F., Bavari, S., Beer, M., Bejerman, N., Blasdell, K.R., Bukreyev, A., Taxonomy of the order Mononegavirales: Update 2017 (2017) Arch. Virol., 162, pp. 2493-2504; Chanock, R.M., Parrott, R.H., Cook, K., Andrews, B.E., Bell, J.A., Reichelderfer, T., Kapikian, A.Z., Huebner, R.J., Newly recognized myxoviruses from children with respiratory disease (1958) N. Engl. J. Med., 258, pp. 207-213; Canchola, J., Christmann, E., Kim, H.W., Parrott, R.H., Chanock, R.M., Vargosko, A.J., Jeffries, B., Antigenic Variation among Newly Isolated Strains of Parainfluenza Type 4 Virus (1964) Am. J. Hyg., 79, pp. 357-364; Henrickson, K.J., Savatski, L.L., Two distinct human parainfluenza virus type 1 genotypes detected during the 1991 Milwaukee epidemic (1996) J. Clin. Microbiol., 34, pp. 695-700; Prinoski, K., Cote, M.J., Kang, C.Y., Dimock, K., Evolution of the fusion protein gene of human parainfluenza virus 3 (1992) Virus Res, 22, pp. 55-69; Henrickson, K.J., Kuhn, S.M., Savatski, L.L., Epidemiology and cost of infection with human parainfluenza virus types 1 and 2 in young children (1994) Clin. Infect. Dis., 18, pp. 770-779; Fiore, A.E., Iverson, C., Messmer, T., Erdman, D., Lett, S.M., Talkington, D.F., Anderson, L.J., Breiman, R.F., Outbreak of pneumonia in a long-term care facility: Antecedent human parainfluenza virus 1 infection may predispose to bacterial pneumonia (1998) J. Am. Geriatr. Soc., 46, pp. 1112-1117; Prince, G.A., Porter, D.D., Treatment of parainfluenza virus type 3 bronchiolitis and pneumonia in a cotton rat model using topical antibody and glucocorticosteroid (1996) J. Infect. Dis., 173, pp. 598-608; Downham, M.A.P., McQuillin, J., Gardner, P.S., Diagnosis and Clinical Significance of Parainfluenza Virus-Infections in Children (1974) Arch. Dis. Child., 49, pp. 8-15; Weinberg, G.A., Hall, C.B., Iwane, M.K., Poehling, K.A., Edwards, K.M., Griffin, M.R., Staat, M.A., Szilagyi, P.G., Parainfluenza Virus Infection of Young Children: Estimates of the Population-Based Burden of Hospitalization (2009) J. Pediatr., 154, pp. 694-699; Mao, N.Y., Ji, Y.X., Xie, Z.D., Wang, H.H., Wang, H.L., An, J.J., Zhang, X.X., Cui, A.L., Human Parainfluenza Virus-Associated Respiratory Tract Infection among Children and Genetic Analysis of HPIV-3 Strains in Beijing, China (2012) Plos ONE, 7. , e0043893. [CrossRef] [PubMed; Simmonds, A., Munoz, J., Montecalvo, M., Clones, B., Lagamma, E.F., Outbreak of Parainfluenza Virus Type 3 in a Neonatal Intensive Care Unit (2009) Am. J. Perinat., 26, pp. 361-364; Costa, L.D.C., Camargos, P.A.M., Brand, P.L.P., Fiaccadori, F.S., Souza, M.B.D.D.E., Cardoso, D.D.D., Castro, I.D., da Costa, P.S.S., Asthma exacerbations in a subtropical area and the role of respiratory viruses: A cross-sectional study (2018) BMC Pulm. Med., 18, p. 109; Wang, F., Zhao, L.Q., Zhu, R.N., Deng, J., Sun, Y., Ding, Y.X., Tian, R., Qian, Y., Parainfluenza Virus Types 1, 2, and 3 in Pediatric Patients with Acute Respiratory Infections in Beijing During 2004 to 2012 (2015) Chin. Med. J., 128, pp. 2726-2730; Matsuse, H., Kondo, Y., Saeki, S., Nakata, H., Fukushima, C., Mizuta, Y., Kohno, S., Naturally occurring parainfluenza virus 3 infection in adults induces mild exacerbation of asthma associated with increased sputum concentrations of cysteinyl leukotrienes (2005) Int. Arch. Allergy Immunol., 138, pp. 267-272; Ottolini, M.G., Porter, D.D., Blanco, J.C., Prince, G.A., A cotton rat model of human parainfluenza 3 laryngotracheitis: Virus growth, pathology, and therapy (2002) J. Infect. Dis., 186, pp. 1713-1717; Mascoli, C.C., Gower, T.A., Capilupo, F.A., Metzgar, D.P., Further studies on the neonatal ferret model of infection and immunity to and attenuation of human parainfluenza viruses (1976) Dev. Biol. Stand., 33, pp. 384-390; Chang, P.W., Hsiung, G.D., Experimental infection of parainfluenza virus type 5 in mice, hamsters and monkeys (1965) J. Immunol., 95, pp. 591-601; Burke, C.W., Bridges, O., Brown, S., Rahija, R., Russell, C.J., Mode of parainfluenza virus transmission determines the dynamics of primary infection and protection from reinfection (2013) Plos Pathog, 9; Akk, A.M., Simmons, P.M., Chan, H.W., Agapov, E., Holtzman, M.J., Grayson, M.H., Pham, C.T., Dipeptidyl peptidase I-dependent neutrophil recruitment modulates the inflammatory response to Sendai virus infection (2008) J. Immunol., 180, pp. 3535-3542; McWilliam, A.S., Marsh, A.M., Holt, P.G., Inflammatory infiltration of the upper airway epithelium during Sendai virus infection: Involvement of epithelial dendritic cells (1997) J. Virol., 71, pp. 226-236; Grayson, M.H., Ramos, M.S., Rohlfing, M.M., Kitchens, R., Wang, H.D., Gould, A., Agapov, E., Holtzman, M.J., Controls for lung dendritic cell maturation and migration during respiratory viral infection (2007) J. Immunol., 179, pp. 1438-1448; Kim, E.Y., Battaile, J.T., Patel, A.C., You, Y., Agapov, E., Grayson, M.H., Benoit, L.A., Tucker, J., Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease (2008) Nat. Med., 14, pp. 633-640; Grayson, M.H., Cheung, D., Rohlfing, M.M., Kitchens, R., Spiegel, D.E., Tucker, J., Battaile, J.T., Agapov, E., Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia (2007) J. Exp. Med., 204, pp. 2759-2769; Cheung, D.S., Ehlenbach, S.J., Kitchens, R.T., Riley, D.A., Thomas, L.L., Holtzman, M.J., Grayson, M.H., Cutting Edge: CD49d+ Neutrophils Induce FcεRI Expression on Lung Dendritic Cells in a Mouse Model of Postviral Asthma (2010) J. Immunol., 185, pp. 4983-4987; Thomas, M.A., Buelow, B.J., Nevins, A.M., Jones, S.E., Peterson, F.C., Gundry, R.L., Grayson, M.H., Volkman, B.F., Structure-function analysis of CCL28 in the development of post-viral asthma (2015) J. Biol. Chem., 290, pp. 4528-4536; Cheung, D.S., Sigua, J.A., Simpson, P.M., Yan, K., Hussain, S.R.A., Santoro, J.L., Buell, E.J., Patadia, D., Cysteinyl leukotriene receptor 1 expression identifies a subset of neutrophils during the antiviral response that contributes to postviral atopic airway disease (2018) J. Allergy Clin. Immunol., 142, pp. 1206-1217; Mori, I., Komatsu, T., Takeuchi, K., Nakakuki, K., Sudo, M., Kimura, Y., Parainfluenza virus type 1 infects olfactory neurons and establishes long-term persistence in the nerve tissue (1995) J. Gen. Virol., 76, pp. 1251-1254; Lee, A.M., Fryer, A.D., van Rooijen, N., Jacoby, D.B., Role of macrophages in virus-induced airway hyperresponsiveness and neuronal M2 muscarinic receptor dysfunction (2004) Am. J. Physiol. Lung Cell Mol. Physiol., 286, pp. L1255-L1259; Castleman, W.L., Sorkness, R.L., Lemanske, R.F., Grasee, G., Suyemoto, M.M., Neonatal Viral Bronchiolitis and Pneumonia Induces Bronchiolar Hypoplasia and Alveolar Dysplasia in Rats (1988) Lab. Investig., 59, pp. 387-396; Castleman, W.L., Sorkness, R.L., Lemanske, R.F., McAllister, P.K., Viral bronchiolitis during early life induces increased numbers of bronchiolar mast cells and airway hyperresponsiveness (1990) Am. J. Pathol., 137, pp. 821-831; Kumar, A., Sorkness, R.L., Kaplan, M.R., Lemanske, R.F., Chronic, episodic, reversible airway obstruction after viral bronchiolitis in rats (1997) Am. J. Respir. Crit. Care Med., 155, pp. 130-134; Sorkness, R.L., Gern, J.E., Grindle, K.A., Mosser, A.G., Rosenthal, L.A., Mikus, L.D., Lemanske, R.F., Persistence of viral RNA in 2 rat strains differing in susceptibility to postbronchiolitis airway dysfunction (2002) J. Allergy Clin. Immunol., 110, pp. 607-609; Mikus, L.D., Rosenthal, L.A., Sorkness, R.L., Lemanske, R.F., Reduced interferon-gamma secretion by natural killer cells from rats susceptible to postviral chronic airway dysfunction (2001) Am. J. Respir. Cell. Mol. Biol., 24, pp. 74-82; Rosenthal, L.A., Mikus, L.D., Tuffaha, A., Mosser, A.G., Sorkness, R.L., Lemanske, R.F., Jr., Attenuated innate mechanisms of interferon-gamma production in rats susceptible to postviral airway dysfunction (2004) Am. J. Respir. Cell. Mol. Biol., 30, pp. 702-709; Uhl, E.W., Clarke, T.J., Hogan, R.J., Differential expression of nuclear factor-kappaB mediates increased pulmonary expression of tumor necrosis factor-alpha and virus-induced asthma (2009) Viral. Immunol., 22, pp. 79-89; Uhl, E.W., Clarke, T.J., Lester, C., Hogan, R.J., Rats Susceptible to Virus-Induced Asthma Have a Persistent Virus-Induced Change in the Predominant Pulmonary Form of the NF-kappa B Inhibitor I kappa B alpha (2010) Vet. Pathol., 47, pp. 1021-1027; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 12891-12896; Bastien, N., Brandt, K., Dust, K., Ward, D., Li, Y., Human Bocavirus infection, Canada (2006) Emerg. Infect. Dis., 12, pp. 848-850; Lau, S.K., Yip, C.C., Que, T.L., Lee, R.A., Au-Yeung, R.K., Zhou, B., So, L.Y., Woo, P.C., Clinical and molecular epidemiology of human bocavirus in respiratory and fecal samples from children in Hong Kong (2007) J. Infect. Dis., 196, pp. 986-993; Allander, T., Jartti, T., Gupta, S., Niesters, H.G., Lehtinen, P., Osterback, R., Vuorinen, T., Tiveljung-Lindell, A., Human bocavirus and acute wheezing in children (2007) Clin. Infect. Dis., 44, pp. 904-910; Kesebir, D., Vazquez, M., Weibel, C., Shapiro, E.D., Ferguson, D., Landry, M.L., Kahn, J.S., Human bocavirus infection in young children in the United States: Molecular epidemiological profile and clinical characteristics of a newly emerging respiratory virus (2006) J. Infect. Dis., 194, pp. 1276-1282; Vallet, C., Pons-Catalano, C., Mandelcwajg, A., Wang, A., Raymond, J., Lebon, P., Gendrel, D., Human bocavirus: A cause of severe asthma exacerbation in children (2009) J. Pediatr., 155, pp. 286-288; Yan, Z., Feng, Z., Sun, X., Zhang, Y., Zou, W., Wang, Z., Jensen-Cody, C., Qiu, J., Human Bocavirus Type-1 Capsid Facilitates the Transduction of Ferret Airways by Adeno-Associated Virus Genomes (2017) Hum. Gene Ther., 28, pp. 612-625; Kim, H.Y., Chang, Y.J., Subramanian, S., Lee, H.H., Albacker, L.A., Matangkasombut, P., Savage, P.B., Rottman, J.B., Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity (2012) J. Allergy Clin. Immunol., 129, pp. 216-227; Juno, J.A., Keynan, Y., Fowke, K.R., Invariant NKT Cells: Regulation and Function during Viral Infection (2012) Plos Pathog, 8; Morita, H., Moro, K., Koyasu, S., Innate lymphoid cells in allergic and nonallergic inflammation (2016) J. Allergy Clin. Immunol., 138, pp. 1253-1264","Hershenson, M.B.; Department of Pediatrics and Communicable Diseases, University of Michigan Medical SchoolUnited States; email: mhershen@umich.edu",,"MDPI AG",19994915,,,"30513770","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85058345748 "O'Brien A., Mettelman R.C., Volk A., André N.M., Whittaker G.R., Baker S.C.","37073014800;56512278300;57203818495;57200535889;7006825143;7403307881;","Characterizing replication kinetics and plaque production of type I feline infectious peritonitis virus in three feline cell lines",2018,"Virology","525",,,"1","9",,5,"10.1016/j.virol.2018.08.022","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053033901&doi=10.1016%2fj.virol.2018.08.022&partnerID=40&md5=1220d07d7d3dc96f7f54c0ed3e374fc7","Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, United States; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States","O'Brien, A., Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, United States; Mettelman, R.C., Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, United States; Volk, A., Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, United States; André, N.M., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Baker, S.C., Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, United States","Investigating type I feline coronaviruses (FCoVs) in tissue culture is critical for understanding the basic virology, pathogenesis, and virus-host interactome of these important veterinary pathogens. This has been a perennial challenge as type I FCoV strains do not easily adapt to cell culture. Here we characterize replication kinetics and plaque formation of a model type I strain FIPV Black in Fcwf-4 cells established at Cornell University (Fcwf-4 CU). We determined that maximum virus titers (>107 pfu/mL) were recoverable from infected Fcwf-4 CU cell-free supernatant at 20 h post-infection. Type I FIPV Black and both biotypes of type II FCoV formed uniform and enumerable plaques on Fcwf-4 CU cells. Therefore, these cells were employable in a standardized plaque assay. Finally, we determined that the Fcwf-4 CU cells were morphologically distinct from feline bone marrow-derived macrophages and were less sensitive to exogenous type I interferon than were Fcwf-4 cells purchased from ATCC. © 2018 Elsevier Inc.","AK-D cells; Fcwf-4 cells; Feline coronavirus; Feline macrophage-like cell line; FIPV; Plaque assay","AK D cell line; animal cell; Article; bone marrow derived macrophage; cell division; cell line; cell structure; Fcwf 4 cell line; Feline infectious peritonitis virus; nonhuman; plaque assay; priority journal; virus plaque; virus replication; virus strain; animal; cat; cell line; Feline coronavirus; physiology; procedures; veterinary medicine; viral plaque assay; virus culture; virus replication; Animals; Cats; Cell Line; Coronavirus, Feline; Viral Plaque Assay; Virus Cultivation; Virus Replication","Addie, D.D., Feline coronaviral infections (2011) Infectious Diseases of the Dog and Cat, pp. 92-108. , C. Greene Saunders; Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infections in kittens (1992) Vet. Rec., 130, pp. 133-137; Addie, D.D., Schaap, I.A.T., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; (2013), American Type Culture Collection. Fcwf­4 [Fcwf] (ATCC ® CRL­ 2787 ™) Product Sheet; Benetka, V., Kübber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Möstl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet. Microbiol., 99, pp. 31-42; Bienzle, D., Reggeti, F., Clark, M.E., Chow, C., Immunophenotype and functional properties of feline dendritic cells derived from blood and bone marrow (2003) Vet. Immunol. Immunopathol., 96, pp. 19-30; Black, J.W., Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP) (1980) Vet. Med. Small Anim. Clin., 75, pp. 811-814; Cham, T.C., Chang, Y.C., Tsai, P.S., Wu, C.H., Chen, H.W., Jeng, C.R., Pang, V.F., Chang, H.W., Determination of the cell tropism of serotype 1 feline infectious peritonitis virus using the spike affinity histochemistry in paraffin-embedded tissues (2017) Microbiol. Immunol., 61, pp. 318-327; Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J.M., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Dye, C., Temperton, N., Siddell, S.G., Type I feline coronavirus spike glycoprotien fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) J. Gen. Virol., 88, pp. 1753-1760; Gow, D.J., Garceau, V., Pridans, C., Gow, A.G., Simpson, K.E., Gunn-Moore, D., Hume, D.A., Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34) (2013) Cytokine, 61, pp. 630-638; Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514; Herrewegh, A.A.P.M., Vennema, H., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., The molecular genetics of feline coronaviruses: comparitive sequence analysis of the ORF7a/7b transcription unit of different biotypes (1995) Virology, 212, pp. 622-631; Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., Differences in virus receptor for type I and type II feline infectious peritonitis virus (1998) Arch. Virol., 143, pp. 839-850; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci., 54, pp. 557-562; Hohdatsu, T., Okada, S., Koyama, H., Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses (1991) Arch. Virol., 117, pp. 85-95; Jacobse-Geels, H.E., Horzinek, M.C., Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells (1983) J. Gen. Virol., 64, pp. 1859-1866; Kennedy, M., Citino, S., McNabb, A.H., Moffatt, A.S., Gertz, K., Kania, S., Detection of feline coronavirus in captive Felidae in the USA (2002) J. Vet. Diagn. Investig., 14, pp. 520-522; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog., 12, p. e1005531; Kim, Y., Lovell, S., Tiew, K.-C., Mandadapu, S.R., Alliston, K.R., Battaile, K.P., Groutas, W.C., Chang, K.-O., Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses (2012) J. Virol., 86, pp. 11754-11762; Kim, Y., Mandadapu, S., Groutas, W., Chang, K., Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease (2013) Antivir. Res., 97, pp. 161-168; Kim, Y., Shivanna, V., Narayanan, S., Prior, A.M., Weerasekara, S., Hua, D.H., Kankanamalage, A.C., Chang, K.O., Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses (2015) J. Virol., 89, pp. 4942-4950; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19, pp. 1066-1073; Licitra, B.N., Sams, K.L., Lee, D.W., Whittaker, G.R., (2014), arXiv:1412.4034v1 Feline coronaviruses associated with feline infectious peritonitis have modifications to spike protein activation sites at two discrete positions. (q-bio.GN); Lin, C.N., Su, B.L., Huang, H.P., Lee, J.J., Hsieh, M.W., Chueh, L.L., Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis (2009) J. Feline Med. Surg., 11, pp. 413-419; Murphy, B.G., Perron, M., Murakami, E., Bauer, K., Park, Y., Eckstrand, C., Liepnieks, M., Pedersen, N.C., The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies (2018) Vet. Microbiol., 219, pp. 226-233; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Serologic studies of naturally occurring feline infectious peritonitis (1976) Am. J. Vet. Res., 37, pp. 1449-1453; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10, pp. 529-541; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Molecular Biology and Pathogenesis of Coronaviruses, pp. 365-380. , Springer Boston, MA; Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.-O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2017) J. Feline Med. Surg., 20, pp. 378-392; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res., 165, pp. 17-28; Phillips, J.E., Hilt, D.A., Jackwood, M.W., Comparative sequence analysis of full-length genome of FIPV at different tissue passage levels (2013) Virus Genes, 47, pp. 490-497; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34, pp. 3180-3184; Poncelet, L., Coppens, A., Peeters, D., Bianchi, E., Grant, C.K., Kadhim, H., Detection of antigenic heterogeneity in feline coronavirus nucleocapsid in feline pyogranulomatous meningoencephalitis (2008) Vet. Pathol., 45, pp. 140-153; Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula (2016) World J. Virol., 5, p. 85; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Regan, A.D., Millet, J.K., Tse, L.P.V., Chillag, Z., Rinaldi, V.D., Licitra, B.N., Dubovi, E.J., Whittaker, G.R., Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain (2012) Virology, 430, pp. 90-99; Rottier, P.J.M., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein (2005) J. Virol., 79, pp. 14122-14130; St John, S.E., Therkelsen, M.D., Nyalapatla, P.R., Osswald, H.L., Ghosh, A.K., Mesecar, A.D., X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design (2015) Bioorg. Med. Chem. Lett., 25, pp. 5072-5077; Takano, T., Nakano, K., Doki, T., Hohdatsu, T., Differential effects of viroporin inhibitors against feline infectious peritonitis virus serotypes I and II (2015) Arch. Virol., 160, pp. 1163-1170; Tekes, G., Hofmann-Lehmann, R., Bank-Wolf, B., Maier, R., Thiel, H.-J., Thiel, V., Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage (2010) J. Virol., 84, pp. 1326-1333; Tekes, G., Hofmann-Lehmann, R., Stallkamp, I., Thiel, V., Thiel, H.-J., Genome organization and reverse genetic analysis of a type I feline coronavirus (2007) J. Virol., 82, pp. 1851-1859; Tekes, G., Spies, D., Bank-Wolf, B., Thiel, V., Thiel, H.-J., A reverse genetics approach to study feline infectious peritonitis (2012) J. Virol., 86, pp. 6994-6998; Tekes, G., Thiel, H.J., Feline coronaviruses: pathogenesis of feline infectious peritonitis (2016) Advances in Virus Research, pp. 193-218. , Academic Press; Thiel, V., Thiel, H.-J., Tekes, G., Tackling feline infectious peritonitis via reverse genetics (2014) Bioengineered, 5, pp. 396-400; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Whittaker, G.R., André, N.M., Millet, J.K., Improving virus taxonomy by recontextualizing sequence-based classification with biologically relevant data: the case of the alphacoronavirus 1 species (2018) mSphere, 3, pp. 1-8","Baker, S.C.; Department of Microbiology and Immunology, Loyola University of Chicago, Stritch School of MedicineUnited States; email: sbaker1@luc.edu",,"Academic Press Inc.",00426822,,VIRLA,"30205273","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85053033901 "Milewska A., Kindler E., Vkovski P., Zeglen S., Ochman M., Thiel V., Rajfur Z., Pyrc K.","55200074700;35210760900;55807132400;6602292170;35781903100;35238592100;6602347295;8869026100;","APOBEC3-mediated restriction of RNA virus replication",2018,"Scientific Reports","8","1", 5960,"","",,2,"10.1038/s41598-018-24448-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045505299&doi=10.1038%2fs41598-018-24448-2&partnerID=40&md5=b74e81acdccb51c14c1d8d219794cd79","Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Institute for Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej 9, Zabrze, 41-800, Poland; Head of Histology Department, Medical Department, University of Opole, Opole, Poland; Department of Pharmacology, School of Medicine, Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland; Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland","Milewska, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Kindler, E., Institute for Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland; Vkovski, P., Institute for Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Zeglen, S., Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej 9, Zabrze, 41-800, Poland, Head of Histology Department, Medical Department, University of Opole, Opole, Poland; Ochman, M., Department of Pharmacology, School of Medicine, Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland; Thiel, V., Institute for Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, Switzerland; Rajfur, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Pyrc, K., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland","APOBEC3 family members are cytidine deaminases with roles in intrinsic responses to infection by retroviruses and retrotransposons, and in the control of other DNA viruses, such as herpesviruses, parvoviruses and hepatitis B virus. Although effects of APOBEC3 members on viral DNA have been demonstrated, it is not known whether they edit RNA genomes through cytidine deamination. Here, we investigated APOBEC3-mediated restriction of Coronaviridae. In experiments in vitro, three human APOBEC3 proteins (A3C, A3F and A3H) inhibited HCoV-NL63 infection and limited production of progeny virus, but did not cause hypermutation of the coronaviral genome. APOBEC3-mediated restriction was partially dependent on enzyme activity, and was reduced by the use of enzymatically inactive APOBEC3. Moreover, APOBEC3 proteins bound to the coronaviral nucleoprotein, and this interaction also affected viral replication. Although the precise molecular mechanism of deaminase-dependent inhibition of coronavirus replication remains elusive, our results further our understanding of APOBEC-mediated restriction of RNA virus infections. © 2018 The Author(s).",,"APOBEC3 protein, human; cytidine deaminase; cytosine deaminase; DNA virus; nucleoprotein; RNA; cell line; genetics; Hepatitis B virus; human; RNA virus; virus genome; virus replication; Cell Line; Cytidine Deaminase; Cytosine Deaminase; DNA Viruses; Genome, Viral; Hepatitis B virus; Humans; Nucleoproteins; RNA; RNA Viruses; Virus Replication","Jarmuz, A., An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22 (2002) Genomics, 79, pp. 285-296. , https://doi.org/10.1006/geno.2002.6718; Esnault, C., Millet, J., Schwartz, O., Heidmann, T., Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses (2006) Nucleic Acids Res, 34, pp. 1522-1531. , https://doi.org/10.1093/nar/gkl054; Madani, N., Kabat, D., An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein (1998) J Virol, 72, pp. 10251-10255; Sheehy, A.M., Gaddis, N.C., Choi, J.D., Malim, M.H., Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein (2002) Nature, 418, pp. 646-650. , https://doi.org/10.1038/nature00939; Dang, Y., Wang, X., Esselman, W.J., Zheng, Y.H., Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family (2006) J Virol, 80, pp. 10522-10533. , https://doi.org/10.1128/JVI.01123-06; Hultquist, J.F., Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1 (2011) J Virol, 85, pp. 11220-11234. , https://doi.org/10.1128/JVI.05238-11; Zielonka, J., Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases (2009) J Virol, 83, pp. 7547-7559. , https://doi.org/10.1128/JVI.00015-09; Bishop, K.N., Cytidine deamination of retroviral DNA by diverse APOBEC proteins (2004) Curr Biol, 14, pp. 1392-1396. , https://doi.org/10.1016/j.cub.2004.06.057; Kobayashi, M., APOBEC3G targets specific virus species (2004) J Virol, 78, pp. 8238-8244. , https://doi.org/10.1128/JVI.78.15.8238-8244.2004; Löchelt, M., The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein (2005) Proc Natl Acad Sci USA, 102, pp. 7982-7987. , https://doi.org/10.1073/pnas.0501445102; Delebecque, F., Restriction of foamy viruses by APOBEC cytidine deaminases (2006) J Virol, 80, pp. 605-614. , https://doi.org/10.1128/JVI.80.2.605-614.2006; Noguchi, C., G to A hypermutation of hepatitis B virus (2005) Hepatology, 41, pp. 626-633. , https://doi.org/10.1002/hep.20580; Suspène, R., Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo (2005) Proc Natl Acad Sci USA, 102, pp. 8321-8326. , https://doi.org/10.1073/pnas.0408223102; Chen, H., APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons (2006) Curr Biol, 16, pp. 480-485. , https://doi.org/10.1016/j.cub.2006.01.031; Yang, B., Chen, K., Zhang, C., Huang, S., Zhang, H., Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA (2007) J Biol Chem, 282, pp. 11667-11675. , https://doi.org/10.1074/jbc.M606864200; Bishop, K.N., Holmes, R.K., Sheehy, A.M., Malim, M.H., APOBEC-mediated editing of viral RNA (2004) Science, 305, p. 645. , https://doi.org/10.1126/science.1100658; Sharma, S., APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages (2015) Nat Commun, 6, p. 6881. , https://doi.org/10.1038/ncomms7881; Fehrholz, M., The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses (2012) J Gen Virol, 93, pp. 565-576. , https://doi.org/10.1099/vir.0.038919-0; Van Der-Hoek, L., Croup is associated with the novel coronavirus NL63 (2005) PLoS Med, 2, p. e240. , https://doi.org/10.1371/journal.pmed.0020240; Pyrc, K., Berkhout, B., Van Der-Hoek, L., The novel human coronaviruses NL63 and HKU1 (2007) J Virol, 81, pp. 3051-3057. , https://doi.org/10.1128/JVI.01466-06; Pyrc, K., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J Mol Biol, 364, pp. 964-973. , https://doi.org/10.1016/j.jmb.2006.09.074; Woo, P.C., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895. , https://doi.org/10.1128/JVI.79.2.884-895.2005; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stöhr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441. , https://doi.org/10.1056/NEJMra032498; Stadler, K., SARS-beginning to understand a new virus (2003) Nat Rev Microbiol, 1, pp. 209-218. , https://doi.org/10.1038/nrmicro775; De Groot, R.J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Van Der-Hoek, L., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373. , https://doi.org/10.1038/nm1024; Pyrc, K., Jebbink, M.F., Berkhout, B., Van Der-Hoek, L., Genome structure and transcriptional regulation of human coronavirus NL63 (2004) Virol J, 1, p. 7. , https://doi.org/10.1186/1743-422X-1-7; Woo, P.C., Wong, B.H., Huang, Y., Lau, S.K., Yuen, K.Y., Cytosine deamination and selection of CpG suppressed clones are the two major independent biological forces that shape codon usage bias in coronaviruses (2007) Virology, 369, pp. 431-442. , https://doi.org/10.1016/j.virol.2007.08.010; Pauli, E.K., High level expression of the anti-retroviral protein APOBEC3G is induced by influenza A virus but does not confer antiviral activity (2009) Retrovirology, 6, p. 38. , https://doi.org/10.1186/1742-4690-6-38; Albin, J.S., Brown, W.L., Harris, R.S., Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus (2014) Virology, 450-451, pp. 49-54. , https://doi.org/10.1016/j.virol.2013.11.041; Bonvin, M., Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication (2006) Hepatology, 43, pp. 1364-1374. , https://doi.org/10.1002/hep.21187; Suspène, R., Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage (2017) Nucleic Acids Res, 45, pp. 3231-3241. , https://doi.org/10.1093/nar/gkx001; Clementz, M.A., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J Virol, 84, pp. 4619-4629. , https://doi.org/10.1128/JVI.02406-09; Donaldson, E.F., Systematic assembly of a full-length infectious clone of human coronavirus NL63 (2008) J Virol, 82, pp. 11948-11957. , https://doi.org/10.1128/JVI.01804-08; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J Gen Virol, 82, pp. 1273-1281. , https://doi.org/10.1099/0022-1317-82-6-1273; Smith, E.C., Denison, M.R., Coronaviruses as DNA wannabes: A new model for the regulation of RNA virus replication fidelity (2013) PLoS Pathog, 9, p. e1003760. , https://doi.org/10.1371/journal.ppat.1003760; Fields, B.N., Knipe, D.M., Howley, P.M., (2013) Fields Virology, , 6th edn, (Wolters Kluwer Health/Lippincott Williams & Wilkins); Zuwała, K., The nucleocapsid protein of human coronavirus NL63 (2015) PLoS One, 10, p. e0117833. , https://doi.org/10.1371/journal.pone.0117833; Hiscox, J.A., The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus (2001) J Virol, 75, pp. 506-512. , https://doi.org/10.1128/JVI.75.1.506-512.2001; Hurst, K.R., Koetzner, C.A., Masters, P.S., Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein (2009) J Virol, 83, pp. 7221-7234. , https://doi.org/10.1128/JVI.00440-09; Wang, S.M., Wang, C.T., APOBEC3G cytidine deaminase association with coronavirus nucleocapsid protein (2009) Virology, 388, pp. 112-120. , https://doi.org/10.1016/j.virol.2009.03.010; Milewska, A., Novel polymeric inhibitors of HCoV-NL63 (2013) Antiviral Res, 97, pp. 112-121. , https://doi.org/10.1016/j.antiviral.2012.11.006; Reed, L., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol, 27, pp. 493-497; Eriksson, K.K., Makia, D., Thiel, V., Generation of recombinant coronaviruses using vaccinia virus as the cloning vector and stable cell lines containing coronaviral replicon RNAs (2008) Methods Mol Biol, 454, pp. 237-254. , https://doi.org/10.1007/978-1-59745-181-9_18; Lundin, A., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog, 10, p. e1004166. , https://doi.org/10.1371/journal.ppat.1004166; Milewska, A., HTCC: Broad range inhibitor of coronavirus entry (2016) PLoS One, 11, p. e0156552. , https://doi.org/10.1371/journal.pone.0156552; Bok, J.W., Keller, N.P., Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis (2012) Methods Mol Biol, 944, pp. 163-174. , https://doi.org/10.1007/978-1-62703-122-6_11","Milewska, A.; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Poland; email: aleksandra.milewska@uj.edu.pl",,"Nature Publishing Group",20452322,,,"29654310","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85045505299 "Vibin J., Chamings A., Collier F., Klaassen M., Nelson T.M., Alexandersen S.","57201640159;56652209600;57202406965;7004383496;55460344900;7004604515;","Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds",2018,"Scientific Reports","8","1", 8686,"","",,12,"10.1038/s41598-018-26851-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048241930&doi=10.1038%2fs41598-018-26851-1&partnerID=40&md5=2742672b4bff26a2b3efb38b76afecf1","Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia; 2 Deakin University, Geelong, VIC 3220, Australia; Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia","Vibin, J., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia, 2 Deakin University, Geelong, VIC 3220, Australia; Chamings, A., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia, 2 Deakin University, Geelong, VIC 3220, Australia; Collier, F., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia, 2 Deakin University, Geelong, VIC 3220, Australia, Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia; Klaassen, M., 2 Deakin University, Geelong, VIC 3220, Australia; Nelson, T.M., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia, 2 Deakin University, Geelong, VIC 3220, Australia; Alexandersen, S., Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia, 2 Deakin University, Geelong, VIC 3220, Australia, Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia","We present an optimised metagenomics method for detection and characterisation of all virus types including single and double stranded DNA/RNA and enveloped and non-enveloped viruses. Initial evaluation included both spiked and non-spiked bird faecal samples as well as non-spiked human faecal samples. From the non-spiked bird samples (Australian Muscovy duck and Pacific black ducks) we detected 21 viruses, and we also present a summary of a few viruses detected in human faecal samples. We then present a detailed analysis of selected virus sequences in the avian samples that were somewhat similar to known viruses, and had good quality (Q20 or higher) and quantity of next-generation sequencing reads, and was of interest from a virological point of view, for example, avian coronavirus and avian paramyxovirus 6. Some of these viruses were closely related to known viruses while others were more distantly related with 70% or less identity to currently known/sequenced viruses. Besides detecting viruses, the technique also allowed the characterisation of host mitochondrial DNA present and thus identifying host species, while ribosomal RNA sequences provided insight into the ""ribosomal activity microbiome""; of gut parasites; and of food eaten such as plants or insects, which we correlated to non-avian host associated viruses. © 2018 The Author(s).",,"animal; Australia; bird; bird disease; feces; genetics; human; isolation and purification; metagenomics; molecular evolution; phylogeny; procedures; virology; virus; wild animal; Animals; Animals, Wild; Australia; Bird Diseases; Birds; Evolution, Molecular; Feces; Humans; Metagenomics; Phylogeny; Viruses","Shi, M., Redefining the invertebrate RNA virosphere (2016) Nature, 540, pp. 539-543; Temmam, S., Characterization of viral communities of biting midges and identification of novel thogotovirus species and rhabdovirus genus (2016) Viruses, 8, p. 77; Lim, E.S., Early life dynamics of the human gut virome and bacterial microbiome in infants (2015) Nat. Med., 21, pp. 1228-1234; Zablocki, O., High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of antarctic soils (2014) Appl. Environ. Microbiol., 80, pp. 6888-6897; Roux, S., Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics (2017) Nat. Commun., 8, p. 858; Conceição-Neto, N., Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis (2015) Sci. Rep., 5, p. 16532; Kluge, M., Metagenomic survey of viral diversity obtained from feces of subantarctic and south American fur seals (2016) PLoS One, 11; Kohl, C., Protocol for metagenomic virus detection in clinical specimens (2015) Emerg. Infect. Dis., 21, pp. 48-57; Temmam, S., Host-associated metagenomics: A guide to generating infectious RNA viromes (2015) PLoS One, 10; Thurber, R.V., Haynes, M., Breitbart, M., Wegley, L., Rohwer, F., Laboratory procedures to generate viral metagenomes (2009) Nat. Protoc., 4, pp. 470-483; Theuns, S., Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet (2016) Infect. Genet. Evol., 43, pp. 135-145; Yinda, C.K., Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon (2017) Emerg. Microbes Infect., 6, p. e38; Conceição-Neto, N., Viral gut metagenomics of sympatric wild and domestic canids, and monitoring of viruses: Insights from an endangered Wolf population (2017) Ecol. Evol., 7, pp. 4135-4146; Davies, H.A., Dourmashkin, R.R., Macnaughton, M.R., Ribonucleoprotein of avian infectious bronchitis virus (1981) J. Gen. Virol., 53, pp. 67-74; Bui, V.N., Characterization of a genetic and antigenic variant of avian paramyxovirus 6 isolated from a migratory wild bird, the red-necked stint (Calidris ruficollis) (2014) Arch. Virol., 159, pp. 3101-3105; Xiao, S., Complete genome sequences of avian paramyxovirus serotype 6 prototype strain Hong Kong and a recent novel strain from Italy: Evidence for the existence of subgroups within the serotype (2010) Virus Res., 150, pp. 61-72; Sobolev, I.A., Characterization of avian paramyxovirus type 6 isolated from a Eurasian teal in the intersection of migratory flyways in Russia (2016) Arch. Virol., 161, pp. 3275-3279; Zhuang, Q.-Y., Genomic analysis and surveillance of the coronavirus dominant in ducks in China (2015) PLoS One, 10; Woo, P.C.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Ivanics, E., Hepatitis and hydropericardium syndrome associated with adenovirus infection in goslings (2010) Acta Vet. Hung., 58, pp. 47-58; Zhang, X., Molecular characterization, phylogeny analysis and pathogenicity of a Muscovy duck adenovirus strain isolated in China in 2014 (2016) Virology, 493, pp. 12-21; Kindler, E., Trojnar, E., Heckel, G., Otto, P.H., Johne, R., Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G (2013) Infect. Genet. Evol., 14, pp. 58-67; Phan, T.G., The viruses of wild pigeon droppings (2013) PLoS One, 8; Shi, M., High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia (2017) J. Virol., 91, pp. e00680-e00717; Kwiatkowski, B., Boschek, B., Thiele, H., Stirm, S., Substrate specificity of two bacteriophage-associated endo-Nacetylneuraminidases (1983) J. Virol., 45, pp. 367-374; Parras-Moltó, M., Suárez-Rodríguez, P., Eguia, A., Aguirre-Urizar, J.M., López-Bueno, A., Genome sequence of two novel species of torque teno minivirus from the human oral cavity (2014) Genome Announc., 2, p. e0086814; Zhao, G., Intestinal virome changes precede autoimmunity in type i diabetes-susceptible children (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E6166-E6175; Naeem, A., Genetic diversity of circulating Saffold viruses in Pakistan and Afghanistan (2014) J. Gen. Virol., 95, pp. 1945-1957; Drexler, J.F., Circulation of 3 lineages of a novel Saffold cardiovirus in humans (2008) Emerg. Infect. Dis., 14, pp. 1398-1405; Matthijnssens, J., Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq (2010) Virology, 403, pp. 111-127; Mummidi, S., Brooks, M.A., Paul, P.S., Lyoo, Y.S., Zaberezhny, A.D., The VP4 and VP7 of bovine rotavirus VMRI are antigenically and genetically closely related to P-type 5, G-type 6 strains (1996) Vet. Microbiol., 51, pp. 241-255; Eden, J.-S., Tanaka, M.M., Boni, M.F., Rawlinson, W.D., White, P.A., Recombination within the pandemic norovirus GII.4 lineage (2013) J. Virol., 87, pp. 6270-6282; Lee, D.-H., DNA barcoding techniques for avian influenza virus surveillance in migratory bird habitats (2010) J. Wildl. Dis., 46, pp. 649-654; Tu, J., The complete mitochondrial genome of the Muscovy duck, Cairina moschata (Anseriformes, Anatidae, Cairina) (2014) Mitochondrial DNA, 25, pp. 102-103; He, S.-P., Liu, L.-L., Yu, Q.-F., Li, S., He, J.-H., Sequence analysis of the complete mitochondrial genome of Youxian sheldrake (2016) Mitochondrial DNA, 27, pp. 1247-1248; Taysom, A.J., (2016) The Occurrence of Hybridisation between the Pacific Black Duck (Anas Superciliosa) and Other Dabbling Ducks (Genus: Anas) in Australia, , Victoria University; Alexandersen, S., Bloom, M.E., Wolfinbarger, J., Race, R.E., In situ molecular hybridization for detection of Aleutian mink disease parvovirus DNA by using strand-specific probes: Identification of target cells for viral replication in cell cultures and in mink kits with virus-induced interstitial pneumonia (1987) J. Virol., 61, pp. 2407-2419; Pasick, J., Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada (2014) Transbound. Emerg. Dis., 61, pp. 397-410; Solonenko, S.A., Sequencing platform and library preparation choices impact viral metagenomes (2013) BMC Genomics, 14, p. 320; Shortridge, K.F., Alexander, D.J., Collins, M.S., Isolation and properties of viruses from poultry in Hong Kong which represent a new (sixth) distinct group of avian paramyxoviruses (1980) J. Gen. Virol., 49, pp. 255-262; Alexander, D.J., (1997) Diseases of Poultry, pp. 541-569. , (eds Nair, V. L. et al.), Iowa State University Press, Iowa, USA; Morrison T, G., Structure and function of a paramyxovirus fusion protein (2003) Biochim. Biophys. Acta - Biomembr., 1614, pp. 73-84; Alexander, D.J., Newcastle disease and other avian paramyxoviruses (2000) Rev. Sci. Tech., 19, pp. 443-462; Chu, D.K.W., Avian coronavirus in wild aquatic birds (2011) J. Virol., 85, pp. 12815-12820; Hudson, C.B., Beaudette, F.R., Infection of the cloaca with the virus of infectious bronchitis (1932) Science (80-), 76, p. 34; Chamings, A., Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds Sci. Rep., 8 (5980), p. 2018; Yates, V.J., El-Mishad, A.M., McCormick, K.J., Trentin, J.J., Isolation and characterization of an Avian adenovirus-associated virus (1973) Infect. Immun., 7, pp. 973-980; Estes, M., Kapikian, A., (2007) Fields Virology, , (eds Fields, B. N., Knipe, D. M. David M. & Howley, P. M.) (Wolters Kluwer Health/Lippincott Williams & Wilkins); Saif, Y.M., (2008) Diseases of Poultry, , Iowa State University Press; Dhama, K., Avian rotavirus enteritis - An updated review (2015) Vet. Q., 35, pp. 142-158; Honkavuori, K.S., Novel picornavirus in Turkey poults with hepatitis, California, USA (2011) Emerg. Infect. Dis., 17, pp. 480-487; Wolf, S., Reetz, J., Otto, P., Genetic characterization of a novel calicivirus from a chicken (2011) Arch. Virol., 156, pp. 1143-1150; Day, J.M., Ballard, L.L., Duke, M.V., Scheffler, B.E., Zsak, L., Metagenomic analysis of the Turkey gut RNA virus community (2010) Virol. J., 7, p. 313; Novella, I.S., Presloid, J.B., Taylor, R.T., RNA replication errors and the evolution of virus pathogenicity and virulence (2014) Curr. Opin. Virol., 9, pp. 143-147; Williams, T., (1998) The Insect Viruses, pp. 31-68. , https://doi.org/10.1007/978-1-4615-5341-0_2, Springer US; Roberts, J., Anderson, D., Durr, P., Upgrading knowledge on pathogens (particularly viruses) of Australian honey bees (2015) RIRDC, 15; Roberts, J.M.K., Anderson, D.L., Durr, P.A., Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses (2017) Sci. Rep., 7, p. 6925; Hubalek, Z., An annotated checklist of pathogenic microorganisms associated with migratory birds (2004) J. Wildl. Dis., 40, pp. 639-659; Gerashchenko, M.V., Gladyshev, V.N., Ribonuclease selection for ribosome profiling (2017) Nucleic Acids Res., 45, p. e6; Schaechter, M., MaalOe, O., Kjeldgaard, N.O., Dependency on medium and temperature of cell size and chemical composition during balanced growth of salmonella typhimurium (1958) J. Gen. Microbiol., 19, pp. 592-606; Milo, R., Phillips, R., (2015) Cell Biology by the Numbers, , Garland Science; Ben-Amor, K., Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis (2005) Appl. Environ. Microbiol., 71, pp. 4679-4689; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874; Nelson, T.M., An outbreak of severe infections among Australian infants caused by a novel recombinant strain of human parechovirus type 3 (2017) Sci. Rep., 7, p. 44423; Alexandersen, S., Nelson, T.M., Hodge, J., Druce, J., Evolutionary and network analysis of virus sequences from infants infected with an Australian recombinant strain of human parechovirus type 3 (2017) Sci. Rep., 7, p. 3861; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410; Mount, D.W., (2007) Using the Basic Local Alignment Search Tool (BLAST). Cold Spring Harb. Protoc., 2007. , pdb.top17; Larkin, M.A., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol., 30, pp. 2725-2729; Tamura, K., Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases (1992) Mol. Biol. Evol., 9, pp. 678-687; Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences (1980) J. Mol. Evol., 16, pp. 111-120; Nei, M., Kumar, S., (2000) Molecular Evolution and Phylogenetics, , Oxford University Press","Alexandersen, S.; Geelong Centre for Emerging Infectious DiseasesAustralia; email: soren.alexandersen@deakin.edu.au",,"Nature Publishing Group",20452322,,,"29875375","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85048241930 "Ramalingam S., Cai B., Wong J., Twomey M., Chen R., Fu R.M., Boote T., McCaughan H., Griffiths S.J., Haas J.G.","7103126755;57203864713;57203862422;57203859936;57203865775;57203863857;57203863880;55071286700;36128553700;7202052971;","Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels",2018,"Scientific Reports","8","1", 13630,"","",,4,"10.1038/s41598-018-31936-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053246767&doi=10.1038%2fs41598-018-31936-y&partnerID=40&md5=070affbe617291c51eccf4c372964b3d","Department of Laboratory Medicine, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom; Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom","Ramalingam, S., Department of Laboratory Medicine, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom, Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Cai, B., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Wong, J., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Twomey, M., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Chen, R., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Fu, R.M., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Boote, T., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; McCaughan, H., Department of Laboratory Medicine, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom; Griffiths, S.J., Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom; Haas, J.G., Department of Laboratory Medicine, NHS Lothian, Edinburgh Royal Infirmary, Edinburgh, United Kingdom, Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom","Phagocytes destroy ingested microbes by producing hypochlorous acid (HOCl) from chloride ions (Cl−) and hydrogen peroxide within phagolysosomes, using the enzyme myeloperoxidase. HOCl, the active ingredient in bleach, has antibacterial/antiviral properties. As myeloperoxidase is needed for HOCl production, non-myeloid cells are considered incapable of producing HOCl. Here, we show that epithelial, fibroblast and hepatic cells have enhanced antiviral activity in the presence of increasing concentrations of sodium chloride (NaCl). Replication of enveloped/non-enveloped, DNA (herpes simplex virus-1, murine gammaherpesvirus 68) and RNA (respiratory syncytial virus, influenza A virus, human coronavirus 229E, coxsackievirus B3) viruses are inhibited in a dose-dependent manner. Whilst treatment with sodium channel inhibitors did not prevent NaCl-mediated virus inhibition, a chloride channel inhibitor reversed inhibition by NaCl, suggesting intracellular chloride is required for antiviral activity. Inhibition is also reversed in the presence of 4-aminobenzoic hydrazide, a myeloperoxidase inhibitor, suggesting epithelial cells have a peroxidase to convert Cl− to HOCl. A significant increase in intracellular HOCl production is seen early in infection. These data suggest that non-myeloid cells possess an innate antiviral mechanism dependent on the availability of Cl− to produce HOCl. Antiviral activity against a broad range of viral infections can be augmented by increasing availability of NaCl. © 2018, The Author(s).",,"4-aminobenzhydrazide; aniline derivative; chloride channel; hydrogen peroxide; hypochlorous acid; ion; MPO protein, human; peroxidase; sodium chloride; A-549 cell line; animal; HeLa cell line; human; immunology; innate immunity; mouse; NIH 3T3 cell line; virus; A549 Cells; Aniline Compounds; Animals; Chloride Channels; HeLa Cells; Humans; Hydrogen Peroxide; Hypochlorous Acid; Immunity, Innate; Ions; Mice; NIH 3T3 Cells; Peroxidase; Sodium Chloride; Viruses","Wang, G., Chloride flux in phagocytes (2016) Immunol Rev, 273, pp. 219-231; Simchowitz, L., De Weer, P., Chloride movements in human neutrophils. Diffusion, exchange, and active transport (1986) J Gen Physiol, 88, pp. 167-194. , PID: 3746250; Wang, G., Nauseef, W.M., Salt, chloride, bleach, and innate host defense (2015) J Leukoc Biol, 98, pp. 163-172; Chesney, J.A., Eaton, J.W., Mahoney, J.R., Jr., Bacterial glutathione: a sacrificial defense against chlorine compounds (1996) J Bacteriol, 178, pp. 2131-2135. , PID: 8606194; Winterbourn, C.C., Hampton, M.B., Livesey, J.H., Kettle, A.J., Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing (2006) J Biol Chem, 281, pp. 39860-39869; Stutts, M.J., Chloride uptake into cultured airway epithelial cells from cystic fibrosis patients and normal individuals (1985) Proceedings of the National Academy of Sciences of the United States of America, 82, pp. 6677-6681. , PID: 3863120; Speir, R.W., Effect of several inorganic salts on infectivity of Mengo virus (1961) Proc Soc Exp Biol Med, 106, pp. 402-404; Liu, S.R., Wu, S.P., Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide (2013) Org Lett, 15, pp. 878-881; Chen, X., A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production (2011) Chem Commun (Camb), 47, pp. 4373-4375; Kettle, A.J., Gedye, C.A., Winterbourn, C.C., Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide (1997) Biochem J, 321, pp. 503-508. , PID: 9020887; Kettle, A.J., Gedye, C.A., Hampton, M.B., Winterbourn, C.C., Inhibition of myeloperoxidase by benzoic acid hydrazides (1995) Biochem J, 308, pp. 559-563. , PID: 7772042; Winterbourn, C.C., Kettle, A.J., Redox reactions and microbial killing in the neutrophil phagosome (2013) Antioxid Redox Signal, 18, pp. 642-660; Kim, S.H., Lee, W.J., Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions (2014) Front Cell Infect Microbiol, 3, p. 116; Strengert, M., Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection (2014) Antioxid Redox Signal, 20, pp. 2695-2709; Linderholm, A.L., All-trans retinoic acid mediates DUOX2 expression and function in respiratory tract epithelium (2010) Am J Physiol Lung Cell Mol Physiol, 299, pp. L215-L221; Harrison, J.E., Schultz, J., Myeloperoxidase: confirmation and nature of heme-binding inequivalence. Resolution of a carbonyl-substituted heme (1978) Biochim Biophys Acta, 536, pp. 341-349. , PID: 213124; Harrison, J.E., Schultz, J., Studies on the chlorinating activity of myeloperoxidase (1976) J Biol Chem, 251, pp. 1371-1374. , PID: 176150; Frenkel, K., Blum, F., Troll, W., Copper ions and hydrogen peroxide form hypochlorite from NaCl thereby mimicking myeloperoxidase (1986) J Cell Biochem, 30, pp. 181-193; Durzynska, J., Gozdzicka-Jozefiak, A., Viruses and cells intertwined since the dawn of evolution (2015) Virol J, 12, p. 169; Shi, M., The evolutionary history of vertebrate RNA viruses (2018) Nature, 556, pp. 197-202; Shi, M., Zhang, Y.Z., Holmes, E.C., Meta-transcriptomics and the evolutionary biology of RNA viruses (2018) Virus Res, 243, pp. 83-90; Millero, F.J., Feistel, R., Wright, D.G., McDougall, T.J., The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale (2008) Deep Sea Research Part I: Oceanographic Research Papers, 55, pp. 50-72; Van Thuong, K., Effects of acute change in salinity and moulting on the infection of white leg shrimp (Penaeus vannamei) with white spot syndrome virus upon immersion challenge (2016) J Fish Dis, 39, pp. 1403-1412; Castelao, C., Association of myeloperoxidase polymorphism (G463A) with cervix cancer (2015) Mol Cell Biochem, 404, pp. 1-4; Jantsch, J., Cutaneous Na+storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense (2015) Cell Metab, 21, pp. 493-501; Minton, K., Antibacterial immunity: a pinch of salt (2015) Nat Rev Immunol, 15, p. 202; (2009) Biological Evaluation of Medical Devices Part 5: Tests for in Vitro Cytotoxicity, , ISO10993–5:2009; Lachmann, R.H., Sadarangani, M., Atkinson, H.R., Efstathiou, S., An analysis of herpes simplex virus gene expression during latency establishment and reactivation (1999) J Gen Virol, 80, pp. 1271-1282","Ramalingam, S.; Department of Laboratory Medicine, NHS Lothian, Edinburgh Royal InfirmaryUnited Kingdom; email: Sandeep.ramalingam@nhslothian.scot.nhs.uk",,"Nature Publishing Group",20452322,,,"30206371","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85053246767 "Zhu X., Liu S., Wang X., Luo Z., Shi Y., Wang D., Peng G., Chen H., Fang L., Xiao S.","56367538000;57201579623;57195152238;56988257100;55481317400;36060664000;56651662900;7501622358;7402470374;7402022567;","Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection",2018,"Emerging Microbes and Infections","7","1", 65,"","",,12,"10.1038/s41426-018-0068-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045310126&doi=10.1038%2fs41426-018-0068-3&partnerID=40&md5=fc96275b0cbd84b98e92fee4fa726861","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China","Zhu, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Liu, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wang, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Luo, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Shi, Y., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Chen, H., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China","Porcine deltacoronavirus (PDCoV), a member of genus Deltacoronavirus, is an emerging swine enteropathogenic coronavirus (CoV). Although outstanding efforts have led to the identification of Alphacoronavirus and Betacoronavirus receptors, the receptor for Deltacoronavirus is unclear. Here, we compared the amino acid sequences of several representative CoVs. Phylogenetic analysis showed that PDCoV spike (S) protein was close to the cluster containing transmissible gastroenteritis virus (TGEV), which utilizes porcine aminopeptidase N (pAPN) as a functional receptor. Ectopic expression of pAPN in non-susceptible BHK-21 cells rendered them susceptible to PDCoV. These results indicate that pAPN may be a functional receptor for PDCoV infection. However, treatment with APN-specific antibody and inhibitors did not completely block PDCoV infection in IPI-2I porcine intestinal epithelial cells. pAPN knockout in IPI-2I cells completely blocked TGEV infection but only slightly decreased PDCoV infection. Homologous modeling of pAPN with the S1 C-terminal domain (S1-CTD) of PDCoV or TGEV showed that TGEV S1-CTD adopted β-turns (β1-β2 and β3-β4), forming the tip of a β-barrel, to recognize pAPN. However, only the top residues in the β1-β2 turn of PDCoV S1-CTD had the possibility to support an interaction with pAPN, and the β3-β4 turn failed to contact pAPN. We also discuss the evolution and variation of PDCoV S1-CTD based on structure information, providing clues to explain the usage of pAPN by PDCoV. Taken together, the results presented herein reveal that pAPN is likely not a critical functional receptor for PDCoV, although it is involved in PDCoV infection. © 2018 The Author(s).",,"microsomal aminopeptidase; viral protein; coronavirus spike glycoprotein; microsomal aminopeptidase; virus receptor; amino acid sequence; animal cell; animal experiment; animal model; Article; BHK-21 cell line; carboxy terminal sequence; Coronavirus infection; deltacoronavirus infection; ectopic expression; intestine epithelium cell; nonhuman; phylogeny; priority journal; Transmissible gastroenteritis virus; animal; cell line; Coronavirinae; Coronavirus infection; genetics; host pathogen interaction; isolation and purification; metabolism; physiology; pig; swine disease; veterinary medicine; virology; Animals; CD13 Antigens; Cell Line; Coronavirus; Coronavirus Infections; Host-Pathogen Interactions; Phylogeny; Receptors, Virus; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases","Chen, Q., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Jung, K., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Ma, Y., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6, p. e00064; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Arch. Virol., 161, pp. 3421-3434; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med. (Maywood), 234, pp. 1117-1127; Woo, P.C., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1594-1595; Homwong, N., Characterization and evolution of porcine deltacoronavirus in the United States (2016) Prev. Vet. Med., 123, pp. 168-174; Dong, N., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from mainland China (2015) Genome Announc., 3, p. e00945; Dong, N., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Song, D., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: Identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; Lee, J.H., Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015 (2016) Transbound. Emerg. Dis., 63, pp. 248-252; Jang, G., Lee, K.K., Kim, S.H., Lee, C., Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016 (2017) Transbound. Emerg. Dis., 64, pp. 1364-1370; Janetanakit, T., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis., 22, pp. 757-759; Saeng-Chuto, K., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound. Emerg. Dis., 64, pp. 3-10; Le, V.P., A novel strain of porcine deltacoronavirus in Vietnam (2017) Arch. Virol., 163, pp. 203-207; Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res., 226, pp. 71-84; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res., 226, pp. 50-59; Saeng-Chuto, K., Retrospective investigation and evolutionary analysis of a novel porcine deltacoronavirus strain detected in Thailand from 2008 to 2015 (2017) Arch. Virol., 162, pp. 2103-2108; Du, L., The spike protein of SARS-CoV-A target for vaccine and therapeutic development (2009) Nat. Rev. Microbiol., 7, pp. 226-236; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu. Rev. Virol., 3, pp. 237-261; Hofmann, H., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc. Natl Acad. Sci. USA, 102, pp. 7988-7993; Bosch, B.J., Van Der-Zee, R., De Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Xiong, X., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2018) J. Virol., 92, p. e01628; Shang, J., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2018) J. Virol., 92, p. e01556; Yeager, C.L., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J. Virol., 70, pp. 8669-8674; Benbacer, L., Kut, E., Besnardeau, L., Laude, H., Delmas, B., Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus (1997) J. Virol., 71, pp. 734-737; Delmas, B., Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc. Natl Acad. Sci. USA, 88, pp. 5533-5536; Reguera, J., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog., 8, p. e1002859; Nam, E., Lee, C., Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection (2010) Vet. Microbiol., 144, pp. 41-50; Li, W., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res., 235, pp. 6-13; Kamau, A.N., Porcine amino peptidase N domain VII has critical role in binding and entry of porcine epidemic diarrhea virus (2017) Virus Res., 227, pp. 150-157; Shirato, K., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J. Gen. Virol., 97, pp. 2528-2539; Oh, J.S., Song, D.S., Park, B.K., Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes (2003) J. Vet. Sci., 4, pp. 269-275; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Hooper, N.M., Families of zinc metalloproteases (1994) FEBS Lett., 354, pp. 1-6; Sjostrom, H., Noren, O., Olsen, J., Structure and function of aminopeptidase N (2000) Adv. Exp. Med. Biol., 477, pp. 25-34; Kolb, A.F., Molecular analysis of the coronavirus-receptor function of aminopeptidase N (1998) Adv. Exp. Med. Biol., 440, pp. 61-67; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range (2007) J. Virol., 81, pp. 1261-1273; Reguera, J., Mudgal, G., Santiago, C., Casasnovas, J.M., A structural view of coronavirus-receptor interactions (2014) Virus Res., 194, pp. 3-15; Woo, P.C., Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region (2017) Emerg. Microbes Infect, 6, p. e53; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol., 25, pp. 35-48; Sabir, J.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Kim, Y., Spread of mutant middle east respiratory syndrome coronavirus with reduced affinity to human CD26 during the south Korean outbreak (2016) MBio, 7, p. e00019; Nakagaki, K., Nakagaki, K., Taguchi, F., Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures (2005) J. Virol., 79, pp. 6102-6110; He, Y., Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptorbinding domain of spike protein (2006) J. Immunol., 176, pp. 6085-6092; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J. Immunol., 174, pp. 4908-4915; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch. Virol., 162, pp. 2357-2362; Schwegmann-Wessels, C., Herrler, G., Sialic acids as receptor determinants for coronaviruses (2006) Glycoconj. J., 23, pp. 51-58; Huang, X., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J. Virol., 89, pp. 7202-7213; Ran, F.A., Genome engineering using the CRISPR-cas9 system (2013) Nat. Protoc., 8, pp. 2281-2308; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874","Fang, L.; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityChina; email: fanglr@mail.hzau.edu.cn",,"Nature Publishing Group",22221751,,,"29636467","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85045310126 "Boniotti M.B., Papetti A., Bertasio C., Giacomini E., Lazzaro M., Cerioli M., Faccini S., Bonilauri P., Vezzoli F., Lavazza A., Alborali G.L.","35581822800;56590403300;55521528600;56765602600;56765573300;16027669900;14422304400;23993671300;22946080600;35339480400;15043779500;","Porcine Epidemic Diarrhoea Virus in Italy: Disease spread and the role of transportation",2018,"Transboundary and Emerging Diseases","65","6",,"1935","1942",,4,"10.1111/tbed.12974","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052636174&doi=10.1111%2ftbed.12974&partnerID=40&md5=10924964ab2bf15ba9f0ba00e288a337","Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy","Boniotti, M.B., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Papetti, A., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Bertasio, C., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Giacomini, E., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Lazzaro, M., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Cerioli, M., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Faccini, S., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Bonilauri, P., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Vezzoli, F., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Lavazza, A., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy; Alborali, G.L., Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy","Porcine Epidemic Diarrhoea Virus (PEDV) causes watery diarrhoea, dehydration, and a high mortality rate among suckling pigs. Recently, PEDV had a large negative economic impact on the swine industries in Asia and North America. In 2014, PEDV re-emerged in many European countries, but most countries only reported a few sporadic cases. Here, we report the epidemic wave that occurred in Italy from 2015 to 2017. During this time, PEDV was detected by real-time PCR in 438 farms located mainly in the high-density pig production area in Northern Italy. Most of the outbreaks were in farrow-to-finish, farrow-to-wean and finisher farms. Clinical signs were observed mainly in suckling and fattening animals, while mortality rates were higher in piglets, reaching 50%. A sequence analysis showed that a PEDV strain, similar to the OH851 S-INDEL strain isolated in the USA in January 2014, was responsible for the outbreaks in Italy in 2015 and 2016. However, from January 2017, a recombinant variant strain, containing a portion of the Swine Enteric Coronavirus in the S1 gene, spread and almost completely outcompeted the previous nonrecombinant strain. In total, 14.1% of the environmental swabs collected from trucks at slaughterhouses after animals were unloaded tested positive for PEDV before the trucks were cleaned and disinfected, and 46% remained positive after cleaning and disinfection processes were performed. Moreover, environmental swabs indicated that 17.3% of the empty trucks arriving at the farms to load animals were PEDV-positive. This study indicates that trucks can have an important role in the spread of PEDV in Italy. © 2018 Blackwell Verlag GmbH","enteritis; Italy; PEDV; S-INDEL; swine; transport","DNA polymerase; amino terminal sequence; Article; contamination; dehydration; disease transmission; disinfection; feces analysis; gene; gene sequence; genetic variability; geographic distribution; indel mutation; insemination; mortality rate; nonhuman; Porcine epidemic diarrhea virus; real time polymerase chain reaction; reinfection; RNA extraction; S1 gene; sequence analysis; slaughterhouse; traffic and transport; Transmissible gastroenteritis virus; virus identification; virus load; virus recombinant; animal; Coronavirus infection; diarrhea; disease transmission; epidemic; genetics; Italy; pig; Porcine epidemic diarrhea virus; swine disease; transmission; veterinary medicine; weaning; Animals; Coronavirus Infections; Diarrhea; Disease Outbreaks; Disease Transmission, Infectious; Italy; Porcine epidemic diarrhea virus; Swine; Swine Diseases; Transportation; Weaning","Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., Pohlmann, A., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerging Infectious Diseases, 22 (7), pp. 1314-1315. , https://doi.org/10.3201/eid2207.160179; Alborali, G.L., Boniotti, M.B., Lavazza, A., (2014) Surveillance and control of PED coronavirus in pigs in Italy, , www.aphis.usda.gov/animal_health/animal_dis_spec/swine/downloads/meeting/SpeakerAbtracts_and_Bios.pdf, Paper presented at the SECD International Meeting, Chicago, Illinois, September 23–25, 2014, Chicago, Illinois, USA. 7. Retrieved from; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in central eastern Europe in 2016 (2016) Transboundary and Emerging Diseases, 63 (6), pp. 595-601. , https://doi.org/10.1111/tbed.12579; Bertasio, C., Giacomini, E., Lazzaro, M., Perulli, S., Papetti, A., Lavazza, A., Boniotti, M.B., Porcine epidemic diarrhea virus shedding and antibody response in swine farms: A longitudinal study (2016) Frontiers in Microbiology, 7, p. 2009. , https://doi.org/10.3389/fmicb.2016.02009; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerging Infectious Diseases, 22, pp. 83-87. , https://doi.org/10.3201/eid2201.150544; Bowman, A.S., Nolting, J.M., Nelson, S.W., Bliss, N., Stull, J.W., Wang, Q., Premanandan, C., Effects of disinfection on the molecular detection of porcine epidemic diarrhea virus (2015) Veterinary Microbiology, 179 (3-4), pp. 213-218. , https://doi.org/10.1016/j.vetmic.2015.05.027; Carstens, E.B., Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2009) (2010) Archives of Virology, 155 (1), pp. 133-146. , https://doi.org/10.1007/s00705-009-0547-x; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Madson, D., Huang, H., Zhang, J., Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets (2016) Journal of General Virology, 97, pp. 1107-1121. , https://doi.org/10.1099/jgv.0.000419; Dastjerdi, A., Carr, J., Ellis, R., Steinbach, F., Williamson, S., Porcine epidemic diarrhea virus among farmed pigs, Ukraine (2015) Emerging Infectious Diseases, 21, pp. 2235-2237. , https://doi.org/10.3201/eid2112.150272; Collection and review of updated epidemiological data on porcine epidemic diarrhoea (2016) EFSA Journal, 14 (2), p. 4375. , https://doi.org/10.2903/j.efsa.2016.4375; Grasland, B., Bigault, L., Bernard, C., Quenault, H., Toulouse, O., Fablet, C., Blanchard, F., Complete genome sequence of a porcine epidemic diarrhea S gene indel strain isolated in france in December 2014 (2015) Genome Announcements, 3 (3). , https://doi.org/10.1128/genomeA.00535-15; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symposium Series, 41, pp. 95-98; Hanke, D., Jenckel, M., Petrov, A., Ritzmann, M., Stadler, J., Akimkin, V., Höper, D., Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014 (2015) Emerging Infectious Diseases, 21, pp. 493-496. , https://doi.org/10.3201/eid2103.141165; Jung, K., Kang, B.K., Lee, C.S., Song, D.S., Impact of porcine group A rotavirus co-infection on porcine epidemic diarrhea virus pathogenicity in piglets (2008) Research in Veterinary Science, 84 (3), pp. 502-506. , https://doi.org/10.1016/j.rvsc.2007.07.004; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) The Veterinary Journal, 204 (2), pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017; Kweon, C., Kwon, B., Jung, T., Kee, Y., Hur, D., Hwang, E., An, S., Isolation of porcine epidemic diarrhea virus (PEDV) in Korea (1993) Korean Journal of Veterinary Research, 33 (2), pp. 249-254; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virology Journal, 12, p. 193. , https://doi.org/10.1186/s12985-015-0421-2; Leidenberger, S., Schroder, C., Zani, L., Auste, A., Pinette, M., Ambagala, A., Blome, S., Virulence of current german PEDV strains in suckling pigs and investigation of protective effects of maternally derived antibodies (2017) Scientific Reports, 7 (1), p. 10825. , https://doi.org/10.1038/s41598-017-11160-w; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., He, Q., New variants of porcine epidemic diarrhea virus, china, 2011 (2012) Emerging Infectious Diseases, 18 (8), pp. 1350-1353. , https://doi.org/10.3201/eid1808.120002; Lin, C.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Wang, Q., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Veterinary Research, 46, p. 134. , https://doi.org/10.1186/s13567-015-0278-9; Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., Main, R., Role of transportation in spread of porcine epidemic diarrhea virus infection, United States (2014) Emerging Infectious Diseases, 20 (5), pp. 872-874. , https://doi.org/10.3201/eid2005.131628; Martelli, P., Lavazza, A., Nigrelli, A., Merialdi, G., Alborali, L., Pensaert, M., Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy (2008) Veterinary Record, 162, pp. 307-310. , https://doi.org/10.1136/vr.162.10.307; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerging Infectious Diseases, 20, pp. 1347-1350. , https://doi.org/10.3201/eid2008.140526; Mesquita, J.R., Hakze-van der Honing, R., Almeida, A., Lourenco, M., van der Poel, W.H., Nascimento, M.S., Outbreak of porcine epidemic diarrhea virus in portugal, 2015 (2015) Transboundary and Emerging Diseases, 62 (6), pp. 586-588. , https://doi.org/10.1111/tbed.12409; Nagy, B., Nagy, G., Meder, M., Mocsari, E., Enterotoxigenic escherichia coli, rotavirus, porcine epidemic diarrhoea virus, adenovirus and calici-like virus in porcine postweaning diarrhoea in Hungary (1996) Acta Veterinaria Hungarica, 44 (1), pp. 9-19; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Archives of Virology, 58 (3), pp. 243-247. , https://doi.org/10.1007/BF01317606; Pijpers, A., van Nieuwstadt, A.P., Terpstra, C., Verheijden, J.H., Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs (1993) Veterinary Record, 132 (6), pp. 129-131. , https://doi.org/10.1136/vr.132.6.129; Pritchard, G.C., Paton, D.J., Wibberley, G., Ibata, G., Transmissible gastroenteritis and porcine epidemic diarrhoea in britain (1999) Veterinary Record, 144 (22), pp. 616-618. , https://doi.org/10.1136/vr.144.22.616; Puranaveja, S., Poolperm, P., Lertwatcharasarakul, P., Kesdaengsakonwut, S., Boonsoongnern, A., Urairong, K., Thanawongnuwech, R., Chinese-like strain of porcine epidemic diarrhea virus, Thailand (2009) Emerging Infectious Diseases, 15 (7), pp. 1112-1115. , https://doi.org/10.3201/eid1507.081256; Stadler, J., Zoels, S., Fux, R., Hanke, D., Pohlmann, A., Blome, S., Ladinig, A., Emergence of porcine epidemic diarrhea virus in southern Germany (2015) BMC Veterinary Research, 11, p. 142. , https://doi.org/10.1186/s12917-015-0454-1; Steinrigl, A., Fernandez, S.R., Stoiber, F., Pikalo, J., Sattler, T., Schmoll, F., First detection, clinical presentation and phylogenetic characterization of porcine epidemic diarrhea virus in Austria (2015) BMC Veterinary Research, 11, p. 310. , https://doi.org/10.1186/s12917-015-0624-1; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Yoon, K., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) Journal of Veterinary Diagnostic Investigation, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerging Infectious Diseases, 18 (1), pp. 161-163. , https://doi.org/10.3201/eid1801.111259; Takahashi, K., Okada, K., Ohshima, K., An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan (1983) Nihon Juigaku Zasshi: The Japanese Journal of Veterinary Science, 45 (6), pp. 829-832. , https://doi.org/10.1292/jvms1939.45.829; Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Molecular Biology and Evolution, 24 (8), pp. 1596-1599. , https://doi.org/10.1093/molbev/msm092; Theuns, S., Conceição-Neto, N., Christiaens, I., Zeller, M., Desmarets, L.M.B., Roukaerts, I.D.M., Nauwynck, H.J., Complete genome sequence of a porcine epidemic diarrhea virus from a novel outbreak in Belgium, January 2015 (2015) Genome Announcements, 3 (3), pp. 6-15. , https://doi.org/10.1128/genomeA.00506-15; Toplak, I., Ipavec, M., Kuhar, U., Kusar, D., Papic, B., Koren, S., Toplak, N., Complete genome sequence of the porcine epidemic diarrhea virus strain SLO/JH-11/2015 (2016) Genome Announcements, 4 (2). , https://doi.org/10.1128/genomeA.01725-15.10.1128/genomeA.01725-15; Tun, H.M., Cai, Z., Khafipour, E., Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDv) in the infected on-farm earthen manure storages (EMS) (2016) Frontiers in Microbiology, 7, p. 265. , https://doi.org/10.3389/fmicb.2016.00265; Valko, A., Biksi, I., Csagola, A., Tuboly, T., Kiss, K., Ursu, K., Dan, A., Porcine epidemic diarrhoea virus with a recombinant S gene detected in Hungary, 2016 (2017) Acta Veterinaria Hungarica, 65 (2), pp. 253-261. , https://doi.org/10.1556/004.2017.025; der Van Wolf, P.J., Van Walderveen, A., Meertens, M., Van Hout, A., Duinhof, T., Geudeke, M., Dikman, R., (2015) First case of porcine epidemic diarrhea (PED) caused by a new variant of PED virus in the Netherlands, , [Abstract]. In Proceedings of the 7th European Symposium of Porcine Health Management, 2015 Apr 22–24, Nantes, France; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging Infectious Diseases, 20 (7), pp. 1227-1230. , https://doi.org/10.3201/eid2007.140296; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerging Infectious Diseases, 20 (5), pp. 917-919. , https://doi.org/10.3201/eid2005.140195; Wang, J., Zhao, P., Guo, L., Liu, Y., Du, Y., Ren, S., Wu, J., Porcine epidemic diarrhea virus variants with high pathogenicity, China (2013) Emerging Infectious Diseases, 19 (12), pp. 2048-2049. , https://doi.org/10.3201/eid1912.121088; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of Virology, 86 (7), pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Veterinary Record, 100 (12), pp. 243-244. , https://doi.org/10.1136/vr.100.12.243; Zhao, Z.P., Yang, Z., Lin, W.D., Wang, W.Y., Yang, J., Jin, W.J., Qin, A.J., The rate of co-infection for piglet diarrhea viruses in china and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus (2016) Acta Virologica, 60 (1), pp. 55-61. , https://doi.org/10.4149/av_2016_01_55","Boniotti, M.B.; Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaItaly; email: mariabeatrice.boniotti@izsler.it",,"Blackwell Publishing Ltd",18651674,,,"30094946","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85052636174 "Jiang Y., Zhao G., Song N., Li P., Chen Y., Guo Y., Li J., Du L., Jiang S., Guo R., Sun S., Zhou Y.","57102098600;8684553000;57195988958;57195986382;57201432379;57102095900;55358034200;8686996200;56491898300;7201990138;35171536200;57191653017;","Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV article",2018,"Emerging Microbes and Infections","7","1", 77,"","",,3,"10.1038/s41426-018-0063-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045878614&doi=10.1038%2fs41426-018-0063-8&partnerID=40&md5=f84c187e9cef81130639c614f6e7821a","State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, 200032, China; InflaRx GmbH, Jena, Germany","Jiang, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Zhao, G., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Song, N., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Li, P., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Chen, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Guo, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Li, J., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Jiang, S., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Guo, R., InflaRx GmbH, Jena, Germany; Sun, S., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China","The pathogenesis of highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV) remains poorly understood. In a previous study, we established an hDPP4-transgenic (hDPP4-Tg) mouse model in which MERS-CoV infection causes severe acute respiratory failure and high mortality accompanied by an elevated secretion of cytokines and chemokines. Since excessive complement activation is an important factor that contributes to acute lung injury after viral infection, in this study, we investigated the role of complement in MERS-CoV-induced lung damage. Our study showed that complement was excessively activated in MERS-CoV-infected hDPP4-Tg mice through observations of increased concentrations of the C5a and C5b-9 complement activation products in sera and lung tissues, respectively. Interestingly, blocking C5a production by targeting its receptor, C5aR, alleviated lung and spleen tissue damage and reduced inflammatory responses. More importantly, anti-C5aR antibody treatment led to decreased viral replication in lung tissues. Furthermore, compared with the sham treatment control, apoptosis of splenic cells was less pronounced in the splenic white pulp of treated mice, and greater number of proliferating splenic cells, particularly in the red pulp, was observed. These data indicate that (1) dysregulated host immune responses contribute to the severe outcome of MERS; (2) excessive complement activation, triggered by MERS-CoV infection, promote such dysregulation; and (3) blockade of the C5a-C5aR axis lead to the decreased tissue damage induced by MERS-CoV infection, as manifested by reduced apoptosis and T cell regeneration in the spleen. Therefore, the results of this study suggest a new strategy for clinical intervention and adjunctive treatment in MERS-CoV cases. © 2018 The Author(s).",,"antivirus agent; caspase 3; CD68 antigen; complement component C3; complement component C5a; complement component C5a receptor; complement component C5a receptor antagonist; complement membrane attack complex; cycline; cytokine; dipeptidyl peptidase IV; gamma interferon; gamma interferon inducible protein 10; gamma interferon receptor; gamma interferon receptor alpha; interleukin 10; interleukin 12; interleukin 1beta; interleukin 6; keratinocyte chemoattractant; monoclonal antibody; monocyte chemotactic protein 1; respiratory tract agent; tumor necrosis factor; unclassified drug; virus nucleoprotein; virus RNA; C5ar1 protein, mouse; chemokine; complement component C5a; complement component C5a receptor; complement inhibitor; cytokine; dipeptidyl peptidase IV; DPP4 protein, human; immunologic factor; animal experiment; animal model; animal tissue; antiviral activity; antiviral therapy; apoptosis; Article; cell proliferation; cell regeneration; clinical observation; clinical outcome; complement activation; complement blood level; controlled study; cytokine production; disease severity; drug targeting; female; histopathology; immune response; immunoregulation; inflammation; lung injury; lung parenchyma; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; protein protein interaction; sham procedure; spleen cell; spleen injury; spleen tissue; T lymphocyte; virus load; virus replication; animal; antagonists and inhibitors; Coronavirus infection; cytology; disease model; genetics; host pathogen interaction; human; immunology; lung; pathogenicity; pathology; spleen; transgenic mouse; virology; Animals; Apoptosis; Chemokines; Complement Activation; Complement C5a; Complement Inactivating Agents; Coronavirus Infections; Cytokines; Dipeptidyl Peptidase 4; Disease Models, Animal; Host-Pathogen Interactions; Humans; Immunologic Factors; Lung; Mice; Mice, Transgenic; Middle East Respiratory Syndrome Coronavirus; Receptor, Anaphylatoxin C5a; Spleen; T-Lymphocytes; Virus Replication","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr. Opin. Pulm. Med., 20, pp. 233-241; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Al-Abdallat, M.M., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis., 59, pp. 1225-1233; Memish, Z.A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr. Infect. Dis. J., 33, pp. 904-906; Arabi, Y.M., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160, pp. 389-397; Lau, Y.L., Peiris, J.S., Pathogenesis of severe acute respiratory syndrome (2005) Curr. Opin. Immunol., 17, pp. 404-410; Josset, L., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4, pp. e00165-e00113; Faure, E., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS ONE, 9, p. e88716; Zhou, J., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342; Van Den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184; Vijay, R., Perlman, S., Middle East respiratory syndrome and severe acute respiratory syndrome (2016) Curr. Opin. Virol., 16, pp. 70-76; Huang, K.J., An interferon-gamma-related cytokine storm in SARS patients (2005) J. Med. Virol., 75, pp. 185-194; Cameron, M.J., Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome (2007) J. Virol., 81, pp. 8692-8706; Wong, C.K., Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome (2004) Clin. Exp. Immunol., 136, pp. 95-103; Lau, S.K., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Baskin, C.R., Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 3455-3460; Wong, G.W., Li, A.M., Ng, P.C., Fok, T.F., Severe acute respiratory syndrome in children (2003) Pediatr. Pulmonol., 36, pp. 261-266; Cao, B., Hayden, F.G., Therapy of H7N9 pneumonia: Current perspectives (2013) Expert. Rev. Anti. Infect. Ther., 11, pp. 1123-1126; Ricklin, D., Lambris, J.D., Complement in immune and inflammatory disorders: Pathophysiological mechanisms (2013) J. Immunol., 190, pp. 3831-3838; Hawlisch, H., C5a negatively regulates toll-like receptor 4-induced immune responses (2005) Immunity, 22, pp. 415-426; Klos, A., The role of the anaphylatoxins in health and disease (2009) Mol. Immunol., 46, pp. 2753-2766; Schindler, R., Gelfand Ja Fau-Dinarello, C.A., Dinarello, C.A., Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: Translational signal provided by lipopolysaccharide or IL-1 itself (1990) Blood, 76, pp. 1631-1638; Patel, S.N., C5 deficiency and C5a or C5aR blockade protects against cerebral malaria (2008) J. Exp. Med., 205, pp. 1133-1143; Sun, S., Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection (2013) Am. J. Respir. Cell. Mol. Biol., 49, pp. 221-230; Sun, S., Treatment with anti-C5a antibody improves the outcome of H7N9 virus infection in African green monkeys (2015) Clin. Infect. Dis., 60, pp. 586-595; Zhao, G., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with middle east respiratory syndrome-coronavirus (2015) PLoS ONE, 10, p. e0145561; Sun, S., Complement inhibition alleviates paraquat-induced acute lung injury (2011) Am. J. Respir. Cell. Mol. Biol., 45, pp. 834-842; Boonacker, E., Van Noorden, C.J., The multifunctional or moonlighting protein CD26/DPPIV (2003) Eur. J. Cell. Biol., 82, pp. 53-73; Agrawal, A.S., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670; Bokisch, V.A., Top, F.H., Jr., Russell, P.K., Dixon, F.J., Muller-Eberhard, H.J., The potential pathogenic role of complement in dengue hemorrhagic shock syndrome (1973) N. Engl. J. Med., 289, pp. 996-1000; Bokisch, V.A., Muller-Eberhard, H.J., Dixon, F.J., The role of complement in hemorrhagic shock syndrome (dengue) (1973) Trans. Assoc. Am. Physicians, 86, pp. 102-110; Churdboonchart, V., Bhamarapravati, N., Futrakul, P., Crossed immunoelectrophoresis for the detection of split products of the third complement in dengue hemorrhagic fever. I. Observations in patients' plasma (1983) Am. J. Trop. Med. Hyg., 32, pp. 569-576; Avirutnan, P., Vascular leakage in severe dengue virus infections: A potential role for the nonstructural viral protein NS1 and complement (2006) J. Infect. Dis., 193, pp. 1078-1088; Ubol, S., Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever (2008) J. Infect. Dis., 197, pp. 1459-1467; Morrison, T.E., Fraser, R.J., Smith, P.N., Mahalingam, S., Heise, M.T., Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease (2007) J. Virol., 81, pp. 5132-5143; Chan, J.F., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752; Chu, H., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Mebius, R.E., Kraal, G., Structure and function of the spleen (2005) Nat. Rev. Immunol., 5, pp. 606-616; Den Haan, J.M., Kraal, G., Innate immune functions of macrophage subpopulations in the spleen (2012) J. Innate Immun., 4, pp. 437-445; Kurotaki, D., CSF-1-dependent red pulp macrophages regulate CD4 T cell responses (2011) J. Immunol., 186, pp. 2229-2237; Fang, C., Miwa, T., Shen, H., Song, W.C., Complement-dependent enhancement of CD8+T cell immunity to lymphocytic choriomeningitis virus infection in decay-accelerating factor-deficient mice (2007) J. Immunol., 179, pp. 3178-3186; Grailer, J.J., Fattahi, F., Dick, R.S., Zetoune, F.S., Ward, P.A., Cutting edge: Critical role for C5aRs in the development of septic lymphopenia in mice (2015) J. Immunol., 194, pp. 868-872; Ward, P.A., The harmful role of c5a on innate immunity in sepsis (2010) J. Innate Immun., 2, pp. 439-445; Chu, H., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J. Infect. Dis., 213, pp. 904-914","Sun, S.; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyChina; email: sunsh01@163.com",,"Nature Publishing Group",22221751,,,"29691378","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85045878614 "Hwang S.-J., Yun H.-C., Ku P.-T., Sim J.-H., Cha Y.-W., Lee M.-O.","57191411986;57196452679;57191405938;57207834865;57207816086;57191405815;","Distribution and characterization of airborne respiratory pathogens in public facilities",2018,"Journal of Bacteriology and Virology","48","4",,"121","129",,,"10.4167/jbv.2018.48.4.121","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062997322&doi=10.4167%2fjbv.2018.48.4.121&partnerID=40&md5=df6eaa02ebe8991c537c2a4d61cf8fc6","Busan Metropolitan City Institute of Health & Environment, Busan, South Korea","Hwang, S.-J., Busan Metropolitan City Institute of Health & Environment, Busan, South Korea; Yun, H.-C., Busan Metropolitan City Institute of Health & Environment, Busan, South Korea; Ku, P.-T., Busan Metropolitan City Institute of Health & Environment, Busan, South Korea; Sim, J.-H., Busan Metropolitan City Institute of Health & Environment, Busan, South Korea; Cha, Y.-W., Busan Metropolitan City Institute of Health & Environment, Busan, South Korea; Lee, M.-O., Busan Metropolitan City Institute of Health & Environment, Busan, South Korea","Respiratory infections, which are caused by airborne pathogens, are the most common disease of all ages worldwide. This study was conducted to characterize the airborne respiratory pathogens in the public facilities in Busan, South Korea. A total of 260 public facilities were investigated in 2017, 52 seasonal indoor air from 2 hospitals and 208 indoor air samples from 208 randomly selected daycare centers. Among respiratory pathogen, 8 viral pathogens including human adenovirus (HAdV), human bocavirus (HBoV), human rhinovirus (HRV), human parainfluenza virus (HPIV), human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), human coronavirus (HCoV) and influenza virus (IFV), and 3 bacterial pathogens including Mycoplasma pneumoniae, Bordetella pertussis, and Chlamydophila pneumoniae, were investigated by multiplex real-time reverse transcription polymerase chain reaction. Pathogens were detected in 9 cases (3.4%). Among 9 positive samples, 6 (2.3%) cases were positive for HBoV and 3 (1.2%) cases were positive for IFV. All the positive cases were detected in daycare centers. Additionally, the concentration of HBoV was determined. In HBoV-positive samples, the cycle threshold (Ct) values of HBoV were 29.73~36.84, which are corresponding to the viral concentration of 4.91 × 10 0 ~ 9.57 × 10 2 copies/ml. Serotype distribution of isolated HBoV was analyzed by sequencing of VP1/VP2 gene. All of the HBoV isolates were identified as HBoV type 1 with a high similarity among the isolates (>97%). No bacterial pathogen was identified in indoor air samples. Although virus concentration was not high in public facilities (daycare center), the presence of respiratory viral pathogens has been identified. Effective ventilation and air purification strategies are needed to reduce the indoor concentration of respiratory pathogens. A long-term and ongoing surveillance plan for respiratory pathogen management should be established. © 2018 Journal of Bacteriology and Virology.","Airborne respiratory pathogen; Daycare center; Respiratory viruses","air sampling; airborne infection; ambient air; Article; Bordetella pertussis; Chlamydia pneumoniae; Coronavirinae; day care; disease transmission; gene sequence; hospital; Human adenovirus C; Human bocavirus; Human respiratory syncytial virus; Human rhinovirus; infectious agent; Influenza virus; Metapneumovirus; multiplex polymerase chain reaction; Mycoplasma pneumoniae; nonhuman; Paramyxovirinae; real time polymerase chain reaction; respiratory tract infection; serotype; South Korea; virus concentration; virus gene; virus identification; virus isolation; VP1 gene; VP2 gene","Gravesen, S., Microbiology on Indoor Air ‘99--what is new and interesting? An overview of selected papers presented in Edinburgh, August, 1999 (2000) Indoor Air, 10, pp. 74-80; Jeong, S.M., (2016) A Study on Indoor Air Quality for Sensitive Population Facilities, , Master’s thesis, Keokuk University; Prussin, A.J., Vikram, A., Bibby, K.J., Marr, L.C., Seasonal dynamics of the airborne bacterial community and selected viruses in a children’s daycare center (2016) Plos One, 11; Garbino, J., Gerbade, M.W., Wunderli, W., Deffernez, C., Thomas, Y., Rochat, T., Lower respiratory viral illnesses: Improved diagnosis by molecular methods and clinical impact (2004) Am J Respir Crit Care Med, 170, pp. 1197-1203; Park, K.T., Moon, K.W., Kim, H.T., Park, C.J., Jeong, H.C., Lim, Y.H., Detection of Airborne Respiratory Viruses in Residential Environments (2011) Korean Journal of Environmental Health Sciences, 37, pp. 306-314; The prevalence of the respiratory viruses in the patients with acute respiratory infections 2014 (2016) Public Health Weekly Report, 9, pp. 26-36; Khamrin, P., Thongprachum, A., Shimizu, H., Okitsu, S., Mizuguchi, M., Hayakawa, S., Detection of Human Bocavirus 1 and 2 from children with acute gastroenteritis in Japan (2012) J Med Virol, 84, pp. 901-905; Chung, J.Y., Han, T.H., Kim, C.K., Kim, S.W., Bocavirus infection in hospitalized children, South Korea (2006) Emerg Infect Dis, 12, pp. 1254-1256; Kwak, K.J., Kim, Y.H., Choi, H.J., Clinical characteristics of respiratory viral infection in children during spring/summer: Focus on human bocavirus (2015) Allergy Asthma Respir Dis, 3, pp. 410-416; Hwang, S.J., Kim, N.H., Park, D.J., Ku, P.T., Lee, M.O., Jin, S.H., Epidemiological Characterization of Adenovirus and Human Bocavirus Detected Acute Respiratory Patients in Busan (2017) Journal of Life Science, 27, pp. 275-282; Marsden, A.G., Outbreak of influenza-like illness [corrected] related to air travel (2003) Med J Aust, 179, pp. 172-173; Mubareka, S., Lowen, A.C., Steel, J., Coates, A.L., García-Sastre, A., Palese, P., Transmission of influenza virus via aerosols and fomites in the guinea pig model (2009) J Infect Dis, 199, pp. 858-865; Won, D.W., (2012) Microbiological Contamination in Indoor Air of Office Buildings, , Master’s thesis, Korea University; Dimmick, R.L., Wolochow, H., Chatigny, M.A., Evidence for more than one division of bacteria within airborne particles (1979) Appl Enviroin Microbiol, 38, pp. 642-643; Koseki, N., Teramoto, S., Kaiho, M., Endo, R., Yoshioka, M., Takahashi, Y., Detection of human bocavirus 1-4 from nasopharyngeal swab samples collected from patients with respiratory tract infections (2012) J Clin Microbiol, 50, pp. 2118-2121; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Ersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Nati Acad Sci U S A, 102, pp. 12891-12896; Lindner, J., Modrow, S., Human bocavirus--a novel parvovirus to infect humans (2008) Intervirology, 51, pp. 116-122; Lee, E.J., Kim, H.S., Kim, H.S., Kim, J.S., Song, W., Kim, M., Human Bocavirus in Korean Children with Gastroenteritis and Respiratory Tract Infections (2016) Biomed Res Int, 2016; Kapoor, A., Slikas, E., Simmonds, P., Chieochansin, T., Naeem, A., Shaukat, S., A newly identified bocavirus species in human stool (2009) J Infect Dis, 199, pp. 196-200; Ahn, J.G., Choi, S.Y., Kim, D.S., Kim, K.H., Phylogenetic Analysis of Human Bocavirus in Hospitalized Children with Acute Respiratory Tract Infection in Korea (2012) Korean J Pediatr Infect Dis, 19, pp. 71-78","Hwang, S.-J.; Busan Metropolitan City Institute of Health & Environment, 120, Hambakbong-ro 140 beon-gil, Buk-gu, South Korea; email: kies98@korea.kr",,"The Korean Society for Mocrobiology / The Korean Society of Virology",15982467,,JBVOA,,"Korean","J. Bacteriol. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85062997322 "Mirkena T., Walelign E., Tewolde N., Gari G., Abebe G., Newman S.","36084935700;57191226198;57205211441;23481606600;6701758985;57214580658;","Camel production systems in Ethiopia: a review of literature with notes on MERS-CoV risk factors",2018,"Pastoralism","8","1", 30,"","",,,"10.1186/s13570-018-0135-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059084615&doi=10.1186%2fs13570-018-0135-3&partnerID=40&md5=a8c741ba1835cc95ebf30c8fac470860","Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia; Regional Office for Africa, Food and Agriculture Organization of the United Nations, Accra, Ghana","Mirkena, T., Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia; Walelign, E., Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia; Tewolde, N., Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia; Gari, G., Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia; Abebe, G., Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Addis Ababa, Ethiopia; Newman, S., Regional Office for Africa, Food and Agriculture Organization of the United Nations, Accra, Ghana","Camels are the most adapted species to the harsh conditions of arid/semi-arid rangelands of Ethiopia where pastoralism is the dominant mode of life and mobility is an inherent strategy to efficiently utilize the spatially and temporally distributed pasture and water resources. Usually, large numbers of camels and other domestic animals from many different herds/flocks congregate at watering sites, and this may create a perfect condition for disease transmission and spread among animals. The same water sources are also shared by multitudes of wild animals. Camel herd sizes per household range from few heads (five to ten) to several hundreds. Female camels account for more than 75% of the herd. Male camels are usually sold early as pack animals or for slaughter. Female camels may remain fertile up to 25 years, during which time they produce eight to ten calves. Camels are herded during daytime on communal rangelands. During night, they are kept in traditional kraals around homesteads. Breeding time is short and seasonal and is affected by rainfall patterns and feed availability. Usually, only men milk camels. Milking frequency ranges from two to five times per day. Washing of hands, milking vessels, the udder and teats is not practised by many prior to milking the camels. Besides, the milking area is generally full of dust and dung and without shade. This affects the quality and safety of the produced milk. Pathogens and diseases of camelids are less well known; however, they are suspected as zoonotic sources for the human infection with the Middle East respiratory syndrome coronavirus. There is an increasing need to determine whether camels are clinically susceptible, act as potential reservoirs and maintenance or bridge hosts, to viral pathogens. © 2018, The Author(s).","Dromedary camel; Ethiopia; MERS-CoV; Pastoralism; Production system",,"Abraham, G., Sintayehu, A., Libeau, G., Albina, E., Roger, F., Laekemariam, Y., Abayneh, D., Awoke, K.M., Antibody seroprevalences against peste des petits ruminants (PPR) virus in camels, cattle, goats and sheep in Ethiopia (2005) Preventive Veterinary Medicine, 70, pp. 51-57. , COI: 1:STN:280:DC%2BD2MzhvFGhtw%3D%3D; Admasu, D., Impacts of Prosopis invasion and experience on control in Afar region (2008) Pastoral livestock systems: Opportunities and challenges as a livelihood strategy, pp. 57-76. , Proceedings of the 15th conference of the Ethiopian Society of Animal Production, October 4–6, 2007, Addis Ababa; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20 (2), pp. 1999-2005. , COI: 1:CAS:528:DC%2BC28XitVOisLbJ; Ahmed Shek, M., Asefa, A.A., Hegde, B.P., Ahmed, B.D., Traditional feeding management, drought and migration of the camel herds of Afder Zone, Somali Regional State (2005) Participatory innovation and research: Lessons for livestock development, pp. 125-135. , Proceedings of the 12th conference of the Ethiopian Society of Animal Production, August 12–14, 2004, Addis Ababa; Ahmed Shek, M., Hegde, B.P., Asefa, A.A., Reproduction, breeding and management of female and male camels in Afder Zone of Somali Regional State, Ethiopia (2005) Participatory innovation and research: Lessons for livestock development, pp. 175-184. , Proceedings of the 12th conference of the Ethiopian Society of Animal Production, August 12–14, 2004, Addis Ababa; Aklilucatley, Y.A., (2010) Mind the Gap: Commercialization, Livelihoods and Wealth Disparity in Pastoralist Areas of Ethiopia, , Feinstein International Centre, Tufts University; Aklilucatley, Y.A., (2011) Shifting Sands: The Commercialization of Camels in Mid-Altitude Ethiopia and Beyond, , Feinstein International Center, Tufts University; Angassa, A., Oba, G., Herder perceptions on impacts of range enclosures, crop farming, fire ban and bush encroachment on the rangelands of Borana, Southern Ethiopia (2008) Human Ecology, 36, pp. 201-215; Behnke, R., (2010) The contribution of livestock to the economies of IGAD member states: Study findings, application of the methodology in Ethiopia and recommendations for further work, , IGAD Livestock Policy Initiative Working Paper No. 02–10; Bekelekibebew, T.T., Camel production and productivity in eastern lowlands of Ethiopia (2002) Proceedings of the 9Th Conference of the Ethiopian Society of Animal Production, pp. 145-161. , Livestock in food security – roles and contributions, Addis Ababa, August 30–31; Bekele, T., Mekuriaw, Z., Baars, R.M.T., Milk production performance of the one humped camel (Camelus dromedarius) under pastoral management in semi-arid eastern Ethiopia (2002) Livestock Production Science, 76, pp. 37-44; Brown, A., A review of camel diseases in Central Australia (2004) Department of Business, Industry and Resource Development, 16. , Arid Zone Research Institute, Alice Springs; Bruke, Y., The declining pastoral environment, vulnerability status and adaptation strategy (2003) Challenges and opportunities of livestock marketing in Ethiopia, pp. 155-163. , Proceedings of the 10th conference of the Ethiopian Society of Animal Production, August 22–24, 2002, Addis Ababa; Coppock, D.L., (1994) The Borana plateau of southern Ethiopia: Synthesis of pastoral research, development and change, 1980–91, p. 374. , ILCA systems study 5, International Livestock Centre for Africa, Addis Ababa; Dejene, T.G., Husbandry practices and utilization of camel products in Borana Zone of Southern Oromia, Ethiopia (2015) Science Research, 3 (4), pp. 191-197; Demeke, G., (1998) Prevalence of camel trypanosomosis and factors associated with the disease occurrence in Leben district, Borena Zone, Oromiya region, , MSc Thesis, Addis Ababa University, Ethiopia and Free University of Berlin, Germany, Ethiopia; Desta, S., Coppock, L., Pastoralism under pressure: Tracking system change in Southern Ethiopia (2004) Human Ecology, 32 (4), pp. 465-486; Eyasu, S., Analysis on the contributions of and constraints to camel production in Shinile and Jijiga zones, eastern Ethiopia (2009) Journal of Agriculture and Environment for International Development, 103 (3), pp. 213-224; (2010) Breeding strategies for sustainable management of animal genetic resources. Food and Agriculture Organization (FAO), 3. , Animal Production and Health Guidelines, Rome; Farah, K.O., Nyariki, D.M., Ngugi, R.K., Noor, I.M., Guliye, A.Y., The Somali and the camel: Ecology, management and economics (2004) Anthropologist, 6 (1), pp. 45-55; Farah, Z., Mollet, M., Younan, M., Dahir, R., Camel dairy in Somalia: Limiting factors and development potential (2007) Livestock Science, 110, pp. 187-191; Faye, B., Role, distribution and perspective of camel breeding in the third millennium economies (2015) Emir. J. Food Agriculture, 27 (4), pp. 318-327; Fekadu, G., Ayelet, G., Abunna, F., Epidemiological investigation of Middle East respiratory syndrome corona virus (MERS-CoV) among dromedary camels in selected areas of Afar and Oromia region (2017) Ethiopia. J. Veterinary Medicine and Animal Health, 9 (3), pp. 47-54. , COI: 1:CAS:528:DC%2BC1cXhs1KjtrbP; Gebru, G., Alemayehu, N., Ibro, A., Ayele, G., Beyene, S., Pastoral livelihoods in Afar and Karayu: The case of pastoral communities in and around Awash National Park (2008) Pastoral livestock systems: Opportunities and challenges as a livelihood strategy, pp. 57-76. , Proceedings of the 15th conference of the Ethiopian Society of Animal Production, October 4–6, 2007, Addis Ababa; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Aaslav, K.K., Adlhoch, C., Coulombier, D., Human–dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses and Public Health, 63, pp. 1-9. , COI: 1:STN:280:DC%2BC2MvitFKruw%3D%3D; Haroun, M., Hajer, I., Mukhtar, M., Ali, B.E., Detection of antibodies against peste des petits ruminants virus in sera of cattle, camels, sheep and goats in Sudan (2002) Veterinary Research Communications, 26, pp. 537-541. , COI: 1:STN:280:DC%2BD38nls1Wrtg%3D%3D; Hemida, M.G., Al-Naeemm, A., Perera, R.A.P.M., Chin, A.W.H., Poon, L.L.M., Peiris, M., Lack of Middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerging Infectious Diseases, 21 (4), pp. 699-701. , COI: 1:CAS:528:DC%2BC2sXivVGitw%3D%3D; Hemida, M.G.A., Elmoslemany, F., Al-Hizab, A., Alnaeem, F., Almathen, B., Faye, D.K.W., Chu, R.A.P.M., Pererapeiris, M., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) Transboundary and Emerging Diseases, , https://doi.org/10.1111/tbed.12401; Kassahun, A., Snyman, H.A., Smit, G.N., Impact of rangeland degradation on the pastoral production systems, livelihoods and perceptions of the Somali pastoralists in Eastern Ethiopia (2008) Journal of Arid Environments., 72, pp. 1265-1281; Kaufmann, B., Reproductive performance of camels (Camelus dromedarius) under pastoral management and its influence on herd development (2005) Livestock Production Science, 92, pp. 17-29; Kekses, S., Dejen, T., Tessema, S.T., Regassa, F., Kassa, T., Dawo, F., Characterization of camel production system in Afar pastoralists, North East Ethiopia (2013) Asian J. Agricultural Science, 5 (2), pp. 16-24; Keskes, S., Ibrahim, M., Tessema, T.S., Tamir, B., Regassa, F., Kassa, T., Dawo, F., Production systems and reproductive performances of Camelus dromedarius in Somali regional state, eastern Ethiopia (2013) J. Agriculture and Environment for International Development, 107 (2), pp. 243-266; Keskes, S., Mechemeria, M., Tessema, T.S., Regassa, F., Adugna, W., Dawo, F., Reproductive performance of Camelus dromedarius kept under Afar pastoral management system using progeny history testing (2013) J. Camelid Science, 6, pp. 100-115; Khalafallaa, A.I., Saeed, I.K., Ali, Y.H., Abdurrahman, M.B., Kwiatek, O., Libeau, G., Obeida, A.A., Abbas, Z., An outbreak of peste des petits ruminants (PPR) in camels in the Sudan (2010) Acta Tropica, 116, pp. 161-165; Kurtu, M.Y., An assessment of the productivity for meat and carcass yield of camels (Camelus dromedarius) and the consumption of camel meat in the eastern region of Ethiopia (2004) Tropical Animal Health and Production, 36, pp. 65-76. , COI: 1:STN:280:DC%2BD2c%2FovFyhtw%3D%3D; Megersa, B., Regassa, A., Kumsa, B., Abuna, F., Performance of camels (Camelus dromedarius) kept by pastoralists with different degrees of experience in camel keeping in Borana, Southern Ethiopia (2008) Animal Science Journal, 79, pp. 534-541; Mehari, Y., Mekuriaw, Z., Gebru, G., (2007) Potentials of camel production in Babile and Kebribeyah woredas of Jijiga Zone, 19, p. 58. , Livestock research for rural development, Somali region; Mekuriaw, Z., (2007) Non-Genetic Factors Affecting Milk Yield and Milk Composition of Traditionally Managed Camels (Camelus Dromedarius) in Eastern Ethiopia, 19, p. 85. , Livestock research for rural development; Mekuriaw, Z., Tafesse, B., Camel herd health and productivity in Eastern Ethiopia selected semi-nomadic households (2000) Revue d’Élevage et de Médecine Vétérinaire des Pays Tropicaux, 53 (2), pp. 213-217; Memish, Z.A.A., Alsahly, M.A., Masri, G.L., Heil, B.D., Anderson, M., Peiris, S.U., Khangray, G.C., Sparse evidence of MERS-CoV infection among animal workers living in southern Saudi Arabia during 2012 (2014) Influenza Other Respiratory Viruses, , https://doi.org/10.1111/irv.12287; Memish, Z.A., Cotton, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infectious Diseases, 20, pp. 1012-1015; Miguel, E.V., Chevalier, G., Ayelet, M.N., Ben Bencheikh, H., Boussini, D.K., Chu, I., El Berbri, O., Rogerpeiris, M., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveillance, 22 (13). , https://doi.org/10.2807/1560-7917; Miguel, E.A., El Idrissi, V., Chevalier, A., Caron, B., Faye, M., Peirisroger, F., (2016) Ecological and Epidemiological Roles of Camels: Lessons from Existing and Emerging Viral Infections, 360 (46). , Empres-Animal Health, FAO; (2007) Livestock Development Masterplan Study, p. 166. , Volume B: Meat Production. Ministry of Agriculture and Rural Development, Ethiopia; Mohammed, T., Woyessa, M., Brihanu, T., Hiko, A., Cross sectional study of camel trypanosomosis in Babile District, Eastern Hararghe Zone, Oromia Regional State, Eastern Ethiopia (2015) Academic Journal of Animal Diseases, 4 (2), pp. 112-117; Mukasa-Mugerwa, E., (1981) The camel (Camelus dromedaries): A bibliographical review, p. 175. , ILCA Monograph, International Livestock Centre for Africa, Addis Ababa; Odeh, F., Falah, K., Labib, A., Khaled, M., Yasin, A., Nicholas, F., A survey of camel (Camelus dromedarius) diseases in Jordan (1999) Journal of Zoo and Wildlife Medicine, 4, pp. 335-338; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P.G., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerging Infectious Diseases, 20 (8), pp. 1370-1374. , COI: 1:CAS:528:DC%2BC28XitVGks7bN; Richard, D., (1979) Study of the Pathology of Dromedary in Borena Awraja (Ethiopia), , PhD Thesis, Ecole Veterinaire, IEMVT, Alfort; Roger, F., Diallo, A., Yigezu, L.M., Hurard, C., Libeau, G., Mebratu, G.Y., Faye, B., Investigation of a new pathological condition of camels in Ethiopia (2000) Journal of Camel Practice and Research, 2 (7), pp. 163-166; Schwartzwalsh, H.J.M.G.H., The productive potential of the camel (1992) The One-Humped Camel (C. Dromedarius) in Eastern Africa: A Pictorial Guide to Diseases, Health Care, and Management, , ed. I.H.J. Schwartz and M. Dioli. Verlag Josef Margraf; Schwartzdioli, I.H.J.M., (1992) The One-Humped Camel (C. Dromedarius) in Eastern Africa: A Pictorial Guide to Diseases, Health Care, and Management, , Verlag Josef Margraf; Shackleton, R.T., Le Maitre, D.C., Pasiecznik, N.M., Richardson, D.M., Prosopis: A global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa (2014) AoB PLANTS, 6, p. plu027; Sisay, K., Getachew, A., Lemma, Z., (2015) The contribution of camel milk to pastoralist livelihoods in Ethiopia: An economic assessment in Somali Regional State, , IIED Country Report. IIED, London; Slingenbergh, J., (2016) Guest Editorial, Broadening Scope, 360, p. 46. , Empres-animal health, FAO; Tadesse, Y., Kebede, K., Kurtu, Y.M., Urge, M., Abegaz, S., Dessie, T., Han, J., Morphological diversities and eco-geographical structuring of Ethiopian camel (Camelus dromedarius) populations (2014) Emir. J. Food Agriculture, 26 (4), pp. 371-389; Tadesse, Y., Kurtu, Y.M., Urge, M., Abegaz, S., Kebede, K., Dessie, T., Distribution, characteristic features of camel populations (Camelus dromedarius) and the unseen treasures of rock-shelters in relation to camel domestication in Ethiopia (2015) Global J. Animal Science, Livestock Production and Animal Breeding, 3 (3), pp. 145-155; Tadesse, Y.M., Urge, S., Abegaz, Y.M., Kurtukebede, K., (2013) Camel and Cattle Population Dynamics and Livelihood Diversification as a Response to Climate Change in Pastoral Areas of Ethiopia, 25, p. 166. , Livestock research for rural development; Tadesse, Y., Urge, M., Abegaz, S., Kurtu, Y.M., Kebede, K., Dessie, D., Husbandry and breeding practices of dromedary camels among pastoral communities of Afar and Somali regional states, Ethiopia (2014) J. Agriculture and Environment for International Development, 108 (2), pp. 167-189; Tadesse, Y., Urge, M., Kesari, P., Kurtu, Y.M., Kebede, K., Abegaz, S., Socioeconomic profile and gender characteristics in relation to camel management practices in the pastoral communities of Ethiopia (2015) J. Economics and Sustainable Development, 6 (1), pp. ISSN 2222-ISSN 2855. , (online; Tefera, M., Abebe, G., Camel in Ethiopia (2012) Ethiopian Veterinary Association, p. 188. , (eds); Tezera, G., Belay, K., Camel husbandry practices in Eastern Ethiopia: The case of Jijiga and Shinile Zones (2002) Nomadic Peoples, New Series, 6 (1), pp. 158-179; Wernery, U., Zoonoses in the Arabian Peninsula (2014) Saudi Medical Journal, 35, pp. 1455-1462; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Khazanehdari, K., Drosten, C., Acute Middle East respiratory syndrome coronavirus infection in livestock dromedaries, Dubai, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1019-1022. , COI: 1:CAS:528:DC%2BC2sXivVGntw%3D%3D; (2017), http://www.who.int/emergencies/mers-cov/en/, Accessed 13 Sept 2017; Wilson, R.T., The nutritional requirements of camel (1989) Séminaire sur la digestion, la nutrition et l'alimentation du dromadaire, pp. 171-179. , Tisserand JL, (ed), CIHEAM, Zaragoza; Wolde, A., Traditional husbandry practices and major health problems of camels in the Ogaden (Ethiopia) (1991) Nomadic Peoples, 29, pp. 21-30; Wolde, A., Getinet, A.M., Mekonnen, H.M., Study on live weight, carcass weight and dressing percentage of Issa camels in Ethiopia (2002) Revue de Médecine Vétérinaire, 153 (11), pp. 713-716; Yusuf, Y., Tafesse, B., Growth pattern of the one humped camel (Camelus dromedarius) (2004) Farm animal biodiversity in Ethiopia: Status and prospects, pp. 157-165.0. , Proceedings of the 11th conference of the Ethiopian Society of Animal Production, August 28–30, 2003, Addis Ababa","Mirkena, T.; Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United NationsEthiopia; email: tadele.mirkena@fao.org",,"SpringerOpen",20417136,,,,"English","Pastoralism",Review,"Final",Open Access,Scopus,2-s2.0-85059084615 "Nieto-Rabiela F., Suzán G., Wiratsudakul A., Rico-Chávez O.","57204152806;7801438528;37023697200;55946094800;","Viral metacommunities associated to bats and rodents at different spatial scales",2018,"Community Ecology","19","2",,"168","175",,2,"10.1556/168.2018.19.2.9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054741333&doi=10.1556%2f168.2018.19.2.9&partnerID=40&md5=0704d2890865257f7d95703b5ef8a910","Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon, Pathom, Thailand","Nieto-Rabiela, F., Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Suzán, G., Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Wiratsudakul, A., Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon, Pathom, Thailand; Rico-Chávez, O., Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico","One of the main goals of community ecology is to measure the relative importance of environmental filters to understand patterns of species distribution at different temporal and spatial scales. Likewise, the identification of factors that shape symbiont metacommunity structures is important in disease ecology because resulting structures drive disease transmission. We tested the hypothesis that distributions of virus species and viral families from rodents and bats are defined by shared responses to host phylogeny and host functional characteristics, shaping the viral metacommunity structures at four spatial scales (Continental, Biogeographical, Zoogeographical, and Regional). The contribution of host phylogeny and host traits to the metacommunity of viruses at each spatial scale was calculated using a redundant analysis of canonical ordering (RDA). For rodents, at American Continental scale the coherence of viral species metacommunity increased while the spatial scale decreased and Quasi-Clementsian structures were observed. This pattern suggests a restricted distribution of viruses through their hosts, while in the Big Mass (Europe, Africa, and Asia), the coherence decreased as spatial scale decreased. Viral species metacommunities associated with bats was dominated by random structures along all spatial scales. We suggest that this random pattern is a result of the presence of viruses with high occupancy range such as rabies (73%) and coronavirus (27%), that disrupt such structures. At viral family scale, viral metacommunities associated with bats showed coherent structures, with the emergence of Quasi- Clementsian and Checkerboard structures. RDA analysis indicates that the assemblage of viral diversity associated with rodents and bats responds to phylogenetic and functional characteristics, which alternate between spatial scales. Several of these variations could be subject to the spatial scale, in spite of this, we could identify patterns at macro ecological scale. The application of metacommunity theory at symbiont scales is particularly useful for large-scale ecological analysis. Understanding the rules of host-virus association can be useful to take better decisions in epidemiological surveillance, control and even predictions of viral distribution and dissemination. © The Author(s).","Biogeographic scale; Disease ecology; Host environmental filtering; Niche theory; Zoogeographic scale","Coronavirus; Rodentia","Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Purvis, A., The delayed rise of present-day mammals (2007) Nature, 446, pp. 507-512; Buckley, L.B., Davies, T.J., Ackerly, D.D., Kraft, N.J.B., Susan, P., Anacker, B.L., Cornell, H.V., Wiens, J.J., Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals (2010) Proc. Roy. Soc. Lond. B. Biol. Sci., 277; Chase, J.M., Myers, J.A., Disentangling the importance of ecological niches from stochastic processes across scales (2011) Phil. Trans. Royal Soc. B: Biol. Sci., 366, pp. 2351-2363; Chave, J., Neutral theory and community ecology (2004) Ecol. Lett., 7, pp. 241-253; Córdova-Tapia, F., Zambrano, L., La diversidad funcional en la ecología de comunidades (2015) Revista Ecosistemas, 24, pp. 78-87; Cox, B., The biogeographic regions reconsidered (2001) J. Biogeogr., 28, pp. 511-523; Dallas, T., Metacom: An R package for the analysis of metacommunity structure (2014) Ecography, 37, pp. 402-405; Dallas, T., Presley, S.J., Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities (2014) Oikos, 123, pp. 866-874; Davies, T.J., Pedersen, A.B., Phylogeny and geography predict pathogen community similarity in wild primates and humans (2008) Proc. Royal Soc. B: Biol. Sci., 275, pp. 1695-1701; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virology, 84, pp. 11336-11349; Gaston, K.J., Global patterns in biodiversity (2000) Nature, 405, pp. 220-227; Gonzalez, A., Metacommunities: Spatial Community Ecology (2009) Encyclopedia of Life Sciences:, pp. 1-8; Gorman, O.T., Bean, W.J., Webster, R.G., Evolutionary processes in influenza viruses: Divergence, rapid evolution, and stasis (1992) Genetic Diversity of RNA Viruses., pp. 75-97. , Holland, J.J. (ed.) Springer, Berlin; Guernier, V., Hochberg, M.E., Guégan, J.F., Ecology drives the worldwide distribution of human diseases (2004) PLoS Biology, 2, p. e141; Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S., Samuel, M.D., Climate warming and disease risks for terrestrial and marine biota (2002) Science, 296, pp. 2158-2162; Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araujo, M.B., Dimitrov, D., Fabre, P.-H., Rahbek, C., Response to comment on ""an Update of Wallace's Zoogeographic Regions of the World (2013) Science, 341, pp. 343-343; Hubbell, S.P., Neutral theory in community ecology and the hypothesis of functional equivalence (2005) Funct. Ecol., 19, pp. 166-172; Jaisson, P.C., (2000) La Hormiga y El Sociobiólogo, , (No. 304.5 J3). México; Johnson, P.T.J., De Roode, J.C., Fenton, A., Why infectious disease research needs community ecology (2016) Science, 349, p. 1259504; Jones, K.E., Bielby, J., Cardillo, M., Fritz, S., O'Dell, J., Orme, C.D.L., Safi, K., Purvis, A., PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals (2009) Ecology, 90, pp. 2648-2648; Kaufman, D.M., Diversity of new world mammals: Universality of the latitudinal gradients of species and bauplans (1995) J. Mammal., 76, pp. 322-334; Krasnov, B.R., Pilosof, S., Stanko, M., Morand, S., Korallo-Vinarskaya, N.P., Vinarski, M.V., Poulin, R., Co-occurrence and phylogenetic distance in communities of mammalian ectoparasites: Limiting similarity versus environmental filtering (2014) Oikos, 123, pp. 63-70; Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Gonzalez, A., The metacommunity concept: A framework for multi-scale community ecology (2004) Ecol. Lett., 7, pp. 601-613; Leibold, M.A., Mikkelson, G.M., Coherence, species turnover, and boundary clumping: Elements of meta-community structure (2002) Oikos, 97, pp. 237-250; Lorencio, C.G., (2007) Avances en Ecología: Hacia un Mejor Conocimiento de la Naturaleza., , Secretariado de Publicaciones de la Universidad de Sevilla; Lovejoy, T.E., Bierregaard, R.O., Rylands, A.B., Edge and other effects of isolation on Amazon forest fragments (1986) The Science of Scarcity and Diversity, pp. 257-284. , M.E. Solé (ed.) Sinauer, Sunderland, Massachusetts; Luis, A.D., Hayman, D.T.S., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R.C., Mills, J.N., Webb, C.T., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc Royal Soc.B: Biol. Sci., 280, p. 20122753; Luis, A.D., O'Shea, T.J., Hayman, D.T.S., Wood, J.L.N., Cunningham, A.A., Gilbert, A.T., Mills, J.N., Webb, C.T., Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission (2015) Ecol. Lett., 18, pp. 1153-1162; Mihaljevic, J.R., Linking metacommunity theory and symbiont evolutionary ecology (2012) Trends Ecol. Evol., 27, pp. 323-329; Morand, S., Krasnov, B.R., (2010) The Biogeography of Host-Parasite Interactions, , Oxford University Press, Oxford; Oksanen, A.J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., Szoecs, E., (2016) Package ""vegan"", , https://cran.r-project.org, (Version 2.4-0). https://github.com/vegandevs/vegan; Peres-Neto, P.R., Legendre, P., Dray, S., Borcard, D., Variation partitioning of species data matrices: Estimation and comparison of fractions (2006) Ecology, 87, pp. 2614-2625; Presley, S.J., Higgins, C.L., Willig, M.R., A comprehensive framework for the evaluation of metacommunity structure (2010) Oikos, 119, pp. 908-917; (2017) R: A Language and Environment for Statistical Computing, , R Core Team. RStudio, Inc., Boston, MA; Rahbek, C., Graves, G.R., Multiscale assessment of patterns of avian species richness (2001) Proc. Nat. Acad. Sci., 98, pp. 4534-4539; Streicker, D.G., Turmelle, S., Vonhof, M.J., Kuzmin, I.V., McCracken, G.F., Rupprecht, C.E., Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats (2010) Science, 329, pp. 676-679; Suzán, G., García-Peńa, G.E., Castro-Arellano, I., Rico, O., Rubio, A.V., Tolsá, M.J., Roche, B., Guégan, J.F., Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space (2015) Ecol. Evol., 5, pp. 865-873; Urteaga, L., La Teoría De Los Climas Y Los Orígenes Del Ambientalismo (1993) Cuadernos Criticos de Geografia Humana, 18, pp. 1-36; Woolhouse, M.E.J., Population biology of multihost pathogens (2001) Science, 292, pp. 1109-1112","Rico-Chávez, O.; Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de MéxicoMexico; email: orich@unam.mx",,"Akademiai Kiado Rt.",15858553,,CEOCA,,"English","Community Ecol.",Article,"Final",Open Access,Scopus,2-s2.0-85054741333 "Li K., Li H., Bi Z., Gu J., Gong W., Luo S., Zhang F., Song D., Ye Y., Tang Y.","57200579323;57195737313;57205398065;57205407349;57195477088;57195742163;56764850300;56571933000;41662531500;57199306900;","Complete genome sequence of a novel swine acute diarrhea syndrome coronavirus, CH/FJWT/2018, isolated in Fujian, China, in 2018",2018,"Microbiology Resource Announcements","7","22", e01259-18,"","",,2,"10.1128/MRA.01259-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059902903&doi=10.1128%2fMRA.01259-18&partnerID=40&md5=8d76fa1db42813c5e463a1b4e8b5a41b","Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China; Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China","Li, K., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Li, H., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Bi, Z., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Gu, J., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Gong, W., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Luo, S., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Zhang, F., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Song, D., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Ye, Y., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Tang, Y., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China","The full-length genome sequence of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV), CH/FJWT/2018, was determined, which was genetically most closely related to CN/GDWT/2017, recently discovered in Fujian, China. The indel sites of the spike (S) gene of CH/FJWT/2018 were most similar to those of bat-origin SADS-related coronaviruses. Copyright © 2018 Li et al.",,"coronavirus spike glycoprotein; Article; bat; China; Coronavirinae; gene sequence; indel mutation; nonhuman; nucleotide sequence; swine acute diarrhea syndrome coronavirus; virus genome; virus isolation","Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg Infect Dis, 23. , https://doi.org/10.3201/eid2309.170915; Wang, L., Su, S., Bi, Y., Wong, G., Gao, G.F., Bat-origin coronaviruses expand their host range to pigs (2018) Trends Microbiol, 26, pp. 466-470. , https://doi.org/10.1016/j.tim.2018.03.001; Fu, X., Fang, B., Liu, Y., Cai, M., Jun, J., Ma, J., Bu, D., Zhang, G., Newly emerged porcine enteric alphacoronavirus in southern China: Identification, origin and evolutionary history analysis (2018) Infect Genet Evol, 62, pp. 179-187. , https://doi.org/10.1016/j.meegid.2018.04.031; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbiol, 211, pp. 15-21. , https://doi.org/10.1016/j.vetmic.2017.09.020; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J Virol Methods, 255, pp. 66-70. , https://doi.org/10.1016/j.jviromet.2018.02.002; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Qin, P., Li, H., Wang, J.W., Wang, B., Xie, R.H., Xu, H., Zhao, L.Y., Huang, Y.W., Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and seroepidemiological survey of MRV3 in diarrheic pigs from East China (2017) Vet Microbiol, 208, pp. 126-136. , https://doi.org/10.1016/j.vetmic.2017.07.021; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Du, Y., Cao, Y., Isolation and characterization of a highly pathogenic strain of porcine enteric alphacoronavirus causing watery diarrhea and high mortality in newborn piglets (2018) Transbound Emerg Dis, , https://doi.org/10.1111/tbed.12992; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Wang, M., Lam, C.S.F., Xu, H., Yuen, K., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439. , https://doi.org/10.1016/j.virol.2007.06.009; Vassilara, F., Spyridaki, A., Pothitos, G., Deliveliotou, A., Papadopoulos, A., A rare case of human coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult (2018) Case Rep Infect Dis, 2018, p. 6796839. , https://doi.org/10.1155/2018/6796839","Ye, Y.; Key Laboratory for Animal Health of Jiangxi ProvinceChina; email: yy6157832@163.com",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Article,"Final",Open Access,Scopus,2-s2.0-85059902903 "Lee T., Ahn J.-H., Park S.Y., Kim G.-H., Kim J., Kim T.-H., Nam I., Park C., Lee M.-H.","37027798300;24398600000;57204978684;57205182845;57203325076;55763792294;7005940652;16835308100;7409122178;","Recent advances in AIV biosensors composed of nanobio hybrid material",2018,"Micromachines","9","12", 651,"","",,1,"10.3390/mi9120651","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058963950&doi=10.3390%2fmi9120651&partnerID=40&md5=a77d5752536a0bf2a9e3bd4b1f6f459b","Department of Chemical Engineering, Kwangwoon University, Seoul, 01899, South Korea; Department of Electronic Engineering, Kwangwoon University, Seoul, 01899, South Korea; Department of Electronics Convergence Engineering, Kwangwoon University, Seoul, 01899, South Korea; School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea; Division of Chemistry and Bio-Environmental Sciences, Seoul Women's University, Seoul, 01797, South Korea","Lee, T., Department of Chemical Engineering, Kwangwoon University, Seoul, 01899, South Korea; Ahn, J.-H., Department of Electronic Engineering, Kwangwoon University, Seoul, 01899, South Korea; Park, S.Y., Department of Chemical Engineering, Kwangwoon University, Seoul, 01899, South Korea; Kim, G.-H., Department of Chemical Engineering, Kwangwoon University, Seoul, 01899, South Korea; Kim, J., Department of Electronics Convergence Engineering, Kwangwoon University, Seoul, 01899, South Korea; Kim, T.-H., School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea; Nam, I., Division of Chemistry and Bio-Environmental Sciences, Seoul Women's University, Seoul, 01797, South Korea; Park, C., Department of Chemical Engineering, Kwangwoon University, Seoul, 01899, South Korea; Lee, M.-H., School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea","Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence. © 2018 by the authors.","Avian influenza virus; Avian influenza virus biosensor; Electrical detection; Electrochemical detection; Fluorescence; Localized surface plasmon resonance; Nanobio hybrid materials","Biosensors; Chemical detection; Damage detection; Diseases; Fluorescence; Materials handling; Plasmons; Surface plasmon resonance; Viruses; Avian influenza virus; Electrical detection; ELectrochemical detection; Localized surface plasmon resonance; Nano-bio hybrid materials; Hybrid materials","Koonin, E.V., Senkevich, T.G., Dolja, V.V., The ancient Virus World and evolution of cells (2006) Biol. Direct, 1, p. 29; Breitbart, M., Rohwer, F., Here a virus, there a virus, everywhere the same virus? (2005) Trends Microbiol, 13, pp. 278-284; Suttle, C.A., Viruses in the sea (2005) Nature, 437, pp. 356-361; Butler, D., MERS cases spotlight lack of research: Outbreak of Middle East respiratory syndrome in South Korea is controllable, but how it infects humans is a puzzle (2015) Nature, 522, pp. 139-140; Smith, R.D., Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management (2006) Soc. Sci. Med, 63, pp. 3113-3123; Fauci, A.S., Morens, D.M., Zika virus in the Americas-Yet another arbovirus threat (2016) N. Engl. J. Med, 374, pp. 601-660; Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C., Gardam, M., Transmission of influenza A in human beings (2007) Lancet Infect. Dis, 7, pp. 257-265; Verhagen, J.H., Lexmond, P., Vuong, O., Schutten, M., Guldemeester, J., Osterhaus, A.D., Elbers, A.R., Koch, G., Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs (2017) PLoS ONE, 12; Cueno, M.E., Imai, K., Tamura, M., Ochiai, K., Structural differences between the Avian and Human H7N9 hemagglutinin proteins are attributable to modifications in salt bridge formation: A computational study with implications in viral evolution (2013) PLoS ONE, 8; Baumann, J., Kouassi, N.M., Foni, E., Klenk, H., Matrosovich, M., H1N1 Swine influenza viruses differ from Avian precursors by a higher pH optimum of membrane fusion (2016) J. Virol, 90, pp. 1569-1577; Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., Finelli, L., Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: A systematic review of the literature (2014) BMC Infect. Dis, pp. 14-480; Alexander, D.J., Brown, I.H., History of highly pathogenic avian influenza (2009) Rev. Sci. Tech, 28, pp. 19-38; Charlton, B., Crossley, B., Hietala, S., Conventional and future diagnostics for avian influenza (2009) Comp. Immunol. Microbiol. Infect. Dis, 32, pp. 341-350; Woolcock, P.R., McFarland, M.D., Lai, S., Chin, R.P., Enhanced recovery of avian influenza virus isolates by a combination of chicken embryo inoculation methods (2001) Avian Dis, 45, pp. 1030-1035; Song, L., Xiong, D., Hu, M., Kang, X., Pan, Z., Jiao, X., Enhanced humoural and cellular immune responses to influenza H7N9 antigen HA1-2 fused with flagellin in chickens (2017) BMC Vet. Res, 13, p. 190; He, Q., Velumani, S., Du, Q., Lim, C.W., Ng, F.K., Donis, R., Kwang, J., Detection of H5 Avian Influenza Viruses by Antigen-Capture Enzyme-Linked Immunosorbent Assay Using H5-Specific Monoclonal Antibody (2007) Clin. Vaccine Immunol, 14, pp. 617-623; Hoffmann, E., Stech, J., Guan, Y., Webster, R.G., Perez, D.R., Universal primer set for the full-length amplification of all influenza A viruses (2001) Arch. Virol, 146, pp. 2275-2289; Auewarakul, P., Sangsiriwut, K., Chaichoune, K., Thitithanyanont, A., Wiriyarat, W., Songserm, T., Ponak-nguen, R., Sawanpanyalert, P., Surveillance for reassortant virus by multiplex reverse transcription-PCR specific for eight genomic segments of avian influenza A H5N1 viruses (2007) J. Clin. Microbiol, 45, pp. 1637-1639; Pang, Y., Rong, Z., Wang, J., Xiao, R., Wang, S., A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF) (2015) Biosens. Bioelectron, 66, pp. 527-532; Guo, D., Zhuo, M., Zhang, X., Xu, C., Jiang, J., Gao, F., Wan, Q., Wang, T., Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1 (2013) Anal. Chim. Acta, 773, pp. 83-88; Xu, L., Wang, R., Kelso, L.C., Ying, Y., Li, Y., A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1 (2016) Sens. Actuators B, 234, pp. 98-108; Nidzworski, D., Siuzdak, K., Niedzialkowski, P., Bogdanowicz, R., Sobaszek, M., Ryl, J., Weiher, P., William, A., A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond (2017) Sci. Rep, 7, p. 15707; Van den Kieboom, C.H., van der Beek, S.L., Mészáros, T., Gyurcsányi, R.E., Ferwerda, G., de Jonge, M.I., Aptasensors for viral diagnostics (2015) Trends Anal. Chem, 75, pp. 58-67; Hassanpour, S., Baradaran, B., Hejazi, M., Hasanzadeh, M., Mokhtarzadeh, A., de la Guardia, M., Recent trends in rapid detection of influenza infections by bio and nanobiosensor (2018) Trends Anal. Chem, 98, pp. 201-215; Wu, Z., Zhou, C.H., Chen, J.J., Xiong, C., Chen, Z., Pang, D.W., Zhang, Z.L., Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization (2015) Biosens. Bioelectron, 68, pp. 586-592; Tepeli, Y., Ülkü, A., Electrochemical biosensors for influenza virus a detection: The potential of adaptation of these devices to POC systems (2018) Sens. Actuators B, 254, pp. 377-384; Grabowska, I., Malecka, K., Jarocka, U., Radecki, J., Radecka, H., Electrochemical biosensors for detection of avian influenza virus-current status and future trends (2014) Acta Biochim. Pol, 61, pp. 471-478; Malecka, K., Grabowska, I., Radecki, J., Stachyra, A., Gora-Sochacka, A., Sirko, A., Radecka, H., Electrochemical detection of Avian Influenza Virus genotype using ssDNA probe modified gold electrode (2013) Electroanalysis, 25, pp. 1871-1878; Arya, S.K., Kongsuphol, P., Wong, C.C., Polla, L.J., Park, M.K., Label free biosensor for sensitive human influenza virus hemagglutinin specific antibody detection using coiled-coil peptide modified microelectrode array based platform (2014) Sens. Actuators B, 194, pp. 127-133; Callaway, Z., Wang, Y., Zhang, B., Zhang, T., Costello, T.A., Slavik, M.F., Li, Y., A portable impedance biosensing system for rapid detection of avian influenza virus (2016) Trans. ASABE, 59, pp. 421-428; Karash, S., Wang, R., Kelso, L., Lu, H., Huang, T.J., Li, Y.J., Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification (2016) J. Virol. Methods, 236, pp. 147-156; Veerapandian, M., Hunter, R., Neethirajan, S., Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen (2016) Talanta, 155, pp. 250-257; Zhou, C.H., Long, Y.M., Qi, B.P., Pang, D.W., Zhang, Z.L., A magnetic bead-based bienzymatic electrochemical immunosensor for determination of H9N2 avian influenza virus (2013) Electrochem. Commun, 31, pp. 129-132; Zhu, X., Ai, S., Chen, Q., Yin, H., Xu, J., Label-free electrochemical detection of Avian Influenza Virus genotype utilizing multi-walled carbon nanotubes-cobalt phthalocyanine-PAMAM nanocomposite modified glassy carbon electrode (2009) Electrochem. Commun, 11, pp. 1543-1546; Xie, Z., Huang, J., Luo, S., Xie, Z., Xie, L., Liu, J., Pang, Y., Fan, Q., Ultrasensitive Electrochemical Immunoassay for Avian Influenza Subtype H5 Using Nanocomposite (2014) PLoS ONE, 9; Jarocka, U., Sawicka, R., Gora-Sochacka, A., Sirko, A., Dehaen, W., Radecki, J., Radecka, H., An electrochemical immunosensor based on a 4, 40-thiobisbenzenethiol self-assembled monolayer for the detection of hemagglutinin from avian influenza virus H5N1 (2016) Sens. Actuators B, 228, pp. 25-30; Tian, J., Wang, D., Zheng, Y., Jing, T., A High Sensitive Electrochemical Avian Influenza Virus H7 Biosensor Based on CNTs/MoSx Aerogel (2017) Int. J. Electrochem. Sci, 12, pp. 2658-2668; Pinar, A., Dowling, J.K., Bitto, N.J., Robertson, A.A., Latz, E., Stewart, C.R., Drummond, G.R., Tate, M.D., PB1-F2 derived from avian influenza A virus H7N9 induces inflammation via activation of the NLRP3 inflammasome (2017) J. Biol. Chem, 292, pp. 826-836; Vidic, J., Manzano, M., Chang, C.M., Jaffrezic-Renault, N., Advanced biosensors for detection of pathogens related to livestock and poultry (2017) Vet. Res, 48, p. 11; Miodek, A., Vidic, J., Sauriat-Dorizon, H., Richard, C.A., Le Goffic, R., Korri-Youssoufi, H., Chevalier, C., Electrochemical detection of the oligomerization of PB1-F2 influenza A virus protein in infected cells (2014) Anal. Chem, 86, pp. 9098-9105; Cui, Y., Wei, Q., Park, H., Lieber, C.M., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species (2001) Science, 293, pp. 1289-1292; Stern, E., Klemic, J.F., Routenberg, D.A., Wyrembak, P.N., Turner-Evans, D.B., Hamilton, A.D., LaVan, D.A., Reed, M.A., Label-free immunodetection with CMOS-compatible semiconducting nanowires (2007) Nature, 445, pp. 519-522; Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., Lieber, C.M., Electrical detection of single viruses (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 14017-14022; Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mileski, W., Davey, M., Leamon, J.H., Edwards, M., An integrated semiconductor device enabling non-optical genome sequencing (2011) Nature, 475, pp. 348-352; Gu, B., Park, T.J., Ahn, J.H., Huang, X.J., Lee, S.Y., Choi, Y.K., Nanogap Field-Effect Transistor Biosensors for Electrical Detection of Avian Influenza (2009) Small, 5, pp. 2407-2412; Kim, S.H., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K., A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor (2009) Appl. Phys. Lett, 94; Lin, C.H., Hung, C.H., Hsiao, C.Y., Lin, H.C., Ko, F.H., Yang, Y.S., Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA (2009) Biosens. Bioelectron, 24, pp. 3019-3024; Ahn, J.H., Im, M., Park, T.J., Lee, S.Y., Choi, Y.K., Label-Free and Real-Time Detection of Avian Influenza Using Nanowire Field Effect Transistors (2015) J. Biomed. Nanotechnol, 11, pp. 1640-1643; Ahn, J.H., Choi, S.J., Han, J.W., Park, T.J., Lee, S.Y., Choi, Y.K., Double-Gate Nanowire Field Effect Transistor for a Biosensor (2010) Nano Lett, 10, pp. 2934-2938; Ono, T., Oe, T., Kanai, Y., Ikuta, T., Ohno, Y., Maehashi, K., Inoue, K., Suzuki, Y., Glycan-functionalized graphene-FETs toward selective detection of human-infectious avian influenza virus (2017) Jpn. J. Appl. Phys, 56; Hideshima, S., Hinou, H., Ebihara, D., Sato, R., Kuroiwa, S., Nakanishi, T., Nishimura, T., Osaka, T., Attomolar Detection of Influenza A Virus Hemagglutinin Human H1 and Avian H5 Using Glycan-Blotted Field Effect Transistor Biosensor (2013) Anal. Chem, 85, pp. 5641-5644; Chan, C., Shi, Y., Fan, Y., Yang, M., A microfluidic flow-through chip integrated with reduced grapheneoxide transistor for influenza virus gene detection (2017) Sens. Actuators B, 251, pp. 927-933; Park, S.W., Choi, J.B., Jeun, M.H., Kim, Y.D., Yuk, S.S., Kim, S.K., Song, C.S., Lee, K.H., Detection of Avian Influenza Virus from Cloacal Swabs Using a DisposableWell Gate FET Sensor (2017) Adv. Healthc. Mater, 6; Poltronieri, P., Mezzolla, V., Primiceri, E., Maruccio, G., Biosensors for the detection of food pathogens (2014) Foods, 3, pp. 511-526; Oh, B.K., Kim, Y.K., Park, K.W., Lee, W.H., Choi, J.W., Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium (2004) Biosens. Bioelectron, 19, pp. 1497-1504; Piliarik, M., Vaisocherová, H., Homola, J., Surface plasmon resonance biosensing (2009) Biosens. Biodetect, 503, pp. 65-88; Zeng, S., Baillargeat, D., Ho, H.P., Yong, K.T., Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications (2014) Chem. Soc. Rev, 43, pp. 3426-3452; Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P., Biosensing with plasmonic nanosensors (2008) Nat. Mater, 7, pp. 442-453; Hall, W.P., Ngatia, S.N., Van Duyne, R.P., LSPR Biosensor Signal Enhancement Using Nanoparticle-Antibody Conjugates (2011) J. Phys. Chem. C, 115, pp. 1410-1414; Takemura, K., Adegoke, O., Takahashi, N., Kato, T., Li, T.C., Kitamoto, N., Tanaka, T., Park, E.Y., Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses (2017) Biosens. Bioelectron, 15, pp. 998-1005; Mandenius, C.F., Wang, R., Aldén, A., Bergström, G., Thébault, S., Lutsch, C., Ohlson, S., Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance (2008) Anal. Chim. Acta, 623, pp. 66-75; Zhao, X., Tsao, Y.C., Lee, F.J., Tsai, W.H., Wang, C.H., Chuang, T.L., Wu, M.S., Lin, C.W., Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies (2016) J. Virol. Methods, 233, pp. 15-22; Kim, S.A., Byun, K.M., Kim, K., Jang, S.M., Ma, K., Oh, Y., Kim, D., Kim, S.J., Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays (2010) Nanotechnology, 21; Bai, H., Wang, R., Hargis, B., Lu, H., Li, Y., A SPR aptasensor for detection of avian influenza virus H5N1 (2012) Sensors, 12, pp. 12506-12518; Kim, S.A., Kim, S.J., Lee, S.H., Park, T.H., Byun, K.M., Kim, S.G., Shuler, M.L., Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor (2009) J. Opt. Soc. Korea, 13, pp. 392-397; Nguyen, V.T., Seo, H.B., Kim, B.C., Kim, S.K., Song, C.S., Gu, M.B., Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers (2016) Biosens. Bioelectron, 86, pp. 293-300; Chang, Y.F., Wang, W.H., Hong, Y.W., Yuan, R.Y., Chen, K.H., Huang, Y.W., Lu, P.L., Su, L.C., Simple Strategy for Rapid and Sensitive Detection of Avian Influenza A H7N9 Virus Based on Intensity-Modulated SPR Biosensor and New Generated Antibody (2018) Anal. Chem, 90, pp. 1861-1869; Park, T.J., Lee, S.J., Kim, D.K., Heo, N.S., Park, J.Y., Lee, S.Y., Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein (2012) Talanta, 86, pp. 246-252; Kamikawa, T.L., Mikolajczyk, M.G., Kennedy, M., Zhong, L., Zhang, P., Setterington, E.B., Scott, D.E., Alocilja, E.C., Pandemic influenza detection by electrically active magnetic nanoparticles and surface plasmon resonance (2012) IEEE Trans. Nanotechnol, 11, pp. 88-96; Vyboh, K., Ajamian, L., Mouland, A.J., Detection of viral RNA by fluorescence in situ hybridization (FISH) (2012) J. Vis. Exp. JoVE; Alimova, A., Katz, A., Podder, R., Minko, G., Wei, H., Alfano, R.R., Gottlieb, P., Virus Particles Monitored by Fluorescence Spectroscopy: A Potential Detection Assay for Macromolecular Assembly (2004) J. Photochem. Photobiol, 80, pp. 41-46; Pashazadeh, P., Mokhtarzadeh, A., Hasanzadeh, M., Hejazi, M., Hashemi, M., de la Guardia, M., Nano-materials for use in sensing of salmonella infections: Recent advances (2017) Biosens. Bioelectron, 87, pp. 1050-1064; Pollock, F.J., Morris, P.J., Willis, B.L., Bourne, D.G., Detection and quantification of the coral pathogen Vibrio coralliilyticus by real-time PCR with TaqMan fluorescent probes (2010) Appl. Environ. Microbiol, 76, pp. 5282-5286; Li, B., Yu, Q., Duan, Y., Fluorescent labels in biosensors for pathogen detection (2015) Crit. Rev. Biotechnol, 35, pp. 82-93; García-Cañas, V., Lorbetskie, B., Bertrand, D., Cyr, T.D., Girard, M., Selective and quantitative detection of influenza virus proteins in commercial vaccines using two-dimensional high-performance liquid chromatography and fluorescence detection (2007) Anal. Chem, 79, pp. 3164-3172; Zhao, W., Zhang, W.P., Zhang, Z.L., He, R.L., Lin, Y., Xie, M., Pang, D.W., Robust and highly sensitive fluorescence approach for point-of-care virus detection based on immunomagnetic separation (2012) Anal. Chem, 84, pp. 2358-2365; Baker, S.F., Nogales, A., Santiago, F.W., Topham, D.J., Martínez-Sobrido, L., Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA) (2015) Vaccine, 33, pp. 3562-3570; Nguyen, T.H., Ung, T.D.T., Vu, T.H., Tran, T.K.C., Dinh, D.K., Nguyen, Q.L., Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus (2012) Adv. Nat. Sci. Nanosci. Nanotechnol, 3; Ahmed, S.R., Neethirajan, S., Chiral MoS 2 Quantum Dots: Dual-Mode Detection Approaches for Avian Influenza Viruses (2018) Glob. Chall, 2; Kuriakose, T., Hilt, D.A., Jackwood, M.W., Detection of avian influenza viruses and differentiation of H5, H7, N1, and N2 subtypes using a multiplex microsphere assay (2012) Avian Dis, 56, pp. 90-96; Chen, W., He, B., Li, C., Zhang, X., Wu, W., Yin, X., Wang, J., Real-time RT-PCR for H5N1 avian influenza A virus detection (2007) J. Med. Microbiol, 56, pp. 603-607; Zou, L., Li, T., Shen, R., Ren, S., Ling, L., A label-free light-up fluorescent sensing platform based upon hybridization chain reaction amplification and DNA triplex assembly (2018) Talanta, 189, pp. 137-142; Yeo, S.J., Choi, K., Cuc, B.T., Hong, N.N., Bao, D.T., Ngoc, N.M., Kim, H.S., Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses (2016) Theranostics, 6, pp. 231-242; Bao, D.T., Do Thi Hoang Kim, H.P., Cuc, B.T., Ngoc, N.M., Linh, N.T.P., Huu, N.C., Yu, S.T., Rapid Detection of Avian Influenza Virus by Fluorescent Diagnostic Assay using an Epitope-Derived Peptide (2017) Theranostics, 7, pp. 1835-1846; Afzal, A., Mujahid, A., Schirhagl, R., Bajwa, S.Z., Latif, U., Feroz, S., Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses (2017) Chemosensors, 5, p. 7; Wu, K., Klein, T., Krishna, V.D., Su, D., Perez, A.M., Wang, J.P., Portable GMR Handheld Platform for the Detection of Influenza A Virus (2017) ACS Sens, 2, pp. 1594-1601; Krishna, V.D., Wu, K., Su, D., Cheeran, M.C.J., Wang, J.P., Perezz, A., Nanotechnology: Review of concepts and potential application of sensing platforms in food safety (2018) Food Microbiol, 75, pp. 47-54; Hung, L.Y., Chang, J.C., Tsai, Y.C., Huang, C.C., Chang, C.P., Yeh, C.S., Lee, G.B., Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system (2014) Nanomedicine, 10, pp. 819-829; Oh, S., Kim, J., Tran, V.T., Lee, D.K., Ahmed, S.R., Hong, J.C., Lee, J., Lee, J., Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection (2018) ACS Appl. Mater. Interfaces, 10, pp. 12534-12543; Chou, T.C., Hsu, W., Wang, C.H., Chen, Y.J., Fang, J.M., Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry (2011) J. Nanobiotechnol, 9, p. 52; Zhu, M., Hu, Y., Li, G., Ou, W., Mao, P., Xin, S., Wan, Y., Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2 (2014) Nanoscale Res. Lett, 9, p. 528; Krishna, V.D., Wu, K., Perezz, A., Wang, J.P., Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus (2016) Front. Microbiol, 7, p. 400; Ha, Y., Ko, S., Kim, I., Huang, Y., Mohanty, K., Huh, C., Maynard, J.A., Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays (2018) ACS Appl. Nano Mater, 1, pp. 512-521; Ladhani, L., Pardon, G., Meeuws, H., vanWesenbeeck, L., Schmidt, K., Stuyver, L., van derWijngaart, W., Sampling and detection of airborne influenza virus towards point-of-care applications (2017) PLoS ONE, 12; Hwang, S.G., Ha, K., Guk, K., Lee, D.K., Eom, G., Song, S., Kang, T., Lim, E.K., Rapid and simple detection of Tamiflu-resistant influenza virus: Development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics (2018) Sci. Rep, 8, p. 12999; Wu, L.T., Thomas, I., Curran, M.D., Ellis, J.S., Parmar, S., Goel, N., Sharma, P.I., Lee, H.H., Duplex molecular assay intended for point-of-care diagnosis of influenza A/B virus infection (2013) J. Clin. Microbiol, 51, pp. 3031-3038","Lee, T.; Department of Chemical Engineering, Kwangwoon UniversitySouth Korea; email: nanotlee@gmail.com",,"MDPI AG",2072666X,,,,"English","Micromachines",Review,"Final",Open Access,Scopus,2-s2.0-85058963950 "Hijano D.R., Maron G., Hayden R.T.","35302437400;23473594800;7102411059;","Respiratory viral infections in patients with cancer or undergoing hematopoietic cell transplant",2018,"Frontiers in Microbiology","9","DEC", 3097,"","",,1,"10.3389/fmicb.2018.03097","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058423415&doi=10.3389%2ffmicb.2018.03097&partnerID=40&md5=1b733ccb8ed8bbddd253154e8bd8ecae","Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States; Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, United States","Hijano, D.R., Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States; Maron, G., Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States; Hayden, R.T., Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, United States","Survival rates for pediatric cancer have steadily improved over time but it remains a significant cause of morbidity and mortality among children. Infections are a major complication of cancer and its treatment. Community acquired respiratory viral infections (CRV) in these patients increase morbidity, mortality and can lead to delay in chemotherapy. These are the result of infections with a heterogeneous group of viruses including RNA viruses, such as respiratory syncytial virus (RSV), influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (HMPV), rhinovirus (RhV), and coronavirus (CoV). These infections maintain a similar seasonal pattern to those of immunocompetent patients. Clinical manifestations vary significantly depending on the type of virus and the type and degree of immunosuppression, ranging from asymptomatic or mild disease to rapidly progressive fatal pneumonia Infections in this population are characterized by a high rate of progression from upper to lower respiratory tract infection and prolonged viral shedding. Use of corticosteroids and immunosuppressive therapy are risk factors for severe disease. The clinical course is often difficult to predict, and clinical signs are unreliable. Accurate prognostic viral and immune markers, which have become part of the standard of care for systemic viral infections, are currently lacking; and management of CRV infections remains controversial. Defining effective prophylactic and therapeutic strategies is challenging, especially considering, the spectrum of immunocompromised patients, the variety of respiratory viruses, and the presence of other opportunistic infections and medical problems. Prevention remains one of the most important strategies against these viruses. Early diagnosis, supportive care and antivirals at an early stage, when available and indicated, have proven beneficial. However, with the exception of neuraminidase inhibitors for influenza infection, there are no accepted treatments. In high-risk patients, preemptive treatment with antivirals for upper respiratory tract infection (URTI) to decrease progression to LRTI is a common strategy. In the future, viral load and immune markers may prove beneficial in predicting severe disease, supporting decision making and monitor treatment in this population. © 2018 Hijano, Maron and Hayden.","Cancer; Child; Hematopoietic cell transplant; Immunocompromised; Influenza; Respiratory infection; RSV; Virus","amantadine; baloxavir marboxil; bronchodilating agent; corticosteroid; DNA directed RNA polymerase; endonuclease; favipiravir; Human immunodeficiency virus fusion inhibitor; laninamivir; monoclonal antibody; nitazoxanide; nucleoside analog; oseltamivir; palivizumab; peramivir; ribavirin; rimantadine; sialic acid; sialidase; suptavumab; vapendavir; zanamivir; artificial ventilation; cell therapy; chemotherapy; clinical feature; community acquired infection; Coronavirinae; fluid therapy; hematopoietic cell; Human respiratory syncytial virus; hypoxia; immunocompetence; immunosuppressive treatment; Influenza virus; Metapneumovirus; morbidity; mortality; next generation sequencing; nonhuman; Paramyxovirinae; pneumonia; Review; Rhinovirus; risk factor; survival rate; upper respiratory tract infection; viral respiratory tract infection; virus diagnosis; virus isolation; virus shedding","Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection (2014) Pediatrics, 134, pp. e620-e638. , AAP; Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection (2014) Pediatrics, 134, pp. 415-420. , AAP; Recommendations for prevention and control of influenza in children, 2018–2019 (2018) Pediatrics, 140, p. e20172550. , AAP; Abandeh, F.I., Lustberg, M., Devine, S., Elder, P., Andritsos, L., Martin, S.I., Outcomes of hematopoietic stem cell transplant recipients with rhinovirus infection: A matched, case-control study (2013) Bone Marrow Transplant, 48, pp. 1554-1557; (2016) Inhaled ALX-0171: Phase I/IIa Study in 53 Hospitalised RSV-Infected Children, , http://www.ablynx.com/uploads/data/files/ablynx_alx-0171_first-ininfant%20study%20results_webcast%20presentation.pdf, Online. Available online at: Accessed; Adderson, E., Branum, K., Sealy, R.E., Jones, B.G., Surman, S.L., Penkert, R., Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- To 6-year-old children (2015) Clin. Vaccine Immunol., 22, pp. 298-303; Adedeji, A.O., Severson, W., Jonsson, C., Singh, K., Weiss, S.R., Sarafianos, S.G., Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms (2013) J. Virol., 87, pp. 8017-8028; Aguayo-Hiraldo, P.I., Arasaratnam, R.J., Tzannou, I., Kuvalekar, M., Lulla, P., Naik, S., Characterizing the cellular immune response to parainfluenza virus 3 (2017) J. Infect. Dis., 216, pp. 153-161; Ambrose, C.S., McLaurin, K.K., The medicaid cost of palivizumab (2015) J. Pediatr. Infect. Dis. Soc., 4, pp. 83-84; Appiah, G.D., Blanton, L., D'Mello, T., Kniss, K., Smith, S., Mustaquim, D., Influenza activity - United States, 2014-15 season and composition of the 2015-16 influenza vaccine (2015) MMWR Morb. Mortal. Wkly. Rep., 64, pp. 583-590; Azadeh, N., Sakata, K.K., Brighton, A.M., Vikram, H.R., Grys, T.E., FilmArray respiratory panel assay: Comparison of nasopharyngeal swabs and bronchoalveolar lavage samples (2015) J. Clin. Microbiol., 53, pp. 3784-3787; Battles, M.B., Langedijk, J.P., Furmanova-Hollenstein, P., Chaiwatpongsakorn, S., Costello, H.M., Kwanten, L., Molecular mechanism of respiratory syncytial virus fusion inhibitors (2016) Nat. Chem. Biol., 12, pp. 87-93; Baugh, K.A., Tzannou, I., Leen, A.M., Infusion of cytotoxic T lymphocytes for the treatment of viral infections in hematopoetic stem cell transplant patients (2018) Curr. Opin. Infect. Dis., 31, pp. 292-300; Beck, C.R., McKenzie, B.C., Hashim, A.B., Harris, R.C., Nguyen-Van-Tam, J.S., Influenza vaccination for immunocompromised patients: Systematic review and meta-analysis by etiology (2012) J. Infect. Dis., 206, pp. 1250-1259; Bednarska, K., Hallmann-Szelinska, E., Kondratiuk, K., Brydak, L.B., Evaluation of the activity of influenza and influenza-like viruses in the epidemic season 2013/2014 (2015) Adv. Exp. Med. Biol., 857, pp. 1-7; Biopharma, A., (2017) Ansun BioPharma Announces Breakthrough Designation for Its Experimental Drug DAS181, , http://www.ansunbiopharma.com/news/, Online. Available online at: Accessed September 3, 2018; Boeckh, M., Englund, J., Li, Y., Miller, C., Cross, A., Fernandez, H., Randomized controlled multicenter trial of aerosolized ribavirin for respiratory syncytial virus upper respiratory tract infection in hematopoietic cell transplant recipients (2007) Clin. Infect. Dis., 44, pp. 245-249; Boeckh, M., Englund, J.A., Evaluation of therapeutics for RSV: An important step forward (2010) Am. J. Respir. Crit. Care Med., 182, pp. 1217-1219; Buckingham, S.C., Bush, A.J., Devincenzo, J.P., Nasal quantity of respiratory syncytical virus correlates with disease severity in hospitalized infants (2000) Pediatr. Infect. Dis. J., 19, pp. 113-117; Byrn, R.A., Jones, S.M., Bennett, H.B., Bral, C., Clark, M.P., Jacobs, M.D., Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit (2015) Antimicrob. Agents Chemother., 59, pp. 1569-1582; Caliendo, A.M., Multiplex PCR and emerging technologies for the detection of respiratory pathogens (2011) Clin. Infect. Dis., 52, pp. S326-S330; Campbell, A.P., Guthrie, K.A., Englund, J.A., Farney, R.M., Minerich, E.L., Kuypers, J., Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant (2015) Clin. Infect. Dis., 61, pp. 192-202; Capella, C., Chaiwatpongsakorn, S., Gorrell, E., Risch, Z.A., Ye, F., Mertz, S.E., Prefusion F, postfusion F, G antibodies, and disease severity in infants and young children with acute respiratory syncytial virus infection (2017) J. Infect. Dis., 216, pp. 1398-1406; Carr, S., Allison, K.J., Van De Velde, L.A., Zhang, K., English, E.Y., Iverson, A., Safety and immunogenicity of live attenuated and inactivated influenza vaccines in children with cancer (2011) J. Infect. Dis., 204, pp. 1475-1482; Carr, S., Ilyushina, N.A., Franks, J., Adderson, E.E., Caniza, M., Govorkova, E.A., Oseltamivir-resistant influenza A and B viruses pre- And postantiviral therapy in children and young adults with cancer (2011) Pediatr. Infect. Dis. J., 30, pp. 284-288; Caserta, M.T., Qiu, X., Tesini, B., Wang, L., Murphy, A., Corbett, A., Development of a global respiratory severity score for respiratory syncytial virus infection in infants (2017) J. Infect. Dis., 215, pp. 750-756; Casper, C., Englund, J., Boeckh, M., How I treat influenza in patients with hematologic malignancies (2010) Blood, 115, pp. 1331-1342; Chalkias, S., Mackenzie, M.R., Gay, C., Dooley, C., Marty, F.M., Moss, R.B., DAS181 treatment of hematopoietic stem cell transplant patients with parainfluenza virus lung disease requiring mechanical ventilation (2014) Transpl. Infect. Dis., 16, pp. 141-144; Chaparro, C., Scavuzzo, M., Winton, T., Keshavjee, S., Kesten, S., Status of lung transplant recipients surviving beyond five years (1997) J. Heart Lung Transplant., 16, pp. 511-516; Chemaly, R.F., Aitken, S.L., Wolfe, C.R., Jain, R., Boeckh, M.J., Aerosolized ribavirin: The most expensive drug for pneumonia (2016) Transpl. Infect. Dis., 18, pp. 634-636; Chemaly, R.F., Ghosh, S., Bodey, G.P., Rohatgi, N., Safdar, A., Keating, M.J., Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients: A retrospective study at a major cancer center (2006) Medicine, 85, pp. 278-287; Chemaly, R.F., Hanmod, S.S., Rathod, D.B., Ghantoji, S.S., Jiang, Y., Doshi, A., The characteristics and outcomes of parainfluenza virus infections in 200 patients with leukemia or recipients of hematopoietic stem cell transplantation (2012) Blood, 119, pp. 2738-2745. , quiz 2969; Chemaly, R.F., Shah, D.P., Boeckh, M.J., Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies (2014) Clin. Infect. Dis., 59, pp. S344-S351; Chen, Y.B., Driscoll, J.P., McAfee, S.L., Spitzer, T.R., Rosenberg, E.S., Sanders, R., Treatment of parainfluenza 3 infection with DAS181 in a patient after allogeneic stem cell transplantation (2011) Clin. Infect. Dis., 53, pp. e77-e80; Choi, S.M., Boudreault, A.A., Xie, H., Englund, J.A., Corey, L., Boeckh, M., Differences in clinical outcomes after 2009 influenza A/H1N1 and seasonal influenza among hematopoietic cell transplant recipients (2011) Blood, 117, pp. 5050-5056; Chu, H.Y., Chin, J., Pollard, J., Zerr, D.M., Englund, J.A., Clinical outcomes in outpatient respiratory syncytial virus infection in immunocompromised children (2016) Influenza Other Respir. Viruses, 10, pp. 205-210; Clark, M.P., Ledeboer, M.W., Davies, I., Byrn, R.A., Jones, S.M., Perola, E., Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2 (2014) J. Med. Chem., 57, pp. 6668-6678; Coates, M., Brookes, D., Kim, Y.I., Allen, H., Fordyce, E.A.F., Meals, E.A., Preclinical characterization of PC786, an inhaled small-molecule respiratory syncytial virus L protein polymerase inhibitor (2017) Antimicrob. Agents Chemother., 61, pp. e00737-e00817; Couch, R.B., Englund, J.A., Whimbey, E., Respiratory viral infections in immunocompetent and immunocompromised persons (1997) Am. J. Med., 102, pp. 2-9. , discussion 25–26; Couturier, B.A., Bender, J.M., Schwarz, M.A., Pavia, A.T., Hanson, K.E., She, R.C., Oseltamivir-resistant influenza A 2009 H1N1 virus in immunocompromised patients (2010) Influenza Other Respir. Viruses, 4, pp. 199-204; Damlaj, M., Bartoo, G., Gijima, D., Hashmi, S., Litzow, M.R., Hogan, W., Oral ribavirin for the treatment of respiratory syncytial virus infection in allogeneic stem cell transplant recipients-utility of the immunodeficiency scoring index for risk stratification (2015) Biol. Blood Marrow Transplant., 21, pp. S173-S174; De Fontbrune, F.S., Robin, M., Porcher, R., Scieux, C., De Latour, R.P., Ferry, C., Palivizumab treatment of respiratory syncytial virus infection after allogeneic hematopoietic stem cell transplantation (2007) Clin. Infect. Dis., 45, pp. 1019-1024; De Jong, M.D., Ison, M.G., Monto, A.S., Metev, H., Clark, C., O'Neil, B., Evaluation of intravenous peramivir for treatment of influenza in hospitalized patients (2014) Clin. Infect. Dis., 59, pp. e172-e185; Deffrasnes, C., Hamelin, M.E., Prince, G.A., Boivin, G., Identification and evaluation of a highly effective fusion inhibitor for human metapneumovirus (2008) Antimicrob. Agents Chemother., 52, pp. 279-287; DeVincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 8800-8805; Devincenzo, J.P., Natural infection of infants with respiratory syncytial virus subgroups A and B: A study of frequency, disease severity, and viral load (2004) Pediatr. Res., 56, pp. 914-917; DeVincenzo, J.P., Aitken, J., Harrison, L., Respiratory syncytial virus (RSV) loads in premature infants with and without prophylactic RSV fusion protein monoclonal antibody (2003) J. Pediatr., 143, pp. 123-126; DeVincenzo, J.P., Buckingham, S.C., Relationship between respiratory syncytial virus load and illness severity in children (2002) J. Infect. Dis., 186, pp. 1376-1377. , author reply 1377; DeVincenzo, J.P., El Saleeby, C.M., Bush, A.J., Respiratory syncytial virus load predicts disease severity in previously healthy infants (2005) J. Infect. Dis., 191, pp. 1861-1868; DeVincenzo, J.P., McClure, M.W., Symons, J.A., Fathi, H., Westland, C., Chanda, S., Activity of oral ALS-008176 in a respiratory syncytial virus challenge study (2015) N. Engl. J. Med., 373, pp. 2048-2058; DeVincenzo, J.P., Whitley, R.J., Mackman, R.L., Scaglioni-Weinlich, C., Harrison, L., Farrell, E., Oral GS-5806 activity in a respiratory syncytial virus challenge study (2014) N. Engl. J. Med., 371, pp. 711-722; Domachowske, J.B., Rosenberg, H.F., Respiratory syncytial virus infection: Immune response, immunopathogenesis, and treatment (1999) Clin. Microbiol. Rev., 12, pp. 298-309; Douglas, J.L., Panis, M.L., Ho, E., Lin, K.Y., Krawczyk, S.H., Grant, D.M., Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms (2005) Antimicrob. Agents Chemother., 49, pp. 2460-2466; Drozd, D.R., Limaye, A.P., Moss, R.B., Sanders, R.L., Hansen, C., Edelman, J.D., DAS181 treatment of severe parainfluenza type 3 pneumonia in a lung transplant recipient (2013) Transpl. Infect. Dis., 15, pp. E28-E32; Dykewicz, C.A., Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients: Focus on community respiratory virus infections (2001) Biol. Blood Marrow Transplant., 7, pp. 19s-22s; El Chaer, F., Shah, D.P., Kmeid, J., Ariza-Heredia, E.J., Hosing, C.M., Mulanovich, V.E., Burden of human metapneumovirus infections in patients with cancer: Risk factors and outcomes (2017) Cancer, 123, pp. 2329-2337; El Saleeby, C.M., Bush, A.J., Harrison, L.M., Aitken, J.A., Devincenzo, J.P., Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children (2011) J. Infect. Dis., 204, pp. 996-1002; El Saleeby, C.M., Somes, G.W., DeVincenzo, J.P., Gaur, A.H., Risk factors for severe respiratory syncytial virus disease in children with cancer: The importance of lymphopenia and young age (2008) Pediatrics, 121, pp. 235-243; Engelhard, D., Mohty, B., De la Camara, R., Cordonnier, C., Ljungman, P., European guidelines for prevention and management of influenza in hematopoietic stem cell transplantation and leukemia patients: Summary of ECIL-4 (2011), on behalf of ECIL, a joint venture of EBMT, EORTC, ICHS, and ELN (2013) Transpl. Infect. Dis., 15, pp. 219-232; Engelhard, D., Nagler, A., Hardan, I., Morag, A., Aker, M., Baciu, H., Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients (1993) Bone Marrow Transplant, 11, pp. 1-5; Englund, J., Feuchtinger, T., Ljungman, P., Viral infections in immunocompromised patients (2011) Biol. Blood Marrow Transplant., 17, pp. S2-S5; Englund, J.A., Diagnosis and epidemiology of community-acquired respiratory virus infections in the immunocompromised host (2001) Biol. Blood Marrow Transplant., 7, pp. 2s-4s; Englund, J.A., Piedra, P.A., Ahn, Y.M., Gilbert, B.E., Hiatt, P., High-dose, short-duration ribavirin aerosol therapy compared with standard ribavirin therapy in children with suspected respiratory syncytial virus infection (1994) J. Pediatr., 125, pp. 635-641; Englund, J.A., Piedra, P.A., Jefferson, L.S., Wilson, S.Z., Taber, L.H., Gilbert, B.E., High-dose, short-duration ribavirin aerosol therapy in children with suspected respiratory syncytial virus infection (1990) J. Pediatr., 117 (2), pp. 313-320; Englund, J.A., Piedra, P.A., Jewell, A., Patel, K., Baxter, B.B., Whimbey, E., Rapid diagnosis of respiratory syncytial virus infections in immunocompromised adults (1996) J. Clin. Microbiol., 34, pp. 1649-1653; Englund, J.A., Whimbey, E., Atmar, R.L., Diagnosis of respiratory viruses in cancer and transplant patients (1999) Curr. Clin. Top. Infect. Dis., 19, pp. 30-59; Erard, V., Chien, J.W., Kim, H.W., Nichols, W.G., Flowers, M.E., Martin, P.J., Airflow decline after myeloablative allogeneic hematopoietic cell transplantation: The role of community respiratory viruses (2006) J. Infect. Dis., 193, pp. 1619-1625; Espinosa-Aguilar, L., Green, J.S., Forrest, G.N., Ball, E.D., Maziarz, R.T., Strasfeld, L., Novel H1N1 influenza in hematopoietic stem cell transplantation recipients: Two centers' experiences (2011) Biol. Blood Marrow Transplant., 17, pp. 566-573; Falsey, A.R., Koval, C., DeVincenzo, J.P., Walsh, E.E., Compassionate use experience with high-titer respiratory syncytical virus (RSV) immunoglobulin in RSV-infected immunocompromised persons (2017) Transpl. Infect. Dis., 19, p. e12657; (2018) FDA Approves New Drug to Treat Influenza, , https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm624226.htm, Online. U.S. Food and Drug Administration. Available online at: Accessed October 25, 2018; Fiore, A.E., Fry, A., Shay, D., Gubareva, L., Bresee, J.S., Uyeki, T.M., Antiviral agents for the treatment and chemoprophylaxis of influenza — Recommendations of the Advisory Committee on Immunization Practices (ACIP) (2011) MMWR Recomm. Rep., 60, pp. 1-24; Fisher, B.T., Danziger-Isakov, L., Sweet, L.R., Munoz, F.M., Maron, G., Tuomanen, E., A multicenter consortium to define the epidemiology and outcomes of inpatient respiratory viral infections in pediatric hematopoietic stem cell transplant recipients (2017) J. Pediatric Infect. Dis. Soc., 7, pp. 275-282; Foolad, F., Aitken, S.L., Shigle, T.L., Prayag, A., Ghantoji, S.S., Ariza-Heredia, E.J., Impact of ribavirin formulation and host risk factors on 90-day mortality in Hematopoietic Cell Transplant (HCT) patients with RSV infection (2018) Biol. Blood Marrow Transplant., 24, pp. S369-S370; Foolad, F., Prayag, A., Ghantoji, S.S., Ariza-Heredia, E.J., Chemaly, R.F., Use of oral ribavirin for the treatment of RSV infections in Hematopoietic Cell Transplant (HCT) recipients (2017) Biol. Blood Marrow Transplant., 23, p. S189; Fraaij, P.L., Schutten, M., Javouhey, E., Burleigh, L., Outlaw, R., Kumar, D., Viral shedding and susceptibility to oseltamivir in hospitalized immunocompromised patients with influenza in the Influenza Resistance Information Study (IRIS) (2015) Antivir. Ther., 20, pp. 633-642; Franz, A., Adams, O., Willems, R., Bonzel, L., Neuhausen, N., Schweizer-Krantz, S., Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection (2010) J. Clin. Virol., 48, pp. 239-245; Fuller, J.A., Njenga, M.K., Bigogo, G., Aura, B., Ope, M.O., Nderitu, L., Association of the CT values of real-time PCR of viral upper respiratory tract infection with clinical severity, Kenya (2013) J. Med. Virol., 85, pp. 924-932; Gerdemann, U., Keirnan, J.M., Katari, U.L., Yanagisawa, R., Christin, A.S., Huye, L.E., Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections (2012) Mol. Ther., 20, pp. 1622-1632; Gerna, G., Campanini, G., Rognoni, V., Marchi, A., Rovida, F., Piralla, A., Correlation of viral load as determined by real-time RT-PCR and clinical characteristics of respiratory syncytial virus lower respiratory tract infections in early infancy (2008) J. Clin. Virol., 41, pp. 45-48; Ghosh, S., Champlin, R.E., Englund, J., Giralt, S.A., Rolston, K., Raad, I., Respiratory syncytial virus upper respiratory tract illnesses in adult blood and marrow transplant recipients: Combination therapy with aerosolized ribavirin and intravenous immunoglobulin (2000) Bone Marrow Transplant, 25, pp. 751-755; Gilchrist, C.A., Turner, S.D., Riley, M.F., Petri, W.A., Jr., Hewlett, E.L., Whole-genome sequencing in outbreak analysis (2015) Clin. Microbiol. Rev., 28, pp. 541-563; Greenberg, S.B., Update on rhinovirus and coronavirus infections (2011) Semin. Respir. Crit. Care Med., 32, pp. 433-446; Greninger, A.L., Zerr, D.M., Qin, X., Adler, A.L., Sampoleo, R., Kuypers, J.M., Rapid metagenomic next-generation sequencing during an investigation of hospital-acquired human parainfluenza virus 3 infections (2017) J. Clin. Microbiol., 55, pp. 177-182; Gruber, W.C., Wilson, S.Z., Throop, B.J., Wyde, P.R., Immunoglobulin administration and ribavirin therapy: Efficacy in respiratory syncytial virus infection of the cotton rat (1987) Pediatr. Res., 21, pp. 270-274; Guzmán-Suarez, B.B., Buckley, M.W., Gilmore, E.T., Vocca, E., Moss, R., Marty, F.M., Clinical potential of DAS181 for treatment of parainfluenza-3 infections in transplant recipients (2012) Transpl. Infect. Dis., 14, pp. 427-433; Haffizulla, J., Hartman, A., Hoppers, M., Resnick, H., Samudrala, S., Ginocchio, C., Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial (2014) Lancet Infect. Dis., 14, pp. 609-618; Hakim, H., Allison, K.J., Van de Velde, L.A., Tang, L., Sun, Y., Flynn, P.M., Immunogenicity and safety of high-dose trivalent inactivated influenza vaccine compared to standard-dose vaccine in children and young adults with cancer or HIV infection (2016) Vaccine, 34, pp. 3141-3148; Hakim, H., Dallas, R., Zhou, Y., Pei, D., Cheng, C., Flynn, P.M., Acute respiratory infections in children and adolescents with acute lymphoblastic leukemia (2016) Cancer, 122, pp. 798-805; Hakki, M., Strasfeld, L.M., Townes, J.M., Predictive value of testing nasopharyngeal samples for respiratory viruses in the setting of lower respiratory tract disease (2014) J. Clin. Microbiol., 52, pp. 4020-4022; Hall, C.B., Respiratory syncytial virus and parainfluenza virus (2001) N. Engl. J. Med., 344, pp. 1917-1928; Hall, C.B., Simoes, E.A., Anderson, L.J., Clinical and epidemiologic features of respiratory syncytial virus (2013) Curr. Top. Microbiol. Immunol., 372, pp. 39-57; Hall, C.B., Walsh, E.E., Schnabel, K.C., Long, C.E., McConnochie, K.M., Hildreth, S.W., Occurrence of groups A and B of respiratory syncytial virus over 15 years: Associated epidemiologic and clinical characteristics in hospitalized and ambulatory children (1990) J. Infect. Dis., 162, pp. 1283-1290; Hall, C.B., Weinberg, G.A., Iwane, M.K., Blumkin, A.K., Edwards, K.M., Staat, M.A., The burden of respiratory syncytial virus infection in young children (2009) N. Engl. J. Med., 360, pp. 588-598; Hamada, N., Imamura, Y., Hara, K., Kashiwagi, T., Imamura, Y., Nakazono, Y., Intrahost emergent dynamics of oseltamivir-resistant virus of pandemic influenza A (H1N1) 2009 in a fatally immunocompromised patient (2012) J. Infect. Chemother., 18, pp. 865-871; Hammond, S.P., Gagne, L.S., Stock, S.R., Marty, F.M., Gelman, R.S., Marasco, W.A., Respiratory virus detection in immunocompromised patients with FilmArray respiratory panel compared to conventional methods (2012) J. Clin. Microbiol., 50, pp. 3216-3221; Hayden, F.G., Sugaya, N., Hirotsu, N., Lee, N., De Jong, M.D., Hurt, A.C., Baloxavir marboxil for uncomplicated influenza in adults and adolescents (2018) N. Engl. J. Med., 379, pp. 913-923; Hayden, R.T., Gu, Z., Rodriguez, A., Tanioka, L., Ying, C., Morgenstern, M., Comparison of two broadly multiplexed PCR systems for viral detection in clinical respiratory tract specimens from immunocompromised children (2012) J. Clin. Virol., 53, pp. 308-313; Henrickson, K.J., Parainfluenza viruses (2003) Clin. Microbiol. Rev., 16, pp. 242-264; Heo, Y.A., Baloxavir: First global approval (2018) Drugs, 78, pp. 693-697; Heslop, H.E., Leen, A.M., T-cell therapy for viral infections (2013) Hematol. Am. Soc. Hematol. Educ. Program, 2013, pp. 342-347; Heylen, E., Neyts, J., Jochmans, D., Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery (2017) Biochem. Pharmacol., 127, pp. 1-12; Hirsch, H.H., Martino, R., Ward, K.N., Boeckh, M., Einsele, H., Ljungman, P., Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus (2013) Clin. Infect. Dis., 56, pp. 258-266; Hodinka, R.L., Respiratory RNA Viruses (2016) Diagnostic Microbiology of the Immunocompromised Host, pp. 233-271. , 2nd Edn, eds R. T. Hayden, D. M. Wolk, K. C. Carroll, and Y.-W. Tang Washington, DC: American Society of Microbiology; Hoppe, B.P., De Jongh, E., Griffioen-Keijzer, A., Zijlstra-Baalbergen, J.M., IJzerman, E.P., Baboe, F., Human metapneumovirus in haematopoietic stem cell transplantation recipients: A case series and review of the diagnostic and therapeutic approach (2016) Neth. J. Med., 74, pp. 336-341; Houlihan, C.F., Frampton, D., Ferns, R.B., Raffle, J., Grant, P., Reidy, M., Use of whole-genome sequencing in the investigation of a nosocomial influenza virus outbreak (2018) J. Infect. Dis., 218, pp. 1485-1489; Hutspardol, S., Essa, M., Richardson, S., Schechter, T., Ali, M., Krueger, J., Significant transplantation-related mortality from respiratory virus infections within the first one hundred days in children after hematopoietic stem cell transplantation (2015) Biol. Blood Marrow Transplant., 21, pp. 1802-1807; Ison, M.G., Optimum timing of oseltamivir: Lessons from Bangladesh (2014) Lancet Infect. Dis., 14, pp. 88-89; Ison, M.G., Hayden, F.G., Viral infections in immunocompromised patients: What's new with respiratory viruses? (2002) Curr. Opin. Infect. Dis., 15, pp. 355-367; Issa, N.C., Marty, F.M., Gagne, L.S., Koo, S., Verrill, K.A., Alyea, E.P., Seroprotective titers against 2009 H1N1 influenza A virus after vaccination in allogeneic hematopoietic stem cell transplantation recipients (2011) Biol. Blood Marrow Transplant., 17, pp. 434-438; Jacobs, S.E., Lamson, D.M., St George, K., Walsh, T.J., Human rhinoviruses (2013) Clin. Microbiol. Rev., 26, pp. 135-162; Jorquera, P.A., Tripp, R.A., Respiratory syncytial virus: Prospects for new and emerging therapeutics (2017) Expert Rev. Respir. Med., 11, pp. 609-615; Kamboj, M., Gerbin, M., Huang, C.K., Brennan, C., Stiles, J., Balashov, S., Clinical characterization of human metapneumovirus infection among patients with cancer (2008) J. Infect., 57, pp. 464-471; Karron, R.A., Wright, P.F., Hall, S.L., Makhene, M., Thompson, J., Burns, B.A., A live attenuated bovine parainfluenza virus type 3 vaccine is safe, infectious, immunogenic, and phenotypically stable in infants and children (1995) J. Infect. Dis., 171, pp. 1107-1114; Karron, R.A., Wright, P.F., Newman, F.K., Makhene, M., Thompson, J., Samorodin, R., A live human parainfluenza type 3 virus vaccine is attenuated and immunogenic in healthy infants and children (1995) J. Infect. Dis., 172, pp. 1445-1450; Kassis, C., Champlin, R.E., Hachem, R.Y., Hosing, C., Tarrand, J.J., Perego, C.A., Detection and control of a nosocomial respiratory syncytial virus outbreak in a stem cell transplantation unit: The role of palivizumab (2010) Biol. Blood Marrow Transplant., 16, pp. 1265-1271; Khanna, N., Steffen, I., Studt, J.D., Schreiber, A., Lehmann, T., Weisser, M., Outcome of influenza infections in outpatients after allogeneic hematopoietic stem cell transplantation (2009) Transpl. Infect. Dis., 11, pp. 100-105; Kim, Y.I., Pareek, R., Murphy, R., Harrison, L., Farrell, E., Cook, R., The antiviral effects of RSV fusion inhibitor, MDT-637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin (2017) Influenza Other Respir. Viruses, 11, pp. 525-530; Kim, Y.J., Boeckh, M., Englund, J.A., Community respiratory virus infections in immunocompromised patients: Hematopoietic stem cell and solid organ transplant recipients, and individuals with human immunodeficiency virus infection (2007) Semin. Respir. Crit. Care Med., 28, pp. 222-242; Kim, Y.J., Guthrie, K.A., Waghmare, A., Walsh, E.E., Falsey, A.R., Kuypers, J., Respiratory syncytial virus in hematopoietic cell transplant recipients: Factors determining progression to lower respiratory tract disease (2014) J. Infect. Dis., 209, pp. 1195-1204; Kiso, M., Takahashi, K., Sakai-Tagawa, Y., Shinya, K., Sakabe, S., Le, Q.M., T-705 (favipiravir) activity against lethal H5N1 influenza A viruses (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 882-887; Knight, V., Gilbert, B.E., Wyde, P.R., Englund, J.A., High dose-short duration ribavirin aerosol treatment–a review (1991) Bull. Int. Union Tuberc. Lung Dis., 66, pp. 97-101; Koszalka, P., Tilmanis, D., Hurt, A.C., Influenza antivirals currently in late-phase clinical trial. (2017) Influenza Other Respir. Viruses, 11, pp. 240-246; Kothari, A., Burgess, M.J., Crescencio, J.C.R., Kennedy, J.L., Denson, J.L., Schwalm, K.C., The role of next generation sequencing in infection prevention in human parainfluenza virus 3 infections in immunocompromised patients (2017) J. Clin. Virol., 92, pp. 53-55; Kou, M., Hwang, V., Ramkellawan, N., Bronchiolitis: From practice guideline to clinical practice (2018) Emerg. Med. Clin. North Am., 36, pp. 275-286; Kumar, D., Ferreira, V.H., Blumberg, E., Silveira, F., Cordero, E., Perez-Romero, P., A five-year prospective multi-center evaluation of influenza infection in transplant recipients (2018) Clin. Infect. Dis., 67, pp. 1322-1329; Laplante, J., St George, K., Antiviral resistance in influenza viruses: Laboratory testing (2014) Clin. Lab. Med., 34, pp. 387-408; Lee, N., Chan, P.K., Wong, C.K., Wong, K.T., Choi, K.W., Joynt, G.M., Viral clearance and inflammatory response patterns in adults hospitalized for pandemic 2009 influenza A(H1N1) virus pneumonia (2011) Antivir. Ther., 16, pp. 237-247; Leen, A.M., Heslop, H.E., Brenner, M.K., Antiviral T-cell therapy (2014) Immunol. Rev., 258, pp. 12-29; Ljungman, P., Vaccination of immunocompromised patients (2012) Clin. Microbiol. Infect., 18, pp. 93-99; Ljungman, P., De la Camara, R., Perez-Bercoff, L., Abecasis, M., Nieto Campuzano, J.B., Cannata-Ortiz, M.J., Outcome of pandemic H1N1 infections in hematopoietic stem cell transplant recipients (2011) Haematologica, 96, pp. 1231-1235; Ljungman, P., Ward, K.N., Crooks, B.N., Parker, A., Martino, R., Shaw, P.J., Respiratory virus infections after stem cell transplantation: A prospective study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation (2001) Bone Marrow Transplant, 28, pp. 479-484; Loria, C., Domm, J.A., Halasa, N.B., Heitman, E., Miller, E.K., Xu, M., Human rhinovirus C infections in pediatric hematology and oncology patients (2015) Pediatr. Transplant., 19, pp. 94-100; Louie, J.K., Yang, S., Acosta, M., Yen, C., Samuel, M.C., Schechter, R., Treatment with neuraminidase inhibitors for critically ill patients with influenza A (H1N1)pdm09 (2012) Clin. Infect. Dis., 55, pp. 1198-1204; Louie, J.K., Yang, S., Yen, C., Acosta, M., Schechter, R., Uyeki, T.M., Use of intravenous peramivir for treatment of severe influenza A(H1N1)pdm09 (2012) PLoS ONE, 7; Luján-Zilbermann, J., Benaim, E., Tong, X., Srivastava, D.K., Patrick, C.C., DeVincenzo, J.P., Respiratory virus infections in pediatric hematopoietic stem cell transplantation (2001) Clin. Infect. Dis., 33, pp. 962-968; Lukens, M.V., Van De Pol, A.C., Coenjaerts, F.E., Jansen, N.J., Kamp, V.M., Kimpen, J.L., A systemic neutrophil response precedes robust CD8(+) T-cell activation during natural respiratory syncytial virus infection in infants (2010) J. Virol., 84, pp. 2374-2383; Machado, C.M., Cardoso, M.R., Da Rocha, I.F., Boas, L.S., Dulley, F.L., Pannuti, C.S., The benefit of influenza vaccination after bone marrow transplantation (2005) Bone Marrow Transplant, 36, pp. 897-900; Maeng, S.H., Yoo, H.S., Choi, S.H., Yoo, K.H., Kim, Y.J., Sung, K.W., Impact of parainfluenza virus infection in pediatric cancer patients (2012) Pediatr. Blood Cancer, 59, pp. 708-710; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin. Microbiol. Rev., 21, pp. 716-747; Mahony, J.B., Petrich, A., Smieja, M., Molecular diagnosis of respiratory virus infections (2011) Crit. Rev. Clin. Lab. Sci., 48, pp. 217-249; Marjuki, H., Mishin, V.P., Sleeman, K., Okomo-Adhiambo, M., Sheu, T.G., Guo, L., Bioluminescence-based neuraminidase inhibition assay for monitoring influenza virus drug susceptibility in clinical specimens (2013) Antimicrob. Agents Chemother., 57, pp. 5209-5215; Martino, R., Porras, R.P., Rabella, N., Williams, J.V., Ramila, E., Margall, N., Prospective study of the incidence, clinical features, and outcome of symptomatic upper and lower respiratory tract infections by respiratory viruses in adult recipients of hematopoietic stem cell transplants for hematologic malignancies (2005) Biol. Blood Marrow Transplant., 11, pp. 781-796; Matz, J., Vapendavir significantly improves upper respiratory symptoms of naturally acquired rhinovirus infection in asthmatic adults: Results of a phase 2 clinical trial (2013) Eur. Respir. J., 42, p. 1493; McLellan, J.S., Ray, W.C., Peeples, M.E., Structure and function of respiratory syncytial virus surface glycoproteins (2013) Curr. Top. Microbiol. Immunol., 372, pp. 83-104; Meissner, H.C., Viral bronchiolitis in children (2016) N. Engl. J. Med., 374, pp. 62-72; Mejias, A., Garcia-Maurino, C., Rodriguez-Fernandez, R., Peeples, M.E., Ramilo, O., Development and clinical applications of novel antibodies for prevention and treatment of respiratory syncytial virus infection (2017) Vaccine, 35, pp. 496-502; Melero, J.A., Mas, V., McLellan, J.S., Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development (2017) Vaccine, 35, pp. 461-468; Milano, F., Campbell, A.P., Guthrie, K.A., Kuypers, J., Englund, J.A., Corey, L., Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients (2010) Blood, 115, pp. 2088-2094; Moss, R.B., Davey, R.T., Steigbigel, R.T., Fang, F., Targeting pandemic influenza: A primer on influenza antivirals and drug resistance (2010) J. Antimicrob. Chemother., 65, pp. 1086-1093; Moss, R.B., Hansen, C., Sanders, R.L., Hawley, S., Li, T., Steigbigel, R.T., A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection (2012) J. Infect. Dis., 206, pp. 1844-1851; Mulrennan, S., Tempone, S.S., Ling, I.T., Williams, S.H., Gan, G.C., Murray, R.J., Pandemic influenza (H1N1) 2009 pneumonia: CURB-65 score for predicting severity and nasopharyngeal sampling for diagnosis are unreliable (2010) PLoS ONE, 5; Nichols, W.G., Corey, L., Gooley, T., Davis, C., Boeckh, M., Parainfluenza virus infections after hematopoietic stem cell transplantation: Risk factors, response to antiviral therapy, and effect on transplant outcome (2001) Blood, 98, pp. 573-578; Nichols, W.G., Guthrie, K.A., Corey, L., Boeckh, M., Influenza infections after hematopoietic stem cell transplantation: Risk factors, mortality, and the effect of antiviral therapy (2004) Clin. Infect. Dis., 39, pp. 1300-1306; Nicholson, K.G., Wood, J.M., Zambon, M., Influenza (2003) Lancet, 362, pp. 1733-1745; Ogimi, C., Englund, J.A., Bradford, M.C., Qin, X., Boeckh, M., Waghmare, A., Characteristics and outcomes of coronavirus infection in children: The role of viral factors and an immunocompromised state (2018) J. Pediatric Infect. Dis. Soc. Pix093; Ogimi, C., Greninger, A.L., Waghmare, A.A., Kuypers, J.M., Shean, R.C., Xie, H., Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: Risk factors and viral genome evolution (2017) J. Infect. Dis., 216, pp. 203-209; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Xie, H., Yeung, C.C., Leisenring, W.M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin. Infect. Dis., 64, pp. 1532-1539; Ogimi, C., Xie, H., Leisenring, W.M., Kuypers, J.M., Jerome, K.R., Campbell, A.P., Initial high viral load is associated with prolonged shedding of human rhinovirus in allogeneic hematopoietic cell transplant recipients (2018) Biol. Blood Marrow Transplant., 24, pp. 2160-2163; Okomo-Adhiambo, M., Fry, A.M., Su, S., Nguyen, H.T., Elal, A.A., Negron, E., Oseltamivir-resistant influenza A(H1N1)pdm09 viruses, United States, 2013-14 (2015) Emerging Infect. Dis., 21, pp. 136-141; Okomo-Adhiambo, M., Nguyen, H.T., Abd Elal, A., Sleeman, K., Fry, A.M., Gubareva, L.V., Drug susceptibility surveillance of influenza viruses circulating in the United States in 2011-2012: Application of the WHO antiviral working group criteria (2014) Influenza Other Respir. Viruses, 8, pp. 258-265; Okomo-Adhiambo, M., Sheu, T.G., Gubareva, L.V., Assays for monitoring susceptibility of influenza viruses to neuraminidase inhibitors. (2013) Influenza Other Respir. Viruses, 7, pp. 44-49; Omoto, S., Speranzini, V., Hashimoto, T., Noshi, T., Yamaguchi, H., Kawai, M., Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil (2018) Sci. Rep., 8, p. 9633; Ottolini, M.G., Porter, D.D., Hemming, V.G., Zimmerman, M.N., Schwab, N.M., Prince, G.A., Effectiveness of RSVIG prophylaxis and therapy of respiratory syncytial virus in an immunosuppressed animal model (1999) Bone Marrow Transplant, 24, pp. 41-45; Papenburg, J., Boivin, G., The distinguishing features of human metapneumovirus and respiratory syncytial virus (2010) Rev. Med. Virol., 20, pp. 245-260; Pasikhova, Y., Hayne, J., Baluch, A., Oral Ribavirin for the Treatment of Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (hMPV) Infections in Hematology Patients and Stem Cell Transplant (SCT) Recipients at a Nci-Designated Cancer Center (2018) Biol. Blood Marrow Transplant., 24, p. S383; Peck, A.J., Englund, J.A., Kuypers, J., Guthrie, K.A., Corey, L., Morrow, R., Respiratory virus infection among hematopoietic cell transplant recipients: Evidence for asymptomatic parainfluenza virus infection (2007) Blood, 110, pp. 1681-1688; Popowitch, E.B., O'Neill, S.S., Miller, M.B., Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses (2013) J. Clin. Microbiol., 51, pp. 1528-1533; Pyrc, K., Berkhout, B., Van Der Hoek, L., Antiviral strategies against human coronaviruses (2007) Infect. Disord. Drug Targets, 7, pp. 59-66; Raad, I., Abbas, J., Whimbey, E., Infection control of nosocomial respiratory viral disease in the immunocompromised host (1997) Am. J. Med., 102, pp. 48-52. , discussion 53–44; Rand, K.H., Rampersaud, H., Houck, H.J., Comparison of two multiplex methods for detection of respiratory viruses: filmArray RP and xTAG RVP (2011) J. Clin. Microbiol., 49, pp. 2449-2453; Renaud, C., Boudreault, A.A., Kuypers, J., Lofy, K.H., Corey, L., Boeckh, M.J., H275Y mutant pandemic (H1N1) 2009 virus in immunocompromised patients (2011) Emerg. Infect. Dis., 17, pp. 653-660. , quiz 765; Renaud, C., Campbell, A.P., Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients (2011) Curr. Opin. Infect. Dis., 24, pp. 333-343; Renaud, C., Englund, J.A., Antiviral therapy of respiratory viruses in haematopoietic stem cell transplant recipients (2012) Antivir. Ther., 17, pp. 175-191; Renaud, C., Kuypers, J., Aspesberro, F., Rosenfeld, M., Englund, J.A., Emergence of oseltamivir-resistant pandemic H1N1 in an immunocompetent child with severe status asthmaticus (2011) J. Asthma, 48, pp. 572-575; Renaud, C., Kuypers, J., Englund, J.A., Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1 (2011) J. Clin. Virol., 52, pp. 70-78; Renaud, C., Pergam, S.A., Polyak, C., Jain, R., Kuypers, J., Englund, J.A., Early emergence of an H275Y mutation in a hematopoietic cell transplant recipient treated with intravenous peramivir (2010) Transpl. Infect. Dis., 12, pp. 513-517; Renaud, C., Xie, H., Seo, S., Kuypers, J., Cent, A., Corey, L., Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients (2013) Biol. Blood Marrow Transplant., 19, pp. 1220-1226; Rossey, I., McLellan, J.S., Saelens, X., Schepens, B., Clinical potential of prefusion RSV F-specific antibodies (2018) Trends Microbiol, 26, pp. 209-219; Rossignol, J.F., Nitazoxanide: A first-in-class broad-spectrum antiviral agent (2014) Antiviral Res, 110, pp. 94-103; Roymans, D., Alnajjar, S.S., Battles, M.B., Sitthicharoenchai, P., Furmanova-Hollenstein, P., Rigaux, P., Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor (2017) Nat. Commun., 8, p. 167; Rubin, L.G., Levin, M.J., Ljungman, P., Davies, E.G., Avery, R., Tomblyn, M., 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host (2014) Clin. Infect. Dis., 58, pp. 309-318; Salez, N., Vabret, A., Leruez-Ville, M., Andreoletti, L., Carrat, F., Renois, F., Evaluation of four commercial multiplex molecular tests for the diagnosis of acute respiratory infections (2015) PLoS ONE, 10; Samuel, S., Nanjappa, S., Cooper, C.D., Greene, J.N., Human metapneumovirus infection in immunocompromised patients (2016) Cancer Control, 23, pp. 442-445; Schildgen, V., Van Den Hoogen, B., Fouchier, R., Tripp, R.A., Alvarez, R., Manoha, C., Human metapneumovirus: Lessons learned over the first decade (2011) Clin. Microbiol. Rev., 24, pp. 734-754; Seo, S., Campbell, A.P., Xie, H., Chien, J.W., Leisenring, W.M., Englund, J.A., Outcome of respiratory syncytial virus lower respiratory tract disease in hematopoietic cell transplant recipients receiving aerosolized ribavirin: Significance of stem cell source and oxygen requirement (2013) Biol. Blood Marrow Transplant., 19, pp. 589-596; Seo, S., Gooley, T.A., Kuypers, J.M., Stednick, Z., Jerome, K.R., Englund, J.A., Human metapneumovirus infections following hematopoietic cell transplantation: Factors associated with disease progression (2016) Clin. Infect. Dis., 63, pp. 178-185; Seo, S., Waghmare, A., Scott, E.M., Xie, H., Kuypers, J.M., Hackman, R.C., Human rhinovirus detection in the lower respiratory tract of hematopoietic cell transplant recipients: Association with mortality (2017) Haematologica, 102, pp. 1120-1130; Seo, S., Xie, H., Campbell, A.P., Kuypers, J.M., Leisenring, W.M., Englund, J.A., Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: Viral detection in the lung predicts outcome (2014) Clin. Infect. Dis., 58, pp. 1357-1368; Shah, D.P., Ghantoji, S.S., Ariza-Heredia, E.J., Shah, J.N., El Taoum, K.K., Shah, P.K., Immunodeficiency scoring index to predict poor outcomes in hematopoietic cell transplant recipients with RSV infections (2014) Blood, 123, pp. 3263-3268; Shah, D.P., Ghantoji, S.S., Azzi, J., Avadhanula, V., Kmeid, J., El Chaer, F., An open label, block-randomized, ribavirin efficacy trial for management of RSV infections in Hematopoietic Cell Transplant (HCT) recipients: Clinical and economic implications (2016) Biol. Blood Marrow Transplant., 22, pp. S52-S53; Shah, D.P., Ghantoji, S.S., Mulanovich, V.E., Ariza-Heredia, E.J., Chemaly, R.F., Management of respiratory viral infections in hematopoietic cell transplant recipients (2012) Am. J. Blood Res., 2, pp. 203-218; Shah, D.P., Shah, P.K., Azzi, J.M., Chemaly, R.F., Parainfluenza virus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 370, pp. 358-364; Shah, D.P., Shah, P.K., Azzi, J.M., El Chaer, F., Chemaly, R.F., Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 379, pp. 100-106; Shah, J.N., Chemaly, R.F., Management of RSV infections in adult recipients of hematopoietic stem cell transplantation (2011) Blood, 117, pp. 2755-2763; Shahani, L., Ariza-Heredia, E.J., Chemaly, R.F., Antiviral therapy for respiratory viral infections in immunocompromised patients (2017) Expert Rev. Anti Infect. Ther., 15, pp. 401-415; Sleeman, K., Mishin, V.P., Deyde, V.M., Furuta, Y., Klimov, A.I., Gubareva, L.V., In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses (2010) Antimicrob. Agents Chemother., 54, pp. 2517-2524; Srinivasan, A., Wang, C., Yang, J., Inaba, H., Shenep, J.L., Leung, W.H., Parainfluenza virus infections in children with hematologic malignancies (2011) Pediatr. Infect. Dis. J., 30, pp. 855-859; Srinivasan, A., Wang, C., Yang, J., Shenep, J.L., Leung, W.H., Hayden, R.T., Symptomatic parainfluenza virus infections in children undergoing hematopoietic stem cell transplantation (2011) Biol. Blood Marrow Transplant., 17, pp. 1520-1527; Stevens, M., Rusch, S., DeVincenzo, J., Kim, Y.I., Harrison, L., Meals, E.A., Antiviral activity of oral JNJ-53718678 in healthy adult volunteers challenged with respiratory syncytial virus: A placebo-controlled study (2018) J. Infect. Dis., 218, pp. 748-756; Sykes, A., Gerhardt, E., Tang, L., Adderson, E.E., The effectiveness of trivalent inactivated influenza vaccine in children with acute leukemia (2017) J. Pediatr., 191, pp. 218-224; Tamura, D., Okomo-Adhiambo, M., Mishin, V.P., Guo, Z., Xu, X., Villanueva, J., Application of a seven-target pyrosequencing assay to improve the detection of neuraminidase inhibitor-resistant Influenza A(H3N2) viruses (2015) Antimicrob. Agents Chemother., 59, pp. 2374-2379; Tantawy, A.A., Barakat, M.M., Adly, A.A., Ebeid, F.S., Shamaa, M.F., Yassin, M., One-year prospective study of community acquired influenza and parainfluenza viral infections in hospitalized egyptian children with malignancy: Single center experience (2015) Pediatr. Hematol. Oncol., 32, pp. 304-314; Tian, D., Battles, M.B., Moin, S.M., Chen, M., Modjarrad, K., Kumar, A., Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein (2017) Nat. Commun., 8, p. 1877; Tilmanis, D., Van Baalen, C., Oh, D.Y., Rossignol, J.F., Hurt, A.C., The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide (2017) Antiviral Res, 147, pp. 142-148; Tomblyn, M., Chiller, T., Einsele, H., Gress, R., Sepkowitz, K., Storek, J., Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: A global perspective (2009) Biol. Blood Marrow Transplant., 15, pp. 1143-1238; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology (2010) Clin. Microbiol. Rev., 23, pp. 74-98; Triana-Baltzer, G.B., Gubareva, L.V., Klimov, A.I., Wurtman, D.F., Moss, R.B., Hedlund, M., Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein (2009) PLoS ONE, 4; Triana-Baltzer, G.B., Gubareva, L.V., Nicholls, J.M., Pearce, M.B., Mishin, V.P., Belser, J.A., Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein (2009) PLoS ONE, 4; Tzannou, I., Nicholas, S.K., Lulla, P., Aguayo-Hiraldo, P.I., Misra, A., Martinez, C.A., Immunologic profiling of human metapneumovirus for the development of targeted immunotherapy (2017) J. Infect. Dis., 216, pp. 678-687; Ulbrandt, N.D., Ji, H., Patel, N.K., Riggs, J.M., Brewah, Y.A., Ready, S., Isolation and characterization of monoclonal antibodies which neutralize human metapneumovirus in vitro and in vivo (2006) J. Virol., 80, pp. 7799-7806; Ustun, C., Slaby, J., Shanley, R.M., Vydra, J., Smith, A.R., Wagner, J.E., Human parainfluenza virus infection after hematopoietic stem cell transplantation: Risk factors, management, mortality, and changes over time (2012) Biol. Blood Marrow Transplant., 18, pp. 1580-1588; Van Der Hoek, L., Human coronaviruses: What do they cause? (2007) Antivir. Ther., 12 (4), pp. 651-658; Vilchez, R.A., Dauber, J., McCurry, K., Iacono, A., Kusne, S., Parainfluenza virus infection in adult lung transplant recipients: An emergent clinical syndrome with implications on allograft function (2003) Am. J. Transplant, 3, pp. 116-120; Vilchez, R.A., McCurry, K., Dauber, J., Iacono, A., Keenan, R., Zeevi, A., The epidemiology of parainfluenza virus infection in lung transplant recipients (2001) Clin. Infect. Dis., 33, pp. 2004-2008; Waghmare, A., Campbell, A.P., Xie, H., Seo, S., Kuypers, J., Leisenring, W., Respiratory syncytial virus lower respiratory disease in hematopoietic cell transplant recipients: Viral RNA detection in blood, antiviral treatment, and clinical outcomes (2013) Clin. Infect. Dis., 57, pp. 1731-1741; Waghmare, A., Englund, J.A., Boeckh, M., How I treat respiratory viral infections in the setting of intensive chemotherapy or hematopoietic cell transplantation (2016) Blood, 127, pp. 2682-2692; Waghmare, A., Wagner, T., Andrews, R., Smith, S., Kuypers, J., Boeckh, M., Successful treatment of parainfluenza virus respiratory tract infection with DAS181 in 4 immunocompromised children (2015) J. Pediatric Infect. Dis. Soc., 4, pp. 114-118; Walsh, E.E., McConnochie, K.M., Long, C.E., Hall, C.B., Severity of respiratory syncytial virus infection is related to virus strain (1997) J. Infect. Dis., 175, pp. 814-820; Walsh, E.E., Wang, L., Falsey, A.R., Qiu, X., Corbett, A., Holden-Wiltse, J., Virus-specific antibody, viral load, and disease severity in respiratory syncytial virus infection (2018) J. Infect. Dis., 218, pp. 208-217; Watanabe, A., Chang, S.C., Kim, M.J., Chu, D.W., Ohashi, Y., Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: A double-blind, randomized, noninferiority clinical trial (2010) Clin. Infect. Dis., 51, pp. 1167-1175; Watcharananan, S.P., Suwatanapongched, T., Wacharawanichkul, P., Chantratitaya, W., Mavichak, V., Mossad, S.B., Influenza A/H1N1 2009 pneumonia in kidney transplant recipients: Characteristics and outcomes following high-dose oseltamivir exposure (2010) Transpl. Infect. Dis., 12, pp. 127-131; Weigt, S.S., Gregson, A.L., Deng, J.C., Lynch, J.P., 3rd, Belperio, J.A., Respiratory viral infections in hematopoietic stem cell and solid organ transplant recipients (2011) Semin. Respir. Crit. Care Med., 32, pp. 471-493; Whimbey, E., Champlin, R.E., Couch, R.B., Englund, J.A., Goodrich, J.M., Raad, I., Community respiratory virus infections among hospitalized adult bone marrow transplant recipients (1996) Clin. Infect. Dis., 22, pp. 778-782; Whimbey, E., Champlin, R.E., Englund, J.A., Mirza, N.Q., Piedra, P.A., Goodrich, J.M., Combination therapy with aerosolized ribavirin and intravenous immunoglobulin for respiratory syncytial virus disease in adult bone marrow transplant recipients (1995) Bone Marrow Transplant, 16, pp. 393-399; Whimbey, E., Englund, J.A., Couch, R.B., Community respiratory virus infections in immunocompromised patients with cancer (1997) Am. J. Med., 102, pp. 10-18. , discussion 25–16; Yeh, E., Luo, R.F., Dyner, L., Hong, D.K., Banaei, N., Baron, E.J., Preferential lower respiratory tract infection in swine-origin 2009 A(H1N1) influenza (2010) Clin. Infect. Dis., 50, pp. 391-394; Zhu, Q., McLellan, J.S., Kallewaard, N.L., Ulbrandt, N.D., Palaszynski, S., Zhang, J., A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants (2017) Sci. Transl. Med., 9, p. eaaj1928; Zhu, Y., Zembower, T.R., Metzger, K.E., Lei, Z., Green, S.J., Qi, C., Investigation of respiratory syncytial virus outbreak on an adult stem cell transplant unit by use of whole-genome sequencing (2017) J. Clin. Microbiol., 55, pp. 2956-2963","Hayden, R.T.; Department of Pathology, St Jude Children's Research HospitalUnited States; email: Randall.Hayden@stjude.org",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85058423415 "Ommeh S., Zhang W., Zohaib A., Chen J., Zhang H., Hu B., Ge X.-Y., Yang X.-L., Masika M., Obanda V., Luo Y., Li S., Waruhiu C., Li B., Zhu Y., Ouma D., Odendo V., Wang L.-F., Anderson D.E., Lichoti J., Mungube E., Gakuya F., Zhou P., Ngeiywa K.-J., Yan B., Agwanda B., Shi Z.-L.","6504693788;56151953000;55627754200;57203334768;57192482516;55908560200;35781787600;35811468700;25960853800;24341820100;57201338288;57205188732;57193360957;57077269800;55723768200;57205185894;57205189501;35243718700;25631949200;56369153800;9246123800;6506020607;56996599500;57189080905;57204351774;24075534400;7403733955;","Genetic Evidence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) and Widespread Seroprevalence among Camels in Kenya",2018,"Virologica Sinica","33","6",,"484","492",,7,"10.1007/s12250-018-0076-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058978129&doi=10.1007%2fs12250-018-0076-4&partnerID=40&md5=361dc2e5989117c5b6186e3adca9e95d","Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya; CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; College of Biology, Hunan University, Changsha, 410006, China; Department of Medical Microbiology, University of Nairobi, Nairobi, 30197-00100, Kenya; Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya; Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Veterinary Services Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock Fisheries and Irrigation, Nairobi, 34188-00100, Kenya; Kenya Camel Association, Nairobi, 30095-00100, Kenya; Department of Zoology, National Museums of Kenya, Nairobi, 40658-00100, Kenya","Ommeh, S., Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya; Zhang, W., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zohaib, A., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Chen, J., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhang, H., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hu, B., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Ge, X.-Y., College of Biology, Hunan University, Changsha, 410006, China; Yang, X.-L., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Masika, M., Department of Medical Microbiology, University of Nairobi, Nairobi, 30197-00100, Kenya; Obanda, V., Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya; Luo, Y., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Li, S., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Waruhiu, C., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Li, B., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhu, Y., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Ouma, D., Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Odendo, V., Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Wang, L.-F., Veterinary Services Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Anderson, D.E., Veterinary Services Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Lichoti, J., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock Fisheries and Irrigation, Nairobi, 34188-00100, Kenya; Mungube, E., Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Gakuya, F., Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya; Zhou, P., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Ngeiywa, K.-J., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock Fisheries and Irrigation, Nairobi, 34188-00100, Kenya, Kenya Camel Association, Nairobi, 30095-00100, Kenya; Yan, B., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Agwanda, B., Department of Zoology, National Museums of Kenya, Nairobi, 40658-00100, Kenya; Shi, Z.-L., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China","We describe the first genome isolation of Middle East respiratory syndrome coronavirus (MERS-CoV) in Kenya. This fatal zoonotic pathogen was first described in the Kingdom of Saudi Arabia in 2012. Epidemiological and molecular evidence revealed zoonotic transmission from camels to humans and between humans. Currently, MERS-CoV is classified by the WHO as having high pandemic potential requiring greater surveillance. Previous studies of MERS-CoV in Kenya mainly focused on site-specific and archived camel and human serum samples for antibodies. We conducted active nationwide cross-sectional surveillance of camels and humans in Kenya, targeting both nasal swabs and plasma samples from 1,163 camels and 486 humans collected from January 2016 to June 2018. A total of 792 camel plasma samples were positive by ELISA. Seroprevalence increased with age, and the highest prevalence was observed in adult camels (82.37%, 95% confidence interval (CI) 79.50–84.91). More female camels were significantly seropositive (74.28%, 95% CI 71.14–77.19) than male camels (P < 0.001) (53.74%, 95% CI 48.48–58.90). Only 11 camel nasal swabs were positive for MERS-CoV by reverse transcription-quantitative PCR. Phylogenetic analysis of whole genome sequences showed that Kenyan MERS-CoV clustered within sub-clade C2, which is associated with the African clade, but did not contain signature deletions of orf4b in African viruses. None of the human plasma screened contained neutralizing antibodies against MERS-CoV. This study confirms the geographically widespread occurrence of MERS-CoV in Kenyan camels. Further one-health surveillance approaches in camels, wildlife, and human populations are needed. © 2018, The Author(s).","Kenya; Middle East respiratory syndrome coronavirus (MERS-CoV); One-health; Public health; Zoonosis","nucleotide; neutralizing antibody; virus antibody; virus RNA; adult; Article; camel; cross-sectional study; cytopathogenic effect; enzyme linked immunosorbent assay; female; human; immunofluorescence test; Kenya; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; quantitative analysis; reverse transcription polymerase chain reaction; serodiagnosis; seroprevalence; Vero cell line; viral genetics; virus replication; virus strain; age; animal; blood; Coronavirus infection; disease carrier; genetics; isolation and purification; Middle East respiratory syndrome coronavirus; nose; phylogeny; prevalence; seroepidemiology; transmission; veterinary medicine; virology; virus genome; whole genome sequencing; zoonosis; Age Factors; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelus; Coronavirus Infections; Cross-Sectional Studies; Disease Reservoirs; Female; Genome, Viral; Humans; Kenya; Male; Middle East Respiratory Syndrome Coronavirus; Nose; Phylogeny; Prevalence; RNA, Viral; Seroepidemiologic Studies; Whole Genome Sequencing; Zoonoses","Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Carissimo, G., van den Beek, M., Vernick, K.D., Antoniewski, C., Metavisitor, a suite of galaxy tools for simple and rapid detection and discovery of viruses in deep sequence data (2017) PLoS ONE, 12; Chu, D.K.W., Poon, L.L.M., Gomaa, M.M., Shehata, M.M., Perera, R.A.P.M., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20, pp. 1049-1053; Chu, D.K.W., Oladipo, J.O., Perera, R.A.P.M., Kuranga, S.A., Chan, S.M.S., Poon, L.L.M., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115, pp. 3144-3149; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Müller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg Infect Dis, 20, pp. 1319-1322; Falzarano, D., Kamissoko, B., de Wit, E., Maïga, O., Cronin, J., Samaké, K., Traoré, A., Feldmann, H., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Godeke, G.-J., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., Bett, B., Corman, V.M., MERS-CoV antibodies in humans, Africa, 2013–2014 (2016) Emerg Infect Dis, 22, pp. 1086-1089; Lu, X., Whitaker, B., Sakthivel, S.K.K., Kamili, S., Rose, L.E., Lowe, L., Mohareb, E., Erdman, D.D., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Mburu, D.N., Ochieng, J.W., Kuria, S.G., Jianlin, H., Kaufmann, B., Rege, J.E.O., Hanotte, O., Genetic diversity and relationships of indigenous Kenyan camel (Camelus dromedarius) populations: implications for their classification (2003) Anim Genet, 34, pp. 26-32; Munyua, P., Corman, V.M., Bitek, A., Osoro, E., Meyer, B., Müller, M.A., Lattwein, E., Njenga, M.K., No serologic evidence of middle east respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: a household linked study, Kenya, 2013 (2017) Am J Trop Med Hyg, 96, pp. 1318-1324; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Eurosurveillance, 18, p. 20574; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, S.E.M., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Smits, S.L., Raj, V.S., Pas, S.D., Reusken, C.B.E.M., Mohran, K., Farag, E.A.B.A., Al-Romaihi, H.E., Koopmans, M.P., Reliable typing of MERS-CoV variants with a small genome fragment (2015) J Clin Virol, 64, pp. 83-87; (2018) WHO | Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, In: WHO, Accessed 29 May; Zohaib, A., Saqib, M., Athar, M.A., Chen, J., Sial, A.-R., Khan, S., Taj, Z., Shi, Z.-L., Countrywide survey for MERS-Coronavirus antibodies in dromedaries and humans in Pakistan (2018) Virol Sin, 33, pp. 410-417","Shi, Z.-L.; CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"Science Press",16740769,,,"30570714","English","Virol. Sin.",Article,"Final",Open Access,Scopus,2-s2.0-85058978129 "Li Y.-H., Gao H., Xiao Y., Weng T., Yu D., Hu C., Yao H.-P., Li L.-J.","57204732943;41761350800;57205729368;57191956440;57192208980;57197797482;7401677994;55540790300;","Bioinformatics Analysis on Potential Anti-Viral Targets Against Spike Protein of MERS-CoV",2018,"Proceedings - 9th International Conference on Information Technology in Medicine and Education, ITME 2018",,, 8589258,"67","71",,1,"10.1109/ITME.2018.00026","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061313078&doi=10.1109%2fITME.2018.00026&partnerID=40&md5=cad359a4e3f4ff4a8d6a2f0c5f592131","State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Shulan (Hangzhou) Hospital, China; Department of Pharmacy, Tangdu Hospital, Xi'an, Shaanxi, 710038, China","Li, Y.-H., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Gao, H., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Shulan (Hangzhou) Hospital, China; Xiao, Y., Department of Pharmacy, Tangdu Hospital, Xi'an, Shaanxi, 710038, China; Weng, T., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Yu, D., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Hu, C., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Yao, H.-P., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China; Li, L.-J., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310031, China, Shulan (Hangzhou) Hospital, China","Objective Middle East respiratory syndrome is caused by the Middle respiratory syndrome coronavirus (MERS-CoV) and the mortality is high. However, to date, there is no effective vaccine or antibody for human immunity and treatment as a putative therapeutic agent specific for MERS. The aim of this study was to obtain the bioinformatic characteristics of the MERS-CoV S protein antigen. Methods SOPMA Server software and the DiscoTope were used to predict the secondary and tertiary structures of the MERS-CoV S protein, respectively, whilst a number of online prediction software applications, including IEDB, Syfpeithi and other resources of IEDB, were used for the T- and B-cell epitope predictions. Results The prediction results indicated that the T-cell epitopes were located at positions 950-958, 317-325, 1309-1317, 480-488 and 388-396, whereas the B-cell epitopes were located at positions 520-528, 629-637, 659-667, 734-744, 1205-1212. 19-53, 300-309, 478-523, 528-550 and 622-632. Conclusion These regions were the potential dominant epitopes of the MERS-CoV S protein antigen. The results of our study provide experimental data for the identification and screening of epitopes and may be used for the development of epitope vaccines that have an enhanced safety and efficacy. This may result in the provision of improved regimens for the prevention and treatment of MERS. © 2018 IEEE.","Anti-viral targets; MERS-CoV; Secondary structure; Spike protein; Tetiary structure","Application programs; Bioinformatics; Diagnosis; Forecasting; Proteins; T-cells; Vaccines; Bioinformatics analysis; MERS-CoV; Online prediction; Secondary and tertiary structures; Secondary structures; Software applications; Spike protein; Therapeutic agents; Epitopes","Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle east respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) The Lancet Infectious Diseases; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Patel, K., Inhibitor recognition specificity of mers-cov papain-like protease may differ from that of sars-cov (2015) ACS Chem Biol, 10, pp. 1456-1465; Choi, J., Kim, M.G., Oh, Y.K., Kim, Y.B., Progress of middle east respiratory syndrome coronavirus vaccines: A patent review (2017) Expert Opin Ther Pat, 27, pp. 721-731; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Immunogenicity and structures of a rationally designed prefusion mers-cov spike antigen (2017) Proc Natl Acad Sci U S A, 114, pp. E7348-E7357; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.A., Sullivan, E., Safety and tolerability of a novel, polyclonal human anti-mers coronavirus antibody produced from transchromosomic cattle: A phase 1 randomised, doubleblind, single-dose-escalation study (2018) The Lancet Infectious Diseases; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3; Frey, K.G., Redden, C.L., Bishop-Lilly, K.A., Johnson, R., Hensley, L.E., Raviprakash, K., Luke, T., Full-genome sequence of human betacoronavirus 2c Jordan-n3/2012 after serial passage in mammalian cells (2014) Genome Announc, 2; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing sars-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Pybus, O.G., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg Infect Dis, 19, pp. 736-742B; Emini, E.A., Hughes, J.V., Perlow, D.S., Boger, J., Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide (1985) J Virol, 55, pp. 836-839; Kolaskar, A.S., Tongaonkar, P.C., A semi-empirical method for prediction of antigenic determinants on protein antigens (1990) FEBS Lett, 276, pp. 172-174; Larsen, J.E., Lund, O., Nielsen, M., Improved method for predicting linear b-cell epitopes (2006) Immunome Research, 2, p. 2; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Structure-based discovery of middle east respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Liu, S., Wu, S., Jiang, S., HIV entry inhibitors targeting gp41: From polypeptides to small-molecule compounds (2007) Curr Pharm Des, 13, pp. 143-162; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for middle east respiratory syndrome (mers): A review (2018) J Infect Public Health, 11, pp. 9-17; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23, pp. 899-905; Walls, A., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryoelectron microscopy (2017) Protein Sci, 26, pp. 113-121","Li, L.-J.; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang UniversityChina; email: ljli@zju.edu.cn",,"Institute of Electrical and Electronics Engineers Inc.",,9781538677438,,,"English","Proc. - Int. Conf. Inf. Technol. Med. Educ., ITME",Conference Paper,"Final",,Scopus,2-s2.0-85061313078 "Nziza J., Goldstein T., Cranfield M., Webala P., Nsengimana O., Nyatanyi T., Mudakikwa A., Tremeau-Bravard A., Byarugaba D., Tumushime J.C., Mwikarago I.E., Gafarasi I., Mazet J., Gilardi K.","57202235320;7004660880;7006131680;7801599727;57205750112;55251696800;6507684167;6603164351;55889102200;57204524469;57212275514;57193536418;7005723108;6603122976;","Coronaviruses Detected in Bats in Close Contact with Humans in Rwanda",2019,"EcoHealth",,,,"","",,,"10.1007/s10393-019-01458-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076337010&doi=10.1007%2fs10393-019-01458-8&partnerID=40&md5=7704676c4466c2ef47045c1ec8b32c73","Gorilla Doctors, P.O. Box 115, Musanze, Rwanda; Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States; Department of Forestry and Wildlife Management, Maasai Mara University, P.O. Box 861, Narok, 20500, Kenya; Rwanda Wildlife Conservation Association, P.O. Box 5427, Kigali, Rwanda; Department of Global Health and Social Medicine, School of Medicine, Harvard University, Boston, United States; Rwanda Development Board, P.O. Box 6932, Kigali, Rwanda; Makerere University Walter Reed Project, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda; National Reference Laboratory, Rwanda Biomedical Center, P.O. Box 83, Kigali, Rwanda; Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda","Nziza, J., Gorilla Doctors, P.O. Box 115, Musanze, Rwanda; Goldstein, T., Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States; Cranfield, M., Gorilla Doctors, P.O. Box 115, Musanze, Rwanda; Webala, P., Department of Forestry and Wildlife Management, Maasai Mara University, P.O. Box 861, Narok, 20500, Kenya; Nsengimana, O., Rwanda Wildlife Conservation Association, P.O. Box 5427, Kigali, Rwanda; Nyatanyi, T., Department of Global Health and Social Medicine, School of Medicine, Harvard University, Boston, United States; Mudakikwa, A., Rwanda Development Board, P.O. Box 6932, Kigali, Rwanda; Tremeau-Bravard, A., Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States; Byarugaba, D., Makerere University Walter Reed Project, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda; Tumushime, J.C., Gorilla Doctors, P.O. Box 115, Musanze, Rwanda; Mwikarago, I.E., National Reference Laboratory, Rwanda Biomedical Center, P.O. Box 83, Kigali, Rwanda; Gafarasi, I., Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda; Mazet, J., Gorilla Doctors, P.O. Box 115, Musanze, Rwanda, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States; Gilardi, K., Gorilla Doctors, P.O. Box 115, Musanze, Rwanda, Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States","Bats living in close contact with people in Rwanda were tested for evidence of infection with viruses of zoonotic potential. Mucosal swabs from 503 bats representing 17 species were sampled from 2010 to 2014 and screened by consensus PCR for 11 viral families. Samples were negative for all viral families except coronaviruses, which were detected in 27 bats belonging to eight species. Known coronaviruses detected included the betacorona viruses: Kenya bat coronaviruses, Eidolon bat coronavirus, and Bat coronavirus HKU9, as well as an alphacoronavirus, Chaerephon Bat coronavirus. Novel coronaviruses included two betacorona viruses clustering with SARS-CoV, a 2d coronavirus, and an alphacoronavirus. © 2019, EcoHealth Alliance.","Bats; Coronaviruses; Human–wildlife interfaces; Rwanda","Alphacoronavirus; article; consensus; controlled study; human; Kenya; nonhuman; polymerase chain reaction; Rwanda; SARS coronavirus; wildlife","Amman, B.R., Albariño, C.G., Bird, B.H., Nyakarahuka, L., Sealy, T.K., Balinandi, S., Schuh, A.J., Towner, J.S., A recently discovered pathogenic paramyxovirus, Sosuga virus, is present in Rousettus aegyptiacus fruit bats at multiple locations in Uganda (2015) Journal of Wildlife Diseases, 51 (3), pp. 774-779. , COI: 1:CAS:528:DC%2BC28XksFynsrw%3D; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012–related viruses in bats, Ghana and Europe (2013) Emerging Infectious Diseases, 19 (3), p. 456; Anthony, E.L.P., (1988) Age determination in bats, pp. 47-58. , Kunz TH, Washington, DC: Smithsonian Institution Press; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A.K., Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus (2017) MBio, 8 (2); Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Hicks, A.L., Goldstein, T., Global patterns in coronavirus diversity (2017) Virus Evolution, 3 (1), p. vex012; Anthony, S.J., Leger, J.S., Pugliares, K., Ip, H.S., Chan, J.M., Carpenter, Z.W., Navarrete-Macias, I., Lipkin, W.I., Emergence of fatal avian influenza in New England harbor seals (2012) MBio, 3 (4); Briese, T., Kapoor, V., Lipkin, W.I., Natural M-segment reassortment in Potosi and Main Drain viruses: implications for the evolution of orthobunyaviruses (2007) Archives of Virology, 152 (12), pp. 2237-2247. , COI: 1:CAS:528:DC%2BD2sXhtlOqsL3N; Butler, C.D., Human carrying capacity and human health (2004) PLoS Med, 1 (3); Chua, K.B., Bellini, W.J., Rota, P.A., Harcourt, B.H., Tamin, A., Lam, S.K., Ksiazek, T.G., Mahy, B.W.J., Nipah virus: a recently emergent deadly paramyxovirus (2000) Science, 288 (5470), pp. 1432-1435. , COI: 1:CAS:528:DC%2BD3cXjslGqsrw%3D; Courgnaud, V., Pourrut, X., Bibollet-Ruche, F., Mpoudi-Ngole, E., Bourgeois, A., Delaporte, E., Peeters, M., Characterization of a novel simian immunodeficiency virus from guereza colobus monkeys (Colobus guereza) in Cameroon: a new lineage in the nonhuman primate lentivirus family (2001) Journal of Virology, 75 (2), pp. 857-866. , COI: 1:CAS:528:DC%2BD3MXhsFajsA%3D%3D; Dominguez, S.R., O’Shea, T.J., Oko, L.M., Holmes, K.V., Detection of group 1 coronaviruses in bats in North America (2007) Emerging Infectious Diseases, 13 (9), p. 1295. , COI: 1:CAS:528:DC%2BD2sXhtVygtbvE; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) Journal of Virology, 84 (21), pp. 11336-11349. , COI: 1:CAS:528:DC%2BC3cXhsVeisb%2FL; Drosten, C., Günther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.M., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) New England Journal of Medicine, 348 (20), pp. 1967-1976. , COI: 1:CAS:528:DC%2BD3sXjslajurw%3D; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Zheng, L.-S., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF; Gloza-Rausch, F., Ipsen, A., Seebens, A., Göttsche, M., Panning, M., Drexler, J.F., Petersen, N., Drosten, C., Detection and prevalence patterns of group I coronaviruses in bats, northern Germany (2008) Emerging Infectious Diseases, 14 (4), p. 626; Goldstein, T., Anthony, S.J., Gbakima, A., Bird, B.H., Bangura, J., Tremeau-Bravard, A., Belaganahalli, M.N., Mazet, J.A.K., The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses (2018) Nature Microbiology, 3 (10), p. 1084. , COI: 1:CAS:528:DC%2BC1cXhsF2nsrjE; Goldstein, T., Mazet, J.A.K., Gulland, F.M.D., Rowles, T., Harvey, J.T., Allen, S.G., King, D.P., Stott, J.L., The transmission of Phocine herpesvirus-1 in rehabilitating and free-ranging Pacific harbor seals (Phoca vitulina) in California (2004) Veterinary Microbiology, 103, pp. 131-141; Joachim, N., (2013) Investigating the Challenges of Promoting Dark Tourism in Rwanda, , GRIN Verlag; Johnson, C.K., Hitchens, P.L., Evans, T.S., Goldstein, T., Thomas, K., Clements, A., Joly, D.O., Mazet, J.K., Spillover and pandemic properties of zoonotic viruses with high host plasticity (2015) Scientific Reports, 5, p. 14830; Kingdon, J., Happold, D., Butynski, T., Hoffmann, M., Happold, M., Kalina, J., (2013) Mammals of Africa, 1. , A&C Black, London; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) New England Journal of Medicine, 348 (20), pp. 1953-1966. , COI: 1:CAS:528:DC%2BD3sXjslajtbk%3D; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Yuen, K.-Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) Journal of Virology, 84 (6), pp. 2808-2819. , COI: 1:CAS:528:DC%2BC3cXjt1eis7w%3D; Lozano, M.E., Posik, D.M., Albarino, C.G., Schujman, G., Ghiringhelli, P.D., Calderon, G., Sabattini, M., Romanowski, V., Characterization of arenaviruses using a family-specific primer set for RT-PCR amplification and RFLP analysis: its potential use for detection of uncharacterized arenaviruses (1997) Virus Research, 49 (1), pp. 79-89. , COI: 1:CAS:528:DyaK2sXjvVWntrg%3D; Moureau, G., Temmam, S., Gonzalez, J.P., Charrel, R.N., Grard, G., De Lamballerie, X., A real-time RT-PCR method for the universal detection and identification of flaviviruses (2007) Vector-Borne and Zoonotic Diseases, 7 (4), pp. 467-478. , COI: 1:STN:280:DC%2BD1c%2FgsFaktg%3D%3D; Patterson, B.D., Webala, P.W., Keys to the bats (Mammalia: Chiroptera) of east Africa (2012) Fieldiana Life and Earth Sciences, 2012, pp. 1-60; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., McCallum, H., Ecological dynamics of emerging bat virus spillover (2015) Proceedings of the Royal Society B: Biological Sciences, 282 (1798), p. 20142124; Pourrut, X., Souris, M., Towner, J.S., Rollin, P.E., Nichol, S.T., Gonzalez, J.P., Leroy, E., Large serological survey showing co-circulation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus (2009) BMC Infectious Diseases, 9 (1), p. 159; (2017), https://www2.vetmed.ucdavis.edu/ohi/local_resources/pdfs/guides/predict-sop-bat-sampling-2017.pdf; Quan, P.L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Hutchison, S.K., Lipkin, W.I., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) MBio, 1 (4); Raboni, S.M., Probst, C.M., Bordignon, J., Zeferino, A., dos Santos, C.N.D., Hantaviruses in Central South America: phylogenetic analysis of the S segment from HPS cases in Paraná, Brazil (2005) Journal of Medical Virology, 76 (4), pp. 553-562. , COI: 1:CAS:528:DC%2BD2MXmvVymu7w%3D; Raymond, M., Rousset, F., An exact test for population differentiation (1995) Evolution, 49 (6), pp. 1280-1283; Sánchez-Seco, M.P., Rosario, D., Quiroz, E., Guzmán, G., Tenorio, A., A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus (2001) Journal of Virological Methods, 95 (1-2), pp. 153-161; Shi, Z., Emerging infectious diseases associated with bat viruses (2013) Science China Life Sciences, 56 (8), pp. 678-682; Spenceley, A., Habyalimana, S., Tusabe, R., Mariza, D., Benefits to the poor from gorilla tourism in Rwanda (2010) Development Southern Africa, 27 (5), pp. 647-662; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) Journal of Virology, 80 (15), pp. 7481-7490. , COI: 1:CAS:528:DC%2BD28XnsVWgtL8%3D; Tao, Y., Tang, K., Shi, M., Conrardy, C., Li, K.S., Lau, S.K., Anderson, L.J., Tong, S., Genomic characterization of seven distinct bat coronaviruses in Kenya (2012) Virus Research, 167 (1), pp. 67-73. , COI: 1:CAS:528:DC%2BC38XmvFKns7w%3D; Tong, S., Chern, S.W.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) Journal of Clinical Microbiology, 46 (8), pp. 2652-2658. , COI: 1:CAS:528:DC%2BD1cXhtVyms73M; Towner, J.S., Sealy, T.K., Khristova, M.L., Albariño, C.G., Conlan, S., Reeder, S.A., Quan, P.L., Nichol, S.T., Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda (2008) PLoS Pathog, 4 (11); Townzen, J.S., Brower, A.V.Z., Judd, D.D., Identification of mosquito blood meals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences (2008) Medical and Veterinary Entomology, 22 (4), pp. 386-393. , COI: 1:STN:280:DC%2BD1M%2FltVygtg%3D%3D; Vijaykrishna, D., Smith, G.J.D., Zhang, J.X., Peiris, J.S.M., Chen, H., Guan, Y., Evolutionary insights into the ecology of coronaviruses (2007) Journal of Virology, 81 (8), pp. 4012-4020. , COI: 1:CAS:528:DC%2BD2sXksVKks78%3D; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Akashi, H., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerging Infectious Diseases, 16 (8), p. 1217. , COI: 1:CAS:528:DC%2BC3cXhtVOnsbnE; Wray, A.K., Olival, K.J., Morán, D., Lopez, M.R., Alvarez, D., Navarrete-Macias, I., Liang, E., Anthony, S.J., Viral diversity, prey preference, and Bartonella prevalence in Desmodus rotundus in Guatemala (2016) EcoHealth, 13 (4), pp. 761-774; Zhai, J., Palacios, G., Towner, J.S., Jabado, O., Kapoor, V., Venter, M., Grolla, A., Lipkin, W.I., Rapid molecular strategy for filovirus detection and characterization (2007) Journal of Clinical Microbiology, 45 (1), pp. 224-226. , COI: 1:CAS:528:DC%2BD2sXhsFyntrc%3D","Nziza, J.; Gorilla Doctors, P.O. Box 115, Rwanda; email: nzizavet@gmail.com",,"Springer",16129202,,,,"English","EcoHealth",Article,"Article in Press",Open Access,Scopus,2-s2.0-85076337010 "Yan B., Chu H., Yang D., Sze K.-H., Lai P.-M., Yuan S., Shuai H., Wang Y., Kao R.Y.-T., Chan J.F.-W., Yuen K.-Y.","56492071000;35781456400;56892956900;7006735061;57205384561;55364121100;56711746100;57191433323;7101675499;24278817900;36078079100;","Characterization of the lipidomic profile of human coronavirus-infected cells: Implications for lipid metabolism remodeling upon coronavirus replication",2019,"Viruses","11","1", 73,"","",,5,"10.3390/v11010073","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060147134&doi=10.3390%2fv11010073&partnerID=40&md5=c401395df01f8e0ca34fcbb3c796b884","State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Hainan-Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 96708, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong","Yan, B., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chu, H., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yang, D., Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Sze, K.-H., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Lai, P.-M., Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yuan, S., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Shuai, H., Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Wang, Y., Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Kao, R.Y.-T., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chan, J.F.-W., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Hainan-Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 96708, China; Yuen, K.-Y., State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Hainan-Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 96708, China, The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong","Lipids play numerous indispensable cellular functions and are involved in multiple steps in the replication cycle of viruses. Infections by human-pathogenic coronaviruses result in diverse clinical outcomes, ranging from self-limiting flu-like symptoms to severe pneumonia with extrapulmonary manifestations. Understanding how cellular lipids may modulate the pathogenicity of human-pathogenic coronaviruses remains poor. To this end, we utilized the human coronavirus 229E (HCoV-229E) as a model coronavirus to comprehensively characterize the host cell lipid response upon coronavirus infection with an ultra-high performance liquid chromatography-mass spectrometry (UPLC–MS)-based lipidomics approach. Our results revealed that glycerophospholipids and fatty acids (FAs) were significantly elevated in the HCoV-229E-infected cells and the linoleic acid (LA) to arachidonic acid (AA) metabolism axis was markedly perturbed upon HCoV-229E infection. Interestingly, exogenous supplement of LA or AA in HCoV-229E-infected cells significantly suppressed HCoV-229E virus replication. Importantly, the inhibitory effect of LA and AA on virus replication was also conserved for the highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). Taken together, our study demonstrated that host lipid metabolic remodeling was significantly associated with human-pathogenic coronavirus propagation. Our data further suggested that lipid metabolism regulation would be a common and druggable target for coronavirus infections. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","HCoV-229E; Lipidomics; MERS-CoV; MS; UHPLC","arachidonic acid; fatty acid; glycerophospholipid; linoleic acid; lysophosphatidylcholine; phosphatidylcholine; arachidonic acid; glycerophospholipid; Article; clinical outcome; controlled study; Coronavirus infection; electrospray mass spectrometry; gene dosage; Huh-7 cell line; human; human cell; Human coronavirus 229E; lipid metabolism; lipidomics; liquid chromatography-mass spectrometry; metabolomics; Middle East respiratory syndrome coronavirus; pathogenicity; real time polymerase chain reaction; regulatory mechanism; retention time; reverse transcription polymerase chain reaction; time of flight mass spectrometry; ultra performance liquid chromatography; upregulation; Vero C1008 cell line; virus genome; virus replication; cell line; host pathogen interaction; Human coronavirus 229E; liquid chromatography; metabolism; physiology; tandem mass spectrometry; Arachidonic Acid; Cell Line; Chromatography, Liquid; Coronavirus 229E, Human; Glycerophospholipids; Host-Pathogen Interactions; Humans; Linoleic Acid; Lipid Metabolism; Tandem Mass Spectrometry; Virus Replication","Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489; Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns” (2013) J. Formos Med. Assoc., 112, pp. 372-381; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Cheng, V.C., Lau, S.K., Woo, P.C., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin. Microbiol. Rev., 20, pp. 660-694; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Cheung, M.T., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Taube, S., Jiang, M., Wobus, C.E., Glycosphingolipids as receptors for non-enveloped viruses (2010) Viruses, 2, pp. 1011-1049; Chazal, N., Gerlier, D., Virus entry, assembly, budding, and membrane rafts (2003) Microbiol. Mol. Biol. Rev., 67, pp. 226-237. , table of contents; Nagy, P.D., Strating, J.R.P.M., van Kuppeveld, F.J.M., Building Viral Replication Organelles: Close Encounters of the Membrane Types (2016) Plos Pathog, 12; Hsu, N.Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.H., Takvorian, P.M., Pau, C., Balla, T., Viral reorganization of the secretory pathway generates distinct organelles for RNA replication (2010) Cell, 141, pp. 799-811; Diamond, D.L., Syder, A.J., Jacobs, J.M., Sorensen, C.M., Walters, K.A., Proll, S.C., McDermott, J.E., Zhao, R., Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics (2010) Plos Pathog, 6; Ono, A., Ablan, S.D., Lockett, S.J., Nagashima, K., Freed, E.O., Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 14889-14894; Zhang, J., Pekosz, A., Lamb, R.A., Influenza virus assembly and lipid raft microdomains: A role for the cytoplasmic tails of the spike glycoproteins (2000) J. Virol., 74, pp. 4634-4644; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) Plos Biol, 6; Muller, C., Hardt, M., Schwudke, D., Neuman, B.W., Pleschka, S., Ziebuhr, J., Inhibition of Cytosolic Phospholipase A2alpha Impairs an Early Step of Coronavirus Replication in Cell Culture J. Virol., 2018, p. 92; Vijay, R., Hua, X., Meyerholz, D.K., Miki, Y., Yamamoto, K., Gelb, M., Murakami, M., Perlman, S., Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome-CoV infection (2015) J. Exp. Med., 212, pp. 1851-1868; Yan, B., Deng, Y., Hou, J., Bi, Q., Yang, M., Jiang, B., Liu, X., Guo, D., UHPLC-LTQ-Orbitrap MS combined with spike-in method for plasma metabonomics analysis of acute myocardial ischemia rats and pretreatment effect of Danqi Tongmai tablet (2015) Mol. Biosyst., 11, pp. 486-496; Chan, J.F., Chan, K.H., Choi, G.K., To, K.K., Tse, H., Cai, J.P., Yeung, M.L., Che, X.Y., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis, 207, pp. 1743-1752; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yu, P., Treatment With Lopinavir/Ritonavir or Interferon-beta1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset (2015) J. Infect. Dis., 212, pp. 1904-1913. , doi:10.1093/infdis/jiv392; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Chu, H., Chan, C.M., Zhang, X., Wang, Y., Yuan, S., Zhou, J., Au-Yeung, R.K., Shuai, H., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J. Biol. Chem., 293, pp. 11709-11726; Chan, C.M., Chu, H., Wang, Y., Wong, B.H., Zhao, X., Zhou, J., Yang, D., Yeung, M.L., Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus (2016) J. Virol., 90, pp. 9114-9127; Chan, J.F., Choi, G.K., Tsang, A.K., Tee, K.M., Lam, H.Y., Yip, C.C., To, K.K., Lau, S.K., Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses (2015) J. Clin. Microbiol, 53, pp. 2722-2726; Chan, K.H., Chan, J.F., Tse, H., Chen, H., Lau, C.C., Cai, J.P., Tsang, A.K., Xiao, X., To, K.K.; Lau, S.K.; et al. Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) J. Infect, 67, pp. 130-140; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Yang, D., Li, C., Middle East Respiratory Syndrome Coronavirus Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and Intrinsic Apoptosis Pathways (2016) J. Infect. Dis., 213, pp. 904-914; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Sun, T., Chan, J.Y., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342; Chu, H., Zhou, J., Wong, B.H., Li, C., Cheng, Z.S., Lin, X., Poon, V.K., Chan, J.F., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Li, P.T., Chen, H., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J. Infect, 67, pp. 606-616; Tang, B.S., Chan, K.H., Cheng, V.C., Woo, P.C., Lau, S.K., Lam, C.C., Chan, T.L., Leung, S.Y., Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E (2005) J. Virol., 79, pp. 6180-6193; Burnum-Johnson, K.E., Kyle, J.E., Eisfeld, A.J., Casey, C.P., Stratton, K.G., Gonzalez, J.F., Habyarimana, F., Chauhan, S., MPLEx: A method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling (2017) Analyst, 142, pp. 442-448; Nakayasu, E.S., Nicora, C.D., Sims, A.C., Burnum-Johnson, K.E., Kim, Y.M., Kyle, J.E., Matzke, M.M., Schepmoes, A.A., MPLEx: A Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses (2016) Msystems, 1; Sze, K.H., Lam, W.H., Zhang, H., Ke, Y.H., Tse, M.K., Woo, P.C.Y., Lau, S.K.P., Tung, E.T.K., Talaromyces marneffei Mp1p Is a Virulence Factor that Binds and Sequesters a Key Proinflammatory Lipid to Dampen Host Innate Immune Response (2017) Cell Chem. Biol., 24, pp. 182-194; Yuan, S., Chu, H., Chan, J.F., Ye, Z.W., Wen, L., Yan, B., Lai, P.M., Chen, D., SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target (2019) Nat. Commun., 10; Smith, C.A., Want, E.J., O'maille, G., Abagyan, R., Siuzdak, G., XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification (2006) Anal. Chem., 78, pp. 779-787; Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T.R., Neumann, S., CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets (2012) Anal. Chem., 84, pp. 283-289; Xia, J., Sinelnikov, I.V., Han, B., Wishart, D.S., MetaboAnalyst 3.0—Making metabolomics more meaningful (2015) Nucleic Acids Res, 43, pp. W251-W257; Galindo-Prieto, B., Eriksson, L., Trygg, J., Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS) (2014) J. Chemom., 28, pp. 623-632; Yang, Z., Hou, J.J., Qi, P., Yang, M., Yan, B.P., Bi, Q.R., Feng, R.H., Guo, D.A., Colon-derived uremic biomarkers induced by the acute toxicity of Kansui radix: A metabolomics study of rat plasma and intestinal contents by UPLC-QTOF-MS(E) (2016) J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1026, pp. 193-203; Ciechonska, M., Duncan, R., Lysophosphatidylcholine reversibly arrests pore expansion during syncytium formation mediated by diverse viral fusogens (2014) J. Virol., 88, pp. 6528-6531; Makide, K., Uwamizu, A., Shinjo, Y., Ishiguro, J., Okutani, M., Inoue, A., Aoki, J., Novel lysophosphoplipid receptors: Their structure and function (2014) J. Lipid Res., 55, pp. 1986-1995; Tallima, H., El Ridi, R., Arachidonic acid: Physiological roles and potential health benefits—A review (2018) J. Adv. Res., 11, pp. 33-41; Xu, K., Nagy, P.D., RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes (2015) Proc. Natl. Acad. Sci. USA, 112, pp. E1782-E1791; Wang, L., Shen, W., Kazachkov, M., Chen, G., Chen, Q., Carlsson, A.S., Stymne, S., Zou, J., Metabolic interactions between the Lands cycle and the Kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds (2012) Plant. Cell, 24, pp. 4652-4669; Demetz, E., Schroll, A., Auer, K., Heim, C., Patsch, J.R., Eller, P., Theurl, M., Seifert, M., The arachidonic acid metabolome serves as a conserved regulator of cholesterol metabolism (2014) Cell Metab, 20, pp. 787-798; Persichini, T., Mastrantonio, R., Del Matto, S., Palomba, L., Cantoni, O., Colasanti, M., The role of arachidonic acid in the regulation of nitric oxide synthase isoforms by HIV gp120 protein in astroglial cells (2014) Free Radic. Biol. Med., 74, pp. 14-20; Chandrasekharan, J.A., Marginean, A., Sharma-Walia, N., An insight into the role of arachidonic acid derived lipid mediators in virus associated pathogenesis and malignancies (2016) Prostaglandins Other Lipid Mediat, 126, pp. 46-54; Muller, C., Karl, N., Ziebuhr, J., Pleschka, S., D, L-lysine acetylsalicylate + glycine Impairs Coronavirus Replication (2016) J. Antivir. Antiretrovir., 8, p. 4","Chan, J.F.-W.; State Key Laboratory of Emerging Infectious Diseases, The University of Hong KongHong Kong; email: jfwchan@hku.hk",,"MDPI AG",19994915,,,"30654597","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85060147134 "Tortorici M.A., Veesler D.","6603890184;25227836200;","Structural insights into coronavirus entry",2019,"Advances in Virus Research","105",,,"93","116",,3,"10.1016/bs.aivir.2019.08.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070931160&doi=10.1016%2fbs.aivir.2019.08.002&partnerID=40&md5=89ef3c578af05c74bd7f3b20cd0931f5","Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France","Tortorici, M.A., Department of Biochemistry, University of Washington, Seattle, WA, United States, Institut Pasteur, Unité de Virologie Structurale, Paris, France, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France; Veesler, D., Department of Biochemistry, University of Washington, Seattle, WA, United States","Coronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies. © 2019 Elsevier Inc.","Coronavirus; Fusion protein; Membrane fusion; Proteolytic activation; Spike glycoprotein; Vaccine design","animal; Coronavirinae; host pathogen interaction; human; physiology; ultrastructure; virion; virus entry; Animals; Coronavirus; Host-Pathogen Interactions; Humans; Virion; Virus Internalization","Bai, X.C., Fernandez, I.S., McMullan, G., Scheres, S.H., Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles (2013) elife, 2; Bakkers, M.J., Lang, Y., Feitsma, L.J., Hulswit, R.J., de Poot, S.A., van Vliet, A.L., Margine, I., de Groot, R.J., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity (2017) Cell Host Microbe, 21, p. 356; Bakkers, M.J., Zeng, Q., Feitsma, L.J., Hulswit, R.J., Li, Z., Westerbeke, A., van Kuppeveld, F.J., de Groot, R.J., Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation (2016) Proc. Natl. Acad. Sci. U. S. A., 113; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, p. 4953; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci. U. S. A., 106, p. 5871; Beniac, D.R., Andonov, A., Grudeski, E., Booth, T.F., Architecture of the SARS coronavirus prefusion spike (2006) Nat. Struct. Mol. Biol., 13, p. 751; Beniac, D.R., deVarennes, S.L., Andonov, A., He, R., Booth, T.F., Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion (2007) PLoS One, 2; Bos, E.C., Heijnen, L., Spaan, W.J., Site directed mutagenesis of the murine coronavirus spike protein. Effects on fusion (1995) Adv. Exp. Med. Biol., 380, p. 283; Bosch, B.J., Bartelink, W., Rottier, P.J., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide (2008) J. Virol., 82, p. 8887; Bosch, B.J., de Haan, C.A., Smits, S.L., Rottier, P.J., Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements (2005) Virology, 334, p. 306; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77, p. 8801; Brilot, A.F., Chen, J.Z., Cheng, A., Pan, J., Harrison, S.C., Potter, C.S., Carragher, B., Grigorieff, N., Beam-induced motion of vitrified specimen on holey carbon film (2012) J. Struct. Biol., 177, p. 630; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10; Campbell, M.G., Cheng, A., Brilot, A.F., Moeller, A., Lyumkis, D., Veesler, D., Pan, J., Grigorieff, N., Movies of ice-embedded particles enhance resolution in electron cryo-microscopy (2012) Structure, 20, p. 1823; Campbell, M.G., Veesler, D., Cheng, A., Potter, C.S., Carragher, B., 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy (2015) Elife, 4; Chang, K.W., Sheng, Y., Gombold, J.L., Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein (2000) Virology, 269, p. 212; Chen, J., Kovacs, J.M., Peng, H., Rits-Volloch, S., Lu, J., Park, D., Zablowsky, E., Chen, B., HIV-1 envelope. Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein (2015) Science, 349, p. 191; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, p. 10777; Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G., Lanzavecchia, A., A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins (2011) Science, 333, p. 850; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. U. S. A., 112, p. 10473; Daniel, C., Anderson, R., Buchmeier, M.J., Fleming, J.O., Spaan, W.J., Wege, H., Talbot, P.J., Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure (1993) J. Virol., 67, p. 1185; Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjöström, H., Norén, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, p. 417; Delmas, B., Gelfi, J., Sjöström, H., Noren, O., Laude, H., Further characterization of aminopeptidase-N as a receptor for coronaviruses (1993) Adv. Exp. Med. Biol., 342, p. 293; Dev, J., Park, D., Fu, Q., Chen, J., Ha, H.J., Ghantous, F., Herrmann, T., Chou, J.J., Structural basis for membrane anchoring of HIV-1 envelope spike (2016) Science, 353, p. 172; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Li, F., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat. Commun., 7, p. 13473; Duquerroy, S., Vigouroux, A., Rottier, P.J., Rey, F.A., Bosch, B.J., Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein (2005) Virology, 335, p. 276; Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V., Dieffenbach, C.W., Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV (1991) J. Virol., 65, p. 6881; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog., 13; Earnest, J.T., Hantak, M.P., Park, J.E., Gallagher, T., Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains (2015) J. Virol., 89, p. 6093; Eifart, P., Ludwig, K., Bottcher, C., de Haan, C.A., Rottier, P.J., Korte, T., Herrmann, A., Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry (2007) J. Virol., 81, p. 10758; Frana, M.F., Behnke, J.N., Sturman, L.S., Holmes, K.V., Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion (1985) J. Virol., 56, p. 912; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Gao, G.F., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, p. 13134; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, p. 535; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, p. 119; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, p. 140; Harrison, S.C., Viral membrane fusion (2008) Nat. Struct. Mol. Biol., 15, p. 690; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, p. 557; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pohlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc. Natl. Acad. Sci. U. S. A., 102, p. 7988; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13; Hulswit, R.J., de Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv. Virus Res., 96, p. 29; Hulswit, R.J.G., Lang, Y., Bakkers, M.J.G., Li, W., Li, Z., Schouten, A., Ophorst, B., de Groot, R.J., Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A (2019) Proc. Natl. Acad. Sci. U. S. A., 116, p. 2681; Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T., Sugamura, K., Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted (2007) J. Virol., 81, p. 8722; Isaacs, D., Flowers, D., Clarke, J.R., Valman, H.B., MacNaughton, M.R., Epidemiology of coronavirus respiratory infections (1983) Arch. Dis. Child., 58, p. 500; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, p. 118; Kirchdoerfer, R.N., Wang, N., Pallesen, J., Wrapp, D., Turner, H.L., Cottrell, C.A., Corbett, K.S., Ward, A.B., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci. Rep., 8, p. 15701; Kong, R., Xu, K., Zhou, T., Acharya, P., Lemmin, T., Liu, K., Ozorowski, G., Mascola, J.R., Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody (2016) Science, 352, p. 828; Krempl, C., Schultze, B., Herrler, G., Analysis of cellular receptors for human coronavirus OC43 (1995) Adv. Exp. Med. Biol., 380, p. 371; Krempl, C., Schultze, B., Laude, H., Herrler, G., Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus (1997) J. Virol., 71, p. 3285; Krokhin, O., Li, Y., Andonov, A., Feldmann, H., Flick, R., Jones, S., Stroeher, U., Standing, K.G., Mass spectrometric characterization of proteins from the SARS virus: a preliminary report (2003) Mol. Cell. Proteomics, 2, p. 346; Lang, S., Xie, J., Zhu, X., Wu, N.C., Lerner, R.A., Wilson, I.A., Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1-69 antibody orientation on the HA stem (2017) Cell Rep., 20, p. 2935; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, p. 1864; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., van Dieren, B., Bosch, B.J., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc. Natl. Acad. Sci. U. S. A., 115; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. U. S. A., 114; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, p. 450; Li, W., Wicht, O., van Kuppeveld, F.J., He, Q., Rottier, P.J., Bosch, B.J., A single point mutation creating a furin cleavage site in the spike protein renders porcine epidemic diarrhea coronavirus trypsin independent for cell entry and fusion (2015) J. Virol., 89, p. 8077; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, p. 1634; Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y., Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM (2013) Nat. Methods, 10, p. 584; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J. Virol., 89, p. 6121; Lontok, E., Corse, E., Machamer, C.E., Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site (2004) J. Virol., 78, p. 5913; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, p. 227; McCoy, L.E., van Gils, M.J., Ozorowski, G., Messmer, T., Briney, B., Voss, J.E., Kulp, D.W., Burton, D.R., Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies (2016) Cell Rep., 16, p. 2327; McLellan, J.S., Chen, M., Leung, S., Graepel, K.W., Du, X., Yang, Y., Zhou, T., Graham, B.S., Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody (2013) Science, 340, p. 1113; McLellan, J.S., Yang, Y., Graham, B.S., Kwong, P.D., Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes (2011) J. Virol., 85, p. 7788; Menachery, V.D., Yount, B.L., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, p. 1508; Menachery, V.D., Yount, B.L., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. U. S. A., 113, p. 3048; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J. Virol., 88; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. U. S. A., 111; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, p. 120; Ng, M.L., Tan, S.H., See, E.E., Ooi, E.E., Ling, A.E., Proliferative growth of SARS coronavirus in Vero E6 cells (2003) J. Gen. Virol., 84, p. 3291; Nomura, R., Kiyota, A., Suzaki, E., Kataoka, K., Ohe, Y., Miyamoto, K., Senda, T., Fujimoto, T., Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae (2004) J. Virol., 78, p. 8701; Owczarek, K., Szczepanski, A., Milewska, A., Baster, Z., Rajfur, Z., Sarna, M., Pyrc, K., Early events during human coronavirus OC43 entry to the cell (2018) Sci. Rep., 8, p. 7124; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. U. S. A., 114, p. E7348; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. U. S. A., 113; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl. Acad. Sci. U. S. A., 108; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem., 287; Petit, C.M., Melancon, J.M., Chouljenko, V.N., Colgrove, R., Farzan, M., Knipe, D.M., Kousoulas, K.G., Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion (2005) Virology, 341, p. 215; Prabakaran, P., Gan, J., Feng, Y., Zhu, Z., Choudhry, V., Xiao, X., Ji, X., Dimitrov, D.S., Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody (2006) J. Biol. Chem., 281; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat. Methods, 14, p. 290; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, p. 251; Regan, A.D., Shraybman, R., Cohen, R.D., Whittaker, G.R., Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses (2008) Vet. Microbiol., 132, p. 235; Reguera, J., Santiago, C., Mudgal, G., Ordoño, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog., 8; Ritchie, G., Harvey, D.J., Feldmann, F., Stroeher, U., Feldmann, H., Royle, L., Dwek, R.A., Rudd, P.M., Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein (2010) Virology, 399, p. 257; Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., Baric, R., Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge (2008) J. Virol., 82, p. 3220; Rosenthal, P.B., Zhang, X., Formanowski, F., Fitz, W., Wong, C.H., Meier-Ewert, H., Skehel, J.J., Wiley, D.C., Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus (1998) Nature, 396, p. 92; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, p. 81; Scheres, S.H., RELION: implementation of a Bayesian approach to cryo-EM structure determination (2012) J. Struct. Biol., 180, p. 519; Schroth-Diez, B., Ludwig, K., Baljinnyam, B., Kozerski, C., Huang, Q., Herrmann, A., The role of the transmembrane and of the intraviral domain of glycoproteins in membrane fusion of enveloped viruses (2000) Biosci. Rep., 20, p. 571; Schwegmann-Wessels, C., Zimmer, G., Schröder, B., Breves, G., Herrler, G., Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins (2003) J. Virol., 77; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog., 14; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state (2018) J. Virol., 92 (4). , pii: e01556-17; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J. Virol., 85, p. 873; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc. Natl. Acad. Sci. U. S. A., 102; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog., 14; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martínez-Sobrido, L., García-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, p. 304; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, p. 490; Supekar, V.M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., Carfí, A., Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein (2004) Proc. Natl. Acad. Sci. U. S. A., 101; Swanson, K., Wen, X., Leser, G.P., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the Newcastle disease virus F protein in the post-fusion conformation (2010) Virology, 402, p. 372; Swanson, K.A., Settembre, E.C., Shaw, C.A., Dey, A.K., Rappuoli, R., Mandl, C.W., Dormitzer, P.R., Carfi, A., Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers (2011) Proc. Natl. Acad. Sci. U. S. A., 108, p. 9619; Thorp, E.B., Boscarino, J.A., Logan, H.L., Goletz, J.T., Gallagher, T.M., Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity (2006) J. Virol., 80, p. 1280; Tortorici, M.A., Walls, A.C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.J., Veesler, D., Structural basis for human coronavirus attachment to sialic acid receptors (2019) Nat. Struct. Mol. Biol., 26, p. 481; Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Lanzavecchia, A., An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus (2004) Nat. Med., 10, p. 871; Van Hamme, E., Dewerchin, H.L., Cornelissen, E., Verhasselt, B., Nauwynck, H.J., Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin (2008) J. Gen. Virol., 89, p. 2147; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc. Natl. Acad. Sci. U. S. A., 85, p. 4526; Walls, A., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Rey, F.A., Veesler, D., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy (2017) Protein Sci., 26, p. 113; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, p. 114; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, p. 899; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc. Natl. Acad. Sci. U. S. A., 114; Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Cameroni, E., Veesler, D., Unexpected receptor functional mimicry elucidates activation of coronavirus fusion (2019) Cell, 176, p. 1026; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, p. 986; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, p. 328; Wang, S., Guo, F., Liu, K., Wang, H., Rao, S., Yang, P., Jiang, C., Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2 (2008) Virus Res., 136, p. 8; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J. Virol., 88, p. 7952; Wickramasinghe, I.N., de Vries, R.P., Grone, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J. Virol., 85, p. 8903; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc. Natl. Acad. Sci. U. S. A., 88, p. 5533; Wong, A.H.M., Tomlinson, A.C.A., Zhou, D., Satkunarajah, M., Chen, K., Sharon, C., Desforges, M., Rini, J.M., Receptor-binding loops in alphacoronavirus adaptation and evolution (2017) Nat. Commun., 8, p. 1735; Wong, J.J., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form (2016) Proc. Natl. Acad. Sci. U. S. A., 113, p. 1056; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc. Natl. Acad. Sci. U. S. A., 106; Xiong, X., Coombs, P.J., Martin, S.R., Liu, J., Xiao, H., McCauley, J.W., Locher, K., Gamblin, S.J., Receptor binding by a ferret-transmissible H5 avian influenza virus (2013) Nature, 497, p. 392; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2018) J. Virol., 92 (4). , pii: e01628-17; Xu, K., Chan, Y.P., Bradel-Tretheway, B., Akyol-Ataman, Z., Zhu, Y., Dutta, S., Yan, L., Nikolov, D.B., Crystal structure of the pre-fusion nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly (2015) PLoS Pathog., 11; Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core (2004) J. Biol. Chem., 279; Xu, Y., Su, N., Qin, L., Bai, Z., Gao, G.F., Rao, Z., Crystallization and preliminary crystallographic analysis of the heptad-repeat complex of SARS coronavirus spike protein (2004) Acta Crystallogr. D Biol. Crystallogr., 60, p. 2377; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J. Virol., 83, p. 8744; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J. Virol., 89, p. 9119; Ye, R., Montalto-Morrison, C., Masters, P.S., Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain (2004) J. Virol., 78, p. 9904; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, p. 420; Yin, H.S., Paterson, R.G., Wen, X., Lamb, R.A., Jardetzky, T.S., Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein (2005) Proc. Natl. Acad. Sci. U. S. A., 102, p. 9288; Yin, H.S., Wen, X., Paterson, R.G., Lamb, R.A., Jardetzky, T.S., Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation (2006) Nature, 439, p. 38; Youn, S., Collisson, E.W., Machamer, C.E., Contribution of trafficking signals in the cytoplasmic tail of the infectious bronchitis virus spike protein to virus infection (2005) J. Virol., 79; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Wang, X., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep., 5; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8; Zhang, H., Wang, G., Li, J., Nie, Y., Shi, X., Lian, G., Wang, W., Deng, H., Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies (2004) J. Virol., 78, p. 6938; Zheng, Q., Deng, Y., Liu, J., van der Hoek, L., Berkhout, B., Lu, M., Core structure of S2 from the human coronavirus NL63 spike glycoprotein (2006) Biochemistry, 45","Veesler, D.; Department of Biochemistry, University of WashingtonUnited States; email: dveesler@uw.edu","Rey F.A.","Academic Press Inc.",00653527,9780128184561,,"31522710","English","Adv. Virus Res.",Book Chapter,"Final",Open Access,Scopus,2-s2.0-85070931160 "Tvarogová J., Madhugiri R., Bylapudi G., Ferguson L.J., Karl N., Ziebuhr J.","57209101115;26654846800;57209102507;57209108521;7004162467;7003783935;","Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3=-terminal adenylyltransferase activity",2019,"Journal of Virology","93","12", e0025119,"","",,1,"10.1128/JVI.00291-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066460450&doi=10.1128%2fJVI.00291-19&partnerID=40&md5=f9604fee3cb444a7ce7dfaa3e1116e37","Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom","Tvarogová, J., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Madhugiri, R., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Bylapudi, G., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; Ferguson, L.J., Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom; Karl, N., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom; Ziebuhr, J., Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom","Coronavirus nonstructural protein 8 (nsp8) has been suggested to have diverse activities, including noncanonical template-dependent polymerase activities. Here, we characterized a recombinant form of the human coronavirus 229E (HCoV-229E) nsp8 and found that the protein has metal ion-dependent RNA 3=-terminal adenylyltransferase (TATase) activity, while other nucleotides were not (or very inefficiently) transferred to the 3= ends of single-stranded and (fully) double-stranded acceptor RNAs. Using partially double-stranded RNAs, very efficient TATase activity was observed if the opposite (template) strand contained a short 5= oligo(U) sequence, while very little (if any) activity was detected for substrates with other homopolymeric or heteropolymeric sequences in the 5= overhang. The oligo(U)-assisted/ templated TATase activity on partial-duplex RNAs was confirmed for two other coronavirus nsp8 proteins, suggesting that the activity is conserved among coronaviruses. Replacement of a conserved Lys residue with Ala abolished the in vitro RNA-binding and TATase activities of nsp8 and caused a nonviable phenotype when the corresponding mutation was introduced into the HCoV-229E genome, confirming that these activities are mediated by nsp8 and critical for viral replication. In additional experiments, we obtained evidence that nsp8 has a pronounced specificity for adenylate and is unable to incorporate guanylate into RNA products, which strongly argues against the previously proposed template-dependent RNA polymerase activity of this protein. Given the presence of an oligo(U) stretch at the 5= end of coronavirus minus-strand RNAs, it is tempting to speculate (but remains to be confirmed) that the nsp8-mediated TATase activity is involved in the 3= polyadenylation of viral plus-strand RNAs. IMPORTANCE Previously, coronavirus nsp8 proteins were suggested to have template-dependent RNA polymerase activities resembling those of RNA primases or even canonical RNA-dependent RNA polymerases, while more recent studies have suggested an essential cofactor function of nsp8 (plus nsp7) for nsp12-mediated RNA-dependent RNA polymerase activity. In an effort to reconcile conflicting data from earlier studies, the study revisits coronavirus nsp8-associated activities using additional controls and proteins. The data obtained for three coronavirus nsp8 proteins provide evidence that the proteins share metal ion-dependent RNA 3= polyadenylation activities that are greatly stimulated by a short oligo(U) stretch in the template strand. In contrast, nsp8 was found to be unable to select and incorporate appropriate (matching) nucleotides to produce cRNA products from heteropolymeric and other homooligomeric templates. While confirming the critical role of nsp8 in coronavirus replication, the study amends the list of activities mediated by coronavirus nsp8 proteins in the absence of other proteins. © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; Replication; RNA 3=-terminal adenylyltransferase; RNA virus","double stranded RNA; guanosine phosphate; lysine; metal ion; nonstructural protein 8; nucleotide; RNA polymerase; single stranded RNA; unclassified drug; viral protein; Article; controlled study; enzyme activity; enzyme substrate; gene sequence; human; Human coronavirus 229E; in vitro study; nonhuman; phenotype; priority journal; protein expression; protein RNA binding; regulatory RNA sequence; RNA 3' end processing; terminal oligopyrimidine tract; virus characterization; virus genome; virus identification; virus mutation; virus recombinant; virus replication","De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Family coronaviridae (2012) Virus Taxonomy, pp. 806-828. , King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ ed, Elsevier, Amsterdam, Netherlands; Zumla, A., Hui, D.S., Perlman, S., Middle east respiratory syndrome (2015) Lancet, 386, pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37. , https://doi.org/10.1016/j.virusres.2006.01.017; Ziebuhr, J., Coronavirus replicative proteins (2008) Nidoviruses, pp. 65-81. , Perlman S, Gallagher T, Snijder EJ ed, ASM Press, Washington, DC; Masters, P.S., Perlman, S., (2013) Fields Virology, 1, pp. 825-858. , Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B ed, 6th ed, Lippincott Williams & Wilkins, Philadelphia, PA; Snijder, E.J., Decroly, E., Ziebuhr, J., The nonstructural proteins directing coronavirus RNA synthesis and processing (2016) Adv Virus Res, 96, pp. 59-126. , https://doi.org/10.1016/bs.aivir.2016.08.008; Sevajol, M., Subissi, L., Decroly, E., Canard, B., Imbert, I., Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus (2014) Virus Res, 194, pp. 90-99. , https://doi.org/10.1016/j.virusres.2014.10.008; Sola, I., Mateos-Gomez, P.A., Almazan, F., Zuñiga, S., Enjuanes, L., RNA-RNA and RNA-protein interactions in coronavirus replication and transcription (2011) RNA Biol, 8, pp. 237-248. , https://doi.org/10.4161/rna.8.2.14991; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu Rev Virol, 2, pp. 265-288. , https://doi.org/10.1146/annurev-virology-100114-055218; Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M., Ruben, M., Overkleeft, H.S., Van Veelen, P.A., Gorbalenya, A.E., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses (2015) Nucleic Acids Res, 43, pp. 8416-8434. , https://doi.org/10.1093/nar/gkv838; Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., Blinov, V.M., Coronavirus genome: Prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis (1989) Nucleic Acids Res, 17, pp. 4847-4861. , https://doi.org/10.1093/nar/17.12.4847; Xiao, Y., Ma, Q., Restle, T., Shang, W., Svergun, D.I., Ponnusamy, R., Sczakiel, G., Hilgenfeld, R., Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity (2012) J Virol, 86, pp. 4444-4454. , https://doi.org/10.1128/JVI.06635-11; Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., Rao, Z., Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer (2005) Nat Struct Mol Biol, 12, pp. 980-986. , https://doi.org/10.1038/nsmb999; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Imbert, I., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc Natl Acad Sci U S A, 111, pp. E3900-E3909. , https://doi.org/10.1073/pnas.1323705111; Ferron, F., Subissi, L., Silveira De Morais, A.T., Le, N.T.T., Sevajol, M., Gluais, L., Decroly, E., Imbert, I., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Natl Acad Sci U S A, 115, pp. E162-E171. , https://doi.org/10.1073/pnas.1718806115; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3=¡5= exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci U S A, 103, pp. 5108-5113. , https://doi.org/10.1073/pnas.0508200103; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Corona-viruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003565; Smith, E.C., Sexton, N.R., Denison, M.R., Thinking outside the triangle: Replication fidelity of the largest RNA viruses (2014) Annu Rev Virol, 1, pp. 111-132. , https://doi.org/10.1146/annurev-virology-031413-085507; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Denison, M.R., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog, 6. , https://doi.org/10.1371/journal.ppat.1000896; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81, pp. 12135-12144. , https://doi.org/10.1128/JVI.01296-07; Ulferts, R., Ziebuhr, J., Nidovirus ribonucleases: Structures and functions in viral replication (2011) RNA Biol, 8, pp. 295-304. , https://doi.org/10.4161/rna.8.2.15196; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuñiga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Imbert, I., Guillemot, J.C., Bourhis, J.M., Bussetta, C., Coutard, B., Egloff, M.P., Ferron, F., Canard, B., A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus (2006) EMBO J, 25, pp. 4933-4942. , https://doi.org/10.1038/sj.emboj.7601368; Te Velthuis, A.J., Van Den Worm, S.H., Snijder, E.J., The SARS-coronavirus nsp7nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension (2012) Nucleic Acids Res, 40, pp. 1737-1747. , https://doi.org/10.1093/nar/gkr893; Gohara, D.W., Ha, C.S., Kumar, S., Ghosh, B., Arnold, J.J., Wisniewski, T.J., Cameron, C.E., Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli (1999) Protein Expr Purif, 17, pp. 128-138. , https://doi.org/10.1006/prep.1999.1100; Te Velthuis, A.J., Arnold, J.J., Cameron, C.E., Van Den Worm, S.H., Snijder, E.J., The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent (2010) Nucleic Acids Res, 38, pp. 203-214. , https://doi.org/10.1093/nar/gkp904; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J Gen Virol, 82, pp. 1273-1281. , https://doi.org/10.1099/0022-1317-82-6-1273; Hafe, L.A., Keller, E.B., The polyadenylate polymerases from yeast (1975) J Biol Chem, 250, pp. 1838-1846; Tsiapalis, C.M., Dorson, J.W., De Sante, D.M., Bollum, F.J., Terminal riboadenylate transferase: A polyadenylate polymerase from calf thymus gland (1973) Biochem Biophys Res Commun, 50, pp. 737-743. , https://doi.org/10.1016/0006-291X(73)91306-5; Balbo, P.B., Bohm, A., Mechanism of poly(A) polymerase: Structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis (2007) Structure, 15, pp. 1117-1131. , https://doi.org/10.1016/j.str.2007.07.010; Moodie, S.L., Mitchell, J.B., Thornton, J.M., Protein recognition of adenylate: An example of a fuzzy recognition template (1996) J Mol Biol, 263, pp. 486-500. , https://doi.org/10.1006/jmbi.1996.0591; Nobeli, I., Laskowski, R.A., Valdar, W.S., Thornton, J.M., On the molecular discrimination between adenine and guanine by proteins (2001) Nucleic Acids Res, 29, pp. 4294-4309. , https://doi.org/10.1093/nar/29.21.4294; Arnold, J.J., Cameron, C.E., Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro (1999) J Biol Chem, 274, pp. 2706-2716. , https://doi.org/10.1074/jbc.274.5.2706; Neufeld, K.L., Galarza, J.M., Richards, O.C., Summers, D.F., Ehrenfeld, E., Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol (1994) J Virol, 68, pp. 5811-5818; Ranjith-Kumar, C.T., Gajewski, J., Gutshall, L., Maley, D., Sarisky, R.T., Kao, C.C., Terminal nucleotidyl transferase activity of recombinant Flaviviri-dae RNA-dependent RNA polymerases: Implication for viral RNA synthesis (2001) J Virol, 75, pp. 8615-8623. , https://doi.org/10.1128/JVI.75.18.8615-8623.2001; Poranen, M.M., Koivunen, M.R., Bamford, D.H., Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase (2008) J Virol, 82, pp. 9254-9264. , https://doi.org/10.1128/JVI.01044-08; Fullerton, S.W., Blaschke, M., Coutard, B., Gebhardt, J., Gorbalenya, A., Canard, B., Tucker, P.A., Rohayem, J., Structural and functional characterization of sapovirus RNA-dependent RNA polymerase (2007) J Virol, 81, pp. 1858-1871. , https://doi.org/10.1128/JVI.01462-06; Rohayem, J., Jager, K., Robel, I., Scheffler, U., Temme, A., Rudolph, W., Characterization of norovirus 3Dpol RNA-dependent RNA polymerase activity and initiation of RNA synthesis (2006) J Gen Virol, 87, pp. 2621-2630. , https://doi.org/10.1099/vir.0.81802-0; Tomar, S., Hardy, R.W., Smith, J.L., Kuhn, R.J., Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity (2006) J Virol, 80, pp. 9962-9969. , https://doi.org/10.1128/JVI.01067-06; Wu, W., Wang, Z., Xia, H., Liu, Y., Qiu, Y., Liu, Y., Hu, Y., Zhou, X., Flock house virus RNA polymerase initiates RNA synthesis de novo and possesses a terminal nucleotidyl transferase activity (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0086876; Wang, Z., Qiu, Y., Liu, Y., Qi, N., Si, J., Xia, X., Wu, D., Zhou, X., Characterization of a nodavirus replicase revealed a de novo initiation mechanism of RNA synthesis and terminal nucleotidyltransferase activity (2013) J Biol Chem, 288, pp. 30785-30801. , https://doi.org/10.1074/jbc.M113.492728; Ranjith-Kumar, C.T., Gutshall, L., Kim, M.J., Sarisky, R.T., Kao, C.C., Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases (2002) J Virol, 76, pp. 12526-12536. , https://doi.org/10.1128/JVI.76.24.12526-12536.2002; Huang, S.G., Klingenberg, M., Two-stage nucleotide binding mechanism and its implications to H transport inhibition of the uncoupling protein from brown adipose tissue mitochondria (1996) Biochemistry, 35, pp. 7846-7854. , https://doi.org/10.1021/bi960244p; Tabor, S., Richardson, C.C., Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I (1989) Proc Natl Acad Sci U S A, 86, pp. 4076-4080. , https://doi.org/10.1073/pnas.86.11.4076; Hofmann, M.A., Brian, D.A., The 5= end of coronavirus minus-strand RNAs contains a short poly(U) tract (1991) J Virol, 65, pp. 6331-6333; Schweizer, M.P., Chan, S.I., Ts'o, P.O., Interaction and association of bases and nucleosides in aqueous solutions. IV. Proton magnetic resonance studies of the association of pyrimidine nucleosides and their interactions with purine (1965) J Am Chem Soc, 87, pp. 5241-5247. , https://doi.org/10.1021/ja00950a045; Ts, P.O., Helmkamp, G.K., Sander, C., Interaction of nucleosides and related compounds with nucleic acids as indicated by the change of helix-coil transition temperature (1962) Proc Natl Acad Sci U S A, 48, pp. 686-698. , https://doi.org/10.1073/pnas.48.4.686; Ts'o, P.O., Kondo, N.S., Schweizer, M.P., Hollis, D.P., Studies of the conformation and interaction in dinucleoside mono- And diphosphates by proton magnetic resonance (1969) Biochemistry, 8, pp. 997-1029. , https://doi.org/10.1021/bi00831a033; Friedman, R.A., Honig, B., A free energy analysis of nucleic acid base stacking in aqueous solution (1995) Biophys J, 69, pp. 1528-1535. , https://doi.org/10.1016/S0006-3495(95)80023-8; Norberg, J., Nilsson, L., Stacking free energy profiles for all 16 natural ribodinucleoside monophosphates in aqueous solution (1995) J Am Chem Soc, 117, pp. 10832-10840. , https://doi.org/10.1021/ja00149a006; Balbo, P.B., Meinke, G., Bohm, A., Kinetic studies of yeast polyA polymerase indicate an induced fit mechanism for nucleotide specificity (2005) Biochemistry, 44, pp. 7777-7786. , https://doi.org/10.1021/bi050089r; Ortin, J., Martin-Benito, J., The RNA synthesis machinery of negative-stranded RNA viruses (2015) Virology, 479-480, pp. 532-544. , https://doi.org/10.1016/j.virol.2015.03.018; Hwang, L.N., Englund, N., Pattnaik, A.K., Polyadenylation of vesicular stomatitis virus mRNA dictates efficient transcription termination at the intercistronic gene junctions (1998) J Virol, 72, pp. 1805-1813; Robertson, J.S., Schubert, M., Lazzarini, R.A., Polyadenylation sites for influenza virus mRNA (1981) J Virol, 38, pp. 157-163; Schnell, M.J., Buonocore, L., Kretzschmar, E., Johnson, E., Rose, J.K., Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles (1996) Proc Natl Acad Sci U S A, 93, pp. 11359-11365. , https://doi.org/10.1073/pnas.93.21.11359; Dorsch-Hasler, K., Yogo, Y., Wimmer, E., Replication of picornaviruses. I. Evidence from in vitro RNA synthesis that poly(A) of the poliovirus genome is genetically coded (1975) J Virol, 16, pp. 1512-1517; Spector, D.H., Villa-Komaroff, L., Baltimore, D., Studies on the function of polyadenylic acid on poliovirus RNA (1975) Cell, 6, pp. 41-44. , https://doi.org/10.1016/0092-8674(75)90071-9; Larsen, G.R., Dorner, A.J., Harris, T.J., Wimmer, E., The structure of poliovirus replicative form (1980) Nucleic Acids Res, 8, pp. 1217-1229. , https://doi.org/10.1093/nar/8.6.1217; Sheets, M.D., Wickens, M., Two phases in the addition of a poly(A) tail (1989) Genes Dev, 3, pp. 1401-1412. , https://doi.org/10.1101/gad.3.9.1401; Yao, Z., Jones, D.H., Grose, C., Site-directed mutagenesis of her-pesvirus glycoprotein phosphorylation sites by recombination polymerase chain reaction (1992) PCR Methods Appl, 1, pp. 205-207. , https://doi.org/10.1101/gr.1.3.205; Jones, D.H., Howard, B.H., A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction (1991) Biotechniques, 10, pp. 62-66; Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., Higgins, D.G., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega (2011) Mol Syst Biol, 7, p. 539. , https://doi.org/10.1038/msb.2011.75; Robert, X., Gouet, P., Deciphering key features in protein structures with the new ENDscript server (2014) Nucleic Acids Res, 42, pp. W320-W324. , https://doi.org/10.1093/nar/gku316","Ziebuhr, J.; Institute of Medical Virology, Justus Liebig University GiessenGermany; email: john.ziebuhr@viro.med.uni-giessen.de",,"American Society for Microbiology",0022538X,,JOVIA,"30918070","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85066460450 "Singh S., Singh R., Singh K.P., Singh V., Malik Y.P.S., Kamdi B., Singh R., Kashyap G.","57208600128;57207895915;35387019900;16687007500;55407524100;57192254353;55574239628;57198421784;","Prevalence of bovine coronavirus infection in organized dairy farms of Central and North regions, India",2019,"Biological Rhythm Research",,,,"","",,,"10.1080/09291016.2019.1629093","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075452824&doi=10.1080%2f09291016.2019.1629093&partnerID=40&md5=9c8d26777b7573e9366605b9cf57f76e","Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, India","Singh, S., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Singh, R., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Singh, K.P., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Singh, V., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Malik, Y.P.S., Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Kamdi, B., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Singh, R., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Kashyap, G., Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India","An epidemiological study was conducted for investigation of bovine coronavirus by antigen Enzyme-linked immunosorbent assay kit in dairy calves from Central India (Madhya Pradesh and Chhattisgarh states) and North India (Uttar Pradesh state). Different epidemiological parameters like age, parity, colour and consistency of faecal materials and seasonal changes in a year were recorded. A total of 816 faecal samples were screened and out of which 7 (0.85%) animals were found to be positive for bovine coronavirus. The higher prevalence was recorded in north India followed by central India. Age wise higher prevalence was recorded below 2 month calves. Seasonally, the prevalence of coronavirus infection was higher in monsoon season and in first parity of calves as compared to other season and parity. Prevalence of coronavirus infection was higher in watery diarrhoea faecal materials than pasty yellow colour diarrhoea. The observations of the present study would provide the basis for further an effective explorative surveillance and epidemiological studies to know the real impact of coronavirus infection with associated risk factors in dairy calves of India. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.","bovine coronavirus; diarrhoea; ELISA; Epidemiological",,"Afshari Safavi, E.A., Mohammadi, G.R., Rad, M., Naghibi, A., (2012) A case-control study of association between diarrhea in newborn calves and infection with rotavirus and coronavirus in some industrial dairy herds of Mashhad area, , Iran: Archives of Razi Institute; Ammar, S.S.M., Mokhtaria, K., Tahar, B.B., Amar, A.A., Redha, B.A., Yuva, B., Mohamed, H.S., Laid, B., Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria (2014) Asian Paci J Trop Biome, 4, pp. S318-S322; Chi, K.O., Hasoksuz, M., Nielsen, P.R., Chang, K.O., Lathrop, S., Saif, L.J., Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RTPCR and nested PCR for their detection (2001) Arch Virol, 146 (12), pp. 2401-2419; Cho, Y.I., Yoon, K.J., An overview of calf diarrhea-infectious etiology, diagnosis, and intervention (2014) J Vet Sci, 15 (1), pp. 1-17; Clark, M.A., Bovine Corona virus (1993) B Vet J, 149, pp. 51-70; Dash, S.K., Kumar, K., Goel, A., Bhatia, A.K., Detection of corona virus antigen by ELISA from diarrhoeic cow calves in Mathura, India (2012) Vet World, 5, pp. 166-168; De Vries, A.A.F., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., The genome organization of the nidovirales: similarities and differences between arteri-, toro-, and coronaviruses (1997) Sem Virol, 8 (1), pp. 33-47; Dhama, K., Chauhan, R.S., Mahendran, M., Malik, S.V.S., Rotavirus diarrhea in bovines and other domestic animals (2009) Vet Res Comm, 33 (1), pp. 1-23; Fink, T., Influence of type of housing, microclimate and management on health of calves (1980) Inaugural Disser Tierarztliche Hochshule, 120 p. , Hannover; Gulliksen, S.M., Jor, E., Lie, K.I., Hamnes, I.S., Loken, T., Akerstedt, J., Osteras, O., Enteropathogens and risk factors for diarrhea in Norwegian dairy calves (2009) J Dai Sci, 92 (10), pp. 5057-5066; Kashyap, G., Singh, R., Malik, Y.S., Agrawal, R.K., Singh, K.P., Kumar, P., Sahoo, M., Singh, R., Experimental bovine rotavirus-A(RV-A) infection causes intestinal and extra-intestinal pathology in suckling mice (2018) Microb Pathog, 121, pp. 22-26; Kashyap, G., Singh, R., Malik, Y.S., Agrawal, R.K., Singh, K.P., Kumar, P., Singh, R., Gupta, D., Rotavirus A associated pathology of intestine and mesenteric lymph nodes and occurrence in bovine calves of Gwalior and Bareilly regions (2018) Indian J Ani Res, 52 (1), pp. 99-104; Kumari, S., Singh, R., Saikumar, G., Epidemiological study of porcine sapelovirus infection in pigs at Bareilly area of Uttar Pradesh, India (2018) Biol Rhythm Res, pp. 1-11; Langpap, T.J., Bergeland, M.E., Reed, D.E., Coronaviral enteritis of young calves: virologic and pathologic findings in naturally occurring infections (1979) Am J Vet Res, 40, pp. 1476-1478; Liberg, P., Carlsson, J., Colostrum in Swedish dairy cows: quality and effects on passive immunity in the calves (1998) Proc. Xth Int. Congr. Prod. Diseases in Farm Anim., , Utrecht (The Netherlands; Liu, L., Hagglund, S., Hakhverdyan, M., Alenius, S., Larsen, L.E., Belak, S., Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene (2006) J Clin Microbiol, 44 (3), pp. 957-960; Logan, E.F., Meneely, D.J., Lindsay, A., Colostrum and serum immunoglobulin levels in Jersey cattle (1981) British Vet J, 137 (3), pp. 279-282; Maclachlan, N.J., Dubovi, E.J., Fenner, F., (2011) Fenner’s veterinary virology, , 4th, Amsterdam (Boston): elsevier, ed; McGavin, M.D., Zachary, J.F., (2007) Pathological basis of veterinary disease, , 4th, St. Louise (Missouri): Mosby Elsevier, ed; Mebus, C.A., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhea: propagation, attenuation and characteristics of a coronavirus-like agent (1973) Am J Vet Res, 34, pp. 145-150; Meganck, V., Hoflack, G., Piepers, S., Opsomer, G., Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds (2015) Prev Vet Med, 118 (1), pp. 64-70; Millemann, Y., Diagnosis of neonatal calf diarrhoea (2009) Rev Méd Vét, 160, pp. 404-409; Quinn, P.J., Markey, B.K., Carter, M.E., Donnelly, W.J., Leonard, F.C., (2002) Veterinary microbiology and microbial disease, 413, p. 381 p. , 1st ed., Blackwell Science Ltd,. Oxford (UK; Radostits, O.M., Gay, C.C., Hinchcliff, K.W., Constable, P.D., (2007) Veterinary Medicine, , 10th, Philadelphia: Saunders, ed; Saif, L.J., Redman, D.R., Moorhead, P.D., Theil, K.W., Experimentally induced coronavirus infections in calves - viral replication in the respiratory and intestinal tracts (1986) Am J Vet Res, 47, pp. 1426-1432; Singh, S., Singh, R., Kamdi, B.P., Kasyap, G., Singh, R., George, N., Kumar, P., Singh, V., Occurrence and pathology of cryptosporidium in bovine calves of North and Central India (2018) J Ani Res, 8 (5), p. 925; Suresh, T., Rai, R.B., Dhama, K., Bhatt, P., Sawant, P.M., Sharma, A.K., Prevalence of rotavirus, coronavirus and Escherichia coli: the main agents responsible for calf diarrhoea (2011) Vet Pract, 13 (2), pp. 160-165","Singh, R.; Division of Pathology, Indian Veterinary Research InstituteIndia; email: rajendra_singh5747@rediffmail.com",,"Taylor and Francis Ltd.",09291016,,BRHRE,,"English","Biol. Rhythm Res.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85075452824 "Suryaman G.K., Soejoedono R.D., Setiyono A., Poetri O.N., Handharyani E.","57211982587;26424105300;6603660377;45461221800;6508206928;","Isolation and characterization of avian coronavirus from healthy Eclectus parrots (Eclectus roratus) from Indonesia",2019,"Veterinary World","12","11",,"1797","1805",,,"10.14202/vetworld.2019.1797-1805","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075578735&doi=10.14202%2fvetworld.2019.1797-1805&partnerID=40&md5=9f57f72f91df5eab8a8054ae83dae6ba","Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia; Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia","Suryaman, G.K., Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia; Soejoedono, R.D., Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia; Setiyono, A., Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia; Poetri, O.N., Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia; Handharyani, E., Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPB, Dramaga, Bogor, 16680, Indonesia","Background and Aim: Avian coronavirus has a wide range of hosts, from chickens and turkeys to wild birds. This virus causes an economically and, possibly, environmentally, important loss in the poultry industry. Therefore, research into the avian coronavirus in various species of birds is required. The Eclectus parrot (Eclectus roratus) is an endemic bird to Indonesia and Northern Australia and often kept as pets. At present, there has been limited information about avian coronavirus infection among birds. This study aimed to determine the presence of and to characterize avian coronavirus isolated from Eclectus parrots in Indonesia. Materials and Methods: Cloacal swab samples were taken from 10 healthy Eclectus parrots (E. roratus). Each isolate was propagated into specific pathogen-free embryonated chicken eggs. The presence of avian coronavirus was determined using three sets of primers targeting the 3’ untranslated region (3’-UTR) of avian coronavirus (UTR41+/11−), the N gene of the infectious bronchitis virus (IBVN+/−), and the S1 gene of the IBV (XCE2+/XCE2−). The infectious bronchitis vaccine strain H120 was used as a positive control. Resulting positive bands were sequenced for the S1 gene. Results: None of the isolates was positive for the 3’-UTR, four isolates were positive for the N gene of infectious bronchitis, and two isolates were positive for the S1 gene of the IBV. However, only one isolate (parrot/Indonesia/BX9/16) was sequenced for the partial S1 gene with primers XCE2+/XCE2−. The partial nucleotide sequence of this isolate showed 100% homology with the IBV GI-13 lineage, specifically with a field isolate of the 4/91 variant 1 Israel and the 4/91 vaccine on the hypervariable region 3 site of the S1 gene. Conclusion: An IB-like avian coronavirus was isolated from healthy Eclectus parrots. Our results indicate that IBV has a wide range of hosts, which prompt the need to understand the interspecies connection of this virus better. Copyright: Suryaman, et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.","Avian coronavirus; Eclectus parrot; Infectious bronchitis","3' untranslated region; animal tissue; Article; Avian coronavirus; Avian infectious bronchitis virus; bronchitis; controlled study; Eclectus roratus; Indonesia; nonhuman; nucleotide sequence; parrot; phylogeny","Milek, J., Blicharz-Domańska, K., Coronaviruses in avian species review with a focus on epidemiology and diagnosis in wild birds (2018) J. Vet. Res., 62 (3), pp. 249-255; Bande, F., Arshad, S.S., Omar, A.R., Bejo, M.H., Abubakar, M.S., Abba, Y., Pathogenesis and diagnostic approaches of avian infectious bronchitis (2016) Adv. Virol., 2016, pp. 1-11; Wickramasinghe, I.A., Beurden, S.V., Weerts, E., Verheije, M., The avian coronavirus spike protein (2014) Virus Res, 194, pp. 37-48; Chan, J.F.W., To, K.K.W., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol, 21 (10), pp. 544-555; Devlin, J.M., Vaz, P.K., Coppo, M.J.C., Browming, G.F., Impacts of poultry vaccination on viruses of wild birds (2016) Curr. Opin. Virol., 19, pp. 23-29; Naruepol, P., Dynamics of avian coronavirus circulation in commercial and non-commercial birds in Asia a review (2016) Vet. Q., 36 (1), pp. 30-44; De Witt, J.J., Cook, J.K.A., Van Der Heijden, H.M.J.F., Infectious bronchitis virus in Asia, Africa, Australia and Latin America history, current situation and control measures (2011) Avian Pathol, 40 (1), pp. 223-235; Cavanagh, D., Coronavirus in poultry and other birds (2005) Avian Pathol, 34 (6), pp. 439-448; Jordan, B.J., Hilt, D.A., Poulson, R., Stallknecht, D.E., Jackwood, M.W., Identification of avian coronavirus in wild aquatic birds of the central and Eastern USA (2015) J. Wildl. Dis., 51 (1), pp. 218-221; Wille, M., Muradrasoli, S., Nilsson, A., Järhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian waterfowl (2016) PLoS One, 11 (3); Forshaw, J.M., (2010) Parrots of the World, , United Kingdom: Princeton University Press; Gough, R.E., Drury, S.E., Culver, F., Britton, P., Cavanagh, D., Isolation of a coronavirus from a green-cheeked Amazon parrot (Amazona viridigenalis Cassin) (2006) Avian Pathol, 35 (2), pp. 122-126; Culver, F.A., Britton, P., Cavanagh, D., RT PCR detection of avian coronavirus of galliform birds (chicken, Turkey, pheasant) and in a parrot (2008) Methods Mol. Biol., 454, pp. 35-42; Handberg, K.J., Nielsen, O.L., Pedersen, M.W., Jørgensen, P.H., Detection and strain differentiation of infectious bronchitis virus in tracheal tissues from experimentally infected chickens by reverse transcription-polymerase chain reaction. Comparison with an immunohisto-chemical technique (1999) Avian Pathol, 28 (4), pp. 327-335; Jahantigh, M., Salari, S., Hedayati, M., Detection of infectious bronchitis virus serotypes by reverse transcription-polymerase chain reaction in broiler chickens (2013) Springerplus, 2 (1), p. 36; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect. Genet. Evol., 39, pp. 349-364; Wibowo, M.H., Ginting, T.E., Asmara, W., Molecular characterization of pathogenic 4/91-like and Qx-like infectious bronchitis virus infecting commercial poultry farms in Indonesia (2019) Vet. World, 12 (2), pp. 277-287; Ito, N.M.K., Miyaji, C.I., Clotilde, C.E.M., Studies on Broilers’s IBV and IB-like virus form Guinea fowl (1991) Proceedings of the II International Symposium on Infectious Bronchitis, pp. p302-p307. , Kaleta, E.F. and Heffels-Redman, U., editors. Justus Liebig University, Giessen; Sun, L., Zhang, G., Jiang, J., Fu, J., Ren, T., Cao, W., Xin, C., Liu, W., A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens (2007) Virus Res, 130 (1-2), pp. 121-128; Calvaheiro, M.M., Caserta, L.C., Dos Santos, M.M.A., Barnabé, A.C.S., Durães-Carvalho, R., Padilla, M.A., Simão, R.M., Ferreira, H.L., Avian coronavirus isolated from a pigeon sample induced clinical disease, tracheal ciliostasis, and high humoral response in day-old chicks (2018) Avian Pathol, 47 (3), pp. 286-293; Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Liu, M., Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) (2005) J. Gen. Virol., 86, pp. 719-725; Setiawaty, R., Soejoedono, R.D., Poetri, O.N., Genetic characterization of S1 gene of infectious bronchitis virus isolated from commercial poultry flocks in West Java, Indonesia (2019) Vet. World, 12 (2), pp. 231-235; Darminto, D., Serotype of IB viral isolates (1992) Penyakit Hewan, 24 (44), pp. 76-81; Dharmayanti, N.L.P., Asmara, W., Arthama, W.T., Indriani, R., Darmito, R., Sequence comparison of hypervariable region (HVR) of subunit S1 gene of infectious bronchitis virus of field isolate I-37 and serotype Connecticut 46 (2003) J. Int. Tech. Vet., 8 (4), pp. 107-113; Dharmayanti, N.L.P., Indriani, R., Identification and characterization of infectious bronchitis virus (IBV) in Indonesia (2017) J. Biol. Ind., 13 (1), pp. 53-59; Rohaim, M.A., El Naggar, R.F., Helal, A.M., Hussein, H.A., Munir, M., Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds (2017) Vaccine, 35 (28), pp. 3523-3527; Promkuntod, N., Dynamics of avian coronavirus circulation in commercial and non-commercial birds in Asia a review (2016) Vet. Q., 36 (1), pp. 30-44; Sims, L.D., Domenech, J., Benigno, C., Kahn, S., Kamata, A., Lubroth, J., Martin, V., Roeder, P., Origin and evolution of highly pathogenic H5N1 avian influenza in Asia (2005) Vet. Rec., 157 (6), pp. 159-164; Alexander, D.J., A review of avian influenza in different bird species (2000) Vet. Microbiol., 74 (1-2), pp. 3-13; Brown, V.R., Bevins, S.N., A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread (2017) Vet. Res., 48 (1), p. 68; Garcia, S.C., Lopez, R.N., Morales, R., Olvera, M.A., Marquez, M.A., Merino, R., Miller, P.J., Afonso, C.L., Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species (2013) Appl. Environ. Microbiol., 79 (16), pp. 4985-4992","Handharyani, E.; Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Jl. Agatis, Kampus IPBIndonesia; email: ekowatieko@apps.ipb.ac.id",,"Veterinary World",09728988,,,,"English","Vet. World",Article,"Final",Open Access,Scopus,2-s2.0-85075578735 "Fung T.S., Liu D.X.","55795740300;57190128771;","Human coronavirus: Host-pathogen interaction",2019,"Annual Review of Microbiology","73",,,"529","557",,3,"10.1146/annurev-micro-020518-115759","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071995842&doi=10.1146%2fannurev-micro-020518-115759&partnerID=40&md5=515059eb7ea545d11a0f3f26ac17a4a9","Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China","Fung, T.S., Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Liu, D.X., Guangdong Province Key Laboratory of Microbial Signals and Disease Control and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China","Human coronavirus (HCoV) infection causes respiratory diseases with mild to severe outcomes. In the last 15 years, we have witnessed the emergence of two zoonotic, highly pathogenic HCoVs: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Replication of HCoV is regulated by a diversity of host factors and induces drastic alterations in cellular structure and physiology. Activation of critical signaling pathways during HCoV infection modulates the induction of antiviral immune response and contributes to the pathogenesis of HCoV. Recent studies have begun to reveal some fundamental aspects of the intricate HCoV-host interaction in mechanistic detail. In this review, we summarize the current knowledge of host factors co-opted and signaling pathways activated during HCoV infection, with an emphasis on HCoV-infection-induced stress response, autophagy, apoptosis, and innate immunity. The cross talk among these pathways, as well as the modulatory strategies utilized by HCoV, is also discussed. © 2019 by Annual Reviews. All rights reserved.","Apoptosis; Coronavirus; ER stress; Host-virus interaction; Innate immunity; MAPK","activating transcription factor 6; genomic RNA; host factor; ion channel; mitogen activated protein kinase; mitogen activated protein kinase p38; papain; papain like protease; PDZ protein; protein IRE1; proteinase; RNA; stress activated protein kinase; structural protein; unclassified drug; vitronectin; apoptosis; autophagy; cell stress; Coronaviridae; Coronavirus infection; deubiquitination; endoplasmic reticulum stress; gene structure; genetic transcription; genome analysis; host interaction; host pathogen interaction; immune response; innate immunity; integrated stress response; macroautophagy; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein motif; Review; SARS coronavirus; signal transduction; translation initiation; virion; virus activation; virus assembly; virus attachment; virus entry; virus replication","Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio, 4 (4), pp. e00524-e00613; Bailey, C.C., ZhongG Huang, I.-C., Farzan, M., IFITM-family proteins: The cell's first line of antiviral defense (2014) Annu. Rev. Virol., 1, pp. 261-283; Bechill, J., Chen, Z., Brewer, J.W., Baker, S.C., Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression (2008) J. Virol., 82 (9), pp. 4492-4501; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) PNAS, 106 (14), pp. 5871-5876; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87 (11), pp. 6150-6160; Bertram, S., Glowacka, I., Müller, M.A., Lavender, H., Gnirss, K., Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease (2011) J. Virol., 85 (24), pp. 13363-13372; Bosch, B.J., Bartelink, W., Rottier, P.J.M., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class i fusion protein upstream of rather than adjacent to the fusion peptide (2008) J. Virol., 82 (17), pp. 8887-8890; Bulavin, D.V., Saito, S., Hollander, M.C., Sakaguchi, K., Anderson, C.W., Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation (1999) EMBO J., 18 (23), pp. 6845-6854; Castaño-Rodriguez, C., Honrubia, J.M., Gutiérrez-Álvarez, J., DeDiego, M.L., Nieto-Torres, J.L., Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis (2018) MBio, 9 (3), pp. e02325-e02417; Chafekar, A., Fielding, B.C., MERS-CoV: Understanding the latest human coronavirus threat (2018) Viruses, 10 (2), p. E93; Chan, C.P., Siu, K.L., Chin, K.T., Yuen, K.Y., Zheng, B., Jin, D.Y., Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein (2006) J. Virol., 80 (18), pp. 9279-9287; Chang, Y.-J., Liu, C.Y.-Y., Chiang, B.-L., Chao, Y.-C., Chen, C.-C., Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndromecoronavirus spike proteins: Identification of two functional regions (2004) J. Immunol., 173 (12), pp. 7602-7614; Chen, C.-C., Krüger, J., Sramala, I., Hsu, H.-J., Henklein, P., ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations (2011) Biochim. Biophys. Acta, 1808 (2), pp. 572-579; Chen, I.-Y., Chang, S.C., Wu, H.-Y., Yu, T.-C., Wei, W.-C., Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway (2010) J. Virol., 84 (15), pp. 7703-7712; Chu, H., Zhou, J., Wong, B.H.-Y., Li, C., Chan, J.F.-W., Middle East respiratory syndrome coronavirus efficiently infects human primaryTlymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J. Infect. Dis., 213 (6), pp. 904-914; Clavarino, G., Cláudio, N., Dalet, A., Terawaki, S., Couderc, T., Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic: Polycytidylic acid-stimulated dendritic cells (2012) PNAS, 109 (8), pp. 3006-3011; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88 (19), pp. 11297-11303; Cottam, E.M., Maier, H.J., Manifava, M., Vaux, L.C., Chandra-Schoenfelder, P., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7 (11), pp. 1335-1347; Cottam, E.M., Whelband, M.C., Wileman, T., CoronavirusNSP6 restricts autophagosome expansion (2014) Autophagy, 10 (8), pp. 1426-1441; Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., Walter, P., On themechanism of sensing unfolded protein in the endoplasmic reticulum (2005) PNAS, 102 (52), pp. 18773-18784; Cruz, J.L., Sola, I., Becares, M., Alberca, B., Plana, J., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) PLOS Pathog., 7 (6), p. e1002090; Cui, J., Li, F., Shi, Z.-L., Origin and evolution of pathogenic coronaviruses (2019) Nat. Rev. Microbiol., 17 (3), pp. 181-192; Dalby, K.N., Morrice, N., Caudwell, F.B., Avruch, J., Cohen, P., Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK (1998) J. Biol. Chem., 273 (3), pp. 1496-1505; De Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of coronaand toroviruses (2006) Glycoconj. J., 23 (1-2), pp. 59-72; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87 (14), pp. 7790-7792; De Haan, C.A.M., De Wit, M., Kuo, L., Montalto-Morrison, C., Haagmans, B.L., The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain (2003) Virology, 312 (2), pp. 395-406; DeDiego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Álvarez, E., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLOS Pathog., 7 (10), p. e1002315; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) PNAS, 114 (21), pp. E4251-E4260; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J. Biol. Chem., 282 (44), pp. 32208-32221; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilinDdependent and potentially caspase dispensable (2012) J.Virol., 86 (1), pp. 81-93; Fouchier, R.A.M., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., De Jong, J.C., A previously undescribed coronavirus associated with respiratory disease in humans (2004) PNAS, 101 (16), pp. 6212-6216; Frödin, M., Gammeltoft, S., Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction (1999) Mol. Cell Endocrinol., 151 (1-2), pp. 65-77; Fukushi, M., Yoshinaka, Y., Matsuoka, Y., Hatakeyama, S., Ishizaka, Y., Monitoring S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus (2012) J. Virol., 86 (21), pp. 11745-11753; Fung, T., Liao, Y., Liu, D.X., Regulation of stress responses and translational control by coronavirus (2016) Viruses, 8 (7), p. 184; Fung, T., Torres, J., Liu, D., The emerging roles of viroporins in ER stress response and autophagy induction during virus infection (2015) Viruses, 7 (6), pp. 2834-2857; Fung, T.S., Huang, M., Liu, D.X., Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions (2014) Virus Res., 194, pp. 110-123; Fung, T.S., Liao, Y., Liu, D.X., The ER stress sensor IRE1a protects cells from apoptosis induced by coronavirus infectious bronchitis virus (2014) J. Virol., 88 (21), pp. 12752-12764; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front. Microbiol., 5, p. 296; Fung, T.S., Liu, D.X., Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun (2017) Cell Death Dis., 8 (12), p. 3215; Fung, T.S., Liu, D.X., Post-translational modifications of coronavirus proteins: Roles and function (2018) Future Virol., 13 (6), pp. 405-430; Gorse, G.J., O'Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J. Infect. Dis., 199 (6), pp. 847-857; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat. Rev.Microbiol., 11 (12), pp. 836-848; Guo, L., Yu, H., Gu, W., Luo, X., Li, R., Autophagy negatively regulates transmissible gastroenteritis virus replication (2016) Sci. Rep., 6, p. 23864; Guo, X., Zhang, M., Zhang, X., Tan, X., Guo, H., Porcine epidemic diarrhea virus induces autophagy to benefit its replication (2017) Viruses, 9 (3), p. E53; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Exp. Biol. Med., 121 (1), pp. 190-193; Han, D.P., Lohani, M., Cho, M.W., Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry (2007) J. Virol., 81 (21), pp. 12029-12039; Hess, J., Angel, P., Schorpp-Kistner, M., AP-1 subunits: Quarrel and harmony among siblings (2004) J. Cell Sci., 117 (25), pp. 5965-5973; Hogue, B.G., Machamer, C.E., Coronavirus structural proteins and virus assembly (2008) Nidoviruses, pp. 179-200. , ed. S Perlman, T Gallagher, EJ Snijder,.Washington, DC: ASM; Hollien, J., Weissman, J.S., Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response (2006) Science, 313 (5783), pp. 104-107; Hu, B., Zeng, L.-P., Yang, X.-L., Ge, X.-Y., Zhang, W., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLOS Pathog., 13 (11), p. e1006698; Huang, I.-C., Bailey, C.C., Weyer, J.L., Radoshitzky, S.R., Becker, M.M., Distinct patterns of IFITMmediated restriction of filoviruses, SARS coronavirus, and influenza A virus (2011) PLOS Pathog., 7 (1), p. e1001258; Irigoyen, N., Firth, A.E., Jones, J.D., Chung, B.Y.-W., Siddell, S.G., Brierley, I., High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling (2016) PLOS Pathog., 12 (2), p. e1005473; Jimenez-Guardeño, J.M., Nieto-Torres, J.L., DeDiego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLOS Pathog., 10 (8), p. e1004320; Jimenez-Guardeño, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castaño-Rodriguez, C., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLOS Pathog., 11 (10), p. e1005215; Keshet, Y., Seger, R., The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions (2010) Methods Mol. Biol., 661, pp. 3-38; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLOS Pathog., 13 (2), p. e1006195; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P., CoronavirusMproteins accumulate in the Golgi complex beyond the site of virion budding (1994) J. Virol., 68 (10), pp. 6523-6534; Ko, S., Gu, M.J., Kim, C.G., Kye, Y.C., Lim, Y., Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells (2017) Antiviral Res., 146, pp. 86-95; Kono, M., Tatsumi, K., Imai, A.M., Saito, K., Kuriyama, T., Shirasawa, H., Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: Involvement of p38 MAPK and ERK (2008) Antiviral Res., 77 (2), pp. 150-152; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Palese, P., 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38mitogen-activated protein kinase (2006) J. Virol., 80 (2), pp. 785-793; Krähling, V., Stein, D.A., Spiegel, M., Weber, F., Mühlberger, E., Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity (2009) J. Virol., 83 (5), pp. 2298-2309; Kwak, H., Park, M.W., Jeong, S., Annexin A2 binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus (2011) PLOS ONE, 6 (8), p. e24067; Li, S.-W., Wang, C.-Y., Jou, Y.-J., Huang, S.-H., Hsiao, L.-H., SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6 (2016) Int. J. Mol. Sci., 17 (5), p. E678; Li, W., Shi, Z., Yu, M., RenW Smith, C., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310 (5748), pp. 676-679; Li, Y., Treffers, E.E., Napthine, S., Tas, A., Zhu, L., Transactivation of programmed ribosomal frameshifting by a viral protein (2014) PNAS, 111 (21), pp. E2172-E2181; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87 (14), pp. 8124-8134; Liao, Y., Yuan, Q., Torres, J., Tam, J.P., Liu, D.X., Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein (2006) Virology, 349 (2), pp. 264-275; Lim, K.P., Liu, D.X., The missing link in coronavirus assembly retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins (2001) J. Biol. Chem., 276 (20), pp. 17515-17523; Lim, Y., Ng, Y., Tam, J., Liu, D., Human coronaviruses: A review of virus-host interactions (2016) Diseases, 4 (4), p. 26; Liu, D.X., Fung, T.S., Chong, K.K.-L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res., 109, pp. 97-109; Liu, D.X., Inglis, S.C., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology, 185 (2), pp. 911-917; LiuM Yang, Y., GuC Yue, Y., Wu, K.K., Spike protein of SARS-CoV stimulates cyclooxygenase-2 expression via both calcium-dependent and calcium-independent protein kinase C pathways (2007) FASEB J., 21 (7), pp. 1586-1596; Lu, W., Zheng, B.J., Xu, K., Schwarz, W., Du, L., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release (2006) PNAS, 103 (33), pp. 12540-12545; Luo, H., Chen, Q., Chen, J., Chen, K., Shen, X., Jiang, H., The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1 (2005) FEBS Lett., 579 (12), pp. 2623-2628; Ma, Y., Wang, C., Xue, M., Fu, F., Zhang, X., Coronavirus TGEV evades the type i interferon response through IRE1a-mediated manipulation of the miR-30a-5p/SOCS1/3 Axis (2018) J. Virol., 92, pp. e00728-e00818; Madan, V., García, M., De, J., Sanz, M.A., Carrasco, L., Viroporin activity of murine hepatitis virus e protein (2005) FEBS Lett., 579 (17), pp. 3607-3612; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) MBio, 4 (5), pp. e00801-e00813; Martinon, F., Chen, X., Lee, A.-H., Glimcher, L.H., TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages (2010) Nat. Immunol., 11 (5), pp. 411-418; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Matthews, K., Schäfer, A., Pham, A., Frieman, M., The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity (2014) Virol. J., 11, p. 209; Maurel, M., Chevet, E., Tavernier, J., Gerlo, S., Getting RIDD of RNA: IRE1 in cell fate regulation (2014) Trends Biochem. Sci., 39 (5), pp. 245-254; Mesel-Lemoine, M., Millet, J., Vidalain, P.-O., Law, H., Vabret, A., A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes (2012) J. Virol., 86 (14), pp. 7577-7587; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Millet, J.K., Whittaker, G.R., Host cell entry ofMiddle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) PNAS, 111 (42), pp. 15214-15219; Mizutani, T., Fukushi, S., Murakami, M., Hirano, T., Saijo, M., Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells (2004) FEBS Lett., 577 (1-2), pp. 187-192; Mizutani, T., Fukushi, S., Saijo, M., Kurane, I., Morikawa, S., Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells (2004) Biochem. Biophys. Res. Commun., 319 (4), pp. 1228-1234; Mizutani, T., Fukushi, S., Saijo, M., Kurane, I., Morikawa, S., JNK and PI3k/Akt signaling pathways are required for establishing persistent SARS-CoV infection in Vero E6 cells (2005) Biochim. Biophys. Acta Mol. Basis Dis., 1741 (1), pp. 4-10; Mizutani, T., Fukushi, S., Saijo, M., Kurane, I., Morikawa, S., Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells (2006) FEBS Lett., 580 (5), pp. 1417-1424; Monastyrska, I., Ulasli, M., Rottier, P.J.M., Guan, J.-L., Reggiori, F., De Haan, C.A.M., An autophagyindependent role for LC3 in equine arteritis virus replication (2013) Autophagy, 9 (2), pp. 164-174; Nanda, S.K., Leibowitz, J.L., Mitochondrial aconitase binds to the 3- untranslated region of themouse hepatitis virus genome (2001) J. Virol., 75 (7), pp. 3352-3362; Nieto-Torres, J.L., DeDiego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLOS Pathog., 10 (5), p. e1004077; Nieto-Torres, J.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome (2015) Virology, 485, pp. 330-339; Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Autophagy is activated for cell survival after endoplasmic reticulum stress (2006) Mol. Cell. Biol., 26 (24), pp. 9220-9231; Oostra, M., De Haan, C.A.M., Rottier, P.J.M., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J. Virol., 81 (24), pp. 13876-13888; Padhan, K., Minakshi, R., Towheed, M.A.B., Jameel, S., Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation (2008) J. Gen. Virol., 89, pp. 1960-1969; Peiris, J., Lai, S., Poon, L., Guan, Y., Yam, L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Pene, F., Merlat, A., Vabret, A., Rozenberg, F., Buzyn, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin. Infect. Dis., 37 (7), pp. 929-932; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7 (6), pp. 439-450; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J. Biol. Chem., 279 (11), pp. 10136-10141; Rabouw, H.H., Langereis, M.A., Knaap, R.C.M., Dalebout, T.J., Canton, J., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLOS Pathog., 12 (10), p. e1005982; Reggiori, F., Monastyrska, I., Verheije, M.H., Cali, T., Ulasli, M., Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication (2010) Cell Host Microbe, 7 (6), pp. 500-508; Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response (2007) Nat. Rev. Mol. Cell Biol., 8 (7), pp. 519-529; Rüdiger, A.-T., Mayrhofer, P., Ma-Lauer, Y., Pohlentz, G., Müthing, J., Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles (2016) Virology, 497, pp. 185-197; Schneider, M., Ackermann, K., Stuart, M., Wex, C., Protzer, U., Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain (2012) J. Virol., 86 (18), pp. 10112-10122; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) PNAS, 102 (33), pp. 11876-11881; Smeal, T., Binetruy, B., Mercola, D.A., BirrerM Karin, M., Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73 (1991) Nature, 354 (6353), pp. 494-496; Song, H.C., Seo, M.-Y., Stadler, K., Yoo, B.J., Choo, Q.-L., Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein (2004) J. Virol., 78 (19), pp. 10328-10335; Spagnolo, J.F., Hogue, B.G., Host protein interactions with the 3- end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication (2000) J.Virol., 74 (11), pp. 5053-5065; Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L.J., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association (2004) PNAS, 101 (8), pp. 2536-2541; Sung, S.C., Chao, C.Y., Jeng, K.S., Yang, J.Y., Lai, M., The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 (2009) Virology, 387 (2), pp. 402-413; Tan, Y.W., Hong, W., Liu, D.X., Binding of the 5-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription (2012) Nucleic Acids Res., 40 (11), pp. 5065-5077; Tan, Y.-X., Tan, T.H.P., Lee, M.J.-R., Tham, P.-Y., Gunalan, V., Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein (2007) J. Virol., 81 (12), pp. 6346-6355; Tao, X., Hill, T.E., Morimoto, C., Peters, C.J., Ksiazek, T.G., Tseng, C.-T.K., Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells (2013) J. Virol., 87 (17), pp. 9953-9958; Taylor, R.C., Cullen, S.P., Martin, S.J., Apoptosis: Controlled demolition at the cellular level (2008) Nat. Rev. Mol. Cell Biol., 9 (3), pp. 231-241; Teoh, K.-T., Siu, Y.-L., Chan, W.-L., Schlüter, M.A., Liu, C.-J., The SARS coronavirus e protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis (2010) Mol. Biol. Cell, 21 (22), pp. 3838-3852; Tirosh, B., Iwakoshi, N.N., Glimcher, L.H., Ploegh, H.L., Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response (2006) J. Biol. Chem., 281 (9), pp. 5852-5860; To, J., Surya, W., Fung, T.S., Li, Y., Verdià-Bàguena, C., Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus (2017) J. Virol., 91 (5), pp. e02158-e02216; Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 (2000) Science, 287 (5453), pp. 664-666; Verheije, M.H., Raaben, M., Mari, M., Te Lintelo, E.G., Reggiori, F., Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation (2008) PLOS Pathog., 4 (6), p. e1000088; Versteeg, G.A., Van De Nes, P.S., Bredenbeek, P.J., Spaan, W.J.M., The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations (2007) J. Virol., 81 (20), pp. 10981-10990; Wang, J., Fang, S., Xiao, H., Chen, B., Tam, J.P., Liu, D.X., Interaction of the coronavirus infectious bronchitis virus membrane protein with β-actin and its implication in virion assembly and budding (2009) PLOS ONE, 4 (3), p. e4908; Wang, K., Lu, W., Chen, J., Xie, S., Shi, H., PEDV ORF3 encodes an ion channel protein and regulates virus production (2012) FEBS Lett., 586 (4), pp. 384-391; Wang, X., Liao, Y., Yap, P.L., Png, K.J., Tam, J.P., Liu, D.X., Inhibition of protein kinase R activation and upregulation of GADD34 expression play a synergistic role in facilitating coronavirus replication by maintaining de novo protein synthesis in virus-infected cells (2009) J. Virol., 83 (23), pp. 12462-12472; Wang, X., Ron, D., Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase (1996) Science, 272 (5266), pp. 1347-1349; Wong, H.H., Kumar, P., Tay, F.P.L., Moreau, D., Liu, D.X., Bard, F., Genome-wide screen reveals valosincontaining protein requirement for coronavirus exit from endosomes (2015) J. Virol., 89 (21), pp. 11116-11128; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Discovery of seven novel mammalian and avian coronaviruses in Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Woo, P.C.Y., Lau, S.K.P., Chu, C., Chan, K., Tsoi, H., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79 (2), pp. 884-895; Wu, C.-H., Chen, P.-J., Yeh, S.-H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16 (4), pp. 462-472; Wu, C.-H., Yeh, S.-H., Tsay, Y.-G., Shieh, Y.-H., Kao, C.-L., Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication (2009) J. Biol. Chem., 284 (8), pp. 5229-5239; Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., Ding, J., Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design (2003) Nucleic Acids Res., 31 (24), pp. 7117-7130; Xue, M., Fu, F., Ma, Y., Zhang, X., Li, L., The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type i interferon production (2018) J. Virol., 92 (15), pp. e00431-e00518; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J. Virol., 83 (17), pp. 8744-8758; Yamamoto, K., Ichijo, H., Korsmeyer, S.J., BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M (1999) Mol. Cell. Biol., 19 (12), pp. 8469-8478; Yamamoto, K., Yoshida, H., Kokame, K., Kaufman, R.J., Mori, K., Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II (2004) J. Biochem., 136 (3), pp. 343-350; Yang, Z., Klionsky, D.J., Eaten alive: A history of macroautophagy (2010) Nat. Cell Biol., 12 (9), pp. 814-822; Yeung, M.-L., Yao, Y., Jia, L., Chan, J.F.W., Chan, K.-H., MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat.Microbiol., 1 (3), p. 16004; Yoon, S., Seger, R., The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions (2006) Growth Factors, 24 (1), pp. 21-44; Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K., XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor (2001) Cell, 107 (7), pp. 881-891; Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6aand 6βthat activates the mammalian unfolded protein response (2001) Mol. Cell. Biol., 21 (4), pp. 1239-1248; Zarubin, T., Han, J., Activation and signaling of the p38 MAP kinase pathway (2005) Cell Res., 15 (1), pp. 11-18; Zhang, R., Wang, K., Lv, W., Yu, W., Xie, S., The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production (2014) Biochim. Biophys. Acta, 1838 (4), pp. 1088-1095; Zhang, R., Wang, K.P.X., YuW Qian, Z., The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis (2015) J. Virol., 89 (22), pp. 11383-11395; Zhang, X., Shi, H., Chen, J., Shi, D., Dong, H., Feng, L., Identification of the interaction between vimentin and nucleocapsid protein of transmissible gastroenteritis virus (2015) Virus Res., 200, pp. 56-63; Zhao, X., Guo, F., Liu, F., Cuconati, A., Chang, J., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43 (2014) PNAS, 111 (18), pp. 6756-6761; Zhao, X., Sehgal, M., Hou, Z., Cheng, J., Shu, S., Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses (2018) J. Virol., 92 (6), pp. e01535-e01617; Zhao, Z., Thackray, L.B., Miller, B.C., Lynn, T.M., Becker, M.M., Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3 (6), pp. 581-585; Zheng, J., Yamada, Y., Fung, T.S., HuangM Chia, R., Liu, D.X., Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture (2018) Virology, 513, pp. 65-74; Zhu, L., Mou, C., Yang, X., Lin, J., Yang, Q., Mitophagy in TGEV infection counteracts oxidative stress and apoptosis (2016) Oncotarget, 7 (19), pp. 27122-27141; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81 (4), pp. 853-879; Zúñiga, S., Cruz, J.L.G., Sola, I., Mateos-Gómez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J. Virol., 84 (4), pp. 2169-2175; Zúñiga, S., Sola, I., Moreno, J.L., Sabella, P., Plana-Durán, J., Enjuanes, L., Coronavirus nucleocapsid protein is an RNA chaperone (2007) Virology, 357 (2), pp. 215-227",,,"Annual Reviews Inc.",00664227,,ARMIA,"31226023","English","Annu. Rev. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85071995842 "Jaimes J.A., Millet J.K., Goldstein M.E., Whittaker G.R., Straus M.R.","55173670700;55217392700;57193237355;7006825143;57189842726;","A fluorogenic peptide cleavage assay to screen for proteolytic activity: Applications for coronavirus spike protein activation",2019,"Journal of Visualized Experiments","2019","143", e58892,"","",,4,"10.3791/58892","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060610795&doi=10.3791%2f58892&partnerID=40&md5=77650ead888ba4ad85e853cd775fcca1","Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States; Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, United States; Virologie et Immunologie Moléculaires, Domaine de Vilvert, INRA, France; Department of Cell Biology and Molecular Genetics, University of Maryland, United States","Jaimes, J.A., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States, Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, United States; Millet, J.K., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States, Virologie et Immunologie Moléculaires, Domaine de Vilvert, INRA, France; Goldstein, M.E., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States, Department of Cell Biology and Molecular Genetics, University of Maryland, United States; Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States; Straus, M.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States","Enveloped viruses such as coronaviruses or influenza virus require proteolytic cleavage of their fusion protein to be able to infect the host cell. Often viruses exhibit cell and tissue tropism and are adapted to specific cell or tissue proteases. Moreover, these viruses can introduce mutations or insertions into their genome during replication that may affect the cleavage, and thus can contribute to adaptations to a new host. Here, we present a fluorogenic peptide cleavage assay that allows a rapid screening of peptides mimicking the cleavage site of viral fusion proteins. The technique is very flexible and can be used to investigate the proteolytic activity of a single protease on many different substrates, and in addition, it also allows exploration of the activity of multiple proteases on one or more peptide substrates. In this study, we used peptides mimicking the cleavage site motifs of the coronavirus spike protein. We tested human and camel derived Middle East Respiratory Syndrome coronaviruses (MERS-CoV) to demonstrate that single and double substitutions in the cleavage site can alter the activity of furin and dramatically change cleavage efficiency. We also used this method in combination with bioinformatics to test furin cleavage activity of feline coronavirus spike proteins from different serotypes and strains. This peptide-based method is less labor- and time intensive than conventional methods used for the analysis of proteolytic activity for viruses, and results can be obtained within a single day. © 2019 Journal of Visualized Experiments.","Biochemistry; Coronavirus; Feline coronavirus; Furin; Fusion peptide; Issue 143; Mers-cov; Peptide assay; Protease cleavage","coronavirus spike glycoprotein; peptide; animal; camel; genetics; human; metabolism; Middle East respiratory syndrome coronavirus; protein degradation; Animals; Camelus; Humans; Middle East Respiratory Syndrome Coronavirus; Peptides; Proteolysis; Spike Glycoprotein, Coronavirus","Harrison, S.C., Viral membrane fusion (2015) Virology., 479-480, pp. 498-507; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2014) Virus Research.; Hamilton, B.S., Whittaker, G.R., Daniel, S., Influenza virus-mediated membrane fusion: Determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion (2012) Viruses., 4 (7); Straus, M.R., Whittaker, G.R., A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site (2017) PloS one., 12 (3), p. e0174827; Kawaoka, Y., Webster, R.G., Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells (1988) Proceedings of the National Academy of Sciences of the United States of America., 85 (2), pp. 324-328; Abdelwhab, E.-S.M., A Unique Multibasic Proteolytic Cleavage Site and Three Mutations in the HA2 Domain Confer High Virulence of H7N1 Avian Influenza Virus in Chickens (2016) Journal of Virology., 90 (1), pp. 400-411; Steinhauer, D., Role of hemagglutinin cleavage for the pathogenicity of influenza virus (1999) Virology., 258 (1), pp. 1-20; Böttcher-Friebertshäuser, E., Klenk, H.D., Garten, W., Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium (2013) Pathogens and disease., 69 (2), pp. 87-100; Horimoto, T., Nakayama, K., Smeekens, S.P., Kawaoka, Y., Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses (1994) Journal of Virology., 68 (9), pp. 6074-6078; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proceedings of the National Academy of Sciences., 106 (14), pp. 5871-5876; Polgar, L., General Aspects of Proteases (1989) Mechanisms of Protease Action., pp. 43-76; Whittaker, G.R., André, N.M., Millet, J.K., Improving Virus Taxonomy by Recontextualizing Sequence-Based Classification with Biologically Relevant Data: The Case of the Alphacoronavirus 1 Species (2018) mSphere., 3 (1), pp. 1-8; Licitra, B.N., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerging Infectious Diseases., 19 (7), pp. 1066-1073; Sanjuan, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R., Viral Mutation Rates (2010) Journal of Virology., 84 (19), pp. 9733-9748; Trombetta, C., Piccirella, S., Perini, D., Kistner, O., Montomoli, E., Emerging Influenza Strains in the Last Two Decades: A Threat of a New Pandemic? (2015) Vaccines., 3 (1), pp. 172-185; Chu, D.K.W., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proceedings of the National Academy of Sciences., pp. 1-6; Caprioli, R.M., Smith, L., Determination of Km and Vmax for Tryptic Peptide Hydrolysis Using Fast Atom Bombardment Mass Spectrometry (1986) Analytical Chemistry., 58 (6), pp. 1080-1083; Millet, J.K., Goldstein, M.E., Labitt, R.N., Hsu, H., Daniel, S., Whittaker, G.R., A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties (2016) Emerging microbes and infections., 5 (12), pp. e126-e129; Tian, S., Huajun, W., Wu, J., Computational prediction of furin cleavage sites by a hybrid method and understanding mechanism underlying diseases (2012) Scientific Reports., p. 2; Hamilton, B.S., Gludish, D.W.J., Whittaker, G.R., Cleavage Activation of the Human-Adapted Influenza Virus Subtypes by Matriptase Reveals both Subtype and Strain Specificities (2012) Journal of Virology., 86 (19), pp. 10579-10586; Beaulieu, A., Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Epithelium Replication in the Human Airway (2013) Journal of virology., 30 (878), pp. 4237-4251; Hammar, L., Markarian, S., Haag, L., Lankinen, H., Salmi, A., Holland Cheng, R., Prefusion rearrangements resulting in fusion peptide exposure in Semliki Forest virus (2003) Journal of Biological Chemistry., 278 (9), pp. 7189-7198; Hamilton, B.S., Chung, C., Cyphers, S.Y., Rinaldi, V.D., Marcano, V.C., Whittaker, G.R., Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2 (2014) Biochemical and Biophysical Research Communications., 450 (2), pp. 1070-1075","Whittaker, G.R.; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityUnited States; email: grw7@cornell.edu",,"Journal of Visualized Experiments",1940087X,,,"30688313","English","J. Visualized Exp.",Article,"Final",Open Access,Scopus,2-s2.0-85060610795 "El-Duah P., Meyer B., Sylverken A., Owusu M., Gottula L.T., Yeboah R., Lamptey J., Frimpong Y.O., Burimuah V., Folitse R., Agbenyega O., Oppong S., Adu-Sarkodie Y., Drosten C.","56503967700;55535148600;56674665700;54584146300;57204167526;57205400278;57205401700;56376174200;57189049493;55893471600;25222419700;6603094509;57201303125;7003813990;","Development of a whole-virus elisa for serological evaluation of domestic livestock as possible hosts of human coronavirus nl63",2019,"Viruses","11","1", 43,"","",,1,"10.3390/v11010043","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059895158&doi=10.3390%2fv11010043&partnerID=40&md5=ef8cb5e8e3e10e2466e033fc0a86bfde","Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana; Previous Institution: Institute of Virology, University of Bonn Medical Centre, Bonn, 53127, Germany; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Institute of Virology, Charite, Universitätsmedizin, Berlin, Berlin, 10117, Germany; Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Agroforestry, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana","El-Duah, P., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana, Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana, Previous Institution: Institute of Virology, University of Bonn Medical Centre, Bonn, 53127, Germany; Meyer, B., Previous Institution: Institute of Virology, University of Bonn Medical Centre, Bonn, 53127, Germany; Sylverken, A., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana, Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Owusu, M., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana, Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Gottula, L.T., Previous Institution: Institute of Virology, University of Bonn Medical Centre, Bonn, 53127, Germany, Institute of Virology, Charite, Universitätsmedizin, Berlin, Berlin, 10117, Germany; Yeboah, R., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana, Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana; Lamptey, J., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana, Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana; Frimpong, Y.O., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana, Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Burimuah, V., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, KNUST, Kumasi, 00233, Ghana, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Folitse, R., School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Agbenyega, O., Department of Agroforestry, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Oppong, S., Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Adu-Sarkodie, Y., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Drosten, C., Previous Institution: Institute of Virology, University of Bonn Medical Centre, Bonn, 53127, Germany, Institute of Virology, Charite, Universitätsmedizin, Berlin, Berlin, 10117, Germany","Known human coronaviruses are believed to have originated in animals and made use of intermediate hosts for transmission to humans. The intermediate hosts of most of the human coronaviruses are known, but not for HCoV-NL63. This study aims to assess the possible role of some major domestic livestock species as intermediate hosts of HCoV-NL63. We developed a testing algorithm for high throughput screening of livestock sera with ELISA and confirmation with recombinant immunofluorescence assay testing for antibodies against HCoV-NL63 in livestock. Optimization of the ELISA showed a capability of the assay to significantly distinguish HCoV-NL63 from HCoV-229E (U = 27.50, p < 0.001) and HCoV-OC43 (U = 55.50, p < 0.001) in coronavirus-characterized sera. Evaluation of the assay with collected human samples showed no significant difference in mean optical density values of immunofluorescence-classified HCoV-NL63-positive and HCoV-NL63-negative samples (F (1, 215) = 0.437, p = 0.509). All the top 5% (n = 8) most reactive human samples tested by ELISA were HCoV-NL63 positive by immunofluorescence testing. In comparison, only a proportion (84%, n = 42) of the top 25% were positive by immunofluorescence testing, indicating an increased probability of the highly ELISA reactive samples testing positive by the immunofluorescence assay. None of the top 5% most ELISA reactive livestock samples were positive for HCoV-NL63-related viruses by immunofluorescence confirmation. Ghanaian domestic livestock are not likely intermediate hosts of HCoV-NL63-related coronaviruses. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; ELISA; Immunofluorescence; Intermediate host; Livestock","article; clinical article; controlled study; enzyme linked immunosorbent assay; high throughput screening; human; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; immunofluorescence test; intermediate host; livestock; nonhuman; optical density; probability; adolescent; adult; aged; agricultural worker; algorithm; animal; blood; bovine; cattle disease; Coronavirus infection; enzyme linked immunosorbent assay; epidemiology; female; fluorescent antibody technique; Ghana; Human coronavirus NL63; isolation and purification; livestock; male; middle aged; procedures; veterinary medicine; virology; young adult; virus antibody; Adolescent; Adult; Aged; Algorithms; Animals; Antibodies, Viral; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus NL63, Human; Enzyme-Linked Immunosorbent Assay; Farmers; Female; Fluorescent Antibody Technique; Ghana; High-Throughput Screening Assays; Humans; Livestock; Male; Middle Aged; Young Adult","Drosten, C., Günther, S., Preiser, W., van Der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.-W., Wong, B.H., Wong, S.S., Yuen, K.-Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Cai, J.-P., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg. Infect. Dis., 20, pp. 560-572; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-Van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Gaunt, E., Hardie, A., Claas, E., Simmonds, P., Templeton, K., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J. Clin. Microbiol., 48, pp. 2940-2947; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., Bett, B., Corman, V.M., MERS-CoV Antibodies in Humans, Africa, 2013–2014 (2016) Emerg. Infect. Dis., 22, pp. 1086-1089; Fielding, B.C., Human coronavirus NL63: A clinically important virus? (2011) Future Microbiol, 6, pp. 153-159; Dijkman, R., Jebbink, M.F., El Idrissi, N.B., Pyrc, K., Müller, M.A., Kuijpers, T.W., Zaaijer, H.L., van der Hoek, L., Human coronavirus NL63 and 229E seroconversion in children (2008) J. Clin. Microbiol., 46, pp. 2368-2373; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Muller, M.A., Adu-Sarkodie, Y., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Ngeiywa, K.J.J., Al Masri, M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9864-9869; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Kapoor, A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Donaldson, E.F., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Guan, Y., Zheng, B., He, Y., Liu, X., Zhuang, Z., Cheung, C., Luo, S., Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Vijgen, L., Keyaerts, E., Moës, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.-M., van Ranst, M., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J. Virol., 79, pp. 1595-1604; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pöhlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 7988-7993; Chen, W., Yan, M., Yang, L., Ding, B., He, B., Wang, Y., Liu, X., You, B., SARS-associated Coronavirus Transmitted from Human to Pig (2005) Emerg. Infect. Dis., 11, pp. 446-448; Gorse, G.J., Patel, G.B., Vitale, J.N., O’Connor, T.Z., Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum (2010) Clin. Vaccine Immunol., 17, pp. 1875-1880; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Gates, J.E., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol, 86, pp. 12816-12825; Müller, M.A., van der Hoek, L., Voss, D., Bader, O., Lehmann, D., Schulz, A.R., Kallies, S., Drosten, C., Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein (2010) Virol. J., 7; Shao, X., Guo, X., Esper, F., Weibel, C., Kahn, J.S., Seroepidemiology of group I human coronaviruses in children (2007) J. Clin. Virol., 40, pp. 207-213; Donaldson, E.F., Yount, B., Sims, A.C., Burkett, S., Pickles, R.J., Baric, R.S., Systematic assembly of a full-length infectious clone of human coronavirus NL63 (2008) J. Virol, 82, pp. 11948-11957; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Faccini, S., Marthaler, D., Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy (2016) Emerg. Infect. Dis., 22, pp. 83-87; Meyer, B., García-Bocanegra, I., Wernery, U., Wernery, R., Sieberg, A., Müller, M.A., Drexler, J.F., Eckerle, I., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg. Infect. Dis., 21, pp. 181-182; Sarmento, B., Ribeiro, A., Veiga, F., Ferreira, D., Development and characterization of new insulin containing polysaccharide nanoparticles (2006) Colloids Surf. B Biointerfaces, 53, pp. 193-202; Meyer, B., Müller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., van Beek, J., Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis., 20, pp. 552-559; Binger, T., Annan, A., Drexler, J.F., Müller, M.A., Kallies, R., Adankwah, E., Wollny, R., Dei, D., A novel rhabdovirus isolated from the straw-colored fruit bat Eidolon helvum, with signs of antibodies in swine and humans (2015) J. Virol., 89, pp. 4588-4597; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Lin, T.L., Loa, C.C., Tsai, S.C., Wu, C.C., Bryan, T.A., Thacker, H.L., Hooper, T., Schrader, D., Characterization of turkey coronavirus from turkey poults with acute enteritis (2002) Vet. Microbiol., 84, pp. 179-186; Rodak, L., Šmíd, B., Nevorankova, Z., Valíček, L., Smitalova, R., Use of monoclonal antibodies in blocking ELISA detection of transmissible gastroenteritis virus in faeces of piglets (2005) Zoonoses Public Health, 52, pp. 105-111; James, K.T., Cooney, B., Agopsowicz, K., Trevors, M.A., Mohamed, A., Stoltz, D., Hitt, M., Shmulevitz, M., Novel high-throughput approach for purification of infectious virions (2016) Sci. Rep., 6; Sastre, P., Dijkman, R., Camuñas, A., Ruiz, T., Jebbink, M.F., van der Hoek, L., Vela, C., Rueda, P., Differentiation between Human Coronaviruses NL63 and 229E Using a Novel Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay Based on Specific Monoclonal Antibodies (2011) Clin. Vaccine Immunol., 18, pp. 113-118; Tedder, R., Gilson, R., Briggs, M., Loveday, C., Cameron, C., Garson, J., Kelly, G., Weller, I., Hepatitis C virus: Evidence for sexual transmission (1991) BMJ, 302, pp. 1299-1302; Manual of Diagnostic Tests for Aquatic Animals, , http://www.oie.int/index.php?id=2439&L=0&htmfile=chapitre_quality_management.htm, (accessed on 27 September 2018); He, Y., Zhou, Y., Siddiqui, P., Niu, J., Jiang, S., Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus (2005) J. Clin. Microbiol., 43, pp. 3718-3726; Woo, P.C., Lau, S.K., Wong, B.H., Tsoi, H.-W., Fung, A.M., Chan, K.-H., Tam, V.K., Yuen, K.-Y., Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia (2004) J. Clin. Microbiol., 42, pp. 2306-2309; He, Y., Zhou, Y., Wu, H., Luo, B., Chen, J., Li, W., Jiang, S., Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: Implication for developing SARS diagnostics and vaccines (2004) J. Immunol., 173, pp. 4050-4057; Moreno, J.L., Zúñiga, S., Enjuanes, L., Sola, I., Identification of a coronavirus transcription enhancer (2008) J. Virol., 82, pp. 3882-3893; Zhao, J., Wang, W., Wang, W., Zhao, Z., Zhang, Y., Lv, P., Ren, F., Gao, X.-M., Comparison of immunoglobulin G responses to the spike and nucleocapsid proteins of severe acute respiratory syndrome (SARS) coronavirus in patients with SARS (2007) Clin. Vaccine Immunol., 14, pp. 839-846; Li, S., Lin, L., Wang, H., Yin, J., Ren, Y., Zhao, Z., Wen, J., Li, X., The epitope study on the SARS-CoV nucleocapsid protein (2003) Genom. Proteom. Bioinform., 1, pp. 198-206; Zuwała, K., Golda, A., Kabala, W., Burmistrz, M., Zdzalik, M., Nowak, P., Kedracka-Krok, S., Florek, D., The nucleocapsid protein of human coronavirus NL63 (2015) Plos ONE, 10; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Arndt, A.L., Larson, B.J., Hogue, B.G., A conserved domain in the coronavirus membrane protein tail is important for virus assembly (2010) J. Virol., 84, pp. 11418-11428; Ono, E., Lafer, M.M., Weckx, L.Y., Granato, C., Moraes-Pinto, M.I.D., A simple and cheaper in house varicella zoster virus antibody indirect ELISA (2004) Rev. Inst. Med. Trop. Sao Paulo, 46, pp. 165-168; Crowther, J.R., Indirect ELISA (1995) ELISA, pp. 131-160. , Springer: Berlin, Germany; Aydin, S., A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA (2015) Peptides, 72, pp. 4-15; Xi, J., Shi, Q., Lu, Q., Development of an indirect competitive elisa kit for the rapid detection of benzopyrene residues (2016) Food Anal. Methods, 9, pp. 966-973; Gan, S.D., Patel, K.R., Enzyme immunoassay and enzyme-linked immunosorbent assay (2013) J. Investig. Dermatol., 133; Beasley, D.W., Holbrook, M.R., da Rosa, A.P.T., Coffey, L., Carrara, A.-S., Phillippi-Falkenstein, K., Bohm, R.P., Ludwig, G.V., Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection (2004) J. Clin. Microbiol., 42, pp. 2759-2765; Näslund, K., Blomqvist, G., Vernersson, C., Zientara, S., Bréard, E., Valarcher, J.F., Development and evaluation of an indirect enzyme-linked immunosorbent assay for serological detection of Schmallenberg virus antibodies in ruminants using whole virus antigen (2014) Acta Vet. Scand., 56, p. 71; Mohan, C.M., Dey, S., Rai, A., Kataria, J., Recombinant haemagglutinin neuraminidase antigen-based single serum dilution ELISA for rapid serological profiling of Newcastle disease virus (2006) J. Virol. Methods, 138, pp. 117-122; Rosati, S., Kwang, J., Tolari, F., Keen, J., A comparison of whole virus and recombinant transmembrane ELISA and immunodiffusion for detection of ovine lentivirus antibodies in Italian sheep flocks (1994) Vet. Res. Commun., 18, pp. 73-80; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., JVI; Herzog, P., (2015) Reverse Genetics for Human Coronavirus NL63, , Universitäts-und Landesbibliothek Bonn: Bonn, Germany; Kahn, J.S., McIntosh, K., History and recent advances in coronavirus discovery (2005) Pediatr. Infect. Dis. J., 24, pp. S223-S227; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs (2009) J. Virol., 83, pp. 1532-1537; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514","Drosten, C.; Previous Institution: Institute of Virology, University of Bonn Medical CentreGermany; email: christian.drosten@charite.de",,"MDPI AG",19994915,,,"30634419","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85059895158 "Song Z., Xu Y., Bao L., Zhang L., Yu P., Qu Y., Zhu H., Zhao W., Han Y., Qin C.","57205434790;23476122500;35314489100;36246863300;55813842400;55891663000;56201637400;57205447901;56542087200;7102688076;","From SARS to MERS, thrusting coronaviruses into the spotlight",2019,"Viruses","11","1", 59,"","",,25,"10.3390/v11010059","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060061483&doi=10.3390%2fv11010059&partnerID=40&md5=1ed6be97d225750457c9e2eca10046e6","Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China; NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China; Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China","Song, Z., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Xu, Y., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Bao, L., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Zhang, L., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Yu, P., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Qu, Y., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Zhu, H., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Zhao, W., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Han, Y., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China; Qin, C., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, 100021, China, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing, 100021, China, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, China","Coronaviruses (CoVs) have formerly been regarded as relatively harmless respiratory pathogens to humans. However, two outbreaks of severe respiratory tract infection, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), as a result of zoonotic CoVs crossing the species barrier, caused high pathogenicity and mortality rates in human populations. This brought CoVs global attention and highlighted the importance of controlling infectious pathogens at international borders. In this review, we focus on our current understanding of the epidemiology, pathogenesis, prevention, and treatment of SARS-CoV and MERS-CoV, as well as provides details on the pivotal structure and function of the spike proteins (S proteins) on the surface of each of these viruses. For building up more suitable animal models, we compare the current animal models recapitulating pathogenesis and summarize the potential role of host receptors contributing to diverse host affinity in various species. We outline the research still needed to fully elucidate the pathogenic mechanism of these viruses, to construct reproducible animal models, and ultimately develop countermeasures to conquer not only SARS-CoV and MERS-CoV, but also these emerging coronaviral diseases. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Animal model; Coronaviruses; MERS-CoV; Prevention and treatment; SARS-CoV; Spike proteins","angiotensin converting enzyme 2; dipeptidyl peptidase IV; DNA vaccine; inactivated virus vaccine; interferon; live vaccine; lopinavir plus ritonavir; monoclonal antibody; polyclonal antibody; proteinase inhibitor; ribavirin; subunit vaccine; virus spike protein; coronavirus spike glycoprotein; virus vaccine; antigen recognition; antiviral susceptibility; antiviral therapy; cellular distribution; convalescence; delayed hypersensitivity; human; immune response; immunogenicity; infection control; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; nonhuman; pathogenicity; prevalence; respiratory tract infection; Review; SARS coronavirus; vaccination; virus cell interaction; virus replication; virus transmission; animal; bat; China; Coronavirus infection; disease model; genetics; immunology; Middle East; Middle East respiratory syndrome coronavirus; mouse; pathogenicity; SARS coronavirus; severe acute respiratory syndrome; transmission; virology; virus genome; zoonosis; Animals; China; Chiroptera; Coronavirus Infections; Disease Models, Animal; Genome, Viral; Humans; Mice; Middle East; Middle East Respiratory Syndrome Coronavirus; SARS Virus; Severe Acute Respiratory Syndrome; Spike Glycoprotein, Coronavirus; Viral Vaccines; Zoonoses","Yin, Y., Wunderink, R.G., MERS, SARS and other coronaviruses as causes of pneumonia (2018) Respirology, 23, pp. 130-137; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Rota, P.A., Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome (2003) Science, 300, pp. 1394-1399; Zhong, N.S., Zheng, B.J., Li, Y.M., Poon, L.L., Xie, Z.H., Chan, K.H., Li, P.H., Xie, J.P., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003 (2003) Lancet, 362, pp. 1353-1358; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., To, K.F., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N. Engl. J. Med, 348, pp. 1986-1994; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Menachery, V.D., Yount, B.J., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Donaldson, E.F., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; WHO Guidelines for the Global Surveillance of Severe Acute Respiratory Syndrome (SARS)., , http://www.who.int/mediacentre/factsheets/mers-cov/en/, accessed on 8 October 2018); Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Cui, J., Li, F., Shi, Z., Origin and evolution of pathogenic coronaviruses (2018) Nat. Rev. Microbiol.; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia (2018) Mbio, 9; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al, R.B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160, pp. 389-397; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al, N.M., Farag, N.H., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis., 59, pp. 1225-1233; Al, H.F., Pringle, K., Al, M.M., Kim, L., Pham, H., Alami, N.N., Khudhair, A., El, S.F., Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014 (2016) Emerg. Infect. Dis., 22, pp. 1162-1168; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al, R.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al, M.M., Hajomar, W., Landt, O., Al, S.A., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin. Infect. Dis., 60, pp. 369-377; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Yi, S.J., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Eurosurveillance, 20; Skowronski, D.M., Astell, C., Brunham, R.C., Low, D.E., Petric, M., Roper, R.L., Talbot, P.J., Babiuk, L., Severe acute respiratory syndrome (SARS): A year in review (2005) Annu. Rev. Med., 56, pp. 357-381; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Wang, Y., Sun, J., Zhu, A., Zhao, J., Zhao, J., Current understanding of middle east respiratory syndrome coronavirus infection in human and animal models (2018) J. Thorac. Dis., 10, pp. S2260-S2271; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B., Jiang, S., The spike protein of SARS-CoV—A target for vaccine and therapeutic development (2009) Nat. Rev. Microbiol., 7, pp. 226-236; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.J., Mason, R.J., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 15748-15753; Liu, L., Wei, Q., Alvarez, X., Wang, H., Du, Y., Zhu, H., Jiang, H., Zhang, L., Epithelial Cells Lining Salivary Gland Ducts Are Early Target Cells of Severe Acute Respiratory Syndrome Coronavirus Infection in the Upper Respiratory Tracts of Rhesus Macaques (2011) J. Virol., 85, pp. 4025-4030; Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Deng, W., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury (2005) Nat. Med., 11, pp. 875-879; Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L., Jingqiang, Z., The life cycle of SARS coronavirus in Vero E6 cells (2004) J. Med. Virol., 73, pp. 332-337; Guo, Y., Korteweg, C., McNutt, M.A., Gu, J., Pathogenetic mechanisms of severe acute respiratory syndrome (2008) Virus Res, 133, pp. 4-12; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am. J. Pathol., 170, pp. 1136-1147; Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Li, Z., Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways (2004) J. Pathol., 203, pp. 622-630; Meyerholz, D.K., Lambertz, A.M., McCray, P.J., Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome (2016) Am. J. Pathol., 186, pp. 78-86; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G., Bosch, B.J., Bensaid, A., Osterhaus, A., Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels (2016) J. Virol., 90, pp. 4838-4842; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., 2014 MERS-CoV outbreak in Jeddah—A link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854; Chu, K.H., Tsang, W.K., Tang, C.S., Lam, M.F., Lai, F.M., To, K.F., Fung, K.S., Chan, H.W., Acute renal impairment in coronavirus-associated severe acute respiratory syndrome (2005) Kidney Int, 67, pp. 698-705; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Al, A.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int. J. Infect. Dis., 29, pp. 301-306; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Zalmout, I.S., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5, pp. e814-e884; Lambeir, A.M., Durinx, C., Scharpe, S., de Meester, I., Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV (2003) Crit. Rev. Clin. Lab. Sci., 40, pp. 209-294; Chu, H., Zhou, J., Wong, B.H., Li, C., Cheng, Z.S., Lin, X., Poon, V.K., Chan, J.F., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, pp. 454–455, 197–205; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Sun, T., Chan, J.Y., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Yang, D., Li, C., Middle East Respiratory Syndrome Coronavirus Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and Intrinsic Apoptosis Pathways (2016) J. Infect. Dis., 213, pp. 904-914; Yeung, M., Yao, Y., Jia, L., Chan, J.F.W., Chan, K., Cheung, K., Chen, H., To, K.K.W., MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat (2016) Microbiol, 1; Liu, W.J., Lan, J., Liu, K., Deng, Y., Yao, Y., Wu, S., Chen, H., Zhao, M., Protective T Cell Res.Ponses Featured by Concordant Recognition of Middle East Respiratory Syndrome Coronavirus-Derived CD8+ T Cell Epitopes and Host MHC (2017) J. Immunol., 198, pp. 873-882; Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., Fong, J.H., Guan, Y., Nicholls, J.M., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J. Virol., 87, pp. 6604-6614; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Chan, S.Y., The Genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404; Qu, X.X., Hao, P., Song, X.J., Jiang, S.M., Liu, Y.X., Wang, P.G., Rao, X., Zuo, Y., Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy (2005) J. Biol. Chem., 280, pp. 29588-29595; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Vasilieva, N., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Xiao, H., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 13134-13140; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev. Vaccines, 13, pp. 761-774; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Lu, L., Zheng, B.J., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun, 5, p. 3067; Zheng, Q., Deng, Y., Liu, J., van der Hoek, L., Berkhout, B., Lu, M. Core structure of S2 from the human coronavirus NL63 spike glycoprotein (2006) Biochemistry, 45, pp. 15205-15215; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 49414-49419; Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 30514-30522; Hofmann, H., Hattermann, K., Marzi, A., Gramberg, T., Geier, M., Krumbiegel, M., Kuate, S., Pohlmann, S., S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients (2004) J. Virol., 78, pp. 6134-6142; Holmes, K.V., SARS-associated coronavirus (2003) N. Engl. J. Med., 348, pp. 1948-1951; Li, F., Berardi, M., Li, W., Farzan, M., Dormitzer, P.R., Harrison, S.C., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain (2006) J. Virol., 80, pp. 6794-6800; Wong, S.K., Li, W., Moore, M.J., Choe, H., Farzan, M., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 (2004) J. Biol. Chem., 279, pp. 3197-3201; Xiao, X., Chakraborti, S., Dimitrov, A.S., Gramatikoff, K., Dimitrov, D.S., The SARS-CoV S glycoprotein: Expression and functional characterization (2003) Biochem. Biophys. Res. Commun., 312, pp. 1159-1164; Zhang, Y., Zheng, N., Hao, P., Cao, Y., Zhong, Y., A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2 (2005) Comput. Biol. Chem., 29, pp. 254-257; He, Y., Li, J., Jiang, S., A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity (2006) Biochem. Biophys. Res. Commun., 344, pp. 106-113; Sainz, B.J., Rausch, J.M., Gallaher, W.R., Garry, R.F., Wimley, W.C., Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein (2005) J. Virol., 79, pp. 7195-7206; Yang, Z.Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.P., Schwartz, O., Subbarao, K., Nabel, G.J., PH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN (2004) J. Virol., 78, pp. 5642-5650; Han, D.P., Lohani, M., Cho, M.W., Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry (2007) J. Virol., 81, pp. 12029-12039; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848; Keng, C.T., Zhang, A., Shen, S., Lip, K.M., Fielding, B.C., Tan, T.H., Chou, C.F., Fu, J., Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: Implications for the development of vaccines and antiviral agents (2005) J. Virol., 79, pp. 3289-3296; Zhou, T., Wang, H., Luo, D., Rowe, T., Wang, Z., Hogan, R.J., Qiu, S., Mishra, V., An exposed domain in the severe acute respiratory syndrome coronavirus spike protein induces neutralizing antibodies (2004) J. Virol., 78, pp. 7217-7226; Bukreyev, A., Lamirande, E.W., Buchholz, U.J., Vogel, L.N., Elkins, W.R., St, C.M., Murphy, B.R., Collins, P.L., Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS (2004) Lancet, 363, pp. 2122-2127; Yang, Z.Y., Kong, W.P., Huang, Y., Roberts, A., Murphy, B.R., Subbarao, K., Nabel, G.J., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice (2004) Nature, 428, pp. 561-564; Kam, Y.W., Kien, F., Roberts, A., Cheung, Y.C., Lamirande, E.W., Vogel, L., Chu, S.L., Zaki, S.R., Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro (2007) Vaccine, 25, pp. 729-740; Czub, M., Weingartl, H., Czub, S., He, R., Cao, J., Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets (2005) Vaccine, 23, pp. 2273-2279; Weingartl, H., Czub, M., Czub, S., Neufeld, J., Marszal, P., Gren, J., Smith, G., Deschambault, Y., Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets (2004) J. Virol., 78, pp. 12672-12676; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants (2017) J. Virol, 91; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Gilbert, S.C., Warimwe, G.M., Rapid development of vaccines against emerging pathogens: The replication-deficient simian adenovirus platform technology (2017) Vaccine, 35, pp. 4461-4464; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Alhajri, M.M., Farag, E.A., Alhajri, F., Gambotto, A., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., Perlman, S., Xia, X., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Alhabbab, R.Y., Hashem, A.M., Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein. Sci (2017) Rep, p. 7; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34, pp. 2982-2987; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., Airway Memory CD4 + T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses (2016) Immunity, 44, pp. 1379-1391; Roper, R.L., Rehm, K.E., SARS vaccines: Where are we? (2009) Expert Rev. Vaccines, 8, pp. 887-898; Lin, J., Zhang, J., Su, N., Xu, J., Wang, N., Chen, J., Chen, X., Jia, Y., Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine (2007) Antivir. Ther., 12, pp. 1107-1113; Deng, Y., Lan, J., Bao, L., Huang, B., Ye, F., Chen, Y., Yao, Y., Tan, W., Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus (2018) Emerg. Microbes Infect., 7, p. 60; See, R.H., Zakhartchouk, A.N., Petric, M., Lawrence, D.J., Mok, C.P., Hogan, R.J., Rowe, T., Hitt, M.M., Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus (2006) J. Gen. Virol., 87, pp. 641-650; Enjuanes, L., Dediego, M.L., Alvarez, E., Deming, D., Sheahan, T., Baric, R., Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease (2008) Virus Res, 133, pp. 45-62; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Heise, M., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J. Virol., 85, pp. 12201-12215; Ishioka, T., Kimura, H., Kita, H., Obuchi, M., Hoshino, H., Noda, M., Nishina, A., Kato, M., Effects of respiratory syncytial virus infection and major basic protein derived from eosinophils in pulmonary alveolar epithelial cells (A549) (2011) Cell Biol. Int., 35, pp. 467-474; Fett, C., Dediego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein (2013) J. Virol., 87, pp. 6551-6559; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med., 18, pp. 1820-1826; Almazan, F., Dediego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) Mbio, 4; Vignuzzi, M., Wendt, E., Andino, R., Engineering attenuated virus vaccines by controlling replication fidelity (2008) Nat. Med., 14, pp. 154-161; Roberts, A., Vogel, L., Guarner, J., Hayes, N., Murphy, B., Zaki, S., Subbarao, K., Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters (2005) J. Virol., 79, pp. 503-511; Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A., Suthar, M., Pickles, R., Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants (2006) Plos Med, 3; Chen, Z., Zhang, L., Qin, C., Ba, L., Yi, C.E., Zhang, F., Wei, Q., Yu, J., Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region (2005) J. Virol., 79, pp. 2678-2688; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Gao, G.F., Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge (2015) Ebiomedicine, 2, pp. 1438-1446; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Bisht, H., Roberts, A., Vogel, L., Subbarao, K., Moss, B., Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein (2005) Virology, 334, pp. 160-165; Woo, P.C., Lau, S.K., Tsoi, H.W., Chen, Z.W., Wong, B.H., Zhang, L., Chan, J.K., Ma, C., SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus (2005) Vaccine, 23, pp. 4959-4968; Shi, S., Peng, J., Li, Y., Qin, C., Liang, G., Xu, L., Yang, Y., Sun, Q., The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization (2006) Mol. Immunol., 43, pp. 1791-1798; Gupta, V., Tabiin, T.M., Sun, K., Chandrasekaran, A., Anwar, A., Yang, K., Chikhlikar, P., Marques, E.T., SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens (2006) Virology, 347, pp. 127-139; Zhuang, M., Jiang, H., Suzuki, Y., Li, X., Xiao, P., Tanaka, T., Ling, H., Zhang, L., Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection (2009) Antivir. Res., 82, pp. 73-81; Hu, H., Li, L., Kao, R.Y., Kou, B., Wang, Z., Zhang, L., Zhang, H., Ni, A., Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library (2005) J. Comb. Chem., 7, pp. 648-656; Zheng, B.J., Guan, Y., Hez, M.L., Sun, H., Du, L., Zheng, Y., Wong, K.L., Lu, L., Synthetic peptides outside the spike protein heptad repeat regions as potent inhibitors of SARS-associated coronavirus (2005) Antivir. Ther., 10, pp. 393-403; Bosch, B.J., Martina, B.E., van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J., Rottier, P.J., Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 8455-8460; Yuan, K., Yi, L., Chen, J., Qu, X., Qing, T., Rao, X., Jiang, P., Nie, Y., Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein (2004) Biochem. Biophys. Res. Commun., 319, pp. 746-752; McRoy, W.C., Baric, R.S., Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion (2008) J. Virol., 82, pp. 1414-1424; He, Y., Li, J., Heck, S., Lustigman, S., Jiang, S., Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design (2006) J. Virol., 80, pp. 5757-5767; He, Y., Li, J., Li, W., Lustigman, S., Farzan, M., Jiang, S., Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein (2006) J. Immunol., 176, pp. 6085-6092; He, Y., Zhu, Q., Liu, S., Zhou, Y., Yang, B., Li, J., Jiang, S., Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: Importance for designing SARS vaccines (2005) Virology, 334, pp. 74-82; Lai, S.C., Chong, P.C., Yeh, C.T., Liu, L.S., Jan, J.T., Chi, H.Y., Liu, H.W., Wang, Y.C., Characterization of neutralizing monoclonal antibodies recognizing a 15-residues epitope on the spike protein HR2 region of severe acute respiratory syndrome coronavirus (SARS-CoV) (2005) J. Biomed. Sci., 12, pp. 711-727; Nie, Y., Wang, G., Shi, X., Zhang, H., Qiu, Y., He, Z., Wang, W., Du, L., Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection (2004) J. Infect. Dis., 190, pp. 1119-1126; Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Lanzavecchia, A., An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus (2004) Nat. Med., 10, pp. 871-875; Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., Baric, R., Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge (2008) J. Virol., 82, pp. 3220-3235; Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., Hensley, L.E., Sidorov, I.A., Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 12123-12128; Coughlin, M., Lou, G., Martinez, O., Masterman, S.K., Olsen, O.A., Moksa, A.A., Farzan, M., Prabhakar, B.S., Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse (2007) Virology, 361, pp. 93-102; van den Brink, E.N., Ter Meulen, J., Cox, F., Jongeneelen, M.A., Thijsse, A., Throsby, M., Marissen, W.E., Gelderblom, H.R., Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus (2005) J. Virol., 79, pp. 1635-1644; Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L.J., Wong, S.K., Moore, M.J., Choe, H., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 2536-2541; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Tien, P., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363, pp. 938-947; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Huang, F., Liu, C., Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (2016) J. Biol. Chem., 291, pp. 9218-9232; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., Welsch, K., Drosten, C., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Nunneley, J.W., Barnard, D., Simmons, G., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antivir. Res., 116, pp. 76-84; Momattin, H., Mohammed, K., Zumla, A., Memish, Z.A., Al-Tawfiq, J.A., Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–possible lessons from a systematic review of SARS-CoV therapy (2013) Int. J. Infect. Dis., 17, pp. e792-e798; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.J., Jahrling, P.B., Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J. Gen. Virol., 95, pp. 571-577; Ter Meulen, J., van den Brink, E.N., Poon, L.L., Marissen, W.E., Leung, C.S., Cox, F., Cheung, C.Y., van Deventer, E., Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants (2006) Plos Med, 3; Zhang, J.S., Chen, J.T., Liu, Y.X., Zhang, Z.S., Gao, H., Liu, Y., Wang, X., Gao, Q., A serological survey on neutralizing antibody titer of SARS convalescent sera (2005) J. Med. Virol., 77, pp. 147-150; Miyoshi-Akiyama, T., Ishida, I., Fukushi, M., Yamaguchi, K., Matsuoka, Y., Ishihara, T., Tsukahara, M., Morisawa, A., Fully Human Monoclonal Antibody Directed to Proteolytic Cleavage Site in Severe Acute Respiratory Syndrome (SARS) Coronavirus S Protein Neutralizes the Virus in a Rhesus Macaque SARS Model (2011) J. Infect. Dis., 203, pp. 1574-1581; Wang, Q., Zhang, L., Kuwahara, K., Li, L., Liu, Z., Li, T., Zhu, H., Xie, J., Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates (2016) ACS Infect. Dis., 2, pp. 361-376; Chen, Z., Bao, L., Chen, C., Zou, T., Xue, Y., Li, F., Lv, Q., Cui, S., Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset (2017) J. Infect. Dis., 215, pp. 1807-1815; Stockman, L.J., Bellamy, R., Garner, P., Low, D., SARS: Systematic Review of Treatment Effects (2006) Plos Med, 3; Chan, P.K.S., Tang, J.W., Hui, D.S.C., SARS: Clinical presentation, transmission, pathogenesis and treatment options (2006) Clin. Sci., 110, pp. 193-204; Chan, J.F., Yao, Y., Yeung, M., Deng, W., Bao, L., Jia, L., Li, F., Yu, P., Treatment with Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset (2015) J. Infect. Dis., 212, pp. 1904-1913; Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Murphy, B., Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice (2004) J. Virol., 78, pp. 3572-3577; Wentworth, D.E., Gillim-Ross, L., Espina, N., Bernard, K.A., Mice susceptible to SARS coronavirus (2004) Emerg. Infect. Dis., 10, pp. 1293-1296; Glass, W.G., Subbarao, K., Murphy, B., Murphy, P.M., Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice (2004) J. Immunol., 173, pp. 4030-4039; Yang, X.H., Deng, W., Tong, Z., Liu, Y.X., Zhang, L.F., Zhu, H., Gao, H., Ma, C.M., Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection (2007) Comp. Med., 57, pp. 450-459; Roberts, A., Paddock, C., Vogel, L., Butler, E., Zaki, S., Subbarao, K., Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans (2005) J. Virol., 79, pp. 5833-5838; Hogan, R.J., Gao, G., Rowe, T., Bell, P., Flieder, D., Paragas, J., Kobinger, G.P., Boyer, J., Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1 (2004) J. Virol., 78, pp. 11416-11421; Frieman, M., Yount, B., Agnihothram, S., Page, C., Donaldson, E., Roberts, A., Vogel, L., Subbarao, K., Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease (2012) J. Virol., 86, pp. 884-897; Zhao, J., Zhao, J., Legge, K., Perlman, S., Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice (2011) J. Clin. Investig., 121, pp. 4921-4930; Zhao, J., Zhao, J., Perlman, S., T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice (2010) J. Virol., 84, pp. 9318-9325; Zhao, J., Zhao, J., van Rooijen, N., Perlman, S., Evasion by stealth: Inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice (2009) Plos Pathog, 5; Sheahan, T., Morrison, T.E., Funkhouser, W., Uematsu, S., Akira, S., Baric, R.S., Heise, M.T., MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV (2008) Plos Pathog, 4; Li, C.K., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., Tang, X., Brenchley, J.M., T cell responses to whole SARS coronavirus in humans (2008) J. Immunol., 181, pp. 5490-5500; Chen, W., Xu, Z., Mu, J., Yang, L., Gan, H., Mu, F., Fan, B., You, B., Antibody response and viraemia during the course of severe acute respiratory syndrome (SARS)-associated coronavirus infection (2004) J. Med. Microbiol., 53, pp. 435-438; Spruth, M., Kistner, O., Savidis-Dacho, H., Hitter, E., Crowe, B., Gerencer, M., Bruhl, P., Tauer, C., A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses (2006) Vaccine, 24, pp. 652-661; Greenough, T.C., Babcock, G.J., Roberts, A., Hernandez, H.J., Thomas, W.J., Coccia, J.A., Graziano, R.F., Finberg, R.W., Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice (2005) J. Infect. Dis., 191, pp. 507-514; Kapadia, S.U., Rose, J.K., Lamirande, E., Vogel, L., Subbarao, K., Roberts, A., Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine (2005) Virology, 340, pp. 174-182; Stadler, K., Roberts, A., Becker, S., Vogel, L., Eickmann, M., Kolesnikova, L., Klenk, H.D., Abrignani, S., SARS vaccine protective in mice (2005) Emerg. Infect. Dis., 11, pp. 1312-1314; Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P.L., Murphy, B.R., Subbarao, K., Moss, B., Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 6641-6646; Schaecher, S.R., Stabenow, J., Oberle, C., Schriewer, J., Buller, R.M., Sagartz, J.E., Pekosz, A., An immunosuppressed Syrian golden hamster model for SARS-CoV infection (2008) Virology, 380, pp. 312-321; Luo, D., Ni, B., Zhao, G., Jia, Z., Zhou, L., Pacal, M., Zhang, L., Lin, Z., Protection from infection with severe acute respiratory syndrome coronavirus in a Chinese hamster model by equine neutralizing F(Ab’)2 (2007) Viral Immunol, 20, pp. 495-502; Subbarao, K., Roberts, A., Is there an ideal animal model for SARS? (2006) Trends Microbiol, 14, pp. 299-303; Roberts, A., Thomas, W.D., Guarner, J., Lamirande, E.W., Babcock, G.J., Greenough, T.C., Vogel, L., Zaki, S., Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters (2006) J. Infect. Dis., 193, pp. 685-692; Martina, B.E., Haagmans, B.L., Kuiken, T., Fouchier, R.A., Rimmelzwaan, G.F., van Amerongen, G., Peiris, J.S., Osterhaus, A.D.V., SARS virus infection of cats and ferrets (2003) Nature, 425, p. 915; van den Brand, J.M., Haagmans, B.L., Leijten, L., van Riel, D., Martina, B.E., Osterhaus, A.D., Kuiken, T., Pathology of experimental SARS coronavirus infection in cats and ferrets (2008) Vet. Pathol., 45, pp. 551-562; Darnell, M.E., Plant, E.P., Watanabe, H., Byrum, R., St, C.M., Ward, J.M., Taylor, D.R., Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets (2007) J. Infect. Dis., 196, pp. 1329-1338; Ter Meulen, J., Bakker, A.B., van den Brink, E.N., Weverling, G.J., Martina, B.E., Haagmans, B.L., Kuiken, T., Spaan, W., Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets (2004) Lancet, 363, pp. 2139-2141; See, R.H., Petric, M., Lawrence, D.J., Mok, C.P., Rowe, T., Zitzow, L.A., Karunakaran, K.P., Gauldie, J., Severe acute respiratory syndrome vaccine efficacy in ferrets: Whole killed virus and adenovirus-vectored vaccines (2008) J. Gen. Virol., 89, pp. 2136-2146; Qin, C., Wang, J., Wei, Q., She, M., Marasco, W.A., Jiang, H., Tu, X., Gao, H., An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus (2005) J. Pathol., 206, pp. 251-259; McAuliffe, J., Vogel, L., Roberts, A., Fahle, G., Fischer, S., Shieh, W.J., Butler, E., Murphy, B., Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys (2004) Virology, 330, pp. 8-15; Rowe, T., Gao, G., Hogan, R.J., Crystal, R.G., Voss, T.G., Grant, R.L., Bell, P., Wilson, J.M., Macaque model for severe acute respiratory syndrome (2004) J. Virol., 78, pp. 11401-11404; Li, B., Tang, Q., Cheng, D., Qin, C., Xie, F.Y., Wei, Q., Xu, J., Woodle, M.C., Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque (2005) Nat. Med., 11, pp. 944-951; Liu, L., Wei, Q., Nishiura, K., Peng, J., Wang, H., Midkiff, C., Alvarez, X., Chen, Z., Spatiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques (2016) Mucosal Immunol, 9, pp. 1089-1101; Fouchier, R.A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J., van den Hoogen, B.G., Peiris, M., Osterhaus, A.D.A., Koch’s postulates fulfilled for SARS virus (2003) Nature, 423, p. 240; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., Lim, W., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270; Greenough, T.C., Carville, A., Coderre, J., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Mansfield, K., Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected with the severe acute respiratory syndrome-associated coronavirus (2005) Am. J. Pathol., 167, pp. 455-463; Lawler, J.V., Endy, T.P., Hensley, L.E., Garrison, A., Fritz, E.A., Lesar, M., Baric, R.S., Wasieloski, L.P., Cynomolgus macaque as an animal model for severe acute respiratory syndrome (2006) Plos Med, 3; Roberts, A., Subbarao, K., Animal models for SARS (2006) Adv. Exp. Med. Biol., 581, pp. 463-471; Chen, Y., Liu, L., Wei, Q., Zhu, H., Jiang, H., Tu, X., Qin, C., Chen, Z., Rhesus angiotensin converting enzyme 2 supports entry of severe acute respiratory syndrome coronavirus in Chinese macaques (2008) Virology, 381, pp. 89-97; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Baric, R.S., Heise, M.T., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 5195-5199; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412; de Wit, E., Feldmann, F., Horne, E., Martellaro, C., Haddock, E., Bushmaker, T., Rosenke, K., Saturday, G., Domestic Pig Unlikely Reservoir for MERS-CoV (2017) Emerg. Infect. Dis., 23, pp. 985-988; Peck, K.M., Scobey, T., Swanstrom, J., Jensen, K.L., Burch, C.L., Baric, R.S., Heise, M.T., Permissivity of Dipeptidyl Peptidase 4 Orthologs to Middle East Respiratory Syndrome Coronavirus Is Governed by Glycosylation and Other Complex Determinants (2017) J. Virol., 91; Haagmans, B.L., van den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., de Waal, L., Verjans, G.M., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Haagmans, B.L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) Plos ONE, 8; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., Gallagher, T., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E3119-E3128; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Du, L., Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus (2015) Plos ONE, 10; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Tseng, C.T., Huang, C., Newman, P., Wang, N., Narayanan, K., Watts, D.M., Makino, S., Chan, T.S., Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor (2007) J. Virol., 81, pp. 1162-1173; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S.A., Mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat (2016) Microbiol, p. 2; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas (2016) Emerg. Infect. Dis., 22, pp. 1031-1037; Crameri, G., Durr, P.A., Klein, R., Foord, A., Yu, M., Riddell, S., Haining, J., Barr, J., Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus (2016) Emerg. Infect. Dis., 22, pp. 1071-1074; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An Animal Model of MERS Produced by Infection of Rhesus Macaques with MERS Coronavirus (2013) J. Infect. Dis., 209, pp. 236-242; Yu, P., Xu, Y., Deng, W., Bao, L., Huang, L., Xu, Y., Yao, Y., Qin, C., Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus (2017) Plos ONE, 12; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Nagy, L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) Plos Pathog, 10; Munster, V.J., de Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N. Engl. J. Med., 368, pp. 1560-1562; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat. Med., 19, pp. 1313-1317; Johnson, R.F., Via, L.E., Kumar, M.R., Cornish, J.P., Yellayi, S., Huzella, L., Postnikova, E., Ork, B.L., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430; Li, W., Greenough, T.C., Moore, M.J., Vasilieva, N., Somasundaran, M., Sullivan, J.L., Farzan, M., Choe, H., Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2 (2004) J. Virol., 78, pp. 11429-11433; Wu, D., Tu, C., Xin, C., Xuan, H., Meng, Q., Liu, Y., Yu, Y., Yin, X., Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates (2005) J. Virol., 79, pp. 2620-2625; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.J., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232","Qin, C.; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Centre, Peking Union Medical Collage (PUMC)China; email: qinchuan@pumc.edu.cn",,"MDPI AG",19994915,,,"30646565","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85060061483 "Wang S.-M., Huang K.-J., Wang C.-T.","16308265000;7403187799;8090787000;","Severe acute respiratory syndrome coronavirus spike protein counteracts BST2-mediated restriction of virus-like particle release",2019,"Journal of Medical Virology","91","10",,"1743","1750",,,"10.1002/jmv.25518","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070185469&doi=10.1002%2fjmv.25518&partnerID=40&md5=27ba052e8b59cada4382b1ec8f6525c6","Department of Medical Research, Taipei Veterans General Hospital and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan","Wang, S.-M., Department of Medical Research, Taipei Veterans General Hospital and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Huang, K.-J., Department of Medical Research, Taipei Veterans General Hospital and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Wang, C.-T., Department of Medical Research, Taipei Veterans General Hospital and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan","BST2/tetherin, an interferon-inducible antiviral factor, can block the cellular release of various enveloped viruses. We previously reported that human coronavirus 229E (HCoV-229E) infection can alleviate the BST2 tethering of HIV-1 virions by downregulating cell surface BST2, suggesting that coronaviruses are capable of encoding anti-BST2 factors. Here we report our new finding that severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) glycoprotein, similar to Vpu, is capable of antagonizing the BST2 tethering of SARS-CoV, HCoV-229E, and HIV-1 virus-like particles via BST2 downregulation. However, unlike Vpu (which downmodulates BST2 by means of proteasomal and lysosomal degradation pathways), BST2 downregulation is apparently mediated by SARS-CoV S through the lysosomal degradation pathway only. We found that SARS-CoV S colocalized with both BST2 and reduced cell surface BST2, suggesting an association between SARS-CoV S and BST2 that targets the lysosomal degradation pathway. According to one recent report, SARS-CoV ORF7a antagonizes BST2 by interfering with BST2 glycosylation1. Our data provide support for the proposal that SARS-CoV and other enveloped viruses are capable of evolving supplementary anti-BST2 factors in a manner that requires virus replication. Further experiments are required to determine whether the BST2-mediated restriction of authentic SARS-CoV virions is alleviated by the SARS-CoV spike protein. © 2019 Wiley Periodicals, Inc.","coronavirus; human immunodeficiency virus; immune responses; innate immunity; SARS coronavirus; virus classification","bone marrow stromal antigen 2; BST2 protein; severe acute respiratory syndrome coronavirus spike protein; unclassified drug; virus spike protein; Article; controlled study; dimerization; down regulation; Human coronavirus 229E; Human immunodeficiency virus 1; nonhuman; protein function; protein glycosylation; protein localization; protein protein interaction; protein targeting; SARS coronavirus; virion; virus inhibition; virus like agent; virus release; virus replication","Kupzig, S., Korolchuk, V., Rollason, R., Sugden, A., Wilde, A., Banting, G., Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology (2003) Traffic, 4 (10), pp. 694-709; Gupta, R.K., Mlcochova, P., Pelchen-Matthews, A., Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration (2009) Proceedings of the National Academy of Sciences, 106, pp. 20889-20894; Jia, B., Serra-Moreno, R., Neidermyer, W., Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2 (2009) PLoS Pathog, 5 (5); Le Tortorec, A., Neil, S.J., Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein (2009) J Virol, 83 (22), pp. 11966-11978; Neil, S.J., Zang, T., Bieniasz, P.D., Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu (2008) Nature, 451 (7177), pp. 425-430; Van Damme, N., Goff, D., Katsura, C., The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein (2008) Cell Host Microbe, 3, pp. 245-252; Zhang, F., Wilson, S.J., Landford, W.C., Nef proteins from simian immunodeficiency viruses are tetherin antagonists (2009) Cell Host Microbe, 6 (1), pp. 54-67; Jouvenet, N., Neil, S.J., Zhadina, M., Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin (2009) J Virol, 83 (4), pp. 1837-1844; Kaletsky, R.L., Francica, J.R., Agrawal-Gamse, C., Bates, P., Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein (2009) Proc Natl Acad Sci U S A, 106 (8), pp. 2886-2891; Sakuma, T., Sakurai, A., Yasuda, J., Dimerization of tetherin is not essential for its antiviral activity against Lassa and Marburg viruses (2009) PLoS One, 4 (9); Radoshitzky, S.R., Dong, L., Chi, X., Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin (2010) J Virol, 84 (20), pp. 10569-10580; Mangeat, B., Cavagliotti, L., Lehmann, M., Influenza virus partially counteracts restriction imposed by tetherin/BST-2 (2012) J Biol Chem, 287 (26), pp. 22015-22029; Bampi, C., Rasga, L., Roux, L., Antagonism to human BST-2/tetherin by Sendai virus glycoproteins (2013) J Gen Virol, 94, pp. 1211-1219; Perez-Caballero, D., Zang, T., Ebrahimi, A., Tetherin inhibits HIV-1 release by directly tethering virions to cells (2009) Cell, 139 (3), pp. 499-511; Mansouri, M., Viswanathan, K., Douglas, J.L., Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus (2009) J Virol, 83 (19), pp. 9672-9681; Mettenleiter, T.C., Herpesvirus assembly and egress (2002) J Virol, 76 (4), pp. 1537-1547; Wang, S.-M., Huang, K.-J., Wang, C.-T., BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface (2014) Virology, 449, pp. 287-296; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292; Hunter, E., Virus assembly (2001) Fundamental Virology, , Knipe DM, Howley PM, eds., 4th; Jones, D.M., McLauchlan, J., Hepatitis C virus: assembly and release of virus particles (2010) J Biol Chem, 285 (30), pp. 22733-22739; Dafa-Berger, A., Kuzmina, A., Fassler, M., Yitzhak-Asraf, H., Shemer-Avni, Y., Taube, R., Modulation of hepatitis C virus release by the interferon-induced protein BST-2/tetherin (2012) Virology, 428 (2), pp. 98-111; Pardieu, C., Vigan, R., Wilson, S.J., The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin (2010) PLoS Pathog, 6 (4); Taylor, J.K., Coleman, C.M., Postel, S., Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference (2015) J Virol, 89 (23), pp. 11820-11833; Huang, Y., Yang, Z.-Y., Kong, W.-P., Nabel, G.J., Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production (2004) J Virol, 78 (22), pp. 12557-12565; Andrew, A.J., Miyagi, E., Kao, S., Strebel, K., The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu (2009) Retrovirology, 6, p. 80; Schelle, B., Karl, N., Ludewig, B., Siddell, S.G., Thiel, V., Selective replication of coronavirus genomes that express nucleocapsid protein (2005) J Virol, 79 (11), pp. 6620-6630; Shih, Y.-P., Chen, C.-Y., Liu, S.-J., Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus (2006) J Virol, 80 (21), pp. 10315-10324; Wang, S.-M., Wang, C.-T., APOBEC3G cytidine deaminase association with coronavirus nucleocapsid protein (2009) Virology, 388 (1), pp. 112-120; Miyagi, E., Andrew, A.J., Kao, S., Strebel, K., Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion (2009) Proceedings of the National Academy of Sciences, 106, pp. 2868-2873; Maldarelli, F., Chen, M.Y., Willey, R.L., Strebel, K., Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein (1993) J Virol, 67 (8), pp. 5056-5061; Tseng, Y.-T., Wang, S.-M., Huang, K.-J., Lee, A.I.-R., Chiang, C.-C., Wang, C.-T., Self-assembly of severe acute respiratory syndrome coronavirus membrane protein (2010) J Biol Chem, 285 (17), pp. 12862-12872; Tseng, Y.-T., Wang, S.-M., Huang, K.-J., Wang, C.-T., SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production (2014) J Biomed Sci, 21 (1), p. 34; Neil, S.J.D., Sandrin, V., Sundquist, W.I., Bieniasz, P.D., An interferon-α-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein (2007) Cell Host Microbe, 2 (3), pp. 193-203; Douglas, J.L., Viswanathan, K., McCarroll, M.N., Gustin, J.K., Fruh, K., Moses, A.V., Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a {beta}TrCP-dependent mechanism (2009) J Virol, 83 (16), pp. 7931-7947; Mitchell, R.S., Katsura, C., Skasko, M.A., Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking (2009) PLoS Pathog, 5; Goffinet, C., Allespach, I., Homann, S., HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor (2009) Cell Host Microbe, 5, pp. 285-297; Dubé, M., Bhusan Roy, B., Guiot-Guillain, P., Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment (2010) PLoS Pathog, 6 (4); Mangeat, B., Gers-Huber, G., Lehmann, M., Zufferey, M., Luban, J., Piguet, V., HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation (2009) PLoS Pathog, 5 (9); Tsubuki, S., Saito, Y., Tomioka, M., Ito, H., Kawashima, S., Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine (1996) The Journal of Biochemistry, 119 (3), pp. 572-576; Hart, P.D., Young, M.R., Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast (1991) J Exp Med, 174 (4), pp. 881-889; Hammonds, J., Ding, L., Chu, H., The tetherin/BST-2 coiled-coil ectodomain mediates plasma membrane microdomain localization and restriction of particle release (2012) J Virol, 86 (4), pp. 2259-2272; Lewinski, M.K., Jafari, M., Zhang, H., Opella, S.J., Guatelli, J., Membrane anchoring by a C-terminal tryptophan enables HIV-1 Vpu to displace bone marrow stromal antigen 2 (BST2) from sites of viral assembly (2015) J Biol Chem, 290 (17), pp. 10919-10933; Schmidt, S., Fritz, J.V., Bitzegeio, J., Fackler, O.T., Keppler, O.T., HIV-1 Vpu blocks recycling and biosynthetic transport of the intrinsic immunity factor CD317/tetherin to overcome the virion release restriction (2011) mBio, 2 (3), p. 11; Nelson, C.A., Pekosz, A., Lee, C.A., Diamond, M.S., Fremont, D.H., Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein (2005) Structure, 13 (1), pp. 75-85; Arias, J.F., Colomer-Lluch, M., von Bredow, B., Tetherin antagonism by HIV-1 group M Nef proteins (2016) J Virol, 90 (23), pp. 10701-10714; Hu, S., Yin, L., Mei, S., BST-2 restricts IAV release and is countered by the viral M2 protein (2017) Biochem J, 474. , BCJ20160861; Watanabe, R., Leser, G.P., Lamb, R.A., Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by tetherin (2011) Virology, 417 (1), pp. 50-56","Wang, C.-T.; Department of Medical Research, Taipei Veterans General Hospital and Institute of Clinical Medicine, School of Medicine, National Yang-Ming UniversityTaiwan; email: chintien@ym.edu.tw",,"John Wiley and Sons Inc.",01466615,,JMVID,"31199522","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85070185469 "Xia S., Lan Q., Pu J., Wang C., Liu Z., Xu W., Wang Q., Liu H., Jiang S., Lu L.","57206826804;57205432257;57204608144;56592029300;57205436059;22137287100;55638946700;57191739564;56491898300;55715616400;","Potent MERS-CoV fusion inhibitory peptides identified from HR2 domain in spike protein of bat coronavirus HKU4",2019,"Viruses","11","1", 56,"","",,3,"10.3390/v11010056","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060017311&doi=10.3390%2fv11010056&partnerID=40&md5=cde65908b8c8c4ec8a9d02989352d1c4","Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States","Xia, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Lan, Q., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Pu, J., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Wang, C., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Liu, Z., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Xu, W., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Wang, Q., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Liu, H., State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Jiang, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Lu, L., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China","The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and caused continual outbreaks worldwide with high mortality. However, no effective anti-MERS-CoV drug is currently available. Recently, numerous evolutionary studies have suggested that MERS-CoV originated from bat coronavirus (BatCoV). We herein reported that three peptides derived from the HR2 region in spike protein of BatCoV HKU4, including HKU4-HR2P1, HKU4-HR2P2 and HKU4-HR2P3, could bind the MERS-CoV HR1-derived peptide to form a six-helix bundle (6-HB) with high stability. Moreover, these peptides, particularly HKU4-HR2P2 and HKU4-HR2P3, exhibited potent inhibitory activity against MERS-CoV S-mediated cell–cell fusion and viral infection, suggesting that these HKU4 HR2-derived peptides could be candidates for futher development as antiviral agents against MERS-CoV infection. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Cell; Cell fusion; Fusion inhibitor; HKU4; MERS-CoV; Peptide","virus spike protein; coronavirus spike glycoprotein; peptide; protein binding; virus fusion protein; antiviral activity; Article; cell culture; cell fusion; circular dichroism; cytotoxicity; genetic transfection; human; human cell; IC50; luciferase assay; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; phylogeny; polyacrylamide gel electrophoresis; protein purification; virogenesis; virus infection; animal; bat; chemistry; Middle East respiratory syndrome coronavirus; virology; virus entry; Animals; Chiroptera; Middle East Respiratory Syndrome Coronavirus; Peptides; Phylogeny; Protein Binding; Spike Glycoprotein, Coronavirus; Viral Fusion Proteins; Virus Internalization","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Myers, R., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Eurosurveillance, 17; Muller, M.A., Raj, V.S., Muth, D., Meyer, B., Kallies, S., Smits, S.L., Wollny, R., Suliman, T., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) Mbio, 3; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Sola, I., Enjuanes, L., Carmody, A., Munster, V., Adaptive evolution of MERS-CoV to species variation in DPP4 (2018) Cell Rep, 24, pp. 1730-1737; Lu, G.W., Hu, Y.W., Wang, Q.H., Qi, J.X., Gao, F., Li, Y., Zhang, Y.F., Bao, J.K., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489; Lu, L., Xia, S., Ying, T.L., Jiang, S.B., Urgent development of effective therapeutic and prophylactic agents to control the emerging threat of Middle East respiratory syndrome (MERS) (2015) Emerg. Microbes Infect, 4, p. 37; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; Du, L.Y., Zhao, G.Y., Kou, Z.H., Ma, C.Q., Sun, S.H., Poon, V.K.M., Lu, L., Zheng, B.J., Identification of a receptor-binding domain in the s protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus. Res., 194, pp. 200-210; Gao, J., Lu, G.W., Qi, J.X., Li, Y., Wu, Y., Deng, Y., Geng, H.Y., Xiao, H.X., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the s protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 13134-13140; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Liu, S.W., Xiao, G.F., Chen, Y.B., He, Y.X., Niu, J.K., Escalante, C.R., Xiong, H.B., Tien, P., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363, pp. 938-947; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) Mbio, 8, pp. 3-17; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol. J, 13, p. 87; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) Elife, 7; Lau, S.K.P., Zhang, L.B., Luk, H.K.H., Xiong, L.F., Peng, X.W., Li, K.S.M., He, X.Y., Wong, A.C.P., Receptor usage of a novel bat lineage c betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J. Infect. Dis., 218, pp. 197-207; Wang, Q.H., Qi, J.X., Yuan, Y., Xuan, Y.F., Han, P.C., Wan, Y.H., Ji, W., Wang, J.W., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Su, S., Zhu, Y., Ye, S., Qi, Q.Q., Xia, S., Ma, Z.X., Yu, F., Jiang, S.B., Creating an artificial tail anchor as a novel strategy to enhance the potency of peptide-based HIV fusion inhibitors (2017) J. Virol, 91, pp. 5-16; Xia, S., Xu, W., Wang, Q., Wang, C., Hua, C., Li, W.H., Lu, L., Jiang, S.B., Peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein HR1 and HR2 domains (2018) Int. J. Mol. Sci., 19, p. 487; Chan, D.C., Fass, D., Berger, J.M., Kim, P.S., Core structure of gp41 from the HIV envelope glycoprotein (1997) Cell, 89, pp. 263-273; Weng, Y.K., Weiss, C.D., Mutational analysis of residues in the coiled-coil domain of human immunodeficiency virus type 1 transmembrane protein gp41 (1998) J. Virol., 72, pp. 9676-9682; Takeda, K., Sasa, K., Nagao, M., Batra, P.P., Secondary structural-changes of non-reduced and reduced ribonuclease-a in solutions of urea, guanidine-hydrochloride and sodium dodecyl-sulfate (1988) Biochim. Biophys. Acta, 957, pp. 340-344; Wang, C., Zhao, L., Xia, S., Zhang, T., Cao, R., Liang, G., Li, Y., Shi, W., De novo design of alpha-helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery (2018) J. Med. Chem., 61, pp. 8734-8745; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection (2015) J. Infect. Dis., 212, pp. 1894-1903; Liu, Q., Xia, S., Sun, Z., Wang, Q., Du, L., Lu, L., Jiang, S., Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry (2015) Antimicrob. Agents Chemother., 59, pp. 742-744; Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol. Rev., 58, pp. 621-681; Zhao, G.Y., Du, L.Y., Ma, C.Q., Li, Y., Li, L., Poon, V.K.M., Wang, L.L., Jiang, S.B., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10, p. 266; Jiang, S.B., Lu, H., Liu, S.W., Zhao, Q., He, Y.X., Debnath, A.K., N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion (2004) Antimicrob. Agents Chemother., 48, pp. 4349-4359; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) Mbio, 5; Forni, D., Filippi, G., Cagliani, R., de Gioia, L., Pozzoli, U., Al-Daghri, N., Clerici, M., Sironi, M., The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses (2015) Sci. Rep., 5; Jiang, S., Lin, K., Strick, N., Neurath, A.R., HIV-1 inhibition by a peptide (1993) Nature, 365, p. 113; Wild, C., Greenwell, T., Matthews, T., A Synthetic peptide from HIV-1 gp41 Is a potent inhibitor of virus-mediated cell-cell fusion (1993) Aids Res. Hum. Retrovir., 9, pp. 1051-1053; Lawless-Delmedico, M.K., Sista, P., Sen, R., Moore, N.C., Antczak, J.B., White, J.M., Greene, R.J., Lambert, D.M., Heptad-repeat regions of respiratory syncytial virus F1 protein form a six-membered coiled-coil complex (2000) Biochemistry, 39, pp. 11684-11695; Russell, C.J., Jardetzky, T.S., Lamb, R.A., Membrane fusion machines of paramyxoviruses: Capture of intermediates of fusion (2001) EMBO J, 20, pp. 4024-4034; Bossart, K.N., Mungall, B.A., Crameri, G., Wang, L.F., Eaton, B.T., Broder, C.C., Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein (2005) Virol. J., 2, p. 57; Bosch, B.J., van der Zee, R., de Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Wang, C., Xia, S., Zhang, P., Zhang, T., Wang, W., Tian, Y., Meng, G., Liu, K., Discovery of hydrocarbon-stapled short alpha-helical peptides as promising Middle East respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors (2018) J. Med. Chem., 61, pp. 2018-2026; Liao, Y., Zhang, S.M., Neo, T.L., Tam, J.P., Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein (2015) Biochemistry, 54, pp. 1819-1830; Lu, Y.N., Neo, T.L., Liu, D.X., Tam, J.P., Importance of SARS-CoV spike protein Trp-rich region in viral infectivity (2008) Biochem. Biophys. Res. Commun., 371, pp. 356-360; Lu, M., Blacklow, S.C., Kim, P.S., A trimeric structural domain of the HIV-1 transmembrane glycoprotein (1995) Nat. Struct. Biol., 2, pp. 1075-1082; Lu, M., Kim, P.S., A trimeric structural subdomain of the HIV-1 transmembrane glycoprotein (1997) J. Biomol. Struct. Dyn., 15, pp. 465-471; Liu, S., Lu, H., Niu, J., Xu, Y., Wu, S., Jiang, S., Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120 (2005) J. Biol. Chem., 280, pp. 11259-11273; Chen, X., Lu, L., Qi, Z., Lu, H., Wang, J., Yu, X., Chen, Y., Jiang, S., Novel recombinant engineered gp41 N-terminal heptad repeat trimers and their potential as anti-HIV-1 therapeutics or microbicides (2010) J. Biol. Chem., 285, pp. 25506-25515; Yang, Y., Du, L.Y., Liu, C., Wang, L.L., Ma, C.Q., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Yang, Y., Liu, C., Du, L.Y., Jiang, S.B., Shi, Z.L., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J. Virol., 89, pp. 9119-9123","Liu, H.; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: liuhuan@wh.iov.cn",,"MDPI AG",19994915,,,"30646495","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85060017311 "Nguyen T.H.V., Lichière J., Canard B., Papageorgiou N., Attoumani S., Ferron F., Coutard B.","57205443120;35311102600;7003995150;26650071200;57205438592;8526522800;6504789960;","Structure and oligomerization state of the C-terminal region of the Middle East respiratory syndrome coronavirus nucleoprotein",2019,"Acta Crystallographica Section D: Structural Biology","75","1",,"8","15",,1,"10.1107/S2059798318014948","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060012464&doi=10.1107%2fS2059798318014948&partnerID=40&md5=92518c4e72846a06be51a3c9eddeebce","Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France; CNRS, AFMB, UMR 7257, Marseilles, 13288, France","Nguyen, T.H.V., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France; Lichière, J., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France; Canard, B., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France; Papageorgiou, N., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France; Attoumani, S., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France; Ferron, F., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France; Coutard, B., Aix-Marseille Université, AFMB, UMR 7257, Marseilles, 13288, France, CNRS, AFMB, UMR 7257, Marseilles, 13288, France","Middle East respiratory syndrome coronavirus (MERS-CoV) is a human pathogen responsible for a severe respiratory illness that emerged in 2012. Structural information about the proteins that constitute the viral particle is scarce. In order to contribute to a better understanding of the nucleoprotein (N) in charge of RNA genome encapsidation, the structure of the C-terminal domain of N from MERS-CoV obtained using single-crystal X-ray diffraction is reported here at 1.97 Å resolution. The molecule is present as a dimer in the crystal structure and this oligomerization state is confirmed in solution, as measured by additional methods including small-angle X-ray scattering measurements. Comparisons with the structures of the C-terminal domains of N from other coronaviruses reveals a high degree of structural conservation despite low sequence conservation, and differences in electrostatic potential at the surface of the protein. © International Union of Crystallography, 2019","Coronaviridae; MERS-CoV; Middle East respiratory syndrome coronavirus; nucleoproteins; SAXS; X-ray diffraction","nucleoprotein; viral protein; chemical structure; chemistry; human; Middle East respiratory syndrome coronavirus; protein multimerization; small angle scattering; static electricity; X ray diffraction; Humans; Middle East Respiratory Syndrome Coronavirus; Molecular Structure; Nucleoproteins; Protein Multimerization; Scattering, Small Angle; Static Electricity; Viral Proteins; X-Ray Diffraction",,"Ferron, F.; Aix-Marseille Université, AFMB, UMR 7257France; email: francois.ferron@afmb.univ-mrs.fr",,"Wiley-Blackwell",20597983,,,"30644840","English","Acta Crystallogr. Sect. D Str. Bio.",Article,"Final",Open Access,Scopus,2-s2.0-85060012464 "Okba N.M.A., Stalin Raj V., Widjaja I., GeurtsvanKessel C.H., De Bruin E., Chandler F.D., Park W.B., Kim N.-J., Farag E.A.B.A., Al-Hajri M., Bosch B.-J., Oh M.-D., Koopmans M.P.G., Reusken C.B.E.M., Haagmans B.L.","56807221300;55552487100;26026520100;24464128400;57210069470;57194153330;7402229219;35495869100;55963332900;57052928400;7003681993;7201600302;7006736989;6602366009;6701371301;","Sensitive and specific detection of low-level antibody responses in mild Middle East respiratory syndrome coronavirus infections",2019,"Emerging Infectious Diseases","25","10",,"1868","1877",,7,"10.3201/eid2510.190051","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072354827&doi=10.3201%2feid2510.190051&partnerID=40&md5=58d017b1558c73e0498ba55d5dc2c604","Utrecht University, Utrecht, Netherlands; Seoul National University, College of Medicine, Seoul, South Korea; Ministry of Public Health, Doha, Qatar; Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands","Okba, N.M.A., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; Stalin Raj, V., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; Widjaja, I., Utrecht University, Utrecht, Netherlands; GeurtsvanKessel, C.H., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; De Bruin, E., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; Chandler, F.D., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; Park, W.B., Seoul National University, College of Medicine, Seoul, South Korea; Kim, N.-J., Seoul National University, College of Medicine, Seoul, South Korea; Farag, E.A.B.A., Ministry of Public Health, Doha, Qatar; Al-Hajri, M., Ministry of Public Health, Doha, Qatar; Bosch, B.-J., Utrecht University, Utrecht, Netherlands; Oh, M.-D., Seoul National University, College of Medicine, Seoul, South Korea; Koopmans, M.P.G., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; Reusken, C.B.E.M., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands; Haagmans, B.L., Erasmus Medical Center, Department of Viroscience, PO Box 2040, Rotterdam, 3000 CA, Netherlands","Middle East respiratory syndrome coronavirus (MERS-CoV) infections in humans can cause asymptomatic to fatal lower respiratory lung disease. Despite posing a probable risk for virus transmission, asymptomatic to mild infections can go unnoticed; a lack of seroconversion among some PCR-confirmed cases has been reported. We found that a MERS-CoV spike S1 protein-based ELISA, routinely used in surveillance studies, showed low sensitivity in detecting infections among PCR-confirmed patients with mild clinical symptoms and cross-reactivity of human coronavirus OC43-positive serum samples. Using in-house S1 ELISA and protein microarray, we demonstrate that most PCR-confirmed MERS-CoV case-patients with mild infections seroconverted; nonetheless, some of these samples did not have detectable levels of virus-neutralizing antibodies. The use of a sensitive and specific serologic S1-based assay can be instrumental in the accurate estimation of MERS-CoV prevalence. © 2019 Centers for Disease Control and Prevention (CDC). All rights reserved.",,"neutralizing antibody; virus antibody; antibody response; antibody titer; Article; autoimmune disease immunofluorescence assay; camel; cohort analysis; controlled study; cross reaction; diagnostic test accuracy study; disease severity; disease surveillance; enzyme linked immunosorbent assay; human; Human coronavirus OC43; Human metapneumovirus; Human respiratory syncytial virus; immune response; immunoprecipitation; longitudinal study; luciferase immunoprecipitation assay; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; normal human; plaque reduction neutralization assay; predictive value; protein denaturation; protein microarray; real time reverse transcription polymerase chain reaction; receiver operating characteristic; sensitivity and specificity; seroconversion; seroprevalence; validation process; virus detection; virus neutralization; virus nucleocapsid; Western blotting","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov, cited 2017 Jul 16; Puzelli, S., Azzi, A., Santini, M.G., Di Martino, A., Facchini, M., Castrucci, M.R., Investigation of an imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013 (2013) Euro Surveill, 18, p. 20564. , https://doi.org/10.2807/1560-7917.ES2013.18.34.20564; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerg Infect Dis, 21, pp. 2197-2200. , https://doi.org/10.3201/eid2112.151132; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Dada, A.M., Bayumi, D.T., Malic, L.S., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22. , https://doi.org/10.3201/eid2206.160010; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Reusken, C.B., Farag, E.A., Haagmans, B.L., Mohran, K.A., Godeke, G.J.V., Raj, S., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1422-1425. , https://doi.org/10.3201/eid2108.150481; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564. , https://doi.org/10.1016/S1473-3099(15)70090-3; Kayali, G., Peiris, M., A more detailed picture of the epidemiology of Middle East respiratory syndrome coronavirus (2015) Lancet Infect Dis, 15, pp. 495-497. , https://doi.org/10.1016/S1473-3099(15)70128-3; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1-August 31, 2015 (2016) Open Forum Infect Dis, 3, p. ofw165. , https://doi.org/10.1093/ofid/ofw165; Park, J.W., Lee, K.J., Lee, K.H., Lee, S.H., Cho, J.R., Mo, J.W., Hospital outbreaks of Middle East respiratory syndrome, Daejeon, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 898-905. , https://doi.org/10.3201/eid2306.160120; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494. , https://doi.org/10.1056/NEJMoa1303729; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835. , https://doi.org/10.1056/NEJMoa1405858; Aleanizy, F.S., Mohmed, N., Alqahtani, F.Y., El Hadi Mohamed, R.A., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: A retrospective study (2017) BMC Infect Dis, 17, p. 23. , https://doi.org/10.1186/s12879-016-2137-3; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084. , https://doi.org/10.3201/eid2307.170310; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285. , https://doi.org/10.2807/ese.17.39.20285-en; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334. , https://doi.org/10.2807/ese.17.49.20334-en; Furuse, Y., Okamoto, M., Oshitani, H., Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015 (2015) Int J Infect Dis, 40, pp. 25-27. , https://doi.org/10.1016/j.ijid.2015.09.018; Park, S.W., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Comparison of serological assays in human Middle East respiratory syndrome (MERS)-coronavirus infection (2015) Euro Surveill, 20, p. 30042. , https://doi.org/10.2807/1560-7917.ES.2015.20.41.30042; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233. , https://doi.org/10.1093/cid/ciu359; Reusken, C., Mou, H., Godeke, G.J., Van Der Hoek, L., Meyer, B., Müller, M.A., Specific serology for emerging human coronaviruses by protein microarray (2013) Euro Surveill, 18, p. 20441. , https://doi.org/10.2807/1560-7917.ES2013.18.14.20441; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e01002-e01014. , https://doi.org/10.1128/mBio.01002-14; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574. , https://doi.org/10.2807/1560-7917.ES2013.18.36.20574; Meyer, B., Müller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559. , https://doi.org/10.3201/eid2004.131746; Meyer, B., Drosten, C., Müller, M.A., Serological assays for emerging coronaviruses: Challenges and pitfalls (2014) Virus Res, 194, pp. 175-183. , https://doi.org/10.1016/j.virusres.2014.03.018; Payne, D.C., Iblan, I., Rha, B., Alqasrawi, S., Haddadin, A., Al Nsour, M., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826. , https://doi.org/10.3201/eid2210.160706; Fanoy, E.B., Van Der Sande, M.A., Kraaij-Dirkzwager, M., Dirksen, K., Jonges, M., Van Der Hoek, W., Travel-related MERS-CoV cases: An assessment of exposures and risk factors in a group of Dutch travelers returning from the Kingdom of Saudi Arabia, May 2014 (2014) Emerg Themes Epidemiol, 11, p. 16. , https://doi.org/10.1186/1742-7622-11-16; Ko, J.H., Muller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Suggested new breakpoints of anti-MERS-CoV antibody ELISA titers: Performance analysis of serologic tests (2017) Eur J Clin Microbiol Infect Dis, 36, pp. 2179-2186; Ko, J.H., Müller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89, pp. 106-111. , https://doi.org/10.1016/j.diagmicrobio.2017.07.006; Chan, K.H., Chan, J.F., Tse, H., Chen, H., Lau, C.C., Cai, J.P., Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) J Infect, 67, pp. 130-140. , https://doi.org/10.1016/j.jinf.2013.03.015; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., MERS-CoV antibodies in humans, Africa, 2013-2014 (2016) Emerg Infect Dis, 22, pp. 1086-1089. , https://doi.org/10.3201/eid2206.160064; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305. , https://doi.org/10.1056/NEJMc1511695; Hangartner, L., Zinkernagel, R.M., Hengartner, H., Antiviral antibody responses: The two extremes of a wide spectrum (2006) Nat Rev Immunol, 6, pp. 231-243. , https://doi.org/10.1038/nri1783; Sakurai, H., Williamson, R.A., Crowe, J.E., Beeler, J.A., Poignard, P., Bastidas, R.B., Human antibody responses to mature and immature forms of viral envelope in respiratory syncytial virus infection: Significance for subunit vaccines (1999) J Virol, 73, pp. 2956-2962; (2018) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, Interim Guidance (WHO/MERS/ LAB/15.1/Rev1/2018), , World Health Organization. Geneva: The Organization; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2. , https://doi.org/10.1126/sciimmunol.aan5393; Buchholz, U., Müller, M.A., Nitsche, A., Sanewski, A., Wevering, N., Bauer-Balci, T., Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012 (2013) Euro Surveill, 18, p. 20406; Patel, D.A., Patel, A.C., Nolan, W.C., Zhang, Y., Holtzman, M.J., High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0036594","Haagmans, B.L.; Erasmus Medical Center, Department of Viroscience, PO Box 2040, Netherlands; email: b.haagmans@erasmusmc.nl",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31423970","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85072354827 "Bleibtreu A., Bertine M., Bertin C., Houhou-Fidouh N., Visseaux B.","50260937600;36442439200;57215459470;6506749715;45961678400;","Focus on Middle East respiratory syndrome coronavirus (MERS-CoV)",2019,"Medecine et Maladies Infectieuses",,,,"","",,1,"10.1016/j.medmal.2019.10.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075391046&doi=10.1016%2fj.medmal.2019.10.004&partnerID=40&md5=506a948f79470342667660f66a2bfe42","Service des maladies infectieuses et tropicales, hôpitaux universitaires Pitié-Salpêtrière Charles Foix, AP–HP, Paris, France; Inserm, Laboratoire de Virologie, IAME, UMR 1137, hôpital Bichat, Sorbonne Paris Cité, université Paris Diderot, AP–HP, Paris, France","Bleibtreu, A., Service des maladies infectieuses et tropicales, hôpitaux universitaires Pitié-Salpêtrière Charles Foix, AP–HP, Paris, France; Bertine, M., Inserm, Laboratoire de Virologie, IAME, UMR 1137, hôpital Bichat, Sorbonne Paris Cité, université Paris Diderot, AP–HP, Paris, France; Bertin, C., Service des maladies infectieuses et tropicales, hôpitaux universitaires Pitié-Salpêtrière Charles Foix, AP–HP, Paris, France; Houhou-Fidouh, N., Inserm, Laboratoire de Virologie, IAME, UMR 1137, hôpital Bichat, Sorbonne Paris Cité, université Paris Diderot, AP–HP, Paris, France; Visseaux, B., Inserm, Laboratoire de Virologie, IAME, UMR 1137, hôpital Bichat, Sorbonne Paris Cité, université Paris Diderot, AP–HP, Paris, France","Since the first case of human infection by the Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia in June 2012, more than 2260 cases of confirmed MERS-CoV infection and 803 related deaths have been reported since the 16th of October 2018. The vast majority of these cases (71%) were reported in Saudi Arabia but the epidemic has now spread to 27 countries and has not ceased 6 years later, unlike SARS-CoV that disappeared a little less than 2 years after emerging. Due to the high fatality rate observed in MERS-CoV infected patients (36%), much effort has been put into understanding the origin and pathophysiology of this novel coronavirus to prevent it from becoming endemic in humans. This review focuses in particular on the origin, epidemiology and clinical manifestations of MERS-CoV, as well as the diagnosis and treatment of infected patients. The experience gained over recent years on how to manage the different risks related to this kind of epidemic will be key to being prepared for future outbreaks of communicable disease. © 2019 Elsevier Masson SAS","Coronavirus; Emerging disease; MERS-CoV; Pneumonia",,"Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2018), http://www.who.int/emergencies/mers-cov/en/.(accessed, WHO. Middle East respiratory syndrome coronavirus (MERS-CoV). WHO March 5, 2018); Cho, S.Y., Kang, J.-M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.-H., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; (2003), https://apps.who.int/iris/handle/10665/70863, World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). World Health Organization; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol 2017;, 25, pp. 35-48; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17, p. 20290; (2012), http://www.who.int/csr/disease/coronavirus_infections/update_20121221/en/(accessed, WHO | Background and summary of novel coronavirus infection–as of 21 December 2012. WHO March 21, 2018); Woo, P.C.Y., Wang, M., Lau, S.K.P., Xu, H., Poon, R.W.S., Guo, R., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81, pp. 1574-1585; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological stud (2015) Lancet Infect Dis, 15, p. 629; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infect Dis, 20, pp. 1012-1015; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerging Infect Dis, 20, pp. 2093-2095; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerging Infect Dis, 20, pp. 1319-1322; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, p. 22; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, S.E.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, p. 3; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Graham, R.L., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) MBio, p. 8; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88, pp. 9220-9232; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., A structural analysis of M protein in coronavirus assembly and morphology (2011) J Struct Biol, 174, pp. 11-22; (2014), http://www.who.int/csr/don/2014_05_15_mers/en/(accessed, WHO | Middle East respiratory syndrome coronavirus (MERS-CoV)–update. WHO April 9, 2018); Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; http://ecdc.europa.eu/en/news-events/new-case-mers-cov-identified-united-kingdom, (accessed October 22, 2018). New case of MERS-CoV identified in the United Kingdom. European Centre for Disease Prevention and Control 2018; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): prevention in travelers (2014) Travel Med Infect Dis, 12, pp. 602-608; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210, pp. 1590-1594; Feikin, D.R., Alraddadi, B., Qutub, M., Shabouni, O., Curns, A., Oboho, I.K., Association of Higher MERS-CoV Virus Load with Severe Disease and Death, Saudi Arabia, 2014 (2015) Emerging Infect Dis, 21, pp. 2029-2035; (2018), http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/(accessed, WHO | Laboratory testing for Middle East Respiratory Syndrome Coronavirus. WHO April 9, 2018); Modjarrad, K., Moorthy, V.S., Ben Embarek, P., Van Kerkhove, M., Kim, J., Kieny, M.-P., A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation (2016) Nat Med, 22, pp. 701-705; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis 2015;, 15, p. 629; Reusken, C., Mou, H., Godeke, G.J., van der Hoek, L., Meyer, B., Müller, M.A., Specific serology for emerging human coronaviruses by protein microarray (2013) Euro Surveill, 18, p. 20441; Trivedi, S., Miao, C., Al-Abdallat, M.M., Haddadin, A., Alqasrawi, S., Iblan, I., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90, pp. 367-371; Guery, B., Poissy, J., el Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Alhamlan, F.S., Majumder, M.S., Brownstein, J.S., Hawkins, J., Al-Abdely, H.M., Alzahrani, A., Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (2017) BMJ Open, 7, p. e011865; Choi, W.S., Kang, C.-I., Kim, Y., Choi, J.-P., Joh, J.S., Shin, H.-S., Clinical Presentation and Outcomes of Middle East Respiratory Syndrome in the Republic of Korea (2016) Infect Chemother, 48, pp. 118-126; Oboho, I., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) NEJM, 372, pp. 846-854; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37, p. e2015033; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14, pp. 464-470; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17, p. 615; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369, pp. 884-886; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2017) Epidemiol Infect, 2017, pp. 1-7; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis (2016) Int J Infect Dis, 49, pp. 129-133; Sherbini, N., Iskandrani, A., Kharaba, A., Khalid, G., Abduljawad, M., Al-Jahdali, H., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data (2017) J Epidemiol Glob Health, 7, pp. 29-36; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Garbati, M.A., Fagbo, S.F., Fang, V.J., Skakni, L., Joseph, M., Wani, T.A., A Comparative Study of Clinical Presentation and Risk Factors for Adverse Outcome in Patients Hospitalised with Acute Respiratory Disease Due to MERS Coronavirus or Other Causes (2016) PLoS ONE, 11, p. e0165978; http://ecdc.europa.eu/en/publications-data/rapid-risk-assessment-severe-respiratory-disease-associated-middle-east-11, (accessed September 16, 2018). eCDC, Rapid risk assessment: Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV), 22nd update. European Centre for Disease Prevention and Control 2018; Bleibtreu, A., Jaureguiberry, S., Houhou, N., Boutolleau, D., Guillot, H., Vallois, D., Clinical management of respiratory syndrome in patients hospitalized for suspected Middle East respiratory syndrome coronavirus infection in the Paris area from 2013 to 2016 (2018) BMC Infect Dis, 18, p. 331; Aleanizy, F.S., Mohmed, N., Alqahtani, F.Y., El Hadi Mohamed, R.A., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study (2017) BMC Infect Dis, 17, p. 23; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Joob, B., Wiwanitkit, V., Middle East respiratory syndrome coronavirus infection: a short note on cases with renal failure problem (2016) Ren Fail, 38, pp. 1749-1750; Who Mers-Cov Research Group, State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans (2013) PLoS Curr, 5; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Ko, J.-H., Müller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89, pp. 106-111; Alfaraj, S.H., Al-Tawfiq, J.A., Alzahrani, N.A., Altwaijri, T.A., Memish, Z.A., The impact of co-infection of influenza A virus on the severity of Middle East Respiratory Syndrome Coronavirus (2017) J Infect, 74, pp. 521-523; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically Ill Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study (2017) Crit Care Med; Nam, H.-S., Park, J.W., Ki, M., Yeon, M.-Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int J Infect Dis, 58, pp. 37-42; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-(2a or IFN-(1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Kim, S.Y., Park, S.J., Cho, S.Y., Cha, R.-H., Jee, H.-G., Kim, G., Viral RNA in blood as Indicator of Severe Outcome in Middle East Respiratory Syndrome Coronavirus Infection (2016) Emerging Infect Dis, 22, pp. 1813-1816; Min, C.-K., Cheon, S., Ha, N.-Y., Sohn, K.M., Kim, Y., Aigerim, A., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Ko, J.-H., Park, G.E., Lee, J.Y., Lee, J.Y., Cho, S.Y., Ha, Y.E., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J Infect, 73, pp. 468-475; McKimm-Breschkin, J.L., Jiang, S., Hui, D.S., Beigel, J.H., Govorkova, E.A., Lee, N., Prevention and treatment of respiratory viral infections: presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference (2018) Antiviral Res, 149, pp. 118-142; Arabi, Y.M., Hajeer, A.H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia (2016) Emerging Infect Dis, 22, pp. 1554-1561; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review (2018) J Infect Public Health, 11, pp. 9-17; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.-A., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect Dis; Mo, Y., Fisher, D., A review of treatment modalities for Middle East Respiratory Syndrome (2016) J Antimicrob Chemother, 71, pp. 3340-3350; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Al Mekhlafi, G.A., Hussein, M.A., Corticosteroid Therapy for Critically Ill Patients with the Middle East Respiratory Syndrome (2017) Am J Respir Crit Care Med; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44, pp. 528-532; Rossignol, J.-F., Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus (2016) J Infect Pub Health, 9, pp. 227-230; Chan, J.F.-W., Yao, Y., Yeung, M.-L., Deng, W., Bao, L., Jia, L., Treatment With Lopinavir/Ritonavir or Interferon-(1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset (2015) J Infect Dis, 212, pp. 1904-1913; Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia (2016) BMC Infect Dis, 16, p. 174; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13; Müller, C., Schulte, F.W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses (2017) Antiviral Res, 150, pp. 123-129; Alshahrani, M.S., Sindi, A., Alshamsi, F., Al-Omari, A., El Tahan, M., Alahmadi, B., Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus (2018) Ann Intensive Care, 8, p. 3; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788","Visseaux, B.; Inserm, Laboratoire de Virologie, IAME, UMR 1137, hôpital Bichat, Sorbonne Paris Cité, université Paris Diderot, AP–HPFrance; email: benoit.visseaux@aphp.fr",,"Elsevier Masson SAS",0399077X,,MMAIB,"31727466","English","Med. Mal. Infect.",Review,"Article in Press",Open Access,Scopus,2-s2.0-85075391046 "Deng X., Van Geelen A., Buckley A.C., O’Brien A., Pillatzki A., Lager K.M., Faaberg K.S., Baker S.C.","36096409000;6602674223;57189712428;57208468758;36451363100;26643487900;6701827490;7403307881;","Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses",2019,"Journal of Virology","93","8", Y,"","",,6,"10.1128/JVI.02000-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064239615&doi=10.1128%2fJVI.02000-18&partnerID=40&md5=856c91e2c1167445fa3b134f9675735c","Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States; Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, United States; Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States","Deng, X., Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States; Van Geelen, A., Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, United States; Buckley, A.C., Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, United States; O’Brien, A., Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States; Pillatzki, A., Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States; Lager, K.M., Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, United States; Faaberg, K.S., Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, United States; Baker, S.C., Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States","Identifying viral antagonists of innate immunity and determining if they contribute to pathogenesis are critical for developing effective strategies to control emerging viruses. Previously, we reported that an endoribonuclease (EndoU) encoded by murine coronavirus plays a pivotal role in evasion of host innate immune defenses in macrophages. Here, we asked if the EndoU activity of porcine epidemic diarrhea coronavirus (PEDV), which causes acute diarrhea in swine, plays a role in antagonizing the innate response in porcine epithelial cells and macrophages, the sites of viral replication. We constructed an infectious clone of PEDV-Colorado strain (icPEDV-wt) and an EndoU-mutant PEDV (icPEDV-EnUmt) by changing the codon for a catalytic histidine residue of EndoU to alanine (His226Ala). We found that both icPEDV-wt and icPEDV-EnUmt propagated efficiently in interferon (IFN)-deficient Vero cells. In contrast, the propagation of icPEDV-EnUmt was impaired in porcine epithelial cells (LLC-PK1), where we detected an early and robust transcriptional activation of type I and type III IFNs. Infection of piglets with the parental Colorado strain, icPEDV-wt, or icPEDV-EnUmt revealed that all viruses replicated in the gut and induced diarrhea; however, there was reduced viral shedding and mortality in the icPEDV-EnUmt-infected animals. These results demonstrate that EndoU activity is not required for PEDV replication in immortalized, IFN-deficient Vero cells, but is important for suppressing the IFN response in epithelial cells and macrophages, which facilitates replication, shedding, and pathogenesis in vivo. We conclude that PEDV EndoU activity is a key virulence factor that suppresses both type I and type III IFN responses. IMPORTANCE Coronaviruses (CoVs) can emerge from an animal reservoir into a naive host species to cause pandemic respiratory or gastrointestinal diseases with significant mortality in humans or domestic animals. Porcine epidemic diarrhea virus (PEDV), an alphacoronavirus (alpha-CoV), infects gut epithelial cells and macrophages, inducing diarrhea and resulting in high mortality in piglets. How PEDV suppresses the innate immune response was unknown. We found that mutating a viral endoribonuclease, EndoU, results in a virus that activates both the type I interferon response and the type III interferon response in macrophages and epithelial cells. This activation of interferon resulted in limited viral replication in epithelial cell cultures and was associated with reduced virus shedding and mortality in piglets. This study reveals a role for EndoU activity as a virulence factor in PEDV infection and provides an approach for generating live-attenuated vaccine candidates for emerging coronaviruses. © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; Endoribonuclease; Immune evasion; Interferon antagonist; Porcine epidemic diarrhea virus; Type I interferon; Type III interferon","alanine; alpha interferon; beta interferon; histidine; interferon; ribonuclease; type III interferon; unclassified drug; virulence factor; virus RNA; interferon; ribonuclease; viral protein; animal cell; animal experiment; animal tissue; Article; controlled study; cytokine production; diarrhea; disease exacerbation; enzyme activity; epithelium cell; gene expression; gene sequence; genetic association; IFN alpha gene; IFN beta gene; IFN delta3 gene; in vivo study; innate immunity; macrophage; mortality; N gene; nonhuman; pathogenesis; pathogenicity; piglet; Porcine epidemic diarrhea virus; priority journal; RNA transcription; transcription initiation; Vero cell line; virus gene; virus genome; virus infection; virus replication; virus shedding; animal; cell line; Coronavirus infection; enzymology; genetics; immunology; pig; swine disease; veterinary medicine; virology; Animals; Cell Line; Coronavirus Infections; Endoribonucleases; Interferon Type I; Porcine epidemic diarrhea virus; Swine; Swine Diseases; Viral Proteins; Virus Shedding","Chan, Y.K., Gack, M.U., Viral evasion of intracellular DNA and RNA sensing (2016) Nat Rev Microbiol, 14, pp. 360-373. , https://doi.org/10.1038/nrmicro.2016.45; García-Sastre, A., Ten strategies of interferon evasion by viruses (2017) Cell Host Microbe, 22, pp. 176-184. , https://doi.org/10.1016/j.chom.2017.07.012; Lee, S., Baldridge, M.T., Interferon-lambda: A potent regulator of intestinal viral infections (2017) Front Immunol, 8, p. 749. , https://doi.org/10.3389/fimmu.2017.00749; Lazear, H.M., Nice, T.J., Diamond, M.S., Interferon-: Immune functions at barrier surfaces and beyond (2015) Immunity, 43, pp. 15-28. , https://doi.org/10.1016/j.immuni.2015.07.001; Wack, A., Terczyn´ska-Dyla, E., Hartmann, R., Guarding the frontiers: The biology of type III interferons (2015) Nat Immunol, 16, pp. 802-809. , https://doi.org/10.1038/ni.3212; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species—a mechanism for coronavirus persistence and survival (2017) Curr Opin Virol, 23, pp. 1-7. , https://doi.org/10.1016/j.coviro.2017.01.002; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193. , https://doi.org/10.1016/j.chom.2016.01.007; Egli, A., Santer, D.M., O’Shea, D., Tyrrell, D.L., Houghton, M., The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections (2014) Emerg Microbes Infect, 3, p. 1. , https://doi.org/10.1038/emi.2014.51; Kotenko, S.V., Durbin, J.E., Contribution of type III interferons to antiviral immunity: Location, location, location (2017) J Biol Chem, 292, pp. 7295-7303. , https://doi.org/10.1074/jbc.R117.777102; Kindler, E., Thiel, V., To sense or not to sense viral RNA—essentials of coronavirus innate immune evasion (2014) Curr Opin Microbiol, 20, pp. 69-75. , https://doi.org/10.1016/j.mib.2014.05.005; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006195; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260. , https://doi.org/10.1073/pnas.1618310114; Deng, X., Baker, S.C., An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses (2018) Virology, 517, pp. 157-163. , https://doi.org/10.1016/j.virol.2017.12.024; Bhardwaj, K., Guarino, L., Kao, C.C., The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor (2004) J Virol, 78, pp. 12218-12224. , https://doi.org/10.1128/JVI.78.22.12218-12224.2004; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E.A., Ziebuhr, J., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc Natl Acad Sci U S A, 101, pp. 12694-12699. , https://doi.org/10.1073/pnas.0403127101; Kang, H., Bhardwaj, K., Li, Y., Palaninathan, S., Sacchettini, J., Guarino, L., Leibowitz, J.L., Kao, C.C., Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease (2007) J Virol, 81, pp. 13587-13597. , https://doi.org/10.1128/JVI.00547-07; Cima, G., Viral disease affects U.S. Pigs: Porcine epidemic diarrhea found in at least 11 states (2013) J Am Vet Med Assoc, 243, pp. 30-31; Huang, Y.-W., Dickerman, A.W., Piñeyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.-J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) mBio, 4, pp. e00737-e100713. , https://doi.org/10.1128/mBio.00737-13; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Invest, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Crawford, K., Lager, K.M., Kulshreshtha, V., Miller, L.C., Faaberg, K.S., Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada (2016) Virus Res, 226, pp. 108-116. , https://doi.org/10.1016/j.virusres.2016.08.005; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus Res, 226, pp. 93-107. , https://doi.org/10.1016/j.virusres.2016.05.016; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204, pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg Infect Dis, 20, pp. 668-671. , https://doi.org/10.3201/eid2004.131685; Madson, D.M., Arruda, P.H.E., Magstadt, D.R., Burrough, E.R., Hoang, H., Sun, D., Bower, L.P., Yoon, K.J., Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-day-old cesarean-derived colostrum-deprived piglets (2016) Vet Pathol, 53, pp. 44-52. , https://doi.org/10.1177/0300985815591080; Niederwerder, M.C., Nietfeld, J.C., Bai, J., Peddireddi, L., Breazeale, B., Anderson, J., Kerrigan, M.A., Hesse, R.A., Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs (2016) J Vet Diagn Invest, 28, pp. 671-678. , https://doi.org/10.1177/1040638716663251; Yount, B., Denison, M.R., Weiss, S.R., Ralph, S., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002; Marthaler, D., Jiang, Y., Otterson, T., Goyal, S., Rossow, K., Collins, J., Complete genome sequence of porcine epidemic diarrhea virus strain USA/Colorado/2013 from the United States (2013) Genome Announc, 1, pp. e00555-e100513; Beall, A., Yount, B., Lin, C.-M., Hou, Y., Wang, Q., Saif, L., Baric, R.S., Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain (2016) mBio, 7, pp. 1-10; Hou, Y., Lin, C.-M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Wang, Q., Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets (2017) J Virol, 91, pp. e00227-e100217; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15; Zhang, Q., Ma, J., Yoo, D., Inhibition of NF-B activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion (2017) Virology, 510, pp. 111-126. , https://doi.org/10.1016/j.virol.2017.07.009; Park, J.E., Shin, H.J., Porcine epidemic diarrhea virus infects and replicates in porcine alveolar macrophages (2014) Virus Res, 191, pp. 143-152. , https://doi.org/10.1016/j.virusres.2014.07.038; Mordstein, M., Neugebauer, E., Ditt, V., Jessen, B., Rieger, T., Falcone, V., Sorgeloos, F., Staeheli, P., Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections (2010) J Virol, 84, pp. 5670-5677. , https://doi.org/10.1128/JVI.00272-10; Mahlakoiv, T., Ritz, D., Mordstein, M., DeDiego, M.L., Enjuanes, L., Muller, M.A., Drosten, C., Staeheli, P., Combined action of type I and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread (2012) J Gen Virol, 93, pp. 2601-2605. , https://doi.org/10.1099/vir.0.046284-0; Li, L., Fu, F., Xue, M., Chen, W., Liu, J., Shi, H., Chen, J., Liu, P., IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha (2017) Antiviral Res, 140, pp. 76-82. , https://doi.org/10.1016/j.antiviral.2017.01.012; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2018) J Virol, 92, pp. e01677-e101617; Yount, B., Roberts, R.S., Lindesmith, L., Baric, R.S., Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome (2006) Proc Natl Acad Sci U S A, 103, pp. 12546-12551. , https://doi.org/10.1073/pnas.0605438103; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., McAnarney, E.T., Baric, R.S., Combination attenuation offers strategy for live-attenuated coronavirus vaccines (2018) J Virol, 92, pp. e00710-e00718; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268. , https://doi.org/10.1016/j.virol.2015.12.010; Odendall, C., Dixit, E., Stavru, F., Bierne, H., Franz, K.M., Durbin, A.F., Boulant, S., Kagan, J.C., Diverse intracellular pathogens activate type III interferon expression from peroxisomes (2014) Nat Immunol, 15, pp. 717-726. , https://doi.org/10.1038/ni.2915; Bender, S., Reuter, A., Eberle, F., Einhorn, E., Binder, M., Bartenschlager, R., Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005264; Griffiths, S.J., Dunnigan, C.M., Russell, C.D., Haas, J.G., The role of interferon-locus polymorphisms in hepatitis C and other infectious diseases (2015) J Innate Immun, 7, pp. 231-242. , https://doi.org/10.1159/000369902; Galani, I.E., Triantafyllia, V., Eleminiadou, E.-E., Koltsida, O., Stavropoulos, A., Manioudaki, M., Thanos, D., Andreakos, E., Interferon-mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness (2017) Immunity, 46, pp. 875-890. , https://doi.org/10.1016/j.immuni.2017.04.025; Mahlakõiv, T., Hernandez, P., Gronke, K., Diefenbach, A., Staeheli, P., Leukocyte-derived IFN-/and epithelial IFN-constitute a compartmentalized mucosal defense system that restricts enteric virus infections (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1004782; Lee, S., Wilen, C.B., Orvedahl, A., McCune, B.T., Kim, K.-W., Orchard, R.C., Peterson, S.T., Virgin, H.W., Norovirus cell tropism is determined by combinatorial action of a viral non-structural protein and host cytokine (2017) Cell Host Microbe, 22, pp. 449-459. , https://doi.org/10.1016/j.chom.2017.08.021; Baldridge, M.T., Lee, S., Brown, J.J., McAllister, N., Urbanek, K., Dermody, T.S., Nice, T.J., Virgin, H.W., Expression of Ifnlr1 on intestinal epithelial cells is critical to the antiviral effects of interferon lambda against norovirus and reovirus (2017) J Virol, 91, pp. e02079-e02116. , https://doi.org/10.1128/JVI.02079-16; Ricagno, S., Egloff, M.-P.M.-P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Cambillau, C., Canard, B., Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family (2006) Proc Natl Acad Sci U S A, 103, pp. 11892-11897. , https://doi.org/10.1073/pnas.0601708103; Xu, X., Zhai, Y., Sun, F., Lou, Z., Su, D., Xu, Y., Zhang, R., Rao, Z., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 (2006) J Virol, 80, pp. 7909-7917. , https://doi.org/10.1128/JVI.00525-06; Zhang, L., Li, L., Yan, L., Ming, Z., Jia, Z., Lou, Z., Rao, Z., Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus (2018) J Virol, 92, pp. e00893-e100818; Shi, S.T., Schiller, J.J., Kanjanahaluethai, A., Baker, S.C., Oh, J.W., Lai, M.M., Colocalization and membrane association of murine hepatitis virus gene 1 products and de novo-synthesized viral RNA in infected cells (1999) J Virol, 73, pp. 5957-5969; Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex associated proteins (2017) mBio, 8, pp. e02320-e02416. , https://doi.org/10.1128/mBio.02320-16; Knoops, K., Kikkert, M., Worm, S.H.E., Van Den Zevenhoven-Dobbe, J.C., Van Der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6. , https://doi.org/10.1371/journal.pbio.0060226; Posthuma, C.C., Nedialkova, D.D., Zevenhoven-Dobbe, J.C., Blokhuis, J.H., Gorbalenya, A.E., Snijder, E.J., Site-directed mutagenesis of the nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle (2006) J Virol, 80, pp. 1653-1661. , https://doi.org/10.1128/JVI.80.4.1653-1661.2006; Sun, Y., Ke, H., Han, M., Chen, N., Fang, W., Yoo, D., Nonstructural protein 11 of porcine reproductive and respiratory syndrome virus suppresses both MAVS and RIG-I expression as one of the mechanisms to antagonize type I interferon production (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0168314; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2–like coronavirus in swine, China, 2017 (2017) Emerg Infect Dis, 23, pp. 1607-1609. , https://doi.org/10.3201/eid2309.170915; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.-L., Wang, L., Huang, Y.-W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbiol, 211, pp. 15-21. , https://doi.org/10.1016/j.vetmic.2017.09.020; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Ma, J.-Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Epidemiol, 27, pp. 493-497. , https://doi.org/10.1093/oxfordjournals.aje.a118408; Gerber, P.F., Xiao, C.-T., Lager, K., Crawford, K., Kulshreshtha, V., Cao, D., Meng, X.-J., Opriessnig, T., Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge (2016) Vet Res, 47, p. 118. , https://doi.org/10.1186/s13567-016-0402-5; Miller, L.C., Crawford, K.K., Lager, K.M., Kellner, S.G., Brockmeier, S.L., Evaluation of two real-time polymerase chain reaction assays for Porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs (2016) J Vet Diagn Invest, 28, pp. 20-29. , https://doi.org/10.1177/1040638715621949; Okda, F., Liu, X., Singrey, A., Clement, T., Nelson, J., Christopher-Hennings, J., Nelson, E.A., Lawson, S., Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of Porcine Epidemic Diarrhea Virus (2015) BMC Vet Res, 11, p. 180. , https://doi.org/10.1186/s12917-015-0500-z","Faaberg, K.S.; Virus and Prion Research Unit, USDA-ARS-National Animal Disease CenterUnited States; email: kay.faaberg@ars.usda.gov",,"American Society for Microbiology",0022538X,,JOVIA,"30728254","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85064239615 "Leist S.R., Jensen K.L., Baric R.S., Sheahan T.P.","55846755300;57215679316;57205312930;15756255200;","Increasing the translation of mouse models of MERS coronavirus pathogenesis through kinetic hematological analysis",2019,"PLoS ONE","14","7", e0220126,"","",,,"10.1371/journal.pone.0220126","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069865937&doi=10.1371%2fjournal.pone.0220126&partnerID=40&md5=290c53ff7af7e2fe23e86e7fa871a270","Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Leist, S.R., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Jensen, K.L., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Sheahan, T.P., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Newly emerging viral pathogens pose a constant and unpredictable threat to human and animal health. Coronaviruses (CoVs) have a penchant for sudden emergence, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and most recently, swine acute diarrhea syndrome coronavirus (SADS-CoV). Small animal models of emerging viral pathogenesis are crucial to better understand the virus and host factors driving disease progression. However, rodent models are often criticized for their limited translatability to humans. The complete blood count is the most ordered clinical test in the United States serving as the cornerstone of clinical medicine and differential diagnosis. We recently generated a mouse model for MERS-CoV pathogenesis through the humanization of the orthologous entry receptor dipeptidyl peptidase 4 (DPP4). To increase the translatability of this model, we validated and established the use of an automated veterinary hematology analyzer (VetScan HM5) at biosafety level 3 for analysis of peripheral blood. MERS-CoV lung titer peaked 2 days post infection concurrent with lymphopenia and neutrophilia in peripheral blood, two phenomena also observed in MERS-CoV infection of humans. The fluctuations in leukocyte populations measured by Vetscan HM5 were corroborated by standard flow cytometry, thus confirming the utility of this approach. Comparing a sublethal and lethal dose of MERS-CoV in mice, analysis of daily blood draws demonstrates a dose dependent modulation of leukocytes. Major leukocyte populations were modulated before weight loss was observed. Importantly, neutrophil counts on 1dpi were predictive of disease severity with a lethal dose of MERS-CoV highlighting the predictive value of hematology in this model. Taken together, the inclusion of hematological measures in mouse models of emerging viral pathogenesis increases their translatability and should elevate the preclinical evaluation of MERS-CoV therapeutics and vaccines to better mirror the complexity of the human condition. © 2019 Leist et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"animal cell; animal experiment; animal model; Article; automation; biosafety; blood analysis; body weight loss; bronchoalveolar lavage fluid; controlled study; disease severity; female; flow cytometry; kinetic hematological analysis; leukocyte; lymphocytopenia; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; mouse model; neutrophil count; neutrophilia; nonhuman; prediction; validation study; virus load; virus pathogenesis; animal; biological monitoring; blood; blood analysis; blood examination; C57BL mouse; Chlorocebus aethiops; Coronavirus infection; disease exacerbation; disease model; human; isolation and purification; kinetics; pathogenicity; pathology; procedures; Vero cell line; veterinary medicine; virology; Animals; Biological Monitoring; Blood Chemical Analysis; Chlorocebus aethiops; Coronavirus Infections; Disease Models, Animal; Disease Progression; Female; Hematologic Tests; Humans; Kinetics; Mice; Mice, Inbred C57BL; Middle East Respiratory Syndrome Coronavirus; Vero Cells","Marston, H.D., Folkers, G.K., Morens, D.M., Fauci, A.S., Emerging viral diseases: Confronting threats with new technologies (2014) Sci Transl Med, 6 (253), p. 253ps10. , https://doi.org/10.1126/scitranslmed.3009872, PMID: 25210060; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14 (8), pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81, PMID: 27344959; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , WHO; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221. , https://doi.org/10.1186/s12985-015-0422-1, PMID: 26689940; PubMed Central PMCID: PMC4687304; (2015) Medicare Payments for Clinical Laboratory Tests in 2014: Baseline Data, , DHHS; Yang, M., Ng, M.H., Li, C.K., Thrombocytopenia in patients with severe acute respiratory syndrome (review) (2005) Hematology, 10 (2), pp. 101-105. , https://doi.org/10.1080/10245330400026170, PMID: 16019455; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, PMID: 23075143; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nos-ocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272. , https://doi.org/10.1016/S0140-6736(13)60982-4, PMID: 23727167; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761. , https://doi.org/10.1016/S1473-3099(13)70204-4, PMID: 23891402; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348 (20), pp. 1986-1994. , https://doi.org/10.1056/NEJMoa030685, PMID: 12682352; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , https://doi.org/10.1038/nmicrobiol.2016.226, PMID: 27892925; Douglas, M.G., Kocher, J.F., Scobey, T., Baric, R.S., Cockrell, A.S., Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease (2018) Virology, 517, pp. 98-107. , https://doi.org/10.1016/j.virol.2017.12.006, Epub 2017/12/27. PMID: 29277291; PubMed Central PMCID: PMC5869108; Gregoire, C., Chasson, L., Luci, C., Tomasello, E., Geissmann, F., Vivier, E., The trafficking of natural killer cells (2007) Immunol Rev, 220, pp. 169-182. , https://doi.org/10.1111/j.1600-065X.2007.00563.x, PMID: 17979846; Breslin, W.L., Strohacker, K., Carpenter, K.C., Haviland, D.L., McFarlin, B.K., Mouse blood monocytes: Standardizing their identification and analysis using CD115 (2013) J Immunol Methods, 390 (1-2), pp. 1-8. , https://doi.org/10.1016/j.jim.2011.03.005, PMID: 21466808; Carlin, L.M., Stamatiades, E.G., Auffray, C., Hanna, R.N., Glover, L., Vizcay-Barrena, G., Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal (2013) Cell, 153 (2), pp. 362-375. , https://doi.org/10.1016/j.cell.2013.03.010, PMID: 23582326; PubMed Central PMCID: PMC3898614; Altin, J.G., Sloan, E.K., The role of CD45 and CD45-associated molecules in T cell activation (1997) Immunol Cell Biol, 75 (5), pp. 430-445. , https://doi.org/10.1038/icb.1997.68, PMID: 9429890; Hoggatt, J., Hoggatt, A.F., Tate, T.A., Fortman, J., Pelus, L.M., Bleeding the laboratory mouse: Not all methods are equal (2016) Exp Hematol, 44 (2), pp. 132-137. , https://doi.org/10.1016/j.exphem.2015.10.008, e1. Epub 2015/12/09. PMID: 26644183; PubMed Central PMCID: PMC5810935; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Pre- And postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112 (28), pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112, PMID: 26124093; PubMed Central PMCID: PMC4507189; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci U S A, 114 (15), pp. E3119-E3128. , https://doi.org/10.1073/pnas.1619109114, PMID: 28348219; PubMed Central PMCID: PMC5393213; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog, 3 (1). , https://doi.org/10.1371/journal.ppat.0030005, PMID: 17222058; PubMed Central PMCID: PMC1769406; Menachery, V.D., Gralinski, L.E., Baric, R.S., Ferris, M.T., New metrics for evaluating viral respiratory pathogenesis (2015) PLoS One, 10 (6). , https://doi.org/10.1371/journal.pone.0131451, PMID: 26115403; PubMed Central PMCID: PMC4482571","Sheahan, T.P.; Department of Epidemiology, University of North Carolina at Chapel HillUnited States; email: sheahan@email.unc.edu",,"Public Library of Science",19326203,,POLNC,"31339932","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85069865937 "Westerbeck J.W., Machamer C.E.","53880712300;7004585797;","The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect the spike protein and promote the release of infectious virus",2019,"Journal of Virology","93","11", e0001519,"","",,4,"10.1128/JVI.00015-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066466463&doi=10.1128%2fJVI.00015-19&partnerID=40&md5=42d9746a38a13b323c754b40e6a1a050","Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States","Westerbeck, J.W., Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Machamer, C.E., Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States","Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi membranes, and has cation channel activity in vitro. The E protein from avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system, which require residues in the HD. Mutation of the HD of IBV E in a recombinant virus background results in impaired growth kinetics, impaired release of infectious virions, accumulation of IBV spike (S) protein on the plasma membrane compared to wild-type (WT) IBV-infected cells, and aberrant cleavage of IBV S on virions. We previously reported the formation of two distinct oligomeric pools of IBV E in transfected and infected cells. Disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. Here, we present evidence suggesting that the monomeric form of IBV E correlates with an increased Golgi luminal pH. Infection with IBV or expression of IBV E induces neutralization of Golgi pH, promoting a model in which IBV E alters the secretory pathway through interaction with host cell factors, protecting IBV S from premature cleavage and leading to the efficient release of infectious virus from the cells. This is the first demonstration of a coronavirus-induced alteration in the microenvironment of the secretory pathway. IMPORTANCE Coronaviruses are important human pathogens with significant zoo-notic potential. Progress has been made toward identifying potential vaccine candidates for highly pathogenic human CoVs, including the use of attenuated viruses that lack the CoV E protein or express E mutants. However, no approved vaccines or antiviral therapeutics exist. Understanding the role of the CoV E protein in virus assembly and release is thus an important prerequisite for potential vaccines as well as in identifying novel antiviral therapeutics. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; E protein; Golgi; Oligomers; PH; Viroporin","virus envelope protein; virus spike protein; Article; Avian infectious bronchitis virus; cell fusion; cell pH; controlled study; Golgi complex; golgi membrane; human; human cell; in vitro study; nonhuman; priority journal; protein cleavage; protein expression; protein function; secretory pathway; virion; virus assembly; virus neutralization; virus release; virus virulence","Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species-a mechanism for coronavirus persistence and survival (2017) Curr Opin Virol, 23, pp. 1-7. , https://doi.org/10.1016/j.coviro.2017.01.002; Channappanavar, R., Zhao, J., Perlman, S., T cell-mediated immune response to respiratory coronaviruses (2014) Immunol Res, 59, pp. 118-128. , https://doi.org/10.1007/s12026-014-8534-z; Hogue, B.G., Machamer, C.E., Coronavirus structural proteins and virus assembly (2008) Nidovi-Ruses, pp. 179-200. , Perlman S, Gallagher T, Snijder EJed, ASM Press, Washington, DC; Weisz, O.A., Acidification and protein traffic (2003) Int Rev Cytol, 226, pp. 259-319. , https://doi.org/10.1016/S0074-7696(03)01005-2; Sakaguchi, T., Leser, G.P., Lamb, R.A., The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus (1996) J Cell Biol, 133, pp. 733-747. , https://doi.org/10.1083/jcb.133.4.733; Maeda, Y., Ide, T., Koike, M., Uchiyama, Y., Kinoshita, T., GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus (2008) Nat Cell Biol, 10, pp. 1135-1145. , https://doi.org/10.1038/ncb1773; Mollenhauer, H.H., Morré, D.J., Rowe, L.D., Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity (1990) Biochim Biophys Acta, 1031, pp. 225-246. , https://doi.org/10.1016/0304-4157(90)90008-Z; Scott, C., Griffin, S., Viroporins: Structure, function and potential as antiviral targets (2015) J Gen Virol, 96, pp. 2000-2027. , https://doi.org/10.1099/vir.0.000201; Sugrue, R.J., Bahadur, G., Zambon, M.C., Hall-Smith, M., Douglas, A.R., Hay, A.J., Specific structural alteration of the influenza haemagglutinin by amantadine (1990) EMBO J, 9, pp. 3469-3476. , https://doi.org/10.1002/j.1460-2075.1990.tb07555.x; Steinhauer, D.A., Wharton, S.A., Skehel, J.J., Wiley, D.C., Hay, A.J., Aman-tadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: Evidence for virus-specific regulation of the pH of glycoprotein transport vesicles (1991) Proc Natl Acad Sci U S A, 88, pp. 11525-11529. , https://doi.org/10.1073/pnas.88.24.11525; Ciampor, F., Thompson, C.A., Grambas, S., Hay, A.J., Regulation of pH by the M2 protein of influenza A viruses (1992) Virus Res, 22, pp. 247-258. , https://doi.org/10.1016/0168-1702(92)90056-F; Wozniak, A.L., Griffin, S., Rowlands, D., Harris, M., Yi, M., Lemon, S.M., Weinman, S.A., Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production (2010) PLoS Pathog, 6. , https://doi.org/10.1371/journal.ppat.1001087; Bentham, M.J., Foster, T.L., McCormick, C., Griffin, S., Mutations in hepatitis C virus p7 reduce both the egress and infectivity of assembled particles via impaired proton channel function (2013) J Gen Virol, 94, pp. 2236-2248. , https://doi.org/10.1099/vir.0.054338-0; Machamer, C.E., Youn, S., The transmembrane domain of the infectious bronchitis virus E protein is required for efficient virus release (2006) Adv Exp Med Biol, 581, pp. 193-198. , https://doi.org/10.1007/978-0-387-33012-9_33; Ruch, T.R., Machamer, C.E., The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for release of infectious virus (2011) J Virol, 85, pp. 675-685. , https://doi.org/10.1128/JVI.01570-10; Corse, E., Machamer, C.E., The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting (2002) J Virol, 76, pp. 1273-1284. , https://doi.org/10.1128/JVI.76.3.1273-1284.2002; Corse, E., Machamer, C.E., The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction (2003) Virology, 312, pp. 25-34. , https://doi.org/10.1016/S0042-6822(03)00175-2; Ruch, T.R., Machamer, C.E., A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus E protein (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002674; Nieto-Torres, J.L., DeDiego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004077; Verdia-Baguena, C., Nieto-Torres, J.L., Alcaraz, A., DeDiego, M.L., Torres, J., Aguilella, V.M., Enjuanes, L., Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids (2012) Virology, 432, pp. 485-494. , https://doi.org/10.1016/j.virol.2012.07.005; Westerbeck, J.W., Machamer, C.E., A coronavirus E protein is present in two distinct pools with different effects on assembly and the secretory pathway (2015) J Virol, 89, pp. 9313-9323. , https://doi.org/10.1128/JVI.01237-15; To, J., Surya, W., Fung, T.S., Li, Y., Verdià-Bàguena, C., Queralt-Martin, M., Aguilella, V.M., Torres, J., Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus (2017) J Virol, 91, pp. e02158-e02216. , https://doi.org/10.1128/JVI.02158-16; Westerbeck, J.W., Machamer, C.E., The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect spike protein and promote release of infectious virus (2018) bioRxiv, , https://doi.org/10.1101/440628; Yamada, Y., Liu, D.X., Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells (2009) J Virol, 83, pp. 8744-8758. , https://doi.org/10.1128/JVI.00613-09; Parr, R.L., Collisson, E.W., Epitopes on the spike protein of a nephro-pathogenic strain of infectious bronchitis virus (1993) Arch Virol, 133, pp. 369-383. , https://doi.org/10.1007/BF01313776; Lontok, E., Corse, E., Machamer, C.E., Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site (2004) J Virol, 78, pp. 5913-5922. , https://doi.org/10.1128/JVI.78.11.5913-5922.2004; Miesenböck, G., De Angelis, D.A., Rothman, J.E., Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins (1998) Nature, 394, pp. 192-195. , https://doi.org/10.1038/28190; Poschet, J.F., Boucher, J.C., Tatterson, L., Skidmore, J., Van Dyke, R.W., Deretic, V., Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung (2001) Proc Natl Acad Sci U S A, 98, pp. 13972-13977. , https://doi.org/10.1073/pnas.241182598; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.-J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114, pp. 11157-11162. , https://doi.org/10.1073/pnas.1708727114; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1007009; To, J., Torres, J., Beyond channel activity: Protein-protein interactions involving viroporins (2018) Subcell Biochem, 88, pp. 329-377. , https://doi.org/10.1007/978-981-10-8456-0_15; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Usera, F., Enjuanes, L., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res, 194, pp. 124-137. , https://doi.org/10.1016/j.virusres.2014.07.024; Teoh, K.-T., Siu, Y.-L., Chan, W.-L., Schluter, M.A., Liu, C.-J., Peiris, J.S.M., Bruzzone, R., Nal, B., The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis (2010) Mol Biol Cell, 21, pp. 3838-3852. , https://doi.org/10.1091/mbc.e10-04-0338; Jimenez-Guardeño, J.M., Nieto-Torres, J.L., DeDiego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004320; Lu, W., Zheng, B.-J., Xu, K., Schwarz, W., Du, L., Wong, C.K.L., Chen, J., Sun, B., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release (2006) Proc Natl Acad Sci U S A, 103, pp. 12540-12545. , https://doi.org/10.1073/pnas.0605402103; Chen, C.C., Krüger, J., Sramala, I., Hsu, H.J., Henklein, P., Chen, Y.M.A., Fischer, W.B., ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations (2011) Biochim Biophys Acta, 1808, pp. 572-579. , https://doi.org/10.1016/j.bbamem.2010.08.004; Castaño-Rodriguez, C., Honrubia, J.M., Gutiérrez-Álvarez, J., DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Enjuanes, L., Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis (2018) mBio, 9, pp. e02325-e02417. , https://doi.org/10.1128/mBio.02325-17; Freundt, E.C., Yu, L., Goldsmith, C.S., Welsh, S., Cheng, A., Yount, B., Liu, W., Lenardo, M.J., The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death (2010) J Virol, 84, pp. 1097-1109. , https://doi.org/10.1128/JVI.01662-09; Hitoshi, N., Ken-Ichi, Y., Jun-Ichi, M., Efficient selection for high-expression transfectants with a novel eukaryotic vector (1991) Gene, 108, pp. 193-199. , https://doi.org/10.1016/0378-1119(91)90434-D; Neumann, G., Watanabe, T., Ito, H., Watanabe, S., Goto, H., Gao, P., Hughes, M., Hay, A.J., Tyrosines in the influenza A virus M2 protein cytoplasmic tail are critical for production of infectious virus particles (1991) Proc Natl Acad Sci U S A, 22, pp. 11525-11529; Sisk, J.M., Frieman, M.B., Machamer, C.E., Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors (2018) J Gen Virol, 99, pp. 619-630. , https://doi.org/10.1099/jgv.0.001047; Corse, E., Machamer, C.E., Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J Virol, 74, pp. 4319-4326. , https://doi.org/10.1128/JVI.74.9.4319-4326.2000; Chandran, S., Machamer, C.E., Acute perturbations in Golgi organization impact de novo sphingomyelin synthesis (2008) Traffic, 9, pp. 1894-1904. , https://doi.org/10.1111/j.1600-0854.2008.00810.x; Zebedee, S.L., Lamb, R.A., Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions (1988) J Virol, 62, pp. 2762-2772; Youn, S., Leibowitz, J.L., Collisson, E.W., In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication (2005) Virology, 332, pp. 206-215. , https://doi.org/10.1016/j.virol.2004.10.045","Machamer, C.E.; Department of Cell Biology, Johns Hopkins University, School of MedicineUnited States; email: machamer@jhmi.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30867314","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85066466463 "Zheng J., Hassan S., Alagaili A.N., Alshukairi A.N., Amor N.M.S., Mukhtar N., Nazeer I.M., Tahir Z., Akhter N., Perlman S., Yaqub T.","57210471516;57211856176;37096779300;15821823600;15070591500;55139545200;57211853226;8652865900;57211854049;57204567845;15835994900;","Middle East respiratory syndrome coronavirus seropositivity in camel handlers and their families, Pakistan",2019,"Emerging Infectious Diseases","25","12",,"2307","2309",,,"10.3201/eid2512.191169","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075115796&doi=10.3201%2feid2512.191169&partnerID=40&md5=d4eb86dd0f8cdffdfe208f6c9c9397a9","King Saud University, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia; Government of Punjab, Lahore, Pakistan; First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; University of Iowa, Department of Microbiology and Immunology, 51 Newton Rd, Iowa City, IA 52242, United States; University of Veterinary and Animal Sciences, Department of Microbiology, Lahore, 54000, Pakistan","Zheng, J., University of Iowa, Department of Microbiology and Immunology, 51 Newton Rd, Iowa City, IA 52242, United States; Hassan, S., University of Veterinary and Animal Sciences, Department of Microbiology, Lahore, 54000, Pakistan; Alagaili, A.N., King Saud University, Riyadh, Saudi Arabia; Alshukairi, A.N., King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia; Amor, N.M.S., King Saud University, Riyadh, Saudi Arabia; Mukhtar, N., Government of Punjab, Lahore, Pakistan; Nazeer, I.M., University of Veterinary and Animal Sciences, Department of Microbiology, Lahore, 54000, Pakistan; Tahir, Z., Government of Punjab, Lahore, Pakistan; Akhter, N., Government of Punjab, Lahore, Pakistan; Perlman, S., First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, University of Iowa, Department of Microbiology and Immunology, 51 Newton Rd, Iowa City, IA 52242, United States; Yaqub, T., University of Veterinary and Animal Sciences, Department of Microbiology, Lahore, 54000, Pakistan","A high percentage of camel handlers in Saudi Arabia are seropositive for Middle East respiratory syndrome coronavirus. We found that 12/100 camel handlers and their family members in Pakistan, a country with extensive camel MERS-CoV infection, were seropositive, indicating that MERS-CoV infection of these populations extends beyond the Arabian Peninsula. © 2019 Centers for Disease Control and Prevention (CDC). All rights reserved.",,"virus antibody; adolescent; adult; aged; Article; camel; camel handler; camel milk; child; education; enzyme linked immunosorbent assay; female; hand washing; herd; human; immunofluorescence test; infection control; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; named groups by occupation; plaque reduction neutralization assay; questionnaire; school child; virus neutralization; young adult","Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227. , https://doi.org/10.1016/S1473-3099(18)30127-0; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10, p. 425. , https://doi.org/10.3390/v10080425; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) MBio, 9, pp. e01985-e02018. , https://doi.org/10.1128/mBio.01985-18; Khudhair, A., Killerby, M.E., Al Mulla, M., Abou Elkheir, K., Ternanni, W., Bandar, Z., Risk factors for MERS-CoV seropositivity among animal market and slaughterhouse workers, Abu Dhabi, United Arab Emirates, 2014-2017 (2019) Emerg Infect Dis, 25, pp. 927-935. , https://doi.org/10.3201/eid2505.181728; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564. , https://doi.org/10.1016/S1473-3099(15)70090-3; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64, pp. 344-353. , https://doi.org/10.1111/tbed.12401; Zohaib, A., Saqib, M., Athar, M.A., Chen, J., Sial, A.U., Khan, S., Countrywide survey for MERS-coronavirus antibodies in dromedaries and humans in Pakistan (2018) Virol Sin, 33, pp. 410-417. , https://doi.org/10.1007/s12250-018-0051-0; Ali, I., Chaudhry, M.S., Farooq, U., Camel rearing in Cholistan Desert of Pakistan (2009) Pak Vet J, 29, pp. 85-92; Khan, A.A., Khan, K., Women's role in livestock economy of Cholistan Desert, Pakistan (2015) Global Journal of Human-Social Science: E Economics, 15, pp. 29-39. , https://globaljournals.org/GJHSS_Volume15/4-Womens-Role-inLivestock-Economy.pdf, cited 2019 Oct 18; Amin, H., Ali, T., Ahmad, M., Zafar, M., Gender and development: Roles of rural women in livestock production in Pakistan (2010) Pak J Agric Sci, 47, pp. 32-36; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, , https://doi.org/10.1126/sciimmunol.aan5393; Okba, N.M.A., Raj, V.S., Widjaja, I., GeurtsvanKessel, C.H., De Bruin, E., Chandler, F.D., Sensitive and specific detection of low-level antibody responses in mild Middle East respiratory syndrome coronavirus infections (2019) Emerg Infect Dis, 25, pp. 1868-1877. , https://doi.org/10.3201/eid2510.190051; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, S.E.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , https://doi.org/10.1126/science.aac8608; Wernery, U., Lau, S.K., Woo, P.C., Middle East respiratory syndrome (MERS) coronavirus and dromedaries (2017) Vet J, 220, pp. 75-79. , https://doi.org/10.1016/j.tvjl.2016.12.020","Perlman, S.; First Affiliated Hospital of Guangzhou Medical UniversityChina; email: stanley-perlman@uiowa.edu",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31742530","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85075115796 "Al Hosani F.I., Kim L., Khudhair A., Pham H., Al Mulla M., Al Bandar Z., Pradeep K., Elkheir K.A., Weber S., Khoury M., Donnelly G., Younis N., El Saleh F., Abdalla M., Imambaccus H., Haynes L.M., Thornburg N.J., Harcourt J.L., Miao C., Tamin A., Hall A.J., Russell E.S., Harris A.M., Kiebler C., Mir R.A., Pringle K., Alami N.N., Abedi G.R., Gerber S.I.","55572197500;55175211200;57193787912;57216111697;56926568500;57185782500;57189708880;57201528716;57209138010;57205477251;57205474350;57205468753;57185754100;57007795500;6508088766;7101765135;6602664202;7006241346;8624002000;6602551546;9241843500;57205467704;24731989400;56648165400;57205462377;56159863600;56135720800;55887217800;56656063700;","Serologic Follow-up of Middle East Respiratory Syndrome Coronavirus Cases and Contacts - Abu Dhabi, United Arab Emirates",2019,"Clinical Infectious Diseases","68","3",,"409","418",,1,"10.1093/cid/ciy503","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058390741&doi=10.1093%2fcid%2fciy503&partnerID=40&md5=2111e8b8fb9e9dff7e52de3fe53bff93","Department of Health-Abu Dhabi, United Arab Emirates; Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; United States Public Health Service, Rockville, MD, United States; Sheikh Khalifa Medical Laboratory, Abu Dhabi, United Arab Emirates; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States; Division of Health Informatics and Surveillance, Centers for Disease Control and Prevention, Atlanta, GA, United States","Al Hosani, F.I., Department of Health-Abu Dhabi, United Arab Emirates; Kim, L., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States, United States Public Health Service, Rockville, MD, United States; Khudhair, A., Department of Health-Abu Dhabi, United Arab Emirates; Pham, H., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Al Mulla, M., Department of Health-Abu Dhabi, United Arab Emirates; Al Bandar, Z., Department of Health-Abu Dhabi, United Arab Emirates; Pradeep, K., Department of Health-Abu Dhabi, United Arab Emirates; Elkheir, K.A., Department of Health-Abu Dhabi, United Arab Emirates; Weber, S., Sheikh Khalifa Medical Laboratory, Abu Dhabi, United Arab Emirates; Khoury, M., Sheikh Khalifa Medical Laboratory, Abu Dhabi, United Arab Emirates; Donnelly, G., Sheikh Khalifa Medical Laboratory, Abu Dhabi, United Arab Emirates; Younis, N., Department of Health-Abu Dhabi, United Arab Emirates; El Saleh, F., Department of Health-Abu Dhabi, United Arab Emirates; Abdalla, M., Department of Health-Abu Dhabi, United Arab Emirates; Imambaccus, H., Sheikh Khalifa Medical Laboratory, Abu Dhabi, United Arab Emirates; Haynes, L.M., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Thornburg, N.J., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Harcourt, J.L., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Miao, C., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Tamin, A., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Hall, A.J., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Russell, E.S., Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States; Harris, A.M., United States Public Health Service, Rockville, MD, United States; Kiebler, C., Division of Health Informatics and Surveillance, Centers for Disease Control and Prevention, Atlanta, GA, United States; Mir, R.A., Division of Health Informatics and Surveillance, Centers for Disease Control and Prevention, Atlanta, GA, United States; Pringle, K., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States, Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States; Alami, N.N., Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States; Abedi, G.R., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States; Gerber, S.I., Division of Viral Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States","Although there is evidence of person-to-person transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in household and healthcare settings, more data are needed to describe and better understand the risk factors and transmission routes in both settings, as well as the extent to which disease severity affects transmission. © Published by Oxford University Press for the Infectious Diseases Society of America 2018.","Asymptomatic infection; serology; Middle East respiratory syndrome coronavirus; Transmission; United Arab Emirates","antibody; nucleocapsid protein; virus antibody; Abu Dhabi; adolescent; adult; antibody detection; Article; asymptomatic infection; child; clinical article; contact examination; environmental exposure; enzyme linked immunosorbent assay; female; follow up; health care policy; hospitalization; household; human; immunofluorescence; infant; infection risk; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; newborn; oxygen therapy; priority journal; quarantine; seroepidemiology; virus neutralization; virus transmission; aged; blood; Coronavirus infection; disease transmission; family health; immunology; indirect fluorescent antibody technique; middle aged; Middle East respiratory syndrome coronavirus; preschool child; risk factor; seroepidemiology; United Arab Emirates; very elderly; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Antibodies, Viral; Child; Child, Preschool; Coronavirus Infections; Disease Transmission, Infectious; Enzyme-Linked Immunosorbent Assay; Family Health; Female; Fluorescent Antibody Technique, Indirect; Humans; Infant; Infant, Newborn; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Seroepidemiologic Studies; United Arab Emirates; Young Adult","World Health Organization, , http://www.who.int/emergencies/mers-cov/en/, Accessed 2 February 2018 Middle East respiratory syndrome coronavirus (MERS-CoV); Ben Embarek, P.K., Van Kerkhove, M.D., Middle East respiratory syndrome coronavirus (MERS-CoV): Current situation 3 years after the virus was first identified (2015) Wkly Epidemiol Rec, 90, pp. 245-250; (2016) World Health Organization, , WHO MERS-CoV global summary and risk assessment. Geneva, Switzerland: WHO; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans (2014) Saudi Arabia; (2016) Emerg Infect Dis, (22), pp. 49-55; Al Hosani, F.I., Pringle, K., Al Mulla, M., Response to emergence of Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, (22), pp. 1162-1168. , Abu Dhabi United Arab Emirates 2013-2014; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, p. 22; Choe, P.G., Perera, R., Park, W.B., MERS-CoV antibody responses 1 year after symptom onset South Korea 2015 (2017) Emerg Infect Dis, (23), pp. 1079-1084; Payne, D.C., Iblan, I., Rha, B., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, p. 22; Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, (6), p. 25359; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah-A link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Drosten, C., Meyer, B., Muller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Assiri, A., McGeer, A., Perl, T.M., KSA MERS-cov investigation team. Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Arwady, M.A., Alraddadi, B., Basler, C., Middle East respiratory syndrome coronavirus transmission in extended family (2016) Emerg Infect Dis, (22), pp. 1395-1402. , Saudi Arabia 2014; (2017) World Health Organization, , http://www.who.int/csr/don/2014_06_13_mers/en/, Accessed 15 March Middle East respiratory syndrome coronavirus (MERS-CoV)-update: disease outbreak news; National Geographic, , http://travel.nationalgeographic.com/travel/countries/abu-dhabi-facts/, Abu Dhabi facts Accessed 27 October 2015; Dhabi Government A., , https://www.abudhabi.ae/portal/public/en/abu-dhabi-emirate/abu-dhabi-emirate-facts-And-figures, Abu Dhabi Emirate facts and figures Accessed 28 March 2017; (2013) Statistical yearbook of Abu Dhabi, , https://www.scad.ae/Release%20Documents/SYB%202013%20English%20-full%20version.pdf, Accessed 27 October 2015; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Jordan MERS-CoV Investigation Team. Hospital-Associated outbreak of Middle East respiratory syndrome coronavirus: A serologic epidemiologic and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; World Health Organization, , http://apps.who.int/iris/bitstream/10665/180973/1/WHO_MERS_IPC_15.2_eng.pdf.?ua=1=1, Management of asymptomatic persons who are RT-PCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV): interim guidance Accessed 2 February 2018; Centers for Disease Control and Prevention, , https://www.cdc.gov/coronavirus/mers/hcp/home-care.html, Implementing home care and isolation or quarantine of people not requiring hospitalization for MERS-CoV Accessed 6 February 2018; Hunter, J.C., Nguyen, D., Aden, B., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings (2016) Abu Dhabi. Emerg Infect Dis, (22), pp. 647-656; Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Risk factors for Middle East respiratory syndrome coronavirus infection among healthcare personnel (2016) Emerg Infect Dis, 22, pp. 1915-1920; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Saad, M., Omrani, A.S., Baig, K., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Kim, S.W., Park, J.W., Jung, H.D., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, (64), pp. 551-557; Ko, J.H., Muller, M.A., Seok, H., Serologic responses of 42 MERS-coronavirusinfected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, (89), pp. 106-111; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, (62), pp. 477-483; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans (2015) South Korea. Emerg Infect Dis, 21, pp. 2186-2189; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-Term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Hall, A.J., Tokars, J.I., Badreddine, S.A., Health care worker contact with MERS patient (2014) Saudi Arabia. Emerg Infect Dis, 20, pp. 2148-2151; Centers for Disease Control and Prevention, , https://www.cdc.gov/coronavirus/mers/interim-guidance.html, Interim guidance for healthcare professionals Accessed 2 February 2018","Kim, L.; Division of Viral Diseases, Centers for Disease Control and Prevention (CDC)United States; email: lkim@cdc.gov",,"Oxford University Press",10584838,,CIDIE,"29905769","English","Clin. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85058390741 "Xu J., Jia W., Wang P., Zhang S., Shi X., Wang X., Zhang L.","57209110414;57202779613;57200821797;36629744200;49861925000;36497607000;56542860200;","Antibodies and vaccines against Middle East respiratory syndrome coronavirus",2019,"Emerging Microbes and Infections","8","1",,"841","856",,4,"10.1080/22221751.2019.1624482","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067516383&doi=10.1080%2f22221751.2019.1624482&partnerID=40&md5=6d0d12eb44fb550e1abf5326ffa81937","Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China; Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University School of Life Sciences, Beijing, China","Xu, J., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China; Jia, W., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China; Wang, P., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University School of Life Sciences, Beijing, China; Zhang, S., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University School of Life Sciences, Beijing, China; Shi, X., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China; Wang, X., Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University School of Life Sciences, Beijing, China; Zhang, L., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China","The Middle East respiratory syndrome coronavirus (MERS-CoV) has spread through 27 countries and infected more than 2,200 people since its first outbreak in Saudi Arabia in 2012. The high fatality rate (35.4%) of this novel coronavirus and its persistent wide spread infectiousness in animal reservoirs have generated tremendous global public health concern. However, no licensed therapeutic agents or vaccines against MERS-CoV are currently available and only a limited few have entered clinical trials. Among all the potential targets of MERS-CoV, the spike glycoprotein (S) has been the most well-studied due to its critical role in mediating viral entry and in inducing a protective antibody response in infected individuals. The most notable studies include the recent discoveries of monoclonal antibodies and development of candidate vaccines against the S glycoprotein. Structural characterization of MERS-CoV S protein bound with these monoclonal antibodies has provided insights into the mechanisms of humoral immune responses against MERS-CoV infection. The current review aims to highlight these developments and discuss possible hurdles and strategies to translate these discoveries into ultimate medical interventions against MERS-CoV infection. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","Coronavirus; MERS-CoV; monoclonal antibody; spike glycoprotein; vaccine","coronavirus spike glycoprotein; Middle East respiratory syndrome coronavirus vaccine; monoclonal antibody; neutralizing antibody; unclassified drug; virus antibody; virus vaccine; coronavirus spike glycoprotein; virus antibody; virus vaccine; human; Middle East respiratory syndrome; nonhuman; priority journal; protein function; protein structure; Review; animal; Coronavirus infection; genetics; immunology; Middle East respiratory syndrome coronavirus; virology; Animals; Antibodies, Viral; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Viral Vaccines","Kuiken, T., Fouchier, R.A., Schutten, M., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362 (9380), pp. 263-270. , https://doi.org/10.1016/S0140-6736(03)13967-0, Jul 26, PubMed PMID: 12892955; Zhong, N.S., Zheng, B.J., Li, Y.M., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003 (2003) Lancet, 362 (9393), pp. 1353-1358. , Oct 25, PubMed PMID: 14585636; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121 (1), pp. 190-193. , Jan, PubMed PMID: 4285768; McIntosh, K., Dees, J.H., Becker, W.B., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc Natl Acad Sci USA, 57 (4), pp. 933-940. , Apr, PubMed PMID: 5231356; PubMed Central PMCID: PMCPMC224637; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10 (4), pp. 368-373. , https://doi.org/10.1038/nm1024, Apr, PubMed PMID: 15034574; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79 (2), pp. 884-895. , https://doi.org/10.1128/JVI.79.2.884-895.2005, Jan, PubMed PMID: 15613317; PubMed Central PMCID: PMCPMC538593; http://www.who.int/csr/sars/country/table2004_04_21/en/, Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 2004 [cited 2019 Mar 6]. Available from; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, Nov 8, PubMed PMID: 23075143; http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV) 2018 [cited 2019 Mar 26]. Available from; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8, Sep 5, PubMed PMID: 26049252; PubMed Central PMCID: PMCPMC4721578; Cui, J., Li, F., Shi, Z.L., Origin and evolution of pathogenic coronaviruses (2019) Nat Rev Microbiol, 17 (3), pp. 181-192. , https://doi.org/10.1038/s41579-018-0118-9, Mar, PubMed PMID: 30531947; Woo, P.C., Lau, S.K., Li, K.S., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg Microbes Infect, 1 (11), p. e35. , https://doi.org/10.1038/emi.2012.45, Nov, PubMed PMID: 26038405; PubMed Central PMCID: PMCPMC3630921; van Boheemen, S., de Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3 (6), pp. e00473-e412; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of middle east respiratory syndrome coronavirus by characterization of a conspecific virus from an African Bat (2014) J Virol, 88 (19), pp. 11297-11303. , https://doi.org/10.1128/jvi.01498-14; Anthony, S.J., Gilardi, K., Menachery, V.D., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8 (2). , https://doi.org/10.1128/mBio.00373-17; Wang, Q., Qi, J., Yuan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16 (3), pp. 328-337. , https://doi.org/10.1016/j.chom.2014.08.009; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances (2017) F1000Res, 6, p. 1628. , https://doi.org/10.12688/f1000research.11827.1, PubMed PMID: 29026532; PubMed Central PMCID: PMCPMC5583735; de Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group (2013) J Virol, 87 (14), pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13, Jul, PubMed PMID: 23678167; PubMed Central PMCID: PMCPMC3700179; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PloS one, 8 (10). , https://doi.org/10.1371/journal.pone.0076469, PubMed PMID: 24098509; PubMed Central PMCID: PMCPmc3789674; eng; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279 (2), pp. 371-374. , https://doi.org/10.1006/viro.2000.0757, Jan 20, PubMed PMID: WOS:000166695000001; Masters, P.S., Pearlman, S., Coronaviridae (2013) Fields virology. Vol. 1. 6th ed, pp. 825-858. , Knipe D.M., Howley P.M., Cohen J.I., (eds), Philadelphia: Lippincott Williams & Wilkins,. In:, editor.,. p; Du, L., He, Y., Zhou, Y., The spike protein of SARS-CoV–a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7 (3), pp. 226-236. , https://doi.org/10.1038/nrmicro2090, Mar, PubMed PMID: 19198616; PubMed Central PMCID: PMCPmc2750777; eng; Wang, N., Shi, X., Jiang, L., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Mou, H., Raj, V.S., van Kuppeveld, F.J.M., The receptor binding domain of the New Middle East respiratory syndrome coronavirus Maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87 (16), pp. 9379-9383. , https://doi.org/10.1128/jvi.01277-13, Aug, PubMed PMID: WOS:000322535600052; Gao, J., Lu, G., Qi, J., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (24), pp. 13134-13140; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254. , https://doi.org/10.1038/nature12005, Mar 14, PubMed PMID: WOS:000316652300054; Lu, L., Liu, Q., Zhu, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor [article] (2014) Nat Commun, 5, p. 12. , https://doi.org/10.1038/ncomms4067, Jan, PubMed PMID: WOS:000331084200009; Wang, C., Hua, C., Xia, S., Combining a fusion inhibitory peptide targeting the MERS-CoV S2 protein HR1 domain and a neutralizing antibody specific for the S1 protein receptor-binding domain (RBD) showed potent Synergism against pseudotyped MERS-CoV with or without mutations in RBD (2019) Viruses, 11 (1). , https://doi.org/10.3390/v11010031, Jan 6, PubMed PMID: 30621343; eng; Xia, S., Yan, L., Xu, W., A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike (2019) Sci Adv, 5 (4), p. eaav4580. , https://doi.org/10.1126/sciadv.aav4580, Apr, PubMed PMID: 30989115; PubMed Central PMCID: PMCPMC6457931; Gui, M., Song, W., Zhou, H., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27 (1), pp. 119-129. , https://doi.org/10.1038/cr.2016.152, Jan, PubMed PMID: 28008928; PubMed Central PMCID: PMCPMC5223232; eng; Kirchdoerfer, R.N., Wang, N., Pallesen, J., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci Rep, 8 (1), p. 15701. , https://doi.org/10.1038/s41598-018-34171-7, Oct 24, PubMed PMID: 30356097; PubMed Central PMCID: PMCPMC6200764; eng; Pallesen, J., Wang, N., Corbett, K.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci USA, 114 (35), pp. E7348-E7357. , https://doi.org/10.1073/pnas.1707304114, Aug 29, PubMed PMID: 28807998; PubMed Central PMCID: PMCPMC5584442; Yuan, Y., Cao, D., Zhang, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092, Apr 10; Song, W., Gui, M., Wang, X., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog, 14 (8), p. e1007236. , https://doi.org/10.1371/journal.ppat.1007236, Aug, PubMed PMID: 30102747; PubMed Central PMCID: PMCPMC6107290; eng; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89 (4), pp. 1954-1964. , https://doi.org/10.1128/JVI.02615-14, Feb, PubMed PMID: 25428871; PubMed Central PMCID: PMCPMC4338876; Jiang, L., Wang, N., Zuo, T., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6 (234). , https://doi.org/10.1126/scitranslmed.3008140, 234r. a59, Apr 30, PubMed PMID: 24778414; eng; Yu, X., Zhang, S., Jiang, L., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci Rep, 5, p. 13133. , https://doi.org/10.1038/srep13133, PubMed PMID: 26281793; PubMed Central PMCID: PMCPmc4539535; eng; Zhang, S., Zhou, P., Wang, P., Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein (2018) Cell Rep, 24 (2), pp. 441-452. , https://doi.org/10.1016/j.celrep.2018.06.041, Jul 10; Tang, X.C., Agnihothram, S.S., Jiao, Y., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci USA, 111 (19), pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111, May 13, PubMed PMID: 24778221; PubMed Central PMCID: PMCPmc4024880; eng; Johnson, R.F., Bagci, U., Keith, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Ying, T., Du, L., Ju, T.W., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88 (14), pp. 7796-7805. , https://doi.org/10.1128/jvi.00912-14, Jul, PubMed PMID: 24789777; PubMed Central PMCID: PMCPmc4097770; eng; Ying, T., Prabakaran, P., Du, L., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat Commun, 6 (1), p. 8223. , https://doi.org/10.1038/ncomms9223, Sep 15, PubMed PMID: 26370782; PubMed Central PMCID: PMCPMC4571279; van Doremalen, N., Falzarano, D., Ying, T., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37. , https://doi.org/10.1016/j.antiviral.2017.03.025, Apr 5; Houser, K.V., Gretebeck, L., Ying, T., Prophylaxis With a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody Protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213 (10), pp. 1557-1561. , https://doi.org/10.1093/infdis/jiw080, May 15, PubMed PMID: 26941283; PubMed Central PMCID: PMCPmc4837915; eng; Agrawal, A.S., Ying, T., Tao, X., Passive transfer of A Germline-like neutralizing human monoclonal antibody Protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci Rep, 6, p. 31629. , https://doi.org/10.1038/srep31629, Aug 19; Du, L., Zhao, G., Yang, Y., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88 (12), pp. 7045-7053. , https://doi.org/10.1128/jvi.00433-14, Jun, PubMed PMID: 24719424; PubMed Central PMCID: PMCPmc4054355; eng; Qiu, H., Sun, S., Xiao, H., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res, 132, pp. 141-148. , https://doi.org/10.1016/j.antiviral.2016.06.003, Jun 14, PubMed PMID: 27312105; Eng; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6. , https://doi.org/10.1038/ncomms8712, Jul, PubMed PMID: WOS:000358858500018; Wang, L., Shi, W., Chappell, J.D., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape (2018) J Virol, , https://doi.org/10.1128/JVI.02002-17, Mar 7; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci USA, 112 (28), pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112, Jul 14, PubMed PMID: 26124093; PubMed Central PMCID: PMCPmc4507189; eng; de Wit, E., Feldmann, F., Okumura, A., Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets (2018) Antiviral Res, 156, pp. 64-71. , https://doi.org/10.1016/j.antiviral.2018.06.006, Aug; Corti, D., Zhao, J., Pedotti, M., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci USA, 112 (33), pp. 10473-10478. , https://doi.org/10.1073/pnas.1510199112, Aug 18, PubMed PMID: 26216974; PubMed Central PMCID: PMCPmc4547275; eng; de Wit, E., Feldmann, F., Horne, E., Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset (2019) Antiviral Res, 163, pp. 70-74. , https://doi.org/10.1016/j.antiviral.2019.01.016, Mar, PubMed PMID: 30684561; Li, Y., Wan, Y., Liu, P., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25 (11), pp. 1237-1249. , https://doi.org/10.1038/cr.2015.113, Nov, PubMed PMID: 26391698; PubMed Central PMCID: PMCPmc4650419; eng; Chen, Z., Bao, L., Chen, C., Human neutralizing monoclonal antibody inhibition of Middle East respiratory syndrome coronavirus replication in the common marmoset (2017) J Infect Dis, 215 (12), pp. 1807-1815. , https://doi.org/10.1093/infdis/jix209, Jun 15; Chen, Y., Lu, S., Jia, H., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg Microbes Infect, 6 (5), p. e37. , https://doi.org/10.1038/emi.2017.18, May 24; Niu, P., Zhang, S., Zhou, P., Ultra-potent human neutralizing antibody Repertoires against MERS-CoV from A recovered patient (2018) J Infect Dis, , https://doi.org/10.1093/infdis/jiy311, May 28; Niu, P., Zhao, G., Deng, Y., A novel human mAb (MERS-GD27) provides prophylactic and postexposure efficacy in MERS-CoV susceptible mice (2018) Sci China Life Sci, 61 (10), pp. 1280-1282. , https://doi.org/10.1007/s11427-018-9343-8, Oct, PubMed PMID: 30091015; eng; Zhao, G., He, L., Sun, S., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J Virol, 92 (18). , https://doi.org/10.1128/JVI.00837-18, Sep 15; Stalin Raj, V., Okba, N.M.A., Gutierrez-Alvarez, J., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci Adv, 4 (8), p. eaas9667. , https://doi.org/10.1126/sciadv.aas9667, Aug, PubMed PMID: 30101189; PubMed Central PMCID: PMCPMC6082650; Agrawal, A.S., Tao, X., Algaissi, A., Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum Vaccin Immunother, 12 (9), pp. 2351-2356. , https://doi.org/10.1080/21645515.2016.1177688, Sep, PubMed PMID: 27269431; PubMed Central PMCID: PMCPMC5027702; Deng, Y., Lan, J., Bao, L., Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of Middle East respiratory syndrome coronavirus (2018) Emerg Microbes Infect, 7 (1), p. 60. , https://doi.org/10.1038/s41426-018-0056-7, Apr 4; Wang, C., Zheng, X., Gai, W., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8 (8), pp. 12686-12694. , https://doi.org/10.18632/oncotarget.8475, Feb 21, PubMed PMID: 27050368; PubMed Central PMCID: PMCPMC5355045; Song, F., Fux, R., Provacia, L.B., Middle East respiratory syndrome coronavirus spike protein delivered by modified Vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87 (21), pp. 11950-11954. , https://doi.org/10.1128/jvi.01672-13, Nov, PubMed PMID: WOS:000325863400060; Volz, A., Kupke, A., Song, F., Protective efficacy of recombinant modified Vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89 (16), pp. 8651-8656. , https://doi.org/10.1128/jvi.00614-15, Aug, PubMed PMID: WOS:000358278200047; Haagmans, B.L., van den Brand, J.M., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (6268), pp. 77-81. , https://doi.org/10.1126/science.aad1283, Jan 1, PubMed PMID: 26678878; eng; Kim, E., Okada, K., Kenniston, T., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32 (45), pp. 5975-5982. , https://doi.org/10.1016/j.vaccine.2014.08.058, Oct 14, PubMed PMID: WOS:000343629900014; Guo, X., Deng, Y., Chen, H., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484. , https://doi.org/10.1111/imm.12462, Aug, PubMed PMID: WOS:000357854300003; Munster, V.J., Wells, D., Lambe, T., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28. , https://doi.org/10.1038/s41541-017-0029-1, Oct 16; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Chadox1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35 (30), pp. 3780-3788. , https://doi.org/10.1016/j.vaccine.2017.05.032, Jun 27; Hashem, A.M., Algaissi, A., Agrawal, A., A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model (2019) J Infect Dis, , https://doi.org/10.1093/infdis/jiz137, Mar 26, PubMed PMID: 30911758; Jia, W., Channappanavar, R., Zhang, C., Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection (2019) Emerg Microbes Infect, 8 (1), pp. 760-772. , https://doi.org/10.1080/22221751.2019.1620083, May 28, PubMed PMID: 31130102; Malczyk, A.H., Kupke, A., Prufer, S., A highly Immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J Virol, 89 (22), pp. 11654-11667. , https://doi.org/10.1128/jvi.01815-15, Nov, PubMed PMID: 26355094; PubMed Central PMCID: PMCPmc4645655; eng; Bodmer, B.S., Fiedler, A.H., Hanauer, J.R.H., Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model (2018) Virology, 521, pp. 99-107. , https://doi.org/10.1016/j.virol.2018.05.028, Jun 11; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111 (13), pp. 4970-4975. , https://doi.org/10.1073/pnas.1323279111, Apr 1, PubMed PMID: 24599590; PubMed Central PMCID: PMCPMC3977243; Li, K., Wohlford-Lenane, C., Perlman, S., Middle East respiratory syndrome coronavirus Causes multiple Organ Damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J Infect Dis, 213 (5), pp. 712-722. , https://doi.org/10.1093/infdis/jiv499, Mar 1, PubMed PMID: 26486634; PubMed Central PMCID: PMCPMC4747621; Liu, R., Wang, J., Shao, Y., A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization (2018) Antiviral Res, 150, pp. 30-38. , https://doi.org/10.1016/j.antiviral.2017.12.007, Feb, PubMed PMID: 29246504; Wirblich, C., Coleman, C.M., Kurup, D., One-health: a safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus (2017) J Virol, 91 (2). , https://doi.org/10.1128/JVI.02040-16, Jan 15; Jung, S.-Y., Kang, K.W., Lee, E.-Y., Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus (2018) Vaccine, 36 (24), pp. 3468-3476. , https://doi.org/10.1016/j.vaccine.2018.04.082, May 5; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7 (301), p. 301ra132. , https://doi.org/10.1126/scitranslmed.aac7462, Aug 19, PubMed PMID: 26290414; PubMed Central PMCID: PMCPmc4573558; eng; Chi, H., Zheng, X., Wang, X., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35 (16), pp. 2069-2075. , https://doi.org/10.1016/j.vaccine.2017.02.063, Apr 11; Du, L., Kou, Z., Ma, C., A Truncated receptor-binding domain of MERS-CoV spike protein potently Inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PloS one, 8 (12). , https://doi.org/10.1371/journal.pone.0081587, Dec 4, PubMed PMID: WOS:000327949300098; Ma, C., Wang, L., Tao, X., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32 (46), pp. 6170-6176. , https://doi.org/10.1016/j.vaccine.2014.08.086, Oct 21; Zhang, N., Channappanavar, R., Ma, C., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2015) Cell Mol Immunol, , https://doi.org/10.1038/cmi.2015.03, Feb 2, PubMed PMID: 25640653; Eng; Tang, J., Zhang, N., Tao, X., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum Vaccin Immunother, 11 (5), pp. 1244-1250. , https://doi.org/10.1080/21645515.2015.1021527, May 4, PubMed PMID: WOS:000355117100035; Wang, Y., Tai, W., Yang, J., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum Vaccin Immunother, 13 (7), pp. 1615-1624. , https://doi.org/10.1080/21645515.2017.1296994, Jul 3; Tai, W., Zhao, G., Sun, S., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382. , https://doi.org/10.1016/j.virol.2016.10.005, Oct 15; Ma, C., Li, Y., Wang, L., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108. , https://doi.org/10.1016/j.vaccine.2014.02.004, Apr 11, PubMed PMID: WOS:000334980800014; Lan, J., Deng, Y., Chen, H., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PloS one, 9 (11). , https://doi.org/10.1371/journal.pone.0112602, PubMed PMID: 25405618; PubMed Central PMCID: PMCPmc4236105; eng; Lan, J., Yao, Y., Deng, Y., Recombinant receptor binding domain protein induces Partial protective Immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMed, 2 (10), pp. 1438-1446. , https://doi.org/10.1016/j.ebiom.2015.08.031, Oct, PubMed PMID: 26629538; PubMed Central PMCID: PMCPmc4634622; eng; Lan, J., Yao, Y., Deng, Y., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35 (1), pp. 10-18. , https://doi.org/10.1016/j.vaccine.2016.11.064, Jan 3, PubMed PMID: 27899228; Coleman, C.M., Liu, Y.V., Mu, H., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32 (26), pp. 3169-3174. , https://doi.org/10.1016/j.vaccine.2014.04.016, May 30, PubMed PMID: WOS:000336872500009; Coleman, C.M., Venkataraman, T., Liu, Y.V., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35 (12), pp. 1586-1589. , https://doi.org/10.1016/j.vaccine.2017.02.012, Mar 14; McCoy, K., Tatsis, N., Korioth-Schmitz, B., Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors (2007) J Virol, 81 (12), pp. 6594-6604. , https://doi.org/10.1128/JVI.02497-06, Jun, PubMed PMID: 17428852; PubMed Central PMCID: PMCPMC1900096; Mast, T.C., Kierstead, L., Gupta, S.B., International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: correlates of high Ad5 titers and implications for potential HIV vaccine trials (2010) Vaccine, 28 (4), pp. 950-957. , https://doi.org/10.1016/j.vaccine.2009.10.145, Jan 22, PubMed PMID: 19925902; Farina, S.F., Gao, G.P., Xiang, Z.Q., Replication-defective vector based on a chimpanzee adenovirus (2001) J Virol, 75 (23), pp. 11603-11613. , https://doi.org/10.1128/JVI.75.23.11603-11613.2001, Dec, PubMed PMID: 11689642; PubMed Central PMCID: PMCPMC114747","Zhang, L.; Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Medical Building A208, 1 Tsinghua Yuan, China; email: zhanglinqi@mail.tsinghua.edu.cn",,"Taylor and Francis Ltd.",22221751,,,"31169078","English","Emerg. Microbes Infect.",Review,"Final",Open Access,Scopus,2-s2.0-85067516383 "Shen L., Niu J., Wang C., Huang B., Wang W., Zhu N., Deng Y., Wang H., Ye F., Cen S., Tan W.","57199824189;57209102341;57209099538;35082078200;7501755105;56992193500;36238838100;37008111500;56992108600;57203102883;7401959748;","High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses",2019,"Journal of Virology","93","12", e0002319,"","",,7,"10.1128/JVI.00023-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066499191&doi=10.1128%2fJVI.00023-19&partnerID=40&md5=c8c12684de305624ba1b9cd2b2c34846","NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; National Institutes for Food and Drug Control, Beijing, China; Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China","Shen, L., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Niu, J., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Wang, C., National Institutes for Food and Drug Control, Beijing, China; Huang, B., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Wang, W., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Zhu, N., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Deng, Y., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Wang, H., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Ye, F., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China; Cen, S., Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China; Tan, W., NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China","Coronaviruses (CoVs) act as cross-species viruses and have the potential to spread rapidly into new host species and cause epidemic diseases. Despite the severe public health threat of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome CoV (MERS-CoV), there are currently no drugs available for their treatment; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are urgently needed. To search for effective inhibitory agents, we performed high-throughput screening (HTS) of a 2,000-compound library of approved drugs and pharmacologically active compounds using the established genetically engineered human CoV OC43 (HCoV-OC43) strain expressing Renilla luciferase (rOC43-ns2Del-Rluc) and validated the inhibitors using multiple genetically distinct CoVs in vitro. We screened 56 hits from the HTS data and validated 36 compounds in vitro using wild-type HCoV-OC43. Furthermore, we identified seven compounds (lycorine, emetine, monensin sodium, mycophenolate mofetil, mycophenolic acid, phenazopyridine, and pyrvinium pamoate) as broad-spectrum inhibitors according to their strong inhibition of replication by four CoVs in vitro at low-micromolar concentrations. Additionally, we found that emetine blocked MERS-CoV entry according to pseudovirus entry assays and that lycorine protected BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This represents the first demonstration of in vivo real-time bioluminescence imaging to monitor the effect of lycorine on the spread and distribution of HCoV-OC43 in a mouse model. These results offer critical information supporting the development of an effective therapeutic strategy against CoV infection. IMPORTANCE Currently, there is no approved therapy to treat coronavirus infection; therefore, broad-spectrum inhibitors of emerging and endemic CoVs are needed. Based on our high-throughput screening assay using a compound library, we identified seven compounds with broad-spectrum efficacy against the replication of four CoVs in vitro. Additionally, one compound (lycorine) was found to protect BALB/c mice against HCoV-OC43-induced lethality by decreasing viral load in the central nervous system. This inhibitor might offer promising therapeutic possibilities for combatting novel CoV infections in the future. © 2019 American Society for Microbiology. All Rights Reserved.","Bioluminescence imaging; Broad-spectrum; Coronaviruses; High-throughput screening; Inhibitor; Mice","antivirus agent; chloroquine; emetine; lycorine; monensin; mycophenolate mofetil; mycophenolic acid; phenazopyridine; pyrvinium embonate; animal cell; animal experiment; animal model; animal tissue; antiviral activity; Article; Bagg albino mouse; concentration response; controlled study; Coronavirus infection; cytotoxicity; drug identification; drug potency; EC50; female; high throughput screening; Human coronavirus OC43; in vitro study; in vivo study; infection prevention; mouse; nonhuman; priority journal; virus entry; virus inhibition; virus load","Saberi, A., Gulyaeva, A.A., Brubacher, J.L., Newmark, P.A., Gorbalenya, A.E., A planarian nidovirus expands the limits of RNA genome size (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1007314; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med (Maywood), 234, pp. 1117-1127. , https://doi.org/10.3181/0903-MR-94; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Denison, M.R., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog, 6. , https://doi.org/10.1371/journal.ppat.1000896; Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., Van Der Hoek, L., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J Mol Biol, 364, pp. 964-973. , https://doi.org/10.1016/j.jmb.2006.09.074; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502. , https://doi.org/10.1016/j.tim.2016.03.003; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Memish, Z.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564. , https://doi.org/10.1016/S1473-3099(15)70090-3; Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Ward, S., Wolff, B., Lho, H., Pham, D.H., Fish, E.N., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: A preliminary study (2003) JAMA, 290, pp. 3222-3228. , https://doi.org/10.1001/jama.290.24.3222; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Sung, J.J., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1986-1994. , https://doi.org/10.1056/NEJMoa030685; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., Siddiqi, N., Mushtaq, A., IFN-2a or IFN-1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132. , https://doi.org/10.1093/jac/dkv085; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Walmsley, S.L., Detsky, A.S., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area (2003) JAMA, 289, pp. 2801-2809. , https://doi.org/10.1001/jama.289.21.JOC30885; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347. , https://doi.org/10.1038/nrd.2015.37; De Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., Van Nieuwkoop, S., Bestebroer, T.M., Van Den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58, pp. 4875-4884. , https://doi.org/10.1128/AAC.03011-14; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Johnson, R.F., Frieman, M.B., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58, pp. 4885-4893. , https://doi.org/10.1128/AAC.03036-14; Müller, C., Schulte, F.W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Grünweller, A., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- And picor-naviruses (2018) Antiviral Res, 150, pp. 123-129. , https://doi.org/10.1016/j.antiviral.2017.12.010; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, 9, p. 3653. , https://doi.org/10.1126/scitranslmed.aal3653; Shen, L., Yang, Y., Ye, F., Liu, G., Desforges, M., Talbot, P.J., Tan, W., Safe and sensitive antiviral screening platform based on recombinant human coronavirus OC43 expressing the luciferase reporter gene (2016) Antimicrob Agents Chemother, 60, pp. 5492-5503. , https://doi.org/10.1128/AAC.00814-16; Evidente, A., Cicala, M.R., Giudicianni, I., Randazzo, G., Riccio, R., 1H and 13C NMR analysis of lycorine and -dihydrolycorine (1983) Phytochemistry, 22, pp. 581-584. , https://doi.org/10.1016/0031-9422(83)83051-9; Liu, R., Cao, Z., Tu, J., Pan, Y., Shang, B., Zhang, G., Bao, M., Zhou, Q., Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry (2012) Pigment Cell Melanoma Res, 25, pp. 630-638. , https://doi.org/10.1111/j.1755-148X.2012.01036.x; Cho, N., Du, Y., Valenciano, A.L., Fernández-Murga, M.L., Goetz, M., Clement, J., Cassera, M.B., Kingston, D., Antiplasmodial alkaloids from bulbs of Amaryllis belladonna Steud (2018) Bioorg Med Chem Lett, 28, pp. 40-42. , https://doi.org/10.1016/j.bmcl.2017.11.021; Bendaif, H., Melhaoui, A., Ramdani, M., Elmsellem, H., Douez, C., El Ouadi, Y., Antibacterial activity and virtual screening by molecular docking of lycorine from Pancratium foetidum Pom (Moroccan endemic Amaryllidaceae) (2018) Microb Pathog, 115, pp. 138-145. , https://doi.org/10.1016/j.micpath.2017.12.037; Chen, S., Fang, X.Q., Zhang, J.F., Ma, Y., Tang, X.Z., Zhou, Z.J., Wang, J.Y., Fan, S.W., Lycorine protects cartilage through suppressing the expression of matrix metalloprotenases in rat chondrocytes and in a mouse osteoarthritis model (2016) Mol Med Rep, 14, pp. 3389-3396. , https://doi.org/10.3892/mmr.2016.5594; Xu, W., Lacerda, L., Debeb, B.G., Atkinson, R.L., Solley, T.N., Li, L., Orton, D., Woodward, W.A., The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0071508; Keyaerts, E., Li, S., Vijgen, L., Rysman, E., Verbeeck, J., Van Ranst, M., Maes, P., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice (2009) Antimicrob Agents Chemother, 53, pp. 3416-3421. , https://doi.org/10.1128/AAC.01509-08; Jacomy, H., Talbot, P.J., Vacuolating encephalitis in mice infected by human coronavirus OC43 (2003) Virology, 315, pp. 20-33. , https://doi.org/10.1016/S0042-6822(03)00323-4; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus OC43: Genetic stability and neu-roinvasion (2004) J Virol, 78, pp. 8824-8834. , https://doi.org/10.1128/JVI.78.16.8824-8834.2004; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Chong, W.K., Breuer, J., Human coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498. , https://doi.org/10.1056/NEJMc1509458; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-e76; Cheng, V.C., Lau, S.K., Woo, P.C., Yuen, K.Y., Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection (2007) Clin Microbiol Rev, 20, pp. 660-694. , https://doi.org/10.1128/CMR.00023-07; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522. , https://doi.org/10.1128/CMR.00102-14; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8; Falzarano, D., De Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel coronavirus replication by a combination of interferon-2b and ribavirin (2013) Sci Rep, 3, p. 1686. , https://doi.org/10.1038/srep01686; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Interferon- And mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J Gen Virol, 9, pp. 571-577. , https://doi.org/10.1099/vir.0.061911-0; Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Yamamoto, N., HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus (2004) Biochem Biophys Res Commun, 18, pp. 719-725. , https://doi.org/10.1016/j.bbrc.2004.04.083; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Li, P.T., Yuen, K.Y., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67, pp. 606-616. , https://doi.org/10.1016/j.jinf.2013.09.029; Shin, J.S., Jung, E., Kim, M., Baric, R.S., Go, Y.Y., Saracatinib inhibits Middle East respiratory syndrome-coronavirus replication in vitro (2018) Viruses, 10. , https://doi.org/10.3390/v10060283, pii: E283; Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., Alhani, H.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66, pp. 1261-1274. , https://doi.org/10.1099/jmm.0.000565; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Denison, M.R., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) mBio, 9, pp. e00221-e00318; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J Infect Dis, 212, pp. 1894-1903. , https://doi.org/10.1093/infdis/jiv325; Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Wang, P., Tan, W., Ultra-potent human neutralizing antibody repertoires against MERS-CoV from a recovered patient (2018) J Infect Dis, 218, pp. 1249-1260. , https://doi.org/10.1093/infdis/jiy311; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, p. 234; Lamoral-Theys, D., Decaestecker, C., Mathieu, V., Dubois, J., Kornienko, A., Kiss, R., Evidente, A., Pottier, L., Lycorine and its derivatives for anticancer drug design (2010) Mini Rev Med Chem, 10, pp. 41-50. , https://doi.org/10.2174/138955710791112604; Cedrón, J.C., Gutiérrez, D., Flores, N., Ravelo, A.G., Estévez-Braun, A., Synthesis and antiplasmodial activity of lycorine derivatives (2010) Bioorg Med Chem, 18, pp. 4694-4701. , https://doi.org/10.1016/j.bmc.2010.05.023; Toriizuka, Y., Kinoshita, E., Kogure, N., Kitajima, M., Ishiyama, A., Otoguro, K., Yamada, H., Takayama, H., New lycorine-type alkaloid from Lycoris traubii and evaluation of antitrypanosomal and antimalarial activities of lycorine derivatives (2008) Bioorg Med Chem, 16, pp. 10182-10189. , https://doi.org/10.1016/j.bmc.2008.10.061; Hwang, Y.C., Chu, J.J., Yang, P.L., Chen, W., Yates, M.V., Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay (2008) Antiviral Res, 77, pp. 232-236. , https://doi.org/10.1016/j.antiviral.2007.12.009; Li, B., Wang, Q., Pan, X., Fernández De Castro, I., Sun, Y., Guo, Y., Tao, X., Lou, Z., Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation (2013) Proc Natl Acad Sci U S A, 110, pp. 9048-9053. , https://doi.org/10.1073/pnas.1222552110; Gabrielsen, B., Monath, T.P., Huggins, J.W., Kefauver, D.F., Pettit, G.R., Groszek, G., Hollingshead, M., Phelan, M.J., Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances (1992) J Nat Prod, 55, pp. 1569-1581. , https://doi.org/10.1021/np50089a003; Li, S.Y., Chen, C., Zhang, H.Q., Guo, H.Y., Wang, H., Wang, L., Zhang, X., Tan, X., Identification of natural compounds with antiviral activities against SARS-associated coronavirus (2005) Antiviral Res, 67, pp. 18-23. , https://doi.org/10.1016/j.antiviral.2005.02.007; Liu, J., Yang, Y., Xu, Y., Ma, C., Qin, C., Zhang, L., Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication (2011) Virol J, 8, p. 483. , https://doi.org/10.1186/1743-422X-8-483; Guo, Y., Wang, Y., Cao, L., Wang, P., Qing, J., Zheng, Q., Shang, L., Sun, Y., A conserved inhibitory mechanism of a lycorine derivative against enterovirus and hepatitis C virus (2016) Antimicrob Agents Chemother, 60, pp. 913-924. , https://doi.org/10.1128/AAC.02274-15; He, J., Qi, W.B., Wang, L., Tian, J., Jiao, P.R., Liu, G.Q., Ye, W.C., Liao, M., Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribo-nucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1 (2013) Influenza Other Respir Viruses, 7, pp. 922-931. , https://doi.org/10.1111/irv.12035; Matthews, H., Usman-Idris, M., Khan, F., Read, M., Nirmalan, N., Drug repositioning as a route to anti-malarial drug discovery: Preliminary investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride hydrate (2013) Malar J, 12, p. 359. , https://doi.org/10.1186/1475-2875-12-359; Low, J.S.Y., Chen, K.C., Wu, K.X., Ng, M.L., Chu, J.J.H., Antiviral activity of emetine dihydrochloride against dengue virus infection (2009) J Antivirals & Antiretrovirals, 1, pp. 62-71; Chaves Valadão, A.L., Abreu, C.M., Dias, J.Z., Arantes, P., Verli, H., Tanuri, A., De Aguiar, R.S., Natural plant alkaloid (emetine) inhibits HIV-1 replication by interfering with reverse transcriptase activity (2015) Molecules, 20, pp. 11474-11489. , https://doi.org/10.3390/molecules200611474; Khandelwal, N., Chander, Y., Rawat, K.D., Riyesh, T., Nishanth, C., Sharma, S., Jindal, N., Kumar, N., Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants (2017) Antiviral Res, 144, pp. 196-204. , https://doi.org/10.1016/j.antiviral.2017.06.006; MacGibeny, M.A., Koyuncu, O.O., Wirblich, C., Schnell, M.J., Enquist, L.W., Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1007188; Mukhopadhyay, R., Roy, S., Venkatadri, R., Su, Y.P., Ye, W., Barnaeva, E., Mathews Griner, L., Arav-Boger, R., Efficacy and mechanism of action of low dose emetine against human cytomegalovirus (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005717; Yang, S., Xu, M., Lee, E.M., Gorshkov, K., Shiryaev, S.A., He, S., Sun, W., Zheng, W., Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry (2018) Cell Discov, 4, p. 31. , https://doi.org/10.1038/s41421-018-0034-1; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yuen, K.Y., Treatment with lopinavir/ritonavir or interferon-1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212, pp. 1904-1913. , https://doi.org/10.1093/infdis/jiv392; Alonso-Caplen, F.V., Matsuoka, Y., Wilcox, G.E., Compans, R.W., Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin (1984) Virus Res, 1, pp. 153-167. , https://doi.org/10.1016/0168-1702(84)90070-4; Niemann, H., Boschek, B., Evans, D., Rosing, M., Tamura, T., Klenk, H.D., Post-translational glycosylation of coronavirus glycoprotein E1: Inhibition by monensin (1982) EMBO J, 1, pp. 1499-1504. , https://doi.org/10.1002/j.1460-2075.1982.tb01346.x; Kim, J.C., Spence, R.A., Currier, P.F., Lu, X., Denison, M.R., Coronavirus protein processing and RNA synthesis is inhibited by the cysteine pro-teinase inhibitor e64dd (1995) Virology, 208, pp. 1-8. , https://doi.org/10.1006/viro.1995.1123; Lu, R., Yu, X., Wang, W., Duan, X., Zhang, L., Zhou, W., Xu, J., Tan, W., Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0038638; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Tan, W., Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2, pp. 1438-1446. , https://doi.org/10.1016/j.ebiom.2015.08.031","Tan, W.; NHC Key Laboratory of Biosafety, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDCChina; email: tanwj28@163.com",,"American Society for Microbiology",0022538X,,JOVIA,"30918074","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85066499191 "Al Kahlout R.A., Nasrallah G.K., Farag E.A., Wang L., Lattwein E., Müller M.A., El Zowalaty M.E., Al Romaihi H.E., Graham B.S., Al Thani A.A., Yassine H.M.","57207458056;7801434176;55963332900;35199353800;48861634200;24068857400;36801657800;55963882100;7201610365;26640267200;23098797900;","Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus Antibodies in High- and Low-Risk Groups in Qatar",2019,"Journal of Immunology Research","2019",, 1386740,"","",,4,"10.1155/2019/1386740","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062542433&doi=10.1155%2f2019%2f1386740&partnerID=40&md5=19cbb3e199b8d26c40d87457d850fd55","Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar; Communicable Diseases Control Programs, Public Health Department, Ministry of Public Health, Doha, Qatar; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States; Euroimmun AG, Luebeck, Germany; Institute of Virology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; Virology and Microbiology Research Laboratory, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa","Al Kahlout, R.A., Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar; Nasrallah, G.K., Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar, Biomedical Research Center, Qatar University, Doha, Qatar; Farag, E.A., Communicable Diseases Control Programs, Public Health Department, Ministry of Public Health, Doha, Qatar; Wang, L., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States; Lattwein, E., Euroimmun AG, Luebeck, Germany; Müller, M.A., Institute of Virology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany; El Zowalaty, M.E., Virology and Microbiology Research Laboratory, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Al Romaihi, H.E., Communicable Diseases Control Programs, Public Health Department, Ministry of Public Health, Doha, Qatar; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States; Al Thani, A.A., Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar, Biomedical Research Center, Qatar University, Doha, Qatar; Yassine, H.M., Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar, Biomedical Research Center, Qatar University, Doha, Qatar","Infection with Middle East respiratory syndrome coronavirus (MERS-CoV) could be asymptomatic or cause mild influenza-like illness. Therefore, the prevalence of MERS-CoV infections in the general population could be underestimated, which necessitates active surveillance to determine the epidemiological importance of asymptomatic cases. The aim of this study is to evaluate the performance of various serological assays and to estimate the seroprevalence of anti-MERS-CoV antibodies in high- and low-risk groups in Qatar. A total of 4858 samples were screened, including 4719 samples collected from healthy blood donors (BD) over a period of five years (2012-2016), 135 samples from baseline case contacts (CC) collected from individuals in close contact with three positive PCR-confirmed patients (CP), and four samples from MERS-CoV CP. Initial screening using anti-MERS-CoV IgG (IgG rS1-ELISA kit) revealed ten reactive samples from BD (10/4719, 0.21%), one from CC (1/135, 0.74%), and three from CP (3/4, 75%). Samples from CP but not from BD were also reactive by whole-virus anti-MERS-CoV IgG (n=3/4) and IgM (n=1/4) indirect immunefluorescent tests (IIFT) and pseudoparticle neutralization test (ppNT). The reactive sample from CC was also confirmed by ppNT. Surprisingly, one out of thirteen (7.7%) randomly selected IgG rS1-ELISA-negative BD samples from the initial screening was reactive by the IgM-IIFT (but not by the IgG-IIFT) and was subsequently confirmed by ppNT. All IgG rS1-ELISA-reactive samples from BD exhibited considerable reactivity to the four circulating human coronaviruses (HKU1, OC43, 229E, and NL63). Cross-reactivity with SARS was only reported for samples from CP using IgG and IgM-IIFT. In conclusion, we report a low prevalence of anti-MERS antibodies in the general population, which coincides with the low number of all reported cases by the time of our study (2017) in Qatar (n=21). The false-positive results and the observed cross-reactivity between MERS-CoV and other circulating human coronavirus necessitate more detailed evaluation of available serological assays. © 2019 Reham A. Al Kahlout et al.",,"immunoglobulin G antibody; virus antibody; adult; aged; antibody response; Article; blood donor; blood transfusion; comparative study; controlled study; cross reaction; enzyme linked immunosorbent assay; false positive result; female; flu like syndrome; high risk population; human; low risk population; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; Qatar; serodiagnosis; seroprevalence; severe acute respiratory syndrome; adolescent; blood; Coronavirus infection; immunology; middle aged; population group; prevalence; risk; serology; young adult; Adolescent; Adult; Aged; Antibodies, Viral; Coronavirus Infections; Cross Reactions; False Positive Reactions; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Population Groups; Prevalence; Qatar; Risk; Serology; Young Adult","(2017), http://www.who.int/emergencies/merscov/en/, WHO; Hemida, M.G., Alnaeem, A., Chu, D.K.W., Longitudinal study of Middle East respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerging Microbes &Infections, 6; Raj, V.S., Farag, E.A., Reusken, C.B., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerging Infectious Diseases, 20 (8), pp. 1339-1342; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) The Lancet Infectious Diseases, 14 (2), pp. 140-145; Agnihothram, S., Gopal, R., Yount, B.L., Jr., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) The Journal of Infectious Diseases, 209 (7), pp. 995-1006; Dea, S., Verbeek, A.J., Tijssen, P., Antigenic and genomic relationships among Turkey and bovine enteric coronaviruses (1990) Journal of Virology, 64 (6), pp. 3112-3118; Chan, K.H., Chan, J.F.W., Tse, H., Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) Journal of Infection, 67 (2), pp. 130-140; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Eurosurveillance, 17 (49); Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Eurosurveillance, 17 (39); Palm, D., Pereyaslov, D., Vaz, J., Laboratory capability for molecular detection and confirmation of novel coronavirus in Europe, November 2012 (2012) Eurosurveillance, 17 (49); Reusken, C., Mou, H., Godeke, G.J., Specific serology for emerging human coronaviruses by protein microarray (2013) Eurosurveillance, 18 (14); http://apps.who.int/iris/bitstream/10665/176982/1/WHO_MERS_LAB_15.1_eng.pdf?ua=1, Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV); http://www.cdc.gov/coronavirus/mers/lab/lab-testing.html, CDC laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV); Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) The Lancet Infectious Diseases, 15 (5), pp. 559-564; Reusken, C.B.E.M., Farag, E.A.B.A., Haagmans, B.L., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013-2014 (2015) Emerging Infectious Diseases, 21 (8), pp. 1422-1425; Nasrallah, G.K., Dargham, S.R., Mohammed, L.I., Abu-Raddad, L.J., Estimating seroprevalence of herpes simplex virus type 1 among different Middle East and North African Male populations residing in Qatar (2018) Journal of Medical Virology, 90 (1), pp. 184-190; Al-Qahtani, A.A., Alabsi, E.S., AbuOdeh, R., Thalib, L., El Zowalaty, M.E., Nasrallah, G.K., Prevalence of anelloviruses (TTV, TTMDV, and TTMV) in healthy blood donors and in patients infected with HBV or HCV in Qatar (2016) Virology Journal, 13 (1), p. 208; AbuOdeh, R.O., Al-Absi, E., Ali, N.H., Detection and phylogenetic analysis of human pegivirus (GBV-C) among blood donors and patients infected with hepatitis B virus (HBV) in Qatar (2015) Journal of Medical Virology, 87 (12), pp. 2074-2081; AbuOdeh, R., Al-Mawlawi, N., Al-Qahtani, A.A., Detection and genotyping of torque teno virus (TTV) in healthy blood donors and patients infected with HBV or HCV in Qatar (2015) Journal of Medical Virology, 87 (7), pp. 1184-1191; Smatti, M.K., Yassine, H.M., AbuOdeh, R., Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar (2017) PLoS One, 12 (12); Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nature Communications, 6 (1), p. 7712; Afshar, P.T., Wong, W.H., COSINE: Non-seeding method for mapping long noisy sequences (2017) Nucleic Acids Research, 45 (14), p. e132; Sikkema, R.S., Farag, E.A.B.A., Himatt, S., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013-2014: A case-control study (2017) The Journal of Infectious Diseases, 215 (11), pp. 1702-1705; Mohran, K.A., Farag, E.A.B.A., Reusken, C.B.E.M., The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reversetranscription polymerase chain reaction (2016) Revue Scientifique et Technique, 35 (3), pp. 905-911; (2017), http://www.moh.gov.sa/en/CCC/PressReleases/Pages/default.aspx, Health KMo KSA Ministry of Health; (2017), http://www.who.int/csr/don/27-april-2017-mers-saudi-arabia-and-qatar/en/, Organization WH WHO; Choe, P.G., Perera, R.A.P.M., Park, W.B., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerging Infectious Diseases, 23 (7), pp. 1079-1084; Ko, J.H., Müller, M.A., Seok, H., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagnostic Microbiology and Infectious Disease, 89 (2), pp. 106-111; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) The New England Journal of Medicine, 371, pp. 828-835; Pallesen, J., Wang, N., Corbett, K.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proceedings of the National Academy of Sciences of the United States of America, 114 (35), pp. E7348-E7357; Walls, A.C., Tortorici, M.A., Bosch, B.J., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), pp. 118-121; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathogens, 14 (8); Shang, J., Zheng, Y., Yang, Y., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathogens, 14 (4); Shang, J., Zheng, Y., Yang, Y., Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state (2018) Journal of Virology, 92 (4); Yuan, Y., Cao, D., Zhang, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nature Communications, 8","Yassine, H.M.; Department of Biomedical Sciences, College of Health Sciences, Qatar UniversityQatar; email: hyassine@qu.edu.qa",,"Hindawi Limited",23148861,,,"30906787","English","J. Immunol. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85062542433 "Farsang A., Bódi I., Fölker O., Minkó K., Benyeda Z., Bálint Á., Oláh I.","12140724600;35093648900;57195640081;6507869202;26030885200;8308795400;7006129565;","Avian coronavirus infection induces mannose-binding lectin production in dendritic cell precursors of chicken lymphoid organs",2019,"Acta Veterinaria Hungarica","67","2",,"183","196",,,"10.1556/004.2019.020","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068860036&doi=10.1556%2f004.2019.020&partnerID=40&md5=a1d7b8f73acd49971dd4ff1303c817bf","National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary; Ceva-Phylaxia Co. Ltd., Szállás u. 5, Budapest, H-1107, Hungary; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Prophyl Ltd., Mohács, Hungary; National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary","Farsang, A., National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary, Ceva-Phylaxia Co. Ltd., Szállás u. 5, Budapest, H-1107, Hungary; Bódi, I., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Fölker, O., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Minkó, K., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Benyeda, Z., Prophyl Ltd., Mohács, Hungary; Bálint, Á., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary; Oláh, I., Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary","The aim of this immunocytochemical study was to compare mannose-binding lectin (MBL) production induced by avian coronavirus in the spleen and caecal tonsil (CT). One-day-old specific-pathogen-free (SPF) chickens were experimentally infected with six QX field isolates and the H120 vaccine strain. In the negative control birds, the spleen was MBL negative, while the CT showed scattered MBL-positive cells in close proximity and within the surface epithelium and germinal centre (GC)-like cell clusters. MBL was detectable in the ellipsoid-associated cells (EACs) and cell clusters in the periarterial lymphoid sheath (PALS) by 7 days post infection (dpi). In both organs, the MBL-positive cells occupy antigen-exposed areas, indicating that GC formation depends on resident precursors of dendritic cells. The majority of MBL-positive EACs express the CD83 antigen, providing evidence that coronavirus infection facilitated the maturation of dendritic cell precursors. Surprisingly, co-localisation of MBL and CD83 was not detectable in the CT. In the spleen (associated with circulation), the EACs producing MBL and expressing CD83 are a common precursor of both follicular (FDC) and interdigitating dendritic cells (IDC). In the CT (gut-associated lymphoid tissue, GALT) the precursors of FDC and IDC are MBL-producing cells and CD83-positive cells, respectively. In the CT the two separate precursors of lymphoid dendritic cells provide some ‘autonomy’ for the GALT. © 2019 Akadémiai Kiadó, Budapest","Avian coronavirus; Caecal tonsil; Mannose-binding lectin; Precursor of follicular dendritic cell; Spleen","avian protein; mannose binding lectin; animal; bird disease; cecum; chicken; Coronavirus infection; dendritic cell; Gammacoronavirus; germfree animal; immunology; metabolism; physiology; spleen; veterinary medicine; Animals; Avian Proteins; Cecum; Chickens; Coronavirus Infections; Dendritic Cells; Gammacoronavirus; Mannose-Binding Lectins; Poultry Diseases; Specific Pathogen-Free Organisms; Spleen","Ambali, A.G., Jones, R.C., Early pathogenesis in chicks of infection with an entero-tropic strain of infectious bronchitis virus (1990) Avian Dis, 34, pp. 809-817; Bódi, I., Minkó, K., Molnár, D., Nagy, N., Oláh, I., A novel aspect of the structure of the avian thymic medulla (2015) Cell and Tissue Res, 359, pp. 489-501; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Cook, J.K.A., Recovery of infectious bronchitis virus from eggs and chicks produced by experimentally inoculated hens (1971) J. Comp. Pathol., 81, pp. 203-211; Cumming, R.B., The etiology of uraemia of chickens (1962) Aust. Vet. J., 38, p. 554; Dalgaard, T., Skovgaard, K., Norup, L.R., Pleidrup, J., Permin, A., Schou, T.W., Vadekar, D.F., Juul-Madsen, H.R., Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli (2015) Vet. Immunol. Immunopathol., 164, pp. 79-86; Dhinakar Raj, G., Jones, R.C., Infectious bronchitis virus: Immunopathogenesis of infection in the chicken (1997) Avian Pathol, 26, pp. 677-706; Farsang, A., Bódi, I., Fölker, O., Minkó, K., Benyeda, Z., Bálint, Á., Kiss, L.A., Oláh, I., Coronavirus infection retards the development of the cortico-medullary capillary network in the bursa of Fabricius of chicken (2018) Acta Vet. Hung., 66, pp. 20-27; Flores-Romo, L., In vivo maturation and migration of dendritic cells (2001) Immunology, 102, pp. 255-262; Gelb, J., Jr., Lunt, R.L., Metz, A.L., Fries, P.A., Attenuation of avian infectious bronchitis virus by cold adaptation (1991) Avian Dis, 35, pp. 847-853; Gunn, M.D., Chemokine mediated control of dendritic cell migration and function (2003) Semin. Immunol., 15, pp. 271-276; Hamzić, E., Kjarup, R.B., Mach, N., Minozzi, G., Strozzi, F., Gualdi, V., Williams, J.L., Dalgaard, T.S., RNA sequencing-based analysis of the spleen transcriptome following infectious bronchitis virus infection of chickens selected for different mannose-binding lectin serum concentrations (2016) BMC Genomics, 17, p. 82; Hansell, C., Zhu, X.W., Brooks, H., Sheppard, M., Withanage, S., Maskell, D., McConnell, I., Unique features and distribution of the chicken CD83+ cell (2007) J. Immunol., 179, pp. 5117-5125; Hock, B.D., Kato, M., McKenzie, J.L., Hart, D.N., A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera (2001) Int. Immunol., 13, pp. 959-967; Igyártó, B.Z., Magyar, A., Oláh, I., Origin of follicular dendritic cell in the chicken spleen (2007) Cell and Tissue Res, 327, pp. 83-92; Igyártó, B.Z., Nagy, N., Magyar, A., Oláh, I., Identification of the avian B-cell-specific Bu1 alloantigen by a novel monoclonal antibody (2008) Poult. Sci., 87, pp. 351-355; Jeurissen, S., Janse, E.M., The microenvironment of the chicken immune system (1996) Poultry Immunology. Poultry Science Symposium Series, 24, pp. 47-66. , Davison, T. F., Morris, T. R. and Payne, L. N. eds Carfax Publishing Company, Abingdon; Jeurissen, S., Claassen, E., Janse, E.M., Histological and functional differentiation of non-lymphoid cells in the chicken spleen (1992) Immunology, 77, pp. 75-80; Kinde, H., Daft, B.M., Castro, A.E., Bickford, A.A., Gelb, J., Reynolds, B., Viral pathogenesis of a nephrotropic infectious bronchitis virus isolated from commercial pullets (1991) Avian Dis, 35, pp. 415-421; Kiss, I., Mató, T., Homonnay, Z.G., Kojer, J., Farsang, A., Bálint, Á., Palya, V., Survey indicates circulation of 4/91 and QX-type infectious bronchitis viruses in Hungary in 2014 – Short communication (2015) Acta Vet. Hung., 63, pp. 382-388; Kjaerup, R.M., Dalgaard, T.S., Norup, L.R., Bergman, I.M., Sorensen, P., Juul-Madsen, H.R., Adjuvant effects of mannose-binding lectin ligands on the immune response to infectious bronchitis vaccine in chickens with high or low serum mannose-binding lectin concentrations (2013) Immunobiology, 219, pp. 263-274; Kjaerup, R.M., Dalgaard, T.S., Norup, L.R., Hamzic, E., Sorensen, P., Juul-Madsen, H.R., Characterization of cellular and humoral immune responses after IBV infection in chicken lines differing in MBL serum concentration (2014) Viral Immunol, 27, pp. 529-542; Lambrechts, C., Pensaert, M., Ducatelle, R., Challenge experiments to evaluate cross-protection induced at the trachea and kidney level by vaccine strains and Belgian nephro-pathogenic isolates of avian infectious bronchitis virus (1993) Avian Pathol, 22, pp. 577-590; Laursen, S.B., Dalgaard, T.S., Thiel, S., Lim, B.L., Jensen, T.V., Juul-Madsen, H.R., Takahashi, A., Jensenius, J.C., Cloning and sequencing of a cDNA encoding chicken mannan-binding lectin (MBL) and comparison with mammalian analogues (1998) Immunology, 93, pp. 421-430; Lechmann, M., Berchtold, S., Hauber, J., Steinkasserer, A., CD83 on dendritic cells: More than just a marker for maturation (2002) Trends Immunol, 23, pp. 273-575; Mast, J., Goddeeris, B.M., Peeters, K., Vandesande, F., Berghman, L.R., Characterisation of chicken monocytes, macrophages and interdigitating cells by the monoclonal antibody KUL01 (1998) Vet. Immunol. Immunopathol., 61, pp. 343-357; Nielsen, O.L., Jorgensen, P.H., Hedemand, J., Jensenius, J.C., Koch, C., Laurse, S.B., Immunohistochemical investigation of the tissue distribution of mannan-binding lectin in noninfected and virus-infected chickens (1998) Immunology, 94, pp. 122-128; Nielsen, O.L., Jensenius, J.C., Jorgensen, P.H., Laursen, S.B., Serum levels of chicken mannan-binding lectin (MBL) during virus infections; indication that chicken MBL is an acute phase reactant (1999) Vet. Immunol. Immunopathol., 70, pp. 309-316; Oláh, I., Glick, B., Splenic white pulp and associated vascular channels in chicken spleen (1982) Am. J. Anat., 165, pp. 445-480; Otsuki, K., Huggins, M.B., Cook, J.K.A., Comparison of the susceptibility to avian infectious bronchitis virus infection of two inbred lines of White Leghorn chickens (1990) Avian Pathol, 19, pp. 467-475; Otsuki, K., Nakamura, T., Kubota, N., Kawaoka, Y., Tsubokura, M., Comparison of two strains of avian infectious bronchitis virus for their interferon induction, viral growth and development of virus-neutralizing antibody in experimentally-infected chickens (1987) Vet. Microbiol., 12, pp. 31-40; Picault, J.P., Drouin, P., Toux, J.Y., Guittet, M., Bennejean, G., Infectious bronchitis in France: Epidemiological situation and prophylactic practices (1991) Proceedings of the IInd International Symposium on Infectious Bronchitis, pp. 3-22. , Rauischholzhausen, Germany; Prazma, C.M., Tedder, T.F., Dendritic cell CD83: A therapeutic target or innocent bystander? (2007) Immunol. Lett., 115, pp. 1-8; Prechtel, A.T., Steinkasserer, A., CD83: An update on functions and prospects of the maturation marker of dendritic cells (2007) Arch. Dermatol. Res., 299, pp. 59-69; Randolph, G.J., Angeli, V., Swartz, M.A., Dendritic-cell trafficking to lymph nodes through lymphatic vessels (2005) Nat. Rev. Immunol., 5, pp. 617-628; Sallusto, F., Cella, M., Danieli, C., Lanzavecchia, A., Dendritic cells use micropinocy-tosis and the mannose receptor to concentrate macromolecules in the major histocompati-bility complex class II compartment: Downregulation by cytokines and bacterial products (1995) J. Exp. Med., 182, pp. 389-400; Schou, T.W., Permin, A., Christensen, J.P., Cu, H.P., Juul-Madsen, H.R., Mannan-binding lectin (MBL) in two chicken breeds and the correlation with experimental Pasteurella multocida infection (2010) Comp. Immunol. Microbiol. Infect. Dis., 33, pp. 183-195; Staines, K., Hunt, L.G., Young, J.R., Butter, C., Evolution of an expanded mannose receptor gene family (2014) PLoS One, 12; Staines, K., Young, J.R., Butter, C., Expression of chicken DEC205 reflects the unique structure and function of the avian immune system (2013) PLoS One, 8; Toro, H., Godoy, V., Larenas, J., Reyes, E., Kaleta, E.F., Avian infectious bronchitis – Viral persistence in the Harderian gland and histological changes after eye-drop vaccination (1996) Avian Dis, 40, pp. 114-120; Ulrich-Lynge, S.L., Dalgaard, T.S., Norup, L.R., Kjaerup, R.M., Olsen, J.E., Sorensen, P., Juul-Madsen, H.R., The consequence of low mannose-binding lectin plasma concentration in relation to susceptibility to Salmonella Infantis in chickens (2015) Vet. Immunol. Immunopathol., 163, pp. 23-32; Ulrich-Lynge, S.L., Dalgaard, T.S., Norup, L.R., Song, X., Sorensen, P., Juul-Madsen, H.R., Chicken mannose-binding lectin function in relation to antibacterial activity towards Salmonella enterica (2015) Immunobiology, 220, pp. 555-563; White, R.G., French, V.I., Stark, J.M., A study of the localisation of a protein antigen in the chicken spleen and its relation to the formation of germinal centres (1970) J. Med. Microbiol., 3, pp. 65-83; Zhang, W., Bouwman, K.M., van Beurden, S.J., Ordonez, S.R., van Eijk, M., Haagsman, H.P., Verheije, M.H., Veldhuizen, E.J.A., Chicken mannose binding lectin has antiviral activity towards infectious bronchitis virus (2017) Virology, 509, pp. 252-259; Zhou, L.J., Tedder, T.F., Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily (1995) J. Immunol., 154, pp. 3821-3835; Zhou, L.J., Schwarting, R., Smith, H.M., Tedder, T.F., A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily (1992) J. Immunol., 149, pp. 735-742","Farsang, A.; National Food Chain Safety Office, Directorate of Veterinary Medicinal ProductsHungary; email: attila.farsang@ceva.com",,"Akademiai Kiado Rt.",02366290,,,"31238731","English","Acta Vet. Hung.",Article,"Final",Open Access,Scopus,2-s2.0-85068860036 "Terada Y., Kuroda Y., Morikawa S., Matsuura Y., Maeda K., Kamitani W.","55338925400;57190012989;7102226341;7202988996;7404376201;6603075332;","Establishment of a virulent full-length cDNA clone for type I feline coronavirus strain C3663",2019,"Journal of Virology","93","21", e01208-19,"","",,,"10.1128/JVI.01208-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073312421&doi=10.1128%2fJVI.01208-19&partnerID=40&md5=6122fe55dcb5906a946023172541884b","Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan; Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan","Terada, Y., Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan, Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan; Kuroda, Y., Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan; Morikawa, S., Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan; Matsuura, Y., Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Maeda, K., Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan, Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan; Kamitani, W., Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan","Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV. IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression. © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; Viral replication","complementary DNA; virus RNA; A-72 cell line; animal cell; Article; bacterial artificial chromosome; controlled study; Coronaviridae infection; Feline coronavirus; fibroblast; life cycle; molecular cloning; Nluc gene; nonhuman; priority journal; reverse genetics; RNA transcription; virus gene; virus replication; virus strain; virus virulence","Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820. , https://doi.org/10.3390/v2081803; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, , Academic Press, London, United Kingdom; Biek, R., Ruth, T.K., Murphy, K.M., Anderson, C.R., Jr., Johnson, M., DeSimone, R., Gray, R., Poss, M., Factors associated with pathogen seroprevalence and infection in rocky mountain cougars (2006) J Wildl Dis, 42, pp. 606-615. , https://doi.org/10.7589/0090-3558-42.3.606; Hofmann-Lehmann, R., Fehr, D., Grob, M., Elgizoli, M., Packer, C., Martenson, J.S., O’Brien, S.J., Lutz, H., Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east africa (1996) Clin Diagn Lab Immunol, 3, pp. 554-562; Heeney, J.L., Evermann, J.F., McKeirnan, A.J., Marker-Kraus, L., Roelke, M.E., Bush, M., Wildt, D.E., Lukas, J., Prevalence and implications of feline coronavirus infections of captive and free-ranging cheetahs (acinonyx jubatus) (1990) J Virol, 64, pp. 1964-1972; Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683 (1984) Am J Vet Res, 45, pp. 2580-2585; Holzworth, J., Some important disorders of cats (1963) Cornell Vet, 53, pp. 157-160; Terada, Y., Shiozaki, Y., Shimoda, H., Mahmoud, H.Y., Noguchi, K., Nagao, Y., Shimojima, M., Maeda, K., Feline infectious peritonitis virus with a large deletion in the 5’-terminal region of the spike gene retains its virulence for cats (2012) J Gen Virol, 93, pp. 1930-1934. , https://doi.org/10.1099/vir.0.043992-0; Fiscus, S.A., Teramoto, Y.A., Antigenic comparison of feline coronavirus isolates: Evidence for markedly different peplomer glycoproteins (1987) J Virol, 61, pp. 2607-2613; Hohdatsu, T., Sasamoto, T., Okada, S., Koyama, H., Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): Preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683 (1991) Vet Microbiol, 28, pp. 13-24. , https://doi.org/10.1016/0378-1135(91)90096-X; Benetka, V., Kübber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Möstl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet Microbiol, 99, pp. 31-42. , https://doi.org/10.1016/j.vetmic.2003.07.010; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in switzerland (2005) Clin Diagn Lab Immunol, 12, pp. 1209-1215. , https://doi.org/10.1128/CDLI.12.10.1209-1215.2005; Shiba, N., Maeda, K., Kato, H., Mochizuki, M., Iwata, H., Differentiation of feline coronavirus type I and II infections by virus neutralization test (2007) Vet Microbiol, 124, pp. 348-352. , https://doi.org/10.1016/j.vetmic.2007.04.031; Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., Differences in virus receptor for type I and type II feline infectious peritonitis virus (1998) Arch Virol, 143, pp. 839-850. , https://doi.org/10.1007/s007050050336; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184. , https://doi.org/10.3390/v1020166; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J Clin Microbiol, 34, pp. 3180-3184; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157. , https://doi.org/10.1006/viro.1998.9045; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18, pp. 1089-1095. , https://doi.org/10.3201/eid1807.120143; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg Infect Dis, 19, pp. 1066-1073. , https://doi.org/10.3201/eid1907.121094; Kiss, I., Poland, A.M., Pedersen, N.C., Disease outcome and cytokine responses in cats immunized with an avirulent feline infectious peritonitis virus (FIPV)-UCD1 and challenge-exposed with virulent FIPV-UCD8 (2004) J Feline Med Surg, 6, pp. 89-97. , https://doi.org/10.1016/j.jfms.2003.08.009; Pedersen, N.C., Black, J.W., Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus (1983) Am J Vet Res, 44, pp. 229-234; Mochizuki, M., Mitsutake, Y., Miyanohara, Y., Higashihara, T., Shimizu, T., Hohdatsu, T., Antigenic and plaque variations of serotype II feline infectious peritonitis coronaviruses (1997) J Vet Med Sci, 59, pp. 253-258. , https://doi.org/10.1292/jvms.59.253; Eckert, N., Wrensch, F., Gartner, S., Palanisamy, N., Goedecke, U., Jager, N., Pohlmann, S., Winkler, M., Influenza a virus encoding secreted gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0097695; Tran, V., Moser, L.A., Poole, D.S., Mehle, A., Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread (2013) J Virol, 87, pp. 13321-13329. , https://doi.org/10.1128/JVI.02381-13; Tekes, G., Hofmann-Lehmann, R., Stallkamp, I., Thiel, V., Thiel, H.J., Genome organization and reverse genetic analysis of a type I feline coronavirus (2008) J Virol, 82, pp. 1851-1859. , https://doi.org/10.1128/JVI.02339-07; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, M.J., Cyclosporin a inhibits the replication of diverse coronaviruses (2011) J Gen Virol, 92, pp. 2542-2548. , https://doi.org/10.1099/vir.0.034983-0; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C.C., Müller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002331; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., van den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58, pp. 4875-4884. , https://doi.org/10.1128/AAC.03011-14; Boyle, J.F., Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Black, J.W., Plaque assay, polypeptide composition and immunochemistry of feline infectious peritonitis virus and feline enteric coronavirus isolates (1984) Adv Exp Med Biol, 173, pp. 133-147. , https://doi.org/10.1007/978-1-4615-9373-7_12; McKeirnan, A.J., Evermann, J.F., Davis, E.V., Ott, R.L., Comparative properties of feline coronaviruses in vitro (1987) Can J Vet Res, 51, pp. 212-216; Terada, Y., Kawachi, K., Matsuura, Y., Kamitani, W., MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA (2017) Virology, 511, pp. 95-105. , https://doi.org/10.1016/j.virol.2017.08.026; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , https://doi.org/10.1016/j.virusres.2014.11.021; Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J.I., Matsuda, Z., Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus s protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay (2016) Antimicrob Agents Chemother, 60, pp. 6532-6539. , https://doi.org/10.1128/AAC.01043-16; Walmsley, S., Bernstein, B., King, M., Arribas, J., Beall, G., Ruane, P., Johnson, M., Team, M.S., Lopinavirritonavir versus nelfinavir for the initial treatment of HIV infection (2002) N Engl J Med, 346, pp. 2039-2046. , https://doi.org/10.1056/NEJMoa012354; Hsieh, L.E., Lin, C.N., Su, B.L., Jan, T.R., Chen, C.M., Wang, C.H., Lin, D.S., Chueh, L.L., Synergistic antiviral effect of galanthus nivalis agglutinin and nelfinavir against feline coronavirus (2010) Antiviral Res, 88, pp. 25-30. , https://doi.org/10.1016/j.antiviral.2010.06.010; Kim, Y., Mandadapu, S.R., Groutas, W.C., Chang, K.O., Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3c-like protease (2013) Antiviral Res, 97, pp. 161-168. , https://doi.org/10.1016/j.antiviral.2012.11.005; Takano, T., Katoh, Y., Doki, T., Hohdatsu, T., Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo (2013) Antiviral Res, 99, pp. 100-107. , https://doi.org/10.1016/j.antiviral.2013.04.016; Fischer, Y., Ritz, S., Weber, K., Sauter-Louis, C., Hartmann, K., Randomized, placebo controlled study of the effect of propentofylline on survival time and quality of life of cats with feline infectious peritonitis (2011) J Vet Intern Med, 25, pp. 1270-1276. , https://doi.org/10.1111/j.1939-1676.2011.00806.x; Pedersen, N.C., An update on feline infectious peritonitis: Diagnostics and therapeutics (2014) Vet J, 201, pp. 133-141. , https://doi.org/10.1016/j.tvjl.2014.04.016; Olsen, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., Scott, F.W., Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages (1992) J Virol, 66, pp. 956-965; Takano, T., Kawakami, C., Yamada, S., Satoh, R., Hohdatsu, T., Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection (2008) J Vet Med Sci, 70, pp. 1315-1321. , https://doi.org/10.1292/jvms.70.1315; Jacobse-Geels, H.E., Daha, M.R., Horzinek, M.C., Isolation and characterization of feline c3 and evidence for the immune complex pathogenesis of feline infectious peritonitis (1980) J Immunol, 125, pp. 1606-1610; Jacobse-Geels, H.E., Daha, M.R., Horzinek, M.C., Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis (1982) Am J Vet Res, 43, pp. 666-670; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J Virol, 72, pp. 4508-4514; Terada, Y., Matsui, N., Noguchi, K., Kuwata, R., Shimoda, H., Soma, T., Mochizuki, M., Maeda, K., Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0106534; Pratelli, A., Martella, V., Decaro, N., Tinelli, A., Camero, M., Cirone, F., Elia, G., Buonavoglia, C., Genetic diversity of a canine coronavirus detected in pups with diarrhoea in italy (2003) J Virol Methods, 110, pp. 9-17. , https://doi.org/10.1016/S0166-0934(03)00081-8; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs (2009) J Virol, 83, pp. 1532-1537. , https://doi.org/10.1128/JVI.01937-08; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase n serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J Virol, 70, pp. 8669-8674; Pratelli, A., Decaro, N., Tinelli, A., Martella, V., Elia, G., Tempesta, M., Cirone, F., Buonavoglia, C., Two genotypes of canine coronavirus simultaneously detected in the fecal samples of dogs with diarrhea (2004) J Clin Microbiol, 42, pp. 1797-1799. , https://doi.org/10.1128/jcm.42.4.1797-1799.2004; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J Virol, 84, pp. 12658-12664. , https://doi.org/10.1128/JVI.01542-10; Verheije, M.H., Raaben, M., Mari, M., Te Lintelo, E.G., Reggiori, F., van Kuppeveld, F.J., Rottier, P.J., de Haan, C.A., Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation (2008) PLoS Pathog, 4. , https://doi.org/10.1371/journal.ppat.1000088; Wu, C.H., Chen, P.J., Yeh, S.H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16, pp. 462-472. , https://doi.org/10.1016/j.chom.2014.09.009; Han, H.J., Wen, H.L., Zhou, C.M., Chen, F.F., Luo, L.M., Liu, J.W., Yu, X.J., Bats as reservoirs of severe emerging infectious diseases (2015) Virus Res, 205, pp. 1-6. , https://doi.org/10.1016/j.virusres.2015.05.006; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , https://doi.org/10.1126/science.1118391; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and europe (2013) Emerg Infect Dis, 19, pp. 456-459. , https://doi.org/10.3201/eid1903.121503; Lau, S.K.P., Wong, E.Y.M., Tsang, C.C., Ahmed, S.S., Au-Yeung, R.K.H., Yuen, K.Y., Wernery, U., Woo, P., Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission (2018) J Virol, 92. , https://doi.org/10.1128/JVI.00265-18; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., van Ranst, M., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604. , https://doi.org/10.1128/JVI.79.3.1595-1604.2005; van Hemert, M.J., van den Worm, S.H., Knoops, K., Mommaas, A.M., Gorbalenya, A.E., Snijder, E.J., SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro (2008) PLoS Pathog, 4. , https://doi.org/10.1371/journal.ppat.1000054; Sola, I., Mateos-Gomez, P.A., Almazan, F., Zuñiga, S., Enjuanes, L., RNA-RNA and RNA-protein interactions in coronavirus replication and transcription (2011) RNA Biol, 8, pp. 237-248. , https://doi.org/10.4161/rna.8.2.14991; Ehmann, R., Kristen-Burmann, C., Bank-Wolf, B., Konig, M., Herden, C., Hain, T., Thiel, H.J., Tekes, G., Reverse genetics for type I feline coronavirus field isolate to study the molecular pathogenesis of feline infectious peritonitis (2018) mBio, 9, pp. e01422-e01518. , https://doi.org/10.1128/mBio.01422-18; Jacobse-Geels, H.E., Horzinek, M.C., Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells (1983) J Gen Virol, 64, pp. 1859-1866. , https://doi.org/10.1099/0022-1317-64-9-1859; Binn, L.N., Marchwicki, R.H., Stephenson, E.H., Establishment of a canine cell line: Derivation, characterization, and viral spectrum (1980) Am J Vet Res, 41, pp. 855-860; Nakano, H., Kameo, Y., Andoh, K., Ohno, Y., Mochizuki, M., Maeda, K., Establishment of canine and feline cells expressing canine signaling lymphocyte activation molecule for canine distemper virus study (2009) Vet Microbiol, 133, pp. 179-183. , https://doi.org/10.1016/j.vetmic.2008.06.016; Gaush, C.R., Hard, W.L., Smith, T.F., Characterization of an established line of canine kidney cells (MDCK) (1966) Proc Soc Exp Biol Med, 122, pp. 931-935. , https://doi.org/10.3181/00379727-122-31293; Wellman, M.L., Krakowka, S., Jacobs, R.M., Kociba, G.J., A macrophagemonocyte cell line from a dog with malignant histiocytosis (1988) Vitro Cell Dev Biol, 24, pp. 223-229. , https://doi.org/10.1007/BF02623551; Almazán, F., Dediego, M.L., Galán, C., Escors, D., Álvarez, E., Ortego, J., Sola, I., Enjuanes, L., Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis (2006) J Virol, 80, pp. 10900-10906. , https://doi.org/10.1128/JVI.00385-06; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc Natl Acad Sci U S A, 103, pp. 12885-12890. , https://doi.org/10.1073/pnas.0603144103; Tanaka, T., Kamitani, W., DeDiego, M.L., Enjuanes, L., Matsuura, Y., Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA (2012) J Virol, 86, pp. 11128-11137. , https://doi.org/10.1128/JVI.01700-12; Tamura, T., Fukuhara, T., Uchida, T., Ono, C., Mori, H., Sato, A., Fauzyah, Y., Matsuura, Y., Characterization of recombinant flaviviridae viruses possessing a small reporter tag (2018) J Virol, 92, pp. e01582-e01617. , https://doi.org/10.1128/JVI.01582-17; Gut, M., Leutenegger, C.M., Huder, J.B., Pedersen, N.C., Lutz, H., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses (1999) J Virol Methods, 77, pp. 37-46. , https://doi.org/10.1016/S0166-0934(98)00129-3; Shimoda, H., Mahmoud, H.Y., Noguchi, K., Terada, Y., Takasaki, T., Shimojima, M., Maeda, K., Production and characterization of monoclonal antibodies to japanese encephalitis virus (2013) J Vet Med Sci, 75, pp. 1077-1080. , https://doi.org/10.1292/jvms.12-0558; Shimoda, H., Inthong, N., Noguchi, K., Terada, Y., Nagao, Y., Shimojima, M., Takasaki, T., Maeda, K., Development and application of an indirect enzyme-linked immunosorbent assay for serological survey of japanese encephalitis virus infection in dogs (2013) J Virol Methods, 187, pp. 85-89. , https://doi.org/10.1016/j.jviromet.2012.09.022","Kamitani, W.; Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka UniversityJapan; email: wakamita@biken.osaka-u.ac.jp",,"American Society for Microbiology",0022538X,,JOVIA,"31375588","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85073312421 "Viehweger A., Krautwurst S., Lamkiewicz K., Madhugiri R., Ziebuhr J., Hölzer M., Marz M.","55547487000;57210905762;57201269136;26654846800;7003783935;56868280900;23134902300;","Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis",2019,"Genome Research","29","9",,"1545","1554",,2,"10.1101/gr.247064.118","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071788565&doi=10.1101%2fgr.247064.118&partnerID=40&md5=da096573514ff36671f9d3c3b741b377","RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, 07743, Germany; European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany; Institute of Medical Virology, Justus Liebig University Gießen, Gießen, 35390, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, 07743, Germany","Viehweger, A., RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, 07743, Germany, European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany; Krautwurst, S., RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, 07743, Germany, European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany; Lamkiewicz, K., RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, 07743, Germany, European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany; Madhugiri, R., Institute of Medical Virology, Justus Liebig University Gießen, Gießen, 35390, Germany; Ziebuhr, J., European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany, Institute of Medical Virology, Justus Liebig University Gießen, Gießen, 35390, Germany; Hölzer, M., RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, 07743, Germany, European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany; Marz, M., RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, 07743, Germany, European Virus Bioinformatics Center, Friedrich Schiller University Jena, Jena, 07743, Germany, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, 07743, Germany","Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called ""quasispecies."" Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes. © 2019 Viehweger et al.",,"messenger RNA; virus RNA; Article; consensus sequence; controlled study; Coronaviridae; Coronavirinae; genome size; haplotype; human; human cell; nonhuman; priority journal; quasispecies; reverse transcription; RNA degradation; RNA extraction; RNA methylation; RNA sequence; sequence analysis; virus genome; whole genome sequencing; cell line; Coronavirinae; genetic variation; genetics; methylation; molecular evolution; procedures; Cell Line; Coronavirus; Evolution, Molecular; Genetic Variation; Genome Size; Humans; Methylation; Nanopore Sequencing; Quasispecies; Sequence Analysis, RNA","Alonso, S., Izeta, A., Sola, I., Enjuanes, L., Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus (2002) J Virol, 76, pp. 1293-1308; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410; Baaijens, J.A., Aabidine, A.Z.E., Rivals, E., Schönhuth, A., De novo assembly of viral quasispecies using overlap graphs (2017) Genome Res, 27, pp. 835-848; Breiling, A., Lyko, F., Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond (2015) Epigenetics Chromatin, 8, p. 24; Brian, D.A., Spaan, W.J., Recombination and coronavirus defective interfering RNAs (1997) Semin Virol, 8, pp. 101-111; Břinda, K., Boeva, V., Kucherov, G., (2017) Ococo: An Online Consensus Caller, , [q-bio.GN]; Brown, C.G., Nixon, K.S., Senanayake, S.D., Brian, D.A., An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication (2007) J Virol, 81, pp. 7716-7724; Chang, R.-Y., Hofmann, M.A., Sethna, P.B., Brian, D.A., A cis-acting function for the coronavirus leader in defective interfering RNA replication (1994) J Virol, 68, pp. 8223-8231; Chang, R.-Y., Krishnan, R., Brian, D.A., The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA (1996) J Virol, 70, pp. 2720-2729; Chua, E.W., Ng, P.Y., MinION: A novel tool for predicting drug hypersensitivity? (2016) Front Pharmacol, 7, p. 156; Depledge, D.P., Puthankalam, S.K., Sadaoka, T., Beady, D., Mori, Y., Placantonakis, D.G., Mohr, I., Wilson, A.C., (2018) Native RNA Sequencing on Nanopore Arrays Redefines the Transcriptional Complexity of A Viral Pathogen, , bioRxiv; Engel, S.R., Dietrich, F.S., Fisk, D.G., Binkley, G., Balakrishnan, R., Costanzo, M.C., Dwight, S.S., Nash, R.S., The reference genome sequence of saccharomyces cerevisiae: Then and now (2014) G3 (Bethesda), 4, pp. 389-398; Faria, N.R., Quick, J., Claro, I., Theze, J., De Jesus, J.G., Giovanetti, M., Kraemer, M.U.G., Da Costa, A.C., Establishment and cryptic transmission of zika virus in Brazil and the americas (2017) Nature, 546, pp. 406-410; Furuya, T., Macnaughton, T.B., La Monica, N., Lai, M.M., Natural evolution of coronavirus defective-interfering RNA involves RNA recombination (1993) Virology, 194, pp. 408-413; Gallei, A., Pankraz, A., Thiel, H.-J., Becher, P., RNA recombination in vivo in the absence of viral replication (2004) J Virol, 78, pp. 6271-6281; Garalde, D.R., Snell, E.A., Jachimowicz, D., Sipos, B., Lloyd, J.H., Bruce, M., Pantic, N., Warland, A., Highly parallel direct RNA sequencing on an array of nanopores (2018) Nat Methods, 15, pp. 201-206; Grozhik, A.V., Jaffrey, S.R., Epitranscriptomics: Shrinking maps of RNA modifications (2017) Nature, 551, pp. 174-176; Gustin, K.M., Guan, B.-J., Dziduszko, A., Brian, D.A., Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements (2009) J Virol, 83, pp. 6087-6097; Hertzig, T., Scandella, E., Schelle, B., Ziebuhr, J., Siddell, S.G., Ludewig, B., Thiel, V., Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA (2004) J Gen Virol, 85, pp. 1717-1725; Holmes, E.C., (2009) The Evolution and Emergence of RNA Viruses, , Oxford University Press, Oxford, New York; Hölzer, M., Marz, M., Software dedicated to virus sequence analysis ""bioinformatics goes viral"" (2017) Adv Virus Res, 99, pp. 233-257; Izeta, A., Smerdou, C., Alonso, S., Penzes, Z., Mendez, A., Plana-Durán, J., Enjuanes, L., Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes (1999) J Virol, 73, pp. 1535-1545; Jain, M., Olsen, H.E., Paten, B., Akeson, M., The oxford nanopore minION: Delivery of nanopore sequencing to the genomics community (2016) Genome Biol, 17, p. 239; Joo, M., Makino, S., Mutagenic analysis of the coronavirus intergenic consensus sequence (1992) J Virol, 66, pp. 6330-6337; Karst, S.M., Dueholm, M.S., McIlroy, S.J., Kirkegaard, R.H., Nielsen, P.H., Albertsen, M., Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias (2018) Nat Biotechnol, 36, pp. 190-195; Keller, M.W., Rambo-Martin, B.L., Wilson, M.M., Ridenour, C.A., Shepard, S.S., Stark, T.J., Neuhaus, E.B., Barnes, J.R., Direct RNA sequencing of the coding complete influenza A virus genome (2018) Sci Rep, 8, p. 14408; Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation (2017) Genome Res, 27, pp. 722-736; Lai, M.M., RNA recombination in animal and plant viruses (1992) Microbiol Rev, 56, pp. 61-79; Lai, M.M., Cellular factors in the transcription and replication of viral RNA genomes: A parallel to DNA-dependent RNA transcription (1998) Virology, 244, pp. 1-12; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100; Li, H., Minimap2: Pairwise alignment for nucleotide sequences (2018) Bioinformatics, 34, pp. 3094-3100; Liao, C.L., Lai, M.M., RNA recombination in a coronavirus: Recombination between viral genomic RNA and transfected RNA fragments (1992) J Virol, 66, pp. 6117-6124; Loman, N.J., Quick, J., Simpson, J.T., A complete bacterial genome assembled de novo using only nanopore sequencing data (2015) Nat Methods, 12, pp. 733-735; Luytjes, W., Gerritsma, H., Spaan, W.J., Replication of synthetic defective interfering RNAs derived from coronavirus mouse hepatitis virus-A59 (1996) Virology, 216, pp. 174-183; Machnicka, M.A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Rother, K.M., MODOMICS: A database of RNA modification pathways-2013 update (2013) Nucleic Acids Res, 41, pp. D262-D267; Madhugiri, R., Karl, N., Petersen, D., Lamkiewicz, K., Fricke, M., Wend, U., Scheuer, R., Ziebuhr, J., Structural and functional conservation of cis-acting RNA elements in coronavirus 5′-terminal genome regions (2018) Virology, 517, pp. 44-55; McIntyre, A.B.R., Alexander, N., Grigorev, K., Bezdan, D., Sichtig, H., Chiu, C.Y., Mason, C.E., Single-molecule sequencing detection of N6-methyladenine in microbial reference materials (2019) Nat Commun, 10, p. 579; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species: A mechanism for coronavirus persistence and survival (2017) Curr Opin Virol, 23, pp. 1-7; Méndez, A., Smerdou, C., Izeta, A., Gebauer, F., Enjuanes, L., Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: Packaging and heterogeneity (1996) Virology, 217, pp. 495-507; Mikheyev, A.S., Tin, M.M., A first look at the oxford nanopore MinION sequencer (2014) Mol Ecol Resour, 14, pp. 1097-1102; Moldován, N., Balázs, Z., Tombácz, D., Csabai, Z., Szucs, A., Snyder, M., Boldogkoi, Z., Multi-platform analysis reveals a complex transcriptome architecture of a circovirus (2017) Virus Res, 237, pp. 37-46; Moldován, N., Tombácz, D., Szucs, A., Csabai, Z., Balázs, Z., Kis, E., Molnár, J., Boldogkoi, Z., Third-generation sequencing reveals extensive polycistronism and transcriptional overlapping in a baculovirus (2018) Sci Rep, 8, p. 8604; Moldován, N., Tombácz, D., Szucs, A., Csabai, Z., Snyder, M., Boldogkoi, Z., Multi-platform sequencing approach reveals a novel transcriptome profile in pseudorabies virus (2018) Front Microbiol, 8, p. 2708; Morisse, P., Lecroq, T., Lefebvre, A., Hybrid correction of highly noisy long reads using a variable-order de bruijn graph (2018) Bioinformatics, 34, pp. 4213-4222; Nowak, M.A., What is a quasispecies? (1992) Trends Ecol Evol, 7, pp. 118-121; Ozdarendeli, A., Ku, S., Rochat, S., Williams, G.D., Senanayake, S.D., Brian, D.A., Downstream sequences influence the choice between a naturally occurring noncanonical and closely positioned upstream canonical heptameric fusion motif during bovine coronavirus subgenomic mRNA synthesis (2001) J Virol, 75, pp. 7362-7374; Pasternak, A.O., Spaan, W.J.M., Snijder, E.J., Nidovirus transcription: How to make sense⋯? (2006) J Gen Virol, 87, pp. 1403-1421; Pathak, K.B., Nagy, P.D., Defective interfering RNAs: Foes of viruses and friends of virologists (2009) Viruses, 1, pp. 895-919; Penzes, Z., Tibbles, K., Shaw, K., Britton, P., Brown, T.D., Cavanagh, D., Characterization of a replicating and packaged defective RNA of avian coronavirus infectious bronchitis virus (1994) Virology, 203, pp. 286-293; Penzes, Z., Wroe, C., Brown, T.D., Britton, P., Cavanagh, D., Replication and packaging of coronavirus infectious bronchitis virus defective RNAs lacking a long open reading frame (1996) J Virol, 70, pp. 8660-8668; Quick, J., Loman, N.J., Duraffour, S., Simpson, J.T., Severi, E., Cowley, L., Bore, J.A., Mikhail, A., Real-time, portable genome sequencing for ebola surveillance (2016) Nature, 530, pp. 228-232; Raabe, T., Schelle-Prinz, B., Siddell, S.G., Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E (1990) J Gen Virol, 71, pp. 1065-1073; Roundtree, I.A., Evans, M.E., Pan, T., He, C., Dynamic RNA modifications in gene expression regulation (2017) Cell, 169, pp. 1187-1200; Sawicki, S.G., Sawicki, D.L., Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands (1995) Adv Exp Med Biol, 380, pp. 499-506; Sawicki, S.G., Sawicki, D.L., A new model for coronavirus transcription (1998) Adv Exp Med Biol, 440, pp. 215-219; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J Virol, 81, pp. 20-29; Schreiber, S.S., Kamahora, T., Lai, M.M., Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E (1989) Virology, 169, pp. 142-151; Smith, A.M., Jain, M., Mulroney, L., Garalde, D.R., Akeson, M., (2017) Reading Canonical and Modified Nucleotides in 16S Ribosomal RNA Using Nanopore Direct RNA Sequencing, , bioRxiv; Sola, I., Mateos-Gomez, P.A., Almazan, F., Zuñiga, S., Enjuanes, L., RNA-RNA and RNA-protein interactions in coronavirus replication and transcription (2011) RNA Biol, 8, pp. 237-248; Sola, I., Almazan, F., Zúñiga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu Rev Virol, 2, pp. 265-288; Stoiber, M.H., Quick, J., Egan, R., Lee, J.E., Celniker, S.E., Neely, R.K., Loman, N., Brown, J., (2016) De Novo Identification of DNA Modifications Enabled by Genome-guided Nanopore Signal Processing, , bioRxiv; Thiel, V., Siddell, S.G., Reverse genetics of coronaviruses using vaccinia virus vectors (2005) Curr Top Microbiol Immunol, 287, pp. 199-227; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J Gen Virol, 82, pp. 1273-1281; Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Doerr, H.W., Mechanisms and enzymes involved in SARS coronavirus genome expression (2003) J Gen Virol, 84, pp. 2305-2315; Tombácz, D., Csabai, Z., Szucs, A., Balázs, Z., Moldován, N., Sharon, D., Snyder, M., Boldogkoi, Z., Long-read isoform sequencing reveals a hidden complexity of the transcriptional landscape of herpes simplex virus type 1 (2017) Front Microbiol, 8, p. 1079; Vijay, R., Perlman, S., Middle east respiratory syndrome and severe acute respiratory syndrome (2016) Curr Opin Virol, 16, pp. 70-76; Warwick-Dugdale, J., Solonenko, N., Moore, K., Chittick, L., Gregory, A.C., Allen, M.J., Sullivan, M.B., Temperton, B., Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands (2019) PeerJ, 7, p. e6800; Workman, R.E., Tang, A., Tang, P.S., Jain, M., Tyson, J.R., Zuzarte, P.C., Gilpatrick, T., Sadowski, N., (2018) Nanopore Native RNA Sequencing of A Human Poly(A) Transcriptome, , bioRxiv; Wu, H.-Y., Brian, D.A., Subgenomic messenger RNA amplification in coronaviruses (2010) Proc Natl Acad Sci, 107, pp. 12257-12262; Zuniga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J Virol, 78, pp. 980-994","Marz, M.; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University JenaGermany; email: manja@uni-jena.de",,"Cold Spring Harbor Laboratory Press",10889051,,GEREF,"31439691","English","Genome Res.",Article,"Final",Open Access,Scopus,2-s2.0-85071788565 "Prutton J.S.W., Barnum S., Pusterla N.","56536936600;57195680555;7005591152;","Evaluation of safety, humoral immune response and faecal shedding in horses inoculated with a modified-live bovine coronavirus vaccination",2019,"Equine Veterinary Education",,,,"","",,,"10.1111/eve.13175","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071416330&doi=10.1111%2feve.13175&partnerID=40&md5=4edbb0163a3f5c84b7f417c47580910d","Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States; Liphook Equine Hospital, Forest Mere, Liphook, Hampshire GU30 7JG, United Kingdom","Prutton, J.S.W., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States, Liphook Equine Hospital, Forest Mere, Liphook, Hampshire GU30 7JG, United Kingdom; Barnum, S., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States; Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States","Equine coronavirus (ECoV) is considered an emerging enteric virus with reported morbidity rates ranging from 10 to 83% and fatality rates ranging from 7 to 27% in adult horses; a vaccine for ECoV is currently not available. This study investigated the safety, humoral response and viral shedding in horses inoculated with a commercially available modified-live bovine coronavirus (BCoV) vaccine. Twelve healthy adult horses were vaccinated twice, 3 weeks apart, either orally, intranasally or intrarectally. Two healthy unvaccinated horses served as sentinel controls. Following each vaccine administration, horses were monitored daily for physical abnormalities whilst the onset and duration of BCoV shedding was determined by quantitative PCR (qPCR) in nasal secretions and faeces. Whole blood was collected every 3 weeks to determine BCoV-specific antibody response. With the exception of transient and self-limiting changes in faecal character observed in seven vaccinated and one control horse, no additional abnormal clinical findings were found in the study horses. Following the first and second vaccine administration, two and one horse, respectively, tested qPCR-positive for BCoV in nasal secretions 1-day post intranasal vaccination. No vaccinated horses tested qPCR-positive for BCoV in faeces following each vaccine administration. One of the two horses that shed BCoV seroconverted to BCoV after the first vaccine administration and an additional two vaccinated horses (oral and intrarectal) seroconverted to BCoV after the second vaccine administration. In conclusion, the results show that the modified-live BCoV is safe to administer to horses via various routes, causes minimal virus shedding and results in detectable antibodies to BCoV in 27% of the vaccinates. © 2019 EVJ Ltd","bovine coronavirus; corona; horse; vaccination",,"Cox, R.J., Brokstad, K.A., Ogra, P.L., Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines (2004) Scand. J. Immunol., 59, pp. 1-15; Fielding, C.L., Higgins, J.K., Higgins, J.C., McIntosh, S., Scott, E., Giannitti, F., Mete, A., Pusterla, N., Disease associated with equine coronavirus infection and high case fatality rate (2015) J. Vet. Intern. Med., 29, pp. 307-310; Ghosh, S., Taniguchi, K., Aida, S., Ganesh, B., Kobayashi, N., Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events (2013) Vet. Microbiol., 166, pp. 474-485; Goodman, L.B., Wagner, B., Flaminio, M.J.B.F., Sussman, K.H., Metzger, S.M., Holland, R., Osterrieder, N., Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1) (2006) Vaccine, 24, pp. 3636-3645; Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S., Smith, L.G., Characterization of a coronavirus isolated from a diarrheic foal (2000) J. Clin. Microbiol., 38, pp. 4523-4526; Kollaritsch, H., Rendi-Wagner, P., Principles of Immunization (2013) Travel Medicine, pp. 67-76. , 3rd edn., Eds, Jay S. Keystone, Phyllis E. Kozarsky, David O. Freedman, Hans D. Nothdruft, Bradley A. Connor, Elsevier, Philadelphia, PA, pp; Kooijman, L.J., Mapes, S.M., Pusterla, N., Development of an equine coronavirus–specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses (2016) J. Vet. Diagn. Invest., 28, pp. 414-418; Mapes, S., Rhodes, D.M., Wilson, W.D., Leutenegger, C.M., Pusterla, N., Papers & articles (2007) Vet. Rec., 161, pp. 716-718; Miszczak, F., Tesson, V., Kin, N., Dina, J., Balasuriya, U.B.R., Pronost, S., Vabret, A., First detection of equine coronavirus (ECoV) in Europe (2014) Vet. Microbiol., 171, pp. 206-209; Nemoto, M., Kanno, T., Bannai, H., Tsujimura, K., Yamanaka, T., Kokado, H., Antibody response to equine coronavirus in horses inoculated with a bovine coronavirus vaccine (2017) J. Vet. Med. Sci., 79, pp. 1889-1891; Oue, Y., Ishihara, R., Edamatsu, H., Morita, Y., Yoshida, M., Yoshima, M., Hatama, S., Kanno, T., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet. Microbiol., 150, pp. 41-48; Oue, Y., Morita, Y., Kondo, T., Nemoto, M., Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012 (2013) J. Vet. Med. Sci., 75, pp. 1261-1265; Pusterla, N., Hilton, H., Wattanaphansak, S., Collier, J.R., Mapes, S.M., Stenbom, R.M., Gebhart, C., Evaluation of the humoral immune response and fecal shedding in weanling foals following oral and intra-rectal administration of an avirulent live vaccine of Lawsonia intracellularis (2009) Vet. J., 182, pp. 458-462; Pusterla, N., Mapes, S., Wademan, C., White, A., Ball, R., Sapp, K., Burns, P., Bartol, J., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet. Microbiol., 162, pp. 228-231; Thurber, E.T., Bass, E.P., Beckenhauer, W.H., Field trial evaluation of a reo-coronavirus calf diarrhea vaccine (1977) Can. J. Comp. Med., 41, p. 131; Waltner-Toews, D., Martin, S.W., Meek, A.H., McMillan, I., Crouch, C.F., A field trial to evaluate the efficacy of a combined rotavirus-coronavirus/Escherichia coli vaccine in dairy cattle (1985) Can. J. Comp. Med., 49, p. 1; Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127","Prutton, J.S.W.; Liphook Equine Hospital, Forest Mere, United Kingdom; email: Jamie.Prutton@theleh.co.uk",,"Equine Veterinary Journal Ltd",09577734,,,,"English","Equine Vet. Educ.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85071416330 "Lo C.-Y., Tsai T.-L., Lin C.-N., Lin C.-H., Wu H.-Y.","57191609693;57191610762;36707995900;57208672716;57129133800;","Interaction of coronavirus nucleocapsid protein with the 5′- and 3′-ends of the coronavirus genome is involved in genome circularization and negative-strand RNA synthesis",2019,"FEBS Journal","286","16",,"3222","3239",,1,"10.1111/febs.14863","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065475619&doi=10.1111%2ffebs.14863&partnerID=40&md5=5ff1dd93872745851cbe42614cf5648e","Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan","Lo, C.-Y., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Tsai, T.-L., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Lin, C.-N., Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan; Lin, C.-H., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Wu, H.-Y., Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan","Synthesis of the negative-strand ((−)-strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)-defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)-strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)-strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)-strand synthesis. The BCoV nucleocapsid (N) protein, an RNA-binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd) values, it was found that the binding affinity between N protein, but not poly(A)-binding protein, and the 3′-terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)-strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′- and 3′-terminal cis-acting elements important for (−)-strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′- and 3′-ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)-strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication. © 2019 Federation of European Biochemical Societies","(−)-strand synthesis; cis-acting element; coronavirus; genome circularization; nucleocapsid protein; replication","defective interfering RNA; nucleocapsid protein; unclassified drug; virus RNA; 3' untranslated region; 5' untranslated region; Article; binding affinity; Bovine coronavirus; controlled study; Coronavirinae; dissociation constant; negative strand RNA synthesis; nonhuman; priority journal; protein interaction; RNA sequence; RNA synthesis; virus genome","King, A.M., (2012) Virus Taxonomy: Classification and Nomenclature of Viruses : Ninth Report of the International Committee on Taxonomy of Viruses, , &, Academic Press, London, Waltham, MA; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30; Lee, S., Lee, C., Complete genome characterization of Korean Porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc, 2; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., Coronavirus cis-acting RNA elements (2016) Adv Virus Res, 96, pp. 127-163; Sola, I., Mateos-Gomez, P.A., Almazan, F., Zuniga, S., Enjuanes, L., RNA-RNA and RNA-protein interactions in coronavirus replication and transcription (2011) RNA Biol, 8, pp. 237-248; Yang, D., Leibowitz, J.L., The structure and functions of coronavirus genomic 3′ and 5′ ends (2015) Virus Res, 206, pp. 120-133; Ke, T.Y., Liao, W.Y., Wu, H.Y., A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression (2013) PLoS ONE, 8; Li, L., Kang, H., Liu, P., Makkinje, N., Williamson, S.T., Leibowitz, J.L., Giedroc, D.P., Structural lability in stem-loop 1 drives a 5′ UTR-3′ UTR interaction in coronavirus replication (2008) J Mol Biol, 377, pp. 790-803; Yeh, P.Y., Wu, H.Y., Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus (2014) Viruses, 6, pp. 2938-2959; Hsue, B., Hartshorne, T., Masters, P.S., Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome (2000) J Virol, 74, pp. 6911-6921; Hsue, B., Masters, P.S., A bulged stem-loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication (1997) J Virol, 71, pp. 7567-7578; Williams, G.D., Chang, R.Y., Brian, D.A., A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication (1999) J Virol, 73, pp. 8349-8355; Goebel, S.J., Miller, T.B., Bennett, C.J., Bernard, K.A., Masters, P.S., A hypervariable region within the 3′ cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis (2007) J Virol, 81, pp. 1274-1287; Liu, Q., Johnson, R.F., Leibowitz, J.L., Secondary structural elements within the 3′ untranslated region of mouse hepatitis virus strain JHM genomic RNA (2001) J Virol, 75, pp. 12105-12113; Liao, W.Y., Ke, T.Y., Wu, H.Y., The 3′-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis (2014) PLoS ONE, 9; Lin, Y.J., Liao, C.L., Lai, M.M., Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription (1994) J Virol, 68, pp. 8131-8140; Spagnolo, J.F., Hogue, B.G., Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication (2000) J Virol, 74, pp. 5053-5065; Zust, R., Miller, T.B., Goebel, S.J., Thiel, V., Masters, P.S., Genetic interactions between an essential 3′ cis-acting RNA pseudoknot, replicase gene products, and the extreme 3′ end of the mouse coronavirus genome (2008) J Virol, 82, pp. 1214-1228; Liu, P., Yang, D., Carter, K., Masud, F., Leibowitz, J.L., Functional analysis of the stem loop S3 and S4 structures in the coronavirus 3′UTR (2013) Virology, 443, pp. 40-47; Chen, H., Gill, A., Dove, B.K., Emmett, S.R., Kemp, C.F., Ritchie, M.A., Dee, M., Hiscox, J.A., Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance (2005) J Virol, 79, pp. 1164-1179; Nelson, G.W., Stohlman, S.A., Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein (1993) J Gen Virol, 74, pp. 1975-1979; Cologna, R., Spagnolo, J.F., Hogue, B.G., Identification of nucleocapsid binding sites within coronavirus-defective genomes (2000) Virology, 277, pp. 235-249; Grossoehme, N.E., Li, L.C., Keane, S.C., Liu, P.H., Dann, C.E., Leibowitz, J.L., Giedroc, D.P., Coronavirus N Protein N-Terminal Domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes (2009) J Mol Biol, 394, pp. 544-557; Tsai, T.-L., Lin, C.-H., Lin, C.-N., Lo, C.-Y., Wu, H.-Y., Interplay between the poly(A) tail, poly(A)-binding protein and coronavirus nucleocapsid protein regulates gene expression of the coronavirus and host cell (2018) J Virol, 92, pp. e01162-e01118; Bost, A.G., Prentice, E., Denison, M.R., Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection (2001) Virology, 285, pp. 21-29; Verheije, M.H., Hagemeijer, M.C., Ulasli, M., Reggiori, F., Rottier, P.J., Masters, P.S., de Haan, C.A., The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes (2010) J Virol, 84, pp. 11575-11579; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J Virol, 87, pp. 9159-9172; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) J Virol, 84, pp. 10276-10288; Almazan, F., Galan, C., Enjuanes, L., The nucleoprotein is required for efficient coronavirus genome replication (2004) J Virol, 78, pp. 12683-12688; Schelle, B., Karl, N., Ludewig, B., Siddell, S.G., Thiel, V., Selective replication of coronavirus genomes that express nucleocapsid protein (2005) J Virol, 79, pp. 6620-6630; Zuniga, S., Cruz, J.L., Sola, I., Mateos-Gomez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J Virol, 84, pp. 2169-2175; Villordo, S.M., Gamarnik, A.V., Genome cyclization as strategy for flavivirus RNA replication (2009) Virus Res, 139, pp. 230-239; Romero-Lopez, C., Berzal-Herranz, A., A long-range RNA-RNA interaction between the 5′ and 3′ ends of the HCV genome (2009) RNA, 15, pp. 1740-1752; Herold, J., Andino, R., Poliovirus RNA replication requires genome circularization through a protein-protein bridge (2001) Mol Cell, 7, pp. 581-591; Huang, P., Lai, M.M., Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA (2001) J Virol, 75, pp. 5009-5017; Hofmann, M.A., Brian, D.A., The 5′ end of coronavirus minus-strand RNAs contains a short poly(U) tract (1991) J Virol, 65, pp. 6331-6333; Wu, H.Y., Ke, T.Y., Liao, W.Y., Chang, N.Y., Regulation of coronaviral Poly(A) tail length during infection (2013) PLoS ONE, 8; Wu, H.Y., Brian, D.A., Subgenomic messenger RNA amplification in coronaviruses (2010) Proc Natl Acad Sci USA, 107, pp. 12257-12262; Lo, Y.S., Lin, S.Y., Wang, S.M., Wang, C.T., Chiu, Y.L., Huang, T.H., Hou, M.H., Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein (2013) FEBS Lett, 587, pp. 120-127; Yu, I.M., Gustafson, C.L., Diao, J., Burgner, J.W., 2nd, Li, Z., Zhang, J., Chen, J., Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain (2005) J Biol Chem, 280, pp. 23280-23286; Huang, C.Y., Hsu, Y.L., Chiang, W.L., Hou, M.H., Elucidation of the stability and functional regions of the human coronavirus OC43 nucleocapsid protein (2009) Protein Sci, 18, pp. 2209-2218; Hogue, B.G., King, B., Brain, D.A., Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus-Oc43, and mouse hepatitis coronavirus-A59 (1984) J Virol, 51, pp. 384-388; Hardy, R.W., Rice, C.M., Requirements at the 3′ end of the sindbis virus genome for efficient synthesis of minus-strand RNA (2005) J Virol, 79, pp. 4630-4639; Silvestri, L.S., Parilla, J.M., Morasco, B.J., Ogram, S.A., Flanegan, J.B., Relationship between poliovirus negative-strand RNA synthesis and the length of the 3′ poly(A) tail (2006) Virology, 345, pp. 509-519; Barton, D.J., O'Donnell, B.J., Flanegan, J.B., 5 ‘cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis (2001) EMBO J, 20, pp. 1439-1448; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078; Galan, C., Sola, I., Nogales, A., Thomas, B., Akoulitchev, A., Enjuanes, L., Almazan, F., Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication (2009) Virology, 391, pp. 304-314; Liu, P., Li, L., Keane, S.C., Yang, D., Leibowitz, J.L., Giedroc, D.P., Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions (2009) J Virol, 83, pp. 12084-12093; Liu, P., Li, L., Millership, J.J., Kang, H., Leibowitz, J.L., Giedroc, D.P., A U-turn motif-containing stem-loop in the coronavirus 5′ untranslated region plays a functional role in replication (2007) RNA, 13, pp. 763-780; Alvarez, D.E., Filomatori, C.V., Gamarnik, A.V., Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′UTRs (2008) Virology, 375, pp. 223-235; Alvarez, D.E., Lodeiro, M.F., Luduena, S.J., Pietrasanta, L.I., Gamarnik, A.V., Long-range RNA-RNA interactions circularize the dengue virus genome (2005) J Virol, 79, pp. 6631-6643; Filomatori, C.V., Lodeiro, M.F., Alvarez, D.E., Samsa, M.M., Pietrasanta, L., Gamarnik, A.V., A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome (2006) Genes Dev, 20, pp. 2238-2249; Ooms, M., Abbink, T.E., Pham, C., Berkhout, B., Circularization of the HIV-1 RNA genome (2007) Nucleic Acids Res, 35, pp. 5253-5261; Sola, I., Moreno, J.L., Zuniga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) J Virol, 79, pp. 2506-2516; Zuniga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J Virol, 78, pp. 980-994; Enjuanes, L., Almazan, F., Sola, I., Zuniga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu Rev Microbiol, 60, pp. 211-230; Moreno, J.L., Zuniga, S., Enjuanes, L., Sola, I., Identification of a coronavirus transcription enhancer (2008) J Virol, 82, pp. 3882-3893; King, B., Brian, D.A., Bovine coronavirus structural proteins (1982) J Virol, 42, pp. 700-707; Lapps, W., Hogue, B.G., Brian, D.A., Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes (1987) Virology, 157, pp. 47-57; Tompkins, W.A., Watrach, A.M., Schmale, J.D., Schultz, R.M., Harris, J.A., Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum (1974) J Natl Cancer Inst, 52, pp. 1101-1110; Peng, Y.H., Lin, C.H., Lin, C.N., Lo, C.Y., Tsai, T.L., Wu, H.Y., Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation (2016) PLoS ONE, 11; Raman, S., Bouma, P., Williams, G.D., Brian, D.A., Stem-loop III in the 5′ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication (2003) J Virol, 77, pp. 6720-6730; Raman, S., Brian, D.A., Stem-loop IV in the 5′ untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication (2005) J Virol, 79, pp. 12434-12446","Wu, H.-Y.; Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing UniversityTaiwan; email: hwu2@dragon.nchu.edu.tw",,"Blackwell Publishing Ltd",1742464X,,FJEOA,"31034708","English","FEBS J.",Article,"Final",Open Access,Scopus,2-s2.0-85065475619 "Brown P.A., Courtillon C., Weerts E.A.W.S., Andraud M., Allée C., Vendembeuche A., Amelot M., Rose N., Verheije M.H., Eterradossi N.","56549316200;55362920500;55981338200;24766063000;12771008500;57203821019;34568450300;7201575667;7801561319;7003674878;","Transmission Kinetics and histopathology induced by European Turkey Coronavirus during experimental infection of specific pathogen free turkeys",2019,"Transboundary and Emerging Diseases","66","1",,"234","242",,1,"10.1111/tbed.13006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053041683&doi=10.1111%2ftbed.13006&partnerID=40&md5=6a95ece1c48f6106fa02398565cf4c7e","VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France; EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France; Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, Netherlands; EBEP Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France; SELEAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France","Brown, P.A., VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France, EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France; Courtillon, C., VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France, EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France; Weerts, E.A.W.S., Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, Netherlands; Andraud, M., EBEP Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France; Allée, C., VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France, EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France; Vendembeuche, A., SELEAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France; Amelot, M., SELEAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France; Rose, N., EBEP Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France; Verheije, M.H., Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Utrecht, Netherlands; Eterradossi, N., VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne Loire, Ploufragan, France, EPICOREM Consortium, Unité de Recherche Risques Microbiens (U2RM), Université de Caen, Caen, France","Numerous viruses, mostly in mixed infections, have been associated worldwide with poult enteritis complex (PEC). In 2008 a coronavirus (Fr-TCoV 080385d) was isolated in France from turkey poults exhibiting clinical signs compatible with this syndrome. In the present study, the median infectious dose (ID 50 ) , transmission kinetics and pathogenicity of Fr-TCoV were investigated in 10-day-old SPF turkeys. Results revealed a titre of 10 4.88 ID 50 /ml with 1 ID 50 /ml being beyond the limit of genome detection using a well-characterized qRT-PCR for avian coronaviruses. Horizontal transmission of the virus via the airborne route was not observed however, via the oro-faecal route this proved to be extremely rapid (one infectious individual infecting another every 2.5 hr) and infectious virus was excreted for at least 6 weeks in several birds. Histological examination of different zones of the intestinal tract of the Fr-TCoV-infected turkeys showed that the virus had a preference for the lower part of the intestinal tract with an abundance of viral antigen being present in epithelial cells of the ileum, caecum and bursa of Fabricius. Viral antigen was also detected in dendritic cells, monocytes and macrophages in these areas, which may indicate a potential for Fr-TCoV to replicate in antigen-presenting cells. Together these results highlight the importance of good sanitary practices in turkey farms to avoid introducing minute amounts of virus that could suffice to initiate an outbreak, and the need to consider that infected individuals may still be infectious long after a clinical episode, to avoid virus dissemination through the movements of apparently recovered birds. © 2018 Blackwell Verlag GmbH","coronavirus; histopathology; transmission; turkeys","virus antigen; virus RNA; virus antigen; animal experiment; animal tissue; Article; bursa Fabricii; cecal tonsil; controlled study; Coronavirinae; dendritic cell; experimental infection; germfree animal; histology; histopathology; ID50 (median infectious dose); immunohistochemistry; intestine; kinetics; macrophage; monocyte; nonhuman; protein expression; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; turkey (bird); virus load; virus transmission; virus virulence; animal; basic reproduction number; bird disease; Coronavirus infection; France; germfree animal; pathology; physiology; transmission; turkey (bird); Turkey coronavirus; veterinary medicine; virology; Animals; Antigens, Viral; Basic Reproduction Number; Coronavirus Infections; Coronavirus, Turkey; France; Poultry Diseases; Specific Pathogen-Free Organisms; Turkeys","Ambepitiya Wickramasinghe, I.N., de Vries, R.P., Weerts, E.A., van Beurden, S.J., Peng, W., McBride, R., Verheije, M.H., Novel receptor specificity of avian gammacoronaviruses that cause enteritis (2015) Journal of Virology, 89, pp. 8783-8792. , https://doi.org/10.1128/JVI.00745-15; Barnes, H.J., Guy, J.S., Vaillancourt, J.P., Poult enteritis complex (2000) Revue Scientifique et Technique, 19, pp. 565-588. , https://doi.org/10.20506/rst.19.2.1234; Becker, N.G., (1989) Analysis of Infectious Disease Data, , London, Chapman and Hall Ltd; Breslin, J.J., Smith, L.G., Barnes, H.J., Guy, J.S., Comparison of virus isolation, immunohistochemistry, and reverse transcriptase-polymerase chain reaction procedures for detection of turkey coronavirus (2000) Avian Diseases, 44, pp. 624-631. , https://doi.org/10.2307/1593102; Brown, P., Touzain, F., Briand, F., De Boisseson, C., Courtillon, C., Allée, C., Eterradossi, N., (2014) First full length sequence of European Turkey coronavirus XIIIth Nidovirus 2014 Symposium, p. 104. , p., Salamanca Spain; Brown, P.A., Touzain, F., Briand, F.X., Gouilh, A.M., Courtillon, C., Allee, C., Eterradossi, N., First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses (2016) Journal of General Virology, 97, pp. 110-120. , https://doi.org/10.1099/jgv.0.000338; Cavanagh, D., A nomenclature for avian coronavirus isolates and the question of species status (2001) Avian Pathology, 30, pp. 109-115. , https://doi.org/10.1080/03079450120044506; Cavanagh, D., Mawditt, K., Sharma, M., Drury, S.E., Ainsworth, H.L., Britton, P., Gough, R.E., Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens (2001) Avian Pathology, 30, pp. 355-368. , https://doi.org/10.1080/03079450120066368; Dea, S., Tijssen, P., Viral agents associated with outbreaks of diarrhea in turkey flocks in Quebec (1988) Canadian Journal of Veterinary Research, 52, pp. 53-57; Domańska-Blicharz, K., Seroka, A., Lisowska, A., Tomczyk, G., Minta, Z., Turkey coronavirus in Poland - Preliminary results (2010) Bulletin of the Veterinary Institute in Pulawy, 54, pp. 473-477; Ducatez, M.F., Liais, E., Croville, G., Guerin, J.L., Full genome sequence of guinea fowl coronavirus associated with fulminating disease (2015) Virus Genes, 50, pp. 514-517. , https://doi.org/10.1007/s11262-015-1183-z; Eblé, P., De Koeijer, A., Bouma, A., Stegeman, A., Dekker, A., Quantification of within- and between-pen transmission of foot-and-mouth disease virus in pigs (2006) Veterinary Research, 37, pp. 647-654. , https://doi.org/10.1051/vetres:2006026; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods in Molecular Biology, 1282, pp. 1-23; Goyal, S., (2014) PEDV research updates: Environmental stability of PED (porcine epidemic diarrhea virus) University of Minnesota, US National Pork Board; Guionie, O., Courtillon, C., Allee, C., Maurel, S., Queguiner, M., Eterradossi, N., An experimental study of the survival of turkey coronavirus at room temperature and +4 degrees C (2013) Avian Pathology, 42, pp. 248-252. , https://doi.org/10.1080/03079457.2013.779364; Guy, J.S., Turkey coronavirus enteritis (2013) Diseases of poultry, pp. 376-381. , D. E. Swayne, (Ed.),, 13 edn., Ames Iowa, John Wiley & Sons, Inc; Guy, J.S., Smith, L.G., Breslin, J.J., Vaillancourt, J.P., Barnes, H.J., High mortality and growth depression experimentally produced in young turkeys by dual infection with enteropathogenic Escherichia coli and turkey coronavirus (2000) Avian Diseases, 44, pp. 105-113. , https://doi.org/10.2307/1592513; Jackwood, M.W., Wit, S.D., Infectious Bronchitis (2013) Diseases of Poultry, pp. 139-159. , D. E. Swayne, (Ed.),, 13, edn., (, Ames, Iowa, John Wiley & Sons, Inc; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) Journal of General Virology, 91, pp. 1698-1707. , https://doi.org/10.1099/vir.0.020214-0; Martin, A.M., Vinco, L.J., Cordioli, P., Lavazza, A., (2002) Diagnosis of turkey viral enteric diseases by electron microscopy and identification of coronavirus in a case of turkey enteritis, pp. 114-119. , 4th International Symposium on Turkey Diseases, Berlin, Germany; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-858. , D. M. Knipe, &, P. M. Howley, (Eds.),, 6, edn., (, Philadelphia, PA, Lippincott Williams & Wilkins; Maurel, S., Toquin, D., Briand, F.X., Queguiner, M., Allee, C., Bertin, J., Eterradossi, N., First full-length sequences of the S gene of European isolates reveal further diversity among turkey coronaviruses (2011) Avian Pathology, 40, pp. 179-189. , https://doi.org/10.1080/03079457.2011.551936; Maurel, S., Toquin, D., Que′guiner, M., Le Men, M., Alle′e, C., Lamande, J., Eterradossi, N., (2009) Molecular identification and characterization of a turkey coronavirus in France, pp. 209-218. , The 6th International Symposium on Avian Corona- and Pneumovirus and Complicating Pathogens, Rauischholzhausen, Germany; Panigrahy, B., Naqi, S.A., Hall, C.F., Isolation and characterization of viruses associated with transmissible enteritis (bluecomb) of turkeys (1973) Avian Diseases, 17, pp. 430-438. , https://doi.org/10.2307/1589228; Reddy, V.R., Trus, I., Desmarets, L.M., Li, Y., Theuns, S., Nauwynck, H.J., Productive replication of nephropathogenic infectious bronchitis virus in peripheral blood monocytic cells, a strategy for viral dissemination and kidney infection in chickens (2016) Veterinary Research, 47, p. 70. , https://doi.org/10.1186/s13567-016-0354-9; Reed, L.J., Muench, H., A simple method of estimating fifty percent end points (1938) American Journal of Hygiene, 27, pp. 493-497; Ritchie, A.E., Deshmukh, D.R., Larsen, C.T., Pomeroy, B.S., Electron microscopy of coronavirus-like particles characteristic of turkey bluecomb disease (1973) Avian Diseases, 17, pp. 546-558. , https://doi.org/10.2307/1589153; Russell, W.M.S., Burch, R.L., (1959) The Principles of Humane Experimental Technique, , Wheathapstead, England, U. F. f. A. W; Teixeira, M.C., Luvizotto, M.C., Ferrari, H.F., Mendes, A.R., da Silva, S.E., Cardoso, T.C., Detection of turkey coronavirus in commercial turkey poults in Brazil (2007) Avian Pathology, 36, pp. 29-33. , https://doi.org/10.1080/03079450601102939; Thomas, J.T., Chen, Q., Gauger, P.C., Gimenez-Lirola, L.G., Sinha, A., Harmon, K.M., Zhang, J., Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0139266; Velthuis, A.G., De Jong, M.C., Kamp, E.M., Stockhofe, N., Verheijden, J.H., Design and analysis of an Actinobacillus pleuropneumoniae transmission experiment (2003) Preventive Veterinary Medicine, 60, pp. 53-68. , https://doi.org/10.1016/S0167-5877(03)00082-5; de Wit, J.J., de Jong, M.C., Pijpers, A., Verheijden, J.H., Transmission of infectious bronchitis virus within vaccinated and unvaccinated groups of chickens (1998) Avian Pathology, 27, pp. 464-471. , https://doi.org/10.1080/03079459808419370","Brown, P.A.; VIPAC Unit, Agence Nationale de Sécurité Sanitaire (ANSES), Laboratoire de Ploufragan-Plouzané, Université Bretagne LoireFrance; email: paul.brown@anses.fr",,"Blackwell Publishing Ltd",18651674,,,"30146717","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85053041683 "Altamimi A., Ahmed A.E.","57211564261;35278332600;","Climate factors and incidence of Middle East respiratory syndrome coronavirus",2019,"Journal of Infection and Public Health",,,,"","",,,"10.1016/j.jiph.2019.11.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076246987&doi=10.1016%2fj.jiph.2019.11.011&partnerID=40&md5=1a3cbb6590fdc445218214256cf96b4c","Tropical Diseases Center, National Health Laboratory, Saudi Center for Disease Prevention and Control (Saudi CDC), Riyadh, Saudi Arabia; Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics/Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States","Altamimi, A., Tropical Diseases Center, National Health Laboratory, Saudi Center for Disease Prevention and Control (Saudi CDC), Riyadh, Saudi Arabia; Ahmed, A.E., Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Department of Preventive Medicine & Biostatistics/Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States","Background: Our understanding of climate factors and their links to the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreaks is incomplete. This study aimed to estimate the monthly incidence of MERS-CoV cases and to investigate their correlation to climate factors. Methods: The study used aggregated monthly MERS-CoV cases that reported to the Saudi Center for Disease Prevention and Control from the Riyadh Region between November 1, 2012 and December 31, 2018. Data on the meteorological situation throughout the study period was calculated based on Google reports on the Riyadh Region (24.7136 °N, 46.6753 °E). The Poisson regression was used to estimate the incidence rate ratio (IRR) and its 95% confidence intervals (CI) for each climate factor. Results: A total of 712 MERS-CoV cases were included in the analysis (mean age 54.2 ± 9.9 years), and more than half (404) (56.1%) MERS-CoV cases were diagnosed during a five-month period from April to August. The highest peak timing positioned in August 2015, followed by April 2014, June 2017, March 2015, and June 2016. High temperatures (IRR = 1.054, 95% CI: 1.043–1.065) and a high ultraviolet index (IRR = 1.401, 95% CI: 1.331–1.475) were correlated with a higher incidence of MERS-CoV cases. However, low relative humidity (IRR = 0.956, 95% CI: 0.948–0.964) and low wind speed (IRR = 0.945, 95% CI: 0.912–0.979) were correlated with a lower incidence of MERS-CoV cases. Conclusion: The novel coronavirus, MERS-CoV, is influenced by climate conditions with increasing incidence between April and August. High temperature, high ultraviolet index, low wind speed, and low relative humidity are contributors to increased MERS-CoV cases. The climate factors must be evaluated in hospitals and community settings and integrated into guidelines to serve as source of control measures to prevent and eliminate the risk of infection. © 2019","MERS-CoV; Meteorological factors; Weather conditions",,"Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (November (19)), pp. 1814-1820; Ahmed, A.E., Diagnostic delays in Middle East respiratory syndrome coronavirus patients and health systems (2019) J Infect Public Health, 12 (November–December (6)), pp. 767-771; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2018) Epidemiol Infect, 146 (March (4)), pp. 489-495; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (December (1)), p. 615; Rabaan, A.A., Middle East respiratory syndrome coronavirus: five years later (2017) Expert Rev Respir Med, 11 (November (11)), pp. 901-912; Ahmed, A.E., Diagnostic delays in 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2017) Int J Infect Dis, 62 (September), pp. 47-51; Fagbo, S.F., Garbati, M.A., Hasan, R., AlShahrani, D., Al-Shehri, M., AlFawaz, T., Acute viral respiratory infections among children in MERS-endemic Riyadh, Saudi Arabia, 2012–2013 (2017) J Med Virol, 89 (February (2)), pp. 195-201; Alkhamis, M.A., Fernández-Fontelo, A., VanderWaal, K., Abuhadida, S., Puig, P., Alba-Casals, A., Temporal dynamics of Middle East respiratory syndrome coronavirus in the Arabian Peninsula, 2012–2017 (2019) Epidemiol Infect, 147; Gardner, E.G., Kelton, D., Poljak, Z., Van Kerkhove, M., von Dobschuetz, S., Greer, A.L., A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome (2019) BMC Infect Dis, 19 (December (1)), p. 113; Da'ar, O.B., Ahmed, A.E., Underlying trend, seasonality, prediction, forecasting and the contribution of risk factors: an analysis of globally reported cases of Middle East Respiratory Syndrome Coronavirus (2018) Epidemiol Infect, 146 (August (11)), pp. 1343-1349; Alghamdi, I.G., Hussain, I.I., Almalki, S.S., Alghamdi, M.S., Alghamdi, M.M., El-Sheemy, M.A., The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health (2014) Int J Gen Med, 7, p. 417; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Eurosurveillance, 18 (September (38)), p. 20590; Prussin, A.J., Schwake, D.O., Lin, K., Gallagher, D.L., Buttling, L., Marr, L.C., Survival of the enveloped virus Phi6 in droplets as a function of relative humidity, absolute humidity, and temperature (2018) Appl Environ Microbiol, 84 (June (12)), pp. e00551-18; Ahmed, A.E., Jradi, H., AlBuraikan, D.A., ALMuqbil, B.I., Albaijan, M.A., Al-Shehri, A.M., Rate and factors for scabies recurrence in children in Saudi Arabia: a retrospective study (2019) BMC Pediatr, 19 (December (1)), p. 187","Ahmed, A.E.; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, United States; email: anwar.ahmed.ctr@usuhs.edu",,"Elsevier Ltd",18760341,,,,"English","J. Infect. Public Health",Article,"Article in Press",Open Access,Scopus,2-s2.0-85076246987 "Myrrha L.W., Silva F.M.F., Vidigal P.M.P., Resende M., Bressan G.C., Fietto J.L.R., Santos M.R., Silva L.M.N., Assao V.S., Silva-Júnior A., Almeida M.R.","55504638200;26031791200;25923216600;12786790700;14041353200;7801474597;55674984900;57211365177;57192166917;26649168800;7202362523;","Feline coronavirus isolates from a part of brazil: Insights into molecular epidemiology and phylogeny inferred from the 7b gene",2019,"Journal of Veterinary Medical Science","81","10",,"1455","1460",,,"10.1292/jvms.19-0090","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073654965&doi=10.1292%2fjvms.19-0090&partnerID=40&md5=6afe0c989fb2524632b16f4e3556aa19","Laboratory of Animal Molecular Infectology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Nucleus of Analysis of Biomolecules, Center of Biological Sciences, Federal University of Viçosa (UFV(, Viçosa, Minas Gerais 36570-900, Brazil; Departament of Microbiology, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais 31275-035, Brazil; Laboratory of Immunobiological and Animal Virology, Departament of Veterinary, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil","Myrrha, L.W., Laboratory of Animal Molecular Infectology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Silva, F.M.F., Laboratory of Animal Molecular Infectology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Vidigal, P.M.P., Nucleus of Analysis of Biomolecules, Center of Biological Sciences, Federal University of Viçosa (UFV(, Viçosa, Minas Gerais 36570-900, Brazil; Resende, M., Departament of Microbiology, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais 31275-035, Brazil; Bressan, G.C., Laboratory of Animal Molecular Infectology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Fietto, J.L.R., Laboratory of Animal Molecular Infectology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Santos, M.R., Laboratory of Immunobiological and Animal Virology, Departament of Veterinary, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Silva, L.M.N., Laboratory of Immunobiological and Animal Virology, Departament of Veterinary, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Assao, V.S., Laboratory of Immunobiological and Animal Virology, Departament of Veterinary, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Silva-Júnior, A., Laboratory of Immunobiological and Animal Virology, Departament of Veterinary, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil; Almeida, M.R., Laboratory of Animal Molecular Infectology, Institute of Biotechnology Applied to Agriculture, Federal University of Viçosa (UFV), Viçosa, Minas Gerais 36570-900, Brazil","The Feline coronavirus (FCoV) can lead to Feline infectious peritonitis (FIP), which the precise cause is still unknown. The theory of internal mutation suggests that a less virulent biotype of FCoV (FECV) would lead to another more pathogenic biotype (FIPV) capable of causing FIP. In this work, the 7b gene was amplified from 51 domestic cat plasma samples by semi-nested PCR and tested through phylogenetic and phylogeographical approaches. The 7b gene of Brazilian isolates displayed high conservation, a strong correlation between the geographic origin of the viral isolates and their genealogy, and its evolution was possibly shaped by a combination of high rates of nucleotide substitution and purifying selection. © 2019 The Japanese Society of Veterinary Science.","7b gene; Feline coronavirus; Molecular epidemiology; Phylogeny","viral protein; animal; Brazil; cat; Feline coronavirus; feline infectious peritonitis; genetics; molecular epidemiology; phylogeny; phylogeography; virulence; Animals; Brazil; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Molecular Epidemiology; Phylogeny; Phylogeography; Viral Regulatory and Accessory Proteins; Virulence","Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Moritz, A., Tekes, G., Thiel, H.J., Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis (2014) Vet. Microbiol., 173, pp. 177-188; Battilani, M., Coradin, T., Scagliarini, A., Ciulli, S., Ostanello, F., Prosperi, S., Morganti, L., Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected cats (2003) FEMS Immunol. Med. Microbiol., 39, pp. 141-147; Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., O’Brien, S.J., Genetics and pathogenesis of feline infectious peritonitis virus (2009) Emerg. Infect. Dis., 15, pp. 1445-1452; Chang, H.W., Egberink, H.F., Rottier, P.J.M., Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory (2011) Emerg. Infect. Dis., 17, pp. 744-746; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and parallel computing (2012) Nat. Methods, 9, p. 772; Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol, 8, pp. 270-279; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol. Biol. Evol., 29, pp. 1969-1973; Drummond, A.J., Rambaut, A., Shapiro, B., Pybus, O.G., Bayesian coalescent inference of past population dynamics from molecular sequences (2005) Mol. Biol. E, 22, pp. 1185-1192. , [Medline] [CrossRef]; Duffy, S., Shackelton, L.A., Holmes, E.C., Rates of evolutionary change in viruses: Patterns and determinants (2008) Nat. Rev. Genet., 9, pp. 267-276; Dye, C., Siddell, S.G., Genomic RNA sequence of feline coronavirus strain FCoV C1Je (2007) J. Feline Med. Surg., 9, pp. 202-213; Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797; Ewing, B., Green, P., Base-calling of automated sequencer traces using phred. II. Error probabilities (1998) Genome Res, 8, pp. 186-194; Hanada, K., Suzuki, Y., Gojobori, T., A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes (2004) Mol. Biol. Evol., 21, pp. 1074-1080; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514. , [Medline]; Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., de Groot, R.J., The molecular genetics of feline coronaviruses: Comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes (1995) Virology, 212, pp. 622-631; Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755; Lin, C.N., Su, B.L., Huang, H.P., Lee, J.J., Hsieh, M.W., Chueh, L.L., Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis (2009) J. Feline Med. Surg., 11, pp. 413-419; Martin, D., Rybicki, E., RDP: Detection of recombination amongst aligned sequences (2000) Bioinformatics, 16, pp. 562-563; Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., RDP3: A flexible and fast computer program for analyzing recombination (2010) Bioinformatics, 26, pp. 2462-2463; Myrrha, L.W., Silva, F.M.F., Peternelli, E.F.D.O., Junior, A.S., Resende, M., de Almeida, M.R., The paradox of feline coronavirus pathogenesis: A review (2011) Adv. Virol., 2011; Padidam, M., Sawyer, S., Fauquet, C.M., Possible emergence of new geminiviruses by frequent recombination (1999) Virology, 265, pp. 218-225; Parker, J., Rambaut, A., Pybus, O.G., Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty (2008) Infect. Genet. Evol., 8, pp. 239-246; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10, pp. 529-541; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34, pp. 3180-3184. , [Medline]; Silva, F.M., Vidigal, P.M., Myrrha, L.W., Fietto, J.L., Silva, A., Almeida, M.R., Tracking the molecular epidemiology of Brazilian Infectious bursal disease virus (IBDV) isolates (2013) Infect. Genet. Evol, 13, pp. 18-26. , [Medline] [CrossRef; Slatkin, M., Maddison, W.P., A cladistic measure of gene flow inferred from the phylogenies of alleles (1989) Genetics, 123, pp. 603-613. , [Medline]; Smith, J.M., Analyzing the mosaic structure of genes (1992) J. Mol. E, 34, pp. 126-129. , Medline] [CrossRef; Suchard, M.A., Weiss, R.E., Sinsheimer, J.S., Bayesian selection of continuous-time Markov chain evolutionary models (2001) Mol. Biol. Evol., 18, pp. 1001-1013; Sukumaran, J., Holder, M.T., DendroPy: A Python library for phylogenetic computing (2010) Bioinformatics, 26, pp. 1569-1571; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Vennema, H., Rossen, J.W., Wesseling, J., Horzinek, M.C., Rottier, P.J., Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses (1992) Virology, 191, pp. 134-140; Wang, T.H., Donaldson, Y.K., Brettle, R.P., Bell, J.E., Simmonds, P., Identification of shared populations of human immunodeficiency virus type 1 infecting microglia and tissue macrophages outside the central nervous system (2001) J. Virol., 75, pp. 11686-11699; Zwickl, D.J., (2006) Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion, , Dissertation, The University of Texas at Austin","Silva-Júnior, A.; Laboratory of Immunobiological and Animal Virology, Departament of Veterinary, Federal University of Viçosa (UFV)Brazil; email: abelardo.junior@ufv.br",,"Japanese Society of Veterinary Science",09167250,,,"31447457","English","J. Vet. Med. Sci.",Note,"Final",Open Access,Scopus,2-s2.0-85073654965 "Weston S., Matthews K.L., Lent R., Vlk A., Haupt R., Kingsbury T., Frieman M.B.","56118663600;35421411000;57210444517;57210446938;57210441275;57204168306;9240056500;","A yeast suppressor screen used to identify mammalian SIRT1 as a proviral factor for middle east respiratory syndrome coronavirus replication",2019,"Journal of Virology","93","16", e00197,"","",,,"10.1128/JVI.00197-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070769228&doi=10.1128%2fJVI.00197-19&partnerID=40&md5=3efb9cf4a171ee2479b6d3e59b4119b6","Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States","Weston, S., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Matthews, K.L., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Lent, R., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Vlk, A., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Haupt, R., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Kingsbury, T., Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States; Frieman, M.B., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States","Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast Saccharomyces cerevisiae as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells. © 2019 American Society for Microbiology. All Rights Reserved.","Host-virus interaction; MERS-CoV; ORF4a; SIRT1; Suppressor screen; Virushost interaction; Yeast","histone deacetylase; immunoglobulin enhancer binding protein; sirtuin 1; viral protein; Article; controlled study; eukaryotic cell; fungal gene; gene interaction; gene overexpression; genetic manipulation; mammal cell; Middle East respiratory syndrome coronavirus; nonhuman; open reading frame; phenotype; priority journal; Saccharomyces cerevisiae; signal transduction; virus genome; virus replication","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A., Fouchier, R., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., De Wit, E., Munster, V.J., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e00914. , https://doi.org/10.1128/mBio.00884-14; Chu, D.K.W., Poon, L.L.M., Gomaa, M.M., Shehata, M.M., Perera, R., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20, pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.-Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg Microbes Infect, 1, p. 1. , https://doi.org/10.1038/emi.2012.45; Boheemen, S.V., Graaf, M.D., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, M., Zaki, A.M., Fouchier, R., Genomic characterization of newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00473-e00512. , https://doi.org/10.1128/mBio.00473-12; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., Sars and mers: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type i interferon antagonist (2013) J Virol, 87, pp. 12489-12495. , https://doi.org/10.1128/JVI.01845-13; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961. , https://doi.org/10.1007/s13238-013-3096-8; Batool, M., Shah, M., Patra, M.C., Yesudhas, D., Choi, S., Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism (2017) Sci Rep, 7, p. 11362. , https://doi.org/10.1038/s41598-017-11736-6; Siu, K.-L., Yeung, M.L., Kok, K.-H., Yuen, K.-S., Kew, C., Lui, P.-Y., Chan, C.-P., Jin, D.-Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACTinduced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876. , https://doi.org/10.1128/JVI.03649-13; Rabouw, H.H., Langereis, M.A., Knaap, R.C.M., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., Van Kuppeveld, F., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12, p. e1005982. , https://doi.org/10.1371/journal.ppat.1005982; Nakagawa, K., Narayanan, K., Wada, M., Makino, S., Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication (2018) J Virol, 92, pp. 00902-00918; Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Oliver, S.G., Life with 6000 genes (1996) Science, 274, pp. 546-567. , https://doi.org/10.1126/science.274.5287.546; Giaever, G., Nislow, C., The yeast deletion collection: A decade of functional genomics (2014) Genetics, 197, pp. 451-465. , https://doi.org/10.1534/genetics.114.161620; Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Scherens, B., Functional profiling of the Saccharomyces cerevisiae genome (2002) Nature, 418, pp. 387-391. , https://doi.org/10.1038/nature00935; Kushner, D.B., Lindenbach, B.D., Grdzelishvili, V.Z., Noueiry, A.O., Paul, S.M., Ahlquist, P., Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus (2003) Proc Natl Acad Sci U S A, 100, pp. 15764-15769. , https://doi.org/10.1073/pnas.2536857100; Hao, L., Lindenbach, B., Wang, X., Dye, B., Kushner, D., He, Q., Newton, M., Ahlquist, P., Genome-wide analysis of host factors in nodavirus RNA replication (2014) PLoS One, 9, p. e95799. , https://doi.org/10.1371/journal.pone.0095799; Panavas, T., Serviene, E., Brasher, J., Nagy, P.D., Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses (2005) Proc Natl Acad Sci U S A, 102, pp. 7326-7331. , https://doi.org/10.1073/pnas.0502604102; Naito, T., Kiyasu, Y., Sugiyama, K., Kimura, A., Nakano, R., Matsukage, A., Nagata, K., An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis (2007) Proc Natl Acad Sci U S A, 104, pp. 18235-18240. , https://doi.org/10.1073/pnas.0705856104; Makarow, M., Nevalainen, L.T., Kaariainen, L., Expression of the RNA genome of an animal virus in Saccharomyces cerevisiae (1986) Proc Natl Acad Sci U S A, 83, pp. 8117-8121. , https://doi.org/10.1073/pnas.83.21.8117; Serviene, E., Shapka, N., Cheng, C.-P., Panavas, T., Phuangrat, B., Baker, J., Nagy, P.D., Genome-wide screen identifies host genes affecting viral RNA recombination (2005) Proc Natl Acad Sci U S A, 102, pp. 10545-10550. , https://doi.org/10.1073/pnas.0504844102; Nagy, P.D., Pogany, J., Lin, J.Y., How yeast can be used as a genetic platform to explore virus-host interactions: From ""omics"" to functional studies (2014) Trends Microbiol, 22, pp. 309-316. , https://doi.org/10.1016/j.tim.2014.02.003; Basu, D., Walkiewicz, M.P., Frieman, M., Baric, R.S., Auble, D.T., Engel, D.A., Novel influenza virus NS1 antagonists block replication and restore innate immune function (2009) J Virol, 83, pp. 1881-1891. , https://doi.org/10.1128/JVI.01805-08; Frieman, M., Basu, D., Matthews, K., Taylor, J., Jones, G., Pickles, R., Baric, R., Engel, D.A., Yeast based small molecule screen for inhibitors of sars-cov (2011) PLoS One, 6, p. e28479. , https://doi.org/10.1371/journal.pone.0028479; Oishi, K., Yamayoshi, S., Kawaoka, Y., Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast (2018) Virology, 516, pp. 71-75. , https://doi.org/10.1016/j.virol.2018.01.004; Barco, A., Carrasco, L., Poliovirus 2Apro expression inhibits growth of yeast cells (1995) FEBS Lett, 371, pp. 4-8. , https://doi.org/10.1016/0014-5793(95)00841-V; Oishi, K., Yamayoshi, S., Kozuka-Hata, H., Oyama, M., Kawaoka, Y., N-terminal acetylation by NatB is required for the shutoff activity of influenza A virus PA-X (2018) Cell Rep, 24, pp. 851-860. , https://doi.org/10.1016/j.celrep.2018.06.078; Sisko, J.L., Spaeth, K., Kumar, Y., Valdivia, R.H., Multifunctional analysis of Chlamydia-specific genes in a yeast expression system (2006) Mol Microbiol, 60, pp. 51-66. , https://doi.org/10.1111/j.1365-2958.2006.05074.x; Slagowski, N.L., Kramer, R.W., Morrison, M.F., LaBaer, J., Lesser, C.F., A functional genomic yeast screen to identify pathogenic bacterial proteins (2008) PLoS Pathog, 4, p. e9. , https://doi.org/10.1371/journal.ppat.0040009; Heidtman, M., Chen, E.J., Moy, M.-Y., Isberg, R.R., Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways (2009) Cell Microbiol, 11, pp. 230-248. , https://doi.org/10.1111/j.1462-5822.2008.01249.x; Rine, J., Herskowitz, I., Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae (1987) Genetics, 116, pp. 9-22; Imai, S., Armstrong, C.M., Kaeberlein, M., Guarente, L., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase (2000) Nature, 403, pp. 795-800. , https://doi.org/10.1038/35001622; Michan, S., Sinclair, D., Sirtuins in mammals: Insights into their biological function (2007) Biochem J, 404, pp. 1-13. , https://doi.org/10.1042/BJ20070140; Choi, J.-E., Mostoslavsky, R., Sirtuins, metabolism, and DNA repair (2014) Curr Opin Genet Dev, 26, pp. 24-32. , https://doi.org/10.1016/j.gde.2014.05.005; Haigis, M.C., Sinclair, D.A., Mammalian sirtuins: Biological insights and disease relevance (2010) Annu Rev Pathol Mech Dis, 5, pp. 253-295. , https://doi.org/10.1146/annurev.pathol.4.110807.092250; Bheda, P., Jing, H., Wolberger, C., Lin, H., The substrate specificity of sirtuins (2016) Annu Rev Biochem, 85, pp. 405-429. , https://doi.org/10.1146/annurev-biochem-060815-014537; Deng, J.-J., Kong, K.-Y., Gao, W.-W., Tang, H.-M., Chaudhary, V., Cheng, Y., Zhou, J., Jin, D.-Y., Interplay between sirt1 and hepatitis b virus x protein in the activation of viral transcription (2017) Biochim Biophys Acta Gene Regul Mech, 1860, pp. 491-501. , https://doi.org/10.1016/j.bbagrm.2017.02.007; Zainal, N., Chang, C.-P., Cheng, Y.-L., Wu, Y.-W., Anderson, R., Wan, S.-W., Chen, C.-L., Lin, Y.-S., Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection (2017) Sci Rep, 7, p. 42998. , https://doi.org/10.1038/srep42998; Han, Y., Wang, L., Cui, J., Song, Y., Luo, Z., Chen, J., Xiong, Y., Wu, J., SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5=UTR RNA (2016) J Cell Sci, 129, pp. 4534-4547. , https://doi.org/10.1242/jcs.193698; Shi, Y., Li, Y., Huang, C., Ying, L., Xue, J., Wu, H., Chen, Z., Yang, Z., Resveratrol enhances hbv replication through activating sirt1-pgc-1-PPAR pathway (2016) Sci Rep, 6, p. 24744. , https://doi.org/10.1038/srep24744; Li, W.-Y., Ren, J.-H., Tao, N.-N., Ran, L.-K., Chen, X., Zhou, H.-Z., Liu, B., Chen, J., The SIRT1 inhibitor, nicotinamide, inhibits hepatitis B virus replication in vitro and in vivo (2016) Arch Virol, 161, pp. 621-630. , https://doi.org/10.1007/s00705-015-2712-8; Koyuncu, E., Budayeva, H.G., Miteva, Y.V., Ricci, D.P., Silhavy, T.J., Shenk, T., Cristea, I.M., Sirtuins are evolutionarily conserved viral restriction factors (2014) MBio, 5, pp. e02249-e02314. , https://doi.org/10.1128/mBio.02249-14; Tang, H.-M., Gao, W.-W., Chan, C.-P., Cheng, Y., Deng, J.-J., Yuen, K.-S., Iha, H., Jin, D.-Y., SIRT1 suppresses human T-cell leukemia virus type 1 transcription (2015) J Virol, 89, pp. 8623-8631. , https://doi.org/10.1128/JVI.01229-15; Lin, S.-C., Ho, C.-T., Chuo, W.-H., Li, S., Wang, T.T., Lin, C.-C., Effective inhibition of MERS-CoV infection by resveratrol (2017) BMC Infect Dis, 17, p. 144. , https://doi.org/10.1186/s12879-017-2253-8; Mumberg, D., Muller, R., Funk, M., Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression (1994) Nucleic Acids Res, 22, pp. 5767-5768. , https://doi.org/10.1093/nar/22.25.5767; Larson, M.H., Gilbert, L.A., Wang, X., Lim, W.A., Weissman, J.S., Qi, L.S., CRISPR interference (CRISPRi) for sequence-specific control of gene expression (2013) Nat Protoc, 8, pp. 2180-2196. , https://doi.org/10.1038/nprot.2013.132; Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., Mayo, M.W., Modulation of NF-B-dependent transcription and cell survival by the SIRT1 deacetylase (2004) EMBO J, 23, pp. 2369-2380. , https://doi.org/10.1038/sj.emboj.7600244; Sinclair, D.A., Guarente, L., Small-molecule allosteric activators of sirtuins (2014) Annu Rev Pharmacol Toxicol, 54, pp. 363-380. , https://doi.org/10.1146/annurev-pharmtox-010611-134657; Matthews, K.L., Coleman, C.M., Van Der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882. , https://doi.org/10.1099/vir.0.062059-0; Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Greenberg, M.E., Stress-dependent regulation of foxo transcription factors by the sirt1 deacetylase (2004) Science, 303, pp. 2011-2015. , https://doi.org/10.1126/science.1094637; Kearns, N.A., Genga, R.M.J., Enuameh, M.S., Garber, M., Wolfe, S.A., Maehr, R., Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells (2014) Development, 141, pp. 219-223. , https://doi.org/10.1242/dev.103341; Pham, H., Kearns, N.A., Maehr, R., Transcriptional regulation with CRISPR/Cas9 effectors in mammalian cells (2016) Methods Mol Biol, 1358, pp. 43-57. , https://doi.org/10.1007/978-1-4939-3067-83; Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G., Park, J., Huang, B., Dynamic imaging of genomic loci in living human cells by an optimized crispr/cas system (2013) Cell, 155, pp. 1479-1491. , https://doi.org/10.1016/j.cell.2013.12.001; Gietz, R.D., Woods, R.A., Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method (2002) Methods Enzymol, 350, pp. 87-96. , https://doi.org/10.1016/S0076-6879(02)50957-5; Comar, C.E., Goldstein, S.A., Li, Y., Yount, B., Baric, R.S., Weiss, S.R., Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection (2019) MBio, 10, pp. e00319-e00419. , https://doi.org/10.1128/mBio.00319-19; Nasrin, N., Kaushik, V.K., Fortier, E., Wall, D., Pearson, K.J., De Cabo, R., Bordone, L., JNK1 phosphorylates SIRT1 and promotes its enzymatic activity PLoS One, , https://doi.org/10.1371/journal.pone.0008414, 22 December 2009, posting date; Wong, H.H., Fung, T.S., Fang, S., Huang, M., Le, M.T., Liu, D.X., Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitindependent rapid degradation of interferon regulatory factor 3 (2018) Virology, 515, pp. 165-175. , https://doi.org/10.1016/j.virol.2017.12.028; Coleman, C.M., Frieman, M.B., (2015) Growth and Quantification of MERSCoV Infection, pp. 15E21-15E29. , https://doi.org/10.1002/9780471729259.mc15e02s37, In Current protocols in microbiology. John Wiley &Sons, Inc, Hoboken, NJ, USA","Frieman, M.B.; Department of Microbiology and Immunology, University of Maryland School of MedicineUnited States; email: MFrieman@som.umaryland.edu",,"American Society for Microbiology",0022538X,,JOVIA,"31142674","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85070769228 "Harvey R., Mattiuzzo G., Hassall M., Sieberg A., Müller M.A., Drosten C., Rigsby P., Oxenford C.J., Caly L., Li C., Zhao L., Tan W., Peiris M., Perera M., Müller M., Drosten C., Kang C., Wang J.-S., Haagmans B., Okba N.M.A., Gopal R., Myhill S., Mattiuzzo G., Thornburg N.","36679089500;23566976600;55340422200;55790537200;24068857400;7003813990;6603060950;57202053582;24586922900;57211660018;57211780171;57211825217;7005486823;36483226400;57213095133;57216109182;57211667119;57211667785;6701371301;56807221300;7102284995;57211316207;23566976600;6602664202;","Comparison of serologic assays for Middle East respiratory syndrome coronavirus",2019,"Emerging Infectious Diseases","25","10",,"1878","1883",,,"10.3201/eid2510.190497","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072351240&doi=10.3201%2feid2510.190497&partnerID=40&md5=d6df282d20f92919784380f37e8ce877","National Institute for Biological Standards and Control-MHRA, Potters Bar, United Kingdom; Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Infection Research, Berlin, Germany; World Health Organization, Lyon, France; Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia; National Institutes for Food and Drug Control, Beijing, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, University of Hong Kong, Hong Kong; Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Korea Centers for Disease Control and Prevention, Center for Laboratory Control of Infectious Diseases, Chungcheonhbuk-do, South Korea; Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; High-Containment Microbiology, National Infection Service, Public Health England - Colindale, London, United Kingdom; National Institute for Biologic Standards and Control, South Mimms, United Kingdom; Centers for Disease Control and Prevention, Atlanta, GA, United States","Harvey, R., National Institute for Biological Standards and Control-MHRA, Potters Bar, United Kingdom; Mattiuzzo, G., National Institute for Biological Standards and Control-MHRA, Potters Bar, United Kingdom, National Institute for Biologic Standards and Control, South Mimms, United Kingdom; Hassall, M., National Institute for Biological Standards and Control-MHRA, Potters Bar, United Kingdom; Sieberg, A., Charité-Universitätsmedizin Berlin, Berlin, Germany; Müller, M.A., Charité-Universitätsmedizin Berlin, Berlin, Germany, German Centre for Infection Research, Berlin, Germany; Drosten, C., Charité-Universitätsmedizin Berlin, Berlin, Germany, German Centre for Infection Research, Berlin, Germany; Rigsby, P., National Institute for Biological Standards and Control-MHRA, Potters Bar, United Kingdom; Oxenford, C.J., World Health Organization, Lyon, France; Caly, L., Victorian Infectious Diseases Reference Laboratory, Melbourne, Australia; Li, C., National Institutes for Food and Drug Control, Beijing, China; Zhao, L., National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Tan, W., National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Peiris, M., School of Public Health, University of Hong Kong, Hong Kong; Perera, M., School of Public Health, University of Hong Kong, Hong Kong; Müller, M., Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Drosten, C., Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Kang, C., Korea Centers for Disease Control and Prevention, Center for Laboratory Control of Infectious Diseases, Chungcheonhbuk-do, South Korea; Wang, J.-S., Korea Centers for Disease Control and Prevention, Center for Laboratory Control of Infectious Diseases, Chungcheonhbuk-do, South Korea; Haagmans, B., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Okba, N.M.A., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Gopal, R., High-Containment Microbiology, National Infection Service, Public Health England - Colindale, London, United Kingdom; Myhill, S., National Institute for Biologic Standards and Control, South Mimms, United Kingdom; Mattiuzzo, G., National Institute for Biological Standards and Control-MHRA, Potters Bar, United Kingdom, National Institute for Biologic Standards and Control, South Mimms, United Kingdom; Thornburg, N., Centers for Disease Control and Prevention, Atlanta, GA, United States","Middle East respiratory syndrome coronavirus (MERSCoV) was detected in humans in 2012. Since then, sporadic outbreaks with primary transmission through dromedary camels to humans and outbreaks in healthcare settings have shown that MERS-CoV continues to pose a threat to human health. Several serologic assays for MERS-CoV have been developed globally. We describe a collaborative study to investigate the comparability of serologic assays for MERS-CoV and assess any benefit associated with the introduction of a standard reference reagent for MERS-CoV serology. Our study findings indicate that, when possible, laboratories should use a testing algorithm including >2 tests to ensure correct diagnosis of MERS-CoV. We also demonstrate that the use of a reference reagent greatly improves the agreement between assays, enabling more consistent and therefore more meaningful comparisons between results. © 2019 Centers for Disease Control and Prevention (CDC). All rights reserved.",,"algorithm; article; human; Middle East respiratory syndrome coronavirus; nonhuman; serology; Oman; Saudi Arabia; serology; South Korea","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; (2017) WHO MERS-CoV Global Summary and Assessment of Risk, , http://www.who.int/emergencies/mers-cov/risk-assessmentjuly-2017.pdf, Jul 21 cited 2019 Feb 12; Alanazi, K.H., Killerby, M.E., Biggs, H.M., Abedi, G.R., Jokhdar, H., Alsharef, A.A., Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia, 2017 (2019) Infect Control Hosp Epidemiol, 40, pp. 79-88. , https://doi.org/10.1017/ice.2018.290; (2019) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/en/news-room/fact-sheets/detail/middle-eastrespiratory-syndrome-coronavirus-(mers-cov, Mar 11 cited 2019 Jul 31; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., Dalab, A.H., Al-Busadah, K.A., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1153-1158. , https://doi.org/10.3201/eid2107.150070; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10, p. 425. , https://doi.org/10.3390/v10080425; (2018) Meeting Report: 2018 Annual Review of Diseases Prioritized under the Research and Development Blueprint, , https://www.who.int/emergencies/diseases/2018prioritization-report.pdf, February 6-7, 2018; Geneva, Switzerland. Geneva: The Organization; cited 2019 Aug 13; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., Van Kerkhove, M.D., Kim, J., Kieny, M., A roadmap for MERS-CoV research and product development: Report from a World Health Organization consultation (2016) Nat Med, 22, pp. 701-705. , https://doi.org/10.1038/nm.4131; (2013) Report on the Intercountry Meeting on the Middle East Respiratory Syndrome Coronavirus (MERSCoV) Outbreak in the Eastern Mediterranean Region, , http://applications.emro.who.int/docs/IC_Meet_Rep_2013_EN_15164.pdf, June 20-22, 2013; Cairo, Egypt. Contract WHO-EM/CSR/063/E/08.13. Geneva: The Organization; cited 2019 Aug 13; Pas, S.D., Patel, P., Reusken, C., Domingo, C., Corman, V.M., Drosten, C., First international external quality assessment of molecular diagnostics for MERS-CoV (2015) J Clin Virol, 69, pp. 81-85. , https://doi.org/10.1016/j.jcv.2015.05.022; Dichtelmüller, H.O., Biesert, L., Fabbrizzi, F., Gajardo, R., Gröner, A., Von Hoegen, I., Robustness of solvent/detergent treatment of plasma derivatives: A data collection from Plasma Protein Therapeutics Association member companies (2009) Transfusion, 49, pp. 1931-1943. , https://doi.org/10.1111/j.1537-2995.2009.02222.x; Matsushita, H., Sano, A., Wu, H., Jiao, J.A., Kasinathan, P., Sullivan, E.J., Triple immunoglobulin gene knockout transchromosomic cattle: Bovine lambda cluster deletion and its effect on fully human polyclonal antibody production (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0090383; Mair, P., Schoenbrodt, F., Wilcox, R., (2017) WRS2: Wilcox Robust Estimation and Testing, , http://cran.rproject.org/package=WRS2, cited 2019 Aug 13; Aguanno, R., ElIdrissi, A., Elkholy, A.A., Ben Embarek, P., Gardner, E., Grant, R., MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44. , https://doi.org/10.1016/j.antiviral.2018.09.002; (2018) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus Interim Guidance, , https://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing, Contract WHO/MERS/LAB/15.1/Rev1/2018. Geneva: The Organization; cited 2019 Aug 13; Recommendations for the preparation, characterization, and establishment of international and other biological reference standards (revised 2004) (2004) WHO Expert Committee on Biological Standardization: Fifty-Fifth Report., (932). , World Health Organization. WHO technical report series,. Geneva: The Organization","Mattiuzzo, G.; NIBSC, Division of Virology, Blanche Lane, United Kingdom; email: Giada.Mattiuzzo@nibsc.org",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31423969","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85072351240 "Hecht L.-S., Jurado-Jimenez A., Hess M., Halas H.E., Bochenek G., Mohammed H., Alzahrani F., Asiri M.O., Hasan R., Alamri A., Alotaibi S.","53871233600;57210638259;35172774400;57213745050;57210641889;57210646359;57210643465;57210638081;55329262700;57210639058;57210642643;","Verification and diagnostic evaluation of the RealStar® Middle East respiratory syndrome coronavirus (N gene) reverse transcription-PCR kit 1.0",2019,"Future Microbiology","14","11",,"941","948",,,"10.2217/fmb-2019-0067","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071179763&doi=10.2217%2ffmb-2019-0067&partnerID=40&md5=d6ad4ee12930f73e41f38474bacf2413","AItona Diagnostics GmbH, Hamburg, Germany; Ministry of Health, Riyadh Regional Laboratory, Riyadh, Saudi Arabia; King Fahad Medical City, Riyadh, Saudi Arabia","Hecht, L.-S., AItona Diagnostics GmbH, Hamburg, Germany; Jurado-Jimenez, A., AItona Diagnostics GmbH, Hamburg, Germany; Hess, M., AItona Diagnostics GmbH, Hamburg, Germany; Halas, H.E., AItona Diagnostics GmbH, Hamburg, Germany; Bochenek, G., AItona Diagnostics GmbH, Hamburg, Germany; Mohammed, H., Ministry of Health, Riyadh Regional Laboratory, Riyadh, Saudi Arabia; Alzahrani, F., Ministry of Health, Riyadh Regional Laboratory, Riyadh, Saudi Arabia; Asiri, M.O., Ministry of Health, Riyadh Regional Laboratory, Riyadh, Saudi Arabia; Hasan, R., King Fahad Medical City, Riyadh, Saudi Arabia; Alamri, A., Ministry of Health, Riyadh Regional Laboratory, Riyadh, Saudi Arabia; Alotaibi, S., King Fahad Medical City, Riyadh, Saudi Arabia","Aim: We report the diagnostic evaluation of a confirmatory reverse transcription-PCR (RT-PCR) kit targeting the Middle East respiratory syndrome coronavirus (MERS-CoV) N gene. Material & methods: 33 patient samples from two collections sites in Riyadh, Saudi Arabia, which were pre-characterized via real-time RT-PCR targeting MERS-CoV orf1a and upE, and were tested using the MERS-CoV N gene, as a confirmatory assay. This diagnostic procedure follows a two-step diagnostics scheme, recommended by the WHO. Results: 18/33 samples tested positive, 11/33 tested negative for MERS-CoV RNA and 2/33 showed uncertain results. Conclusion: The results suggest, that the RealStar® MERS-CoV (N gene) RT-PCR kit 1.0 can be considered a suitable and reliable confirmatory assay in combination with the RealStar MERS-CoV RT-PCR kit 1.0 according to the diagnostic scheme recommended by WHO. © 2019 Future Medicine Ltd.","diagnostics; emerging diseases; MERS-CoV; molecular diagnostics; preparedness; real-time RT-PCR; WHO diagnostic scheme","Article; cerebrospinal fluid; clinical article; controlled study; diagnostic procedure; human; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nasopharyngeal aspiration; nonhuman; nose smear; open reading frame; priority journal; real time polymerase chain reaction; reverse transcription polymerase chain reaction; Saudi Arabia; urine; Coronavirus infection; genetics; isolation and purification; Middle East respiratory syndrome coronavirus; molecular diagnosis; procedures; real time polymerase chain reaction; sensitivity and specificity; virology; nucleocapsid protein; nucleocapsid protein, Coronavirus; virus RNA; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Molecular Diagnostic Techniques; Nucleocapsid Proteins; Real-Time Polymerase Chain Reaction; RNA, Viral; Saudi Arabia; Sensitivity and Specificity","Ogden, N.H., Abdelmalik, P., Pulliam, J.R.C., Emerging infectious diseases: Prediction and detection (2017) Can. Commun. Dis. Rep., 43 (10), pp. 206-211; Poutanen, S.M., De, L., Bonnie, H., Identification of severe acute respiratory syndrome in Canada (2003) N. Engl. J. Med., 348 (20), pp. 1995-2005; (2003), www.cdc.gov/mmwr/preview/mmwrhtml/mm5223a4.html, Control CFD, Prevention. Update: severe acute respiratory syndrome-Toronto, Canada, 2003; Van Boheemen, S., Graaf, M.D., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6), pp. e00473-e00512; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: Recent advances (2017) F1000Research, 6, p. 1628; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88 (19), pp. 11297-11303; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N. Engl. J. Med., 376 (6), pp. 584-594; Thabet, F., Chehab, M., Bafaqih, H., Al Mohaimeed, S., Middle East respiratory syndrome coronavirus in children (2015) Saudi Med. J., 36 (4), pp. 484-486; Perkins, M.D., Dye, C., Balasegaram, M., Diagnostic preparedness for infectious disease outbreaks (2017) Lancet, 390, pp. 2211-2214; Corman, V.M., Ma, M., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill., 17 (49), pp. 1-9; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill., 17 (39), pp. 1-6; Oh, M.-D., Park, W.B., Park, S.-W., Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J. Intern. Med., 33 (2), pp. 233-246; www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV); Jfw, C., Skp, L., Kkw, T., Vcc, C., Pcy, W., Yuen, K.-Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28 (2), pp. 465-522; (2018), https://apps.who.int/iris/bitstream/handle/10665/259952/WHO-MERS-LAB-15.1-Rev1-2018-eng.pdf;jsessionid=F52DB0B61F1718291FCA95A05E22B418?sequence=1, World Health Organization. Laboratory testing for Middle East respiratory syndrome coronavirus interim guidance (revised); (2015) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Interim Guidance, , www.who.int/csr/disease/coronavirusinfections/mers-laboratory-testing/en/, World Health Organization; (2012) Laboratory Testing for Novel Coronavirus Interim Recommendations, , www.who.int/csr/disease/coronavirusinfections/LaboratoryTestingNovelCoronavirus21Dec12.pdf, World Health Organization; Huang, L.-H., Lin, P.-H., Tsai, K.-W., The effects of storage temperature and duration of blood samples on DNA and RNA qualities (2017) PLoS ONE, 12 (9), p. e0184692; Corman, V.M., Olschlager, S., Wendtner, C.-M., Drexler, J.F., Hess, M., Drosten, C., Performance and clinical validation of the RealStar MERS-CoV kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) J. Clin. Virol., 60 (2), pp. 168-171","Hecht, L.-S.; AItona Diagnostics GmbHGermany; email: leonie.hecht@altona-diagnostics.com",,"Future Medicine Ltd.",17460913,,,"31271059","English","Future Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85071179763 "Teramichi T., Fukushi S., Hachiya Y., Melaku S.K., Oguma K., Sentsui H.","57212613002;7004841901;57204502863;56303406700;56402775200;7005853346;","Evaluation of serological assays available in a biosafety level 2 laboratory and their application for survey of middle east respiratory syndrome coronavirus among livestock in ethiopia",2019,"Journal of Veterinary Medical Science","81","12",,"1887","1891",,,"10.1292/jvms.19-0436","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077224435&doi=10.1292%2fjvms.19-0436&partnerID=40&md5=c3578e41962531e5e294713096b5c43e","Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Kanagawa, Fujisawa, 252-0880, Japan; Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan; Addis Ababa Science and Technology University, Akaky Kaliti Sub-city, Kilinto area, Addis Ababa, Ethiopia; Isahaya Meat Inspection Center, 79-20, Sakaimachi 79-20, Nagasaki, Isahaya, 854-0022, Japan","Teramichi, T., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Kanagawa, Fujisawa, 252-0880, Japan, Isahaya Meat Inspection Center, 79-20, Sakaimachi 79-20, Nagasaki, Isahaya, 854-0022, Japan; Fukushi, S., Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan; Hachiya, Y., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Kanagawa, Fujisawa, 252-0880, Japan; Melaku, S.K., Addis Ababa Science and Technology University, Akaky Kaliti Sub-city, Kilinto area, Addis Ababa, Ethiopia; Oguma, K., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Kanagawa, Fujisawa, 252-0880, Japan; Sentsui, H., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Kanagawa, Fujisawa, 252-0880, Japan","A serological survey of Middle East respiratory syndrome coronavirus (MERS-CoV) was conducted among dromedary camels and herbivorous animals sharing the same pasturage in Ethiopia. The pseudotyped vesicular stomatitis virus coated with the spike protein of MERS-CoV was used in virus neutralization (VN) tests performed in a biosafety level (BSL)-2 laboratory. The results were similar to those obtained from the VN test using live MERS-CoV and were more sensitive than the ELISA performed using synthetic MERS S1 fragment as the antigen as well as the competitive ELISA performed using a monoclonal antibody against MERS-CoV. According to the comprehensive results of the four types of serodiagnosis methods, positive antibodies were detected only in dromedary camels and the remaining herbivorous animals were not infected with the virus. Moreover, using the present procedure, serological tests for MERS-CoV can be conducted even in BSL 2 laboratory. © 2019, Japanese Society of Veterinary Science. All rights reserved.","Camel; Coronavirus; Ethiopia; Middle East respiratory syndrome; Serological survey","viral protein; animal cell; antibody titer; Article; biosafety; cell culture; controlled study; dromedary; enzyme linked immunosorbent assay; fluorescence microscopy; health survey; human; human cell; Leporidae; livestock; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; serodiagnosis; serology; Vero cell line; virus neutralization","Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Hall, A.J., Poon, L.L., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates (2015) Emerg. Infect. Dis., 21, pp. 2197-2200; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Mers-Cov Investigation Team, K.S.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Dragúnová, J., Závada, J., Cross-neutralization between vesicular stomatitis virus type Indiana and Chandipura virus (1979) Acta Virol, 23, pp. 319-328; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Memish, Z.A., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Fukuma, A., Tani, H., Taniguchi, S., Shimojima, M., Saijo, M., Fukushi, S., Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein (2015) Arch. Virol., 160, pp. 2293-2300; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Iwata-Yoshikawa, N., Saijo, M., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA (2018) J. Virol. Methods, 251, pp. 22-29; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Alrabiah, F.A., Zumla, A., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin. Microbiol. Infect., 20, pp. 469-474; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Shirato, K., Azumano, A., Nakao, T., Hagihara, D., Ishida, M., Tamai, K., Yamazaki, K., Matsuyama, S., Middle East respiratory syndrome coronavirus infection not found in camels in Japan (2015) Jpn. J. Infect. Dis., 68, pp. 256-258; Wang, W., Wang, H., Deng, Y., Song, T., Lan, J., Wu, G., Ke, C., Tan, W., Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China (2016) Emerg. Microbes Infect., 5. , [Medline] [CrossRef; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Khazanehdari, K., Drosten, C., Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014 (2015) Emerg. Infect. Dis., 21, pp. 1019-1022; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820","Sentsui, H.; Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Kanagawa, Japan; email: sentsui.hiroshi@nihon-u.ac.jp",,"Japanese Society of Veterinary Science",09167250,,,"31685722","English","J. Vet. Med. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85077224435 "Al-Raddadi R.M., Shabouni O.I., Alraddadi Z.M., Alzalabani A.H., Al-Asmari A.M., Ibrahim A., Almarashi A., Madani T.A.","57203397490;56910136500;57191836447;57212378144;56531713100;55433064200;57210763230;57207894899;","Burden of Middle East respiratory syndrome coronavirus infection in Saudi Arabia",2019,"Journal of Infection and Public Health",,,,"","",,,"10.1016/j.jiph.2019.11.016","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076513527&doi=10.1016%2fj.jiph.2019.11.016&partnerID=40&md5=e6141cbf7c754daaaa805ac03f804972","Department of Community Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Ministry of Health, Jeddah, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Family and Community Medicine, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia; Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia","Al-Raddadi, R.M., Department of Community Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Shabouni, O.I., Ministry of Health, Jeddah, Saudi Arabia; Alraddadi, Z.M., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Alzalabani, A.H., Department of Family and Community Medicine, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia; Al-Asmari, A.M., Ministry of Health, Jeddah, Saudi Arabia, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Ibrahim, A., Ministry of Health, Jeddah, Saudi Arabia; Almarashi, A., Ministry of Health, Jeddah, Saudi Arabia; Madani, T.A., Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia","MERS-coronavirus infection is currently responsible for considerable morbidity and mortality in Saudi Arabia. Understanding its burden, as an emerging infectious disease, is vital for devising appropriate control strategies. In this study, the burden of MERS-CoV was estimated over 31 months period from June 6, 2012 to January 5, 2015. The total number of patients was 835; 528 (63.2%) patients were male, 771 (92.3%) patients were ≥25 years of age, and 210 (25.1%) patients were healthcare workers. A total of 751 (89.9%) patients required hospitalization. The median duration between onset of illness and hospitalization was 2 days (interquartile range, 0–5). The median length of hospital stay was 14 days (IQR, 6–27). The overall case fatality rate was 43.1%. Basic reproductive number was 0.9. Being Saudi, non-healthcare workers, and age ≥65 years were significantly associated with higher mortality. In conclusion, MERS-CoV infection caused a substantial health burden in Saudi Arabia. © 2019 The Author(s)","Burden; Case fatality rate; Health care workers; MERS-Coronavirus; Saudi Arabia",,"World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) (2019), http://www.who.int/emergencies/mers-cov/en/, (Accessed 24 August 2019); Ministry of Health, Command and control center (2019), https://www.moh.gov.sa/en/CCC/Pages/default.aspx, (Accessed 24 August 2019); Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Majumder, M.S., Rivers, C., Lofgren, E., Fisman, D., Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia Outbreak: insights from publicly available data (2014) PLoS Curr, 6; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev Vaccines, 13, pp. 761-774; Papaneri, A.B., Johnson, R.F., Wada, J., Bollinger, L., Jahrling, P.B., Kuhn, J.H., Middle East respiratory syndrome: obstacles and prospects for vaccine development (2015) Expert Rev Vaccines, 14, pp. 949-962; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Alghamdi, I.G., Hussain, I.I., Almalki, S.S., Alghamdi, M.S., Alghamdi, M.M., El-Sheemy, M.A., The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health (2014) Int J Gen Med, 7, pp. 417-423; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah — a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Fraser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D., Hollingsworth, T.D., Pandemic potential of a strain of influenza A (H1N1): early findings (2009) Science, 324, pp. 1557-1561; Madani, T.A., Case definition and management of patients with MERS coronavirus in Saudi Arabia (2014) Lancet Infect Dis, 14, pp. 911-913; Hastings, D.L., Tokars, J.I., Abdel Aziz, I.Z.A.M., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Outbreak of middle east respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 794-801; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Choi, J.Y., An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med J, 56, pp. 1174-1176; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int J Infect Dis, 38, pp. 65-67; Khan, A., Farooqui, A., Guan, Y., Kelvin, D.J., Lessons to learn from MERS-CoV outbreak in South Korea (2015) J Infect Dev Ctries, 9, pp. 543-546; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Abroug, F., Slim, A., Ouanes-Besbes, L., Hadj Kacem, M.-A., Dachraoui, F., Ouanes, I., Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013 (2014) Emerg Infect Dis, 20, pp. 1527-1530; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-72; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV): summary of current situation, literature update and risk assessment–as of 5 February 2015 (2019), http://www.who.int/csr/disease/coronavirus_infections/mers-5-february-2015.pdf?ua=1, (Accessed 15 April 2016); Madani, T.A., Althaqafi, A.O., Alraddadi, B.M., Infection prevention and control guidelines for patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2014) Saudi Med J, 35, pp. 897-913; Sprenger, M., Coulombier, D., Middle East respiratory syndrome coronavirus - two years into the epidemic (2014) Euro Surveill Bull Eur Sur Les Mal Transm = Eur Commun Dis Bull, 19, p. 20783; Almutairi, S.E., Boujenane, I., Musaad, A., Awad-Acharari, F., Non-genetic factors influencing reproductive traits and calving weight in Saudi camels (2010) Trop Anim Health Prod, 42, pp. 1087-1092; Hemida, M.G., Chu, D.K.W., Poon, L.L.M., RAPM, P., Alhammadi, M.A., Ng, H.-Y., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 1231-1234; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I.A., Dalab, A.H.S., Al-Busadah, K.A.S., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1153-1158; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-14; Wernery, U., Corman, V.M., Wong, E.Y.M., Tsang, A.K.L., Muth, D., Lau, S.K.P., Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014 (2015) Emerg Infect Dis, 21, pp. 1019-1022","Al-Raddadi, R.M.; Faculty of Medicine, King Abdulaziz University, PO Box 80215, Saudi Arabia; email: rmsalhari@kau.edu.sa",,"Elsevier Ltd",18760341,,,,"English","J. Infect. Public Health",Article,"Article in Press",Open Access,Scopus,2-s2.0-85076513527 "Gomez G.N., Abrar F., Dodhia M.P., Gonzalez F.G., Nag A.","57212201956;57212202709;57212202750;57212202115;9737721500;","SARS coronavirus protein nsp1 disrupts localization of nup93 from the nuclear pore complex",2019,"Biochemistry and Cell Biology","97","6",,"758","766",,,"10.1139/bcb-2018-0394","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076197791&doi=10.1139%2fbcb-2018-0394&partnerID=40&md5=3f80103702fe552d96e7c53262a534ab","Furman University, 3300 Poinsett Highway, Greenville, SC 29613, United States; University of South Carolina Upstate, 800 University Way, Spartanburg, SC 29303, United States","Gomez, G.N., Furman University, 3300 Poinsett Highway, Greenville, SC 29613, United States; Abrar, F., Furman University, 3300 Poinsett Highway, Greenville, SC 29613, United States; Dodhia, M.P., Furman University, 3300 Poinsett Highway, Greenville, SC 29613, United States; Gonzalez, F.G., Furman University, 3300 Poinsett Highway, Greenville, SC 29613, United States; Nag, A., Furman University, 3300 Poinsett Highway, Greenville, SC 29613, United States, University of South Carolina Upstate, 800 University Way, Spartanburg, SC 29303, United States","Severe acute respiratory syndrome coronavirus nonstructural protein 1 (nsp1) is a key factor in virus-induced downregulation of host gene expression. In infected cells, nsp1 engages in a multipronged mechanism to inhibit host gene expression by binding to the 40S ribosome to block the assembly of translationally competent ribosome, and then inducing endonucleolytic cleavage and the degradation of host mRNAs. Here, we report a previously undetected mechanism by which nsp1 exploits the nuclear pore complex and disrupts the nuclear–cytoplasmic transport of biomolecules. We identified members of the nuclear pore complex from the nsp1-associated protein assembly and found that the expression of nsp1 in HEK cells disrupts Nup93 localization around the nuclear envelope without triggering proteolytic degradation, while the nuclear lamina remains unperturbed. Consistent with its role in host shutoff, nsp1 alters the nuclear–cytoplasmic distribution of an RNA binding protein, nucleolin. Our results suggest that nsp1, alone, can regulate multiple steps of gene expression including nuclear–cytoplasmic transport. © 2019, Canadian Science Publishing. All rights reserved.","Immunofluorescence; NLS; Nsp1; Nuclear pore complex; Nup93; SARS-CoV","Cell proliferation; Diseases; Macromolecules; Proteins; Viruses; Immunofluorescence; Nsp1; Nuclear pore complexes; Nup93; SARS-CoV; Gene expression; endonuclease; glutathione transferase; lamin A; lamin C; nsp1 protein; nucleolin; nucleoporin; nup93 protein; RNA binding protein; unclassified drug; viral protein; Nsp1 protein, SARS coronavirus; Nup93 protein, human; phosphoprotein; RNA binding protein; RNA directed RNA polymerase; viral protein; 5' untranslated region; Article; cell fractionation; cell nucleus membrane; cellular distribution; comparative study; controlled study; cytoplasm; gene expression; immunofluorescence test; immunohistochemistry; immunoprecipitation; mass spectrometry; nonhuman; nuclear lamina; nuclear pore complex; nucleocytoplasmic transport; point mutation; protein analysis; protein assembly; protein degradation; protein expression; protein localization; protein synthesis; proteomics; quantitative analysis; SARS coronavirus; transient transfection; Western blotting; cell culture; genetics; HEK293 cell line; human; metabolism; nuclear pore; Cells, Cultured; Cytoplasm; HEK293 Cells; Humans; Nuclear Pore; Nuclear Pore Complex Proteins; Phosphoproteins; RNA Replicase; RNA-Binding Proteins; Viral Nonstructural Proteins","Ao, Z., Jayappa, K.D., Wang, B., Zheng, Y., Wang, X., Peng, J., Yao, X., Contribution of host nucleoporin 62 in HIV-1 integrase chromatin association and viral DNA integration (2012) J. Biol. Chem., 287 (13), pp. 10544-10555. , PMID:22308026; Bernad, R., van der Velde, H., Fornerod, M., Pickersgill, H., Nup358/ RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export (2004) Mol. Cell Biol., 24 (6), pp. 2373-2384. , 14993277; Bernad, R., Engelsma, D., Sanderson, H., Pickersgill, H., Fornerod, M., Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export (2006) J. Biol. Chem., 281 (28), pp. 19378-19386. , 16675447; Borah, S., Darricarrère, N., Darnell, A., Myoung, J., Steitz, J.A., A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression (2011) Plos Pathog, 7 (10). , PMID:22022268; Bunimov, N., Smith, J.E., Gosselin, D., Laneuville, O., Translational regulation of PGHS-1 mRNA: 5= untranslated region and first two exons conferring negative regulation (2007) Biochim. Biophys. Acta, 1769 (2), pp. 92-105. , 17320986; Chen, J., Guo, K., Kastan, M.B., Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA (2012) J. Biol. Chem., 287 (20), pp. 16467-16476. , 22433872; Copeland, A.M., Newcomb, W.W., Brown, J.C., Herpes simplex virus replication: Roles of viral proteins and nucleoporins in capsid-nucleus attachment (2009) J. Virol., 83 (4), pp. 1660-1668. , 19073727; Di Nunzio, F., Danckaert, A., Fricke, T., Perez, P., Fernandez, J., Perret, E., Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration (2012) Plos One, 7 (9). , 23049930; Furusawa, Y., Yamada, S., Kawaoka, Y., Host factor nucleoporin 93 is involved in the nuclear export of influenza virus RNA (2018) Front. Microbiol., 9, p. 1675. , 30087672; Ghisolfi-Nieto, L., Joseph, G., Puvion-Dutilleul, F., Amalric, F., Bouvet, P., Nucleolin is a sequence-specific RNA-binding protein: Characterization of targets on pre-ribosomal RNA (1996) J. Mol. Biol., 260 (1), pp. 34-53. , 8676391; Grandi, P., Dang, T., Pané, N., Shevchenko, A., Mann, M., Forbes, D., Hurt, E., Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly (1997) Mol Biol Cell, 8 (10), pp. 2017-2038. , 9348540; Gustin, K.E., Sarnow, P., Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition (2001) EMBO J, 20 (1-2), pp. 240-249. , PMID:11226174; Gustin, K.E., Sarnow, P., Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus (2002) J. Virol., 76 (17), pp. 8787-8796. , 12163599; Hawryluk-Gara, L.A., Shibuya, E.K., Wozniak, R.W., Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex (2005) Mol. Biol. Cell, 16 (5), pp. 2382-2394. , 15703211; Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., Makino, S., SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage (2011) Plos Pathog, 7 (12). , 22174690; Huang, S.H., Lee, T.Y., Lin, Y.J., Wan, L., Lai, C.H., Lin, C.W., Phage display technique identifies the interaction of severe acute respiratory syndrome coronavirus open reading frame 6 protein with nuclear pore complex interacting protein NPIPB3 in modulating Type I interferon antagonism (2017) J. Microbiol. Immunol. Infect., 50 (3), pp. 277-285. , 26320399; Ibarra, A., Benner, C., Tyagi, S., Cool, J., Hetzer, M.W., Nucleoporin-mediated regulation of cell identity genes (2016) Genes Dev, 30 (20), pp. 2253-2258. , 27807035; Jauregui, A.R., Savalia, D., Lowry, V.K., Farrell, C.M., Wathelet, M.G., Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling (2013) Plos One, 8 (4). , 23658627; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (34), pp. 12885-12890. , 16912115; Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K.G., Makino, S., A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein (2009) Nat. Struct. Mol. Biol., 16 (11), pp. 1134-1140. , 19838190; Knockenhauer, K.E., Schwartz, T.U., The nuclear pore complex as a flexible and dynamic gate (2016) Cell, 164 (6), pp. 1162-1171. , 26967283; Labade, A.S., Karmodiya, K., Sengupta, K., HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205 (2016) Epigenetics Chromatin, 9. , 27980680; Le Sage, V., Mouland, A.J., Viral subversion of the nuclear pore complex (2013) Viruses, 5 (8), pp. 2019-2042. , 23959328; Lee, P.-T., Liao, P.-C., Chang, W.-C., Tseng, J.T., Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover (2007) Mol. Biol. Cell, 18 (12), pp. 5004-5013. , 17928403; Lokugamage, K.G., Narayanan, K., Huang, C., Makino, S., Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation (2012) J. Virol., 86 (24), pp. 13598-13608. , 23035226; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.-T.K., Makino, S., Middle east respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J. Virol., 89 (21), pp. 10970-10981. , 26311885; McBride, A.E., Schlegel, A., Kirkegaard, K., Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells (1996) Proc. Natl. Acad. Sci. U. S. A., 93 (6), pp. 2296-2301. , 8637866; Mühlbauer, D., Dzieciolowski, J., Hardt, M., Hocke, A., Schierhorn, K.L., Mostafa, A., Influenza virus-induced caspase-dependent enlargement of nuclear pores promotes nuclear export of viral ribonucleoprotein complexes (2015) J. Virol., 89 (11), pp. 6009-6021. , 25810542; Naetar, N., Ferraioli, S., Foisner, R., Lamins in the nuclear interior-life outside the lamina (2017) J. Cell Sci., 130 (13), pp. 2087-2096. , 28668931; Nakielny, S., Siomi, M.C., Siomi, H., Michael, W.M., Pollard, V., Dreyfuss, G., Transportin: Nuclear transport receptor of a novel nuclear protein import pathway (1996) Exp. Cell Res., 229 (2), pp. 261-266. , 8986607; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.-T.K., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J. Virol., 82 (9), pp. 4471-4479. , 18305050; Park, N., Katikaneni, P., Skern, T., Gustin, K.E., Differential targeting of nuclear pore complex proteins in poliovirus-infected cells (2008) J. Virol., 82 (4), pp. 1647-1655. , 18045934; Park, N., Skern, T., Gustin, K.E., Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease (2010) J. Biol. Chem., 285 (37), pp. 28796-28805. , 20622012; Porter, F.W., Palmenberg, A.C., Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition by cardioviruses (2009) J. Virol., 83 (4), pp. 1941-1951. , 19073724; Porter, F.W., Brown, B., Palmenberg, A.C., Nucleoporin phosphoryla- tion triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases (2010) J. Virol., 84 (24), pp. 12538-12548. , PMID:20881039; Schmidt-Zachmann, M.S., Nigg, E.A., Protein localization to the nucle-olus: A search for targeting domains in nucleolin (1993) J. Cell Sci., 105, pp. 799-806. , Pt 3; Sevajol, M., Subissi, L., Decroly, E., Canard, B., Imbert, I., Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus (2014) Virus Res, 194, pp. 90-99. , 25451065; Tanaka, T., Kamitani, W., Dediego, M.L., Enjuanes, L., Matsuura, Y., Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA (2012) J. Virol., 86 (20), pp. 11128-11137. , 22855488; Terrier, O., Carron, C., de Chassey, B., Dubois, J., Traversier, A., Julien, T., Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication (2016) Sci. Rep., 6. , 27373907; Vollmer, B., Antonin, W., The diverse roles of the Nup93/Nic96 complex proteins — structural scaffolds of the nuclear pore complex with additional cellular functions (2014) Biol. Chem., 395 (5), pp. 515-528. , 24572986; Waggoner, S., Sarnow, P., Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells (1998) J. Virol, 72 (8), pp. 6699-6709. , 9658117; Zhang, L., Zhang, Z.P., Zhang, X.E., Lin, F.S., Ge, F., Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication (2010) J. Virol., 84 (12), pp. 6050-6059. , 20392858","Nag, A.; Furman University, 3300 Poinsett Highway, United States; email: anitan@uscupstate.edu",,"Canadian Science Publishing",08298211,,BCBIE,"30943371","English","Biochem. Cell Biol.",Article,"Final",,Scopus,2-s2.0-85076197791 "Rodon J., Okba N.M.A., Te N., van Dieren B., Bosch B.-J., Bensaid A., Segalés J., Haagmans B.L., Vergara-Alert J.","35269968300;56807221300;57205248002;57195938065;7003681993;7005940684;7005525215;6701371301;37121040100;","Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein",2019,"Emerging Microbes and Infections","8","1",,"1593","1603",,,"10.1080/22221751.2019.1685912","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074832346&doi=10.1080%2f22221751.2019.1685912&partnerID=40&md5=fca753af4b6664ba1175e28638e439da","IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain; Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra (Cerdanyola del Vallès), Spain","Rodon, J., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain; Okba, N.M.A., Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Te, N., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain; van Dieren, B., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Bosch, B.-J., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Bensaid, A., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain; Segalés, J., UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain, Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra (Cerdanyola del Vallès), Spain; Haagmans, B.L., Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands; Vergara-Alert, J., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra (Cerdanyola del Vallès), Spain","The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks pose a worldwide public health threat. Blocking MERS-CoV zoonotic transmission from dromedary camels, the animal reservoir, could potentially reduce the number of primary human cases. Here we report MERS-CoV transmission from experimentally infected llamas to naïve animals. Directly inoculated llamas shed virus for at least 6 days and could infect all in-contact naïve animals 4–5 days after exposure. With the aim to block virus transmission, we examined the efficacy of a recombinant spike S1-protein vaccine. In contrast to naïve animals, in-contact vaccinated llamas did not shed infectious virus upon exposure to directly inoculated llamas, consistent with the induction of strong virus neutralizing antibody responses. Our data provide further evidence that vaccination of the reservoir host may impede MERS-CoV zoonotic transmission to humans. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","Animal model; llama; MERS-CoV; Middle East respiratory syndrome coronavirus; S1-protein-based vaccine; virus transmission","fusion protein; guanine nucleotide binding protein; neutralizing antibody; protein A; recombinant s1 protein vaccine; recombinant vaccine; Renilla luciferin 2 monooxygenase; sodium ion; thrombin; unclassified drug; viral protein; virus RNA; virus vaccine; coronavirus spike glycoprotein; neutralizing antibody; virus antibody; virus vaccine; animal cell; animal experiment; animal model; animal tissue; Article; clinical evaluation; controlled study; drug efficacy; evidence based practice; host; immune response; llama; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; vaccination; virus infectivity; virus neutralization; virus transmission; zoonosis; animal; camel; Coronavirus infection; genetics; human; immunology; New World camelid; vaccination; virology; zoonosis; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelids, New World; Camelus; Coronavirus Infections; Humans; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Vaccination; Viral Vaccines; Zoonoses","Zaki, A., van Boheemen, S., Bestebroer, T., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl J Med, 367, pp. 1814-1820; http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoVupdated 2019 March; cited 2019 Sep 26]. Available from; Middle East respiratory syndrome coronavirus (MERS-CoV): WHO MERS-CoV Global Summary and Assessment of Risk, , https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf, 2018. Available from; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, p. 87; Reusken, C.B., Schilp, C., Raj, V.S., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerg Infect Dis, 22, pp. 1129-1131; David, D., Rotenberg, D., Khinich, E., Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels (2018) One Health, 5, pp. 65-68; Crameri, G., Durr, P.A., Klein, R., Experimental infection and response to rechallenge of alpacas with Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1071-1074; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerg Infect Dis, 22, pp. 1031-1037; Vergara-Alert, J., van den Brand, J.M.A., Widagdo, W., Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus (2017) Emerg Infect Dis, 23, pp. 232-240; WHO Target Product Profiles for MERS-CoV Vaccines, , https://www.who.int/blueprint/what/research-development/MERS_CoV_TPP_15052017.pdf, 2017. Available from; Aguanno, R., ElIdrissi, A., Elkholy, A.A., MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches (2017) Curr Opin Virol, 23, pp. 49-58; Cho, H., Excler, J.-L., Kim, J.H., Development of Middle East respiratory syndrome coronavirus vaccines–advances and challenges (2018) Hum Vaccin Immunother, 14, pp. 304-313; Stalin Raj, V., Okba, N.M.A., Gutierrez-Alvarez, J., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci Adv, 4, p. eaas9667; Widjaja, I., Wang, C., van Haperen, R., Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein (2019) Emerg Microbes Infect, 8, pp. 516-530; Xu, J., Jia, W., Wang, P., Antibodies and vaccines against Middle East respiratory syndrome coronavirus (2019) Emerg Microbes Infect, 8, pp. 841-856; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Guo, X., Deng, Y., Chen, H., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Kim, E., Okada, K., Kenniston, T., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Cockrell, A.S., Yount, B.L., Scobey, T., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2017) Nat Microbiol, 2, p. 16226; Hashem, A.M., A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model (2019) J Infect Dis, pii, p. jiz137; Malczyk, A.H., Algaissi, A., Agrawal, A., A Highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J Virol, 89, pp. 11654-11667; Wirblich, C., Coleman, C.M., Kurup, D., One-Health: a safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus (2017) J Virol, 91, pp. 1-15; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111, pp. 4970-4975; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132; Wang, C., Zheng, X., Gai, W., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694; Lan, J., Yao, Y., Deng, Y., Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2, pp. 1438-1446; Zhang, N., Channappanavar, R., Ma, C., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13, pp. 180-190; Lan, J., Deng, Y., Chen, H., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS One, 9; Tang, J., Zhang, N., Tao, X., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum Vaccin Immunother, 11, pp. 1244-1250; Tai, W., Wang, Y., Fett, C.A., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91, pp. e01651-e1616; Tao, X., Garron, T., Agrawal, A.S., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2016) J Virol, 90, pp. 57-67; Tai, W., Zhao, G., Sun, S., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Jiaming, L., Yanfeng, Y., Yao, D., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Adney, R.D., Wang, L., van Doremalen, N., Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas (2019) Viruses, 11, p. 212; Mou, H., Raj, V.S., van Kuppeveld, F.J.M., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87, pp. 9379-9383; Vergara-Alert, J., Raj, V.S., Muñoz, M., Middle East respiratory syndrome coronavirus experimental transmission using a pig model (2017) Transbound Emerg Dis, 64, pp. 1342-1345; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285; Coleman, C.M., Frieman, M.B., Growth and quantification of MERS-CoV infection (2015) Curr Protoc Microbiol, 37 (1), pp. 15E.2.1-15E.2.9; Okba, N.M.A., Raj, V.S., Widjaja, I., Sensitive and specific detection of Low-level antibody responses in Mild Middle East respiratory syndrome coronavirus infections (2019) Emerg Infect Dis, 25, pp. 1868-1877; Burbelo, P.D., Goldman, R., Mattson, T.L., A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins (2005) BMC Biotechnol, 5, p. 22; Burbelo, P.D., Ching, K.H., Klimavicz, C.M., Antibody profiling by luciferase immunoprecipitation systems (LIPS) (2009) J Vis Exp, 32, p. 1549; Li, W., Hulswit, R.J.G., Widjaja, I., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci, 114, pp. E8508-E8517; Letko, M., Miazgowicz, K., McMinn, R., Adaptive Evolution of MERS-CoV to species Variation in DPP4 (2018) Cell Rep, 24, pp. 1730-1737; Hemida, M.G., Alnaeem, A., Chu, D.K., Longitudinal study of Middle East respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015 (2017) Emerg Microbes Infect, 6, pp. 1-7; Ibrahim, E.E.-S., Gamal, W.M., Hassan, A.I., Comparative study on the immunopotentiator effect of ISA 201, ISA 61, ISA 50, ISA 206 used in trivalent foot and mouth disease vaccine (2015) Vet World, 8, pp. 1189-1198","Haagmans, B.L.; Department of Viroscience, Erasmus Medical CentreNetherlands; email: b.haagmans@erasmusmc.nl",,"Taylor and Francis Ltd.",22221751,,,"31711379","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85074832346 "Widjaja I., Wang C., van Haperen R., Gutiérrez-Álvarez J., van Dieren B., Okba N.M.A., Raj V.S., Li W., Fernandez-Delgado R., Grosveld F., van Kuppeveld F.J.M., Haagmans B.L., Enjuanes L., Drabek D., Bosch B.-J.","26026520100;57208238618;6603509440;57191845034;57195938065;56807221300;55552487100;54966542700;55986933600;7101858903;7004255109;6701371301;7006565392;6602828815;7003681993;","Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein",2019,"Emerging Microbes and Infections","8","1",,"516","530",,10,"10.1080/22221751.2019.1597644","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064226197&doi=10.1080%2f22221751.2019.1597644&partnerID=40&md5=ec32ebfb4d5157abe6561337c12be0d0","Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands; Harbour Antibodies B.V., Rotterdam, Netherlands; Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain; Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Merus N.V, Utrecht, Netherlands; School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Kerala, India","Widjaja, I., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands, Merus N.V, Utrecht, Netherlands; Wang, C., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; van Haperen, R., Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands, Harbour Antibodies B.V., Rotterdam, Netherlands; Gutiérrez-Álvarez, J., Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain; van Dieren, B., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Okba, N.M.A., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Raj, V.S., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Kerala, India; Li, W., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Fernandez-Delgado, R., Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain; Grosveld, F., Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands, Harbour Antibodies B.V., Rotterdam, Netherlands; van Kuppeveld, F.J.M., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Haagmans, B.L., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Enjuanes, L., Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain; Drabek, D., Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands, Harbour Antibodies B.V., Rotterdam, Netherlands; Bosch, B.-J., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands","The Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus that causes severe and often fatal respiratory disease in humans. Efforts to develop antibody-based therapies have focused on neutralizing antibodies that target the receptor binding domain of the viral spike protein thereby blocking receptor binding. Here, we developed a set of human monoclonal antibodies that target functionally distinct domains of the MERS-CoV spike protein. These antibodies belong to six distinct epitope groups and interfere with the three critical entry functions of the MERS-CoV spike protein: sialic acid binding, receptor binding and membrane fusion. Passive immunization with potently as well as with poorly neutralizing antibodies protected mice from lethal MERS-CoV challenge. Collectively, these antibodies offer new ways to gain humoral protection in humans against the emerging MERS-CoV by targeting different spike protein epitopes and functions. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","antibodies; Coronavirus; MERS; spike protein","antivirus agent; epitope; glycoprotein; human monoclonal antibody; neutralizing antibody; sialic acid; virus spike protein; coronavirus spike glycoprotein; monoclonal antibody; virus antibody; virus receptor; animal cell; animal experiment; animal model; antigen binding; Article; binding competition; competitive inhibition; controlled study; dissociation constant; drug receptor binding; HEK293 cell line; human; human cell; humoral immunity; hybridoma cell line; IC50; immunogenicity; membrane fusion; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; passive immunization; priority journal; protein domain; protein function; protein targeting; transgene; Vero cell line; virus entry; virus neutralization; animal; chemistry; Coronavirus infection; genetics; immunology; Middle East respiratory syndrome coronavirus; virology; Animals; Antibodies, Monoclonal; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Epitopes; Humans; Immunization, Passive; Mice; Middle East Respiratory Syndrome Coronavirus; Protein Domains; Receptors, Virus; Spike Glycoprotein, Coronavirus","http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle east respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathog. Glob. Health, 109, pp. 354-362. , https://doi.org/10.1080/20477724.2015.1122852; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 370, pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20 (1012-1015). , https://doi.org/10.3201/eid2006.140402; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143. , https://doi.org/10.1080/14728222.2017.1271415; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , https://doi.org/10.1038/nature16988; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol, 23, pp. 899-905. , https://doi.org/10.1038/nsmb.3293; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J. Virol, , https://doi.org/JVI.01628-17%20[pii]; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , https://doi.org/10.1038/nature17200; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-Electron microscopy Structure of Porcine Deltacoronavirus spike protein in the prefusion state (2018) J. Virol, 92. , https://doi.org/10.1128/JVI.01556-17, JVI.01556-17 [pii]; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14, p. e1007009. , https://doi.org/10.1371/journal.ppat.1007009; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol, 87, pp. 9379-9383. , https://doi.org/10.1128/JVI.01277-13; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. U. S. A, 114, pp. E8508-E8517. , https://doi.org/10.1073/pnas.1712592114; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. U. S. A, 112, pp. 10473-10478. , https://doi.org/10.1073/pnas.1510199112; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Zhou, Y., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol, 88, pp. 7045-7053. , https://doi.org/10.1128/JVI.00433-14; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Yan, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249. , https://doi.org/10.1038/cr.2015.113; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. U. S. A, 112, pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med, 6, p. 234ra59. , https://doi.org/10.1126/scitranslmed.3008140; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Marasco, W.A., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. U. S. A, 111, pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Dimitrov, D.S., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol, 88, pp. 7796-7805. , https://doi.org/10.1128/JVI.00912-14; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Marasco, W.A., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , https://doi.org/10.1016/j.virol.2016.01.004; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res, 132, pp. 141-148. , https://doi.org/10.1016/j.antiviral.2016.06.003; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Tseng, C.T., Passive transfer of A Germline-like neutralizing human monoclonal antibody Protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci. Rep, 6, p. 31629. , https://doi.org/10.1038/srep31629; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis With a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody Protects Rabbits from MERS-CoV infection (2016) J. Infect. Dis, 213, pp. 1557-1561. , https://doi.org/10.1093/infdis/jiw080; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Wang, X., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep, 5, p. 13133. , https://doi.org/10.1038/srep13133; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun, 6, p. 7712. , https://doi.org/10.1038/ncomms8712; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape (2018) J. Virol, , https://doi.org/JVI.02002-17%20[pii]; Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J.B., Fausther-Bovendo, H., Kobinger, G.P., Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp (2014) Nature, 514, pp. 47-53. , https://doi.org/10.1038/nature13777; Saphire, E.O., Aman, M.J., Feverish Quest for Ebola Immunotherapy: Straight or Cocktail? (2016) Trends Microbiol, 24, pp. 684-686. , S0966-842X(16)30049-X [pii], and; Saphire, E.O., Schendel, S.L., Fusco, M.L., Gangavarapu, K., Gunn, B.M., Wec, A.Z., Halfmann, P.J., Dye, J.M., Systematic analysis of monoclonal antibodies against Ebola virus GP defines Features that contribute to protection (2018) Cell, 174, pp. e13-e952. , S0092-8674(18)30960-7 [pii], and; Kyratsous, C., Stahl, N., Sfvapalasingam, S., (2015), Regeneron Pharmaceuticals Inc. International publication number: WO2015179535; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc. Natl. Acad. Sci. U. S. A, 114, pp. 11157-11162. , https://doi.org/10.1073/pnas.1708727114; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray Jr, P.B., Middle East respiratory syndrome coronavirus causes multiple Organ Damage and lethal disease in mice transgenic for human Dipeptidyl Peptidase 4 (2016) J. Infect. Dis, 213, pp. 712-722. , https://doi.org/10.1093/infdis/jiv499; http://www.who.int/blueprint/what/research-development/meeting-report-prioritization.pdf?ua=1; Bossart, K.N., Broder, C.C., Developments towards effective treatments for Nipah and Hendra virus infection (2006) Expert Rev. Anti Infect. Ther, 4, pp. 43-55. , https://doi.org/10.1586/14787210.4.1.43; Lu, L.L., Suscovich, T.J., Fortune, S.M., Alter, G., Beyond binding: antibody effector functions in infectious diseases (2017) Nat. Rev. Immunol, 18, pp. 46-61. , https://doi.org/10.1038/nri.2017.106; Overdijk, M.B., Verploegen, S., Ortiz Buijsse, A., Vink, T., Leusen, J.H., Bleeker, W.K., Parren, P.W., Crosstalk between human IgG isotypes and murine effector cells (2012) J. Immunol, 189, pp. 3430-3438. , –,. :, [pii]; Audet, J., Wong, G., Wang, H., Lu, G., Gao, G.F., Kobinger, G., Qiu, X., Molecular characterization of the monoclonal antibodies composing ZMAb: a protective cocktail against Ebola virus (2015) Sci. Rep, 4, p. 6881. , https://doi.org/10.1038/srep06881; Qiu, X., Audet, J., Wong, G., Pillet, S., Bello, A., Cabral, T., Strong, J.E., Kobinger, G.P., Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies (2012) Sci. Transl. Med, 4, p. 138ra81. , https://doi.org/10.1126/scitranslmed.3003876; Pal, P., Dowd, K.A., Brien, J.D., Edeling, M.A., Gorlatov, S., Johnson, S., Lee, I., Diamond, M.S., Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus (2013) PLoS Pathog, 9, p. e1003312. , https://doi.org/10.1371/journal.ppat.1003312; Bakker, A.B., Marissen, W.E., Kramer, R.A., Rice, A.B., Weldon, W.C., Niezgoda, M., Hanlon, C.A., Goudsmit, J., Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants (2005) J. Virol, 79, pp. 9062-9068. , 79/14/9062 [pii], and; Enjuanes, L., Zuniga, S., Castano-Rodriguez, C., Gutierrez-Alvarez, J., Canton, J., Sola, I., Molecular Basis of coronavirus Virulence and vaccine development (2016) Adv. Virus Res, 96, pp. 245-286. , S0065-3527(16)30042-2 [pii], and; Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G., Lanzavecchia, A., A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins (2011) Science, 333, pp. 850-856; Furuyama, W., Marzi, A., Nanbo, A., Haddock, E., Maruyama, J., Miyamoto, H., Igarashi, M., Takada, A., Discovery of an antibody for pan-ebolavirus therapy (2016) Sci. Rep, 6 (20514). , https://doi.org/10.1038/srep20514; Gilchuk, P., Kuzmina, N., Ilinykh, P.A., Huang, K., Gunn, B.M., Bryan, A., Davidson, E., Crowe Jr, J.E., Multifunctional Pan-ebolavirus antibody recognizes a site of broad Vulnerability on the ebolavirus glycoprotein (2018) Immunity, , https://doi.org/S1074-7613(18)30300-5%20[pii]; Kaname, Y., Tani, H., Kataoka, C., Shiokawa, M., Taguwa, S., Abe, T., Moriishi, K., Matsuura, Y., Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64 (2010) J. Virol, 84, pp. 3210-3219. , https://doi.org/10.1128/JVI.02519-09; Stalin Raj, V., Okba, N.M.A., Gutierrez-Alvarez, J., Drabek, D., van Dieren, B., Widagdo, W., Lamers, M.M., Haagmans, B.L., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci. Adv, 4, p. eaas9667","Bosch, B.-J.; Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht UniversityNetherlands; email: b.j.bosch@uu.nl",,"Taylor and Francis Ltd.",22221751,,,"30938227","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85064226197 "Xia S., Yan L., Xu W., Agrawal A.S., Algaissi A., Tseng C.-T.K., Wang Q., Du L., Tan W., Wilson I.A., Jiang S., Yang B., Lu L.","57206826804;57195980948;22137287100;57204367081;57046024300;7402541658;55638946700;8686996200;57203643436;56743978000;56491898300;56306616200;55715616400;","A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike",2019,"Science Advances","5","4", eaav4580,"","",,13,"10.1126/sciadv.aav4580","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064729014&doi=10.1126%2fsciadv.aav4580&partnerID=40&md5=63c20a196f3b3149ac7686d590e8005c","Shanghai Public Health Clinical Center, School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 200032, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Integrative Structural and Computational Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, San Diego, CA 92037, United States","Xia, S., Shanghai Public Health Clinical Center, School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 200032, China; Yan, L., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; Xu, W., Shanghai Public Health Clinical Center, School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 200032, China; Agrawal, A.S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States; Algaissi, A., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States, Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia; Tseng, C.-T.K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States; Wang, Q., Shanghai Public Health Clinical Center, School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 200032, China; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Tan, W., MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Wilson, I.A., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China, Department of Integrative Structural and Computational Biology, Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, San Diego, CA 92037, United States; Jiang, S., Shanghai Public Health Clinical Center, School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 200032, China, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Yang, B., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; Lu, L., Shanghai Public Health Clinical Center, School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 200032, China","Continuously emerging highly pathogenic human coronaviruses (HCoVs) remain a major threat to human health, as illustrated in past SARS-CoV and MERS-CoV outbreaks. The development of a drug with broad-spectrum HCoV inhibitory activity would address this urgent unmet medical need. Although previous studies have suggested that the HR1 of HCoV spike (S) protein is an important target site for inhibition against specific HCoVs, whether this conserved region could serve as a target for the development of broad-spectrum pan-CoV inhibitor remains controversial. Here, we found that peptide OC43-HR2P, derived from the HR2 domain of HCoV-OC43, exhibited broad fusion inhibitory activity against multiple HCoVs. EK1, the optimized form of OC43-HR2P, showed substantially improved pan-CoV fusion inhibitory activity and pharmaceutical properties. Crystal structures indicated that EK1 can form a stable six-helix bundle structure with both short α-HCoV and long β-HCoV HR1s, further supporting the role of HR1 region as a viable pan-CoV target site. © 2019 The Authors, some rights reserved.",,"Crystal structure; Broad spectrum; Conserved regions; Coronaviruses; Fusion inhibitors; Human health; Inhibitory activity; Medical needs; Target sites; Health risks","Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K.-Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Simon, A., Völz, S., Höfling, K., Kehl, A., Tillman, R., Müller, A., Kupfer, B., Schildgen, O., Acute life threatening event (ALTE) in an infant with human coronavirus HCoV-229E infection (2007) Pediatr. Pulmonol., 42, pp. 393-396; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Chong, W.K., Breuer, J., Human coronavirus OC43 associated with fatal encephalitis (2016) N. Engl. J. Med., 375, pp. 497-498; Mayer, K., Nellessen, C., Hahn-Ast, C., Schumacher, M., Pietzonka, S., Eis-Hübinger, A.M., Drosten, C., Wolf, D., Fatal outcome of human coronavirus NL63 infection despite successful viral elimination by IFN-alpha in a patient with newly diagnosed ALL (2016) Eur. J. Haematol., 97, pp. 208-210; Al-Khannaq, M.N., Ng, K.T., Oong, X.Y., Pang, Y.K., Takebe, Y., Chook, J.B., Hanafi, N.S., Tee, K.K., Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia (2016) Virol. J., 13, p. 33; Oong, X.Y., Ng, K.T., Takebe, Y., Ng, L.J., Chan, K.G., Chook, J.B., Kamarulzaman, A., Tee, K.K., Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: Phylogenetic, spatiotemporal and transmission network analyses (2017) Emerg. Microbes Infect., 6, p. e3; Lau, S.K.P., Lee, P., Tsang, A.K.L., Yip, C.C.Y., Tse, H., Lee, R.A., So, L.-Y., Yuen, K.-Y., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.-L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 3048-3053; Yang, Y., Liu, C., Du, L.Y., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of Middle East Respiratory Syndrome coronavirus (2015) J. Virol., 89, pp. 9119-9123; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Yuen, K.-Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg. Microbes Infect., 1, p. e35; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210; Jiang, S., Lu, L., Liu, Q., Xu, W., Du, L., Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines (2012) Emerg. Microbes Infect., 1, p. e13; Sui, J., Deming, M., Rockx, B., Liddington, R.C., Zhu, Q.K., Baric, R.S., Marasco, W.A., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J. Virol., 88, pp. 13769-13780; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J.K., Escalante, C.R., Xiong, H., Jiang, S., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363, pp. 938-947; Jiang, S., Lin, K., Strick, N., Neurath, A.R., HIV-1 inhibition by a peptide (1993) Nature, 365, p. 113; Wild, C.T., Shugars, D.C., Greenwell, T.K., Mcdanal, C.B., Matthews, T.J., Peptides corresponding to a predictive alpha-helical domain of human-immunodeficiency-virus type 1 gp41 are potent inhibitors of virus-infection (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 9770-9774; Lu, M., Kim, P.S., A trimeric structural subdomain of the HIV-1 transmembrane glycoprotein (1997) J. Biomol. Struct. Dynam., 15, pp. 465-471; Lawless-Delmedico, M.K., Sista, P., Sen, R., Moore, N.C., Antczak, J.B., White, J.M., Greene, R.J., Lambert, D.M., Heptad-repeat regions of respiratory syncytial virus F1 protein form a six-membered coiled-coil complex (2000) Biochemistry, 39, pp. 11684-11695; Watanabe, S., Takada, A., Watanabe, T., Ito, H., Kida, H., Kawaoka, Y., Functional importance of the coiled-coil of the Ebola virus glycoprotein (2000) J. Virol., 74, pp. 10194-10201; Russell, C.J., Jardetzky, T.S., Lamb, R.A., Membrane fusion machines of paramyxoviruses: Capture of intermediates of fusion (2001) EMBO J., 20, pp. 4024-4034; Bossart, K.N., Mungall, B.A., Crameri, G., Wang, L.-F., Eaton, B.T., Broder, C.C., Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein (2005) Virol. J., 2, p. 57; Bosch, B.J., Van Der Zee, R., De Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a class i virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Wang, Q., Jiang, S., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Aydin, H., Al-Khooly, D., Lee, J.E., Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design (2014) Protein Sci., 23, pp. 603-617; Zheng, Q., Deng, Y., Liu, J., Van Der Hoek, L., Berkhout, B., Lu, M., Core structure of S2 from the human coronavirus NL63 spike glycoprotein (2006) Biochemistry, 45, pp. 15205-15215; Otaka, A., Nakamura, M., Nameki, D., Kodama, E., Uchiyama, S., Nakamura, S., Nakano, H., Fujii, N., Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 with target cells (2002) Angew. Chem. Int. Ed., 41, pp. 2937-2940; Marqusee, S., Baldwin, R.L., Helix stabilization by Glu-Lys+ salt bridges in short peptides of de novo design (1987) Proc. Natl. Acad. Sci. U.S.A., 84, pp. 8898-8902; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J. Infect. Dis., 212, pp. 1894-1903; Cavrois, M., De Noronha, C., Greene, W.C., A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes (2002) Nat. Biotechnol., 20, pp. 1151-1154; Cavrois, M., Neidleman, J., Yonemoto, W., Fenard, D., Greene, W.C., HIV-1 virion fusion assay: Uncoating not required and no effect of Nef on fusion (2004) Virology, 328, pp. 36-44; Yonezawa, A., Cavrois, M., Greene, W.C., Studies of Ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: Involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha (2005) J. Virol., 79, pp. 918-926; Wolf, M.C., Wang, Y., Freiberg, A.N., Aguilar, H.C., Holbrook, M.R., Lee, B., A catalytically and genetically optimized -lactamase-matrix based assay for sensitive, specific, and higher throughput analysis of native henipavirus entry characteristics (2009) Virol. J., 6, p. 119; Yan, L., Meng, B., Xiang, J., Wilson, I.A., Yang, B., Crystal structure of the post-fusion core of the human coronavirus 229E spike protein at 1.86 Å resolution (2018) Acta Crystallogr. D, 74, pp. 841-851; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C.Y., Lu, L., Liu, Q., Dimitrov, D.S., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J. Virol., 91, pp. e01651-e01716; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike glycoprotein to avoid neutralization escape (2018) J. Virol., 92, pp. e02002-e02017; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Bosch, B.J., Martina, B.E.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J.R., Rottier, P.J.M., Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 8455-8460; Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Jiang, S., HIV gp41 C-terminal heptad repeat contains multifunctional domains (2007) Relation to Mechanisms of Action of Anti-HIV Peptides. J. Biol. Chem., 282, pp. 9612-9620; Wang, C., Zhao, L., Xia, S., Zhang, T., Cao, R.-Y., Liang, G., Li, Y., Liu, K., De novo design of -helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery (2018) J. Med. Chem., 61, pp. 8734-8745; Wang, C., Xia, S., Zhang, P., Zhang, T., Wang, W., Tian, Y., Meng, G., Liu, K., Discovery of hydrocarbon-stapled short -helical peptides as promising middle east respiratory syndrome coronavirus (MERS-CoV) fusion inhibitors (2018) J. Med. Chem., 61, pp. 2018-2026; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J. Virol., 84, pp. 12658-12664; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLOS Pathog., 13, p. e1006546; Bertram, S., Glowacka, I., Müller, M.A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., Pöhlmann, S., Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease (2011) J. Virol., 85, pp. 13363-13372; Choi, S.-Y., Bertram, S., Glowacka, I., Park, Y.W., Pöhlmann, S., Type II transmembrane serine proteases in cancer and viral infections (2009) Trends Mol. Med., 15, pp. 303-312; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J. Virol., 91, pp. e01387-e01416; Shirato, K., Kawase, M., Matsuyama, S., Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry (2018) Virology, 517, pp. 9-15; Chiu, S.S., Chan, K.H., Chu, K.W., Kwan, S.W., Guan, Y., Poon, L.L.M., Peiris, J.S.M., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin. Infect. Dis., 40, pp. 1721-1729; Gorse, G.J., O'Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J. Infect. Dis., 199, pp. 847-857; Jean, A., Quach, C., Yung, A., Semret, M., Severity and outcome associated with human coronavirus OC43 infections among children (2013) Pediatr. Infect. Dis. J., 32, pp. 325-329; Yu, Y., Deng, Y.-Q., Zou, P., Wang, Q., Dai, Y., Yu, F., Du, L., Lu, L., A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses (2017) Nat. Commun., 8, p. 15672; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326; Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Zwart, P.H., PHENIX: A comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr. D, 66, pp. 213-221; Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr. D, 60, pp. 2126-2132; Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: All-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr. D, 66, pp. 12-21; Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A., PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations (2004) Nucleic Acids Res., 32, pp. W665-W667; Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Schwede, T., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res., 42, pp. W252-W258; Chen, Y.H., Yang, J.T., Chau, K.H., Determination of the helix and beta form of proteins in aqueous solution by circular dichroism (1974) Biochemistry, 13, pp. 3350-3359; Liu, S.W., Zhao, Q., Jiang, S.B., Determination of the HIV-1 gp41 fusogenic core conformation modeled by synthetic peptides: Applicable for identification of HIV-1 fusion inhibitors (2003) Peptides, 24, pp. 1303-1313; Chou, T.-C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol. Rev., 58, pp. 621-681; Brison, E., Jacomy, H., Desforges, M., Talbot, P.J., Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus (2014) J. Virol., 88, pp. 1548-1563; Ciejka, J., Wolski, K., Nowakowska, M., Pyrc, K., Szczubialka, K., Biopolymeric nano/ microspheres for selective and reversible adsorption of coronaviruses (2017) Mater. Sci. Eng. C Mater. Biol. Appl., 76, pp. 735-742; Tao, X., Mei, F., Agrawal, A., Peters, C.J., Ksiazek, T.G., Cheng, X., Tseng, C.-T.K., Blocking of exchange proteins directly activated by cAMP leads to reduced replication of Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 3902-3910; Tao, X., Hill, T.E., Morimoto, C., Peters, C.J., Ksiazek, T.G., Tseng, C.-T.K., Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells (2013) J. Virol., 87, pp. 9953-9958; Jacomy, H., Talbot, P.J., Vacuolating encephalitis in mice infected by human coronavirus OC43 (2003) Virology, 315, pp. 20-33; Tomcin, S., Baier, G., Landfester, K., Mailänder, V., Pharmacokinetics on a microscale: Visualizing Cy5-labeled oligonucleotide release from poly(n-butylcyanoacrylate) nanocapsules in cells (2014) Int. J. Nanomedicine, 9, pp. 5471-5489; Tan, M.Q., Burden-Gulley, S.M., Li, W., Wu, X.M., Lindner, D., Brady-Kalnay, S.M., Gulani, V., Lu, Z.-R., MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in a mouse orthotopic prostate cancer model (2012) Pharm. Res., 29, pp. 953-960","Wilson, I.A.; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityChina; email: wilson@scripps.edu",,"American Association for the Advancement of Science",23752548,,,"30989115","English","Sci. Adv.",Article,"Final",Open Access,Scopus,2-s2.0-85064729014 "Koonpaew S., Teeravechyan S., Frantz P.N., Chailangkarn T., Jongkaewwattana A.","6507953021;23020269900;56271025900;55249702700;25824320100;","PEDV and PDCoV pathogenesis: The interplay between host innate immune responses and porcine enteric coronaviruses",2019,"Frontiers in Veterinary Science","6","FEB", 00034,"","",,3,"10.3389/fvets.2019.00034","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064434607&doi=10.3389%2ffvets.2019.00034&partnerID=40&md5=8d7ed039ddca50f9ff8958ffdba154b6","Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand","Koonpaew, S., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand; Teeravechyan, S., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand; Frantz, P.N., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand; Chailangkarn, T., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand; Jongkaewwattana, A., Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand","Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host's first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution. © 2019 Rioja-Lang, Brown, Brockhoff and Faucitano.","Innate antiviral response; Innate immune antagonism; Interferon induction and signaling; PDCoV; PEDV","nonstructural protein 1; nonstructural protein 3; nonstructural protein 5; structural protein; cellular immunity; Coronavirinae; Coronavirus infection; host pathogen interaction; human; innate immunity; nonhuman; Porcine deltacoronavirus; porcine deltacoronavirus infection; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; primary cell; Review; virus immunity; virus pathogenesis","Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med Maywood NJ., 234, pp. 1117-1127; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol., 86, pp. 3995-4008; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch Virol., 58, pp. 243-247; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet Rec., 100, pp. 243-244; Song, D., Park, B., Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg Infect Dis., 18, pp. 1350-1353; Luo, Y., Zhang, J., Deng, X., Ye, Y., Liao, M., Fan, H., Complete genome sequence of a highly prevalent isolate of porcine epidemic diarrhea virus in South China (2012) J Virol., 86, p. 9551; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis., 18, pp. 161-163; Huang, Y.-W., Dickerman, A.W., Piñeyro, P., Li, L., Fang, L., Kiehne, R., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00737-e00713; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg Infect Dis., 21, pp. 2254-2255; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound Emerg Dis., 62, pp. 575-580; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg Infect Dis., 22, pp. 757-759; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc., 2, p. 14; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res., 226, pp. 50-59; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg Infect Dis., 21, pp. 650-654; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis., 20, pp. 1227-1230; Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu Rev Anim Biosci., 3, pp. 375-395; Tomasello, E., Pollet, E., Vu Manh, T.-P., Uzé, G., Dalod, M., Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types (2014) Front Immunol., 5, p. 526; Haverson, K., Riffault, S., Antigen presenting cells in mucosal sites of veterinary species (2006) Vet Res., 37, pp. 339-358; Jensen, S., Thomsen, A.R., Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion (2012) J Virol., 86, pp. 2900-2910; Charley, B., Riffault, S., Van Reeth, K., Porcine innate and adaptative immune responses to influenza and coronavirus infections (2006) Ann N Y Acad Sci., 1081, pp. 130-136; Annamalai, T., Saif, L.J., Lu, Z., Jung, K., Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs (2015) Vet Immunol Immunopathol., 168, pp. 193-202; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res., 66, pp. 193-292; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J Gen Virol., 81, pp. 853-879; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol Biol Clifton NJ., 1282, pp. 1-23; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J Virol., 78, pp. 13600-12; Prentice, E., McAuliffe, J., Lu, X., Subbarao, K., Denison, M.R., Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins (2004) J Virol., 78, pp. 9977-9986; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144; Fang, P., Fang, L., Liu, X., Hong, Y., Wang, Y., Dong, N., Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6 (2016) Virology, 499, pp. 170-177; Fang, P., Fang, L., Hong, Y., Liu, X., Dong, N., Ma, P., Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus (2017) J Gen Virol., 98, pp. 173-178; Zhang, Q., Yoo, D., Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling (2016) Virus Res., 226, pp. 128-141; de Haan, C.A.M., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J.M., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; Law, P.T.W., Wong, C.-H., Au, T.C.C., Chuck, C.-P., Kong, S.-K., Chan, P.K.S., The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells (2005) J Gen Virol., 86, pp. 1921-1930; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Porcine Deltacoronavirus Accessory Protein NS6 Antagonizes Interferon Beta Production by Interfering with the Binding of RIG-I/MDA5 to Double-Stranded RNA (2018) J Virol., 92, p. 18; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol., 87, pp. 12489-95; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol., 88, pp. 4866-4876; Morilla, A., Yoon, K.-J., Zimmerman, J.J., Trends in Emerging Viral Infections of Swine (2002) Ames, IA: Iowa State Press, p. 387; Dee, S., Clement, T., Schelkopf, A., Nerem, J., Knudsen, D., Christopher-Hennings, J., An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naïve pigs following consumption via natural feeding behavior: proof of concept (2014) BMC Vet Res., 10, p. 176; Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., Role of transportation in spread of porcine epidemic diarrhea virus infection, United States (2014) Emerg Infect Dis., 20, pp. 872-874; Debouck, P., Pensaert, M., Experimental infection of pigs with a new porcine enteric coronavirus, CV 777 (1980) Am J Vet Res., 41, pp. 219-223; Sueyoshi, M., Tsuda, T., Yamazaki, K., Yoshida, K., Nakazawa, M., Sato, K., An immunohistochemical investigation of porcine epidemic diarrhoea (1995) J Comp Pathol., 113, pp. 59-67; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc Natl Acad Sci., 2018, p. 02879; Cong, Y., Ren, X., Coronavirus entry and release in polarized epithelial cells: a review (2014) Rev Med Virol., 24, pp. 308-315; Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., The life cycle of SARS coronavirus in Vero E6 cells (2004) J Med Virol., 73, pp. 332-337; Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G., Hiscox, J.A., Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division (2001) J Virol., 75, pp. 9345-9356; Zhou, X., Cong, Y., Veenendaal, T., Klumperman, J., Shi, D., Mari, M., Ultrastructural characterization of membrane rearrangements induced by porcine epidemic diarrhea virus infection (2017) Viruses, 9, p. 251; Frieman, M., Heise, M., Baric, R., SARS coronavirus and innate immunity (2008) Virus Res., 133, pp. 101-112; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol., 2, pp. 264-275; Tseng, C.-T.K., Perrone, L.A., Zhu, H., Makino, S., Peters, C.J., Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection (2005) J. Immunol. Baltim. Md, 174, pp. 7977-7985; Chan, R.W.Y., Chan, M.C.W., Agnihothram, S., Chan, L.L.Y., Kuok, D.I.T., Fong, J.H.M., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J Virol., 87, pp. 6604-6614; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J Virol., 87, pp. 5300-5304; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J Clin Microbiol., 26, pp. 2235-2239; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) J Clin Microbiol., 52, pp. 234-243; Desmyter, J., Melnick, J.L., Rawls, W.E., Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero) (1968) J Virol., 2, pp. 955-961; Diaz, M.O., Ziemin, S., Le Beau, M.M., Pitha, P., Smith, S.D., Chilcote, R.R., Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines (1988) Proc Natl Acad Sci USA., 85, pp. 5259-5263; Mosca, J.D., Pitha, P.M., Transcriptional and posttranscriptional regulation of exogenous human beta interferon gene in simian cells defective in interferon synthesis (1986) Mol Cell Biol., 6, pp. 2279-2283; Osada, N., Kohara, A., Yamaji, T., Hirayama, N., Kasai, F., Sekizuka, T., The genome landscape of the african green monkey kidney-derived vero cell line (2014) DNA Res Int J Rapid Publ Rep Genes Genomes, 21, pp. 673-683; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zhang, Q., Ma, J., Yoo, D., Inhibition of NF-?B activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion (2017) Virology, 510, pp. 111-126; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol., 89, pp. 6121-6125; Teeravechyan, S., Frantz, P.N., Wongthida, P., Chailangkarn, T., Jaru-Ampornpan, P., Koonpaew, S., Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics (2016) Virus Res., 226, pp. 152-171; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol., 53, pp. 1537-1548; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo (2016) Vet Microbiol., 182, pp. 57-63; Luo, J., Fang, L., Dong, N., Fang, P., Ding, Z., Wang, D., Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-ß production (2016) Virology, 495, pp. 10-17; Wang, J., Hu, G., Lin, Z., He, L., Xu, L., Zhang, Y., Characteristic and functional analysis of a newly established porcine small intestinal epithelial cell line (2014) PLoS ONE, 9, p. e0110916; Cong, Y., Li, X., Bai, Y., Lv, X., Herrler, G., Enjuanes, L., Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells (2015) Virology, 478, pp. 1-8; Li, W., Wang, G., Liang, W., Kang, K., Guo, K., Zhang, Y., Integrin ß3 is required in infection and proliferation of classical swine fever virus (2014) PLoS ONE, 9, p. e110911; Shi, W., Jia, S., Zhao, H., Yin, J., Wang, X., Yu, M., Novel Approach for Isolation and Identification of Porcine Epidemic Diarrhea Virus (PEDV) Strain NJ Using Porcine Intestinal Epithelial Cells (2017) Viruses, 9, p. 9010019; Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression (2013) Virol J., 10, p. 26; Xu, X., Zhang, H., Zhang, Q., Huang, Y., Dong, J., Liang, Y., Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression (2013) Vet Microbiol., 164, pp. 212-221; Guo, L., Luo, X., Li, R., Xu, Y., Zhang, J., Ge, J., Porcine epidemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1 (2016) J Virol., 90, pp. 8281-8292; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling J Virol., 92, pp. e01677-17; Hare, D., Collins, S., Cuddington, B., Mossman, K., Hare, D., Collins, S., The importance of physiologically relevant cell lines for studying virus-host interactions (2016) Viruses, 8, p. 297; Cao, L., Ge, X., Gao, Y., Herrler, G., Ren, Y., Ren, X., Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-ß production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway (2015) Virol J., 12, p. 127; Schulz, K.S., Mossman, K.L., Viral evasion strategies in type I IFN signaling - a summary of recent developments (2016) Front Immunol., 7, p. 498; Lester, S.N., Li, K., Toll-like receptors in antiviral innate immunity (2014) J Mol Biol., 426, pp. 1246-1264; Loo, Y.-M., Gale, M., Immune signaling by RIG-I-like receptors (2011) Immunity, 34, pp. 680-692; Franchi, L., Warner, N., Viani, K., Nuñez, G., Function of Nod-like receptors in microbial recognition and host defense (2009) Immunol Rev., 227, pp. 106-128; Kanneganti, T.-D., Lamkanfi, M., Núñez, G., Intracellular NOD-like receptors in host defense and disease (2007) Immunity, 27, pp. 549-559; Kawasaki, T., Kawai, T., Toll-like receptor signaling pathways (2014) Front Immunol., 5, p. 461; Reikine, S., Nguyen, J.B., Modis, Y., Pattern recognition and signaling mechanisms of RIG-I and MDA5 (2014) Front Immunol., 5, p. 342; Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway (2003) Nat Immunol., 4, pp. 491-496; Randall, R.E., Goodbourn, S., Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J Gen Virol., 89, pp. 1-47; Levy, D.E., García-Sastre, A., The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion (2001) Cytokine Growth Factor Rev., 12, pp. 143-156; Samuel, C.E., Antiviral actions of interferons (2001) Clin Microbiol Rev., 14, pp. 778-809; Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., Schreiber, R.D., How cells respond to interferons (1998) Annu Rev Biochem., 67, pp. 227-264; Takaoka, A., Yanai, H., Interferon signalling network in innate defence (2006) Cell Microbiol., 8, pp. 907-922; Lazear, H.M., Nice, T.J., Diamond, M.S., Interferon-?: Immune Functions at Barrier Surfaces and Beyond (2015) Immunity, 43, pp. 15-28; Kotenko, S.V., Durbin, J.E., Contribution of type III interferons to antiviral immunity: location, location, location (2017) J Biol Chem., 292, pp. 7295-7303; Jewell, N.A., Cline, T., Mertz, S.E., Smirnov, S.V., Flaño, E., Schindler, C., Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo (2010) J Virol., 84, pp. 11515-22; Nakagawa, S., Hirata, Y., Kameyama, T., Tokunaga, Y., Nishito, Y., Hirabayashi, K., Targeted induction of interferon-? in humanized chimeric mouse liver abrogates hepatotropic virus infection (2013) PLoS ONE, 8, p. e59611; Lin, J.-D., Feng, N., Sen, A., Balan, M., Tseng, H.-C., McElrath, C., Distinct roles of type I and type III interferons in intestinal immunity to homologous and heterologous rotavirus infections (2016) PLoS Pathog., 12, p. e1005600; Mahlakõiv, T., Hernandez, P., Gronke, K., Diefenbach, A., Staeheli, P., Leukocyte-derived IFN-a/ß and epithelial IFN-? constitute a compartmentalized mucosal defense system that restricts enteric virus infections (2015) PLOS Pathog., 11, p. e1004782; Okabayashi, T., Kojima, T., Masaki, T., Yokota, S.-I., Imaizumi, T., Tsutsumi, H., Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells (2011) Virus Res., 160, pp. 360-366; Ingle, H., Peterson, S.T., Baldridge, M.T., Distinct effects of type I and III interferons on enteric viruses (2018) Viruses, 10, p. 46; Durbin, R.K., Kotenko, S.V., Durbin, J.E., Interferon induction and function at the mucosal surface (2013) Immunol Rev., 255, pp. 25-39; Odendall, C., Dixit, E., Stavru, F., Bierne, H., Franz, K.M., Durbin, A.F., Diverse intracellular pathogens activate type III interferon expression from peroxisomes (2014) Nat Immunol., 15, pp. 717-726; Dixit, E., Boulant, S., Zhang, Y., Lee, A.S.Y., Odendall, C., Shum, B., Peroxisomes are signaling platforms for antiviral innate immunity (2010) Cell, 141, pp. 668-681; Seth, R.B., Sun, L., Ea, C.-K., Chen, Z.J., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 (2005) Cell, 122, pp. 669-682; Rouse, B.T., Sehrawat, S., Immunity and immunopathology to viruses: what decides the outcome? (2010) Nat Rev Immunol., 10, pp. 514-526; Gasteiger, G., D'Osualdo, A., Schubert, D.A., Weber, A., Bruscia, E.M., Hartl, D., Cellular Innate Immunity: An Old Game with New Players (2017) J Innate Immun., 9, pp. 111-125; Gao, Q., Zhao, S., Qin, T., Yin, Y., Yang, Q., Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells (2015) Vet Microbiol., 179, pp. 131-141; Wang, X., Ohnstad, M., Nelsen, A., Nelson, E., Porcine epidemic diarrhea virus does not replicate in porcine monocyte-derived dendritic cells, but activates the transcription of type I interferon and chemokine (2017) Vet Microbiol., 208, pp. 77-81; Devriendt, B., Verdonck, F., Summerfield, A., Goddeeris, B.M., Cox, E., Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells (2010) Vet Immunol Immunopathol., 135, pp. 188-198; Hunger, R.E., Sieling, P.A., Ochoa, M.T., Sugaya, M., Burdick, A.E., Rea, T.H., Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells (2004) J Clin Invest., 113, pp. 701-708; Li, Y., Wu, Q., Huang, L., Yuan, C., Wang, J., Yang, Q., An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine (2018) Nat Commun., 9, p. 56; Coughlin, M.M., Bellini, W.J., Rota, P.A., Contribution of dendritic cells to measles virus induced immunosuppression (2013) Rev Med Virol., 23, pp. 126-138; Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houlès, C., Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection (2002) Immunity, 17, pp. 653-664; Harman, A.N., Kim, M., Nasr, N., Sandgren, K.J., Cameron, P.U., Tissue dendritic cells as portals for HIV entry (2013) Rev Med Virol., 23, pp. 319-333; Palucka, A.K., Dengue virus and dendritic cells (2000) Nat Med., 6, pp. 748-749; Lee, H.M., Lee, B.J., Tae, J.H., Kweon, C.H., Lee, Y.S., Park, J.H., Detection of porcine epidemic diarrhea virus by immunohistochemistry with recombinant antibody produced in phages (2000) J Vet Med Sci., 62, pp. 333-337; Fauriat, C., Long, E.O., Ljunggren, H.-G., Bryceson, Y.T., Regulation of human NK-cell cytokine and chemokine production by target cell recognition (2010) Blood, 115, pp. 2167-2176; Vivier, E., Tomasello, E., Baratin, M., Walzer, T., Ugolini, S., Functions of natural killer cells (2008) Nat Immunol., 9, pp. 503-510; Kim, Y., Lee, C., Extracellular signal-regulated kinase (ERK) activation is required for porcine epidemic diarrhea virus replication (2015) Virology, 484, pp. 181-193; Lee, C., Kim, Y., Jeon, J.H., JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection (2016) Virus Res., 222, pp. 1-12; Cao, L., Ge, X., Gao, Y., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus infection induces NF-?B activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells (2015) J Gen Virol., 96, pp. 1757-1767; Zhang, P., Martin, M., Michalek, S.M., Katz, J., Role of Mitogen-Activated Protein Kinases and NF-?B in the Regulation of Proinflammatory and Anti-Inflammatory Cytokines by Porphyromonas gingivalis Hemagglutinin B (2005) Infect Immun., 73, pp. 3990-3998; Zou, J., Shankar, N., Roles of TLR/MyD88/MAPK/NF-?B signaling pathways in the regulation of phagocytosis and proinflammatory cytokine expression in response to E. faecalis infection (2015) PLoS ONE, 10, p. e0136947; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6, p. e00064; Wang, L., Hayes, J., Sarver, C., Byrum, B., Zhang, Y., Porcine deltacoronavirus: histological lesions and genetic characterization (2016) Arch Virol., 161, pp. 171-175; Ahn, D.-G., Choi, J.-K., Taylor, D.R., Oh, J.-W., Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates (2012) Arch Virol., 157, pp. 2095-2104; Hu, T., Chen, C., Li, H., Dou, Y., Zhou, M., Lu, D., Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9 (2017) Protein Sci Publ Protein Soc., 26, pp. 1037-1048; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog., 10, p. e1004166; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci USA., 103, pp. 5108-5113; Sevajol, M., Subissi, L., Decroly, E., Canard, B., Imbert, I., Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus (2014) Virus Res., 194, pp. 90-99; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3 (2017) Biol Pharm Bull., 40, pp. 345-351; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuñiga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune Response (2016) J Virol., 90, pp. 5399-5414; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis of S-Adenosyl-l-methionine-binding residues in coronavirus nsp14 N7-methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity (2016) J Virol., 90, pp. 7248-7256; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Sexton, N.R., Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2018) J Virol., 92; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci USA., 114, pp. E4251-E4260; Kindler, E., Thiel, V., To sense or not to sense viral RNA-essentials of coronavirus innate immune evasion (2014) Curr Opin Microbiol., 20, pp. 69-75; Menachery, V.D., Debbink, K., Baric, R.S., Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments (2014) Virus Res., 194, pp. 191-199; Narayanan, K., Ramirez, S.I., Lokugamage, K.G., Makino, S., Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression (2015) Virus Res., 202, pp. 89-100; Wang, Y., Sun, Y., Wu, A., Xu, S., Pan, R., Zeng, C., Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis (2015) J Virol., 89, pp. 8416-8427; Woo, P.C.Y., Huang, Y., Lau, S.K.P., Yuen, K.-Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Connor, R.F., Roper, R.L., Unique SARS-CoV protein nsp1: bioinformatics, biochemistry and potential effects on virulence (2007) Trends Microbiol., 15, pp. 51-53; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L.M., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol., 331, pp. 991-1004; Honda, K., Taniguchi, T., IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors (2006) Nat Rev Immunol., 6, pp. 644-658; Wathelet, M.G., Lin, C.H., Parekh, B.S., Ronco, L.V., Howley, P.M., Maniatis, T., Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo (1998) Mol Cell, 1, pp. 507-518; Hayden, M.S., Ghosh, S., NF-?B, the first quarter-century: remarkable progress and outstanding questions (2012) Genes Dev., 26, pp. 203-234; Mitchell, S., Vargas, J., Hoffmann, A., Signaling via the NF?B system (2016) Wiley Interdiscip Rev Syst Biol Med., 8, pp. 227-241; Napetschnig, J., Wu, H., Molecular basis of NF-?B signaling (2013) Annu Rev Biophys., 42, pp. 443-468; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) J Virol., 84, pp. 4619-4629; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J Biol Chem., 282, pp. 32208-21; Sun, L., Xing, Y., Chen, X., Zheng, Y., Yang, Y., Nichols, D.B., Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling (2012) PLoS ONE, 7, p. e30802; Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase (2013) J Gen Virol., 94, pp. 1554-1567; Liu, Y., Olagnier, D., Lin, R., Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity (2017) Front Immunol., 7, p. 662; Tsuchida, T., Zou, J., Saitoh, T., Kumar, H., Abe, T., Matsuura, Y., The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA (2010) Immunity, 33, pp. 765-776; Zhang, J., Hu, M.-M., Wang, Y.-Y., Shu, H.-B., TRIM32 Protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination (2012) J Biol Chem., 287, pp. 28646-55; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2016) J Virol., 90, pp. 2090-2101; Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2 (2017) J Virol., 91, p. 14; Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Porcine deltacoronavirus nsp5 inhibits interferon-ß production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38; Ramos, H.J., Gale, M., RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity (2011) Curr Opin Virol., 1, pp. 167-176; Zhao, T., Yang, L., Sun, Q., Arguello, M., Ballard, D.W., Hiscott, J., The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways (2007) Nat Immunol., 8, pp. 592-600; Huang, C., Zhang, Q., Guo, X., Yu, Z., Xu, A., Tang, J., Porcine reproductive and respiratory syndrome virus nonstructural protein 4 antagonizes beta interferon expression by targeting the NF-?B essential modulator (2014) J Virol., 88, pp. 10934-45; Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling (2012) J Virol., 86, pp. 9311-9322; Wang, D., Fang, L., Wei, D., Zhang, H., Luo, R., Chen, H., Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon (2014) J Virol., 88, pp. 10252-8; Shen, S., Wen, Z.L., Liu, D.X., Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: functional characterization of the 3b protein in pathogenesis and replication (2003) Virology, 311, pp. 16-27; Cruz, J.L.G., Becares, M., Sola, I., Oliveros, J.C., Enjuanes, L., Zúñiga, S., Alphacoronavirus protein 7 modulates host innate immune response (2013) J Virol., 87, pp. 9754-9767; Dedeurwaerder, A., Olyslaegers, D.A.J., Desmarets, L.M.B., Roukaerts, I.D.M., Theuns, S., Nauwynck, H.J., ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-a-induced antiviral response (2014) J Gen Virol., 95, pp. 393-402; Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., Baric, R.S., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J Virol., 81, pp. 9812-9824; Zhang, R., Jha, B.K., Ogden, K.M., Dong, B., Zhao, L., Elliott, R., Homologous 2',5'-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity (2013) Proc Natl Acad Sci USA., 110, pp. 13114-9; Kopecky-Bromberg, S.A., Martínez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol., 81, pp. 548-557; Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol., 95, pp. 874-882; Shi, C.-S., Qi, H.-Y., Boularan, C., Huang, N.-N., Abu-Asab, M., Shelhamer, J.H., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome (2014) J Immunol Baltim Md, 193, pp. 3080-3089; Spiegel, M., Pichlmair, A., Martínez-Sobrido, L., Cros, J., García-Sastre, A., Haller, O., Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3 (2005) J Virol., 79, pp. 2079-2086; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Middle east respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, p. e00258; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11, pp. 607-616; Beall, A., Yount, B., Lin, C.-M., Hou, Y., Wang, Q., Saif, L., Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A (2016) MBio, 7, pp. e01451-15; Jengarn, J., Wongthida, P., Wanasen, N., Frantz, P.N., Wanitchang, A., Jongkaewwattana, A., Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone (2015) J Gen Virol., 96, pp. 2206-2218; Kaewborisuth, C., He, Q., Jongkaewwattana, A., The accessory protein ORF3 contributes to porcine epidemic diarrhea virus replication by direct binding to the spike protein (2018) Viruses, 10, p. 399; Li, C., Li, Z., Zou, Y., Wicht, O., van Kuppeveld, F.J.M., Rottier, P.J.M., Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination (2013) PLoS ONE, 8, p. e69997; Wongthida, P., Liwnaree, B., Wanasen, N., Narkpuk, J., Jongkaewwattana, A., The role of ORF3 accessory protein in replication of cell-adapted porcine epidemic diarrhea virus (PEDV) (2017) Arch Virol., 162, pp. 2553-2563; Park, S.-J., Moon, H.-J., Luo, Y., Kim, H.-K., Kim, E.-M., Yang, J.-S., Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses (2008) Virus Genes, 36, pp. 95-104; Huang, C., Peters, C.J., Makino, S., Severe acute respiratory syndrome coronavirus accessory protein 6 is a virion-associated protein and is released from 6 protein-expressing cells (2007) J Virol., 81, pp. 5423-5426; Xu, K., Zheng, B.-J., Zeng, R., Lu, W., Lin, Y.-P., Xue, L., Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein (2009) Virology, 388, pp. 279-285; Xu, X.G., Zhang, H.L., Zhang, Q., Dong, J., Huang, Y., Tong, D.W., Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells (2015) Acta Virol., 59, pp. 265-275; Yang, L., Xu, J., Guo, L., Guo, T., Zhang, L., Feng, L., Porcine Epidemic Diarrhea Virus-Induced Epidermal Growth Factor Receptor Activation Impairs the Antiviral Activity of Type I Interferon (2018) J Virol., 92, pp. e02095-17; Avraham, R., Yarden, Y., Feedback regulation of EGFR signalling: decision making by early and delayed loops (2011) Nat Rev Mol Cell Biol., 12, pp. 104-117; Lindsey, S., Langhans, S.A., Epidermal growth factor signaling in transformed cells (2015) Int Rev Cell Mol Biol., 314, pp. 1-41; Kung, C.-P., Meckes, D.G., Raab-Traub, N., Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta (2011) J Virol., 85, pp. 4399-4408; Oshiumi, H., Miyashita, M., Okamoto, M., Morioka, Y., Okabe, M., Matsumoto, M., DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation (2015) Cell Rep., 11, pp. 1193-1207; Xu, Y., Shi, Y., Yuan, Q., Liu, X., Yan, B., Chen, L., Epstein-Barr Virus encoded LMP1 regulates cyclin D1 promoter activity by nuclear EGFR and STAT3 in CNE1 cells (2013) J Exp Clin Cancer Res CR, 32, p. 90; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Zúñiga, S., Cruz, J.L.G., Sola, I., Mateos-Gómez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J Virol., 84, pp. 2169-2175; Lu, P., Struijs, M.-C., Mei, J., Witte-Bouma, J., Korteland-van Male, A.M., de Bruijn, A.C.J.M., Endoplasmic reticulum stress, unfolded protein response and altered T cell differentiation in necrotizing enterocolitis (2013) PLoS ONE, 8, p. e0078491; Tam, A.B., Mercado, E.L., Hoffmann, A., Niwa, M., ER stress activates NF-?B by integrating functions of basal IKK activity, IRE1 and PERK (2012) PloS One, 7, p. e45078; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J Virol., 88, pp. 8936-8945; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-ß response by targeting initial step of IFN-ß induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Ye, Y., Hauns, K., Langland, J.O., Jacobs, B.L., Hogue, B.G., Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist (2007) J Virol., 81, pp. 2554-2563; Ashkar, A.A., Yao, X.-D., Gill, N., Sajic, D., Patrick, A.J., Rosenthal, K.L., Toll-like receptor (TLR)-3, but not TLR4, agonist protects against genital herpes infection in the absence of inflammation seen with CpG DNA (2004) J Infect Dis., 190, pp. 1841-1849; Horsmans, Y., Berg, T., Desager, J.-P., Mueller, T., Schott, E., Fletcher, S.P., Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection (2005) Hepatol Baltim Md, 42, pp. 724-731; Cervantes-Barragan, L., Züst, R., Weber, F., Spiegel, M., Lang, K.S., Akira, S., Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon (2007) Blood, 109, pp. 1131-1137; Kobiyama, K., Takeshita, F., Ishii, K.J., Koyama, S., Aoshi, T., Akira, S., A signaling polypeptide derived from an innate immune adaptor molecule can be harnessed as a new class of vaccine adjuvant (2009) J. Immunol. Baltim. Md, 182, pp. 1593-1601; Chinsangaram, J., Moraes, M.P., Koster, M., Grubman, M.J., Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease (2003) J Virol., 77, pp. 1621-1625; Dias, C.C.A., Moraes, M.P., Segundo, F.D-S., de los Santos, T., Grubman, M.J., Porcine type I interferon rapidly protects swine against challenge with multiple serotypes of foot-and-mouth disease virus (2011) J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res., 31, pp. 227-236; Moraes, M.P., de Los Santos, T., Koster, M., Turecek, T., Wang, H., Andreyev, V.G., Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons (2007) J Virol., 81, pp. 7124-7135; Perez-Martin, E., Diaz-San Segundo, F., Weiss, M., Sturza, D.F., Dias, C.C., Ramirez-Medina, E., Type III interferon protects swine against foot-and-mouth disease (2014) J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res., 34, pp. 810-821; Ramírez-Carvajal, L., Díaz-San Segundo, F., Hickman, D., Long, C.R., Zhu, J., Rodríguez, L.L., Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication (2014) J Virol., 88, pp. 11140-53; Ramírez-Carvajal, L., Diaz-San Segundo, F., Ramirez-Medina, E., Rodríguez, L.L., de Los Santos, T., Constitutively active IRF7/IRF3 fusion protein completely protects swine against foot-and-mouth disease (2016) J Virol., 90, pp. 8809-8821; Netland, J., DeDiego, M.L., Zhao, J., Fett, C., álvarez, E., Nieto-Torres, J.L., Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease (2010) Virology, 399, pp. 120-128; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Castaño-Rodríguez, C., Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates (2015) J Virol., 89, pp. 3870-3887; Ortego, J., Escors, D., Laude, H., Enjuanes, L., Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome (2002) J Virol., 76, pp. 11518-29","Koonpaew, S.; Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development AgencyThailand; email: surapong.koo@biotec.or.th",,"Frontiers Media S.A.",22971769,,,,"English","Front. Vet. Sci.",Review,"Final",Open Access,Scopus,2-s2.0-85064434607 "Chen I.-Y., Moriyama M., Chang M.-F., Ichinohe T.","36496477500;57206696188;7404504288;7007074113;","Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome",2019,"Frontiers in Microbiology","10","JAN", 50,"","",,10,"10.3389/fmicb.2019.00050","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064394329&doi=10.3389%2ffmicb.2019.00050&partnerID=40&md5=e8d4fa325eec5572d46c1303ff45d5e7","Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan","Chen, I.-Y., Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Moriyama, M., Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Chang, M.-F., Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Ichinohe, T., Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan","Nod-like receptor family, pyrin domain-containing 3 (NLRP3) regulates the secretion of proinflammatory cytokines interleukin 1 beta (IL-1β) and IL-18. We previously showed that influenza virus M2 or encephalomyocarditis virus (EMCV) 2B proteins stimulate IL-1β secretion following activation of the NLRP3 inflammasome. However, the mechanism by which severe acute respiratory syndrome coronavirus (SARS-CoV) activates the NLRP3 inflammasome remains unknown. Here, we provide direct evidence that SARS-CoV 3a protein activates the NLRP3 inflammasome in lipopolysaccharide-primed macrophages. SARS-CoV 3a was sufficient to cause the NLRP3 inflammasome activation. The ion channel activity of the 3a protein was essential for 3a-mediated IL-1β secretion. While cells uninfected or infected with a lentivirus expressing a 3a protein defective in ion channel activity expressed NLRP3 uniformly throughout the cytoplasm, NLRP3 was redistributed to the perinuclear space in cells infected with a lentivirus expressing the 3a protein. K+ efflux and mitochondrial reactive oxygen species were important for SARS-CoV 3a-induced NLRP3 inflammasome activation. These results highlight the importance of viroporins, transmembrane pore-forming viral proteins, in virus-induced NLRP3 inflammasome activation. © 2019 Frontiers Media S.A. All Rights Reserved.","IL-1β; Inflammasome; Inflammation; SARS-CoV; Viroporin","cryopyrin; interleukin 18; interleukin 1beta; ion channel; lipopolysaccharide; reactive oxygen metabolite; unclassified drug; viral protein; viroporin 3a; animal cell; animal experiment; Article; cell activation; cell culture; confocal microscopy; controlled study; cytokine production; dimerization; enzyme activity; enzyme linked immunosorbent assay; female; gene; gene mutation; genetic transfection; immune response; Lentivirus infection; macrophage; molecular cloning; mouse; nonhuman; plasmid; polymerase chain reaction; protein expression; SARS coronavirus; severe acute respiratory syndrome; Western blotting","Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., Mcelvania-Tekippe, E., Taxman, D.J., The NLRP3 inflammasome mediates in vivo innate immunity to influenza a virus through recognition of viral RNA (2009) Immunity, 30, pp. 556-565; Arlehamn, C.S., Petrilli, V., Gross, O., Tschopp, J., Evans, T.J., The role of potassium in inflammasome activation by bacteria (2010) J. Biol. Chem., 285, pp. 10508-10518; Bauernfeind, F., Ablasser, A., Bartok, E., Kim, S., Schmid-Burgk, J., Cavlar, T., Inflammasomes: Current understanding and open questions (2011) Cell Mol. Life Sci., 68, pp. 765-783; Castano-Rodriguez, C., Honrubia, J.M., Gutierrez-Alvarez, J., Dediego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Role of severe acute respiratory syndrome Coronavirus viroporins E, 3a, and 8a in replication and pathogenesis (2018) MBio, 9, pp. e2325-e2417; Chakrabarti, A., Banerjee, S., Franchi, L., Loo, Y.M., Gale, M., Jr., Núñez, G., RNase L activates the NLRP3 inflammasome during viral infections (2015) Cell Host Microbe, 17, pp. 466-477; Chan, C.M., Tsoi, H., Chan, W.M., Zhai, S., Wong, C.O., Yao, X., The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function (2009) Int. J. Biochem. Cell Biol., 41, pp. 2232-2239; Chen, I.Y., Ichinohe, T., Response of host inflammasomes to viral infection (2015) Trends Microbiol., 23, pp. 55-63; Chen, W., Xu, Y., Li, H., Tao, W., Xiang, Y., Huang, B., HCV genomic RNA activates the NLRP3 inflammasome in human myeloid cells (2014) PLoS One, 9; Drosten, C., Gunther, S., Preiser, W., Van-Der-Werf, S., Brodt, H.R., Becker, S., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals (2010) Nature, 464, pp. 1357-1361; Farag, N.S., Breitinger, U., El-Azizi, M., Breitinger, H.G., The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1beta (2017) Biochim. Biophys. Acta Mol. Basis Dis., 1863, pp. 712-720; Fernandes-Alnemri, T., Wu, J., Yu, J.W., Datta, P., Miller, B., Jankowski, W., The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation (2007) Cell Death Differ., 14, pp. 1590-1604; Fouchier, R.A., Kuiken, T., Schutten, M., Van-Amerongen, G., Van-Doornum, G.J., Van-Den-Hoogen, B.G., Aetiology: Koch's postulates fulfilled for SARS virus (2003) Nature, 423, p. 240; Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta (2008) Nat. Immunol., 9, pp. 857-865; He, L., Ding, Y., Zhang, Q., Che, X., He, Y., Shen, H., Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS (2006) J. Pathol., 210, pp. 288-297; Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization (2008) Nat. Immunol., 9, pp. 847-856; Hornung, V., Latz, E., Critical functions of priming and lysosomal damage for NLRP3 activation (2010) Eur. J. Immunol., 40, pp. 620-623; Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R., Iwasaki, A., Inflammasome recognition of influenza virus is essential for adaptive immune responses (2009) J. Exp. Med., 206, pp. 79-87; Ichinohe, T., Pang, I.K., Iwasaki, A., Influenza virus activates inflammasomes via its intracellular M2 ion channel (2010) Nat. Immunol., 11, pp. 404-410; Ichinohe, T., Yamazaki, T., Koshiba, T., Yanagi, Y., Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection (2013) Proc. Natl. Acad. Sci. U.S.A, 110, pp. 17963-17968; Ito, M., Yanagi, Y., Ichinohe, T., Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome (2012) PLoS Pathog., 8; Jiang, J., Stoyanovsky, D.A., Belikova, N.A., Tyurina, Y.Y., Zhao, Q., Tungekar, M.A., A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator (2009) Radiat. Res., 172, pp. 706-717; Johnson, K.E., Chikoti, L., Chandran, B., Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes (2013) J. Virol., 87, pp. 5005-5018; Kawai, T., Akira, S., The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors (2010) Nat. Immunol., 11, pp. 373-384; Kayagaki, N., Stowe, I.B., Lee, B.L., O'Rourke, K., Anderson, K., Warming, S., Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling (2015) Nature, 526, pp. 666-671; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., Van-Amerongen, G., Van-Riel, D., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270; Lu, W., Zheng, B.J., Xu, K., Schwarz, W., Du, L., Wong, C.K., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release (2006) Proc. Natl. Acad. Sci. U.S.A, 103, pp. 12540-12545; Mariathasan, S., Weiss, D.S., Newton, K., Mcbride, J., O'Rourke, K., Roose-Girma, M., Cryopyrin activates the inflammasome in response to toxins and ATP (2006) Nature, 440, pp. 228-232; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc. Natl. Acad. Sci. U.S.A, 102, pp. 12543-12547; Medzhitov, R., Toll-like receptors and innate immunity (2001) Nat. Rev. Immunol., 1, pp. 135-145; Minakshi, R., Padhan, K., The YXXPhi motif within the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is crucial for its intracellular transport (2014) Virol. J., 11, p. 75; Mitoma, H., Hanabuchi, S., Kim, T., Bao, M., Zhang, Z., Sugimoto, N., The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome (2013) Immunity, 39, pp. 123-135; Moriyama, M., Chen, I.Y., Kawaguchi, A., Koshiba, T., Nagata, K., Takeyama, H., The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated IL-1beta secretion (2016) J. Virol., 90, pp. 4105-4114; Munoz-Planillo, R., Kuffa, P., Martinez-Colon, G., Smith, B.L., Rajendiran, T.M., Nunez, G., K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter (2013) Immunity, 38, pp. 1142-1153; Murakami, T., Ockinger, J., Yu, J., Byles, V., Mccoll, A., Hofer, A.M., Critical role for calcium mobilization in activation of the NLRP3 inflammasome (2012) Proc. Natl. Acad. Sci. U.S.A, 109, pp. 11282-11287; Nakahira, K., Haspel, J.A., Rathinam, V.A., Lee, S.J., Dolinay, T., Lam, H.C., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome (2011) Nat. Immunol., 12, pp. 222-230; Negash, A.A., Ramos, H.J., Crochet, N., Lau, D.T., Doehle, B., Papic, N., IL-1beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease (2013) PLoS Pathog., 9; Nieto-Torres, J.L., Verdia-Baguena, C., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome (2015) Virology, 485, pp. 330-339; Pang, I.K., Ichinohe, T., Iwasaki, A., IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8(+) T cell responses to influenza a virus (2013) Nat. Immunol., 14, pp. 246-253; Parthasarathy, K., Ng, L., Lin, X., Liu, D.X., Pervushin, K., Gong, X., Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel (2008) Biophys. J., 95, pp. L39-L41; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Perlman, S., Dandekar, A.A., Immunopathogenesis of coronavirus infections: Implications for SARS (2005) Nat. Rev. Immunol., 5, pp. 917-927; Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F.L., Yu, D., Structure and inhibition of the SARS coronavirus envelope protein ion channel (2009) PLoS Pathog., 5; Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., Tschopp, J., Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration (2007) Cell Death Differ., 14, pp. 1583-1589; Schroder, K., Zhou, R., Tschopp, J., The NLRP3 inflammasome: A sensor for metabolic danger? (2010) Science, 327, pp. 296-300; Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death (2015) Nature, 526, pp. 660-665; Shimada, K., Crother, T.R., Karlin, J., Dagvadorj, J., Chiba, N., Chen, S., Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis (2012) Immunity, 36, pp. 401-414; Subramanian, N., Natarajan, K., Clatworthy, M.R., Wang, Z., Germain, R.N., The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation (2013) Cell, 153, pp. 348-361; Tan, Y.J., Lim, S.G., Hong, W., Characterization of viral proteins encoded by the SARS-coronavirus genome (2005) Antiviral Res., 65, pp. 69-78; Torres, J., Maheswari, U., Parthasarathy, K., Ng, L., Liu, D.X., Gong, X., Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein (2007) Protein Sci., 16, pp. 2065-2071; Triantafilou, K., Kar, S., Van-Kuppeveld, F.J., Triantafilou, M., Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells (2013) Am. J. Respir. Cell Mol. Biol., 49, pp. 923-934; Trnka, J., Blaikie, F.H., Logan, A., Smith, R.A., Murphy, M.P., Antioxidant properties of MitoTEMPOL and its hydroxylamine (2009) Free Radic. Res., 43, pp. 4-12; Tschopp, J., Schroder, K., NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? (2010) Nat. Rev. Immunol., 10, pp. 210-215; Verdia-Baguena, C., Nieto-Torres, J.L., Alcaraz, A., Dediego, M.L., Torres, J., Aguilella, V.M., Coronavirus e protein forms ion channels with functionally and structurally-involved membrane lipids (2012) Virology, 432, pp. 485-494; Wang, K., Xie, S., Sun, B., Viral proteins function as ion channels (2011) Biochim. Biophys. Acta, 1808, pp. 510-515; Wang, W., Xiao, F., Wan, P., Pan, P., Zhang, Y., Liu, F., EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex (2017) PLoS Pathog., 13; Wilson, L., Mckinlay, C., Gage, P., Ewart, G., SARS coronavirus e protein forms cation-selective ion channels (2004) Virology, 330, pp. 322-331; Yu, C.J., Chen, Y.C., Hsiao, C.H., Kuo, T.C., Chang, S.C., Lu, C.Y., Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus (2004) FEBS Lett., 565, pp. 111-116; Yuan, X., Li, J., Shan, Y., Yang, Z., Zhao, Z., Chen, B., Subcellular localization and membrane association of SARS-CoV 3a protein (2005) Virus Res., 109, pp. 191-202; Yue, Y., Nabar, N.R., Shi, C.S., Kamenyeva, O., Xiao, X., Hwang, I.Y., SARS-Coronavirus open reading frame-3a drives multimodal necrotic cell death (2018) Cell Death Dis., 9, p. 904; Zeng, R., Yang, R.F., Shi, M.D., Jiang, M.R., Xie, Y.H., Ruan, H.Q., Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients (2004) J. Mol. Biol., 341, pp. 271-279; Zhou, R., Tardivel, A., Thorens, B., Choi, I., Tschopp, J., Thioredoxin-interacting protein links oxidative stress to inflammasome activation (2010) Nat. Immunol., 11, pp. 136-140; Zhou, R., Yazdi, A.S., Menu, P., Tschopp, J., A role for mitochondria in NLRP3 inflammasome activation (2011) Nature, 469, pp. 221-225","Ichinohe, T.; Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of TokyoJapan; email: ichinohe@ims.u-tokyo.ac.jp",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85064394329 "Banerjee A., Kulcsar K., Misra V., Frieman M., Mossman K.","56412355200;55805281200;7201897411;9240056500;35243393500;","Bats and coronaviruses",2019,"Viruses","11","1", 41,"","",,8,"10.3390/v11010041","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059915893&doi=10.3390%2fv11010041&partnerID=40&md5=408f54b8ebb05557b7485025652324f2","Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada","Banerjee, A., Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Kulcsar, K., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Misra, V., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Frieman, M., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Mossman, K., Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada","Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause serious disease in humans and agricultural animals. These include CoVs that cause severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), porcine epidemic diarrhea (PED) and severe acute diarrhea syndrome (SADS). Bats that are naturally infected or experimentally infected do not demonstrate clinical signs of disease. These observations have allowed researchers to speculate that bats are the likely reservoirs or ancestral hosts for several CoVs. In this review, we follow the CoV outbreaks that are speculated to have originated in bats. We review studies that have allowed researchers to identify unique adaptation in bats that may allow them to harbor CoVs without severe disease. We speculate about future studies that are critical to identify how bats can harbor multiple strains of CoVs and factors that enable these viruses to “jump” from bats to other mammals. We hope that this review will enable readers to identify gaps in knowledge that currently exist and initiate a dialogue amongst bat researchers to share resources to overcome present limitations. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Bats; Coronaviruses; Immune response; In vitro; In vivo","adaptation; bat; cell culture; Coronaviridae; Coronavirinae; disease model; disease severity; epidemic; host; human; immune response; in vivo study; nonhuman; Review; virus strain; animal; asymptomatic disease; bat; Coronavirinae; Coronavirus infection; disease carrier; epidemic; molecular evolution; pathogenicity; phylogeny; physiology; pig; SARS coronavirus; severe acute respiratory syndrome; veterinary medicine; virology; virus genome; Animals; Asymptomatic Diseases; Chiroptera; Coronavirus; Coronavirus Infections; Disease Outbreaks; Disease Reservoirs; Evolution, Molecular; Genome, Viral; Humans; Phylogeny; SARS Virus; Severe Acute Respiratory Syndrome; Swine","Moratelli, R., Calisher, C.H., Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? (2015) Mem. Inst. Oswaldo Cruz, 110, pp. 1-22; Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O’Brien, S.J., Murphy, W.J., A molecular phylogeny for bats illuminates biogeography and the fossil record (2005) Science, 307, pp. 580-584; Teeling, E.C., Jones, G., Rossiter, S.J., Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats (2016) Bat Bioacoustics, 54, pp. 25-54; Simmons, N.B., Seymour, K.L., Habersetzer, J., Gunnell, G.F., Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation (2008) Nature, 451, pp. 818-821; O’Leary, M.A., Bloch, J.I., Flynn, J.J., Gaudin, T.J., Giallombardo, A., Giannini, N.P., Goldberg, S.L., Meng, J., The placental mammal ancestor and the post-K-Pg radiation of placentals (2013) Science, 339, pp. 662-667; Lei, M., Dong, D., Phylogenomic analyses of bat subordinal relationships based on transcriptome data (2016) Sci. Rep., 6; Fisher, C.R., Streicker, D.G., Schnell, M.J., The spread and evolution of rabies virus: Conquering new frontiers (2018) Nat. Rev. Microbiol., 16, pp. 241-255; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Coleman, C.M., Frieman, M.B., Coronaviruses: Important emerging human pathogens (2014) J. Virol., 88, pp. 5209-5212; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir. Res., 109, pp. 97-109; Narayanan, K., Huang, C., Makino, S., SARS coronavirus accessory proteins (2008) Virus Res, 133, pp. 113-121; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Severe Acute Respiratory Syndrome, , https://www.cdc.gov/sars/about/fs-sars.html, (accessed on 20 December 2018); Middle East Respiratory Syndrome Coronavirus, , http://www.who.int/emergencies/mers-cov/en/, (accessed on 10 November 2018); Lim, Y.X., Ng, Y.L., Tam, J.P., Liu, D.X., Human Coronaviruses: A Review of Virus-Host Interactions (2016) Diseases, 4; Schulz, L.L., Tonsor, G.T., Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States (2015) J. Anim. Sci., 93, pp. 5111-5118; Colvero, L.P., Villarreal, L.Y.B., Torres, C.A., Brandao, P.E., Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil (2015) Revue Scientifique Et Technique De l’OIE, 34, pp. 993-999; Chen, L., Liu, B., Yang, J., Jin, Q., DBatVir: The database of bat-associated viruses (2014) Database, 2014; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Cheung, C.L., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) Plos Pathog, 13; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Islam, A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Wong, A.C.P., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of MERS-related coronavirus spike proteins for human DPP4 binding (2018) J. Infect. Dis; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis., 20, pp. 1231-1234; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Kuehn, B.M., More evidence emerges that bats may have spread SARS (2013) JAMA, 310; Zheng, B.J., Wong, K.H., Zhou, J., Wong, K.L., Young, B.W., Lu, L.W., Lee, S.S., SARS-related virus predating SARS outbreak, Hong Kong (2004) Emerg. Infect. Dis., 10, pp. 176-178; Falzarano, D., Kamissoko, B., de Wit, E., Maiga, O., Cronin, J., Samake, K., Traore, A., Sogoba, N., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Deem, S.L., Fevre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.J., Koopmans, M., Reusken, C.B., Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, Kenya (2015) Plos ONE, 10; Alexandersen, S., Kobinger, G.P., Soule, G., Wernery, U., Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005 (2014) Transbound. Emerg. Dis., 61, pp. 105-108; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Ben Embarek, P.K., van Kerkhove, M.D., Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases (2018) Viruses, 10; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia (2018) Mbio, 9; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) Mbio, 8; Chastel, C., Middle East respiratory syndrome (MERS): Bats or dromedary, which of them is responsible? (2014) Bull. Soc. Pathol. Exot., 107, pp. 69-73; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., van den Brand, J.M.A., Tissue Distribution of the MERS-Coronavirus Receptor in Bats (2017) Sci. Rep., 7; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Yuen, K.-Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg. Microbes Infect., 1; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Wang, J., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus (2018) J. Virol; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Drexler, J.F., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-Van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Abdul-Rasool, S., Fielding, B.C., Understanding Human Coronavirus HCoV-NL63 (2010) Open Virol. J., 4, pp. 76-84; Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., van der Hoek, L., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J. Mol. Biol., 364, pp. 964-973; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Gates, J.E., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol, 86, pp. 12816-12825; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History (2017) J. Virol., 91; McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc. Natl. Acad. Sci. USA, 57, pp. 933-940; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Müller, M.A., Adu-Sarkodie, Y., Distant Relatives of Severe Acute Respiratory Syndrome Coronavirus and Close Relatives of Human Coronavirus 229E in Bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Crossley, B.M., Mock, R.E., Callison, S.A., Hietala, S.K., Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E (2012) Viruses, 4, pp. 3689-3700; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Adu-Sarkodie, Y., Evidence for an Ancestral Association of Human Coronavirus 229E with Bats (2015) J. Virol, 89, pp. 11858-11870; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Al Masri, M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9864-9869; Lau, S.K.P., Fan, R.Y.Y., Luk, H.K.H., Zhu, L., Fung, J., Li, K.S.M., Wong, E.Y.M., Kok, R.K.H., Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins (2018) Emerg. Microbes Infect, 7; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, pp. 243-247; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144; Choudhury, B., Dastjerdi, A., Doyle, N., Frossard, J.P., Steinbach, F., From the field to the lab—An European view on the global spread of PEDV (2016) Virus Res; Opriessnig, T., Gerber, P.F., Shen, H., de Castro, A., Zhang, J., Chen, Q., Halbur, P., Evaluation of the efficacy of a commercial inactivated genogroup 2b-based porcine epidemic diarrhea virus (PEDV) vaccine and experimental live genogroup 1b exposure against 2b challenge (2017) Vet. Res., 48; Lee, S.H., Yang, D.K., Kim, H.H., Cho, I.S., Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs (2018) Clin. Exp. Vaccine Res., 7, pp. 61-69; Zhang, J., Guo, L., Xu, Y., Yang, L., Shi, H., Feng, L., Wang, Y., Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells (2017) Arch. Virol., 162, pp. 2415-2419; Banerjee, A., Rapin, N., Miller, M., Griebel, P., Zhou, Y., Munster, V., Misra, V., Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen (2016) J. Virol. Methods, 237, pp. 166-173; Plowright, R.K., Peel, A.J., Streicker, D.G., Gilbert, A.T., McCallum, H., Wood, J., Baker, M.L., Restif, O., Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations (2016) Plos Negl. Trop. Dis., 10; Amman, B.R., Carroll, S.A., Reed, Z.D., Sealy, T.K., Balinandi, S., Swanepoel, R., Kemp, A., Campbell, S., Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection (2012) Plos Pathog, 8; Schuh, A.J., Amman, B.R., Jones, M.E., Sealy, T.K., Uebelhoer, L.S., Spengler, J.R., Martin, B.E., Towner, J.S., Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats (2017) Nat. Commun., 8; Plowright, R.K., Field, H.E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P., Foley, J.E., Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus) (2008) Proc. Biol. Sci., 275, pp. 861-869; Davy, C.M., Donaldson, M.E., Subudhi, S., Rapin, N., Warnecke, L., Turner, J.M., Bollinger, T.K., Kunkel, E.L., White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats (2018) Sci. Rep., 8; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Hicks, A.L., Daszak, P., Global patterns in coronavirus diversity (2017) Virus Evol., 3; Baric, R.S., Fu, K., Schaad, M.C., Stohlman, S.A., Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups (1990) Virology, 177, pp. 646-656; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Guo, R., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819; Wang, M.N., Zhang, W., Gao, Y.T., Hu, B., Ge, X.Y., Yang, X.L., Zhang, Y.Z., Shi, Z.L., Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR (2016) Virol. Sin., 31, pp. 78-80; Papenfuss, A.T., Baker, M.L., Feng, Z.P., Tachedjian, M., Crameri, G., Cowled, C., Ng, J., Wang, L.F., The immune gene repertoire of an important viral reservoir, the Australian black flying fox (2012) BMC Genom, 13; Lee, A.K., Kulcsar, K.A., Elliott, O., Khiabanian, H., Nagle, E.R., Jones, M.E., Amman, B.R., Palacios, G., De novo transcriptome reconstruction and annotation of the Egyptian rousette bat (2015) BMC Genom, 16; Shaw, T.I., Srivastava, A., Chou, W.C., Liu, L., Hawkinson, A., Glenn, T.C., Adams, R., Schountz, T., Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis) (2012) Plos ONE, 7; Cowled, C., Baker, M., Tachedjian, M., Zhou, P., Bulach, D., Wang, L.F., Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto (2011) Dev. Comp. Immunol., 35, pp. 7-18; Cowled, C., Baker, M.L., Zhou, P., Tachedjian, M., Wang, L.F., Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto (2012) Dev. Comp. Immunol., 36, pp. 657-664; Zhou, P., Cowled, C., Mansell, A., Monaghan, P., Green, D., Wu, L., Shi, Z., Baker, M.L., IRF7 in the Australian black flying fox, Pteropus alecto: Evidence for a unique expression pattern and functional conservation (2014) Plos ONE, 9; Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Cowled, C., Michalski, W.P., Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 2696-2701; Kepler, T.B., Sample, C., Hudak, K., Roach, J., Haines, A., Walsh, A., Ramsburg, E.A., Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler (2010) BMC Genom, 11; Pavlovich, S.S., Lovett, S.P., Koroleva, G., Guito, J.C., Arnold, C.E., Nagle, E.R., Kulcsar, K., Hume, A.J., The Egyptian rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity (2018) Cell, 173, pp. 1098-1110; Arnold, C.E., Guito, J.C., Altamura, L.A., Lovett, S.P., Nagle, E.R., Palacios, G.F., Sanchez-Lockhart, M., Towner, J.S., Transcriptomics Reveal Antiviral Gene Induction in the Egyptian rousette Bat Is Antagonized In Vitro by Marburg Virus Infection (2018) Viruses, 10; Liang, Y.Z., Wu, L.J., Zhang, Q., Zhou, P., Wang, M.N., Yang, X.L., Ge, X.Y., Shi, Z.L., Cloning, expression, and antiviral activity of interferon beta from the Chinese microbat, Myotis davidii (2015) Virol. Sin., 30, pp. 425-432; Banerjee, A., Rapin, N., Bollinger, T., Misra, V., Lack of inflammatory gene expression in bats: A unique role for a transcription repressor (2017) Sci. Rep., 7; Li, J., Zhang, G., Cheng, D., Ren, H., Qian, M., Du, B., Molecular characterization of RIG-I, STAT-1 and IFN-beta in the horseshoe bat (2015) Gene, 561, pp. 115-123; Biesold, S.E., Ritz, D., Gloza-Rausch, F., Wollny, R., Drexler, J.F., Corman, V.M., Kalko, E.K., Muller, M.A., Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum (2011) Plos ONE, 6; Glennon, N.B., Jabado, O., Lo, M.K., Shaw, M.L., Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions (2015) J. Virol., 89, pp. 7550-7566; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Beall, A., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) Mbio, 8; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87; Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., Baker, S.C., Chen, Z., The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase (2013) J. Gen. Virol., 94, pp. 1554-1567; Cao, L., Ge, X., Gao, Y., Herrler, G., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-beta production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway (2015) Virol. J., 12; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J. Virol., 88, pp. 8936-8945; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Kim, J.D., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Iha, K., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6; Woo, P.C.Y., Lau, S.K.P., Chen, Y., Wong, E.Y.M., Chan, K.H., Chen, H., Zhang, L., Yuen, K.Y., Rapid detection of MERS coronavirus-like viruses in bats: Pote1ntial for tracking MERS coronavirus transmission and animal origin (2018) Emerg. Microbes Infect., 7; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G., Bosch, B.J., Bensaid, A., Osterhaus, A., Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels (2016) J. Virol., 90, pp. 4838-4842; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract (2016) Implications for the Middle East Respiratory Syndrome. Am. J. Pathol., 186, pp. 78-86; Luis, A.D., Hayman, D.T., O’Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., Mills, J.N., Cunningham, A.A., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc. Biol. Sci., 280; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., McFarlane, R.A., Martin (2015) G.; Et Al. Ecological Dynamics of Emerging Bat Virus Spillover. Proc. Biol. Sci, 282; Community Intervention to Prevent Nipah Spillover, , https://clinicaltrials.gov/ct2/show/record/NCT01811784, ClinicalTrials.gov, (accessed on 17 March 2018); Gurley, E., Ecological determinants of Nipah virus risk in Bangladesh: The convergence of people, bats, trees and a tasty drink (2015) Proceedings of the 3Rd International One Health Conference, , Amsterdam, The Netherlands, 15–18 March; Field, H., Young, P., Yob, J.M., Mills, J., Hall, L., Mackenzie, J., The natural history of Hendra and Nipah viruses (2001) Microbes Infect, 3, pp. 307-314","Mossman, K.; Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityCanada; email: mossk@mcmaster.ca",,"MDPI AG",19994915,,,"30634396","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85059915893 "Lee J.Y., Kim S.-J., Myoung J.","56823058900;57206876439;7005911830;","Middle East respiratory syndrome coronavirus-encoded ORF8B inhibits RIG-I-like receptors by a differential mechanism",2019,"Journal of Microbiology and Biotechnology","29","12",,"2014","2021",,,"10.4014/jmb.1911.11024","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077347322&doi=10.4014%2fjmb.1911.11024&partnerID=40&md5=4525d6bef02615c5e1153348b550c436","Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 54531, South Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea","Lee, J.Y., Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 54531, South Korea; Kim, S.-J., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Myoung, J., Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 54531, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to the genus Betacoronavirus and causes severe morbidity and mortality in humans especially when infected patients have underlying diseases such as chronic obstructive pulmonary disease (COPD). Previously, we demonstrated that MERS-CoV-encoded ORF8b strongly inhibits MDA5- and RIG-I-mediated induction of the interferon beta (IFN-β) promoter activities. Here, we report that ORF8b seemed to regulate MDA5 or RIG-I differentially as protein levels of MDA5 were significantly down-regulated while those of RIG-I were largely unperturbed. In addition, ORF8b seemed to efficiently suppress phosphorylation of IRF3 at the residues of 386 and 396 in cells transfected with RIG-I while total endogenous levels of IRF3 remained largely unchanged. Furthermore, ORF8b was able to inhibit all forms of RIG-I; full-length, RIG-I-1-734, and RIG-I-1-228, the last of which contains only the CARD domains. Taken together, it is tempting to postulate that ORF8b may interfere with the CARD-CARD interactions between RIG-I and MAVS. Further detailed analysis is required to delineate the mechanisms of how ORF8b inhibits the MDA5/ RIG-I receptor signaling pathway. Copyright© 2019 by The Korean Society for Microbiology and Biotechnology.","Interferon; MERS-CoV; RIG-I","interferon induced helicase C domain containing protein 1; interferon regulatory factor 3; ORF8b protein; pattern recognition receptor; retinoic acid inducible protein I; retinoic acid inducible protein I [1-128]; retinoic acid inducible protein I [1-734]; RIG I Like receptor; unclassified drug; viral protein; amino acid sequence; Article; caspase activation and recruitment domain; controlled study; down regulation; embryo; HEK293T cell line; human; human cell; Middle East respiratory syndrome coronavirus; nonhuman; open reading frame; ORF8b gene; protein interaction; protein phosphorylation; signal transduction; virus gene; Western blotting","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39). , pii: 20285; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Lee, J., Bae, S., Myoung, J., Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus (2019) J. Microbiol. Biotechnol., 29, pp. 999-1007; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184; Widagdo, W., Sooksawasdi Na Ayudhya, S., Hundie, G.B., Haagmans, B.L., Host determinants of MERS-CoV transmission and pathogenesis (2019) Viruses, 11 (3). , pii: E280; Mubarak, A., Alturaiki, W., Hemida, M.G., Middle East Respiratory Syndrome coronavirus (MERS-CoV): Infection, immunological response, and vaccine development (2019) J. Immunol. Res., 2019, p. 6491738; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Ferguson, N.M., van Kerkhove, M.D., Identification of MERS-CoV in dromedary camels (2014) Lancet Infect. Dis., 14, pp. 93-94; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8 (2). , pii: e00373-17; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Global patterns in coronavirus diversity (2017) Virus Evol, 3, p. vex012; Banerjee, A., Falzarano, D., Rapin, N., Lew, J., Misra, V., Interferon regulatory factor 3-mediated signaling limits middle-east respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat (2019) Viruses, 11 (2). , pii: E152; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: Recent advances (2017) F1000Res, 6, p. 1628; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Yu, P., Hu, B., Shi, Z.L., Cui, J., Geographical structure of bat SARS-related coronaviruses (2019) Infect. Genet. Evol., 69, pp. 224-229; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00737-e100713; Hayman, D.T., Bats as viral reservoirs (2016) Annu. Rev. Virol., 3, pp. 77-99; Luis, A.D., Hayman, D.T., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc. Biol. Sci., 280, p. 20122753; Lee, J.Y., Bae, S., Myoung, J., Middle East respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB (2019) J. Microbiol. Biotechnol., 29, pp. 1316-1323; Kang, S., Myoung, J., Host innate immunity against hepatitis E virus and viral evasion mechanisms (2017) J. Microbiol. Biotechnol., 27, pp. 1727-1735; Theofilopoulos, A.N., Baccala, R., Beutler, B., Kono, D.H., Type I interferons (alpha/beta) in immunity and autoimmunity (2005) Annu. Rev. Immunol., 23, pp. 307-336; Xi, Y., Day, S.L., Jackson, R.J., Ranasinghe, C., Role of novel type I interferon epsilon in viral infection and mucosal immunity (2012) Mucosal Immunol, 5, pp. 610-622; Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M.J., Kroemer, G., Type I interferons in anticancer immunity (2015) Nat. Rev. Immunol., 15, pp. 405-414; Kang, S., Myoung, J., Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas (2017) J. Microbiol., 55, pp. 319-329; Akira, S., Uematsu, S., Takeuchi, O., Pathogen recognition and innate immunity (2006) Cell, 124, pp. 783-801; Fujita, T., Onoguchi, K., Onomoto, K., Hirai, R., Yoneyama, M., Triggering antiviral response by RIG-I-related RNA helicases (2007) Biochimie, 89, pp. 754-760; Medzhitov, R., Recognition of microorganisms and activation of the immune response (2007) Nature, 449, pp. 819-826; Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., IPS-1, an adaptor triggering RIG-I- And Mda5-mediated type I interferon induction (2005) Nat. Immunol., 6, pp. 981-988; Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus (2005) Nature, 437, pp. 1167-1172; Seth, R.B., Sun, L., Ea, C.K., Chen, Z.J., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF (2005) Cell, 122, pp. 669-682; Kang, S., Choi, C., Choi, I., Han, K.N., Rho, S.W., Choi, J., Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I (2018) J. Microbiol. Biotechnol., 28, pp. 1554-1562; Myoung, J., Min, K., Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus (2019) J. Microbiol. Biotechnol., 29, pp. 1137-1143; Chau, T.L., Gioia, R., Gatot, J.S., Patrascu, F., Carpentier, I., Chapelle, J.P., Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? (2008) Trends Biochem. Sci., 33, pp. 171-180; Clement, J.F., Meloche, S., Servant, M.J., The IKK-related kinases: From innate immunity to oncogenesis (2008) Cell Res, 18, pp. 889-899; Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway (2003) Nat. Immunol., 4, pp. 491-496; Gatot, J.S., Gioia, R., Chau, T.L., Patrascu, F., Warnier, M., Close, P., Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF (2007) J. Biol. Chem., 282, pp. 31131-31146; Hacker, H., Karin, M., Regulation and function of IKK and IKK-related kinases (2006) Sci. STKE., 2006, p. re13; Grandvaux, N., Servant, M.J., tenOever, B., Sen, G.C., Balachandran, S., Barber, G.N., Transcriptional profiling of interferon regulatory factor 3 target genes: Direct involvement in the regulation of interferon-stimulated genes (2002) J. Virol., 76, pp. 5532-5539; Honda, K., Taniguchi, T., IRFS: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors (2006) Nat. Rev. Immunol., 6, pp. 644-658; Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation (2015) Science, 347, p. aaa2630; Hiscott, J., Grandvaux, N., Sharma, S., Tenoever, B.R., Servant, M.J., Lin, R., Convergence of the NF-kappaB and interferon signaling pathways in the regulation of antiviral defense and apoptosis (2003) Ann. NY Acad. Sci., 1010, pp. 237-248; Wang, J., Basagoudanavar, S.H., Wang, X., Hopewell, E., Albrecht, R., Garcia-Sastre, A., NF-kappa B RelA subunit is crucial for early IFN-beta expression and resistance to RNA virus replication (2010) J. Immunol., 185, pp. 1720-1729; Lee, J.Y., Bae, S., Myoung, J., Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: Its implication for vaccine design (2019) J. Microbiol., 57, pp. 803-811; Hu, J., Lou, D.H., Carow, B., Winerdal, M.E., Rottenberg, M., Wikstrom, A.C., LPS regulates SOCS2 transcription in a Type I Interferon dependent autocrine-paracrine loop (2012) PLoS One, 7 (1); Song, J.W., Guan, M., Zhao, Z.W., Zhang, J.J., Type I interferons function as autocrine and paracrine factors to induce autotaxin in response to TLR activation (2015) PLoS One, 10 (8); Hasan, M.T., Jang, W.J., Tak, J.Y., Lee, B.J., Kim, K.W., Hur, S.W., Effects of Lactococcus lactis subsp. Lactis I2 with betaGlucooligosaccharides on growth, innate immunity and Streptococcosis resistance in olive flounder (Paralichthys olivaceus) (2018) J. Microbiol. Biotechnol., 28, pp. 1433-1442; Liu, S., Yu, X., Wang, Q., Liu, Z., Xiao, Q., Hou, P., Specific expression of interferon-gamma induced by synergistic activation mediator-derived systems activates innate immunity and inhibits Tumorigenesis (2017) J. Microbiol. Biotechnol., 27, pp. 1855-1866; Baek, Y.H., Cheon, H.S., Park, S.J., Lloren, K.K.S., Ahn, S.J., Jeong, J.H., Simple, rapid and sensitive portable molecular diagnosis of SFTS virus using reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) (2018) J. Microbiol. Biotechnol., 28, pp. 1928-1936; Jo, G., Jeong, M.S., Wi, J., Kim, D.H., Kim, S., Kim, D., Generation and characterization of a neutralizing human monoclonal antibody to Hepatitis B Virus PreS1 from a Phage-Displayed human synthetic fab library (2018) J. Microbiol. Biotechnol., 28, pp. 1376-1383; Kim, E., Myoung, J., Hepatitis E Virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5 (2018) J. Microbiol. Biotechnol., 28, pp. 1908-1915; Park, M.K., Cho, H., Roh, S.W., Kim, S.J., Myoung, J., Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication (2019) Sci. Rep., 9, p. 2372; Ngueyen, T.T.N., Kim, S.J., Lee, J.Y., Myoung, J., Zika virus proteins NS2A and NS4A are major antagonists that reduce IFN-beta promoter activity induced by the MDA5/RIG-I signaling pathway (2019) J. Microbiol. Biotechnol., 29, pp. 1665-1674; Loo, Y.M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity (2008) J. Virol., 82, pp. 335-345; Takeuchi, O., Akira, S., Pattern recognition receptors and inflammation (2010) Cell, 140, pp. 805-820","Myoung, J.; Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Chonbuk National UniversitySouth Korea; email: jinjong.myoung@jbnu.ac.kr",,"Korean Society for Microbiology and Biotechnology",10177825,,JOMBE,"31838791","English","J. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85077347322 "Skariyachan S., Challapilli S.B., Packirisamy S., Kumargowda S.T., Sridhar V.S.","36996175300;57200289607;57200293428;57200288328;57200295893;","Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for middle east respiratory syndrome coronavirus infections",2019,"Frontiers in Microbiology","10","MAR", 569,"","",,1,"10.3389/fmicb.2019.00569","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066606072&doi=10.3389%2ffmicb.2019.00569&partnerID=40&md5=42752971e4b8fdb534740195415c90bf","RandD Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India","Skariyachan, S., RandD Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India; Challapilli, S.B., RandD Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India; Packirisamy, S., RandD Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India; Kumargowda, S.T., RandD Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India; Sridhar, V.S., RandD Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging zoonotic virus considered as one of the major public threat with a total number of 2 298 laboratory-confirmed cases and 811 associated deaths reported by World Health Organization as of January 2019. The transmission of the virus was expected to be from the camels found in Middle Eastern countries via the animal and human interaction. The genome structure provided information about the pathogenicity and associated virulent factors present in the virus. Recent studies suggested that there were limited insight available on the development of novel therapeutic strategies to induce immunity against the virus. The severities of MERS-CoV infection highlight the necessity of effective approaches for the development of various therapeutic remedies. Thus, the present review comprehensively and critically illustrates the recent aspects on the epidemiology of the virus, the structural and functional features of the viral genome, viral entry and transmission, major mechanisms of pathogenesis and associated virulent factors, current animal models, detection methods and novel strategies for the development of vaccines against MERS-CoV. The review further illustrates the molecular and computational virtual screening platforms which provide insights for the identification of putative drug targets and novel lead molecules toward the development of therapeutic remedies. © 2019 Skariyachan, Challapilli, Packirisamy, Kumargowda and Sridhar.","Animal models; Emerging zoonotic virus; Mechanisms of pathogenesis; MERS-CoV; Probable drug targets; Vaccine development","interferon induced helicase C domain containing protein 1; membrane protein; Callitrichinae; gene mutation; human; immune response; immunohistochemistry; Leporidae; Middle East respiratory syndrome; nonhuman; pathogenesis; respiratory tract disease; Review; rhesus monkey; screening; vaccination; virus entry; virus genome; virus transmission","Abd, E.W.A., Patel, P., Heidenreich, D., Hufert, F.T., Weidmann, M., Reverse transcription recombinase polymerase amplification assay for the detection of Middle East respiratory syndrome coronavirus (2013) PLoS Curr., 5. , ecurrents outbreaks.62df1c7c75ffc96cd59034531e2e8364., PubMed Abstract | CrossRef Full Text | Google Scholar; Aderem, A., Adkins, J.N., Ansong, C., Galagan, J., Kaiser, S., Korth, M.J., A systems biology approach to infectious disease research: Innovating the pathogen-host research paradigm (2011) MBio, 2, pp. e00325-e00410. , PMID:21285433 PubMed Abstract | CrossRef Full Text | Google Scholar; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) MBio, 9, pp. e00221-e00318. , PubMed Abstract | CrossRef Full Text | Google Scholar; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Generation of a transgenic mouse model of middle east respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670. , PubMed Abstract | CrossRef Full Text | Google Scholar; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum. Vaccin. Immunother., 12, pp. 2351-2356. , PubMed Abstract | CrossRef Full Text | Google Scholar; Albarrak, A., Stephens, G., Hewson, R., Memish, Z., Recovery from severe novel coronavirus infection (2012) Saudi Med. J., 33, pp. 1265-1269. , Google Scholar; Al-Qahtani, A.A., Lyroni, K., Aznaourova, M., Tseliou, M., Al-Anazi, M.R., Al-Ahdal, M.N., Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PPARγ (2017) Oncotarget, 8, pp. 9053-9066. , PubMed Abstract | CrossRef Full Text | Google Scholar; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., Histopathology of Middle East respiratory syndrome corona virus (MERS-CoV) infection - Clinicopathological and ultrastructural study (2018) Histopathology, 72, pp. 516-524. , PubMed Abstract | CrossRef Full Text | Google Scholar; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) MBio, 9, pp. e01985-e02018. , PubMed Abstract | CrossRef Full Text | Google Scholar; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) Int. J. Infect. Dis., 20, pp. 42-46. , PubMed Abstract | CrossRef Full Text | Google Scholar; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East Respiratory Syndrome (2017) N. Engl. J. Med., 376, pp. 584-594. , PubMed Abstract | CrossRef Full Text | Google Scholar; Assiri, A., Al-Tawfiq, J., Al-Rabeeah, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome corona virus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761. , PubMed Abstract | CrossRef Full Text | Google Scholar; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., KSA MERS-CoV investigation team. hospital outbreak of middle east respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, p. 886. , PubMed Abstract | CrossRef Full Text | Google Scholar; Baseler, L., De Wit, E., Feldmann, H., A comparative review of animal models of middle east respiratory syndrome coronavirus infection (2016) Vet. Pathol., 53, pp. 521-531. , PubMed Abstract | CrossRef Full Text | Google Scholar; Batool, M., Shah, M., Patra, M.C., Yesudhas, D., Choi, S., Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism (2017) Sci. Rep., 7, p. 11362. , PubMed Abstract | CrossRef Full Text | Google Scholar; Bauch, C.T., Oraby, T., Assessing the pandemic potential of MERS-CoV (2013) Lancet, 382, pp. 662-664. , PubMed Abstract | CrossRef Full Text | Google Scholar; Breban, R., Riou, J., Fontanet, A., Inter-human transmissibility of Middle East respiratory syndrome corona virus: Estimation of pandemic risk (2013) Lancet, 382, pp. 694-699. , CrossRef Full Text | Google Scholar; Buchholz, U., Müller, M., Nitsche, A., Sanewski, A., Wevering, N., Bauer-Balci, T., Contact investigation of a case of human novel corona virus infection treated in a German hospital, October-November 2012 (2013) Euro. Surveill, 18, p. 20406. , Google Scholar; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., García-Sastre, A., MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection (2018) PLoS Pathog., 14, p. e1006838. , PubMed Abstract | CrossRef Full Text | Google Scholar; Cauchemez, S., Fraser, C., Van, K.M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome corona virus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect. Dis., 14, pp. 50-56. , CrossRef Full Text | Google Scholar; Chafekar, A., Fielding, B.C., MERS-CoV: Understanding the latest human Corona virus threat (2018) Viruses, 10, p. E93. , PubMed Abstract | CrossRef Full Text | Google Scholar; Chan, J.F., Chan, K.H., Choi, G.K., To, K.K., Tse, H., Cai, J.P., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752. , PubMed Abstract | CrossRef Full Text | Google Scholar; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome corona virus: The 'knowns' and 'unknowns' (2013) J. Formos. Med. Assoc., 112, pp. 372-381. , PubMed Abstract | CrossRef Full Text | Google Scholar; Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489. , PubMed Abstract | CrossRef Full Text | Google Scholar; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075. , PubMed Abstract | CrossRef Full Text | Google Scholar; Chowell, G., Nishiura, H., Transmission dynamics and control of Ebola virus disease (EVD): A review (2014) BMC Med., 12, p. 196. , PubMed Abstract | CrossRef Full Text | Google Scholar; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Middle east respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J. Infect. Dis., 213, pp. 904-914. , PubMed Abstract | CrossRef Full Text | Google Scholar; Clasman, J.R., Báez-Santos, Y.M., Mettelman, R.C., O'Brien, A., Baker, S.C., Mesecar, A.D., X-ray structure and enzymatic activity profile of a core papain-like protease of MERS coronavirus with utility for structure-based drug design (2017) Sci. Rep., 7, p. 40292. , PubMed Abstract | CrossRef Full Text | Google Scholar; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226. , PubMed Abstract | CrossRef Full Text | Google Scholar; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., Beck, S.E., Matthews, K.J., CD8+ T Cells and macrophages regulate pathogenesis in a mouse model of middle east respiratory syndrome (2017) J. Virol., 91, pp. e01825-e01916. , PubMed Abstract | Google Scholar; Cong, Y., Hart, B.J., Gross, R., Zhou, H., Frieman, M., Bollinger, L., MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells (2018) PLoS One, 13, p. e0194868. , PubMed Abstract | CrossRef Full Text | Google Scholar; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10, p. E425. , PubMed Abstract | CrossRef Full Text | Google Scholar; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with Middle East Respiratory Syndrome Coronavirus infection (2016) Clin. Infect. Dis., 62, pp. 477-483. , PubMed Abstract | CrossRef Full Text | Google Scholar; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro. Surveill., 17, p. 20285. , CrossRef Full Text | Google Scholar; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro. Surveill., 17, p. 1. , PubMed Abstract | Google Scholar; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792. , PubMed Abstract | CrossRef Full Text | Google Scholar; De Sousa, R., Reusken, C., Koopmans, M., MERS corona virus: Data gaps for laboratory preparedness (2014) J. Clin. Virol., 59, pp. 4-11. , PubMed Abstract | CrossRef Full Text | Google Scholar; De Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS One, 8, p. e69127. , PubMed Abstract | CrossRef Full Text | Google Scholar; De Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 16598-16603. , PubMed Abstract | CrossRef Full Text | Google Scholar; Denayer, T., Roy, M.V., Animal models in translational medicine: Validation and prediction (2014) New Horiz. Transl. Med., 2, pp. 5-11. , CrossRef Full Text | Google Scholar; Doremalen, N.V., Munster, V.J., Animal models of middle east respiratory syndrome coronavirus infection (2015) Antiviral Res., 22, pp. 28-38. , PubMed Abstract | CrossRef Full Text | Google Scholar; Drosten, C., Is MERS another SARS? (2013) Lancet Infect. Dis., 13, pp. 727-728. , Google Scholar; Drosten, C., Günther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976. , PubMed Abstract | CrossRef Full Text | Google Scholar; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med., 371, pp. 828-835. , PubMed Abstract | CrossRef Full Text | Google Scholar; Drosten, C., Seilmaier, M., Corman, V., Clinical features and virological analysis of a case of Middle East respiratory syndrome corona virus infection (2013) Lancet Infect. Dis., 13, pp. 745-751. , CrossRef Full Text | Google Scholar; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV - A target for vaccine and therapeutic development (2009) Nat. Rev. Microbiol., 7, pp. 226-236. , PubMed Abstract | CrossRef Full Text | Google Scholar; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Identification of a receptor-binding domain in the S protein of the novel human corona virus Middle East respiratory syndrome corona virus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942. , PubMed Abstract | CrossRef Full Text | Google Scholar; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome corona virus: Transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp. Mol. Med., 47, p. e181. , PubMed Abstract | CrossRef Full Text | Google Scholar; Eckerle, I., Corman, V.M., Muller, M.A., Lenk, M., Ulrich, R.G., Drosten, C., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerg. Infect. Dis., 20, pp. 276-279. , PubMed Abstract | CrossRef Full Text | Google Scholar; Falzarano, D., De Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog., 10, p. e1004250. , PubMed Abstract | CrossRef Full Text | Google Scholar; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9, p. e88716. , PubMed Abstract | CrossRef Full Text | Google Scholar; Firbas, C., Jilma, B., Tauber, E., Buerger, V., Jelovcan, S., Lingnau, K., Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: A randomized, placebo controlled trial for dose optimization in 128 healthy subjects (2006) Vaccine, 24, pp. 4343-4353. , PubMed Abstract | CrossRef Full Text | Google Scholar; Forni, D., Giulia, F., Rachele, C., Gioia, D.L., Pozzoli, P., Al-Daghri, N., The heptad repeat region is a major selection target in MERS-CoV and related corona viruses (2015) Sci. Rep., 25, p. 14480. , PubMed Abstract | CrossRef Full Text | Google Scholar; Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Broekman, J.M., Kemink, S.A., Munster, V., Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 1356-1361. , PubMed Abstract | CrossRef Full Text | Google Scholar; Fung, T.S., Liu, D.X., Corona virus infection, ER stresses apoptosis and innate immunity (2014) Front. Microbiol., 5, p. 296. , CrossRef Full Text | Google Scholar; Gao, H., Yao, H., Yang, S., Li, L., From SARS to MERS: Evidence and speculation (2016) Front Med., 10, pp. 377-382. , PubMed Abstract | CrossRef Full Text | Google Scholar; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res., 117, pp. 17-37. , PubMed Abstract | CrossRef Full Text | Google Scholar; Guery, B., Poissy, J., El Mansouf, L., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome corona virus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272. , CrossRef Full Text | Google Scholar; Haagmans, B.L., Van Den Branda, J.M.A., Provaciaa, L.B., Raja, V.S., Stittelaarb, K.J., Getua, S., Asymptomatic middle east respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135. , PubMed Abstract | CrossRef Full Text | Google Scholar; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med., 121, pp. 190-193. , CrossRef Full Text | Google Scholar; Harcourt, J.L., Rudoler, N., Tamin, A., Leshemm, E., Rasis, M., Giladi, M., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Healthg, , [Epub ahead of print]. PubMed Abstract | CrossRef Full Text | Google Scholar; Harrigan, J.A., Jacq, X., Martin, N.M., Jackson, S.P., Deubiquitylating enzymes and drug discovery: Emerging opportunities (2018) Nat. Rev. Drug Discov., 17, pp. 57-78. , PubMed Abstract | CrossRef Full Text | Google Scholar; Evidence of person-to-person transmission within a family cluster of novel corona virus infections, United Kingdom, February (2013) Euro Surveill., 18, p. 20427. , Health Protection Agency., Google Scholar; Henderson, D.A., Moss, B., Recombinant Vaccinia Virus Vaccines (1999) Vaccines, 6, pp. 43-46. , Google Scholar; Hou, L., Zhao, H., A review of post-GWAS prioritization approaches (2013) Front. Genet., 4, p. 280. , PubMed Abstract | CrossRef Full Text | Google Scholar; Houser, K.V., Broadbent, A.J., Gretebeck, L., Vogel, L., Lamirande, E.W., Sutton, T., Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody (2017) PLoS Pathog., 13, p. e1006565. , PubMed Abstract | CrossRef Full Text | Google Scholar; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J. Infect. Dis., 213, pp. 1557-1561. , PubMed Abstract | CrossRef Full Text | Google Scholar; Huang, P., Wang, H., Cao, Z., Jin, H., Chi, H., Zhao, J., A rapid and specific assay for the detection of MERS-CoV (2018) Front. Microbiol., 9, p. 1101. , CrossRef Full Text | Google Scholar; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome corona virus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect. Dis., 18, pp. e217-e227. , CrossRef Full Text | Google Scholar; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18. , PubMed Abstract | CrossRef Full Text | Google Scholar; Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A., Abiadh, A., Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals (2019) Emerg. Microbes Infect., 8, pp. 103-108. , PubMed Abstract | CrossRef Full Text | Google Scholar; Kim, T., (2016), http://english.mw.go.kr/front_eng/sg/ssg0111vw.jsp?PAR_MENU_ID1001&MENU_ID100111&page1&CONT_SEQ324470, The Korean Ministry of Health & Welfare. Press release: MERS statistics. Sejong: Ministry of Health & Welfare, [accessed July 15, 2016]; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., Van Amerongen, G., Van Riel, D., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270. , CrossRef Full Text | Google Scholar; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690. , PubMed Abstract | CrossRef Full Text | Google Scholar; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular Evolution of MERS Corona virus: Dromedaries as a Recent Intermediate Host or Long-Time Animal Reservoir? (2017) Int. J. Mol. Sci., 18, p. E2138. , PubMed Abstract | CrossRef Full Text | Google Scholar; Law, G.L., Korth, M.J., Benecke, A.G., Katze, M.G., Systems virology: Host-directed approaches to viral pathogenesis and drug targeting (2013) Nat. Rev. Microbiol., 11, pp. 455-466. , PubMed Abstract | CrossRef Full Text | Google Scholar; Lorenzen, E., Follmann, F., Jungersen, G., Agerholm, J.S., A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection (2015) Vet. Res., 46, p. 116. , PubMed Abstract | CrossRef Full Text | Google Scholar; Lui, P.L., Wong, L.Y.R., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg. Microbes Infect., 5, p. e39. , PubMed Abstract | CrossRef Full Text | Google Scholar; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.K., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176. , PubMed Abstract | CrossRef Full Text | Google Scholar; Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404. , PubMed Abstract | CrossRef Full Text | Google Scholar; Masters, P., The molecular biology of corona viruses (2006) Adv. Virus Res., 66, pp. 193-292. , CrossRef Full Text | Google Scholar; McDermott, J.E., Shankaran, H., Eisfeld, A.J., Belisle, S.E., Neuman, G., Li, C., Conserved host response to highly pathogenic avian-influenza virus infection in human cell culture, mouse and macaque model systems (2011) BMC Syst. Biol., 5, p. 190. , PubMed Abstract | CrossRef Full Text | Google Scholar; Memish, Z., Mishra, N., Olival, K., Middle East respiratory syndrome corona virus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823. , PubMed Abstract | CrossRef Full Text | Google Scholar; Memish, Z., Zumla, A., Assiri, A., Middle East respiratory syndrome corona virus infections in health care workers (2013) N. Engl. J. Med., 2013, pp. 884-886. , PubMed Abstract | CrossRef Full Text; Memish, Z.A., Assiri, A., Alhakeem, R., Yezli, S., Almasri, M., Zumla, A., Middle East Respiratory Syndrome Corona virus, MERS-CoV. Conclusions from the 2nd scientific advisory board meeting of the WHO collaborating center for mass gathering medicine Riyadh (2014) Int. J. Infect. Dis., 24, pp. 51-53. , PubMed Abstract | CrossRef Full Text | Google Scholar; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome corona virus (MERS-CoV) viral shedding in the respiratory tract: An observational analysis with infection control implications (2014) Int. J. Infect. Dis., 29, pp. 307-308. , PubMed Abstract | CrossRef Full Text | Google Scholar; Menachery, V.D., Eisfeld, A.J., Schäfer, A., Josset, L., Sims, A.C., Proll, S., Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses (2014) MBio, 5, pp. e01174-e01214. , PMID:24846384 PubMed Abstract | CrossRef Full Text | Google Scholar; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., MERS-CoV Accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e00717. , PubMed Abstract | CrossRef Full Text | Google Scholar; Menachery, V.D., Schäfer, A., Burnum-Johnson, K.E., Mitchell, H.D., Eisfeld, A.J., Walters, K.B., MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape (2018) Proc. Natl. Acad. Sci. U.S.A., 115, pp. E1012-E1021. , PubMed Abstract | CrossRef Full Text | Google Scholar; Meyer, B., Drosten, C., Muller, M.A., Serological assays for emerging corona viruses: Challenges and pitfalls (2014) Virus Res., 194, pp. 175-183. , PubMed Abstract | CrossRef Full Text | Google Scholar; Meyer, B., García-Bocanegra, I., Wernery, U., Wernery, R., Sieberg, A., Müller, M.A., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg. Infect. Dis., 21, pp. 181-182. , PubMed Abstract | CrossRef Full Text | Google Scholar; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 45, pp. 64-70. , PubMed Abstract | CrossRef Full Text | Google Scholar; Mitchell, H.D., Eisfeld, A.J., Sims, A.C., McDermott, J.E., Matzke, M.M., Webb-Robertson, B.J., A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses (2013) PLoS One, 8, p. e69374. , PubMed Abstract | CrossRef Full Text | Google Scholar; Muller, M.A., Raj, V.S., Muth, D., Meyer, B., Kallies, S., Smits, S.L., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) MBio, 3, pp. e00515-e00612. , PubMed Abstract | CrossRef Full Text | Google Scholar; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review (2017) J. Infect. Public Health, 11, pp. 9-17. , PubMed Abstract | CrossRef Full Text | Google Scholar; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for middle east respiratory syndrome (MERS): A review (2018) J. Infect. Public Health, 11, pp. 9-17. , PubMed Abstract | CrossRef Full Text | Google Scholar; Muth, D., Corman, V.M., Meyer, B., Assiri, A., Al-Masri, M., Farah, M., Infectious Middle East respiratory Syndrome Corona virus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia (2015) J. Clin. Microbiol., 53, pp. 2951-2955. , PubMed Abstract | CrossRef Full Text | Google Scholar; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7, p. 301ra132. , PubMed Abstract | CrossRef Full Text | Google Scholar; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Clinicopathologic, Immunohistochemical, and Ultra structural Findings of a Fatal Case of Middle East Respiratory Syndrome Corona virus Infection in the United Arab Emirates, April 2014 (2016) Am. J. Pathol., 186, pp. 652-658. , PubMed Abstract | CrossRef Full Text | Google Scholar; Oh, M.D., Park, W.B., Park, S.W., Choe, P.G., Bang, J.H., Song, K.H., Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J. Intern. Med., 33, pp. 233-246. , PubMed Abstract | CrossRef Full Text | Google Scholar; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J. Virol., 87, pp. 13892-13899. , PubMed Abstract | CrossRef Full Text | Google Scholar; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: Current status and novel approaches (2017) Curr. Opin. Virol., 23, pp. 49-58. , PubMed Abstract | CrossRef Full Text | Google Scholar; Omrani, A., Matin, M., Haddad, Q., Al-Nakhli, D., Memish, Z., Albarrak, A., A family cluster of Middle East Respiratory Syndrome Corona virus infections related to a likely unrecognized asymptomatic or mild case (2013) Int. J. Infect. Dis., 17, p. 72. , PubMed Abstract | CrossRef Full Text | Google Scholar; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. U.S.A., 114, pp. E7348-E7357. , PubMed Abstract | CrossRef Full Text | Google Scholar; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Proteolytic processing of middle east respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 12262-12267. , PubMed Abstract | CrossRef Full Text | Google Scholar; Park, W.B., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Kinetics of serologic responses to MERS Coronavirus Infection in Humans (2015) South Korea. Emerg. Infect. Dis., 21, pp. 2186-2189. , PubMed Abstract | CrossRef Full Text | Google Scholar; Pascal, K.E., Colemanb, C.M., Mujicaa, A.O., Kamata, V., Badithea, A., Fairhursta, J., Pre- And postexposure efficacy of fully human antibodies againt Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 8738-8743. , PubMed Abstract | CrossRef Full Text | Google Scholar; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East Respiratory Syndrome Coronavirus infection (2015) J. Virol., 89, pp. 4696-4699. , PubMed Abstract | CrossRef Full Text | Google Scholar; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt (2013) Euro. Surveill., 18, p. 20574. , PubMed Abstract | Google Scholar; Perlman, S., Research Driven by Curiosity: The Journey from basic molecular biology and virology to studies of human pathogenic corona viruses (2015) PLoS Pathog., 11, p. e1005023. , PubMed Abstract | CrossRef Full Text | Google Scholar; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, pp. 439-450. , PubMed Abstract | CrossRef Full Text | Google Scholar; Puzelli, S., Azzi, A., Santini, M.G., Di, M.A., Facchini, M., Castrucci, M.R., Investigation of an imported case of Middle East Respiratory Syndrome Corona virus (MERS-CoV) infection in Florence, Italy, May to June 2013 (2013) Euro. Surveill., 18, p. 1. , Google Scholar; Rabaan, A.A., Bazzi, A.M., Al-Ahmed, S.H., Al-Tawfiq, J.A., Molecular aspects of MERS-CoV (2017) Front. Med., 11, pp. 365-377. , PubMed Abstract | CrossRef Full Text | Google Scholar; Rabouw, H.H., Langereis, M.A., Knaap, R.C.M., Dalebout, T.J., Canton, J., Sola, I., Middle east respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog., 12, p. e1005982. , PubMed Abstract | CrossRef Full Text | Google Scholar; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , PubMed Abstract | CrossRef Full Text | Google Scholar; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., MERS: Emergence of a novel human coronavirus (2014) Curr. Opin. Virol., 5, pp. 58-62. , PubMed Abstract | CrossRef Full Text | Google Scholar; Rockx, B., Donaldson, E., Frieman, M., Sheahan, T., Corti, D., Lanzavecchia, A., Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome corona virus (2010) J. Infect. Dis., 201, pp. 946-955. , PubMed Abstract | CrossRef Full Text | Google Scholar; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399. , PubMed Abstract | CrossRef Full Text | Google Scholar; Selinger, C., Tisoncik-Go, J., Menachery, V.D., Agnihothram, S., Law, G.L., Chang, J., Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates (2014) BMC Genomics, 15, p. 1161. , PubMed Abstract | CrossRef Full Text | Google Scholar; Shehata, M.M., Gomaa, M.R., Ali, M.A., Kayali, G., Middle East respiratory syndrome coronavirus: A comprehensive review (2016) Front Med., 10, pp. 120-136. , PubMed Abstract | CrossRef Full Text | Google Scholar; Shi, J., Zhang, J., Li, S., Sun, J., Teng, Y., Wu, M., Epitope-based vaccine target screening against highly pathogenic MERS-CoV: An in silico approach applied to emerging infectious diseases (2015) PLoS One, 10, p. e0144475. , PubMed Abstract | CrossRef Full Text | Google Scholar; Shirato, K., Kawase, M., Matsuyama, S., Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561. , PubMed Abstract | CrossRef Full Text | Google Scholar; Shirato, K., Yano, T., Senba, S., Akachi, S., Kobayashi, T., Nishinaka, T., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP) (2014) Virol J., 11, p. 139. , PubMed Abstract | CrossRef Full Text | Google Scholar; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Corona viruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics (2013) PLoS Pathog., 9, p. e1003565. , PubMed Abstract | CrossRef Full Text | Google Scholar; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J. Mol. Biol., 331, pp. 991-1004. , PubMed Abstract | CrossRef Full Text | Google Scholar; Song, D., Ha, G., Serhan, W., Eltahir, Y., Yusof, M., Hashem, F., Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels (2015) J. Clin. Microbiol., 53, pp. 1178-1182. , PubMed Abstract | CrossRef Full Text | Google Scholar; Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum. Vaccin. Immunother., 11, pp. 1244-1250. , PubMed Abstract | CrossRef Full Text | Google Scholar; Tang, X.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. U.S.A., 2014, pp. E2018-E2026. , PubMed Abstract | CrossRef Full Text | Google Scholar; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Characterization and demonstration of the value of a lethal mouse model of middle east respiratory syndrome coronavirus infection and disease (2015) J. Virol., 90, pp. 57-67. , PubMed Abstract | CrossRef Full Text | Google Scholar; Terry, F.E., Moise, L., Martin, R.F., Torres, M., Pilotte, N., Williams, S.A., Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases (2015) Expert Rev. Vaccin., 14, pp. 21-35. , PubMed Abstract | CrossRef Full Text | Google Scholar; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00473-e00512. , PubMed Abstract | CrossRef Full Text | Google Scholar; Van Den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184. , PubMed Abstract | CrossRef Full Text | Google Scholar; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373. , PubMed Abstract | CrossRef Full Text | Google Scholar; Van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232. , PubMed Abstract | CrossRef Full Text | Google Scholar; Vergara-Alert, J., Vidal, E., Bensaid, A., Segalés, J., Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus (2017) One Health, 3, pp. 34-40. , PubMed Abstract | CrossRef Full Text | Google Scholar; Wang, C., Hua, C., Xia, S., Li, W., Lu, L., Jiang, S., Combining a fusion inhibitory peptide targeting the MERS-CoV S2 protein HR1 domain and a neutralizing antibody specific for the S1 protein receptor-binding domain (RBD) showed potent synergism against pseudotyped MERS-CoV with or without mutations in RBD (2019) Viruses, 11, p. E31. , PubMed Abstract | CrossRef Full Text | Google Scholar; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712. , PubMed Abstract | CrossRef Full Text | Google Scholar; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993. , PubMed Abstract | CrossRef Full Text | Google Scholar; Wang, Q., Bat origins of MERS-CoV supported by bat corona virus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , PubMed Abstract | CrossRef Full Text | Google Scholar; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , PubMed Abstract | CrossRef Full Text | Google Scholar; Watson, J.T., Hall, A.J., Erdman, D.D., Swerdlow, D.L., Gerber, S.I., Unraveling the mysteries of Middle East respiratory syndrome corona virus (2014) Emerg. Infect. Dis., 20, pp. 1054-1056. , CrossRef Full Text | Google Scholar; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664. , PubMed Abstract | CrossRef Full Text | Google Scholar; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., One-Health: A Safe, efficient, dual-use vaccine for humans and animals against Middle East Respiratory Syndrome Corona virus and Rabies Virus (2017) J. Virol, 91, pp. e02040-16e0204016. , PubMed Abstract | CrossRef Full Text | Google Scholar; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895. , PubMed Abstract | CrossRef Full Text | Google Scholar; (2012) Novel Corona Virus Infection - Update 2012, , http://www.who.int/csr/don/2012_11_30/en/, World Health Organization, [accessed February 9, 2018]; (2013) Middle East Respiratory Syndrome Corona Virus Joint Kingdom of Saudi Arabia/ WHO Mission, , http://www.who.int/csr/disease/coronavirus_infections/MERSCov_WHO_KSA_Mission_Jun13_.pdf, World Health Organization, [accessed January 30, 2018]; (2013) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Update 2013, , http://www.who.int/csr/don/2013_12_31/en/, World Health Organization, [accessed February 9, 2018]. Google Scholar; (2014) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Saudi Arabia, , http://www.who.int/csr/don/26-december-2014-mers/en/, World Health Organization, [accessed February 9, 2018]. Google Scholar; (2015) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Saudi Arabia, , http://www.who.int/csr/don/4-december-2015-mers-saudi-arabia/en/, World Health Organization, [accessed February 9, 2018]. Google Scholar; (2015) Summary and Risk Assessment of Current Situation in Republic of Korea and China, , http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-19june2015/en/, World Health Organization, Google Scholar; (2016) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Saudi Arabia, , http://www.who.int/csr/don/19-december-2016-2-mers-saudi-arabia/en/, World Health Organization, [accessed February 9, 2018]. Google Scholar; (2016) Middle East Respiratory Syndrome Corona Virus (MERS-CoV) WHO MERS-CoV Global Summary and Risk Assessment 5 December 2016 WHO/MERS/RA/16.1, , https://www.who.int/emergencies/mers-cov/en/, World Health Organization; (2017) Middle East Respiratory Syndrome Corona Virus (MERS-CoV) - Oman, , http://www.who.int/csr/don/10-november-2017-mers-oman/en/, World health Organization, [accessed December 1, 2017]. Google Scholar; (2017) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - United Arab Emirates, , http://www.who.int/csr/don/22-december-2017-mers-cov-united-arab-emirates/en/, World Health Organization, [accessed February 9, 2018]. Google Scholar; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.who.int/emergencies/mers-cov/en/, World Health Organization, Google Scholar; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - Saudi Arabia, , http://www.who.int/csr/don/31-december-2018-mers-saudi-arabia/en/, World Health Organization, [accessed December 31, 2018]. Google Scholar; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Middle East respiratory syndrome corona virus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210. , PubMed Abstract | CrossRef Full Text | Google Scholar; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961. , PubMed Abstract | CrossRef Full Text | Google Scholar; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis., 209, pp. 236-242. , PubMed Abstract | CrossRef Full Text | Google Scholar; Yeung, M.L., Yao, Y., Jia, L., Chan, J.F., Chan, K.H., Cheung, K.F., MERS corona virus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat. Microbiol., 1, p. 16004. , PubMed Abstract | CrossRef Full Text | Google Scholar; Ying, T., Li, W., Dimitrov, D.S., Discovery of T-Cell infection and apoptosis by Middle East Respiratory Syndrome Coronavirus (2016) J. Infect. Dis., 213, pp. 877-879. , PubMed Abstract | CrossRef Full Text | Google Scholar; Yu, P., Xu, Y., Deng, W., Bao, L., Huang, L., Xu, Y., Comparative pathology of rhesus macaque and common marmoset animal models with middle east respiratory syndrome coronavirus (2017) PLoS ONE., 12, p. e0172093. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel corona virus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res., 202, pp. 151-159. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhang, Z., Shen, L., Gu, X., Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission (2016) Sci. Rep., 6, p. 25049. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., A novel nanobody targeting Middle East respiratory syndrome corona virus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J. Virol., 92, pp. e00837-18e0083718. , PMID:NOPMID, PubMed Abstract | CrossRef Full Text; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with middle east respiratory syndrome-coronavirus (2015) PLoS One, 10, p. e0145561. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 4970-4975. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhou, J., Chu, H., Chan, J.F.W., Yuen, K.Y., Middle East respiratory syndrome corona virus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virol. J., 12, p. 218. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342. , PubMed Abstract | CrossRef Full Text | Google Scholar; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zinzula, L., Tramontano, E., Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit (2013) Antiviral Res., 100, pp. 615-635. , PubMed Abstract | CrossRef Full Text | Google Scholar; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 38, pp. 995-1007. , CrossRef Full Text | Google Scholar","Skariyachan, S.; RandD Centre, Department of Biotechnology, Dayananda Sagar College of EngineeringIndia; email: sinoshskariya@gmail.com",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85066606072 "Sikkema R.S., Farag E.A.B.A., Islam M., Atta M., Reusken C.B.E.M., Al-Hajri M.M., Koopmans M.P.G.","25923062900;55963332900;57214493887;14012778400;6602366009;57052928400;7006736989;","Global status of middle east respiratory syndrome coronavirus in dromedary camels: A systematic review",2019,"Epidemiology and Infection","147",, e84,"","",,9,"10.1017/S095026881800345X","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062851966&doi=10.1017%2fS095026881800345X&partnerID=40&md5=ee05f89f286af8b63aa7e36c2588fb98","Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Ministry of Public of Health, Doha, Qatar; Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar","Sikkema, R.S., Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Farag, E.A.B.A., Ministry of Public of Health, Doha, Qatar; Islam, M., Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Atta, M., Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Reusken, C.B.E.M., Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Al-Hajri, M.M., Ministry of Public of Health, Doha, Qatar; Koopmans, M.P.G., Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands","Dromedary camels have been shown to be the main reservoir for human Middle East respiratory syndrome (MERS) infections. This systematic review aims to compile and analyse all published data on MERS-coronavirus (CoV) in the global camel population to provide an overview of current knowledge on the distribution, spread and risk factors of infections in dromedary camels. We included original research articles containing laboratory evidence of MERS-CoV infections in dromedary camels in the field from 2013 to April 2018. In general, camels only show minor clinical signs of disease after being infected with MERS-CoV. Serological evidence of MERS-CoV in camels has been found in 20 countries, with molecular evidence for virus circulation in 13 countries. The seroprevalence of MERS-CoV antibodies increases with age in camels, while the prevalence of viral shedding as determined by MERS-CoV RNA detection in nasal swabs decreases. In several studies, camels that were sampled at animal markets or quarantine facilities were seropositive more often than camels at farms as well as imported camels vs. locally bred camels. Some studies show a relatively higher seroprevalence and viral detection during the cooler winter months. Knowledge of the animal reservoir of MERS-CoV is essential to develop intervention and control measures to prevent human infections. © Cambridge University Press 2019.","Animal pathogens; Coronavirus; Emerging infections; Zoonoses","virus antibody; virus RNA; age distribution; agricultural land; antibody response; breeding; clinical feature; disease carrier; disease transmission; dromedary; geographic distribution; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; quarantine station; Review; risk factor; seasonal variation; seroprevalence; sex difference; virus shedding; animal; camel; Coronavirus infection; Middle East respiratory syndrome coronavirus; physiology; virology; zoonosis; Animals; Camelus; Coronavirus Infections; Middle East Respiratory Syndrome Coronavirus; Zoonoses","Zaki, A.M., Isolation of a novel coronavirus from a man with pneumonia in saudi arabia (2012) The New England Journal of Medicine, 367, pp. 1814-1820; MERS Situation Update March, , http://www.emro.who.int/images/stories/mers-cov/MERS-CoV_March_2018.pdf?ua=1, Accessed 2 May 2018; Haagmans, B.L., Middle east respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) The Lancet Infectious Diseases, 14, pp. 140-145; Reusken, C.B., Middle east respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) The Lancet Infectious Diseases, 13, pp. 859-866; Hui, D.S., Middle east respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) The Lancet Infectious Diseases, 18, pp. e217-e227; WHO MERS-CoV Global Summary and Assessment of Risk, , http://www.who.int/emergencies/mers-cov/risk-assessmentjuly-2017.pdf, WHO/MERS/RA. Accessed 2 May 2018; Dudas, G., MERS-CoV spillover at the camel-human interface (2018) Elife, 7, p. e31257; Anthony, S.J., Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus (2017) mBio, 8, pp. e00373-e00417; Chu, D.K., MERS coronaviruses in dromedary camels, egypt (2014) Emerging Infectious Diseases, 20, pp. 1049-1053; FAO MERS-CoV Situation Updates, , http://www.fao.org/ag/againfo/programmes/en/empres/mers/situation_update.html, Accessed 2 May 2018; http://www.fao.org/faostat/en/#data, FAO FAOSTAT. Accessed 2 May 2018; http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home/indexcontent/newlang/en, OIE World Animal Health Information System (WAHIS). Accessed 2 May 2018; Faye, B., La production de viande de chameau: État des con-naissances, situation actuelle et perspectives (2013) INRA Productions Animales, 26, pp. 247-258; Saalfeld, W.K., Edwards, G.P., Distribution and abundance of the feral camel (camelus dromedarius) in australia (2010) The Rangeland Journal, 32, pp. 1-9; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between africa and the middle east (2016) Tropical Animal Health and Production, 48, pp. 1277-1282; (2018) Somalia Registers Record Exports of 5 Million Livestock in 2014, , http://www.fao.org/news/story/en/item/283777/icode/, Accessed 19 June 2018; Ali, M., Cross-sectional surveillance of middle east respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, august 2015 to january 2016 (2017) Eurosurveilancel, 22, p. 30487; Adney, D.R., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20, pp. 1999-2005; Hemida, M.G., MERS coronavirus in dromedary camel herd, saudi arabia (2014) Emerging Infectious Diseases, 20, pp. 1231-1234; Khalafalla, A.I., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013–2014 (2015) Emerging Infectious Diseases, 21, pp. 1153-1158; Haagmans, B.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Sabir, J.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in saudi arabia (2016) Science, 351, pp. 81-84; van Doremalen, N., High prevalence of middle east respiratory coronavirus in young dromedary camels in jordan (2017) Vector-Borne and Zoonotic Diseases, 17, pp. 155-159; Hemida, M.G., Longitudinal study of middle east respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015 (2017) Emerging Microbes & Infections, 6, p. e56; Woo, P.C., Novel betacoronavirus in dromedaries of the middle east, 2013 (2014) Emerging Infectious Diseases, 20, pp. 560-572; Farag, E.A., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infection Ecology & Epidemiology, 5, p. 28305; Ali, M.A., Systematic, active surveillance for middle east respiratory syndrome coronavirus in camels in Egypt (2017) Emerging Microbes & Infections, 6, p. e1; Reusken, C.B., Middle east respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, april 2014 (2014) Eurosurveillance, 19, p. 20829; Muhairi, S.A., Epidemiological investigation of middle east respiratory syndrome coronavirus in dromedary camel farms linked with human infection in abu dhabi emirate, united arab emirates (2016) Virus Genes, 52, pp. 848-854; Meyer, B., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerging Infectious Diseases, 22, pp. 2171-2173; Alagaili, A.N., Middle east respiratory syndrome coronavirus infection in dromedary camels in saudi arabia (2014) MBio, 5, pp. e00884-e00914; Muller, M.A., MERS coronavirus neutralizing antibodies in camels, eastern africa, 1983–1997 (2014) Emerging Infectious Diseases, 20, pp. 2093-2095; Gutierrez, C., Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the canary islands, 2015 (2015) Eurosurveillance, 20, p. 30019; Islam, A., Middle east respiratory syndrome coronavirus antibodies in dromedary camels, Bangladesh, 2015 (2018) Emerging Infectious Diseases, 24, pp. 926-928; Saqib, M., Serologic evidence for MERS-CoV infection in dromedary camels, punjab, Pakistan, 2012–2015 (2017) Emerging Infectious Diseases, 23, pp. 550-551; Corman, V.M., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerging Infectious Diseases, 20, pp. 1319-1322; Meyer, B., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerging Infectious Diseases, 20, pp. 552-559; Kasem, S., Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in saudi arabia (2018) Journal of Infection and Public Health, 11, pp. 331-338; Miguel, E., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Eurosurveillance, 22, p. 30498; Deem, S.L., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedaries) in Laikipia county, Kenya (2015) PLoS ONE, 10; Yusof, M.F., Diversity of middle east respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, abu dhabi, united arab emirates (2017) Emerging Microbes& Infections, 6, p. e101; Reusken, C.B., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerging Infectious Diseases, 22, pp. 1129-1131; David, D., Middle east respiratory syndrome coronavirus specific antibodies in naturally exposed israeli llamas, alpacas and camels (2018) One Health, 5, pp. 65-68; Chan, S.M., Absence of MERS-coronavirus in bactrian camels, southern Mongolia, november 2014 (2015) Emerging Infectious Diseases, 21, pp. 1269-1271; Liu, R., Absence of middle east respiratory syndrome coronavirus in bactrian camels in the west inner Mongolia autonomous region of China: Surveillance study results from july 2015 (2015) Emerging Microbes & Infections, 4, p. e73; Miguel, E., Absence of middle east respiratory syndrome coronavirus in camelids, Kazakhstan, 2015 (2016) Emerging Infectious Diseases, 22, pp. 555-557; Shirato, K., Middle east respiratory syndrome coronavirus infection not found in camels in japan (2015) Japanese Journal of Infectious Diseases, 68, pp. 256-258; Perera, R.A., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, june 2013 (2013) Eurosurveillance, 18, p. 20574; Alexandersen, S., Middle east respiratory syndrome coronavirus antibody reactors among camels in dubai, United Arab Emirates, in 2005 (2014) Transboundary Emerging Diseases, 61, pp. 105-108; Hemida, M.G., Middle east respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Eurosurveillance, 18, p. 20659; Reusken, C.B., Middle east respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, june to september 2013 (2013) Eurosurveillance, 18, p. 20662; Meyer, B., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerging Infectious Diseases, 21, pp. 181-182; Falzarano, D., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43. , Amsterdam, The Netherlands; Kamber, R., Studies on the supply of immunoglobulin g to newborn camel calves (camelus dromedarius) (2001) Journal of Dairy Research, 68, pp. 1-7; Wernery, U., Acute middle east respiratory syndrome coronavirus infection in livestock dromedaries, dubai, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1019-1022; Faye, B., The camel today: Assets and potentials (2014) Anthropozoologica, 49, pp. 167-176; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of middle east respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Eurosurveillance, 18, p. 20590; Crameri, G., Experimental infection and response to rechallenge of alpacas with middle east respiratory syndrome coronavirus (2016) Emerging Infectious Diseases, 22, pp. 1071-1074; Vergara-Alert, J., Livestock susceptibility to infection with middle east respiratory syndrome coronavirus (2017) Emerging Infectious Diseases, 23, pp. 232-240; Adney, D.R., Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding (2016) Viruses, 8, p. E230; van Doremalen, N., Host species restriction of middle east respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) Journal of Virology, 88, pp. 9220-9232; Vergara-Alert, J., Middle east respiratory syndrome coronavirus experimental transmission using a pig model (2017) Transboundary Emerging Diseases, 64, pp. 1342-1345; de Wit, E., Domestic pig unlikely reservoir for MERS-CoV (2017) Emerging Infectious Diseases, 23, pp. 985-988; Liljander, A., MERS-CoV antibodies in humans, africa, 2013–2014 (2016) Emerging Infectious Diseases, 22, pp. 1086-1089; Chu, D.K.W., MERS coronaviruses from camels in africa exhibit region-dependent genetic diversity (2018) Proceedings of the National Academy of Sciences, 115, pp. 3144-3149; Ming, L., Genetic diversity and phylogeographic structure of bactrian camels shown by mitochondrial sequence variations (2017) Animal Genetics, 48, pp. 217-220; Azhar, E.I., Evidence for camel-to-human transmission of MERS coronavirus (2014) The New England Journal of Medicine, 370, pp. 2499-2505; Memish, Z.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infectious Diseases, 20, pp. 1012-1015; Hemida, M.G., Seroepidemiology of middle east respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) EuroSurveillance, 19, p. 20828; Nowotny, N., Middle east respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Eurosurveillance, 19, p. 20781; Raj, V., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerging Infectious Diseases, 20, pp. 1339-1342; Al Hammadi, Z.M., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, may 2015 (2015) Emerging Infectious Diseases, 21, pp. 2197-2200; Chu, D.K.W., Middle east respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Eurosurveillance, 20, p. 30086; Yusof, M.F., Prevalence of middle east respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in abu dhabi emirate, united arab emirates (2015) Virus Genes, 50, pp. 509-513; Al-Salihi, S.F., Phylogenetic analysis of MERSCoV in human and camels in iraq (2017) International Journal of Pharmaceutical Research & Allied Sciences, 6, pp. 53-58; Munyua, P., No serologic evidence of middle east respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: A household linked study, Kenya, 2013 (2017) American Journal Tropical Medicine and Hygiene, 96, pp. 1318-1324; Li, Y., Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates (2017) PLOS ONE, 12; Harrath, R., Sero-prevalence of middle east respiratory syndrome coronavirus (MERS-CoV) specific antibodies in dromedary camels in tabuk, saudi arabia (2018) Journal of Medical Virology, 90, pp. 1285-1289; Kasem, S., The prevalence of middle east respiratory syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons (2018) Journal of Infection and Public Health, 11, pp. 884-888","Sikkema, R.S.; Department of Viroscience, Erasmus University Medical CenterNetherlands; email: r.sikkema@erasmusmc.nl",,"Cambridge University Press",09502688,,EPINE,"30869000","English","Epidemiol. Infect.",Review,"Final",Open Access,Scopus,2-s2.0-85062851966 "Papatsiros V.G., Stylianaki I., Papakonstantinou G., Papaioannou N., Christodoulopoulos G.","12780117700;57203902304;57205370700;56124473100;22940219900;","Case Report of Transmissible Gastroenteritis Coronavirus Infection Associated with Small Intestine and Brain Lesions in Piglets",2019,"Viral Immunology","32","1",,"63","67",,,"10.1089/vim.2018.0095","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059799024&doi=10.1089%2fvim.2018.0095&partnerID=40&md5=e84f97212e288edd640f3bd55604b97b","Faculty of Veterinary Medicine, Clinic of Medicine, School of Health Sciences, University of Thessaly, Karditsa, 224, GR 43100, Greece; Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece","Papatsiros, V.G., Faculty of Veterinary Medicine, Clinic of Medicine, School of Health Sciences, University of Thessaly, Karditsa, 224, GR 43100, Greece; Stylianaki, I., Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Papakonstantinou, G., Faculty of Veterinary Medicine, Clinic of Medicine, School of Health Sciences, University of Thessaly, Karditsa, 224, GR 43100, Greece; Papaioannou, N., Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Christodoulopoulos, G., Faculty of Veterinary Medicine, Clinic of Medicine, School of Health Sciences, University of Thessaly, Karditsa, 224, GR 43100, Greece","This case study report describes a transmissible gastroenteritis coronavirus (TGEV) infection presented in a commercial pig herd. The clinical signs of infection appeared in newborn piglets, including medium morbidity and low mortality rates. Rectal swabs were collected from five different affected litters for laboratory examinations. Samples from two dead piglets and two euthanized affected piglets were collected for gross and histopathological examinations. All fecal samples were tested TGEV positive by real-time polymerase chain reaction (RT-PCR). Necropsy revealed nonspecific gross lesions. The histopathological examinations revealed villi fused with denuded tips and severe villus atrophy, leading to extensive epithelial flattening in middle and lower small intestine. The architecture pattern of villi presented columnar and cuboidal poorly differentiated enterocytes with mild subepithelial edema. In some enterocytes, pycnotic nuclei were detected. Microscopic examination of brain tissue revealed diffuse gliosis in the area of pia matter with mild congestion of the meningeal and parenchymal vessels and neuronal degeneration. In conclusion, this case study reported an epidemic TGEV infection in piglets, characterized by low mortality and medium morbidity rates accompanied by typical histopathological lesions in small intestine, as well as by coexisting brain lesions, that are described for the first time. © 2019, Mary Ann Liebert, Inc., publishers.","brain; Coronavirus; intestine; lesion; piglet; TGEV","antibiotic agent; plant extract; animal experiment; animal tissue; Article; autopsy; body weight loss; brain damage; brain tissue; case study; cell differentiation; cell nucleus; Coronavirus infection; dehydration; diarrhea; dietary supplement; edema; epidemic; feces analysis; gliosis; hair texture; herd; histopathology; intestine cell; intestine epithelium; intestine infection; intestine injury; intestine villus atrophy; meninx; microbiological examination; morbidity; mortality rate; nerve cell degeneration; newborn; nonhuman; parenchyma; pia matter; piglet; real time polymerase chain reaction; rectum; RNA sequence; small intestine; subepithelial edema; Transmissible gastroenteritis virus; vomiting; agricultural land; animal; brain; case report; Coronavirinae; feces; female; genetics; Greece; isolation and purification; male; mortality; pathology; pig; transmissible gastroenteritis of swine; veterinary medicine; virology; Animals; Brain; Coronavirus; Diarrhea; Farms; Feces; Female; Gastroenteritis, Transmissible, of Swine; Greece; Intestine, Small; Male; Swine","Bohl, E.H., Gupta, R.K.P., McCloskey, L.W., Immunology of transmissible gastroenteritis (1972) J Am Vet Med Assoc, 160, pp. 543-549; Bohl, E.H., Kohler, E.M., Saif, L.J., Rotavirus as a cause of diarrhea in pigs (1978) J Am Vet Med Assoc, 172, pp. 458-463; Buchmeier, M.J., Lane, T.E., Viral-induced neuro-degenerative disease (1999) Curr Opin Microbiol, 2, pp. 398-402; Butler, D.G., Gall, D.G., Kelly, M.H., Transmissible gastroenteritis. Mechanisms responsible for diarrhea in an acute viral enteritis in piglets (1974) J Clin Invest, 53, pp. 1335-1342; Cantile, C., Youssef, S., Nervous system (2016) Jubb, Kennedy and Palmer's Pathology of Domestic Animals 6th Ed, pp. 283-457. , Maxie MG, ed, Philadelphia, PA: Elsevier Saunders; Carstens, E.B., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2010) Arch Virol, 155, pp. 133-146; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol, 34, pp. 439-448; Desforges, M., Le Coupanec, A., Stodola, J.K., Human coronaviruses: Viral and cellular factors involved in neu-roinvasiveness and neuropathogenesis (2014) Virus Res, 194, pp. 145-158; Dewey, C.E., Carman, S., Hazlett, M., Endemic transmissible gastroenteritis: Difficulty in diagnosis and attempted confirmation using a transmission trial (1999) Swine Health Prod, 7, pp. 73-78; Frosch, M.P., Anthony, D.C., De Girolami, U., The central nervous system (2010) Robbins and Cotran Pathologic Basis of Disease, 1329. , Kumar V, Abbas AK, Fausto N, Aster JC, eds, Philadelphia, PA: Saunders Elsevier; Hooper, B.E., Haelterman, E.O., Lesions of the Gastrointestinal Tract of Pigs Infected with Transmissible Gastroenteritis (1969) Can J Comp Med, 33, pp. 29-36; Kim, L., Chang, K.O., Sestak, K., Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs (2000) J Vet Diagn Invest, 12, pp. 385-388; Maxie, M.G., Youssef, S., Nervous system (2007) Jubb, Kennedy and Palmer's Pathology of Domestic Animals 4th Ed, pp. 283-457. , Maxie MG, Jubb KVF, Kennedy PC, Palmer N eds, Philadelphia PA: Elsevier Saunders; McGowan, J.E., Zanelli, S.A., Haynes-Laing, A.G., Mod-ification of glutamate binding sites in newborn brain during hypoglycemia (2000) Brain Res, 927, pp. 80-86; Moon, H.W., Mechanisms in the pathogenesis of diarrhea: A review (1978) J Am Vet Med Assoc, 172, pp. 443-448; Pritchard, G.C., Transmissible gastroenteritis in endemically infected breeding herds of pigs in East Anglia, 1981-1985 (1987) Vet Rec, 120, pp. 226-230; Saif, L.J., Pensaert, M.B., Sesta, K., Coronaviruses (2012) Diseases of Swine 10th Ed, pp. 501-524. , Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ and Stevenson GW, eds, Ames, IA: Wiley-Blackwell; Talbot, P.J., Desforges, M., Brison, E., Coronaviruses as Encephalitis inducing infectious agents (2011) Non-flavirus Encephalitis, pp. 185-202. , Tkachev S, ed, Croatia: In-Tech","Papatsiros, V.G.; Faculty of Veterinary Medicine, Clinic of Medicine, School of Health Sciences, University of ThessalyGreece; email: vpapatsiros@vet.uth.gr",,"Mary Ann Liebert Inc.",08828245,,VIIME,"30207926","English","Viral Immunol.",Article,"Final",,Scopus,2-s2.0-85059799024 "Alqahtani F.Y., Aleanizy F.S., Ali El Hadi Mohamed R., Alanazi M.S., Mohamed N., Alrasheed M.M., Abanmy N., Alhawassi T.","56282382200;55236547400;57204557473;34067501600;7103398147;24536655100;8517245000;37015425100;","Prevalence of comorbidities in cases of Middle East respiratory syndrome coronavirus: A retrospective study",2019,"Epidemiology and Infection","147",, e35,"","",,2,"10.1017/S0950268818002923","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056197773&doi=10.1017%2fS0950268818002923&partnerID=40&md5=caef6b7563ece4bf95074507011e0ae0","Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia; College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 12484, Saudi Arabia; Federal Ministry of Health, Khartoum, 303, Sudan; Emergency Medicine Consultant, Emergency Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 12455, Saudi Arabia; College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 12484, Saudi Arabia; Clinical Microbiology Department, Umeå University, Virology Unit, Sweden; Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia","Alqahtani, F.Y., Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia; Aleanizy, F.S., Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia; Ali El Hadi Mohamed, R., College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 12484, Saudi Arabia, Federal Ministry of Health, Khartoum, 303, Sudan; Alanazi, M.S., Emergency Medicine Consultant, Emergency Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 12455, Saudi Arabia; Mohamed, N., College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 12484, Saudi Arabia, Clinical Microbiology Department, Umeå University, Virology Unit, Sweden; Alrasheed, M.M., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia; Abanmy, N., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia; Alhawassi, T., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia","The Middle East respiratory syndrome coronavirus (MERS-CoV) is a life-threatening respiratory disease with a high case fatality rate; however, its risk factors remain unclear. We aimed to explore the influence of demographic factors, clinical manifestations and underlying comorbidities on mortality in MERS-CoV patients. Retrospective chart reviews were performed to identify all laboratory-confirmed cases of MERS-COV infection in Saudi Arabia that were reported to the Ministry of Health of Saudi Arabia between 23 April 2014 and 7 June 2016. Statistical analyses were conducted to assess the effect of sex, age, clinical presentation and comorbidities on mortality from MERS-CoV. A total of 281 confirmed MERS-CoV cases were identified: 167 (59.4%) patients were male and 55 (20%) died. Mortality predominantly occurred among Saudi nationals and older patients and was significantly associated with respiratory failure and shortness of breath. Of the 281 confirmed cases, 160 (56.9%) involved comorbidities, wherein diabetes mellitus, hypertension, ischemic heart disease, congestive heart failure, end-stage renal disease and chronic kidney disease were significantly associated with mortality from MERS-CoV and two or three comorbidities significantly affected the fatality rates from MERS-CoV. The findings of this study show that old age and the existence of underlying comorbidities significantly increase mortality from MERS-CoV. © 2018 Cambridge University Press.","Comorbidities; middle east respiratory syndrome coronavirus; mortality","adult; age; Article; chronic kidney failure; clinical feature; comorbidity; congestive heart failure; demography; diabetes mellitus; dyspnea; end stage renal disease; fatality; female; human; hypertension; ischemic heart disease; major clinical study; male; Middle East respiratory syndrome; mortality; prevalence; respiratory failure; retrospective study; reverse transcription polymerase chain reaction; Saudi Arabia; sex; statistical analysis","Zaki, A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367, pp. 1814-1820; De Groot, R.J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group (2013) Journal of Virology, 87, pp. 7790-7792; (2017) WHO MERS-CoV Global Summary and Assessment of Risk, , http://www.who.int/emergencies/merscov/risk-assessment-july-2017.pdf, (WHO), W.H.O; Chan, J.F., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clinical Microbiology Reviews, 28, pp. 465-522; Van Boheemen, S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00473-e00512; Cotten, M., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Memish, Z.A., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) New England Journal of Medicine, 368, pp. 2487-2494; Omrani, A.S., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) International Journal of Infectious Diseases, 17, pp. e668-e672; Memish, Z.A., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A descriptive genomic study (2014) International Journal of Infectious Diseases, 23, pp. 63-68; Assiri, A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) New England Journal of Medicine, 369, pp. 407-416; Guery, B., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Arabi, Y.M., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Annals of Internal Medicine, 160, pp. 389-397; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) The Lancet Infectious Diseases, 13, pp. 752-761; Cauchemez, S., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) The Lancet Infectious Diseases, 14, pp. 50-56; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Majumder, M.S., Estimation of MERS-Coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: Insights from publicly available data (2014) PLoS Currents, 18, p. 6; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012-2015 (2016) American Journal of Epidemiology, 184, pp. 460-464; Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients (2014) Clinical Infectious Diseases, 59, pp. 160-165; Chen, X., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerging Microbes & Infections, 6, p. e51; Bermingham, A., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Eurosurveillance, 17, p. 20290; Cauchemez, S., Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart (2013) Eurosurveillance, 18, pp. 1-7; Oboho, I.K., 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) New England Journal of Medicine, 372, pp. 846-854; Aleanizy, F.S., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: A retrospective study (2017) BMC Infectious Diseases, 17, p. 23; Al-Shehri, A.M., A lesson learned from Middle East respiratory syndrome (MERS) in Saudi Arabia (2015) Medical Teacher, 37, pp. S88-S93; Aly, M., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the gulf corporation council countries: Four years update (2017) PLoS ONE, 12, p. e0183850; Mertz, D., Populations at risk for severe or complicated influenza illness: Systematic review and meta-analysis (2013) BMJ, 347, p. f5061; Kusznierz, G., Clinical features of the hospitalized patients with 2009 pandemic influenza A (H1N1) (2013) Influenza and Other Respiratory Viruses, 7, pp. 410-417. , in Santa Fe Argentina; Suryaprasad, A., Severe acute respiratory infections caused by 2009 pandemic influenza A (H1N1) among American Indians-southwestern United States, May 1-July 21, 2009 (2013) Influenza and Other Respiratory Viruses, 7, pp. 1361-1369; Moni, M.A., Lio, P., Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies (2014) BMC Bioinformatics, 15, p. 333; Park, J., The impact of cellular networks on disease comorbidity (2009) Molecular Systems Biology, 5, p. 262","Alqahtani, F.Y.; Department of Pharmaceutics, College of Pharmacy, King Saud UniversitySaudi Arabia; email: fyalqahtani@ksu.edu.sa",,"Cambridge University Press",09502688,,EPINE,,"English","Epidemiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85056197773 "Al-Tawfiq J.A., Auwaerter P.G.","9436438200;6602539208;","Healthcare-associated infections: the hallmark of Middle East respiratory syndrome coronavirus with review of the literature",2019,"Journal of Hospital Infection","101","1",,"20","29",,11,"10.1016/j.jhin.2018.05.021","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050474196&doi=10.1016%2fj.jhin.2018.05.021&partnerID=40&md5=12085e57a910c919b119a9e6854478f6","Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indiana University, Indianapolis, IN, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States","Al-Tawfiq, J.A., Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indiana University, Indianapolis, IN, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Auwaerter, P.G., The Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) is capable of causing acute respiratory illness. Laboratory-confirmed MERS-CoV cases may be asymptomatic, have mild disease, or have a life-threatening infection with a high case fatality rate. There are three patterns of transmission: sporadic community cases from presumed non-human exposure, family clusters arising from contact with an infected family index case, and healthcare-acquired infections among patients and from patients to healthcare workers. Healthcare-acquired MERS infection has become a well-known characteristic of the disease and a leading means of spread. The main factors contributing to healthcare-associated outbreaks include delayed recognition, inadequate infection control measures, inadequate triaging and isolation of suspected MERS or other respiratory illness patients, crowding, and patients remaining in the emergency department for many days. A review of the literature suggests that effective control of hospital outbreaks was accomplished in most instances by the application of proper infection control procedures. Prompt recognition, isolation and management of suspected cases are key factors for prevention of the spread of MERS. Repeated assessments of infection control and monitoring of corrective measures contribute to changing the course of an outbreak. Limiting the number of contacts and hospital visits are also important factors to decrease the spread of infection. © 2018 The Healthcare Infection Society","Healthcare-associated outbreaks; MERS; Middle East respiratory syndrome coronavirus","Abu Dhabi; clinical practice; epidemic; France; healthcare associated infection; human; infection control; Jordan; Middle East respiratory syndrome coronavirus; patient care; patient monitoring; Review; risk factor; Saudi Arabia; South Korea; virus transmission; Coronavirus infection; cross infection; disease management; disease transmission; prevention and control; procedures; transmission; Coronavirus Infections; Cross Infection; Disease Management; Disease Transmission, Infectious; Humans; Infection Control","Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Exp Rev Respir Med, 10, pp. 331-338; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Mailles, A., Blanckaert, K., Chaud, P., van der Werf, S., Lina, B., Caro, V., First cases of middle east respiratory syndrome coronavirus (MERS-COV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013 (2013) EuroSurveillance, 18. , pii:20502; Majumder, M.S., Brownstein, J.S., Finkelstein, S.N., Larson, R.C., Bourouiba, L., Nosocomial amplification of MERS-coronavirus in South Korea, 2015 (2017) Trans R Soc Trop Med Hyg, 111, pp. 261-269; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the Gulf Corporation Council countries: four years update (2017) PLoS One, 12, p. e0183850; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Curr Opin Infect Dis, 28, pp. 392-396; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) WHO MERS-CoV global summary and assessment of risk global summary 2017 (2017), http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1, WHO Geneva Available at: [last accessed September 2017]; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Memish, Z., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah – a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11, pp. 128-131; Fagbo, S.F., Skakni, L., Chu, D.K.W., Garbati, M.A., Joseph, M., Peiris, M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 1981-1988; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20, p. 123; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Assiri, A., Alharby, K.D., Almahallawi, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV): a cluster analysis with implications for global management of suspected cases (2015) Travel Med Infect Dis, 13, pp. 311-314; El Bushra, H.E., Abdalla, M.N., Al Arbash, H., Alshayeb, Z., Al-Ali, S., Latif, Z.A.-A., An outbreak of Middle East Respiratory Syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia, 2015 (2016) East Mediterr Health J, 22, pp. 468-475; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: nosocomial outbreak of Middle East respiratory syndrome in a large tertiary care hospital – Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1–August 31, 2015 (2016) Open Forum Infect Dis, 3, p. ofw165; Nazer, R.I., Outbreak of Middle East respiratory syndrome-coronavirus causes high fatality after cardiac operations (2017) Ann Thorac Surg, 104, pp. e127-e129; Assiri, A., Abedi, G.R., Bin Saeed, A.A., Abdalla, M.A., al-Masry, M., Choudhry, A.J., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; Cauchemez, S., Van Kerkhove, M.D., Riley, S., Donnelly, C.A., Fraser, C., Ferguson, N.M., Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart (2013) EuroSurveillance, 18. , pii:20503; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; Choi, S., Jung, E., Choi, B.Y., Hur, Y.J., Ki, M., High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea (2018) J Hosp Infect, 99, pp. 162-168; Hastings, D.L., Tokars, J.I., Aziz Izam, A., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Outbreak of Middle East respiratory syndrome at Tertiary Care Hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 794-801; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015 (2015) EuroSurveillance, 20, pp. 7-13; Park, Y.-S., Lee, C., Kim, K.M., Kim, S.W., Lee, K.-J., Ahn, J., The first case of the 2015 Korean Middle East respiratory syndrome outbreak (2015) Epidemiol Health, 37, p. e2015049; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) WHO MERS-CoV global summary and risk assessment global summary, December 2016 (2016), http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf, WHO Geneva Available at: [last accessed September 2017]; Kim, S.-H., Chang, S.Y., Sung, M., Park, J.H., Bin Kim, H., Lee, H., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37, p. e2015033; Choi, I., Lee, D.H., Kim, Y., Effects of timely control intervention on the spread of Middle East respiratory syndrome coronavirus infection (2017) Osong Public Heal Res Perspect, 8, pp. 373-376; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Heal Res Perspect, 7, pp. 49-55; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) EuroSurveillance, 20, pp. 1-5; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Nishiura, H., Endo, A., Saitoh, M., Kinoshita, R., Ueno, R., Nakaoka, S., Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis (2016) BMJ Open, 6, p. e009936; Oh, M., Choe, P.G., Oh, H.S., Park, W.B., Lee, S.-M., Park, J., Middle East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015 (2015) J Korean Med Sci, 30, pp. 1701-1705; Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; Nam, H.-S., Park, J.W., Ki, M., Yeon, M.-Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int J Infect Dis, 58, pp. 37-42; Alenazi, T.H., Al Arbash, H., El-Saed, A., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y.M., Identified transmission dynamics of Middle East respiratory syndrome coronavirus infection during an outbreak: implications of an overcrowded emergency department (2017) Clin Infect Dis, 65, pp. 675-679; Lamers, M.M., Raj, V.S., Shafei, M., Ali, S.S., Abdallh, S.M., Gazo, M., Deletion variants of Middle East respiratory syndrome coronavirus from humans, Jordan, 2015 (2016) Emerg Infect Dis, 22, pp. 716-719; World Health Organization, WHO update and clarification on recent MERS cases reported by the Kingdom of Saudi Arabia 23 June 2016 (2016), http://who.int/emergencies/mers-cov/saudi-arabia-update/en/, WHO Geneva Available at: [last accessed September 2017]; World Health Organization, Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2015), http://apps.who.int/iris/bitstream/handle/10665/174652/WHO_MERS_IPC_15.1_eng.pdf;jsessionid=E60EEABCA96F2383F0F1D82C3A44C13B?sequence=1, WHO Geneva Available at: [last accessed April 2017]; Centers for Disease Control and Prevention, Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS-CoV) (2015), https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, CDC Atlanta, GA Available at: [last accessed March 2017]; Foote, M.M.K., Styles, T.S., Quinn, C.L., Assessment of hospital emergency department response to potentially infectious diseases using unannounced mystery patient drills — New York City, 2016 (2017) MMWR Morb Mortal Wkly Rep, 66, pp. 945-949; Command and Control Center Ministry of Health Kingdom of Saudi Arabia Scientific Advisory Board, Infection prevention and control guidelines for the Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017), http://www.moh.gov.sa/endepts/Infection/Documents/Guidelines-for-MERS-CoV.PDF, 4th ed. Available at: [last accessed May 2017]; Saudi Ministry of Health, MOH's command and control center forms rapid response teams including 120 health specialists (2015), http://www.moh.gov.sa/en/Ministry/MediaCenter/News/Pages/News-2015-04-12-001.aspx, Saudi Ministry of Health (website) Riyadh, Saudi Arabia Available at: [last accessed September 2017]; Lee, J., Rapid Response Team, Kim, W.J., Collaborative intervention of Middle East respiratory syndrome: rapid response team (2016) Infect Chemother, 48, pp. 71-74; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with middle east respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Al Hosani, F.I., Pringle, K., Al Mulla, M., Kim, L., Pham, H., Alami, N.N., Response to emergence of Middle East respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014 (2016) Emerg Infect Dis, 22, pp. 1162-1168; Moon, S., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Memish, Z.A., Middle East respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: implications for infection control (2017) Intervirology, 60, pp. 53-55; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2018) Am J Infect Control, 46, pp. 165-168; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) EuroSurveillance, 18. , pii:20590; Pyankov, O.V., Bodnev, S.A., Pyankova, O.G., Agranovski, I.E., Survival of aerosolized coronavirus in the ambient air (2018) J Aerosol Sci, 115, pp. 158-163; Jeong, H.W., Heo, J.Y., Kim, H.-W., Choi, Y.K., Song, M.-S., Bin Seo, Y., Persistent environmental contamination and prolonged viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2015) Open Forum Infect Dis, 2, p. 1978a; Bin Seo, Y., Heo, J.Y., Song, M.-S., Lee, J., Kim, E.-H., Park, S.-J., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-756; Balkhy, H., MERS CoV: a trigger for healthcare transformation (2016) J Infect Public Health, 9, pp. 1-2; Balkhy, H., The emergence of a new corona virus – MERS-CoV: hind sight is always 20/20 (2013) J Infect Public Health, 6, pp. 317-318; Al-Tawfiq, J.A., Rothwell, S., Mcgregor, H.A., Khouri, Z.A., A multi-faceted approach of a nursing led education in response to MERS-CoV infection (2018) J Infect Public Health, 11, pp. 260-264; Koenig, K., Identify–isolate–inform: a modified tool for initial detection and management of Middle East respiratory syndrome patients in the emergency department (2015) West J Emerg Med, 16, pp. 619-624; Lee, J.Y., Kim, G., Lim, D.-G., Jee, H.-G., Jang, Y., Joh, J.-S., A Middle East respiratory syndrome screening clinic for health care personnel during the 2015 Middle East respiratory syndrome outbreak in South Korea: a single-center experience (2018) Am J Infect Control, 46, pp. 436-440; Rabaan, A.A., Alhani, H.M., Bazzi, A.M., Al-Ahmed, S.H., Questionnaire-based analysis of infection prevention and control in healthcare facilities in Saudi Arabia in regards to Middle East respiratory syndrome (2017) J Infect Public Health, 10, pp. 548-563; Aldrees, T., Al Ghobain, M., Alenezi, A., Alqaryan, S., Aldabeeb, D., Alotaibi, N., Medical residents’ attitudes and emotions related to Middle East respiratory syndrome in Saudi Arabia. A cross-sectional study (2017) Saudi Med J, 38, pp. 942-947; Nour, M.O., Babalghith, A.O., Natto, H.A., Alawneh, S.M., Elamin, F.O., Raising awareness of health care providers about MERSCoV infection in public hospitals in Mecca, Saudi Arabia (2017) East Mediterr Health J, 23, pp. 534-542; Bawazir, A., Al-Mazroo, E., Jradi, H., Ahmed, A., Badri, M., MERS-CoV infection: mind the public knowledge gap (2018) J Infect Public Health, 11, pp. 89-93; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome-coronavirus (MERS-CoV): a case–control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Al-Tawfiq, J.A., Hinedi, K., The calm before the storm: clinical observations of Middle East respiratory syndrome (MERS) patients (2018) J Chemother, 30, pp. 179-182; Memish, Z.A.Z.A., Al-Tawfiq, J.A.J.A., Makhdoom, H.Q.H.Q., Assiri, A., Alhakeem, R.F.R.F., Albarrak, A., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210, pp. 1590-1594; World Health Organization, Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV) (2015), http://apps.who.int/iris/bitstream/10665/176982/1/WHO_MERS_LAB_15.1_eng.pdf?ua=1, WHO Geneva Available at: [last accessed December 2016]; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H.-N., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci Adv, 3, p. eaao4966; Abroug, F., Slim, A., Ouanes-Besbes, L., Hadj Kacem, M.-A., Dachraoui, F., Ouanes, I., Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013 (2014) Emerg Infect Dis, 20, pp. 1527-1530; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Leyten, E., Groeneveld, P., Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014 (2014) EuroSurveillance, 19. , pii:20817; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61, pp. 275-278; Cha, R., Yang, S.H., Moon, K.C., Joh, J.-S., Lee, J.Y., Shin, H.-S., A case report of a Middle East respiratory syndrome survivor with kidney biopsy results (2016) J Korean Med Sci, 31, p. 635; El Bushra, H.E., Al Arbash, H.A., Mohammed, M., Abdalla, O., Abdallah, M.N., Al-Mayahi, Z.K., Outcome of strict implementation of infection prevention control measures during an outbreak of Middle East respiratory syndrome (2017) Am J Infect Control, 45, pp. 502-507; Kim, S.W., Park, J.W., Jung, H.-D., Yang, J.-S., Park, Y.-S., Lee, C., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) summary and literature update as of 9 May 2014 (2014), http://www.who.int/csr/disease/coronavirus_infections/MERS_CoV_Update_09_May_2014.pdf?ua=1, WHO Geneva Available at: [last accessed September 2017]; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement (2009) Open Med, 3, pp. e123-e130","Al-Tawfiq, J.A.; Dhahran Health Centre, Johns Hopkins Aramco Healthcare, P.O. Box 76, Room A-428-2, Building 61, Saudi Arabia; email: jaffar.tawfiq@jhah.com",,"W.B. Saunders Ltd",01956701,,JHIND,"29864486","English","J. Hosp. Infect.",Review,"Final",Open Access,Scopus,2-s2.0-85050474196 "Rahman A., Sarkar A.","57212819243;35070308800;","Risk factors for fatal Middle East respiratory syndrome coronavirus infections in Saudi Arabia: Analysis of the WHO Line list, 2013–2018",2019,"American Journal of Public Health","109","9",,"1288","1293",,4,"10.2105/AJPH.2019.305186","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070575648&doi=10.2105%2fAJPH.2019.305186&partnerID=40&md5=2b9e7adae7df1b9c27a07bad3d0d1a7e","Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial University, St John’s,, Newfoundland and Labrador A1B 3V6, Canada","Rahman, A., Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial University, St John’s,, Newfoundland and Labrador A1B 3V6, Canada; Sarkar, A., Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial University, St John’s,, Newfoundland and Labrador A1B 3V6, Canada","Objectives. To explore complex associations among demographic factors, risk factors, health care, and fatality rates of Middle East respiratory syndrome coronavirus (MERS-CoV) in the Kingdom of Saudi Arabia. Methods. We based this study on analysis of a publicly accessible line listing of 1256 MERS-CoV cases (2013 to October 2018) available on the World Health Organization’s Web site. For analyses of demographic factors (e.g., age, gender), access to health care, promptness of laboratory services, risk factors (comorbidity, exposure to camels and persons with MERS-CoV), occupation (health care), and outcome (fatality), we used descriptive statistics, risk ratio (RR), and the Pearson c2 test. Results. Presence of comorbidity (RR = 3; 95% confidence interval [CI] = 2.2, 3.9), being male (RR = 1.6; 95% CI = 1.2, 2.1), exposure to dromedary camels (RR = 1.6; 95% CI = 1.3, 2.3), and consumption of camel milk (RR = 1.5; 95% CI = 0.9, 1.7) can significantly increase risk for fatality. Health care workers have significantly lower fatality (P < .001) than the rest of the persons with MERS-CoV. Conclusions. Policies that promote health awareness for the high-risk population and their prompt seeking of health care should be considered. Publicly accessible line lists of infectious diseases such as MERS-CoV can be valuable sources for epidemiological analysis. © 2019 American Public Health Association Inc.. All rights reserved.",,"comorbidity; Coronavirus infection; cross-sectional study; female; human; male; Middle East respiratory syndrome coronavirus; risk factor; Saudi Arabia; Comorbidity; Coronavirus Infections; Cross-Sectional Studies; Female; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Saudi Arabia","(2018) WHO MERS Global Summary and Assessment of Risk, , https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf, August Accessed April 2, 2019; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14 (1), pp. 50-56; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015 (2015) Euro Surveill, 20 (25), pp. 7-13; (2018) MERS Situation Update, , http://applications.emro.who.int/docs/EMROPub_2018_EN_20702.pdf?ua=1, October Accessed April 2, 2019; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (5), pp. 559-564; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371 (9), pp. 828-835; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854. , 2014; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60 (6), pp. 973-974; Ki, M., MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol Health, 37, p. e2015033. , 2015; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov, February 19, Accessed April 2, 2019; (2018) Update on MERS-CoV Transmission from Animals to Humans, and Interim Recommendations for at-Risk Groups, , http://www.who.int/csr/disease/coronavirus_infections/transmission-and-recommendations/en, January 26, Accessed April 2, 2019; (2018) MERS-CoV. Disease Outbreak News, , http://www.who.int/csr/don/archive/disease/coronavirus_infections/en, Accessed April 2, 2019; Honaker, J., King, G., What to do about missing values in time-series cross-section data (2010) Am J Pol Sci, 54 (2), pp. 561-581; Zou, G., A modified Poisson regression approach to prospective studies with binary data (2004) Am J Epidemiol, 159 (7), pp. 702-706; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012–2015 (2016) Am J Epidemiol, 184 (6), pp. 460-464; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update (2017) PLoS One, 12 (10); Yang, Y.M., Hsu, C.Y., Lai, C.C., Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome (2017) Sci Rep, 7 (1), p. 11307; Lessler, J., Salje, H., Van Kerkhove, M.D., Estimating the severity and subclinical burden of Middle East respiratory syndrome coronavirus infection in the Kingdom of Saudi Arabia (2016) Am J Epidemiol, 183 (7), pp. 657-663; Gardner, E.G., Kelton, D., Poljak, Z., Van Kerkhove, M., von Dobschuetz, S., Greer, A.L., A case–crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome (2019) BMC Infect Dis, 19 (1), p. 113; (2019) MERS Situation Update, , http://applications.emro.who.int/docs/EMROPub_2019_MERA_apr_EN_23513.pdf?ua=1, April Accessed June 19, 2019; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376 (6), pp. 584-594","Sarkar, A.; Division of Community Health and Humanities, Faculty of Medicine, Health Sciences Centre, Memorial UniversityCanada; email: atanu.sarkar@med.mun.ca",,"American Public Health Association Inc.",00900036,,AJPEA,"31318592","English","Am. J. Public Health",Article,"Final",,Scopus,2-s2.0-85070575648 "Hwang S.-M., Na B.-J., Jung Y., Lim H.-S., Seo J.-E., Park S.-A., Cho Y.-S., Song E.-H., Seo J.-Y., Kim S.-R., Lee G.-Y., Kim S.-J., Park Y.-S., Seo H.","57214387359;13402839700;57192405605;57209105023;37665927800;57209105562;57209108344;57209097356;57209109352;57209099200;57209100203;57209099240;57209097883;57209104004;","Clinical and laboratory findings of Middle East respiratory syndrome coronavirus infection",2019,"Japanese Journal of Infectious Diseases","72","3",,"160","167",,1,"10.7883/yoken.JJID.2018.187","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066482581&doi=10.7883%2fyoken.JJID.2018.187&partnerID=40&md5=acd862d8920c3700b0b043fcaaaae9f0","Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Department of Health Policy, Health & Welfare Bureau, Sejong-si, South Korea; Department of Preventive Medicine, Korea University College of MedicineSeoul, South Korea; Seoul Metropolitan Government Civil Health BueauSeoul, South Korea; Korea Armed Forces Nursing Academy, Daejeon, South Korea; Department of Tuberculosis, Seobuk HospitalSeoul, South Korea","Hwang, S.-M., Korea Centers for Disease Control and Prevention, Cheongju, South Korea, Department of Health Policy, Health & Welfare Bureau, Sejong-si, South Korea, Department of Preventive Medicine, Korea University College of MedicineSeoul, South Korea; Na, B.-J., Seoul Metropolitan Government Civil Health BueauSeoul, South Korea; Jung, Y., Korea Armed Forces Nursing Academy, Daejeon, South Korea; Lim, H.-S., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Seo, J.-E., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Park, S.-A., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Cho, Y.-S., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Song, E.-H., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Seo, J.-Y., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Kim, S.-R., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Lee, G.-Y., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Kim, S.-J., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Park, Y.-S., Department of Tuberculosis, Seobuk HospitalSeoul, South Korea; Seo, H., Department of Preventive Medicine, Korea University College of MedicineSeoul, South Korea, Department of Tuberculosis, Seobuk HospitalSeoul, South Korea","There is a paucity of data regarding the differentiating characteristics of patients with laboratory-confirmed and those negative for Middle East respiratory syndrome coronavirus (MERS-CoV) in South Korea. This hospital-based retrospective study compared MERS-CoV-positive and MERSCoV- negative patients. A total of seven positive patients and 55 negative patients with a median age of 43 years (P = 0.845) were included. No statistical differences were observed with respect to their sex and the presence of comorbidities. At the time of admission, headache (28.6% vs. 3.6%; odds ratio [OR], 10.60; 95% confidence interval [CI], 1.22-92.27), myalgia (57.1% vs. 9.1%; OR, 13.33; 95% CI, 2.30- 77.24), and diarrhea (57.1% vs. 14.5%; OR, 7.83; 95% CI, 1.47-41.79) were common among MERSCoV- positive patients. MERS-CoV-positive patients were more likely to have a low platelet count (164 ± 76.57 vs. 240 ± 79.87) and eosinophil (0.27 ± 0.43 vs. 2.13 ± 2.01; P = 0.003). Chest radiography with diffuse bronchopneumonia was more frequent in MERS-CoV-positive patients than in negative patients (100% vs. 62.5%; P = 0.491). The symptoms of headache, myalgia, and diarrhea, as well as laboratory characteristics, including low platelet counts and eosinophil, and chest X-ray showing diffuse bronchopneumonia might enhance the ability to detect patients in South Korea infected with MERSCoV. © 2019 National Institute of Health. All rights reserved.",,"alanine aminotransferase; alkaline phosphatase; aspartate aminotransferase; C reactive protein; creatine kinase; creatinine; hemoglobin; lactate dehydrogenase; abdominal pain; adult; Article; bronchopneumonia; comparative study; diarrhea; disease severity; dyspnea; eosinophil count; female; headache; hematocrit; home care; human; lymphocytopenia; major clinical study; male; middle aged; Middle East respiratory syndrome; monocytosis; myalgia; neutrophilia; patient isolation; platelet count; pneumonia; Pneumonia Severity Index; quarantine; retrospective study; rhinorrhea; thorax radiography; vomiting; aged; blood; Coronavirus infection; epidemic; hospital; isolation and purification; Middle East respiratory syndrome coronavirus; South Korea; sputum; virology; Adult; Aged; Coronavirus Infections; Disease Outbreaks; Female; Hospitals; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Republic of Korea; Retrospective Studies; Sputum","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia N Engl J Med., 2012 (367), pp. 1814-1820; Kim, K.H., Tandi, T.E., Choi, J.W., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications J Hosp Infect., 2017 (95), pp. 207-213; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 Osong Public Health Res Perspect., 2015 (6), pp. 269-278; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study Lancet Infect Dis., 2013 (13), pp. 752-761; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients (2014) Clin Infect Dis., 59, pp. 160-165; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J., 13, p. 87; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: Epidemiology and disease control measures Infect Drug Resist., 2014 (7), pp. 281-287; Laboratory testing for Middle East respiratory syndrome coronavirus (2014) Interim recommendations., , Geneva (Switzerland): WHO; Kim, Y.J., Cho, Y.J., Kim, D.W., Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/-KNIH/002_05_2015 isolated in South Korea (2015) Genome Announc., 3, pp. e00787-e00815; Lim, W.S., van der Eerden, M.M., Laing, R., Defining community acquired pneumonia severity on presentation to hospital: An international derivation and validation study Thorax., 2003 (58), pp. 377-382; Aujesky, D., Auble, T.E., Yealy, D.M., Prospective comparison of three validated prediction rules for prognosis in communityacquired pneumonia Am J Med., 2005 (118), pp. 384-392; Buising, K.L., Thursky, K.A., Black, J.F., A prospective comparison of severity scores for identifying patients with severe community acquired pneumonia: Reconsidering what is meant by severe pneumonia Thorax., 2006 (61), pp. 419-424; Spindler, C., Ortqvist, A., Prognostic score systems and communityacquired bacteraemic pneumococcal pneumonia Eur Respir J., 2006 (28), pp. 816-823; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol Health., 37, p. e2015033; Khan, A., Farooqui, A., Guan, Y., Lessons to learn from MERSCoV outbreak in South Korea J Infect Dev Ctries., 2015 (9), pp. 543-546; Ahmed, A.E., Al-Jahdali, H., Alshukairi, A.N., Early identification of pneumonia patients at increased risk of Middle East respiratory syndrome coronavirus infection in Saudi Arabia Int J Infect Dis., 2018 (70), pp. 51-56; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study Lancet., 2016 (388), pp. 994-1001; Choi, W.S., Kang, C.I., Kim, Y., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea Infect Chemother., 2016 (48), pp. 118-126; Rhee, J.Y., Hong, G., Ryu, K.M., Clinical implications of 5 cases of Middle East respiratory syndrome coronavirus infection in a South Korean outbreak Jpn J Infect Dis., 2016 (69), pp. 361-366; Al-Tawfiq, J.A., Alfaraj, S.H., Altuwaijri, T.A., A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia (2017) J infect., 75, pp. 378-379; Garbati, M.A., Fagbo, S.F., Fang, V.J., A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PloS One., 11, p. e0165978; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia Travel Med Infect Dis., 2016 (14), pp. 464-470; Kim, J.Y., Song, J.Y., Yoon, Y.K., Middle East respiratory syndrome infection control and prevention guideline for healthcare facilities Infect Chemother., 2015 (47), pp. 278-302; Lee, J.H., Lee, C.S., Lee, H.B., An appropriate lower respiratory tract specimen is essential for diagnosis of Middle East respiratory syndrome (MERS) J Korean Med Sci., 2015 (30), pp. 1207-1208; Chen, X., Chughtai, A.A., Dyda, A., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg Microbes Infect., 6, p. e51; Wardlaw, A.J., Eosinophils in the 1990s: New perspectives on their role in health and disease Postgrad Med J., 1994 (70), pp. 536-552; Abbas, A.K., Lichtman, A.H., Pober, J.S., (2000) Cellular and Molecular Immunology., p. 269. , 4th ed. Philadelphia: WB Saunders Co; Husain, A., (2012) Thoracic Pathology., , editor, 1st ed. Amsterdam: Saunders; Zhao, Z., Zhang, F., Xu, M., Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China (2003) J Med Microbiol., 52, pp. 715-720; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome N Engl J Med., 2017 (376), pp. 584-594","Seo, H.; Department of Preventive Medicine, Korea University College of MedicineSouth Korea; email: karlfreud@naver.com",,"National Institute of Health",13446304,,JJIDF,"30584196","English","Jpn. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85066482581 "Khan G., Sheek-Hussein M.","6701635515;15741662500;","The middle east respiratory syndrome coronavirus: An emerging virus of global threat",2019,"Emerging and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens",,,,"151","167",,,"10.1016/B978-0-12-819400-3.00008-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082254879&doi=10.1016%2fB978-0-12-819400-3.00008-9&partnerID=40&md5=7c248da33caecc57f7a9b88a3e7b3365","Department of Microbiology & Immunology, United Arab Emirates University, Abu Dhabi, United Arab Emirates; Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates","Khan, G., Department of Microbiology & Immunology, United Arab Emirates University, Abu Dhabi, United Arab Emirates; Sheek-Hussein, M., Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates","Middle East respiratory syndrome (MERS) is a viral respiratory illness caused by a coronavirus (CoV), first identified in Saudi Arabia in 2012. Since then, almost 2000 cases have been reported from 27 countries, with Saudi Arabia being the epicenter. This newly emerging virus is highly pathogenic and has a case mortality rate of 35%. It is similar to the CoV causing severe acute respiratory syndrome CoV (SARS-CoV) in that both belong to the genus beta CoVs that are of zoonotic origin and cause lower respiratory infection. The natural reservoir for MERS-CoV remains unknown. Serological studies indicate that most dromedary camels in the Middle East have been infected with this virus, and they maybe the potential intermediate host. However, the mode of transmission from camels to humans is poorly understood. The majority of confirmed human cases have resulted from human-to-human transmission, most probably via respiratory route. Patients most at risk of developing severe MERS-CoV infection appear to be those with underlying conditions such as diabetes, hypertension, obesity, cardiac diseases, chronic respiratory diseases, and cancer. Unlike SARS-CoV, MERS-CoV is considered an ongoing public health problem, particularly for the Middle East region. In this chapter, we outline the prevailing information regarding the emergence and epidemiology of this virus, its mode of transmission and pathogenicity, its clinical features, and the potential strategies for prevention. © 2020 Elsevier Inc. All rights reserved.","Camels; MERS-CoV; Middle east; Respiratory infection; Zoonosis",,"Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20 (12), pp. 1999-2005. , http://doi.org/10.3201/eid2012.141280; Alhamlan, F.S., Majumder, M.S., Brownstein, J.S., Hawkins, J., Al-Abdely, H.M., Alzahrani, A., Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (2017) BMJ Open, 7 (1), p. e011865. , http://doi.org/10.1136/bmjopen-2016-011865; Al Hammadi, Z.M., Chu, D.K.W., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerg. Infect. Dis., 21 (12), pp. 2197-2200. , http://doi.org/10.3201/eid2112.151132; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill., 22 (11). , http://doi.org/10.2807/1560-7917.ES.2017.22.11.30487; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22 (1), pp. 49-55. , http://doi.org/10.3201/eid2201.151340; Al-Tawfiq, J.A., Kattan, R.F., Memish, Z.A., Middle East respiratory syndrome coronavirus disease is rare in children: An update from Saudi Arabia (2016) World J. Clin. Pediatr., 5 (4), pp. 391-396. , http://doi.org/10.5409/wjcp.v5.i4.391; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the gulf corporation council countries: Four years update (2017) PLoS One, 12 (10). , http://doi.org/10.1371/journal.pone.0183850; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8 (2). , http://doi.org/10.1128/mBio.00373-17; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) N. Engl. J. Med., 376 (6), pp. 584-594. , http://doi.org/10.1056/NEJMsr1408795; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13 (9), pp. 752-761. , http://doi.org/10.1016/S1473-3099(13)70204-4; Assiri, A., Abedi, G.R., Al Masri, M., Bin Saeed, A., Gerber, S.I., Watson, J.T., Middle East respiratory syndrome coronavirus infection during pregnancy: A report of 5 cases from Saudi Arabia (2016) Clin. Infect. Dis., 63 (7), pp. 951-953. , http://doi.org/10.1093/cid/ciw412; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370 (26), pp. 2499-2505. , http://doi.org/10.1056/NEJMoa1401505; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis (2016) Int. J. Infect. Dis.: IJID, 49, pp. 129-133. , http://doi.org/10.1016/j.ijid.2016.06.015; Buliva, E., Elhakim, M., Minh, T., Nguyen, N., Elkholy, A., Mala, P., Emerging and reemerging diseases in the World Health Organization (WHO) Eastern Mediterranean Region-progress, challenges, and WHO initiatives (2017) Front. Public Health, 5. , http://doi.org/10.3389/fpubh.2017.00276; Chafekar, A., Fielding, B.C., MERS-CoV: Understanding the latest human coronavirus threat (2018) Viruses, 10 (2), p. 93. , http://doi.org/10.3390/v10020093; Chan, J.F., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.-Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28 (2), pp. 465-522. , http://doi.org/10.1128/CMR.00102-14; Chan, J.F.-W., Yao, Y., Yeung, M.-L., Deng, W., Bao, L., Jia, L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J. Infect. Dis., 212 (12), pp. 1904-1913. , http://doi.org/10.1093/infdis/jiv392; Cho, S.Y., Kang, J.-M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.-H., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet (London, England), 388 (10048), pp. 994-1001. , http://doi.org/10.1016/S0140-6736(16)30623-7; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14 (8), pp. 523-534. , http://doi.org/10.1038/nrmicro.2016.81; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371 (9), pp. 828-835. , http://doi.org/10.1056/NEJMoa1405858; Du, L., Tai, W., Zhou, Y., Jiang, S., Vaccines for the prevention against the threat of MERS-CoV (2016) Expert Rev. Vaccines, 15 (9), pp. 1123-1134. , http://doi.org/10.1586/14760584.2016.1167603; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat. Med., 19 (10), pp. 1313-1317. , http://doi.org/10.1038/nm.3362; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol., 25 (1), pp. 35-48. , http://doi.org/10.1016/j.tim.2016.09.001; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., The spike-protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2 and is targeted by neutralizing antibodies (2013) J. Virol., , http://doi.org/10.1128/JVI.00128-13; Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272. , http://doi.org/10.1016/S0140-6736(13)60982-4; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2013) Lancet Infect. Dis., , http://doi.org/10.1016/S1473-3099(13)70690-X; Haagmans, B.L., Van Den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2015) Science (New York, NY), , http://doi.org/10.1126/science.aad1283; Hastings, D.L., Tokars, J.I., Abdel Aziz, I.Z.A.M., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Outbreak of Middle East respiratory syndrome at Tertiary Care Hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22 (5), pp. 794-801. , http://doi.org/10.3201/eid2205.151797; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Transmission of Middle East Respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg. Infect. Dis., 22 (4), pp. 647-656. , http://doi.org/10.3201/eid2204.151615; Khan, G., A novel coronavirus capable of lethal human infections: An emerging picture (2013) Virol. J., 10, p. 66. , http://doi.org/10.1186/1743-422X-10-66; Kim, J.Y., Song, J.Y., Yoon, Y.K., Choi, S.-H., Song, Y.G., Kim, S.-R., Middle East respiratory syndrome infection control and prevention guideline for healthcare facilities (2015) Infect. Chemother., 47 (4), pp. 278-302. , http://doi.org/10.3947/ic.2015.47.4.278; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95 (2), pp. 207-213. , http://doi.org/10.1016/j.jhin.2016.10.008; Kutter, J.S., Spronken, M.I., Fraaij, P.L., Fouchier, R.A., Herfst, S., Transmission routes of respiratory viruses among humans (2018) Curr. Opin. Virol., 28, pp. 142-151. , http://doi.org/10.1016/j.coviro.2018.01.001; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int. J. Infect. Dis., 38, pp. 65-67. , http://doi.org/10.1016/j.ijid.2015.07.014; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231. , http://doi.org/10.1038/nature12328; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.-A., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci. Transl. Med., 8 (326), p. 326ra21. , http://doi.org/10.1126/scitranslmed.aaf1061; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222. , http://doi.org/10.1186/s12985-015-0439-5; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin. Microbiol. Infect., 20 (5), pp. 469-474. , http://doi.org/10.1111/1469-0691.12562; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J. Infect. Dis., 210 (10), pp. 1590-1594. , http://doi.org/10.1093/infdis/jiu292; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis., 20 (6). , http://doi.org/10.3201/eid2006.140402; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species-a mechanism for coronavirus persistence and survival (2017) Curr. Opin. Virol., 23, pp. 1-7. , http://doi.org/10.1016/j.coviro.2017.01.002; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Dipeptidyl peptidase 4 distribution in the human respiratory tract (2016) Am. J. Pathol., 186 (1), pp. 78-86. , http://doi.org/10.1016/j.ajpath.2015.09.014; Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) (2014) Pathog. Dis., 71 (2), pp. 119-134. , http://doi.org/10.1111/2049-632X.12166; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol. J., p. 13. , http://doi.org/10.1186/s12985-016-0544-0; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis., 15 (5), pp. 559-564. , http://doi.org/10.1016/S1473-3099(15)70090-3; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) N. Engl. J. Med., 372 (9), pp. 846-854. , http://doi.org/10.1056/NEJMoa1408636; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction (2015) Pathog. Global Health, 109 (8), pp. 354-362. , http://doi.org/10.1080/20477724.2015.1122852; Pebody, R.G., Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013 (2013) Euro Surveill.: Bulletin Européen Sur Les Maladies Transmissibles=European Communicable Disease Bulletin, 18 (11); Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254. , http://doi.org/10.1038/nature12005; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13 (10), pp. 859-866. , http://doi.org/10.1016/S1473-3099(13)70164-6; Reusken, C.B.E.M., Farag, E.A.B.A., Haagmans, B.L., Mohran, K.A., Godeke, G.-J., Raj, S., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013-2014 (2015) Emerg. Infect. Dis., 21 (8), pp. 1422-1425. , http://doi.org/10.3201/eid2108.150481; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, S.E.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2015) Science (New York, NY), , http://doi.org/10.1126/science.aac8608; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill.: Bulletin Europeen Sur Les Maladies Transmissibles=European Communicable Disease Bulletin, 18 (38); Virlogeux, V., Fang, V.J., Park, M., Wu, J.T., Cowling, B.J., Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia (2016) Sci. Rep., 6. , http://doi.org/10.1038/srep35839; (2017) Confirmed global cases of MERS-CoV, , http://www.who.int/emergencies/mers-cov/epi-17-november-2017.png?ua=1, (retrieved 07.03.18.); MERS-CoV global summary and assessment of risk, , http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf, n.d, (retrieved 21.07.17.); Widagdo, W., Begeman, L., Schipper, D., Van Run, P.R., Cunningham, A.A., Kley, N., Tissue distribution of the MERS-coronavirus receptor in bats (2017) Sci. Rep., 7 (1), p. 1193. , http://doi.org/10.1038/s41598-017-01290-6; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Wong, B.H.L., Tsoi, H., Molecular diversity of coronaviruses in bats (2006) Virology, 351 (1), pp. 180-187. , http://doi.org/10.1016/j.virol.2006.02.041; Yu, P., Xu, Y., Deng, W., Bao, L., Huang, L., Xu, Y., Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus (2017) PLoS One, 12 (2), p. e0172093. , http://doi.org/10.1371/journal.pone.0172093; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , http://doi.org/10.1056/NEJMoa1211721; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to SARS-coronavirus (2013) J. Virol., 87 (9), pp. 5300-5304. , http://doi.org/10.1128/JVI.03496-12; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.-Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15 (5), pp. 327-347. , http://doi.org/10.1038/nrd.2015.37",,,"Elsevier",,9780128194003; 9780128194010,,,"English","Emerg. and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Hum., Animal and Plant Pathogens",Book Chapter,"Final",,Scopus,2-s2.0-85082254879 "Zhao X., Ma X., Guo J., Mi M., Wang K., Zhang C., Tang X., Chang L., Huang Y., Tong D.","55657088400;57200575521;57200575511;57204183609;57210844051;57210841726;57210840049;55538964300;56923887700;16318143500;","Circular RNA circEZH2 suppresses transmissible gastroenteritis coronavirus-induced opening of mitochondrial permeability transition pore via targeting miR-22 in IPEC-j2",2019,"International Journal of Biological Sciences","15","10",,"2051","2064",,1,"10.7150/ijbs.36532","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071676699&doi=10.7150%2fijbs.36532&partnerID=40&md5=8668c1f7017823593808882bd6462e70","College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China","Zhao, X., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Ma, X., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Guo, J., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Mi, M., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Wang, K., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Zhang, C., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Tang, X., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Chang, L., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Huang, Y., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China; Tong, D., College of Veterinary Medicine, Northwest A&F University, YanglingShaanxi 712100, China","Transmissible gastroenteritis (TGE) is a contagious and infectious disease that is characterized by severe vomiting and diarrhea of swine, especially piglet, and caused by transmissible gastroenteritis coronavirus (TGEV) . TGEV infection provokes mitochondrial damage of porcine intestinal epthelial cell (IPEC), which is responsible for inflammation and cell death. In our previous study, we have demonstrated that circular RNA circEZH2 was down-regulated during TGEV infection and promoted the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) via targeting miR-22 in porcine intestinal epithelial cell line (IPEC-J2). Activation of NF-κB is an important factor for mitochondrial damage. Mitochondrial permeability transition pore (mPTP) opening is a key reason for mitochondrial damage. So, we speculate that circEZH2 may regulate TGEV-induced mPTP opening via NF-kB pathway. In the present study, we found that mPTP opening of IPEC-J2 was occured during TGEV infection and suppressed by circEZH2 via attaching miR-22. Hexokinase 2 (HK2) and interleukin 6 (IL-6) were identified as the targets of miR-22. Silencing HK2 enhanced TGEV-induced mPTP opening, while no effect on NF-κB pathway. Silencing IL-6 promoted TGEV-induced mPTP opening and inhibited NF-κB pathway. Inhibitor of NF-κB increased TGEV-induced mPTP opening. The data revealed that TGEV-induced mPTP opening was regulated via two pathways: circEZH2/miR-22/HK2 axis and circEZH2/miR-22/IL-6/NF-κB axis. © The author(s).","Circular RNA; MicroRNA; Mitochondrial permeability transition pore; NF-κB; Transmissible gastroenteritis coronavirus virus",,"Chen, I.Y., Moriyama, M., Chang, M.F., Ichinohe, T., Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome (2019) Frontiers in Microbiology, 10, p. 50; Faridi, U., Middle East respiratory syndrome coronavirus (MERS-CoV): Impact on Saudi Arabia, 2015 (2018) Saudi Journal of Biological Sciences, 25, pp. 1402-1405; Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion (2019) Cell, 176, pp. 1026-1039; Cui, T., Theuns, S., Desmarets, L.M.B., Xie, J., de Gryse, G.M.A., Yang, B., Establishment of porcine enterocyte/myofibroblast co-cultures for the growth of porcine rota-and coronaviruses (2018) Scientific Reports, 8; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada (2018) Transboundary and Emerging Diseases, 65, pp. 660-675; Yang, Z., Ran, L., Yuan, P., Yang, Y., Wang, K., Xie, L., EGFR as a Negative Regulatory Protein Adjusts the Activity and Mobility of NHE3 in the Cell Membrane of IPEC-J2 Cells With TGEV Infection (2018) Frontiers in Microbiology, 9, p. 2734; Zhang, S., Hu, W., Yuan, L., Yang, Q., Transferrin receptor 1 is a supplementary receptor that assists transmissible gastroenteritis virus entry into porcine intestinal epithelium (2018) Cell Communication and Signaling: CCS, 16, p. 69; Brown, D., Breton, S., Mitochondria-rich, proton-secreting epithelial cells (1996) The Journal of Experimental Biology, 199, pp. 2345-2358; Saif, L.J., Mucosal immunity: An overview and studies of enteric and respiratory coronavirus infections in a swine model of enteric disease (1996) Veterinary Immunology and Immunopathology, 54, pp. 163-169; Zhou, T., Zhu, M., Liang, Z., (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson's disease (2018) Molecular Medicine Reports; Liu, P., Dong, J., Protective effects of carnosic acid against mitochondria-mediated injury in H9c2 cardiomyocytes induced by hypoxia/reoxygenation (2017) Experimental and Therapeutic Medicine, 14, pp. 5629-5634; Wang, H., Chen, Y., Zhai, N., Chen, X., Gan, F., Li, H., Ochratoxin A-Induced Apoptosis of IPEC-J2 Cells through ROS-Mediated Mitochondrial Permeability Transition Pore Opening Pathway (2017) Journal of Agricultural and Food Chemistry, 65, pp. 10630-10637; Zandalinas, S.I., Mittler, R., ROS-induced ROS release in plant and animal cells Free Radical Biology & Medicine, 2017; Yang, J., Huo, T., Zhang, X., Ma, J., Wang, Y., Dong, F., Oxidative stress and cell cycle arrest induced by short-term exposure to dustfall PM2.5 in A549 cells (2017) Environmental Science and Pollution Research International; El-Amine, R., Germini, D., Zakharova, V.V., Tsfasman, T., Sheval, E.V., Louzada, R.A.N., HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production (2017) Redox Biology, 15, pp. 97-108; Reshi, L., Wu, H.C., Wu, J.L., Wang, H.V., Hong, J.R., GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells (2016) Apoptosis: An International Journal on Programmed Cell Death, 21, pp. 443-458; Lin, X., Wang, R., Zou, W., Sun, X., Liu, X., Zhao, L., The Influenza Virus H5N1 Infection Can Induce ROS Production for Viral Replication and Host Cell Death in A549 Cells Modulated by Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression (2016) Viruses, 8; Ivanov, A.V., Smirnova, O.A., Petrushanko, I.Y., Ivanova, O.N., Karpenko, I.L., Alekseeva, E., HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma Huh7 cells (2015) Viruses, 7, pp. 2745-2770; Zhu, L., Mou, C., Yang, X., Lin, J., Yang, Q., Mitophagy in TGEV infection counteracts oxidative stress and apoptosis (2016) Oncotarget; Ding, L., Xu, X., Huang, Y., Li, Z., Zhang, K., Chen, G., Transmissible gastroenteritis virus infection induces apoptosis through FasL-and mitochondria-mediated pathways (2012) Veterinary Microbiology, 158, pp. 12-22; Ma, X., Zhao, X., Zhang, Z., Guo, J., Guan, L., Li, J., Differentially expressed non-coding RNAs induced by transmissible gastroenteritis virus potentially regulate inflammation and NF-kappaB pathway in porcine intestinal epithelial cell line (2018) BMC Genomics, 19, p. 747; Gu, Y., Liu, H., Kong, F., Ye, J., Jia, X., Zhang, Z., MiR-22/KAT6B axis is a chemotherapeutic determiner via regulation of PI3k-Akt-NF-kB pathway in tongue squamous cell carcinoma (2018) Journal of Experimental & Clinical Cancer Research: CR, 37, p. 164; Polioudakis, D., Bhinge, A.A., Killion, P.J., Lee, B.K., Abell, N.S., Iyer, V.R., A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes (2013) Nucleic Acids Research, 41, pp. 2239-2254; Du, J.K., Cong, B.H., Yu, Q., Wang, H., Wang, L., Wang, C.N., Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function (2016) Free Radical Biology & Medicine, 96, pp. 406-417; Clippinger, A.J., Gearhart, T.L., Bouchard, M.J., Hepatitis B virus X protein modulates apoptosis in primary rat hepatocytes by regulating both NF-kappaB and the mitochondrial permeability transition pore (2009) Journal of Virology, 83, pp. 4718-4731; Zhang, C., Jiang, H., Wang, P., Liu, H., Sun, X., Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions (2017) Scientific Reports, 7; Baetz, D., Regula, K.M., Ens, K., Shaw, J., Kothari, S., Yurkova, N., Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes (2005) Circulation, 112, pp. 3777-3785; Song, X., Zhao, X., Huang, Y., Xiang, H., Zhang, W., Tong, D., Transmissible gastroenteritis virus (TGEV) infection alters the expression of cellular microRNA species that affect transcription of TGEV gene 7 (2015) International Journal of Biological Sciences, 11, pp. 913-922; Heckman, K.L., Pease, L.R., Gene splicing and mutagenesis by PCR-driven overlap extension (2007) Nature Protocols, 2, pp. 924-932; Aoki, R., Kawamura, T., Goshima, F., Ogawa, Y., Nakae, S., Nakao, A., Mast cells play a key role in host defense against herpes simplex virus infection through TNF-alpha and IL-6 production (2013) The Journal of Investigative Dermatology, 133, pp. 2170-2179; Chiaretti, A., Pulitano, S., Barone, G., Ferrara, P., Romano, V., Capozzi, D., IL-1 beta and IL-6 upregulation in children with H1N1 influenza virus infection (2013) Mediators of Inflammation, 2013; Quetier, I., Brezillon, N., Duriez, M., Massinet, H., Giang, E., Ahodantin, J., Hepatitis B virus HBx protein impairs liver regeneration through enhanced expression of IL-6 in transgenic mice (2013) Journal of Hepatology, 59, pp. 285-291; Huan, C.C., Wang, H.X., Sheng, X.X., Wang, R., Wang, X., Liao, Y., Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-beta (2016) Oncotarget, 7, pp. 75064-75080; Hartman, Z.C., Poage, G.M., Den Hollander, P., Tsimelzon, A., Hill, J., Panupinthu, N., Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8 (2013) Cancer Res, 73, pp. 3470-3480; Elbrond, V.S., Jones, C.J., Skadhauge, E., Localization, morphology and function of the mitochondria-rich cells in relation to transepithelial Na(+)-transport in chicken lower intestine (coprodeum) (2004) Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 137, pp. 683-696; Ding, L., Zhao, X., Huang, Y., Du, Q., Dong, F., Zhang, H., Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling (2013) Biochemical and Biophysical Research Communications, 442, pp. 33-37; Zhao, X., Bai, X., Guan, L., Li, J., Song, X., Ma, X., MicroRNA-4331 Promotes Transmissible Gastroenteritis Virus (TGEV)-induced Mitochondrial Damage Via Targeting RB1, Upregulating Interleukin-1 Receptor Accessory Protein (IL1RAP), and Activating p38 MAPK Pathway In Vitro (2018) Molecular & Cellular Proteomics: MCP, 17, pp. 190-204; Zhao, X., Song, X., Bai, X., Tan, Z., Ma, X., Guo, J., MicroRNA-222 Attenuates Mitochondrial Dysfunction During Transmissible Gastroenteritis Virus Infection (2019) Molecular & Cellular Proteomics: MCP, 18, pp. 51-64; Warnsmann, V., Meyer, N., Hamann, A., Kogel, D., Osiewacz, H.D., A novel role of the mitochondrial permeability transition pore in (-)-gossypol-induced mitochondrial dysfunction (2018) Mechanisms of Ageing and Development, 170, pp. 45-58; Briston, T., Selwood, D.L., Szabadkai, G., Duchen, M.R., Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets (2019) Trends in Pharmacological Sciences, 40, pp. 50-70; Yang, J., Huo, T., Zhang, X., Ma, J., Wang, Y., Dong, F., Oxidative stress and cell cycle arrest induced by short-term exposure to dustfall PM2.5 in A549 cells (2018) Environmental Science and Pollution Research International, 25, pp. 22408-22419; Zandalinas, S.I., Mittler, R., ROS-induced ROS release in plant and animal cells (2018) Free Radical Biology & Medicine, 122, pp. 21-27; Valcarcel-Ares, M.N., Riveiro-Naveira, R.R., Vaamonde-Garcia, C., Loureiro, J., Hermida-Carballo, L., Blanco, F.J., Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes (2014) Rheumatology (Oxford, England), 53, pp. 1332-1343; Dela Cruz, C.S., Kang, M.J., Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases (2018) Mitochondrion, 41, pp. 37-44; Wang, L., Qiao, X., Zhang, S., Qin, Y., Guo, T., Hao, Z., Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-kappaB activation (2018) Virulence, 9, pp. 1685-1698; Chen, Y.G., Kim, M.V., Chen, X., Batista, P.J., Aoyama, S., Wilusz, J.E., Sensing Self and Foreign Circular RNAs by Intron Identity (2017) Molecular Cell, 67, pp. 228-238; Liang, D., Tatomer, D.C., Luo, Z., Wu, H., Yang, L., Chen, L.L., The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting (2017) Molecular Cell, 68, pp. 940-954; Xue, Y.N., Yu, B.B., Li, J.L., Guo, R., Zhang, L.C., Sun, L.K., Zinc and p53 disrupt mitochondrial binding of HK2 by phosphorylating VDAC1 (2019) Experimental Cell Research, 374, pp. 249-258; Zhang, D., Yip, Y.M., Li, L., In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1 (2016) Mitochondrion, 30, pp. 222-228; Zhou, H., Hu, S., Jin, Q., Shi, C., Zhang, Y., Zhu, P., Mff-Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvasculature Ischemia/Reperfusion Injury via Induction of mROS-Mediated Cardiolipin Oxidation and HK2/VDAC1 Disassociation-Involved mPTP Opening (2017) Journal of the American Heart Association, 6; Waxman, A.B., Kolliputi, N., IL-6 protects against hyperoxia-induced mitochondrial damage via Bcl-2-induced Bak interactions with mitofusins (2009) American Journal of Respiratory Cell and Molecular Biology, 41, pp. 385-396","Tong, D.; College of Veterinary Medicine, Northwest A&F University, Yangling, China; email: dwtong@nwsuaf.edu.cn",,"Ivyspring International Publisher",14492288,,,"31592229","English","Int. J. Biol. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85071676699 "Mubarak A., Alturaiki W., Hemida M.G.","51161671900;57191598052;37037447300;","Middle east respiratory syndrome coronavirus (mers-cov): Infection, immunological response, and vaccine development",2019,"Journal of Immunology Research","2019",, 6491738,"","",,7,"10.1155/2019/6491738","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066865382&doi=10.1155%2f2019%2f6491738&partnerID=40&md5=d653e31d438b51ae31d37bb1d43b12f5","Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia; Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafresheikh University, Egypt","Mubarak, A., Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia; Alturaiki, W., Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia; Hemida, M.G., Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Saudi Arabia, Department of Virology, Faculty of Veterinary Medicine, Kafresheikh University, Egypt","Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in late 2012. Since its emergence, a total of 2279 patients from 27 countries have been infected across the globe according to a World Health Organization (WHO) report (Feb. 12th, 2019). Approximately 806 patients have died. The virus uses its spike proteins as adhesive factors that are proinflammatory for host entry through a specific receptor called dipeptidyl peptidase-4 (DPP4). This receptor is considered a key factor in the signaling and activation of the acquired and innate immune responses in infected patients. Using potent antigens in combination with strong adjuvants may effectively trigger the activation of specific MERS-CoV cellular responses as well as the production of neutralizing antibodies. Unfortunately, to date, there is no effective approved treatment or vaccine for MERS-CoV. Thus, there are urgent needs for the development of novel MERS-CoV therapies as well as vaccines to help minimize the spread of the virus from infected patients, thereby mitigating the risk of any potential pandemics. Our main goals are to highlight and describe the current knowledge of both the innate and adaptive immune responses to MERS-CoV and the current state of MERS-CoV vaccine development. We believe this study will increase our understanding of the mechanisms that enhance the MERS-CoV immune response and subsequently contribute to the control of MERS-CoV infections. Copyright © 2019 Ayman Mubarak et al.",,"immunological adjuvant; Middle East respiratory syndrome coronavirus vaccine; unclassified drug; virus vaccine; antivirus agent; dipeptidyl peptidase IV; neutralizing antibody; virus antibody; virus receptor; virus vaccine; adaptive immunity; antibody response; human; innate immunity; Middle East respiratory syndrome; nonhuman; Review; animal; Coronavirus infection; immunology; metabolism; Middle East respiratory syndrome coronavirus; mouse; Adaptive Immunity; Animals; Antibodies, Neutralizing; Antibodies, Viral; Antiviral Agents; Coronavirus Infections; Dipeptidyl Peptidase 4; Humans; Immunity, Innate; Mice; Middle East Respiratory Syndrome Coronavirus; Receptors, Virus; Viral Vaccines","Butler, D., Clusters of coronavirus cases put scientists on alert (2012) Nature, 492 (7428), pp. 166-167; Countries Agree Next Steps to Combat Global Health Threat by MERS-CoV (2019) WHO, , World Health Organization; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clinical Microbiology Reviews, 28 (2), pp. 465-522; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) The New England Journal of Medicine, 367 (19), pp. 1814-1820; Eckerle, I., Corman, V.M., Muller, M.A., Lenk, M., Ulrich, R.G., Drosten, C., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerging Infectious Diseases, 20 (2), pp. 276-279; Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerging Infectious Diseases, 19 (11), pp. 1819-1823; Assiri, A., Abedi, G.R., Saeed, A.A.B., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerging Infectious Diseases, 22 (1), pp. 32-40; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012-2015 (2016) International Journal of Infectious Diseases, 45, pp. 1-4; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk (2013) The Lancet, 382 (9893), pp. 694-699; Cotten, M., Watson, S.J., Kellam, P., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) The Lancet, 382 (9909), pp. 1993-2002; Xia, S., Liu, Q., Wang, Q., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Research, 194, pp. 200-210; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Al-Qahtani, A.A., Lyroni, K., Aznaourova, M., Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PPARγ (2017) Oncotarget, 8 (6), pp. 9053-9066; Crespo, H.J., Lau, J.T.Y., Videira, P.A., Dendritic cells: A spot on sialic acid (2013) Frontiers in Immunology, 4, pp. 491-491; Balachandran, S., Roberts, P.C., Brown, L.E., Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection (2000) Immunity, 13 (1), pp. 129-141; Kato, H., Takahasi, K., Fujita, T., RIG-I-like receptors: Cytoplasmic sensors for non-self RNA (2011) Immunological Reviews, 243 (1), pp. 91-98; Anwar, M.A., Basith, S., Choi, S., Negative regulatory approaches to the attenuation of Toll-like receptor signaling (2013) Experimental & Molecular Medicine, 45 (2). , article e11; Krishnan, J., Selvarajoo, K., Tsuchiya, M., Lee, G., Choi, S., Toll-like receptor signal transduction (2007) Experimental & Molecular Medicine, 39 (4), pp. 421-438; Kumar, H., Kawai, T., Akira, S., Toll-like receptors and innate immunity (2009) Biochemical and Biophysical Research Communications, 388 (4), pp. 621-625; Honda, K., Taniguchi, T., IRFs: Master regulators of signalling by Toll-like receptors and cytosolic patternrecognition receptors (2006) Nature Reviews. Immunology, 6 (9), pp. 644-658; Brown, J., Wang, H., Hajishengallis, G.N., Martin, M., TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-Talk (2011) Journal of Dental Research, 90 (4), pp. 417-427; O'Neill, L.A.J., Bowie, A.G., The family of five: TIRdomain-containing adaptors in Toll-like receptor signalling (2007) Nature Reviews Immunology, 7 (5), pp. 353-364; Totura, A.L., Whitmore, A., Agnihothram, S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) MBio, 6 (3). , article e00638; Sheahan, T., Morrison, T.E., Funkhouser, W., MyD88 is required for protection from lethal infection with a mouseadapted SARS-CoV (2008) PLoS Pathogens, 4 (12). , article e1000240; Yoneyama, M., Kikuchi, M., Natsukawa, T., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses (2004) Nature Immunology, 5 (7), pp. 730-737; Welsh, R.M., Waggoner, S.N., NK cells controlling virusspecific T cells: Rheostats for acute vs. persistent infections (2013) Virology, 435 (1), pp. 37-45; Taniguchi, T., Takaoka, A., A weak signal for strong responses: Interferon-Alpha/beta revisited (2001) Nature Reviews Molecular Cell Biology, 2 (5), pp. 378-386; Zhou, J., Chu, H., Li, C., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) The Journal of Infectious Diseases, 209 (9), pp. 1331-1342; Chu, H., Zhou, J., Ho-Yin Wong, B., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Chan, R.W.Y., Chan, M.C.W., Agnihothram, S., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) Journal of Virology, 87 (12), pp. 6604-6614; Zielecki, F., Weber, M., Eickmann, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) Journal of Virology, 87 (9), pp. 5300-5304; Canton, J., Fehr, A.R., Fernandez-Delgado, R., MERSCoV 4b protein interferes with the NF-KB-dependent innate immune response during infection (2018) PLoS Pathogens, 14 (1), p. e1006838; De Wilde, A.H., Raj, V.S., Oudshoorn, D., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) The Journal of General Virology, 94, pp. 1749-1760; Hart, B.J., Dyall, J., Postnikova, E., Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) The Journal of General Virology, 95, pp. 571-577; Pan, Q., De Ruiter, P.E., Metselaar, H.J., Mycophenolic acid augments interferon-stimulated gene expression and inhibits hepatitis C virus infection in vitro and in vivo (2012) Hepatology, 55 (6), pp. 1673-1683; Nicholls, J.M., Poon, L.L.M., Lee, K.C., Lung pathology of fatal severe acute respiratory syndrome (2003) The Lancet, 361 (9371), pp. 1773-1778; Faure, E., Poissy, J., Goffard, A., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9 (2). , article e88716; Zhou, J., Chu, H., Chan, J.F.-W., Yuen, K.-Y., Middle East respiratory syndrome coronavirus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virology Journal, 12 (1), pp. 218-218; Mahallawi, W.H., Khabour, O.F., Zhang, Q., Makhdoum, H.M., Suliman, B.A., MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile (2018) Cytokine, 104, pp. 8-13; Cameron, M.J., Ran, L., Xu, L., Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome (2007) Journal of Virology, 81 (16), pp. 8692-8706; Dumoutier, L., Renauld, J.C., Viral and cellular interleukin-10 (IL-10)-related cytokines: From structures to functions (2002) European Cytokine Network, 13 (1), pp. 5-15; Sabat, R., IL-10 family of cytokines (2010) Cytokine & Growth Factor Reviews, 21 (5), pp. 315-324; Blackburn, S.D., Wherry, E.J., IL-10, T cell exhaustion and viral persistence (2007) Trends in Microbiology, 15 (4), pp. 143-146; Xu, X., Gao, X., Immunological responses against SARScoronavirus infection in humans (2004) Cellular & Molecular Immunology, 1 (2), pp. 119-122; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proceedings of the National Academy of Sciences of the United States of America, 111 (13), pp. 4970-4975; Yang, Z.Y., Kong, W.P., Huang, Y., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice (2004) Nature, 428 (6982), pp. 561-564; Channappanavar, R., Zhao, J., Perlman, S., T cellmediated immune response to respiratory coronaviruses (2014) Immunologic Research, 59 (1-3), pp. 118-128; Josset, L., Menachery, V.D., Gralinski, L.E., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4 (3); Ying, T., Li, W., Dimitrov, D.S., Discovery of T-cell infection and apoptosis by Middle East respiratory syndrome coronavirus (2016) The Journal of Infectious Diseases, 213 (6), pp. 877-879; Chu, H., Zhou, J., Wong, B.H.Y., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) The Journal of Infectious Diseases, 213 (6), pp. 904-914; Ishii, T., Ohnuma, K., Murakami, A., CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (21), pp. 12138-12143; Manni, M.L., Robinson, K.M., Alcorn, J.F., A tale of two cytokines: IL-17 and IL-22 in asthma and infection (2013) Expert Review of Respiratory Medicine, 8 (1), pp. 25-42; Jin, W., Dong, C., IL-17 cytokines in immunity and inflammation (2013) Emerging Microbes & Infections, 2 (1), pp. 1-5; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clinical Infectious Diseases, 62 (4), pp. 477-483; Park, W.B., Perera, R.A.P.M., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerging Infectious Diseases, 21 (12), pp. 2186-2189; Buchholz, U., Möller, M.A., Nitsche, A., Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012 (2013) Euro Surveillance, 18; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerging Infectious Diseases, 22 (6); Liu, W., Fontanet, A., Zhang, P.H., Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome (2006) The Journal of Infectious Diseases, 193 (6), pp. 792-795; Tang, F., Quan, Y., Xin, Z.-T., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study (2011) The Journal of Immunology, 186 (12), pp. 7264-7268; Coleman, C.M., Liu, Y.V., Mu, H., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32 (26), pp. 3169-3174; Chan, K.H., Chan, J.F.W., Tse, H., Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests (2013) Journal of Infection, 67 (2), pp. 130-140; Du, L., Ma, C., Jiang, S., Antibodies induced by receptorbinding domain in spike protein of SARS-CoV do not crossneutralize the novel human coronavirus hCoV-EMC (2013) The Journal of Infection, 67 (4), pp. 348-350; Corman, V.M., Jores, J., Meyer, B., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerging Infectious Diseases, 20 (8), pp. 1319-1322; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2); Memish, Z.A., Cotten, M., Meyer, B., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia 2013 (2014) Emerging Infectious Diseases, 20 (6), pp. 1012-1015; Payne, D.C., Iblan, I., Rha, B., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerging Infectious Diseases, 22 (10), pp. 1824-1826; Meyer, B., Juhasz, J., Barua, R., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerging Infectious Diseases, 22 (12), pp. 2171-2173; Kamber, R., Farah, Z., Rusch, P., Hassig, M., Studies on the supply of immunoglobulin G to newborn camel calves (Camelus dromedarius) (2001) The Journal of Dairy Research, 68 (1), pp. 1-7; Song, F., Fux, R., Provacia, L.B., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) Journal of Virology, 87 (21), pp. 11950-11954; Volz, A., Kupke, A., Song, F., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) Journal of Virology, 89 (16), pp. 8651-8656; Du, L., Kou, Z., Ma, C., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS One, 8 (12). , article e81587; Takasuka, N., Fujii, H., Takahashi, Y., A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice (2004) International Immunology, 16 (10), pp. 1423-1430; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Review of Vaccines, 13 (6), pp. 761-774; Bisht, H., Roberts, A., Vogel, L., Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (17), pp. 6641-6646; Chen, Z., Zhang, L., Qin, C., Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region (2005) Journal of Virology, 79 (5), pp. 2678-2688; Kreijtz, J.H.C.M., Goeijenbier, M., Moesker, F.M., Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: A randomised, double-blind phase 1/2a clinical trial (2014) The Lancet Infectious Diseases, 14 (12), pp. 1196-1207; Altenburg, A.F., Kreijtz, J.H.C.M., De Vries, R.D., Modified vaccinia virus Ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases (2014) Viruses, 6 (7), pp. 2735-2761; Guo, X., Deng, Y., Chen, H., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484; Gao, W., Tamin, A., Soloff, A., Effects of a SARSassociated coronavirus vaccine in monkeys (2003) The Lancet, 362 (9399), pp. 1895-1896; Du, L., Zhao, G., Lin, Y., Intranasal vaccination of recombinant adeno-Associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-Term protection against SARSCoV infection (2008) Journal of Immunology, 180 (2), pp. 948-956; Pichla-Gollon, S.L., Lin, S.W., Hensley, S.E., Effect of preexisting immunity on an adenovirus vaccine vector: In vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo (2009) Journal of Virology, 83 (11), pp. 5567-5573; Weingartl, H., Czub, M., Czub, S., Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets (2004) Journal of Virology, 78 (22), pp. 12672-12676; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV-A target for vaccine and therapeutic development (2009) Nature Reviews. Microbiology, 7 (3), pp. 226-236; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptorbinding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformationdependent epitopes that induce highly potent neutralizing antibodies (2005) Journal of Immunology, 174 (8), pp. 4908-4915; Du, L., Zhao, G., He, Y., Receptor-binding domain of SARS-CoV spike protein induces long-Term protective immunity in an animal model (2007) Vaccine, 25 (15), pp. 2832-2838; Tang, J., Zhang, N., Tao, X., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Human Vaccines & Immunotherapeutics, 11 (5), pp. 1244-1250; Ma, C., Wang, L., Tao, X., Searching for an ideal vaccine candidate among different MERS coronavirus receptorbinding fragments-The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32 (46), pp. 6170-6176; Du, L., Zhao, G., Kou, Z., Identification of a receptorbinding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) Journal of Virology, 87 (17), pp. 9939-9942; Mou, H., Raj, V.S., Van Kuppeveld, F.J.M., Rottier, P.J.M., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) Journal of Virology, 87 (16), pp. 9379-9383; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre-And postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proceedings of the National Academy of Sciences of the United States of America, 112 (28), pp. 8738-8743; Agrawal, A.S., Garron, T., Tao, X., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) Journal of Virology, 89 (7), pp. 3659-3670; Liew, F.Y., Russell, S.M., Appleyard, G., Brand, C.M., Beale, J., Cross-protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T cell reactivity (1984) European Journal of Immunology, 14 (4), pp. 350-356; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Research, 202, pp. 151-159; Ma, C., Li, Y., Wang, L., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108; Podda, A., Del Giudice, G., MF59-Adjuvanted vaccines: Increased immunogenicity with an optimal safety profile (2003) Expert Review of Vaccines, 2 (2), pp. 197-204; Jiang, S., Bottazzi, M.E., Du, L., Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome (2012) Expert Review of Vaccines, 11 (12), pp. 1405-1413; Liu, Y.V., Massare, M.J., Barnard, D.L., Chimeric severe acute respiratory syndrome coronavirus (SARSCoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV (2011) Vaccine, 29 (38), pp. 6606-6613; Lovgren Bengtsson, K., Morein, B., Osterhaus, A.D., ISCOM technology-based Matrix M adjuvant: Success in future vaccines relies on formulation (2011) Expert Review of Vaccines, 10 (4), pp. 401-403; Cox, R.J., Pedersen, G., Madhun, A.S., Evaluation of a virosomal H5N1 vaccine formulated with Matrix M adjuvant in a phase i clinical trial (2011) Vaccine, 29 (45), pp. 8049-8059; Yang, Y., Zhang, L., Geng, H., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein & Cell, 4 (12), pp. 951-961; Siu, K.L., Yeung, M.L., Kok, K.H., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) Journal of Virology, 88 (9), pp. 4866-4876; Niemeyer, D., Zillinger, T., Muth, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type i interferon antagonist (2013) Journal of Virology, 87 (22), pp. 12489-12495","Alturaiki, W.; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah UniversitySaudi Arabia; email: w.alturaiki@mu.edu.sa",,"Hindawi Limited",23148861,,,"31089478","English","J. Immunol. Res.",Review,"Final",Open Access,Scopus,2-s2.0-85066865382 "Adney D.R., Letko M., Ragan I.K., Scott D., van Doremalen N., Bowen R.A., Munster V.J.","56518159500;55240038400;57193447990;54387473900;36009447200;24598913600;9332531900;","Bactrian camels shed large quantities of Middle East respiratory syndrome coronavirus (MERS-CoV) after experimental infection*",2019,"Emerging Microbes and Infections","8","1",,"717","723",,2,"10.1080/22221751.2019.1618687","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066395287&doi=10.1080%2f22221751.2019.1618687&partnerID=40&md5=44cdda92ece551eaed294bfb693a5500","Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States; Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States","Adney, D.R., Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States; Letko, M., Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Ragan, I.K., Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States; Scott, D., Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; van Doremalen, N., Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States; Bowen, R.A., Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States; Munster, V.J., Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States","In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged. To date, more than 2300 cases have been reported, with an approximate case fatality rate of 35%. Epidemiological investigations identified dromedary camels as the source of MERS-CoV zoonotic transmission and evidence of MERS-CoV circulation has been observed throughout the original range of distribution. Other new-world camelids, alpacas and llamas, are also susceptible to MERS-CoV infection. Currently, it is unknown whether Bactrian camels are susceptible to infection. The distribution of Bactrian camels overlaps partly with that of the dromedary camel in west and central Asia. The receptor for MERS-CoV, DPP4, of the Bactrian camel was 98.3% identical to the dromedary camel DPP4, and 100% identical for the 14 residues which interact with the MERS-CoV spike receptor. Upon intranasal inoculation with 107 plaque-forming units of MERS-CoV, animals developed a transient, primarily upper respiratory tract infection. Clinical signs of the MERS-CoV infection were benign, but shedding of large quantities of MERS-CoV from the URT was observed. These data are similar to infections reported with dromedary camel infections and indicate that Bactrians are susceptible to MERS-CoV and given their overlapping range are at risk of introduction and establishment of MERS-CoV within the Bactrian camel populations. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","Bactrian camel; dromedary camel; MERS-CoV; natural reservoir; virus shedding","dipeptidyl peptidase IV; neutralizing antibody; adult; amino acid sequence; animal experiment; animal model; animal tissue; Article; Asia; Bactrian camel; disease predisposition; dromedary; experimental infection; human; human tissue; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; virus shedding; virus titration; animal; camel; Coronavirus infection; disease carrier; disease transmission; growth, development and aging; isolation and purification; Middle East respiratory syndrome coronavirus; respiratory system; veterinary medicine; virology; Animal Experimentation; Animals; Asia; Camelus; Coronavirus Infections; Disease Reservoirs; Disease Transmission, Infectious; Middle East Respiratory Syndrome Coronavirus; Respiratory System; Virus Shedding","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Azhar, E.I., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; Conzade, R., Reported direct and Indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10. , https://doi.org/10.3390/v10080425; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , https://doi.org/10.1016/s1473-3099(13)70690-x; Hemida, M.G., MERS coronavirus in dromedary camel Herd, Saudi Arabia (2014) Emerging Infect Dis, 20. , https://doi.org/10.3201/eid2007.140571; Memish, Z.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infect Dis, 20, pp. 1012-1015. , https://doi.org/10.3201/eid2006.140402; Meyer, B., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerging Infect Dis, 20, pp. 552-559. , https://doi.org/10.3201/eid2004.131746; Muller, M.A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerging Infect Dis, 20, pp. 2093-2095. , https://doi.org/10.3201/eid2012.141026; de Wit, E., van Doremalen, N., Falzarano, D., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Adney, D.R., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005. , https://doi.org/10.3201/eid2012.141280; Khalafalla, A.I., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerging Infect Dis, 21, pp. 1153-1158. , https://doi.org/10.3201/eid2107.150070; van Doremalen, N., High Prevalence of Middle East respiratory coronavirus in Young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis, 17, pp. 155-159. , https://doi.org/10.1089/vbz.2016.2062; Adney, D.R., Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike Protein Vaccine in dromedary camels and alpacas (2019) Viruses, 11. , https://doi.org/10.3390/v11030212; Haagmans, B.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81. , https://doi.org/10.1126/science.aad1283; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerging Infect Dis, 22, pp. 1031-1037. , https://doi.org/10.3201/2206.160192; Vergara-Alert, J., Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus (2017) Emerging Infect Dis, 23, pp. 232-240. , https://doi.org/10.3201/eid2302.161239; https://www.departments.bucknell.edu/biology/resources/msw3/browse.asp?id=14200112, A taxonomic and geographic reference. (2005; Imamura, K., The distribution of the Two Domestic camel species in Kazakhstan caused by the demand of industrial stockbreeding (2017) J Arid Land Stud, 26, pp. 233-236. , https://doi.org/10.14976/jals.26.4_233; Chan, S.M., Absence of MERS-coronavirus in Bactrian camels, southern Mongolia, November 2014 (2015) Emerging Infect Dis, 21, pp. 1269-1271. , https://doi.org/10.3201/eid2107.150178; Liu, R., Absence of Middle East respiratory syndrome coronavirus in Bactrian camels in the West Inner Mongolia Autonomous Region of China: surveillance study results from July 2015 (2015) Emerg Microbes Infect, 4, p. e73. , https://doi.org/10.1038/emi.2015.73; Miguel, E., Absence of Middle East respiratory syndrome coronavirus in Camelids, Kazakhstan, 2015 (2016) Emerging Infect Dis, 22, pp. 555-557. , https://doi.org/10.3201/eid2203.151284; Corman, V., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, pp. 1-9; van Doremalen, N., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88, pp. 9220-9232. , https://doi.org/10.1128/jvi.00676-14; Aly, M., Elrobh, M., Alzayer, M., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the Gulf Corporation Council countries: Four years update (2017) PloS one, 12. , https://doi.org/10.1371/journal.pone.0183850; de Wit, E., Domestic Pig Unlikely reservoir for MERS-CoV (2017) Emerging Infect Dis, 23, pp. 985-988. , https://doi.org/10.3201/eid2306.170096; Adney, D.R., Inoculation of Goats, sheep, and horses with MERS-CoV does Not result in productive viral shedding (2016) Viruses, 8. , https://doi.org/10.3390/v8080230","Munster, V.J.; Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: vincent.munster@nih.gov",,"Taylor and Francis Ltd.",22221751,,,"31119984","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85066395287 "Al-Tawfiq J.A., Gautret P.","9436438200;36893462000;","Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: Extent and implications for infection control: A systematic review",2019,"Travel Medicine and Infectious Disease","27",,,"27","32",,13,"10.1016/j.tmaid.2018.12.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058386694&doi=10.1016%2fj.tmaid.2018.12.003&partnerID=40&md5=66f5965cda0fcf7f241ced7b8878f765","Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Microbes Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire-Méditerranée Infection (IHU-Méditerranée Infection), Marseille, France","Al-Tawfiq, J.A., Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indianapolis, IN, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Gautret, P., Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Microbes Vecteurs Infections Tropicales et Méditerranéennes (VITROME), Institut Hospitalo-Universitaire-Méditerranée Infection (IHU-Méditerranée Infection), Marseille, France","Background: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) emerged in 2012 and attracted an international attention as the virus caused multiple healthcare associated outbreaks. There are reports of the role of asymptomatic individuals in the transmission of MERS-CoV, however, the exact role is not known. Method: The MEDLINE/PubMed and Scopus databases were searched for relevant papers published till August 2018 describing asymptomatic MERS-CoV infection. Results: A total of 10 papers were retrieved and included in the final analysis and review. The extent of asymptomatic MERS infection had increased with change in the policy of testing asymptomatic contacts. In early cases in April 2012–October 2013, 12.5% were asymptomatic among 144 PCR laboratory-confirmed MERS-CoV cases while in 2014 the proportion rose to 25.1% among 255 confirmed cases. The proportion of asymptomatic cases reported among pediatric confirmed MERS-CoV cases were higher (41.9%–81.8%). Overall, the detection rate of MERS infection among asymptomatic contacts was 1-3.9% in studies included in this review. Asymptomatic individuals were less likely to have underlying condition compared to fatal cases. Of particular interest is that most of the identified pediatric cases were asymptomatic with no clear explanation. Conclusions: The proportion of asymptomatic MERS cases were detected with increasing frequency as the disease progressed overtime. Those patients were less likely to have comorbid disease and may contribute to the transmission of the virus. © 2018 Elsevier Ltd","Healthcare associated outbreaks; MERS; Middle East Respiratory Syndrome Coronavirus","asymptomatic infection; fatality; human; infection control; Medline; Middle East respiratory syndrome; nonhuman; priority journal; Review; Scopus; systematic review; virus transmission; animal; asymptomatic infection; Coronavirus infection; cross infection; epidemic; Middle East respiratory syndrome coronavirus; transmission; travel; Animals; Asymptomatic Infections; Coronavirus Infections; Cross Infection; Disease Outbreaks; Humans; Infection Control; Middle East Respiratory Syndrome Coronavirus; Travel","Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Expert Rev Respir Med, 10, pp. 331-338; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11, pp. 128-131; Fagbo, S.F., Skakni, L., Chu, D.K.W., Garbati, M.A., Joseph, M., Peiris, M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 1981-1988; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20, p. 123; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Assiri, A., Alharby, K.D., Almahallawi, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV): a cluster analysis with implications for global management of suspected cases (2015) Trav Med Infect Dis, 13, pp. 311-314; El Bushra, H.E., Abdalla, M.N., Al Arbash, H., Alshayeb, Z., Al-Ali, S., Latif, Z.A.-A., An outbreak of Middle East respiratory syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia, 2015 (2016) East Mediterr Health J, 22, pp. 468-475; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: nosocomial outbreak of Middle East respiratory syndrome in a large tertiary care hospital–Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1-August 31, 2015 (2016) Open Forum Infect Dis, 3. , ofw165; Nazer, R.I., Outbreak of Middle East respiratory syndrome-coronavirus causes high fatality after cardiac operations (2017) Ann Thorac Surg, 104, pp. e127-e129; Assiri, A., Abedi, G.R., Bin Saeed, A.A., Abdalla, M.A., al-Masry, M., Choudhry, A.J., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; Cauchemez, S., Van Kerkhove, M.D., Riley, S., Donnelly, C.A., Fraser, C., Ferguson, N.M., Transmission scenarios for middle east respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart (2013) Euro Surveill, 18. , pii: 20503; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of middle eastern respiratory syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Heal Res Perspect, 7, pp. 49-55; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015 (2015) Euro Surveill, 20; Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, WHO (Accessed 30 April 2017); Al-Tawfiq, J.A., Rabaan, A.A., Hinedi, K., Influenza is more common than Middle East Respiratory Syndrome Coronavirus (MERS-CoV) among hospitalized adult Saudi patients (2017) Trav Med Infect Dis; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of the Middle East respiratory syndrome coronavirus (MERS-CoV) with review of the literature (2018) J Hosp Infect; Thomas, H.L., Zhao, H., Green, H.K., Boddington, N.L., Carvalho, C.F.A., Osman, H.K., Enhanced MERS coronavirus surveillance of travelers from the Middle East to England (2014) Emerg Infect Dis, 20, pp. 1562-1564; Sridhar, S., Brouqui, P., Parola, P., Gautret, P., Imported cases of Middle East respiratory syndrome: an update (2015) Trav Med Infect Dis, 13, pp. 106-109; Granados, A., Goodall, E.C., Luinstra, K., Smieja, M., Mahony, J., Comparison of asymptomatic and symptomatic rhinovirus infections in university students: incidence, species diversity, and viral load (2015) Diagn Microbiol Infect Dis, 82, pp. 292-296; Furuya-Kanamori, L., Cox, M., Milinovich, G.J., Magalhaes, R.J.S., Mackay, I.M., Yakob, L., Heterogeneous and dynamic prevalence of asymptomatic influenza virus infections (2016) Emerg Infect Dis, 22, pp. 1052-1056; Wilder-Smith, A., Teleman, M.D., Heng, B.H., Earnest, A., Ling, A.E., Leo, Y.S., Asymptomatic SARS coronavirus infection among healthcare workers, Singapore (2005) Emerg Infect Dis, 11, pp. 1142-1145; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement (2009) Open Med, 3, pp. e123-e130; The WHO Mers-Cov Research Group, State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr, 5. , pii: ecurrents.outbreaks.0bf719e352e7478f8ad85fa30; Park, G.E., Ko, J.-H., Peck, K.R., Lee, J.Y., Lee, J.Y., Cho, S.Y., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, p. 87; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Song, Y., Yang, J.-S., Cheong, H.-K., Yoon, H.J., Nam, H.-S., Lee, S.Y., Asymptomatic infection of Middle East respiratory syndrome coronavirus using serologic survey in Korea (2018) Epidemiol Health; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M.V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Memish, Z.A.Z.A., Al-Tawfiq, J.A.J.A., Assiri, A., Alrabiah, F.A.F.A., Al Hajjar, S., Albarrak, A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr Infect Dis J, 33, pp. 904-906; Al-Tawfiq, J.A., Kattan, R.F., Memish, Z.A., Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia (2016) World J Clin Pediatr, 5, pp. 391-396; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Memish, Z.A., Middle East respiratory syndrome coronavirus in pediatrics: a report of seven cases from Saudi Arabia (2018) Front Med; Amer, H., Alqahtani, A.S., Alaklobi, F., Altayeb, J., Memish, Z.A., Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): revision of screening strategies urgently needed (2018) Int J Infect Dis, 71, pp. 113-116; Haagmans, B.L., van den Brand, J.M.A., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J Virol, 89, pp. 6131-6135; Al Hammadi, Z.M., Chu, D.K.W., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerg Infect Dis, 21, pp. 2197-2200; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet (London, England), 386, pp. 995-1007; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.-H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 Year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084; Thabet, F., Chehab, M., Bafaqih, H., Al Mohaimeed, S., Middle East respiratory syndrome coronavirus in children (2015) Saudi Med J, 36, pp. 484-486; World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV) WHO MERS global summary and assessment of risk August 2018 (2018), http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, (Accessed 2 October 2018); Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Travel implications of emerging coronaviruses: SARS and MERS-CoV (2014) Trav Med Infect Dis, 12, pp. 422-428; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of middle east respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Moon, S., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458; Al Hosani, F.I., Kim, L., Khudhair, A., Pham, H., Al Mulla, M., Al Bandar, Z., Serologic follow-up of Middle East respiratory syndrome coronavirus cases and contacts - Abu Dhabi, United Arab Emirates (2018) Clin Infect Dis; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2018) Am J Infect Contr, 46, pp. 165-168; Al-Abdely, H.M., Midgley, C.M., Alkhamis, A.M., Abedi, G.R., Tamin, A., Binder, A.M., Infectious MERS-CoV isolated from a mildly ill patient, Saudi Arabia (2018) Open Forum Infect Dis, 5; Gardner, L.M., Chughtai, A.A., MacIntyre, C.R., Risk of global spread of Middle East respiratory syndrome coronavirus (MERS-CoV) via the air transport network (2016) J Trav Med, 23, p. taw063; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Yezli, S., Etiology of severe community-acquired pneumonia during the 2013 Hajj-part of the MERS-CoV surveillance program (2014) Int J Infect Dis, 25, pp. 186-190; Kandeel, A., Deming, M., Elkreem, E.A., El-Refay, S., Afifi, S., Abukela, M., Pandemic (H1N1) 2009 and Hajj pilgrims who received predeparture vaccination, Egypt (2011) Emerg Infect Dis, 17, pp. 1266-1268; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Memish, Z.A., Sudhanva, M., Viral respiratory infections at the Hajj: comparison between UK and Saudi pilgrims (2008) Clin Microbiol Infect, 14, pp. 569-574; Al-Tawfiq, J.A., Smallwood, C.A.H., Arbuthnott, K.G., Malik, M.S.K., Barbeschi, M., Memish, Z.A., Emerging respiratory and novel coronavirus 2012 infections and mass gatherings (2013) East Mediterr Health J, 19, pp. S48-S54; Memish, Z.A., Zumla, A., Al-Tawfiq, J.A., How great is the risk of Middle East respiratory syndrome coronavirus to the global population? (2013) Expert Rev Anti Infect Ther, 11, pp. 979-981; Al-Tawfiq, J.A., Memish, Z.A., Mass gathering medicine: 2014 Hajj and Umra preparation as a leading example (2014) Int J Infect Dis, 27, pp. 26-31; Korea Centers for Disease Control and Prevention, Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Heal Res Perspect, 6, pp. 269-278; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): prevention in travelers (2014) Trav Med Infect Dis, 12, pp. 602-608; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Drali, T., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B viruses but not MERS-CoV in Hajj pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21, pp. 726-727; Gardner, L.M., Rey, D., Heywood, A.E., Toms, R., Wood, J., Travis Waller, S., A scenario-based evaluation of the Middle East respiratory syndrome coronavirus and the Hajj (2014) Risk Anal, 34, pp. 1391-1400; Lessler, J., Rodriguez-Barraquer, I., Cummings, D.A.T., Garske, T., Van Kerkhove, M., Mills, H., Estimating potential incidence of MERS-CoV associated with Hajj pilgrims to Saudi Arabia, 2014 (2014) PLoS Curr, 6, pp. 1-18; Gautret, P., Charrel, R., Belhouchat, K., Drali, T., Benkouiten, S., Nougairede, A., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19, pp. E315-E317; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Azeem, M., Bokhary, H., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Baharoon, S., Al-Jahdali, H., Al Hashmi, J., Memish, Z.A., Ahmed, Q.A., Severe sepsis and septic shock at the Hajj: etiologies and outcomes (2009) Trav Med Infect Dis, 7, pp. 247-252; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210, pp. 1067-1072; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20, pp. 807-812; Refaey, S., Amin, M.M., Roguski, K., Azziz-Baumgartner, E., Uyeki, T.M., Labib, M., Cross-Sectional survey and surveillance for influenza viruses and MERS-CoV among Egyptian pilgrims returning from Hajj during 2012-2015 (2016) Influenza Other Respir Viruses; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Petersen, E., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013–2015 (2016) Int J Infect Dis, 47, pp. 10-14; ProMed, Novel coronavirus – Eastern Mediterranean (03): Saudi comment, 12 February 2013 (2013), http://promedmail.org/post/20130326.1603038; Griffiths, K., Charrel, R., Lagier, J.-C., Nougairede, A., Simon, F., Parola, P., Infections in symptomatic travelers returning from the Arabian peninsula to France: a retrospective cross-sectional study (2016) Trav Med Infect Dis, 14, pp. 414-416; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect, 21, p. 571. , e1–8; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Ma, X., Liu, F., Liu, L., Zhang, L., Lu, M., Abudukadeer, A., No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China, 2013–2015 (2017) BMC Infect Dis, 17, p. 715; Al-Abdallat, M.M., Rha, B., Alqasrawi, S., Payne, D.C., Iblan, I., Binder, A.M., Acute respiratory infections among returning Hajj pilgrims—Jordan, 2014 (2017) J Clin Virol, 89, pp. 34-37; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.-A., Influenza not MERS CoV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, North India, 2014–15 (2017) Trav Med Infect Dis, 15, pp. 45-47; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Leyten, E., Groeneveld, P., Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in The Netherlands, May 2014 (2014) Euro Surveill, 19. , pii: 20817; Fanoy, E.B., van der Sande, M.A., Kraaij-Dirkzwager, M., Dirksen, K., Jonges, M., van der Hoek, W., Travel-related MERS-CoV cases: an assessment of exposures and risk factors in a group of Dutch travellers returning from the Kingdom of Saudi Arabia, May 2014 (2014) Emerg Themes Epidemiol, 11, p. 16; ProMed, MERS-CoV - Eastern Mediterranean (73): Saudi Arabia, Algeria, Jordan (2014), http://www.promedmail.org/post/20140601.2512766, WHO, RFI (Accessed 11 November 2016); http://promedmail.chip.org/pipermail/promed/2014-June/004423.html, ProMed. MERS-CoV - Eastern Mediterranean (80): S Arabia, Iran, Algeria, Tunisia, n.d; ProMed, MERS-CoV (01): Bangladesh, KSA, Algeria, UAE, Iran (2014), http://www.promedmail.org/post/20140616.2541707, WHO RFI Archive Number: 20140616.2541707; World Health Organization, Management of asymptomatic persons who are RT-PCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV) Interim guidance (2018), http://apps.who.int/iris/bitstream/handle/10665/180973/WHO_MERS_IPC_15.2_eng.pdf;jsessionid=F362DEB01D8550505DDF4C962CD62479?sequence=1, (Accessed 22 July 2018); Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with middle east respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60","Al-Tawfiq, J.A.; Dhahran Health Center, Saudi Aramco, P.O. Box 76, Room A-428-2, Building 61, Saudi Arabia; email: jaffar.tawfiq@jhah.com",,"Elsevier USA",14778939,,TMIDA,"30550839","English","Travel Med. Infect. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85058386694 "AlRuthia Y., Somily A.M., Alkhamali A.S., Bahari O.H., Aljuhani R.J., Alsenaidy M., Balkhi B.","57115555700;16835635500;57209272256;57211806931;57211809891;55271889500;55583981900;","Estimation of direct medical costs of middle east respiratory syndrome coronavirus infection: A single-center retrospective chart review study",2019,"Infection and Drug Resistance","12",,,"3463","3473",,,"10.2147/IDR.S231087","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075049805&doi=10.2147%2fIDR.S231087&partnerID=40&md5=d56a573531e30cd6da9a5301a4eb4f48","Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Microbiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia","AlRuthia, Y., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Somily, A.M., Microbiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Alkhamali, A.S., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Bahari, O.H., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Aljuhani, R.J., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Alsenaidy, M., Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Balkhi, B., Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia","Background: Among the countries affected by Middle East respiratory syndrome (MERS), Saudi Arabia was impacted the most, with 2,058 cases reported as of June 2019. However, the impact of the MERS epidemic on the Saudi economy is unknown. Purpose: The present study aimed to evaluate the direct medical costs associated with the management of MERS cases at a tertiary referral hospital in Riyadh, Saudi Arabia. Methods: The study involved a retrospective chart review of confirmed cases of MERS coronavirus (MERS-CoV) infections in a tertiary care referral center in Riyadh, Saudi Arabia, from January 2015 to October 2018. The collected data included sociodemographic characteristics, medical information, and the cost of hospitalization of each patient as estimated by micro-costing. Results: A complete set of relevant information was available only for 24 of 44 identified MERS-CoV cases. Patients were mostly females, and the mean age was 52 years. Diabetes, hypertension, and chronic kidney disease were the most frequent comorbidities. The length of hospital stay varied from 1 to 31 days, averaging 4.96 ± 7.29 days. Two of the 24 patients died. The total cost of managing a MERS case at the hospital ranged from $1278.41 to $75,987.95 with a mean cost of $12,947.03 ± $19,923.14. Conclusion: The findings of this study highlight the enormous expenses incurred by the Saudi health care system due to the MERS-CoV outbreak and the importance of developing an enforceable nationwide policy to control MERS-CoV transmission and infection. © 2019 AlRuthia et al.","Costs and cost analysis; Middle East respiratory syndrome coronavirus; Saudi Arabia","adult; Article; chronic kidney failure; clinical feature; comorbidity; cost of illness; diabetes mellitus; female; health care cost; human; hypertension; length of stay; major clinical study; male; Middle East respiratory syndrome; retrospective study; Saudi Arabia; tertiary health care","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Cauchemez, S., Nouvellet, P., Cori, A., Unraveling the drivers of MERS-CoV transmission (2016) Proc Natl Acad Sci U S A, 113 (32), pp. 9081-9086; Hajjar, S.A., Memish, Z.A., McIntosh, K., Middle East Respiratory Syndrome Coronavirus (MERS-CoV): A perpetual challenge (2013) Ann Saudi Med, 33 (5), pp. 427-436; Memish, Z.A., Cotten, M., Meyer, B., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20 (6), pp. 1012-1015; Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the Middle East respiratory syndrome coronavirus (2014) Pathog Dis, 71 (2), pp. 121-136; Ki, M., MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol Health, 37; Bin, S.Y., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62 (6), pp. 755-760; Virlogeux, V., Fang, V.J., Wu, J.T., Incubation period duration and severity of clinical disease following severe acute respiratory syndrome coronavirus infection (2015) Epidemiology, 26, pp. 666-669; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12 (1), p. 222; Al-Hameed, F., Wahla, A.S., Siddiqui, S., Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia (2016) J Intensive Care Med, 31 (5), pp. 344-348; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55; Thabet, F., Chehab, M., Bafaqih, H., Al Mohaimeed, S., Middle East respiratory syndrome coronavirus in children (2015) Saudi Med J, 36 (4), pp. 484-486; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95 (2), pp. 207-213; Reusken, C., Haagmans, B.L., Koopmans, M.P., [Dromedary camels and Middle East respiratory syndrome: MERS coronavirus in the ‘ship of the desert’] (2014) Ned Tijdschr Geneeskd, 158; Baseler, L., De Wit, E., Feldmann, H., Comparative, A., Review of animal models of Middle East respiratory syndrome coronavirus infection (2016) Vet Pathol, 53 (3), pp. 521-531; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Shehata, M.M., Gomaa, M.R., Ali, M.A., Kayali, G., Middle East respiratory syndrome coronavirus: A comprehensive review (2016) Front Med, 10 (2), pp. 120-136; Chan, J.F., Lau, S.K., To, K.K., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Hemida, M.G., Chu, D.K., Poon, L.L., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20 (7), pp. 1231-1234; Farag, E.A., Reusken, C.B., Haagmans, B.L., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5; Adney, D.R., Brown, V.R., Van Doremalen, N., Efficient replication and shedding of MERS CoV from the upper respiratory tract of experimentally infected dromedary camels (2015) New Horiz Transl Med, 2 (4), p. 131; Aburizaiza, A.S., Mattes, F.M., Azhar, E.I., Investigation of antimiddle East respiratory syndrome antibodies in blood donors and slaughterhouse workers in Jeddah and Makkah, Saudi Arabia, fall 2012 (2014) J Infect Dis, 209 (2), pp. 243-246; Gossner, C., Danielson, N., Gervelmeyer, A., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63 (1), pp. 1-9; Widagdo, W., Raj, V.S., Schipper, D., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90 (9), pp. 4838-4842; Balkhy, H.H., Perl, T.M., Arabi, Y.M., Preventing healthcare-associated transmission of the Middle East Respiratory Syndrome (MERS): Our Achilles heel (2016) J Infect Public Health, 9 (3), pp. 208-212; Almutairi, A.F., Adlan, A.A., Balkhy, H.H., Abbas, O.A., Clark, A.M., It feels like I’m the dirtiest person in the world”: Exploring the experiences of healthcare providers who survived MERS-CoVin Saudi Arabia (2018) J Infect Public Health, 11 (2), pp. 187-191; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278; (2015), https://www.who.int/csr/disease/coronavirus_infections/mers-5-february-2015.pdf, Middle East respiratory syndrome coronavirus (MERS-CoV): Summary of current situation, literature update and risk assessment -as of 5 February, 2015, Accessed August 10, 2019; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227; http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html, MERS situation update. June 2019, Accessed August 10, 2019; Zhou, Y., Jiang, S., Du, L., Prospects for aMERS-CoV spike vaccine (2018) Expert Rev Vaccines, 17 (8), pp. 677-686; Joo, H., Maskery, B.A., Berro, A.D., Rotz, L.D., Lee, Y.K., Brown, C.M., Economic impact of the 2015 MERS outbreak on the Republic of Korea’s tourism-related industries (2019) Health Secur, 17, pp. 100-108; Naeem, Z., Burden of diabetes mellitus in Saudi Arabia (2015) Int J Health Sci, 9 (3), pp. 4-5. , Qassim; Lee, S.I., Costly lessons from the 2015 Middle East respiratory syndrome coronavirus outbreak in Korea (2015) J Prev Med Public Health, 48, pp. 274-276; McDowall, A., Kelland, K., (2014) Saudi MERS Response Hobbled by Institutional Failings, , https://www.reuters.com/article/us-saudi-mersfailings-insight/saudi-mers-response-hobbled-by-institutional-failings-idUSKBN0EN1I520140612, Accessed August 10, 2019","AlRuthia, Y.; Department of Clinical Pharmacy, College of Pharmacy, King Saud UniversitySaudi Arabia; email: yazeed@ksu.edu.sa",,"Dove Medical Press Ltd.",11786973,,,,"English","Infect. Drug Resist.",Article,"Final",Open Access,Scopus,2-s2.0-85075049805 "Parsons L.M., Bouwman K.M., Azurmendi H., De Vries R.P., Cipollo J.F., Verheije M.H.","56019454900;57193003445;6603595088;36458043300;6603068791;7801561319;","Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding",2019,"Journal of Biological Chemistry","294","19",,"7797","7809",,3,"10.1074/jbc.RA119.007532","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065999609&doi=10.1074%2fjbc.RA119.007532&partnerID=40&md5=e09f0c619b1ec9efcd16397227a83cf9","Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States; Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3512 JE, Netherlands","Parsons, L.M., Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States; Bouwman, K.M., Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Azurmendi, H., Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States; De Vries, R.P., Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3512 JE, Netherlands; Cipollo, J.F., Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States; Verheije, M.H., Division of Pathology, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands","Avian coronaviruses, including infectious bronchitis virus (IBV), are important respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is responsible for binding to host tissues. Glycosylation sites in the spike protein are highly conserved across viral genotypes, suggesting an important role for this modification in the virus life cycle. Here, we analyzed the N-glycosylation of the receptor-binding domain (RBD) of IBV strain M41 spike protein and assessed the role of this modification in host receptor binding. Ten single Asn-to-Ala substitutions at the predicted N-glycosylation sites of the M41-RBD were evaluated along with two control Val-to-Ala substitutions. CD analysis revealed that the secondary structure of all variants was retained compared with the unmodifiedM41-RBD construct. Six of the 10 glycosylation variants lost binding to chicken trachea tissue and an ELISA-presented α2,3-linked sialic acid oligosaccharide ligand. LC/MSE glycomics analysis revealed that glycosylation sites have specific proportions of N-glycan subtypes. Overall, the glycosylation patterns of most variant RBDs were highly similar to those of the unmodified M41-RBD construct. In silico docking experiments with the recently published cryo-EM structure of the M41 IBV spike protein and our glycosylation results revealed a potential ligand receptor site that is ringed by four glycosylation sites that dramatically impact ligand binding. Combined with the results of previous array studies, the glycosylation and mutational analyses presented here suggest a unique glycosylation-dependent binding modality for the M41 spike protein. © 2019 American Society for Biochemistry and Molecular Biology Inc.. All rights reserved.",,"Binding sites; Life cycle; Ligands; Medical imaging; Proteins; Tissue; Viruses; Glycosylation sites; Mutational analysis; N-Glycosylation; N-glycosylation sites; Potential ligand; Receptor binding; Receptor-binding domains; Secondary structures; Glycosylation; alanine; asparagine; viral protein; coronavirus spike glycoprotein; amino acid substitution; Article; Avian coronavirus; Avian infectious bronchitis virus; computer model; controlled study; cryoelectron microscopy; enzyme linked immunosorbent assay; glycobiology; glycosylation; host cell; liquid chromatography-mass spectrometry; molecular docking; nonhuman; prediction; priority journal; protein domain; protein modification; protein structure; receptor binding; virus attachment; virus strain; animal; chemistry; chicken; genetics; glycosylation; HEK293 cell line; human; metabolism; missense mutation; molecular docking; protein secondary structure; virology; Amino Acid Substitution; Animals; Chickens; Glycosylation; HEK293 Cells; Humans; Infectious bronchitis virus; Molecular Docking Simulation; Mutation, Missense; Protein Structure, Secondary; Spike Glycoprotein, Coronavirus","Cook, J.K., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol, 41, pp. 239-250; Bosch, B.J., Van Der Zee, R., De Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class i virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol, 77, pp. 8801-8811; Masters, P., Perlman, S., Coronaviridae (2013) Fields Virology, pp. 825-858. , Howley, P., and Knipe, D. M., eds), 6th Ed, Wolters Kluwer Health/Lippincott Williams &Wilkins, Philadelphia, PA; Wickramasinghe, I.N., Van Beurden, S.J., Weerts, E.A., Verheije, M.H., The avian coronavirus spike protein (2014) Virus Res, 194, pp. 37-48; Binns, M.M., Boursnell, M.E., Cavanagh, D., Pappin, D.J., Brown, T.D., Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV (1985) J. Gen. Virol, 66, pp. 719-726; Cavanagh, D., Coronavirus IBV: Structural characterization of the spike protein (1983) J. Gen. Virol, 64, pp. 2577-2583; Cavanagh, D., Coronavirus IBV glycopolypeptides: Size of their polypeptide moieties and nature of their oligosaccharides (1983) J. Gen. Virol, 64, pp. 1187-1191; Delmas, B., Laude, H., Assembly of coronavirus spike protein into trimers and its role in epitope expression (1990) J. Virol, 64, pp. 5367-5375; Lewicki, D.N., Gallagher, T.M., Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen-related cell adhesion molecule cellular receptors (2002) J. Biol. Chem, 277, pp. 19727-19734; Promkuntod, N., Van Eijndhoven, R.E., De Vrieze, G., Gröne, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32; Wickramasinghe, I.N., De Vries, R.P., Gröne, A., De Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J. Virol, 85, pp. 8903-8912; Winter, C., Schwegmann-Wessels, C., Cavanagh, D., Neumann, U., Herrler, G., Sialic acid is a receptor determinant for infection of cells by avian infectious bronchitis virus (2006) J. Gen. Virol, 87, pp. 1209-1216; Raman, R., Tharakaraman, K., Sasisekharan, V., Sasisekharan, R., Glycan-protein interactions in viral pathogenesis (2016) Curr. Opin. Struct. Biol, 40, pp. 153-162; Zheng, J., Yamada, Y., Fung, T.S., Huang, M., Chia, R., Liu, D.X., Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture (2018) Virology, 513, pp. 65-74; Geilhausen, H.E., Ligon, F.B., Lukert, P.D., The pathogenesis of virulent and avirulent avian infectious bronchitis virus (1973) Arch. Gesamte Virusforsch, 40, pp. 285-290; Whitmore, L., Wallace, B.A., Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases (2008) Biopolymers, 89, pp. 392-400; Wickramasinghe, I.N.A., De Vries, R.P., Weerts, E.A., Van Beurden, S.J., Peng, W., McBride, R., Ducatez, M., Verheije, M.H., Novel receptor specificity of avian gammacoronaviruses that cause enteritis (2015) J. Virol, 89, pp. 8783-8792; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14, p. e1007009; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem, 287, pp. 41931-41938; Dormitzer, P.R., Sun, Z.Y., Wagner, G., Harrison, S.C., The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site (2002) EMBO J, 21, pp. 885-897; Ferrara, C., Grau, S., Jäger, C., Sondermann, P., Brünker, P., Waldhauer, I., Hennig, M., Benz, J., Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcRIII and antibodies lacking core fucose (2011) Proc. Natl. Acad. Sci. U.S.A, 108, pp. 12669-12674; Lorenz, B., De Cienfuegos, L.A., Oelkers, M., Kriemen, E., Brand, C., Stephan, M., Sunnick, E., Janshoff, A., Model system for cell adhesion mediated by weak carbohydrate-carbohydrate interactions (2012) J. Am. Chem. Soc, 134, pp. 3326-3329; Bucior, I., Burger, M.M., Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition (2004) Glycoconj. J, 21, pp. 111-123; Sletmoen, M., Gerken, T.A., Stokke, B.T., Burchell, J., Brewer, C.F., Tn and STn are members of a family of carbohydrate tumor antigens that possess carbohydrate-carbohydrate interactions (2018) Glycobiology, 28, pp. 437-442; Radziejewska, I., Borzym-Kluczyk, M., Leszczyńska, K., Are Lewis b andHtype 1 on Helicobacter pylori involved in binding of bacteria to MUC1 mucin? Adv (2013) Clin. Exp. Med, 22, pp. 347-353; Manavalan, P., Johnson, W.C., Jr., Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra (1987) Anal. Biochem, 167, pp. 76-85; Sreerama, N., Woody, R.W., A self-consistent method for the analysis of protein secondary structure from circular dichroism (1993) Anal. Biochem, 209, pp. 32-44; Van Stokkum, I.H., Spoelder, H.J., Bloemendal, M., Van Grondelle, R., Groen, F.C., Estimation of protein secondary structure and error analysis from circular dichroism spectra (1990) Anal. Biochem, 191, pp. 110-118; An, Y., Cipollo, J.F., An unbiased approach for analysis of protein glycosylation and application to influenza vaccine hemagglutinin (2011) Anal. Biochem, 415, pp. 67-80; Ciucanu, I., Costello, C.E., Elimination of oxidative degradation during the per-O-methylation of carbohydrates (2003) J. Am. Chem. Soc, 125, pp. 16213-16219; Ciucanu, I., Kerek, F., Asimpleandrapidmethodforthepermethylation of carbohydrates (1984) Carbohydrate Res, 131, pp. 209-217; An, Y., McCullers, J.A., Alymova, I., Parsons, L.M., Cipollo, J.F., Glycosylation analysis of engineered H3N2 influenza A virus hemagglutinins with sequentially added historically relevant glycosylation sites (2015) J. Proteome Res, 14, pp. 3957-3969; Parsons, L.M., An, Y., De Vries, R.P., De Haan, C.A., Cipollo, J.F., Glycosylation characterization of an influenza H5N7 hemagglutinin series with engineered glycosylation patterns: Implications for structure-function relationships (2017) J. Proteome Res, 16, pp. 398-412; (2005) GLYCAM Web. Complex Carbohydrate Research Center, , Woods Group , University of Georgia, Athens, GA; Kirschner, K.N., Yongye, A.B., Tschampel, S.M., González-Outeirino, J., Daniels, C.R., Foley, B.L., Woods, R.J., GLYCAM06: A generalizable biomolecular force field (2008) Carbohydrates. J. Comput. Chem, 29, pp. 622-655; Krieger, E., Vriend, G., YASARA View-molecular graphics for all devices-from smartphones to workstations (2014) Bioinformatics, 30, pp. 2981-2982; Trott, O., Olson, A.J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading (2010) J. Comput. Chem, 31, pp. 455-461; McNicholas, S., Potterton, E., Wilson, K.S., Noble, M.E., Presenting your structures: The CCP4mg molecular-graphics software (2011) Acta Crystallogr. D Biol. Crystallogr, 67, pp. 386-394; Cheng, K., Zhou, Y., Neelamegham, S., DrawGlycan-SNFG: A robust tool to render glycans and glycopeptides with fragmentation information (2017) Glycobiology, 27, pp. 200-205","Cipollo, J.F.; Center for Biologics Evaluation and Research, Food and Drug AdministrationUnited States; email: john.cipollo@fda.hhs.gov",,"American Society for Biochemistry and Molecular Biology Inc.",00219258,,JBCHA,"30902814","English","J. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85065999609 "Asaad A.M., El-Sokkary R.H., Aedh A.I., Alzamanan M.A.A., Khalil F.O.","55162921900;53871227800;57194832862;56815093200;57208772023;","Exploring knowledge and attitude toward middle east respiratory syndrome-coronavirus (MERS-coV) among university health colleges’ students, Saudi Arabia: A cross- sectional study",2019,"Revista Brasileira de Gestao e Desenvolvimento Regional","15","1",,"37","43",,1,"10.3844/ajidsp.2019.37.43","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065782661&doi=10.3844%2fajidsp.2019.37.43&partnerID=40&md5=c6218728b0046aad45025c052485814c","Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Medicine, College of Medicine, Najran University, Najran, Saudi Arabia; Department of Medical Microbiology and Immunology, National Liver Institute, Menofia University, Menofia, Egypt","Asaad, A.M., Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; El-Sokkary, R.H., Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Aedh, A.I., Department of Medicine, College of Medicine, Najran University, Najran, Saudi Arabia; Alzamanan, M.A.A., Department of Medicine, College of Medicine, Najran University, Najran, Saudi Arabia; Khalil, F.O., Department of Medical Microbiology and Immunology, National Liver Institute, Menofia University, Menofia, Egypt","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging pathogen with a pandemic potential and a higher burden in Saudi Arabia. This cross-sectional study aimed to investigate the knowledge and attitude toward MERS-CoV among Health Colleges’ students in a Saudi public university. The study included 540 students. A well-constructed questionnaire containing 14 knowledge and 8 attitude items was completed by all participants. Overall, >80% of students were aware about MERS-CoV aetiology, mode of transmission, risk factors and signs and symptoms. Knowledge scores revealed that 42% of participants have sufficient knowledge. Medical students had significantly better knowledge compared to students in other Health Colleges (p = 0.001). Concerning attitude, >50% of students exhibited a positive attitude toward MERS-CoV. This study showed a good knowledge level and a strong positive attitude towards protection from MERS-CoV among Health Colleges’ students. However, there is a noticeable defect in the knowledge level about the microbiology of the virus and the infection control measures. The findings of this study highlight the need to design educational courses on new emerging diseases, field epidemiology, infection control practice and public health to all Health Colleges’ students to prepare them for dealing with these types of health emergencies in their future healthcare practice. Besides, continuous awareness campaigns about new emerging diseases are warranted for all Health Colleges’ students to improve their knowledge and attitude toward emerging infection trends. © 2019 Ahmed Morad Asaad, Rehab H. El-Sokkary, Abdullah I. Aedh, Mahdi Aly Ali Alzamanan and Fatma Omar Khalil.","Attitude; Knowledge; MERS-CoV; Saudi Arabia; Students",,"Aldrees, T., Al Ghobain, M., Alenezi, A., Saleh, A., Dana, A., Medical residents’ attitudes and emotions related to Middle East respiratory syndrome in Saudi Arabia (2017) Saudi Med. J, 38, pp. 942-947; Al-Hazmi, A., Gosadi, I., Somily, A., Alsubaie, S., Bin Saeed, A., Knowledge, attitude and practice of secondary schools and university students toward Middle East Respiratory Syndrome epidemic in Saudi Arabia: A cross-sectional study (2018) Saudi J. Biol. Sci, 25, pp. 572-577; Alkot, M., Albouq, A.M., Shakuri, A.M., Subahi, M.S., Knowledge, attitude and practice toward MERS-CoV among primary health-care workers in Makkah Al-Mukarramah: An intervention study (2016) Int. J. Med. Sci. Pub. Health, 5, p. 952; Al-Mohrej, A., Agha, S., Are Saudi medical students aware of middle east respiratory syndrome coronavirus during an outbreak? (2017) J. Infect. Pub. Health, 10, pp. 388-395; Al-Mohrej, O.A., Al-Shirian, S.D., Al-Otaibi, S.K., Tamim, H.M., Masuadi, E.M., Is the Saudi public aware of Middle East respiratory syndrome (2016) J. Infect. Pub. Health, 9, pp. 259-266; Al-Tawfiq, J.A., Middle East respiratory syndrome-coronavirus infection: An overview (2013) J. Infect. Pub. Health, 6, pp. 319-322; Bawazir, A., Al-Mazroo, E., Jradi, H., Ahmed, A., Badri, M., MERS-CoV infection: Mind the public knowledge gap (2018) J. Infect. Pub. Health, 11, pp. 89-93; Updated Information and guidelines for evaluation of patients for Middle East Respiratory Syndrome Coronavirus (MERS-Co V) Infection (2015) Centers for Disease Control and Prevention; (2015) Rapid Risk Assessment. Middle East Respiratory Syndrome Coronavirus (Mers-Co V), , 17th Update; Hassan, H.M., Knowledge, attitude and belief of Al-Ghad College students toward Coronavirus Infection, Riyadh, Saudi Arabia (2016) Int. J. Med. Res. Re, 4, pp. 19-26; Ibrahim, I.A., Alghamdi, Y.K., Awareness, attitude and practices of students medical sciences, medicine and pharmacology Colleges towards MERS-CoV Infection: A Cross Sectional Study (2016) Sav. J. Med. Med. Sci, 2, pp. 127-141; Khairoalsindi, O.A., Tayeb, A.M., Mandora, R.M., Siddiqui, M.I., Middle East respiratory syndrome coronavirus: Are Makkah medical students sufficiently aware of it? (2017) Int. J. Adv. Res, 5, pp. 1743-1751; Khan, K., Sears, J., Hu, V.W., Brownstein, J.S., Hay, S., Potential for the international spread of Middle East respiratory syndrome in association with mass gatherings in Saudi Arabia (2013) Plos Curr; Lwanga, S.K., Lemeshow, S., (1990) Sample Size Determination in Health Studies, , Geneva: World Health Organization; Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Hajj: Infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Salem, I., Ahmada, J.A., Abalkhail, B., Howladar, S., Balto, H., Knowledge and attitude about Middle East respiratory syndrome Coronavirus (MERS-CoV) among medical students in king Abdulaziz University in Jeddah, 2015 (2016) Int. J. Curr. Res, 8, pp. 28733-28740; (2018), FAQs Coronavirus (MERS-CoV); Stirling, B.V., Harmston, J., Readying nurses for clinical practice: Protecting students during an outbreak of Middle Eastern-Coronavirus in Saudi Arabia (2015) J. Nurs. Edu. Practice, 5, pp. 40-44; (2007), STROBE checklist, Version 4, published in Oct/Nov 2007; (2013) EMRO. Middle East Respiratory Syndrome Coronavirus: Joint Kingdom of Saudi Arabia, pp. 4-9. , Riyadh: World Health Organization Mission; (2018) Frequently Asked Questions on Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , World Health Organization; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Foucheir, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820","Asaad, A.M.; Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig UniversityEgypt; email: ahmedmoradassad@hotmail.com",,"Universidade de Taubate",1809239X,,,,"English","Rev. Bras. Gestao Desenvolv. Reg.",Article,"Final",Open Access,Scopus,2-s2.0-85065782661 "Amer H.M.","36602135700;","Bovine-like coronaviruses in domestic and wild ruminants",2019,"Animal Health Research Reviews",,,,"","",,1,"10.1017/S1466252318000117","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060540170&doi=10.1017%2fS1466252318000117&partnerID=40&md5=152ceb88c2de5395ae4abe301aa7c539","Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt","Amer, H.M., Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt","Coronaviruses (CoVs) produce a wide spectrum of disease syndromes in different mammalian and avian host species. These viruses are well-recognized for their ability to change tissue tropism, to hurdle the interspecies barriers and to adapt ecological variations. It is predicted that the inherent genetic diversity of CoVs caused by accumulation of point mutations and high frequency of homologous recombination is the principal determinant of these competences. Several CoVs (e.g. Severe acute respiratory syndrome-CoV, Middle East respiratory syndrome-CoV) have been recorded to cross the interspecies barrier, inducing different disease conditions in variable animal hosts. Bovine CoV (BCoV) is a primary cause of gastroenteritis and respiratory disease in cattle calves, winter dysentery in lactating cows and shipping fever pneumonia in feedlot cattle. Although it has long been known as a restrictive cattle pathogen, CoVs that are closely related to BCoV have been recognized in dogs, humans and in other ruminant species. Biologic, antigenic and genetic analyses of the so-called 'bovine-like CoVs' proposed classification of these viruses as host-range variants rather than distinct virus species. In this review, the different bovine-like CoVs that have been identified in domesticated ruminants (water buffalo, sheep, goat, dromedary camel, llama and alpaca) and wild ruminants (deer, wild cattle, antelopes, giraffes and wild goats) are discussed in terms of epidemiology, transmission and virus characteristics. The presented data denote the importance of these viruses in the persistence of BCoV in nature, spread to new geographical zones, and continuous emergence of disease epidemics in cattle farms. © 2019 Cambridge University Press.","Bovine-like coronavirus; host-range variant; interspecies transmission; ruminant species; wildlife","animal; bovine; cattle disease; classification; Coronavirinae; Coronavirus infection; female; human; isolation and purification; livestock; ruminant; veterinary medicine; virology; wild animal; Animals; Animals, Wild; Cattle; Cattle Diseases; Coronavirus; Coronavirus Infections; Female; Humans; Livestock; Ruminants","Abd El-Karim, I.A., El-Sanousi, A.A., Aly, N.M., Reda, I.M., Detection of coronavirus antigen in fecal samples obtained from newborn buffalo calves (1990) Veterinary Medical Journal Giza, 38, pp. 77-85; Abd El-Rahim, I.H.A., Rota and/or coronavirus infections in newborn buffalo calves in Upper Egypt (1997) Proceedings of the 4th Scientific Congress, Egyptian Society for Cattle Diseases, pp. 210-220. , Assuit, Egypt; Akashi, H., Inaba, Y., Miura, Y., Sato, K., Tokuhisa, S., Asagi, M., Hayashi, Y., Propagation of the Kakegawa strain of bovine coronavirus in suckling mice, rats and hamsters (1981) Archives of Virology, 67, pp. 367-370; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., De Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e00914; Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Halpin, R., Wang, S., Saif, L.J., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) Journal of Virology, 82, pp. 12422-12431; (2018) Endangered Animals, , http://www.animalinfo.org/species/artiperi/camebact.htm, Animal Information Organization Wild Bactrian camel; Berezowski, J., (2001) Diseases of Bison, , http://www.usask.ca/wcvm/herdmed/specialstock/bison/bisondis.html; Bertin, J., (2017) Types of Deer Around the World, , http://www.animalwised.com/types-of-deer-around-the-world-1345.html; Bhatnagar, Y.V., Lovari, S., Hemitragus jemlahicus (2008) The IUCN Red List of Threatened Species, , http://www.iucnredlist.org/details/9919/0; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Veterinary Clinics of North America: Food Animal Practice, 26, pp. 123-146; Borghese, A., Situation and perspectives of buffalo in the world, Europe and Macedonia (2011) Macedonian Journal of Animal Science, 1, pp. 281-296; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Current Topics in Microbiology and Immunology, 287, pp. 1-30; Byomi, A., Herbst, W., Baljer, G., Some viral agents associated with neonatal calf diarrhea (1996) Assuit Veterinary Medical Journal, 35, pp. 1-9; Carman, P.S., Hazlett, M.J., Bovine coronavirus infection in Ontario 1990-1991 (1992) Canadian Veterinary Journal, 33, pp. 812-814; Cebra, C.K., Diarrhea in llama and alpaca crias (2007) The AABP Proceedings, 40, pp. 170-173; Cebra, C.K., Mattson, D.E., Baker, R.J., Sonn, R.J., Dearing, P.L., Potential pathogens in feces from unweaned llamas and alpacas with diarrhea (2003) Journal of American Veterinary Medical Association, 223, pp. 1806-1808; Chasey, D., Reynolds, D.J., Bridger, J.C., Debney, T.G., Scott, A.C., Identification of coronaviruses in exotic species of Bovidae (1984) Veterinary Record, 115, pp. 602-603; Chouljenko, V.N., Kousoulas, K.G., Lin, X., Storz, J., Nucleotide and predicted amino acid sequences of all genes encoded by the 3' genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses (1998) Virus Genes, 17, pp. 33-42; Chouljenko, V.N., Lin, X.Q., Storz, J., Kousoulas, K.G., Gorbalenya, A.E., Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia (2001) Journal of General Virology, 82, pp. 2927-2933; Chung, J.E., Kim, H.R., Bae, Y.C., Lee, O.S., Oem, J.K., Detection and characterization of bovine-like coronaviruses from four species of zoo ruminants (2011) Veterinary Microbiology, 148, pp. 396-401; Crossley, B., Barr, B., Magdesian, K.G., Ing, M., Mora, D., Jensen, D., Loretti, A., Mock, R., Identification of a novel coronavirus possibly associated with acute respiratory syndrome in alpacas (Vicugna pacos) in California, 2007 (2010) Journal of Veterinary Diagnostic Investigation, 22, pp. 94-97; Crossley, B.M., Mock, R.E., Callison, S.A., Hietala, S.K., Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E (2012) Viruses, 4, pp. 3689-3700; Daginakatte, G.C., Chard-Bergstrom, C., Andrews, G.A., Kapil, S., Production, characterization, and uses of monoclonal antibodies against recombinant nucleoprotein of elk coronavirus (1999) Clinical Diagnostic Laboratory Immunology, 6, pp. 341-344; Dea, S., Roy, R.S., Begin, M.E., Bovine coronavirus isolation and cultivation in continuous cell lines (1980) American Journal of Veterinary Research, 41, pp. 30-38; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: Viral evolution and pathobiology (2008) Veterinary Microbiology, 132, pp. 221-234; Decaro, N., Desario, C., Elia, G., Mari, V., Lucente, M.S., Cordioli, P., Colaianni, M.L., Buonavoglia, C., Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy (2007) Veterinary Microbiology, 121, pp. 225-230; Decaro, N., Campolo, M., Desario, C., Cirone, F., D'Abramo, M., Lorusso, E., Greco, G., Buonavoglia, C., Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy (2008) Journal of Veterinary Diagnostic Investigation, 20, pp. 28-32; Decaro, N., Mari, V., Desario, C., Campolo, M., Elia, G., Martella, V., Greco, G., Buonavoglia, C., Severe outbreak of bovine coronavirus infection in dairy cattle during the warmer season (2008) Veterinary Microbiology, 126, pp. 30-39; Decaro, N., Martella, V., Elia, G., Campolo, M., Mari, V., Desario, C., Lucente, M., Buonavoglia, C., Biological and genetic analysis of a bovine-like coronavirus isolated from water buffalo (Bubalus bubalis) calves (2008) Virology, 370, pp. 213-222; Decaro, N., Cirone, F., Mari, V., Nava, D., Tinelli, A., Elia, G., Sarno, A., Buonavoglia, C., Characterisation of bubaline coronavirus strains associated with gastroenteritis in water buffalo (Bubalus bubalis) calves (2010) Veterinary Microbiology, 145, pp. 245-251; Decaro, N., Mari, V., Elia, G., Addie, D.D., Camero, M., Lucente, M.S., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses in dogs, Europe (2010) Emerging Infectious Diseases, 16, pp. 41-47; De Groot, R.J., Ziebuhr, J., Poon, L.L., Woo, P.C., Talbot, P., Rottier, P.J.M., Holmes, K.V., Enjuanes, L., (2008) Taxonomic Proposal of the Coronavirus Study Group to the ICTV Executive Committee, , https://data.ictvonline.org/proposals/2008.085-122V.v4.Coronaviridae.pdf, Revision of the Family Coronaviridae; De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Lefkowitz, E., Family Coronaviridae (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 8828-8886. , San Diego: Elsevier Science Publishing Co. Inc; Doughri, A.M., Storz, J., Hajer, I., Fernando, H.S., Morphology and morphogenesis of a coronavirus infecting intestinal epithelial cells of newborn calves (1976) Experimental and Molecular Pathology, 25, pp. 355-370; Drake, J.W., Holland, J.J., Mutation rates among RNA viruses (1999) Proceedings of the National Academy of Science USA, 96, pp. 13910-13913; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 371, pp. 1359-1360; Elazhary, M.A., Frechette, J.L., Silim, A., Roy, R.S., Serological evidence of some bovine viruses in the caribou (Rangifer tarandus caribou) in Quebec (1981) Journal of Wildlife Diseases, 17, pp. 609-612; Erles, K., Shiu, K.B., Brownlie, J., Isolation and sequence analysis of canine respiratory coronavirus (2007) Virus Research, 124, pp. 78-87; Estes, R., (2017) Antelope, , https://www.britannica.com/animal/antelope-mammal; Frankin, W.L., Wilson, D.E., Mittermeier, R.A., Family Camelidae (Camels) (2011) Handbook of the Mammals of the World, pp. 206-246. , Barcelona, Spain: Lynx Ediciones; Fulton, R.W., Herd, H.R., Sorensen, N.J., Confer, A.W., Ritchey, J.W., Ridpath, J.F., Burge, L.J., Enteric disease in postweaned beef calves associated with Bovine coronavirus clade 2 (2015) Journal of Veterinary Diagnostic Investigation, 27, pp. 97-101; Garbe, J.A., Amarin, M., Hicheri, K., (1995) The Tri-national Animal Health Research Project (TAHRP) - Project 398-0158.21. Final Evaluation Report, p. 110. , United States Agency for International Development; Genova, S.G., Streeter, R.N., Simpson, K.M., Kapil, S., Detection of an antigenic group 2 coronavirus in an adult alpaca with enteritis (2008) Clinical and Vaccine Immunology, 15, pp. 1629-1632; Haigh, J.C., MacKintosh, C., Griffin, F., Viral, parasitic and prion diseases of farmed deer and bison (2002) Revue Scientifique et Technique, 21, pp. 219-248; Harms, N.J., Jung, T.S., Andrew, C.L., Surujballi, O.P., VanderKop, M., Savic, M., Powell, T., Health status of reintroduced wood bison (Bison bison athabascae): Assessing the conservation value of an isolated population in Northwestern Canada (2019) Journal of Wildlife Diseases, 55, pp. 1-12; Harp, J.A., Myers, L.L., Rich, J.E., Gates, N.L., Role of Salmonella arizonae and other infective agents in enteric disease of lambs (1981) American Journal of Veterinary Research, 42, pp. 596-599; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Halpin, R., Wang, S., Saif, L.J., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) Journal of Virology, 81, pp. 4981-4990; Heckert, R.A., Saif, L.J., Agnes, A.G., A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio (1990) Veterinary Microbiology, 22, pp. 187-201; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveillance, 18, p. 20659; Hirst, K., (2017) What Connects Llamas and Alpacas, Vicunas, and Guanacos?, , www.thoughtco.com/llama-and-alpaca-domestication-history-170646; Jin, L., Cebra, C.K., Baker, R.J., Mattson, D.E., Cohen, S.A., Alvarado, D.E., Rohrmann, G.F., Analysis of the genome sequence of an alpaca coronavirus (2007) Virology, 365, pp. 198-203; Kim, S.H., Choi, H., Yoon, J., Woo, C., Chung, H.M., Kim, J.T., Shin, J.H., Pathogens in water deer (Hydropotes inermis) in South Korea, 2010-12 (2014) Journal of Wildlife Diseases, 50, pp. 478-483; Kim, J.H., Jang, J.H., Yoon, S.W., Noh, J.Y., Ahn, M.J., Kim, Y., Jeong, D.G., Kim, H.K., Detection of bovine coronavirus in nasal swab of non-captive wild water deer, Korea (2018) Transboundary and Emerging Diseases, 65, pp. 627-631; La Vigna, A., (2018) World Distribution of Alpacas, , http://www.lavignaalpacas.com/alpaca-facts/world-distribution-of-alpacas; Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., So, L.Y., Yuen, K.Y., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) Journal of Virology, 85, pp. 11325-11337; Lau, S.K., Woo, P.C., Yip, C.C., Fan, R.Y., Huang, Y., Wang, M., Guo, R., Yuen, K.Y., Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) Journal of Virology, 86, pp. 5481-5496; Lau, S.K., Tsang, A.K., Ahmed, S.S., Alam, M.M., Ahmed, Z., Wong, P.C., Yuen, K.Y., Woo, P.C., First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh (2016) New Microbes and New Infections, 11, pp. 54-56; López, W.P., Chamorro, M.L., Garmendia, A.E.B., [Rapid detection of rotavirus and coronavirus in alpaca crias (Vicugna pacos) with diarrhea in the Cusco region, Peru] (2011) Revista de Investigaciones Veterinarias Del Perú, 22, pp. 407-411; Lorusso, A., Desario, C., Mari, V., Campolo, M., Lorusso, E., Elia, G., Martella, V., Decaro, N., Molecular characterization of a canine respiratory coronavirus strain detected in Italy (2009) Virus Research, 141, pp. 96-100; Majhdi, F., Minocha, H.C., Kapil, S., Isolation and characterization of a coronavirus from elk calves with diarrhea (1997) Journal of Clinical Microbiology, 35, pp. 2937-2942; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., El Berbri, I., Peiris, M., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveillance, 22, p. 30498; Milman, O., Giraffes must be listed as endangered, conservationists formally tell US (2017) Guardian News and Media, , www.theguardian.com/environment/2017/apr/19/giraffes-endangered-species-conservation-hunting; Muhairi, S.A., Hosani, F.A., Eltahir, Y.M., Mulla, M.A., Yusof, M.F., Serhan, W.S., Hashem, F.M., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52, pp. 848-854; Muniiappa, L., Mitov, B.K., Kharalambiev, K.E., [Demonstration of coronavirus infection in buffaloes] (1985) Veterinarno-meditsinski Nauki, 22, pp. 27-32; Muñoz, M., Alvarez, M., Lanza, I., Cármenes, P., Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain (1996) Epidemiology and Infection, 117, pp. 203-211; Natsuaki, S., Goto, K., Nakamura, K., Yamada, M., Ueo, H., Komori, T., Shirakawa, H., Uchinuno, Y., Fatal winter dysentery with severe anemia in an adult cow (2007) Journal of Veterinary Medical Sciences, 69, pp. 957-960; Ozmen, O., Yukari, B., Haligur, M., Sahinduran, S., Observations and immunohistochemical detection of Coronavirus, Cryptosporidium parvum and Giardia intestinalis in neonatal diarrhoea in lambs and kids (2006) Schweizer Archiv fur Tierheilkunde, 148, pp. 357-364; Park, S.J., Kim, G.Y., Choy, H.E., Hong, Y.J., Saif, L.J., Jeong, J.H., Park, S.I., Cho, K.O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) Journal of Clinical Microbiology, 44, pp. 3178-3188; Pass, D.A., Penhale, W.J., Wilcox, G.E., Batey, R.G., Intestinal coronavirus-like particles in sheep with diarrhoea (1982) Veterinary Record, 111, pp. 106-107; Peck, K.M., Burch, C.L., Heise, M.T., Baric, R.S., Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: Biochemical mechanisms and evolutionary perspectives (2015) Annual Review of Virology, 2, pp. 95-117; Reinhardt, G., Zamora, J., Tadich, N., Polette, M., Aguilar, M., Riedemann, S., Palisson, J., Diagnosis of coronavirus in sheep in Valdivia province, Xth Region, Chile (1995) Archivos de Medicina Veterinaria, 27, pp. 129-132; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveillance, 18, p. 20662; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) The Lancet Infectious Diseases, 13, pp. 859-866; Rojas, M., Manchego, A., Rocha, A., Fornells, L., Silva, R., Mendes, G., Dias, H., Santos, N., Outbreak of diarrhea among preweaning alpacas (Vicugna pacos) in the southern Peruvian highland (2016) The Journal of Infection in Developing Countries, 10, pp. 269-274; Saalfeld, W.K., Edwards, G.P., Managing the impacts of feral camels in Australia: A new way of doing business (DKCRC Report 47) (2008) Ecology of Feral Camels in Australia, , Alice Springs: Desert Knowledge Cooperative Research Centre; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Saif, L.J., Bovine respiratory coronavirus (2010) Veterinary Clinics of North America: Food Animal Practice, 26, pp. 349-364; Saleh, S.M., Epidemiological studies on diarrhea in cattle newborn calves fed on colostrum from vaccinated and control-pregnant cows (1994) Trinational Animal Health Research Project (TAHRP), 2nd Annual Workshop, , Sharm El-Sheikh, Egypt; Smits, J.E., A brief review of infectious and parasitic diseases of wapiti, with emphasis on western Canada and the northwestern United States (1991) Canadian Veterinary Journal, 32, pp. 471-479; Smits, J.E., Brown, R.D., Elk diseases survey in western Canada and northwestern United States (1992) The Biology of Deer, pp. 101-106. , New York, NY: Springer-Verlag; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proceeding of the National Academy of Sciences of the USA, 102, pp. 2430-2435; Stair, E.L., Rhodes, M.B., White, R.G., Mebus, C.A., Neonatal calf diarrhea: Purification and electron microscopy of a coronavirus-like agent (1972) American Journal of Veterinary Research, 33, pp. 1147-1156; Storz, J., Stine, L., Liem, A., Anderson, G.A., Coronavirus isolation from nasal swab samples in cattle with signs of respiratory tract disease after shipping (1996) Journal of American Veterinary Medical Association, 208, pp. 1452-1455; Storz, J., Purdy, C.W., Lin, X., Burrell, M., Truax, R.E., Briggs, R.E., Frank, G.H., Loan, R.W., Isolation of respiratory bovine coronavirus, other cytocidal viruses, and Pasteurella spp from cattle involved in two natural outbreaks of shipping fever (2000) Journal of American Veterinary Medical Association, 216, pp. 1599-1604; Thomas, S.M., Morgan, E.R., Effect on performance of weanling alpacas following treatments against gastro-intestinal parasites (2013) Veterinary Parasitology, 198, pp. 244-249; Torres-Medina, A., Schlafer, D.H., Mebus, C.A., Rotaviral and coronaviral diarrhea (1985) Veterinary Clinics of North America: Food Animal Practice, 1, pp. 471-493; Tråvén, M., Carlsson, U., Lundén, A., Larsson, B., Serum antibodies to bovine coronavirus in Swedish sheep (1999) Acta Veterinaria Scandinavica, 40, pp. 69-74; Tsunemitsu, H., Yonemichi, H., Hirai, T., Kudo, T., Onoe, S., Mori, K., Shimizu, M., Isolation of bovine coronavirus from feces and nasal swabs of calves with diarrhea (1991) Journal of Veterinary Medical Sciences, 53, pp. 433-437; Tsunemitsu, H., El-Kanawati, Z.R., Smith, D.R., Reed, H.H., Saif, L.J., Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea (1995) Journal of Clinical Microbiology, 33, pp. 3264-3269; Tzipori, S., Smith, M., Makin, T., McCaughan, C., Enteric coronavirus-like particles in sheep (1978) Australian Veterinary Journal, 54, pp. 320-321; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) Journal of Virology, 79, pp. 1595-1604; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) Journal of Virology, 80, pp. 7270-7274; Woo, P.C., Lau, S.K., Yip, C.C., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) Journal of Virology, 80, pp. 7136-7145; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and, jumping (2009) Experimental Biology and Medicine, 234, pp. 1117-1127; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Yuen, K.Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerging Infectious Diseases, 20, pp. 560-572; Woo, P.C., Lau, S.K., Fan, R.Y., Lau, C.C., Wong, E.Y., Joseph, S., Tsang, A.K., Yuen, K.Y., Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the Middle East: Minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23 (2016) International Journal of Molecular Sciences, 17, p. E691; Wünschmann, A., Frank, R., Pomeroy, K., Kapil, S., Enteric coronavirus infection in a juvenile dromedary (Camelus dromedarius) (2002) Journal of Veterinary Diagnostic Investigation, 14, pp. 441-444; Yang, D.K., Hwang, I.J., Kim, B.H., Kweon, C.H., Lee, K.W., Kang, M.I., Lee, C.S., Cho, K.O., Serosurveillance of viral diseases in Korean native goats (Capra hircus) (2008) Journal of Veterinary Medical Sciences, 70, pp. 977-979; Yokoi, K., Okazaki, H., Inahara, K., Hatama, S., Prevalence of eight bovine viruses in sika deer (Cervus nippon yesoensis) in Japan (2009) Veterinary Record, 165, pp. 754-755; Zhang, X.M., Herbst, W., Kousoulas, K.G., Storz, J., Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child (1994) Journal of Medical Virology, 44, pp. 152-161","Amer, H.M.; Department of Virology, Faculty of Veterinary Medicine, Cairo UniversityEgypt; email: hamoamer@cu.edu.eg",,"Cambridge University Press",14662523,,,"30683171","English","Anim. health Res. Rev.",Article in Press,"Article in Press",Open Access,Scopus,2-s2.0-85060540170 "Rohaim M.A., El Naggar R.F., Helal A.M., Bayoumi M.M., El-Saied M.A., Ahmed K.A., Shabbir M.Z., Munir M.","55817102000;57194397853;55910830800;57205571079;57205579075;12784208000;24768303400;36912587700;","Genetic diversity and phylodynamics of avian coronaviruses in Egyptian wild birds",2019,"Viruses","11","1", 57,"","",,3,"10.3390/v11010057","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060014612&doi=10.3390%2fv11010057&partnerID=40&md5=182c8404403c3f58498b28cd56f988e4","Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, United Kingdom; Virology Department, Faculty of Veterinary Medicine, Sadat University, Sadat, 32897, Egypt; Central Lab for Evaluation of Veterinary Biologics, Abbasia, Cairo, 11381, Egypt; Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan","Rohaim, M.A., Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt, Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, United Kingdom; El Naggar, R.F., Virology Department, Faculty of Veterinary Medicine, Sadat University, Sadat, 32897, Egypt; Helal, A.M., Central Lab for Evaluation of Veterinary Biologics, Abbasia, Cairo, 11381, Egypt; Bayoumi, M.M., Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; El-Saied, M.A., Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Ahmed, K.A., Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Shabbir, M.Z., Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan; Munir, M., Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, United Kingdom","Avian coronaviruses (ACoVs) are continuously evolving and causing serious economic consequences in the poultry industry and around the globe. Owing to their extensive genetic diversity and high mutation rates, controlling ACoVs has become a challenge. In this context, the potential contribution of wild birds in the disease dynamics, especially in domesticated birds, remains largely unknown. In the present study, five hundred fifty-seven (n = 557) cloacal/fecal swabs were collected from four different wild bird species from eight Egyptian governorates during 2016 and a total of fourteen positive isolates were used for phylodynamics and evolutionary analysis. Genetic relatedness based on spike (S1) gene demonstrated the clustering of majority of these isolates where nine isolates grouped within Egy/variant 2 (IS/885 genotype) and five isolates clustered within Egy/variant 1 (IS/1494/06 genotype). Interestingly, these isolates showed noticeable genetic diversity and were clustered distal to the previously characterized Egy/variant 1 and Egy/variant 2 in Egyptian commercial poultry. The S1 gene based comparison of nucleotide identity percentages revealed that all fourteen isolates reported in this study were genetically related to the variant GI-23 lineage with 92–100% identity. Taken together, our results demonstrate that ACoVs are circulating in Egyptian wild birds and highlight their possible contributions in the disease dynamics. The study also proposes that regular monitoring of the ACoVs in wild birds is required to effectively assess the role of wild birds in disease spread, and the emergence of ACoVs strains in the country. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Avian coronavirus; Egypt; Monitoring; Phylodynamics; Wild bird","nucleotide; amino acid sequence; Article; Avian coronavirus; bioinformatics; bird; disease transmission; Egyptian; evolution; feces analysis; gene amplification; gene sequence; genetic recombination; genetic variability; genotype; nonhuman; phylogeny; poultry; prevalence; reverse transcription polymerase chain reaction; RNA extraction; sequence analysis; virus isolation; animal; classification; Coronavirus infection; Egypt; feces; Gammacoronavirus; genetic variation; genetics; molecular evolution; phylogeny; veterinary medicine; virology; virus genome; wild animal; Animals; Animals, Wild; Birds; Coronavirus Infections; Egypt; Evolution, Molecular; Feces; Gammacoronavirus; Genetic Variation; Genome, Viral; Genotype; Phylogeny","Virus Taxonomy: 2018, , https://talk.ictvonline.org/taxonomy/, assessed on 25 December 2018; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Talbot, P.J., Family Coronaviridae (2011) Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , King, A.M.Q., Lefkowitz, E., Adams, M.J., Carstens, E.B., Eds.; Elsevier: Oxford, UK; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Wickramasinghe, I.N.A., de Vries, R.P., Grone, A., de Haan, C.A.M., Verheije, M.H., Binding of Avian Coronavirus Spike Proteins to Host Factors Reflects Virus Tropism and Pathogenicity (2011) J. Virol., 85, pp. 8903-8912; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Adzhar, A., Shaw, K., Britton, P., Cavanagh, D., Universal oligonucleotides for the detection of infectious bronchitis virus by the polymerase chain reaction (1996) Avian Pathol, 25, pp. 817-836; Kingham, B.F., Keeler, C.L., Nix, W.A., Ladman, B.S., Gelb, J., Identification of avian infectious bronchitis virus by direct automated cycle sequencing of the S-1 gene (2000) Avian Dis, 44, pp. 325-335; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect. Genet. Evol., 39, pp. 349-364; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis, 56, pp. 634-641; Schalk, A.F., Hawn, M.C., An apparently new respiratory disease of baby chicks (1931) J. Am. Vet. Med. Assoc., 78, p. 1931; Liu, S., Kong, X., A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China (2004) Avian Pathol, 33, pp. 321-327; McMartin, D.A., (1993) Infectious Bronchitis, pp. 249-274. , Virus Infections of Birds; McFerran, J.B., McNulty, M.S., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands; Spackman, E., The ecology of avian influenza virus in wild birds: What does this mean for poultry? (2009) Poult. Sci., 88, pp. 847-850; Domanska-Blicharz, K., Smietanka, K., Minta, Z., Molecular studies on infectious bronchitis virus isolated in Poland (2007) Bull. Vet. Inst. Pulawy, 51, pp. 449-452; Cavanagh, D., Gelb, J., (2008) Infectious Bronchitis, pp. 117-135. , Diseases of Poultry, 12th ed.; Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., Eds.; Blackwell Publishing: Hoboken, NJ, USA; Ahmed, H.N., (1954) Incidence and Treatment of Some Infectious Viral Respiratory Diseases of Poultry in Egypt, , DVM Thesis, Cairo University, Cairo, Egypt; Abdel-Moneim, A.S., El-Kady, M.F., Ladman, B.S., Gelb, J., S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt (2006) Virol. J, 3, pp. 1-9; Abdel-Moneim, A.S., Madbouly, H.M., Gelb, J., Ladman, B.S., Isolation and identification of Egypt/Beni-Seuf/01 a novel genotype of infectious bronchitis virus (2002) Vet. Med. J. Giza, 50, pp. 1065-1078; Hussein, A.H., Emara, M., Rohaim, M., Ganapathy, K., Arafa, A., Sequence analysis of infectious bronchitis virus IS/1494 like strain isolated from broiler chicken co-infected with Newcastle disease virus in Egypt during 2012 (2014) Int. J. Poult. Sci., 13, pp. 530-536; (2018) Manual Diagnostic Tests Vaccines Terrestrial Animals (Mammals, Birds Bees), , Office International des Epizooties: Paris, France; Muradrasoli, S., Bálint, Á., Wahlgren, J., Waldenström, J., Belák, S., Blomberg, J., Olsen, B., Prevalence and phylogeny of coronaviruses in wild birds from the bering strait area (Beringia) (2010) Plos ONE, 5; Dolz, R., Pujols, J., Ordóñez, G., Porta, R., Majó, N., Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype (2006) Avian Pathol, 35, pp. 77-85; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98; Minh, B.Q., Nguyen, M.A., von Haeseler, A., Ultrafast approximation for phylogenetic bootstrap (2013) Mol. Biol. Evol., 30, pp. 1188-1195; Korber, B.H.I.V., (2000) Signature and Sequence Variation Analysis. Computational Analysis of HIV Molecular Sequences, pp. 55-72. , Kluwer Academic Publishers: Dordrecht, The Netherlands; Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., RDP3: A flexible and fast computer program for analyzing recombination (2010) Bioinformatics, 26, pp. 2462-2463; Abdel-Moneim, A.S., Afifi, M.A., El-Kady, M.F., Emergence of a novel genotype of avian infectious bronchitis virus in Egypt (2012) Arch. Virol., 157, pp. 2453-2457; Domingo, E., Sheldon, J., Perales, C., Viral Quasispecies Evolution (2012) Microbiol. Mol. Biol. Rev., 76, pp. 159-216; Ignjatovic, J., Sapats, S., Avian infectious bronchitis virus (2000) Rev. Sci. Tech. Off. Int. Epiz., 19, pp. 493-508; Cook, J.K.A., Coronaviridae (2008) Poultry Diseases, pp. 340-349. , 6th ed.; Pattison, M., Bradbury, A., Eds.; Saunders Elsevier: Amsterdam, The Netherlands; Cavanagh, D., Elus, M.M., Cook, J.K.A., Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross—Protection in vivo S1 spike protein of infectious bronchitis virus (1997) Avian Pathol, 26, pp. 63-74; Domanska-Blicharz, K., Jacukowicz, A., Lisowska, A., Wyrostek, K., Minta, Z., Detection and molecular characterization of infectious bronchitis-like viruses in wild bird populations (2014) Avian Pathol, 43, pp. 406-413; Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Liu, M., Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) (2005) J. Gen. Virol., 86, pp. 719-725; Hughes, L.A., Savage, C., Naylor, C., Bennett, M., Chantrey, J., Jones, R., Genetically diverse coronaviruses in wild bird populations of northern England (2009) Emerg. Infect. Dis., 15, pp. 1091-1094; Kahya, S., Coven, F., Temelli, S., Eyigor, A., Carli, K.T., Presence of IS/1494/06 genotype-related infectious bronchitis virus in breeder and broiler flocks in Turkey (2013) Ankara Üniv. Vet. Fak. Derg., 60, pp. 27-31; Ganapathy, K., Ball, C., Forrester, A., Genotypes of infectious bronchitis viruses circulating in the Middle East between 2009 and 2014 (2015) Virus Res, 210, pp. 198-204; Jackwood, M.W., Hall, D., Handel, A., Molecular evolution and emergence of avian gammacoronaviruses (2012) Infect. Genet. Evol., 12, pp. 1305-1311; Thor, S.W., Hilt, D.A., Kissinger, J.C., Paterson, A.H., Jackwood, M.W., Recombination in avian gamma-coronavirus infectious bronchitis virus (2011) Viruses, 3, pp. 1777-1799; Zhang, Y., Wang, H.N., Wang, T., Fan, W.Q., Zhang, A.Y., Wei, K., Tian, G.B., Yang, X., Complete genome sequence and recombination analysis of infectious bronchitis virus attenuated vaccine strain (2010) Hvirus Genes, 41, pp. 377-388; Han, Z., Zhang, T., Xu, Q., Gao, M., Chen, Y., Wang, Q., Zhao, Y., Kong, X., Altered pathogenicity of a tl/CH/ LDT3/03 genotype infectious bronchitis coronavirus due to natural recombination in the 5’-17 kb region of the genome (2016) Virus Res, 213, pp. 140-148; Jackwood, M.W., Boynton, T.O., Hilt, D.A., McKinley, E.T., Kissinger, J.C., Paterson, A.H., Robertson, J., Williams, S.M., Emergence of a group 3 coronavirus through recombination (2010) Virology, 398, pp. 98-108; Olvera, A., Cortey, M., Segalés, J., Molecular evolution of porcine circovirus type 2 genomes: Phylogeny and clonality (2007) Virology, 357, pp. 175-185; Shangjin, C., Cortey, M., Segalés, J., Phylogeny and evolution of the NS1 and VP1/VP2 gene sequences from porcine parvovirus (2009) Virus Res, 140, pp. 209-215","Munir, M.; Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster UniversityUnited Kingdom; email: muhammad.munir@lancaster.ac.uk",,"MDPI AG",19994915,,,"30646528","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85060014612 "Han Y., Du J., Su H., Zhang J., Zhu G., Zhang S., Wu Z., Jin Q.","57204507563;55480885600;55770853800;12804671600;30567972400;35212214400;36449566800;26030966000;","Identification of diverse bat alphacoronaviruses and betacoronaviruses in china provides new insights into the evolution and origin of coronavirus-related diseases",2019,"Frontiers in Microbiology","10","AUG", 1900,"","",,,"10.3389/fmicb.2019.01900","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071904545&doi=10.3389%2ffmicb.2019.01900&partnerID=40&md5=c7be353babb1531cd890ab8affd041c0","NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China; EcoHealth Alliance, New York, NY, United States","Han, Y., NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Du, J., NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Su, H., NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Zhang, J., Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China; Zhu, G., EcoHealth Alliance, New York, NY, United States; Zhang, S., Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China; Wu, Z., NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Jin, Q., NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China","Outbreaks of severe acute respiratory syndrome (SARS) in 2002, Middle East respiratory syndrome in 2012 and fatal swine acute diarrhea syndrome in 2017 caused serious infectious diseases in humans and in livestock, resulting in serious public health threats and huge economic losses. All such coronaviruses (CoVs) were confirmed to originate from bats. To continuously monitor the epidemic-related CoVs in bats, virome analysis was used to classify CoVs from 831 bats of 15 species in Yunnan, Guangxi, and Sichuan Provinces between August 2016 and May 2017. We identified 11 CoV strains from 22 individual samples of four bat species. Identification of four alpha-CoVs from Scotophilus kuhlii in Guangxi, which was closely related to a previously reported bat CoV and porcine epidemic diarrhea virus (PEDV), revealed a bat-swine lineage under the genus Alphacoronavirus. A recombinant CoV showed that the PEDV probably originated from the CoV of S. kuhlii. Another alpha-CoV, α-YN2018, from Rhinolophus affinis in Yunnan, suggested that this alpha-CoV lineage had multiple host origins, and α-YN2018 had recombined with CoVs of other bat species over time. We identified five SARS-related CoVs (SARSr-CoVs) in Rhinolophus bats from Sichuan and Yunnan and confirmed that angiotensin-converting enzyme 2 usable SARSr-CoVs were continuously circulating in Rhinolophus spp. in Yunnan. The other beta-CoV, strain β-GX2018, found in Cynopterus sphinx of Guangxi, represented an independently evolved lineage different from known CoVs of Rousettus and Eonycteris bats. The identification of diverse CoVs here provides new genetic data for understanding the distribution and source of pathogenic CoVs in China. © 2019 Han, Du, Su, Zhang, Zhu, Zhang, Wu and Jin.","Bats; Coronaviruses; Ecological and genetic diversity; Porcine epidemic diarrhea virus; Severe acute respiratory syndrome coronavirus",,"Balboni, A., Battilani, M., Prosperi, S., The SARS-like coronaviruses: The role of bats and evolutionary relationships with SARS coronavirus (2012) New Microbiol, 35, pp. 1-16; Cai, Y., Yin, W., Zhou, Y., Li, B., Ai, L., Pan, M., Molecular detection of Porcine astrovirus in Sichuan Province, China (2016) Virol. J., 13, p. 6; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Desforges, M., Le Coupanec, A., Stodola, J.K., Meessen-Pinard, M., Talbot, P.J., Human coronaviruses: Viral and cellular factors involved in neuroinvasiveness and neuropathogenesis (2014) Virus Res, 194, pp. 145-158; Dijkman, R., van der Hoek, L., Human coronaviruses 229E and NL63: Close yet still so far (2009) J. Formos. Med. Assoc., 108, pp. 270-279; Donnelly, C.A., Fisher, M.C., Fraser, C., Ghani, A.C., Riley, S., Ferguson, N.M., Epidemiological and genetic analysis of severe acute respiratory syndrome (2004) Lancet Infect. Dis., 4, pp. 672-683; Du, J., Yang, L., Ren, X., Zhang, J., Dong, J., Sun, L., Genetic diversity of coronaviruses in Miniopterus fuliginosus bats (2016) Sci. China Life Sci., 59, pp. 604-614; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Vet. Microbiol., 206, pp. 45-51; Halpin, K., Hyatt, A.D., Fogarty, R., Middleton, D., Bingham, J., Epstein, J.H., Pteropid bats are confirmed as the reservoir hosts of henipaviruses: A comprehensive experimental study of virus transmission (2011) Am. J. Trop. Med. Hyg., 85, pp. 946-951; Heymann, D.L., Mackenzie, J.S., Peiris, M., SARS legacy: Outbreak reporting is expected and respected (2013) Lancet, 381, pp. 779-781; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol. J., 12, p. 221; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) Plos Pathog, 13; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., A Bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) Plos Pathog, 12; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 14040-14045; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Lim, Y.X., Ng, Y.L., Tam, J.P., Liu, D.X., Human Coronaviruses: A review of virus-host interactions (2016) Diseases, 4, p. 26; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222; Madhugiri, R., Fricke, M., Marz, M., Ziebuhr, J., RNA structure analysis of alphacoronavirus terminal genome regions (2014) Virus Res, 194, pp. 76-89; Mari Saez, A., Weiss, S., Nowak, K., Lapeyre, V., Zimmermann, F., Dux, A., Investigating the zoonotic origin of the West African Ebola epidemic (2015) EMBO Mol. Med., 7, pp. 17-23; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction (2015) Pathog. Glob. Health, 109, pp. 354-362; O’Shea, T.J., Cryan, P.M., Cunningham, A.A., Fooks, A.R., Hayman, D.T., Luis, A.D., Bat flight and zoonotic viruses (2014) Emerg. Infect. Dis., 20, pp. 741-745; Paez, D.J., Giles, J., McCallum, H., Field, H., Jordan, D., Peel, A.J., Conditions affecting the timing and magnitude of Hendra virus shedding across pteropodid bat populations in Australia (2017) Epidemiol. Infect., 145, pp. 3143-3153; Phan, M.V.T., Ngo Tri, T., Hong Anh, P., Baker, S., Kellam, P., Cotten, M., Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains (2018) Virus. E, 4; Sendow, I., Ratnawati, A., Taylor, T., Adjid, R.M., Saepulloh, M., Barr, J., Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia (2013) Plos One, 8; Simas, P.V., Barnabe, A.C., Duraes-Carvalho, R., Neto, D.F., Caserta, L.C., Artacho, L., Bat coronavirus in Brazil related to appalachian ridge and Porcine epidemic diarrhea viruses (2015) Emerg. Infect. Dis., 21, pp. 729-731; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu. Rev. Virol., 2, pp. 265-288; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184; Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Woo, P.C.Y., Huang, Y., Lau, S.K.P., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Wu, Z., Li, Y., Ren, X., He, G., Zhang, J., Jian, Y., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J, 10, pp. 609-620; Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S., ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J. Infect. Dis., 213, pp. 579-583; Wu, Z., Lu, L., Du, J., Yang, L., Ren, X., Liu, B., Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases (2018) Microbiome, 6, p. 178; Wu, Z., Ren, X., Yang, L., Hu, Y., Yang, J., He, G., Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces (2012) J. Virol., 86, pp. 10999-11012; Yang, L., Wu, Z., Ren, X., Yang, F., He, G., Zhang, J., Novel SARS-like betacoronaviruses in bats, China, 2011 (2013) Emerg. Infect. Dis., 19, pp. 989-991; Yang, L., Wu, Z., Ren, X., Yang, F., Zhang, J., He, G., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg. Infect. Dis., 20, pp. 1260-1262; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J. Virol., 90, pp. 3253-3256; Yang, X.L., Tan, C.W., Anderson, D.E., Jiang, R.D., Li, B., Zhang, W., Characterization of a filovirus (Mengla virus) from Rousettus bats in China (2019) Nat. Microbiol., 4, pp. 390-395; Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K.A., Fang, X., Comparative analysis of bat genomes provides insight into the evolution of flight and immunity (2013) Science, 339, pp. 456-460; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Wu, Z.; NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeChina; email: wuzq2009@ipbcams.ac.cn",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85071904545 "Malbon A.J., Meli M.L., Barker E.N., Davidson A.D., Tasker S., Kipar A.","24401119500;7005287100;7103411237;7402001807;55790583400;7004576445;","Inflammatory Mediators in the Mesenteric Lymph Nodes, Site of a Possible Intermediate Phase in the Immune Response to Feline Coronavirus and the Pathogenesis of Feline Infectious Peritonitis?",2019,"Journal of Comparative Pathology","166",,,"69","86",,4,"10.1016/j.jcpa.2018.11.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058419053&doi=10.1016%2fj.jcpa.2018.11.001&partnerID=40&md5=b496029f29a4191055076a61cd92686a","Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland; Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland; Center for Clinical Studies, Switzerland; Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Switzerland; Langford Vets, Langford House, United Kingdom; Bristol Veterinary School, United Kingdom; School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, United Kingdom; Institute of Global Health, Faculty of Health and Life Sciences, University of Liverpool, United Kingdom","Malbon, A.J., Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland, Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland, Center for Clinical Studies, Switzerland; Meli, M.L., Center for Clinical Studies, Switzerland, Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Switzerland; Barker, E.N., Langford Vets, Langford House, United Kingdom; Davidson, A.D., School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, United Kingdom; Tasker, S., Bristol Veterinary School, United Kingdom; Kipar, A., Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland, Institute of Global Health, Faculty of Health and Life Sciences, University of Liverpool, United Kingdom","Feline infectious peritonitis (FIP) is an almost invariably fatal feline coronavirus (FCoV)-induced disease thought to arise from a combination of viral mutations and an overexuberant immune response. Natural initial enteric FCoV infection may remain subclinical, or result in mild enteric signs or the development of FIP; cats may also carry the virus systemically with no adverse effect. This study screened mesenteric lymph nodes (MLNs), the presumed first site of FCoV spread from the intestine regardless of viraemia, for changes in the transcription of a panel of innate immune response mediators in response to systemic FCoV infection and with FIP, aiming to identify key pathways triggered by FCoV. Cats with and without FIP, the latter with and without FCoV infection in the MLN, were compared. Higher expression levels in FIP were found for toll-like receptors (TLRs) 2, 4 and 8. These are part of the first line of defence and suggest a response to both viral structural proteins and viral nucleic acid. Expression of genes encoding inflammatory cytokines and chemokines, including interleukin (IL)-1β, IL-6, IL-15, tumour necrosis factor (TNF)-α, CXCL10, CCL8, interferon (IFN)-α, IFN-β and IFN-γ, was higher in cats with FIP, consistent with inflammatory pathway activation. Expression of genes encoding transcription factors STAT1 and 2, regulating signalling pathways, particularly of the interferons, was also higher. Among cats without FIP, there were few differences between virus-positive and virus-negative MLNs; however, TLR9 and STAT2 expression were higher with infection, suggesting a direct viral effect. The study provides evidence for TLR involvement in the response to FCoV. This could open up new avenues for therapeutic approaches. © 2018 Elsevier Ltd","cytokines; feline coronavirus; mesenteric lymph nodes; toll-like receptors","alpha interferon; beta interferon; chemokine; cytokine; gamma interferon; gamma interferon inducible protein 10; interleukin 15; interleukin 1beta; interleukin 6; monocyte chemotactic protein 2; nucleic acid; STAT1 protein; STAT2 protein; structural protein; toll like receptor 2; toll like receptor 4; toll like receptor 8; toll like receptor 9; tumor necrosis factor; autacoid; adult; animal experiment; animal tissue; Article; cat disease; Feline coronavirus; female; gene expression; gene expression level; genetic variation; immune response; innate immunity; male; mesentery lymph node; nonhuman; pathogenesis; peritonitis; priority journal; protein expression; signal transduction; virus gene; virus load; animal; cat; Feline coronavirus; feline infectious peritonitis; immunology; lymph node; mesentery; Animals; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Female; Inflammation Mediators; Lymph Nodes; Male; Mesentery","Aaronson, D.S., Horvath, C.M., A road map for those who don't know JAK–STAT (2002) Science, 296, pp. 1653-1655; Abbas, A.K., Lichtman, A.H., Pillai, S., Cellular and Molecular Immunology (2017), pp. 63-65. , 9th Edit. Saunders Elsevier Philadelphia; Arpaia, N., Barton, G., Toll-like receptors: key players in antiviral immunity (2011) Current Opinion in Virology, 1, pp. 447-454; Barker, E.N., Stranieri, A., Helps, C.R., Porter, E.L., Davidson, A.D., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Veterinary Research, 48, pp. 1-14; Beutler, B.A., TLRs and innate immunity (2009) Blood, 113, pp. 1399-1407; Camporeale, A., Poli, V., IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? (2012) Frontiers in Bioscience, 17, pp. 2306-2326; Chang, H.-W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J.M., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerging Infectious Diseases, 18, pp. 1089-1095; Dean, G.A., Olivry, T., Stanton, C., Pedersen, N.C., In vivo cytokine response to experimental feline infectious peritonitis virus infection (2003) Veterinary Microbiology, 97, pp. 1-12; Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., Replication of feline coronaviruses in peripheral blood monocytes (2005) Archives of Virology, 150, pp. 2483-2500; Dosch, S.F., Mahajan, S.D., Collins, A.R., SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro (2009) Virus Research, 142, pp. 19-27; Felten, S., Leutenegger, C.M., Balzer, H.-J., Pantchev, N., Matiasek, K., Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis (2017) BMC Veterinary Research, 13, p. 228; Felten, S., Weider, K., Doenges, S., Gruendl, S., Matiasek, K., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) Journal of Feline Medicine & Surgery, 19, pp. 321-335; Frieman, M.B., Chen, J., Morrison, T.E., Whitmore, A., Funkhouser, W., SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism (2010) PLoS Pathogens, 6, p. e1000849; Gelain, M.E., Meli, M., Paltrinieri, S., Whole blood cytokine profiles in cats infected by feline coronavirus and healthy non-FCoV infected specific pathogen-free cats (2006) Journal of Feline Medicine & Surgery, 8, pp. 389-399; Gut, M., Leutenegger, C.M., Huder, J.B., Pedersen, N.C., Lutz, H., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses (1999) Journal of Virological Methods, 77, pp. 37-46; Harun, M.S.R., Kuan, C.O., Selvarajah, G.T., Wei, T.S., Arshad, S.S., Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats (2013) Virology Journal, 10, pp. 1-9; Hennessy, E.J., Parker, A.E., O'Neill, L.A.J., Targeting Toll-like receptors: emerging therapeutics? (2010) Nature Reviews Drug Discovery, 9, pp. 293-307; Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., De Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) Journal of Virology, 72, pp. 4508-4514; Hsieh, L.-E., Chueh, L.-L., Identification and genotyping of feline infectious peritonitis-associated single nucleotide polymorphisms in the feline interferon-γ gene (2014) Veterinary Research, 45, p. 57; Hughes, A.L., Piontkivska, H., Functional diversification of the toll-like receptor gene family (2008) Immunogenetics, 60, pp. 249-256; Ignacio, G., Nordone, S., Howard, K.E., Dean, G.A., Toll-like receptor expression in feline lymphoid tissues (2005) Veterinary Immunology and Immunopathology, 106, pp. 229-237; Jensen, S., Thomsen, A.R., Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion (2012) Journal of Virology, 86, pp. 2900-2910; Khanolkar, A., Hartwig, S.M., Haag, B.A., Meyerholz, D.K., Harty, J.T., Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice (2009) Journal of Virology, 83, pp. 8946-8956; Kint, J., Dickhout, A., Kutter, J., Maier, H.J., Britton, P., Infectious bronchitis coronavirus inhibits STAT1 signaling and requires accessory proteins for resistance to type I interferon activity (2015) Journal of Virology, 89, pp. 12047-12057; Kipar, A., Baptiste, K., Barth, A., Reinacher, M., Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats (2006) Journal of Feline Medicine & Surgery, 8, pp. 69-72; Kipar, A., Bellmann, S., Kremendahl, J., Köhler, K., Reinacher, M., Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis (1998) Veterinary Immunology and Immunopathology, 65, pp. 243-257; Kipar, A., Koehler, K., Bellmann, S., Reinacher, M., Feline infectious peritonitis presenting as a tumour in the abdominal cavity (1999) Veterinary Record, 144, pp. 118-122; Kipar, A., Leutenegger, C.M., Hetzel, U., Akens, M.K., Mislin, C.N., Cytokine mRNA levels in isolated feline monocytes (2001) Veterinary Immunology and Immunopathology, 78, pp. 305-315; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Veterinary Pathology, 51, pp. 505-526; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) Journal of General Virology, 91, pp. 1698-1707; Kipar, A., Meli, M.L., Failing, K., Euler, T., Gomes-Keller, M., Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection (2006) Veterinary Immunology and Immunopathology, 112, pp. 141-155; Klingemann, H., Immunotherapy for dogs: running behind humans (2018) Frontiers in Immunology, 9, p. 133; Lester, S.N., Li, K., Toll-like receptors in antiviral innate immunity (2014) Journal of Molecular Biology, 426, pp. 1246-1264; Leutenegger, C.M., Mislin, C.N., Sigrist, B., Ehrengruber, M.U., Hofmann-Lehmann, R., Quantitative real-time PCR for the measurement of feline cytokine mRNA (1999) Veterinary Immunology and Immunopathology, 71, pp. 291-305; Li, S.-W., Wang, C.-Y., Jou, Y.-J., Huang, S.-H., Hsiao, L.-H., SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6 (2016) International Journal of Molecular Sciences, 17, p. 678; Maruo, N., Morita, I., Shirao, M., Murota, S., IL-6 increases endothelial permeability in vitro (1992) Endocrinology, 131, pp. 710-714; Mazaleuskaya, L., Veltrop, R., Ikpeze, N., Martin-Garcia, J., Navas-Martin, S., Protective role of Toll-like receptor 3-induced type I interferon in murine coronavirus infection of macrophages (2012) Viruses, 4, pp. 901-923; Meli, M., Kipar, A., Müller, C., Jenal, K., Gönczi, E., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats (2004) Journal of Feline Medicine & Surgery, 6, pp. 69-81; Nan, J., Wang, Y., Yang, J., Stark, G.R., IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression (2018) Proceedings of the National Academy of Sciences of the USA, 115, pp. 3906-3911; Pedersen, N.C., Virologic and immunologic aspects of feline infectious peritonitis virus infection (1987) Advances in Experimental Medicine & Biology, 218, pp. 529-550; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Veterinary Journal, 201, pp. 123-132; Pedersen, N.C., Boyle, J.F., Immunologic phenomena in the effusive form of feline infectious peritonitis (1980) American Journal of Veterinary Research, 41, pp. 868-876; Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis (1981) American Journal of Veterinary Research, 42, pp. 368-377; Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acids Research, 29, p. e45; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) Journal of Clinical Microbiology, 34, pp. 3180-3184; Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Veterinary Research, 45, p. 49; Roach, J.C., Glusman, G., Rowen, L., Kaur, A., Purcell, M.K., The evolution of vertebrate Toll-like receptors (2005) Proceedings of the National Academy of Sciences of the USA, 102, pp. 9577-9582; Robert-Tissot, C., Rümegger, V.L., Cattori, V., Meli, M.L., Riond, B., The innate antiviral immune system of the cat: Molecular tools for the measurement of its state of activation (2011) Veterinary Immunology and Immunopathology, 143, pp. 269-281; Robert-Tissot, C., Rüegger, V.L., Cattori, V., Meli, M.L., Riond, B., Stimulation with a class A CpG oligonucleotide enhances resistance to infection with feline viruses from five different families (2012) Veterinary Research, 43, p. 60; Safi, N., Haghani, A., Ng, S.W., Selvarajah, G.T., Mustaffa-Kamal, F., Expression profiles of immune mediators in feline coronavirus-infected cells and clinical samples of feline coronavirus-positive cats (2017) BMC Veterinary Research, 13, p. 92; Taglinger, K., Van Nguyen, N., Helps, C.R., Day, M.J., Foster, A.P., Quantitative real-time RT-PCR measurement of cytokine mRNA expression in the skin of normal cats and cats with allergic skin disease (2008) Veterinary Immunology and Immunopathology, 122, pp. 216-230; Takano, T., Ohyama, T., Kokumoto, A., Satoh, R., Hohdatsu, T., Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP (2011) Virus Research, 158, pp. 161-168; Tekes, G., Hofmann-Lehmann, R., Bank-Wolf, B., Maier, R., Thiel, H.-J., Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage (2010) Journal of Virology, 84, pp. 1326-1333; van Beijnum, J.R., Buurman, W.A., Griffioen, A.W., Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1) (2008) Angiogenesis, 11, pp. 91-99","Kipar, A.; Institute of Global Health, Faculty of Health and Life Sciences, University of LiverpoolUnited Kingdom; email: anja.kipar@uzh.ch",,"W.B. Saunders Ltd",00219975,,JCVPA,"30691609","English","J. Comp. Pathol.",Article,"Final",,Scopus,2-s2.0-85058419053 "Ahmadzadeh J., Mobaraki K.","36573331500;55853618500;","Epidemiological status of the middle east respiratory syndrome coronavirus in 2019: An update from january 1 to march 31, 2019",2019,"International Journal of General Medicine","12",,,"305","311",,2,"10.2147/IJGM.S215396","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071857800&doi=10.2147%2fIJGM.S215396&partnerID=40&md5=0edea448471610b5b4248b63de0161b0","Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran","Ahmadzadeh, J., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Mobaraki, K., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran","Purpose: This study represents the current epidemiological status of Middle East respiratory syndrome coronavirus (MERS-CoV) worldwide in the first three months of 2019. Patients and methods: Full details of the MERS-CoV cases available and published in the disease outbreak news on the WHO website were retrieved. Related details of laboratory-confirmed MERS-CoV were extracted and analyzed by standard statistical methods. Results: A total of 107 cases of MERS-CoV, including 18 deaths (overall case fatality rate (CFR), 16.8%; male-specific CFR was 17.5% [14/80] and female-specific CFR was 14.8% [4/27]) were reported to WHO from the National International Health Regulation Focal Points of Saudi Arabia and Oman. The overall mean age was 50±17 years and 80 patients (74.8%) were male. The average time from the onset of the symptoms to the first hospitalization was 3±3.3 days; from the first hospitalization to laboratory confirmation was 3.6±6.5 days; from the onset of symptom to death was 17.5±11.7 days; and the mean length of hospitalization for patients with MERS-CoV was 3.5±3.9 days. Males in comparison to females had a 1.5-fold increased chance (adjusted OR =1.5 [95% CI: 1.3–1.8]) of death related to MERS-CoV infection; 1.05 [95% CI: 1.1–3.3], 1.05 [95% CI: 1.2–2.8] and 1.06 [95% CI: 1.2–2.0] for those who had exposure to camels, camel milk consumption, and close contact with MERS-CoV cases, respectively. Health care workers had 2.4 fold [95% CI: 1.2– 3.1] greater odds of death compared to other people. Conclusion: The knowledge obtained from this study can contribute to the development of a prevention program and early system warning against MERS-CoV infection. © 2019 Ahmadzadeh and Mobaraki.","Disease outbreaks; Emerging infectious disease; Middle East respiratory syndrome coronavirus","adolescent; adult; aged; Article; camel; camel milk; case fatality rate; controlled study; cross-sectional study; data analysis; data extraction; disease course; epidemiological data; female; geographic distribution; health care organization; health care personnel; hospitalization; human; infection risk; major clinical study; male; Middle East respiratory syndrome; mortality risk; Oman; risk factor; Saudi Arabia; sex difference; very elderly","Friedman, N., Alter, H., Hindiyeh, M., Mendelson, E., Shemer Avni, Y., Mandelboim, M., Human coronavirus infections in Israel: Epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1 (2018) Viruses, 10 (10), p. 515; Te, N., Vergara-Alert, J., Lehmbecker, A., Co-localization of Middle East respiratory syndrome coronavirus (MERS-CoV) and dipeptidyl peptidase-4 in the respiratory tract and lymphoid tissues of pigs and llamas (2019) Transbound Emerg Dis, 66 (2), pp. 831-841; Dawson, P., Malik, M.R., Parvez, F., Morse, S.S., What have we learned about Middle East respiratory syndrome coronavirus emergence in humans? A systematic literature review (2019) Vector Borne Zoonotic Dis, 19 (3), pp. 174-192; Amri, S., Bharti, R., Alsaleem, S.A., Musa, H.M., Chaudhary, S., Shaikh, A.A., Knowledge and practices of primary health care physicians regarding updated guidelines of MERS-CoV infection in Abha city (2019) Jfamilymed Prim Care, 8 (2), p. 455; (2019), https://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov, Available from, Accessed March 11, 2019; Drosten, C., Seilmaier, M., Corman, V.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13 (9), pp. 745-751; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371 (9), pp. 828-835; (2019) Emergencies Preparedness, Response,Mers-Cov Disease Outbreak News, , https://www.who.int/csr/don/archive/disease/coronavirus_infections/en/, Accessed April 24, 2019; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): Prevention in travelers (2014) Travel Med Infect Dis, 12 (6), pp. 602-608; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Yezli, S., Etiology of severe community-acquired pneumonia during the 2013 Hajj—part of the MERS-CoV surveillance program (2014) Int J Infect Dis, 25, pp. 186-190; Mobaraki, K., Ahmadzadeh, J., Current epidemiological status of Middle East respiratory syndrome coronavirus in the world from 1.1. 2017 to 17.1. 2018: A cross-sectional study (2019) BMC Infect Dis, 19 (1), p. 351; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14 (5), pp. 464-470; Kim, K., Tandi, T., Choi, J., Moon, J., Kim, M., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95 (2), pp. 207-213; Nam, H.-S., Park, J.W., Ki, M., Yeon, M.-Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int J Infect Dis, 58, pp. 37-42; Furman, D., Hejblum, B.P., Simon, N., Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination (2014) Proc Natl Acad Sci, 111 (2), pp. 869-874; Memish, Z., Al-Tawfiq, J., Makhdoom, H., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Feikin, D.R., Alraddadi, B., Qutub, M., Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia (2015) Emerg Infect Dis, 21 (11), p. 2029; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (1), p. 615; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64 (2), pp. 344-353; Majumder, M.S., Rivers, C., Lofgren, E., Fisman, D., Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: Insights from publicly available data (2014) Plos Curr, 6; Alqahtani, A.S., Wiley, K.E., Mushta, S.M., Association between Australian Hajj Pilgrims’ awareness of MERS-CoV, and their compliance with preventive measures and exposure to camels (2016) J Travel Med, 23 (5), p. taw046; Eifan, S.A., Nour, I., Hanif, A., Zamzam, A.M., Aljohani, S.M., A pandemic risk assessment of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia (2017) Saudi J Biol Sci, 24 (7), pp. 1631-1638","Mobaraki, K.; Social Determinants of Health Research Center, Urmia University of Medical Sciences, Resalat Street, Iran; email: Mobaraki.k@umsu.ac.ir",,"Dove Medical Press Ltd.",11787074,,,,"English","Int. J. Gen. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85071857800 "Kim M.H., Kim H.J., Chang J.","57201330627;55153906800;8735999100;","Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing fulllength Spike protein of Middle East respiratory syndrome coronavirus",2019,"PLoS ONE","14","7", e0220196,"","",,1,"10.1371/journal.pone.0220196","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069965295&doi=10.1371%2fjournal.pone.0220196&partnerID=40&md5=af5ae2df8bba3ce591ccd3960c6a38e7","Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, South Korea; Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea","Kim, M.H., Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, South Korea; Kim, H.J., Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea; Chang, J., Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) causes an acute and severe lower respiratory illness as well as vomiting, diarrhea, and renal failure. Because no licensed MERS-CoV vaccines are currently available, preventive and therapeutic measures are urgently needed. The surface spike (S) glycoprotein of MERS-CoV, which binds to the cellular receptor dipeptidyl peptidase 4 (DPP4), is considered as a major target for MERS-CoV vaccine development. Here, we designed recombinant replication-deficient adenovirusbased vaccines expressing the N-terminal domain (rAd/NTD) and receptor-binding domain (rAd/RBD) of the MERS-CoV S1 subunit and full-length Spike protein (rAd/Spike). We found that immunization with candidate vaccines via intranasal route induced S1-specific IgG antibodies and neutralizing antibodies against MERS spike pseudotyped virus. Especially, rAd/ Spike induced the highest neutralizing antibody titer and the strongest cytokine-induced T cell responses among the three candidate vaccines. To compare the immune responses induced by different administration routes, rAd/Spike was administered via intranasal, sublingual, or intramuscular route. All these administration routes exhibited neutralizing effects in the serum. MERS-CoV-specific neutralizing IgA antibodies in the bronchoalveolar lavage fluid were only induced by intranasal and sublingual administration but not by intramuscular administration. Intranasal administration with rAd/Spike also created resident memory CD8 T cells in the airway and lung parenchyma. Taken together, our results showed that both the humoral and cellular immune responses are highly induced by rAd/Spike administration, suggesting that rAd/Spike may confer protection against MERS-CoV infection. © 2019 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adenovirus vector; CD8 antigen; cytokine; immunoglobulin G; neutralizing antibody; virus spike protein; coronavirus spike glycoprotein; immunoglobulin A; neutralizing antibody; recombinant vaccine; airway; amino terminal sequence; animal experiment; animal model; animal tissue; antibody titer; Article; bronchoalveolar lavage fluid; CD8+ T lymphocyte; cellular immunity; controlled study; female; human; human cell; humoral immunity; immune response; immunization; infant; lung parenchyma; Middle East respiratory syndrome; mouse; nonhuman; protein expression; viral gene therapy; virus replication; Adenoviridae; animal; Bagg albino mouse; cell culture; Coronavirus infection; genetics; HEK293 cell line; immunology; intranasal drug administration; Middle East respiratory syndrome coronavirus; procedures; Spodoptera; vaccination; Adenoviridae; Administration, Intranasal; Animals; Antibodies, Neutralizing; Cells, Cultured; Coronavirus Infections; Female; HEK293 Cells; Humans; Immunoglobulin A; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Spodoptera; Vaccination; Vaccines, Synthetic","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, PMID: 23075143; Bermingham, A., Chand, M., Brown, C., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Eurosurveillance, 17 (40), p. 20290. , PMID: 23078800; Guery, B., Poissy, J., El Mansouf, L., Sééjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission (2013) The Lancet, 381 (9885), pp. 2265-2272; MacKay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virology Journal, 12 (1), p. 222; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary middle east respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55. , https://doi.org/10.3201/eid2201.151340, Jan, PMID: 26692185; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., Haagmans, B.L., MERS: Emergence of a novel human coronavirus (2014) Current Opinion in Virology, 5, pp. 58-62. , https://doi.org/10.1016/j.coviro.2014.01.010, 2014 April, PMID: 24584035; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) The Lancet, 386 (9997), pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8, 2015 5-11 September, PMID: 26049252; Cho, S.Y., Kang, J., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) The Lancet, 388, pp. 994-1001. , https://doi.org/10.1016/S0140-6736(16)30623-7, 2016 3-9 September, 10048; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: Current status and novel approaches (2017) Current Opinion in Virology, 23, pp. 49-58. , https://doi.org/10.1016/j.coviro.2017.03.007, 2017 April, PMID: 28412285; Modjarrad, K., Moorthy, V.S., Embarek, P.B., Van Kerkhove, M., Kim, J., Kieny, M., A roadmap for MERS-CoV research and product development: Report from a World Health Organization consultation (2016) Nat Med, 22 (7), p. 701. , https://doi.org/10.1038/nm.4131, PMID: 27387881; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522. , https://doi.org/10.1128/CMR.00102-14, Apr, PMID: 25810418; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J Virol, 87 (14), pp. 7790-7792. , https://doi.org/10.1128/JVI.01244-13, Jul, PMID: 23678167; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47 (8), p. e181; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg Infect Dis, 19 (5), pp. 736-742B. , https://doi.org/10.3201/eid1905.130057, May, PMID: 23693015; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6). , https://doi.org/10.1128/mBio.00473-12, Nov 20, PMID: 23170002; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), p. 227. , https://doi.org/10.1038/nature12328, PMID: 23831647; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), p. 251. , https://doi.org/10.1038/nature12005, PMID: 23486063; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), p. 986. , https://doi.org/10.1038/cr.2013.92, PMID: 23835475; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111 (42), pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111, Oct 21, PMID: 25288733; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69 (4), pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005, Dec, PMID: 16339739; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: Targets for vaccines and therapeutics (2016) Antiviral Res, 133, pp. 165-177. , https://doi.org/10.1016/j.antiviral.2016.07.015, PMID: 27468951; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32 (26), pp. 3169-3174. , https://doi.org/10.1016/j.vaccine.2014.04.016, 30 May 2014, PMID: 24736006; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opinion on Therapeutic Targets, 21 (2), pp. 131-143. , https://doi.org/10.1080/14728222.2017.1271415, PMID: 27936982; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Human Vaccines & Immunotherapeutics, 12 (9), pp. 2351-2356; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PloS One, 8 (12), p. e81587. , https://doi.org/10.1371/journal.pone.0081587, PMID: 24324708; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERSCoV) infection (2017) Vaccine, 35 (1), pp. 10-18. , https://doi.org/10.1016/j.vaccine.2016.11.064, PMID: 27899228; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nature Communications, 6, p. 7712. , https://doi.org/10.1038/ncomms8712, PMID: 26218507; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.K., Intranasal vaccination with recombinant receptorbinding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108. , https://doi.org/10.1016/j.vaccine.2014.02.004, PMID: 24560617; Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptorbinding domain as an antigen (2014) PLoS One, 9 (11), p. e112602. , https://doi.org/10.1371/journal.pone.0112602, PMID: 25405618; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7 (301), p. 301ra132. , https://doi.org/10.1126/scitranslmed.aac7462, Aug 19, PMID: 26290414; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Scientific Reports, 7, p. 44875. , https://doi.org/10.1038/srep44875, PMID: 28332568; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Alhajri, M.M., Farag, E.A., Immunogenicity of an adenoviralbased Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32 (45), pp. 5975-5982. , https://doi.org/10.1016/j.vaccine.2014.08.058, PMID: 25192975; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484. , https://doi.org/10.1111/imm.12462, PMID: 25762305; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (6268), pp. 77-81. , https://doi.org/10.1126/science.aad1283, Jan 1, PMID: 26678878; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Protective efficacy of recombinant modified vaccinia virus Ankara delivering middle east respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89 (16), pp. 8651-8656. , https://doi.org/10.1128/JVI.00614-15, Aug, PMID: 26018172; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87 (21), pp. 11950-11954. , https://doi.org/10.1128/JVI.01672-13, Nov, PMID: 23986586; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2 (10), pp. 1438-1446. , https://doi.org/10.1016/j.ebiom.2015.08.031, PMID: 26629538; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J Virol, , JVI. 02002-17; Park, D.Y., Kim, S., Kim, C., Yoon, J., Kim, H., Alternative method for primary nasal epithelial cell culture using intranasal brushing and feasibility for the study of epithelial functions in allergic rhinitis (2016) Allergy, Asthma & Immunology Research, 8 (1), pp. 69-78; He, T.C., Zhou, S., Da Costa, L.T., Yu, J., Kinzler, K.W., Vogelstein, B., A simplified system for generating recombinant adenoviruses (1998) Proc Natl Acad Sci U S A, 95 (5), pp. 2509-2514. , https://doi.org/10.1073/pnas.95.5.2509, Mar 3, PMID: 9482916; Kim, M.H., Kang, J., Kim, J., Jung, H.E., Lee, H.K., Chang, J., Single mucosal vaccination targeting nucleoprotein provides broad protection against two lineages of influenza B virus (2019) Antiviral Res, 163, pp. 19-28. , https://doi.org/10.1016/j.antiviral.2019.01.002, PMID: 30639307; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nature Communications, 8, p. 15092. , https://doi.org/10.1038/ncomms15092, PMID: 28393837; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PloS One, 8 (10), p. e76469. , https://doi.org/10.1371/journal.pone.0076469, PMID: 24098509; Hossler, P., Protein glycosylation control in mammalian cell culture: Past precedents and contemporary prospects (2011) Genomics and Systems Biology of Mammalian Cell Culture, pp. 187-219. , Springer; Brandtzaeg, P., Role of secretory antibodies in the defence against infections (2003) International Journal of Medical Microbiology, 293 (1), p. 3. , https://doi.org/10.1078/1438-4221-00241, PMID: 12755363; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111 (13), pp. 4970-4975. , https://doi.org/10.1073/pnas.1323279111, Apr 1, PMID: 24599590; Liu, W.J., Lan, J., Liu, K., Deng, Y., Yao, Y., Wu, S., Protective t cell responses featured by concordant recognition of middle east respiratory syndrome coronavirus-derived cd8+ t cell epitopes and host MHC (2017) J Immunol, 198 (2), pp. 873-882. , https://doi.org/10.4049/jimmunol.1601542, Jan 15, PMID: 27903740; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerging Microbes & Infections, 6 (5), p. e37; McMaster, S.R., Wein, A.N., Dunbar, P.R., Hayward, S.L., Cartwright, E.K., Denning, T.L., Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma (2018) Mucosal Immunol, 11 (4), pp. 1071-1078. , https://doi.org/10.1038/s41385-018-0003-x, Jul, PMID: 29453412; McMaster, S.R., Wilson, J.J., Wang, H., Kohlmeier, J.E., Airway-resident memory cd8 t cells provide antigen- specific protection against respiratory virus challenge through rapid ifn-gamma production (2015) J Immunol, 195 (1), pp. 203-209. , https://doi.org/10.4049/jimmunol.1402975, Jul 1, PMID: 26026054; Takamura, S., Roberts, A.D., Jelley-Gibbs, D.M., Wittmer, S.T., Kohlmeier, J.E., Woodland, D.L., The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen (2010) J Exp Med, 207 (6), pp. 1153-1160. , https://doi.org/10.1084/jem.20090283, Jun 7, PMID: 20457758; Anderson, K.G., Mayer-Barber, K., Sung, H., Beura, L., James, B.R., Taylor, J.J., Intravascular staining for discrimination of vascular and tissue leukocytes (2014) Nature Protocols, 9 (1), p. 209. , https://doi.org/10.1038/nprot.2014.005, PMID: 24385150; Wu, T., Hu, Y., Lee, Y.T., Bouchard, K.R., Benechet, A., Khanna, K., Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection (2014) J Leukoc Biol, 95 (2), pp. 215-224. , https://doi.org/10.1189/jlb.0313180, Feb, PMID: 24006506; Siegrist, C., Vaccine immunology (2008) Vaccines, 5 (1), pp. 17-36; Coleman, C.M., Frieman, M.B., Coronaviruses: Important emerging human pathogens (2014) J Virol, 88 (10), pp. 5209-5212. , https://doi.org/10.1128/JVI.03488-13, May, PMID: 24600003; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35 (16), pp. 2069-2075. , https://doi.org/10.1016/j.vaccine.2017.02.063, PMID: 28314561; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34 (26), pp. 2982-2987. , https://doi.org/10.1016/j.vaccine.2016.03.104, PMID: 27083424; Kim, Y.J., Cho, Y.J., Kim, D.W., Yang, J.S., Kim, H., Park, S., Complete genome sequence of middle east respiratory syndrome coronavirus KOR/KNIH/002_05_2015, isolated in South Korea (2015) Genome Announc, 3 (4). , https://doi.org/10.1128/genomeA.00787-15, Aug 13, PMID: 26272558; Kleine-Weber, H., Elzayat, M.T., Wang, L., Graham, B.S., Muller, M.A., Drosten, C., Mutations in the spike protein of MERS-CoV transmitted in Korea increase resistance towards antibody-mediated neutralization (2018) J Virol, , Nov 7; Sui, J., Deming, M., Rockx, B., Liddington, R.C., Zhu, Q.K., Baric, R.S., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J Virol, 88 (23), pp. 13769-13780. , https://doi.org/10.1128/JVI.02232-14, Dec, PMID: 25231316; Yang, Y., Deng, Y., Wen, B., Wang, H., Meng, X., Lan, J., The amino acids 736-761 of the MERS-CoV spike protein induce neutralizing antibodies: Implications for the development of vaccines and antiviral agents (2014) Viral Immunol, 27 (10), pp. 543-550. , https://doi.org/10.1089/vim.2014.0080, PMID: 25387086; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111 (19), pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111, May 13, PMID: 24778221; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci U S A, 114 (35), pp. E7348-E7357. , https://doi.org/10.1073/pnas.1707304114, Aug 29, PMID: 28807998; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) The Lancet Infectious Diseases, 13 (9), pp. 745-751. , https://doi.org/10.1016/S1473-3099(13)70154-3, PMID: 23782859; Zens, K.D., Chen, J.K., Farber, D.L., Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection (2016) JCI Insight, 1 (10). , https://doi.org/10.1172/jci.insight.85832, Jul 7, PMID: 27468427","Chang, J.; Graduate School of Pharmaceutical Sciences, Ewha Woman's UniversitySouth Korea; email: tcell@ewha.ac.kr",,"Public Library of Science",19326203,,POLNC,"31329652","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85069965295 "Behzadi M.A., Leyva-Grado V.H.","24480846800;22986018700;","Overview of current therapeutics and novel candidates against influenza, respiratory syncytial virus, and Middle East respiratory syndrome coronavirus infections",2019,"Frontiers in Microbiology","10","JUN", 1327,"","",,7,"10.3389/fmicb.2019.01327","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069057241&doi=10.3389%2ffmicb.2019.01327&partnerID=40&md5=8b9c629f1d9caca6a11efb2878a800bd","Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States","Behzadi, M.A., Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Leyva-Grado, V.H., Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States","Emergence and re-emergence of respiratory virus infections represent a significant threat to global public health, as they occur seasonally and less frequently (such as in the case of influenza virus) as pandemic infections. Some of these viruses have been in the human population for centuries and others had recently emerged as a public health problem. Influenza viruses have been affecting the human population for a long time now; however, their ability to rapidly evolve through antigenic drift and antigenic shift causes the emergence of new strains. A recent example of these events is the avian-origin H7N9 influenza virus outbreak currently undergoing in China. Human H7N9 influenza viruses are resistant to amantadines and some strains are also resistant to neuraminidase inhibitors greatly limiting the options for treatment. Respiratory syncytial virus (RSV) may cause a lower respiratory tract infection characterized by bronchiolitis and pneumonia mainly in children and the elderly. Infection with RSV can cause severe disease and even death, imposing a severe burden for pediatric and geriatric health systems worldwide. Treatment for RSV is mainly supportive since the only approved therapy, a monoclonal antibody, is recommended for prophylactic use in high-risk patients. The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging respiratory virus. The virus was first recognized in 2012 and it is associated with a lower respiratory tract disease that is more severe in patients with comorbidities. No licensed vaccines or antivirals have been yet approved for the treatment of MERS-CoV in humans. It is clear that the discovery and development of novel antivirals that can be used alone or in combination with existing therapies to treat these important respiratory viral infections are critical. In this review, we will describe some of the novel therapeutics currently under development for the treatment of these infections. Copyright © 2019 Behzadi and Leyva-Grado.","Antiviral; Influenza; MERS-coronavirus; Novel therapeutic agents; Respiratory syncytial virus","alina; amantadine; baloxavir marboxil; benzimidazole; favipiravir; immunoglobulin G; lopinavir; lopinavir plus ritonavir; motavizumab; nitazoxanide; nucleoside analog; oseltamivir; palivizumab; peramivir; pimodivir; polyclonal human immunoglobulin G; ribavirin; rimantadine; ritonavir; RNA directed DNA polymerase inhibitor; unclassified drug; zanamivir; Betacoronavirus; bovine; clinical trial (topic); comorbidity; drug mechanism; drug targeting; genetic drift; human; influenza; influenza A; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; phase 1 clinical trial (topic); phase 2 clinical trial (topic); phase 3 clinical trial (topic); respiratory syncytial virus infection; Review; virus neutralization","Abarca, K., Jung, E., Fernández, P., Zhao, L., Harris, B., Connor, E.M., Safety, tolerability, pharmacokinetics, and immunogenicity of motavizumab, a humanized, enhanced-potency monoclonal antibody for the prevention of respiratory syncytial virus infection in at-risk children (2009) Pediatr. Infect. Dis. J., 28, pp. 267-272; Ackermann, M., Alnajjar, S., Larios-Mora, A., Koul, A., Rigaux, P., Gallup, J., Therapeutic efficacy of JNJ-53718678, a RSV fusion inhibitor, in neonatal lambs (2016) 10th International Respiratory Syncytial Virus Symposium, , (Argentina: Patagonia); Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., Treatment outcomes for patients with middle Eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the kingdom of Saudi Arabia (2016) BMC Infect. Dis., 16, p. 174; Alame, M.M., Massaad, E., Zaraket, H., Peramivir: A novel intravenous neuraminidase inhibitor for treatment of acute influenza infections (2016) Front. Microbiol, 7, p. 450; Ali, S.O., Takas, T., Nyborg, A., Shoemaker, K., Kallewaard, N.L., Chiong, R., Evaluation of MEDI8852, an anti-influenza A monoclonal antibody, in treating acute uncomplicated influenza (2018) Antimicrob. Agents Chemother, 62, pp. e00694-e00718; Al-Tawfiq, J.A., Alfaraj, S.H., Altuwaijri, T.A., Memish, Z.A., A cohort-study of patients suspected for MERS-cov in a referral hospital in Saudi Arabia (2017) J. Infect, 75, pp. 378-379; Al-Tawfiq, J.A., Memish, Z.A., Update on therapeutic options for middle East respiratory syndrome coronavirus (MERS-cov) (2017) Expert Rev. Anti-Infect. Ther., 15, pp. 269-275; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the middle East respiratory syndrome coronavirus: An observational study (2014) Int. J. Infect. Dis., 20, pp. 42-46; Amarelle, L., Lecuona, E., Sznajder, J.I., Anti-influenza treatment: Drugs currently used and under development (2017) Arch. Bronconeumol, 53, pp. 19-26; Antonini, T.M., Coilly, A., Rossignol, E., Fougerou-Leurent, C., Dumortier, J., Leroy, V., Sofosbuvir-based regimens in HIV/HCV coinfected patients after liver transplantation: Results from the ANRS CO23 CUPILT study (2018) Transplantation, 102, pp. 119-126; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., Aljohani, S., Al Harbi, S., Treatment of middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-beta1b (MIRACLE trial): Study protocol for a randomized controlled trial (2018) Trials, 19, p. 81; Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Al-Omari, A., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with middle East respiratory syndrome coronavirus infection: A study protocol (2015) Springerplus, 4, p. 709; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Battles, M.B., Langedijk, J.P., Furmanova-Hollenstein, P., Chaiwatpongsakorn, S., Costello, H.M., Kwanten, L., Molecular mechanism of respiratory syncytial virus fusion inhibitors (2016) Nat. Chem. Biol., 12, pp. 87-93; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.A., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: A phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect. Dis., 18, pp. 410-418; Belardo, G., Cenciarelli, O., La Frazia, S., Rossignol, J.F., Santoro, M.G., Synergistic effect of nitazoxanide with neuraminidase inhibitors against influenza A viruses in vitro (2015) Antimicrob. Agents Chemother, 59, pp. 1061-1069; Belser, J.A., Lu, X., Szretter, K.J., Jin, X., Aschenbrenner, L.M., Lee, A., DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection (2007) J. Infect. Dis., 196, pp. 1493-1499; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the middle East, September 2012 (2012) Euro Surveill, 17, p. 20290; Bonavia, A., Franti, M., Keaney, E.P., Kuhen, K., Seepersaud, M., Radetich, B., Identification of broad-spectrum antiviral compounds and assessment of the druggability of their target for efficacy against respiratory syncytial virus (RSV) (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 6739-6744; Bonfanti, J.-F., Doublet, F., Fortin, J., Lacrampe, J., Guillemont, J., Muller, P., Selection of a respiratory syncytial virus fusion inhibitor clinical candidate, Part 1: Improving the pharmacokinetic profile using the structure-property relationship (2007) J. Med. Chem., 50, pp. 4572-4584; Bonfanti, J.-F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121) (2008) J. Med. Chem., 51, pp. 875-896; Borchardt, R.A., Rolston, K.V., Respiratory tract infections: Emerging viral pathogens (2012) JAAPA, 25, pp. 19-20; Boyd, M.J., Bandarage, U.K., Bennett, H., Byrn, R.R., Davies, I., Gu, W., Isosteric replacements of the carboxylic acid of drug candidate VX-787: Effect of charge on antiviral potency and kinase activity of azaindole-based influenza PB2 inhibitors (2015) Bioorg. Med. Chem. Lett., 25, pp. 1990-1994; Byrn, R.A., Jones, S.M., Bennett, H.B., Bral, C., Clark, M.P., Jacobs, M.D., Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit (2015) Antimicrob. Agents Chemother, 59, pp. 1569-1582; (2017) Middle East Respiratory Syndrome (MERS), , https://www.cdc.gov/coronavirus/mers/index.html, (Accessed April 17, 2019); (2018) Influenza Antiviral Medications: Summary for Clinicians, , https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm, (Accessed April 17, 2019); (2018) Respiratory Syncytial Virus (RSV), , https://www.cdc.gov/rsv/clinical/index.html, (Accessed June 2016, 2019); (2018) Summary of the 107-2018 Influenza Season, , https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm, (Accessed April 17, 2019); Challa, S., Scott, A.D., Yuzhakov, O., Zhou, Y., Tiong-Yip, C.L., Gao, N., Mechanism of action for respiratory syncytial virus inhibitor RSV604 (2015) Antimicrob. Agents Chemother, 59, pp. 1080-1087; Chan, S.M., Damdinjav, B., Perera, R.A., Chu, D.K., Khishgee, B., Enkhbold, B., Absence of MERS-coronavirus in bactrian camels, Southern Mongolia, November 2014 (2015) Emerg. Infect. Dis., 21, pp. 1269-1271; Chapman, J., Abbott, E., Alber, D.G., Baxter, R.C., Bithell, S.K., Henderson, E.A., RSV604, a novel inhibitor of respiratory syncytial virus replication (2007) Antimicrob. Agents Chemother, 51, pp. 3346-3353; Chaudhuri, S., Symons, J.A., Deval, J., Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond (2018) Antiviral Res., 155, pp. 76-88; Clark, M.P., Ledeboer, M.W., Davies, I., Byrn, R.A., Jones, S.M., Perola, E., Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2 (2014) J. Med. Chem., 57, pp. 6668-6678; Collins, P.L., Fearns, R., Graham, B.S., Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease (2013) Challenges and Opportunities for Respiratory Syncytial Virus Vaccines, pp. 3-38. , eds. L. J. Anderson and S. B. Graham (Berlin, Heidelberg: Springer-Verlag); Davidson, S., Treating influenza infection, from now and into the future (2018) Front. Immunol, 9, p. 1946; Deng, R., Lee, A.P., Maia, M., Lim, J.J., Burgess, T., Horn, P., Pharmacokinetics of MHAA4549A, an anti-influenza A monoclonal antibody, in healthy subjects challenged with influenza A virus in a phase IIa randomized trial (2018) Clin. Pharmacokinet, 57, pp. 367-377; Detalle, L., Larios, A., Gallup, L., Van Geelen, A., Duprez, L., Stohr, T., Delivery of ALX-0171 by inhalation greatly reduces disease burden in a neonatal lamb RSV infection model (2014) 9th International Respiratory Syncytial Virus Symposium, , (Cape Town, South Africa) Abstract OP 72; Detalle, L., Stohr, T., Palomo, C., Piedra, P.A., Gilbert, B.E., Mas, V., Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection (2016) Antimicrob. Agents Chemother, 60, pp. 6-13; Deval, J., Hong, J., Wang, G., Taylor, J., Smith, L.K., Fung, A., Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate (2015) PLoS Pathog., 11; Devincenzo, J.P., Therapy of respiratory syncytial virus infection (2000) Pediatr. Infect. Dis. J., 19, pp. 786-790; Devincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 8800-8805; Devincenzo, J.P., Mcclure, M.W., Symons, J.A., Fathi, H., Westland, C., Chanda, S., Activity of oral ALS-008176 in a respiratory syncytial virus challenge study (2015) N. Engl. J. Med., 373, pp. 2048-2058; Domachowske, J.B., Khan, A.A., Esser, M.T., Jensen, K., Takas, T., Villafana, T., Safety, tolerability, and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants (2018) Pediatr. Infect. Dis. J., 37, pp. 886-892; Dyall, J., Gross, R., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Hensley, L.E., Middle East respiratory syndrome and severe acute respiratory syndrome: Current therapeutic options and potential targets for novel therapies (2017) Drugs, 77, pp. 1935-1966; Ekiert, D.C., Friesen, R.H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., A highly conserved neutralizing epitope on group 2 influenza A viruses (2011) Science, 333, pp. 843-850; Enjuanes, L., Zuniga, S., Castano-Rodriguez, C., Gutierrez-Alvarez, J., Canton, J., Sola, I., Molecular basis of coronavirus virulence and vaccine development (2016) Adv. Virus Res., 96, pp. 245-286; Erbelding, E.J., Post, D.J., Stemmy, E.J., Roberts, P.C., Augustine, A.D., Ferguson, S., A universal influenza vaccine: The strategic plan for the national institute of allergy and infectious diseases (2018) J. Infect. Dis., 218, pp. 347-354; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat. Med., 19, pp. 1313-1317; Ferkol, T., Schraufnagel, D., The global burden of respiratory disease (2014) Ann. Am. Thorac. Soc., 11, pp. 404-406; (2018) FDA Approves New Drug to Treat Influenza, , https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm624226.htm, (Accessed October 24, 2018); Friesen, R.H., Koudstaal, W., Koldijk, M.H., Weverling, G.J., Brakenhoff, J.P., Lenting, P.J., New class of monoclonal antibodies against severe influenza: Prophylactic and therapeutic efficacy in ferrets (2010) PLoS One, 5; Frogel, M., Nerwen, C., Cohen, A., Vanveldhuisen, P., Harrington, M., Boron, M., Prevention of hospitalization due to respiratory syncytial virus: Results from the palivizumab outcomes registry (2008) J. Perinatol, 28, pp. 511-517; Fukao, K., Noshi, T., Yamamoto, A., Kitano, M., Ando, Y., Noda, T., Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza A virus infection (2018) J. Antimicrob. Chemother, 74, pp. 654-662; Furuta, Y., Komeno, T., Nakamura, T., Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase (2017) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 93, pp. 449-463; Furuta, Y., Takahashi, K., Kuno-Maekawa, M., Sangawa, H., Uehara, S., Kozaki, K., Mechanism of action of T-705 against influenza virus (2005) Antimicrob. Agents Chemother, 49, pp. 981-986; Gottlieb, J., Zamora, M.R., Hodges, T., Musk, A., Sommerwerk, U., Dilling, D., ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients (2016) J. Heart Lung Transplant, 35, pp. 213-221; Griffin, M.P., Khan, A.A., Esser, M.T., Jensen, K., Takas, T., Kankam, M.K., Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults (2017) Antimicrob. Agents Chemother, 61, pp. e01714-e01716; Griffiths, C., Drews, S.J., Marchant, D.J., Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment (2017) Clin. Microbiol. Rev., 30, pp. 277-319; Gurnett-Bander, A., Perez-Caballero, D., Sivapalasingam, S., Duan, X., Macdonald, D., (2016) Human Antibodies to Respiratory Syncytial Virus F Protein and Methods of use Thereof, , Google Patents; Haffizulla, J., Hartman, A., Hoppers, M., Resnick, H., Samudrala, S., Ginocchio, C., Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial (2014) Lancet Infect. Dis., 14, pp. 609-618; Hanfelt-Goade, D., Maimon, N., Nimer, A., Riviere, F., Catherinot, E., Ison, M., ""A phase 2b, randomized, double-blind, placebo-controlled trial of presatovir (GS-5806), a novel oral RSV fusion inhibitor, for the treatment of respiratory syncytial virus (RSV) in hospitalized adults"" in C17 (2018) New Insights in Acute Pulmonary Infections, p. A4457. , (San Diego, CA: American Thoracic Society); Hanton, G., Detalle, L., Priem, S., Bouche, M.-P., Depla, E., Baumeister, J., ALX-0171 toxicity study in RSV-infected cotton rats: Safety and therapeutic potential (2012) Toxicol. Lett., 211, p. S43; Hayden, F.G., Sugaya, N., Hirotsu, N., Lee, N., De Jong, M.D., Hurt, A.C., Baloxavir marboxil for uncomplicated influenza in adults and adolescents (2018) N. Engl. J. Med., 379, pp. 913-923; Haynes, L.M., Caidi, H., Radu, G.U., Miao, C., Harcourt, J.L., Tripp, R.A., Therapeutic monoclonal antibody treatment targeting respiratory syncytial virus (RSV) G protein mediates viral clearance and reduces the pathogenesis of RSV infection in BALB/c mice (2009) J. Infect. Dis., 200, pp. 439-447; Heylen, E., Neyts, J., Jochmans, D., Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery (2017) Biochem. Pharmacol, 127, pp. 1-12; Hotard, A.L., Lee, S., Currier, M.G., Crowe, J.E., Sakamoto, K., Newcomb, D.C., Identification of residues in the human respiratory syncytial virus fusion protein that modulate fusion activity and pathogenesis (2015) J. Virol., 89, pp. 512-522; Huntjens, D.R., Ouwerkerk-Mahadevan, S., Brochot, A., Rusch, S., Stevens, M., Verloes, R., Population pharmacokinetic modeling of JNJ-53718678, a novel fusion inhibitor for the treatment of respiratory syncytial virus: Results from a phase I, double-blind, randomized, placebo-controlled first-in-human study in healthy adult subjects (2017) Clin. Pharmacokinet, 56, pp. 1331-1342; Prevention and treatment of respiratory viral infections: Presentations on antiviral, traditional therapies and host-directed interventions at the 5th ISIRV antiviral group conference. Meeting report (2018) Antiviral Res., 149, pp. 118-142; Ison, M.G., Antiviral treatments (2017) Clin. Chest Med., 38, pp. 139-153; Ispas, G., Koul, A., Verbeeck, J., Sheehan, J., Sanders-Beer, B., Roymans, D., Antiviral activity of TMC353121, a respiratory syncytial virus (RSV) fusion inhibitor, in a non-human primate model (2015) PLoS One, 10; Israel, S., Rusch, S., Devincenzo, J., Boyers, A., Fok-Seang, J., Huntjens, D., Effect of oral JNJ-53718678 (JNJ-678) on disease severity in healthy adult volunteers experimentally inoculated with live respiratory syncytial virus (RSV): A placebo-controlled challenge study"" (2016) Open Forum Infectious Diseases, , (New Orleans, LA: Oxford University Press); Jin, Y., Lei, C., Hu, D., Dimitrov, D.S., Ying, T., Human monoclonal antibodies as candidate therapeutics against emerging viruses (2017) Front. Med., 11, pp. 462-470; Johnson, S.M., McNally, B.A., Ioannidis, I., Flano, E., Teng, M.N., Oomens, A.G., Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures (2015) PLoS Pathog, 11; Jones, J.C., Kumar, G., Barman, S., Najera, I., White, S.W., Webby, R.J., Identification of the I38T PA substitution as a resistance marker for next-generation influenza virus endonuclease inhibitors (2018) MBio, 9, pp. e00430-e00518; Jordan, P.C., Stevens, S.K., Deval, J., Nucleosides for the treatment of respiratory RNA virus infections (2018) Antivir. Chem. Chemother, 26. , 2040206618764483; Jorquera, P.A., Tripp, R.A., Respiratory syncytial virus: Prospects for new and emerging therapeutics (2017) Expert Rev. Respir. Med., 11, pp. 609-615; Kallewaard, N.L., Corti, D., Collins, P.J., Neu, U., McAuliffe, J.M., Benjamin, E., Structure and function analysis of an antibody recognizing all influenza A subtypes (2016) Cell, 166, pp. 596-608; Kapoor, M., Pringle, K., Kumar, A., Dearth, S., Liu, L., Lovchik, J., Clinical and laboratory findings of the first imported case of middle East respiratory syndrome coronavirus to the United States (2014) Clin. Infect. Dis., 59, pp. 1511-1518; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al Mutairy, E., Ribavirin and interferon-alpha2b as primary and preventive treatment for middle East respiratory syndrome coronavirus: A preliminary report of two cases (2015) Antivir. Ther., 20, pp. 87-91; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol. Health, 37; Kim, Y.I., Pareek, R., Murphy, R., Harrison, L., Farrell, E., Cook, R., The antiviral effects of RSV fusion inhibitor, MDT-637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin (2017) Influenza Other Respir. Viruses, 11, pp. 525-530; Kim, J., Seong, R.-K., Kumar, M., Shin, O.S., Favipiravir and ribavirin inhibit replication of Asian and African strains of zika virus in different cell models (2018) Viruses, 10, p. 72; Kim, U.J., Won, E.J., Kee, S.J., Jung, S.I., Jang, H.C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for middle East respiratory syndrome (2016) Antivir. Ther., 21, pp. 455-459; Koszalka, P., Tilmanis, D., Hurt, A.C., Influenza antivirals currently in late-phase clinical trial (2017) Influenza Other Respir. Viruses, 11, pp. 240-246; Koudstaal, W., Koldijk, M.H., Brakenhoff, J.P., Cornelissen, L.A., Weverling, G.J., Friesen, R.H., Pre- and postexposure use of human monoclonal antibody against H5N1 and H1N1 influenza virus in mice: Viable alternative to oseltamivir (2009) J. Infect. Dis., 200, pp. 1870-1873; Lim, J.J., Deng, R., Derby, M.A., Larouche, R., Horn, P., Anderson, M., Two phase 1, randomized, double-blind, placebo-controlled, single-ascending-dose studies to investigate the safety, tolerability, and pharmacokinetics of an anti-influenza A virus monoclonal antibody, MHAA4549A, in healthy volunteers (2016) Antimicrob. Agents Chemother, 60, pp. 5437-5444; Lu, P.Y., Evans, D.M., Xu, J.J., Lu, A.Y., Ge, Q., (2018) Compositions and Methods for ""resistance-proof"" SiRNA Therapeutics for Influenza, , Google Patents; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.A., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci. Transl. Med., 8, pp. 321-326; Mackman, R.L., Sangi, M., Sperandio, D., Parrish, J.P., Eisenberg, E., Perron, M., Discovery of an oral respiratory syncytial virus (RSV) fusion inhibitor (GS-5806) and clinical proof of concept in a human RSV challenge study (2015) J. Med. Chem., 58, pp. 1630-1643; Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw, F.M., Lim, W.S., The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis (2015) J. Infect. Dis., 211, pp. 80-90; Malakhov, M.P., Aschenbrenner, L.M., Smee, D.F., Wandersee, M.K., Sidwell, R.W., Gubareva, L.V., Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection (2006) Antimicrob. Agents Chemother, 50, pp. 1470-1479; Marjuki, H., Mishin, V.P., Chesnokov, A.P., De La Cruz, J.A., Fry, A.M., Villanueva, J., An investigational antiviral drug, DAS181, effectively inhibits replication of zoonotic influenza A virus subtype H7N9 and protects mice from lethality (2014) J. Infect. Dis., 210, pp. 435-440; Marjuki, H., Mishin, V.P., Chesnokov, A.P., Jones, J., De La Cruz, J.A., Sleeman, K., Characterization of drug-resistant influenza A(H7N9) variants isolated from an oseltamivir-treated patient in Taiwan (2015) J. Infect. Dis., 211, pp. 249-257; Marty, F., Chemaly, R., Liakopoulou, E., Dent, J., Powell, K., A double-blind, randomized, placebo-controlled study to evaluate the safety and efficacy of RSV604 in adults with respiratory syncytial virus infection following stem cell transplantation"" (2007) Proceedings of the IXth International Symposium on Respiratory Viral Infections, , International Society for Influenza and other Respiratory Virus Diseases (ISIRV); Matsushita, H., Sano, A., Wu, H., Jiao, J.A., Kasinathan, P., Sullivan, E.J., Triple immunoglobulin gene knockout transchromosomic cattle: Bovine lambda cluster deletion and its effect on fully human polyclonal antibody production (2014) PLoS One, 9; McBride, J.M., Lim, J.J., Burgess, T., Deng, R., Derby, M.A., Maia, M., Phase 2 randomized trial of the safety and efficacy of MHAA4549A, a broadly neutralizing monoclonal antibody, in a human influenza A virus challenge model (2017) Antimicrob. Agents Chemother, 61, pp. e01154-e01217; McIntosh, K., (2017) Middle East Respiratory Syndrome Coronavirus: Treatment and Prevention; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N. Engl. J. Med., 369, pp. 884-886; Mo, Y., Fisher, D., A review of treatment modalities for middle East respiratory syndrome (2016) J. Antimicrob. Chemother, 71, pp. 3340-3350; Modjarrad, K., Treatment strategies for middle East respiratory syndrome coronavirus (2016) J. Virus Erad, 2, pp. 1-4; Momattin, H., Mohammed, K., Zumla, A., Memish, Z.A., Al-Tawfiq, J.A., Therapeutic options for middle East respiratory syndrome coronavirus (MERS-cov) - Possible lessons from a systematic review of SARS-CoV therapy (2013) Int. J. Infect. Dis., 17, pp. e792-e798; Morris, J., Blount, R., Jr., Savage, R., Recovery of cytopathogenic agent from chimpanzees with goryza (1956) Proc. Soc. Exp. Biol. Med., 92, pp. 544-549; Moss, R.B., Hansen, C., Sanders, R.L., Hawley, S., Li, T., Steigbigel, R.T., A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection (2012) J. Infect. Dis., 206, pp. 1844-1851; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for middle East respiratory syndrome (MERS): A review (2018) J. Infect. Public Health, 11, pp. 9-17; Nakamura, G., Chai, N., Park, S., Chiang, N., Lin, Z., Chiu, H., An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies (2013) Cell Host Microbe, 14, pp. 93-103; Noshi, T., Kitano, M., Taniguchi, K., Yamamoto, A., Omoto, S., Baba, K., In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit (2018) Antiviral Res., 160, pp. 109-117; O'Brien, K.L., Chandran, A., Weatherholtz, R., Jafri, H.S., Griffin, M.P., Bellamy, T., Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy native American infants: A phase 3 randomised double-blind placebo-controlled trial (2015) Lancet Infect. Dis., 15, pp. 1398-1408; Omrani, A.S., Shalhoub, S., Middle East respiratory syndrome coronavirus (MERS-cov): What lessons can we learn? (2015) J. Hosp. Infect, 91, pp. 188-196; Ormond, L., Liu, P., Matuszewski, S., Renzette, N., Bank, C., Zeldovich, K., The combined effect of oseltamivir and favipiravir on influenza A virus evolution (2017) Genome Biol. Evol., 9, pp. 1913-1924; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Zoonotic origin and transmission of middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65, pp. 322-333; Palese, P., Bodo, G., Tuppy, H., Quantitative determination of neuraminidase-active foci in cell monolayer cultures infected with influenza or newcastle disease virus (1970) J. Virol., 6, pp. 556-558; Park, S.Y., Lee, J.S., Son, J.S., Ko, J.H., Peck, K.R., Jung, Y., Post-exposure prophylaxis for middle East respiratory syndrome in healthcare workers (2019) J. Hosp. Infect, 101, pp. 42-46; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; Paules, C.I., Lakdawala, S., McAuliffe, J.M., Paskel, M., Vogel, L., Kallewaard, N.L., The hemagglutinin A stem antibody MEDI8852 prevents and controls disease and limits transmission of pandemic influenza viruses (2017) J. Infect. Dis., 216, pp. 356-365; Petersen, E., Hui, D.S., Perlman, S., Zumla, A., Middle East respiratory syndrome - Advancing the public health and research agenda on MERS - Lessons from the South Korea outbreak (2015) Int. J. Infect. Dis., 36, pp. 54-55; Pielak, R.M., Chou, J.J., Influenza M2 proton channels (2011) Biochim. Biophys. Acta, 1808, pp. 522-529; Putri, W., Muscatello, D.J., Stockwell, M.S., Newall, A.T., Economic burden of seasonal influenza in the United States (2018) Vaccine, 36, pp. 3960-3966; Rabaan, A.A., Middle East respiratory syndrome coronavirus: Five years later (2017) Expert Rev. Respir. Med., 11, pp. 901-912; Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., Alhani, H.M., A review of candidate therapies for middle East respiratory syndrome from a molecular perspective (2017) J. Med. Microbiol, 66, pp. 1261-1274; Rossignol, J.F., Thiazolides: A new class of antiviral drugs (2009) Expert Opin. Drug Metab. Toxicol, 5, pp. 667-674; Rossignol, J.F., La Frazia, S., Chiappa, L., Ciucci, A., Santoro, M.G., Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level (2009) J. Biol. Chem., 284, pp. 29798-29808; Rouan, M.-C., Gevers, T., Roymans, D., De Zwart, L., Nauwelaers, D., De Meulder, M., Pharmacokinetics-pharmacodynamics of a respiratory syncytial virus fusion inhibitor in the cotton rat model (2010) Antimicrob. Agents Chemother, 54, pp. 4534-4539; Roymans, D., Rigaux, P., Kwanten, L., Vandesteene, C., Van Ginderen, M., Van Den Berg, J., Discovery of JNJ-53718678, a potent inhibitor of RSV (2014) 9th International Respiratory Syncytial Virus Symposium, pp. 9-13. , (Cape Town); Samuel, D., Xing, W., Niedziela-Majka, A., Wong, J.S., Hung, M., Brendza, K.M., GS-5806 inhibits pre-to postfusion conformational changes of the respiratory syncytial virus fusion protein (2015) Antimicrob. Agents Chemother, 59, pp. 7109-7112; Schickli, J.H., Whitacre, D.C., Tang, R.S., Kaur, J., Lawlor, H., Peters, C.J., Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge (2015) J. Clin. Invest, 125, pp. 1637-1647; Schnell, J.R., Chou, J.J., Structure and mechanism of the M2 proton channel of influenza A virus (2008) Nature, 451, pp. 591-595; Shahabi, A., Peneva, D., Incerti, D., McLaurin, K., Stevens, W., Assessing variation in the cost of palivizumab for respiratory syncytial virus prevention in preterm infants (2017) PharmacoEconomics-Open, 2, pp. 1-9; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J. Antimicrob. Chemother, 70, pp. 2129-2132; Shaw, M.L., The next wave of influenza drugs (2017) ACS Infect. Dis., 3, pp. 691-694; Sidwell, R.W., Barnard, D.L., Day, C.W., Smee, D.F., Bailey, K.W., Wong, M.H., Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice (2007) Antimicrob. Agents Chemother, 51, pp. 845-851; Sivapalasingam, S., Caballero-Perez, D., Houghton, M., Yang, F., Davis, J., Gao, B., Phase 1 study evaluating safety, tolerability, pharmacokinetics and immunogenicity of REGN2222 in healthy adults: A new human monoclonal RSV-F antibody for RSV prevention (2015) Open Forum Infectious Diseases, , (San Diego, CA: Oxford University Press); Sleeman, K., Mishin, V.P., Guo, Z., Garten, R.J., Balish, A., Fry, A.M., Antiviral susceptibility of variant influenza A(H3N2)v viruses isolated in the United States from 2011 to 2013 (2014) Antimicrob. Agents Chemother, 58, pp. 2045-2051; Smee, D.F., Barnard, D.L., Jones, S.M., Activities of JNJ63623872 and oseltamivir against influenza A H1N1pdm and H3N2 virus infections in mice (2016) Antiviral Res., 136, pp. 45-50; Smee, D.F., Hurst, B.L., Wong, M.H., Bailey, K.W., Tarbet, E.B., Morrey, J.D., Effects of the combination of favipiravir (T-705) and oseltamivir on influenza A virus infections in mice (2010) Antimicrob. Agents Chemother, 54, pp. 126-133; Stachulski, A.V., Santoro, M.G., Piacentini, S., Belardo, G., Frazia, S., Pidathala, C., Second-generation nitazoxanide derivatives: Thiazolides are effective inhibitors of the influenza A virus (2018) Future Med. Chem., 10, pp. 851-862; Sun, Z., Pan, Y., Jiang, S., Lu, L., Respiratory syncytial virus entry inhibitors targeting the F protein (2013) Viruses, 5, pp. 211-225; Takashita, E., Ejima, M., Ogawa, R., Fujisaki, S., Neumann, G., Furuta, Y., Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir (2016) Antiviral Res., 132, pp. 170-177; Takashita, E., Kiso, M., Fujisaki, S., Yokoyama, M., Nakamura, K., Shirakura, M., Characterization of a large cluster of influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir during the 2013-2014 influenza season in Japan (2015) Antimicrob. Agents Chemother, 59, pp. 2607-2617; Takashita, E., Morita, H., Ogawa, R., Nakamura, K., Fujisaki, S., Shirakura, M., Susceptibility of influenza viruses to the novel cap-dependent endonuclease inhibitor baloxavir marboxil (2018) Front. Microbiol, 9, p. 3026; Taleb, S.A., Al Thani, A.A., Al Ansari, K., Yassine, H.M., Human respiratory syncytial virus: Pathogenesis, immune responses, and current vaccine approaches (2018) Eur. J. Clin. Microbiol. Infect. Dis., 37, pp. 1-11; Tarbet, E.B., Maekawa, M., Furuta, Y., Babu, Y.S., Morrey, J.D., Smee, D.F., Combinations of favipiravir and peramivir for the treatment of pandemic influenza A/California/04/2009 (H1N1) virus infections in mice (2012) Antiviral Res., 94, pp. 103-110; Tharakaraman, K., Subramanian, V., Cain, D., Sasisekharan, V., Sasisekharan, R., Broadly neutralizing influenza hemagglutinin stem-specific antibody CR8020 targets residues that are prone to escape due to host selection pressure (2014) Cell Host Microbe, 15, pp. 644-651; Reduction of respiratory syncytial virus hospitalization among premature infants and infants with bronchopulmonary dysplasia using respiratory syncytial virus immune globulin prophylaxis (1997) Pediatrics, 99, pp. 93-99; Tian, D., Battles, M.B., Moin, S.M., Chen, M., Modjarrad, K., Kumar, A., Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein (2017) Nat. Commun., 8, p. 1877; Tilmanis, D., Van Baalen, C., Oh, D.Y., Rossignol, J.F., Hurt, A.C., The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide (2017) Antiviral Res., 147, pp. 142-148; Toovey, S., Wu, J., Wang, V., Griffin, P., Lau, A., Elliot, S., Safety and pharmacokinetics in healthy volunteers of the anti-RSV antiviral AK0529 (2015) 1st International Meeting on Respiratory Pathogens, September 3th, Singapore, , International Society for Influenza and other Respiratory Virus Diseases (ISIRV); Trevejo, J.M., Asmal, M., Vingerhoets, J., Polo, R., Robertson, S., Jiang, Y., Pimodivir treatment in adult volunteers experimentally inoculated with live influenza virus: A phase IIa, randomized, double-blind, placebo-controlled study (2018) Antivir. Ther., 23, pp. 335-344; Triana-Baltzer, G.B., Babizki, M., Chan, M.C., Wong, A.C., Aschenbrenner, L.M., Campbell, E.R., DAS181, a sialidase fusion protein, protects human airway epithelium against influenza virus infection: An in vitro pharmacodynamic analysis (2010) J. Antimicrob. Chemother, 65, pp. 275-284; Triana-Baltzer, G.B., Gubareva, L.V., Nicholls, J.M., Pearce, M.B., Mishin, V.P., Belser, J.A., Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein (2009) PLoS One, 4; Triana-Baltzer, G.B., Sanders, R.L., Hedlund, M., Jensen, K.A., Aschenbrenner, L.M., Larson, J.L., Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181 (2011) J. Antimicrob. Chemother, 66, pp. 15-28; Uehara, T., Keiko, K., Kawaguchi, K., Sato, C., Ishida, T., Hirotsu, N., S-033188, a small molecule inhibitor of cap-dependent endonuclease of influenza A and B virus, leads to rapid and profund viral load reduction (2016) Options for the Control of Influenza IX, p. 77. , (Chicago, USA: ISIRV); Van Heeke, G., Allosery, K., De Brabandere, V., De Smedt, T., Detalle, L., De Fougerolles, A., Nanobodies® as inhaled biotherapeutics for lung diseases (2017) Pharmacol. Ther., 169, pp. 47-56; Wang, J., Pielak, R.M., McClintock, M.A., Chou, J.J., Solution structure and functional analysis of the influenza B proton channel (2009) Nat. Struct. Mol. Biol., 16, pp. 1267-1271; Wasserman, R.L., Greener, B.N., Mond, J., RI-002, an intravenous immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory viruses for use in primary immunodeficiency disease and other immune compromised populations (2017) Expert Rev. Clin. Immunol, 13, pp. 1107-1119; Watanabe, T., Kiso, M., Fukuyama, S., Nakajima, N., Imai, M., Yamada, S., Characterization of H7N9 influenza A viruses isolated from humans (2013) Nature, 501, pp. 551-555; Wernery, U., Lau, S.K., Woo, P.C., Middle East respiratory syndrome (MERS) coronavirus and dromedaries (2017) Vet. J., 220, pp. 75-79; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: From discovery to intervention (2017) One Health, 3, pp. 11-16; (2014) Position Paper on Collection and use of Convalescent Plasma or Serum as an Element in Middle East Respiratory Syndrome Coronavirus Response, , https://www.who.int/bloodproducts/brn/BRN_PositionPaperConvPlasmaMERSCoV_March2014.pdf?ua=1, (Accessed March 11, 2014); (2017) Influenza in Focus: Up to 650000 People die of Respiratory Diseases Linked to Seasonal Flu Each Year, , https://www.who.int/en/news-room/detail/14-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year, (Accessed April 17, 2019); (2019) Clinical Mamagment of Severe Acute Respiratory Infection when MESR-CoV Infection Is Suspected: Interim Guidance, , http://www.who.int/iris/handle/10665/178529, (Accessed April 17, 2019); Wu, X.X., Gao, H.N., Wu, H.B., Peng, X.M., Ou, H.L., Li, L.J., Successful treatment of avian-origin influenza A (H7N9) infection using convalescent plasma (2015) Int. J. Infect. Dis., 41, pp. 3-5; Wu, H., Pfarr, D.S., Johnson, S., Brewah, Y.A., Woods, R.M., Patel, N.K., Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract (2007) J. Mol. Biol., 368, pp. 652-665; Wyde, P.R., Chetty, S.N., Timmerman, P., Gilbert, B.E., Andries, K., Short duration aerosols of JNJ 2408068 (R170591) administered prophylactically or therapeutically protect cotton rats from experimental respiratory syncytial virus infection (2003) Antiviral Res., 60, pp. 221-231; Wyde, P.R., Laquerre, S., Chetty, S.N., Gilbert, B.E., Nitz, T.J., Pevear, D.C., Antiviral efficacy of VP14637 against respiratory syncytial virus in vitro and in cotton rats following delivery by small droplet aerosol (2005) Antiviral Res., 178, pp. 131-138; Xing, Y., Proesmans, M., New therapies for acute RSV infections: Where are we? (2019) Eur. J. Pediatr, 68, pp. 18-26; Yip, T.F., Selim, A.S.M., Lian, I., Lee, S.M., Advancements in host-based interventions for influenza treatment (2018) Front. Immunol, 9, p. 1547; Zenilman, J.M., Fuchs, E.J., Hendrix, C.W., Radebaugh, C., Jurao, R., Nayak, S.U., Phase 1 clinical trials of DAS181, an inhaled sialidase, in healthy adults (2015) Antiviral Res., 123, pp. 114-119; Zhao, J., Perera, R.A., Kayali, G., Meyerholz, D., Perlman, S., Peiris, M., Passive immunotherapy with dromedary immune serum in an experimental animal model for middle East respiratory syndrome coronavirus infection (2015) J. Virol., 89, pp. 6117-6120; Zhu, Q., McAuliffe, J.M., Patel, N.K., Palmer-Hill, F.J., Yang, C.-F., Liang, B., Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab (2011) J. Infect. Dis., 203, pp. 674-682; Zhurilo, N.I., Chudinov, M.V., Matveev, A.V., Smirnova, O.S., Konstantinova, I.D., Miroshnikov, A.I., Isosteric ribavirin analogues: Synthesis and antiviral activities (2018) Bioorg. Med. Chem. Lett., 28, pp. 11-14; Zorc, J.J., Hall, C.B., Bronchiolitis: Recent evidence on diagnosis and management (2010) Pediatrics, 125, pp. 2009-2092; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - Drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov, 15, pp. 327-347; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007","Leyva-Grado, V.H.; Department of Microbiology, Icahn School of Medicine at Mount SinaiUnited States; email: victor.leyva-grado@mssm.edu",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85069057241 "Kandeil A., Gomaa M., Shehata M., El-Taweel A., Kayed A.E., Abiadh A., Jrijer J., Moatasim Y., Kutkat O., Bagato O., Mahmoud S., Mostafa A., El-Shesheny R., Perera R.A.P.M., Ko R.L.W., Hassan N., Elsokary B., Allal L., Saad A., Sobhy H., McKenzie P.P., Webby R.J., Peiris M., Ali M.A., Kayali G.","37034258700;55535974200;55857867300;56566529000;55536161900;36019970300;56166161700;55443467800;57192873994;55443270100;57191913086;35091393800;36456637800;43861730800;57193609536;57209588266;57193719276;55546357300;55497009100;56416347800;7006529917;35448064800;7005486823;55262803600;24366561300;","Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals",2019,"Emerging Microbes and Infections","8","1",,"103","108",,11,"10.1080/22221751.2018.1560235","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062817846&doi=10.1080%2f22221751.2018.1560235&partnerID=40&md5=8cab47d6fe8c4da8760741a2d95e9f10","Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Nature Link, Sfax, Tunisia; Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; St. Jude Children’s Research Hospital, Memphis, TN, United States; School of Public Health, University of Hong Kong, Sandy Bay, Hong Kong; General Organizations of Veterinary Services, Ministry of Agriculture and Land Reclamation, Giza, Egypt; Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases, Giza, Egypt; Human Link, Baabda, Lebanon; University of Texas Health Sciences Center, Houston, TX, United States","Kandeil, A., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Gomaa, M., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Shehata, M., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; El-Taweel, A., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Kayed, A.E., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Abiadh, A., Nature Link, Sfax, Tunisia; Jrijer, J., Nature Link, Sfax, Tunisia; Moatasim, Y., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Kutkat, O., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Bagato, O., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Mahmoud, S., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Mostafa, A., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt, Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany; El-Shesheny, R., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt, St. Jude Children’s Research Hospital, Memphis, TN, United States; Perera, R.A.P.M., School of Public Health, University of Hong Kong, Sandy Bay, Hong Kong; Ko, R.L.W., School of Public Health, University of Hong Kong, Sandy Bay, Hong Kong; Hassan, N., General Organizations of Veterinary Services, Ministry of Agriculture and Land Reclamation, Giza, Egypt; Elsokary, B., General Organizations of Veterinary Services, Ministry of Agriculture and Land Reclamation, Giza, Egypt; Allal, L., Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases, Giza, Egypt; Saad, A., Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases, Giza, Egypt; Sobhy, H., Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary Animal Diseases, Giza, Egypt; McKenzie, P.P., St. Jude Children’s Research Hospital, Memphis, TN, United States; Webby, R.J., St. Jude Children’s Research Hospital, Memphis, TN, United States; Peiris, M., School of Public Health, University of Hong Kong, Sandy Bay, Hong Kong; Ali, M.A., Center of Scientific Excellence for Influenza Virus, National Research Centre, Giza, Egypt; Kayali, G., Human Link, Baabda, Lebanon, University of Texas Health Sciences Center, Houston, TX, United States","Dromedary camels are natural host of the Middle East respiratory syndrome coronavirus (MERS-CoV). However, there are limited studies of MERS-CoV infection of other domestic mammals exposed to infected dromedaries. We expanded our surveillance among camels in Egypt, Tunisia, and Senegal to include other domestic mammalian species in contact with infected camels. A total of 820 sera and 823 nasal swabs from cattle, sheep, goats, donkeys, buffaloes, mules, and horses were collected. Swabs were tested using RT-PCR and virus RNA-positive samples were genetically sequenced and phylogenetically analysed. Sera were screened using virus microneutralization tests and positive sera (where available) were confirmed using plaque reduction neutralization tests (PRNT). We detected 90% PRNT confirmed MERS-CoV antibody in 35 (55.6%) of 63 sera from sheep collected from Senegal, two sheep (1.8%) of 114 in Tunisia and a goat (0.9%) of 107 in Egypt, with titres ranging from 1:80 to ≥1:320. We detected MERS-CoV RNA in swabs from three sheep (1.2%) of 254 and five goats (4.1%) of 121 from Egypt and Senegal, as well as one cow (1.9%) of 53 and three donkeys (7.1%) of 42 from Egypt. Partial sequences of the RT-PCR amplicons confirmed specificity of the results. This study showed that domestic livestock in contact with MERS-CoV infected camels may be at risk of infection. We recommend expanding current MERS-CoV surveillance in animals to include other livestock in close contact with dromedary camels. The segregation of camels from other livestock in farms and live animal markets may need to be considered. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","Egypt; MERS-CoV; Senegal; serology; sheep; surveillance; Tunisia","virus RNA; virus antibody; Article; bovine; buffalo; controlled study; dromedary; Egypt; goat; horse; infection risk; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mule; nonhuman; nose smear; phylogeny; priority journal; reverse transcription polymerase chain reaction; RNA sequence; Senegal; sequence analysis; serodiagnosis; sheep; Tunisia; animal; blood; classification; Coronavirus infection; domestic animal; genetics; health survey; human; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; nose; procedures; virology; Animals; Animals, Domestic; Antibodies, Viral; Cattle; Coronavirus Infections; Egypt; Goats; Horses; Humans; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Nose; Phylogeny; Population Surveillance; Senegal; Sequence Analysis, RNA; Sheep; Tunisia","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV); 2017. Available from; Shehata, M.M., Chu, D.K.W., Gomaa, M.R., Surveillance for coronaviruses in Bats, Lebanon and Egypt, 2013-2015 (2016) Emerg Infect Dis, 22, pp. 148-150. , https://doi.org/10.3201/eid2201.151397; Memish, Z.A., Cotten, M., Meyer, B., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015. , https://doi.org/10.3201/eid2006.140402; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/http://www.nature.com/nature/journal/v495/n7440/abs/nature12005.html#supplementary-information; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88, pp. 9220-9232. , https://doi.org/10.1128/JVI.00676-14; Reusken, C.B., Ababneh, M., Raj, V., Middle east respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18, p. 20662; Hemida, M.G., Chu, D.K.W., Perera, R.A.P.M., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound Emerg Dis, 64, pp. 2093-2103. , https://doi.org/10.1111/tbed.12630; Meyer, B., García-Bocanegra, I., Wernery, U., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg Infect Dis, 21, pp. 181-182. , https://doi.org/10.3201/eid2101.141342; Shehata, M.M., Gomaa, M.R., Ali, M.A., Middle East respiratory syndrome coronavirus: a comprehensive review (2016) Front Med, 10, pp. 120-136. , https://doi.org/10.1007/s11684-016-0430-6; Ali, M., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22. , https://doi.org/10.2807/1560-7917.ES.2017.22.11.30487; Chu, D.K., Feldman, Z.B., Doherty, S.P., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci USA, 115, pp. 2144-2149; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19; Traven, M., Carlsson, U., Lunden, A., Serum antibodies to bovine coronavirus in Swedish sheep (1999) Acta Vet Scand, 40, pp. 69-74; de Wit, E., Feldmann, F., Horne, E., Domestic pig unlikely reservoir for MERS-CoV (2017) Emerg Infect Dis, 23. , https://doi.org/10.3201/eid2306.170096; Vergara-Alert, J., van den Brand, J.M.A., Widagdo, W., Livestock susceptibility to infection with middle east respiratory syndrome coronavirus (2017) Emerg Infect Dis, 23, pp. 232-240. , https://doi.org/10.3201/eid2302.161239; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 17; http://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1, Laboratory Testing for Middle East Respiratory Syndrome Coronavirus; 2013. available from; Tamura, K., Stecher, G., Peterson, D., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729. , https://doi.org/10.1093/molbev/mst197; Hall, T.A., Bioedit: a user-friendly biological sequence alignment editor and analysis for Windows 95/98/NT (1999) Nucleic Acids Symp, 41, pp. 95-98; Park, W.B., Perera, R.A.P.M., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in Humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189. , https://doi.org/10.3201/eid2112.151421; Townzen, J.S., Brower, A.V., Judd, D.D., Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences (2008) Med Vet Entomol, 22, pp. 386-393. , https://doi.org/10.1111/j.1365-2915.2008.00760.x","Ali, M.A.; Center of Scientific Excellence for Influenza Virus, National Research Centre, El Buhouth Street, Dokki, Egypt; email: mohamedahmedali2004@yahoo.com",,"Taylor and Francis Ltd.",22221751,,,"30866764","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85062817846 "Alanazi K.H., Killerby M.E., Biggs H.M., Abedi G.R., Jokhdar H., Alsharef A.A., Mohammed M., Abdalla O., Almari A., Bereagesh S., Tawfik S., Alresheedi H., Alhakeem R.F., Hakawi A., Alfalah H., Amer H., Thornburg N.J., Tamin A., Trivedi S., Tong S., Lu X., Queen K., Li Y., Sakthivel S.K., Tao Y., Zhang J., Paden C.R., Al-Abdely H.M., Assiri A.M., Gerber S.I., Watson J.T.","57205250746;57207624890;46460986500;55887217800;6507147807;57191347075;56453979700;57191346377;57205247428;57205248704;57205246789;57205244621;54796434800;8208965900;57193972393;57201583437;6602664202;6602551546;56025976500;55783951400;57216109714;55601440700;57171026600;55414566800;36744564300;57206848706;57193553180;6602914036;36607531400;56656063700;55374101200;","Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia, 2017",2019,"Infection Control and Hospital Epidemiology","40","1",,"79","88",,10,"10.1017/ice.2018.290","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059273335&doi=10.1017%2fice.2018.290&partnerID=40&md5=eede4aeadbaaddffaa3fbcea8cd99dd2","Ministry of Health, Riyadh, Saudi Arabia; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; King Saud Medical City, Riyadh, Saudi Arabia; Department of Community Medicine, National Research Center, Cairo, Egypt; IHRC, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Batelle, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","Alanazi, K.H., Ministry of Health, Riyadh, Saudi Arabia; Killerby, M.E., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States, King Saud Medical City, Riyadh, Saudi Arabia; Biggs, H.M., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Abedi, G.R., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Jokhdar, H., Ministry of Health, Riyadh, Saudi Arabia; Alsharef, A.A., Ministry of Health, Riyadh, Saudi Arabia; Mohammed, M., Ministry of Health, Riyadh, Saudi Arabia; Abdalla, O., Ministry of Health, Riyadh, Saudi Arabia; Almari, A., Ministry of Health, Riyadh, Saudi Arabia; Bereagesh, S., Ministry of Health, Riyadh, Saudi Arabia; Tawfik, S., Ministry of Health, Riyadh, Saudi Arabia; Alresheedi, H., Ministry of Health, Riyadh, Saudi Arabia; Alhakeem, R.F., Ministry of Health, Riyadh, Saudi Arabia; Hakawi, A., Ministry of Health, Riyadh, Saudi Arabia; Alfalah, H., King Saud Medical City, Riyadh, Saudi Arabia; Amer, H., King Saud Medical City, Riyadh, Saudi Arabia, Department of Community Medicine, National Research Center, Cairo, Egypt; Thornburg, N.J., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Tamin, A., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Trivedi, S., IHRC, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Tong, S., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Lu, X., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Queen, K., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Li, Y., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Sakthivel, S.K., Batelle, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Tao, Y., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Zhang, J., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Paden, C.R., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Al-Abdely, H.M., Ministry of Health, Riyadh, Saudi Arabia; Assiri, A.M., Ministry of Health, Riyadh, Saudi Arabia; Gerber, S.I., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Watson, J.T., Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","Objective To investigate a Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak event involving multiple healthcare facilities in Riyadh, Saudi Arabia; to characterize transmission; and to explore infection control implications.Design Outbreak investigation.Setting Cases presented in 4 healthcare facilities in Riyadh, Saudi Arabia: A tertiary-care hospital, a specialty pulmonary hospital, an outpatient clinic, and an outpatient dialysis unit.Methods Contact tracing and testing were performed following reports of cases at 2 hospitals. Laboratory results were confirmed by real-time reverse transcription polymerase chain reaction (rRT-PCR) and/or genome sequencing. We assessed exposures and determined seropositivity among available healthcare personnel (HCP) cases and HCP contacts of cases.Results In total, 48 cases were identified, involving patients, HCP, and family members across 2 hospitals, an outpatient clinic, and a dialysis clinic. At each hospital, transmission was linked to a unique index case. Moreover, 4 cases were associated with superspreading events (any interaction where a case patient transmitted to ≥5 subsequent case patients). All 4 of these patients were severely ill, were initially not recognized as MERS-CoV cases, and subsequently died. Genomic sequences clustered separately, suggesting 2 distinct outbreaks. Overall, 4 (24%) of 17 HCP cases and 3 (3%) of 114 HCP contacts of cases were seropositive.Conclusions We describe 2 distinct healthcare-associated outbreaks, each initiated by a unique index case and characterized by multiple superspreading events. Delays in recognition and in subsequent implementation of control measures contributed to secondary transmission. Prompt contact tracing, repeated testing, HCP furloughing, and implementation of recommended transmission-based precautions for suspected cases ultimately halted transmission. © This work is classified, for copyright purposes, as a work of the U.S. Government and is not subject to copyright protection within the United States.",,"adult; article; case report; clinical article; contact examination; dialysis; female; genome; health care personnel; human; male; Middle East respiratory syndrome coronavirus; multicenter study; nonhuman; outpatient department; reverse transcription polymerase chain reaction; Saudi Arabia; aged; clinical trial; Coronavirus infection; cross infection; epidemic; genetics; infection control; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; nucleotide sequence; procedures; Saudi Arabia; very elderly; virology; virus RNA; Adult; Aged; Aged, 80 and over; Base Sequence; Contact Tracing; Coronavirus Infections; Cross Infection; Disease Outbreaks; Female; Health Personnel; Humans; Infection Control; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; RNA, Viral; Saudi Arabia","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl J Med, 367, pp. 1814-1820; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) New Engl J Med, 376, pp. 584-594; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary-care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah - A link to health care facilities (2015) New Engl J Med, 372, pp. 846-854; Assiri, A., Abedi, G.R., Bin Saeed, A.A., Multifacility outbreak ofMiddle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Bin, S.Y., Heo, J.Y., Song, M.-S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2015) Clin Infect Dis, 62, pp. 755-760; Al-Abdely, H.M., Kasole, O.H., AlRajhi, A.A., (2017) Infection Prevention and Control Guidelines for the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection, 4th Ed, , Riyadh, Saudi Arabia: Ministry of Health; (2015) Infection Prevention and Control during Health Care for Probable or Confirmed Cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection, , World Health Organization, Geneva: WHO; (2017) WHO MERS-CoV Global Summary and Assessment of Risk, , World Health Organization, Geneva: WHO; (2018) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Interim Guidance, , https://www.who.int/csr/disease/coronavirus-infections/mers-laboratory-testing/en/, World Health Organization, updated January, Accessed October 10, 2018; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveil, 17 (49). , pii: 20334; (2018) Middle East Respiratory Syndrome Coronavirus: Guidelines for Healthcare Professionals, , https://www.moh.gov.sa/CCC/healthp/regulations/Documents/MERS-CoV%20Guidelines%20for%20Healthcare%20Professionals%20-%20May%202018%20-%20v5.1%20%281%29.pdf, Saudi Arabia Ministry of Health website, Updated May. Accessed October 24, 2018; Lu, X., Whitaker, B., Sakthivel, S.K., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Assiri, A.M., Midgley, C.M., Abedi, G.R., Epidemiology of a novel recombinant MERS-CoV in humans in Saudi Arabia (2016) J Infect Dis, 22, pp. 2020-2022; Yusof, M.F., Queen, K., Eltahir, Y.M., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg Microb Infect, 6, p. e101; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst Biol, 59, pp. 307-321; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Trivedi, S., Miao, C., Al-Abdallat, M.M., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERSCoV infection (2018) J Med Virol, 90, pp. 367-371; Wang, Y., Liu, D., Shi, W., Origin and possible genetic recombination of the Middle East Respiratory syndrome coronavirus from the first imported case in China: Phylogenetics and coalescence analysis (2015) MBio, 6; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015 (2015) Euro Surveil, 20, pp. 7-13; Alenazi, T.H., Al Arbash, H., El-Saed, A., Identified transmission dynamics of Middle East respiratory syndrome coronavirus infection during an outbreak: Implications of an overcrowded emergency department (2017) Clin Infect Dis, 65, pp. 675-679; Kim, S.W., Park, J.W., Jung, H.-D., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64, pp. 551-557; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am J Infect Control, 46, pp. 1022-1025; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2015) Clin Infect Dis, 62, pp. 477-483; Kim, C.-J., Choi, W., Jung, Y., Surveillance of the Middle East respiratory syndrome (MERS) coronavirus (CoV) infection in healthcare workers after contact with confirmed MERS patients: Incidence and risk factors of MERS-CoV seropositivity (2016) Clin Microbiol Infect, 22, pp. 880-886; Park, G.E., Ko, J.-H., Peck, K.R., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22, p. 1113; Payne, D.C., Biggs, H.M., Al-Abdallat, M.M., Alqasrawi, S., Lu, X., Abedi, G.R., Haddadin, A., Sheikh Ali, S., Multihospital Outbreak of a Middle East Respiratory Syndrome Coronavirus Deletion Variant, Jordan: A Molecular, Serologic, and Epidemiologic Investigation (2018) InOpen Forum Infectious Diseases, 5 (5), p. ofy095. , Apr 28, US: Oxford University Press; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, p. 2186","Killerby, M.E.; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and PreventionUnited States; email: lxo9@cdc.gov",,"Cambridge University Press",0899823X,,ICEPE,"30595141","English","Infect. Control Hosp. Epidemiol.",Article,"Final",Open Access,Scopus,2-s2.0-85059273335 "Alkhamis M.A., Fernández-Fontelo A., Vanderwaal K., Abuhadida S., Puig P., Alba-Casals A.","26321325500;56888728300;57203151844;57204209374;57215113657;56190237900;","Temporal dynamics of Middle East respiratory syndrome coronavirus in the Arabian Peninsula, 2012-2017",2019,"Epidemiology and Infection","147",, e21,"","",,3,"10.1017/S0950268818002728","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055004828&doi=10.1017%2fS0950268818002728&partnerID=40&md5=10784d116445b97a3551756d1ebfa898","Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Center, Kuwait University Kuwait, Khaldiya, Kuwait; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, United States; Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain; Health Planning and Follow-up Department, Assistant Undersecretary Office of Quality and Development, Ministry of Health, Kuwait City, Kuwait; IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain","Alkhamis, M.A., Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Center, Kuwait University Kuwait, Khaldiya, Kuwait, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, United States; Fernández-Fontelo, A., Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain; Vanderwaal, K., Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, United States; Abuhadida, S., Health Planning and Follow-up Department, Assistant Undersecretary Office of Quality and Development, Ministry of Health, Kuwait City, Kuwait; Puig, P., Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Barcelona, Spain; Alba-Casals, A., Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, United States, IRTA, Centre de Recerca en Sanitat Animal (CReSA), IRTA-UAB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain","Middle East respiratory syndrome coronavirus (MERS-CoV) remains a notable disease and poses a significant threat to global public health. The Arabian Peninsula is considered a major global epicentre for the disease and the virus has crossed regional and continental boundaries since 2012. In this study, we focused on exploring the temporal dynamics of MERS-CoV in human populations in the Arabian Peninsula between 2012 and 2017, using publicly available data on case counts and combining two analytical methods. Disease progression was assessed by quantifying the time-dependent reproductive number (TD-Rs), while case series temporal pattern was modelled using the AutoRegressive Integrated Moving Average (ARIMA). We accounted for geographical variability between three major affected regions in Saudi Arabia including Eastern Province, Riyadh and Makkah. In Saudi Arabia, the epidemic size was large with TD-Rs >1, indicating significant spread until 2017. In both Makkah and Riyadh regions, the epidemic progression reached its peak in April 2014 (TD-Rs > 7), during the highest incidence period of MERS-CoV cases. In Eastern Province, one unique super-spreading event (TD-R > 10) was identified in May 2013, which comprised of the most notable cases of human-to-human transmission. Best-fitting ARIMA model inferred statistically significant biannual seasonality in Riyadh region, a region characterised by heavy seasonal camel-related activities. However, no statistical evidence of seasonality was identified in Eastern Province and Makkah. Instead, both areas were marked by an endemic pattern of cases with sporadic outbreaks. Our study suggested new insights into the epidemiology of the virus, including inferences about epidemic progression and evidence for seasonality. Despite the inherent limitations of the available data, our conclusions provide further guidance to currently implement risk-based surveillance in high-risk populations and, subsequently, improve related interventions strategies against the epidemic at country and regional levels. © 2018 Cambridge University Press.","ARIMA modelling; MERS-CoV; seasonality; surveillance; time-dependent reproductive number","adult; analytic method; Bahrain; decision making; disease course; disease transmission; female; geographic distribution; human; Kuwait; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; Qatar; Review; Saudi Arabia; seasonal variation; time series analysis; United Arab Emirates; virus transmission; Yemen","Updated information on the epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) infection and guidance for the public, clinicians, and public health authorities 2012-2013 (2013) Morbidity and Mortality Weekly Report, 62, pp. 793-796. , Center for Disease Control and Prevention; Ministry of Health, Saudi Arabia, Middles Eastern Respiratory Syndrome Corona Virus Daily Statistics, , http://www.moh.gov.sa/CCC/PressReleases/Pages/default.aspx, Command and Control Center (Accessed August 2018); Coronavirus Infections; Disease Outbreak News, , http://www.who.int/emergencies/mers-cov/en, WHO (World Health Organization) (Accessed August 2018); Bialek, S.R., First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities-May 2014 (2014) Morbidity and Mortality Weekly Report, 63, pp. 431-436; An unexpected outbreak of Middle East respiratory syndrome coronavirus infection in the Republic of Korea, 2015 (2015) Journal of Infection and Chemotherapy, 47, pp. 120-122. , Korean Society of Infectious D, Korean Society for Healthcare-associated Infection C, Prevention; Zumla, A., Infectious diseases epidemic threats and mass gatherings: Refocusing global attention on the continuing spread of the Middle East respiratory syndrome coronavirus (MERS-CoV (2016) BMC Medicine, 14, p. 132; Azhar, E.I., Evidence for camel-to-human transmission of MERS coronavirus (2014) The New England Journal of Medicine, 370, pp. 2499-2505; Alraddadi, B.M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia 2014 (2016) Emerging Infectious Diseases, 22, pp. 49-55; Lau, S.K., Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) Journal of Virology, 87, pp. 8638-8650; Du, L., Han, G.Z., Deciphering MERS-CoV evolution in dromedary camels (2016) Trends in Microbiology, 24, pp. 87-89; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) The Lancet Infectious Diseases, 13, pp. 752-761; Majumder, M.S., Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea 2015 (2015) Emerging Infectious Diseases, 21, pp. 2088-2090; Summary of Current Situation, Literature Update and Risk Assessment, , http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdfua, WHO (World Health Organization) (Accessed August 2018); Zaki, A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) The New England Journal of Medicine, 367, pp. 1814-1820; Al-Tawfiq, J.A., Middle East respiratory syndrome-coronavirus infection: An overview (2013) Journal of Infection and Public Health, 6, pp. 319-322; Shehata, M.M., Middle East respiratory syndrome coronavirus: A comprehensive review (2016) Frontiers in Medicine, 10, pp. 120-136; Fagbo, S.F., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1981-1988; Cauchemez, S., Unraveling the drivers of MERS-CoV transmission (2016) Proceedings of the National Academy of Sciences of the USA, 113, pp. 9081-9086; Mohd, H.A., Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Medicine and Infectious Disease, 14, pp. 464-470; Banik, G.R., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virologica Sinica, 31, pp. 81-84; Majumder, M.S., Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: Insights from publicly available data (2014) PLoS Currents, 6. , ecurrents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c; Poletto, C., Colizza, V., Boëlle, P.-Y., Quantifying spatiotemporal heterogeneity of MERS-CoV transmission in the Middle East region: A combined modelling approach (2016) Epidemics, 15, pp. 1-9; Nah, K., Predicting the international spread of Middle East respiratory syndrome (MERS) (2016) Statistical Methods in Medical Research, 16, p. 356; Dietz, K., The estimation of the basic reproduction number for infectious diseases (1993) Statistical Methods in Medical Research, 2, pp. 23-41; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk (2013) The Lancet, 382, pp. 694-699; Jornet-Sanz, M., A Bayesian stochastic SIRS model with a vaccination strategy for the analysis of respiratory syncytial virus (2017) SORT-Statistics and Operation Research Transactions, 41, pp. 159-176; Fernandez-Fontelo, A., Under-reported data analysis with INAR-hidden Markov chains (2016) Statistics in Medicine, 35, pp. 4875-4890; EMPRES Global Animal Disease Information System (EMPRES-i), , http://empres-i.fao.org, FAO. Food and Agriculture Organization (FAO) (Accessed May 2016); Wallinga, J., Teunis, P., Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures (2004) American Journal of Epidemiology, 160, pp. 509-516; Obadia, T., Haneef, R., Boelle, P.Y., The R0 package: A toolbox to estimate reproduction numbers for epidemic outbreaks (2012) BMC Medical Informatics and Decision Making, 12, p. 147; Haydon, D.T., The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak (2003) Proceedings: Biological Sciences, 270, pp. 121-127; Alba, A., Exploring the surveillance potential of mortality data: Nine years of bovine fallen stock data collected in Catalonia (Spain (2015) PLoS ONE, 10, p. e0122547; Song, X., Time series analysis of influenza incidence in Chinese provinces from 2004 to 2011 (2016) Medicine (Baltimore), 95, p. e3929; Brockwell, P.J., Davis, R.A., (1996) Introduction to Time Series and Forecasting, 13, p. 420. , New York: Springer; Hemida, M.G., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveillance, 18, p. 20659; Perera, R.A., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveillance, 18, p. 20574; Memish, Z.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerging Infectious Diseases, 20, pp. 1012-1015; Meyer, B., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates 2003 and 2013 (2014) Emerging Infectious Diseases, 20, pp. 552-559; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveillance, 19, p. 20781; Raj, V.S., Isolation of MERS coronavirus from a Dromedary camel, Qatar 2014 (2014) Emerging Infectious Diseases, 20, pp. 1339-1342; Corman, V.M., Performance and clinical validation of the RealStar MERS-CoV Kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) Journal of Clinical Virology, 60, pp. 168-171; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: An update (2016) Journal of Infection and Public Health, 9, pp. 216-219; Madani, T.A., Althaqafi, A.O., Alraddadi, B.M., Infection prevention and control guidelines for patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2014) Saudi Medical Journal, 35, pp. 897-913; Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases (2015) Travel Medicine and Infectious Disease, 13, pp. 311-314; Eifan, S.A., A pandemic risk assessment of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia (2017) Saudi Journal of Biological Sciences, 24, pp. 1631-1638; Dudas, G., MERS-CoV spillover at the camel-human interface (2018) Elife, 7, p. e31257; Hemida, M.G., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) Transboundary and Emerging Diseases, 39, pp. 243-261; Khalaf, S., Poetics and politics of newly invented traditions in the gulf: Camel racing in the United Arab Emirates (2000) Ethnology, 39, pp. 243-261; Alqahtani, A.S., Camel exposure and knowledge about MERS-CoV among Australian Hajj pilgrims in 2014 (2016) Virologica Sinica, 31, pp. 89-93; Williams, J.R., Heterogeneity in regional notification patterns and its impact on aggregate national case notification data: The example of measles in Italy (2003) BMC Public Health, 3, p. 23; Cauchemez, S., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) The Lancet Infectious Diseases, 14, pp. 50-56; Muller, M.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) The Lancet Infectious Diseases, 15, p. 629","Alkhamis, M.A.; Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Center, Kuwait University KuwaitKuwait; email: malkahmi@umn.edu",,"Cambridge University Press",09502688,,EPINE,,"English","Epidemiol. Infect.",Review,"Final",Open Access,Scopus,2-s2.0-85055004828 "Emmler L., Felten S., Matiasek K., Balzer H.-J., Pantchev N., Leutenegger C., Hartmann K.","57211861578;57193734979;55853997300;7003660016;23489943400;7006706489;7201407340;","Feline coronavirus with and without spike gene mutations detected by real-time RT-PCRs in cats with feline infectious peritonitis",2019,"Journal of Feline Medicine and Surgery",,,,"","",,,"10.1177/1098612X19886671","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075139765&doi=10.1177%2f1098612X19886671&partnerID=40&md5=6f719b5edf2d6803cfa440cbae183b06","Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany; IDEXX Laboratories, Ludwigsburg, Germany; IDEXX Laboratories, West Sacramento, CA, United States","Emmler, L., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Felten, S., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Matiasek, K., Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany; Balzer, H.-J., IDEXX Laboratories, Ludwigsburg, Germany; Pantchev, N., IDEXX Laboratories, Ludwigsburg, Germany; Leutenegger, C., IDEXX Laboratories, West Sacramento, CA, United States; Hartmann, K., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany","Objectives: Feline infectious peritonitis (FIP) emerges when feline coronaviruses (FCoVs) mutate within their host to a highly virulent biotype and the immune response is not able to control the infection. FCoV spike (S) gene mutations are considered to contribute to the change in virulence by enabling FCoV infection of and replication in macrophages. This study investigated the presence of FCoV with and without S gene mutations in cats with FIP using two different real-time RT-PCRs on different samples obtained under clinical conditions. Methods: Fine-needle aspirates (FNAs) and incisional biopsies (IBs) of popliteal and mesenteric lymph nodes, liver, spleen, omentum and kidneys (each n = 20), EDTA blood (n = 13), buffy coat smears (n = 13), serum (n = 11), effusion (n = 14), cerebrospinal fluid (n = 16), aqueous humour (n = 20) and peritoneal lavage (n = 6) were obtained from 20 cats with FIP diagnosed by immunohistochemistry. Samples were examined by RT-PCR targeting the FCoV 7b gene, detecting all FCoV, and S gene mutation RT-PCR targeting mutations in nucleotides 23531 and 23537. The prevalence of FCoV detected in each sample type was calculated. Results: In 20/20 cats, FCoV with S gene mutations was present in at least one sample, but there was variation in which sample was positive. FCoV with mutations in the S gene were most frequently found in effusion (64%, 95% confidence interval [CI] 39–89), followed by spleen, omentum and kidney IBs (50%, 95% CI 28–72), mesenteric lymph node IBs and FNAs (45%, 95% CI 23–67), and FNAs of spleen and liver and liver IBs (40%, 95% CI 19–62). Conclusions and relevance: In these 20 cats with FIP, FCoVs with S gene mutations were found in every cat in at least one tissue or fluid sample. This highlights the association between mutated S gene and systemic FCoV spread. Examining a combination of different samples increased the probability of finding FCoV with the mutated S gene. © The Author(s) 2019.","FCoV; FIP; IHC; immunohistochemistry; RT-PCR; S gene",,"Vennema, H., Poland, A., Foley, J., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Genetics and pathogenesis of feline infectious peritonitis virus (2009) Emerg Infect Dis, 15, pp. 1445-1452; Addie, D.D., Kennedy, L.J., Ryvar, R., Feline leucocyte antigen class II polymorphism and susceptibility to feline infectious peritonitis (2004) J Feline Med Surg, 6, pp. 59-62; Kipar, A., Meli, M.L., Failing, K., Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection (2006) Vet Immunol Immunopathol, 112, pp. 141-155; Chang, H.W., Egberink, H.F., Halpin, R., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18, pp. 1089-1095; Pedersen, N.C., Liu, H., Scarlett, J., Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res, 165, pp. 17-28; Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis (2014) Vet Microbiol, 173, pp. 177-188; Borschensky, C.M., Reinacher, M., Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats (2014) Res Vet Sci, 97, pp. 333-340; Pedersen, N.C., Liu, H., Dodd, K.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Barker, E.N., Tasker, S., Gruffydd-Jones, T.J., Phylogenetic analysis of feline coronavirus strains in an epizootic outbreak of feline infectious peritonitis (2013) J Vet Intern Med, 27, pp. 445-450; Rottier, P.J., Nakamura, K., Schellen, P., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein (2005) J Virol, 79, pp. 14122-14130; Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., Replication of feline coronaviruses in peripheral blood monocytes (2005) Arch Virol, 150, pp. 2483-2500; Bosch, B.J., van der Zee, R., de Haan, C.A., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J Virol, 77, pp. 8801-8811; Licitra, B.N., Millet, J.K., Regan, A.D., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg Infect Dis, 19, pp. 1066-1073; Lewis, C.S., Porter, E., Matthews, D., Genotyping coronaviruses associated with feline infectious peritonitis (2015) J Gen Virol, 96, pp. 1358-1368; Shirato, K., Chang, H.W., Rottier, P.J.M., Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein (2018) Virus Res, 255, pp. 14-23; Hartmann, K., Binder, C., Hirschberger, J., Comparison of different tests to diagnose feline infectious peritonitis (2003) J Vet Intern Med, 17, pp. 781-790; Sharif, S., Arshad, S.S., Hair-Bejo, M., Diagnostic methods for feline coronavirus: a review (2010) Vet Med Int, p. 809480; Kipar, A., Bellmann, S., Kremendahl, J., Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis (1998) Vet Immunol Immunopathol, 65, pp. 243-257; Gunn-Moore, D.A., Gruffydd-Jones, T.J., Harbour, D.A., Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis (1998) Vet Microbiol, 62, pp. 193-205; Herrewegh, A.A., de Groot, R.J., Cepica, A., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) J Clin Microbiol, 33, pp. 684-689; Li, X., Scott, F.W., Detection of feline coronaviruses in cell cultures and in fresh and fixed feline tissues using polymerase chain reaction (1994) Vet Microbiol, 42, pp. 65-77; Kipar, A., Meli, M.L., Baptiste, K.E., Sites of feline coronavirus persistence in healthy cats (2010) J Gen Virol, 91, pp. 1698-1707; Fish, E.J., Diniz, P.P.V., Juan, Y.C., Cross-sectional quantitative RT-PCR study of feline coronavirus viremia and replication in peripheral blood of healthy shelter cats in Southern California (2018) J Feline Med Surg, 20, pp. 295-301; Felten, S., Weider, K., Doenges, S., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 321-335; Longstaff, L., Porter, E., Crossley, V.J., Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 240-245; Felten, S., Leutenegger, C.M., Balzer, H.J., Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis (2017) BMC Vet Res, 13, p. 228; Porter, E., Tasker, S., Day, M.J., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet Res, 45, p. 49; Barker, E.N., Stranieri, A., Helps, C.R., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Vet Res, 48, p. 60; Felten, S., Matiasek, K., Gruendl, S., Investigation into the utility of an immunocytochemical assay in body cavity effusions for diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 410-418; Gut, M., Leutenegger, C.M., Huder, J.B., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses (1999) J Virol Methods, 77, pp. 37-46; (2016) IDEXX FIP Virus RealPCR™ test validation studies, , www.idexx.com/FIPValidationStudies, accessed July 26, 2019; Sangl, L., Matiasek, K., Felten, S., Detection of feline coronavirus mutations in paraffin-embedded tissues in cats with feline infectious peritonitis and controls (2019) J Feline Med Surg, 21, pp. 133-142; Doenges, S.J., Weber, K., Dorsch, R., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 344-350; Sangl, L., Felten, S., Bergmann, M., Diagnostischer Nutzen der Mutations-PCR auf das feline Coronavirus unter Verwendung von Kammerwasser, , Proceedings of the 24th Annual Meeting for Internal Medicine and Clinical Laboratory Diagnostics of the German Veterinary Society, 2006 Jan 29–30, Berlin, Germany; Doenges, S.J., Weber, K., Dorsch, R., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J Feline Med Surg, 18, pp. 104-109; Pedersen, N.C., Eckstrand, C., Liu, H., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet Microbiol, 175, pp. 157-166; Chang, H.W., de Groot, R.J., Egberink, H.F., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420; Hsieh, L.E., Huang, W.P., Tang, D.J., 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway (2013) Res Vet Sci, 95, pp. 1241-1247; Hora, A.S., Asano, K.M., Guerra, J.M., Intrahost diversity of feline coronavirus: a consensus between the circulating virulent/avirulent strains and the internal mutation hypotheses? (2013) ScientificWorldJournal; Hora, A.S., Tonietti, P.O., Taniwaki, S.A., Feline coronavirus 3c protein: a candidate for a virulence marker? (2016) Biomed Res Int; Kummrow, M., Meli, M.L., Haessig, M., Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland (2005) Clin Diagn Lab Immunol, 12, pp. 1209-1215; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet Microbiol, 99, pp. 31-42; Li, C., Liu, Q., Kong, F., Circulation and genetic diversity of feline coronavirus type I and II from clinically healthy and FIP-suspected cats in China (2019) Transbound Emerg Dis, 66, pp. 763-775; Giordano, A., Paltrinieri, S., Bertazzolo, W., Sensitivity of Tru-cut and fine needle aspiration biopsies of liver and kidney for diagnosis of feline infectious peritonitis (2005) Vet Clin Pathol, 34, pp. 368-374","Emmler, L.; Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of MunichGermany; email: lauraemmler@gmail.com",,"SAGE Publications Ltd",1098612X,,,"31729897","English","J. Feline Med. Surg.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85075139765 "Ababneh M., Alrwashdeh M., Khalifeh M.","26432525000;57211715854;6602299051;","Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East Respiratory Syndrome Coronavirus elicits strong humoral and cellular immune responses in mice",2019,"Veterinary World","12","10",,"1554","1562",,1,"10.14202/vetworld.2019.1554-1562","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074876612&doi=10.14202%2fvetworld.2019.1554-1562&partnerID=40&md5=f9dd9df312017a6d2ba20b4d8653389e","Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan","Ababneh, M., Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan; Alrwashdeh, M., Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan; Khalifeh, M., Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan","Background and Aim: Middle East respiratory syndrome coronavirus (MERS-CoV) has rapidly spread throughout the Middle East since its discovery in 2012. The virus poses a significant global public health threat with potentially devastating effects. In this study, a recombinant adenoviral-based vaccine encoding the spike 1 (S1) subunit of the MERS-CoV genome was constructed, and its humoral, and cellular immune responses were evaluated in mice. Materials and Methods: Mice were immunized initially by intramuscular injection and boosted 3 weeks later by intranasal application. Expression of the S1 protein in the lungs and kidneys was detected using conventional polymerase chain reaction (PCR) and immunohistochemistry (IHC) targeting specific regions within the S1 subunit at weeks 3, 4, 5, and 6 after the first vaccination. Antigen-specific humoral and cellular immune responses were evaluated in serum and in cell culture following in vitro stimulation with a specific 9-mer epitope within the S1 protein (CYSSLILDY). Results: S1 protein expression was only detected by IHC in the kidneys of the Ad-MERS-S1 group at week 6 from first immunization, and in both lungs and kidneys of Ad-MERS-S1 group by conventional PCR at weeks 3 and 5 post-prime. The vaccine elicited a specific S1-immunoglobulin G antibody response, which was detected in the sera of the vaccinated mice at weeks 4 and 6 from the onset of the first immunization. There was a significant increase in the amount of Th1-related cytokines (interferon-γ and interleukin [IL] 12), and a significant decrease in the Th2-related cytokine IL-4 in splenocyte cell culture of the vaccinated group compared with the control groups. Conclusion: The results of this study suggest that this recombinant adenovirus vaccine encoding the S1 subunit of MERS-CoV elicits potentially protective antigen-specific humoral and cellular immune responses in mice. This study demonstrates a promising vaccine for the control and/or prevention of MERS-CoV infection in humans. © 2019 Veterinary World. All rights reserved.","Coronavirus; Middle East respiratory syndrome; Recombinant vaccine; Spike protein","adenovirus vaccine; beta actin; coronavirus spike glycoprotein; gamma interferon; immunoglobulin G; interleukin 12; interleukin 4; recombinant vaccine; animal experiment; animal model; animal tissue; antibody response; antigen specificity; Article; cellular immunity; clinical evaluation; controlled study; cytokine release; drug efficacy; gene expression; humoral immunity; immunoglobulin blood level; immunohistochemistry; in vitro study; kidney tissue; lung parenchyma; lymphocyte culture; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; polymerase chain reaction; protein expression; serum; spleen cell; Th1 cell; Th2 cell; vaccination; vaccine immunogenicity; virus genome","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: Transmission and phylogenetic evolution (2014) Trends Microbiol, 22 (10), pp. 573-579; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., Haagmans, B.L., MERS: Emergence of a novel human coronavirus (2014) Curr. Opin. Virol., 5, pp. 58-62; Banik, G.R., Khandaker, G., Rashid, H., Middle East respiratory syndrome coronavirus “MERS-CoV”: Current knowledge gaps (2015) Paediatr. Respir. Rev., 16 (3), pp. 197-202; VanBoheemen, S., DeGraaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6), p. e00473; Jamil, B., Habib, K., MERS-CoV-are we on the verge of a pandemic? (2013) J. Pak. Med. Assoc., 63 (11), pp. 1329-1331; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18 (50), p. 20662; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18 (50), p. 20659; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14 (2), pp. 140-145; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., Drosten, C., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis., 20 (4), pp. 552-559; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Hassan, A.M., Madani, T.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) MBio, 5 (4), pp. e01450-e101414; See, R.H., Petric, M., Lawrence, D.J., Mok, C.P., Rowe, T., Zitzow, L.A., Karunakaran, K.P., Roper, R.L., Severe acute respiratory syndrome vaccine efficacy in ferrets: Whole killed virus and adenovirus-vectored vaccines (2008) J. Gen. Virol., 89, pp. 2136-2146; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Tan, W., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus Type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Al Hajri, M.M., Farag, E.A., Al Hajri, F., Gambotto, A., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32 (45), pp. 5975-5982; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D., Sutter, G., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87 (21), pp. 11950-11954; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Sutter, G., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J. Virol., 89 (16), pp. 8651-8656; Jung, S.Y., Kang, K.W., Lee, E.Y., Seo, D.W., Kim, H.L., Kim, H., Kwon, T., Nam, J.H., Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus (2018) Vaccine, 36 (24), pp. 3468-3476; Langenmayer, M.C., Lulf-Averhoff, A.T., Adam-Neumair, S., Fux, R., Sutter, G., Volz, A., Distribution and absence of generalized lesions in mice following single-dose intramuscular inoculation of the vaccine candidate MVA-MERS-S (2018) Biologicals, 54, pp. 58-62; Ozharovskaia, T.A., Zubkova, O.V., Dolzhikova, I.V., Gromova, A.S., Grousova, D.M., Tukhvatulin, A.I., Popova, O., Gintsburg, A.L., Immunogenicity of different forms of Middle East respiratory syndrome s glycoprotein (2019) Acta Naturae, 11 (1), pp. 38-47; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., Grehan, K., Gilbert, S.C., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35 (30), pp. 3780-3788; Munster, V.J., Wells, D., Lambe, T., Wright, D., Fischer, R.J., Bushmaker, T., Saturday, G., Warimwe, G.M., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28; Jia, W., Channappanavar, R., Zhang, C., Li, M., Zhou, H., Zhang, S., Zhou, P., Zhang, L., Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection (2019) Emerg. Microbes Infect., 8 (1), pp. 760-772; Hashem, A.M., Algaissi, A., Agrawal, A., Al-Amri, S.S., Alhabbab, R.Y., Sohrab, S.S., Almasoud, A., Tseng, C.T.K., A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model (2019) J. Infect. Dis., p. jiz137; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Zhou, N., Zhang, Y., Zhang, J.C., Feng, L., Bao, J.K., The receptor-binding domain of MERS-CoV: The dawn of vaccine and treatment development (2014) J. Formos. Med. Assoc., 113 (3), pp. 143-147; Liu, R.Y., Wu, L.Z., Huang, B.J., Huang, J.L., Zhang, Y.L., Ke, M.L., Wang, J.M., Huang, W., Adenoviral expression of a truncated S1 subunit of SARS-CoV spike protein results in specific humoral immune responses against SARS-CoV in rats (2005) Virus Res, 112 (1-2), pp. 24-31; See, R.H., Zakhartchouk, A.N., Petric, M., Lawrence, D.J., Mok, C.P., Hogan, R.J., Rowe, T., Finlay, B.B., Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus (2006) J. Gen. Virol., 87, pp. 641-650; (2016) The Gene Delivery Company): Recombinant Adenovirus Construction, , https://www.vectorbiolabs.com/vbs/page.html?m=82, Last accessed on 14-08-2019; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., De Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2), pp. e00884-e100814; Fahmy, N., Woo, M., Alameldin, M., Lee, J.K., MacDonald, K., Goneau, L.W., Cadieux, P., Pautler, S., Endogenous biotin expression in renal and testicular tumors and literature review (2014) Can. Urol. Assoc. J., 8 (7-8), pp. 268-272; Bussolati, G., Gugliotta, P., Volante, M., Pace, M., Papotti, M., Retrieved endogenous biotin: A novel marker and a potential pitfall in diagnostic immunohistochemistry (1997) Histopathology, 31 (5), pp. 400-407; Khalifeh, M.S., Stabel, J.R., Effects of gamma interferon, interleukin-10, and transforming growth factor beta on the survival of Mycobacterium avium subsp. Para-tuberculosis in monocyte-derived macrophages from naturally infected cattle (2004) Infect. Immun., 72 (4), pp. 1974-1982; Ali, M.T., Morshed, M.M., Gazi, M.A., Musa, M.A., Kibria, M.G., Uddin, M.J., Khan, M.A., Hasan, S., Computer-aided prediction and identification of potential epitopes in the receptor-binding domain (RBD) of spike (S) glycoprotein of MERS-CoV (2014) Bioinformation, 10 (8), pp. 533-538; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25 (4), pp. 402-408; Skelding, K.A., Hickey, D.K., Horvat, J.C., Bao, S., Roberts, K.G., Finnie, J.M., Hansbro, P.M., Beagley, K.W., Comparison of intranasal and transcutaneous immunization for induction of protective immunity against Chlamydia muridarum respiratory tract infection (2006) Vaccine, 24 (3), pp. 355-366; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Jiang, S., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS One, 8 (12); Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., Fong, J.H., Guan, Y., Peiris, J.S., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J. Virol., 87 (12), pp. 6604-6614; Eckerle, I., Muller, M.A., Kallies, S., Gotthardt, D.N., Drosten, C., In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East respiratory syndrome (MERS) coronavirus infection (2013) Virol. J., 10, p. 359; Lambeir, A.M., Durinx, C., Scharpe, S., De Meester, I., Dipeptidyl-peptidase IV from bench to bedside: An updateonstructuralproperties,functions,andclinicalaspects of the enzyme DPP IV (2003) Crit. Rev. Clin. Lab. Sci., 40 (3), pp. 209-294; Kidd, P., Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease (2003) Altern. Med. Rev., 8 (3), pp. 223-246; Tatsis, N., Ertl, H.C., Adenoviruses as vaccine vectors (2004) Mol. Ther., 10 (4), pp. 616-629; Santra, S., Seaman, M.S., Xu, L., Barouch, D.H., Lord, C.I., Lifton, M.A., Gorgone, D.A., Letvin, N.L., Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates (2005) J. Virol., 79 (10), pp. 6516-6522; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Yount, B.L., Katze, M.G., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4 (3), pp. e00165-e100113; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4 (12), pp. 951-961; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Bortolotti, P., Guery, B., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9 (2)","Ababneh, M.; Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, P.O. Box 3030, Jordan; email: ababnem@just.edu.jo",,"Veterinary World",09728988,,,,"English","Vet. World",Article,"Final",Open Access,Scopus,2-s2.0-85074876612 "Ogimi C., Englund J.A., Bradford M.C., Qin X., Boeckh M., Waghmare A.","8685685400;35227211100;56004882200;7202154941;7005979598;6507629223;","Characteristics and outcomes of coronavirus infection in children: The role of viral factors and an immunocompromised state",2019,"Journal of the Pediatric Infectious Diseases Society","8","1",,"21","28",,6,"10.1093/jpids/pix093","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058384305&doi=10.1093%2fjpids%2fpix093&partnerID=40&md5=4488c35f7f00919ed168d463bac60828","Vaccine and Infectious Disease Division, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, United States; Department of Medicine, University of Washington, Seattle, United States; Laboratory Medicine, University of Washington, Seattle, United States; Pediatric Infectious Diseases Division, Seattle Children’s Hospital, 4800 Sand Point Way NE, MA 7.226, Seattle, WA 98105, United States; Microbiology Laboratory, Seattle Children’s HospitalWA, United States; Children’s Core for Biomedical Statistics, Center for Clinical and Translational Research, Seattle Children’s Research InstituteWA, United States","Ogimi, C., Vaccine and Infectious Disease Division, Seattle, WA, United States, Department of Pediatrics, University of Washington, Seattle, United States, Pediatric Infectious Diseases Division, Seattle Children’s Hospital, 4800 Sand Point Way NE, MA 7.226, Seattle, WA 98105, United States; Englund, J.A., Department of Pediatrics, University of Washington, Seattle, United States, Pediatric Infectious Diseases Division, Seattle Children’s Hospital, 4800 Sand Point Way NE, MA 7.226, Seattle, WA 98105, United States; Bradford, M.C., Children’s Core for Biomedical Statistics, Center for Clinical and Translational Research, Seattle Children’s Research InstituteWA, United States; Qin, X., Laboratory Medicine, University of Washington, Seattle, United States, Microbiology Laboratory, Seattle Children’s HospitalWA, United States; Boeckh, M., Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States, Department of Medicine, University of Washington, Seattle, United States; Waghmare, A., Vaccine and Infectious Disease Division, Seattle, WA, United States, Department of Pediatrics, University of Washington, Seattle, United States, Pediatric Infectious Diseases Division, Seattle Children’s Hospital, 4800 Sand Point Way NE, MA 7.226, Seattle, WA 98105, United States","Background. Immunocompromised children might be predisposed to serious infections from human coronaviruses (HCoVs), including strains OC43, NL63, HKU1, and 229E; however, the virologic and clinical features of HCoV infection in immunocompromised children have not been compared to those in nonimmunocompromised children. Methods. We retrospectively analyzed a cohort of children who presented to Seattle Children’s Hospital and in whom HCoV was detected by a multiplex respiratory polymerase chain reaction assay of a nasal sample between October 2012 and March 2016. Lower respiratory tract disease (LRTD) was defined as possible or definite infiltrate seen in chest imaging, need for oxygen, or abnormal lung examination in conjunction with a physician diagnosis of LRTD. We used logistic regression modeling to evaluate risk factors for LRTD and LRTD that necessitated oxygen use (severe LRTD), including an immunocompromised state, in children with HCoV infection. Results. The median ages of 85 immunocompromised and 1152 nonimmunocompromised children with HCoV infection were 6.3 and 1.6 years, respectively. The prevalence of LRTD and of severe LRTD did not differ greatly between the immunocompromised and nonimmunocompromised patients (22% vs 26% [LRTD] and 15% vs 11% [severe LRTD], respectively); however, in a multivariable model, an immunocompromised state was associated with an increased likelihood of severe LRTD (adjusted odds ratio, 2.5 [95% confidence interval, 1.2–4.9]; P = .01). Younger age, having an underlying pulmonary disorder, and the presence of respiratory syncytial virus were also associated with LRTD or severe LRTD in multivariable models. The risks of LRTD or severe LRTD did not differ among the children with different HCoV strains. Conclusions. The presence of a copathogen and host factors, including an immunocompromised state, were associated with increased risk for severe LRTD. Recognizing risk factors for severe respiratory illness might assist in risk stratification. © The Author(s) 2018. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved.","Human coronavirus; Immunocompromised host; Lower respiratory tract disease; Respiratory copathogen; Respiratory polymerase chain reaction (PCR)","host factor; Adenoviridae; Article; child; clinical outcome; cohort analysis; controlled study; Coronavirus infection; Enterovirus; female; human; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; Human respiratory syncytial virus; immunocompromised patient; infant; influenza; lower respiratory tract infection; lung disease; major clinical study; male; monocyte count; multiplex polymerase chain reaction; Mycoplasma pneumoniae; preschool child; prevalence; priority journal; respiratory failure; retrospective study; Rhinovirus; risk factor; upper respiratory tract infection; virus characterization; age; Coronavirus infection; immunocompromised patient; immunology; mixed infection; respiratory syncytial virus infection; respiratory tract infection; season; severity of illness index; sex factor; virology; Age Factors; Child; Child, Preschool; Coinfection; Coronavirus Infections; Female; Humans; Immunocompromised Host; Infant; Male; Respiratory Syncytial Virus Infections; Respiratory Tract Infections; Retrospective Studies; Risk Factors; Seasons; Severity of Illness Index; Sex Factors","Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Leung, G.M., Hedley, A.J., Ho, L.M., The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: An analysis of all 1755 patients (2004) Ann Intern Med, 141, pp. 662-673; Chan, J.W., Ng, C.K., Chan, Y.H., Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) (2003) Thorax, 58, pp. 686-689; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Cherry, J.D., Harrison, G.J., Kaplan, S.L., Hotez, P.J., Steinbach, W.J., (2014) Feigin and Cherry’S Textbook of Pediatric Infectious Diseases, , 7th ed. Philadelphia: Elsevier/Saunders; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin Respir Crit Care Med, 37, pp. 555-571; Arens, M.Q., Buller, R.S., Rankin, A., Comparison of the Eragen multi-code respiratory virus panel with conventional viral testing and real-time multiplex PCR assays for detection of respiratory viruses (2010) J Clin Microbiol, 48, pp. 2387-2395; Caliendo, A.M., Multiplex PCR and emerging technologies for the detection of respiratory pathogens (2011) Clin Infect Dis, 52, pp. S326-S330; Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age (2014) Pediatr Infect Dis J, 33, pp. 814-820; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: A one-year study in Colorado (2009) J Med Virol, 81, pp. 1597-1604; Self, W.H., Williams, D.J., Zhu, Y., Respiratory viral detection in children and adults: Comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J Infect Dis, 213, pp. 584-591; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin Infect Dis, 64, pp. 1532-1539; Chu, H.Y., Renaud, C., Ficken, E., Respiratory tract infections due to human metapneumovirus in immunocompromised children (2014) J Pediatric Infect Dis Soc, 3, pp. 286-293; Chu, H.Y., Chin, J., Pollard, J., Clinical outcomes in outpatient respiratory syncytial virus infection in immunocompromised children (2016) Influenza Other Respir Viruses, 10, pp. 205-210; Xu, M., Qin, X., Astion, M.L., Implementation of filmarray respiratory viral panel in a core laboratory improves testing turnaround time and patient care (2013) Am J Clin Pathol, 139, pp. 118-123; Chu, H.Y., Englund, J.A., Strelitz, B., Rhinovirus disease in children seeking care in a tertiary pediatric emergency department (2016) J Pediatric Infect Dis Soc, 5, pp. 29-38; Arden, K.E., Nissen, M.D., Sloots, T.P., Mackay, I.M., New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia (2005) J Med Virol, 75, pp. 455-462; Dijkman, R., Jebbink, M.F., Gaunt, E., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Gerna, G., Campanini, G., Rovida, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78, pp. 938-949; Lau, S.K., Woo, P.C., Yip, C.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071; Talbot, H.K., Crowe, J.E., Jr., Edwards, K.M., Coronavirus infection and hospitalizations for acute respiratory illness in young children (2009) J Med Virol, 81, pp. 853-856. , New Vaccine Surveillance Network; Renaud, C., Campbell, A.P., Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients (2011) Curr Opin Infect Dis, 24, pp. 333-343; Weigt, S.S., Gregson, A.L., Deng, J.C., Respiratory viral infections in hematopoietic stem cell and solid organ transplant recipients (2011) Semin Respir Crit Care Med, 32, pp. 471-493; Srinivasan, A., Gu, Z., Smith, T., Prospective detection of respiratory pathogens in symptomatic children with cancer (2013) Pediatr Infect Dis J, 32, pp. e99-e104; Trombetta, H., Faggion, H.Z., Leotte, J., Human coronavirus and severe acute respiratory infection in southern Brazil (2016) Pathog Glob Health, 110, pp. 113-118; Milano, F., Campbell, A.P., Guthrie, K.A., Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients (2010) Blood, 115, pp. 2088-2094; Talbot, H.K., Shepherd, B.E., Crowe, J.E., Jr., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Kristoffersen, A.W., Nordbø, S.A., Rognlien, A.G., Coronavirus causes lower respiratory tract infections less frequently than RSV in hospitalized Norwegian children (2011) Pediatr Infect Dis J, 30, pp. 279-283; Kuypers, J., Martin, E.T., Heugel, J., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119, pp. e70-e76; Nunes, M.C., Kuschner, Z., Rabede, Z., Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children (2014) PLoS One, 9; Martin, E.T., Kuypers, J., Wald, A., Englund, J.A., Multiple versus single virus respiratory infections: Viral load and clinical disease severity in hospitalized children (2012) Influenza Other Respir Viruses, 6, pp. 71-77; Crotty, M.P., Meyers, S., Hampton, N., Epidemiology, co-infections, and outcomes of viral pneumonia in adults: An observational cohort study (2015) Medicine (Baltimore), 94, p. e2332; Gaunt, E.R., Hardie, A., Claas, E.C., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Söderman, M., Rhedin, S., Tolfvenstam, T., Frequent respiratory viral infections in children with febrile neutropenia—a prospective follow-up study (2016) PLoS One, 11; Suryadevara, M., Tabarani, C.M., Bartholoma, N., Nasopharyngeal detection of respiratory viruses in febrile neutropenic children (2012) Clin Pediatr (Phila), 51, pp. 1164-1167; Prill, M.M., Iwane, M.K., Edwards, K.M., Human coronavirus in young children hospitalized for acute respiratory illness and asymptomatic controls (2012) Pediatr Infect Dis J, 31, pp. 235-240. , New Vaccine Surveillance Network; Singleton, R.J., Bulkow, L.R., Miernyk, K., Viral respiratory infections in hospitalized and community control children in Alaska (2010) J Med Virol, 82, pp. 1282-1290; Srinivasan, A., Flynn, P., Gu, Z., Detection of respiratory viruses in asymptomatic children undergoing allogeneic hematopoietic cell transplantation (2013) Pediatr Blood Cancer, 60, pp. 149-151; Byington, C.L., Ampofo, K., Stockmann, C., Community surveillance of respiratory viruses among families in the Utah Better Identification of Germs-Longitudinal Viral Epidemiology (BIG-LoVE) study (2015) Clin Infect Dis, 61, pp. 1217-1224","Waghmare, A.; Vaccine and Infectious Disease Division andUnited States; email: alpana.wagh-mare@seattlechildrens.org",,"Oxford University Press",20487193,,,"29447395","English","J. Pediatric Infect. Dis. Soc.",Article,"Final",Open Access,Scopus,2-s2.0-85058384305 "Shirato K., Melaku S.K., Kawachi K., Nao N., Iwata-Yoshikawa N., Kawase M., Kamitani W., Matsuyama S., Tessema T.S., Sentsui H.","7101969487;56303406700;57195058453;56111967300;37031266800;25958099400;6603075332;7201442043;6603621299;7005853346;","Middle east respiratory syndrome coronavirus in dromedaries in Ethiopia is antigenically different from the Middle East isolate EMC",2019,"Frontiers in Microbiology","10","JUN", 1326,"","",,2,"10.3389/fmicb.2019.01326","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069201065&doi=10.3389%2ffmicb.2019.01326&partnerID=40&md5=27f0ba1a8c3f2bf3db9df7b79b487167","Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan; Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia; Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia; Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan","Shirato, K., Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan; Melaku, S.K., Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia; Kawachi, K., Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Nao, N., Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan; Iwata-Yoshikawa, N., Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan; Kawase, M., Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan; Kamitani, W., Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Matsuyama, S., Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Japan; Tessema, T.S., Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia; Sentsui, H., Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan","Middle East respiratory syndrome (MERS) is an emerging respiratory disease caused by the MERS coronavirus (MERS-CoV). MERS has been endemic to Saudi Arabia since 2012. The reservoir of MERS-CoV is the dromedary camel, suggesting that MERS is primarily a zoonotic disease. MERS-CoV is common in dromedaries throughout the Middle East, North Africa, and East Africa as evidenced by neutralizing antibodies against MERS-CoV; however, human cases have remained limited to the Middle East. To better understand the cause of this difference, the virological properties of African camel MERS-CoV were analyzed based on the spike (S) protein in Ethiopia. Nasal swabs were collected from 258 young dromedaries (≤ 2 years old) in the Afar region of Ethiopia, of which 39 were positive for MERS-CoV, as confirmed by genetic tests. All positive tests were exclusive to the Amibara woreda region. Using next-generation sequencing, two full-length genomes of Amibara isolates were successfully decoded; both isolates belonged to the C2 clade based on phylogenetic analysis of full-length and S protein sequences. Recombinant EMC isolates of MERS-CoV, in which the S protein is replaced with those of Amibara isolates, were then generated to test the roles of these proteins in viral properties. Amibara S recombinants replicated more slowly in cultured cells than in EMC S recombinants. In neutralizing assays, Amibara S recombinants were neutralized by lower concentrations of sera from both Ethiopian dromedaries and EMC isolate (wild-type)-immunized mouse sera, relative to the EMC S recombinants, indicating that viruses coated in the Amibara S protein were easier to neutralize than the EMC S protein. Neutralization experiments performed using S1/S2 chimeric recombinants of the EMC and Amibara S proteins showed that the neutralization profile was dependent on the S1 region of the S protein. These results suggest that the slower viral replication and the ease of neutralization seen in the Ethiopian MERS-CoV are due to strain-specific differences in the S protein and may account for the absence of human MERS-CoV cases in Ethiopia. Copyright © 2019 Shirato, Melaku, Kawachi, Nao, Iwata-Yoshikawa, Kawase, Kamitani, Matsuyama, Tessema and Sentsui.","Antigenicity; Dromedary; Ethiopia; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; Neutralization","virus RNA; virus spike protein; amino acid sequence; animal cell; Article; bootstrapping; cell fusion; coculture; controlled study; dromedary; Ethiopia; gel electrophoresis; maximum likelihood method; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; next generation sequencing; nonhuman; nose smear; nucleotide sequence; open reading frame; phylogeny; RNA extraction; sequence analysis; strain difference; Vero cell line; virogenesis; virus neutralization; virus nucleocapsid; virus recombinant; virus replication","Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00814-e00884; Ami, Y., Nagata, N., Shirato, K., Watanabe, R., Iwata, N., Nakagaki, K., Co-infection of respiratory bacterium with severe acute respiratory syndrome coronavirus induces an exacerbated pneumonia in mice (2008) Microbiol. Immunol, 52, pp. 118-127; Assiri, A., Mcgeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect, 6; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Crystal structure of the receptor-binding domain from newly emerged middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. U. S. A, 115, pp. 3144-3149; Corman, V., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg. Infect. Dis., 19, pp. 736-742; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Spread, circulation, and evolution of the middle East respiratory syndrome coronavirus (2014) MBio, 5, pp. e01062-e01063; Danielsson, N., Novel coronavirus associated with severe respiratory disease: Case definition and public health measures (2012) Euro Surveill, 17, p. 20282; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group (2013) J. Virol., 87, pp. 7790-7792; Eshetu, E., Abraham, Z., Review on live animal and meat export marketing system in Ethiopia: Challenges and opportunities (2016) J. Sci. Innov. Res., 5, pp. 59-64; Faye, B., The camel today: Assets and potentials (2014) Anthropozoologica, 49, pp. 167-176; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA (2018) J. Virol. Methods, 251, pp. 22-29; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Kramer-Kuhl, A., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Gutierrez, C., Tejedor-Junco, M.T., Gonzalez, M., Lattwein, E., Renneker, S., Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the Canary Islands, 2015 (2015) Euro Surveill, 20. , pii: 30019; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Harcourt, J.L., Rudoler, N., Tamin, A., Leshem, E., Rasis, M., Giladi, M., The prevalence of middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health, 65, pp. 749-754; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Seroepidemiology of middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19. , pii: 20828; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18, p. 20659; Holmes, K.V., Compton, S.R., Coronavirus receptors (1995) The Coronaviridae, pp. 55-71. , ed. S. G. Siddell (New York: Plenum Press); Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Kotani, O., Sato, H., Sekimukai, H., Acute respiratory infection in human dipeptidyl peptidase 4-transgenic mice infected with middle East respiratory syndrome coronavirus (2019) J. Virol., 93. , pii: e01818-18; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2009) J. Virol., 83, pp. 712-721; Kawase, M., Shirato, K., Van Der Hoek, L., Taguchi, F., Matsuyama, S., Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry (2012) J. Virol., 86, pp. 6537-6545; Kiambi, S., Corman, V.M., Sitawa, R., Githinji, J., Ngoci, J., Ozomata, A.S., Detection of distinct MERS-coronavirus strains in dromedary camels from Kenya, 2017 (2018) Emerg. Microbes Infect, 7, p. 195; Kubo, H., Takase-Yoden, S., Taguchi, F., Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of the spike protein of neurovirulent murine coronavirus JHMV c1-2 variant (1993) J. Gen. Virol., 74, pp. 1421-1425; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874; Kupferschmidt, K., Emerging diseases. Researchers scramble to understand camel connection to MERS (2013) Science, 341, p. 702; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res., 25, pp. 1237-1249; Liljander, A., Meyer, B., Jores, J., Muller, M.A., Lattwein, E., Njeru, I., MERS-CoV antibodies in humans, Africa, 2013-2014 (2016) Emerg. Infect. Dis., 22, pp. 1086-1089; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83, pp. 7411-7421; Matsuyama, S., Shirato, K., Kawase, M., Terada, Y., Kawachi, K., Fukushi, S., Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells (2018) J. Virol., 92. , pii: e00683-18; Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M., Taguchi, F., Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection (2005) Proc. Natl. Acad. Sci. U. S. A, 102, pp. 12543-12547; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, 22; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis., 15, pp. 559-564; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., Mccray, P.B., Jr., Proteolytic processing of middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 12262-12267; Reusken, C., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Saijo, M., Qing, T., Niikura, M., Maeda, A., Ikegami, T., Sakai, K., Immunofluorescence technique using HeLa cells expressing recombinant nucleoprotein for detection of immunoglobulin G antibodies to crimean-Congo hemorrhagic fever virus (2002) J. Clin. Microbiol, 40, pp. 372-375; Shirato, K., Azumano, A., Nakao, T., Hagihara, D., Ishida, M., Tamai, K., Middle East respiratory syndrome coronavirus infection not found in camels in Japan (2015) Jpn. J. Infect. Dis., 68, pp. 256-258; Shirato, K., Chang, H.W., Rottier, P.J.M., Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein (2018) Virus Res., 255, pp. 14-23; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J. Virol., 91. , pii: e01387-16; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Shirato, K., Semba, S., El-Kafrawy, S.A., Hassan, A.M., Tolah, A.M., Takayama, I., Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the middle East respiratory syndrome coronavirus (2018) J. Virol. Methods, 258, pp. 41-48; Shirogane, Y., Takeda, M., Iwasaki, M., Ishiguro, N., Takeuchi, H., Nakatsu, Y., Efficient multiplication of human metapneumovirus in vero cells expressing the transmembrane serine protease TMPRSS2 (2008) J. Virol., 82, pp. 8942-8946; Spaan, W., Cavanagh, D., Horzinek, M.C., Coronaviruses: Structure and genome expression (1988) J. Gen. Virol., 69, pp. 2939-2952; The probable error of a mean (1908) Biometrika, 6, pp. 1-25. , Student; Sturman, L.S., Ricard, C.S., Holmes, K.V., Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments (1985) J. Virol., 56, pp. 904-911; Takase-Yoden, S., Kikuchi, T., Siddell, S.G., Taguchi, F., Localization of major neutralizing epitopes on the S1 polypeptide of the murine coronavirus peplomer glycoprotein (1991) Virus Res., 18, pp. 99-107; Terada, Y., Kawachi, K., Matsuura, Y., Kamitani, W., MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA (2017) Virology, 511, pp. 95-105; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape (2018) J. Virol., 92. , pii: 202002-17; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Welch, B.L., The generalisation of student's problems when several different population variances are involved (1947) Biometrika, 34, pp. 28-35; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Acute middle East respiratory syndrome coronavirus infection in livestock dromedaries, dubai, 2014 (2015) Emerg. Infect. Dis., 21, pp. 1019-1022; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep., 5, p. 13133; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhang, S., Zhou, P., Wang, P., Li, Y., Jiang, L., Jia, W., Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein (2018) Cell Rep., 24, pp. 441-452","Shirato, K.; Department of Virology III, National Institute of Infectious DiseasesJapan; email: shirato@nih.go.jp",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85069201065 "Deng X., Mettelman R.C., O'Brien A., Thompson J.A., O'Brien T.E., Baker S.C.","36096409000;56512278300;37073014800;57209099690;57210411722;7403307881;","Analysis of coronavirus temperature-sensitive mutants reveals an interplay between the macrodomain and Papain-like protease impacting replication and pathogenesis",2019,"Journal of Virology","93","12", e0214018,"","",,,"10.1128/JVI.02140-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066485800&doi=10.1128%2fJVI.02140-18&partnerID=40&md5=f404d4afc24288974abdba45d481a866","Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of Medicine, Maywood, IL, United States; Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, United States","Deng, X., Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of Medicine, Maywood, IL, United States; Mettelman, R.C., Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of Medicine, Maywood, IL, United States; O'Brien, A., Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of Medicine, Maywood, IL, United States; Thompson, J.A., Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of Medicine, Maywood, IL, United States; O'Brien, T.E., Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, United States; Baker, S.C., Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of Medicine, Maywood, IL, United States","Analysis of temperature-sensitive (ts) mutant viruses is a classic method allowing researchers to identify genetic loci involved in viral replication and pathogenesis. Here, we report genetic analysis of a ts strain of mouse hepatitis virus (MHV), tsNC11, focusing on the role of mutations in the macrodomain (MAC) and the papain-like protease 2 (PLP2) domain of nonstructural protein 3 (nsp3), a component of the viral replication complex. Using MHV reverse genetics, we generated a series of mutant viruses to define the contributions of macrodomain- and PLP2-specific mutations to the ts phenotype. Viral replication kinetics and efficiency-of-plating analysis performed at permissive and nonpermissive temperatures revealed that changes in the macrodomain alone were both necessary and sufficient for the ts phenotype. Interestingly, mutations in the PLP2 domain were not responsible for the temperature sensitivity but did reduce the frequency of reversion of macrodomain mutants. Coimmunoprecipitation studies are consistent with an interaction between the macrodomain and PLP2. Expression studies of the macrodomain-PLP2 portion of nsp3 indicate that the ts mutations enhance proteasome-mediated degradation of the protein. Furthermore, we found that during virus infection, the replicase proteins containing the MAC and PLP2 mutations were more rapidly degraded at the nonpermissive temperature than were the wild-type proteins. Importantly, we show that the macrodomain and PLP2 mutant viruses trigger production of type I interferon in vitro and are attenuated in mice, further highlighting the importance of the macrodomain-PLP2 interplay in viral pathogenesis. IMPORTANCE Coronaviruses (CoVs) are emerging human and veterinary pathogens with pandemic potential. Despite the established and predicted threat these viruses pose to human health, there are currently no approved countermeasures to control infections with these viruses in humans. Viral macrodomains, enzymes that remove posttranslational ADP-ribosylation of proteins, and viral multifunctional papain-like proteases, enzymes that cleave polyproteins and remove polyubiquitin chains via deubiquitinating activity, are two important virulence factors. Here, we reveal an unanticipated interplay between the macrodomain and the PLP2 domain that is important for replication and antagonizing the host innate immune response. Targeting the interaction of these enzymes may provide new therapeutic opportunities to treat CoV disease. © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; Innate immunity; Interferon; Macrodomain; Papain-like protease; Temperature sensitive; Viral replication","nonstructural protein 3; papain; Article; controlled study; Coronavirinae; embryo; female; gene frequency; gene identification; gene mutation; genetic analysis; human; human cell; immunoprecipitation; in vitro study; MAC gene; mouse; Murine hepatitis virus; nonhuman; phenotype; PLP2 gene; priority journal; protein degradation; protein domain; protein expression; protein protein interaction; protein stability; reverse genetics; temperature sensitivity; virus gene; virus infection; virus mutation; virus pathogenesis; virus replication; virus strain; wild type","De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Ma, J.-Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J Virol, 76, pp. 3697-3708. , https://doi.org/10.1128/JVI.76.8.3697-3708.2002; Knoops, K., Kikkert, M., Worm, S.H.E., Van Den Zevenhoven-Dobbe, J.C., Van Der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6. , https://doi.org/10.1371/journal.pbio.0060226; Enjuanes, L., Almazán, F., Sola, I., Zuñiga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu Rev Microbiol, 60, pp. 211-230. , https://doi.org/10.1146/annurev.micro.60.080805.142157; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Kindler, E., Thiel, V., Weber, F., Interaction of SARS and MERS coronaviruses with the antiviral interferon response (2016) Adv Virus Res, 96, pp. 219-243; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006195; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260. , https://doi.org/10.1073/pnas.1618310114; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., McAnarney, E.T., Baric, R.S., Combination attenuation offers strategy for live-attenuated coronavirus vaccines (2018) J Virol, 92, pp. e00710-e00718; Oudshoorn, D., Rijs, K., Limpens, R., Groen, K., Koster, A.J., Snijder, E.J., Kikkert, M., Bárcena, M., Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication (2017) mBio, 8, pp. e01658-e01717; Neuman, B.W., Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles (2016) Antiviral Res, 135, pp. 97-107. , https://doi.org/10.1016/j.antiviral.2016.10.005; Dominguez, G., Wang, C.-Y., Frey, T.K., Sequence of the genome RNA of rubella virus: Evidence for genetic rearrangement during togavirus evolution (1990) Virology, 177, pp. 225-238. , https://doi.org/10.1016/0042-6822(90)90476-8; Gorbalenya, A.E., Koonin, E.V., Lai, M.M.-C., Putative papain-related thiol proteases of positive-strand RNA viruses Identification of rubi- And aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-, and coronaviruses (1991) FEBS Lett, 288, pp. 201-205. , https://doi.org/10.1016/0014-5793(91)81034-6; Koonin, E.V., Gorbalenya, A.E., Purdy, M.A., Rozanov, M.N., Reyes, G.R., Bradley, D.W., Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: Delineation of an additional group of positive-strand RNA plant and animal viruses (1992) Proc Natl Acad Sci U S A, 89, pp. 8259-8263. , https://doi.org/10.1073/pnas.89.17.8259; Egloff, M.-P., Malet, H., Putics, A., Heinonen, M., Dutartre, H., Frangeul, A., Gruez, A., Canard, B., Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains (2006) J Virol, 80, pp. 8493-8502. , https://doi.org/10.1128/JVI.00713-06; Saikatendu, K.S., Joseph, J.S., Subramanian, V., Clayton, T., Griffith, M., Moy, K., Velasquez, J., Kuhn, P., Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1-phosphate dephosphorylation by a conserved domain of nsP3 (2005) Structure, 13, pp. 1665-1675. , https://doi.org/10.1016/j.str.2005.07.022; Putics, A., Gorbalenya, A.E., Ziebuhr, J., Putics, Á., Gorbalenya, A.E., Ziebuhr, J., Identification of protease and ADP-ribose 1-monophosphatase activities associated with transmissible gastroenteritis virus nonstructural protein 3 (2006) J Gen Virol, 87, pp. 651-656. , https://doi.org/10.1099/vir.0.81596-0; Putics, A., Filipowicz, W., Hall, J., Gorbalenya, A.E., Ziebuhr, J., ADP-ribose-1-monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture (2005) J Virol, 79, pp. 12721-12731. , https://doi.org/10.1128/JVI.79.20.12721-12731.2005; Eriksson, K.K., Cervantes-Barragán, L., Ludewig, B., Thiel, V., Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1phosphatase, a viral function conserved in the alpha-like supergroup (2008) J Virol, 82, pp. 12325-12334. , https://doi.org/10.1128/JVI.02082-08; Kuri, T., Eriksson, K.K., Putics, A., Züst, R., Snijder, E.J., Davidson, A.D., Siddell, S.G., Weber, F., The ADP-ribose-1-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses (2011) J Gen Virol, 92, pp. 1899-1905. , https://doi.org/10.1099/vir.0.031856-0; Li, C., Debing, Y., Jankevicius, G., Neyts, J., Ahel, I., Coutard, B., Canard, B., Viral macrodomains reverse protein ADP-ribosylation (2016) J Virol, 90, pp. 8478-8486. , https://doi.org/10.1128/JVI.00705-16; Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., Ladurner, A.G., A family of macrodomain proteins reverses cellular mono-ADP-ribosylation (2013) Nat Struct Mol Biol, 20, pp. 508-514. , https://doi.org/10.1038/nsmb.2523; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J Virol, 89, pp. 1523-1536. , https://doi.org/10.1128/JVI.02596-14; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D.K., Perlman, S., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) mBio, 7, pp. e01721-e01816; Kanjanahaluethai, A., Baker, S.C., Identification of mouse hepatitis virus papain-like proteinase 2 activity (2000) J Virol, 74, pp. 7911-7921. , https://doi.org/10.1128/JVI.74.17.7911-7921.2000; Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Rota, P.A., Baker, S.C., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity (2004) J Virol, 78, pp. 13600-13612. , https://doi.org/10.1128/JVI.78.24.13600-13612.2004; Barretto, N., Jukneliene, D., Ratia, K., Chen, Z., Mesecar, A.D., Baker, S.C., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity (2005) J Virol, 79, pp. 15189-15198. , https://doi.org/10.1128/JVI.79.24.15189-15198.2005; Lindner, H.A., Fotouhi-Ardakani, N., Lytvyn, V., Lachance, P., Sulea, T., Ménard, R., The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme (2005) J Virol, 79, pp. 15199-15208. , https://doi.org/10.1128/JVI.79.24.15199-15208.2005; Ratia, K., Saikatendu, K.S., Santarsiero, B.D., Barretto, N., Baker, S.C., Stevens, R.C., Mesecar, A.D., Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme (2006) Proc Natl Acad Sci U S A, 103, pp. 5717-5722. , https://doi.org/10.1073/pnas.0510851103; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res, 194, pp. 184-190. , https://doi.org/10.1016/j.virusres.2014.01.025; Bailey-Elkin, B.A., Knaap, R.C.M., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., Van Kasteren, P.B., Bredenbeek, P.J., Mark, B.L., Crystal structure of the MERS coronavirus papain-like protease bound to ubiq-uitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J Biol Chem, 289, pp. 34667-34682. , https://doi.org/10.1074/jbc.M114.609644; Báez-Santos, Y.M., Mielech, A.M., Deng, X., Baker, S., Mesecar, A.D., Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 12511-12527. , https://doi.org/10.1128/JVI.01294-14; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Li, K., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J Biol Chem, 282, pp. 32208-32221. , https://doi.org/10.1074/jbc.M704870200; Niemeyer, D., Mösbauer, K., Klein, E.M., Sieberg, A., Mettelman, R.C., Mielech, A.M., Dijkman, R., Müller, M.A., The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1007296; Schaad, M.C., Stohlman, S.A., Egbert, J., Lum, K., Fu, K., Wei, T., Baric, R.S., Genetics of mouse hepatitis virus transcription: Identification of cistrons which may function in positive and negative strand RNA synthesis (1990) Virology, 177, pp. 634-645. , https://doi.org/10.1016/0042-6822(90)90529-Z; Yount, B., Denison, M.R., Weiss, S.R., Ralph, S., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002; Herman, R.K., Yochem, J., Genetic enhancers (2005) The C. Elegans Research Community, pp. 1-11. , https://doi.org/10.1895/wormbook.1.27.1, 16 September WormBook (ed), WormBook; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) J Virol, 84, pp. 10276-10288. , https://doi.org/10.1128/JVI.01287-10; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J Virol, 87, pp. 9159-9172. , https://doi.org/10.1128/JVI.01275-13; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antiviral Res, 149, pp. 58-74. , https://doi.org/10.1016/j.antiviral.2017.11.001; Chen, Y., Savinov, S.N., Mielech, A.M., Cao, T., Baker, S.C., Mesecar, A.D., X-ray structural and functional studies of the three tandemly linked domains of nonstructural protein 3 (nsp3) from murine hepatitis virus reveal conserved functions (2015) J Biol Chem, 290, pp. 25293-25306. , https://doi.org/10.1074/jbc.M115.662130; Zheng, D., Chen, G., Guo, B., Cheng, G., Tang, H., PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production (2008) Cell Res, 18, pp. 1105-1113. , https://doi.org/10.1038/cr.2008.294; Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., Chen, Z., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease (2014) J Gen Virol, 95, pp. 614-626. , https://doi.org/10.1099/vir.0.059014-0; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70. , https://doi.org/10.1016/j.virol.2013.11.040; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-B signaling (2009) J Virol, 83, pp. 6689-6705. , https://doi.org/10.1128/JVI.02220-08; Ratia, K., Kilianski, A., Baez-Santos, Y.M., Baker, S.C., Mesecar, A., Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004113; Fehr, A.R., Jankevicius, G., Ahel, I., Perlman, S., Viral macrodomains: Unique mediators of viral replication and pathogenesis (2018) Trends Microbiol, 26, pp. 598-610. , https://doi.org/10.1016/j.tim.2017.11.011; Leung, A.K.L., McPherson, R.L., Griffin, D.E., Macrodomain ADP-ribosylhydrolase and the pathogenesis of infectious diseases (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1006864; McPherson, R.L., Abraham, R., Sreekumar, E., Ong, S.-E., Cheng, S.-J., Baxter, V.K., Kistemaker, H., Leung, A., ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence (2017) Proc Natl Acad Sci U S A, 114, pp. 1666-1671. , https://doi.org/10.1073/pnas.1621485114; Abraham, R., Hauer, D., McPherson, R.L., Utt, A., Kirby, I.T., Cohen, M.S., Merits, A., Griffin, D.E., ADP-ribosyl-binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication (2018) Proc Natl Acad Sci U S A, 115, pp. E10457-E10466. , https://doi.org/10.1073/pnas.1812130115; Mielech, A.M., Deng, X., Chen, Y., Kindler, E., Wheeler, D.L., Mesecar, A.D., Thiel, V., Baker, S.C., Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis (2015) J Virol, 89, pp. 4907-4917. , https://doi.org/10.1128/JVI.00338-15; Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S., Denison, M.R., The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication (2005) J Virol, 79, pp. 13399-13411. , https://doi.org/10.1128/JVI.79.21.13399-13411.2005; Donaldson, E.F., Sims, A.C., Graham, R.L., Denison, M.R., Baric, R.S., Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis (2007) J Virol, 81, pp. 6356-6368. , https://doi.org/10.1128/JVI.02805-06; Donaldson, E.F., Graham, R.L., Sims, A.C., Denison, M.R., Baric, R.S., Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing (2007) J Virol, 81, pp. 7086-7098. , https://doi.org/10.1128/JVI.00049-07; Gallagher, T.M., Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein (1996) J Virol, 70, pp. 4683-4690; Baric, R.S., Fu, K., Schaad, M.C., Stohlman, S.A., Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups (1990) Virology, 177, pp. 646-656. , https://doi.org/10.1016/0042-6822(90)90530-5; Schiller, J.J., Kanjanahaluethai, A., Baker, S.C., Processing of the coronavirus MHV-JHM polymerase polyprotein: Identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a (1998) Virology, 242, pp. 288-302. , https://doi.org/10.1006/viro.1997.9010; Deng, X., StJohn, S.E., Osswald, H.L., O'Brien, A., Banach, B.S., Sleeman, K., Ghosh, A.K., Baker, S.C., Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance (2014) J Virol, 88, pp. 11886-11898. , https://doi.org/10.1128/JVI.01528-14","Baker, S.C.; Department of Microbiology and Immunology, Loyola University, Chicago Stritch School of MedicineUnited States; email: sbaker1@luc.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30918076","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85066485800 "Kleine-Weber H., Elzayat M.T., Wang L., Graham B.S., Müller M.A., Drosten C., Pöhlmann S., Hoffmann M.","57204592347;57204581159;35199353800;7201610365;24068857400;7003813990;7003508167;35080416400;","Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization",2019,"Journal of Virology","93","2", e01381-18,"","",,8,"10.1128/JVI.01381-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059494347&doi=10.1128%2fJVI.01381-18&partnerID=40&md5=105f936ad434c4f9a4e225ba3cb3db47","Infection Biology Unit, German Primate Center, Göttingen, Germany; Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Infection Research, Associated partner Charité, Berlin, Germany","Kleine-Weber, H., Infection Biology Unit, German Primate Center, Göttingen, Germany, Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany; Elzayat, M.T., Infection Biology Unit, German Primate Center, Göttingen, Germany; Wang, L., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Müller, M.A., Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany, German Centre for Infection Research, Associated partner Charité, Berlin, Germany; Drosten, C., Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany, German Centre for Infection Research, Associated partner Charité, Berlin, Germany; Pöhlmann, S., Infection Biology Unit, German Primate Center, Göttingen, Germany, Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany; Hoffmann, M., Infection Biology Unit, German Primate Center, Göttingen, Germany","Middle East respiratory syndrome coronavirus (MERS-CoV) poses a threat to public health. The virus is endemic in the Middle East but can be transmitted to other countries by travel activity. The introduction of MERS-CoV into the Republic of Korea by an infected traveler resulted in a hospital outbreak of MERS that entailed 186 cases and 38 deaths. The MERS-CoV spike (S) protein binds to the cellular protein DPP4 via its receptor binding domain (RBD) and mediates viral entry into target cells. During the MERS outbreak in Korea, emergence and spread of viral variants that harbored mutations in the RBD, D510G and I529T, was observed. Counter-intuitively, these mutations were found to reduce DPP4 binding and viral entry into target cells. In this study, we investigated whether they also exerted proviral effects. We confirm that changes D510G and I529T reduce S protein binding to DPP4 but show that this reduction only translates into diminished viral entry when expression of DPP4 on target cells is low. Neither mutation modulated S protein binding to sialic acids, S protein activation by host cell proteases, or inhibition of S protein-driven entry by interferon-induced transmembrane proteins. In contrast, changes D510G and I529T increased resistance of S protein-driven entry to neutralization by monoclonal antibodies and sera from MERS patients. These findings indicate that MERS-CoV variants with reduced neutralization sensitivity were transmitted during the Korean outbreak and that the responsible mutations were compatible with robust infection of cells expressing high levels of DPP4. IMPORTANCE MERS-CoV has pandemic potential, and it is important to identify mutations in viral proteins that might augment viral spread. In the course of a large hospital outbreak of MERS in the Republic of Korea in 2015, the spread of a viral variant that contained mutations in the viral spike protein was observed. These mutations were found to reduce receptor binding and viral infectivity. However, it remained unclear whether they also exerted proviral effects. We demonstrate that these mutations reduce sensitivity to antibody-mediated neutralization and are compatible with robust infection of target cells expressing large amounts of the viral receptor DPP4. Copyright © 2019 American Society for Microbiology. All Rights Reserved.",,"dipeptidyl peptidase IV; interferon; membrane protein; monoclonal antibody; proteinase; sialic acid; virus spike protein; vitronectin; coronavirus spike glycoprotein; dipeptidyl peptidase IV; DPP4 protein, human; monoclonal antibody; neutralizing antibody; protein binding; sialic acid derivative; amino acid substitution; animal cell; Article; controlled study; flow cytometry; human; human cell; immunoblotting; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein binding; protein expression; serum; South Korea; travel; virus entry; virus mutation; virus neutralization; virus transmission; aged; antiviral resistance; binding site; chemistry; Coronavirus infection; down regulation; genetics; male; metabolism; middle aged; Middle East respiratory syndrome coronavirus; mutation; pathogenicity; Aged; Antibodies, Monoclonal; Antibodies, Neutralizing; Binding Sites; Coronavirus Infections; Dipeptidyl Peptidase 4; Down-Regulation; Drug Resistance, Viral; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Mutation; Protein Binding; Republic of Korea; Sialic Acids; Spike Glycoprotein, Coronavirus; Virus Internalization","Lai, M.M.C., Perlman, S., Anderson, L.J., Coronaviridae (2007) Fields Virology, 1, pp. 1305-1336. , Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE ed, 5th ed, Lippincott, Williams & Wilkins, Philadelphia, PA; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Cbem, R., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—Saudi Arabia, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-march-2018.html, Accessed 27 July 2018; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Memish, Z.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Kim, Y.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001. , https://doi.org/10.1016/S0140-6736(16)30623-7; Oh, M.D., Park, W.B., Park, S.W., Choe, P.G., Bang, J.H., Song, K.H., Kim, E.S., Kim, N.J., Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J Intern Med, 33, pp. 233-246. , https://doi.org/10.3904/kjim.2018.031; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci U S A, 114, pp. E8508-E8517. , https://doi.org/10.1073/pnas.1712592114; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Pöhlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511. , https://doi.org/10.1128/JVI.00128-13; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0076469; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2017) J Virol, 91, pp. e01387-e01416. , https://doi.org/10.1128/JVI.01387-16; Kim, D.W., Kim, Y.J., Park, S.H., Yun, M.R., Yang, J.S., Kang, H.J., Han, Y.W., Kim, S.S., Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015 (2016) Emerg Infect Dis, 22, pp. 100-104. , https://doi.org/10.3201/eid2201.151055; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Kang, J.I., Cho, N.H., Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) mBio, 7, pp. e00019-e00116. , https://doi.org/10.1128/mBio.00019-16; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., Landt, O., Memish, Z.A., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377. , https://doi.org/10.1093/cid/ciu812; Fagbo, S.F., Skakni, L., Chu, D.K., Garbati, M.A., Joseph, M., Peiris, M., Hakawi, A.M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 1981-1988. , https://doi.org/10.3201/eid2111.150944; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , https://doi.org/10.1126/science.aac8608; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Muth, D., Memish, Z.A., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483. , https://doi.org/10.1093/cid/civ951; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Yau, E., Peiris, M., Longitudinal study of Middle East respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerg Microbes Infect, 6, p. e56. , https://doi.org/10.1038/emi.2017.44; Hoffmann, M., González Hernández, M., Berger, E., Marzi, A., Pöhlmann, S., The glycoproteins of all filovirus species use the same host factors for entry into bat and human cells but entry efficiency is species dependent (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0149651; Fukuma, A., Tani, H., Taniguchi, S., Shimojima, M., Saijo, M., Fukushi, S., Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein (2015) Arch Virol, 160, pp. 2293-2300. , https://doi.org/10.1007/s00705-015-2506-z; Gierer, S., Muller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pohlmann, S., Inhibition of proprotein convertases abrogates processing of the Middle Eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J Infect Dis, 211, pp. 889-897. , https://doi.org/10.1093/infdis/jiu407; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561. , https://doi.org/10.1128/JVI.01890-13; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 9119-9123. , https://doi.org/10.1128/JVI.01279-15; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr, Nunneley, J.W., Barnard, D., Simmons, G., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res, 116, pp. 76-84. , https://doi.org/10.1016/j.antiviral.2015.01.011; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pöhlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160. , https://doi.org/10.1128/JVI.03372-12; Wrensch, F., Winkler, M., Pohlmann, S., IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: Evidence for cholesterol-independent mechanisms (2014) Viruses, 6, pp. 3683-3698. , https://doi.org/10.3390/v6093683; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV spike to avoid neutralization escape (2018) J Virol, 92, pp. e02002-e02017. , https://doi.org/10.1128/JVI.02002-17; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Marasco, W.A., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111, pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Haagmans, B.L., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838. , https://doi.org/10.1128/JVI.02935-13; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implications for the Middle East respiratory syndrome (2016) Am J Pathol, 186, pp. 78-86. , https://doi.org/10.1016/j.ajpath.2015.09.014; Seys, L.J.M., Widagdo, W., Verhamme, F.M., Kleinjan, A., Janssens, W., Joos, G.F., Bracke, K.R., Brusselle, G.G., DPP4, the Middle East respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients (2018) Clin Infect Dis, 66, pp. 45-53. , https://doi.org/10.1093/cid/cix741; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8; Hoffmann, M., Hofmann-Winkler, H., Pohlmann, S., Priming time: How cellular proteases arm coronavirus spike proteins (2018) Activation of Viruses by Host Proteases, pp. 71-98. , Böttcher-Friebertshäuser E, Garten W, Klenk HD ed, Springer International Publishing, Cham, Switzerland; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr, Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc Natl Acad Sci U S A, 113, pp. 12262-12267. , https://doi.org/10.1073/pnas.1608147113; Cortes, A., Gracia, E., Moreno, E., Mallol, J., Lluis, C., Canela, E.I., Casado, V., Moonlighting adenosine deaminase: A target protein for drug development (2015) Med Res Rev, 35, pp. 85-125. , https://doi.org/10.1002/med.21324; Choe, P.G., Perera, R., Park, W.B., Song, K.H., Bang, J.H., Kim, E.S., Kim, H.B., Oh, M.D., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084. , https://doi.org/10.3201/eid2307.170310; Arabi, Y.M., Hajeer, A.H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., Al-Dawood, A., Alahmadi, M., Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 1554-1561. , https://doi.org/10.3201/eid2209.151164; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Zhao, J., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2, p. eaan5393. , https://doi.org/10.1126/sciimmunol.aan5393; Brinkmann, C., Hoffmann, M., Lübke, A., Nehlmeier, I., Krämer-Kühl, A., Winkler, M., Pöhlmann, S., The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells (2017) PLoS One, 12. , https://doi.org/10.1371/journal.pone.0189073; Radoshitzky, S.R., Abraham, J., Spiropoulou, C.F., Kuhn, J.H., Nguyen, D., Li, W., Nagel, J., Choe, H., Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses (2007) Nature, 446, pp. 92-96. , https://doi.org/10.1038/nature05539; Chaipan, C., Kobasa, D., Bertram, S., Glowacka, I., Steffen, I., Tsegaye, T.S., Takeda, M., Pohlmann, S., Proteolytic activation of the 1918 influenza virus hemagglutinin (2009) J Virol, 83, pp. 3200-3211. , https://doi.org/10.1128/JVI.02205-08; Bertram, S., Glowacka, I., Blazejewska, P., Soilleux, E., Allen, P., Danisch, S., Steffen, I., Pohlmann, S., TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells (2010) J Virol, 84, pp. 10016-10025. , https://doi.org/10.1128/JVI.00239-10; Wrensch, F., Hoffmann, M., Gartner, S., Nehlmeier, I., Winkler, M., Pohlmann, S., Virion background and efficiency of virion incorporation determine susceptibility of simian immunodeficiency virus env-driven viral entry to inhibition by IFITM proteins (2017) J Virol, 91, pp. e01488-e01516. , https://doi.org/10.1128/JVI.01488-16; Berger Rentsch, M., Zimmer, G., A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon (2011) PLoS One, 6. , https://doi.org/10.1371/journal.pone.0025858; Hoffmann, M., Kruger, N., Zmora, P., Wrensch, F., Herrler, G., Pohlmann, S., The hemagglutinin of bat-associated influenza viruses is activated by TMPRSS2 for pH-dependent entry into bat but not human cells (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0152134; Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Cardona, A., Fiji: An open-source platform for biological-image analysis (2012) Nat Methods, 9, pp. 676-682. , https://doi.org/10.1038/nmeth.2019; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408. , https://doi.org/10.1006/meth.2001.1262; Guberina, H., Witzke, O., Timm, J., Dittmer, U., Muller, M.A., Drosten, C., Bonin, F., A patient with severe respiratory failure caused by novel human coronavirus (2014) Infection, 42, pp. 203-206. , https://doi.org/10.1007/s15010-013-0509-9; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Wendtner, C.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751. , https://doi.org/10.1016/S1473-3099(13)70154-3; (2015) MERS-COV (31): Saudi Arabia, Germany Ex United Arab Emirates, Request for, , http://www.promedmail.org/, ProMED. information. ProMED mail archive 20150308.3215456","Pöhlmann, S.; Infection Biology Unit, German Primate CenterGermany; email: spoehlmann@dpz.eu",,"American Society for Microbiology",0022538X,,JOVIA,"30404801","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85059494347 "Hemida M.G.","37037447300;","Middle East Respiratory Syndrome Coronavirus and the One Health concept",2019,"PeerJ","2019","8", 7556,"","",,3,"10.7717/peerj.7556","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074165618&doi=10.7717%2fpeerj.7556&partnerID=40&md5=1c8bcafd143999f208f30b3b8591396d","Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Hasa, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Kafrelsheikh, Egypt","Hemida, M.G., Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Hasa, Saudi Arabia, Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Kafrelsheikh, Egypt","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is one of the major threats to the healthcare systems in some countries, especially in the Arabian Peninsula. MERS-CoV is considered an ideal example of the One Health concept. This is due to the animals, especially dromedary camels, play important roles in the transmission and sustainability of the virus, and the virus can be transmitted through aerosols of infected patients into the environment. However, there is some debate regarding the origin of MERS-CoV either from bats or other unknown reservoirs. The dromedary camel is the only identified animal reservoir to date. These animals play important roles in sustaining the virus in certain communities and may act as an amplifier of the virus by secreting it in their body fluids, especially in nasal and rectal discharges. MERS-CoV has been detected in the nasal and rectal secretions of infected camels, and MERS-CoV of this origin has full capacity to infect human airway epithelium in both in vitro and in vivo models. Other evidence confirms the direct transmission of MERS-CoV from camels to humans, though the role of camel meat and milk products has yet to be well studied. Human-to-human transmission is well documented through contact with an active infected patient or some silently infected persons. Furthermore, there are some significant risk factors of individuals in close contact with a positive MERS-CoV patient, including sleeping in the same patient room, removing patient waste (urine, stool, and sputum), and touching respiratory secretions from the index case. Outbreaks within family clusters have been reported, whereby some blood relative patients were infected through their wives in the same house were not infected. Some predisposing genetic factors favor MERS-CoV infection in some patients, which is worth investigating in the near future. The presence of other comorbidities may be another factor. Overall, there are many unknown/confirmed aspects of the virus/human/animal network. Here, the most recent advances in this context are discussed, and the possible reasons behind the emergence and sustainability of MERS-CoV in certain regions are presented. Identification of the exact mechanism of transmission of MERS-CoV from camels to humans and searching for new reservoir/s are of high priority. This will reduce the shedding of the virus into the environment, and thus the risk of human infection can be mitigated. © 2019 Hemida.","Dromedary camel; Human; MERS-CoV; One Health concept; Reservoir; Transmision; Zoonosis","animal; Article; human; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; One Health","Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20, pp. 1999-2005; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) International Journal of Infectious Diseases, 20, pp. 42-46; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: Implication for infection control (2018) American Journal of Infection Control, 46, pp. 165-168; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., El-Taweel, A.N., Kayali, G., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerging Microbes & Infections, 6, p. e1; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Alagaili, A.N., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) MBio, 9 (5), pp. e01985-e02018; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al Raiy, B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Annals of Internal Medicine, 160, pp. 389-397; Aronin, S.I., Sadigh, M., Severe acute respiratory syndrome (2004) Connecticut Medicine, 68, pp. 207-215; Arwady, M.A., Alraddadi, B., Basler, C., Azhar, E.I., Abuelzein, E., Sindy, A.I., Sadiq, B.M., Madani, T.A., Middle East respiratory syndrome coronavirus transmission in ex-tended family, Saudi Arabia, 2014 (2016) Emerging Infectious Diseases, 22, pp. 1395-1402; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Has-San, A.M., Madani, T.A., Detection of the mid-dle east respiratory syndrome coronavirus genome in an air sample originat-ing from a camel barn owned by an infected patient (2014) MBio, 5, pp. e01450-e01414; Bayrakdar, F., Altas, A.B., Korukluoglu, G., Topal, S., Molecular diagnosis and phylo-genetic analysis of the first MERS case in Turkey (2015) Mikrobiyoloji Bulteni, 49, pp. 414-422; (2016) Coronavirus | Home | CDC. (2016) Gov., , https://www.cdc.gov/coronavirus/, Centers for Disease Control (CDC). (accessed on 26 December 2016); Chan, R.W., Hemida, M.G., Kayali, G., Chu, D.K., Poon, L.L., Alnaeem, A., Ali, M.A., Peiris, J.S., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: An in-vitro and ex-vivo study (2014) The Lancet Respiratory Medicine, 2, pp. 813-822; Chan, S.M., Damdinjav, B., Perera, R.A., Chu, D.K., Khishgee, B., Enkhbold, B., Poon, L.L., Peiris, M., Absence of MERS-coronavirus in Bactrian Camels, Southern Mongolia, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1269-1271; Choi, S., Jung, E., Choi, B.Y., Hur, Y.J., Ki, M., High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: Mathemati-cal modelling in Saudi Arabia and South Korea (2017) Journal of Hospital Infection; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proceedings of the National Academy of Sciences of the United States of America, 115 (12), pp. 3144-3149; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Muller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerging Infectious Diseases, 20, pp. 1319-1322; Crameri, G., Durr, P.A., Barr, J., Yu, M., Graham, K., Williams, O.J., Kayali, G., Wang, L.F., Absence of MERS-CoV antibodies in feral camels in Australia: Implications for the pathogen's origin and spread (2015) One Health, 1, pp. 76-82; Crameri, G., Durr, P.A., Klein, R., Foord, A., Yu, M., Riddell, S., Haining, J., Wang, L.F., Experimental infection and re-sponse to rechallenge of alpacas with middle east respiratory syndrome coronavirus (2016) Emerging Infectious Diseases, 22, pp. 1071-1074; Darling, N.D., De, P., Schoelen, M.P., Metcalf-Kelly, M., Hill, S.E., Harris, S., Retro-spective, epidemiological cluster analysis of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic using open source data (2017) Epidemiology and Infection, 145, pp. 3106-3114; David, D., Rotenberg, D., Khinich, E., Erster, O., Bardenstein, S., Van Straten, M., Okba, N.M.A., Davidson, I., Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels (2018) One Health, 5, pp. 65-68; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Van Den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) Journal of General Virology, 94, pp. 1749-1760; De Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Munster, V.J., The middle east respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLOS ONE, 8, p. e69127; Destoumieux-Garzon, D., Mavingui, P., Boetsch, G., Boissier, J., Darriet, F., Duboz, P., Fritsch, C., Voituron, Y., The One Health concept: 10 years old and a long road ahead (2018) Frontiers in Veterinary Science, 5, p. 14; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Memish, Z.A., Transmission of MERS-coronavirus in household contacts (2014) New England Journal of Medicine, 371, pp. 828-835; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Voermans, J., Koopmans, M.P., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infection Ecology & Epidemiology, 5, p. 28305; (2016) Understanding MERS-CoV at the Animal-human Interface, , Food and Agriculture Organization of the United Nations (FAO). Technical meeting, 21-22 2016, Rome, Italy; Gao, H., Yao, H., Yang, S., Li, L., From SARS to MERS: Evidence and speculation (2016) Frontiers in Medicine, 10, pp. 377-382; Garcell, H.G., Garcia, E.G., Pueyo, P.V., Martin, I.R., Arias, A.V., Alfonso Serrano, R.N., Outbreaks of brucellosis related to the consumption of unpasteurized camel milk (2016) Journal of Infection and Public Health, 9, pp. 523-527; Han, H.J., Liu, J.W., Yu, H., Yu, X.J., Neutralizing monoclonal antibodies as promising therapeutics against middle east respiratory syndrome coronavirus infection (2018) Viruses, 10 (12), p. 680; He, L., Tai, W., Li, J., Chen, Y., Gao, Y., Li, J., Sun, S., Zhao, G., Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain (2019) Viruses, 11 (2), p. 166; Hemida, M.G., Al-Naeem, A., Perera, R.A., Chin, A.W., Poon, L.L., Peiris, M., Lack of middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerging Infectious Diseases, 21, pp. 699-701; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Yau, E., Peiris, M., Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerging Microbes & Infections, 6, p. e56; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerging Infectious Diseases, 20, pp. 1231-1234; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D.K., Peiris, M., Dromedary camels and the Transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2017) Transboundary and Emerging Diseases, 64 (2), pp. 344-353; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Alsheikh, S., Alsanouri, T., Novel coronavirus infections in Jordan, 2012: Epidemiological findings from a retrospective investigation (2013) Eastern Mediterranean Health Journal, 19, pp. S12-S18; Hofer, U., Viral evolution: Fooling the coronavirus proofreading machinery. Nature Reviews (2013) Microbiology, 11, pp. 662-663; Hong, K.H., Choi, J.P., Hong, S.H., Lee, J., Kwon, J.S., Kim, S.M., Park, S.Y., Kim, S.H., Predictors of mor-tality in Middle East respiratory syndrome (MERS) (2017) Thorax, 73 (3), pp. 286-289; Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Jrijer, J., Kayali, G., Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals (2019) Emerg Microbes Infect, 8, pp. 103-108; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., Dalab, A.H., Al-Busadah, K.A., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerging Infectious Diseases, 21, pp. 1153-1158; Kim, K., Andrew, S.A., Jung, K., Public Health Network Structure Effectiveness during the 2015 MERS outbreak in South Korea: An institutional collective action framework (2017) International Journal of Environmental Research and Public Health, 14 (9), p. 1064; Kim, S.H., Chang, S.Y., Sung, M., Park, J.H., Bin Kim, H., Lee, H., Choi, J.P., Min, J.Y., Extensive Viable Middle East Respiratory Syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clinical Infectious Diseases, 63, pp. 363-369; Lau, S.K., Chan, J.F., Coronaviruses: Emerging and re-emerging pathogens in humans and animals (2015) Virology Journal, 12, p. 209; Lerner, H., Berg, C., The concept of health in One Health and some practical implications for research and education: What is One Health? (2015) Infection Ecology & Epidemiology, 5, p. 25300; Makino, S., Keck, J.G., Stohlman, S.A., Lai, M.M., High-frequency RNA recombination of murine coronaviruses (1986) Journal of Virology, 57, pp. 729-737; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Assiri, A., Alharby, K.D., Almahallawi, M.S., Alkhallawi, M., Middle East respiratory syndrome coronavirus (MERS-CoV): A cluster analysis with implications for global management of suspected cases (2015) Travel Medicine and Infectious Disease, 13, pp. 311-314; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Lipkin, W.I., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerging Infectious Diseases, 19, pp. 1819-1823; Mollers, M., Jonges, M., Pas, S.D., Van Der Eijk, A.A., Dirksen, K., Jansen, C., Gelinck, L.B., Timen, A., Follow-up of contacts of middle east respiratory syndrome coronavirus-infected returning travelers, the Netherlands, 2014 (2015) Emerging Infectious Diseases, 21, pp. 1667-1669. , Netherlands ME-COITot; Monchatre-Leroy, E., Boue, F., Boucher, J.M., Renault, C., Moutou, F., Ar Gouilh, M., Umhang, G., Identification of alpha and beta coronavirus in wildlife species in France: Bats, rodents, rabbits, and hedgehogs (2017) Viruses, 9 (12), p. 364; Moon, S.Y., Son, J.S., Infectivity of an asymptomatic patient with middle east respi-ratory syndrome coronavirus infection (2017) Clinical Infectious Diseases, 64, pp. 1457-1458; Munster, V.J., Adney, D.R., Van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Bowen, R.A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Scientific Reports, 6 (21878); Niu, P., Zhao, G., Deng, Y., Sun, S., Wang, W., Zhou, Y., Tan, W., A novel hu-man mAb (MERS-GD27) provides prophylactic and postexposure efficacy in MERS-CoV susceptible mice (2018) Science China Life Sciences, 61, pp. 1280-1282; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Ss, G., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Rajakaruna, S.J., Liu, W.B., Ding, Y.B., Cao, G.W., Strategy and technology to prevent hospital-acquired infections: Lessons from SARS, Ebola, and MERS in Asia and West Africa (2017) Military Medical Research, 4, p. 32; Reeves, T., Samy, A.M., Peterson, A.T., MERS-CoV geography and ecology in the Middle East: Analyses of reported camel exposures and a preliminary risk map (2015) BMC Research Notes, 8, p. 801; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Raj, V.S., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, 2014 (2014) Euro Surveill, 19; Reusken, C.B., Schilp, C., Raj, V.S., De Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., Koopmans, M.P., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerging Infectious Diseases, 22, pp. 1129-1131; Roess, A., Carruth, L., Lahm, S., Salman, M., Camels, MERS-CoV, and other emerging infections in east Africa (2016) The Lancet Infectious Diseases, 16, pp. 14-15; Rubio, E., Martinez, M.J., Gonzalo, V., Barrachina, J., Torner, N., Martinez, A.I., Jane, M., Marcos, M.A., Definitive diagnosis in suspected middle east respiratory syndrome coronavirus cases (2018) Expert Opinion on Drug Discovery, 25; Totura, A.L., Bavari, S., Broad-spectrum coronavirus antiviral drug discovery (2019) Expert Opin Drug Discov, 14, pp. 397-412; Van Doremalen, N., Bushmaker, T., Karesh, W.B., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus in milk (2014) Emerging Infectious Diseases, 20, pp. 1263-1264; Van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., Talafha, H.A., Richt, J.A., High prevalence of middle east respiratory coron-avirus in young dromedary camels in Jordan (2017) Vector-borne and Zoonotic Diseases, 17, pp. 155-159; Vergara-Alert, J., Van Den Brand, J.M., Widagdo, W., Munoz, M.T., Raj, S., Schipper, D., Solanes, D., Segales, J., Livestock suscep-tibility to infection with middle east respiratory syndrome coronavirus (2017) Emerging Infectious Diseases, 23, pp. 232-240; Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., Chen, H., Xu, J., SARS-CoV infection in a restaurant from palm civet (2005) Emerging Infectious Diseases, 11, pp. 1860-1865; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., Van Den Brand, J.M.A., Tissue distribution of the MERS-coronavirus receptor in bats (2017) Scientific Reports, 7, p. 1193; (2018) Middle East Respiratory Syndrome Cor-navirus (MERS-CoV), , http://wwwwhoint/emergencies/mers-cov/en/, World Health Organization (WHO); Xiao, S., Li, Y., Sung, M., Wei, J., Yang, Z., A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea (2018) Indoor Air, 28, pp. 51-63; Yu, P., Xu, Y., Deng, W., Bao, L., Huang, L., Xu, Y., Yao, Y., Qin, C., Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus (2017) PLOS ONE, 12, p. e0172093; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367, pp. 1814-1820; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Zhou, Y., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with middle east respiratory syndrome-coronavirus (2015) PLOS ONE, 10, p. e0145561; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H., Poon, V.K., Yuen, K.Y., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Science Advances, 3 (11), p. eaao4966; Zumla, A., Azhar, E.I., Arabi, Y., Alotaibi, B., Rao, M., McCloskey, B., Petersen, E., Maeurer, M., Host-directed therapies for improving poor treatment outcomes associated with the middle east respiratory syndrome coronavirus infections (2015) International Journal of Infectious Diseases, 40, pp. 71-74","Hemida, M.G.; Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal UniversitySaudi Arabia; email: gomaa55@gmail.com",,"PeerJ Inc.",21678359,,,,"English","PeerJ",Article,"Final",Open Access,Scopus,2-s2.0-85074165618 "Widagdo W., Okba N.M.A., Li W., De Jong A., De Swart R.L., Begeman L., Van Den Brand J.M.A., Bosch B.-J., Haagmans B.L.","56387603500;56807221300;54966542700;57193060560;7003275675;12778958600;25625734400;7003681993;6701371301;","Species-specific colocalization of middle east respiratory syndrome coronavirus attachment and entry receptors",2019,"Journal of Virology","93","16", e00107,"","",,1,"10.1128/JVI.00107-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070782368&doi=10.1128%2fJVI.00107-19&partnerID=40&md5=73917939c1ff436ae6bb3a50e607b10c","Viroscience Department, Erasmus MC, Rotterdam, Netherlands; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Department of Pathobiology, Utrecht University, Utrecht, Netherlands","Widagdo, W., Viroscience Department, Erasmus MC, Rotterdam, Netherlands; Okba, N.M.A., Viroscience Department, Erasmus MC, Rotterdam, Netherlands; Li, W., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; De Jong, A., Viroscience Department, Erasmus MC, Rotterdam, Netherlands; De Swart, R.L., Viroscience Department, Erasmus MC, Rotterdam, Netherlands; Begeman, L., Viroscience Department, Erasmus MC, Rotterdam, Netherlands; Van Den Brand, J.M.A., Viroscience Department, Erasmus MC, Rotterdam, Netherlands, Department of Pathobiology, Utrecht University, Utrecht, Netherlands; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Haagmans, B.L., Viroscience Department, Erasmus MC, Rotterdam, Netherlands","Middle East respiratory syndrome coronavirus (MERS-CoV) uses the S1B domain of its spike protein to bind to dipeptidyl peptidase 4 (DPP4), its functional receptor, and its S1A domain to bind to sialic acids. The tissue localization of DPP4 in humans, bats, camelids, pigs, and rabbits generally correlates with MERS-CoV tropism, highlighting the role of DPP4 in virus pathogenesis and transmission. However, MERS-CoV S1A does not indiscriminately bind to all κ2,3-sialic acids, and the species-specific binding and tissue distribution of these sialic acids in different MERS-CoV-susceptible species have not been investigated. We established a novel method to detect these sialic acids on tissue sections of various organs of different susceptible species by using nanoparticles displaying multivalent MERS-CoV S1A. We found that the nanoparticles specifically bound to the nasal epithelial cells of dromedary camels, type II pneumocytes in human lungs, and the intestinal epithelial cells of common pipistrelle bats. Desialylation by neuraminidase abolished nanoparticle binding and significantly reduced MERS-CoV infection in primary susceptible cells. In contrast, S1A nanoparticles did not bind to the intestinal epithelium of serotine bats and frugivorous bat species, nor did they bind to the nasal epithelium of pigs and rabbits. Both pigs and rabbits have been shown to shed less infectious virus than dromedary camels and do not transmit the virus via either contact or airborne routes. Our results depict species-specific colocalization of MERS-CoV entry and attachment receptors, which may be relevant in the transmission and pathogenesis of MERS-CoV. IMPORTANCE MERS-CoV uses the S1B domain of its spike protein to attach to its host receptor, dipeptidyl peptidase 4 (DPP4). The tissue localization of DPP4 has been mapped in different susceptible species. On the other hand, the S1A domain, the N-terminal domain of this spike protein, preferentially binds to several glycotopes of κ2,3-sialic acids, the attachment factor of MERS-CoV. Here we show, using a novel method, that the S1A domain specifically binds to the nasal epithelium of dromedary camels, alveolar epithelium of humans, and intestinal epithelium of common pipistrelle bats. In contrast, it does not bind to the nasal epithelium of pigs or rabbits, nor does it bind to the intestinal epithelium of serotine bats and frugivorous bat species. This finding supports the importance of the S1A domain in MERS-CoV infection and tropism, suggests its role in transmission, and highlights its potential use as a component of novel vaccine candidates. © 2019 American Society for Microbiology. All Rights Reserved.","Common pipistrelle bats; Dromedary camels; Humans; Middle East respiratory syndrome coronavirus; S1A domain","nanoparticle; sialic acid derivative; animal cell; Article; bat; controlled study; dromedary; human; human cell; intestine epithelium; Leporidae; lower respiratory tract; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose epithelium; pig; priority journal; species difference; tissue distribution; virus attachment; virus entry","Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23. , https://doi.org/10.1007/978-1-4939-2438-71; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , https://doi.org/10.1038/nature17200; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , https://doi.org/10.1038/nature16988; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87, pp. 9379-9383. , https://doi.org/10.1128/JVI.01277-13; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci U S A, 114, pp. E8508-E8517. , https://doi.org/10.1073/pnas.1712592114; Haagmans, B.L., Van Den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., De Waal, L., Osterhaus, A.D., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J Virol, 89, pp. 6131-6135. , https://doi.org/10.1128/JVI.00661-15; Vergara-Alert, J., Van Den Brand, J.M.A., Widagdo, W., Muñoz, M., Raj, S., Schipper, D., Solanes, D., Segalés, J., Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus (2017) Emerg Infect Dis, 23, pp. 232-240. , https://doi.org/10.3201/eid2302.161239; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., Van Leenders, G.J., Bosch, B.J., Bensaid, A., Haagmans, B.L., Differential expression of the middle east respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90, pp. 4838-4842. , https://doi.org/10.1128/JVI.02994-15; Houser, K.V., Broadbent, A.J., Gretebeck, L., Vogel, L., Lamirande, E.W., Sutton, T., Bock, K.W., Subbarao, K., Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody (2017) PLoS Pathog, 13, p. e1006565. , https://doi.org/10.1371/journal.ppat.1006565; De Wit, E., Feldmann, F., Horne, E., Martellaro, C., Haddock, E., Bushmaker, T., Rosenke, K., Feldmann, H., Domestic pig unlikely reservoir for MERS-CoV (2017) Emerg Infect Dis, 23, pp. 985-988. , https://doi.org/10.3201/eid2306.170096; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005. , https://doi.org/10.3201/eid2012.141280; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerg Infect Dis, 22, pp. 1031-1037. , https://doi.org/10.3201/2206.160192; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implications for the Middle East respiratory syndrome (2016) Am J Pathol, 186, pp. 78-86. , https://doi.org/10.1016/j.ajpath.2015.09.014; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17 (10), p. 20290. , https://www.eurosurveillance.org/content/10.2807/ese.17.40.20290-en; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Wendtner, C.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coro-navirus infection (2013) Lancet Infect Dis, 13, pp. 745-751. , https://doi.org/10.1016/S1473-3099(13)70154-3; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Tong, S., Zaki, S.R., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658. , https://doi.org/10.1016/j.ajpath.2015.10.024; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., Van Den Brand, J.M.A., Tissue distribution of the MERS-coronavirus receptor in bats (2017) Sci Rep, 7, p. 1193. , https://doi.org/10.1038/s41598-017-01290-6; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8, pp. e00373-e00417. , https://doi.org/10.1128/mBio.00373-17; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Woo, P.C.Y., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J Infect Dis, 218, pp. 197-207. , https://doi.org/10.1093/infdis/jiy018; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Drexler, J.F., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg Infect Dis, 19, pp. 456-459. , https://doi.org/10.3201/eid1903.121503; Adney, D.R., Brown, V.R., Porter, S.M., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding (2016) Viruses, 8, p. E230. , https://doi.org/10.3390/v8080230; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18 (50), p. 20659. , https://doi.org/10.2807/1560-7917.es2013.18.50.20659; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18 (50), p. 20662. , https://doi.org/10.2807/1560-7917.ES2013.18.50.20662; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Makonnen, Y.J., Cross-sectional surveillance of middle east respiratory syndrome coronavirus (mers-cov) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22 (11), p. 30487. , https://doi.org/10.2807/1560-7917.ES.2017.22.11.30487; Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Jrijer, J., Kayali, G., Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals (2019) Emerg Microbes Infect, 8, pp. 103-108. , https://doi.org/10.1080/22221751.2018.1560235; Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y., Avian flu: Influenza virus receptors in the human airway (2006) Nature, 440, pp. 435-436. , https://doi.org/10.1038/440435a; Haagmans, B.L., Van Den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D.M.E., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81. , https://doi.org/10.1126/science.aad1283; Geisler, C., Jarvis, D.L., Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities (2011) Glycobiology, 21, pp. 988-993. , https://doi.org/10.1093/glycob/cwr080; Stalin Raj, V., Okba, N.M.A., Gutierrez-Alvarez, J., Drabek, D., Van Dieren, B., Widagdo, W., Lamers, M.M., Haagmans, B.L., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci Adv, 4, p. eaas9667. , https://doi.org/10.1126/sciadv.aas9667; Widagdo, W., Okba, N.M.A., Richard, M., De Meulder, D., Bestebroer, T.M., Lexmond, P., Farag, E.A.B.A., Herfst, S., Lack of Middle East respiratory syndrome coronavirus transmission in rabbits (2019) Viruses, 11, p. E381. , https://doi.org/10.3390/v11040381; Van Poucke, S.G., Nicholls, J.M., Nauwynck, H.J., Van Reeth, K., Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution (2010) Virol J, 7, p. 38. , https://doi.org/10.1186/1743-422X-7-38; Trebbien, R., Larsen, L.E., Viuff, B.M., Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs (2011) Virol J, 8, p. 434. , https://doi.org/10.1186/1743-422X-8-434; Caì, Y., Yú, S.Q., Postnikova, E.N., Mazur, S., Bernbaum, J.G., Burk, R., Zhang, T., Kuhn, J.H., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PLoS One, 9, p. e112060. , https://doi.org/10.1371/journal.pone.0112060; Munster, V.J., Adney, D.R., Van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Bowen, R.A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci Rep, 6, p. 21878. , https://doi.org/10.1038/srep21878; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , https://doi.org/10.1016/j.chom.2014.08.009; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521. , https://doi.org/10.1073/pnas.1405889111; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., AlJohani, S., Arabi, Y.M., Histopathology of Middle East respiratory syndrome coronovirus [sic] (MERS-CoV) infection- clinicopathological and ultrastructural study (2018) Histopathology, 72, pp. 516-524. , https://doi.org/10.1111/his.13379; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Tao, X., Hill, T.E., Morimoto, C., Peters, C.J., Ksiazek, T.G., Tseng, C.T., Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells (2013) J Virol, 87, pp. 9953-9958. , https://doi.org/10.1128/JVI.01562-13; Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Geffers, R., Thiel, V., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) MBio, 4, pp. e00611-e00612. , https://doi.org/10.1128/mBio.00611-12; Hulswit, R.J., De Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57. , https://doi.org/10.1016/bs.aivir.2016.08.004; Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420. , https://doi.org/10.1038/357417a0; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup i (1996) J Virol, 70, pp. 8669-8674; Schwegmann-Wessels, C., Zimmer, G., Laude, H., Enjuanes, L., Herrler, G., Binding of transmissible gastroenteritis coronavirus to cell surface sialoglycoproteins (2002) J Virol, 76, pp. 6037-6043. , https://doi.org/10.1128/jvi.76.12.6037-6043.2002; Desmarets, L.M., Theuns, S., Roukaerts, I.D., Acar, D.D., Nauwynck, H.J., Role of sialic acids in feline enteric coronavirus infections (2014) J Gen Virol, 95, pp. 1911-1918. , https://doi.org/10.1099/vir.0.064717-0; Eckerle, I., Corman, V.M., Muller, M.A., Lenk, M., Ulrich, R.G., Drosten, C., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerg Infect Dis, 20, pp. 276-279. , https://doi.org/10.3201/eid2002.131182; Raj, V.S., Smits, S.L., Provacia, L.B., Van Den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Haagmans, B.L., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838. , https://doi.org/10.1128/JVI.02935-13; Van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88, pp. 9220-9232. , https://doi.org/10.1128/JVI.00676-14; Vergara-Alert, J., Raj, V.S., Muñoz, M., Abad, F.X., Cordón, I., Haagmans, B.L., Bensaid, A., Segalés, J., Middle East respiratory syndrome coronavirus experimental transmission using a pig model (2017) Transbound Emerg Dis, 64, pp. 1342-1345. , https://doi.org/10.1111/tbed.12668; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095. , https://doi.org/10.3201/eid2012.141026; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., Drosten, C., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559. , https://doi.org/10.3201/eid2004.131746; Reusken, C.B., Schilp, C., Raj, V.S., De Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., Koopmans, M.P., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerg Infect Dis, 22, pp. 1129-1131. , https://doi.org/10.3201/eid2206.152113; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561. , https://doi.org/10.1128/JVI.01890-13; Zheng, Y., Shang, J., Yang, Y., Liu, C., Wan, Y., Geng, Q., Wang, M., Li, F., Lysosomal proteases are a determinant of coronavirus tropism (2018) J Virol, 92, pp. e01504-e01518. , https://doi.org/10.1128/JVI.01504-18; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci U S A, 111, pp. 15214-15219. , https://doi.org/10.1073/pnas.1407087111; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W.A.L., Posthuma, C.C., Van Den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J Gen Virol, 94, pp. 1749-1760. , https://doi.org/10.1099/vir.0.052910-0; Falzarano, D., De Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin (2013) Sci Rep, 3, p. 1686. , https://doi.org/10.1038/srep01686; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., De Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e00914. , https://doi.org/10.1128/mBio.00884-14; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115, pp. 3144-3149. , https://doi.org/10.1073/pnas.1718769115; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., Yu, Y., Tan, W., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg Microbes Infect, 6, p. e60. , https://doi.org/10.1038/emi.2017.50; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the Middle East respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape (2018) J Virol, 92, pp. e02002-e02017. , https://doi.org/10.1128/JVI.02002-17; Verkaik, N.J., Nguyen, D.T., De Vogel, C.P., Moll, H.A., Verbrugh, H.A., Jaddoe, V.W., Hofman, A., De Swart, R.L., Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection (2011) Clin Microbiol Infect, 17, pp. 1840-1844. , https://doi.org/10.1111/j.1469-0691.2011.03480.x; (2011), https://www.federa.org/sites/default/files/digital_version_first_part_code_of_conduct_in_uk_2011_12092012.pdf, Anonymous. 2012. Human tissue and medical research: code of conduct for responsible use . Federa, Rotterdam, The Netherlands:","Haagmans, B.L.; Viroscience Department, Erasmus MCNetherlands; email: b.haagmans@erasmusmc.nl",,"American Society for Microbiology",0022538X,,JOVIA,"31167913","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85070782368 "Schindewolf C., Menachery V.D.","57205467305;24281639500;","Middle east respiratory syndrome vaccine candidates: Cautious optimism",2019,"Viruses","11","1", 74,"","",,6,"10.3390/v11010074","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060124569&doi=10.3390%2fv11010074&partnerID=40&md5=84fac5ab871d22225016a24639614c34","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States","Schindewolf, C., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States; Menachery, V.D., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States","Efforts towards developing a vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV) have yielded promising results. Utilizing a variety of platforms, several vaccine approaches have shown efficacy in animal models and begun to enter clinical trials. In this review, we summarize the current progress towards a MERS-CoV vaccine and highlight potential roadblocks identified from previous attempts to generate coronavirus vaccines. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Animal models; Coronavirus spike glycoprotein; Correlates of immunity; Middle East respiratory syndrome coronavirus; Severe acute respiratory syndrome coronavirus; Vaccine platforms","DNA vaccine; fusion protein; gamma interferon; gls5300; glycoprotein; immunoglobulin A; immunoglobulin G1; immunoglobulin G2; immunoglobulin G3; inactivated vaccine; inactivated virus vaccine; interleukin 4; live vaccine; modified vaccinia virus Ankara 5T4 vaccine; pvax1; subunit vaccine; virus vaccine; virus vector; coronavirus spike glycoprotein; neutralizing antibody; virus antibody; virus vaccine; adaptive immunity; amino terminal sequence; antibody response; CD4+ T lymphocyte; CD8+ T lymphocyte; cellular immunity; clinical trial (topic); human; humoral immunity; immunogenicity; Middle East respiratory syndrome coronavirus; Newcastle disease virus; nonhuman; phase 1 clinical trial (topic); receptor binding; Review; vaccination; virus replication; virus spike; animal; Coronavirus infection; disease model; genetics; immunology; Middle East respiratory syndrome coronavirus; mouse; Animals; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Disease Models, Animal; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Vaccination; Vaccines, Attenuated; Viral Vaccines","Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Trifonov, V., Khiabanian, H., Rabadan, R., Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus (2009) N. Engl. J. Med., 361, pp. 115-119; Gire, S.K., Goba, A., Andersen, K.G., Sealfon, R.S., Park, D.J., Kanneh, L., Jalloh, S., Dudas, G., Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak (2014) Science, 345, pp. 1369-1372; Baize, S., Pannetier, D., Oestereich, L., Rieger, T., Koivogui, L., Magassouba, N., Soropogui, B., de Clerck, H., Emergence of Zaire Ebola virus disease in Guinea (2014) N. Engl. J. Med., 371, pp. 1418-1425; Snijder, E.J., Decroly, E., Ziebuhr, J., The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing (2016) Adv. Virus Res., 96, pp. 59-126; Riski, H., Hovi, T., Coronavirus infections of man associated with diseases other than the common cold (1980) J. Med. Virol., 6, pp. 259-265; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) Mbio, 8; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Donaldson, E.F., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013 (2013) Euro Surveill, 18; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses-drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Johnson, R.F., Laidlaw, M., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob. Agents Chemother., 58, pp. 4885-4893; (2015) Treatment of Mers-Cov: Information for Clinicians, Clinical Decision-Making Support for Treatment of Mers-Cov Patients, , Public Health England: London, UK; Vergara-Alert, J., Vidal, E., Bensaid, A., Segales, J., Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus (2017) One Health, 3, pp. 34-40; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J. Virol., 89, pp. 4696-4699; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Baric, R.S., Heise, M.T., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 5195-5199; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol, 95, pp. 408-412; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Gale, M.J., Jr., Baric, R.S., McCray, P.B., Jr., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Chan, T.S., Jiang, S., Characterization and Demonstration of the Value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease (2016) J. Virol., 90, pp. 57-67; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., Gallagher, T., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E3119-E3128; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV—A target for vaccine and therapeutic development (2009) Nat. Rev. Microbiol., 7, pp. 226-236; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev. Vaccines, 13, pp. 761-774; Surjit, M., Lal, S.K., The SARS-CoV nucleocapsid protein: A protein with multifarious activities (2008) Infect. Genet. Evolut., 8, pp. 397-405; Chang, C.K., Lo, S.C., Wang, Y.S., Hou, M.H., Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein (2016) Drug Discov. Today, 21, pp. 562-572; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Lang, Y., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E8508-E8517; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6, p. 234; Irigoyen, N., Firth, A.E., Jones, J.D., Chung, B.Y., Siddell, S.G., Brierley, I., High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling (2016) Plos Pathog, 12; Buchholz, U.J., Bukreyev, A., Yang, L., Lamirande, E.W., Murphy, B.R., Subbarao, K., Collins, P.L., Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 9804-9809; Agnihothram, S., Gopal, R., Yount, B.L., Jr., Donaldson, E.F., Menachery, V.D., Graham, R.L., Scobey, T.D., Zambon, M., Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J. Infect. Dis., 209, pp. 995-1006; Zhu, M.S., Pan, Y., Chen, H.Q., Shen, Y., Wang, X.C., Sun, Y.J., Tao, K.H., Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine (2004) Immunol. Lett., 92, pp. 237-243; Channappanavar, R., Zhao, J., Perlman, S., T cell-mediated immune response to respiratory coronaviruses (2014) Immunol. Res., 59, pp. 118-128; Wang, Y.D., Sin, W.Y., Xu, G.B., Yang, H.H., Wong, T.Y., Pang, X.W., He, X.Y., Cheng, C.S., T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS (2004) J. Virol., 78, pp. 5612-5618; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Dada, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci. Immunol, p. 2; Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A., Suthar, M., Pickles, R., Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants (2006) Plos Med, 3; Tseng, C.T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P.C., Garron, T., Atmar, R.L., Peters, C.J., Couch, R.B., Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus (2012) Plos ONE, 7; Weihofen, W.A., Liu, J., Reutter, W., Saenger, W., Fan, H., Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface (2004) J. Biol. Chem., 279, pp. 43330-43335; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: Targets for vaccines and therapeutics (2016) Antivir. Res., 133, pp. 165-177; Hansson, M., Nygren, P.A., Stahl, S., Design and production of recombinant subunit vaccines (2000) Biotechnol. Appl. Biochem, 32, pp. 95-107; Cao, Z., Liu, L., Du, L., Zhang, C., Jiang, S., Li, T., He, Y., Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients (2010) Virol. J., 7, p. 299; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Lu, L., Zheng, B.J., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Burton, D.R., Williamson, R.A., Parren, P.W., Antibody and virus: Binding and neutralization (2000) Virology, 270, pp. 1-3; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108; Zhang, M.Y., Wang, Y., Mankowski, M.K., Ptak, R.G., Dimitrov, D.S., Cross-reactive HIV-1-neutralizing activity of serum IgG from a rabbit immunized with gp41 fused to IgG1 Fc: Possible role of the prolonged half-life of the immunogen (2009) Vaccine, 27, pp. 857-863; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.K., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments—The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Nyon, M.P., Du, L., Tseng, C.K., Seid, C.A., Pollet, J., Naceanceno, K.S., Agrawal, A., Tai, W., Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen (2018) Vaccine, 36, pp. 1853-1862; Letarov, A.V., Londer, Y.Y., Boudko, S.P., Mesyanzhinov, V.V., The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin (1999) Biochem. Biokhimiia, 64, pp. 817-823; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Du, L., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (HDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Gao, G.F., Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge (2015) Ebiomedicine, 2, pp. 1438-1446; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants (2017) J. Virol., 91; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Smith, G.E., Frieman, M.B., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., Frieman, M.B., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35, pp. 1586-1589; Kam, Y.W., Kien, F., Roberts, A., Cheung, Y.C., Lamirande, E.W., Vogel, L., Chu, S.L., Zaki, S.R., Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcgammaRII-dependent entry into B cells in vitro (2007) Vaccine, 25, pp. 729-740; McLellan, J.S., Chen, M., Joyce, M.G., Sastry, M., Stewart-Jones, G.B., Yang, Y., Zhang, B., Zheng, A., Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus (2013) Science, 342, pp. 592-598; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Chen, M.H., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Aihara, H., Miyazaki, J., Gene transfer into muscle by electroporation in vivo (1998) Nat. Biotechnol., 16, pp. 867-870; Sardesai, N.Y., Weiner, D.B., Electroporation delivery of DNA vaccines: Prospects for success (2011) Curr. Opin. Immunol., 23, pp. 421-429; Liu, M.A., DNA vaccines: An historical perspective and view to the future (2011) Immunol. Rev., 239, pp. 62-84; Nichols, W.W., Ledwith, B.J., Manam, S.V., Troilo, P.J., Potential DNA vaccine integration into host cell genome (1995) Ann. N. Y. Acad. Sci., 772, pp. 30-39; Sheets, R.L., Stein, J., Manetz, T.S., Duffy, C., Nason, M., Andrews, C., Kong, W.P., Gomez, P.L., Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts (2006) Toxicol. Sci., 91, pp. 610-619; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7, p. 301; Barouch, D.H., Yang, Z.Y., Kong, W.P., Korioth-Schmitz, B., Sumida, S.M., Truitt, D.M., Kishko, M.G., Mascola, J.R., A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates (2005) J. Virol., 79, pp. 8828-8834; Cayabyab, M.J., Kashino, S.S., Campos-Neto, A., Robust immune response elicited by a novel and unique Mycobacterium tuberculosis protein using an optimized DNA/protein heterologous prime/boost protocol (2012) Immunology, 135, pp. 216-225; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., Perlman, S., Xia, X., DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075; Lanzavecchia, A., Mechanisms of antigen uptake for presentation (1996) Curr. Opin. Immunol., 8, pp. 348-354; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Alhabbab, R.Y., Hashem, A.M., Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein (2017) Sci. Rep, 7; Stevens, T.L., Bossie, A., Sanders, V.M., Fernandez-Botran, R., Coffman, R.L., Mosmann, T.R., Vitetta, E.S., Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells (1988) Nature, 334, pp. 255-258; Rollier, C.S., Reyes-Sandoval, A., Cottingham, M.G., Ewer, K., Hill, A.V., Viral vectors as vaccine platforms: Deployment in sight (2011) Curr. Opin. Immunol., 23, pp. 377-382; Pushko, P., Parker, M., Ludwig, G.V., Davis, N.L., Johnston, R.E., Smith, J.F., Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: Expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo (1997) Virology, 239, pp. 389-401; Agnihothram, S., Menachery, V.D., Yount, B.L., Jr., Lindesmith, L.C., Scobey, T., Whitmore, A., Schafer, A., Baric, R.S., Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform (2018) J. Virol., 92; Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Baric, R.S., Perlman, S., Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses (2016) Immunity, 44, pp. 1379-1391; Sutter, G., Moss, B., Nonreplicating vaccinia vector efficiently expresses recombinant genes (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 10847-10851; Stittelaar, K.J., Kuiken, T., de Swart, R.L., van Amerongen, G., Vos, H.W., Niesters, H.G., van Schalkwijk, P., Moss, B., Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques (2001) Vaccine, 19, pp. 3700-3709; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D., Sutter, G., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J. Virol., 87, pp. 11950-11954; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Becker, S., Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein (2015) J. Virol., 89, pp. 8651-8656; Langenmayer, M.C., Lulf-Averhoff, A.T., Adam-Neumair, S., Fux, R., Sutter, G., Volz, A., Distribution and absence of generalized lesions in mice following single dose intramuscular inoculation of the vaccine candidate MVA-MERS-S (2018) Biologicals, 54, pp. 58-62; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Hammer, S.M., Sobieszczyk, M.E., Janes, H., Karuna, S.T., Mulligan, M.J., Grove, D., Koblin, B.A., Tomaras, G.D., Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine (2013) N. Engl. J. Med., 369, pp. 2083-2092; Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R., Wilson, J., Immune responses to adenovirus and adeno-associated virus in humans (1999) Gene Ther, 6, pp. 1574-1583; Mast, T.C., Kierstead, L., Gupta, S.B., Nikas, A.A., Kallas, E.G., Novitsky, V., Mbewe, B., Vardas, E., International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high Ad5 titers and implications for potential HIV vaccine trials (2010) Vaccine, 28, pp. 950-957; Mercier, S., Rouard, H., Delfau-Larue, M.H., Eloit, M., Specific antibodies modulate the interactions of adenovirus type 5 with dendritic cells (2004) Virology, 322, pp. 308-317; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Alhajri, M.M., Farag, E.A., Alhajri, F., Gambotto, A., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Tan, W., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Lemiale, F., Haddada, H., Nabel, G.J., Brough, D.E., King, C.R., Gall, J.G., Novel adenovirus vaccine vectors based on the enteric-tropic serotype 41 (2007) Vaccine, 25, pp. 2074-2084; Jung, S.Y., Kang, K.W., Lee, E.Y., Seo, D.W., Kim, H.L., Kim, H., Kwon, T., Nam, J.H., Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus (2018) Vaccine, 36, pp. 3468-3476; Farina, S.F., Gao, G.P., Xiang, Z.Q., Rux, J.J., Burnett, R.M., Alvira, M.R., Marsh, J., Wilson, J.M., Replication-defective vector based on a chimpanzee adenovirus (2001) J. Virol., 75, pp. 11603-11613; Ledgerwood, J.E., Dezure, A.D., Stanley, D.A., Coates, E.E., Novik, L., Enama, M.E., Berkowitz, N.M., Ploquin, A., Chimpanzee Adenovirus Vector Ebola Vaccine (2017) N. Engl. J. Med., 376, pp. 928-938; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., Grehan, K., Warimwe, G., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788; Li, Z., Howard, A., Kelley, C., Delogu, G., Collins, F., Morris, S., Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences (1999) Infect. Immunity, 67, pp. 4780-4786; Zhang, Y., Feng, L., Li, L., Wang, D., Li, C., Sun, C., Li, P., Yang, W., Effects of the fusion design and immunization route on the immunogenicity of Ag85A-Mtb32 in adenoviral vectored tuberculosis vaccine (2015) Hum. Vaccines Immunother, 11, pp. 1803-1813; Munster, V.J., Wells, D., Lambe, T., Wright, D., Fischer, R.J., Bushmaker, T., Saturday, G., de Wit, E., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28; Zuniga, A., Wang, Z., Liniger, M., Hangartner, L., Caballero, M., Pavlovic, J., Wild, P., Billeter, M.A., Attenuated measles virus as a vaccine vector (2007) Vaccine, 25, pp. 2974-2983; Malczyk, A.H., Kupke, A., Prufer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Tondera, C., A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform (2015) J. Virol., 89, pp. 11654-11667; Bodmer, B.S., Fiedler, A.H., Hanauer, J.R.H., Prufer, S., Muhlebach, M.D., Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model (2018) Virology, 521, pp. 99-107; Kim, S.H., Samal, S.K., Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines (2016) Viruses, 8, p. 183; Liu, R.-Q., Ge, J.-Y., Wang, J.-L., Yu, S., Zhang, H.-L., Wang, J.-L., Wen, Z.-Y., Bu, Z.-G., Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels (2017) J. Integr. Agric., 16, pp. 2264-2273; Lichty, B.D., Power, A.T., Stojdl, D.F., Bell, J.C., Vesicular stomatitis virus: Re-inventing the bullet (2004) Trends Mol. Med., 10, pp. 210-216; Liu, R., Wang, J., Shao, Y., Wang, X., Zhang, H., Shuai, L., Ge, J., Bu, Z., A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization (2018) Antivir. Res., 150, pp. 30-38; Willet, M., Kurup, D., Papaneri, A., Wirblich, C., Hooper, J.W., Kwilas, S.A., Keshwara, R., Rudolph, G., Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses (2015) J. Infect. Dis., 212. , Suppl. 2), S414–S424. [CrossRef; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., Hensley, L.E., Schnell, M.J., One-Health: A Safe, Efficient, Dual-Use Vaccine for Humans and Animals against Middle East Respiratory Syndrome Coronavirus and Rabies Virus (2017) J. Virol., 91; Zeltins, A., Construction and characterization of virus-like particles: A review (2013) Mol. Biotechnol., 53, pp. 92-107; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Feng, N., Chi, H., Wang, T., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694; Wang, C., Zheng, X., Gai, W., Wong, G., Wang, H., Jin, H., Feng, N., Li, N., Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antivir. Res., 140, pp. 55-61; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Heise, M., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J. Virol., 85, pp. 12201-12215; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Couch, R.B., Tseng, C.T., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum. Vaccines Immunother., 12, pp. 2351-2356; Deng, Y., Lan, J., Bao, L., Huang, B., Ye, F., Chen, Y., Yao, Y., Tan, W., Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus (2018) Emerg. Microbes Infect., 7, p. 60; Iwata-Yoshikawa, N., Uda, A., Suzuki, T., Tsunetsugu-Yokota, Y., Sato, Y., Morikawa, S., Tashiro, M., Nagata, N., Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine (2014) J. Virol., 88, pp. 8597-8614; Plotkin, S.A., Vaccines: Past, present and future (2005) Nat. Med., 11, pp. S5-S11. , Suppl. 4; Ruch, T.R., Machamer, C.E., The coronavirus E protein: Assembly and beyond (2012) Viruses, 4, pp. 363-382; Lamirande, E.W., Dediego, M.L., Roberts, A., Jackson, J.P., Alvarez, E., Sheahan, T., Shieh, W.J., Enjuanes, L., A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters (2008) J. Virol., 82, pp. 7721-7724; Almazan, F., Dediego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) Mbio, 4, p. 650; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med., 18, pp. 1820-1826; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Diamond, M.S., Ribose 2 ′ -O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat. Immunol., 12, pp. 137-143; Menachery, V.D., Yount, B.L., Jr., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2 ′ -o-methyltransferase activity (2014) J. Virol., 88, pp. 4251-4264; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., III, Leist, S.R., Yount, B.L., Jr., McAnarney, E.T., Baric, R.S., Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines (2018) J. Virol, 92, pp. e00710-e00718; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., III, Leist, S.R., Yount, B.L., Jr., Graham, R.L., Cockrell, A.S., Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis (2017) Msphere, 2, p. 346; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir. Res., 109, pp. 97-109; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Beall, A., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) Mbio, 8; (2003) Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS), , World Health Organization: Geneva, Switzerland; Hotez, P.J., Bottazzi, M.E., Tseng, C.T., Zhan, B., Lustigman, S., Du, L., Jiang, S., Calling for rapid development of a safe and effective MERS vaccine (2014) Microbes Infect, 16, pp. 529-531; Prescott, J., Falzarano, D., de Wit, E., Hardcastle, K., Feldmann, F., Haddock, E., Scott, D., Munster, V.J., Pathogenicity and Viral Shedding of MERS-CoV in Immunocompromised Rhesus Macaques (2018) Front. Immunol., 9, p. 205","Menachery, V.D.; Department of Microbiology and Immunology, University of Texas Medical BranchUnited States; email: vimenach@utmb.edu",,"MDPI AG",19994915,,,"30658390","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85060124569 "Yanık Ö., Hoşal B., Tekeli A., Nalcı H.","56305645500;6603898663;6701422807;57195214657;","Viral nucleic acid analysis with PCR in lacrimal tissue and nasal swab samples of primary acquired nasolacrimal duct obstruction cases",2019,"European Journal of Ophthalmology",,,,"","",,,"10.1177/1120672119882331","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074386550&doi=10.1177%2f1120672119882331&partnerID=40&md5=7ab2e8307d955e3dbe7e362729812e27","Department of Ophthalmology, Ankara University School of Medicine, Ankara, Turkey; Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey; Ürgüp State Hospital, Nevşehir, Turkey","Yanık, Ö., Department of Ophthalmology, Ankara University School of Medicine, Ankara, Turkey; Hoşal, B., Department of Ophthalmology, Ankara University School of Medicine, Ankara, Turkey; Tekeli, A., Department of Medical Microbiology, Ankara University School of Medicine, Ankara, Turkey; Nalcı, H., Ürgüp State Hospital, Nevşehir, Turkey","Purpose: To evaluate the role of viral infections in the pathogenesis of primary acquired nasolacrimal duct obstruction. Methods: The study included 48 patients diagnosed with primary acquired nasolacrimal duct obstruction undergoing dacryocystorhinostomy surgery. Prior to dacryocystorhinostomy surgery, nasal swab sample was taken from the inferior meatus at the same side. During dacryocystorhinostomy, tissue biopsy sample (2 × 2 mm) was taken from the junction area of the lacrimal sac and nasolacrimal duct. Following nucleic acid extraction, polymerase chain reaction was performed. Results: The patients consisted of 9 (18.8%) men and 39 (81.2%) women with a mean age of 51.0 ± 14.3 years. Qualitative polymerase chain reaction showed viral genome in the nasal swabs of 10 (20.8%) patients, including coronavirus 229E (three cases), coronavirus HKU1 (two cases), respiratory syncytial virus (two cases), coronavirus OC43 (one case), coronavirus NL63 (one case), and adenovirus (one case). In the dacryocystorhinostomy samples, viral genomes were detected in four (8.3%) cases, including respiratory syncytial virus (two cases), coronavirus HKU1 (one case), and adenovirus (one case). There was a statistically significant agreement between nasal mucosal swab and dacryocystorhinostomy biopsy samples in terms of respiratory syncytial virus positivity (kappa = 1.000, p = 0.001). Conclusion: Although the viral genome was detected in the samples, a direct relationship between viruses and pathogenesis of primary acquired nasolacrimal duct obstruction could not be revealed because of the low number of positive results. However, considering the profibrotic characteristics of specific viruses such as respiratory syncytial virus and adenovirus, viral infections may be one of the many predisposing factors of primary acquired nasolacrimal duct obstruction. © The Author(s) 2019.","Adenovirus; coronavirus; polymerase chain reaction; primary acquired nasolacrimal duct obstruction; respiratory syncytial virus",,"Sibley, D., Norris, J.H., Malhotra, R., Management and outcomes of patients with epiphora referred to a specialist ophthalmic plastic unit (2013) Clin Exp Ophthalmol, 41 (3), pp. 231-238; Altan-Yaycioglu, R., Canan, H., Sizmaz, S., Nasolacrimal duct obstruction: clinicopathologic analysis of 205 cases (2010) Orbit, 29 (5), pp. 254-258; Linberg, J.V., McCormick, S.A., Primary acquired nasolacrimal duct obstruction: a clinicopathologic report and biopsy technique (1986) Ophthalmology, 93, pp. 1055-1063; Mauriello, J.A., Jr., Palydowycz, S., DeLuca, J., Clinicopathologic study of lacrimal sac and nasal mucosa in 44 patients with complete acquired nasolacrimal duct obstruction (1992) Ophthalmic Plast Reconstr Surg, 8 (1), pp. 13-21; Schaefer, D.P., Acquired etiologies of lacrimal system obstructions (2006) The lacrimal system diagnosis, management, and surgery, pp. 43-65. , Cohen A.J., Mercandetti M., Brazzo B.G., (eds), New York, Springer, In:, (eds; Ishikawa, M., Kubo, M., Maeda, S., Structural changes in the lacrimal sac epithelium and associated lymphoid tissue during experimental dacryocystitis (2011) Clin Ophthalmol, 5, pp. 1567-1574; Bowles, N.E., Ni, J., Marcus, F., The detection of cardiotropic viruses in the myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (2002) J Am Coll Cardiol, 39 (5), pp. 892-895; Hazebroek, M., Dennert, R., Heymans, S., Idiopathic dilated cardiomyopathy: possible triggers and treatment strategies (2012) Neth Heart J, 20 (7-8), pp. 332-335; Kottmann, R.M., Hogan, C.M., Phipps, R.P., Determinants of initiation and progression of idiopathic pulmonary fibrosis (2009) Respirology, 14 (7), pp. 917-933; Naik, P.K., Moore, B.B., Viral infection and aging as cofactors for the development of pulmonary fibrosis (2010) Expert Rev Respir Med, 4 (6), pp. 759-771; Paulsen, F.P., Thale, A.B., Maune, S., New insights into the pathophysiology of primary acquired dacryostenosis (2001) Ophthalmology, 108 (12), pp. 2329-2336; Paulsen, F., Thale, A., Kohla, G., Functional anatomy of human lacrimal duct epithelium (1998) Anat Embryol, 198 (1), pp. 1-12; Ohtomo, K., Ueta, T., Toyama, T., Predisposing factors for primary acquired nasolacrimal duct obstruction (2013) Graefes Arch Clin Exp Ophthalmol, 251 (7), pp. 1835-1839; Kashkouli, M.B., Sadeghipour, A., Kaghazkanani, R., Pathogenesis of primary acquired nasolacrimal duct obstruction (2010) Orbit, 29, pp. 11-15; Huang, Y.T., Wertz, G.W., The genome of respiratory syncytial virus is a negative-stranded RNA that codes for at least seven mRNA species (1982) J Virol, 43 (1), pp. 150-157; Becker, Y., Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy: a review (2006) Virus Genes, 33 (2), pp. 235-252; Guerrero-Plata, A., Ortega, E., Gomez, B., Persistence of respiratory syncytial virus in macrophages alters phagocytosis and pro-inflammatory cytokine production (2001) Viral Immunol, 14 (1), pp. 19-30; Yeo, S.J., Yun, Y.J., Lyu, M.A., Respiratory syncytial virus infection induces matrix metalloproteinase-9 expression in epithelial cells (2002) Arch Virol, 147 (2), pp. 229-242; Fujishima, H., Respiratory syncytial virus may be a pathogen in allergic conjunctivitis (2002) Cornea, 21 (2), pp. S39-S45; Butt, A.L., Chodosh, J., Adenoviral keratoconjunctivitis in a tertiary care eye clinic (2006) Cornea, 25 (2), pp. 199-202; Jin, X.H., Ishiko, H., Nguyen, T.H., Molecular epidemiology of adenoviral conjunctivitis in Hanoi, Vietnam (2006) Am J Ophthalmol, 142 (6), pp. 1064-1066; Furuse, Y., Ornelles, D.A., Cullen, B.R., Persistently adenovirus-infected lymphoid cells express microRNAs derived from the viral VAI and especially VAII RNA (2013) Virology, 447 (1-2), pp. 140-145; Ogawa, E., Elliott, W.M., Hughes, F., Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD (2004) Am J Physiol Lung Cell Mol Physiol, 286 (1), pp. L189-L197; Ali, M.J., Mulay, K., Pujari, A., Derangements of lacrimal drainage-associated lymphoid tissue (LDALT) in human chronic dacryocystitis (2013) Ocul Immunol Inflamm, 21 (6), pp. 417-423; Paulsen, F.P., Schaudig, U., Maune, S., Loss of tear duct-associated lymphoid tissue in association with the scarring of symptomatic dacryostenosis (2003) Ophthalmology, 110 (1), pp. 85-92; Peiris, J.S., Severe acute respiratory syndrome (SARS) (2003) J Clin Virol, 28, pp. 245-247; Klein, S.L., Huber, S., Sex differences in susceptibility to viral infection (2010) Sex hormones and immunity to infection, pp. 93-122. , Klein S., Roberts C., (eds), Berlin, Springer, In:, (eds","Yanık, Ö.; Department of Ophthalmology, Ankara University School of MedicineTurkey; email: oyanik05@hotmail.com",,"SAGE Publications Ltd",11206721,,EJOOE,"31630558","English","Eur. J. Ophthalmol.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85074386550 "Weston S., Frieman M.B.","56118663600;9240056500;","Respiratory viruses",2019,"Encyclopedia of Microbiology",,,,"85","101",,,"10.1016/B978-0-12-801238-3.66161-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079521515&doi=10.1016%2fB978-0-12-801238-3.66161-5&partnerID=40&md5=0c5e70d4e4814ea69235eea2c1973c99","University of Maryland School of Medicine, Baltimore, MD, United States","Weston, S., University of Maryland School of Medicine, Baltimore, MD, United States; Frieman, M.B., University of Maryland School of Medicine, Baltimore, MD, United States","This article is an overview of the most clinically important respiratory viruses including the recently emerged highly pathogenic coronaviruses and other viruses that are transmitted via the respiratory tract. In this article, we highlight a description of the agent, its life cycle, epidemiology, pathogenesis, clinical features, diagnosis and management of the infection. The viruses in this article are respiratory syncytial virus, parainfluenza virus, human metapneumovirus, rhinovirus, seasonal and emerging coronaviruses, adenovirus, bocavirus and other viruses associated with the respiratory tract for their life cycle. © 2019 Elsevier Inc. All rights reserved.","Adenovirus; Antivirals; Bocavirus; Human metapneumovirus; Middle east respiratory syndrome coronavirus; Parainfluenza virus; Pathogenesis; Respiratory syncytial virus; Respiratory virus; Rhinovirus; Severe acute respiratory syndrome coronavirus",,"Boivin, G., Virological features and clinical manifestations associated with human metapneumovirus: A new paramyxovirus responsible for acute respiratory-tract infections in all age groups (2002) The Journal of Infectious Diseases, 186 (9), pp. 1330-1334; Borchers, A.T., Respiratory syncytial virus-A comprehensive review (2013) Clinical Reviews in Allergy and Immunology, 45 (3), pp. 331-379; Coleman, C.M., Frieman, M.B., Emergence of the Middle East respiratory syndrome coronavirus (2013) PLoS Pathogens, 9 (9); Coleman, C.M., Frieman, M.B., Coronaviruses: Important emerging human pathogens (2014) Journal of Virology, 88 (10), pp. 5209-5212; Cook, J., Radke, J., Mechanisms of pathogenesis of emerging adenoviruses (2017) F1000Research, 6 (90); Dyall, J., Middle East respiratory syndrome and severe acute respiratory syndrome: Current therapeutic options and potential targets for novel therapies (2017) Drugs, 77 (18), pp. 1935-1966; Fehr, A.R., Channappanavar, R., Perlman, S., Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus (2017) Annual Review of Medicine, 68 (1), pp. 387-399; Greensill, J., Human metapneumovirus in severe respiratory syncytial virus bronchiolitis (2003) Emerging Infectious Diseases, 9 (3), pp. 372-375; Guido, M., Human bocavirus: Current knowledge and future challenges (2016) World Journal of Gastroenterology, 22 (39), pp. 8684-8697; Henrickson, K.J., Parainfluenza viruses (2003) Clinical Microbiology Reviews, 16 (2), pp. 242-264; Heylen, E., Neyts, J., Jochmans, D., Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery (2017) Biochemical Pharmacology, 127, pp. 1-12; Jha, A., Respiratory syncytial virus (2016) SARS, MERS and other viral lung infections, , European Respiratory Society Sheffield, UK, Chapter 5; Kutter, J.S., Transmission routes of respiratory viruses among humans (2018) Current Opinion in Virology, 28, pp. 142-151; Lau, S.K.P., Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV C, associated with acute respiratory illness in children (2007) Journal of Clinical Microbiology, 45 (11), pp. 3655-3664; Nemerow, G.R., Stewart, P.L., Insights into adenovirus uncoating from interactions with integrins and mediators of host immunity (2016) Viruses, 8 (12); Palmenberg, A.C., Sequencing and analyses of all reveal structure and evolution (2009) Science, 324, pp. 55-60; de Wit, E., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nature Reviews Microbiology, 14 (8), pp. 523-534",,,"Elsevier",,9780128117378; 9780128117361,,,"English","Encyclopedia of Microbiology",Book Chapter,"Final",,Scopus,2-s2.0-85079521515 "Verdugo C., Pinto A., Ariyama N., Moroni M., Hernandez C.","15835996700;57205469643;57205197667;36497221900;57190387904;","Molecular identification of avian viruses in neotropic cormorants (Phalacrocorax Brasilianus) in Chile",2019,"Journal of Wildlife Diseases","55","1",,"105","112",,2,"10.7589/2017-10-256","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059968683&doi=10.7589%2f2017-10-256&partnerID=40&md5=798083bfbed1e6b8fa24f9adf519df71","Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile; Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile","Verdugo, C., Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile; Pinto, A., Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile; Ariyama, N., Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile; Moroni, M., Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile; Hernandez, C., Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, 509000, Chile","We identified two RNA (paramyxovirus and coronavirus) and two DNA (adenovirus and herpesvirus) viruses in a common aquatic bird, the Neotropic Cormorant (Phalacrocorax brasilianus), and determined their phylogenetic relationships to other global circulating variants. We analyzed 104 cloacal swabs from individuals collected at locations in Central Chile. Sequences were obtained from amplicons using consensus primers targeting conserved genes of the virus families Paramyxoviridae, Coronaviridae, Adenoviridae, and Herpesviridae. A total of 20.2% of the samples was positive for coronavirus, 8.7% for adenovirus, and 3.8% for herpesvirus. No paramyxoviruses were detected. All coronaviruses were identified as viruses of the Gammacoronavirus genus, closely related to the infectious bronchitis virus clade (bootstrap clade support=75%). All adenovirus samples were identified as Aviadenovirus, related to a gull and falcon adenovirus (Bayesian posterior probability=0.86). The herpesviruses identified were related to the infectious laryngotracheitis virus (Gallid herpesvirus 1) of the genus Iltovirus (bootstrap clade support=99%). We provide information about the diversity of viruses circulating among apparently healthy Neotropic Cormorants. © Wildlife Disease Association 2019.","Adenovirus; Chile; Cormorant; Coronavirus; Herpesvirus; Paramyxovirus; Phalacrocorax","Adenoviridae; adenovirus infection; animal; bird; bird disease; Chile; Coronaviridae; Coronavirus infection; genetics; herpes virus infection; Herpesviridae; isolation and purification; phylogeny; veterinary medicine; virology; Adenoviridae; Adenoviridae Infections; Animals; Bird Diseases; Birds; Chile; Coronaviridae; Coronavirus Infections; Herpesviridae; Herpesviridae Infections; Phylogeny","Anthony, S.J., Ojeda-Flores, R., Rico-Chávez, O., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Rostal, M.K., Epstein, J.H., Sanchez-Leon, M., Coronaviruses in bats from Mexico (2013) J Gen Virol, 94, pp. 1028-1038; Artois, M., Manvell, R., Fromont, E., Schweyer, J.B., Serosurvey for Newcastle disease and avian influenza A virus antibodies in great cormorants from France (2002) J Wildl Dis, 38, pp. 169-171; Blanchong, J.A., Robinson, S.J., Samuel, M.D., Foster, J.T., Application of genetics and genomics to wildlife epidemiology (2016) J Wildl Manage, 80, pp. 593-608; Bodewes, R., van de Bildt, M.W., Schapendonk, C.M., van Leeuwen, M., van Boheemen, S., de Jong, A.A., Osterhaus, A.D., Kuiken, T., Identification and characterization of a novel adenovirus in the cloacal bursa of gulls (2013) Virology, 440, pp. 84-88; Chen, G.Q., Zhuang, Q.Y., Wang, K.C., Liu, S., Shao, J.Z., Jiang, W.M., Hou, G.Y., Li, Y.P., Identification and survey of a novel avian coronavirus in ducks (2013) Plos One, 8; Chen, H., Li, Y., Li, Z., Shi, J., Shinya, K., Deng, G., Qi, Q., Zhao, H., Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China (2006) J Virol, 80, pp. 5976-5983; Christaki, E., New technologies in predicting, preventing and controlling emerging infectious diseases (2015) Virulence, 6, pp. 558-565; Chu, D.K.W., Leung, C.Y.H., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Poon, L.L.M., Avian coronavirus in wild aquatic birds (2011) J Virol, 85; Costa, É.A., Luppi, M.M., Campos Cordeiro Malta, M., Luiz, A.P.M.F., Araujo, M.R., Coelho, F.M., Fonseca, F.G., Resende, M., Outbreak of human herpesvirus type 1 infection in nonhuman primates (Callithrix penincillata) (2011) J Wildl Dis, 47, pp. 690-693; Cross, T.A., Arsnoe, D.M., Minnis, R.B., King, D.T., Swafford, S., Pedersen, K., Owen, J.C., Prevalence of avian paramyxovirus 1 and avian influenza virus in double-crested cormorants (Phalacrocorax auritus) in eastern North America (2013) J Wildl Dis, 49, pp. 965-977; Czeglédi, A., Ujvári, D., Somogyi, E., Wehmann, E., Werner, O., Lomniczi, B., Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications (2006) Virus Res, 120, pp. 36-48; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and parallel computing (2012) Nat Methods, 9, p. 772; French, E.L., Purchase, H.G., Nazerian, K., A new herpesvirus isolated from a nestling cormorant (Phalacrocorax melanoleucos) (1973) Avian Pathol, 2, pp. 3-15; Gallo, L., Quintana, F., Uhart, M., Serosurvey for selected infectious agents in two sympatric species of cormorants (Phalacrocorax atriceps and Phalacrocorax magellanicus) from coastal Patagonia, Argentina (2013) J Wildl Dis, 49, pp. 492-500; Glaser, L.C., Barker, I.K., Weseloh, D.V., Ludwig, J., Wind-Ingstad, R.M., Key, D.W., Bollinger, T.K., The 1992 epizootic of Newcastle disease in double-crested cormorants in North America (1999) J Wildl Dis, 35, pp. 319-330; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst Biol, 59, pp. 307-321; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98; Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogeny (2001) Bioinformatics, 17, pp. 754-755; Hughes, L.A., Savage, C., Naylor, C., Bennett, M., Chantrey, J., Jones, R., Genetically diverse coronaviruses in wild bird populations of Northern England (2009) Emerg Infect Dis, 15, pp. 1091-1094; Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993; Kálmán, D., Egyed, L., PCR detection of bovine herpesviruses from nonbovine ruminants in Hungary (2005) J Wildl Dis, 41, pp. 482-488; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol Biol Evol, 30, pp. 772-780; Kim, H.R., Oem, J.K., Surveillance of avian coronaviruses in wild bird populations of Korea (2014) J Wildl Dis, 50, pp. 964-968; Kim, L.M., King, D.J., Curry, P.E., Suarez, D.L., Swayne, D.E., Stallknecht, D.E., Slemons, R.D., Winker, K., Phylogenetic diversity among low-virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates (2007) J Virol, 81, pp. 12641-12653; Leighton, F.A., Heckert, R.A., Newcastle disease and related avian paramyxoviruses (2008) Infectious Diseases of Wild Birds, pp. 3-16. , Thomas NJ, Hunter DB, Atkinson CT, editors. Blackwell, Ames, Iowa; Mase, M., Mitake, H., Inoue, T., Imada, T., Identification of group I-III avian adenovirus by PCR coupled with direct sequencing of the hexon gene (2009) J Vet Med Sci, 71, pp. 1239-1242; Muradrasoli, S., Bálint, Á., Wahlgren, J., Waldenström, J., Belák, S., Blomberg, J., Olsen, B., Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia) (2010) Plos One, 5; Olsen, B., Munster, V.J., Wallensten, A., Waldenström, J., Osterhaus, A.D., Fouchier, R.A., Global patterns of influenza A virus in wild birds (2006) Science, 312, pp. 384-388; Pereda, A.J., Uhart, M., Perez, A.A., Zaccagnini, M.E., la Sala, L., Decarre, J., Goijman, A., Craig, M.I., Avian influenza virus isolated in wild waterfowl in Argentina: Evidence of a potentially unique phylogenetic lineage in South America (2008) Virology, 378, pp. 363-370; Rue, C.A., Susta, L., Brown, C.C., Pasick, J.M., Swafford, S.R., Wolf, P.C., Killian, M.L., Afonso, C.L., Evolutionary changes affecting rapid identification of 2008 Newcastle disease viruses isolated from double-crested cormorants (2010) J Clin Microbiol, 48, pp. 2440-2448; Schrenzel, M., Oaks, J.L., Rotstein, D., Maalouf, G., Snook, E., Sandfort, C., Rideout, B., Characterization of a new species of adenovirus in falcons (2005) J Clin Microbiol, 43, pp. 3402-3413; (2010) Http://Www.Sag.Gob.Cl/Sites/Default/Files/Situacion_Sanitaria_ Animal_2010.Pdf, , Situación sanitaria animal de Chile, 2010. División Protección Pecuaria, Subdepartamento de Vigilancia Epidemiológica, Servicio Agrícola y Ganadero, Gobierno de Chile, Accessed March 2017; Stephensen, C.B., Casebolt, D.B., Gangopadhyay, N.N., Phylogenetic analysis of a highly conserved region of the polymerase gene from 11 coronaviruses and development of a consensus polymerase chain reaction assay (1999) Virus Res, 60, pp. 181-189; Süss, J., Schäfer, J., Sinnecker, H., Webster, R.G., Influenza virus subtypes in aquatic birds of eastern Germany (1994) Arch Virol, 135, pp. 101-114; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Cheung, C.L., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J Virol, 80, pp. 7481-7490; Tong, S., Chern, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse tran-scription-PCR assays to detect novel paramyxoviruses (2008) J Clin Microbiol, 46, pp. 2652-2658; Travis, E.K., Vargas, F.H., Merkel, J., Gottdenker, N., Miller, R.E., Parker, P.G., Hematology, plasma chemistry, and serology of the flightless cormorant (Phalacro-corax harrisi) in the Galápagos Islands, Ecuador (2006) J Wild Dis, 42, pp. 133-141; Vandevanter, D.R., Warrener, P., Bennett, L., Schultz, E.R., Coulter, S., Garber, R.L., Rose, T.M., Detection and analysis of diverse herpesviral species by consensus primer PCR (1996) J Clin Microbiol, 34, pp. 1666-1671; Woo, P.C., Lau, S.K., Lam, C.S., Lai, K.K., Huang, Y., Lee, P., Luk, G.S., Yuen, K.Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J Virol, 83, pp. 908-917; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel mammalian and avian coronaviruses in Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus (2012) J Virol, 86, pp. 3995-4008","Verdugo, C.; Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla Teja, Chile; email: claudioverdugo@uach.cl",,"Wildlife Disease Association, Inc.",00903558,,,"30216128","English","J. Wildl. Dis.",Article,"Final",,Scopus,2-s2.0-85059968683 "Shen Z., Wang G., Yang Y., Shi J., Fang L., Li F., Xiao S., Fu Z.F., Peng G.","56921067100;57200632379;57211009738;57201360383;7402470374;26028899600;7402022567;7403347700;56651662900;","A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence",2019,"Journal of Biological Chemistry","294","37",,"13606","13618",,1,"10.1074/jbc.RA119.009713","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072234645&doi=10.1074%2fjbc.RA119.009713&partnerID=40&md5=d29c886adf001dcb6a942d58c81e9865","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, United States; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China","Shen, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Wang, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Yang, Y., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Shi, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, United States; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China; Fu, Z.F., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centerfor Sustainable Pig Production, Wuhan, 430070, China, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China","Coronaviruses are enveloped, single-stranded RNA viruses that are distributed worldwide. They include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and the human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), many of which seriously endanger human health and well-being. Only alphacoronaviruses and betacoronaviruses harbor nonstructural protein 1 (nsp1), which performs multiple functions in inhibiting antiviral host responses. The role of the C terminus of betacoronavirus nsp1 in virulence has been characterized, but the location of the alphacoronavirus nsp1 region that is important for virulence remains unclear. Here, using TGEV nsp1 as a model to explore the function of this protein in alphacoronaviruses, we demonstrate that alphacoronavirus nsp1 inhibits host gene expression. Solving the crystal structure of full-length TGEV at 1.85-Å resolution and conducting several biochemical analyses, we observed that a specific motif (amino acids 91-95) of alphacoronavirus nsp1 is a conserved region that inhibits host protein synthesis. Using a reverse-genetics system based on CRISPR/ Cas9 technology to construct a recombinant TGEV in which this specific nsp1 motif was altered, we found that this mutation does not affect virus replication in cell culture but significantly reduces TGEV pathogenicity in pigs. Taken together, our findings suggest that alphacoronavirus nsp1 is an essential virulence determinant, providing a potential paradigm for the development of a new attenuated vaccine based on modified nsp1. © 2019 Shen et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.",,"Biosynthesis; Cell culture; Crystal structure; Gene expression; Mammals; Proteins; Viruses; Biochemical analysis; Conserved regions; Multiple function; Nonstructural proteins; Porcine epidemic diarrhea virus; Severe acute respiratory syndrome coronavirus; Single stranded RNA; Transmissible gastroenteritis virus; Diseases; nonstructural protein 1; amino terminal sequence; Article; controlled study; CRISPR-CAS9 system; embryo; gene expression; human; human cell; in vitro study; Middle East respiratory syndrome coronavirus; molecular cloning; nonhuman; nsp1 gene; plasmid; priority journal; protein motif; protein synthesis; real time polymerase chain reaction; SARS coronavirus; Transmissible gastroenteritis virus; virogenesis; virus replication; virus virulence","Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664. , CrossRef Medline; Weiss, S.R., Leibowitz, J.L., Coronavirus pathogenesis (2011) Adv. Virus. Res., 81, pp. 85-164. , CrossRef Medline; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143. , CrossRef Medline; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Pei, G.Q., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , CrossRef Medline; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23. , CrossRef Medline; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820. , CrossRef Medline; Almeida, M.S., Johnson, M.A., Wüthrich, K., NMR assignment of the SARS-CoV protein nsp1 (2006) J. Biomol. NMR, 36, p. 46. , CrossRef Medline; Jansson, A.M., Structure of alphacoronavirus transmissible gastroenteritis virus nsp1 has implications for coronavirus nsp1 function and evolution (2013) J. Virol., 87, pp. 2949-2955. , CrossRef Medline; Shen, Z., Ye, G., Deng, F., Wang, G., Cui, M., Fang, L., Xiao, S., Peng, G., Structural basis for the inhibition of host gene expression by porcine epidemic diarrhea virus nsp1 (2018) J. Virol., 92. , CrossRef Medline; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.T., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J. Virol., 82, pp. 4471-4479. , CrossRef Medline; Züst, R., Cervantes-Barragán, L., Kuri, T., Blakqori, G., Weber, F., Ludewig, B., Thiel, V., Coronavirus non-structural protein 1 is a major pathogenicity factor: Implications for the rational design of coronavirus vaccines (2007) PLoS Pathog, 3. , CrossRef Medline; Zhang, Q., Ma, J., Yoo, D., Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion (2017) Virology, 510, pp. 111-126. , CrossRef Medline; Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K.G., Makino, S., A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein (2009) Nat. Struct. Mol. Biol., 16, pp. 1134-1140. , CrossRef Medline; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J. Virol., 89, pp. 10970-10981. , CrossRef Medline; Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., Makino, S., Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate (2011) J. Virol., 85, pp. 638-643. , CrossRef Medline; Wang, Y., Shi, H., Rigolet, P., Wu, N., Zhu, L., Xi, X.G., Vabret, A., Wang, T., Nsp1 proteins of group I and SARS coronaviruses share structural and functional similarities (2010) Infect. Genet. Evol., 10, pp. 919-924. , CrossRef Medline; Wathelet, M.G., Orr, M., Frieman, M.B., Baric, R.S., Severe acute respiratory syndrome coronavirus evades antiviral signaling: Role of nsp1 and rational design of an attenuated strain (2007) J. Virol., 81, pp. 11620-11633. , CrossRef Medline; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268. , CrossRef Medline; Wang, G., Liang, R., Liu, Z., Shen, Z., Shi, J., Shi, Y., Deng, F., Peng, G., The N-terminal domain of spike protein is not the enteric tropism determinant for transmissible gastroenteritis virus in piglets (2019) Viruses, 11, p. E313. , CrossRef Medline; Lloyd, R.E., Translational control by viral proteinases (2006) Virus Res, 119, pp. 76-88. , CrossRef Medline; Schneider, R.J., Mohr, I., Translation initiation and viral tricks (2003) Trends Biochem. Sci., 28, pp. 130-136. , CrossRef Medline; Patnaik, S., Basu, D., Southall, N., Dehdashti, S., Wan, K.K., Zheng, W., Ferrer, M., Marugan, J.J., Identification, design and synthesis of novel pyrazolopyridine influenza virus nonstructural protein 1 antagonists (2019) Bioorg. Med. Chem. Lett., 29, pp. 1113-1119. , CrossRef Medline; Park, H.S., Liu, G., Thulasi Raman, S.N., Landreth, S.L., Liu, Q., Zhou, Y., NS1 protein of 2009 pandemic influenza a virus inhibits porcine NLRP3 Inflammasome-mediated interleukin-1β production by suppressing ASC ubiquitination (2018) J. Virol., 92, pp. e00022-e00118. , CrossRef Medline; Nicolodi, C., Groiss, F., Kiselev, O., Wolschek, M., Seipelt, J., Muster, T., Safety and immunogenicity of a replication-deficient H5N1 influenza virus vaccine lacking NS1 (2019) Vaccine, 37, pp. 3722-3729. , CrossRef Medline; Liu, Y.F., Tsai, P.Y., Chulakasian, S., Lin, F.Y., Hsu, W.L., The pseudorabies virus vhs protein cleaves RNA containing an IRES sequence (2016) FEBS J, 283, pp. 899-911. , CrossRef Medline; Pasieka, T.J., Lu, B., Crosby, S.D., Wylie, K.M., Morrison, L.A., Alexander, D.E., Menachery, V.D., Leib, D.A., Herpes simplex virus virion host shutoff attenuates establishment of the antiviral state (2008) J. Virol., 82, pp. 5527-5535. , CrossRef Medline; Cai, H., Zhang, Y., Lu, M., Liang, X., Jennings, R., Niewiesk, S., Li, J., Phosphorylation of human metapneumovirus M2-1 protein up-regulates viral replication and pathogenesis (2016) J. Virol., 90, pp. 7323-7338. , CrossRef Medline; Jimenez-Guardeño, J.M., Nieto-Torres, J.L., DeDiego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLoS Pathog, 10. , CrossRef Medline; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Usera, F., Enjuanes, L., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus. Res., 194, pp. 124-137. , CrossRef Medline; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502. , CrossRef Medline; Lamirande, E.W., DeDiego, M.L., Roberts, A., Jackson, J.P., Alvarez, E., Sheahan, T., Shieh, W.J., Subbarao, K., A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters (2008) J. Virol., 82, pp. 7721-7724. , CrossRefMedline; Netland, J., DeDiego, M.L., Zhao, J., Fett, C., Álvarez, E., Nieto-Torres, J.L., Enjuanes, L., Perlman, S., Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease (2010) Virology, 399, pp. 120-128. , CrossRef Medline; Fett, C., DeDiego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein (2013) J. Virol., 87, pp. 6551-6559. , CrossRef Medline; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848. , CrossRef Medline; Lei, L., Ying, S., Baojun, L., Yi, Y., Xiang, H., Wenli, S., Zounan, S., Guohui, C., Attenuation of mouse hepatitis virus by deletion of the LLRKxGxKG region of Nsp1 (2013) PLoS One, 8. , CrossRef Medline; Tohya, Y., Narayanan, K., Kamitani, W., Huang, C., Lokugamage, K., Makino, S., Suppression of host gene expression by nsp1 proteins of group 2 bat coronaviruses (2009) J. Virol., 83, pp. 5282-5288. , CrossRef Medline; Gustin, K.M., Guan, B.J., Dziduszko, A., Brian, D.A., Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements (2009) J. Virol., 83, pp. 6087-6097. , CrossRef Medline; Guan, B.J., Su, Y.P., Wu, H.Y., Brian, D.A., Genetic evidence of a long-range RNA-RNA interaction between the genomic 5' untranslated region and the nonstructural protein 1 coding region in murine and bovine coronaviruses (2012) J. Virol., 86, pp. 4631-4643. , CrossRef Medline; Minor, W., Cymborowski, M., Otwinowski, Z., Chruszcz, M., HKL-3000: The integration of data reduction and structure solution-from diffraction images to an initial model in minutes (2006) Acta Crystallogr. D Biol. Crystallogr., 62, pp. 859-866. , CrossRef Medline; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J. Appl. Crystallogr., 40, pp. 658-674. , CrossRef Medline; Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60, pp. 2126-2132. , CrossRef Medline; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., Phenix: Building new software for automated crystallographic structure determination (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 1948-1954. , CrossRef Medline; Grell, L., Parkin, C., Slatest, L., Craig, P.A., EZ-Viz, a tool for simplifying molecular viewing in PyMOL (2006) Biochem. Mol. Biol. Educ., 34, pp. 402-407. , CrossRef Medline; Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , CrossRef Medline; Schmidt, E.K., Clavarino, G., Ceppi, M., Pierre, P., SUnSET, a nonradioactive method to monitor protein synthesis (2009) Nat. Methods, 6, pp. 275-277. , CrossRef Medline; Robert, X., Gouet, P., Deciphering key features in protein structures with the new ENDscript server (2014) Nucleic Acids Res, 42, pp. W320-W324. , CrossRef Medline","Peng, G.; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan St., China; email: penggq@mail.hzau.edu.cn",,"American Society for Biochemistry and Molecular Biology Inc.",00219258,,JBCHA,"31350335","English","J. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85072234645 "Kalkanov I., Dinev I., Zarkov I.","57079236900;23990394600;55666386900;","Etiological and pathomorphological investigations in calves with coronaviral pneumoenteritis",2019,"Macedonian Veterinary Review","42","1",,"43","49",,,"10.2478/macvetrev-2018-0028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065318566&doi=10.2478%2fmacvetrev-2018-0028&partnerID=40&md5=1c1036f980508cd856fe93c7aef9c700","Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria; Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria","Kalkanov, I., Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria; Dinev, I., Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria; Zarkov, I., Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria","The aim of the present study was to report the primary gross and microscopic lesions, as well as etiological agents of field cases of pneumoenteritis in neonate and juvenile calves. The research was done with 370 calves from 6 cattle farms in 4 regions of the country. The age of the animals was from 24 hours to 25 days. Clinical and epidemiological studies were carried out with newborn and growing calves in all farms. For rapid antigenic and viral detection of pathogens, Rainbow calf scour 5 BIO K 306 Detection of Rota, Corona, E.coli F5, Crypto and Clostridium perf. in bovine stool (BIOX Diagnostics, Belgium), and Monoclonal Antibody anti-bovine Coronavirus FITC conjugated) 0,5 ml (20X), BIO 023, (BIOX Diagnostics, Belgium) were used. Eighteen carcasses of calves with signs of pneumoenteritis syndrome (PES) were submitted to gross anatomy and histopathological studies. Bovine coronavirus (BСoV) was the main etiological agent involved in calf pneumoenteritis. The macro-and micro lesions in the lung and the ileum of calves affected by PES are relevant with regard to the differential diagnosis of the syndrome and its differentiation from respiratory (IBR, BVD, BRSV, M. haemolytica etc.) and intestinal (Cryptosporidium parvum, bovine rotaviruses, bovine coronaviruses and Escherichia coli K99 (F5) diseases in this category of animals. © 2018 Kalkanov I.","Bovine coronavirus; Calves; Pathology; Pneumoenteritis",,"Alenius, S., Niskanen, R., Junti, N., Larsso, B., Bovine coronavirus as the causative agent of winter dysentery: Serological evidence (1991) Acta Vet Scand, 32, pp. 163-170; Yang, D., Leibowitz, L., The structure and functions of coronavirus genomic 3′ and 5′ ends (2015) Virus Res, 206, pp. 120-133. , https://doi.org/10.1016/j.virusres.2015.02.025; Hansa, A., Rai, R., Dhama, K., Wani, M., ELISA screening of faecal samples for bovine coronavirus and virus detection by RT-PCR in Northern India (2012) Asian J Anim & Vet Advances, 23, pp. 123-234; Saif, L., Coronoviruses of domestic livestock and poultry: Interspecies transmission, pathogenesis and immunity (2007) The Nidoviruses, 18, pp. 279-298. , S. Perlman, T. Gallagher, E. Snijder (Eds.), Washington; Fulton, W., Ridpath, J., Burge, L., Bovine coronaviruses from the respiratory tract: Antigenic and genetic diversity (2013) Vaccine, 31, pp. 886-892. , https://doi.org/10.1016/j.vaccine.2012.12.006, 23246548; Kanno, T., Hatama, S., Ishihara, R., Uchida, I., Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006 (2007) J Gen Virol, 88, pp. 1218-1224. , https://doi.org/10.1099/vir.0.82635-0, 17374765; Gorbalenya, E., Snijder, E., Spaan, W., Severe acute respiratory syndrome coronavirus phylogeny: Toward consensus (2008) J Virol, 78, pp. 7863-7866. , https://doi.org/10.1128/JVI.78.15.7863-7866.2004; Mee, J., Geraghty, T., O‘Neill, R., More, S., Bioexclusion of diseases from dairy and beef farms: Risks of introducing infectious agents and risk reduction strategies (2012) Vet Journal, 194, pp. 143-150. , https://doi.org/10.1016/j.tvjl.2012.07.001PMid; Barrera, M., Rodrigues, E., Martell, A., Short communication. First report in Cuba of bovine coronavirus detection in a winter dysentery outbreak (2006) Spanish J Agr Res, 4, pp. 221-224. , https://doi.org/10.5424/sjar/2006043-6300; Lorusso, A., Desario, C., Mari, V., Molecular characterization of a canine respiratory coronavirus strain detected in Italy (2009) Virus Res, 141, pp. 96-100. , https://doi.org/10.1016/j.virusres.2008.12.011, 19162098; Fulton, W., Ridpath, J., Burge, L., Bovine coronaviruses from the respiratory tract: Antigenic and genetic diversity (2013) Vaccine, 31, pp. 886-892. , https://doi.org/10.1016/j.vaccine.2012.12.006, 23246548; Stipp, T., Barry, A., Alfieri, A., Takiuchi, E., Amude, A., Alfieri, A., Frequency of BCoV detection by a semi-nested PCR assay in faeces of calves from Brazilian cattle herds (2009) Trop Anim Health Prod, 41, pp. 1563-1567. , https://doi.org/10.1007/s11250-009-9347-2, 19370396; Sen, İ., Guzelbektas, H., Yildiz, R., Neonatal calf diarrhea: Pathophysiology, epidemiology, clinical, treatment and prevention (2013) Turkey Clinics J Vet Sci, 4, pp. 71-78; Khalili, M., Morshedi, A., The first detection of bovinecoronavirus in calves diarrhea in west of Iran (2006) J Clin Virol, 36, pp. 24-25. , https://doi.org/10.1016/S1386-6532(06)80788-2; Jeong, J., Kim, Y., Yoon, S., Park, J., Sung, M., Shin, S., Kang, I., Cho, O., Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002–2003 (2005) Virus Res, 108, pp. 207-212. , https://doi.org/10.1016/j.virusres.2004.07.003; Boileau, J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin Food Anim, 26, pp. 123-146. , https://doi.org/10.1016/j.cvfa.2009.10.003, 20117547","Kalkanov, I.; Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia UniversityBulgaria; email: ismet_88@abv.bg",,"Sciendo",14097621,,,,"English","Macedonian Veterinary Review",Article,"Final",Open Access,Scopus,2-s2.0-85065318566 "Zhang W., Zheng X.-S., Agwanda B., Ommeh S., Zhao K., Lichoti J., Wang N., Chen J., Li B., Yang X.-L., Mani S., Ngeiywa K.-J., Zhu Y., Hu B., Onyuok S.O., Yan B., Anderson D.E., Wang L.-F., Zhou P., Shi Z.-L.","56151953000;57198448529;24075534400;6504693788;57207315784;56369153800;55908990800;57203334768;57077269800;35811468700;57201548973;57189080905;55723768200;55908560200;57211478162;57204351774;25631949200;35243718700;56996599500;7403733955;","Serological evidence of MERS-CoV and HKU8-related CoV co-infection in Kenyan camels",2019,"Emerging Microbes and Infections","8","1",,"1528","1534",,1,"10.1080/22221751.2019.1679610","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074097444&doi=10.1080%2f22221751.2019.1679610&partnerID=40&md5=bdb1bc644e2bff7413fcd5adfe7d14bf","CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Department of Zoology, National Museums of Kenya, Nairobi, Kenya; Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Kenya; Kenya Camel Association, Nairobi, Kenya; Programme in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore","Zhang, W., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Zheng, X.-S., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China, University of Chinese Academy of Sciences, Beijing, China; Agwanda, B., Department of Zoology, National Museums of Kenya, Nairobi, Kenya; Ommeh, S., Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Zhao, K., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China, University of Chinese Academy of Sciences, Beijing, China; Lichoti, J., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Kenya; Wang, N., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Chen, J., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China, University of Chinese Academy of Sciences, Beijing, China; Li, B., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Yang, X.-L., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Mani, S., Programme in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore; Ngeiywa, K.-J., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Kenya, Kenya Camel Association, Nairobi, Kenya; Zhu, Y., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Hu, B., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Onyuok, S.O., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Yan, B., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Anderson, D.E., Programme in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore; Wang, L.-F., Programme in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore; Zhou, P., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; Shi, Z.-L., CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China","Dromedary camels are important reservoir hosts of various coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) that cause human infections. CoV genomes regularly undergo recombination during infection as observed in bat SARS-related CoVs. Here we report for the first time that only a small proportion of MERS-CoV receptor-binding domain positive (RBD) of spike protein positive camel sera in Kenya were also seropositive to MERS-CoV nucleocapsid (NP). In contrast, many of them contain antibodies against bat HKU8-related (HKU8r)-CoVs. Among 584 camel samples that were positive against MERS-CoV RBD, we found only 0.48 (8.22%) samples were also positive for NP. Furthermore, we found bat HKU8r-CoV NP antibody in 73 (12.5%) of the MERS-CoV RBD positive and NP negative samples, yet found only 3 (0.43%) of the HKU8r-CoV S1 antibody in the same samples. These findings may indicate co-infection with MERS-CoV and a HKU8r-CoV in camels. It may also raise the possibility of the circulation of a recombinant coronavirus virus with the spike of MERS-CoV and the NP of a HKU8r-CoV in Kenya. We failed to find molecular evidence of an HKU8r-CoV or a putative recombinant virus. Our findings should alert other investigators to look for molecular evidence of HKU8r-CoV or recombinants. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","bat; camel; coronavirus; HKU8; MERS","animal experiment; Article; camel; Coronavirus infection; enzyme linked immunosorbent assay; HKU8 related coronavirus infection; Kenya; Middle East respiratory syndrome; mixed infection; nonhuman; priority journal; receptor binding; serodiagnosis; virus nucleocapsid; animal; bat; blood; camel; Coronavirinae; Coronavirus infection; genetic recombination; genetics; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; veterinary medicine; virology; coronavirus spike glycoprotein; nucleocapsid protein; virus antibody; Animals; Antibodies, Viral; Camelus; Chiroptera; Coronavirus; Coronavirus Infections; Kenya; Middle East Respiratory Syndrome Coronavirus; Nucleocapsid Proteins; Recombination, Genetic; Spike Glycoprotein, Coronavirus","MERS situation update, February 2019 2019; Geneva S. Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, Interim guidance (WHO/MERS/LAB/15.1/Rev1/2018). 2018; Reusken, C.B., Haagmans, B.L., Muller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6, Oct, PubMed PMID: 23933067; Reusken, C.B., Messadi, L., Feyisa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20 (8), pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590, Aug, PubMed PMID: 25062254; PubMed Central PMCID: PMC4111168; Muller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (6), p. 629. , https://doi.org/10.1016/S1473-3099(15)00029-8, Jun, PubMed PMID: 26008827; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (49). , Dec 6, PubMed PMID: 23231891; Trivedi, S., Miao, C., Al-Abdallat, M.M., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90 (2), pp. 367-371. , https://doi.org/10.1002/jmv.24948, Feb, PubMed PMID: 28906003; PubMed Central PMCID: PMC6158782; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14 (2), pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X, Feb, PubMed PMID: 24355866; Corman, V.M., Jores, J., Meyer, B., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg Infect Dis, 20 (8), pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596, Aug, PubMed PMID: 25075637; PubMed Central PMCID: PMC4111164; Munyua, P., Corman, V.M., Bitek, A., No serologic evidence of Middle East respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: a household linked study, Kenya (2013) Am J Trop Med Hyg, 96 (6), pp. 1318-1324. , https://doi.org/10.4269/ajtmh.16-0880, 2017 Jun;, PubMed PMID: 28719257; PubMed Central PMCID: PMC5462565; Chu, D.K.W., Hui, K.P.Y., Perera, R., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115 (12), pp. 3144-3149. , https://doi.org/10.1073/pnas.1718769115, Mar 20, PubMed PMID: 29507189; PubMed Central PMCID: PMC5866576; Woo, P.C., Lau, S.K., Wernery, U., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg Infect Dis, 20 (4), pp. 560-572. , https://doi.org/10.3201/eid2004.131769, Apr, PubMed PMID: 24655427; PubMed Central PMCID: PMCPMC3966378; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2), pp. e00884-e14. , https://doi.org/10.1128/mBio.00884-14, Feb 25, PubMed PMID: 24570370; PubMed Central PMCID: PMC3940034; Ommeh, S., Zhang, W., Zohaib, A., Genetic evidence of Middle East respiratory syndrome coronavirus (MERS-CoV) and widespread seroprevalence among camels in Kenya (2018) Vriol Sin, 33 (6), pp. 484-492; Zohaib, A., Saqib, M., Athar, M.A., Countrywide Survey for MERS-coronavirus antibodies in Dromedaries and humans in Pakistan (2018) Virol Sin, 33 (5), pp. 410-417. , https://doi.org/10.1007/s12250-018-0051-0, Oct, PubMed PMID: 30311100; Luo, Y., Li, B., Jiang, R.D., Longitudinal surveillance of betacoronaviruses in fruit bats in Yunnan Province, China during 2009–2016 (2018) Virol Sin, 33 (1), pp. 87-95. , https://doi.org/10.1007/s12250-018-0017-2, Feb, PubMed PMID: 29500692; Wang, N., Li, S.Y., Yang, X.L., Serological evidence of bat SARS-related coronavirus infection in humans, China (2018) Virol Sin, 33 (1), pp. 104-107. , https://doi.org/10.1007/s12250-018-0012-7, Feb, PubMed PMID: 29500691; Zhou, P., Fan, H., Lan, T., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9, Apr, PubMed PMID: 29618817; Burbelo, P.D., Hoshino, Y., Leahy, H., Serological diagnosis of human herpes simplex virus type 1 and 2 infections by luciferase immunoprecipitation system assay (2009) Clin Vaccine Immunol, 16 (3), pp. 366-371. , https://doi.org/10.1128/cvi.00350-08, Mar, PubMed PMID: 19129469; PubMed Central PMCID: PMC2650866; Luna LK, D., Heiser, V., Regamey, N., Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray (2007) J Clin Microbiol, 45 (3), pp. 1049-1052. , https://doi.org/10.1128/jcm.02426-06, Mar, PubMed PMID: 17229859; PubMed Central PMCID: PMCPMC1829107; Hemida, M.G., Chu, D.K.W., Perera, R., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound Emerg Dis, 64 (6), pp. 2093-2103. , https://doi.org/10.1111/tbed.12630, Dec, PubMed PMID: 28296228; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59 (9), pp. 1225-1233. , https://doi.org/10.1093/cid/ciu359, Nov 1, PubMed PMID: 24829216; PubMed Central PMCID: PMCPMC4834865; Chu, D.K., Poon, L.L., Chan, K.H., Coronaviruses in bent-winged bats (Miniopterus spp (2006) J Gen Virol, 87, pp. 2461-2466. , https://doi.org/10.1099/vir.0.82203-0, Sep, PubMed PMID: 16894183; Tong, S., Conrardy, C., Ruone, S., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg Infect Dis, 15 (3), pp. 482-485. , https://doi.org/10.3201/eid1503.081013, Mar, PubMed PMID: 19239771; PubMed Central PMCID: PMC2681120; Ge, X.Y., Wang, N., Zhang, W., Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft (2016) Virol Sin, 31 (1), pp. 31-40. , https://doi.org/10.1007/s12250-016-3713-9, Feb, PubMed PMID: 26920708; Corman, V.M., Eckerle, I., Memish, Z.A., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci U S A, 113 (35), pp. 9864-9869. , https://doi.org/10.1073/pnas.1604472113, Aug 30, PubMed PMID: 27528677; PubMed Central PMCID: PMCPMC5024591; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, p. 87. , https://doi.org/10.1186/s12985-016-0544-0, Jun 3, PubMed PMID: 27255185; PubMed Central PMCID: PMC4891877; Sabir, J.S., Lam, T.T., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84. , https://doi.org/10.1126/science.aac8608, Jan 1, PubMed PMID: 26678874; Chafekar, A., Fielding, B.C., MERS-CoV: understanding the latest human coronavirus threat (2018) Viruses, 10 (2). , https://doi.org/10.3390/v10020093, Feb 24, PubMed PMID: 29495250; PubMed Central PMCID: PMC5850400; MERS: progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44. , https://doi.org/10.1016/j.antiviral.2018.09.002, Nov, PubMed PMID: 30236531; Hu, B., Zeng, L.P., Yang, X.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13 (11), p. e1006698. , https://doi.org/10.1371/journal.ppat.1006698, Nov, PubMed PMID: 29190287; PubMed Central PMCID: PMC5708621","Zhou, P.; CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: peng.zhou@wh.iov.cn",,"Taylor and Francis Ltd.",22221751,,,"31645223","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85074097444 "Perrier A., Bonnin A., Desmarets L., Danneels A., Goffard A., Rouillé Y., Dubuisson J., Belouzard S.","57211115571;57202922768;57211122516;37112090800;16425384700;7003412978;7102542575;6507480311;","The C-terminal domain of the MERS coronavirusMprotein contains a trans-Golgi network localization signal",2019,"Journal of Biological Chemistry","294","39",,"14406","14421",,,"10.1074/jbc.RA119.008964","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072699160&doi=10.1074%2fjbc.RA119.008964&partnerID=40&md5=c3c686ecf0693ca6f7fd43a8690641b6","Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France","Perrier, A., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Bonnin, A., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Desmarets, L., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Danneels, A., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Goffard, A., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Rouillé, Y., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Dubuisson, J., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France; Belouzard, S., Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, Lille, F-59000, France","Coronavirus M proteins represent the major protein component of the viral envelope. They play an essential role during viral assembly by interacting with all of the other structural proteins. Coronaviruses bud into the endoplasmic reticulum (ER)- Golgi intermediate compartment (ERGIC), but the mechanisms by whichMproteins are transported from their site of synthesis, the ER, to the budding site remain poorly understood. Here, we investigated the intracellular trafficking of the Middle East respiratory syndrome coronavirus (MERS-CoV)Mprotein. Subcellular localization analyses revealed that the MERS-CoV M protein is retained intracellularly in the trans-Golgi network (TGN), and we identified two motifs in the distal part of the C-terminal domain as being important for this specific localization. We identified the first motif as a functional diacidic DxE ER export signal, because substituting Asp-211 and Glu-213 with alanine induced retention of the MERS-CoV M in the ER. The second motif, 199KxGxYR204, was responsible for retaining theMprotein in the TGN. Substitution of this motif resulted in MERS-CoV M leakage toward the plasma membrane. We further confirmed the role of 199KxGxYR204 as a TGN retention signal by using chimeras between MERS-CoVMand theMprotein of infectious bronchitis virus (IBV). Our results indicated that the C-terminal domains of both proteins determine their specific localization, namely TGN and ERGIC/cis-Golgi for MERS-M and IBV-M, respectively. Our findings indicate that MERS-CoVMprotein localizes to the TGN because of the combined presence of an ER export signal and a TGN retention motif. © 2019 American Society for Biochemistry and Molecular Biology Inc.. All rights reserved.",,"Amino acids; Cell membranes; Plants (botany); Viruses; C-terminal domains; Endoplasmic reticulum; Export signals; Intracellular trafficking; Protein components; Structural proteins; Subcellular localizations; Trans-Golgi network; Proteins; Middle East respiratory syndrome coronavirus M protein; unclassified drug; viral protein; amino acid sequence; Article; Avian infectious bronchitis virus; biotinylation; cell membrane; cell migration; cell surface; cellular distribution; controlled study; glycosylation; human; human cell; immunofluorescence; Middle East respiratory syndrome coronavirus; nonhuman; oligomerization; priority journal; protein expression; protein folding; protein function; protein localization; trans Golgi network","Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292. , CrossRef Medline; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, pp. 439-450. , CrossRef Medline; Corman, V.M., Muth, D., Niemeyer, D., Drosten, C., Hosts and sources of endemic human coronaviruses (2018) Adv. Virus Res., 100, pp. 163-188. , CrossRef Medline; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033. , CrossRef Medline; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580. , CrossRef Medline; Ruch, T.R., MacHamer, C.E., The coronavirus e protein: Assembly and beyond (2012) Viruses, 4, pp. 363-382. , CrossRef Medline; Nieto-Torres, J.L., Verdiá-Báguena, C., Castaño-Rodriguez, C., Aguilella, V.M., Enjuanes, L., Relevance of viroporin ion channel activity on viral replication and pathogenesis (2015) Viruses, 7, pp. 3552-3573. , CrossRef Medline; Westerbeck, J.W., MacHamer, C.E., The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect spike protein and promote release of infectious virus (2019) J. Virol., 93, p. e00015. , CrossRef Medline; Westerbeck, J.W., MacHamer, C.E., A coronavirus e protein is present in two distinct pools with different effects on assembly and the secretory pathway (2015) J. Virol., 89, pp. 9313-9323. , CrossRef Medline; De Haan, C.A.M., Rottier, P.J.M., Molecular interactions in the assembly of coronaviruses (2005) Adv. Virus Res., 64, pp. 165-230. , CrossRef Medline; De Haan, C.A., Kuo, L., Masters, P.S., Vennema, H., Rottier, P.J., Coronavirus particle assembly: Primary structure requirements of the membrane protein (1998) J. Virol., 72, pp. 6838-6850. , Medline; Opstelten, D.J., Raamsman, M.J., Wolfs, K., Horzinek, M.C., Rottier, P.J., Envelope glycoprotein interactions in coronavirus assembly (1995) J. Cell Biol., 131, pp. 339-349. , CrossRef Medline; De Haan, C.A., Smeets, M., Vernooij, F., Vennema, H., Rottier, P.J., Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein (1999) J. Virol., 73, pp. 7441-7452. , Medline; Arndt, A.L., Larson, B.J., Hogue, B.G., A conserved domain in the coronavirus membrane protein tail is important for virus assembly (2010) J. Virol., 84, pp. 11418-11428. , CrossRef Medline; Tseng, Y.-T., Wang, S.-M., Huang, K.-J., Lee, A.I.-R., Chiang, C.-C., Wang, C.-T., Self-assembly of severe acute respiratory syndrome coronavirus membrane protein (2010) J. Biol. Chem., 285, pp. 12862-12872. , CrossRef Medline; De Haan, C.A.M., Vennema, H., Rottier, P.J.M., Assembly of the coronavirus envelope: Homotypic interactions between the M proteins (2000) J. Virol., 74, pp. 4967-4978. , CrossRef Medline; Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., Laude, H., Coronavirus pseudoparticles formed with recombinantMand e proteins induce α interferon synthesis by leukocytes (1998) J. Virol., 72, pp. 8636-8643. , Medline; Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J., Rottier, P.J., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBO J., 15, pp. 2020-2028. , CrossRef Medline; Lim, K.P., Liu, D.X., The missing link in coronavirus assembly: Retention of the avian coronavirus infectious brochitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins (2001) J. Biol. Chem., 276, pp. 17515-17523. , CrossRef Medline; Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., Tsao, S.W., Nal, B., The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles (2008) J. Virol., 82, pp. 11318-11330. , CrossRef Medline; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P.J., CoronavirusMproteins accumulate in the Golgi complex beyond the site of virion budding (1994) J. Virol., 68, pp. 6523-6534. , Medline; Salanueva, I.J., Carrascosa, J.L., Risco, C., Structural maturation of the transmissible gastroenteritis coronavirus (1999) J. Virol., 73, pp. 7952-7964. , Medline; MacHamer, C.E., Mentone, S.A., Rose, J.K., Farquhar, M.G., The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex (1990) Proc. Natl. Acad. Sci. U.S.A., 87, pp. 6944-6948. , CrossRef Medline; Locker, J.K., Griffiths, G., Horzinek, M.C., Rottier, P.J., O-glycosylation of the coronavirusMprotein: Differential localization of sialyltransferases in N- And O-linked glycosylation (1992) J. Biol. Chem., 267, pp. 14094-14101. , Medline; MacHamer, C.E., Grim, M.G., Esquela, A., Chung, S.W., Rolls, M., Ryan, K., Swift, A.M., Retention of a cis Golgi protein requires polar residues on one face of a predictedα-helix in the transmembrane domain (1993) Mol. Biol. Cell, 4, pp. 695-704. , CrossRef Medline; MacHamer, C.E., Rose, J.K., A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region (1987) J. Cell Biol., 105, pp. 1205-1214. , CrossRef Medline; Locker, J.K., Klumperman, J., Oorschot, V., Horzinek, M.C., Geuze, H.J., Rottier, P.J., The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex (1994) J. Biol. Chem., 269, pp. 28263-28269. , Medline; Waguri, S., Dewitte, F., Le Borgne, R., Rouillé, Y., Uchiyama, Y., Dubremetz, J.-F., Hoflack, B., Visualization of TGN to endosome trafficking through fluorescently labeled MPR and AP-1 in living cells (2003) Mol. Biol. Cell., 14, pp. 142-155. , CrossRef Medline; Dunn, K.W., Kamocka, M.M., McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy (2011) Am. J. Physiol. Cell Physiol., 300, pp. C723-C742. , CrossRef Medline; Venditti, R., Wilson, C., De Matteis, M.A., Exiting the ER: What we know and what we don't (2014) Trends Cell Biol., 24, pp. 9-18. , CrossRef Medline; Geva, Y., Schuldiner, M., The back and forth of cargo exit from the endoplasmic reticulum (2014) Curr. Biol., 24, pp. R130-R136. , CrossRef Medline; Votsmeier, C., Gallwitz, D., An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export (2001) EMBO J., 20, pp. 6742-6750. , CrossRef Medline; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERSCoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961. , CrossRef Medline; Bos, K., Wraight, C., Stanley, K.K., TGN38 is maintained in the trans-Golgi network by a tyrosine-containing motif in the cytoplasmic domain (1993) EMBO J., 12, pp. 2219-2228. , CrossRef Medline; Ponnambalam, S., Rabouille, C., Luzio, J.P., Nilsson, T., Warren, G., The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network (1994) J. Cell Biol., 125, pp. 253-268. , CrossRef Medline; Armstrong, J., Patel, S., The Golgi sorting domain of coronavirus E1 protein (1991) J. Cell Sci., 98, pp. 567-575. , Medline; Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Kam, J., Altmeyer, R., Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, Mand e (2005) J. Gen. Virol., 86, pp. 1423-1434. , CrossRef Medline; McBride, C.E., MacHamer, C.E., A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein (2010) J. Virol., 84, pp. 1891-1901. , CrossRef Medline; Locker, J.K., Opstelten, D.J., Ericsson, M., Horzinek, M.C., Rottier, P.J., Oligomerization of a trans-Golgi/trans-Golgi network retained protein occurs in the Golgi complex and may be part of its retention (1995) J. Biol. Chem., 270, pp. 8815-8821. , CrossRef Medline; Heffernan, L.F., Simpson, J.C., The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport (2014) Biochem. Soc. Trans., 42, pp. 1453-1459. , CrossRef Medline; Puthenveedu, M.A., Linstedt, A.D., Subcompartmentalizing the Golgi apparatus (2005) Curr. Opin. Cell Biol., 17, pp. 369-375. , CrossRef Medline; Tu, L., Banfield, D.K., Localization of Golgi-resident glycosyltransferases (2010) Cell. Mol. Life Sci., 67, pp. 29-41. , CrossRef Medline","Belouzard, S.; Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of LilleFrance; email: sandrine.belouzard@ibl.cnrs.fr",,"American Society for Biochemistry and Molecular Biology Inc.",00219258,,JBCHA,"31399512","English","J. Biol. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85072699160 "Ortiz-Hernández A.A., Nishimura K.K., Noyola D.E., Moreno-Espinosa S., Gamiño A., Galindo-Fraga A., Valdéz Vázquez R., Magaña Aquino M., Ramirez-Venegas A., Valdés Salgado R., Andrade-Platas D., Estevez-Jimenéz J., Ruiz-Palacios G.M., Guerrero M.L., Beigel J., Smolskis M.C., Hunsberger S., Freimanis-Hence L., Llamosas-Gallardo B., the Mexico Emerging Infectious Diseases Clinical Research Network (La Red)","6506986080;56008565500;6701473723;23966912200;57204316066;6508359924;6504726578;15044871000;55993674700;57212713111;57204315198;56117748100;7006106839;8245833100;6506675950;6508304782;7003410346;57204312974;6508011014;","“Differential risk of hospitalization among single virus infections causing influenza-like illnesses”",2019,"Influenza and other Respiratory Viruses","13","1",,"36","43",,2,"10.1111/irv.12606","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055208674&doi=10.1111%2firv.12606&partnerID=40&md5=6c70f196573ddaa463c594c9601c0fb1","Instituto Nacional de Pediatria, Ciudad de México, Mexico; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Universidad Autonoma de San Luis Potosi, San Luis Potosí, Mexico; Hospital Infantil de México Dr. Federico Gómez, Ciudad de México, Mexico; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México, Mexico; Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico; Hospital Regional Dr. Ignacio Morones Prieto, San Luis Potosí, Mexico; Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico; Westat, Rockville, MD, United States; Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States","Ortiz-Hernández, A.A., Instituto Nacional de Pediatria, Ciudad de México, Mexico; Nishimura, K.K., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Noyola, D.E., Universidad Autonoma de San Luis Potosi, San Luis Potosí, Mexico; Moreno-Espinosa, S., Hospital Infantil de México Dr. Federico Gómez, Ciudad de México, Mexico; Gamiño, A., Hospital Infantil de México Dr. Federico Gómez, Ciudad de México, Mexico; Galindo-Fraga, A., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México, Mexico; Valdéz Vázquez, R., Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico; Magaña Aquino, M., Hospital Regional Dr. Ignacio Morones Prieto, San Luis Potosí, Mexico; Ramirez-Venegas, A., Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico; Valdés Salgado, R., Westat, Rockville, MD, United States; Andrade-Platas, D., Instituto Nacional de Pediatria, Ciudad de México, Mexico; Estevez-Jimenéz, J., Instituto Nacional de Pediatria, Ciudad de México, Mexico; Ruiz-Palacios, G.M., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México, Mexico; Guerrero, M.L., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México, Mexico; Beigel, J., Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States; Smolskis, M.C., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Hunsberger, S., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Freimanis-Hence, L., Westat, Rockville, MD, United States; Llamosas-Gallardo, B., Instituto Nacional de Pediatria, Ciudad de México, Mexico; the Mexico Emerging Infectious Diseases Clinical Research Network (La Red)","Background: Acute respiratory infections are a major cause of morbidity in children and are often caused by viruses. However, the relative severity of illness associated with different viruses is unclear. The objective of this study was to evaluate the risk of hospitalization from different viruses in children presenting with an influenza-like illness (ILI). Methods: Data from children 5 years old or younger participating in an ILI natural history study from April 2010 to March 2014 was analyzed. The adjusted odds ratio for hospitalization was estimated in children with infections caused by respiratory syncytial virus (RSV), metapneumovirus, bocavirus, parainfluenza viruses, rhinovirus/enterovirus, coronavirus, adenovirus, and influenza. Results: A total of 1486 children (408 outpatients and 1078 inpatients) were included in this analysis. At least one virus was detected in 1227 (82.6%) patients. The most frequent viruses detected as single pathogens were RSV (n = 286), rhinovirus/enterovirus (n = 251), parainfluenza viruses (n = 104), and influenza A or B (n = 99). After controlling for potential confounders (age, sex, recruitment site, days from symptom onset to enrollment, and underlying illnesses), children with RSV and metapneumovirus infections showed a greater likelihood of hospitalization than those infected by parainfluenza viruses (OR 2.7 and 1.9, respectively), rhinovirus/enterovirus (OR 3.1 and 2.1, respectively), coronaviruses (OR 4.9 and 3.4, respectively), adenovirus (OR 4.6 and 3.2, respectively), and influenza (OR 6.3 and 4.4, respectively). Conclusions: Children presenting with ILI caused by RSV and metapneumovirus were at greatest risk for hospitalization, while children with rhinovirus/enterovirus, parainfluenza, coronavirus, adenovirus, and influenza were at lower risk of hospitalization. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","acute respiratory infection; hospitalization; influenza-like illness; single virus","adenovirus infection; Article; Bocavirus infection; child; Coronavirus infection; Enterovirus infection; female; flu like syndrome; hospitalization; human; infant; influenza A; influenza B; major clinical study; male; Metapneumovirus infection; nonhuman; Parainfluenza virus infection; preschool child; priority journal; respiratory syncytial virus infection; Rhinovirus infection; risk; risk assessment; virus detection; virus infection; acute disease; complication; evaluation study; hospitalization; influenza; isolation and purification; Mexico; odds ratio; paramyxovirus infection; pathogenicity; prospective study; respiratory syncytial virus infection; respiratory tract infection; severity of illness index; virology; virus; virus infection; Acute Disease; Child, Preschool; Female; Hospitalization; Humans; Infant; Influenza, Human; Male; Mexico; Odds Ratio; Paramyxoviridae Infections; Prospective Studies; Respiratory Syncytial Virus Infections; Respiratory Tract Infections; Severity of Illness Index; Virus Diseases; Viruses","Wong-Chew, R.M., Espinoza, M.A., Taboada, B., Prevalence of respiratory virus in symptomatic children in private physician office settings in five communities of the state of Veracruz Mexico (2015) BMC Res Notes, 8, p. 261; Monto, A.S., Viral respiratory infections in the community: epidemiology, agents and interventions (1995) Am J Med, 99 (6B), pp. 24S-27S; Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015 (2016) Lancet, 388, pp. 1459-1544; http://www.who.int/news-room/fact-sheets/detail/pneumonia, Accessed September 4, 2018; Liu, L., Oza, S., Hogan, D., Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals (2016) Lancet, 388, pp. 3027-3035; Rudan, I., Tomaskovic, L., Boschi-Pinto, C., Global estimate of the incidence of clinical pneumonia among children under five years of age (2004) Bull World Health Organ, 82 (12), pp. 895-903; (2016) SUIVE/DGE/Secretaria de Salud/EstadosUnidosMexicanos; Shi, T., McAllister, D.A., O'Brien, K.L., Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study (2017) Lancet, 390 (10098), pp. 946-958; Lafond, K.E., Nair, H., Rasooly, M.H., Global role and burden of influenza in pediatric respiratory hospitalizations, 1982-2012: a systematic analysis (2016) PLoS Med, 13 (3); Cabello, C., Manjarrez, M.E., Olvera, R., Frequency of viruses associated with acute respiratory infections in children younger than five years of age at a locality of Mexico City (2006) Mem Inst Oswaldo Cruz, 101 (1), pp. 21-24; Manjarrez, M.E., Rosette, D.P., Rincón, M., Comparative viral frequency in Mexican children under 5 years of age with and without upper respiratory symptoms (2013) J Med Microbiol, 52 (Pt7), pp. 579-583; Noyola, D.E., Alpuche-Solis, A.G., Herrera-Diaz, A., Human metapneumovirus infections in Mexico: epidemiological and clinical characteristics (2005) J Med Microbiol, 54 (Pt10), pp. 969-974; Noyola, D.E., Rodriguez-Moreno, G., Alvarado, S., Viral etiology of lower respiratory tract infection in hospitalized children in Mexico (2004) Pediatr Infect Dis J, 23 (2), pp. 118-123; Wong-Chew, R.M., García-León, M.L., Noyola, D.E., Respiratory viruses detected in Mexican children younger than 5 years old with community-acquired pneumonia: a national multicenter study (2017) Int J Infect Dis, 62, pp. 32-38; Fernandes-Matano, L., Monroy-Muñoz, I.E., Angeles-Martínez, J., Prevalence of non-influenza respiratory viruses in acute respiratory infection cases in Mexico (2017) PLoS ONE, 12 (5); Garcia, J., Espejo, V., Nelson, M., Human rhinoviruses and enteroviruses in influenza-like illness in Latin America (2013) Virol J, 10, p. 305; Villaran, M.V., García, J., Gomez, J., Human parainfluenza virus in patients with influenza-like illness from Central and South America during 2006-2010 (2014) Influenza Other Respir Viruses, 8 (2), pp. 217-227; Galindo-Fraga, A., Ortiz-Hernández, A.A., Ramírez-Venegas, A., Clinical Characteristics and Outcomes of Influenza and Other Influenza Like Illnesses in Mexico City (2013) Int J Infect Dis, 17 (7), pp. e510-e517; Glezen, P., Denny, F.W., Epidemiology of acute lower respiratory disease in children (1973) N Engl J Med, 288 (10), pp. 498-505; Garcia-Garcia, M.L., Calvo, C., Rey, C., Human metapneumovirus infections in hospitalized children and comparison with other respiratory viruses 2005-2014 propective study (2014) PLoS ONE, 12 (3); Glezen, W.P., Taber, L.H., Frank, A.L., Risk of primary infection and reinfection with respiratory syncytial virus (1986) Am J Dis Child, 140 (6), pp. 543-546; Heikkinen, T., Osterback, R., Peltola, V., Human metapneumovirus infections in children (2008) Emerg Infect Dis, 14 (1), pp. 101-106; Aranda-Romo, S., Comas-García, A., García-Sepúlveda, C.A., Effect of an immunization program on seasonal influenza hospitalizations in Mexican children (2010) Vaccine, 28 (13), pp. 2550-2555; Sánchez-Ramos, E.L., Monárrez-Espino, J., Noyola, D.E., Impact of vaccination on influenza mortality in children <5 years old in Mexico (2017) Vaccine, 35 (9), pp. 1287-1292; Ampofo, K., Bender, J., Sheng, X., Seasonal invasive pneumococcal disease in children: role of preceding respiratory viral infection (2008) Pediatrics, 122 (2), pp. 229-237; Murdoch, D.R., Jennings, L.C., Association of respiratory virus activity and environmental factors with the incidence of invasive pneumococcal disease (2009) J Infect, 58 (1), pp. 37-46; Calvo, C., Garcıa-Garcıa, M.L., Pozo, F., Clinical characteristics of human bocavirusinfections compared with other respiratory viruses in Spanishchildren (2007) Pediatr Infect Dis J, 27, pp. 677-680; Blessing, K., Neske, F., Herre, U., Kreth, H.W., Weissbrich, B., Prolonged detection of human bocavirus DNA in nasopharyngealaspirates of children with respiratory tract disease (2009) Pediatr Infect Dis J, 28, pp. 1018-1019; Martin, E.T., Fairchok, M.P., Kuypers, J., Magaret, A., Zerr, D.M., Wald, A., Englund, J.A., Frequent and prolonged shedding of bocavi-rus in young children attending daycare (2010) J Infect Dis, 201, pp. 1625-1632; Von Linstow, M.L., Hogh, M., Hogh, B., Clinical and epidemiologic characteristics of human bocavirus in Danish infants: Results from a prospective birth cohort study (2008) Pediatr Infect Dis J, 27, pp. 897-902; Peltola, V., Söderlund-Venermo, M., Jartti, T., Human bocavirus infections (2013) Pediatr Infect Dis J, 32 (2), pp. 178-179","Llamosas-Gallardo, B.; Instituto Nacional de PediatriaMexico; email: bllamosas@yahoo.com.mx",,"Blackwell Publishing Ltd",17502640,,,"30137695","English","Influ. Other Respir. Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85055208674 "Donnelly C.A., Malik M.R., Elkholy A., Cauchemez S., Van Kerkhove M.D.","35468127900;37031425300;57191446321;11940936200;15761388700;","Worldwide reduction in MERS cases and deaths since 2016",2019,"Emerging Infectious Diseases","25","9",,"1758","1760",,,"10.3201/eid2509.190143","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071705313&doi=10.3201%2feid2509.190143&partnerID=40&md5=59a085908d990f62754d79bce55bab5f","University of Oxford, Oxford, United Kingdom; Imperial College London, London, United Kingdom; World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt; Institut Pasteur, Paris, France; World Health Organization, High Threat Pathogens, Global Infectious Hazards Management, Health Emergencies Program, Geneva, Switzerland","Donnelly, C.A., University of Oxford, Oxford, United Kingdom, Imperial College London, London, United Kingdom; Malik, M.R., World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt; Elkholy, A., World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt; Cauchemez, S., Institut Pasteur, Paris, France; Van Kerkhove, M.D., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management, Health Emergencies Program, Geneva, Switzerland","Since 2012, Middle East respiratory syndrome (MERS) coronavirus has infected 2,442 persons worldwide. Case-based data analysis suggests that since 2016, as many as 1,465 cases and 293-520 deaths might have been averted. Efforts to reduce the global MERS threat are working, but countries must maintain vigilance to prevent further infections. © 2019 Centers for Disease Control and Prevention (CDC). All rights reserved.",,"Article; case fatality rate; community; death; global health; human; hypothesis; major clinical study; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; virus transmission; Coronavirus infection; epidemic; global health; incidence; mortality; Coronavirus Infections; Disease Outbreaks; Global Health; Humans; Incidence","(2019) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov, [cited June 4]; MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Res., 159, pp. 35-44. , https://doi.org/10.1016/j.antiviral.2018.09.002; Ki, M., 2015 MERS outbreak in korea: Hospital-to-hospital transmission (2015) Epidemiol Health, 37, p. e2015033. , https://doi.org/10.4178/epih/e2015033; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in jeddah-A link to health care facilities (2015) N Engl J Med., 372, pp. 846-854. , https://doi.org/10.1056/NEJMoa1408636; (2019) 2017 Middle East Respiratory Syndrome Coronavirus: Case Definition for Reporting to WHO, , https://www.who.int/csr/disease/coronavirus_infections/case_definition, [cited Jun 4]; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: Nosocomial outbreak of middle east respiratory syndrome in a large tertiary care hospital-Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep., 65, pp. 163-164. , https://doi.org/10.15585/mmwr.mm6506a5; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N Engl J Med., 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Bernard-Stoecklin, S., Nikolay, B., Assiri, A., Aziz Bin-Saeed, A.A., Karim Ben-Embarek, P., El Bushra, H., Comparative analysis of eleven healthcare-associated outbreaks of MERS-CoV from 2015-2017 (2019) Sci Rep., 9, p. 7385. , https://doi.org/10.1038/s41598-019-43586-9; (2019) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov, [cited Jun 4]; (2019) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection-Republic of Korea, , http://www.who.int/csr/don/12-september-2018-mers-republic-of-korea, [cited Jun 4]","Van Kerkhove, M.D.; World Health Organization, High Threat Pathogens, Global Infectious Hazards Management, Health Emergencies ProgramSwitzerland; email: vankerkhovem@who.int",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31264567","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85071705313 "Farag E., Sikkema R.S., Mohamedani A.A., De Bruin E., Oude Munnink B.B., Chandler F., Kohl R., Van Der Linden A., Okba N.M.A., Haagmans B.L., Van Den Brand J.M.A., Elhaj A.M., Abakar A.D., Nour B.Y.M., Mohamed A.M., Alwaseela B.E., Ahmed H., Alhajri M.M., Koopmans M., Reusken C., Elrahman S.H.A.","55963332900;25923062900;6507826679;57210069470;55989982700;57194153330;7005060965;36875299000;56807221300;6701371301;25625734400;57211849340;8836130500;57213662600;57211850593;57211848661;57211852290;55963202700;7006736989;6602366009;57211853327;","MERS-CoV in camels but not camel handlers, Sudan, 2015 and 2017",2019,"Emerging Infectious Diseases","25","12",,"2333","2335",,1,"10.3201/eid2512.190882","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075146673&doi=10.3201%2feid2512.190882&partnerID=40&md5=0afc4536d933e8d3fdad9a1bd0e4ae93","Ministry of Public Health, Doha, Qatar; Erasmus Medical Centre, Rotterdam, Netherlands; Utrecht University, Utrecht, Netherlands; Blue Nile National Institute for Communicable Diseases, Wad Medani, Sudan; Tamboul Camel Research Centre, Tamboul, Sudan; National Institute |for Public Health and the Environment, Bilthoven, Netherlands; University of Gezira, Blue Nile National Institute for Communicable Diseases, PO Box 101, Wad Medani, Gezira, Sudan","Farag, E., Ministry of Public Health, Doha, Qatar; Sikkema, R.S., Erasmus Medical Centre, Rotterdam, Netherlands; Mohamedani, A.A., University of Gezira, Blue Nile National Institute for Communicable Diseases, PO Box 101, Wad Medani, Gezira, Sudan; De Bruin, E., Erasmus Medical Centre, Rotterdam, Netherlands; Oude Munnink, B.B., Erasmus Medical Centre, Rotterdam, Netherlands; Chandler, F., Erasmus Medical Centre, Rotterdam, Netherlands; Kohl, R., Erasmus Medical Centre, Rotterdam, Netherlands; Van Der Linden, A., Erasmus Medical Centre, Rotterdam, Netherlands; Okba, N.M.A., Erasmus Medical Centre, Rotterdam, Netherlands; Haagmans, B.L., Erasmus Medical Centre, Rotterdam, Netherlands; Van Den Brand, J.M.A., Utrecht University, Utrecht, Netherlands; Elhaj, A.M., Blue Nile National Institute for Communicable Diseases, Wad Medani, Sudan; Abakar, A.D., Blue Nile National Institute for Communicable Diseases, Wad Medani, Sudan; Nour, B.Y.M., Blue Nile National Institute for Communicable Diseases, Wad Medani, Sudan; Mohamed, A.M., Blue Nile National Institute for Communicable Diseases, Wad Medani, Sudan; Alwaseela, B.E., Tamboul Camel Research Centre, Tamboul, Sudan; Ahmed, H., Tamboul Camel Research Centre, Tamboul, Sudan; Alhajri, M.M., Ministry of Public Health, Doha, Qatar; Koopmans, M., Erasmus Medical Centre, Rotterdam, Netherlands; Reusken, C., Erasmus Medical Centre, Rotterdam, Netherlands, National Institute |for Public Health and the Environment, Bilthoven, Netherlands; Elrahman, S.H.A., Blue Nile National Institute for Communicable Diseases, Wad Medani, Sudan, University of Gezira, Blue Nile National Institute for Communicable Diseases, PO Box 101, Wad Medani, Gezira, Sudan","We tested samples collected from camels, camel workers, and other animals in Sudan and Qatar in 2015 and 2017 for evidence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection. MERS-CoV antibodies were abundant in Sudan camels, but we found no evidence of MERS-CoV infection in camel workers, other livestock, or bats. © 2019 Centers for Disease Control and Prevention (CDC). All rights reserved.",,"cytochrome b; nucleocapsid protein; unclassified drug; virus antibody; virus envelope protein; virus spike protein; virus spike protein s1; animal husbandry; Article; camel; enzyme linked immunosorbent assay; feces analysis; human; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; protein microarray; retrospective study; reverse transcription polymerase chain reaction; seroprevalence; Sudan; urinalysis; virus load; virus neutralization","Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr Opin Virol, 16, pp. 55-62. , https://doi.org/10.1016/j.coviro.2016.01.004; So, R.T., Perera, R.A., Oladipo, J.O., Chu, D.K., Kuranga, S.A., Chan, K.H., Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016 (2018) Euro Surveill, 23. , https://doi.org/10.2807/1560-7917.ES.2018.23.32.1800175; Sikkema, R.S., Farag, E.A.B.A., Islam, M., Atta, M., Reusken, C.B.E.M., Al-Hajri, M.M., Global status of Middle East respiratory syndrome coronavirus in dromedary camels: A systematic review (2019) Epidemiol Infect, 147. , http://dx.doi.org/10.1017/S095026881800345X; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Okba, N.M.A., Raj, V.S., Widjaja, I., Geurts Van Kessel, C.H., De Bruin, E., Chandler, F.D., Sensitive and specific detection of low-level antibody responses in mild Middle East respiratory (2019) Emerg Infect Dis, 25, pp. 1868-1877. , http://dx.doi.org/10.3201/eid2510.190051; Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X., Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers (1989) Proc Natl Acad Sci U S A, 86, pp. 6196-6200. , https://doi.org/10.1073/pnas.86.16.6196; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285. , https://doi.org/10.2807/ese.17.39.20285-en; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334. , https://doi.org/10.2807/ese.17.49.20334-en; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., MERS-CoV antibodies in humans, Africa, 2013-2014 (2016) Emerg Infect Dis, 22, pp. 1086-1089. , https://doi.org/10.3201/eid2206.160064; Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals (2019) Emerg Microbes Infect, 8, pp. 103-108. , https://doi.org/10.1080/22221751.2018.1560235","Elrahman, S.H.A.; Blue Nile National Institute for Communicable DiseasesSudan; email: samhamid2002@yahoo.co.uk",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31742534","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85075146673 "Mósena A.C.S., Cruz D.L., Canal C.W., Marques S.M.T., Valle S.F., Soares J.F., Mattos M.J.T., Costa F.V.A.","55589553500;57211681713;7003463241;8559796900;24073799800;16445193800;12241750100;57190126263;","Detection of enteric agents into a cats' shelter with cases of chronic diarrhea in Southern Brazil",2019,"Pesquisa Veterinaria Brasileira","39","8",,"630","634",,,"10.1590/1678-5150-PVB-5987","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074827658&doi=10.1590%2f1678-5150-PVB-5987&partnerID=40&md5=f91720dcf3757d7c484f2df2bbec0c9e","Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Laboratório IBASA Ltda., Rua Almirante Tamandaré 530, Porto Alegre, RS 90220-030, Brazil; Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Departamento de Medicina Animal, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil","Mósena, A.C.S., Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Cruz, D.L., Laboratório IBASA Ltda., Rua Almirante Tamandaré 530, Porto Alegre, RS 90220-030, Brazil; Canal, C.W., Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Marques, S.M.T., Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Valle, S.F., Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Soares, J.F., Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Mattos, M.J.T., Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil; Costa, F.V.A., Departamento de Medicina Animal, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS 91540-000, Brazil","This study carried out a survey about enteropathogenic agents in domestic cats' shelter as a stage of investigation for the intermittent chronic diarrhea. Individual fecal samples from 39 cats with free access to the external environment were submitted to parasitological examination, parvovirus, and coronavirus by PCR, and Cryptosporidium spp., Giardia spp. and Tritrichomonas foetus by real-time PCR. From the cats evaluated, 30 (76.9%) were positive for one or more enteric agents, and coinfections were observed in 11 cats samples (28.2%). Helminth eggs were observed in 48.7% of cats (19/30), 16 (41%) were positive for parvovirus or coronavirus and 25.6% (10/30) were infected by protozoa. From the positives for protozoa, five cats were positive to T. foetus (12.82%). The first finding of this protozoan through PCR was in the southern Brazil, and the second was in the whole country. Chronic diarrhea in cats may be multifactorial in shelter animals where the population density is high and the control of parasitic, and viral infections are deficient. Moreover, it is due to poor hygiene conditions in these shelters. The factors associated with the proliferation of infectious diseases in shelters are correlated with new pathogens infections such as T. foetus. © 2019 Colegio Brasileiro de Patologia Animal. All rights reserved.","Cat shelter; Chronic diarrhea; Coinfection; Enteric agents; Gastrointestinal disorders; Intestinal parasitosis; Parasitoses; Southern Brazil; Tritrichomonas foetus","genomic DNA; animal experiment; Article; cat; chronic diarrhea; Coronavirinae; Cryptosporidium; female; Giardia; male; microorganism detection; mixed infection; nonhuman; Parvoviridae; polymerase chain reaction; real time polymerase chain reaction; Tritrichomonas foetus; worm egg","Andersen, A.A., Levy, J.K., McManus, C.M., McGorray, S.P., Leutenegger, C.M., Piccione, J., Blackwelder, L.K., Tucker, S.J., Prevalence of enteropathogens in cats with and without diarrhea in four different management models for unowned cats in the southeast United States (2018) Vet. J., 236, pp. 49-55. , http://dx.doi.org/10.1016/j.tvjl.2018.04.008, PMid:29871750>; Ballweber, L.R., Panuska, C., Huston, C.L., Vasilopulos, R., Pharr, G.T., Mackin, A., Prevalence of and risk factors associated with shedding of CryptosporidiumfelisindomesticcatsofMississippiandAlabama (2009) Vet.Parasitol., 160 (3-4), pp. 306-310. , http://dx.doi.org/10.1016/j.vetpar.2008.11.018, PMid:19117680>; Boom, R., Sol, C.J., Salimans, M.M., Jansen, C.L., Wertheim-Van Dillen, P.M., Van Der Noordaa, J., Rapid and simple method for purification of nucleic acids (1990) J. Clin. Microbiol., 28 (3), pp. 495-503. , ; Buonavoglia, C., Martella, V., Pratelli, A., Tempesta, M., Cavalli, A., Buonavoglia, D., Bozzo, G., Carmichael, L., Evidence for evolution of canine parvovirus type 2 in Italy (2001) J. Gen. Virol., 82 (12), pp. 3021-3025. , http://dx.doi.org/10.1099/0022-1317-82-12-3021, PMid:11714979>; Cave, T.A., Thompson, H., Reid, S.W., Hodgson, D.R., Addie, D.D., Kitten mortality in the United Kingdom: A retrospective analysis of 274 histopathological examinations (1986 to 2000) (2002) Vet. Rec., 151 (17), pp. 497-501. , http://dx.doi.org/10.1136/vr.151.17.497, PMid:12430997>; Clegg, S.R., Coyne, K.P., Dawson, S., Spibey, N., Gaskell, R.M., Radford, A.D., Canine parvovirus in asymptomatic feline carriers (2012) Vet. Microbiol., 157 (1-2), pp. 78-85. , http://dx.doi.org/10.1016/j.vetmic.2011.12.024, PMid:22257775>; Coelho, W.M.D., Amarante, A.F.T., Soutello, R.V.G., Meireles, M.V., Bresciane, K.D.S., Ocorrência de parasitos gastrintestinais em amostras fecais de felinos no município de Andradina, São Paulo (2009) Revta Bras. Parasitol. Vet., 18 (2), pp. 46-49. , http://dx.doi.org/10.4322/rbpv.01802010; Cook, A., Feline infectious diarrhea (2008) Top. Companion Anim. Med., 23 (4), pp. 169-176. , http://dx.doi.org/10.1053/j.tcam.2008.07.001, PMid:19081550>; De Santis-Kerr, A.C., Raghavan, M., Glickman, N.W., Caldanaro, R.J., Moore, G.E., Lewis, H.B., Schantz, P.M., Glickman, L.T., Prevalence and risk factors for Giardia and Coccidia species of pet cats in 2003-2004 (2006) J. Feline Med. Surg., 8 (5), pp. 292-301. , http://dx.doi.org/10.1016/j.jfms.2006.02.005, PMid:16678461>; Dennis, W.R., Stone, W.M., Swanson, L.E., A new laboratory and field diagnostic test for fluke ova, in feces (1954) J. Am. Vet. Med. Assoc., 124 (922), pp. 47-50. , ; Dupont, S., Butaye, P., Claerebout, E., Theuns, S., Duchateau, L., Van De Maele, I., Daminet, S., Enteropathogens in pups from pet shops and breeding facilities (2013) J. Small Anim. Pract., 54 (9), pp. 475-480. , http://dx.doi.org/10.1111/jsap.12119, PMid:23915246>; Ferreira, F.P., Dias, R.C.F., Martins, T.A., Constantino, C., Pasquali, A.K.S., Vidotto, O., Freire, R.L., Navarro, I.T., Frequência de parasitas gastrointestinais em cães e gatos do município de Londrina, PR, com enfoque em saúde pública (2013) Semina, Ciênc. Agrárias, 34 (6), pp. 3851-3858; Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments (1997) J.Am.Vet.Med.Assoc., 210 (9), pp. 1307-1312. , ; Gavioli, F.A., Borsa, A., Diogo, J.E., De Lara Pinto, A.Z., Azevedo, L.S., Sousa, V.R.F., Ocorrência de endoparasitos em gatos de Cuiabá, Mato Grosso, Brasil (2011) Arch. Vet. Sci., 16 (3), pp. 25-30. , http://dx.doi.org/10.5380/avs.v16i3.19498; Gennari, S.M., Kasai, N., Pena, H.F.J., Cortez, A., Ocorrência de protozoários e helmintos em amostras de fezes de cães e gatos da cidade de São Paulo (1999) Braz. J. Vet. Res. Anim. Sci., 36 (2), pp. 87-91. , http://dx.doi.org/10.1590/S1413-95961999000200006; Gizzi, A.B., Oliveira, S.T., Leutenegger, C.M., Estrada, M., Kozemjakin, D.A., Stedile, R., Marcondes, M., Biondo, A.W., Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel (2014) BMC Vet. Res., 16 (1), pp. 10-23. , http://dx.doi.org/10.1186/1746-6148-10-23, PMid:24433321>; Gookin, J.L., Stebbins, M.E., Hunt, E., Burlone, K., Fulton, M., Hochel, R., Talaat, M., Levy, M.G., Prevalence of and risk factors for feline TritrichomonasfoetusandGiardiainfection (2004) J.ClinMicrobiol., 42 (6), pp. 2707-2710. , http://dx.doi.org/10.1128/JCM.42.6.2707-2710.2004, < >; Herrewegh, A.A.P.M., Mähler, M., Hedrich, H.J., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J.M., De Groot, R.J., Persistence and evolution of feline coronavirus in a closed cat-breeding colony (1997) Virology, 234 (2), pp. 349-363. , http://dx.doi.org/10.1006/viro.1997.8663, PMid:9268167>; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., De Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72 (5), pp. 4508-4514. , ; Holliday, M., Deni, D., Gunn-Moore, D.A., Tritrichomonas foetus infection in cats with diarrhoea in a rescue colony in Italy (2009) J. Feline Med. Surg., 11 (2), pp. 131-134. , http://dx.doi.org/10.1016/j.jfms.2008.06.004, PMid:18774326>; Hora, A.S., Miyashiro, S.I., Cassiano, F.C., Brandão, P.E., Reche-Junior, A., Pena, H.F.J., Report of the first clinical case of intestinal trichomoniasis caused by Tritrichomonas foetus in a cat with chronic diarrhea in Brazil (2017) BMC Vet. Res., 13 (1), p. 109. , http://dx.doi.org/10.1186/s12917-017-1026-3, PMid:28412947>; Mtambo, M.M., Nash, A.S., Blewett, D.A., Smith, H.V., Wright, S., Cryptosporidiuminfectionincats:prevalenceofinfectionindomesticand feralcatsintheGlasgowarea (1991) Vet.Rec., 129 (23), pp. 502-504. , ; Paris, J.K., Wills, S., Balzer, H.J., Shaw, D.J., Gunn-Moore, D.A., Enteropathogen co-infection in UK cats with diarrhoea (2014) BMC Vet. Res., 10 (1), p. 13. , http://dx.doi.org/10.1186/1746-6148-10-13, PMid:24410914>; Pedersen, N.C., (1991) Feline Husbandry: Diseases and Management in the Multiple-Catenvironment, 453p. , AmericanVeterinaryPublications,Goleta,CA; Pedersen, N.C., Sato, R., Foley, J.E., Poland, A.M., Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus (2004) J. Feline Med. Surg., 6 (2), pp. 83-88. , http://dx.doi.org/10.1016/j.jfms.2003.08.008, PMid:15123152>; Pesavento, P.A., Murphy, B.G., Common and emerging infectious diseases in the animal shelter (2014) Vet. Pathol., 51 (2), pp. 478-491. , http://dx.doi.org/10.1177/0300985813511129, PMid:24265288>; Pivoto, F.L., Lopes, L.F.D., Vogel, F.S.F., Botton, S.D.A., Sangioni, L.A., Ocorrência de parasitos gastrointestinais e fatores de rico de parasitismo em gatos domésticos urbanos de Santa Maria, RS, Brasil (2013) Ciência Rural, 43 (8), pp. 1453-1458. , http://dx.doi.org/10.1590/S0103-84782013000800018; Polak, K.C., Levy, J.K., Crawford, P.C., Leutenegger, C.M., Moriello, K.A., Infectious diseases in large-scale cat hoarding investigations (2014) Vet. J., 201 (2), pp. 189-195. , http://dx.doi.org/10.1016/j.tvjl.2014.05.020, PMid:24934262>; Sabshin, S.J., Levy, J.K., Tupler, T., Tucker, S.J., Greiner, E.C., Leutenegger, C.M., Enteropathogens identified in cats entering a Florida animal shelter with normal feces or diarrhea (2012) J. Am. Vet. Med. Assoc., 241 (3), pp. 331-337. , http://dx.doi.org/10.2460/javma.241.3.331, PMid:22812469>; Serra, C.M.B., Uchôa, C.M.A., Coimbra, R.A., Exame parasitológico de fezes de gatos (Felis catus domesticus) domiciliados e errantes da Região Metropolitana do Rio de Janeiro, Brasil (2003) Revta Soc. Bras. Med. Trop., 36 (3), pp. 331-334. , http://dx.doi.org/10.1590/S0037-86822003000300003; Snel, G.G.M., Bercht, B.S., Gomes, M.J.P., Tricomonose em gatos no Rio Grande do Sul (2006) Anais Do XVII Congresso Estadual De Medicina Veterinária, p. 25. , Gramado, RS,. Resumo expandido; Tysnes, K., Gjerde, B., Nødtvedt, A., Skancke, E., A cross-sectional study of Tritrichomonas foetus infection among healthy cats at shows in Norway (2011) Acta Vet. Scand., 53 (1), pp. 39-45. , http://dx.doi.org/10.1186/1751-0147-53-39, PMid:21689400>; Willis, H.H., A simple levitation method for the detection of hookworm ova (1921) Med. J. Aust., 8, pp. 375-376","Valle, S.F.; Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Brazil; email: stella.valle@ufrgs.br",,"Colegio Brasileiro de Patologia Animal",0100736X,,,,"English","Pesqui. Vet. Bras.",Article,"Final",Open Access,Scopus,2-s2.0-85074827658 "Kasmi Y., Khataby K., Souiri A., Ennaji M.M.","57201065929;56781432800;57215892859;57214098820;","Coronaviridae: 100,000 years of emergence and reemergence",2019,"Emerging and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens",,,,"127","149",,,"10.1016/B978-0-12-819400-3.00007-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082289685&doi=10.1016%2fB978-0-12-819400-3.00007-7&partnerID=40&md5=ff27a0ab6a4108ac7ca4dade9beaf503","Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco; Society Biopharma, Rabat, Morocco; Society of Veterinary ATLAS, Bouskoura, Morocco; Centre of Research Health and Biothechnology, University Hassan II of Casablanca, Casablanca, Morocco","Kasmi, Y., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco; Khataby, K., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco, Society Biopharma, Rabat, Morocco, Society of Veterinary ATLAS, Bouskoura, Morocco; Souiri, A., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco; Ennaji, M.M., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco, Centre of Research Health and Biothechnology, University Hassan II of Casablanca, Casablanca, Morocco","The coronavirus family (Coronaviridae) is a positive-sense single-stranded RNA, with a size of 27 kb. These viruses have a potential species specificity and interspecies transmission. The interspecies transmission of viruses from one host species to another is a major factor responsible for the majority of emerging and reemerging infections. The Coronaviridae is one of the most popular emerging viral families that threaten to the public health. © 2020 Elsevier Inc. All rights reserved.","Coronaviridae; Emergence; Genomics; Infection",,"Abdel-Moneim, A., Madbouly, H., El-Kady, M., In vitro characterization and pathogenesis of Egypt/Beni-Suef/01; a novel genotype of infectious bronchitis virus (2005) Beni Suef Vet. Med. J., 15 (2), pp. 127-133; Abd El Rahman, S., El-Kenawy, A.A., Neumann, U., Herrler, G., Winter, C., Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus (2009) Avian Pathol., 38 (1), pp. 41-45; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., De Wit, E., Middle East respiratory syndrome Coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2), pp. e00814-e00884; Balasuriya, Snijder, Arteriviruses (2008) Animal Viruses: Molecular Biology, , Caister Academic Press; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of Coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4 (6), pp. 1011-1033; Berger, S., (2017) SARS and MERS: Global Status, , GIDEON Informatics, Inc; Birkhead, M., Paweska, J., A microscopic introduction to virus taxonomy (2015) Commun. Dis. Surveill. Bull., 13, pp. 52-61; Cavanagh, D., Nidovirales: A new order comprising Coronaviridae and Arteriviridae (1997) Arch. Virol., 142 (3), p. 629; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38 (2), pp. 281-297; Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol., 21 (10), pp. 544-555; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome Coronavirus: Another zoonotic betaCoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28 (2), pp. 465-522; Cook, J.K., Orbell, S.J., Woods, M.A., Huggins, M.B., A survey of the presence of a new infectious bronchitis virus designated 4/91 (793B) (1996) Vet. Rec., 138 (8), pp. 178-180; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Spread, circulation, and evolution of the Middle East respiratory syndrome Coronavirus (2014) MBio, 5 (1), pp. e01013-e01062; Cunningham, C., (1973) A Laboratory Guide in Virology, pp. 67-80. , seventh ed, Burgess Minneapolis, MN; Cunningham, C.H., El Dardiry, A., Distribution of the virus of infectious bronchitis of chickens in embryonated chicken eggs (1948) Cornell. Vet., 38, pp. 381-388; Delaplane, J., Technique for the isolation of infectious bronchitis or Newcastle virus including observations on the use of streptomycin in overcoming bacterial contaminants (1947) NE. Conf. Lab. Workers Pullorum Dis. Control Proc., 19, pp. 11-13; De Haan, C.A., Li, Z., Te Lintelo, E., Bosch, B.J., Haijema, B.J., Rottier, P.J., Murine Coronavirus with an extended host range uses heparan sulfate as an entry receptor (2005) J. Virol., 79, pp. 14451-14456; De Vries, A.A., Horzinek, M.C., Rottier, P.J., De Groot, R.J., (1997) The genome organization of the Nidovirales: Similarities and differences between arteri-, toro-, and CoronavirusesSeminars in VIROLOGY, 8, pp. 33-47. , Academic Press, No. 1; De Wit, J.J., Cook, J.K.A., Heijden, H.M.J.F., Infectious bronchitis virus variants: A review of the history current situation and control measures (2011) Avian Pathol., 40, pp. 223-235; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging Coronaviruses (2016) Nat. Rev. Microbiol., 14 (8), pp. 523-534; Duckmanton, L., Luan, B., Devenish, J., Tellier, R., Petric, M., Characterization of Torovirus from human faecal specimens (1997) Virology, 239, pp. 158-168; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome Coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp. Mol. Med., 47 (8), p. e181; Engering, A., Hogerwerf, L., Slingenbergh, J., Pathogen-host-environment interplay and disease emergence (2013) Emerg. Microbes Infect., 2 (2), p. e5; Fleck, F., How SARS changed the world in less than six months (2003) Bull. World Health Organ., 81 (8), pp. 625-626; Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch. Virol., 148 (11), pp. 2207-2235; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res., 117 (1), pp. 17-37; Hudson, C.B., Beaudette, F.R., Infection of the cloaca with the virus of infectious bronchitis (1932) Science, 76 (1958), p. 34; King, A.M., Adams, E., Lefkowitz, M.J., Carstens, E.B., (2011) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, , Elsevier; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res. Persp., 6 (4), pp. 269-278; Kuo, L., Hurst-Hess, K.R., Koetzner, C.A., Masters, P.S., Analyses of Coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras (2016) J. Virol., 90 (9), pp. 4357-4368; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other Coronaviruses (2014) Antiviral Res., 109, pp. 97-109; Mackey, T.K., Liang, B.A., Cuomo, R., Hafen, R., Brouwer, K.C., Lee, D.E., Emerging and reemerging neglected tropical diseases: A review of key characteristics, risk factors, and the policy and innovation environment (2014) Clin. Microbiol. Rev., 27 (4), pp. 949-979; Marquez-Jurado, S., Nogales, A., Zuñiga, S., Enjuanes, L., Almazán, F., Identification of a gamma interferon-activated inhibitor of translation-like RNA motif at the 3′ end of the transmissible gastroenteritis Coronavirus genome modulating innate immune response (2015) mBio, 6 (2), pp. e00105-e00115; Masters, P.S., The molecular biology of Coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Avian infectious bronchitis virus (2013) Terrestrial Manual, pp. 1-15. , Chapter 2.3.2; Okino, C.H., Santos, I.L.D., Fernando, F.S., Alessi, A.C., Wang, X., Montassier, H.J., Inflammatory and cell-mediated immune responses in the respiratory tract of chickens to infection with avian infectious bronchitis virus (2014) Viral Immunol., 27 (8), pp. 383-391; Perlman, S., Netland, J., Coronaviruses postSARS: Update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7 (6), pp. 439-450; Promkuntod, N., Van Eijndhoven, R.E., De Vrieze, G., Grone, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian Coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32; Pyrc, K., Jebbink, M.F., Berkhout, B., Van Der Hoek, L., Genome structure and transcriptional regulation of human Coronavirus NL63 (2004) Virol. J., 1, p. 7; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome Coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS one, 8 (10), p. e76469; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human Coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Riedel, S., Crossing the species barrier: The threat of an avian influenza pandemic (2006) Baylor University Medical Center Proceedings, 19 (1), p. 16. , January, Baylor University Medical Center; Schmidt, A., Weber, M.H., Wolff, O., (2005) Coronaviruses With Special Emphasis on First Insights Concerning SARS, , Springer Science & Business Media; Segondy, M., Spécificité d’hôte des virus et passages inter-espèces (2010) Revue Francophone des Laboratoires, 2010 (423), pp. 37-42; Sheahan, T.P., Baric, R.S., (2010) SARS Coronavirus Pathogenesis and Therapeutic Treatment Design, pp. 195-230. , Springer Berlin Heidelberg; Siddell, S., Wege, H., Ter Meulen, V., The biology of Coronaviruses (1983) J. Gen. Virol., 64, pp. 761-776; Silva Júnior, W.S.D., Godoy-Matos, A.F.D., Kraemer-Aguiar, L.G., Dipeptidyl peptidase 4: A new link between diabetes mellitus and atherosclerosis? (2015) BioMed Res. Int., 2015; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J. Mol. Biol., 331 (5), pp. 991-1004; Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., SARS-beginning to understand a new virus (2003) Nat. Rev. Microbiol., 1 (3), pp. 209-218; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Prevalence and genetic diversity of Coronaviruses in bats from China (2006) J. Virol., 80 (15), pp. 7481-7490; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br. Med. J., 1 (5448), pp. 1467-1470; Tyrrell, D.A., Almeida, J.D., Cunningham, C.H., Dowdle, W.R., Hofstad, M.S., McIntosh, K., Coronaviridae (1975) Intervirology, 5 (1-2), pp. 76-82; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered Coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6); Verheije, M.H., Hagemeijer, M.C., Ulasli, M., Reggiori, F., Rottier, P.J., Masters, P.S., The Coronavirus nucleocapsid protein is dynamically associated with the replication transcription complexes (2010) J. Virol., 84 (21), pp. 11575-11579; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Evolutionary history of the closely related group 2 Coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine Coronavirus, and human Coronavirus OC43 (2006) J. Virol., 80 (14), pp. 7270-7274; (2017), http://www.who.int/medicines/ebola-treatment/WHO-list-of-top-emerging-diseases/en/, Available from; http://www.who.int/emergencies/mers-cov/en/, Available from; (2017) Middle East respiratory syndrome Coronavirus (MERS-CoV), , www.who.int/emergencies/mers-cov/en/, Available from; Wang, M., Jing, H.Q., Xu, H.F., Jiang, X.G., Kan, B., Liu, Q.Y., Surveillance on severe acute respiratory syndrome associated Coronavirus in animals at a live animal market of Guangzhou in 2004 (2005) Zhonghua liu xing bing xue za zhi=Zhonghua liuxingbingxue zazhi, 26 (2), pp. 84-87; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: Targets for vaccines and therapeutics (2016) Antiviral Res., 133, pp. 165-177; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., MERS-Cov virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8 (8), p. 12686; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome Coronavirus (2005) Microbiol. Mol. Biol. Rev.: MMBR, 69 (4), pp. 635-664; Widagdo, W., Begeman, L., Schipper, D., Van Run, P.R., Cunningham, A.A., Kley, N., Tissue distribution of the MERS-coronavirus receptor in bats (2017) Nat. Sci. Rep., 7; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med. (Maywood, N.J.), 234 (10), pp. 1117-1127; Woo, P.C., Lau, S.K., Lam, C.S., Tsang, A.K., Hui, S.W., Fan, R.Y., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal Coronavirus in Gammacoronavirus (2014) J. Virol., 88 (2), pp. 1318-1331; Woolhouse, M.E., Population biology of emerging and re-emerging pathogens (2002) Trends Microbiol., 10 (10), pp. s3-s7; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Middle East respiratory syndrome Coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Crystal structure of severe acute respiratory syndrome Coronavirus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 49414-49419; Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome Coronavirus papain-like protease (2014) J. Gen. Virol., 95 (3), pp. 614-626; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia (2012) New Engl. J. Med., 367 (19), pp. 1814-1820; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) The Lancet, 386 (9997), pp. 995-1007; Zuniga, S., Cruz, J.L., Sola, I., Mateos-Gomez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J. Virol., 84 (4), pp. 2169-2175",,,"Elsevier",,9780128194003; 9780128194010,,,"English","Emerg. and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Hum., Animal and Plant Pathogens",Book Chapter,"Final",,Scopus,2-s2.0-85082289685 "Choi S., Lee C.","57212113962;55700560700;","Functional characterization and proteomic analysis of porcine deltacoronavirus accessory protein NS7",2019,"Journal of Microbiology and Biotechnology","29","11",,"1817","1829",,,"10.4014/jmb.1908.08013","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075962315&doi=10.4014%2fjmb.1908.08013&partnerID=40&md5=6150d9d6b72801378a8ae493b25c203a","Animal Virology Laboratory, School of Life Sciences, BK21 PLUS KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea","Choi, S., Animal Virology Laboratory, School of Life Sciences, BK21 PLUS KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; Lee, C., Animal Virology Laboratory, School of Life Sciences, BK21 PLUS KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea","Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in neonatal piglets. Like other coronaviruses, PDCoV encodes at least three accessory or species-specific proteins; however, the biological roles of these proteins in PDCoV replication remain undetermined. As a first step toward understanding the biology of the PDCoV accessory proteins, we established a stable porcine cell line constitutively expressing the PDCoV NS7 protein in order to investigate the functional characteristics of NS7 for viral replication. Confocal microscopy and subcellular fractionation revealed that the NS7 protein was extensively distributed in the mitochondria. Proteomic analysis was then conducted to assess the expression dynamics of the host proteins in the PDCoV NS7-expressing cells. High-resolution two-dimensional gel electrophoresis initially identified 48 protein spots which were differentially expressed in the presence of NS7. Seven of these spots, including two up-regulated and five down-regulated protein spots, showed statistically significant alterations, and were selected for subsequent protein identification. The affected cellular proteins identified in this study were classified into functional groups involved in various cellular processes such as cytoskeleton networks and cell communication, metabolism, and protein biosynthesis. A substantial down-regulation of α-actinin-4 was confirmed in NS7-expressing and PDCoV-infected cells. These proteomic data will provide insights into the understanding of specific cellular responses to the accessory protein during PDCoV infection. Copyright© 2019 by The Korean Society for Microbiology and Biotechnology.","Accessory protein; ACTN4; Mitochondrial localization; NS7; PDCoV; Proteomics","alpha actinin 4; functional group; mitochondrial protein; NS7 protein; unclassified drug; viral protein; actinin; viral protein; animal cell; Article; cell communication; cell fractionation; cell metabolism; cellular distribution; confocal microscopy; controlled study; Coronavirinae; Coronavirus infection; cytoskeleton; down regulation; molecular dynamics; nonhuman; Porcine deltacoronavirus; Porcine deltacoronavirus infection; protein analysis; protein determination; protein expression; protein function; protein localization; protein synthesis; proteomics; two dimensional gel electrophoresis; upregulation; virus cell interaction; virus replication; animal; cell line; Coronaviridae; Coronaviridae infection; genetics; host pathogen interaction; metabolism; mitochondrion; physiology; pig; proteomics; swine disease; veterinary medicine; virology; Actinin; Animals; Cell Line; Coronaviridae; Coronaviridae Infections; Host-Pathogen Interactions; Mitochondria; Proteomics; Swine; Swine Diseases; Viral Regulatory and Accessory Proteins","Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Li, G., Chen, Q., Harmon, K.M., Yoon, K.J., Schwartz, K.J., Hoogland, M.J., Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announc, 2, pp. e00278-e00314; Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete genome sequence of strain SDCV/USA/Illinois121/2014, a porcine deltacoronavirus from the United States (2014) Genome Announc, 2, pp. e00218-e00314; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Chen, F., Zhu, Y., Wu, M., Ku, X., Yao, L., He, Q., Full-length genome characterization of Chinese porcine deltacoronavirus strain CH/SXD1/2015 (2015) Genome Announc, 3, pp. e01284-e01315; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) MBio, 6, p. e00064; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/ 2014 (2014) Genome Announc, 2, pp. e01191-e01214; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis., 2, pp. 757-759; Jang, G., Lee, K.K., Kim, S.H., Lee, C., Prevalence, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016 (2017) Transbound. Emerg. Dis., 64, pp. 1364-1370; de Groot, R.J., Baker, S.C., Bari, R., Enjuanes, L., Gorbalenya, A.E., Holme, K.V., Coronaviridae (2011) Virus Taxonomy: 9th Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ eds, Elsevier, Oxford; Lai, M.C., Perlman, S., Anderson, L.J., Coronaviridae (2007) Fields Virology, pp. 1305-1336. , Knipe DM, Howley PM, Griffin DE, Martin MA, Lamb RA, Roizman B, and Straus SE eds, 5th Ed. Lippincott Williams & Wilkins, Philadelphia, Pennsylvania; Fang, P., Fang, L., Liu, X., Hong, Y., Wang, Y., Dong, N., Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6 (2016) Virology, 499, pp. 170-177; Fang, P., Fang, L., Hong, Y., Liu, X., Dong, N., Ma, P., Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus (2017) J. Gen. Virol., 98, pp. 173-178; McBride, R., Fielding, B.C., The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis (2012) Viruses, 4, pp. 2902-2923; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res, 109, pp. 97-109; de Haan, C.A., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J. Virol., 79, pp. 14909-14922; Zhang, R., Wang, K., Ping, X., Yu, W., Qian, Z., Xiong, S., The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis (2015) J. Virol., 89, pp. 11383-11395; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e00717; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 2489-2495; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J. Virol., 88, pp. 4866-4876; Zeng, L.P., Gao, Y.T., Ge, X.Y., Zhang, Q., Peng, C., Yang, X.L., Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response (2016) J. Virol., 90, pp. 6573-6582; Lee, S., Lee, C., Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus (2015) Virus. Res., 208, pp. 136-145; Jang, G., Kim, S.H., Lee, Y.J., Kim, S., Lee, D.S., Lee, K.K., Isolation and characterization of a Korean porcine deltacoronavirus strain KNU16-07 (2018) J. Vet. Sci., 19, pp. 586-590; Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; Creixell, P., Schoof, E.M., Tan, C.S., Linding, R., Mutational properties of amino acid residues: Implications for evolvability of phosphorylatable residues (2012) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367, pp. 2584-2593; Lee, Y.J., Park, C.K., Nam, E., Kim, S.H., Lee, O.S., Lee, D., Generation of a porcine alveolar macrophage cell line for the growth of porcine reproductive and respiratory syndrome virus (2010) J. Virol. Methods, 163, pp. 410-415; Nam, E., Lee, C., Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection (2010) Vet. Microbiol., 144, pp. 41-50; Oh, J., Lee, C., Proteomic characterization of a novel structural protein ORF5a of porcine reproductive and respiratory syndrome virus (2012) Virus Res, 169, pp. 255-263; Lee, Y.J., Lee, C., Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway (2018) Virus Res, 253, pp. 112-123; Oakley, B.R., Kirsch, D.R., Morris, N.R., A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels (1980) Anal. Biochem., 105, pp. 361-363; Shevchenko, A., Wil, M., Vorm, O., Mann, M., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels (1996) Anal. Chem., 68, pp. 850-858; Fernandez, J., Gharahdaghi, F., Mische, S.M., Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) (1998) Electrophoresis, 19, pp. 1036-1045; Sagong, M., Lee, C., Porcine reproductive and respiratory syndrome virus nucleocapsid protein modulates interferon-β production by inhibiting IRF3 activation in immortalized porcine alveolar macrophages (2011) Arch. Virol., 156, pp. 2187-2195; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408; Zhang, H., Guo, X., Ge, X., Chen, Y., Sun, Q., Yang, H., Changes in the cellular proteins of pulmonary alveolar macrophage infected with porcine reproductive and respiratory syndrome virus by proteomics analysis (2009) J. Proteome. Res., 8, pp. 3091-3097; Alfonso, P., Rivera, J., Hernáez, B., Alonso, C., Escriban, J.M., Identification of cellular proteins modified in response to African swine fever virus infection by proteomics (2004) Proteomics, 4, pp. 2037-2046; Brasier, A.R., Spratt, H., Wu, Z., Boldogh, I., Zhang, Y., Garofalo, R.P., Nuclear heat shock response and novel nuclear domain 10 reorganization in respiratory syncytial virus-infected A549 cells identified by high-resolution two-dimensional gel electrophoresis (2004) J. Virol., 78, pp. 11461-11476; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J. Virol., 82, pp. 5279-5294; Ringrose, J.H., Jeeninga, R.E., Berkhout, B., Speijer, D., Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1 (2008) J. Virol., 82, pp. 4320-4330; Sagong, M., Lee, C., Differential cellular protein expression in continuous porcine alveolar macrophages regulated by the porcine reproductive and respiratory syndrome virus nucleocapsid protein (2010) Virus Res, 151, pp. 88-96; Zhang, J., Li, D., Zheng, Y., Cui, Y., Feng, K., Zhou, J., Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma in China: A SELDI-TOF-MS study (2008) Int. J. Clin. Exp. Pathol., 1, pp. 352-361; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Martínez, A.I., Pérez-Arellano, I., Pekkala, S., Barcelona, B., Cervera, J., Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency (2010) Mol. Genet. Metab., 101, pp. 311-323; Mignotte, B., Vayssiere, J.L., Mitochondria and apoptosis (1998) Eur. J. Biochem., 252, pp. 1-15; Winder, S.J., Ayscough, K.R., Actin-binding proteins (2005) J. Cell Sci., 118, pp. 651-654; An, H.T., Yoo, S., Ko, J., Α-actinin-4 induces the epithelial-to-mesenchymal transition and tumorigenesis via regulation of snail expression and β-catenin stabilization in cervical cancer (2016) Oncogene, 35, pp. 5893-5904; Agarwal, N., Adhikari, A.S., Iyer, S.V., Hekmatdoost, K., Welch, D.R., Iwakuma, T., MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4 (2013) Oncogene, 32, pp. 462-470; Aksenova, V., Turoverova, L., Khotin, M., Magnusson, K.E., Tulchinsky, E., Melino, G., Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB (2013) Oncotarget, 4, pp. 362-372; Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion (1998) J. Cell Biol., 140, pp. 1383-1393; Khurana, S., Chakraborty, S., Cheng, X., Su, Y.T., Kao, H.Y., The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells (2011) J. Biol. Chem., 286, pp. 1850-1859; Kumeta, M., Yoshimura, S.H., Harata, M., Takeyasu, K., Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4 (2010) J. Cell Sci., 123, pp. 1020-1030; Sharma, S., Mayank, A.K., Nailwal, H., Tripathi, S., Patel, J.R., Bowzard, J.B., Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein α-actinin-4 for viral replication (2014) FEBS J, 281, pp. 2899-2914; Zhao, X., Khurana, S., Charkraborty, S., Tian, Y., Sedor, J.R., Bruggman, L.A., Α-actinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and trans-repression in podocytes (2016) J. Biol. Chem., 292, pp. 1637-1647; Gross, S.R., Actin binding proteins: Their ups and downs in metastatic life (2013) Cell Adh. Migr., 7, pp. 199-213; Kemp, J.P., Jr., Brieher, W.M., The actin filament bundling protein α-actinin-4 actually suppresses actin stress fibers by permitting actin turnover (2018) J. Biol. Chem., 293, pp. 14520-14533; Burridge, K., Guilluy, C., Focal adhesions, stress fibers and mechanical tension (2016) Exp. Cell Res., 343, pp. 14-20; Pellegrin, S., Mellor, H., Actin stress fibres (2007) J. Cell Sci., 120, pp. 3491-3499; Berkova, Z., Crawford, S.E., Blutt, S.E., Morris, A.P., Estes, M.K., Expression of rotavirus NSP4 alters the actin network organization through the actin remodeling protein cofilin (2007) J. Virol., 81, pp. 3545-3553; Taylor, M.P., Koyuncu, O.O., Enquist, L.W., Subversion of the actin cytoskeleton during viral infection (2011) Nat. Rev. Microbiol., 9, pp. 427-439; Lv, X., Li, Z., Guan, J., Hu, S., Zhang, J., Lan, Y., Porcine hemagglutinating encephalomyelitis virus activation of the integrin α5β1-FAK-cofilin pathway causes cytoskeletal rearrangement to promote its invasion of N2a Cells (2019) J. Virol., 93, pp. e01736-e01818; Stradal, T.E.B., Schelhaas, M., Actin dynamics in host–pathogen interaction (2018) FEBS Lett, 592, pp. 3658-3669; Surjit, M., Liu, B., Jameel, S., Chow, V.T., Lal, S.K., The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors (2004) Biochem. J., 383, pp. 13-18; Lomert, E., Turoverova, L., Kriger, D., Aksenov, N.D., Nikotina, A.D., Petukhov, A., Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells (2018) Cell Cycle, 17, pp. 616-626; Huang, Q., Li, X., Huang, Z., Yu, F., Wang, X., Wang, S., ACTN4 promotes the proliferation, migration, metastasis of osteosarcoma and enhances its invasive ability through the NF-κB pathway (2019) Pathol. Oncol. Res.; Zhao, X., Hsu, K.S., Lim, J.H., Bruggeman, L.A., Kao, H.Y., Α-Actinin 4 potentiates nuclear factor κ-light-chain-enhancer of activated B-cell (NF-κB) activity in podocytes independent of its cytoplasmic actin binding function (2015) J. Biol. Chem., 290, pp. 338-349; Oeckinghaus, A., Ghosh, S., The NF-kappaB family of transcription factors and its regulation (2009) Cold Spring Harb. Perspect. Biol., 1, p. a000034; Tornatore, L., Thotakura, A.K., Bennett, J., Moretti, M., Franzoso, G., The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation (2012) Trends Cell Biol, 22, pp. 557-566","Lee, C.; Animal Virology Laboratory, School of Life Sciences, BK21 PLUS KNU Creative BioResearch Group, Kyungpook National UniversitySouth Korea; email: changhee@knu.ac.kr",,"Korean Society for Microbiology and Biotechnology",10177825,,JOMBE,"31546302","English","J. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85075962315 "Moutelikova R., Prodelalova J.","55442877600;6507197060;","First detection and characterisation of porcine hemagglutinating encephalomyelitis virus in the Czech Republic",2019,"Veterinarni Medicina","64","2",,"60","66",,,"10.17221/95/2018-VETMED","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063731253&doi=10.17221%2f95%2f2018-VETMED&partnerID=40&md5=df1cebed098c5eb7522091beb019d479","Department of Virology, Veterinary Research Institute, Brno, Czech Republic","Moutelikova, R., Department of Virology, Veterinary Research Institute, Brno, Czech Republic; Prodelalova, J., Department of Virology, Veterinary Research Institute, Brno, Czech Republic","Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system in piglets. The incidence of PHEV among pigs in many countries is rising, and the economic losses to the pig industry may be significant. Serological studies suggest that PHEV is spread worldwide. However, no surveillance has been carried out in the Czech Republic. In this study, eight pig farms were screened for the presence of members of the Coronaviridae family with the use of reverse transcription PCR. A collection of 123 faecal samples and 151 nasal swabs from domestic pigs were analysed. In PHEV-positive samples, almost the complete coding sequence of the nucleocapsid gene was amplified and the acquired sequences were compared to those of geographically dispersed PHEV strains; phylogenetic analyses were also performed. PHEV was present in 7.9% of nasal swabs taken from different age categories of pigs. No other swine coronaviruses were detected. The amino acid sequence of the Czech PHEV strains showed 95.8–98.1% similarity to other PHEV reference strains in GenBank. PHEV strains collected from animals on the same farm were identical; however, strains from different farms have only exhibited only 96.7–98.7% amino acid sequence identity. Our study demonstrates the presence of PHEV in pigs in the Czech Republic. The Czech PHEV strains were evolutionarily closest to the Belgium strain VW572. © 2019 Czech Academy of Agricultural Sciences. All rights reserved.","Genetic analysis; Nucleocapsid; PHEV; Pig; RT-PCR","agricultural land; amino acid sequence; animal experiment; animal tissue; article; Belgium; controlled study; Coronaviridae; Czech Republic; domestic pig; encephalitis virus; feces; GenBank; genetic analysis; identity; nonhuman; nose smear; phylogeny; reverse transcription polymerase chain reaction; virus nucleocapsid; virus strain","Cartwright, S.F., Lucas, M., Vomiting and wasting disease in piglets (1970) Veterinary Record, 86, pp. 278-280; Dong, B., Lu, H., Zhao, K., Liu, W., Gao, W., Lan, Y., Zhao, J., Gao, F., Identification and genetic characterization of porcine hemagglutinating encephalomyelitis virus from domestic piglets in China (2014) Archives of Virology, 159, pp. 2329-2337; Gao, W., Zhao, K., Zhao, C., Du, C., Ren, W., Song, D., Lu, H., Gao, F., Vomiting and wasting disease associated with Hemagglutinating En-cephalomyelitis Viruses infection in piglets in Jilin, China (2011) Virology Journal, 8; Greig, A.S., Mitchell, D., Corner, A.H., Bannister, G.L., Meads, E.B., Julian, R.J., A hemagglutinating virus producing encephalomyelitis in baby pigs (1962) Canadian Journal of Comparative Medicine and Veterinary Science, 26, pp. 49-56; Hirano, N., Ono, K., A serological survey of human coronavirus in pigs of the Tohoku District of Japan (1998) Ad-vancesinExperimentalMedicineandBiology440, pp. 491-494; Kim, L., Chang, K.O., Sestak, K., Parwani, A., Saif, L.J., Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs (2000) Journal of Veterinary Diagnostic Investigation, 12, pp. 385-388; Kimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences (1980) Journal of Molecular Evolution, 16, pp. 111-120; Kubota, S., Sasaki, O., Amimoto, K., Okada, N., Kitazima, T., Yasuhara, H., Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus (1999) Journal of Veterinary Medical Science, 61, pp. 827-830; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Molecular Biology and Evolution, 33, pp. 1870-1874; Lorbach, J.N., Wang, L., Nolting, J.M., Benjamin, M.G., Killian, M.L., Zhang, Y., Bowman, A.S., Porcine hemagglutinating encephalomyelitis virus and respiratory disease in exhibition swine, Michigan, USA, 2015 (2017) Emerging Infectious Diseases, 23, pp. 1168-1171; Masters, P.S., The molecular biology of coronaviruses (2006) Advances in Virus Research, 66, pp. 193-292; Mengeling, W.L., Incidence of antibody for hemagglutinating encephalomyelitis virus in serums from swine in the United States (1975) American Journal of Veterinary Research, 36, pp. 821-823; Moutelikova, R., Prodelalova, J., Toman, M., Coronaviruses in pig breeds in the Czech Republic (in Czech) (2016) Veterinarstvi, 66, pp. 764-767; Pensaert, M.B., Hemagglutinating encephalomyelitis virus (2006) Diseases of Swine, pp. 353-358. , Straw BL, Zimmerman JJ, D’Allaire DS, Taylor DJ eds: Blackwell Publishing; Pensaert, M.B., Callebaut, P.E., Characteristics of a coronavirus causing vomition and wasting in pigs (1974) Archiv Fur Die Gesamte Virusforschung, 44, pp. 35-50; Pensaert, M., Andries, K., Callebaut, P., A seroepizoo-tiologic study of vomiting and wasting disease virus in pigs (1980) Veterinary Quarterly, 2, pp. 142-148; Quiroga, M.A., Cappuccio, J., Pineyro, P., Basso, W., More, G., Kienast, M., Schonfeld, S., Perfumo, C.J., Hemagglutinating encephalomyelitis coronavirus infection in pigs, Argentina (2008) Emerging Infectious Diseases, 14, pp. 484-486; Rho, S., Moon, H.J., Park, S.J., Kim, H.K., Keum, H.O., Han, J.Y., Nguyen, G.V., Park, B.K., Detection and genetic analysis of porcine hemagglutinating encephalomyelitis virus in South Korea (2011) Virus Genes, 42, pp. 90-96; Sasseville, A.M., Boutin, M., Gelinas, A.M., Dea, S., Sequence of the 3'-terminal end (8.1 kb) of the genome of porcine haemagglutinating encephalomyelitis virus: Comparison with other haemagglutinating coronaviruses (2002) Journal of General Virology, 83, pp. 2411-2416; Smid, B., Valicek, L., Rodak, L., Kudrna, J., Musilova, J., Detection of porcine epidemic diarrhea virus using electron microscopy in the Czech Republic (1993) Veterinarni Medicina, 38, pp. 333-341; Tong, S., Conrardy, C., Ruone, S., Kuzmin, I.V., Guo, X., Tao, Y., Niezgoda, M., Rupprecht, C.E., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerging Infectious Diseases, 15, pp. 482-485; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) Journal of Virology, 80, pp. 7270-7274; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuena, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoro-navirus and Deltacoronavirus (2012) Journal of Virology, 86, pp. 3995-4008","Moutelikova, R.; Department of Virology, Veterinary Research InstituteCzech Republic; email: moutelikova@vri.cz",,"Czech Academy of Agricultural Sciences",03758427,,,,"English","Vet. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85063731253 "Choi J.Y., Oh J.O., Ahn J.Y., Choi H., Kim J.H., Seong H., Jeong S.J., Ku N.S., Yeom J.-S., Choi J.-P.","48761023600;55570756300;55241325500;55940398500;57202253968;57193717138;55545686800;39863085800;7004196941;8635780700;","Absence of neutralizing activity in serum 1 year after successful treatment with antivirals and recovery from mers in south korea",2019,"Clinical and Experimental Vaccine Research","8","1",,"86","88",,1,"10.7774/cevr.2019.8.1.86","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062679993&doi=10.7774%2fcevr.2019.8.1.86&partnerID=40&md5=0f26f87abc3d988dce80182d6ca0aafd","Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; AIDS Research Institute, Yonsei University College of MedicineSeoul, South Korea; Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea","Choi, J.Y., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; Oh, J.O., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; Ahn, J.Y., Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea; Choi, H., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; Kim, J.H., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; Seong, H., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; Jeong, S.J., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea, AIDS Research Institute, Yonsei University College of MedicineSeoul, South Korea; Ku, N.S., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea, AIDS Research Institute, Yonsei University College of MedicineSeoul, South Korea; Yeom, J.-S., Department of Internal Medicine, Yonsei University College of MedicineSeoul, South Korea; Choi, J.-P., Department of Internal Medicine, Seoul Medical Center, Seoul, South Korea","We evaluated the neutralizing activity in serum from three patients >1 year after recovery from Middle East respiratory syndrome (MERS) associated with mild pneumonia treated with antivirals during the MERS outbreak in South Korea at 2015. The neutralizing activity in serum was measured by pseudovirus inhibition assays. Three-fold diluted serum of subjects showed only 9.7%, 10.3%, and 2.2% reductions in relative light units. So, significant neutralizing activity was not demonstrated in any sera of three patients with mild pneumonia >1 year after being successfully treated with antiviral agents and recovering from MERS coronavirus infection. © Korean Vaccine Society.","Middle East respiratory syndrome coronavirus; Neutralizing antibodies; Serum","alpha2a interferon; antivirus agent; lopinavir plus ritonavir; ribavirin; adult; Article; case report; clinical article; controlled study; coughing; diarrhea; disease association; drug dose reduction; epidemic; female; fever; headache; human; jaundice; loading drug dose; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; myalgia; nasopharyngeal aspiration; patient transport; plasmid; pneumonia; protein modification; real time polymerase chain reaction; sore throat; South Korea; sputum; thorax radiography; treatment outcome; virus neutralization; Western blotting","Choi, J.Y., An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med J, 56, pp. 1174-1176; Chong, Y.P., Song, J.Y., Seo, Y.B., Choi, J.P., Shin, H.S., Rapid Response Team. Antiviral treatment guidelines for Middle East respiratory syndrome (2015) Infect Chemother, 47, pp. 212-222; Du, L., Zhao, G., Zhang, X., Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies (2010) Biochem Biophys Res Commun, 397, pp. 580-585; Zhao, G., Du, L., Ma, C., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol J, 10, p. 266; Wu, X., Mao, Q., Yao, X., Development and evaluation of a pseudovirus-luciferase assay for rapid and quantitative detection of neutralizing antibodies against enterovirus 71 (2013) Plos One, 8; Wu, L.P., Wang, N.C., Chang, Y.H., Duration of antibody responses after severe acute respiratory syndrome (2007) Emerg Infect Dis, 13, pp. 1562-1564; Payne, D.C., Iblan, I., Rha, B., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826; Drosten, C., Meyer, B., Muller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835","Choi, J.-P.; Department of Internal Medicine, Seoul Medical Center, 156 Sinnae-ro, South Korea; email: dasole@hanmail.net",,"Korean Vaccine Society",22873651,,,,"English","Clin. Exp. Vaccine Res.",Article,"Final",Open Access,Scopus,2-s2.0-85062679993 "Khataby K., Kasmi Y., Souiri A., Loutfi C., Ennaji M.M.","56781432800;57201065929;57215892859;6505669552;57214098820;","Molecular modeling of major structural protein genes of avian coronavirus: Infectious bronchitis virus mass h120 and italy02 strains",2019,"Emerging and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Related to Human, Animal and Environmental Pathogens",,,,"45","56",,,"10.1016/B978-0-12-814966-9.00004-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082462760&doi=10.1016%2fB978-0-12-814966-9.00004-4&partnerID=40&md5=438b336f72c831abb0f84131a381eb22","Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco; Society Biopharma, Rabat, Morocco","Khataby, K., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco, Society Biopharma, Rabat, Morocco; Kasmi, Y., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco; Souiri, A., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco; Loutfi, C., Society Biopharma, Rabat, Morocco; Ennaji, M.M., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco","In Morocco, the epidemiological situation of infectious bronchitis virus (IBV) is very complex, because of the antigenic diversity associated with the emergence of new serotypes/genotypes and variants. The IBV strains circulating in poultry farms are serotypes/genotypes Italy02 and Massachusetts (Mass) identified during 2010-14. The appearance of these variants hinders the prophylactic strategy carried out by the breeders of the Moroccan poultry farm. To solve this problem, we have opted for the rational design of candidate vaccines in order to study the structure of the three-dimensional (3D) S1 spicule protein of serotype Italy02 and Mass H120, through molecular modeling, using the I-TASSER server, then the COACH, and another Meta server to determine and predict the common immunogenic active sites between these two IBV strains circulating in Morocco. The obtained results showed that the two strains studied had identical spatial conformation of the S1 protein structure with a similarity percentage of 81% and an average stability of the modeled sequences. Thus both serotypes share active antigenic sites common in the hypervariable region, located at residues 229, 230, 232, 233, and 235, with a magnesium molecule association around the Alanine 280 region responsible for stimulating immunogenicity. The quality of the 3D conformation, the stability, and the percentage make it possible to have accessibility to the common predicted neutralizing epitopes. Based on these data, we can conclude that it is highly probable that the H120 vaccine strain confers cross-protection against a challenge with new strains Italy02 circulating in Morocco. © 2020 Elsevier Inc. All rights reserved.","Cellular response; Epitope; Infectious bronchitis virus; Modeling; Vaccine",,"Abd, E.R.S., El-Kenawy, A.A., Neumann, U., Herrler, G., Winter, C., Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus (2009) Avian Pathol., 38 (1), pp. 41-45; Berjanskii, M., Liang, Y., Zhou, J., Tang, P., Stothard, P., Zhou, Y., PROSESS: A protein structure evaluation suite and server (2010) Nucleic Acids Res., 38, pp. W633-W640; Bijlenga, G., Cook, J.K.A., Gelb, J., De Wit, J.J., Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: A review (2004) Avian Pathol, 33, pp. 550-557; Boursnell, M.E., Brown, T.D., Foulds, I.J., Green, P.F., Tomley, F.M., Binns, M.M., Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus (1987) J. Gen. Virol., 68, pp. 57-77; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J. Virol., 77 (16), pp. 9084-9089; Cavanagh, D., Nidovirales: A new order comprising Coronaviridae and Arterividae (1997) Arch. Virol, 142 (3), pp. 629-633; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol., 34 (6), pp. 439-448; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res, 38, pp. 281-297; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38 (2), pp. 281-297; Cavanagh, D., Davis, P.J., Darbyshire, J.H., Peters, R.W., Coronavirus IBV: Virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection (1986) J. Gen. Virol., 67 (7), pp. 1435-1442; Chothia, C., Lesk, A.M., The relation between the divergence of sequence and structure in proteins (1986) EMBO J, 4, pp. 823-826; Fellahi, S., Ducatez, M., El Harrak, M., Guerin, J.L., Touil, N., Sebbar, G., Prevalence and molecular characterization of avian infection bronchitis virus in poultry flocks in Morocco from 2010-2014 and the first report of Italy02 genotype in Africa (2015) Avian Pathol., 44, pp. 287-295; Ignjatovic, J., Sapats, S., Avianinfectiousbronchitis virus (2000) Rev. Sci. Tech, 19, pp. 493-508; Jackwood, M.W., Hilt, D.A., Callison, S.A., Lee, C.W., Plaza, H., Wade, E., Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus (2001) Avian Dis., 45 (2), pp. 366-372; Jones, R.C., Jordan, F.T., Persistence of virus in the tissues and development of the oviduct in the fowl following infection at day old with infectious bronchitis vims (1972) Res. Vet. Sci., 13, pp. 52-60; Koch, A.E., Polverini, P.J., Kunkel, S.L., Harlow, L.A., DiPietro, L.A., Elner, V.M., Strieter, R.M., Interleukin-8 as a macrophage-derived mediator of angiogenesis (1981) Science, 258 (5089), pp. 1798-1801; Lai, M.M., Brayton, P.R., Armen, R.C., Patton, C.D., Pugh, C., Stohlman, S.A., Mouse hepatitis virus A59: MRNA structure and genetic localization of the sequence divergence from hepatotropic strain MHV-3 (1981) J. Virol., 39 (3), pp. 823-834; Niesters, H.G., Kusters, J.G., Lenstra, J.A., Spaan, W.J., Horzined, M.C., Van der Zeijst, B.A., The neutralization epitopes on the spike protein of infectious bronchitis virus and their antigenic variation (1987) Adv. Exp. Med. Biol., 218, pp. 483-492; Piuzzi, M., (2010), Détermination de la structure de protéines à l’aide de données faiblement résolues (Thèse Biochimie). Université Pierre et Marie Curie, Paris VI, Français; Tam, M., Gómez, S., González-Gross, M., Marcos, A., Possible roles of magnesium on the immune system (2003) Eur. J. Clin. Nutr, 57, pp. 1193-1197; Zhang, Y., Cloning, expression and characterization of the human NOB1 gene (2005) Mol Biol Rep., 32 (3), pp. 185-189; Zou, N.L., Zhao, F.F., Wang, Y.P., Liu, P., Cao, S.J., Wen, X.T., Genetic analysis revealed LX4 genotype strains of avian infectious bronchitis virus became predominant in recent years in Sichuan area, China (2010) Virus Genes, 41 (2), pp. 202-209; Zou, N.L., Wang, F.F., Duan, Z., Xia, J., Wen, X., Yan, Q., Development and characterization of neutralizing monoclonal antibodies against the S1 subunit protein of QX-like avian infectious bronchitis virus strain Sczy3 (2015) Monoclon. Antib. Immunodiagn. Immunother., 34, pp. 17-24",,,"Elsevier",,9780128149669; 9780128149676,,,"English","Emerg. and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Relat. to Human, Animal and Environmental Pathogens",Book Chapter,"Final",,Scopus,2-s2.0-85082462760 "Khataby K., Kasmi Y., Souiri A., Loutfi C., Ennaji M.M.","56781432800;57201065929;57215892859;6505669552;57214098820;","Avian coronavirus: Case of infectious bronchitis virus pathogenesis, diagnostic approaches, and phylogenetic relationship among emerging strains in middle east and North Africa regions",2019,"Emerging and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens",,,,"729","744",,,"10.1016/B978-0-12-819400-3.00033-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082259136&doi=10.1016%2fB978-0-12-819400-3.00033-8&partnerID=40&md5=a04fd298f9d735829b1a16546e198ab0","Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco; Society Biopharma, Rabat, Morocco; Society of Veterinary ATLAS, Bouskoura, Morocco; Centre of Research Health and Biothechnology, University Hassan II of Casablanca, Casablanca, Morocco","Khataby, K., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco, Society Biopharma, Rabat, Morocco, Society of Veterinary ATLAS, Bouskoura, Morocco; Kasmi, Y., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco; Souiri, A., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco; Loutfi, C., Society Biopharma, Rabat, Morocco; Ennaji, M.M., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Casablanca, Morocco, Centre of Research Health and Biothechnology, University Hassan II of Casablanca, Casablanca, Morocco","Infectious bronchitis (IB) virus (IBV) is a very dynamic and evolving virus, causing severe diseases in poultry with significant economic consequences to the poultry industry worldwide, affecting chickens of all ages and possessing a major threat to the poultry industry. IBV is well studied worldwide; nevertheless, in Middle East and North Africa (MENA) regions, epidemiological and scientific data are poor and not updated. In spite of regular vaccination with Massachusetts (Mass) strain has been available to control IB for many decades in MENA regions, which it is most commonly used, the protection is not occurred. However, the continuity of the spread of IBV has shown the emergence of multiple variant strains due to the frequent point of mutations and recombination events in the S1 gene hypervariable regions. All the reported IBV variants circulate in the form of several serotypes/genotypes that can be partially or poorly neutralized by current vaccines. This emergence remains a problem for the poultry industry and vaccine manufacturers. Therefore the objective of this present chapter, which is reported for the first time, aims to establish phylogenic relationship among emerging strains in MENA regions. © 2020 Elsevier Inc. All rights reserved.","Hypervariable regions (HVR); Infectious bronchitis; Infectious bronchitis virus; Phylogenetic analysis; S1 gene",,"Alvarado, I., Villegas, P., Mossos, N., Jackwood, M., Molecular characterization of avian infectious bronchitis virus strains isolated in Colombia during 2003 (2005) Avian Dis., 49, pp. 494-499; Bochkov, Y.A., Batchenko, G.V., Shcherbakova, L.A., Borisov, A.V., Drygin, V.V., Molecular epizootiology of avian infectious bronchitis in Russia (2006) Avian Pathol., 35, pp. 379-393; Bourogâa, H., Miled, K., Gribâa, L., El Behi, I., Ghram, A., Characterization of new variants of avian infectious bronchitis virus in Tunisia (2009) Avian Dis., 53, pp. 426-433; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J. Virol., 77, pp. 9084-9089; Cavanagh, D., Nidovirales: A new order comprising Coronaviridae and Arteriviridae (1997) Arch. Virol., 142, pp. 629-633; Cavanagh, D., Gelb, J., Infectious bronchitis (2008) Diseases of Poultry, pp. 117-135. , Y.M. Saif., H.J. Barnes. J.R. Glisson., A.M. Fadly., L.R. Mcdougald., D.E. Swayne, Iowa State University Press Ames, IA; Cavanagh, D., Naqi, S.A., Infectious bronchitis (2003) Diseases of Poultry, pp. 101-119. , Y.M. Saif., 11th ed., Iowa State University Press Ames, IA; Chevenet, F., Brun, C., Banuls, A.L., Jacq, B., Chisten, R., TreeDyn: Towards dynamic graphics and annotations for analyses of trees (2006) BMC Bioinformatics., 7, p. 439; Colvero, L.P., Villarreal, L.Y., Torres, C.A., Brando, P.E., Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil (2015) Rev. Sci. Tech., 34 (3), pp. 993-999; Cook, J.K.A., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol., 41, pp. 239-250; Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Phylogeny.fr: Robust phylogenetic analysis for the non-specialist (2008) Nucleic Acids Res., 36, pp. W465-W469; Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797; Elias, I., Lagergren, J., Fast computation of distance estimators (2007) BMC Bioinformatics., 8, p. 89; Glahn, R.P., Wideman, R.F., Cowen, B.S., Order of exposure to high dietary calcium and Gray strain infectious bronchitis virus alters renal function and the incidence of urolithiasis (1989) Poult. Sci., 68, pp. 1193-1204; Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp., 41, pp. 95-98; Hitchner, S.B., Winterfield, R.W., Appleton, G.S., Infectious bronchitis virus types -incidence in the United States (1966) Avian Dis., 10, pp. 98-102; Ignjatovic, J., Galli, L., The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens (1994) Arch. Virol., 138 (12), pp. 117-134; Ignjatovic, J., Sapats, S., Avian infectious bronchitis virus (2000) Rev. Sci. Tech., 19, pp. 493-508; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis., 56, pp. 634-641; Khataby, K., Fellahi, S., Loutfi, C., Ennaji, M.M., Avian infectious bronchitis virus in Africa: A review (2016) Vet. Q., 36 (2), pp. 71-75; Khataby, K., Souiri, A., Kasmi, Y., Loutfi, C., Ennaji, M.M., Current situation, genetic relationship and control measures of infectious bronchitis virus variants circulating in African regions (2016) J. Basic Appl. Zool., 76, pp. 20-30; Koch, G., Hartog, L., Kant, A., Van Roozelaar, D.J., Antigenic domains on the peplomer protein of avian infectious bronchitis virus: Correlation with biological functions (1990) J. Gen. Virol., 71, pp. 1929-1935; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res., 48, pp. 1-100; Landman, W.J., Feberwee, A., Aerosol-induced Mycoplasma synoviae arthritis: The synergistic effect of infectious bronchitis virus infection (2004) Avian Pathol., 33, pp. 591-598; Li, M., Wang, X.Y., Wei, P., Chen, Q.Y., Wei, Z.J., Mo, M.L., Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi, China (2012) Arch. Virol., 157 (3), pp. 467-474; Liu, H.J., Lee, L.H., Shih, W.L., Lin, M.Y., Liao, M.H., Detection of infectious bronchitis virusby multiplex polymerase chain reaction and sequence analysis (2003) J. Virol. Methods, 109, pp. 31-37; Schalk, A.F., Hawn, M.C., An apparently new respiratory disease of baby chicks (1931) J. Amer. Vet. Med. Ass., 78, pp. 413-422; Ujike, M., Taguchi, F., Incorporation of spike and membrane glycoproteins into coronavirus virions (2015) Viruses, 7 (4), pp. 1700-1725",,,"Elsevier",,9780128194003; 9780128194010,,,"English","Emerg. and Reemerging Viral Pathogens: Volume 1: Fundamental and Basic Virology Aspects of Hum., Animal and Plant Pathogens",Book Chapter,"Final",,Scopus,2-s2.0-85082259136 "Marimuthu S.K., Nagarajan K., Perumal S.K., Palanisamy S., Subbiah L.","57197831432;57211611067;57211599819;16507231700;56514041900;","Insilico Alpha-Helical Structural Recognition of Temporin Antimicrobial Peptides and Its Interactions with Middle East Respiratory Syndrome-Coronavirus",2019,"International Journal of Peptide Research and Therapeutics",,,,"","",,,"10.1007/s10989-019-09951-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074573765&doi=10.1007%2fs10989-019-09951-y&partnerID=40&md5=48b1a2165ab5df8d0edcf7afdf0f272f","Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu 620024, India","Marimuthu, S.K., Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu 620024, India; Nagarajan, K., Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu 620024, India; Perumal, S.K., Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu 620024, India; Palanisamy, S., Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu 620024, India; Subbiah, L., Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus, Tiruchirappalli, Tamilnadu 620024, India","Many antimicrobial peptides (AMPs) have multiple antimicrobial immunity effects. One such class of peptides is temporins. Temporins are the smallest (AMPs) found in nature and are highly active against gram-positive bacteria. Nowadays, there was a rapid increase in the availability of the 3D structure of proteins in PDB (protein data bank). The conserved residues and 3D structural conformations of temporins (AMPs) were still unknown. The present study explores the sequence analysis, alpha-helical structural conformations of temporins. The sequence of temporins was deracinated from APD3 database, the three-dimensional structure was constructed by homology modeling studies. The sequence analysis results show that the conserved residues among the peptide sequences, the maximum of the sequences are 70% alike to each other. The secondary structure prediction results revealed that 99% of temporin (AMPs) exhibited in alpha-helical form. The 3D structure speculated using RAMPAGE exposes the alpha-helical conformation in all temporins (AMPs). The phylogenetic analysis reveals the evolutionary relationships of temporins (AMPs), which are branched into seven clusters. As a result, we identified a list of potential temporin AMPs which docked to the antiviral protein (MERS-CoV), it shows good protein-peptide binding. This computational approach may serve as a good model for the rationale design of temporin based antibiotics. © 2019, Springer Nature B.V.","Alpha helical; Amino acid composition; Phylogenetic tree; Protein-peptide docking; Structure prediction; Temporins",,"Ahmed, A., Siman-Tov, G., Hall, G., Human antimicrobial peptides as therapeutics for viral infections (2019) Viruses, 11, p. 704; Babicki, S., Arndt, D., Marcu, A., Heatmapper: web-enabled heat mapping for all (2016) Nucleic Acids Res, 44, pp. W147-W153; Bahar, A.A., Ren, D., Antimicrobial peptides (2013) Pharmaceuticals (Basel), 6, pp. 1543-1575; Batoni, G., Maisetta, G., Brancatisano, F.L., Use of antimicrobial peptides against microbial biofilms: advantages and limits (2011) Curr Med Chem, 18, pp. 256-279. , COI: 1:CAS:528:DC%2BC3MXkvVWrtL8%3D; Cho, A., (2012) Constructing Phylogenetic Trees Using Maximum Likelihood. Scripps Sr Theses; Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14, pp. 1188-1190; Du, L., Yang, Y., Zhou, Y., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin Ther Targets, 21, pp. 131-143; Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797; Fiser, A., Do, R.K.G., Šali, A., Modeling of loops in protein structures (2000) Protein Sci, 9, pp. 1753-1773; Hancock, R.E., Chapple, D.S., Peptide antibiotics (1999) Antimicrob Agents Chemother, 43, pp. 1317-1323. , COI: 1:CAS:528:DyaK1MXjs12nsrc%3D; Hancock, R.E.W., Brown, K.L., Mookherjee, N., Host defence peptides from invertebrates—emerging antimicrobial strategies (2006) Immunobiology, 211, pp. 315-322; van t Hof, W., Veerman, E.C.I., Helmerhorst, E.J., Amerongen, A.V.N., Antimicrobial peptides: properties and applicability (2001) Biol Chem, 382, pp. 597-619; Huang, Y., Huang, J., Chen, Y., Alpha-helical cationic antimicrobial peptides: relationships of structure and function (2010) Protein Cell, 1, pp. 143-152; Huang, Y., Niu, B., Gao, Y., CD-HIT suite: a web server for clustering and comparing biological sequences (2010) Bioinformatics, 26, pp. 680-682; Kozakov, D., Beglov, D., Bohnuud, T., How good is automated protein docking? (2013) Proteins Struct Funct Bioinforma, 81, pp. 2159-2166; Kozakov, D., Hall, D.R., Xia, B., The ClusPro web server for protein–protein docking (2017) Nat Protoc, 12, pp. 255-278; Kustanovich, I., Shalev, D.E., Mikhlin, M., Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives (2002) J Biol Chem, 277, pp. 16941-16951; Lee, D.G., Kim, H.N., Park, Y., Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 (2002) Biochim Biophys Acta, 1598, pp. 185-194. , COI: 1:CAS:528:DC%2BD38XmslKlsLc%3D; Letunic, I., Bork, P., Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees (2016) Nucleic Acids Res, 44, pp. W242-W245; Li, W., Godzik, A., Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences (2006) Bioinformatics, 22, pp. 1658-1659; Lovell, S.C., Davis, I.W., Arendall, W.B., Structure validation by Cα geometry: ϕ, ψ and Cβ deviation (2003) Proteins Struct Funct Bioinforma, 50, pp. 437-450; Malanovic, N., Lohner, K., Antimicrobial peptides targeting Gram-positive bacteria (2016) Pharmaceuticals, 9, p. 59; Marcocci, M.E., Amatore, D., Villa, S., The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection (2018) Antimicrob Agents Chemother, 62; Martí-Renom, M.A., Stuart, A.C., Fiser, A., Comparative protein structure modeling of genes and genomes (2000) Annu Rev Biophys Biomol Struct, 29, pp. 291-325; Matsuzaki, K., Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes (1999) Biochim Biophys Acta, 1462, pp. 1-10. , COI: 1:CAS:528:DyaK1MXnslymuro%3D; Melo, M.N., Ferre, R., Castanho, M.A.R.B., Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations (2009) Nat Rev Microbiol, 7, pp. 245-250; Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the middle east respiratory syndrome coronavirus (2014) Pathog Dis, 71, pp. 121-136; Mustafa, S., Balkhy, H., Gabere, M., Peptide-protein interaction studies of antimicrobial peptides targeting middle east respiratory syndrome coronavirus spike protein: an in silico approach (2019) Adv Bioinform, 2019, pp. 1-16; Roy, M., Lebeau, L., Chessa, C., Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and [K3]SHa to LL-37 and temporin-Tb against herpes simplex virus type 1 (2019) Viruses, 11, p. 77; Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J Mol Biol, 234, pp. 779-815; Sharma, A., Singla, D., Rashid, M., Raghava, G.P., Designing of peptides with desired half-life in intestine-like environment (2014) BMC bioinform, 15 (1), p. 282; Sharma, A., Gupta, P., Kumar, R., Bhardwaj, A., dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides (2016) Sci Rep, 6, p. 21839; Shen, Y., Maupetit, J., Derreumaux, P., Tufféry, P., Improved PEP-FOLD approach for peptide and miniprotein structure prediction (2014) J Chem Theory Comput, 10, pp. 4745-4758; Skalickova, S., Heger, Z., Krejcova, L., Perspective of use of antiviral peptides against influenza virus (2015) Viruses, 7, pp. 5428-5442. , COI: 1:CAS:528:DC%2BC28XhsVygtb%2FF; Steinegger, M., Söding, J., MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets (2017) Nat Biotechnol; Steiner, H., Andreu, D., Merrifield, R.B., Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects (1988) Biochim Biophys Acta, 939, pp. 260-266. , COI: 1:CAS:528:DyaL1cXktVGju7Y%3D; Tamura, K., Stecher, G., Peterson, D., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Thevenet, P., Shen, Y., Maupetit, J., PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides (2012) Nucleic Acids Res, 40, pp. W288-W293; Vajda, S., Yueh, C., Beglov, D., New additions to the ClusPro server motivated by CAPRI (2017) Proteins Struct Funct Bioinform, 85, pp. 435-444; Wang, Z., Wang, G., APD: the antimicrobial peptide database (2004) Nucleic Acids Res, 32, pp. 590D-592; Wang, G., Li, X., Wang, Z., APD2: the updated antimicrobial peptide database and its application in peptide design (2009) Nucleic Acids Res, 37, pp. D933-D937; Wang, G., Li, X., Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education (2016) Nucleic Acids Res, 44, pp. D1087-D1093; Webb, B., Sali, A., Comparative protein structure modeling using MODELLER (2016) Curr Protoc Protein Sci, 86, pp. 2.9.1-2.9.37; Yeaman, M.R., Yount, N.Y., Mechanisms of antimicrobial peptide action and resistance (2003) Pharmacol Rev, 55, pp. 27-55; Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415, pp. 389-395; Zelezetsky, I., Tossi, A., Alpha-helical antimicrobial peptides—using a sequence template to guide structure—activity relationship studies (2006) Biochim Biophys Acta, 1758, pp. 1436-1449; Zimmermann, L., Stephens, A., Nam, S.-Z., A completely reimplemented MPI bioinformatics toolkit with a new hhpred server at its core (2018) J Mol Biol, 430, pp. 2237-2243","Subbiah, L.; Department of Pharmaceutical Technology, University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) CampusIndia; email: lathasuba2010@gmail.com",,"Springer Netherlands",15733149,,IJPRF,,"English","Int. J. Pept. Res. Ther.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85074573765 "Hakawi A., Rose E.B., Biggs H.M., Lu X., Mohammed M., Abdalla O., Abedi G.R., Alsharef A.A., Alamri A.A., Bereagesh S.A., Al Dosari K.M., Ashehri S.A., Fakhouri W.G., Alzaid S.Z., Lindstrom S., Gerber S.I., Asiri A., Jokhdar H., Watson J.T.","8208965900;57200296801;46460986500;57216109714;56453979700;57191346377;55887217800;57191347075;57210639058;57205248704;57211327036;57211327321;57211326497;57211327081;35582139100;56656063700;36607531400;6507147807;55374101200;","Middle East respiratory syndrome coronavirus, Saudi Arabia, 2017-2018",2019,"Emerging Infectious Diseases","25","11",,"2149","2151",,,"10.3201/eid2511.190726","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073483587&doi=10.3201%2feid2511.190726&partnerID=40&md5=016a34184051a382453c799aebd7a46e","Ministry of Health, Riyadh, Saudi Arabia; Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States","Hakawi, A., Ministry of Health, Riyadh, Saudi Arabia; Rose, E.B., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States; Biggs, H.M., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States; Lu, X., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States; Mohammed, M., Ministry of Health, Riyadh, Saudi Arabia; Abdalla, O., Ministry of Health, Riyadh, Saudi Arabia; Abedi, G.R., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States; Alsharef, A.A., Ministry of Health, Riyadh, Saudi Arabia; Alamri, A.A., Ministry of Health, Riyadh, Saudi Arabia; Bereagesh, S.A., Ministry of Health, Riyadh, Saudi Arabia; Al Dosari, K.M., Ministry of Health, Riyadh, Saudi Arabia; Ashehri, S.A., Ministry of Health, Riyadh, Saudi Arabia; Fakhouri, W.G., Ministry of Health, Riyadh, Saudi Arabia; Alzaid, S.Z., Ministry of Health, Riyadh, Saudi Arabia; Lindstrom, S., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States; Gerber, S.I., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States; Asiri, A., Ministry of Health, Riyadh, Saudi Arabia; Jokhdar, H., Ministry of Health, Riyadh, Saudi Arabia; Watson, J.T., Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, Atlanta, GA 30329-4027, United States",[No abstract available],,"adolescent; adult; aged; camel; child; cladistics; communicable disease; controlled study; diabetes mellitus; disease control; female; gene deletion; gene sequence; geographic origin; health care facility; high risk behavior; human; hypertension; Letter; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nucleotide sequence; nucleotide sequence; open reading frame; phylogeny; questionnaire; Saudi Arabia; school child; virus characterization; whole genome sequencing","Alanazi, K.H., Killerby, M.E., Biggs, H.M., Abedi, G.R., Jokhdar, H., Alsharef, A.A., Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia, 2017 (2019) Infect Control Hosp Epidemiol, 40, pp. 79-88. , https://doi.org/10.1017/ice.2018.290; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854. , https://doi.org/10.1056/NEJMoa1408636, 2014; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835. , https://doi.org/10.1056/NEJMoa1405858; Alhakeem, R.F., Midgley, C.M., Assiri, A.M., Alessa, M., Al Hawaj, H., Saeed, A.B., Exposures among MERS case-patients, Saudi Arabia, January-February 2016 (2016) Emerg Infect Dis, 22, pp. 2020-2022. , https://doi.org/10.3201/eid2211.161042; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1-August 31, 2015 (2016) Open Forum Infect Dis, 3, p. ofw165. , https://doi.org/10.1093/ofid/ofw165; (2019) MERS Situation Update, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-january-2019.html, Cairo (Egypt): Eastern Mediterranean Regional Office (EMRO; cited 2019 Feb 26; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55. , https://doi.org/10.3201/eid2201.151340; (2018) Laboratory Testing for Middle East Respiratory Syndrome Coronavirus: Interim Guidance, , https://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing, cited 2019 Feb 26; Assiri, A.M., Midgley, C.M., Abedi, G.R., Bin Saeed, A., Almasri, M.M., Lu, X., Epidemiology of a novel recombinant Middle East respiratory syndrome coronavirus in humans in Saudi Arabia (2016) J Infect Dis, 214, pp. 712-721. , https://doi.org/10.1093/infdis/jiw236; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Saudi Arabia, , https://www.who.int/csr/don/03-october-2018-merssaudi-arabia, cited 2019 Apr 22","Rose, E.B.; Centers for Disease Control and Prevention, Mailstop A3-4, 1600 Clifton Road NE, United States; email: nqx4@cdc.gov",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31430248","English","Emerg. Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85073483587 "Sikkema R.S., Farag E.A.B.A., Islam M., Atta M., Reusken C.B.E.M., Al-Hajri M.M., Koopmans M.P.G.","25923062900;55963332900;57214493887;14012778400;6602366009;57052928400;7006736989;","Corrigendum: Global status of middle east respiratory syndrome coronavirus in dromedary camels: A systematic review (Epidemiology and Infection (2019) 147 (e84) DOI: 10.1017/S095026881800345X)",2019,"Epidemiology and Infection","147",, e198,"","",,,"10.1017/S0950268819000669","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070833515&doi=10.1017%2fS0950268819000669&partnerID=40&md5=cf179df118553467d8bb99bedda7b1de",,"Sikkema, R.S.; Farag, E.A.B.A.; Islam, M.; Atta, M.; Reusken, C.B.E.M.; Al-Hajri, M.M.; Koopmans, M.P.G.","Due to an oversight during the final editing of the manuscript, there has been a shift in the references of table 1. The editorial team apologises for this mistake. – Azhar et al. [66] should be [67] – Memish et al. [67] should be [68] – Hemida et al. [68] should be [69] – Nowotny et al. [69] should be [70] – Raj et al. [70] should be [71] – Al Hammadi et al. [71] should be [72] – Chu et al. [72] should be [73] – Yusof et al. [73] should be [74] – Al Salihi et al. [74] should be [75] – Munyua et al. [75] should be [76] – Li et al. [76] should be [77] – Harrath et al. [77] should be [78] – Kasem et al. [78] should be [79] Additionally, table 1 cites Crameri et al [1] but should have cited Crameri et al. [2], which was not present elsewhere in the paper. © The Author(s) 2019.",,"erratum; error",,,,"Cambridge University Press",09502688,,EPINE,"31364519","English","Epidemiol. Infect.",Erratum,"Final",Open Access,Scopus,2-s2.0-85070833515 "De Castro A., Abu-Hishmeh M., El Husseini I., Paul L.","57210202506;57191745924;57210214054;57210206910;","Haemophilus parainfluenzae endocarditis with multiple cerebral emboli in a pregnant woman with coronavirus",2019,"IDCases","18",, e00593,"","",,,"10.1016/j.idcr.2019.e00593","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069895513&doi=10.1016%2fj.idcr.2019.e00593&partnerID=40&md5=203cdf7bb2a27d92772e708abfe17fd4","Department of Internal Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, United States; Department of Internal Medicine, Division of Pulmonary and Critical Care, Westchester Medical Center, New York Medical College, Valhalla, NY, United States; Department of Internal Medicine, Division of Pulmonary and Critical Care, University Hospital, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, United States","De Castro, A., Department of Internal Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, United States; Abu-Hishmeh, M., Department of Internal Medicine, Division of Pulmonary and Critical Care, Westchester Medical Center, New York Medical College, Valhalla, NY, United States; El Husseini, I., Department of Internal Medicine, Division of Pulmonary and Critical Care, University Hospital, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, United States; Paul, L., Department of Internal Medicine, Division of Pulmonary and Critical Care, Westchester Medical Center, New York Medical College, Valhalla, NY, United States",[No abstract available],,"aciclovir; ampicillin; cefepime; ceftriaxone; oseltamivir; vancomycin; adult; Article; autoimmune thyroiditis; brain embolism; case report; cesarean section; clinical article; computer assisted tomography; confusion; Coronavirinae; Coronavirus infection; drug dose reduction; drug withdrawal; encephalitis; endocarditis; female; fever; foramen magnum; Haemophilus parainfluenzae; headache; human; hyperreflexia; leukocyte count; lumbar puncture; lung congestion; lung edema; meningitis; mitral valve regurgitation; mitral valve repair; multiplex polymerase chain reaction; nuclear magnetic resonance imaging; platelet count; pregnant woman; priority journal; respiratory distress; thorax radiography; transthoracic echocardiography","Selton-Suty, C., Ce´lard, M., Le Moing, V., Doco-Lecompte, T., Chirouze, C., on behalf of the AEPEI Study Group, Preeminence of staphylococcusaureus in infective endocarditis: a 1-year population-based survey (2012) Clin Infect Dis, 54, pp. 1230-1239; Ferreiros, E., Nacinovich, F., Casabé, J.H., Modenesi, J.C., Swieszkowski, S., Cortes, C., EIRA-2 Investigators. Epidemiologic, clinical, and microbiologic profileof infective endocarditis in Argentina: a national survey. The Endocarditis Infecciosa en la Repu´blicamArgentina-2 (EIRA-2) Study (2006) Am Heart J, 151, pp. 545-552; Tleyjeh, I.M., Steckelberg, J.M., Murad, H.S., Anavekar, N.S., Ghomrawi, H.M., Mirzoyev, Z., Temporal trends in infective endocarditis: a population-based study in Olmsted County, Minnesota (2005) JAMA, 293, pp. 3022-3028; Dickerman, S.A., Abrutyn, E., Barsic, B., Bouza, E., Cecchi, E., Moreno, A., The relationship between the initiation of antimicrobial therapy and the incidence of stroke in infective endocarditis: an analysis from the ICE Prospective Cohort Study (ICE-PCS) (2007) Am Heart J, 154, pp. 1086-1094; Steckelberg, J.M., Murphy, J.G., Ballard, D., Bailey, K., Tajik, A.J., Taliercio, C.P., Emboli in infective endocarditis: theprognostic value of echocardiography (1991) Ann Intern Med, 114, pp. 635-640; Vilacosta, I., Graupner, C., San Roman, J.A., Sarria, C., Ronderos, R., Fernandez, C., Risk of embolization after institution of antibiotic therapy for infective endocarditis (2002) J Am Coll Cardiol, 39, pp. 1489-1495; Darras-Joly, C., Lortholary, O., Mainardi, J.L., Etienne, J., Guillevin, L., Acar, J., Haemophilus endocarditis: report of 42 cases in adults and review (1997) Clin Infect Dis, 24, pp. 1087-1094; Chambers, S.T., Murdoch, D., Morris, A., Holland, D., Pappas, P., Almela, M., HACEK infective endocarditis: characteristics and outcomes from a large, multinational cohort (2013) PLoS One, 8; Baddour, L.M., Wilson, W.R., Bayer, A.S., Fowler, V.G., Jr, Tleyjeh, I.M., Rybak, M.J., Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association (2015) Circulation, 132 (15), pp. 1435-1486; Bai, A.D., Steinberg, M., Showler, A., Burry, L., Bhatia, R.S., Tomlinson, G.A., Diagnostic accuracy of transthoracic echocardiography for infective endocarditis findings using transesophageal echocardiography as the reference standard: a meta-analysis (2017) J Am Soc Echocardiogr, 30 (7). , 639-646.e8; Rohmann, S., Erbel, R., Darius, H., Görge, G., Makowski, T., Zotz, R., Prediction of rapid versus prolonged healing of infective endocarditis by monitoring vegetation size (1991) J Am Soc Echocardiogr, 4, pp. 465-474; Heiro, M., Nikoskelainen, J., Engblom, E., Kotilainen, E., Marttila, R., Kotilainen, P., Neurologic manifestations of infective endocarditis: a 17-year experience in a teaching hospital in Finland (2000) Arch Intern Med, 160, pp. 2781-2787; Salgado, A.V., Central nervous system complications of infective endocarditis (1991) Stroke, 22, pp. 1461-1463; Snygg-Martin, U., Gustafsson, L., Rosngren, L., Alsiö, A., Ackerholm, P., Andersson, R., Cerebrovascular complications in patients with left-sided infective endocarditis are common: a prospective study using magnetic resonance imaging and neurochemical brain damage markers (2008) Clin Infect Dis, 47, pp. 23-30; Corral, I., Martin-Davila, P., Fortun, J., Navas, E., Centella, T., Moya, J., Trends in neurological complications of endocarditis (2007) J Neurol, 254, pp. 1253-1259","De Castro, A.; Department of Internal Medicine, Westchester Medical Center, New York Medical CollegeUnited States; email: Alicia.decastro@wmchealth.org",,"Elsevier Ltd",22142509,,,,"English","IDCases",Article,"Final",Open Access,Scopus,2-s2.0-85069895513 "Mustafa S., Balkhy H., Gabere M.","57195490754;6701797249;35174624800;","Peptide-Protein Interaction Studies of Antimicrobial Peptides Targeting Middle East Respiratory Syndrome Coronavirus Spike Protein: An In Silico Approach",2019,"Advances in Bioinformatics","2019",, 6815105,"","",,1,"10.1155/2019/6815105","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069050083&doi=10.1155%2f2019%2f6815105&partnerID=40&md5=7fc507b7f8fea5a0ad48a55c3d5e64ee","Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Infection Prevention and Control Department, Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia","Mustafa, S., Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Balkhy, H., Infection Prevention and Control Department, Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Gabere, M., Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia","There is no effective therapeutic or vaccine for Middle East Respiratory Syndrome and this study attempts to find therapy using peptide by establishing a basis for the peptide-protein interactions through in silico docking studies for the spike protein of MERS-CoV. The antimicrobial peptides (AMPs) were retrieved from the antimicrobial peptide database (APD3) and shortlisted based on certain important physicochemical properties. The binding mode of the shortlisted peptides was measured based on the number of clusters which forms in a protein-peptide docking using Piper. As a result, we identified a list of putative AMPs which binds to the spike protein of MERS-CoV, which may be crucial in providing the inhibitory action. It is observed that seven putative peptides have good binding score based on cluster size cutoff of 208. We conclude that seven peptides, namely, AP00225, AP00180, AP00549, AP00744, AP00729, AP00764, and AP00223, could possibly have binding with the active site of the MERS-CoV spike protein. These seven AMPs could serve as a therapeutic option for MERS and enhance its treatment outcome. © 2019 Sabeena Mustafa et al.",,,"Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the middle east respiratory syndrome coronavirus (2014) Pathogens and Disease, 71 (2), pp. 121-136; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle east respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir susanna lau (2016) Virology Journal, 13 (1); Melnik, L.I., Garry, R.F., Morris, C.A., Peptide inhibition of human cytomegalovirus infection (2011) Virology Journal, 8; Safety Study of flufirvitide-3 Nasal Spray in Healthy Subjects, , https://clinicaltrials.gov/ct2/show/NCT01313962?term=Flufirvitide; Koehler, J.W., Smith, J.M., Ripoll, D.R., A fusion-inhibiting peptide against rift valley fever virus inhibits multiple, diverse viruses (2013) PLOS Neglected Tropical Diseases, 7 (9), pp. 1-11; Hrobowski, Y.M., Garry, R.F., Michael, S.F., Peptide inhibitors of dengue virus and west nile virus infectivity (2005) Virology Journal, 2 (1); Sainz, B., Mossel, E.C., Gallaher, W.R., Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein (2006) Virus Research, 120 (1-2), pp. 146-155; Badani, H., Garry, R.F., Wimley, W.C., Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity (2014) Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838 (9), pp. 2180-2197; Chia, T.-J., Wu, Y.-C., Chen, J.-Y., Chi, S.-C., Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus (2010) Fish and Shellfish Immunology, 28 (3), pp. 434-439; Lu, L., Liu, Q., Zhu, Y., Structure-based discovery of middle east respiratory syndrome coronavirus fusion inhibitor (2014) Nature Communications, 5; Channappanavar, R., Lu, L., Xia, S., Protective effect of intranasal regimens containing peptidic middle east respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) The Journal of Infectious Diseases, 212 (12), pp. 1894-1903; Gao, J., Lu, G., Qi, J., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the s protein of middle east respiratory syndrome coronavirus (2013) Journal of Virology, 87 (24), pp. 13134-13140; Zhao, H., Zhou, J., Zhang, K., A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses (2016) Scientific Reports, 6; Du, L., Yang, Y., Zhou, Y., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opinion on Therapeutic Targets, 21 (2), pp. 131-143; Wang, G., Li, X., Wang, Z., APD3: The antimicrobial peptide database as a tool for research and education (2016) Nucleic Acids Research, 44 (D1), pp. D1087-D1093; Ciemny, M., Kurcinski, M., Kamel, K., Protein-peptide docking: Opportunities and challenges (2018) Drug Discovery Therapy, 23 (8), pp. 1530-1537; Hoojghan, A.V., Application of Graphical Models in Proteinprotein Interactions and Dynamics, , [Ph.D. thesis], University of Massachusetts Boston; Zhao, F., Zeng, H., Li, X., Complexcontact: A web server for inter-protein contact prediction using deep learning (2018) Nucleic Acids Research, 46 (W1), pp. W432-W437; Valencia, A., Ezkurdia, I., Bartoli, L., Tress, M.L., Fariselli, P., Casadio, R., Progress and challenges in predicting proteinprotein interaction sites (2009) Briefings in Bioinformatics, 10 (3), pp. 233-246; Berman, H.M., Westbrook, J., Feng, Z., The protein data bank (2000) Nucleic Acids Research, 28 (1), pp. 235-242; Wang, G., Natural antimicrobial peptides as promising anti-HIV candidates (2012) Current Topics in Peptide and Protein Research, 13, pp. 93-110; Roy, A., Kucukural, A., Zhang, Y., I-TASSER: A unified platform for automated protein structure and function prediction (2010) Nature Protocols, 5 (4), pp. 725-738; Lovell, S.C., Davis, I.W., Arendall, W.B., Structure validation by cα geometry: φ, ψ and cβ deviation (2003) Proteins: Structure, Function, and Bioinformatics, 50 (3), pp. 437-450; Chuang, G., Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S., DARS (decoys as the reference state) potentials for proteinprotein docking (2008) Biophysical Journal, 95 (9), pp. 4217-4227; Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S., PIPER: An FFT-based protein docking program with pairwise potentials (2006) Proteins: Structure, Function, and Genetics, 65 (2), pp. 392-406; Kozakov, D., Hall, D.R., Xia, B., The clus pro web server for protein-protein docking (2017) Nature Protocols, 12 (2), pp. 255-278; Tina, K.G., Bhadra, R., Srinivasan, N., PIC: Protein interactions calculator (2007) Nucleic Acids Research, 35 (2), pp. W473-W476; Adedeji, A.O., Singh, K., Kassim, A., Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and middle east respiratory syndrome coronaviruses (2014) Antimicrobial Agents and Chemotherapy, 58 (8), pp. 4894-4898; Teissier, E., Penin, F., Pécheur, E.-I., Targeting cell entry of enveloped viruses as an antiviral strategy (2011) Molecules, 16 (1), pp. 221-250; Ramachandran, G.N., Ramakrishnan, C., Sasisekharan, V., Stereochemistry of polypeptide chain configurations (1963) Journal of Molecular Biology, 7, pp. 95-99; Rothan, H.A., Mohamed, Z., Suhaeb, A.M., Rahman, N.A., Yusof, R., Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: High yield production of the biologically active recombinant plectasin peptide (2013) OMICS: A Journal of Integrative Biology, 17 (11), pp. 560-567; Haspel, N., Jagodzinski, F., (2017) Methods for Detecting Critical Residues in Proteins, , Springer, New York, NY, USA; Eisenhauer, P.B., Harwig, S.S.L., Szklarek, D., Ganz, T., Selsted, M.E., Lehrer, R.I., Purification and antimicrobial properties of three defensins fromrat neutrophils (1989) Infection and Immunity, 57 (7), pp. 2021-2027; Dugan, A.S., Maginnis, M.S., Jordan, J.A., Human α-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells (2008) The Journal of Biological Chemistry, 283 (45), pp. 31125-31132; Milona, P., Townes, C.L., Bevan, R.M., Hall, J., The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against salmonella serovars (2007) Biochemical and Biophysical Research Communications, 356 (1), pp. 169-174; Gould, A., Ji, Y., Aboye, T.L., Camarero, J.A., Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery (2011) Current Pharmaceutical Design, 17 (38), pp. 4294-4307; Shi, D., Hou, X., Wang, L., Two novel dermaseptin-like antimicrobial peptides with anticancer activities from the skin secretion of pachymedusa dacnicolor (2016) Toxins, 8 (5); Iijima, N., Tanimoto, N., Emoto, Y., Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, chrysophrys major (2003) European Journal of Biochemistry, 270 (4), pp. 675-686; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for middle east respiratory syndrome (MERS): A review (2018) Journal of Infection and Public Health, 11 (1), pp. 9-17","Gabere, M.; Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health SciencesSaudi Arabia; email: mgabere@gmail.com",,"Hindawi Limited",16878027,,,,"English","Adv. Bioinformatics",Article,"Final",Open Access,Scopus,2-s2.0-85069050083 "Pusterla N., James K., Mapes S., Bain F.","7005591152;57193252040;6603127432;6603560251;","Frequency of molecular detection of equine coronavirus in faeces and nasal secretions in 277 horses with acute onset of fever",2019,"Veterinary Record","184","12",,"385","",,1,"10.1136/vr.104919","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062647376&doi=10.1136%2fvr.104919&partnerID=40&md5=614f9e5ce0dc41a87d6aa44be560370f","Department of Medicine and Epidemiology, University of California, Davis, CA, United States; Merck Animal Health, Wakefield, VA, United States","Pusterla, N., Department of Medicine and Epidemiology, University of California, Davis, CA, United States; James, K., Department of Medicine and Epidemiology, University of California, Davis, CA, United States; Mapes, S., Department of Medicine and Epidemiology, University of California, Davis, CA, United States; Bain, F., Merck Animal Health, Wakefield, VA, United States","Context Due to the inconsistent development of enteric signs associated with ECoV infection in adult horses, many practitioners collect nasal secretions rather than feces for the molecular diagnostic work-up of such horses. Main conclusion ECoV infection should be considered in horses presenting with acute onset of fever, especially when nasal discharge is absent as one of the cardinal clinical sign. Approach A total of 277 adult horses with acute onset of fever were enrolled in this study. Feces were tested for ECoV and nasal secretions for common respiratory pathogens (equine herpesvirus (EHV)-1, EHV-4, equine influenza virus (EIV), equine rhinitis viruses (ERVs) and Streptococcus equi ss. equi) and ECoV by qPCR. Each submission was accompanied by a questionnaire requesting information pertaining to signalment, use, recent transportation, number of affected horses on the premise and presence of clinical signs at the time of sample collection. Results The total number of horses testing qPCR-positive for ECoV in feces was 20 (7.2%), 4 of which also tested qPCR-positive for ECoV in nasal secretions. In the same population 9.0% of horses tested qPCR-positive for EHV-4, 6.1% for EIV, 4.3% for Streptococcus equi ss. equi, 3.2% for ERVs and 0.7% for EHV-1. Draft horses, pleasure use, multiple horses affected on a premise and lack of nasal discharge were significantly associated with ECoV qPCR-positive horses. Interpretation The present study results showed that 7.2% of horses with acute onset of fever tested qPCR-positive for ECoV in feces, highlighting the importance of testing such horses for ECoV in feces. The various prevalence factors associated with ECoV qPCR-positive status likely relate to the high infectious nature of ECoV and breed-specific differences in management and husbandry practices. Significance of findings ECoV infection should be suspected and tested for in horses presenting with acute onset of fever, lethargy and anorexia with no respiratory signs. A two-step approach should be consider in which respiratory secretions and feces should be collected from such horses and submitted to a diagnostic laboratory. If the respiratory secretions test negative by qPCR for a panel of respiratory pathogens, feces already submitted to the laboratory should be tested for ECoV. © British Veterinary Association 2019. No commercial re-use. See rights and permissions. Published by BMJ.","Equine coronavirus; Feces; Fever; QPCR","acute disease; adult; agriculture; anorexia; Article; clinical feature; Coronavirinae; Coronavirus infection; disease association; Equid herpesvirus 1; Equid herpesvirus 4; equine coronavirus; equine rhinitis virus; feces; female; fever; horse; Influenza virus; lethargy; male; molecular diagnosis; nonhuman; nose secretion; patient transport; polymerase chain reaction; prevalence; questionnaire; Streptococcus equi; virus detection","Oue, Y., Ishihara, R., Edamatsu, H., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet Microbiol, 150, pp. 41-48; Oue, Y., Morita, Y., Kondo, T., Epidemic of equine coronavirus at obihiro racecourse, hokkaido, Japan in 2012 (2013) J Vet Med Sci, 75, pp. 1261-1265; Pusterla, N., Mapes, S., Wademan, C., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet Microbiol, 162, pp. 228-231; Miszczak, F., Tesson, V., Kin, N., First detection of equine coronavirus (ECoV) in Europe (2014) Vet Microbiol, 171, pp. 206-209; Fielding, C.L., Higgins, J.K., Higgins, J.C., Disease associated with equine coronavirus infection and high case fatality rate (2015) J Vet Intern Med, 29, pp. 307-310; Pusterla, N., Vin, R., Leutenegger, C., Equine coronavirus: An emerging enteric virus of adult horses (2016) Equine Vet Educ, 28, pp. 216-223; Pusterla, N., Holzenkaempfer, N., Mapes, S., Prevalence of equine coronavirus in nasal secretions from horses with fever and upper respiratory tract infection (2015) Vet Rec, 177, pp. 289-2289; Hemida, M.G., Chu, D.K.W., Perera, R., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound Emerg Dis, 64, pp. 2093-2103; Pusterla, N., Mapes, S., Wademan, C., Investigation of the role of lesser characterised respiratory viruses associated with upper respiratory tract infections in horses (2013) Vet Rec, 172, pp. 1-315; Nemoto, M., Oue, Y., Morita, Y., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Arch Virol, 159, pp. 3329-3334; Pusterla, N., Kass, P.H., Mapes, S., Surveillance programme for important equine infectious respiratory pathogens in the USA (2011) Vet Rec, 169, p. 12; Pusterla, N., Bain, F., James, K., Frequency of molecular detection of equine herpesvirus-4 in nasal secretions of 3028 horses with upper airway infection (2017) Vet Rec, 180, pp. 2-593; Taktaz Hafshejani, T., Nekoei, S., Vazirian, B., Molecular detection of equine herpesvirus types 1 and 4 infection in healthy horses in isfahan central and shahrekord southwest regions, Iran (2015) Biomed Res Int, 2015, pp. 1-7; Nemoto, M., Oue, Y., Higuchi, T., Low prevalence of equine coronavirus in foals in the largest thoroughbred horse breeding region of Japan, 2012-2014 (2015) Acta Vet Scand, 57, p. 53; Slovis, N.M., Elam, J., Estrada, M., Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: A comprehensive molecular study (2014) Equine Vet J, 46, pp. 311-316; Kooijman, L.J., James, K., Mapes, S.M., Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA (2017) Vet J, 220, pp. 91-94",,,"British Veterinary Association",00424900,,VETRA,"30850426","English","Vet. Rec.",Article,"Final",,Scopus,2-s2.0-85062647376 "Al-Tawfiq J.A., Memish Z.A.","9436438200;7005059350;","Lack of seasonal variation of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)",2019,"Travel Medicine and Infectious Disease","27",,,"125","126",,2,"10.1016/j.tmaid.2018.09.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061008479&doi=10.1016%2fj.tmaid.2018.09.002&partnerID=40&md5=7ea25b4d86b1d0be9f86ca43ee71a708","Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of MedicineIN, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Al-Tawfiq, J.A., Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of MedicineIN, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States",[No abstract available],"MERS; Middle east respiratory syndrome coronavirus; Seasonal variation","environmental temperature; human; Letter; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; seasonal variation; spring; virus transmission; winter; animal; camel; climate; Coronavirus infection; epidemic; risk factor; season; transmission; virology; Animals; Camelus; Climate; Coronavirus Infections; Disease Outbreaks; Humans; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Seasons","Dowell, S.F., Ho, M.S., Seasonality of infectious diseases and severe acute respiratory syndrome-what we don't know can hurt us (2004) Lancet Infect Dis, 4, pp. 704-708; Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, WHO (Accessed 30 April 2017); Saudi ministry of health-MERS https://www.moh.gov.sa/en/CCC/PressReleases/Pages/default.aspx, n.d. (Accessed 16 March 2018); World Health Organization, Middle East respiratory syndrome coronavirus (MERS-CoV): summary of current situation, literature update and risk assessment–as of 5 February 2015 2015 http://www.who.int/csr/disease/coronavirus_infections/mers-5-february-2015.pdf, (Accessed 16 March 2018); Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of the Middle East respiratory syndrome coronavirus (MERS-CoV) with review of the literature (2018) J Hosp Infect; Kasem, S., Qasim, I., Al-Doweriej, A., Hashim, O., Alkarar, A., Abu-Obeida, A., The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons (2018) J Infect Public Health; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the gulf corporation council countries: four years update (2017) PLoS One, 12","Al-Tawfiq, J.A.; Dhahran Health Center, Johns Hoplins Aramco Healthcare, P.O. Box 76, Room A-428-2, Building 61, Saudi Arabia; email: jaffar.tawfiq@jhah.com",,"Elsevier USA",14778939,,TMIDA,"30218713","English","Travel Med. Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85061008479 "Skinner D., Marro B.S., Lane T.E.","57202254038;54401448900;24722465300;","Chemokine CXCL10 and Coronavirus-Induced Neurologic Disease",2019,"Viral Immunology","32","1",,"25","37",,2,"10.1089/vim.2018.0073","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059798819&doi=10.1089%2fvim.2018.0073&partnerID=40&md5=72f13b052b7623190314b4cc6404bc4f","Department of Pathology, University of Utah, School of Medicine, Salt Lake City, UT 84112, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Immunology Inflammation and Infectious Disease Initiative, University of Utah, School of Medicine, Salt Lake City, UT, United States; Neuroscience Initiative, University of Utah, School of Medicine, Salt Lake CityUT, United States; Department of Immunology and Microbiology, Scripps Research Institute, San Diego, CA, United States","Skinner, D., Department of Pathology, University of Utah, School of Medicine, Salt Lake City, UT 84112, United States; Marro, B.S., Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Lane, T.E., Department of Pathology, University of Utah, School of Medicine, Salt Lake City, UT 84112, United States, Immunology Inflammation and Infectious Disease Initiative, University of Utah, School of Medicine, Salt Lake City, UT, United States, Neuroscience Initiative, University of Utah, School of Medicine, Salt Lake CityUT, United States, Department of Immunology and Microbiology, Scripps Research Institute, San Diego, CA, United States","Chemokines (chemotactic cytokines) are involved in a wide variety of biological processes. Following microbial infection, there is often robust chemokine signaling elicited from infected cells, which contributes to both innate and adaptive immune responses that control growth of the invading pathogen. Infection of the central nervous system (CNS) by the neuroadapted John Howard Mueller (JHM) strain of mouse hepatitis virus (JHMV) provides an excellent example of how chemokines aid in host defense as well as contribute to disease. Intracranial inoculation of the CNS of susceptible mice with JHMV results in an acute encephalomyelitis characterized by widespread dissemination of virus throughout the parenchyma. Virus-specific T cells are recruited to the CNS, and control viral replication through release of antiviral cytokines and cytolytic activity. Sterile immunity is not acquired, and virus will persist primarily in white matter tracts leading to chronic neuroinflammation and demyelination. Chemokines are expressed and contribute to defense as well as chronic disease by attracting targeted populations of leukocytes to the CNS. The T cell chemoattractant chemokine CXCL10 (interferon-inducible protein 10 kDa, IP-10) is prominently expressed in both stages of disease, and serves to attract activated T and B lymphocytes expressing CXC chemokine receptor 3 (CXCR3), the receptor for CXCL10. Functional studies that have blocked expression of either CXCL10 or CXCR3 illuminate the important role of this signaling pathway in host defense and neurodegeneration in a model of viral-induced neurologic disease. © 2019, Mary Ann Liebert, Inc., publishers.","CNS infection; coronavirus; CXCL10","chemokine receptor CXCR3; gamma interferon inducible protein 10; chemokine receptor CXCR3; chemotactic factor; Cxcr3 protein, mouse; gamma interferon inducible protein 10; animal experiment; animal model; Article; B lymphocyte activation; central nervous system infection; controlled study; Coronavirinae; Coronavirus infection; cytokine release; cytolysis; demyelination; encephalomyelitis; host resistance; infection control; infection sensitivity; mouse; Murine hepatitis virus; nervous system inflammation; nonhuman; T lymphocyte activation; virus replication; virus transmission; white matter; animal; C57BL mouse; central nervous system infection; Coronavirus infection; demyelinating disease; genetics; human; immunology; pathogenicity; pathology; signal transduction; T lymphocyte; virology; Animals; Central Nervous System Viral Diseases; Chemokine CXCL10; Chemotactic Factors; Coronavirus Infections; Demyelinating Diseases; Humans; Mice; Mice, Inbred C57BL; Murine hepatitis virus; Receptors, CXCR3; Signal Transduction; T-Lymphocytes","Akwa, Y., De, H., Eloranta, M.L., Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration (1998) J Immunol, 161, pp. 5016-5026; Anghelina, D., Zhao, J., Trandem, K., Role of regulatory T cells in coronavirus-induced acute encephalitis (2009) Virology, 385, pp. 358-367; Baerwald, K.D., Popko, B., Developing and mature oli-godendrocytes respond differently to the immune cytokine interferon-gamma (1998) J Neurosci Res, 52, pp. 230-239; Balabanov, R., Strand, K., Kemper, A., Suppressor of cytokine signaling 1 expression protects oligodendrocytes from the deleterious effects of interferon-gamma (2006) J Neu-rosci, 26, pp. 5143-5152; Bender, S.J., Weiss, S.R., Pathogenesis of murine cor-onavirus in the central nervous system (2010) J Neuroimmune Pharmacol, 5, pp. 336-354; Bergmann, C.C., Lane, T.E., Stohlman, S.A., Coronavirus infection of the central nervous system: Host-virus standoff (2006) Nat Rev Microbiol, 4, pp. 121-132; Buchmeier, M.J., Lane, T.E., Viral-induced neurodegen-erative disease (1999) Curr Opin Microbiol, 2, pp. 398-402; Byrne, F.R., Winters, A., Brankow, D., An antibody to IP-10 is a potent antagonist of cell migration in vitro and in vivo and does not affect disease in several animal models of inflammation (2009) Autoimmunity, 42, pp. 171-182; Cheever, F.S., Daniels, J.B., Pappenheimer, A.M., A murine virus (Jhm) causing disseminated encephalomyelitis with extensive destruction of myelin: I. isolation and biological properties of the virus (1949) J Exp Med, 90, pp. 181-194; Chew, L.J., King, W.C., Kennedy, A., Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells (2005) Glia, 52, pp. 127-143; Dandekar, A.A., Wu, G.F., Pewe, L., Axonal damage is T cell mediated and occurs concomitantly with demyelin-ation in mice infected with a neurotropic coronavirus (2001) J Virol, 75, pp. 6115-6120; Das Sarma, J., Kenyon, L.C., Hingley, S.T., Mechanisms of primary axonal damage in a viral model of multiple sclerosis (2009) J Neurosci, 29, pp. 10272-10280; Dufour, J.H., Dziejman, M., Liu, M.T., IFN-g-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking (2002) J Immunol, 168, pp. 3195-3204; Fife, B.T., Kennedy, K.J., Paniagua, M.C., CXCL10 (IFN-gamma-inducible protein-10) control of encephalitogenic CD4 + T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis (2001) J Immunol, 166, pp. 7617-7624; Fleming, J.O., Trousdale, M.D., El-Zaatari, F.A., Patho-genicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies (1986) J Virol, 58, pp. 869-875; Fleury, H.J., Sheppard, R.D., Bornstein, M.B., Further ultrastructural observations of virus morphogenesis and myelin pathology in JHM virus encephalomyelitis (1980) Neu-ropathol Appl Neurobiol, 6, pp. 165-179; Glass, W.G., Hickey, M.J., Hardison, J.L., Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis (2004) J Immunol, 172, pp. 4018-4025; Glass, W.G., Liu, M.T., Kuziel, W.A., Reduced macro-phage infiltration and demyelination in mice lacking the chemokine receptor CCR5 following infection with a neurotropic coronavirus (2001) Virology, 288, pp. 8-17; Gonzalez, J.M., Bergmann, C.C., Ramakrishna, C., Inhibition of interferon-gamma signaling in oligodendroglia delays coronavirus clearance without altering demyelin-ation (2006) Am J Pathol, 168, pp. 796-804; Gottlieb, A.B., Luster, A.D., Posnett, D.N., Detection of a gamma interferon-induced protein IP-10 in psoriatic plaques (1988) J Exp Med, 168, pp. 941-948; Greenberg, M.L., Weinger, J.G., Matheu, M.P., Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis (2014) Proc Natl Acad Sci USA, 111, pp. E2349-E2355; Grinspan, J.B., Reeves, M.F., Coulaloglou, M.J., Re-entry into the cell cycle is required for bFGF-induced oligo-dendroglial dedifferentiation and survival (1996) J Neurosci Res, 46, pp. 456-464; Grinspan, J.B., Stern, J.L., Franceschini, B., Trophic effects of basic fibroblast growth factor (bFGF) on differentiated oligodendroglia: A mechanism for regeneration of the oligodendroglial lineage (1993) J Neurosci Res, 36, pp. 672-680; Groom, J.R., Luster, A.D., CXCR3 ligands: Redundant, collaborative and antagonistic functions (2011) Immunol Cell Biol, 89, pp. 207-215; Gruslin, E., Moisan, S., St-Pierre, Y., Transcriptome profile within the mouse central nervous system and activation of myelin-reactive T cells following murine coronavirus infection (2005) J Neuroimmunol, 162, pp. 60-70; Haring, J.S., Perlman, S., Bystander CD4 T cells do not mediate demyelination in mice infected with a neurotropic coronavirus (2003) J Neuroimmunol, 137, pp. 42-50; Horiuchi, M., Itoh, A., Pleasure, D., MEK-ERK signaling is involved in interferon-gamma-induced death of oligodendroglial progenitor cells (2006) J Biol Chem, 281, pp. 20095-20106; Hosking, M.P., Liu, L., Ransohoff, R.M., A protective role for ELR+ chemokines during acute viral encephalo-myelitis (2009) PLoS Pathog, 5, p. e1000648; Houtman, J.J., Fleming, J.O., Dissociation of demyelin-ation and viral clearance in congenitally immunodeficient mice infected with murine coronavirus JHM (1996) J Neurovirol, 2, pp. 101-110; Ireland, D.D., Stohlman, S.A., Hinton, D.R., Type I in-terferons are essential in controlling neurotropic cor-onavirus infection irrespective of functional CD8 T cells (2008) J Virol, 82, pp. 300-310; Janette, G., Rafael, G., Ellika, S., Neutralization of the chemokine CXCL10 reduces apoptosis and increases axon sprouting after spinal cord injury (2006) J Neurosci Res, 84, pp. 724-734; Karin, N., Razon, H., Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity (2018) Cytokine, 109, pp. 24-28; Klein, R.S., Lin, E., Zhang, B., Neuronal CXCL10 directs CD8 + T-cell recruitment and control of West Nile virus encephalitis (2005) J Virol, 79, pp. 11457-11466; LaFerla, F.M., Sugarman, M.C., Lane, T.E., Regional hypomyelination and dysplasia in transgenic mice with astrocyte-directed expression of interferon-gamma (2000) J Mol Neurosci, 15, pp. 45-59; Lane, T.E., Asensio, V.C., Yu, N., Dynamic regulation of alpha-and beta-chemokine expression in the central nervous system during mouse hepatitis virus-induced demy-elinating disease (1998) J Immunol, 160, pp. 970-978; Lane, T.E., Buchmeier, M.J., Murine coronavirus infection: A paradigm for virus-induced demyelinating disease (1997) Trends Microbiol, 5, pp. 9-14; Lane, T.E., Liu, M.T., Chen, B.P., A central role for CD4(+) T cells and RANTES in virus-induced central nervous system inflammation and demyelination (2000) J Virol, 74, pp. 1415-1424; Lasagni, L., Francalanci, M., Annunziato, F., An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4 (2003) J Exp Med, 197, pp. 1537-1549; Libbey, J.E., Lane, T.E., Fujinami, R.S., Axonal pathology and demyelination in viral models of multiple sclerosis (2014) Discov Med, 18, pp. 79-89; Lin, M.T., Hinton, D.R., Marten, N.W., Antibody prevents virus reactivation within the central nervous system (1999) J Immunol, 162, pp. 7358-7368; Lin, M.T., Stohlman, S.A., Hinton, D.R., Mouse hepatitis virus is cleared from the central nervous systems of mice lacking perforin-mediated cytolysis (1997) J Virol, 71, pp. 383-391; Lin, W., Kemper, A., Dupree, J.L., Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress (2006) Brain, 129, pp. 1306-1318; Lin, W., Kunkler, P.E., Harding, H.P., Enhanced integrated stress response promotes myelinating oligoden-drocyte survival in response to interferon-gamma (2008) Am J Pathol, 173, pp. 1508-1517; Liu, L., Callahan, M.K., Huang, D., Chemokine receptor CXCR3: An unexpected enigma (2005) Curr Top Dev Biol, 68, pp. 149-181; Liu, M.T., Chen, B.P., Oertel, P., The T cell chemoat-tractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease (2000) J Immunol, 165, pp. 2327-2330; Liu, M.T., Keirstead, H.S., Lane, T.E., Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis (2001) J Immunol, 167, pp. 4091-4097; Luster, A.D., Chemokines-chemotactic cytokines that mediate inflammation (1998) N Engl J Med, 338, pp. 436-445; Luster, A.D., Unkeless, J.C., Ravetch, J.V., Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins (1985) Nature, 315, pp. 672-676; Malone, K.E., Stohlman, S.A., Ramakrishna, C., Induction of class I antigen processing components in oligo-dendroglia and microglia during viral encephalomyelitis (2008) Glia, 56, pp. 426-435; Marro, B.S., Blanc, C.A., Loring, J.F., Promoting re-myelination: Utilizing a viral model of demyelination to assess cell-based therapies (2014) Expert Rev Neurother, 14, pp. 1169-1179; Marro, B.S., Grist, J.J., Lane, T.E., Inducible expression of CXCL1 within the central nervous system amplifies viral-induced demyelination (2016) J Immunol, 196, pp. 1855-1864; Marten, N.W., Stohlman, S.A., Bergmann, C.C., Role of viral persistence in retaining CD8(+) T cells within the central nervous system (2000) J Virol, 74, pp. 7903-7910; Maru, S.V., Holloway, K.A., Flynn, G., Chemokine production and chemokine receptor expression by human glioma cells: Role of CXCL10 in tumour cell proliferation (2008) J Neuroimmunol, 199, pp. 35-45; Matthews, A.E., Weiss, S.R., Shlomchik, M.J., Antibody is required for clearance of infectious murine hepatitis virus A59 from the central nervous system, but not the liver (2001) J Immunol, 167, pp. 5254-5263; McMahon, E.J., Bailey, S.L., Castenada, C.V., Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis (2005) Nat Med, 11, pp. 335-339; Miller, S.D., Vanderlugt, C.L., Begolka, W.S., Persistent infection with Theiler's virus leads to CNS autoimmunity through epitope spreading (1997) Nat Med, 3, pp. 1133-1136; Mills Ko, E., Ma, J.H., Guo, F., Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model (2014) J Neuroinflammation, 11, p. 105; Minagawa, H., Takenaka, A., Mohri, S., Protective effect of recombinant murine interferon beta against mouse hepatitis virus infection (1987) Antiviral Res, 8, pp. 85-95; Ontiveros, E., Kuo, L., Masters, P.S., Inactivation of expression of gene 4 of mouse hepatitis virus strain JHM does not affect virulence in the murine CNS (2001) Virology, 289, pp. 230-238; Pachner, A.R., Experimental models of multiple sclerosis (2011) Curr Opin Neurol, 24, pp. 291-299; Parra, B., Hinton, D.R., Marten, N.W., IFN-gamma is required for viral clearance from central nervous system oligodendroglia (1999) J Immunol, 162, pp. 1641-1647; Pearce, B.D., Hobbs, M.V., McGraw, T.S., Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo (1994) J Virol, 68, pp. 5483-5495; Pewe, L., Haring, J., Perlman, S., CD4 T-cell-mediated demyelination is increased in the absence of gamma interferon in mice infected with mouse hepatitis virus (2002) J Virol, 76, pp. 7329-7333; Pewe, L., Perlman, S., Cutting edge: CD8 T cell-mediated demyelination is IFN-gamma dependent in mice infected with a neurotropic coronavirus (2002) J Immunol, 168, pp. 1547-1551; Phares, T.W., Marques, C.P., Stohlman, S.A., Factors supporting intrathecal humoral responses following viral encephalomyelitis (2011) J Virol, 85, pp. 2589-2598; Phares, T.W., Stohlman, S.A., Hinton, D.R., Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis (2013) J Virol, 87, pp. 3382-3392; Phares, T.W., Stohlman, S.A., Hwang, M., CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis (2012) J Virol, 86, pp. 2416-2427; Ramakrishna, C., Bergmann, C.C., Atkinson, R., Control of central nervous system viral persistence by neutralizing antibody (2003) J Virol, 77, pp. 4670-4678; Ramakrishna, C., Stohlman, S.A., Atkinson, R.A., Differential regulation of primary and secondary CD8 + T cells in the central nervous system (2004) J Immunol, 173, pp. 6265-6273; Ramakrishna, C., Stohlman, S.A., Atkinson, R.D., Mechanisms of central nervous system viral persistence: The critical role of antibody and B cells (2002) J Immunol, 168, pp. 1204-1211; Savarin, C., Bergmann, C.C., Gaignage, M., Self-reactive CD4 + T cells activated during viral-induced demyelination do not prevent clinical recovery (2015) J Neuroinflammation, 12, p. 207; Savarin, C., Stohlman, S.A., Atkinson, R., Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis (2010) J Virol, 84, pp. 4878-4888; Shosaku, N., Toshikatu, K., Hiroyuki, Y., Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis (2002) Eur J Immunol, 32, pp. 1784-1791; Sidahmed, A.M.E., León, A.J., Bosinger, S.E., CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro (2012) Cytokine, 59, pp. 433-441; Smith, A.L., Barthold, S.W., Beck, D.S., Intranasally administered alpha/beta interferon prevents extension of mouse hepatitis virus, strain JHM, into the brains of BALB/cByJ mice (1987) Antiviral Res, 8, pp. 239-245; Sørensen, T.L., Tani, M., Jensen, J., Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients (1999) J Clin Invest, 103, pp. 807-815; Stiles, L.N., Hardison, J.L., Schaumburg, C.S., T cell antiviral effector function is not dependent on CXCL10 following murine coronavirus infection (2006) J Immunol, 177, pp. 8372-8380; Stiles, L.N., Hosking, M.P., Edwards, R.A., Differential roles for CXCR3 in CD4 + and CD8 + T cell trafficking following viral infection of the CNS (2006) Eur J Immunol, 36, pp. 613-622; Stiles, L.N., Liu, M.T., Kane, J.A.C., CXCL10 and trafficking of virus-specific T cells during coronavirus de-myelination (2009) Autoimmunity, 42, pp. 484-491; Stohlman, S.A., Bergmann, C.C., Lin, M.T., CTL effector function within the central nervous system requires CD4 + T cells (1998) J Immunol, 160, pp. 2896-2904; Stohlman, S.A., Hinton, D.R., Parra, B., CD4 T cells contribute to virus control and pathology following central nervous system infection with neurotropic mouse hepatitis virus (2008) J Virol, 82, pp. 2130-2139; Thirion, G., Coutelier, J.-P., Production of protective gamma interferon by natural killer cells during early mouse hepatitis virus infection (2009) J Gen Virol, 90, pp. 442-447; Tirotta, E., Kirby, L.A., Hatch, M.N., IFN-gamma-induced apoptosis of human embryonic stem cell derived oligodendrocyte progenitor cells is restricted by CXCR2 signaling (2012) Stem Cell Res, 9, pp. 208-217; Tirotta, E., Ransohoff, R.M., Lane, T.E., CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-gamma/CXCL10-mediated apoptosis (2011) Glia, 59, pp. 1518-1528; Trandem, K., Anghelina, D., Zhao, J., Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus (2010) J Immunol, 184, pp. 4391-4400; Trifilo, M.J., Lane, T.E., The CC chemokine ligand 3 regulates CD11c + CD11b + CD8alpha - dendritic cell maturation and activation following viral infection of the central nervous system: Implications for a role in T cell activation (2004) Virology, 327, pp. 8-15; Tschen, S.I., Stohlman, S.A., Ramakrishna, C., CNS viral infection diverts homing of antibody-secreting cells from lymphoid organs to the CNS (2006) Eur J Immunol, 36, pp. 603-612; Van Raemdonck, K., Van Den Steen, P.E., Liekens, S., CXCR3 ligands in disease and therapy (2015) Cytokine Growth Factor Rev, 26, pp. 311-327; Vanguri, P., Farber, J.M., Identification of CRG-2. An interferon-inducible mRNA predicted to encode a murine monokine (1990) J Biol Chem, 265, pp. 15049-15057; Vartanian, T., Li, Y., Zhao, M., Interferon-gamma-induced oligodendrocyte cell death: Implications for the pathogene-sis of multiple sclerosis (1995) Mol Med, 1, pp. 732-743; Walsh, K.B., Edwards, R.A., Romero, K.M., Expression of CXC chemokine ligand 10 from the mouse hepatitis virus genome results in protection from viral-induced neurological and liver disease (2007) J Immunol, 179, pp. 1155-1165; Wang, F.I., Hinton, D.R., Gilmore, W., Sequential infection of glial cells by the murine hepatitis virus JHM strain (MHV-4) leads to a characteristic distribution of demyelination (1992) Lab Invest, 66, pp. 744-754; Wang, F.I., Stohlman, S.A., Fleming, J.O., Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is im-munologically mediated (1990) J Neuroimmunol, 30, pp. 31-41; Wang, Y., Ren, Z., Tao, D., STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells (2010) Glia, 58, pp. 195-208; Watanabe, R., Wege, H., Ter Meulen, V., Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis (1983) Nature, 305, pp. 150-153; Wheeler, D.L., Sariol, A., Meyerholz, D.K., Microglia are required for protection against lethal coronavirus encephalitis in mice (2018) J Clin Invest, 128, pp. 931-943; Wu, G.F., Perlman, S., Macrophage infiltration, but not apoptosis, is correlated with immune-mediated demye-lination following murine infection with a neurotropic coronavirus (1999) J Virol, 73, pp. 8771-8780; Wuest, T.R., Carr, D.J., Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection (2008) J Immunol, 181, pp. 7985-7993; Yang, J., Richmond, A., The angiostatic activity of interferon-inducible protein-10/CXCL10 in human mela-noma depends on binding to CXCR3 but not to glycos-aminoglycan (2004) Mol Ther, 9, pp. 846-855; Yokomori, K., Lai, M.M., Mouse hepatitis virus S RNA sequence reveals that nonstructural proteins ns4 and ns5a are not essential for murine coronavirus replication (1991) J Virol, 65, pp. 5605-5608; Yong, V.W., Zabad, R.K., Agrawal, S., Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators (2007) J Neurol Sci, 259, pp. 79-84; Zhao, J., Zhao, J., Fett, C., IFN-gamma-and IL-10-expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis (2011) J Exp Med, 208, pp. 1571-1577; Zhou, J., Hinton, D.R., Stohlman, S.A., Maintenance of CD8 + T cells during acute viral infection of the central nervous system requires CD4 + T cells but not interleukin-2 (2005) Viral Immunol, 18, pp. 162-169; Zhou, J., Stohlman, S.A., Atkinson, R., Matrix me-talloproteinase expression correlates with virulence following neurotropic mouse hepatitis virus infection (2002) J Virol, 76, pp. 7374-7384; Zhou, J., Stohlman, S.A., Hinton, D.R., Neutrophils promote mononuclear cell infiltration during viral-induced encephalitis (2003) J Immunol, 170, pp. 3331-3336; Zuo, J., Stohlman, S.A., Hoskin, J.B., Mouse hepatitis virus pathogenesis in the central nervous system is independent of IL-15 and natural killer cells (2006) Virology, 350, pp. 206-215","Lane, T.E.; Department of Pathology, University of Utah, School of MedicineUnited States; email: tom.lane@utah.path.edu",,"Mary Ann Liebert Inc.",08828245,,VIIME,"30109979","English","Viral Immunol.",Article,"Final",,Scopus,2-s2.0-85059798819 "Rahman M.M., Hosen M.B., Howlader M.Z.H., Kabir Y.","57194615154;55938983700;35254034400;6602961427;","Lead molecule prediction and characterization for designing MERS-CoV 3C-like protease inhibitors: An in silico approach",2019,"Current Computer-Aided Drug Design","15","1",,"82","88",,,"10.2174/1573409914666180629151906","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058871690&doi=10.2174%2f1573409914666180629151906&partnerID=40&md5=289366aa74d446f015c7171086e24a77","Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh","Rahman, M.M., Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh; Hosen, M.B., Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh; Howlader, M.Z.H., Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh; Kabir, Y., Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh","Background: 3C-like protease also called the main protease is an essential enzyme for the completion of the life cycle of Middle East Respiratory Syndrome Coronavirus. In our study we predicted compounds which are capable of inhibiting 3C-like protease, and thus inhibit the lifecycle of Middle East Respiratory Syndrome Coronavirus using in silico methods. Methods: Lead like compounds and drug molecules which are capable of inhibiting 3C-like protease was identified by structure-based virtual screening and ligand-based virtual screening method. Further, the compounds were validated through absorption, distribution, metabolism and excretion filtering. Results: Based on binding energy, ADME properties, and toxicology analysis, we finally selected 3 compounds from structure-based virtual screening (ZINC ID: 75121653, 41131653, and 67266079) having binding energy -7.12, -7.1 and -7.08 Kcal/mol, respectively and 5 compounds from ligandbased virtual screening (ZINC ID: 05576502, 47654332, 04829153, 86434515 and 25626324) having binding energy -49.8, -54.9, -65.6, -61.1 and -66.7 Kcal/mol respectively. All these compounds have good ADME profile and reduced toxicity. Among eight compounds, one is soluble in water and remaining 7 compounds are highly soluble in water. All compounds have bioavailability 0.55 on the scale of 0 to 1. Among the 5 compounds from structure-based virtual screening, 2 compounds showed leadlikeness. All the compounds showed no inhibition of cytochrome P450 enzymes, no blood-brain barrier permeability and no toxic structure in medicinal chemistry profile. All the compounds are not a substrate of P-glycoprotein. Conclusion: Our predicted compounds may be capable of inhibiting 3C-like protease but need some further validation in wet lab. © 2019 Bentham Science Publishers.","3C-like protease; ADME; Ligand-based virtual screening; MERS-CoV; Molecular docking; Structure-based virtual screening","cytochrome P450; cytochrome P450 1A2 inhibitor; cytochrome P450 2C19 inhibitor; cytochrome P450 2C9 inhibitor; cytochrome P450 2D6 inhibitor; lead; proteinase inhibitor; proteinase inhibitor; Article; binding affinity; bioinformatics; blood brain barrier; computer model; crystal structure; drug absorption; drug binding; drug bioavailability; drug design; drug distribution; drug excretion; drug interaction; drug metabolism; drug screening; drug solubility; enzyme activity; human; hydrogen bond; lipophilicity; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; molecular docking; molecular weight; pharmacokinetic parameters; severe acute respiratory syndrome; three dimensional imaging; validation process; bioavailability; chemistry; computer simulation; preclinical study; procedures; solubility; structure activity relation; Biological Availability; Computer Simulation; Drug Design; Drug Evaluation, Preclinical; Molecular Docking Simulation; Protease Inhibitors; Solubility; Structure-Activity Relationship","De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent Insights into emerging coronaviruses (2016) Nat. Rev. Microbiol, 14, pp. 523-534; Needle, D., Lountos, G.T., Waugh, D.S., Structures of the middle east respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity (2015) Acta Crystallogr. Sect. D Biol. Crystallogr, 71, pp. 1102-1111; Kilianski, A., Mielech, A.M., Deng, X., Baker, S.C., Assessing activity and inhibition of middle east respiratory syndrome coronavirus papain-like and 3c-like proteases using luciferasebased biosensors (2013) J. Virol, 87, pp. 11955-11962; Stobart, C.C., Sexton, N.R., Munjal, H., Lu, X., Molland, K.L., Tomar, S., Mesecar, A.D., Denison, M.R., Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity (2013) J. Virol, 87, pp. 12611-12618; Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., Hilgenfeld, R., Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain (2002) EMBO J, 21, pp. 3213-3224; Chen, H., Wei, P., Huang, C., Tan, L., Liu, Y., Lai, L., Only one protomer is active in the dimer of SARS 3C-like proteinase (2006) J. Biol. Chem, 281, pp. 13894-13898; Ren, Z., Yan, L., Zhang, N., Guo, Y., Yang, C., Lou, Z., Rao, Z., The Newly emerged SARS-Like coronavirus HCoV-EMC also Has an “Achilles’ Heel”: Current effective inhibitor targeting a 3C-like protease (2013) Protein Cell, 4, pp. 248-250; Tomar, S., Johnston, M.L., St John, S.E., Osswald, H.L., Nyalapatla, P.R., Paul, L.N., Ghosh, A.K., Mesecar, A.D., Ligand-Induced dimerization of middle east respiratory syndrome (MERS) coronavirus Nsp5 protease (3CL Pro ) (2015) J. Biol. Chem, 290, pp. 19403-19422; Deng, X., StJohn, S.E., Osswald, H.L., Banach, B.S., Sleeman, K., Ghosh, A.K., Mesecar, A.D., Baker, S.C., Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance (2014) J. Virol, 88, pp. 11886-11898; Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J. Comput. Chem, 30, pp. 2785-2791; Li, H., Leung, K.S., Wong, M.H., Idock: A Multithreaded virtual screening tool for flexible ligand docking (2012) 2012 IEEE Symposium on Computational Intelligence and Computational Biology, CIBCB 2012, pp. 77-84; Ballester, P.J., Richards, W.G., Ultrafast Shape recognition to search compound databases for similar molecular shapes (2007) J. Comput. Chem, 28, pp. 1711-1723; Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G., ZINC: A free tool to discover chemistry for biology (2012) J. Chem. Inf. Mod, 52, pp. 1757-1768; Yang, J.M., Chen, C.C., GEMDOCK: A generic evolutionary method for molecular docking (2004) Proteins Struct. Funct. Genet, 55, pp. 288-304; Page, R.D., TreeView: An Application to display phylogenetic trees on personal computers (1996) Comput. Appl. Biosci, 12, pp. 357-358; Dallakyan, S., Olson, A.J., Small-molecule library screening by docking with PyRx (2015) Methods in molecular biology, 1263, pp. 243-250. , (Clifton, N.J.); Daina, A., Michielin, O., Zoete, V., SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules (2017) Sci. Rep, 7, p. 42717; Daina, A., Michielin, O., Zoete, V., ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach (2014) J. Chem. Inf. Model, 54, pp. 3284-3301; Daina, A., Zoete, V., A BOILED-Egg To predict gastrointestinal absorption and brain penetration of small molecules (2016) Chem. Med. Chem, pp. 1117-1121; O’Boyle, N.M., Morley, C., Hutchison, G.R., Pybel: A python wrapper for the openbabel cheminformatics toolkit (2008) Chem. Cent. J, 2, p. 5; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.-Y., Coronaviruses - Drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov, 15, pp. 327-347; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Feldmann, H., Treatment with interferon-α 2b and ribavirin improves outcome in mers-cov-infected rhesus macaques (2013) Nat. Med, 19, pp. 1313-1317; Cheng, K.W., Cheng, S.C., Chen, W.Y., Lin, M.H., Chuang, S.J., Cheng, I.H., Sun, C.Y., Chou, C.Y., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of middle east respiratory syndrome coronavirus (2015) Antiviral Res, 115, pp. 9-16; Wu, C.Y., Jan, J.T., Ma, S.H., Kuo, C.J., Juan, H.F., Cheng, Y.S., Hsu, H.H., Wong, C.H., Small molecules targeting severe acute respiratory syndrome human coronavirus (2004) Proc. Natl. Acad. Sci. U S A, 101, pp. 10012-10017; Sydnes, M.O., Hayashi, Y., Sharma, V.K., Hamada, T., Bacha, U., Barrila, J., Freire, E., Kiso, Y., Synthesis of glutamic acid and glutamine peptides possessing a trifluoromethyl ketone group as SARS-CoV 3CL Protease inhibitors (2006) Tetrahedron, 62, pp. 8601-8609","Kabir, Y.; Department of Biochemistry and Molecular Biology, University of DhakaBangladesh; email: ykabir@yahoo.com",,"Bentham Science Publishers B.V.",15734099,,,"29956635","English","Curr. Comput.-Aided Drug Des.",Article,"Final",,Scopus,2-s2.0-85058871690 "Kanner E.V., Pechkurov D.V., Gorelov A.V., Maksimov M.L., Ermolaeva A.S., Kanshina N.N.","57189342899;57189345921;7005253154;10540727700;49461223700;57203262213;","Clinical and laboratory characteristics of acute infections with combined lesions to the respiratory and gastrointestinal tracts in children",2019,"Infektsionnye Bolezni","17","4",,"5","12",,,"10.20953/1729-9225-2019-4-5-12","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082564174&doi=10.20953%2f1729-9225-2019-4-5-12&partnerID=40&md5=18b0e4384b163c0df3d7ba2af4369dd2","Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation; Samara State Medical University, 89 Chapayevskaya str., Samara, 443099, Russian Federation; Department of Children’s Diseases, I.M.Sechenov First Moscow State Medical University (Sechenov University), 3а Novogireevskaya str., Moscow, 111123, Russian Federation; Kazan State Medical Academy, branch of Russian Medical Academy of Postgraduate Education, Moscow, Russian Federation; Department of Pharmacology, Paediatric Faculty, N.I.Pirogov Russian National Research Medical University, 49B N.Ershov str., Kazan, 420082, Russian Federation; Department of Clinical Pharmacology and Propaedeutics of Internal Diseases of the I.M.Sechenov First Moscow State Medical University (Sechenov University), 6/1 B. Pirogovskay str., Moscow, 119435, Russian Federation; Department of infectious diseases of medical-prophylactic faculty of I.M.Sechenov First Moscow State Medical University (Sechenov University), 15/1 8 thSokolinoy Gory str., Moscow, 105275, Russian Federation","Kanner, E.V., Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation; Pechkurov, D.V., Samara State Medical University, 89 Chapayevskaya str., Samara, 443099, Russian Federation; Gorelov, A.V., Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation, Department of Children’s Diseases, I.M.Sechenov First Moscow State Medical University (Sechenov University), 3а Novogireevskaya str., Moscow, 111123, Russian Federation; Maksimov, M.L., Kazan State Medical Academy, branch of Russian Medical Academy of Postgraduate Education, Moscow, Russian Federation, Department of Pharmacology, Paediatric Faculty, N.I.Pirogov Russian National Research Medical University, 49B N.Ershov str., Kazan, 420082, Russian Federation; Ermolaeva, A.S., Department of Clinical Pharmacology and Propaedeutics of Internal Diseases of the I.M.Sechenov First Moscow State Medical University (Sechenov University), 6/1 B. Pirogovskay str., Moscow, 119435, Russian Federation; Kanshina, N.N., Department of infectious diseases of medical-prophylactic faculty of I.M.Sechenov First Moscow State Medical University (Sechenov University), 15/1 8 thSokolinoy Gory str., Moscow, 105275, Russian Federation","Objective. To assess clinical and laboratory characteristics of acute respiratory and gastrointestinal infections in children, as well as infections simultaneously affecting both respiratory and gastrointestinal tracts. Materials and methods. We analyzed medical records of 4,842 children aged between 3 months and 14 years admitted to infectious disease hospitals in Moscow. We evaluated the course of some most common infections with combined lesions to the respiratory and gastrointestinal tracts (rotavirus, norovirus, coronavirus, bocavirus, adenovirus, and influenza) and mixed infections. Results. Rotavirus was the most common causative agent in patients with combined lesions to the respiratory and gastrointestinal tracts (CLRGT) (both in case of monoinfections and mixed infections). Of 542 children with rotavirus infection and CLRGT, 210 patients (38.7%) had monoinfections, whereas 332 patients (61.3%) had mixed infections. Almost half of the children with norovirus infection (n = 194; 49.6%) presented with CLRGT. Among 267 patients (8%) infected with bocavirus, 74 participants (27.7%) had CLRGT, while 179 children (67.0%) had manifestations of acute respiratory infections; 5.2% of children with symptoms of acute intestinal infections alone were found to have bocavirus, primarily in combination with other infectious agents. Adenovirus infection type 40 and 41 was mainly characterized by gastrointestinal symptoms. Gastrointestinal lesions alone were observed in 42 out of 76 patients diagnosed with adenovirus infection (55.26%); the remaining 34 patients (44.74%) presented with CLRGT. Influenza, adenovirus infection type 40 and 41, and rotavirus infection were associated with the most severe symptoms. Coronavirus infection and parainfluenza were more likely to manifest with laryngitis; bocavirus infection manifested itself with purulent inflammatory lesions of the respiratory tract and diarrhea; influenza was characterized by tracheitis and persistent hyperthermia. Conclusion. Some infections manifesting with CLRGT have specific symptoms and types of lesions, which allows the identification of disease etiology and prediction of its course and outcomes. © 2019, Dynasty Publishing House. All rights reserved.","Acute infections; Acute respiratory infections; Children; Respiratory and gastrointestinal infections",,"Kozlowski, D., Physical interventions to interrupt or reduce the spread of respiratory viruses (2012) International Journal of Evidence-Based Healthcare, 10 (2), pp. 159-161; Uršič, T., Jevšnik, M., Zigon, N., Krivec, U., Beden, A.B., Praprotnik, M., Petrovec, M., Human bocavirus and other respiratory viral infections in a 2-year cohort of hospitalized children (2012) J Med Virol, 84 (1), pp. 99-108. , Jan; Tkhakushinova, N.H., Clinical and epidemiological features of acute intestinal infections of viral and combined etiology in children in the Krasnodar territory. Èpidemiologiâ i infekcionnye bolezni. Aktual’nye voprosy (Epidemiology and Infectious Diseases (2016) Current Items), 29-35, p. 6; Belyaev, D.L., Dolgina, E.N., Babayants, A.A., Uchastie khronicheskikh mikst-infektsii s virusami gruppy gerpesa v formirovanii tyazhelogo sindroma smeshannykh infektsii mikrobno-virusnoi etiologii (2008) Russian Allergology Journal, 1 (1), pp. 41-42; Shkarin, V.V., Chubukova, O.A., Blagonravova, A.S., Sergeeva, A.V., Problematic issues of combined intestinal infections (2016), 8 (4), pp. 11-19; (2012) Gripp: Epidemiologiya, Diagnostika, Lechenie, Profilaktika [Influenza: Epidemiology, Diagnosis, Treatment, Prevention, p. 496. , Kiselev OI, Tsybalova LM, Pokrovskii VI (eds, Мoscow: ""MIA"" Publ; Dondurei, E.A., Zheludochno-kishechnye simptomy pri grippe i ORVI u detei (2012) Taktika Pediatra, , https://yandex.ru/video/www.youtube.com; Osidak, L.V., Dondurei, E.A., Drinevskii, V.P., (2007) Ostrye Virusnye Infektsii S Sochetannym Porazheniem Respiratornogo I Zheludochno-Kishechnogo Trakta U Detei [Acute Viral Infections with Combined Damage to the Respiratory and Gastrointestinal Tract in Children], , St. Petersburg, 90 p. (In Russian); Kanner, E.V., Pechkurov, D.V., Gorelov, A.V., Epidemiological characteristics of acute infections with concomitant respiratory and digestive tract lesions in children. Èpidemiologiâ i infekcionnye bolezni (2019) Aktual’nye Voprosy (Epidemiology and Infectious Diseases. Current Items, 9 (2), pp. 24-30; Ploskireva, A.A., (2016) Ostrye Kishechnye Infektsii Virusnoi Etiologii U Detei: Klinika, Diagnostika I Terapiya, p. 48. , Diss. Мoscow; Ploskireva, A.A., Gorelov, A.V., Whether respiratory form of rotavirus infection possible? Infekc (2016) Bolezni (Infectious Diseases, 14 (3), pp. 22-30; Gorelov, A.V., (2016) Ostrye Kishechnye Infektsii U Detei [Acute Intestinal Infections in Children, p. 144. , Мoscow: ""GEOTAR-Media"" Publ","Kanner, E.V.; Department of children's infections of Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 3a Novogireevskaya str., Russian Federation; email: crie@pcr.ru",,"Dynasty Publishing House",17299225,,,,"Russian","Infektsionnye Bolezni",Article,"Final",,Scopus,2-s2.0-85082564174 "Zhou Y., Yang Y., Huang J., Jiang S., Du L.","57191653017;57192214076;57205435855;56491898300;8686996200;","Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain",2019,"Viruses","11","1", 60,"","",,9,"10.3390/v11010060","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060051371&doi=10.3390%2fv11010060&partnerID=40&md5=80f51f42605a1dd626a0b10a45a3e651","State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States","Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Yang, Y., Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States; Huang, J., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Jiang, S., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States","Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; MERS-CoV; Receptor-binding domain; Spike protein; Therapeutics; Vaccines","dipeptidyl peptidase IV; epitope; ferritin; gamma interferon; glucose regulated protein 78; interleukin 2; interleukin 4; interleukin 6; nanobody; recombinant vaccine; tumor necrosis factor; virus spike protein; virus vaccine; vitronectin; antivirus agent; coronavirus spike glycoprotein; neutralizing antibody; protein binding; virus antibody; virus receptor; virus vaccine; drug development; drug targeting; human; ID50 (median infectious dose); immune response; immunogenicity; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; plaque forming cell; protein expression; protein motif; protein tertiary structure; receptor binding; Review; virus attachment; virus cell interaction; virus entry; virus genome; virus infection; virus load; virus neutralization; virus pathogenesis; virus replication; animal; bat; binding site; chemistry; Coronavirus infection; drug delivery system; drug effect; immunology; mouse; virology; Animals; Antibodies, Neutralizing; Antibodies, Viral; Antiviral Agents; Binding Sites; Chiroptera; Coronavirus Infections; Drug Delivery Systems; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Protein Binding; Receptors, Virus; Spike Glycoprotein, Coronavirus; Viral Vaccines","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Sha, J., Li, Y., Chen, X., Hu, Y., Ren, Y., Geng, X., Zhang, Z., Liu, S., Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea (2017) Arch. Virol., 162, pp. 33-44; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012-2015 (2016) Am. J. Epidemiol., 184, pp. 460-464; Yang, Y.M., Hsu, C.Y., Lai, C.C., Yen, M.F., Wikramaratna, P.S., Chen, H.H., Wang, T.H., Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome (2017) Sci. Rep., 7; Matsuyama, R., Nishiura, H., Kutsuna, S., Hayakawa, K., Ohmagari, N., Clinical determinants of the severity of Middle East respiratory syndrome (MERS): A systematic review and meta-analysis (2016) BMC Public Health, 16, p. 1203; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis (2016) Int. J. Infect. Dis., 49, pp. 129-133; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Jansen, A., Chiew, M., Konings, F., Lee, C.K., Ailan, L., Sex matters-a preliminary analysis of Middle East respiratory syndrome in the Republic of Korea, 2015 (2015) West. Pac. Surveill Response J., 6, pp. 68-71; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Alfaraj, S.H., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature (2018) J. Microbiol. Immunol. Infect.; Jeong, S.Y., Sung, S.I., Sung, J.H., Ahn, S.Y., Kang, E.S., Chang, Y.S., Park, W.S., Kim, J.H., MERS-CoV infection in a pregnant woman in Korea (2017) J. Korean Med. Sci., 32, pp. 1717-1720; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Memish, Z.A., Middle East respiratory syndrome coronavirus in pediatrics: A report of seven cases from Saudi Arabia (2018) Front. Med.; Assiri, A., Abedi, G.R., Al, M.M., Bin, S.A., Gerber, S.I., Watson, J.T., Middle East respiratory syndrome coronavirus infection during pregnancy: A Report of 5 cases from Saudi Arabia (2016) Clin. Infect. Dis, 63, pp. 951-953; Choi, J.Y., An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med. J., 56, pp. 1174-1176; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int. J. Infect. Dis., 38, pp. 65-67; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) Mbio, 8, pp. 3-17; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Wang, J., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of novel bat coronaviruses in south China that use the same receptor as Middle East respiratory syndrome coronavirus (2018) J. Virol., 92, pp. e00116-e00118; Woo, P.C.Y., Lau, S.K.P., Chen, Y., Wong, E.Y.M., Chan, K.H., Chen, H., Zhang, L., Yuen, K.Y., Rapid detection of MERS coronavirus-like viruses in bats: Pote1ntial for tracking MERS coronavirus transmission and animal origin (2018) Emerg. Microbes Infect., 7, p. 18; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Wong, A.C.P., Receptor usage of a novel bat lineage C Betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J. Infect. Dis., 218, pp. 197-207; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) Elife, 7; Yusof, M.F., Eltahir, Y.M., Serhan, W.S., Hashem, F.M., Elsayed, E.A., Marzoug, B.A., Abdelazim, A.S., Al Muhairi, S.S., Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates (2015) Virus Genes, 50, pp. 509-513; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) Mbio, 9; Harcourt, J.L., Rudoler, N., Tamin, A., Leshem, E., Rasis, M., Giladi, M., Haynes, L.M., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Muller, M.A., Corman, V.M., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012-2015 (2017) Emerg. Infect. Dis., 23, pp. 550-551; Harrath, R., Abu Duhier, F.M., Sero-prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) specific antibodies in dromedary camels in Tabuk, Saudi Arabia (2018) J. Med. Virol., 90, pp. 1285-1289; Falzarano, D., Kamissoko, B., de Wit, E., Maiga, O., Cronin, J., Samake, K., Traore, A., Sogoba, N., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Sobhy, H., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016. Euro (2017) Surveill, 22; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., El-Taweel, A.N., Bagato, O., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg. Microbes Infect., 6; Deem, S.L., Fevre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.J., Koopmans, M., Reusken, C.B., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedaries) in Laikipia county, Kenya (2015) Plos ONE, 10; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Ben Embarek, P.K., van Kerkhove, M.D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10, p. 425; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect. Dis., 18, pp. e217-e227; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am. J. Infect. Control., 46, pp. 1022-1025; Park, S.H., Kim, Y.S., Jung, Y., Choi, S.Y., Cho, N.H., Jeong, H.W., Heo, J.Y., Cheon, S., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect. Chemother., 48, pp. 99-107; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Jo, I.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Hastings, D.L., Tokars, J.I., Abdel Aziz, I.Z., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Jokhdar, H., Tomczyk, S.M., Outbreak of Middle East respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 794-801; Hunter, J.C., Nguyen, D., Aden, B., Al, B.Z., Al, D.W., Abu, E.K., Khudair, A., Imambaccus, H., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg. Infect. Dis., 22, pp. 647-656; Harriman, K., Brosseau, L., Trivedi, K., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 369, p. 1761; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 369, pp. 1761-1762; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 368, pp. 2487-2494; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: The hallmark of Middle East respiratory syndrome coronavirus with review of the literature (2019) J. Hosp. Infect., 101, pp. 20-29; Guery, B., Poissy, J., El, M.L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., Enouf, V., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al, R.B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160, pp. 389-397; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H., Poon, V.K., Zhao, X., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci. Adv., 3. , eaao4966. [CrossRef; Payne, D.C., Iblan, I., Rha, B., Alqasrawi, S., Haddadin, A., Al, N.M., Alsanouri, T., Miao, C., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerg. Infect. Dis., 22, pp. 1824-1826; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Lattwein, E., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis., 15, pp. 559-564; Arabi, Y.M., Hajeer, A.H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., Al-Dawood, A., Al-Hameed, F., Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia (2016) Emerg. Infect. Dis., 22, pp. 1554-1561; Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Al-Omari, A., Al-Hameed, F.M., Whitehead, J., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: A study protocol (2015) Springerplus, 4, p. 709; Ko, J.H., Seok, H., Cho, S.Y., Ha, Y.E., Baek, J.Y., Kim, S.H., Kim, Y.J., Kang, E.S., Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience (2018) Antivir. Ther., 23, pp. 617-622; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.A., Sullivan, E., Davey, R.T., Jr., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: A phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect. Dis., 18, pp. 410-418; Zhou, Y., Jiang, S., Du, L., Prospects for a MERS-CoV spike vaccine (2018) Expert. Rev. Vaccines, 17, pp. 677-686; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert. Rev. Vaccines, 13, pp. 761-774; Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert. Opin. Ther. Targets, 21, pp. 131-143; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3; Almazan, F., Dediego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) Mbio, 4; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Kim, J.D., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Nakagawa, K., Narayanan, K., Wada, M., Popov, V.L., Cajimat, M., Baric, R.S., Makino, S., The endonucleolytic RNA cleavage function of nsp1 of Middle East respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines (2018) J. Virol., 92; Terada, Y., Kawachi, K., Matsuura, Y., Kamitani, W., MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA (2017) Virology, 511, pp. 95-105; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., III, Leist, S.R., Yount, B.L., Jr., Graham, R.L., Cockrell, A.S., Middle East respiratory syndrome coronavirus nonstructural protein 16 Is necessary for interferon resistance and viral pathogenesis (2017) Msphere, 2, pp. 6-17; Zhang, L., Li, L., Yan, L., Ming, Z., Jia, Z., Lou, Z., Rao, Z., Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus (2018) J. Virol., 92; Batool, M., Shah, M., Patra, M.C., Yesudhas, D., Choi, S., Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism (2017) Sci. Rep., 7; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., de Groot, R.J., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) Plos Pathog, 12; Nakagawa, K., Narayanan, K., Wada, M., Makino, S., Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication (2018) J. Virol., 92; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., Garcia-Sastre, A., Perlman, S., Sola, I., MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) Plos Pathog, 14; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 12262-12267; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu. Rev. Virol., 3, pp. 237-261; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: Targets for vaccines and therapeutics (2016) Antiviral Res, 133, pp. 165-177; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Xiao, H., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 13134-13140; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol, 87, pp. 10777-10783; Matsuyama, S., Shirato, K., Kawase, M., Terada, Y., Kawachi, K., Fukushi, S., Kamitani, W., Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells (2018) J. Virol., 92; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Sola, I., Enjuanes, L., Carmody, A., Munster, V., Adaptive evolution of MERS-CoV to species variation in DPP4 (2018) Cell Rep, 24, pp. 1730-1737; Chu, H., Chan, C.M., Zhang, X., Wang, Y., Yuan, S., Zhou, J., Au-Yeung, R.K., Shuai, H., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J. Biol. Chem., 293, pp. 11709-11726; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Lang, Y., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E8508-E8517; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl Acad. Sci. USA, 114, pp. E7348-E7357; Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Tan, W., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) Plos ONE, 9; Kim, Y.S., Son, A., Kim, J., Kwon, S.B., Kim, M.H., Kim, P., Kim, J., Lee, J., Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles (2018) Front. Immunol, 9, p. 1093; Wang, C., Zheng, X., Gai, W., Wong, G., Wang, H., Jin, H., Feng, N., Li, N., Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antiviral Res, 140, pp. 55-61; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Gao, G.F., Recombinant receptor binding domain protein induces partial protective immunity in Rhesus Macaques against Middle East respiratory syndrome coronavirus challenge (2015) Ebiomedicine, 2, pp. 1438-1446; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Tseng, C.T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol. Immunol., 13, pp. 180-190; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Perlman, S., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat. Commun., 7; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Du, L., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (HDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.T., Li, F., Jiang, S., Du, L. Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res, 202, pp. 151-159; Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T., Jiang, S., Zhou, Y., Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus (2015) Hum. Vaccin Immunother., 11, pp. 1244-1250; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Jiang, S., Gao, J., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum. Vaccin Immunother., 13, pp. 1615-1624; Nyon, M.P., Du, L., Tseng, C.K., Seid, C.A., Pollet, J., Naceanceno, K.S., Agrawal, A., Tai, W., Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen (2018) Vaccine, 36, pp. 1853-1862; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J. Virol., 91; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Wang, N., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J. Virol, JVI, pp. 02002-02017; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell. Res., 25, pp. 1237-1249; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 8738-8743; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Dimitrov, D.S., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6, p. 8223; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res, 132, pp. 141-148; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Du, L., Jiang, S., Middle East respiratory syndrome: Current status and future prospects for vaccine development (2015) Expert. Opin. Biol. Ther., 15, pp. 1647-1651; Wang, L., Shi, L., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Niu, P., Zhao, G., Deng, Y., Sun, S., Wang, W., Zhou, Y., Tan, W., A novel human mAb (MERS-GD27) provides prophylactic and postexposure efficacy in MERS-CoV susceptible mice (2018) Sci. China Life Sci., 61, pp. 1280-1282; Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Wang, P., Zhou, J., Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient (2018) J. Infect Dis., 218, pp. 1249-1260; Chen, Z., Bao, L., Chen, C., Zou, T., Xue, Y., Li, F., Lv, Q., Cui, S., Human neutralizing monoclonal antibody inhibition of Middle East respiratory syndrome coronavirus replication in the common marmoset (2017) J. Infect Dis., 215, pp. 1807-1815; Zhang, S., Zhou, P., Wang, P., Li, Y., Jiang, L., Jia, W., Wang, H., Shi, X., Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein (2018) Cell Rep, 24, pp. 441-452; Raj, V.S., Okba, N.M.A., Gutierrez-Alvarez, J., Drabek, D., van Dieren, B., Widagdo, W., Lamers, M.M., Sola, I., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci. Adv., 4; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., Li, J., Wang, Y., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J. Virol, 92; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Li, Z., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci Rep, 5; Wilken, L., McPherson, A., Application of camelid heavy-chain variable domains (VHHs) in prevention and treatment of bacterial and viral infections (2018) Int. Rev. Immunol., 37, pp. 69-76; van Heeke, G., Allosery, K., de Brabandere, V., de Smedt, T., Detalle, L., de Fougerolles, A., Nanobodies(R) as inhaled biotherapeutics for lung diseases (2017) Pharmacol. Ther., 169, pp. 47-56; Detalle, L., Stohr, T., Palomo, C., Piedra, P.A., Gilbert, B.E., Mas, V., Millar, A., Allosery, K., Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection (2015) Antimicrob. Agents Chemother., 60, pp. 6-13; Steeland, S., Vandenbroucke, R.E., Libert, C., Nanobodies as therapeutics: Big opportunities for small antibodies (2016) Drug Discov. Today, 21, pp. 1076-1113; Muyldermans, S., Nanobodies: Natural single-domain antibodies (2013) Annu. Rev. Biochem., 82, pp. 775-797; Du, L., Tai, W., Zhou, Y., Jiang, S., Vaccines for the prevention against the threat of MERS-CoV (2016) Expert Rev. Vaccines, 15, pp. 1123-1134; Zhang, Z., Shen, L., Gu, X., Evolutionary dynamics of MERS-CoV: Potential recombination, positive selection and transmission (2016) Sci. Rep., 6; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Kang, J.I., Kim, G., Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) Mbio, 7; Kleine-Weber, H., Elzayat, M.T., Wang, L., Graham, B.S., Muller, M.A., Drosten, C., Pohlmann, S., Hoffmann, M., Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization (2019) J. Virol., 93; Wang, C., Hua, C., Xia, S., Li, W., Lu, L., Jiang, S., Combining a fusion inhibitory peptide targeting the MERS-CoV S2 protein HR1 domain and a neutralizing antibody specific for the S1 protein receptor-binding domain (RBD) showed potent synergism against pseudotyped MERS-CoV with or without mutations in RBD (2019) Viruses, 11, p. 31; Galasiti Kankanamalage, A.C., Kim, Y., Damalanka, V.C., Rathnayake, A.D., Fehr, A.R., Mehzabeen, N., Battaile, K.P., Perlman, S., Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element (2018) Eur. J. Med. Chem, 150, pp. 334-346","Du, L.; Lindsley F. Kimball Research Institute, New York Blood CenterUnited States; email: ldu@nybc.org",,"MDPI AG",19994915,,,"30646569","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85060051371 "Park S.Y., Lee J.S., Son J.S., Ko J.H., Peck K.R., Jung Y., Woo H.J., Joo Y.S., Eom J.S., Shi H.","57042194700;27171254600;24545005500;55804188300;55664295200;56497402200;57201778265;57204569117;8312280800;57204566540;","Post-exposure prophylaxis for Middle East respiratory syndrome in healthcare workers",2019,"Journal of Hospital Infection","101","1",,"42","46",,5,"10.1016/j.jhin.2018.09.005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056156511&doi=10.1016%2fj.jhin.2018.09.005&partnerID=40&md5=e0dd0b8b8d171fa939d100383564aced","Division of Infectious Diseases, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, South Korea; Division of Infectious Diseases, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, South Korea; Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Division of Infectious Diseases, Hallym University Sacred Heart Hospital, Hallym University School of Medicine, Anyang, Gyeonggi, South Korea; Division of Infectious Diseases, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwasung, Gyeonggi, South Korea; Department of Occupational and Environmental Medicine, Hallym University Sacred Heart Hospital, Hallym University School of Medicine, Anyang, Gyeonggi, South Korea","Park, S.Y., Division of Infectious Diseases, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, South Korea; Lee, J.S., Division of Infectious Diseases, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, South Korea; Son, J.S., Division of Infectious Diseases, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, South Korea; Ko, J.H., Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Peck, K.R., Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Jung, Y., Division of Infectious Diseases, Hallym University Sacred Heart Hospital, Hallym University School of Medicine, Anyang, Gyeonggi, South Korea; Woo, H.J., Division of Infectious Diseases, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwasung, Gyeonggi, South Korea; Joo, Y.S., Department of Occupational and Environmental Medicine, Hallym University Sacred Heart Hospital, Hallym University School of Medicine, Anyang, Gyeonggi, South Korea; Eom, J.S., Division of Infectious Diseases, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, South Korea; Shi, H., Division of Infectious Diseases, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, Seoul, South Korea","An effective post-exposure prophylaxis (PEP) strategy may limit the spread of infection. However, there is no consensus regarding PEP for Middle East respiratory syndrome coronavirus (MERS-CoV) infection. This study assessed the efficacy of ribavirin and lopinavir/ritonavir as PEP for healthcare workers (HCWs) exposed to patients with severe MERS-CoV pre-isolation pneumonia. The safety of the PEP regimen was assessed. HCWs with high-risk exposure to MERS-CoV pre-isolation pneumonia were retrospectively enrolled. HCWs who received PEP therapy were classified into the PEP group. PEP therapy was associated with a 40% decrease in the risk of infection. There were no severe adverse events during PEP therapy. © 2018 The Healthcare Infection Society","Healthcare worker; High-risk exposure; Middle East respiratory syndrome coronavirus; Outbreak; Post-exposure prophylaxis; Pre-isolation pneumonia","lopinavir plus ritonavir; ribavirin; antivirus agent; lopinavir; ribavirin; ritonavir; adult; adverse outcome; aged; anemia; Article; backache; case report; clinical article; controlled study; diarrhea; disease association; disease severity; drug efficacy; drug safety; drug screening; endotracheal intubation; female; fever; health care personnel; high risk population; hospital admission; human; hyperbilirubinemia; infection risk; intensive care unit; leukopenia; male; Middle East respiratory syndrome; nausea; patient isolation; pneumonia; post exposure prophylaxis; real time polymerase chain reaction; retrospective study; reverse transcription polymerase chain reaction; stomatitis; adverse drug reaction; Coronavirus infection; incidence; pathology; post exposure prophylaxis; procedures; young adult; Adult; Aged; Antiviral Agents; Coronavirus Infections; Drug-Related Side Effects and Adverse Reactions; Female; Health Personnel; Humans; Incidence; Lopinavir; Male; Post-Exposure Prophylaxis; Retrospective Studies; Ribavirin; Ritonavir; Young Adult","Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Kim, S.G., Healthcare workers infected with Middle East respiratory syndrome coronavirus and infection control (2015) J Korean Med Assoc, 58, pp. 647-654; World Health Organization, Laboratory testing for Middle East respiratory syndrome coronavirus – interim recommendations (revised) (2014), http://www.who.int/csr/disease/coronavirus infections/en/, Available at: [last accessed October 2016]; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, p. 629; Centers for Disease Control and Prevention, Interim infection prevention and control recommendations for hospitalized patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2015), http://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, Available at: [last accessed October 2016]; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67, pp. 606-616; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58, pp. 4875-4884; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44, pp. 528-532; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14, pp. 1090-1095","Lee, J.S.; Division of Infectious Diseases, Kangdong Sacred Heart Hospital, Hallym University School of Medicine, 150 Seongan-ro, Gangdong-gu, South Korea; email: rem324@naver.com",,"W.B. Saunders Ltd",01956701,,JHIND,"30240813","English","J. Hosp. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85056156511 "Gaur B., Saha S., Iuliano A., Rai S., Krishnan A., Jain S., Whitaker B., Winchell J., Lal R., Broor S.","36869372500;55947755500;35221399700;8866124200;7102443593;35242149700;55413901500;7003884147;35495076000;57197125834;","Use of TaqMan Array card for the detection of respiratory viral pathogens in children under 5 years old hospitalised with acute medical illness in Ballabgarh, Haryana, India",2019,"Indian Journal of Medical Microbiology","37","1",,"105","108",,,"10.4103/ijmm.IJMM_18_146","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070934183&doi=10.4103%2fijmm.IJMM_18_146&partnerID=40&md5=7d2ea44073a3c1c6ab0c5db5271b1f25","Department of Microbiology, All Institute of Medical Sciences, New Delhi, 110 029, India; Influenza Division, Centers for Disease Control and Prevention, U.S Embassy, New Delhi, India; Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States; Centre for Community Medicine, All Institute of Medical Sciences, New Delhi, India; Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","Gaur, B., Department of Microbiology, All Institute of Medical Sciences, New Delhi, 110 029, India; Saha, S., Influenza Division, Centers for Disease Control and Prevention, U.S Embassy, New Delhi, India; Iuliano, A., Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States; Rai, S., Centre for Community Medicine, All Institute of Medical Sciences, New Delhi, India; Krishnan, A., Centre for Community Medicine, All Institute of Medical Sciences, New Delhi, India; Jain, S., Influenza Division, Centers for Disease Control and Prevention, U.S Embassy, New Delhi, India; Whitaker, B., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Winchell, J., Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Lal, R., Influenza Division, Centers for Disease Control and Prevention, U.S Embassy, New Delhi, India; Broor, S., Department of Microbiology, All Institute of Medical Sciences, New Delhi, 110 029, India","Historical specimens collected from hospitalized children were tested for the following 13 viruses: influenza A and B; respiratory syncytial virus (RSV); parainfluenza viruses 1-3; human metapneumovirus; rhinovirus; coronaviruses 229E, OC43, NL63 and HKU1 and Adenovirus using monoplex real-time reverse transcriptase polymerase chain reaction (rRT-PCR). They were retested using TaqMan Array Card (TAC), a micro-fluidic system, capable of simultaneous multi-pathogen testing, to evaluate its sensitivity and specificity against monoplex rRT-PCR. TAC showed high sensitivity (71%-100%) and specificity (98%-100%) for these viruses in comparison to monoplex rRT-PCR. Multi-specimen detection with high sensitivity and specificity makes TAC a potentially useful tool for both surveillance and outbreak investigations. © 2019 Indian Society of Anaesthetists. All rights reserved.","Micro-fluidic card; sensitivity; specificity; viral pathogen diagnosis","acute disease; Article; child; comparative study; controlled study; human; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; Human metapneumovirus; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human respiratory syncytial virus; India; influenza A; influenza B; limit of detection; nose smear; predictive value; preschool child; real time polymerase chain reaction; reverse transcription polymerase chain reaction; Rhinovirus; RNA extraction; sensitivity and specificity; throat culture; viral respiratory tract infection; virus detection; infant; isolation and purification; lab on a chip; microfluidic analysis; molecular diagnosis; newborn; procedures; respiratory tract infection; virology; virus; Child, Preschool; Humans; India; Infant; Infant, Newborn; Lab-On-A-Chip Devices; Microfluidic Analytical Techniques; Molecular Diagnostic Techniques; Real-Time Polymerase Chain Reaction; Respiratory Tract Infections; Sensitivity and Specificity; Viruses","Weinberg, G.A., Schnabel, K.C., Erdman, D.D., Prill, M.M., Iwane, M.K., Shelley, L.M., Field evaluation of TaqMan Array Card (TAC) for the simultaneous detection of multiple respiratory viruses in children with acute respiratory infection (2013) J Clin Virol, 57, pp. 254-260; Kodani, M., Yang, G., Conklin, L.M., Travis, T.C., Whitney, C.G., Anderson, L.J., Application of TaqMan low-density arrays for simultaneous detection of multiple respiratory pathogens (2011) J Clin Microbiol, 49, pp. 2175-2182; Unexplained Respiratory Disease Outbreak Working Group activities-Worldwide, March 2007-September 2011 (2012) MMWR Morb Mortal Wkly Rep, 61, pp. 480-483. , Centers for Disease Control and Prevention (CDC); Liu, J., Ochieng, C., Wiersma, S., Ströher, U., Towner, J.S., Whitmer, S., Development of a TaqMan array card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including ebola virus (2016) J Clin Microbiol, 54, pp. 49-58; Saha, S.K., Islam, M.S., Qureshi, S.M., Hossain, B., Islam, M., Zaidi, A.K., Laboratory methods for determining etiology of neonatal infection at population-based sites in South Asia: The ANISA study (2016) Pediatr Infect Dis J, 35, pp. S16-22; Kim, C., Ahmed, J.A., Eidex, R.B., Nyoka, R., Waiboci, L.W., Erdman, D., Comparison of nasopharyngeal and oropharyngeal swabs for the diagnosis of eight respiratory viruses by real-time reverse transcription-PCR assays (2011) PLoS One, 6, p. e21610; Broor, S., Dawood, F.S., Pandey, B.G., Saha, S., Gupta, V., Krishnan, A., Rates of respiratory virus-associated hospitalization in children aged<5 years in rural Northern India (2014) J Infect, 68, pp. 281-289; Harvey, J.J., Chester, S., Burke, S.A., Ansbro, M., Aden, T., Gose, R., Comparative analytical evaluation of the respiratory TaqMan array card with real-time PCR and commercial multi-pathogen assays (2016) J Virol Methods, 228, pp. 151-157; McHugh, M.L., Interrater reliability: The Kappa statistic (2012) Biochem Med (Zagreb), 22, pp. 276-282; Salez, N., Vabret, A., Leruez-Ville, M., Andreoletti, L., Carrat, F., Renois, F., Evaluation of four commercial multiplex molecular tests for the diagnosis of acute respiratory infections (2015) PLoS One, 10, p. e0130378; Diaz, M.H., Cross, K.E., Benitez, A.J., Hicks, L.A., Kutty, P., Bramley, A.M., Identification of bacterial and viral codetections with mycoplasma pneumoniae using the TaqMan array card in patients hospitalized with community-acquired pneumonia (2016) Open Forum Infect Dis, 3, p. ofw071; Loeffelholz, M.J., Pong, D.L., Pyles, R.B., Xiong, Y., Miller, A.L., Bufton, K.K., Comparison of the filmArray respiratory panel and prodesse real-time PCR assays for detection of respiratory pathogens (2011) J Clin Microbiol, 49, pp. 4083-4088","Gaur, B.; Department of Microbiology, All Institute of Medical SciencesIndia; email: ggaur.bharti@gmail.com",,"Wolters Kluwer Medknow Publications",02550857,,IJMME,"31424019","English","Indian J. Med. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85070934183 "Contu L., Steiner S., Thiel V., Mühlemann O.","55389023300;57209107684;35238592100;6603417731;","The role of stress granules and the nonsense-mediated mRNA decay pathway in antiviral defence",2019,"Chimia","73","5",,"374","379",,,"10.2533/chimia.2019.374","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066470677&doi=10.2533%2fchimia.2019.374&partnerID=40&md5=6d2d017badff56135310f6b3851680e7","Universität Bern, Departement Chemie und Biochemie, Freiestrasse 3, Bern, CH-3012, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Institute of Virology und Immunology, Länggassstrasse 122, Bern, CH-3012, Switzerland; Institute of Virology and Immunology, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland","Contu, L., Universität Bern, Departement Chemie und Biochemie, Freiestrasse 3, Bern, CH-3012, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Steiner, S., Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Institute of Virology und Immunology, Länggassstrasse 122, Bern, CH-3012, Switzerland, Institute of Virology and Immunology, Bern, Switzerland, Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Thiel, V., Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Institute of Virology und Immunology, Länggassstrasse 122, Bern, CH-3012, Switzerland, Institute of Virology and Immunology, Bern, Switzerland; Mühlemann, O., Universität Bern, Departement Chemie und Biochemie, Freiestrasse 3, Bern, CH-3012, Switzerland","Eukaryotic cells have evolved a number of survival tactics and quality control pathways that are able to counter intrinsic error-prone mechanisms and allow for maintenance of cellular homeostasis in the face of external stresses. This review will discuss the role of two cellular eukaryotic processes that are vital for maintenance of cellular homeostasis – 1) the nonsense-mediated mRNA decay (NMD) pathway and 2) the transient formation of stress granules (SG) – and explore the current literature on their roles in antiviral defence. Within the NCCR RNA & Disease, the laboratories of Proffs. O. Mühlemann and Volker Thiel teamed up to unravel the roles of NMD and SGs, and their interconnections in defending cells from alphavirus and coronavirus infections. © Swiss Chemical Society.","Innate immune response; Integrated stress response; Nonsense-mediated mRNA decay; RNA virus; Stress granules","antivirus agent; RNA; nonsense mediated mRNA decay; Antiviral Agents; Nonsense Mediated mRNA Decay; RNA","Peltz, S.W., Brown, A.H., Jacobson, A., (1993) Genes Dev, 7, p. 1737; Stalder, L., Mühlemann, O., (2008) Trends Cell Biol, 18, p. 315; Nasif, S., Contu, L., Mühlemann, O., (2018) Semin. Cell Dev. Biol., 75, p. 78; Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F., Dietz, H.C., (2004) Nat. Genet., 36, p. 1073; Colombo, M., Karousis, E.D., Bourquin, J., Bruggmann, R., Mühlemann, O., (2017) RNA, 23, p. 189; Carter, M., Doskow, J., Morris, P., Li, S., Nhim, R.P., Sandstedt, S., Wilkinson, M.F., (1995) J. Biol. Chem., 270, p. 28995; Karousis, E.D., Mühlemann, O., (2018) Cold Spring Harb. Perspect. Biol., p. a032862; Amrani, N., Ganesan, R., Kervestin, S., Mangus, D.A., Ghosh, S., Jacobson, A., (2004) Nature, 432, p. 112; Peixeiro, I., Inácio, Â., Barbosa, C., Silva, A.L., Liebhaber, S.A., Romão, L., (2012) Nucleic Acids Res, 40, p. 1160; Kervestin, S., Jacobson, A., (2012) Nat. Rev. Mol. Cell Biol., 13, p. 700; He, F., Jacobson, A., (2015) Annu. Rev. Genet., 49, p. 339; Ivanov, P.V., Gehring, N.H., Kunz, J.B., Hentze, M.W., Kulozik, A.E., (2008) EMBO J, 27, p. 736; Eberle, A.B., Stalder, L., Mathys, H., Orozco, R.Z., Mühlemann, O., (2008) PLoS Biol, 6, p. 849; Singh, G., Rebbapragada, I., Lykke-Andersen, J., (2008) PLoS Biol, 6, p. 860; Zünd, D., Gruber, A.R., Zavolan, M., Mühlemann, O., (2013) Nat. Struct. Mol. Biol., 20, p. 936; Mühlemann, O., Lykke-Andersen, J., (2010) RNA Biol, 7, p. 28; Bühler, M., Steiner, S., Mohn, F., Paillusson, A., Mühlemann, O., (2006) Nat. Struct. Mol. Biol., 13, p. 462; Balistreri, G., Bognanni, C., Mühlemann, O., (2017) Viruses, 9, p. 1; Wernet, M.F., Klovstad, M., Clandinin, T.R., (2014) Curr. Biol., 24, p. 107; Garcia, D., Garcia, S., Voinnet, O., (2014) Cell Host Microbe, 16, p. 391; Balistreri, G., Horvath, P., Schweingruber, C., Zünd, D., McInerney, G., Merits, A., Mühlemann, O., Helenius, A., (2014) Cell Host Microbe, 16, p. 403; Wada, M., Lokugamage, K.G., Nakagawa, K., Narayanan, K., Makino, S., (2018) Proc. Natl. Acad. Sci., 115; Fontaine, K.A., Leon, K.E., Khalid, M.M., Tomar, S., Jimenez-Morales, D., Dunlap, M., Kaye, J.A., Ott, M., (2018) MBio, 9, p. 1; Ge, Z., Quek, B.L., Beemon, K.L., Hogg, J.R., (2016) Elife, 5, p. 1; Tang, X., Zhu, Y., Baker, S.L., Bowler, M.W., Chen, B.J., Chen, C., Hogg, J.R., Song, H., (2016) Nat. Commun., 7, p. 1; Baker, S.L., Hogg, J.R., (2017) PLoS One, 12, p. 1; May, J.P., Yuan, X., Sawicki, E., Simon, A.E., (2018) PLOS Pathog, 14; Weil, J.E., Beemon, K.L., (2006) RNA, 12, p. 102; Withers, J.B., Beemon, K., (2011) J. Cell Biochem., 112, p. 1; Hogg, J.R., Goff, S.P., (2010) Cell, 143, p. 379; Ramage, H.R., Kumar, G.R., Verschueren, E., Johnson, J.R., Von Dollen, J., Johnson, T., Newton, B., Ott, M., (2015) Mol. Cell, 57, p. 329; Fiorini, F., Robin, J., Kanaan, J., Borowiak, M., Croquette, V., Le Hir, H., Jalinot, P., Mocquet, V., (2018) Nat. Commun., 9, p. 1; Rasmussen, S.A., Jamieson, D.J., Honein, M.A., Petersen, L.R., (2016) N. Engl. J. Med., 374, p. 1981; Silver, D.L., Watkins-Chow, D.E., Schreck, K.C., Pierfelice, T.J., Larson, D.M., Burnetti, A.J., Liaw, H.J., Pavan, W.J., (2010) Nat. Neurosci., 13, p. 551; Mao, H., Pilaz, L.-J., McMahon, J.J., Golzio, C., Wu, D., Shi, L., Katsanis, N., Silver, D.L., (2015) J. Neurosci., 35, p. 7003; Mao, H., McMahon, J.J., Tsai, Y.H., Wang, Z., Silver, D.L., (2016) PLoS Genet, 12, p. 1; Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., Gorman, A.M., (2016) EMBO Rep, 17, p. 1374; Pavitt, G.D., (2018) Wiley Interdiscip. Rev. RNA, 9, p. 1; Buchan, J.R., Parker, R., (2009) Mol. Cell, 36, p. 932; Sekine, Y., Zyryanova, A., Crespillo-Casado, A., Fischer, P.M., Harding, H.P., Ron, D., (2015) Science, 348, p. 1027; Young, S.K., Wek, R.C., (2016) J. Biol. Chem., 291, p. 16927; Hinnebusch, A.G., Ivanov, I.P., Sonenberg, N., (2016) Science, 352, p. 1413; Han, A.P., Yu, C., Lu, L., Fujiwara, Y., Browne, C., Chin, G., Fleming, M., Chen, J.J., (2001) EMBO J, 20, p. 6909; Dever, T.E., Feng, L., Wek, R.C., Cigan, M.A., Donahue, T.F., Hinnebusch, A.G., (1992) Cell, 68, p. 585; Nallagatla, S.R., Hwang, J., Toroney, R., Zheng, X., Cameron, C.E., Bevilacqua, P.C., (2007) Science, 318, p. 1455; Harding, H.P., Zhang, Y., Ron, D., (1999) Nature, 397, p. 271; Kedersha, N., Anderson, P., (2002) Biochem. Soc. Trans., 30, p. 963; McCormick, C., Khaperskyy, D.A., (2017) Nat. Rev. Immunol., 17, p. 647; Jackson, R.J., Hellen, C.U.T., Pestova, T.V., (2010) Nat. Rev. Mol. Cell Biol., 11, p. 113; Aulas, A., Fay, M.M., Lyons, S.M., Achorn, C.A., Kedersha, N., Anderson, P., Ivanov, P., (2017) J. Cell Sci., 130, p. 927; Reineke, L.C., Neilson, J.R., (2018) Biochem. Pharmacol., , press; Wheeler, J.R., Matheny, T., Jain, S., Abrisch, R., Parker, R., (2016) Elife, 5, p. 1; Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., (2015) Cell, 163, p. 123; Lin, Y., Protter, D.S.W., Rosen, M.K., Parker, R., Lin, Y., Protter, D.S.W., Rosen, M.K., Parker, R., (2015) Mol. Cell, 60, p. 208; Kedersha, N., Ivanov, P., Anderson, P., (2013) Trends Biochem. Sci., 38, p. 494; Berlanga, J.J., Ventoso, I., Harding, H.P., Deng, J., Ron, D., Sonenberg, N., Carrasco, L., De Haro, C., (2006) EMBO J, 25, p. 1730; Cheng, G., Feng, Z., He, B., (2005) J. Virol., 79, p. 1379; White, J.P., Lloyd, R.E., (2012) Trends Microbiol, 20, p. 175; Khaperskyy, D.A., Hatchette, T.F., McCormick, C., (2012) FASEB J, 26, p. 1629; Poblete-Durán, N., Prades-Pérez, Y., Vera-Otarola, J., Soto-Rifo, R., Valiente-Echeverría, F., (2016) Viruses, 8, p. 1; White, J.P., Cardenas, A.M., Marissen, W.E., Lloyd, R.E., (2007) Cell Host Microbe, 2, p. 295; Panas, M.D., Varjak, M., Lulla, A., Er Eng, K., Merits, A., Karlsson Hedestam, G.B., McInerney, G.M., (2012) Mol. Biol. Cell, 23, p. 4701; Raaben, M., Groot Koerkamp, M.J.A., Rottier, P.J.M., De Haan, C.A.M., (2007) Cell. Microbiol., 9, p. 2218; Jan, E., Mohr, I., Walsh, D., (2016) Annu. Rev. Virol., 3, p. 283; Katoh, H., Okamoto, T., Fukuhara, T., Kambara, H., Morita, E., Mori, Y., Kamitani, W., Matsuura, Y., (2013) J. Virol., 87, p. 489; Onomoto, K., Yoneyama, M., Fung, G., Kato, H., Fujita, T., (2014) Trends Immunol, 35, p. 420; Reikine, S., Nguyen, J.B., Modis, Y., (2014) Front. Immunol., 5, p. 1; Ramos, H.J., Gale, M., (2011) Curr. Opin. Virol., 1, p. 167; Schneider, W.M., Chevillotte, M.D., Rice, C.M., (2014) Annu. Rev. Immunol., 32, p. 513; Onomoto, K., Jogi, M., Yoo, J.S., Narita, R., Morimoto, S., Takemura, A., Sambhara, S., Fujita, T., (2012) PLoS One, 7; Langereis, M.A., Feng, Q., Van Kuppeveld, F.J., (2013) J. Virol., 87, p. 6314; Sànchez-Aparicio, M., Ayllon, J., Leo-Macias, A., Wolff, T., Garcia-Sastre, A., (2017) J. Virol., 91, p. 1; Kim, W.J., Back, S.H., Kim, V., Ryu, I., Jang, S.K., (2005) Mol. Cell. Biol., 25, p. 2450; Reineke, L.C., Kedersha, N., Langereis, M.A., Van Kuppeveld, F.J.M., Lloyd, R.E., (2015) MBio, 6; Brown, J.A.L., Roberts, T.L., Richards, R., Woods, R., Birrell, G., Lim, Y.C., Ohno, S., Lavin, M.F., (2011) Mol. Cell. Biol., 31, p. 4417","Thiel, V.; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Institute of Virology und Immunology, Länggassstrasse 122, Switzerland; email: Volker.thiel@vetsuisse.unibe.ch",,"Swiss Chemical Society",00094293,,CHIMA,"31118119","English","Chimia",Article,"Final",,Scopus,2-s2.0-85066470677 "Raghav R.S., Dhavachelvan P.","57119824700;6506713915;","Bigdata fog based cyber physical system for classifying, identifying and prevention of SARS disease",2019,"Journal of Intelligent and Fuzzy Systems","36","5",,"4361","4373",,1,"10.3233/JIFS-169992","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065841146&doi=10.3233%2fJIFS-169992&partnerID=40&md5=34b486397268db621b0d621c2ed59c42","Department of CSE, KL University, Andhra Pradesh, India; Department of Computer Science, Pondicherry University, Puducherry, India","Raghav, R.S., Department of CSE, KL University, Andhra Pradesh, India; Dhavachelvan, P., Department of Computer Science, Pondicherry University, Puducherry, India","The Severe acute respiratory syndrome coronavirus (SARS-CoV) are deadly infectious disease which can easily transmit and causes severe problems in humans. It is known as a coronavirus and referred as a common form of virus that naturally causes upper-respiratory tract illnesses and the symptoms are hard to identify. It is important to recognize the patient and providing them with suitable action with constant intensive care. Healthcare amenities is constructed on fog and big-data based system and it is integrated with cyber-physical system. The role of Cyber physical system in health care domain is to fetch deep insights about the nature of disease and carry the monitoring process with early detection of infected users. The objective is to identify occurrence of SARS at initial stage. In proposed system, resemblance factor is evaluated from the extracted keywords. In order to identify the difference between SARS affected and others, the proposed scheme fetches the inputs from user's displayed in the form of text. It is passed to deep recurrent neural network (RNN) model. It extracts useful information from the raw information given by the user. The J48graft algorithm is used to carry the classification based on the type of infection and symptoms of each user. The data is stored in the bigdata layer (mongoDB) and it detects the infected area by using the geospatial feature in mongo dB. The methodology is framed in the proposed model to prevent the spread of disease to other users. In case of any abnormality the generation of alert process is done instantaneously and directed on user's mobile from fog layer. The final experimental outcome reveals information about the performance of proposed system in terms of Success rate, failure rate, latency and accuracy %. It shows that the proposed algorithm gives high level of accuracy when it is compared with other primitive methods. © 2019 - IOS Press and the authors. All rights reserved.","Bigdata analytics; Cyber physical systems; Deep recurrent neural network; Fog layer; J48graft; Mongo dB","Cyber Physical System; Deep neural networks; Embedded systems; Failure analysis; Fog; Health care; Network layers; Recurrent neural networks; Viruses; Bigdata analytics; Deadly infectious disease; Geospatial features; J48graft; Mongo dB; Recurrent neural network (RNN); Severe acute respiratory syndrome coronavirus; Upper respiratory tract; Diseases","Aljaaf Ahmed, J., Applied machine learning classifiers for medical applications: Clarifying the behavioural patterns using a variety of datasets (2015) Systems, Signals and Image Processing (IWSSIP), 2015 International Conference on IEEE; Slobodan, B., Meštrović, A., Martincic-Ipsic, S., An overview of graph-based keyword extraction methods and approaches (2015) Journal of Information and Organizational Sciences, 391, pp. 1-20; Antony, B.J., Senthilkumar, N.C., Real-Time analysis of healthcare using big data analytics (2017) IOP Conference Series: Materials Science and Engineering, 263 (4). , IOP Publishing; Christian Michael, D., Susan, M., Mona, P., Loutfy, R., Muller, M.P., Donald, E., Low Severe acute respiratory syndrome (2004) Clinical Infectiousdiseases, 38 (10), pp. 1420-1427; Deliaioana, D., Dumitrache, I., Cyber-physical systems in healthcare networks (2015) E-Health and Bioengineering Conference (EHB, , IEEE 2015; Tuan Nguyen, G., Jiang, M., Rahmani, A., Pasi Liljeberg, T., Tenhunen, H., Fog computing in healthcare internet of things: A case study on ECG feature extraction (2015) Computer and Information Technology; Ubiquitous Computing and Communications; Pervasive IntelligenceandComputing 2015 IEEE International Conference on, pp. 356-363. , IEEE; Grossman Robert, L., Gu, Y., Sabala, M., Zhang, W., Compute and storage clouds using wide area high performance networks (2009) Future Generation Computer Systems, 25 (2), pp. 179-183; Bhumika, G., Rawat, A., Jain, A., Arora, A., Dhami, N., Analysis of Various Decision Tree Algorithms for Classification in Data Mining (2017) International Journal of Computer Applications, 163 (8). , Seifert, Darren, and Hassan Reza. ""A security analysis of cyberphysical systems architecture for healthcare Computers 5(4) 2016 27; Shah Ahsanul, H., Mahfuzul Aziz, S., Rahman, M., Review of cyber-physical system in healthcare (2014) International Journal of Distributed Sensor Networks, 104, p. 217415; Heymann David, L., Rodier, G., SARS: Lessons from a new disease (2004) Learning from SARS: Preparing for the Next Disease Outbreak, pp. 234-245; Jie, H., Patent keyword extraction algorithm based on distributed representation for patent classification (2018) Entropy, 202, p. 104; Redowan, M., Luiz Koch, F., Buyya, R., Cloud-Fog Interoperability in IoT-enabled Healthcare Solutions (2018) Proceedings of the 19th International Conference on Distributed Computing and Networking ACM; Parmar Raj, R., Roy, S., MongoDB as an Efficient Graph Database: An Application of Document Oriented NOSQLDatabase (2018) Data Intensive Computing Applications for Big Data, 29, p. 331; Jeya Rebecca, V.B., Performance comparison of various decision tree algorithms for classification of advertisement and non advertisement videos Indian Journal of Science and Technology, 948, p. 2016; Shenglan, X., Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong (2017) PloS One, 127, p. e0181558; Qi, Z., Wang, Y., Gong, Y., Huang, X., Keyphrase extraction using deep recurrent neural networks on Twitter (2016) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 836-845; Yin, Z., Health-CPS: Healthcare cyber-physical system assisted by cloud and big data (2017) IEEE Systems Journal, 111, pp. 88-95; Shuai, Z., James, J.L., Ghasemzadeh, N., Hayek, S.S., Quyyumi, A.A., Wang, F., Effective information extraction framework for heterogeneous clinical reports using online machine learning and controlled vocabularies (2017) JMIR Medical Informatics, 5 (2); Xiaolong, Z., Zeng, D., Sun, A., Luo, Y., Wang, Q., Wang, F., Network-based analysis of Beijing SARS data (2008) Biosurveillance and Biosecurity, pp. 64-73. , Springer, Berlin, Heidelberg","Raghav, R.S.; Department of CSE, KL UniversityIndia; email: vpmrags@gmail.com",,"IOS Press",10641246,,,,"English","J. Intelligent Fuzzy Syst.",Article,"Final",,Scopus,2-s2.0-85065841146 "Falsey A.R.","7003365074;","Respiratory viral infections",2019,"Genomic and Precision Medicine: Infectious and Inflammatory Disease",,,,"117","139",,,"10.1016/B978-0-12-801496-7.00009-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080802399&doi=10.1016%2fB978-0-12-801496-7.00009-5&partnerID=40&md5=683ee0162d95dae873cb056d900bbe4d","University of Rochester, Rochester, NY, United States; Rochester General Hospital, Rochester, NY, United States","Falsey, A.R., University of Rochester, Rochester, NY, United States, Rochester General Hospital, Rochester, NY, United States","Molecular analysis of respiratory viruses and the host response to both infection and vaccination have transformed our understanding of these ubiquitous pathogens. Polymerase chain reaction for the rapid and accurate diagnosis of viral infections has led to a better understanding of the epidemiology and impact of many common respiratory viruses and resulted in better patient care. Over the past decade a number of new respiratory viruses including human metapneumovirus and new coronaviruses have been discovered using molecular techniques such as random primer amplification, pan-viral array and next generation sequencing. Analysis of the host transcriptional response during respiratory viral infection using in-vitro, animal models and natural and experimental human challenge have furthered the understanding of the mechanisms and predictors of severe disease and may identify potential therapeutic targets to prevent and ameliorate illness. © 2019 Elsevier Inc. All rights reserved.","Influenza; Molecular diagnostics; Respiratory virus; Transcriptional profiling",,"Bloom, B., Cohen, R.A., Summary health statistics for U.S. children: National health interview survey (2006) Vital Health Stat 10, 234, pp. 1-79. , 2007; Scheltema, N.M., Gentile, A., Lucion, F., Nokes, D.J., Munywoki, P.K., Madhi, S.A., Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): A retrospective case series (2017) Lancet Glob Health, 5 (10), pp. e984-e991; Thompson, W.W., Shay, D.K., Weintraub, E., Brammer, L., Cox, N., Anderson, L.J., Mortality associated with influenza and respiratory syncytial virus in the United States (2003) JAMA, 289 (2), pp. 179-186; Monto, A.S., Epidemiology of viral respiratory infections (2002) Am J Med, 112, pp. 4S-12; Monto, A.S., Epidemiology of influenza (2008) Vaccine, 26, pp. D45-D48; Fry, A.M., Shay, D.K., Holman, R.C., Curns, A.T., Anderson, L.J., Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988-2002 (2005) JAMA, 294 (21), pp. 2712-2719; Zhou, H., Thompson, W.W., Viboud, C.G., Ringholz, C.M., Cheng, P.Y., Steiner, C., Hospitalizations associated with influenza and respiratory syncytial virus in the United States, 1993-2008 (2012) Clin Infect Dis, 54 (10), pp. 1427-1436; Thompson, W.W., Moore, M.R., Weintraub, E., Cheng, P.Y., Jin, X., Bridges, C.B., Estimating influenza-associated deaths in the United States (2009) Am J Public Health, 99, pp. S225-S230; Oosterheert, J.J., van Loon, A.M., Schuurman, R., Hoepelman, A.I., Hak, E., Thijsen, S., Impact of rapid detection of viral and atypical bacterial pathogens by real-time polymerase chain reaction for patients with lower respiratory tract infection (2005) Clin Infect Dis, 41 (10), pp. 1438-1444; Walsh, E.E., Peterson, D.R., Falsey, A.R., Human metapneumovirus infections in adults: Another piece of the puzzle (2008) Arch Intern Med, 168 (22), pp. 2489-2496; Gorse, G.J., O’Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J Infect Dis, 199 (6), pp. 847-857; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin Respir Crit Care Med, 37 (4), pp. 555-571; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin Microbiol Rev, 21 (4), pp. 716-747; Buller, R.S., Molecular detection of respiratory viruses (2013) Clin Lab Med, 33 (3), pp. 439-460; Falsey, A.R., Hennessey, P.A., Formica, M.A., Cox, C., Walsh, E.E., Respiratory syncytial virus infection in elderly and high-risk adults (2005) N Engl J Med, 352 (17), pp. 1749-1759; Johansson, N., Kalin, M., Tiveljung-Lindell, A., Giske, C.G., Hedlund, J., Etiology of community-acquired pneumonia: Increased microbiological yield with new diagnostic methods (2010) Clin Infect Dis, 50 (2), pp. 202-209; van Elden, L.J., van Kraaij, M.G., Nijhuis, M., Hendriksen, K.A., Dekker, A.W., Rozenberg-Arska, M., Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia (2002) Clin Infect Dis, 34 (2), pp. 177-183; Jennings, L.C., Anderson, T.P., Beynon, K.A., Chua, A., Laing, R.T., Werno, A.M., Incidence and characteristics of viral community-acquired pneumonia in adults (2008) Thorax, 63 (1), pp. 42-48; Howard, L.M., Johnson, M., Gil, A.I., Griffin, M.R., Edwards, K.M., Lanata, C.F., Molecular epidemiology of rhinovirus detections in young children (2016) Open Forum Infect Dis, 3 (1), p. ofw001; Maitre, N.L., Williams, J.V., Human metapneumovirus in the preterm neonate: Current perspectives (2016) Res Rep Neonatol, 6, pp. 41-49; Johnstone, J., Majumdar, S.R., Fox, J.D., Marrie, T.J., Viral infection in adults hospitalized with community-acquired pneumonia: Prevalence, pathogens, and presentation (2008) Chest, 134 (6), pp. 1141-1148; Wang, H., Deng, J., Tang, Y.W., Profile of the Alere i Influenza A & B assay: A pioneering molecular point-of-care test (2018) Expert Rev Mol Diagn, 18 (5), pp. 403-409; Lipkin, W.I., Firth, C., Viral surveillance and discovery (2013) Curr Opin Virol, 3 (2), pp. 199-204; Chiu, C.Y., Viral pathogen discovery (2013) Curr Opin Microbiol, 16 (4), pp. 468-478; Wang, D., Urisman, A., Liu, Y.T., Springer, M., Ksiazek, T.G., Erdman, D.D., Viral discovery and sequence recovery using DNA microarrays (2003) PLoS Biol, 1 (2), p. E2; Iwane, M.K., Edwards, K.M., Szilagyi, P.G., Walker, F.J., Griffin, M.R., Weinberg, G.A., Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children (2004) Pediatrics, 113 (6), pp. 1758-1764; Jain, S., Self, W.H., Wunderink, R.G., Team, C.E.S., Community-acquired pneumonia requiring hospitalization (2015) N Engl J Med, 373 (24), p. 2382; Jartti, T., Lehtinen, P., Vuorinen, T., Osterback, R., van den Hoogen, B., Osterhaus, A.D., Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children (2004) Emerg Infect Dis, 10 (6), pp. 1095-1101; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79 (2), pp. 884-895; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; van den Hoogen, B.G., de Jong, J.C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R.A., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat Med, 7 (6), pp. 719-724; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci USA, 102 (36), pp. 12891-12896; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1953-1966; Prachayangprecha, S., Schapendonk, C.M., Koopmans, M.P., Osterhaus, A.D., Schurch, A.C., Pas, S.D., Exploring the potential of next-generation sequencing in detection of respiratory viruses (2014) J Clin Microbiol, 52 (10), pp. 3722-3730; Zhao, G., Wu, G., Lim, E.S., Droit, L., Krishnamurthy, S., Barouch, D.H., VirusSeeker, a computational pipeline for virus discovery and virome composition analysis (2017) Virology, 503, pp. 21-30; Smith, D.J., Lapedes, A.S., de Jong, J.C., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D., Mapping the antigenic and genetic evolution of influenza virus (2004) Science, 305 (5682), pp. 371-376; Bedford, T., Suchard, M.A., Lemey, P., Dudas, G., Gregory, V., Hay, A.J., Integrating influenza antigenic dynamics with molecular evolution (2014) Elife, 3, p. e01914; Du, Y., Chen, M., Yang, J., Jia, Y., Han, S., Holmes, E.C., Molecular evolution and emergence of H5N6 avian influenza virus in Central China (2017) J Virol, 91 (12), pp. e00143-e17; Xue, K.S., Moncla, L.H., Bedford, T., Bloom, J.D., Within-host evolution of human influenza virus (2018) Trends Microbiol, 9, pp. 781-793; Dinis, J.M., Florek, N.W., Fatola, O.O., Moncla, L.H., Mutschler, J.P., Charlier, O.K., Deep sequencing reveals potential antigenic variants at low frequencies in influenza A virus-infected humans (2016) J Virol, 90 (7), pp. 3355-3365; Sobel Leonard, A., McClain, M.T., Smith, G.J., Wentworth, D.E., Halpin, R.A., Lin, X., Deep sequencing of influenza A virus from a human challenge study reveals a selective bottleneck and only limited intrahost genetic diversification (2016) J Virol, 90 (24), pp. 11247-11258; Ghedin, E., Holmes, E.C., DePasse, J.V., Pinilla, L.T., Fitch, A., Hamelin, M.E., Presence of oseltamivir-resistant pandemic A/H1N1 minor variants before drug therapy with subsequent selection and transmission (2012) J Infect Dis, 206 (10), pp. 1504-1511; Rogers, M.B., Song, T., Sebra, R., Greenbaum, B.D., Hamelin, M.E., Fitch, A., Intrahost dynamics of antiviral resistance in influenza A virus reflect complex patterns of segment linkage, reassortment, and natural selection (2015) MBio, 6 (2), pp. e02464-e14; Grad, Y.H., Newman, R., Zody, M., Yang, X., Murphy, R., Qu, J., Within-host whole-genome deep sequencing and diversity analysis of human respiratory syncytial virus infection reveals dynamics of genomic diversity in the absence and presence of immune pressure (2014) J Virol, 88 (13), pp. 7286-7293; Cordey, S., Junier, T., Gerlach, D., Gobbini, F., Farinelli, L., Zdobnov, E.M., Rhinovirus genome evolution during experimental human infection (2010) PLoS One, 5 (5), p. e10588; Newport, M.J., Finan, C., Genome-wide association studies and susceptibility to infectious diseases (2011) Brief Funct Genomics, 10 (2), pp. 98-107; Khor, C.C., Hibberd, M.L., Host-pathogen interactions revealed by human genome-wide surveys (2012) Trends Genet, 28 (5), pp. 233-243; Juno, J., Fowke, K.R., Keynan, Y., Immunogenetic factors associated with severe respiratory illness caused by zoonotic H1N1 and H5N1 influenza viruses (2012) Clin Dev Immunol, 2012, p. 797180; Keynan, Y., Malik, S., Fowke, K.R., The role of polymorphisms in host immune genes in determining the severity of respiratory illness caused by pandemic H1N1 influenza (2013) Public Health Genomics, 16 (1-2), pp. 9-16; Miyairi, I., DeVincenzo, J.P., Human genetic factors and respiratory syncytial virus disease severity (2008) Clin Microbiol Rev, 21 (4), pp. 686-703; Keynan, Y., Juno, J., Meyers, A., Ball, T.B., Kumar, A., Rubinstein, E., Chemokine receptor 5 big up tri, open32 allele in patients with severe pandemic (H1N1) (2009) Emerg Infect Dis, 16 (10), pp. 1621-1622. , 2010; Dawson, T.C., Beck, M.A., Kuziel, W.A., Henderson, F., Maeda, N., Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus (2000) Am J Pathol, 156 (6), pp. 1951-1959; La, D., Czarnecki, C., El-Gabalawy, H., Kumar, A., Meyers, A.F., Bastien, N., Enrichment of variations in KIR3DL1/S1 and KIR2DL2/L3 among H1N1/09 ICU patients: An exploratory study (2011) PLoS One, 6 (12), p. e29200; Everitt, A.R., Clare, S., Pertel, T., John, S.P., Wash, R.S., Smith, S.E., IFITM3 restricts the morbidity and mortality associated with influenza (2012) Nature, 484 (7395), pp. 519-523; Chan, J.F., To, K.K., Tse, H., Lau, C.C., Li, I.W., Hung, I.F., The lower serum immunoglobulin G2 level in severe cases than in mild cases of pandemic H1N1 2009 influenza is associated with cytokine dysregulation (2011) Clin Vaccine Immunol, 18 (2), pp. 305-310; Zuniga, J., Buendia-Roldan, I., Zhao, Y., Jimenez, L., Torres, D., Romo, J., Genetic variants associated with severe pneumonia in A/H1N1 influenza infection (2012) Eur Respir J, 39 (3), pp. 604-610; Hitomi, Y., Ebisawa, M., Tomikawa, M., Imai, T., Komata, T., Hirota, T., Associations of functional NLRP3 polymorphisms with susceptibility to food-induced anaphylaxis and aspirin-induced asthma (2009) J Allergy Clin Immunol, 124 (4). , 779-85.e6; Verma, D., Lerm, M., Blomgran Julinder, R., Eriksson, P., Soderkvist, P., Sarndahl, E., Gene polymorphisms in the NALP3 inflammasome are associated with interleukin-1 production and severe inflammation: Relation to common inflammatory diseases? (2008) Arthritis Rheum, 58 (3), pp. 888-894; Boon, A.C., de Mutsert, G., Graus, Y.M., Fouchier, R.A., Sintnicolaas, K., Osterhaus, A.D., The magnitude and specificity of influenza A virus-specific cytotoxic T-lymphocyte responses in humans is related to HLA-A and -B phenotype (2002) J Virol, 76 (2), pp. 582-590; Ip, W.K., Chan, K.H., Law, H.K., Tso, G.H., Kong, E.K., Wong, W.H., Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection (2005) J Infect Dis, 191 (10), pp. 1697-1704; Zhang, H., Zhou, G., Zhi, L., Yang, H., Zhai, Y., Dong, X., Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection (2005) J Infect Dis, 192 (8), pp. 1355-1361; Ching, J.C., Chan, K.Y., Lee, E.H., Xu, M.S., Ting, C.K., So, T.M., Significance of the myxovirus resistance A (MxA) gene -123C a single-nucleotide polymorphism in suppressed interferon beta induction of severe acute respiratory syndrome coronavirus infection (2010) J Infect Dis, 201 (12), pp. 1899-1908; He, J., Feng, D., de Vlas, S.J., Wang, H., Fontanet, A., Zhang, P., Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: A case-control study (2006) BMC Infect Dis, 6, p. 106; Hamano, E., Hijikata, M., Itoyama, S., Quy, T., Phi, N.C., Long, H.T., Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population (2005) Biochem Biophys Res Commun, 329 (4), pp. 1234-1239; Lim, J.K., Lisco, A., McDermott, D.H., Huynh, L., Ward, J.M., Johnson, B., Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man (2009) PLoS Pathog, 5 (2), p. e1000321; Hidaka, F., Matsuo, S., Muta, T., Takeshige, K., Mizukami, T., Nunoi, H., A missense mutation of the toll-like receptor 3 gene in a patient with influenza-associated encephalopathy (2006) Clin Immunol, 119 (2), pp. 188-194; Janssen, R., Bont, L., Siezen, C.L., Hodemaekers, H.M., Ermers, M.J., Doornbos, G., Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes (2007) J Infect Dis, 196 (6), pp. 826-834; Stark, J.M., Barmada, M.M., Winterberg, A.V., Majumber, N., Gibbons, W.J., Jr., Stark, M.A., Genomewide association analysis of respiratory syncytial virus infection in mice (2010) J Virol, 84 (5), pp. 2257-2269; Larkin, E.K., Hartert, T.V., Genes associated with RSV lower respiratory tract infection and asthma: The application of genetic epidemiological methods to understand causality (2015) Future Virol, 10 (7), pp. 883-897; Hull, J., Ackerman, H., Isles, K., Usen, S., Pinder, M., Thomson, A., Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus (2001) Am J Hum Genet, 69 (2), pp. 413-419; Hull, J., Rowlands, K., Lockhart, E., Moore, C., Sharland, M., Kwiatkowski, D., Variants of the chemokine receptor CCR5 are associated with severe bronchiolitis caused by respiratory syncytial virus (2003) J Infect Dis, 188 (6), pp. 904-907; Hull, J., Thomson, A., Kwiatkowski, D., Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families (2000) Thorax, 55 (12), pp. 1023-1027; Wilson, J., Rowlands, K., Rockett, K., Moore, C., Lockhart, E., Sharland, M., Genetic variation at the IL10 gene locus is associated with severity of respiratory syncytial virus bronchiolitis (2005) J Infect Dis, 191 (10), pp. 1705-1709; Zhou, J., To, K.K., Dong, H., Cheng, Z.S., Lau, C.C., Poon, V.K., A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection (2012) J Infect Dis, 206 (4), pp. 495-503; Statnikov, A., Lytkin, N.I., McVoy, L., Weitkamp, J.H., Aliferis, C.F., Using gene expression profiles from peripheral blood to identify asymptomatic responses to acute respiratory viral infections (2010) BMC Res Notes, 3, p. 264; Barton, A.J., Hill, J., Pollard, A.J., Blohmke, C.J., Transcriptomics in human challenge models (2017) Front Immunol, 8, p. 1839; Cilloniz, C., Shinya, K., Peng, X., Korth, M.J., Proll, S.C., Aicher, L.D., Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes (2009) PLoS Pathog, 5 (10), p. e1000604; Mejias, A., Dimo, B., Suarez, N.M., Garcia, C., Suarez-Arrabal, M.C., Jartti, T., Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection (2013) PLoS Med, 10 (11), p. e1001549; Reza Etemadi, M., Ling, K.H., Zainal Abidin, S., Chee, H.Y., Sekawi, Z., Gene expression patterns induced at different stages of rhinovirus infection in human alveolar epithelial cells (2017) PLoS One, 12 (5), p. e0176947; van den Kieboom, C.H., Ahout, I.M., Zomer, A., Brand, K.H., de Groot, R., Ferwerda, G., Nasopharyngeal gene expression, a novel approach to study the course of respiratory syncytial virus infection (2015) Eur Respir J, 45 (3), pp. 718-725; Gralinski, L.E., Bankhead, A., 3rd, Jeng, S., Menachery, V.D., Proll, S., Belisle, S.E., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) MBio, 4 (4), pp. e00271-e13; Josset, L., Zeng, H., Kelly, S.M., Tumpey, T.M., Katze, M.G., Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: Specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options (2014) MBio, 5 (1). , e01102-13; Menachery, V.D., Eisfeld, A.J., Schafer, A., Josset, L., Sims, A.C., Proll, S., Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses (2014) MBio, 5 (3), pp. e01174-e14; Levitz, R., Gao, Y., Dozmorov, I., Song, R., Wakeland, E.K., Kahn, J.S., Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus (2017) PLoS One, 12 (9), p. e0184318; Guan, W., Yang, Z., Wu, N.C., Lee, H.H.Y., Li, Y., Jiang, W., Shen, L., Clinical correlations of transcriptional profile in patients infected with avian influenza H7N9 virus (2018) J Infect Dis, 218, pp. 1238-1248; Bochkov, Y.A., Hanson, K.M., Keles, S., Brockman-Schneider, R.A., Jarjour, N.N., Gern, J.E., Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma (2010) Mucosal Immunol, 3 (1), pp. 69-80; Gern, J.E., How rhinovirus infections cause exacerbations of asthma (2015) Clin Exp Allergy, 45 (1), pp. 32-42; Gardeux, V., Berghout, J., Achour, I., Schissler, A.G., Li, Q., Kenost, C., A genome-by-environment interaction classifier for precision medicine: Personal transcriptome response to rhinovirus identifies children prone to asthma exacerbations (2017) J Am Med Inform Assoc, 24 (6), pp. 1116-1126; Wesolowska-Andersen, A., Everman, J.L., Davidson, R., Rios, C., Herrin, R., Eng, C., Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome (2017) Genome Biol, 18 (1), p. 12; Heinonen, S., Jartti, T., Garcia, C., Oliva, S., Smitherman, C., Anguiano, E., Rhinovirus detection in symptomatic and asymptomatic children: Value of host transcriptome analysis (2016) Am J Respir Crit Care Med, 193 (7), pp. 772-782; Mariani, T.J., Qiu, X., Chu, C., Wang, L., Thakar, J., Holden-Wiltse, J., Association of dynamic changes in the CD4 T-cell transcriptome with disease severity during primary respiratory syncytial virus infection in young infants (2017) J Infect Dis, 216 (8), pp. 1027-1037; Do, L.A.H., Pellet, J., van Doorn, H.R., Tran, A.T., Nguyen, B.H., Tran, T.T.L., Host transcription profile in nasal epithelium and whole blood of hospitalized children under 2 years of age with respiratory syncytial virus infection (2017) J Infect Dis, 217 (1), pp. 134-146; Morrison, J., Katze, M.G., Gene expression signatures as a therapeutic target for severe H7N9 influenza-what do we know so far? (2015) Expert Opin Ther Targets, 19 (4), pp. 447-450; de Steenhuijsen Piters, W.A., Heinonen, S., Hasrat, R., Bunsow, E., Smith, B., Suarez-Arrabal, M.C., Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection (2016) Am J Respir Crit Care Med, 194 (9), pp. 1104-1115; Hoang, L.T., Tolfvenstam, T., Ooi, E.E., Khor, C.C., Naim, A.N., Ho, E.X., Patient-based transcriptome-wide analysis identify interferon and ubiquination pathways as potential predictors of influenza A disease severity (2014) PLoS One, 9 (11), p. e111640; Proud, D., Turner, R.B., Winther, B., Wiehler, S., Tiesman, J.P., Reichling, T.D., Gene expression profiles during in vivo human rhinovirus infection: Insights into the host response (2008) Am J Respir Crit Care Med, 178 (9), pp. 962-968; McClain, M.T., Nicholson, B.P., Park, L.P., Liu, T.Y., Hero, A.O., 3rd, Tsalik, E.L., A genomic signature of influenza infection shows potential for presymptomatic detection, guiding early therapy, and monitoring clinical responses (2016) Open Forum Infect Dis, 3 (1), p. ofw007; Warren-Gash, C., Hayward, A.C., Hemingway, H., Denaxas, S., Thomas, S.L., Timmis, A.D., Influenza infection and risk of acute myocardial infarction in England and Wales: A CALIBER self-controlled case series study (2012) J Infect Dis, 206 (11), pp. 1652-1659; Kwong, J.C., Schwartz, K.L., Campitelli, M.A., Chung, H., Crowcroft, N.S., Karnauchow, T., Acute myocardial infarction after laboratory-confirmed influenza infection (2018) N Engl J Med, 378 (4), pp. 345-353; Gozalo, P.L., Pop-Vicas, A., Feng, Z., Gravenstein, S., Mor, V., Effect of influenza on functional decline (2012) J Am Geriatr Soc, 60 (7), pp. 1260-1267; Barker, W.H., Borisute, H., Cox, C., A study of the impact of influenza on the functional status of frail older people (1998) Arch Intern Med, 158 (6), pp. 645-650; Rose, J.J., Voora, D., Cyr, D.D., Lucas, J.E., Zaas, A.K., Woods, C.W., Gene expression profiles link respiratory viral infection, platelet response to aspirin, and acute myocardial infarction (2015) PLoS One, 10 (7), p. e0132259; Zaas, A.K., Garner, B.H., Tsalik, E.L., Burke, T., Woods, C.W., Ginsburg, G.S., The current epidemiology and clinical decisions surrounding acute respiratory infections (2014) Trends Mol Med, 20 (10), pp. 579-588; Zaas, A.K., Chen, M., Varkey, J., Veldman, T., Hero, A.O., 3rd, Lucas, J., Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans (2009) Cell Host Microbe, 6 (3), pp. 207-217; Parnell, G.P., McLean, A.S., Booth, D.R., Armstrong, N.J., Nalos, M., Huang, S.J., A distinct influenza infection signature in the blood transcriptome of patients with severe community-acquired pneumonia (2012) Crit Care, 16 (4), p. R157; Harris, A.M., Hicks, L.A., Qaseem, A., Appropriate antibiotic use for acute respiratory tract infection in adults (2016) Ann Intern Med, 165 (9), p. 674; Lautenbach, E., Lee, I., Shiley, K.T., Treating viral respiratory tract infections with antibiotics in hospitals: No longer a case of mistaken identity (2010) LDI Issue Brief, 16 (3), pp. 1-4; Falsey, A.R., Becker, K.L., Swinburne, A.J., Nylen, E.S., Formica, M.A., Hennessey, P.A., Bacterial complications of respiratory tract viral illness: A comprehensive evaluation (2013) J Infect Dis, 208 (3), pp. 432-441; Brendish, N.J., Malachira, A.K., Armstrong, L., Houghton, R., Aitken, S., Nyimbili, E., Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): A pragmatic, open-label, randomised controlled trial (2017) Lancet Respir Med, 5, pp. P401-P411; Muller, B., Harbarth, S., Stolz, D., Bingisser, R., Mueller, C., Leuppi, J., Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia (2007) BMC Infect Dis, 7, p. 10; Tenover, F.C., Developing molecular amplification methods for rapid diagnosis of respiratory tract infections caused by bacterial pathogens (2011) Clin Infect Dis, 52, pp. S338-S345; Chaussabel, D., Pascual, V., Banchereau, J., Assessing the human immune system through blood transcriptomics (2010) BMC Biol, 8, p. 84; Suarez, N.M., Bunsow, E., Falsey, A.R., Walsh, E.E., Mejias, A., Ramilo, O., Superiority of transcriptional profiling over procalcitonin for distinguishing bacterial from viral lower respiratory tract infections in hospitalized adults (2015) J Infect Dis, 212 (2), pp. 213-222; Ramilo, O., Allman, W., Chung, W., Mejias, A., Ardura, M., Glaser, C., Gene expression patterns in blood leukocytes discriminate patients with acute infections (2007) Blood, 109 (5), pp. 2066-2077; Hu, X., Yu, J., Crosby, S.D., Storch, G.A., Gene expression profiles in febrile children with defined viral and bacterial infection (2013) Proc Natl Acad Sci USA, 110 (31), pp. 12792-12797; Sweeney, T.E., Wong, H.R., Khatri, P., Robust classification of bacterial and viral infections via integrated host gene expression diagnostics (2016) Sci Transl Med, 8 (346), p. 346ra91; Tsalik, E.L., Henao, R., Nichols, M., Burke, T., Ko, E.R., McClain, M.T., Host gene expression classifiers diagnose acute respiratory illness etiology (2016) Sci Transl Med, 8 (322), p. 322ra11; Bhattacharya, S., Rosenberg, A.F., Peterson, D.R., Grzesik, K., Baran, A.M., Ashton, J.M., Transcriptomic biomarkers to discriminate bacterial from nonbacterial infection in adults hospitalized with respiratory illness (2017) Sci Rep, 7 (1), p. 6548; Herberg, J.A., Kaforou, M., Wright, V.J., Shailes, H., Eleftherohorinou, H., Hoggart, C.J., Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children (2016) JAMA, 316 (8), pp. 835-845; Mahajan, P., Kuppermann, N., Mejias, A., Suarez, N., Chaussabel, D., Casper, T.C., Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger (2016) JAMA, 316 (8), pp. 846-857; Zaas, A.K., Burke, T., Chen, M., McClain, M., Nicholson, B., Veldman, T., A host-based RT-PCR gene expression signature to identify acute respiratory viral infection (2013) Sci Transl Med, 5 (203), p. 203ra126; Yahya, M., Rulli, M., Toivonen, L., Waris, M., Peltola, V., Detection of host response to viral respiratory infection by measurement of messenger RNA for MxA, TRIM21, and viperin in nasal swabs (2017) J Infect Dis, 216 (9), pp. 1099-1103; Landry, M.L., Foxman, E.F., Antiviral response in the nasopharynx identifies patients with respiratory virus infection (2018) J Infect Dis, 217 (6), pp. 897-905; Franco, L.M., Bucasas, K.L., Wells, J.M., Nino, D., Wang, X., Zapata, G.E., Integrative genomic analysis of the human immune response to influenza vaccination (2013) Elife, 2, p. e00299; Zhu, W., Higgs, B.W., Morehouse, C., Streicher, K., Ambrose, C.S., Woo, J., A whole genome transcriptional analysis of the early immune response induced by live attenuated and inactivated influenza vaccines in young children (2010) Vaccine, 28 (16), pp. 2865-2876; Bucasas, K.L., Franco, L.M., Shaw, C.A., Bray, M.S., Wells, J.M., Nino, D., Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans (2011) J Infect Dis, 203 (7), pp. 921-929; Nakaya, H.I., Wrammert, J., Lee, E.K., Racioppi, L., Marie-Kunze, S., Haining, W.N., Systems biology of vaccination for seasonal influenza in humans (2011) Nat Immunol, 12 (8), pp. 786-795; Haralambieva, I.H., Ovsyannikova, I.G., Kennedy, R.B., Zimmermann, M.T., Grill, D.E., Oberg, A.L., Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals (2016) Vaccine, 34 (34), pp. 3993-4002; Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses (2017) Sci Immunol, 2 (14), pp. 1-28","Falsey, A.R.; University of RochesterUnited States",,"Elsevier",,9780128014967,,,"English","Genomic and Precis. Medicine: Infectious and Inflamm. Disease",Book Chapter,"Final",,Scopus,2-s2.0-85080802399 "Lee H.","57193528959;","Stochastic and spatio-temporal analysis of the Middle East Respiratory Syndrome outbreak in South Korea, 2015",2019,"Infectious Disease Modelling","4",,,"227","238",,,"10.1016/j.idm.2019.06.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070423881&doi=10.1016%2fj.idm.2019.06.002&partnerID=40&md5=6d065b12d4d6142667c19f5b0e5086ec","Department of Mathematics, Hawai'i Pacific University, Honolulu, HI 96813, United States","Lee, H., Department of Mathematics, Hawai'i Pacific University, Honolulu, HI 96813, United States","South Korea was free of the Middle East Respiratory Syndrome (MERS) until 2015. The MERS outbreak in South Korea during 2015 was the largest outbreak of the Coronavirus outside the Middle East. The major characteristic of this outbreak is inter- or intra-hospital transmission. This recent MERS outbreak in South Korea is examined and assessed in this paper. The main objectives of the study is to characterize the pattern of the MERS outbreak in South Korea based on a basic reproductive ratio, the probability of ultimate extinction of the disease, and the spatio-temporal proximity of occurrence between patients. The survival function method and stochastic branching process model are adapted to calculate the basic reproductive ratio and the probability of ultimate extinction of the disease. We further investigate the occurrence pattern of the outbreak using a spatio-temporal autocorrelation function. © 2019 The Authors","Autocorrelation; Basic reproductive ratio; Middle East Respiratory Syndrome; Probability of ultimate extinction","adult; Article; basic reproduction number; disease transmission; female; geographic distribution; geometry; human; major clinical study; male; mathematical model; middle aged; respiratory tract disease; South Korea; spatiotemporal analysis; stochastic model; three dimensional imaging","Bennett, R.J., The representation and identification of spatio-temporal systems; an example of population diffusion in north-west england (1975) Transactions of the Institute of British Geographers, 66, pp. 73-94; Bennett, R.J., Spatial time series (1975), Pion Ltd; Bernoulli, D., Essai d'une nouvelle analyse de la mortalite causée par la petite vérole, et des avantages de l'inoculation pour la prévenir (1766), p. 1. , Mém. Math. Phys. Acad. Roy. Sci., Paris; Brauer, F., Castillo-Chavez, C., Mathematical models in population biology and epidemiology (2011), Springer Science and Business Media; Campbell, C.L., Noe, J.P., The spatial analysis of soilborne pathogens and root diseases (1985) Annual Review of Phytopathology, 23, pp. 129-148; Cao, C., Chen, W., Zheng, S., Zhao, J., Wang, J., Cao, W., Analaysis of spatiotemporal characteristics of pandemic sars spread in mainland China (2016) BioMed Research International, (7247983), pp. 1-12. , 2016; Chang, H., Estimation of basic reproduction number of the middle east respiratory syndrome coronavirus (mers-cov) during the outbreak in South Korea (2017) BioMedical Engineering Online, 16 (1). , (79); Choi, S., Jung, E., Choi, B.Y., Hur, Y.J., Ki, M., High reproduction number of middle east respiratory syndrome coronavirus in nosocomial outbreaks: Mathematical modelling in Saudi Arabia and South Korea (2018) Journal of Hospital Infection, 99 (2), pp. 162-168; Cuong, H.Q., Vu, N.T., Cazelles, B., Boni, M.F., Thai, K.T.D., Rabaa, M.A., Spatiotemporal dynamics of dengue epidemics, southern vietnam (2013) Emerging Infectious Diseases, 19 (6), pp. 945-953; Dietz, K., The first epidemic model: A historical note on P. D. En'ko (1988) Australian Journal of Statistics, 30 (1), pp. 56-65; Hamer, W.H., Epidemic disease in England (1906), Bedford Press; Heesterbeek, J.A.P., Dietz, K., The concept of in epidemic theory (1996) Statistica Neerlandica, 50 (1), pp. 89-110; Hefferman, J.M., Smith, R.J., Wahl, L.M., Perspectives on the basic reproductive ratio (2005) Journal of the Royal Society Interface, 2 (4), pp. 281-293; Hethcote, H.W., The mathematics of infectious diseases (2000) Society for Industrial and Applied Mathematics, 42 (4), pp. 599-653; Keeling, M.J., Rohani, P., Modeling infectious diseases in humans and animals (2008), Princeton University Press; Kermack, W.O., McKendrick, A.G., Contributions to the mathematical theory of epidemics. ii. the problem of endemicity (1932) Proceedings of the Royal Society of London Series A, 138 (834), pp. 55-83; Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Transmission dynamics and control of severe acute respiratory syndrome (2003) Science, 300 (5627), pp. 1966-1970; Lloyd-Smith, J.O., Schreiber, S.J., Getz, W.M., Moving beyond averages: Individual-level variation in disease transmission (2006) Contemporary Mathematics, 410, pp. 235-258; McKendrick, A.G., Applications of mathematics to medical problems (1926) Proceedings of the Edinburgh Mathematical Society (Revised Edition), 44, pp. 98-130; Mills, C.E., Robins, J.M., Lipsitch, M., Transmissibility of 1918 pandemic influenza (2004) Nature, 432 (7019), pp. 904-906; Nicot, P.C., Rouse, D.I., Yandell, B.S., Comparison of statistical methods for studying spatial patterns of soilborne plant pathogens in the field (1984) Phytopathology, 74, pp. 1399-1402; Reynolds, K.M., Madden, L.V., Analaysis of epidemics using spatio-temporal autocorrelation (1988) Phytopathology, 78, pp. 240-246; Ross, R., The prevention of malaria (1911), John Murray London; Snow, J., On the mode of communication of Cholera (1855), 2nd ed. John Churchill London",,,"KeAi Communications Co.",24680427,,,,"English","Infect. Dis. Modelling",Article,"Final",Open Access,Scopus,2-s2.0-85070423881 "Feldmann F., Shupert W.L., Haddock E., Twardoski B., Feldmann H.","12771883300;6603302143;43761241400;52365449000;7202115850;","Gamma irradiation as an effective method for inactivation of emerging viral pathogens",2019,"American Journal of Tropical Medicine and Hygiene","100","5",,"1275","1277",,2,"10.4269/ajtmh.18-0937","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065512416&doi=10.4269%2fajtmh.18-0937&partnerID=40&md5=fe6ae72201032cb1694ac7a440de1cab","Division of Intramural Research (DIR), Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 903 S 4th St., Hamilton, MT 59840, United States; Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States; Division of Intramural Research (DIR), Office of Operations and Management, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States","Feldmann, F., Division of Intramural Research (DIR), Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 903 S 4th St., Hamilton, MT 59840, United States; Shupert, W.L., Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States; Haddock, E., Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States; Twardoski, B., Division of Intramural Research (DIR), Office of Operations and Management, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States; Feldmann, H., Division of Intramural Research (DIR), Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States","Gamma irradiation using a cobalt-60 source is a commonly used method for the inactivation of infectious specimens to be handled safely in subsequent laboratory procedures. Here, we determined irradiation doses to safely inactivate liquid proteinaceous specimens harboring different emerging/reemerging viral pathogens known to cause neglected tropical and other diseases of regional or global public health importance. By using a representative arenavirus, bunyavirus, coronavirus, filovirus, flavivirus, orthomyxovirus, and paramyxovirus, we found that these enveloped viruses differed in their susceptibility to irradiation treatment with adsorbed doses for inactivation of a target dose of 1 × 106 50% tissue culture infectious dose (TCID50)/mL ranging from 1 to 5 MRads. This finding seemed generally inversely correlated with genome size. Our data may help to guide other facilities in testing and verifying safe inactivation procedures. Copyright © 2019 by The American Society of Tropical Medicine and Hygiene",,"cobalt 60; animal experiment; animal tissue; Arenaviridae; Article; Bunyaviridae; controlled study; Coronavirinae; disease predisposition; disease re-emergence; female; Filovirus; Flavivirus; fluorescence microscopy; gamma irradiation; genome size; ID50 (median infectious dose); mouse; nonhuman; Orthomyxoviridae; Paramyxoviridae; public health problem; radiation dose; radiation safety; Vero cell line; virus envelope; virus genome; virus inactivation; virus infectivity; virus load; virus recombinant; virus virulence; gamma radiation; Orthobunyavirus; pathogenicity; procedures; radiation response; virology; virus; virus inactivation; Flavivirus; Gamma Rays; Genome, Viral; Orthobunyavirus; Orthomyxoviridae; Virology; Virus Inactivation; Viruses","Sullivan, R., Fassolitis, A.C., Larkin, E.P., Read, R.B., Jr., Peeler, J.T., Inactivation of thirty viruses by gamma radiation (1971) Appl Microbiol, 22, pp. 61-65; Elliott, L.H., McCormick, J.B., Johnson, K.M., Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation (1982) J Clin Microbiol, 16, pp. 704-708; Mitchell, S.W., McCormick, J.B., Physicochemical inactivation of Lassa, Ebola, and Marburg viruses and effect on clinical laboratory analyses (1984) J Clin Microbiol, 20, pp. 486-489; House, C., Mikiciuk, P.E., Berninger, M.L., Laboratory diagnosis of African horse sickness: Comparison of serological techniques and evaluation of storage methods of samples for virus isolation (1990) J Vet Diagn Invest, 2, pp. 44-50; Haddock, E., Feldmann, F., Feldmann, H., Effective chemical inactivation of Ebola virus (2016) Emerg Infect Dis, 22, pp. 1292-1294; Hume, A.J., Ames, J., Rennick, L.J., Duprex, W.P., Marzi, A., Tonkiss, J., Mühlberger, E., Inactivation of RNA viruses by gamma irradiation: A study on mitigating factors (2016) Viruses, 8, p. E204; Haddock, E., Feldmann, F., Validating the inactivation effectiveness of chemicals on Ebola virus (2017) Methods Mol Biol, 1628, pp. 251-257; (2018) Division of Select Agents and Toxins (DSAT) of the Centers for Disease Control and Prevention, , https://www.selectagents.gov/irg-inactivation.html; (2018) Animal and Plant Health Inspection Services of the Department of Agriculture, , https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-and-animal-product-import-information/sa_ag_select_agent; Ebihara, H., In vitro and in vivo characterization of recombinant Ebola viruses expressing enhanced green fluorescent protein (2007) J Infect Dis, 196, pp. S313-S322; Bray, M., Davis, K., Geisbert, T., Schmaljohn, C., Huggins, J., A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever (1998) J Infect Dis, 178, pp. 651-661; Ebihara, H., Takada, A., Kobasa, D., Jones, S., Neumann, G., Theriault, S., Bray, M., Kawaoka, Y., Molecular determinants of Ebola virus virulence in mice (2006) PLoS Pathog, 2; Lomax, M.E., Folkes, L.K., O’Neill, P., Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy (2013) Clin Oncol (R Coll Radiol), 25, pp. 578-585; Ohshima, H., Iida, Y., Matsuda, A., Kuwabara, M., Damage induced by hydroxyl radicals generated in the hydration layer of gamma-irradiated frozen aqueous solution of DNA (1996) J Radiat Res, 37, pp. 199-207; Jordan, R.T., Kempe, L.L., Inactivation of some animal viruses with gamma radiation from cobalt-60 (1956) Proc Soc Exp Biol Med, 91, pp. 212-215; Kenny, M.T., Albright, K.L., Emery, J.B., Bittle, J.L., Inactivation of rubella virus by gamma radiation (1969) J Virol, 4, pp. 807-810; Niedrig, M., Donoso-Mantke, O., Schädler, R., The European Network for Diagnostics of Imported Viral Diseases (ENIVD)—12 years of strengthening the laboratory diagnostic capacity in Europe (2007) Euro Surveill, 12. , E070419.5 ENIVD members, 2007 Apr 19","Feldmann, F.; Division of Intramural Research (DIR), Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 903 S 4th St., United States; email: feldmannh@niaid.nih.gov",,"American Society of Tropical Medicine and Hygiene",00029637,,AJTHA,"30860018","English","Am. J. Trop. Med. Hyg.",Article,"Final",,Scopus,2-s2.0-85065512416 "Yadana S., Coleman K.K., Nguyen T.T., Hansen-Estruch C., Kalimuddin S., Thoon K.C., Low J.G.H., Gray G.C.","57204876024;57203436946;57208893817;56033471200;35484514100;35081338400;8538590800;16425441400;","Monitoring for airborne respiratory viruses in a general pediatric ward in Singapore",2019,"Journal of Public Health Research","8","3", 1407,"100","103",,1,"10.4081/jphr.2019.1407","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076297242&doi=10.4081%2fjphr.2019.1407&partnerID=40&md5=56d41251538602785c0dc68e652370f5","Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Duke University School of Medicine, Durham, United States; Department of Infectious Diseases, Singapore General Hospital, Singapore; Department of Pediatrics, Infectious Disease Service, KK Women’s and Children’s Hospital, Singapore; Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, United States; Global Health Research Center, Duke Kunshan University, Kunshan, China","Yadana, S., Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Coleman, K.K., Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Nguyen, T.T., Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Hansen-Estruch, C., Duke University School of Medicine, Durham, United States; Kalimuddin, S., Department of Infectious Diseases, Singapore General Hospital, Singapore; Thoon, K.C., Department of Pediatrics, Infectious Disease Service, KK Women’s and Children’s Hospital, Singapore; Low, J.G.H., Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Department of Infectious Diseases, Singapore General Hospital, Singapore; Gray, G.C., Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, NC, United States, Global Health Research Center, Duke Kunshan University, Kunshan, China","There is an increasing body of evidence suggesting that transmission of respiratory viruses occurs through the inhalation of virus-laden particles. Our study describes the use of an aerosol sampling system to monitor the prevalence of airborne viruses in a hospital setting. Using SKC AirCheck Touch pumps, with National Institute for Occupational Safety and Health (NIOSH) bioaerosol samplers and SKC filter cassette blanks, 28 aerosol samples were collected in a hospital ward in Singapore. Following DNA/RNA extraction, real-time RT-PCR/PCR was used for the detection of influenza A, B and D viruses, coronaviruses, enteroviruses, and adenoviruses. Airborne virus was detected in nine (32%) of 28 samples. Among the nine positive samples, eight were PCR-positive for adenovirus and one for influenza A virus. Our data suggest that bioaerosol sampling could be valuable in monitoring for airborne respiratory viruses in clinical environments to better understand the risk of infection during a hospital visit. © the Author(s), 2019 Licensee PAGEPress, Italy.","Adenovirus; Aerosol; Influenza virus; Respiratory viruses; Surveillance","A-549 cell line; Adenoviridae; aerosol; airborne virus; Article; cell culture; Coronaviridae; cytopathogenic effect; DNA extraction; Enterovirus; human; human cell; Human parainfluenza virus 1; infection risk; Influenza A virus; Influenza B virus; nonhuman; patient monitoring; pediatric ward; prevalence; real time reverse transcription polymerase chain reaction; respiratory virus; RNA extraction; SARS coronavirus; severe acute respiratory syndrome; Singapore; virus detection; virus transmission","(2013) The New Paper, , https://www.sgh.com.sg/about-us/news-room/News-Articles-Reports/Pages/hospital-acquired-infec-tions.aspx, February, Retrieved from; (2007) Infection Prevention and Control Measures for Acute Respiratory Infections in Healthcare Settings: An Update, pp. 39-47; Cao, G., Noti, J.D., Blachere, F.M., Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler (2011) J Environ Monitoring, 13, pp. 3321-3328; CDC Protocol of Realtime RT-PCR for Influenza H1N1, , World Health Organization, Geneva: Switzerland; Selvaraju, S.B., Selvarangan, R., Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses (2010) J Clin Microbiol, 48, pp. 3870-3875; Hause, B.M., Ducatez, M., Collin, E.A., Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses (2013) Plos Pathog, 9; Vlasova, A.N., Halpin, R., Wang, S., Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis (2011) J Gen Virol, 92, pp. 1369-1379; Kilpatrick, D.R., Yang, C.F., Ching, K., Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues (2009) J Clin Microbiol, 47, pp. 1939-1941; Blachere, F.M., Lindsley, W.G., Pearce, T.A., Measurement of airborne influenza virus in a hospital emergency department (2009) Clin Infect Dis, 48, pp. 438-440; Coleman, K., (2017) Environmental Detection and Quantification of Airborne Influenza a Virus in an Elementary School, and Its Implications for Student and Community Illness, , https://etd.ohi-olink.edu/, Electronic Thesis or Dissertation; Nguyen, T.T., Poh, M.K., Low, J., Bioaerosol Sampling in Clinical Settings: A Promising, Noninvasive Approach for Detecting Respiratory Viruses (2017) Open Forum Infect Dis, 4; Blachere, F.M., Lindsley, W.G., Slaven, J.E., Bioaerosol sampling for the detection of aerosolized influenza virus (2007) Influenza Other Respir Viruses, 1, pp. 113-120; Cao, G., Noti, J.D., Blachere, F.M., Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler (2011) J Environ Monit, 13, pp. 3321-3328; Noti, J.D., Blachere, F.M., McMillen, C.M., High humidity leads to loss of infectious influenza virus from simulated coughs (2013) Plos One, 8","Coleman, K.K.; Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore; email: kristen.coleman@duke-nus.edu.sg",,"Page Press Publications",22799028,,,,"English","J. Public Health Res.",Article,"Final",Open Access,Scopus,2-s2.0-85076297242 "van Kerkhove M.D., Aswad S., Assiri A., Perera R.A.P.M., Peiris M., El Bushra H.E., BinSaeed A.A.","15761388700;57211636823;36607531400;43861730800;7005486823;6701457097;24471240700;","Transmissibility of MERS-CoV infection in closed setting, Riyadh, Saudi Arabia, 2015",2019,"Emerging Infectious Diseases","25","10",,"1802","1809",,,"10.3201/eid2510.190130","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072366595&doi=10.3201%2feid2510.190130&partnerID=40&md5=e3433afd0a81fc79bf8a7158f5c01e7b","King Saud University, Riyadh, Saudi Arabia; World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland","van Kerkhove, M.D., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland; Aswad, S., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland; Assiri, A., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland; Perera, R.A.P.M., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland; Peiris, M., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland; El Bushra, H.E., World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland; BinSaeed, A.A., King Saud University, Riyadh, Saudi Arabia, World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Geneva, 1211, Switzerland","To investigate a cluster of Middle East respiratory syndrome (MERS) cases in a women-only dormitory in Riyadh, Saudi Arabia, in October 2015, we collected epidemiologic information, nasopharyngeal/oropharyngeal swab samples, and blood samples from 828 residents during November 2015 and December 2015–January 2016. We found confirmed infection for 19 (8 by reverse transcription PCR and 11 by serologic testing). Infection attack rates varied (2.7%–32.3%) by dormitory building. No deaths occurred. Independent risk factors for infection were direct contact with a confirmed case-patient and sharing a room with a confirmed case-patient; a protective factor was having an air conditioner in the bedroom. For 9 women from whom a second serum sample was collected, antibodies remained detectable at titers >1:20 by pseudoparticle neutralization tests (n = 8) and 90% plaque-reduction neutralization tests (n = 2). In closed high-contact settings, MERS coronavirus was highly infectious and pathogenicity was relatively low. © 2019 Centers for Disease Control and Prevention (CDC). All rights reserved.",,"immunoglobulin G; adult; Article; asthma; breast cancer; diabetes mellitus; enzyme linked immunosorbent assay; female; gene expression; human; hypertension; major clinical study; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; questionnaire; reverse transcription polymerase chain reaction; risk factor; seroepidemiology; virus virulence","Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823. , https://doi.org/10.3201/eid1911.131172; (2013) Middle East Respiratory Syndrome–Coronavirus– Update, , http://www.who.int/csr/don/2013_05_29_ncov, 29 May cited 2013 May 30; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18. , https://doi.org/10.26719/2013.19.supp1.S12; MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Research, 159, pp. 35-44; Ben Embarek, P.K., van Kerkhove, M.D., Middle East respiratory syndrome coronavirus (MERS-CoV): Current situation 3 years after the virus was first identified (2015) Wkly Epidemiol Rec, 90, pp. 245-250; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377. , https://doi.org/10.1093/cid/ciu812; Ki, M., MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol Health, 37, p. e2015033. , 2015; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835. , https://doi.org/10.1056/NEMoa1405858; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov, cited 2019 Jul 30; Al Hosani, F., Pringle, K., Al Mulla, M., Kim, L., Pham, H., Alami, N.N., Response to emergence of Middle East respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014 (2016) Emerg Infect Dis, 22, pp. 1162-1168. , https://dx.doi.org/10.3201/eid2207.160040; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11, pp. 128-131. , https://doi.org/10.4103/1817-1737.180027; Disease Outbreak News, , http://www.who.int/csr/don/22-june-2016-mers-saudi-arabia, cited 2019 Jul 30; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369, pp. 884-886. , https://doi.org/10.1056/NEJMc1308698; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854. , https://doi.org/10.1056/NEJMoa1408636, 2014; Moon, S.Y., Son, J.S., Infectivity of an asymptomatic patient with Middle East respiratory syndrome coronavirus infection (2017) Clin Infect Dis, 64, pp. 1457-1458; (2015) Weekly Monitor MERS-CoV, , https://www.moh.gov.sa/en/CCC/Documents/Volume-2-Issue11-Tuesday-March-15-2016.pdf, Kingdom of Saudi Arabia Ministry of Health. 3 November cited 2019 Jul 24; Seroepidemiological Investigation of Contacts of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Patients, , https://www.who.int/csr/disease/coronavirus_infections/who-close-non-hcw-contact-protocol-merscov.docx?ua=1, cited 2019 Aug 1; Kingdom of Saudi Arabia Ministry of Health. Middle East Respiratory Syndrome Coronavirus Guidelines for Healthcare Professionals, , https://www.moh.gov.sa/CCC/healthp/regulations/Documents/MERS-CoV%20Guidelines%20for%20Healthcare%20Professionals%20-%20May%202018%20-%20v5.1%20%281%29.pdf, Command and Control Center SAB. cited 2019 Aug 1; Guidance on Regulations for the Transport of Infectious Substances 2015–2016, , http://www.who.int/ihr/publications/who_hse_ihr_2015.2, cited 2019 Jun 5; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.-H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084. , https://dx.doi.org/10.3201/eid2307.170310; Al-Abdely, H.M., Midgley, C.M., Alkhamis, A.M., Abedi, G.R., Tamin, A., Binder, A.M., Infectious MERS-CoV isolated from a mildly ill patient, Saudi Arabia (2018) Open Forum Infect Dis, 5, p. ofy111. , https://doi.org/10.1093/ofid/ofy111; Arwady, M.A., Alraddadi, B., Basler, C., Azhar, E.I., Abuelzein, E., Sindy, A.I., Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 1395-1402. , https://doi.org/10.3201/eid2208.152015; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk (2013) Lancet, 382, pp. 694-699. , https://doi.org/10.1016/S0140-6736(13)61492-0; Cauchemez, S., Fraser, C., van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Hui, D.S., Azhar, E.I., Kim, Y.-J., Memish, Z.A., Oh, M., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227. , d; (2018) WHO MERS Global Summary and Assessment of Risk, , https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf, August cited 2019 Jun 5; Infection Prevention and Control during Health Care for Probable or Confirmed Cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection, , https://www.who.int/csr/disease/coronavirus_infections/ipc-mers-cov, cited 2019 Jun 5; BinSaeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015–February 2016 (2017) Emerg Infect Dis, 23, pp. 682-685. , https://doi.org/10.3201/eid2304.161793; van Kerkhove, M.D., Peiris, M.J.S., Malik, M.R., Ben Embarek, P., Interpreting results from environmental contamination studies of Middle East respiratory syndrome coronavirus (2016) Clin Infect Dis, 63, p. 1142. , https://doi.org/10.1093/cid/ciw478; Kim, S.-H., Chang, S.Y., Sung, M., Park, J.H., Bin Kim, H., Lee, H., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS outbreak units (2016) Clin Infect Dis, 63, pp. 363-369; Bin, S.Y., Heo, J.Y., Song, M.-S., Lee, J., Kim, E.-H., Park, S.-J., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760. , https://doi.org/10.1093/cid/civ1020; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18, p. 20590. , https://doi.org/10.2807/1560-7917.ES2013.18.38.20590; Assessment of Potential Risk Factors of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection among Health Care Personnel in A Health Care Setting, , https://www.who.int/csr/disease/coronavirus_infections/who-generic_healthcare-mers-seroepi-investigation.docx, cited 2019 Jan 1; Park, S.W., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Comparison of serological assays in human Middle East respiratory syndrome (MERS)-coronavirus infection (2015) Euro Surveill, 20, p. 30042. , https://doi.org/10.2807/1560-7917.ES.2015.20.41.30042; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574. , https://doi.org/10.2807/1560-7917.ES2013.18.36.20574; Ko, J.H., Müller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89, pp. 106-111; Vatcheva, K.P., Lee, M., McCormick, J.B., Rahbar, M.H., Multicollinearity in regression analyses conducted in epidemiologic studies (2016) Epidemiology (Sunnyvale), 6, p. 227","van Kerkhove, M.D.; World Health Organization, High Threat Pathogens, Global Infectious Hazards Management Health Emergencies Program, Avenue Appia, Switzerland; email: vankerkhovem@who.int",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31423971","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85072366595 "Dlamini Z., Kupa K., Schellack N.","57204933180;57209852715;35801452600;","Colds and flu - An overview of their management",2019,"SA Pharmaceutical Journal","86","3",,"16","22",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068904018&partnerID=40&md5=a13954d017c4fd24ebb79a02bac9143b","Academic Intern, School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, South Africa; School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, South Africa","Dlamini, Z., Academic Intern, School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, South Africa; Kupa, K., Academic Intern, School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, South Africa; Schellack, N., School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, South Africa","In South Africa deaths related to colds and flu are at least three times higher when compared to the USA. The burden of HIV and tuberculosis in our country heightens the risk of severe flu-related illness. The common cold and flu are caused by very different viruses that share very similar symptoms. The common cold is a self-limiting upper respiratory tract viral infection and it is caused by the rhinovirus, coronavirus or the adenovirus. It usually resolves within 7-10 days. Flu is caused by the influenza virus and usually presents with headaches, myalgia, fever and body aches. There is no place for antibiotic usage in colds and flu management, and there is no clinical evidence which suggests that using antibiotics alters the course of the disease or prevents secondary infection. Treatment is mainly symptomatic and includes many over-the counter-medicines, specific antiviral agents and herbal treatment. © 2019 Medpharm.","Adenovirus; Antivirals; Colds; Coronavirus; Flu; Herbal medicine; Influenza; Over-the-counter medicine; Rhinovirus; Upper respiratory tract infections","antihistaminic agent; antitussive agent; decongestive agent; expectorant agent; influenza vaccine; mineral; mucolytic agent; n methyl dextro aspartic acid receptor blocking agent; sialidase inhibitor; vitamin; antiviral therapy; common cold; human; hydration status; influenza; influenza vaccination; nonhuman; Review","Schellack, N., Labuschagne, Q., Overview and management of colds and flu (2014) South African Pharmacy Journal, 81 (6), pp. 19-26; (2019) The Common Cold in Children: Clinical Features and Diagnosis, , https://www.uptodate.com/contents/the-common-cold-in-children-clinicalfeatures-and-diagnosis, Uptodate.com [online] [Accessed 3 Apr 2019]; (2017), http://www.npc.nhs.uk/merec/infect/commonintro/resources/merec_bulletin_vol17_no3_common_cold.pdf, National Prescribing Centre, [online] NHS National Prescribing Centre. Common cold. NHS [homepage on the Internet]. 2006. c2014. [Accessed 3 Apr 2019]; Hermsen, E.D., Rupp, M.E., (2008) Influenza. Pharmacotherapy: A Pathophysiologic Approach, pp. 1791-1799. , DiPiro JT, editor. New York: McGraw Hill; Van Schoor, J., Colds, flu and coughing, a review of over-the-counter cold and flu medicines (2013) South African Family Practice, 55 (4), pp. 334-336; Perrotta, D., Bella, A., Rizzo, C., Paolotti, D., Participatory online surveillance as a supplementary tool to sentinel doctors for influenza-like illness surveillance in Italy (2017) PloS One, 12 (1); Wright, C.I., Awareness of 'Does Finiflu (containing garlic, onion and chili) provide symptomatic relief from cold and flu? (2016) Current Trends in Nutraceuticals, 1 (1), p. 6; Guppy, M.P.B., Mickan, S.M., Del Mar, C.B., ""Drink plenty of fluids"": A systematic review of evidence for this recommendation in acute respiratory infections BMJ, (7438), pp. 499-500. , 2004328; Byber, K., Flatz, A., Norbäck, D., (2016) Humidification of Indoor Air for Preventing or Reducing Dryness Symptoms or Upper Respiratory Infections in Educational Settings and at the Workplace, , The Cochrane Library; Barham, H.P., Harvey, R.J., Nasal saline irrigation: Therapeutic or homeopathic (2015) Brazilian Journal of Otorhinolaryngology., 81 (5), pp. 457-458; Mousa, H.A.L., Prevention and treatment of influenza, influenza-like illness, and common cold by herbal, complementary, and natural therapies (2017) Journal of Evidence-Based Complementary and Alternative Medicine., 22 (1), pp. 166-174; (2019) Types of Vaccines | Vaccines.gov, , https://www.vaccines.gov/basics/types/index.html, Vaccines.gov [online] [Accessed 3 Apr 2019]; Rossiter, D., (2014) South African Medicines Formulary, , editor. 11th ed. Cape Town: Health and Medical Publishing Group; Simon, H., Zieve, D., (2013) Colds and Flu: An In-depth Report on the Diagnosis, Treatment and Prevention of Colds and Flu, , http://health/medical/reports/articles/colds-and-the-flu, University of Maryland Medical Centre [homepage on the Internet]. c2014. [Accessed 3 Apr 2017]; (2019), https://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm126465.htm, Fda.gov. Information for healthcare professionals - promethazine (marketed as phenergan and generic products). [online] [Accessed 3 Apr 2019]; Schellack, G., (2010) Pharmacology in Clinical Practice: Application Made Easy for Nurses and Allied Health Professionals, , 2nd ed. Claremont: Juta and Company; Ryan, D., How to identify and manage seasonal allergic rhinitis (2016) Journal of Community Nursing, 30 (2); Jefferson, T., Jones, M., Doshi, P., Del Mar, C., Neuraminidase inhibitors for preventing and treating influenza in healthy adults: Systematic review and meta-analysis (2009) BMJ, 339, p. b5106; Barnett, R., Case histories: Influenza (2019) Lancet, 393, p. 218. , https://www.thelancet.com/action/showPdf?pii=S0140-6736%2819%2930148-5, [Accessed 19 Apr 2019]","Schellack, N.; School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences UniversitySouth Africa; email: natalie.schellack@smu.ac.za",,"Medpharm Publications",22215875,,,,"English","SA Pharm. J.",Review,"Final",,Scopus,2-s2.0-85068904018 "Kim Y., Ku M., Oh S.S.","36501848000;57104727600;26023532100;","Public health emergency response coordination: putting the plan into practice",2019,"Journal of Risk Research",,,,"","",,,"10.1080/13669877.2019.1628092","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067574940&doi=10.1080%2f13669877.2019.1628092&partnerID=40&md5=ed05fa7ae7d47d9d881b63fd06915857","School of Public Affairs, Arizona State University, Phoenix, AZ, United States; Department of Public Management, John Jay College, CUNY, New York, NY, United States; Department of Public Administration, Hanyang University, Seongdong-gu, South Korea","Kim, Y., School of Public Affairs, Arizona State University, Phoenix, AZ, United States; Ku, M., Department of Public Management, John Jay College, CUNY, New York, NY, United States; Oh, S.S., Department of Public Administration, Hanyang University, Seongdong-gu, South Korea","Insufficient specifications about public health emergency coordination involving government entities have been criticized as a contributing factor in managerial and institutional shortcomings. In response, this study analyzed the coordination plan and actions taken during the 2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreak in South Korea. Using network data, we found a low congruence between the planned response coordination networks and those carried out. This result was observed for two reasons. First, unrealized or newly emerging relationships among planned actors contributed to the low congruence. Second, the response plan overlooked the role and relationships of several intermediary actors between the local and national actors in the government system. The broad implication is that public health emergency preparedness and response agencies may be cognizant of the neglected areas in drawing the boundaries between—and the relationships of—core and emergent actors in emergency planning. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.","MERS-CoV; Response coordination plan; social network analysis","Public health; Social networking (online); Contributing factor; Coordination networks; Emergency planning; Government entities; Government systems; Health emergencies; MERS-CoV; Response coordination plan; Emergency services","Boin, A., ‘T Hart, P., Organizing for Effective Emergency Management: Lessons from Research (2010) Australian Journal of Public Administration, 69 (4), pp. 357-371; Borgatti, S.P., Everett, M.G., Johnson, J.C., (2013) Analyzing Social Networks, , Thousand Oaks, CA: Sage; Briggs, D., Stern, R., Risk Response to Environmental Hazards to Health–towards an Ecological Approach (2007) Journal of Risk Research, 10 (5), pp. 593-622; Brooks, J.M., Bodeau, D., Fedorowicz, J., Network Management in Emergency Response: Articulation Practices of State-Level Managers–Interweaving up, down, and Sideways (2012) Administration & Society, 45 (8), pp. 911-948; Brown, C., Eriksson, K., A Plan for (Certain) Failure: Possibilities for and Challenges of More Realistic Emergency Plans (2008) International Journal of Emergency Management, 5 (3-4), pp. 292-310. , http://10.1504/IJEM.2008.025099; (2011) Public Health Emergency Response Guide for State, Local, and Tribal Public Health Directors (Version 2.0), , https://emergency.cdc.gov/planning/pdf/cdcresponseguide.pdf, Washington, DC: U.S. Department of Health and Human Services; Choi, J.W., Kim, K.H., Cho, Y.M., Kim, S.H., Current Epidemiological Situation of Middle East Respiratory Syndrome Coronavirus Clusters and Implications for Public Health Response in South Korea (2015) Journal of the Korean Medical Association, 58 (6), pp. 487-497; Clarke, L., (1999) Mission Improbable: Using Fantasy Documents to Tame Disaster, , Chicago, IL: The University of Chicago Press; Comfort, L.K., Risk and Resilience: Inter‐Organizational Learning following the Northridge Earthquake of 17 January 1994 (1994) Journal of Contingencies and Crisis Management, 2 (3), pp. 157-170; Comfort, L.K., Risk, Security, and Disaster (2005) Annual Review of Political Science, 8 (1), pp. 335-356; Comfort, L.K., Crisis Management in Hindsight: Cognition, Communication, Coordination, and Control (2007) Public Administration Review, 67 (s1), pp. 189-197; Davis, J.R., Lederberg, J., (2000) Public Health Systems and Emerging Infections: Assessing the Capabilities of the Public and Private Sectors: Workshop Summary, , Washington, DC: National Academy Press; Figuie, M., Towards a Global Governance of Risks: International Health Organizations and the Surveillance of Emerging Infectious Diseases (2014) Journal of Risk Research, 17 (4), pp. 469-482; Go, D.Y., Park, J., A Comparative Study of Infectious Disease Government in Korea: What we Can Learn from the 2003 SARS and the 2015 MERS Outbreak (2018) Journal of the Korea Association for Policy Studies, 27 (1), pp. 243-280; Gorman, L., Stoney, C., Missed Opportunities: Public Health Disaster Management in Canada (2015) Journal of Public Management & Social Policy, 22 (2), p. 6; Hart, P.T., Rosenthal, U., Kouzmin, A., Crisis Decision Making: The Centralization Thesis Revisited (1993) Administration & Society, 25 (1), pp. 12-45; Hodge, J.G., Gostin, L.O., Vernick, J.S., The Pandemic and All-Hazards Preparedness Act: Improving Public Health Emergence Response (2007) JAMA, 297 (15), pp. 1708-1711; Holloway, R., Rasmussen, S.A., Zaza, S., Cox, N.J., Jernigan, D.B., Updated Preparedness and Response Framework for Influenza Pandemics (2014) MMWR, 63 (6), pp. 1-18; Jehn, M., Kim, Y., Bradley, B., Lant, T., Community Knowledge, Risk Perception, Preparedness for the 2009 Influenza a/H1N1 Pandemic (2011) Journal of Public Health Management Practice, 17 (5), pp. 431-438; Jones, E., Faas, A.J., (2016) Social Network Analysis of Disaster Response, Recovery, and Adaptation, , Cambridge, MA: Butterworth-Heinemann; Kapucu, N., Examining the National Response Plan in Response to a Catastrophic Disaster: Hurricane Katrina in 2005 (2006) International Journal of Mass Emergencies and Disasters, 24 (2), pp. 271-299; Kapucu, N., Arslan, T., Collins, M.L., Examining Intergovernmental and Interorganizational Response to Catastrophic Disasters: Toward a Network-Centered Approach (2010) Administration & Society, 42 (2), pp. 222-247; Kapucu, N., Demiroz, F., “Interorganizational networks in disaster management,” (2016) Social Network Analysis of Disaster Response, Recovery, and Adaptation, pp. 25-39. , Jones E., Faas A.J., (eds), Cambridge, MA: Butterworth-Heinemann, and, edited by; Kim, Y., Zhong, W., Jehn, M., Walsh, L., Public Risk Perceptions and Preventive Behaviors during the 2019 H1N1 Influenza Pandemic (2015) Disaster Medicine and Public Health Preparedness, 9 (2), pp. 145-154; (2014) MERS Response Manual, , 1st and 2nd ed, Seoul: KCDC; (2015) MERS Response Manual, , Seoul: KCDC,. (3-1, 3-2, 3-3, 3-3-1, 3-3-2, 3-4, and 3-5 ed; Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015 (2015) Osong Public Health and Research Perspect, 6 (4), pp. 269-278; Marcum, C.S., Bevc, C.A., Butts, C.T., Mechanisms of Control in Emergent Interorganizational Networks (2012) Policy Studies Journal, 40 (3), pp. 516-546; Mars, D., Heterarchy: An Interorganizational Approach to Securing the United States against a Pandemic Threat (2013) Policy Perspectives, 20, pp. 100-117; Michelle, D.S., Maier, R., Jardine, C., Damned If You Do, and Damned If You Don’t’: Communicating about Uncertainty and Evolving Science during the H1N1 Influenza Pandemic (2018) Journal of Risk Research; (2016) 2015 MERS White Paper, , Seoul: Korea Institute for Health and Social Affairs; Nelson, C., Lurie, N., Wasserman, J., Zakowski, S., Conceptualizing and Defining Public Health Emergency Preparedness (2007) American Journal of Public Health, 97, pp. S9-S11; Perry, R.W., Lindell, M.K., Preparedness for Emergency Response: Guideline for the Emergency Planning Process (2003) Disasters, 27 (4), pp. 336-350; Robinson, S.E., Eller, W.S., Gall, M., Gerber, B.J., The Core and Periphery of Emergency Management Networks: A Multi-Modal Assessment of Two Evacuation-Hosting Networks from 2000 to 2009 (2013) Public Management Review, 15 (3), pp. 344-362; Schneider, S.K., Governmental Response to Disasters: The Conflict between Bureaucratic Procedures and Emergent Norms (1992) Public Administration Review, 52 (2), pp. 135-145; Seo, K.H., Lee, J.C., Kim, G.H., Lee, E., Epidemics Crisis Management Systems in South Korea (2015) Chung-Ang Public Administration Review, 29 (4), pp. 219-242; Steigenberger, N., Organizing for the Big One: A Review of Case Studies and a Research Agenda for Multi-Agency Disaster Response (2016) Journal of Contingencies and Crisis Management, 24 (2), pp. 60-72; Swaan, C.M., Öry, A.V., Schol, L.G.C., Jacobi, A., Richardus, J.H., Timen, A., Ebola Preparedness in The Netherlands: The Need for Coordination between the (2018) Public Health and the Curative Sector.” Journal of Public Health Management and Practice, 24 (1), pp. 18-25; Takeda, M.B., Helms, M.M., Bureaucracy, Meet Catastrophe: Analysis (2005) International Journal of Public Sector Management, 19 (4), pp. 397-411; Treurniet, W., “Shaping Comprehensive Emergency Response Networks,” (2014) Network Topology in Command and Control: Organization, Operation, and Evolution, pp. 26-48. , Monsuur H., Janssen R.H.P., (eds), Hershey, PA: IGI Global, edited by; (2016) Infectious Disease Emergency Response Plan, , http://health.utah.gov/epi/IDER_2016.pdf; Williams, H.A., Dunville, R.L., Gerber, S.I., Erdman, D.D., Pesik, N., Kuhar, D., Mason, K.A., CDC’s Early Response to a Novel Viral Disease, Middle East Respiratory Syndrome Coronavirus (MERS-Cov), September 2012–May 2014 (2015) Public Health Reports, 130 (4), pp. 307-317","Kim, Y.; School of Public Affairs, Arizona State University, 411 N. Central Ave. Ste. 400, United States; email: ykim@asu.edu",,"Routledge",13669877,,,,"English","J. Risk Res.",Article,"Article in Press",,Scopus,2-s2.0-85067574940 "Xu Z., Zhang Y., Gong L., Huang L., Lin Y., Qin J., Du Y., Zhou Q., Xue C., Cao Y.","57195944163;55344929200;57195944977;57201408389;57193956631;57193958554;57201312085;55481327300;24400445400;36039272800;","Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets",2019,"Transboundary and Emerging Diseases","66","1",,"119","130",,7,"10.1111/tbed.12992","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053040219&doi=10.1111%2ftbed.12992&partnerID=40&md5=aa5620654aa30b11cbcc30e6ec70641c","State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Guangdong Wen's Group Academy, Guangdong Wen’s Foodstuffs Group Co., Ltd, Xinxing, China","Xu, Z., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Zhang, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Gong, L., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Huang, L., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Lin, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Qin, J., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Du, Y., Guangdong Wen's Group Academy, Guangdong Wen’s Foodstuffs Group Co., Ltd, Xinxing, China; Zhou, Q., Guangdong Wen's Group Academy, Guangdong Wen’s Foodstuffs Group Co., Ltd, Xinxing, China; Xue, C., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China; Cao, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China","Porcine enteric alphacoronavirus (PEAV) was first discovered in China in February 2017, and the origin and virulence of this novel porcine coronavirus were not fully characterized. Here, we isolated a strain of PEAV, named GDS04 that is identified by immunofluorescence and typical crown-shaped particles observed with electron microscopy. Genomic analysis reveals that PEAV GDS04 shares a close relationship with SADS-CoV and SeACoV. Furthermore, newborn piglets orally challenged with PEAV GDS04 developed typical clinical symptoms as watery diarrhoea in neonatal piglets. Viral RNA was detected in faeces and various tissues of the infected piglets. Moreover, macroscopic and microscopic lesions in whole intestinal tract were observed, and viral antigen could be detected in the small intestines by immunohistochemical staining and electron microscopy. Importantly, the mortality rate of inoculated-newborn piglets was 100% and half of the cohabiting piglets died. Collectively, we demonstrate that PEAV is highly pathogenic in newborn piglets. © 2018 Blackwell Verlag GmbH","newborn piglets; pathogenicity; Porcine enteric alphacoronavirus (PEAV)","virus RNA; virus antigen; virus RNA; Alphacoronavirus; animal cell; animal experiment; animal model; animal tissue; Article; dehydration; diarrhea; electron microscopy; enteric virus; gene; genetic analysis; histology; immunofluorescence; immunofluorescence test; intestine; mortality; nonhuman; PEAV gene; phylogeny; piglet; reverse transcription polymerase chain reaction; Vero cell line; virus characterization; virus isolation; virus plaque; virus strain; virus titration; virus virulence; vomiting; Alphacoronavirus; animal; China; Coronavirus infection; diarrhea; feces; isolation and purification; mortality; pathology; physiology; pig; swine disease; veterinary medicine; virology; Alphacoronavirus; Animals; Antigens, Viral; China; Coronavirus Infections; Diarrhea; Feces; Intestines; RNA, Viral; Swine; Swine Diseases","Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., Arabi, Y.M., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study (2018) Histopathology, 72, pp. 516-524. , https://doi.org/10.1111/his.13379; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59. , https://doi.org/10.1016/j.virol.2015.03.024; Cruz, D.J., Kim, C.J., Shin, H.J., The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus (2008) Virus research, 132, pp. 192-196. , https://doi.org/10.1016/j.virusres.2007.10.015; Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Zhang, S., Evolutionary Relationships between bat coronaviruses and their hosts (2007) Emerging Infectious Diseases, 13, p. 10; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Veterinary microbiology, 196, pp. 98-106. , https://doi.org/10.1016/j.vetmic.2016.10.022; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) Journal of the American Veterinary Medical Association, 108, pp. 257-259; Felippe, P.A., da Silva, L.H., Santos, M.M., Spilki, F.R., Arns, C.W., Genetic diversity of avian infectious bronchitis virus isolated from domestic chicken flocks and coronaviruses from feral pigeons in Brazil between 2003 and 2009 (2010) Avian diseases, 54, pp. 1191-1196. , https://doi.org/10.1637/9371-041510-Reg.1; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Cao, Y., A new bat-HKU2-like coronavirus in Swine, China, 2017 (2017) Emerging Infectious Diseases, 23, p. 9; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) Journal of clinical microbiology, 53, pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Archives of virology, 161, pp. 3421-3434. , https://doi.org/10.1007/s00705-016-3056-8; Hu, X., Jr., Li, N., Jr., Tian, Z., Jr., Yin, X., Jr., Qu, L., Qu, J., Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China (2015) BMC veterinary research, 11, p. 72. , https://doi.org/10.1186/s12917-015-0387-8; Jeong, Y.J., Park, S.I., Hosmillo, M., Shin, D.J., Chun, Y.H., Kim, H.J., Cho, K.O., Detection and molecular characterization of porcine group C rotaviruses in South Korea (2009) Veterinary microbiology, 138, pp. 217-224. , https://doi.org/10.1016/j.vetmic.2009.03.024; Kong, Q., Xue, C., Ren, X., Zhang, C., Li, L., Shu, D., Cao, Y., Proteomic analysis of purified coronavirus infectious bronchitis virus particles (2010) Proteome Science, 8, p. 29. , https://doi.org/10.1186/1477-5956-8-29; Larson, H.E., Reed, S.E., Tyrrell, D.A., Isolation of rhinoviruses and coronaviruses from 38 colds in adults (1980) Journal of Medical Virology, 5, pp. 221-229. , https://doi.org/10.1002/(ISSN)1096-9071; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Yuen, K.Y., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439. , https://doi.org/10.1016/j.virol.2007.06.009; Lee, S., Kim, Y., Lee, C., Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112 (2015) Virus research, 208, pp. 215-224. , https://doi.org/10.1016/j.virusres.2015.07.010; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Veterinary microbiology, 173, pp. 258-269. , https://doi.org/10.1016/j.vetmic.2014.08.012; Pan, Y., Tian, X., Li, W., Zhou, Q., Wang, D., Bi, Y., Song, Y., Isolation and characterization of a variant porcine epidemic diarrhea virus in China (2012) Virology Journal, 9, p. 195. , https://doi.org/10.1186/1743-422X-9-195; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Veterinary microbiology, 211, pp. 15-21. , https://doi.org/10.1016/j.vetmic.2017.09.020; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Archives of virology, 58, pp. 243-247. , https://doi.org/10.1007/BF01317606; Reed, L.J., A simple method of estimating fifty per endpoints (1938) The American Journal of Hygiene, 27, pp. 493-497; Rhim, J.S., Schell, K., Creasy, B., Case, W., Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero) (1969) Proceedings of the Society for Experimental Biology and Medicine, 132, pp. 670-678. , https://doi.org/10.3181/00379727-132-34285; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Archives of virology, 155, pp. 507-514. , https://doi.org/10.1007/s00705-010-0612-5; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Nilubol, D., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transboundary and Emerging Diseases, 64, pp. 3-10. , https://doi.org/10.1111/tbed.12585; Sasseville, A.M., Boutin, M., Gelinas, A.M., Dea, S., Sequence of the 3’-terminal end (8.1 kb) of the genome of porcine haemagglutinating encephalomyelitis virus: Comparison with other haemagglutinating coronaviruses (2002) Journal of General Virology, 83, pp. 2411-2416. , https://doi.org/10.1099/0022-1317-83-10-2411; Stohlman, S.A., Brayton, P.R., Fleming, J.O., Weiner, L.P., Lai, M.M., Murine coronaviruses: Isolation and characterization of two plaque morphology variants of the JHM neurotropic strain (1982) Journals of General Virology, 63, pp. 265-275. , https://doi.org/10.1099/0022-1317-63-2-265; Tsunemitsu, H., el-Kanawait, Z.R., Smith, D.R., Reed, H.H., Saif, L.J., Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea (1995) Journal of clinical microbiology, 33, pp. 3264-3269; Wesley, R.D., Woods, R.D., Hill, H.T., Biwer, J.D., Evidence for a porcine respiratory coronavirus, antigenically similar to transmissible gastroenteritis virus, in the United States (1990) Journal of Veterinary Diagnostic Investigation, 2, pp. 312-317. , https://doi.org/10.1177/104063879000200411; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820. , https://doi.org/10.3390/v2081803; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of virology, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus research, 226, pp. 71-84. , https://doi.org/10.1016/j.virusres.2016.05.028; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9","Cao, Y.; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen UniversityChina; email: caoych@mail.sysu.edu.cn",,"Blackwell Publishing Ltd",18651674,,,"30103259","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85053040219 "Ison M.G., Hirsch H.H.","6701366871;7202406848;","Community-acquired respiratory viruses in transplant patients: Diversity, impact, unmet clinical needs",2019,"Clinical Microbiology Reviews","32","4", e00042,"","",,,"10.1128/CMR.00042-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072104181&doi=10.1128%2fCMR.00042-19&partnerID=40&md5=e6d07c76944b32753ea8011d08c7e95e","Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland","Ison, M.G., Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Hirsch, H.H., Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland, Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland, Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland","Patients undergoing solid-organ transplantation (SOT) or allogeneic hematopoietic cell transplantation (HCT) are at increased risk for infectious complications. Community-acquired respiratory viruses (CARVs) pose a particular challenge due to the frequent exposure pre-, peri-, and posttransplantation. Although influenza A and B viruses have a top priority regarding prevention and treatment, recent molecular diagnostic tests detecting an array of other CARVs in real time have dramatically expanded our knowledge about the epidemiology, diversity, and impact of CARV infections in the general population and in allogeneic HCT and SOT patients. These data have demonstrated that non-influenza CARVs independently contribute to morbidity and mortality of transplant patients. However, effective vaccination and antiviral treatment is only emerging for non-influenza CARVs, placing emphasis on infection control and supportive measures. Here, we review the current knowledge about CARVs in SOT and allogeneic HCT patients to better define the magnitude of this unmet clinical need and to discuss some of the lessons learned from human influenza virus, respiratory syncytial virus, parainflu-enzavirus, rhinovirus, coronavirus, adenovirus, and bocavirus regarding diagnosis, prevention, and treatment. © 2019 American Society for Microbiology.","Bone marrow transplantation; Diagnosis; Respiratory viruses; Solid-organ transplantation; Treatment; Vaccination","influenza vaccine; ribavirin; acquired immune deficiency syndrome; Adenoviridae; allogeneic hematopoietic stem cell transplantation; antiviral therapy; clinical trial (topic); community acquired infection; Coronavirinae; Cytomegalovirus; diagnostic test; Epstein Barr virus; Hepatitis B virus; Hepatitis C virus; Hepatitis E virus; human; Human herpesvirus 6; Human respiratory syncytial virus; infection control; Influenza A virus; Influenza B virus; Influenza virus; lung transplantation; Metapneumovirus; morbidity; mortality; nonhuman; organ transplantation; Paramyxovirinae; patient history of transplantation; Polyomavirus; posttransplant lymphoproliferative disease; respiratory virus; Review; Rhinovirus; vaccination; virus detection; biodiversity; classification; community acquired infection; graft recipient; respiratory tract infection; viral phenomena and functions; virology; virus; virus infection; Biodiversity; Community-Acquired Infections; Humans; Respiratory Tract Infections; Transplant Recipients; Virus Diseases; Virus Physiological Phenomena; Viruses","Rubin, R.H., Hirsch, H.H., Transplant infectious disease: A moving target (2008) Transpl Infect Dis, 10, pp. 1-2. , https://doi.org/10.1111/j.1399-3062.2008.00297.x; Englund, J.A., Sullivan, C.J., Jordan, M.C., Dehner, L.P., Vercellotti, G.M., Balfour, H.H., Jr., Respiratory syncytial virus infection in immunocompromised adults (1988) Ann Intern Med, 109, pp. 203-208. , https://doi.org/10.7326/0003-4819-109-3-203; Ison, M.G., Hayden, F.G., Kaiser, L., Corey, L., Boeckh, M., Rhinovirus infections in hematopoietic stem cell transplant recipients with pneumonia (2003) Clin Infect Dis, 36, pp. 1139-1143. , https://doi.org/10.1086/374340; Ison, M.G., Respiratory viral infections in transplant recipients (2007) Antivir Ther, 12, pp. 627-638; Hirsch, H.H., Martino, R., Ward, K.N., Boeckh, M., Einsele, H., Ljungman, P., Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus (2013) Clin Infect Dis, 56. , https://doi.org/10.1093/cid/cis844; Simonsen, L., Fukuda, K., Schonberger, L.B., Cox, N.J., The impact of influenza epidemics on hospitalizations (2000) J Infect Dis, 181, pp. 831-837. , https://doi.org/10.1086/315320; Laurichesse, H., Dedman, D., Watson, J.M., Zambon, M.C., Epidemiological features of parainfluenza virus infections: Laboratory surveillance in England and Wales, 1975–1997 (1999) Eur J Epidemiol, 15, pp. 475-484. , https://doi.org/10.1023/A:1007511018330; Treanor, J., Falsey, A., Respiratory viral infections in the elderly (1999) Antiviral Res, 44, pp. 79-102. , https://doi.org/10.1016/S0166-3542(99)00062-5; Zambon, M.C., Stockton, J.D., Clewley, J.P., Fleming, D.M., Contribution of influenza and respiratory syncytial virus to community cases of influenza-like illness: An observational study (2001) Lancet, 358, pp. 1410-1416. , https://doi.org/10.1016/s0140-6736(01)06528-x; Hayden, F.G., Prevention and treatment of influenza in immunocompromised patients (1997) Am J Med, 102, pp. 55-60. , https://doi.org/10.1016/s0002-9343(97)80013-7; Apalsch, A.M., Green, M., Ledesma-Medina, J., Nour, B., Wald, E.R., Parainfluenza and influenza virus infections in pediatric organ transplant recipients (1995) Clin Infect Dis, 20, pp. 394-399. , https://doi.org/10.1093/clinids/20.2.394; Whimbey, E., Champlin, R.E., Couch, R.B., Englund, J.A., Goodrich, J.M., Raad, I., Przepiorka, D., Bodey, G.P., Community respiratory virus infections among hospitalized adult bone marrow transplant recipients (1996) Clin Infect Dis, 22, pp. 778-782. , https://doi.org/10.1093/clinids/22.5.778; Nichols, W.G., Gooley, T., Boeckh, M., Community-acquired respiratory syncytial virus and parainfluenza virus infections after hematopoietic stem cell transplantation: The Fred Hutchinson Cancer Research Center experience (2001) Biol Blood Marrow Transplant, 7, pp. 11S–15S. , https://doi.org/10.1053/bbmt.2001.v7.pm11777098; Dawood, F.S., Iuliano, A.D., Reed, C., Meltzer, M.I., Shay, D.K., Cheng, P.Y., Bandaranayake, D., Widdowson, M.A., Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study (2012) Lancet Infect Dis, 12, pp. 687-695. , https://doi.org/10.1016/S1473-3099(12)70121-4; Dumoulin, A., Widmer, A.F., Hirsch, H.H., Comprehensive diagnostics for respiratory virus infections after transplantation or after potential exposure to swine flu A/H1N1: What else is out there? (2009) Transpl Infect Dis, 11, pp. 287-289. , https://doi.org/10.1111/j.1399-3062.2009.00425.x; Nickel, C.H., Stephan, F.P., Dangel, M., Blume, K., Gehrisch, R., Dumoulin, A., Tschudin, S., Bingisser, R., First wave of the influenza A/H1N1v pandemic in Switzerland (2009) Swiss Med Wkly, 139, pp. 731-737. , https://smw.ch/en/article/doi/smw.2009.12952/; Webb, S.A., Pettila, V., Seppelt, I., Bellomo, R., Bailey, M., Cooper, D.J., Cretikos, M., Yung, M., Critical care services and 2009 H1N1 influenza in Australia and New Zealand (2009) N Engl J Med, 361, pp. 1925-1934. , https://doi.org/10.1056/NEJMoa0908481; Pavia, A.T., Viral infections of the lower respiratory tract: Old viruses, new viruses, and the role of diagnosis (2011) Clin Infect Dis, 52, pp. S284 –S289. , https://doi.org/10.1093/cid/cir043; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275. , https://doi.org/10.1016/S0140-6736(10)61459-6; Charlton, C.L., Babady, E., Ginocchio, C.C., Hatchette, T.F., Jerris, R.C., Li, Y., Loeffelholz, M., Drews, S.J., Practical guidance for clinical microbiology laboratories: Viruses causing acute respiratory tract infections (2019) Clin Microbiol Rev, 32, pp. e00042-18. , https://doi.org/10.1128/CMR.00042-18; Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Swartz, S., Fullman, N., Mokdad, A.H., Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015 (2017) Lancet Infect Dis, 17, pp. 1133-1161. , https://doi.org/10.1016/S1473-3099(17)30396-1; Lee, N., Lui, G.C., Wong, K.T., Li, T.C., Tse, E.C., Chan, J.Y., Yu, J., Chan, P.K., High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections (2013) Clin Infect Dis, 57, pp. 1069-1077. , https://doi.org/10.1093/cid/cit471; Russell, E., Yang, A., Tardrew, S., Ison, M.G., Parainfluenza virus in hospitalized adults: A 7-year retrospective study (2019) Clin Infect Dis, 68, pp. 298-305. , https://doi.org/10.1093/cid/ciy451; Stolz, D., Hirsch, H.H., Schilter, D., Louis, R., Rakic, J., Boeck, L., Papakonstanti-Nou, E., Tamm, M., Intensified therapy with inhaled corticosteroids and long-acting beta2-agonists at the onset of upper respiratory tract infection to prevent chronic obstructive pulmonary disease exacerbations. A multicenter, randomized, double-blind, placebo-controlled trial (2018) Am J Respir Crit Care Med, 197, pp. 1136-1146. , https://doi.org/10.1164/rccm.201709-1807OC; (2014) Global Epidemiological Surveillance Standards for Influenza, , http://www.who.int/influenza/resources/documents/influenza_surveillance:manual/en/, World Health Organization, Geneva, Switzerland; Peck, A.J., Englund, J.A., Kuypers, J., Guthrie, K.A., Corey, L., Morrow, R., Hackman, R.C., Boeckh, M., Respiratory virus infection among hematopoietic cell transplant recipients: Evidence for asymptomatic parainfluenza virus infection (2007) Blood, 110, pp. 1681-1688. , https://doi.org/10.1182/blood-2006-12-060343; Khanna, N., Steffen, I., Studt, J.D., Schreiber, A., Lehmann, T., Weisser, M., Fluckiger, U., Hirsch, H.H., Outcome of influenza infections in outpatients after allogeneic hematopoietic stem cell transplantation (2009) Transpl Infect Dis, 11, pp. 100-105. , https://doi.org/10.1111/j.1399-3062.2008.00362.x; Ison, M.G., Hirsch, H.H., Influenza: A recurrent challenge to transplantation (2010) Transpl Infect Dis, 12, pp. 95-97. , https://doi.org/10.1111/j.1399-3062.2010.00501.x; Kumar, D., Michaels, M.G., Morris, M.I., Green, M., Avery, R.K., Liu, C., Danziger-Isakov, L., Humar, A., American Society of Transplantation H1N1 Collaborative Study Group. 2010. Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: A multicentre cohort study Lancet Infect Dis, 10, pp. 521-526. , https://doi.org/10.1016/S1473-3099(10)70133-X; Ljungman, P., de la Camara, R., Perez-Bercoff, L., Abecasis, M., Nieto Cam-Puzano, J.B., Cannata-Ortiz, M.J., Cordonnier, C., Engelhard, D., Outcome of pandemic H1N1 infections in hematopoietic stem cell transplant recipients (2011) Haematologica, 96, pp. 1231-1235. , https://doi.org/10.3324/haematol.2011.041913; Seo, S., Xie, H., Campbell, A.P., Kuypers, J.M., Leisenring, W.M., Englund, J.A., Boeckh, M., Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: Viral detection in the lung predicts outcome (2014) Clin Infect Dis, 58, pp. 1357-1368. , https://doi.org/10.1093/cid/ciu134; Garbino, J., Soccal, P.M., Aubert, J.D., Rochat, T., Meylan, P., Thomas, Y., Tapparel, C., Kaiser, L., Respiratory viruses in bronchoalveolar lavage: A hospital-based cohort study in adults (2009) Thorax, 64, pp. 399-404. , https://doi.org/10.1136/thx.2008.105155; Soccal, P.M., Aubert, J.D., Bridevaux, P.O., Garbino, J., Thomas, Y., Rochat, T., Rochat, T.S., Kaiser, L., Upper and lower respiratory tract viral infections and acute graft rejection in lung transplant recipients (2010) Clin Infect Dis, 51, pp. 163-170. , https://doi.org/10.1086/653529; Beckmann, C., Hirsch, H.H., Comparing Luminex NxTAG-Respiratory Pathogen Panel and RespiFinder-22 for multiplex detection of respiratory pathogens (2016) J Med Virol, 88, pp. 1319-1324. , https://doi.org/10.1002/jmv.24492; Compagno, F., Braunackermayer, L., Khanna, N., Stolz, D., Battegay, M., Frey, U., Tamm, M., Hirsch, H.H., (2017) Comparing Viral Respiratory Tract Infections in Symptomatic Children and Adults: Multiplex NAT from 2010 –2015 (EP0641), , https://www.escmid.org/escmid_publications/escmid_elibrary/?q=Compagno±Hirsch-ePoster-2016&id=2173&L=0&x=0&y=0, Abstr ECCMID 2017. ESCMID, Basel, Switzerland; Cummings, M.J., Bakamutumaho, B., Kayiwa, J., Byaruhanga, T., Owor, N., Namagambo, B., Wolf, A., O’Donnell, M.R., Epidemiologic and spatiotemporal characterization of influenza and severe acute respiratory infection in Uganda, 2010-2015 (2016) Annals ATS, 13. , https://doi.org/10.1513/AnnalsATS.201607-561OC; Hirsch, H.H., Spatio-temporal virus surveillance for severe acute respiratory infections in resource-limited settings: How deep need we go? (2019) Clin Infect Dis, 68, pp. 1126-1128. , https://doi.org/10.1093/cid/ciy663; Hirsch, H.H., Babel, N., Comoli, P., Friman, V., Ginevri, F., Jardine, A., Lauten-Schlager, I., Hosts, E., European perspective on human polyomavirus infection, replication and disease in solid organ transplantation (2014) Clin Microbiol Infect, 20, pp. 74-88. , https://doi.org/10.1111/1469-0691.12538; Piralla, A., Mariani, B., Rovida, F., Baldanti, F., Frequency of respiratory viruses among patients admitted to 26 intensive care units in seven consecutive winter-spring seasons (2009 –2016) in Northern Italy (2017) J Clin Virol, 92, pp. 48-51. , https://doi.org/10.1016/j.jcv.2017.05.004; van Asten, L., van den Wijngaard, C., van Pelt, W., van de Kassteele, J., Meijer, A., van der Hoek, W., Kretzschmar, M., Koopmans, M., Mortality attributable to 9 common infections: Significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons (2012) J Infect Dis, 206, pp. 628-639. , https://doi.org/10.1093/infdis/jis415; Legoff, J., Zucman, N., Lemiale, V., Mokart, D., Pene, F., Lambert, J., Kouatchet, A., Azoulay, E., Clinical significance of upper airway virus detection in critically ill hematology patients (2018) Am J Respir Crit Care Med, 199, pp. 518-528. , https://doi.org/10.1164/rccm.201804-0681OC; Shorr, A.F., Fisher, K., Micek, S.T., Kollef, M.H., The burden of viruses in pneumonia associated with acute respiratory failure: An underap-preciated issue (2018) Chest, 154, pp. 84-90. , https://doi.org/10.1016/j.chest.2017.12.005; Shorr, A.F., Zilberberg, M.D., Micek, S.T., Kollef, M.H., Viruses are prevalent in non-ventilated hospital-acquired pneumonia (2017) Respir Med, 122, pp. 76-80. , https://doi.org/10.1016/j.rmed.2016.11.023; Thompson, W.W., Shay, D.K., Weintraub, E., Brammer, L., Cox, N., Anderson, L.J., Fukuda, K., Mortality associated with influenza and respiratory syncytial virus in the United States (2003) JAMA, 289, pp. 179-186. , https://doi.org/10.1001/jama.289.2.179; Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., O’Brien, K.L., Campbell, H., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555. , https://doi.org/10.1016/S0140-6736(10)60206-1; Hirsch, H.H., Virus infections post transplant: Risk and immunity (2005) Transpl Infect Dis, 7, pp. 97-98. , https://doi.org/10.1111/j.1399-3062.2005.00116.x; Campbell, A.P., Guthrie, K.A., Englund, J.A., Farney, R.M., Minerich, E.L., Kuypers, J., Corey, L., Boeckh, M., Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant (2015) Clin Infect Dis, 61, pp. 192-202. , https://doi.org/10.1093/cid/civ272; L’Huillier, A.G., Green, M., Danziker-Isakov, L., Chaudhuri, A., Höcker, B., Vanderlinden, D., Goddard, L., Posfay-Barbe, K.M., Infections among pediatric transplant candidates: An approach to decision-mak-ing (2019) Pediatr Transplant, 23, pp. 1-13. , https://doi.org/10.1111/petr.13375; Malinis, M., Boucher, H.W., Screening of donor and candidate prior to solid organ transplantation– guidelines from the American Society of Transplantation Infectious Diseases Community of Practice (2019) Clin Transplant, 2019. , https://doi.org/10.1111/ctr.13548; Nagler, A., Shimoni, A., Conditioning (2019) The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, pp. 99-107. , https://doi.org/10.1007/978-3-030-02278-5_13, Carreras E, Dufour C, Mohty M, Kröger N, Springer, Cham, Switzerland; Cordero, E., Roca-Oporto, C., Bulnes-Ramos, A., Aydillo, T., Gavaldà, J., Moreno, A., Torre-Cisneros, J., Pérez-Romero, P., Two doses of inactivated influenza vaccine improve immune response in solid organ transplant recipients: Results of TRANSGRIPE 1-2, a randomized controlled clinical trial (2017) Clin Infect Dis, 64, pp. 829-838. , https://doi.org/10.1093/cid/ciw855; Branagan, A.R., Duffy, E., Albrecht, R.A., Cooper, D.L., Seropian, S., Parker, T.L., Gan, G., Dhodapkar, M.V., Clinical and serologic responses after a two-dose series of high-dose influenza vaccine in plasma cell disorders: A prospective, single-arm trial (2017) Clin Lymphoma Myeloma Leuk, 17, pp. 296-304. , https://doi.org/10.1016/j.clml.2017.02.025; Fishman, J.A., Infection in organ transplantation (2017) Am J Transplant, 17, pp. 856-879. , https://doi.org/10.1111/ajt.14208; Huang, G., Yu, D., Mao, N., Zhu, Z., Zhang, H., Jiang, Z., Li, H., Xu, W., Viral etiology of acute respiratory infection in Gansu province, China, 2011 (2013) Plos One, 8, pp. e64254. , https://doi.org/10.1371/journal.pone.0064254; Peghin, M., Hirsch, H.H., Len, Ó., Codina, G., Berastegui, C., Sáez, B., Solé, J., Gavaldá, J., Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: A 5-year prospective study (2017) Am J Transplant, 17. , https://doi.org/10.1111/ajt.14042; Kumar, D., Husain, S., Chen, M.H., Moussa, G., Himsworth, D., Manuel, O., Studer, S., Humar, A., A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients (2010) Transplantation, 89, pp. 1028-1033. , https://doi.org/10.1097/TP.0b013e3181d05a71; Liu, M., Worley, S., Arrigain, S., Aurora, P., Ballmann, M., Boyer, D., Conrad, C., Danziger-Isakov, L.A., Respiratory viral infections within one year after pediatric lung transplant (2009) Transpl Infect Dis, 11, pp. 304-312. , https://doi.org/10.1111/j.1399-3062.2009.00397.x; Gottlieb, J., Schulz, T.F., Welte, T., Fuehner, T., Dierich, M., Simon, A.R., Engel-Mann, I., Community-acquired respiratory viral infections in lung transplant recipients: A single season cohort study (2009) Transplantation, 87, pp. 1530-1537. , https://doi.org/10.1097/TP.0b013e3181a4857d; Paulsen, G.C., Danziger-Isakov, L., Respiratory viral infections in solid organ and hematopoietic stem cell transplantation (2017) Clin Chest Med, 38, pp. 707-726. , https://doi.org/10.1016/j.ccm.2017.07.012; Kumar, D., Ferreira, V.H., Blumberg, E., Silveira, F., Cordero, E., Perez-Romero, P., Aydillo, T., Humar, A., A 5-year prospective multicenter evaluation of influenza infection in transplant recipients (2018) Clin Infect Dis, 67, pp. 1322-1329. , https://doi.org/10.1093/cid/ciy294; Peghin, M., Los-Arcos, I., Hirsch, H.H., Codina, G., Monforte, V., Bravo, C., Berastegui, C., Gavalda, J., Community-acquired respiratory viruses are a risk factor for chronic lung allograft dysfunction (2018) Clin Infect Dis, , https://doi.org/10.1093/cid/ciy1047; Cainelli, F., Vento, S., Infections and solid organ transplant rejection: A cause-and-effect relationship? (2002) Lancet Infect Dis, 2, pp. 539-549. , https://doi.org/10.1016/S1473-3099(02)00370-5; Vu, D.L., Bridevaux, P.O., Aubert, J.D., Soccal, P.M., Kaiser, L., Respiratory viruses in lung transplant recipients: A critical review and pooled analysis of clinical studies (2011) Am J Transplant, 11, pp. 1071-1078. , https://doi.org/10.1111/j.1600-6143.2011.03490.x; McCullers, J.A., The co-pathogenesis of influenza viruses with bacteria in the lung (2014) Nat Rev Microbiol, 12, pp. 252-262. , https://doi.org/10.1038/nrmicro3231; Shah, R.J., Diamond, J.M., Update in chronic lung allograft dysfunction (2017) Clin Chest Med, 38, pp. 677-692. , https://doi.org/10.1016/j.ccm.2017.07.009; Khanna, N., Widmer, A.F., Decker, M., Steffen, I., Halter, J., Heim, D., Weisser, M., Hirsch, H.H., Respiratory syncytial virus infection in patients with hematological diseases: Single-center study and review of the literature (2008) Clin Infect Dis, 46, pp. 402-412. , https://doi.org/10.1086/525263; Harrington, R.D., Hooton, T.M., Hackman, R.C., Storch, G.A., Osborne, B., Gleaves, C.A., Benson, A., Meyers, J.D., An outbreak of respiratory syncytial virus in a bone marrow transplant center (1992) J Infect Dis, 165, pp. 987-993. , https://doi.org/10.1093/infdis/165.6.987; Cortez, K.J., Erdman, D.D., Peret, T.C., Gill, V.J., Childs, R., Barrett, A.J., Bennett, J.E., Outbreak of human parainfluenza virus 3 infections in a hematopoietic stem cell transplant population (2001) J Infect Dis, 184, pp. 1093-1097. , https://doi.org/10.1086/322041; Lehners, N., Schnitzler, P., Geis, S., Puthenparambil, J., Benz, M.A., Alber, B., Luft, T., Egerer, G., Risk factors and containment of respiratory syncytial virus outbreak in a hematology and transplant unit (2013) Bone Marrow Transplant, 48, pp. 1548-1553. , https://doi.org/10.1038/bmt.2013.94; Lehners, N., Tabatabai, J., Prifert, C., Wedde, M., Puthenparambil, J., Weiss-Brich, B., Biere, B., Schnitzler, P., Long-term shedding of influenza virus, parainfluenza virus, respiratory syncytial virus and nosocomial epidemiology in patients with hematological disorders (2016) Plos One, 11. , https://doi.org/10.1371/journal.pone.0148258; Mikulska, M., Del Bono, V., Gandolfo, N., Dini, S., Dominietto, A., Di Grazia, C., Bregante, S., Viscoli, C., Epidemiology of viral respiratory tract infections in an outpatient haematology facility (2014) Ann Hematol, 93, pp. 669-676. , https://doi.org/10.1007/s00277-013-1912-0; Foolad, F., Aitken, S.L., Shigle, T.L., Prayag, A., Ghantoji, S., Ariza-Heredia, E., Chemaly, R.F., Oral versus aerosolized ribavirin for the treatment of respiratory syncytial virus infections in hematopoietic cell transplantation recipients (2018) Clin Infect Dis, pp. ciy760. , https://doi.org/10.1093/cid/ciy760; Spahr, Y., Tschudin-Sutter, S., Baettig, V., Compagno, F., Tamm, M., Halter, J., Gerull, S., Khanna, N., Community-acquired respiratory paramyxovirus infection after allogeneic hematopoietic cell transplantation: A single-center experience (2018) Open Forum Infect Dis, 5. , https://doi.org/10.1093/ofid/ofy077; Fisher, B.T., Danziger-Isakov, L., Sweet, L.R., Munoz, F.M., Maron, G., Tuomanen, E., Murray, A., Steinbach, W.J., A multicenter consortium to define the epidemiology and outcomes of inpatient respiratory viral infections in pediatric hematopoietic stem cell transplant recipients (2018) J Pediatric Infect Dis Soc, 7, pp. 275-282. , https://doi.org/10.1093/jpids/pix051; Kim, Y.J., Guthrie, K.A., Waghmare, A., Walsh, E.E., Falsey, A.R., Kuypers, J., Cent, A., Boeckh, M., Respiratory syncytial virus in hematopoietic cell transplant recipients: Factors determining progression to lower respiratory tract disease (2014) J Infect Dis, 209, pp. 1195-1204. , https://doi.org/10.1093/infdis/jit832; Kmeid, J., Vanichanan, J., Shah, D.P., El Chaer, F., Azzi, J., Ariza-Heredia, E.J., Hosing, C., Chemaly, R.F., Outcomes of influenza infections in hematopoietic cell transplant recipients: Application of an immunodeficiency scoring index (2016) Biol Blood Marrow Transplant, 22, pp. 542-548. , https://doi.org/10.1016/j.bbmt.2015.11.015; Pinana, J.L., Gomez, M.D., Perez, A., Madrid, S., Balaguer-Rosello, A., Gimenez, E., Montoro, J., Navarro, D., Community-acquired respiratory virus lower respiratory tract disease in allogeneic stem cell transplantation recipient: Risk factors and mortality from pulmonary virus-bacterial mixed infections (2018) Transpl Infect Dis, 20. , https://doi.org/10.1111/tid.12926; Vakil, E., Sheshadri, A., Faiz, S.A., Shah, D.P., Zhu, Y., Li, L., Kmeid, J., Chemaly, R.F., Risk factors for mortality after respiratory syncytial virus lower respiratory tract infection in adults with hematologic malignancies (2018) Transpl Infect Dis, 20. , https://doi.org/10.1111/tid.12994; Zaia, J., Baden, L., Boeckh, M.J., Chakrabarti, S., Einsele, H., Ljungman, P., McDonald, G.B., Hirsch, H., Viral disease prevention after hematopoietic cell transplantation (2009) Bone Marrow Transplant, 44, pp. 471-482. , https://doi.org/10.1038/bmt.2009.258; Ariza-Heredia, E.J., Gulbis, A.M., Stolar, K.R., Kebriaei, P., Shah, D.P., McConn, K.K., Champlin, R.E., Chemaly, R.F., Vaccination guidelines after hematopoietic stem cell transplantation: Practitioners’ knowledge, attitudes, and gap between guidelines and clinical practice (2014) Transpl Infect Dis, 16, pp. 878-886. , https://doi.org/10.1111/tid.12312; Engelhard, D., Mohty, B., de la Camara, R., Cordonnier, C., Ljungman, P., European guidelines for prevention and management of influenza in hematopoietic stem cell transplantation and leukemia patients: Summary of ECIL-4 (2011), on behalf of ECIL, a joint venture of EBMT, EORTC, ICHS, and ELN (2013) Transpl Infect Dis, 15, pp. 219-232. , https://doi.org/10.1111/tid.12054; Engelhard, D., Nagler, A., Hardan, I., Morag, A., Aker, M., Baciu, H., Strauss, N., Ravid, Z., Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients (1993) Bone Marrow Transplant, 11, pp. 1-5; Smith, K.G., Isbel, N.M., Catton, M.G., Leydon, J.A., Becker, G.J., Walker, R.G., Suppression of the humoral immune response by mycophenolate mofetil (1998) Nephrol Dial Transplant, 13. , https://doi.org/10.1093/ndt/13.1.160; Danziger-Isakov, L., Kumar, D., Vaccination of solid organ transplant candidates and recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice (2019) Clin Transplant, 2019. , https://doi.org/10.1111/ctr.13563; Cordonnier, C., Einarsdottir, S., Cesaro, S., Di Blasi, R., Mikulska, M., Rieger, C., de Lavallade, H., Ljungman, P., European Conference on Infections in Leukaemia. 2019. Vaccination of haemopoietic stem cell transplant recipients: Guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7) Lancet Infect Dis, 19, pp. e200 – e212. , https://doi.org/10.1016/S1473-3099(18)30600-5; Hayden, F.G., Sugaya, N., Hirotsu, N., Lee, N., de Jong, M.D., Hurt, A.C., Ishida, T., Watanabe, A., Baloxavir marboxil for uncomplicated influenza in adults and adolescents (2018) N Engl J Med, 379, pp. 913-923. , https://doi.org/10.1056/NEJMoa1716197; Ison, M.G., Szakaly, P., Shapira, M.Y., Krivan, G., Nist, A., Dutkowski, R., Efficacy and safety of oral oseltamivir for influenza prophylaxis in transplant recipients (2012) Antivir Ther, 17, pp. 955-964. , https://doi.org/10.3851/IMP2192; Canini, L., Conway, J.M., Perelson, A.S., Carrat, F., Impact of different oseltamivir regimens on treating influenza a virus infection and resistance emergence: Insights from a modelling study (2014) Plos Comput Biol, 10. , https://doi.org/10.1371/journal.pcbi.1003568; Kimball, P., Verbeke, S., Flattery, M., Rhodes, C., Tolman, D., Influenza vaccination does not promote cellular or humoral activation among heart transplant recipients (2000) Transplantation, 69, pp. 2449-2451. , https://doi.org/10.1097/00007890-200006150-00042; Kumar, D., Ferreira, V.H., Campbell, P., Hoschler, K., Humar, A., Heter ologous Immune responses to influenza vaccine in kidney transplant recipients (2017) Am J Transplant, 17, pp. 281-286. , https://doi.org/10.1111/ajt.13960; Birdwell, K.A., Ikizler, M.R., Sannella, E.C., Wang, L., Byrne, D.W., Ikizler, T.A., Wright, P.F., Decreased antibody response to influenza vaccination in kidney transplant recipients: A prospective cohort study (2009) Am J Kidney Dis, 54, pp. 112-121. , https://doi.org/10.1053/j.ajkd.2008.09.023; Manuel, O., Humar, A., Berutto, C., Ely, L., Giulieri, S., Lien, D., Meylan, P.R., Kumar, D., Low-dose intradermal versus intramuscular trivalent inactivated seasonal influenza vaccine in lung transplant recipients (2011) J Heart Lung Transplant, 30, pp. 679-684. , https://doi.org/10.1016/j.healun.2011.01.705; Baluch, A., Humar, A., Eurich, D., Egli, A., Liacini, A., Hoschler, K., Campbell, P., Kumar, D., Randomized controlled trial of high-dose intradermal versus standard-dose intramuscular influenza vaccine in organ transplant recipients (2013) Am J Transplant, 13, pp. 1026-1033. , https://doi.org/10.1111/ajt.12149; Natori, Y., Shiotsuka, M., Slomovic, J., Hoschler, K., Ferreira, V., Ashton, P., Rotstein, C., Kumar, D., A double-blind, randomized trial of high-dose vs standard-dose influenza vaccine in adult solid-organ transplant recipients (2018) Clin Infect Dis, 66, pp. 1698-1704. , https://doi.org/10.1093/cid/cix1082; Ison, M.G., Antiviral therapies for respiratory viral infections in lung transplant patients (2012) Antivir Ther, 17, pp. 193-200. , https://doi.org/10.3851/IMP2058; Ison, M.G., Sharma, A., Shepard, J.A., Wain, J.C., Ginns, L.C., Outcome of influenza infection managed with oseltamivir in lung transplant recipients (2008) J Heart Lung Transplant, 27, pp. 282-288. , https://doi.org/10.1016/j.healun.2007.11.575; Manuel, O., Estabrook, M., RNA respiratory viral infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice (2019) Clin Transplant, 28. , https://doi.org/10.1111/ctr.13511; Uyeki, T.M., Bernstein, H.H., Bradley, J.S., Englund, J.A., File, T.M., Fry, A.M., Gravenstein, S., Pavia, A.T., Clinical practice guidelines by the Infectious Diseases Society of America: 2018 update on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenza (2019) Clin Infect Dis, 68, pp. 895-902. , https://doi.org/10.1093/cid/ciy874; Beckmann, C., Hirsch, H.H., Diagnostic performance of near-patient testing for influenza (2015) J Clin Virol, 67, pp. 43-46. , https://doi.org/10.1016/j.jcv.2015.03.024; Bell, J., Bonner, A., Cohen, D.M., Birkhahn, R., Yogev, R., Triner, W., Cohen, J., Selvarangan, R., Multicenter clinical evaluation of the novel Alere i influenza A&B isothermal nucleic acid amplification test (2014) J Clin Virol, 61, pp. 81-86. , https://doi.org/10.1016/j.jcv.2014.06.001; Brendish, N.J., Schiff, H.F., Clark, T.W., Point-of-care testing for respiratory viruses in adults: The current landscape and future potential (2015) J Infect, 71, pp. 501-510. , https://doi.org/10.1016/j.jinf.2015.07.008; Lee, N., Hui, D.S., Zuo, Z., Ngai, K.L., Lui, G.C., Wo, S.K., Tam, W.W., Chan, P.K., A prospective intervention study on higher-dose oseltamivir treatment in adults hospitalized with influenza a and B infections (2013) Clin Infect Dis, 57, pp. 1511-1519. , https://doi.org/10.1093/cid/cit597; Effect of double dose oseltamivir on clinical and virological outcomes in children and adults admitted to hospital with severe influenza: Double blind randomised controlled trial (2013) BMJ, 346. , https://doi.org/10.1136/bmj.f3039; Kumar, D., Morris, M.I., Kotton, C.N., Fischer, S.A., Michaels, M.G., Allen, U., Blumberg, E.A., Ison, M.G., Guidance on novel influenza A/H1N1 in solid organ transplant recipients (2010) Am J Transplant, 10, pp. 18-25. , https://doi.org/10.1111/j.1600-6143.2009.02960.x; Nichols, W.G., Guthrie, K.A., Corey, L., Boeckh, M., Influenza infections after hematopoietic stem cell transplantation: Risk factors, mortality, and the effect of antiviral therapy (2004) Clin Infect Dis, 39, pp. 1300-1306. , https://doi.org/10.1086/425004; Most, J., Weiss, G., Consecutive infections with influenza A and B virus in children during the 2014-2015 seasonal influenza epidemic (2016) J Infect Dis, 214, pp. 1139-1141. , https://doi.org/10.1093/infdis/jiw104; Pinana, J.L., Perez, A., Montoro, J., Gimenez, E., Dolores Gomez, M., Lorenzo, I., Madrid, S., Navarro, D., Clinical effectiveness of influenza vaccination after allogeneic hematopoietic stem cell transplantation: A cross-sectional prospective observational study (2018) Clin Infect Dis, 2018, pp. ciy792. , https://doi.org/10.1093/cid/ciy792; Casper, C., Englund, J., Boeckh, M., How I treat influenza in patients with hematologic malignancies (2010) Blood, 115, pp. 1331-1342. , https://doi.org/10.1182/blood-2009-11-255455; Reid, G., Huprikar, S., Patel, G., Razonable, R.R., Mossad, S., Levi, M., Gregg, K., Kumar, D., A multicenter evaluation of pandemic influenza A/H1N1 in hematopoietic stem cell transplant recipients (2013) Transpl Infect Dis, 15, pp. 487-492. , https://doi.org/10.1111/tid.12116; Choi, S.M., Boudreault, A.A., Xie, H., Englund, J.A., Corey, L., Boeckh, M., Differences in clinical outcomes after 2009 influenza A/H1N1 and seasonal influenza among hematopoietic cell transplant recipients (2011) Blood, 117, pp. 5050-5056. , https://doi.org/10.1182/blood-2010-11-319186; Wang, L., Allen, J., Diong, C., Goh, Y.T., Gopalakrishnan, S., Ho, A., Hwang, W., Tan, B.H., Respiratory virus infection after allogeneic hematopoietic stem cell transplant in a tropical center: Predictive value of the immunodeficiency scoring index (2017) Transpl Infect Dis, 19. , https://doi.org/10.1111/tid.12693; Giaquinta, S., Michaels, M.G., McCullers, J.A., Wang, L., Fonnesbeck, C., O’Shea, A., Green, M., Halasa, N.B., Randomized, double-blind comparison of standard-dose vs. High-dose trivalent inactivated influenza vaccine in pediatric solid organ transplant patients (2015) Pediatr Transplant, 19, pp. 219-228. , https://doi.org/10.1111/petr.12419; Halasa, N.B., Savani, B.N., Asokan, I., Kassim, A., Simons, R., Summers, C., Bourgeois, J., Jagasia, M., Randomized double-blind study of the safety and immunogenicity of standard-dose trivalent inactivated influenza vaccine versus high-dose trivalent inactivated influenza vaccine in adult hematopoietic stem cell transplantation patients (2016) Biol Blood Marrow Transplant, 22, pp. 528-535. , https://doi.org/10.1016/j.bbmt.2015.12.003; (2011) Summary on Compassionate Use for IV Zanamivir. Procedure No. EMA/H/K/2287/CU, , https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-iv-zanamivir-rev-1_en.pdf, 114. European Medicines Agency, Amsterdam, the Netherlands; Whitley, R.J., Boucher, C.A., Lina, B., Nguyen-Van-tam, J.S., Osterhaus, A., Schutten, M., Monto, A.S., Global assessment of resistance to neuraminidase inhibitors, 2008-2011: The Influenza Resistance Information Study (IRIS) (2013) Clin Infect Dis, 56, pp. 1197-1205. , https://doi.org/10.1093/cid/cis1220; Lina, B., Boucher, C., Osterhaus, A., Monto, A.S., Schutten, M., Whitley, R.J., Nguyen-Van-tam, J.S., Five years of monitoring for the emergence of oseltamivir resistance in patients with influenza A infections in the Influenza Resistance Information Study (2018) Influenza Other Respir Viruses, 12, pp. 267-278. , https://doi.org/10.1111/irv.12534; van der Vries, E., Stittelaar, K.J., van Amerongen, G., Veldhuis Kroeze, E.J., de Waal, L., Fraaij, P.L., Meesters, R.J., Osterhaus, A.D., Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets (2013) Plos Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003343; Schofield, K.P., Potter, C.W., Edey, D., Jennings, R., Oxford, J.S., Antiviral activity of ribavirin on influenza infection in ferrets (1975) J Antimicrob Chemother, 1, pp. 63-69. , https://doi.org/10.1093/jac/1.suppl_4.63; Beigel, J.H., Bao, Y., Beeler, J., Manosuthi, W., Slandzicki, A., Dar, S.M., Panuto, J., Alzogaray, M.F., Oseltamivir, amantadine, and ribavirin combination antiviral therapy versus oseltamivir monotherapy for the treatment of influenza: A multicentre, double-blind, randomised phase 2 trial (2017) Lancet Infect Dis, 17, pp. 1255-1265. , https://doi.org/10.1016/S1473-3099(17)30476-0; Hoopes, J.D., Driebe, E.M., Kelley, E., Engelthaler, D.M., Keim, P.S., Perelson, A.S., Rong, L., Nguyen, J.T., Triple combination antiviral drug (TCAD) composed of amantadine, oseltamivir, and ribavirin impedes the selection of drug-resistant influenza A virus (2011) Plos One, 6. , https://doi.org/10.1371/journal.pone.0029778; Seo, S., Englund, J.A., Nguyen, J.T., Pukrittayakamee, S., Lindegardh, N., Tarning, J., Tambyah, P.A., Boeckh, M.J., Combination therapy with amantadine, oseltamivir and ribavirin for influenza A infection: Safety and pharmacokinetics (2013) Antivir Ther, 18, pp. 377-386. , https://doi.org/10.3851/IMP2475; Fukao, K., Noshi, T., Yamamoto, A., Kitano, M., Ando, Y., Noda, T., Baba, K., Naito, A., Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza A virus infection (2019) J Antimicrob Chemother, 74, pp. 654-662. , https://doi.org/10.1093/jac/dky462; Kawaguchi, N., Koshimichi, H., Ishibashi, T., Wajima, T., Evaluation of drug-drug interaction potential between baloxavir marboxil and oseltamivir in healthy subjects (2018) Clin Drug Investig, 38, pp. 1053-1060. , https://doi.org/10.1007/s40261-018-0697-2; Finberg, R.W., Lanno, R., Anderson, D., Fleischhackl, R., van Duijnhoven, W., Kauffman, R.S., Kosoglou, T., Leopold, L., Phase 2b study of pimodivir (JNJ-63623872) as monotherapy or in combination with oseltamivir for treatment of acute uncomplicated seasonal influenza A: TOPAZ Trial (2019) J Infect Dis, 219, pp. 1026-1034. , https://doi.org/10.1093/infdis/jiy547; Beigel, J.H., Tebas, P., Elie-Turenne, M.C., Bajwa, E., Bell, T.E., Cairns, C.B., Shoham, S., Davey, R.T., IRC002 Study Team. 2017. Immune plasma for the treatment of severe influenza: An open-label, multicentre, phase 2 randomised study Lancet Respir Med, 5, pp. 500-511. , https://doi.org/10.1016/S2213-2600(17)30174-1; Bhattacharyya, S., Gesteland, P.H., Korgenski, K., Bjornstad, O.N., Adler, F.R., Cross-immunity between strains explains the dynamical pattern of paramyxoviruses (2015) Proc Natl Acad Sci U S A, 112, pp. 13396-13400. , https://doi.org/10.1073/pnas.1516698112; Corti, D., Bianchi, S., Vanzetta, F., Minola, A., Perez, L., Agatic, G., Guarino, B., Lanzavecchia, A., Cross-neutralization of four paramyxoviruses by a human monoclonal antibody (2013) Nature, 501, pp. 439-443. , https://doi.org/10.1038/nature12442; Hynicka, L.M., Ensor, C.R., Prophylaxis and treatment of respiratory syncytial virus in adult immunocompromised patients (2012) Ann Pharmacother, 46, pp. 558-566. , https://doi.org/10.1345/aph.1Q553; Shah, J.N., Chemaly, R.F., Management of RSV infections in adult recipients of hematopoietic stem cell transplantation (2011) Blood, 117, pp. 2755-2763. , https://doi.org/10.1182/blood-2010-08-263400; Rowan, C.M., Gertz, S.J., Zinter, M.S., Moffet, J., Bajwa, R.P.S., Barnum, J.L., Kong, M., A multicenter investigation of respiratory syncytial viral infection in children with hematopoietic cell transplantation (2018) Transpl Infect Dis, 20. , https://doi.org/10.1111/tid.12882; Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection (2014) Pediatrics, 134, pp. 415-420. , https://doi.org/10.1542/peds.2014-1665; Teusink-Cross, A., Davies, S.M., Danziger-Isakov, L., El-Bietar, J., Grimley, M.S., Restrictive palivizumab use does not lead to increased morbidity and mortality in pediatric hematopoietic stem cell transplantation patients (2016) Biol Blood Marrow Transplant, 22, pp. 1904-1906. , https://doi.org/10.1016/j.bbmt.2016.07.005; Uckay, I., Gasche-Soccal, P.M., Kaiser, L., Stern, R., Mazza-Stalder, J., Aubert, J.D., van Delden, C., Low incidence of severe respiratory syncytial virus infections in lung transplant recipients despite the absence of specific therapy (2010) J Heart Lung Transplant, 29, pp. 299-305. , https://doi.org/10.1016/j.healun.2009.08.012; Glanville, A.R., Scott, A.I., Morton, J.M., Aboyoun, C.L., Plit, M.L., Carter, I.W., Malouf, M.A., Intravenous ribavirin is a safe and cost-effective treatment for respiratory syncytial virus infection after lung transplan-tation (2005) J Heart Lung Transplant, 24, pp. 2114-2119. , https://doi.org/10.1016/j.healun.2005.06.027; Fuehner, T., Dierich, M., Duesberg, C., Dewall, C., Welte, T., Haverich, A., Warnecke, G., Gottlieb, J., Single-centre experience with oral ribavirin in lung transplant recipients with paramyxovirus infections (2011) Antivir Ther, 16, pp. 733-740. , https://doi.org/10.3851/IMP1811; Burrows, F.S., Carlos, L.M., Benzimra, M., Marriott, D.J., Havryk, A.P., Plit, M.L., Malouf, M.A., Glanville, A.R., Oral ribavirin for respiratory syncytial virus infection after lung transplantation: Efficacy and cost-efficiency (2015) J Heart Lung Transplant, 34. , https://doi.org/10.1016/j.healun.2015.01.009; Chemaly, R.F., Aitken, S.L., Wolfe, C.R., Jain, R., Boeckh, M.J., Aerosolized ribavirin: The most expensive drug for pneumonia (2016) Transpl Infect Dis, 18, pp. 634-636. , https://doi.org/10.1111/tid.12551; Chakrabarti, S., Collingham, K.E., Holder, K., Fegan, C.D., Osman, H., Milligan, D.W., Pre-emptive oral ribavirin therapy of paramyxovirus infections after haematopoietic stem cell transplantation: A pilot study (2001) Bone Marrow Transplant, 28, pp. 759-763. , https://doi.org/10.1038/sj.bmt.1703216; Hirsch, H.H., Widmer, A.F., Francioli, P., Respiratorisches syncytial-virus (RSV) infektion: Massnahmen beim immunsupprimierten patienten (2004) Praxis, 95, pp. 61-66. , https://doi.org/10.1024/0369-8394.95.3.61; Shah, D.P., Ghantoji, S.S., Shah, J.N., El Taoum, K.K., Jiang, Y., Popat, U., Hosing, C., Chemaly, R.F., Impact of aerosolized ribavirin on mortality in 280 allogeneic haematopoietic stem cell transplant recipients with respiratory syncytial virus infections (2013) J Antimicrob Chemother, 68, pp. 1872-1880. , https://doi.org/10.1093/jac/dkt111; Beaird, O.E., Freifeld, A., Ison, M.G., Lawrence, S.J., Theodoropoulos, N., Clark, N.M., Razonable, R.R., Kaul, D.R., Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: A survey of institutions in the Midwestern Respiratory Virus Collaborative (2016) Transpl Infect Dis, 18. , https://doi.org/10.1111/tid.12510; Gottlieb, J., Zamora, M.R., Hodges, T., Musk, A.W., Sommerwerk, U., Dilling, D., Arcasoy, S., Glanville, A.R., ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients (2016) J Heart Lung Transplant, 35, pp. 213-221. , https://doi.org/10.1016/j.healun.2015.08.012; Devincenzo, J., Cehelsky, J.E., Alvarez, R., Elbashir, S., Harborth, J., Toudjarska, I., Nechev, L., Meyers, R., Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV) (2008) Antiviral Res, 77, pp. 225-231. , https://doi.org/10.1016/j.antiviral.2007.11.009; Domachowske, J.B., Khan, A.A., Esser, M.T., Jensen, K., Takas, T., Villafana, T., Dubovsky, F., Griffin, M.P., Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants (2018) Pediatr Infect Dis J, 37, pp. 886-892. , https://doi.org/10.1097/INF.0000000000001916; Griffin, M.P., Khan, A.A., Esser, M.T., Jensen, K., Takas, T., Kankam, M.K., Villafana, T., Dubovsky, F., Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults (2017) Antimicrob Agents Chemother, 61, pp. e01714-16. , https://doi.org/10.1128/AAC.01714-16; Devincenzo, J.P., Whitley, R.J., Mackman, R.L., Scaglioni-Weinlich, C., Harrison, L., Farrell, E., McBride, S., Chien, J.W., Oral GS-5806 activity in a respiratory syncytial virus challenge study (2014) N Engl J Med, 371, pp. 711-722. , https://doi.org/10.1056/NEJMoa1401184; Gottlieb, J., Torres, F., Hadddad, T., Dhillon, G., Dilling, D.F., Knoop, C., Ram-Polla, R., Zamora, M.R., A phase 2b randomized controlled trial of presatovir, an oral RSV fusion inhibitor, for the treatment of respiratory syncytial virus (RSV) in lung transplant (LT) recipients, abstr 372 (2018) J Heart Lung Transplant, 37, p. S155. , https://www.jhltonline.org/article/S1053-2498(18)30376-0/abstract; Chemaly, R.F., Dadwal, S.S., Bergeron, A., Ljungman, P.T., Kim, Y.-J., Cheng, G.S., Pipavath, S., Boeckh, M.J., A phase 2b, randomized, double-blind, placebo-controlled trial of presatovir (GS-5806), an oral fusion inhibitor for the treatment of RSV upper tract respiratory tract infection in hematopoietic-cell transplant recipients (2018) Abstr BMT Tandem Meet, , abstr LBA7; Marty, F.M., Chemaly, R.F., Bergeron, A., Ljungman, P.T., Kim, Y.-J., Boeckh, M.J., Waghmare, A., Dadwal, S.S., (2018) A Phase 2B, Randomized, Double-Blind, Placebo-Controlled Trial of Presatovir (GS-5806), an Oral Fusion Inhibitor for the Treatment of RSV Lower Tract Respiratory Tract Infection in Hematopoietic-Cell Transplant Recipients, , Abstr BMT Tandem, abstr LBA6; Devincenzo, J.P., McClure, M.W., Symons, J.A., Fathi, H., Westland, C., Chanda, S., Lambkin-Williams, R., Fry, J., Activity of oral ALS-008176 in a respiratory syncytial virus challenge study (2015) N Engl J Med, 373, pp. 2048-2058. , https://doi.org/10.1056/NEJMoa1413275; Dosanjh, A., Respiratory metapneumoviral infection without co-infection in association with acute and chronic lung allograft dysfunction (2015) J Inflamm Res, 8, pp. 79-82. , https://doi.org/10.2147/JIR.S78259; Egli, A., Bucher, C., Dumoulin, A., Stern, M., Buser, A., Bubendorf, L., Gregor, M., Halter, J.P., Human metapneumovirus infection after allogeneic hematopoietic stem cell transplantation (2012) Infection, 40, pp. 677-684. , https://doi.org/10.1007/s15010-012-0279-9; Shah, D.P., Shah, P.K., Azzi, J.M., El Chaer, F., Chemaly, R.F., Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 379, pp. 100-106. , https://doi.org/10.1016/j.canlet.2016.05.035; Seo, S., Gooley, T.A., Kuypers, J.M., Stednick, Z., Jerome, K.R., Englund, J.A., Boeckh, M., Human metapneumovirus infections following hematopoietic cell transplantation: Factors associated with disease progression (2016) Clin Infect Dis, 63, pp. 178-185. , https://doi.org/10.1093/cid/ciw284; Russell, E., Ison, M.G., Parainfluenza virus in the hospitalized adult (2017) Clin Infect Dis, 65, pp. 1570-1576. , https://doi.org/10.1093/cid/cix528; Shah, D.P., Shah, P.K., Azzi, J.M., Chemaly, R.F., Parainfluenza virus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 370, pp. 358-364. , https://doi.org/10.1016/j.canlet.2015.11.014; Piralla, A., Percivalle, E., Di Cesare-Merlone, A., Locatelli, F., Gerna, G., Multicluster nosocomial outbreak of parainfluenza virus type 3 infection in a pediatric oncohematology unit: A phylogenetic study (2009) Haematologica, 94, pp. 833-839. , https://doi.org/10.3324/haematol.2008.003319; Hodson, A., Kasliwal, M., Streetly, M., Macmahon, E., Raj, K., A parainfluenza-3 outbreak in a SCT unit: Sepsis with multi-organ failure and multiple co-pathogens are associated with increased mortality (2011) Bone Marrow Transplant, 46, pp. 1545-1550. , https://doi.org/10.1038/bmt.2010.347; Berrueco, R., Anton, A., Rives, S., Catala, A., Toll, T., Ruiz, A., Camos, M., Munoz-Almagro, C., Multiplex real-time PCR for prompt diagnosis of an outbreak of human parainfluenza 3 virus in children with acute leukemia (2013) Infection, 41, pp. 1171-1175. , https://doi.org/10.1007/s15010-013-0498-8; Ustun, C., Slaby, J., Shanley, R.M., Vydra, J., Smith, A.R., Wagner, J.E., Weisdorf, D.J., Young, J.A., Human parainfluenza virus infection after hematopoietic stem cell transplantation: Risk factors, management, mortality, and changes over time (2012) Biol Blood Marrow Transplant, 18, pp. 1580-1588. , https://doi.org/10.1016/j.bbmt.2012.04.012; Chemaly, R.F., Hanmod, S.S., Rathod, D.B., Ghantoji, S.S., Jiang, Y., Doshi, A., Vigil, K., Champlin, R., The characteristics and outcomes of parainfluenza virus infections in 200 patients with leukemia or recipients of hematopoietic stem cell transplantation (2012) Blood, 119, pp. 2738-2745. , https://doi.org/10.1182/blood-2011-08-371112; Seo, S., Xie, H., Leisenring, W.M., Kuypers, J.M., Sahoo, F.T., Goyal, S., Kimball, L.E., Boeckh, M., Risk factors for parainfluenza virus lower respiratory tract disease after hematopoietic cell transplantation (2019) Biol Blood Marrow Transplant, 25, pp. 163-171. , https://doi.org/10.1016/j.bbmt.2018.08.021; Billings, J.L., Hertz, M.I., Savik, K., Wendt, C.H., Respiratory viruses and chronic rejection in lung transplant recipients (2002) J Heart Lung Transplant, 21, pp. 559-566. , https://doi.org/10.1016/S1053-2498(01)00405-3; Erard, V., Chien, J.W., Kim, H.W., Nichols, W.G., Flowers, M.E., Martin, P.J., Corey, L., Boeckh, M., Airflow decline after myeloablative allogeneic hematopoietic cell transplantation: The role of community respiratory viruses (2006) J Infect Dis, 193, pp. 1619-1625. , https://doi.org/10.1086/504268; Waghmare, A., Wagner, T., Andrews, R., Smith, S., Kuypers, J., Boeckh, M., Moss, R., Englund, J.A., Successful treatment of parainfluenza virus respiratory tract infection with DAS181 in 4 immunocompromised children (2015) J Pediatric Infect Dis Soc, 4, pp. 114-118. , https://doi.org/10.1093/jpids/piu039; Chen, Y.B., Driscoll, J.P., McAfee, S.L., Spitzer, T.R., Rosenberg, E.S., Sanders, R., Moss, R.B., Marty, F.M., Treatment of parainfluenza 3 infection with DAS181 in a patient after allogeneic stem cell transplantation (2011) Clin Infect Dis, 53, pp. e77-e80. , https://doi.org/10.1093/cid/cir501; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci U S A, 102, pp. 12891-12896. , https://doi.org/10.1073/pnas.0504666102; Tapparel, C., Cordey, S., Junier, T., Farinelli, L., van Belle, S., Soccal, P.M., Aubert, J.D., Kaiser, L., Rhinovirus genome variation during chronic upper and lower respiratory tract infections (2011) Plos One, 6. , https://doi.org/10.1371/journal.pone.0021163; Young, J.C., Chehoud, C., Bittinger, K., Bailey, A., Diamond, J.M., Cantu, E., Haas, A.R., Collman, R.G., Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients (2015) Am J Transplant, 15, pp. 200-209. , https://doi.org/10.1111/ajt.13031; de Vlaminck, I., Khush, K.K., Strehl, C., Kohli, B., Luikart, H., Neff, N.F., Okamoto, J., Quake, S.R., Temporal response of the human virome to immunosuppression and antiviral therapy (2013) Cell, 155, pp. 1178-1187. , https://doi.org/10.1016/j.cell.2013.10.034; Hirsch, H.H., Pergam, S.A., Human adenovirus, polyomavirus, and parvovirus infections in patients undergoing hematopoietic stem-cell transplantation (2016) Thomas’ Hematopoietic Cell Transplantation, pp. 1090-1104. , Forman SJ, Negrin RS, Antin JH, Appelbaum FR, 5th ed. John Wiley & Sons Ltd., Chichester, United Kingdom; Piralla, A., Zecca, M., Comoli, P., Girello, A., Maccario, R., Baldanti, F., Persistent rhinovirus infection in pediatric hematopoietic stem cell transplant recipients with impaired cellular immunity (2015) J Clin Virol, 67, pp. 38-42. , https://doi.org/10.1016/j.jcv.2015.03.022; Esposito, S., Daleno, C., Scala, A., Castellazzi, L., Terranova, L., Sferrazza Papa, S., Longo, M.R., Principi, N., Impact of rhinovirus naso-pharyngeal viral load and viremia on severity of respiratory infections in children (2014) Eur J Clin Microbiol Infect Dis, 33, pp. 41-48. , https://doi.org/10.1007/s10096-013-1926-5; Ambrosioni, J., Bridevaux, P.O., Aubert, J.D., Soccal, P., Wagner, G., Kaiser, L., Role of rhinovirus load in the upper respiratory tract and severity of symptoms in lung transplant recipients (2015) J Clin Virol, 64, pp. 1-5. , https://doi.org/10.1016/j.jcv.2014.12.021; Megremis, S., Niespodziana, K., Cabauatan, C., Xepapadaki, P., Kowalski, M.L., Jartti, T., Bachert, C., Papadopoulos, N.G., Rhinovirus species-specific antibodies differentially reflect clinical outcomes in health and asthma (2018) Am J Respir Crit Care Med, pp. 1490-1499. , https://doi.org/10.1164/rccm.201803-0575OC; Sester, M., Leboeuf, C., Schmidt, T., Hirsch, H.H., The “ABC” of virus-specific T cell immunity in solid organ transplantation (2016) Am J Transplant, 16, pp. 1697-1706. , https://doi.org/10.1111/ajt.13684; Sester, M., Sester, U., Alarcon Salvador, S., Heine, G., Lipfert, S., Girndt, M., Gartner, B., Kohler, H., Age-related decrease in adenovirus-specific T cell responses (2002) J Infect Dis, 185, pp. 1379-1387. , https://doi.org/10.1086/340502; Milano, F., Campbell, A.P., Guthrie, K.A., Kuypers, J., Englund, J.A., Corey, L., Boeckh, M., Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients (2010) Blood, 115, pp. 2088-2094. , https://doi.org/10.1182/blood-2009-09-244152; Sim, S.A., Leung, V.K.Y., Ritchie, D., Slavin, M.A., Sullivan, S.G., Teh, B.W., Viral respiratory tract infections in allogeneic hematopoietic stem cell transplantation recipients in the era of molecular testing (2018) Biol Blood Marrow Transplant, 24, pp. 1490-1496. , https://doi.org/10.1016/j.bbmt.2018.03.004; Seo, S., Waghmare, A., Scott, E.M., Xie, H., Kuypers, J.M., Hackman, R.C., Campbell, A.P., Boeckh, M., Human rhinovirus detection in the lower respiratory tract of hematopoietic cell transplant recipients: Association with mortality (2017) Haematologica, 102, pp. 1120-1130. , https://doi.org/10.3324/haematol.2016.153767; Abandeh, F.I., Lustberg, M., Devine, S., Elder, P., Andritsos, L., Martin, S.I., Outcomes of hematopoietic SCT recipients with rhinovirus infection: A matched, case-control study (2013) Bone Marrow Transplant, 48, pp. 1554-1557. , https://doi.org/10.1038/bmt.2013.100; Waghmare, A., Xie, H., Kuypers, J., Sorror, M.L., Jerome, K.R., Englund, J.A., Boeckh, M., Leisenring, W.M., Human rhinovirus infections in hematopoietic cell transplant recipients: Risk score for progression to lower respiratory tract infection (2019) Biol Blood Marrow Transplant, 25, pp. 1011-1021. , https://doi.org/10.1016/j.bbmt.2018.12.005; Kim, S.H., Chang, S.Y., Sung, M., Park, J.H., Bin Kim, H., Lee, H., Choi, J.P., Min, J.Y., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369. , https://doi.org/10.1093/cid/ciw239; Folz, R.J., Elkordy, M.A., Coronavirus pneumonia following auto-logous bone marrow transplantation for breast cancer (1999) Chest, 115, pp. 901-905. , https://doi.org/10.1378/chest.115.3.901; Garbino, J., Crespo, S., Aubert, J.D., Rochat, T., Ninet, B., Deffernez, C., Wunderli, W., Kaiser, L., A prospective hospital-based study of the clinical impact of non-severe acute respiratory syndrome (Non-SARS)-related human coronavirus infection (2006) Clin Infect Dis, 43, pp. 1009-1015. , https://doi.org/10.1086/507898; Ogimi, C., Englund, J.A., Bradford, M.C., Qin, X., Boeckh, M., Waghmare, A., Characteristics and outcomes of coronavirus infection in children: The role of viral factors and an immunocompromised state (2018) J Pediatric Infect Dis Soc, 8, pp. 21-28. , https://doi.org/10.1093/jpids/pix093; Wolfromm, A., Porcher, R., Legoff, J., Peffault de Latour, R., Xhaard, A., de Fontbrune, F.S., Ribaud, P., Robin, M., Viral respiratory infections diagnosed by multiplex PCR after allogeneic hematopoietic stem cell transplantation: Long-term incidence and outcome (2014) Biol Blood Marrow Transplant, 20, pp. 1238-1241. , https://doi.org/10.1016/j.bbmt.2014.04.004; Ogimi, C., Greninger, A.L., Waghmare, A.A., Kuypers, J.M., Shean, R.C., Xie, H., Leisenring, W.M., Boeckh, M., Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: Risk factors and viral genome evolution (2017) J Infect Dis, 216, pp. 203-209. , https://doi.org/10.1093/infdis/jix264; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Xie, H., Yeung, C.C., Leisenring, W.M., Seo, S., Boeckh, M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin Infect Dis, 64, pp. 1532-1539. , https://doi.org/10.1093/cid/cix160; Lion, T., Adenovirus infections in immunocompetent and immunocompromised patients (2014) Clin Microbiol Rev, 27, pp. 441-462. , https://doi.org/10.1128/CMR.00116-13; Michaels, M.G., Green, M., Wald, E.R., Starzl, T.E., Adenovirus infection in pediatric liver transplant recipients (1992) J Infect Dis, 165, pp. 170-174. , https://doi.org/10.1093/infdis/165.1.170; (2007) Acute Respiratory Disease Associated with Adenovirus Serotype 14 –four States, 2006 –2007, 56, pp. 1181-1184. , MMWR Morb Mortal Wkly Rep; Kandel, R., Srinivasan, A., D’Agata, E.M., Lu, X., Erdman, D., Jhung, M., Outbreak of adenovirus type 4 infection in a long-term care facility for the elderly (2010) Infect Control Hosp Epidemiol, 31, pp. 755-757. , https://doi.org/10.1086/653612; Barnadas, C., Schmidt, D.J., Fischer, T.K., Fonager, J., Molecular epidemiology of human adenovirus infections in Denmark, 2011–2016 (2018) J Clin Virol, 104, pp. 16-22. , https://doi.org/10.1016/j.jcv.2018.04.012; Lu, C.Y., Huang, L.M., Fan, T.Y., Cheng, A.L., Chang, L.Y., Incidence of respiratory viral infections and associated factors among children attending a public kindergarten in Taipei City (2018) J Formos Med Assoc, 117, pp. 132-140. , https://doi.org/10.1016/j.jfma.2017.02.020; Shen, C.F., Wang, S.M., Ho, T.S., Liu, C.C., Clinical features of community acquired adenovirus pneumonia during the 2011 community outbreak in southern Taiwan: Role of host immune response (2017) BMC Infect Dis, 17 (196). , https://doi.org/10.1186/s12879-017-2272-5; Swartling, L., Allard, A., Torlen, J., Ljungman, P., Mattsson, J., Sparrelid, E., Prolonged outbreak of adenovirus A31 in allogeneic stem cell transplant recipients (2015) Transpl Infect Dis, 17, pp. 785-794. , https://doi.org/10.1111/tid.12443; Engen, R.M., Huang, M.L., Park, G.E., Smith, J.M., Limaye, A.P., Prospective assessment of adenovirus infection in pediatric kidney transplant recipients (2018) Transplantation, 102, pp. 1165-1171. , https://doi.org/10.1097/TP.0000000000002100; Doan, M.L., Mallory, G.B., Kaplan, S.L., Dishop, M.K., Schecter, M.G., McKenzie, E.D., Heinle, J.S., Elidemir, O., Treatment of adenovirus pneumonia with cidofovir in pediatric lung transplant recipients (2007) J Heart Lung Transplant, 26, pp. 883-889. , https://doi.org/10.1016/j.healun.2007.06.009; Ohori, N.P., Michaels, M.G., Jaffe, R., Williams, P., Yousem, S.A., Adenovirus pneumonia in lung transplant recipients (1995) Hum Pathol, 26, pp. 1073-1079. , https://doi.org/10.1016/0046-8177(95)90268-6; Lachiewicz, A.M., Cianciolo, R., Miller, M.B., Derebail, V.K., Adenovirus causing fever, upper respiratory infection, and allograft nephritis complicated by persistent asymptomatic viremia (2014) Transpl Infect Dis, 16, pp. 648-652. , https://doi.org/10.1111/tid.12248; Saquib, R., Melton, L.B., Chandrakantan, A., Rice, K.M., Spak, C.W., Saad, R.D., Fenves, A.Z., Barri, Y.M., Disseminated adenovirus infection in renal transplant recipients: The role of cidofovir and intravenous immuno-globulin (2009) Transpl Infect Dis, 12, pp. 77-83. , https://doi.org/10.1111/j.1399-3062.2009.00452.x; Hiwarkar, P., Kosulin, K., Cesaro, S., Mikulska, M., Styczynski, J., Wynn, R., Lion, T., Management of adenovirus infection in patients after haematopoietic stem cell transplantation: State-of-the-art and real-life current approach: A position statement on behalf of the Infectious Diseases Working Party of the European Society of Blood and Marrow Transplantation (2018) Rev Med Virol, 28. , https://doi.org/10.1002/rmv.1980; Symeonidis, N., Jakubowski, A., Pierre-Louis, S., Jaffe, D., Pamer, E., Sepkowitz, K., O’Reilly, R.J., Papanicolaou, G.A., Invasive adenoviral infections in T-cell-depleted allogeneic hematopoietic stem cell transplantation: High mortality in the era of cidofovir (2007) Transpl Infect Dis, 9, pp. 108-113. , https://doi.org/10.1111/j.1399-3062.2006.00184.x; Fisher, B.T., Boge, C.L.K., Petersen, H., Seif, A.E., Bryan, M., Hodinka, R.L., Cardenas, A.M., Kajon, A.E., Outcomes of human adenovirus infection and disease in a retrospective cohort of pediatric hematopoietic cell transplant recipients (2018) J Pediatr Infect Dis Soc, , https://doi.org/10.1093/jpids/piy049; Hill, J.A., Mayer, B.T., Xie, H., Leisenring, W.M., Huang, M.L., Stevens-Ayers, T., Milano, F., Schiffer, J.T., Kinetics of double-stranded DNA viremia after allogeneic hematopoietic cell transplantation (2018) Clin Infect Dis, 66, pp. 368-375. , https://doi.org/10.1093/cid/cix804; Funk, G.F., Gosert, R., Hirsch, H.H., Viral dynamics in transplant patients: Implication for disease (2007) Lancet Infect Dis, 7, pp. 460-472. , https://doi.org/10.1016/S1473-3099(07)70159-7; Neofytos, D., Ojha, A., Mookerjee, B., Wagner, J., Filicko, J., Ferber, A., Dessain, S., Flomenberg, P., Treatment of adenovirus disease in stem cell transplant recipients with cidofovir (2007) Biol Blood Marrow Transplant, 13, pp. 74-81. , https://doi.org/10.1016/j.bbmt.2006.08.040; Matthes-Martin, S., Feuchtinger, T., Shaw, P.J., Engelhard, D., Hirsch, H.H., Cordonnier, C., Ljungman, P., European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: Summary of ECIL-4 (2011) (2012) Transpl Infect Dis, 14, pp. 555-563. , https://doi.org/10.1111/tid.12022; Lee, Y.J., Prockop, S.E., Papanicolaou, G.A., Approach to adenovirus infections in the setting of hematopoietic cell transplantation (2017) Curr Opin Infect Dis, 30, pp. 377-387. , https://doi.org/10.1097/QCO.0000000000000379; Lugthart, G., Oomen, M.A., Jol-Van der Zijde, C.M., Ball, L.M., Bresters, D., Kollen, W.J., Smiers, F.J., Lankester, A.C., The effect of cidofovir on adenovirus plasma DNA levels in stem cell transplantation recipients without T cell reconstitu-tion (2015) Biol Blood Marrow Transplant, 21, pp. 293-299. , https://doi.org/10.1016/j.bbmt.2014.10.012; Baugh, K.A., Tzannou, I., Leen, A.M., Infusion of cytotoxic T lympho-cytes for the treatment of viral infections in hematopoetic stem cell transplant patients (2018) Curr Opin Infect Dis, 31, pp. 292-300. , https://doi.org/10.1097/QCO.0000000000000456; Tzannou, I., Papadopoulou, A., Naik, S., Leung, K., Martinez, C.A., Ramos, C.A., Carrum, G., Omer, B., Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation (2017) J Clin Oncol, 35, pp. 3547-3557. , https://doi.org/10.1200/JCO.2017.73.0655; Leen, A.M., Bollard, C.M., Mendizabal, A.M., Shpall, E.J., Szabolcs, P., Antin, J.H., Kapoor, N., Heslop, H.E., Multicenter study of banked third party virus-specific T-cells to treat severe viral infections after hematopoietic stem cell transplantation (2013) Blood, 121, pp. 5113-5123. , https://doi.org/10.1182/blood-2013-02-486324; Schenk, T., Maier, B., Hufnagel, M., Strahm, B., Kontny, U., Neumann-Haefelin, D., Falcone, V., Persistence of human bocavirus DNA in immunocompromised children (2010) Pediatr Infect Dis J, 30, pp. 82-84. , https://doi.org/10.1097/INF.0b013e3181f12fcf; Jula, A., Waris, M., Kantola, K., Peltola, V., Soderlund-Venermo, M., Hedman, K., Ruuskanen, O., Primary and secondary human bocavirus 1 infections in a family, Finland (2013) Emerg Infect Dis, 19, pp. 1328-1331. , https://doi.org/10.3201/eid1908.130074; Gerna, G., Piralla, A., Campanini, G., Marchi, A., Stronati, M., Rovida, F., The human bocavirus role in acute respiratory tract infections of pediatric patients as defined by viral load quantification (2007) New Microbiol, 30, pp. 383-392; Pinana, J.L., Madrid, S., Perez, A., Hernandez-Boluda, J.C., Gimenez, E., Terol, M.J., Calabuig, M., Solano, C., Epidemiologic and clinical characteristics of coronavirus and bocavirus respiratory infections after allogeneic stem cell transplantation: A prospective single-center study (2018) Biol Blood Marrow Transplant, 24, pp. 563-570. , https://doi.org/10.1016/j.bbmt.2017.11.001; Rahiala, J., Koskenvuo, M., Norja, P., Meriluoto, M., Toppinen, M., Lahtinen, A., Vaisanen, E., Vetten-Ranta, K., Human parvoviruses B19, PARV4 and bocavirus in pediatric patients with allogeneic hematopoietic SCT (2013) Bone Marrow Transplant, 48, pp. 1308-1312. , https://doi.org/10.1038/bmt.2013.63; Miyakis, S., van Hal, S.J., Barratt, J., Stark, D., Marriott, D., Harkness, J., Absence of human bocavirus in bronchoalveolar lavage fluid of lung transplant patients (2009) J Clin Virol, 44, pp. 179-180. , https://doi.org/10.1016/j.jcv.2008.10.010; Chalkias, S., Mackenzie, M.R., Gay, C., Dooley, C., Marty, F.M., Moss, R.B., Li, T., Tan, C.S., DAS181 treatment of hematopoietic stem cell transplant patients with parainfluenza virus lung disease requiring mechanical ventilation (2014) Transpl Infect Dis, 16, pp. 141-144. , https://doi.org/10.1111/tid.12177; Guzman-Suarez, B.B., Buckley, M.W., Gilmore, E.T., Vocca, E., Moss, R., Marty, F.M., Sanders, R., Koo, S., Clinical potential of DAS181 for treatment of parainfluenza-3 infections in transplant recipients (2012) Transpl Infect Dis, 14, pp. 427-433. , https://doi.org/10.1111/j.1399-3062.2012.00718.x; Dhakal, B., D’Souza, A., Pasquini, M., Saber, W., Fenske, T.S., Moss, R.B., Drobyski, W.R., Abidi, M.Z., DAS181 treatment of severe parainfluenza virus 3 pneumonia in allogeneic hematopoietic stem cell transplant recipients requiring mechanical ventilation (2016) Case Rep Med, 2016. , https://doi.org/10.1155/2016/8503275; Drozd, D.R., Limaye, A.P., Moss, R.B., Sanders, R.L., Hansen, C., Edelman, J.D., Raghu, G., Rakita, R.M., DAS181 treatment of severe parainfluenza type 3 pneumonia in a lung transplant recipient (2013) Transpl Infect Dis, 15, pp. E28 –E32. , https://doi.org/10.1111/tid.12045; Salvatore, M., Satlin, M.J., Jacobs, S.E., Jenkins, S.G., Schuetz, A.N., Moss, R.B., van Besien, K., Soave, R., DAS181 for the treatment of parainfluenza virus infections in 16 hematopoietic stem cell transplant recipients at a single center (2016) Biol Blood Marrow Transplant, 22, pp. 965-970. , https://doi.org/10.1016/j.bbmt.2016.02.011","Ison, M.G.; Northwestern University Feinberg School of MedicineUnited States; email: mgison@northwestern.edu",,"American Society for Microbiology",08938512,,CMIRE,"31511250","English","Clin. Microbiol. Rev.",Review,"Final",Open Access,Scopus,2-s2.0-85072104181 "Al-Tawfiq J.A., Memish Z.A.","9436438200;7005059350;","The Hajj 2019 vaccine requirements and possible new challenges",2019,"Journal of Epidemiology and Global Health","9","3",,"147","152",,1,"10.2991/jegh.k.190705.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071720458&doi=10.2991%2fjegh.k.190705.001&partnerID=40&md5=d3e6609ffdd755792a16739a422f13a7","Infectious Disease Section, Specialty Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohammed Bin Abdulaziz Hospital (PMAH), Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Al-Tawfiq, J.A., Infectious Disease Section, Specialty Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Memish, Z.A., Department of Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohammed Bin Abdulaziz Hospital (PMAH), Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Each year millions of pilgrims perform the annual Hajj from more than 180 countries around the world. This is one of the largest mass gathering events and may result in the occurrence and spread of infectious diseases. As such, there are mandatory vaccinations for the pilgrims such as meningococcal vaccines. The 2019 annual Hajj will take place during August 8–13, 2019. Thus, we review the recommended and mandated vaccinations for the 2019 Hajj and Umrah. The mandatory vaccines required to secure the visa include the quadrivalent meningococcal vaccine for all pilgrims, while yellow fever, and poliomyelitis vaccines are required for pilgrims coming from countries endemic or with disease activity. The recommended vaccines are influenza, pneumococcal, in addition to full compliance with basic vaccines for all pilgrims against diphtheria, tetanus, pertussis, polio, measles, and mumps. It is imperative to continue surveillance for the spread of antimicrobial resistance and occurrence of all infectious diseases causing outbreaks across the globe in the last year, like Zika virus, MDR-Typhoid, Nipah, Ebola, cholera, chikungunya and Middle East Respiratory Syndrome Coronavirus. © 2019 Atlantis Press International B.V.","Hajj; Mass gathering; Pilgrimage; Saudi Arabia; Vaccine requirements","diphtheria vaccine; influenza vaccine; measles vaccine; Meningococcus vaccine; mumps vaccine; pertussis vaccine; Pneumococcus vaccine; poliomyelitis vaccine; tetanus toxoid; yellow fever vaccine; diphtheria; disease activity; human; influenza; influenza vaccination; measles; meningococcosis; mumps; pertussis; pneumococcal infection; poliomyelitis; priority journal; Review; tetanus; vaccination; yellow fever","Al-Tawfiq, J.A., Gautret, P., Memish, Z.A., Expected immunizations and health protection for Hajj and Umrah 2018 —an overview (2017) Travel Med Infect Dis, 19, pp. 2-7; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: A systematic review (2016) Travel Med Infect Dis, 14, pp. 92-109; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., The spectrum of respiratory pathogens among returning Hajj pilgrims: Myths and reality (2016) Int J Infect Dis, 47, pp. 83-85; Memish, Z.A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Hajj: Preparations underway (2013) Lancet Glob Health, 1, p. E331; Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Hajj: Infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Al-Tawfiq, J.A., Memish, Z.A., Mass gathering medicine: 2014 Hajj and Umra preparation as a leading example (2014) Int J Infect Dis, 27, pp. 26-31; Memish, Z.A., Al-Tawfiq, J.A., The Hajj in the time of an ebola outbreak in West Africa (2014) Travel Med Infect Dis, 12, pp. 415-417; Al-Tawfiq, J.A., Memish, Z.A., The Hajj: Updated health hazards and current recommendations for 2012 (2012) Euro Surveill, 17, p. 20295; Al-Tawfiq, J.A., Memish, Z.A., Mass gatherings and infectious diseases: Prevention, detection, and control (2012) Infect Dis Clin North Am, 26, pp. 725-737; Lucidarme, J., Scott, K.J., Ure, R., Smith, A., Lindsay, D., Stenmark, B., An international invasive meningococcal disease outbreak due to a novel and rapidly expanding serogroup W strain, Scotland and Sweden, July to August 2015 (2016) Eurosurveillance, 21, p. 30395; Wilder-Smith, A., Goh, K.T., Barkham, T., Paton, N.I., Hajj-associated outbreak strain of Neisseria meningitidis serogroup W135: Estimates of the attack rate in a defined population and the risk of invasive disease developing in carriers (2003) Clin Infect Dis, 36, pp. 679-683; Aguilera, J.-F., Perrocheau, A., Meffre, C., Hahné, S., Outbreak of serogroup W135 meningococcal disease after the Hajj pilgrimage, Europe, 2000 (2002) Emerg Infect Dis, 8, pp. 761-767; Dull, P.M., Abdelwahab, J., Sacchi, C.T., Becker, M., Noble, C.A., Barnett, G.A., Neisseria meningitidis Serogroup W-135 Carriage among US travelers to the 2001 Hajj (2005) J Infect Dis, 191, pp. 33-39; Al-Tawfiq, J.A., Clark, T.A., Memish, Z.A., Meningococcal disease: The organism, clinical presentation, and worldwide epidemiology (2010) J Travel Med, 17, pp. 3-8; Al-Gahtani, Y.M., El Bushra, H.E., Al-Qarawi, S.M., Al-Zubaidi, A.A., Fontaine, R.E., Epidemiological investigation of an outbreak of meningococcal meningitis in Makkah (Mecca), Saudi Arabia, 1992 (1995) Epidemiol Infect, 115, pp. 399-409; Moore, P.S., Reeves, M.W., Schwartz, B., Gellin, B.G., Broome, C.V., Intercontinental spread of an epidemic group A Neisseria meningitidis strain (1989) Lancet, 334, pp. 260-263; Novelli, V.M., Lewis, R.G., Dawood, S.T., Epidemic group A meningococcal disease in Haj pilgrims (1987) Lancet, 330, p. 863; Lingappa, J.R., Al-Rabeah, A.M., Hajjeh, R., Mustafa, T., Fatani, A., Al-Bassam, T., Serogroup W-135 meningococcal disease during the Hajj, 2000 (2003) Emerg Infect Dis, 9, pp. 665-671; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210, pp. 1067-1072; Health Regulations - 2019/1440H-Hajj and Umrah Health Regulations N.D., , https://www.moh.gov.sa/en/Hajj/HealthGuidelines/HealthGuidelinesDuringHajj/Pages/HealthRequirements.aspx, Saudi Ministry of Health. accessed June 22, 2019; Parker, A.A., Staggs, W., Dayan, G.H., Ortega-Sánchez, I.R., Rota, P.A., Lowe, L., Implications of a 2005 measles outbreak in Indiana for sustained elimination of measles in the United States (2006) N Engl J Med, 355, pp. 447-455; Pfaff, G., Lohr, D., Santibanez, S., Mankertz, A., Van Treeck, U., Schonberger, K., Spotlight on measles 2010: Measles outbreak among travellers returning from a mass gathering, Germany, September to October 2010 (2010) Euro Surveill, 15. , pii: 19750; Chen, T.-H., Kutty, P., Lowe, L., Hunt, E., Blostein, J., Espinoza, R., Measles outbreak associated with an international youth sporting event in the United States, 2007 (2010) Pediatr Infect Dis J, 29, pp. 794-800; Memish, Z.A., Al-Tawfiq, J.A., Almasri, M., Azhar, E.I., Yasir, M., Al-Saeed, M.S., Neisseria meningitidis nasopharyngeal carriage during the Hajj: A cohort study evaluating the need for ciprofloxacin prophylaxis (2017) Vaccine, 35, pp. 2473-2478; Borrow, R., Meningococcal disease and prevention at the Hajj (2009) Travel Med Infect Dis, 7, pp. 219-225; Memish, Z., Al Hakeem, R., Al Neel, O., Danis, K., Jasir, A., Eibach, D., Laboratory-confirmed invasive meningococcal disease: Effect of the Hajj vaccination policy, Saudi Arabia, 1995 to 2011 (2013) Euro Surveill, 18. , pii: 20581; Memish, Z.A., Venkatesh, S., Ahmed, Q.A., Travel epidemiology: The Saudi perspective (2003) Int J Antimicrob Agents, 21, pp. 96-101; Mayer, L.W., Reeves, M.W., Al-Hamdan, N., Sacchi, C.T., Taha, M.-K., Ajello, G.W., Outbreak of W135 meningococcal disease in 2000; not emergence of a new W135 strain but clonal expansion within the electophoretic type-37 complex (2002) J Infect Dis, 185, pp. 1596-1605; Issack, M.I., Ragavoodoo, C., Hajj-related Neisseria meningitidis serogroup w135 in Mauritius (2002) Emerg Infect Dis, 8, pp. 332-334; Folaranmi, T., Rubin, L., Martin, S.W., Patel, M., MacNeil, J.R., Use of serogroup B meningococcal vaccines in persons aged ≥10 years at increased risk for serogroup B meningococcal disease: Recommendations of the advisory committee on immunization practices, 2015 (2015) MMWR Morb Mortal Wkly Rep, 64, pp. 608-612; Memish, Z.A., Meningococcal disease and travel (2002) Clin Infect Dis, 34, pp. 84-90; Shibl, A., Tufenkeji, H., Khalil, M., Memish, Z., Consensus recommendation for meningococcal disease prevention for Hajj and Umra pilgrimage/travel medicine (2013) East Mediterr Health J, 19, pp. 389-392; Alborzi, A., Oskoee, S., Pourabbas, B., Alborzi, S., Astaneh, B., Gooya, M.M., Meningococcal carrier rate before and after hajj pilgrimage: Effect of single dose ciprofloxacin on carriage (2008) East Mediterr Health J, 14, pp. 277-282; Wilder-Smith, A., Barkham, T.M.S., Chew, S.K., Paton, N.I., Absence of Neisseria meningitidis W-135 electrophoretic Type 37 during the Hajj, 2002 (2003) Emerg Infect Dis, 9, pp. 734-737; Wilder-Smith, A., Barkham, T.M.S., Earnest, A., Paton, N.I., Acquisition of W135 meningococcal carriage in Hajj pilgrims and transmission to household contacts: Prospective study (2002) BMJ, 325, p. 365; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect, 21, pp. 571.e1–571.e8; Mushtaq, A., Mehmood, S., Ur Rehman, M.A., Younas, A., Ur Rehman, M.S., Malik, M.F., Polio in Pakistan: Social constraints and travel implications (2015) Travel Med Infect Dis, 13, pp. 360-366; Polio global eradication initiative Polio Today N.D, , http://polioeradication.org/polio-today/polio-now/this-week/, accessed June 23, 2019; Polio Eradication Initiative N, , http://www.emro.who.int/polio/countries/saudi-arabia.html, d. accessed June 23, 2019; Wilder-Smith, A., Leong, W.-Y., Lopez, L.F., Amaku, M., Quam, M., Khan, K., Potential for international spread of wild poliovirus via travelers (2015) BMC Med, 13, p. 133; Elachola, H., Chitale, R.A., Ebrahim, S.H., Wassilak, S.G.F., Memish, Z.A., Polio priority countries and the 2018 Hajj: Leveraging an opportunity (2018) Travel Med Infect Dis, 25, pp. 3-5; Ahmed, Q.A., Arabi, Y.M., Memish, Z.A., Health risks at the Hajj (2006) Lancet, 367, pp. 1008-1015; (2005) International Health Regulations (IHR), , https://www.who.int/ihr/finalversion9Nov07.pdf, last accessed July 25, 2019; (2016) New Yellow Fever Vaccination Requirements for Travellers, , http://www.who.int/ith/updates/20160727/en/, accessed August 18, 2017; (2016) Countries with Risk of Yellow Fever Transmission and Countries Requiring Yellow Fever Vaccination, , http://www.who.int/ith/2016-ith-annex1.pdf?ua=1, accessed August 20, 2017; Rashid, H., Shafi, S., Booy, R., El Bashir, H., Ali, K., Zambon, M.C., Influenza and respiratory syncytial virus infections in British Hajj pilgrims (2008) Emerg Health Threats J, 1, p. e2; Kandeel, A., Deming, M., Elkreem, E.A., El-Refay, S., Afifi, S., Abukela, M., Pandemic (H1N1) 2009 and Hajj pilgrims who received predeparture vaccination, Egypt (2011) Emerg Infect Dis, 17, pp. 1266-1268; Ziyaeyan, M., Alborzi, A., Jamalidoust, M., Moeini, M., Pouladfar, G.R., Pourabbas, B., Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims from Southern Iran: A real-time RT-PCR-based study (2012) Influenza Other Respir Viruses, 6, pp. e80-e84; Memish, Z.A., Assiri, A.M., Hussain, R., Alomar, I., Stephens, G., Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic (2012) J Travel Med, 19, pp. 15-21; Refaey, S., Amin, M.M., Roguski, K., Azziz-Baumgartner, E., Uyeki, T.M., Labib, M., Cross-sectional survey and surveillance for influenza viruses and MERS-CoV among Egyptian pilgrims returning from Hajj during 2012–2015 (2016) Influenza Other Respir Viruses, 11, pp. 57-60; Ashshi, A., Azhar, E., Johargy, A., Asghar, A., Momenah, A., Turkestani, A., Demographic distribution and transmission potential of influenza A and 2009 pandemic influenza A H1N1 in pilgrims (2014) J Infect Dev Ctries, 8, pp. 1169-1175; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20, pp. 807-812; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Drali, T., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Ali, K.A., Memish, Z.A., Value of rapid testing for influenza among Hajj pilgrims (2007) Travel Med Infect Dis, 5, pp. 310-313; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Memish, Z.A., Sudhanva, M., Viral respiratory infections at the Hajj: Comparison between UK and Saudi pilgrims (2008) Clin Microbiol Infect, 14, pp. 569-574; Alborzi, A., Aelami, M.H., Ziyaeyan, M., Jamalidoust, M., Moeini, M., Pourabbas, B., Viral etiology of acute respiratory infections among Iranian Hajj pilgrims, 2006 (2009) J Travel Med, 16, pp. 239-242; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian Hajj pilgrims returning to Shiraz, Fars province, Iran (2012) Influenza Other Respir Viruses, 6, pp. e77-e79; Barasheed, O., Almasri, N., Badahdah, A.-M., Heron, L., Taylor, J., McPhee, K., Pilot randomised controlled trial to test effectiveness of facemasks in preventing influenza-like illness transmission among Australian Hajj pilgrims in 2011 (2014) Infect Disord Drug Targets, 14, pp. 110-116; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Azeem, M., Bokhary, H., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Yezli, S., Etiology of severe community-acquired pneumonia during the 2013 Hajj—part of the MERS-CoV surveillance program (2014) Int J Infect Dis, 25, pp. 186-190; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B viruses but not MERS-CoV in Hajj pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21, pp. 726-727; Alfelali, M., Khandaker, G., Booy, R., Rashid, H., Mismatching between circulating strains and vaccine strains of influenza: Effect on Hajj pilgrims from both hemispheres (2016) Hum Vaccin Immunother, 12, pp. 709-715; (2017) Hajj 1438 Hijrah (2017) - Health Regulations, , http://www.moh.gov.sa/en/Hajj/Pages/HealthRegulations.aspx, Saudi Ministry of Health. accessed August 18, 2017; Alfelali, M., Barasheed, O., Tashani, M., Azeem, M.I., El Bashir, H., Memish, Z.A., Changes in the prevalence of influenza-like illness and influenza vaccine uptake among Hajj pilgrims: A 10-year retrospective analysis of data (2015) Vaccine, 33, pp. 2562-2569; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Travel Med Infect Dis, 23, pp. 6-13; Edouard, S., Al-Tawfiq, J.A., Memish, Z.A., Yezli, S., Gautret, P., Impact of the Hajj on pneumococcal carriage and the effect of various pneumococcal vaccines (2018) Vaccine, 36, pp. 7415-7422; Al-Tawfiq, J.A., Memish, Z.A., Prevention of pneumococcal infections during mass gathering (2016) Hum Vaccin Immunother, 12, pp. 326-330; Al-Tawfiq, J.A., Smallwood, C.A.H., Arbuthnott, K.G., Malik, M.S.K., Barbeschi, M., Memish, Z.A., Emerging respiratory and novel coronavirus 2012 infections and mass gatherings (2013) East Mediterr Health J, 19, pp. S48-S54; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Petersen, E., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: A prospective descriptive study for the period 2013–2015 (2016) Int J Infect Dis, 47, pp. 10-14; (2013) Novel Coronavirus – Eastern Mediterranean (03), , http://promedmail.org/post/20130326.1603038, Saudi comment, accessed February 12, 2013; Griffiths, K., Charrel, R., Lagier, J.-C., Nougairede, A., Simon, F., Parola, P., Infections in symptomatic travelers returning from the Arabian peninsula to France: A retrospective cross-sectional study (2016) Travel Med Infect Dis, 14, pp. 414-416; Gautret, P., Charrel, R., Belhouchat, K., Drali, T., Benkouiten, S., Nougairede, A., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19, pp. E315-E317; Baharoon, S., Al-Jahdali, H., Al Hashmi, J., Memish, Z.A., Ahmed, Q.A., Severe sepsis and septic shock at the Hajj: Etiologies and outcomes (2009) Travel Med Infect Dis, 7, pp. 247-252; Sridhar, S., Brouqui, P., Parola, P., Gautret, P., Imported cases of Middle East respiratory syndrome: An update (2015) Travel Med Infect Dis, 13, pp. 106-109; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Travel implications of emerging coronaviruses: SARS and MERS-CoV (2014) Travel Med Infect Dis, 12, pp. 422-428; Gautret, P., Benkouiten, S., Sridhar, S., Al-Tawfiq, J.A., Memish, Z.A., Diarrhea at the Hajj and Umrah (2015) Travel Med Infect Dis, 13, pp. 159-166; McDonald, R., Ruppert, P.S., Souto, M., Johns, D.E., McKay, K., Bessette, N., Notes from the field: Measles outbreaks from imported cases in Orthodox Jewish communities — New York and New Jersey, 2018–2019 (2019) Am J Transplant, 19, pp. 2131-2133; Patel, M., Lee, A.D., Redd, S.B., Clemmons, N.S., McNall, R.J., Cohn, A.C., Increase in measles cases — United States, January 1–April 26, 2019 (2019) Am J Transplant, 19, pp. 2127-2130; Carlson, A., Riethman, M., Gastañaduy, P., Lee, A., Leung, J., Holshue, M., Notes from the field: Community outbreak of measles — Clark County, Washington, 2018–2019 (2019) Am J Transplant, 19, pp. 2134-2135; Mahase, E., Measles cases rise 300% globally in first few months of 2019 (2019) BMJ, 365, p. l1810; Gautret, P., Steffen, R., Communicable diseases as health risks at mass gatherings other than Hajj: What is the evidence? (2016) Int J Infect Dis, 47, pp. 46-52; Al-Tawfiq, J.A., Gautret, P., Benkouiten, S., Memish, Z.A., Mass gatherings and the spread of respiratory infections. Lessons from the Hajj (2016) Ann Am Thorac Soc, 13, pp. 759-765; Elachola, H., Assiri, A., Turkestani, A.H., Sow, S.S., Petersen, E., Al-Tawfiq, J.A., Advancing the global health security agenda in light of the 2015 annual Hajj pilgrimage and other mass gatherings (2015) Int J Infect Dis, 40, pp. 133-134","Al-Tawfiq, J.A.; Infectious Disease Section, Specialty Medicine Department, Johns Hopkins Aramco HealthcareSaudi Arabia; email: jaffar.tawfiq@jhah.com",,"Atlantis Press International",22106006,,,"31529930","English","J. Epidemiol. Global Health",Review,"Final",Open Access,Scopus,2-s2.0-85071720458 "Kandeel M., Altaher A., Alnazawi M.","22937486100;57213434131;57190490007;","Molecular dynamics and inhibition of MERS CoV papain-like protease by small molecule imidazole and aminopurine derivatives",2019,"Letters in Drug Design and Discovery","16","5",,"584","591",,,"10.2174/1570180815666180918161922","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067281926&doi=10.2174%2f1570180815666180918161922&partnerID=40&md5=8f68a5cea6f5bcbd3e42229d22b17909","Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelsheikh, Egypt","Kandeel, M., Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia, Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelsheikh, Egypt; Altaher, A., Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia; Alnazawi, M., Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia","Background: Middle East Respiratory Syndrome coronavirus (MERS CoV) is a newly emerged viral disease with a fatal outcome. Methods: During the search for new antiviral drugs, MERS CoV papain-like protease (Plpro) was identified as a possible target. In this work, MERS CoV Plpro was investigated by virtual screening, enzyme inhibition and molecular dynamics to find new inhibitors. After the virtual screening of a dataset of small molecules, 5 compounds were selected for inhibitory studies. Results: Purine and imidazole-pyridine derivatives were identified as MERS CoV Plpro inhibitors with Ki values of 73 and 68 µM, respectively. The binding of inhibitors showed marked changes in both the fingers subdomain and Ubl domain, with negligible changes in the catalytic domain. The binding of inhibitors was associated with the formation of favorable hydrogen bonds with the side chains of Plpro S1648 or Y1760. Conclusion: Further optimization of the present set can lead to more potent inhibitors through the design of small molecules with improved binding affinity. © 2019 Bentham Science Publishers.","Coronavirus; Inhibitors; MERS CoV; Molecular dynamics; Plpro; Protease","2 [(4h 1,2,4 triazol 3 yl)thio] n (3,5 dichlorophenyl)acetamide; 3 [((1h benzo[d]imidazol 2 yl)methyl)thio]propanenitrile; 6 bromo 5 methyl 2 (trifluoromethyl) 1h imidazo[4,5 b]pyridine; antivirus agent; imidazole derivative; mercaptopurine; n (3 chlorophenyl) 8 (trifluoromethyl) 9h purin 6 amine; n (3,5 dichlorophenyl) 2 [(4 ethyl 5 phenyl 4h 1,2,4 triazol 3 yl)thio]acetamide; papain; papain like protease; proteinase; proteinase inhibitor; purine derivative; pyridine derivative; tioguanine; unclassified drug; Article; catalysis; controlled study; drug protein binding; drug screening; enzyme inhibition; hydrogen bond; inhibition constant; Middle East respiratory syndrome coronavirus; molecular dynamics; nonhuman; priority journal; protein domain","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New Eng. J. Med., 367 (19), pp. 1814-1820; Kandeel, M., Elaiziz, M., Kandeel, A., Altaher, A., Kitade, Y., Association of host tropism of Middle East syndrome coronavirus with the amino acid structure of host cell receptor dipeptidyl peptidase 4 (2013) Acta Virol., 58 (4), pp. 359-363; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of MERS coronavirus among dromedary camels (2014) Africa. Emerg. Infec. Dis., 20 (8), pp. 1370-1374; Devi, J.P., Noraini, W., Norhayati, R., Kheong, C.C., Badrul, A., Zainah, S., Fadzilah, K., Hisham, A.N., Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: Preparedness and response (2014) Euro Surveill, 19 (18); Su, S., Wong, G., Liu, Y., Gao, G.F., Li, S., Bi, Y., MERS in South Korea and China: A potential outbreak threat? (2015) Lancet, 385 (9985), pp. 2349-2350; Shi, J., Zhang, J., Li, S., Sun, J., Teng, Y., Wu, M., Li, J., Wang, H., Epitope-based vaccine target screening against highly pathogenic MERS-CoV: An in silico approach applied to emerging infectious diseases (2015) Plos One, 10 (12), p. e0144475; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Patel, K., Ghosh, A.K., Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV (2015) ACS. Chem. Biol., 10 (6), pp. 1456-1465; Wang, F., Chen, C., Tan, W., Yang, K., Yang, H., Structure of main protease from human coronavirus NL63: Insights for wide spectrum anti-coronavirus drug design (2016) Sci. Rep., 6, p. 22677; Wu, A., Wang, Y., Zeng, C., Huang, X., Xu, S., Su, C., Wang, M., Guo, D., Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus (2015) Virus Res., 208, pp. 56-65; Lei, J., Hilgenfeld, R., Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin (2016) Virol. Sin., 31, pp. 288-299; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450, pp. 64-70; Lin, M.-H., Chuang, S.-J., Chen, C.-C., Cheng, S.-C., Cheng, K.W., Lin, C.-H., Sun, C.-Y., Chou, C.-Y., Structural and functional characterization of MERS coronavirus papain-like protease (2014) J. Biomed. Sci., 21 (1), p. 1; Cheng, K.-W., Cheng, S.-C., Chen, W.-Y., Lin, M.-H., Chuang, S.J., Cheng, I.-H., Sun, C.-Y., Chou, C.-Y., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus (2015) Antiviral Res., 115, pp. 9-16; Kandeel, M., Altaher, A., Kitade, Y., Abdelaziz, M., Alnazawi, M., Elshazli, K., Evolution of camel CYP2E1 and its associated power of binding toxic industrial chemicals and drugs (2016) Comput. Biol. Chem., 64, pp. 271-280; Kandeel, M., Kitade, Y., Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing (2013) Plos One, 8, p. e57140; Kandeel, M., Kitade, Y., In silico molecular docking analysis of the human Argonaute 2 PAZ domain reveals insights into RNA interference (2013) J. Comp. Aided Mol. Des., 27 (7), pp. 605-614; Kandeel, M., Ando, T., Kitamura, Y., Abdel-Aziz, M., Kitade, Y., Mutational, inhibitory and microcalorimetric analyses of Plasmodium falciparum TMP kinase. Implications for drug discovery (2009) Parasitology, 136 (1), pp. 11-25; Altaher, Y., Kandeel, M., Molecular analysis of some camel cytochrome P450 enzymes reveals lower evolution and drugbinding properties (2016) J. Biomol. Struct. Dynamics., 34 (1), pp. 115-124; Altaher, Y., Nakanishi, M., Kandeel, M., Annotation of camel genome for estimation of drug binding power, evolution and adaption of cytochrome P450 1a2 (2015) Int. J. Pharmacol., 11 (3), pp. 243-247; Krieger, E., Koraimann, G., Vriend, G., Increasing the precision of comparative models with YASARA NOVA-a self‐parameterizing force field. Proteins (2002) Struct. Func. Bioinform., 47 (3), pp. 393-402; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular Dynamic studies of interferon and innate immunity resistance in MERS CoV non-structural protein 3 (2017) Biol. Pharmaceut. Bull., 40 (3), pp. 345-351; Clasman, J.R., Báez-Santos, Y.M., Mettelman, R.C., O’Brien, A., Baker, S.C., Mesecar, A.D., X-ray structure and enzymatic activity profile of a core papain-like protease of MERS coronavirus with utility for structure-based drug design (2017) Scient. Rep., 7, p. 40292","Kandeel, M.; Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, Saudi Arabia; email: mkandeel@kfu.edu.sa",,"Bentham Science Publishers B.V.",15701808,,LDDDA,,"English","Lett. Drug. Des. Discov.",Article,"Final",,Scopus,2-s2.0-85067281926 "Harms N.J., Jung T.S., Andrew C.L., Surujballi O.P., Vanderkop M., Savic M., Powell T.","55571114200;15755768800;57205481427;6602181351;57205485116;57196917609;15756381000;","Health status of reintroduced wood bison (Bison bison athabascae): Assessing the conservation value of an isolated population in northwestern Canada",2019,"Journal of Wildlife Diseases","55","1",,"44","53",,1,"10.7589/2017-09-235","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060195171&doi=10.7589%2f2017-09-235&partnerID=40&md5=17eea113aad016b5cabdd3f36fad58df","Department of Environment, Government of Yukon, PO Box 2703, Whitehorse, Yukon Y1A 2C6, Canada; Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H1, Canada; Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, 3851 Fallowfield, Ottawa, ON K2H 8P9, Canada","Harms, N.J., Department of Environment, Government of Yukon, PO Box 2703, Whitehorse, Yukon Y1A 2C6, Canada; Jung, T.S., Department of Environment, Government of Yukon, PO Box 2703, Whitehorse, Yukon Y1A 2C6, Canada, Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, AB T6G 2H1, Canada; Andrew, C.L., Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Surujballi, O.P., Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, 3851 Fallowfield, Ottawa, ON K2H 8P9, Canada; Vanderkop, M., Department of Environment, Government of Yukon, PO Box 2703, Whitehorse, Yukon Y1A 2C6, Canada; Savic, M., Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, 3851 Fallowfield, Ottawa, ON K2H 8P9, Canada; Powell, T., Department of Environment, Government of Yukon, PO Box 2703, Whitehorse, Yukon Y1A 2C6, Canada","A central goal for reintroduced populations of threatened wood bison (Bison bison athabascae) is to maintain them free of diseases of concern, particularly bovine tuberculosis (caused by Mycobacterium bovis) and brucellosis (caused by Brucella abortus). A wood bison population in southwestern Yukon, Canada was reintroduced into the wild in 1988, but no health assessment has been done since then. To provide an initial assessment of the health status and, hence, the conservation value of this population, we serologically tested 31 wood bison (approximately 3% of the population) for pathogens of interest and obtained histopathology results for select tissues. We found no evidence of exposure to M. bovis or Brucella spp., but antibodies were present to bovine parainfluenza virus 3, bovine coronavirus, Leptospira interrogans, and Neospora caninum, with seroprevalences of 87, 7, 61, and 7% of the tested animals, respectively. Reintroduced wood bison in southwestern Yukon may be of high value for wood bison recovery because it is a large and geographically isolated population with no bacteriologic, histopathologic, or serologic evidence of exposure to Brucella spp. or M. bovis. © Wildlife Disease Association 2019.","Bison bison; Brucella abortus; Health surveillance; Leptospira interrogans; Mycobacterium bovis; Neospora caninum; Reintroduction; Serology","animal; Bison; blood; communicable disease; environmental protection; female; health survey; male; seroepidemiology; serology; veterinary medicine; Yukon; Animals; Bison; Communicable Diseases; Conservation of Natural Resources; Female; Male; Population Surveillance; Seroepidemiologic Studies; Serologic Tests; Yukon Territory","Adler, B., de la Peña Moctezuma, A., Leptospira and leptospirosis (2010) Vet Microbiol, 140, pp. 287-296; Baszler, T.V., Adams, S., Vander-Schalie, J., Mathison, B.A., Kostovic, M., Validation of a commercially available monoclonal antibody-based competitive-inhibition enzyme-linked immunosorbent assay for detection of serum antibodies to Neospora caninum in cattle (2001) J Clin Microbiol, 39, pp. 3851-3857; Bień, J., Moskwa, B., Cabaj, W., In vitro isolation and identification of the first Neospora caninum isolate from European bison (Bison bison bonasus L.) (2010) Vet Parasitol, 173, pp. 200-205; Cabaj, W., Moskwa, B., Pastusiak, K., Gill, J., Antibodies to Neospora caninum in the blood of European bison (Bison bison bonasus L.) living in Poland (2005) Vet Parasitol, 128, pp. 163-168; Choquette, L.P.E., Broughton, E., Cousineau, J.G., Novakow-Ski, N.S., Parasites and diseases of bison in Canada IV—Serologic survey for brucellosis in bison in northern Canada (1978) J Wildl Dis, 14, pp. 329-359; Chung, J.Y., Kim, H.R., Bae, Y.C., Lee, O.S., Oem, J.K., Detection and characterization of bovine-like coronaviruses from four species of zoo ruminants (2011) Vet Microbiol, 148, pp. 396-401; Clark, D.A., Workman, L., Jung, T.S., Impacts of reintroduced bison on First Nations people in Yukon, Canada: Finding common ground through participatory research and social learning (2016) Conservat Soc, 14 (1), p. 12; Clark, M.A., Bovine coronavirus (1993) Br Vet J, 149, pp. 51-70; Cook, R.A., Karesh, W.B., Emerging diseases at the interface of people, domestic animals, and wildlife (2012) Fowler’s Zoo and Wild Animal Medicine: Current Therapy, 7, pp. 136-146. , Miller RE, Fowler ME, editors. Elsevier Saunders, St. Louis, Missouri; Cullen, J.M., Liver, biliary system, and exocrine pancreas (2007) Pathologic Basis of Veterinary Disease, pp. 393-462. , 4th Ed., McGavin MD, Zachary JF, editors. Mosby Elsevier, St. Louis, Missouri; Dubey, J.P., Thulliez, P., Prevalence of antibodies to Neospora caninum in wild animals (2005) J Parasitol, 91, pp. 1217-1218; Dubovi, E.J., Laboratory diagnosis of bovine viral diarrhea virus (2013) Biologicals, 41, pp. 8-13; Durham, P.J., Hassard, L.E., Prevalence of antibodies to infectious bovine rhinotracheitis, parainfluenza 3, bovine respiratory syncytial, and bovine viral diarrhea viruses in cattle in Saskatchewan and Alberta (1990) Can Vet J, 31, pp. 815-820; (2016) Recovery Strategy for the Wood Bison, 52p. , (Bison bison athabascae) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment and Climate Change Canada, Ottawa, Ontario, Canada; Evermann, J.F., Benfield, D.A., Coronaviral infections (2001) Infectious Diseases of Wild Mammals, pp. 245-253. , 4th Ed., Williams ES, Barker IK, editors. Iowa State University Press, Ames, Iowa; Fifis, T., Rothel, J.S., Wood, P.R., Soluble Mycobacterium bovis protein antigens: Studies on their purification and immunological evaluation (1994) Vet Microbiol, 40, pp. 65-81; Fry, M.M., McGavin, M.D., Bone marrow, blood cells, and lymphatic system (2007) Pathologic Basis of Veterinary Disease, pp. 743-832. , 4th Ed., McGavin MD, Zachary JF, editors. Mosby Elsevier, St. Louis, Missouri; Gall, D., Nielsen, K., Forbes, L., Davis, D., Elzer, P., Olsen, S., Balsevicius, S., Tan, S., Validation of the fluorescence polarization assay and comparison to other serological assays for the detection of serum antibodies to Brucella abortus in bison (2000) J Wildl Dis, 36, pp. 469-476; Gilbert, A.T., Fooks, A.R., Hayman, D.T.S., Horton, D.L., Muller, T., Plowright, R., Peel, A.J., Mills, J., Deciphering serology to understand the ecology of infectious diseases in wildlife (2013) Ecohealth, 10, pp. 298-313; (2012) Management Plan for the Aishihik Wood Bison (Bison Bison Athabascae) Herd in Southwestern Yukon, p. 28. , Environment Yukon, Whitehorse, Canada; Himsworth, C.G., Elkin, B.T., Nishi, J.S., Epp, T., Lyashchenko, K.P., Surujballi, O., Turcotte, C., Leighton, F.A., Comparison of test performance and evaluation of novel immunoassays for tuberculosis in a captive herd of wood bison naturally infected with Mycobacterium bovis (2010) J Wildl Dis, 46, pp. 78-86; Jolley, M.E., Nasir, M.S., Surujballi, O.P., Romanowska, A., Renteria, T.B., de al Mora, A., Lim, A., Kostovic, M., Fluorescence polarization assay for the detection of antibodies to Mycobacterium bovis in bovine sera (2007) Vet Microbiol, 120, pp. 113-121; Joly, D.O., Messier, F., Factors affecting apparent prevalence of tuberculosis and brucellosis in wood bison (2004) J Anim Ecol, 73, pp. 623-631; Jung, T.S., Winter diets of reintroduced bison (Bison bison) in northwestern Canada (2015) Mamm Res, 60, pp. 385-391; Jung, T.S., Extralimital movements of reintroduced bison (Bison bison): Implications for potential range expansion and human-wildlife conflict (2017) Eur J Wildl Res, 63, p. 35; Jung, T.S., Hegel, T.M., Stotyn, S.A., Czetwertynski, S.M., Co-occurrence of reintroduced and resident ungulates on a shared winter range in northwestern Canada (2015) Ecoscience, 22, pp. 7-16; Jung, T.S., Nagorsen, D.W., Barker, O.E., First record of a brown rat (Rattus norvegicus) from the Yukon (2011) Northwest Nat, 92, pp. 131-132; Jung, T.S., Stotyn, S.A., Czetwertynski, S.M., Dietary overlap and potential competition in a dynamic ungulate community in northwestern Canada (2015) J Wildl Manag, 79, pp. 1277-1285; Karstad, L.H., Parainfluenza virus (1981) Infectious Diseases of Wild Animals, pp. 208-209. , Davis JW, Karstad LH, Trainer DO, editors. Iowa University Press, Ames, Iowa; Kipps, M.S., (1990) Leptospirosis. BUFFALO!, 18, p. 15; Kita, J., Anusz, K., Serologic survey for bovine pathogens in free-ranging European bison from Poland (1991) J Wildl Dis, 27, pp. 16-20; Kutz, S.J., Ducrocq, J., Verocai, G.G., Hoar, B.M., Colwell, D.D., Beckmen, K.B., Polley, L., Hoberg, E.P., Parasites in ungulates of arctic North America and Greenland: A view of contemporary diversity, ecology, and impact in a world under change (2012) Advances in Parasitology, 79, pp. 99-252. , Rollinson D, Hay SI, editors, Academic Press, Cambridge, Massachusetts; Lau, C.L., Smythe, L.D., Craig, S.B., Weinstein, P., Climate change, flooding, urbanisation, and leptospirosis: Fuelling the fire? (2010) Trans R Soc Trop Med Hyg, 104, pp. 631-638; Levett, P.N., Leptospirosis: A forgotten zoonosis? (2004) Clin Appl Immunol Rev, 4, pp. 435-448; Luna, L.G., (2008) Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology, 258p. , 3rd Ed. Blakiston Division, McGraw Hill, New York, New York; Messier, V., Lévesque, B., Proulx, J.F., Rochette, L., Serhir, B., Couillard, M., Ward, B.J., Déry, S., Seroprevalence of seven zoonotic infections in Nunavik, Québec (Canada) (2012) Zoonoses Public Health, 59, pp. 107-117; Moffitt, S.A., Aging bison by the incremental cementum growth layers in teeth (1998) J Wildl Manag, 62, pp. 1276-1280; Nielsen, K.H., Kelly, L., Gall, D., Nicoletti, P., Kelly, W., Improved competitive enzyme immunoassay for the diagnosis of bovine brucellosis (1995) Vet Immunol Immunopathol, 46, pp. 285-291; Nishi, J.S., Shury, T., Elkin, B.T., Wildlife reservoirs for bovine tuberculosis (Mycobacterium bovis) in Canada: Strategies for management and research (2006) Vet Microbiol, 112, pp. 325-338; Nishi, J.S., Stephen, C., Elkin, B., Implications of agricultural and wildlife policy on management and eradication of bovine tuberculosis and brucellosis in free-ranging wood bison of northern Canada (2002) Ann N Y Acad Sci, 969, pp. 236-244; Ransom, A.B., Kidney and marrow fat as indicators of white–tailed deer condition (1965) J Wildl Manag, 29, pp. 397-398; Rhyan, J.C., Gidlewski, T., Roffe, T.J., Aune, K., Philo, L.M., Ewalt, D.R., Pathology of brucellosis in bison from Yellowstone National Park (2001) J Wildl Dis, 37, pp. 101-109; Sanderson, E.W., Redford, K.H., Weber, B., Aune, K., Baldes, D., Berger, J., Carter, D., Dobrott, S., The ecological future of bison: Conceiving long-term, large-scale conservation of wildlife (2008) Conserv Biol, 22, pp. 252-266; Shoemaker, M.E., (2014) The Effect of Stress on the Ecology of Neospora Caninum in Bison (Bison Bison), p. 80. , PhD Dissertation, Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio; Shury, T.K., Nishi, J.S., Elkin, B.T., Wobeser, G.A., Tuberculosis and brucellosis in wood bison (Bison bison athabascae) in northern Canada: A renewed need to develop options for future management (2015) J Wildl Dis, 51, pp. 543-554; Stieve, E., Beckmen, K., Kania, S.A., Widner, A., Patton, S., Neospora caninum and Toxoplasma gondii antibody prevalence in Alaska wildlife (2010) J Wildl Dis, 46, pp. 348-355; Surujballi, O.P., Romanowska, A., Sugden, E.A., Turcotte, C., Jolley, M.E., A fluorescence polarization assay for the detection of antibodies to Mycobacterium bovis in cattle sera (2002) Vet Microbiol, 87, pp. 149-157; Taylor, S.K., Lane, V.M., Hunter, D.L., Eyre, K.G., Kaufman, S., Frye, S., Johnson, M.R., Serologic survey for infectious pathogens in free-ranging American bison (1997) J Wildl Dis, 33, pp. 308-311; Tessaro, S.V., The existing and potential importance of brucellosis and tuberculosis in Canadian wildlife: A review (1989) Can Vet J, 27, pp. 119-124; van de Weyer, L.M., Hendrick, S., Rosengren, L., Waldner, C.L., Leptosporosis in beef herds from western Canada: Serum antibody titers and vaccination practices (2011) Can Vet J, 52, pp. 619-626; Vestweber, J.G., Merrill, G.L., Staats, J.J., Veatch, J., Serologic survey for selected microbial pathogens in bison from Kansas (1991) J Wildl Dis, 27, pp. 473-476; Williams, E.S., Thorne, E.T., Anderson, S.L., Herriges, J.D., Jr., Brucellosis in free-ranging bison (Bison bison) from Teton County, Wyoming (1993) J Wildl Dis, 29, pp. 118-122; Wobeser, G., Bovine tuberculosis in Canadian wildlife: An updated history (2009) Can Vet J, 50, pp. 1169-1176; (2003) Human Leptospirosis: Guidance for Diagnosis, Surveillance and Control, p. 109. , World Health Organization and International Leptospirosis Society, Geneva, Switzerland; Zarnke, R.L., Erickson, G.A., Serum antibody prevalence of parainfluenza 3 virus in a free-ranging bison (Bison bison) herd from Alaska (1990) J Wildl Dis, 26, pp. 416-419; Zaugg, J.L., Taylor, S.K., Anderson, B.C., Hunter, D.L., Ryder, J., Divine, M., Hematologic, serologic values, histopathologic, and fecal evaluations of bison from Yellowstone Park (1993) J Wildl Dis, 29, pp. 453-457","Jung, T.S.; Department of Environment, Government of Yukon, PO Box 2703, Canada; email: thomas.jung@gov.yk.ca",,"Wildlife Disease Association, Inc.",00903558,,,"29953313","English","J. Wildl. Dis.",Article,"Final",,Scopus,2-s2.0-85060195171 "Jiang Y., Li J., Teng Y., Sun H., Tian G., He L., Li P., Chen Y., Guo Y., Li J., Zhao G., Zhou Y., Sun S.","57102098600;55358034200;57192934150;55729301400;55443796400;57194204279;57195986382;57201432379;57102095900;57203801477;8684553000;57191653017;35171536200;","Complement receptor c5ar1 inhibition reduces pyroptosis in hdpp4-transgenic mice infected with mers-cov",2019,"Viruses","11","1", 39,"","",,1,"10.3390/v11010039","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059917591&doi=10.3390%2fv11010039&partnerID=40&md5=50dcc272329be901020847a267afe8fb","State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China; Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China","Jiang, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Li, J., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Teng, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Sun, H., Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China; Tian, G., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; He, L., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Li, P., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Chen, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Guo, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Li, J., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Zhao, G., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Sun, S., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China","Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic virus with a crude mortality rate of ~35%. Previously, we established a human DPP4 transgenic (hDPP4-Tg) mouse model in which we studied complement overactivation-induced immunopathogenesis. Here, to better understand the pathogenesis of MERS-CoV, we studied the role of pyroptosis in THP-1 cells and hDPP4 Tg mice with MERS-CoV infection. We found that MERS-CoV infection induced pyroptosis and over-activation of complement in human macrophages. The hDPP4-Tg mice infected with MERS-CoV overexpressed caspase-1 in the spleen and showed high IL-1β levels in serum, suggesting that pyroptosis occurred after infection. However, when the C5a-C5aR1 axis was blocked by an anti-C5aR1 antibody (Ab), expression of caspase-1 and IL-1β fell. These data indicate that MERS-CoV infection induces overactivation of complement, which may contribute to pyroptosis and inflammation. Pyroptosis and inflammation were suppressed by inhibiting C5aR1. These results will further our understanding of the pathogenesis of MERS-CoV infection. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Complement; Inflammation; MERS-CoV; Pyroptosis","complement component C3a; complement component C5a; complement component C5a receptor; complement receptor c5ar1; interleukin 1beta; interleukin 1beta converting enzyme; interleukin 6; unclassified drug; C5ar1 protein, mouse; Casp1 protein, mouse; complement component C5a receptor; dipeptidyl peptidase IV; DPP4 protein, human; IL1B protein, mouse; interleukin 1beta; interleukin 1beta converting enzyme; animal experiment; animal model; Article; complement inhibition; controlled study; host resistance; human; human cell; inflammation; macrophage; Middle East respiratory syndrome; mouse; nonhuman; pathogenesis; protein expression; pyroptosis; spleen; THP-1 cell line; transgenic mouse; animal; antagonists and inhibitors; blood; complement activation; Coronavirus infection; disease model; female; genetics; immunology; Middle East respiratory syndrome coronavirus; pathology; virology; Animals; Caspase 1; Complement Activation; Coronavirus Infections; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Humans; Interleukin-1beta; Macrophages; Mice; Mice, Transgenic; Middle East Respiratory Syndrome Coronavirus; Pyroptosis; Receptor, Anaphylatoxin C5a; Spleen; THP-1 Cells","Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al Raiy, B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann. Intern. Med., 160; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet. Infect. Dis., 13, pp. 752-761; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al Nsour, M., Farag, N.H., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis., 59, pp. 1225-1233; Vande Walle, L., Lamkanfi, M., Pyroptosis (2016) Curr. Biol., 26, pp. R568-R572; Kanneganti, T.D., Body-Malapel, M., Amer, A., Park, J.H., Whitfield, J., Franchi, L., Taraporewala, Z.F., Inohara, N., Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA (2006) J. Biol. Chem, 281, pp. 36560-36568; Joly, S., Sutterwala, F.S., Fungal pathogen recognition by the NLRP3 inflammasome (2010) Virulence, 1, pp. 276-280; Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O’Rourke, K., Roose-Girma, M., Lee, W.P., Dixit, V.M., Cryopyrin activates the inflammasome in response to toxins and ATP (2006) Nature, 440, pp. 228-232; Shaw, O.M., Steiger, S., Liu, X., Hamilton, J.A., Harper, J.L., Brief report: Granulocyte-macrophage colony-stimulating factor drives monosodium urate monohydrate crystal-induced inflammatory macrophage differentiation and NLRP3 inflammasome up-regulation in an in vivo mouse model (2014) Arthritis Rheumatol, 66, pp. 2423-2428; Dostert, C., Petrilli, V., van Bruggen, R., Steele, C., Mossman, B.T., Tschopp, J., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica (2008) Science, 320, pp. 674-677; Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., Sun, H., Shao, F., Pore-forming activity and structural autoinhibition of the gasdermin family (2016) Nature, 535, pp. 111-116; Schroder, K., Tschopp, J., The inflammasomes (2010) Cell, 140, pp. 821-832; Al-Sharif, W.Z., Sunyer, J.O., Lambris, J.D., Smith, L.C., Sea urchin coelomocytes specifically express a homologue of the complement component C3 (1998) J. Immunol., 160, pp. 2983-2997; Levashina, E.A., Moita, L.F., Blandin, S., Vriend, G., Lagueux, M., Kafatos, F.C., Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae (2001) Cell, 104, pp. 709-718; Peng, Q., Li, K., Sacks, S.H., Zhou, W., The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses (2009) Inflamm. Allergy Drug Targets, 8, pp. 236-246; Discipio, R.G., Schraufstatter, I.U., The role of the complement anaphylatoxins in the recruitment of eosinophils (2007) Int. Immunopharmacol., 7, pp. 1909-1923; Jiang, Y., Zhao, G., Song, N., Li, P., Chen, Y., Guo, Y., Li, J., Guo, R., Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV (2018) Emerg. Microbes Infect., 7; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Du, L., Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus (2015) Plos ONE, 10; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Sun, T., Chan, J.Y., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342; Wang, W., Xiao, F., Wan, P., Pan, P., Zhang, Y., Liu, F., Wu, K., Wu, J., EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex (2017) Plos Pathog, 13; Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., McElvania-Tekippe, E., Taxman, D.J., Guthrie, E.H., Ting, J.P., The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA (2009) Immunity, 30, pp. 556-565; Ren, R., Wu, S., Cai, J., Yang, Y., Ren, X., Feng, Y., Chen, L., Yang, H., The H7N9 influenza A virus infection results in lethal inflammation in the mammalian host via the NLRP3-caspase-1 inflammasome (2017) Sci. Rep., 7, p. 7625; Wang, W., Li, G., De, W., Luo, Z., Pan, P., Tian, M., Wang, Y., Wu, K., Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1beta secretion (2018) Nat. Commun., 9, p. 106; Dinarello, C.A., Immunological and inflammatory functions of the interleukin-1 family (2009) Annu. Rev. Immunol., 27, pp. 519-550; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., Enouf, V., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Hajishengallis, G., Lambris, J.D., Crosstalk pathways between Toll-like receptors and the complement system (2010) Trends Immunol, 31, pp. 154-163; Samstad, E.O., Niyonzima, N., Nymo, S., Aune, M.H., Ryan, L., Bakke, S.S., Lappegard, K.T., Damas, J.K., Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release (2014) J. Immunol., 192, pp. 2837-2845; Liszewski, M.K., Kolev, M., Le Friec, G., Leung, M., Bertram, P.G., Fara, A.F., Subias, M., Meri, S., Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation (2013) Immunity, 39, pp. 1143-1157; Asgari, E., Le Friec, G., Yamamoto, H., Perucha, E., Sacks, S.S., Kohl, J., Cook, H.T., Kemper, C., C3a modulates IL-1beta secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation (2013) Blood, 122, pp. 3473-3481; Gerard, N.P., Gerard, C., The chemotactic receptor for human C5a anaphylatoxin (1991) Nature, 349, pp. 614-617; Gao, H., Neff, T.A., Guo, R.F., Speyer, C.L., Sarma, J.V., Tomlins, S., Man, Y., Younkin, E., Evidence for a functional role of the second C5a receptor C5L2 (2005) FASEB J, 19, pp. 1003-1005; Gerard, N.P., Lu, B., Liu, P., Craig, S., Fujiwara, Y., Okinaga, S., Gerard, C., An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2 (2005) J. Biol. Chem., 280; Morgan, B.P., Gasque, P., Extrahepatic complement biosynthesis: Where, when and why? (1997) Clin. Exp. Immunol, 107, pp. 1-7; Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Xie, Z., Multiple organ infection and the pathogenesis of SARS (2005) J. Exp. Med., 202, pp. 415-424; Doitsh, G., Galloway, N.L., Geng, X., Yang, Z., Monroe, K.M., Zepeda, O., Hunt, P.W., Munoz-Arias, I., Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection (2014) Nature, 505, pp. 509-514; McAuley, J.L., Tate, M.D., Mackenzie-Kludas, C.J., Pinar, A., Zeng, W., Stutz, A., Latz, E., Mansell, A., Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease (2013) Plos Pathog, 9; Pinar, A., Dowling, J.K., Bitto, N.J., Robertson, A.A., Latz, E., Stewart, C.R., Drummond, G.R., Tate, M.D., PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome (2017) J. Biol. Chem., 292, pp. 826-836; Yao, S.T., Cao, F., Chen, J.L., Chen, W., Fan, R.M., Li, G., Zeng, Y.C., Han, C., NLRP3 is Required for Complement-Mediated Caspase-1 and IL-1beta Activation in ICH (2017) J. Mol. Neurosci., 61, pp. 385-395; Arbore, G., West, E.E., Spolski, R., Robertson, A.A.B., Klos, A., Rheinheimer, C., Dutow, P., O’Neill, L.A., T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells (2016) Science, 352; Reichhardt, M.P., Meri, S., Intracellular complement activation-An alarm raising mechanism? (2018) Semin. Immunol.; Zhang, Y., Liu, F., Yuan, Y., Jin, C., Chang, C., Zhu, Y., Zhang, X., Wang, J., Inflammasome-Derived Exosomes Activate NF-kappaB Signaling in Macrophages (2017) J. Proteome Res., 16, pp. 170-178; Mebius, R.E., Kraal, G., Structure and function of the spleen (2005) Nat. Rev. Immunol., 5, pp. 606-616","Zhou, Y.; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyChina; email: yszhou@bmi.ac.cn",,"MDPI AG",19994915,,,"30634407","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85059917591 "Wang C., Hua C., Xia S., Li W., Lu L., Jiang S.","56592029300;57193114091;56410369000;57171085200;55715616400;56491898300;","Combining a fusion inhibitory peptide targeting the mers-cov s2 protein hr1 domain and a neutralizing antibody specific for the s1 protein receptor-binding domain (Rbd) showed potent synergism against pseudotyped mers-cov with or without mutations in rbd",2019,"Viruses","11","1", 31,"","",,5,"10.3390/v11010031","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059795428&doi=10.3390%2fv11010031&partnerID=40&md5=33df0807ee5787a61861ffb888bd7b65","Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, 200032, China","Wang, C., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Hua, C., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Xia, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Li, W., NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, 200032, China; Lu, L., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Jiang, S., Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, 200032, China","Middle East respiratory syndrome coronavirus (MERS-CoV) has continuously posed a threat to public health worldwide, yet no therapeutics or vaccines are currently available to prevent or treat MERS-CoV infection. We previously identified a fusion inhibitory peptide (HR2P-M2) targeting the MERS-CoV S2 protein HR1 domain and a highly potent neutralizing monoclonal antibody (m336) specific to the S1 spike protein receptor-binding domain (RBD). However, m336 was found to have reduced efficacy against MERS-CoV strains with mutations in RBD, and HR2P-M2 showed low potency, thus limiting the clinical application of each when administered separately. However, we herein report that the combination of m336 and HR2P-M2 exhibited potent synergism in inhibiting MERS-CoV S protein-mediated cell–cell fusion and infection by MERS-CoV pseudoviruses with or without mutations in the RBD, resulting in the enhancement of antiviral activity in contrast to either one administered alone. Thus, this combinatorial strategy could be used in clinics for the urgent treatment of MERS-CoV-infected patients. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Combination; MERS-CoV; Mutation; Neutralizing antibody; Peptide; RBD","fusion protein; hr2p m2 peptide; monoclonal antibody; monoclonal antibody m336; neutralizing antibody; s1 protein; s2 protein; unclassified drug; viral protein; coronavirus spike glycoprotein; neutralizing antibody; peptide; protein binding; virus antibody; animal experiment; animal model; antiviral activity; Article; cell fusion; controlled study; drug potentiation; female; gene mutation; IC50; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; protein domain; receptor binding; virus cell interaction; virus inhibition; animal; Bagg albino mouse; genetics; HEK293 cell line; human; immunology; Middle East respiratory syndrome coronavirus; mutation; protein domain; virus entry; Animals; Antibodies, Neutralizing; Antibodies, Viral; Drug Synergism; Female; HEK293 Cells; Humans; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Mutation; Peptides; Protein Binding; Protein Domains; Spike Glycoprotein, Coronavirus; Virus Internalization","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K., Lu, L., Zheng, B.J., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Xiao, H., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol, 87, pp. 13134-13140; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Chan, T.S., Jiang, S., Characterization and Demonstration of the Value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease (2016) J. Virol., 90, pp. 57-67; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection (2016) J. Infect. Dis., 213, pp. 1557-1561; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Dimitrov, D.S., Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection (2016) Sci. Rep., 6; van Doremalen, N., Falzarano, D., Ying, T., de Wit, E., Bushmaker, T., Feldmann, F., Okumura, A., Hanley, P.W., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Dimitrov, D.S., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants (2017) J. Virol., 91; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Kang, J.I., Kim, G., Spread of Mutant Middle East Respiratory Syndrome Coronavirus with Reduced Affinity to Human CD26 during the South Korean Outbreak (2016) Mbio, 7; Kim, D.W., Kim, Y.J., Park, S.H., Yun, M.R., Yang, J.S., Kang, H.J., Han, Y.W., Kim, H., Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015 (2016) Emerg. Infect. Dis., 22, pp. 100-104; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Jiang, S., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10; Gunaratne, G.S., Yang, Y., Li, F., Walseth, T.F., Marchant, J.S., NAADP-dependent Ca(2+) signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system (2018) Cell Calcium, 75, pp. 30-41; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Wang, N., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J. Virol.; Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol. Rev., 58, pp. 621-681; Qi, Q., Wang, Q., Chen, W., Yu, F., Du, L., Dimitrov, D.S., Lu, L., Jiang, S., Anti-HIV antibody and drug combinations exhibit synergistic activity against drug-resistant HIV-1 strains (2017) J. Infect., 75, pp. 68-71; Xu, W., Wang, Q., Yu, F., Lu, L., Jiang, S., Synergistic effect resulting from combinations of a bifunctional HIV-1 antagonist with antiretroviral drugs (2014) J. Acquir. Immune Defic. Syndr., 67, pp. 1-6; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) Mbio, 5; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection (2015) J. Infect. Dis., 212, pp. 1894-1903; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Lu, L., Xia, S., Ying, T., Jiang, S., Urgent development of effective therapeutic and prophylactic agents to control the emerging threat of Middle East respiratory syndrome (MERS) (2015) Emerg. Microbes Infect., 4; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res, 194, pp. 200-210; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., Li, J., Wang, Y., A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV (2018) J. Virol., 92; Kleine-Weber, H., Elzayat, M.T., Wang, L., Graham, B.S., Muller, M.A., Drosten, C., Pohlmann, S., Hoffmann, M., Mutations in the spike protein of MERS-CoV transmitted in Korea increase resistance towards antibody-mediated neutralization (2018) J. Virol; Zhang, L., Ramratnam, B., Tenner-Racz, K., He, Y., Vesanen, M., Lewin, S., Talal, A., Korber, B.T., Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy (1999) N. Engl. J. Med., 340, pp. 1605-1613; Hogg, R.S., Rhone, S.A., Yip, B., Sherlock, C., Conway, B., Schechter, M.T., O’Shaughnessy, M.V., Montaner, J.S., Antiviral effect of double and triple drug combinations amongst HIV-infected adults: Lessons from the implementation of viral load-driven antiretroviral therapy (1998) AIDS, 12, pp. 279-284; Richman, D.D., Margolis, D.M., Delaney, M., Greene, W.C., Hazuda, D., Pomerantz, R.J., The challenge of finding a cure for HIV infection (2009) Science, 323, pp. 1304-1307; Liu, S., Lu, H., Neurath, A.R., Jiang, S., Combination of candidate microbicides cellulose acetate 1,2-benzenedicarboxylate and UC781 has synergistic and complementary effects against human immunodeficiency virus type 1 infection (2005) Antimicrob. Agents Chemother., 49, pp. 1830-1836; Pan, C., Cai, L., Lu, H., Qi, Z., Jiang, S., Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide-sensitive and-resistant HIV type 1 strains (2009) J. Virol., 83, pp. 7862-7872; Pan, C., Lu, H., Qi, Z., Jiang, S., Synergistic efficacy of combination of enfuvirtide and sifuvirtide, the first-and next-generation HIV-fusion inhibitors (2009) AIDS, 23, pp. 639-641","Lu, L.; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan UniversityChina; email: lul@fudan.edu.cn",,"MDPI AG",19994915,,,"30621343","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85059795428 "Xu Z., Zhong H., Huang S., Zhou Q., Du Y., Chen L., Xue C., Cao Y.","57195944163;57201308019;57202387827;55481327300;57201312085;56115476300;24400445400;36039272800;","Porcine deltacoronavirus induces TLR3, IL-12, IFN-α, IFN-β and PKR mRNA expression in infected Peyer's patches in vivo",2019,"Veterinary Microbiology","228",,,"226","233",,2,"10.1016/j.vetmic.2018.12.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058425403&doi=10.1016%2fj.vetmic.2018.12.012&partnerID=40&md5=e60d055130812b5cc58317adb5641ae8","State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong 527400, China","Xu, Z., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Zhong, H., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Huang, S., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Zhou, Q., Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong 527400, China; Du, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China, Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong 527400, China; Chen, L., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China, Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong 527400, China; Xue, C., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Cao, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China","Porcine deltacoronavirus (PDCoV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in piglets and results in significant economic losses to the pig industry. Currently there are no effective treatments or vaccines for PDCoV. In particular, the pathogenesis of PDCoV infection is still largely unknown. In this study, we reported that inoculating conventional weaned piglets with 1 × 109 TCID50 of the PDCoV CHN-GD-2016 strain by oral feeding could cause severe diarrhea. Virus RNA was detected in rectal swabs from 1 to 7 days post inoculation. In addition, microscopic lesions in small intestine were observed, and viral antigen also detected in the small intestines with PDCoV immunohistochemical staining. Importantly, PDCoV significantly induced mRNA expression of TLR3, IL-12, IFN-α, IFN-β, and PKR, the genes involved in modulation of the host immune responses, in infected Peyer's patches at 3 d.p.i., indicating that Peyer's patches play an important role in PDCoV immune responses in vivo. Collectively, our findings suggest that the observed gene expression profile might help explain immunological and pathological changes associated with PDCoV infection. © 2018","Innate immune responses; Peyer's patches; Porcine deltacoronavirus (PDCoV); Weaned piglets","alpha interferon; beta interferon; interleukin 12; messenger RNA; protein kinase R; toll like receptor 3; virus antigen; virus RNA; cytokine; messenger RNA; animal tissue; Article; comparative study; controlled study; Coronaviridae infection; Coronavirinae; diarrhea; disease severity; gene expression; histopathology; immune response; immunohistochemistry; in vivo study; inoculation; intestine villus; mRNA expression level; nonhuman; pathogenicity; Peyer patch; piglet; Porcine deltacoronavirus; real time polymerase chain reaction; reverse transcription polymerase chain reaction; small intestine; upregulation; virus detection; animal; Coronavirinae; Coronavirus infection; female; genetics; immunology; innate immunity; LLC-PK1 cell line; male; pathogenicity; Peyer patch; pig; randomization; swine disease; veterinary medicine; virology; Animals; Antigens, Viral; Coronavirus; Coronavirus Infections; Cytokines; Diarrhea; Female; Immunity, Innate; Intestine, Small; LLC-PK1 Cells; Male; Peyer's Patches; Random Allocation; RNA, Messenger; Swine; Swine Diseases","Akira, S., Takeuchi, O., Innate immunity to virus infection (2009) Immunol. Rev., 227, pp. 75-86; Borca, M.V., Gudmundsdottir, I., Fernandez-Sainz, I.J., Holinka, L.G., Risatti, G.R., Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia (2008) Virus. Res., 138, pp. 89-96; Cao, L., Ge, X., Gao, Y., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus infection induces NF-kappaB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells (2015) J. Gen. Virol., 96, pp. 1757-1767; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Fang, F.C., Vazquenz-Torres, A., Cellular routes of invasion by enteropathogens (2000) Curr. Opin. Microbiol., 3, pp. 54-59; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Wang, D., Xiao, S., Porcine deltacoronavirus accessory protein NS6 antagonizes interferon Beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA (2018) J. Virol., 92, pp. 712-718; Huang, C., Zhang, Q., Guo, X.K., Yu, Z.B., Xu, A.T., Tang, J., Feng, W.H., Porcine reproductive and respiratory syndrome virus nonstructural protein 4 antagonizes beta interferon expression by targeting the NF-kappaB essential modulator (2014) J. Virol., 88, pp. 10934-10945; Iborra, S., Sancho, D., Signalling versatility following self and non-self sensing by myeloid C-type lectin receptors (2015) Immunobiology, 220, pp. 175-184; Isao, S., Tsuda, T., Masahumi, M., Masaaki, O., Sueyoshib, M., Urunoa, K., Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages (2000) Vet. Microbiol., 72, pp. 173-182; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg. Infect. Dis., 20, pp. 662-665; Kwonil, J., Hu, H., Eyerly, B., Lu, Z., Juliet, C., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Lena, A., Holt, A.C., Medzhitov, R., Flavell, R.A., Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3 (2001) Nature., 413, pp. 732-738; Lenschow, D.J., Lai, C., Frias-Staheli, N., Giannakopoulos, N.V., Lutz, A., Wolff, T., Osiak, A., Virgin, H.W.T., IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses (2007) Proc. Natl. Acad. Sci. U S A., 104, pp. 1371-1376; Leyi, W., Byrum, B., Zhang, Y., Porcine Coronavirus HKU15 detected in 9 US States, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1594-1595; Li, Z., Wang, Y., Li, X., Li, X., Cao, H., Zheng, S.J., Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4 (2013) J. Virol., 87, pp. 1221-1231; Luo, J., Fang, L., Dong, N., Fang, P., Ding, Z., Wang, D., Chen, H., Xiao, S., Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-beta production (2016) Virology., 495, pp. 10-17; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio., 6; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350; Moon, H.W., Kemeny, L.J., Lamberts, G., Stark, S.L., Booth, G.D., Age-dependent resistance to transmissible gastroenteritis of swine: III. Effects of epithelial cell kinetics on coronavirus production and on atrophy of intestinal villi (1975) Vet. Pathol., 12, pp. 434-445; Mosser, D.M., Suresh, R., Pattern recognition receptors in innate immunity, host defense, and immunopathology (2013) Adv. Physiol. Educ., 37, pp. 284-291; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27, p. 3; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Tripipat, T., Nilubol, D., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound. Emerg. Dis., 64, pp. 3-10; Sanfilippo, C., Pinzone, M.R., Cambria, D., Longo, A., Palumbo, M., Di Marco, R., Condorelli, F., Di Rosa, M., OAS Gene family expression Is associated with HIV-related neurocognitive disorders (2018) Mol. Neurobiol., 55, pp. 1905-1914; Sunhee Lee, C.L., Complete genome characterization of korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc., 26; Van Kruiningen, H.J., West, A.B., Freda, B.J., Holmes, K.A., Distribution of Peyer's patches in the Distal Ileum (2002) Inflamm. Bowel. Dis., 8, pp. 180-185; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Wang, B., Fu, M., Liu, Y., Wang, Y., Li, X., Cao, H., Zheng, S.J., Gga-miR-155 enhances type I interferon expression and suppresses infectious burse disease virus replication via targeting SOCS1 and TANK (2018) Front. Cell. Infect. Microbiol., 8, p. 55; Williams, B.R., PKR; A sentinel kinase for cellular stress (1999) Oncogene., 18, pp. 6112-6120; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Wu, J., Chen, Z.J., Innate immune sensing and signaling of cytosolic nucleic acids (2014) Annu. Rev. Immunol., 32, pp. 461-488; Xie, S., Chen, X.X., Qiao, S., Li, R., Sun, Y., Xia, S., Wang, L.J., Zhang, G.P., Identification of the RNA pseudoknot within the 3’ end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3 (2018) J. Virol., 92; Xu, Z., Zhong, H., Zhou, Q., Du, Y., Chen, L., Zhang, Y., Xue, C., Cao, Y., A highly pathogenic strain of porcine deltacoronavirus caused watery diarrhea in newborn piglets (2018) Virol. Sin., 33, pp. 131-141; Yuan, C., Zhang, E., Huang, L., Wang, J., Yang, Q., Oral administration of inactivated porcine epidemic diarrhea virus activate DCs in porcine Peyer's patches (2018) BMC. Vet. Res., 14, p. 239; Zhang, J., Porcine deltacoronavirus: overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res., 226, pp. 71-84; Zhou, J., Chen, J., Zhang, X.M., Gao, Z.C., Liu, C.C., Zhang, Y.N., Hou, J.X., Zhou, B., Porcine Mx1 protein inhibits classical swine fever virus replication by targeting nonstructural protein NS5B (2018) J. Virol., 92; Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M.F., Xiao, S., Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38; Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Lv, M., Xiao, S., Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2 (2017) J. Virol., 91","Cao, Y.; School of Life Science, Sun Yat-sen University, Higher Education Mega CenterChina; email: caoych@mail.sysu.edu.cn",,"Elsevier B.V.",03781135,,VMICD,"30593372","English","Vet. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85058425403 "Atkinson J.R., Hwang M., Reyes-Rodriguez A., Bergmann C.C.","57196943448;55058842700;56142019800;35449739000;","Dynamics of Virus-Specific Memory B Cells and Plasmablasts following Viral Infection of the Central Nervous System",2019,"Journal of Virology","93","2", e00875-18,"","",,,"10.1128/JVI.00875-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059492992&doi=10.1128%2fJVI.00875-18&partnerID=40&md5=0b717d1f29024169c2ffdd7e559fc7b0","Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; School of Biomedical Sciences, Kent State University, Kent, OH, United States; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States","Atkinson, J.R., Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States, School of Biomedical Sciences, Kent State University, Kent, OH, United States, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Hwang, M., Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Reyes-Rodriguez, A., Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Bergmann, C.C., Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States","Humoral responses within the central nervous system (CNS) are common to many neurotropic viral infections, with antibody (Ab)-secreting cells (ASC) contributing to local protection. However, a role for virus-specific memory B cells (Bmem) within the CNS is poorly explored due to lack of robust phenotypic or functional identification in mice. This study takes advantage of the progeny of mice expressing tamoxifen-inducible Cre recombinase (Cre-ERT2) under the Aicda promoter crossed with Rosa26-loxP-tdTomato reporter mice (AID Cre -Rosa26 tdTomato ) to monitor B cells having undergone activation-induced cytidine deaminase (AID)-mediated somatic hypermutation (SHM) following neurotropic coronavirus infection. AID detection via tdTomato expression allowed tracking of virus-specific ASC and Bmem in priming and effector sites throughout infection. In draining lymph nodes, tdTomato-positive (tdTomato) ASC were most prevalent prior to germinal center (GC) formation, but total tdTomato B cells only peaked with robust GC formation at day 14 p.i. Moreover, their proportion of Bmem dominated over the proportion of ASC throughout infection. In the CNS, tdTomato cells started emerging at day 14 p.i. While they initially comprised mainly Bmem, the proportions of ASC and Bmem became similar as tdTomato B cells increased throughout viral persistence. Delayed tamoxifen treatment demonstrated ongoing CNS recruitment of tdTomato B cells, mainly ASC, primed late during GC reactions. Overall, the data support the idea that virus-induced B cells exhibiting SHM require peripheral GC formation to emerge in the CNS. Ongoing GC reactions and regional signals further regulate dynamics within the CNS, with preferential maintenance of tdTomato B cells in spinal cords relative to that in brains during viral persistence. IMPORTANCE The prevalence and role of antigen-specific Bmem in the CNS during viral encephalomyelitis is largely undefined. A lack of reliable markers identifying murine Bmem has made it difficult to assess their contribution to local antiviral protection via antigen presentation or conversion to ASC. Using reporter mice infected with neurotropic coronavirus to track virus-specific Bmem and ASC, this report demonstrates that both subsets only emerge in the CNS following peripheral GC formation and subsequently prevail. While early GC reactions supported preferential Bmem accumulation in the CNS, late GC reactions favored ASC accumulation, although Bmem outnumbered ASC in draining lymph nodes throughout infection. Importantly, virus-specific B cells undergoing sustained GC selection were continually recruited to the persistently infected CNS. Elucidating the factors governing temporal events within GCs, as well as regional CNS cues during viral persistence, will aid intervention to modulate CNS humoral responses in the context of infection and associated autoimmune pathologies. Copyright © 2019 Atkinson et al.","B cell responses; Central nervous system infections; Coronavirus; Germinal centers; Neuroimmunology; Viral encephalomyelitis","cre recombinase; tamoxifen; cytidine deaminase; virus antibody; animal cell; animal experiment; animal model; animal tissue; antibody secreting cell; Article; B lymphocyte activation; central nervous system infection; controlled study; Coronavirus infection; enzyme linked immunospot assay; germinal center; immunohistochemistry; lymph node; memory cell; mouse; nonhuman; persistent virus infection; plasmablast; priority journal; progeny; promoter region; protein expression; real time polymerase chain reaction; somatic hypermutation; spinal cord; virus infection; animal; B lymphocyte; central nervous system; Coronavirinae; female; immunology; male; metabolism; virology; Animals; Antibodies, Viral; B-Lymphocytes; Central Nervous System; Coronavirus; Cytidine Deaminase; Female; Germinal Center; Male; Mice; Somatic Hypermutation, Immunoglobulin","DiSano, K.D., Stohlman, S.A., Bergmann, C.C., Activated GL7 B cells are maintained within the inflamed CNS in the absence of follicle formation during viral encephalomyelitis (2017) Brain Behav Immun, 60, pp. 71-83. , https://doi.org/10.1016/j.bbi.2016.09.022; Phares, T.W., DiSano, K.D., Stohlman, S.A., Bergmann, C.C., Progression from IgD IgM to isotype-switched B cells is site specific during coronavirus-induced encephalomyelitis (2014) J Virol, 88, pp. 8853-8867. , https://doi.org/10.1128/JVI.00861-14; Metcalf, T.U., Baxter, V.K., Nilaratanakul, V., Griffin, D.E., Recruitment and retention of B cells in the central nervous system in response to alpha-virus encephalomyelitis (2013) J Virol, 87, pp. 2420-2429. , https://doi.org/10.1128/JVI.01769-12; Dogan, I., Bertocci, B., Vilmont, V., Delbos, F., Mégret, J., Storck, S., Reynaud, C.-A., Weill, J.-C., Multiple layers of B cell memory with different effector functions (2009) Nat Immunol, 10, p. 1292. , https://doi.org/10.1038/ni.1814; Bachmann, M.F., Kündig, T., Odermatt, B., Hengartner, H., Zinkernagel, R.M., Free recirculation of memory B cells versus antigen-dependent differentiation to antibody-forming cells (1994) J Immunol, 153, pp. 3386-3397; Liu, Y.J., Zhang, J., Lane, P.J., Chan, E.Y.T., Maclennan, I., Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens (1991) Eur J Immunol, 21, pp. 2951-2962. , https://doi.org/10.1002/eji.1830211209; Jacob, J., Kassir, R., Kelsoe, G., In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. I. The architecture and dynamics of responding cell populations (1991) J Exp Med, 173, pp. 1165-1175. , https://doi.org/10.1084/jem.173.5.1165; Smith, K.G., Hewitson, T.D., Nossal, G., Tarlinton, D.M., The phenotype and fate of the antibody-forming cells of the splenic foci (1996) Eur J Immunol, 26, pp. 444-448. , https://doi.org/10.1002/eji.1830260226; Sze, D.M.-Y., Toellner, K.-M., De Vinuesa, C.G., Taylor, D.R., MacLennan, I.C., Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival (2000) J Exp Med, 192, pp. 813-822. , https://doi.org/10.1084/jem.192.6.813; Gray, D., Dullforce, P., Jainandunsing, S., Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction (1994) J Exp Med, 180, pp. 141-155. , https://doi.org/10.1084/jem.180.1.141; Takahashi, Y., Dutta, P.R., Cerasoli, D.M., Kelsoe, G., In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. V. Affinity maturation develops in two stages of clonal selection (1998) J Exp Med, 187, pp. 885-895. , https://doi.org/10.1084/jem.187.6.885; Bohannon, C., Powers, R., Satyabhama, L., Cui, A., Tipton, C., Michaeli, M., Skountzou, I., Jacob, J., Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection (2016) Nat Commun, 7, p. 11826. , https://doi.org/10.1038/ncomms11826; Phares, T.W., DiSano, K.D., Stohlman, S.A., Segal, B.M., Bergmann, C.C., CXCL13 promotes isotype-switched B cell accumulation to the central nervous system during viral encephalomyelitis (2016) Brain Behav Immun, 54, pp. 128-139. , https://doi.org/10.1016/j.bbi.2016.01.016; Atkinson, J.R., Bergmann, C.C., Protective humoral immunity in the central nervous system requires peripheral CD19-dependent germinal center formation following coronavirus encephalomyelitis (2017) J Virol, 91, pp. e01352-e01417. , https://doi.org/10.1128/JVI.01352-17; Manz, R.A., Hauser, A.E., Hiepe, F., Radbruch, A., Maintenance of serum antibody levels (2005) Annu Rev Immunol, 23, pp. 367-386. , https://doi.org/10.1146/annurev.immunol.23.021704.115723; Shlomchik, M.J., Weisel, F., Germinal center selection and the development of memory B and plasma cells (2012) Immunol Rev, 247, pp. 52-63. , https://doi.org/10.1111/j.1600-065X.2012.01124.x; Dörner, T., Radbruch, A., Antibodies and B cell memory in viral immunity (2007) Immunity, 27, pp. 384-392. , https://doi.org/10.1016/j.immuni.2007.09.002; Elgueta, R., De Vries, V.C., Noelle, R.J., The immortality of humoral immunity (2010) Immunol Rev, 236, pp. 139-150. , https://doi.org/10.1111/j.1600-065X.2010.00924.x; Bransteitter, R., Pham, P., Scharff, M.D., Goodman, M.F., Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase (2003) Proc Natl Acad Sci U S A, 100, pp. 4102-4107. , https://doi.org/10.1073/pnas.0730835100; Chaudhuri, J., Tian, M., Khuong, C., Chua, K., Pinaud, E., Alt, F.W., Transcription-targeted DNA deamination by the AID antibody diversification enzyme (2003) Nature, 422, p. 726. , https://doi.org/10.1038/nature01574; Bannard, O., Horton, R.M., Allen, C.D., An, J., Nagasawa, T., Cyster, J.G., Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection (2013) Immunity, 39, pp. 912-924. , https://doi.org/10.1016/j.immuni.2013.08.038; William, J., Euler, C., Christensen, S., Shlomchik, M.J., Evolution of autoantibody responses via somatic hypermutation outside of germinal centers (2002) Science, 297, pp. 2066-2070. , https://doi.org/10.1126/science.1073924; Marques, C.P., Kapil, P., Hinton, D.R., Hindinger, C., Nutt, S.L., Ransohoff, R.M., Phares, T.W., Bergmann, C.C., CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis (2011) J Virol, 85, pp. 6136-6147. , https://doi.org/10.1128/JVI.00202-11; Ramakrishna, C., Bergmann, C.C., Atkinson, R., Stohlman, S.A., Control of central nervous system viral persistence by neutralizing antibody (2003) J Virol, 77, pp. 4670-4678. , https://doi.org/10.1128/JVI.77.8.4670-4678.2003; DiSano, K.D., Stohlman, S.A., Bergmann, C.C., An optimized method for enumerating CNS derived memory B cells during viral-induced inflammation (2017) J Neurosci Methods, 285, pp. 58-68. , https://doi.org/10.1016/j.jneumeth.2017.05.011; Slifka, M.K., Ahmed, R., Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay (1996) J Immunol Methods, 199, pp. 37-46. , https://doi.org/10.1016/S0022-1759(96)00146-9; Tas, J.M., Mesin, L., Pasqual, G., Targ, S., Jacobsen, J.T., Mano, Y.M., Chen, C.S., Victora, G.D., Visualizing antibody affinity maturation in germinal centers (2016) Science, 351, pp. 1048-1054. , https://doi.org/10.1126/science.aad3439; Laman, J.D., Weller, R.O., Drainage of cells and soluble antigen from the CNS to regional lymph nodes (2013) J Neuroimmune Pharmacol, 8, pp. 840-856. , https://doi.org/10.1007/s11481-013-9470-8; Tschen, S.I., Stohlman, S.A., Ramakrishna, C., Hinton, D.R., Atkinson, R.D., Bergmann, C.C., CNS viral infection diverts homing of antibody-secreting cells from lymphoid organs to the CNS (2006) Eur J Immunol, 36, pp. 603-612. , https://doi.org/10.1002/eji.200535123; Coro, E.S., Chang, W.W., Baumgarth, N., Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection (2006) J Immunol, 176, pp. 4343-4351. , https://doi.org/10.4049/jimmunol.176.7.4343; Purtha, W.E., Chachu, K.A., Virgin, H.W., Diamond, M.S., Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling (2008) J Virol, 82, pp. 10964-10974. , https://doi.org/10.1128/JVI.01646-08; Le Gallou, S., Zhou, Z., Thai, L.-H., Fritzen, R., de Los Aires, A.V., Mégret, J., Yu, P., Reynaud, C.A., A splenic IgM memory subset with antibacterial specificities is sustained from persistent mucosal responses (2018) J Exp Med, 215, pp. 2035-2053. , https://doi.org/10.1084/jem.20180977; Taylor, J.J., Pape, K.A., Jenkins, M.K., A germinal center–independent pathway generates unswitched memory B cells early in the primary response (2012) J Exp Med, 209, pp. 597-606. , https://doi.org/10.1084/jem.20111696; Metcalf, T.U., Griffin, D.E., Alphavirus-induced encephalomyelitis: Antibody-secreting cells and viral clearance from the nervous system (2011) J Virol, 85, pp. 11490-11501. , https://doi.org/10.1128/JVI.05379-11; Ramakrishna, C., Stohlman, S.A., Atkinson, R.D., Shlomchik, M.J., Bergmann, C.C., Mechanisms of central nervous system viral persistence: The critical role of antibody and B cells (2002) J Immunol, 168, pp. 1204-1211. , https://doi.org/10.4049/jimmunol.168.3.1204; Slifka, M.K., Ahmed, R., Long-term antibody production is sustained by antibody-secreting cells in the bone marrow following acute viral infection (1996) Ann N Y Acad Sci, 797, pp. 166-176. , https://doi.org/10.1111/j.1749-6632.1996.tb52958.x; Slifka, M.K., Antia, R., Whitmire, J.K., Ahmed, R., Humoral immunity due to long-lived plasma cells (1998) Immunity, 8, pp. 363-372. , https://doi.org/10.1016/S1074-7613(00)80541-5; Hargreaves, D.C., Hyman, P.L., Lu, T.T., Ngo, V.N., Bidgol, A., Suzuki, G., Zou, Y.-R., Cyster, J.G., A coordinated change in chemokine responsiveness guides plasma cell movements (2001) J Exp Med, 194, pp. 45-56. , https://doi.org/10.1084/jem.194.1.45; Cyster, J.G., Homing of antibody secreting cells (2003) Immunol Rev, 194, pp. 48-60. , https://doi.org/10.1034/j.1600-065X.2003.00041.x; Shenoy, G.N., Chatterjee, P., Kaw, S., Mukherjee, S., Rathore, D.K., Bal, V., Rath, S., George, A., Recruitment of memory B cells to lymph nodes remote from the site of immunization requires an inflammatory stimulus (2012) J Immunol, 189, pp. 521-528. , https://doi.org/10.4049/jimmunol.1102814; Kurosaki, T., Kometani, K., Ise, W., Memory B cells (2015) Nat Rev Immunol, 15, pp. 149-159. , https://doi.org/10.1038/nri3802; Jelcic, I., Al Nimer, F., Wang, J., Lentsch, V., Planas, R., Jelcic, I., Madjovski, A., Martin, R., Memory B cells activate brain-homing, autoreactive CD4 T cells in multiple sclerosis (2018) Cell, 175, pp. 85-100. , https://doi.org/10.1016/j.cell.2018.08.011, e23; Eriksson, K.K., Cervantes-Barragán, L., Ludewig, B., Thiel, V., Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1-phosphatase, a viral function conserved in the alpha-like supergroup (2008) J Virol, 82, pp. 12325-12334. , https://doi.org/10.1128/JVI.02082-08; Bergmann, C.C., Altman, J.D., Hinton, D., Stohlman, S.A., Inverted immunodominance and impaired cytolytic function of CD8 T cells during viral persistence in the central nervous system (1999) J Immunol, 163, pp. 3379-3387","Bergmann, C.C.; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic FoundationUnited States; email: bergmac@ccf.org",,"American Society for Microbiology",0022538X,,JOVIA,"30333176","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85059492992 "Fichtelová V., Kovařčík K.","36084320800;55940954200;","Quantification of bovine viral diarrhoea virus ribonucleic acid in serum of infected animals by one-step reverse transcriptase quantitative real-time polymerase chain reaction",2019,"Acta Veterinaria Brno","88","4",,"361","367",,,"10.2754/avb201988040361","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078868618&doi=10.2754%2favb201988040361&partnerID=40&md5=cd57cedab951d12b5a4a6da4cfe538f5","Veterinary Research Institute, Department of Virology, Brno, Czech Republic","Fichtelová, V., Veterinary Research Institute, Department of Virology, Brno, Czech Republic; Kovařčík, K., Veterinary Research Institute, Department of Virology, Brno, Czech Republic","Bovine viral diarrhoea virus (BVDV) can cause either acute transient or persistent infection. Identification and removal of persistently infected animals from infected herds is a crucial component to control BVDV infection. Only limited data on serum virus concentration in infected animals are available to date. Using one-step reverse transcriptase quantitative real-time polymerase chain reaction, we quantified the serum viral load in 40 BVDV infected animals. To control nucleic acid extraction, complementary DNA synthesis and polymerase chain reaction amplification, each serum sample was spiked with a known small amount of reference canine coronavirus. Detected ribonucleic acid copy number ranged from 2.2 × 106 to 7.4 × 108 per 1 ml of serum of persistently infected animals and from 6.6 × 104 to 3.3 × 107 of transiently infected animals. These findings support the idea that it is impossible to accurately distinguish between transiently and persistently infected animals just from a single blood sample. To use this testing as a means of declining costs of BVDV control programmes cannot be recommended and paired serum samples have to be investigated to confirm persistent infection. © 2019, University of Veterinary and Pharmaceutical Sciences. All rights reserved.","Reverse transcription quantitative PCR; Ruminant","complementary DNA; virus RNA; Article; bovine viral diarrhea; Bovine viral diarrhea virus 1; Canine coronavirus; controlled study; copy number variation; DNA sequence; DNA synthesis; down regulation; enzyme linked immunosorbent assay; gene amplification; gene expression; gene frequency; gene sequence; genetic analysis; nonhuman; nucleotide sequence; real time polymerase chain reaction; real time reverse transcription polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; sequence analysis; seroconversion; virus detection; virus isolation; virus load; virus shedding; virus transmission","Baker, J.C., The clinical manifestations of bovine viral diarrhea infection (1995) Vet Clin North am Food Anim Pract, 11, pp. 425-445; Bruschke, C.J., Weerdmeester, K., van Oirschot, J.T., van Rijn, P.A., Distribution of bovine virus diarrhoea virus in tissues and white blood cells of cattle during acute infection (1998) Vet Microbiol, 64, pp. 23-32; Castelain, S., Descamps, V., Thibault, V., Francois, C., Bonte, D., Morel, V., Izopet, J., Duverlie, G., TaqMan amplification system with an internal positive control for HCV RNA quantitation (2004) J Clin Virol, 31, pp. 227-234; Cleland, A., Nettleton, P., Jarvis, L., Simmonds, P., Use of bovine viral diarrhoea virus as an internal control for amplification of hepatitis C virus (1999) Vox Sang, 76, pp. 170-174; Hanon, J.B., van der Stede, Y., Antonissen, A., Mullender, C., Tignon, M., Berg, D., Caij, B., Distinction between persistent and transient infection in bovine viral diarrhoea (BVD) control programme: Appropriate interpretation of real-time RT-PCR and Antigen-ELISA test results (2014) Transbound Emerg Dis, 61, pp. 156-162; Houe, H., Lindberg, A., Moennig, V., Test strategies in bovine viral diarrhea virus control and eradication campaigns in Europe (2006) J Vet Diagn Invest, 18, pp. 427-436; Howard, C.J., Immunological responses to bovine virus diarrhoea virus infection (1990) Rev Sci Tech, 9, pp. 95-103; Laureyns, J., Ribbens, S., de Kruif, A., Control of bovine virus diarrhoea at the herd level: Reducing the risk of false negatives in the detection of persistently infected cattle (2010) Vet J, 184, pp. 21-26; Letellier, C., de Meulemeester, L., Lomba, M., Mijten, E., Kerkhofs, P., Detection of BVDV persistently infected animals in Belgium: Evaluation of the strategy implemented (2005) Prev Vet Med, 72, pp. 121-125; Lindberg, A.L., Alenius, S., Principles for eradication of bovine viral diarrhoea virus (BVDV) infections in cattle populations (1999) Vet Microbiol, 64, pp. 197-222; Lindberg, A., Houe, H., Characteristics in the epidemiology of bovine viral diarrhea virus (BVDV) of relevance to control (2005) Prev Vet Med, 72, pp. 55-73; Mahlum, C.E., Haugerud, S., Shivers, J.L., Rossow, K.D., Goyal, S.M., Collin, J.E., Faaberg, K.S., Detection of bovine viral diarrhea virus by TaqMan reverse transcription polymerase chain reaction (2002) J Vet Diag Inves, 14, pp. 120-125; Mars, M.H., van Maanen, C., Diagnostic assays applied in BVDV control in The Netherlands (2005) Prev Vet Med, 72, pp. 43-48; Marshall, D.J., Moxley, R.A., Kelling, C.L., Distribution of virus and viral antigen in specific pathogen-free calves following inoculation with noncytophatic bovine viral diarrhea virus (1996) Vet Pathol, 33, pp. 311-318; Munoz-Zanzi, C.A., Johnson, W.O., Thurmond, M.C., Hietala, S.K., Pooled-sample testing as a herd-screening tool for detection of bovine viral diarrhea virus persistently infected cattle (2000) J Vet Diagn Invest, 12, pp. 195-203; Niesters, H.G., Quantitation of viral load using real-time amplification techniques (2001) Methods, 25, pp. 419-429; Ohmann, H.B., BVD virus antigens in tissues of persistently infected viraemic, clinically normal cattle: Implication for the pathogenesis of clinically fatal disease (1988) Acta Vet Scand, 29, pp. 77-84; Saliki, J.T., Dubovi, E.J., Laboratory diagnosis of bovine viral diarrhea virus infections (2004) Vet Clin North am Food Anim Pract, 20, pp. 69-83; Sandvik, T., Selection and use of laboratory diagnostic assays in BVD control programmes (2005) Prev Vet Med, 72, pp. 3-16; Vilcek, S., Paton, D.J., Durkovic, B., Strojny, L., Ibata, G., Moussa, A., Loitsch, A., Palfi, V., Bovine viral diarrhoea virus genotype 1 can be separated into at least eleven genetic groups (2001) Arch Virol, 146, pp. 99-115; Young, N.J., Thomas, C.J., Collins, M.E., Brownlie, J., Real-time RT-PCR detection of Bovine Viral Diarrhoea virus in whole blood using an external RNA reference (2006) J Virol Methods, 138, pp. 218-222; Ward, P., Poitras, E., Leblanc, D., Letellier, A., Brassard, J., Plante, D., Houde, A., Comparative analysis of different TaqMan real-time RT-PCR assays for the detection of swine Hepatitis E virus and integration of Feline calicivirus as internal control (2009) J Appl Microbiol, 106, pp. 1360-1369","Fichtelová, V.; Veterinary Research Institute, Hudcova 70, Czech Republic; email: fichtelova@vri.cz",,"University of Veterinary and Pharmaceutical Sciences",00017213,,,,"English","Acta Vet. Brno",Article,"Final",Open Access,Scopus,2-s2.0-85078868618 "Park B.K., Maharjan S., Lee S.I., Kim J., Bae J.-Y., Park M.-S., Kwon H.-J.","36010594000;57201569309;57190686484;57209586750;55201437800;7404491121;7401838287;","Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex",2019,"BMB Reports","52","6",,"397","402",,2,"10.5483/BMBRep.2019.52.6.185","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068991871&doi=10.5483%2fBMBRep.2019.52.6.185&partnerID=40&md5=58cc0b5305e44455f08379d0451ae1a4","Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea","Park, B.K., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Maharjan, S., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Lee, S.I., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Kim, J., Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Bae, J.-Y., Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Park, M.-S., Department of Microbiology, College of Medicine, Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Kwon, H.-J., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea, Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) uses the spike (S) glycoprotein to recognize and enter target cells. In this study, we selected two epitope peptide sequences within the receptor binding domain (RBD) of the MERS-CoV S protein. We used a complex consisting of the epitope peptide of the MERS-CoV S protein and CpG-DNA encapsulated in liposome complex to immunize mice, and produced the monoclonal antibodies 506-2G10G5 and 492-1G10E4E2. The western blotting data showed that both monoclonal antibodies detected the S protein and immunoprecipitated the native form of the S protein. Indirect immunofluorescence and confocal analysis suggested strong reactivity of the antibodies towards the S protein of MERS-CoV virus infected Vero cells. Furthermore, the 506-2G10G5 monoclonal antibody significantly reduced plaque formation in MERS-CoV infected Vero cells compared to normal mouse IgG and 492-1G10E4E2. Thus, we successfully produced a monoclonal antibody directed against the RBD domain of the S protein which could be used in the development of diagnostics and therapeutic applications in the future. © 2019 by the The Korean Society for Biochemistry and Molecular Biology.","B cell epitope; Lipoplex (O); MERS-CoV; Monoclonal antibody; Spike protein","coronavirus spike glycoprotein; DNA; epitope; liposome; monoclonal antibody; peptide; protein binding; animal; Chlorocebus aethiops; CpG island; human; immunology; isolation and purification; metabolism; Middle East respiratory syndrome coronavirus; mouse; pathogenicity; Vero cell line; Animals; Antibodies, Monoclonal; Chlorocebus aethiops; CpG Islands; DNA; Epitopes; Humans; Liposomes; Mice; Middle East Respiratory Syndrome Coronavirus; Peptides; Protein Binding; Spike Glycoprotein, Coronavirus; Vero Cells","Zumla, A., Chan, J.F., Azhar, E.I., Coronaviruses-drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347; Du, L., Yang, Y., Zhou, Y., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin Ther Targets, 21, pp. 131-143; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathog Glob Health, 109, pp. 354-362; (2018), http://www.who.int/emergencies/mers-cov/en/; Ki, M., 2015 MERS outbreak in Korea: hospital-tohospital transmission (2015) Epidemiol Health, 37; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47; Lambour, J., Naranjo-Gomez, M., Piechaczyk, M., Pelegrin, M., Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play (2016) Emerg Microbes Infect, 5; Scott, A.M., Allison, J.P., Wolchok, J.D., Monoclonal antibodies in cancer therapy (2012) Cancer Immun, 12, p. 14; Wang, Q., Wong, G., Lu, G., MERS-CoV spike protein: Targets for vaccines and therapeutics (2016) Antiviral Res, 133, pp. 165-177; Gao, J., Lu, G., Qi, J., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 13134-13140; Wang, N., Shi, X., Jiang, L., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Kim, D., Kwon, H.J., Lee, Y., Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA (2011) BMB Rep, 44, pp. 607-612; Rhee, J.W., Kim, D.P., Immunization with a hemagglutinin-derived synthetic peptide formulated with a CpG-DNA-liposome complex induced protection against lethal influenza virus infection in mice (2012) PLoS One, 7; Park, B.K., Choi, S.H., Kim, Y.E., Monoclonal antibodies against the human respiratory syncytial virus obtained by immunization with epitope peptides and CpG-DNA-liposome complex (2015) Monoclon Antib Immunodiagn Immunother, 34, pp. 101-109; Park, B.K., Lee, S.I., Bae, J.Y., Production of a Monoclonal Antibody targeting the M protein of MERSCoV for detection of MERS-CoV using a synthetic peptide epitope formulated with a CpG-DNA-liposome complex (2018) Int J Pept Res Ther, , https://doi.org/10.1007/s10989-018-9731-8; Salazar, G., Zhang, N., Fu, T.M., An, Z., Antibody therapies for the prevention and treatment of viral infections (2017) NPJ Vaccines, 2, p. 19; Park, B.K., Park, J.Y., Kim, T.H., Production of an anti-TM4SF5 monoclonal antibody and its application in the detection of TM4SF5 as a possible marker of a poor prognosis in colorectal cancer (2018) Int J Oncol, 53, pp. 275-285; Wu, G., Maharjan, S., Kim, D., A Novel monoclonal antibody targets mucin1 and attenuates growth in pancreatic cancer model (2018) Int J Mol Sci, 19, p. 2004; Park, B.K., Gautam, A., Maharjan, S., Production of anti-c-Myc monoclonal antibody inhibiting DNA binding of c-Myc and max dimer by epitope peptide-CpGDNA-liposome complex without carriers (2017) Int J Pept Res Ther, , https://doi.org/10.1007/s10989-017-9649-6; Wu, G., Kim, D., Kim, J.N., A Mucin1 C-terminal subunit-directed monoclonal antibody targets overexpressed Mucin1 in breast cancer (2018) Theranostics, 8, pp. 78-91; Kim, D., Kwon, S., Rhee, J.W., Production of antibodies with peptide-CpG-DNA-liposome complex without carriers (2011) BMC Immunol, 12, p. 29; Yokoyama, W.M., Christensen, M., Santos, G.D., Miller, D., Production of monoclonal antibodies (2006) Curr Protoc Immunol, 102. , Unit 2.5; Maharjan, S., Park, B.K., Lee, S.I., Gomisin G inhibits the growth of triple-negative breast cancer cells by suppressing AKT phosphorylation and decreasing cyclin D1 (2018) Biomol Ther (Seoul), 26, pp. 322-327; Maharjan, S., Park, B.K., Lee, S.I., Gomisin G suppresses the growth of colon cancer cells by attenuation of AKT phosphorylation and arrest of cell cycle progression (2018) Biomol Ther (Seoul), , https://doi.org/10.4062/biomolther.2018.054; Jo, H.S., Eum, W.S., Park, E.Y., Effects of PEP-1-FK506BP on cyst formation in polycystic kidney disease (2017) BMB Rep, 50, pp. 460-465; Lee, E.W., Oh, W., Song, H.P., Kim, W.K., Phosphorylation of p53 at threonine 155 is required for Jab1-mediated nuclear export of p53 (2017) BMB Rep, 50, pp. 373-378","Kwon, H.-J.; Center for Medical Science Research, College of Medicine, Hallym UniversitySouth Korea; email: hjookwon@hallym.ac.kr",,"The Biochemical Society of the Republic of Korea",19766696,,,"30355437","English","BMB Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85068991871 "Khalil E.E., El-Bandrawy M.M.","57195541532;57209858123;","Numerical investigation of air flow regimes and thermal patterns in trains cabins",2019,"AIAA Scitech 2019 Forum",,,,"","",,,"10.2514/6.2019-1278","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068923744&doi=10.2514%2f6.2019-1278&partnerID=40&md5=33a99ecc02bf8fc937910febc766da80","Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, Egypt","Khalil, E.E., Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, Egypt; El-Bandrawy, M.M., Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, Egypt","To reach the required thermal comfort in addition to the safety environment and conditions for the travelers. Should study many researches to reach the best thermal comfort case to can avoid any possibility of the occurrence or the spread of an infection inside the trains cabins such that this diseases occur due to the near distance between the passengers' bodies with each other in addition to the long distances of the travelling such as the SARS, Coronavirus and other diseases can form. The present numerical investigation was done by using ANSYS FLUENT 15 CFD (Computational Fluid Dynamics) package. Techniques species transport as well as RNG k-epsilon model equations for turbulence model. Mesh sizes used in the present study were about 7,000,000 mesh volumes and 1,000 iteration for each case. In this paper, CFD simulation, indicate the effect of the thermal comfortable through fixating the location of air inlet at the ceiling and variation the locations of air outlets inside the train cabin to reach the best result of the thermal comfort. © 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.",,"Aviation; Iterative methods; Mesh generation; Thermal comfort; Turbulence models; CFD (computational fluid dynamics); CFD simulations; Coronaviruses; Numerical investigations; RNG k epsilons; Species transport; Spread of an infection; Thermal patterns; Computational fluid dynamics","Chen, H., Huang, S., Yang, P., Study on indoor environment in air-conditioned trains (2003) International Journal on Architectural Science, 4, pp. 60-72; Clausen, G., Bekö, G., Corsi, R.L., Gunnarsen, L., Nazaroff, W.W., Olesen, B.W., Sigsgaard, T., Weschler, C.J., Reflections on the state of research: Indoor environmental quality (2011) Indoor Air, 21, pp. 219-230; Zhang, T., Chen, Q., (2006) Novel Air Distribution Systems for Commercial Trains Cabins, Buildings and Environment, , Elsevier; (Haitao Wang, Miaoda Lin,)2013, national Journal on thermal Science for improving the geometric dimensions inside the cabin of CRH(China Railway High-speed); Elbandarawy, M.M.F., (2017) Numerical Investigation of Air Flow Regimes and Thermal Patterns in Train Cabins, , MSc Thesis, Cairo University, May 2017",,,"American Institute of Aeronautics and Astronautics Inc, AIAA",,9781624105784,,,"English","AIAA Scitech Forum",Conference Paper,"Final",,Scopus,2-s2.0-85068923744 "Naidenko S.V., Erofeeva M.N., Demina T.S., Alekseicheva I.A., Pavlova E.V.","56120960800;8214532000;57209461383;57209454403;56301077500;","Comparative estimation of some immune parameters in three felid species",2019,"Russian Journal of Theriology","18","1",,"1","11",,,"10.15298/rusjtheriol.18.1.01","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067822913&doi=10.15298%2frusjtheriol.18.1.01&partnerID=40&md5=8ce40df9ee5a7f288969e0e95e84d0a9","Department of Behavioral Ecology and Behavior of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation; Moscow Zoo, Bolshaya Gruzinskaya 1.b.1, Moscow, 123242, Russian Federation","Naidenko, S.V., Department of Behavioral Ecology and Behavior of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation; Erofeeva, M.N., Department of Behavioral Ecology and Behavior of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation; Demina, T.S., Moscow Zoo, Bolshaya Gruzinskaya 1.b.1, Moscow, 123242, Russian Federation; Alekseicheva, I.A., Moscow Zoo, Bolshaya Gruzinskaya 1.b.1, Moscow, 123242, Russian Federation; Pavlova, E.V., Department of Behavioral Ecology and Behavior of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation","Pallas' cat inhabits dry steppes in the center of Asia where winter temperatures may drop below -50 °C. We suggested that the evolution in severe climatic conditions and costly adaptations to low ambient temperatures may result in decrease of immunity of this species, because it prevents acquisition of adequate resources to develop robust immune responses. We estimated humoral immune response to a non-replicating antigen (sheep red blood cells) in ten captive Pallas' cats, twelve domestic cats and six Far Eastern wildcats. Blood-sampling was conducted prior to and 21 days after the injection. We analyzed changes in body mass, number of leukocytes, IgG concentration and hemoagglutination/hemolysis titer. Pallas' cat had lower hemoagglutination/hemolysis titer before the injection and showed lower titer than the two other felids three weeks after the injection. These results may reflect a lower level of natural antibodies in Pallas' cat than in the two other species and, possibly, lower innate immunity of this species. Domestic cats, which were serum positive to feline coronavirus, also showed lower hemoagglutination/hemolysis titer during the experiment than serum negative animals. © Russian Journal of Theriology, 2019.","Feline coronavirus; Immune response; Leukocytes; Pallas' cat",,"Acevedo-Whitehouse, K., Cunnigham, A., Is MHC enough for understanding wildlife immunogenetics? (2006) Trends in Ecology and Evolution, 21, pp. 433-438; Addie, D.D., Jarrett, O., Control of feline coronavirus infection in kittens (1990) Veterinary Record, 126, p. 164; Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infection in kittens (1992) Veterinary Record, 130, pp. 133-137; Avrameas, S., Natural autoantibodies: from 'horror autotoxicus' to 'gnothi seauton' (1991) Immunology Today, 12, pp. 154-159; Basso, W., Edelhoffer, R., Zenker, W., Mostl, K., Kubber-Heiss, A., Prosl, H., Toxoplasmosis in Pallas' cats (Otocolobus manul) raised in captivity (2005) Parasitology, 130, pp. 293-299; Belperron, A.A., Bockenstedt, L.K., Natural antibody affects survival of the spirochete Borrelia burgdorferi within feeding ticks (2001) Infection and Immunity, 69, pp. 6456-6462; Beran, O., Kodym, P., Maly, M., Davidova, A., Reinvartova, G., Jilich, D., Holub, M., Rozsypal, H., The effect of latent Toxoplasma gondii infection on the immune response in HIV-infected patients (2015) BioMed Research International; Bereshchenko, O., Bruscoli, S., Riccardi, C., Glucocorticoids, sex hormones, and immunity (2018) Frontiers in Immunology, 9; Bernatchez, L., Landry, C., MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? (2003) Journal of Evolutionary Biology, 16, pp. 363-377; Borsetti, A., Ferrantelli, F., Maggiorella, M.T., Sernicola, L., Bellino, S., Gallinaro, A., Farcomeni, S., Ensoli, B., Effect of MHC haplotype on immune response upon experimental SHIVSF162P4cy infection of Mauritian cynomolgus macaques (2014) PLoS ONE, 9 (4); Bradley, A.J., McDonald, I.R., Lee, A.K., Stress and mortality in a small marsupial (Antechinus stuartii Macleay) (1980) General and Comparative Endocrinology, 40, pp. 188-200; Brown, M., Lappin, M.R., Brown, J.L., Munkhtsog, B., Swanson, W., Exploring the ecological basis for extreme susceptibility of Pallas' cats (Otocolobus manul) to fatal toxoplasmosis: comparison of wild and captive populations (2005) Journal of Wildlife Diseases, 41, pp. 691-700; Coutinho, A.E., Chapman, K.E., The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights (2011) Molecular and Cellular Endocrinology, 335, pp. 2-13; Cunningham, M.W., Brown, M.A., Shindle, D.B., Terrell, S.P., Hayes, K.A., Ferree, B.C., McBride, R.T., O'Brien, S.J., Epizootiology and management of feline leukemia virus in the Florida puma (2008) Journal of Wildlife Diseases, 44, pp. 537-552; Daoust, P.-Y., McBurney, S.R., Godson, D.L., de van Bildt, M.W.G., Osterhaus, A.D.M.E., Canine distemper virus-associated encephalitis in free-living lynx (Lynx canadensis) and bobcats (Lynx rufus) of eastern Canada (2009) Journal of Wildlife Diseases, 45, pp. 611-624; Demas, G.E., Chefer, V., Talan, M.I., Nelson, R.G., Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice (1997) American Journal of Physiology, 42, pp. R1631-R1637; Dubey, J.P., Gendron-Fitzpaztrick, A.P., Lenhard, A.L., Bowman, D., Fatal toxoplasmosis and enteroepithelial stages of Toxoplasma gondii in a Pallas' cat (Felis manul) (1988) Journal of Protozoology, 35, pp. 528-530; Fatoohi, A.F., Cozon, G.J., Gonzalo, P., Mayencon, M., Greenland, T., Picot, S., Peyron, F., Heterogeneity in cellular and humoral immune responses against Toxoplasma gondii antigen in humans (2004) Clinical and Experimental Immunology, 136, pp. 535-541; Field, C.J., Johnson, I.R., Schley, P.D., Nutrients and their role in host resistance to infection (2002) Journal of Leukocyte Biology, 71, pp. 16-32; Froeschke, G., Sommer, S., MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the southern Kalahari (2005) Molecular Biology and Evolution, 22, pp. 1254-1259; Gildersleeve, R.P., Thaxton, J.P., Parkhurst, C.R., Scott, T.R., Galvin, M.J., McRee, D.I., Leukocyte numbers during the humoral and cell-mediated immune response of Japanese quail after microwave irradiation in ovo (1987) Comparative Biochemistry and Physiology. Part A. Physiology, 87, pp. 375-380; Gilot-Fromont, E., Jégo, M., Bonenfant, C., Gibert, P., Rannou, B., Klein, F., Gaillard, J.M., Immune phenotype and body condition in roe deer: individuals with high body condition have different, not stronger immunity (2012) PLoS ONE, 7; Givens, M.D., Marley, M.S.D., Infectious causes of embryonic and fetal mortality (2008) Theriogenology, 70, pp. 270-285; Graham, R.I., Deacutis, J.M., Simpson, S.J., Wilson, K., Body condition constrains immune function in field populations of female Australian plague locust Chortoicetes terminifera (2015) Parasite Immunology, 37, pp. 233-241; Greenberg, A.H., Antibodies and natural immunity (1985) Biomedicine and Pharmacotherapy, 39, pp. 4-6; Hassiotou, F., Hepworth, A.R., Metzger, P., Lai, C.T., Trengove, N., Hartmann, P.E., Filgueira, L., Maternal and infant infections stimulate a rapid leukocyte response in breastmilk (2013) Clinical and Translational Immunology, 2; Heinrich, S.K., Hofer, H., Courtiol, A., Melzheimer, J., Dehnhard, M., Czirják, G.A., Wachter, B., Cheetahs have a stronger constitutive innate immunity than leopards (2017) Scientific Reports, 7; Heptner, V.G., Sludskii, A.A., (1992) Mammals of the Soviet Union, 2, p. 784. , Carnivora (Hyaenas and Cats). Springfield, Virginia, USA: Smithsonian Institution Libraries and National Science Foundation; Hoover, E.A., Mullins, J.I., Feline leukemia virus infection and diseases (1991) Journal of American Veterinary Medicine Association, 199, pp. 1287-1297; International Species Information System (1999) Physiological Data Reference Values, , www.isis.org; Ketz-Riley, C.J., Ritchey, J.W., Hoover, J.P., Johnson, C.M., Barrie, M.T., Immunodeficiency associated with multiple concurrent infections in captive Pallas' cats (Otocolobus manul) (2003) Journal of Zoo and Wildlife Medicine, 34, pp. 239-245; Kumar, V., Sharma, A., Neutrophils: Cinderella of innate immune system (2010) International Immunopharmacology, 10, pp. 1325-1334; Lehmann, T., Ectoparasites: direct impact on host fitness (1993) Parasitology Today, 9, pp. 8-13; Lin, D.-S., Bowman, D.D., Jacobson, R.H., Immunological changes in cats with concurrent Toxoplasma gondii and feline immunodeficiency virus infections (1992) Journal of Clinical Microbiology, 30, pp. 17-24; Lucherini, M., Manfredi, C., Luengos, E., Dias Mazim, F., Soler, L., Casanave, E.B., Body mass variation in the Geoffroy's cat (Oncifelis geoffroyi) (2006) Revista Chilena de Historia Natural, 79, pp. 169-174; Matson, K.D., Are there differences in immune function between continental and insular birds? (2006) Proceedings of the Royal Society. Biological Sciences, 273, pp. 2267-2274; Matson, K.D., Ricklefs, R.E., Klasing, K.C., A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds (2005) Developmental and Comparative Immunology, 29, pp. 275-286; McKinnon, W., Weisse, C.S., Reynolds, C.P., Bowles, C.A., Baum, A., Chronic stress, leukocytes subpopulations and humoral response to latent viruses (1989) Health Psychology, 8, pp. 389-402; Mendes, L., Piersma, T., Hasselquist, D., Matson, K.D., Ricklefs, R.E., Variation in the innate and acquired arms of the immune system among five shorebird species (2006) Journal of Experimental Biology, 209, pp. 284-291; Messaoudi, I., Guevara Patino, J.A., Dyall, R., LeMaoult, J., Nikolich-Zugich, J., Direct link between MHC polymorphism, T cell avidity, and diversity in immune defense (2002) Science, 298, pp. 1780-1797; Mestas, J., Hughes, C.C.W., Of mice and not men: differences between mouse and human immunology (2004) Journal of Immunology, 172, pp. 2731-2738; Moreno-Ruedo, G., Body-mass-dependent trade-off between immune response and uropygial gland size in house sparrows Passer domesticus (2015) Journal of Avian Biology, 46, pp. 40-45; Moret, Y., Schmid-Hempel, P., Survival for immunity: the price of immune system activation for bumblebee workers (2000) Science, 290, pp. 1166-1168; Naidenko, S.V., Pavlova, E.V., Kirilyuk, V.E., Detection of seasonal weight loss and a serologic survey of potential pathogens in wild Pallas' cats (Felis [Otocolobus] manul) of the Daurian steppe, Russia (2014) Journal of Wildlife Diseases, 50, pp. 188-194; Naidenko, S.V., Hernandez-Blanco, J.A., Pavlova, E.V., Erofeeva, M.N., Sorokin, P.A., Litvinov, M.N., Kotlyar, A.K., Rozhnov, V.V., Primary study of seroprevalence to virus pathogens in wild felids of South Primorie, Russia (2018) Canadian Journal of Zoology, 96, pp. 839-846; Nordling, D., Andersson, M., Zohari, S., Gustafsson, L., Reproductive effort reduces specific immune response and parasite resistance (1998) Proceedings of Royal Society. Biological Sciences, 265, pp. 1291-1298; Norris, K., Evans, M.R., Ecological immunology: life history trade-offs and immune defense in birds (2000) Behavioral Ecology, 11, pp. 19-26; Novikov, E., Kondratyuk, E., Petrovski, D., Krivopalov, A., Moshkin, M., Effects of parasites and antigenic challenge on metabolic rates and thermoregulation in northern red-backed voles (Myodes rutilus) (2015) Parasitology Research, 114, pp. 4479-4486; Ochsenbein, A.F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H., Zinkernagel, R.M., Control of early viral and bacterial distribution and disease by natural antibodies (1999) Science, 286, pp. 2156-2159; Ohishi, K., Suzuki, R., Maeda, T., Tsuda, M., Abe, E., Yoshida, T., Endo, Y., Maruyama, T., Recent host range expansion of canine distemper virus and variation in its receptor, the signaling lymphocyte activation molecule, in carnivores (2014) Journal of Wildlife Diseases, 50, pp. 596-606; Olsen, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., Scott, F.W., Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages (1992) Journal of Virology, 66, pp. 956-965; Pap, P.L., Czirjak, G.A., Vagasi, C.I., Barta, Z., Hasselquist, D., Sexual dimorphism in immune function changes during the annual cycle in house sparrows (2010) Naturwissenschaften, 97, pp. 891-901; Pas, A., Dubey, J.P., Fatal toxoplasmosis in sand cats (Felis margarita) (2008) Journal of Zoo and Wildlife Medicine, 39, pp. 362-369; Patel, R.P., Wutke, S., Lenz, D., Mukherjee, S., Ramakrishnan, U., Veron, G., Fickel, J., Förster, D.W., Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes (2017) Journal of Heredity, 108, pp. 349-360; Pavlova, E.V., Kirilyuk, V.E., Naidenko, S.V., Patterns of seroprevalence of feline viruses among domestic cats and Pallas' cats in Daurskii Reserve, Russia (2015) Canadian Journal of Zoology, 93, pp. 849-855; Pavlova, E.V., Kirilyuk, V.E., Naidenko, S.V., Occurrence of Toxoplasma gondii, influenza A virus and Coxiella burnetti in Pallas cat, domestic cats and their potential preys in arid climate (2016) Arid Ecosystems, 6, pp. 287-293; Pavlova, E.V., Alekseeva, G.S., Erofeeva, M.N., Vasilieva, N.A., Tchabovsky, A.V., Naidenko, S.V., The method matters: The effect of handling time on cortisol level and blood parameters in wild cats (2018) Journal of Experimental Zoology, 329, pp. 112-119; Pedersen, N.C., Boyle, J.F., Immunologic phenomena in the effusive form of feline infectious peritonitis (1980) American Journal of Veterinary Research, 41, pp. 868-876; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) Journal of Feline Medicine and Surgery, 10, pp. 529-541; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) Journal of Clinical Microbiology, 34, pp. 3180-3184; Roelke-Parker, M.E., Munson, L., Packer, C., Kock, R., Cleaveland, S., Carpenter, M., O'Brien, S.J., Appel, M.J.G., A canine distemper virus epidemic in Serengeti lions (Panthera leo) (1996) Nature, 379, pp. 441-445; Ross, P., Pohajdak, B., Bowen, W., Addison, R., Immune function in free-ranging harbor seal (Phoca vitulina) mothers and their pups during lactation (1993) Journal of Wildlife Diseases, 29, pp. 21-29; Schad, J., Ganzhorn, J.U., Sommer, S., Yoder, A., Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus (2005) Evolution, 59, pp. 439-450; Schleimer, R.P., Glucocorticoids suppress inflammation but spare innate immune responses in airway epithelium (2004) Proceedings of American Thoracic Society, 1, pp. 222-230; Seimon, T.A., Miquelle, D.G., Chang, T.Y., Newton, A.L., Korotkova, I., Ivanchuk, G., Lyubchenko, E., McAloose, D., Canine distemper virus: an emerging disease in wild endangered Amur tigers (Panthera tigris altaica) (2013) mBio, 4; Sheldon, B.C., Verhulst, S., Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology (1996) Trends in Ecology and Evolution, 11, pp. 317-321; Sheridan, P.A., Paich, H.A., Handy, J., Karlsson, E.A., Hudgens, M.G., Sammon, A.B., Holland, L.A., Beck, M.A., Obesity is associated with impaired immune response to influenza vaccination in humans (2012) International Journal of Obesity, 36, pp. 1072-1077; Sleeman, J.M., Keane, J.M., Johnson, J.S., Brown, R.J., Woude, S.V., Feline leukemia virus in a captive bobcat (2001) Journal of Wildlife Diseases, 37, pp. 194-200; Sorokin, P., Pavlova, E., Kirilyuk, V., Naidenko, S., Genetic diversity of Pallas' cat (Otocolobus manul) group in Daurskiy reserve (2015) 10th International Conference on Behavior, Physiology and Genetics of Wildlife, p. 181. , Berlin, Germany; Sulikhan, N.S., Gilbert, M., Blidchenko, E.Y., Naidenko, S.V., Ivanchuk, G.V., Gorpenchenko, T.Y., Alshinetskiy, M.V., Miquelle, D.G., Canine distemper virus in a wild Far Eastern leopard Panthera pardus orientalis (2018) Journal of Wildlife Diseases, 54, pp. 170-174; Takano, T., Azuma, N., Hashida, Y., Satoh, R., Hohdatsu, T., B-cell activation in cats with feline infectious peritonitis (FIP) by FIP-virus-induced B-cell differentiation/survival factors (2009) Archives of Virology, 154, pp. 27-35; Tamada, T., Siriaroonrat, B., Subramaniam, V., Hamachi, V., Lin, L.-K., Oshida, T., Rerkamnuaychoke, W., Masuda, R., Molecular diversity and phylogeography of the Asian leopard cat, Felis bengalensis, inferred from mitochondrial and Y-chromosomal DNA sequences (2008) Zoological Science, 25, pp. 154-163; Weiss, R.C., Scott, F.W., Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever (1981) Comparative Immunology, Microbiology and Infectious Diseases, 4, pp. 175-189; Wernicke, D., Trainin, Z., Ungar-Waron, H., Essex, M., Humoral immune response of asymptomatic cats naturally infected with feline leukemia virus (1986) Journal of Virology, 60, pp. 669-673; Yudin, V.G., (2015) [Far Eastern Wildcat], p. 442. , Vladivostok: Dalnauka [In Russian]; Zschaler, J., Schlorke, D., Arnhold, J., Differences in innate immune response between man and mouse (2014) Critical Reviews in Immunology, 34, pp. 433-454","Naidenko, S.V.; Department of Behavioral Ecology and Behavior of Mammals, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Russian Federation; email: snaidenko@mail.ru",,"K M K Scientific Press Ltd",16823559,,,,"English","Russ. J. Theriol.",Article,"Final",Open Access,Scopus,2-s2.0-85067822913 "Kwok K.O., Tang A., Wei V.W.I., Park W.H., Yeoh E.K., Riley S.","35983448100;57201649539;56237605400;57194058144;35427828500;7102619416;","Epidemic Models of Contact Tracing: Systematic Review of Transmission Studies of Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome",2019,"Computational and Structural Biotechnology Journal","17",,,"186","194",,2,"10.1016/j.csbj.2019.01.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061366399&doi=10.1016%2fj.csbj.2019.01.003&partnerID=40&md5=d306986e71e9ed9f8f6e69e0a8e03c6c","The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong; Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, Hong Kong; Department of Software, Sungkyunkwan University, South Korea; Department of Electrical and Computer Engineering, Sungkyunkwan University, South Korea; MRC Centre for Outbreak Analysis and Modelling, Department for Infectious Disease Epidemiology, Imperial College London, United Kingdom","Kwok, K.O., The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, Shenzhen Research Institute of The Chinese University of Hong Kong, Shenzhen, Hong Kong; Tang, A., Department of Software, Sungkyunkwan University, South Korea; Wei, V.W.I., The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Park, W.H., Department of Electrical and Computer Engineering, Sungkyunkwan University, South Korea; Yeoh, E.K., The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Riley, S., MRC Centre for Outbreak Analysis and Modelling, Department for Infectious Disease Epidemiology, Imperial College London, United Kingdom","The emergence and reemergence of coronavirus epidemics sparked renewed concerns from global epidemiology researchers and public health administrators. Mathematical models that represented how contact tracing and follow-up may control Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) transmissions were developed for evaluating different infection control interventions, estimating likely number of infections as well as facilitating understanding of their likely epidemiology. We reviewed mathematical models for contact tracing and follow-up control measures of SARS and MERS transmission. Model characteristics, epidemiological parameters and intervention parameters used in the mathematical models from seven studies were summarized. A major concern identified in future epidemics is whether public health administrators can collect all the required data for building epidemiological models in a short period of time during the early phase of an outbreak. Also, currently available models do not explicitly model constrained resources. We urge for closed-loop communication between public health administrators and modelling researchers to come up with guidelines to delineate the collection of the required data in the midst of an outbreak and the inclusion of additional logistical details in future similar models. © 2019","Contact Tracing; Coronavirus Epidemics; MERS; SARS; Transmission Modelling","Diseases; Public health; Constrained resources; Contact tracing; Coronaviruses; Epidemiological models; Infection control; MERS; SARS; Severe acute respiratory syndrome; Disease control; asymptomatic disease; basic reproduction number; clinical evaluation; communication skill; contact examination; early intervention; epidemic; epidemiological data; follow up; human; incubation time; infection control; latent period; mathematical model; Medline; meta analysis; Middle East respiratory syndrome; practice guideline; priority journal; public health; quarantine; Review; Scopus; severe acute respiratory syndrome; social behavior; systematic review; virus transmission","WHO, Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July (2018), p. 2003; WHO, MERS situation update July 2018 (2018); Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; USCDC, Frequently asked questions about SARS (2012); WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) (2018); Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17, p. 615; Hui, D.S., Chan, M.C., Wu, A.K., Ng, P.C., Severe acute respiratory syndrome (SARS): epidemiology and clinical features (2004) Postgrad Med J, 80, pp. 373-381; Muller, J., Kretzschmar, M., Dietz, K., Contact tracing in stochastic and deterministic epidemic models (2000) Math Biosci, 164, pp. 39-64; Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J., Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions (2003) Science, 300, pp. 1961-1966; Saurabh, S., Prateek, S., Role of contact tracing in containing the 2014 Ebola outbreak: a review (2017) Afr Health Sci, 17, pp. 225-236; Eames, K.T., Keeling, M.J., Contact tracing and disease control (2003) Proc Biol Sci, 270, pp. 2565-2571; Lee, M.S., Hu, A.Y., A cell-based backup to speed up pandemic influenza vaccine production (2012) Trends Microbiol, 20, pp. 103-105; Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement (2015) Syst Rev, 4 (1); Peak, C.M., Childs, L.M., Grad, Y.H., Buckee, C.O., Comparing nonpharmaceutical interventions for containing emerging epidemics (2017) Proc Natl Acad Sci U S A, 114, pp. 4023-4028; Feng, Z., Yang, Y., Xu, D., Zhang, P., McCauley, M.M., Timely identification of optimal control strategies for emerging infectious diseases (2009) J Theor Biol, 259, pp. 165-171; Klinkenberg, D., Fraser, C., Heesterbeek, H., The effectiveness of contact tracing in emerging epidemics (2006) PLoS One, 1, p. e12; Chen, S.C., Chang, C.F., Liao, C.M., Predictive models of control strategies involved in containing indoor airborne infections (2006) Indoor Air, 16, pp. 469-481; Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M., Factors that make an infectious disease outbreak controllable (2004) Proc Natl Acad Sci U S A, 101, pp. 6146-6151; Lloyd-Smith, J.O., Galvani, A.P., Getz, W.M., Curtailing transmission of severe acute respiratory syndrome within a community and its hospital (2003) Proc Biol Sci, 270, pp. 1979-1989; Becker, N.G., Glass, K., Li, Z., Aldis, G.K., Controlling emerging infectious diseases like SARS (2005) Math Biosci, 193, pp. 205-221; Anderson, R.M.M.R.M., Infectious Diseases of Humans Dynamics and Control (1992), Oxford University Press; Kirch, W., Incubation (2008) Encyclopedia of Public Health, , Springer Dordrecht; Kirch, W., Latency (2008) Encyclopedia of Public Health, , Springer Dordrecht; Wilder-Smith, A., Teleman, M.D., Heng, B.H., Earnest, A., Ling, A.E., Asymptomatic SARS coronavirus infection among healthcare workers, Singapore (2005) Emerg Infect Dis, 11, pp. 1142-1145; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., A family cluster of Middle East respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Donnelly, C.A., Ghani, A.C., Leung, G.M., Hedley, A.J., Fraser, C., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong (2003) Lancet, 361, pp. 1761-1766; Kwok, K.O., Leung, G.M., Lam, W.Y., Riley, S., Using models to identify routes of nosocomial infection: a large hospital outbreak of SARS in Hong Kong (2007) Proc Biol Sci, 274, pp. 611-617; Majumder, M.S., Brownstein, J.S., Finkelstein, S.N., Larson, R.C., Bourouiba, L., Nosocomial amplification of MERS-coronavirus in South Korea, 2015 (2017) Trans R Soc Trop Med Hyg, 111, pp. 261-269; Day, T., Park, A., Madras, N., Gumel, A., Wu, J., When is quarantine a useful control strategy for emerging infectious diseases? (2006) Am J Epidemiol, 163, pp. 479-485; Rivers, C.M., Lofgren, E.T., Marathe, M., Eubank, S., Lewis, B.L., Modeling the impact of interventions on an epidemic of ebola in Sierra Leone and Liberia (2014) PLoS Curr, 6; Webb, G., Browne, C., Huo, X., Seydi, O., Seydi, M., A model of the 2014 ebola epidemic in West Africa with contact tracing (2015) PLoS Curr, 7; Kuk, A.Y., Ma, S., The estimation of SARS incubation distribution from serial interval data using a convolution likelihood (2005) Stat Med, 24, pp. 2525-2537; Pitzer, V.E., Leung, G.M., Lipsitch, M., Estimating variability in the transmission of severe acute respiratory syndrome to household contacts in Hong Kong, China (2007) Am J Epidemiol, 166, pp. 355-363; Wearing, H.J., Rohani, P., Keeling, M.J., Appropriate models for the management of infectious diseases (2005) PLoS Med, 2, p. e174; Chowell, G., Nishiura, H., Transmission dynamics and control of Ebola virus disease (EVD): a review (2014) BMC Med, 12, p. 196; Lloyd, A.L., Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics (2001) Theor Popul Biol, 60, pp. 59-71; Wilkinson, R.R., Sharkey, K.J., Impact of the infectious period on epidemics (2018) Phys Rev E, 97; Kaplan, E.H., Craft, D.L., Wein, L.M., Emergency response to a smallpox attack: the case for mass vaccination (2002) Proc Natl Acad Sci U S A, 99, pp. 10935-10940; Halloran, M.E., Longini, I.M., Jr., Nizam, A., Yang, Y., Containing bioterrorist smallpox (2002) Science, 298, pp. 1428-1432; Kwok, K.O., Cowling, B., Wei, V., Riley, S., Read, J.M., Temporal variation of human encounters and the number of locations in which they occur: a longitudinal study of Hong Kong residents (2018) J R Soc Interface, 15; Kwok, K.O., Cowling, B.J., Wei, V.W., Wu, K.M., Read, J.M., Social contacts and the locations in which they occur as risk factors for influenza infection (2014) Proc Biol Sci, 281, p. 20140709; Huerta, R., Tsimring, L.S., Contact tracing and epidemics control in social networks (2002) Phys Rev E Stat Nonlin Soft Matter Phys, 66, p. 056115; (2018) South Korean man infected by MERS virus, first case in 3 years, , [Reuters/AFP/aj]; Galvani, A.P., Lei, X., Jewell, N.P., Severe acute respiratory syndrome: temporal stability and geographic variation in case-fatality rates and doubling times (2003) Emerg Infect Dis, 9, pp. 991-994; McKinney, K.R., Gong, Y.Y., Lewis, T.G., Environmental transmission of SARS at Amoy Gardens (2006) J Environ Health, 68, pp. 26-30. , [quiz 51-22]; Yu, I.T., Li, Y., Wong, T.W., Tam, W., Chan, A.T., Evidence of airborne transmission of the severe acute respiratory syndrome virus (2004) N Engl J Med, 350, pp. 1731-1739","Kwok, K.O.; JC School of Public Health and Primary Care Building, Prince of Wales Hospital, Room 416, 4/F, Shatin, New Territories, Hong Kong; email: kkokwok@cuhk.edu.hk",,"Elsevier B.V.",20010370,,,,"English","Comput. Struct. Biotechnol. J.",Review,"Final",Open Access,Scopus,2-s2.0-85061366399 "Zhang F., Chen Y., Ke Y., Zhang L., Zhang B., Yang L., Zhu J.","57205434765;57205438977;57206200422;57205434280;57205439603;57205447164;55704660400;","Single chain fragment variable (scFv) antibodies targeting the spike protein of porcine epidemic diarrhea virus provide protection against viral infection in piglets",2019,"Viruses","11","1", 58,"","",,1,"10.3390/v11010058","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060055410&doi=10.3390%2fv11010058&partnerID=40&md5=e27f3b5e061dd2b79556e17a101b1d5b","Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China; Shanghai Frontan Animal Health Corp., Shanghai, 201502, China","Zhang, F., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China; Chen, Y., Shanghai Frontan Animal Health Corp., Shanghai, 201502, China; Ke, Y., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China; Zhang, L., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China; Zhang, B., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China; Yang, L., Shanghai Frontan Animal Health Corp., Shanghai, 201502, China; Zhu, J., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China","Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. In this study, single chain fragment variable (scFv) antibodies against PEDV were screened from the porcine scFv phage display library. After four rounds of biopanning, scFvs that showed higher affinity to the PEDV antigen were selected for further study. The scFv genes were cloned into the expression plasmid for recombinant protein expression. These scFvs were shown to inhibit PEDV infectivity by the plaque reduction neutralization assay. Immunofluorescence assay (IFA) revealed that the epitopes recognized by these scFvs were in the S1 region of the spike protein. The potential of scFvs to provide prevention against PEDV infections in piglets was further investigated. Piglets orally administered scFvs showed no to mild clinical symptoms, significantly less viral shedding, no mortality and no intestinal lesions. The field application also revealed that the survival rate of piglets was significantly increased by oral administration of scFvs. Our data support the potential role of scFvs in the prevention and treatment of PEDV infection. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Porcine epidemic diarrhea virus; Protection; Single chain fragment variable (scFv); Spike (S) protein","fluorescein isothiocyanate; neutralizing antibody; single chain fragment variable antibody; virus spike protein; coronavirus spike glycoprotein; epitope; single chain fragment variable antibody; virus antibody; animal experiment; animal model; anorexia; Article; binding affinity; biopanning; clinical feature; controlled study; cytotoxicity assay; depression; diarrhea; disease severity; enzyme linked immunosorbent assay; feces analysis; fluorescence microscopy; gene sequence; genetic transfection; human; human cell; immunofluorescence; immunohistochemistry; in vitro study; intestine injury; IPEC-J2 cell line; molecular cloning; mortality; MTT assay; nonhuman; passive immunization; piglet; polyacrylamide gel electrophoresis; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; prophylaxis; protein expression; protein stability; protein targeting; real time polymerase chain reaction; survival rate; Vero C1008 cell line; virus infection; virus load; virus neutralization; virus purification; virus shedding; vomiting; Western blotting; age; animal; cell surface display; Coronavirus infection; feces; immunology; passive immunization; pig; serodiagnosis; swine disease; veterinary medicine; virology; Age Factors; Animals; Antibodies, Neutralizing; Antibodies, Viral; Cell Surface Display Techniques; Coronavirus Infections; Epitopes; Feces; Immunization, Passive; Neutralization Tests; Porcine epidemic diarrhea virus; Single-Chain Antibodies; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases; Virus Shedding","Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, pp. 243-247; Madson, D.M., Magstadt, D.R., Arruda, P.H., Hoang, H., Sun, D., Bower, L.P., Bhandari, M., Pillatzki, A.E., Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs (2014) Vet. Microbiol., 174, pp. 60-68; Song, D., Park, B., Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg. Infect. Dis., 18, pp. 1350-1353; Wang, J., Zhao, P., Guo, L., Liu, Y., Du, Y., Ren, S., Li, J., Huang, B., Porcine epidemic diarrhea virus variants with high pathogenicity, China (2013) Emerg. Infect. Dis., 19, pp. 2048-2049; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Schmitt, B.J., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Investig., 25, pp. 649-654; Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13; Mole, B., Deadly pig virus slips through US borders (2013) Nature, 499, p. 388; Sun, M., Ma, J., Wang, Y., Wang, M., Song, W., Zhang, W., Lu, C., Yao, H., Genomic and epidemiological characteristics provide new insights into the phylogeographical and spatiotemporal spread of porcine epidemic diarrhea virus in Asia (2015) J. Clin. Microbiol., 53, pp. 1484-1492; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol. J, 12, p. 193; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res., 48, pp. 1-100; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) Mbio, 4, p. 13; Cruz, D.J., Kim, C.J., Shin, H.J., The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus (2008) Virus Res, 132, pp. 192-196; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J. Virol., 88, pp. 7952-7961; Li, W., Wicht, O., van Kuppeveld, F.J., He, Q., Rottier, P.J., Bosch, B.J., A Single Point Mutation Creating a Furin Cleavage Site in the Spike Protein Renders Porcine Epidemic Diarrhea Coronavirus Trypsin Independent for Cell Entry and Fusion (2015) J. Virol., 89, pp. 8077-8081; Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Res, 226, pp. 117-127; Hain, K.S., Joshi, L.R., Okda, F., Nelson, J., Singrey, A., Lawson, S., Martins, M., Nelson, E.A., Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus (2016) J. Gen. Virol., 97, pp. 2719-2731; Zhang, Y., Zhang, X., Liao, X., Huang, X., Cao, S., Wen, X., Wen, Y., Liu, W., Construction of a bivalent DNA vaccine co-expressing S genes of transmissible gastroenteritis virus and porcine epidemic diarrhea virus delivered by attenuated Salmonella typhimurium (2016) Virus Genes, 52, pp. 354-364; Lee, D.H., Jeon, Y.S., Park, C.K., Kim, S., Lee, D.S., Lee, C., Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a recombinant S1 domain of the porcine epidemic diarrhea virus spike protein in piglets (2015) Arch. Virol., 160, pp. 2197-2207; Schofield, D.J., Pope, A.R., Clementel, V., Buckell, J., Chapple, S., Clarke, K.F., Conquer, J.S., Dyson, M.R., Application of phage display to high throughput antibody generation and characterization (2007) Genome Biol, 8, p. 254; Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Johnson, K.S., Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library (1996) Nat. Biotechnol., 14, pp. 309-314; Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.M., Lee, T., Whitlow, M., Single-chain antigen-binding proteins (1988) Science, 242, pp. 423-426; Yokota, T., Milenic, D.E., Whitlow, M., Schlom, J., Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms (1992) Cancer Res, 52, pp. 3402-3408; Sapats, S.I., Heine, H.G., Trinidad, L., Gould, G.J., Foord, A.J., Doolan, S.G., Prowse, S., Ignjatovic, J., Generation of chicken single chain antibody variable fragments (ScFv) that differentiate and neutralize infectious bursal disease virus (IBDV) (2003) Arch. Virol., 148, pp. 497-515; Maneewatch, S., Thanongsaksrikul, J., Songserm, T., Thueng-In, K., Kulkeaw, K., Thathaisong, U., Srimanote, P., Chaicumpa, W., Human single-chain antibodies that neutralize homologous and heterologous strains and clades of influenza A virus subtype H5N1 (2009) Antivir. Ther., 14, pp. 221-230; Li, T.W., Cheng, S.F., Tseng, Y.T., Yang, Y.C., Liu, W.C., Wang, S.C., Chou, M.J., Hsiao, P.W., Development of single-chain variable fragments (ScFv) against influenza virus targeting hemagglutinin subunit 2 (HA2) (2016) Arch. Virol., 161, pp. 19-31; Li, B., Ye, J., Lin, Y., Wang, M., Jia, R., Zhu, J., Selection and characterization of single-chain recombinant antibodies against phosphoprotein of Newcastle disease virus (2014) Biologicals, 42, pp. 285-289; Krempl, C., Herrler, G., Sialic acid binding activity of transmissible gastroenteritis coronavirus affects sedimentation behavior of virions and solubilized glycoproteins (2001) J. Virol., 75, pp. 844-849; Okda, F.A., Lawson, S., Singrey, A., Nelson, J., Hain, K.S., Joshi, L.R., Christopher-Hennings, J., Diel, D.G., The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes (2017) Virology, 509, pp. 185-194; Feng, C., Wang, Z., Jiang, C., Kong, M., Zhou, X., Li, Y., Cheng, X., Chen, X., Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation (2013) Int. J. Pharm., 457, pp. 158-167; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Saif, L.J., Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets (2017) J. Virol, 91; Ogawa, H., Taira, O., Hirai, T., Takeuchi, H., Nagao, A., Ishikawa, Y., Tuchiya, K., Ueda, S., Multiplex PCR and multiplex RT-PCR for inclusive detection of major swine DNA and RNA viruses in pigs with multiple infections (2009) J. Virol. Methods, 160, pp. 210-214; Zhang, F., Ye, Y., Song, D., Guo, N., Peng, Q., Li, A., Zhou, X., Huang, D., A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification (2017) Biol. Res., 50, p. 30; Su, Y., Liu, Y., Chen, Y., Zhao, B., Ji, P., Xing, G., Jiang, D., Wang, G., Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene (2016) Virol. J., 13, p. 192; Chen, Q., Li, G., Stasko, J., Thomas, J.T., Stensland, W.R., Pillatzki, A.E., Gauger, P.C., Yoon, K.J., Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States (2014) J. Clin. Microbiol., 52, pp. 234-243; Gao, Y., Kou, Q., Ge, X., Zhou, L., Guo, X., Yang, H., Phylogenetic analysis of porcine epidemic diarrhea virus field strains prevailing recently in China (2013) Arch. Virol., 158, pp. 711-715; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg. Infect. Dis., 18, pp. 161-163; Lin, H., Chen, L., Gao, L., Yuan, X., Ma, Z., Fan, H., Epidemic strain YC2014 of porcine epidemic diarrhea virus could provide piglets against homologous challenge (2016) Virol. J, 13, p. 68; Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu. Rev. Anim. Biosci., 3, pp. 375-395; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: A review of current epidemiology and available vaccines (2015) Clin. Exp. Vaccine Res., 4, pp. 166-176; Lee, D.K., Park, C.K., Kim, S.H., Lee, C., Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea (2010) Virus Res, 149, pp. 175-182; Li, X., Wang, L., Zhen, Y., Li, S., Xu, Y., Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: A review (2015) J. Anim. Sci. Biotechnol., 6, p. 40; Ahmad, Z.A., Yeap, S.K., Ali, A.M., Ho, W.Y., Alitheen, N.B., Hamid, M., ScFv antibody: Principles and clinical application (2012) Clin. Dev. Immunol., 2012; Marasco, W.A., Sui, J., The growth and potential of human antiviral monoclonal antibody therapeutics (2007) Nat. Biotechnol., 25, pp. 1421-1434; Bose, M., Mullick, R., Das, S., Das, S., Karande, A.A., Combination of neutralizing monoclonal antibodies against Hepatitis C virus E2 protein effectively blocks virus infection (2016) Virus Res, 224, pp. 46-57; Spaan, W., Cavanagh, D., Horzinek, M.C.C., Structure and genome expression (1988) J. Gen. Virol., 12, pp. 2939-2952. , 69 Pt; Sun, D.B., Feng, L., Shi, H.Y., Chen, J.F., Liu, S.W., Chen, H.Y., Wang, Y.F., Spike protein region (Aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies (2007) Acta Virol, 51, pp. 149-156; Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies (2017) J. Virol, 91; Chang, S.H., Bae, J.L., Kang, T.J., Kim, J., Chung, G.H., Lim, C.W., Laude, H., Jang, Y.S., Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus (2002) Mol. Cells, 14, pp. 295-299; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet. Microbiol., 173, pp. 258-269; Liu, J., Shi, H., Chen, J., Zhang, X., Ji, Z., Yuan, J., Shi, D., Dong, H., Neutralization of genotype 2 porcine epidemic diarrhea virus strains by a novel monoclonal antibody (2017) Virology, 507, pp. 257-262; Liu, Y., Cheng, X.J., Dang, Q.F., Ma, F.K., Chen, X.G., Park, H.J., Kim, B.K., Preparation and evaluation of oleoyl-carboxymethy-chitosan (OCMCS) nanoparticles as oral protein carriers (2012) J. Mater. Sci. Mater. Med., 23, pp. 375-384; Rishi, P., Bhogal, A., Arora, S., Pandey, S.K., Verma, I., Kaur, I.P., Improved oral therapeutic potential of nanoencapsulated cryptdin formulation against Salmonella infection (2015) Eur. J. Pharm. Sci., 72, pp. 27-33; Adamu Ahmad, K., Sabo Mohammed, A., Abas, F., Chitosan Nanoparticles as Carriers for the Delivery of PhiKAZ14 Bacteriophage for Oral Biological Control of Colibacillosis in Chickens (2016) Molecules, 21, p. 256; Gao, P., Xia, G., Bao, Z., Feng, C., Cheng, X., Kong, M., Liu, Y., Chen, X., Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery (2016) Int. J. Biol. Macromol., 91, pp. 716-723; Sadreddini, S., Safaralizadeh, R., Baradaran, B., Aghebati-Maleki, L., Hosseinpour-Feizi, M.A., Shanehbandi, D., Jadidi-Niaragh, F., Younesi, V., Chitosan nanoparticles as a dual drug/siRNA delivery system for treatment of colorectal cancer (2017) Immunol. Lett., 181, pp. 79-86","Zhu, J.; Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong UniversityChina; email: zhu_jg@sjtu.edu.cn",,"MDPI AG",19994915,,,"30646521","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85060055410 "Cao L., Ji Y., Zeng L., Liu Q., Zhang Z., Guo S., Guo X., Tong Y., Zhao X., Li C.-M., Chen Y., Guo D.","57193316870;56770475900;57200011376;57212729985;57200907500;57214012226;57211526282;57211409323;55705071400;56440439000;56399209300;57203942550;","P200 family protein IFI204 negatively regulates type I interferon responses by targeting IRF7 in nucleus",2019,"PLoS Pathogens","15","10", e1008079,"","",,1,"10.1371/journal.ppat.1008079","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074305826&doi=10.1371%2fjournal.ppat.1008079&partnerID=40&md5=df7111d5e5de9115fc5231dd8351f09e","State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; School of Medicine, Sun Yat-sen University, Guangzhou, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China; College of Life Sciences, Wuhan University, Wuhan, China","Cao, L., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Ji, Y., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China, School of Medicine, Sun Yat-sen University, Guangzhou, China; Zeng, L., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Liu, Q., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Zhang, Z., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Guo, S., School of Basic Medical Sciences, Wuhan University, Wuhan, China; Guo, X., College of Life Sciences, Wuhan University, Wuhan, China; Tong, Y., College of Life Sciences, Wuhan University, Wuhan, China; Zhao, X., College of Life Sciences, Wuhan University, Wuhan, China; Li, C.-M., School of Medicine, Sun Yat-sen University, Guangzhou, China; Chen, Y., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Guo, D., School of Medicine, Sun Yat-sen University, Guangzhou, China","Interferon-inducible p200 family protein IFI204 was reported to be involved in DNA sensing, and subsequently induces the production of type I interferons and proinflammatory mediators. However, its function in the regulation of antiviral innate immune signaling pathway remains unclear. Here we reported a novel role of IFI204 that specifically inhibits the IRF7-mediated type I interferons response during viral infection. IFI204 and other p200 family proteins are highly expressed in mouse hepatitis coronavirus-infected bone marrow-derived dendritic cells. The abundant IFI204 could significantly interact with IRF7 in nucleus by its HIN domain and prevent the binding of IRF7 with its corresponding promoter. Moreover, other p200 family proteins that possess HIN domain could also inhibit the IRF7-mediated type I interferons. These results reveal that, besides the positive regulation function in type I interferon response at the early stage of DNA virus infection, the interferon-inducible p200 family proteins such as IFI204 could also negatively regulate the IRF7-mediated type I interferon response after RNA virus infection to avoid unnecessary host damage from hyper-inflammatory responses. © 2019 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"alpha1 interferon; beta interferon; differentiation antigen; guide RNA; interferon; Interferon inducible p200 family protein; interferon inducible protein 204; Interferon inducible protein 205; Interferon inducible protein 209; interferon regulatory factor 3; interferon regulatory factor 7; interleukin 6; proteome; small interfering RNA; transcriptome; unclassified drug; Ifi16 protein, mouse; interferon; interferon regulatory factor 7; Irf7 protein, mouse; nuclear protein; phosphoprotein; animal experiment; animal model; Article; bone marrow derived dendritic cell; cell fractionation; cell nucleus; chromatin immunoprecipitation; controlled study; dendritic cell; DNA binding motif; DNA packaging; down regulation; enzyme linked immunosorbent assay; gel mobility shift assay; gene editing; gene knockdown; gene mapping; genetic transfection; hepatitis; human; human cell; inflammation; Lentivirus infection; liquid chromatography; mouse; Murine hepatitis virus; nonhuman; protein expression; protein targeting; real time polymerase chain reaction; receptor binding; RNA isolation; RNA sequence; sequence analysis; upregulation; virus infection; Western blotting; 3T3 cell line; A-549 cell line; animal; cell line; Coronavirinae; Coronavirus infection; genetics; HEK293 cell line; immunology; innate immunity; metabolism; pathology; RAW 264.7 cell line; 3T3 Cells; A549 Cells; Animals; Cell Line; Coronavirus; Coronavirus Infections; HEK293 Cells; Humans; Immunity, Innate; Inflammation; Interferon Regulatory Factor-7; Interferon Type I; Mice; Nuclear Proteins; Phosphoproteins; RAW 264.7 Cells","Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: A complex web of host defenses (2014) Annu Rev Immunol, 32, pp. 513-545. , https://doi.org/10.1146/annurev-immunol-032713-120231, PMID: 24555472; Akira, S., Uematsu, S., Takeuchi, O., Pathogen recognition and innate immunity (2006) Cell, 124 (4), pp. 783-801. , https://doi.org/10.1016/j.cell.2006.02.015, PMID: 16497588; Kumar, H., Kawai, T., Akira, S., Pathogen recognition by the innate immune system (2011) Int Rev Immunol, 30 (1), pp. 16-34. , https://doi.org/10.3109/08830185.2010.529976, PMID: 21235323; Wu, J., Chen, Z.J., Innate immune sensing and signaling of cytosolic nucleic acids (2014) Annu Rev Immunol, 32, pp. 461-488. , https://doi.org/10.1146/annurev-immunol-032713-120156, PMID: 24655297; Ma, Z., Damania, B., The cGAS-STING defense pathway and its counteraction by viruses (2016) Cell Host Microbe, 19 (2), pp. 150-158. , https://doi.org/10.1016/j.chom.2016.01.010, PMID: 26867174; Errett, J.S., Gale, M., Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity (2015) Virol Sin, 30 (3), pp. 163-173. , https://doi.org/10.1007/s12250-015-3604-5, PMID: 25997992; Kang, D.C., MDA-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties (2002) Proc Natl Acad Sci U S A, 99 (2), pp. 637-642. , https://doi.org/10.1073/pnas.022637199, PMID: 11805321; Rothenfusser, S., The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I (2005) Journal of Immunology, 175 (8), pp. 5260-5268; Yoneyama, M., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses (2004) Nature Immunology, 5 (7), pp. 730-737. , https://doi.org/10.1038/ni1087, PMID: 15208624; Kawai, T., Akira, S., The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors (2010) Nat Immunol, 11 (5), pp. 373-384. , https://doi.org/10.1038/ni.1863, PMID: 20404851; Medzhitov, R., Janeway, C., The Toll receptor family and microbial recognition (2000) Trends in Microbiology, 8 (10), pp. 452-456. , https://doi.org/10.1016/s0966-842x(00)01845-x, PMID: 11044679; O’Neill, L.A., Golenbock, D., Bowie, A.G., The history of Toll-like receptors—redefining innate immunity (2013) Nat Rev Immunol, 13 (6), pp. 453-460. , https://doi.org/10.1038/nri3446, PMID: 23681101; Yamamoto, M., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway (2003) Science, 301 (5633), pp. 640-643. , https://doi.org/10.1126/science.1087262, PMID: 12855817; Alexopoulou, L., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 (2001) Nature, 413 (6857), pp. 732-738. , https://doi.org/10.1038/35099560, PMID: 11607032; Matsumoto, M., Seya, T., TLR3: Interferon induction by double-stranded RNA including poly(I:C) (2008) Adv Drug Deliv Rev, 60 (7), pp. 805-812. , https://doi.org/10.1016/j.addr.2007.11.005, PMID: 18262679; Heil, F., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 (2004) Science, 303 (5663), pp. 1526-1529. , https://doi.org/10.1126/science.1093620, PMID: 14976262; Honda, K., Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction (2005) Nature, 434 (7036), pp. 1035-1040. , https://doi.org/10.1038/nature03547, PMID: 15815647; Sun, L., Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway (2013) Science, 339 (6121), pp. 786-791. , https://doi.org/10.1126/science.1232458, PMID: 23258413; Orzalli, M.H., DeLuca, N.A., Knipe, D.M., Nuclear IFI16 induction of IRF-3 signaling during herpes-viral infection and degradation of IFI16 by the viral ICP0 protein (2012) Proc Natl Acad Sci U S A, 109 (44), pp. E3008-E3017. , https://doi.org/10.1073/pnas.1211302109, PMID: 23027953; Morrone, S.R., Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy (2014) Proc Natl Acad Sci U S A, 111 (1), pp. E62-E71. , https://doi.org/10.1073/pnas.1313577111, PMID: 24367117; Hornung, V., AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC (2009) Nature, 458 (7237), pp. 514-518. , https://doi.org/10.1038/nature07725, PMID: 19158675; Luan, Y., Lengyel, P., Liu, C.J., P204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation (2008) Cytokine & Growth Factor Reviews, 19 (5-6), pp. 357-369; Zhao, H., The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation (2015) Genes & Diseases, 2 (1), pp. 46-56; Unterholzner, L., IFI16 is an innate immune sensor for intracellular DNA (2010) Nature Immunology, 11 (11), pp. 997-1004. , https://doi.org/10.1038/ni.1932, PMID: 20890285; Stratmann, S.A., The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex (2015) Elife, 4, p. e11721. , https://doi.org/10.7554/eLife.11721, PMID: 26673078; Ansari, M.A., Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-beta Responses (2015) PLoS Pathog, 11 (7). , https://doi.org/10.1371/journal.ppat.1005019, PMID: 26134128; Kerur, N., IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection (2011) Cell Host & Microbe, 9 (5), pp. 363-375; Almine, J.F., IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes (2017) Nat Commun, 8, p. 14392. , https://doi.org/10.1038/ncomms14392, PMID: 28194029; Jonsson, K.L., IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP (2017) Nat Commun, 8, p. 14391. , https://doi.org/10.1038/ncomms14391, PMID: 28186168; Dunphy, G., Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IFI16 Mediates NF-kappaB Signaling after Nuclear DNA Damage (2018) Mol Cell, 71 (5), pp. 745-760. , https://doi.org/10.1016/j.molcel.2018.07.034, PMID: 30193098; Choubey, D., Panchanathan, R., IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases (2016) Ageing Res Rev, 28, pp. 27-36. , https://doi.org/10.1016/j.arr.2016.04.002, PMID: 27063514; Singh, V.V., Kaposi’s sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes (2013) Journal of Virology, 87 (8), pp. 4417-4431. , https://doi.org/10.1128/JVI.03282-12, PMID: 23388709; Gray, E.E., The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA (2016) Immunity, 45 (2), pp. 255-266. , https://doi.org/10.1016/j.immuni.2016.06.015, PMID: 27496731; Lee, M.N., Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach (2013) Nat Immunol, 14 (2), pp. 179-185. , https://doi.org/10.1038/ni.2509, PMID: 23263557; Storek, K.M., CGAS and IFI204 cooperate to produce type I IFNs in response to Francisella infection (2015) Journal of Immunology, 194 (7), pp. 3236-3245; Lin, R., Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7 (2000) Mol Cell Biol, 20 (17), pp. 6342-6353. , https://doi.org/10.1128/mcb.20.17.6342-6353.2000, PMID: 10938111; Ludlow, L.E., Johnstone, R.W., Clarke, C.J., The HIN-200 family: More than interferon-inducible genes? (2005) Exp Cell Res, 308 (1), pp. 1-17. , https://doi.org/10.1016/j.yexcr.2005.03.032, PMID: 15896773; Gonzalez-Navajas, J.M., Immunomodulatory functions of type I interferons (2012) Nat Rev Immunol, 12 (2), pp. 125-135. , https://doi.org/10.1038/nri3133, PMID: 22222875; Yeung, M.L., MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat Microbiol, 1, p. 16004. , https://doi.org/10.1038/nmicrobiol.2016.4, PMID: 27572168; Christensen, S.R., Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus (2006) Immunity, 25 (3), pp. 417-428. , https://doi.org/10.1016/j.immuni.2006.07.013, PMID: 16973389; Pisitkun, P., Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication (2006) Science, 312 (5780), pp. 1669-1672. , https://doi.org/10.1126/science.1124978, PMID: 16709748; Deane, J.A., Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation (2007) Immunity, 27 (5), pp. 801-810. , https://doi.org/10.1016/j.immuni.2007.09.009, PMID: 17997333; Richards, K.H., Macdonald, A., Putting the brakes on the anti-viral response: Negative regulators of type I interferon (IFN) production (2011) Microbes Infect, 13 (4), pp. 291-302. , https://doi.org/10.1016/j.micinf.2010.12.007, PMID: 21256242; Cui, L., The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells (2015) Journal of Virology, 89 (17), pp. 9029-9043. , https://doi.org/10.1128/JVI.01331-15, PMID: 26085159; Wang, Y., Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide in Vitro and in Vivo to Reduce Replication and Pathogenesis (2015) Journal of Virology, 89 (16), pp. 8416-8427. , https://doi.org/10.1128/JVI.00948-15, PMID: 26041293; Li, S., The tumor suppressor PTEN has a critical role in antiviral innate immunity (2016) Nature Immunology, 17 (3), pp. 241-249. , https://doi.org/10.1038/ni.3311, PMID: 26692175; Ji, Y.X., The N-terminal ubiquitin-associated domain of Cezanne is crucial for its function to suppress NF-kappa B pathway (2018) Journal of Cellular Biochemistry, 119 (2), pp. 1979-1991. , https://doi.org/10.1002/jcb.26359, PMID: 28817177","Chen, Y.; State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan UniversityChina; email: chenyu@whu.edu.cn",,"Public Library of Science",15537366,,,"31603949","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85074305826 "Price O.H., Sullivan S.G., Sutterby C., Druce J., Carville K.S.","57210473676;7202445287;57210464029;6601964776;15764655900;","Using routine testing data to understand circulation patterns of influenza A, respiratory syncytial virus and other respiratory viruses in Victoria, Australia",2019,"Epidemiology and Infection","147",, e221,"","",,1,"10.1017/S0950268819001055","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070792175&doi=10.1017%2fS0950268819001055&partnerID=40&md5=c9eb36a457f3a6936081e647a786b04b","WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; School of Population and Global Health, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia","Price, O.H., WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; Sullivan, S.G., WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia, School of Population and Global Health, University of Melbourne, Melbourne, Australia; Sutterby, C., School of Population and Global Health, University of Melbourne, Melbourne, Australia; Druce, J., Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; Carville, K.S., Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia","Several studies have reported evidence of interference between respiratory viruses: respiratory viruses rarely reach their epidemic peak concurrently and there appears to be a negative association between infection with one respiratory virus and co-infection with another. We used results spanning 16 years (2002–2017) of a routine diagnostic multiplex panel that tests for nine respiratory viruses to further investigate these interactions in Victoria, Australia. Time series analyses were used to plot the proportion positive for each virus. The seasonality of all viruses included was compared with respiratory syncytial virus (RSV) and influenza A virus using cross-correlations. Logistic regression was used to explore the likelihood of co-infection with one virus given infection with another. Seasonal peaks were observed each year for influenza A and RSV and less frequently for influenza B, coronavirus and parainfluenza virus. RSV circulated an average of 6 weeks before influenza A. Co-infection with another respiratory virus was less common with picornavirus, RSV or influenza A infection. Our findings provide further evidence of a temporal relationship in the circulation of respiratory viruses. A greater understanding of the interaction between respiratory viruses may enable better prediction of the timing and magnitude of respiratory virus epidemics. © The Author(s) 2019.","Co-infection; Epidemiology; Influenza; Respiratory infections; Respiratory syncytial virus","adolescent; adult; aged; Article; child; Coronaviridae infection; correlational study; female; human; influenza A; influenza B; major clinical study; male; mixed infection; paramyxovirus infection; population risk; respiratory syncytial virus infection; risk factor; seasonal variation; trend study; Victoria; virus detection","(2013) Battle against Respiratory Viruses (BRaVe) Initiative, , https://www.who.int/influenza/patient_care/clinical/brave/en/, July 2018; Míguez, A., Iftimi, A., Montes, F., Temporal association between the influenza virus and respiratory syncytial virus (RSV):RSV as a predictor of seasonal influenza (2016) Epidemiology & Infection, 144, pp. 2621-2632; Skog, L., Spatiotemporal characteristics of pandemic influenza (2014) BMC Infectious Diseases, 14, p. 378; Glezen, W.P., Denny, F.W., Epidemiology of acute lower respiratory disease in children (1973) The New England Journal of Medicine, 288, pp. 498-505; Anestad, G., Interference between outbreaks of respiratory syncytial virus and influenza virus infection (1982) Lancet, 1, p. 502; Ånestad, G., Surveillance of respiratory viral infections by rapid immunofluorescence diagnosis, with emphasis on virus interference (1987) Epidemiology & Infection, 99, pp. 523-531; Anestad, G., Nordbo, S., Interference between outbreaks of respiratory viruses (2009) Euro Surveillance: European Communicable Disease Bulletin, 14, p. 19359; Casalegno, J., Rhinoviruses delayed the circulation of the pandemic influenza a (H1N1) 2009 virus in france (2010) Clinical Microbiology and Infection, 16, pp. 326-329; Linde, A., Does viral interference affect spread of influenza? (2009) Euro Surveillance: European Communicable Disease Bulletin, 14, p. 19354; Casalegno, J.S., Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal respiratory virus epidemics, France, 2009 (2010) Euro Surveillance: European Communicable Disease Bulletin, 15. , pii=19486; Hirsh, S., Epidemiological changes of respiratory syncytial virus (RSV) infections in israel (2014) PLoS One, 9; Gröndahl, B., The 2009 pandemic influenza a (H1N1) coincides with changes in the epidemiology of other viral pathogens causing acute respiratory tract infections in children (2014) Infection, 42, pp. 303-308; Mak, G.C., The impact of pandemic influenza a (H1N1) 2009 on the circulation of respiratory viruses 2009–2011 (2012) Influenza and Other Respiratory Viruses, 6, pp. 6-10; Yang, Y., Influenza A/H1N1 2009 pandemic and respiratory virus infections, beijing, 2009-2010 (2012) PLoS One, 7; van Asten, L., Early occurrence of influenza a epidemics coincided with changes in occurrence of other respiratory virus infections (2016) Influenza and Other Respiratory Viruses, 10, pp. 14-26; Zheng, X., Possible interference between seasonal epidemics of influenza and other respiratory viruses in Hong Kong, 2014–2017 (2017) BMC Infectious Diseases, 17, p. 772; Haller, O., Kochs, G., Weber, F., The interferon response circuit: Induction and suppression by pathogenic viruses (2006) Virology, 344, pp. 119-130; Shinjoh, M., In vitro growth profiles of respiratory syncytial virus in the presence of influenza virus (2000) Acta Virologica, 44, pp. 91-97; Chan, K.F., Investigating viral interference between influenza a virus and human respiratory syncytial virus in a ferret model of infection (2018) The Journal of Infectious Diseases, 18, pp. 406-417; Laurie, K.L., Interval between infections and viral hierarchy are determinants of viral interference following influenza virus infection in a ferret model (2015) The Journal of Infectious Diseases, 212, pp. 1701-1710; Arden, K.E., Genotypic diversity, circulation patterns, and co-detections among rhinoviruses in queensland, 2001 (2018) bioRxivorg: The Preprint Server for Biology, p. 334334; Jansen, R.R., Frequent detection of respiratory viruses without symptoms: Toward defining clinically relevant cutoff values (2011) Journal of Clinical Microbiology, 49, pp. 2631-2636; Greer, R., Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? (2009) Journal of Clinical Virology, 45, pp. 10-15; Esper, F.P., Spahlinger, T., Zhou, L., Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease (2011) The Journal of Infection, 63, pp. 260-266; (2018) Communicable Diseases Australia (CDA) – National Notifiable Diseases Surveillance System (NNDSS), , http://www9.health.gov.au/cda/source/cda-index.cfm, Canberra: Department of Health. 11 September 2018; Rothman, K.J., No adjustments are needed for multiple comparisons (1990) Epidemiology, 1, pp. 43-46; Simoes, E.A., Respiratory syncytial virus infection (1999) Lancet, 354, pp. 847-852; Kelly, H.A., The significance of increased influenza notifications during spring and summer of 2010-11 in australia (2013) Influenza and Other Respiratory Viruses, 7, pp. 1136-1141; Lowen, A.C., Influenza virus transmission is dependent on relative humidity and temperature (2007) PLoS Pathogens, 3, pp. 1470-1476; Stefanska, I., Co-infections with influenza and other respiratory viruses (2013) Advances in Experimental Medicine and Biology, 756, pp. 291-301; Goka, E.A., Single and multiple respiratory virus infections and severity of respiratory disease: A systematic review (2014) Paediatric Respiratory Reviews, 15, pp. 363-370; Asner, S.A., Clinical disease severity of respiratory viral co-infection versus single viral infection: A systematic review and meta-analysis (2014) PLoS One, 9; Pascalis, H., Intense co-circulation of non-influenza respiratory viruses during the first wave of pandemic influenza pH1N1/2009: A cohort study in Reunion island (2012) PLoS One, 7; Peci, A., Community-acquired respiratory viruses and co-infection among patients of ontario sentinel practices, april 2009 to february 2010 (2013) Influenza and Other Respiratory Viruses, 7, pp. 559-566; Varghese, B.M., Epidemiology of viral respiratory infections in australian working-age adults (20-64 years): 2010-2013 (2018) Epidemiology & Infection, 146, pp. 619-626; Martin, E.T., Multiple versus single virus respiratory infections: Viral load and clinical disease severity in hospitalized children (2012) Influenza and Other Respiratory Viruses, 6, pp. 71-77; Aberle, J.H., Single versus dual respiratory virus infections in hospitalized infants: Impact on clinical course of disease and interferon-gamma response (2005) The Pediatric Infectious Disease Journal, 24, pp. 605-610; Lim, F.J., Viral etiology and the impact of codetection in young children presenting with influenza-like illness (2017) Journal of the Pediatric Infectious Diseases Society, 6, pp. 260-266","Carville, K.S.; Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and ImmunityAustralia; email: kylie.carville@vidrl.org.au",,"Cambridge University Press",09502688,,EPINE,"31364539","English","Epidemiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85070792175 "Saldanha I.F., Lawson B., Goharriz H., Rodriguez-Ramos Fernandez J., John S.K., Fooks A.R., Cunningham A.A., Johnson N., Horton D.L.","57208742000;8944571900;36522912000;36961283700;57213854763;7003456806;57203051586;24764844900;24375991700;","Extension of the known distribution of a novel clade C betacoronavirus in a wildlife host",2019,"Epidemiology and Infection","147",, e169,"","",,1,"10.1017/S0950268819000207","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065665207&doi=10.1017%2fS0950268819000207&partnerID=40&md5=6a39a1a773484390ba1f9ead6fdc1757","School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom; Institute of Zoology, Zoological Society of London, London, United Kingdom; Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom; IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom; University of Liverpool, Institute of Infection and Global Health, Liverpool, United Kingdom","Saldanha, I.F., School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom; Lawson, B., Institute of Zoology, Zoological Society of London, London, United Kingdom; Goharriz, H., Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom; Rodriguez-Ramos Fernandez, J., IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom; John, S.K., Institute of Zoology, Zoological Society of London, London, United Kingdom; Fooks, A.R., Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom, University of Liverpool, Institute of Infection and Global Health, Liverpool, United Kingdom; Cunningham, A.A., Institute of Zoology, Zoological Society of London, London, United Kingdom; Johnson, N., Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom; Horton, D.L., School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom","Disease surveillance in wildlife populations presents a logistical challenge, yet is critical in gaining a deeper understanding of the presence and impact of wildlife pathogens. Erinaceus coronavirus (EriCoV), a clade C Betacoronavirus, was first described in Western European hedgehogs (Erinaceus europaeus) in Germany. Here, our objective was to determine whether EriCoV is present, and if it is associated with disease, in Great Britain (GB). An EriCoV-specific BRYT-Green® real-time reverse transcription PCR assay was used to test 351 samples of faeces or distal large intestinal tract contents collected from casualty or dead hedgehogs from a wide area across GB. Viral RNA was detected in 10.8% (38) samples; however, the virus was not detected in any of the 61 samples tested from Scotland. The full genome sequence of the British EriCoV strain was determined using next generation sequencing; it shared 94% identity with a German EriCoV sequence. Multivariate statistical models using hedgehog case history data, faecal specimen descriptions and post-mortem examination findings found no significant associations indicative of disease associated with EriCoV in hedgehogs. These findings indicate that the Western European hedgehog is a reservoir host of EriCoV in the absence of apparent disease. © The Author(s) 2019.","Coronavirus; Geographical information systems; Virology; Wildlife; Zoonoses","virus RNA; animal experiment; animal tissue; Article; Betacoronavirus; cladistics; controlled study; disease association; Erinaceus coronavirus; female; gene sequence; hedgehog; histopathology; male; next generation sequencing; nonhuman; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA analysis; Scotland; virus detection; virus genome; Western European; whole genome sequencing; wildlife; animal; animal disease; Betacoronavirus; Coronavirus infection; feces; genetics; intestine; isolation and purification; United Kingdom; veterinary medicine; virology; Animal Diseases; Animals; Betacoronavirus; Coronavirus Infections; Feces; Hedgehogs; Intestines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; United Kingdom","Woo, P.C.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of Virology, 86, pp. 3995-4008; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Research, 101, pp. 45-56; Corman, V.M., Characterization of a novel betacoronavirus related to middle east respiratory syndrome coronavirus in european hedgehogs (2013) Journal of Virology, 88, pp. 717-724; Monchatre-Leroy, E., Identification of alpha and beta coronavirus in wildlife species in france: Bats, rodents, rabbits, and hedgehogs (2017) Viruses, 9, p. 364; Memish, Z.A., Middle east respiratory syndrome coronavirus in bats, saudi arabia (2013) Emerging Infectious Diseases, 19, pp. 1819-1823; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle east respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virology Journal, 13, p. 87; Bosch, B.J., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) Journal ofVirology, 77, pp. 8801-8811; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) Journal of Virology, 84, pp. 3134-3146; Li, W., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Hu, B., Bat origin of human coronaviruses (2015) Virology Journal, 12, p. 221; Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the middle east respiratory syndrome coronavirus (2014) Pathogens and Disease, 71, pp. 121-136; Haagmans, B.L., Middle east respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) The Lancet Infectious Diseases, 14, pp. 140-145; Hemida, M.G., Dromedary camels and the transmission of middle east respiratory syndrome coronavirus (MERS-CoV) (2017) Transboundary and Emerging Diseases, 64, pp. 344-353; Onuma, M., A close relationship of chiroptera with eulipotyphla (core insectivora) suggested by four mitochondrial genes (2000) Zoological Science, 17, pp. 1327-1332; Lau, S.K.P., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related rhinolophus bat coronavirus in china reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) Journal of Virology, 84, pp. 2808-2819; Chu, D.K.W., Avian coronavirus in wild aquatic birds (2011) Journal of Virology, 85, pp. 12815-12820; Haagmans, B.L., Asymptomatic middle east respiratory syndrome coronavirus infection in rabbits (2015) Journal of Virology, 89, pp. 6131-6135; Adney, D.R., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20, pp. 1999-2005; Kim, L., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Archives of Virology, 145, pp. 1133-1147; Reeve, N., (1994) Hedgehogs, 1st Edn, , London: T & A D Poyser Ltd; Wembridge, D., The state of britain’s hedgehogs 2011 (2011) People’s Trust for Endangered Species, , www.britishhedgehogs.org.uk/leaflets/sobh.pdf, Accessed 27 August 2015; Pettett, C.E., National predictors of hedgehog erinaceus europaeus distribution and decline in britain (2018) Mammal Review, 48, pp. 1-6; Sangster, L., Detection and molecular characterisation of cryptosporidium parvum in british european hedgehogs (erinaceus europaeus) (2016) Veterinary Parasitology, 217, pp. 39-44; Franklinos, L.H.V., Streptococcus pyogenes infection in a free-living european hedgehog (erinaceus europaeus) (2015) EcoHealth, 12, pp. 689-692; Ririe, K.M., Rasmussen, R.P., Wittwer, C.T., Product differentiation by analysis of DNA melting curves during the polymerase chain reaction (1997) Analytical Biochemistry, 245, pp. 154-160; Marston, D.A., Next generation sequencing of viral RNA genomes (2013) BMC Genomics, 14, p. 444; Perlman, S., Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects (1998) Advances in Experimental Medicine and Biology, 440, pp. 503-513; Haydon, D.T., Identifying reservoirs of infection: A conceptual and practical challenge (2002) Emerging Infectious Diseases, 8, pp. 1468-1473; Viana, M., Assembling evidence for identifying reservoirs of infection (2014) Trends in Ecology and Evolution, 29, pp. 270-279; Paris, J.K., Enteropathogen co-infection in UK cats with diarrhoea (2014) BMC Veterinary Research, 10, p. 13; Bunnell, T., The importance of faecal indices in assessing gastrointestinal parasite infestation and bacterial infection in the hedgehog (erinaceus europaeus) (2001) Journal of Wildlife Rehabilitation, 24, pp. 13-17; Drexler, J.F., Amplification of emerging viruses in a bat colony (2011) Emerging Infectious Diseases, 17, pp. 449-456; Mendenhall, I.H., Influence of age and body condition on astrovirus infection of bats in singapore: An evolutionary and epidemiological analysis (2017) One Health, 4, pp. 27-33; Osborne, C., Alphacoronaviruses in new world bats: Prevalence, persistence, phylogeny, and potential for interaction with humans (2011) PLoS ONE, 6; Wacharapluesadee, S., Diversity of coronavirus in bats from eastern Thailand emerging viruses (2015) Virology Journal, 12, pp. 1-7; Gilbert, A.T., Deciphering serology to understand the ecology of infectious diseases in wildlife (2013) EcoHealth, 10, pp. 298-313; Stavisky, J., Cross sectional and longitudinal surveys of canine enteric coronavirus infection in kennelled dogs: A molecular marker for biosecurity (2012) Infection, Genetics and Evolution, 12, pp. 1419-1426; Lawson, B., Petrovan, S.O., Cunningham, A.A., Citizen science and wildlife disease surveillance (2015) EcoHealth, 12, pp. 693-702","Horton, D.L.; School of Veterinary Medicine, University of SurreyUnited Kingdom; email: d.horton@surrey.ac.uk",,"Cambridge University Press",09502688,,EPINE,"31063092","English","Epidemiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85065665207 "Valkó A., Marosi A., Cságola A., Farkas R., Rónai Z., Dán Á.","57194560762;55673448200;13003178800;57208212852;22235703600;7005396351;","Frequency of diarrhoea-associated viruses in swine of various ages in Hungary",2019,"Acta Veterinaria Hungarica","67","1",,"140","150",,1,"10.1556/004.2019.016","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064135409&doi=10.1556%2f004.2019.016&partnerID=40&md5=aad10fe19fdfdb9e17603ed46d6c159a","Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23–25, Budapest, H-1143, Hungary; Ceva-Phylaxia Co. Ltd, Budapest, Hungary; National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary","Valkó, A., Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23–25, Budapest, H-1143, Hungary; Marosi, A., Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23–25, Budapest, H-1143, Hungary; Cságola, A., Ceva-Phylaxia Co. Ltd, Budapest, Hungary; Farkas, R., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary; Rónai, Z., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary; Dán, Á., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary","Enteric viral diseases of swine are one of the most frequent disorders causing huge economic losses in pork production. After the reappearance of an emerging enteropathogen, porcine epidemic diarrhoea virus (PEDV) in Hungary in 2016, an extensive survey was initiated in an attempt to identify diarrhoea-related porcine viruses, including adeno-, astro-, boca-, calici-, circo-, corona-, kobu-, rota- and Torque teno viruses. A total of 384 faecal samples collected during a two-year period from diarrhoeic and asymptomatic pigs of various ages in 17 farms were screened by conventional and real-time PCR methods. Half of the samples contained at least one examined virus with the dominance of kobuvirus (55.1%) followed by bocaviruses (33.2%) and rotavirus groups A and C together (20.9%), while coronaviruses including PEDV were not found in this set of samples. Statistical analysis showed a highly significant difference (P < 0.0001) in the frequency of single infections compared to mixed ones with the exception of weaned pigs, in which group additionally most viruses were detected. The results of this study suggest that the complexity of this disease may vary with age, which makes the prevention of diarrhoea a challenge, especially in weaned pigs. *Corresponding author; E-mail: valko.anna@univet.hu; Phone: 0036 (1) 251-9900;","Diarrhoea-associated viruses; Enteropathogens; Suckling and weaned pigs","aging; animal; diarrhea; feces; Hungary; pig; swine disease; veterinary medicine; virology; Aging; Animals; Diarrhea; Feces; Hungary; Swine; Swine Diseases","Bauer, E., Williams, B.A., Smidt, H., Verstegen, M.W., Mosenthin, R., Influence of the gastrointestinal microbiota on development of the immune system in young animals (2006) Curr. Issues Intest. Microbiol., 7, pp. 35-51; Cságola, A., Kecskeméti, S., Kardos, G., Kiss, I., Tuboly, T., Genetic characterization of type 2 porcine circoviruses detected in Hungarian wild boars (2006) Arch. Virol., 151, pp. 495-507; Cságola, A., Lőrincz, M., Cadar, D., Tombácz, K., Biksi, I., Tuboly, T., Detection, prevalence and analysis of emerging porcine parvovirus infections (2012) Arch. Virol., 157, pp. 1003-1010; De Arruda Leme, R., Lorenzetti, E., Alfieri, A.F., Alfieri, A.A., Detection of Torque teno sus virus in diarrheic piglet fecal samples positive or negative for porcine group A rotavirus (2014) J. Swine Health Prod., 22, pp. 287-290; Ducatelle, R., Coussement, W., Hoorens, J., Sequential pathological study of experimental porcine adenovirus enteritis (1982) Vet. Pathol., 19, pp. 179-189; Dufkova, L., Scigalkova, I., Moutelikova, R., Malenovska, H., Prodelalova, J., Genetic diversity of porcine sapoviruses, kobuviruses, and astroviruses in asymptomatic pigs: An emerging new sapovirus GIII genotype (2013) Arch. Virol., 158, pp. 549-558; Elschner, M., Prudlo, J., Hotzel, H., Otto, P., Sachse, K., Nested reverse transcriptase-polymerase chain reaction for the detection of Group A rotaviruses (2002) J. Vet. Med. B, 49, pp. 77-81; Gouvea, V., Allen, J.R., Glass, R.I., Fang, Z.-Y., Bremont, M., Cohen, J., McCrae, M.A., Caul, E.O., Detection of group B and C rotaviruses by polymerase chain reaction (1991) J. Clin. Microbiol., 29, pp. 519-523; Jackova, A., Sliz, I., Mandelik, R., Salamunova, S., Novotny, J., Kolesarova, M., Vlasakova, M., Vilcek, S., Porcine kobuvirus 1 in healthy and diarrheic pigs: Genetic detection and characterization of virus and co-infection with rotavirus A (2017) Infect. Genet. Evol., 49, pp. 73-77; Katsuda, K., Kohmoto, M., Kawashima, K., Tsunemitsu, H., Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan (2006) J. Vet. Diagn. Invest., 18, pp. 350-354; Kim, J., Ha, Y., Jung, K., Choi, C., Chae, C., Enteritis associated with porcine circovirus 2 in pigs (2004) Can. J. Vet. Res., 68, pp. 218-221; Kiss, I., Matiz, K., Allard, A., Wadell, G., Benkő, M., Detection of homologous DNA sequences in animal adenoviruses by polymerase chain reaction (1996) Acta Vet. Hung., 44, pp. 243-251; Kumthip, K., Khamrin, P., Saikruang, W., Kongkaew, A., Vachirachewin, R., Ushijima, H., Maneekarn, N., Detection and genetic characterization of porcine astroviruses in piglets with and without diarrhea in Thailand (2018) Arch. Virol., 163, pp. 1823-1829; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: Molecular features and virus–host interactions (1993) Vet. Res., 24, pp. 125-150; Lorenzetti, E., Stipp, D.T., Possatti, F., Campanha, J.E.T., Alfieri, A.F., Alfieri, A.A., Diarrhea outbreaks in suckling piglets due to rotavirus group C single and mixed (rotavirus groups A and B) infections (2014) Pesqui. Vet. Brasil., 34, pp. 391-397; Lőrincz, M., Biksi, I., Andersson, S., Cságola, A., Tuboly, T., Sporadic re-emergence of enzootic porcine transmissible gastroenteritis in Hungary (2014) Acta Vet. Hung., 62, pp. 125-133; Mai, K., Feng, J., Chen, G., Li, D., Zhou, L., Bai, Y., Wu, Q., Ma, J., The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China (2017) Transbound. Emerg. Dis., 65, pp. 166-173; Marthaler, D., Homwong, N., Rossow, K., Culhane, M., Goyal, S., Collins, J., Matthijnssens, J., Ciarlet, M., Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples (2014) J. Virol. Methods, 209, pp. 30-34; Meng, X.-J., Porcine circovirus type 2 (PCV2): Pathogenesis and interaction with the immune system (2013) Annu. Rev. Anim. Biosci., 1, pp. 43-64; Ndze, V.N., Cadar, D., Cságola, A., Kisfali, P., Kovács, E., Farkas, S., Ngu, A.F., Bányai, K., Detection of novel porcine bocaviruses in fecal samples of asymptomatic pigs in Cameroon (2013) Infect. Genet. Evol., 17, pp. 277-282; Pensaert, M.B., Martelli, P., Porcine epidemic diarrhea: A retrospect from Europe and matters of debate (2016) Virus Res, 226, pp. 1-6; Reuter, G., Boldizsár, Á., Kiss, I., Pankovics, P., Candidate new species of kobuvirus in porcine hosts (2008) Emerg. Infect. Dis., 14, pp. 1968-1970; Reuter, G., Pankovics, P., Boros, Á., Identification of a novel astrovirus in a domestic pig in Hungary (2011) Arch. Virol., 156, pp. 125-128; Salamunova, S., Jackova, A., Mandelik, R., Novotny, J., Vlasakova, M., Vilcek, S., Molecular detection of enteric viruses and the genetic characterization of porcine astroviruses and sapoviruses in domestic pigs from Slovakian farms (2018) BMC Vet. Res., 14, pp. 313-321; Sanford, S.E., Hoover, D.M., Enteric adenovirus infection in pigs (1983) Can. J. Comp. Med., 47, pp. 396-400; Segalés, J., Martínez-Guíno, L., Cortey, M., Navarro, N., Huerta, E., Sibila, M., Pujols, J., Ke-Karainen, T., Retrospective study on swine Torque teno virus genogroups 1 and 2 infection from 1985 to 2005 in Spain (2009) Vet. Microbiol., 134, pp. 199-207; Shan, T., Li, L., Simmonds, P., Wang, C., Moeser, A., Delwart, E., The fecal virome of pigs on a high-density farm (2011) J. Virol., 85, pp. 11697-11708; Valkó, A., Biksi, I., Cságola, A., Tuboly, T., Kiss, K., Ursu, K., Dán, Á., Porcine epidemic diarrhoea virus with a recombinant S gene detected in Hungary, 2016 (2017) Acta Vet. Hung., 65, pp. 253-261; Wang, Q.-H., Chang, K.-O., Han, M.G., Sreevatsan, S., Saif, L.J., Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR (2006) J. Virol. Methods, 132, pp. 135-145; Wang, Q.-H., Souza, M., Funk, J.A., Zhang, W., Saif, L.J., Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays (2006) J. Clin. Microbiol., 44, pp. 2057-2062; Yang, F., Liu, X., Zhou, Y., Lyu, W., Xu, S., Xu, Z., Zhu, L., Histopathology of Porcine kobuvirus in Chinese piglets (2015) Virol. Sin., 30, pp. 396-399; Yang, Z., Jin, W., Zhao, Z., Lin, W., Zhang, D., Yu, E., Qin, A., Yang, H., Genetic characterization of porcine kobuvirus and detection of coinfecting pathogens in diarrheic pigs in Jiangsu Province, China (2014) Arch. Virol., 159, pp. 3407-3412; Zhai, S., Yue, C., Wei, Z., Long, J., Ran, D., Lin, T., Deng, Y., Zheng, H., High prevalence of a novel porcine bocavirus in weanling piglets with respiratory tract symptoms in China (2010) Arch. Virol., 155, pp. 1313-1317; Zhang, Q., Hu, R., Tang, X., Wu, C., He, Q., Zhao, Z., Chen, H., Wu, B., Occurrence and investigation of enteric viral infections in pigs with diarrhea in China (2013) Arch. Virol., 158, pp. 1631-1636; Zhou, F., Sun, H., Wang, Y., Porcine bocavirus: Achievements in the past five years (2014) Viruses, 6, pp. 4946-4960; Zhou, W., Ullman, K., Chowdry, V., Reining, M., Benyeda, Z., Baule, C., Juremalm, M., Liu, L., Molecular investigations on the prevalence and viral load of enteric viruses in pigs from five European countries (2016) Vet. Microbiol., 182, pp. 75-81","Valkó, A.; Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23–25, Hungary",,"Akademiai Kiado Rt.",02366290,,,"30922088","English","Acta Vet. Hung.",Article,"Final",Open Access,Scopus,2-s2.0-85064135409 "Tambyah P., Isa M.S., Tan C.X.-T.","35499886400;56608813700;57188555018;","New and Emerging Infections of the Lung",2019,"Kendig's Disorders of the Respiratory Tract in Children",,,,"466","474.e2",,,"10.1016/B978-0-323-44887-1.00028-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054744444&doi=10.1016%2fB978-0-323-44887-1.00028-6&partnerID=40&md5=b2b0185206a343fff9952fd76506f04f","National University Health System, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore","Tambyah, P., National University Health System, Singapore; Isa, M.S., Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Tan, C.X.-T., Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore","In this era of rapid globalization and frequent travel, emerging viral infections have gained an immense potential to spread at an unprecedented speed and scale compared with the past. This poses a significant challenge to coordinated international efforts in global surveillance and infection control.Significantly, respiratory viral infections, spread mostly via droplet transmission, are extremely contagious and have caused significant morbidity and mortality during outbreaks in the last decade. Molecular diagnostics via reverse transcriptase polymerase chain reaction (RT-PCR) have been key in the rapid diagnosis of most of these viral infections. However, a high index of suspicion and early institution of appropriate isolation measures remain as the mainstay in the control and containment of the spread of these viral infections. Although treatment for most of the viral infections remains supportive, efficacious antiviral agents against influenza infections exist.The infections discussed in this chapter include those first described in the 2000s: Middle East respiratory syndrome coronavirus (MERS-CoV) and metapneumovirus and rhinovirus C as well as those that have been described in the past but have reemerged in the last decade in outbreaks resulting in significant morbidity and mortality, including adenovirus, influenza virus, and enterovirus D68 (EV-D68). © 2019 Elsevier Inc. All rights reserved.","Emerging infections; Respiratory; Virus",,"Mertz, D., Alawfi, A., Pernica, J.M., Clinical severity of pediatric respiratory illness with enterovirus D68 compared with rhinovirus or other enterovirus genotypes (2015) CMAJ, 187 (17), pp. 1279-1284. , https://doi.org/10.1503/cmaj.150619, Epub 2015 Oct 13; Imamura, T., Oshitani, H., Global reemergence of enterovirus D68 as an important pathogen for acute respiratory infections (2015) Rev Med Virol, 25 (2), pp. 102-114; Orvedahl, A., Padhye, A., Barton, K., Clinical characterization of children presenting to the hospital with enterovirus D68 infection during the 2014 outbreak in St. Louis (2016) Pediatr Infect Dis J, 35 (5), pp. 481-487; Midgley, C.M., Jackson, M.A., Selvarangan, R., Severe respiratory illness associated with enterovirus D68-Missouri and Illinois, 2014 (2014) MMWR Morb Mortal Wkly Rep, 63 (36), pp. 798-799; Li, R., Cook, V.E., Kapur, A., Respiratory presentation of paediatric patients in the 2014 Enterovirus D68 outbreak (2016) Can Respir J, 2016; Holm-Hansen, C.C., Midgley, S.E., Fischer, T.K., Global emergence of enterovirus D68: a systematic review (2016) Lancet Infect Dis, , https://doi.org/10.1016/S1473-3099(15)00543-5, Epub ahead of print; Midgley, C.M., Watson, J.T., Pallansch, M.A., Severe respiratory illness associated with a nationwide outbreak of enterovirus D68 in the USA (2014): a descriptive epidemiological investigation (2015) Lancet Respir Med, 3 (11), pp. 879-887. , https://doi.org/10.1016/S2213-2600(15)00335-5, Epub 2015 Oct 5; Hijawi, B., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; http://www.who.int/mediacentre/news/situation-assessments/2-june-2015-south-korea/en/, [updated 3 July 2015; Cited June 4, 2016]; Perera, R.A., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18; Van den Brand, J.M., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235 (2), pp. 175-184; Hocke, A.C., Emerging human Middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs (2013) Am J Respir Crit Care Med, 188 (7), pp. 882-886; https://www.cdc.gov/coronavirus/mers/clinical-features.html, [updated 04 Feb 2015; Cited June 3, 2016]; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Memish, Z.A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr Infect Dis J, 33 (9), pp. 904-906; Thabet, F., Middle East respiratory syndrome coronavirus in children (2015) Saudi Med J, 36 (4), pp. 484-486; (2014) CDC Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.cdc.gov/coronavirus/mers/lab/lab-testing.html, Centers for Disease Control and Prevention, updated 25 June 2014; Cited June 4, 2016; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397; Van den Hoogen, B.G., de Jong, J.C., Groen, J., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat Med, 7 (6), pp. 719-724; Haas, L.E.M., Thijsen, S.F.T., van Elden, L., Human metapneumovirus in adults (2013) Viruses, 5 (1), pp. 87-110; Edwards, K.M., Zhu, Y., Griffin, M.R., Burden of human metapneumovirus infection in young children (2013) N Engl J Med, 368 (7), pp. 633-643; Haynes, A.K., Fowlkes, A.L., Schneider, E., Human metapneumovirus circulation in the United States, 2008 to 2014 (2016) Pediatrics, 137 (5). , https://doi.org/10.1542/peds.2015-2927; Schildgen, V., van den Hoogen, B., Fouchier, R., Human metapneumovirus: lessons learned over the first decade (2011) Clin Microbiol Rev, 24 (4), pp. 734-754; Hall, C.B., Weinberg, G.A., Iwane, M.K., The burden of respiratory syncytial virus infection in young children (2009) N Engl J Med, 360 (6), pp. 588-598; Williams, J.V., Edwards, K.M., Weinberg, G.A., Population-based incidence of human metapneumovirus infection among hospitalized children (2010) J Infect Dis, 201 (12), pp. 1890-1898; Syha, R., Beck, R., Hetzel, J., Human metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults-initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections (2012) Eur J Radiol, 81 (12), pp. 4173-4178; Williams, J.V., Chen, Z., Cseke, G., A recombinant human monoclonal antibody to human metapneumovirus fusion protein that neutralizes virus in vitro and is effective therapeutically in vivo (2007) J Virol, 81 (15), pp. 8315-8324; Wyde, P.R., Chetty, S.N., Jewell, A.M., Comparison of the inhibition of human metapneumovirus and respiratory syncytial virus by ribavirin and immune serum globulin in vitro (2003) Antiviral Res, 60 (1), pp. 51-59; Deffrasnes, C., Cavanagh, M.H., Goyette, N., Inhibition of human metapneumovirus replication by small interfering RNA (2008) Antivir Ther, 13 (6), pp. 821-832; Wyde, P.R., Moylett, E.H., Chetty, S.N., Comparison of the inhibition of human metapneumovirus and respiratory syncytial virus by NMSO3 in tissue culture assays (2004) Antiviral Res, 63 (1), pp. 51-59; Lau, S.K.P., Lau, S.K., Yip, C.C.Y., Human rhinovirus C: a newly discovered human rhinovirus species (2010) Emerg Health Threats J, 3, p. e2; Miller, E.K., A novel group of rhinoviruses is associated with asthma hospitalizations (2009) J Allergy Clin Immunol, 123; Hao, W., Bernard, K., Patel, N., Infection and propagation of human rhinovirus C in human airway epithelial cells (2012) J Virol, 86 (24), pp. 13524-13532; Kennedy, J.L., Turner, R.B., Braciale, T., Pathogenesis of rhinovirus infection (2012) Curr Opin Virol, 2 (3), pp. 287-293; Ishizuka, S., Yamaya, M., Suzuki, T., Effects of rhinovirus infection on the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells (2003) J Infect Dis, 188 (12), pp. 1928-1939; Oliver, B.G., Lim, S., Wark, P., Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages (2008) Thorax, 63 (6), pp. 519-525; Mosser, A.G., Vrtis, R., Burchell, L., Quantitative and qualitative analysis of rhinovirus infection in bronchial tissues (2005) Am J Respir Crit Care Med, 171 (6), pp. 645-651; Papadopoulos, N.G., Psarras, S., Rhinoviruses in the pathogenesis of asthma (2003) Curr Allergy Asthma Rep, 3 (2), pp. 137-145; Miller, E.K., Edwards, K.M., Weinberg, G.A., A novel group of rhinoviruses is associated with asthma hospitalizations (2009) J Allergy Clin Immunol, 123 (1); Miller, E.K., Khuri-Bulos, N., Williams, J.V., Human rhinovirus C associated with wheezing in hospitalised children in the Middle East (2009) J Clin Virol, 46 (1), pp. 85-89; Renwick, N., Schweiger, B., Kapoor, V., A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany (2007) J Infect Dis, 196 (12), pp. 1754-1760; Lemanske, R.F., The childhood origins of asthma (COAST) study (2002) Pediatr Allergy Immunol, 13, pp. 38-43; Kusel, M.M., de Klerk, N.H., Kebadze, T., Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma (2007) J Allergy Clin Immunol, 119 (5), pp. 1105-1110; Zhu, L., Lee, P.K., Lee, W.M., Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway (2009) Am J Respir Cell Mol Biol, 40 (5), pp. 610-619; Jin, Y., Yuan, X.H., Xie, Z.P., Prevalence and clinical characterization of a newly identified human rhinovirus C species in children with acute respiratory tract infections (2009) J Clin Microbiol, 47 (9), pp. 2895-2900; Lau, S.K., Yip, C.C., Lin, A.W., Clinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup (2009) J Infect Dis, 200 (7), pp. 1096-1103; Glanville, N., Johnston, S.L., Challenges in developing a cross-serotype rhinovirus vaccine (2015) Curr Opin Virol, 11, pp. 83-88; Loria, C., Domm, J.A., Halasa, N.B., Human rhinovirus C infections in pediatric hematology and oncology patients (2015) Pediatr Transplant, 19 (1), pp. 94-100; Carvo, C., Garcia, M.L., Casas, I., Role of rhinovirus C in apparently life-threatening events in infants, Spain (2009) Emerg Infect Dis, 15 (9), pp. 1506-1508; Hai Le, T., Fatal respiratory infections associated with rhinovirus outbreak, Vietnam (2012) Emerg Infect Dis, 18 (11), pp. 1886-1888; Suzuki, A., Respiratory viruses from hospitalized children with severe pneumonia in the Philippines (2012) BMC Infect Dis, 12, p. 267; Rocholl, C., Gerber, K., Daly, J., Adenoviral infections in children: the impact of rapid diagnosis (2004) Pediatrics, 113 (1), pp. e51-e56; Lai, C.Y., Lee, C.J., Lu, C.Y., Adenovirus serotype 3 and 7 infection with acute respiratory failure in children in Taiwan, 2010-2011 (2013) PLoS ONE, 8 (1); Ng, O.T., Thoon, K.C., Gunalan, V., Severe pediatric adenovirus 7 disease in singapore linked to recent outbreaks across Asia (2015) Emerg Infect Dis, 21, pp. 1192-1196; Outbreaks, , http://www.cdc.gov/adenovirus/outbreaks.html, Centers for Disease Control and Prevention; Prevention & Treatment, , http://www.cdc.gov/adenovirus/hcp/prevention-treatment.html, Centers for Disease Control and Prevention; Garnett, C.T., Talekar, G., Omelies, D.A., Latent species C Adenoviruses in human tonsil tissues (2009) J Virol, 83 (6), pp. 2417-2428; Chuang, Y., Chiu, C.H., Wong, K.S., Severe adenovirus infection in children (2003) J Microbiol Immunol Infect, 36 (1), pp. 37-40; Chau, S.K., Lee, S.L., Peiris, M.J., Adenovirus respiratory infection in hospitalized children in Hong Kong: serotype-clinical syndrome association and risk factors for lower respiratory tract infection (2014) Eur J Pediatr, 173 (3), pp. 291-301; Mattes-Martin, S., Ljungman, P., European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: summary of ECIL-4 (2011). Fourth European Conference on Infections in Leukemia (2012) Transpl Infect Dis, 14 (6), pp. 555-556; Zhang, L., Irion, K., Kozakewich, H., Clinical course of postinfectious bronchiolitis obliterans (2000) Pediatr Pulmonol, 29 (5), pp. 341-350; Tomikawa, S.O., Adde, F.V., da Silva Filho, L.V., Follow-up on pediatric patients with bronchiolitis obliterans treated with corticosteroid pulse therapy (2014) Orphanet J Rare Dis, 9, p. 128; Yamada, K., Elliott, W.M., Hayashi, S., Latent adenoviral infection modifies the steroid response in allergic lung inflammation (2000) J Allergy Clin Immunol, 106 (5), pp. 844-851","Tambyah, P.; National University Health SystemSingapore",,"Elsevier Inc.",,9780323555951; 9780323448871,,,"English","Kendig's Disord. of the Respir. Tract in Child.",Book Chapter,"Final",,Scopus,2-s2.0-85054744444 "Chen D., Hou Z., Jiang D., Zheng M., Li G., Zhang Y., Li R., Lin H., Chang J., Zeng H., Guo J.-T., Zhao X.","57191822074;57200820023;35310318500;57211353838;56411160600;57196202987;57211346627;55500769900;55568522823;56642248500;7404490091;55674750200;","GILT restricts the cellular entry mediated by the envelope glycoproteins of SARS-CoV, Ebola virus and Lassa fever virus",2019,"Emerging Microbes and Infections","8","1",,"1511","1523",,,"10.1080/22221751.2019.1677446","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073607180&doi=10.1080%2f22221751.2019.1677446&partnerID=40&md5=974c90b6ccdfe0bd24de07085ff132d0","Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Department of Pulmonary and Critical Care Medicine, General Hospital of Datong Coal Mine Group Co., Ltd., China; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States","Chen, D., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Hou, Z., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China, Department of Pulmonary and Critical Care Medicine, General Hospital of Datong Coal Mine Group Co., Ltd., China; Jiang, D., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Zheng, M., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Li, G., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Zhang, Y., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Li, R., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Lin, H., Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Chang, J., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Zeng, H., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China; Guo, J.-T., Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States; Zhao, X., Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China, Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China","Interferons (IFNs) control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. We report herein that gamma-interferon-inducible lysosomal thiol reductase (GILT), a lysosome-associated ISG, restricts the infectious entry of selected enveloped RNA viruses. Specifically, we demonstrated that GILT was constitutively expressed in lung epithelial cells and fibroblasts and its expression could be further induced by type II interferon. While overexpression of GILT inhibited the entry mediated by envelope glycoproteins of SARS coronavirus (SARS-CoV), Ebola virus (EBOV) and Lassa fever virus (LASV), depletion of GILT enhanced the entry mediated by these viral envelope glycoproteins. Furthermore, mutations that impaired the thiol reductase activity or disrupted the N-linked glycosylation, a posttranslational modification essential for its lysosomal localization, largely compromised GILT restriction of viral entry. We also found that the induction of GILT expression reduced the level and activity of cathepsin L, which is required for the entry of these RNA viruses in lysosomes. Our data indicate that GILT is a novel antiviral ISG that specifically inhibits the entry of selected enveloped RNA viruses in lysosomes via disruption of cathepsin L metabolism and function and may play a role in immune control and pathogenesis of these viruses. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","Ebola virus; GILT; Interferon-stimulated genes (ISGs); Lassa fever virus; SARS-CoV","antivirus agent; beta secretase 2; cysteine; gamma interferon inducible lysosomal thiol reductase; oxidoreductase; unclassified drug; virus glycoprotein; cathepsin L; IFI30 protein, human; oxidoreductase; virus envelope protein; A-549 cell line; Article; Coronaviridae; CRISPR-CAS9 system; cytoplasm; Ebolavirus; enzyme activity; glycosylation; HEK293T cell line; host cell; human; human cell; immunofluorescence; infection control; Influenza A virus (H1N1); Lassa virus; luciferase assay; lung epithelium; lysosome; MRC-5 cell line; Murine leukemia virus; pathogenesis; plasmid; priority journal; protein expression level; protein processing; protein targeting; RNA virus infection; SARS coronavirus; THP-1 cell line; Vesiculovirus; virus entry; virus envelope; virus replication; Western blotting; cell line; Ebola hemorrhagic fever; Ebolavirus; genetics; immunology; Lassa fever; Lassa virus; metabolism; physiology; SARS coronavirus; severe acute respiratory syndrome; virology; virus entry; Cathepsin L; Cell Line; Ebolavirus; Hemorrhagic Fever, Ebola; Humans; Lassa Fever; Lassa virus; Lysosomes; Oxidoreductases Acting on Sulfur Group Donors; SARS Virus; Severe Acute Respiratory Syndrome; Viral Envelope Proteins; Virus Internalization; Virus Replication","Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res, 100 (1), pp. 286-295. , Oct; Andersen, K.G., Shapiro, B.J., Matranga, C.B., Clinical sequencing uncovers origins and evolution of Lassa virus (2015) Cell, 162 (4), pp. 738-750. , Aug 13; Scott, J.T., Semple, M.G., Ebola virus disease sequelae: a challenge that is not going away (2017) Lancet Infect Dis, 17 (5), pp. 470-471. , May; (2014) Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, , Geneva: WHO; Outbreak of Ebola virus disease in the democratic republic of the Congo, April–May, 2018: an epidemiological study (2018) Lancet, 392 (10143), pp. 213-221. , Jul 21; Attinsounon, C.A., Ossibi Ibara, B.R., Alassani, A., Report of a fatal case of Lassa fever in Parakou in 2018: clinical, therapeutic and diagnostic aspects (2018) BMC Infect Dis, 18 (1), p. 667. , Dec 17; Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: a complex web of host defenses (2014) Annu Rev Immunol, 32, pp. 513-545; Brass, A.L., Huang, I.C., Benita, Y., The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus (2009) Cell, 139 (7), pp. 1243-1254. , Dec 24; Liu, S.Y., Aliyari, R., Chikere, K., Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol (2013) Immunity, 38 (1), pp. 92-105. , Jan 24; Shu, Q., Lennemann, N.J., Sarkar, S.N., ADAP2 is an interferon stimulated gene that restricts RNA virus entry (2015) Plos Pathog, 11 (9), p. e1005150. , Sep; Doyle, T., Moncorge, O., Bonaventure, B., The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry (2018) Nat Microbiol, 3 (12), pp. 1369-1376. , Dec; Jiang, D., Weidner, J.M., Qing, M., Identification of five interferon-induced cellular proteins that inhibit west Nile virus and dengue virus infections (2010) J Virol, 84 (16), pp. 8332-8341. , Aug; Weidner, J.M., Jiang, D., Pan, X.B., Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms (2010) J Virol, 84 (24), pp. 12646-12657. , Dec; Zhao, X., Li, J., Winkler, C.A., IFITM genes, variants, and their roles in the control and pathogenesis of viral infections (2018) Front Microbiol, 9, p. 3228; Luster, A.D., Weinshank, R.L., Feinman, R., Molecular and biochemical characterization of a novel gamma-interferon-inducible protein (1988) J Biol Chem, 263 (24), pp. 12036-12043. , Aug 25; Arunachalam, B., Phan, U.T., Geuze, H.J., Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT) (2000) Proc Natl Acad Sci USA, 97 (2), pp. 745-750. , Jan 18; Maric, M., Arunachalam, B., Phan, U.T., Defective antigen processing in GILT-free mice (2001) Science, 294 (5545), pp. 1361-1365. , Nov 9; Phipps-Yonas, H., Semik, V., Hastings, K.T., GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity (2013) Eur J Immunol, 43 (1), pp. 65-74. , Jan; Bogunovic, B., Stojakovic, M., Chen, L., An unexpected functional link between lysosomal thiol reductase and mitochondrial manganese superoxide dismutase (2008) J Biol Chem, 283 (14), pp. 8855-8862. , Apr 4; Chiang, H.S., Maric, M., Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation (2011) Free Radic Biol Med, 51 (3), pp. 688-699. , Aug 1; Teramoto, T., Chiang, H.S., Takhampunya, R., Gamma interferon-inducible lysosomal thioreductase (GILT) ablation renders mouse fibroblasts sensitive to dengue virus replication (2013) Virology, 441 (2), pp. 146-151. , Jul 5; Singh, R., Cresswell, P., Defective cross-presentation of viral antigens in GILT-free mice (2010) Science, 328 (5984), pp. 1394-1398. , Jun 11; Hastings, K.T., Lackman, R.L., Cresswell, P., Functional requirements for the lysosomal thiol reductase GILT in MHC class II-restricted antigen processing (2006) J Immunol, 177 (12), pp. 8569-8577. , Dec 15; Hastings, K.T., GILT: Shaping the MHC Class II-restricted Peptidome and CD4(+) T cell-mediated immunity (2013) Front Immunol, 4, p. 429. , Dec 4; Perreira, J.M., Chin, C.R., Feeley, E.M., IFITMs restrict the replication of multiple pathogenic viruses (2013) J Mol Biol, 425 (24), pp. 4937-4955. , Dec 13; Mingo, R.M., Simmons, J.A., Shoemaker, C.J., Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step (2015) J Virol, 89 (5), pp. 2931-2943. , Mar; West, L.C., Cresswell, P., Expanding roles for GILT in immunity (2013) Curr Opin Immunol, 25 (1), pp. 103-108. , Feb; Wang, H., Shi, Y., Song, J., Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1 (2016) Cell, 164 (1-2), pp. 258-268. , Jan 14; Carette, J.E., Raaben, M., Wong, A.C., Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 (2011) Nature, 477 (7364), pp. 340-343. , Aug 24; Simmons, J.A., D'Souza, R.S., Ruas, M., Ebolavirus glycoprotein directs fusion through NPC1+ endolysosomes (2016) J Virol, 90 (1), pp. 605-610. , Jan 1; Jiang, D., Guo, H., Xu, C., Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus (2008) J Virol, 82 (4), pp. 1665-1678. , Feb; Zhao, X., Sehgal, M., Hou, Z., Identification of residues controlling restriction versus Enhancing activities of IFITM proteins on entry of human coronaviruses (2018) J Virol, 92 (6), pp. e01535-e1517. , http://doi.org/10.1128/JVI.01535-17, Mar 15; Bulli, L., Apolonia, L., Kutzner, J., Complex Interplay between HIV-1 Capsid and MX2-independent alpha interferon-induced antiviral factors (2016) J Virol, 90 (16), pp. 7469-7480. , Aug 15; Zhao, X., Guo, F., Comunale, M.A., Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2 (2015) Antimicrob Agents Chemother, 59 (1), pp. 206-216. , Jan; Zhao, X., Guo, F., Liu, F., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43 (2014) Proc Natl Acad Sci USA, 111 (18), pp. 6756-6761. , May 6; Cavrois, M., De Noronha, C., Greene, W.C., A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes (2002) Nat Biotechnol, 20 (11), pp. 1151-1154. , Nov; Sealy, R., Chaka, W., Surman, S., Target peptide sequence within infectious human immunodeficiency virus type 1 does not ensure envelope-specific T-helper cell reactivation: influences of cysteine protease and gamma interferon-induced thiol reductase activities (2008) Clin Vaccine Immunol, 15 (4), pp. 713-719. , Apr; Rausch, M.P., Hastings, K.T., Diverse cellular and organismal functions of the lysosomal thiol reductase GILT (2015) Mol Immunol, 68 (2 Pt A), pp. 124-128. , Dec; Li, S., Sun, Z., Pryce, R., Acidic pH-induced conformations and LAMP1 binding of the Lassa virus glycoprotein spike (2016) Plos Pathog, 12 (2), p. e1005418. , Feb; Cohen-Dvashi, H., Israeli, H., Shani, O., Role of LAMP1 binding and pH sensing by the spike complex of Lassa virus (2016) J Virol, 90 (22), pp. 10329-10338. , Nov 15; Lackman, R.L., Cresswell, P., Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-gamma-inducible lysosomal thiol reductase expression by inflammatory cytokines (2006) J Immunol, 177 (7), pp. 4833-4840. , Oct 1; Chandran, K., Sullivan, N.J., Felbor, U., Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection (2005) Science, 308 (5728), pp. 1643-1645. , Jun 10; Huang, I.C., Bosch, B.J., Li, F., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells (2006) J Biol Chem, 281 (6), pp. 3198-3203. , Feb 10; Misasi, J., Chandran, K., Yang, J.Y., Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences (2012) J Virol, 86 (6), pp. 3284-3292. , Mar; Huang, I.C., Bailey, C.C., Weyer, J.L., Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus (2011) Plos Pathog, 7 (1), p. e1001258. , Jan 6; Singh, R., Jamieson, A., Cresswell, P., GILT is a critical host factor for Listeria monocytogenes infection (2008) Nature, 455 (7217), pp. 1244-1247. , Oct 30; Kubo, Y., Izumida, M., Yashima, Y., Gamma-interferon-inducible, lysosome/endosome-localized thiolreductase, GILT, has anti-retroviral activity and its expression is counteracted by HIV-1 (2016) Oncotarget, 7 (44), pp. 71255-71273. , Nov 1; Miyauchi, K., Kim, Y., Latinovic, O., HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes (2009) Cell, 137 (3), pp. 433-444. , May 1","Zhao, X.; Institute of Infectious disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People’s Republic of China, Beijing Key Laboratory of Emerging Infectious DiseaseChina; email: zhaoxuesen@ccmu.edu.cn",,"Taylor and Francis Ltd.",22221751,,,"31631785","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85073607180 "Lu D., Liu K., Zhang D., Yue C., Lu Q., Cheng H., Wang L., Chai Y., Qi J., Wang L.-F., Gao G.F., Liu W.J.","57209539258;57190961251;57211055275;57211055423;57211056696;56408986000;57189262949;57202398802;23089172800;35243718700;7403171212;57191415744;","Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats",2019,"PLoS Biology","17","9", e3000436,"","",,,"10.1371/journal.pbio.3000436","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072509133&doi=10.1371%2fjournal.pbio.3000436&partnerID=40&md5=9ea3d0354d839876e941d8561bf1620b","NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Faculty of Health Sciences, University of Macau, Macau; Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China; Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore","Lu, D., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Liu, K., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, Faculty of Health Sciences, University of Macau, Macau; Zhang, D., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Yue, C., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Lu, Q., Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China; Cheng, H., Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China; Wang, L., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Chai, Y., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Qi, J., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Wang, L.-F., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Gao, G.F., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, Faculty of Health Sciences, University of Macau, Macau, Beijing Institutes of Life Science, University of Chinese Academy of Sciences, Beijing, China, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Liu, W.J., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China","Bats harbor many zoonotic viruses, including highly pathogenic viruses of humans and other mammals, but they are typically asymptomatic in bats. To further understand the antiviral immunity of bats, we screened and identified a series of bat major histocompatibility complex (MHC) I Ptal-N*01:01–binding peptides derived from four different bat-borne viruses, i.e., Hendra virus (HeV), Ebola virus (EBOV), Middle East respiratory syndrome coronavirus (MERS-CoV), and H17N10 influenza-like virus. The structures of Ptal-N*01:01 display unusual peptide presentation features in that the bat-specific 3–amino acid (aa) insertion enables the tight “surface anchoring” of the P1-Asp in pocket A of bat MHC I. As the classical primary anchoring positions, the B and F pockets of Ptal-N*01:01 also show unconventional conformations, which contribute to unusual peptide motifs and distinct peptide presentation. Notably, the features of bat MHC I may be shared by MHC I from various marsupials. Our study sheds light on bat adaptive immunity and may benefit future vaccine development against bat-borne viruses of high impact on humans. © 2019 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"aspartic acid; leucine; major histocompatibility antigen class 1; methionine; HLA antigen class 1; adaptive immunity; animal cell; antigen presentation; Article; controlled study; Ebolavirus; Hendra virus; Influenza virus; marsupial; Middle East respiratory syndrome coronavirus; nonhuman; peptide synthesis; protein conformation; protein motif; virus cell interaction; virus immunity; animal; bat; host pathogen interaction; immunology; physiology; RNA virus; virology; Animals; Antigen Presentation; Chiroptera; Histocompatibility Antigens Class I; Host-Pathogen Interactions; RNA Viruses","Zhao, M., Zhang, H., Liu, K., Gao, G.F., Liu, W.J., Human T-cell immunity against the emerging and re-emerging viruses (2017) Sci China Life Sci, 60 (12), pp. 1307-1316. , https://doi.org/10.1007/s11427-017-9241-3, PMID: 29294219; Liu, W.J., Lan, J., Liu, K., Deng, Y., Yao, Y., Wu, S., Protective T cell responses featured by concordant recognition of middle east respiratory syndrome coronavirus-derived CD8+ T cell epitopes and host MHC (2017) J Immunol, 198 (2), pp. 873-882. , https://doi.org/10.4049/jimmunol.1601542, PMID: 27903740; Liu, W.J., Liu, D., The triphibious warfare against viruses (2017) Sci China Life Sci, 60 (12), pp. 1295-1298. , https://doi.org/10.1007/s11427-017-9252-y, PMID: 29285714; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P.D.A., Paweska, J.T., Swanepoel, R., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438 (7068), pp. 575-576. , PMID: 16319873; Selvey, L.A., Wells, R.M., McCormack, J.G., Ansford, A.J., Murray, K., Rogers, R.J.L.P., Selleck, P., Sheridan, J.W., Infection of humans and horses by a newly described morbillivirus (1995) Med J Aust, 162 (12), pp. 642-645. , PMID: 7603375; Smith, I., Wang, L.F., Bats and their virome: An important source of emerging viruses capable of infecting humans (2013) Curr Opin Virol, 3 (1), pp. 84-91. , https://doi.org/10.1016/j.coviro.2012.11.006, PMID: 23265969; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310 (5748), pp. 676-679. , PMID: 16195424; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102 (39), pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102, PMID: 16169905; Gao, G.F., From ""A""IV to ""Z""IKV: Attacks from emerging and re-emerging pathogens (2018) Cell, 172 (6), pp. 1157-1159. , https://doi.org/10.1016/j.cell.2018.02.025, PMID: 29522735; Liu, W.J., Shi, W.F., Zhu, W.Y., Jin, C., Zou, S.M., Wang, J., Intra-host Ebola viral adaption during human infection (2019) Biosafety and Health, 1 (1), pp. 14-24. , https://www.sciencedirect.com/science/article/pii/S2590053619300011; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9, PMID: 29618817; Obameso, J.O., Li, H., Jia, H., Han, M., Zhu, S., Huang, C., The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: A two-year follow-up (2017) Sci China Life Sci, 60 (12), pp. 1357-1363. , https://doi.org/10.1007/s11427-017-9263-6, PMID: 29299855; Wu, Y., Wu, Y., Tefsen, B., Shi, Y., Gao, G.F., Bat-derived influenza-like viruses H17N10 and H18N11 (2014) Trends Microbiol, 22 (4), pp. 183-191. , https://doi.org/10.1016/j.tim.2014.01.010, PMID: 24582528; Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., A distinct lineage of influenza A virus from bats (2012) Proc Natl Acad Sci U S A, 109 (11), pp. 4269-4274. , https://doi.org/10.1073/pnas.1116200109, PMID: 22371588; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546 (7660), pp. 646-650. , https://doi.org/10.1038/nature22975, PMID: 28636590; Mandl, J.N., Schneider, C., Schneider, D.S., Baker, M.L., Going to bat(s) for studies of disease tolerance (2018) Front Immunol, 9, p. 2112. , https://doi.org/10.3389/fimmu.2018.02112, PMID: 30294323; Bean, A.G., Baker, M.L., Stewart, C.R., Cowled, C., Deffrasnes, C., Wang, L.F., Studying immunity to zoonotic diseases in the natural host—keeping it real (2013) Nat Rev Immunol, 13 (12), pp. 851-861. , https://doi.org/10.1038/nri3551, PMID: 24157573; Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K.A., Fang, X., Comparative analysis of bat genomes provides insight into the evolution of flight and immunity (2013) Science, 339 (6118), pp. 456-460. , https://doi.org/10.1126/science.1230835, PMID: 23258410; Pavlovich, S.S., Lovett, S.P., Koroleva, G., Guito, J.C., Arnold, C.E., Nagle, E.R., The Egyptian Rousette genome reveals unexpected features of bat antiviral immunity (2018) Cell, 173 (5), pp. 1098-1110. , https://doi.org/10.1016/j.cell.2018.03.070, e18. PMID: 29706541; Papenfuss, A.T., Baker, M.L., Feng, Z.P., Tachedjian, M., Crameri, G., Cowled, C., The immune gene repertoire of an important viral reservoir, the Australian black flying fox (2012) BMC Genomics, 13, p. 261. , https://doi.org/10.1186/1471-2164-13-261, PMID: 22716473; Xie, J., Li, Y., Shen, X., Goh, G., Zhu, Y., Cui, J., Dampened STING-dependent interferon activation in bats (2018) Cell Host Microbe, 23 (3), pp. 297-301. , https://doi.org/10.1016/j.chom.2018.01.006, PMID: 29478775; Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats (2016) Proc Natl Acad Sci U S A, 113 (10), pp. 2696-2701. , https://doi.org/10.1073/pnas.1518240113, PMID: 26903655; Zhou, P., Cowled, C., Todd, S., Crameri, G., Virtue, E.R., Marsh, G.A., Type III IFNs in pteropid bats: Differential expression patterns provide evidence for distinct roles in antiviral immunity (2011) J Immunol, 186 (5), pp. 3138-3147. , https://doi.org/10.4049/jimmunol.1003115, PMID: 21278349; Sarkis, S., Dabo, S., Lise, M.C., Neuveut, C., Meurs, E.F., Lacoste, V., A potential robust antiviral defense state in the common vampire bat: Expression, induction and molecular characterization of the three interferon-stimulated genes - OAS1, ADAR1 and PKR (2018) Dev Comp Immunol, 85, pp. 95-107. , https://doi.org/10.1016/j.dci.2018.04.006, PMID: 29635006; Li, H., Zhou, M., Han, J., Zhu, X., Dong, T., Gao, G.F., Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments (2004) J Immunol, 174 (1), pp. 195-204. , PMID: 15611241; Turner, S.J., Kedzierska, K., Komodromou, H., La Gruta, N.L., Dunstone, M.A., Webb, A.I., Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations (2005) Nat Immunol, 6 (4), pp. 382-389. , PMID: 15735650; Garrett, T.P., Saper, M.A., Bjorkman, P.J., Strominger, J.L., Wiley, D.C., Specificity pockets for the side chains of peptide antigens in HLA-Aw68 (1989) Nature, 342 (6250), pp. 692-696. , PMID: 2594067; Saper, M.A., Bjorkman, P.J., Wiley, D.C., Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution (1991) J Mol Biol, 219 (2), pp. 277-319. , PMID: 2038058; Ng, J.H., Tachedjian, M., Deakin, J., Wynne, J.W., Cui, J., Haring, V., Evolution and comparative analysis of the bat MHC-I region (2016) Sci Rep, 6, p. 21256. , https://doi.org/10.1038/srep21256, PMID: 26876644; Wynne, J.W., Woon, A.P., Dudek, N.L., Croft, N.P., Ng, J.H., Baker, M.L., Characterization of the antigen processing machinery and endogenous peptide presentation of a bat MHC class I molecule (2016) J Immunol, 196 (11), pp. 4468-4476. , https://doi.org/10.4049/jimmunol.1502062, PMID: 27183594; Mage, M.G., Dolan, M.A., Wang, R., Boyd, L.F., Revilleza, M.J., Robinson, H., The peptide-receptive transition state of MHC class I molecules: Insight from structure and molecular dynamics (2012) J Immunol, 189 (3), pp. 1391-1399. , https://doi.org/10.4049/jimmunol.1200831, PMID: 22753930; Jiang, J., Natarajan, K., Boyd, L.F., Morozov, G.I., Mage, M.G., Margulies, D.H., Crystal structure of a TAPBPR-MHC I complex reveals the mechanism of peptide editing in antigen presentation (2017) Science, 358 (6366), pp. 1064-1068. , https://doi.org/10.1126/science.aao5154, PMID: 29025991; McShan, A.C., Natarajan, K., Kumirov, V.K., Flores-Solis, D., Jiang, J., Badstübner, M., Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle (2018) Nat Chem Biol, 14 (8), pp. 811-820. , https://doi.org/10.1038/s41589-018-0096-2, PMID: 29988068; Xiao, J., Xiang, W., Zhang, Y., Peng, W., Zhao, M., Niu, L., An invariant arginine in common with MHC class II allows extension at the C-terminal end of peptides bound to chicken MHC class I (2018) J Immunol, 201 (10), pp. 3084-3095. , https://doi.org/10.4049/jimmunol.1800611, PMID: 30341185; Xiao, J., Xiang, W., Chai, Y., Haywood, J., Qi, J., Ba, L., Diversified anchoring features the peptide presentation of DLA-88*50801: First structural insight into domestic dog MHC class I (2016) J Immunol, 197 (6), pp. 2306-2315. , https://doi.org/10.4049/jimmunol.1600887, PMID: 27511732; Liang, R., Sun, Y., Liu, Y., Wang, J., Wu, Y., Li, Z., Major histocompatibility complex class I (FLAE*01801) molecular structure in domestic cats demonstrates species-specific characteristics in presenting viral antigen peptides (2018) J Virol, 92 (6). , https://doi.org/10.1128/JVI.01631-17, PMID: 29263258; Mohammed, F., Cobbold, M., Zarling, A.L., Salim, M., Barrett-Wilt, G.A., Shabanowitz, J., Phosphorylation-dependent interaction between antigenic peptides and MHC class I: A molecular basis for the presentation of transformed self (2008) Nat Immunol, 9 (11), pp. 1236-1243. , https://doi.org/10.1038/ni.1660, PMID: 18836451; Papenfuss, A.T., Feng, Z.P., Krasnec, K., Deakin, J.E., Baker, M.L., Miller, R.D., Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage (2015) BMC Genomics, 16, p. 535. , https://doi.org/10.1186/s12864-015-1745-4, PMID: 26194104; Liu, W.J., Tan, S., Zhao, M., Quan, C., Bi, Y., Wu, Y., Cross-immunity against avian influenza A(H7N9) virus in the healthy population is affected by antigenicity-dependent substitutions (2016) J Infect Dis, 214 (12), pp. 1937-1946. , PMID: 27738054; Smith, K.J., Reid, S.W., Stuart, D.I., McMichael, A.J., Jones, E.Y., Bell, J.I., An altered position of the alpha 2 helix of MHC class I is revealed by the crystal structure of HLA-B*3501 (1996) Immunity, 4 (3), pp. 203-213. , PMID: 8624811; Smith, K.J., Reid, S.W., Harlos, K., McMichael, A.J., Stuart, D.I., Bell, J.I., Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to MHC class I HLA-B53 (1996) Immunity, 4 (3), pp. 215-228. , PMID: 8624812; Balendiran, G.K., Solheim, J.C., Young, A.C., Hansen, T.H., Nathenson, S.G., Sacchettini, J.C., The three-dimensional structure of an H-2Ld-peptide complex explains the unique interaction of Ld with beta-2 microglo-bulin and peptide (1997) Proc Natl Acad Sci U S A, 94 (13), pp. 6880-6885. , https://doi.org/10.1073/pnas.94.13.6880, PMID: 9192660; Achour, A., Persson, K., Harris, R.A., Sundback, J., Sentman, C.L., Lindqvist, Y., The crystal structure of H-2Dd MHC class I complexed with the HIV-1-derived peptide P18-I10 at 2.4 A resolution: Implications for T cell and NK cell recognition (1998) Immunity, 9 (2), pp. 199-208. , PMID: 9729040; Chu, F., Lou, Z., Chen, Y.W., Liu, Y., Gao, B., Zong, L., First glimpse of the peptide presentation by rhesus macaque MHC class I: Crystal structures of Mamu-A*01 complexed with two immunogenic SIV epitopes and insights into CTL escape (2007) J Immunol, 178 (2), pp. 944-952. , PMID: 17202356; Salloum, S., Oniangue-Ndza, C., Neumann-Haefelin, C., Hudson, L., Giugliano, S., Aus Dem Siepen, M., Escape from HLA-B*08-restricted CD8 T cells by hepatitis C virus is associated with fitness costs (2008) J Virol, 82 (23), pp. 11803-11812. , https://doi.org/10.1128/JVI.00997-08, PMID: 18815309; Tokunaga, F., Goto, T., Koide, T., Murakami, Y., Hayashi, S., Tamura, T., ATP- And antizyme-dependent endoproteolysis of ornithine decarboxylase to oligopeptides by the 26S proteasome (1994) J Biol Chem, 269 (26), pp. 17382-17385. , PMID: 8021237; Shimbara, N., Ogawa, K., Hidaka, Y., Nakajima, H., Yamasaki, N., Niwa, S., Contribution of proline residue for efficient production of MHC class I ligands by proteasomes (1998) J Biol Chem, 273 (36), pp. 23062-23071. , PMID: 9722532; Julie, D., Thompson, T.J.G., Plewniak, F., Jeanmougin, F., Higgins Desmond, G., The CLUS-TAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res, 25 (24), pp. 4876-4882. , https://doi.org/10.1093/nar/25.24.4876, PMID: 9396791; Gouet, P., Espript/Endscript: Extracting and rendering sequence and 3D information from atomic structures of proteins (2003) Nucleic Acids Res, 31 (13), pp. 3320-3323. , https://doi.org/10.1093/nar/gkg556, PMID: 12824317; Hoof, I., Peters, B., Sidney, J., Pedersen, L.E., Sette, A., Lund, O., NetMHCpan, a method for MHC class I binding prediction beyond humans (2009) Immunogenetics, 61 (1), pp. 1-13. , https://doi.org/10.1007/s00251-008-0341-z, PMID: 19002680; Raveh, B., London, N., Zimmerman, L., Schueler-Furman, O., Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors (2011) PLoS ONE, 6 (4). , https://doi.org/10.1371/journal.pone.0018934, PMID: 21572516; Toor, J.S., Rao, A.A., McShan, A.C., Yarmarkovich, M., Nerli, S., Yamaguchi, K., A recurrent mutation in anaplastic lymphoma kinase with distinct neoepitope conformations (2018) Front Immunol, 9, p. 99. , https://doi.org/10.3389/fimmu.2018.00099, PMID: 29441070; Zhang, S., Liu, J., Cheng, H., Tan, S., Qi, J., Yan, J., Structural basis of cross-allele presentation by HLA-A*0301 and HLA-A*1101 revealed by two HIV-derived peptide complexes (2011) Mol Immunol, 49 (1-2), pp. 395-401. , https://doi.org/10.1016/j.molimm.2011.08.015, PMID: 21943705; Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes (2010) J Infect Dis, 202 (8), pp. 1171-1180. , https://doi.org/10.1086/656315, PMID: 20831383; Liu, J., Wu, P., Gao, F., Qi, J., Kawana-Tachikawa, A., Xie, J., Novel immunodominant peptide presentation strategy: A featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein (2010) J Virol, 84 (22), pp. 11849-11857. , https://doi.org/10.1128/JVI.01464-10, PMID: 20844028; Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr D Biol Crystallogr, 54 (5), pp. 905-921. , PMID: 9757107; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66 (4), pp. 486-501. , https://doi.org/10.1107/S0907444910007493, PMID: 20383002; Tobita, T., Oda, M., Morii, H., Kuroda, M., Yoshino, A., Azuma, T., A role for the P1 anchor residue in the thermal stability of MHC class II molecule I-Ab (2003) Immunol Lett, 85 (1), pp. 47-52. , PMID: 12505196","Gao, G.F.; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionChina; email: gaofu@chinacdc.cn",,"Public Library of Science",15449173,,PBLIB,"31498797","English","PloS Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85072509133 "Ferreira H.L.D.S., Costa K.L.P., Cariolano M.S., Oliveira G.S., Felipe K.K.P., Silva E.S.A., Alves M.S., Maramaldo C.E.C., de Sousa E.M., Rego J.S., Silva I.C.P.A., Albuquerque R.K.S., Araújo N.S.C., Amorim A.M.M., Costa L.D., Pinheiro C.S., Guimarães V.A., Santos M.C., Mello W.A., Falcai A., Lima-Neto L.G.","57210281731;57210291202;57210289099;57210286706;57210289800;57210282468;57206855423;57210286529;19834559300;57210287489;57210285612;57210292787;57210289787;57210285273;57210286539;57210283381;57210282743;55362705000;6602161887;54784331600;28267848100;","High incidence of rhinovirus infection in children with community-acquired pneumonia from a city in the Brazilian pre-Amazon region",2019,"Journal of Medical Virology","91","10",,"1751","1758",,1,"10.1002/jmv.25524","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070234087&doi=10.1002%2fjmv.25524&partnerID=40&md5=5fab77f426cf41fda808d010686589b7","Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Complexo Hospitalar Materno Infantil do Maranhão Hospital Dr. Juvêncio Mattos Maternidade Benedito Leite, São Luís, Maranhão, Brazil; Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brazil; Hospital Universitário, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil; Mestrado em Meio Ambiente, Universidade CEUMA, São Luís, Maranhão, Brazil","Ferreira, H.L.D.S., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Costa, K.L.P., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Cariolano, M.S., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Oliveira, G.S., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Felipe, K.K.P., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Silva, E.S.A., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Alves, M.S., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Maramaldo, C.E.C., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; de Sousa, E.M., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Rego, J.S., Complexo Hospitalar Materno Infantil do Maranhão Hospital Dr. Juvêncio Mattos Maternidade Benedito Leite, São Luís, Maranhão, Brazil; Silva, I.C.P.A., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil; Albuquerque, R.K.S., Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brazil; Araújo, N.S.C., Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brazil; Amorim, A.M.M., Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brazil; Costa, L.D., Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brazil; Pinheiro, C.S., Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brazil; Guimarães, V.A., Hospital Universitário, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil; Santos, M.C., Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil; Mello, W.A., Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil; Falcai, A., Mestrado em Meio Ambiente, Universidade CEUMA, São Luís, Maranhão, Brazil; Lima-Neto, L.G., Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brazil","Community-acquired pneumonia (CAP) is the leading cause of child death worldwide. Viruses are the most common pathogens associated with CAP in children, but their incidence varies greatly. This study investigated the presence of respiratory syncytial virus (RSV), adenovirus, human rhinovirus (HRV), human metapneumovirus (HMPV), human coronavirus (HCoV-OC43 and HCoV-NL63), and influenza A virus (FluA) in children with CAP and the contributing risk factors. Here, children with acute respiratory infections were screened by pediatrics; and a total of 150 radiographically-confirmed CAP patients (aged 3 months to 10 years) from two clinical centers in Sao Luis, Brazil were recruited. Patient's clinical and epidemiological data were recorded. Nasopharyngeal swab and tracheal aspirate samples were collected to extract viral nucleic acid. RSV, adenovirus, rhinovirus, FluA, HMPV, HCoV-OC43, and HCoV-NL63 were detected by real-time polymerase chain reaction. The severe CAP was associated with ages between 3 and 12 months. Viruses were detected in 43% of CAP patients. Rhinovirus infections were the most frequently identified (68%). RSV, adenovirus, FluA, and coinfections were identified in 14%, 14%, 5%, and 15% of children with viral infection, respectively. Rhinovirus was associated with nonsevere CAP (P =.014); RSV, FluA, and coinfections were associated with severe CAP (P <.05). New strategies for prevention and treatment of viral respiratory infections, mainly rhinovirus and RSV infections, are necessary. © 2019 Wiley Periodicals, Inc.","epidemiology; respiratory tract; seasonal incidence","Adenoviridae; adult; Amazonas (Brazil); Article; community acquired pneumonia; controlled study; Coronaviridae; disease severity; female; human; Human metapneumovirus; Human respiratory syncytial virus; Human rhinovirus; incidence; infection risk; Influenza A virus; major clinical study; mixed infection; mouse; nonhuman; nose smear; real time polymerase chain reaction; Rhinovirus infection; screening test; seasonal variation; tracheal aspiration procedure; virus detection","De Antonio, R., Yarzabal, J.P., Cruz, J.P., Schmidt, J.E., Kleijnen, J., Epidemiology of community-acquired pneumonia and implications for vaccination of children living in developing and newly industrialized countries: a systematic literature review (2016) Hum Vaccin Immunother, 12, pp. 2422-2440; Black, R.E., Cousens, S., Johnson, H.L., Global, regional, and national causes of child mortality in 2008: a systematic analysis (2010) Lancet, 375, pp. 1969-1987; Greenwood, B., A global action plan for the prevention and control of pneumonia (2008) Bull World Health Organ, 86, p. 322; Huang, S.H., Su, M.C., Tien, N., Epidemiology of human coronavirus NL63 infection among hospitalized patients with pneumonia in Taiwan (2017) J Microbiol Immunol Infect, 50, pp. 763-770; Sung, C.C., Chi, H., Chiu, N.C., Viral etiology of acute lower respiratory tract infections in hospitalized young children in Northern Taiwan (2011) J Microbiol Immunol Infect, 44, pp. 184-190; Jain, S., Epidemiology of viral pneumonia (2017) Clin Chest Med, 38, pp. 1-9; Rudan, I., O'Brien, K.L., Nair, H., Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries (2013) J Glob Health, 3, p. 010401; Correa, R.A., Costa, A.N., Lundgren, F., 2018 recommendations for the management of community acquired pneumonia (2018) J Bras Pneumol, 44 (44), pp. 405-423; Brini, I., Guerrero, A., Hannachi, N., Bouguila, J., Orth-Holler, D., Bouhlel, A., Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia (2017) PLoS One, 12; Camargo, L.F., De Marco, F.V., Barbas, C.S., Hoelz, C., Bueno, M.A., Rodrigues, M., Ventilator associated pneumonia: comparison between quantitative and qualitative cultures of tracheal aspirates (2004) Crit Care, 8, pp. R422-R430; Pinheiro, A., Goncalves, J.S., Dourado, A.W.A., Punica granatum L. leaf extract attenuates lung inflammation in mice with acute lung injury (2018) J Immunol Res, 2018, p. 6879183; Barsam, F.J., Borges, G.S., Severino, A.B., de Mello, L.M., da Silva, A.S., Nunes, A.A., Factors associated with community-acquired pneumonia in hospitalised children and adolescents aged 6 months to 13 years old (2013) Eur J Pediatr, 172, pp. 493-499; Li, Y., An, Z., Yin, D., Disease burden of community acquired pneumonia among children under 5 y old in China: a population based survey (2017) Hum Vaccin Immunother, 13, pp. 1681-1687; Haugen, J., Chandyo, R.K., Ulak, M., 25-Hydroxy-vitamin D concentration is not affected by severe or non-severe pneumonia, or inflammation, in young children (2017) Nutrients, 9, p. 52; Giamberardin, H.I., Homsani, S., Bricks, L.F., Clinical and epidemiological features of respiratory virus infections in preschool children over two consecutive influenza seasons in southern Brazil (2016) J Med Virol, 88, pp. 1325-1333; Cebey-Lopez, M., Herberg, J., Pardo-Seco, J., Viral co-infections in pediatric patients hospitalized with lower tract acute respiratory infections (2015) PLoS One, 10; Nascimento-Carvalho, A.C., Ruuskanen, O., Nascimento-Carvalho, C.M., Comparison of the frequency of bacterial and viral infections among children with community-acquired pneumonia hospitalized across distinct severity categories: a prospective cross-sectional study (2016) BMC Pediatr, 16, p. 105; Self, W.H., Williams, D.J., Zhu, Y., Respiratory viral detection in children and adults: comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J Infect Dis, 213, pp. 584-591; Ali, A., Khowaja, A.R., Bashir, M.Z., Aziz, F., Mustafa, S., Zaidi, A., Role of human metapneumovirus, influenza A virus and respiratory syncytial virus in causing WHO-defined severe pneumonia in children in a developing country (2013) PLoS One, 8; Banstola, A., Banstola, A., The epidemiology of hospitalization for pneumonia in children under five in the rural western region of Nepal: a descriptive study (2013) PLoS One, 8; Berkley, J.A., Munywoki, P., Ngama, M., Viral etiology of severe pneumonia among Kenyan infants and children (2010) JAMA, 303, pp. 2051-2057; Liu, W.K., Liu, Q., Chen, D.H., Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study (2014) PLoS One, 9; Holly, M.K., Smith, J.G., Adenovirus infection of human enteroids reveals interferon sensitivity and preferential infection of goblet cells (2018) J Virol, 92, p. 18; Homaira, N., Luby, S.P., Petri, W.A., Incidence of respiratory virus-associated pneumonia in urban poor young children of Dhaka, Bangladesh, 2009-2011 (2012) PLoS One, 7; Oumei, H., Xuefeng, W., Jianping, L., Etiology of community-acquired pneumonia in 1500 hospitalized children (2018) J Med Virol, 90, pp. 421-428; Cao, B., Huang, G.H., Pu, Z.H., Emergence of community-acquired adenovirus type 55 as a cause of community-onset pneumonia (2014) Chest, 145, pp. 79-86; Kim, S.J., Kim, K., Park, S.B., Hong, D.J., Jhun, B.W., Outcomes of early administration of cidofovir in non-immunocompromised patients with severe adenovirus pneumonia (2015) PLoS One, 10; Jonnalagadda, S., Rodriguez, O., Estrella, B., Sabin, L.L., Sempertegui, F., Hamer, D.H., Etiology of severe pneumonia in Ecuadorian children (2017) PLoS One, 12; Wo, Y., Lu, Q.B., Huang, D.D., Epidemical features of HAdV-3 and HAdV-7 in pediatric pneumonia in Chongqing, China (2015) Arch Virol, 160, pp. 633-638; Esposito, S., Zampiero, A., Bianchini, S., Epidemiology and clinical characteristics of respiratory infections due to adenovirus in children living in Milan, Italy, during 2013 and 2014 (2016) PLoS One, 11; Jain, S., Benoit, S.R., Skarbinski, J., Bramley, A.M., Finelli, L., Pandemic influenza AVHIT. Influenza-associated pneumonia among hospitalized patients with 2009 pandemic influenza A (H1N1) virus–United States, 2009 (2012) Clin Infect Dis, 54, pp. 1221-1229; Thompson, D.S., Younger-Coleman, N., Lyew-Ayee, P., Greene, L.G., Boyne, M.S., Forrester, T.E., Influenza vaccine effectiveness in preventing influenza-associated intensive care admissions and attenuating severe disease among adults in New Zealand 2012-2015 (2018) Vaccine, 36, pp. 5916-5925; Aberle, J.H., Aberle, S.W., Pracher, E., Hutter, H.P., Kundi, M., Popow-Kraupp, T., Single versus dual respiratory virus infections in hospitalized infants: impact on clinical course of disease and interferon-gamma response (2005) Pediatr Infect Dis J, 24, pp. 605-610; Cilla, G., Onate, E., Perez-Yarza, E.G., Montes, M., Vicente, D., Perez-Trallero, E., Viruses in community-acquired pneumonia in children aged less than 3 years old: high rate of viral coinfection (2008) J Med Virol, 80, pp. 1843-1849; Richard, N., Komurian-Pradel, F., Javouhey, E., The impact of dual viral infection in infants admitted to a pediatric intensive care unit associated with severe bronchiolitis (2008) Pediatr Infect Dis J, 27, pp. 213-217; Paula, N.T., Carneiro, B.M., Yokosawa, J., Human rhinovirus in the lower respiratory tract infections of young children and the possible involvement of a secondary respiratory viral agent (2011) Mem Inst Oswaldo Cruz, 106, pp. 316-321; Scotta, M.C., Chakr, V.C., de Moura, A., Respiratory viral coinfection and disease severity in children: a systematic review and meta-analysis (2016) J Clin Virol, 80, pp. 45-56; Jiang, W., Wu, M., Zhou, J., Etiologic spectrum and occurrence of coinfections in children hospitalized with community-acquired pneumonia (2017) BMC Infect Dis, 17, p. 787; Asner, S.A., Rose, W., Petrich, A., Richardson, S., Tran, D.J., Is virus coinfection a predictor of severity in children with viral respiratory infections? (2015) Clin Microbiol Infect, 21 (264), pp. e1-e6; Lin, H.C., Lin, C.C., Chen, C.S., Lin, H.C., Seasonality of pneumonia admissions and its association with climate: an eight-year nationwide population-based study (2009) Chronobiol Int, 26, pp. 1647-1659; Nascimento-Carvalho, C.M., Cardoso, M.R., Barral, A., Seasonal patterns of viral and bacterial infections among children hospitalized with community-acquired pneumonia in a tropical region (2010) Scand J Infect Dis, 42, pp. 839-844; Morikawa, S., Kohdera, U., Hosaka, T., Seasonal variations of respiratory viruses and etiology of human rhinovirus infection in children (2015) J Clin Virol, 73, pp. 14-19; Caini, S., Andrade, W., Badur, S., Global influenza, temporal patterns of influenza A and B in tropical and temperate countries: what are the lessons for influenza vaccination? (2016) PLoS One, 11; Bouzas, M.L., Oliveira, J.R., Fukutani, K.F., Respiratory syncytial virus a and b display different temporal patterns in a 4-year prospective cross-sectional study among children with acute respiratory infection in a tropical city (2016) Medicine, 95; Freitas, A.R., Donalisio, M.R., Respiratory syncytial virus seasonality in Brazil: implications for the immunisation policy for at-risk populations (2016) Mem Inst Oswaldo Cruz, 111, pp. 294-301; Fraser, C.S., Jha, A., Openshaw, P.J., Vaccines in the prevention of viral pneumonia (2017) Clin Chest Med, 38, pp. 155-169; Chonmaitree, T., Alvarez-Fernandez, P., Jennings, K., Symptomatic and asymptomatic respiratory viral infections in the first year of life: association with acute otitis media development (2015) Clin Infect Dis, 60, pp. 1-9","Lima-Neto, L.G.; Programa de Pós-Graduação, Universidade CEUMABrazil; email: lidio.neto@ceuma.br",,"John Wiley and Sons Inc.",01466615,,JMVID,"31230362","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85070234087 "Góes L.G.B., Zerbinati R.M., Tateno A.F., de Souza A.V., Ebach F., Corman V.M., Moreira-Filho C.A., Durigon E.L., da Silva Filho L.V.R.F., Drexler J.F.","55199212600;36081403600;7004365437;36843913500;55363994400;34876424800;7003679273;16834395300;6603011188;15753438200;","Typical epidemiology of respiratory virus infections in a Brazilian slum",2019,"Journal of Medical Virology",,,,"","",,,"10.1002/jmv.25636","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076358348&doi=10.1002%2fjmv.25636&partnerID=40&md5=50875ff63ba0503592b63d12503cf91b","Institute of Virology, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Laboratório de Virologia Clínica e Molecular, Departamento de Microbiologia – ICB-II, Universidade de São Paulo, São Paulo, Brazil; Institute of Virology, University of Bonn Medical Center, Bonn, Germany; Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil; German Center for Infection Research (DZIF), associated partner site Charité, Berlin, Germany; Departmento de Pediatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Instituto da Criança, Hospital das Clínicas da FMUSP, São Paulo, Brazil; Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russian Federation","Góes, L.G.B., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, Laboratório de Virologia Clínica e Molecular, Departamento de Microbiologia – ICB-II, Universidade de São Paulo, São Paulo, Brazil; Zerbinati, R.M., Institute of Virology, University of Bonn Medical Center, Bonn, Germany; Tateno, A.F., Institute of Virology, University of Bonn Medical Center, Bonn, Germany; de Souza, A.V., Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil; Ebach, F., Institute of Virology, University of Bonn Medical Center, Bonn, Germany; Corman, V.M., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, German Center for Infection Research (DZIF), associated partner site Charité, Berlin, Germany; Moreira-Filho, C.A., Departmento de Pediatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Durigon, E.L., Laboratório de Virologia Clínica e Molecular, Departamento de Microbiologia – ICB-II, Universidade de São Paulo, São Paulo, Brazil; da Silva Filho, L.V.R.F., Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil, Instituto da Criança, Hospital das Clínicas da FMUSP, São Paulo, Brazil; Drexler, J.F., Institute of Virology, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, German Center for Infection Research (DZIF), associated partner site Charité, Berlin, Germany, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russian Federation","Host population size, density, immune status, age structure, and contact rates are critical elements of virus epidemiology. Slum populations stand out from other settings and may present differences in the epidemiology of acute viral infections. We collected nasopharyngeal specimens from 282 children aged ≤5 years with acute respiratory tract infection (ARI) during 2005 to 2006 in one of the largest Brazilian slums. We conducted real-time reverse transcription-polymerase chain reaction (RT-PCR) for 16 respiratory viruses, nested RT-PCR-based typing of rhinoviruses (HRVs), and collected clinical symptoms. Viruses were common causes of respiratory disease; with ≥1 virus being detected in 65.2% of patients. We detected 15 different viruses during 1 year with a predomidnance of HRV (33.0%) and human respiratory syncytial virus (hRSV, 12.1%) infections, and a high rate of viral coinfections (28.3%). We observed seasonality of hRSV, HRV and human coronavirus infections, more severe symptoms in hRSV and influenza virus (FLU) infections and prolonged circulation of seven HRV clusters likely representing distinct serotypes according to genomic sequence distances. Potentially unusual findings included the absence of human metapneumovirus detections and lack of typical FLU seasonal patterns, which may be linked to the population size and density of the slum. Nonetheless, most epidemiological patterns were similar to other studies globally, suggesting surprising similarities of virus-associated ARI across highly diverse settings and a complex impact of population characteristics on respiratory virus epidemiology. © 2019 The Authors. Journal of Medical Virology published by Wiley Periodicals, Inc.","acute respiratory infection; Brazil; epidemiology; real-time polymerase chain reaction; respiratory tract infections; slum; viruses",,"Williams, B.G., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2 (1), pp. 25-32; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin Microbiol Rev, 21 (4), pp. 716-747; Kutter, J.S., Spronken, M.I., Fraaij, P.L., Fouchier, R.A., Herfst, S., Transmission routes of respiratory viruses among humans (2018) Curr Opin Virol., 28, pp. 142-151; Hu, H., Nigmatulina, K., Eckhoff, P., The scaling of contact rates with population density for the infectious disease models (2013) Math Biosci, 244 (2), pp. 125-134; Rahman, S.R., Ahmed, M.F., Islam, M.A., Majibur Rahman, M., Effect of risk factors on the prevalence of influenza infections among children of slums of Dhaka city (2016) SpringerPlus, 5, p. 602; (2010) The challenge of slums: global report on human settlements, , 2003. Revised and updated version April; World Cities Report 2006 Urbanization and Development—Emerging Features, United Nations Human Settlements Program; 2016; Riley, L.W., Ko, A.I., Unger, A., Reis, M.G., Slum health: diseases of neglected populations (2007) BMC Int Health Hum Rights, 7, p. 2; Brooks, W.A., Erdman, D., Terebuh, P., Human metapneumovirus infection among children, Bangladesh (2007) Emerging Infect Dis, 13 (10), pp. 1611-1613; Bigogo, G.M., Breiman, R.F., Feikin, D.R., Epidemiology of respiratory syncytial virus infection in rural and urban Kenya (2013) J Infect Dis, 208, pp. S207-S216; Castro, M.X., Soares, A.M., Fonseca, W., Rey, L.C., Guerrant, R.L., Lima, A.A., Common infectious diseases and skin test anergy in children from an urban slum in northeast Brazil (2003) Braz J Infect Dis, 7 (6), pp. 387-394; de Arruda, N.E., Hayden, F.G., McAuliffe, J.F., Acute respiratory viral infections in ambulatory children of urban northeast Brazil (1991) J Infect Dis, 164 (2), pp. 252-258; Bezerra, P.G.M., Britto, M.C.A., Correia, J.B., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) PLOS One, 6 (4); Annan, A., Ebach, F., Corman, V.M., Similar virus spectra and seasonality in paediatric patients with acute respiratory disease, Ghana and Germany (2016) Clin Microbiol Infect, 22 (4), pp. 340-346; Gohn, M., Morumbi: o contraditório bairro-região de São Paulo (2010) Caderno CRH, 23, p. 14; Baumgarte, S., de Souza Luna, L.K., Grywna, K., Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis (2008) J Clin Microbiol, 46 (1), pp. 242-248; Wisdom, A., Leitch, E.C., Gaunt, E., Harvala, H., Simmonds, P., Screening respiratory samples for detection of human rhinoviruses (HRVs) and enteroviruses: comprehensive VP4-VP2 typing reveals high incidence and genetic diversity of HRV species C (2009) J Clin Microbiol, 47 (12), pp. 3958-3967; Raboni, S.M., Moura, F.E., Caetano, B.C., Global influenza hospital-based surveillance network (GIHSN): results of surveillance of influenza and other respiratory viruses in hospitalised patients in Brazil, 2015 (2018) BMJ Open, 8 (2); Leotte, J., Trombetta, H., Faggion, H.Z., Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years (2017) J Pediatr, 93 (3), pp. 294-300; Breiman, R.F., Cosmas, L., Njenga, M.K., Severe acute respiratory infection in children in a densely populated urban slum in Kenya, 2007-2011 (2015) BMC Infect Dis, 15, p. 95; Taylor, S., Lopez, P., Weckx, L., Respiratory viruses and influenza-like illness: epidemiology and outcomes in children aged 6 months to 10 years in a multi-country population sample (2017) J Infect, 74 (1), pp. 29-41; Thomazelli, L.M., Vieira, S., Leal, A.L., Surveillance of eight respiratory viruses in clinical samples of pediatric patients in southeast Brazil (2007) J Pediatr, 83 (5), pp. 422-428; Durigon, G.S., Oliveira, D.B.L., Felicio, M.C.C., Poor outcome of acute respiratory infection in young children with underlying health condition in Brazil (2015) Int J Infect Dis, 34, pp. 3-7; Talbot, H.K., Shepherd, B.E., Crowe, J.E., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28 (8), pp. 682-687; Jacobs, S.E., Lamson, D.M., St George, K., Walsh, T.J., Human rhinoviruses (2013) Clin Microbiol Rev, 26 (1), pp. 135-162; Sansone, M., Andersson, M., Brittain-Long, R., Rhinovirus infections in western Sweden: a four-year molecular epidemiology study comparing local and globally appearing types (2013) Eur J Clin Microbiol Infect Dis, 32 (7), pp. 947-954; Savolainen, C., Mulders, M.N., Hovi, T., Phylogenetic analysis of rhinovirus isolates collected during successive epidemic seasons (2002) Virus Res, 85 (1), pp. 41-46; Netto, E.M., Moreira-Soto, A., Pedroso, C., High Zika Virus Seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks (2017) mBio, 8 (6); Gregianini, T.S., Seadi, C.F., Menegolla, I., Human metapneumovirus in Southern Brazil (2018) Rev Soc Bras Med Trop, 51 (1), pp. 30-38; Oliveira, D.B.L., Durigon, E.L., Carvalho, A.C.L., Epidemiology and genetic variability of human metapneumovirus during a 4-year-long study in Southeastern Brazil (2009) J Med Virol, 81 (5), pp. 915-921; Alonso, W.J., Viboud, C., Simonsen, L., Hirano, E.W., Daufenbach, L.Z., Miller, M.A., Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics (2007) Am J Epidemiol, 165 (12), pp. 1434-1442; Lam, T.T., Tang, J.W., Lai, F.Y., Comparative global epidemiology of influenza, respiratory syncytial and parainfluenza viruses, 2010-2015 (2019) J Infect, 79 (4), pp. 373-382; Li, Y., Reeves, R.M., Wang, X., Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis (2019) Lancet Global Health, 7 (8), pp. e1031-e1045","Drexler, J.F.; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthGermany; email: felix.drexler@charite.de",,"John Wiley and Sons Inc.",01466615,,JMVID,"31769524","English","J. Med. Virol.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85076358348 "Fallatah S.A., Ghallab E.H., Khater E.I.","56374196500;57210703205;6602730511;","Phylogenetic diversity and DNA barcoding of the camel tick Hyalomma dromedarii (Acari: Ixodidae) of the Eastern region of Saudi Arabia",2019,"Tropical Biomedicine","36","2",,"390","401",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071229919&partnerID=40&md5=d42582b4cdd59bdd57649b645d4343ab","Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt; Public Health Pests LaboratoryJeddah Governorate, Saudi Arabia","Fallatah, S.A., Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Ghallab, E.H., Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt; Khater, E.I., Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt, Public Health Pests LaboratoryJeddah Governorate, Saudi Arabia","Hard ticks are causative agents of physical illness and vectors of important diseases of human and livestock. The hard tick Hyalomma dromedarii Koch, 1844 is a major ectoparasite of livestock in the Kingdom of Saudi Arabia (KSA), of which, the one-humped dromedaries Camelus dromedarius is the most economically and culturally important and a potential reservoir of Middle East respiratory syndrome coronavirus (MERS-CoV) disease. Here we report on the molecular phylogenetic diversity of H. dromedarii collected from camels in the Eastern Province of KSA based on the mitochondrial cytochrome oxidase I (COI) gene. Maximum likelihood (ML) phylogenetic analysis of COI sequences of the studied ticks identified 11 haplotypes. All H. dromedarii ticks from KSA belonged to eight haplotypes diverged into two distinguished genetic clades (A-B). These results indicate that H. dromedarii ticks from KSA are monophyletic species with two distinguished lineages with low intra-specific genetic divergence and sharply structured isolated populations with high level of genetic differentiation. This is a first report of DNA barcode of H. dromedarii ticks from KSA and the Arabian Peninsula, which is an important step towards broader phylogenetic studies on larger tick samples from the region. The studies are important for better understanding its interactions with camels and other hosts and role in zoonotic disease transmission (e.g. MERS-CoV or Alkhurma virus) to pinpoint effective control strategies. © 2019, Malaysian Society for Parasitology. All rights reserved.",,,"Abdullah, H.H.A.M., El-Shanawany, E.E., Abdel-Shafy, S., Abou-Zeina, H.A.A., Abdel-Rahman, E.H., Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels (2018) Veterinary World, 11 (8), pp. 1109-1119; Abdullah, H.R., Faye, B., Phenotypic classification of Saudi Arabian camel (Camelus dromedarius) by their body measurements (2012) Emirates Journal of Food and Agriculture, 3, pp. 272-280; Al-Deeb, M.A., Enan, M.R., Genetic Diversity in the Camel Tick Hyalomma dromedarii (Acari: Ixodidae) Based on Mitochondrial Cytochrome c Oxidase Subunit I (COI) and Randomly Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR) (2018) Advances in Entomology, 6, pp. 285-294; Al-Shammery, K.A., Fetoh, B.A., Al-Shammery, A.M., Differentiation between common tick species using molecular biology techniques in Saudi Arabia (2011) World Academy of Science, Engineering and Technology, 49, pp. 776-779; Apanaskevich, D.A., Schuster, A.L., Horak, I.G., The genus Hyalomma: VII. Redescription of all parasitic stages of H. (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae) (2008) Journal of Medical Entomology, 45 (5), pp. 817-831; Barker, S.C., Murrell, A., Systematics and evolution of ticks with a list of valid genus and species names (2004) Parasitology, 129, pp. S15-S36; Cangi, N., Horak, I.G., Apanaskevich, D.A., Matthee, S., Das Neves, L.C., Estrada-Peña, A., Matthee, C.A., The influence of interspecific competition and host preference on the phylo-geography of two African ixodid tick species (2013) Plos One, 8 (10); Esteve-Gassent, M.D., Castro-Arellano, I., Feria-Arroyo, T.P., Patino, R., Li, A.Y., Medina, R.F., de León, A.A., Rodríguez-Vivas, R.I., Translating ecology, physiology, biochemistry, and population genetics research to meet the challenge of tick and tick-borne diseases in North America (2016) Archives of Insect Biochemistry and Physiology, 92 (1), pp. 38-64; Estrada-Pena, A., D’Amico, G., Palomar, A.M., Dupraz, M., Fonville, M., Heylen, D., Habela, M.A., Madder, M., N´uncio, M.S., Otranto, D., Pfaffle, M., Plantard, O., Santos-Silva, M.M., Sprong, H., Vatansever, Z., Vial, L. & Mihalca, A.D (2017) A Comparative Test of Ixodid Tick Identification by a Network of European Researchers. Ticks and Tick-Borne Diseases, 8, pp. 540-546; Excoffier, L., Smouse, P.E., Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data (1992) Genetics, 131, pp. 479-491; Excoffier, L., Laval, G., Schneider, S., Arlequin ver. 3.0: An integrated software package for population genetics data analysis (2005) Evolution Bioinformatics Online, 1, pp. 47-50; Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates (1994) Molecular Marine Biology and Biotechnology, 3 (5), pp. 294-299; Hall, T., (1999), http://www.mbio.ncsu.edu/BioEdit/bioedit.html, BioEdit Sequence Alignment Editor, version 7.0.9.0; Hartl, D.L., Clark, A.G., (1997) Principles of Population Genetics, , 3rd edn. Sinauer Associates, Inc, Sunderland, MA; Hoogstraal, H., Aeschlimann, A., Tick-host specificity (1982) Bulletin De La Société Entomologique Suisse, 55, pp. 5-32; Hoogstraal, H., Kaiser, M.N., Pedersen, E.C., Hyalomma (Hyalommina) punt, n. sp., (Ixodoidea, Ixodidae), a relict parasite of domestic animals and gazelles in arid areas of northern Somali Republic (1969) Annals of the Entomological Society of America, 62 (2), pp. 415-419; Jeyaprakash, A., Hoy, M.A., First divergence time estimates of spiders, scorpions, mites and ticks (Subphylum: Chelicerata) inferred from mitochondrial phylogeny (2008) Experimental and Applied Acarology, 47, pp. 1-18; Jongejan, F., Uilenberg, G., The global importance of ticks (2004) Parasitology, 129, pp. S3-S14; Klompen, J.S.H., Black, W.C.I.V., Keirans, J.E., Oliver, J.H., Jr., Evolution of ticks (1996) Annual Review of Entomology, 41, pp. 141-161; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets (2016) Molecular Biology and Evolution, 33 (7), pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054; Librado, P., Rozas, J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data (2005) Bioinformatics, 25, pp. 1451-1452; Lv, J., Wu, S., Zhang, Y., Chen, Y., Feng, C., Yuan, X., Jia, G., Lin, X., Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida) (2014) Parasites & Vectors, 7, p. 93; Lv, J., Wu, S., Zhang, Y., Zhang, T., Feng, C., Jia, G., Lin, X., Development of a DNA barcoding system for the Ixodida (Acari: Ixodida) (2014) The Journal of DNA Mapping, Sequencing, and Analysis, 25, pp. 142-149; Nei, M., (1987) Molecular Evolution Genetics, , Columbia University Press, New York; Randolph, S.E., Tick-borne encephalitis virus, ticks and humans: Short-term and long-term dynamics (2008) Current Opinion in Infectious Diseases, 21 (5), pp. 462-467; Rees, D.J., Dioli, M., Kirkendall, L.R., Molecules and morphology: Evidence for cryptic hybridization in African Hyalomma (Acari: Ixodidae) (2003) Molecular Phylogenetics and Evolution, 27 (1), p. 131; Ribeiro, J.M., Alarcon-Chaidez, F., Francischetti, I.M., Mans, B.J., Mather, T.N., Valenzuela, J.G., Wikel, S.K., An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks (2006) Insect Biochemistry and Molecular Biology, 36 (2), pp. 111-129; Sambrook, J., Fritsch, E., Maniatis, T., (1989) Molecular Cloning, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; Sands, A.F., Apanaskevich, D.A., Matthee, S., Horak, I.G., Harrison, A., Karim, S., Mohammad, M.K., Matthee, C.A., Effects of tectonics and large-scale climatic changes on the evolutionary history of Hyalomma ticks (2017) Molecular Phylogenetics and Evolution, 114, pp. 153-165. , Erratum in: Molecular Phylogenetics and Evolution. 120:390; Sanger, F., Nicklen, S., Coulson, A.R., DNA sequencing with chain-terminating inhibitors (1977) Proceedings of the National Academy of Sciences of the United States of America, 74 (12), pp. 5463-5467; Sonenshine, D., Mather, T.N., (1994) Ecological Dynamics of Tick-Borne Zoonoses, p. 447. , Oxford University Press, New York; (1982) Helminths, Arthropods and Protozoa of Domesticated Animals 7th Edition, pp. 456-475. , Baillere Tindall, London; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10, pp. 512-526; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Rescearch, 22 (22), pp. 4673-4680; van Straten, M., Jongejan, F., Ticks (Acari: Ixodidae) infesting the Arabian camel (Camelus dromedarius) in the Sinai, Egypt with a note on the acaricidal efficacy of ivermectin (1993) Experimental & Applied Acarology, 17 (8), pp. 605-616; Weir, B.S., Cockerham, C.C., Estimating F-statistics for the analysis of population structure (1984) Evolution, 38, pp. 1358-1370; Zhang, Z., Schwartz, S., Wagner, L., Miller, W., A greedy algorithm for aligning DNA sequences (2000) Journal of Computational Biology, 7 (1-2), pp. 203-214; Zhang, L.R., Zhang, B., Prospects of Using DNA Barcoding for species Identification and Evaluation of the Accuracy of Sequence Databases for Ticks (Acari: Ixodida) (2014) Ticks and Tick-Borne Diseases, 5, pp. 352-358","Fallatah, S.A.; Biology Department, College of Science, Imam Abdulrahman Bin Faisal UniversitySaudi Arabia; email: sfallatah@iau.edu.sa",,"Malaysian Society for Parasitology",01275720,,,,"English","Tropical Biomed.",Article,"Final",,Scopus,2-s2.0-85071229919 "Jia W., Channappanavar R., Zhang C., Li M., Zhou H., Zhang S., Zhou P., Xu J., Shan S., Shi X., Wang X., Zhao J., Zhou D., Perlman S., Zhang L.","57202779613;35309748500;56582894400;57209103822;55505867900;57209104443;57203264246;57209110414;57209098643;49861925000;36497607000;8584763700;14822761400;57204567845;56542860200;","Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection",2019,"Emerging Microbes and Infections","8","1",,"760","772",,3,"10.1080/22221751.2019.1620083","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066487976&doi=10.1080%2f22221751.2019.1620083&partnerID=40&md5=894794e3912fb4ec859a69258cad987c","Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States; Department of Acute and Tertiary Care, and the Institute for the Study of Host–Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States; School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China","Jia, W., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Channappanavar, R., Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States, Department of Acute and Tertiary Care, and the Institute for the Study of Host–Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States; Zhang, C., School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China, Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; Li, M., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Zhou, H., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China; Zhang, S., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China; Zhou, P., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Xu, J., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Shan, S., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Shi, X., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Wang, X., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China; Zhao, J., State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Zhou, D., Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; Perlman, S., Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Zhang, L., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China","The recently identified Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe and fatal acute respiratory illness in humans. However, no approved prophylactic and therapeutic interventions are currently available. The MERS-CoV envelope spike protein serves as a crucial target for neutralizing antibodies and vaccine development, as it plays a critical role in mediating viral entry through interactions with the cellular receptor, dipeptidyl peptidase 4 (DPP4). Here, we constructed a recombinant rare serotype of the chimpanzee adenovirus 68 (AdC68) that expresses full-length MERS-CoV S protein (AdC68-S). Single intranasal immunization with AdC68-S induced robust and sustained neutralizing antibody and T cell responses in BALB/c mice. In a human DPP4 knock-in (hDPP4-KI) mouse model, it completely protected against lethal challenge with a mouse-adapted MERS-CoV (MERS-CoV-MA). Passive transfer of immune sera to naïve hDPP4-KI mice also provided survival advantages from lethal MERS-CoV-MA challenge. Analysis of sera absorption and isolated monoclonal antibodies from immunized mice demonstrated that the potent and broad neutralizing activity was largely attributed to antibodies targeting the receptor binding domain (RBD) of the S protein. These results show that AdC68-S can induce protective immune responses in mice and represent a promising candidate for further development against MERS-CoV infection in both dromedaries and humans. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","chimpanzee adenoviral vector; intranasal immunization; MERS-CoV vaccine; monoclonal antibody; receptor binding domain (RBD)","adenovirus vaccine; antiserum; glycoprotein; monoclonal antibody; neutralizing antibody; viral protein; vitronectin; coronavirus spike glycoprotein; drug carrier; recombinant vaccine; virus antibody; virus vaccine; absorption; Adenoviridae; adenovirus 68; animal experiment; Article; Bagg albino mouse; cellular immunity; chimpanzee; controlled study; epitope mapping; gene knock-in; human; human cell; immune response; immunization; Middle East respiratory syndrome; mouse; mouse model; nonhuman; passive immunization; priority journal; protein expression; receptor binding; serotype; survival; T lymphocyte; virus load; virus recombinant; Adenoviridae; animal; blood; Coronavirus infection; genetics; immunology; intranasal drug administration; Middle East respiratory syndrome coronavirus; survival analysis; transgenic animal; treatment outcome; Adenoviridae; Administration, Intranasal; Animals; Animals, Genetically Modified; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Drug Carriers; Humans; Immunization, Passive; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Survival Analysis; T-Lymphocytes; Treatment Outcome; Vaccines, Synthetic; Viral Vaccines","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Zhong, N.S., Zheng, B.J., Li, Y.M., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China (2003) Lancet, 362, pp. 1353-1358; http://www.who.int/emergencies/mers-cov/en/%3C/authors, Middle East respiratory syndrome coronavirus (MERS-CoV); 2019; http://www.who.int/emergencies/mers-cov/en/%3C/authors, Middle East respiratory syndrome coronavirus (MERS-CoV); 2017; Wilder-Smith, A., Teleman, M.D., Heng, B.H., Asymptomatic SARS coronavirus infection among healthcare workers, Singapore (2005) Emerg Infect Dis, 11, pp. 1142-1145; Song, Y.-J., Yang, J.S., Yoon, H.J., Asymptomatic Middle East Respiratory syndrome coronavirus infection using a serologic survey in Korea (2018) Epidemiol Health, 40, p. e2018014. , https://doi.org/10.4178/epih.e2018014; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Du, L., Yang, Y., Zhou, Y., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin Ther Targets, 21, pp. 131-143. , https://doi.org/10.1080/14728222.2017.1271415; Du, L., He, Y., Zhou, Y., The spike protein of SARS-CoV — a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7, pp. 226-236. , https://doi.org/10.1038/nrmicro2090; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292. , https://doi.org/10.1016/S0065-3527(06)66005-3; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848. , https://doi.org/10.1038/nrmicro3143; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89, pp. 1954-1964. , https://doi.org/10.1128/JVI.02615-14; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; Wang, N., Shi, X., Jiang, L., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993. , https://doi.org/10.1038/cr.2013.92; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , https://doi.org/10.1038/nature12328; Ohnuma, K., Haagmans, B.L., Hatano, R., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J Virol, 87, pp. 13892-13899. , https://doi.org/10.1128/JVI.02448-13; Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66, pp. 1261-1274. , https://doi.org/10.1099/jmm.0.000565; Ying, T., Li, H., Lu, L., Development of human neutralizing monoclonal antibodies for prevention and therapy of MERS-CoV infections (2015) Microbes Infect, 17, pp. 142-148. , https://doi.org/10.1016/j.micinf.2014.11.008; Jiang, L., Wang, N., Zuo, T., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, p. 234ra59. , https://doi.org/10.1126/scitranslmed.3008140; Ying, T., Du, L., Ju, T.W., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805. , https://doi.org/10.1128/JVI.00912-14; Niu, P., Zhang, S., Zhou, P., Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient (2018) J Infect Dis, 218, pp. 1249-1260. , https://doi.org/10.1093/infdis/jiy311; Zhao, G., He, L., Sun, S., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J Virol, 92, pp. e00837-e18. , https://doi.org/10.1128/JVI.00837-18; Stalin Raj, V., Okba, N.M.A., Gutierrez-Alvarez, J., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci Adv, 4, p. eaas9667. , https://doi.org/10.1126/sciadv.aas9667; Tang, X.C., Agnihothram, S.S., Jiao, Y., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci USA, 111, pp. E2018-E2026. , https://doi.org/10.1073/pnas.1402074111; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci USA, 112, pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112; Yu, X., Zhang, S., Jiang, L., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci Rep, 5, p. 13133. , https://doi.org/10.1038/srep13133; Zhang, S., Zhou, P., Wang, P., Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein (2018) Cell Rep, 24, pp. 441-452. , https://doi.org/10.1016/j.celrep.2018.06.041; Kaufmann, S.H., McElrath, M.J., Lewis, D.J., Challenges and responses in human vaccine development (2014) Curr Opin Immunol, 28, pp. 18-26. , https://doi.org/10.1016/j.coi.2014.01.009; Du, L., Tai, W., Zhou, Y., Vaccines for the prevention against the threat of MERS-CoV (2016) Expert Rev Vaccines, 15, pp. 1123-1134. , https://doi.org/10.1586/14760584.2016.1167603; Du, L., Jiang, S., Middle East respiratory syndrome: current status and future prospects for vaccine development (2015) Expert Opin Biol Ther, 15, pp. 1647-1651. , https://doi.org/10.1517/14712598.2015.1092518; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev Vaccines, 13, pp. 761-774. , https://doi.org/10.1586/14760584.2014.912134; Perlman, S., Vijay, R., Middle East respiratory syndrome vaccines (2016) Int J Infect Dis, 47, pp. 23-28. , https://doi.org/10.1016/j.ijid.2016.04.008; Wirblich, C., Coleman, C.M., Kurup, D., One-health: a safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus (2017) J Virol, 91, pp. e02040-e16. , https://doi.org/10.1128/JVI.02040-16; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132. , https://doi.org/10.1126/scitranslmed.aac7462; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111, pp. 4970-4975. , https://doi.org/10.1073/pnas.1323279111; Modjarrad, K., MERS-CoV vaccine candidates in development: the current landscape (2016) Vaccine, 34, pp. 2982-2987. , https://doi.org/10.1016/j.vaccine.2016.03.104; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114, pp. E3119-E3128. , https://doi.org/10.1073/pnas.1619109114; Roy, S., Gao, G., Lu, Y., Characterization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors (2004) Hum Gene Ther, 15, pp. 519-530. , https://doi.org/10.1089/10430340460745838; Farina, S.F., Gao, G.-P., Xiang, Z.Q., Replication-defective vector based on a chimpanzee adenovirus (2001) J Virol, 75, pp. 11603-11613. , https://doi.org/10.1128/JVI.75.23.11603-11613.2001; Vitelli, A., Folgori, A., Scarselli, E., Chimpanzee adenoviral vectors as vaccines - challenges to move the technology into the fast lane (2017) Expert Rev Vaccines, 16, pp. 1241-1252. , https://doi.org/10.1080/14760584.2017.1394842; O'Hara, G.A., Duncan, C.J.A., Ewer, K.J., Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector (2012) J Infect Dis, 205, pp. 772-781. , https://doi.org/10.1093/infdis/jir850; Barnes, E., Folgori, A., Capone, S., Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man (2012) Sci Transl Med, 4, p. 115ra1. , https://doi.org/10.1126/scitranslmed.3003155; Antrobus, R.D., Coughlan, L., Berthoud, T.K., Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens (2014) Mol Ther, 22, pp. 668-674. , https://doi.org/10.1038/mt.2013.284; Ferguson, N.M., Van Kerkhove, M.D., Identification of MERS-CoV in dromedary camels (2014) Lancet Infect Dis, 14, pp. 93-94. , https://doi.org/10.1016/S1473-3099(13)70691-1; Reusken, C.B., Haagmans, B.L., Müller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Cotten, M., Watson, S.J., Kellam, P., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study (2013) Lancet, 382, pp. 1993-2002. , https://doi.org/10.1016/S0140-6736(13)61887-5; Hayton, E.J., Rose, A., Ibrahimsa, U., Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus Ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0101591; Ledgerwood, J.E., DeZure, A.D., Stanley, D.A., Chimpanzee adenovirus vector ebola vaccine (2017) N Engl J Med, 376, pp. 928-938. , https://doi.org/10.1056/NEJMoa1410863; De Santis, O., Audran, R., Pothin, E., Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study (2016) Lancet Infect Dis, 16, pp. 311-320. , https://doi.org/10.1016/S1473-3099(15)00486-7; Borthwick, N., Ahmed, T., Ondondo, B., Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1 (2014) Mol Ther, 22, pp. 464-475. , https://doi.org/10.1038/mt.2013.248; Green, C.A., Scarselli, E., Sande, C.J., Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults (2015) Sci Transl Med, 7, p. 300ra126. , https://doi.org/10.1126/scitranslmed.aac5745; Munster, V.J., Wells, D., Lambe, T., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28. , https://doi.org/10.1038/s41541-017-0029-1; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Chadox1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788. , https://doi.org/10.1016/j.vaccine.2017.05.032; Hodgson, S.H., Ewer, K.J., Bliss, C.M., Evaluation of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite protein and ME-TRAP against controlled human malaria infection in malaria-naive individuals (2015) J Infect Dis, 211, pp. 1076-1086. , https://doi.org/10.1093/infdis/jiu579; Tutykhina, I.L., Logunov, D.Y., Shcherbinin, D.N., Development of adenoviral vector-based mucosal vaccine against influenza (2011) J Mol Med (Berl), 89, pp. 331-341. , https://doi.org/10.1007/s00109-010-0696-0; Holmgren, J., Czerkinsky, C., Mucosal immunity and vaccines (2005) Nat Med, 11, pp. S45-S53. , https://doi.org/10.1038/nm1213; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235, pp. 175-184. , https://doi.org/10.1002/path.4458; Nassar, M.S., Bakhrebah, M.A., Meo, S.A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics (2018) Eur Rev Med Pharmacol Sci, 22, pp. 4956-4961. , https://doi.org/10.26355/eurrev_201808_15635; Zhou, N., Zhang, Y., Zhang, J.C., The receptor binding domain of MERS-CoV: the Dawn of vaccine and treatment development (2014) J Formos Med Assoc, 113, pp. 143-147. , https://doi.org/10.1016/j.jfma.2013.11.006; Zhang, N., Tang, J., Lu, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res, 202, pp. 151-159. , https://doi.org/10.1016/j.virusres.2014.11.013; Zhang, N., Channappanavar, R., Ma, C., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13, pp. 180-190. , https://doi.org/10.1038/cmi.2015.03; Yang, Y., Deng, Y., Wen, B., The amino acids 736-761 of the MERS-CoV spike protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents (2014) Viral Immunol, 27, pp. 543-550. , https://doi.org/10.1089/vim.2014.0080; Lan, J., Yao, Y., Deng, Y., Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2, pp. 1438-1446. , https://doi.org/10.1016/j.ebiom.2015.08.031","Zhang, L.; Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityChina; email: zhanglinqi@tsinghua.edu.cn",,"Taylor and Francis Ltd.",22221751,,,"31130102","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85066487976 "Mair C., Nickbakhsh S., Reeve R., McMenamin J., Reynolds A., Gunson R.N., Murcia P.R., Matthews L.","56033342300;53871874000;35730417600;7005921994;37093884700;6603282357;14024885900;7202488795;","Estimation of temporal covariances in pathogen dynamics using Bayesian multivariate autoregressive models",2019,"PLoS Computational Biology","15","12", e1007492,"","",,1,"10.1371/journal.pcbi.1007492","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077296600&doi=10.1371%2fjournal.pcbi.1007492&partnerID=40&md5=296e60a1d407389c5434ae22d09b9a5f","MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom; Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Health Protection Scotland, NHS National Services Scotland, Glasgow, United Kingdom; West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom","Mair, C., MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom, School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom; Nickbakhsh, S., MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Reeve, R., Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; McMenamin, J., Health Protection Scotland, NHS National Services Scotland, Glasgow, United Kingdom; Reynolds, A., Health Protection Scotland, NHS National Services Scotland, Glasgow, United Kingdom; Gunson, R.N., West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom; Murcia, P.R., MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Matthews, L., Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom","It is well recognised that animal and plant pathogens form complex ecological communities of interacting organisms within their hosts, and there is growing interest in the health implications of such pathogen interactions. Although community ecology approaches have been used to identify pathogen interactions at the within-host scale, methodologies enabling robust identification of interactions from population-scale data such as that available from health authorities are lacking. To address this gap, we developed a statistical framework that jointly identifies interactions between multiple viruses from contemporaneous non-stationary infection time series. Our conceptual approach is derived from a Bayesian multivariate disease mapping framework. Importantly, our approach captures within- and between-year dependencies in infection risk while controlling for confounding factors such as seasonality, demographics and infection frequencies, allowing genuine pathogen interactions to be distinguished from simple correlations. We validated our framework using a broad range of synthetic data. We then applied it to diagnostic data available for five respiratory viruses co-circulating in a major urban population between 2005 and 2013: adenovirus, human coronavirus, human metapneumovirus, influenza B virus and respiratory syncytial virus. We found positive and negative covariances indicative of epidemiological interactions among specific virus pairs. This statistical framework enables a community ecology perspective to be applied to infectious disease epidemiology with important utility for public health planning and preparedness. © 2019 Mair et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"Adenoviridae; analysis of covariance; Article; Bayes theorem; Coronavirinae; correlation analysis; Human respiratory syncytial virus; infection risk; infectious agent; Influenza B virus; Metapneumovirus; multivariate autoregressive model; nonhuman; seasonal variation; simulation; statistical model; time series analysis; trend study; urban population; animal; Bayes theorem; biological model; biology; computer simulation; host pathogen interaction; human; medical informatics; multivariate analysis; respiratory tract infection; spatiotemporal analysis; time factor; virus infection; Animals; Bayes Theorem; Computational Biology; Computer Simulation; Host Microbial Interactions; Host-Pathogen Interactions; Humans; Models, Biological; Multivariate Analysis; Public Health Informatics; Respiratory Tract Infections; Spatio-Temporal Analysis; Time Factors; Virus Diseases","Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S., Paterson, S., Species interactions in a parasite community drive infection risk in a wildlife population (2007) Science, 330 (6001), pp. 243-246. , https://doi.org/10.1126/science.1190333, New York, NY; Rynkiewicz, E.C., Pedersen, A.B., Fenton, A., An ecosystem approach to understanding and managing within-host parasite community dynamics (2015) Trends in Parasitology, 31 (5), pp. 212-221. , https://doi.org/10.1016/j.pt.2015.02.005, PMID: 25814004; Seabloom, E.W., Borer, E.T., Gross, K., Kendig, A.E., Lacroix, C., Mitchell, C.E., The community ecology of pathogens: Coinfection, coexistence and community composition Ecology Letters, 18 (4), pp. 401-415. , https://doi.org/10.1111/ele.12418, PMID: 25728488; Bäumler, A., Sperandio, V., Interactions between the microbiota and pathogenic bacteria in the gut (2016) Nature, 535 (7610), pp. 85-93. , https://doi.org/10.1038/nature18849; Mina, M.J., Klugman, K.P., The role of influenza in the severity and transmission of respiratory bacterial disease (2014) The Lancet Respiratory Medicine, 2 (9), pp. 750-763. , https://doi.org/10.1016/S2213-2600(14)70131-6, PMID: 25131494; Lloyd-Smith, J.O., Vacated niches, competitive release and the community ecology of pathogen eradication (2013) Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1623), p. 20120150. , https://doi.org/10.1098/rstb.2012.0150; Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus (2016) Nature Immunology, 17 (9), pp. 1102-1108. , https://doi.org/10.1038/ni.3515, PMID: 27339099; Singer, M., Pathogen-pathogen interaction (2010) Virulence, 1 (1), pp. 10-18. , https://doi.org/10.4161/viru.1.1.9933, PMID: 21178409; Shrestha, S., King, A.A., Rohani, P., Statistical inference for multi-pathogen systems (2011) PLOS Computational Biology, 7, pp. 1-14. , https://doi.org/10.1371/journal.pcbi.1002135; Randuineau, B., (2015) Interactions between Pathogens: What Are the Impacts on Public Health? [Theses], , https://tel.archives-ouvertes.fr/tel-01487918, Université Pierre et Marie Curie—Paris VI; Cazelles, B., Champagne, C., Dureau, J., Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models (2018) PLOS Computational Biology, 14, pp. 1-26. , https://doi.org/10.1371/journal.pcbi.1006211; Dominici, F., McDermott, A., Zeger, S.L., Samet, J.M., On the use of generalized additive models in time-series studies of air pollution and health (2002) American Journal of Epidemiology, 156 (3), pp. 193-203. , https://doi.org/10.1093/aje/kwf062, PMID: 12142253; Willems, S., Segala, C., Maidenberg, M., Mesbah, M., (2007) Longitudinal Analysis of Short-Term Bronchiolitis Air Pollution Association Using Semiparametric Models, pp. 467-487. , https://doi.org/10.1007/978-0-8176-4542-7_30, Auget JL, Balakrishnan N, Mesbah M, Molenberghs G, editors. Boston, MA: Birkhäuser Boston; Imai, C., Hashizume, M., A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases; Wood, S.N., (2017) Generalized Additive Models: An Introduction with R, , 2nd ed. Chapman and Hall/CRC; Simpson, G.L., Modelling palaeoecological time series using generalised additive models (2018) Frontiers in Ecology and Evolution, 6, p. 149. , https://doi.org/10.3389/fevo.2018.00149; Hunter, P.R., Colón-González, F.J., Brainard, J., Majuru, B., Pedrazzoli, D., Abubakar, I., Can economic indicators predict infectious disease spread? A cross-country panel analysis of 13 European countries (2019) Scandinavian Journal of Public Health, , 0(0):1403494819852830; Ravindra, K., Rattan, P., Mor, S., Aggarwal, A.N., Generalized additive models: Building evidence of air pollution, climate change and human health (2019) Environment International, 132, p. 104987. , https://doi.org/10.1016/j.envint.2019.104987, PMID: 31398655; Pascual, M., Rodó, X., Ellner, S.P., Colwell, R., Bouma, M.J., Cholera dynamics and El Niño-Southern oscillation (2000) Science, 289 (5485), pp. 1766-1769. , https://doi.org/10.1126/science.289.5485.1766, PMID: 10976073; Cazelles, B., Chavez, M., Magny, G., Guégan, J., Hales, S., Time-dependent spectral analysis of epidemiological time-series with wavelets (2007) Journal of the Royal Society Interface, 4 (15), pp. 625-636. , https://doi.org/10.1098/rsif.2007.0212; Bhattacharyya, S., Gesteland, P.H., Korgenski, K., Bjornstad, O.N., Adler, F.R., Cross-immunity between strains explains the dynamical pattern of paramyxoviruses (2015) Proceedings of the National Academy of Sciences of the United States of America, 112, pp. 13396-13400. , https://doi.org/10.1073/pnas.1516698112, PMID: 26460003; Groth, A., Ghil, M., Multivariate singular spectrum analysis and the road to phase synchronization (2011) Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 84, p. 036206. , https://doi.org/10.1103/PhysRevE.84.036206, PMID: 22060474; Shrestha, S., Foxman, B., Weinberger, D.M., Steiner, C., Viboud, C., Rohani, P., Identifying the interaction between influenza and pneumococcal pneumonia using incidence data (2013) Science Translational Medicine, 5 (191), p. 191ra84. , https://doi.org/10.1126/scitranslmed.3005982, PMID: 23803706; Barnett, L., Barrett, A.B., Seth, A.K., Granger causality and transfer entropy are equivalent for Gaussian variables (2009) Phys Rev Lett, 103, p. 238701. , https://doi.org/10.1103/PhysRevLett.103.238701; Seth, A.K., A MATLAB toolbox for Granger causal connectivity analysis (2010) Journal of Neuroscience Methods, 186 (2), pp. 262-273. , https://doi.org/10.1016/j.jneumeth.2009.11.020, PMID: 19961876; Fisman, D., Seasonality of viral infections: Mechanisms and unknowns (2012) Clinical Microbiology and Infection, 18 (10), pp. 946-954. , https://doi.org/10.1111/j.1469-0691.2012.03968.x, PMID: 22817528; Lawson, A., Lee, D., MacNab, Y., Editorial (2016) Statistical Methods in Medical Research, 25 (4), p. 1079. , https://doi.org/10.1177/0962280216660410, PMID: 27566766; Lawson, A., Williams, F., (2001) An Introductory Guide to Disease Mapping, , UK: John Wiley & Sons, Ldt; Knorr-Held, L., Besag, J., Modelling risk from a disease in time and space (1998) Statistics in Medicine, 17 (18), pp. 2045-2060. , https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p, PMID: 9789913; Lee, D., A comparison of conditional autoregressive models used in Bayesian disease mapping (2011) Spatial and Spatio-Temporal Epidemiology, 2 (2), pp. 79-89. , https://doi.org/10.1016/j.sste.2011.03.001, PMID: 22749587; Robertson, C., Nelson, T.A., MacNab, Y.C., Lawson, A.B., Review of methods for space-time disease surveillance (2010) Spatial and Spatio-Temporal Epidemiology, 1 (2), pp. 105-116. , https://doi.org/10.1016/j.sste.2009.12.001, PMID: 22749467; Rushworth, A., Lee, D., Mitchell, R., A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London (2014) Spatial and Spatio-Temporal Epidemiology, 10, pp. 29-38. , https://doi.org/10.1016/j.sste.2014.05.001, PMID: 25113589; Knorr-Held, L., Bayesian modelling of inseparable space-time variation in disease risk (2000) Statistics in Medicine, 19, pp. 2555-2567. , https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aidsim587>3.0.co;2-#, PMID: 10960871; Martínez-Beneito, M.A., Lopez-Quilez, A., Botella-Rocamora, P., An autoregressive approach to spatio-temporal disease mapping (2008) Statistics in Medicine, 27 (15), pp. 2874-2889. , https://doi.org/10.1002/sim.3103; Richardson, S., Abellan, J.J., Best, N., Bayesian spatio-temporal analysis of joint patterns of Male and female lung cancer risks in Yorkshire (UK) (2006) Statistical Methods in Medical Research, 15 (4), pp. 385-407. , https://doi.org/10.1191/0962280206sm458oa, PMID: 16886738; Held, L., Paul, M., Modeling seasonality in space-time infectious disease surveillance data (2012) Biometrical Journal, 54 (6), pp. 824-843. , https://doi.org/10.1002/bimj.201200037, PMID: 23034894; Manda, S., Feltbower, R., Gilthorpe, M., Review and empirical comparison of joint mapping of multiple diseases (2012) Southern African Journal of Epidemiology and Infection, 27 (4), pp. 169-182. , https://doi.org/10.1080/10158782.2012.11441505; Nickbakhsh, S., Thorburn, F., Wissmann, B.V., McMenamin, J., Gunson, R., Murcia, P., Extensive multiplex PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections (2016) Epidemiol Infect, 144, pp. 2064-2076. , https://doi.org/10.1017/S0950268816000339, PMID: 26931455; Anestad, G., Interference between outbreaks of respiratory syncytial virus and influenza virus infection (1982) The Lancet, p. 502. , https://doi.org/10.1016/S0140-6736(82)91466-0; Anestad, G., Vainio, K., Hungnes, O., Interference between outbreaks of epidemic viruses (2007) Scandinavian Journal of Infectious Diseases, 39, pp. 653-654. , https://doi.org/10.1080/00365540701253860, PMID: 17577842; Casalegno, J.S., Ottmann, M., Duchamp, M.B., Escuret, V., Billaud, G., Frober, E., Rhinovirus delayed the circulation of the pandemic influenze A (H1N1) 2009 virus in France (2010) European Journal of Clinical Microbiology and Infectious Diseases, 16, pp. 326-329; van Asten, L., Bijkerk, P., Fanoy, E., van Ginkel, A., Suijkerbuijk, A., van der Hoek, W., Early occurrence of influenza A epidemics coincided with changes in occurrence of other respiratory virus infections (2016) Influenza and Other Respiratory Viruses, 10 (1), pp. 14-26. , https://doi.org/10.1111/irv.12348, PMID: 26369646; Greer, R.M., McErlean, P., Arden, K.E., Faux, C.E., Nitsche, A., Lambert, S.B., Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? (2009) Journal of Clinical Virology, 45 (1), pp. 10-15. , https://doi.org/10.1016/j.jcv.2009.03.008, PMID: 19376742; Pascalis, H., Temmam, S., Turpin, M., Intense co-circulation of non-influenza respiratory viruses during the first wave of pandemic influenza PH1N1/2009: A cohort study in Reunion Island (2012) PLoS ONE, 7. , https://doi.org/10.1371/journal.pone.0044755, PMID: 22984554; Unkel, S., Farrington, C.P., Garthwaite, P.H., Robertson, C., Andrews, N., Statistical methods for the prospective detection of infectious disease outbreaks: A review (2012) Journal of the Royal Statistical Society: Series A (Statistics in Society), 175 (1), pp. 49-82. , https://doi.org/10.1111/j.1467-985X.2011.00714.x; Gunson, R.N., Collins, T.C., Carman, W.F., Real-time RT-PCR detection of 12 respiratory viral infections in four triplex reactions (2005) Journal of Clinical Virology, 33, pp. 341-344. , https://doi.org/10.1016/j.jcv.2004.11.025, PMID: 15927526; (2019) Confidentiality Factsheet, , https://www.nhsinform.scot/publications/confidentiality-factsheet; (2019) Confidentiality and Data Protection, , https://www.isdscotland.org/About-ISD/Confidentiality/index.asp?Co=Y; (2019) Data Protection, , http://www.nhsnss.org/pages/corporate/data_protection.php; Lawson, A., (2009) Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology, , Boca Raton: Chapman & Hall/CRC; Oliveira, V.D., Bayesian analysis of conditional autoregressive models (2012) Ann Inst Stat Math, 64, pp. 107-133. , https://doi.org/10.1007/s10463-010-0298-1; Martinez-Beneito, M.A., A general modelling framework for multivariate disease mapping (2013) Biometrika, 100 (3), p. 539. , https://doi.org/10.1093/biomet/ast023; Jin, X., Carlin, B., Banerjee, S., Generalized hierarchical multivariate car models for areal data (2005) Biometrics, 61, pp. 950-961. , https://doi.org/10.1111/j.1541-0420.2005.00359.x, PMID: 16401268; MacNab, Y.C., On Bayesian shared component disease mapping and ecological regression with errors in covariates (2010) Statistics in Medicine, 29 (11), pp. 1239-1249. , https://doi.org/10.1002/sim.3875, PMID: 20205271; MacNab, Y.C., Mapping disability-adjusted life years: A Bayesian hierarchical model framework for burden of disease and injury assessment (2007) Statistics in Medicine, 26 (26), pp. 4746-4769. , https://doi.org/10.1002/sim.2890, PMID: 17427183; Chen, Z., Dunson, D., Random effects selection in linear mixed models (2003) Biometrics, 59, pp. 762-769. , https://doi.org/10.1111/j.0006-341x.2003.00089.x, PMID: 14969453; Pourahmadi, M., Covariance estimation: The GLM and regularization perspectives (2011) Stat Sci, 26, pp. 369-387. , https://doi.org/10.1214/11-STS358; Wall, M.M., A close look at the spatial structure implied by the CAR and SAR models (2004) Journal of Statistical Planning and Inference, 121 (2), pp. 311-324. , https://doi.org/10.1016/S0378-3758(03)00111-3; MacNab, Y., On identification in Bayesian disease mapping and ecological-spatial regression models (2014) Stat Methods Med Res, 23, pp. 134-155. , https://doi.org/10.1177/0962280212447152, PMID: 22573502; Plummer, M., (2003) JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling; Su, Y., Yajima, M., (2015) R2jags: A Package for Running ‘JAGS’ from R; (2015) R: A Language and Environment for Statistical Computing, , http://www.R-project.org/; Thomas, A., Best, N., Lunn, D., Arnold, R., Spiegelhalter, D., (2004) GeoBUGS User Manual; Matz, M.V., Wright, R.M., Scott, J.G., No control genes required: Bayesian analysis of qRT-PCR data (2013) PLOS ONE, 8 (8), pp. 1-12. , https://doi.org/10.1371/journal.pone.0071448; Lin, Y., Lipsitz, S., Sinha, D., Gawande, A.A., Regenbogen, S.E., Greenberg, C.C., Using Bayesian p-values in a 2 × 2 table of matched pairs with incompletely classified data (2009) Journal of the Royal Statistical Society: Series C (Applied Statistics), 58 (2), pp. 237-246. , https://doi.org/10.1111/j.1467-9876.2008.00645.x; Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: A practical and powerful approach to multiple testing (1995) J R Stat Soc Series B Stat Methodol, 57, pp. 289-300; Boshnakov, G.N., Halliday, J., (2019) Sarima: Simulation and Prediction with Seasonal ARIMA Models, , https://CRAN.R-project.org/package=sarima","Mair, C.; MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowUnited Kingdom; email: Colette.Mair@glasgow.ac.uk",,"Public Library of Science",1553734X,,,"31834896","English","PLoS Comput. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85077296600 "Yew S.M., Tan K.-L., Yeo S.K., Ng K.P., Kuan C.S.","55200798400;57191991569;57189906454;7403179089;56684496900;","Molecular epidemiology of respiratory viruses among Malaysian Young children with a confirmed respiratory infection during 2014–2015",2019,"Journal of Thoracic Disease","11","11",,"4626","4633",,,"10.21037/jtd.2019.10.69","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077117329&doi=10.21037%2fjtd.2019.10.69&partnerID=40&md5=2122e6713438240a09f24dab43a8070f","Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 59400, Malaysia; Neogenix Laboratoire SDN Bhd (1191967-W), Petaling Jaya, Selangor, 47301, Malaysia; Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Pandan Indah, Kuala Lumpur, 55100, Malaysia; Centre for Holistic Intelligence, Institut Sains Islam, Universiti Sains Islam Malaysia (USIM), Nilai, Negeri Sembilan, 71800, Malaysia; School of Bioscience, Taylor’s University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan, 47500, Malaysia","Yew, S.M., Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 59400, Malaysia, Neogenix Laboratoire SDN Bhd (1191967-W), Petaling Jaya, Selangor, 47301, Malaysia; Tan, K.-L., Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Pandan Indah, Kuala Lumpur, 55100, Malaysia, Centre for Holistic Intelligence, Institut Sains Islam, Universiti Sains Islam Malaysia (USIM), Nilai, Negeri Sembilan, 71800, Malaysia; Yeo, S.K., School of Bioscience, Taylor’s University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan, 47500, Malaysia; Ng, K.P., Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 59400, Malaysia; Kuan, C.S., Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 59400, Malaysia, Neogenix Laboratoire SDN Bhd (1191967-W), Petaling Jaya, Selangor, 47301, Malaysia","Background: In many developing countries, acute respiratory tract infections (ARTIs) are the main cause of morbidity and mortality among young children. This study aims to evaluate the molecular epidemiology of respiratory viruses among Malaysian children with confirmed respiratory infections between July 2014 and July 2015. Methods: A total of 394 nasopharyngeal swabs were collected prospectively from children age 0–5 years old with ARTIs from hospitals in Kuala Lumpur. Respiratory viral panel (RVP) assay was used to identify the viral aetiology of respiratory infections. Results: From a total of 394 samples, the positive detection rate was 79.9% (n=315). A total of 15 types of RNA viruses and a single type of DNA virus were detected. Enterovirus/rhinovirus (n=112, 28.4%), respiratory syncytial virus (RSV) (n=85, 21.6%), adenovirus (n=64, 16.2%), human bocavirus (n=34, 8.6%), and human metapneumovirus (n=29, 7.4%) were the five predominant viruses. Enterovirus/rhinovirus and RSV constituted most of the viral respiratory infections among young children, especially among children less than 1 year old. No coronavirus was detected among children between 3 and 5 years old. Co-infection caused by 2 or 3 respiratory viruses were detected in 52 patients (13.2%). Enterovirus/rhinovirus, adenovirus, and human bocavirus demonstrated pronounced seasonality. The infection rate peaked during mid-year, while the lowest activity occurred during early of the year. Conclusions: The use of molecular assay as a routine diagnostic in the hospitals can improve the diagnosis and management of respiratory tract infections among children. © Journal of Thoracic Disease. All rights reserved.","Acute respiratory tract infections (ARTIs); Molecular epidemiology; Young children","Adenoviridae; Article; child; Enterovirus; female; human; Human bocavirus; Human metapneumovirus; Human respiratory syncytial virus; infection rate; major clinical study; Malaysia; male; mixed infection; molecular epidemiology; nonhuman; respiratory tract infection; respiratory virus; Rhinovirus; seasonal variation; throat culture; virus detection; virus etiology","Williams, B.G., Gouws, E., Boschi-Pinto, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; Regamey, N., Kaiser, L., Roiha, H.L., Viral etiology of acute respiratory infections with cough in infancy: A community-based birth cohort study (2008) Pediatr Infect Dis J, 27, pp. 100-105; Bush, A., Thomson, A.H., Acute bronchiolitis (2007) BMJ, 335, pp. 1037-1041; Black, R.E., Cousens, S., Johnson, H.L., Global, regional, and national causes of child mortality in 2008: A systematic analysis (2010) Lancet, 375, pp. 1969-1987; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23, pp. 74-98; Meerhoff, T.J., Mosnier, A., Schellevis, F., Progress in the surveillance of respiratory syncytial virus (RSV) in Europe: 2001-2008 (2009) Euro Surveill, 14 (40); Iwane, M.K., Edwards, K.M., Szilagyi, P.G., Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children (2004) Pediatrics, 113, pp. 1758-1764; Song, J.R., Jin, Y., Xie, Z.P., Novel human bocavirus in children with acute respiratory tract infection (2010) Emerg Infect Dis, 16, pp. 324-327; Monto, A.S., Koopman, J.S., Bryan, E.R., The TecumSeH study of illness. XIV. Occurrence of respiratory viruses, 1976-1981 (1986) Am J Epidemiol, 124, pp. 359-367; Jin, Y., Zhang, R.F., Xie, Z.P., Prevalence of adenovirus in children with acute respiratory tract infection in Lanzhou, China (2013) Virol J, 10, p. 271; Singleton, R.J., Holman, R.C., Folkema, A.M., Trends in lower respiratory tract infection hospitalizations among American Indian/Alaska Native children and the general US child population (2012) J Pediatr, 161, pp. 296-302; Zamberi, S., Zulkifli, I., Ilina, I., Respiratory viruses detected in hospitalised paediatric patients with respiratory infections (2003) Med J Malaysia, 58, pp. 681-687; Chan, P.W., Chew, F.T., Tan, T.N., Seasonal variation in respiratory syncytial virus chest infection in the tropics (2002) Pediatr Pulmonol, 34, pp. 47-51; Saat, Z., Abdul Rashid, T.R., Yusof, M.A., Seasonal influenza virus strains circulating in Malaysia from 2005 to 2009 (2010) Southeast Asian J Trop Med Public Health, 41, pp. 1368-1373; Khor, C.S., Sam, I.C., Hooi, P.S., Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: A retrospective study of 27 years (2012) BMC Pediatr, 12, p. 32; Kuan, C.S., Sim, H.P., Lee, L.M., Comparison of Anyplex II RV16 assay with conventional methods for detection of respiratory viruses (2016) Trop Biomed, 33, pp. 311-319; Henrickson, K.J., Kuhn, S.M., Savatski, L.L., Recovery of human parainfluenza virus types one and two (1994) J Virol Methods, 46, pp. 189-205; Bortolin, S., Black, M., Modi, H., Analytical validation of the tag-it high-throughput microsphere-based universal array genotyping platform: Application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms (2004) Clin Chem, 50, pp. 2028-2036; LaSala, P.R., Bufton, K.K., Ismail, N., Prospective comparison of R-mix shell vial system with direct antigen tests and conventional cell culture for respiratory virus detection (2007) J Clin Virol, 38, pp. 210-216; Liolios, L., Jenney, A., Spelman, D., Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens (2001) J Clin Microbiol, 39, pp. 2779-2783; Tantivanich, S., Suphanaranonda, K., Balachanda, K., Detection of respiratory syncytial virus from clinical specimens: Comparison between reverse transcription polymerase chain reaction and tissue culture (1995) Southeast Asian J Trop Med Public Health, 26, pp. 684-688; Thomazelli, L.M., Vieira, S., Leal, A.L., Surveillance of eight respiratory viruses in clinical samples of pediatric patients in southeast Brazil (2007) J Pediatr (Rio J), 83, pp. 422-428; Merante, F., Yaghoubian, S., Janeczko, R., Principles of the xTAG respiratory viral panel assay (RVP Assay) (2007) J Clin Virol, 40, pp. S31-S35; Kuan, C.S., Yew, S.M., Hooi, P.S., Detection of respiratory viruses from ARTI patients by XTAG RVP fast V2 assay and conventional methods (2017) Malays J Med Sci, 24, pp. 33-43; Choi, E.H., Lee, H.J., Kim, S.J., The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000-2005 (2006) Clin Infect Dis, 43, pp. 585-592; Yeolekar, L.R., Damle, R.G., Kamat, A.N., Respiratory viruses in acute respiratory tract infections in Western India (2008) Indian J Pediatr, 75, pp. 341-345; Kwofie, T.B., Anane, Y.A., Nkrumah, B., Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana (2012) Virol J, 9, p. 78; Shafik, C.F., Mohareb, E.W., Yassin, A.S., Viral etiologies of lower respiratory tract infections among Egyptian children under five years of age (2012) BMC Infect Dis, 12, p. 350; Yoshida, L.M., Suzuki, M., Yamamoto, T., Viral pathogens associated with acute respiratory infections in central Vietnamese children (2010) Pediatr Infect Dis J, 29, pp. 75-77; Loo, L.H., Tan, B.H., Ng, L.M., Human metapneumovirus in children, Singapore (2007) Emerg Infect Dis, 13, pp. 1396-1398; Samransamruajkit, R., Thanasugarn, W., Prapphal, N., Human metapneumovirus in infants and young children in Thailand with lower respiratory tract infections; molecular characteristics and clinical presentations (2006) J Infect, 52, pp. 254-263; Tan, B.H., Lim, E.A., Seah, S.G., The incidence of human bocavirus infection among children admitted to hospital in Singapore (2009) J Med Virol, 81, pp. 82-89; Bearden, A., Friedrich, T.C., Goldberg, T.L., An outbreak of the 2009 influenza a (H1N1) virus in a children's hospital (2012) Influenza Other Respir Viruses, 6, pp. 374-379; Gaunt, E.R., Hardie, A., Claas, E.C., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Gerna, G., Campanini, G., Rovida, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78, pp. 938-949; Pene, F., Merlat, A., Vabret, A., Coronavirus 229E-related pneumonia in immunocompromised patients (2003) Clin Infect Dis, 37, pp. 929-932; Talbot, H.K., Crowe, J.E., Jr., Edwards, K.M., Coronavirus infection and hospitalizations for acute respiratory illness in young children (2009) J Med Virol, 81, pp. 853-856; Dijkman, R., Jebbink, M.F., El Idrissi, N.B., Human coronavirus NL63 and 229E seroconversion in children (2008) J Clin Microbiol, 46, pp. 2368-2373; Chew, F.T., Doraisingham, S., Ling, A.E., Seasonal trends of viral respiratory tract infections in the tropics (1998) Epidemiol Infect, 121, pp. 121-128; Djelantik, I.G., Gessner, B.D., Soewignjo, S., Incidence and clinical features of hospitalization because of respiratory syncytial virus lower respiratory illness among children less than two years of age in a rural Asian setting (2003) Pediatr Infect Dis J, 22, pp. 150-157; Omer, S.B., Sutanto, A., Sarwo, H., Climatic, temporal, and geographic characteristics of respiratory syncytial virus disease in a tropical island population (2008) Epidemiol Infect, 136, pp. 1319-1327; Loh, T.P., Lai, F.Y., Tan, E.S., Correlations between clinical illness, respiratory virus infections and climate factors in a tropical paediatric population (2011) Epidemiol Infect, 139, pp. 1884-1894; Suwanjutha, S., Chantarojanasiri, T., Watthana-Kasetr, S., A study of nonbacterial agents of acute lower respiratory tract infection in Thai children (1990) Rev Infect Dis, 12, pp. S923-S928","Kuan, C.S.; Department of Medical Microbiology, Faculty of Medicine, University of MalayaMalaysia; email: cs_sam85@yahoo.com.my",,"AME Publishing Company",20721439,,,,"English","J. Thorac. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85077117329 "Ambrogi C., Ragagli C., Decaro N., Ferroglio E., Mencucci M., Apollonio M., Mannelli A.","6603598340;16242531900;6701636107;6701439121;57210644313;7004580395;7003410818;","Health survey on the wolf population in Tuscany, Italy",2019,"Hystrix","30","1",,"19","23",,,"10.4404/hystrix-00100-2019","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071178712&doi=10.4404%2fhystrix-00100-2019&partnerID=40&md5=4969a878ab161097f6287fe281b387bd","Comando Unità Tutela Forestale Ambientale Agroalimentare Carabinieri; Dipartimento di Medicina Veterinaria, Strada Provinciale per Casamassima 3, Valenzano, Ba 70010, Italy; Dipartimento di Scienze Veterinarie, Largo Paolo Braccini 2, Grugliasco, TO 10095, Italy; Department of Veterinary Medicine, University of Sassari, Sassari, Sardinia, Italy","Ambrogi, C., Comando Unità Tutela Forestale Ambientale Agroalimentare Carabinieri; Ragagli, C., Comando Unità Tutela Forestale Ambientale Agroalimentare Carabinieri; Decaro, N., Dipartimento di Medicina Veterinaria, Strada Provinciale per Casamassima 3, Valenzano, Ba 70010, Italy; Ferroglio, E., Dipartimento di Scienze Veterinarie, Largo Paolo Braccini 2, Grugliasco, TO 10095, Italy; Mencucci, M., Comando Unità Tutela Forestale Ambientale Agroalimentare Carabinieri; Apollonio, M., Department of Veterinary Medicine, University of Sassari, Sassari, Sardinia, Italy; Mannelli, A., Dipartimento di Scienze Veterinarie, Largo Paolo Braccini 2, Grugliasco, TO 10095, Italy","The objective of our study was to survey the occurence of transmissible agents in wolf (Canis lupus) population living in the northern Apennines. A total of 703 wolf fecal samples were collected in the Appennino Tosco-Emiliano National Park (ATENP) and the Foreste Casentinesi National Park (FCNP) in Tuscany, Italy. Parasitic forms (eggs or oocists) were detected in 74.3% of fecal samples, mainly infested by Trichuroidae (60.4%) and Coccidia (27.3%); heavy Trichuroidea and Coccidia infestation were found in 8.5% and 17.4% of samples (the intensity of infestation measured as EPG >1000, OPG >10000). Taking into consideration the main canine viruses, we evaluated the presence of Parvovirus in feces: 54 specimens from the study area in the ATENP and 71 from the study area in the FCNP were negative by PCR for the detection of Parvovirus. Tissue samples from nine wolves found dead were negative for Canine Distemper Virus (CDV), Canine Coronavirus (CCoV), Canine Adenovirus-1 (CAdV-1) and Canine Adenovirus-2 (CAdV-2). Tissue samples of two dead wolves in the FCNP were positive for Canine Parvovirus (CPV) and the virus was characterized as the antigenic variant 2a. Wild boar is the main component of the wolf’s diet in the study areas and 57 out of 135 serum samples (42.2%), collected from wild boars in the surroundings of the FCNP, yielded positive results for the detection of antibodies against Pseudorabies Virus (PrV). Wolves, especially in mountain areas, share the same habitat with dogs: this suggests how useful dog vaccination is for wolf protection. © 2019, Associazione Teriologica Italiana onlus. All rights reserved.","Dog; Monitoring; Parasites; Parvovirus; Wolf",,"Alfano, F., Dowgier, G., Valentino, M.P., Galiero, G., Tinelli, A., Decaro, N., Fusco, G., Identification of Pantropic Canine Coronavirus in a Wolf (Canis lupus italicus) in Italy (2019) J. Wildl. Dis, 55 (2), pp. 504-508; Allison, A.B., Kohler, D.J., Fox, K.A., Brown, J.D., Gerhold, R.G., Shearn-Bochsler, V.I., Dubovi, E.J., Holmesh, E.C., Frequent cross-species transmission of parvoviruses among diverse carnivore hosts (2013) J. Virol., 87 (4), pp. 2342-2347; Almberg, E.S., Mech, L.D., Smith, D.W., Sheldon, J.W., Crabtree, R.L., A serological survey of infectious disease in Yellowstone National Park’s canid community (2009) Plos ONE, 4 (9); Anderson, R.M., May, R.M., Regulation and stability of host-parasite population interactions: I. Regulatory processes (1978) J. Animal. Ecol., 47 (1), pp. 219-247; Apollonio, M., Mattioli, L., Scandura, M., Mauri, L., Gazzola, A., Avanzinelli, E., Wolves in the Casentinesi Forests: Insights for wolf conservation in Italy from a protected area with a rich wild prey community (2004) Biol. Conserv., 120 (2), pp. 249-260; Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R., Prosperi, S., Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy (2001) J. Gen. Virol., 82, pp. 1555-1560; Bryan, H.M., Darimont, C.T., Hill, J.E., Paquet, P.C., Thompson, R.C., Wagner, B., Smits, J.E., Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: Wolves in a coastal archipelago (2012) Parasitology, 139 (6), pp. 781-790; Byman, D., van Ballenberghe, V., Schlotthauer, J.C., Erickson, A.W., Parasites of wolves, Canis lupus L., in northeastern Minnesota, as indicated by analysis of fecal samples (1977) Can. J. Zool., 55 (2), pp. 376-380; Caniglia, R., Fabbri, E., Galaverni, M., Milanesi, P., Randi, E., Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population (2014) J. Mammal., 95 (1), pp. 41-59; Capelli, G., Stancampiano, L., Magi, M., Poglayen, G., Guberti, V., Diversità delle comunità parassitarie intestinali in tre popolazioni di volpi (2003) J. Mt. Ecol., 7, pp. 199-205; Capua, I., Fico, R., Banks, M., Tamba, M., Calzetta, G., Isolation and characterization of an Aujeszky’s disease virus naturally infecting a wild boar (Sus scrofa) (1997) Vet. Microbiol., 55, pp. 141-146; Ciancio, O., Corona, O., Lamonaca, A., Portoghesi, L., Travaglini, D., Conversion of clearcut beech coppices into high forests with continuous cover: A case study in central Italy (2006) Forest Ecol. Manag., 224, pp. 235-240; Choquette, L.P., Kuyt, E., Serological indication of canine distemper and of infectious canine hepatitis in wolves (Canis lupus L.) in northern Canada (1974) J. Wildl. Dis., 10 (4), pp. 321-324; Cleaveland, S., Appel, M.J., Chalmers, W.K., Chillingworth, C., Kaare, M., Dye, C., Serological and demographic evidence for domestic dogs as a source of canine distemper virus infection for Serengeti wildlife (2000) Vet. Microbiol., 72 (3-4), pp. 217-227; Craig, H.L., Craig, P.S., Helminth parasites of wolves (Canis lupus): A species list and an analysis of published prevalence studies in Nearctic and Palearctic populations (2005) J. Helminthol., 79 (2), pp. 95-103; Darimont, C.T., Reimchen, T.E., Bryan, H.M., Paquet, P.C., Faecal-centric approaches to wildlife ecology and conservation. Methods, data and ethics (2008) Wildl. Biol. Pract., 4 (2), pp. 73-87; Davis, M.L., Stephens, P.A., Willis, S.G., Bassi, E., Marcon, A., Donaggio, E., Prey selection by an apex predator: The importance of sampling uncertainty (2012) Plos ONE, 7 (10); Decaro, N., Buonavoglia, C., Canine parvovirus — a review of epidemiological and diagnostic aspects, with emphasis on type 2c (2012) Vet. Microbiol., 155 (1), pp. 1-12; Decaro, N., Camero, M., Greco, G., Zizzo, N., Tinelli, A., Campolo, M., Pratelli, A., Buonavoglia, C., Canine distemper and related diseases: Report of a severe outbreak in a kennel (2004) New Microbiol, 27 (2), pp. 177-181; Decaro, N., Cirone, F., Desario, C., Elia, G., Lorusso, E., Colaianni, M.L., Martella, V., Buonavoglia, C., Severe parvovirus in a 12-year-old dog that had been repeatedly vaccinated (2009) Vet. Rec., 164 (19), pp. 593-595; Decaro, N., Desario, C., Elia, G., Martella, V., Mari, V., Lavazza, A., Nardi, M., Buonavoglia, C., Evidence for immunization failure in vaccinated adult dogs infected with canine parvovirus type 2c (2008) New Microbiol, 31 (1), pp. 125-130; Decaro, N., Elia, G., Martella, V., Campolo, M., Desario, C., Camero, M., Cirone, F., Buonavoglia, C., Characterization of the canine parvovirus type 2 variants using minor groove binder probe technology (2006) J. Virol. Methods., 133 (1), pp. 92-99; Decaro, N., Elia, G., Martella, V., Desario, C., Campolo, M., Di Trani, L., Tarsitano, E., Buonavoglia, C., A real-time PCR assay for rapid detection and quantitation of canine parvovirus type 2 in the feces of dogs (2005) Vet. Microbiol., 105 (1), pp. 19-28; Decaro, N., Martella, V., Ricci, D., Elia, G., Desario, C., Campolo, M., Cavaliere, N., Buonavoglia, C., Genotype-specific fluorogenic RT-PCR assays for the detection and quantitation of canine coronavirus type I and type II RNA in fecal samples of dogs (2005) J. Virol. Methods., 130 (1-2), pp. 72-78; Di Sabatino, D., Lorusso, A., Di Francesco, C.E., Gentile, L., Di Pirro, V., Bellacicco, A.L., Giovannini, A., Savini, G., Arctic Lineage-canine distemper virus as a cause of death in Apennine wolves (Canis lupus) in Italy (2014) Plos ONE, 9 (1); Di Sabatino, D., Savini, G., Lorusso, A., Canine distemper and endangered wildlife: Is it time for mandatory vaccination of dogs? (2015) Vaccine, 33 (48), p. 6519; Dowgier, G., Lahoreau, J., Lanave, G., Losurdo, M., Varello, K., Lucente, M.S., Ventriglia, G., Decaro, N., Sequential circulation of canine adenoviruses 1 and 2 in captive wild carnivores, France (2018) Vet Microbiol, 221, pp. 67-73; Dowgier, G., Mari, V., Losurdo, M., Larocca, V., Colaianni, M.L., Cirone, F., Lucente, M.S., Decaro, N., A duplex real-time PCR assay based on TaqMan technology for simultaneous detection and differentiation of canine adenovirus types 1 and 2 (2016) J Virol Methods, 234, pp. 1-6; Elia, G., Decaro, N., Martella, V., Girone, F., Lucente, M.S., Lorusso, E., Di Trani, L., Buonavoglia, C., Detection of canine distemper virus in dogs by real-time RT-PCR (2006) J. Virol. Methods, 136 (1-2), pp. 171-176; Fico, R., Marsilio, S., Tiscar, P.G., Antibodies againt canine parvovirus, distemper, infectious canine hepatitis, canine coronavirus, and Ehrlichia canis in wolves (Canis lupus) in central Italy (1996) Ricerche Di Biologia Della Selvaggina, 24, pp. 137-143; Filipov, C., Desario, C., Patouchas, O., Eftimov, P., Gruichev, G., Manov, V., Filipov, G., Decaro, N., A Ten-Year Molecular Survey on Parvoviruses Infecting Carnivores in Bulgaria (2016) Transbound Emerg. Dis., 63 (4), pp. 460-464; Galaverni, M., Caniglia, R., Fabbri, E., Milanesi, P., Randi, E., One, no one, or one hundred thousand: How many wolves are there currently in Italy? (2015) Mammal Res, 61, pp. 3-24; Galaverni, M., Palumbo, D., Fabbri, E., Caniglia, R., Greco, C., Randi, E., Monitoring wolves (Canis lupus) by non invasive genetics and camera trapping: A small-scale pilot study (2012) Eur. J. Wildl. Res., 58 (1), pp. 47-58; Genovesi, P., Piano d’azione nazionale per la conservazione del lupo (Canis lupus) (2002) Quad. Cons. Natura, 13. , Min. Ambiente – Ist. Naz. Fauna Selvatica; Gompper, M.E., Goodman, R.M., Kays, R.W., Ray, J.C., Fiorello, C.V., Wade, S.E., A survey of the parasites of coyotes (Canis latrans) in New York based on fecal analysis (2003) J. Wildl. Dis., 39 (3), pp. 712-717; Gori, F., Armua-Fernandez, M.T., Milanesi, P., Serafini, M., Magi, M., Deplazes, P., Macchioni, F., The occurrence of taenidis of wolves in Liguria (Northern Italy) (2015) Int. J. Parasitol. Parasites Wildl., 4 (2), pp. 252-256; Goyal, S.M., Mech, L.D., Rademacherb, R.A., Khan, M.A., Seal, U.S., Antibodies against canine parvovirus in wolves of Minnesota: A serological study from 1975 through 1985 (1986) J. Am.Vet. Med. Ass., 89, pp. 1092-1094; Guberti, V., Stancampiano, L., Francisci, F., Intestinal helminth parasite community in wolves (Canis lupus) in Italy (1993) Parassitologia, 35 (1-3), pp. 59-65; Guerra, D., Armua-Fernandez, M.T., Silva, M., Bravo, I., Santos, N., Deplazes, P., Carvalho, L.M., Taeniid species of the Iberian wolf (Canis lupus signatus) in Portugal with special focus on Echinococcus spp (2013) Int. J. Parasitol. Parasites Wildl., 2, pp. 50-53; Hahn, E.C., Page, G.R., Hahn, P.S., Gillis, K.D., Romero, C., Annelli, J.A., Gibbs, E.P., Mechanisms of transmission of Aujeszky’s disease virus originating from feral swine in the USA (1997) Vet. Microbiol., 55 (1-4), pp. 123-130; Hildreth, M.B., Blunt, D.S., Oaks, J.A., Lethal effects of freezing Echinococcus multilocularis eggs at ultralow temperatures (2004) J. Parasitol., 90 (4), pp. 841-844; Holmes, J.C., Podesta, R., The helminths of wolves and coyotes from the forested regions of Alberta (1968) Canad. J. Zool., 46 (6), pp. 1193-1204; Kloch, A., Bednarska, M., Bajer, A., Intestinal macro-and microparasites of wolves (Canis lupus L.) from north-eastern Poland recovered by coprological study (2005) Ann. Agric. Environ. Med., 12 (2), pp. 237-245; Lari, A., Lorenzi, D., Nigrelli, D., Brocchi, E., Faccini, S., Poli, A., Pseudorabies virus in european wild boar from central Italy (2006) J. Wildl. Dis., 42 (2), pp. 319-324; Laurenson, M.K., Sillero-Zubrini, C., Thompson, H., Shiferaw, F., Thirgood, S., Malcom, J., Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens (1998) Anim. Conserv., 1, pp. 273-280; Loots, A.K., Mitchell, E., Dalton, D.L., Kotzé, A., Venter, E.H., Advances in canine distemper virus pathogenesis research: A wildlife perspective (2017) J.Gen. Virol., 98 (3), pp. 311-321; Martella, V., Bianchi, A., Bertoletti, I., Pedrotti, L., Gugiatti, A., Catella, A., Cordioli, P., Buonavoglia, C., Canine distemper epizootic among red foxes, Italy 2009 (2010) Emerg. Infect. Dis., 16 (12), pp. 2007-2009; Martella, V., Elia, G., Buonavoglia, C., Canine distemper virus (2008) Vet. Clin. North Am. Small. Anim. Pract., 38 (4), pp. 787-797; Martinello, F., Galuppo, F., Guberti, V., Prosperi, S., Detection of canine parvovirus in wolves from Italy (1997) J. Wildl. Dis., 33 (3), pp. 628-631; Mattioli, L., Apollonio, M., Mazzarone, V., Centofanti, E., Wolf food habits and wild ungulate availability in the Foreste Casentinesi National Park, Italy (1995) Acta Theriol, 40 (4), pp. 387-402; Mattioli, L., Capitani, C., Gazzola, A., Scandura, M., Apollonio, M., Prey selection and dietary response by wolves in a high-density multi-species ungulate community (2011) Eur J Wildl Res, 57 (4), pp. 909-922; Mech, L.D., Boitani, L., Wolf social ecology (2003) Wolves: Behavior, Ecology and Conservation, , Mech L.D., Boitani L. (Eds.), University of Chicago Press, Chicago; Mech, L.D., Goyal, S.M., Canine parvovirus effect on wolf population change and pup survival (1993) J. Wildl. Dis., 29 (2), pp. 330-333; Mech, L.D., Kurtz, H.J., First Record of Coccidiosis in Wolves, Canis lupus (1999) Can. Field Nat., 113 (2), pp. 305-306; Mech, L.D., Almberg, E.S., Smith, D., Goyal, S., Singer, R.S., Use of Real-time PCR to Detect Canine Parvovirus in Feces of Free-ranging Wolves (2012) J. Wildl. Dis., 48 (2), pp. 473-476; Millán, J., Lopez-Bao, J.V., Garcia, E.J., Oleaga, A., Llaneza, L., Palacios, V., de la Torre, A., Esperon, F., Patterns of exposure of Iberian Wolves (Canis lupus) to canine viruses in human-dominated landscapes (2016) Ecohealth. Mar., 13 (1), pp. 123-134; Mira, F., Purpari, G., Di Bella, S., Vicari, D., Schirò, G., Di Marco, P., Macaluso, G., Guercio, A., Update on canine distemper virus (CDV) strains of Artic-like lineage detected in dogs in Italy (2018) Vet. Ital., 54 (3), pp. 225-236; Molnar, B., Duchamp, C., Möstl, K., Diehl, P.A., Betschart, B., Comparative survey of canine parvovirus, canine distemper virus and canine enteric coronavirus infection in free-ranging wolves of central Italy and south-eastern France (2014) Eur. J. Wildl. Res., 60 (4), pp. 613-624; Müller, A., Silva, E., Santos, N., Thompson, G., Domestic dog origin of canine distemper virus in free-ranging wolves in Portugal as revealed by hemagglutinin gene characterization (2011) J. Wildl. Dis., 47 (3), pp. 725-729; Poglayen, G., Gori, F., Morandi, B., Galuppi, R., Fabbri, E., Caniglia, R., Milanesi, P., Deplazes, P., Italian wolves (Canis lupus it-alicusAltobello, 1921) and molecular detection of taeniids in the Foreste Casentinesi National Park, Northern Italian Apennines (2017) Int. J. Parasitol. Parasites and Wildl., 6 (1), pp. 1-7; Popiołek, M., Szczęsna, J., Nowak, S., Mysłajek, R., Helminth infections of faecal samples of wolves Canis lupus L. From western Beskidy Mountains in southern Poland (2007) J. of Helminthol., 81 (4), pp. 339-344; Rikula, U., Nuotio, L., Sihvonen, L., Vaccine coverage, herd immunity and occurrence of canine distemper from 1990-1996 in Finland (2007) Vaccine, 25 (47), pp. 7994-7998; Santos, N., Almendra, C., Tavares, L., Serologic survey for canine distemper virus and canine parvovirus in free-ranging wild carnivores from Portugal (2009) J.Wildl. Dis., 45 (1), pp. 221-226; Scott, M.E., The impact of infection and disease on animal populations: Implications for conservation biology (1988) Conser. Biol., 2 (1), pp. 40-56; Segovia, J.M., Guerrero, R., Torres, J., Miquel, J., Feliu, C., Ecological analyses of the intestinal helminth communities of the wolf, Canis lupus, in Spain (2003) Folia Parasitol, 50 (3), pp. 231-236; Segovia, J.M., Torres, J., Miquel, J., Llaneza, L., Feliu, C., Helminths in the wolf, Canis lupus, from northwestern Spain (2001) J. Helminthol., 75 (2), pp. 183-192; Sloss, M.W., Kemp, R.L., (1978) Veterinary Clinical Parasitology, , The Iowa State University Press, Ames, Iowa; Sobrino, R., Arnal, M.C., Luco, D.F., Gortázar, C., Prevalence of antibodies against canine distemper virus and canine parvovirus among foxes and wolves from Spain (2008) Vet. Microbiol., 126 (1-3), pp. 251-256; Stephenson, R.O., Ritter, D.G., Nielsen, C.A., Serologic survey for canine distemper and infectious canine hepatitis in wolves in Alaska (1982) J. Wildl. Dis., 18 (4), pp. 419-424; Stronen, A.V., Sallows, T., Forbes, G.J., Wagner, B., Paquet, P.C., Diseases and parasites in wolves of the Riding Mountain National Park region, Manitoba, Canada (2011) J. Wildl. Dis., 47 (1), pp. 222-227; Tompkins, D.M., Dobson, A.P., Arneberg, P., Begon, M.E., Cattadori, I.M., Greenman, J.V., Heesterbeek, J.A.P., Wilson, K., Parasites and host population dynamics (2002) The Ecology of Wildlife Diseases, pp. 45-62. , Hudson P.J., Rizzoli A.P., Grenfell B.T., Heesterbeek H., Dobson A.P. (Eds.), Oxford Press, Oxford, UK; Urquarth, G.M., Armour, J., Duncan, J.L., Dunn, A.M., Jennings, F.W., (1998) Parassitologia Veterinaria, , UTET, Torino; Verpoest, S., Cay, A.B., Bertrand, O., Saulmont, M., de Regge, N., Isolation and characterization of pseudorabies virus from a wolf Canis lupus from Belgium (2014) Eur. J.Wildl. Res., 60 (1), pp. 149-153; Vilà, C., Urios, V., Castroviejo, J., (1994) Use of Feces for Scent Marking in Iberian Wolves Canis Lupus. Can. J. Zool, 72 (2), pp. 374-377; Villeneuve, A., Polley, L., Jenkins, E., Schurer, J., Gilleard, J., Kutz, S., Conboy, G., Gagné, F., Parasite prevalence in fecal samples from shelter dogs and cats across the Canadian provinces (2015) Parasit. Vectors., 8 (1), p. 281; Zarnke, R.L., Ballard, W.B., Serologic survey for selected microbial pathogens of wolves in Alaska, 1975–1982 (1987) J. Wildl. Dis., 23 (1), pp. 77-85; Zarnke, R.L., Evermann, J., Ver Hoef, J.M., McNay, M.E., Boertje, R.D., Gardner, C.L., Adams, L.G., Burch, J., Serologic survey for canine coronavirus in wolves from Alaska (2001) J. Wildl. Dis., 37 (4), pp. 740-745; Whitlock, J.H., Some modifications of the McMaster helminth egg counting technique and apparatus (1948) Journal of the Council for Scientific and Industrial Research, 21 (3), pp. 177-180; Wilson, K., Bjørnstad, O.N., Dobson, A.P., Merler, S., Poglayen, G., Randolph, S.E., Read, A.F., Skorping, A., Heterogeneites in macroparasite infections: Patterns and processes (2002) The Ecology of Wildlife Diseases, pp. 6-44. , Hudson P.J., Rizzoli A.P., Greenfell B.T., Heesterbeek H., Dobson A.P. (Eds.), Oxford Press, Oxford, UK","Ambrogi, C.; Comando Unità Tutela Forestale Ambientale Agroalimentare Carabinieriemail: cecilia.ambrogi@gmail.com",,"Associazione Teriologica Italiana onlus",03941914,,,,"English","Hystrix",Article,"Final",,Scopus,2-s2.0-85071178712 "Srivastava S., Kamthania M., Kumar Pandey R., Kumar Saxena A., Saxena V., Kumar Singh S., Kumar Sharma R., Sharma N.","57204877182;55479937900;57205463680;38761691900;57210719895;57205476501;57205473973;57209914934;","Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics",2019,"Journal of Biomolecular Structure and Dynamics","37","16",,"4345","4360",,1,"10.1080/07391102.2018.1548977","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060183506&doi=10.1080%2f07391102.2018.1548977&partnerID=40&md5=29beb1dd63d0e0b5d11274fe3c6b17a1","Department of Biotechnology, Mangalayatan University, Aligarh, India; Molecular Medicine Lab, School of Life Science, Jawaharlal Nehru University, New Delhi, India; Department of Biotechnology, Faculty of Life Sciences, Institute of Applied Medicines and Research, Ghaziabad, India; Center of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India","Srivastava, S., Department of Biotechnology, Mangalayatan University, Aligarh, India, Molecular Medicine Lab, School of Life Science, Jawaharlal Nehru University, New Delhi, India; Kamthania, M., Department of Biotechnology, Mangalayatan University, Aligarh, India, Department of Biotechnology, Faculty of Life Sciences, Institute of Applied Medicines and Research, Ghaziabad, India; Kumar Pandey, R., Center of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; Kumar Saxena, A., Molecular Medicine Lab, School of Life Science, Jawaharlal Nehru University, New Delhi, India; Saxena, V., Molecular Medicine Lab, School of Life Science, Jawaharlal Nehru University, New Delhi, India; Kumar Singh, S., Center of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; Kumar Sharma, R., Department of Biotechnology, Mangalayatan University, Aligarh, India; Sharma, N., Department of Biotechnology, Mangalayatan University, Aligarh, India","Severe acute respiratory syndrome (SARS) is endemic in South China and is continuing to spread worldwide since the 2003 outbreak, affecting human population of 37 countries till present. SARS is caused by the severe acute respiratory syndrome Coronavirus (SARS-CoV). In the present study, we have designed two multi-epitope vaccines (MEVs) composed of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes overlap, bearing the potential to elicit cellular as well as humoral immune response. We have used truncated (residues 10–153) Onchocerca volvulus activation-associated secreted protein-1 as molecular adjuvants at N-terminal of both the MEVs. Selected overlapping epitopes of both the MEVs were further validated for stable molecular interactions with their respective human leukocyte antigen class I and II allele binders. Moreover, CTL epitopes were further studied for their molecular interaction with transporter associated with antigen processing. Furthermore, after tertiary structure modelling, both the MEVs were validated for their stable molecular interaction with Toll-like receptors 2 and 4. Codon-optimized cDNA of both the MEVs was analysed for their potential high level of expression in the mammalian cell line (Human) needed for their further in vivo testing. Overall, the present study proposes in silico validated design of two MEVs against SARS composed of specific epitopes with the potential to cause a high level of SARS-CoV specific cellular as well as humoral immune response. Communicated by Ramaswamy H. Sarma. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.","epitope; human transporter associated with antigen processing; molecular docking; molecular dynamics simulation; multi-epitope vaccines; Severe acute respiratory syndrome; severe acute respiratory syndrome coronavirus; Toll-like receptors","HLA antigen class 1; severe acute respiratory syndrome vaccine; toll like receptor 2; toll like receptor 4; amino terminal sequence; antigen presentation; antigenicity; Article; B lymphocyte; codon; cytotoxic T lymphocyte; drug design; drug determination; drug effect; drug structure; helper cell; human; human cell; humoral immunity; molecular docking; molecular dynamics; molecular interaction; nonhuman; Onchocerca volvulus; physical chemistry; priority journal; protein expression; SARS coronavirus; sequence alignment; severe acute respiratory syndrome; validation study","Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from lap- tops to supercomputers (2015) SoftwareX, 1-2, pp. 19-25; Åkerström, S., Mirazimi, A., Tan, Y.J., Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S (2007) Antiviral Research, 73 (3), pp. 219-227; Antoniou, A.N., Powis, S.J., Elliott, T., Assembly and export of MHC class I peptide ligands (2003) Current Opinion in Immunology, 15 (1), pp. 75-81; Arai, R., Ueda, H., Kitayama, A., Kamiya, N., Nagamune, T., Design of the linkers which effectively separate domains of a bifunctional fusion protein (2001) Protein Engineering, 14 (8), pp. 529-532; Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling (2006) Bioinformatics (Oxford, England), 22 (2), pp. 195-201; Bai, Y., Shen, W.C., Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization (2006) Pharmaceutical Research, 23 (9), pp. 2116-2121; Benkert, P., Tosatto, S.C., Schomburg, D., QMEAN: A comprehensive scoring function for model quality assessment (2008) Proteins: Structure, Function, and Bioinformatics, 71 (1), pp. 261-277; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Detsky, A.S., ""Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area"" (2003) JAMA, 289 (21), pp. 2801-2809. , …; Bui, H.H., Sidney, J., Dinh, K., Southwood, S., Newman, M.J., Sette, A., Predicting population coverage of T-cell epitope-based diagnostics and vaccines (2006) BMC Bioinformatics, 7, p. 153; Bui, H.H., Sidney, J., Li, W., Fusseder, N., Sette, A., Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines (2007) BMC Bioinformatics, 8, p. 361; Calis, J.J.A., Maybeno, M., Greenbaum, J.A., Weiskopf, D., De Silva, A.D., Sette, A., Peters, B., Properties of MHC class I presented peptides that enhance immunogenicity. PloS Computational (2013) Biology, 8 (1), p. 361. , …; (2018), https://www.cdc.gov/sars/about/fs-sars.html, SARS Basics Fact Sheet. Atlanta, GA: Centers for Disease Control and Prevention; as cited on 28 July. Retrieved from; Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., Huang, T.H., The SARS coronavirus nucleocapsid protein–forms and functions (2014) Antiviral Research, 103, pp. 39-50; Chen, C.Y., Ping, Y.H., Lee, H.C., Chen, K.H., Lee, Y.M., Chan, Y.J., Chen, Y.M.A., Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis (2007) The Journal of Infectious Diseases, 196 (3), pp. 405-415. , …; Chen, X., Zaro, J.L., Shen, W.C., Fusion protein linkers: Property, design and functionality (2013) Advanced Drug Delivery Reviews, 65 (10), pp. 1357-1369; Chou, P.Y., Fasman, G.D., Prediction of the secondary structure of proteins from their amino acid sequence (1978) Advances in Enzymology and Related Areas of Molecular Biology, 47, pp. 45-148; DeDiego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology, 376 (2), pp. 379-389; Delneste, Y., Beauvillain, C., Jeannin, P., Innate immunity: Structure and function of TLRs (2007) Médecine/Sciences, 23 (1), pp. 67-73. , –,. [InsertedFromOnline]; Dhanda, S.K., Vir, P., Raghava, G.P., Designing of interferon-gamma inducing MHC class-II binders (2013) Biology Direct, 8, p. 30; Doytchinova, I.A., Flower, D.R., VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines (2007) BMC Bioinformatics, 8 (1), p. 4; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV–a target for vaccine and therapeutic development (2009) Nature Reviews Microbiology, 7 (3), p. 226; Duhovny, D., Nussinov, R., Wolfson, H.J., Efficient unbound docking of rigid molecules (2002) Proceedings of the 2nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Italy, Lecture Notes in Computer Science, 2452, pp. 185-200). , Springer Verlag, &,. Gusfield (Ed.), (. Berlin, Germany; Emini, E.A., Hughes, J.V., Perlow, D.S., Boger, J., Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide (1985) Journal of Virology, 55 (3), pp. 836-839; Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.E., Wilkins, M.R., Appel, R.D., Bairoch, A., (2005) Protein identification and analysis tools on the ExPASy server, pp. 571-607. , Humana Press, &, (). New York, NY; Guo, J., Yang, Y., Xiao, W., Sun, W., Yu, H., Du, L., Zhou, Y., A truncated fragment of Ov-ASP-1 consisting of the core pathogenesis-related-1 (PR-1) domain maintains adjuvanticity as the full-length protein (2015) Vaccine, 33 (16), pp. 1974-1980. , …; Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G.P., In silico approach for predicting toxicity of peptides and proteins (2013) PLoS One, 8 (9). , and; Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S.S., Ghasemi, Y., Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus (2017) Infection, Genetics and Evolution, 48, pp. 83-94; He, Y., Barker, S.J., MacDonald, A.J., Yu, Y., Cao, L., Li, J., Jiang, S., Recombinant Ov–ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells (2009) The Journal of Immunology, 182 (7), pp. 4005-4016. , …; Hoof, I., Peters, B., Sidney, J., Pedersen, L.E., Sette, A., Lund, O., Nielsen, M., NetMHCpan, a method for MHC class I binding prediction beyond humans (2009) Immunogenetics, 61 (1), p. 1. , …; Hu, W., Li, F., Yang, X., Li, Z., Xia, H., Li, G., Zhang, Z., A flexible peptide linker enhances the immunoreactivity of two copies HBsAg preS1 (21-47) fusion protein (2004) Journal of Biotechnology, 107 (1), pp. 83-90. , …; Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.S., Novotný, J., Margolies, M.N., Crea, R., Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli (1988) Proceedings of the National Academy of Sciences, 85 (16), pp. 5879-5883. , …; Jimenez-Guardeño, J.M., Nieto-Torres, J.L., DeDiego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLoS Pathogens, 10 (8), p. e1004320; Jin, M.S., Kim, S.E., Heo, J.Y., Lee, M.E., Kim, H.M., Paik, S.G., Lee, J.O., Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide (2007) Cell, 130 (6), pp. 1071-1082. , …; Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids (1996) Journal of the American Chemical Society, 118 (45), pp. 11225-11236; Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J., Template-based protein structure modeling using the RaptorX web server (2012) Nature Protocols, 7 (8), p. 1511; Karplus, P.A., Schulz, G.E., Prediction of chain flexibility in proteins (1985) Naturwissenschaften, 72 (4), pp. 212-213; Ko, J., Park, H., Heo, L., Seok, C., GalaxyWEB server for protein structure prediction and refinement (2012) Nucleic Acids Research, 40 (W1), pp. W294-W297; Kolaskar, A.S., Tongaonkar, P.C., A semi-empirical method for prediction of antigenic determinants on protein antigens (1990) FEBS Letters, 276 (1-2), pp. 172-174; Kringelum, J.V., Lundegaard, C., Lund, O., Nielsen, M., Reliable B cell epitope predictions: Impacts of method development and improved benchmarking (2012) PLoS Computational Biology, 8 (12), p. e1002829; Larsen, J.E., Lund, O., Nielsen, M., Improved method for predicting linear B-cell epitopes (2006) Immunome Research, 2, p. 2; Law, P.Y.P., Liu, Y.M., Geng, H., Kwan, K.H., Waye, M.M.Y., Ho, Y.Y., Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome‐associated coronavirus (2006) FEBS Letters, 580 (15), pp. 3643-3648; Leung, T.F., Wong, G.W.K., Hon, K.L.E., Fok, T.F., Severe Acute respiratory syndrome (SARS) in children: epidemiology, presentation and management (2003) Paediatric Respiratory Reviews, 4 (4), pp. 334-339; Liao, Y., Zhang, S.M., Neo, T.L., Tam, J.P., Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein (2015) Biochemistry, 54 (9), pp. 1819-1830; Lovell, S.C., Davis, I.W., Arendall, W.B., III, De Bakker, P.I., Word, J.M., Prisant, M.G., Richardson, D.C., Structure validation by Cα geometry: ϕ, ψ and Cβ deviation (2003) Proteins: Structure, Function, and Bioinformatics, 50 (3), pp. 437-450. , …; Lu, B., Tao, L., Wang, T., Zheng, Z., Li, B., Chen, Z., Wang, H., Humoral and cellular immune responses induced by 3a DNA vaccines against severe acute respiratory syndrome (SARS) or SARS-like coronavirus in mice (2009) Clinical and Vaccine Immunology, 16 (1), pp. 73-77. , …; MacDonald, A.J., Cao, L., He, Y., Zhao, Q., Jiang, S., Lustigman, S., rOv–ASP-1, a recombinant secreted protein of the helminth Onchocerca volvulus, is a potent adjuvant for inducing antibodies to ovalbumin, HIV-1 polypeptide and SARS-CoV peptide antigens (2005) Vaccine, 23 (26), pp. 3446-3452; Morla, S., Makhija, A., Kumar, S., Synonymous codon usage pattern in glycoprotein gene of rabies virus (2016) Gene, 584 (1), pp. 1-6; Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function (1998) Journal of Computational Chemistry, 19 (14), pp. 1639-1662; Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) Journal of Computational Chemistry, 30 (16), pp. 2785-2791; Nezafat, N., Eslami, M., Negahdaripour, M., Rahbar, M.R., Ghasemi, Y., Designing an ancient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches (2017) Molecular Biosystems, 13 (4), pp. 699-713; Nielsen, M., Lundegaard, C., Lund, O., Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method (2007) BMC Bioinformatics, 8 (1), p. 238; Ohto, U., Yamakawa, N., Akashi-Takamura, S., Miyake, K., Shimizu, T., Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I (2012) Journal of Biological Chemistry, 287 (48), pp. 40611-40617; Oldham, M.L., Grigorieff, N., Chen, J., Structure of the transporter associated with antigen processing trapped by herpes simplex virus (2016) eLife, 5, p. e21829; Parker, J.M., Guo, D., Hodges, R.S., New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites (1986) Biochemistry, 25 (19), pp. 5425-5432; Peters, B., Bulik, S., Tampe, R., Van Endert, P.M., Holzhutter, H.G., Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors (2003) Journal of Immunology (Baltimore, MD: 1950), 171 (4), pp. 1741-1749; Pfefferle, S., Krähling, V., Ditt, V., Grywna, K., Mühlberger, E., Drosten, C., Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo (2009) Virology Journal, 6 (1), p. 131; Ponomarenko, J.V., Bui, H., Li, W., Fusseder, N., Bourne, P.E., Sette, A., Peters, B., ElliPro: A new structure-based tool for the prediction of antibody epitopes (2008) BMC Bioinformatics, 9, p. 514; Robinson, J., Halliwell, J.A., Hayhurst, J.D., Flicek, P., Parham, P., Marsh, S.G., The IPD and IMGT/HLA database: Allele variant databases (2014) Nucleic Acids Research, 43 (Database issue), pp. D423-D431; Saha, S., Raghava, G., AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes (2006) Nucleic Acids Research, 34 (Web Server issue), pp. W202-W209; Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J., PatchDock and SymmDock: Servers for rigid and symmetric docking (2005) Nucleic Acids Research, 33 (Web Server issue), pp. W363-W367; Shi, C.S., Qi, H.Y., Boularan, C., Huang, N.N., Abu-Asab, M., Shelhamer, J.H., Kehrl, J.H., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome (2014) The Journal of Immunology, 193 (6), pp. 3080-3089; Sidney, J., Assarsson, E., Moore, C., Ngo, S., Pinilla, C., Sette, A., Peters, B., Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries (2008) Immunome Research, 4 (1), p. 2; Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Higgins, D.G., Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega (2011) Molecular Systems Biology, 7 (1), p. 539. , …; Singh, S., Singh, H., Tuknait, A., Chaudhary, K., Singh, B., Kumaran, S., Raghava, G.P.S., PEPstrMOD: Structure prediction of peptides containing natural, non-natural and modified residues (2015) Biology Direct, 10, p. 73; Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Hammer, J., Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices (1999) Nature Biotechnology, 17 (6), p. 555. , …; Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M.M., Holzhutter, H.G., Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding (2005) Cellular and Molecular Life Sciences: Cmls, 62 (9), pp. 1025-1037. , …; Totura, A.L., Whitmore, A., Agnihothram, S., Schäfer, A., Katze, M.G., Heise, M.T., Baric, R.S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to Severe Acute respiratory syndrome coronavirus infection (2015) MBio, 6 (3), pp. e00638-e00615; Trott, O., Olson, A.J., AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) Journal of Computational Chemistry, , 31, (2): 455–461; Varshney, B., Agnihotram, S., Tan, Y.J., Baric, R., Lal, S.K., SARS coronavirus 3b accessory protein modulates transcriptional activity of RUNX1b (2012) PloS One, 7 (1); Vasilenko, N., Moshynskyy, I., Zakhartchouk, A., SARS coronavirus protein 7a interacts with human Ap4A-hydrolase (2010) Virology Journal, 7 (1), p. 31; Voß, D., Pfefferle, S., Drosten, C., Stevermann, L., Traggiai, E., Lanzavecchia, A., Becker, S., Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein (2009) Virology Journal, 6 (1), p. 79; Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., Peters, B., Peptide binding predictions for HLA DR, DP and DQ molecules (2010) BMC Bioinformatics, 11 (1), p. 568; Wang, Y., Liu, L., The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a Toll-like-receptor-related TRAF3-independent mechanism (2016) MBio, 7 (1), pp. e01872-e01815; Wei, W.Y., Li, H.C., Chen, C.Y., Yang, C.H., Lee, S.K., Wang, C.W., Lo, S.Y., SARS-CoV nucleocapsid protein interacts with cellular pyruvate kinase protein and inhibits its activity (2012) Archives of Virology, 157 (4), pp. 635-645. , …; Wu, X., Wu, S., Li, D., Zhang, J., Hou, L., Ma, J., He, F., Computational identification of rare codons of Escherichia coli based on codon pairs preference (2010) BMC Bioinformatics, 11, p. 61. , …; Xu, D., Zhang, Y., Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization (2011) Biophysical Journal, 101 (10), pp. 2525-2534; Zhong, N.S., Zheng, B.J., Li, Y.M., Poon, L.L.M., Xie, Z.H., Chan, K.H., Guan, Y., Epidemiological and aetiological studies of patients with severe acute respiratory syndrome (SARS) from Guangdong in February 2003 (2003) Lancet, 362 (9393), pp. 1353-1358. , …; Zhong, X., Guo, Z., Yang, H., Peng, L., Xie, Y., Wong, T.Y., Guo, Z., Amino terminus of the SARS coronavirus protein 3a elicits strong, potentially protective humoral responses in infected patients (2006) Journal of General Virology, 87 (2), pp. 369-373. , …","Srivastava, S.; Department of Biotechnology, Mangalayatan UniversityIndia; email: srivastav.sukrit@gmail.com",,"Taylor and Francis Ltd.",07391102,,JBSDD,"30457455","English","J. Biomol. Struct. Dyn.",Article,"Final",,Scopus,2-s2.0-85060183506 "Guo Z., He Q., Zhang B., Yue H., Tang C.","57196116642;57196118120;55811769500;8855570100;36646976100;","Detection and molecular characteristics of neboviruses in dairy cows in China",2019,"Journal of General Virology","100","1", 001172,"35","45",,4,"10.1099/jgv.0.001172","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059389173&doi=10.1099%2fjgv.0.001172&partnerID=40&md5=6787c0cf4edb4eeea040e72ee2d35577","College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China","Guo, Z., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; He, Q., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Zhang, B., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China; Yue, H., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China; Tang, C., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China","In this study, 98 diarrhoeic and 70 non-diarrhoeic samples were collected from 13 dairy farms located across 5 provinces in China from April 2017 to May 2018. Approximately 41.8% (41/98) of diarrhoeic samples and 5.7% (4/70) of non-diarrhoeic samples were nebovirus-positive based on RT-PCR results, and some diarrhoeic samples were co-infected with bovine rotavirus (73.2%), bovine coronavirus (36.6%) and/or bovine viral diarrhoea virus (31.7%). A phylogenetic analysis of 23 nebovirus RdRp fragments showed that these strains were closely related to Nebraska-like (NB-like) strains but were all located in a unique large branch. Moreover, a phylogenetic analysis of the 18 complete VP1 sequences from this study revealed that 14 strains belonged to lineage 1 and 4 strains belonged to lineage 3. Notably, all four lineage 3 strains shared the same recombination event, with a breakpoint located within the P1A domain. The complete genome of one nebovirus strain, Bo/YLA-2/17/CH, which had a recombination event within the P1A domain of its VP1, was successfully sequenced and was found to be 7453 nt in length, and this may represent a novel nebovirus strain based on the phylogenetic analysis of its complete genome sequence. In conclusion, this study reveals that neboviruses circulate widely in dairy cows in China and exhibit a unique evolution of RdRp. To the best of our knowledge, this is the first reported recombination event located within the P1A domain of nebovirus VP1. © 2019 The Authors.","China; Genome; Neboviruses; Prevalence; RdRp; VP1 recombination","Article; Bovine coronavirus; bovine viral diarrhea; Caliciviridae; China; dairy cattle; Nebovirus; nonhuman; phylogeny; prevalence; priority journal; reverse transcription polymerase chain reaction; Rotavirus; sample; sequence alignment; virus detection; virus genome; virus recombination; virus strain; animal; bovine; Caliciviridae; calicivirus infection; cattle disease; diarrhea; DNA sequence; feces; genetic recombination; genetics; genotype; heterozygote; isolation and purification; molecular epidemiology; veterinary medicine; virology; viral protein; virus RNA; Animals; Caliciviridae; Caliciviridae Infections; Carrier State; Cattle; Cattle Diseases; China; Diarrhea; Feces; Genotype; Molecular Epidemiology; Phylogeny; Recombination, Genetic; Reverse Transcriptase Polymerase Chain Reaction; RNA, Viral; Sequence Analysis, DNA; Viral Proteins","Cho, E.H., Soliman, M., Alfajaro, M.M., Kim, J.Y., Seo, J.Y., Bovine nebovirus interacts with a wide spectrum of histo-blood group antigens (2018) J Virol, 92, pp. e02117-e02160; Cho, Y.I., Han, J.I., Wang, C., Cooper, V., Schwartz, K., Case-control study of microbiological etiology associated with calf diarrhea (2013) Vet Microbiol, 166, pp. 375-385; Pourasgari, F., Kaplon, J., Sanchooli, A., Fremy, C., Karimi-Naghlani, S., Molecular prevalence of bovine noroviruses and neboviruses in newborn calves in Iran (2018) Arch Virol, 163, pp. 1271-1277; Smiley, J.R., Chang, K.O., Hayes, J., Vinjé, J., Saif, L.J., Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus (2002) J Virol, 76, pp. 10089-10098; Alkan, F., Karayel, İ., Catella, C., Bodnar, L., Lanave, G., Identification of a bovine enteric calicivirus, Kırklareli virus, distantly related to neboviruses, in calves with enteritis in Turkey (2015) J Clin Microbiol, 53, pp. 3614-3617; Candido, M., Alencar, A.L., Almeida-Queiroz, S.R., Buzinaro, M.G., Munin, F.S., First detection and molecular characterization of Nebovirus in Brazil (2016) Epidemiol Infect, 144, pp. 1876-1878; Di Martino, B., Di Profio, F., Martella, V., Ceci, C., Marsilio, F., Evidence for recombination in neboviruses (2011) Vet Microbiol, 153, pp. 367-372; Guo, Z., He, Q., Yue, H., Zhang, B., Tang, C., First detection of nebovirus and norovirus from cattle in China (2018) Arch Virol, 163, pp. 475-478; Hassine-Zaafrane, M., Kaplon, J., Sdiri-Loulizi, K., Aouni, Z., Pothier, P., Molecular prevalence of bovine noroviruses and neboviruses detected in central-eastern Tunisia (2012) Arch Virol, 157, pp. 1599-1604; Kaplon, J., Guenau, E., Asdrubal, P., Pothier, P., Ambert-Balay, K., Possible novel nebovirus genotype in cattle, France (2011) Emerg Infect Dis, 17, pp. 1120-1123; Oliver, S.L., Asobayire, E., Dastjerdi, A.M., Bridger, J.C., Genomic characterization of the unclassified bovine enteric virus Newbury agent-1 (Newbury1) endorses a new genus in the family Caliciviridae (2006) Virology, 350, pp. 240-250; Park, S.I., Jeong, C., Park, S.J., Kim, H.H., Jeong, Y.J., Molecular detection and characterization of unclassified bovine enteric caliciviruses in South Korea (2008) Vet Microbiol, 130, pp. 371-379; Peter, P., Boros, A., Csaba, N., Delwart, E., Gabor, R., First detection of nebovirus (Caliciviridae) in faecal sample of diarrhoeic calf in Hungary (2013) Magyar Allatorvosok Lapja, 135, pp. 12-17; Chen, R., Neill, J.D., Estes, M.K., Prasad, B.V., X-ray structure of a native calicivirus: Structural insights into antigenic diversity and host specificity (2006) Proc Natl Acad Sci USA, 103, pp. 8048-8053; Prasad, B.V., Hardy, M.E., Dokland, T., Bella, J., Rossmann, M.G., X-ray crystallographic structure of the Norwalk virus capsid (1999) Science, 286, pp. 287-290; Tan, M., Jiang, X., The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors (2005) J Virol, 79, pp. 14017-14030; Chen, R., Neill, J.D., Prasad, B.V., Crystallization and preliminary crystallographic analysis of San Miguel sea lion virus: An animal calicivirus (2003) J Struct Biol, 141, pp. 143-148; D’Mello, F., Jervis, S.M., Edwards, P.M., Oliver, S.L., Bridger, J.C., Heterogeneity in the capsid protein of bovine enteric caliciviruses belonging to a new genus (2009) Virology, 387, pp. 109-116; Chakravarty, S., Hutson, A.M., Estes, M.K., Prasad, B.V., Evolutionary trace residues in noroviruses: Importance in receptor binding, antigenicity, virion assembly, and strain diversity (2005) J Virol, 79, pp. 554-568; Guo, Z., He, Q., Yue, H., Zhang, B., Tang, C., Genomic characterization of a RdRp-recombinat nebovirus strain with a novel VP1 genotype (2018) Virus Res, 251, pp. 6-13; Gomez, D.E., Weese, J.S., Viral enteritis in calves (2017) Can Vet J, 58, pp. 1267-1274; Gong, X., Liu, L., Zheng, F., Chen, Q., Li, Z., Molecular investigation of bovine viral diarrhea virus infection in yaks (Bos gruniens) from Qinghai, China (2014) Virol J, 11, p. 29; Wei, S., Gong, Z., Che, T., Guli, A., Tian, F., Genotyping of calves rotavirus in China by reverse transcription polymerase chain reaction (2013) J Virol Methods, 189, pp. 36-40; Lu, C.P., Yao, H.C., Eichhorn, W., Coronavirus as an agent of neonatal calf diarrhea in a Chinese dairy cattle farm (1991) Zentralbl Veterinarmed, 38, pp. 473-476; Deval, J., Jin, Z., Chuang, Y.C., Kao, C.C., Structure(S), function(s), and inhibition of the RNA-dependent RNA polymerase of noroviruses (2017) Virus Res, 234, pp. 21-33; Lee, J.H., Chung, M.S., Kim, K.H., Structure and function of caliciviral RNA polymerases (2017) Viruses, 9, p. 329; Ng, K.K., Arnold, J.J., Cameron, C.E., Structure-function relationships among RNA-dependent RNA polymerases (2008) Curr Top Microbiol Immunol, 320, pp. 137-156; Worobey, M., Holmes, E.C., Evolutionary aspects of recombination in RNA viruses (1999) J Gen Virol, 80, pp. 2535-2543; Lindesmith, L.C., Donaldson, E.F., Lobue, A.D., Cannon, J.L., Zheng, D.P., Mechanisms of GII.4 norovirus persistence in human populations (2008) Plos Med, 5; Rohayem, J., Münch, J., Rethwilm, A., Evidence of recombination in the norovirus capsid gene (2005) J Virol, 79, pp. 4977-4990; Eden, J.S., Tanaka, M.M., Boni, M.F., Rawlinson, W.D., White, P.A., Recombination within the pandemic norovirus GII.4 lineage (2013) J Virol, 87, pp. 6270-6282; De Rougemont, A., Ruvoen-Clouet, N., Simon, B., Estienney, M., Elie-Caille, C., Qualitative and quantitative analysis of the binding of GII.4 norovirus variants onto human blood group antigens (2011) J Virol, 85, pp. 4057-4070; Kroneman, A., Vega, E., Vennema, H., Vinjé, J., White, P.A., Proposal for a unified norovirus nomenclature and genotyping (2013) Arch Virol, 158, pp. 2059-2068; Le Pendu, J., Abrantes, J., Bertagnoli, S., Guitton, J.S., Le Gall-Reculé, G., Proposal for a unified classification system and nomenclature of lagoviruses (2017) J Gen Virol, 98, pp. 1658-1666; Di Felice, E., Mauroy, A., Pozzo, F.D., Thiry, D., Ceci, C., Bovine noroviruses: A missing component of calf diarrhoea diagnosis (2016) Vet J, 207, pp. 53-62; Kumar, S., Tamura, K., Nei, M., MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment (2004) Brief Bioinform, 5, pp. 150-163; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1, pp. vev003","Tang, C.; College of Life Science and Technology, Southwest University for NationalitiesChina; email: tangcheng101@163.com",,"Microbiology Society",00221317,,JGVIA,"30444471","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85059389173 "Hoang V.-T., Dao T.-L., Ly T.D.A., Belhouchat K., Chaht K.L., Gaudart J., Mrenda B.M., Drali T., Yezli S., Alotaibi B., Fournier P.-E., Raoult D., Parola P., de Santi V.P., Gautret P.","57202332027;57208530490;57196149513;55607871900;57211948033;56091387500;57193393677;55607739300;35996197300;55393168700;7202879683;57208853524;7006212186;37005552100;36893462000;","The dynamics and interactions of respiratory pathogen carriage among French pilgrims during the 2018 Hajj",2019,"Emerging Microbes and Infections","8","1",,"1701","1710",,2,"10.1080/22221751.2019.1693247","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075461085&doi=10.1080%2f22221751.2019.1693247&partnerID=40&md5=f90a8abc59c08c0a9071499396566b6e","Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Aix Marseille Univ, INSERM, IRD, SESSTIM UMR1252, Faculty of Medicine, Marseille, France; APHM, La Timone Hospital, Biostatistics & ICT, Marseille, France; The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; French Military Centre for Epidemiology and Public Health, Marseille, France","Hoang, V.-T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Dao, T.-L., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Ly, T.D.A., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Belhouchat, K., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Chaht, K.L., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Gaudart, J., Aix Marseille Univ, INSERM, IRD, SESSTIM UMR1252, Faculty of Medicine, Marseille, France, APHM, La Timone Hospital, Biostatistics & ICT, Marseille, France; Mrenda, B.M., French Military Centre for Epidemiology and Public Health, Marseille, France; Drali, T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Yezli, S., The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Alotaibi, B., The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Fournier, P.-E., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Raoult, D., IHU-Méditerranée Infection, Marseille, France, Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France; Parola, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; de Santi, V.P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, French Military Centre for Epidemiology and Public Health, Marseille, France; Gautret, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France","We conducted this study to describe the dynamics of the acquisition of respiratory pathogens, their potential interactions and risk factors for possible lower respiratory tract infection symptoms (LRTI) among French pilgrims during the 2018 Hajj. Each participant underwent four successive systematic nasopharyngeal swabs before and during their stay in Saudi Arabia. Carriage of the main respiratory pathogens was assessed by PCR. 121 pilgrims were included and 93.4% reported respiratory symptoms during the study period. The acquisition of rhinovirus, coronaviruses and Staphylococcus aureus occurred soon after arrival in Saudi Arabia and rates decreased gradually after days 5 and 6. In contrast, Streptococcus pneumoniae and Klebsiella pneumoniae carriage increased progressively until the end of the stay in Saudi Arabia. Haemophilus influenzae and Moraxella catarrhalis carriage increased starting around days 12 and 13, following an initial clearance. Influenza viruses were rarely isolated. We observed an independent positive mutual association between S. aureus and rhinovirus carriage and between H. influenzae and M. catarrhalis carriage. Dual carriage of H. influenzae and M. catarrhalis was strongly associated with S. pneumoniae carriage (OR = 6.22). Finally, our model showed that M. catarrhalis carriage was negatively associated with K. pneumoniae carriage. Chronic respiratory disease was associated with symptoms of LRTI. K. pneumoniae, M. catarrhalis-S. aureus and H. influenzae-rhinovirus dual carriage was associated with LRTI symptoms. Our data suggest that RTIs at the Hajj are a result of complex interactions between a number of respiratory viruses and bacteria. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd.","Hajj; pathogen interaction; pilgrims; respiratory tract infections","adult; aged; Article; chronic respiratory tract disease; Coronavirinae; coughing; dyspnea; female; Frenchman; Haemophilus influenzae; human; infectious agent; Klebsiella pneumoniae; lower respiratory tract infection; major clinical study; male; microbe-microbe interaction; Moraxella catarrhalis; nonhuman; obesity; priority journal; real time polymerase chain reaction; rhinitis; Rhinovirus; risk factor; ritual; Saudi Arabia; Staphylococcus aureus; Streptococcus pneumonia; Streptococcus pneumoniae; travel; virus isolation; bacterial infection; bacterium; classification; France; genetics; isolation and purification; microbiology; middle aged; respiratory tract infection; very elderly; virology; virus; virus infection; Adult; Aged; Aged, 80 and over; Bacteria; Bacterial Infections; Female; France; Humans; Male; Middle Aged; Respiratory Tract Infections; Saudi Arabia; Travel; Virus Diseases; Viruses","Memish, Z.A., Steffen, R., White, P., Mass gatherings medicine: public health issues arising from mass gathering religious and sporting events (2019) Lancet, 393, pp. 2073-2084; Gautret, P., Bauge, M., Simon, F., Travel reported by pilgrims from Marseille, France before and after the 2010 Hajj (2012) J Travel Med., 19, pp. 130-132; Khan, I.D., Khan, S.A., Asima, B., Morbidity and mortality amongst Indian Hajj pilgrims: a 3-year experience of Indian Hajj medical mission in mass-gathering medicine (2018) J Infect Public Health, 11, pp. 165-170; Gautret, P., Benkouiten, S., Griffiths, K., The inevitable Hajj cough: surveillance data in French pilgrims, 2012–2014 (2015) Travel Med Infect Dis., 13, pp. 485-489; Hoang, V.T., Gautret, P., Infectious diseases and mass gatherings (2018) Curr Infect Dis Rep, 20, p. 44; AlTawfq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Travel Med Infect Dis, 23, pp. 6-13; Hoang, V.T., Sow, D., Dogue, F., Acquisition of respiratory viruses and presence of respiratory symptoms in French pilgrims during the 2016 Hajj: A prospective cohort study (2019) Travel Med Infect Dis, 30, pp. 32-38. , https://doi.org/10.1016/j.tmaid.2019.03.003; van den Bergh, M.R., Biesbroek, G., Rossen, J.W., Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria (2012) PLoS One, 7; Brunstein, J.D., Cline, C.L., McKinney, S., Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections (2008) J Clin Microbiol, 46, pp. 97-102; Peleg, A.Y., Hogan, D.A., Mylonakis, E., Medically important bacterial-fungal interactions (2010) Nat Rev Microbiol, 8, pp. 340-349; von Eiff, C., Becker, K., Machka, K., Nasal carriage as a source of Staphylococcus aureus bacteremia. study group (2001) N Engl J Med, 344, pp. 11-16; Edouard, S., Al-Tawfiq, J.A., Memish, Z.A., Impact of the Hajj on pneumococcal carriage and the effect of various pneumococcal vaccines (2018) Vaccine, 36, pp. 7415-7422; Veenhoven, R., Bogaert, D., Uiterwaal, C., Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on recurrent acute otitis media: a randomised study (2003) Lancet, 361, pp. 2189-2195; (2018) Bull Epidemiol Hebdo. Recommandations Sanitaires Pour Les Voyageurs, , https://invs.santepubliquefrance.fr/content/…/62/file/Recommandations_voyageurs_2018.pdf; (2018), https://solidarites-sante.gouv.fr/IMG/pdf/calendrier_vaccinations_2018.pdf, Direction Générale de la Santé. Ministère des Affaires sociales, de la Santé et des Droits des femmes. Paris. Calendrier des vaccinations et recommandations vaccinales 2018; Rashid, H., Influenza and the Hajj: defining influenza-like illness clinically (2008) Int J Infect Dis, 12, pp. 102-103; Hoang, V.T., Nguyen, T.T., Belhouchat, K., Antibiotic use for respiratory infections among Hajj pilgrims: A cohort survey and review of the literature (2019) Travel Med Infect Dis, 30, pp. 39-45; (2019) Body Mass Index – BMI, , http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi; Ninove, L., Nougairede, A., Gazin, C., RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests (2011) PLoS One, 6; Memish, Z.A., Assiri, A., Turkestani, A., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect, 21 (571), pp. e1-e8; Greiner, O., Day, P.J., Altwegg, M., Quantitative detection of Moraxella catarrhalis in nasopharyngeal secretions by real-time PCR (2003) J Clin Microbiol, 41, pp. 1386-1390; Benkouiten, S., Charrel, R., Belhouchat, K., Circulation of respiratory viruses among pilgrims during the 2012 Hajj pilgrimage (2013) Clin Infect Dis, 57, pp. 992-1000; Benkouiten, S., Charrel, R., Belhouchat, K., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Miniopticon System Instruction Manual for Miniopticon Real-Time PCR Detection System with CFX Manager Spfware, , http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_10954.pdf; Al-Tawfiq, J.A., Gautret, P., Memish, Z.A., Expected immunizations and health protection for Hajj and Umrah 2018 -an overview (2017) Travel Med Infect Dis, 19, pp. 2-7; Benkouiten, S., Brouqui, P., Gautret, P., Non-pharmaceutical interventions for the prevention of RTIs during Hajj pilgrimage (2014) Travel Med Infect Dis, 12, pp. 429-442; Hoang, V.T., Meftah, M., Anh Ly, T.D., Bacterial respiratory carriage in French Hajj pilgrims and the effect of pneumococcal vaccine and other individual preventive measures: a prospective cohort survey (2018) Travel Med Infect Dis, 31, p. 101343. , https://doi.org/10.1016/j.tmaid.2018.10.021; Memish, Z.A., Al-Tawfiq, J.A., Almasri, M., A cohort study of the impact and acquisition of nasopharyngeal carriage of Streptococcus pneumoniae during the Hajj (2016) Travel Med Infect Dis, 14, pp. 242-247; Memish, Z.A., Assiri, A., Almasri, M., Impact of the Hajj on pneumococcal transmission (2015) Clin Microbiol Infect, 21, p. 8; Hanada, S., Pirzadeh, M., Carver, K.Y., Respiratory viral infection-induced Microbiome alterations and secondary bacterial pneumonia (2018) Front Immunol, 9, p. 2640; Bischoff, W.E., Bassetti, S., Bassetti-Wyss, B.A., Airborne dispersal as a novel transmission route of coagulase-negative staphylococci: interaction between coagulase-negative staphylococci and rhinovirus infection (2004) Infect Control Hosp Epidemiol, 25, pp. 504-511; Bischoff, W.E., Wallis, M.L., Tucker, B.K., “Gesundheit!” sneezing, common colds, allergies, and Staphylococcus aureus dispersion (2006) J Infect Dis, 194, pp. 1119-1126; Bischoff, W.E., Tucker, B.K., Wallis, M.L., Preventing the airborne spread of Staphylococcus aureus by persons with the common cold: effect of surgical scrubs, gowns, and masks (2007) Infect Control Hosp Epidemiol, 28, pp. 1148-1154; Bassetti, S., Bischoff, W.E., Walter, M., Dispersal of Staphylococcus aureus into the air associated with a rhinovirus infection (2005) Infect Control Hosp Epidemiol, 26, pp. 196-203; Merler, S., Poletti, P., Ajelli, M., Coinfection can trigger multiple pandemic waves (2008) J Theor Biol, 254, pp. 499-507; Hofstra, J.J., Matamoros, S., van de Pol, M.A., Changes in microbiota during experimental human rhinovirus infection (2015) BMC Infect Dis, 15, p. 336; Morgene, M.F., Botelho-Nevers, E., Grattard, F., Staphylococcus aureus colonization and non-influenza respiratory viruses: interactions and synergism mechanisms (2018) Virulence, 9, pp. 1354-1363; Dunne, E.M., Murad, C., Sudigdoadi, S., Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: A cross-sectional study (2018) PLoS One, 13; Pettigrew, M.M., Gent, J.F., Revai, K., Microbial interactions during upper respiratory tract infections (2008) Emerg Infect Dis, 14, pp. 1584-1591; Xu, Q., Almudervar, A., Casey, J.R., Nasopharyngeal bacterial interactions in children (2012) Emerg Infect Dis, 18, pp. 1738-1745; Ruohola, A., Pettigrew, M.M., Lindholm, L., Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media (2013) J Infect, 66, pp. 247-254; Perez, A.C., Pang, B., King, L.B., Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo (2014) Pathog Dis, 70, pp. 280-288; Weimer, K.E.D., Juneau, R.A., Murrah, K.A., Divergent mechanisms for passive pneumococcal resistance to β-Lactam antibiotics in the presence of Haemophilus influenzae (2011) J Infect Dis, 203, pp. 549-555; (2019), https://solidarites-sante.gouv.fr/IMG/pdf/calendrier_vaccinal_mars_2019.pdf, Direction Générale de la Santé. Ministère des Affaires sociales, de la Santé et des Droits des femmes. Paris. Calendrier des vaccinations et recommandations vaccinales 2019","Gautret, P.; VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, France; email: philippe.gautret@club-internet.fr",,"Taylor and Francis Ltd.",22221751,,,"31749410","English","Emerg. Microbes Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85075461085 "Van Rijn A.L., Van Boheemen S., Sidorov I., Carbo E.C., Pappas N., Mei H., Feltkamp M., Aanerud M., Bakke P., Claas E.C.J., Eagan T.M., Hiemstra P.S., Kroes A.C.M., De Vries J.J.C.","57196081206;36151634200;7005186545;57211476616;57211472870;57202314556;57209053280;55258921800;7005426134;7005382224;6603063293;7004364809;7004351233;15827268000;","The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease",2019,"PLoS ONE","14","10", e0223952,"","",,1,"10.1371/journal.pone.0223952","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074089070&doi=10.1371%2fjournal.pone.0223952&partnerID=40&md5=f57af8e098a13a87c12abb254b6267ad","Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Sequencing Analysis Support Core, Department of Medical Data Sciences, Leiden University Medical Center, Leiden, Netherlands; Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands; Department of Clinical Virology, Erasmus Medical Center, Rotterdam, Netherlands; Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands","Van Rijn, A.L., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Van Boheemen, S., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands, Department of Clinical Virology, Erasmus Medical Center, Rotterdam, Netherlands; Sidorov, I., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Carbo, E.C., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Pappas, N., Sequencing Analysis Support Core, Department of Medical Data Sciences, Leiden University Medical Center, Leiden, Netherlands, Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands; Mei, H., Sequencing Analysis Support Core, Department of Medical Data Sciences, Leiden University Medical Center, Leiden, Netherlands; Feltkamp, M., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Aanerud, M., Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway, Department of Clinical Science, University of Bergen, Bergen, Norway; Bakke, P., Department of Clinical Science, University of Bergen, Bergen, Norway; Claas, E.C.J., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Eagan, T.M., Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway, Department of Clinical Science, University of Bergen, Bergen, Norway; Hiemstra, P.S., Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands; Kroes, A.C.M., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; De Vries, J.J.C., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","Introduction Exacerbations are major contributors to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), and respiratory bacterial and viral infections are an important trigger. However, using conventional diagnostic techniques, a causative agent is not always found. Metagenomic next-generation sequencing (mNGS) allows analysis of the complete virome, but has not yet been applied in COPD exacerbations. Objectives To study the respiratory virome in nasopharyngeal samples during COPD exacerbations using mNGS. Study design 88 nasopharyngeal swabs from 63 patients from the Bergen COPD Exacerbation Study (2006-2010) were analysed by mNGS and in-house qPCR for respiratory viruses. Both DNA and RNA were sequenced simultaneously using an Illumina library preparation protocol with in-house adaptations. Results By mNGS, 24/88 samples tested positive. Sensitivity and specificity, as compared with PCR, were 96% and 98% for diagnostic targets (23/24 and 1093/1120, respectively). Additional viral pathogens detected by mNGS were herpes simplex virus type 1 and coronavirus OC43. A positive correlation was found between Cq value and mNGS viral normalized species reads (log value) (p = 0.002). Patients with viral pathogens had lower percentages of bacteriophages (p<0.001). No correlation was found between viral reads and clinical markers. Conclusions The mNGS protocol used was highly sensitive and specific for semi-quantitative detection of respiratory viruses. Excellent negative predictive value implicates the power of mNGS to exclude any pathogenic respiratory viral infectious cause in one test, with consequences for clinical decision making. Reduced abundance of bacteriophages in COPD patients with viral pathogens implicates skewing of the virome during infection, with potential consequences for the bacterial populations, during infection. © 2019 van Rijn et al.",,"adult; aged; Article; bacteriophage; chronic obstructive lung disease; clinical protocol; controlled study; Coronavirinae; diagnostic accuracy; diagnostic test; diagnostic test accuracy study; disease exacerbation; disease marker; DNA sequence; female; human; Human alphaherpesvirus 1; major clinical study; male; microbiological examination; nasopharyngeal swab; next generation sequencing; nonhuman; predictive value; real time polymerase chain reaction; reference value; respiratory virus; RNA sequence; sensitivity and specificity; virus strain; chronic obstructive lung disease; classification; complication; genetics; high throughput sequencing; incidence; metagenomics; middle aged; nasopharynx; Netherlands; pathology; respiratory tract infection; virology; virus; virus infection; Aged; Female; High-Throughput Nucleotide Sequencing; Humans; Incidence; Male; Metagenomics; Middle Aged; Nasopharynx; Netherlands; Pulmonary Disease, Chronic Obstructive; Respiratory Tract Infections; Virus Diseases; Viruses","Who, , http://www.who.int/respiratory/copd/burden/en/, [cited 2018 08-10-2018]; Aaron, S.D., Management and prevention of exacerbations of COPD (2014) BMJ (Clinical Research Ed), 349, p. g5237. , https://doi.org/10.1136/bmj.g5237, Epub 2014/09/24. PMID: 25245156; Ko, F.W., Chan, K.P., Hui, D.S., Goddard, J.R., Shaw, J.G., Reid, D.W., Acute exacerbation of COPD (2016) Respirology (Carlton, Vic), 21 (7), pp. 1152-1165. , https://doi.org/10.1111/resp.12780, Epub 2016/03/31 PMID: 27028990; Wedzicha, J.A., Seemungal, T.A., COPD exacerbations: Defining their cause and prevention (2007) Lancet, 370 (9589), pp. 786-796. , https://doi.org/10.1016/S0140-6736(07)61382-8, Epub 2007/09/04 PMID: 17765528; Sapey, E., Stockley, R.A., COPD exacerbations. 2: Aetiology (2006) Thorax., 61 (3), pp. 250-258. , https://doi.org/10.1136/thx.2005.041822, Epub 2006/03/ 07. PMID: 16517585; Hewitt, R., Farne, H., Ritchie, A., Luke, E., Johnston, S.L., Mallia, P., The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma (2016) Therapeutic Advances in Respiratory Disease, 10 (2), pp. 158-174. , https://doi.org/10.1177/1753465815618113, Epub 2015/11/28 PMID: 26611907; Van Den Hoogen, B.G., De Jong, J.C., Groen, J., Kuiken, T., De Groot, R., Fouchier, R.A., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat Med., 7 (6), pp. 719-724. , https://doi.org/10.1038/89098, Epub 2001/06/01 PMID: 11385510; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med., 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, Epub 2012/10/ 19 PMID: 23075143; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci U S A, 102 (36), pp. 12891-12896. , https://doi.org/10.1073/pnas.0504666102, Epub 2005/08/25 PMID: 16118271; Prachayangprecha, S., Schapendonk, C.M., Koopmans, M.P., Osterhaus, A.D., Schurch, A.C., Pas, S.D., Exploring the potential of next-generation sequencing in detection of respiratory viruses (2014) Journal of Clinical Microbiology, 52 (10), pp. 3722-3730. , https://doi.org/10.1128/JCM.01641-14, Epub 2014/08/08 PMID: 25100822; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio., 3 (6). , https://doi.org/10.1128/mBio.00473-12, Epub 2012/11/22. PMID: 23170002; Yang, J., Yang, F., Ren, L., Xiong, Z., Wu, Z., Dong, J., Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach (2011) Journal of Clinical Microbiology, 49 (10), pp. 3463-3469. , https://doi.org/10.1128/JCM.00273-11, Epub 2011/08/05 PMID: 21813714; Lewandowska, D.W., Schreiber, P.W., Schuurmans, M.M., Ruehe, B., Zagordi, O., Bayard, C., Metagenomic sequencing complements routine diagnostics in identifying viral pathogens in lung transplant recipients with unknown etiology of respiratory infection (2017) PloS One., 12 (5). , https://doi.org/10.1371/journal.pone.0177340, Epub 2017/ 05/26 PMID: 28542207; Van Boheemen, S., (2018) Metagenomic Sequencing for Combined Detection of RNA and DNA Viruses in Respiratory Samples from Paediatric Patients, , http://dx.doi.org/10.1101/492835, bioRxiv. Dec 10; Wang, Z., Bafadhel, M., Haldar, K., Spivak, A., Mayhew, D., Miller, B.E., Lung microbiome dynamics in COPD exacerbations (2016) Eur Respir J., 47 (4), pp. 1082-1092. , https://doi.org/10.1183/13993003.01406-2015, Epub 2016/02/27 PMID: 26917613; Wang, Y., Zhu, N., Li, Y., Lu, R., Wang, H., Liu, G., Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China (2016) Clin Microbiol Infect., 22 (5), p. 458. , https://doi.org/10.1016/j.cmi.2016.01.006, e1-9. Epub 2016/01/24 PMID: 26802214; Lysholm, F., Wetterbom, A., Lindau, C., Darban, H., Bjerkner, A., Fahlander, K., Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing (2012) PloS One., 7 (2). , https://doi.org/10.1371/journal.pone.0030875, Epub 2012/02/23 PMID: 22355331; Eagan, T.M., Ueland, T., Wagner, P.D., Hardie, J.A., Mollnes, T.E., Damas, J.K., Systemic inflammatory markers in COPD: Results from the Bergen COPD Cohort Study (2010) Eur Respir J., 35 (3), pp. 540-548. , https://doi.org/10.1183/09031936.00088209, Epub 2009/08/01 PMID: 19643942; Loens, K., Van Loon, A.M., Coenjaerts, F., Van Aarle, Y., Goossens, H., Wallace, P., Performance of different mono- And multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel (2012) Journal of Clinical Microbiology, 50 (3), pp. 977-987. , https://doi.org/10.1128/JCM.00200-11, Epub 2011/12/16 PMID: 22170925; Van Boheemen, S., Van Rijn-Klink, A.L., Pappas, N., Carbo, E.C., Vorderman, R.H.P., Van 't Hof, P.J., (2018) Metagenomic Sequencing for Combined Detection of RNA and DNA Viruses in Respiratory Samples from Paediatric Patients, p. 492835. , https://doi.org/10.1101/492835%JbioRxiv; Kim, D., Song, L., Breitwieser, F.P., Salzberg, S.L., Centrifuge: Rapid and sensitive classification of metagenomic sequences (2016) Genome Research, 26 (12), pp. 1721-1729. , https://doi.org/10.1101/gr.210641.116, Epub 2016/11/18 PMID: 27852649; Vilsker, M., Moosa, Y., Nooij, S., Fonseca, V., Ghysens, Y., Dumon, K., Genome detective: An automated system for virus identification from high-throughput sequencing data (2018) Bioinformatics, , https://doi.org/10.1093/bioinformatics/bty695, Epub 2018/08/21. PMID: 30124794; Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing (2012) Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 19 (5), pp. 455-477. , https://doi.org/10.1089/cmb.2012.0021, Epub 2012/04/18 PMID: 22506599; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol., 215 (3), pp. 403-410. , https://doi.org/10.1016/S0022-2836(05)80360-2, Epub 1990/10/05 PMID: 2231712; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25 (14), pp. 1754-1760. , https://doi.org/10.1093/bioinformatics/btp324, Epub 2009/05/20 PMID: 19451168; Akobeng, A.K., Understanding diagnostic tests 3: Receiver operating characteristic curves (2007) Acta Paediatrica (Oslo, Norway: 1992), 96 (5), pp. 644-647. , https://doi.org/10.1111/j.1651-2227.2006.00178.x, Epub 2007/03/23 PMID: 17376185; Elbehery, A.H.A., Feichtmayer, J., Singh, D., Griebler, C., Deng, L., The human virome protein cluster database (HVPC): A human viral metagenomic database for diversity and function annotation (2018) Front Microbiol., 9, p. 1110. , https://doi.org/10.3389/fmicb.2018.01110, Epub 2018/06/14 PMID: 29896176; Arden, K.E., McErlean, P., Nissen, M.D., Sloots, T.P., Mackay, I.M., Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections (2006) Journal of Medical Virology, 78 (9), pp. 1232-1240. , https://doi.org/10.1002/jmv.20689, Epub 2006/07/19 PMID: 16847968; Lamson, D., Renwick, N., Kapoor, V., Liu, Z., Palacios, G., Ju, J., MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004-2005 (2006) The Journal of Infectious Diseases, 194 (10), pp. 1398-1402. , https://doi.org/10.1086/508551, Epub 2006/10/21 PMID: 17054069; Bonnelykke, K., Sleiman, P., Nielsen, K., Kreiner-Moller, E., Mercader, J.M., Belgrave, D., A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations (2014) Nat Genet., 46 (1), pp. 51-55. , https://doi.org/10.1038/ng.2830, Epub 2013/11/19 PMID: 24241537; Bochkov, Y.A., Watters, K., Ashraf, S., Griggs, T.F., Devries, M.K., Jackson, D.J., Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication (2015) Proc Natl Acad Sci U S A., 112 (17), pp. 5485-5490. , https://doi.org/10.1073/pnas.1421178112, Epub 2015/04/08 PMID: 25848009; Kanazawa, J., Masuko, H., Yatagai, Y., Sakamoto, T., Yamada, H., Kaneko, Y., Genetic association of the functional CDHR3 genotype with early-onset adult asthma in Japanese populations (2017) Allergol Int., 66 (4), pp. 563-567. , https://doi.org/10.1016/j.alit.2017.02.012, Epub 2017/03/21 PMID: 28318885; Romero-Espinoza, J.A., Moreno-Valencia, Y., Coronel-Tellez, R.H., Castillejos-Lopez, M., Hernandez, A., Dominguez, A., Virome and bacteriome characterization of children with pneumonia and asthma in Mexico City during winter seasons 2014 and 2015 (2018) PloS One., 13 (2). , https://doi.org/10.1371/journal.pone.0192878, Epub 2018/02/16 PMID: 29447223; Lau, S.K., Yip, C.C., Lin, A.W., Lee, R.A., So, L.Y., Lau, Y.L., Clinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup (2009) The Journal of Infectious Diseases., 200 (7), pp. 1096-1103. , https://doi.org/10.1086/605697, PMID: 19708791; McErlean, P., Shackelton, L.A., Lambert, S.B., Nissen, M.D., Sloots, T.P., Mackay, I.M., Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis (2007) Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 39 (2), pp. 67-75. , https://doi.org/10.1016/j.jcv.2007.03.012, Epub 2007/05/08 PMID: 17482871; El Saleeby, C.M., Bush, A.J., Harrison, L.M., Aitken, J.A., Devincenzo, J.P., Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children (2011) The Journal of Infectious Diseases, 204 (7), pp. 996-1002. , https://doi.org/10.1093/infdis/jir494, Epub 2011/09/02 PMID: 21881113; Houben, M.L., Coenjaerts, F.E., Rossen, J.W., Belderbos, M.E., Hofland, R.W., Kimpen, J.L., Disease severity and viral load are correlated in infants with primary respiratory syncytial virus infection in the community (2010) Journal of Medical Virology, 82 (7), pp. 1266-1271. , https://doi.org/10.1002/jmv.21771, Epub 2010/06/01 PMID: 20513094; Zhao, B., Yu, X., Wang, C., Teng, Z., Wang, C., Shen, J., High human bocavirus viral load is associated with disease severity in children under five years of age (2013) PloS One, 8 (4). , https://doi.org/10.1371/journal.pone.0062318, Epub 2013/05/ 03 PMID: 23638038; Christensen, A., Nordbo, S.A., Krokstad, S., Rognlien, A.G., Dollner, H., Human bocavirus in children: Monodetection, high viral load and viraemia are associated with respiratory tract infection (2010) Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology., 49 (3), pp. 158-162. , https://doi.org/10.1016/j.jcv.2010.07.016, Epub 2010/09/14 PMID: 20833582; Gregory, A.C., Sullivan, M.B., Segal, L.N., Keller, B.C., Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome (2018) Respiratory Research., 19 (1), p. 174. , https://doi.org/10.1186/s12931-018-0878-9, Epub 2018/09/ 14 PMID: 30208886; Norman, J.M., Handley, S.A., Baldridge, M.T., Droit, L., Liu, C.Y., Keller, B.C., Disease-specific alterations in the enteric virome in inflammatory bowel disease (2015) Cell., 160 (3), pp. 447-460. , https://doi.org/10.1016/j.cell.2015.01.002, Epub 2015/01/27 PMID: 25619688; D'Anna, S.E., Balbi, B., Cappello, F., Carone, M., Di Stefano, A., Bacterial-viral load and the immune response in stable and exacerbated COPD: Significance and therapeutic prospects (2016) Int J Chron Obstruct Pulmon Dis., 11, pp. 445-453. , https://doi.org/10.2147/COPD.S93398, Epub 2016/04/05 PMID: 27042037; Molyneaux, P.L., Mallia, P., Cox, M.J., Footitt, J., Willis-Owen, S.A., Homola, D., Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease (2013) Am J Respir Crit Care Med., 188 (10), pp. 1224-1231. , https://doi.org/10.1164/rccm.201302-0341OC, Epub 2013/09/03 PMID: 23992479; Huffnagle, G.B., Dickson, R.P., Lukacs, N.W., The respiratory tract microbiome and lung inflammation: A twoway street (2016) Mucosal Immunology., 10, p. 299. , https://doi.org/10.1038/mi.2016.108, PMID: 27966551; Ling, Z., Liu, X., Luo, Y., Yuan, L., Wang, Y., Xiang, C., (2013) Pyrosequencing Analysis of the Human Microbiota of Healthy Chinese Undergraduates, 390p; Bedarida, S., Dussol, B., Signoli, M., Biagini, P., Analysis of Anelloviridae sequences characterized from serial human and animal biological samples (2017) Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 53, pp. 89-93. , https://doi.org/10.1016/j.meegid.2017.05.017, Epub 2017/05/26 PMID: 28536071; Thorburn, F., Bennett, S., Modha, S., Murdoch, D., Gunson, R., Murcia, P.R., The use of next generation sequencing in the diagnosis and typing of respiratory infections (2015) J Clin Virol., 69, pp. 96-100. , https://doi.org/10.1016/j.jcv.2015.06.082, Epub 2015/07/26 PMID: 26209388; Graf, E.H., Simmon, K.E., Tardif, K.D., Hymas, W., Flygare, S., Eilbeck, K., Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: A systematic comparison to a commercial PCR panel (2016) J Clin Microbiol., 54 (4), pp. 1000-1007. , https://doi.org/10.1128/JCM.03060-15, Epub 2016/01/29 PMID: 26818672","Van Rijn, A.L.; Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: a.l.van_rijn-klink@lumc.nl",,"Public Library of Science",19326203,,POLNC,"31647831","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85074089070 "Mitchell H.D., Eisfeld A.J., Stratton K.G., Heller N.C., Bramer L.M., Wen J., McDermott J.E., Gralinski L.E., Sims A.C., Le M.Q., Baric R.S., Kawaoka Y., Waters K.M.","7202670454;12241829700;35765680000;57203578735;54386489200;57214631711;7202518284;6505609367;7102763252;14525254100;57205312930;26643027000;7102277063;","The role of EGFR in influenza pathogenicity: Multiple network-based approaches to identify a key regulator of non-lethal infections",2019,"Frontiers in Cell and Developmental Biology","7","SEP", 200,"","",,1,"10.3389/fcell.2019.00200","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072923388&doi=10.3389%2ffcell.2019.00200&partnerID=40&md5=5cae41e175bb6483300a137c4a128deb","Pacific Northwest National Laboratory, Richland, WA, United States; Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States; Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan","Mitchell, H.D., Pacific Northwest National Laboratory, Richland, WA, United States; Eisfeld, A.J., Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States; Stratton, K.G., Pacific Northwest National Laboratory, Richland, WA, United States; Heller, N.C., Pacific Northwest National Laboratory, Richland, WA, United States; Bramer, L.M., Pacific Northwest National Laboratory, Richland, WA, United States; Wen, J., Pacific Northwest National Laboratory, Richland, WA, United States; McDermott, J.E., Pacific Northwest National Laboratory, Richland, WA, United States; Gralinski, L.E., Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Sims, A.C., Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Le, M.Q., National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; Baric, R.S., Department of Microbiology and Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Kawaoka, Y., Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States, Division of Virology, Department of Microbiology and Immunology, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan, International Research Center for Infectious Diseases, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan; Waters, K.M., Pacific Northwest National Laboratory, Richland, WA, United States","Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene’s involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections. © 2019 Mitchell, Eisfeld, Stratton, Heller, Bramer, Wen, McDermott, Gralinski, Sims, Le, Baric, Kawaoka and Waters.","Data integration; Influenza; Network topology; SARS-CoV; Systems biology","epidermal growth factor receptor; proteome; transcriptome; animal experiment; Article; female; immune response; influenza; Influenza virus; mouse; nonhuman; protein expression; proteomics; SARS coronavirus; transcriptomics; virus mutant; virus strain; virus virulence","Berri, F., Rimmelzwaan, G.F., Hanss, M., Albina, E., Foucault-Grunenwald, M.L., Le, V.B., Plasminogen controls inflammation and pathogenesis of influenza virus infections via fibrinolysis (2013) Plos Pathog, 9; Cilloniz, C., Shinya, K., Peng, X., Korth, M.J., Proll, S.C., Aicher, L.D., Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes (2009) Plos Pathog, 5; Dawood, F.S., Iuliano, A.D., Reed, C., Meltzer, M.I., Shay, D.K., Cheng, P.Y., Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study (2012) Lancet Infect. Dis., 12, pp. 687-695; Dougan, S.K., Ashour, J., Karssemeijer, R.A., Popp, M.W., Avalos, A.M., Barisa, M., Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus (2013) Nature, 503, pp. 406-409; Eierhoff, T., Hrincius, E.R., Rescher, U., Ludwig, S., Ehrhardt, C., The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells (2010) Plos Pathog, 6; Eisfeld, A.J., Neumann, G., Kawaoka, Y., Influenza A virus isolation, culture and identification (2014) Nat. Protoc., 9, pp. 2663-2681; Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles (2007) Plos Biol, 5, p. e8; (2019) H7N9 Situation Update, 13, p. 2019. , http://www.fao.org/ag/againfo/programmes/en/empres/H7N9/situation_update.html, Available at, accessed September; Gralinski, L.E., Bankhead, A., III, Jeng, S., Menachery, V.D., Proll, S., Belisle, S.E., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) Mbio, 4; Hatta, M., Gao, P., Halfmann, P., Kawaoka, Y., Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses (2001) Science, 293, pp. 1840-1842; Ideker, T., Krogan, N.J., Differential network biology (2012) Mol. Syst. Biol., 8, p. 565; Kalinowski, A., Ueki, I., Min-Oo, G., Ballon-Landa, E., Knoff, D., Galen, B., EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production (2014) Am. J. Physiol. Lung Cell. Mol. Physiol., 307, pp. L186-L196; Kobasa, D., Jones, S.M., Shinya, K., Kash, J.C., Copps, J., Ebihara, H., Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus (2007) Nature, 445, pp. 319-323; Langfelder, P., Horvath, S., WGCNA: An R package for weighted correlation network analysis (2008) BMC Bioinform, 9, p. 559; Levine, A.J., Horvath, S., Miller, E.N., Singer, E.J., Shapshak, P., Baldwin, G.C., Transcriptome analysis of HIV-infected peripheral blood monocytes: Gene transcripts and networks associated with neurocognitive functioning (2013) J. Neuroimmunol., 265, pp. 96-105; Li, C., Bankhead, A., III, Eisfeld, A.J., Hatta, Y., Jeng, S., Chang, J.H., Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus (2011) J. Virol., 85, pp. 10955-10967; McDermott, J.E., Archuleta, M., Stevens, S.L., Stenzel-Poore, M.P., Sanfilippo, A., Defining the players in higher-order networks: Predictive modeling for reverse engineering functional influence networks (2011) Pac. Sympos. Biocomput., 2011, pp. 314-325; McDermott, J.E., Diamond, D.L., Corley, C., Rasmussen, A.L., Katze, M.G., Waters, K.M., Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis (2012) BMC Syst. Biol., 6, p. 28; McDermott, J.E., Mitchell, H.D., Gralinski, L.E., Eisfeld, A.J., Josset, L., Bankhead, A., III, The effect of inhibition of PP1 and TNFalpha signaling on pathogenesis of SARS coronavirus (2016) BMC Syst. Biol., 10, p. 93; McDermott, J.E., Taylor, R.C., Yoon, H., Heffron, F., Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium (2009) J. Comput. Biol., 16, pp. 169-180; Michaelis, M., Doerr, H.W., Cinatl, J., Jr., Novel swine-origin influenza A virus in humans: Another pandemic knocking at the door (2009) Med. Microbiol. Immunol., 198, pp. 175-183; Mitchell, H.D., Eisfeld, A.J., Sims, A.C., McDermott, J.E., Matzke, M.M., Webb-Robertson, B.J., A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses (2013) Plos One, 8; Narang, V., Ramli, M.A., Singhal, A., Kumar, P., de Libero, G., Poidinger, M., Automated identification of core regulatory genes in human gene regulatory networks (2015) Plos Comput. Biol., 11; Peiris, J.S., Yu, W.C., Leung, C.W., Cheung, C.Y., Ng, W.F., Nicholls, J.M., Re-emergence of fatal human influenza A subtype H5N1 disease (2004) Lancet, 363, pp. 617-619; Polverino, F., Seys, L.J., Bracke, K.R., Owen, C.A., B cells in chronic obstructive pulmonary disease: Moving to center stage (2016) Am. J. Physiol. Lung Cell. Mol. Physiol., 311, pp. L687-L695; Puddicombe, S.M., Polosa, R., Richter, A., Krishna, M.T., Howarth, P.H., Holgate, S.T., Involvement of the epidermal growth factor receptor in epithelial repair in asthma (2000) FASEB J, 14, pp. 1362-1374; Safronetz, D., Rockx, B., Feldmann, F., Belisle, S.E., Palermo, R.E., Brining, D., Pandemic swine-origin H1N1 influenza A virus isolates show heterogeneous virulence in macaques (2011) J. Virol., 85, pp. 1214-1223; Saris, C.G., Horvath, S., van Vught, P.W., van Es, M.A., Blauw, H.M., Fuller, T.F., Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients (2009) BMC Genomics, 10, p. 405; Sedger, L.M., Hou, S., Osvath, S.R., Glaccum, M.B., Peschon, J.J., van Rooijen, N., Bone marrow B cell apoptosis during in vivo influenza virus infection requires TNF-alpha and lymphotoxin-alpha (2002) J. Immunol., 169, pp. 6193-6201; Taylor, A., Vagany, V., Jackson, A.C., Harrison, R.J., Rainoni, A., Clarkson, J.P., Identification of pathogenicity-related genes in Fusarium oxysporum f. Sp. cepae (2016) Mol. Plant Pathol., 17, pp. 1032-1047; Tchitchek, N., Eisfeld, A.J., Tisoncik-Go, J., Josset, L., Gralinski, L.E., Becavin, C., Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice (2013) BMC Syst. Biol., 7, p. 69; Tisoncik-Go, J., Gasper, D.J., Kyle, J.E., Eisfeld, A.J., Selinger, C., Hatta, M., Integrated omics analysis of pathogenic host responses during pandemic H1N1 influenza virus infection: The crucial role of lipid metabolism (2016) Cell Host Microbe, 19, pp. 254-266; Ueki, I.F., Min-Oo, G., Kalinowski, A., Ballon-Landa, E., Lanier, L.L., Nadel, J.A., Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon lambda and antiviral defense in airway epithelium (2013) J. Exp. Med., 210, pp. 1929-1936; Venkataraman, T., Coleman, C.M., Frieman, M.B., Overactive epidermal growth factor receptor signaling leads to increased fibrosis after severe acute respiratory syndrome coronavirus infection (2017) J. Virol., 91, p. e00182; Vogel, C., Marcotte, E.M., Insights into the regulation of protein abundance from proteomic and transcriptomic analyses (2012) Nat. Rev. Genet., 13, pp. 227-232; Webb-Robertson, B.J., Wiberg, H.K., Matzke, M.M., Brown, J.N., Wang, J., McDermott, J.E., Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics (2015) J. Proteome Res., 14, pp. 1993-2001; (2018) Cumulative Number of Confirmed Human Cases for Avian Influenza A(H5N1) Reported to WHO, 2003-2018, , https://www.who.int/influenza/human_animal_interface/2018_12_13_tableH5N1.pdf, (accessed September 13, 2019); Yu, H., Kim, P.M., Sprecher, E., Trifonov, V., Gerstein, M., The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics (2007) Plos Comput. Biol, 3, p. e59; Zhou, X., Liu, J., A computational model to predict bone metastasis in breast cancer by integrating the dysregulated pathways (2014) BMC Cancer, 14, p. 618","Mitchell, H.D.; Pacific Northwest National LaboratoryUnited States; email: hugh.mitchell@pnnl.gov",,"Frontiers Media S.A.",2296634X,,,,"English","Front. Cell Dev. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85072923388 "Lee K.H., Yoo S.G., Cho Y., Kwon D.E., La Y., Han S.H., Kim M.S., Choi J.S., Kim S.I., Kim Y.S., Min Y.H., Cheong J.-W., Kim J.S., Song Y.G.","57211694162;57209533910;55257875000;57209532607;57209530036;24168229300;57211696833;57209534551;57205256117;27067882600;7202197132;7004933294;57207437817;57209536813;","Characteristics of community-acquired respiratory viruses infections except seasonal influenza in transplant recipients and non-transplant critically ill patients",2019,"Journal of Microbiology, Immunology and Infection",,,,"","",,3,"10.1016/j.jmii.2019.05.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068089643&doi=10.1016%2fj.jmii.2019.05.007&partnerID=40&md5=5841c3e0af8b2d1860d45be689649813","Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea; Department of Transplantation Surgery and Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea; Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea","Lee, K.H., Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Yoo, S.G., Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Cho, Y., Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea; Kwon, D.E., Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; La, Y., Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Han, S.H., Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Kim, M.S., Department of Transplantation Surgery and Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea; Choi, J.S., Department of Transplantation Surgery and Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea; Kim, S.I., Department of Transplantation Surgery and Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea; Kim, Y.S., Department of Transplantation Surgery and Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea; Min, Y.H., Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Cheong, J.-W., Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Kim, J.S., Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Song, Y.G., Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea","Background/Purpose: Transplant recipients are vulnerable to life-threatening community-acquired respiratory viruses (CA-RVs) infection (CA-RVI). Even if non-transplant critically ill patients in intensive care unit (ICU) have serious CA-RVI, comparison between these groups remains unclear. We aimed to evaluate clinical characteristics and mortality of CA-RVI except seasonal influenza A/B in transplant recipients and non-transplant critically ill patients in ICU. Methods: We collected 37,777 CA-RVs multiplex real-time reverse transcription-polymerase chain reaction test results of individuals aged ≥18 years from November 2012 to November 2017. The CA-RVs tests included adenovirus, coronavirus 229E/NL63/OC43, human bocavirus, human metapneumovirus, parainfluenza virus 1/2/3, rhinovirus, and respiratory syncytial virus A/B. Results: We found 286 CA-RVI cases, including 85 solid organ transplantation recipients (G1), 61 hematopoietic stem cell transplantation recipients (G2), and 140 non-transplant critically ill patients in ICU (G3), excluding those with repeated isolation within 30 days. Adenovirus positive rate and infection cases were most prominent in G2 (p < 0.001). The median time interval between transplantation and CA-RVI was 30 and 20 months in G1 and G2, respectively. All-cause in-hospital mortality was significantly higher in G3 than in G1 or G2 (51.4% vs. 28.2% or 39.3%, p = 0.002, respectively). The mechanical ventilation (MV) was the independent risk factor associated with all-cause in-hospital mortality in all three groups (hazard ratio, 3.37, 95% confidence interval, 2.04–5.56, p < 0.001). Conclusions: This study highlights the importance of CA-RVs diagnosis in transplant recipients even in long-term posttransplant period, and in non-transplant critically ill patients in ICU with MV. © 2019","Community-acquired respiratory viruses; Critically ill patients; Hematopoietic stem cell transplantation; Mortality; Solid organ transplantation",,"Fishman, J.A., Infection in solid-organ transplant recipients (2007) N Engl J Med, 357, pp. 2601-2614; Fishman, J.A., Issa, N.C., Infection in organ transplantation: risk factors and evolving patterns of infection (2010) Infect Dis Clin N Am, 24, pp. 273-283; Wingard, J.R., Hsu, J., Hiemenz, J.W., Hematopoietic stem cell transplantation: an overview of infection risks and epidemiology (2010) Infect Dis Clin N Am, 24, pp. 257-272; Paulsen, G.C., Danziger-Isakov, L., Respiratory viral infections in solid organ and hematopoietic stem cell transplantation (2017) Clin Chest Med, 38, pp. 707-726; Abbas, S., Raybould, J.E., Sastry, S., de la Cruz, O., Respiratory viruses in transplant recipients: more than just a cold. Clinical syndromes and infection prevention principles (2017) Int J Infect Dis, 62, pp. 86-93; Peghin, M., Hirsch, H.H., Len, O., Codina, G., Berastegui, C., Saez, B., Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: a 5-year prospective study (2017) Am J Transplant, 17, pp. 1304-1312; Lo, M.S., Lee, G.M., Gunawardane, N., Burchett, S.K., Lachenauer, C.S., Lehmann, L.E., The impact of RSV, adenovirus, influenza, and parainfluenza infection in pediatric patients receiving stem cell transplant, solid organ transplant, or cancer chemotherapy (2013) Pediatr Transplant, 17, pp. 133-143; Nichols, W.G., Guthrie, K.A., Corey, L., Boeckh, M., Influenza infections after hematopoietic stem cell transplantation: risk factors, mortality, and the effect of antiviral therapy (2004) Clin Infect Dis, 39, pp. 1300-1306; Hutspardol, S., Essa, M., Richardson, S., Schechter, T., Ali, M., Krueger, J., Significant transplantation-related mortality from respiratory virus infections within the first one hundred days in children after hematopoietic stem cell transplantation (2015) Biol Blood Marrow Transplant, 21, pp. 1802-1807; Green, M., Introduction: infections in solid organ transplantation (2013) Am J Transplant, 13, pp. 3-8; van Someren Greve, F., Juffermans, N.P., Bos, L.D.J., Binnekade, J.M., Braber, A., Cremer, O.L., Respiratory viruses in invasively ventilated critically ill patients-A prospective multicenter observational study (2018) Crit Care Med, 46, pp. 29-36; Shah, R.D., Wunderink, R.G., Viral pneumonia and acute respiratory distress syndrome (2017) Clin Chest Med, 38, pp. 113-125; van Someren Greve, F., Ong, D.S., Cremer, O.L., Bonten, M.J., Bos, L.D., de Jong, M.D., Clinical practice of respiratory virus diagnostics in critically ill patients with a suspected pneumonia: a prospective observational study (2016) J Clin Virol, 83, pp. 37-42; To, K.K., Lau, S.K., Chan, K.H., Mok, K.Y., Luk, H.K., Yip, C.C., Pulmonary and extrapulmonary complications of human rhinovirus infection in critically ill patients (2016) J Clin Virol, 77, pp. 85-91; Choi, S.H., Huh, J.W., Hong, S.B., Lee, J.Y., Kim, S.H., Sung, H., Clinical characteristics and outcomes of severe rhinovirus-associated pneumonia identified by bronchoscopic bronchoalveolar lavage in adults: comparison with severe influenza virus-associated pneumonia (2015) J Clin Virol, 62, pp. 41-47; Ong, D.S., Faber, T.E., Klein Klouwenberg, P.M., Cremer, O.L., Christiaan Boerma, E., Sietses, M., Respiratory syncytial virus in critically ill adult patients with community-acquired respiratory failure: a prospective observational study (2014) Clin Microbiol Infect, 20, pp. O505-O507; Huang, H.S., Tsai, C.L., Chang, J., Hsu, T.C., Lin, S., Lee, C.C., Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis (2017) Clin Microbiol Infect; Puppe, W., Weigl, J.A., Aron, G., Grondahl, B., Schmitt, H.J., Niesters, H.G., Evaluation of a multiplex reverse transcriptase PCR ELISA for the detection of nine respiratory tract pathogens (2004) J Clin Virol, 30, pp. 165-174; Kim, Y.J., Boeckh, M., Englund, J.A., Community respiratory virus infections in immunocompromised patients: hematopoietic stem cell and solid organ transplant recipients, and individuals with human immunodeficiency virus infection (2007) Semin Respir Crit Care Med, 28, pp. 222-242; Rheem, I., Park, J., Kim, T.H., Kim, J.W., Evaluation of a multiplex real-time PCR assay for the detection of respiratory viruses in clinical specimens (2012) Ann Lab Med, 32, pp. 399-406; Huh, H.J., Kim, J.Y., Kwon, H.J., Yun, S.A., Lee, M.K., Lee, N.Y., Performance evaluation of allplex respiratory panels 1, 2, and 3 for detection of respiratory viruses and influenza a virus subtypes (2017) J Clin Microbiol, 55, pp. 479-484; Cho, C.H., Lee, C.K., Nam, M.H., Yoon, S.Y., Lim, C.S., Cho, Y., Evaluation of the AdvanSure real-time RT-PCR compared with culture and Seeplex RV15 for simultaneous detection of respiratory viruses (2014) Diagn Microbiol Infect Dis, 79, pp. 14-18; Bruno, B., Gooley, T., Hackman, R.C., Davis, C., Corey, L., Boeckh, M., Adenovirus infection in hematopoietic stem cell transplantation: effect of ganciclovir and impact on survival (2003) Biol Blood Marrow Transplant, 9, pp. 341-352; Bridevaux, P.O., Aubert, J.D., Soccal, P.M., Mazza-Stalder, J., Berutto, C., Rochat, T., Incidence and outcomes of respiratory viral infections in lung transplant recipients: a prospective study (2014) Thorax, 69, pp. 32-38; Kumar, D., Husain, S., Chen, M.H., Moussa, G., Himsworth, D., Manuel, O., A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients (2010) Transplantation, 89, pp. 1028-1033; Martino, R., Porras, R.P., Rabella, N., Williams, J.V., Ramila, E., Margall, N., Prospective study of the incidence, clinical features, and outcome of symptomatic upper and lower respiratory tract infections by respiratory viruses in adult recipients of hematopoietic stem cell transplants for hematologic malignancies (2005) Biol Blood Marrow Transplant, 11, pp. 781-796; Lee, Y.J., Prockop, S.E., Papanicolaou, G.A., Approach to adenovirus infections in the setting of hematopoietic cell transplantation (2017) Curr Opin Infect Dis, 30, pp. 377-387; Waghmare, A., Englund, J.A., Boeckh, M., How I treat respiratory viral infections in the setting of intensive chemotherapy or hematopoietic cell transplantation (2016) Blood, 127, pp. 2682-2692; Kumar, D., Emerging viruses in transplantation (2010) Curr Opin Infect Dis, 23, pp. 374-378; Tan, M.Y., Tan, L.N., Aw, M.M., Quak, S.H., Karthik, S.V., Bocavirus infection following paediatric liver transplantation (2017) Pediatr Transplant, 21; Rahiala, J., Koskenvuo, M., Norja, P., Meriluoto, M., Toppinen, M., Lahtinen, A., Human parvoviruses B19, PARV4 and bocavirus in pediatric patients with allogeneic hematopoietic SCT (2013) Bone Marrow Transplant, 48, pp. 1308-1312; Grim, S.A., Reid, G.E., Clark, N.M., Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients (2017) Expert Opin Pharmacother, 18, pp. 767-779; Ljungstrom, L.R., Jacobsson, G., Claesson, B.E.B., Andersson, R., Enroth, H., Respiratory viral infections are underdiagnosed in patients with suspected sepsis (2017) Eur J Clin Microbiol Infect Dis, 36, pp. 1767-1776; Nguyen, C., Kaku, S., Tutera, D., Kuschner, W.G., Barr, J., Viral respiratory infections of adults in the intensive care unit (2016) J Intensive Care Med, 31, pp. 427-441","Han, S.H.; Department of Internal Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, South Korea; email: shhan74@yuhs.ac",,"Elsevier Ltd",16841182,,JMIIF,,"English","J. Microbiol. Immunol. Infect.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85068089643 "Langley C., Goodwin O., Dzimianski J.V., Daczkowski C.M., Pegan S.D.","57205445195;55921292800;57190951153;56928350300;6507300619;","Structure of interferon-stimulated gene product 15 (ISG15) from the bat species Myotis davidii and the impact of interdomain ISG15 interactions on viral protein engagement",2019,"Acta Crystallographica Section D: Structural Biology","75","1",,"21","31",,3,"10.1107/S2059798318015322","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060049279&doi=10.1107%2fS2059798318015322&partnerID=40&md5=d96157fbe21c9c9b610ea4482bc89b13","Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, Athens, GA 30602, United States","Langley, C., Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, Athens, GA 30602, United States; Goodwin, O., Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, Athens, GA 30602, United States; Dzimianski, J.V., Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, Athens, GA 30602, United States; Daczkowski, C.M., Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, Athens, GA 30602, United States; Pegan, S.D., Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, Athens, GA 30602, United States","Bats have long been observed to be the hosts and the origin of numerous human diseases. Bats, like all mammals, rely on a number of innate immune mechanisms to combat invading pathogens, including the interferon type I, II and III responses. Ubiquitin-like interferon-stimulated gene product 15 (ISG15) is a key modulator of these interferon responses. Within these pathways, ISG15 can serve to stabilize host proteins modulating innate immune responses and act as a cytokine. Post-translational modifications of viral proteins introduced by ISG15 have also been observed to directly affect the function of numerous viral proteins. Unlike ubiquitin, which is virtually identical across all animals, comparison of ISG15s across species reveals that they are relatively divergent, with sequence identity dropping to as low as ∼58% among mammals. In addition to serving as an obstacle to the zoonotic transmission of influenza, these ISG15 species–species differences have also long been shown to have an impact on the function of viral deISGylases. Recently, the structure of the first nonhuman ISG15, originating from mouse, suggested that the structures of human ISG15 may not be reflective of other species. Here, the structure of ISG15 from the bat species Myotis davidii solved to 1.37 Å resolution is reported. Comparison of this ISG15 structure with those from human and mouse not only underscores the structural impact of ISG15 species–species differences, but also highlights a conserved hydrophobic motif formed between the two domains of ISG15. Using the papain-like deISGylase from Severe acute respiratory syndrome coronavirus as a probe, the biochemical importance of this motif in ISG15–protein engagements was illuminated. © International Union of Crystallography, 2019","coronaviruses; interferons; ISG15; Myotis davidii; papain-like proteases; severe acute respiratory syndrome","cytokine; G1p2 protein, mouse; interferon; ISG15 protein, human; ubiquitin; viral protein; animal; bat; chemistry; human; immunology; metabolism; mouse; protein domain; protein processing; X ray crystallography; Animals; Chiroptera; Crystallography, X-Ray; Cytokines; Humans; Interferons; Mice; Protein Domains; Protein Processing, Post-Translational; Ubiquitins; Viral Proteins",,"Pegan, S.D.; Pharmaceutical and Biomedical Sciences, University of Georgia, 240 West Green Street, United States; email: spegan@uga.edu",,"Wiley-Blackwell",20597983,,,"30644842","English","Acta Crystallogr. Sect. D Str. Bio.",Article,"Final",,Scopus,2-s2.0-85060049279 "Moser J.-A.S., Galindo-Fraga A., Ortiz-Hernández A.A., Gu W., Hunsberger S., Galán-Herrera J.-F., Guerrero M.L., Ruiz-Palacios G.M., Beigel J.H., Magaña-Aquino M., Valdez-Vazquez R., Moreno-Espinosa S., Ramírez-Venegas A., Llamosas-Gallardo B., Pérez-Patrigeon S., Cherpitel D.E.N., The La Red ILI 002 Study Group","57204893620;6508359924;6506986080;21734415100;7003410346;37024274800;8245833100;7006106839;6506675950;15044871000;6504726578;23966912200;55993674700;6508011014;56013554700;56572770200;","Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses",2019,"Influenza and other Respiratory Viruses","13","1",,"3","9",,5,"10.1111/irv.12618","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057714090&doi=10.1111%2firv.12618&partnerID=40&md5=eaf5d8aaf9e09c3ccbb26fed60013527","National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Instituto Nacional de Pediatría, Mexico City, Mexico; Leidos Biomedical Research Inc. in support of National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States; Mexico Emerging Infectious Disease Clinical Research Network Coordinating Center, Mexico City, Mexico; Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico","Moser, J.-A.S., National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States; Galindo-Fraga, A., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Ortiz-Hernández, A.A., Instituto Nacional de Pediatría, Mexico City, Mexico; Gu, W., Leidos Biomedical Research Inc. in support of National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States; Hunsberger, S., National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States; Galán-Herrera, J.-F., Mexico Emerging Infectious Disease Clinical Research Network Coordinating Center, Mexico City, Mexico; Guerrero, M.L., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Ruiz-Palacios, G.M., Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico; Beigel, J.H., Leidos Biomedical Research Inc. in support of National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States; Magaña-Aquino, M.; Valdez-Vazquez, R.; Moreno-Espinosa, S.; Ramírez-Venegas, A.; Llamosas-Gallardo, B.; Pérez-Patrigeon, S.; Cherpitel, D.E.N.; The La Red ILI 002 Study Group","Background: The relationship between obesity and risk of complications described during the 2009 influenza pandemic is poorly defined for seasonal influenza and other viral causes of influenza-like illness (ILI). Methods: An observational cohort of hospitalized and outpatient participants with ILI was conducted in six hospitals in Mexico. Nasopharyngeal swabs were tested for influenza and other common respiratory pathogens. Results: A total of 4778 participants were enrolled in this study and had complete data. A total of 2053 (43.0%) had severe ILI. Seven hundred and seventy-eight (16.3%) were positive for influenza, 2636 (55.2%) were positive for other viral respiratory pathogens, and 1364 (28.5%) had no respiratory virus isolated. Adults with influenza were more likely to be hospitalized if they were underweight (OR: 5.20), obese (OR: 3.18), or morbidly obese (OR: 18.40) compared to normal-weight adults. Obese adults with H1N1 had a sixfold increase in odds of hospitalization over H3N2 and B (obese OR: 8.96 vs 1.35, morbidly obese OR: 35.13 vs 5.58, respectively) compared to normal-weight adults. In adults with coronavirus, metapneumovirus, parainfluenza, and rhinovirus, participants that were underweight (OR: 4.07) and morbidly obese (OR: 2.78) were more likely to be hospitalized as compared to normal-weight adults. All-cause influenza-like illness had a similar but less pronounced association between underweight or morbidly obesity and hospitalization. Conclusions: There is an increased risk of being hospitalized in adult participants that are underweight or morbidly obese, regardless of their viral pathogen status. Having influenza, however, significantly increases the odds of hospitalization in those who are underweight or morbidly obese. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","body mass index; hospital burden of disease; influenza; obesity; respiratory viral pathogens","adolescent; adult; age distribution; Article; body mass; child; cohort analysis; comorbidity; controlled study; disease association; disease severity; female; hospital admission; hospitalization; human; influenza; Influenza A virus (H1N1); Influenza A virus (H3N2); Influenza B virus; major clinical study; male; mixed infection; morbid obesity; nonhuman; observational study; priority journal; respiratory virus; risk assessment; risk factor; underweight; virus isolation; virus strain; aged; complication; hospitalization; infant; influenza; middle aged; morbid obesity; nasopharynx; obesity; outpatient; preschool child; respiratory tract infection; underweight; virology; Adult; Aged; Body Mass Index; Child; Child, Preschool; Cohort Studies; Female; Hospitalization; Humans; Infant; Influenza, Human; Male; Middle Aged; Nasopharynx; Obesity; Obesity, Morbid; Outpatients; Overweight; Respiratory Tract Infections; Risk Factors; Thinness","Murphy, R., Fragaszy, E.B., Hayward, A.C., Warren-Gash, C., Investigating obesity as a risk factor for influenza-like illness during the 2009 H1N1 influenza pandemic using the Health Survey for England (2017) Influenza Other Respir Viruses, 11 (1), pp. 66-73; Dominguez-Cherit, G., Lapinsky, S.E., Macias, A.E., Critically Ill patients with 2009 influenza A(H1N1) in Mexico (2009) JAMA, 302 (17), pp. 1880-1887; Jain, S., Kamimoto, L., Bramley, A.M., Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009 (2009) N Engl J Med, 361 (20), pp. 1935-1944; Kumar, A., Zarychanski, R., Pinto, R., Critically ill patients with 2009 influenza A(H1N1) infection in Canada (2009) JAMA, 302 (17), pp. 1872-1879; Miller, R.R., III, Markewitz, B.A., Rolfs, R.T., Clinical findings and demographic factors associated with ICU admission in Utah due to novel 2009 influenza A(H1N1) infection (2010) Chest, 137 (4), pp. 752-758; Intensive-care patients with severe novel influenza A (H1N1) virus infection—Michigan, June 2009 (2009) MMWR Morb Mortal Wkly Rep, 58 (27), pp. 749-752; Rello, J., Rodriguez, A., Ibanez, P., Intensive care adult patients with severe respiratory failure caused by Influenza A (H1N1)v in Spain (2009) Crit Care, 13 (5), p. R148; Ugarte, S., Arancibia, F., Soto, R., Influenza A pandemics: clinical and organizational aspects: the experience in Chile (2010) Crit Care Med, 38 (4), pp. e133-e137; Investigators, A.I., Webb, S.A., Aubron, C., Critical care services and the H1N1 (2009) influenza epidemic in Australia and New Zealand in 2010: the impact of the second winter epidemic (2011) Crit Care, 15 (3), p. R143; Vaillant, L., La Ruche, G., Tarantola, A., Barboza, P., Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009 (2009) Euro Surveill, 14 (33), p. 19309; Martin, E.T., Archer, C., McRoberts, J., Epidemiology of severe influenza outcomes among adult patients with obesity in Detroit, Michigan, 2011 (2013) Influenza Other Respir Viruses, 7 (6), pp. 1004-1007; Morgan, O.W., Bramley, A., Fowlkes, A., Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease (2010) PLoS One, 5 (3); Louie, J.K., Acosta, M., Samuel, M.C., A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A (H1N1) (2011) Clin Infect Dis, 52 (3), pp. 301-312; Mertz, D., Kim, T.H., Johnstone, J., Populations at risk for severe or complicated Avian Influenza H5N1: a systematic review and meta-analysis (2014) PLoS One, 9 (3); Diaz, E., Rodriguez, A., Martin-Loeches, I., Impact of obesity in patients infected with 2009 influenza A(H1N1) (2011) Chest, 139 (2), pp. 382-386; Kwong, J.C., Campitelli, M.A., Rosella, L.C., Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study (2011) Clin Infect Dis, 53 (5), pp. 413-421; Cocoros, N.M., Lash, T.L., DeMaria, A., Jr., Klompas, M., Obesity as a risk factor for severe influenza-like illness (2014) Influenza Other Respir Viruses, 8 (1), pp. 25-32; Campitelli, M.A., Rosella, L.C., Kwong, J.C., The association between obesity and outpatient visits for acute respiratory infections in Ontario, Canada (2014) Int J Obes (Lond), 38 (1), pp. 113-119; Charland, K.M., Buckeridge, D.L., Hoen, A.G., Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States (2013) Influenza Other Respir Viruses, 7 (5), pp. 718-728; (2009) CDC protocol of realtime RTPCR for influenza A (H1N1), , CDC protocol of realtime RTPCR for influenza A (H1N1). Accessed February 22, 2018; Reijans, M., Dingemans, G., Klaassen, C.H., RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses (2008) J Clin Microbiol, 46 (4), pp. 1232-1240; Loens, K., van Loon, A.M., Coenjaerts, F., Performance of different mono- and multiplex nucleic acid amplification tests on a multipathogen external quality assessment panel (2012) J Clin Microbiol, 50 (3), pp. 977-987; Heinze, G., Schemper, M., A solution to the problem of separation in logistic regression (2002) Stat Med, 21 (16), pp. 2409-2419; (1995) Physical status: the use of and interpretation of anthropometry, report of a WHO expert committee, , http://www.who.int/iris/handle/10665/37003, Geneva, World Health Organization, Accessed November 20, 2018; Kim, Y.H., Kim, J.K., Kim, D.J., Diet-induced obesity dramatically reduces the efficacy of a 2009 pandemic H1N1 vaccine in a mouse model (2012) J Infect Dis, 205 (2), pp. 244-251; Sweet, M.A., McCullers, J.A., Lasala, P.R., Briggs, F.E., Smithmyer, A., Khakoo, R.A., Comparison of immune response to the influenza vaccine in obese and nonobese healthcare workers (2015) Infect Control Hosp Epidemiol, 36 (3), pp. 249-253; Talbot, H.K., Coleman, L.A., Crimin, K., Association between obesity and vulnerability and serologic response to influenza vaccination in older adults (2012) Vaccine, 30 (26), pp. 3937-3943; Karlsson, E.A., Sheridan, P.A., Beck, M.A., Diet-induced obesity impairs the T cell memory response to influenza virus infection (2010) J Immunol, 184 (6), pp. 3127-3133; Klatsky, A.L., Zhang, J., Udaltsova, N., Li, Y., Tran, H.N., Body mass index and mortality in a very large cohort: is it really healthier to be overweight? (2017) Perm J, 21, pp. 16-142; Sun, H., Ren, X., Chen, Z., Association between body mass index and mortality in a prospective cohort of Chinese adults (2016) Medicine (Baltimore), 95 (32); Chen, W.H., Lu, C.Y., Shao, P.L., Risk factors of severe novel influenza A (H1N1) infections in hospitalized children (2012) J Formos Med Assoc, 111 (8), pp. 421-426; Plessa, E., Diakakis, P., Gardelis, J., Thirios, A., Koletsi, P., Falagas, M.E., Clinical features, risk factors, and complications among pediatric patients with pandemic influenza A (H1N1) (2010) Clin Pediatr (Phila), 49 (8), pp. 777-781; Freedman, D.S., Butte, N.F., Taveras, E.M., BMI z-Scores are a poor indicator of adiposity among 2- to 19-year-olds with very high BMIs, NHANES 1999-2000 to 2013-2014 (2017) Obesity (Silver Spring), 25 (4), pp. 739-746","Beigel, J.H.; Leidos Biomedical Research Inc. in support of National Institute of Allergy and Infectious DiseasesUnited States; email: jbeigel@niaid.nih.gov",,"Blackwell Publishing Ltd",17502640,,,"30515985","English","Influ. Other Respir. Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85057714090 "Ennaji Y., Khataby K., Ennaji M.M.","57215964957;56781432800;57214098820;","Infectious bronchitis virus in poultry: Molecular epidemiology and factors leading to the emergence and reemergence of novel strains of infectious bronchitis virus",2019,"Emerging and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Related to Human, Animal and Environmental Pathogens",,,,"31","44",,,"10.1016/B978-0-12-814966-9.00003-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082449126&doi=10.1016%2fB978-0-12-814966-9.00003-2&partnerID=40&md5=c4f8523cfd661bac30713a0e748adf84","Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco","Ennaji, Y., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco; Khataby, K., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco; Ennaji, M.M., Laboratory of Virology, Microbiology, Quality, Biotechnologies/Eco-Toxicology and Biodiversity, Faculty of Sciences and Techniques, University Hassan II of Casablanca, Mohammedia, Morocco","Infectious bronchitis virus (IBV) is a coronavirus that causes an acute and highly contagious disease in chickens. The virus can cause substantial economic losses throughout the poultry industry worldwide. It can affect the upper respiratory tract and the reproductive tract, and some strains can cause nephritis. The causative agent IBV is an RNA virus with great ability for mutation and recombination, thus capable of generating new virus strains that are difficult to control. There are many IBV strains found worldwide, including the Massachusetts, 4/91, D274, and QX-like strains that can be grouped under the classic or variant serotypes. In addition, new types of the virus continue to arise due to mutations and recombination events in the viral genome and even more factors, making this virus difficult to identify and extremely difficult to control. Surveillance and identification of IBV types are extremely important for control of the disease and the advancement of molecular methods has aided in this pursuit. Genetic typing of IBV, which involves reverse transcription polymerase chain reaction amplification and sequence analysis of the S1 glycoprotein gene, has revolutionized diagnosis and identification of this virus by making it possible to type and compare the relatedness of a large number of virus isolates in a short period of time. Several conventional and molecular diagnostic methods have been described for the diagnosis of IB in chickens. “All-in/all-out” operations of rearing along with good biosafety measures form the basis of prevention, whereas vaccination forms the backbone of IB control program. Both live and inactivated (oil emulsified) conventional vaccines are available. The new generation vaccines (recombinant and vector-based) developed against locally prevailing IBV strains may be more helpful and avoid the reversion of virulence in live vaccine viruses. © 2020 Elsevier Inc. All rights reserved.","Diagnosis; Emergence; IBV; Identification; Reemergence; Vaccine; Virus",,"Abdel-Moneim, A.S., (2017) Coronaviridae: Infectious bronchitis virus, pp. 133-166. , Bayry, J. (Ed.), Emerging and Re-Emerging Infectious Diseases of Livestock; Abdel-Moneim, A.S., El-Kady, M.F., Ladman, B.S., Gelb, J., S1 gene sequence analysis of a nephropathogenic strain of avian infectious Bronchitis virus in Egypt (2006) Virol. J., 3, p. 78; Abdel-Moneim, A.S., Zlotowski, P., Veits, J., Keil, G.M., Teifke, J.P., Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos (2009) Virol. J., 6, p. 15; Abdel-Moneim, A.S., Afifi, M.A., El-Kady, M.F., Emergence of a novel genotype of avian infectious bronchitis virus in Egypt (2012) Arch. Virol., 157, pp. 2453-2457; Awad, F., Baylis, M., Ganapathy, K., Detection of variant infectious bronchitis viruses in broiler flocks in Libya (2014) Int. J. Vet. Med. Sci, 1, pp. 78-82; Bande, F., Arshad, S.S., Omar, A.R., Hair-Bejo, M., Mahmuda, A., Nair, N., Global distributions and strain diversity of avian infectious bronchitis virus: A review (2017) Anim. Health Res. Rev, 18 (1), pp. 70-83; Beach, J.R., Schalm, O.W., A filterable virus, distinct from that of laryngotracheitis, the cause of a respiratory disease of chicks (1936) Poult. Sci., 1, pp. 199-206; Benyeda, Z., Szeredi, L., Mató, T., Süveges, T., Balka, G., Abonyi-Tóth, Z., Comparative histopathology and immunohistochemistry of QX-like, Massachusetts and 793/B serotypes of infectious bronchitis virus infection in chickens (2010) J. Comp. Pathol, 143 (4), pp. 276-283; Bingham, R.W., Madge, M.H., Tyrrell, D.A., Hemagglutination by avian infectious bronchitis virus-a coronavirus (1975) J. Gen. Virol, 28 (3), pp. 381-390; Bourogâa, H., Miled, K., Gribâa, L., El Behi, I., Ghram, A., Characterization of new variants of avian infectious bronchitis virus in Tunisia (2009) Avian Dis., 53, pp. 426-433; Capua, I., Gough, R.E., Mancini, M., Casaccia, C., Weiss, C., A novel infectious bronchitis strain infecting broiler-chickens in Italy (1994) J. Vet. Med. B, 41 (2), pp. 83-89; Cavanagh, S., Content analysis: Concepts, methods and applications (1997) Nurse Researcher, 4, pp. 5-16; Cavanagh, D., Severe acute respiratory syndrome vaccine development: Experiences of vaccination against avian infectious bronchitis coronavirus (2003) Avian Pathol., 32 (6), pp. 567-582; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Cavanagh, D., Naqi, S.A., Infectious bronchitis (2003) Diseases of Poultry., pp. 101-119. , Y.M. Saif., eleventh ed, University Press Ames, IA; Cavanagh, D., Davis, P.J., Cook, J.K., Li, D., Kant, A., Koch, G., Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus (1992) Avian Pathol., 21, pp. 33-43; Cavanagh, D., Davis, P.J., Mockett, A.P.A., Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes (1988) Virus Res., 11, pp. 141-150; Cavanagh, D., Mawditt, K., Britton, P., Naylor, C.J., Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions (1999) Avian Pathol., 28 (6), pp. 593-605; Cavanagh, D., Picault, J.P., Gough, R., Hess, M., Mawditt, K., Britton, P., Variation in the spike protein of the 793/B type of infectious bronchitis virus, in the field and during alternate passage in chickens and embryonated eggs (2005) Avian Pathol., 34, pp. 20-25; Clarke, J.K., Mc Ferran, J.B., Gay, F.W., Use of allantoic cells for the detection of avian infectious bronchitis virus (1972) Arch. Gesamte Virusforsch, 36, pp. 62-70; Collisson, E.W., Li, J.Z., Sneed, L.W., Peters, M.L., Wang, L., Detection of avian infectious bronchitis viral infection using in situ hybridization and recombinant DNA (1990) Vet. Microbiol., 24 (3-4), pp. 261-271; Cook, J.K.A., Orbell, S.J., Woods, M.A., Huggins, M.B., Breadth of protection of the respiratory tract provided by different live-attenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous serotypes (1999) Avian Pathol., 28, pp. 477-485; Cook, J.K.A., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol., 41, pp. 239-250; Davelaar, F.G., Kouwenhoven, B., Burger, A.G., Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands (1984) Vet. Q., 6 (3), pp. 114-120; Dawson, P.S., Gough, R.E., Antigenic variation in strains of avian infectious bronchitis virus (1971) Arch. Gesamte Virusforsch., 34 (1), pp. 32-39; Delaplane, J., (1947) Technique for the isolation of infectious bronchitis or Newcastle virus including observations on the use of streptomycin in overcoming bacterial contaminants, 19, pp. 11-13. , Proceedings of Northeast Conference of Laboratory Workers in Pullorum Disease Control; De Wit, J.J., Cook, J.K., Van der Heijden, H.M., Infectious bronchitis virus variants: A review of the history, current situation and control measures (2011) Avian Pathol., 40, pp. 223-235; Dhama, K., Singh, S.D., Barathidasan, R., Desingu, P.A., Chakraborty, S., Tiwari, R., Emergence of avian infectious bronchitis virus and its variants need better diagnosis, prevention and control strategies: A global perspective (2014) Pak. J. Biol. Sci, 17, pp. 751-767; Dolz, R., Pujols, J., Ordóñez, G., Porta, R., Majó, N., Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype (2006) Avian Pathol., 35 (2), pp. 77-85; Ducatez, M.F., Martin, A.M., Owoade, A.A., Olatoye, I.O., Alkali, B.R., Maikano, I., Characterization of a new genotype and serotype of infectious bronchitis virus in Western Africa (2009) J. Gen. Virol, 90, pp. 2679-2685; El-Houadfi, M., Jones, R.C., Cook, J.K.A., Ambali, A.G., The isolation and characterisation of six avian infectious bronchitis viruses isolated in Morocco (1986) Avian Pathol., 15, pp. 93-105; Finney, P., Box, P., Holmes, H., Studies with a bivalent infectious bronchitis killed virus vaccine (1990) Avian Pathol. 19.3, pp. 435-450; Gelb, J., Keeler, C.L., Jr., Nix, W.A., Rosenberger, J.K., Cloud, S.S., Antigenic and S-1 genomic characterization of the Delaware variant serotype of infectious bronchitis virus (1997) Avian Dis., 41, pp. 661-669; Gelb, J., Ladman, B.S., Tamayo, M., Gonzalez, M., Sivanandan, V., Novel infectious bronchitis virus S1 genotypes in Mexico 1998-1999 (2001) Avian Dis., 45, pp. 1060-1063; Hipolito, O., Isolamento e identificacao do virus da bronquite infecciosa das galinhas no Brasil (1957) Arquivo Escuela Veterinaria Universidade de Minas Gerais, 10, pp. 131-151; Hopkins, S.R., Yoder, H.W., Jr., Reversion to virulence of chicken-passaged infectious bronchitis vaccine virus (1986) Avian Dis., 30 (1), pp. 221-223; Ignjatovic, J., Sapats, S., Avian infectious bronchitis virus (2000) Rev. Sci. Tech. Off. Int. Epiz., 19 (2), pp. 493-508; Ignjatovic, J., McWaters, P., Galli, L., (1991) Antigenic relationship of Australian infectious bronchitis viruses: Analysis using polyclonal and monoclonal antibodies, pp. 161-167. , Proceedings of the Second International Symposium on Infectious Bronchitis. Rauischholzhausen, Germany; Jackwood, M.W., Current and future recombinant viral vaccines for poultry (1999) Adv. Vet. Med, 41, pp. 517-522; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis., 56, pp. 634-641; Jackwood, M.W., Yousef, N.M., Hilt, D.A., Further development and use of a molecular serotype identification test for infectious bronchitis virus (1997) Avian Dis., 41 (1), pp. 105-110; Jackwood, M.W., Hilt, D.A., Lee, C.W., Kwon, H.M., Callison, S.A., Moore, K.M., Data from 11 years of molecular typing infectious bronchitis virus field isolates (2005) Avian Dis., 49, pp. 614-618; Jackwood, M.W., Hilt, D.A., Williams, S.M., Woolcock, P., Cardona, C., O’Connor, R., Molecular and serologic characterization, pathogenicity, and protection studies with infectious bronchitis virus field isolates from California (2007) Avian Dis., 51, pp. 527-533; Jones, R.C., Europe: History, current situation and control measures for infectious bronchitis (2010) Braz. J. Poultry Sci, 12 (2), pp. 125-128; Karaca, K., Syed, N., A monoclonal antibody blocking ELISA to detect serotype-specific infectious bronchitis virus antibodies (1993) Vet. Microbiol., 34 (3), pp. 249-257; Khataby, K., Fellahi, S., Loutfi, C., Ennaji, M.M., Avian infectious bronchitis virus in Africa: A review (2016) Vet. Quart., 34, pp. 1-5; King, D.J., Hopkins, S.R., Rapid serotyping of infectious bronchitis virus isolates with the hemagglutination inhibition test (1984) Avian Dis., 28, pp. 727-733; Kusters, J.G., Niesters, H.G.M., Bleumink-Pluym, N.M.C., Molecular epidemiology of infectious bronchitis virus in the Netherlands (1987) J. Gen. Virol, 68, pp. 343-352; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res, 48, pp. 1-100; Lee, C.W., Evolution of avian infectious bronchitis virus: Genetic drift and recombination (2002) Korean J. Vet. Ser, 25, pp. 97-103; Lee, C.W., Jackwood, M.W., Origin and evolution of Georgia 98 (GA98), a new serotype of avian infectious bronchitis virus (2001) Virus Res., 80, pp. 33-39; Lee, H.J., Youn, H.N., Kwon, J.S., Lee, Y.J., Kim, J.H., Lee, J.B., Characterization of a novel live attenuated infectious bronchitis virus vaccine candidate derived from a Korean nephropathogenic strain (2010) Vaccine., 28 (16), pp. 2887-2894; Liu, S.W., Zhang, Q.X., Chen, J.D., Han, Z.X., Liu, X., Feng, L., Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004 (2006) Arch. Virol., 151, pp. 1133-1148; McKinley, E.T., Hilt, D.A., Jackwood, M.W., Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination (2008) Vaccine., 26 (10), pp. 1274-1284; Meulemans, G., Carlier, M.C., Gonze, M., Petit, P., Vandenbroeck, M., Incidence, characterization and prophylaxis of nephropathogenic avian infectious bronchitis viruses (1987) Vet. Rec., 120 (9), pp. 205-206; Mondal, S.P., Cardona, C.J., Genetic and phenotypic characterization of the California 99 (Cal99) variant of IBV (2007) Virus Genes., 34, pp. 327-341; Mondal, S.P., Naqi, S.A., Maternal antibody to infectious bronchitis virus: Its role in protection against infection and development of active immunity to vaccine (2001) Vet. Immunol. Immunopathol, 79 (1-2), pp. 31-40; Monne, I., Cattoli, G., Jones, R., Worthington, K., Wijmenga, W., QX genotypes of infectious bronchitis virus circulating in Europe (2008) Vet. Rec., 163, pp. 606-607; Montassier, M.F.S., Brentano, L., Montassier, H.J., Richtzenhain, L.J., Genetic grouping of avian infectious bronchitis virus isolated in Brazil based on RT-PCR/RFLP analysis of the S1 gene (2008) Pesq. Vet. Bras., 28, pp. 190-194; Moore, K.M., Bennett, J.D., Seal, B.S., Jackwood, M.W., Sequence comparison of avian infectious bronchitis virus S1 glycoproteins of the Florida serotype and five variant isolates from Georgia and California (1998) Virus Genes., 17, pp. 63-83; Morley, A.J., Thomson, D.K., Swollen-head syndrome in broiler chickens (1984) Avian Dis., 28, pp. 238-243; Nix, W.A., Troeber, D.S., Kingham, B.F., Keeler, C.L., Jr., Gelb, J., Jr., Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens (2000) Avian Dis., 44, pp. 568-581; (2013), pp. 1-15. , Chapter 2.3.2: Avian infectious bronchitis virus. Terrestrial Manual; Picault, J.P., Giraud, P., Drouin, P., Guittet, M., Bennejean, G., Lamande, J., Isolation of a TRTV-like virus from chickens with swollen-head syndrome (1987) Vet Rec., 121 (6), p. 135; Sasipreeyajan, J., Pohuang, T., Sirikobkul, N., Efficacy of different vaccination programs against Thai QX-like infectious bronchitis virus (2012) Thai J. Vet. Med, 42 (1), pp. 73-79; Schalk, A.F., Hawn, M.C., An apparently new respiratory disease of baby chicks (1931) J. Am. Vet. Med. Assoc, 78, pp. 413-422; Schikora, B.M., Shih, L.M., Hietala, S.K., Genetic diversity of avian infectious bronchitis virus California variants isolated between 1988 and 2001 based on the S1 subunit of the spike glycoprotein (2003) Arch. Virol., 148, pp. 115-136; Sesti, L., Sara, L., Alvarado, L., Coregana, J., Orosco, R., Romero, J.C., (2014) Diagnosis, epidemiology and control of the Q1 variant strain in Peru, Colombia, Argentina and Chile, , Leirz, M., Huffels-Redman, U., Kaleta, E.F., Heckman, J. (Eds.), 8th International Symposium on Avian Corona and Pneumovirus Infections/2nd Meeting Cost Action, Rauischholzhausen, Germany; Sheble, A., Sabry, M.Z., Davelaar, F.G., Burger, A.G., Khafagy, A.K., Moustafa, F., Present status of infectious bronchitis in Egypt (1986) Egypt. Vet. Med. Assoc., 4, pp. 393-411; Tarpey, I., Orbell, S.J., Britton, P., Casais, R., Hodgson, T., Lin, F., Safety and efficacy of an infectious bronchitis virus used for chicken embryo vaccination (2006) Vaccine., 24, pp. 6830-6838; Thornton, D.H., Muskett, J.C., Effect of infectious bronchitis vaccination on the performance of live Newcastle disease vaccine (1975) Vet. Rec., 96 (21), pp. 467-468; Umar, S., Shah, M.A.A., Munir, M.T., Ahsan, U., Kaboudi, K., Infectious bronchitis virus: Evolution and vaccination (2016) World’s Poult. Sci. J., 72, pp. 49-60; Vagnozzi, A., Garcia, M., Riblet, S.M., Zavala, G., Protection induced by infectious laryngotracheitis virus vaccines alone and combined with Newcastle disease virus and/or infectious bronchitis virus vaccines (2010) Avian Dis., 54 (4), pp. 1210-1219; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect. Gen. Evol, 39, pp. 349-364; Wang, C.H., Huang, Y.C., Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus (2000) Arch. Virol, 145, pp. 291-300; Worthington, K.J., Currie, R.J., Jones, R.C., A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006 (2008) Avian Pathol., 37, pp. 247-257; Zanella, A., Lavazza, A., Marchi, R., Martin, A.M., Paganelli, F., Avian infectious bronchitis: Characterization of new isolates from Italy (2003) Avian Dis., 47 (1), pp. 180-185; Zhang, Y., Wang, H.N., Wang, T., Fan, W.Q., Zhang, A.Y., Wei, K., Complete genome sequence and recombination analysis of infectious bronchitis virus attenuated vaccine strain H120 (2010) Virus Genes., 41 (3), pp. 377-388",,,"Elsevier",,9780128149669; 9780128149676,,,"English","Emerg. and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Relat. to Human, Animal and Environmental Pathogens",Book Chapter,"Final",,Scopus,2-s2.0-85082449126 "Petrarca L., Nenna R., Frassanito A., Pierangeli A., Di Mattia G., Scagnolari C., Midulla F.","36701812300;6507592100;24070637100;7005198786;57195074630;6602283955;6701654701;","Human bocavirus in children hospitalized for acute respiratory tract infection in Rome",2019,"World Journal of Pediatrics",,,,"","",,,"10.1007/s12519-019-00324-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075678260&doi=10.1007%2fs12519-019-00324-5&partnerID=40&md5=9707e3995bbebff419448d8b284bbeaa","Maternal-Infantile and Urological Science Department, “Sapienza” University of Rome, Rome, Italy; Virology Laboratory, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy","Petrarca, L., Maternal-Infantile and Urological Science Department, “Sapienza” University of Rome, Rome, Italy; Nenna, R., Maternal-Infantile and Urological Science Department, “Sapienza” University of Rome, Rome, Italy; Frassanito, A., Maternal-Infantile and Urological Science Department, “Sapienza” University of Rome, Rome, Italy; Pierangeli, A., Virology Laboratory, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy; Di Mattia, G., Maternal-Infantile and Urological Science Department, “Sapienza” University of Rome, Rome, Italy; Scagnolari, C., Virology Laboratory, Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy; Midulla, F., Maternal-Infantile and Urological Science Department, “Sapienza” University of Rome, Rome, Italy","Background: The role of human bocavirus (HBoV) as a respiratory pathogen has not been fulfilled yet. We aimed to describe clinical and serological characteristics of children with HBoV hospitalized for acute respiratory tract infection and to evaluate whether differences occur between HBoV alone and in co-infection. Methods: We retrospectively reviewed data from 60 children (median age of 6.2 months, range 0.6–70.9) hospitalized for acute respiratory symptoms, with HBoV detected from a respiratory sample, using a reverse transcriptase-PCR for 14 respiratory viruses (including respiratory syncytial virus (RSV), influenza virus A and B, human coronavirus OC43, 229E, NL-63 and HUK1, adenovirus, rhinovirus, parainfluenza virus1–3, and human metapneumovirus). Results: HBoV was detected alone in 29 (48.3%) patients, while in co-infection with other viruses in 31 patients (51.7%), with a peak between December and January. Among the 60 patients, 34 were bronchiolitis, 19 wheezing, 3 pneumonia, 2 upper respiratory tract infection, and 2 whooping cough. Seven children (11.6%) required admission to the paediatric intensive care unit (PICU) for respiratory failure. No differences was observed in age, family history for atopy and/or asthma, clinical presentations, chest X-ray, or laboratory findings in children with HBoV alone vs. multiple viral detection. RSV was the most frequently co-detected virus (61.3%). When compared with HBoV detection alone, the co-detection of RSV and HBoV was associated with male sex (P = 0.013), younger age (P = 0.01), and lower blood neutrophil count (P = 0.032). Conclusions: HBoV can be detected alone and in co-infection respiratory samples of children with an acute respiratory tract infection. A cause–effect relationship between HBoV and respiratory infection is not clear, so further studies are needed to clarify this point. © 2019, Children's Hospital, Zhejiang University School of Medicine.","Human bocavirus; Pediatrics; Respiratory tract infection; Viral infection",,"Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci USA, 102, pp. 12891-12896. , COI: 1:CAS:528:DC%2BD2MXhtVWktb%2FM; Ljubin-Sternak, S., Meštrović, T., Ivković-Jureković, I., Tešović, G., Mlinarić-Galinović, G., Lukšić, I., High detection rates of human bocavirus in infants and small children with lower respiratory tract infection from Croatia (2019) Clin Lab; Martin, E.T., Fairchok, M.P., Kuypers, J., Magaret, A., Zerr, D.M., Wald, A., Frequent and prolonged shedding of bocavirus in young children attending daycare (2010) J Infect Dis, 201, pp. 1625-1632; Do Amaral de Leon, C., Amantea, S.L., Pilger, D.A., Cantarelli, V., Clinical and epidemiologic profile of lower respiratory tract infections associated with human bocavirus (2013) Pediatr Pulmonol, 48, pp. 1112-1118; García-García, M.L., Calvo, C., Falcón, A., Pozo, F., Pérez-Breña, P., De Cea, J.M., Casas, I., Role of emerging respiratory viruses in children with severe acute wheezing (2010) Pediatr Pulmonol, 45, pp. 585-591; Calvo, C., García-García, M.L., Pozo, F., Carballo, D., Martínez-Monteserín, E., Casas, I., Infections and coinfections by respiratory human bocavirus during eight seasons in hospitalized children (2016) J Med Virol, 88, pp. 2052-2058; Ghietto, L.M., Majul, D., Ferreyra Soaje, P., Baumeister, E., Avaro, M., Insfrán, C., Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection (2015) Arch Virol, 160, pp. 117-127. , COI: 1:CAS:528:DC%2BC2cXhs1GmtrbE; Huebner, R.J., Criteria for etiologic association of prevalent viruses with prevalent diseases; the virologist’s dilemma (1957) Ann NY Acad Sci, 67, pp. 430-438. , COI: 1:STN:280:DyaG2s%2FlvVeisQ%3D%3D; Williams, J.V., Déjà vu all over again: koch’s postulates and virology in the 21st century (2010) J Infect Dis, 201, pp. 1611-1614; Midulla, F., Scagnolari, C., Bonci, E., Pierangeli, A., Antonelli, G., De Angelis, D., Respiratory syncytial virus, human bocavirus and rhinovirus bronchiolitis in infants (2010) Arch Dis Child, 95, pp. 35-41. , COI: 1:STN:280:DC%2BD1MfkvVanuw%3D%3D; Liu, L.L., Gallaher, M.M., Davis, R.L., Rutter, C.M., Lewis, T.C., Marcuse, E.K., Use of a respiratory clinical score among different providers (2004) Pediatr Pulmonol, 37, pp. 243-248; Smyth, R.L., Openshaw, P.J., Bronchiolitis (2006) Lancet, 368, pp. 312-322; Cherry, J.D., Grimprel, E., Guiso, N., Heininger, U., Mertsola, J., Defining pertussis epidemiology: clinical, microbiologic and serologic perspectives (2005) Pediatr Infect Dis J., 24, pp. S25-S34; Harris, M., Clark, J., Coote, N., Fletcher, P., Harnden, A., McKean, M., British thoracic society guidelines for the management of community acquired pneumonia in children: update 2011 (2011) Thorax, 66, pp. 1-23; Pierangeli, A., Gentile, M., Di Marco, P., Pagnotti, P., Scagnolari, C., Trombetti, S., Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy (2007) J Med Virol, 79, pp. 463-468; Pierangeli, A., Scagnolari, C., Trombetti, S., Grossi, R., Battaglia, M., Moretti, C., Human bocavirus infection in hospitalised children in Italy (2008) Influenza Other Respir Viruses, 2, pp. 175-179; Zhou, L., Zheng, S., Xiao, Q., Zhou, L., Zheng, S., Xiao, Q., Single detection of human bocavirus 1 with high viral load in severe respiratory tract infections in previously healthy children (2014) BMC Infect Dis, 14, p. 424; Sun, H., Sun, J., Ji, W., Hao, C., Yan, Y., Chen, Z., Impact of RSV coinfection on human bocavirus in children with acute respiratory infections (2019) J Trop Pediatr, 65, pp. 342-351; Calvo, C., Garcìa-Garcìa, M.L., Pozo, F., Carvajal, O., Pérez-Breña, P., Casas, I., Clinical characteristic of human bocavirus infections compared with other respiratory viruses in Spanish children (2008) Pediatr Infect Dis J, 27, pp. 677-680; Lüsebrink, J., Schildgen, V., Tillmann, R.L., Wittleben, F., Böhmer, A., Müller, A., Detection of head-to-tail DNA sequences of human bocavirus in clinical samples (2011) PLoS ONE, 6; Byington, C.L., Ampofo, K., Stockmann, C., Adler, F.R., Herbener, A., Miller, T., Community surveillance of respiratory viruses among families in the utah better identification of germs-longitudinal viral epidemiology (BIG-LoVE) study (2015) Clin Infect Dis, 61, pp. 1217-1224; Kantola, K., Hedman, L., Allander, T., Jartti, T., Lehtinen, P., Ruuskanen, O., Serodiagnosis of human bocavirus infection (2008) Clin Infect Dis, 46, pp. 540-546. , COI: 1:CAS:528:DC%2BD1cXis1altL0%3D; Brand, P.L.P., Caudri, D., Eber, E., Gaillard, E.A., Garcia-Marcos, L., Hedlin, G., Classification and pharmacological treatment of preschool wheezing: changes since 2008 (2014) Eur Respir J, 43, pp. 1172-1177; Cangiano, G., Nenna, R., Frassanito, A., Evangelisti, M., Nicolai, A., Scagnolari, C., Bronchiolitis: analysis of 10 consecutive epidemic seasons (2016) Pediatr Pulmonol, 51, pp. 1330-1335; Pozo, F., García-García, M.L., Calvo, C., Cuesta, I., Pérez-Breña, P., Casas, I., High incidence of human bocavirus infection in children in Spain (2007) J Clin Virol, 40, pp. 224-228; Silva, P.E., Figueiredo, C.A., Luchs, A., de Paiva, T.M., Pinho, M.A.B., Paulino, R.S., Human bocavirus in hospitalized children under 5 years with acute respiratory infection, São Paulo, Brazil, 2010 (2018) Arch Virol, 163, pp. 1325-1330. , COI: 1:CAS:528:DC%2BC1cXitFGlurg%3D","Midulla, F.; Maternal-Infantile and Urological Science Department, “Sapienza” University of RomeItaly; email: midulla@uniroma1.it",,"Institute of Pediatrics of Zhejiang University",17088569,,,,"English","World J. Pediatr.",Article,"Article in Press",Open Access,Scopus,2-s2.0-85075678260 "Kirbas A., Kandemir F.M., Celebi D., Hanedan B., Timurkan M.O.","55293011400;27368037600;8548683900;8646843700;36130568600;","The use of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia",2019,"Acta Veterinaria Hungarica","67","3",,"360","376",,1,"10.1556/004.2019.037","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072556394&doi=10.1556%2f004.2019.037&partnerID=40&md5=1cc561d09407adf12f0abafcf37f2726","Department of Internal Medicine, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey","Kirbas, A., Department of Internal Medicine, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Kandemir, F.M., Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Celebi, D., Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Hanedan, B., Department of Internal Medicine, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey; Timurkan, M.O., Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey","The objective of this study was to evaluate the usefulness of inflammatory markers as a diagnostic and prognostic approach in neonatal calves with septicaemia. The study material consisted of 13 neonatal calves with septicaemia (septicaemic calves, SC) and ten healthy neonatal calves (control calves, CC). Blood samples were collected for biochemical, haematological and microbiological analyses. In addition, faecal samples were collected for microbiological and virological analyses. Three of neonatal calves with septicaemia were positive for E. coli (E. coli O157 serotype) by microbiological examination, but all neonatal calves with septicaemia were negative for rota- and coronaviruses. By haematological examination, there were no significant differences between SC and CC for white blood cell (WBC) and neutrophil (NEU) counts (P > 0.05). NEU counts were higher on day 0 than on day 15 in SC (P < 0.05). Red blood cell (RBC) counts and packed cell volume (PCV) values were higher on day 0 in the SC than in the CC (P < 0.05). By biochemical analyses, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), procalcitonin (PCT), haptoglobin (Hp), and fibrinogen (Fb) concentrations were higher on day 0 in the SC than in the CC (P < 0.05). After treatment (on day 15), the serum IL-6, PCT, Hp, and Fb concentrations were significantly decreased in the SC compared to the CC (P < 0.05). The serum iron (Fe) concentrations were lower on day 0 in the SC than in the CC (P < 0.05), and were higher on day 15 than on day 0 in the SC (P < 0.05). The study revealed that inflammatory markers could be used for determining the diagnosis and prognosis in neonatal calves with septicaemia. © 2019 Akadémiai Kiadó, Budapest","Acute phase response; Calf; Iron; Neonatal septicaemia; Pro-inflammatory cytokines; Procalcitonin","biological marker; animal; bovine; cattle disease; inflammation; newborn; pathophysiology; prognosis; sepsis; veterinary medicine; Animals; Animals, Newborn; Biomarkers; Cattle; Cattle Diseases; Inflammation; Prognosis; Sepsis","Aldridge, B.M., Garry, F.B., Adams, R., Neonatal septicemia in calves: 25 cases (1985–1990) (1993) J. Am. Vet. Med. Assoc., 203, pp. 1324-1329; Allen, G.K., Green, E.M., Robinson, J.A., Garner, H.E., Loch, W.E., Walsh, D.M., Serum tumor necrosis factor alpha concentrations and clinical abnormalities in colostrum-fed and colostrum-deprived neonatal foals given endotoxin (1993) Am. J. Vet. Res., 54, pp. 1404-1410; Alsemgeest, S.P.M., Jonker, F.H., Taverne, M.A.M., Kalsbeek, H.C., Wensing, T., Gruys, E., Serum amyloid-A (SAA) and haptoglobin (Hp) plasma concentrations in newborn calves (1995) Theriogenology, 43, pp. 381-387; Aydogdu, U., Coskun, A., Yildiz, R., Guzelbektes, H., Sen, I., Changes of hematological parameters and serum iron levels in calves with systemic inflammatory response syndrome (2018) Eurasian J. Vet. Sci., 34, pp. 56-59; Ayoglu, H., Sezer, U., Akin, M., Okyay, D., Ayoglu, F., Can, M., Kuucuukosman, G., Turan, I., Selenium, copper, zinc, iron levels and mortality in patients with sepsis and systemic inflammatory response syndrome in Western Black Sea Region, Turkey (2016) J. Pak. Med. Assoc., 66, pp. 447-452; Balikci, E., Al, M., Some serum acute phase proteins and immunoglobulins concentrations in calves with rotavirus, coronavirus, E. Coli F5 and Eimeria species (2014) Iran J. Vet. Res., 15, pp. 397-401; Basoglu, A., Camkerten, I., Sevinc, M., Serum immunoglobulin concentrations in diarrheic calves and their measurement by single radial immunodiffusion (1999) Isr. J. Vet. Med., 54, pp. 9-10; Basoglu, A., Sen, I., Sevinc, M., Simsek, A., Serum concentrations of tumor necrosis factor-α in neonatal calves with presumed septicemia (2004) J. Vet. Intern. Med., 18, pp. 238-241; Basoglu, A., Sevinc, M., Birdane, F.M., Camkerten, I., (2001) Concentrations of Immunoglobulin G and Tumor Necrosis Factor in Septicemic Calves, , TUBITAK Project number, VHAG-1338; Baydar, E., Dabak, M., Serum iron as an indicator of acute inflammation in cattle (2014) J. Dairy Sci., 97, pp. 222-228; Becker, K.L., Nylen, E.S., White, J.C., Muller, B., Snider, R.H., Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: A journey from calcitonin back to its precursors (2004) J. Clin. Endocrinol. Metab., 89, pp. 1512-1525; Blackwell, T.S., Christman, J.W., Sepsis and cytokines: Current status (1996) Br. J. Anaesth., 77, pp. 110-117; Bloos, F., Reinhart, K., Rapid diagnosis of sepsis (2014) Virulence, 5, pp. 154-160; Bonelli, F., Meucci, V., Divers, T.J., Boccardo, A., Pravettoni, D., Meylan, M., Belloli, A.G., Sgorbini, M., Plasma procalcitonin concentration in healthy calves and those with septic systemic inflammatory response syndrome (2018) Vet. J., 234, pp. 61-65; Borges, A.S., Divers, T.J., Stokol, T., Mohammed, O.H., Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses (2007) J. Vet. Intern. Med., 21, pp. 489-494; Bozukluhan, K., Merhan, O., Ogun, M., Kurt, B., Cihan, M., Erkilic, E.E., Gokce, G., Ozcan, A., Investigation of haptoglobin, serum amyloid A, and some biochemical parameters in calves with omphalitis (2018) Vet. World, 11, pp. 1055-1058; Brunkhorst, F.M., Eberhard, O.K., Brunkhorst, R., Discrimination of infectious and noninfectious causes of early acute respiratory distress syndrome by procalcitonin (1999) Crit. Care Med., 27, pp. 2172-2176; Carter, J.N., Meredith, G.L.L., Montelongo, M., Gill, D.R., Krehbiel, C.R., Payton, M.E., Confer, A.W., Relationship of Vitamin E supplementation and antimicrobial treatment with acute-phase protein responses in cattle affected by naturally acquired respiratory tract disease (2002) Am. J. Vet. Res., 63, pp. 1111-1117; Ceciliani, F., Ceron, J.J., Eckersall, P.D., Sauerwein, H., Acute phase proteins in ruminants (2012) J. Proteom., 275, pp. 4207-4231; Cherayil, B.J., The role of iron in the immune response to bacterial infection (2011) Immunol. Res., 50, pp. 1-9; Chiesa, C., Pellegrini, G., Panero, A., Osborn, J.F., Signore, F., Assumma, M., Pacifico, L., C-reactive protein, interleukin-6, and procalcitonin in the immediate postnatal period: Influence of illness severity, risk status, antenatal and perinatal complications, and infection (2003) Clin. Chem., 49, pp. 60-68; Cho, K.O., Hasoksuz, M., Nielsen, P.R., Chang, K.O., Lathrop, S., Saif, L.J., Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection (2001) Arch. Virol., 146, pp. 2401-2419; Cole, D.J., Roussel, A.J., Whitney, M.S., Interpreting a bovine CBC: Evaluating the leukon and acute-phase proteins (1997) Vet. Med., 92, pp. 470-478; Constable, P.D., Hinckliff, K.W., Done, S.H., Grunberg, W., (2017) Veterinary Medicine, , 11th edition. W. B. Saunders Company, London; Eckersall, P.D., Bell, R., Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine (2010) Vet. J., 185, pp. 23-27; Ercan, N., Tuzcu, N., Basbug, O., Gok, K., Isidan, H., Ograk, Y.Z., The evaluation of important biomarkers in healthy cattle (2014) Kafkas Univ. Vet. Fak. Derg., 20, pp. 749-755; Ercan, N., Tuzcu, N., Basbug, O., Tuzcu, M., Alim, A., Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis (2016) J. Vet. Diagn. Invest., 28, pp. 180-183; Fecteau, G., Metre, D.C., Pare, J., Smith, B.P., Higgins, R., Holmberg, C.A., Jang, S., Gu-Terbock, W., Bacteriological culture of blood from critically ill neonatal calves (1997) Can. Vet. J., 38, pp. 95-100; Fecteau, G., Smith, B.P., George, L.W., Septicemia and meningitis in the newborn calf (2009) Vet. Clin. Food Anim. Pract., 25, pp. 195-208; Gabay, C., Kushner, I., Acute-phase proteins and other systemic responses to inflammation (1999) N. Engl. J. Med., 340, pp. 448-454; Ganheim, C., Alenius, S., Waller, K.P., Acute phase proteins as indicators of calf herd health (2007) Vet. J., 173, pp. 645-651; Ganheim, C., Hulten, C., Carlsson, U., Kindahl, H., Niskanen, R., Waller, K.P., The acute phase response in calves experimentally infected with bovine viral diarrhoea virus and/or Mannheimia haemolytica (2003) J. Vet. Med. B, 50, pp. 183-190; Gokce, E., Erdogan, H.M., Unver, A., Sozmen, M., Atakisi, O., Karapehlivan, M., (2015) An Investigation on the Diagnostic and Prognostic Importance of Some Clinical, Haematological and Biochemical Parameters in Calves with Neonatal Diseases and Septicemia, pp. 1-124. , TUBITAK Project, Project Number: 111O476, Kars; Gomora, M.I., Wong, C., Blome, S., Desselberger, U., Gray, J., Rotavirus subgroup characterisation by restriction endonuclease digestion of a cDNA fragment of the VP6 gene (2002) J. Virol. Methods, 105, pp. 99-103; Gruys, E., Toussiant, M., Niewald, T.A., Acute phase reaction and acute phase proteins (2005) J. Zhejiang Univ. Sci., 11, pp. 1045-1056; Hariharan, H., Bryenton, J., St Onge, J., Heaney, S., Blood cultures from calves and foals (1992) Can Vet. J., 33, pp. 56-57; Heinrich, P.C., Castell, J.V., Andust, T., Interleukin-6 and the acute phase response (1990) Biochem. J., 265, pp. 621-636; Horadagoda, N.U., Knox, K.M.G., Gibbs, H.A., Reid, S.W.J., Horagoda, A., Edwards, S.E.R., Eckersall, P.D., Acute phase proteins in cattle: Discrimination between acute and chronic inflammation (1999) Vet. Rec., 144, pp. 437-441; House, J.K., Smith, G.W., McGuirk, S.M., Gunn, A.A., Izzo, M., Manifestations and management of disease in neonatal ruminants (2015) Large Animal Internal Medicine, , Smith, B. ed 5th edition. Elsevier, USA; Humblet, M.F., Coghe, J., Lekeux, P., Godeau, J.M., Acute phase proteins assessment for an early selection of treatments in growing calves suffering from bronchopneumonia under field conditions (2004) Res. Vet. Sci., 77, pp. 41-47; Irmak, K., Guzelbektes, H., Alteration in some haematological and biochemical parameters in the calves with presumed septic shock (2003) Kafkas Univ. Vet. Fak. Derg., 9, pp. 53-57; Irmak, K., Sen, I., Col, R., Birdane, F.M., Guzelbektes, H., Civelek, T., Yilmaz, A., Turgut, K., The evaluation of coagulation profiles in calves with suspected septic shock (2006) Vet. Res. Commun., 30, pp. 497-503; Joshi, V., Gupta, V.K., Bhanuprakash, A.G., Mandal, R.S.K., Dimri, U., Ajith, Y., Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves (2018) Microb. Pathog., 116, pp. 33-37; Kirbas, A., Karakus, E., Ozkanlar, S., Gedikli, S., Hanedan, B., Topcu, A., Bayraktutan, Z., Comparative efficacy of the steroids administered by inhalation and parenteral route in lambs with experimentally induced endotoxemia (2015) Int. J. Vet. Sci., 4, pp. 199-205; Kirbas, A., Ozkanlar, Y., Aktas, M.S., Ozkanlar, S., Ulas, N., Erol, H.S., Acute phase biomarkers for inflammatory response in dairy cows with traumatic reticuloperitonitis (2015) Isr. J. Vet. Med., 70, pp. 23-29; Kirecci, E., Ozkanlar, Y., Aktas, M.S., Uyanik, M.H., Yazgi, H., Isolation of pathogenic aerobic bacteria from the blood of septicaemic neonatal calves and the susceptibility of isolates to various antibiotics (2010) J. S. Afr.Vet. Assoc., 81, pp. 110-113; Knowles, T.G., Edwards, J.E., Bazeley, K.J., Brown, S.N., Butterwoth, A., Warriss, P.D., Changes in the blood biochemical and haematological profile of neonatal calves with age (2000) Vet. Rec., 147, pp. 593-598; Lofstedt, J., Dohoo, I.R., Duizer, G., Model to predict septicemia in diarrheic calves (1999) J. Vet. Intern. Med., 13, pp. 81-88; Lohman, K.L., Baron, M.H., Endotoxemia (2010) Equine Internal Medicine, , Reed, S. M., Bayly, W. M. and Sellon, D. C. eds 3rd edition. Saunders, Elsevier, USA; Matur, E., Eraslan, E., Cotelioglu, U., Biology of procalcitonin and its potential role in veterinary medicine (2017) J. Istanbul Vet. Sci., 2, pp. 16-27; Medcalf, R.L., Fibrinolysis, inflammation and regulation of the plasminogen activating system (2007) J. Thromb. Haemost., 5, pp. 132-142; Morris, D.D., Moore, J.N., Tumor necrosis factor activity in serum from neonatal foals with presumed septicemia (1991) J. Am. Vet. Med. Assoc., 199, pp. 1584-1589; Murray, C.F., Windeyer, M.C., Duffield, T.F., Haley, D.B., Pearl, D.L., Waalderbos, K.M., Leslie, K.E., Associations of serum haptoglobin in newborn dairy calves with health, growth, and mortality up to 4 months of age (2014) J. Dairy Sci., 97, pp. 7844-7855; Orro, T., Jacobsen, S., Lepage, J.P., Niewold, T., Alasuutari, S., Soveri, T., Temporal changes in serum concentrations of acute phase proteins in newborn dairy calves (2008) Vet. J., 176, pp. 182-187; Petersen, H.H., Nielsen, J.P., Heegard, P.M.H., Application of acute phase protein measurements in veterinary clinical chemistry (2004) Vet. Res., 35, pp. 163-167; Pourjafar, M., Badiei, K., Nazifi, S., Naghib, S.M., Acute phase response in Holstein dairy calves affected with diarrhoea (2011) Bulg. J. Vet. Med., 14, pp. 142-149; Reinhart, K., Bauer, M., Riedemann, N.C., Hartoga, C.S., New approaches to sepsis: Molecular diagnostics and biomarkers (2012) Clin. Microbiol. Rev., 25, pp. 609-634; Reinhart, K., Karzai, W., Meisner, M., Procalcitonin as a systemic inflammatory response to infection (2000) Intensive Care Med, 26, pp. 1193-1200; Robinson, J.A., Allen, G.K., Green, E.M., Garner, H.E., Loch, W.E., Walsh, D.M., Serum interleukin-6 concentrations in endotoxin-infused neonatal foals (1993) Am. J. Vet. Res., 54, pp. 1411-1414; Roussel, A.J., Whitney, M.S., Cole, D., Interpreting a bovine serum chemistry profile: Part 1 (1997) Vet. Med., 92, pp. 551-558; Shanbhogue, L.K., Paterson, N., Effect of sepsis and surgery on trace minerals (1990) J. Parenter. Enteral Nutr., 14, pp. 287-289; Shehabi, Y., Seppelt, I., Pro/con debate: Is procalcitonin useful for guiding antibiotic decision making in critically ill patients? (2008) Crit. Care, 12, pp. 211-216; Torrente, C., Manzanilla, E.G., Bosch, L., Fresno, L., Rivera Del Alamo, M., Andaluz, A., Saco, Y., Ruiz De Gopegui, R., Plasma iron, C-reactive protein, albumin, and plasma fibrinogen concentrations in dogs with systemic inflammatory response syndrome (2015) J. Vet. Emerg. Crit. Care, 25, pp. 611-619; Tothova, C., Nagy, O., Nagyova, V., Kovac, G., Changes in the concentrations of acute phase poteins in calves during the first month of life (2015) Acta Vet. Beograd, 65, pp. 260-270; Tothova, C., Nagy, O., Seidel, H., Kovac, G., The effect of chronic respiratory diseases on acute phase proteins and selected blood parameters of protein metabolism in calves (2010) Berl. Munch. Tierarztl. Wochenschr., 123, pp. 307-313; Tothova, C., Nagy, O., Seidel, H., Kovac, G., Acute phase proteins in relation to various inflammatory diseases of calves (2012) Comp. Clin. Pathol., 21, pp. 1037-1042; Walter, T., Olivares, M., Pizarro, F., Munoz, C., Iron, anemia, and infection (1997) Nutr. Rev., 55, pp. 111-124; Yildiz, R., Beslek, M., Beydilli, Y., Ozcelik, M., Bicici, O., Evaluation of platelet activating factor in neonatal calves with sepsis (2018) J. Turkish Vet. Med. Soc., 89, pp. 66-73","Kirbas, A.; Department of Internal Medicine, Faculty of Veterinary Medicine, Ataturk UniversityTurkey; email: akindahiliye55@yahoo.com",,"Akademiai Kiado Rt.",02366290,,,"31549538","English","Acta Vet. Hung.",Article,"Final",,Scopus,2-s2.0-85072556394 "Zheng Y., Chen J., Kong D., Pan H., Zhou Y., Chen M., Teng Z., Wu H., Yuan Z.","57211881446;57212282094;57210945493;57198905898;57210945548;57209988876;57211741424;56645140100;57210128864;","Pathogenic characteristics of hospitalized severe acute respiratory infections in Shanghai, China, 2015-2017",2019,"Chinese Journal of Endemiology","40","8",,"911","916",,1,"10.3760/cma.j.issn.0254-6450.2019.08.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071968768&doi=10.3760%2fcma.j.issn.0254-6450.2019.08.008&partnerID=40&md5=8dbc3e626b5ffc980fbd97cad495785c","Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Fudan University, Shanghai, 200032, China","Zheng, Y., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China, Fudan University, Shanghai, 200032, China; Chen, J., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Kong, D., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Pan, H., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Zhou, Y., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Chen, M., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Teng, Z., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Wu, H., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; Yuan, Z., Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China","Objective To understand the epidemiological and pathogenic characteristics of hospitalized severe acute respiratory infections (SARI) in Shanghai, China. Methods From 2015 to 2017, one Tertiary hospital and one Secondary hospital were chosen as the surveillance sites. Two respiratory tract specimens per case were collected from SARI cases aged 15 years and older. One specimen was tested for 22 respiratory pathogens by RT-PCR, and the other specimen was cultured for 6 respiratory bacteria. Results A total of 287 SARI cases were enrolled for sampling and lab testing. 70.73% of the cases were aged 60 years and older, with 41.46% (119/287) were positive for at least one pathogen. Influenza virus was the predominant pathogen, accounting for 17.77% (51/287) of all SARI cases. Human rhinovirus/Enterovirus and Coronavirus were both accounting for 7.32% (21/287), followed by Mycoplasma pneumoniae (5.57%, 16/287). The positive rates of parainfluenza virus, bocavirus, adenovirus, respiratory syncytial virus and human metapneumo virus were all less than 5%. Bacterial strains were identified in seven SARI cases, including Klebsiella pneumoniae (3 strains), Staphylococcus aureus (2 strains), Streptococcus pneumoniae (1 strain) and Pseudomonas aeruginosa (1 strain). Two or Three pathogens were co-detected from 40 cases, accounting for 33.61% of 119 positive cases. The most common co-detected pathogens were influenza virus and Mycoplasma pneumoniae (10 cases). Influenza cases peaked in winter-spring and summer. Mycoplasma pneumoniae peaked in winter-spring season and overlapped with influenza. The positive rates of pathogens were not significantly different between different age groups. Conclusions Various respiratory pathogens can be detected from SARI cases aged 15 years and older. Influenza virus was the predominant pathogen and the co-detection of influenza virus with Mycoplasma pneumoniae the most common one. © 2019 Chinese Medical Association. All rights reserved.","Epidemiological characteristics; Influenza; Inpatients; Pathogenic characteristics; Severe acute respiratory infection","Adenoviridae; adolescent; adult; bacterial strain; Bocaparvovirus; China; clinical article; controlled study; Coronavirinae; Enterovirus; groups by age; hospital patient; human; human cell; Human respiratory syncytial virus; Human rhinovirus; human tissue; Klebsiella pneumoniae; laboratory test; middle aged; Mycoplasma pneumoniae; nonhuman; Paramyxovirinae; polymerase chain reaction; Pseudomonas aeruginosa; review; spring; Staphylococcus aureus; Streptococcus pneumoniae; summer; winter","Yang, J., Zheng, Y.M., Liu, X.X., Analysis on the economic burden of severe acute respiratory infection inpatients from sentinel hospitals in China [j] (2015) Int J Virol, 22 (6), p. 361366; Yang, J., Zheng, Y.M., Liu, X.X., Analysis on the health-related quality of life of severe acute respiratory infection inpatients from sentinel hospitals in China [j] (2016) Pract Prev Med, 23 (5), pp. 539-544; Jiang, H., Yu, D.S., Ruan, F., Clinical characteristics of hospitalized severe acute respiratory illnesses in adults and risk factors of severe iilness : Results of sentinel surveiilance in 10 provinces, China[j]. (2016) Pract, Prev Med, 23 (1), pp. 25-30; (2018) The Top 10 Causes of Death, , https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-deatli, World Health Organization.[EB/OL]. (2018-05-24) [,-12-20; Huang, H.H., Zhang, Y.Y., Wang, F., A prevalence analysis of mycoplasma pneumoniae and chlamydia pneumoniae in asian adults with community-acquired pneumonia [j] (2008) Chin J Infect Chemother, 8 (2), pp. 89-93; Peng, Z.B., Feng, L.Z., Carolyn, G.M., Characterizing the epidemiology, virology, and clinical features of influenza in China's first severe acute respiratory infection sentinel surveiilance system, February 2011-October 2013 [ j[. (2015) BMC Infect Dis, 15, p. 143; Liu, Y.N., Chen, M.J., Zhao, T.M., A multicentre study on the pathogenic agents in 665 adult patients with community-acquired pneumonia in cities of China [j] (2006) Chin J Tuberc Respir Dis, 29 (1), pp. 3-8; Yu, H.J., Huang, J.G., Huai, Y., The substantial hospitalization burden of influenza in central China : Surveiilance for severe, acute respiratory infection, and influenza viruses, 2010-2012[j] (2014) Influenza Other, Respir Viruses, 8 (1), pp. 53-65; Feng, L.Z., Li, Z.J., Zhao, S.W., Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013 [j] (2014) PLoS One, 9 (6), p. e99419; Abdel-Hady, D.M., Al, B.R., Al, A.B.A., Estimating the burden of influenza-associated hospitalization and deaths in Oman (2012-2015) [j] (2018) Influenza Other Respi Viruses, 12 (1), pp. 146-152; Descalzo, M.A., Clara, W., Guzman, G., Estimating the burden of influenza-associated hospitalizations and deaths in central america [j] (2016) Influenza Other Respir Viruses, 10 (4), pp. 340-345; Wang, M.Z., Sun, W.Z., Wang, Y.M., Efficacy and safety of oseltamivir in the treatment of naturally acquired influenza in China [j] (2003) Chin J Infect Dis, 21 (2), pp. 114-117; Lin, J.T., Yu, X.Z., Cui, D.J., A multicenter randomized controlled study of the efficacy and safety of oseltamivir in the treatment of influenza in a high risk population [j] (2004) Chin J Tuberc Respir, Dis, 27 (7), pp. 455-459; Matias, G., Taylor, R., Haguinet, F., Estimates of hospitalization attributable to influenza and rsv in the us during 1997-2009, by age and risk status [j] (2017) BMC Public Health, 17, p. 271; Fieldhouse, J.K., Toh, T.H., Lim, W.H., Surveiilance for respiratory syncytial virus and parainfluenza virus among patients hospitalized with pneumonia in sarawak, Malaysia [j] (2018) PLoS One, 13 (8), p. e0202147; Jiang, C.Y., Zhao, G.M., Mao, S.H., Epidemiologic characteristics of influenza in Shanghai from 2013 to 2015 [j] (2016) Shanghai J Prev Med, 28 (11), pp. 766-768; McDanel, J.S., Perencevich, E.N., Storm, J., Increased mortality rates associated with staphylococcus aureus and influenza coinfection, Maryland and Iowa, USA [ j] (2016) Emerg Infect Dis, 22 (7), pp. 1253-1256; Palacios, G., Hornig, M., Cisterna, D., Streptococcus pneumoniae coinfection is correlated with the severity of h1n1 pandemic influenza [j] (2009) PLoS One, 4 (12), p. e8540; Morens, D.M., Taubenberger, J.K., Fauci, A.S., Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness [j] (2008) J Infect Dis, 198 (7), pp. 962-970","Wu, H.; Shanghai Municipal Center for Disease Control and PreventionChina; email: wuhuanyu@scdc.sh.cn",,"Chinese Medical Association",20954255,,,"31484253","Chinese","Chin. J. Endemiol.",Review,"Final",,Scopus,2-s2.0-85071968768 "Bobylev A.A., Rachina S.A., Avdeev S.N., Kozlov R.S., Sukhorukova M.V., Yatsyshina S.B., El’kina M.A., Yudanova T.A.","57207702801;57207690457;7003292838;6701555731;55589501000;8876779600;57214284082;57210573325;","Etiology of community-acquired pneumonia in patients with chronic heart failure [Этиология внебольничной пневмонии у лиц с хронической сердечной недостаточностью]",2019,"Pulmonologiya","29","3",,"293","301",,,"10.18093/0869-0189-2019-29-3-293-301","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071041934&doi=10.18093%2f0869-0189-2019-29-3-293-301&partnerID=40&md5=5d0e57448ee57d37fc84bf5ffe19db5b","Smolensk State Medical University, Healthcare Ministry of Russia, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation; Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation; Peoples' Friendship University, Ministry of Science and higher Education of Russia, Ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation; I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Ul. Trubetskaya 8, build. 2, Moscow, 119991, Russian Federation; Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, Orekhovyy Bul'var 28, Moscow, 115682, Russian Federation; Federal Central Institute of Epidemiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Ul. Novogireyevskaya 3a, Moscow, 111123, Russian Federation; Smolensk Regional Teaching Hospital, Prospekt Gagarina 27, Smolensk, 214018, Russian Federation","Bobylev, A.A., Smolensk State Medical University, Healthcare Ministry of Russia, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation; Rachina, S.A., Peoples' Friendship University, Ministry of Science and higher Education of Russia, Ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation; Avdeev, S.N., I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Ul. Trubetskaya 8, build. 2, Moscow, 119991, Russian Federation, Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, Orekhovyy Bul'var 28, Moscow, 115682, Russian Federation; Kozlov, R.S., Smolensk State Medical University, Healthcare Ministry of Russia, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation; Sukhorukova, M.V., Smolensk State Medical University, Healthcare Ministry of Russia, Ul. Krupskoy 28, Smolensk, 214019, Russian Federation; Yatsyshina, S.B., Federal Central Institute of Epidemiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Ul. Novogireyevskaya 3a, Moscow, 111123, Russian Federation; El’kina, M.A., Federal Central Institute of Epidemiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Ul. Novogireyevskaya 3a, Moscow, 111123, Russian Federation; Yudanova, T.A., Smolensk Regional Teaching Hospital, Prospekt Gagarina 27, Smolensk, 214018, Russian Federation","Chronic heart failure (CHF) is one of the most common comorbidities in elderly patients with community-acquired pneumonia (CAP). The aim of this study was to investigate etiology of CAP in patients with concomitant CHF. Methods. This prospective observational study involved adult hospitalized patients with CAP and concomitant CHF. CAP was confirmed by chest X-ray. Sputum samples or oropharyngeal swabs, blood and urine samples were collected in all eligible patients before starting the therapy with systemic antibiotics. Sputum was cultured for «typical» bacterial pathogens, such as Streptococcus pneumoniae, Staphylococcus aureus, Enterobacterales, etc., in accordance with standard methods and procedures. Mycoplasma pneumoniae, Chlamydophila pneumoniae and respiratory viruses in sputum or oropharyngeal swabs were identified using the real-time polymerase chain reaction (PCR). Urine samples were used to determine serogroup 1 Legionella pneumophila and S. pneumoniae soluble antigens using bedside immunochromatography. Results. Fifty patients were enrolled in the study. The mean age was 72.2 ± 9.5 years, 27 (54%) were females. The etiology of CAP was identified in 23 cases (46%). S. pneumoniae was the most common pathogen (16/23; 69.7%) followed by respiratory viruses (3/23; 13.1%), such as type 3 parainfluenza virus, coronavirus, human metapneumovirus; Haemophilus influenzae (1/23; 4.3%), S. aureus (1/23; 4.3%), and Klebsiella pneumoniae (1/23; 4.3%). S. pneumoniae and parainfluenza virus co-infection was diagnosed in one of 23 patients (4.3%). Conclusion. S. pneumoniae and respiratory viruses were predominant causative pathogens of CAP in hospitalized adults with concomitant CHF. Therefore, bedside tests for urine pneumococcal antigens should be used more widely considering difficult sputum expectoration in elderly. Atypical bacterial pathogens (M. pneumoniae, C. pneumoniae, L. pneumophila) were not identified in this study, so the routine PCR-test and urine tests for L. pneumophila antigens are thought to be not useful. © 2019 Medical Education. All rights reserved.","Chronic heart failure; Community-acquired pneumonia; Etiology; Microbiological detection","antibiotic agent; adult; aged; antibiotic therapy; Article; blood sampling; Chlamydia pneumoniae; clinical article; community acquired pneumonia; Coronavirinae; Enterobacter; female; Haemophilus influenzae; heart failure; hospital patient; human; Human metapneumovirus; immunoaffinity chromatography; Klebsiella pneumoniae; male; mixed infection; Mycoplasma pneumoniae; observational study; Paramyxovirinae; prospective study; real time polymerase chain reaction; respiratory virus; sputum culture; Staphylococcus aureus; Streptococcus pneumoniae; thorax radiography; urinalysis; urine sampling","Feldman, C., Shaddock, E., Epidemiology of lower respiratory tract infections in adults (2019) Expert. Rev. Respir. Med., 13 (1), pp. 63-77; El-Solh, A.A., Sikka, P., Ramadan, F., Davies, J., Etiology of severe pneumonia in the very elderly (2001) Am. J. Respir. Crit. Care Med., 163 (3), pp. 645-651; Gau, J.T., Acharya, U., Khan, S., Pharmacotherapy and the risk for community-acquired pneumonia (2010) BMC Geriatr, 10, p. 45; Jackson, M.L., Neuzil, K.M., Thompson, W.W., The burden of community-acquired pneumonia in seniors: Results of a population-based study (2004) Clin. Infect. Dis., 39 (11), pp. 1642-1650; Welte, T., Community-acquired pneumonia (2009) Internist (Berl.), 50 (3), pp. 331-339; Fung, H.B., Monteagudo-Chu, M.O., Community-acquired pneumonia in the elderly (2010) Am. J. Geriatr. Pharmacother., 8 (1), pp. 47-62; Kaplan, V., Angus, D.C., Community-acquired pneumonia in the elderly (2003) Crit. Care Clin., 19 (4), pp. 729-748; Gutiérrez, F., Masiá, M., Improving outcomes of elderly patients with community-acquired pneumonia (2008) Drugs Aging, 25 (7), pp. 585-610; Gutiérrez, F., Masiá, M., Rodriguez, J.C., Epidemiology of community-acquired pneumonia at the dawn of the 21st century: A prospective study on the Mediterranean coast of Spain (2005) Clin. Microbiol. Infect., 11 (10), pp. 788-800; Kaplan, V., Angus, D.C., Griffin, M.F., Hospitalized community-acquired pneumonia in the elderly: Age- And sex-related patterns of care and outcome in the United States (2002) Am. J. Respir. Crit. Care Med., 165 (6), pp. 766-772; Woods, G.L., Isaacs, R.D., McCarroll, K.A., Friedland, I.R., Ertapenem therapy for community-acquired pneumonia in the elderly (2003) J. Am. Geriatr. Soc., 51 (11), pp. 1526-1532; Vila-Corcoles, A., Ochoa-Gondar, O., Rodriguez-Blanco, T., Epidemiology of community-acquired pneumonia in older adults: A population-based study (2009) Respir. Med., 103 (2), pp. 309-316; Lieberman, D., Lieberman, D., Community-acquired pneumonia in the elderly: A practical guide to treatment (2000) Drugs Aging, 17 (2), pp. 93-105; Garcia-Vazquez, E., Marcos, M.A., Mensa, J., Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system (2004) Arch. Intern. Med., 164 (16), pp. 1807-1811; González-Castillo, J., Martín-Sánchez, F.J., Llinares, P., Guidelines for the management of community-acquired pneumonia in the elderly patient (2014) Rev. Esp. Quimioter., 27 (1), pp. 69-86; Mareev, V.Yu., Ageev, F.T., Arutyunov, G.P., National guidelines of Russian Society of Heart failure specialists, Russian Society of Cardiology, and Russian Scientific Medical Society of internal medicine of diagnosis and treatment of chronic heart failure (the 4th Revised edition) (2013) Zhurnal Serdechnaya Nedostatochnost', 14 (7), pp. 379-472. , Russian; Chuchalin, A.G., Sinopal'nikov, A.I., Kozlov, R.S., Community-acquired pneumonia in adults: Clinical guidelines on diagnosis, treatment and prevention (2010) Kli-Nicheskaya Mikrobiologiya I Antimikrobnaya Khimioterapiya, 12 (3), pp. 186-225. , Russian; Gorelik, E., Masarwa, R., Perlman, A., Systematic review, meta-analysis, and network meta-analysis of the cardiovascular safety of macrolides (2018) Antimicrob. Agents. Chemother., 62 (6), pp. e00438-e00518; Cornett, E., Novitch, M.B., Kaye, A.D., Macrolide and fluoroquinolone mediated cardiac arrhythmias: Clinical considerations and comprehensive review (2017) Postgrad. Med., 129 (7), pp. 715-724; Zalacain, R., Torres, A., Celis, R., Community-acquired pneumonia in the elderly: Spanish multicentre study (2003) Eur. Respir. J., 21 (2), pp. 294-302; Saito, A., Kohno, S., Matsushima, T., Prospective multi-center study of the causative organisms of community-acquired pneumonia in adults in Japan (2006) J. Infect. Chemother., 12 (2), pp. 63-69; García-Ordóñez, M.A., García-Jiménez, J.M., Páez, F., Clinical aspects and prognostic factors in elderly patients hospitalised for community-acquired pneumonia (2001) Eur. J. Clin. Microbiol. Infect. Dis., 20 (1), pp. 14-19; Fernández-Sabé, N., Carratalà, J., Rosón, B., Community-acquired pneumonia in very elderly patients: Causative organisms, clinical characteristics, and outcomes (2003) Medicine (Baltimore), 82 (3), pp. 159-169; Von Baum, H., Welte, T., Marre, R., Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: Diagnosis, incidence and predictors (2010) Eur. Respir. J., 35 (3), pp. 598-605; Quah, J., Jiang, B., Tan, P.C., Impact of microbial aetiology on mortality in severe community-acquired pneumonia (2018) BMC Infect. Dis., 18, p. 451; Holter, J.C., Müller, F., Bjørang, O., Etiology of community-acquired pneumonia and diagnostic yields of microbiological methods: A 3-year prospective study in Norway (2015) BMC Infect. Dis., 15, p. 64",,,"Medical Education",08690189,,,,"Russian","Pulmonologiya",Article,"Final",Open Access,Scopus,2-s2.0-85071041934 "Ozharovskaia T.A., Zubkova O.V., Dolzhikova I.V., Gromova A.S., Grousova D.M., Tukhvatulin A.I., Popova O., Shcheblyakov D.V., Scherbinin D.N., Dzharullaeva A.S., Erokhova A.S., Shmarov M.M., Loginova S.Y., Borisevich S.V., Naroditsky B.S., Logunov D.Y., Gintsburg A.L.","57193202483;6603215070;57188716632;57208258279;57208260370;36545449300;57208694097;35073056900;57193199548;56426992400;57203805898;6507322279;6603490298;6602589858;7003323437;22835557900;7005111491;","Immunogenicity of different forms of middle east respiratory syndrome s glycoprotein",2019,"Acta Naturae","11","1",,"38","47",,1,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065536580&partnerID=40&md5=7d4044943dc195a459f4d901e6f4d0ee","Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; '48 Central Research Institute', Ministry of Defense of Russian Federation, Oktyabrskaya Str. 11, Sergiev Posad, 141306, Russian Federation","Ozharovskaia, T.A., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Zubkova, O.V., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Dolzhikova, I.V., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Gromova, A.S., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Grousova, D.M., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Tukhvatulin, A.I., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Popova, O., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Shcheblyakov, D.V., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Scherbinin, D.N., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Dzharullaeva, A.S., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Erokhova, A.S., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Shmarov, M.M., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Loginova, S.Y., '48 Central Research Institute', Ministry of Defense of Russian Federation, Oktyabrskaya Str. 11, Sergiev Posad, 141306, Russian Federation; Borisevich, S.V., '48 Central Research Institute', Ministry of Defense of Russian Federation, Oktyabrskaya Str. 11, Sergiev Posad, 141306, Russian Federation; Naroditsky, B.S., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Logunov, D.Y., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation; Gintsburg, A.L., Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Moscow, 123098, Russian Federation","The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 during the first Middle East respiratory syndrome (MERS) outbreaks. MERS-CoV causes an acute lower-respiratory infection in humans, with a fatality rate of ~35.5%. Currently, there are no registered vaccines or means of therapeutic protection against MERS in the world. The MERS-CoV S glycoprotein plays the most important role in the viral life cycle (virus internalization). The S protein is an immunodominant antigen and the main target for neutralizing antibodies. In the present study, the immunogenicities of five different forms of the MERS-CoV S glycoprotein were compared: the full-length S glycoprotein, the full-length S glycoprotein with the transmembrane domain of the G glycoprotein of VSV (S-G), the receptor-binding domain (RBD) of the S glycoprotein, the membrane-fused RBD (the RBD fused with the transmembrane domain of the VSV G glycoprotein (RBD-G)), and the RBD fused with Fc of human IgG1 (RBD-Fc). Recombinant vectors based on human adenoviruses type 5 (rAd5) were used as delivery vehicles. Vaccination with all of the developed rAd5 vectors elicited a balanced Th1/Th2 response in mice. The most robust humoral immune response was induced after the animal had been vaccinated with the membrane-fused RBD (rAd5-RBD-G). Only immunization with membrane forms of the glycoprotein (rAd5-S, rAd5-S-G, and rAd5-RBD-G) elicited neutralizing antibodies among all vaccinated animals. The most significant cellular immune response was induced after vaccination of the animals with the full-length S (rAd5-S). These investigations suggest that the full-length S and the membrane form of the RBD (RBD-G) are the most promising vaccine candidates among all the studied forms of S glycoprotein. © 2019 National Research University Higher School of Economics.","Adenoviral vector; Glycoprotein; immunity; MERS; MERS-CoV; Middle East respiratory syndrome",,"de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A.M., Memish, Z.A., (2013) J. Virol, 87 (14), pp. 7790-7792; Zaki, A.M., van Boheemen, L., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., (2012) N. Engl. J. Med, 367 (19), pp. 1814-1820; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., (2014) Emerg. Infect. Dis, 20 (6), pp. 1012-1015; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Raj, V.S., Ghobashy, H., (2014) Euro. Surveill, 19 (23), pp. 1-5; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohra, S.S., Aburizaiza, A.S., Farraja, S.A., Hassan, A.M., Madani, T.A., (2014) MBio, 5 (4), pp. 1-4; Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., (2017) PLoS One, 12 (10), pp. 1-11; WHO Research and Development Blueprint: 2017 Annual review of diseases prioritized under the Research and Development Blueprint, , http://www.who.int/blueprint/what/research-development/2017-Prioritization-Long-Report.pdf; Qian, Z., Dominguez, S.R., Holmes, K.V., (2013) PLoS. One, 8 (10); Millet, J.K., Whittaker, G.R., (2014) Proc. Natl. Acad. Sci. USA, 111 (42), pp. 15214-15219; Lu, G., Wang, Q., Gao, G.F., (2015) Trends Microbiol, 23 (8), pp. 468-478; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Wang, Q., Yu, F., (2014) Nat. Commun, 5 (3067), pp. 1-12; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., (2013) Nature, 495 (7440), pp. 251-254; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D., Sutter, G., (2013) J. Virol, 87 (21), pp. 11950-11954; Kim, E., Okada, K., Kenniston, T., Raj, V.S., AlHajri, M.M., Farag, E.A.B.A., AlHajri, F., Gambotto, A., (2014) Vaccine, 32 (45), pp. 5975-5982; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Tan, W., (2015) Immunology, 145 (4), pp. 476-484; Liu, R., Wang, J., Shao, Y., Wang, X., Zhang, H., Shuai, L., Ge, J., Bu, Z., (2018) Antiviral Res, 150, pp. 30-38; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Jiang, S., (2013) PLoS One, 8 (12), pp. 2-10; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K.M., Lu, L., Zheng, B.-J., (2013) J. Virol, 87 (17), pp. 9939-9942; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T.K., Zhou, Y., Jiang, S., (2014) Vaccine, 32 (18), pp. 2100-2108; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Alhabbab, R.Y., Hashem, A.M., (2017) Sci. Rep, 7, pp. 1-8; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.T.K., Li, F., Du, L., (2014) Vaccine, 32 (46), pp. 6170-6176; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., (2017) Proc. Natl. Acad. Sci. USA, 114 (35), pp. E7348-E7353; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., (2015) Nat. Commun, 6, p. 7712; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Du, L., (2016) Cell. Mol. Immunol, 13 (2), pp. 180-190; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., (2017) Expert Opin. Ther. Targets, 21 (2), pp. 131-143; Appaiahgari, M.B., Vrati, S., (2015) Expert Opin. Biol. Ther, 15 (3), pp. 337-351; Benihoud, K., Yeh, P., Perricaudet, M., Curr. Opin. Biotechnol, 10 (5), pp. 440-447; Kamen, A., Henry, O., (2004) J. Gene Med, 6, pp. 184-192; Muruve, D.A., (2004) Hum. Gene Ther, 15 (12), pp. 1157-1166; Dolzhikova, I.V., Tokarskaya, E.A., Dzharullaeva, A.S., Tukhvatulin, A.I., Shcheblyakov, D.V., Voronina, O.L., Syromyatnikova, S.I., Babira, V.F., (2017) Acta Naturae, 9 (3), pp. 4-11; Hatcher, E.L., Zhdanov, S.A., Bao, Y., Blinkova, O., Nawrocki, E.P., Ostapchuck, Y., Schäffer, A.A., Brister, J.R., (2017) Nucl. Acids. Res, 45 (D1), pp. D482-D490; Gribova, I.Y., Tillib, S.V., Tutykhina, I.L., Shmarov, C.E., Logunov, D.Y., Verkhovskaya, L.V., Naroditskii, B.S., Gintsburg, A.L., (2011) Acta Naturae, 3 (3), pp. 64-70; Grehan, K., Ferrara, F., Temperton, N., (2015) Methods X, 2, pp. 379-384; Quah, B.J., Warren, H.S., Parish, C.R., (2007) Nat. Protoc, 2 (9), pp. 2049-2056; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., Perlman, S., Xia, X., (2017) Vaccine, 35 (16), pp. 2069-2075; Deng, Y., Lan, J., Bao, L., Huang, B., Ye, F., Chen, Y., Yao, Y., Tan, W., (2018) Emerg. Microbes Infect, 7 (60), pp. 1-10; Nyon, M.P., Du, L., Tseng, C.K., Seid, C.A., Pollet, J., Naceanceno, K.S., Agrawal, A., Tai, W., (2018) Vaccine, 36 (14), pp. 1853-1862; Snapper, C.M., Mond, J.J., (1993) Immunol. Today, 14 (1), pp. 15-17; Perlman, S., Vijay, R., (2016) Int. J. Infect. Dis, 47, pp. 23-28; Okba, N.M., Raj, V.S., Haagmans, B.L., (2017) Curr. Opin. Virol, 23, pp. 49-58; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Zhou, Y., (2016) Virology, 499, pp. 375-382; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., Grehan, K., Warimwe, G., (2017) Vaccine, 35 (30), pp. 3780-3788; Munster, V.J., Wells, D., Lambe, T., Wright, D., Fischer, R.J., Bushmaker, T., Saturday, G., De Wit, E., (2017) NPJ. Vaccines, 2, p. 28; Malczyk, A.H., Kupke, A., Prüfer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Tondera, C., (2015) J. Virol, 89 (22), pp. 11654-11667; Lan, J., Deng, Y., Song, J., Huang, B., Wang, W., Tan, W., (2018) Virol. Sin, 33 (5), pp. 453-455; Modjarrad, K., (2016) Vaccine, 34 (26), pp. 2982-2987; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Couch, R.B., Tseng, C.T.K., (2016) Hum. Vaccin. Immunother, 12 (9), pp. 2351-2356; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Glenn, G.M., Frieman, M.B., (2014) Vaccine, 32 (26), pp. 3169-3174; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., (2016) Science, 351 (6268), pp. 77-81; Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Tan, W., (2014) PLoS. One, 9 (11), pp. 1-9; Mou, H., Raj, V.S., van Kuppeveld, F.J.M., Rottier, P.J.M., Haagmans, B.L., Bosch, B.J., J. Virol, 87 (16), pp. 9379-9383; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., (2015) Sci. Transl. Med, 7 (301), pp. 1-29; Yang, Y., Deng, Y., Wen, B., Wang, H., Meng, X., Lan, J., Gao, G.F., Tan, W., (2014) Viral Immunol, 27 (10), pp. 543-550; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Perlmana, S., (2014) Proc. Natl. Acad. Sci. USA, 111 (13), pp. 4970-4975; Iwata-Yoshikawa, N., Uda, A., Suzuki, T., Tsunetsugu-Yokota, Y., Sato, Y., Morikawa, S., Tashiro, M., Nagata, N., (2014) J. Virol, 88 (15), pp. 8597-8614; Tseng, C.T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P.C., Garron, T., Atmar, R.L., Peters, C.J., Couch, R.B., (2012) PLoS. One, 7 (4); Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T., Jiang, S., Zhou, Y., (2015) Hum. Vaccin. Immunother, 11 (5), pp. 1244-1250; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Gao, G.F., (2015) EBioMedicine, 2 (10), pp. 1438-1446","Logunov, D.Y.; Federal Research Centre of Epidemiology, Microbio. named after Honorary Academician N.F. Gamaleya, Ministry of Health of Russian Federation, Gamaleya Str. 18, Russian Federation; email: logunov@gamaleya.org",,"Acta Naturae",20758251,,,,"English","Acta Naturae",Article,"Final",,Scopus,2-s2.0-85065536580 "Danziger-Isakov L., Steinbach W.J., Paulsen G., Munoz F.M., Sweet L.R., Green M., Michaels M.G., Englund J.A., Murray A., Halasa N., Dulek D.E., Madan R.P., Herold B.C., Fisher B.T.","8329743600;7004164877;57191378347;7103206377;56973705800;7406237201;7005166995;35227211100;57204580733;6602646208;36008162700;10638918000;24512307400;35723564000;","A multicenter consortium to define the epidemiology and outcomes of pediatric solid organ transplant recipients with inpatient respiratory virus infection",2019,"Journal of the Pediatric Infectious Diseases Society","8","3",,"197","204",,1,"10.1093/jpids/piy024","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072166208&doi=10.1093%2fjpids%2fpiy024&partnerID=40&md5=db3ccafaa36204173da1c5bbc57fa18b","Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH 45236, United States; Departments of Pediatrics and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States; Department of Pediatrics, Section of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, United States; Division of Infectious Diseases, Children's Hospital of Pittsburgh of UPMC, Departments of Pediatrics and Surgery, University of Pittsburgh School of MedicinePA, United States; Seattle Children's Research Institute, Seattle Children's Hospital, University of Washington, United States; Division of Pediatric Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY, United States; Division of Infectious Diseases, Department of Pediatrics, United States; Center for Pediatric Clinical Effectiveness, Children's Hospital of PhiladelphiaPA, United States; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States","Danziger-Isakov, L., Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH 45236, United States; Steinbach, W.J., Departments of Pediatrics and Molecular Genetics and Microbiology, Duke University, Durham, NC, United States; Paulsen, G., Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH 45236, United States; Munoz, F.M., Department of Pediatrics, Section of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, United States; Sweet, L.R., Department of Pediatrics, Section of Infectious Diseases, Texas Children's Hospital, Baylor College of Medicine, Houston, United States; Green, M., Division of Infectious Diseases, Children's Hospital of Pittsburgh of UPMC, Departments of Pediatrics and Surgery, University of Pittsburgh School of MedicinePA, United States; Michaels, M.G., Division of Infectious Diseases, Children's Hospital of Pittsburgh of UPMC, Departments of Pediatrics and Surgery, University of Pittsburgh School of MedicinePA, United States; Englund, J.A., Seattle Children's Research Institute, Seattle Children's Hospital, University of Washington, United States; Murray, A., Seattle Children's Research Institute, Seattle Children's Hospital, University of Washington, United States; Halasa, N., Division of Pediatric Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Dulek, D.E., Division of Pediatric Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, United States; Madan, R.P., Department of Pediatrics, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY, United States; Herold, B.C., Department of Pediatrics, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY, United States; Fisher, B.T., Division of Infectious Diseases, Department of Pediatrics, United States, Center for Pediatric Clinical Effectiveness, Children's Hospital of PhiladelphiaPA, United States, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States","Background. Respiratory virus infection (RVI) in pediatric solid organ transplant (SOT) recipients poses a significant risk; however, the epidemiology and effects of an RVI after pediatric SOT in the era of current molecular diagnostic assays are unclear. Methods. A retrospective observational cohort of pediatric SOT recipients (January 2010 to June 2013) was assembled from 9 US pediatric transplant centers. Charts were reviewed for RVI events associated with hospitalization within 1 year after the transplant. An RVI diagnosis required respiratory symptoms and detection of a virus (ie, human rhinovirus/enterovirus, human metapneumovirus, influenza virus, parainfluenza virus, coronavirus, and/or respiratory syncytial virus). The incidence of RVI was calculated, and the association of baseline SOT factors with subsequent pulmonary complications and death was assessed. Results. Of 1096 pediatric SOT recipients (448 liver, 289 kidney, 251 heart, 66 lung, 42 intestine/multivisceral), 159 (14.5%) developed RVI associated with hospitalization within 12 months after their transplant. RVI occurred at the highest rates in intestine/ abdominal multivisceral (38%), thoracic (heart/lung) (18.6%), and liver (15.6%) transplant recipients and a lower rate in kidney (5.5%) transplant recipients. RVI was associated with younger median age at transplant (1.72 vs 7.89 years; P < .001) and among liver or kidney transplant recipients with the receipt of a deceased-donor graft compared to a living donor (P = .01). The all-cause and attributable case-fatality rates within 3 months of RVI onset were 4% and 0%, respectively. Multivariable logistic regression models revealed that age was independently associated with increased risk for a pulmonary complication (odds ratio, 1.24 [95% confidence interval, 1.02-1.51]) and that receipt of an intestine/multivisceral transplant was associated with increased risk of all-cause death (odds ratio, 24.54 [95% confidence interval, 1.69-327.96]). Conclusions. In this study, hospital-associated RVI was common in the first year after pediatric SOT and associated with younger age at transplant. All-cause death after RVI was rare, and no definitive attributable death occurred. © The Author(s) 2018.","Organ transplantation; Pediatrics; Respiratory virus infection","immunoglobulin G; palivizumab; ribavirin; steroid; Article; artificial ventilation; assisted ventilation; bronchiolitis; child; clinical feature; cohort analysis; Coronaviridae; deceased donor; female; graft recipient; hospitalization; human; Human respiratory syncytial virus; infant; influenza; influenza vaccination; Influenza virus; kidney transplantation; liver transplantation; lung hemorrhage; lymphocytopenia; major clinical study; male; Metapneumovirus; mixed infection; multicenter study; neutropenia; observational study; organ transplantation; outcome assessment; Paramyxovirinae; positive end expiratory pressure; priority journal; respiratory syncytial virus infection; respiratory tract infection; respiratory virus; retrospective study; Rhinovirus; Rhinovirus infection; tracheostomy; viral respiratory tract infection; virus detection; adolescent; Coronavirinae; Enterovirus; hospital patient; multivariate analysis; organ transplantation; Orthomyxoviridae; Pneumovirus; preschool child; respiratory tract infection; Respirovirus; statistical model; United States; virology; virus infection; Adolescent; Child; Child, Preschool; Coronavirus; Enterovirus; Female; Hospitalization; Humans; Infant; Inpatients; Logistic Models; Male; Metapneumovirus; Multivariate Analysis; Organ Transplantation; Orthomyxoviridae; Respiratory Syncytial Viruses; Respiratory Tract Infections; Respirovirus; Retrospective Studies; Rhinovirus; Transplant Recipients; United States; Virus Diseases","(2013) Child Health USA 2012, , US Department of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Bureau. US Department of Health and Human Services, ed. Rockville, MD: US Department of Health and Human Services; Flagg, A., Danziger-Isakov, L., Foster, C., Novel 2009 H1N1 influenza virus infection requiring extracorporeal membrane oxygenation in a pediatric heart transplant recipient (2010) J Heart Lung Transplant, 29, pp. 582-584; Evashuk, K.M., Forgie, S.E., Gilmour, S., Respiratory failure associated with human metapneumovirus infection in an infant posthepatic transplant (2008) Am J Transplant, 8, pp. 1567-1569; Blanchard, S.S., Gerrek, M., Siegel, C., Czinn, S.J., Significant morbidity associated with RSV infection in immunosuppressed children following liver transplantation: Case report and discussion regarding need of routine prophylaxis (2006) Pediatr Transplant, 10, pp. 826-829; Gavaldà, J., Cabral, E., Alonso, E., Influenza A H1N1/2009 infection in pediatric solid organ transplant recipients (2012) Transpl Infect Dis, 14, pp. 584-588; Lo, M.S., Lee, G.M., Gunawardane, N., The impact of RSV, adenovirus, influenza, and parainfluenza infection in pediatric patients receiving stem cell transplant, solid organ transplant, or cancer chemotherapy (2013) Pediatr Transplant, 17, pp. 133-143; Tran, T.T., Gonzalez, I.A., Tekin, A., McLaughlin, G.E., Lower respiratory tract viral infections in pediatric abdominal organ transplant recipients: A single hospital inpatient cohort study (2013) Pediatr Transplant, 17, pp. 461-465; Robinson, J.L., Grenier, D., MacLusky, I., Allen, U.D., Respiratory syncytial virus infections in pediatric transplant recipients: A Canadian Paediatric Surveillance Program study (2015) Pediatr Transplant, 19, pp. 659-662; Kumar, D., Michaels, M.G., Morris, M.I., Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: A multicentre cohort study (2010) Lancet Infect Dis, 10, pp. 521-526; Liu, M., Worley, S., Arrigain, S., Respiratory viral infections within one year after pediatric lung transplant (2009) Transpl Infect Dis, 11, pp. 304-312; Fisher, B.T., Danziger-Isakov, L., Sweet, L.R., A multicenter consortium to define the epidemiology and outcomes of inpatient respiratory viral infections in pediatric hematopoietic stem cell transplant recipients (2017) J Pediatric Infect Dis Soc; Fisher, C.E., Preiksaitis, C.M., Lease, E.D., Symptomatic respiratory virus infection and chronic lung allograft dysfunction (2016) Clin Infect Dis, 62, pp. 313-319; Sayah, D.M., Koff, J.L., Leard, L.E., Rhinovirus and other respiratory viruses exert different effects on lung allograft function that are not mediated through acute rejection (2013) Clin Transplant, 27, pp. E64-E71; Apalsch, A.M., Green, M., Ledesma-Medina, J., Parainfluenza and influenza virus infections in pediatric organ transplant recipients (1995) Clin Infect Dis, 20, pp. 394-399; Kumar, D., Michaels, M.G., Morris, M.I., Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: A multicentre cohort study (2010) Lancet Infect Dis, 10, pp. 521-526; Liu, M., Mallory, G.B., Schecter, M.G., Long-term impact of respiratory viral infection after pediatric lung transplantation (2010) Pediatr Transplant, 14, pp. 431-436; Bridges, N.D., Spray, T.L., Collins, M.H., Adenovirus infection in the lung results in graft failure after lung transplantation (1998) J Thorac Cardiovasc Surg, 116, pp. 617-623; Chu, H.Y., Chin, J., Pollard, J., Clinical outcomes in outpatient respiratory syncytial virus infection in immunocompromised children (2016) Influenza Other Respir Viruses, 10, pp. 205-210","Danziger-Isakov, L.; Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7017, United States; email: Lara.Danziger-Isakov@cchmc.org",,"Oxford University Press",20487193,,,"29538674","English","J. Pediatric Infect. Dis. Soc.",Article,"Final",,Scopus,2-s2.0-85072166208 "Mora-Díaz J.C., Piñeyro P.E., Houston E., Zimmerman J., Giménez-Lirola L.G.","57203878440;23988268000;57205716220;55434243900;55129193400;","Porcine hemagglutinating encephalomyelitis virus: A review",2019,"Frontiers in Veterinary Science","6","FEB", 00053,"","",,1,"10.3389/fvets.2019.00053","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064464037&doi=10.3389%2ffvets.2019.00053&partnerID=40&md5=261ebe0376fb4ec345c2ee589a753a2e","Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States","Mora-Díaz, J.C., Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Piñeyro, P.E., Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Houston, E., Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Zimmerman, J., Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Giménez-Lirola, L.G., Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States","The porcine hemagglutinating encephalomyelitis virus (PHEV) is classified as a member of genus Betacoronavirus, family Coronaviridae, sub-family Cornavirinae, and order Nidovirales. PHEV shares the same genomic organization, replication strategy, and expression of viral proteins as other nidoviruses. PHEV produces vomiting and wasting disease (VWD) and/or encephalomyelitis, being the only known neurotropic coronavirus affecting pigs. First clinical outbreak was reported in 1957 in Ontario, Canada. Although pigs are the only species susceptible to natural PHEV infections, the virus displays neurotropism in mice and Wistar rats. Clinical disease, morbidity, and mortality is age-dependent and generally reported only in piglets under 4 weeks old. The primary site of replication of PHEV in pigs is the respiratory tract, and it can be further spread to the central nervous system through the peripheral nervous system via different pathways. The diagnosis of PHEV can be made using a combination of direct and indirect detection methods. The virus can be isolated from different tissues within the acute phase of the clinical signs using primary and secondary pig-derived cell lines. PHEV agglutinates the erythrocytes of mice, rats, chickens, and several other animals. PCR-based methods are useful to identify and subsequently isolate animals that are actively shedding the virus. The ability to detect antibodies allows producers to know the status of first-litter gilts and evaluate their risk of tier offspring to infection. PHEV is highly prevalent and circulates subclinically in most swine herds worldwide. PHEV-related disease is not clinically relevant in most of the swine-producing countries, most likely because of dams are immune to PHEV which may confer passive immunity to their offspring. However, PHEV should be considered a major source of economic loss because of the high mortality on farms with high gilt replacement rates, specific pathogen-free animals, and gnotobiotic swine herds. Thus, in the absence of current PHEV vaccines, promoting virus circulation on farms with early exposure to gilts and young sows could induce maternal immunity and prevent disease in piglets. © 2019 Rioja-Lang, Brown, Brockhoff and Faucitano.","Coronavirus; Encephalomyelitis; Nidovirus; Porcine hemagglutinating encephalomyelitis virus; Vomiting and wasting disease","viral protein; Betacoronavirus; Coronaviridae infection; encephalomyelitis; gene structure; gnotobiotics; histology; immunity; morbidity; mortality; neurotropism; nonhuman; passive immunization; pathogenesis; polymerase chain reaction; porcine hemagglutinating encephalomyelitis virus; protein expression; Review; taxonomy; virus replication; vomiting; wasting syndrome","Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol Biol., 1282, pp. 1-23; Oshiro, L.S., Schieble, J.H., Lennette, E.H., Electron microscopic studies of coronavirus (1971) J Gen Virol., 12, pp. 161-168; Enjuanes, L., van Der Zeijst, B.A.M., Molecular basis of transmissible gastroenteritis virus epidemiology (1995), pp. 337-376. , In: Siddell SG, editor. The Coronaviridae The Viruses. Boston, MA: Springer; Saif, L.J., Pensaert, M., Sestak, K., Yeo, S., Jung, K., Hemagglutinating encephalomyelitis virus (2012), pp. 517-520. , In: Zimmerman JJ, Karriker L, Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of swine. 10th ed. Ames, IA: Blackwell Publishers; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: molecular features and virus-host interactions (1993) Vet Res., 24, pp. 125-150; Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch Virol., 148, pp. 2207-2235; Sasseville, A.M., Boutin, M., Gelinas, A.M., Dea, S., Sequence of the 3'-terminal end (8.1 kb) of the genome of porcine haemagglutinating encephalomyelitis virus: comparison with other haemagglutinating coronaviruses (2002) J Gen Virol., 83, pp. 2411-2416; de Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses (2006) Glycoconj J., 23, pp. 59-72; Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., Warren, G., Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus (1984) Nature., 308, pp. 751-752; Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E (2005) J Gen Virol., 86, pp. 1423-1434; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., A structural analysis of M protein in coronavirus assembly and morphology (2011) J Struct Biol., 174, pp. 11-22; Charley, B., Laude, H., Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1 (1988) J Virol., 62, pp. 8-11; Laude, H., Gelfi, J., Lavenant, L., Charley, B., Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus (1992) J Virol., 66, pp. 743-749; Woods, R.D., Wesley, R.D., Kapke, P.A., Neutralization of porcine transmissible gastroenteritis virus by complement-dependent monoclonal antibodies (1988) Am J Vet Res., 49, pp. 300-304; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J Virol., 77, pp. 8801-8811; Collins, A.R., Knobler, R.L., Powell, H., Buchmeier, M.J., Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion (1982) Virology., 119, pp. 358-371; de Groot, R.J., Luytjes, W., Horzinek, M.C., van der Zeijst, B.A., Spaan, W.J., Lenstra, J.A., Evidence for a coiled-coil structure in the spike proteins of coronaviruses (1987) J Mol Biol., 196, pp. 963-966; Luytjes, W., Sturman, L.S., Bredenbeek, P.J., Charite, J., van der Zeijst, B.A., Horzinek, M.C., Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site (1987) Virology, 161, pp. 479-487; Abraham, S., Kienzle, T.E., Lapps, W., Brian, D.A., Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site (1990) Virology., 176, pp. 296-301; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier (2000) J Virol., 74, pp. 1393-1406; Beniac, D.R., Andonov, A., Grudeski, E., Booth, T.F., Architecture of the SARS coronavirus prefusion spike (2006) Nat Struct Mol Biol., 13, pp. 751-752; Dong, B., Gao, W., Lu, H., Zhao, K., Ding, N., Liu, W., A small region of porcine hemagglutinating encephalomyelitis virus spike protein interacts with the neural cell adhesion molecule (2015) Intervirology., 58, pp. 130-137; Gao, W., He, W., Zhao, K., Lu, H., Ren, W., Du, C., Identification of NCAM that interacts with the PHE-CoV spike protein (2010) Virol J., 7, p. 254; Gimenez-Lirola, L.G., Zhang, J., Carrillo-Avila, J.A., Chen, Q., Magtoto, R., Poonsuk, K., Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications (2017) J Clin Microbiol., 55, pp. 1426-1436; Nieto-Torres, J.L., DeDiego, M.L., Verdia-Baguena, C., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog., 10, p. e1004077; Ruch, T.R., Machamer, C.E., The coronavirus E protein: assembly and beyond (2012) Viruses., 4, pp. 363-382; DeDiego, M.L., Alvarez, E., Almazan, F., Rejas, M.T., Lamirande, E., Roberts, A., A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo (2007) J Virol., 81, pp. 1701-1713; Li, S., Lin, L., Wang, H., Yin, J., Ren, Y., Zhao, Z., The epitope study on the SARS-CoV nucleocapsid protein (2003) Genomics Proteomics Bioinformatics, 1, pp. 198-206; Sturman, L.S., Holmes, K.V., Behnke, J., Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid (1980) J Virol., 33, pp. 449-462; Stohlman, S.A., Lai, M.M., Phosphoproteins of murine hepatitis viruses (1979) J Virol., 32, pp. 672-675; Zeng, Q., Langereis, M.A., van Vliet, A.L., Huizinga, E.G., de Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc Natl Acad Sci USA., 105, pp. 9065-9069; Klausegger, A., Strobl, B., Regl, G., Kaser, A., Luytjes, W., Vlasak, R., Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus (1999) J Virol., 73, pp. 3737-3743; Schultze, B., Wahn, K., Klenk, H.D., Herrler, G., Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity (1991) Virology., 180, pp. 221-228; Cornelissen, L.A., Wierda, C.M., van der Meer, F.J., Herrewegh, A.A., Horzinek, M.C., Egberink, H.F., Hemagglutinin-esterase, a novel structural protein of torovirus (1997) J Virol., 71, pp. 5277-5286; Kazi, L., Lissenberg, A., Watson, R., de Groot, R.J., Weiss, S.R., Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence (2005) J Virol., 79, pp. 15064-15073; Lissenberg, A., Vrolijk, M.M., van Vliet, A.L., Langereis, M.A., de Groot-Mijnes, J.D., Rottier, P.J., Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro (2005) J Virol., 79, pp. 15054-15063; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J Am Vet Med Assoc., 108, pp. 257-259; Greig, A.S., Mitchell, D., Corner, A.H., Bannister, G.L., Meads, E.B., Julian, R.J., A hemagglutinating virus producing encephalomyelitis in baby pigs (1962) Can J Comp Med Vet Sci., 26, pp. 49-56; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet Rec., 100, pp. 243-244; Pensaert, M., Callebaut, P., Vergote, J., Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis (1986) Vet Q., 8, pp. 257-261; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol., 86, pp. 3995-4008; Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerg Infect Dis., 22, pp. 1314-1315; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in central eastern Europe in 2016 (2016) Transbound Emerg Dis., 63, pp. 595-601; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg Infect Dis., 22, pp. 83-87; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg Infect Dis., 23, pp. 1607-1609; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbiol., 211, pp. 15-21; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada (2018) Transbound Emerg Dis., 65, pp. 660-675; Opriessnig, T., Gimenez-Lirola, L.G., Halbur, P.G., Polymicrobial respiratory disease in pigs (2011) Anim Health Res Rev., 12, pp. 133-148; Roe, C.K., Alexander, T.J., A disease of nursing pigs previously unreported in Ontario (1958) Can J Comp Med Vet Sci., 22, pp. 305-307; Alexander, T.J., Richards, W.P., Roe, C.K., An encephalomyelitis of suckling pigs in Ontario (1959) Can J Comp Med Vet Sci., 23, pp. 316-319; Mitchell, D., Corner, A.H., Bannister, G.L., Greig, A.S., Studies on pathogenic porcine enteroviruses: 1. preliminary investigations (1961) Can J Comp Med Vet Sci., 25, pp. 85-93; Cartwright, S.F., Lucas, M., Cavill, J.P., Gush, A.F., Blandford, T.B., Vomiting and wasting disease of piglets (1969) Vet Rec., 84, pp. 175-176; Gotink, W.M., Lambers, G.M., Vansoest, H., Vanulsen, F.W., Vomiting and wasting disease in piglets (1969) Vet Rec., 84, p. 178; Schlenstedt, D., Barnikol, H., Plonait, H., [Vomiting and distress in suckling pigs (short clinical report)] (1969) Dtsch Tierarztl Wochenschr., 76, pp. 694-695; Greig, A.S., Girard, A., Serological comparison of hemagglutinating encephalomyelitis viruses isolated from different outbreaks (1969) Can J Comp Med., 33, pp. 25-28; Greig, A.S., Johnson, C.M., Bouillant, A.M., Encephalomyelitis of swine caused by a haemagglutinating virus. VI. Morphology of the virus (1971) Res Vet Sci., 12, pp. 305-307; Clarke, J.K., McFerran, J.B., An electron microscopic study of haemagglutinating encephalomyelitis virus of pigs (1971) J Gen Virol., 13, pp. 339-344; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol., 80, pp. 7270-7274; Pensaert, M.B., Callebaut, P.E., Characteristics of a coronavirus causing vomition and wasting in pigs (1974) Arch Gesamte Virusforsch., 44, pp. 35-50; Hirano, N., Nomura, R., Tawara, T., Tohyama, K., Neurotropism of swine haemagglutinating encephalomyelitis virus (coronavirus) in mice depending upon host age and route of infection (2004) J Comp Pathol., 130, pp. 58-65; Yagami, K., Izumi, Y., Kajiwara, N., Sugiyama, F., Sugiyama, Y., Neurotropism of mouse-adapted haemagglutinating encephalomyelitis virus (1993) J Comp Pathol., 109, pp. 21-27; Sasseville, A.M., Gelinas, A.M., Sawyer, N., Boutin, M., Dea, S., Biological and molecular characteristics of an HEV isolate associated with recent acute outbreaks of encephalomyelitis in Quebec pig farms (2001) Adv Exp Med Biol., 494, pp. 57-62; Gao, W., Zhao, K., Zhao, C., Du, C., Ren, W., Song, D., Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in Jilin, China (2011) Virol J., 8, p. 130; Dong, B., Lu, H., Zhao, K., Liu, W., Gao, W., Lan, Y., Identification and genetic characterization of porcine hemagglutinating encephalomyelitis virus from domestic piglets in China (2014) Arch Virol., 159, pp. 2329-2337; Chang, G., Chang, T., Lin, S., Tsai, S., Chern, R., Isolation and identification of hemagglutinating enchephalomyelitis virus from pigs in Taiwan (1993) J Chin Soc Vet Sci., 19, pp. 147-158; Quiroga, M.A., Cappuccio, J., Pineyro, P., Basso, W., More, G., Kienast, M., Hemagglutinating encephalomyelitis coronavirus infection in pigs, Argentina (2008) Emerg Infect Dis., 14, pp. 484-486; Alarcon, L., Mortola, E., Larsen, A., Serena, S., Monterrubianesi, M., Vidal, P., Dinamica de la respuesta inmune del virus de la Encefalomielitis hemaglutinante en la Argentina (2018) Proceedings of the XIV Congreso Nacional de Producción Porcina. Córdoba; Rho, S., Moon, H.J., Park, S.J., Kim, H.K., Keum, H.O., Han, J.Y., Detection and genetic analysis of porcine hemagglutinating encephalomyelitis virus in South Korea (2011) Virus Genes., 42, pp. 90-96; Cutlip, R.C., Mengeling, W.L., Lesions induced by hemagglutinating encephalomyelitis virus strain 67N in pigs (1972) Am J Vet Res., 33, pp. 2003-2009; Hirano, N., Ono, K., A serological survey of human coronavirus in pigs of the Tohoku District of Japan (1998) Adv Exp Med Biol., 440, pp. 491-494; Mora-Díaz, J.C., Temeeyasen, G., Magtoto, R., Baum, D., Carrillo-ávila, J., Houston, E., Seroprevalence of Porcine hemagglutinating encephalomyelitis virus in sow herds in the United States (2018) 25th International Pig Veterinary Society Congress. ChongQing; Appel, M., Greig, A.S., Corner, A.H., Encephalomyelitis of swine caused by a haemagglutinating virus (1965) IV. Transmission studies. Res Vet Sci., 6, pp. 482-489; Alsop, J.E., A presumptive case of vomiting and wasting disease in a swine nucleus herd (2006) J Swine Health Prod., 14, pp. 97-100; Mengeling, W.L., Cutlip, R.C., Pathogenicity of field isolants of hemagglutinating encephalomyelitis virus for neonatal pigs (1976) J Am Vet Med Assoc., 168, pp. 236-239; Mora-Díaz, J.C., Temeeyasen, G., Magtoto, R., Rauh, R., Nelson, W., Carrillo-ávila, J., Characterization of the immune response against porcine hemagglutinating encephalomyelitis virus in grow-finisher pigs (2018) 25th International Pig Veterinary Society Congress. ChongQing; Lorbach, J.N., Wang, L., Nolting, J.M., Benjamin, M.G., Killian, M.L., Zhang, Y., Porcine hemagglutinating encephalomyelitis virus and respiratory disease in exhibition Swine, Michigan, USA, 2015 (2017) Emerg Infect Dis., 23, pp. 1168-1171; Andries, K., Pensaert, M., Callebaut, P., Pathogenicity of hemagglutinating encephalomyelitis (vomiting and wasting disease) virus of pigs, using different routes of inoculation (1978) Zentralbl Veterinarmed B., 25, pp. 461-468; Mitchell, D., Encephalomyelitis of swine caused by a hemagglutinating virus (1963) I. Case histories. Res Vet Sci., 4, pp. 506-510; Greig, A.S., Girard, A., Encephalomyelitis of swine caused by an hemagglutinating virus. II. Virological studies (1963) Res Vet Sci., 4, pp. 511-519; Yagami, K., Hirai, K., Hirano, N., Pathogenesis of haemagglutinating encephalomyelitis virus (HEV) in mice experimentally infected by different routes (1986) J Comp Pathol., 96, pp. 645-657; Andries, K., Pensaert, M.B., Virus isolated and immunofluorescence in different organs of pigs infected with hemagglutinating encephalomyelitis virus (1980) Am J Vet Res., 41, pp. 215-218; Hirahara, T., Yasuhara, H., Kodama, K., Nakai, M., Sasaki, N., Isolation of hemagglutinating encephalomyelitis virus from respiratory tract of pigs in Japan (1987) Nihon Juigaku Zasshi, 49, pp. 85-93; Mengeling, W.L., Boothe, A.D., Ritchie, A.E., Characteristics of a coronavirus (strain 67N) of pigs (1972) Am J Vet Res., 33, pp. 297-308; Andries, K., Pensaert, M.B., Immunofluorescence studies on the pathogenesis of hemagglutinating encephalomyelitis virus infection in pigs after oronasal inoculation (1980) Am J Vet Res., 41, pp. 1372-1378; Meyvisch, C., Hoorens, J., An electron microscopic study of experimentally-induced HEV encephalitis (1978) Vet Pathol., 15, pp. 102-113; Raihana, R.R., Hayakawa, M., Sugiura, E., Sugiura, H., Hanaki, K., Taniguchi, T., Analysis of the properties of neutralizing monoclonal antibodies against the hemagglutinating encephalomyelitis virus and inhibition of HEV infection by specific MAb (2009) J Vet Med Sci., 71, pp. 447-452; Chen, K., Zhao, K., He, W., Gao, W., Zhao, C., Wang, L., Comparative evaluation of two hemagglutinating encephalomyelitis coronavirus vaccine candidates in mice (2012) Clin Vaccine Immunol., 19, pp. 1102-1109; Lan, Y., Zhao, K., Zhao, J., Lv, X., Wang, G., Lu, H., Gene-expression patterns in the cerebral cortex of mice infected with porcine haemagglutinating encephalomyelitis virus detected using microarray (2014) J Gen Virol., 95, pp. 2192-2203; Li, Z., He, W., Lan, Y., Zhao, K., Lv, X., Lu, H., The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets (2016) PeerJ., 4, p. e2443; Lv, X., Zhao, K., Lan, Y., Li, Z., Ding, N., Su, J., miR-21a-5p contributes to porcine hemagglutinating encephalomyelitis virus proliferation via targeting CASK-interactive protein1 in vivo and vitro (2017) Front Microbiol., 8, p. 304; Li, Z., Lan, Y., Zhao, K., Lv, X., Ding, N., Lu, H., miR-142-5p disrupts neuronal morphogenesis underlying porcine hemagglutinating encephalomyelitis virus infection by targeting Ulk1 (2017) Front Cell Infect Microbiol., 7, p. 155; Li, Y.C., Bai, W.Z., Hirano, N., Hayashida, T., Hashikawa, T., Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells (2012) Virus Res., 163, pp. 628-635; Li, Y.C., Bai, W.Z., Hirano, N., Hayashida, T., Taniguchi, T., Sugita, Y., Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication (2013) J Comp Neurol., 521, pp. 203-212; Hirano, N., Tohyama, K., Taira, H., Spread of swine hemagglutinating encephalomyelitis virus from peripheral nerves to the CNS (1998) Adv Exp Med Biol., 440, pp. 601-607; Bai, W.Z., Li, Y.C., Hirano, N., Tohyama, K., Hashkawa, T., Transneuronal infection and associated immune response in the central nervous system induced by hemagglutinating encephalomyelitis virus following rat hindpaw inoculation (2008) Neurosci Res., 61, p. S135; Hara, Y., Hasebe, R., Sunden, Y., Ochiai, K., Honda, E., Sakoda, Y., Propagation of swine hemagglutinating encephalomyelitis virus and pseudorabies virus in dorsal root ganglia cells (2009) J Vet Med Sci., 71, pp. 595-601; Li, Z., Zhao, K., Lan, Y., Lv, X., Hu, S., Guan, J., Porcine hemagglutinating encephalomyelitis virus enters neuro-2a Cells via clathrin-mediated endocytosis in a Rab5-, cholesterol-, and pH-dependent manner (2017) J Virol., 91, pp. e01083-17; Lan, Y., Zhao, K., Wang, G., Dong, B., Zhao, J., Tang, B., Porcine hemagglutinating encephalomyelitis virus induces apoptosis in a porcine kidney cell line via caspase-dependent pathways (2013) Virus Res., 176, pp. 292-297; Ding, N., Zhao, K., Lan, Y., Li, Z., Lv, X., Su, J., Induction of atypical autophagy by porcine hemagglutinating encephalomyelitis virus contributes to viral replication (2017) Front Cell Infect Microbiol., 7, p. 56; Lan, Y., Lu, H., Zhao, K., He, W., Chen, K., Wang, G., In vitro inhibition of porcine hemagglutinating encephalomyelitis virus replication with siRNAs targeting the spike glycoprotein and replicase polyprotein genes (2012) Intervirology, 55, pp. 53-61; Lan, Y., Zhao, K., He, W., Wang, G., Lu, H., Song, D., Inhibition of porcine hemagglutinating encephalomyelitis virus replication by short hairpin RNAs targeting of the nucleocapsid gene in a porcine kidney cell line (2012) J Virol Methods., 179, pp. 414-418; Werdin, R.E., Sorensen, D.K., Stewart, W.C., Porcine encephalomyelitis caused by hemagglutinating encephalomyelitis virus (1976) J Am Vet Med Assoc., 168, pp. 240-246; Alexander, T.J., Viral encephalomyelitis of swine in Ontario-experimental and natural transmission (1962) Am J Vet Res., 23, pp. 756-762; Richards, W.P., Savan, M., A viral encephalomyelitis of pigs. Further studies on the transmissibility of the disease in Ontario (1961) Cornell Vet., 51, pp. 235-244; Narita, M., Kawamura, H., Tsuboi, T., Haritani, M., Kobayashi, M., Immunopathological and ultrastructural studies on the tonsil of gnotobiotic pigs infected with strain 67N of haemagglutinating encephalomyelitis virus (1989) J Comp Pathol., 100, pp. 305-312; Chen, K., Zhao, K., Song, D., He, W., Gao, W., Zhao, C., Development and evaluation of an immunochromatographic strip for rapid detection of porcine hemagglutinating encephalomyelitis virus (2012) Virol J., 9, p. 172; Sekiguchi, Y., Shirai, J., Taniguchi, T., Honda, E., Development of reverse transcriptase PCR and nested PCR to detect porcine hemagglutinating encephalomyelitis virus (2004) J Vet Med Sci., 66, pp. 367-372; Sorensen, K.J., Microadaption of hemadsorption inhibition for neutralization tests with pig hemagglutinating encephalomyelitis virus (1974) Appl Microbiol., 28, pp. 553-556; Rauh, R., Piñeyro, P., Nelson, W., Zimmerman, J., Giménez-Lirola, L.G., Development of a dry room temperature-stable real-time RT-PCR assay for the specific detection of porcine hemagglutinating encephalomyelitis virus (PHEV) (2017) In Proceedings of the 60th Annual Conference American Association of Veterinary Laboratory Diagnosticians. San Diego, CA; Sasaki, I., Kazusa, Y., Shirai, J., Taniguchi, T., Honda, E., Neutralizing test of hemagglutinating encephalomyelitis virus (HEV) in FS-L3 cells cultured without serum (2003) J Vet Med Sci., 65, pp. 381-383; Lucas, M.H., Napthine, P., Fluorescent antibody technique in the study of three porcine viruses. Transmissible gastroenteritis virus, vomiting and wasting disease virus and the parvovirus 59E-63 (1971) J Comp Pathol., 81, pp. 111-117; Chappuis, G., Tektoff, J., Turdu, Y., Isolement en France et identification de la maladie du vomissement et du dépérissement des porcelets (corona-like virus) (1975) Rec Méd Vét., 151, pp. 557-566; Mengeling, W.L., Porcine coronaviruses: co-infection of cell cultures with transmissible gastroenteritis virus and hemagglutinating encephalomyelitis virus (1973) Am J Vet Res., 34, pp. 779-783; Pirtle, E.C., Titration of two porcine respiratory viruses in mammalian cell cultures by direct fluorescent antibody staining (1974) Am J Vet Res., 35, pp. 249-250; Andries, K., Pensaert, M., Propagation of hemagglutinating encephalomyelitis virus in porcine cell cultures (1980) Zentralbl Veterinarmed B, 27, pp. 280-290; Kaye, H.S., Yarbrough, W.B., Reed, C.J., Harrison, A.K., Antigenic relationship between human coronavirus strain OC 43 and hemagglutinating encephalomyelitis virus strain 67N of swine: antibody responses in human and animal sera (1977) J Infect Dis., 135, pp. 201-209; Hirano, N., Ono, K., Takasawa, H., Murakami, T., Haga, S., Replication and plaque formation of swine hemagglutinating encephalomyelitis virus (67N) in swine cell line, SK-K culture (1990) J Virol Methods., 27, pp. 91-100; Girard, A., Greig, A.S., Mitchell, D., Encephalomyelitis of swine caused by a haemagglutinating virus. III: serological studies (1964) Res Vet Sci., 5, pp. 294-302; Paul, P.S., Mengeling, W.L., Persistence of passively acquired antibodies to hemagglutinating encephalomyelitis virus in swine (1984) Am J Vet Res., 45, pp. 932-934; Hirano, N., Taira, H., Sato, S., Hashikawa, T., Tohyama, K., Antibody-mediated virus clearance from neurons of rats infected with hemagglutinating encephalomyelitis virus (2006) Adv Exp Med Biol., 581, pp. 391-394","Piñeyro, P.E.; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State UniversityUnited States; email: pablop@iastate.edu",,"Frontiers Media S.A.",22971769,,,,"English","Front. Vet. Sci.",Review,"Final",Open Access,Scopus,2-s2.0-85064464037 "Sohrab S.S., Azhar E.I.","7003696284;23090055800;","Genetic diversity of MERS-CoV spike protein gene in Saudi Arabia",2019,"Journal of Infection and Public Health",,,,"","",,1,"10.1016/j.jiph.2019.11.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076531575&doi=10.1016%2fj.jiph.2019.11.007&partnerID=40&md5=75e0c835eb00177a13a94f096c4a4468","Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia","Sohrab, S.S., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) was primarily detected in 2012 and still causing disease in human and camel. Camel and bats have been identified as a potential source of virus for disease spread to human. Although, significant information related to MERS-CoV disease, spread, infection, epidemiology, clinical features have been published, A little information is available on the sequence diversity of Spike protein gene. The Spike protein gene plays a significant role in virus attachment to host cells. Recently, the information about recombinant MERS-CoV has been published. So, this work was designed to identify the emergence of any another recombinant virus in Jeddah, Saudi Arabia. Methods: In this study samples were collected from both human and camels and the Spike protein gene was amplified and sequenced. The nucleotide and amino acid sequences of MERS-CoV Spike protein gene were used to analyze the recombination, genetic diversity and phylogenetic relationship with selected sequences from Saudi Arabia. Results: The nucleotide sequence identity ranged from 65.7% to 99.8% among all the samples collected from human and camels from various locations in the Kingdom. The lowest similarity (65.7%) was observed in samples from Madinah and Dammam. The phylogenetic relationship formed different clusters with multiple isolates from various locations. The sample collected from human in Jeddah hospital formed a closed cluster with human samples collected from Buraydah, while camel sample formed a closed cluster with Hufuf isolates. The phylogenetic tree by using Aminoacid sequences formed closed cluster with Dammam, Makkah and Duba isolates. The amino acid sequences variations were observed in 28/35 samples and two unique amino acid sequences variations were observed in all samples analyzed while total 19 nucleotides sequences variations were observed in the Spike protein gene. The minor recombination events were identified in eight different sequences at various hotspots in both human and camel samples using recombination detection programme. Conclusion: The generated information from this study is very valuable and it will be used to design and develop therapeutic compounds and vaccine to control the MERS-CoV disease spread in not only in the Kingdom but also globally. © 2019 The Authors","Camel; Genetic diversity; Human; MERS-CoV; Saudi Arabia",,"Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, pp. 490-502; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; https://www.who.int/emergencies/mers-cov/en/2019, WHO: Global alert and response. [Accessed 31 August 2019]; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle east respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerging Infect Dis, 19, pp. 1819-1823; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 26, pp. 2499-2505; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., MERS-CoV outbreak in Jeddah — a link to health care facilities (2015) N Eng J Med, 372, pp. 846-854; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 9, pp. 752-761; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 9, pp. 745-751; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, p. 828; Lee, S.S., Wong, N.S., Probable transmission chains of MERS-CoV and the multiple generations of secondary infections in South Korea (2015) Int J Infect Dis, 38, pp. 65-67; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) MBio, 4. , e01450-14; Chen, Y., Chan, K.H., Kang, Y., Chen, H., Luk, H.K., Poon, R.W., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg Microbes Infect, 4, p. e26; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 11, p. 30487; Kim, D.W., Kim, Y.J., Park, S.H., Yun, M.R., Yang, J.S., Kang, H.J., Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015 (2016) Emerg Infect Dis, 22 (1), pp. 100-104; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) MBio, 7 (2); Ali, S., Omrani, J.A., Al-Tawfiq, Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2016) Pathog Glob Health, 109 (8), pp. 354-362; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am J Infect Control, 46 (9), pp. 1022-1025; Yusof, M.F., Queen, K., Eltahir, Y.M., Paden, C.R., Al Hammadi, Z.M.A.H., Tao, Y., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg Microbes Infect, 6 (11), p. e101; Paden, C.R., Yusof, M.F.B.M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65 (3), pp. 322-333; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) Elife, 7 (January), p. e31257; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral Spike protein (2012) Viruses, 4, pp. 1011-1033; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV Spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., MERS-CoV Spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35 (12), pp. 1586-1589; Kim, D.W., Kim, Y.J., Park, S.H., Yun, M.R., Yang, J.S., Kang, H.J., Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015 (2016) Emerg Infect Dis, 22 (1), pp. 100-104; Assiri, A.M., Midgley, C.M., Abedi, G.R., Bin Saeed, A., Almasri, M.M., Lu, X., Epidemiology of a novel recombinant MERS-CoV in humans in Saudi Arabia (2016) J Infect Dis, 214, pp. 712-721; Xiaoyan, L., Lori, A., Rowe, M.F., James, S., Glen, R., Abedi, O.E., Spike gene deletion quasispecies in serum of patient with acute MERS-CoV infection (2017) J Med Virol, 89, pp. 542-545; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8 (2), pp. e00373-e00417; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., Niemeyer, D., Zhao, J., MERS-CoV from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115 (12), pp. 3144-3149; Chung, Y.S., Kim, J.M., Man Kim, H., Park, K.R., Lee, A., Lee, N.J., Genetic characterization of Middle East respiratory syndrome coronavirus, South Korea, 2018 (2019) Emerg Infect Dis, 25 (May (5)), pp. 958-962; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1 (1). , vev003. eCollection 2015; Borucki, M.K., Lao, V., Hwang, M., Gardner, S., Adney, D., Munster, V., Middle east respiratory syndrome coronavirus intra-host populations are characterized by numerous high frequency variants (2016) PLoS One, 11 (1); Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., Mosaic structure of human coronavirus NL63, one thousand years of evolution (2006) J Mol Biol, 364 (5), pp. 964-973; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, 5 (1). , e01062-13; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , 2016; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med (Maywood), 234, pp. 1117-1127; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Gorry, P.R., Ahmad, F., Mohl, J., Alkhatib, G., Low levels of HIV-1 envelope-mediated fusion are associated with long-term survival of an infected CCR5-/- patient (2018) AIDS, 32 (16), pp. 2269-2278; Ahmad, F., ZIKV leads to microcephaly (2016) EC Microbiol, 4, pp. 12-13; Ahmad, F., Siddiqui, A., Kamal, M.A., Sohrab, S.S., Inhibition of Neurogenesis by Zika virus infection (2018) CNS Neurol Disord Drug Targets, 2, pp. 78-86; Ahmad, F., Siddiqui, A., Raut, A.A., Pandey, P.K., Austro Asiatic tribes are original native inhabitants of India (2009) Biotechnol Int, 2, pp. 91-115; Borker, M., Ahmad, F., Khan, F., Agrawal, S., Paleolithic spread of Y-chromosomal lineage of tribes in Eastern and Northeastern India (2011) Ann Hum Biol, 6, pp. 736-746; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 49, p. 20334","Sohrab, S.S.; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No: 80216, Saudi Arabia; email: ssohrab@kau.edu.sa",,"Elsevier Ltd",18760341,,,"31831395","English","J. Infect. Public Health",Article,"Article in Press",Open Access,Scopus,2-s2.0-85076531575 "Jiang S., Li F., Li X., Wang L., Zhang L., Lu C., Zheng L., Yan M.","57211145852;57211145552;57211147595;57208610128;57213178786;57211147886;57211146300;56457250500;","Transcriptome analysis of PK-15 cells in innate immune response to porcine deltacoronavirus infection",2019,"PLoS ONE","14","10", e0223177,"","",,,"10.1371/journal.pone.0223177","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072798629&doi=10.1371%2fjournal.pone.0223177&partnerID=40&md5=03ed3d0f9e914883382e91764e0fc1f4","Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China; Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China","Jiang, S., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Li, F., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Li, X., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Wang, L., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Zhang, L., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Lu, C., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Zheng, L., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China; Yan, M., Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China, Tianjin Scientific Observation Experiment Station for Veterinary Medicine and Diagnosis Technology, Ministry of Agriculture of the People‘s Republic of China, Tianjin, China","Porcine deltacoronavirus (PDCoV) is a newly emerged swine enteropathogenic coronavirus affecting pigs of all ages and causing diarrhea problems. Research findings indicate that PDCoV has evolved strategies to escape innate immune response in host cells, but mechanism of PDCoV in innate immune modulation is not well understood. In this study, we report our findings on identifying the alterations of host cell innate immune response affected by PDCoV infection and exploring the gene expression profiles of PK-15 cells at 0, 24, and 36 h PDCoV post infection by RNA sequencing. A total of 3,762 and 560 differentially expressed genes (DEGs) were screened by comparison of uninfected PK-15 cells and infected PK-15 cells at 24 h post infection (hpi) (INF_24h versus NC), and also comparison of infected PK-15 cells between 24 and 36 hpi (INF_36h versus INF_24h), which included 156 and 23 porcine innate immune-related genes in the DEGs of INF_24h versus NC and INF_36h versus INF_24h, respectively. Gene Ontology function classification and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis were performed based on the DEGs that exhibited the same expression tendencies with most of the innate immune-associated genes among these PK-15 cell samples described above. The enrichment results indicated that extensive gene functions and signaling pathways including innate immune-associated functions and pathways were affected by PDCoV infection. Particularly, 4 of 5 innate immune signaling pathways, which were primarily affected by PDCoV, played important roles in I-IFN’s antiviral function in innate immune response. Additionally, 16 of the host cell endogenous miRNAs were predicted as potential contributors to the modulation of innate immune response affected by PDCoV. Our research findings indicated that the innate immune-associated genes and signaling pathways in PK-15 cells could be modified by the infection of PDCoV, which provides a fundamental foundation for further studies to better understand the mechanism of PDCoV infections, so as to effectively control and prevent PDCoV-induced swine diarrheal disease outbreaks. © 2019 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"microRNA; animal experiment; Article; controlled study; Coronavirinae; Coronavirus infection; gene expression profiling; gene function; genetic association; human; immunofluorescence; innate immunity; inoculation; nonhuman; PK-15 cell line; porcine deltacoronavirus; porcine deltacoronavirus infection; RNA sequence; signal transduction; transcriptomics; virus strain; animal; Coronavirus infection; diarrhea; gene expression profiling; gene expression regulation; genetics; immunology; innate immunity; pathogenicity; pig; swine disease; virology; Animals; Coronavirus; Coronavirus Infections; Diarrhea; Gene Expression Profiling; Gene Expression Regulation; Immunity, Innate; Swine; Swine Diseases","Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) M Bio, 6 (2), pp. e00064-e00115. , https://doi.org/10.1128/mBio.00064-15, PMID: 25759498; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Arch Virol, 161, pp. 3421-3434. , https://doi.org/10.1007/s00705-016-3056-8, PMID: 27619798; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11, PMID: 22278237; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of a deltacoronavirus in pigs in the United States, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20 (7), pp. 1227-1230. , https://doi.org/10.3201/eid2007.140296, PMID: 24964136; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerg Infect Dis, 20, pp. 1594-1595. , https://doi.org/10.3201/eid2009.140756, PMID: 25153521; Ajayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., Poljak, Z., Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada (2018) Transbound Emerg Dis, 65 (5), pp. 1197-1207. , https://doi.org/10.1111/tbed.12858, PMID: 29607611; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/ KNU14-04/2014 (2014) Genome Announc, 2 (6), pp. e01191-e01214. , https://doi.org/10.1128/genomeA.01191-14, PMID: 25428966; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg Infect Dis, 22 (4), pp. 757-759. , https://doi.org/10.3201/eid2204.151852, PMID: 26982324; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from mainland China (2015) Genome Announc, 3 (5), pp. e00945-e01015. , https://doi.org/10.1128/genomeA.00945-15, PMID: 26337879; Masuda, T., Tsuchiaka, S., Ashiba, T., Yamasato, H., Fukunari, K., Omatsu, T., Development of one-step real-time reverse transcriptase-PCR-based assays for the rapid and simultaneous detection of four viruses causing porcine diarrhea (2016) Jpn J Vet Res, 64 (1), pp. 5-14. , PMID: 27348884; Thachil, A., Gerber, P.F., Xiao, C.T., Huang, Y.W., Opriessnig, T., Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies (2015) PLoS One, 10 (4). , https://doi.org/10.1371/journal.pone.0124363, PMID: 25881086; Zhang, Q., Yoo, D., Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling (2016) Virus Res, 226, pp. 128-141. , https://doi.org/10.1016/j.virusres.2016.05.015, PMID: 27212682; Zhang, Q., Ma, J., Yoo, D., Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion (2017) Viroloy, 510, pp. 111-1126. , https://doi.org/10.1016/j.virol.2017.07.009, PMID: 28715653; Horner, S.M., Activation and evasion of antiviral innate immunity by hepatitis C virus (2014) Mol Biol, 426 (6), pp. 1198-1209. , https://doi.org/10.1016/j.jmb.2013.10.032, J PMID: 24184198; Kopecky-Bromberg, S.A., Martínez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J Virol, 81 (2), pp. 548-557. , https://doi.org/10.1128/JVI.01782-06, PMID: 17108024; Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination (2017) J Virol, 91 (8), pp. e02143-e02216. , https://doi.org/10.1128/JVI.02143-16, PMID: 28148787; Ding, Z., Fang, L., Yuan, S., Zhao, L., Wang, X., Long, S., The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-β antagonizing mechanism: Attenuation of PACT-mediated RIG-I/ MDA5 activation (2017) Oncotarget, 8 (30), pp. 49655-49670. , https://doi.org/10.18632/oncotarget.17912, PMID: 28591694; Yu, L., Zhang, X., Wu, T., Su, J., Wang, Y., Wang, Y., Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS (2017) BMC Vet Res, 13 (1), p. 332. , https://doi.org/10.1186/s12917-017-1253-7, PMID: 29132350; Luo, J., Fang, L., Dong, N., Fang, P., Ding, Z., Wang, D., (2016) Porcine Deltacoronavirus (PDCoV) Infection Suppresses RIG-I-Mediated Interferon-Β Production, 495, pp. 10-17. , https://doi.org/10.1016/j.virol.2016.04.025, PMID: 27152478; Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2 (2017) J Virol, 91 (10), pp. e00003-e00017. , https://doi.org/10.1128/JVI.00003-17, PMID: 28250121; Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38. , https://doi.org/10.1016/j.virol.2016.12.005, PMID: 27984784; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA (2018) J Virol, 92 (15), pp. e00712-e00718. , https://doi.org/10.1128/JVI.00712-18, PMID: 29769346; Huang, J., Lang, Q., Li, X., Xu, Z., Zhu, L., Zhou, Y., MicroRNA expression profiles of porcine kidney 15 cell line infected with porcine epidemic diahorrea virus (2016) Chinese Journal of Virology, 32 (4), pp. 465-471. , Chinese) PMID: 29995369; Mallick, B., Ghosh, Z., Chakrabarti, J., MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells (2009) PLoS One, 4 (11). , https://doi.org/10.1371/journal.pone.0007837, PMID: 19915717; Devhare, P.B., Steele, R., Di Bisceglie, A.M., Kaplan, D.E., Ray, R.B., Differential expression of microRNAs in hepatitis C virus-mediated liver disease between African Americans and Caucasians: Implications for racial health disparities (2017) Gene Expr, 17 (2), pp. 89-98. , https://doi.org/10.3727/105221616X693594, PMID: 27765085; Liu, X., Zhu, L., Liao, S., Xu, Z., Zhou, Y., The porcine microRNA transcriptome response to transmissible gastroenteritis virus infection (2015) PLoS One, 10 (3). , https://doi.org/10.1371/journal.pone.0120377, PMID: 25781021; Zheng, H., Xu, L., Liu, Y., Li, C., Zhang, L., Wang, T., MicroRNA-221-5p inhibits porcine epidemic diarrhea virus replication by targeting genomic viral RNA and activating the NF-κB pathway (2018) Int J Mol Sci, 19 (11). , https://doi.org/10.3390/ijms19113381, pii: E3381. PMID: 30380612; Ma, Y., Wang, C., Xue, M., Fu, F., Zhang, X., Li, L., Coronavirus TGEV evades the type I interferon response through IRE1α-mediated manipulation of the miR-30a-5p/SOCS1/3 Axis (2018) J Virol, 92 (22), pp. e00728-e00818. , https://doi.org/10.1128/JVI.00728-18, PMID: 30185587; Bhanja Chowdhury, J., Shrivastava, S., Steele, R., Di Bisceglie, A.M., Ray, R., Ray, R.B., Hepatitis C virus infection modulates expression of interferon stimulatory gene IFITM1 by upregulating miR-130A (2012) J Virol, 86 (18), pp. 10221-10225. , https://doi.org/10.1128/JVI.00882-12, PMID: 22787204; Zheng, L., Li, X.L., Yan, M.H., Ren, W.K., Zhang, L., Lu, C., Isolation, identification and biological characteristics analysis of porcine deltacoronavirus TJ1[J] (2018) China Animal Husbandry & Veterinary Medicine, 45 (1), pp. 219-224. , Chinese; Anders, S., Huber, W., Differential expression analysis for sequence count data (2010) Genome Biol, 11 (10), p. R106. , https://doi.org/10.1186/gb-2010-11-10-r106, PMID: 20979621; Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation (2010) Nat Biotechnol, 28 (5), pp. 511-515. , https://doi.org/10.1038/nbt.1621, PMID: 20436464; Thompson, H.W., Mera, R., Prasad, C., A description of the appropriate use of student’s t-test (1998) Nutr Neurosci, 1 (2), pp. 165-172. , https://doi.org/10.1080/1028415X.1998.11747226, PMID: 27406022; Mair, K.H., Sedlak, C., Käser, T., Pasternak, A., Levast, B., Gerner, W., The porcine innate immune system: An update (2014) Dev Comp Immunol, 45 (2), pp. 321-343. , https://doi.org/10.1016/j.dci.2014.03.022, PMID: 24709051; Zhang, H., Liu, Q., Su, W., Wang, J., Sun, Y., Zhang, J., Genome-wide analysis of differentially expressed genes and the modulation of PEDV infection in Vero E6 cells (2018) Microb Pathog, 117, pp. 247-254. , https://doi.org/10.1016/j.micpath.2018.02.004, PMID: 29408315; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53 (5), pp. 1537-1548. , https://doi.org/10.1128/JCM.00031-15, PMID: 25740769; Zhang, J., Chen, J., Shi, D., Shi, H., Zhang, X., Liu, J., Porcine deltacoronavirus enters cells via two pathways: A protease-mediated one at the cell surface and another facilitated by cathepsins in the endosome (2019) Journal of Biological Chemistry. J Biol Chem, 294 (25), pp. 9830-9843. , https://doi.org/10.1074/jbc.RA119.007779, PMID: 31068417","Yan, M.; Tianjin Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesChina; email: yanmh81971@126.com",,"Public Library of Science",19326203,,POLNC,"31574122","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85072798629 "Yormaz B., Findik D., Süerdem M.","57210603687;6603689507;24466911500;","Differences of viral panel positive versus negative by real-time PCR in COPD exacerbated patients [KOAH alevlenmeli hastalarda gerçek zamanlı pcr tekniğiyle viral panel pozitif olanların negatif olanlardan farklılığı]",2019,"Tuberkuloz ve Toraks","67","2",,"124","130",,,"10.5578/tt.68471","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071117224&doi=10.5578%2ftt.68471&partnerID=40&md5=a71402a966c3360faf6f9160a1c8866e","Department of Chest Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey; Department of Medical Microbiology, Faculty of Medicine, Selcuk University, Konya, Turkey","Yormaz, B., Department of Chest Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey; Findik, D., Department of Medical Microbiology, Faculty of Medicine, Selcuk University, Konya, Turkey; Süerdem, M., Department of Chest Diseases, Faculty of Medicine, Selcuk University, Konya, Turkey","Introduction: Exacerbations of chronic obstructive pulmonary disease (COPD) are often caused by respiratory tract infections. The aim of this study was to investigate the clinical, laboratory and computed tomography features of patients with hospitalized COPD exacerbations in which respiratory viruses were detected using a real-time polymerase chain reaction (PCR) technique. Materials and Methods: This retrospectively planned study included patients hospitalized in the chest diseases clinic due to exacerbation of COPD between November 2018-February 2019. The study included patients who had virus-specific real-time PCR, and computed tomography scans of the chest. Results: A total of 110 patients were included in the study. Respiratory viruses were identified in the nasopharyngeal swabs of 50 patients (45.5%) using the real-time PCR method, with rhinovirus (25%), influenza A (13.1%) and coronavirus (11.8%) being the most commonly isolated agents. The mean age of the patients was 68.28 ± 9.59 years in the virus-positive group and 68.20 ± 8.27 years in the virus-negative group (p= 0.963). Gender distribution, rate of smokers, exposure to biofuels, blood leukocyte count, neutrophil percentage, C-reactive protein (CRP) level, FEV1 /FVC ratio did not significantly differ between the two groups (p> 0.05). Procalcitonin (PCT) and FEV1 values were significantly lower (p= 0.001 and p= 0.028, respectively) and the number of exacerbations was significantly higher in the virus-positive group (p= 0.001). The length of hospital stay was longer in the virus-positive group than in the virus-negative group (p= 0.012). Among the findings of computed tomography (CT) of the chest, bronchial wall thickening, cystic bronchiectasis, and emphysema did not differ significantly (p> 0.05). The rate of infiltrative lesions (tree-in-bud opacity, ground-glass opacity, atypical pneumonia) was significantly higher in the virus-positive group (p= 0.020). Conclusion: Viral respiratory tract infections should be considered in hospitalized patients with an exacerbation of COPD who have a history of frequent exacerbations, normal PCT value, and the absence of consolidation in CT scan of the chest. The use of broad-spectrum antibiotic therapy should be avoided in patients with these features. ©Copyright 2019 by Tuberculosis and Thorax.","Chronic obstructive pulmonary disease; Procalcitonin; Viral respiratory panel","C reactive protein; procalcitonin; aged; antibiotic therapy; Article; Aviadenovirus; blood level; bronchial wall thickening; bronchiectasis; cancer screening; cell infiltration; chronic obstructive lung disease; computer assisted tomography; Coronavirinae; disease exacerbation; emphysema; Enterovirus; female; forced expiratory volume; forced vital capacity; ground glass opacity; hospitalization; human; Human metapneumovirus; influenza; length of stay; leukocyte count; lung function test; lung parenchyma; major clinical study; male; Metapneumovirus; multidetector computed tomography; multiplex polymerase chain reaction; neutrophil count; Paramyxovirinae; prevalence; real time polymerase chain reaction; respiratory tract disease; respiratory tract parameters; respiratory virus; retrospective study; Rhinovirus; spirometry; thorax radiography; tree in bud opacity; virus infection; virus isolation; virus pneumonia; chronic obstructive lung disease; complication; Influenza A virus; isolation and purification; middle aged; nasopharynx; pathophysiology; real time polymerase chain reaction; respiratory tract infection; virology; virus infection; x-ray computed tomography; Aged; Bronchiectasis; Coronavirus; Female; Humans; Influenza A virus; Influenza, Human; Length of Stay; Male; Middle Aged; Nasopharynx; Pulmonary Disease, Chronic Obstructive; Real-Time Polymerase Chain Reaction; Respiratory Function Tests; Respiratory Tract Infections; Retrospective Studies; Rhinovirus; Tomography, X-Ray Computed; Virus Diseases","Vestbo, J., Hurd, S.S., Agustí, A.G., Jones, P.W., Vogelmeier, C., Anzueto, A., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary (2013) Am J Respir Crit Care Med, 187, pp. 347-365; Rodriguez-Roisin, R., Toward a consensus definition for COPD exacerbations (2000) Chest, 117, pp. 398S-401S; Burge, S., Wedzicha, J., COPD exacerbations: Definitions and classifications (2003) Eur Respir J Suppl, 41, pp. 46s-53s; Celli, B.R., Macnee, W., Agusti, A., Anzueto, A., Berg, B., Buist, A.S., Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ERS position paper (2004) Eur Respir J, 23, pp. 932-946; Papi, A., Bellettato, C.M., Braccioni, F., Romagnoli, M., Casolari, P., Caramori, G., Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations (2006) Am J Respir Crit Care Med, 173, pp. 1114-1121; Sethi, S., Murphy, T.F., Bacterial infection in chronic obstructive pulmonary disease in 2000: A state-of-the-art review. Clinical microbiology reviews (2001) Clin Microbiol Rev, 14, pp. 336-363; Seemungal, T., Harper-Owen, R., Bhowmik, A., Moric, I., Sanderson, G., Message, S., Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease (2001) Am J Respir Crit Care Med, 164, pp. 1618-1623; Wedzicha, J.A., Role of viruses in exacerbations of chronic obstructive pulmonary disease (2004) Proc am Thorac Soc, 1, pp. 115-120; Ko, F.W., Ip, M., Chan, P.K., Chan, M.C., To, K.-W., Ng, S.S., Viral etiology of acute exacerbations of COPD in Hong Kong (2007) Chest, 132, pp. 900-908; Gorse, G.J., O’Connor, T.Z., Young, S.L., Habib, M.P., Wittes, J., Neuzil, K.M., Impact of a winter respiratory virus season on patients with COPD and association with influenza vaccination (2006) Chest, 130, pp. 1109-1116; Sapey, E., Stockley, R.A., COPD exacerbations· 2: Aetiology (2006) Thorax, 61, pp. 250-258; Sethi, S., Bacterial infection and the pathogenesis of COPD (2000) Chest, 117, p. 286; Smith, C.B., Golden, C.A., Kanner, R.E., Renzetti, A.D., Jr., Association of viral and Mycoplasma pneumoniae infections with acute respiratory illness in patients with chronic obstructive pulmonary diseases (1980) Am Rev Respir Dis, 121, pp. 225-232; Mohan, A., Chandra, S., Agarwal, D., Guleria, R., Broor, S., Gaur, B., Prevalence of viral infection detected by PCR and RT‐PCR in patients with acute exacerbation of COPD: A systematic review (2010) Respirology, 15, pp. 536-542; Camargo, C.A., Ginde, A.A., Clark, S., Cartwright, C.P., Falsey, A.R., Niewoehner, D.E., Viral pathogens in acute exacerbations of chronic obstructive pulmonary disease (2008) Intern Emerg Med, 3, p. 355; Rohde, G., Wiethege, A., Borg, I., Kauth, M., Bauer, T., Gillissen, A., Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: A case-control study (2003) Thorax, 58, pp. 37-42; Dimopoulos, G., Lerikou, M., Tsiodras, S., Chranioti, A., Perros, E., Anagnostopoulou, U., Viral epidemiology of acute exacerbations of chronic obstructive pulmonary disease (2012) Pulm Pharmacol Ther, 25, pp. 12-18; Beckham, J.D., Cadena, A., Lin, J., Piedra, P.A., Glezen, W.P., Greenberg, S.B., Respiratory viral infections in patients with chronic, obstructive pulmonary disease (2005) J Infect, 50, pp. 322-330; Dai, M.-Y., Qiao, J.-P., Xu, Y.-H., Fei, G.-H., Respiratory infectious phenotypes in acute exacerbation of COPD: An aid to length of stay and COPD Assessment Test (2015) Int J Chron Obstruct Pulmon Dis, 10, pp. 2257-2263; Cals, J.W., Butler, C.C., Hopstaken, R.M., Hood, K., Dinant, G.-J., Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: Cluster randomised trial (2009) Bmj, 338, p. b1374; Bach, P.B., Brown, C., Gelfand, S.E., McCrory, D.C., Management of acute exacerbations of chronic obstructive pulmonary disease: A summary and appraisal of published evidence (2001) Annals of Internal Medicine, 134, pp. 600-620; Murphy, T.F., Sethi, S., Niederman, M.S., The role of bacteria in exacerbations of COPD: A constructive view (2000) Chest, 118, pp. 204-209; Anthonisen, N., Manfreda, J., Warren, C., Hershfield, E., Antibiotic therapy in exacerbations of chronic obstructive pulmonary (1987) Ann Intern Med, 106, pp. 196-204; Ram, F.S., Rodriguez-Roisin, R., Granados-Navarrete, A., Garcia-Aymerich, J., Barnes, N.C., Antibiotics for exacerbations of chronic obstructive pulmonary disease (2006) Cochrane Database Syst Rev; Simon, L., Gauvin, F., Amre, D.K., Saint-Louis, P., Lacroix, J., Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: A systematic review and meta-analysis (2004) Clin Infect Dis, 39, pp. 206-217; Stolz, D., Christ-Crain, M., Bingisser, R., Leuppi, J., Miedinger, D., Müller, C., Antibiotic treatment of exacerbations of COPD: A randomized, controlled trial comparing procal-citonin-guidance with standard therapy (2007) Chest, 131, pp. 9-19; Franquet, T., Imaging of pulmonary viral pneumonia (2011) Radiology, 260, pp. 18-39","Yormaz, B.; Selçuk Üniversitesi Tıp Fakültesi, Göğüs Hastalıkları Anabilim DalıTurkey; email: burcyormaz@gmail.com",,"Ankara University",04941373,,,"31414643","English","Tuberk. Toraks",Article,"Final",,Scopus,2-s2.0-85071117224 "Likai J., Shasha L., Wenxian Z., Jingjiao M., Jianhe S., Hengan W., Yaxian Y.","57209305755;57209301634;57209309721;57209308416;57199679329;57209308956;24768199600;","Porcine deltacoronavirus nucleocapsid protein suppressed IFN-β production by interfering porcine RIG-I dsRNA-binding and K63-linked polyubiquitination",2019,"Frontiers in Immunology","10","MAY", 1024,"","",,5,"10.3389/fimmu.2019.01024","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067302645&doi=10.3389%2ffimmu.2019.01024&partnerID=40&md5=dcfab361557dca951a19dd8db26df077","Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China","Likai, J., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Shasha, L., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Wenxian, Z., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Jingjiao, M., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Jianhe, S., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Hengan, W., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Yaxian, Y., Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China","Porcine deltacoronavirus (PDCoV) is a newly detected porcine coronavirus causing serious vomiting and diarrhea in piglets, especially newborn piglets. There has been an outbreak of PDCoV in worldwide since 2014, causing significant economic losses in the pig industry. The interferon (IFN)-mediated antiviral response is an important component of virus-host interactions and plays an essential role in inhibiting virus infection. However, the mechanism of PDCoV escaping the porcine immune surveillance is unclear. In the present study, we demonstrated that the PDCoV nucleocapsid (N) protein antagonizes porcine IFN-β production after vesicular stomatitis virus (VSV) infection or poly(I:C) stimulation. PDCoV N protein also suppressed the activation of porcine IFN-β promoter when it was stimulated by porcine RLR signaling molecules. PDCoV N protein targeted porcine retinoic acid-inducible gene I (pRIG-I) and porcine TNF receptor associated factor 3 (pTRAF3) by directly interacting with them. The N-terminal region (1-246 aa) of PDCoV N protein was important for interacting with pRIG-I and interfere its function. We confirmed that PDCoV N antagonizes IFN-β production by associating with pRIG-I to impede it from binding double-stranded RNA. Furthermore, porcine Riplet (pRiplet) was an important activator for pRIG-I by mediating the K63-linked polyubiquitination. However, PDCoV N protein restrained the pRiplet binding pRIG-I to inhibit pRIG-I K63-linked polyubiquitination. Taken together, our results revealed a novel mechanism by which PDCoV N protein interferes with the early activation of pRIG-I in the host antiviral response. The novel findings provide a new insight into PDCoV on evading the host innate immune response and may provide new therapeutic targets and more efficacious vaccines strategies for PDCoV infections. Copyright © 2019 Likai, Shasha, Wenxian, Jingjiao, Jianhe, Hengan and Yaxian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.","IFN-β; Nucleocapsid protein; PDCoV; Porcine RIG-I; Ubiquitination","beta actin; beta interferon; Myc protein; nucleocapsid protein; retinoic acid inducible protein I; RNA binding protein; tumor necrosis factor receptor; tumor necrosis factor receptor associated factor 3; ubiquitin; virulence plasmid; animal experiment; animal model; Article; controlled study; Coronavirinae; cytokine production; double-stranded RNA virus; gene; genetic transfection; HEK293T cell line; immune response; immunofluorescence test; immunoprecipitation; innate immunity; K48 gene; K48R gene; K63 gene; K63R gene; luciferase assay; nonhuman; PK-15 cell line; porcine model; protein targeting; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA binding; sequence alignment; sequence analysis; signal transduction; ubiquitination; virus infection; virus mutant; Western blotting","Zhang, J.Q., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res, 226, pp. 71-84; Xu, Z., Zhong, H., Zhou, Q., Du, Y., Chen, L., Zhang, Y., A highly pathogenic strain of porcine deltacoronavirus caused watery diarrhea in newborn piglets (2018) Virologica Sinica, 33, pp. 131-141; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Veter Microbiol, 196, pp. 98-106; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clini Microbiol, 53, pp. 1537-1548; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch Virol, 161, pp. 2909-2911; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound Emerg Dis, 64, pp. 3-10; Fang, P.X., Fang, L.R., Liu, X.R., Hong, Y.Y., Wang, Y.L., Dong, N., Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6 (2016) Virology, 499, pp. 170-177; Fang, P.X., Fang, L.R., Hong, Y.Y., Liu, X.R., Dong, N., Ma, P.P., Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus (2017) J Gen Virol, 98, pp. 173-178; Li, W.T., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc Natl Acad Sci USA, 115, pp. E5135-E5143; Bruns, A.M., Horvath, C.M., LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling (2015) Cytokine, 74, pp. 198-206; Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity (2005) J Immunol, 175, pp. 2851-2858; Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., IPS-1, an adaptor triggering RIG-I- And Mda5-mediated type I interferon induction (2005) Nat Immunol, 6, pp. 981-988; Sun, Q.M., Sun, L.J., Liu, H.H., Chen, X., Seth, R.B., Forman, J., The specific and essential role of MAVS in antiviral innate immune responses (2006) Immunity, 24, pp. 633-642; Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2 (2007) Proc Natl Acad Sci USA, 104, pp. 582-587; Oshiumi, H., Miyashita, M., Matsumoto, M., Seya, T., A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses (2013) PLoS Pathog, 9; Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L.J., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity (2007) Nature, 446, pp. 916-1012; Liu, S., Chen, J., Cai, X., Wu, J., Chen, X., Wu, Y.T., MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades (2013) eLife, 2; Paz, S., Vilasco, M., Werden, S.J., Arguello, M., Joseph-Pillai, D., Zhao, T., A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response (2011) Cell Res, 21, pp. 895-910; Honda, K., Takaoka, A., Taniguchi, T., Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors (2006) Immunity, 25, pp. 349-360; Rajsbaum, R., Albrecht, R.A., Wang, M.K., Maharaj, N.P., Versteeg, G.A., Nistal-Villan, E., Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein (2012) PLoS Pathog, 8; Zhang, H.L., Ye, H.Q., Liu, S.Q., Deng, C.L., Li, X.D., Shi, P.Y., West nile virus NS1 antagonizes interferon beta production by targeting RIG-I and MDA5 (2017) J Virol, 91, pp. e02396-e02416; Ma, Y.L., Tong, X.H., Xu, X.L., Li, X.M., Lou, Z.Y., Rao, Z.H., Structures of the N- And C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus (2010) Protein Cell, 1, pp. 688-697; McBride, R., Van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses-Basel, 6, pp. 2991-3018; Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination (2017) J Virol, 91, pp. e02143-e02216; Ding, Z., Fang, L.R., Jing, H.Y., Zeng, S.L., Wang, D., Liu, L.Z., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J Virol, 88, pp. 8936-8945; Xu, X., Zhang, H., Zhang, Q., Huang, Y., Dong, J., Liang, Y., Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression (2013) Veter Microbiol, 164, pp. 212-221; Cao, L., Ge, X., Gao, Y., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3, and TLR9 pathways in porcine intestinal epithelial cells (2015) J Gen Virol, 96, p. 1757; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Transmissible gastroenteritis virus infection induces NF-κB activation through RLR-mediated signaling (2017) Virology, 507, p. 170; Luo, J.Y., Fang, L.R., Dong, N., Fang, P.X., Ding, Z., Wang, D., Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-beta production (2016) Virology, 495, pp. 10-17; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA (2018) J Virol, 92, pp. e00712-e00718; Zhu, X.Y., Fang, L.R., Wang, D., Yang, Y.T., Chen, J.Y., Ye, X., Porcine deltacoronavirus Nsp5 inhibits interferon-beta production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38; Lee, S., Lee, C., Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus (2015) Virus Res, 208, pp. 136-145; Shi, Y., Yuan, B., Zhu, W., Zhang, R., Li, L., Hao, X., Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity (2017) Nat Comm, 8, p. 15138; Zhu, X.Y., Wang, D., Zhou, J.W., Pan, T., Chen, J.Y., Yang, Y.T., Porcine deltacoronavirus Nsp5 antagonizes type I interferon signaling by cleaving STAT2 (2017) J Virol, 91, pp. e00003-e00017; Ding, Z., Fang, L., Yuan, S., Zhao, L., Wang, X., Long, S., The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-beta antagonizing mechanism: Attenuation of PACT-mediated RIG-I/ MDA5 activation (2017) Oncotarget, 8, pp. 49655-49670; Zhou, Y.R., Wu, W., Xie, L.L., Wang, D., Ke, Q.Y., Hou, Z.Z., Cellular RNA helicase DDX1 is involved in trasmissible gastroenteritis virus Nsp 14-induced interferon-beta production (2017) Front Immunol, 8, p. 940; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Lui, P.Y., Wong, L.R., Ho, T.H., Au, S.W.N., Chan, C.P., Kok, K.H., PACT Facilitates RNA-induced activation of MDA5 by promoting MDA5 oligomerization (2017) J Immunol, 199, pp. 1846-1855; Kok, K.H., Lui, P.Y., Ng, M.H.J., Siu, K.L., Au, S.W.N., Jin, D.Y., The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response (2011) Cell Host Microbe, 9, pp. 299-309; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876; Chen, X.J., Yang, X.X., Zheng, Y., Yang, Y.D., Xing, Y.L., Chen, Z.B., SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex (2014) Protein Cell, 5, pp. 369-381; Siu, K.L., Kok, K.H., Ng, M.H.J., Poon, V.K.M., Yuen, K.Y., Zheng, B.J., Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3 center dot TANK center dot TBK1/IKK epsilon Complex (2009) J Biol Chem, 284, pp. 16202-16209; Wei, Q., Wei, X., Guo, K., Li, Y., Lin, X., Zhong, Z., The C-terminal effector domain of non-structural protein 1 of influenza A virus blocks IFN-β production by targeting TNF receptor-associated factor 3 (2017) Front Immunol, 8, p. 779; Yan, J., Li, Q., Mao, A.P., Hu, M.M., Shu, H.B., TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination (2014) J Mol Cell Biol, 6, pp. 154-163; Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M., Seya, T., The ubiquitin ligase riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection (2010) Cell Host Microbe, 8, pp. 496-509; Oshiumi, H., Matsumoto, M., Hatakeyama, S., Seya, T., Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection (2009) J Biol Chem, 284, pp. 807-817; Gao, D., Yang, Y.K., Wang, R.P., Zhou, X., Diao, F.C., Li, M.D., REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I (2009) PloS ONE, 4","Yaxian, Y.; Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong UniversityChina; email: yanyaxian@sjtu.edu.cn",,"Frontiers Media S.A.",16643224,,,"31143181","English","Front. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85067302645 "Feldmann H.R., Williams D.R., Champagne J.D., Lehenbauer T.W., Aly S.S.","57210134345;57203443279;55660333000;6701599364;15838888300;","Effectiveness of zinc supplementation on diarrhea and average daily gain in preweaned dairy calves: A double-blind, blockrandomized, placebo-controlled clinical trial",2019,"PLoS ONE","14","7", e0219321,"","",,2,"10.1371/journal.pone.0219321","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069597990&doi=10.1371%2fjournal.pone.0219321&partnerID=40&md5=12da7d519eea102ed57e9eca6ac9b270","Veterinary Medicine Teaching and Research Center, University of California, Davis School of Veterinary Medicine, Tulare, CA, United States; Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, United States","Feldmann, H.R., Veterinary Medicine Teaching and Research Center, University of California, Davis School of Veterinary Medicine, Tulare, CA, United States; Williams, D.R., Veterinary Medicine Teaching and Research Center, University of California, Davis School of Veterinary Medicine, Tulare, CA, United States; Champagne, J.D., Veterinary Medicine Teaching and Research Center, University of California, Davis School of Veterinary Medicine, Tulare, CA, United States; Lehenbauer, T.W., Veterinary Medicine Teaching and Research Center, University of California, Davis School of Veterinary Medicine, Tulare, CA, United States, Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, United States; Aly, S.S., Veterinary Medicine Teaching and Research Center, University of California, Davis School of Veterinary Medicine, Tulare, CA, United States, Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, United States","The objective of this clinical trial was to evaluate the effectiveness of zinc supplementation on diarrhea and average daily weight gain (ADG) in pre-weaned dairy calves. A total of 1,482 healthy Holstein heifer and bull calves from a large California dairy were enrolled at 24 to 48 hours of age until hutch exit at approximately 90 days of age. Calves were block-randomized by time to one of three treatments: 1) placebo, 2) zinc methionine (ZM), or 3) zinc sulfate (ZS) administered in milk once daily for 14 days. Serum total protein at enrollment and body weight at birth, treatment end, and hutch exit were measured. Fecal consistency was assessed daily for 28 days post-enrollment. For a random sample of 127 calves, serum zinc concentrations before and after treatment and a fecal antigen ELISA at diarrhea start and resolution for Escherichia coli K99, rotavirus, coronavirus, and Cryptosporidium parvum were performed. Linear regression showed that ZM-treated bull calves had 22 g increased ADG compared to placebo-treated bulls (P = 0.042). ZM-treated heifers had 9 g decreased ADG compared to placebo-treated heifers (P = 0.037), after adjusting for average birth weight. Sex-stratified models showed that high birth weight heifers treated with ZM gained more than placebo-treated heifers of the same birth weight, which suggests a doseresponse effect rather than a true sex-specific effect of ZM on ADG. Cox regression showed that ZM and ZS-treated calves had a 14.7% (P = 0.015) and 13.9% (P = 0.022) reduced hazard of diarrhea, respectively, compared to placebo-treated calves. Calves supplemented for at least the first five days of diarrhea with ZM and ZS had a 21.4% (P = 0.027) and 13.0% (P = 0.040) increased hazard of cure from diarrhea, respectively, compared to placebo-treated calves. Logistic regression showed that the odds of microbiological cure at diarrhea resolution for rotavirus, C. parvum, or any single fecal pathogen was not different between treatment groups. Zinc supplementation delayed diarrhea and expedited diarrhea recovery in pre-weaned calves. Additionally, zinc improved weight gain differentially in bulls compared to heifers, indicating a research need for sex-specific dosing. © 2019 Feldmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"antigen; placebo; protein; unclassified drug; zinc derivative; zinc methionine; zinc sulfate; zinc; Article; bacterial strain; birth weight; body weight gain; bull (bovine); calf (bovine); California; cattle disease; concentration response; controlled study; Coronavirinae; cow milk; Cryptosporidium parvum; dairy cattle; diarrhea; diet supplementation; disease duration; double blind procedure; enzyme linked immunosorbent assay; Escherichia coli; feces; female; heifer; Holstein cattle; incidence; linear regression analysis; logistic regression analysis; male; nonhuman; proportional hazards model; protein blood level; randomized controlled trial; Rotavirus; sex difference; treatment duration; weaning; zinc blood level; adverse event; animal; animal food; body weight gain; bovine; cattle disease; cryptosporidiosis; Cryptosporidium; dairying; diarrhea; dietary supplement; drug effect; microbiology; milk; newborn; pathogenicity; pathophysiology; veterinary medicine; weaning; Animal Feed; Animals; Animals, Newborn; California; Cattle; Cattle Diseases; Cryptosporidiosis; Cryptosporidium; Dairying; Diarrhea; Dietary Supplements; Double-Blind Method; Feces; Female; Male; Milk; Weaning; Weight Gain; Zinc","NAHMS. Dairy 2007: heifer calf health and management practices on U. S. dairy operations. 2010: 1-157; NAHMS. Dairy heifer raiser 2011: An overview of operations that specialize in raising dairy heifers. 2012: 1-150; http://www.who.int/news-room/factsheets/detail/diarrhoeal-disease, WHO. Diarrhoeal Disease [updated May 2, 2017]; https://www.unicef.org/health/index_92007.html, UNICEF. Diarrhoea [updated July 25, 2016]; Liberato, S.C., Singh, G., Mulholland, K., Zinc supplementation in young children: A review of the literature focusing on diarrhoea prevention and treatment (2015) Clin Nutr., 34 (2), pp. 181-188. , https://doi.org/10.1016/j.clnu.2014.08.002, PMID: 25176404; Hoque, K.M., Sarker, R., Guggino, S.E., Tse, C.M., A new insight into pathophysiological mechanisms of zinc in diarrhea (2009) Annals of the New York Academy of Sciences., 1165, pp. 279-284. , https://doi.org/10.1111/j.1749-6632.2009.04442.x, PMID: 19538317; Crane, J.K., Hoque, K.M., Zinc for infectious diarrhea in developed countries: Should we be sprinkling our own lawns? (2008) J Pediatr Gastroenterol Nutr., 46 (5), pp. 484-485. , https://doi.org/10.1097/MPG.0b013e3181679801, PMID: 18493201; Bhatnagar, S., Effects of zinc supplementation on child mortality (2007) Lancet., 369 (9565), pp. 885-886. , https://doi.org/10.1016/S0140-6736(07)60423-1, PMID: 17368132; Bhutta, Z.A., Bird, S.M., Black, R.E., Brown, K.H., Gardner, J.M., Hidayat, A., Therapeutic effects of oral zinc in acute and persistent diarrhea in children in developing countries: Pooled analysis of randomized controlled trials (2000) Am J Clin Nutr., 72 (6), pp. 1516-1522. , https://doi.org/10.1093/ajcn/72.6.1516, PMID: 11101480; Penny, M.E., Zinc supplementation in public health (2013) Ann Nutr Metab., 62, pp. 31-42. , https://doi.org/10.1159/000348263, PMID: 23689111; Glover, A.D., Puschner, B., Rossow, H.A., Lehenbauer, T.W., Champagne, J.D., Blanchard, P.C., A doubleblind block randomized clinical trial on the effect of zinc as a treatment for diarrhea in neonatal Holstein calves under natural challenge conditions (2013) Preventive Veterinary Medicine., 112 (3-4), pp. 338-347. , https://doi.org/10.1016/j.prevetmed.2013.09.001, PMID: 24074841; Larson, C.P., Nasrin, D., Saha, A., Chowdhury, M.I., Qadri, F., The added benefit of zinc supplementation after zinc treatment of acute childhood diarrhoea: A randomized, double-blind field trial (2010) Trop Med Int Health., 15 (6), pp. 754-761. , https://doi.org/10.1111/j.1365-3156.2010.02525.x, PMID: 20374562; Garenne, M., Becher, H., Ye, Y., Kouyate, B., Muller, O., Sex-specific responses to zinc supplementation in Nouna, Burkina Faso (2007) J Pediatr Gastroenterol Nutr., 44 (5), pp. 619-628. , https://doi.org/10.1097/MPG.0b013e31802c695e, PMID: 17460497; Aggarwal, R., Sentz, J., Miller, M.A., Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis (2007) Pediatrics., 119 (6), pp. 1120-1130. , https://doi.org/10.1542/peds.2006-3481, PMID: 17545379; Lira, P.I., Ashworth, A., Morris, S.S., Effect of zinc supplementation on the morbidity, immune function, and growth of low-birth-weight, full-term infants in northeast Brazil (1998) Am J Clin Nutr., 68 (2), pp. 24S-418S. , https://doi.org/10.1093/ajcn/68.2.418S, PMID: 9701155; Edwards, H.M., III, Baker, D.H., Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal (1999) J Anim Sci., 77 (10), pp. 2730-2735. , https://doi.org/10.2527/1999.77102730x, PMID: 10521034; Schell, T.C., Kornegay, E.T., Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4 (1996) J Anim Sci., 74 (7), pp. 1584-1593. , https://doi.org/10.2527/1996.7471584x, PMID: 8818803; Wedekind, K.J., Lewis, A.J., Giesemann, M.A., Miller, P.S., Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets (1994) J Anim Sci., 72 (10), pp. 2681-2689. , https://doi.org/10.2527/1994.72102681x, PMID: 7883627; Wedekind, K.J., Hortin, A.E., Baker, D.H., Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide (1992) J Anim Sci., 70 (1), pp. 178-187. , https://doi.org/10.2527/1992.701178x, PMID: 1582905; Bach, A., Gimenez, A., Juaristi, J.L., Ahedo, J., Effects of physical form of a starter for dairy replacement calves on feed intake and performance (2007) J Dairy Sci., 90 (6), pp. 3028-3033. , https://doi.org/10.3168/jds.2006-761, PMID: 17517745; Khan, M.A., Lee, H.J., Lee, W.S., Kim, H.S., Ki, K.S., Hur, T.Y., Structural growth, rumen development, and metabolic and immune responses of Holstein Male calves fed milk through step-down and conventional methods (2007) J Dairy Sci., 90 (7), pp. 3376-3387. , https://doi.org/10.3168/jds.2007-0104, PMID: 17582123; Graham, T.W., Holmberg, C.A., Keen, C.L., Thurmond, M.C., Clegg, M.S., A pathologic and toxicologic evaluation of veal calves fed large amounts of zinc (1988) Vet Pathol., 25 (6), pp. 484-491. , https://doi.org/10.1177/030098588802500612, PMID: 3212892; Jenkins, K.J., Hidiroglou, M., Tolerance of the preruminant calf for excess manganese or zinc in milk replacer (1991) J Dairy Sci., 74 (3), pp. 1047-1053. , https://doi.org/10.3168/jds.S0022-0302(91)78254-4, PMID: 2071705; NHMRC. Nutrient Reference Values for Australia and New Zealand 2006; NRC. Nutrient Requirements of Dairy Cattle. 2001; Robert, B., Ginter, A., Antoine, H., Collard, A., Coppe, P., Diagnosis of bovine cryptosporidiosis by an enzyme-linked immunosorbent assay (1990) Veterinary Parasitology., 37 (1), pp. 1-8. , PMID: 2238427; Thorns, C.J., Bell, M.M., Chasey, D., Chesham, J., Roeder, P.L., Development of monoclonal antibody ELISA for simultaneous detection of bovine coronavirus, rotavirus serogroup A, and Escherichia coli K99 antigen in feces of calves (1992) Am J Vet Res., 53 (1), pp. 36-43. , PMID: 1371656; Blanchard, P.C., Diagnostics of dairy and beef cattle diarrhea (2012) Vet Clin North Am Food Anim Pract., 28 (3), pp. 443-464. , https://doi.org/10.1016/j.cvfa.2012.07.002, PMID: 23101670; Mickey, R.M., Greenland, S., The impact of confounder selection criteria on effect estimation (1989) Am J Epidemiol., 129 (1), pp. 125-137. , https://doi.org/10.1093/oxfordjournals.aje.a115101, PMID: 2910056; Rothman, K.J., Greenland, S., Lash, T.L., Modern Epidemiology, , 3rd ed. Philadelphia, PA Wolters Kluwer Health/Lippincott Williams &Wilkins; 2008; Weng, H.Y., Hsueh, Y.H., Messam, L.L., Hertz-Picciotto, I., Methods of covariate selection: Directed acyclic graphs and the change-in-estimate procedure (2009) Am J Epidemiol., 169 (10), pp. 1182-1190. , https://doi.org/10.1093/aje/kwp035, PMID: 19363102; Maldonado, G., Greenland, S., Simulation study of confounder-selection strategies (1993) Am J Epidemiol., 138 (11), pp. 923-936. , https://doi.org/10.1093/oxfordjournals.aje.a116813, PMID: 8256780; Galvao, T.F., Thees, M.F., Pontes, R.F., Silva, M.T., Pereira, M.G., Zinc supplementation for treating diarrhea in children: A systematic review and meta-analysis (2013) Rev Panam Salud Publica., 33 (5), pp. 370-377. , https://doi.org/10.1590/s1020-49892013000500009, PMID: 23764669; Patel, A.B., Mamtani, M., Badhoniya, N., Kulkarni, H., What zinc supplementation does and does not achieve in diarrhea prevention: A systematic review and meta-analysis (2011) BMC Infect Dis., 11, p. 122. , https://doi.org/10.1186/1471-2334-11-122, PMID: 21569418; PubMed Central PMCID: PMC3115868; Sazawal, S., Black, R.E., Bhan, M.K., Jalla, S., Bhandari, N., Sinha, A., Zinc supplementation reduces the incidence of persistent diarrhea and dysentery among low socioeconomic children in India (1996) J Nutr., 126 (2), pp. 443-450. , https://doi.org/10.1093/jn/126.2.443, PMID: 8632217; Sazawal, S., Black, R.E., Bhan, M.K., Jalla, S., Sinha, A., Bhandari, N., Efficacy of zinc supplementation in reducing the incidence and prevalence of acute diarrhea-A community-based, double-blind, controlled trial (1997) Am J Clin Nutr., 66 (2), pp. 413-418. , https://doi.org/10.1093/ajcn/66.2.413, PMID: 9250122; Atia, A.N., Buchman, A.L., Oral rehydration solutions in non-cholera diarrhea: A review (2009) Am J Gastroenterol., 104 (10), pp. 2596-2604. , https://doi.org/10.1038/ajg.2009.329, PMID: 19550407 quiz 605; Fischer Walker, C.L., Fontaine, O., Young, M.W., Black, R.E., Zinc and low osmolarity oral rehydration salts for diarrhoea: A renewed call to action (2009) Bull World Health Organ., 87 (10), pp. 780-786. , https://doi.org/10.2471/BLT.08.058990, PMID: 19876545; PubMed Central PMCID: PMC2755312; Zhao, J., Shirley, R.B., Dibner, J.J., Wedekind, K.J., Yan, F., Fisher, P., Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper (2016) J Anim Sci Biotechnol., 7, p. 13. , https://doi.org/10.1186/s40104-016-0072-1, PMID: 26933492; PubMed Central PMCID: PMC4772281; https://www.fda.gov/AnimalVeterinary/DevelopmentApprovalProcess/ucm071807.htm, FDA. Veterinary Feed Directive [updated May 18, 2018]; Foster, D.M., Smith, G.W., Pathophysiology of diarrhea in calves (2009) Vet Clin North Am Food Anim Pract., 25 (1), pp. 13-36. , https://doi.org/10.1016/j.cvfa.2008.10.013, PMID: 19174281., xi",,,"Public Library of Science",19326203,,POLNC,"31291305","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85069597990 "Hou Y., Meulia T., Gao X., Saif L.J., Wang Q.","57158102900;6603656016;56521994900;57205309530;55698230500;","Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs",2019,"Journal of Virology","93","2", e01758-18,"","",,9,"10.1128/JVI.01758-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057759222&doi=10.1128%2fJVI.01758-18&partnerID=40&md5=74bb92d3701eef6f0a0c260475a1fd86","Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States","Hou, Y., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Meulia, T., Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States; Gao, X., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Saif, L.J., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Wang, Q., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States","Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, Yxx (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the Yxx motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) ic?10aa (?YxxEKVHVQ), (ii) ic?5aa (?KVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with ic?10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant ic?10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, ic?5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets. IMPORTANCE Many coronaviruses (CoVs) possess conserved motifs Yxx and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the Yxx motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the Yxx of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional Yxx and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; Endocytosis; PEDV; Spike; Virulence; Yxx","tyrosine; virus spike protein; vitronectin; coronavirus spike glycoprotein; animal cell; animal experiment; Article; cell surface; controlled study; diarrhea; disease severity; endocytosis; endoplasmic reticulum; gene deletion; Golgi complex; intestine injury; nonhuman; pig; piglet; Porcine epidemic diarrhea virus; priority journal; protein expression; protein function; protein motif; regulatory mechanism; transmission electron microscopy; Vero cell line; virion; virus mutation; virus recombinant; virus strain; virus virulence; animal; chemistry; Chlorocebus aethiops; endocytosis; endoplasmic reticulum; gene deletion; genetics; metabolism; pathogenicity; Porcine epidemic diarrhea virus; swine disease; virology; virulence; Amino Acid Motifs; Animals; Cercopithecus aethiops; Endocytosis; Endoplasmic Reticulum; Golgi Apparatus; Porcine epidemic diarrhea virus; Sequence Deletion; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases; Vero Cells; Virulence","Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13. , https://doi.org/10.1016/j.virusres.2016.05.026; Paarlberg, P.L., (2014) Updated Estimated Economic Welfare Impacts of Porcine Epidemic Diarrhea Virus (PEDV), , http://ageconsearch.umn.edu/bitstream/174517/2/14-4.Updated%20Estimated%20Economic%20Welfare%20Impacts%20of%20PEDV.pdf; Schulz, L.L., Tonsor, G.T., Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States (2015) J Anim Sci, 93, pp. 5111-5118. , https://doi.org/10.2527/jas.2015-9136; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Invest, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J Virol, 88, pp. 7952-7961. , https://doi.org/10.1128/JVI.00297-14; Shirato, K., Maejima, M., Matsuyama, S., Ujike, M., Miyazaki, A., Takeyama, N., Ikeda, H., Taguchi, F., Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity (2011) Virus Res, 161, pp. 188-193. , https://doi.org/10.1016/j.virusres.2011.07.019; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P.J.M., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding (1994) J Virol, 68, pp. 6523-6534; Hogue, B.G., Machamer, C.E., Coronavirus structural proteins and virus assembly (2008) Nidovi-Ruses, pp. 179-200. , Stanley Gallagher T, Snijder EJ ed, ASM Press, Washington, DC; Zhou, X., Cong, Y., Veenendaal, T., Klumperman, J., Shi, D., Mari, M., Reggiori, F., Ultrastructural characterization of membrane rearrangements induced by porcine epidemic diarrhea virus infection (2017) Viruses, 9, p. 251. , https://doi.org/10.3390/v9090251; Ujike, M., Taguchi, F., Incorporation of spike and membrane glycoproteins into coronavirus virions (2015) Viruses, 7, pp. 1700-1725. , https://doi.org/10.3390/v7041700; Winter, C., Schwegmann-Wessels, C., Neumann, U., Herrler, G., The spike protein of infectious bronchitis virus is retained intracellularly by a tyrosine motif (2008) J Virol, 82, pp. 2765-2771. , https://doi.org/10.1128/JVI.02064-07; Youn, S., Collisson, E.W., Machamer, C.E., Contribution of trafficking signals in the cytoplasmic tail of the infectious bronchitis virus spike protein to virus infection (2005) J Virol, 79, pp. 13209-13217. , https://doi.org/10.1128/JVI.79.21.13209-13217.2005; Schwegmann-Wessels, C., Al-Falah, M., Escors, D., Wang, Z., Zimmer, G., Deng, H., Enjuanes, L., Herrler, G., A novel sorting signal for intracellular localization is present in the S protein of a porcine coronavirus but absent from severe acute respiratory syndrome-associated coronavirus (2004) J Biol Chem, 279, pp. 43661-43666. , https://doi.org/10.1074/jbc.M407233200; Lontok, E., Corse, E., Machamer, C.E., Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site (2004) J Virol, 78, pp. 5913-5922. , https://doi.org/10.1128/JVI.78.11.5913-5922.2004; Ujike, M., Huang, C., Shirato, K., Makino, S., Taguchi, F., The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles (2016) J Gen Virol, 97, pp. 1853-1864. , https://doi.org/10.1099/jgv.0.000494; McBride, C.E., Li, J., Machamer, C.E., The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein (2007) J Virol, 81, pp. 2418-2428. , https://doi.org/10.1128/JVI.02146-06; Jackson, L.P., Lewis, M., Kent, H.M., Edeling, M.A., Evans, P.R., Duden, R., Owen, D.J., Molecular basis for recognition of dilysine trafficking motifs by COPI (2012) Dev Cell, 23, pp. 1255-1262. , https://doi.org/10.1016/j.devcel.2012.10.017; Sato, T., Takeyama, N., Katsumata, A., Tuchiya, K., Kodama, T., Kusanagi, K., Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo (2011) Virus Genes, 43, pp. 72-78. , https://doi.org/10.1007/s11262-011-0617-5; Neveu, G., Barouch-Bentov, R., Ziv-Av, A., Gerber, D., Jacob, Y., Einav, S., Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002845; Collins, B.M., McCoy, A.J., Kent, H.M., Evans, P.R., Owen, D.J., Molecular architecture and functional model of the endocytic AP2 complex (2002) Cell, 109, pp. 523-535. , https://doi.org/10.1016/S0092-8674(02)00735-3; Kelly, B.T., McCoy, A.J., Späte, K., Miller, S.E., Evans, P.R., Höning, S., Owen, D.J., A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex (2008) Nature, 456, pp. 976-979. , https://doi.org/10.1038/nature07422; Oliver, S.L., Brady, J.J., Sommer, M.H., Reichelt, M., Sung, P., Blau, H.M., Arvin, A.M., An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis (2013) Proc Natl Acad Sci U S A, 110, pp. 1911-1916. , https://doi.org/10.1073/pnas.1216985110; Heineman, T.C., Hall, S.L., VZV Gb endocytosis and Golgi localization are mediated by YXX motifs in its cytoplasmic domain (2001) Virology, 285, pp. 42-49. , https://doi.org/10.1006/viro.2001.0930; West, J.T., Weldon, S.K., Wyss, S., Lin, X., Yu, Q., Thali, M., Hunter, E., Mutation of the dominant endocytosis motif in human immunodeficiency virus type 1 gp41 can complement matrix mutations without increasing Env incorporation (2002) J Virol, 76, pp. 3338-3349. , https://doi.org/10.1128/JVI.76.7.3338-3349.2002; Vogt, C., Eickmann, M., Diederich, S., Moll, M., Maisner, A., Endocytosis of the Nipah virus glycoproteins (2005) J Virol, 79, pp. 3865-3872. , https://doi.org/10.1128/JVI.79.6.3865-3872.2005; Paul, A., Trincone, A., Siewert, S., Herrler, G., Schwegmann-Weßels, C., A lysine-methionine exchange in a coronavirus surface protein transforms a retention motif into an endocytosis signal (2014) Biol Chem, 395, pp. 657-665. , https://doi.org/10.1515/hsz-2013-0282; Lin, C.-M., Hou, Y., Marthaler, D.G., Gao, X., Liu, X., Zheng, L., Saif, L., Wang, Q., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet Microbiol, 201, pp. 62-71. , https://doi.org/10.1016/j.vetmic.2017.01.015; Zhang, X., Pan, Y., Wang, D., Tian, X., Song, Y., Cao, Y., Identification and pathogenicity of a variant porcine epidemic diarrhea virus field strain with reduced virulence (2015) Virol J, 12, p. 88. , https://doi.org/10.1186/s12985-015-0314-4; Jengarn, J., Wongthida, P., Wanasen, N., Frantz, P.N., Wanitchang, A., Jong-Kaewwattana, A., Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone (2015) J Gen Virol, 96, pp. 2206-2218. , https://doi.org/10.1099/vir.0.000184; Li, J., Jin, Z., Gao, Y., Zhou, L., Ge, X., Guo, X., Han, J., Yang, H., Development of the full-length cDNA clones of two porcine epidemic diarrhea disease virus isolates with different virulence (2017) PLoS One, 12. , https://doi.org/10.1371/journal.pone.0173998; Lee, S., Son, K.-Y.Y., Noh, Y.-H.H., Lee, S.-C.C., Choi, H.-W.W., Yoon, I.-J.J., Lee, C., Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus (2017) Vet Microbiol, 207, pp. 248-258. , https://doi.org/10.1016/j.vetmic.2017.06.019; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Wang, Q., Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets (2017) J Virol, 91, pp. e00227-e00317. , https://doi.org/10.1128/JVI.00227-17; Manders, E.M.M., Stap, J., Brakenhoff, G.J., Driel, R.V., Aten, J.A., Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy (1993) J Cell Sci, 103, pp. 857-862; Dunn, K.W., Kamocka, M.M., McDonald, J.H., A practical guide to evaluating colocalization in biological microscopy (2011) Am J Physiol Cell Physiol, 300, pp. C723-C742. , https://doi.org/10.1152/ajpcell.00462.2010; Huotari, J., Helenius, A., Endosome maturation (2011) EMBO J, 30, pp. 3481-3500. , https://doi.org/10.1038/emboj.2011.286; Salanueva, I.J., Carrascosa, J.L., Risco, C., Structural maturation of the transmissible gastroenteritis coronavirus (1999) J Virol, 73, pp. 7952-7964; Fultz, P.N., Vance, P.J., Endres, M.J., Tao, B., Dvorin, J.D., Davis, I.C., Lifson, J.D., Hoxie, J.A., In vivo attenuation of simian immunodeficiency virus by disruption of a tyrosine-dependent sorting signal in the envelope glycoprotein cytoplasmic tail (2001) J Virol, 75, pp. 278-291. , https://doi.org/10.1128/JVI.75.1.278-291.2001; Bu, Z., Ye, L., Vzorov, A., Taylor, D., Compans, R.W., Yang, C., Enhancement of immunogenicity of an HIV Env DNA vaccine by mutation of the Tyr-based endocytosis motif in the cytoplasmic domain (2004) Virology, 328, pp. 62-73. , https://doi.org/10.1016/j.virol.2004.06.041; Costers, S., Delputte, P.L., Nauwynck, H.J., Porcine reproductive and respiratory syndrome virus-infected alveolar macrophages contain no detectable levels of viral proteins in their plasma membrane and are protected against antibody-dependent, complement-mediated cell lysis (2006) J Gen Virol, 87, pp. 2341-2351. , https://doi.org/10.1099/vir.0.81808-0; Van de Walle, G.R., Favoreel, H.W., Nauwynck, H.J., Pensaert, M.B., Antibody-induced internalization of viral glycoproteins and gE-gI Fc receptor activity protect pseudorabies virus-infected monocytes from efficient complement-mediated lysis (2003) J Gen Virol, 84, pp. 939-947. , https://doi.org/10.1099/vir.0.18663-0; Lavi, E., Wang, Q., Weiss, S.R., Gonatas, N.K., Syncytia formation induced by coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus (1996) Virology, 221, pp. 325-334. , https://doi.org/10.1006/viro.1996.0382; Tobler, K., Ackermann, M., PEDV leader sequence and junction sites (1995) Adv Exp Med Biol, 380, pp. 541-542. , https://doi.org/10.1007/978-1-4615-1899-0_86; Beall, A., Yount, B., Lin, C.-M.M., Hou, Y., Wang, Q., Saif, L., Baric, R., Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A (2016) mBio, 7, pp. e01451-e01515. , https://doi.org/10.1128/mBio.01451-15; Okda, F.A., Lawson, S., Singrey, A., Nelson, J., Hain, K.S., Joshi, L.R., Christopher-Hennings, J., Diel, D.G., The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes (2017) Virology, 509, pp. 185-194. , https://doi.org/10.1016/j.virol.2017.06.013; Almazán, F., González, J.M., Pénzes, Z., Izeta, A., Calvo, E., Plana-Durán, J., Enjuanes, L., Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome (2000) Proc Natl Acad Sci U S A, 97, pp. 5516-5521. , https://doi.org/10.1073/pnas.97.10.5516; Manders, E.M.M., Verbeek, F.J., Aten, J.A., Measurement of colocalization of objects in dual-colour confocal images (1993) J Microsc, 169, pp. 375-382. , https://doi.org/10.1111/j.1365-2818.1993.tb03313.x; Saif, L.J., Ward, L.A., Yuan, L., Rosen, B.I., To, T.L., The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses (1996) Arch Virol Suppl, 12, pp. 153-161; Lin, C.-M.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Hu, H., Wang, Q., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Vet Res, 46, p. 134. , https://doi.org/10.1186/s13567-015-0278-9; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg Infect Dis, 20, p. 662; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.-M.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet Microbiol, 173, pp. 258-269. , https://doi.org/10.1016/j.vetmic.2014.08.012; Neuman, B.W., Adair, B.D., Yeager, M., Buchmeier, M.J., Purification and electron cryomicroscopy of coronavirus particles (2008) SARS- and Other Coronaviruses: Laboratory Protocols, pp. 129-136. , Ca-vanagh D ed, Humana Press, Totowa, NJ; Frigge, M., Hoaglin, D.C., Iglewicz, B., Some implementations of the boxplot (1989) Am Stat, 43, p. 50. , https://doi.org/10.2307/2685173; Wei, Z., Lu, W., Li, Z., Mo, J., Zeng, X., Zeng, Z., Sun, B., Ma, J., Complete genome sequence of novel porcine epidemic diarrhea virus strain GD-1 in China (2012) J Virol, 86, pp. 13824-13825. , https://doi.org/10.1128/JVI.02615-12; Duarte, M., Laude, H., Sequence of the spike protein of the porcine epidemic diarrhoea virus (1994) J Gen Virol, 75, pp. 1195-1200. , https://doi.org/10.1099/0022-1317-75-5-1195; Gao, Y., Kou, Q., Ge, X., Zhou, L., Guo, X., Yang, H., Phylogenetic analysis of porcine epidemic diarrhea virus field strains prevailing recently in China (2013) Arch Virol, 158, pp. 711-715. , https://doi.org/10.1007/s00705-012-1541-2","Wang, Q.; Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State UniversityUnited States; email: wang.655@osu.edu",,"American Society for Microbiology",0022538X,,JOVIA,"30404797","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85057759222 "Wang D., Chen J., Yu C., Zhu X., Xu S., Fang L., Xiao S.","36060664000;57192309339;57210253964;56367538000;56912579200;7402470374;7402022567;","Porcine reproductive and respiratory syndrome virus nsp11 antagonizes type I interferon signaling by targeting IRF9",2019,"Journal of Virology","93","15", e00623-19,"","",,1,"10.1128/JVI.00623-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070056122&doi=10.1128%2fJVI.00623-19&partnerID=40&md5=c362a18b5a68d07362343f4b00a3623e","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China","Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Chen, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Yu, C., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Zhu, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Xu, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Fang, L., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China; Xiao, S., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China","Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus from the Nidovirales order that causes reproductive failure and respiratory disease in pigs and poses a constant threat to the global pig industry. The PRRSV-encoded nonstructural protein 11 (nsp11) is a nidovirus-specific endoribonuclease (NendoU) that is conserved throughout the Arteriviridae and Coronaviridae families. Previously, our research and that of others demonstrated that PRRSV nsp11 inhibits type I interferon (IFN) production through NendoU activity-dependent mechanisms. Here, we found that PRRSV nsp11 also inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs). Detailed analysis showed that nsp11 targeted interferon regulatory factor 9 (IRF9), but not transducer and activator of transcription 1 (STAT1) or STAT2, key molecules in the type I IFN signaling pathway. Furthermore, the nsp11-IRF9 interaction impaired the formation and nuclear translocation of the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) in both nsp11-overexpressed and PRRSV-infected cells. Importantly, nsp11 mutations (H129A, H144A, and K173A) that ablate NendoU activity or its cell cytotoxicity also interacted with IRF9 and retained the ability to block IFN signaling, indicating that the nsp11-IRF9 interaction is independent of NendoU activity or cell cytotoxicity of nsp11. Taking the results together, our study demonstrated that PRRSV nsp11 antagonizes type I IFN signaling by targeting IRF9 via a NendoU activity-independent mechanism, and this report describes a novel strategy evolved by PRRSV to counteract host innate antiviral responses, revealing a potential new function for PRRSV nsp11 in type I IFN signaling. IMPORTANCE The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Interferon regulatory factor 9; Nidovirus-specific endoribonuclease; Porcine reproductive and respiratory syndrome virus; Type I IFN signaling","interferon; interferon regulatory factor 9; interferon stimulated gene factor 3; nonstructural protein 11; protein H129A; protein H144A; protein K173A; ribonuclease; STAT1 protein; STAT2 protein; unclassified drug; viral protein; Article; carboxy terminal sequence; controlled study; cytokine responsive element; cytotoxicity; enzyme activity; enzyme mechanism; gene translocation; innate immunity; nonhuman; Porcine reproductive and respiratory syndrome virus; priority journal; protein analysis; protein expression; protein function; protein protein interaction; protein targeting; signal transduction","Lunney, J.K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B., Renukaradhya, G.J., Porcine reproductive and respiratory syndrome virus (PRRSV): Pathogenesis and interaction with the immune system (2016) Annu Rev Anim Biosci, 4, pp. 129-154. , https://doi.org/10.1146/annurev-animal-022114-111025; Murtaugh, M.P., Stadejek, T., Abrahante, J.E., Lam, T.T., Leung, F.C., The ever-expanding diversity of porcine reproductive and respiratory syndrome virus (2010) Virus Res, 154, pp. 18-30. , https://doi.org/10.1016/j.virusres.2010.08.015; Fang, Y., Snijder, E.J., The PRRSV replicase: Exploring the multifunctionality of an intriguing set of nonstructural proteins (2010) Virus Res, 154, pp. 61-76. , https://doi.org/10.1016/j.virusres.2010.07.030; Kappes, M.A., Faaberg, K.S., PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity (2015) Virology, 479, pp. 475-486. , https://doi.org/10.1016/j.virol.2015.02.012; Dokland, T., The structural biology of PRRSV (2010) Virus Res, 154, pp. 86-97. , https://doi.org/10.1016/j.virusres.2010.07.029; Du, T.F., Nan, Y.C., Xiao, S.Q., Zhao, Q., Zhou, E.M., Antiviral strategies against PRRSV infection (2017) Trends Microbiol, 25, pp. 968-979. , https://doi.org/10.1016/j.tim.2017.06.001; Butler, J.E., Lager, K.M., Golde, W., Faaberg, K.S., Sinkora, M., Loving, C., Zhang, Y.I., Porcine reproductive and respiratory syndrome (PRRS): An immune dysregulatory pandemic (2014) Immunol Res, 59, pp. 81-108. , https://doi.org/10.1007/s12026-014-8549-5; Randall, R.E., Goodbourn, S., Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J Gen Virol, 89, pp. 1-47. , https://doi.org/10.1099/vir.0.83391-0; Darnell, J.E., Jr., Kerr, I.M., Stark, G.R., Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins (1994) Science, 264, pp. 1415-1421. , https://doi.org/10.1126/science.8197455; Ihle, J.N., The janus protein tyrosine kinase family and its role in cytokine signaling (1995) Adv Immunol, 60, pp. 1-35. , https://doi.org/10.1016/S0065-2776(08)60582-9; Qureshi, S.A., Salditt-Georgieff, M., Darnell, J.E., Jr., Tyrosine-phosphorylated stat1 and stat2 plus a 48-kda protein all contact DNA in forming interferon-stimulated-gene factor 3 (1995) Proc Natl Acad Sci U S A, 92, pp. 3829-3833. , https://doi.org/10.1073/pnas.92.9.3829; Pitini, V., Arrigo, C., Altavilla, G., How cells respond to interferons (2010) J Clin Oncol, 28, p. E439. , https://doi.org/10.1200/JCO.2010.28.9603; Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions (2011) Curr Opin Virol, 1, pp. 519-525. , https://doi.org/10.1016/j.coviro.2011.10.008; Nan, Y.C., Wu, C.Y., Zhang, Y.J., Posting date. Interplay between janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism (2017) Front Immunol, , https://doi.org/10.3389/fimmu.2017.01758, 11 December; Zhu, X.Y., Wang, D., Zhou, J.W., Pan, T., Chen, J.Y., Yang, Y.T., Lv, M.T., Xiao, S.B., Posting date. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2 J Virol, , https://doi.org/10.1128/JVI.00003-17, 28 April 2017; Arnold, M.M., Barro, M., Patton, J.T., Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain (2013) J Virol, 87, pp. 9813-9821. , https://doi.org/10.1128/JVI.01146-13; Sen, A., Rott, L., Phan, N., Mukherjee, G., Greenberg, H.B., Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation (2014) J Virol, 88, pp. 41-53. , https://doi.org/10.1128/JVI.01501-13; Oda, K., Matoba, Y., Irie, T., Kawabata, R., Fukushi, M., Sugiyama, M., Sakaguchi, T., Structural basis of the inhibition of STAT1 activity by sendai virus c protein (2015) J Virol, 89, pp. 11487-11499. , https://doi.org/10.1128/JVI.01887-15; Sun, Y., Ke, H.Z., Han, M.Y., Chen, N., Fang, W.H., Yoo, D., Nonstructural protein 11 of porcine reproductive and respiratory syndrome virus suppresses both MAVS and RIG-I expression as one of the mechanisms to antagonize type I interferon production PLoS One, , https://doi.org/10.1371/journal.pone.0168314, 30 Decembe 2016, posting date; Shi, X.B., Wang, L., Li, X.W., Zhang, G.P., Guo, J.Q., Zhao, D., Chai, S.J., Deng, R.G., Endoribonuclease activities of porcine reproductive and respiratory syndrome virus nsp11 was essential for nsp11 to inhibit IFN-beta induction (2011) Mol Immunol, 48, pp. 1568-1572. , https://doi.org/10.1016/j.molimm.2011.03.004; Shi, Y.J., Li, Y.W., Lei, Y.Y., Ye, G., Shen, Z., Sun, L.M., Luo, R., Peng, G.Q., A dimerization-dependent mechanism drives the endoribonuclease function of porcine reproductive and respiratory syndrome virus nsp11 (2016) J Virol, 90, pp. 4579-4592. , https://doi.org/10.1128/JVI.03065-15; Takaoka, A., Yanai, H., Interferon signalling network in innate defence (2006) Cell Microbiol, 8, pp. 907-922. , https://doi.org/10.1111/j.1462-5822.2006.00716.x; Zhang, M.F., Li, X.R., Deng, Z.Q., Chen, Z.H., Liu, Y., Gao, Y.N., Wu, W., Chen, Z.Z., Structural biology of the arterivirus nsp11 endoribonucleases J Virol, , https://doi.org/10.1128/JVI.01309-16, 16 December 2017, posting date; Shi, X.B., Zhang, X.Z., Chang, Y.Z., Jiang, B., Deng, R.G., Wang, A.P., Zhang, G.P., Nonstructural protein 11 (nsp11) of porcine reproductive and respiratory syndrome virus (PRRSV) promotes PRRSV infection in MARC-145 cells BMC Vet Res, , https://doi.org/10.1186/s12917-016-0717-5, 6 June 2016, posting date; Nedialkova, D.D., Ulferts, R., van den Born, E., Lauber, C., Gorbalenya, A.E., Ziebuhr, J., Snijder, E.J., Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease (2009) J Virol, 83, pp. 5671-5682. , https://doi.org/10.1128/JVI.00261-09; Posthuma, C.C., Nedialkova, D.D., Zevenhoven-Dobbe, J.C., Blokhuis, J.H., Gorbalenya, A.E., Snijder, E.J., Site-directed mutagenesis of the nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle (2006) J Virol, 80, pp. 1653-1661. , https://doi.org/10.1128/JVI.80.4.1653-1661.2006; Deng, X., van Geelen, A., Buckley, A.C., O’Brien, A., Pillatzki, A., Lager, K.M., Faaberg, K.S., Baker, S.C., Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses (2019) J Virol, 93, pp. e02000-e02018. , https://doi.org/10.1128/JVI.02000-18; Guo, L., Luo, X., Li, R., Xu, Y., Zhang, J., Ge, J., Bu, Z., Wang, Y., Porcine epidemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1 (2016) J Virol, 90, pp. 8281-8292. , https://doi.org/10.1128/JVI.01091-16; Ashour, J., Laurent-Rolle, M., Shi, P.-Y., García-Sastre, A., NS5 of dengue virus mediates STAT2 binding and degradation (2009) J Virol, 83, pp. 5408-5418. , https://doi.org/10.1128/JVI.02188-08; Grant, A., Ponia, S.S., Tripathi, S., Balasubramaniam, V., Miorin, L., Sourisseau, M., Schwarz, M.C., García-Sastre, A., Zika virus targets human STAT2 to inhibit type I interferon signaling (2016) Cell Host Microbe, 19, pp. 882-890. , https://doi.org/10.1016/j.chom.2016.05.009; Zhang, R.X., Fang, L.R., Wang, D., Cai, K.M., Zhang, H., Xie, L.L., Li, Y., Xiao, S.B., Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9 (2015) Virology, 485, pp. 414-421. , https://doi.org/10.1016/j.virol.2015.08.005; Zhang, A.P.P., Bornholdt, Z.A., Liu, T., Abelson, D.M., Lee, D.E., Li, S., Woods, V.L., Saphire, E.O., The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold (2012) PLoS Pathog, , https://doi.org/10.1371/journal.ppat.1002550, 23 February posting date; Tamura, T., Yanai, H., Savitsky, D., Taniguchi, T., The IRF family transcription factors in immunity and oncogenesis (2008) Annu Rev Immunol, 26, pp. 535-584. , https://doi.org/10.1146/annurev.immunol.26.021607.090400; Banninger, G., Reich, N.C., STAT2 nuclear trafficking (2004) J Biol Chem, 279, pp. 39199-39206. , https://doi.org/10.1074/jbc.M400815200; Peng, Y.B., Yerle, M., Liu, B., Mapping of nine porcine interferon regulatory factor genes (2006) Anim Genet, 37, pp. 600-601. , https://doi.org/10.1111/j.1365-2052.2006.01525.x; Martinez-Moczygemba, M., Gutch, M.J., French, D.L., Reich, N.C., Distinct STAT structure promotes interaction of STAT2 with the p48 subunit of the interferon-alpha-stimulated transcription factor ISGF3 (1997) J Biol Chem, 272, pp. 20070-20076. , https://doi.org/10.1074/jbc.272.32.20070; Veals, S.A., Santa Maria, T., Levy, D.E., Two domains of ISGF3 gamma that mediate protein-DNA and protein-protein interactions during transcription factor assembly contribute to DNA-binding specificity (1993) Mol Cell Biol, 13, pp. 196-206. , https://doi.org/10.1128/mcb.13.1.196; Ke, H., Yoo, D., The viral innate immune antagonism and an alternative vaccine design for PRRS virus (2017) Vet Microbiol, 209, pp. 75-89. , https://doi.org/10.1016/j.vetmic.2017.03.014; Wang, D., Fan, J., Fang, L., Luo, R., Ouyang, H., Ouyang, C., Zhang, H., Xiao, S., The nonstructural protein 11 of porcine reproductive and respiratory syndrome virus inhibits NF-kappaB signaling by means of its deubiquitinating activity (2015) Mol Immunol, 68, pp. 357-366. , https://doi.org/10.1016/j.molimm.2015.08.011; Su, Y., Shi, P., Zhang, L., Lu, D., Zhao, C., Li, R., Zhang, L., Huang, J., The superimposed deubiquitination effect of OTULIN and PRRSV nsp11 promoted the multiplication of PRRSV (2018) J Virol, , https://doi.org/10.1128/JVI.00175-18; Deng, X., Baker, S.C., An “old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses (2018) Virology, , https://doi.org/10.1016/j.virol.2017.12.024; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260. , https://doi.org/10.1073/pnas.1618310114; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006195; Suprunenko, T., Hofer, M.J., The emerging role of interferon regulatory factor 9 in the antiviral host response and beyond (2016) Cytokine Growth Factor Rev, 29, pp. 35-43. , https://doi.org/10.1016/j.cytogfr.2016.03.002; Hofer, M.J., Li, W., Lim, S.L., Campbell, I.L., The type I interferon-alpha mediates a more severe neurological disease in the absence of the canonical signaling molecule interferon regulatory factor 9 (2010) J Neurosci, 30, pp. 1149-1157. , https://doi.org/10.1523/JNEUROSCI.3711-09.2010; Hofer, M.J., Li, W., Manders, P., Terry, R., Lim, S.L., King, N.J., Campbell, I.L., Mice deficient in STAT1 but not STAT2 or IRF9 develop a lethal CD4 t-cell-mediated disease following infection with lymphocytic choriomeningitis virus (2012) J Virol, 86, pp. 6932-6946. , https://doi.org/10.1128/JVI.07147-11; Barnard, P., McMillan, N.A., The human papillomavirus e7 oncoprotein abrogates signaling mediated by interferon-alpha (1999) Virology, 259, pp. 305-313. , https://doi.org/10.1006/viro.1999.9771; Verweij, M.C., Wellish, M., Whitmer, T., Malouli, D., Lapel, M., Jonjic, S., Haas, J.G., Fruh, K., Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1004901; Leonard, G.T., Sen, G.C., Effects of adenovirus E1A protein on interferon-signaling (1996) Virology, 224, pp. 25-33. , https://doi.org/10.1006/viro.1996.0503; Miller, D.M., Zhang, Y., Rahill, B.M., Waldman, W.J., Sedmak, D.D., Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immuno-regulatory responses by blocking multiple levels of IFN-alpha signal transduction (1999) J Immunol, 162, pp. 6107-6113; Wang, R., Nan, Y., Yu, Y., Zhang, Y.J., Porcine reproductive and respiratory syndrome virus nsp1beta inhibits interferon-activated JAK/STAT signal transduction by inducing karyopherin-alpha1 degradation (2013) J Virol, 87, pp. 5219-5228. , https://doi.org/10.1128/JVI.02643-12; Patel, D., Nan, Y., Shen, M., Ritthipichai, K., Zhu, X., Zhang, Y.J., Porcine reproductive and respiratory syndrome virus inhibits type I interferon signaling by blocking STAT1/STAT2 nuclear translocation (2010) J Virol, 84, pp. 11045-11055. , https://doi.org/10.1128/JVI.00655-10; Rengachari, S., Groiss, S., Devos, J.M., Caron, E., Grandvaux, N., Panne, D., Structural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function (2018) Proc Natl Acad Sci U S A, 115, pp. E601-E609. , https://doi.org/10.1073/pnas.1718426115; Wang, D., Cao, L., Xu, Z., Fang, L., Zhong, Y., Chen, Q., Luo, R., Xiao, S., MiR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-kappaB pathway (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0055838; Bi, J., Zeng, S., Xiao, S., Chen, H., Fang, L., Complete genome sequence of porcine epidemic diarrhea virus strain AJ1102 isolated from a suckling piglet with acute diarrhea in China (2012) J Virol, 86, pp. 10910-10911. , https://doi.org/10.1128/JVI.01919-12","Xiao, S.; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig ProductionChina; email: vet@mail.hzau.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"31092569","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85070056122 "Hou Y., Ke H., Kim J., Yoo D., Su Y., Boley P., Chepngeno J., Vlasova A.N., Saif L.J., Wang Q.","57158102900;57192587137;57209990385;7103242554;55938073200;57205406848;56557131200;16246782500;57205309530;55698230500;","Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-O-methyltransferase and the endocytosis signal of the spike protein",2019,"Journal of Virology","93","15", e00406-19,"","",,4,"10.1128/JVI.00406-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070055839&doi=10.1128%2fJVI.00406-19&partnerID=40&md5=f1572bc12638103b12270717a2a8e6fb","Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States","Hou, Y., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Ke, H., Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Kim, J., Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Yoo, D., Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Su, Y., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Boley, P., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Chepngeno, J., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Vlasova, A.N., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Saif, L.J., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States; Wang, Q., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State University, Wooster, OH, United States, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Wooster, OH, United States","Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A. Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate. IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs. © 2019 American Society for Microbiology. All Rights Reserved.","2’-O-methyltransferase; Coronavirus; Nsp16; PEDV; Vaccine","complementary DNA; interferon; live vaccine; protein methyltransferase; virus vaccine; animal cell; animal experiment; Article; controlled study; cytokine response; death; disease severity; endocytosis; enzyme activity; enzyme inactivation; genetic engineering; in vitro study; molecular cloning; mortality rate; newborn; nonhuman; piglet; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; priority journal; virus virulence","Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis, 18, pp. 161-163. , https://doi.org/10.3201/eid1801.111259; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of porcine epidemic diarrhea virus in the united states: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Invest, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Puranaveja, S., Poolperm, P., Lertwatcharasarakul, P., Kesdaengsakonwut, S., Boonsoongnern, A., Urairong, K., Kitikoon, P., Thanawongnuwech, R., Chinese-like strain of porcine epidemic diarrhea virus, thailand (2009) Emerg Infect Dis, 15, pp. 1112-1115. , https://doi.org/10.3201/eid1507.081256; Schulz, L.L., Tonsor, G.T., Assessment of the economic impacts of porcine epidemic diarrhea virus in the united states (2015) J Animal Sci, 93, pp. 5111-5118. , https://doi.org/10.2527/jas.2015-9136; Paarlberg, P.L., (2014) Updated Estimated Economic Welfare Impacts of Porcine Epidemic Diarrhea Virus (PEDV), , http://ageconsearch.umn.edu/bitstream/174517/2/14-4.Updated%20Estimated%20Economic%20Welfare%20Impacts%20of%20PEDV.pdf; Bjustrom-Kraft, J., Woodard, K., Giménez-Lirola, L., Setness, B., Ji, J., Lasley, P., Nelson, E., Zimmerman, J., Serum and mammary secretion antibody responses in porcine epidemic diarrhea-immune gilts following porcine epidemic diarrhea vaccination (2018) J Swine Health Prod, 26, pp. 34-40; Opriessnig, T., Gerber, P.F., Shen, H., de Castro, A., Zhang, J., Chen, Q., Halbur, P., Evaluation of the efficacy of a commercial inactivated genogroup 2b-based porcine epidemic diarrhea virus (PEDV) vaccine and experimental live genogroup 1b exposure against 2b challenge (2017) Vet Res, 48, p. 69. , https://doi.org/10.1186/s13567-017-0472-z; Crawford, K., Lager, K.M., Kulshreshtha, V., Miller, L.C., Faaberg, K.S., Status of vaccines for porcine epidemic diarrhea virus in the united states and canada (2016) Virus Res, 226, pp. 108-116. , https://doi.org/10.1016/j.virusres.2016.08.005; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus Res, 226, pp. 93-107. , https://doi.org/10.1016/j.virusres.2016.05.016; Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu Rev Anim Biosci, 3, pp. 375-395. , https://doi.org/10.1146/annurev-animal-022114-111038; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: A review of current epidemiology and available vaccines (2015) Clin Exp Vaccine Res, 4, pp. 166-176. , https://doi.org/10.7774/cevr.2015.4.2.166; Jarvis, M.C., Lam, H.C., Zhang, Y., Wang, L., Hesse, R.A., Hause, B.M., Vlasova, A., Marthaler, D., Genomic and evolutionary inferences between american and global strains of porcine epidemic diarrhea virus (2016) Prev Vet Med, 123, pp. 175-184. , https://doi.org/10.1016/j.prevetmed.2015.10.020; Jie, T., Benqiang, L., Jinghua, C., Ying, S., Huili, L., Preparation and characterization of an attenuated porcine epidemic diarrhea virus strain by serial passaging (2018) Arch Virol, 163, pp. 2997-3004. , https://doi.org/10.1007/s00705-018-3968-6; Lin, C.-M., Hou, Y., Marthaler, D.G., Gao, X., Liu, X., Zheng, L., Saif, L., Wang, Q., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet Microbiol, 201, pp. 62-71. , https://doi.org/10.1016/j.vetmic.2017.01.015; Li, Y., Wang, G., Wang, J., Man, K., Yang, Q., Cell attenuated porcine epidemic diarrhea virus strain zhejiang08 provides effective immune protection attributed to dendritic cell stimulation (2017) Vaccine, 35, pp. 7033-7041. , https://doi.org/10.1016/j.vaccine.2017.10.052; Chang, Y.-C., Kao, C.-F., Chang, C.-Y., Jeng, C.-R., Tsai, P.-S., Pang, V., Chiou, H.-Y., Chang, H.-W., Evaluation and comparison of the pathogenicity and host immune responses induced by a g2b Taiwan porcine epidemic diarrhea virus (strain pintung 52) and its highly cell-culture passaged strain in conventional 5-week-old pigs (2017) Viruses, 9, p. 121. , https://doi.org/10.3390/v9050121; Lee, S., Son, K.-Y., Noh, Y.-H., Lee, S.-C., Choi, H.-W., Yoon, I.-J., Lee, C., Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus (2017) Vet Microbiol, 207, pp. 248-258. , https://doi.org/10.1016/j.vetmic.2017.06.019; Kim, Y., Oh, C., Shivanna, V., Hesse, R.A., Chang, K.O., Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism (2017) BMC Vet Res, 13, p. 356. , https://doi.org/10.1186/s12917-017-1283-1; Chen, F., Zhu, Y., Wu, M., Ku, X., Ye, S., Li, Z., Guo, X., He, Q., Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus (2015) Viruses, 7, pp. 5525-5538. , https://doi.org/10.3390/v7102891; Lin, C.-M., Ghimire, S., Hou, Y., Boley, P., Langel, S.N., Vlasova, A.N., Saif, L.J., Wang, Q., Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs (2019) BMC Vet Res, 15, p. 26. , https://doi.org/10.1186/s12917-018-1756-x; Zuñiga, S., Pascual-Iglesias, A., Sanchez, C.M., Sola, I., Enjuanes, L., Virulence factors in porcine coronaviruses and vaccine design (2016) Virus Res, 226, pp. 142-151. , https://doi.org/10.1016/j.virusres.2016.07.003; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Wang, Q., Deletion of a 197-amino-acid region in the n-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets (2017) J Virol, 91, pp. e00227-e00317. , https://doi.org/10.1128/JVI.00227-17; Baker, S.C., Coronavirus: Molecular biology (2010) Desk Encyclopedia of General Virology, pp. 445-453. , Mahy BWJ, van Regenmortel MHV (ed), Academic Press, New York, NY; Hyde, J.L., Diamond, M.S., Innate immune restriction and antagonism of viral RNA lacking 2-o methylation (2015) Virology, 479-480, pp. 66-74. , https://doi.org/10.1016/j.virol.2015.01.019; Daffis, S., Szretter, K.J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T.-Y., Diamond, M.S., 2’-O methylation of the viral mRNA cap evades host restriction by IFIT family members (2010) Nature, 468, pp. 452-456. , https://doi.org/10.1038/nature09489; Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Gorbalenya, A.E., Canard, B., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’o)-methyltransferase activity (2008) J Virol, 82, pp. 8071-8084. , https://doi.org/10.1128/JVI.00407-08; Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Guo, D., Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-o-methylation by nsp16/nsp10 protein complex (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002294; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Guo, D., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap n7 methyltransferase (2009) Proc Natl Acad Sci U S A, 106, pp. 3484-3489. , https://doi.org/10.1073/pnas.0808790106; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Rao, Z., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc Natl Acad Sci U S A, 112, pp. 9436-9441. , https://doi.org/10.1073/pnas.1508686112; Bouvet, M., Lugari, A., Posthuma, C.C., Zevenhoven, J.C., Bernard, S., Betzi, S., Imbert, I., Morelli, X., Coronavirus nsp10, a critical co-factor for activation of multiple replicative enzymes (2014) J Biol Chem, 289, pp. 25783-25796. , https://doi.org/10.1074/jbc.M114.577353; Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Canard, B., Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-o-methyltransferase nsp10/nsp16 complex (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002059; Menachery, V.D., Yount, B.L., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity (2014) J Virol, 88, pp. 4251-4264. , https://doi.org/10.1128/JVI.03571-13; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., Graham, R.L., Baric, R.S., Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere, 2, pp. e00346-e00417. , https://doi.org/10.1128/mSphere.00346-17; Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Thiel, V., Ribose 2’-o-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor mda5 (2011) Nat Immunol, 12, pp. 137-143. , https://doi.org/10.1038/ni.1979; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., McAnarney, E.T., Baric, R.S., Combination attenuation offers strategy for live attenuated coronavirus vaccines (2018) J Virol, 92, pp. e00710-e00718. , https://doi.org/10.1128/JVI.00710-18; Hou, Y., Meulia, T., Gao, X., Saif, L.J., Wang, Q., Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs (2019) J Virol, 93, pp. e01758-e01818. , https://doi.org/10.1128/JVI.01758-18; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2017) J Virol, 92, pp. e01677-e01717. , https://doi.org/10.1128/JVI.01677-17; Li, L., Fu, F., Xue, M., Chen, W., Liu, J., Shi, H., Chen, J., Liu, P., IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha (2017) Antiviral Res, 140, pp. 76-82. , https://doi.org/10.1016/j.antiviral.2017.01.012; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, ohio, USA, 2014 (2014) Emerg Infect Dis, 20, pp. 1227-1230. , https://doi.org/10.3201/eid2007.140296; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Ma, J.-Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., Emerging and reemerging coronaviruses in pigs (2019) Curr Opin Virol, 34, pp. 39-49. , https://doi.org/10.1016/j.coviro.2018.12.001; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.-M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet Microbiol, 173, pp. 258-269. , https://doi.org/10.1016/j.vetmic.2014.08.012; Lin, C.-M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Hu, H., Wang, Q., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Vet Res, 46, p. 134. , https://doi.org/10.1186/s13567-015-0278-9; Chen, Q., Thomas, J.T., Giménez-Lirola, L.G., Hardham, J.M., Gao, Q., Gerber, P.F., Opriessnig, T., Zhang, J., Evaluation of serological cross-reactivity and cross-neutralization between the united states porcine epidemic diarrhea virus prototype and S-INDEL-variant strains (2016) BMC Vet Res, 12, p. 70. , https://doi.org/10.1186/s12917-016-0697-5; Feder, M., Pas, J., Wyrwicz, L.S., Bujnicki, J.M., Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2=-o-methyltransferases (2003) Gene, 302, pp. 129-138. , https://doi.org/10.1016/S0378-1119(02)01097-1; Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T.S., Shi, P.-Y., West nile virus 5’-cap structure is formed by sequential guanine n-7 and ribose 2’-o methylations by nonstructural protein 5 (2006) J Virol, 80, pp. 8362-8370. , https://doi.org/10.1128/JVI.00814-06; Li, S.-H., Dong, H., Li, X.-F., Xie, X., Zhao, H., Deng, Y.-Q., Wang, X.-Y., Zhu, S.-Y., ; Wang, H.-J., Zhang, B., Leng, Q.-B., Zuest, R., Qin, E.-D., Qin, C.-F., Shi, P.-Y., Rational design of a flavivirus vaccine by abolishing viral RNA 2’-o methylation (2013) J Virol, 87, pp. 5812-5819. , https://doi.org/10.1128/JVI.02806-12; Züst, R., Dong, H., Li, R.X., Chang, D.C., Zhang, B., Balakrishnan, T., Toh, Y.X., Fink, K., Rational design of a live attenuated dengue vaccine: 2’-O-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003521; Zhang, Y., Wei, Y., Zhang, X., Cai, H., Niewiesk, S., Li, J., Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase (2014) J Virol, 88, pp. 11411-11429. , https://doi.org/10.1128/JVI.00876-14; Pott, J., Mahlakõiv, T., Mordstein, M., Duerr, C.U., Michiels, T., Stockinger, S., Staeheli, P., Hornef, M.W., IFN-lambda determines the intestinal epithelial antiviral host defense (2011) Proc Natl Acad Sci U S A, 108, pp. 7944-7949. , https://doi.org/10.1073/pnas.1100552108; Swamy, M., Abeler-Dörner, L., Chettle, J., Mahlakõiv, T., Goubau, D., Chakravarty, P., Ramsay, G., Hayday, A.C., Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance (2015) Nat Commun, 6, p. 7090. , https://doi.org/10.1038/ncomms8090; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268. , https://doi.org/10.1016/j.virol.2015.12.010; Deng, X., van Geelen, A., Buckley, A.C., O’Brien, A., Pillatzki, A., Lager, K.M., Faaberg, K.S., Baker, S.C., Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses (2019) J Virol, 93, pp. e02000-e02018. , https://doi.org/10.1128/JVI.02000-18; Cao, L., Ge, X., Gao, Y., Herrler, G., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon- production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway (2015) Virol J, 12, p. 127. , https://doi.org/10.1186/s12985-015-0345-x; Guo, L., Luo, X., Li, R., Xu, Y., Zhang, J., Ge, J., Bu, Z., Wang, Y., Porcine epidemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1 (2016) J Virol, 90, pp. 8281-8292. , https://doi.org/10.1128/JVI.01091-16; Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., Liu, H.-J., Tong, D., Porcine epidemic diarrhea virus e protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression (2013) Virol J, 10, p. 26. , https://doi.org/10.1186/1743-422X-10-26; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J Virol, 88, pp. 8936-8945. , https://doi.org/10.1128/JVI.00700-14; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine epidemic diarrhea virus 3c-like protease regulates its interferon antagonism by cleaving NEMO (2016) J Virol, 90, pp. 2090-2101. , https://doi.org/10.1128/JVI.02514-15; Jimenez-Guardeño, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., DeDiego, M.L., Castaño-Rodriguez, C., Fernandez-Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005215; Liu, X., Lin, C.-M., Annamalai, T., Gao, X., Lu, Z., Esseili, M.A., Jung, K., Wang, Q., Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain (2015) Vet Res, 46, p. 109. , https://doi.org/10.1186/s13567-015-0249-1; Jung, K., Annamalai, T., Lu, Z., Saif, L.J., Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs (2015) Vet Microbiol, 178, pp. 31-40. , https://doi.org/10.1016/j.vetmic.2015.04.022; Thomas, J.T., Chen, Q., Gauger, P.C., Giménez-Lirola, L.G., Sinha, A., Harmon, K.M., Madson, D.M., Zhang, J., Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naïve conventional neonatal and weaned pigs (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0139266; Chen, P., Wang, K., Hou, Y., Li, H., Li, X., Yu, L., Jiang, Y., Zhou, Y., Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011-2017 (2019) Infect Genet Evol, 69, pp. 153-165. , https://doi.org/10.1016/j.meegid.2019.01.022; Azevedo, M.P., Vlasova, A.N., Saif, L.J., Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease (2013) Expert Rev Vaccines, 12, pp. 169-181. , https://doi.org/10.1586/erv.13.3; Park, S., Sestak, K., Hodgins, D.C., Shoup, D.I., Ward, L.A., Jackwood, D.J., Saif, L.J., Immune response of sows vaccinated with attenuated transmissible gastroenteritis virus (TGEV) and recombinant TGEV spike protein vaccines and protection of their suckling pigs against virulent TGEV challenge exposure (1998) Am J Vet Res, 59, pp. 1002-1008; Kandasamy, S., Chattha, K.S., Vlasova, A.N., Saif, L.J., Prenatal vitamin a deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq) in a neonatal gnotobiotic pig model (2014) Vaccine, 32, pp. 816-824. , https://doi.org/10.1016/j.vaccine.2013.12.039; Kandasamy, S., Vlasova, A.N., Fischer, D., Kumar, A., Chattha, K.S., Rauf, A., Shao, L., Saif, L.J., Differential effects of escherichia coli nissle and lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and b cell immunity (2016) J Immunol, 196, pp. 1780-1789. , https://doi.org/10.4049/jimmunol.1501705; Langel, S.N., Paim, F.C., Alhamo, M.A., Buckley, A., Van Geelen, A., Lager, K.M., Vlasova, A.N., Saif, L.J., Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets (2019) Front Immunol, 10, p. 727. , https://doi.org/10.3389/fimmu.2019.00727; Beall, A., Yount, B., Lin, C.-M., Hou, Y., Wang, Q., Saif, L., Baric, R., Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A (2016) mBio, 7, pp. e01451-e01515. , https://doi.org/10.1128/mBio.01451-15; Saif, L.J., Ward, L.A., Yuan, L., Rosen, B.I., To, T.L., The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses (1996) Gnotobiotic Piglets and Human Rotaviruses, pp. 153-161. , Chiba S, Estes MK, Nakata S, Calisher CH (ed), Springer, New York, NY; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg Infect Dis, 20, p. 662; Su, Y., Hou, Y., Wang, Q., The enhanced replication of an s-intact PEDV during coinfection with an s1 NTD-del PEDV in piglets (2019) Vet Microbiol, 228, pp. 202-212. , https://doi.org/10.1016/j.vetmic.2018.11.025; Miyazaki, A., Kandasamy, S., Michael, H., Langel, S.N., Paim, F.C., Chepngeno, J., Alhamo, M.A., Vlasova, A.N., Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model (2018) Vaccine, 36, pp. 6270-6281. , https://doi.org/10.1016/j.vaccine.2018.09.008; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method (2001) Methods, 25, pp. 402-408. , https://doi.org/10.1006/meth.2001.1262","Wang, Q.; Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Ohio State UniversityUnited States; email: wang.655@osu.edu",,"American Society for Microbiology",0022538X,,JOVIA,"31118255","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85070055839 "Chen J., Wang D., Sun Z., Gao L., Zhu X., Guo J., Xu S., Fang L., Li K., Xiaoa S.","57192309339;36060664000;57209097874;56437090000;56367538000;57203748056;56912579200;7402470374;55733139900;57209104578;","Arterivirus nsp4 antagonizes interferon beta production by proteolytically cleaving NEMO at multiple sites",2019,"Journal of Virology","93","12", e0038519,"","",,1,"10.1128/JVI.00385-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066470790&doi=10.1128%2fJVI.00385-19&partnerID=40&md5=f791e77291f0c94d91e1ad67e55bcb18","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States","Chen, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Sun, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Gao, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Zhu, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Guo, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Xu, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Li, K., Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States; Xiaoa, S., Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China","Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-) production by cleaving the NF-B essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN- production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN- production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN- transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival. IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro. In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4. © 2019 American Society for Microbiology. All Rights Reserved.","3C-like protease; Equine arteritis virus; Interferon beta; NF-B essential modulator; Porcine reproductive; Respiratory syndrome virus","beta interferon; glutamine; I kappa B kinase gamma; nonstructural protein 4; proteinase; AGMK cell line; animal cell; Article; binding site; controlled study; enzyme activity; enzyme inhibition; enzyme substrate; Equine arteritis virus; genomic fragment; HEK293T cell line; human; immune evasion; innate immunity; interferon induction; interferon production; nonhuman; Picornaviridae; PK-15 cell line; Porcine reproductive and respiratory syndrome virus; priority journal; protein cleavage; protein degradation; protein targeting; virus immunity; virus replication; virus survival","Kuhn, J.H., Lauck, M., Bailey, A.L., Shchetinin, A.M., Vishnevskaya, T.V., Bào, Y., Ng, T.F.F., Goldberg, T.L., Reorganization and expansion of the nidoviral family Arteriviridae (2016) Arch Virol, 161, pp. 755-768. , https://doi.org/10.1007/s00705-015-2672-z; Li, Y., Tas, A., Snijder, E.J., Fang, Y., Identification of porcine reproductive and respiratory syndrome virus ORF1a-encoded non-structural proteins in virus-infected cells (2012) J Gen Virol, 93, pp. 829-839. , https://doi.org/10.1099/vir.0.039289-0; Barrette-Ng, I.H., Ng, K.K.-S., Mark, B.L., Van Aken, D., Cherney, M.M., Garen, C., Kolodenko, Y., James, M.N.G., Structure of arterivirus nsp4. The smallest chymotrypsin-like proteinase with an alpha/beta C-terminal extension and alternate conformations of the oxyanion hole (2002) J Biol Chem, 277, pp. 39960-39966. , https://doi.org/10.1074/jbc.M206978200; Socha, W., Rola, J., Zmudzin, J.F., Variability of non-structural proteins of equine arteritis virus during persistent infection of the stallion (2015) Pol J Vet Sci, 18, pp. 255-259. , https://doi.org/10.1515/pjvs-2015-0033; Timoney, P.J., McCollum, W.H., Roberts, A.W., Murphy, T.W., Demonstration of the carrier state in naturally acquired equine arteritis virus infection in the stallion (1986) Res Vet Sci, 41, pp. 279-280. , https://doi.org/10.1016/S0034-5288(18)30616-7; Timoney, P.J., McCollum, W.H., Murphy, T.W., Roberts, A.W., Willard, J.G., Carswell, G.D., The carrier state in equine arteritis virus infection in the stallion with specific emphasis on the venereal mode of virus transmission (1987) J Reprod Fertil Suppl, 35, pp. 95-102; Balasuriya, U.B.R., Carossino, M., Timoney, P.J., Equine viral arteritis: A respiratory and reproductive disease of significant economic importance to the equine industry (2016) Equine Vet Educ, 30, pp. 497-512; Carossino, M., Wagner, B., Loynachan, A.T., Cook, R.F., Canisso, I.F., Chelvarajan, L., Edwards, C.L., Balasuriya, U.B.R., Equine arteritis virus elicits a mucosal antibody response in the reproductive tract of persistently infected stallions (2017) Clin Vaccine Immunol, 24, pp. e00215-e00217. , https://doi.org/10.1128/CVI.00215-17; Chand, R.J., Trible, B.R., Rowland, R.R., Pathogenesis of porcine reproductive and respiratory syndrome virus (2012) Curr Opin Virol, 2, pp. 256-263. , https://doi.org/10.1016/j.coviro.2012.02.002; Balasuriya, U.B., Carossino, M., Reproductive effects of arteriviruses: Equine arteritis virus and porcine reproductive and respiratory syndrome virus infections (2017) Curr Opin Virol, 27, pp. 57-70. , https://doi.org/10.1016/j.coviro.2017.11.005; Balasuriya, U.B., Hedges, J.F., Smalley, V.L., Navarrette, A., McCollum, W.H., Timoney, P.J., Snijder, E.J., MacLachlan, N.J., Genetic characterization of equine arteritis virus during persistent infection of stallions (2004) J Gen Virol, 85, pp. 379-390. , https://doi.org/10.1099/vir.0.19545-0; Meng, X.J., Heterogeneity of porcine reproductive and respiratory syndrome virus: Implications for current vaccine efficacy and future vaccine development (2000) Vet Microbiol, 74, pp. 309-329. , https://doi.org/10.1016/S0378-1135(00)00196-6; Rowland, R.R.R., Morrison, R.B., Challenges and opportunities for the control and elimination of porcine reproductive and respiratory syndrome virus (2012) Transbound Emerg Dis, 59, pp. 55-59. , https://doi.org/10.1111/j.1865-1682.2011.01306.x; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J Gen Virol, 94, pp. 2141-2163. , https://doi.org/10.1099/vir.0.056341-0; Fang, Y., Treffers, E.E., Li, Y., Tas, A., Sun, Z., Van Der Meer, Y., De Ru, A.H., Firth, A.E., Efficient 2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein (2012) Proc Natl Acad Sci U S A, 109, pp. E2920-E2928. , https://doi.org/10.1073/pnas.1211145109; Fang, Y., Snijder, E.J., The PRRSV replicase: Exploring the multifunc-tionality of an intriguing set of nonstructural proteins (2010) Virus Res, 154, pp. 61-76. , https://doi.org/10.1016/j.virusres.2010.07.030; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J Gen Virol, 81, pp. 853-879. , https://doi.org/10.1099/0022-1317-81-4-853; Snijder, E.J., Wassenaar, A.L., Spaan, W.J., Proteolytic processing of the replicase ORF1a protein of equine arteritis virus (1994) J Virol, 68, pp. 5755-5764; Snijder, E.J., Wassenaar, A.L., Spaan, W.J., Gorbalenya, A.E., The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases (1995) J Biol Chem, 270, pp. 16671-16676. , https://doi.org/10.1074/jbc.270.28.16671; Snijder, E.J., Wassenaar, A.L., Van Dinten, L.C., Spaan, W.J., Gorbalenya, A.E., The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases (1996) J Biol Chem, 271, pp. 4864-4871; Snijder, E.J., Wassenaar, A.L., Spaan, W.J., The 5= end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease (1992) J Virol, 66, pp. 7040-7048; Van Aken, D., Zevenhovendobbe, J., Gorbalenya, A.E., Snijder, E.J., Proteolytic maturation of replicase polyprotein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7 (2006) J Gen Virol, 87, pp. 3473-3482. , https://doi.org/10.1099/vir.0.82269-0; Chen, Z., Liu, S., Sun, W., Chen, L., Yoo, D., Li, F., Ren, S., Wang, J., Nuclear export signal of PRRSV NSP1 is necessary for type I IFN inhibition (2016) Virology, 499, pp. 278-287. , https://doi.org/10.1016/j.virol.2016.07.008; Ke, H., Yoo, D., The viral innate immune antagonism and an alternative vaccine design for PRRS virus (2017) Vet Microbiol, 209, pp. 75-89. , https://doi.org/10.1016/j.vetmic.2017.03.014; Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: A complex web of host defenses (2014) Annu Rev Immunol, 32, pp. 513-545. , https://doi.org/10.1146/annurev-immunol-032713-120231; Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Thiel, V., Ribose 2=-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat Immunol, 12, pp. 137-143. , https://doi.org/10.1038/ni.1979; Loo, Y.-M., Gale, M., Jr., Immune signaling by RIG-I-like receptors (2011) Immunity, 34, pp. 680-692. , https://doi.org/10.1016/j.immuni.2011.05.003; Kawai, T., Akira, S., Innate immune recognition of viral infection (2006) Nat Immunol, 7, pp. 131-137. , https://doi.org/10.1038/ni1303; Rui, Y., Su, J., Wang, H., Chang, J., Wang, S., Zheng, W., Cai, Y., Yu, X.F., Disruption of MDA5-mediated innate immune responses by the 3C proteins of coxsackievirus A16, coxsackievirus A6, and enterovirus D68 (2017) J Virol, 91, pp. e00546-e00617. , https://doi.org/10.1128/JVI.00546-17; Wang, D., Fang, L., Wei, D., Zhang, H., Luo, R., Chen, H., Li, K., Xiao, S., Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon (2014) J Virol, 88, pp. 10252-10258. , https://doi.org/10.1128/JVI.00869-14; Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M.F., Xiao, S., Porcine deltacoronavirus nsp5 inhibits interferon- Production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38. , https://doi.org/10.1016/j.virol.2016.12.005; Lei, X., Xiao, X., Xue, Q., Jin, Q., He, B., Wang, J., Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses (2013) J Virol, 87, pp. 1690-1698. , https://doi.org/10.1128/JVI.01855-12; Huang, C., Zhang, Q., Guo, X.K., Yu, Z.B., Xu, A.T., Tang, J., Feng, W.H., Porcine reproductive and respiratory syndrome virus nonstructural protein 4 antagonizes beta interferon expression by targeting the NF-B essential modulator (2014) J Virol, 88, pp. 10934-10945. , https://doi.org/10.1128/JVI.01396-14; Yoneyama, M., Fujita, T., RIG-I family RNA helicases: Cytoplasmic sensor for antiviral innate immunity (2007) Cytokine Growth Factor Rev, 18, pp. 545-551. , https://doi.org/10.1016/j.cytogfr.2007.06.023; Tian, X., Lu, G., Gao, F., Peng, H., Feng, Y., Ma, G., Bartlam, M., Gao, G.F., Structure and cleavage specificity of the chymotrypsin-like serine protease (3CLSP/nsp4) of porcine reproductive and respiratory syndrome virus (PRRSV) (2009) J Mol Biol, 392, pp. 977-993. , https://doi.org/10.1016/j.jmb.2009.07.062; Beura, L.K., Sarkar, S.N., Kwon, B., Subramaniam, S., Jones, C., Pattnaik, A.K., Osorio, F.A., Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation (2010) J Virol, 84, pp. 1574-1584. , https://doi.org/10.1128/JVI.01326-09; Randall, R.E., Goodbourn, S., Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J Gen Virol, 89, pp. 1-47. , https://doi.org/10.1099/vir.0.83391-0; Bender, S., Reuter, A., Eberle, F., Einhorn, E., Binder, M., Bartenschlager, R., Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus (2015) PLoS Pathog, 11. , https://doi.org/10.1371/journal.ppat.1005264; Mukherjee, A., Morosky, S.A., Delorme-Axford, E., Dybdahl-Sissoko, N., Ober-Ste, M.S., Wang, T., Coyne, C.B., The coxsackievirus B 3Cpro protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1001311; Anggakusuma, Frentzen, A., Gürlevik, E., Yuan, Q., Steinmann, E., Ott, M., Staeheli, P., Piet-Schmann, T., Control of hepatitis C virus replication in mouse liver-derived cells by MAVS-dependent production of type I and type III interferons (2015) J Virol, 89, pp. 3833-3845. , https://doi.org/10.1128/JVI.03129-14; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2016) J Virol, 90, pp. 2090-2101. , https://doi.org/10.1128/JVI.02514-15; Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., Xiao, S., Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling (2012) J Virol, 86, pp. 9311-9322. , https://doi.org/10.1128/JVI.00722-12; Ye, G., Deng, F., Shen, Z., Luo, R., Zhao, L., Xiao, S., Fu, Z.F., Peng, G., Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease (2016) Virology, 494, pp. 225-235. , https://doi.org/10.1016/j.virol.2016.04.018; Zunszain, P.A., Knox, S.R., Sweeney, T.R., Yang, J., Roque-Rosell, N., Belsham, G.J., Leatherbarrow, R.J., Curry, S., Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease com-plexed with a peptide substrate (2010) J Mol Biol, 395, pp. 375-389. , https://doi.org/10.1016/j.jmb.2009.10.048; Qian, S., Fan, W., Liu, T., Wu, M., Zhang, H., Cui, X., Zhou, Y., Qian, P., Seneca Valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage (2017) J Virol, 91, pp. e00823-e00917. , https://doi.org/10.1128/JVI.00823-17; Huang, L., Xiong, T., Yu, H., Zhang, Q., Zhang, K., Li, C., Hu, L., Weng, C., Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting TANK-TBK1-IKK-IRF3 complex (2017) Biochem J, 474, pp. 2051-2065. , https://doi.org/10.1042/BCJ20161037; Fang, R., Jiang, Q., Zhou, X., Wang, C., Guan, Y., Tao, J., Xi, J., Jiang, Z., MAVS activates TBK1 and IKK through TRAFs in NEMO dependent and independent manner (2017) PLoS Pathog, 13. , https://doi.org/10.1371/journal.ppat.1006720; Mauro, C., Pacifico, F., Lavorgna, A., Mellone, S., Iannetti, A., Acquaviva, R., Formisano, S., Leonardi, A., ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB (2006) J Biol Chem, 281, pp. 18482-18488. , https://doi.org/10.1074/jbc.M601502200; Keusekotten, K., Elliott, P.R., Glockner, L., Fiil, B.K., Damgaard, R.B., Kulathu, Y., Wauer, T., Komander, D., OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin (2013) Cell, 153, pp. 1312-1326. , https://doi.org/10.1016/j.cell.2013.05.014; Maubach, G., Schmädicke, A.C., Naumann, M., NEMO links nuclear factor-B to human diseases (2017) Trends Mol Med, 23, pp. 1138-1155. , https://doi.org/10.1016/j.molmed.2017.10.004; Godwin, R.C., Melvin, R.L., Gmeiner, W.H., Salsbury, F.R., Jr., Binding site configurations probe the structure and dynamics of the zinc finger of NEMO (NF-kappaB essential modulator) (2017) Biochemistry, 56, pp. 623-633. , https://doi.org/10.1021/acs.biochem.6b00755; Bal, E., Laplantine, E., Hamel, Y., Dubosclard, V., Boisson, B., Pesacatore, A., Picard, C., Smahi, A., Lack of interaction between NEMO and SHARPIN impairs linear ubiquitination and NF-B activation, and leads to incontinentia pig-menti (2017) J Allergy Clin Immunol, 140, pp. 1671e2-1682e2. , https://doi.org/10.1016/j.jaci.2016.11.056; Li, B., Fang, L., Liu, S., Zhao, F., Jiang, Y., He, K., Chen, H., Xiao, S., The genomic diversity of Chinese porcine reproductive and respiratory syndrome virus isolates from 1996 to 2009 (2010) Vet Microbiol, 146, pp. 226-237. , https://doi.org/10.1016/j.vetmic.2010.05.011; Van Dinten, L.C., Den Boon, J.A., Wassenaar, A.L., Spaan, W.J., Snijder, E.J., An infectious arterivirus cDNA clone: Identification of a replicase point mutation that abolishes discontinuous mRNA transcription (1997) Proc Natl Acad Sci U S A, 94, pp. 991-996. , https://doi.org/10.1073/pnas.94.3.991; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NF-kappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178. , https://doi.org/10.1016/j.virol.2017.04.024; Jing, H., Zhou, Y., Fang, L., Ding, Z., Wang, D., Ke, W., Chen, H., Xiao, S., DExD/H-box helicase 36 signaling via myeloid differentiation primary response gene 88 contributes to NF-B activation to type 2 porcine reproductive and respiratory syndrome virus infection (2017) Front Immunol, 8, p. 1365. , https://doi.org/10.3389/fimmu.2017.01365; Matayoshi, E., Wang, G., Krafft, G., Erickson, J., Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer (1990) Science, 247, pp. 954-958. , https://doi.org/10.1126/science.2106161","Xiaoa, S.; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig ProductionChina; email: vet@mail.hzau.edu.cn",,"American Society for Microbiology",0022538X,,JOVIA,"30944180","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85066470790 "Patil V., Patil S.A., Patil R., Bugarin A., Beaman K., Patil S.A.","57195253848;57212424776;7101770292;24477080200;7004984219;35499321200;","Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities",2019,"Medicinal Chemistry","15","2",,"150","161",,,"10.2174/1573406414666180524074648","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062077919&doi=10.2174%2f1573406414666180524074648&partnerID=40&md5=99b3d0a70b53550ef2997a808687fbc0","Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India; Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States; Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019, United States; Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States","Patil, V., Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India; Patil, S.A., Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India; Patil, R., Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States; Bugarin, A., Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019, United States; Beaman, K., Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States; Patil, S.A., Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States","Background: Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. Objective: With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. Method: A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)‘s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. Results: All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV) towards Rift Valley fever virus (RVFV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 µg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 µg/ml) compared to the standard drug Ribavirin (EC50: 11 µg/ml; visual assay and EC50: 12 µg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 µg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 µg/ml) compared to the standard drug Ribavirin (EC50: 12 µg/ml; visual assay and EC50: 9.9 µg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancers (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. Conclusion: Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro. © 2019 Bentham Science Publishers.","Anticancer; Antiviral; Aryl/heteroaryl; Colon; Structure-activity relationship; Thienyl chalcone","aciclovir; antineoplastic agent; antivirus agent; chalcone derivative; cidofovir; enviroxime; ganciclovir; lamivudine; neutral red; ribavirin; antineoplastic agent; antivirus agent; chalcone derivative; antineoplastic activity; antiviral activity; Article; breast cancer cell line; cancer inhibition; central nervous system cancer cell line; colon cancer cell line; controlled study; Dengue virus 2; DNA hybridization; dose response; drug cytotoxicity; drug potency; EC50; female; Hepatitis B virus; human; Human alphaherpesvirus 1; human cell; Human cytomegalovirus; Human cytomegalovirus (strain AD169); Human poliovirus 1; in vitro study; influenza A (H1N1); Influenza A virus (H1N1); LC50; leukemia cell line; lung non-small cell carcinoma cell line; male; melanoma cell line; Middle East respiratory syndrome coronavirus; ovarian cancer cell line; priority journal; prostate cancer cell line; renal cancer cell line; Rift Valley fever; Rift Valley fever virus; substitution reaction; Tacaribe virus; Venezuelan equine encephalitis virus; virus inhibition; Zika virus; chemistry; drug effect; preclinical study; tumor cell line; virus; Antineoplastic Agents; Antiviral Agents; Cell Line, Tumor; Chalcones; Drug Evaluation, Preclinical; Humans; Viruses","Irwin, K.K., Renzette, N., Kowalik, T.F., Jensen, J.D., Antiviral drug resistance as an adaptive process (2016) Virus Evol., 2 (1), p. vew014; Patil, S.A., Patil, V., Patil, R., Beaman, K., Patil, S.A., Identification of novel 5,6-dimethoxyindan-1-one derivatives as antiviral agents (2017) Med. Chem., 13 (8), pp. 787-795; Patil, R., Ghosh, A., Sun Cao, P., Sommer, R.D., Grice, K.A., Waris, G., Patil, S., Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents (2017) Bioorg. Med. Chem. Lett., 27 (5), pp. 1129-1135; Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2016 (2016) CA Cancer J. Clin., 66 (1), pp. 7-30; www.cancer.org/research/cancer-facts-statistics/allcancer-facts-figures/cancer-facts-figures-2016, Available at; Baselga, J., Targeting tyrosine kinases in cancer: The second wave (2006) Science, 312, pp. 1175-1178; Croom, K.F., Perry, C.M., Imatinibmesylate: In the treatment of gastrointestinal stromal tumors (2003) Drugs, 63, pp. 513-522; Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Sawyers, C.L., Efficacy and safety of a specific inhibitor of the BCRABL tyrosine kinase in chronic myeloid leukemia (2001) N. Engl. J. Med., 344, pp. 1031-1037; Patil, S.A., Wang, J., Li, X.S., Chen, J., Jones, T.S., Hosni-Ahmed, A., Patil, R., Miller, D.D., New substituted 4H-chromenes as anticancer agents (2012) Bioorg. Med. Chem. Lett., 22 (13), pp. 4458-4461; Patil, S.A., Pfeffer, S.R., Seibel, W.L., Pfeffer, L.M., Miller, D.D., Identification of imidazoquinoline derivatives as potent antiglioma agents (2015) Med. Chem., 11 (4), pp. 400-406; Maria, K., Dimitra, H.L., Maria, G., Synthesis and antiinflammatory activity of chalcones and related Mannich bases (2008) Med. Chem., 4 (6), pp. 586-596; Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Liang, G., Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents (2011) J. Med. Chem., 54 (23), pp. 8110-8123; Nowakowska, Z., A review of anti-infective and anti-inflammator chalcones (2007) Eur. J. Med. Chem., 42 (2), pp. 125-137; Miranda, C.L., Stevens, J.F., Ivanov, V., McCall, M., Frei, B., Deinzer, M.L., Buhler, D.R., Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro (2000) J. Agric. Food Chem., 48 (9), pp. 3876-3884; Chiaradia, L.D., Mascarello, A., Purificacao, M., Vernal, J., Cordeiro, M.N.S., Zenteno, M.E., Villarino, A., Terenzi, H., Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA (2008) Bioorg. Med. Chem. Lett., 18 (23), pp. 6227-6230; Wu, J.H., Wang, X.H., Yi, Y.H., Lee, K.H., Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos (2003) Bioorg. Med. Chem. Lett., 13 (10), pp. 1813-1815; Dominguez, J.N., Charris, J.E., Lobo, G., Gamboa de Dominguez, N., Moreno, M.M., Riggione, F., Sanchez, E., Rosenthal, P.J., Synthesis of quinolinylchalcones and evaluation of their antimalarial activity (2001) Eur. J. Med. Chem., 36 (6), pp. 555-560; Dimmock, J.R., Elias, D.W., Beazely, M.A., Kandepu, N.M., Bioactivities of chalcones (1999) Curr. Med. Chem., 6 (12), pp. 1125-1149; Patil, V., Barragan, E., Patil, S.A., Patil, S.A., Bugarin, A., Direct synthesis and antimicrobial evaluation of structurally complex chalcones (2016) Chem. Select., 1 (13), p. 3647; Prichard, M.N., Williams, J.D., Komazin-Meredith, G., Khan, A.R., Price, N.B., Jefferson, G.M., Harden, E.A., Bowlin, T.L., Synthesis and antiviral activities of methylenecyclopropane analogs with 6-alkoxy and 6-alkylthio substitutions that exhibit broad-spectrum antiviral activity against human herpesviruses (2013) Antimicrob. Agents Chemother., 57 (8), pp. 3518-3527; Smee, D.F., Huffman, J.H., Morrison, A.C., Barnard, D.L., Sidwell, R.W., Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities (2001) Antimicrob. Agents Chemother., 45 (3), pp. 743-748; Smee, D.F., Evans, W.J., Nicolaou, K.C., Tarbet, E.B., Day, C.W., Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds (2016) Antiviral. Res., 131, pp. 61-65; Korba, B.E., Gerin, J.L., Use of a standardized cell culture assay to assess activities of nucleoside analogs against hepatitis B virus replication (1992) Antiviral Res., 19 (1), pp. 55-70; Korba, B.E., Milman, G., A cell culture assay for compounds which inhibit hepatitis B virus replication (1991) Antiviral Res., 15 (3), pp. 217-228; Boyd, M.R., Paull, K.D., Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen (1995) Drug Dev. Res., 34, pp. 91-109; Holbeck, S.L., Collins, J.M., Doroshow, J.H., Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines (2010) Mol. Cancer Ther., 9 (5), pp. 1451-1460; Covell, D.G., Huang, R., Wallqvist, A., Anticancer medicines in development: Assessment of bioactivity profiles within the National Cancer Institute anticancer screening data (2007) Mol. Cancer Ther., 6 (8), pp. 2261-2270; Skehan, P., Streng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Boyd, M., New colorimetric cytotoxicity assay for anticancer-drug screening (1990) J. Natl. Cancer Inst., 82, pp. 1107-1112; Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Boyd, M., Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell Lines (1991) J. Natl. Cancer Inst., 11, pp. 757-766; Lok, A.S., Hepatitis B infection: Pathogenesis and management (2000) J. Hepatol., 32, pp. 89-97; Shepard, C.W., Simard, E.P., Finelli, L., Fiore, E., Bell, B.P., Hepatitis B virus infection: Epidemiology and vaccination (2006) Epidemiol. Rev., 28, pp. 112-125; Sharma, A., Chakravarti, B., Gupta, M.P., Siddiqui, J.A., Konwar, R., Tripathi, R.P., Synthesis and anti breast cancer activity of biphenyl based chalcones (2010) Bioorg. Med. Chem., 18 (13), pp. 4711-4720; Lee, J.M., Lee, M.S., Koh, D., Lee, Y.H., Lim, Y., Shin, S.Y., A new synthetic 2'-hydroxy-2,4,6-trimethoxy-5',6'-naphthochalcone induces G2/M cell cycle arrest and apoptosis by disrupting the microtubular network of human colon cancer cells (2014) Cancer Lett., 354 (2), pp. 348-354; Mai, C.W., Yaeghoobi, M., Abd-Rahman, N., Kang, Y.B., Pichika, M.R., Chalcones with electron-withdrawing and electron-donating substituents: Anticancer activity against TRAIL resistant cancer cells, structure-activity relationship analysis and regulation of apoptotic proteins (2014) Eur. J. Med. Chem., 77, pp. 378-387","Patil, S.A.; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, India; email: p.siddappa@jainuniversity.ac.in",,"Bentham Science Publishers",15734064,,MCEHA,"29792154","English","Med. Chem.",Article,"Final",,Scopus,2-s2.0-85062077919 "Ziyade N., Elgörmüş N., Kara E., Karayel F.","26642184600;36083898600;57190173202;12778613800;","Investigation of viral respiratory tract infection agents by multiplex PCR method in autopsy cases: A five-year study [Otopsi Olgularinda Viral Solunum Yolu Enfeksiyonu Etkenlerinin Multipleks PCR Yöntemi ile Araştirilmasi: Beş Yillik Bir Çalişma]",2019,"Mikrobiyoloji Bulteni","53","2",,"179","191",,,"10.5578/mb.67960","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066945822&doi=10.5578%2fmb.67960&partnerID=40&md5=53759210966b0200154077b9dc7fb949","Council of Forensic Medicine, Postmortem Microbiology Laboratory, Istanbul, Turkey; Council of Forensic Medicine, Autopsy Unit, Istanbul, Turkey; Council of Forensic Medicine, Histopathology Unit, Istanbul, Turkey","Ziyade, N., Council of Forensic Medicine, Postmortem Microbiology Laboratory, Istanbul, Turkey; Elgörmüş, N., Council of Forensic Medicine, Postmortem Microbiology Laboratory, Istanbul, Turkey; Kara, E., Council of Forensic Medicine, Autopsy Unit, Istanbul, Turkey; Karayel, F., Council of Forensic Medicine, Histopathology Unit, Istanbul, Turkey","Viral respiratory infections are one of the leading causes of morbidity and mortality, especially in children, elderly and immunocompromised patients. The inclusion of post-mortem studies to diagnose the infection causing mortality could be beneficial in specifying new pathogens and determining strategies for treatment and prevention. The aim of this study was to research viral etiology by applying multiplex real-time polymerase chain reaction (Rt-PCR) method in autopsy cases who have been considered to have a respiratory infection and to assess whether the viruses detected are the primary cause of the infection and whether they have any contributory effect on the mortality together with histopathological evidence. In this study, we included a total of 834 cases consisting of sudden death cases from infantile-pediatric age group and autopsy cases from > 18 year age group with suspected respiratory tract infection in our laboratory between January 2013 and May 2017. Of 834 cases, 468 (56.1%) were male and 366 (43.9%) were female, there were 191 (22.9%) cases between 0-1 months, 593 (71.1%) cases between 1 month-18 years, and 50 (6%) cases in the > 18 years age group. In 728 of 834 (87.3%) cases nasopharyngeal/tracheal swab samples and in 106 (12.7%) of them paraffin-embedded lung tissue samples were studied by the use of ""FTD Respiratory 21 (Fast-Tract Diagnostics Luxemburg)"" kit, with multiplex Rt-PCR method. The post-mortem samples were evaluated for human rhinovirus (HRV), parainfluenza viruses (PIV) (1, 2, 3, 4), influenza virus type A and B (INF-A, INF-B), enterovirus (EV), human bocavirus (HBoV), adenovirus (AdV), human coronavirus (HCoV 229,63,HKU,43), human metapneumovirus A ve B (HMPV-A/B), parechovirus, respiratory syncytial virus (RSV A/B) and Mycoplasma pneumoniae. In our study, at least one respiratory virus was detected by Rt-PCR in 379 (45.4%) of total 834 cases, whereas no viral agent was identified in 455 (54.6%) of the cases. One viral agent was detected in 278 (33.3%), two viral agents were detected in 83 (9.94%) and three viral agents were detected in 18 (2.16%) cases. Overall, the most common viral agent was HRV 110 (13.2%) followed by AdV 39 (4.7%) and RSV A/B 33 (4%). In pediatric cases the rate of positive results for respiratory viruses was 31.8% and in adult group it was 20% (p= 0.032). The most common virus detected among children was HRV and INF-A in adult group. In 101 (12.1%) cases infections caused by two or three agents were diagnosed. Infections with two causative agents were detected as 2.6% (5/191) in 0-1 month age group, 13% (77/593) in 1 month-18 year age group and 2% (1/50) in > 18 age group. The most frequently observed co-infections with double causative agents were HRV and INF-B, HRV and PIV, HRV and HBoV, HRV and AdV combinations. Infections with three causative agents were detected completely among 1 month-18 year age [3% (18/593)] group. In our study, 318 (38.1%) cases had no signs of infection in the postmortem histopathological examination of the lung tissues, while the most common finding was lobular pneumonia/purulent bronchitis in 233 (28%) cases and the second was interstitial pneumonia in 168 (20.1%) cases. When all cases were evaluated in terms of infection, positive results were detected in 469 (56.2%) cases. As a result; postmortem microbiological diagnosis with autopsy and histopathological detection of the patients who are thought to have respiratory tract infection will also determine the infectious agents causing death. © 2019 Ankara Microbiology Society. All rights reserved.","Multiplex PCR; Post-mortem diagnosis; Respiratory tract infections; Respiratory viruses","adolescent; adult; autopsy; child; female; genetics; human; infant; isolation and purification; male; multiplex polymerase chain reaction; newborn; preschool child; respiratory tract infection; virology; virus; virus infection; young adult; Adolescent; Adult; Autopsy; Child; Child, Preschool; Female; Humans; Infant; Infant, Newborn; Male; Multiplex Polymerase Chain Reaction; Respiratory Tract Infections; Virus Diseases; Viruses; Young Adult","Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the global burden of disease study 2013 (2015) Lancet, 385 (9963), pp. 117-171; Hamelin, M.E., Abed, Y., Boivin, G., Human metapneumovirus: A new player among respiratory viruses (2004) Clin Infect Dis, 38 (7), pp. 983-990; Turner, G.D., Bunthi, C., Wonodi, C.B., Morpeth, S.C., Molyneux, C.S., Zaki, S.R., The role of postmortem studies in pneumonia etiology research (2012) Clin Infect Dis, 54, pp. 165-171; Denison, A.M., Blau, D.M., Jost, H.A., Jones, T., Rollin, D., Gao, R., Diagnosis of influenza from respiratory autopsy tissues detection of virus by real-time reverse transcription-PCR in 222 cases (2011) J Mol Diagn, 13 (2), pp. 123-128; Muñoz-Cadavid, C., Rudd, S., Zaki, S.R., Patel, M., Moser, S.A., Brandt, M.E., Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: Comparison of five tissue DNA extraction methods using panfungal PCR (2010) J Clin Microbiol, 48 (6), pp. 2147-2153; Muldrew, K.L., Molecular diagnostics of infectious diseases (2009) Curr Opin Pediatr, 21 (1), pp. 102-111; Rogers, G.B., Carroll, M.P., Bruce, K.D., Studying bacterial infections through culture-independent approaches (2009) J Med Microbiol, 58, pp. 1401-1418; Procop, G.W., Church, D.L., Hall, G.S., Janda, W.M., Koneman, E.W., Schreckenberger, P.C., Diagnosis of infections caused by viruses, chlamydia, rickettsia and related organisms (2017) Koneman's Color Atlas and Textbook of Diagnostic Microbiology, pp. 1500-1587. , Chapter 23 Wolters Kluwer, 6th Edition; Chan, P.K.S., Chan, D.P.C., To, K.-F., Yu, M.Y., Cheung, J.L.K., Cheng, A.F., Evaluation of extraction methods from paraffin wax embedded tissues for PCR amplification of human and viral DNA (2001) J Clin Pathol, 54, pp. 401-403; Yilmaz, G., Uzel, N., Işik, N., Uǧur, S., Aslan, S., Badur, S., Akut alt solunum yolu infeksiyonu olan çocuklarda viral etkenler ve respiratory syncytial virüs alt gruplari (2000) İnfek Derg, 14 (2), pp. 157-164; Akşit, S., Acute respiratory tract infections-1 (2002) STED, 11 (4), pp. 132-135; Bellau-Pujol, S., Vabret, A., Legrand, L., Dina, J., Gouarin, S., Petitjean-Lecherbonnier, J., Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses (2005) J Virol Methods, 126 (1-2), pp. 53-63; Coiras, M.T., Aguilar, J.C., Garcia, M.L., Casas, I., Perez-Brena, P., Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested-PCR assays (2004) J Med Virol, 72 (3), pp. 484-495; Akçali, S., Yilmaz, N., Güler, O., Şanlidaǧ, T., Anil, M., Alt solunum yolu enfeksiyonu olan çocuklarda solunum yolu viral etkenlerinin sikliǧi (2013) Türk Ped Arş, pp. 215-220; Do, A.H., Van Doorn, H.R., Nghiem, M.N., Bryant, J.E., Hoang, T.H., Do, Q.H., Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008 (2011) PLoS One, 6 (3), p. 18176; Bezerra, P.G., Britto, M.C., Correia, J.B., Duarte Mdo, C., Fonceca, A.M., Rose, K., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) PLoS One, 6 (4), p. 18928; Fernandez-Rodriguez, A., Cohen, M.C., Lucena, J., Van De Voorde, W., Angelini, A., Ziyade, N., How to optimise the yield of forensic and clinical post-mortem microbiology with an adequate sampling: A proposal for standardisation (2015) Eur J Clin Microbiol Infect Dis, 34 (5), pp. 1045-1057; Papadopoulos, N.G., Bates, P.J., Bardin, P.G., Papi, A., Leir, S.H., Fraenkel, D.J., Rhinoviruses infect the lower airways (2000) J Infect Dis, 181 (6), pp. 1875-1884; Richard, N., Komurian-Pradel, F., Javouhey, E., Perret, M., Rajoharison, A., Bagnaud, A., The impact of dual viral infection in infants admitted to a pediatric intensive care unit associated with severe bronchiolitis (2008) Pediatr Infect Dis J, 27 (3), pp. 213-217; Broberg, E., Niemela, J., Lahti, E., Hyypia, T., Ruuskanen, O., Waris, M., Human rhinovirus C-associated severe pneumonia in a neonate (2011) J Clin Virol, 51 (1), pp. 79-82; Bicer, S., Giray, T., Cöl, D., Erdag, G.C., Vitrinel, A., Gürol, Y., Virological and clinical characterizations of respiratory infections in hospitalized children (2013) Ital J Pediatr, 39, p. 22; Renwick, N., Schweiger, B., Kapoor, V., Liu, Z., Villari, J., Bullmann, R., A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany (2007) J Infect Dis, 196 (12), pp. 1754-1760; Goka, E.A., Vallely, P.J., Mutton, K.J., Klapper, P.E., Single and multiple respiratory virus infections and severity of respiratory disease: A systematic review (2014) Paediatr Respir Rev, 15 (4), pp. 363-367; Çiçek, C., Arslan, A., Karakuş, H.S., Yalaz, M., Saz, E.U., Pullukçu, H., Prevalence and seasonal distribution of respiratory viruses in patients with acute respiratory tract infections, 2002-2014 (2015) Mikrobiyol Bul, 49 (2), pp. 188-200; Simoes, E.A.F., Cherian, T., Chow, J., Shahid-Salles, S.A., Laxminarayan, R., John, T.J., Acute respiratory infections in children (2006) Disease Control Priorities in Developing Countries, , Jamison DT, Breman JG, Measham AR, (eds) 2nd ed. World Bank, Washington (DC); Eisenstein, E.M., Haklai, Z., Schwartz, S., Klar, A., Stein, N., Kerem, E., Investigation of unexplained infant deaths in Jerusalem, Israel 1996-2003 (2007) Arch Dis Child, 92 (8), pp. 697-699; Sadler, D.W., Nakano, R., The value of a thorough protocol in the investigation of sudden infant deaths (1998) J Clin Pathol, 51 (9), pp. 689-694; Vennemann, M.M., Bajanowski, T., Butterfass-Bahloul, T., Sauerland, C., Jorch, G., Brinkmann, B., Do risk factors differ between explained sudden unexpected death in infancy and sudden infant death syndrome? (2007) Arch Dis Child, 92 (2), pp. 133-136; An, S.F., Gould, S., Keeling, J.W., Fleming, K.A., Role of respiratory viral infection in SIDS: Detection of viral nucleic acid by in situ hybridization (1993) J Pathol, 171 (4), pp. 271-278; Bajanowski, T., Rolf, B., Jorch, G., Brinkmann, B., Detection of RNA viruses in sudden infant death (SID) (2003) Int J Legal Med, 117 (4), pp. 237-240; Morens, D.M., Taubenberger, J.K., Fauci, A.S., Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness (2008) J Infect Dis, 198 (7), pp. 962-970; Desmons, A., Terrade, C., Boulagnon, C., Giusti, D., Nguyen, Y., Andreoletti, L., Post-mortem diagnosis, of cytomegalovirus and varicella zoster virus co-infection by combined histology and tissue molecular biology, in a sudden unexplained infant death (2013) J Clin Virol, 58 (2), pp. 486-489; La Grange, H., Verster, J., Dempers, J.J., De Beer, C., Review of immunological and virological aspects as contributory factors in sudden unexpected death in infancy (SUDI) (2014) Forensic Sci Int, 245, pp. 12-16","Ziyade, N.; Council of Forensic Medicine, Postmortem Microbiology LaboratoryTurkey; email: nihanziyade@gmail.com",,"Ankara Microbiology Society",03749096,,MIBUB,"31130122","Turkish","Mikrobiyol. Bulteni",Article,"Final",,Scopus,2-s2.0-85066945822 "Frenz B., Rämisch S., Borst A.J., Walls A.C., Adolf-Bryfogle J., Schief W.R., Veesler D., DiMaio F.","56765846000;25028465800;56673842300;57159082300;37060338200;35727694700;25227836200;57194085436;","Automatically Fixing Errors in Glycoprotein Structures with Rosetta",2019,"Structure","27","1",,"134","139.e3",,10,"10.1016/j.str.2018.09.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059499661&doi=10.1016%2fj.str.2018.09.006&partnerID=40&md5=8e893d84289a10a41511382b68986158","Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Institute for Protein Design, University of Washington, Seattle, WA 98195, United States; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States","Frenz, B., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States, Institute for Protein Design, University of Washington, Seattle, WA 98195, United States; Rämisch, S., Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; Borst, A.J., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Walls, A.C., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Adolf-Bryfogle, J., Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; Schief, W.R., Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; Veesler, D., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; DiMaio, F., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States, Institute for Protein Design, University of Washington, Seattle, WA 98195, United States","Recent advances in single-particle cryo-electron microscopy (cryoEM) have resulted in determination of an increasing number of protein structures with resolved glycans. However, existing protocols for the refinement of glycoproteins at low resolution have failed to keep up with these advances. As a result, numerous deposited structures contain glycan stereochemical errors. Here, we describe a Rosetta-based approach for both cryoEM and X-ray crystallography refinement of glycoproteins that is capable of correcting conformational and configurational errors in carbohydrates. Building upon a previous Rosetta framework, we introduced additional features and score terms enabling automatic detection, setup, and refinement of glycan-containing structures. We benchmarked this approach using 12 crystal structures and showed that glycan geometries can be automatically improved while maintaining good fit to the crystallographic data. Finally, we used this method to refine carbohydrates of the human coronavirus NL63 spike glycoprotein and of an HIV envelope glycoprotein, demonstrating its usefulness for cryoEM refinement. © 2018 Elsevier LtdFrenz et al. have developed a new method for refinement of glycoprotein structures against low-resolution cryoEM and X-ray crystallography data. This new method is able to make significantly larger changes to the glycan geometry compared with previous methods, including the ability to changing the glycan's anomer. © 2018 Elsevier Ltd","cryoEM; glycans; glycoproteins; refinement","glycan; immunoglobulin G1; virus glycoprotein; virus spike protein; glycoprotein; viral protein; Article; automation; carbohydrate analysis; comparative study; conformational transition; conjugate; controlled study; cryoelectron microscopy; crystal structure; data analysis software; human; Human coronavirus NL63; humoral immunity; nonhuman; priority journal; protein conformation; protein determination; protein structure; rosetta based approach; virus envelope; X ray crystallography; chemistry; cryoelectron microscopy; Human immunodeficiency virus; molecular dynamics; procedures; software; X ray crystallography; Coronavirus NL63, Human; Cryoelectron Microscopy; Crystallography, X-Ray; Glycoproteins; HIV; Molecular Dynamics Simulation; Software; Viral Proteins","Agirre, J., Strategies for carbohydrate model building, refinement and validation (2017) Acta Crystallogr. D Struct. Biol., 73, pp. 171-186; Agirre, J., Davies, G., Wilson, K., Cowtan, K., Carbohydrate anomalies in the PDB (2015) Nat. Chem. Biol., 11, p. 303; Agirre, J., Iglesias-Fernández, J., Rovira, C., Davies, G.J., Wilson, K.S., Cowtan, K.D., Privateer: software for the conformational validation of carbohydrate structures (2015) Nat. Struct. Mol. Biol., 22, pp. 833-834; Agirre, J., Davies, G.J., Wilson, K.S., Cowtan, K.D., Carbohydrate structure: the rocky road to automation (2017) Curr. Opin. Struct. Biol., 44, pp. 39-47; Astronomo, R.D., Burton, D.R., Carbohydrate vaccines: developing sweet solutions to sticky situations? (2010) Nat. Rev. Drug Discov., 9, pp. 308-324; Cingolani, G., Panella, A., Perrone, M.G., Vitale, P., Di Mauro, G., Fortuna, C.G., Armen, R.S., Scilimati, A., Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6) (2017) Eur. J. Med. Chem., 138, pp. 661-668; Conway, P., Tyka, M.D., DiMaio, F., Konerding, D.E., Baker, D., Relaxation of backbone bond geometry improves protein energy landscape modeling (2014) Protein Sci., 23, pp. 47-55; Derewenda, Z., The use of recombinant methods and molecular engineering in protein crystallization (2004) Methods, 34, pp. 354-363; DiMaio, F., Echols, N., Headd, J.J., Terwilliger, T.C., Adams, P.D., Baker, D., Improved low-resolution crystallographic refinement with Phenix and Rosetta (2013) Nat. Methods, 10, pp. 1102-1104; DiMaio, F., Song, Y., Li, X., Brunner, M.J., Xu, C., Conticello, V., Egelman, E., Baker, D., Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement (2015) Nat. Methods, 12, pp. 361-365; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60, pp. 2126-2132; Favuzza, P., Guffart, E., Tamborrini, M., Scherer, B., Dreyer, A.M., Rufer, A.C., Erny, J., Schmid, G., Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody (2017) Elife, 6; Fleishman, S.J., Leaver-Fay, A., Corn, J.E., Strauch, E.-M., Khare, S.D., Koga, N., Ashworth, J., Lemmon, G., RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite (2011) PLoS One, 6, p. e20161; French, A.D., Dowd, M.K., Analysis of the ring-form tautomers of psicose with MM3(92) (1994) J. Comput. Chem., 15, pp. 561-570; Frenz, B., Walls, A.C., Egelman, E.H., Veesler, D., DiMaio, F., RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps (2017) Nat. Methods, 14, pp. 797-800; Goepfert, A., Lehmann, S., Wirth, E., Rondeau, J.-M., The human IL-17A/F heterodimer: a two-faced cytokine with unique receptor recognition properties (2017) Sci. Rep., 7, p. 8906; Gorelik, A., Randriamihaja, A., Illes, K., Nagar, B., A key tyrosine substitution restricts nucleotide hydrolysis by the ectoenzyme NPP5 (2017) FEBS J., 284, pp. 3718-3726; Gristick, H.B., Wang, H., Bjorkman, P.J., X-ray and EM structures of a natively glycosylated HIV-1 envelope trimer (2017) Acta Crystallogr. D Struct. Biol., 73, pp. 822-828; Joosten, R.P., te Beek, T.A.H., Krieger, E., Hekkelman, M.L., Hooft, R.W.W., Schneider, R., Sander, C., Vriend, G., A series of PDB related databases for everyday needs (2011) Nucleic Acids Res., 39, pp. D411-D419; Kanai, R., Kar, K., Anthony, K., Gould, L.H., Ledizet, M., Fikrig, E., Marasco, W.A., Modis, Y., Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes (2006) J. Virol., 80, pp. 11000-11008; Labonte, J.W., Adolf-Bryfogle, J., Schief, W.R., Gray, J.J., Residue-centric modeling and design of saccharide and glycoconjugate structures (2017) J. Comput. Chem., 38, pp. 276-287; Liebschner, D., Afonine, P.V., Moriarty, N.W., Poon, B.K., Sobolev, O.V., Terwilliger, T.C., Adams, P.D., Polder maps: improving OMIT maps by excluding bulk solvent (2017) Acta Crystallogr. D Struct. Biol., 73, pp. 148-157; Lin, C.C., Wu, B.S., Wu, W.G., 5GZ5: crystal structure of snake venom phosphodiesterase (PDE) from Taiwan cobra (Naja atra atra) in complex with AMP (2017), https://www.ncbi.nlm.nih.gov/Structure/pdb/5GZ5; Lobner, E., Humm, A.-S., Mlynek, G., Kubinger, K., Kitzmüller, M., Traxlmayr, M.W., Djinović-Carugo, K., Obinger, C., Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex (2017) MAbs, 9, pp. 1088-1104; Lyumkis, D., Julien, J.-P., de Val, N., Cupo, A., Potter, C.S., Klasse, P.-J., Burton, D.R., Carragher, B., Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer (2013) Science, 342, pp. 1484-1490; Modis, Y., Ogata, S., Clements, D., Harrison, S.C., Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein (2005) J. Virol., 79, pp. 1223-1231; Moriarty, N.W., Grosse-Kunstleve, R.W., Adams, P.D., electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation (2009) Acta Crystallogr. D Biol. Crystallogr., 65, pp. 1074-1080; De Nardis, C., Hendriks, L.J.A., Poirier, E., Arvinte, T., Gros, P., Bakker, A.B.H., de Kruif, J., A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G (2017) J. Biol. Chem., 292, pp. 14706-14717; Qin, Z., Yang, D., You, X., Liu, Y., Hu, S., Yan, Q., Yang, S., Jiang, Z., The recognition mechanism of triple-helical β-1,3-glucan by a β-1,3-glucanase (2017) Chem. Commun. (Camb.), 53, pp. 9368-9371; Schwarzenbacher, R., Zeth, K., Diederichs, K., Gries, A., Kostner, G.M., Laggner, P., Prassl, R., Crystal structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome (1999) EMBO J., 18, pp. 6228-6239; Song, Y., DiMaio, F., Wang, R.Y.-R., Kim, D., Miles, C., Brunette, T., Thompson, J., Baker, D., High-resolution comparative modeling with RosettaCM (2013) Structure, 21, pp. 1735-1742; Terwilliger, T.C., Dimaio, F., Read, R.J., Baker, D., Bunkóczi, G., Adams, P.D., Grosse-Kunstleve, R.W., Echols, N., phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta (2012) J. Struct. Funct. Genomics, 13, pp. 81-90; Tyka, M.D., Keedy, D.A., André, I., Dimaio, F., Song, Y., Richardson, D.C., Richardson, J.S., Baker, D., Alternate states of proteins revealed by detailed energy landscape mapping (2011) J. Mol. Biol., 405, pp. 607-618; Walls, A.C., Tortorici, M.A., Bosch, B.-J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Wang, R.Y.-R., Kudryashev, M., Li, X., Egelman, E.H., Basler, M., Cheng, Y., Baker, D., DiMaio, F., De novo protein structure determination from near-atomic-resolution cryo-EM maps (2015) Nat. Methods, 12, pp. 335-338; Wang, R.Y.-R., Song, Y., Barad, B.A., Cheng, Y., Fraser, J.S., DiMaio, F., Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta (2016) Elife, 5; Wu, L., Jiang, J., Jin, Y., Kallemeijn, W.W., Kuo, C.-L., Artola, M., Dai, W., van der Marel, G.A., Activity-based probes for functional interrogation of retaining β-glucuronidases (2017) Nat. Chem. Biol., 13, pp. 867-873","DiMaio, F.; Department of Biochemistry, University of WashingtonUnited States; email: dimaio@uw.edu",,"Cell Press",09692126,,STRUE,"30344107","English","Structure",Article,"Final",Open Access,Scopus,2-s2.0-85059499661 "Mahajan V.S., Alsufyani F., Mattoo H., Rosenberg I., Pillai S.","55974417800;57204314905;35337231500;7201713763;7202816141;","Alterations in sialic-acid O-acetylation glycoforms during murine erythrocyte development",2019,"Glycobiology","29","3",,"222","228",,,"10.1093/glycob/cwy110","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061851641&doi=10.1093%2fglycob%2fcwy110&partnerID=40&md5=85ba33454c1e4c2bb7050697b1f421e6","Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, United States; Brigham and Women's Hospital, Department of Pathology, Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States","Mahajan, V.S., Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, United States, Brigham and Women's Hospital, Department of Pathology, Boston, MA 02115, United States; Alsufyani, F., Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, United States; Mattoo, H., Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, United States; Rosenberg, I., Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, United States; Pillai, S., Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, United States, Harvard Medical School, Boston, MA 02115, United States","We used Casd1-deficient mice to confirm that this enzyme is responsible for 9-O-acetylation of sialic acids in vivo. We observed a complete loss of 9-O-acetylation of sialic acid on the surface of myeloid, erythroid and CD4+ T cells in Casd1-deficient mice. Although 9-O-acetylation of sialic acids on multiple hematopoietic lineages was lost, there were no obvious defects in hematopoiesis. Interestingly, erythrocytes from Casd1-deficient mice also lost reactivity to TER-119, a rat monoclonal antibody that is widely used to mark the murine erythroid lineage. The sialic acid glyco-epitope recognized by TER-119 on erythrocytes was sensitive to the sialic acid O-acetyl esterase activity of the hemagglutinin-esterase from bovine coronavirus but not to the corresponding enzyme from the influenza C virus. During erythrocyte development, TER-119+ Ery-A and Ery-B cells could be stained by catalytically inactive bovine coronavirus hemagglutininesterase but not by the inactive influenza C hemagglutinin-esterase, while TER-119+ Ery-C cells and mature erythrocytes were recognized by both virolectins. Although the structure of the sialoglycoconjugate recognized by TER-119 was not chemically demonstrated, its selective binding to virolectins suggests that it may be comprised of a 7,9-di-O-acetyl form of sialic acid. As erythrocytes mature, the surfaces of Ery-C cells and mature erythrocytes also acquire an additional distinct CASD1-dependent 9-O-acetyl sialic acid moiety that can be recognized by virolectins from both influenza C and bovine coronavirus. © 2019 The Author(s).","9-O-acetylation; Casd1; sialic acid; TER-119; virolectin","CD4 antigen; epitope; esterase; hemagglutinin; sialic acid; epitope; hemagglutinin esterase; n acetylneuraminic acid; virus fusion protein; virus hemagglutinin; acetylation; Article; bone marrow cell; Bovine coronavirus; CD4+ T lymphocyte; cell lineage; erythrocyte; erythroid cell; hematopoiesis; Influenza C virus; mouse; nonhuman; priority journal; rat; acetylation; animal; bovine; chemistry; enzymology; erythrocyte; genetics; human; immunology; influenza; Influenzavirus C; isolation and purification; virology; Acetylation; Animals; Cattle; CD4-Positive T-Lymphocytes; Epitopes; Erythrocytes; Erythroid Cells; Hemagglutinins, Viral; Humans; Influenza, Human; Influenzavirus C; Mice; Myeloid Cells; N-Acetylneuraminic Acid; Rats; Viral Fusion Proteins","Arming, S., Wipfler, D., Mayr, J., Merling, A., Vilas, U., Schauer, R., Schwartz-Albiez, R., Vlasak, R., The human Cas1 protein: A sialic acid-specific O-acetyltransferase? (2011) Glycobiology, 21 (5), pp. 553-564; Bakkers, M.J.G., Zeng, Q., Feitsma, L.J., Hulswit, R.J.G., Li, Z., Westerbeke, A., Van Kuppeveld, F.J.M., Huizinga, E.G., Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation (2016) Proc Natl Acad Sci USA, 113 (22), pp. E3111-E3119; Baumann, A.M.T., Bakkers, M.J.G., Buettner, F.F.R., Hartmann, M., Grove, M., Langereis, M.A., De Groot, R.J., Mühlenhoff, M., 9-O-acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate (2015) Nat Commun., 6, p. 7673; Cariappa, A., Takematsu, H., Liu, H., Diaz, S., Haider, K., Boboila, C., Kalloo, G., Varki, N., B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase (2009) J Exp Med., 206 (1), pp. 125-138; Chen, K., Liu, J., Heck, S., Chasis, J.A., An, X., Mohandas, N., Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis (2009) Proc Natl Acad Sci U S A, 106 (41), pp. 17413-17418; Kina, T., Ikuta, K., Takayama, E., Wada, K., Majumdar, A.S., Weissman, I.L., Katsura, Y., The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage (2000) Br J Haematol., 109 (2), pp. 280-287; Klein, A., Krishna, M., Varki, N.M., Varki, A., 9-O-acetylated sialic acids have widespread but selective expression: Analysis using a chimeric dualfunction probe derived from influenza C hemagglutinin-esterase (1994) Proc Natl Acad Sci USA, 91 (16), pp. 7782-7786; Koulnis, M., Pop, R., Porpiglia, E., Shearstone, J.R., Hidalgo, D., Socolovsky, M., Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay (2011) J Vis Exp., 54. , pii: 2809; Krishna, M., Varki, A., 9-O-acetylation of sialomucins: A novel marker of murine CD4 T cells that is regulated during maturation and activation (1997) J Exp Med., 185 (11), pp. 1997-2013; Langereis, M.A., Bakkers, M.J.G., Deng, L., Padler-Karavani, V., Vervoort, S.J., Hulswit, R.J.G., Van Vliet, A.L.W., Boot, W., Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins (2015) Cell Rep., 11 (12), pp. 1966-1978; Mahajan, V.S., Demissie, E., Mattoo, H., Viswanadham, V., Varki, A., Morris, R., Pillai, S., Striking immune phenotypes in gene-targeted mice are driven by a copy-number variant originating from a commercially available C57BL/6 strain (2016) Cell Rep., 15 (9), pp. 1901-1909; Muchmore, E.A., Varki, A., Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids (1987) Science, 236 (4806), pp. 1293-1295; Schauer, R., Sialic acids as regulators of molecular and cellular interactions (2009) Curr Opin Struct Biol., 19 (5), pp. 507-514; Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Asplund, A., Proteomics. Tissue-based map of the human proteome (2015) Science, 347 (6220), p. 1260419; Zeng, Q., Martijn, A.L., Van Vliet, A.L.W., Huizinga, E.G., De Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc Natl Acad Sci USA, 105 (26), pp. 9065-9069","Pillai, S.; Ragon Institute of MGH, MIT and HarvardUnited States; email: pillai@helix.mgh.harvard.edu",,"Oxford University Press",09596658,,GLYCE,"30597004","English","Glycobiology",Article,"Final",,Scopus,2-s2.0-85061851641 "V'kovski P., Gerber M., Kelly J., Pfaender S., Ebert N., Braga Lagache S., Simillion C., Portmann J., Stalder H., Gaschen V., Bruggmann R., Stoffel M.H., Heller M., Dijkman R., Thiel V.","55807132400;36742788200;57205735783;55320564800;57192167156;55388047100;6506507002;57210652503;7103223413;6507131103;6506919787;57193409980;56988578100;13807789300;35238592100;","Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling",2019,"eLife","8",,,"","",,5,"10.7554/eLife.42037","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061393814&doi=10.7554%2feLife.42037&partnerID=40&md5=274f852da794d9e3c779956e4584b383","Institute of Virology and Immunology IVIBern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Graduate School for Biomedical Science, University of BernBern, Switzerland; Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of BernBern, Switzerland; Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of BernBern, Switzerland; Department of Clinical Research, University of BernBern, Switzerland; Division of Veterinary Anatomy, Vetsuisse Faculty, University of BernBern, Switzerland","V'kovski, P., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland, Graduate School for Biomedical Science, University of BernBern, Switzerland; Gerber, M., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Kelly, J., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland, Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of BernBern, Switzerland; Pfaender, S., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Ebert, N., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Braga Lagache, S., Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of BernBern, Switzerland; Simillion, C., Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of BernBern, Switzerland, Department of Clinical Research, University of BernBern, Switzerland; Portmann, J., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Stalder, H., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Gaschen, V., Division of Veterinary Anatomy, Vetsuisse Faculty, University of BernBern, Switzerland; Bruggmann, R., Interfaculty Bioinformatics Unit, SIB Swiss Institute of Bioinformatics, University of BernBern, Switzerland; Stoffel, M.H., Division of Veterinary Anatomy, Vetsuisse Faculty, University of BernBern, Switzerland; Heller, M., Mass Spectrometry and Proteomics Core Facility, Department for BioMedical Research (DBMR), University of BernBern, Switzerland; Dijkman, R., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland; Thiel, V., Institute of Virology and Immunology IVIBern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland","Positive-sense RNA viruses hijack intracellular membranes that provide niches for viral RNA synthesis and a platform for interactions with host proteins. However, little is known about host factors at the interface between replicase complexes and the host cytoplasm. We engineered a biotin ligase into a coronaviral replication/transcription complex (RTC) and identified >500 host proteins constituting the RTC microenvironment. siRNA-silencing of each RTC-proximal host factor demonstrated importance of vesicular trafficking pathways, ubiquitin-dependent and autophagy-related processes, and translation initiation factors. Notably, detection of translation initiation factors at the RTC was instrumental to visualize and demonstrate active translation proximal to replication complexes of several coronaviruses. Collectively, we establish a spatial link between viral RNA synthesis and diverse host factors of unprecedented breadth. Our data may serve as a paradigm for other positive-strand RNA viruses and provide a starting point for a comprehensive analysis of critical virus-host interactions that represent targets for therapeutic intervention. © 2019, V'kovski et al.","coronavirus; human; infectious disease; microbiology; mouse; proximity labeling; replicase complex; translation; vesicular transport; virus; virus-host interaction",,,,,"NLM (Medline)",2050084X,,,"30632963","English","Elife",Article,"Final",Open Access,Scopus,2-s2.0-85061393814 "De Sabato L., Lelli D., Faccin F., Canziani S., Di Bartolo I., Vaccari G., Moreno A.","57113663600;26436391000;56646364000;57204757417;22939874200;7004557999;56452258900;","Full genome characterization of two novel Alpha-coronavirus species from Italian bats",2019,"Virus Research","260",,,"60","66",,1,"10.1016/j.virusres.2018.11.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057006537&doi=10.1016%2fj.virusres.2018.11.007&partnerID=40&md5=ab83a9e036127a66ad7a475f3fa692eb","Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, Rome, 00146, Italy; Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy; Department of Virology, Istituto Zooprofilattico Sperimentale Lombardia ed Emilia Romagna, Via Antonio Bianchi 9, Brescia, 25124, Italy","De Sabato, L., Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, Rome, 00146, Italy, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy; Lelli, D., Department of Virology, Istituto Zooprofilattico Sperimentale Lombardia ed Emilia Romagna, Via Antonio Bianchi 9, Brescia, 25124, Italy; Faccin, F., Department of Virology, Istituto Zooprofilattico Sperimentale Lombardia ed Emilia Romagna, Via Antonio Bianchi 9, Brescia, 25124, Italy; Canziani, S., Department of Virology, Istituto Zooprofilattico Sperimentale Lombardia ed Emilia Romagna, Via Antonio Bianchi 9, Brescia, 25124, Italy; Di Bartolo, I., Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy; Vaccari, G., Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, 00161, Italy; Moreno, A., Department of Virology, Istituto Zooprofilattico Sperimentale Lombardia ed Emilia Romagna, Via Antonio Bianchi 9, Brescia, 25124, Italy","Coronaviruses (CoVs) have been detected worldwide in several bat species, which are considered the main reservoir. The attention to the high diversity of CoVs hosted by bats has increased during the last decade due to the high number of human infections caused by two zoonotic Beta-CoVs, SARS-CoV and MERS-CoV, that cause several respiratory diseases. Among coronaviruses, two Alpha-CoV strains (HuCoV-229E and HuCoV-NL63) cause mild respiratory disease that can change to severe disease in children, elderly and individuals affected by illnesses. Phylogenetic analysis conducted on bat Alpha-CoV strains revealed their evolutive correlation to human strains, suggesting their origin in bats. The genome of CoVs is characterized by a high frequency of mutations and recombination events, increasing their ability to switch hosts and their zoonotic potential. In this study, three strains of Alpha-CoV genera detected in Italian bats (Pipistrellus kuhlii) were fully sequenced by Next Generation Sequencing (NGS) and characterized. The complete genome analysis showed the correlation of the Italians strains with a Chinese strain detected in 2013 and, based on CoV molecular species demarcation, two new Alpha-CoV species were established. The analysis of a fragment of the RNA-dependent RNA polymerase (RdRp) showed the correlation of the Italian strains with CoVs that was only detected in the bat Pipistrellus genera (Pipistrellus kuhlii and Pipistrellus Pipistrellus) in European countries. © 2018 Elsevier B.V.","Alpha-CoV viruses; Bats; Full genome sequencing; Italy","RNA directed RNA polymerase; virus enzyme; Alphacoronavirus; animal tissue; Article; gene frequency; gene mutation; genetic recombination; genome analysis; Italy; next generation sequencing; nonhuman; phylogeny; Pipistrellus pipistrellus; priority journal; respiratory tract disease; virus detection; virus genome; virus strain; whole genome sequencing; animal; bat; biology; classification; Coronavirinae; Coronavirus infection; genetics; high throughput sequencing; isolation and purification; sequence homology; veterinary medicine; virology; Animals; Chiroptera; Computational Biology; Coronavirus; Coronavirus Infections; Genome, Viral; High-Throughput Nucleotide Sequencing; Italy; Phylogeny; Sequence Homology","Ancillotto, L., Santini, L., Ranc, N., Maiorano, L., Russo, D., Extraordinary range expansion in a common bat: the potential roles of climate change and urbanization (2016) Naturwissenschaften, 103 (3-4), p. 15; Annan, A., Baldwin, H.J., Corman, V.M., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19 (3), pp. 456-459; Apweiler, R., Attwood, T.K., Bairoch, A., The InterPro database, an integrated documentation resource for protein families, domains and functional sites (2001) Nucleic Acids Res., 29 (1), pp. 37-40; Ar Gouilh, M., Puechmaille, S.J., Diancourt, L., SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world (2018) Virology, 517, pp. 88-97; Asano, K.M., Hora, A.S., Scheffer, K.C., Alphacoronavirus in urban Molossidae and Phyllostomidae bats (2016) Brazil. Virol. J., 13, p. 110; August, T.A., Mathews, F., Nunn, M.A., Alphacoronavirus detected in bats in the United Kingdom (2012) Vector Borne Zoonotic Dis., 12 (6), pp. 530-533; Bateman, A., Birney, E., Cerruti, L., The Pfam protein families database (2002) Nucleic Acids Res., 30 (1), pp. 276-280; Calisher, C.H., Childs, J.E., Field, H.E., Bats: important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19 (3), pp. 531-545; Corman, V.M., Baldwin, H.J., Tateno, A.F., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J. Virol., 89 (23), pp. 11858-11870; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88 (19), pp. 11297-11303; De Benedictis, P., Marciano, S., Scaravelli, D., Alpha and lineage C BetaCoV infections in Italian bats (2014) Virus Genes, 48 (2), pp. 366-371; Djikeng, A., Halpin, R., Kuzmickas, R., Viral genome sequencing by random priming methods (2008) BMC Genomics, 9, p. 5; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res., 101, pp. 45-56; Falcon, A., Vazquez-Moron, S., Casas, I., Detection of Alpha and Betacoronaviruses in multiple Iberian bat species (2011) Arch. Virol., 156 (10), pp. 1883-1890; Field, H.E., Bats and emerging zoonoses: henipaviruses and SARS (2009) Zoonoses Public Health, 56 (6-7), pp. 278-284; Fischer, K., Zeus, V., Kwasnitschka, L., Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany (2016) Infect. Genet. Evol., 37, pp. 108-116; Geldenhuys, M., Mortlock, M., Weyer, J., A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa (2018) PLoS One, 13 (3); Gloza-Rausch, F., Ipsen, A., Seebens, A., Detection and prevalence patterns of group I coronaviruses in bats, northern Germany (2008) Emerg. Infect. Dis., 14 (4), pp. 626-631; Goes, L.G.B., Campos, A.C.A., Carvalho, C., Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome (2016) Brazil. Infect. Genet. Evol., 44, pp. 510-513; Goffard, A., Demanche, C., Arthur, L., Alphacoronaviruses detected in french bats are phylogeographically linked to coronaviruses of european bats (2015) Viruses, 7 (12), pp. 6279-6290; Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.P., SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory (2011) Infect. Genet. Evol., 11 (7), pp. 1690-1702; Holmes, E.C., The evolution and emergence of RNA viruses (2009) Oxford Series in Ecology and Evolution, , P.H. Harvey R.M. May Oxford University Press Inc. New York; Hu, B., Ge, X., Wang, L.F., Bat origin of human coronaviruses (2015) Virol. J., 12, p. 221; Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogeny (2001) Bioinformatics, 17, pp. 754-755; Huynh, J., Li, S., Yount, B., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol., 86 (23), pp. 12816-12825; Ithete, N.L., Stoffberg, S., Corman, V.M., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19 (10), pp. 1697-1699; Kemenesi, G., Dallos, B., Gorfol, T., Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses (2014) Vector Borne Zoonotic Dis., 14 (12), pp. 846-855; Kiemer, L., Lund, O., Brunak, S., Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology (2004) BMC Bioinformatics, 5, p. 72; Lai, M.M., RNA recombination in animal and plant viruses (1992) Microbiol. Rev., 56 (1), pp. 61-79; Lau, S.K., Li, K.S., Tsang, A.K., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J. Virol., 87 (15), pp. 8638-8650; Lelli, D., Papetti, A., Sabelli, C., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5 (11), pp. 2679-2689; Leopardi, S., Holmes, E.C., Gastaldelli, M., Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses (2018) Infect. Genet. Evol., 58, pp. 279-289; Martin, D.P., Murrell, B., Golden, M., RDP4: detection and analysis of recombination patterns in virus genomes (2015) Virus Evol., 1 (1). , vev003; Monchatre-Leroy, E., Boue, F., Boucher, J.M., Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs (2017) Viruses, 9 (12); Moreno, A., Lelli, D., de Sabato, L., Detection and full genome characterization of two Beta CoV viruses related to Middle East respiratory syndrome from bats in Italy (2017) Virol. J., 14 (1), p. 239; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathog. Glob. Health, 109 (8), pp. 354-362; Pauly, M., Pir, J.B., Loesch, C., Novel alphacoronaviruses and paramyxoviruses cocirculate with type 1 and severe acute respiratory system (SARS)-Related betacoronaviruses in synanthropic bats of Luxembourg (2017) Appl. Environ. Microbiol., 83 (18); Pfefferle, S., Oppong, S., Drexler, J.F., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats (2009) Ghana. Emerg. Infect. Dis., 15 (9), pp. 1377-1384; Reusken, C.B., Lina, P.H., Pielaat, A., Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe (2010) Vector Borne Zoonotic Dis., 10 (8), pp. 785-791; Rizzo, F., Edenborough, K.M., Toffoli, R., Coronavirus and paramyxovirus in bats from Northwest Italy (2017) BMC Vet. Res., 13 (1), p. 396; Russo, D., Jones, G., Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications (2003) Ecography., 26, pp. 197-209; Shi, Z., Emerging infectious diseases associated with bat viruses. Science China (2013) Life Sci., 56 (8), pp. 678-682; Simmonds, P., SSE: a nucleotide and amino acid sequence analysis platform (2012) BMC Res. Notes, 5, p. 50; Smith, I., Wang, L.F., Bats and their virome: an important source of emerging viruses capable of infecting humans (2013) Curr. Opin. Virol., 3 (1), pp. 84-91; Subudhi, S., Rapin, N., Bollinger, T.K., A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat (2017) J. Gen. Virol., 98 (9), pp. 2297-2309; Tao, Y., Shi, M., Chommanard, C., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91 (5); Waruhiu, C., Ommeh, S., Obanda, V., Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses (2017) Virol. Sin., 32 (2), pp. 101-114; Weiss, S.R., Leibowitz, J.L., Coronavirus pathogenesis (2011) Adv. Virus Res., 81, pp. 85-164; Wolfe, N.D., Dunavan, C.P., Diamond, J., Origins of major human infectious diseases (2007) Nature, 447 (7142), pp. 279-283; Woo, P.C., Lau, S.K., Huang, Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med. (Maywood), 234 (10), pp. 1117-1127; Woo, P.C., Lau, S.K., Lam, C.S., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J. Virol., 83 (2), pp. 908-917; Woo, P.C., Lau, S.K., Lam, C.S., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86 (7), pp. 3995-4008; Woo, P.C., Lau, S.K., Yuen, K.Y., Clinical features and molecular epidemiology of coronavirus-HKU1-associated community-acquired pneumonia (2009) Hong Kong Med. J. = Xianggang yi xue za zhi, 15, pp. 46-47","Vaccari, G.; Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Viale Regina Elena 299, Italy; email: gabriele.vaccari@iss.it",,"Elsevier B.V.",01681702,,VIRED,"30447246","English","Virus Res.",Article,"Final",Open Access,Scopus,2-s2.0-85057006537 "Takano T., Akiyama M., Doki T., Hohdatsu T.","55251249800;57205466081;55758877000;57197786893;","Antiviral activity of itraconazole against type i feline coronavirus infection",2019,"Veterinary Research","50","1", 5,"","",,3,"10.1186/s13567-019-0625-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060176701&doi=10.1186%2fs13567-019-0625-3&partnerID=40&md5=c2598e43ed9ae01fcabedb5ec3dea616","School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan","Takano, T., School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan; Akiyama, M., School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan; Doki, T., School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan; Hohdatsu, T., School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan","Feline coronaviruses (FCoVs) are the causative agents of severe systemic disease (feline infectious peritonitis: FIP) in domestic and wild cats. FCoVs have been classified into serotypes I and II. Type I FCoV is the dominant serotype (approximately 70-90%) worldwide. Therefore, it is necessary to provide antiviral agents for type I FCoV infection. In this study, we demonstrated that itraconazole (ICZ), practically used for fungal infections in cats, inhibits the type I FCoV infection. ICZ also exhibited antiviral effect in cells after viral infection, suggesting that ICZ could potentially be used as a therapeutic. © 2019 The Author(s).",,"alanine aminotransferase; cholesterol; immunoglobulin G2b; inhibitor protein; ITORIZOLE; itraconazole; nucleocapsid protein; antifungal agent; antivirus agent; itraconazole; antiviral activity; Article; CC50; cell viability assay; cholesterol transport; Coronavirus infection; cytotoxicity; cytotoxicity assay; domestic cat; Feline coronavirus; Feline infectious peritonitis virus; human; immunofluorescence test; maximum concentration; monolayer culture; nonhuman; systemic disease; viral disease immunofluorescence assay; animal; cat; cell line; Coronavirus infection; drug effect; Feline coronavirus; feline infectious peritonitis; virology; Animals; Antifungal Agents; Antiviral Agents; Cats; Cell Line; Coronavirus Infections; Coronavirus, Feline; Feline Infectious Peritonitis; Itraconazole","Tekes, G., Thiel, H.J., Feline coronaviruses: Pathogenesis of feline infectious peritonitis (2016) Adv Virus Res, 96, pp. 193-218. , 1:STN:280:DC%2BC2svnvFSjtQ%3D%3D; Pedersen, N.C., An update on feline infectious peritonitis: Diagnostics and therapeutics (2014) Vet J, 201, pp. 133-141; Jaimes, J.A., Whittaker, G.R., Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function (2018) Virology, 517, pp. 108-121. , 1:CAS:528:DC%2BC1cXmtlWlsg%3D%3D; Addie, D.D., Schaap, I.A.T., Nicolson, L., Jarrett, O., Persistence and transmission of natural type i feline coronavirus infection (2003) J Gen Virol, 84, pp. 2735-2744. , 1:CAS:528:DC%2BD3sXotF2gtb8%3D; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clin Diagn Lab Immunol, 12, pp. 1209-1215. , 1:CAS:528:DC%2BD28XisVSnsw%3D%3D 16210485 1247821; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types i and II feline coronavirus infections in cats (1992) J Vet Med Sci, 54, pp. 557-562. , 1:STN:280:DyaK38zltlantA%3D%3D; Takano, T., Satomi, Y., Oyama, Y., Doki, T., Hohdatsu, T., Differential effect of cholesterol on type i and II feline coronavirus infection (2016) Arch Virol, 161, pp. 125-133. , 1:CAS:528:DC%2BC2MXhslGmsbvM; Takano, T., Endoh, M., Fukatsu, H., Sakurada, H., Doki, T., Hohdatsu, T., The cholesterol transport inhibitor U18666A inhibits type i feline coronavirus infection (2017) Antiviral Res, 145, pp. 96-102. , 1:CAS:528:DC%2BC2sXht1yltrvE; Takano, T., Nakano, K., Doki, T., Hohdatsu, T., Differential effects of viroporin inhibitors against feline infectious peritonitis virus serotypes i and II (2015) Arch Virol, 160, pp. 1163-1170. , 1:CAS:528:DC%2BC2MXjt1ars7o%3D; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog, 12, p. e1005531; Saag, M.S., Dismukes, W.E., Azole antifungal agents: Emphasis on new triazoles (1988) Antimicrob Agents Chemother, 32, pp. 1-8. , 1:CAS:528:DyaL1cXmvVWjsQ%3D%3D; McKinsey, D.S., Wheat, L.J., Cloud, G.A., Pierce, M., Black, J.R., Bamberger, D.M., Goldman, M., Kauffman, C.A., Itraconazole prophylaxis for fungal infections in patients with advanced human immunodeficiency virus infection: Randomized, placebo-controlled, double-blind study (1999) Clin Infect Dis, 28, pp. 1049-1056. , 1:CAS:528:DyaK1MXjtVOhsL8%3D; Strating, J.R., Van Der Linden, L., Albulescu, L., Bigay, J., Arita, M., Delang, L., Leyssen, P., Van Kuppeveld, F.J., Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein (2015) Cell Rep, 10, pp. 600-615. , 1:CAS:528:DC%2BC2MXhvVOqtb8%3D; Hohdatsu, T., Sasamoto, S., Koyama, H., Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): Preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683 (1991) Vet Microbiol, 28, pp. 13-24. , 1:STN:280:DyaK3MzmtFGitg%3D%3D; Takano, T., Hohdatsu, T., Serological diagnosis of feline coronavirus infection by immunochromatographic test (2014) Methods Mol Biol, 1282, pp. 33-39; Trinh, M.N., Lu, F., Li, X., Das, A., Liang, Q., De Brabander, J.K., Brown, M.S., Goldstein, J.L., Triazoles inhibit cholesterol export from lysosomes by binding to NPC1 (2017) Proc Natl Acad Sci U S A, 114, pp. 89-94. , 1:CAS:528:DC%2BC28XitFWls7bM; Wang, Y.T., Chueh, L.L., Wan, C.H., An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type i and II feline coronavirus infections (2014) BMC Vet Res, 10, p. 186; Takano, T., Katoh, Y., Doki, T., Hohdatsu, T., Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo (2013) Antiviral Res, 99, pp. 100-107. , 1:CAS:528:DC%2BC3sXhtFCkt7nK; Boothe, D.M., Herring, I., Calvin, J., Way, N., Dvorak, J., Itraconazole disposition after single oral and intravenous and multiple oral dosing in healthy cats (1997) Am J Vet Res, 58, pp. 872-877. , 1:CAS:528:DyaK2sXls1Srt70%3D 9256973; Medleau, L., Jacobs, G.J., Marks, M.A., Itraconazole for the treatment of cryptococcosis in cats (1995) J Vet Intern Med, 9, pp. 39-42. , 1:STN:280:DyaK2M7pvVejug%3D%3D; Liu, R., Li, J., Zhang, T., Zou, L., Chen, Y., Wang, K., Lei, Y., Wei, Y., Itraconazole suppresses the growth of glioblastoma through induction of autophagy: Involvement of abnormal cholesterol trafficking (2014) Autophagy, 10, pp. 1241-1255; Neuman, B.W., Angelini, M.M., Buchmeier, M.J., Does form meet function in the coronavirus replicative organelle? (2014) Trends Microbiol, 22, pp. 642-647. , 1:CAS:528:DC%2BC2cXhtFGqu7zN","Hohdatsu, T.; School of Veterinary Medicine, Kitasato UniversityJapan; email: hohdatsu@vmas.kitasato-u.ac.jp",,"BioMed Central Ltd.",09284249,,VEREE,"30658691","English","Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85060176701 "Caldeira D.B., de Souza Luna L.K., Watanabe A., Perosa A.H., Granato C., Bellei N.","57201704286;14024020500;23977124900;22235276100;7003306639;6506015701;","The occurrence of polyomaviruses WUPyV and KIPyV among patients with severe respiratory infections",2019,"Brazilian Journal of Microbiology","50","1",,"133","137",,,"10.1007/s42770-018-0038-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060929153&doi=10.1007%2fs42770-018-0038-x&partnerID=40&md5=302f5c3d64390d9be1c4d0fcef82e8f5","Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil; Department of parasitology, microbiology and immunology, Biologic Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil","Caldeira, D.B., Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil; de Souza Luna, L.K., Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil; Watanabe, A., Department of parasitology, microbiology and immunology, Biologic Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil; Perosa, A.H., Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil; Granato, C., Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil; Bellei, N., Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil","In 2007, the new polyomaviruses WUPyV and KIPyV were identified in patients with acute respiratory infections. The aim of this study was to investigate these viruses in hospitalized patients with severe acute respiratory infection (SARI). A retrospective study was conducted with 251 patients, from April 2009 to November 2010, using nasopharyngeal aspirates, naso- and oropharyngeal swab samples from hospitalized patients (children < 12 years and adults) who had SARI within 7 days of the onset of symptoms, including fever (> 38.8 °C), dyspnea, and cough. Clinical and epidemiological information was obtained through standardized questionnaire. Enrolled patients were initially suspected to have influenza A(H1N1)pdm09 infections. WUPyV and KIPyV were detected by real-time PCR. Samples were also tested for influenza A and B viruses, human respiratory syncytial virus, rhinovirus, metapneumovirus, coronavirus, adenovirus, and parainfluenza viruses. WUPyV and KIPyV were detected in 6.77% (4.78% and 1.99%, respectively) of hospitalized patients with SARI. All samples from children showed coinfections (rhinovirus was the most commonly detected). Six adults had polyomavirus infection and four (1.6%) had monoinfection. Of them, 3 reported comorbidities including immunosuppression and 1 patient had worse outcome, requiring ICU admission. These preliminary data may suggest a possible role of polyomaviruses in SARI among immunocompromised adult patients. © 2018, Sociedade Brasileira de Microbiologia.","KIPyV; Polyomaviruses; Real-time PCR; Severe acute respiratory infection; WUPyV","adult; aged; child; classification; female; genetics; human; infant; isolation and purification; male; middle aged; Polyomavirus; polyomavirus infection; preschool child; respiratory tract infection; very elderly; virology; young adult; Adult; Aged; Aged, 80 and over; Child; Child, Preschool; Female; Humans; Infant; Male; Middle Aged; Polyomavirus; Polyomavirus Infections; Respiratory Tract Infections; Young Adult","Allander, T., Andreasson, K., Gupta, S., Identification of a third human polyomavirus (2007) J Virol, 81 (8), pp. 4130-4136; Gaynor, A.M., Nissen, M.D., Whiley, D.M., Identification of a novel polyomavirus from patients with acute respiratory tract infections (2007) PLoS Pathog, 3 (5); Moens, U., Calvignac-Spencer, S., Lauber, C., ICTV virus taxonomy profile: polyomaviridae (2017) J Gen Virol, 98 (6), pp. 1159-1160; Teramoto, S., Kaiho, M., Takano, Y., Detection of KI polyomavirus and WU polyomavirus DNA by real-time polymerase chain reaction in nasopharyngeal swabs and in normal lung and lung adenocarcinoma tissues (2011) Microbiol Immunol, 55 (7), pp. 525-530; Ren, L., Gonzalez, R., Xie, Z., WU and KI polyomavirus present in the respiratory tract of children, but not in immunocompetent adults (2008) J Clin Virol, 43 (3), pp. 330-333; Mourez, T., Bergeron, A., Ribaud, P., Polyomaviruses KI and WU in immunocompromised patients with respiratory disease (2009) Emerg Infect Dis, 15 (1), pp. 107-109; Babakir-Mina, M., Ciccozzi, M., Dimonte, S., Identification of the novel KI polyomavirus in the respiratory tract of an Italian patient (2008) J Med Virol, 80 (11), pp. 2012-2014; Lin, S.-X., Wang, W., Guo, W., A molecular epidemiological study of KI polyomavirus and WU polyomavirus in children with acute respiratory infection in Tianjin, China (2017) Chinese J Contemp Pediatr, 19 (7), pp. 763-769; Han, T.H., Chung, J.Y., Koo, J.W., Kim, S.W., Hwang, E.S., WU polyomavirus in children with acute lower respiratory tract infections, South Korea (2007) Emerg Infect Dis, 13 (11), pp. 1766-1768; Wattier, R.L., Vázquez, M., Weibel, C., Role of human polyomaviruses in respiratory tract disease in young children (2008) Emerg Infect Dis, 14 (11), pp. 1766-1768; Hansen-Estruch, C., Coleman, K.K., Thoon, K.C., Low, J.G., Anderson, B.D., Gray, G.C., Prevalence of respiratory polyomaviruses among pediatric patients with respiratory symptoms in Singapore (2018) Front Pediatr;, 6. , (,),.,., https://doi.org/10.3389/fped.2018.00228; Rao, S., Lucero, M.G., Nohynek, H., WU and KI polyomavirus infections in Filipino children with lower respiratory tract disease (2016) J Clin Virol, 82, pp. 112-118; Gozalo-Margüello, M., Agüero-Balbín, J., Martínez-Martínez, L., WU and KI polyomavirus prevalence in invasive respiratory samples from transplant recipients in Cantabria, Spain (2015) Transplant Proc, 47 (1), pp. 67-69; Essa, S., Owayed, A., Altawalah, H., Khadadah, M., Behbehani, N., Al-Nakib, W., The prevalence of human bocavirus, human coronavirus-NL63, human metapneumovirus, human polyomavirus KI and WU in respiratory tract infections in Kuwait (2015) Med Princ Pract, 24 (4), pp. 382-387; Iaria, M., Caccuri, F., Apostoli, P., Detection of KI WU and Merkel cell polyomavirus in respiratory tract of cystic fibrosis patients (2015) Clin Microbiol Infect, 21 (6), pp. 603.e9-603; Bergallo, M., Terlizzi, M.E., Astegiano, S., Real time PCR TaqMan assays for detection of polyomaviruses KIV and WUV in clinical samples (2009) J Virol Methods, 162 (1-2), pp. 69-74; Sadeghi, M., Wang, Y., Ramqvist, T., Multiplex detection in tonsillar tissue of all known human polyomaviruses (2017) BMC Infect Dis, 17 (1), p. 409; Comar, M., Zanotta, N., Rossi, T., Pelos, G., D’Agaro, P., Secondary lymphoid tissue as an important site for WU polyomavirus infection in immunocompetent children (2011) J Med Virol, 83 (8), pp. 1446-1450; Herberhold, S., Hellmich, M., Panning, M., Human polyomavirus and human papillomavirus prevalence and viral load in non-malignant tonsillar tissue and tonsillar carcinoma (2017) Med Microbiol Immunol, 206 (2), pp. 93-103; Bialasiewicz, S., Whiley, D.M., Lambert, S.B., Nissen, M.D., Sloots, T.P., Detection of BK, JC, WU, or KI polyomaviruses in faecal, urine, blood, cerebrospinal fluid and respiratory samples (2009) J Clin Virol, 45 (3), pp. 249-254; Sloots, T.P., Whiley, D.M., Lambert, S.B., Nissen, M.D., Emerging respiratory agents: new viruses for old diseases? (2008) J Clin Virol, 42 (3), pp. 233-243; Robaina, T.F., Mendes, G.S., Benati, F.J., Shedding of polyomavirus in the saliva of immunocompetent individuals (2013) J Med Virol, 85 (1), pp. 144-148; Robaina, T.F., Mendes, G.S., Benati, F.J., Polyomavirus in saliva of HIV-infected children, Brazil (2013) Emerg Infect Dis, 19 (1), pp. 155-157; (2009) Ações da Atenção Primária à Saúde, 2010, p. 38. , http://bvsms.saude.gov.br/bvs/publicacoes/protocolo_enfrentamento_influenza_2009.pdf, Epidemiológica D de V, ed; (2009) CDC Protocol of Realtime RT-PCR for Influenza a (H1N1). World Health Organization, , http://www.who.int/csr/resources/publications/swineflu/CDCRealtimeRTPCR_SwineH1Assay-2009_20090430.pdf, Published; Perosa, A.H., Watanabe, A.S., Guatura, S.B., Silva, E.R., Granato, C., Bellei, N., Comparison of the direct fluorescence assay and real-time polymerase chain reaction for the detection of influenza virus A and B in immunocompromised patients (2013) Clin (Sao Paulo), 68 (9), pp. 1206-1209; Fry, A.M., Chittaganpitch, M., Baggett, H.C., The burden of hospitalized lower respiratory tract infection due to respiratory syncytial virus in rural Thailand (2010) PLoS One, 5 (11); Savolainen, C., Mulders, M.N., Hovi, T., Phylogenetic analysis of rhinovirus isolates collected during successive epidemic seasons (2002) Virus Res, 85 (1), pp. 41-46. , https://www.ncbi.nlm.nih.gov/pubmed/11955637; Falsey, A.R., Erdman, D., Anderson, L.J., Walsh, E.E., Human metapneumovirus infections in young and elderly adults (2003) J Infect Dis, 187 (5), pp. 785-790; Dare, R.K., Fry, A.M., Chittaganpitch, M., Sawanpanyalert, P., Olsen, S.J., Erdman, D.D., Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays (2007) J Infect Dis, 196 (9), pp. 1321-1328; Heim, A., Ebnet, C., Harste, G., Pring-Akerblom, P., Rapid and quantitative detection of human adenovirus DNA by real-time PCR (2003) J Med Virol, 70 (2), pp. 228-239; Puerari, D., Camargo, C., Gratura, S., Watanabe, A.S., Granato, C., Bellei, N.C., Application of molecular assay for adenovirus detection among different pediatric patients (2015) Rev Paul Pediatr, 33 (2), pp. 136-141; Kim, C., Ahmed, J.A., Eidex, R.B., Comparison of nasopharyngeal and oropharyngeal swabs for the diagnosis of eight respiratory viruses by real-time reverse transcription-PCR assays (2011) PLoS One, 6 (6); van de Pol, A.C., van Loon, A.M., Wolfs, T.F., Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms (2007) J Clin Microbiol, 45 (7), pp. 2260-2262; Lindau, C., Tiveljung-Lindell, A., Goh, S., Ramqvist, T., Allander, T., A single-tube, real-time PCR assay for detection of the two newly characterized human KI and WU polyomaviruses (2009) J Clin Virol, 44 (1), pp. 24-26; Abed, Y., Wang, D., Boivin, G., WU polyomavirus in children, Canada (2007) Emerg Infect Dis, 13 (12), pp. 1939-1941; Norja, P., Ubillos, I., Templeton, K., Simmonds, P., No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease (2007) J Clin Virol, 40 (4), pp. 307-311; Bialasiewicz, S., Whiley, D.M., Lambert, S.B., Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection (2008) J Clin Virol, 41 (2), pp. 63-68; Le, B.M., Demertzis, L.M., Wu, G., Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri (2007) Emerg Infect Dis, 13 (12), pp. 1936-1938; Gossai, A., Waterboer, T., Nelson, H.H., Seroepidemiology of human polyomaviruses in a US population (2016) Am J Epidemiol, 183 (1), pp. 61-69; Abedi Kiasari, B., Vallely, P.J., Corless, C.E., Al-Hammadi, M., Klapper, P.E., Age-related pattern of KI and WU polyomavirus infection (2008) J Clin Virol, 43 (1), pp. 123-125; White, M.K., Gordon, J., Khalili, K., The rapidly expanding family of human polyomaviruses: Recent developments in understanding their life cycle and role in human pathology (2013) Hobman TC, Ed. Plos Pathog, 9 (3). , https://doi.org/10.1371/journal.ppat.1003206","Caldeira, D.B.; Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Brazil; email: debora.dellini@globo.com",,"Springer",15178382,,,"30637634","English","Braz. J. Microbiol.",Article,"Final",,Scopus,2-s2.0-85060929153 "Shean R.C., Makhsous N., Stoddard G.D., Lin M.J., Greninger A.L.","57193538651;57193504949;57205533769;57205529501;24832873700;","VAPiD: A lightweight cross-platform viral annotation pipeline and identification tool to facilitate virus genome submissions to NCBI GenBank",2019,"BMC Bioinformatics","20","1", 48,"","",,,"10.1186/s12859-019-2606-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060388191&doi=10.1186%2fs12859-019-2606-y&partnerID=40&md5=f7d434fa5232b711117f269c8f8f4e4e","University of Washington, Department of Laboratory Medicine, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, United States; University of Washington, Department of Neurobiology, Seattle, WA, United States","Shean, R.C., University of Washington, Department of Laboratory Medicine, Seattle, WA, United States, Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, United States; Makhsous, N., University of Washington, Department of Laboratory Medicine, Seattle, WA, United States, Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, United States; Stoddard, G.D., University of Washington, Department of Neurobiology, Seattle, WA, United States; Lin, M.J., University of Washington, Department of Laboratory Medicine, Seattle, WA, United States, Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, United States; Greninger, A.L., University of Washington, Department of Laboratory Medicine, Seattle, WA, United States, Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, United States","Background: With sequencing technologies becoming cheaper and easier to use, more groups are able to obtain whole genome sequences of viruses of public health and scientific importance. Submission of genomic data to NCBI GenBank is a requirement prior to publication and plays a critical role in making scientific data publicly available. GenBank currently has automatic prokaryotic and eukaryotic genome annotation pipelines but has no viral annotation pipeline beyond influenza virus. Annotation and submission of viral genome sequence is a non-trivial task, especially for groups that do not routinely interact with GenBank for data submissions. Results: We present Viral Annotation Pipeline and iDentification (VAPiD), a portable and lightweight command-line tool for annotation and GenBank deposition of viral genomes. VAPiD supports annotation of nearly all unsegmented viral genomes. The pipeline has been validated on human immunodeficiency virus, human parainfluenza virus 1-4, human metapneumovirus, human coronaviruses (229E/OC43/NL63/HKU1/SARS/MERS), human enteroviruses/rhinoviruses, measles virus, mumps virus, Hepatitis A-E Virus, Chikungunya virus, dengue virus, and West Nile virus, as well the human polyomaviruses BK/JC/MCV, human adenoviruses, and human papillomaviruses. The program can handle individual or batch submissions of different viruses to GenBank and correctly annotates multiple viruses, including those that contain ribosomal slippage or RNA editing without prior knowledge of the virus to be annotated. VAPiD is programmed in Python and is compatible with Windows, Linux, and Mac OS systems. Conclusions: We have created a portable, lightweight, user-friendly, internet-enabled, open-source, command-line genome annotation and submission package to facilitate virus genome submissions to NCBI GenBank. Instructions for downloading and installing VAPiD can be found at https://github.com/rcs333/VAPiD. © 2019 The Author(s).","Data submission; GenBank; NCBI; VAPiD; Viral annotation; Viral genomics; Virus sequence","Computer operating systems; Genetic engineering; HTTP; Pipelines; Viruses; Data submission; GenBank; Genomics; NCBI; VAPiD; Viral annotation; Virus sequences; Genes; genetics; genomics; human; nucleic acid database; procedures; standards; virus genome; Databases, Nucleic Acid; Genome, Viral; Genomics; Humans","Quick, J., Loman, N.J., Duraffour, S., Simpson, J.T., Severi, E., Cowley, L., Real-time, portable genome sequencing for Ebola surveillance (2016) Nature, 530, pp. 228-232; Kozyreva, V.K., Jospin, G., Greninger, A.L., Watt, J.P., Eisen, J.A., Chaturvedi, V., Recent outbreaks of shigellosis in California caused by two distinct populations of Shigella sonnei with either increased virulence or fluoroquinolone resistance (2016) mSphere, 1; Naccache, S.N., Thézé, J., Sardi, S.I., Somasekar, S., Greninger, A.L., Bandeira, A.C., Distinct Zika virus lineage in Salvador, Bahia (2016) Brazil Emerg Infect Dis, 22, pp. 1788-1792; Greninger, A.L., Zerr, D.M., Qin, X., Adler, A.L., Sampoleo, R., Kuypers, J.M., Rapid metagenomic next-generation sequencing during an investigation of hospital-acquired human parainfluenza virus 3 infections (2017) J Clin Microbiol, 55, pp. 177-182; Greninger, A.L., Messacar, K., Dunnebacke, T., Naccache, S.N., Federman, S., Bouquet, J., Clinical metagenomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: the continuing case for reference genome sequencing (2015) Genome Med, 7, p. 113; Wood, D.E., Salzberg, S.L., Kraken: ultrafast metagenomic sequence classification using exact alignments (2014) Genome Biol, 15, p. R46; Naccache, S.N., Federman, S., Veeraraghavan, N., Zaharia, M., Lee, D., Samayoa, E., A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples (2014) Genome Res, 24, pp. 1180-1192; Greninger, A.L., Knudsen, G.M., Betegon, M., Burlingame, A.L., DeRisi, J.L., ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding (2013) MBio, 4; Gardy, J., Loman, N.J., Rambaut, A., Real-time digital pathogen surveillance - the time is now (2015) Genome Biol, 16, p. 155; Yozwiak, N.L., Schaffner, S.F., Sabeti, P.C., Data sharing: make outbreak research open access (2015) Nature, 518, pp. 477-479; Allard, M.W., Strain, E., Melka, D., Bunning, K., Musser, S.M., Brown, E.W., Practical value of food pathogen traceability through building a whole-genome sequencing network and database (2016) J Clin Microbiol, 54, pp. 1975-1983; Kozyreva, V.K., Truong, C.-L., Greninger, A.L., Crandall, J., Mukhopadhyay, R., Chaturvedi, V., Validation and implementation of clinical laboratory improvements act-compliant whole-genome sequencing in the public health microbiology laboratory (2017) J Clin Microbiol, 55, pp. 2502-2520; Besser, J., Carleton, H.A., Gerner-Smidt, P., Lindsey, R.L., Trees, E., Next-generation sequencing technologies and their application to the study and control of bacterial infections (2017) Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis, 24 (4), pp. 335-341; Seemann, T., Prokka: rapid prokaryotic genome annotation (2014) Bioinforma Oxf Engl, 30, pp. 2068-2069; Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., NCBI prokaryotic genome annotation pipeline (2016) Nucleic Acids Res, 44, pp. 6614-6624; Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Tatusova, T., FLAN: a web server for influenza virus genome annotation (2007) Nucleic Acids Res, 35, pp. W280-W284; Greninger, A.L., A decade of RNA virus metagenomics is (not) enough (2018) Virus Res, 244, pp. 218-229; Pelet, T., Curran, J., Kolakofsky, D., The P gene of bovine parainfluenza virus 3 expresses all three reading frames from a single mRNA editing site (1991) EMBO J, 10, pp. 443-448; Greninger, A.L., Pepper, G., Shean, R.C., Cent, A., Palileo, I., Kuypers, J.M., Myeloablation-associated deletion of ORF4 in a human coronavirus 229E infection (2017) Npj Genomic Med, 2, p. 30; Vidal, S., Curran, J., Kolakofsky, D., Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity (1990) J Virol, 64, pp. 239-246; Katoh, K., Asimenos, G., Toh, H., Multiple alignment of DNA sequences with MAFFT (2009) Bioinformatics for DNA sequence analysis, 537, pp. 39-64. , In: Posada D, editor Methods in molecular biology (methods and protocols)","Greninger, A.L.; University of Washington, Department of Laboratory MedicineUnited States; email: agrening@uw.edu",,"BioMed Central Ltd.",14712105,,BBMIC,"30674273","English","BMC Bioinform.",Article,"Final",Open Access,Scopus,2-s2.0-85060388191 "Bryan J., Marr C.M., MacKenzie C.J., Mair T.S., Fletcher A., Cash R., Phillips M., Pusterla N., Mapes S., Foote A.K.","57205928398;7004610172;57212739769;7005068471;36058803700;7006069881;57205022055;7005591152;6603127432;8663202300;","Detection of equine coronavirus in horses in the United Kingdom",2019,"Veterinary Record","184","4",,"123","",,2,"10.1136/vr.105098","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058329210&doi=10.1136%2fvr.105098&partnerID=40&md5=e6381c92733251822027e86697c95bb2","Rossdales Laboratories Rossdale and Partners, Suffolk, United Kingdom; Rossdales Equine Hospital and Diagnostic Centre, Suffolk, United Kingdom; Bell Equine Veterinary Clinic, Maidstone, United Kingdom; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States","Bryan, J., Rossdales Laboratories Rossdale and Partners, Suffolk, United Kingdom; Marr, C.M., Rossdales Equine Hospital and Diagnostic Centre, Suffolk, United Kingdom; MacKenzie, C.J., Rossdales Equine Hospital and Diagnostic Centre, Suffolk, United Kingdom; Mair, T.S., Bell Equine Veterinary Clinic, Maidstone, United Kingdom; Fletcher, A., Rossdales Laboratories Rossdale and Partners, Suffolk, United Kingdom; Cash, R., Rossdales Laboratories Rossdale and Partners, Suffolk, United Kingdom; Phillips, M., Rossdales Laboratories Rossdale and Partners, Suffolk, United Kingdom; Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States; Mapes, S., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States; Foote, A.K., Rossdales Laboratories Rossdale and Partners, Suffolk, United Kingdom",[No abstract available],"enteritis; horses; PCR; viruses","acetylsalicylic acid; Clostridium difficile toxin A; Clostridium difficile toxin B; fenbendazole; flunixin; hetastarch; ivermectin; low molecular weight heparin; metronidazole; morphine; omeprazole; paracetamol; pentoxifylline; prednisone; virus RNA; Article; body weight loss; clinical feature; Clostridium perfringens; colic; Coronavirinae; enzyme linked immunosorbent assay; Equus; feces analysis; fever; gene; horse; intravenous feeding; larval cyathostomiasis; lethargy; leukopenia; lymphocytopenia; N gene; nonhuman; parasitosis; polymerase chain reaction; population research; United Kingdom; virus detection; virus strain; animal; Betacoronavirus 1; Coronavirus infection; feces; horse disease; isolation and purification; veterinary medicine; virology; Animals; Betacoronavirus 1; Coronavirus Infections; Feces; Horse Diseases; Horses; Polymerase Chain Reaction; RNA, Viral; United Kingdom","Oue, Y., Ishihara, R., Edamatsu, H., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet Microbiol, 150, pp. 41-48; Oue, Y., Morita, Y., Kondo, T., Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012 (2013) J Vet Med Sci, 75 (126), pp. 1-5; Pusterla, N., Mapes, S., Wademan, C., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet Microbiol, 162, pp. 228-231; Fielding, C.L., Higgins, J.K., Higgins, J.C., Disease associated with equine coronavirus nfection and high case fatality rate (2015) J Vet Intern Med, 29, pp. 307-310; Nemoto, M., Oue, Y., Morita, Y., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Arch Virol, 159, pp. 3329-3334; Giannitti, F., Diab, S., Mete, A., Necrotizing Enteritis and Hyperammonemic Encephalopathy Associated with Equine Coronavirus Infection in Equids (2015) Vet Pathol, 52, pp. 1148-1156; Pusterla, N., Vin, R., Leutenegger, C., Equine coronavirus: An emerging enteric virus of adult horses (2016) Equine Vet Educ, 28, pp. 216-223; Mair, T.S., Taylor, F.G., Harbour, D.A., Concurrent cryptosporidium and coronavirus nfections in an Arabian foal with combined immunodeficiency syndrome (1990) Vet Rec, 126, pp. 127-130; Davis, E., Rush, B.R., Cox, J., Neonatal enterocolitis associated with coronavirus nfection in a foal: A case report (2000) J Vet Diagn Invest, 12, pp. 153-156; Guy, J.S., Breslin, J.J., Breuhaus, B., Characterization of a coronavirus isolated from a diarrheic foal (2000) J Clin Microbiol, 38, pp. 4523-4526; Slovis, N.M., Elam, J., Estrada, M., Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: A comprehensive molecular study (2014) Equine Vet J, 46, pp. 311-316; Miszczak, F., Tesson, V., Kin, N., First detection of equine coronavirus (ECoV) in Europe (2014) Vet Microbiol, 171, pp. 206-209; Nemoto, M., Oue, Y., Higuchi, T., Low prevalence of equine coronavirus in foals in the largest thoroughbred horse breeding region of Japan, 2012-2014 (2015) Acta Vet Scand, 57, p. 53","Pusterla, N.; Rossdales Laboratories Rossdale and PartnersUnited Kingdom; email: jill.bryan@rossdales.com",,"British Veterinary Association",00424900,,VETRA,"30530800","English","Vet. Rec.",Article,"Final",,Scopus,2-s2.0-85058329210 "Ellis J.","7402714986;","What is the evidence that bovine coronavirus is a biologically significant respiratory pathogen in cattle?",2019,"Canadian Veterinary Journal","60","2",,"147","152",,1,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060944580&partnerID=40&md5=27ca5d459a3d4475a7942b8fac4bc997","Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada","Ellis, J., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada","Coronaviruses, including bovine Coronavirus (BCoV), are etiologically associated with enteric and respiratory disease across a wide range of mammalian and avian species. The role of BCoV in calfhood diarrhea is well-established, but its role in the bovine respiratory disease complex (BRDC) has been controversial. This review re-examines the evidence that BCoV is a significant pathogen in the BRDC. © 2019 Canadian Veterinary Medical Association. All Rights Reserved.",,"antibody response; antigenic variation; Article; Bovine coronavirus; cattle disease; diarrhea; electron microscopy; genotype; immune response; Nidovirales infection; nonhuman; pathogenicity; reverse transcription polymerase chain reaction; serology; virology","Brownlie, J., Coronaviridae (2017) Fenner's Veterinary Virology, pp. 435-459. , MacLachlan NJ, Dubovi EJ, eds, 5th ed. San Diego, California: Elsevier; Clark, M.A., Bovine coronavirus (1993) Br Vet J, 149, pp. 51-70; Kapil, S., Basaraba, R.J., Infectious bovine rhinotracheitis, parainfluenza-3, and respiratory Coronavirus (1997) Vet Clin North Am Food Anim Pratt, 13, pp. 455-469; Bolieau, M.J., Kapil, S., Bovine Coronavirus associated syndromes (2010) Vet Clin North Am Food Anim Prac, 26, pp. 123-146; Saif, L.J., Bovine respiratory Coronavirus (2010) Vet Clin North Am Food Anim Pract, 26, pp. 349-364; Mebus, C.A., White, R.G., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhea: Results of a field trial using a reo-like virus vaccine (1972) Vet Med Small Anim Clin, 67, pp. 173-178; Mebus, C.A., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhea: Propagation, attenuation and characteristics of a coronavirus-like agent (1973) Am J Vet Res, 34, pp. 145-150; Woode, G.N., Bridger, J.C., Meyling, A., Significance of bovine Coronavirus infection (1978) Vet Ree, 102, pp. 15-16; Thomas, L.H., Gourlay, R.N., Stott, E.J., Howard, C.J., Bridger, J.C., A search for new microorganisms in calf pneumonia by the inoculation of gno-tobiotic calves (1982) Res Vet Sei, 33, pp. 170-182; Reynolds, D.J., Debney, T.G., Hall, G.A., Thomas, L.H., Parsons, K.R., Studies on the relationship between coronaviruses from the intestinal and respiratory tract of calves (1985) Arch Virol, 85, pp. 71-83; Domingo, E., Martinez-Salas, E., Sobrino, F., The quasispecies (extremely heterogenous) nature of viral RNA genome populations: Biological relevance - A review (1985) Gene, 40, pp. 1-9; Estola, T., Coronaviruses, a new group of animal RNA viruses (1970) Avian Dis, 14, pp. 330-336; Perlman, S., Netland, J., Coronavirues post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450; Kin, N., Miszczak, F., Diancourt, L., Comparative molecular epidemiology of two closely related coronaviruses, bovine Coronavirus (BCoV) and human Coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect Genet Evol, 40, pp. 186-191; Benfield, D.A., Saif, L.J., Cell propagation of a Coronavirus isolated from cows with winter dysentery (1990) J Clin Microbiol, 28, pp. 1454-1457; Hasoksuz, M., Lathrop, S.L., Gadfield, K.L., Saif, L.J., Isolation of bovine respiratory coronaviruses from feedlot cattle and comparison of their biological and antigenic properties with bovine enteric coronaviruses (1999) Am J Vet Res, 60, pp. 1227-1233; Hogue, B.G., King, B., Brian, D.A., Antigenic relationships among proteins of bovine Coronavirus, human respiratory Coronavirus OC43, and mouse hepatitis Coronavirus A59 (1984) J. Virol, 51, pp. 384-388; Fulton, R.W., Blood, K.S., Pandera, R.J., Lung pathology and infectious agents in fatal feedlot pneumonias and relationship with mortality, disease onset, and treatments (2009) J Vet Diagn Invest, 21, pp. 464-477; Moore, S.J., O'Dea, M.A., Perkins, N., Barnes, A., O'Hara, A.J., Mortality of live export cattle on long-haul voyages: Pathologic changes and pathogens (2014) J Vet Diagn Invest, 26, pp. 252-265; O'Neill, R., Mooney, J., Connaghan, E., Furphy, C., Graham, D.A., Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: A retrospective study (2014) Vet Ree, 175, pp. 351-357; Francoz, D., Buczinski, S., Belanger, G., Respiratory pathogens in Quebec dairy calves and their relationship with clinical status, lung consolidation, and average daily gain (2015) J Vet Intern Med, 29, pp. 381-387; Fulton, R.W., D'Offay, J.M., Landis, C., Detection and characterization of viruses as field and vaccine strains (2016) Vaccine, 34, pp. 3478-3492; Doyle, D., Credille, B., Lehenbauer, T.W., Agreement among 4 sampling methods to identify respiratory pathogens in dairy calves with acute bovine respiratory disease (2017) J Vet Intern Med, 31, pp. 954-959; Kishimoto, M., Tsuchiaka, S., Rahpaya, S.S., Development of a one-run real time PCR detection system for pathogens associated with bovine respiratory disease complex (2017) J Vet Med Sei, 79, pp. 517-523; Workman, A.M., Kuehn, L.A., McDonald, T.G., Clawson, M.L., Chitko-Mckowen, C.G., Loy, J.D., Evaluation of the effect of serum antibody abundance against bovine Coronavirus on bovine Coronavirus shedding and risk of respiratory tract disease in beef calves from birth through the first five weeks in a feedlot (2017) Am J Vet Res, 78, pp. 1065-1076; Mitra, N., Cernicchiaro, N., Torres, S., Li, F., Hause, B.M., Metagenomic characterization of the VIRÓme associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus (2016) J Gen Virol, 97, pp. 1771-1784; Storz, J., Purdy, C.W., Lin, X., Isolation of respiratory bovine corona-virus, other cytocydal viruses, and Pasteurella spp (2000) From Cattle Involved in Two Natural Outbreaks of Shipping Fever. J Am Vet Med Assoc, 216, pp. 1599-1604; Fulton, R.W., Step, D.L., Wahrmund, J., Bovine Coronavirus (BCV) infections in transported commingled beef cattle and sole-source ranch calves (2011) Can J Vet Res, 75, pp. 191-199; Storz, J., Lin, X., Purdy, C.W., Coronavirus and Pasteurella infections in bovine shipping fever pneumonia and Evan's criteria for causation (2000) J Clin Microbiol, 38, pp. 3291-3298; Gagea, M.I., Bateman, K.G., Van Dreumel, T., Diseases and pathogens associated with mortality in Ontario beef feedlots (2006) J Vet Diag Invest, 18, pp. 18-28; Cho, K.O., Hoet, A.E., Loerch, S.C., Wittum, T.E., Saif, L.J., Evaluation of concurrent shedding of bovine Coronavirus via the respiratory tract and enteric route in feedlot cattle (2001) Am J Vet Res, 62, pp. 1436-1441; Oma, V.S., Traven, M., Alenius, S., Myrmel, M., Stokstad, M., Bovine Coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission (2016) Vet J, 13, pp. 100-111; Storz, J., Stine, L., Liem, A., Anderson, G.A., Coronavirus isolation from nasal swab samples in cattle with signs of respiratory tract disease after shipping (1996) J Am Vet Med Assoc, 208, pp. 1452-1455; Marten, S.W., Nagy, E., Shewen, P.E., Harland, R.J., The association of titers to bovine Coronavirus with treatment for bovine respiratory disease and weight gain in feedlot cattle (1998) Can J Vet Res, 62, pp. 257-261; Lathrop, S.L., Wittum, T.E., Loerch, S.C., Perino, L.J., Saif, L.J., Antibody titers against bovine Coronavirus and shedding of the virus via the respiratory tracat in feedlot cattle (2000) Am J Vet Res, 61, pp. 1057-1061; Hasoksuz, M., Hoet, A.E., Loerch, S.C., Wittum, T.E., Nielsen, P.R., Saif, L.J., Detection of respiratory and enteric shedding of bovine coronaviruses in cattle in Ohio feedlot (2002) J Vet Diagn Invest, 14, pp. 308-313; Lin, X.O., O'Reilly, K.L., Storz, J., Purdy, C.W., Loan, R.W., Antibody responses to respiratory Coronavirus infections of cattle during shipping fever pathogenesis (2000) Arch Virol, 145, pp. 2345-2349; O'Connor, A., Marten, S.W., Nagy, E., Menzies, P., Harland, R., The relationship between the occurrence of undifferentiated bovine respiratory disease and titer changes to bovine Coronavirus and bovine viral diarrhea virus in 3 Ontario feedlots (2001) Can J Vet Res, 65, pp. 137-142; Thomas, C.J., Hoet, A.E., Sreevatsan, S., Transmission of bovine Coronavirus and serologic responses in feedlot calves under field conditions (2006) Am J Vet Res, 67, pp. 1412-1420; Pardon, B., Alliet, J., Boone, R., Roelandt, S., Valgaeren, B., Deprez, P., Prediction of respiratory disease and diarrhea in veal calves based on immunoglobulin levels and the serostatus for respiratory pathogens measured at arrival (2015) Prevent Vet Med, 120, pp. 169-176; Plummer, P.J., Rohrbach, B.W., Daugherty, R.A., Effect of intranasal vaccination against bovine enteric Coronavirus on the occurrence of respiratory tract disease in a commercial backgounding feedlot (2004) J Am Vet Med Assoc, 225, pp. 726-731; Booker, C.W., Abutarbush, S.M., Morley, P.S., Microbiological and histopathological findings in cases of fatal bovine respiratory disease of feedlot cattle in Western Canada (2008) Can Vet J, 49, pp. 473-481; Hick, P.M., Read, A.J., Lugton, I., Coronavirus infection in intensively managed cattle with respiratory disease (2012) Aust Vet J, pp. 381-386; Saif, L.J., Redman, D.R., Moorhead, P.D., Theil, K.W., Experimentally induced Coronavirus infections in calves: Viral replication in the respiratory and intestinal tracts (1986) Am J Vet Res, 47, pp. 1426-1432; Cho, K.-O., Hasoksuz, M., Nielsen, P.R., Chang, K.-O., Lathrop, S., Saif, L.J., Cross-protection studies between respiratory and calf diarrhea and winter dysentery Coronavirus strains in calves and RT-PCR and nested PCR for their detection (2001) Arch Virol, 146, pp. 2401-2409; Park, S.J., Kim, G.Y., Choy, H.E., Dual enteric and respiratory troptsms of winter dysentery bovine Coronavirus in calves (2007) Arch Virol, 152, pp. 1885-1900; McNulty, M.S., Bryson, D.G., Allan, G.M., Logan, E.E., Coronavirus infection of the bovine respiratory tract (1984) Vet Microbiol, 9, pp. 425-434; Kapil, S., Trent, A.M., Goyal, S.M., Excretion and persistence of bovine Coronavirus in neonatal calves (1990) Arch Virol, 115, pp. 127-132; Kapil, S., Pomeroy, K.A., Goyal, P.G., Trent, A.M., Experimental infection with a virulent pneumoenteric isolate of bovine Coronavirus (1991) J Vet Diagn Invest, 3, pp. 88-89; Ellis, J.A., Update on viral pathogenesis in BRD (2009) Anim Health Res Rev, 10, pp. 149-153; Ellis, J.A., How efficacious are vaccines against bovine respiratory syncytial virus in cattle? (2017) Vet Microbiol, 206, pp. 59-68; Ellis, J.A., Bovine parainfluenza virus-3 (2010) Vet Clin Food Anim, 26, pp. 575-593","Ellis, J.; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Canada; email: john.ellis@usask.ca",,"Canadian Veterinary Medical Association",00085286,,CNVJA,"30705449","English","Can. Vet. J.",Article,"Final",,Scopus,2-s2.0-85060944580 "Wang Q., Vlasova A.N., Kenney S.P., Saif L.J.","55698230500;16246782500;21934200600;57205309530;","Emerging and re-emerging coronaviruses in pigs",2019,"Current Opinion in Virology","34",,,"39","49",,18,"10.1016/j.coviro.2018.12.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059837267&doi=10.1016%2fj.coviro.2018.12.001&partnerID=40&md5=b93c1e2ffacaf04da33c55b5a6bcff16","Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States","Wang, Q., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States; Vlasova, A.N., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States; Kenney, S.P., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States; Saif, L.J., Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, United States","Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV) are emerging/reemerging coronaviruses (CoVs). They cause acute gastroenteritis in neonatal piglets. Sequence analyses suggest that PEDV and SADS-CoV may have originated from bat CoVs and PDCoV from a sparrow CoV, reaffirming the interspecies transmission of CoVs. The clinical signs and pathogenesis of the three viruses are similar. Necrosis of infected intestinal epithelial cells occurs, causing villous atrophy that results in malabsorptive diarrhea. The severe diarrhea and vomiting may lead to dehydration and death of piglets. Natural infection induces protective immunity, but there is no cross-protection among the three viruses. Besides strict biosecurity measures, individual vaccines are needed for each virus for disease prevention and control. © 2018 Elsevier B.V.",,"acute gastroenteritis; bat; Coronavirinae; cross protection; death; dehydration; diarrhea; disease re-emergence; immune response; immunity; infection control; infection prevention; intestine epithelium cell; intestine villus atrophy; nonhuman; piglet; porcine delta coronavirus; Porcine epidemic diarrhea virus; priority journal; Review; sequence analysis; swine acute diarrhea syndrome coronavirus; virus pathogenesis; virus transmission; vomiting; animal; classification; Coronavirinae; Coronavirus infection; human; pathogenicity; phylogeny; pig; Porcine epidemic diarrhea virus; swine disease; veterinary medicine; virology; virus genome; Animals; Coronavirus; Coronavirus Infections; Diarrhea; Genome, Viral; Humans; Phylogeny; Porcine epidemic diarrhea virus; Swine; Swine Diseases","Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet Rec, 100, pp. 243-244; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review (2016) J Vet Med Sci, 78, pp. 355-363; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis, 18, pp. 161-163; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008. , It is a nice study on the evolution of coronaviruses; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerg Infect Dis, 20, pp. 1594-1595; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new Bat-HKU2-like Coronavirus in Swine, China, 2017 (2017) Emerg Infect Dis, 23; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L.X., Zhang, X., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbio, 211, pp. 15-21; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , Comprehensively, investigation of a deadly pig diarrhea outbreak caused by a novel alphacoronavirus. They also identified SADS-related CoVs from bats, highlighting the interspecies transmission of bat CoVs to pigs; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59; Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., Pohlmann, A., New Chimeric Porcine Coronavirus in Swine Feces, Germany, 2012 (2016) Emerg Infect Dis, 22, pp. 1314-1315; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Faccini, S., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg Infect Dis, 22, pp. 83-87; Mandelik, R., Sarvas, M., Jackova, A., Salamunova, S., Novotny, J., Vilcek, S., First outbreak with chimeric swine enteric coronavirus (SeCoV) on pig farms in Slovakia - lessons to learn (2018) Acta Veterinaria Hungarica, 66, pp. 488-492; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Topics Microbiol Immunol, 287, pp. 1-30; Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Vlasova, A.N., Saif, L.J., Biological aspects of the interspecies transmission of selected coronaviruses (2013) Viral Infections and Global Change, pp. 393-418. , S.K. Singh Wiley; Zhang, C.Y., Wei, J.F., He, S.H., Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups (2006) BMC Microbiol, 6, p. 88; Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Vlasova, A., Janies, D., Saif, L.J., Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation (2007) Virology, 363, pp. 1-10; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Halpin, R., Wang, S., Saif, L.J., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J Virol, 81, pp. 4981-4990; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: molecular features and virus-host interactions (1993) Vet Res, 24, pp. 125-150; Lorusso, A., Decaro, N., Schellen, P., Rottier, P.J., Buonavoglia, C., Haijema, B.J., de Groot, R.J., Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein (2008) J Virol, 82, pp. 10312-10317. , A nice study on the evolutionary history of alphacoronaviruses based on accessory gene ORF3; Vaughn, E.M., Halbur, P.G., Paul, P.S., Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes (1995) J Virol, 69, pp. 3176-3184; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604; Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Stollar, S., Janies, D., Ghedin, E., Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus (2007) Virology, 358, pp. 424-435; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Saif, L.J., Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets (2017) J Virol, 91; Suzuki, T., Shibahara, T., Yamaguchi, R., Nakade, K., Yamamoto, T., Miyazaki, A., Ohashi, S., Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets (2016) J Gen Virol, 97, pp. 1823-1828; Whitworth, K.M., Rowland, R.R.R., Petrovan, V., Sheahan, M., Cino-Ozuna, A.G., Fang, Y., Hesse, R., Wells, K.D., Resistance to coronavirus infection in amino peptidase N-deficient pigs (2018) Transgenic Res; Terada, Y., Shiozaki, Y., Shimoda, H., Mahmoud, H.Y.A.H., Noguchi, K., Nagao, Y., Shimojima, M., Okuda, M., Feline infectious peritonitis virus with a large deletion in the 5’-terminal region of the spike gene retains its virulence for cats (2012) J Gen Virol, 93, pp. 1930-1934; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Chen, M.H., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Decaro, N., Mari, V., Elia, G., Addie, D.D., Camero, M., Lucente, M.S., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses in dogs, Europe (2010) Emerg Infect Dis, 16, pp. 41-47; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Muller, M.A., Adu-Sarkodie, Y., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg Infect Dis, 15, pp. 1377-1384; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Adu-Sarkodie, Y., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J Virol, 89, pp. 11858-11870; Lau, S.K., Li, K.S., Tsang, A.K., Shek, C.T., Wang, M., Choi, G.K., Guo, R., Poon, R.W., Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J Virol, 86, pp. 11906-11918. , C.S. Lam; Han, M.G., Cheon, D.S., Zhang, X., Saif, L.J., Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves (2006) J Virol, 80, pp. 12350-12356; Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Halpin, R., Wang, S., Saif, L.J., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) J Virol, 82, pp. 12422-12431; Tsunemitsu, H., el-Kanawati, Z.R., Smith, D.R., Reed, H.H., Saif, L.J., Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea (1995) J Clin Microbiol, 33, pp. 3264-3269; Majhdi, F., Minocha, H.C., Kapil, S., Isolation and characterization of a coronavirus from elk calves with diarrhea (1997) J Clin Microbiol, 35, pp. 2937-2942; Kin, N., Miszczak, F., Diancourt, L., Caro, V., Moutou, F., Vabret, A., Ar Gouilh, M., Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect, Genet Evol, 40, pp. 186-191; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6; Chu, D.K., Leung, C.Y., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Poon, L.L., Avian coronavirus in wild aquatic birds (2011) J Virol, 85, pp. 12815-12820; Lau, S.K.P., Wong, E.Y.M., Tsang, C.C., Ahmed, S.S., Au-Yeung, R.K.H., Yuen, K.Y., Wernery, U., Woo, P.C.Y., Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission (2018) J Virol, 92; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) mBio, 4, pp. e00737-00713. , A nice study on the origin of emerging PEDV in the USA; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Du, L., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125; Teeravechyan, S., Frantz, P.N., Wongthida, P., Chailangkarn, T., Jaru-Ampornpan, P., Koonpaew, S., Jongkaewwattana, A., Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics (2016) Virus Res, 226, pp. 152-171; Bevins, S.N., Lutman, M., Pedersen, K., Barrett, N., Gidlewski, T., Deliberto, T.J., Franklin, A.B., Spillover of swine coronaviruses, United States (2018) Emerg Infect Dis, 24, pp. 1390-1392; Lee, D.U., Kwon, T., Je, S.H., Yoo, S.J., Seo, S.W., Sunwoo, S.Y., Lyoo, Y.S., Wild boars harboring porcine epidemic diarrhea virus (PEDV) may play an important role as a PEDV reservoir (2016) Vet Microbiol, 192, pp. 90-94. , This is the first study reporting PEDV infection of wild pigs, which can be an important PEDV reservoir; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Zheng, B.J., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., van Dieren, B., Bosch, B.J., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc Natl Acad Sci U S A, 115, pp. E5135-E5143. , This study reported that PDCoV uses APN as an entry receptor via binding to the phylogenetically conserved catalytic domain of APN. It partially explains the fact that PDCoV efficiently infects cells of a broad species range and the mechanism of interspecies transmission of the virus from birds to pigs; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261; Hulswit, R.J., de Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57. , Nice and comprehensive review of the coronavirus spike protein and inter- and intraspecies tropism changes; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Res, 226, pp. 117-127; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539. , It is the first report showing experimental evidence that the previously claimed PEDV receptor APN is not the cellular receptor for PEDV; Li, W., Luo, R., He, Q., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13; Ji, C.M., Wang, B., Zhou, J., Huang, Y.W., Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells (2018) Virology, 517, pp. 16-23; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity (1996) J Virol, 70, pp. 5634-5637; Krempl, C., Schultze, B., Laude, H., Herrler, G., Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus (1997) J Virol, 71, pp. 3285-3287. , A nice study on the connection between sialic acid binding activity and the enteropathogenicity of TGEV; Schwegmann-Wessels, C., Herrler, G., Sialic acids as receptor determinants for coronaviruses (2006) Glycoconjugate J, 23, pp. 51-58; Zhu, X., Liu, S., Wang, X., Luo, Z., Shi, Y., Wang, D., Peng, G., Xiao, S., Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection (2018) Emerg Microbes Infect, 7, p. 65; Vlasova, A.N., Zhang, X., Hasoksuz, M., Nagesha, H.S., Haynes, L.M., Fang, Y., Lu, S., Saif, L.J., Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein (2007) J Virol, 81, pp. 13365-13377; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Saif, L.J., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342; Sun, Z.F., Meng, X.J., Antigenic cross-reactivity between the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus and polyclonal antisera of antigenic group I animal coronaviruses: implication for SARS diagnosis (2004) J Clin Microbiol, 42, pp. 2351-2352; Ma, Y., Zhang, Y., Liang, X., Oglesbee, M., Krakowka, S., Niehaus, A., Wang, G., Li, J., Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Vet Microbiol, 186, pp. 90-96; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg Infect Dis, 20, pp. 1347-1350; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada (2018) Transboundary and Emerg Dis, 65, pp. 660-675; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Du, Y., Cao, Y., Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets (2018) Transboundary Emerg Dis; Li, Y., Wu, Q., Huang, L., Yuan, C., Wang, J., Yang, Q., An alternative pathway of enteric PEDV dissemination from nasal cavity to intestinal mucosa in swine (2018) Nat Commun, 9, p. 3811; Liu, X., Lin, C.M., Annamalai, T., Gao, X., Lu, Z., Esseili, M.A., Jung, K., Wang, Q., Determination of the infectious titer and virulence of an original US porcine epidemic diarrhea virus PC22A strain (2015) Vet Res, 46, p. 109; Thomas, J.T., Chen, Q., Gauger, P.C., Gimenez-Lirola, L.G., Sinha, A., Harmon, K.M., Madson, D.M., Salzbrenner, H.M., Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs (2015) PloS One, 10; Zhang, J., Porcine deltacoronavirus: overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res, 226, pp. 71-84; Chen, Q., Wang, L., Zheng, Y., Zhang, J., Guo, B., Yoon, K.J., Gauger, P.C., Li, G., Metagenomic analysis of the RNA fraction of the fecal virome indicates high diversity in pigs infected by porcine endemic diarrhea virus in the United States (2018) Virol J, 15, p. 95; Zhang, Q., Hu, R., Tang, X., Wu, C., He, Q., Zhao, Z., Chen, H., Wu, B., Occurrence and investigation of enteric viral infections in pigs with diarrhea in China (2013) Arch Virol, 158, pp. 1631-1636; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204, pp. 134-143; Moon, H.W., Kemeny, L.J., Lambert, G., Stark, S.L., Booth, G.D., Age-dependent resistance to transmissible gastroenteritis of swine. III. Effects of epithelial cell kinetics on coronavirus production and on atrophy of intestinal villi (1975) Vet Pathol, 12, pp. 434-445. , A nice study on innate age-dependent resistance to transmissible gastroenteritis; Annamalai, T., Saif, L.J., Lu, Z., Jung, K., Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs (2015) Vet Immunol Immunopathol, 168, pp. 193-202; Jung, K., Annamalai, T., Lu, Z., Saif, L.J., Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs (2015) Vet Microbiol, 178, pp. 31-40; Hammerberg, C., Schurig, G.G., Ochs, D.L., Immunodeficiency in young pigs (1989) Am J Vet Res, 50, pp. 868-874; Jung, K., Miyazaki, A., Saif, L.J., Immunohistochemical detection of the vomiting-inducing monoamine neurotransmitter serotonin and enterochromaffin cells in the intestines of conventional or gnotobiotic (Gn) pigs infected with porcine epidemic diarrhea virus (PEDV) and serum cytokine responses of Gn pigs to acute PEDV infection (2018) Res Vet Sci, 119, pp. 99-108; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus Res, 226, pp. 93-107; Song, Q., Stone, S., Drebes, D., Greiner, L.L., Dvorak, C.M., Murtaugh, M.P., Characterization of anti-porcine epidemic diarrhea virus neutralizing activity in mammary secretions (2016) Virus Res, 226, pp. 85-92; Diel, D.G., Lawson, S., Okda, F., Singrey, A., Clement, T., Fernandes, M.H.V., Christopher-Hennings, J., Nelson, E.A., Porcine epidemic diarrhea virus: an overview of current virological and serological diagnostic methods (2016) Virus Res, 226, pp. 60-70; Crawford, K., Lager, K., Miller, L., Opriessnig, T., Gerber, P., Hesse, R., Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs (2015) Vet Res, 46, p. 49; Gimenez-Lirola, L.G., Zhang, J., Carrillo-Avila, J.A., Chen, Q., Magtoto, R., Poonsuk, K., Baum, D.H., Zimmerman, J., Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications (2017) J Clin Microbiol, 55, pp. 1426-1436. , A nice study on the immunogenicity and reactivity among porcine enteric CoV structural proteins; de Arriba, M.L., Carvajal, A., Pozo, J., Rubio, P., Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus (2002) Vet Immunol Immunopathol, 85, pp. 85-97; de Arriba, M.L., Carvajal, A., Pozo, J., Rubio, P., Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV (2002) Vet Immunol Immunopathol, 84, pp. 1-16; Ouyang, K., Shyu, D.L., Dhakal, S., Hiremath, J., Binjawadagi, B., Lakshmanappa, Y.S., Guo, R., Gauger, P., Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions (2015) Vet Res, 46, p. 140; Lin, C.M., Ghimire, S., Hou, Y., Langel, S.N., Vlasova, A.N., Saif, L.J., Wang, Q., Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs (2019) BMC Vet Res, , (in press); Derbyshire, J.B., Jessett, D.M., Newman, G., An experimental epidemiological study of porcine transmissible gastroenteritis (1969) J Comp Pathol, 79, pp. 445-452; Cao, L., Ge, X., Gao, Y., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus infection induces NF-kappaB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells (2015) J Gen Virol, 96, pp. 1757-1767; Xu, X., Zhang, H., Zhang, Q., Huang, Y., Dong, J., Liang, Y., Liu, H.J., Tong, D., Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression (2013) Vet Microbiol, 164, pp. 212-221; Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., Liu, H.J., Tong, D., Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression (2013) Virol J, 10, p. 26; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2015) J Virol, 90, pp. 2090-2101; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J Virol, 88, pp. 8936-8945; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2018) J Virol, 92; Lin, C.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Hu, H., Wang, Q., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Vet Res, 46, p. 134; Crawford, K., Lager, K.M., Kulshreshtha, V., Miller, L.C., Faaberg, K.S., Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada (2016) Virus Res, 226, pp. 108-116; Song, D., Park, B., Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175; Okda, F.A., Lawson, S., Singrey, A., Nelson, J., Hain, K.S., Joshi, L.R., Christopher-Hennings, J., Diel, D.G., The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes (2017) Virology, 509, pp. 185-194; Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J Virol, 91; Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu Rev Anim Biosci, 3, pp. 375-395; Bjustrom-Kraft, J., Woodard, K., Gimenez-Lirola, L., Setness, B., Ji, J., Lasley, P., Nelson, E., Gauger, P., Serum and mammary secretion antibody responses in porcine epidemic diarrhea-immune gilts following porcine epidemic diarrhea vaccination (2018) JSHAP, 26, pp. 34-40; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: a review of current epidemiology and available vaccines (2015) Clin Exp Vac Res, 4, pp. 166-176; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to the newly emerged porcine deltacoronavirus, but not to the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch Virol, , Submitted for publication; Tamura, K., Nei, M., Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method (2004) Proc Natl Acad Sci U S A, 101, pp. 11030-11035; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms (2018) Mol Biol Evol, 35, pp. 1547-1549; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548; Jung, K., Miyazaki, A., Hu, H., Saif, L.J., Susceptibility of porcine IPEC-J2 intestinal epithelial cells to infection with porcine deltacoronavirus (PDCoV) and serum cytokine responses of gnotobiotic pigs to acute infection with IPEC-J2 cell culture-passaged PDCoV (2018) Vet Microbiol, 221, pp. 49-58",,,"Elsevier B.V.",18796257,,,"30654269","English","Curr. Opin. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85059837267 "He L., Tai W., Li J., Chen Y., Gao Y., Li J., Sun S., Zhou Y., Du L., Zhao G.","57194204279;57188879191;57203801477;57201432379;57200686971;55358034200;35171536200;57191653017;8686996200;8684553000;","Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain",2019,"Viruses","11","2", 166,"","",,4,"10.3390/v11020166","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061974267&doi=10.3390%2fv11020166&partnerID=40&md5=8b783148afce23c00b4630f09451650a","State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China","He, L., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Tai, W., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Li, J., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Chen, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Gao, Y., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Li, J., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Sun, S., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China; Zhou, Y., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States; Zhao, G., State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China","Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), an infectious coronavirus first reported in 2012, has a mortality rate greater than 35%. Therapeutic antibodies are key tools for preventing and treating MERS-CoV infection, but to date no such agents have been approved for treatment of this virus. Nanobodies (Nbs) are camelid heavy chain variable domains with properties distinct from those of conventional antibodies and antibody fragments. We generated two oligomeric Nbs by linking two or three monomeric Nbs (Mono-Nbs) targeting the MERS-CoV receptor-binding domain (RBD), and compared their RBD-binding affinity, RBD-receptor binding inhibition, stability, and neutralizing and cross-neutralizing activity against MERS-CoV. Relative to Mono-Nb, dimeric Nb (Di-Nb) and trimeric Nb (Tri-Nb) had significantly greater ability to bind MERS-CoV RBD proteins with or without mutations in the RBD, thereby potently blocking RBD-MERS-CoV receptor binding. The engineered oligomeric Nbs were very stable under extreme conditions, including low or high pH, protease (pepsin), chaotropic denaturant (urea), and high temperature. Importantly, Di-Nb and Tri-Nb exerted significantly elevated broad-spectrum neutralizing activity against at least 19 human and camel MERS-CoV strains isolated in different countries and years. Overall, the engineered Nbs could be developed into effective therapeutic agents for prevention and treatment of MERS-CoV infection. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Cross-neutralization; MERS-CoV; Nanobodies; Receptor-binding domain; Therapeutic antibodies","dimeric nanobody; dipeptidyl peptidase IV; monomeric nanobody; nanobody; pepsin A; trimeric nanobody; unclassified drug; urea; viral protein; vitronectin; coronavirus receptor; nanobody; neutralizing antibody; protein binding; virus antibody; virus receptor; analytical parameters; Article; binding affinity; conformation; controlled study; cross reaction; cytopathogenic effect; drug antigenicity; drug stability; enzyme linked immunosorbent assay; flow cytometry; gene mutation; genetic transfection; high temperature; human; human cell; Middle East respiratory syndrome coronavirus; neutralization dose; nonhuman; pH; polyacrylamide gel electrophoresis; pseudotyping; receptor binding; surface plasmon resonance; thermostability; virus neutralization; virus strain; Western blotting; animal; camel; chemistry; heat; immunology; protein domain; serodiagnosis; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelus; Hot Temperature; Humans; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Pepsin A; Protein Binding; Protein Domains; Receptors, Virus; Single-Domain Antibodies; Urea","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6, p. 21878; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8, pp. e17-e00373; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular evolution of MERS Coronavirus: Dromedaries as a recent intermediate host or long-time animal reservoir? (2017) Int. J. Mol. Sci., 18, p. 2138; van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al, O.B., McDowell, C., Adney, D., Talafha, H.A., Amarin, N., High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis., 17, pp. 155-159; Madani, T.A., Azhar, E.I., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 371, p. 1360; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D.K., Peiris, M., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) Transbound. Emerg. Dis., 64, pp. 344-353; Hunter, J.C., Nguyen, D., Aden, B., Al, B.Z., Al, D.W., Abu, E.K., Khudair, A., Imambaccus, H., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg. Infect. Dis., 22, pp. 647-656; Alhakeem, R.F., Midgley, C.M., Assiri, A.M., Alessa, M., Al, H.H., Saeed, A.B., Almasri, M.M., Abdalla, O., Exposures among MERS case-patients, Saudi Arabia, January-February 2016 (2016) Emerg. Infect. Dis., 22, pp. 2020-2022; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg. Microbes Infect., 6, p. e51; Choi, J.Y., An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med. J., 56, pp. 1174-1176; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int. J. Infect. Dis., 38, pp. 65-67; Zhou, Y., Jiang, S., Du, L., Prospects for a MERS-CoV spike vaccine (2018) Expert Rev. Vaccines, 17, pp. 677-686; Du, L., Tai, W., Zhou, Y., Jiang, S., Vaccines for the prevention against the threat ofMERS-CoV (2016) Expert Rev. Vaccines, 15, pp. 1123-1134; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.T., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res., 202, pp. 151-159; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Perlman, S., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat. Commun., 7, p. 13473; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Jiang, S., Du, L., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J. Virol., 91, pp. e16-e01651; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Tseng, C.T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell. Mol. Immunol., 13, pp. 180-190; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res., 132, pp. 141-148; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl Acad. Sci. USA, 112, pp. 10473-10478; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Dimitrov, D.S., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6, p. 8223; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6, p. 234ra59; Lowe, D., Dudgeon, K., Rouet, R., Schofield, P., Jermutus, L., Christ, D., Aggregation, stability, and formulation of human antibody therapeutics (2011) Adv. Protein Chem. Struct. Biol., 84, pp. 41-61; Rouet, R., Lowe, D., Christ, D., Stability engineering of the human antibody repertoire (2014) FEBS Lett., 588, pp. 269-277; Chames, P., Van, R.M., Weiss, E., Baty, D., Therapeutic antibodies: Successes, limitations and hopes for the future (2009) Br. J. Pharmacol., 157, pp. 220-233; Muyldermans, S., Nanobodies: Natural single-domain antibodies (2013) Annu. Rev. Biochem., 82, pp. 775-797; Siontorou, C.G., Nanobodies as novel agents for disease diagnosis and therapy (2013) Int. J. Nanomed., 8, pp. 4215-4227; Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., Cauerhff, A., Scheuplein, F., Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity (2009) Med. Microbiol. Immunol., 198, pp. 157-174; Hmila, I., Abdallah, R.B., Saerens, D., Benlasfar, Z., Conrath, K., Ayeb, M.E., Muyldermans, S., Bouhaouala-Zahar, B., VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI’ (2008) Mol. Immunol., 45, pp. 3847-3856; Els, C.K., Lauwereys, M., Wyns, L., Muyldermans, S., Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs (2001) J. Biol. Chem., 276, pp. 7346-7350; Laursen, N.S., Friesen, R.H.E., Zhu, X., Jongeneelen, M., Blokland, S., Vermond, J., van Eijgen, A., Obmolova, G., Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin (2018) Science, 362, pp. 598-602; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., Li, J., Wang, Y., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J. Virol., 92, pp. e18-e00837; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., Tseng, C.K., Du, L., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Tai, W., He, L., Wang, Y., Sun, S., Zhao, G., Luo, C., Li, P., Li, F., Critical neutralizing fragment of Zika virus EDIII elicits cross-neutralization and protection against divergent Zika viruses (2018) Emerg. Microbes Infect., 7, p. 7; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J. Immunol., 174, pp. 4908-4915; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Jiang, S., Gao, J., Receptor-binding domain ofMERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum. Vaccin. Immunother., 13, pp. 1615-1624; Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies (2006) Pharmacol. Rev., 58, pp. 621-681; Biacchesi, S., Skiadopoulos, M.H., Yang, L., Murphy, B.R., Collins, P.L., Buchholz, U.J., Rapid human metapneumovirus microneutralization assay based on green fluorescent protein expression (2005) J. Virol. Methods, 128, pp. 192-197; Gaiotto, T., Hufton, S.E., Cross-neutralising nanobodies bind to a conserved pocket in the hemagglutinin stem region identified using yeast display and deep mutational scanning (2016) PLoS ONE, 11, p. e0164296; Ardekani, L.S., Gargari, S.L., Rasooli, I., Bazl, M.R., Mohammadi, M., Ebrahimizadeh, W., Bakherad, H., Zare, H., A novel nanobody against urease activity of Helicobacter pylori (2013) Int. J. Infect. Dis., 17, pp. e723-e728; Hussack, G., Hirama, T., Ding, W., Mackenzie, R., Tanha, J., Engineered single-domain antibodies with high protease resistance and thermal stability (2011) PLoS ONE, 6, p. e28218; AlDeghaither, D., Smaglo, B.G., Weiner, L.M., Beyond peptides and mAbs-current status and future perspectives for biotherapeutics with novel constructs (2015) J. Clin. Pharmacol., pp. S4-S20; Ibanez, L.I., De, F.M., Hultberg, A., Verrips, T., Temperton, N., Weiss, R.A., Vandevelde, W., Saelens, X., Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection (2011) J. Infect. Dis., 203, pp. 1063-1072; Li, T., Bourgeois, J.P., Celli, S., Glacial, F., Le Sourd, A.M., Mecheri, S., Weksler, B., Rougeon, F., Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: Application to brain imaging (2012) FASEB J., 26, pp. 3969-3979; Liu, A., Yin, K., Mi, L., Ma, M., Liu, Y., Li, Y., Wei, W., Liu, S., A novel photoelectrochemical immunosensor by integration of nanobody and ZnO nanorods for sensitive detection of nucleoside diphosphatase kinase-A (2017) Anal. Chim. Acta., 973, pp. 82-90; Bannas, P., Hambach, J., Koch-Nolte, F., Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics (2017) Front. Immunol., 8, p. 1603; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Van Roy, M., Ververken, C., Beirnaert, E., Hoefman, S., Kolkman, J., Vierboom, M., Breedveld, E., Bontinck, L., The preclinical pharmacology of the high affinity anti-IL-6R Nanobody(R) ALX-0061 supports its clinical development in rheumatoid arthritis (2015) Arthritis Res. Ther., 17, p. 135; Raj, V.S., Okba, N.M., Gutierrez-Alvarez, J., Drabek, D., van Dieren, B., Widagdo, W., Lamers, M.M., Sola, I., Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection (2018) Sci. Adv., 4, p. eaas9667","Zhou, Y.; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyChina; email: yszhou@bmi.ac.cn",,"MDPI AG",19994915,,,"30791410","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85061974267 "Gardner E.G., Kelton D., Poljak Z., von Dobschuetz S., Greer A.L.","57193719177;7003316905;8966822700;20436883300;15026202400;","A rapid scoping review of Middle East respiratory syndrome coronavirus in animal hosts",2019,"Zoonoses and Public Health","66","1",,"35","46",,,"10.1111/zph.12537","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056334704&doi=10.1111%2fzph.12537&partnerID=40&md5=3ea145c4f11483c0961064a68a9bbd4d","University of Guelph, Guelph, ON, Canada; Food and Agriculture Organization of the United Nations, Rome, Italy","Gardner, E.G., University of Guelph, Guelph, ON, Canada, Food and Agriculture Organization of the United Nations, Rome, Italy; Kelton, D., University of Guelph, Guelph, ON, Canada; Poljak, Z., University of Guelph, Guelph, ON, Canada; von Dobschuetz, S., Food and Agriculture Organization of the United Nations, Rome, Italy; Greer, A.L., University of Guelph, Guelph, ON, Canada","Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen discovered in 2012. The purpose of this scoping review was to summarize the empirical evidence for MERS-CoV in animals in order to map knowledge gaps and to extract data for modelling disease transmission in dromedary camels. A review protocol was developed a priori, and a systematic search, data extraction and summary were conducted using the Arksey and O'Malley framework. Ninety-nine publications were identified for full review out of 1,368 unique records. Of these publications, 71 were articles in scientific journals. Ninety of the studies were observational and the remaining nine were experimental. We summarize characteristics of animal studies including study design, study population and outcomes of interest for future transmission modelling in the reservoir population. The majority of field studies reported measures of prevalence, while experimental studies provided estimates of transmission parameters that pertain to the natural course of disease. © 2018 Blackwell Verlag GmbH","camels; disease reservoirs; dromedary; MERS-CoV; Middle East respiratory syndrome; review; zoonoses","dromedary; host; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; practice guideline; priority journal; publication; Review; Saudi Arabia; seroconversion; systematic review; vaccination; virus transmission; animal; communicable disease; Coronavirus infection; isolation and purification; Middle East respiratory syndrome coronavirus; transmission; veterinary medicine; virology; Animals; Communicable Diseases, Emerging; Coronavirus Infections; Middle East Respiratory Syndrome Coronavirus","Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, replication, and transmission of middle east respiratory syndrome coronavirus in Alpacas (2016) Emerging Infectious Diseases, 22 (6), pp. 1031-1037. , https://doi.org/10.3201/eid2206.160192; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerging Infectious Diseases, 20 (12), pp. 1999-2005. , https://doi.org/10.3201/eid2012.141280; Al Hammadi, Z.M., Chu, D.K.W., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Poon, L.L.M., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerging Infectious Diseases, 21 (12), pp. 2197-2200. , https://doi.org/10.3201/eid2112.151132; Al Muhairi, S., Al Hosani, F., Eltahir, Y.M., Al Mulla, M., Yusof, M.F., Serhan, W.S., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate (2016) United Arab Emirates. Virus Genes, 52 (6), pp. 848-854. , https://doi.org/10.1007/s11262-016-1367-1; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., de Wit, E., Lipkin, W.I., Middle East Respiratory Syndrome Coronavirus Infection in Dromedary Camels in Saudi Arabia (2014) Mbio, 5 (2). , https://doi.org/10.1128/mBio.00884-14; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Makonnen, Y.J., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Eurosurveillance, 22 (11), p. 30487. , https://doi.org/10.2807/1560-7917.ES.2017.22.11.30487; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., Kayali, G., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerging Microbes & Infections, 6 (1). , https://doi.org/10.1038/emi.2016.130; Al-Muhairi, S., Al-Hosani, F., Eltahir, Y.M., Al-Mulla, M., Yusof, M.F., Serhan, W.S., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate (2016) United Arab Emirates. Virus Genes, 52 (6), pp. 848-854. , https://doi.org/10.1007/s11262-016-1367-1; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Fowler, R.A., Middle east respiratory syndrome (2017) New England Journal of Medicine, 376 (6), pp. 584-594. , https://doi.org/10.1056/NEJMsr1408795; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 370 (26), pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; Brook, C.E., Dobson, A.P., Bats as “special” reservoirs for emerging zoonotic pathogens (2015) Trends in Microbiology, 23 (3), pp. 172-180. , https://doi.org/10.1016/j.tim.2014.12.004; Dowell, S.F., Ho, M.S., Seasonality of infectious diseases and severe acute respiratory syndrome–what we don’t know can hurt us (2004) The Lancet Infectious Diseases, 4 (11), pp. 704-708. , https://doi.org/10.1016/S1473-3099(04)01177-6; Farag, E.A.B.A., Reusken, C.B.E.M., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Koopmans, M.P.G., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infection Ecology & Epidemiology, 5, p. 28305. , https://doi.org/10.3402/iee.v5.28305; (2014) EMPRESi - Global Animal Disease Information System, , https://empres-i.fao.org/eipws3g/, Retrieved from; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) The Lancet Infectious Diseases, 14 (2), pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Hemida, M.G., Alnaeem, A., Chu, D.K.W., Perera, R.A.P.M., Chan, S.M.S., Almathen, F., Peiris, M., Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014–2015 (2017) Emerging Microbes & Infections, 6. , https://doi.org/10.1038/emi.2017.44; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Peiris, M., Dromedary Camels and the Transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2015) Transboundary and Emerging Diseases, 64 (2), pp. 344-353. , https://doi.org/10.1111/tbed.12401; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Peiris, M., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveillance, 19 (23). , https://doi.org/10.2807/1560-7917.ES2014.19.23.20828; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveillance, 18 (50), p. 20659. , https://doi.org/10.2807/1560-7917.ES2013.18.50.20659; Isaacs, D., Flowers, D., Clarke, J.R., Valman, H.B., MacNaughton, M.R., Epidemiology of coronavirus respiratory infections (1983) Archives of Disease in Childhood, 58 (7), pp. 500-503. , https://doi.org/10.1136/ADC.58.7.500; Keeling, M.J., Rohani, P., (2008) Modeling infectious diseases in humans and animals - Matt J. Keeling, Pejman Rohani - Google Books, , Princeton, NJ, Princeton University Press; Levac, D., Colquhoun, H., O'Brien, K.K., Scoping studies: Advancing the methodology (2010) Implementation Science, 5, p. 69. , https://doi.org/10.1186/1748-5908-5-69; Mackay, I.M., Arden, K.E., Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd (2015) Virus Research, 202, pp. 60-88. , https://doi.org/10.1016/j.virusres.2015.01.021; Meyer, B., García-Bocanegra, I., Wernery, U., Wernery, R., Sieberg, A., Müller, M.A., Eckerle, I., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerging Infectious Diseases, 21 (1), pp. 181-182. , https://doi.org/10.3201/eid2101.141342; Meyer, B., Juhasz, J., Barua, R., Das Gupta, A., Hakimuddin, F., Corman, V.M., Nagy, P., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerging Infectious Diseases, 22 (12), pp. 2171-2173. , https://doi.org/10.3201/eid2212.160382; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir (2016) Virology Journal, 13 (1), p. 87. , https://doi.org/10.1186/s12985-016-0544-0; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, T.P., Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (2009) PLoS Medicine, 6 (7). , https://doi.org/10.1371/journal.pmed.1000097; Peters, M.D.J., Godfrey, C., McInerney, P., Baldini Soares, C., Khalil, H.P.D., Chapter 11: Scoping reviews (2017) Joanna Briggs Institute Reviewer’s Manual, , E. Aromataris, Z. Munn, (Eds.),, Adelaide, SA, The Joanna Briggs Institute; Pham, M.T., Rajić, A., Greig, J.D., Sargeant, J.M., Papadopoulos, A., Mcewen, S.A., A scoping review of scoping reviews: Advancing the approach and enhancing the consistency (2014) Research Synthesis Methods, 5 (4), pp. 371-385. , https://doi.org/10.1002/jrsm.1123; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveillance, 19 (23), p. 20810; Reusken, C.B.E.M., Haagmans, B.L., Mueller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infectious Diseases, 13 (10), pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Corman, V.M., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerging Infectious Diseases, 23 (3), pp. 550-551. , https://doi.org/10.3201/eid2303.161285; Wernery, U., Lau, S.K.P., Woo, P.C.Y., Middle East respiratory syndrome (MERS) coronavirus and dromedaries (2017) Veterinary Journal., 63 (9), pp. 262-272. , https://doi.org/10.1016/j.tvjl.2016.12.020; (2018) WHO | Middle East respiratory syndrome coronavirus (MERS-CoV), , https://www.who.int/emergencies/mers-cov/en/, Retrieved from; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721","Gardner, E.G.; University of GuelphCanada; email: egardn01@uoguelph.ca",,"Wiley-VCH Verlag",18631959,,,"30421581","English","Zoonoses Public Health",Review,"Final",Open Access,Scopus,2-s2.0-85056334704 "Qiu B.-N., Hu X.-X., Yan F.-H., Wang C., Cui J.-N., Gai W.-W., Cao Z.-G., Wang H.-L., Zhao Y.-K., Yang S.-T., Xia X.-Z.","57190659360;57194449891;56959769400;57188854271;57192649594;55860865200;56655813200;36487256300;55199696000;35212814200;12787855600;","Preparation of specific equine F( ab' )2 against Middle East respiratory syndrome coronavirus",2019,"Chinese Journal of Biologicals","32","2",,"173","180",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063594311&partnerID=40&md5=076d88a98d48ca3f34cfe3fd0e8b89c1","College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China","Qiu, B.-N., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Hu, X.-X., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Yan, F.-H., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Wang, C., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Cui, J.-N., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Gai, W.-W., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Cao, Z.-G., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Wang, H.-L., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Zhao, Y.-K., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Yang, S.-T., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China; Xia, X.-Z., College of Veterinary Medicine, Jilin University, Changchun, Jilin Province130062, China","Objective To prepare the specific equine F(ab' )2 against Middle East respiratory syndrome coronavirus (MERS-CoV) by immunoaffinity chromatography. Methods Immunoaffinity column was prepared using the hyperimmune equine serum obtained by repeat immunization of horses with the virus-like particles (VLPs) of MERS-CoV as material and spike protein S-receptor binding domain (S-RBD) of MERS-CoV expressed in prokaryotic cells as antigen protein. Antigen-specific IgG or F(ab' )2 was prepared by using the column and determined for activity by indirect ELISA, for neutralizing activity by MERS pseudovirus neutralization test, and for concentration by BCA method, based on which the recovery was calculated. Results The purities of prepared IgG and F(ab' )2 were 90. 1% and 92. 8%, while the recovery rates were 8. 7% and 3. 07%, respectively. At the same concentrations, both the activities and neutralizing activities of the prepared IgG and F(ab' )2 were higher than those of total IgG and F(ab' )2 in control group. Conclusion Specific equine F( ab' )2 against MERS-CoV was prepared successfully, which laid a foundation of development of safer and more effective procedure for preparation of IgG F(ab' )2 was against MERS-CoV. © 2018 University of Utah. All rights reserved.","Coronavirus; F(ab' )2; Immunoaffinity chromatography; Immunoglobulin; Middle East respiratory syndrome (MERS); Virus-like particles (VLPs)","immunoglobulin F(ab) fragment; immunoglobulin G; virus spike protein; antibody affinity; Article; enzyme linked immunosorbent assay; horse; immunization; immunoaffinity chromatography; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; prokaryotic cell; receptor binding; serodiagnosis; virus like agent","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Isolation of a novel corona virus from a man with pneumonia in Saudi Arabia[J] (2012) N Engl J Med, 367 (19), pp. 1814-1820; Huawi, B., Abdallat, M., Sayaydeh, A., Novel coronavirus infections in Jordan April 2012: Epidemiological findings from a retrospective investigation [J] (2013) East Mediterr Health J, 19, pp. S12-S18; Middle East Respiratory Syndrome Coronavirus (MERS-CoV) [OL], , WHO. 2017-03-27)[2017-04-12]. emergencies/mers-cov/en; Alvarenga, L.M., Zahid, M., Di Tommaso, A., Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential [J] (2014) Toxins, 6 (8), p. 2541; Gupta, N., Legoff, J., Chamat, S., Affinity-purified respiratory syncytial virus antibodies from intravenous immunoglobulin exert potent antibody-dependent cellular cytotoxicity [J] (2013) PLoSOne, 8 (7), p. e69390; Fitzgerald, J., Leonard, P., Darcy, E., Immunoa-ffinity chromatography [J] (2011) Methods Mol Biol, 681 (1), pp. 35-59; Li, L., (2015) Development and preliminary application of okadaic acid immunoaflinity column in field [D], , Changchun: Jilin University, in Chinese; Sun, H.X., Ge, B.S., Chen, H.L., Immuno-afiinity membrane separation and its development [J] (2009) Mem Sci Technol, 29 (1), pp. 90-95. , in Chinese; Sun, X.R., Pei, S.C., Liu, J.P., Preparation of immunoaflinity column for anti-AFMl [J] (2011) Mod Food Sci Technol, 27 (3), pp. 306-309. , in Chinese; Du, L., Zhao, G., Kou, Z., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development [J] (2013) J Virol, 87 (17), pp. 9939-9942; Mou, H., Raj, V.S., Van Kuppeveld, F.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies [J] (2013) J Virol, 87 (16), pp. 9379-9383; Du, L., Zhao, G., Yang, Y., El at A conformation-dependent neutralizing monoclonal antibody specifically targeting receptorbind-ing domain in Middle East respiratory syndrome corona-virus spike protein [J] (2014) J Virol, 88 (12), pp. 7045-7053; Jiang, L., Wang, N., Zuo, T., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein [J] (2014) Sci Translational Med, 6 (234), p. 234ra59; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome [J] (2017) N Engl J Med, 376 (6), pp. 584-594; Lovrecek, D., Tomic, S., A century of antivenom [J] (2011) Coll Antropol, 35 (1), pp. 249-258; Corti, D., Zhao, J., Pedott, M., (2015) Prophylactic and Postexposure Efficacy of A Potent Human Monoclonal Antibody Against MERS Coronavirus [JlProc Natl Acad Sci USA, 112 (33), pp. 10473-10478; Pascal, K.E., Coleman, C.M., Mujica, A.O., Elol Pre-and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection [J] (2015) Proc Natl Acad Sci USA, 112 (28), pp. 8738-8743; Li, Y., Wan, Y., Liu, P., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein [J] (2015) Cell Res, 25 (11), pp. 1237-1249; Johnson, R.F., Bagci, U., Keith, L., 3B11-N a monoclonal antibody against MERS-CoV reduces lung patho-logy in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 [J] (2016) Virology, 490 (1), pp. 49-58; Qiu, H., Sun, S., Xiao, H., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome(MERS)-coronavirus infection [J] (2016) Antiviral Res, 132 (8), pp. 141-148; Agrawal, A.S., Ying, T., Tao, X., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection [J] (2016) Sci Rep, 6, p. 31629; Luke, T., Wu, H., Zhao, J., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo [J] (2016) Sci Transl Med, 8 (326), p. 326ra21; Alvarenga, L.M., Zahid, M., Di Tommaso, A., Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential [J] (2014) Toxins (Basel, 6 (8), pp. 2541-2567; Ying, T., Du, L., Ju, T.W., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies [J] (2014) J Virol, 88 (14), pp. 7796-7805; Ma, C., Li, Y., Wang, L., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines [J] (2014) Vaccine, 32 (18), pp. 2100-2108; Chen, Y., Rajashankar, K.R., Yang, Y., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus [J] (2013) J Virol, 87 (19), pp. 10777-10783; Gupta, S.K., Shukla, P., Advanced technologies for improved expression of recombinant proteins in bacteria: Perspectives and applications [J] (2016) Crit Rev Biotechnol, 36 (6), pp. 1089-1098; Xia, S., Liu, Q., Wang, Q., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein [J] (2014) Virus Res, 194 (12), pp. 200-210","Yang, S.-T.; College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China; email: yst62041@163.com",,"Changchun Institute of Biological Products",10045503,,,,"Chinese","Chin. J. Biol.",Article,"Final",,Scopus,2-s2.0-85063594311 "Kamau E., Ongus J., Gitau G., Galgalo T., Lowther S.A., Bitek A., Munyua P.","57190953062;6504611547;6701607693;24381713800;7004234928;56771464400;36094881700;","Knowledge and practices regarding Middle East Respiratory Syndrome Coronavirus among camel handlers in a Slaughterhouse, Kenya, 2015",2019,"Zoonoses and Public Health","66","1",,"169","173",,2,"10.1111/zph.12524","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053537756&doi=10.1111%2fzph.12524&partnerID=40&md5=4c1537edb6d9292e150ce3473d21fdd0","State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nyeri, Kenya; Field Epidemiology and Laboratory Training Programme, Nairobi, Kenya; Medical Laboratory Sciences Department, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya; Department of Clinical Studies, University of Nairobi, Nairobi, Kenya; Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya; Food and Agriculture Organization, Nairobi, Kenya","Kamau, E., State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nyeri, Kenya, Field Epidemiology and Laboratory Training Programme, Nairobi, Kenya, Medical Laboratory Sciences Department, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya; Ongus, J., Medical Laboratory Sciences Department, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya; Gitau, G., Department of Clinical Studies, University of Nairobi, Nairobi, Kenya; Galgalo, T., Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya; Lowther, S.A., Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya; Bitek, A., Food and Agriculture Organization, Nairobi, Kenya; Munyua, P., Division of Global Health Protection, US Centres for Disease Control and Prevention, Nairobi, Kenya","Dromedary camels are implicated as reservoirs for the zoonotic transmission of Middle East Respiratory Syndrome coronavirus (MERS-CoV) with the respiratory route thought to be the main mode of transmission. Knowledge and practices regarding MERS among herders, traders and slaughterhouse workers were assessed at Athi-River slaughterhouse, Kenya. Questionnaires were administered, and a check list was used to collect information on hygiene practices among slaughterhouse workers. Of 22 persons, all washed hands after handling camels, 82% wore gumboots, and 65% wore overalls/dustcoats. None of the workers wore gloves or facemasks during slaughter processes. Fourteen percent reported drinking raw camel milk; 90% were aware of zoonotic diseases with most reporting common ways of transmission as: eating improperly cooked meat (90%), drinking raw milk (68%) and slaughter processes (50%). Sixteen (73%) were unaware of MERS-CoV. Use of personal protective clothing to prevent direct contact with discharges and aerosols was lacking. Although few people working with camels were interviewed, those met at this centralized slaughterhouse lacked knowledge about MERS-CoV but were aware of zoonotic diseases and their transmission. These findings highlight need to disseminate information about MERS-CoV and enhance hygiene and biosafety practices among camel slaughterhouse workers to reduce opportunities for potential virus transmission. © 2018 Blackwell Verlag GmbH","biosafety; camel; Middle East respiratory syndrome; slaughterhouse","abattoir worker; adult; Article; biosafety; camel; camel milk; checklist; clinical article; drinking; dromedary; food intake; hand washing; health behavior; health education; human; industrial hygiene; information dissemination; interview; Kenya; meat; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; occupational exposure; priority journal; questionnaire; raw milk; slaughterhouse; virus transmission; zoonosis; animal; attitude to health; Coronavirus infection; disease carrier; information processing; Middle East respiratory syndrome coronavirus; slaughterhouse; veterinary medicine; virology; Abattoirs; Animals; Camelus; Coronavirus Infections; Data Collection; Disease Reservoirs; Health Knowledge, Attitudes, Practice; Humans; Kenya; Middle East Respiratory Syndrome Coronavirus; Surveys and Questionnaires; Zoonoses","Azhar, E.I., Hashem, A.M., El-Kafrawy, Aburizaiza, A.S., Farraj, S., Madani, T.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) mBio, 5 (4), p. 44. , https://doi.org/10.1128/mBio.01450-14; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Lipkin, W.I., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) mBio, 5 (3). , https://doi.org/10.1128/mBio.01146-14; Chu, D., Oladipo, J., Perera, R., Kuranga, S., Chan, S., Poon, L., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria (2015) Eurosurveillance Weekly, 20 (49), p. pii=30086. , https://doi.org/10.2807/1560-7917.ES.2015.20.49.30086; Chu, D., Poon, L., Gomaa, M.M., Shehata, M.M., Perera, R., Zeid, A., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerging Infectious Diseases, 20 (6), pp. 1049-1053. , https://doi.org/10.3201/eid2006.140299; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Müller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerging Infectious Diseases, 8 (20), pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596; Deem, S.L., Fèvre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.-J., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedarius) in Laikipia County, Kenya (2015) Plos ONE, 10 (10). , https://doi.org/10.1371/journal.pone.01401; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 370, pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; Farag, E.A., Reusken, C.B.E.M., Haagmans, B.L., Mohran, K.A., Raj, V.S., Pas, S.D., Koopmans, M.P., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infection Ecology and Epidemiology, 5, p. 28305; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., Corman, V.M., MERS-CoV antibodies in humans, Africa, 2013–2014 (2016) Emerging Infectious Diseases, 22 (6), pp. 1086-1089. , https://doi.org/10.3201/eid2206.160064; Muller, M.A., Meyer, B., Corman, V.M., Al Misri, M., Turkestani, A., Ritz, D., Memish, Z.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infectious Diseases, 15 (5), pp. 559-566. , https://doi.org/10.1016/S1473-3099(15)70090-3; Munyua, P., Corman, V.M., Bitek, A., Osoro, E., Meyer, B., Muller, M.A., Njenga, No serologic evidence of Middle East respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: A Household Linked Study, Kenya (2017) American Journal of Tropical Medicine and Hygiene, 96 (6), pp. 1318-1324. , https://doi.org/10.4269/ajtmh.16-0880; Reusken, C.B.E.M., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.-J., Danmarwa, A., Koopmans, M.P.G., Geographic distribution of MERS coronavirus among dromedary camels Africa (2014) Emerging Infectious Diseases, 20, pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590; (2018) WHO Risk assessment, , https://www.who.int/emergencies/mers-cov/risk-assessment-july-2018.pdf?ua=1, https://www.who.int/emergencies/mers-cov/en/; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia"" (2012) New England Journal of Medicine, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721","Kamau, E.; State Department of Livestock, Ministry of Agriculture, Livestock and FisheriesKenya; email: lystarkamau@gmail.com",,"Wiley-VCH Verlag",18631959,,,"30238634","English","Zoonoses Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85053537756 "Almeida A.C.S., Galdino M.V., Araújo J.P., Jr.","56939886100;57201291193;10139707500;","Seroepidemiological study of feline coronavirus (FCoV) infection in domiciled cats from Botucatu, São Paulo, Brazil",2019,"Pesquisa Veterinaria Brasileira","39","2",,"129","133",,,"10.1590/1678-5150-PVB-5706","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063533976&doi=10.1590%2f1678-5150-PVB-5706&partnerID=40&md5=fdc3649ae3e84731ce136c654ee1c36a","Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, SP, 18607-440, Brazil; Departamento de Bioestatística, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (Unesp), Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, 18618-689, Brazil","Almeida, A.C.S., Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, SP, 18607-440, Brazil; Galdino, M.V., Departamento de Bioestatística, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (Unesp), Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, 18618-689, Brazil; Araújo, J.P., Jr., Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, SP, 18607-440, Brazil","Feline coronavirus (FCoV) is responsible for causing one of the most important infectious diseases of domestic and wild felids, the feline infectious peritonitis (FIP), which is an immune-mediated, systemic, progressive and fatal disease. FCoV is highly contagious, and infection is common in domestic feline populations worldwide. The present study aimed to determine the seropositivity of FCoV infection and its associated epidemiological variables (risk factors) in domiciled cats in Botucatu, São Paulo, Brazil. Whole blood samples (0.5-1mL) were collected from 151 cats, and sera were extracted by centrifugation. These sera were tested by an commercial enzyme-linked immunosorbent assay (ELISA) for the detection of IgG anti-FCoV antibodies. The assessed risk factors were age range, breed, gender, reproductive status, outdoor access and rearing mode (living alone or in a group). The seropositivity was 64.2% (97/151). There was no statistical significance for risk factors related to breed, gender or rearing mode. There were significant differences in seropositivity (p-values ≤0.05) for age range (p=0.0157), reproductive status (p=0.0074) and outdoor access (p=0.0001). This study verified a wide dissemination of FCoV in the studied population, with a higher than expected seropositivity for indoor cats. Among the risk factors, age range, reproductive status and outdoor access presented statistically significant differences, thus helping to establish an epidemiological profile of this population. © 2019 Colegio Brasileiro de Patologia Animal.All rights reserved.","Brazil; Cats; Domiciled cats; FCoV; Feline coronavirus; Seroepidemiology; São Paulo; Viroses","immunoglobulin G antibody; virus antibody; age; animal experiment; Article; Brazil; breed; Coronavirus infection; domestic cat; enzyme linked immunosorbent assay; Feline coronavirus; feline infectious peritonitis; female; gender; male; nonhuman; rearing; reproduction; risk factor; serology","Addie, D.D., Jarrett, O., Feline coronavirus infections (2006) Infectious Diseases of The Dog and The Cat, pp. 88-102. , Greene C.E. Ed, 3rd ed. Saunders Elsevier, St Louis; Akkan, H.A., Karaca, M., Studies on the seroprevalence, age, and gender on the distribution of feline coronavirus in Van Cat kept in a multiple-cat environment (2009) Bull. Vet. Inst. Pulawy, 53, pp. 183-186; Bell, E.T., Malik, R., Norris, J.M., The relationship between the Feline Coronavirus antibody titre and the age, breed, gender and health status of Australian cats (2006) Aust. Vet. J., 84 (1-2), pp. 2-7. , http://dx.doi.org/10.1111/j.1751-0813.2006.tb13114.x, PMid:16498826; Bell, E.T., Toribio, J.A.L.M., White, J.D., Malik, R., Seroprevalence study of Feline Coronavirus in owned and feral cats in Sydney, Australia (2006) Aust. Vet. J., 84 (3), pp. 74-81. , http://dx.doi.org/10.1111/j.1751-0813.2006.tb12231.x, PMid:16555552; Brown, M.A., Troyer, J.L., Pecon-Slattery, J., Roelke, M.E., O'Brien, S.J., Genetics and pathogenesis of feline infectious peritonitis virus (2009) Emerg. Infect. Dis., 15 (9), pp. 1445-1452. , http://dx.doi.org/10.3201/eid1509.081573, PMid:19788813; Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., Absence of surface expression of feline infectious peritonitis virus antigens on infected cells isolated from cats with FIP (2007) Vet. Microbiol., 121 (1-2), pp. 131-137. , http://dx.doi.org/10.1016/j.vetmic.2006.11.026, PMid:17188823; Foley, J.E., Pedersen, N.C., The inheritance of susceptibility to feline infectious peritonitis in purebred catteries (1996) Feline Pract, 24 (1), pp. 14-22; Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus (1997) J. Am. Vet. Med. Assoc., 210 (9), pp. 1313-1318. , PMid:9143536; Hartmann, K., Feline infectious peritonitis (2005) Vet.Clin.N.Am.,SmallAnim. Pract., 35 (1), pp. 39-79. , http://dx.doi.org/10.1016/j.cvsm.2004.10.011, PMid:15627627; Horzinek, M., Addie, D.D., Bélak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Truyen, U., ABCD guidelines on feline infectious perotinitis (2008) European Advisory Board Cat Dis, 1, pp. 1-30; Hoskins, J.D., Loar, A.S., Feline infectious diseases (1993) Vet. Clin. N. Am., Small Anim. Pract., 23 (1), pp. 2-11; (2017) Virus Taxonomy: 2017 Release, , https://talk.ictvonline.org/taxonomy/, ternational Committee on Taxonomy of Viruses. Accessed on 12 jun. 2018; Le Poder, S., Feline and Canine Coronaviruses: Common genetic and pathobiological features (2011) Adv. Virol., 2011, p. 609465. , http://dx.doi.org/10.1155/2011/609465, PMid:22312347; Little, S., Sears, W., Lachtara, J., Bienzle, D., Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada (2009) Can. Vet. J., 50 (6), pp. 644-648. , PMid:19721785; Norsworthy, G.D., Feline infectious peritonitis (2006) The Feline Patient, pp. 97-98. , Norsworthy G.D., Crystal M.A., Grace S.F. & Tilley L. (Eds), 3rd ed. Blackwell Publishing, Oxford; Estimates and Aims of Pasteur Institute (2016) Rabies Vaccination in 2016, , Pasteur Institute Paris; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11 (4), pp. 225-258. , http://dx.doi.org/10.1016/j.jfms.2008.09.008, PMid:19254859; Pesteanu-Somogyi, L.D., Radzai, C., Pressler, B.M., Prevalence of feline infectious peritonitis in specific cat breeds (2006) J. Feline Med. Surg., 8 (1), pp. 1-5. , http://dx.doi.org/10.1016/j.jfms.2005.04.003, PMid:15994104; Pratelli, A., Comparison of serologic techniques for detection of antibodies against feline coronaviruses (2008) J. Vet. Diagn. Invest., 20 (1), pp. 45-50. , http://dx.doi.org/10.1177/104063870802000108, PMid:18182507; Robison, R.L., Holzworth, J., Gilmore, C.E., Naturally occurring feline infectious peritonitis: Signs and clinical diagnosis (1971) J. Am. Vet. Med. Assoc., 158 (6), pp. 981-986. , PMid:5280568; Rohrbach, B.W., Legendre, A.M., Baldwin, C.A., Lein, D.H., Reed, W.M., Wilson, R.B., Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals (2001) J. Am. Vet. Med. Assoc., 218 (7), pp. 1111-1115. , http://dx.doi.org/10.2460/javma.2001.218.1111, PMid:11318361; Sparkes, A.H., Infecção por coronavírus felino (2006) Clínica E Terapêutica Em Felinos, pp. 508-518. , Chandler E.A., Gaskell C.J. & Gaskell R.M. (Eds), 3rd ed. Roca, São Paulo; Westman, M.E., Paul, A., Malik, R., McDonagh, P., Ward, M.P., Hall, E., Norris, J.M., Seroprevalence of feline immunodeficiency virus and feline leukaemia virus in Australia: Risk factors for infection and geographical influences (2011-2013) (2016) JFMS Open Reports, 2 (1), pp. 1-11. , PMid:28491420; Worthing, K.A., Wigney, D.I., Dhand, N.K., Fawcett, A., McDonagh, P., Malik, R., Norris, J.M., Risk factors for feline infectious peritonitis in Australian cats (2012) J. Feline Med. Surg., 14 (6), pp. 405-412. , http://dx.doi.org/10.1177/1098612X12441875, PMid:22398460","Almeida, A.C.S.; Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Brazil; email: arianicristina@yahoo.com.br",,"Colegio Brasileiro de Patologia Animal",0100736X,,,,"English","Pesqui. Vet. Bras.",Article,"Final",Open Access,Scopus,2-s2.0-85063533976 "Banerjee A., Falzarano D., Rapin N., Lew J., Misra V.","56412355200;13411417100;6508287195;57206691868;7201897411;","Interferon regulatory factor 3-mediated signaling limits middle-east respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat",2019,"Viruses","11","2", 152,"","",,7,"10.3390/v11020152","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061867902&doi=10.3390%2fv11020152&partnerID=40&md5=027a2253e711f09d71a49407d78e56ba","Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada","Banerjee, A., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada, Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Falzarano, D., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada, Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Rapin, N., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Lew, J., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada, Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-Intervac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Misra, V., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada","Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (Eptesicus fuscus) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβin bat cells. Our study demonstrates that innate antiviral signaling in E. fuscus bat cells is resistant to MERS-CoV-mediated subversion. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Bat; Interferon; IRF3; MERS-CoV","2',5' oligoadenylate synthetase; beta interferon; dipeptidyl peptidase IV; interferon regulatory factor 3; small interfering RNA; virus antibody; beta interferon; interferon regulatory factor 3; IRF3 protein, human; agar gel electrophoresis; algorithm; Article; cell fractionation; chromosome translocation; controlled study; cytopathogenic effect; dynamics; evolutionary adaptation; gene and nucleic acid parameters; gene expression; gene knockdown; genetic transfection; immune response; immunofluorescence; incubation temperature; insectivore; microscopy; Middle East respiratory syndrome; neighbor joining method; nonhuman; Porcine epidemic diarrhea virus; protein expression; reverse transcription polymerase chain reaction; RNA extraction; sequence analysis; signal transduction; vegetative propagation; Vero cell line; virus infection; virus replication; virus titration; Western blotting; animal; bat; cell line; cytology; gene knockout; genetics; human; immune evasion; immunology; innate immunity; kidney; Middle East respiratory syndrome coronavirus; pathogenicity; phylogeny; signal transduction; virology; Animals; Cell Line; Chiroptera; Gene Knockdown Techniques; Gene Knockout Techniques; Humans; Immune Evasion; Immunity, Innate; Interferon Regulatory Factor-3; Interferon-beta; Kidney; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Signal Transduction","Moratelli, R., Calisher, C.H., Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? (2015) Mem. Inst. Oswaldo Cruz, 110, pp. 1-22; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Maxmen, A., Bats are global reservoir for deadly coronaviruses (2017) Nature, 546, p. 340; Hayman, D.T., Bats as Viral Reservoirs (2016) Annu. Rev. Virol., 3, pp. 77-99; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13, p. e1006698; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir. Res., 101, pp. 45-56; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) MBio, p. 8; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: Recent advances (2017) F1000Res, 6, p. 1628; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6, p. 21878; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00713-e00737; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; http://www.who.int/emergencies/mers-cov/en/, Available online, accessed on 10 November 2018; Schulz, L.L., Tonsor, G.T., Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States (2015) J. Anim. Sci., 93, pp. 5111-5118; Moreno, A., Lelli, D., de Sabato, L., Zaccaria, G., Boni, A., Sozzi, E., Prosperi, A., Castrucci, M.R., Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy (2017) Virol. J., 14, p. 239; Corman, V.M., Muth, D., Niemeyer, D., Drosten, C., Hosts and Sources of Endemic Human Coronaviruses (2018) Adv. Virus Res., 100, pp. 163-188; Bailey, E.S., Fieldhouse, J.K., Choi, J.Y., Gray, G.C., A Mini Review of the Zoonotic Threat Potential of Influenza Viruses, Coronaviruses, Adenoviruses, and Enteroviruses (2018) Front. Public Health, 6, p. 104; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus (2018) J. Virol.; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Chan, C.P., Yuen, K.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J. Virol., 88, pp. 4866-4876; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495; Zhou, J., Chu, H., Chan, J.F., Yuen, K.Y., Middle East respiratory syndrome coronavirus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virol. J., 12, p. 218; Lui, P.Y., Wong, L.Y., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Chan, C.P., Jin, D.Y., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg. Microbes Infect., 5, p. e39; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Kawai, T., Akira, S., Innate immune recognition of viral infection (2006) Nat. Immunol., 7, pp. 131-137; Ivashkiv, L.B., Donlin, L.T., Regulation of type I interferon responses (2014) Nat. Rev. Immunol., 14, pp. 36-49; Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions (2011) Curr. Opin. Virol., 1, pp. 519-525; Choi, U.Y., Kang, J.S., Hwang, Y.S., Kim, Y.J., Oligoadenylate synthase-like (OASL) proteins: Dual functions and associations with diseases (2015) Exp. Mol. Med., 47, p. e144; Schulz, K.S., Mossman, K.L., Viral Evasion Strategies in Type I IFN Signaling-A Summary of Recent Developments (2016) Front. Immunol., 7, p. 498; De Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Lu, X., Pan, J., Tao, J., Guo, D., SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism (2011) Virus Genes, 42, pp. 37-45; Cao, L., Ge, X., Gao, Y., Herrler, G., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-beta production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway (2015) Virol. J., 12, p. 127; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J. Virol., 88, pp. 8936-8945; Cai, Y., Yu, S.Q., Postnikova, E.N., Mazur, S., Bernbaum, J.G., Burk, R., Zhang, T., Jordan, I., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PLoS ONE, 9, p. e112060; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Banerjee, A., Rapin, N., Miller, M., Griebel, P., Zhou, Y., Munster, V., Misra, V., Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen (2016) J. Virol. Methods, 237, pp. 166-173; Karber, G., Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche (1931) Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 162, pp. 480-483; Spearman, C., The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula (1908) Br. J. Psychol., 2, pp. 227-242; Banerjee, A., Rapin, N., Bollinger, T., Misra, V., Lack of inflammatory gene expression in bats: A unique role for a transcription repressor (2017) Sci. Rep., 7, p. 2232; Lau, S., Fan, R.Y.Y., Hayes, L.K.H., Zhu, L., Fung, J., Li, K.S.M., Wong, E.Y.M., Kok, K.H., Replication of MERS and SARS Coronaviruses in Bat Cells Offers Insights to Their Ancestral Origins, , https://www.biorxiv.org/content/early/2018/05/20/326538, Available online, accessed on 5 December 2018; Rapin, N., Johns, K., Martin, L., Warnecke, L., Turner, J.M., Bollinger, T.K., Willis, C.K., Misra, V., Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans (2014) PLoS ONE, 9, p. e112285; Brinkman, E.K., Chen, T., Amendola, M., van Steensel, B., Easy quantitative assessment of genome editing by sequence trace decomposition (2014) Nucleic Acids Res., 42, p. e168; McCloy, R.A., Rogers, S., Caldon, C.E., Lorca, T., Castro, A., Burgess, A., Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events (2014) Cell Cycle, 13, pp. 1400-1412; Bergeron, T., Zhang, R., Elliot, K., Rapin, N., MacDonald, V., Linn, K., Simko, E., Misra, V., The effect of Zhangfei on the unfolded protein response and growth of cells derived from canine and human osteosarcomas (2013) Vet. Comp. Oncol., 11, pp. 140-150; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Mol. Biol. Evol., 10, pp. 512-526; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Chan, J.F., Yuen, K.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Noyce, R.S., Collins, S.E., Mossman, K.L., Differential modification of interferon regulatory factor 3 following virus particle entry (2009) J. Virol., 83, pp. 4013-4022; TenOever, B.R., Sharma, S., Zou, W., Sun, Q., Grandvaux, N., Julkunen, I., Hemmi, H., Yeh, W.C., Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity (2004) J. Virol., 78, pp. 10636-10649; Servant, M.J., ten Oever, B., LePage, C., Conti, L., Gessani, S., Julkunen, I., Lin, R., Hiscott, J., Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3 (2001) J. Biol. Chem., 276, pp. 355-363; Servant, M.J., Grandvaux, N., tenOever, B.R., Duguay, D., Lin, R., Hiscott, J., Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA (2003) J. Biol. Chem., 278, pp. 9441-9447; Tynell, J., Westenius, V., Ronkko, E., Munster, V.J., Melen, K., Osterlund, P., Julkunen, I., Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells (2016) J. Gen. Virol., 97, pp. 344-355; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., van Den Brand, J.M.A., Tissue Distribution of the MERS-Coronavirus Receptor in Bats (2017) Sci. Rep., 7, p. 1193; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Sola, I., Enjuanes, L., Carmody, A., Munster, V., Adaptive Evolution of MERS-CoV to Species Variation in DPP4 (2018) Cell Rep., 24, pp. 1730-1737; DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeno, J.M., Regla-Nava, J.A., Castano-Rodriguez, C., Fernandez-Delgado, R., Usera, F., Enjuanes, L., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res., 194, pp. 124-137; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am. J. Pathol., 170, pp. 1136-1147; Collins, S.E., Mossman, K.L., Danger, diversity and priming in innate antiviral immunity (2014) Cytokine Growth Factor Rev., 25, pp. 525-531; Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Cowled, C., Michalski, W.P., Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 2696-2701; Omatsu, T., Bak, E.J., Ishii, Y., Kyuwa, S., Tohya, Y., Akashi, H., Yoshikawa, Y., Induction and sequencing of Rousette bat interferon alpha and beta genes (2008) Vet. Immunol. Immunopathol., 124, pp. 169-176; Virtue, E.R., Marsh, G.A., Baker, M.L., Wang, L.F., Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines (2011) PLoS ONE, 6, p. e22488; Biesold, S.E., Ritz, D., Gloza-Rausch, F., Wollny, R., Drexler, J.F., Corman, V.M., Kalko, E.K., Muller, M.A., Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum (2011) PLoS ONE, 6, p. e28131; Falzarano, D., Kamissoko, B., de Wit, E., Maiga, O., Cronin, J., Samake, K., Traore, A., Sogoba, N., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Subudhi, S., Rapin, N., Bollinger, T.K., Hill, J.E., Donaldson, M.E., Davy, C.M., Warnecke, L., Willis, C.K.R., A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat (2017) J. Gen. Virol., 98, pp. 2297-2309; Kennedy, M.A., Moore, E., Wilkes, R.P., Citino, S.B., Kania, S.A., Analysis of genetic mutations in the 7a7b open reading frame of coronavirus of cheetahs (Acinonyx jubatus) (2006) Am. J. Vet. Res., 67, pp. 627-632; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707; Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamaoka, S., Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1 (2006) Nat. Immunol., 7, pp. 598-605; DeWitte-Orr, S.J., Mehta, D.R., Collins, S.E., Suthar, M.S., Gale, M., Jr., Mossman, K.L., Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN (2009) J. Immunol., 183, pp. 6545-6553; De La Cruz-Rivera, P.C., Kanchwala, M., Liang, H., Kumar, A., Wang, L.F., Xing, C., Schoggins, J.W., The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction (2017) J. Immunol.; Banerjee, A., Misra, V., Schountz, T., Baker, M.L., Tools to study pathogen-host interactions in bats (2018) Virus Res., 248, pp. 5-12","Misra, V.; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of SaskatchewanCanada; email: vikram.misra@usask.ca",,"MDPI AG",19994915,,,"30781790","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85061867902 "Alfaraj S.H., Al-Tawfiq J.A., Altuwaijri T.A., Memish Z.A.","57191595182;9436438200;57188694559;7005059350;","Middle East respiratory syndrome coronavirus in pediatrics: a report of seven cases from Saudi Arabia",2019,"Frontiers of Medicine","13","1",,"126","130",,4,"10.1007/s11684-017-0603-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045055928&doi=10.1007%2fs11684-017-0603-y&partnerID=40&md5=347a4aa68f9439afd47bc8de9a762ae3","University of British Columbia, Vancouver, V6T 1Z4, Canada; Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 11676, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN 46202, United States; Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia; Department of Surgery, King Saud University, Riyadh, 11692, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 11676, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States","Alfaraj, S.H., University of British Columbia, Vancouver, V6T 1Z4, Canada, Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 11676, Saudi Arabia; Al-Tawfiq, J.A., Indiana University School of Medicine, Indianapolis, IN 46202, United States, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia; Altuwaijri, T.A., Department of Surgery, King Saud University, Riyadh, 11692, Saudi Arabia; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, 11676, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States","Infection with Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as an important respiratory disease with high fatality rates of 40%–60%. Despite the increased number of cases over subsequent years, the number of pediatric cases remained low. A review of studies conducted from June 2012 to April 19, 2016 reported 31 pediatric MERS-CoV cases. In this paper, we present the clinical and laboratory features of seven patients with pediatric MERS. Five patients had no underlying medical illnesses, and three patients were asymptomatic. Of the seven cases, four (57%) patients sought medical advice within 1–7 days from the onset of symptoms. The three other patients (43%) were asymptomatic and were in contact with patients with confirmed diagnosis of MERS-CoV. The most common presenting symptoms were fever (57%), cough (14%), shortness of breath (14%), vomiting (28%), and diarrhea (28%). Two (28.6%) patients had platelet counts of < 150 × 10 9 /L, and one patient had an underlying end-stage renal disease. The remaining patients presented with normal blood count, liver function, and urea and creatinine levels. The documented MERS-CoV Ct values were 32–38 for four of the seven cases. Two patients (28.6%) had abnormal chest radiographic findings of bilateral infiltration. One patient (14.3%) required ventilator support, and two patients (28.6%) required oxygen supplementation. All the seven patients were discharged without complications. © 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature.","MERS-CoV; Middle East respiratory syndrome coronavirus; pediatrics; pregnancy",,"Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; Assiri, A., McGeer, A., Perl, T.M., Price, C.A., Rabeeah, A.A., Cummings, D.A.T., Alabdullatif, Z.N., Memish, Z.K.M.-C.I.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Memish, Z.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Penttinen, P.M., Kaasik-Aaslav, K., Friaux, A., Donachie, A., Sudre, B., Amato-Gauci, A.J., Memish, Z.A., Coulombier, D., Taking stock of the first 133 MERS coronavirus cases globally—is the epidemic changing (2013) Euro Surveill, 18 (39), p. 20596; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , WHO; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Madani, T.A., 2014 MERSCoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Drosten, C., Muth, D., Corman, V.M., Hussain, R.A., Masri, M., HajOmar, W., Landt, O., Memish, Z.A., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60 (3), pp. 369-377; Al-Tawfiq, J.A., Memish, Z.A., An update on Middle East respiratory syndrome: 2 years later (2015) Expert Rev Respir Med, 9 (3), pp. 327-335; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution (2014) Trends Microbiol, 22 (10), pp. 573-579; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Alsheikh, S., Alsanouri, T., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19 (1), pp. S12-S18; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Health Res Perspect, 7 (1), pp. 49-55; Seong, M.W., Kim, S.Y., Corman, V.M., Kim, T.S., Cho, S.I., Kim, M.J., Lee, S.J., Park, S.S., Microevolution of outbreak-associated Middle East respiratory syndrome coronavirus, South Korea, 2015 (2016) Emerg Infect Dis, 22 (2), pp. 327-330; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Assiri, A., Al-Tawfiq, J.A., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., AlRabiah, F.A., Hajjar, S., Albarrak, A., Flemban, H., Al-Rabeeah, A.A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr Infect Dis J, 33 (9), pp. 904-906; (2013) Mers-Cov Summary and Literature update—as of 20 June 2013, , http://www.who.int/csr/disease/coronavirus_infections/update_20130620/en/; Al-Tawfiq, J.A., Kattan, R.F., Memish, Z.A., Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia (2016) World J Clin Pediatr, 5 (4), pp. 391-396; Fagbo, S.F., Garbati, M.A., Hasan, R., AlShahrani, D., Al-Shehri, M., AlFawaz, T., Hakawi, A., Skakni, L., Acute viral respiratory infections among children in MERS-endemic Riyadh, Saudi Arabia, 2012–2013 (2017) J Med Virol, 89 (2), pp. 195-201; Alhamlan, F.S., Majumder, M.S., Brownstein, J.S., Hawkins, J., Al-Abdely, H.M., Alzahrani, A., Obaid, D.A., BinSaeed, A., Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (2017) BMJ Open, 7 (1); Aleanizy, F.S., Mohmed, N., Alqahtani, F.E.H., Mohamed, R.A., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: a retrospective study (2017) BMC Infect Dis, 17 (1), p. 23; Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Algarni, H.E., Gerber, S.I., Surveillance and testing for Middle East respiratory syndrome coronavirus, Saudi Arabia, April 2015–February 2016 (2017) Emerg Infect Dis, 23 (4), pp. 682-685; (2017) Infection Prevention and Control Guidelines for Middle East Respiratory Syndrome Coronavirus (Mers-Cov) Infection 2015, , http://www.moh.gov.sa/en/CCC/StaffRegulations/Corona/Documents/IPCGuidelinesforMERS-coVInfection.pdf, accessed March 9; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Memish, Z.A., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients (2014) Clin Infect Dis, 59 (2), pp. 160-165; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Drosten, C., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (49), p. 49; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., AlRabiah, F.A., Zumla, A., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Al-Tawfiq, J.A., Memish, Z.A., Managing MERS-CoV in the healthcare setting (2015) Hosp Pract (1995), 43 (3), pp. 158-163; Al-Tawfiq, J.A., Memish, Z.A., Update on therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Expert Rev Anti Infect Ther, 15 (3), pp. 269-275; Al-Tawfiq, J.A., Omrani, A.S., Memish, Z.A., Middle East respiratory syndrome coronavirus: current situation and travel-associated concerns (2016) Front Med, 10 (2), pp. 111-119; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Aloqiel, S.A., Ghazal, S., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Travel Med Infect Dis, 14 (5), pp. 464-470; Al-Tawfiq, J.A., Hinedi, K., Abbasi, S., Babiker, M., Sunji, A., Eltigani, M., Hematologic, hepatic, and renal function changes in hospitalized patients with Middle East respiratory syndrome coronavirus (2017) Int J Lab Hematol, 39 (3), pp. 272-278; Ko, J.H., Müller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Ha, Y.E., Peck, K.R., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89 (2), pp. 106-111; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Zhao, J., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2 (14), p. eaan5393; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Sutter, G., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89 (16), pp. 8651-8656; Lan, J., Deng, Y., Chen, H.L., Wang, W., Guo, X., Lu, Z., Gao, G.F., Tan, W., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS One, 9 (11); Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., Gao, G.F., T-cell immunity of SARS-CoV: implications for vaccine development against MERS-CoV (2017) Antiviral Res, 137, pp. 82-92; Liu, W.J., Lan, J., Liu, K., Deng, Y.Y., Wu, S., Chen, H., Bao, L., Tan, W., Protective T cell responses featured by concordant recognition of Middle East respiratory syndrome coronavirusderived CD8 + T cell epitopes and host MHC (2017) J Immunol, 198 (2), pp. 873-882","Memish, Z.A.; College of Medicine, Alfaisal UniversitySaudi Arabia; email: zmemish@yahoo.com",,"Higher Education Press",20950217,,,"29623560","English","Front. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85045055928 "Wong A.C.P., Li X., Lau S.K.P., Woo P.C.Y.","57196150074;57206782771;7401596211;7201801340;","Global epidemiology of bat coronaviruses",2019,"Viruses","11","2", 174,"","",,10,"10.3390/v11020174","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061964822&doi=10.3390%2fv11020174&partnerID=40&md5=aaf5b22038703fe9818cd5c5405a9981","Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong","Wong, A.C.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Li, X., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Lau, S.K.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Woo, P.C.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong","Bats are a unique group of mammals of the order Chiroptera. They are highly diversified and are the group of mammals with the second largest number of species. Such highly diversified cell types and receptors facilitate them to be potential hosts of a large variety of viruses. Bats are the only group of mammals capable of sustained flight, which enables them to disseminate the viruses they harbor and enhance the chance of interspecies transmission. This article aims at reviewing the various aspects of the global epidemiology of bat coronaviruses (CoVs). Before the SARS epidemic, bats were not known to be hosts for CoVs. In the last 15 years, bats have been found to be hosts of >30 CoVs with complete genomes sequenced, and many more if those without genome sequences are included. Among the four CoV genera, only alphaCoVs and betaCoVs have been found in bats. As a whole, both alphaCoVs and betaCoVs have been detected from bats in Asia, Europe, Africa, North and South America and Australasia; but alphaCoVs seem to be more widespread than betaCoVs, and their detection rate is also higher. For betaCoVs, only those from subgenera Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus have been detected in bats. Most notably, horseshoe bats are the reservoir of SARS-CoV, and several betaCoVs from subgenus Merbecovirus are closely related to MERS-CoV. In addition to the interactions among various bat species themselves, bat-animal and bat-human interactions, such as the presence of live bats in wildlife wet markets and restaurants in Southern China, are important for interspecies transmission of CoVs and may lead to devastating global outbreaks. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Alphacoronavirus; Bat; Betacoronavirus; Coronavirus; Epidemiology; Global; Host; Interspecies transmission","angiotensin converting enzyme 2; carcinoembryonic antigen; dipeptidyl peptidase IV; Alphacoronavirus; bat; Betacoronavirus; Coronavirinae; Gammacoronavirus; gene sequence; geographic distribution; merbecovirus; Middle East respiratory syndrome coronavirus; molecular epidemiology; nobecovirus; nonhuman; organismal interaction; phylogeny; public health; Review; sarbecovirus; sequence analysis; severe acute respiratory syndrome; species diversity; virus detection; virus infection; virus replication; virus shedding; virus transmission; Africa; animal; Asia; Australia and New Zealand; bat; China; Coronavirinae; Coronavirus infection; disease carrier; Europe; genetics; global health; human; isolation and purification; molecular evolution; North America; phylogeography; South America; veterinary medicine; virology; virus genome; Africa; Animals; Asia; Australasia; China; Chiroptera; Coronavirus; Coronavirus Infections; Disease Reservoirs; Europe; Evolution, Molecular; Genome, Viral; Global Health; Humans; North America; Phylogeny; Phylogeography; South America","De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Talbot, P.J., Family Coronaviridae (2011) Virus Taxonomy, Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , 1st ed.; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: San Diego, CA, USA; https://talk.ictvonline.org/taxonomy/p/taxonomy-history?taxnode_id=20186105, Available online, accessed on 2 January 2019; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Lee, P., Lee, R.A., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J. Clin. Microbiol., 44, pp. 2063-2071; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) J. Virol., 84, pp. 3134-3146; Lai, M.M., Baric, R.S., Makino, S., Keck, J.G., Egbert, J., Leibowitz, J.L., Stohlman, S.A., Recombination between nonsegmented RNA genomes of murine coronaviruses (1985) J. Virol., 56, pp. 449-456; Tian, P.F., Jin, Y.L., Xing, G., Qv, L.L., Huang, Y.W., Zhou, J.Y., Evidence of recombinant strains of porcine epidemic diarrhea virus, United States, 2013 (2014) Emerg. Infect. Dis., 20, pp. 1735-1738; Lau, S.K.P., Li, K.S.M., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K.Y., Guo, R., Ecoepidemiology and Complete Genome Comparison of Different Strains of Severe Acute Respiratory Syndrome-Related Rhinolophus Bat Coronavirus in China Reveal Bats as a Reservoir for Acute, Self-Limiting Infection That Allows Recombination Events (2010) J. Virol., 84, pp. 2808-2819; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs (2009) J. Virol., 83, pp. 1532-1537; Holmes, E.C., Rambaut, A., Viral evolution and the emergence of SARS coronavirus (2004) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 359, pp. 1059-1065; Tsagkogeorga, G., Parker, J., Stupka, E., Cotton, J.A., Rossiter, S.J., Phylogenomic analyses elucidate the evolutionary relationships of bats (2013) Curr. Biol., 23, pp. 2262-2267; https://cdn.bats.org.uk/pdf/Bats-of-the-World.pdf?mtime=20181101151316, Available online, accessed on 26 January 2019; Jones, K.E., MacLarnon, A., Bat life histories: Testing models of mammalian life-history evolution (2001) Evol. Ecol. Res., 3, pp. 465-476; Chua, K.B., Bellini, W.J., Rota, P.A., Harcourt, B.H., Tamin, A., Lam, S.K., Ksiazek, T.G., Shieh, W., Nipah virus: A recently emergent deadly paramyxovirus (2000) Science, 288, pp. 1432-1435; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Delicat, A., Swanepoel, R., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576; Halpin, K., Young, P.L., Field, H.E., Mackenzie, J.S., Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus (2000) J. Gen. Virol., 81, pp. 1927-1932; Badrane, H., Tordo, N., Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders (2001) J. Virol., 75, pp. 8096-8104; Suu-Ire, R., Begeman, L., Banyard, A.C., Breed, A.C., Drosten, C., Eggerbauer, E., Freuling, C.M., Horton, D.L., Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus (2018) PLoS Negl. Trop. Dis., 12, p. e0006311; Streicker, D.G., Winternitz, J.C., Satterfield, D.A., Condori-Condori, R.E., Broos, A., Tello, C., Recuenco, S., Valderrama, W., Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 10926-10931; Francis, J.R., McCall, B.J., Hutchinson, P., Powell, J., Vaska, V.L., Nourse, C., Australian bat lyssavirus: Implications for public health (2014) Med. J. Aust., 201, pp. 647-649; Warrilow, D., Harrower, B., Smith, I.L., Field, H., Taylor, R., Walker, C., Smith, G.A., Public health surveillance for Australian bat lyssavirus in Queensland, Australia, 2000-2001 (2003) Emerg. Infect. Dis., 9, pp. 262-264; Guyatt, K.J., Twin, J., Davis, P., Holmes, E.C., Smith, G.A., Smith, I.L., Mackenzie, J.S., Young, P.L., A molecular epidemiological study of Australian bat lyssavirus (2003) J. Gen. Virol., 84, pp. 485-496; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Zheng, B.J., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the Phylogenetic Tree of Middle East Respiratory Syndrome Coronavirus by Characterization of a Conspecific Virus from an African Bat (2014) J. Virol., 88, pp. 11297-11303; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Wong, A.C.P., Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding (2018) J. Infect. Dis., 218, pp. 197-207; Lau, S.K., Li, K.S., Tsang, A.K., Shek, C.T., Wang, M., Choi, G.K., Guo, R., Lam, C.S., Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to pomona leaf-nosed bats: First evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J. Virol., 86, pp. 11906-11918; Woo, P.C., Lau, S.K., Li, K.S., Poon, R.W., Wong, B.H., Tsoi, H.W., Yip, B.C., Yuen, K.Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., Shi, Y., Zhou, Y., A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene (2016) PLoS Pathog., 12, p. e1005883; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Huang, Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) MBio, p. 8; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Daszak, P., Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus (2015) J. Virol., 90, pp. 3253-3256; Yang, L., Wu, Z., Ren, X., Yang, F., Zhang, J., He, G., Dong, J., Zhang, S., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg. Infect. Dis., 20, pp. 1260-1262; Moreno, A., Lelli, D., De Sabato, L., Zaccaria, G., Boni, A., Sozzi, E., Prosperi, A., Castrucci, M.R., Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy (vol 14, 1, 2017) (2018) Virol. J., p. 15; De Benedictis, P., Marciano, S., Scaravelli, D., Priori, P., Zecchin, B., Capua, I., Monne, I., Cattoli, G., Alpha and lineage C betaCoV infections in Italian bats (2014) Virus Genes, 48, pp. 366-371; Bourgarel, M., Pfukenyi, D.M., Boue, V., Talignani, L., Chiweshe, N., Diop, F., Caron, A., Liegeois, F., Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimbabwe (2018) Infect. Genet. Evol., 58, pp. 253-257; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Moreno, A., Boniotti, M.B., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689; Falcon, A., Vazquez-Moron, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Perez-Brena, P., Garin, I., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch. Virol., 156, pp. 1883-1890; Tsuda, S., Watanabe, S., Masangkay, J.S., Mizutani, T., Alviola, P., Ueda, N., Iha, K., Kato, K., Genomic and serological detection of bat coronavirus from bats in the Philippines (2012) Arch. Virol., 157, pp. 2349-2355; Smith, C.S., de Jong, C.E., Meers, J., Henning, J., Wang, L., Field, H.E., Coronavirus Infection and Diversity in Bats in the Australasian Region (2016) Ecohealth, 13, pp. 72-82; Carrington, C.V., Foster, J.E., Zhu, H.C., Zhang, J.X., Smith, G.J., Thompson, N., Auguste, A.J., Guan, Y., Detection and phylogenetic analysis of group 1 coronaviruses in South American bats (2008) Emerg. Infect. Dis., 14, pp. 1890-1893; Suzuki, J., Sato, R., Kobayashi, T., Aoi, T., Harasawa, R., Group B betacoronavirus in rhinolophid bats, Japan (2014) J. Vet. Med. Sci., 76, pp. 1267-1269; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Chea, S., Silithammavong, S., Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia (2017) Infect. Genet. Evol., 48, pp. 10-18; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History (2017) J. Virol., p. 91; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Arch. Virol., 155, pp. 507-514; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.Y., Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg. Microbes. Infect., 1, p. e35; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic Characterization of Betacoronavirus Lineage C Viruses in Bats Reveals Marked Sequence Divergence in the Spike Protein of Pipistrellus Bat Coronavirus HKU5 in Japanese Pipistrelle: Implications for the Origin of the Novel Middle East Respiratory Syndrome Coronavirus (2013) J. Virol., 87, pp. 8638-8650; Cui, J., Li, F., Shi, Z.L., Origin and evolution of pathogenic coronaviruses (2018) Nat. Rev. Microbiol.; Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Qin, C., From SARS to MERS, Thrusting Coronaviruses into the Spotlight (2019) Viruses, 11, p. 59; Banerjee, A., Kulcsar, K., Misra, V., Frieman, M., Mossman, K., Bats and Coronaviruses (2019) Viruses, 11, p. 41; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Zhu, Y., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J., 10, pp. 609-620; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Tsang, A.K.L., Fan, R.Y.Y., Luk, H.K.H., Cai, J.-P., Wang, M., Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A (2014) J. Virol., 89, pp. 3076-3092; Zhao, G.P., SARS molecular epidemiology: A Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era (2007) Philos. Trans. R. Soc. Lond. B Biol. Sci., 362, pp. 1063-1081; Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., Chen, H., Zhang, E., SARS-CoV infection in a restaurant from palm civet (2005) Emerg. Infect. Dis., 11, pp. 1860-1865; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Xiang, H., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 2430-2435; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Lima, S.L., O’Keefe, J.M., Do predators influence the behaviour of bats? (2013) Biol. Rev., 88, pp. 626-644; Li, W., Wong, S.K., Li, F., Kuhn, J.H., Huang, I.C., Choe, H., Farzan, M., Animal origins of the severe acute respiratory syndrome coronavirus: Insight from ACE2-S-protein interactions (2006) J. Virol., 80, pp. 4211-4219; Luo, Y., Li, B., Jiang, R.D., Hu, B.J., Luo, D.S., Zhu, G.J., Hu, B., Yang, X.L., Longitudinal Surveillance of Betacoronaviruses in Fruit Bats in Yunnan Province, China During 2009-2016 (2018) Virol. Sin., 33, pp. 87-95; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of Novel Bat Coronaviruses in South China That Use the Same Receptor as Middle East Respiratory Syndrome Coronavirus (2018) J. Virol., p. 92; Wang, L., Fu, S., Cao, Y., Zhang, H., Feng, Y., Yang, W., Nie, K., Liang, G., Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China (2017) Emerg. Microbes. Infect., 6, p. e14; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Zhang, X., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13, p. e1006698; Lau, S.K., Poon, R.W., Wong, B.H., Wang, M., Huang, Y., Xu, H., Guo, R., Chan, K.H., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J. Virol., 84, pp. 11385-11394; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., van Den Brand, J.M.A., Tissue Distribution of the MERS-Coronavirus Receptor in Bats (2017) Sci. Rep., 7, p. 1193; Dhondt, K.P., Horvat, B., Henipavirus infections: Lessons from animal models (2013) Pathogens, 2, pp. 264-287; Subudhi, S., Rapin, N., Bollinger, T.K., Hill, J.E., Donaldson, M.E., Davy, C.M., Warnecke, L., Willis, C.K.R., A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat (2017) J. Gen. Virol., 98, pp. 2297-2309; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Iha, K., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Khiyami, M.A., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Plowright, R.K., Eby, P., Hudson, P.J., Smith, I.L., Westcott, D., Bryden, W.L., Middleton, D., Martin, G., Ecological dynamics of emerging bat virus spillover (2015) Proc. Biol. Sci., 282, p. 20142124; Geller, C., Varbanov, M., Duval, R.E., Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies (2012) Viruses, 4, pp. 3044-3068; Sinclair, R., Boone, S.A., Greenberg, D., Keim, P., Gerba, C.P., Persistence of category A select agents in the environment (2008) Appl. Environ. Microbiol., 74, pp. 555-563; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Vasilieva, N., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643; Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Deng, W., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury (2005) Nat. Med., 11, pp. 875-879; Yuan, Y., Cao, D.F., Zhang, Y.F., Ma, J., Qi, J.X., Wang, Q.H., Lu, G.W., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., p. 8; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Lu, G.W., Hu, Y.W., Wang, Q.H., Qi, J.X., Gao, F., Li, Y., Zhang, Y.F., Bao, J.K., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Lin, H.X., Feng, Y., Wong, G., Wang, L., Li, B., Zhao, X., Li, Y., Zhang, C., Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction (2008) J. Gen. Virol., 89, pp. 1015-1024; Li, W., Sui, J., Huang, I.C., Kuhn, J.H., Radoshitzky, S.R., Marasco, W.A., Choe, H., Farzan, M., The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2 (2007) Virology, 367, pp. 367-374; Smith, M.K., Tusell, S., Travanty, E.A., Berkhout, B., van der Hoek, L., Holmes, K.V., Human angiotensin-converting enzyme 2 (ACE2) is a receptor for human respiratory coronavirus NL63 (2006) Adv. Exp. Med. Biol., 581, pp. 285-288; Pohlmann, S., Gramberg, T., Wegele, A., Pyrc, K., van der Hoek, L., Berkhout, B., Hofmann, H., Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2 (2006) Adv. Exp. Med. Biol., 581, pp. 281-284; Lachance, C., Arbour, N., Cashman, N.R., Talbot, P.J., Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E (1998) J. Virol., 72, pp. 6511-6519; Kolb, A.F., Hegyi, A., Siddell, S.G., Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N (1997) J. Gen. Virol., 78, pp. 2795-2802; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 5533-5536; Dveksler, G.S., Pensiero, M.N., Cardellichio, C.B., Williams, R.K., Jiang, G.S., Holmes, K.V., Dieffenbach, C.W., Cloning of the mouse hepatitis virus (MHV) receptor: Expression in human and hamster cell lines confers susceptibility to MHV (1991) J. Virol., 65, pp. 6881-6891; Peng, G.Q., Xu, L.Q., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal Structure of Bovine Coronavirus Spike Protein Lectin Domain (2012) J. Biol. Chem., 287, pp. 41931-41938; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S-Protein of Bovine Coronavirus Is a Hemagglutinin Recognizing 9-O-Acetylated Sialic-Acid as a Receptor Determinant (1991) J. Virol., 65, pp. 6232-6237; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Wang, J., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe., 16, pp. 328-337; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Royal, S.R., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3048-3053; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range (2007) J. Virol., 81, pp. 1261-1273; Lau, S.K.P., Fan, R.Y.Y., Luk, H.K.H., Zhu, L., Fung, J., Li, K.S.M., Wong, E.Y.M., Kok, R.K.H., Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins (2018) Emerg. Microbes. Infect., 7, p. 209; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A New Bat-HKU2-like Coronavirus in Swine, China, 2017 (2017) Emerg. Infect. Dis., p. 23; Tu, C., Crameri, G., Kong, X., Chen, J., Sun, Y., Yu, M., Xiang, H., Ren, T., Antibodies to SARS coronavirus in civets (2004) Emerg. Infect. Dis., 10, pp. 2244-2248; Jeong, J., Smith, C.S., Peel, A.J., Plowright, R.K., Kerlin, D.H., McBroom, J., McCallum, H., Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis macropus) (2017) Epidemiol. Infect., 145, pp. 2053-2061; Hall, R.J., Wang, J., Peacey, M., Moore, N.E., McInnes, K., Tompkins, D.M., New alphacoronavirus in Mystacina tuberculata bats, New Zealand (2014) Emerg. Infect. Dis., 20, pp. 697-700; Anthony, S.J., Ojeda-Flores, R., Rico-Chavez, O., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Rostal, M.K., Epstein, J.H., Sanchez-Leon, M., Coronaviruses in bats from Mexico (2013) J. Gen. Virol., 94, pp. 1028-1038; Fischer, K., Zeus, V., Kwasnitschka, L., Kerth, G., Haase, M., Groschup, M.H., Balkema-Buschmann, A., Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany (2016) Infect Genet. Evol., 37, pp. 108-116; Monchatre-Leroy, E., Boue, F., Boucher, J.M., Renault, C., Moutou, F., Ar Gouilh, M., Umhang, G., Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs (2017) Viruses, 9, p. 364; Misra, V., Dumonceaux, T., Dubois, J., Willis, C., Nadin-Davis, S., Severini, A., Wandeler, A., Artsob, H., Detection of polyoma and corona viruses in bats of Canada (2009) J. Gen. Virol., 90, pp. 2015-2022; Wacharapluesadee, S., Duengkae, P., Rodpan, A., Kaewpom, T., Maneeorn, P., Kanchanasaka, B., Yingsakmongkon, S., Khlangsap, N., Diversity of coronavirus in bats from Eastern Thailand (2015) Virol. J., p. 12; Wacharapluesadee, S., Sintunawa, C., Kaewpom, T., Khongnomnan, K., Olival, K.J., Epstein, J.H., Rodpan, A., Chindamporn, A., Group C betacoronavirus in bat guano fertilizer, Thailand (2013) Emerg. Infect. Dis., 19, pp. 1349-1351; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV):Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular Evolution of MERS Coronavirus: Dromedaries as a Recent Intermediate Host or Long-Time Animal Reservoir? (2017) Int. J. Mol. Sci., 18, p. 2138; Bates, P., Bumrungsri, S., Csorba, G., Rhinolophus thomasi (2008) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19573A8980523.en, e.T19573A8980523, Available online, accessed on 23 October 2018; Smith, A.T., Johnston, C.H., Jones, G., Rossiter, S., Rhinolophus rex (2008) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19562A8977955.en, e.T19562A8977955, Available online, accessed on 23 October 2018; Hutson, A.M., Kingston, T., Walston, J., Rhinolophus pusillus (2008) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19561A8977661.en, e.T19561A8977661, Available online, accessed on 23 October 2018; Bates, P., Bumrungsri, S., Csorba, G., Rhinolophus pearsonii (2008) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19559A8977144.en, e.T19559A8977144, Available online, accessed on 23 October 2018; Alcaldé, J., Benda, P., Juste, J., Rhinolophus mehelyi (2016) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19519A21974380.en, e.T19519A21974380, Available online, accessed on 23 October 2018; Molur, S., Srinivasulu, C., Francis, C., Rhinolophus macrotis (2008) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19550A8974366.en, e.T19550A8974366, Available online, accessed on 23 October 2018; Taylor, P., Rhinolophus hipposideros (2016) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19518A21972794.en, e.T19518A21972794, Available online, accessed on 23 October 2018; Monadjem, A., Jacobs, D., Rhinolophus hildebrandtii (2017) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T64586080A21979893.en, e.T64586080A21979893, Available online, accessed on 23 October 2018; Piraccini, R., Rhinolophus ferrumequinum (2016) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19517A21973253.en, e.T19517A21973253, Available online, accessed on 23 October 2018; Juste, J., Alcaldé, J., Rhinolophus euryale (2016) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19516A21971185.en, e.T19516A21971185, Available online, accessed on 23 October 2018; Taylor, P., Rhinolophus blasii (2016) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T19515A21972073.en, e.T19515A21972073, Available online, accessed on 23 October 2018; Walston, J., Kingston, T., Hutson, A.M., Rhinolophus affinis (2008) The IUCN Red List of Threatened Species, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T19522A8952553.en, e.T19522A8952553, Available online, accessed on 23 October 2018; Ar Gouilh, M., Puechmaille, S.J., Diancourt, L., Vandenbogaert, M., Serra-Cobo, J., Lopez Roig, M., Brown, P., Vabret, A., SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world (2018) Virology, 517, pp. 88-97; Pauly, M., Pir, J.B., Loesch, C., Sausy, A., Snoeck, C.J., Hubschen, J.M., Muller, C.P., Novel Alphacoronaviruses and Paramyxoviruses Cocirculate with Type 1 and Severe Acute Respiratory System (SARS)-Related Betacoronaviruses in Synanthropic Bats of Luxembourg (2017) Appl. Environ. Microbiol., p. 83; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Cheung, C.L., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Yordanov, S., Genomic Characterization of Severe Acute Respiratory Syndrome-Related Coronavirus in European Bats and Classification of Coronaviruses Based on Partial RNA-Dependent RNA Polymerase Gene Sequences (2010) J. Virol., 84, pp. 11336-11349; Quan, P.L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Hutchison, S.K., Niezgoda, M., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) MBio, p. 1; Lee, S., Jo, S.D., Son, K., An, I., Jeong, J., Wang, S.J., Kim, Y., Oem, J.K., Genetic Characteristics of Coronaviruses from Korean Bats in 2016 (2018) Microb. Ecol., 75, pp. 174-182; Mendenhall, I.H., Borthwick, S., Neves, E.S., Low, D., Linster, M., Liang, B., Skiles, M., Gunalan, V., Identification of a Lineage D Betacoronavirus in Cave Nectar Bats (Eonycteris spelaea) in Singapore and an Overview of Lineage D Reservoir Ecology in SE Asian Bats (2017) Transbound Emerg. Dis., 64, pp. 1790-1800; Chen, Y.N., Phuong, V.N., Chen, H.C., Chou, C.H., Cheng, H.C., Wu, C.H., Detection of the Severe Acute Respiratory Syndrome-Related Coronavirus and Alphacoronavirus in the Bat Population of Taiwan (2016) Zoonoses Public Health, 63, pp. 608-615; Yang, L., Wu, Z., Ren, X., Yang, F., He, G., Zhang, J., Dong, J., Du, J., Novel SARS-like betacoronaviruses in bats, China, 2011 (2013) Emerg. Infect. Dis., 19, pp. 989-991; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Chow, W.N., Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination (2015) J. Virol., 89, pp. 10532-10547; Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S., Jin, Q., ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus (2016) J. Infect. Dis., 213, pp. 579-583; Heinonen, J., Vainio-Mattila, K., Biodiversity/Ecotourism Assessments in Yunnan, China (1997) Spec. Rep., 5771, pp. 1-16; Shi, Z., Hu, Z., A review of studies on animal reservoirs of the SARS coronavirus (2008) Virus Res., 133, pp. 74-87; Gonzalez, J.P., Pourrut, X., Leroy, E., Ebolavirus and other filoviruses (2007) Curr. Top. Microbiol. Immunol., 315, pp. 363-387; Towner, J.S., Amman, B.R., Sealy, T.K., Carroll, S.A., Comer, J.A., Kemp, A., Swanepoel, R., Khristova, M.L., Isolation of genetically diverse Marburg viruses from Egyptian fruit bats (2009) PLoS Pathog., 5, p. e1000536; Smith, C., Skelly, C., Kung, N., Roberts, B., Field, H., Flying-fox species density-A spatial risk factor for Hendra virus infection in horses in eastern Australia (2014) PLoS ONE, 9, p. e99965; Yob, J.M., Field, H., Rashdi, A.M., Morrissy, C., van der Heide, B., Rota, P., Bin Adzhar, A., Jamaluddin, A., Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia (2001) Emerg. Infect. Dis., 7, pp. 439-441; Reynes, J.M., Counor, D., Ong, S., Faure, C., Seng, V., Molia, S., Walston, J., Sarthou, J.L., Nipah virus in Lyle’s flying foxes, Cambodia (2005) Emerg. Infect. Dis., 11, pp. 1042-1047; Chua, K.B., Crameri, G., Hyatt, A., Yu, M., Tompang, M.R., Rosli, J., McEachern, J., Eaton, B.T., A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 11424-11429","Lau, S.K.P.; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong; email: skplau@hku.hk",,"MDPI AG",19994915,,,"30791586","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85061964822 "Sangl L., Matiasek K., Felten S., Gründl S., Bergmann M., Balzer H.-J., Pantchev N., Leutenegger C.M., Hartmann K.","57193733754;55853997300;57193734979;57201253109;56861789500;7003660016;23489943400;7006706489;7201407340;","Detection of feline coronavirus mutations in paraffin-embedded tissues in cats with feline infectious peritonitis and controls",2019,"Journal of Feline Medicine and Surgery","21","2",,"133","142",,3,"10.1177/1098612X18762883","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044022013&doi=10.1177%2f1098612X18762883&partnerID=40&md5=ab61c425b7459afdf5d5892076810d9d","Clinic of Small Animal Medicine, LMU, Munich, Germany; Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, LMU, Munich, Germany; IDEXX Laboratories, Ludwigsburg, Germany; IDEXX Laboratories, West Sacramento, CA, United States","Sangl, L., Clinic of Small Animal Medicine, LMU, Munich, Germany; Matiasek, K., Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, LMU, Munich, Germany; Felten, S., Clinic of Small Animal Medicine, LMU, Munich, Germany; Gründl, S., Clinic of Small Animal Medicine, LMU, Munich, Germany; Bergmann, M., Clinic of Small Animal Medicine, LMU, Munich, Germany; Balzer, H.-J., IDEXX Laboratories, Ludwigsburg, Germany; Pantchev, N., IDEXX Laboratories, Ludwigsburg, Germany; Leutenegger, C.M., IDEXX Laboratories, West Sacramento, CA, United States; Hartmann, K., Clinic of Small Animal Medicine, LMU, Munich, Germany","Objectives: The amino acid substitutions M1058L and S1060A in the spike protein of feline coronavirus (FCoV) have been postulated to be responsible for the development of the pathogenic feline infectious peritonitis virus (FIPV), which causes feline infectious peritonitis (FIP). The aim of the following study was to investigate the presence of mutated virus in tissue samples of cats with and without FIP. Methods: The study population consisted of 64 cats, 34 of which were diagnosed with FIP and 30 control cats. All cases underwent autopsy, histopathology and immunohistochemistry (IHC) for FCoV. Furthermore, a genotype-discriminating quantitative reverse transcriptase PCR (RT-qPCR) was performed on shavings of paraffin-embedded tissues to discriminate between cats with FIP and controls, and the sensitivity and specificity of this discriminating RT-qPCR were calculated using 95% confidence intervals (CIs). Results: Specificity of genotype-discriminating RT-qPCR was 100.0% (95% CI 88.4–100.0), and sensitivity was 70.6% (95% CI 52.5–84.9). In cats with FIP, 24/34 tested positive for FIPV. In samples of three control cats and in seven cats with FIP, FCoV was found, but genotyping was not possible owing to low FCoV RNA concentrations. Out of the positive samples, 23 showed the amino acid substitution M1058L in the spike protein and none the substitution S1060A. One sample in a cat with FIP revealed a mixed population of non-mutated FCoV and FIPV (mixed genotype). For one sample genotyping was not possible despite high viral load, and two samples were negative for FCoV. Conclusions and relevance: As none of the control animals showed FCoV amino acid substitutions previously demonstrated in cats with FIP, it can be presumed that the substitution M1058L correlates with the presence of FIP. FCoV was detected in low concentration in tissues of control animals, confirming the ability of FCoV to spread systemically. The fact that no negative controls were included in the IHC protocol could potentially lead to an underestimation of the sensitivity of the RT-qPCR. © The Author(s) 2018.",,"amino acid substitution; animal experiment; animal tissue; Article; ascites; autopsy; controlled study; Feline coronavirus; feline infectious peritonitis; Feline infectious peritonitis virus; genotype; genotyping technique; histopathology; immunohistochemistry; nonhuman; paraffin embedding; pericardial effusion; priority journal; real time polymerase chain reaction; reverse transcription polymerase chain reaction; sensitivity and specificity; virus mutation; virus replication","Addie, D., Belak, S., Boucraut-Baralon, C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 594-604; Borschensky, C.M., Reinacher, M., Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats (2014) Res Vet Sci, 97, pp. 333-340; Licitra, B.N., Millet, J.K., Regan, A.D., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg Infect Dis, 19, pp. 1066-1073; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J Feline Med Surg, 11, pp. 225-258; Hui-Wen, C., Egberink, H.F., Halpin, R., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18, pp. 1089-1095; Porter, E., Tasker, S., Day, M.J., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet Res, 45, p. 49; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet J, 201, pp. 123-132; Vennema, H., Poland, A., Foley, J., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Takano, T., Azuma, N., Satoh, M., Neutrophil survival factors (TNF-alpha, GM-CSF, and G-CSF) produced by macrophages in cats infected with feline infectious peritonitis virus contribute to the pathogenesis of granulomatous lesions (2009) Arch Virol, 154, pp. 775-781; Kipar, A., Bellmann, S., Kremendahl, J., Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis (1998) Vet Immunol Immunopathol, 65, pp. 243-257; Tammer, R., Evensen, O., Lutz, H., Immunohistological demonstration of feline infectious peritonitis virus antigen in paraffin-embedded tissues using feline ascites or murine monoclonal antibodies (1995) Vet Immunol Immunopathol, 49, pp. 177-182; Felten, S., Matiasek, K., Gruendl, S., Investigation into the utility of an immunocytochemical assay in body cavity effusions for diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 410-418; Felten, S., Weider, K., Doenges, S., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 321-335; Gut, M., Leutenegger, C.M., Huder, J.B., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses (1999) J Virol Methods, 77, pp. 37-46; Doenges, S.J., Weber, K., Dorsch, R., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 344-350; Pedersen, N.C., Eckstrand, C., Liu, H., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet Microbiol, 175, pp. 157-166; Doenges, S.J., Weber, K., Dorsch, R., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J Feline Med Surg, 18, pp. 104-109; Hornyak, A., Balint, A., Farsang, A., Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR) (2012) J Virol Methods, 181, pp. 155-163; Kipar, A., Meli, M.L., Baptiste, K.E., Sites of feline coronavirus persistence in healthy cats (2010) J Gen Virol, 91, pp. 1698-1707; Foley, J.E., Lapointe, J.M., Koblik, P., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J Vet Intern Med, 12, pp. 415-423; Künzel, F., Rebel-Bauder, B., Kassl, C., Meningoencephalitis in cats in Austria: a study of infectious causes, including Encephalitozoon cuniculi (2015) J Feline Med Surg, 19, pp. 171-176; Li, X., Scott, F.W., Detection of feline coronaviruses in cell cultures and in fresh and fixed feline tissues using polymerase chain reaction (1994) Vet Microbiol, 42, pp. 65-77; Chang, H.W., de Groot, R.J., Egberink, H.F., Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet Microbiol, 99, pp. 31-42; Hohdatsu, T., Okada, S., Ishizuka, Y., The prevalence of types I and II feline coronavirus infections in cats (1992) J Vet Med Sci, 54, pp. 557-562","Sangl, L.; Clinic of Small Animal Medicine, LMUGermany; email: laura.sangl@gmx.de",,"SAGE Publications Ltd",1098612X,,,"29542369","English","J. Feline Med. Surg.",Article,"Final",Open Access,Scopus,2-s2.0-85044022013 "Wang L.-F., Anderson D.E.","35243718700;25631949200;","Viruses in bats and potential spillover to animals and humans",2019,"Current Opinion in Virology","34",,,"79","89",,13,"10.1016/j.coviro.2018.12.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060110949&doi=10.1016%2fj.coviro.2018.12.007&partnerID=40&md5=e641fc7916fc804a441b44fdd3a7f092","Programme in Emerging Infectious Diseases, Duke-NUS Medical School169857, Singapore","Wang, L.-F., Programme in Emerging Infectious Diseases, Duke-NUS Medical School169857, Singapore; Anderson, D.E., Programme in Emerging Infectious Diseases, Duke-NUS Medical School169857, Singapore","In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission. © 2019 The Authors",,"bat; Coronavirinae; disease severity; Filovirus; human; infection risk; nonhuman; Paramyxoviridae; priority journal; Reoviridae; Review; risk assessment; RNA virus; RNA virus infection; virus transmission; animal; communicable disease; disease carrier; epidemic; genetics; Hendra virus; pathogenicity; SARS coronavirus; veterinary medicine; virology; virus; virus infection; zoonosis; Animals; Chiroptera; Communicable Diseases, Emerging; Coronavirus; Disease Outbreaks; Disease Reservoirs; Hendra Virus; Humans; SARS Virus; Virus Diseases; Viruses; Zoonoses","Taylor, L.H., Latham, S.M., Woolhouse, M.E., Risk factors for human disease emergence (2001) Philos Trans R Soc Lond B Biol Sci, 356, pp. 983-989; Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., Breit, N., Daszak, P., Global hotspots and correlates of emerging zoonotic diseases (2017) Nat Commun, 8, p. 1124. , An updated version of the 2008 publication (Ref. [3]) with better modeling data and updated maps, which is an important resource for assessing risk of future emerging zoonotic diseases; Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993; Bean, A.G., Baker, M.L., Stewart, C.R., Cowled, C., Deffrasnes, C., Wang, L.F., Lowenthal, J.W., Studying immunity to zoonotic diseases in the natural host - keeping it real (2013) Nat Rev Immunol, 13, pp. 851-861; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin Microbiol Rev, 19, pp. 531-545. , Although it has been a decade since its publication, this paper remains to be one of the best reviews on this subject; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650. , A milestone paper demonstrating the special status of bats as virus reservoir; Wong, S., Lau, S., Woo, P., Yuen, K.Y., Bats as a continuing source of emerging infections in humans (2007) Rev Med Virol, 17, pp. 67-91; Wang, L.F., Walker, P.J., Poon, L.L., Mass extinctions, biodiversity and mitochondrial function: are bats’ special’ as reservoirs for emerging viruses? (2011) Curr Opin Virol, 1, pp. 649-657; Luis, A.D., Hayman, D.T., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., Mills, J.N., Cunningham, A.A., A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? (2013) Proc Biol Sci, 280. , 20122753; Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O'Brien, S.J., Murphy, W.J., A molecular phylogeny for bats illuminates biogeography and the fossil record (2005) Science, 307, pp. 580-584; Teeling, E.C., Vernes, S.C., Davalos, L.M., Ray, D.A., Gilbert, M.T.P., Myers, E., Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species (2018) Annu Rev Anim Biosci, 6, pp. 23-46; Smith, I., Wang, L.F., Bats and their virome: an important source of emerging viruses capable of infecting humans (2013) Curr Opin Virol, 3, pp. 84-91; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441; Wang, L.F., Eaton, B.T., Bats, civets and the emergence of SARS (2007) Curr Top Microbiol Immunol, 315, pp. 325-344; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045; Hu, D., Zhu, C., Ai, L., He, T., Wang, Y., Ye, F., Yang, L., Lv, R., Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats (2018) Emerg Microbes Infect, 7, p. 154; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 28, pp. 535-538. , After more than ten years of continuous investigation, this paper finally demonstrated bats as the true reservoir of SARS related viruses; Menachery, V.D., Yount, B.L., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Royal, S.R., SARS-like WIV1-CoV poised for human emergence (2016) Proc Nat Acad Sci, 113, pp. 3048-3053; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , The paper opened a whole new area of MERS research, which is not going to stop in the foreseeable future; http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV) on World Wide Web URL; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , An important finding indicating that camels are the reservoir or amplifying host of MERS-CoV in Middle East; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Webby, R.J., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20, pp. 1049-1053; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Lattwein, E., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Sabir, J.S.M., Lam, T.T.-Y., Ahmed, M.M.M., Li, L., Shen, Y.E.M., Abo-Aba, S., Qureshi, M.I., Khiyami, M.A., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , It is important to find that MERS-CoV is not the only CoV circulating in Middle East camals; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1697-1699; Luo, C.-M., Wang, N., Yang, X.-L., Liu, H.-Z., Zhang, W., Li, B., Hu, B., Zhu, G.-J., Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus (2018) J Virol, 92; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8. , An important finding although the evidence is not very strong; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol, 91; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , This paper highlights that lethal outbreaks by bat CoVs are not limited to humans, they can happen in livestock animals as well; Murray, K., Selleck, P., Hooper, P., Hyatt, A., Gould, A., Gleeson, L., Westbury, H., Rodwell, B., A morbillivirus that caused fatal disease in horses and humans (1995) Science, 268, pp. 94-97. , First discovery of a bat-borne BSL4 virus which can affect both human and animals; Field, H.E., Hendra virus ecology and transmission (2016) Curr Opin Virol, 16, pp. 120-125; https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary, Summary of Hendra virus incidents in horses on World Wide Web URL; Field, H., de Jong, C., Melville, D., Smith, C., Smith, I., Broos, A., Kung, Y.H., Zeddeman, A., Hendra virus infection dynamics in Australian fruit bats (2011) PLoS One, 6. , e28678; Chua, K.B., Goh, K.J., Wong, K.T., Kamarulzaman, A., Tan, P.S., Ksiazek, T.G., Zaki, S.R., Tan, C.T., Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia [see comments] (1999) Lancet, 354, pp. 1257-1259; Chua, K.B., Bellini, W.J., Rota, P.A., Harcourt, B.H., Tamin, A., Lam, S.K., Ksiazek, T.G., Shieh, W., Nipah virus: a recently emergent deadly paramyxovirus (2000) Science, 288, pp. 1432-1435; Hsu, V.P., Hossain, M.J., Parashar, U.D., Ali, M.M., Ksiazek, T.G., Kuzmin, I., Niezgoda, M., Breiman, R.F., Nipah virus encephalitis reemergence, Bangladesh (2004) Emerg Infect Dis, 10, pp. 2082-2087; Luby, S.P., Hossain, M.J., Gurley, E.S., Ahmed, B.N., Banu, S., Khan, S.U., Homaira, N., Comer, J.A., Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007 (2009) Emerg Infect Dis, 15, pp. 1229-1235; http://www.who.int/csr/don/07-august-2018-nipah-virus-india/en/, Nipah virus – India on World Wide Web URL; Yob, J.M., Field, H., Rashdi, A.M., Morrissy, C., van der Heide, B., Rota, P., bin Adzhar, A., Jamaluddin, A., Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia (2001) Emerg Infect Dis, 7, pp. 439-441; Chua, K.B., Lek Koh, C., Hooi, P.S., Wee, K.F., Khong, J.H., Chua, B.H., Chan, Y.P., Lam, S.K., Isolation of Nipah virus from Malaysian Island flying-foxes (2002) Microbes Infect, 4, pp. 145-151; Epstein, J.H., Prakash, V., Smith, C.S., Daszak, P., McLaughlin, A.B., Meehan, G., Field, H.E., Cunningham, A.A., Henipavirus infection in fruit bats (Pteropus giganteus), India (2008) Emerg Infect Dis, 14, pp. 1309-1311; Yadav, P.D., Raut, C.G., Shete, A.M., Mishra, A.C., Towner, J.S., Nichol, S.T., Mourya, D.T., Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India (2012) Am J Trop Med Hyg, 87, pp. 576-578; Anderson, D.E., Islam, A., Crameri, G., Todd, S., Khan, S.U., Foord, A., Rahman, M.Z., Gurley, E.S., Isolation and full-genome characterization of Nipah viruses from bats, Bangladesh (2019) Emerg Infect Dis, 25; Marsh, G.A., de Jong, C., Barr, J.A., Tachedjian, M., Smith, C., Middleton, D., Yu, M., Haring, V., Cedar virus: a novel Henipavirus isolated from Australian bats (2012) PLoS Pathog, 8; Olson, J.G., Rupprecht, C., Rollin, P.E., An, U.S., Niezgoda, M., Clemins, T., Walston, J., Ksiazek, T.G., Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia (2002) Emerg Infect Dis, 8, pp. 987-988; Sendow, I., Ratnawati, A., Taylor, T., Adjid, R.M., Saepulloh, M., Barr, J., Wong, F., Field, H., Nipah virus in the fruit bat Pteropus vampyrus in Sumatera, Indonesia (2013) PLoS One, 8. , e69544; Pernet, O., Schneider, B.S., Beaty, S.M., LeBreton, M., Yun, T.E., Park, A., Zachariah, T.T., Ramirez, C.M., Evidence for henipavirus spillover into human populations in Africa (2014) Nat Commun, 5, p. 5342; Peel, A.J., Baker, K.S., Crameri, G., Barr, J.A., Hayman, D.T., Wright, E., Broder, C.C., Wang, L.F., Henipavirus neutralising antibodies in an isolated island population of African fruit bats (2012) PLoS One, 7; Hayman, D.T., Suu-Ire, R., Breed, A.C., McEachern, J.A., Wang, L., Wood, J.L., Cunningham, A.A., Evidence of henipavirus infection in West African fruit bats (2008) PLoS One, 3; Iehle, C., Razafitrimo, G., Razainirina, J., Andriaholinirina, N., Goodman, S.M., Faure, C., Georges-Courbot, M.C., Reynes, J.M., Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar (2007) Emerg Infect Dis, 13, pp. 159-161; Drexler, J.F., Corman, V.M., Muller, M.A., Maganga, G.D., Vallo, P., Binger, T., Gloza-Rausch, F., Yordanov, S., Bats host major mammalian paramyxoviruses (2012) Nat Commun, 3, p. 796. , A very large study demonstrating the great diversity of bat borne viruses in multiple viral families; Chant, K., Chan, R., Smith, M., Dwyer, D.E., Kirkland, P., Probable human infection with a newly described virus in the family Paramyxoviridae. The NSW expert group (1998) Emerg Infect Dis, 4, pp. 273-275; Philbey, A.W., Kirkland, P.D., Ross, A.D., Field, H.E., Srivastava, M., Davis, R.J., Love, R.J., Infection with Menangle virus in flying foxes (Pteropus spp.) in Australia (2008) Aust Vet J, 86, pp. 449-454; Barr, J.A., Smith, C., Marsh, G.A., Field, H., Wang, L.F., Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs (2012) J Gen Virol, 93, pp. 2590-2594; Chua, K.B., Wang, L.F., Lam, S.K., Crameri, G., Yu, M., Wise, T., Boyle, D., Eaton, B.T., Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia (2001) Virology, 283, pp. 215-229; Yaiw, K.C., Bingham, J., Crameri, G., Mungall, B., Hyatt, A., Yu, M., Eaton, B., Thong Wong, K., Tioman virus, a paramyxovirus of bat origin, causes mild disease in pigs and has a predilection for lymphoid tissues (2008) J Virol, 82, pp. 565-568; Katoh, H., Kubota, T., Ihara, T., Maeda, K., Takeda, M., Kidokoro, M., Cross-neutralization between human and African Bat mumps viruses (2016) Emerg Infect Dis, 22, pp. 703-706. , For the first time, it is demonstrated that a mumps virus close relative exists in non-human mammals; Krüger, N., Hoffmann, M., Drexler, J.F., Müller, M.A., Corman, V.M., Sauder, C., Rubin, S., Drosten, C., Functional properties and genetic relatedness of the fusion and hemagglutinin-neuraminidase proteins of a mumps virus-like bat virus (2015) J Virol, 89, pp. 4539-4548; Beaty, S.M., Nachbagauer, R., Hirsh, A., Vigant, F., Duehr, J., Azarm, K.D., Stelfox, A.J., Krammer, F., Cross-reactive and cross-neutralizing activity of human mumps antibodies against a novel mumps virus from bats (2017) J Infect Dis, 215, pp. 209-213; Kruger, N., Sauder, C., Huttl, S., Papies, J., Voigt, K., Herrler, G., Hardes, K., Drexler, J.F., Entry, replication, immune evasion, and neurotoxicity of synthetically engineered bat-borne mumps virus (2018) Cell Rep, 25, pp. 312-320. , e317; Stephan, H., Gay, G., Ramirez, T., Encephalomyelitis, reproductive failure and corneal opacity (blue eye) in pigs, associated with a paramyxovirus infection (1988) Vet Rec, 122, pp. 6-10; Salas-Rojas, M., Sanchez-Hernandez, C., Romero-Almaraz Md Mde, L., Schnell, G.D., Schmid, R.K., Aguilar-Setien, A., Prevalence of rabies and LPM paramyxovirus antibody in non-hematophagous bats captured in the Central Pacific coast of Mexico (2004) Trans R Soc Trop Med Hyg, 98, pp. 577-584; Wang, L.F., Hansson, E., Yu, M., Chua, K.B., Mathe, N., Crameri, G., Rima, B.K., Eaton, B.T., Full-length genome sequence and genetic relationship of two paramyxoviruses isolated from bat and pigs in the Americas (2007) Arch Virol, 152, pp. 1259-1271; Zeller, H.G., Karabatsos, N., Calisher, C.H., Digoutte, J.P., Cropp, C.B., Murphy, F.A., Shope, R.E., Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the family Bunyaviridae (1989) Arch Virol, 108, pp. 211-227; Lau, S.K., Woo, P.C., Wong, B.H., Wong, A.Y., Tsoi, H.W., Wang, M., Lee, P., Guo, R., Identification and complete genome analysis of three novel paramyxoviruses, tuhoko virus 1, 2 and 3, in fruit bats from China (2010) Virology, 404, pp. 106-2116; Albarino, C.G., Foltzer, M., Towner, J.S., Rowe, L.A., Campbell, S., Jaramillo, C.M., Bird, B.H., Rota, P., Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012 (2014) Emerg Infect Dis, 20, pp. 211-216. , Although it was limited to a single patient, it demonstrated that the spill over events of bat viruses may occur more frequently than we expected; Amman, B.R., Albarino, C.G., Bird, B.H., Nyakarahuka, L., Sealy, T.K., Balinandi, S., Schuh, A.J., Jones, M.E., A recently discovered pathogenic paramyxovirus, sosuga virus, is present in rousettus aegyptiacus fruit bats at multiple locations in Uganda (2015) J Wildl Dis, 51, pp. 774-779; Piot, P., Spencer, J., From 1976 to 2018: reflections on early investigations into the Ebola virus (2018) Trans R Soc Trop Med Hyg, 112, pp. 527-528; Nakkazi, E., DR Congo ebola virus outbreak: responding in a conflict zone (2018) Lancet, 392, p. 623; Goldstein, T., Anthony, S.J., Gbakima, A., Bird, B.H., Bangura, J., Tremeau-Bravard, A., Belaganahalli, M.N., Liang, E., The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses (2018) Nat Microbiol, 3, pp. 1084-1089; Johnson, E.D., Johnson, B.K., Silverstein, D., Tukei, P., Geisbert, T.W., Sanchez, A.N., Jahrling, P.B., Characterization of a new Marburg virus isolated from a 1987 fatal case in Kenya (1996) Arch Virol Suppl, 11, pp. 101-114; Towner, J.S., Khristova, M.L., Sealy, T.K., Vincent, M.J., Erickson, B.R., Bawiec, D.A., Hartman, A.L., Stroher, U., Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola (2006) J Virol, 80, pp. 6497-6516; Negredo, A., Discovery of an ebolavirus-like filovirus in Europe (2011) PLoS Pathog, 7; Kemenesi, G., Kurucz, K., Dallos, B., Zana, B., Foldes, F., Boldogh, S., Gorfol, T., Jakab, F., Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016 (2018) Emerg Microbes Infect, 7, p. 66; Yang, X.-L., Tan, C.W., Anderson, D.E., Jian, R.-D., Li, B., Zhang, W., Zhu, Y., Liu, X.-L., Characterization of a filovirus (Měnglà virus) from Rousettus bats in China (2019) Nat Microbiol, , This is the first time that a novel filovirus representing a new genus is discovered in Asia; Towner, J.S., Amman, B.R., Sealy, T.K., Carroll, S.A., Comer, J.A., Kemp, A., Swanepoel, R., Khristova, M.L., Isolation of genetically diverse Marburg viruses from Egyptian fruit bats (2009) PLoS Pathog, 5. , This is important in the context of debate on whether bats are true reservoir of filoviruses; Schuh, A.J., Amman, B.R., Towner, J.S., Filoviruses and bats (2017) Microbiol Aust, 38, pp. 12-16; Leendertz, S.A.J., Testing new hypotheses regarding ebolavirus reservoirs (2016) Viruses, 8, pp. 30-34; Schiff, L.A., Nibert, M.L., Tyler, K.L., Orthoreoviruses and their replication (2007) Fields Virology, pp. 1853-1915. , D.M. Knipe D.E. Griffin R.A. Lamb S.E. Straus P.M. Howley M.A. Martin B. Roizman Lippincott Williams & Wilkins; Chua, K.B., Crameri, G., Hyatt, A., Yu, M., Tompang, M.R., Rosli, J., McEachern, J., Eaton, B.T., A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans (2007) Proc Natl Acad Sci U S A, 104, pp. 11424-11429. , First demonstration that bat reovirus can cause severe diseases in humans, which opened up a new field of research with many more discoveries of similar cases in different countries; Gard, G.P., Marshall, I.D., Nelson Bay virus. A novel reovirus (1973) Arch Gesamte Virusforsch, 43, pp. 34-42; Pritchard, L.I., Chua, K.B., Cummins, D., Hyatt, A., Crameri, G., Eaton, B.T., Wang, L.F., Pulau virus; a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia (2006) Arch Virol, 151, pp. 229-239; Chua, K.B., Voon, K., Crameri, G., Tan, H.S., Rosli, J., McEachern, J.A., Suluraju, S., Wang, L.F., Identification and characterization of a new orthoreovirus from patients with acute respiratory infections (2008) PLoS One, 3; Cheng, P., Lau, C.S., Lai, A., Ho, E., Leung, P., Chan, F., Wong, A., Lim, W., A novel reovirus isolated from a patient with acute respiratory disease (2009) J Clin Virol, 45, pp. 79-80; Du, L., Lu, Z., Fan, Y., Meng, K., Jiang, Y., Zhu, Y., Wang, S., Tu, C., Xi river virus, a new bat reovirus isolated in southern China (2010) Arch Virol, 155, pp. 1295-1299; Chua, K.B., Voon, K., Yu, M., Keniscope, C., Abdul Rasid, K., Wang, L.F., Investigation of a potential zoonotic transmission of orthoreovirus associated with acute influenza-like illness in an adult patient (2011) PLoS One, 6. , e25434; Wong, A.H., Cheng, P.K., Lai, M.Y., Leung, P.C., Wong, K.K., Lee, W.Y., Lim, W.W., Virulence potential of fusogenic orthoreoviruses (2012) Emerg Infect Dis, 18, pp. 944-948; Singh, H., Yoshikawa, T., Kobayashi, T., Fukushi, S., Tani, H., Taniguchi, S., Fukuma, A., Shimojima, M., Rapid whole genome sequencing of Miyazaki-Bali/2007 Pteropine orthoreovirus by modified rolling circular amplification with adaptor ligation - next generation sequencing (2015) Sci Rep, 5, p. 16517; Hu, T., Qiu, W., He, B., Zhang, Y., Yu, J., Liang, X., Zhang, W., Wang, Y., Characterization of a novel orthoreovirus isolated from fruit bat, China (2014) BMC Microbiol, 14, p. 293; Lorusso, A., Teodori, L., Leone, A., Marcacci, M., Mangone, I., Orsini, M., Capobianco-Dondona, A., Savini, G., A new member of the Pteropine Orthoreovirus species isolated from fruit bats imported to Italy (2015) Infect Genet Evol, 30, pp. 55-58; Taniguchi, S., Maeda, K., Horimoto, T., Masangkay, J.S., Puentespina, R., Jr., Alvarez, J., Eres, E., Egawa, K., First isolation and characterization of pteropine orthoreoviruses in fruit bats in the Philippines (2017) Arch Virol, 162, pp. 1529-1539; Takemae, H., Basri, C., Mayasari, N., Tarigan, R., Shimoda, H., Omatsu, T., Supratikno, Kobayashi, R., Isolation of Pteropine orthoreovirus from Pteropus vampyrus in Garut, Indonesia (2018) Virus Genes, 54, pp. 823-827; Singh, H., Shimojima, M., Ngoc, T.C., Quoc Huy, N.V., Chuong, T.X., Le Van, A., Saijo, M., Sugamata, M., Serological evidence of human infection with Pteropine orthoreovirus in Central Vietnam (2015) J Med Virol, 87, pp. 2145-2148; Voon, K., Tan, Y.F., Leong, P.P., Teng, C.L., Gunnasekaran, R., Ujang, K., Chua, K.B., Wang, L.F., Pteropine orthoreovirus infection among out-patients with acute upper respiratory tract infection in Malaysia (2015) J Med Virol, 87, pp. 2149-2153; Yinda, C.K., Ghogomu, S.M., Conceição-Neto, N., Beller, L., Deboutte, W., Vanhulle, E., Maes, P., Matthijnssens, J., Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code (2018) Virus Evol, 4. , vey008-vey008; Geldenhuys, M., Mortlock, M., Weyer, J., Bezuidt, O., Seamark, E.C.J., Kearney, T., Gleasner, C., Markotter, W., A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa (2018) PLoS One, 13; Tse, H., Chan, W.M., Li, K.S., Lau, S.K., Woo, P.C., Yuen, K.Y., Discovery and genomic characterization of a novel bat sapovirus with unusual genomic features and phylogenetic position (2012) PLoS One, 7; Wang, J., Moore, N.E., Murray, Z.L., McInnes, K., White, D.J., Tompkins, D.M., Hall, R.J., Discovery of novel virus sequences in an isolated and threatened bat species, the New Zealand lesser short-tailed bat (Mystacina tuberculata) (2015) J Gen Virol, 96, pp. 2442-2452; Kemenesi, G., Dallos, B., Görföl, T., Boldogh, S., Estók, P., Kurucz, K., Kutas, A., Németh, V., Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses (2014) Vector-Borne Zoonotic Dis, 14, pp. 846-855; Waruhiu, C., Ommeh, S., Obanda, V., Agwanda, B., Gakuya, F., Ge, X.-Y., Yang, X.-L., Hu, B., Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses (2017) Virol Sin, 32, pp. 101-114; Yinda, C.K., Zeller, M., Conceição-Neto, N., Maes, P., Deboutte, W., Beller, L., Heylen, E., Matthijnssens, J., Novel highly divergent reassortant bat rotaviruses in Cameroon, without evidence of zoonosis (2016) Sci Rep, 6, p. 34209; He, B., Huang, X., Zhang, F., Tan, W., Matthijnssens, J., Qin, S., Xu, L., Wang, Q., Group A rotaviruses in Chinese bats: genetic composition, serology and evidence for bat–to–human transmission and reassortment (2017) J Virol, 91. , pii: e02493-16; He, B., Yang, F., Yang, W., Zhang, Y., Feng, Y., Zhou, J., Xie, J., Guo, H., Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses (2013) J Virol, 87, pp. 12357-12366; Le, Y., Wang, Q., Xu, L., Tu, C., Huang, X., He, B., Detection and characterization of a novel norovirus in bats, China (2018) Virol Sin, 33, pp. 100-103; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Zhu, Y., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J, 10, pp. 609-620; Kocher, J.F., Lindesmith, L.C., Debbink, K., Beall, A., Mallory, M.L., Yount, B.L., Graham, R.L., Donaldson, E.F., Bat caliciviruses and human noroviruses are antigenically similar and have overlapping histo-blood group antigen binding profiles (2018) mBio, 9; Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A.A., Chen, L.-M., Recuenco, S., York, I.A., A distinct lineage of influenza A virus from bats (2012) Proc Nat Acad Sci U S A, 109, p. 4269; Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., Yang, H., Gomez, J., New world bats harbor diverse influenza A viruses (2013) PLOS Pathog, 9; Moreira, É.A., Locher, S., Kolesnikova, L., Bolte, H., Aydillo, T., García-Sastre, A., Schwemmle, M., Zimmer, G., Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism (2016) Proc Nat Acad Sci U S A, 113, p. 12797; Zhou, B., Ma, J., Liu, Q., Bawa, B., Wang, W., Shabman, R.S., Duff, M., Cao, N., Characterization of uncultivable bat influenza virus using a replicative synthetic virus (2014) PLoS Pathog, 10; Ciminski, K., Thamamongood, T., Zimmer, G., Schwemmle, M., Novel insights into bat influenza A viruses (2017) J Gen Virol, 98, pp. 2393-2400; Guo, W.-P., Lin, X.-D., Wang, W., Tian, J.-H., Cong, M.-L., Zhang, H.-L., Wang, M.-R., Li, M.-H., Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents (2013) PLoS Pathog, 9; Weiss, S., Witkowski, P.T., Auste, B., Nowak, K., Weber, N., Fahr, J., Mombouli, J.-V., Drosten, C., Hantavirus in bat, Sierra Leone (2012) Emerg Infect Dis, 18, pp. 159-161; Kim, G.R., Lee, Y.T., Park, C.H., A new natural reservoir of hantavirus: isolation of hantaviruses from lung tissues of bats (1994) Arch Virol, 134, pp. 85-95; Sabino-Santos, G., Jr, Maia, F.G.M., Vieira, T.M., de Lara Muylaert, R., Lima, S.M., Gonçalves, C.B., Barroso, P.D., Goodin, D., Evidence of hantavirus infection among bats in Brazil (2015) Am J Trop Med Hyg, 93, pp. 404-406; Sabino-Santos, G., Jr, Maia, F.G.M., Martins, R.B., Gagliardi, T.B., Souza, W.M.D., Muylaert, R.L., Luna, L.K.D.S., Barbosa, N.D.S., Natural infection of Neotropical bats with hantavirus in Brazil (2018) Sci Rep, 8, p. 9018; de Araujo, J., Thomazelli, L.M., Henriques, D.A., Lautenschalager, D., Ometto, T., Dutra, L.M., Aires, C.C., Durigon, E.L., Detection of hantavirus in bats from remaining rain forest in Sao Paulo, Brazil (2012) BMC Res Notes, 5, p. 690; Xu, B., Liu, L., Huang, X., Ma, H., Zhang, Y., Du, Y., Wang, P., Kang, K., Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan Province, China: discovery of a new bunyavirus (2011) PLoS Pathog, 7; McMullan, L.K., Folk, S.M., Kelly, A.J., MacNeil, A., Goldsmith, C.S., Metcalfe, M.G., Batten, B.C., Rollin, P.E., A new phlebovirus associated with severe febrile illness in Missouri (2012) N Engl J Med, 367, pp. 834-841; Mourya, D.T., Yadav, P.D., Basu, A., Shete, A., Patil, D.Y., Zawar, D., Majumdar, T.D., Raut, C.G., Malsoor virus, a novel bat phlebovirus, is closely related to severe fever with thrombocytopenia syndrome virus and heartland virus (2014) J Virol, 88, pp. 3605-3609; Pawan, J.L., Rabies in the vampire bat of Trinidad, with special reference to the clinical course and the latency of infection (1959) Caribb Med J, 21, pp. 137-156; Waterman, J.A., The history of the outbreak of paralytic rabies in Trinidad transmitted by bats to human beings and the lower animals from 1925 (1959) Caribb Med J, 21, pp. 1-6; Francis, J.R., McCall, B.J., Hutchinson, P., Powell, J., Vaska, V.L., Nourse, C., Australian bat lyssavirus: implications for public health (2014) Med J Aust, 201, pp. 647-649; Smith, E.C., Blanc, H., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 10; Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol, 8, pp. 270-279; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13. , A very detailed study to show that all building blocks of SARS-CoV are present among a diverse group of CoVs in the same cave; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., Shi, Y., Zhou, Y., A bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) PLoS Pathog, 12. , An important finding demonstrating that CoVs are highly active in recombination, even with viruses outside the coronavirus family; Obameso, J.O., Li, H., Jia, H., Han, M., Zhu, S., Huang, C., Zhao, Y., Yuan, F., The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: a two-year follow-up (2017) Sci China Life Sci, 60, pp. 1357-1363; Lau, S.K.P., Chan, J.F.W., Coronaviruses: emerging and re-emerging pathogens in humans and animals (2015) Virol J, 12, p. 209; Saif, L.J., Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? (2004) Rev Sci Tech, 23, pp. 643-660; Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Cowled, C., Michalski, W.P., Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats (2016) Proc Natl Acad Sci U S A, 113, pp. 2696-2701; Wynne, J.W., Shiell, B.J., Marsh, G.A., Boyd, V., Harper, J.A., Heesom, K., Monaghan, P., Klein, R., Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis (2014) Genome Biol, 15, p. 532; Ahn, M., Cui, J., Irving, A.T., Wang, L.F., Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing (2016) Sci Rep, 6, p. 21722; Xie, J., Li, Y., Shen, X., Goh, G., Zhu, Y., Cui, J., Wang, L.F., Zhou, P., Dampened STING-dependent interferon activation in bats (2018) Cell Host Microbe, 23, pp. 297-301. , e294; Pavlovich, S.S., Lovett, S.P., Koroleva, G., Guito, J.C., Arnold, C.E., Nagle, E.R., Kulcsar, K., Hume, A.J., The Egyptian rousette genome reveals unexpected features of bat antiviral immunity (2018) Cell, 173, pp. 1098-1110. , e1018",,,"Elsevier B.V.",18796257,,,"30665189","English","Curr. Opin. Virol.",Review,"Final",,Scopus,2-s2.0-85060110949 "Xie W., Ao C., Yang Y., Liu Y., Liang R., Zeng Z., Ye G., Xiao S., Fu Z.F., Dong W., Peng G.","57205688684;57197835211;57205692075;57205697201;57205689632;57195235981;57141715200;7402022567;7403347700;56921147900;56651662900;","Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus",2019,"Journal of General Virology","100","2", 001216,"206","216",,3,"10.1099/jgv.0.001216","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061131370&doi=10.1099%2fjgv.0.001216&partnerID=40&md5=8dd5b1de44fc8d2864f558f61fc0c9fa","State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China","Xie, W., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Ao, C., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Yang, Y., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Liu, Y., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Liang, R., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Zeng, Z., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Ye, G., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Fu, Z.F., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Dong, W., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China, National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Peng, G., State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China","Both porcine epidemic diarrhoea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), which cause high mortality in piglets and produce similar clinical symptoms and histopathological morphology, belong to the genus Alphacoronavirus. Serological diagnosis plays an important role in distinguishing pathogen species. Together with the spike (S) protein, the nucleocapsid (N) protein is one of the immunodominant regions among coronaviruses. In this study, two-way antigenic cross-reactivity between the N proteins of PEDV and TGEV was observed by indirect immunofluorescence assay (IFA) and Western blot analysis. Furthermore, the PEDV N protein harbouring truncations of amino acids (aa) 1 to 170 or aa 125 to 301 was demonstrated to cross-react with the anti-TGEV N polyclonal antibody (PAb), whereas the truncation-expressing aa 302 to 401 resulted in a specific reaction with the anti-PEDV N PAb but not with the anti-TGEV N PAb. Mutants of the PEDV N protein were generated based on sequence alignment and structural analysis; we then confirmed that the N-terminal residues 58-RWRMRRGERIE-68 and 78-LGTGPHAD-85 contributed to the cross-reactivity. All the results provide vital clues for the development of precise diagnostic assays for porcine coronaviruses. © 2019 The Authors.","Cross-reactivity; N-terminal epitopes; Nucleocapsid protein; PEDV; TGEV","guanine nucleotide binding protein; nucleocapsid protein; polyclonal antibody; virus antigen; epitope; nucleocapsid protein; virus antibody; amino terminal sequence; animal cell; Article; bioinformatics; carboxy terminal sequence; controlled study; cross reaction; embryo; epitope mapping; human; human cell; immunofluorescence; nonhuman; piglet; Porcine epidemic diarrhea virus; priority journal; protein expression; sequence alignment; Transmissible gastroenteritis virus; virus nucleocapsid; virus strain; Western blotting; animal; epitope mapping; immunology; indirect fluorescent antibody technique; pig; Porcine epidemic diarrhea virus; Transmissible gastroenteritis virus; Animals; Antibodies, Viral; Blotting, Western; Cross Reactions; Epitope Mapping; Epitopes; Fluorescent Antibody Technique, Indirect; Nucleocapsid Proteins; Porcine epidemic diarrhea virus; Swine; Transmissible gastroenteritis virus","Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Invest, 25, pp. 649-654; Cima, G., Fighting a deadly pig disease. Industry, veterinarians trying to contain PED virus, new to the US (2013) J am Vet Med Assoc, 243, pp. 469-470; Song, D., Park, B., Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44, pp. 167-175; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204, pp. 134-143; Saif, L.J., Coronavirus immunogens (1993) Vet Microbiol, 37, pp. 285-297; Adams, M.J., Carstens, E.B., Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2012) (2012) Arch Virol, 157, pp. 1411-1422; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg Infect Dis, 20, pp. 668-671; Thomas, J.T., Chen, Q., Gauger, P.C., Giméenez-Lirola, L.G., Sinha, A., Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naïve conventional neonatal and weaned pigs (2015) Plos One, 10; Saif, L.J., Pensaert, M.B., Sestak, K., Yeo, S.G., Jung, K., Coronaviruses Disease of Swine, pp. 501-524. , Zimmerman J, Karriker L, Ramirez A, Schwartz K, Stevenson G et al.. (editors), Ames, IA: Wiley-Blackwell; Kim, S.H., Kim, I.J., Pyo, H.M., Tark, D.S., Song, J.Y., Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus (2007) J Virol Methods, 146, pp. 172-177; Song, D.S., Kang, B.K., Oh, J.S., Ha, G.W., Yang, J.S., Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus (2006) J Vet Diagn Invest, 18, pp. 278-281; Okda, F., Liu, X., Singrey, A., Clement, T., Nelson, J., Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of porcine epidemic Diarrhea virus (2015) BMC Vet Res, 11, p. 180; Hou, X.L., Yu, L.Y., Liu, J., Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies (2007) Vet Microbiol, 123, pp. 86-92; Song, Y., Singh, P., Nelson, E., Ramamoorthy, S., A computationally designed serological assay for porcine epidemic diarrhea virus (2016) J Clin Microbiol, 54, pp. 2039-2046; Sturman, L.S., Holmes, K.V., The molecular biology of coronaviruses (1983) Adv Virus Res, 28, pp. 35-112; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342; Gimenez-Lirola, L.G., Zhang, J., Carrillo-Avila, J.A., Chen, Q., Magtoto, R., Reactivity of porcine epidemic Diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: Diagnostic implications (2017) J Clin Microbiol, 55, pp. 1426-1436; Wang, K., Xie, C., Zhang, J., Zhang, W., Yang, D., The identification and characterization of two novel epitopes on the nucleocapsid protein of the porcine epidemic diarrhea virus (2016) Sci Rep, 6; Martín Alonso, J.M., Balbín, M., Garwes, D.J., Enjuanes, L., Gascón, S., Antigenic structure of transmissible gastroenteritis virus nucleoprotein (1992) Virology, 188, pp. 168-174; Simkins, R.A., Saif, L.J., Weilnau, P.A., Epitope mapping and the detection of transmissible gastroenteritis viral proteins in cell culture using biotinylated monoclonal antibodies in a fixed-cell ELISA (1989) Arch Virol, 107, pp. 179-190; Ma, Y., Zhang, Y., Liang, X., Oglesbee, M., Krakowka, S., Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Vet Microbiol, 186, pp. 90-96; Horzinek, M.C., Lutz, H., Pedersen, N.C., Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses (1982) Infect Immun, 37, pp. 1148-1155; Vlasova, A.N., Zhang, X., Hasoksuz, M., Nagesha, H.S., Haynes, L.M., Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein (2007) J Virol, 81, pp. 13365-13377; Zhou, Y.L., Ederveen, J., Egberink, H., Pensaert, M., Horzinek, M.C., Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related (1988) Arch Virol, 102, pp. 63-71; Have, P., Moving, V., Svansson, V., Uttenthal, A., Bloch, B., Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus (1992) Vet Microbiol, 31, pp. 1-10; He, Y., Zhou, Y., Wu, H., Kou, Z., Liu, S., Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus (2004) J Clin Microbiol, 42, pp. 5309-5314; Liang, Y., Wan, Y., Qiu, L.W., Zhou, J., Ni, B., Comprehensive antibody epitope mapping of the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus: Insight into the humoral immunity of SARS (2005) Clin Chem, 51, pp. 1382-1396; Huang, Q., Yu, L., Petros, A.M., Gunasekera, A., Liu, Z., Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein (2004) Biochemistry, 43, pp. 6059-6063; Takeda, M., Chang, C.K., Ikeya, T., Güntert, P., Chang, Y.H., Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method (2008) J Mol Biol, 380, pp. 608-622; Wang, Y.S., Chang, C.K., Hou, M.H., Crystallographic analysis of the N-terminal domain of middle east respiratory syndrome coronavirus nucleocapsid protein (2015) Acta Crystallogr F Struct Biol Commun, 71, pp. 977-980; Jayaram, H., Fan, H., Bowman, B.R., Ooi, A., Jayaram, J., X-ray structures of the N-and C-terminal domains of a coronavirus nucleocapsid protein: Implications for nucleocapsid formation (2006) J Virol, 80, pp. 6612-6620; Szelazek, B., Kabala, W., Kus, K., Zdzalik, M., Twarda-Clapa, A., Structural characterization of human coronavirus NL63 N protein (2017) J Virol, 91; Chen, I.J., Yuann, J.M., Chang, Y.M., Lin, S.Y., Zhao, J., Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein (2013) Biochim Biophys Acta, 1834, pp. 1054-1062; Ma, Y., Tong, X., Xu, X., Li, X., Lou, Z., Structures of the N-and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus (2010) Protein Cell, 1, pp. 688-697; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39; Yu, J., Chai, X., Cheng, Y., Xing, G., Liao, A., Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016 (2018) Virus Res, 247, pp. 47-54; Zhang, X., Zhu, Y., Zhu, X., Shi, H., Chen, J., Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China (2017) Emerg Microbes Infect, 6, p. 74; Han, X., Khan, F.A., Zhu, X., Zhang, R., Mustafa, R., Establishment of an antibody avidity test to differentiate vaccinated cattle from those naturally infected with Mycoplasma bovis (2015) Vet J, 203, pp. 79-84; Shen, Z., Ye, G., Deng, F., Wang, G., Cui, M., Structural basis for the inhibition of host gene expression by porcine epidemic diarrhea virus nsp1 (2018) J Virol, 92","Dong, W.; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityChina; email: dongwanyuzaixian@126.com",,"Microbiology Society",00221317,,JGVIA,"30652967","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85061131370 "Tsoleridis T., Chappell J.G., Onianwa O., Marston D.A., Fooks A.R., Monchatre-Leroy E., Umhang G., Müller M.A., Drexler J.F., Drosten C., Tarlinton R.E., McClure C.P., Holmes E.C., Ball J.K.","57173233100;57205654491;57188548565;12240659200;7003456806;57074058100;38663455200;24068857400;15753438200;7003813990;8306886600;57212026869;55535773400;7401813822;","Shared common ancestry of rodent alphacoronaviruses sampled globally",2019,"Viruses","11","2", 125,"","",,3,"10.3390/v11020125","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060913559&doi=10.3390%2fv11020125&partnerID=40&md5=af96c206a3a950e86f2d7eea5e5c8064","School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom; Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, KT15 3NB, United Kingdom; Anses, Laboratoire de la rage et de la faune sauvage, Malzéville, 54220, France; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia","Tsoleridis, T., School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom; Chappell, J.G., School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom; Onianwa, O., School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom; Marston, D.A., Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, KT15 3NB, United Kingdom; Fooks, A.R., Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge-London, KT15 3NB, United Kingdom; Monchatre-Leroy, E., Anses, Laboratoire de la rage et de la faune sauvage, Malzéville, 54220, France; Umhang, G., Anses, Laboratoire de la rage et de la faune sauvage, Malzéville, 54220, France; Müller, M.A., Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany; Drexler, J.F., Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany; Drosten, C., Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, 10117, Germany; Tarlinton, R.E., School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom; McClure, C.P., School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom; Holmes, E.C., Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Ball, J.K., School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, United Kingdom","The recent discovery of novel alphacoronaviruses (alpha-CoVs) in European and Asian rodents revealed that rodent coronaviruses (CoVs) sampled worldwide formed a discrete phylogenetic group within this genus. To determine the evolutionary history of rodent CoVs in more detail, particularly the relative frequencies of virus-host co-divergence and cross-species transmission, we recovered longer fragments of CoV genomes from previously discovered European rodent alpha-CoVs using a combination of PCR and high-throughput sequencing. Accordingly, the full genome sequence was retrieved from the UK rat coronavirus, along with partial genome sequences from the UK field vole and Poland-resident bank vole CoVs, and a short conserved ORF1b fragment from the French rabbit CoV. Genome and phylogenetic analysis showed that despite their diverse geographic origins, all rodent alpha-CoVs formed a single monophyletic group and shared similar features, such as the same gene constellations, a recombinant beta-CoV spike gene, and similar core transcriptional regulatory sequences (TRS). These data suggest that all rodent alpha CoVs sampled so far originate from a single common ancestor, and that there has likely been a long-term association between alpha CoVs and rodents. Despite this likely antiquity, the phylogenetic pattern of the alpha-CoVs was also suggestive of relatively frequent host-jumping among the different rodent species. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Alphacoronavirus; Ancestry; Coronavirus; Evolution; Recombination; Rodents","Alphacoronavirus; Antiquity; article; genetic transcription; genome; geographic origin; high throughput sequencing; human; human tissue; jumping; Leporidae; Microtus agrestis; monophyly; Myodes glareolus; nonhuman; Poland; polymerase chain reaction; Rat coronavirus; regulatory sequence; resident; spike; Alphacoronavirus; animal; Arvicolinae; Asia; classification; Coronavirinae; Coronavirus infection; DNA sequence; Europe; genetic recombination; genetic variation; genetics; molecular evolution; murine; phylogeny; rat; rodent; transmission; virology; virus genome; Alphacoronavirus; Animals; Arvicolinae; Asia; Coronavirus; Coronavirus Infections; Europe; Evolution, Molecular; Genetic Variation; Genome, Viral; Murinae; Phylogeny; Rabbits; Rats; Recombination, Genetic; Rodentia; Sequence Analysis, DNA","Hudson, C., Beaudette, F.R., Infection of the cloaca with the virus of infectious bronchitis (1932) Science, 76, p. 34; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; Weiss, S., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664; Luis, A.D., Hayman, D.T., O’Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., Mills, J.N., Cunningham, A.A., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc. Biol. Sci., 280; Huchon, D., Madsen, O., Sibbald, M.J., Ament, K., Stanhope, M.J., Catzeflis, F., de Jong, W.W., Douzery, E.J., Rodent phylogeny and a timescale for the evolution of Glires: Evidence from an extensive taxon sampling using three nuclear genes (2002) Mol. Biol. Evol., 19, pp. 1053-1065; Phan, T.G., Kapusinszky, B., Wang, C., Rose, R.K., Lipton, H.L., Delwart, E.L., The fecal viral flora of wild rodents (2011) Plos Pathog, 7; Cheever, F.S., Daniels, J.B., Pappenheimer, A.M., Bailey, O.T., A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin (1949) J. Exp. Med., 90, pp. 181-194; Parker, J.C., Cross, S.S., Rowe, W.P., Rat coronavirus (RCV): A prevalent, naturally occurring pneumotropic virus of rats (1970) Arch. Gesamte Virusforsch., 31, pp. 293-302; Tsoleridis, T., Onianwa, O., Horncastle, E., Dayman, E., Zhu, M., Danjittrong, T., Wachtl, M., Strong, V., Discovery of Novel Alphacoronaviruses in European Rodents and Shrews (2016) Viruses, 8, p. 84; Ge, X.Y., Yang, W.H., Zhou, J.H., Li, B., Zhang, W., Shi, Z.L., Zhang, Y.Z., Detection of alpha-and betacoronaviruses in rodents from Yunnan (2017) China. Virol. J, 14, p. 98; Hu, D., Zhu, C., Wang, Y., Ai, L., Yang, L., Ye, F., Ding, C., Zhu, J., Virome analysis for identification of novel mammalian viruses in bats from Southeast China (2017) Sci. Rep, 7; Monchatre-Leroy, E., Boué, F., Boucher, J.-M., Renault, C., Moutou, F., Ar Gouilh, M., Umhang, G., Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs (2017) Viruses, 9, p. 364; Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Qin, X.C., Eden, J.S., Redefining the invertebrate RNA virosphere (2016) Nature; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874; Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R., Jane: A new tool for the cophylogeny reconstruction problem (2010) Algorithms for Mol. Biol, 5, p. 16; Wang, W., Lin, X.D., Guo, W.P., Zhou, R.H., Wang, M.R., Wang, C.Q., Ge, S., Shi, M., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; Lau, S.K., Woo, P.C., Li, K.S., Tsang, A.K., Fan, R.Y., Luk, H.K., Cai, J.P., Wang, M., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J. Virol., 89, pp. 3076-3092; Geoghegan, J.L., Duchene, S., Holmes, E.C., Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families (2017) Plos Pathog, 13; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Zheng, B.J., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Wang, W., Lin, X.D., Liao, Y., Guan, X.Q., Guo, W.P., Xing, J.G., Holmes, E.C., Zhang, Y.Z., Discovery of a highly divergent coronavirus in the Asian house shrew from China illuminates the origin of the alphacoronaviruses (2017) J. Virol.; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Zhu, Y., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J, 10, pp. 609-620; Pyrc, K., Jebbink, M.F., Berkhout, B., van der Hoek, L., Genome structure and transcriptional regulation of human coronavirus NL63 (2004) Virol. J., 1, p. 7; Dye, C., Siddell, S.G., Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146 (2005) J. Gen. Virol., 86, pp. 2249-2253; Hiscox, J.A., Mawditt, K.L., Cavanagh, D., Britton, P., Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts (1995) J. Virol., 69, pp. 6219-6227; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol, 14, pp. 523-534; Zeng, L., Ming, C., Li, Y., Su, L.-Y., Su, Y.-H., Otecko, N.O., Dalecky, A., Liu, X.-H., Out of Southern East Asia of the Brown Rat Revealed by Large-Scale Genome Sequencing (2018) Mol. Biol. Evol, 35, pp. 149-158","Ball, J.K.; School of Life Sciences, University of NottinghamUnited Kingdom; email: jonathan.ball@nottingham.ac.uk",,"MDPI AG",19994915,,,"30704076","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85060913559 "An H., Cai Z., Yang Y., Wang Z., Liu D.X., Fang S.","57194333926;57205436425;57161761400;55386581800;57190128771;9842744100;","Identification and formation mechanism of a novel noncoding RNA produced by avian infectious bronchitis virus",2019,"Virology","528",,,"176","180",,1,"10.1016/j.virol.2018.12.019","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060032266&doi=10.1016%2fj.virol.2018.12.019&partnerID=40&md5=3b6750b36341b831c8cdb749f071c075","College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China; College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China","An, H., College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China; Cai, Z., College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China; Yang, Y., College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China; Wang, Z., College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Fang, S., College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China, College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou, Hubei 434025, China","Viral noncoding (nc) RNAs have been shown to play important roles in viral life cycle. Many viruses employ different mechanism to produce ncRNAs. Here, we report that coronavirus infectious bronchitis virus (IBV) produces a novel ncRNA in virus-infected cells. This ncRNA consists of 563 nucleotides excluding a poly(A) tail, is mainly derived from the 3′-untranslated region of IBV genome, and contains a 63-nt-long of terminal leader sequence derived from the 5′ end of the viral genome. Using mutagenesis and reverse genetics, we reveal that this ncRNA is a subgenomic RNA generated by discontinuous transcription mechanism. © 2018",,"nucleotide; polyadenylic acid; untranslated RNA; complementary DNA; messenger RNA; nucleotide; untranslated RNA; virus RNA; 3' untranslated region; 5' untranslated region; animal cell; Article; Avian infectious bronchitis virus; embryo; fibroblast; molecular mechanics; mutagenesis; nonhuman; priority journal; reverse genetics; RNA analysis; transcription regulation; virus genome; animal; Avian infectious bronchitis virus; chicken; Chlorocebus aethiops; genetics; Vero cell line; Animals; Cercopithecus aethiops; Chickens; DNA, Complementary; Genome, Viral; Infectious bronchitis virus; Mutagenesis; Nucleotides; Poly A; Reverse Genetics; RNA, Messenger; RNA, Untranslated; RNA, Viral; Vero Cells","Akiyama, B.M., Laurence, H.M., Massey, A.R., Costantino, D.A., Xie, X., Yang, Y., Shi, P.Y., Kieft, J.S., Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease (2016) Science, 354, pp. 1148-1152; Albrecht, J.C., Fleckenstein, B., Nucleotide sequence of HSUR 6 and HSUR 7, two small RNAs of herpesvirus saimiri (1992) Nucleic Acids Res, 20, p. 1810; Arvey, A., Tempera, I., Tsai, K., Chen, H.S., Tikhmyanova, N., Klichinsky, M., Leslie, C., Lieberman, P.M., An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions (2012) Cell Host Microbe, 12, pp. 233-245; Baric, R.S., Yount, B., Subgenomic negative-strand RNA function during mouse hepatitis virus infection (2000) J. Virol., 74, pp. 4039-4046; Bentley, K., Keep, S.M., Armesto, M., Britton, P., Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses (2013) J. Virol., 87, pp. 2128-2136; Bidet, K., Dadlani, D., Garcia-Blanco, M.A., G3BP1 G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA (2014) PLoS Pathog., 10, p. e1004242; Bloom, D.C., HSV LAT and neuronal survival (2004) Int Rev. Immunol., 23, pp. 187-198; Bogerd, H.P., Karnowski, H.W., Cai, X., Shin, J., Pohlers, M., Cullen, B.R., A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs (2010) Mol. Cell, 37, pp. 135-142; Borah, S., Darricarrere, N., Darnell, A., Myoung, J., Steitz, J.A., A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression (2011) PLoS Pathog., 7, p. e1002300; Bowden, R.J., Simas, J.P., Davis, A.J., Efstathiou, S., Murine gammaherpesvirus 68 encodes tRNA-like sequences which are expressed during latency (1997) J. Gen. Virol., 78, pp. 1675-1687; Campbell, C.L., Keene, K.M., Brackney, D.E., Olson, K.E., Blair, C.D., Wilusz, J., Foy, B.D., Aedes aegypti uses RNA interference in defense against Sindbis virus infection (2008) BMC Microbiol, 8, p. 47; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol., 34, pp. 439-448; Cazalla, D., Yario, T., Steitz, J.A., Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA (2010) Science, 328, pp. 1563-1566; Diebel, K.W., Smith, A.L., van Dyk, L.F., Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters (2010) RNA, 16, pp. 170-185; Ensser, A., Fleckenstein, B., T-cell transformation and oncogenesis by gamma2- herpesviruses (2005) Adv. Cancer Res., 93, pp. 91-128; Fang, S., Chen, B., Tay, F.P., Ng, B.S., Liu, D.X., An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells (2007) Virology, 358, pp. 136-147; Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Guo, D., Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus (2005) J. Virol., 79, pp. 5288-5295; Kincaid, R.P., Burke, J.M., Sullivan, C.S., RNA virus microRNA that mimics a B-cell oncomiR (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 3077-3082; Kulesza, C.A., Shenk, T., Human cytomegalovirus 5-kilobase immediate-early RNA is a stable intron (2004) J. Virol., 78, pp. 13182-13189; Kulesza, C.A., Shenk, T., Murine cytomegalovirus encodes a stable intron that facilitates persistent replication in the mouse (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 18302-18307; Lee, N., Moss, W.N., Yario, T.A., Steitz, J.A., An EBV noncoding RNA base pairs with nascent RNA to enable PAX5 transcription factor binding to viral DNA (2015) Cell, 160, pp. 607-618; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Mathews, M.B., Shenk, T., Adenovirus virus-associated RNA and translation control (1991) J. Virol., 65, pp. 5657-5662; Miller, W.A., Shen, R., Staplin, W., Kanodia, P., Noncoding RNAs of plant viruses and viroids: sponges of host translation and RNA interference machinery (2016) Mol. Plant Microbe Interact., 29, pp. 156-164; Miller, W.A., Shen, R., Staplin, W., Kanodia, P., Noncoding RNAs of plant viruses and viroids: sponges of host translation and RNA interference machinery (2016) Mol. Plant Microbe Interact., 29, pp. 156-164; Moon, S.L., Anderson, J.R., Kumagai, Y., Wilusz, C.J., Akira, S., Khromykh, A.A., Wilusz, J., A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability (2012) RNA, 18, pp. 2029-2040; Pijlman, G.P., Funk, A., Kondratieva, N., Leung, J., Torres, S., van der Aa, L., Liu, W.J., Khromykh, A.A., A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity (2008) Cell Host Microbe, 4, pp. 579-591; Reich, P.R., Forget, B.G., Weissman, S.M., RNA of low molecular weight in KB cells infected with adenovirus type 2 (1966) J. Mol. Biol., 17, pp. 428-439; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J. Virol., 81, pp. 20-29; Schnettler, E., Sterken, M.G., Leung, J.Y., Metz, S.W., Geertsema, C., Goldbach, R.W., Vlak, J.M., Pijlman, G.P., Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells (2012) J. Virol., 86, pp. 13486-13500; Schuessler, A., Funk, A., Lazear, H.M., Cooper, D.A., Torres, S., Daffis, S., Jha, B.K., Hertzog, P., West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response (2012) J. Virol., 86, pp. 5708-5718; Shen, H., Fang, S.G., Chen, B., Chen, G., Tay, F.P., Liu, D.X., Towards construction of viral vectors based on avian coronavirus infectious bronchitis virus for gene delivery and vaccine development (2009) J. Virol. Methods, 160, pp. 48-56; Skalsky, R.L., Cullen, B.R., EBV noncoding RNAs (2015) Curr. Top. Microbiol Immunol., 391, pp. 181-217; Sola, I., Moreno, J.L., Zúñiga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) J. Virol., 79, pp. 2506-2516; Steitz, J., Borah, S., Cazalla, D., Fok, V., Lytle, R., Mitton-Fry, R., Riley, K., Samji, T., Noncoding RNPs of viral origin (2010) Cold Spring Harb. Perspect. Biol., pp. 165-179; Stern-Ginossar, N., Weisburd, B., Michalski, A., Le, V.T., Hein, M.Y., Huang, S.X., Ma, M., Hengel, H., Decoding human cytomegalovirus (2012) Science, 338, pp. 1088-1093; Sun, R., Lin, S.F., Gradoville, L., Miller, G., Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 11883-11888; Wang, Z., Shen, W., Cheng, F., Deng, X., Engelhardt, J.F., Yan, Z., Qiu, J., Parvovirus expresses a small noncoding RNA that plays an essential role in virus replication (2017) J. Virol., 191. , (e02375-16); Wilson, J.L., Vachon, V.K., Sunita, S., Schwartz, S.L., Conn, G.L., Dissection of the adenoviral VA RNAI central domain structure reveals minimum requirements for RNA mediated inhibition of PKR (2014) J. Biol. Chem., 289, pp. 23233-23245; Zhang, X., Liu, R., Identification of a noncanonical signal for transcription of a novel subgenomic mRNA of mouse hepatitis virus: implication for the mechanism of coronavirus RNA transcription (2000) Virology, 278, pp. 75-85; Zhong, W., Ganem, D., Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) (1997) J. Virol., 71, pp. 1207-1212; Zúñiga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J. Virol., 78, pp. 980-994","Liu, D.X.; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research CentreChina; email: dxliu0001@163.com",,"Academic Press Inc.",00426822,,VIRLA,"30616206","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85060032266 "Whitworth K.M., Rowland R.R.R., Petrovan V., Sheahan M., Cino-Ozuna A.G., Fang Y., Hesse R., Mileham A., Samuel M.S., Wells K.D., Prather R.S.","6701782506;7102266919;55370764400;57201285645;37113692100;55723124300;7005769153;7003432260;7102728185;55166585800;7102821990;","Resistance to coronavirus infection in amino peptidase N-deficient pigs",2019,"Transgenic Research","28","1",,"21","32",,12,"10.1007/s11248-018-0100-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055291646&doi=10.1007%2fs11248-018-0100-3&partnerID=40&md5=744a09412adf77dc5a9e325ffdab2e32","Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO 65211, United States; Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Genus plc, Deforest, WI 53532, United States","Whitworth, K.M., Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO 65211, United States; Rowland, R.R.R., Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Petrovan, V., Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Sheahan, M., Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Cino-Ozuna, A.G., Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Fang, Y., Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Hesse, R., Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States; Mileham, A., Genus plc, Deforest, WI 53532, United States; Samuel, M.S., Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO 65211, United States; Wells, K.D., Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO 65211, United States; Prather, R.S., Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO 65211, United States","The alphacoronaviruses, transmissible gastroenteritis virus (TGEV) and Porcine epidemic diarrhea virus (PEDV) are sources of high morbidity and mortality in neonatal pigs, a consequence of dehydration caused by the infection and necrosis of enterocytes. The biological relevance of amino peptidase N (ANPEP) as a putative receptor for TGEV and PEDV in pigs was evaluated by using CRISPR/Cas9 to edit exon 2 of ANPEP resulting in a premature stop codon. Knockout pigs possessing the null ANPEP phenotype and age matched wild type pigs were challenged with either PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the enterocytes lining the ileum in ANPEP null pigs. The different receptor requirements for TGEV and PEDV have important implications in the development of new genetic tools for the control of enteric disease in pigs. © 2018, The Author(s).","Coronavirus; CRISPR/Cas9; Disease resistance; Viral receptor","aminopeptidase; peptidase N; animal; Coronavirinae; Coronavirus infection; CRISPR Cas system; deficiency; enzymology; genetics; intestine cell; pathogenicity; pig; Porcine epidemic diarrhea virus; transgenic animal; Transmissible gastroenteritis virus; virology; Aminopeptidases; Animals; Animals, Genetically Modified; Coronavirus; Coronavirus Infections; CRISPR-Cas Systems; Enterocytes; Porcine epidemic diarrhea virus; Swine; Transmissible gastroenteritis virus","Abeydeera, L.R., Wang, W.H., Cantley, T.C., Prather, R.S., Day, B.N., Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization (1998) Theriogenology, 50, pp. 747-756; Beaton, B.P., Wells, K.D., Compound transgenics: recombinase-mediated gene stacking (2016) Transgenic Anim Technol, pp. 565-579. , Pinkert CA, (ed), 3, Elsevier, Amsterdam; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in Central Eastern Europe in 2016 (2016) Transbound Emerg Dis, 63, pp. 595-601; Cao, L., Generation of a monoclonal antibody to S1 protein of porcine epidemic diarrhea virus (2013) Monoclon Antib Immunodiagn Immunother, 32, pp. 371-374; Chen, L., Lin, Y.L., Peng, G., Li, F., Structural basis for multifunctional roles of mammalian aminopeptidase (2012) Natl Proc Natl Acad Sci USA, 109, pp. 17966-17971; Cong, L., Multiplex genome engineering using CRISPR/Cas systems (2013) Science, 339, pp. 819-823; Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Delmas, B., Gelfi, J., Kut, E., Sjostrom, H., Noren, O., Laude, H., Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site (1994) J Virol, 68, pp. 5216-5224; Hsu, P.D., DNA targeting specificity of RNA-guided Cas9 nucleases (2013) Nat Biotechnol, 31, pp. 827-832; Kamau, A.N., Park, J.E., Park, E.S., Yu, J.E., Rho, J., Shin, H.J., Porcine amino peptidase N domain VII has critical role in binding and entry of porcine epidemic diarrhea virus (2017) Virus Res, 227, pp. 150-157; Kim, L., Hayes, J., Lewis, P., Parwani, A.V., Chang, K.O., Saif, L.J., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Arch Virol, 145, pp. 1133-1147; Kolb, A.F., Mammary gland development is delayed in mice deficient for aminopeptidase N (2013) Transgenic Res, 22, pp. 425-434; Lai, L., Prather, R.S., Creating genetically modified pigs by using nuclear transfer (2003) Reprod Biol Endocrinol, 1, p. 82; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts (2016) Virus Res, 226, pp. 93-107; Lee, K., Piglets produced from cloned blastocysts cultured in vitro with GM-CSF (2013) Mol Reprod Dev, 80, pp. 145-154; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89, pp. 1954-1964; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Res, 226, pp. 117-127; Li, W., Luo, R., He, Q., van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13; Li, W., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc Natl Acad Sci USA; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Saif, L.J., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342; Liu, C., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125; Madson, D.M., Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 Infection in 1-day-old cesarean-derived colostrum-deprived piglets (2016) Vet Pathol, 53, pp. 44-52; Niederwerder, M.C., Tissue localization, shedding, virus carriage, antibody response, and aerosol transmission of Porcine epidemic diarrhea virus following inoculation of 4-week-old feeder pigs (2016) J Vet Diagn Invest, 28, pp. 671-678; Oh, J.S., Song, D.S., Park, B.K., Identification of a putative cellular receptor 150 kDa polypeptide for Porcine epidemic diarrhea virus in porcine enterocytes (2003) J Vet Sci, 4, pp. 269-275; Park, J.E., Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to Porcine epidemic diarrhea virus (2015) Virus Res, 197, pp. 108-115; Prather, R.S., An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus (2013) J Virol, 87, pp. 9538-9546; Rangel, R., Impaired angiogenesis in aminopeptidase N-null mice (2007) Proc Natl Acad Sci USA, 104, pp. 4588-4593; Redel, B.K., Tessanne, K.J., Spate, L.D., Murphy, C.N., Prather, R.S., Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase-dimethylarginine dimethylaminohydrolase-nitric oxide axis (2015) Reprod Fertil Dev, 27, pp. 655-666; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Epidemiol, 27, pp. 493-497; Ren, X., Li, G., Liu, B., Binding characterization of determinants in porcine aminopeptidase N, the cellular receptor for transmissible gastroenteritis virus (2010) J Biotechnol, 150, pp. 202-206; Ross, J.W., Whyte, J.J., Zhao, J., Samuel, M., Wells, K.D., Prather, R.S., Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts (2010) Transgenic Res, 19, pp. 611-620; Saif, L.J., Pensaert, M.B., Sestak, K., Yeo, S., Jung, K., Coronaviruses (2012) Diseases of swine, pp. 501-524. , Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, (eds), 10, Wiley, New York; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of Porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539; Stevenson, G.W., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Invest, 25, pp. 649-654; Sun, D., Virus-binding activity of the truncated C subunit of porcine aminopeptidase N expressed in Escherichia coli (2012) Biotechnol Lett, 34, pp. 533-539; Vemulapalli, R., Real-time reverse transcription polymerase chain reaction for rapid detection of transmissible gastroenteritis virus (2016) Animal coronaviruses, pp. 115-119. , Wang L, (ed), Springer protocols handbooks, Humana Press, New York; Wentworth, D.E., Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo (2005) Virology, 335, pp. 185-197; Whitworth, K.M., Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos (2014) Biol Reprod, 91, p. 78; Whitworth, K.M., Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus (2016) Nat Biotechnol, 34, pp. 20-22; Whitworth, K.M., Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs (2017) Transgenic Res, 26, pp. 97-107; Winnicka, B., CD13 is dispensable for normal hematopoiesis and myeloid cell functions in the mouse (2010) J Leukoc Biol, 88, pp. 347-359; Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357, pp. 420-422; Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I.M., Iwamura, S., Birth of piglets derived from porcine zygotes cultured in a chemically defined medium (2002) Biol Reprod, 66, pp. 112-119; Zhang, X., ORF3a deletion in field strains of porcine-transmissible gastroenteritis virus in China: a hint of association with porcine respiratory coronavirus (2017) Transbound Emerg Dis, 64, pp. 698-702","Prather, R.S.; Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, United States; email: PratherR@missouri.edu",,"Springer International Publishing",09628819,,TRSEE,"30315482","English","Transgenic Res.",Article,"Final",Open Access,Scopus,2-s2.0-85055291646 "Redford T., Al-Dissi A.N.","56919581700;23088137900;","Feline infectious peritonitis in a cat presented because of papular skin lesions",2019,"Canadian Veterinary Journal","60","2",,"183","185",,,,"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060930829&partnerID=40&md5=20a98073629b8dfc360f953514684046","Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada","Redford, T., Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Al-Dissi, A.N., Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada","A 19-week-old neutered male domestic shorthair cat was examined because of multiple raised pruritic skin lesions along the dorsal head and back. Histopathology of biopsies of the lesions detected nodular pyogranulomatous dermatitis with vasculitis and necrosis, leading to a suspicion of feline infectious peritonitis (FIP). Postmortem examination revealed gross lesions consistent with FIP. Histopathologic lesions and positive immunohistochemical staining for feline Coronavirus in multiple tissues, including the skin, confirmed the diagnosis of FIP. The current case was similar to previous cases, except for the initial presentation with cutaneous lesions and no other clinical signs, which had not been reported previously. © 2019 Canadian Veterinary Medical Association. All Rights Reserved.",,"cefalexin; diphenhydramine; guanine nucleotide binding protein; meprednisone; prednisone; animal cell; animal tissue; appetite disorder; Article; autopsy; cat; dermatitis; disease exacerbation; feline infectious peritonitis; fever; histopathology; immunohistochemistry; lymphocyte; macrophage; male; necrosis; neutrophil; nonhuman; optic neuritis; papular skin disease; phlebitis; pruritus; seizure; skin biopsy; vasculitis","Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Cannon, M.J., Silkstone, M.A., Kipar, A.M., Cutaneous lesions associated with coronavirus-induced vasculitis in a cat with feline infectious peritonitis and concurrent feline immunodeficiency virus infection (2005) J Feline Med Surg, 7, pp. 233-236; Kipar, A., May, H., Menger, S., Weber, M., Leukert, W., Reinacher, M., Morphologic features and 182 development of granulomatous vasculitis in feline infectious peritonitis (2005) Vet Pathol, 42, pp. 321-330; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet Pathol, 51, pp. 505-526; Bauer, B.S., Kerr, M.E., Sandmeyer, L.S., Grahn, B.H., Positive immunostain-ing for feline infectious peritonitis (FIP) in a Sphinx cat with cutaneous lesions and bilateral panuveitis (2013) Vet Ophthalmol, 16, pp. 160-163; Declercq, J., De Bosschere, H., Schwarzkopf, I., Declercq, L., Papular cutaneous lesions in a cat associated with feline infectious peritonitis (2008) Vet Dermatol, 19, pp. 255-258; Foster, R.A., Caswell, J.L., Rinkardt, N., Chronic fibrinous and necrotic orchitis in a cat (1996) Can Vet J, 37, pp. 681-682; Gaisbauer, S., Vandenabeele, S., Daminet, S., Paepe, D., Immunological deep dermal vasculitis in a cat (2014) Vlaams Diergeneeskundig Tijdschrift, 83, pp. 184-192; Gross, T., Pyogranulomatous vasculitis and mural folliculitis associated with feline infectious peritonitis in a Sphinx cat (1999) Vet Pathol, 36, p. 507; Holzworth, J., Some important disorders of cats (1963) Cornell Vet, 53, pp. 157-160; Trotman, T.K., Mauldin, E., Hoffmann, V., Piero, F.D., Hess, R.S., Skin fragility syndrome in a cat with feline infectious peritonitis and hepatic lipidosis (2007) Vet Dermatol, 18, pp. 365-369; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J Feline Med Surg, 11, pp. 225-258; Lewis, C.S., Porter, E., Matthews, D., Genotyping coronaviruses associated with feline infectious peritonitis (2015) J Gen Virol, 96, pp. 1358-1368","Al-Dissi, A.N.; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Canada; email: ahmad.aldissi@usask.ca",,"Canadian Veterinary Medical Association",00085286,,CNVJA,"30705455","English","Can. Vet. J.",Article,"Final",,Scopus,2-s2.0-85060930829 "Carman K.B., Calik M., Karal Y., Isikay S., Kocak O., Ozcelik A., Yazar A.S., Nuhoglu C., Sag C., Kilic O., Dinleyici M., Lacinel Gurlevik S., Yimenicioglu S., Ekici A., Perk P., Tosun A., Isik I., Yarar C., Arslantas D., Dinleyici E.C., and EFES Study Group","7003368713;36818468400;37120371900;35484039800;55621347700;25222093000;55575955500;6603593823;37024517300;36604690900;23134605800;57204105958;54788420100;36711362600;56431184800;10839796400;57194679111;14523929400;6507011038;6602301979;","Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study)",2019,"Human Vaccines and Immunotherapeutics","15","2",,"496","502",,,"10.1080/21645515.2018.1526588","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054510388&doi=10.1080%2f21645515.2018.1526588&partnerID=40&md5=5674f420df7bcc2ea22eb9cedf247ca5","Faculty of Medicine, Department of Pediatric Neurology, Eskisehir Osmangazi University, Eskisehir, Turkey; Faculty of Medicine, Department of Pediatric Neurology, Harran University, Sanliurfa, Turkey; Faculty of Medicine, Department of Pediatric Neurology, Trakya University, Edirne, Turkey; Faculty of Medicine, Department of Pediatric Neurology, Hasan Kalyoncu University, Gaziantep, Turkey; Department of Pediatric Neurology, Samsun Education and Research Hospital, Samsun, Turkey; Faculty of Medicine, Department of Pediatric Neurology, Gaziantep University, Gaziantep, Turkey; Department of Pediatrics, Umraniye Education and Research Hospital, Istanbul, Turkey; Department of Pediatrics, Haydarapasa Numune Education and Research Hospital, Istanbul, Turkey; Faculty of Medicine, Pediatric Infectious Disease Unit, Eskisehir Osmangazi University, Eskisehir, Turkey; Faculty of Medicine, Department of Social Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey; Department of Pediatric Neurology, Eskisehir Maternity and Children Hospital, Eskisehir, Turkey; Department of Pediatric Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey; Faculty of Medicine, Department of Pediatric Neurology, Adnan Menderes University, Aydin, Turkey; Department of Pediatric Neurology, Sanliurfa Children’s Hospital, Sanliurfa, Turkey; Faculty of Medicine, Department of Public Health, Eskisehir Osmangazi University, Eskisehir, Turkey; Faculty of Medicine, Department of Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey","Carman, K.B., Faculty of Medicine, Department of Pediatric Neurology, Eskisehir Osmangazi University, Eskisehir, Turkey; Calik, M., Faculty of Medicine, Department of Pediatric Neurology, Harran University, Sanliurfa, Turkey; Karal, Y., Faculty of Medicine, Department of Pediatric Neurology, Trakya University, Edirne, Turkey; Isikay, S., Faculty of Medicine, Department of Pediatric Neurology, Hasan Kalyoncu University, Gaziantep, Turkey; Kocak, O., Department of Pediatric Neurology, Samsun Education and Research Hospital, Samsun, Turkey; Ozcelik, A., Faculty of Medicine, Department of Pediatric Neurology, Gaziantep University, Gaziantep, Turkey; Yazar, A.S., Department of Pediatrics, Umraniye Education and Research Hospital, Istanbul, Turkey; Nuhoglu, C., Department of Pediatrics, Haydarapasa Numune Education and Research Hospital, Istanbul, Turkey; Sag, C., Department of Pediatrics, Haydarapasa Numune Education and Research Hospital, Istanbul, Turkey; Kilic, O., Faculty of Medicine, Pediatric Infectious Disease Unit, Eskisehir Osmangazi University, Eskisehir, Turkey; Dinleyici, M., Faculty of Medicine, Department of Social Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey; Lacinel Gurlevik, S., Faculty of Medicine, Department of Pediatric Neurology, Eskisehir Osmangazi University, Eskisehir, Turkey; Yimenicioglu, S., Department of Pediatric Neurology, Eskisehir Maternity and Children Hospital, Eskisehir, Turkey; Ekici, A., Department of Pediatric Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey; Perk, P., Faculty of Medicine, Department of Pediatric Neurology, Gaziantep University, Gaziantep, Turkey; Tosun, A., Faculty of Medicine, Department of Pediatric Neurology, Adnan Menderes University, Aydin, Turkey; Isik, I., Department of Pediatric Neurology, Sanliurfa Children’s Hospital, Sanliurfa, Turkey; Yarar, C., Faculty of Medicine, Department of Pediatric Neurology, Eskisehir Osmangazi University, Eskisehir, Turkey; Arslantas, D., Faculty of Medicine, Department of Public Health, Eskisehir Osmangazi University, Eskisehir, Turkey; Dinleyici, E.C., Faculty of Medicine, Department of Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey; and EFES Study Group","Background: Febrile seizure is the most common childhood neurological disorder, is an important health problem with potential short- and long-term complications, also leading to economic burden and increased parental anxiety about fevers and seizures occurring in their children. There are no routine recommendation to detect etiological causes of FS for neurological perspective, further knowledge about the etiological causes of FS in children will support preventive measures and follow-up strategies. The aim of this study is to evaluate the percentage of respiratory viruses in children with FS. Methods: This prospective multicenter study, entitled “Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study)” examined representative populations in eight different cities in Turkey between March 1, 2016 and April 1, 2017. Nasopharyngeal swabs were taken from all children at presentation. A respiratory multiplex array was performed to detect for influenza A and B; respiratory syncytial virus A and B; human parainfluenza virus 1-2-3 and 4; human coronavirus 229E and OC43; human rhinovirus; human enterovirus; human adenovirus; human bocavirus; human metapneumovirus. Results: During the study period, at least one virus was detected in 82.7% (144/174) of children with FS. The most frequently detected virus was adenovirus, followed by influenza A and influenza B. Detection of more than one virus was present in 58.3% of the children with FS, and the most common co-existence was the presence of adenovirus and influenza B. In children younger than 12 months, Coronavirus OC43 was the most common, while influenza A was most frequently observed in children older than 48 months (p < 0.05). Human bocavirus was common in children who experienced complex FS, while respiratory syncytial virus (RSV) A was more common in children who experienced simple FS. Influenza B virus was the most common virus identified in children who were experiencing their first incidence of FS (p < 0.05). Conclusions: This study indicates that respiratory viruses are important in the etiology of FS in children. The results show that antibiotics must be prescribed carefully in children with FS since the majority of cases are related to viral causes. Widespread use of the existing quadrivalent influenza vaccine might be useful for the prevention of FS related to the flu. Further vaccine candidates for potential respiratory pathogens, including RSV, might be helpful for the prevention of FS. © 2018, © 2018 Taylor & Francis Group, LLC.","children; febrile seizure; infection; influenza; respiratory virus; RSV","antibiotic agent; Article; child; Coronaviridae; febrile convulsion; female; human; Human adenovirus 1; Human bocavirus; Human coronavirus 229E; Human coronavirus OC43; Human metapneumovirus; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus A; Human respiratory syncytial virus B; Human rhinovirus; infant; influenza A; influenza B; lower respiratory tract infection; major clinical study; male; multicenter study; multiplex polymerase chain reaction; nasopharynx fibroma; nose smear; preschool child; prospective study; respiratory virus; viral upper respiratory tract infection; classification; clinical trial; complication; febrile convulsion; isolation and purification; mixed infection; respiratory tract infection; virology; virus; virus infection; Child, Preschool; Coinfection; Female; Humans; Infant; Male; Prospective Studies; Respiratory Tract Infections; Seizures, Febrile; Virus Diseases; Viruses","Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 (2017) Lancet, 390 (10100), pp. 1211-1259; Pavia, A.T., Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis (2011) Clin Infect Dis, 52, pp. S284-S289; Hoa, N.Q., Thi Lan, P., Phuc, H.D., Chuc, N.T.K., Stalsby Lundborg, C., Antibiotic prescribing and dispensing for acute respiratory infections in children: effectiveness of a multi-faceted intervention for health-care providers in Vietnam (2017) Glob Health Action, 10 (1), p. 1327638; Sacri, A.S., De Serres, G., Quach, C., Boulianne, N., Valiquette, L., Skowronski, D.M., Transmission of acute gastroenteritis and respiratory illness from children to parents (2014) Pediatr Infect Dis J, 33 (6), pp. 583-588; Zoch, B., Günther, A., Karch, A., Mikolajczyk, R., Effect of disease definition on perceived burden of acute respiratory infections in children: a prospective cohort study based on symptom diaries (2017) Pediatr Infect Dis J, 36 (10), pp. 956-961; Atkins, K.E., Lipsitch, M., Can antibiotic resistance be reduced by vaccinating against respiratory disease? (2018) Lancet Respir Med; Dinleyici, E.C., Current status of pneumococcal vaccines: lessons to be learned and new insights (2010) Expert Rev Vaccines, 9 (9), pp. 1017-1022; Dinleyici, E.C., Yargic, Z.A., Current knowledge regarding the investigational 13-valent pneumococcal conjugate vaccine (2009) Expert Rev Vaccines, 8 (8), pp. 977-986; Dinleyici, E.C., Yargic, Z.A., Pneumococcal conjugated vaccines: impact of PCV-7 and new achievements in the postvaccine era (2008) Expert Rev Vaccines, 7 (9), pp. 11367-11394; Jain, V.K., Rivera, L., Zaman, K., Espos, R.A., Jr., Sirivichayakul, C., Quiambao, B.P., Rivera-Medina, D.M., Dinleyici, E.C., Vaccine for prevention of mild and moderate-to-severe influenza in children (2013) N Engl J Med, 369 (26), pp. 2481-2491; Claeys, C., Zaman, K., Dbaibo, G., Li, P., Izu, A., Kosalaraksa, P., Prevention of vaccine-matched and mismatched influenza in children 6−35 months of age: a multinational randomized trial across five influenza seasons (2018) Lancet Child Adolesc Health, 2 (5), pp. 338-349; Grohskopf, L.A., Sokolow, L.Z., Broder, K.R., Walter, E.B., Bresee, J.S., Fry, A.M., Jernigan, D.B., Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices - United States, 2017–18 influenza season (2017) MMWR Recomm Rep, 66 (2), pp. 1-20; Simões, E.A.F., Bont, L., Manzoni, P., Fauroux, B., Paes, B., Figueras-Aloy, J., Checchia, P.A., Carbonell-Estrany, X., Past, present and future approaches to the prevention and treatment of respiratory syncytial virus infection in children (2018) Infect Dis Ther, 7 (1), pp. 87-120; Mazur, N.I., Higgins, D., Nunes, M.C., Melero, J.A., Langedijk, A.C., Horsley, N., Buchholz, U.J., Englund, J.A., The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates (2018) Lancet Infect Dis; Mittal, R., Recent advances in febrile seizures (2014) Indian J Pediatr, 81 (9), pp. 909-916; Commission on epidemiology and prognosis, international league against epilepsy (1993) Epilepsia, 34 (4), pp. 592-596; Shinnar, S., Glauser, T.A., Febrile seizures (2002) J Child Neurol, 17, pp. S44-S52; Carman, K.B., Ekici, A., Yimenicioglu, S., Yarar, C., Arslantas, D., Yakut, A., The prevalence of febrile seizure and associated factors among Turkish children (2014) Int J Clin Pediatr, 3, pp. 1-4; Pavlidou, E., Hagel, C., Panteliadis, C., Febrile seizures: recent developments and unanswered questions (2013) Childs Nerv Syst, 29 (11), pp. 2011-2017; Çiftçi, E., Tuygun, N., Özdemir, H., Tezer, H., Şensoy, G., Devrim, İ., Dalgiç, N., Tapisiz, A., Clinical and epidemiological features of Turkish children with 2009 pandemic influenza A (H1N1) infection: experience from multiple tertiary paediatric centres in Turkey (2011) Scand J Infect Dis, 43 (11-12), pp. 923-929; Britton, P.N., Blyth, C.C., Macartney, K., Dale, R.C., Li-Kim-Moy, J., Khandaker, G., Crawford, N.W., Elliott, E.J., The spectrum and burden of influenza-associated neurological disease in children: combined encephalitis and influenza sentinel site surveillance from Australia, 2013–2015 (2017) Clin Infect Dis, 65 (4), pp. 653-660; Chung, B., Wong, V., Relationship between five common viruses and febrile seizure in children (2007) Arch Dis Child, 92 (7), pp. 589-593; Tang, J., Yan, W., Li, Y., Zhang, B., Gu, Q., Relationship between common viral upper respiratory tract infections and febrile seizures in children from Suzhou, China (2014) J Child Neurol, 29 (10), pp. 1327-1332; Pokorn, M., Jevšnik, M., Petrovec, M., Steyer, A., Mrvič, T., Grosek, Š., Lusa, L., Strle, F., Respiratory and enteric virus detection in children (2017) J Child Neurol, 32 (1), pp. 84-93; Chiu, S.S., Tse, C.Y., Lau, Y.L., Peiris, M., Influenza A infection is an important cause of febrile seizures (2001) Pediatrics, 108 (4), p. E63; Francis, J.R., Richmond, P., Robins, C., Lindsay, K., Levy, A., Effler, P.V., Borland, M., Blyth, C.C., An observational study of febrile seizures: the importance of viral infection and immunization (2016) BMC Pediatr, 16 (1), p. 202; Hanson, K.E., Couturier, M.R., Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections (2016) Clin Infect Dis, 63 (10), pp. 1361-1367; Dinleyici, M., Carman, K.B., Kilic, O., Laciner Gurlevik, S., Yarar, C., Dinleyici, E.C., The immunization status of children with chronic neurological disease and serological assessment of vaccine-preventable diseases (2018) Hum Vaccin Immunother, , 14(8):1970–1976; Dinleyici, E.C., Kurugol, Z., Carman, K.B., Neurologic causes of varicella related hospitalizations in Turkey (VARICOMP study 2008–2015) (2017) Eur J Paediatric Neurol, 21, p. e91; Shinnar, R.C., Shinnar, S., Hesdorffer, D.C., O’Hara, K., Conklin, T., Cornett, K.M., Miazga, D., Sun, S., Parental stress, pediatric quality of life, and behavior at baseline and one-year follow-up: results from the FEBSTAT study (2017) Epilepsy Behav, 69, pp. 95-99","Dinleyici, E.C.; Eskisehir Osmangazi University Faculty of Medicine, Department of PediatricsTurkey; email: timboothtr@yahoo.com",,"Taylor and Francis Inc.",21645515,,,"30235060","English","Hum. Vaccines Immunother.",Article,"Final",,Scopus,2-s2.0-85054510388 "Badolo A., Burt F., Daniel S., Fearns R., Gudo E.S., Kielian M., Lescar J., Shi Y., von Brunn A., Weiss S.R., Hilgenfeld R.","6507836442;6603745891;35615196600;6602279491;33367814200;7006533563;6603844493;56185724100;6701437402;57203567044;7006843618;","Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018",2019,"Antiviral Research","162",,,"142","150",,,"10.1016/j.antiviral.2018.12.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059448251&doi=10.1016%2fj.antiviral.2018.12.015&partnerID=40&md5=cbc670e1cc830bb99ac317f0eb859e8e","Laboratory of Fundamental and Applied Entomology, University Ouaga, Ouagadougou, Burkina Faso; Division of Virology, National Health Laboratory Services and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States; Boston University School of Medicine, Boston, MA, United States; Instituto Nacional de Saúde, Maputo, Mozambique; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States; Structural Biology and Biochemistry, Nanyang Technological University, Singapore; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Max von Pettenkofer-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Site, Munich, Germany; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute of Biochemistry, University of Lübeck, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, Lübeck, Germany","Badolo, A., Laboratory of Fundamental and Applied Entomology, University Ouaga, Ouagadougou, Burkina Faso; Burt, F., Division of Virology, National Health Laboratory Services and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Daniel, S., Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States; Fearns, R., Boston University School of Medicine, Boston, MA, United States; Gudo, E.S., Instituto Nacional de Saúde, Maputo, Mozambique; Kielian, M., Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States; Lescar, J., Structural Biology and Biochemistry, Nanyang Technological University, Singapore; Shi, Y., Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; von Brunn, A., Max von Pettenkofer-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany, German Center for Infection Research (DZIF), Munich Site, Munich, Germany; Weiss, S.R., Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Hilgenfeld, R., Institute of Biochemistry, University of Lübeck, Lübeck, Germany, German Center for Infection Research (DZIF), Hamburg - Lübeck - Borstel - Riems Site, Lübeck, Germany","The Third Tofo Advanced Study Week on Emerging and Re-Emerging Viruses (3rd TASW) was held in Praia do Tofo, Mozambique, from September 02 to 06, 2018. It brought together 55 participants from 10 African countries as well as from Belgium, China, Germany, Singapore, and the USA. Meeting sessions covered aspects of the epidemiology, diagnosis, molecular and structural biology, vaccine development, and antiviral drug discovery for emerging RNA viruses that are current threats in Africa and included flaviviruses (dengue and Zika), alphaviruses (chikungunya), coronaviruses, filoviruses (Ebola), influenza viruses, Crimean Congo hemorrhagic fever virus, Rift Valley fever Virus, Lassa virus, and others. Data were presented on recent flavivirus and/or chikungunyavirus outbreaks in Angola, Burkina Faso, and Mozambique. In addition, these viruses are endemic in many sub-Saharan countries. The TASW series on emerging viruses is unique in Africa and successful in promoting collaborations between researchers in Africa and other parts of the world, as well as among African scientists. This report summarizes the lectures held at the meeting and highlights advances in the field. © 2019 Elsevier B.V.",,"antivirus agent; Chikungunya virus; Coronavirinae; Dengue virus; Ebolavirus; human; molecular biology; nonhuman; Orthomyxoviridae; Paramyxoviridae; pathogenesis; priority journal; Review; virus; Zika virus; animal; chikungunya; communicable disease; Crimean Congo hemorrhagic fever; Crimean-Congo hemorrhagic fever virus; Ebola hemorrhagic fever; epidemic; Flavivirus; Mozambique; organization; pathogenicity; RNA virus; virology; Animals; Chikungunya Fever; Communicable Diseases, Emerging; Congresses as Topic; Disease Outbreaks; Flavivirus; Hemorrhagic Fever Virus, Crimean-Congo; Hemorrhagic Fever, Crimean; Hemorrhagic Fever, Ebola; Humans; Mozambique; RNA Viruses; Zika Virus","Abdelnabi, R., Jochmans, D., Verbeken, E., Neyts, J., Delang, L., Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection (2018) Antivir. Res., 149, pp. 113-117; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Denison, M.R., Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) Is mediated by the viral polymerase and the proofreading exoribonuclease (2018) MBio, 9. , pii: e00221-18; António, V.S., Muianga, A.F., Wieseler, J., Pereira, S.A., Monteiro, V.O., Mula, F., Chelene, I., Gudo, E.S., Seroepidemiology of chikungunya virus among febrile patients in eight health facilities in central and northern Mozambique, 2015-2016 (2018) Vector Borne Zoonotic Dis., 18, pp. 311-316; Banerjee, S., Chakrabarti, A., Jha, B.K., Weiss, S.R., Silverman, R.H., Cell-type-specific effects of RNase L on viral induction of beta interferon (2014) MBio, 5. , e00856-14; Barba-Spaeth, G., Dejnirattisai, W., Rouvinski, A., Vaney, M.C., Medits, I., Sharma, A., Simon-Lorière, E., Rey, F.A., Structural basis of potent Zika-dengue virus antibody cross-neutralization (2016) Nature, 536, pp. 48-53; Borena, W., Hofer, T., Stiasny, K., Aberle, S.W., Gaber, M., von Laer, D., Schennach, H., No molecular or serological evidence of Zikavirus infection among healthy blood donors living in or travelling to regions where Aedes albopictus circulates (2017) PLoS One, 12, p. e0178175; Brown, R.S., Wan, J.J., Kielian, M., The alphavirus exit pathway: What we know and what we wish we knew (2018) Viruses, 10. , pii: E89; Chang, A.Y., Martins, K.A.O., Encinales, L., Reid, S.P., Acuña, M., Encinales, C., Matranga, C.B., Firestein, G.S., Chikungunya arthritis mechanisms in the Americas: A cross-sectional analysis of Chikungunya arthritis patients twenty-two months after infection demonstrating no detectable viral persistence in synovial fluid (2018) Arthritis Rheumatol., 70, pp. 585-593; Chau, R., Bhatt, N., Manhica, I., Candido, S., de Deus, N., Guiliche, O., Tivane, A., Gudo, E.S., First serological evidence of hantavirus among febrile patients in Mozambique (2017) Int. J. Infect. Dis., 61, pp. 51-55; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria (2015) Euro Surveill., 20, p. 30086. , https://doi.org/10.2807/1560-7917; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. U. S. A., 115, pp. 3144-3149; Cressey, T.N., Noton, S.L., Nagendra, K., Braun, M.R., Fearns, R., Mechanism for de novo initiation at two sites in the respiratory syncytial virus promoter (2018) Nucleic Acids Res., 46, pp. 6785-6796; Dai, L., Song, J., Lu, X., Deng, Y.Q., Musyoki, A.M., Cheng, H., Zhang, Y., Gao, G.F., Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody (2016) Cell Host Microbe, 19, pp. 696-704; Dai, L., Wang, Q., Song, H., Gao, G.F., Zika virus envelope protein and antibody complexes (2018) Subcell. Biochem., 88, pp. 147-168; Delang, L., Li, C., Tas, A., Quérat, G., Albulescu, I.C., De Burghgraeve, T., Guerrero, N.A., Neyts, J., The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection (2016) Sci. Rep., 6, p. 31819; Dörnemann, J., Burzio, C., Ronsse, A., Sprecher, A., De Clerck, H., van Herp, M., Kolié, M.C., Antierens, A., First newborn baby to receive experimental therapies survives Ebola virus disease (2017) J. Infect. Dis., 215, pp. 171-174; Duan, W., Song, H., Wang, H., Chai, Y., Su, C., Qi, J., Shi, Y., Gao, G.F., The crystal structure of Zika virus NS5 reveals conserved drug targets (2017) EMBO J., 36, pp. 919-933; El Sahili, A., Lescar, J., Dengue virus non-structural protein 5 (2017) Viruses, 9. , pii: E91; Férir, G., Petrova, M.I., Andrei, G., Huskens, D., Hoorelbeke, B., Snoeck, R., Vanderleyden, J., Schols, D., The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications (2013) PLoS One, 8, p. e64010; Fleta-Soriano, E., Smutná, K., Martínez, J.P., Lorca Oró, C., Sadiq, S.K., Mirambeau, G., Lopez-Iglesias, C., Meyerhans, A., The myxobacterial metabolite Soraphen A inhibits HIV-1 by reducing virus production and altering virion composition (2017) Antimicrob. Agents Chemother., 61. , pii: e00739-17; Gikonyo, S., Kimani, T., Matere, J., Kimutai, J., Kiambi, S.G., Bitek, A.O., Juma Ngeiywa, K.J.Z., Fasina, F.O., (2018) Mapping potential amplification and transmission hotspots for MERS-CoV, 15, pp. 372-387. , Ecohealth Kenya; Goedhals, D., Paweska, J.T., Burt, F.J., Identification of human linear B-cell epitope sites on the envelope glycoproteins of Crimean-Congo haemorrhagic fever virus (2015) Epidemiol. Infect., 143, pp. 1451-1456; Goldstein, S.A., Thornbrough, J.M., Zhang, R., Jha, B.K., Li, Y., Elliott, R., Quiroz-Figueroa, K., Weiss, S.R., Lineage-A betacoronavirus NS2 proteins and the homologous torovirus Berne pp1a carboxy-terminal domain are phosphodiesterases that antagonize activation of RNase L (2017) J. Virol., 91, pp. e02201-e02216; Granger, D., Hilgart, H., Misner, L., Christensen, J., Bistodeau, S., Palm, J., Strain, A.K., Theel, E.S., Serologic testing for Zika Virus: comparison of three Zika Virus IgM-Screening enzyme-linked immunosorbent assays and initial laboratory experiences (2017) J. Clin. Microbiol., 55, pp. 2127-2136; Gudo, E.S., Black, J.F., Cliff, J.L., Chikungunya in Mozambique: a forgotten history (2016) PLoS Neglected Trop. Dis., 10, p. e0005001; Gudo, E.S., Falk, K.I., Ali, S., Muianga, A.F., Monteiro, V., Cliff, J., A historic report of Zika in Mozambique: Implications for assessing current risk (2016) PLoS Neglected Trop. Dis., 10, p. e0005052; Hilgenfeld, R., From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design (2014) FEBS J., 281, pp. 4085-4096; Hilgenfeld, R., Vasudevan, S.G., Dengue and Zika: Control and Antiviral Treatment Strategies (2018) Proceedings of the 2nd Tofo Advanced Study week on Emerging Viruses, , Springer Singapore; Huzly, D., Hanselmann, I., Schmidt-Chanasit, J., Panning, M., High specificity of a novel Zika virus ELISA in European patients after exposure to different flaviviruses (2016) Euro Surveill., 21. , pii=30203; Jacobs, M., Rodger, A., Bell, D.J., Bhagani, S., Cropley, I., Filipe, A., Gifford, R.J., Thomson, E.C., Late Ebola virus relapse causing meningoencephalitis: a case report (2016) Lancet, 388, pp. 498-503; Kadkhoda, K., Gretchen, A., Racano, A., Evaluation of a commercially available Zika virus IgM ELISA: specificity in focus (2017) Diagn. Microbiol. Infect. Dis., 88, pp. 233-235; Kolawole, O., Oguntoye, M., Dam, T., Chunara, R., Etiology of respiratory tract infections in the community and clinic in Ilorin, Nigeria (2017) BMC Res. Notes, 10, p. 712; Koutsoudakis, G., Romero-Brey, I., Berger, C., Pérez-Vilaró, G., Monteiro Perin, P., Vondran, F.W., Kalesse, M., Díez, J., Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity (2015) J. Hepatol., 63, pp. 813-821; Kusov, Y., Tan, J., Alvarez, E., Enjuanes, L., Hilgenfeld, R., A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex (2015) Virology, 484, pp. 313-322; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antivir. Res., 149, pp. 58-74; Lescar, J., Roussel, A., Wien, M.W., Navaza, J., Fuller, S.D., Wengler, G., Wengler, G., Rey, F.A., The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH (2001) Cell, 105, pp. 137-148. , https://doi.org/10.1016/S0092-8674(01)00303-8; Li, Y., Banerjee, S., Wang, Y., Goldstein, S.A., Dong, B., Gaughan, C., Silverman, R.H., Weiss, S.R., Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 2241-2246; Lim, S.P., Sonntag, L.S., Noble, C., Nilar, S.H., Ng, R.H., Zou, G., Monaghan, P., Shi, P.Y., Small-molecule inhibitors that selectively block dengue virus methyltransferase (2011) J. Biol. Chem., 286, pp. 6233-6240; Lim, S.P., Noble, C.G., Seh, C.C., Soh, T.S., El Sahili, A., Chan, G.K., Lescar, J., Yokokawa, F., Potent allosteric Dengue virus NS5 polymerase inhibitors: Mechanism of action and resistance profiling (2016) PLoS Pathog., 12, p. e1005737; Lindner, H.A., Lytvyn, V., Qi, H., Lachance, P., Ziomek, E., Ménard, R., Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease (2007) Arch. Biochem. Biophys., 466, pp. 8-14; Ma-Lauer, Y., Carbajo-Lozoya, J., Hein, M.Y., Müller, M.A., Deng, W., Lei, J., Meyer, B., von Brunn, A., p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1 (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. E5192-E5201; Malathi, K., Siddiqui, M.A., Dayal, S., Naji, M., Ezelle, H.J., Zeng, C., Zhou, A., Hassel, B.A., RNase L interacts with Filamin A to regulate actin dynamics and barrier function for viral entry (2014) MBio, 5, p. e02012; Martinez, M.G., Kielian, M., Intercellular extensions are induced by the alphavirus structural proteins and mediate virus transmission (2016) PLoS Pathog., 12, p. e1006061; Massangaie, M., Pinto, G., Padama, F., Chambe, G., da Silva, M., Mate, I., Chirindza, C., Gudo, E.S., Clinical and epidemiological characterization of the first recognized outbreak of dengue virus-type 2 in Mozambique, 2014 (2016) Am. J. Trop. Med. Hyg., 94, pp. 413-416; Moiane, B., Mapaco, L., Thompson, P., Berg, M., Albihn, A., Fafetine, J., High seroprevalence of Rift Valley fever phlebovirus in domestic ruminants and African Buffaloes in Mozambique shows need for intensified surveillance (2017) Infect. Ecol. Epidemiol., 7, p. 1416248; Mugabe, V.A., Ali, S., Chelene, I., Monteiro, V.O., Guiliche, O., Muianga, A.F., Mula, F., Gudo, E.S., Evidence for chikungunya and dengue transmission in Quelimane, Mozambique: Results from an investigation of a potential outbreak of chikungunya virus (2018) PLoS One, 13, p. e0192110; Muianga, A.F., Watson, R., Varghese, A., Chongo, I.S., Ali, S., Monteiro, V., Inalda, F., Gudo, E.S., First serological evidence of Crimean-Congo haemorrhagic fever in febrile patients in Mozambique (2017) Int. J. Infect. Dis., 62, pp. 119-123; Noton, S.L., Fearns, R., Initiation and regulation of paramyxovirus transcription and replication (2015) Virology, 479-480, pp. 545-554; Oludele, J., Lesko, B., Mahumane Gundane, I., de Bruycker-Nogueira, F., Muianga, A., Ali, S., Mula, F., Gudo, E.S., Dengue virus serotype 2 established in northern Mozambique (2015-2016) (2017) Am. J. Trop. Med. Hyg., 97, pp. 1418-1422; Shang, Z., Song, H., Shi, Y., Qi, J., Gao, G.F., Crystal structure of the capsid protein from Zika virus (2018) J. Mol. Biol., 430, pp. 948-962; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2018) Sci. Transl. Med., 9. , pii: eaal3653; Shi, Y., Gao, G.F., Structural biology of the Zika virus (2017) Trends Biochem. Sci., 42, pp. 443-456; Smith, T.M., Lim, S.P., Yue, K., Busby, S.A., Arora, R., Seh, C.C., Wright, S.K., Benson, T.E., Identifying initiation and elongation inhibitors of dengue virus RNA polymerase in a high-throughput lead-finding campaign (2015) J. Biomol. Screen, 20, pp. 153-163; Song, H., Qi, J., Xiao, H., Bi, Y., Zhang, W., Xu, Y., Wang, F., Gao, G.F., Avian-to-human receptor-binding adaptation by influenza A virus hemagglutinin H4 (2017) Cell Rep., 20, pp. 1201-1214; Steinhagen, K., Probst, C., Radzimski, C., Schmidt-Chanasit, J., Emmerich, P., van Esbroeck, M., Schinkel, J., Schlumberger, W., Serodiagnosis of Zika virus (ZIKV) infections by a novel NS1-based ELISA devoid of cross-reactivity with dengue virus antibodies: a multicohort study of assay performance, 2015 to 2016 (2016) Euro Surveill., 21. , pii: 30426; Tan, J., Vonrhein, C., Smart, O.S., Bricogne, G., Bollati, M., Kusov, Y., Hansen, G., Hilgenfeld, R., The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes (2009) PLoS Pathog., 5, p. e1000428; Tharakaraman, K., Watanabe, S., Chan, K.R., Huan, J., Subramanian, V., Chionh, Y.H., Raguram, A., Sasisekharan, R., Rational engineering and characterization of a mAb that neutralizes Zika virus by targeting a mutationally constrained quaternary epitope (2018) Cell Host Microbe, 23, pp. 618-627; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7, p. e00258; Tivane, A., Daniels, R., Nguenha, N., Machalele, L., Nacoto, A., Pale, M., Mateonane, E., McCauley, J., Antigenic and genetic characterization of influenza viruses isolated in Mozambique during the 2015 season (2018) PLoS One, 13, p. e0201248; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Wang, J., Bardelli, M., Espinosa, D.A., Pedotti, M., Ng, T.S., Bianchi, S., Simonelli, L., Corti, D., A human bi-specific antibody against Zika virus with high therapeutic potential (2017) Cell, 171, pp. 229-241. , e215; Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Bavari, S., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 381-385; Xu, K., Song, Y., Dai, L., Zhang, Y., Lu, X., Xie, Y., Zhang, H., Gao, G.F., Recombinant chimpanzee adenovirus vaccine AdC7-M/E protects against Zika virus infection and testis damage (2018) J. Virol., 92. , pii: e01722-1717; Xu, X., Song, H., Qi, J., Liu, Y., Wang, H., Su, C., Shi, Y., Gao, G.F., Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure (2016) EMBO J., 35, pp. 2170-2178; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Silverman, R.H., Weiss, S.R., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11, pp. 607-616","Hilgenfeld, R.; University of Lübeck, Institute for Biochemistry Ratzeburger, Allee 160, Germany; email: hilgenfeld@biochem.uni-luebeck.de",,"Elsevier B.V.",01663542,,ARSRD,"30597184","English","Antiviral Res.",Review,"Final",,Scopus,2-s2.0-85059448251 "Pablo Corvalán L., Guisselle Arias B., Paola Morales S., Raquel González M., Jaime Inostroza S., Loreto Fuenzalida I.","57208708607;57208704120;57208702754;57208702476;25223235400;57208702891;","Indirect immunofluorescence technique versus polymerase chain reaction for the diagnosis of respiratory viruses in children admitted to a hospital in the Metropolitan Region [Inmunofluorescencia indirecta versus reacción de polimerasa en cadena para el diagnóstico de virus respiratorios en niños ingresados en un hospital de la Región Metropolitana]",2019,"Revista Chilena de Infectologia","36","1",,"26","31",,,"10.4067/S0716-10182019000100026","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065575123&doi=10.4067%2fS0716-10182019000100026&partnerID=40&md5=58827881967d446f7190774c5377c607","Estudiante de Enfermería, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile; Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile; Centro Salud Integral, Universidad Autónoma de ChileSantiago, Chile; Laboratorio de Microbiología, Hospital Dr. Exequiel González CortésSantiago, Chile; Centro Jeffrey Modell para Diagnóstico e Investigación en Inmunodeficiencias Primarias, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile","Pablo Corvalán, L., Estudiante de Enfermería, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile; Guisselle Arias, B., Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile; Paola Morales, S., Centro Salud Integral, Universidad Autónoma de ChileSantiago, Chile; Raquel González, M., Laboratorio de Microbiología, Hospital Dr. Exequiel González CortésSantiago, Chile; Jaime Inostroza, S., Centro Jeffrey Modell para Diagnóstico e Investigación en Inmunodeficiencias Primarias, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile; Loreto Fuenzalida, I., Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile","Background: Early viral detection in acute respiratory infections (ARI) is essential to establish appropriate therapy and prevent nosocomial transmission. Objective: To compare the efficacy of indirect immunofluorescence technique (IIF) with the polymerase chain reaction (PCR) to identify respiratory viruses in children hospitalized for ARI. Methods: 47 nasopharyngeal aspirates of children = 2 years with ARI were included. IFI included respiratory syncytial virus (RSV), adenovirus, influenza A and B and parainfluenza. PCR also included the detection of metapneumovirus, enterovirus/rhinovirus, bocavirus and coronavirus. Sensitivity, specificity, positive and negative predictive value (VPP/NPV) and kappa correlation for RSV were estimated by IIF compared to PCR. Results: The IIF detected only RSV (29; 61.7%). PCR detected several viruses, including RSV in 26 cases (55.3%), followed by bocavirus (29.8%), rhinovirus/enterovirus (21.3%), adenovirus (14.9%) and parainfluenza (4,3%) among others, with 35.5% of coinfection. The IIF presented sensitivity: 85.7%, specificity: 73.6%, PPV: 82.7%, NPV: 77.7% and kappa: 0.5990 (95% CI, 0.3636-0.8346) for RSV. Conclusion: The IIF presents good sensitivity, but moderate specificity for RSV. However, IIF fails to detect other respiratory viruses. The introduction of PCR would improve the etiological diagnosis of ARI of viral origin. © 2019, Sociedad Chilena de Infectologia. All rights reserved.","Acute respiratory infection; Indirect immunofluorescence; Polymerase chain reaction; Respiratory viruses","DNA virus; adolescent; child; Chile; comparative study; cross-sectional study; female; human; indirect fluorescent antibody technique; infant; isolation and purification; male; nasopharynx; polymerase chain reaction; preschool child; procedures; prospective study; reproducibility; respiratory tract infection; RNA virus; sensitivity and specificity; virology; virus; Adolescent; Child; Child, Preschool; Chile; Cross-Sectional Studies; DNA Viruses; Female; Fluorescent Antibody Technique, Indirect; Humans; Infant; Male; Nasopharynx; Polymerase Chain Reaction; Prospective Studies; Reproducibility of Results; Respiratory Tract Infections; RNA Viruses; Sensitivity and Specificity; Viruses","Rudan, I., Boschi-Pinto, C., Biloglav, Z., Mulholland, K., Campbell, H., Epidemiology and etiology of childhood pneumonia (2008) Bull World Health Org, 86 (5), pp. 408-416. , PMCID: PMC2647437; Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: An updated systematic analysis (2015) Lancet, 385 (9966), pp. 430-440; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377 (9773), pp. 1264-1275; Mäkela, M.J., Puhakka, T., Ruuskanen, O., Leinonen, M., Saikku, P., Kimpimaki, M., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36 (2), pp. 539-542. , PMCID: PMC104573; García-García, M.L., Ordobas, G.M., Calvo, R.C., González, A.M., Aguilar, R.J., Arregui, S.A., Infecciones virales de vías aéreas inferiores en lactantes hospitalizados:Etiología, características clínicas y factores de riesgo (2001) An Esp Pediatr, 55, pp. 101-107. , http://www.analesdepediatria.org/espdf-S1695403301776448; Fendrick, A.M., Monto, A.S., Nightengale, B., Sarnes, M., The economic burden of noninfluenza- related viral respiratory tract infection in the United States (2003) Arch Intern Med, 163 (4), pp. 487-494. , PMID: 12588210; Kusel, M.M., de Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., Sly, P.D., Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study (2006) Pediatr Infect Dis J, 25, pp. 680-686; Brittain-Long, R., Nord, S., Olofsson, S., Westin, J., Anderson, L.M., Lindh, M., Multiplex real-time PCR for detection of respiratory tract infections (2008) J Clin Virol, 41, pp. 53-56; Fuenzalida, L., Fabrega, J., Blanco, S., Del Mar Martínez, M., Prat, C., Pérez, M., Usefulness of two new methods for diagnosing metapneumovirus infections in children (2010) Clin Microbiol Infect, 16 (11), pp. 1663-1668; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci USA, 102 (36), pp. 12891-12896; Coleman, C.M., Frieman, M.B., Coronaviruses:Important emerging human pathogens (2014) J Virol., 88 (10), pp. 5209-5212; Chartrand, C., Leeflang, M.M.G., Minion, J., Brewer, T., Pai, M., Accuracy of rapid influenza diagnostic tests: A meta-analysis (2012) Ann Intern Med, 156, pp. 500-511; Wilhelm, J., Yubero, J., Fuentes, C., Ríos, P., Leyton, O., Reyes, F., Evaluation of three laboratory methods diagnostic sensitivity in influenza A infection: RIDT, DFA and DFA with cytocentrifugation versus RT-PCR (2014) Rev Chilena Infectol, 31 (6), pp. 690-693; Gharabaghi, F., Tellier, R., Cheung, R., Collins, C., Broukhanski, G., Drews, S.J., Comparison of a commercial qualitative real-time RT-PCR kit with direct immunofluorescence assay (DFA) and cell culture for detection of influenza A and B in children (2008) J Clin Virol, 42, pp. 190-193; Fairchok, M.P., Martin, E.T., Chambers, S., Kuypers, J., Behrens, M., Braun, L.E., Epidemiology of viral respiratory tract infections in a prospective cohort of infants and toddlers attending daycare (2010) J Clin Virol, 49, pp. 16-20; Campanini, G., Percivalle, E., Baldanti, F., Rovida, F., Bertaina, A., Marchi, A., Human respiratory syncytial virus (hRSV) RNA quantification in nasopharyngeal secretions identifies the hRSV etiologic role in acute respiratory tract infections of hospitalized infants (2007) J Clin Virol, 39 (2), pp. 119-124; Luchsinger, V., Ampuero, S., Palomino, M.A., Chnaiderman, J., Levican, J., Gaggero, A., Comparison of virological profiles of respiratory syncytial virus and rhinovirus in acute lower tract respiratory infections in very young Chilean infants, according to their clinical outcome (2014) J Clin Virol, 61 (1), pp. 138-144; Duchamp, M.B., Casalegno, J.S., Gillet, Y., Frobert, E., Bernard, E., Escuret, V., Pandemic A(H1N1) 2009 influenza virus detection by real time RT-PCR: Is viral quantification useful? (2010) Clin Microbiol Infect, 16 (4), pp. 317-321; Altman, D.G., (1991) Practical Statistics for Medical Research., , 1 ed. Chapman & Hall/CRC Texts in Statistical Science; Flores, C., Méndez, M., Astudillo, C., Cerda, H., Espinoza, T., Montes, S., Infección por adenovirus en hospital de niños con enfermedades respiratorias crónicas (2013) Rev Chil Pediatr, 84 (5), pp. 522-526. , https://scielo.conicyt.cl/pdf/rcp/v84n5/art06.pdf; Henrickson, K.J., Cost-effective use of rapid diagnostic techniques in the treatment and prevention of viral respiratory infections (2005) Pediatr Ann, 34 (1), pp. 24-31. , PMID: 15693213; Gerber, S.I., Erdman, D.D., Pur, S.L., Díaz, P.S., Segreti, J., Kajon, A.E., Outbreak of adenovirus genome type 7d2 infection in a pediatric chronic-care facility and tertiary-care hospital (2001) Clin Infect Dis, 32 (5), pp. 694-700; Larrañaga, C., Vicente, M., Wu, E., Carrasco, L., Pena, A., Onate, C., Adenovirus in children with acute lower respiratory tract infections (1988) Rev Chil Pediatr, 59 (5), pp. 312-317. , PMID: 2856008; Levy, Y., Nitzan, M., Beharab, A., Zeharia, A., Schoenfeld, T., Nutman, J., Adenovirus type 3 infection with systemic manifestation in apparently normal children (1986) Isr J Med Sci, 22 (11), pp. 774-778. , PMID: 3025130; Martin, E.T., Kuypers, J., McRoberts, J.P., Englund, J.A., Zerr, D.M., Human bocavirus 1 primary infection and shedding in infants (2015) J Infect Dis, 212 (4), pp. 516-524; Broccolo, F., Falcone, V., Esposito, S., Toniolo, A., Human bocaviruses: Possible etiologic role in respiratory infection (2015) J Clin Virol, 72, pp. 75-81; Harada, Y., Kinoshita, F., Yoshida, L.M., Minh le, N., Suzuki, M., Morimoto, K., Does respiratory virus coinfection increases the clinical severity of acute respiratory infection among children infected with respiratory syncytial virus? (2013) Pediatr Infect Dis J, 32 (5), pp. 441-445; Jiang, W., Yin, F., Zhou, W., Yan, Y., Ji, W., Clinical significance of different virus load of human bocavirus in patients with lower respiratory tract infection (2016) Sci Rep, 6, p. 20246; Moyer, K., Wang, H., Salamon, D., Leber, A., Mejias, A., Enterovirus D68 in hospitalized children: Sequence variation, viral loads and clinical outcomes (2016) PLoS One, 11 (11), p. e0167111. , https://doi.org/10.1371/journal.pone.0167111","Loreto Fuenzalida, I.; Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileChile; email: lfuenzalidai@uautonoma.cl",,"Sociedad Chilena de Infectologia",07161018,,,"31095201","Spanish","Rev. Chil. Infectol.",Article,"Final",Open Access,Scopus,2-s2.0-85065575123 "Ommeh S., Zhang W., Zohaib A., Chen J., Zhang H., Hu B., Ge X.-Y., Yang X.-L., Masika M., Obanda V., Luo Y., Li S., Waruhiu C., Li B., Zhu Y., Ouma D., Odendo V., Wang L.-F., Anderson D.E., Lichoti J., Mungube E., Gakuya F., Zhou P., Ngeiywa K.-J., Yan B., Agwanda B., Shi Z.-L.","6504693788;56151953000;55627754200;57203334768;57192482516;55908560200;35781787600;35811468700;25960853800;24341820100;57201338288;57205188732;57193360957;57077269800;55723768200;57205185894;57205189501;35243718700;25631949200;56369153800;9246123800;6506020607;56996599500;57189080905;57204351774;24075534400;7403733955;","Correction to: Genetic Evidence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) and Widespread Seroprevalence among Camels in Kenya (Virologica Sinica, (2018), 33, 6, (484-492), 10.1007/s12250-018-0076-4)",2019,"Virologica Sinica","34","1",,"115","",,,"10.1007/s12250-019-00092-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062597454&doi=10.1007%2fs12250-019-00092-6&partnerID=40&md5=12b7a9b2dfc1c0efcfc57ac5fabd8747","Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya; CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; College of Biology, Hunan University, Changsha, 410006, China; Department of Medical Microbiology, University of Nairobi, Nairobi, 30197-00100, Kenya; Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya; Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Veterinary Services Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock Fisheries and Irrigation, Nairobi, 34188-00100, Kenya; Kenya Camel Association, Nairobi, 30095-00100, Kenya; Department of Zoology, National Museums of Kenya, Nairobi, 40658-00100, Kenya","Ommeh, S., Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya; Zhang, W., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zohaib, A., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Chen, J., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhang, H., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hu, B., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Ge, X.-Y., College of Biology, Hunan University, Changsha, 410006, China; Yang, X.-L., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Masika, M., Department of Medical Microbiology, University of Nairobi, Nairobi, 30197-00100, Kenya; Obanda, V., Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya; Luo, Y., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Li, S., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Waruhiu, C., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Li, B., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhu, Y., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Ouma, D., Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Odendo, V., Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Wang, L.-F., Veterinary Services Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Anderson, D.E., Veterinary Services Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Lichoti, J., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock Fisheries and Irrigation, Nairobi, 34188-00100, Kenya; Mungube, E., Veterinary Research Institute, Kenya Agriculture and Livestock Research Organization, Nairobi, 57811-00200, Kenya; Gakuya, F., Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya; Zhou, P., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Ngeiywa, K.-J., Directorate of Veterinary Services, State Department of Livestock, Ministry of Agriculture, Livestock Fisheries and Irrigation, Nairobi, 34188-00100, Kenya, Kenya Camel Association, Nairobi, 30095-00100, Kenya; Yan, B., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Agwanda, B., Department of Zoology, National Museums of Kenya, Nairobi, 40658-00100, Kenya; Shi, Z.-L., CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China","The acknowledgement section in the original article was published incorrectly. The appropriate version is given below. Acknowledgements We thank all staff of the Ministry of Health and Ministry of Agriculture Livestock, Fisheries and Irrigation, Chiefs and local assistants from County governments of West Pokot, Turkana, Baringo, Samburu, Laikipia, Isiolo, Marsabit, Mandera, Wajir, Garissa, Tana River, Kitui, and Makueni; Kenya camel association; Kenya Wildlife Service; and National Museums of Kenya. Sheila Ommeh is a recipient of the Chinese Academy of Science Presidents International Fellowship Initiative (CAS-PIFI). This work was funded by Sino-Africa Joint Research Center (SAJC201313 and SAJC201605), External Cooperation Program of CAS (153211KYSB201 60001), and National Science and Technology Major Project (2018ZX10101004). © 2019, Wuhan Institute of Virology, CAS.",,"erratum; error",,"Shi, Z.-L.; CAS Key Laboratory for Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"Science Press",16740769,,,"30820836","English","Virol. Sin.",Erratum,"Final",Open Access,Scopus,2-s2.0-85062597454 "Gardner E.G., Kelton D., Poljak Z., Van Kerkhove M., Von Dobschuetz S., Greer A.L.","57193719177;7003316905;8966822700;15761388700;20436883300;15026202400;","A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome",2019,"BMC Infectious Diseases","19","1", 113,"","",,5,"10.1186/s12879-019-3729-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061129535&doi=10.1186%2fs12879-019-3729-5&partnerID=40&md5=212b18e1e6067181a647d7fb38c8945f","Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; World Health Organization, Geneva, Switzerland; Animal Health Service - FAO, Viale Delle Terme di Caracalla, Rome, Italy","Gardner, E.G., Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; Kelton, D., Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; Poljak, Z., Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; Van Kerkhove, M., World Health Organization, Geneva, Switzerland; Von Dobschuetz, S., Animal Health Service - FAO, Viale Delle Terme di Caracalla, Rome, Italy; Greer, A.L., Ontario Veterinary College, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in dromedary camels in the Arabian Peninsula, and zoonotic transmission to people is a sporadic event. In the absence of epidemiological data on the reservoir species, patterns of zoonotic transmission have largely been approximated from primary human cases. This study aimed to identify meteorological factors that may increase the risk of primary MERS infections in humans. Methods: A case-crossover design was used to identify associations between primary MERS cases and preceding weather conditions within the 2-week incubation period in Saudi Arabia using univariable conditional logistic regression. Cases with symptom onset between January 2015 - December 2017 were obtained from a publicly available line list of human MERS cases maintained by the World Health Organization. The complete case dataset (N = 1191) was reduced to approximate the cases most likely to represent spillover transmission from camels (N = 446). Data from meteorological stations closest to the largest city in each province were used to calculate the daily mean, minimum, and maximum temperature ( ο C), relative humidity (%), wind speed (m/s), and visibility (m). Weather variables were categorized according to strata; temperature and humidity into tertiles, and visibility and wind speed into halves. Results: Lowest temperature (Odds Ratio = 1.27; 95% Confidence Interval = 1.04-1.56) and humidity (OR = 1.35; 95% CI = 1.10-1.65) were associated with increased cases 8-10 days later. High visibility was associated with an increased number of cases 7 days later (OR = 1.26; 95% CI = 1.01-1.57), while wind speed also showed statistically significant associations with cases 5-6 days later. Conclusions: Results suggest that primary MERS human cases in Saudi Arabia are more likely to occur when conditions are relatively cold and dry. This is similar to seasonal patterns that have been described for other respiratory diseases in temperate climates. It was hypothesized that low visibility would be positively associated with primary cases of MERS, however the opposite relationship was seen. This may reflect behavioural changes in different weather conditions. This analysis provides key initial evidence of an environmental component contributing to the development of primary MERS-CoV infections. © 2019 The Author(s).","Case-crossover; MERS-CoV; Middle East respiratory syndrome; Veterinary public health","adolescent; adult; aged; Article; camel; controlled study; crossover procedure; disease association; disease course; disease transmission; environmental temperature; female; human; humidity; incubation time; infection risk; low temperature; major clinical study; male; meteorological phenomena; Middle East respiratory syndrome; onset age; Saudi Arabia; seasonal variation; visibility; animal; case control study; Coronavirus infection; disease carrier; environment; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; statistics and numerical data; very elderly; virology; weather; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Animals; Camelus; Case-Control Studies; Coronavirus Infections; Cross-Over Studies; Disease Reservoirs; Environment; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Saudi Arabia; Weather; Young Adult","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , 1:CAS:528:DC%2BC38Xhs1ekt73P; (2018), http://www.who.int/emergencies/mers-cov/en, World Health Organization. WHO | Middle East respiratory syndrome coronavirus (MERS-CoV). WHO Accessed 1 Oct 2017; (2015) Investigation of Cases of Human Infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Interim Guidance, , World Health Organization; (2016), https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) Fact Sheet Accessed 14 May 2018; (2017) MERS-CoV: Progress in Global Response to Epidemic Threat, Remaining Challenges and Way Forward: Report from the FAO-OIE-WHO Global Technical Meeting on MERS-CoV, , MERS-CoV technical working group 25-27 September WHO headquarters Geneva, Switzerland; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505. , 1:CAS:528:DC%2BC2cXhs1artLzN; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; (2018) MERS Situation Update March 2018, , http://www.emro.who.int/images/stories/mers-cov/MERS-CoV_March_2018.pdf?ua=1, World Health Organization Accessed 26 Apr 2018; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005. , 1:CAS:528:DC%2BC28XitVOisLbJ; Lowen, A.C., Mubareka, S., Steel, J., Palese, P., Influenza virus transmission is dependent on relative humidity and temperature (2007) PLoS Pathog, 3, pp. 1470-1476. , 1:CAS:528:DC%2BD2sXhsVOgu7jJ; Bloom-Feshbach, K., Alonso, W.J., Charu, V., Tamerius, J., Simonsen, L., Ma, M., Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): A global comparative review (2013) PLoS One, 8; Glass, R.I., Rosenthal, J.P., International approach to environmental and lung health a perspective from the fogarty international center (2018) Annals of the American Thoracic Society. American Thoracic Society, pp. S109-S113; Horne, B.D., Joy, E.A., Hofmann, M.G., Gesteland, P.H., Cannon, J.B., Lefler, J.S., Short-term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection (2018) Am J Respir Crit Care Med, , https://doi.org/10.1164/rccm.201709-1883OC; Schweitzer, M.D., Calzadilla, A.S., Salamo, O., Sharifi, A., Kumar, N., Holt, G., Lung health in era of climate change and dust storms (2018) Environ Res, 163, pp. 36-42. , 1:CAS:528:DC%2BC1cXisVensrY%3D; Dowell, S.F., Ho, M.S., Seasonality of infectious diseases and severe acute respiratory syndrome-what we don't know can hurt us (2004) Lancet Infect Dis, 4, pp. 704-708; Maclure, M., Mittleman and MA. Should we use a case-crossover design? (2000) Annu Rev Public Health, 21, pp. 193-221. , 1:STN:280:DC%2BD3M%2FhsVCkug%3D%3D; Dixon, K.E., (1997) A Comparison of Case-crossover and Case-control Designs in A Study of Risk Factors for Hemorrhagic Fever with Renal Syndrome; Lumley, T., Levy, D., Bias in the case-crossover design:implications for studies of air pollution (2000) Environmetrics, 11, pp. 689-704. , 1:CAS:528:DC%2BD3MXitFSnuw%3D%3D; Middle East respiratory syndrome coronavirus (MERS-CoV) Disease outbreak news (2018) World Health Organization, , World Health Organization; (2017), http://www.who.int/csr/disease/coronavirus_infections/case_definition/en, World Health Organization. WHO | Middle East respiratory syndrome coronavirus: Case definition for reporting to WHO Accessed 10 Apr 2018; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: Nosocomial outbreak of Middle East respiratory syndrome in a large tertiary care hospital - Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164; (2017) Google Earth Pro, 7.1.7.2606, , Google Inc; (2016), https://www.ncei.noaa.gov, US.gov. National Centers for Environmental Information Accessed 15 May 2018; Anderson, B., Peng, R., (2012) Weathermetrics: Functions to Convert between Weather Metrics. R Package Version 1.0, , https://cran.r-project.org/web/packages/weathermetrics/index.html; Maclure, M., The case-crossover design: A method for studying transient effects on the risk of acute events (1991) Amencan J Epidemiolooy, 133 (2), pp. 144-153; Levy, D., Lumley, T., Sheppard, L., Kaufman, J., Checkoway, H., Epidemiology, S., Referent selection in case-crossover analyses of acute health effects of air pollution (2001) Epidemiology, 12, pp. 186-192. , 1:STN:280:DC%2BD3M3hsVSnsg%3D%3D; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10, p. 425; (2017), http://www.who.int/blueprint/priority-diseases/en, World Health Organization. WHO | List of blueprint priority pathogens. WHO Accessed 12 Apr 2018; Tamerius, J.D., Shaman, J., Alonso, W.J., Bloom-Feshbach, K., Uejio, C.K., Comrie, A., Environmental predictors of seasonal influenza epidemics across temperate and tropical climates (2013) PLoS Pathog, 9, p. e1003194. , 1:CAS:528:DC%2BC3sXmtVejtL4%3D; Samarkandi, O.A., Khan, A.A., Alazmy, W., Alobaid, A.M., Bashatah, A.S., The pulmonary consequences of sandstorms in Saudi Arabia: A comprehensive review and update (2017) Am J Disaster Med, 12, pp. 179-188; Bell, M.L., Levy, J.K., Lin, Z., The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei (2008) Taiwan Occup Environ Med, 65, pp. 104-111. , 1:CAS:528:DC%2BD1cXis1WisL4%3D; Kang, J.H., Keller, J.J., Chen, C.S., Lin, H.C., Asian dust storm events are associated with an acute increase in pneumonia hospitalization (2012) Ann Epidemiol, 22, pp. 257-263; De Villiers, M.P., (2010) Predicting the Development of Weather Phenomena That Influence Aviation at Abu Dhabi International Airport, , Pretoria: University of Pretoria; Nasser, Z., Salameh, P., Nasser, W., Abou Abbas, L., Elias, E., Leveque, A., Outdoor Particulate Matter (Pm) and Associated Cardiovascular Diseases in the Middle East (2015) Int J Occup Med Environ Health, 28, pp. 641-661; WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: Global update 2005: Summary of risk assessment (2006) Geneva World Heal Organ, pp. 1-22. , World Health Organization; Dayan, U., Levy, I., The influence of meteorological conditions and atmospheric circulation types on PM 10 and visibility in Tel Aviv (2005) J Appl Meteorol, 44, pp. 606-619; Vajanapoom, N., Shy, C.M., Neas, L.M., Loomis, D., Estimation of particulate matter from visibility in Bangkok (2001) Thailand J Expo Anal Environ Epidemiol, 11, pp. 97-102. , 1:CAS:528:DC%2BD3MXkslSmtLg%3D; Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S., Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon (2006) Atmos Environ, 40, pp. 593-605; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63, pp. 1-9. , 1:STN:280:DC%2BC2MvitFKruw%3D%3D","Greer, A.L.; Ontario Veterinary College, University of Guelph, 50 Stone Road E, Canada; email: agreer@uoguelph.ca",,"BioMed Central Ltd.",14712334,,BIDMB,"30717685","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85061129535 "Joyjinda Y., Rodpan A., Chartpituck P., Suthum K., Yaemsakul S., Cheun-Arom T., Bunprakob S., Olival K.J., Stokes M.M., Hemachudha T., Wacharapluesadee S.","49663712400;36648094900;57205696090;57205687112;57205690757;55840026000;57205687840;11141168500;57205697020;7007163205;6602950054;","First complete genome sequence of human coronavirus HKU1 from a nonill bat guano miner in Thailand",2019,"Microbiology Resource Announcements","8","6", e01457-18,"","",,1,"10.1128/MRA.01457-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061133638&doi=10.1128%2fMRA.01457-18&partnerID=40&md5=a8776038524e483737d1320243082c5f","Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 5th Office of Disease Prevention and Control, Ratchaburi, Thailand; Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand; EcoHealth Alliance, New York, NY, United States; Cooperative Biological Engagement Program, Defense Threat Reduction Agency (DTRA), Washington, DC, United States","Joyjinda, Y., Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Rodpan, A., Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chartpituck, P., 5th Office of Disease Prevention and Control, Ratchaburi, Thailand; Suthum, K., 5th Office of Disease Prevention and Control, Ratchaburi, Thailand; Yaemsakul, S., 5th Office of Disease Prevention and Control, Ratchaburi, Thailand; Cheun-Arom, T., Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand; Bunprakob, S., Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Olival, K.J., EcoHealth Alliance, New York, NY, United States; Stokes, M.M., Cooperative Biological Engagement Program, Defense Threat Reduction Agency (DTRA), Washington, DC, United States; Hemachudha, T., Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Wacharapluesadee, S., Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand","Human coronavirus HKU1 (HCoV-HKU1) was first detected in a patient with viral pneumonia from Hong Kong in 2004. Here, we report the first complete genome sequence of HCoV-HKU1 from Thailand, obtained from a nonill person who worked in a bat cave. Phylogenetic tree analysis revealed it as a group B HCoV-HKU1. © 2019 Joyjinda et al.",,"deoxyribonuclease; fertilizer; RNA directed RNA polymerase; virus RNA; Article; bat; Betacoronavirus; Coronaviridae; Coronaviridae infection; DNA library; human; metagenomics; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; miner; molecular phylogeny; next generation sequencing; nucleotide sequence; occupational exposure; phylogenetic tree; polymerase chain reaction; RNA extraction; SARS coronavirus; severe acute respiratory syndrome; Thailand; throat culture; virus genome; whole genome sequencing","Lefkowitz, E.J., Dempsey, D.M., Hendrickson, R.C., Orton, R.J., Siddell, S.G., Smith, D.B., Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV) (2018) Nucleic Acids Res, 46, pp. D708-D717. , https://doi.org/10.1093/nar/gkx932; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , https://doi.org/10.1038/nature12711; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8, pp. e00373-e00417. , https://doi.org/10.1128/mBio.00373-17; Wacharapluesadee, S., Sintunawa, C., Kaewpom, T., Khongnomnan, K., Olival, K.J., Epstein, J.H., Rodpan, A., Hemachudha, T., Group C betacoronavirus in bat guano fertilizer, Thailand (2013) Emerg Infect Dis Aug, 19, pp. 1349-1351. , https://doi.org/10.3201/eid1908.130119; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Akashi, H., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg Infect Dis, 16, pp. 1217-1223. , https://doi.org/10.3201/eid1608.100208; Zaharia, M., Bolosky, W.J., Curtis, K., Fox, A., Patterson, D., Shenker, S., Stoica, I., Sittler, T., (2011) Faster and More Accurate Sequence Alignment with SNAP, , q-bio.GN; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows–Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760. , https://doi.org/10.1093/bioinformatics/btp324; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Durbin, R., 1000 genome project data processing subgroupThe Sequence Alignment/Map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079. , https://doi.org/10.1093/bioinformatics/btp352; Woo, P.C.Y., Lau, S.K.P., Yip, C.C.Y., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., Comparative analysis of 22 Coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in Coronavirus HKU1 (2006) J Virol, 80, pp. 7136-7145. , https://doi.org/10.1128/JVI.00509-06","Wacharapluesadee, S.; Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Faculty of Medicine, Chulalongkorn UniversityThailand; email: spwa@hotmail.com",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Article,"Final",Open Access,Scopus,2-s2.0-85061133638 "El-Duah P., Sylverken A., Owusu M., Yeboah R., Lamptey J., Frimpong Y.O., Burimuah V., Antwi C., Folitse R., Agbenyega O., Oppong S., Adu-Sarkodie Y.","56503967700;56674665700;54584146300;57205400278;57205401700;56376174200;57189049493;55781844700;55893471600;25222419700;6603094509;57201303125;","Potential intermediate hosts for coronavirus transmission: No evidence of clade 2C coronaviruses in domestic livestock from Ghana",2019,"Tropical Medicine and Infectious Disease","4","1", 34,"","",,1,"10.3390/tropicalmed4010034","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072226909&doi=10.3390%2ftropicalmed4010034&partnerID=40&md5=4dd7378ea508e9295fb55f779b3b686e","Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Agroforestry, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana","El-Duah, P., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana, Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana; Sylverken, A., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana, Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Owusu, M., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana, Department of Medical Laboratory Technology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Yeboah, R., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana, Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana; Lamptey, J., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana, Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana; Frimpong, Y.O., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana, Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Burimuah, V., Kumasi Centre for Collaborative Research in Tropical Medicine, PMB, UPO, Kumasi, 00233, Ghana, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Antwi, C., Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Folitse, R., School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Agbenyega, O., Department of Agroforestry, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Oppong, S., Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana; Adu-Sarkodie, Y., Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, 00233, Ghana","The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade ago with worldwide distribution, was believed to be of zoonotic origin from bats with dromedary camels as intermediate hosts. There is a likelihood of other domestic livestock serving as intermediate hosts for this virus. The presence of coronaviruses, closely related to MERS-CoV in Ghanaian bats, presented the opportunity to test the hypothesis of transmissibility of this virus through domestic livestock species. The possible interactions between livestock and bats in 31 household farms were accessed by observation and interviews with farmers. Rectal swabs and serum from cattle, sheep, goats, donkeys, and swine from commercial and household farms were tested for MERS-CoV and a Nycteris sp. bat coronavirus, previously detected in Ghana. A pan-PCR assay to detect clade 2c viruses and recombinant immunofluorescence assay to detect anti-spike IgG antibodies against the target viruses were used. Likely contact between livestock and bats was determined for 13 farms (41.9%) that reported confining their livestock and also observing bats in their homes. Livestock were left unconfined on eight farms (25.8%) that also observed bats roosting in trees close to their homes. No viral RNA or antibodies against the two coronaviruses were detected in any of the livestock species tested. Cattle, sheep, goats, donkeys, and swine are not likely hosts of clade 2c coronaviruses. © 2019 by the authors.","Bats; Coronavirus; Intermediate host; Livestock","Article; bat; Coronavirinae; Coronavirus clade 2c; Ghana; immunofluorescence; intermediate host; laboratory test; livestock; Middle East respiratory syndrome coronavirus; nonhuman; seroprevalence; virus transmission","Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; De Groot, R., Ziebuhr, J., Poon, L., Woo, P., Talbot, P., Rottier, P., Holmes, K., Enjuanes, L., (2008) Taxonomic Proposal to the ICTV Executive Committee: Revision of the Family Coronaviridae, , ICTV: Mountain View, CA, USA; Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Fouchier, A.R., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Eng. J. Med., 348, pp. 1967-1976; Guan, Y., Zheng, B., He, Y., Liu, X., Zhuang, Z., Cheung, C., Luo, S., Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Field, H., Bats and emerging zoonoses: Henipaviruses and SARS (2009) Zoonoses Public Health, 56, pp. 278-284; Zaki, M.A., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, A.R., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Eng. J. Med., 367, pp. 1814-1820; Haagmans, L.B., al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.-J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Azhar, I.E., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Eng. J. Med., 370, pp. 2499-2505; Memish, A.Z., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., AlHakeem, R., Kapoor, A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19; Alagaili, N.A., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., de Wit, E., Munster, V.J., Kapoor, A., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e00914; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Donaldson, E.F., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Muller, M.A., Adu-Sarkodie, Y., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Corman, M.V., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Ngeiywa, K.J.J., Al Masri, M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9864-9869; Crossley, M.B., Mock, R.E., Callison, S.A., Hietala, S.K., Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E (2012) Viruses, 4, pp. 3689-3700; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol.; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-coronavirus in household contacts (2014) N. Eng. J. Med., 371, pp. 828-835; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., Bett, B., Corman, V.M., MERS-CoV antibodies in humans, Africa, 2013–2014 (2016) Emerg. Infect. Dis., 22, pp. 1086-1089; Reusken, C., Ababneh, M., Raj, V., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G., Müller, M., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 12, p. 20662; Hemida, M., Perera, R., Wang, P., Alhammadi, M., Siu, L., Li, M., Poon, L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2012) Euro Surveill. Bull., 18, p. 20659; Meyer, B., García-Bocanegra, I., Wernery, U., Wernery, R., Sieberg, A., Müller, M.A., Drexler, J.F., Eckerle, I., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg. Infect. Dis., 21, pp. 181-182; Perera, R., Wang, P., Gomaa, M., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L., Moatasim, Y., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574; Müller, A.M., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Meyer, B., Human betacoronavirus 2c EMC/2012–related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, p. 456; Corman, V., Müller, M., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Nitsche, A., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Eurosurveillance, 17, p. 20334; Meyer, B., Müller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., van Beek, J., Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis., 20, pp. 552-559; Binger, T., Annan, A., Drexler, J.F., Müller, M.A., Kallies, R., Adankwah, E., Wollny, R., Dei, D., A novel rhabdovirus isolated from the straw-colored fruit bat Eidolon helvum, with signs of antibodies in swine and humans (2015) J. Virol., 89, pp. 4588-4597; Hoye, J.B., Munster, V.J., Nishiura, H., Klaassen, M., Fouchier, R.A., Surveillance of wild birds for avian influenza virus (2010) Emerg. Infect. Dis., 16, p. 1827; Venette, C.R., Moon, R.D., Hutchison, W.D., Strategies and statistics of sampling for rare individuals (2002) Ann. Rev. Entomol., 47, pp. 143-174; Chu, D., Poon, L., Gomaa, M.M., Shehata, M.M., Perera, R., Zeid, D.A., el Rifay, A.S., Webby, R.J., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20, pp. 1049-1053; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Junglen, S., Clinical features and virological analysis of a case of Middle East. Respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13, pp. 745-751; Cotton, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Al-Tawfiq, J.A., AlRabiah, F.A., Transmission and evolution of the Middle East. Respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Reusken, B.C., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Corman, V.M., Middle East. Respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Raj, S.V., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, p. 251; Reusken, B.C., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr. Opini. Virol., 16, pp. 55-62; Eckerle, I., Corman, V.M., Müller, M.A., Lenk, M., Ulrich, R.G., Drosten, C., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerg. Infect. Dis., 20, p. 276; Doremalen, V.N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East. Respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; Adney, R.D., Brown, V.R., Porter, S.M., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Inoculation of goats, sheep, and horses with MERS-CoV DOES Not. Result in productive viral shedding (2016) Viruses, 8, p. 230; Gortazar, C., Reperant, L.A., Kuiken, T., de la Fuente, J., Boadella, M., Martínez-Lopez, B., Ruiz-Fons, F., Medley, G., Crossing the interspecies barrier: Opening the door to zoonotic pathogens (2014) PLoS Pathog, 10; Mossoun, A., Pauly, M., Akoua-Koffi, C., Couacy-Hymann, E., Leendertz, S.A.J., Anoh, A.E., Gnoukpoho, A.H., Schubert, G., Contact to non-human primates and risk factors for zoonotic disease emergence in the Taï region, Côte d'Ivoire (2015) EcoHealth, 12, pp. 580-591; Meyer, B., Drosten, C., Müller, M.A., Serological assays for emerging coronaviruses: Challenges and pitfalls (2014) Virus Res, 194, pp. 175-183; Wilson, R.T., Extra-limital records of the one-humped camel in west and central Africa (2014) J. Camel Pract. Res., 21, pp. 115-120; Anti, P., Owusu, M., Agbenyega, O., Annan, A., Badu, E.K., Nkrumah, E.E., Tschapka, M., Drosten, C., Human–bat interactions in rural West (2015) Africa. Emerg. Infect. Dis., 21, p. 1418","Adu-Sarkodie, Y.; Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, PMB, UPOGhana; email: yasax@hotmail.co.uk",,"MDPI AG",24146366,,,,"English","Trop. Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85072226909 "Hulswit R.J.G., Lang Y., Bakkers M.J.G., Li W., Li Z., Schouten A., Ophorst B., Van Kuppeveld F.J.M., Boons G.-J., Bosch B.-J., Huizinga E.G., De Groot R.J.","56685560200;57193546459;56685406700;54966542700;57189491157;35601135700;57205740403;7004255109;25635472000;7003681993;7004310068;7103077066;","Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A",2019,"Proceedings of the National Academy of Sciences of the United States of America","116","7",,"2681","2690",,13,"10.1073/pnas.1809667116","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061399521&doi=10.1073%2fpnas.1809667116&partnerID=40&md5=255fbe9f674c69af188b3f9e4a76799a","Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Department of Chemical Biology and Drug Discovery, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, 3584 CG, Netherlands; Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, Utrecht, 3584 CH, Netherlands; Department of Chemistry, University of Georgia, Athens, GA 30602, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States","Hulswit, R.J.G., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Lang, Y., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Bakkers, M.J.G., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States; Li, W., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Li, Z., Department of Chemical Biology and Drug Discovery, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, 3584 CG, Netherlands; Schouten, A., Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, Utrecht, 3584 CH, Netherlands; Ophorst, B., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Van Kuppeveld, F.J.M., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Boons, G.-J., Department of Chemical Biology and Drug Discovery, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, 3584 CG, Netherlands, Department of Chemistry, University of Georgia, Athens, GA 30602, United States, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands; Huizinga, E.G.; De Groot, R.J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CH, Netherlands","Human betacoronaviruses OC43 and HKU1 are endemic respiratory pathogens and, while related, originated from independent zoonotic introductions. OC43 is in fact a host-range variant of the species Betacoronavirus-1, and more closely related to bovine coronavirus (BCoV)—its presumptive ancestor—and porcine hemagglutinating encephalomyelitis virus (PHEV). The β1-coronaviruses (β1CoVs) and HKU1 employ glycan-based receptors carrying 9-O-acetylated sialic acid (9-O-Ac-Sia). Receptor binding is mediated by spike protein S, the main determinant of coronavirus host specificity. For BCoV, a crystal structure for the receptor-binding domain S1 A is available and for HKU1 a cryoelectron microscopy structure of the complete S ectodomain. However, the location of the receptor-binding site (RBS), arguably the single-most important piece of information, is unknown. Here we solved the 3.0-Å crystal structure of PHEV S1 A . We then took a comparative structural analysis approach to map the β1CoV S RBS, using the general design of 9-O-Ac-Sia-binding sites as blueprint, backed-up by automated ligand docking, structure-guided mutagenesis of OC43, BCoV, and PHEV S1 A , and infectivity assays with BCoV-S–pseudotyped vesicular stomatitis viruses. The RBS is not exclusive to OC43 and related animal viruses, but is apparently conserved and functional also in HKU1 S1 A . The binding affinity of the HKU1 S RBS toward short sialoglycans is significantly lower than that of OC43, which we attribute to differences in local architecture and accessibility, and which may be indicative for differences between the two viruses in receptor fine-specificity. Our findings challenge reports that would map the OC43 RBS elsewhere in S1 A and that of HKU1 in domain S1 B © 2019 National Academy of Sciences. All Rights Reserved.","9-O-acetylated sialic acid; Coronavirus; HKU1; OC43; Spike","sialic acid derivative; virus spike protein; coronavirus spike glycoprotein; n acetylneuraminic acid; virus receptor; animal cell; Article; Betacoronavirus; Betacoronavirus HKU1; Betacoronavirus OC43; binding affinity; binding site; Bovine coronavirus; controlled study; crystal structure; erythrocyte; molecular docking; mutagenesis; nonhuman; Porcine hemagglutinating encephalomyelitis virus; priority journal; protein carbohydrate interaction; protein domain; rat; Vesiculovirus; virus infectivity; acetylation; animal; chemistry; human; Human coronavirus OC43; membrane fusion; metabolism; physiology; Acetylation; Animals; Binding Sites; Coronavirus OC43, Human; Humans; Membrane Fusion; N-Acetylneuraminic Acid; Rats; Receptors, Virus; Spike Glycoprotein, Coronavirus","Corman, V.M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci USA, 113, pp. 9864-9869; Vijgen, L., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80, pp. 7270-7274; Vijgen, L., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604; Huynh, J., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J Virol, 86, pp. 12816-12825; Tao, Y., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol, 91, pp. 1-16; Yuen, K.Y., Lau, S.K., Woo, P.C., Wild animal surveillance for coronavirus HKU1 and potential variants of other coronaviruses (2012) Hong Kong Med J, 18, pp. 25-26; Woo, P.C., Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia (2005) J Infect Dis, 192, pp. 1898-1907; McIntosh, K., Seroepidemiologic studies of coronavirus infection in adults and children (1970) Am J Epidemiol, 91, pp. 585-592; Morfopoulou, S., Human coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498; Bakkers, M.J.G., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity (2017) Cell Host Microbe, 21, pp. 356-366; Hulswit, R.J.G., De Haan, C.A.M., Bosch, B.-J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580; Matrosovich, M., Herrler, G., Klenk, H.D., Sialic acid receptors of viruses (2015) Top Curr Chem, 367, pp. 1-28; Huang, X., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J Virol, 89, pp. 7202-7213; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc Natl Acad Sci USA, 85, pp. 4526-4529; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J Virol, 87, pp. 3097-3107; Peng, G., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J Biol Chem, 287, pp. 41931-41938; Zeng, Q., Langereis, M.A., Van Vliet, A.L.W., Huizinga, E.G., De Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc Natl Acad Sci USA, 105, pp. 9065-9069; Langereis, M.A., Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases (2009) Proc Natl Acad Sci USA, 106, pp. 15897-15902; Langereis, M.A., Zeng, Q., Heesters, B.A., Huizinga, E.G., De Groot, R.J., The murine coronavirus hemagglutinin-esterase receptor-binding site: A major shift in ligand specificity through modest changes in architecture (2012) PLoS Pathog, 8. , correction (2012) 8; Cook, J.D., Sultana, A., Lee, J.E., Structure of the infectious salmon anemia virus receptor complex illustrates a unique binding strategy for attachment (2017) Proc Natl Acad Sci USA, 114, pp. E2929-E2936; Bakkers, M.J.G., Coronavirus receptor switch explained from the stereo-chemistry of protein-carbohydrate interactions and a single mutation (2016) Proc Natl Acad Sci USA, 113, pp. E3111-E3119; Song, H., An open receptor-binding cavity of hemagglutinin-esterase-fusion glycoprotein from newly-identified influenza D virus: Basis for its broad cell tropism (2016) PLoS Pathog, 12. , correction (2016) 12:e1005505; Rosenthal, P.B., Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus (1998) Nature, 396, pp. 92-96; Walls, A.C., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23, pp. 899-905; Walls, A.C., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Yuan, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092; Gui, M., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27, pp. 119-129; Peng, G., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc Natl Acad Sci USA, 108, pp. 10696-10701; Ou, X., Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1 (2017) Nat Commun, 8, p. 15216; Qian, Z., Identification of the receptor-binding domain of the spike glycoprotein of human betacoronavirus HKU1 (2015) J Virol, 89, pp. 8816-8827; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261; Brossmer, R., Isecke, R., Herrler, G., A sialic acid analogue acting as a receptor determinant for binding but not for infection by influenza C virus (1993) FEBS Lett, 323, pp. 96-98; Neu, U., Bauer, J., Stehle, T., Viruses and sialic acids: Rules of engagement (2011) Curr Opin Struct Biol, 21, pp. 610-618; Kaiser, J.T., Crystal structure of a NifS-like protein from Thermotoga maritima: Implications for iron sulphur cluster assembly (2000) J Mol Biol, 297, pp. 451-464; Pronker, M.F., Structural basis of myelin-associated glycoprotein adhesion and signalling (2016) Nat Commun, 7, p. 13584; Van Der Vries, E., H1N1 2009 pandemic influenza virus: Resistance of the I223R neuraminidase mutant explained by kinetic and structural analysis (2012) PLoS Pathog, 8; De Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of corona- And toroviruses (2006) Glycoconj J, 23, pp. 59-72; Li, W., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci USA, 114, pp. E8508-E8517; King, B., Brian, D.A., Bovine coronavirus structural proteins (1982) J Virol, 42, pp. 700-707; Hogue, B.G., King, B., Brian, D.A., Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59 (1984) J Virol, 51, pp. 384-388; Kozak, R.P., Royle, L., Gardner, R.A., Fernandes, D.L., Wuhrer, M., Suppression of peeling during the release of O-glycans by hydrazinolysis (2012) Anal Biochem, 423, pp. 119-128; Reeves, P.J., Callewaert, N., Contreras, R., Khorana, H.G., Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line (2002) Proc Natl Acad Sci USA, 99, pp. 13419-13424; Peng, W., Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity (2017) Cell Host Microbe, 21, pp. 23-34; Li, W., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Langereis, M.A., Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins (2015) Cell Rep, 11, pp. 1966-1978; Lubineau, A., Le Gallic, J., Stereoselective syntheses of ALKYL- And ALKYL-2-THIO-α-sialosides (1991) J Carbohydr Chem, 10, pp. 263-268; Kabsch, W., Xds (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 125-132; Winn, M.D., Overview of the CCP4 suite and current developments (2011) Acta Crystallogr D Biol Crystallogr, 67, pp. 235-242; McCoy, A.J., Phaser crystallographic software (2007) J Appl Cryst, 40, pp. 658-674; Vagin, A.A., REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use (2004) Acta Crystallogr Sect D Biol Crystallogr, 60, pp. 2184-2195; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501; Kaname, Y., Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64 (2016) J Virol, 84, pp. 3210-3219; Burkard, C., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog, 10; Langereis, M.A., Van Vliet, A.L.W., Boot, W., De Groot, R.J., Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein (2010) J Virol, 84, pp. 8970-8974","De Groot, R.J.; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht UniversityNetherlands; email: r.j.degroot@uu.nl",,"National Academy of Sciences",00278424,,PNASA,"30679277","English","Proc. Natl. Acad. Sci. U. S. A.",Article,"Final",Open Access,Scopus,2-s2.0-85061399521 "Algaissi A., Agrawal A.S., Han S., Peng B.-H., Luo C., Li F., Chan T.-S., Couch R.B., Tseng C.-T.K.","57046024300;57204367081;57206209580;7102873025;55908846900;26028899600;9273838400;7102611225;7402541658;","Elevated human dipeptidyl peptidase 4 expression reduces the susceptibility of hDPP4 transgenic mice to middle east respiratory syndrome coronavirus infection and disease",2019,"Journal of Infectious Diseases","219","5",,"829","835",,3,"10.1093/infdis/jiy574","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061576560&doi=10.1093%2finfdis%2fjiy574&partnerID=40&md5=69e091fd01f90a5211fe8a3b065ae971","Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory 5.200Q, 301 University Boulevard, Galveston, TX 77555-0609, United States; Department of Molecular Diagnostics, University of Texas Medical Branch, Galveston, United States; Department of Neurosciences, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, United States; Department of Internal Medicine, Division of Infectious Disease, University of Texas Medical Branch, Galveston, United States; Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, United States; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, United States; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia","Algaissi, A., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory 5.200Q, 301 University Boulevard, Galveston, TX 77555-0609, United States, Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia; Agrawal, A.S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory 5.200Q, 301 University Boulevard, Galveston, TX 77555-0609, United States; Han, S., Department of Molecular Diagnostics, University of Texas Medical Branch, Galveston, United States; Peng, B.-H., Department of Neurosciences, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, United States; Luo, C., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, United States; Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, United States; Chan, T.-S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory 5.200Q, 301 University Boulevard, Galveston, TX 77555-0609, United States; Couch, R.B., Department of Internal Medicine, Division of Infectious Disease, University of Texas Medical Branch, Galveston, United States; Tseng, C.-T.K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory 5.200Q, 301 University Boulevard, Galveston, TX 77555-0609, United States, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, United States","Background The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) infections pose threats to public health worldwide, making an understanding of MERS pathogenesis and development of effective medical countermeasures (MCMs) urgent. Methods We used homozygous (+/+) and heterozygous (+/-) human dipeptidyl peptidase 4 (hDPP4) transgenic mice to study the effect of hDPP4 on MERS-CoV infection. Specifically, we determined values of 50% lethal dose (LD 50) of MERS-CoV for the 2 strains of mice, compared and correlated their levels of soluble (s)hDPP4 expression to susceptibility, and explored recombinant (r)shDPP4 as an effective MCM for MERS infection. Results hDPP4 +/+ mice were unexpectedly more resistant than hDPP4 +/- mice to MERS-CoV infection, as judged by increased LD 50, reduced lung viral infection, attenuated morbidity and mortality, and reduced histopathology. Additionally, the resistance to MERS-CoV infection directly correlated with increased serum shDPP4 and serum virus neutralizing activity. Finally, administration of rshDPP4 led to reduced lung virus titer and histopathology. Conclusions Our studies suggest that the serum shDPP4 levels play a role in MERS pathogenesis and demonstrate a potential of rshDPP4 as a treatment option for MERS. Additionally, it offers a validated pair of Tg mice strains for characterizing the effect of shDPP4 on MERS pathogenesis. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.","human DPP4; medical countermeasures for MERS; MERS pathogenesis; Middle East respiratory syndrome coronavirus; transgenic mice","dipeptidyl peptidase IV; dipeptidyl peptidase IV; animal tissue; Conference Paper; controlled study; histopathology; infection sensitivity; LD50; lung infection; medical countermeasure; Middle East respiratory syndrome; morbidity; mortality rate; mouse; nonhuman; pilot study; priority journal; protein expression; protein expression level; protein function; transgenic mouse; virus load; virus neutralization; virus resistance; animal; blood; Coronavirus infection; disease model; disease resistance; gene expression; genetics; growth, development and aging; human; immunology; Middle East respiratory syndrome coronavirus; transgenic mouse; virology; Animals; Coronavirus Infections; Dipeptidyl Peptidase 4; Disease Models, Animal; Disease Resistance; Gene Expression; Humans; Lethal Dose 50; Mice; Mice, Transgenic; Middle East Respiratory Syndrome Coronavirus","(2018) Epidemic and Pandemic-prone Diseases, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-june-2018.html, World Health Organization Regional Office for the Eastern Mediterranean.. MERS situation update, June. Accessed 12 July 2018; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Klemann, C., Wagner, L., Stephan, M., Von Hörsten, S., Cut to the chase: A review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system (2016) Clin Exp Immunol, 185, pp. 1-21; Wagner, L., Klemann, C., Stephan, M., Von Hörsten, S., Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins (2016) Clin Exp Immunol, 184, pp. 265-283; Agrawal, A.S., Garron, T., Tao, X., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670; Tao, X., Garron, T., Agrawal, A.S., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2016) J Virol, 90, pp. 57-67; Du, L., Kou, Z., Ma, C., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERSCoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS One, 8, p. e81587; Yang, Y., Du, L., Liu, C., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Mamgain, S., Mathur, S., Kothiyal, P., Imunomodulatory activity of DPP4 (2013) J Pharmacol Clin Toxicol, 1, p. 1006; Lambeir, A.M., Durinx, C., Scharpé, S., De Meester, I., Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV (2003) Crit Rev Clin Lab Sci, 40, pp. 209-294; Agrawal, A.S., Tao, X., Algaissi, A., Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum Vaccin Immunother, 12, pp. 2351-2356; Morimoto, C., Schlossman, S.F., The structure and function of CD26 in the T-cell immune response (1998) Immunol Rev, 161, pp. 55-70; Nohtomi, K., Terasaki, M., Kohashi, K., Hiromura, M., Nagashima, M., Hirano, T., A dipeptidyl peptidase-4 inhibitor directly suppresses inflammation and foam cell formation in monocytes/macrophages beyond incretins (2014) Diabetologia, 57, p. S373; Itou, M., Kawaguchi, T., Taniguchi, E., Sata, M., Dipeptidyl peptidase-4: A key player in chronic liver disease (2013) World J Gastroenterol, 19, pp. 2298-2306; Inn, K.S., Kim, Y., Aigerim, A., Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus (2018) Virology, 518, pp. 324-327; Hofmann, H., Geier, M., Marzi, A., Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor (2004) Biochem Biophys Res Commun, 319, pp. 1216-1221; Huguenel, E.D., Cohn, D., Dockum, D.P., Prevention of rhinovirus infection in chimpanzees by soluble intercellular adhesion molecule-1 (1997) Am J Respir Crit Care Med, 155, pp. 1206-1210; Gardner, M.R., Kattenhorn, L.M., Kondur, H.R., AAVexpressed eCD4-Ig provides durable protection from multiple SHIV challenges (2015) Nature, 519, pp. 87-91; Saad, M., Omrani, A.S., Baig, K., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594","Tseng, C.-T.K.; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory 5.200Q, 301 University Boulevard, United States; email: sktseng@utmb.edu",,"Oxford University Press",00221899,,JIDIA,"30256968","English","J. Infect. Dis.",Conference Paper,"Final",Open Access,Scopus,2-s2.0-85061576560 "Lecis R., Mucedda M., Pidinchedda E., Pittau M., Alberti A.","6602986054;6507521878;6504393530;8550541800;7201912968;","Molecular identification of Betacoronavirus in bats from Sardinia (Italy): first detection and phylogeny",2019,"Virus Genes","55","1",,"60","67",,1,"10.1007/s11262-018-1614-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056644171&doi=10.1007%2fs11262-018-1614-8&partnerID=40&md5=e3890ce5fb0edc2f19657f0ea72fbdf5","Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, 07100, Italy; Mediterranean Centre for Disease Control, University of Sassari, Via Vienna 2, Sassari, 07100, Italy; Centro Pipistrelli Sardegna, Via G. Leopardi 1, Sassari, 07100, Italy","Lecis, R., Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, 07100, Italy, Mediterranean Centre for Disease Control, University of Sassari, Via Vienna 2, Sassari, 07100, Italy; Mucedda, M., Centro Pipistrelli Sardegna, Via G. Leopardi 1, Sassari, 07100, Italy; Pidinchedda, E., Centro Pipistrelli Sardegna, Via G. Leopardi 1, Sassari, 07100, Italy; Pittau, M., Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, 07100, Italy, Mediterranean Centre for Disease Control, University of Sassari, Via Vienna 2, Sassari, 07100, Italy; Alberti, A., Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Sassari, 07100, Italy, Mediterranean Centre for Disease Control, University of Sassari, Via Vienna 2, Sassari, 07100, Italy","Bats may be natural reservoirs for a large variety of emerging viruses, including mammalian coronaviruses (CoV). The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) in humans, with evidence that these viruses may have their ancestry in bats, highlights the importance of virus surveillance in bat populations. Here, we report the identification and molecular characterization of a bat β-Coronavirus, detected during a viral survey carried out on different bat species in the island of Sardinia (Italy). Cutaneous, oral swabs, and faecal samples were collected from 46 bats, belonging to 15 different species, and tested for viral presence. Coronavirus RNA was detected in faecal samples from three different species: the greater horseshoe bat (Rhinolophus ferrumequinum), the brown long-eared bat (Plecotus auritus), and the European free-tailed bat (Tadarida teniotis). Phylogenetic analyses based on RNA-dependent RNA polymerase (RdRp) sequences assigned the detected CoV to clade 2b within betacoronaviruses, clustering with SARS-like bat CoVs previously reported. These findings point to the need for continued surveillance of bat CoV circulating in Sardinian bats, and extend the current knowledge on CoV ecology with novel sequences detected in bat species not previously described as β-Coronavirus hosts. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.","Bats; Coronavirus; Rhinolophus ferrumequinum; RNA-dependent RNA polymerase; Sardinia","RNA directed RNA polymerase; virus RNA; amino acid sequence; animal tissue; Article; bat; Betacoronavirus; controlled study; ecology; feces analysis; Italy; nonhuman; oral biopsy; phylogeny; Plecotus auritus; priority journal; Rhinolophus ferrumequinum; RNA analysis; SARS-related coronavirus; sequence analysis; skin biopsy; species difference; Tadarida teniotis; taxonomic identification; virus identification; animal; animal disease; Betacoronavirus; classification; Coronavirus infection; DNA sequence; genetics; host range; human; molecular evolution; phylogeny; physiology; polymerase chain reaction; veterinary medicine; virology; virus genome; Animal Diseases; Animals; Betacoronavirus; Chiroptera; Coronavirus Infections; Evolution, Molecular; Genome, Viral; Host Specificity; Humans; Italy; Phylogeny; Polymerase Chain Reaction; Sequence Analysis, DNA","Burgin, C.J., Colella, J.P., Kahn, P.L., Upham, N.S., How many species of mammals are there? (2018) J Mammal, 99, pp. 1-14; García-Pérez, R., Ibáñez, C., Godínez, J.M., Aréchiga, N., Garin, I., Pérez-Suárez, G., de Paz, O., Bravo, I.G., Novel Papillomaviruses in free-ranging Iberian bats: no virus-host co-evolution, no strict host specificity, and hints for recombination (2014) Genome Biol Evol, 6, pp. 94-104; Smith, I., Wang, L., Bats and their virome: an important source of emerging viruses capable of infecting humans (2012) Curr Opin Virol, 3, pp. 1-8; Lin, X.D., Wanga, W., Haoc, Z.Y., Wang, Z.X., Guoa, W.P., Guana, X.Q., Wange, M.R., Zhanga, Y.Z., Extensive diversity of coronaviruses in bats from China (2017) Virol, 507, pp. 1-10; Tse, H., Tsang, A.K.L., Tsoi, H.W., Leung, A.S.P., Ho, C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., Identification of a novel bat papillomavirus by metagenomics (2012) PLoS ONE, 7; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: important reservoir hosts of emerging viruses (2006) Clin Microbiol Rev, 19, pp. 531-545; Woo, P.C.Y., Huang, Y., Lau, S.K.P., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; (2017) Taxonomy, , https://talk.ictvonline.org/taxonomy; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Moreno, A., Boniotti, M.B., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine Coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs (2009) J Virol, 83, pp. 1532-1537; Decaro, N., Mari, V., Elia, G., Addie, D.D., Camero, M., Lucente, M.S., Martella, V., Buonavoglia, C., Recombinant canine Coronaviruses in dogs, Europe (2010) Emerg Infect Dis, 16, pp. 41-47; Lorusso, A., Decaro, N., Schellen, P., Rottier, P.J.M., Buonavoglia, C., Haijema, B.J., de Groot, R.J., Gain, preservation and loss of a group 1a Coronavirus accessory glycoprotein (2008) J Virol, 82, pp. 10312-10317; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of Coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) JVirol, 84, pp. 11336-11349; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East Respiratory Syndrome Coronavirus by characterization of a conspecific virus from an African bat (2014) JVirol, 88, pp. 11297-11303; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Peiris, J.S., Identification of a novel coronavirus in bats (2005) J Virol, 79, pp. 2001-2009; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J Virol, 80, pp. 7481-7490; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Falcón, A., Vázquez-Morón, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Perez-Breña, P., Echevarría, J.E., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch Virol, 156, pp. 1883-1890; Gloza-Rausch, F., Ipsen, A., Seebens, A., Göttsche, M., Panning, M., Drexler, J.F., Petersen, N., Drosten, C., Detection and prevalence patterns of Group I Coronaviruses in bats, Northern Germany (2008) Emerg Infect Dis, 14, pp. 626-631; Reusken, C.B.E.M., Lina, P.H.C., Pielaat, A., de Vries, A., Dam-Deisz, C., Adema, J., Drexler, J.F., Kooi, E.A., Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe (2010) Vect Borne Zoonotic Dis, 10, pp. 785-791; Balboni, A., Gallina, L., Palladini, A., Prosperi, S., Battilani, M., A real-time PCR assay for bat SARS-like Coronavirus detection and its application to Italian greater horseshoe bat faecal sample surveys (2012) Sci World J, 2012; De Benedictis, P., Marciano, S., Scaravelli, D., Priori, P., Zecchin, B., Capua, I., Monne, I., Cattoli, G., Alpha and lineage C betaCoV infections in Italian bats (2014) Virus Genes, 48, pp. 366-371; Moreno, A., Lelli, D., de Sabato, L., Zaccaria, G., Boni, A., Sozzi, E., Prosperi, A., Vaccari, G., Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy (2017) Virol J, 14, p. 239; Veith, M., Mucedda, M., Kiefer, A., Pidinchedda, E., On the presence of pipistrelle bats (Pipistrellus and Hypsugo; Chiroptera: Vespertilionidae) in Sardinia (2011) Acta Chiropter, 13, pp. 89-99; VanDevanter, D.R., Warrener, P., Bennett, L., Schultz, E.R., Coulter, S., Garber, R.L., Rose, T.M., Detection and analysis of diverse herpesviral species by consensus primer PCR (1996) J Clin Microbiol, 34, pp. 1666-1671; Li, Y., Meyer, H., Zhao, H., Damon, I.K., GC content-based pan-pox universal PCR assays for Poxvirus detection (2010) J Clin Microbiol, 48, pp. 268-276; Perez-Tris, J., Williams, R.A.J., Abel-Fernandez, E., Barreiro, J., Conesa, J.J., Figuerola, J., Martinez-Martinez, M., Benitez, L., A multiplex PCR for detection of poxvirus and papillomavirus in cutaneous warts from live birds and museum skins (2011) Avian Dis, 55, pp. 545-553; De Sales Lima, F.E., Campos, F.S., Kuner Filho, H.C., De Carvalho Ruthner Batista, H.B., Carnielli, P.J., Cibulski, S.P., Spilki, F.R., Franco, A.C., Detection of Alphacoronavirus in velvety free-tailed bats (Molossus molossus) and Brazilian free-tailed bats (Tadarida brasiliensis) from urban area of Southern Brazil (2013) Virus Genes, 47, pp. 164-167; Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98NT (1999) Nucleic Acids Symp Ser, 41, pp. 95-98; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA 6: molecular evolutionary genetics analysis Version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Amoroso, M.G., Russo, D., Lanave, G., Cistrone, L., Pratelli, A., Martella, V., Galiero, G., Fusco, G., Detection and phylogenetic characterization of Astroviruses in insectivorous bats from Central-Southern Italy (2018) Zoonoses Public Health; Yuan, J., Hon, C.C., Li, Y., Wang, D., Xu, G., Zhang, H., Zhou, P., Shi, Z., Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans (2010) J Gen Virol, 91, pp. 1058-1062; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Arch Virol, 155, pp. 507-514; Mucedda, M., Pidinchedda, E., Pipistrelli in Sardegna. Conoscere e tutelare i mammiferi volanti (2010) Nuova Sampa Color, Muros, pp. 1-46; Mucedda, M., Kiefer, A., Pidinchedda, E., Veith, M., A new species of long-eared bat (Chiroptera, Vespertilionidae) from Sardinia, Italy (2002) Acta Chiropterolog, 42, pp. 121-135; Biollaz, F., Bruyndonckx, N., Beuneux, G., Mucedda, M., Goudet, J., Christe, P., Genetic isolation of insular populations of the Maghrebian bat, Myotis punicus, in the Mediterranean Basin (2010) J Biogeogr; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102, pp. 14040-14045; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Drexler, J.F., (2015) J Virol, 89, pp. 11858-11870; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol JVI, pp. 01953-2016; Lòpez-Baucells, A., Rocha, R., Fernàndez-Llamazares, A., When bats go viral: negative framings in virological research imperil bat conservation (2017) Mammal Rev","Lecis, R.; Department of Veterinary Medicine, University of Sassari, Via Vienna 2, Italy; email: rlecis@uniss.it",,"Springer New York LLC",09208569,,VIGEE,"30426315","English","Virus Genes",Article,"Final",Open Access,Scopus,2-s2.0-85056644171 "Yilmaz H., Faburay B., Turan N., Cotton-Caballero M., Cetinkaya B., Gurel A., Yilmaz A., Cizmecigil U.Y., Aydin O., Tarakci E.A., Bayraktar E., Richt J.A.","55580079300;22937562100;7004571094;57202873123;7006471257;7006520048;7101628067;56071165000;57191164322;57211991813;57202868305;57203104067;","Production of Recombinant N Protein of Infectious Bronchitis Virus Using the Baculovirus Expression System and Its Assessment as a Diagnostic Antigen",2019,"Applied Biochemistry and Biotechnology","187","2",,"506","517",,,"10.1007/s12010-018-2815-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049637079&doi=10.1007%2fs12010-018-2815-2&partnerID=40&md5=021fd9b4fb6940e4e0380158dfa8dd77","Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State, University, Manhattan, KS, United States; Department of Microbiology, Veterinary Faculty, University of Firat, Elazig, Turkey; Department of Pathology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey; CEVA Animal Health, Poultry Division, Maslak, Turkey","Yilmaz, H., Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Faburay, B., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State, University, Manhattan, KS, United States; Turan, N., Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Cotton-Caballero, M., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State, University, Manhattan, KS, United States; Cetinkaya, B., Department of Microbiology, Veterinary Faculty, University of Firat, Elazig, Turkey; Gurel, A., Department of Pathology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey; Yilmaz, A., Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Cizmecigil, U.Y., Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Aydin, O., Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Tarakci, E.A., Department of Virology, University of Istanbul, Veterinary Faculty, Istanbul, 34320, Turkey; Bayraktar, E., CEVA Animal Health, Poultry Division, Maslak, Turkey; Richt, J.A., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State, University, Manhattan, KS, United States","The avian coronavirus-infectious bronchitis virus (AvCoV-IBV) is recognized as an important avian pathogen, and new viral variants are a continuous threat to the poultry industry worldwide. Sensitive diagnostics and efficacious vaccines are necessary to combat IBV infections in chickens. The aim of this study was to produce recombinant N protein of IBV in the baculovirus system to use in ELISA diagnostic tests in order to enable the assessment of the sero-prevalence and risk of IBV infections in chickens in Turkey. For this, the gene encoding the N protein of the Beaudette strain of IBV was expressed using a recombinant baculovirus expression system. The recombinant N protein was purified using Ni-NTA affinity chromatography. An estimated 50-kDa recombinant protein corresponding to the expected molecular weight of IBV N including the 6xHis tag was detected using an anti-His monoclonal antibody. Specific immunoreactivity of the recombinant protein was confirmed by Western blot using antiserum obtained from vaccinated and naturally infected chicken from Turkey as well as using a monoclonal antibody raised against the N protein of the IBV Massachusetts strain. The results obtained with the in-house ELISA had high agreement with a commercial ELISA. Immunoreactivity analysis using antisera in Western blotting and the in-house ELISA suggests that the recombinant IBV N protein could be broadly cross-reactive with antisera produced against different IBV strains. We conclude that the recombinant baculovirus expressed IBV N protein could serve as a useful diagnostic antigen for detection of IBV infections in chickens by ELISA. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.","Baculovirus; Expression; Infectious bronchitis virus; N protein; Recombinant","Affinity chromatography; Animals; Antigens; Gene encoding; Gene expression; Monoclonal antibodies; Risk assessment; Viruses; Baculovirus; Baculovirus expression systems; Baculovirus system; Diagnostic tests; Expression; Immunoreactivities; Recombinant; Recombinant baculovirus; Recombinant proteins; antigen; Avian infectious bronchitis virus N protein; recombinant protein; unclassified drug; viral protein; nucleocapsid protein; nucleocapsid protein, Coronavirus; recombinant protein; virus antigen; affinity chromatography; animal experiment; animal model; Article; Avian coronavirus; avian infectious bronchitis; Avian infectious bronchitis virus; Avian infectious bronchitis virus N; baculovirus expression system; chicken; controlled study; Coronavirus infection; cross reaction; diagnostic test; enzyme linked immunosorbent assay; immunization; immunogenicity; immunoreactivity; infection risk; nonhuman; polymerase chain reaction; poultry; prevalence; protein expression; serodiagnosis; Turkey (republic); virus detection; Western blotting; animal; Avian infectious bronchitis virus; Baculoviridae; biosynthesis; bird disease; cell line; chemistry; Coronavirus infection; gene expression; genetics; isolation and purification; Spodoptera; turkey (bird); veterinary medicine; virology; Animals; Antigens, Viral; Baculoviridae; Cell Line; Chickens; Coronavirus Infections; Gene Expression; Infectious bronchitis virus; Nucleocapsid Proteins; Poultry Diseases; Recombinant Proteins; Spodoptera; Turkeys","Andoh, K., Suenaga, K., Sakaguchi, M., Yamazaki, K., Honda, T., Decreased neutralizing antigenicity in IBV S1 protein expressed from mammalian cells (2015) Virus Research, 208, pp. 164-170; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Veterinary Research, 38 (2), pp. 281-297; Chen, H., Coote, B., Attree, S., Hiscox, J.A., Evaluation of a nucleoprotein-based enzyme-linked immunosorbent assay for the detection of antibodies against infectious bronchitis virus (2003) Avian Pathology, 32 (5), pp. 519-526; Cook, J.K., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathology, 41 (3), pp. 239-250; De Wit, S., Cook, J.K., van der Heijden, H.M., Infectious bronchitis virus variants: A review of the history, current situation and control measures (2011) Avian Pathology, 40 (3), pp. 223-235; Ding, M.D., Yang, X., Wang, H.N., Zhang, A.Y., Zhang, Z.K., Fan, W.Q., Cao, H.P., Development of an ELISA based on a multi-fragment antigen of infectious bronchitis virus for antibodies detection (2015) Biotechnology Letters, 37 (12), pp. 2453-2459; Faburay, B., Wilson, W., McVey, D.S., Drolet, B.S., Welngartl, H., Madden, D., Young, A., Richt, J.A., Rift Valley fever virus structural and nonstructural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep (2013) Vector Borne and Zoonotic Diseases, 13 (9), pp. 619-629; Faburay, B., Lebedev, M., McVey, D.S., Wilson, W., Morozov, I., Young, A., Richt, J.A., A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep (2014) Vector Borne and Zoonotic Diseases, 14 (10), pp. 746-756; Gelb, J., Welsman, Y., Ladman, B.S., Meir, R., S1 gene characteristics and efficacy of vaccination against infectious bronchitis virus field isolates from the United States and Israel (1996 to 2000) (2005) Avian Pathology, 34 (3), pp. 194-203; Ignjatovic, J., Sapats, S., Avian infectious bronchitis virus (2000) Rev. Sci. Tech. Off. Int. Epiz., 19 (2), pp. 493-508; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Diseases, 56 (4), pp. 634-641; Kumar, S., Tuteja, U., Kumar, A., Batra, H.V., Expression and purification of the 26 kDa periplasmic protein of Brucella abortus: a reagent for the diagnosis of bovine brucellosis (2008) Biotechnology and Applied Biochemistry, 49, pp. 213-218; Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 15, pp. 680-685; Liu, W.X., Hu, S., Qiao, Z.J., Chen, W.Y., Liu, L.T., Wang, F.K., Hua, R.H., Li, X.R., Expression, purification, and improved antigenic specificity of a truncated recombinant bp26 protein of Brucella melitensis M5-90: a potential antigen for differential serodiagnosis of brucellosis in sheep and goats (2011) Biotechnology and Applied Biochemistry, 58 (1), pp. 32-38; Lugovskaya, N.N., Scherbakov, A.V., Yakovleva, A.S., Tsyvanyuk, M.A., Mudrak, N.S., Drygin, V.V., Borisov, A.V., Detection of antibodies to avian infectious bronchitis virus by a recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay (2006) J. Virol. Methods., 135 (2), pp. 292-296; Meir, R., Krispel, S., Simanov, L., Eliahu, D., Maharat, O., Pitcovski, J., Immune responses to mucosal vaccination by the recombinant A1 and N proteins of infectious bronchitis virus (2012) Viral Immunology, 25 (1), pp. 55-62; Montassier, H.J., Molecular epidemiology and evolution of avian infectious bronchitis virus (2010) Rev. Bras. Cienc. Avic., 12 (2), pp. 87-96; Pradhan, S.K., Kamble, N.M., Pillai, A.S., Galkwad, S.S., Khulape, S.A., Reddy, M.R., Mohan, C.M., Dey, S., Recombinant nucleocapsid protein based single serum dilution ELISA for the detection of antibodies to infectious bronchitis virus in poultry (2014) Journal of Virological Methods, 209, pp. 1-6; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infection, Genetics and Evolution, 39, pp. 349-364; Wang, C.H., Hong, C.C., Seak, J.C., An ELISA for antibodies against infectious bronchitis virus using an S1 spike polypeptide (2002) Veterinary Microbiology, 85 (4), pp. 333-342; Worthington, K.J., Currie, R.J., Jones, R.C., A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006 (2008) Avian Pathology, 37 (3), pp. 247-257; Yilmaz, H., Turan, N., Ekici, H., Kondo, T., Hasoksuz, M., Sato, I., Tuchiya, K., Fukunaga, Y., Detection of antibodies to equine arteritis virus in horse sera using recombinant chimaeric N/G(L) protein (2007) The Veterinary Record, 161 (10), pp. 352-354; Yilmaz, H., Altan, E., Cizmecigil, U.Y., Gurel, A., Ozturk, G.Y., Bamac, O.E., Aydin, O., Turan, N., Phylogeny and S1 gene variation of infectious bronchitis virus detected in broilers and layers in Turkey (2016) Avian Diseases, 60 (3), pp. 596-602","Richt, J.A.; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State, UniversityUnited States; email: jricht@vet.k-state.edu",,"Humana Press Inc.",02732289,,,"29987628","English","Appl. Biochem. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85049637079 "Walls A.C., Xiong X., Park Y.-J., Tortorici M.A., Snijder J., Quispe J., Cameroni E., Gopal R., Dai M., Lanzavecchia A., Zambon M., Rey F.A., Corti D., Veesler D.","57159082300;55370685000;57199902157;6603890184;42462439500;6603081591;57210608588;7102284995;57193483843;7006689347;7006818684;7102099345;57209051663;25227836200;","Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion",2019,"Cell","176","5",,"1026","1039.e15",,19,"10.1016/j.cell.2018.12.028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061830074&doi=10.1016%2fj.cell.2018.12.028&partnerID=40&md5=b6d00890602c3798e134af962b389524","Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris, 75015, France; Humabs Biomed SA, Vir Biotechnology, Bellinzona, 6500, Switzerland; National Infection Service, Public Health England, London, NW9 5HT, United Kingdom; Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, 6500, Switzerland","Walls, A.C., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Xiong, X., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Park, Y.-J., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Tortorici, M.A., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States, Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris, 75015, France; Snijder, J., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Quispe, J., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Cameroni, E., Humabs Biomed SA, Vir Biotechnology, Bellinzona, 6500, Switzerland; Gopal, R., National Infection Service, Public Health England, London, NW9 5HT, United Kingdom; Dai, M., Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom; Lanzavecchia, A., Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, 6500, Switzerland; Zambon, M., National Infection Service, Public Health England, London, NW9 5HT, United Kingdom; Rey, F.A., Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris, 75015, France; Corti, D., Humabs Biomed SA, Vir Biotechnology, Bellinzona, 6500, Switzerland; Veesler, D., Department of Biochemistry, University of Washington, Seattle, WA 98195, United States","Recent outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome, along with the threat of a future coronavirus-mediated pandemic, underscore the importance of finding ways to combat these viruses. The trimeric spike transmembrane glycoprotein S mediates entry into host cells and is the major target of neutralizing antibodies. To understand the humoral immune response elicited upon natural infections with coronaviruses, we structurally characterized the SARS-CoV and MERS-CoV S glycoproteins in complex with neutralizing antibodies isolated from human survivors. Although the two antibodies studied blocked attachment to the host cell receptor, only the anti-SARS-CoV S antibody triggered fusogenic conformational changes via receptor functional mimicry. These results provide a structural framework for understanding coronavirus neutralization by human antibodies and shed light on activation of coronavirus membrane fusion, which takes place through a receptor-driven ratcheting mechanism. Structural analysis of the SARS-CoV S and MERS-CoV S glycoproteins in complex with neutralizing antibodies from human survivors sheds light into the mechanisms of membrane fusion and neutralization © 2018 Elsevier Inc.","class I fusion protein; coronavirus; glycoproteomics; membrane fusion; MERS-CoV; N-linked glycosylation; neutralizing antibodies; SARS-CoV; spike glycoprotein","glycoprotein S; neutralizing antibody; unclassified drug; virus antibody; virus glycoprotein; virus receptor; coronavirus spike glycoprotein; monoclonal antibody; protein binding; virus receptor; Article; conformational transition; controlled study; Coronavirinae; human; human cell; humoral immunity; membrane fusion; Middle East respiratory syndrome coronavirus; molecular mimicry; nonhuman; priority journal; protein conformation; protein structure; receptor functional mimicry; SARS coronavirus; survivor; virus activation; virus attachment; animal; Chlorocebus aethiops; Coronavirinae; Coronavirus infection; HEK293 cell line; immunology; metabolism; molecular mimicry; physiology; ultrastructure; Vero cell line; virus entry; Animals; Antibodies, Monoclonal; Antibodies, Neutralizing; Antibodies, Viral; Chlorocebus aethiops; Coronavirus; Coronavirus Infections; HEK293 Cells; Humans; Immunity, Humoral; Middle East Respiratory Syndrome Coronavirus; Molecular Mimicry; Protein Binding; Receptors, Virus; SARS Virus; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Internalization","Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Gross-Kunstleve, R.W., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr (2010) D Biol. Crystallogr, 66, pp. 213-221; Agirre, J., Iglesias-Fernández, J., Rovira, C., Davies, C.J., Wilson, K.S., Cowtan, K.D., Privateer: software for the conformational validation of carbohydrate structures (2015) Nat. Struct. Mol. Biol., 22, pp. 833-834; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 5871-5876; Bern, M., Kil, Y.J., Becker, C., Byonic: advanced peptide and protein identification software (2012) Curr. Protoc. Bioinformatics, Chapter 13. , Unit 13.20; Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S.M., Bricogne, G., Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr (2004) D Biol. Crystallogr, 60, pp. 2210-2221; Brown, A., Long, F., Nicholls, R.A., Toots, J., Emsley, P., Murshudov, G., Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions (2015) Acta Crystallogr. D Biol. Crystallogr., 71, pp. 136-153; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10, p. e1004502; Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 12-21; Chen, S., McMullan, G., Faruqi, A.R., Murshudov, G.N., Short, J.M., Scheres, S.H., Henderson, R., High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy (2013) Ultramicroscopy, 135, pp. 24-35; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; Cowtan, K., The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crytallogr (2006) D Biol. Crystallogr, 62, pp. 1002-1011; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Perlman, S., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat. Commun., 7, p. 13473; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 486-501; Evans, P.R., Murshudov, G.N., How good are my data and what is the resolution? (2013) Acta Crystallogr. D Biol. Crystallogr., 69, pp. 1204-1214; Frenz, B., Rämisch, S., Borst, A.J., Walls, A.C., Adolf-Bryfogle, J., Schief, W.R., Veesler, D., DiMaio, F., Automatically fixing errors in glycoprotein structures with Rosetta (2019) Structure, 27, pp. 134-139.e3; Frese, C.K., Zhou, H., Taus, T., Altelaar, A.F., Mechtler, K., Heck, A.J., Mohammed, S., Unambiguous phosphosite localization using electron-transfer/higher-energy collision dissociation (EThcD) (2013) J. Proteome Res., 12, pp. 1520-1525; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Goddard, T.D., Huang, C.C., Ferrin, T.E., Visualizing density maps with UCSF Chimera (2007) J. Struct. Biol., 157, pp. 281-287; Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., Ferrin, T.E., UCSF ChimeraX: Meeting modern challenges in visualization and analysis (2018) Protein Sci., 27, pp. 14-25; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13, p. e1006698; Kabsch, W., Xds (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 125-132; Kimanius, D., Forsberg, B.O., Scheres, S.H., Lindahl, E., Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 (2016) eLife, 5; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Kirchdoerfer, R.N., Wang, N., Pallesen, J., Wrapp, D., Turner, H.L., Cottrell, C.A., Corbett, K.S., Ward, A.B., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci. Rep., 8, p. 15701; Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J. Mol. Biol., 372, pp. 774-797; Krokhin, O., Li, Y., Andonov, A., Feldmann, H., Flick, R., Jones, S., Stroeher, U., Cheng, K., Mass spectrometric characterization of proteins from the SARS virus: a preliminary report (2003) Mol. Cell. Proteomics, 2, pp. 346-356; Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., Pulokas, J., Yoshioka, C., Lau, P.W., Appion: an integrated, database-driven pipeline to facilitate EM image processing (2009) J. Struct. Biol., 166, pp. 95-102; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Vasilieva, N., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B., Kern, R., MacCoss, M.J., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments (2010) Bioinformatics, 26, pp. 966-968; Matsuyama, S., Taguchi, F., Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis (2009) J. Virol., 83, pp. 11133-11141; McCoy, A.J., Oeffner, R.D., Millan, C., Sammito, M., Uson, I., Read, R.J., Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement (2018) Acta. Crystallogr. D Struct. Biol., 74, pp. 279-289; McCoy, L.E., van Gils, M.J., Ozorowski, G., Messmer, T., Briney, B., Voss, J.E., Kulp, D.W., Pauthner, M., Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies (2016) Cell Rep., 16, pp. 2327-2338; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Islam, A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Donaldson, E.F., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Royal, S.R., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3048-3053; Michielssens, S., Peters, J.H., Ban, D., Pratihar, S., Seeliger, D., Sharma, M., Giller, K., Lee, D., A designed conformational shift to control protein binding specificity (2014) Angew. Chem. Int. Ed. Engl., 53, pp. 10367-10371; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Millet, J.K., Whittaker, G.R., Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Biol (2016) Protoc. 6.otherMillet and Whittaker, 2016; Ng, M.L., Tan, S.H., See, E.E., Ooi, E.E., Ling, A.E., Proliferative growth of SARS coronavirus in Vero E6 cells (2003) J. Gen. Virol., 84, pp. 3291-3303; Nkolola, J.P., Bricault, C.A., Cheung, A., Shields, J., Perry, J., Kovacs, J.M., Giorgi, E., Brinkman-van der Linden, E.C., Characterization and immunogenicity of a novel mosaic M HIV-1 gp140 trimer (2014) J. Virol., 88, pp. 9538-9552; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 12262-12267; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera–a visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat. Methods, 14, pp. 290-296; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Ritchie, G., Harvey, D.J., Feldmann, F., Stroeher, U., Feldmann, H., Royle, L., Dwek, R.A., Rudd, P.M., Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein (2010) Virology, 399, pp. 257-269; Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., Baric, R., Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge (2008) J. Virol., 82, pp. 3220-3235; Rosenthal, P.B., Henderson, R., Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy (2003) J. Mol. Biol., 333, pp. 721-745; Rossen, J.W., de Beer, R., Godeke, G.J., Raamsman, M.J., Horzinek, M.C., Vennema, H., Rottier, P.J., The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells (1998) J. Virol., 72, pp. 497-503; Scharf, L., Wang, H., Gao, H., Chen, S., McDowall, A.W., Bjorkman, P.J., Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env (2015) Cell, 162, pp. 1379-1390; Scheres, S.H., Chen, S., Prevention of overfitting in cryo-EM structure determination (2012) Nat. Methods, 9, pp. 853-854; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-Election Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State (2017) J. Virol., 92; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog., 14, p. e1007009; Snijder, J., Ortego, M.S., Weidle, C., Stuart, A.B., Gray, M.D., McElrath, M.J., Pancera, M., McGuire, A.T., An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus (2018) Immunity, 48, pp. 799-811; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog., 14, p. e1007236; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martínez-Sobrido, L., García-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315; Stewart-Jones, G.B., Soto, C., Lemmin, T., Chuang, G.Y., Druz, A., Kong, R., Thomas, P.V., Behrens, A.J., Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G (2016) Cell, 165, pp. 813-826; Struwe, W.B., Chertova, E., Allen, J.D., Seabright, G.E., Watanabe, Y., Harvey, D.J., Medina-Ramirez, M., Westcott, D., Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen (2018) Cell Rep, 24, pp. 1958-1966; Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Carragher, B., Automated molecular microscopy: the new Leginon system (2005) J. Struct. Biol., 151, pp. 41-60; Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Lanzavecchia, A., An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus (2004) Nat. Med., 10, pp. 871-875; Vagin, A.A., Steiner, R.A., Lebedev, A.A., Potterton, L., McNicholas, S., Long, F., Murshudov, G.N., REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use (2004) Acta. Crystallogr. D Biol. Crystallogr, 60, pp. 2184-2195; Veesler, D., Blangy, S., Siponen, M., Vincentelli, R., Cambillau, C., Sciara, G., Production and biophysical characterization of the CorA transporter from Methanosarcina mazei (2009) Anal. Biochem., 388, pp. 115-121; Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S., Carragher, B., DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy (2009) J. Struct. Biol., 166, pp. 205-213; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.-J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 11157-11162; Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., Chen, H., Zhang, E., SARS-CoV infection in a restaurant from palm civet (2005) Emerg. Infect. Dis., 11, pp. 1860-1865; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Wang, J., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Wang, R.Y., Song, Y., Barad, B.A., Cheng, Y., Fraser, J.S., DiMaio, F., Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta (2016) eLife, 5; Watanabe, Y., Raghwani, J., Allen, J.D., Seabright, G.E., Li, S., Moser, F., Huiskonen, J.T., Crispin, M., Structure of the Lassa virus glycan shield provides a model for immunological resistance (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 7320-7325; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J. Virol.; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Li, F., Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus (2015) J. Virol., 89, pp. 9119-9123; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zhang, K., Gctf: Real-time CTF determination and correction (2016) J. Struct. Biol., 193, pp. 1-12; Zhang, H., Wang, G., Li, J., Nie, Y., Shi, X., Lian, G., Wang, W., Qu, X., Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies (2004) J. Virol., 78, pp. 6938-6945; Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., Agard, D.A., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy (2017) Nat. Methods, 14, pp. 331-332; Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., Scheres, S.H., New tools for automated high-resolution cryo-EM structure determination in RELION-3 (2018) eLife, 7; Zivanov, J., Nakane, T., Scheres, S.H.W., A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis (2019) IUCrJ, 6, pp. 5-17","Veesler, D.; Department of Biochemistry, University of WashingtonUnited States; email: dveesler@uw.edu",,"Cell Press",00928674,,CELLB,"30712865","English","Cell",Article,"Final",Open Access,Scopus,2-s2.0-85061830074 "Liu L., Wei Q., Lin Q., Fang J., Wang H., Kwok H., Tang H., Nishiura K., Peng J., Tan Z., Wu T., Cheung K.-W., Chan K.-H., Alvarez X., Qin C., Lackner A., Perlman S., Yuen K.-Y., Chen Z.","35784425200;55553728134;57207299828;57207312690;56410565500;57207309164;56921058200;55897049000;57207755945;57213158710;57201403863;54392710800;57207851346;7005973195;7102688076;7004326651;57204567845;36078079100;57196285945;","Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection",2019,"JCI insight","4","4",,"","",,3,"10.1172/jci.insight.123158","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062393219&doi=10.1172%2fjci.insight.123158&partnerID=40&md5=82f5ecbf6145982f427ea49a29d7cf62","AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Key Clinical Department of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China; Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China","Liu, L., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China, HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Key Clinical Department of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China; Wei, Q., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China; Lin, Q., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Fang, J., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Wang, H., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Kwok, H., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Tang, H., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Nishiura, K., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Peng, J., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Tan, Z., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Wu, T., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Cheung, K.-W., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Chan, K.-H., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Alvarez, X., Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States; Qin, C., Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China; Lackner, A., Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States; Perlman, S., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Yuen, K.-Y., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Chen, Z., AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China, HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Key Clinical Department of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China","Newly emerging viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle Eastern respiratory syndrome CoVs (MERS-CoV), and H7N9, cause fatal acute lung injury (ALI) by driving hypercytokinemia and aggressive inflammation through mechanisms that remain elusive. In SARS-CoV/macaque models, we determined that anti-spike IgG (S-IgG), in productively infected lungs, causes severe ALI by skewing inflammation-resolving response. Alveolar macrophages underwent functional polarization in acutely infected macaques, demonstrating simultaneously both proinflammatory and wound-healing characteristics. The presence of S-IgG prior to viral clearance, however, abrogated wound-healing responses and promoted MCP1 and IL-8 production and proinflammatory monocyte/macrophage recruitment and accumulation. Critically, patients who eventually died of SARS (hereafter referred to as deceased patients) displayed similarly accumulated pulmonary proinflammatory, absence of wound-healing macrophages, and faster neutralizing antibody responses. Their sera enhanced SARS-CoV-induced MCP1 and IL-8 production by human monocyte-derived wound-healing macrophages, whereas blockade of FcγR reduced such effects. Our findings reveal a mechanism responsible for virus-mediated ALI, define a pathological consequence of viral specific antibody response, and provide a potential target for treatment of SARS-CoV or other virus-mediated lung injury.","Cytokines; Immunoglobulins; Infectious disease; Macrophages; Pulmonology",,,,,"NLM (Medline)",23793708,,,"30830861","English","JCI Insight",Article,"Final",Open Access,Scopus,2-s2.0-85062393219 "Cui J., Li F., Shi Z.-L.","36162804500;26028899600;7403733955;","Origin and evolution of pathogenic coronaviruses",2019,"Nature Reviews Microbiology","17","3",,"181","192",,61,"10.1038/s41579-018-0118-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058193722&doi=10.1038%2fs41579-018-0118-9&partnerID=40&md5=f621088e64fb34e490d58dc08d3438b3","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States","Cui, J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China; Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China","Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two highly transmissible and pathogenic viruses that emerged in humans at the beginning of the 21st century. Both viruses likely originated in bats, and genetically diverse coronaviruses that are related to SARS-CoV and MERS-CoV were discovered in bats worldwide. In this Review, we summarize the current knowledge on the origin and evolution of these two pathogenic coronaviruses and discuss their receptor usage; we also highlight the diversity and potential of spillover of bat-borne coronaviruses, as evidenced by the recent spillover of swine acute diarrhoea syndrome coronavirus (SADS-CoV) to pigs. © 2018, Springer Nature Limited.",,"bat; civet (animal); Coronavirinae; evolution; microbial diversity; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; Review; SARS coronavirus; swine acute diarrhoea syndrome coronavirus; Alphacoronavirus; animal; Coronavirinae; Coronavirus infection; genetic variation; genetics; human; molecular evolution; pathogenicity; phylogeny; pig; severe acute respiratory syndrome; virology; virus genome; Swine acute diarrhea syndrome coronavirus; Alphacoronavirus; Animals; Chiroptera; Coronavirus; Coronavirus Infections; Evolution, Molecular; Genetic Variation; Genome, Viral; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; SARS Virus; Severe Acute Respiratory Syndrome; Swine","Masters, P.S., Perlman, S., (2013) Fields Virology, 2, pp. 825-858. , eds Knipe, D. M. & Howley, P. M, Lippincott Williams & Wilkins; Zhong, N.S., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003 (2003) Lancet, 362, pp. 1353-1358. , COI: 1:STN:280:DC%2BD3srhtVKgug%3D%3D, PID: 14585636; Drosten, C., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976. , COI: 1:CAS:528:DC%2BD3sXjslajurw%3D, PID: 12690091; Fouchier, R.A., Aetiology: Koch’s postulates fulfilled for SARS virus (2003) Nature, 423, p. 240. , COI: 1:CAS:528:DC%2BD3sXjs1yntb0%3D, PID: 12748632; Ksiazek, T.G., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966. , COI: 1:CAS:528:DC%2BD3sXjslajtbk%3D, PID: 12690092; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P, PID: 23075143; Li, W.H., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , COI: 1:CAS:528:DC%2BD3sXpt1GlsLs%3D, PID: 14647384; Qian, Z., Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus (2013) Am. J. Respir. Cell. Mol. Biol., 48, pp. 742-748. , COI: 1:CAS:528:DC%2BC3sXptlOju7Y%3D, PID: 23418343; Lu, G., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , COI: 1:CAS:528:DC%2BC3sXhtVKhtbfK, PID: 23831647; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , COI: 1:CAS:528:DC%2BC3sXjvFensb8%3D, PID: 23486063; Scobey, T., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl Acad. Sci. USA, 110, pp. 16157-16162. , COI: 1:CAS:528:DC%2BC3sXhs1SqtbfO, PID: 24043791; Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , COI: 1:CAS:528:DC%2BD3sXnvFWgtL0%3D, PID: 12958366, This paper is the first demonstration of SARS-CoV transmission from animals; Alagaili, A.N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e814. , PID: 24570370; Hemida, M.G., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro. Surveill., 18, pp. 21-27; Lau, S.K., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl Acad. Sci. USA, 102, pp. 14040-14045. , COI: 1:CAS:528:DC%2BD2MXhtVOqsbbO, PID: 16169905; Kan, B., Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms (2005) J. Virol., 79, pp. 11892-11900. , COI: 1:CAS:528:DC%2BD2MXhtVWktL%2FN, PID: 16140765; Ithete, N.L., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699. , PID: 24050621; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF, PID: 24172901, This paper provides the first identification of human ACE2 as the receptor for bat SARS-like coronavirus; Yang, X.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2016) J. Virol., 90, pp. 3253-3256. , COI: 1:CAS:528:DC%2BC28Xht1WqtrvI; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLOS Pathog., 13. , PID: 29190287, This paper identifies a gene pool of SARS-CoVs bats; Lau, S.K., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 8638-8650. , COI: 1:CAS:528:DC%2BC3sXhtFCmtbjF, PID: 23720729; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med. (Maywood), 234, pp. 1117-1127. , COI: 1:CAS:528:DC%2BD1MXht1ams7fM; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, pp. 439-450. , COI: 1:CAS:528:DC%2BD1MXls1Cmt7k%3D, PID: 19430490; Woo, P.C., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008. , COI: 1:CAS:528:DC%2BC38XktlOrsr8%3D, PID: 22278237, This paper describes coronavirus origins by phylogenetic analysis; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol., 11, pp. 836-848. , COI: 1:CAS:528:DC%2BC3sXhslCrt7bN, PID: 24217413; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol. J., 12, p. 221. , PID: 4687304; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534. , PID: 27344959; Su, S., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502. , COI: 1:CAS:528:DC%2BC28XksVWmsbc%3D, PID: 27012512; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol., 25, pp. 35-48. , COI: 1:CAS:528:DC%2BC28XhsFamtb%2FO, PID: 27743750; Anthony, S.J., Global patterns in coronavirus diversity (2017) Virus Evol., 3, p. vex012. , PID: 28630747; Wang, L., Su, S., Bi, Y., Wong, G., Gao, G.F., Bat-origin coronaviruses expand their host range to pigs (2018) Trends Microbiol., 26, pp. 466-470. , COI: 1:CAS:528:DC%2BC1cXlt1Sqsrc%3D, PID: 29680361; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr. Top. Microbiol. Immunol., 287, pp. 1-30. , COI: 1:CAS:528:DC%2BD2MXht1KgsA%3D%3D, PID: 15609507; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res., 226, pp. 20-39. , COI: 1:CAS:528:DC%2BC28Xht1eju7bP, PID: 27288724; Zhou, P., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , COI: 1:CAS:528:DC%2BC1cXosVCgtbo%3D, PID: 29618817, This paper describes bat origin of a swine coronavirus; Huang, Y.W., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00737-00713. , PID: 24129257; Liu, C., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J. Virol., 89, pp. 6121-6125. , COI: 1:CAS:528:DC%2BC2MXosFSjt7k%3D, PID: 25787280; Simas, P.V., Bat coronavirus in Brazil related to appalachian ridge and porcine epidemic diarrhea viruses (2015) Emerg. Infect. Dis., 21, pp. 729-731. , COI: 1:CAS:528:DC%2BC2sXivVCqtg%3D%3D, PID: 25811911; Lacroix, A., Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia (2017) Infect. Genet. Evol., 48, pp. 10-18. , COI: 1:CAS:528:DC%2BC28XitVyqsrvJ, PID: 27932284; Tu, C., Antibodies to SARS coronavirus in civets (2004) Emerg. Infect. Dis., 10, pp. 2244-2248. , COI: 1:CAS:528:DC%2BD2cXhtFGms7jO, PID: 15663874; Wang, M., [Analysis on the risk factors of severe acute respiratory syndromes coronavirus infection in workers from animal markets] (2004) Zhonghua Liu Xing Bing Xue Za Zhi, 25, pp. 503-505. , PID: 15231128; Xu, H.F., [An epidemiologic investigation on infection with severe acute respiratory syndrome coronavirus in wild animals traders in Guangzhou] (2004) Zhonghua Yu Fang Yi Xue Za Zhi, 38, pp. 81-83. , PID: 15061910; Song, H.D., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl Acad. Sci. USA, 102, pp. 2430-2435. , COI: 1:CAS:528:DC%2BD2MXhvFKitLs%3D, PID: 15695582, This paper describes genetic evolution of SARS-CoV during transmission from animals and humans; Li, W., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjO; Ren, W., Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis (2006) J. Gen. Virol., 87, pp. 3355-3359. , COI: 1:CAS:528:DC%2BD28XhtFGhsbbN, PID: 17030870; Drexler, J.F., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349. , COI: 1:CAS:528:DC%2BC3cXhsVeisb%2FL, PID: 20686038; Lau, S.K., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819. , COI: 1:CAS:528:DC%2BC3cXjt1eis7w%3D, PID: 20071579; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Arch. Virol., 155, pp. 507-514. , COI: 1:CAS:528:DC%2BC3cXktVSnsrc%3D, PID: 20217155; Yuan, J., Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans (2010) J. Gen. Virol., 91, pp. 1058-1062. , COI: 1:CAS:528:DC%2BC3cXkvFKitbs%3D, PID: 20016037; Balboni, A., Gallina, L., Palladini, A., Prosperi, S., Battilani, M., A real-time PCR assay for bat SARS-like coronavirus detection and its application to Italian greater horseshoe bat faecal sample surveys (2012) Sci. World J., 2012, p. 989514; Yang, L., Novel SARS-like betacoronaviruses in bats, China, 2011 (2013) Emerg. Infect. Dis., 19, pp. 989-991. , PID: 23739658; He, B., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J. Virol., 88, pp. 7070-7082. , PID: 24719429; Gouilh, M.A., SARS-coronavirus ancestor’s foot-prints in South-East Asian bat colonies and the refuge theory (2011) Infect. Genet. Evol., 11, pp. 1690-1702. , PID: 21763784; Wacharapluesadee, S., Diversity of coronavirus in bats from Eastern Thailand (2015) Virol. J., 12, p. 57. , PID: 25884446; Tong, S., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg. Infect. Dis., 15, pp. 482-485. , PID: 19239771; Wang, M.N., Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR (2016) Virol. Sin., 31, pp. 78-80. , PID: 26920711; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res., 48, pp. 1-100. , COI: 1:CAS:528:DyaK2sXntVeju7o%3D, PID: 9233431; Zhao, Z., Moderate mutation rate in the SARS coronavirus genome and its implications (2004) BMC Evol. Biol., 4, p. 21. , PID: 15222897; Hon, C.C., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J. Virol., 82, pp. 1819-1826. , COI: 1:CAS:528:DC%2BD1cXhvFart7c%3D, PID: 18057240; Wu, Z., ORF8-related genetic evidence for chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J. Infect. Dis., 213, pp. 579-583. , COI: 1:CAS:528:DC%2BC1cXktFCjsbk%3D, PID: 26433221; Nagy, P.D., Simon, A.E., New insights into the mechanisms of RNA recombination (1997) Virology, 235, pp. 1-9. , COI: 1:CAS:528:DyaK2sXlsFGjtrs%3D, PID: 9300032; Rowe, C.L., Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure (1997) J. Virol., 71, pp. 6183-6190. , COI: 1:CAS:528:DyaK2sXks1Gnt7k%3D, PID: 9223514; Chinese, S.M.E.C., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669. , This paper describes the genetic evolution of human SARS-CoV during SARS outbreaks; Babcock, G.J., Esshaki, D.J., Thomas, W.D., Ambrosino, D.M., Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor (2004) J. Virol., 78, pp. 4552-4560. , COI: 1:CAS:528:DC%2BD2cXjsVKisro%3D, PID: 15078936; Wong, S.K., Li, W.H., Moore, M.J., Choe, H., Farzan, M.A., 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 (2004) J. Biol. Chem., 279, pp. 3197-3201. , COI: 1:CAS:528:DC%2BD2cXmtlCiug%3D%3D, PID: 14670965, This paper identifies the receptor-binding domain of the SARS-CoV spike protein; Le, T.M., Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus (2007) FEBS J., 274, pp. 4211-4222. , COI: 1:CAS:528:DC%2BD2sXhtVSmt7vL, PID: 17645546; Oostra, M., de Haan, C.A., Rottier, P.J., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J. Virol., 81, pp. 13876-13888. , COI: 1:CAS:528:DC%2BD2sXhsValsbfO, PID: 17928347; Wong, H.H., Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 (2018) Virology, 515, pp. 165-175. , COI: 1:CAS:528:DC%2BC1cXitlanuw%3D%3D, PID: 29294448; Sung, S.C., Chao, C.Y., Jeng, K.S., Yang, J.Y., Lai, M.M., The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 (2009) Virology, 387, pp. 402-413. , COI: 1:CAS:528:DC%2BD1MXltVyltbs%3D, PID: 19304306; Chen, C.Y., Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis (2007) J. Infect. Dis., 196, pp. 405-415. , COI: 1:CAS:528:DC%2BD2sXpt1Glurw%3D, PID: 17597455; Zhou, P., Li, H., Wang, H., Wang, L.F., Shi, Z., Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities (2012) J. Gen. Virol., 93, pp. 275-281. , COI: 1:CAS:528:DC%2BC38XisVSjuro%3D, PID: 22012463; Zeng, L.P., Cross-neutralization of SARS coronavirus-specific antibodies against bat SARS-like coronaviruses (2017) Sci. China Life Sci., 60, pp. 1399-1402. , COI: 1:CAS:528:DC%2BC2sXhvVSmsrjM, PID: 29134417; Li, F., Receptor recognition and cross-species infections of SARS coronavirus (2013) Antiviral Res., 100, pp. 246-254. , COI: 1:CAS:528:DC%2BC3sXhvVWltb%2FE, PID: 23994189; Li, W.H., Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions (2006) J. Virol., 80, pp. 4211-4219. , COI: 1:CAS:528:DC%2BD28Xkt1Okurg%3D, PID: 16611880; Li, F., Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain (2006) J. Virol., 80, pp. 6794-6800. , COI: 1:CAS:528:DC%2BD28XmvVaisL4%3D, PID: 16809285; Yuan, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8. , COI: 1:CAS:528:DC%2BC2sXlvFCgt74%3D, PID: 28393837; Li, W.H., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643. , COI: 1:CAS:528:DC%2BD2MXktFequ7o%3D, PID: 15791205, This paper identifies key residues involved SARS-CoV adaptation to humans; Towler, P., ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis (2004) J. Biol. Chem., 279, pp. 17996-18007. , COI: 1:CAS:528:DC%2BD2cXjt1Gms7o%3D, PID: 14754895; Qu, X.X., Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy (2005) J. Biol. Chem., 280, pp. 29588-29595. , COI: 1:CAS:528:DC%2BD2MXns1SlsLw%3D, PID: 15980414; Liu, L., Natural mutations in the receptor binding domain of spike glycoprotein determine the reactivity of cross-neutralization between palm civet coronavirus and severe acute respiratory syndrome coronavirus (2007) J. Virol., 81, pp. 4694-4700. , COI: 1:CAS:528:DC%2BD2sXkvFChsbc%3D, PID: 17314167; Liang, G.D., Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, guangdong province, china (2004) Emerg. Infect. Dis., 10, pp. 1774-1781. , PID: 15504263; Sheahan, T., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) J. Virol., 82, pp. 2274-2285. , COI: 1:CAS:528:DC%2BD1cXitlyhtLY%3D, PID: 18094188; Li, F., Li, W.H., Farzan, M., Harrison, S.C., The Nidoviruses: Toward Control of SARSs and Other Nidovirus Diseases (2006) Advances in Experimental Medicine and Biology, 581, pp. 229-234. , Springer; Wu, K.L., Peng, G.Q., Wilken, M., Geraghty, R.J., Li, F., Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus (2012) J. Bio. Chem., 287, pp. 8904-8911. , COI: 1:CAS:528:DC%2BC38XjvVehtbs%3D; Wu, K., A virus-binding hot spot on human angiotensin-converting enzyme 2 Is critical for binding of two different coronaviruses (2011) J. Virol., 85, pp. 5331-5337. , COI: 1:CAS:528:DC%2BC3MXms1Wlurw%3D, PID: 21411533; Li, F., Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections (2008) J. Virol., 82, pp. 6984-6991. , COI: 1:CAS:528:DC%2BD1cXosFWmsro%3D, PID: 18448527; Becker, M.M., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl Acad. Sci. USA, 105, pp. 19944-19949. , COI: 1:CAS:528:DC%2BD1cXhsFCmtbfN, PID: 19036930; Ren, W., Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin (2008) J. Virol., 82, pp. 1899-1907. , COI: 1:CAS:528:DC%2BD1cXhvFartLg%3D, PID: 18077725; Menachery, V.D., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513. , COI: 1:CAS:528:DC%2BC2MXhslKgt7nO, PID: 26552008; Menachery, V.D., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl Acad. Sci. USA, 113, pp. 3048-3053. , COI: 1:CAS:528:DC%2BC28XktV2msr8%3D, PID: 26976607; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145. , COI: 1:CAS:528:DC%2BC3sXitVWjtrbO, PID: 24355866, This paper provides the first identification of MERS-CoV camels; Azhar, E.I., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505. , COI: 1:CAS:528:DC%2BC2cXhs1artLzN, PID: 24896817; Raj, V.S., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342. , PID: 25075761; Sabir, J.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , COI: 1:CAS:528:DC%2BC2MXitV2nt7nL, PID: 26678874; Chu, D.K.W., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl Acad. Sci. USA, 115, pp. 3144-3149. , COI: 1:CAS:528:DC%2BC1cXht1Chs7jK, PID: 29507189, This paper describes the genetic diversity of MERS-CoV African camels; Paden, C.R., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoo. Pub. Health, 65, pp. 322-333. , COI: 1:CAS:528:DC%2BC1cXns12mu7g%3D; Perera, R.A., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro. Surveill., 18, p. 20574. , PID: 24079378; Reusken, C.B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866. , COI: 1:CAS:528:DC%2BC3sXht1Ggt7nM, PID: 23933067; Hemida, M.G., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis., 20, pp. 1231-1234. , PID: 24964193; Corman, V.M., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322. , COI: 1:CAS:528:DC%2BC28XitVGksL7E, PID: 25075637; Muller, M.A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095. , PID: 25425139; Muller, M.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis., 15, pp. 559-564. , PID: 25863564; Saqib, M., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg. Infect. Dis., 23, pp. 550-551. , PID: 28221127; Harcourt, J.L., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health, 65, pp. 749-754. , COI: 1:CAS:528:DC%2BC1cXhsVygtLbN; de Groot, R.J., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792. , PID: 23678167; Corman, V.M., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303. , PID: 25031349; Yang, L., MERS-related betacoronavirus in Vespertilio superans bats (2014) China. Emerg. Infect. Dis., 20, pp. 1260-1262. , PID: 24960574; Dudas, G., Rambaut, A., MERS-CoV recombination: implications about the reservoir and potential for adaptation (2016) Virus Evol., 2, p. vev023. , PID: 27774293; Wang, Y., Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis (2015) MBio, 6, pp. e01280-e1215. , COI: 1:CAS:528:DC%2BC28XitVGlsbbN, PID: 26350969; Zhang, Z., Shen, L., Gu, X., Evolutionary dynamics of MERS-CoV: potential recombination, positive selection and transmission (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28XnsVemtLk%3D, PID: 27142087; Lau, S.K.P., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J. Infect. Dis., 218, pp. 197-207. , PID: 29346682; Luo, C.M., Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus (2018) J. Virol., 92, pp. e00116-e118. , COI: 1:CAS:528:DC%2BC1cXhvFWmu7rJ, PID: 29669833; Barlan, A., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961. , PID: 24554656; Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J. Gen. Virol., 95, pp. 874-882. , COI: 1:CAS:528:DC%2BC2cXhtVyms7rE, PID: 24443473; Yang, Y., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci. Rep., 5. , COI: 1:CAS:528:DC%2BC2MXhvFGmsLrN, PID: 26631542; Menachery, V.D., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8, pp. e00665-e617. , PID: 28830941; Anthony, S.J., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8, pp. e00373-e317. , COI: 1:CAS:528:DC%2BC1cXhsVGgurfN, PID: 28377531; Du, L., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942. , COI: 1:CAS:528:DC%2BC3sXhtlCmurbF, PID: 23824801; Mou, H., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383. , COI: 1:CAS:528:DC%2BC3sXht1WgtLrI, PID: 23785207; Wang, N., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993. , COI: 1:CAS:528:DC%2BC3sXht1Wltb%2FM, PID: 23835475; Chen, Y., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783. , COI: 1:CAS:528:DC%2BC3sXhsVygtL7N, PID: 23903833; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J. Virol., 89, pp. 1954-1964. , PID: 25428871; Cockrell, A.S., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 5195-5199. , PID: 24574399; van Doremalen, N., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232. , PID: 24899185; Peck, K.M., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J. Virol., 89, pp. 4696-4699. , COI: 1:CAS:528:DC%2BC2MXlvVWlt7Y%3D, PID: 25653445; Peck, K.M., Permissivity of dipeptidyl peptidase 4 orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants (2017) J. Virol., 91, pp. e00534-e517. , COI: 1:CAS:528:DC%2BC1cXpvFSntg%3D%3D, PID: 28747502; Yang, Y., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl Acad. Sci. USA, 111, pp. 12516-12521. , COI: 1:CAS:528:DC%2BC2cXhtlCju7rI, PID: 25114257; Wang, Q., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337. , COI: 1:CAS:528:DC%2BC2cXhsV2ntb3J, PID: 25211075; Gong, L., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, p. 9; Pan, Y., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21. , COI: 1:CAS:528:DC%2BC2sXhsF2gsrfK, PID: 29102111; Lau, S.K., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439. , COI: 1:CAS:528:DC%2BD2sXhtFeitbzE, PID: 17617433; Wang, N., Serological evidence of bat SARS-related coronavirus infection in humans (2018) China. Virol. Sin., 33, pp. 104-107. , PID: 29500691; Memish, Z.A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823. , COI: 1:CAS:528:DC%2BC2cXhs1ChsL7I, PID: 24206838; Huynh, J., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol., 86, pp. 12816-12825. , COI: 1:CAS:528:DC%2BC38Xhs1yksLbL, PID: 22993147; Tao, Y., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91, pp. e01953-e1916. , COI: 1:CAS:528:DC%2BC2sXpvVOnsLg%3D, PID: 28077633, This paper describes the bat origins of two human coronaviruses, NL63 and 229E; Corman, V.M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl Acad. Sci. USA, 113, pp. 9864-9869. , COI: 1:CAS:528:DC%2BC28XhtlChsLnN, PID: 27528677; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res., 101, pp. 45-56. , COI: 1:CAS:528:DC%2BC3sXhvFyksrnP, PID: 24184128; Guindon, S., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst. Biol., 59, pp. 307-321. , COI: 1:CAS:528:DC%2BC3cXks1Kms7s%3D, PID: 20525638; Lin, X.D., Extensive diversity of coronaviruses in bats from China (2017) Virology, 507, pp. 1-10. , COI: 1:CAS:528:DC%2BC2sXls1Kmt7w%3D, PID: 28384506; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222. , PID: 26695637; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60, pp. 2126-2132; Li, F., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868","Shi, Z.-L.; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"Nature Publishing Group",17401526,,NRMAC,"30531947","English","Nat. Rev. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85058193722 "Iwata-Yoshikawa N., Okamura T., Shimizu Y., Hasegawa H., Takeda M., Nagata N.","37031266800;7401572953;55773204400;55485164600;7403299731;11839905700;","TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection",2019,"Journal of Virology","93","6", e01815-18,"","",,5,"10.1128/JVI.01815-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062601344&doi=10.1128%2fJVI.01815-18&partnerID=40&md5=d1ee8ee167e3dd689d2cb6af233bde34","Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan","Iwata-Yoshikawa, N., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Okamura, T., Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan, Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Shimizu, Y., Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Hasegawa, H., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Takeda, M., Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Nagata, N., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan","Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology. IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Animal model; Immunopathology; MERS-CoV; SARS-CoV; TMPRSS2","chemokine; cytokine; DPP4 protein; polyinosinic polycytidylic acid; serine proteinase; TMPRSS2 protein; unclassified drug; virus receptor; coronavirus spike glycoprotein; serine proteinase; TMPRSS2 protein, mouse; toll like receptor 3; animal cell; animal experiment; animal model; animal tissue; Article; body weight loss; controlled study; female; gene knockout; immunopathology; inflammation; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; protein expression; SARS coronavirus; severe acute respiratory syndrome; virus replication; animal; C57BL mouse; cell line; Chlorocebus aethiops; Coronavirus infection; disease model; human; immunology; knockout mouse; lung; metabolism; Middle East respiratory syndrome coronavirus; SARS coronavirus; transgenic mouse; Vero cell line; virology; Animals; Cell Line; Cercopithecus aethiops; Coronavirus Infections; Disease Models, Animal; Female; Humans; Lung; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Middle East Respiratory Syndrome Coronavirus; Poly I-C; SARS Virus; Serine Endopeptidases; Severe Acute Respiratory Syndrome; Spike Glycoprotein, Coronavirus; Toll-Like Receptor 3; Vero Cells","Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966. , https://doi.org/10.1056/NEJMoa030781; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Sung, J.J., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1986-1994. , https://doi.org/10.1056/NEJMoa030685; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , https://doi.org/10.1016/S0140-6736(03)13077-2; Zhong, N.S., Zheng, B.J., Li, Y.M., Poon, L.L.M., Xie, Z.H., Chan, K.H., Li, P.H., Guan, Y., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003 (2003) Lancet, 362, pp. 1353-1358. , https://doi.org/10.1016/S0140-6736(03)14630-2; Guan, Y., Peiris, J.S., Zheng, B., Poon, L.L., Chan, K.H., Zeng, F.Y., Chan, C.W., Leung, F.C., Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome (2004) Lancet, 363, pp. 99-104; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., El Sheikh, S., Alsanouri, T., Novel coronavirus infections in Jordan, april 2012: Epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18. , https://doi.org/10.26719/2013.19.supp1.S12; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278. , https://doi.org/10.1016/j.phrp.2015.08.006, Korea Centers for Disease Control and Prevention; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Bottcher, E., Matrosovich, T., Beyerle, M., Klenk, H.D., Garten, W., Matrosovich, M., Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium (2006) J Virol, 80, pp. 9896-9898. , https://doi.org/10.1128/JVI.01118-06; Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., Taguchi, F., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 (2010) J Virol, 84, pp. 12658-12664. , https://doi.org/10.1128/JVI.01542-10; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561. , https://doi.org/10.1128/JVI.01890-13; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pöhlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J Virol, 87, pp. 6150-6160. , https://doi.org/10.1128/JVI.03372-12; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Pöhlmann, S., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87, pp. 5502-5511. , https://doi.org/10.1128/JVI.00128-13; Laporte, M., Naesens, L., Airway proteases: An emerging drug target for influenza and other respiratory virus infections (2017) Curr Opin Virol, 24, pp. 16-24. , https://doi.org/10.1016/j.coviro.2017.03.018; Hatesuer, B., Bertram, S., Mehnert, N., Bahgat, M.M., Nelson, P.S., Pöhlmann, S., Pöhlman, S., Schughart, K., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice (2013) PLoS Pathog, 9. , https://doi.org/10.1371/journal.ppat.1003774; Tarnow, C., Engels, G., Arendt, A., Schwalm, F., Sediri, H., Preuss, A., Nelson, P.S., Böttcher-Friebertshäuser, E., TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza a virus in mice (2014) J Virol, 88, pp. 4744-4751. , https://doi.org/10.1128/JVI.03799-13; Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Takeda, M., The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses (2014) J Virol, 88, pp. 5608-5616. , https://doi.org/10.1128/JVI.03677-13; Sakai, K., Sekizuka, T., Ami, Y., Nakajima, N., Kitazawa, M., Sato, Y., Nakajima, K., Takeda, M., A mutant H3N2 influenza virus uses an alternative activation mechanism in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk region (2015) J Virol, 89, pp. 5154-5158. , https://doi.org/10.1128/JVI.00124-15; Cheng, Z., Zhou, J., To, K.K., Chu, H., Li, C., Wang, D., Yang, D., Yuen, K.Y., Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) influenza and A(H7N9) influenza (2015) J Infect Dis, 212, pp. 1214-1221. , https://doi.org/10.1093/infdis/jiv246; Nagata, N., Iwata, N., Hasegawa, H., Fukushi, S., Harashima, A., Sato, Y., Saijo, M., Sata, T., Mouse-passaged severe acute respiratory syndrome-associated coronavirus leads to lethal pulmonary edema and diffuse alveolar damage in adult but not young mice (2008) Am J Pathol, 172, pp. 1625-1637. , https://doi.org/10.2353/ajpath.2008.071060; Iwata-Yoshikawa, N., Uda, A., Suzuki, T., Tsunetsugu-Yokota, Y., Sato, Y., Morikawa, S., Tashiro, M., Nagata, N., Effects of toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine (2014) J Virol, 88, pp. 8597-8614. , https://doi.org/10.1128/JVI.00983-14; Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Kotani, O., Sato, H., Sekimukai, H., Fukushi, S., Nagata, N., Acute respiratory infection in human dipeptidyl peptidase 4-transgenic mice infected with Middle East respiratory syndrome coronavirus (2019) J Virol, 93, pp. e01818-e01918. , https://doi.org/10.1128/JVI.01818-18; Ichinohe, T., Watanabe, I., Ito, S., Fujii, H., Moriyama, M., Tamura, S., Takahashi, H., Hasegawa, H., Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection (2005) J Virol, 79, pp. 2910-2919. , https://doi.org/10.1128/JVI.79.5.2910-2919.2005; Trumpfheller, C., Caskey, M., Nchinda, G., Longhi, M.P., Mizenina, O., Huang, Y., Schlesinger, S.J., Steinman, R.M., The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine (2008) Proc Natl Acad Sci U S A, 105, pp. 2574-2579. , https://doi.org/10.1073/pnas.0711976105; Schulz, O., Diebold, S.S., Chen, M., Naslund, T.I., Nolte, M.A., Alexopoulou, L., Azuma, Y.T., Reis e Sousa, C., Toll-like receptor 3 promotes cross-priming to virus-infected cells (2005) Nature, 433, pp. 887-892. , https://doi.org/10.1038/nature03326; Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R.A., Diamond, M.S., Colonna, M., Essential role of MDA-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus (2006) Proc Natl Acad Sci U S A, 103, pp. 8459-8464. , https://doi.org/10.1073/pnas.0603082103; Bugge, T.H., Antalis, T.M., Wu, Q., Type II transmembrane serine proteases (2009) J Biol Chem, 284, pp. 23177-23181. , https://doi.org/10.1074/jbc.R109.021006; Vaarala, M.H., Porvari, K.S., Kellokumpu, S., Kyllonen, A.P., Vihko, P.T., Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues (2001) J Pathol, 193, pp. 134-140. , https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T; Kim, T.S., Heinlein, C., Hackman, R.C., Nelson, P.S., Phenotypic analysis of mice lacking the Tmprss2-encoded protease (2006) Mol Cell Biol, 26, pp. 965-975. , https://doi.org/10.1128/MCB.26.3.965-975.2006; Donaldson, S.H., Hirsh, A., Li, D.C., Holloway, G., Chao, J., Boucher, R.C., Gabriel, S.E., Regulation of the epithelial sodium channel by serine proteases in human airways (2002) J Biol Chem, 277, pp. 8338-8345. , https://doi.org/10.1074/jbc.M105044200; Kido, H., Okumura, Y., Takahashi, E., Pan, H.Y., Wang, S., Chida, J., Le, T.Q., Yano, M., Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses (2008) J Mol Genet Med, 3, pp. 167-175; Yamaya, M., Shimotai, Y., Hatachi, Y., Lusamba Kalonji, N., Tando, Y., Kitajima, Y., Matsuo, K., Nishimura, H., The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells (2015) Pulm Pharmacol Ther, 33, pp. 66-74. , https://doi.org/10.1016/j.pupt.2015.07.001; Bertram, S., Heurich, A., Lavender, H., Gierer, S., Danisch, S., Perin, P., Lucas, J.M., Soilleux, E.J., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0035876; Glowacka, I., Bertram, S., Muller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pohlmann, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J Virol, 85, pp. 4122-4134. , https://doi.org/10.1128/JVI.02232-10; Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., Pohlmann, S., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 1293-1307. , https://doi.org/10.1128/JVI.02202-13; Shirato, K., Kawase, M., Matsuyama, S., Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry (2017) Virology, 517, pp. 9-15. , https://doi.org/10.1016/j.virol.2017.11.012; Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., Gallagher, T., A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry (2011) J Virol, 85, pp. 873-882. , https://doi.org/10.1128/JVI.02062-10; Bertram, S., Glowacka, I., Muller, M.A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., Pohlmann, S., Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease (2011) J Virol, 85, pp. 13363-13372. , https://doi.org/10.1128/JVI.05300-11; Simmons, G., Zmora, P., Gierer, S., Heurich, A., Pohlmann, S., Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research (2013) Antiviral Res, 100, pp. 605-614. , https://doi.org/10.1016/j.antiviral.2013.09.028; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr., Nunneley, J.W., Barnard, D., Simmons, G., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res, 116, pp. 76-84. , https://doi.org/10.1016/j.antiviral.2015.01.011; Blasius, A.L., Beutler, B., Intracellular toll-like receptors (2010) Immunity, 32, pp. 305-315. , https://doi.org/10.1016/j.immuni.2010.03.012; Lappi-Blanco, E., Soini, Y., Kinnula, V., Pääkkö, P., VEGF and bFGF are highly expressed in intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing pneumonia (2002) J Pathol, 196, pp. 220-227. , https://doi.org/10.1002/path.1038; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235, pp. 175-184. , https://doi.org/10.1002/path.4458; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Tong, S., Zaki, S.R., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658. , https://doi.org/10.1016/j.ajpath.2015.10.024; Markan, K.R., Potthoff, M.J., Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis (2016) Semin Cell Dev Biol, 53, pp. 85-93. , https://doi.org/10.1016/j.semcdb.2015.09.021; Kühn, N., Bergmann, S., Kösterke, N., Lambertz, R.L.O., Keppner, A., van den Brand, J.M.A., Pöhlmann, S., Schughart, K., The proteolytic activation of (H3N2) influenza A virus hemagglutinin is facilitated by different type II transmembrane serine proteases (2016) J Virol, 90, pp. 4298-4307. , https://doi.org/10.1128/JVI.02693-15; Simeoni, L., Rufini, A., Moretti, T., Forte, P., Aiuti, A., Fantoni, A., Human CD26 expression in transgenic mice affects murine T-cell populations and modifies their subset distribution (2002) Hum Immunol, 63, pp. 719-730","Nagata, N.; Department of Pathology, National Institute of Infectious DiseasesJapan; email: nnagata@niid.go.jp",,"American Society for Microbiology",0022538X,,JOVIA,"30626688","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85062601344 "Millet J.K., Tang T., Nathan L., Jaimes J.A., Hsu H.-L., Daniel S., Whittaker G.R.","55217392700;57207941989;57207942159;55173670700;57191542139;35615196600;7006825143;","Production of pseudotyped particles to study highly pathogenic coronaviruses in a biosafety level 2 setting",2019,"Journal of Visualized Experiments","2019","145", e59010,"","",,1,"10.3791/59010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063268056&doi=10.3791%2f59010&partnerID=40&md5=076bc83b83bfb862eb21aae98bd36f42","Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States; INRA, Virologie et Immunologie Moléculaires, United States; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, United States; Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, United States; Horae Gene Therapy Center, University of Massachusetts Medical School, United States","Millet, J.K., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States, INRA, Virologie et Immunologie Moléculaires, United States; Tang, T., Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, United States; Nathan, L., Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, United States; Jaimes, J.A., Department of Microbiology, College of Agricultural and Life Sciences, Cornell University, United States; Hsu, H.-L., Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, United States, Horae Gene Therapy Center, University of Massachusetts Medical School, United States; Daniel, S., Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, United States; Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, United States","The protocol aims to generate coronavirus (CoV) spike (S) fusion protein pseudotyped particles with a murine leukemia virus (MLV) core and luciferase reporter, using a simple transfection procedure of the widely available HEK-293T cell line. Once formed and released from producer cells, these pseudovirions incorporate a luciferase reporter gene. Since they only contain the heterologous coronavirus spike protein on their surface, the particles behave like their native coronavirus counterparts for entry steps. As such, they are the excellent surrogates of native virions for studying viral entry into host cells. Upon successful entry and infection into target cells, the luciferase reporter gets integrated into the host cell genome and is expressed. Using a simple luciferase assay, transduced cells can be easily quantified. An important advantage of the procedure is that it can be performed in biosafety level 2 (BSL-2) facilities instead of BSL-3 facilities required for work with highly pathogenic coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARSCoV). Another benefit comes from its versatility as it can be applied to envelope proteins belonging to all three classes of viral fusion proteins, such as the class I influenza hemagglutinin (HA) and Ebola virus glycoprotein (GP), the class II Semliki forest virus E1 protein, or the class III vesicular stomatitis virus G glycoprotein. A limitation of the methodology is that it can only recapitulate virus entry steps mediated by the envelope protein being investigated. For studying other viral life cycle steps, other methods are required. Examples of the many applications these pseudotype particles can be used in include investigation of host cell susceptibility and tropism and testing the effects of virus entry inhibitors to dissect viral entry pathways used. © 2019 Journal of Visualized Experiments.","Cancer research; Coronavirus; CoV; Issue 145; MERS-CoV; Middle east respiratory syndrome coronavirus; MLV; Murine leukemia virus; Pseudotyped particle; Pseudovirion; SARS-CoV; Severe acute respiratory syndrome coronavirus; Spike protein","coronavirus spike glycoprotein; animal; Coronavirinae; drug effect; hazardous waste; HEK293 cell line; human; metabolism; Middle East respiratory syndrome coronavirus; mouse; pathogenicity; SARS coronavirus; virion; virus entry; Animals; Containment of Biohazards; Coronavirus; HEK293 Cells; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; SARS Virus; Spike Glycoprotein, Coronavirus; Virion; Virus Internalization","Dimitrov, D.S., Virus entry: Molecular mechanisms and biomedical applications (2004) Nature Reviews Microbiology., 2 (2), pp. 109-122; White, J.M., Delos, S.E., Brecher, M., Schornberg, K., Structures and Mechanisms of Viral Membrane Fusion Proteins: Multiple Variations on a Common Theme (2008) Critical Reviews in Biochemistry and Molecular Biology., 43 (3), pp. 189-219; Bosch, B.J., van der Zee, R., de Haan, C.A.M., Rottier, P.J.M., The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex (2003) Journal of Virology., 77 (16), pp. 8801-8811; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein (2012) Viruses., 4 (6), pp. 1011-1033; Millet, J.K., Whittaker, G.R., Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells (2018) Virology., 517, pp. 3-8; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Research., 202, pp. 120-134; Steidl, S., Coreceptor Switch of [MLV(SIVagm)] Pseudotype Vectors by V3-Loop Exchange (2002) Virology., 300 (2), pp. 205-216; Höhne, M., Thaler, S., Dudda, J.C., Groner, B., Schnierle, B.S., Truncation of the Human Immunodeficiency Virus-Type-2 Envelope Glycoprotein Allows Efficient Pseudotyping of Murine Leukemia Virus Retroviral Vector Particles (1999) Virology., 261 (1), pp. 70-78; Wang, W., Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies (2008) Journal of Virological Methods., 153 (2), pp. 111-119; Wallerstrom, S., Detection of antibodies against H5 and H7 strains in birds: Evaluation of influenza pseudovirus particle neutralization tests (2014) Infection Ecology, Epidemiology., 4; Radoshitzky, S.R., Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses (2007) Nature., 446 (7131), pp. 92-96; Han, D.P., Kim, H.G., Kim, Y.B., Poon, L.L., Cho, M.W., Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein (2004) Virology., 326 (1), pp. 140-149; Moore, M.J., Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2 (2004) Journal of Virology., 78 (19), pp. 10628-10635; Sharkey, C.M., North, C.L., Kuhn, R.J., Sanders, D.A., Ross River virus glycoprotein-pseudotyped retroviruses and stable cell lines for their production (2001) Journal of Virology., 75 (6), pp. 2653-2659; Bruett, L., Clements, J.E., Functional murine leukemia virus vectors pseudotyped with the visna virus envelope show expanded visna virus cell tropism (2001) Journal of Virology., 75 (23), pp. 11464-11473; Ma, M., Murine leukemia virus pseudotypes of La Crosse and Hantaan Bunyaviruses: A system for analysis of cell tropism (1999) Virus Research., 64 (1), pp. 23-32; Wool-Lewis, R.J., Bates, P., Characterization of Ebola virus entry by using pseudotyped viruses: Identification of receptor-deficient cell lines (1998) Journal of Virology., 72 (4), pp. 3155-3160; Op De Beeck, A., Characterization of Functional Hepatitis C Virus Envelope Glycoproteins (2004) Journal of Virology., 78 (6), pp. 2994-3002; Calland, N., (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry (2012) Hepatology., 55 (3), pp. 720-729; Bartosch, B., Dubuisson, J., Cosset, F.L., Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes (2003) Journal of Experimental Medicine., 197 (5), pp. 633-642; Giroglou, T., Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein (2004) Journal of Virology., 78 (17), pp. 9007-9015; Dye, C., Temperton, N., Siddell, S.G., Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) Journal of General Virology., 88 (6), pp. 1753-1760; Kobinger, G.P., Weiner, D.J., Yu, Q.-C., Wilson, J.M., Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo (2001) Nature Biotechnology., 19, p. 225; Salvador, B., Zhou, Y., Michault, A., Muench, M.O., Simmons, G., Characterization of Chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein (2009) Virology., 393 (1), pp. 33-41; Nie, Y., Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression (2004) Biochemical and Biophysical Research Communications., 321 (4), pp. 994-1000; Grehan, K., Ferrara, F., Temperton, N., An optimised method for the production of MERS-CoV spike expressing viral pseudotypes (2015) MethodsX., 2, pp. 379-384; Bakri, Y., The Maturation of Dendritic Cells Results in Postintegration Inhibition of HIV-1 Replication (2001) The Journal of Immunology., 166 (6), pp. 3780-3788; Hsu, M., Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles (2003) Proceedings of the National Academy of Sciences., 100 (12), pp. 7271-7276; Simmons, G., DC-SIGN and DC-SIGNR Bind Ebola Glycoproteins and Enhance Infection of Macrophages and Endothelial Cells (2003) Virology., 305 (1), pp. 115-123; Simmons, G., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proceedings of the National Academy of Sciences., 102 (33), pp. 11876-11881; Gierer, S., The spike-protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2 and is targeted by neutralizing antibodies (2013) Journal of Virology., 87 (10), pp. 5502-5511; Bertram, S., Cleavage and activation of the SARS-coronavirus spike-protein by human airway trypsin-like protease (2011) Journal of Virology., 85 (24), pp. 13363-13372; Bertram, S., TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells (2010) Journal of Virology., 84 (19), pp. 10016-10025; Connor, R.I., Chen, B.K., Choe, S., Landau, N.R., Vpr Is Required for Efficient Replication of Human Immunodeficiency Virus Type-1 in Mononuclear Phagocytes (1995) Virology., 206 (2), pp. 935-944; Evans, M.J., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry (2007) Nature., 446 (7137), pp. 801-805; Negrete, O.A., EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus (2005) Nature., 436 (7049), pp. 401-405; Suda, Y., Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system (2016) Archives of Virology., 161 (6), pp. 1447-1454; Zimmer, G., Locher, S., Berger Rentsch, M., Halbherr, S.J., Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses (2014) Journal of General Virology., 95, pp. 1634-1639; Moeschler, S., Locher, S., Conzelmann, K.K., Kramer, B., Zimmer, G., Quantification of Lyssavirus-Neutralizing Antibodies Using Vesicular Stomatitis Virus Pseudotype Particles (2016) Viruses., 8 (9); Tong, W., Yin, X.X., Lee, B.J., Li, Y.G., Preparation of vesicular stomatitis virus pseudotype with Chikungunya virus envelope protein (2015) Acta Virologica., 59 (2), pp. 189-193; Tani, H., Involvement of ceramide in the propagation of Japanese encephalitis virus (2010) Journal of Virology., 84 (6), pp. 2798-2807; Kaku, Y., Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: Sensitive and high-throughput analysis utilizing secreted alkaline phosphatase (2012) Journal of Virological Methods., 179 (1), pp. 226-232; Tani, H., Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus (2014) Journal of Virology., 88 (13), pp. 7317-7330; Ogino, M., Use of Vesicular Stomatitis Virus Pseudotypes Bearing Hantaan or Seoul Virus Envelope Proteins in a Rapid and Safe Neutralization Test (2003) Clinical and Vaccine Immunology., 10 (1), pp. 154-160; Logan, N., Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies (2016) Vaccine., 34 (6), pp. 814-822; Takada, A., A system for functional analysis of Ebola virus glycoprotein (1997) Proceedings of the National Academy of Sciences., 94 (26), pp. 14764-14769; Whitt, M.A., Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines (2010) Journal of Virological Methods., 169 (2), pp. 365-374; Lai, A.L., Millet, J.K., Daniel, S., Freed, J.H., Whittaker, G.R., The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. (2017) Journal of Molecular Biology., 429 (24), pp. 3875-3892; Millet, J.K., Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin (2016) Antiviral Research., 133, pp. 1-8; Millet, J.K., A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties (2016) Emerging Microbes, Infections., 5 (12), p. e126; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proceedings of the National Academy of Sciences., 111 (42), pp. 15214-15219; Tse, L.V., Hamilton, A.M., Friling, T., Whittaker, G.R., A Novel Activation Mechanism of Avian Influenza Virus H9N2 by Furin. (2014) Journal of Virology., 88 (3), pp. 1673-1683; Sun, X., Belouzard, S., Whittaker, G.R., Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein (2008) Journal of Biological Chemistry., 283 (10), pp. 6418-6427; Millet, J., Whittaker, G., Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection (2016) Bio-Protocol., 6 (23), p. e2035; Bonnin, A., Danneels, A., Dubuisson, J., Goffard, A., Belouzard, S., HCoV-229E spike protein fusion activation by trypsin-like serine proteases is mediated by proteolytic processing in the S2' region. (2018) Journal of General Virology., , 10.1099/jgv.0.001074; Belouzard, S., Madu, I., Whittaker, G.R., Elastase-mediated activation of the SARS coronavirus spike protein at discrete sites within the S2 domain (2010) Journal of Biological Chemistry., 285 (30), pp. 22758-22763; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide (2009) Journal of Virology., 83 (15), pp. 7411-7421; Madu, I.G., Belouzard, S., Whittaker, G.R., SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion. (2009) Virology., 393 (2), pp. 265-271; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proceedings of the National Academy of Sciences., 106 (14), pp. 5871-5876; Costello, D.A., Millet, J.K., Hsia, C.-Y., Whittaker, G.R., Daniel, S., Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers (2013) Biomaterials., 34 (32), pp. 7895-7904; Costello, D.A., Hsia, C.-Y., Millet, J.K., Porri, T., Daniel, S., Membrane Fusion-Competent Virus-Like Proteoliposomes and Proteinaceous Supported Bilayers Made Directly from Cell Plasma Membranes (2013) Langmuir., 29 (21), pp. 6409-6419; Floyd, D.L., Ragains, J.R., Skehel, J.J., Harrison, S.C., van Oijen, A.M., Single particle kinetics of influenza virus membrane fusion (2008) Proceedings of the National Academy of Sciences., 105 (40), pp. 15382-15387; Hsu, H.-L., Millet, J.K., Costello, D.A., Whittaker, G.R., Daniel, S., Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level (2016) Scientific reports., 6, p. 35537","Whittaker, G.R.; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityUnited States; email: gary.whittaker@cornell.edu",,"Journal of Visualized Experiments",1940087X,,,"30882796","English","J. Visualized Exp.",Article,"Final",Open Access,Scopus,2-s2.0-85063268056 "Fan Y., Zhao K., Shi Z.-L., Zhou P.","57207305104;57213476191;7403733955;56996599500;","Bat coronaviruses in China",2019,"Viruses","11","3", 210,"","",,9,"10.3390/v11030210","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062429362&doi=10.3390%2fv11030210&partnerID=40&md5=5560be9f2108a693d0f583f57a9c7b02","CAS Key Laboratory of Special Pathogens and Biosafety,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China","Fan, Y., CAS Key Laboratory of Special Pathogens and Biosafety,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Zhao, K., CAS Key Laboratory of Special Pathogens and Biosafety,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Zhou, P., CAS Key Laboratory of Special Pathogens and Biosafety,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China","During the past two decades, three zoonotic coronaviruses have been identified as the cause of large-scale disease outbreaks–Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Swine Acute Diarrhea Syndrome (SADS). SARS and MERS emerged in 2003 and 2012, respectively, and caused a worldwide pandemic that claimed thousands of human lives, while SADS struck the swine industry in 2017. They have common characteristics, such as they are all highly pathogenic to humans or livestock, their agents originated from bats, and two of them originated in China. Thus, it is highly likely that future SARS- or MERS-like coronavirus outbreaks will originate from bats, and there is an increased probability that this will occur in China. Therefore, the investigation of bat coronaviruses becomes an urgent issue for the detection of early warning signs, which in turn minimizes the impact of such future outbreaks in China. The purpose of the review is to summarize the current knowledge on viral diversity, reservoir hosts, and the geographical distributions of bat coronaviruses in China, and eventually we aim to predict virus hotspots and their cross-species transmission potential. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Bat; Coronavirus; Cross-species; Epidemiology; Zoonosis","bat; bioinformatics; disease surveillance; disease transmission; gene structure; genetic variability; genome analysis; genome size; geographic distribution; human; immune response; kidney transplantation; LD50; livestock; metagenomics; next generation sequencing; nonhuman; phylogeny; Review; RNA virus; SARS coronavirus; sequence analysis; soil analysis; virus detection; virus infection; virus isolation; animal; China; Coronavirinae; Coronavirus infection; disease carrier; epidemic; genetic variation; genetics; isolation and purification; molecular evolution; veterinary medicine; virology; virus genome; zoonosis; Animals; China; Chiroptera; Coronavirus; Coronavirus Infections; Disease Outbreaks; Disease Reservoirs; Evolution, Molecular; Genetic Variation; Genome, Viral; Humans; Phylogeny; Zoonoses","Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A.M., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med, 348, pp. 1967-1976; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, p. 255; (2019), https://viralzone.expasy.org/785; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Imbert, I., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E3900-E3909; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular Evolution of Human Coronavirus Genomes (2017) Trends Microbiol, 25, pp. 35-48; (2018), https://talk.ictvonline.org/taxonomy/, (accessed on 28 January 2019); Ge, X.Y., Wang, N., Zhang, W., Hu, B., Li, B., Zhang, Y.Z., Zhou, J.H., Wu, L.J., Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft (2016) Virol. Sin, 31, pp. 31-40; Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Zhu, Y., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J, 10, pp. 609-620; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat. Rev. Microbiol, 11, pp. 836-848; Zhang, Q., Yoo, D., Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling (2016) Virus Res, 226, pp. 128-141; Zhao, Y., Zhang, H., Zhao, J., Zhong, Q., Jin, J.H., Zhang, G.Z., Evolution of infectious bronchitis virus in China over the past two decades (2016) J. Gen. Virol, 97, pp. 1566-1574; Mihindukulasuriya, K.A., Wu, G., St Leger, J., Nordhausen, R.W., Wang, D., Identification of a novel coronavirus from a beluga whale by using a panviral microarray (2008) J. Virol, 82, pp. 5084-5088; Vlasova, A.N., Halpin, R., Wang, S., Ghedin, E., Spiro, D.J., Saif, L.J., Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis (2011) J. Gen. Virol, 92, pp. 1369-1379; Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O’Brien, S.J., Murphy, W.J., A molecular phylogeny for bats illuminates biogeography and the fossil record (2005) Science, 307, pp. 580-584; Wang, L.F., Cowled, C., (2015) Bats and Viruses: A New Frontior of Emerging Infectious Diseases, , JohnWiley Sons Inc.: Hoboken, NJ, USA; Yang, X.L., Tan, C.W., Anderson, D.E., Jiang, R.D., Li, B., Zhang, W., Zhu, Y., Liu, X.L., Characterization of a filovirus (Mengla virus) from Rousettus bats in China (2019) Nat. Microbiol; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.W., Wong, B.H.L., Wong, S.S.Y., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Li, W.D., Shi, Z.L., Yu, M., Ren, W.Z., Smith, C., Epstein, J.H., Wang, H.Z., Zhang, H.J., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G.J., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, p. 535; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Chea, S., Silithammavong, S., Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect (2017) Genet. Evol, 48, pp. 10-18; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History (2017) J. Virol, 91, pp. e01953-e01e16; Leopardi, S., Holmes, E.C., Gastaldelli, M., Tassoni, L., Priori, P., Scaravelli, D., Zamperin, G., De Benedictis, P., Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses (2018) Infect. Genet. Evol, 58, pp. 279-289; Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Shek, C.T., Wang, M., Choi, G.K.Y., Guo, R.T., Lam, C.S.F., Recent Transmission of a Novel Alphacoronavirus, Bat Coronavirus HKU10, from Leschenault’s Rousettes to Pomona Leaf-Nosed Bats: First Evidence of Interspecies Transmission of Coronavirus between Bats of Different Suborders (2012) J. Virol, 86, pp. 11906-11918; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Feng, Y., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J. Virol, 88, pp. 7070-7082; Zeng, Z.Q., Chen, D.H., Tan, W.P., Qiu, S.Y., Xu, D., Liang, H.X., Chen, M.X., Liu, W.K., Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: A study of hospitalized children with acute respiratory tract infection in Guangzhou, China (2018) Eur. J. Clin. Microbiol. Infect. Dis., 37, pp. 363-369; Yip, C.C., Lam, C.S., Luk, H.K., Wong, E.Y., Lee, R.A., So, L.Y., Chan, K.H., Woo, P.C., A six-year descriptive epidemiological study of human coronavirus infections in hospitalized patients in Hong Kong (2016) Virol. Sin, 31, pp. 41-48; Wang, W., Lin, X.D., Guo, W.P., Zhou, R.H., Wang, M.R., Wang, C.Q., Ge, S., Shi, M., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; Provacia, L.B., Smits, S.L., Martina, B.E., Raj, V.S., Doel, P.V., Amerongen, G.V., Moorman-Roest, H., Haagmans, B.L., Enteric coronavirus in ferrets, The Netherlands (2011) Emerg. Infect. Dis., 17, pp. 1570-1571; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Yuen, K.Y., Identification of a novel coronavirus in bats (2005) J. Virol, 79, pp. 2001-2009; Chu, D.K., Poon, L.L., Chan, K.H., Chen, H., Guan, Y., Yuen, K.Y., Peiris, J.S., Coronaviruses in bent-winged bats (Miniopterus spp.) (2006) J. Gen. Virol, 87, pp. 2461-2466; Chu, D.K., Peiris, J.S., Chen, H., Guan, Y., Poon, L.L., Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats (2008) J. Gen. Virol, 89, pp. 1282-1287; Du, J., Yang, L., Ren, X., Zhang, J., Dong, J., Sun, L., Zhu, Y., Wu, Z., Genetic diversity of coronaviruses in Miniopterus fuliginosus bats. Sci (2016) China Life Sci, 59, pp. 604-614; Liang, J., Yang, X.L., Li, B., Liu, Q., Zhang, Q., Liu, H., Kan, H.P., He, X., Detection of diverse viruses in alimentary specimens of bats in Macau (2017) Virol. Sin, 32, pp. 226-234; Lin, X.D., Wang, W., Hao, Z.Y., Wang, Z.X., Guo, W.P., Guan, X.Q., Wang, M.R., Li, M.H., Extensive diversity of coronaviruses in bats from China (2017) Virology, 507, pp. 1-10; Woo, P.C., Lau, S.K., Li, K.S., Poon, R.W., Wong, B.H., Tsoi, H.W., Yip, B.C., Yuen, K.Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Huang, Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol, 81, pp. 1574-1585; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Chow, W.N., Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination (2015) J. Virol, 89, pp. 10532-10547; Xu, L., Zhang, F., Yang, W., Jiang, T., Lu, G., He, B., Li, X., Feng, Y., Detection and characterization of diverse alpha- and betacoronaviruses from bats in China (2016) Virol. Sin, 31, pp. 69-77; Zhang, Q., Hu, R., Tang, X., Wu, C., He, Q., Zhao, Z., Chen, H., Wu, B., Occurrence and investigation of enteric viral infections in pigs with diarrhea in China (2013) Arch. Virol, 158, pp. 1631-1636; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Cheung, C.L., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol, 80, pp. 7481-7490; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Zheng, B.J., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Guo, R., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol, 84, pp. 2808-2819; Lau, S.K., Woo, P.C., Li, K.S., Tsang, A.K., Fan, R.Y., Luk, H.K., Cai, J.P., Wang, M., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A (2015) J. Virol, 89, pp. 3076-3092; Bardos, V., Schwanzer, V., Pesko, J., Identification of Tettnang virus (‘possible arbovirus’) as mouse hepatitis virus (1980) Intervirology, 13, pp. 275-283; Corman, V.M., Kallies, R., Philipps, H., Gopner, G., Muller, M.A., Eckerle, I., Brunink, S., Drexler, J.F., Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs (2014) J. Virol, 88, pp. 717-724; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of Novel Bat Coronaviruses in South China That Use the Same Receptor as Middle East Respiratory Syndrome Coronavirus (2018) J. Virol, 92, pp. e00116-e00e18; Lau, S.K.P., Zhang, L.B., Luk, H.K.H., Xiong, L.F., Peng, X.W., Li, K.S.M., He, X.Y., Wong, A.C.P., Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding (2018) J. Infect. Dis, 218, pp. 197-207; Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Lam, C.S.F., Ahmed, S., Chen, H.L., Chan, K.H., Yuen, K.Y., Genetic Characterization of Betacoronavirus Lineage C Viruses in Bats Reveals Marked Sequence Divergence in the Spike Protein of Pipistrellus Bat Coronavirus HKU5 in Japanese Pipistrelle: Implications for the Origin of the Novel Middle East Respiratory Syndrome Coronavirus (2013) J. Virol, 87, pp. 8638-8650; Yang, L., Wu, Z.Q., Ren, X.W., Yang, F., Zhang, J.P., He, G.M., Dong, J., Zhang, S.Y., MERS-Related Betacoronavirus in Vespertilio superans Bats (2014) China. Emerg. Infect. Dis, 20, pp. 1260-1262; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., Shi, Y., Zhou, Y., A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene (2016) Plos Pathog, 12; Obameso, J.O., Li, H., Jia, H., Han, M., Zhu, S., Huang, C., Zhao, Y., Yuan, F., The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: A two-year follow-up (2017) Sci. China Life Sci, 60, pp. 1357-1363; Luo, Y., Li, B., Jiang, R.D., Hu, B.J., Luo, D.S., Zhu, G.J., Hu, B., Yang, X.L., Longitudinal Surveillance of Betacoronaviruses in Fruit Bats in Yunnan Province, China During 2009-2016 (2018) Virol. Sin, 33, pp. 87-95; Lau, S.K., Poon, R.W., Wong, B.H., Wang, M., Huang, Y., Xu, H., Guo, R., Chan, K.H., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J. Virol, 84, pp. 11385-11394; Ge, X., Li, Y., Yang, X., Zhang, H., Zhou, P., Zhang, Y., Shi, Z., Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China (2012) J. Virol, 86, pp. 4620-4630; Ren, W., Li, W.D., Yu, M., Hao, P., Zhang, Y., Zhou, P., Zhang, S.Y., Wang, S.Y., Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis (2006) J. Gen. Virol, 87, pp. 3355-3359; Yuan, J.F., Hon, C.C., Li, Y., Wang, D.M., Xu, G.L., Zhang, H.J., Zhou, P., Leung, F.C.C., Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans (2010) J. Gen. Virol, 91, pp. 1058-1062; Wu, Z.G., Yang, L., Ren, X.W., Zhang, J.P., Yang, F., Zhang, S.Y., Jin, Q., ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus (2016) J. Infect. Dis, 213, pp. 579-583; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Daszak, P., Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus (2016) J. Virol, 90, pp. 3253-3256; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) Plos Pathog, 13; Hu, D., Zhu, C.Q., Ai, L.L., He, T., Wang, Y., Ye, F.Q., Yang, L., Lv, R.C., Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats (2018) Emerg. Microbes Infect, 7, p. 154; Hu, D., Zhu, C., Wang, Y., Ai, L., Yang, L., Ye, F., Ding, C., Zhu, J., Virome analysis for identification of novel mammalian viruses in bats from Southeast China (2017) Sci. Rep, 7, p. 10917; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol, 86, pp. 3995-4008; Woo, P.C., Lau, S.K., Tsang, C.C., Lau, C.C., Wong, P.C., Chow, F.W., Fong, J.Y., Yuen, K.Y., Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 50-untranslated region (2017) Emerg. Microbes Infect, 6; Ren, W., Qu, X., Li, W., Han, Z., Yu, M., Zhou, P., Zhang, S.Y., Shi, Z., Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin (2008) J. Virol, 82, pp. 1899-1907; Yang, L., Wu, Z.Q., Ren, X.W., Yang, F., He, G.M., Zhang, J.P., Dong, J., Du, J., Novel SARS-like Betacoronaviruses in Bats, China, 2011 (2013) Emerg. Infect. Dis, 19, pp. 989-991; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Donaldson, E.F., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med, 21, pp. 1508-1513; Wang, N., Li, S.Y., Yang, X.L., Huang, H.M., Zhang, Y.J., Guo, H., Luo, C.M., Chmura, A.A., Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China (2018) Virol. Sin, 33, pp. 104-107; Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., Cross host transmission in the emergence of MERS coronavirus (2016) Curr. Opin. Virol, 16, pp. 55-62; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol, 88, pp. 11297-11303; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) Mbio, 8, pp. e00373-e00e17; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Wang, L., Su, S., Bi, Y., Wong, G., Gao, G.F., Bat-Origin Coronaviruses Expand Their Host Range to Pigs (2018) Trends Microbiol, 26, pp. 466-470; Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Cowled, C., Michalski, W.P., Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 2696-2701; Xie, J., Li, Y., Shen, X., Goh, G., Zhu, Y., Cui, J., Wang, L.F., Zhou, P., Dampened STING-Dependent Interferon Activation in Bats (2018) Cell Host Microbe, 23, pp. 297-301","Zhou, P.; CAS Key Laboratory of Special Pathogens and Biosafety,Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: peng.zhou@wh.iov.cn",,"MDPI AG",19994915,,,"30832341","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85062429362 "Ramadan N., Shaib H.","57211517979;24725826400;","Middle east respiratory syndrome coronavirus (MERS-COV): A review",2019,"GERMS","9","1",,"35","42",,4,"10.18683/germs.2019.1155","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074705296&doi=10.18683%2fgerms.2019.1155&partnerID=40&md5=aecf5879db45e0b680fd0689290e1df2","Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh, PO Box 11-0236, Beirut, 1107-2020, Lebanon","Ramadan, N., Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh, PO Box 11-0236, Beirut, 1107-2020, Lebanon; Shaib, H., Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh, PO Box 11-0236, Beirut, 1107-2020, Lebanon","As a novel coronavirus first reported by Saudi Arabia in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is responsible for an acute human respiratory syndrome. The virus, of 2C beta-CoV lineage, expresses the dipeptidyl peptidase 4 (DPP4) receptor and is densely endemic in dromedary camels of East Africa and the Arabian Peninsula. MERS-CoV is zoonotic but human-to-human transmission is also possible. Surveillance and phylogenetic researches indicate MERS-CoV to be closely associated with bats’ coronaviruses, suggesting bats as reservoirs, although unconfirmed. With no vaccine currently available for MERS-CoV nor approved prophylactics, its global spread to over 25 countries with high fatalities highlights its role as ongoing public health threat. An articulated action plan ought to be taken, preferably from a One Health perspective, for appropriately advanced countermeasures against MERS-CoV. © GERMS 2019 ISSN 2248 – 2997.","Epidemiology; Lebanon; MERS-CoV; One Health","dipeptidyl peptidase IV; amino acid sequence; antiviral therapy; apoptosis; fever; health care planning; hospitalization; human; immunosuppressive treatment; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; nonhuman; open reading frame; phylogeny; prophylaxis; protein expression; public health; real time polymerase chain reaction; Review; Saudi Arabia; vaccination; virology; virus genome; virus pathogenesis; virus replication; virus transmission; World Health Organization","(2017) Middle East Respiratory Syndrome Coronavirus (Mers-Cov)-Lebanon, , https://www.who.int/csr/don/04-july-2017-mers-lebanon/en/, Accessed on: 05 July 2017. Available at; Bauerfeind, R., von Graevenitz, A., Kimmig, P., (2016) Zoonoses: Infectious Diseases Transmissible from Animals to Humans, , Fourth Edition. Washington, DC, USA: ASM Press; McIntosh, K., Hirsch, M., Thorner, A., (2017) Middle East Respiratory Syndrome Coronavirus: Virology, Pathogenesis, and Epidemiology, , Post TW, ed. UpToDate. Waltham, MA, USA: UpToDate Inc; Wise, J., Patient with new strain of coronavirus is treated in intensive care at London hospital (2012) BMJ, 345, p. e6455; Al-Tawfiq, A., Middle East Respiratory Syndrome-coronavirus infection: An overview (2013) J Infect Public Health, 6, pp. 319-322; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; (2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), Accessed on: 29 December 2018. Available at; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Sharif-Yakan, A., Kanj, S.S., Emergence of MERS-CoV in the Middle East: Origins, transmission, treatment, and perspectives (2014) Plos Pathog, 10; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Kindler, E., Jónsdóttir, H.R., Muth, D., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) Mbio, 4, pp. e00611-e00612; Chan, R.W., Hemida, M.G., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: An in-vitro and ex-vivo study (2014) Lancet Respir Med, 2, pp. 813-822; Müller, M.A., Raj, V.S., Muth, D., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) Mbio, p. 3; Chan, J.F., Choi, G.K., Tsang, A.K., Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses (2015) J Clin Microbiol, 53, pp. 2722-2726; Widagdo, W., Raj, V.S., Schipper, D., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90, pp. 4838-4842; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12; Zhang, Z., Shen, L., Gu, X., Evolutionary dynamics of MERS-CoV: Potential recombination, positive selection and transmission (2016) Sci Rep, 6; Lau, S.K.P., Fan, R.Y.Y., Luk, H.K.H., Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins (2018) Emerg Microbes Infect, 7, p. 209; (2017) Dromedary Camels and Mers-Cov: Filling Knowledge Gaps., , http://www.fao.org/3/a-i7350e.pdf, Accessed on: 20 November 2018. Available at; (2013) Camel with Mers-Cov had Signs of Illness., , http://www.cidrap.umn.edu/news-perspective/2013/11/camel-mers-cov-had-signs-illness, Accessed on: 25 November 2018. Available at; Chan, J.F., Chan, K.H., Choi, G.K., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J Infect Dis, 207, pp. 1743-1752; van Boheemen, S., de Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3, p. e00473; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; Wang, N., Shi, X., Jiang, L., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Woo, P.C., Lau, S.K., Lam, C.S., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Cauchemez, S., Fraser, C., van Kerkhove, M.D., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Hijawi, B., Abdallat, M., Sayaydeh, A., Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; (2017), http://coronamap.com, Accessed on: 02 July 2017. Available at; Banerjee, A., Rawat, R., Subudhi, S., Outbreak control policies for Middle East Respiratory Syndrome (MERS): The present and the future (2015) J Trop Dis Public Health, 3, p. 166; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea (2015) Osong Public Health Res Perspect, 6, pp. 269-278; (2014) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) – Update, , https://www.who.int/csr/don/2014_05_15_mers/en/, Accessed on: 29 June 2017. Available at; Hemida, M.G., Perera, R.A., Wang, P., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18; (2016) Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS). Transmission, , https://www.cdc.gov/coronavirus/mers/about/transmission.html, Accessed on: 29 June 2017. Available at; Meyer, B., García-Bocanegra, I., Wernery, U., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg Infect Dis, 21, pp. 181-182; Reusken, C.B., Ababneh, M., Raj, V.S., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18; Reusken, C.B., Schilp, C., Raj, V.S., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerg Infect Dis, 22, pp. 1129-1131; Sabir, J.S., Lam, T.T., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Shehata, M.M., Chu, D.K., Gomaa, M.R., Surveillance for coronaviruses in bats, Lebanon and Egypt, 2013-2015 (2016) Emerg Infect Dis, 22, pp. 148-150; Funk, A.L., Goutard, F.L., Miguel, E., MERS-CoV at the animal–human interface: Inputs on exposure pathways from an expert-opinion elicitation (2016) Front Vet Sci, 3, p. 88; Sikkema, R.S., Farag, E.A.B.A., Himatt, S., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013-2014: A case-control study (2017) J Infect Dis, 215, pp. 1702-1705; Zumla, A., Rustomjee, R., Ntoumi, F., Middle East respiratory syndrome—need for increased vigilance and watchful surveillance for MERS-CoV in Sub-Saharan Africa (2015) Int J Infect Dis, 37, pp. 77-79; Lu, X., Whitaker, B., Sakthivel, S.K., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Al-Hameed, F., Wahla, A.S., Siddiqui, S., Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia (2016) J Intensive Care Med, 31, pp. 344-348; Arabi, Y.M., Harthi, A., Hussein, J., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501; Excler, J.L., Delvecchio, C.J., Wiley, R.E., Toward developing a preventive MERS-CoV vaccine – Report from a workshop organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14-15, 2015 (2016) Emerg Infect Dis, 22; Papaneri, A.B., Johnson, R.F., Wada, J., Bollinger, L., Jahrling, P.B., Kuhn, J.H., Middle East respiratory syndrome: Obstacles and prospects for vaccine development (2015) Expert Rev Vaccines, 14, pp. 949-962; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns” (2013) J Formos Med Assoc, 112, pp. 372-381","Shaib, H.; Department of Agriculture, Faculty of Agricultural and Food Sciences (FAFS), American University of Beirut (AUB), Riad El Solh, PO Box 11-0236, Lebanon; email: hs45@aub.edu.lb",,"European Academy of HIV/AIDS and Infectious Diseases",22482997,,,,"English","GERMS",Review,"Final",,Scopus,2-s2.0-85074705296 "Zhou L., Sun Y., Lan T., Wu R., Chen J., Wu Z., Xie Q., Zhang X., Ma J.","55861714100;56166199400;57201787210;57196419932;57201552219;57193311808;9249047300;36968813100;7406199976;","Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China",2019,"Transboundary and Emerging Diseases","66","2",,"687","695",,7,"10.1111/tbed.13008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058520113&doi=10.1111%2ftbed.13008&partnerID=40&md5=1889e455d99bfae6388ddf3b6890c372","College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China","Zhou, L., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Sun, Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Lan, T., College of Animal Science, South China Agricultural University, Guangzhou, China; Wu, R., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Chen, J., Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China; Wu, Z., Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China; Xie, Q., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Zhang, X., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China, Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China; Ma, J., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China","Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel coronavirus, was first discovered in southern China in January 2017 and caused a large scale outbreak of fatal diarrheal disease in piglets. Here, we conducted a retrospective investigation of 236 samples from 45 swine farms with a clinical history of diarrheal disease to evaluate the emergence and the distribution of SADS-CoV in pigs in China. Our results suggest that SADS-CoV has emerged in China at least since August 2016. Meanwhile, we detected a prevalence of SADS-CoV (43.53%), porcine deltacoronavirus (8.83%), porcine epidemic diarrhoea virus (PEDV) (78.25%), rotavirus (21.77%), and transmissible gastroenteritis virus (0%), and we also found the co-infection of SADS-CoV and PEDV occurred most frequently with the rate of 17.65%. We screened and obtained two new complete genomes, five N and five S genes of SADS-CoV. Phylogenetic analysis based on these sequences revealed that all SADS-CoV sequences in this study clustered with previously reported SADS-CoV strains to form a well defined branch that grouped with the bat coronavirus HKU2 strains. This study is the first retrospective investigation for SADS-CoV and provides the epidemiological information of this new virus in China, which highlights the urgency to develop effective measures to control SADS-CoV. © 2018 Blackwell Verlag GmbH","phylogenetic analysis; prevalence; retrospective detection; Swine Acute Diarrhoea Syndrome Coronavirus","Article; China; Coronavirinae; diarrhea; DNA extraction; feces analysis; gene amplification; infection rate; mixed infection; nonhuman; phylogenetic tree; phylogeny; pig; polymerase chain reaction; Porcine epidemic diarrhea virus; Porcine respiratory coronavirus; prevalence; retrospective study; reverse transcription polymerase chain reaction; Rotavirus; sequence alignment; sequence analysis; Transmissible gastroenteritis virus; virus identification; Alphacoronavirus; animal; classification; Coronavirus infection; feces; female; genetics; isolation and purification; phylogeny; swine disease; veterinary medicine; virology; virus genome; coronavirus spike glycoprotein; nucleocapsid protein; nucleocapsid protein, Coronavirus; Swine acute diarrhea syndrome coronavirus; Alphacoronavirus; Animals; China; Coronavirus Infections; Feces; Female; Genome, Viral; Nucleocapsid Proteins; Phylogeny; Polymerase Chain Reaction; Prevalence; Retrospective Studies; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases","Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D., Multiple sequence alignmentwith the Clustal series of programs (2003) Nucleic Acids Research, 31, pp. 3497-3500. , https://doi.org/10.1093/nar/gkg500; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine Deltacoronavirus in Mainland China (2015) Emerging Infectious Diseases, 21, pp. 2254-2255. , https://doi.org/10.3201/eid2112.150283; Drummond, A., Pybus, O., Rambaut, A., Forsberg, R., Rodrigo, A., Measurably evolving populations (2003) Trends in Ecology & Evolution, 18, pp. 481-488. , https://doi.org/10.1016/S0169-5347(03)00216-7; Ge, F.F., Yang, D.Q., Ju, H.B., Wang, J., Liu, J., Liu, P.H., Zhou, J.P., Epidemiological survey of porcine epidemic diarrhea virus in swine farms in Shanghai, China (2013) Archives of Virology, 158, pp. 2227-2231. , https://doi.org/10.1007/s00705-013-1722-7; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Cao, Y., A new bat-HKU2–like coronavirus in swine, China, 2017 (2017) Emerging Infectious Diseases, 23, pp. 1607-1609. , https://doi.org/10.3201/eid2309.170915; Kühnert, D., Wu, C., Drummond, A.J., Phylogenetic and epidemic modeling of rapidly evolving infectious diseases (2011) Infection, Genetics and Evolution, 11, pp. 1825-1841. , https://doi.org/10.1016/j.meegid.2011.08.005; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics analysis version 7.0 for bigger datasets (2016) Molecular Biology and Evolution, 33 (7), pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054; Lin, C., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Research, 226, pp. 20-39. , https://doi.org/10.1016/j.virusres.2016.05.023; Liu, X., Zhu, L., Liao, S., Xu, Z., Zhou, Y., The porcine microRNA transcriptome response to transmissible gastroenteritis virus infection (2015) PLoS One, 10 (3). , https://doi.org/10.1371/journal.pone.0120377; Mai, K., Feng, J., Chen, G., Li, D., Zhou, L., Bai, Y., Ma, J., The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China (2017) Transboundary and Emerging Diseases, 65 (1), pp. 166-173; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y., Huang, Y., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Veterinary Microbiology, 211, pp. 15-21. , https://doi.org/10.1016/j.vetmic.2017.09.020; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) Journal of veterinary Diagnostic Investigation, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerging Infectious Diseases, 18, pp. 161-163. , https://doi.org/10.3201/eid1801.111259; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review (2016) Journal of Veterinary Medical Science, 78, pp. 355-363. , https://doi.org/10.1292/jvms.15-0446; Tamura, K., Nei, M., Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method (2004) Proceedings of the National Academy of Sciences, 101, pp. 11030-11035. , https://doi.org/10.1073/pnas.0404206101; Wesley, R.D., Woods, R.D., Cheung, A.K., Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus (1991) Journal of Virology, 65, pp. 3369-3373; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Yuen, K.Y., Discovery of seven novel Mammalian and Avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of Virology, 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Zhao, Z.P., Yang, Z., Lin, W.D., Wang, W.Y., Yang, J., Jin, W.J., Qin, A.J., The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus (2016) Acta Virologica, 60, pp. 55-61. , https://doi.org/10.4149/av_2016_01_55; Zhou, P., Fan, H., Lan, T., Yang, X., Zhang, W., Zhu, Y., Ma, J., Fatal Swine Acute Diarrhea Syndrome caused by an HKU2-related Coronavirus of Bat Origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9","Zhang, X.; College of Animal Science, South China Agricultural UniversityChina; email: zhangxb@scau.edu.cn",,"Blackwell Publishing Ltd",18651674,,,"30171801","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85058520113 "Comar C.E., Goldstein S.A., Li Y., Yount B., Baric R.S., Weiss S.R.","57208148476;35784187600;55802366600;6603564156;57205312930;57203567044;","Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection",2019,"mBio","10","2", e00319-19,"","",,4,"10.1128/mBio.00319-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063929856&doi=10.1128%2fmBio.00319-19&partnerID=40&md5=175379c6cc61dc2bf39cf10c2d8a8349","Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States","Comar, C.E., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Goldstein, S.A., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Li, Y., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Yount, B., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Weiss, S.R., Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in 2012 as a novel etiological agent of severe respiratory disease in humans. As during infection by other viruses, host sensing of viral double-stranded RNA (dsRNA) induces several antiviral pathways. These include interferon (IFN), oligoadenylate synthetase (OAS)-RNase L, and protein kinase R (PKR). Coronaviruses, including MERS-CoV, potently suppress the activation of these pathways, inducing only modest host responses. Our study describes the functions of two accessory proteins unique to MERS-CoV and related viruses, NS4a and NS4b, during infection in human airway epithelium-derived A549 cells. NS4a has been previously characterized as a dsRNA binding protein, while NS4b is a 2=,5=-phosphodiesterase with structural and enzymatic similarity to NS2 encoded by mouse hepatitis virus (MHV). We found that deletion of NS4a results in increased interferon lambda (IFNL1) expression, as does mutation of either the catalytic site or nuclear localization sequence of NS4b. All of the mutant viruses we tested exhibited slight decreases in replication. We previously reported that, like MHV NS2, NS4b antagonizes OAS-RNase L, but suppression of IFN is a previously unidentified function for viral phosphodiesterases. Unexpectedly, deletion of NS4a does not result in robust activation of the PKR or OAS-RNase L pathways. Therefore, MERS-CoV likely encodes other proteins that contribute to suppression or evasion of these antiviral innate immune pathways that should be an important focus of future work. This study provides additional insight into the complex interactions between MERS-CoV and the host immune response. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is the second novel zoonotic coronavirus to emerge in the 21st century and cause outbreaks of severe respiratory disease. More than 2,200 cases and 800 deaths have been reported to date, yet there are no licensed vaccines or treatments. Coronaviruses encode unique accessory proteins that are not required for replication but most likely play roles in immune antagonism and/or pathogenesis. Our study describes the functions of MERS-CoV accessory proteins NS4a and NS4b during infection of a human airway-derived cell line. Loss of these accessory proteins during MERS-CoV infection leads to host antiviral activation and modestly attenuates replication. In the case of both NS4a and NS4b, we have identified roles during infection not previously described, yet the lack of robust activation suggests much remains to be learned about the interactions between MERS-CoV and the infected host. © 2019 Comar et al.","Coronavirus; Interferon antagonist; MERS-CoV; Viral accessory proteins","double stranded RNA; immunoglobulin enhancer binding protein; interleukin 29; nonstructural protein 4A; nonstructural protein 4B; oligoadenylate synthetase; protein kinase R; ribonuclease L; synthetase; unclassified drug; double stranded RNA; viral protein; virus RNA; A-549 cell line; Article; catalysis; controlled study; enzyme activation; enzyme phosphorylation; gene expression; human; human cell; IFNL1 gene; immune deficiency; immune evasion; immune response; innate immunity; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein expression; protein function; protein localization; protein synthesis; signal transduction; virus replication; epithelium cell; gene deletion; genetics; host pathogen interaction; immune evasion; immunology; innate immunity; metabolism; mutation; pathogenicity; virology; A549 Cells; Epithelial Cells; Gene Deletion; Host-Pathogen Interactions; Humans; Immune Evasion; Immunity, Innate; Middle East Respiratory Syndrome Coronavirus; Mutation; RNA, Double-Stranded; RNA, Viral; Viral Nonstructural Proteins; Viral Regulatory and Accessory Proteins; Virus Replication","van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3, pp. e00473-e00512. , https://doi.org/10.1128/mBio.00473-12; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I.A., Dalab, A.H.S., Al-Busadah, K.A.S., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1153-1158. , https://doi.org/10.3201/eid2107.150070; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.-J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590; Wernery, U., Rasoul, I.E., Wong, E.Y., Joseph, M., Chen, Y., Jose, S., Tsang, A.K., Woo, P.C., A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age (2015) Emerg Microbes Infect, 4, p. 1. , https://doi.org/10.1038/emi.2015.74; Geldenhuys, M., Mortlock, M., Weyer, J., Bezuidt, O., Seamark, E.C.J., Kearney, T., Gleasner, C., Markotter, W., A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa (2018) PLoS One, 13, p. e0194527. , https://doi.org/10.1371/journal.pone.0194527; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303. , https://doi.org/10.1128/JVI.01498-14; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A.K., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8, pp. e00373-e00417. , https://doi.org/10.1128/mBio.00373-17; Liu, D.X., Fung, T.S., Chong, K.K.-L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res, 109, pp. 97-109. , https://doi.org/10.1016/j.antiviral.2014.06.013; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) mBio, 8, pp. e00665-e00717. , https://doi.org/10.1128/mBio.00665-17; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961. , https://doi.org/10.1007/s13238-013-3096-8; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., García-Sastre, A., Perlman, S., Sola, I., MERSCoV 4b protein interferes with the NF-κB-dependent innate immune response during infection (2018) PLoS Pathog, 14, p. e1006838. , https://doi.org/10.1371/journal.ppat.1006838; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Müller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87, pp. 12489-12495. , https://doi.org/10.1128/JVI.01845-13; Rabouw, H.H., Langereis, M.A., Knaap, R.C.M., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., van Kuppeveld, F.J.M., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12, p. e1005982. , https://doi.org/10.1371/journal.ppat.1005982; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Tan, W., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci Rep, 5, p. 17554. , https://doi.org/10.1038/srep17554; Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882. , https://doi.org/10.1099/vir.0.062059-0; Siu, K.-L., Yeung, M.L., Kok, K.-H., Yuen, K.-S., Kew, C., Lui, P.-Y., Chan, C.-P., Jin, D.-Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876. , https://doi.org/10.1128/JVI.03649-13; Nakagawa, K., Narayanan, K., Wada, M., Makino, S., Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication (2018) J Virol, 92, pp. e00902-e00918. , https://doi.org/10.1128/JVI.00902-18; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) mBio, 7, pp. e00258-e00316. , https://doi.org/10.1128/mBio.00258-16; Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H., Parks, W.P., In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors (1973) J Natl Cancer Inst, 51, pp. 1417-1423. , https://doi.org/10.1093/jnci/51.5.1417; Liu, R., Moss, B., Opposing roles of double-stranded RNA effector pathways and viral defense proteins revealed with CRISPR-Cas9 knockout cell lines and vaccinia virus mutants (2016) J Virol, 90, pp. 7864-7879. , https://doi.org/10.1128/JVI.00869-16; Min, J.Y., Krug, R.M., The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2=-5= oligo (A) synthetase/RNase L pathway (2006) Proc Natl Acad Sci U S A, 103, pp. 7100-7105. , https://doi.org/10.1073/pnas.0602184103; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Silverman, R.H., Weiss, S.R., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11, pp. 607-616. , https://doi.org/10.1016/j.chom.2012.04.011; Goldstein, S.A., Thornbrough, J.M., Zhang, R., Jha, B.K., Li, Y., Elliott, R., Quiroz-Figueroa, K., Weiss, S.R., Lineage A betacoronavirus NS2 proteins and homologous torovirus Berne pp1a-carboxyterminal domain are phosphodiesterases that antagonize activation of RNase L (2016) J Virol, 91, pp. 02201-02216. , https://doi.org/10.1128/JVI.02201-16; Roth-Cross, J.K., Stokes, H., Chang, G., Chua, M.M., Thiel, V., Weiss, S.R., Gorbalenya, A.E., Siddell, S.G., Organ-specific attenuation of murine hepatitis virus strain A59 by replacement of catalytic residues in the putative viral cyclic phosphodiesterase ns2 (2009) J Virol, 83, pp. 3743-3753. , https://doi.org/10.1128/JVI.02203-08; Zhao, L., Birdwell, L.D., Wu, A., Elliott, R., Rose, K.M., Phillips, J.M., Li, Y., Weiss, S.R., Cell-type-specific activation of the oligoadenylate synthetase-RNase L pathway by a murine coronavirus (2013) J Virol, 87, pp. 8408-8418. , https://doi.org/10.1128/JVI.00769-13; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Baric, R.S., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162. , https://doi.org/10.1073/pnas.1311542110; te Velthuis, A.J.W., van den Worm, S.H.E., Snijder, E.J., The SARScoronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension (2012) Nucleic Acids Res, 40, pp. 1737-1747. , https://doi.org/10.1093/nar/gkr893; Mazumder, R., Iyer, L.M., Vasudevan, S., Aravind, L., Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily (2002) Nucleic Acids Res, 30, pp. 5229-5243. , https://doi.org/10.1093/nar/gkf645; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115, pp. 3144-3149. , https://doi.org/10.1073/pnas.1718769115; Zhao, L., Rose, K.M., Elliott, R., Van Rooijen, N., Weiss, S.R., Cell-typespecific type I interferon antagonism influences organ tropism of murine coronavirus (2011) J Virol, 85, pp. 10058-10068. , https://doi.org/10.1128/JVI.05075-11; Li, Y., Banerjee, S., Wang, Y., Goldstein, S.A., Dong, B., Gaughan, C., Silverman, R.H., Weiss, S.R., Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses (2016) Proc Natl Acad Sci U S A, 113, pp. 2241-2246. , https://doi.org/10.1073/pnas.1519657113; Rivas, C., Gil, J., Mĕlková, Z., Esteban, M., Díaz-Guerra, M., Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2-5A synthetase enzyme (1998) Virology, 243, pp. 406-414. , https://doi.org/10.1006/viro.1998.9072; Gusho, E., Zhang, R., Jha, B.K., Thornbrough, J.M., Dong, B., Gaughan, C., Elliott, R., Silverman, R.H., Murine AKAP7 has a 2=,5=-phosphodiesterase domain that can complement an inactive murine coronavirus ns2 gene (2014) mBio, 5, pp. e01312-e01314. , https://doi.org/10.1128/mBio.01312-14; Schmidt, E.K., Clavarino, G., Ceppi, M., Pierre, P., SUnSET, a nonradioactive method to monitor protein synthesis (2009) Nat Methods, 6, pp. 275-277. , https://doi.org/10.1038/nmeth.1314; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.-T.K., Makino, S., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89, pp. 10970-10981. , https://doi.org/10.1128/JVI.01352-15; Lamers, M.M., Raj, V.S., Shafei, M., Ali, S.S., Abdallh, S.M., Gazo, M., Nofal, S., Haagmans, B.L., Deletion variants of Middle East respiratory syndrome coronavirus from humans, Jordan, 2015 (2016) Emerg Infect Dis, 22, pp. 716-719. , https://doi.org/10.3201/eid2204.152065; Wells, A.I., Coyne, C.B., Type III interferons in antiviral defenses at barrier surfaces (2018) Trends Immunol, 39, pp. 848-858. , https://doi.org/10.1016/j.it.2018.08.008; Hilcenko, C., Simpson, P.J., Finch, A.J., Bowler, F.R., Churcher, M.J., Jin, L., Packman, L.C., Warren, A.J., Aberrant 3= oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia (2013) Blood, 121, pp. 1028-1038. , https://doi.org/10.1182/blood-2012-10-461491; Nomura, Y., Roston, D., Montemayor, E.J., Cui, Q., Butcher, S.E., Structural and mechanistic basis for preferential deadenylation of U6 snRNA by Usb1 (2018) Nucleic Acids Res, 46, pp. 11488-11501. , https://doi.org/10.1093/nar/gky812; Zhang, R., Jha, B.K., Ogden, K.M., Dong, B., Zhao, L., Elliott, R., Patton, J.T., Weiss, S.R., Homologous 2=,5=-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity (2013) Proc Natl Acad Sci U S A, 110, pp. 13114-13119. , https://doi.org/10.1073/pnas.1306917110; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114, pp. E4251-E4260; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13, p. e1006195. , https://doi.org/10.1371/journal.ppat.1006195; Zhou, H., Perlman, S., Mouse hepatitis virus does not induce beta interferon synthesis and does not inhibit its induction by doublestranded RNA (2007) J Virol, 81, pp. 568-574. , https://doi.org/10.1128/JVI.01512-06; Versteeg, G.A., Bredenbeek, P.J., van den Worm, S.H., Spaan, W.J., Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition (2007) Virology, 361, pp. 18-26. , https://doi.org/10.1016/j.virol.2007.01.020; Suthar, M.S., Shabman, R., Madric, K., Lambeth, C., Heise, M.T., Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86 (2005) J Virol, 79, pp. 4219-4228. , https://doi.org/10.1128/JVI.79.7.4219-4228.2005; Basler, C.F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., Klenk, H.-D., García-Sastre, A., The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3 (2003) J Virol, 77, pp. 7945-7956. , https://doi.org/10.1128/JVI.77.14.7945-7956.2003","Weiss, S.R.; Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaUnited States; email: weisssr@pennmedicine.upenn.edu",,"American Society for Microbiology",21612129,,,"30914508","English","mBio",Article,"Final",Open Access,Scopus,2-s2.0-85063929856 "Li C.-C., Wang X.-J., Wang H.-C.R.","57191916600;39962863500;57201776295;","Repurposing host-based therapeutics to control coronavirus and influenza virus",2019,"Drug Discovery Today","24","3",,"726","736",,6,"10.1016/j.drudis.2019.01.018","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061126957&doi=10.1016%2fj.drudis.2019.01.018&partnerID=40&md5=51f15c7ba5c666ba8058a7f76bd778f2","Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China; Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, United States","Li, C.-C., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China; Wang, X.-J., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China; Wang, H.-C.R., Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, United States","This communication focuses on the repurposing of clinically approved drugs and promising preclinical drug candidates for therapeutic development of host-based antiviral agents to control diseases caused by coronavirus and influenza virus. © 2019 Elsevier LtdThe development of highly effective antiviral agents has been a major objective in virology and pharmaceutics. Drug repositioning has emerged as a cost-effective and time-efficient alternative approach to traditional drug discovery and development. This new shift focuses on the repurposing of clinically approved drugs and promising preclinical drug candidates for the therapeutic development of host-based antiviral agents to control diseases caused by coronavirus and influenza virus. Host-based antiviral agents target host cellular machineries essential for viral infections or innate immune responses to interfere with viral pathogenesis. This review discusses current knowledge, prospective applications and challenges in the repurposing of clinically approved and preclinically studied drugs for newly indicated antiviral therapeutics. © 2019 Elsevier Ltd",,"antivirus agent; cyclin dependent kinase; initiation factor 2alpha; interferon; mitogen activated protein kinase; polyamine; protein tmprss2; unclassified drug; virus glycoprotein; antivirus agent; Coronavirinae; host resistance; human; infection control; inflammation; Influenza virus; innate immunity; nonhuman; pathogenesis; protein phosphorylation; Review; virus infection; virus replication; animal; Coronavirus infection; drug repositioning; immunology; influenza; virus entry; Animals; Antiviral Agents; Coronavirus Infections; Drug Repositioning; Humans; Immunity, Innate; Influenza, Human; Virus Internalization; Virus Replication","Yin, Y., Wunderink, R.G., MERS, SARS and other coronaviruses as causes of pneumonia (2018) Respirology, 23, pp. 130-137; Dyall, J., Middle East respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies (2017) Drugs, 77, pp. 1935-1966; Forrest, H.L., Webster, R.G., Perspectives on influenza evolution and the role of research (2010) Anim. Health Res. Rev., 11, pp. 3-18; Hayden, F.G., Hay, A.J., Emergence and transmission of influenza A viruses resistant to amantadine and rimantadine (1992) Curr. Top. Microbiol. Immunol., 176, pp. 119-130; Perwitasari, O., Repurposing kinase inhibitors as antiviral agents to control influenza A virus replication (2015) Assay Drug Dev. Technol., 13, pp. 638-649; Woollard, S.M., Kanmogne, G.D., Maraviroc: a review of its use in HIV infection and beyond (2015) Drug Des. Dev. Ther., 9, pp. 5447-5468; Emu, B., Phase 3 study of ibalizumab for multidrug-resistant HIV-1 (2018) N. Engl. J. Med., 379, pp. 645-654; Walls, A.C., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. 11157-11162; Hamilton, B.S., Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion (2012) Viruses, 4, pp. 1144-1168; Zumla, A., Coronaviruses-drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Shirato, K., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Reinke, L.M., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12; Sai, J.K., Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease (2010) J. Gastroenterol., 45, pp. 335-341; Zhou, Y., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res., 116, pp. 76-84; Yamaya, M., The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells (2015) Pulm. Pharmacol. Ther., 33, pp. 66-74; Murakawa, M., Use of a synthetic protease inhibitor for the treatment of l-asparaginase-induced acute pancreatitis complicated by disseminated intravascular coagulation (1992) Ann. Hematol., 64, pp. 249-252; Cao, Y.G., A method for quantifying the unstable and highly polar drug nafamostat mesilate in human plasma with optimized solid-phase extraction and ESI-MS detection: more accurate evaluation for pharmacokinetic study (2008) Anal. Bioanal. Chem., 391, pp. 1063-1071; Yamamoto, M., Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay (2016) Antimicrob. Agents Chemother., 60, pp. 6532-6539; Hosoya, M., Effects of protease inhibitors on replication of various myxoviruses (1992) Antimicrob. Agents Chemother., 36, pp. 1432-1436; Lucas, J.M., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis (2014) Cancer Discov., 4, pp. 1310-1325; Simmons, G., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 11876-11881; Huang, I.C., SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells (2006) J. Biol. Chem., 281, pp. 3198-3203; Abdulla, M.H., Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor (2007) PLoS Med., 4; Nunes-Correia, I., Caveolae as an additional route for influenza virus endocytosis in MDCK cells (2004) Cell Mol. Biol. Lett., 9, pp. 47-60; Sieczkarski, S.B., Whittaker, G.R., Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis (2002) J. Virol., 76, pp. 10455-10464; Wang, H., SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway (2008) Cell Res., 18, pp. 290-301; de Vries, E., Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway (2011) PLoS Pathog., 7; Rossman, J.S., Filamentous influenza virus enters cells via macropinocytosis (2012) J. Virol., 86, pp. 10950-10960; Miyamoto, S., Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents (2012) Mol. Psychiatry, 17, pp. 1206-1227; Curry, S.H., Chlorpromazine: concentrations in plasma, excretion in urine and duration of effect (1971) Proc. R. Soc. Med., 64, pp. 285-289; de Wilde, A.H., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; Inoue, Y., Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted (2007) J. Virol., 81, pp. 8722-8729; Chu, V.C., Avian infectious bronchitis virus enters cells via the endocytic pathway (2006) Adv. Exp. Med. Biol., 581, pp. 309-312; Pu, Y., Zhang, X., Mouse hepatitis virus type 2 enters cells through a clathrin-mediated endocytic pathway independent of Eps15 (2008) J. Virol., 82, pp. 8112-8123; Teiwes, J., Toto, R.D., Epithelial sodium channel inhibition in cardiovascular disease: A potential role for amiloride (2007) Am. J. Hypertens., 20, pp. 109-117; Mercer, J., Helenius, A., Virus entry by macropinocytosis (2009) Nat. Cell Biol., 11, pp. 510-520; Lin, C.W., Binding interaction of SARS coronavirus 3CL(pro) protease with vacuolar-H+ ATPase G1 subunit (2005) FEBS Lett., 579, pp. 6089-6094; Müller, K.H., The proton translocation domain of cellular vacuolar ATPase provides a target for the treatment of influenza A virus infections (2011) Br. J. Pharmacol., 164, pp. 344-357; Lebreton, S., Evaluating the potential of vacuolar ATPase inhibitors as anticancer agents and multigram synthesis of the potent salicylihalamide analog saliphenylhalamide (2008) Bioorg. Med. Chem. Lett., 18, pp. 5879-5883; Denisova, O.V., Obatoclax, saliphenylhalamide, and gemcitabine inhibit influenza a virus infection (2012) J. Biol. Chem., 287, pp. 35324-35332; Bimbo, L.M., Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles (2013) ACS Nano, 7, pp. 6884-6893; Huss, M., Wieczorek, H., Inhibitors of V-ATPases: old and new players (2009) J. Exp. Biol., 212, pp. 341-346; Shen, W., Effects of diphyllin as a novel V-ATPase inhibitor on gastric adenocarcinoma (2011) Eur. J. Pharmacol., 667, pp. 330-338; Chen, H.W., Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on infuenza viruses (2013) Antiviral Res., 99, pp. 371-382; Hu, C.J., Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus (2017) Sci. Rep., 7, p. 13043; Ditzel, J., Schwartz, M., Worm cure without tears. The effect of niclosamide on Taeniasis saginata in man (1967) Acta Med. Scand., 182, pp. 663-664; Jurgeit, A., Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects (2012) PLoS Pathog., 8; Wu, C.J., Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide (2004) Antimicrob. Agents Chemother., 48, pp. 2693-2696; Malpartida, F., Clinical evaluation of amiodarone hydrochloride as an anti-arrhythmia agent (1975) Rev. Med. Univ. Navarra, 19, pp. 143-149; Stadler, K., Amiodarone alters late endosomes and inhibits SARS coronavirus infection at a post-endosomal level (2008) Am. J. Respir. Cell Mol. Biol., 39, pp. 142-149; Coleman, C.M., Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion (2016) J. Virol., 90, pp. 8924-8933; Hochhaus, A., Long-term outcomes of imatinib treatment for chronic myeloid leukemia (2017) N. Engl. J. Med., 376, pp. 917-927; Gambacorti-Passerini, C., Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients (2003) Clin. Cancer Res., 9, pp. 625-632; Dyall, J., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob. Agents Chemother., 58, pp. 4885-4893; Okesli, A., Human pyrimidine nucleotide biosynthesis as a target for antiviral chemotherapy (2017) Curr. Opin. Biotechnol., 48, pp. 127-134; Evans, D.R., Guy, H.I., Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway (2004) J. Biol. Chem., 279, pp. 33035-33038; Burkhardt, H., Kalden, J.R., Xenobiotic immunosuppressive agents: therapeutic effects in animal models of autoimmune diseases (1997) Rheumatol. Int., 17, pp. 85-90; Qing, M., Characterization of dengue virus resistance to brequinar in cell culture (2010) Antimicrob. Agents Chemother., 54, pp. 3686-3695; Hoffmann, H.H., Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 5777-5782; Harvey, R., GSK983: a novel compound with broad-spectrum antiviral activity (2009) Antiviral Res., 82, pp. 1-11; Deans, R.M., Parallel shRNA and CRISPR-cas9 screens enable antiviral drug target identification (2016) Nat. Chem. Biol., 12, pp. 361-366; Barton-Burke, M., Gemcitabine: a pharmacologic and clinical overview (1999) Cancer Nurs., 22, pp. 176-183; Kuivanen, S., Obatoclax, saliphenylhalamide and gemcitabine inhibit Zika virus infection in vitro and differentially affect cellular signaling, transcription and metabolism (2017) Antiviral Res., 139, pp. 117-128; Pestova, T.V., Molecular mechanisms of translation initiation in eukaryotes (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 7029-7036; Nellist, C.F., Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance (2014) Plant J., 77, pp. 261-268; Schneider, R.J., Mohr, I., Translation initiation and viral tricks (2003) Trends Biochem. Sci., 28, pp. 130-136; Taylor, S.S., PKR and eIF2alpha: integration of kinase dimerization, activation, and substrate docking (2005) Cell, 122, pp. 823-825; Vane, J.R., Botting, R.M., Mechanism of action of aspirin-like drugs (1997) Semin. Arthritis Rheum., 26, pp. 2-10; Wei, X., An in situ crosslinked compression coat comprised of pectin and calcium chloride for colon-specific delivery of indomethacin (2015) Drug Deliv., 22, pp. 298-305; Amici, C., Inhibition of viral protein translation by indomethacin in vesicular stomatitis virus infection: role of eIF2alpha kinase PKR (2015) Cell Microb., 17, pp. 1391-1404; Amici, C., Indomethacin has a potent antiviral activity against SARS coronavirus (2006) Antivir. Ther., 11, pp. 1021-1030; Veronesi, U., Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer (1999) J. Natl. Cancer Inst., 91, pp. 1847-1856; Fraser, J.E., Novel dengue virus inhibitor 4-HPR activates ATF4 independent of protein kinase R-like endoplasmic reticulum kinase and elevates levels of eIF2alpha phosphorylation in virus infected cells (2016) Antiviral Res., 130, pp. 1-6; Fraser, J.E., A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection (2014) J. Infect. Dis., 210, pp. 1780-1791; Unoshima, M., Antiviral effects of geranylgeranylacetone: enhancement of MxA expression and phosphorylation of PKR during influenza virus infection (2003) Antimicrob. Agents Chemother., 47, pp. 2914-2921; Ding, L., HPLC-APCI-MS for the determination of teprenone in human plasma: method and clinical application (2007) J. Pharm. Biomed. Anal., 44, pp. 779-785; Hashimoto, K., Geranylgeranylacetone inhibits ovarian cancer progression in vitro and in vivo (2007) Biochem. Biophys. Res. Commun., 356, pp. 72-77; Rogers, G.W., Jr., Further characterization of the helicase activity of eIF4A. Substrate specificity (2001) J. Biol. Chem., 276, pp. 12598-12608; Cencic, R., Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol (2009) PLoS One, 4; Pan, L., Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species (2014) Nat. Prod. Rep., 31, pp. 924-939; Saradhi, U.V., Characterization of silvestrol pharmacokinetics in mice using liquid chromatography-tandem mass spectrometry (2011) AAPS J., 13, pp. 347-356; Müller, C., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses (2018) Antiviral Res., 150, pp. 123-129; Bordeleau, M.E., Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A (2006) Nat. Chem. Biol., 2, pp. 213-220; Slaine, P.D., Stress granule-inducing eukaryotic translation initiation factor 4A inhibitors block influenza A virus replication (2017) Viruses, 2017, p. 9; Kindrachuk, J., Antiviral potential of ERK/MAPK and PI3 K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis (2015) Antimicrob. Agents Chemother., 59, pp. 1088-1099; Steelman, L.S., JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis (2004) Leukemia, 18, pp. 189-218; McCubrey, J.A., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance (2007) Biochim. Biophys. Acta, 1773, pp. 1263-1284; Gupta, A., Vemurafenib (BRAF inhibitor) therapy for orbital Erdheim–Chester disease (2017) Ophthal. Plast. Reconstr. Surg., 33, pp. e138-e139; Yang, H., RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models (2010) Cancer Res., 70, pp. 5518-5527; Holzberg, M., Vemurafenib limits influenza A virus propagation by targeting multiple signaling pathways (2017) Front. Microbiol., 8, p. 2426; Cai, Y., Suppression of coronavirus replication by inhibition of the MEK signaling pathway (2007) J. Virol., 81, pp. 446-456; Droebner, K., Antiviral activity of the MEK-inhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo (2011) Antiviral Res., 92, pp. 195-203; Haasbach, E., The MEK-inhibitor CI-1040 displays a broad anti-influenza virus activity in vitro and provides a prolonged treatment window compared to standard of care in vivo (2017) Antiviral Res., 142, pp. 178-184; Lorusso, P.M., Phase I and pharmacodynamics study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies (2005) J. Clin. Oncol., 23, pp. 5281-5293; Yamaguchi, T., Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancercell lines in vitro and in vivo (2011) Int. J. Oncol., 39, pp. 23-31; Yamaguchi, T., Suppressive effect of an orally active MEK1/2 inhibitor in two different animal models for rheumatoid arthritis: a comparison with leflunomide (2012) Inflamm. Res., 61, pp. 445-454; Schräder, T., The clinically approved MEK inhibitor trametinib efficiently blocks influenza A virus propagation and cytokine expression (2018) Antiviral Res., 157, pp. 80-92; Söderholm, S., Phosphoproteomics to characterize host response during influenza A virus infection of human macrophages (2016) Mol. Cell. Proteomics, 15, pp. 3203-3219; Zhang, J., Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II (2010) J. Virol., 84, pp. 12619-12627; Mita, M.M., Randomized Phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer (2014) Clin. Breast Cancer, 14, pp. 169-176; Ang, C., A nonrandomized, Phase II study of sequential irinotecan and flavopiridol in patients with advanced hepatocellular carcinoma (2012) Gastrointest. Cancer Res., 5, pp. 185-189; Chen, R., Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia (2009) Blood, 113, pp. 4637-4645; Lenis, Y.Y., Physiological importance of polyamines (2017) Zygote, 25, pp. 244-255; Thomas, T., Polyamine-mediated conformational perturbations in DNA alter the binding of estrogen receptor to poly(dG-m5dC).poly(dG-m5dC) and a plasmid containing the estrogen response element (1995) J. Steroid Biochem. Mol. Biol., 54, pp. 89-99; Frugier, M., Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase (1994) Nucleic Acids Res., 22, pp. 2784-2790; Mandal, S., Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 2169-2174; Williams, K., Interactions of polyamines with ion channels (1997) Biochem. J., 325, pp. 289-297; Gibson, W., Roizman, B., Compartmentalization of spermine and spermidine in the herpes simplex virion (1971) Proc. Natl. Acad. Sci. U. S. A., 68, pp. 2818-2821; Mounce, B.C., Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict Zika and Chikungunya viruses (2016) Cell Host Microbe, 20, pp. 167-177; Bacchi, C.J., Polyamine metabolism: a potential therapeutic target in trypanosomes (1980) Science, 210, pp. 332-334; Casero, R.A., Jr., Woster, P.M., Recent advances in the development of polyamine analogues as antitumor agents (2009) J. Med. Chem., 52, pp. 4551-4573; Mounce, B.C., Inhibition of polyamine biosynthesis is a broad-spectrum strategy against RNA viruses (2016) J. Virol., 90, pp. 9683-9692; Ng, D., Gommerman, J.L., The regulation of immune responses by DC derived type I IFN (2013) Front. Immunol, 4, p. 94; Wilkins, C., Gale, M., Jr., Recognition of viruses by cytoplasmic sensors (2010) Curr. Opin. Immunol., 22, pp. 41-47; Bisbal, C., The 2-5ARNase L pathway and inhibition by RNase L inhibitor (RLI) (2001) Methods Mol. Biol., 160, pp. 183-198; Ma, L.L., Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response (2016) Free Radic. Biol. Med., 96, pp. 347-361; Lang, Z.W., A clinicopathological study on 3 cases of severe acute respiratory syndrome (2003) Zhonghua Bing Li Xue Za Zhi, 32, pp. 201-204; Li, N., Histologic and ultrastructural studies of the patient died of highly pathogenic H5N1 avian influenza virus infection in China (2008) Zhonghua Bing Li Xue Za Zhi, 37, pp. 150-154; Ludwig, S., Planz, O., Influenza viruses and the NF-kappaB signaling pathway-towards a novel concept of antiviral therapy (2008) Biol. Chem., 389, pp. 1307-1312; Pasparakis, M., Role of NF-κB in epithelial biology (2012) Immunol. Rev., 246, pp. 346-358; Bermejo Benito, P., In vivo and in vitro antiinflammatory activity of saikosaponins (1998) Life Sci., 63, pp. 1147-1156; Wong, V.K., Mechanistic study of saikosaponin-d (Ssd) on suppression of murine T lymphocyte activation (2009) J. Cell Biochem., 107, pp. 303-315; Chen, J., Saikosaponin A inhibits influenza A virus replication and lung immunopathology (2015) Oncotarget, 6, pp. 42541-42556; DeDiego, M.L., Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival (2014) J. Virol., 88, pp. 913-924; Sartore-Bianchi, A., Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma (2007) Clin. Cancer Res., 13, pp. 5942-5951; Dudek, S.E., The clinically approved proteasome inhibitor PS-341 efficiently blocks influenza A virus and vesicular stomatitis virus propagation by establishing an antiviral state (2010) J. Virol., 84, pp. 9439-9451; Zhang, L., Characterization of bortezomib-adapted I-45 mesothelioma cells (2010) Mol. Cancer, 9, p. 110; Kim, S.W., The use of stronger neo-Minophagen C, a glycyrrhizin-containing preparation, in robust neuroprotection in the postischemic brain (2011) Anat. Cell Biol, 44, pp. 304-313; Asl, M.N., Hosseinzadeh, H., Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds (2008) Phytother. Res., 22, pp. 709-724; Wolkerstorfer, A., Glycyrrhizin inhibits influenza A virus uptake into the cell (2009) Antiviral Res., 83, pp. 171-178; Michaelis, M., Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression (2011) PLoS One, 6; Cinatl, J., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus (2003) Lancet, 361, pp. 2045-2046; Suebsasana, S., Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals (2009) Arch. Pharm. Res., 32, pp. 1191-1200; Chen, Q., Pharmacokinetics and tolerance of dehydroandrographolide succinate injection after intravenous administration in healthy Chinese volunteers (2012) Acta Pharmacol. Sin., 33, pp. 1332-1336; Cai, W., 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes (2015) Antiviral Res., 11, pp. 82-92; Rossignol, J.F., Maisonneuve, H., Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections (1984) Am. J. Trop. Med. Hyg., 33, pp. 511-512; Liu, C., In vivo and in vitro efficacies of mebendazole, mefloquine and nitazoxanide against cyst echinococcosis (2015) Parasitol. Res., 114, pp. 2213-2222; Haffizulla, J., Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial (2014) Lancet Infect. Dis., 14, pp. 609-618; Rossignol, J.F., Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus (2016) J. Infect. Public Health, 9, pp. 227-230; Lu, P., Lanthionine synthetase component C-like protein 2: a new drug target for inflammatory diseases and diabetes (2014) Curr. Drug Targets, 15, pp. 565-572; Leber, A., Lanthionine synthetase C-Like 2 modulates immune responses to influenza virus infection (2017) Front. Immunol, 8, p. 178; Lau, K.M., Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum (2002) J. Ethnopharmacol., 83, pp. 63-71; Hu, X.P., Anti-influenza virus effects of crude phenylethanoid glycosides isolated from Ligustrum purpurascens via inducing endogenous interferon-gamma (2016) J. Ethnopharmacol., 179, pp. 128-136","Wang, X.-J.; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural UniversityChina; email: wangxj@cau.edu.cn",,"Elsevier Ltd",13596446,,DDTOF,"30711575","English","Drug Discov. Today",Review,"Final",Open Access,Scopus,2-s2.0-85061126957 "Shokri S., Mahmoudvand S., Taherkhani R., Farshadpour F.","57190051091;57003498100;56004959700;35336313500;","Modulation of the immune response by Middle East respiratory syndrome coronavirus",2019,"Journal of Cellular Physiology","234","3",,"2143","2151",,5,"10.1002/jcp.27155","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052378077&doi=10.1002%2fjcp.27155&partnerID=40&md5=af7cb195e3fd3658e3be8c83e15e703e","Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran","Shokri, S., Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Mahmoudvand, S., Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Taherkhani, R., The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran; Farshadpour, F., The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran","Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells. © 2018 Wiley Periodicals, Inc.","immune evasion; immune response; Middle East respiratory syndrome coronavirus","double stranded RNA; immunoglobulin enhancer binding protein; interferon; interleukin 10; M protein; monocyte chemotactic protein 1; nonstructural protein 15; nonstructural protein 4A; nonstructural protein 4B; papain; papain like protease ubiquitin like domain; unclassified drug; viral protein; virus RNA; adaptive immunity; antigen presentation; apoptosis; cell proliferation; cytokine release; cytokine response; down regulation; host resistance; human; immune evasion; immune response; immunomodulation; innate immunity; macrophage; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; myeloid progenitor cell; nonhuman; priority journal; Review; signal transduction; T lymphocyte activation; Coronavirus infection; genetics; host pathogen interaction; immune evasion; immunology; Middle East respiratory syndrome coronavirus; pathogenicity; pathology; virology; Coronavirus Infections; Host-Pathogen Interactions; Humans; Immune Evasion; Immunity, Innate; Middle East Respiratory Syndrome Coronavirus","Al Hajjar, S., Memish, Z.A., Mcintosh, K., Middle East respiratory syndrome coronavirus (MERS-CoV): A perpetual challenge (2013) Annals of Saudi Medicine, 33 (5), pp. 427-436; Alcami, A., Koszinowski, U.H., Viral mechanisms of immune evasion (2000) Immunology Today, 21 (9), pp. 447-455; Almazan, F., DeDiego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) mBio, 4 (5), pp. e00613-e00650; Al-Tawfiq, J., Memish, Z., The middle east respiratory syndrome coronavirus respiratory infection: An emerging infection from the Arabian Peninsula (2016) The Microbiology of Respiratory System Infections, pp. 55-63. , Elsevier; Bosch, B.J., Raj, V.S., Haagmans, B.L., Spiking the MERS-coronavirus receptor (2013) Cell Research, 23 (9), pp. 1069-1070; Broxmeyer, H.E., Sherry, B., Cooper, S., Lu, L., Maze, R., Beckmann, M.P., Ralph, P., Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. Interacting effects involving suppression, synergistic suppression, and blocking of suppression (1993) The Journal of Immunology, 150 (8), pp. 3448-3458; Chan, J.F.W., Lau, S.K.P., Woo, P.C.Y., The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns” (2013) Journal of the Formosan Medical Association, 112 (7), pp. 372-381; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerging Microbes & Infections, 6 (6); Cho, C.-C., Lin, M.-H., Chuang, C.-Y., Hsu, C.-H., Macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV) is an efficient ADP-ribose binding module crystal structure and biochemical studies (2016) Journal of Biological Chemistry, 291 (10), pp. 4894-4902; Chu, H., Zhou, J., Ho-Yin Wong, B., Li, C., Cheng, Z.-S., Lin, X., Yuen, K.-Y., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205. , [Supplement C]; Chu, H., Zhou, J., Wong, B.H.Y., Li, C., Chan, J.F.W., Cheng, Z.-S., Yuen, K.Y., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2015) The Journal of Infectious Diseases, 213 (6), pp. 904-914; Clementz, M.A., Chen, Z., Banach, B.S., Wang, Y., Sun, L., Ratia, K., Baker, S.C., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases (2010) Journal of Virology, 84 (9), pp. 4619-4629; Coleman, C.M., Sisk, J.M., Mingo, R.M., Nelson, E.A., White, J.M., Frieman, M.B., Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion (2016) Journal of Virology, 90 (19), pp. 8924-8933; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) Journal of Virology, 88 (19), pp. 11297-11303; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proceedings of the National Academy of Sciences, 114 (21), pp. E4251-E4260; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Wendtner, C.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) The Lancet Infectious Diseases, 13 (9), pp. 745-751; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control (2015) Experimental & Molecular Medicine, 47 (8); Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Guery, B., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9 (2); Ferran, M.C., Skuse, G.R., Evasion of host innate immunity by emerging viruses: Antagonizing host RIG-I pathways (2017) J Emerg Dis Virol, 3 (3); Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Maniatis, T., IKKε and TBK1 are essential components of the IRF3 signaling pathway (2003) Nature Immunology, 4 (5), pp. 491-496; González-Navajas, J.M., Lee, J., David, M., Raz, E., Immunomodulatory functions of type I interferons (2012) Nature Reviews Immunology, 12 (2), pp. 125-135; Goubau, D., Deddouche, S., Reis e Sousa, C., Cytosolic sensing of viruses (2013) Immunity, 38 (5), pp. 855-869; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group (2013) Journal of Virology, 87 (14), pp. 7790-7792; Guo, B., Cheng, G., Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK (2007) Journal of Biological Chemistry, 282 (16), pp. 11817-11826; Haagmans, B.L., Kuiken, T., Martina, B.E., Fouchier, R.A.M., Rimmelzwaan, G.F., Van Amerongen, G., Osterhaus, A.D.M.E., Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nature Medicine, 10 (3), pp. 290-293; de Haan, C.A.M., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J.M., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296 (1), pp. 177-189; Haijema, B.J., Volders, H., Rottier, P.J.M., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) Journal of Virology, 78 (8), pp. 3863-3871; Hiscott, J., Triggering the innate antiviral response through IRF-3 activation (2007) Journal of Biological Chemistry, 282 (21), pp. 15325-15329; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Katze, M.G., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) mBio, 4 (3), pp. e00113-e00165; Kanwar, A., Selvaraju, S., Esper, F., Human coronavirus-HKU1 infection among adults in Cleveland, Ohio (2017) Open Forum Infectious Diseases, 4 (2), p. ofx052; Karin, M., Nuclear factor-κB in cancer development and progression (2006) Nature, 441 (7092), pp. 431-436; Kato, H., Takahasi, K., Fujita, T., RIG-I-like receptors: Cytoplasmic sensors for non-self RNA (2011) Immunological Reviews, 243 (1), pp. 91-98; Kim, E.S., Choe, P.G., Park, W.B., Oh, H.S., Kim, E.J., Nam, E.Y., Oh, M., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) Journal of Korean Medical Science, 31 (11), pp. 1717-1725; Kindler, E., Thiel, V., To sense or not to sense viral RNA—Essentials of coronavirus innate immune evasion (2014) Current Opinion in Microbiology, 20, pp. 69-75. , [Supplement C]; Kok, K.-H., Lui, P.-Y., Ng, M.H., Siu, K.-L., Au, S.W., Jin, D.-Y., The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response (2011) Cell Host and Microbe, 9 (4), pp. 299-309; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Yuen, K.-Y., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) Journal of Virology, 87 (15), pp. 8638-8650; Lee, H.-R., Lee, S., Chaudhary, P.M., Gill, P., Jung, J.U., Immune evasion by Kaposi’s sarcoma-associated herpesvirus (2010) Future Microbiology, 5 (9), pp. 1349-1365; Liu, D.X., Fung, T.S., Chong, K.K.L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Research, 109, pp. 97-109. , [Supplement C]; Liu, T., Zhang, L., Joo, D., Sun, S.-C., NF-κB signaling in inflammation (2017) Signal Transduction and Targeted Therapy, 2, p. 17023; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Lui, P.-Y., Wong, L.Y., Fung, C.-L., Siu, K.-L., Yeung, M.-L., Yuen, K.-S., Jin, D.-Y., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerging Microbes & Infections, 5 (4); Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) The Journal of General Virology, 95, pp. 874-882; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new MERS coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) Journal of Virology, 87, pp. 01213-01277; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review (2017) Journal of Infection and Public Health, 11, pp. 9-17; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., Buchmeier, M.J., A structural analysis of M protein in coronavirus assembly and morphology (2011) Journal of Structural Biology, 174 (1), pp. 11-22; Nicholson, L.B., The immune system (2016) Essays in Biochemistry, 60 (3), pp. 275-301; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a Is a Type I interferon antagonist (2013) Journal of Virology, 87 (22), pp. 12489-12495; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Morimoto, C., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) Journal of Virology, 87 (24), pp. 13892-13899; Organization, W.H., (2017) Middle East respiratory syndrome coronavirus (MERS-CoV)–Saudi Arabia, , http://wwwwhoint/emergencies/mers-cov/en/, Geneva, WHO, Accessed 21 July 2017; Pfeffer, L.M., The Role of nuclear factor κB in the interferon response (2011) Journal of Interferon & Cytokine Research, 31 (7), pp. 553-559; Rabouw, H.H., Langereis, M.A., Knaap, R.C.M., Dalebout, T.J., Canton, J., Sola, I., van Kuppeveld, F.J.M., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathogens, 12 (10); Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M.A., Wiersma, L., Ouwendijk, W.J.D., Haagmans, B.L., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) Journal of Virology, 88 (3), pp. 1834-1838; Seth, R.B., Sun, L., Ea, C.-K., Chen, Z.J., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3 (2005) Cell, 122 (5), pp. 669-682; Simmons, R.A., Willberg, C.B., Paul, K., (2001) Immune evasion by viruses. eLS, , John Wiley & Sons, Ltd; Siu, K.-L., Chan, C.-P., Kok, K.-H., Chiu-Yat Woo, P., Jin, D.-Y., Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain (2014) Cellular and Molecular Immunology, 11 (2), pp. 141-149; Siu, K.-L., Kok, K.-H., Ng, M.H.J., Poon, V.K.M., Yuen, K.-Y., Zheng, B.-J., Jin, D.-Y., Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKKϵ Complex (2009) The Journal of Biological Chemistry, 284 (24), pp. 16202-16209; Siu, K.-L., Yeung, M.L., Kok, K.-H., Yuen, K.-S., Kew, C., Lui, P.-Y., Jin, D.-Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) Journal of Virology, 88 (9), pp. 4866-4876; Suhara, W., Yoneyama, M., Kitabayashi, I., Fujita, T., Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex (2002) Journal of Biological Chemistry, 277 (25), pp. 22304-22313; Sumpter, R., Loo, Y.-M., Foy, E., Li, K., Yoneyama, M., Fujita, T., Gale, M., Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I (2005) Journal of Virology, 79 (5), pp. 2689-2699; Takeuchi, O., Akira, S., Innate immunity to virus infection (2009) Immunological Reviews, 227 (1), pp. 75-86; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Weiss, S.R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) mBio, 7 (2), pp. e00216-e00258; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon (2012) Current Opinion in Virology, 2 (3), pp. 264-275; De Veer, M.J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J.M., Williams, B.R., Functional classification of interferon-stimulated genes identified using microarrays (2001) Journal of Leukocyte Biology, 69 (6), pp. 912-920; Vossen, M., Westerhout, E., Söderberg-Nauclér, C., Wiertz, E., Viral immune evasion: A masterpiece of evolution (2002) Immunogenetics, 54 (8), pp. 527-542; Wong, L.Y.R., Lui, P.-Y., Jin, D.-Y., A molecular arms race between host innate antiviral response and emerging human coronaviruses (2016) Virologica Sinica, 31 (1), pp. 12-23; Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., Chen, Z., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease (2014) Journal of General Virology, 95 (3), pp. 614-626; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein & Cell, 4 (12), pp. 951-961; Ying, T., Li, W., Dimitrov, D.S., Discovery of T-cell infection and apoptosis by Middle East respiratory syndrome coronavirus (2016) The Journal of Infectious Diseases, 213 (6), pp. 877-879; Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Fujita, T., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses (2004) Nature Immunology, 5 (7), pp. 730-737; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Review of Vaccines, 13 (6), pp. 761-774; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Perlman, S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proceedings of the National Academy of Sciences of the United States of America, 111 (13), pp. 4970-4975; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Weiss, S.R., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host and Microbe, 11 (6), pp. 607-616; Zhou, J., Chu, H., Chan, J.F.W., Yuen, K.-Y., Middle East respiratory syndrome coronavirus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virology Journal, 12 (1), p. 218; Zhou, J., Chu, H., Li, C., Wong, B.H.Y., Cheng, Z.-S., Poon, V.K.M., Yuen, K.-Y., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) The Journal of Infectious Diseases, 209 (9), pp. 1331-1342; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) The Lancet, 386 (9997), pp. 995-1007","Farshadpour, F.; The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical SciencesIran; email: f.farshadpour@yahoo.com",,"Wiley-Liss Inc.",00219541,,JCLLA,"30146782","English","J. Cell. Physiol.",Review,"Final",Open Access,Scopus,2-s2.0-85052378077 "Ma L., Zeng F., Cong F., Huang B., Huang R., Ma J., Guo P.","57203960867;57202942871;57195918992;57190381187;36183347600;57205222918;55433605900;","Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus",2019,"Journal of Virological Methods","265",,,"66","70",,1,"10.1016/j.jviromet.2018.12.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059111582&doi=10.1016%2fj.jviromet.2018.12.010&partnerID=40&md5=ea30cb7dd39cceadecb3cadfe3376e02","Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; College of Animal Science, South China Agricultural University, Guangzhou, China","Ma, L., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Zeng, F., College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Cong, F., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Huang, B., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Huang, R., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China; Ma, J., College of Animal Science, South China Agricultural University, Guangzhou, China; Guo, P., Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China","Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel coronavirus which was associated with severe diarrhea disease in pigs. SADS-CoV was first detected and identified as the causative agent of a devastating swine disease outbreak in southern China in 2017. Routine monitoring and early detection of the source of infection is therefore integral to the prevention and control of SADS-CoV infection. In this study, a SYBR green-based real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) technique was established for rapid detection and monitoring of this emerging virus. Specific primers were designed based on the conserved region within the M gene of the viral genome. The lowest detection limit of the RT-qPCR assay was 10 copies/μL. This assay was specific and had no cross-reaction with other 11 swine viruses. The positive rate of 84 clinical samples for the SYBR green-based RT-qPCR and the conventional RT-PCR was 73.81% (62/84) and 53.57% (45/84), respectively. These results demonstrated that the SYBR green-based RT-qPCR technique was an effectively diagnostic method with higher sensitivity than probe-based RT-qPCR and gel-based RT-PCR for detection and epidemiological investigations of SADS-CoV. © 2018 Elsevier B.V.","Detection; Quantitative PCR; Swine acute diarrhea syndrome coronavirus (SADS-CoV)","Alphacoronavirus; Article; controlled study; gene sequence; monitoring; nonhuman; priority journal; quantitative analysis; real time polymerase chain reaction; reverse transcription polymerase chain reaction; sensitivity analysis; swine acute diarrhea syndrome coronavirus; virus detection; virus gene; virus genome; virus strain; Alphacoronavirus; animal; China; Coronavirus infection; evaluation study; genetics; isolation and purification; pig; procedures; real time polymerase chain reaction; reverse transcription polymerase chain reaction; sensitivity and specificity; staining; swine disease; time factor; veterinary medicine; virology; organic compound; primer DNA; Swine acute diarrhea syndrome coronavirus; SYBR Green I; Alphacoronavirus; Animals; China; Coronavirus Infections; DNA Primers; Organic Chemicals; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; Sensitivity and Specificity; Staining and Labeling; Swine; Swine Diseases; Time Factors","Fu, X., Fang, B., Liu, Y., Cai, M., Jun, J., Ma, J., Bu, D., Zhang, G., Newly emerged porcine enteric alphacoronavirus in southern China: identification, origin and evolutionary history analysis (2018) Infect. Genet. Evol., 62, pp. 179-187; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Jensen, K.S., Adams, R., Bennett, R.S., Bernbaum, J., Jahrling, P.B., Holbrook, M.R., Development of a novel real-time polymerase chain reaction assay for the quantitative detection of Nipah virus replicative viral RNA (2018) PLoS One, 13. , e0199534; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Yuen, K.Y., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Wang, H., Cong, F., Zeng, F., Lian, Y., Liu, X., Luo, M., Guo, P., Ma, J., Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV) (2018) J. Virol. Methods, 260, pp. 45-48; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Du, Y., Cao, Y., Isolation and characterization of a highly pathogenic strain of porcine enteric alphacoronavirus causing watery diarrhea and high mortality in newborn piglets (2018) Transbound. Emerg. Dis.; Yang, F., Chen, B., Liu, F., Peng, X., Sun, T., Yao, H., Wu, H., Wu, N., Development of a TaqMan MGB RT-PCR assay for the detection of type A and subtype H10 avian influenza viruses (2018) Arch. Virol., 163, pp. 2497-2501; Yuan, W., Wang, J., Xu, F., Huang, B., Lian, Y., Rao, D., Yin, X., Guo, P., Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler's murine encephalomyelitis virus and rat theilovirus (2016) J. Virol. Methods, 236, pp. 139-146; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J. Virol. Methods, 255, pp. 66-70; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Ma, J.; College of Animal Science, South China Agricultural UniversityChina; email: majy2400@scau.edu.cn",,"Elsevier B.V.",01660934,,JVMED,"30593837","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85059111582 "Manship A.J., Blikslager A.T., Elfenbein J.R.","57203842820;7006920626;24331195200;","Disease features of equine coronavirus and enteric salmonellosis are similar in horses",2019,"Journal of Veterinary Internal Medicine","33","2",,"912","917",,3,"10.1111/jvim.15386","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059871909&doi=10.1111%2fjvim.15386&partnerID=40&md5=b48f99471839c1e802fc5ad6c381adbc","Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States","Manship, A.J., Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Blikslager, A.T., Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States; Elfenbein, J.R., Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States","Background: Equine coronavirus (ECoV) is an emerging pathogen associated with fever and enteric disease in adult horses. Clinical features of ECoV infection have been described, but no study has compared these features to those of Salmonella infections. Objectives: Compare the clinical features of ECoV infection with enteric salmonellosis and establish a disease signature to increase clinical suspicion of ECoV infection in adult horses. Animals: Forty-three horses >1 year of age with results of CBC, serum biochemistry, and fecal diagnostic testing for ECoV and Salmonella spp. Methods: Medical records of horses presented to the North Carolina State University Equine and Farm Animal Veterinary Center (2003-016) were retrospectively reviewed. Horses were divided into 3 groups based on fecal diagnostic test results: ECoV-positive, Salmonella-positive, or unknown diagnosis (UNK). Time of year presented, clinical signs, CBC, and serum biochemistry test results were recorded. Data were analyzed by 1-way analysis of variance, Kruskal-Wallis test, or Fisher's exact test with significance set at P <.05. Results: Most common presenting complaints were fever and colic and were similar across groups. Horses with ECoV had significantly decreased neutrophil counts when compared to those with no diagnosis but were not different from horses with Salmonella. Horses with Salmonella had significantly lower mean leukocyte counts compared to those with UNK. No significant differences were found among groups for any other examined variable. Conclusions and Clinical Importance: Equine coronavirus and Salmonella infections share clinical features, suggesting both diseases should be differential diagnoses for horses with fever and enteric clinical signs. © 2019 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.","colic; equine coronavirus; fever; salmonella","bilirubin; creatinine; fibrinogen; gamma glutamyltransferase; nonsteroid antiinflammatory agent; adult; anorexia; Article; biochemistry; breathing rate; colic; Coronavirinae; Coronavirus infection; diagnostic test; diarrhea; enzyme linked immunosorbent assay; feces culture; fever; heart rate; hematocrit; horse; hospitalization; laminitis; lethargy; leukocyte count; leukocyte differential count; leukopenia; lymphocyte count; mortality; neutropenia; neutrophil count; nonhuman; polymerase chain reaction; retrospective study; Salmonella; salmonellosis; thrombocytopenia; animal; animal salmonellosis; Betacoronavirus 1; blood analysis; blood cell count; communicable disease; comparative study; Coronavirus infection; differential diagnosis; feces; female; horse disease; isolation and purification; male; microbiology; veterinary medicine; Animals; Betacoronavirus 1; Blood Cell Count; Blood Chemical Analysis; Communicable Diseases, Emerging; Coronavirus Infections; Diagnosis, Differential; Feces; Female; Horse Diseases; Horses; Male; Retrospective Studies; Salmonella; Salmonella Infections, Animal","Oue, Y., Ishihara, R., Edamatsu, H., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet Microbiol, 150, pp. 41-48; Oue, Y., Morita, Y., Kondo, T., Epidemic of equine coronavirus at Obihiro racecourse, Hokkaido, Japan in 2012 (2013) J Vet Med Sci, 75, pp. 1261-1265; Fielding, C.L., Higgins, J.K., Higgins, J.C., Disease associated with equine coronavirus infection and high case fatality rate (2015) J Vet Intern Med, 29, pp. 307-310; Nemoto, M., Oue, Y., Morita, Y., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Arch Virol, 159, pp. 3329-3334; Miszczak, F., Tesson, V., Kin, N., First detection of equine coronavirus (ECoV) in Europe (2014) Vet Microbiol, 171, pp. 206-209; Pusterla, N., Mapes, S., Wademan, C., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet Microbiol, 162, pp. 228-231; Pusterla, N., Vin, R., Leutenegger, C., Mittel, L.D., Divers, T.J., Equine coronavirus: an emerging enteric virus of adult horses (2016) Equine Vet Educ, 28, pp. 216-223; Smith, B.P., Equine salmonellosis: a contemporary view (1981) Equine Vet J, 13, pp. 147-151; Whitlock, R.H., Colitis: differential diagnosis and treatment (1986) Equine Vet J, 18, pp. 278-283; Burgess, B.A., Morley, P.S., Managing Salmonella in Equine Populations (2014) Vet Clin North Am Equine Pract, 30, pp. 623-640; Palmer, J., Benson, C., Salmonella shedding in the equine, , In International Symposium on Salmonella, New Orleans, LA, 19–20 Jul 1984 [1985]; Palmer, J.E., Whitlock, R.H., Benson, C.E., Becht, J.L., Morris, D.D., Acland, H.M., Comparison of rectal mucosal cultures and fecal cultures in detecting salmonella infection in horses and cattle (1985) Am J Vet Res, 46, pp. 697-698; van Duijkeren, E., Flemming, C., van Oldruitenborgh-Oosterbaan, M.S., Kalsbeek, N.C., van der Giessen, J.W.B., Diagnosing salmonellosis in horses culturing of multiple versus single faecal samples (1995) Vet Q, 17, pp. 63-66; Dallap Schaer, B.L., Aceto, H., Caruso, M.A., 3rd, Identification of predictors of salmonella shedding in adult horses presented for acute colic (2012) J Vet Intern Med, 26, pp. 1177-1185; Kim, L.M., Morley, P.S., Traub-Dargatz, J.L., Factors associated with salmonella shedding among equine colic patients at a veterinary teaching hospital (2001) J Am Vet Med Assoc, 218, pp. 740-748; Traub-Dargatz, J.L., Salman, M.D., Jones, R.L., Epidemiologic study of salmonellae shedding in the feces of horses and potential risk factors for development of the infection in hospitalized horses (1990) J Am Vet Med Assoc, 196, pp. 1617-1622; Pusterla, N., Vin, R., Leutenegger, C.M., Mittel, L.D., Divers, T.J., Enteric coronavirus infection in adult horses (2018) Vet J, 231, pp. 13-18; Ruby, R., Magdesian, K.G., Kass, P.H., Comparison of clinical, microbiologic, and clinicopathologic findings in horses positive and negative for Clostridium difficile infection (2009) J Am Vet Med Assoc, 234, pp. 777-784","Elfenbein, J.R.; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State UniversityUnited States; email: jrelfenb@ncsu.edu",,"Blackwell Publishing Inc.",08916640,,,"30632200","English","J. Vet. Intern. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85059871909 "Al-Omari A., Rabaan A.A., Salih S., Al-Tawfiq J.A., Memish Z.A.","55883902400;56049830800;57211010520;9436438200;7005059350;","MERS coronavirus outbreak: Implications for emerging viral infections",2019,"Diagnostic Microbiology and Infectious Disease","93","3",,"265","285",,4,"10.1016/j.diagmicrobio.2018.10.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055975622&doi=10.1016%2fj.diagmicrobio.2018.10.011&partnerID=40&md5=94e9196f0404c0cf351d87b566ca40ba","Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, Al-Faisal University, Riyadh, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia; Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia","Al-Omari, A., Critical Care and Infection Control Department, Dr. Sulaiman Al-Habib Medical Group, Al-Faisal University, Riyadh, Saudi Arabia; Rabaan, A.A., Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Salih, S., Internal Medicine Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia; Al-Tawfiq, J.A., Medical Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Memish, Z.A., College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia","In September 2012, a novel coronavirus was isolated from a patient who died in Saudi Arabia after presenting with acute respiratory distress and acute kidney injury. Analysis revealed the disease to be due to a novel virus which was named Middle East Respiratory Coronavirus (MERS-CoV). There have been several MERS-CoV hospital outbreaks in KSA, continuing to the present day, and the disease has a mortality rate in excess of 35%. Since 2012, the World Health Organization has been informed of 2220 laboratory-confirmed cases resulting in at least 790 deaths. Cases have since arisen in 27 countries, including an outbreak in the Republic of Korea in 2015 in which 36 people died, but more than 80% of cases have occurred in Saudi Arabia. Human-to-human transmission of MERS-CoV, particularly in healthcare settings, initially caused a ‘media panic’ however human-to-human transmission appears to require close contact and thus far the virus has not achieved epidemic potential. Zoonotic transmission is of significant importance and evidence is growing implicating the dromedary camel as the major animal host in spread of disease to humans. MERS-CoV is now included on the WHO list of priority blueprint diseases for which there which is an urgent need for accelerated research and development as they have the potential to cause a public health emergency while there is an absence of efficacious drugs and/or vaccines. In this review we highlight epidemiological, clinical, and infection control aspects of MERS-CoV as informed by the Saudi experience. Attention is given to recommended treatments and progress towards vaccine development. © 2018 Elsevier Inc.","Coronavirus; Infection; MERS; Middle East; Respiratory; Saudi Arabia; Transmission","DPP4 receptor; interferon; receptor; severe acute respiratory syndrome vaccine; unclassified drug; virus antigen; virus RNA; antivirus agent; virus vaccine; adaptive immunity; antigen detection; bat; camel; clinical feature; epidemic; genomics; human; incubation time; infection control; infection prevention; innate immunity; laboratory test; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; pregnancy; priority journal; radiodiagnosis; Review; Saudi Arabia; vaccination; virology; virus carrier; virus classification; virus detection; virus pathogenesis; virus transmission; animal; communicable disease; Coronavirus infection; immunology; Middle East respiratory syndrome coronavirus; transmission; zoonosis; Animals; Antiviral Agents; Communicable Diseases, Emerging; Coronavirus Infections; Disease Outbreaks; Humans; Middle East Respiratory Syndrome Coronavirus; Saudi Arabia; Viral Vaccines; Zoonoses","About SAVE LIVES: Clean Your Hands (2018) My 5 Moments for Hand Hygiene, , http://www.who.int/gpsc/5may/background/5moments/en/, World Health Organization (WHO) [cited 2018 September 27]. Available from; Agrawal, A.S., Ying, T., Tao, X., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci Rep, 6, p. 31629; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2018) Epidemiol Infect, 146 (4), pp. 489-495; Al Johani, S., Hajeer, A.H., MERS-CoV diagnosis: an update (2016) J Infect Public Health, 9, pp. 216-219; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35 (30), pp. 3780-3788; Alhetheel, A., Altalhi, H., Albarrag, A., Shakoor, Z., Mohamed, D., El-Hazmi, M., Assessing the detection of Middle East respiratory syndrome coronavirus IgG in suspected and proven cases of Middle East respiratory syndrome coronavirus infection (2017) Viral Immunol, 30 (9), pp. 649-653; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22 (11), pp. 1560-7917; Ali, M., El-Shesheny, R., Kandeil, A., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22 (11), pp. 1560-7917; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20, p. 123; Al-Qahtani, A., Lyroni, K., Aznaourova, M., Tseliou, M., Al-Anazi, M., Al-Ahdal, M., Middle East respiratory syndrome coronavirus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PPARγ (2017) Oncotarget, 8 (6), pp. 9053-9066; Alraddadi, B., Bawareth, N., Omar, H., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11 (2), pp. 128-131; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study (2018) Histopathology, 72 (3), pp. 516-524; Al-Tawfiq, J., Kattan, R.F., Memish, Z.A., Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia (2016) World J Clin Pediatr, 5 (4), pp. 391-396; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am J Infect Control, 46 (9), pp. 1022-1025; Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Al-Omari, A., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol (2015) SpringerPlus, 4, pp. 709-716; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Almekhlafi, G.A., Hussein, M.A., Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome (2018) Am J Respir Crit Care Med, 197 (6), pp. 757-767; Assiri, A., Abedi, G.R., Al Masri, M., Bin Saeed, A., Gerber, S.I., Watson, J.T., Middle East respiratory syndrome coronavirus infection during pregnancy: a report of 5 cases from Saudi Arabia (2016) Clin Infect Dis, 63 (7), pp. 951-953; Assiri, A., Al-Tawfiq, J., Al-Rabeeah, A., Al-Rabiah, F., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) NEJM, 370 (26), pp. 2499-2505; Badawi, A., Ryoo, S.G., Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis (2016) Int J Infect Dis, 49, pp. 129-133; Báez-Santos, Y.M., Mielech, A.M., Deng, X., Baker, S., Mesecar, A.D., Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus (2014) J Virol, 88 (21), pp. 12511-12527; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the Field: Nosocomial Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital–Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164; Balkhy, H.H., Perl, T.M., Arabi, Y.M., Preventing healthcare-associated transmission of the Middle East Respiratory Syndrome (MERS): our Achilles heel (2016) J Infect Public Health, 9, pp. 208-212; Banik, G.R., Alqahtani, A.S., Booy, R., Rashid, H., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virol Sin, 31 (1), pp. 81-84; Batool, M., Shah, M., Patra, M.C., Yesudhas, D., Choi, S., Structural insights into the Middle East respiratory syndrome coronavirus 4a protein and its dsRNA binding mechanism (2017) Sci Rep, 7 (1), p. 11362; Becker, W.B., McIntosh, K., Dees, J.H., Chanock, R.M., Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E) (1967) J Virol, 1, pp. 1019-1027; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17 (40), p. 20290; Bhadra, S., Jiang, Y.S., Kumar, M.R., Johnson, R.F., Hensley, L.E., Ellington, A.D., Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) (2015) PloS One, 10; Boonacker, E., Van Noorden, C.J.F., The multifunctional or moonlighting protein CD26/DPPIV (2003) Eur J Cell Biol, 82 (2), pp. 53-73; Bosch, B.J., Martina, B.E., van der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides (2004) PNAS, 101 (22), pp. 8455-8460; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382 (9893), pp. 694-699; Butt, T.S., Koutlakis-Barron, I., AlJumaah, S., AlThawadi, S., AlMofada, S., Infection control and prevention practices implemented to reduce transmission risk of Middle East respiratory syndrome-coronavirus in a tertiary care institution in Saudi Arabia (2016) Am J Infect Control, 44 (5), pp. 605-611; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F., Sanchez-Aparicio, M., García-Sastre, A., MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection (2018) PLoS Pathog, 14 (1), pp. 1-25; CDC Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2017), https://www.cdc.gov/coronavirus/mers/lab/lab-testing.html, Available from; Cha, R., Joh, J., Jeong, I., Lee, J.Y., Shin, H., Kim, G., Renal complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-CoV designated hospital (2015) J Korean Med Sci, 30 (12), pp. 1807-1814; Chan, C., Chu, H., Wang, Y., Wong, B.H., Zhao, X., Zhou, J., Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of Middle East respiratory syndrome coronavirus (2016) J Virol, 90 (20), pp. 9114-9127; Chan, J.F., Choi, G.K., Tsang, A.K., Tee, K.M., Lam, H.Y., Yip, C.C., Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses (2015) J Clin Microbiol, 53, pp. 2722-2726; Chan, J.F., Yao, Y., Yeung, M., Deng, W., Bao, L., Jia, L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212 (12), pp. 1904-1913; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Chan, J.F.W., Sridhar, S., Yip, C.C.Y., Lau, S.K.P., Woo, P.C.Y., The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic (2017) J Microbiol, 55 (3), pp. 172-182; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J Infect Dis, 212 (12), pp. 1894-1903; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg Microbes Infect, 6 (6); Chen, Y., Chan, K., Kang, Y., Chen, H., Luk, H.K.H., Poon, R.W.S., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg Microbes Infect, 4 (4), pp. 1-5; Cheng, K., Cheng, S., Chen, W., Lin, M.H., Chuang, S.J., Cheng, I.H., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus (2015) Antiviral Res, 115, pp. 9-16; Cho, H., Excler, J., Kim, J.H., Yoon, I., Development of Middle East respiratory syndrome coronavirus vaccines – advances and challenges (2018) Hum Vaccin Immunother, 14 (2), pp. 304-313; Choi, W.S., Kang, C., Kim, Y., Choi, J., Joh, J.S., Shin, H., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48 (2), pp. 118-126; Chu, D.K., Oladipo, J.O., Perera, R., Kuranga, S.A., Chan, S.M., Poon, L.L., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill, 20 (49); Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213 (6), pp. 904-914; Clasman, J.R., Báez-Santos, Y.M., Mettelman, R.C., O'Brien, A., Baker, S.C., Mesecar, A.D., X-ray structure and enzymatic activity profile of a core papain-like protease of MERS coronavirus with utility for structure-based drug design (2017) Sci Rep, 7, p. 40292; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32 (26), pp. 3169-3174; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., Beck, S.E., Matthews, K.L., CD8+ T Cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91 (1), p. 1825-16; Cong, Y., Hart, B.J., Gross, R., Zhou, H., Frieman, M., Bollinger, L., MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells (2018) PLoS One, 13 (3), pp. 1-17; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with MERS-coronavirus infection (2015) Clin Infect Dis, 62 (4), pp. 477-483. , civ951; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39), pp. 1-6; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88 (19), pp. 11297-11303; Corman, V.M., Kallies, R., Philipps, H., Göpner, G., Müller, M.A., Eckerle, I., Characterization of a novel betacoronavirus related to Middle East respiratory syndrome coronavirus in European hedgehogs (2014) J Virol, 88 (1), pp. 717-724; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Eurosurveill, 17, p. 20334; Corman, V.M., Ölschläger, S., Wendtner, C.M., Drexler, J.F., Hess, M., Drosten, C., Performance and clinical validation of the RealStar MERS-CoV kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) J Clin Virol, 60, pp. 168-171; Coronavirus infections (2017) Disease outbreak news, , http://www.who.int/csr/don/archive/disease/coronavirus_infections/en/, World Health Organization (WHO) Geneva [cited 2018 April 4]. Available from; Corti, D., Passini, N., Lanzavecchia, A., Zambon, M., Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome (2016) J Infect Public Health, 9 (3), pp. 231-235; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, 5 (1), p. e01062-13; Daczkowski, C.M., Dzimianski, J.V., Clasman, J.R., Goodwin, O., Mesecar, A.D., Pegan, S.D., Structural insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species (2017) J Mol Biol, 429 (11), pp. 1661-1683; Das, K.M., Lee, E.Y., Al Jawder, S.E., Enani, M.A., Singh, R., Skakni, L., Acute Middle East respiratory syndrome coronavirus: temporal lung changes observed on the chest radiographs of 55 patients (2015) Am J Roentgenol, 205 (3), pp. W267-W274; Das, K.M., Lee, E.Y., Langer, R.D., Larsson, S.G., Middle East respiratory syndrome coronavirus: what does a radiologist need to know? (2016) Am J Roentgenol, 206 (6), pp. 1193-1201; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Identification of a new human coronavirus (2004) Nat Med, 10 (4), pp. 368-373; van Doremalen, N., Falzarano, D., Ying, T., de Wit, E., Bushmaker, T., Feldmann, F., Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets (2017) Antiviral Res, 143, pp. 30-37; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88 (16), pp. 9220-9232; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PLoS One, 8 (12); Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88 (12), pp. 7045-7053; Durai, P., Batool, M., Shah, M., Choi, S., Middle east respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47 (8); Fagbo, S.F., Skakni, L., Chu, D.K.W., Garbati, M.A., Joseph, M., Peiris, M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 1981-1988; Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin (2013) Sci Rep, 3, p. 1686; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Treatment with interferon-[alpha] 2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317; Farag, E.A.B.A., Reusken, C.B.E.M., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5; Food and Drug Administration, Fact sheet for health care providers: interpreting RealStar® MERS-CoV RT-PCR Kit U.S. Test Results (2016), https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM455349.pdf, Available from; Forni, D., Cagliani, R., Mozzi, A., Pozzoli, U., Al-Daghri, N., Clerici, M., Extensive positive selection drives the evolution of nonstructural proteins in lineage C betacoronaviruses (2016) J Virol, 90 (7), pp. 3627-3639; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., de Jong, J.C., Simon, J.H., A previously undescribed coronavirus associated with respiratory disease in humans (2004) PNAS, 101, pp. 6212-6216; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA (2018) J Virol Methods, 251, pp. 22-29; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63 (1), pp. 1-9; de Groot, R.J., Baker, S.C., Baric, R., Family Coronaviridae (2012) Virus taxonomy: classification and nomenclature of viruses, Ninth report of the International Committee on Taxonomy of Viruses, pp. 806-820. , King AMQ M.J. Adams E.B. Carstens E.J. Lefkowitz Academic Press London (UK); de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group (2013) J Virol, 87, pp. 7790-7792; Guery, B., Poissy, J., el Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484; Gutiérrez, C., Tejedor-Junco, M., González, M., Lattwein, E., Renneker, S., Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the Canary Islands, 2015 (2015) Euro Surveill, 20 (37), pp. 1560-7917; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14 (2), pp. 140-145; Hagemeijer, M.C., Rottier, P.J., de Haan, C.A., Biogenesis and dynamics of the coronavirus replicative structures (2012) Viruses, 4, pp. 3245-3269; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121, pp. 190-193; Hasley, P.B., Albaum, M.N., Li, Y.H., Fuhrman, C.R., Britton, C.A., Marrie, T.J., Do pulmonary radiographic findings at presentation predict mortality in patients with community-acquired pneumonia? (1996) Arch Intern Med, 156 (19), pp. 2206-2212; Hastings, D.L., Tokars, J.I., Abdel Aziz, I.Z., Alkhaldi, K.Z., Bensadek, A.T., Alraddadi, B.M., Outbreak of Middle East respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (5), pp. 794-801; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Longitudinal study of Middle East respiratory syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerg Microbes Infect, 6 (6), p. 1; Hemida, M.G., Chu, D.K.W., Poon, L.L.M., Perera, R.A.P.M., Alhammadi, M.A., Ng, H., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20 (7), pp. 1231-1234; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64 (2), pp. 344-353; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18 (50), p. 20659; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation/Infections par le nouveau coronavirus en Jordanie, avril 2012: résultats épidémiologiques d'une étude rétrospective (2013) East Mediterr Health J, 19, pp. S12-S18; Hocke, A.C., Becher, A., Knepper, J., Peter, A., Holland, G., Tönnies, M., Emerging human Middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs (2013) Am J Respir Crit Care Med, 188, pp. 882-886; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213 (10), pp. 1557-1561; Hui, D.S., Azhar, E.I., Kim, Y., Memish, Z.A., Oh, M., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18 (8), pp. e217-e227; Hui, D.S.C., Lee, N., Adjunctive therapies and immunomodulating agents for severe influenza (2013) Influenza Other Respi Viruses, 7, pp. 52-59; Hung, I.F.N., To, K.K.W., Lee, C., Lee, K.L., Yan, W.W., Chan, K., Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza a(H1N1) infection (2013) Chest, 144 (2), pp. 464-473; Inovio, GLS-5300 SynCon® immunotherapy targeting Middle East Respiratory Syndrome (2016), http://www.inovio.com/products/infectious-disease-vaccines/mers/, Available from (Accessed 14 June 2018); Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19 (10), pp. 1697-1699; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6 (234); Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Jung, S., Kang, K.W., Lee, E., Seo, D., Kim, H., Kim, H., Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus (2018) Vaccine, 36 (24), pp. 3468-3476; Kapoor, M., Pringle, K., Kumar, A., Dearth, S., Liu, L., Lovchik, J., Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States (2014) Clin Infect Dis, 59 (11), pp. 1511-1518; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al Mutairy, E., Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases (2015) Antivir Ther, 20 (1), pp. 87-91; Khalid, M., Khan, B., Rabiah, F.A., Alismaili, R., Saleemi, S., Rehan-Khaliq, A.M., Middle eastern respiratory syndrome coronavirus (MERS CoV): case reports from a tertiary care hospital in Saudi Arabia (2014) Ann Saudi Med, 34 (5), pp. 396-400; Kim, J.S., Lessons learned from new emerging infectious disease, Middle East respiratory syndrome coronavirus outbreak in Korea (2015) Epidemiol Health, 37, pp. 1-3; Kim, M.N., Ko, Y.J., Seong, M.W., Kim, J.S., Shin, B.M., Sung, H., Analytical and clinical validation of six commercial Middle East respiratory syndrome coronavirus RNA detection kits based on real-time reverse-transcription PCR (2016) Ann Lab Med, 36 (5), pp. 450-456; Kim, U.J., Won, E., Kee, S., Jung, S.I., Jang, H.C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome (2016) Antivir Ther, 21 (5), pp. 455-459; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13 (2), pp. 1-26; Korea Centers for Disease Control, and Prevention, Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6 (4), pp. 269-278; Langenmayer, M.C., Lülf-Averhoff, A., Adam-Neumair, S., Fux, R., Sutter, G., Volz, A., Distribution and absence of generalized lesions in mice following single dose intramuscular inoculation of the vaccine candidate MVA-MERS-S (2018) Biologicals, 54, pp. 58-62; Lau, S.K.P., Lau, C.C.Y., Chan, K., Li, C.P., Chen, H., Jin, D.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment (2013) J Gen Virol, 94, pp. 2679-2690; Lee, J., Ahn, J.S., Yu, B.S., Cho, S.I., Kim, M.J., Choi, J.M., Evaluation of a real-time reverse transcription-PCR (RT-PCR) assay for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) in clinical samples from an outbreak in South Korea in 2015 (2017) J Clin Microbiol, 55 (8), pp. 2554-2555; Li, H.S., Kuok, D.I.T., Cheung, M.C., Ng, M.M.T., Ng, K.C., Hui, K.P.Y., Effect of interferon alpha and cyclosporine treatment separately and in combination on Middle East respiratory syndrome coronavirus (MERS-CoV) replication in a human in-vitro and ex-vivo culture model (2018) Antiviral Res, 155, pp. 89-96; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci U S A, 114 (40), pp. E8508-E8517; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25 (11), pp. 1237-1249; Liljander, A., Meyer, B., Jores, J., Müller, M.A., Lattwein, E., Njeru, I., MERS-CoV antibodies in humans, Africa, 2013–2014 (2016) Emerg Infect Dis, 22 (6), pp. 1086-1089; List of Blueprint priority diseases (2018) 2018 annual review of the Blueprint list of priority diseases, , http://www.who.int/blueprint/priority-diseases/en/, World Health Organization (WHO) Geneva, Switzerland [cited 2018 April 4]. Available from; Liu, R., Wang, J., Shao, Y., Wang, X., Zhang, H., Shuai, L., A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization (2018) Antiviral Res, 150, pp. 30-38; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363 (9413), pp. 938-947; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23 (8), pp. 468-478; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5; Lu, X., Whitaker, B., Sakthivel, S.K.K., Kamili, S., Rose, L.E., Lowe, L., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52 (1), pp. 67-75; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; Mailles, A., Blanckaert, K., Chaud, P., van, D., Lina, B., Caro, V., First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013 (2013) Euro Surveill, 18 (24), pp. 20502-20505; Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw, F.M., Lim, W.S., The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis (2015) J Infect Dis, 211 (1), pp. 80-90; Malczyk, A.H., Kupke, A., Prüfer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J Virol, 89 (22), pp. 11654-11667; Malik, A., El Masry, K.M., Ravi, M., Sayed, F., Middle East respiratory syndrome coronavirus during pregnancy, Abu Dhabi, United Arab Emirates, 2013 (2016) Emerg Infect Dis, 22 (3), pp. 515-517; Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404; Matsuyama, R., Nishiura, H., Kutsuna, S., Hayakawa, K., Ohmagari, N., Clinical determinants of the severity of Middle East respiratory syndrome (MERS): a systematic review and meta-analysis (2016) BMC Public Health, 16 (1), p. 1203; Matthews, K.L., Coleman, C.M., van, D., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 95, pp. 874-882; Memish, Z.A., Al-Tawfiq, J., Assiri, A., AlRabiah, F.A., Al Hajjar, S., Albarrak, A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr Infect Dis J, 33 (9), pp. 904-906; Memish, Z.A., Al-Tawfiq, J., Makhdoom, H.Q., Al-Rabeeah, A., Assiri, A., Alhakeem, R.F., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol Infect, 20 (5), pp. 469-474; Memish, Z.A., Al-Tawfiq, J., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210 (10), pp. 1590-1594; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20 (6), pp. 1012-1015; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19 (11), pp. 1819-1823; Memish, Z.A., Zumla, A.I., Al-Hakeem, R., Al-Rabeeah, A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368 (26), pp. 2487-2494; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369 (9), pp. 884-886; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere, 2 (6), pp. 1-12; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Graham, R.L., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) mBio, 8 (4), pp. 665-678; Menachery, V.D., Schäfer, A., Burnum-Johnson, K., Mitchell, H.D., Eisfeld, A.J., Walters, K.B., MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape (2018) Proc Natl Acad Sci U S A, 115 (5), pp. E1012-E1021; Meyer, B., Drosten, C., Müller, M.A., Serological assays for emerging coronaviruses: challenges and pitfalls (2014) Virus Res, 194, pp. 175-183; Meyer, B., Müller, M.A., Corman, V.M., Reusken, C.B.E.M., Ritz, D., Godeke, G., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20 (4), pp. 552-559; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East respiratory syndrome (2016) Am J Pathol, 186 (1), pp. 78-86; (2018) Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, World Health Organization (WHO) Geneva, Switzerland [cited 2018 March 23]. Available from; (2015) Middle East respiratory syndrome coronavirus (MERS-CoV) – Republic of Korea. Disease outbreak news, , http://www.who.int/csr/don/25-october-2015-mers-korea/en/, World Health Organization (WHO) Geneva October 2015. [cited 2018 April 4]. Available from [Internet]; Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia (2017) Disease outbreak news. 17 August 2017, , http://www.who.int/csr/don/17-august-2017-mers-saudi-arabia/en/, World Health Organization (WHO) Geneva, Switzerland [cited 2018 April 4]. Available from; Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia (2017) Disease outbreak news. 9 October 2017, , http://www.who.int/csr/don/09-october-2017-mers-saudi-arabia/en/, World Health Organization (WHO) Geneva, Switzerland [cited 2018 April 4]. Available from; Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia (2018) Disease outbreak news. 26 January 2018, , http://www.who.int/csr/don/26-january-2018-mers-saudi-arabia/en/, World Health Organization (WHO) Geneva, Switzerland [cited 2018 April 4]. Available from; (2017) Middle East respiratory syndrome coronavirus (MERS-CoV) Fact sheet, , http://www.who.int/mediacentre/factsheets/mers-cov/en/#, World Health Organization (WHO) Geneva May 2017. [cited 2018 April 19]. Available from; (2018) Middle East respiratory syndrome coronavirus (MERS-CoV). Fact sheet, , http://www.who.int/mediacentre/factsheets/mers-cov/en/, World Health Organization (WHO) Geneva, Switzerland [cited 2018 March 23]. Available from; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) PNAS, 111 (42), pp. 15214-15219; Modjarrad, K., Treatment strategies for Middle East respiratory syndrome coronavirus (2016) J Virus Erad, 2 (1), pp. 1-4; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (5), pp. 559-564; Muller, M.A., Raj, V.S., Muth, D., Meyer, B., Kallies, S., Smits, S.L., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) mBio, 3, pp. 515-519; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7 (301); Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66; Nishiura, H., Endo, A., Saitoh, M., Kinoshita, R., Kinoshita, R., Ueno, R., Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis (2016) BMJ Open, 6 (2); Nishiura, H., Miyamatsu, Y., Mizumoto, K., Objective determination of end of MERS outbreak, South Korea, 2015 (2016) Emerg Infect Dis, 22 (1), pp. 146-148; Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Ultra-potent human neutralizing antibody repertoires against MERS-CoV from a recovered patient (2018) J Infect Dis, 218, pp. 1249-1260; tenOever, B.R., The evolution of antiviral defense systems (2016) Cell Host Microbe, 19 (2), pp. 142-149; Nyon, M.P., Du, L., Tseng, C.K., Seid, C.A., Pollet, J., Naceanceno, K.S., Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen (2018) Vaccine, 36 (14), pp. 1853-1862; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Oh, M., Choe, P.G., Oh, H.S., Park, W.B., Lee, S., Park, J., Middle East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015 (2015) J Korean Med Sci, 30 (11), pp. 1701-1705; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Mou, H., Iwata, S., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J Virol, 87 (24), pp. 13892-13899; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14 (11), pp. 1090-1095; Park, H.Y., Lee, E.J., Ryu, Y.A., Kim, Y., Kim, H., Lee, H., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, may to June 2015 (2015) Euro Surveill, 20 (25), p. 21169; Park, J., Jung, S., Kim, A., MERS transmission and risk factors: a systematic review (2018) BMC Public Health, 18 (1), p. 574; Payne, D.C., Iblan, I., Alqasrawi, S., Al Nsour, M., Rha, B., Tohme, R.A., Stillbirth during infection with Middle East respiratory syndrome coronavirus (2014) J Infect Dis, 209 (12), pp. 1870-1872; Peck, K.M., Burch, C.L., Heise, M.T., Baric, R.S., Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives (2015) Ann Rev Virol, 2 (1), pp. 95-117; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18 (36), p. 20574; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8 (10); Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res, 132, pp. 141-148; Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., Alhani, H.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66 (9), pp. 1261-1274; Rabouw, H.H., Langereis, M.A., Knaap, R.C.M., Dalebout, T.J., Canton, J., Sola, I., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12 (10), pp. 1371-1398; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Rambaut, A., MERS-coronavirus molecular epidemiology and genetic analysis - origin and evolution (2014), http://epidemic.bio.ed.ac.uk/coronavirus_analysis, Available at (Accessed 14 June 2018); Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18; Reusken, C.B., Chrispijn Schilp, V., De Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerg Infect Dis, 22 (6), pp. 1129-1131; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20 (8), pp. 1370-1374; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866; Rhee, J., Hong, G., Ryu, K.M., Clinical implications of 5 cases of Middle East respiratory syndrome coronavirus infection in a south Korean outbreak (2016) Jpn J Infect Dis, 69 (5), pp. 361-366; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Sabir, J.S.M., Lam, T.T., Ahmed, M.M.M., Li, L., Shen, Y., Abo-Aba, S., C-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg Infect Dis, 23 (3), pp. 550-551; Scheuplein, V.A., Seifried, J., Malczyk, A.H., Miller, L., Höcker, L., Vergara-Alert, J., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) J Virol, 89 (7), pp. 3859-3869; Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: a complex web of host defenses (2014) Annu Rev Immunol, 32, pp. 513-545; Scientific Advisory Board, Ministry of Health, Kingdom of Saudi Arabia. Infection prevention and control guidelines for the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection (2018), Scientific Advisory Board, Ministry of Health, Kingdom of Saudi Arabia Kingdom of Saudi Arabia, 4th (KSA): Ministry of Health Kingdom of Saudi Arabia; Seys, L.J.M., Widagdo, W., Verhamme, F.M., Kleinjan, A., Janssens, W., Joos, G.F., DPP4, the Middle East respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients (2018) Clin Infect Dis, 66 (1), pp. 45-53; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70 (7), pp. 2129-2132; Sherbini, N., Iskandrani, A., Kharaba, A., Khalid, G., Abduljawad, M., Al-Jahdali, H., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: demographic, clinical and survival data (2017) J Epidemiol Glob Health, 7 (1), pp. 29-36; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87 (23), pp. 12552-12561; Siu, K., Yeung, M.L., Kok, K., Yuen, K., Kew, C., Lui, P., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88 (9), pp. 4866-4876; Song, D., Ha, G., Serhan, W., Eltahir, Y., Yusof, M., Hashem, F., Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels (2015) J Clin Microbiol, 53 (4), pp. 1178-1182; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44 (6), pp. 528-532; Stockman, L.J., Bellamy, R., Garner, P., SARS: systematic review of treatment effects (2006) PLoS Med, 3 (9), pp. 1525-1531; Strayer, D.R., Dickey, R., Carter, W.A., Sensitivity of SARS/MERS CoV to interferons and other drugs based on achievable serum concentrations in humans (2014) Infect Disord Drug Targets, 14 (1), pp. 37-43; Sun, Y., Zhang, H., Shi, J., Zhang, Z., Gong, R., Identification of a novel inhibitor against Middle East respiratory syndrome coronavirus (2017) Viruses, 9 (9), pp. 1-12; Tai, W., Wang, Y., Fett, C.A., Zhao, G., Li, F., Perlman, S., Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91 (1), p. e01651-16; Tang, S., Ma, W., Bai, P., A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4 (2017) Comput Math Methods Med, 2017, p. 5285810; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B., Wakamiya, M., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2016) J Virol, 90 (1), pp. 57-67; Thabet, F., Chehab, M., Bafaqih, H., Al Mohaimeed, S., Middle East respiratory syndrome coronavirus in children (2015) Saudi Med J, 36 (4), pp. 484-486; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) mBio, 7 (2), pp. 1-12; Treatment of MERS-CoV; information for clinicians (2015) Clinical decision-making support for treatment of MERS-CoV patients, , https://www.google.ie/?gws_rd=ssl#q=public+health+england+treatment+mers-cov, Public Health England/ISARIC Oxford (UK) September 2015. [cited 2018 June 06]. Available from [Internet]; Trivedi, S., Miao, C., Al-Abdallat, M., Haddadin, A., Alqasrawi, S., Iblan, I., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90 (2), pp. 367-371; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89 (16), pp. 8651-8656; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23 (8), pp. 986-993; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16 (3), pp. 328-337; (2017) WHO target product profiles for MERS-CoV vaccines, , http://www.who.int/emergencies/mers-cov/en/, World Health Organization Geneva [cited 2018 June 13]. Available from [Internet]; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J.L.H., Bosch, B.J., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90 (9), pp. 4838-4842; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58 (8), pp. 4875-4884; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin a or interferon-α treatment (2013) J Gen Virol, 94, pp. 1749-1760; Wong, K.T., Antonio, G.E., Hui, D.S.C., Lee, N., Yuen, E.H.Y., Wu, A., Severe acute respiratory syndrome: radiographic appearances and pattern of progression in 138 patients (2003) Radiology, 228 (2), pp. 401-406; Collecting, preserving and shipping specimens for the diagnosis of avian influenza A(H5N1) virus infection. Guide for field operations (2006), http://www.who.int/csr/resources/publications/surveillance/CDS_EPR_ARO_2006_1.pdf, Available from; Laboratory testing for Middle East respiratory syndrome coronavirus interim guidance (revised) (2018), http://apps.who.int/iris/bitstream/handle/10665/259952/WHO-MERS-LAB-15.1-Rev1-2018-eng.pdf?sequence=1, Available from; Middle East respiratory syndrome coronavirus: case definition for reporting to WHO. Interim case definition as of 26 July 2017 http://www.who.int/csr/disease/coronavirus_infections/case_definition/en/, Available from; Yamamoto, M., Matsuyama, S., Li, X., Takeda, M., Kawaguchi, Y., Inoue, J.I., Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay (2016) Antimicrob Agents Chemother, 60 (11), pp. 6532-6539; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J Virol, 89 (17), pp. 9119-9123; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci Rep, 5, p. 17554; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4 (12), pp. 951-961; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88 (14), pp. 7796-7805; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between Africa and the Middle East (2016) Tropl Anim Health Prod, 48 (6), pp. 1277-1282; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci Rep, 5, p. 13133; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13 (2), pp. 180-190; Zhang, N., Jiang, S., Du, L., Current advancements and potential strategies in the development of MERS-CoV vaccines (2014) Expert Rev Vaccines, 13 (6), pp. 761-774; Zhang, N., Tang, J., Lu, L., Jiang, S., Du, L., Receptor-binding domain-based subunit vaccines against MERS-CoV (2015) Virus Res, 202, pp. 151-159; Zhang, Z., Shen, L., Gu, X., Evolutionary dynamics of MERS-CoV: potential recombination, positive selection and transmission (2016) Sci Rep, 6, p. 25049; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) PLoS One, 10 (12), pp. 1-14; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2 (14). , [pii: eaan5393]; Zheng, Y., Wang, Q.Y., Bioinformatics analysis on molecular mechanism of ribavirin and interferon-α in treating MERS-CoV (2016) Chung-Hua Liu Hsing Ping Hsueh Tsa Chih, 37 (2), pp. 291-293; Zhou, J., Chu, H., Chan, J.F., Yuen, K., Middle East respiratory syndrome coronavirus infection: virus-host cell interactions and implications on pathogenesis (2015) Virol J, 12, p. 218; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z., Poon, V.K., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2014) J Infect Dis, 209 (9), pp. 1331-1342; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci Adv, 3 (11), pp. 1-12; Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) (2016) J Biol Chem, 291 (17), pp. 9218-9232; Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion, R., Jr., Nunneley, J.W., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res, 116, pp. 76-84; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J Virol, 87 (9), pp. 5300-5304","Rabaan, A.A.; Molecular Diagnostic Laboratory, Johns Hopkins Aramco HealthcareSaudi Arabia; email: arabaan@gmail.com",,"Elsevier Inc.",07328893,,DMIDD,"30413355","English","Diagn. Microbiol. Infect. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85055975622 "Kim J.I., Park S., Bae J.-Y., Park M.-S.","54949297800;56097972400;55201437800;7404491121;","Evolutionary relationship analysis of Middle East respiratory syndrome coronavirus 4a and 4b protein coding sequences",2019,"Journal of Veterinary Science","20","2", e1,"","",,2,"10.4142/jvs.2019.20.e1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064239293&doi=10.4142%2fjvs.2019.20.e1&partnerID=40&md5=985be26a6602baba585fece93b7c1eb1","Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, South Korea","Kim, J.I., Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, South Korea; Park, S., Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, South Korea; Bae, J.-Y., Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, South Korea; Park, M.-S., Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 02841, South Korea","The 4a and 4b proteins of the Middle East respiratory syndrome coronavirus (MERS-CoV) have been described for their antagonism on host innate immunity. However, unlike clustering patterns of the complete gene sequences of human and camel MERS-CoVs, the 4a and 4b protein coding regions did not constitute species-specific phylogenetic groups. Moreover, given the estimated evolutionary rates of the complete, 4a, and 4b gene sequences, the 4a and 4b proteins might be less affected by species-specific innate immune pressures. These results suggest that the 4a and 4b proteins of MERS-CoV may function against host innate immunity in a manner independent of host species and/or evolutionary clustering patterns. © 2019 The Korean Society of Veterinary Science.","Middle East respiratory syndrome coronavirus; Molecular evolution; Phylogeny; Zoonoses","viral protein; virus RNA; animal; camel; Coronavirus infection; genetics; human; Middle East respiratory syndrome coronavirus; molecular evolution; phylogeny; veterinary medicine; virology; virus gene; Animals; Camelus; Coronavirus Infections; Evolution, Molecular; Genes, Viral; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; RNA, Viral; Viral Proteins","(2018) WHO MERS Global Summary and Assessment of Risk [Internet], , http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, [updated August 2018; cited September 10, 2018]. World Health Organization; (2018) MERS Situation Update [Internet], , http://applications.emro.who.int/docs/EMROPub_2018_EN_20487.pdf, World Health Organization [updated September 2018; cited September 10, 2018]; Kim, J.I., Kim, Y.J., Lemey, P., Lee, I., Park, S., Bae, J.Y., Kim, D., Park, M.S., The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination (2016) Sci Rep, 6, p. 18825; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235, pp. 175-184; Kindler, E., Jónsdóttir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Geffers, R., Thiel, V., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) MBio, 4; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., van Kuppeveld, F.J., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Chan, C.P., Jin, D.Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., García-Sastre, A., Perlman, S., Sola, I., MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection (2018) PLoS Pathog, 14; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7; Tripathi, S., Balasubramaniam, V.R., Brown, J.A., Mena, I., Grant, A., Bardina, S.V., Maringer, K., García-Sastre, A., A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses (2017) PLoS Pathog, 13; Turnbull, M.L., Wise, H.M., Nicol, M.Q., Smith, N., Dunfee, R.L., Beard, P.M., Jagger, B.W., Digard, P., Role of the B allele of influenza A virus segment 8 in setting mammalian host range and pathogenicity (2016) J Virol, 90, pp. 9263-9284; Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 (2018) Virus Evol, 4; Posada, D., jModelTest: phylogenetic model averaging (2008) Mol Biol Evol, 25, pp. 1253-1256; Aydillo, T., Ayllon, J., Pavlisin, A., Martinez-Romero, C., Tripathi, S., Mena, I., Moreira-Soto, A., García-Sastre, A., Specific mutations in the PB2 protein of influenza a virus compensate for the lack of efficient interferon antagonism of the NS1 protein of bat influenza A-like viruses (2018) J Virol, 92; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J., Bosch, B.J., Bensaid, A., Haagmans, B.L., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J Virol, 90, pp. 4838-4842","Park, M.-S.; Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, 73 Inchon-ro, South Korea; email: manseong.park@gmail.com",,"Korean Society of Veterinary Science",1229845X,,,"30944524","English","J. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85064239293 "Dawson P., Malik M.R., Parvez F., Morse S.S.","57216126945;37031425300;6603099106;7101813200;","What Have We Learned about Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review",2019,"Vector-Borne and Zoonotic Diseases","19","3",,"174","192",,5,"10.1089/vbz.2017.2191","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062264694&doi=10.1089%2fvbz.2017.2191&partnerID=40&md5=0521d721d71d1e99d1a1c9b2fea47276","Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, United States; Infectious Hazard Management, Department of Health Emergency, World Health Organization Eastern Mediterranean Regional Office (WHO/EMRO), Cairo, Egypt; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States","Dawson, P., Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, United States; Malik, M.R., Infectious Hazard Management, Department of Health Emergency, World Health Organization Eastern Mediterranean Regional Office (WHO/EMRO), Cairo, Egypt; Parvez, F., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Morse, S.S., Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, United States","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in humans in 2012. A systematic literature review was conducted to synthesize current knowledge and identify critical knowledge gaps. Materials and Methods: We conducted a systematic review on MERS-CoV using PRISMA guidelines. We identified 407 relevant, peer-reviewed publications and selected 208 of these based on their contributions to four key areas: virology; clinical characteristics, outcomes, therapeutic and preventive options; epidemiology and transmission; and animal interface and the search for natural hosts of MERS-CoV. Results: Dipeptidyl peptidase 4 (DPP4/CD26) was identified as the human receptor for MERS-CoV, and a variety of molecular and serological assays developed. Dromedary camels remain the only documented zoonotic source of human infection, but MERS-like CoVs have been detected in bat species globally, as well as in dromedary camels throughout the Middle East and Africa. However, despite evidence of camel-to-human MERS-CoV transmission and cases apparently related to camel contact, the source of many primary cases remains unknown. There have been sustained health care-associated human outbreaks in Saudi Arabia and South Korea, the latter originating from one traveler returning from the Middle East. Transmission mechanisms are poorly understood; for health care, this may include environmental contamination. Various potential therapeutics have been identified, but not yet evaluated in human clinical trials. At least one candidate vaccine has progressed to Phase I trials. Conclusions: There has been substantial MERS-CoV research since 2012, but significant knowledge gaps persist, especially in epidemiology and natural history of the infection. There have been few rigorous studies of baseline prevalence, transmission, and spectrum of disease. Terms such as ""camel exposure"" and the epidemiological relationships of cases should be clearly defined and standardized. We strongly recommend a shared and accessible registry or database. Coronaviruses will likely continue to emerge, arguing for a unified ""One Health"" approach. © Patrick Dawson et al. 2019; Published by Mary Ann Liebert, Inc. 2019.","Coronaviruses; MERS; MERS epidemiology; MERS-CoV; Severe acute respiratory infection (SARI); Zoonotic disease","virus vaccine; dromedary; human; immune response; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; phase 1 clinical trial (topic); practice guideline; priority journal; Review; Saudi Arabia; South Korea; systematic review; virus transmission; Africa; animal; communicable disease; Coronavirus infection; epidemic; Middle East; physiology; virology; zoonosis; Africa; Animals; Communicable Diseases, Emerging; Coronavirus Infections; Disease Outbreaks; Humans; Middle East; Middle East Respiratory Syndrome Coronavirus; Zoonoses","Abd El Wahed, A., Patel, P., Heidenreich, D., Hufert, F., Reverse transcription recombinase polymerase amplification assay for the detection of Middle East respiratory syndrome coronavirus (2013) PLoS Curr Outbreaks, , http://currents.plos.org/outbreaks/index.html%3Fp=22591.html, accessed January, 2019; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Influenza A and B viruses but not MERS-CoV in Hajj Pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21, pp. 726-727; Abroug, F., Slim, A., Ouanes-Besbes, L., Kacem, M.-A.H., Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013 (2014) Emerg Infect Dis, 20, pp. 1527-1530; Aburizaiza, A.S., Mattes, F.M., Azhar, E.I., Hassan, A.M., Investigation of anti-Middle East respiratory syndrome antibodies in blood donors and slaughterhouse workers in Jeddah and Makkah, Saudi Arabia, Fall 2012 (2014) J Infect Dis, 209, pp. 243-246; Adedeji, A.O., Singh, K., Kassim, A., Coleman, C.M., Evaluation of SSYA10-001 as a replication inhibitor of Severe Acute Respiratory Syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses (2014) Antimicrob Agents Chemother, 58, pp. 4894-4898; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerg Infect Dis, 22, pp. 1031-1037; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005; Agrawal, A.S., Garron, T., Tao, X., Peng, B.-H., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670; Ajlan, A.M., Ahyad, R.A., Jamjoom, L.G., Alharthy, A., Middle East respiratory syndrome coronavirus (MERS-CoV) infection: Chest CT findings (2014) AJR Am J Roentgenol, 203, pp. 782-787; Al Hammadi, Z.M., Chu, D.K.W., Eltahir, Y.M., Hosani, F.A., Asymptomatic mers-cov infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, may 2015 (2015) Emerg Infect Dis, 21, pp. 2197-2200; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Hospitalassociated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2015) Clin Infect Dis, 60, pp. 973-974; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) J Infect Dis, 20, pp. 42-46; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00814-e00884; Alexandersen, S., Kobinger, G.P., Soule, G., Wernery, U., Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005 (2014) Transbound Emerg Dis, 61, pp. 105-108; Alghamdi, I.G., Hussain, I.I., Almalki, S.S., Alghamdi, M.S., The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive epidemiological analysis of data from the Saudi Ministry of Health (2014) J Gen Med, 7, pp. 417-423; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Crosssectional surveillance of middle east respiratory syndrome coronavirus (mers-cov) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22, p. 30487; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect., 6 (1), p. e1. , Jan 4; Almazan, F., DeDiego, M.L., Sola, I., Zuniga, S., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4, pp. e00613-e00650; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012-2015 (2016) J Infect Dis, 45, pp. 1-4; Alserehi, H., Wali, G., Alshukairi, A., Alraddadi, B., Impact of Middle East respiratory syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome (2016) BMC Infect Dis, 16, p. 105; Alshukairi, A.N., Khalid, I., Ahmed, W.A., Dada, A.M., Antibody response and disease severity in healthcare worker MERS survivors (2016) Emerg Infect Dis, 22, pp. 1113-1115; Anderson, R.M., May, R.M., (1991) Infectious Diseases of Humans: Dynamics and Control, , Oxford, UK: Oxford University Press; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20, pp. 807-812; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8, pp. e00373-e00417; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Global patterns in coronavirus diversity (2017) Virus Evol, 3, p. vex012; Anthony, S.J., Ojeda-Flores, R., Rico-Chavez, O., Navarrete-Macias, I., Coronaviruses in bats from Mexico (2013) J Gen Virol, 94, pp. 1028-1038; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Assiri, A., Abedi, G.R., Saeed, A.A.B., Abdalla, M.A., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2506; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) MBio, 5, pp. e01414-e01450; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 4953-4961; Baseler, L., De Wit, E., Feldmann, H., A comparative review of animal models of Middle East respiratory syndrome coronavirus infection (2016) Vet Pathol, 53, pp. 521-531; Ben Embarek, P., Van Kerkhove, M.D., Middle East respiratory syndrome coronavirus (MERS-CoV): Current situation 3 years after the virus was first identified (2015) Wkly Epidemiol Rec, 90, pp. 245-250; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Bin Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Surveillance and testing for middle east respiratory syndrome coronavirus, Saudi Arabia, April 2015-February 2016 (2017) Emerg Infect Dis, 23, pp. 682-685; Breakwell, L., Pringle, K., Chea, N., Allen, D., Lack of transmission among close contacts of patient with case of Middle East Respiratory Syndrome imported into the United States, 2014 (2015) Emerg Infect Dis, 21, pp. 1128-1134; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e01114-e01146; Buchholz, U., Muller, M.A., Nitsche, A., Sanewski, A., Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012 (2013) Euro Surveill, 18, p. 20406; Cai, Y., Yu, S., Postnikova, E.N., Mazur, S., CD26/DPP4 cellsurface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) PLoS One, 9, p. e112060; Carias, C., O'Hagan, J.J., Jewett, A., Gambhir, M., Exportations of symptomatic cases of MERS-CoV infection to countries outside the Middle East (2016) Emerg Infect Dis, 22, pp. 723-725; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; (2018), www.cdc.gov/coronavirus/mers/lab/labtesting.html, CDC. CDC Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) 2014 (updated June 26 (Accessed August 1, 2017 and July 23, 2018); http://cepi.net/sites/default/files/PipelinedatasetforMERS-CoV.pdf, CEPI (Coalition for Epidemic Preparedness Innovations). Pipeline dataset for MERS-CoV. Accessed Aug. 1, 2017 and August 8, 2018); Jf-W, C., Yao, Y., Yeung, M.-L., Deng, W., Treatment with lopinavir/ritonavir or interferon-b1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212, pp. 1904-1913; Chan, J.F.W., Chan, K.-H., Kao, R.Y.T., To, K.K.W., Broadspectrum antivirals for the emerging Middle East respiratory syndrome (2013) J Infect, 67, pp. 606-616; Chan, R.W.Y., Hemida, M.G., Kayali, G., Chu, D.K.W., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: An invitro and ex-vivo study (2014) Lancet Respir Med, 2, pp. 813-822; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 10777-10783; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.-H., MERSCoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill, 20, p. 30086; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115, pp. 3144-3149; Chu, D.K.W., Poon, L.L.M., Gomaa, M.M., Shehata, M.M., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20, pp. 1049-1053; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 5195-5199; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91, pp. e01825-e01916; Corman, V., Eckerle, I., Bleicker, T., Zaki, A., Detection of a novel human coronavirus by realtime reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285; Corman, V., Müller, M., Costabel, U., Timm, J., Assays for laboratory confirmation of novel human coronavirus (hCoVEMC) infections (2012) Euro Surveill, 17, p. 20334; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Corman, V.M., Meyer, B., Jores, J., Younan, M., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg Infect Dis, 20, pp. 1319-1322; Corman, V.M., Lschläger, S.O., Wendtner, C.-M., Drexler, J.F., Performance and clinical validation of the RealStar_ MERSCoV Kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) J Clin Virol, 60, pp. 168-171; Corman, V.M., Rasche, A., Diallo, T.D., Cottontail, V.M., Highly diversified coronaviruses in neotropical bats (2013) J Gen Virol, 94, pp. 1984-1994; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci U S A, 112, pp. 10473-10478; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, 5, pp. e01013-e01062; Cowling, B.J., Park, M., Fang, V.J., Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015 (2015) Euro Surveill, 20, p. 21163; De Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58, pp. 4875-4884; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-A treatment (2013) J Gen Virol, 94, pp. 1749-1760; De Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110, pp. 16598-16603; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-tohuman transmission of MERS coronavirus (Letter) (2014) N Engl J Med, 371, pp. 1359-1360; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Drosten, C., Muth, D., Corman, V.M., Hussain, R., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751; Du, L., Kou, Z., Ma, C., Tao, X., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERSCoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS One, 8, p. e81587; Du, L.G., Kou, Z., Ma, C., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development (2013) J Virol, 87, pp. 9939-9942; Du, L., Zhao, G., Yang, Y., Qiu, H., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58, pp. 4885-4893; Eckerle, I., Corman, V.M., Müller, M.A., Lenk, M., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerg Infect Dis, 20, pp. 276-279; Eckerle, I., Müller, M.A., Kallies, S., Gotthardt, D.N., In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East respiratory syndrome (MERS) coronavirus infection (2013) Virol J, 10, p. 359; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Treatment with interferon-a2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19, pp. 1313-1318; Falzarano, D., Ed, W., Feldmann, F., Rasmussen, A.L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10, p. e1004250; Fanoy, E.B., Van Der Sande, M.A., Kraaij-Dirkzwager, M., Dirksen, K., Travel-related mers-cov cases: An assessment of exposures and risk factors in a group of Dutch travellers returning from the kingdom of Saudi Arabia, may 2014 (2014) Emerg Themes Epidemiol, 11, p. 16; Faure, E., Poissy, J., Goffard, A., Fournier, C., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9, p. e88716; Feikin, D.R., Alraddadi, B.M., Qutub, M., Shabouni, O., Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 2029-2035; Ferguson, N.M., Kerkhove, M.D.V., Identification of MERS-CoV in dromedary camels (2014) Lancet Infect Dis, 14, pp. 93-94; Gao, J., Lu, G., Qi, J., Li, Y., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 13134-13140; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Gesmann, M., De Castillo, D., (2017) Introduction to GoogleVis 0.6.2, , https://cran.r-project.org/web/packages/googleVis/vignettes/googleVis.pdf[E-pubonline]; Gierer, S., Hofmann-Winkler, H., Albuali, W.H., Bertram, S., Lack of MERS coronavirus neutralizing antibodies in humans, Eastern Province, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 2034-2036; Gierer, S., Müller, M.A., Heurich, A., Ritz, D., Inhibition of proprotein convertases abrogates processing of the Middle Eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J Infect Dis, 211, pp. 889-897; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63, pp. 1-9; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular Spike: Mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Interferon-b and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J Gen Virol, 95, pp. 571-577; Hastings, D.L., Tokars, J.I., Aziz, A.I.Z.A.M., Alkhaldi, K.Z., Outbreak of Middle East respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 794-801; Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013 (2013) Euro Surveill, 8, p. 20427. , Health Protection Agency (HPA) UK Novel Coronavirus Investigation Team; Hemida, M.G., Al-Naeem, A., Perera, R.A.P.M., Chin, A.W.H., Lack of Middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerg Infect Dis, 21, pp. 699-701; Hemida, M.G., Chu, D.K.W., Poon, L.L.M., Perera, R.A.P.M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 1231-1234; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18, p. 20659; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res, 100, pp. 286-295; Hin Chu, J.Z., Bh-Y, W., Li, C., Jf-W, C., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213, pp. 904-914; Hocke, A.C., Becher, A., Knepper, J., Peter, A., Emerging human Middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs (2013) Am J Respir Crit Care Med, 188, pp. 882-886; Hosani, F.I.A., Pringle, K., Mulla, M.A., Kim, L., Response to emergence of Middle East respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014 (2016) Emerg Infect Dis, 22, pp. 1162-1168; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERSCoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213, pp. 1-5; Hui, D.S., Perlman, S., Zumla, A., Spread of MERS to South Korea and China (2015) Lancet Respir Med, 3, pp. 509-510; Hulswit, R.J., De Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; https://talk.ictvonline.org/taxonomy, ICTV. Virus Taxonomy: 2016 Release. Accessed August 1, 2017); Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Close relative of Human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, pp. 1698-1699; Jiang, L., Wang, N., Zuo, T., Shi, X., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, pp. 234-259; Kang, C.K., Song, K.H., Choe, P., Park, W.B., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; Kapoor, M., Pringle, K., Kumar, A., Dearth, S., Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States (2014) Clin Infect Dis, 59, pp. 1511-1518; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Ribavirin and interferon-a2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: A preliminary report of two cases (2015) Antivir Ther, 20, pp. 87-91; Khalid, M., Khan, B., Rabiah, F.A., Alismaili, R., Middle Eastern respiratory syndrome corona virus (MERS CoV): Case reports from a tertiary care hospital in Saudi Arabia (2014) Ann Saudi Med, 34, pp. 396-400; Khan, K., Sears, J., Hu, V., Brownstein, J., Potential for the international spread of Middle East respiratory syndrome in association with mass gatherings in Saudi Arabia (2013) PLoS Currents Outbreaks, , http://currents.plos.org/outbreaks/index.html%3Fp=21609.html, accessed January, 2019; Kilianski, A., Mielech, A.M., Deng, X., Baker, S.C., Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferasebased biosensors (2013) J Virol, 87, pp. 11955-11962; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Kim, Y.-J., Cho, Y.-J., Kim, D.-W., Yang, J.-S., Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/KNIH/002052015, isolated in South Korea (2015) Genome Announc, 3, pp. e00715-e00787; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014 (2014) Euro Surveill, 19, p. 20817; Kucharski, A., Althaus, C., The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission (2015) Euro Surveill, 20, p. 21167; Kumar, V., Shin, J.S., Shie, J.J., Ku, K.B., Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CL(Pro) inhibitors (2017) Antiviral Res, 141, pp. 101-106; Lan, J., Deng, Y., Chen, H., Lu, G., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptorbinding domain as an antigen (2014) PLoS One, 9, p. e112602; Lau, S.K.P., Lau, C.C.Y., Chan, K.-H., Li, C.P.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J Gen Virol, 94, pp. 2679-2690; Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Lam, C.S.F., Genetic characterization of betacoronavirus lineage c viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus hku5 in Japanese pipistrelle: Implications for the origin of the novel middle east respiratory syndrome coronavirus (2013) J Virol, 87, pp. 8638-8650; Leclercq, I., Batejat, C., Burguiere, A.M., Manuguerra, J.-C., Heat inactivation of the Middle East respiratory syndrome coronavirus (2014) Influenza Other Respir Viruses, 8, pp. 585-586; Lee, J., Better understanding on MERS corona virus outbreak in Korea (2015) J Korean Med Sci, 30, pp. 835-836; Lee, K.H., Emergency medical services in response to the Middle East respiratory syndrome outbreak in Korea (2015) J Korean Med Assoc, 58, pp. 611-616; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) J Infect Dis, 38, pp. 65-67; Lei, J., Mesters, J.R., Drosten, C., Anemüller, S., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antiviral Res, 109, pp. 72-82; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689; Lessler, J., Ridriguez-Barraquer, I., Cummings, D., Garske, T., Estimating potential incidence of mers-cov associated with hajj pilgrims to Saudi Arabia, 2014 (2014) PLoS Currents Outbreaks, , http://currents.plos.org/outbreaks/index.html%3Fp=44225.html, accessed January, 2019; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Adaptive evolution of MERS-CoV to species variation in DPP4 (2018) Cell Rep, 24, pp. 1730-1737; Liu, Q., Xia, S., Sun, Z., Wang, Q., Testing of Middle East respiratory syndrome coronavirus replication inhibitors for the ability to block viral entry (2015) Antimicrob Agents Chemother, 59, pp. 742-744; Liu, S., Chan, T.-C., Chu, Y.-T., Wu, J.T.-S., Comparative epidemiology of human infections with Middle East respiratory syndrome and Severe Acute respiratory syndrome coronaviruses among healthcare personnel (2016) PLoS One, 11, p. e0149988; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Lu, X., Whitaker, B., Sakthivel, S.K.K., Kamili, S., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Lundin, A., Dijkman, R., Bergstrom, T., Kann, N., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus (2014) PLoS Pathog, 10, p. e1004166; Ma, C., Li, Y., Wang, L., Zhao, G., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108; Ma, C., Wang, L., Tao, X., Zhang, N., Searching for an ideal vaccine candidate among different MERS coronavirus receptorbinding fragments-The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Mailles, A., Blanckaert, K., Chaud, P., Van Der Werf, S., First cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013 (2013) Euro Surveill, 18, p. 20502; Majumder, M., Rivers, C., Lofgren, E., Fisman, D., Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: Insights from publicly available data (2014) PLoS Currents Outbreaks, , http://currents.plos.org/outbreaks/index.html%3Fp=40801.html, accessed January, 2019; Malik, A., El Masry, K.M., Ravi, M., Sayed, F., Middle East respiratory syndrome coronavirus during pregnancy, Abu Dhabi, United Arab Emirates, 2013 (2016) Emerg Infect Dis, 22, pp. 515-517; Malik, M., Elkholy, A.A., Khan, W., Hassounah, S., Middle East respiratory syndrome coronavirus: Current knowledge and future considerations (2016) East Mediterr Health J, 22, pp. 537-546; Maltezou, H.C., Tsiodras, S., Middle East respiratory syndrome coronavirus: Implications for health care facilities (2014) Am J Infect Control, 42, pp. 1261-1265; Matthews, K.L., Coleman, C.M., Van Der Meer, Y., Snijder, E.J., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J Gen Virol, 94, pp. 874-882; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin Microbiol Infect, 20, pp. 469-474; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Etiology of severe community-acquired pneumonia during the 2013 Hajj-Part of the MERS-CoV surveillance program (2014) J Infect Dis, 25, pp. 186-190; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210, pp. 1067-1072; Memish, Z.A., Assiri, A.M., Al-Tawfi, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: An observational analysis with infection control implications (2014) J Infect Dis, 29, pp. 307-308; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, pp. 1819-1823; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Meyer, B., Garcia-Bocanegra, I., Wernery, U., Wernery, R., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg Infect Dis, 21, pp. 181-182; Meyer, B., Mü Ller, M.A., Corman, V.M., Reusken, C.B.E.M., Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-558; Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Mishra, N., Caciula, A., Price, A., Thakkar, R., Diagnosis of Zika virus infection by peptide array and enzyme-linked immunosorbent assay (2018) MBio, 9, pp. e18-e00095; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34, pp. 2982-2987; Mohamed, D.H., AlHetheel, A.F., Mohamud, H.S., Aldosari, K., Clinical validation of 3 commercial real-time reverse transcriptase polymerase chain reaction assays for the detection of Middle East respiratory syndrome coronavirus from upper respiratory tract specimens (2017) Diagn Microbiol Infect Dis, 87, pp. 320-324; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (2009) BMJ, 339, p. b2535; Morse, S.S., Factors in the emergence of infectious diseases (1995) Emerg Infect Dis, 1, pp. 7-15; Morse, S.S., Public health disease surveillance networks (2012) Microbiol Spectr, 1. , OH-0002-2012; Morse, S.S., Mazet, J.A.K., Woolhouse, M., Parrish, C.R., Prediction and prevention of the next pandemic zoonosis (2012) Lancet, 380, pp. 1956-1965; Morse, S.S., Morahan, P.S., Activated macrophages mediate interferon-independent inhibition of Herpes simplex virus (1981) Cell Immunol, 58, pp. 72-84; Mou, H., Raj, V.S., Van Kuppeveld, F.J.M., Rottier, P.J.M., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87, pp. 9379-9383; Müller, M.A., Corman, V.M., Jores, J., Meyer, B., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Müller, M.A., Raj, V.S., Muth, D., Meyer, B., Human coronavirus EMC does not require the SARS-Coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) MBio, 3, pp. e00515-e00612; Munster, V.J., De Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N Engl J Med, 368, pp. 1560-1562; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658; Nishiura, H., Mizumoto, K., Ejima, K., Zhong, Y., Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case (2015) Euro Surveill, 20, p. 21181; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveill, 19, p. 20781; O'Hagan, J.J., Carias, C., Rudd, J.M., Pham, H.T., Estimation of severe Middle East respiratory syndrome cases in the Middle East, 2012-2016 (2016) Emerg Infect Dis, 22, pp. 1797-1799; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., 2014 MERS-CoV outbreak in Jeddah-A link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Ohnuma, K., Haagmans, B.L., Hatano, R., Raj, V.S., Inhibition of Middle East respiratory syndrome coronavirus infection by Anti-CD26 monoclonal antibody (2013) J Virol, 87, pp. 13892-13899; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) J Infect Dis, 17, pp. e668-e672; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study (2014) Lancet Infect Dis, 14, pp. 1090-1095; Otter, J., Donskey, C., Yezli, S., Douthwaite, S., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination (2016) J Hosp Infect, 92, pp. 235-250; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Euro Surveill, 20, p. 21169; Park, W.B., Perera, R.A.P.M., Choe, P.G., Lau, E.H., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): Prevention in travelers (2014) Travel Med Infect Dis, 12, pp. 602-608; Payne, D.C., Iblan, I., Alqasrawi, S., Al Nsour, M., Stillbirth during infection with Middle East respiratory syndrome coronavirus (2014) J Infect Dis, 209, pp. 1870-1872; Payne, D.C., Iblan, I., Alqasrawi, S., Persistence of antibodies against Middle East Respiratory Syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826; Pebody, R., Chand, M., Thomas, H., Green, H., The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012 (2012) Euro Surveill, 17, p. 20292; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61, pp. 275-278; Poletto, C., Pelat, C., Levy-Bruhl, D., Yazdanpanah, Y., Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach (2014) Euro Surveill, 19, p. 20699; Premila Devi, J., Noraini, W., Norhayati, R., Chee Kheong, C., Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: Preparedness and response, April 2014 (2014) Euro Surveill, 19, p. 20797; www.promedmail.org/direct.php?id=20120920.1302733.ArchiveNumber:20120920.21302733, ProMED-mail. NOVEL CORONAVIRUS-Saudi Arabia: HUMAN ISOLATE (Accessed August 1, 2017); Puzelli, S., Azzi, A., Santini, M., Di Martino, A., Investigation of an imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013 (2013) Euro Surveill, 18, p. 20564; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8, p. e76469; Raj, V.S., Farag, E.A.B.A., Reusken, C.B.E.M., Lamers, M.M., Isolation of MERS coronavirus from dromedary camel, Qatar, 2014 (2014) Emerg Infect Dis, 20, pp. 1339-1342; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Raj, V.S., Smits, S.L., Provacia, L.B., Van Den Brand, J.M.A., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 1834-1838; Rasmussen, S.A., Gerber, S.I., Swerdlow, D.L., Middle East respiratory syndrome coronavirus: Update for clinicians (2015) Clin Infect Dis, 60, pp. 1686-1689; Reusken, C., Mou, H., Godeke, G., Van Der Hoek, L., Specific serology for emerging human coronaviruses by protein microarray (2013) Euro Surveill, 18, p. 20441; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18, p. 20662; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill, 19, p. 20829; Reusken, C.B.E.M., Feyisa, A., Messadi, L., Ularamu, H., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Reusken, C.B.E.M., Schilp, C., Raj, V.S., Bruin, E.D., MERSCoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerg Infect Dis, 22, pp. 1129-1131; Reuss, A., Litterst, A., Drosten, C., Seilmaier, M., Contact investigation for imported case of Middle East respiratory syndrome, Germany (2014) Emerg Infect Dis, 20, pp. 620-625; Saad, M., Omrania, A.S., Baig, K., Bahloul, A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) J Infect Dis, 29, pp. 301-306; Scheuplein, V.A., Seifried, J., Malczyk, A.H., Miller, L., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 3859-3869; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci U S A, 110, pp. 16157-16162; Seo, Y.B., Heo, J.Y., Song, M.-S., Lee, J., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Seong, M.-W., Lee, S.J., Cho, S.I., Ko, K., External quality assessment of MERS-CoV molecular diagnostics during the 2015 Korean outbreak (2016) Ann Lab Med, 36, pp. 230-234; Shalhoub, S., AlZahrani, A., Simhairi, R., Mushtaq, A., Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: A case report (2015) J Clin Virol, 62, pp. 69-71; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561; Shirato, K., Yano, T., Senba, S., Akachi, S., Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RTLAMP) (2014) Virol J, 11, p. 139; Siu, K.-L., Yeung, M.L., Kok, K.-H., Yuen, K.-S., Middle East respiratory syndrome coronavirus 4a protein is a doublestranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876; Smits, S.L., Raj, V.S., Pas, S.D., Reusken, C.B.E.M., Reliable typing of MERS-CoV variants with a small genome fragment (2015) J Clin Virol, 64, pp. 83-87; Song, F., Fux, R., Provacia, L.B., Volz, A., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virusneutralizing antibodies (2013) J Virol, 87, pp. 11950-11954; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) J Antimicrob Agents, 44, pp. 528-532; Sridhar, S., Brouqui, P., Parola, P., Gautret, P., Imported cases of Middle East respiratory syndrome: An update (2015) Travel Med Infect Dis, 13, pp. 106-109; Tang, X.-C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A, 111, pp. e2018-e2026; Tao, X., Hill, T.E., Morimoto, C., Peters, C.J., Bilateral entry and release of Middle East respiratory syndrome coronavirus induces profound apoptosis of human bronchial epithelial cells (2013) J Virol, 87, pp. 9953-9958; Tao, X., Mei, F., Agrawal, A., Peters, C.J., Blocking of exchange proteins directly activated by cAMP leads to reduced replication of Middle East respiratory syndrome coronavirus (2014) J Virol, 88, pp. 3902-3910; Thomas, H.L., Zhao, H., Green, H.K., Boddington, N.L., Enhanced MERS coronavirus surveillance of travelers from the Middle East to England (2014) Emerg Infect Dis, 20, pp. 1562-1564; Tsiodras, S., Baka, A., Mentis, A., Iliopoulos, D., A case of imported Middle East respiratory syndrome coronavirus infection and public health response, Greece, April 2014 (2014) Euro Surveill, 19, p. 20782; Van Doremalen, N., Bushmaker, T., Karesh, W.B., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus in milk (2014) Emerg Infect Dis, 20, pp. 1263-1264; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18, p. 20590; Van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J Virol, 88, pp. 9220-9232; Van Kerkhove, M.D., Peiris, M.J.S., Malik, M.R., Ben Embarek, P., Interpreting results from environmental contamination studies of Middle East respiratory syndrome coronavirus (2016) Clin Infect Dis, 63, p. 1142; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Bat origins of MERSCoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Wirblich, C., Coleman, C.M., Drishya, K., Abraham, T.S., Onehealth: A safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus (2017) J Virol, 91, pp. e02040-e02116; Woo, P., Lau, S., Lam, C., Lau, C., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; (2015), www.who.int/csr/disease/coronavirus_infections/case-management-ipc/en, World Health Organization 2015. Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (MERS-CoV) infection is suspected; (2018), www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf, World Health Organization 2018a. WHO MERS-CoV global summary and assessment of risk-August; MERS webpage online: www .who.int/emergencies/mers-cov/en]; www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en], World Health Organization 2018b. Laboratory testing for Middle East respiratory syndrome coronavirus-Interim guidance (revised), January 2018; www.emro.who.int/health-topics/mers-cov/situation-update.html], World Health Organization/EMRO (Eastern Mediterranean Regional Office) 2018. Available at MERS situation update; Wrensch, F., Winkler, M., Pöhlmann, S., IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: Evidence for cholesterol-independent mechanisms (2014) Viruses, 6, pp. 3683-3698; Wu, J., Yi, L., Zou, L., Zhong, H., Imported case of MERSCoV infection identified in China, May 2015: Detection and lesson learned (2015) Euro Surveill, 20, p. 21158; Yang, L., Ren, X., Wu, Z., Yang, F., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg Infect Dis, 20, pp. 1260-1262; Yang, Y., Du, L., Liu, C., Wang, L., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-tohuman transmission of MERS coronavirus (2014) Proc Natl Acad Sci U S A, 111, pp. 12516-12521; Yang, Y., Zhang, L., Geng, H., Deng, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERSCoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Yao, Y., Bao, L., Deng, W., Xu, L., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209, pp. 236-242; Yavarian, J., Rezaei, F., Shadab, A., Soroush, M., Cluster of middle east respiratory syndrome coronavirus infections in Iran, 2014 (2015) Emerg Infect Dis, 21, pp. 362-364; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J Virol, 88, pp. 7796-7805; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Zhao, G., Du, L., Ma, C., Li, Y., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol J, 10, p. 266; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses (2017) Sci Immunol, 2, p. eaan5393; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111, pp. 4970-4975; Zhao, J., Perera, R.A.P.M., Kayali, G., Meyerholz, D., Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection (2015) J Virol, 89, pp. 6117-6120; Zhou, J., Chu, H., Li, C., Wong, B.H., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J Infect Dis, 209, pp. 1331-1342","Morse, S.S.; Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, United States; email: ssm20@cumc.columbia.edu",,"Mary Ann Liebert Inc.",15303667,,VZDEB,"30676269","English","Vector Borne Zoonotic Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85062264694 "Iwata-Yoshikawa N., Okamura T., Shimizu Y., Kotani O., Sato H., Sekimukai H., Fukushi S., Suzuki T., Sato Y., Takeda M., Tashiro M., Hasegawa H., Nagata N.","37031266800;7401572953;55773204400;55637033000;7410401109;57207566611;7004841901;57207100849;7410374839;7403299731;7201482415;55485164600;11839905700;","Acute respiratory infection in human dipeptidyl peptidase 4-transgenic mice infected with Middle East respiratory syndrome coronavirus",2019,"Journal of Virology","93","6", e01818-18,"","",,4,"10.1128/JVI.01818-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062627872&doi=10.1128%2fJVI.01818-18&partnerID=40&md5=0f2587c125efd7ae8cfa9928600d9528","Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan; Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan","Iwata-Yoshikawa, N., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Okamura, T., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan, Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan, Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Shimizu, Y., Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Kotani, O., Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan; Sato, H., Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan; Sekimukai, H., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan, Department of Tissue Physiology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Fukushi, S., Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan; Suzuki, T., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Sato, Y., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Takeda, M., Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan; Tashiro, M., Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan; Hasegawa, H., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan; Nagata, N., Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan","Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Animal models; DPP4; Immunopathology; MERS-CoV; Transgenic mouse","chemokine; cytokine; dipeptidyl peptidase IV; cytokine; dipeptidyl peptidase IV; DPP4 protein, human; adult; animal experiment; animal model; animal tissue; Article; body weight; cell migration; controlled study; evidence based medicine; interstitial pneumonia; macrophage; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; protein expression; transgenic mouse; viral respiratory tract infection; animal; C57BL mouse; cell line; Chlorocebus aethiops; Coronavirus infection; disease model; female; lung; male; metabolism; pathogenicity; respiratory tract infection; Vero cell line; virology; Animals; Cell Line; Cercopithecus aethiops; Coronavirus Infections; Cytokines; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Lung; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle East Respiratory Syndrome Coronavirus; Respiratory Tract Infections; Vero Cells","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Munster, V.J., Middle east respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110, pp. 16598-16603. , https://doi.org/10.1073/pnas.1310744110; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Munster, V.J., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10. , https://doi.org/10.1371/journal.ppat.1004250; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89, pp. 3659-3670. , https://doi.org/10.1128/JVI.03427-14; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Zhou, Y., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0145561; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray, P.B., Jr., Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J Infect Dis, 213, pp. 712-722. , https://doi.org/10.1093/infdis/jiv499; de Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Munster, V.J., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0069127; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild type and innate immune deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2013) J Gen Virol, 95, pp. 408-412. , https://doi.org/10.1099/vir.0.060640-0; Iwata-Yoshikawa, N., Fukushi, S., Fukuma, A., Suzuki, T., Takeda, M., Tashiro, M., Hasegawa, H., Nagata, N., No susceptibility of neonatal and adult rats against the Middle East respiratory syndrome coronavirus (2016) Jpn J Infect Dis, 69, pp. 510-516; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Perlman, S., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111, pp. 4970-4975. , https://doi.org/10.1073/pnas.1323279111; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., Beck, S.E., Matthews, K.L., Venkataraman, T., Frieman, M.B., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91, pp. e01825-e01916; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., McCray, P.B., Jr., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci U S A, 114, pp. E3119-E3128. , https://doi.org/10.1073/pnas.1619109114; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226. , https://doi.org/10.1038/nmicrobiol.2016.226; Middle East respiratory syndrome coronavirus outbreak in the republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278. , https://doi.org/10.1016/j.phrp.2015.08.006, Korea Centers for Disease Control and Prevention; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Albarrak, A.M., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in saudi arabia (2014) Int J Infect Dis, 29, pp. 301-306. , https://doi.org/10.1016/j.ijid.2014.09.003; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17, p. 615. , https://doi.org/10.1186/s12879-017-2712-2; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015 (2016) Int J Infect Dis, 45, pp. 1-4. , https://doi.org/10.1016/j.ijid.2016.02.004; Majumder, M.S., Kluberg, S.A., Mekaru, S.R., Brownstein, J.S., Mortality risk factors for Middle East respiratory syndrome outbreak, South Korea, 2015 (2015) Emerg Infect Dis, 21, pp. 2088-2090. , https://doi.org/10.3201/eid2111.151231; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Kim, G., Kim, Y.S., Clinical presentation and outcomes of Middle East respiratory syndrome in the republic of korea (2016) Infect Chemother, 48, pp. 118-126. , https://doi.org/10.3947/ic.2016.48.2.118; Koike, S., Taya, C., Kurata, T., Abe, S., Ise, I., Yonekawa, H., Nomoto, A., Transgenic mice susceptible to poliovirus (1991) Proc Natl Acad Sci U S A, 88, pp. 951-955; Fujii, K., Nagata, N., Sato, Y., Ong, K.C., Wong, K.T., Yamayoshi, S., Shimanuki, M., Koike, S., Transgenic mouse model for the study of enterovirus 71 neuropathogenesis (2013) Proc Natl Acad Sci U S A, 110, pp. 14753-14758. , https://doi.org/10.1073/pnas.1217563110; Haruyama, N., Cho, A., Kulkarni, A.B., Overview: Engineering transgenic constructs and mice (2009) Curr Protoc Cell Biol Chapter 19:Unit 19.10, , https://doi.org/10.1002/0471143030.cb1910s42; Geppert, T.D., Davis, L.S., Gur, H., Wacholtz, M.C., Lipsky, P.E., Accessory cell signals involved in T-cell activation (1990) Immunol Rev, 117, pp. 5-66; Fleischer, B., CD26: A surface protease involved in T-cell activation (1994) Immunol Today, 15, pp. 180-184. , https://doi.org/10.1016/0167-5699(94)90316-6; Hegen, M., Niedobitek, G., Klein, C.E., Stein, H., Fleischer, B., The T cell triggering molecule tp103 is associated with dipeptidyl aminopeptidase IV activity (1990) J Immunol, 144, pp. 2908-2914; Fan, C., Wu, X., Liu, Q., Li, Q., Liu, S., Lu, J., Yang, Y., Wang, Y., A human DPP4-knockin mouse’s susceptibility to infection by authentic and pseudotyped MERS-CoV (2018) Viruses, 10, p. E448. , https://doi.org/10.3390/v10090448; Chu, H., Zhou, J., Wong, B.H., Li, C., Chan, J.F., Cheng, Z.S., Yang, D., Yuen, K.Y., Middle east respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213, pp. 904-914. , https://doi.org/10.1093/infdis/jiv380; Alghamdi, I.G., Hussain, I.I., Almalki, S.S., Alghamdi, M.S., Alghamdi, M.M., El-Sheemy, M.A., The pattern of Middle East respiratory syndrome coronavirus in saudi arabia: A descriptive epidemiological analysis of data from the Saudi ministry of health (2014) Int J Gen Med, 7, pp. 417-423. , https://doi.org/10.2147/IJGM.S67061; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235, pp. 175-184. , https://doi.org/10.1002/path.4458; Iwata-Yoshikawa, N., Uda, A., Suzuki, T., Tsunetsugu-Yokota, Y., Sato, Y., Morikawa, S., Tashiro, M., Nagata, N., Effects of toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine (2014) J Virol, 88, pp. 8597-8614. , https://doi.org/10.1128/JVI.00983-14; Memish, Z.A., Zumla, A.I., Assiri, A., Middle East respiratory syndrome coronavirus infections in health care workers (2013) N Engl J Med, 369, pp. 884-886. , https://doi.org/10.1056/NEJMc1308698; State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr Outbreaks, 1, p. 23143; O’Hagan, J.J., Carias, C., Rudd, J.M., Pham, H.T., Haber, Y., Pesik, N., Cetron, M.S., Swerdlow, D.L., Estimation of severe Middle East respiratory syndrome cases in the Middle East, 2012–2016 (2016) Emerg Infect Dis, 22, pp. 1797-1799. , https://doi.org/10.3201/eid2210.151121; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672. , https://doi.org/10.1016/j.ijid.2013.07.001; Update: Severe respiratory illness associated with Middle East respiratory syndrome coronavirus (MERS-CoV) — Worldwide, 2012–2013 (2013) MMWR Morb Mortal Wkly Rep, 62, pp. 480-483. , CDC; Assiri, A., Abedi, G.R., Bin Saeed, A.A., Abdalla, M.A., Al-Masry, M., Choudhry, A.J., Lu, X., Watson, J.T., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40. , https://doi.org/10.3201/eid2201.151370; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Baric, R.S., Heise, M.T., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J Virol, 88, pp. 5195-5199. , https://doi.org/10.1128/JVI.03764-13; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112, pp. 8738-8743. , https://doi.org/10.1073/pnas.1510830112; Chien, C.H., Huang, L.H., Chou, C.Y., Chen, Y.S., Han, Y.S., Chang, G.G., Liang, P.H., Chen, X., One site mutation disrupts dimer formation in human DPP-IV proteins (2004) J Biol Chem, 279, pp. 52338-52345. , https://doi.org/10.1074/jbc.M406185200; Tynell, J., Westenius, V., Ronkko, E., Munster, V.J., Melen, K., Osterlund, P., Julkunen, I., Middle east respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells (2016) J Gen Virol, 97, pp. 344-355. , https://doi.org/10.1099/jgv.0.000351; Zhou, J., Chu, H., Li, C., Wong, B.H., Cheng, Z.S., Poon, V.K., Sun, T., Yuen, K.Y., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J Infect Dis, 209, pp. 1331-1342. , https://doi.org/10.1093/infdis/jit504; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Tong, S., Zaki, S.R., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, april 2014 (2016) Am J Pathol, 186, pp. 652-658. , https://doi.org/10.1016/j.ajpath.2015.10.024; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Mathieu, D., Guery, B., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61, pp. 275-278. , https://doi.org/10.1016/j.jcv.2014.07.002; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Wendtner, C.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751. , https://doi.org/10.1016/S1473-3099(13)70154-3; Seeley, E.J., Updates in the management of acute lung injury: A focus on the overlap between AKI and ARDS (2013) Adv Chronic Kidney Dis, 20, pp. 14-20. , https://doi.org/10.1053/j.ackd.2012.10.001; Park, J.E., Jung, S., Kim, A., Park, J.E., MERS transmission and risk factors: A systematic review (2018) BMC Public Health, 18, p. 574. , https://doi.org/10.1186/s12889-018-5484-8; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Bortolotti, P., Guery, B., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0088716; Guan, W.D., Mok, C.K., Chen, Z.L., Feng, L.Q., Li, Z.T., Huang, J.C., Ke, C.W., Zhong, N.S., Characteristics of traveler with Middle East respiratory syndrome, China, 2015 (2015) Emerg Infect Dis, 21, pp. 2278-2280. , https://doi.org/10.3201/eid2112.151232; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, Y.S., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359. , https://doi.org/10.1038/srep25359; Shin, H.S., Kim, Y., Kim, G., Lee, J.Y., Jeong, I., Joh, J.S., Kim, H., Lim, D.G., Immune responses to MERS coronavirus during the acute and convalescent phases of human infection (2018) Clin Infect Dis, , https://doi.org/10.1093/cid/ciy595, 27 July; Mahallawi, W.H., Khabour, O.F., Zhang, Q., Makhdoum, H.M., Suliman, B.A., MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile (2018) Cytokine, 104, pp. 8-13. , https://doi.org/10.1016/j.cyto.2018.01.025; Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., Nagata, N., TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection (2019) J Virol, 93, pp. e01815-e01818. , https://doi.org/10.1128/JVI.01815-18; Ichinohe, T., Watanabe, I., Ito, S., Fujii, H., Moriyama, M., Tamura, S., Takahashi, H., Hasegawa, H., Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection (2005) J Virol, 79, pp. 2910-2919. , https://doi.org/10.1128/JVI.79.5.2910-2919.2005","Nagata, N.; Department of Pathology, National Institute of Infectious DiseasesJapan; email: nnagata@niid.go.jp",,"American Society for Microbiology",0022538X,,JOVIA,"30626685","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85062627872 "Magtoto R., Poonsuk K., Baum D., Zhang J., Chen Q., Ji J., Piñeyro P., Zimmerman J., Giménez-Lirola L.G.","57188764705;55829767400;57002743900;55983810400;55643447900;57192064270;23988268000;55434243900;55129193400;","Evaluation of the serologic crossreactivity between transmissible gastroenteritis coronavirus and porcine respiratory coronavirus using commercial blocking enzyme-linked immunosorbent assay kits",2019,"mSphere","4","2", e00017-19,"","",,,"10.1128/mSphere.00017-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062889904&doi=10.1128%2fmSphere.00017-19&partnerID=40&md5=ec24a4eac00d619451c05e3c7823124c","College of Veterinary Medicine, Iowa State University, Ames, IA, United States; College of Liberal Arts and Sciences, Iowa State University, Ames, IA, United States","Magtoto, R., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Poonsuk, K., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Baum, D., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Zhang, J., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Chen, Q., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Ji, J., College of Liberal Arts and Sciences, Iowa State University, Ames, IA, United States; Piñeyro, P., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Zimmerman, J., College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Giménez-Lirola, L.G., College of Veterinary Medicine, Iowa State University, Ames, IA, United States","This study compared the performances of three commercial transmissible gastroenteritis virus/porcine respiratory coronavirus (TGEV/PRCV) blocking enzyme-linked immunosorbent assays (ELISAs) using serum samples (n=528) collected over a 49-day observation period from pigs inoculated with TGEV strain Purdue (n=12), TGEV strain Miller (n=12), PRCV (n = 12), or with virus-free culture medium (n=12). ELISA results were evaluated both with ""suspect"" results interpreted as positive and then as negative. All commercial kits showed excellent diagnostic specificity (99 to 100%) when testing samples from pigs inoculated with virus-free culture medium. However, analyses revealed differences between the kits in diagnostic sensitivity (percent TGEV- or PRCVseropositive pigs), and all kits showed significant (P < 0.05) cross-reactivity between TGEV and PRCV serum antibodies, particularly during early stages of the infections. Serologic cross-reactivity between TGEV and PRCV seemed to be TGEV strain dependent, with a higher percentage of PRCV-false-positive results for pigs inoculated with TGEV Purdue than for TGEV Miller. Moreover, the overall proportion of false positives was higher when suspect results were interpreted as positive, regardless of the ELISA kit evaluated. © 2019 Magtoto et al.","Antibody; Cross-reactivity; ELISA; Porcine respiratory coronavirus; Serum; Swine; Transmissible gastroenteritis virus","virus antibody; virus antigen; animal; Coronavirus infection; cross reaction; diagnostic kit; diarrhea; enzyme linked immunosorbent assay; evaluation study; false positive result; immunology; pig; Porcine respiratory coronavirus; procedures; respiratory tract infection; sensitivity and specificity; standards; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; veterinary medicine; Animals; Antibodies, Viral; Antigens, Viral; Coronavirus Infections; Cross Reactions; Diarrhea; Enzyme-Linked Immunosorbent Assay; False Positive Reactions; Gastroenteritis, Transmissible, of Swine; Porcine Respiratory Coronavirus; Reagent Kits, Diagnostic; Respiratory Tract Infections; Sensitivity and Specificity; Swine; Transmissible gastroenteritis virus","Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J Am Vet Med Assoc, 108, pp. 257-259; Enjuanes, L., Van der Zeijst, B.A.M., Molecular basis of transmissible gastroenteritis virus epidemiology (1995) The Coronaviridae, pp. 337-376. , In Siddell SG (ed), Plenum Press, New York, NY; Sestak, K., Saif, L.J., Porcine coronaviruses (2008) Trends in emerging viral infections of swine, , In Morilla A, Yoon KJ, Zimmerman JJ (ed), Iowa State Press, Ames, IA; Pensaert, M., Callebaut, P., Vergote, J., Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis (1986) Vet Q, 8, pp. 257-261. , https://doi.org/10.1080/01652176.1986.9694050; Pensaert, M.B., Cox, E., Porcine respiratory coronavirus related to transmissible gastroenteritis virus (1989) Agri-Practice, 10, p. 17; Opriessnig, T., Giménez-Lirola, L.G., Halbur, P.G., Polymicrobial respiratory disease in pigs (2011) Anim Health Res Rev, 12, pp. 133-148. , https://doi.org/10.1017/S1466252311000120; Costantini, V., Lewis, P., Alsop, J., Templeton, C., Saif, L.J., Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates (2004) Arch Virol, 149, pp. 957-974. , https://doi.org/10.1007/s00705-003-0245-z; Kim, L., Chang, K.O., Sestak, K., Parwani, A., Saif, L.J., Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs (2000) J Vet Diagn Invest, 12, pp. 385-388. , https://doi.org/10.1177/104063870001200418; Kim, L., Hayes, J., Lewis, P., Parwani, A.V., Chang, K.O., Saif, L.J., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Arch Virol, 145, pp. 1133-1147. , https://doi.org/10.1007/s007050070114; Ogawa, H., Taira, O., Hirai, T., Takeuchi, H., Nagao, A., Ishikawa, Y., Tuchiya, K., Ueda, S., Multiplex PCR and multiplex RT-PCR for inclusive detection of major swine DNA and RNA viruses in pigs with multiple infections (2009) J Virol Methods, 160, pp. 210-214. , https://doi.org/10.1016/j.jviromet.2009.05.010; Callebaut, P., Correa, I., Pensaert, M., Jiménez, G., Enjuanes, L., Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus (1988) J Gen Virol, 69, pp. 1725-1730. , https://doi.org/10.1099/0022-1317-69-7-1725; Delmas, B., Laude, H., Assembly of coronavirus spike protein into trimers and its role in epitope expression (1990) J Virol, 64, pp. 5367-5375; Sánchez, C.M., Jiménez, G., Laviada, M.D., Correa, I., Suñé, C., Bullido, M.J., Gebauer, F., Enjuanes, L., Antigenic homology among coronaviruses related to transmissible gastroenteritis virus (1990) Virology, 174, pp. 410-417. , https://doi.org/10.1016/0042-6822(90)90094-8; Sestak, K., Meister, R.K., Hayes, J.R., Kim, L., Lewis, P.A., Myers, G., Saif, L.J., Active immunity and T-cell populations in pigs intraperitoneally inoculated with baculovirus-expressed transmissible gastroenteritis virus structural proteins (1999) Vet Immunol Immunopathol, 70, pp. 203-221. , https://doi.org/10.1016/S0165-2427(99)00074-4; Sestak, K., Zhou, Z., Shoup, D.I., Saif, L.J., Evaluation of the baculovirusexpressed S glycoprotein of transmissible gastroenteritis virus (TGEV) as antigen in a competition ELISA to differentiate porcine respiratory coronavirus from TGEV antibodies in pigs (1999) J Vet Diagn Invest, 11, pp. 205-214. , https://doi.org/10.1177/104063879901100301; Simkins, R.A., Weilnau, P.A., Bias, J., Saif, L.J., Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV (1992) Am J Vet Res, 53, pp. 1253-1258; Simkins, R.A., Weilnau, P.A., Van Cott, J., Brim, T.A., Saif, L.J., Competition ELISA, using monoclonal antibodies to the transmissible gastroenteritis virus (TGEV) S protein, for serologic differentiation of pigs infected with TGEV or porcine respiratory coronavirus (1993) Am J Vet Res, 54, pp. 254-259; Bernard, S., Bottreau, E., Aynaud, J.M., Have, P., Szymansky, J., Natural infection with the porcine respiratory coronavirus induces protective lactogenic immunity against transmissible gastroenteritis (1989) Vet Microbiol, 21, pp. 1-8. , https://doi.org/10.1016/0378-1135(89)90013-8; Callebaut, P., Pensaert, M.B., Hooyberghs, J., A competitive inhibition ELISA for the differentiation of serum antibodies from pigs infected with transmissible gastroenteritis virus (TGEV) or with the TGEV-related porcine respiratory coronavirus (1989) Vet Microbiol, 20, pp. 9-19. , https://doi.org/10.1016/0378-1135(89)90003-5; Garwes, D.J., Stewart, F., Cartwright, S.F., Brown, I., Differentiation of porcine coronavirus from transmissible gastroenteritis virus (1988) Vet Rec, 122, pp. 86-87. , https://doi.org/10.1136/vr.122.4.86; Frederick, G.T., Bohl, E.H., Cross, R.F., Pathogenicity of an attenuated strain of transmissible gastroenteritis virus for newborn pigs (1976) Am J Vet Res, 37, pp. 165-169; Turgeon, D.C., Morin, M., Jolette, J., Higgins, R., Marsolais, G., DiFranco, E., Coronavirus-like particles associated with diarrhea in baby pigs in Quebec (1980) Can Vet J, 21, pp. xxiii-100; Underdahl, N.R., Mebus, C.A., Torres-Medina, A., Recovery of transmissible gastroenteritis virus from chronically infected experimental pigs (1975) Am J Vet Res, 36, pp. 1473-1476; Cox, E., Pensaert, M.B., Callebaut, P., Intestinal protection against challenge with transmissible gastroenteritis virus of pigs immune after infection with the porcine respiratory coronavirus (1993) Vaccine, 11, pp. 267-272. , https://doi.org/10.1016/0264-410X(93)90028-V; Saif, L.J., Pensaert, M.B., Sestak, K., Yeo, S.G., Jung, K., Coronaviruses (2012) Diseases of swine, pp. 501-524. , In Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW (ed), 10th ed. John Wiley & Sons, Chichester, United Kingdom; Oh, Y.I., Yang, D.K., Cho, S.D., Kang, H.K., Choi, S.K., Kim, Y.J., Hyun, B.H., Song, J.Y., Sero-surveillance of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in South Korea (2011) J Bacteriol Virol, 41, pp. 189-193. , https://doi.org/10.4167/jbv.2011.41.3.189; Sánchez, C.M., Gebauer, F., Suñé, C., Mendez, A., Dopazo, J., Enjuanes, L., Genetic evolution and tropism of transmissible gastroenteritis coronaviruses (1992) Virology, 190, pp. 92-105. , https://doi.org/10.1016/0042-6822(92)91195-Z; Godet, M., L'Haridon, R., Vautherot, J.F., Laude, H., TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions (1992) Virology, 188, pp. 666-675. , https://doi.org/10.1016/0042-6822(92)90521-P; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (Nglycolylneuraminic acid) binding activity (1996) J Virol, 70, pp. 5634-5637; Chae, C., Kim, O., Min, K., Choi, C., Kim, J., Cho, W., Seroprevalence of porcine respiratory coronavirus in selected Korean pigs (2000) Prev Vet Med, 46, pp. 293-296. , https://doi.org/10.1016/S0167-5877(00)00154-9; Carman, S., Josephson, G., McEwen, B., Maxie, G., Antochi, M., Eernisse, K., Nayar, G., Nilsson, E., Field validation of a commercial blocking ELISA to differentiate antibody to transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus and to identify TGEV-infected swine herds (2002) J Vet Diagn Invest, 14, pp. 97-105. , https://doi.org/10.1177/104063870201400202; Paton, D., Ibata, G., Sands, J., McGoldrick, A., Detection of transmissible gastroenteritis virus by RT-PCR and differentiation from porcine respiratory coronavirus (1997) J Virol Methods, 66, pp. 303-309. , https://doi.org/10.1016/S0166-0934(97)00055-4; Sirinarumitr, T., Paul, P.S., Kluge, J.P., Halbur, P.G., In situ hybridization technique for the detection of swine enteric and respiratory coronaviruses, transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV), in formalin-fixed paraffin-embedded tissues (1996) J Virol Methods, 56, pp. 149-160. , https://doi.org/10.1016/0166-0934(95)01901-4; Hälli, O., Ala-Kurikka, E., Nokireki, T., Skrzypczak, T., Raunio-Saarnisto, M., Peltoniemi, O., Heinonen, M., Prevalence of and risk factors associated with viral and bacterial pathogens in farmed European wild boar (2012) Vet J, 194, pp. 98-101. , https://doi.org/10.1016/j.tvjl.2012.03.008; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Saif, L.J., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342. , https://doi.org/10.1128/JVI.03196-14; Mullan, B.P., Davies, G.T., Cutler, R.S., Simulation of the economic impact of transmissible gastroenteritis on commercial pig production in Australia (1994) Aust Vet J, 71, pp. 151-154. , https://doi.org/10.1111/j.1751-0813.1994.tb03370.x; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am J Epidemiol, 27, pp. 493-497. , https://doi.org/10.1093/oxfordjournals.aje.a118408; Madson, D.M., Magstadt, D.R., Arruda, P.H.E., Hoang, H., Sun, D., Bower, L.P., Bhandari, M., Yoon, K.J., Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs (2014) Vet Microbiol, 174, pp. 60-68. , https://doi.org/10.1016/j.vetmic.2014.09.002; Gimenez-Lirola, L.G., Zhang, J., Carrillo-Avila, J.A., Chen, Q., Magtoto, R., Poonsuk, K., Baum, D.H., Zimmerman, J., Reactivity of porcine epidemic diarrhea virus structural proteins to antibodies against porcine enteric coronaviruses: diagnostic implications (2017) J Clin Microbiol, 55, pp. 1426-1436. , https://doi.org/10.1128/JCM.02507-16; Kim, S.H., Kim, I.J., Pyo, H.M., Tark, D.S., Song, J.Y., Hyun, B.H., Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus (2007) J Virol Methods, 146, pp. 172-177. , https://doi.org/10.1016/j.jviromet.2007.06.021","Giménez-Lirola, L.G.; College of Veterinary Medicine, Iowa State UniversityUnited States; email: luisggl@iastate.edu",,"American Society for Microbiology",23795042,,,"30867325","English","mSphere",Article,"Final",Open Access,Scopus,2-s2.0-85062889904 "Te N., Vergara-Alert J., Lehmbecker A., Pérez M., Haagmans B.L., Baumgärtner W., Bensaid A., Segalés J.","57205248002;37121040100;24450846500;57194454925;6701371301;7203023235;7005940684;7005525215;","Co-localization of Middle East respiratory syndrome coronavirus (MERS-CoV) and dipeptidyl peptidase-4 in the respiratory tract and lymphoid tissues of pigs and llamas",2019,"Transboundary and Emerging Diseases","66","2",,"831","841",,1,"10.1111/tbed.13092","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059289149&doi=10.1111%2ftbed.13092&partnerID=40&md5=dcfa292150f6cd58b300eb3247a5a7c7","IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Pathology, University of Veterinary Medicine, Hannover, Germany; Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain; Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain","Te, N., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain; Vergara-Alert, J., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain; Lehmbecker, A., Department of Pathology, University of Veterinary Medicine, Hannover, Germany; Pérez, M., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain; Haagmans, B.L., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Baumgärtner, W., Department of Pathology, University of Veterinary Medicine, Hannover, Germany; Bensaid, A., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain; Segalés, J., UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain, Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain","This study investigated the co-localization of the Middle East respiratory syndrome coronavirus (MERS-CoV) and its receptor dipeptidyl peptidase-4 (DPP4) by immunohistochemistry (IHC) across respiratory and lymphoid organs of experimentally MERS-CoV infected pigs and llamas. Also, scanning electron microscopy was performed to assess the ciliary integrity of respiratory epithelial cells in both species. In pigs, on day 2 post-inoculation (p.i.), DPP4-MERS-CoV co-localization was detected in medial turbinate epithelium. On day 4 p.i., the virus/receptor co-localized in frontal and medial turbinate epithelial cells in pigs, and epithelial cells distributed unevenly through the whole nasal cavity and in the cervical lymph node in llamas. MERS-CoV viral nucleocapsid was mainly detected in upper respiratory tract sites on days 2 and 4 p.i. in pigs and day 4 p.i. in llamas. No MERS-CoV was detected on day 24 p.i. in any tissue by IHC. While pigs showed severe ciliary loss in the nasal mucosa both on days 2 and 4 p.i. and moderate loss in the trachea on days 4 and 24 p.i., ciliation of respiratory organs in llamas was not significantly affected. Obtained data confirm the role of DPP4 for MERS-CoV entry in respiratory epithelial cells of llamas. Notably, several nasal epithelial cells in pigs were found to express viral antigen but not DPP4, suggesting the possible existence of other molecule/s facilitating virus entry or down regulation of DPP4 upon infection. © 2018 The Authors. Transboundary and Emerging Diseases published by Blackwell Verlag GmbH.","dipeptidyl peptidase-4 (DPP4); immunohistochemistry; llama; Middle East respiratory syndrome coronavirus (MERS-CoV); pig; scanning electron microscopy","dipeptidyl peptidase IV; virus antigen; virus RNA; dipeptidyl peptidase IV; virus receptor; animal cell; animal experiment; animal tissue; Article; cellular distribution; cervical lymph node; controlled study; down regulation; immunohistochemistry; lung alveolus cell; lymphoid tissue; macrophage; mediastinum lymph node; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose cavity; real time polymerase chain reaction; reverse transcription polymerase chain reaction; scanning electron microscopy; trachea; turbinate; upper respiratory tract; virus detection; virus nucleocapsid; animal; Coronavirus infection; enzymology; genetics; metabolism; Middle East respiratory syndrome coronavirus; New World camelid; pathogenicity; pig; respiratory system; swine disease; veterinary medicine; virology; Animals; Camelids, New World; Coronavirus Infections; Dipeptidyl Peptidase 4; Immunohistochemistry; Lymphoid Tissue; Microscopy, Electron, Scanning; Middle East Respiratory Syndrome Coronavirus; Real-Time Polymerase Chain Reaction; Receptors, Virus; Respiratory System; RNA, Viral; Swine; Swine Diseases","Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, replication, and transmission of Middle East Respiratory Syndrome Coronavirus in alpacas (2016) Emerging Infectious Diseases, 22 (6), pp. 1031-1037. , https://doi.org/10.3201/2206.160192; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 370 (26), pp. 2499-2505. , https://doi.org/10.1056/NEJMoa1401505; Chan, C.M., Chu, H., Wang, Y., Wong, B.H., Zhao, X., Zhou, J., Yuen, K.Y., Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of middle east respiratory syndrome coronavirus (2016) Journal of Virology, 90 (20), pp. 9114-9127. , https://doi.org/10.1128/JVI.01133-16; Chu, H., Zhou, J., Wong, B.H., Li, C., Cheng, Z.S., Lin, X., Yuen, K.Y., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454, pp. 197-205. , https://doi.org/10.1016/j.virol.2014.02.018; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Müller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya (2014) Emerging Infectious Diseases, 20 (8), pp. 1319-1322. , https://doi.org/10.3201/eid2008.140596; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Nastouli, E., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerging Infectious Diseases, 19 (5), pp. 736-742. , https://doi.org/10.3201/eid1905.130057; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Memish, Z.A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) The Lancet, 382 (9909), pp. 1993-2002. , https://doi.org/10.1016/S0140-6736(13)61887-5; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Memish, Z.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) mBio, 5 (1). , https://doi.org/10.1128/mbio.01062-13; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathogens, 13 (7). , https://doi.org/10.1371/journal.ppat.1006546; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Munster, V.J., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLOS Pathogens, 10 (8). , https://doi.org/10.1371/journal.ppat.1004250; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Osterhaus, A.D., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection indromedary camels (2016) Science, 351 (6268), pp. 77-81. , https://doi.org/10.1126/science.aad1283; Haverkamp, A.K., Lehmbecker, A., Spitzbarth, I., Widagdo, W., Haagmans, B.L., Segalés, J., Baumgärtner, W., Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4 (2018) Scientific Reports, 8 (1), p. 9778; Hsieh, Y.H., Middle East Respiratory Syndrome coronavirus (MERS-CoV) nosocomial outbreak in South Korea: Insights from modeling (2015) PeerJ, 3. , https://doi.org/10.7717/peerj.1505; Jumat, M.R., Yan, Y., Ravi, L.I., Wong, P., Huong, T.N., Li, C., Sugrue, R.J., Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia (2015) Virology, 484, pp. 395-411. , https://doi.org/10.1016/j.virol.2015.05.014; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proceedings of the National Academy of Sciences of the United States of America, 114 (40), pp. E8508-E8517. , https://doi.org/10.1073/pnas.1712592114; Mall, M.A., Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: Lessons from mouse models (2008) Journal of Aerosol Medicine and Pulmonary Drug Delivery, 21 (1), pp. 13-24. , https://doi.org/10.1089/jamp.2007.0659; Mitchell, J.A., Brooks, H.W., Szladovits, B., Erles, K., Gibbons, R., Shields, S., Brownlie, J., Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV) (2013) Veterinary Microbiology, 162 (2-4), pp. 582-594. , https://doi.org/10.1016/j.vetmic.2012.11.025; Nicholls, J.M., Poon, L.L., Lee, K.C., Ng, W.F., Lai, S.T., Leung, C.Y., Peiris, J.S., Lung pathology of fatal severe acute respiratory syndrome (2003) The Lancet, 361 (9371), pp. 1773-1778; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndromecoronavirus infection (2015) Journal of Virology, 89 (8), pp. 4696-4699. , https://doi.org/10.1128/JVI.03445-14; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254. , https://doi.org/10.1038/nature12005; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) The Lancet Infectious Diseases, 13 (10), pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84. , https://doi.org/10.1126/science.aac8608; Scheuplein, V.A., Seifried, J., Malczyk, A.H., Miller, L., Höcker, L., Vergara-Alert, J., Mühlebach, M.D., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) Journal of Virology, 89 (7), pp. 3859-3869. , https://doi.org/10.1128/JVI.03607-14; Tsiodras, S., Baka, A., Mentis, A., Iliopoulos, D., Dedoukou, X., Papamavrou, G., Saroglou, G., A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014 (2014) Euro Surveillance, 19 (16), p. 20782; Vareille, M., Kieninger, E., Edwards, M.R., Regamey, N., The airway epithelium: Soldier in the fight against respiratory viruses (2011) Clinical Microbiology Reviews, 24 (1), pp. 210-229. , https://doi.org/10.1128/CMR.00014-10; Vergara-Alert, J., van den Brand, J.M., Widagdo, W., Muñoz, M., Raj, S., Schipper, D., Segalés, J., Livestock susceptibility to infection with Middle East Respiratory Syndrome coronavirus (2017) Emerging Infectious Diseases, 23 (2), pp. 232-240. , https://doi.org/10.3201/eid2302.161239; (2015) Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.ecdc.europa.eu/en/publications/Publications/RRA-MERS-CoV-thirteenth-update.pdf; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., van den Brand, J.M.A., Tissue distribution of the MERS-coronavirus receptor in bats (2017) Scientific Reports, 7 (1), p. 1193. , https://doi.org/10.1038/s41598-017-01290-6; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J., Bosch, B.J., Haagmans, B.L., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) Journal of Virology, 90 (9), pp. 4838-4842. , https://doi.org/10.1128/JVI.02994-15; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Munster, V.J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratorytract infection in rhesus macaques (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (41), pp. 16598-16603. , https://doi.org/10.1073/pnas.1310744110; (2018) Middle East respiratory syndrome coronavirus (MERS-CoV) - update: August 2018, , http://www.who.int/emergencies/mers-cov/en/, Retrieved from, Accessed 14 September 2018; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Zeng, H., Goldsmith, C.S., Maines, T.R., Belser, J.A., Gustin, K.M., Pekosz, A., Tumpey, T.M., Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures (2013) Journal of Virology, 87 (5), pp. 2597-2607. , https://doi.org/10.1128/JVI.02885-12; Zhang, Z., Shen, L., Gu, X., Evolutionary dynamics of MERS-CoV: Potential recombination, positive selection and transmission (2016) Scientific Reports, 6, p. 25049. , https://doi.org/10.1038/srep25049","Segalés, J.; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de BarcelonaSpain; email: joaquim.segales@irta.cat",,"Blackwell Publishing Ltd",18651674,,,"30520548","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85059289149 "Maciel J.F., Matter L.B., Tasca C., Scheid D.A.R., Gressler L.T., Ziech R.E., De Vargas A.C.","55919329100;7006306349;56697999000;57207690878;37107493100;55863180900;6602591393;","Characterization of intestinal Escherichia coli isolated from calves with diarrhea due to rotavirus and coronavirus",2019,"Journal of Medical Microbiology","68","3",,"417","423",,,"10.1099/jmm.0.000937","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062689548&doi=10.1099%2fjmm.0.000937&partnerID=40&md5=93d942a10aa822ce13c9ff6e5839c619","Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Instituto Federal Farroupilha, Campus Frederico Westphalen, Laboratório de Microbiologia e Doenças Infecciosas, Curso de Medicina Veterinária, Frederico Westphalen, Rio Grande do Sul, Brazil","Maciel, J.F., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Matter, L.B., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Tasca, C., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Scheid, D.A.R., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; Gressler, L.T., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil, Instituto Federal Farroupilha, Campus Frederico Westphalen, Laboratório de Microbiologia e Doenças Infecciosas, Curso de Medicina Veterinária, Frederico Westphalen, Rio Grande do Sul, Brazil; Ziech, R.E., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil; De Vargas, A.C., Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil","Purpose. To address more information about changes in commensal Escherichia coli during virus intestinal infection, we characterized 30 faecal E. coli isolates from calves (21 to 60 days old) with diarrhea due to rotavirus and coronavirus, which received, before diagnosis, tetracycline, gentamicin and enrofloxacin drugs. Methodology. Clermont’s phylogenetic classification; presence of genes for curli, cellulose, fimbriae (F4, F5, F6, F18, F41); and antimicrobial susceptibility were used to characterize the isolates. Disk diffusion technique and PCR were used as methodologies. Results. E. coli isolates from calves with diarrhea were phylogenetically classified as B1 (70%, 21/30), B2 (3.33%, 1/30), C (3.33%, 1/30), D (3.33%, 1/30), E (13.33%, 4/30) and unknown (6.7 %; 2/30), whereas E. coli isolates from the control group were classified only as B1 (83.3%, 25/30), E (10 %; 3/30) and unknown (6,7 %; 2/30). E. coli isolates from calves with diarrhea showed a much higher resistance profile with 16 (53.3%) multiresistant isolates. Only isolates (30%-9/30) from diarrheic calves were also positive for fimbriae, specifically 16.7% (5/30) for F5 and 13.3% (4/30) for F18. Conclusion. To sum up, E. coli isolates from calves with diarrhea showed differences in relation to the control group, confirming changes in commensal E. coli during virus intestinal infection. It can be emphasized that some care should be taken to manage diarrheic calves: the pathological agent must be diagnosed prior to treatment; antibacterial treatment should be with antimicrobials with a different mechanism of action; and finally, treated animals should be maintained separately from others because they can carry micro-organisms with a resistant profile. © 2019 The Authors.","Antimicrobial susceptibility; Calves; Diarrhea; Intestinal escherichia coli; Microbiota","amplicon; antibiotic sensitivity; antibiotic therapy; Article; bacterial virulence; bacterium isolate; commensal Escherichia coli; controlled study; Coronavirinae; Coronavirus infection; diarrhea; disk diffusion; DNA extraction; DNA isolation; Escherichia coli; genetic screening; in vitro study; intestine flora; intestine infection; multiplex polymerase chain reaction; nonhuman; priority journal; Rotavirus; Rotavirus infection; animal; bovine; cattle disease; Coronavirus infection; diarrhea; drug effect; Escherichia coli; feces; fimbria; genetics; intestine; isolation and purification; microbiology; multidrug resistance; phylogeny; Rotavirus infection; symbiosis; veterinary medicine; virology; antiinfective agent; virulence factor; Animals; Anti-Bacterial Agents; Cattle; Cattle Diseases; Coronavirus; Coronavirus Infections; Diarrhea; Drug Resistance, Multiple, Bacterial; Escherichia coli; Feces; Fimbriae, Bacterial; Intestines; Phylogeny; Rotavirus; Rotavirus Infections; Symbiosis; Virulence Factors","Tenaillon, O., Skurnik, D., Picard, B., Denamur, E., The population genetics of commensal Escherichia coli (2010) Nat Rev Micro, 8, pp. 207-217; Gomez, D.E., Arroyo, L.G., Costa, M.C., Viel, L., Weese, J.S., Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves (2017) J Vet Intern Med, 31, pp. 928-939; Trefz, F.M., Lorenz, I., Lorch, A., Constable, P.D., Clinical signs, profound acidemia, hypoglycemia, and hypernatremia are predictive of mortality in 1,400 critically ill neonatal calves with diarrhea (2017) PLoS One, 12, pp. e0182927-e0182938; Son, I., Van Kessel, J.A.S., Karns, J.S., Genotypic diversity of Escherichia coli in a dairy farm (2009) Foodborne Pathog Dis, 6, pp. 837-847; Coura, F.M., de Araújo Diniz, S., Mussi, J.M.S., Silva, M.X., Lage, A.P., Characterization of virulence factors and phylogenetic group determination of Escherichia coli isolated from diarrheic and non-diarrheic calves from Brazil (2017) Folia Microbiol, 62, pp. 139-144; Clermont, O., Bonacorsi, S., Bingen, E., Rapid and simple determination of the Escherichia coli phylogenetic group (2000) Appl Environ Microbiol, 66, pp. 4555-4558; Clermont, O., Christenson, J.K., Denamur, E., Gordon, D.M., The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups (2013) Environ Microbiol Rep, 5, pp. 58-65; Foster, D.M., Smith, G.W., Pathophysiology of diarrhea in calves (2009) Vet Clin North Am Food Anim Pract, 25, pp. 13-16; Gyles, C.L., Fairbrother, J.M., Escherichia coli (2010) Pathogenesis of Bacterial Infections in Animal, pp. 267-308. , Gyles CL (editors), 4th Edn. Ames: Blackwell Publishing; Bokranz, W., Wang, X., Tschäpe, H., Römling, U., Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract (2005) J Med Microbiol, 54, pp. 1171-1182; Solomon, E.B., Niemira, B.A., Sapers, G.M., Annous, B.A., Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources (2005) J Food Prot, 68, pp. 906-912; Saldaña, Z., Xicohtencatl-Cortes, J., Avelino, F., Phillips, A.D., Kaper, J.B., Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli (2009) Environ Microbiol, 11, pp. 992-1006; Serra, D.O., Hengge, R., Stress responses go three dimensional - the spatial order of physiological differentiation in bacterial macrocolony biofilms (2014) Environ Microbiol, 16, pp. 1455-1471; Quinn, P.J., Carter, M.E., Markey, B., Carter, G.R., (1994) Clinical Veterinary Microbiology, p. 648. , Spain: Wolfe; Macfaddin, J.F., (2000) Biochemical Tests for Identification of Medical Bacteria, , 3rd Edn. Philadelphia, PA: Lippincott Willians & Wilkins; Costa, M.M.D., Silva, M.S., Spricigo, D.A., Witt, N.M., Marchioro, S.B., Caracterização epidemiológica, molecular e perfil de resistência aos antimicrobianos de Escherichia coli isoladas de criatórios suínos do sul do Brasil (2006) Pesq Vet Bras, 26, pp. 5-8; (2013) Performance Standards for Antimicrobial Disk and Dilution Susceptibility Testing for Bacteria Isolated from Animals, , Second Informational Supplement VET01-S2. Wayne, PA, USA: CLSI; Bryan, J., Leonard, N., Fanning, S., Katz, L., Duggan, V., Antimicrobial resistance in commensal faecal Escherichia coli of hospitalised horses (2010) Ir Vet J, 63, pp. 373-379; Krumperman, P.H., Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods (1983) Appl Environ Microbiol, 46, pp. 165-170; Gordon, D.M., Cowling, A., The distribution and genetic structure of Escherichia coli in Australian vertebrates: Host and geographic effects (2003) Microbiology, 149, pp. 3575-3586; Escobar-Páramo, P., Le Menac’h, A., Le Gall, T., Amorin, C., Gouriou, S., Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates (2006) Environ Microbiol, 8, pp. 1975-1984; Baldy-Chudzik, K., Mackiewicz, P., Stosik, M., Phylogenetic background, virulence gene profiles, and genomic diversity in commensal Escherichia coli isolated from ten mammal species living in one zoo (2008) Vet Microbiol, 131, pp. 173-184; Houser, B.A., Donaldson, S.C., Padte, R., Sawant, A.A., DebRoy, C., Assessment of phenotypic and genotypic diversity of Escherichia coli shed by healthy lactating dairy cattle (2008) Foodborne Pathog Dis, 5, pp. 41-51; Ferens, W.A., Hovde, C.J., Escherichia coli O157: H7: Animal reservoir and sources of human infection (2011) Foodborne Pathog Dis, 8, pp. 465-487; Escobar-Páramo, P., Clermont, O., Blanc-Potard, A.B., Bui, H., Le Bouguénec, C., A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli (2004) Mol Biol Evol, 21, pp. 1085-1094; Dubreuil, J.D., Isaacson, R.E., Schifferli, D.M., Animal enterotoxigenic Escherichia coli (2016) EcoSal Plus, 7, pp. 1-80; Nagy, B., Fekete, P.Z., Enterotoxigenic Escherichia coli in veterinary medicine (2005) Int J Med Microbiol, 295, pp. 443-454; Kolenda, R., Burdukiewicz, M., Schierack, P., Kolenda, R., Burdukiewicz, M., A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli (2015) Front Cell Infect Microbiol, 5, pp. 1-12; Tiels, P., Verdonck, F., Smet, A., Goddeeris, B., Cox, E., The F18 fimbrial adhesin FedF is highly conserved among F18+Escherichia coli isolates (2005) Vet Microbiol, 110, pp. 277-283; Khachatryan, A.R., Besser, T.E., Hancock, D.D., Call, D.R., Use of a nonmedicated dietary supplement correlates with increased prevalence of streptomycin-sulfa-tetracycline-resistant Escherichia coli on a dairy farm (2006) Appl Environ Microbiol, 72, pp. 4583-4588; Chantziaras, I., Boyen, F., Callens, B., Dewulf, J., Correlation between veterinary antimicrobial use and antimicrobial resistance in foodproducing animals: A report on seven countries (2014) J Antimicrob Chemother, 69, pp. 827-834; Shin, S.W., Shin, M.K., Jung, M., Belaynehe, K.M., Yoo, H.S., Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle (2015) Appl Environ Microbiol, 81, pp. 5560-5566; Mazel, D., Integrons: Agents of bacterial evolution (2006) Nat Rev Micro, 4, pp. 608-620; de Verdier, K., Nyman, A., Greko, C., Bengtsson, B., Antimicrobial resistance and virulence factors in Escherichia coli from Swedish dairy calves (2012) Acta Vet Scand, 54, pp. 2-10; Valat, C., Auvray, F., Forest, K., Métayer, V., Gay, E., Phylogenetic grouping and virulence potential of extended-spectrum-β- lactamase-producing Escherichia coli strains in cattle (2012) Appl Environ Microbiol, 78, pp. 4677-4682; Cheney, T.E.A., Smith, R.P., Hutchinson, J.P., Brunton, L.A., Pritchard, G., Cross-sectional survey of antibiotic resistance in Escherichia coli isolated from diseased farm livestock in England and Wales (2015) Epidemiol Infect, 143, pp. 2653-2659; Trevisi, E., Zecconi, A., Cogrossi, S., Razzuoli, E., Grossi, P., Strategies for reduced antibiotic usage in dairy cattle farms (2014) Res Vet Sci, 96, pp. 229-233","Matter, L.B.; Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM)Brazil; email: lmatter2006@yahoo.com.br",,"Microbiology Society",00222615,,JMMIA,"30720419","English","J. Med. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85062689548 "Sanz M.G., Kwon S., Pusterla N., Gold J.R., Bain F., Evermann J.","14011847900;57206663166;7005591152;8869978300;6603560251;7005408825;","Evaluation of equine coronavirus fecal shedding among hospitalized horses",2019,"Journal of Veterinary Internal Medicine","33","2",,"918","922",,3,"10.1111/jvim.15449","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061827372&doi=10.1111%2fjvim.15449&partnerID=40&md5=e6cb6d6a1795c12cd2a5a307d928b646","Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States; Department of Medicine and Epidemiology, University of California, Davis, CA, United States; Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, United States","Sanz, M.G., Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States; Kwon, S., Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States; Pusterla, N., Department of Medicine and Epidemiology, University of California, Davis, CA, United States; Gold, J.R., Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States; Bain, F., Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, United States; Evermann, J., Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, United States","Background: Currently, diagnosis of equine coronavirus (ECoV) relies on the exclusion of other infectious causes of enteric disease along with molecular detection of ECoV in feces or tissue. Although this approach is complete, it is costly and may not always be achievable. Objective: We hypothesized that the overall fecal shedding of ECoV in hospitalized horses is low. Our objective was to determine whether systemically healthy horses and horses with gastrointestinal disorders shed ECoV in their feces at the time of admission to a referral hospital and after 48 hours of stress associated with hospitalization. Animals: One-hundred thirty adult horses admitted to the Washington State University Veterinary Teaching Hospital for gastrointestinal disease (n = 65) or for imaging under anesthesia (n = 65) that were hospitalized for 48 hours. Owner consent was obtained before sampling. Methods: Fecal samples were collected at admission and 48 hours later. Polymerase chain reaction (PCR) for ECoV and electron microscopy (EM) were performed on all samples. Results: Only 1 of 258 fecal samples was PCR-positive for ECoV. Electron microscopy identified ECoV-like particles in 9 of 258 samples, parvovirus-like particles in 4 of 258 samples, and rotavirus-like particles in 1 of 258 samples. Conclusions and Clinical Importance: The presence of ECoV in feces of hospitalized adult horses was low. Thus, fecal samples that are PCR-positive for ECoV in adult horses that have clinical signs consistent with this viral infection are likely to be of diagnostic relevance. The clinical relevance of the viruses observed using EM remains to be investigated. © 2019 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.","anesthesia; anorexia; electron microscopy; fever; gastrointestinal disease; lethargy; PCR","RNA 16S; anorexia; Article; bacterium identification; colic; controlled study; Coronaviridae; diarrhea; electron microscopy; feces analysis; feces culture; feces microflora; fever; gastrointestinal disease; histology; horse; horse disease; hospitalization; immunohistochemistry; liver disease; nonhuman; prevalence; prospective study; real time polymerase chain reaction; transmission electron microscopy; virus infection; virus load; virus shedding; animal; Betacoronavirus 1; feces; isolation and purification; microbiology; Parvoviridae; polymerase chain reaction; Rotavirus; veterinary medicine; virology; Washington; Animals; Betacoronavirus 1; Feces; Gastrointestinal Diseases; Horse Diseases; Horses; Hospitalization; Microscopy, Electron; Parvovirus; Polymerase Chain Reaction; Rotavirus; Washington","Pusterla, N., Mapes, S., Wademan, C., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet Microbiol, 162, pp. 228-231; Oue, Y., Morita, Y., Kondo, T., Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012 (2013) J Vet Med Sci, 75, pp. 1261-1265; Fielding, C.L., Higgins, J.K., Higgins, J.C., Disease associated with equine coronavirus infection and high case fatality rate (2015) J Vet Intern Med, 29, pp. 307-310; Oue, Y., Ishihara, R., Edamatsu, H., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet Microbiol, 150, pp. 41-48; Kooijman, L.J., James, K., Mapes, S.M., Theelen, M.J.P., Pusterla, N., Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA (2017) Vet J, 220, pp. 91-94; Pusterla, N., Kass, P.H., Mapes, S., Surveillance programme for important equine infectious respiratory pathogens in the USA (2011) Vet Rec, 169, p. 12; Pusterla, N., Vin, R., Leutengegger, C., Equine coronavirus: an emerging enteric virus of adult horses (2016) Equine Vet Educ, 28, pp. 216-233; Goodrich, E.L., Mittel, L.D., Glaser, A., Ness, S.L., Radcliffe, R.M., Divers, T.J., Novel findings from a beta coronavirus outbreak on an American Miniature Horse breeding farm in upstate New York Equine Vet Educ, , https://doi.org/10.1111/eve.12938; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin North Am Food Anim Pract, 26, pp. 123-146. , table of contents; Genova, S.G., Streeter, R.N., Simpson, K.M., Kapil, S., Detection of an antigenic group 2 coronavirus in an adult alpaca with enteritis (2008) Clin Vaccine Immunol, 15, pp. 1629-1632; Kapil, S., Yeary, T., Evermann, J.F., Viral diseases of new world camelids (2009) Vet Clin North Am Food Anim Pract, 25, pp. 323-337; Collins, J.K., Riegel, C.A., Olson, J.D., Fountain, A., Shedding of enteric coronavirus in adult cattle (1987) Am J Vet Res, 48, pp. 361-365; Hemida, M.G., Chu, D.K.W., Perera, R., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound Emerg Dis, 64, pp. 2093-2103; Miszczak, F., Tesson, V., Kin, N., First detection of equine coronavirus (ECoV) in Europe (2014) Vet Microbiol, 171, pp. 206-209; Mapes, S., Rhodes, D.M., Wilson, W.D., Leutenegger, C.M., Pusterla, N., Comparison of five real-time PCR assays for detecting virulence genes in isolates of Escherichia coli from septicaemic neonatal foals (2007) Vet Rec, 161, pp. 716-718; Hazelton, P.R., Gelderblom, H.R., Electron microscopy for rapid diagnosis of infectious agents in emergent situations (2003) Emerg Infect Dis, 9, pp. 294-303; Giannitti, F., Diab, S., Mete, A., Necrotizing enteritis and hyperammonemic encephalopathy associated with equine coronavirus infection in equids (2015) Vet Pathol, 52, pp. 1148-1156; Huang, J.C., Wright, S.L., Shipley, W.D., Isolation of coronavirus-like agent from horses suffering from acute equine diarrhoea syndrome (1983) Vet Rec, 113, pp. 262-263; Traub-Dargatz, J.L., Salman, M.D., Jones, R.L., Epidemiologic study of salmonellae shedding in the feces of horses and potential risk factors for development of the infection in hospitalized horses (1990) J Am Vet Med Assoc, 196, pp. 1617-1622; Ward, M.P., Alinovi, C.A., Couetil, L.L., Evaluation of a PCR to detect Salmonella in fecal samples of horses admitted to a veterinary teaching hospital (2005) J Vet Diagn Invest, 17, pp. 118-123; Badenhorst, M., Page, P., Ganswindt, A., Laver, P., Guthrie, A., Schulman, M., Detection of equine herpesvirus-4 and physiological stress patterns in young Thoroughbreds consigned to a South African auction sale (2015) BMC Vet Res, 11, p. 126; Divers, T.J., Tennant, B.C., Kumar, A., New parvovirus associated with serum hepatitis in horses after inoculation of common biological product (2018) Emerg Infect Dis, 24, pp. 303-310; Slovis, N.M., Elam, J., Estrada, M., Leutenegger, C.M., Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: a comprehensive molecular study (2014) Equine Vet J, 46, pp. 311-316","Sanz, M.G.; Department of Veterinary Clinical Sciences, Washington State UniversityUnited States; email: macarena@wsu.edu",,"Blackwell Publishing Inc.",08916640,,,"30788861","English","J. Vet. Intern. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85061827372 "Alfaraj S.H., Al-Tawfiq J.A., Memish Z.A.","57191595182;9436438200;7005059350;","Middle East respiratory syndrome coronavirus intermittent positive cases: Implications for infection control",2019,"American Journal of Infection Control","47","3",,"290","293",,4,"10.1016/j.ajic.2018.08.020","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055126102&doi=10.1016%2fj.ajic.2018.08.020&partnerID=40&md5=6823ceab383dd16bdc4b1561210ffb4b","Corona Center, Infectious Diseases Division, Department of Pediatrics, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; University of British Columbia, Vancouver, BC, Canada; Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Alfaraj, S.H., Corona Center, Infectious Diseases Division, Department of Pediatrics, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, University of British Columbia, Vancouver, BC, Canada; Al-Tawfiq, J.A., Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indianapolis, IN, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) continues to be reported from the Kingdom of Saudi Arabia. Data on the phenomenon of intermittent positive results for MERS-CoV on reverse-transcription polymerase chain reaction (RT-PCR) with negative results in between are lacking. Here we describe cases with intermittent positive MERS-CoV test results and highlight the required number of tests to rule out or rule in MERS-CoV infection based on a large retrospective cohort of patients with confirmed MERS-CoV. Methods: This analysis included cases admitted between January 2014 and December 2017. The included patients had a minimum of 3 nasopharyngeal MERS-CoV RT-PCR tests for confirmation and needed 2 negative samples for MERS-CoV evaluated 48 hours apart with clinical improvement or stabilization apart to ensure clearance. Results: A total of 408 patients with positive MERS-CoV test results were treated at the referring hospital. We excluded 72 patients who had only 1 swab result available in the system and were treated in the initial years of the disease. Of the remaining 336 patients, 300 (89%) had a positive result after 1 swab, 324 (96.5%) had a positive result after 2 consecutive swabs, and 328 (97.6%) had a positive result after 3 consecutive swabs. Of the total cases, 46 (13.7%) had a positive MERS-CoV test then a negative test, followed by positive test results. Conclusions: Our data indicate that 2 to 3 nasopharyngeal samples are needed to produce the highest yield of positive results for MERS-CoV. In addition, 2 negative results 48 hours apart with clinical improvement or stabilization are needed to clear patients from MERS-CoV. Evaluation of the yield of sputum samples is needed to assess the effectiveness against nasopharyngeal swabs. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","MERS-CoV; Middle East respiratory syndrome coronavirus; Outbreak Saudi Arabia","Article; cohort analysis; controlled study; diagnostic test; disease course; human; infection control; major clinical study; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nasopharyngeal swab; nasopharynx; retrospective study; reverse transcription polymerase chain reaction; Saudi Arabia; sputum analysis; thorax radiography; throat culture; virus load","World Health Organization, (2017), http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: Accessed April 30; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of the Middle East respiratory syndrome coronavirus (MERS-CoV) with review of the literature J Hosp Infect, 101, pp. 20-29. , 2019; Lim, P.L., Middle East respiratory syndrome (MERS) in Asia: lessons gleaned from the South Korean outbreak (2015) Trans R Soc Trop Med Hyg, 109, pp. 541-542; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Park, Y.S., Lee, C., Kim, K.M., Kim, S.W., Lee, K.J., Ahn, J., The first case of the 2015 Korean Middle East respiratory syndrome outbreak (2015) Epidemiol Health, 37; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., (2014), 210, pp. 1590-4. , Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Al-Tawfiq, J.A., Hinedi, K., The calm before the storm: clinical observations of Middle East respiratory syndrome (MERS) patients (2018) J Chemother; Huh, H.J., Ko, J.H., Kim, Y.E., Park, C.H., Hong, G., Choi, R., Importance of specimen type and quality in diagnosing Middle East respiratory syndrome (2017) Ann Lab Med, 37, pp. 81-83; Oh, M., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305; Park, W.B., Poon, L.L.M., Choi, S.J., Choe, P.G., Song, K.H., Bang, J.H., Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection (2018) Int J Infect Dis, 72, pp. 8-10; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751; Guery, B., Poissy, J., el Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Kapoor, M., Pringle, K., Kumar, A., Dearth, S., Liu, L., Lovchik, J., Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States (2014) Clin Infect Dis, 59, pp. 1511-1518; Al-Tawfiq, J.A., Alfaraj, S.H., Altuwaijri, T.A., Memish, Z.A., (2017), 75, pp. 378-9. , A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia. J Infect; Amer, H., Alqahtani, A.S., Alaklobi, F., Altayeb, J., Memish, Z.A., Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): revision of screening strategies urgently needed (2018) Int J Infect Dis, 71, pp. 113-116; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am J Infect Control, 46, pp. 1022-1025; Al-Abdely, H.M., Midgley, C.M., Alkhamis, A.M., Abedi, G.R., Tamin, A., Binder, A.M., Infectious MERS-CoV isolated from a mildly ill patient, Saudi Arabia (2018) Open Forum Infect Dis, 5; (2018), https://www.moh.gov.sa/CCC/healthp/regulations/Documents/MERS-CoV%20Guidelines%20for%20Healthcare%20Professionals%20-%20May%202018%20-%20v5.1%20%281%29.pdf, Saudi Ministry of Health. Health staff guidelines: coronavirus (MERS-CoV) 2018. Availablefrom: Accessed July 2; World Health Organization, (2016), http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/, Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: Accessed December 20; Huang, P., Wang, H., Cao, Z., Jin, H., Chi, H., Zhao, J., A rapid and specific assay for the detection of MERS-CoV (2018) Front Microbiol, 9, p. 1101; Lee, S.H., Baek, Y.H., Kim, Y.H., Choi, Y.K., Song, M.S., Ahn, J.Y., (2017), 7, p. 2166. , One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV. Front Microbiol; Chen, Y., Chan, K.H., Hong, C., Kang, Y., Ge, S., Chen, H., A highly specific rapid antigen detection assay for on-site diagnosis of MERS (2016) J Infect, 73, pp. 82-84","Memish, Z.A.PO Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Mosby Inc.",01966553,,AJICD,"30352694","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85055126102 "Li C., Liu Q., Kong F., Guo D., Zhai J., Su M., Sun D.","56442838800;57075147000;57206191937;55597099800;56494074200;56905143900;18434956900;","Circulation and genetic diversity of Feline coronavirus type I and II from clinically healthy and FIP-suspected cats in China",2019,"Transboundary and Emerging Diseases","66","2",,"763","775",,4,"10.1111/tbed.13081","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057763586&doi=10.1111%2ftbed.13081&partnerID=40&md5=1727173dad9bf83f2a6026fa7e144239","College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China","Li, C., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Liu, Q., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Kong, F., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Guo, D., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Zhai, J., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Su, M., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Sun, D., College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China","Feline infectious peritonitis (FIP) is a fatal infectious disease of wild and domestic cats, and the occurrence of FIP is frequently reported in China. To trace the evolution of type I and II feline coronavirus in China, 115 samples of ascetic fluid from FIP-suspected cats and 54 fecal samples from clinically healthy cats were collected from veterinary hospitals in China. The presence of FCoV in the samples was detected by RT-PCR targeting the 6b gene. The results revealed that a total of 126 (74.6%, 126/169) samples were positive for FCoV: 75.7% (87/115) of the FIP-suspected samples were positive for FCoV, and 72.2% (39/54) of the clinically healthy samples were positive for FCoV. Of the 126 FCoV-positive samples, 95 partial S genes were successfully sequenced. The partial S gene-based genotyping indicated that type I FCoV and type II FCoV accounted for 95.8% (91/95) and 4.2% (4/95), respectively. The partial S gene-based phylogenetic analyses showed that the 91 type I FCoV strains exhibited genetic diversity; the four type II FCoV strains exhibited a close relationship with type II FCoV strains from Taiwan. Three type I FCoV strains, HLJ/HRB/2016/10, HLJ/HRB/2016/11 and HLJ/HRB/2016/13, formed one potential new clade in the nearly complete genome-based phylogenetic trees. Further analysis revealed that FCoV infection appeared to be significantly correlated with a multi-cat environment (p < 0.01) and with age (p < 0.01). The S gene of the three type I FCoV strains identified in China, BJ/2017/27, BJ/2018/22 and XM/2018/04, exhibited a six nucleotide deletion (C 4035 AGCTC 4040 ). Our data provide evidence that type I and type II FCoV strains co-circulate in the FIP-affected cats in China. Type I FCoV strains exhibited high prevalence and genetic diversity in both FIP-affected cats and clinically healthy cats, and a multi-cat environment and age (<6 months) were significantly associated with FCoV infection. © 2018 Blackwell Verlag GmbH","feline coronavirus; feline infectious peritonitis; genetic diversity; phylogenetic analysis; S gene","albumin; globulin; coronavirus spike glycoprotein; anorexia; Article; body weight loss; cat; China; diarrhea; echography; effusion; Feline coronavirus; feline infectious peritonitis; female; fever; gene; gene deletion; gene sequence; genetic variability; genotype; jaundice; lethargy; leukocytosis; loss of appetite; lymphocyte; male; next generation sequencing; nonhuman; phylogenetic tree; phylogeny; prevalence; real time polymerase chain reaction; sequence analysis; tree of life; virus detection; amino acid sequence; animal; chemistry; Feline coronavirus; feline infectious peritonitis; genetic variation; genetics; isolation and purification; metabolism; sequence alignment; virology; Amino Acid Sequence; Animals; Cats; China; Coronavirus, Feline; Feline Infectious Peritonitis; Female; Genetic Variation; Male; Phylogeny; Prevalence; Sequence Alignment; Spike Glycoprotein, Coronavirus","Addie, D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Horzinek, M.C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) Journal of Feline Medicine and Surgery, 11 (7), pp. 3594-3604. , https://doi.org/10.1016/j.jfms.2009.05.008; Amer, A., Siti-Suri, A., Abdul-Rahman, O., Mohd, H.B., Faruku, B., Saeed, S., Tengku Azmi, T.I., Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia (2012) Virology Journal, 9, p. 278. , https://doi.org/10.1186/1743-422X-9-278; An, D.J., Jeoung, H.Y., Jeong, W., Park, J.Y., Lee, M.H., Park, B.K., Prevalence of Korean cats with natural feline coronavirus infections (2011) Virology Journal, 8, p. 455. , https://doi.org/10.1186/1743-422X-8-455; Bell, E.T., Malik, R., Norris, J.M., The relationship between the feline coronavirus antibody titre and the age, breed, gender and health status of Australian cats (2006) Australian Veterinary Journal, 84 (1-2), pp. 2-7. , https://doi.org/10.1111/j.1751-0813.2006.tb13114; Benetka, V., Kübber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Möstl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Veterinary Microbiology, 99 (1), pp. 31-42. , https://doi.org/10.1016/j.vetmic.2003.07.010; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: Viral evolution and pathobiology (2008) Veterinary Microbiology, 132 (3-4), pp. 221-234. , https://doi.org/10.1016/j.vetmic.2008.06.007; Drechsler, Y., Alcaraz, A., Bossong, F.J., Collisson, E.W., Diniz, P.P., Feline coronavirus in multicat environments (2011) The Veterinary Clinics of North America Small Animal Practice, 41 (6), pp. 1133-1169. , https://doi.org/10.1016/j.cvsm.2011.08.004; Foley, J.E., Pedersen, N.C., The inheritance of susceptibility to feline infectious peritonitis virus in purebred catteries (1996) Feline Practice, 24 (1), pp. 14-22; Haijema, B.J., Rottier, P.J., de Groot, R.J., Feline coronaviruses: A tale of two-faced types (2007) Coronaviruses Molecular and Cellular Biology, Thiel V, pp. 183-204. , C. Academic, (Ed.),, Norfolk, UK, Press; Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) Journal of Clinical Microbiology, 33 (3), pp. 684-689; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) Journal of Virology, 72 (5), pp. 4508-4514; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) The Journal of Veterinary Medical Science, 54 (3), pp. 557-562. , https://doi.org/10.1292/jvms.54.557; Kiss, I., Kecskeméti, S., Tanyi, J., Klingeborn, B., Belák, S., Preliminary studies on feline coronavirus distribution in naturally and experimentally infected cats (2000) Research in Veterinary Science, 68 (3), pp. 237-242. , https://doi.org/10.1053/rvsc.1999.0368; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clinical and Diagnostic Laboratory Immunology, 12 (10), pp. 1209-1215. , https://doi.org/10.1128/CDLI.12.10.1209-1215.2005; Letunic, I., Bork, P., Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation (2007) Bioinformatics, 23 (1), pp. 127-128. , https://doi.org/10.1093/bioinformatics/btl529; Lin, C.N., Chang, R.Y., Su, B.L., Chueh, L.L., Full genome analysis of a novel type II feline coronavirus NTU156 (2013) Virus Genes, 46 (2), pp. 316-322. , https://doi.org/10.1007/s11262-012-0864-0; Lin, C.N., Su, B.L., Wang, C.H., Hsieh, M.W., Chueh, T.J., Chueh, L.L., Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan (2009) Veterinary Microbiology, 136 (3-4), pp. 233-239. , https://doi.org/10.1016/j.vetmic.2008.11.010; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ray, S.C., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) Journal of Virology, 73 (1), pp. 152-160; Lorusso, A., Decaro, N., Schellen, P., Rottier, P.J., Buonavoglia, C., Haijema, B.J., de Groot, R.J., Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein (2008) Journal of Virology, 82 (20), pp. 10312-10317. , https://doi.org/10.1128/JVI.01031-08; Marthaler, D., Jiang, Y., Otterson, T., Goyal, S., Rossow, K., Collins, J., Complete genome sequence of porcine epidemic diarrhea virus strain USA/Colorado/2013 from the United States (2013) Genome Announcements, 14, pii, pp. e00555-e00513. , https://doi.org/10.1128/genomeA.00555-13; Myrrha, L.W., Silva, F.M., Peternelli, E.F., Junior, A.S., Resende, M., de Almeida, M.R., The paradox of feline coronavirus pathogenesis: A review (2011) Advances in Virology, 2011, p. 109849. , https://doi.org/10.1155/2011/109849; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) Journal of Feline Medicine Surgery, 11 (4), pp. 225-258. , https://doi.org/10.1016/j.jfms.2008.09.008; Pesteanu-Somogyi, L.D., Radzai, C., Pressler, B.M., Prevalence of feline infectious peritonitis in specific cat breeds (2006) Journal of Feline Medicine and Surgery, 8 (1), pp. 1-5. , https://doi.org/10.1016/j.jfms.2005.04.003; Sharif, S., Arshad, S.S., Hair-Bejo, M., Omar, A.R., Zeenathul, N.A., Fong, L.S., Isa, M.K., Descriptive distribution and phylogenetic analysis of feline infectious peritonitis virus isolates of Malaysia (2010) Acta Veterinaria Scandinavica, 52, p. 1. , https://doi.org/10.1186/1751-0147-52-1; Sharif, S., Arshad, S.S., Hair-Bejo, M., Omar, A.R., Zeenathul, N.A., Hafidz, M.A., Prevalence of feline coronavirus in two cat populations in Malaysia (2009) Journal of Feline Medicine and Surgery, 11 (12), pp. 1031-1034. , https://doi.org/10.1016/j.jfms.2009.08.005; Taharaguchi, S., Soma, T., Hara, M., Prevalence of feline coronavirus antibodies in Japanese domestic cats during the past decade (2012) The Journal of Veterinary Medical Science, 74 (10), pp. 1355-1358. , https://doi.org/10.1292/jvms.11-0577; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Bioloty and (2013) Evolution, 30 (12), pp. 2725-2729. , https://doi.org/10.1093/molbev/mst197; Tekelioglu, B.K., Berriatua, E., Turan, N., Helps, C.R., Kocak, M., Yilmaz, H., A retrospective clinical and epidemiological study on feline coronavirus (FCoV) in cats in Istanbul, Turkey (2015) Preventive Veterinary Medicine, 119 (1-2), pp. 41-47. , https://doi.org/10.1016/j.prevetmed.2015.01.017; Tekes, G., Thiel, H.J., Feline Coronaviruses: Pathogenesis of feline infectious peritonitis (2016) Advances in Virus Research, 96, pp. 193-218. , https://doi.org/10.1016/bs.aivir.2016.08.002; Terada, Y., Matsui, N., Noguchi, K., Kuwata, R., Shimoda, H., Soma, T., Maeda, K., Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses (2014) PLoS One, 9 (9). , https://doi.org/10.1371/journal.pone.0106534; Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Research, 25 (24), pp. 4876-4882. , https://doi.org/10.1093/nar/25.24.4876; Wang, E., Guo, D., Li, C., Wei, S., Wang, Z., Liu, Q., Sun, D., Molecular characterization of the ORF3 and S1 genes of porcine epidemic diarrhea virus non S-indel strains in seven regions of China, 2015 (2016) PLoS One, 11 (8). , https://doi.org/10.1371/journal.pone.0160561; Wolfe, L.G., Griesemer, R.A., Feline infectious peritonitis (1966) Pathologia Veterinaria, 3 (3), pp. 255-270. , https://doi.org/10.1177/030098586600300309; Worthing, K.A., Wigney, D.I., Dhand, N.K., Fawcett, A., McDonagh, P., Malik, R., Norris, J.M., Risk factors for feline infectious peritonitis in Australian cats (2012) Journal of Feline Medicine and Surgery, 14 (6), pp. 405-412. , https://doi.org/10.1177/1098612X12441875","Sun, D.; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityChina; email: dongbosun@126.com",,"Blackwell Publishing Ltd",18651674,,,"30468573","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85057763586 "Li L., Fu F., Guo S., Wang H., He X., Xue M., Yin L., Feng L., Liu P.","57116608200;7201607918;57206694549;57194442378;56518605100;55496438000;57204446785;55792011500;36804440700;","Porcine intestinal enteroids: A new model for studying enteric coronavirus porcine epidemic diarrhea virus infection and the host innate response",2019,"Journal of Virology","93","5", e01682-18,"","",,4,"10.1128/JVI.01682-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061866413&doi=10.1128%2fJVI.01682-18&partnerID=40&md5=62afc7f7984c94cea8b1d2debca49599","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Weike Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China","Li, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Fu, F., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Guo, S., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Wang, H., Weike Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; He, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Xue, M., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Yin, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Feng, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Liu, P., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China","Porcine epidemic diarrhea virus (PEDV), a member of the group of al-phacoronaviruses, is the pathogen of a highly contagious gastrointestinal swine disease. The elucidation of the events associated with the intestinal epithelial response to PEDV infection has been limited by the absence of good in vitro porcine intestinal models that recapitulate the multicellular complexity of the gastrointestinal tract. Here, we generated swine enteroids from the intestinal crypt stem cells of the duodenum, jejunum, or ileum and found that the generated enteroids are able to satisfactorily recapitulate the complicated intestinal epithelium in vivo and are susceptible to infection by PEDV. PEDV infected multiple types of cells, including enterocytes, stem cells, and goblet cells, and exhibited segmental infection discrepancies compared with ileal enteroids and colonoids, and this finding was verified in vivo. Moreover, the clinical isolate PEDV-JMS propagated better in ileal enteroids than the cell-adapted isolate PEDV-CV777, and PEDV infection suppressed interferon (IFN) production early during the infection course. IFN lambda elicited a potent antiviral response and inhibited PEDV in enteroids more efficiently than IFN alpha (IFN-). Therefore, swine enteroids provide a novel in vitro model for exploring the pathogenesis of PEDV and for the in vitro study of the interplay between a host and a variety of swine enteric viruses. IMPORTANCE PEDV is a highly contagious enteric coronavirus that causes significant economic losses, and the lack of a good in vitro model system is a major roadblock to an in-depth understanding of PEDV pathogenesis. Here, we generated a porcine intestinal enteroid model for PEDV infection. Utilizing porcine intestinal enteroids, we demonstrated that PEDV infects multiple lineages of the intestinal epithelium and preferably infects ileal enteroids over colonoids and that enteroids prefer to respond to IFN lambda 1 over IFN-. These events recapitulate the events that occur in vivo. This study constitutes the first use of a primary intestinal enteroid model to investigate the susceptibility of porcine enteroids to PEDV and to determine the antiviral response following infection. Our study provides important insights into the events associated with PEDV infection of the porcine intestine and provides a valuable in vitro model for studying not only PEDV but also other swine enteric viruses. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Coronavirus; Enteroids; Interferon; Intestine crypt stem cell; PEDV; Porcine epidemic diarrhea virus","alpha interferon; interleukin 29; interferon; animal cell; animal tissue; Article; cell differentiation; cell proliferation; controlled study; Coronavirus infection; goblet cell; in vivo study; infection sensitivity; innate immunity; interferon production; intestinal crypt stem cell; intestinal enteroid; intestine; intestine cell; nonhuman; pig; Porcine epidemic diarrhea virus; priority journal; stem cell; virus genome; virus isolation; virus replication; virus strain; animal; biological model; biosynthesis; cell line; Chlorocebus aethiops; Coronavirus infection; cytology; duodenum; gastrointestinal disease; ileum; immunology; innate immunity; intestine mucosa; jejunum; physiology; Porcine epidemic diarrhea virus; swine disease; Vero cell line; veterinary medicine; virology; Animals; Cell Line; Cercopithecus aethiops; Coronavirus Infections; Duodenum; Gastrointestinal Diseases; Ileum; Immunity, Innate; Interferons; Intestinal Mucosa; Jejunum; Models, Biological; Porcine epidemic diarrhea virus; Swine; Swine Diseases; Vero Cells","Peterson, L.W., Artis, D., Intestinal epithelial cells: Regulators of barrier function and immune homeostasis (2014) Nat Rev Immunol, 14, pp. 141-153. , https://doi.org/10.1038/nri3608; Moon, C., Stappenbeck, T.S., Viral interactions with the host and microbiota in the intestine (2012) Curr Opin Immunol, 24, pp. 405-410. , https://doi.org/10.1016/j.coi.2012.05.002; Sato, T., Van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., Van Den Born, M., Barker, N., Clevers, H., Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts (2011) Nature, 469, pp. 415-418. , https://doi.org/10.1038/nature09637; Sato, T., Vries, R.G., Snippert, H.J., Van De Wetering, M., Barker, N., Stange, D.E., Van Es, J.H., Clevers, H., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche (2009) Nature, 459, pp. 262-265. , https://doi.org/10.1038/nature07935; Kovbasnjuk, O., Zachos, N.C., In, J., Foulke-Abel, J., Ettayebi, K., Hyser, J.M., Broughman, J.R., Donowitz, M., Human enteroids: Preclinical models of non-inflammatory diarrhea (2013) Stem Cell Res Ther, 4, p. S3. , https://doi.org/10.1186/scrt364; Lanik, W.E., Mara, M.A., Mihi, B., Coyne, C.B., Good, M., Stem cell-derived models of viral infections in the gastrointestinal tract (2018) Viruses, 10, p. E124. , https://doi.org/10.3390/v10030124; Saxena, K., Blutt, S.E., Ettayebi, K., Zeng, X.L., Broughman, J.R., Crawford, S.E., Karandikar, U.C., Estes, M.K., Human intestinal enteroids: A new model to study human rotavirus infection, host restriction, and pathophysiology (2016) J Virol, 90, pp. 43-56. , https://doi.org/10.1128/JVI.01930-15; Luu, L., Matthews, Z.J., Armstrong, S.D., Powell, P., Wileman, T., Wastling, J.M., Coombes, J.L., Proteomic profiling of enteroid cultures skewed towards development of specific epithelial lineages (2018) Proteomics, 18, p. e1800132. , https://doi.org/10.1002/pmic.201800132; Barker, N., Huch, M., Kujala, P., Van De Wetering, M., Snippert, H.J., Van Es, J.H., Sato, T., Clevers, H., Lgr5(ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro (2010) Cell Stem Cell, 6, pp. 25-36. , https://doi.org/10.1016/j.stem.2009.11.013; Ettayebi, K., Crawford, S.E., Murakami, K., Broughman, J.R., Karandikar, U., Tenge, V.R., Neill, F.H., Estes, M.K., Replication of human noroviruses in stem cell-derived human enteroids (2016) Science, 353, pp. 1387-1393. , https://doi.org/10.1126/science.aaf5211; Ootani, A., Li, X., Sangiorgi, E., Ho, Q.T., Ueno, H., Toda, S., Sugihara, H., Kuo, C.J., Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche (2009) Nat Med, 15, pp. 701-706. , https://doi.org/10.1038/nm.1951; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39. , https://doi.org/10.1016/j.virusres.2016.05.023; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204, pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017; Beall, A., Yount, B., Lin, C.M., Hou, Y., Wang, Q., Saif, L., Baric, R., Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A (2016) mBio, 7, pp. e01451-e01515. , https://doi.org/10.1128/mBio.01451-15; Jung, K., Eyerly, B., Annamalai, T., Lu, Z., Saif, L.J., Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus (2015) Vet Microbiol, 177, pp. 373-378. , https://doi.org/10.1016/j.vetmic.2015.03.022; Zhang, J., Guo, L., Yang, L., Xu, J., Zhang, L., Feng, L., Chen, H., Wang, Y., Metalloprotease ADAM17 regulates porcine epidemic diarrhea virus infection by modifying aminopeptidase N (2018) Virology, 517, pp. 24-29. , https://doi.org/10.1016/j.virol.2018.02.001; Zeng, S., Zhang, H., Ding, Z., Luo, R., An, K., Liu, L., Bi, J., Fang, L., Proteome analysis of porcine epidemic diarrhea virus (PEDV)infected Vero cells (2015) Proteomics, 15, pp. 1819-1828. , https://doi.org/10.1002/pmic.201400458; Ji, C.M., Wang, B., Zhou, J., Huang, Y.W., Aminopeptidase-N-inde-pendent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells (2018) Virology, 517, pp. 16-23. , https://doi.org/10.1016/j.virol.2018.02.019; Desmyter, J., Melnick, J.L., Rawls, W.E., Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero) (1968) J Virol, 2, pp. 955-961; Koh, S.Y., George, S., Brozel, V., Moxley, R., Francis, D., Kaushik, R.S., Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli (2008) Vet Microbiol, 130, pp. 191-197. , https://doi.org/10.1016/j.vetmic.2007.12.018; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2018) J Virol, 92, pp. e01677-e01717. , https://doi.org/10.1128/JVI.01677-17; Fu, F., Li, L., Shan, L., Yang, B., Shi, H., Zhang, J., Wang, H., Liu, P., A spike-specific whole-porcine antibody isolated from a porcine B cell that neutralizes both genogroup 1 and 2 PEDV strains (2017) Vet Microbiol, 205, pp. 99-105. , https://doi.org/10.1016/j.vetmic.2017.05.013; Van Der Hee, B., Loonen, L.M.P., Taverne, N., Taverne-Thiele, J.J., Smidt, H., Wells, J.M., Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids (2018) Stem Cell Res, 28, pp. 165-171. , https://doi.org/10.1016/j.scr.2018.02.013; Thorne, C.A., Chen, I.W., Sanman, L.E., Cobb, M.H., Wu, L.F., Altschuler, S.J., Enteroid monolayers reveal an autonomous WNT and BMP circuit controlling intestinal epithelial growth and organization (2018) Dev Cell, 44, pp. 624e4-633e4. , https://doi.org/10.1016/j.devcel.2018.01.024; Cheung, R., Kelly, J., Macleod, R.J., Regulation of villin by wnt5a/ror2 signaling in human intestinal cells (2011) Front Physiol, 2, p. 58. , https://doi.org/10.3389/fphys.2011.00058; Landry, C., Huet, C., Mangeat, P., Sahuquet, A., Louvard, D., Crine, P., Comparative analysis of neutral endopeptidase (NEP) and villin gene expression during mouse embryogenesis and enterocyte maturation (1994) Differentiation, 56, pp. 55-65. , https://doi.org/10.1046/j.1432-0436.1994.56120055.x; Jung, K., Annamalai, T., Lu, Z., Saif, L.J., Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs (2015) Vet Microbiol, 178, pp. 31-40. , https://doi.org/10.1016/j.vetmic.2015.04.022; Li, L., Fu, F., Xue, M., Chen, W., Liu, J., Shi, H., Chen, J., Liu, P., IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha (2017) Antiviral Res, 140, pp. 76-82. , https://doi.org/10.1016/j.antiviral.2017.01.012; Lin, C.M., Hou, Y., Marthaler, D.G., Gao, X., Liu, X., Zheng, L., Saif, L.J., Wang, Q., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet Microbiol, 201, pp. 62-71. , https://doi.org/10.1016/j.vetmic.2017.01.015; Zhang, J., Guo, L., Xu, Y., Yang, L., Shi, H., Feng, L., Wang, Y., Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells (2017) Arch Virol, 162, pp. 2415-2419. , https://doi.org/10.1007/s00705-017-3369-2; Xue, M., Zhao, J., Ying, L., Fu, F., Li, L., Ma, Y., Shi, H., Liu, P., IL-22 suppresses the infection of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway (2017) Antiviral Res, 142, pp. 68-75. , https://doi.org/10.1016/j.antiviral.2017.03.006; Madson, D.M., Arruda, P.H., Magstadt, D.R., Burrough, E.R., Hoang, H., Sun, D., Bower, L.P., Yoon, K.J., Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-day-old cesarean-derived colostrum-deprived piglets (2016) Vet Pathol, 53, pp. 44-52. , https://doi.org/10.1177/0300985815591080; Darwich, A.S., Aslam, U., Ashcroft, D.M., Rostami-Hodjegan, A., Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans (2014) Drug Metab Dispos, 42, pp. 2016-2022. , https://doi.org/10.1124/dmd.114.058404; Pelaseyed, T., Bergström, J.H., Gustafsson, J.K., Ermund, A., Birchenough, G.M.H., Schütte, A., Van Der Post, S., Hansson, G.C., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system (2014) Immunol Rev, 260, pp. 8-20. , https://doi.org/10.1111/imr.12182; Johansson, M.E., Hansson, G.C., Immunological aspects of intestinal mucus and mucins (2016) Nat Rev Immunol, 16, pp. 639-649. , https://doi.org/10.1038/nri.2016.88; Wlodarska, M., Thaiss, C.A., Nowarski, R., Henao-Mejia, J., Zhang, J.P., Brown, E.M., Frankel, G., Flavell, R.A., NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion (2014) Cell, 156, pp. 1045-1059. , https://doi.org/10.1016/j.cell.2014.01.026; Johansson, M.E., Hansson, G.C., Is the intestinal goblet cell a major immune cell? (2014) Cell Host Microbe, 15, pp. 251-252. , https://doi.org/10.1016/j.chom.2014.02.014; Jung, K., Saif, L.J., Goblet cell depletion in small intestinal villous and crypt epithelium of conventional nursing and weaned pigs infected with porcine epidemic diarrhea virus (2017) Res Vet Sci, 110, pp. 12-15. , https://doi.org/10.1016/j.rvsc.2016.10.009; Schwegmann-Wessels, C., Zimmer, G., Schroder, B., Breves, G., Herrler, G., Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins (2003) J Virol, 77, pp. 11846-11848. , https://doi.org/10.1128/JVI.77.21.11846-11848.2003; Sun, D., Shi, H., Guo, D., Chen, J., Shi, D., Zhu, Q., Zhang, X., Feng, L., Analysis of protein expression changes of the Vero E6 cells infected with classic PEDV strain CV777 by using quantitative proteomic technique (2015) J Virol Methods, 218, pp. 27-39. , https://doi.org/10.1016/j.jviromet.2015.03.002; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J Clin Microbiol, 26, pp. 2235-2239; Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method (2008) Nat Protoc, 3, pp. 1101-1108. , https://doi.org/10.1038/nprot.2008.73","Liu, P.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: liupinghuang@caas.cn",,"American Society for Microbiology",0022538X,,JOVIA,"30541861","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85061866413 "Li J., Qian J., Mao X., Xue C., Cao Y.","57200551350;57211474409;57211476974;24400445400;36039272800;","Whole-genome sequencing to determine origin of diarrhea in suckling piglets in Southern China",2019,"Proceedings of 2019 IEEE 7th International Conference on Bioinformatics and Computational Biology, ICBCB 2019",,, 8854647,"7","11",,,"10.1109/ICBCB.2019.8854647","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074097192&doi=10.1109%2fICBCB.2019.8854647&partnerID=40&md5=c5666ca39db133572726528d2a907dd9","School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China","Li, J., School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China; Qian, J., School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China; Mao, X., School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China; Xue, C., School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Cao, Y., School of Life Sciences, Sun Yat-sen University, Guangzhou, China","Severe diarrhea in suckling piglets occurred in southern China in 2017 and a new porcine coronavirus, named as porcine enteric alphacoronavirus (PEAV), was identified. Here we reported a detailed process to sequence, assemble and analyze the whole genome of PEAV. GDS04 has 87% amino acid identity comparing to the S proteins of the HKU2 strains without recombination, and their receptor-binding domains in S protein differ at 20 amino acids, suggesting that GDS04 could be a new mutant virus from bat-like CoVs and responsible for the most recent diarrhea endemic in pig herds in southern China. © 2019 IEEE.","Genome assembly; Phylogenetic evolution; Porcine enteric alphacoronavirus","Amino acids; Genes; Mammals; Proteins; Viruses; Coronaviruses; Genome assembly; Phylogenetic evolution; Porcine enteric alphacoronavirus; Receptor-binding domains; Southern China; Whole genome sequencing; Bioinformatics","Cotten, M., Watson, S.J., Kellam, P., Transmission and evolution of the middle east respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) LANCET, 382, pp. 1993-2002; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Lau, S.K., Li, K.S., Huang, Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J VIROL, 84, pp. 2808-2819; Woo, P.C., Lau, S.K., Yip, C.C., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) J VIROL, 80, pp. 7136-7145; Woo, P.C., Lau, S.K., Huang, Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) ExpBiol Med (Maywood), 234, pp. 1117-1127; Guan, Y., Zheng, B.J., He, Y.Q., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) SCIENCE, 302, pp. 276-278; Lau, S.K., Poon, R.W., Wong, B.H., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J VIROL, 84, pp. 11385-11394; Li, W., Shi, Z., Yu, M., et al, Bats are natural reservoirs of SARS-like coronaviruses (2005) SCIENCE, 310, pp. 676-679; Gong, L., Li, J., Zhou, Q., A New Bat-HKU2-like Coronavirus in Swine, China 2017 (2017) EMERG INFECT DIS, 23, p. 1607; Lau, S.K., Woo, P.C., Li, K.S., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: A flexible trimmer for Illumina sequence data (2014) Bioinformatics, 30, pp. 2114-2120; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler Transform (2009) Bioinformatics, 25, pp. 1754-1760; Myers, E., Sutton, G., Delcher, A., A whole-genome assembly of drosophila (2000) Science, 287, p. 2196; Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data (2011) Bioinformatics, 27, pp. 2987-2993; Tamura, K., Stecher, G., Peterson, D., MEGA6: Molecular evolutionary genetics analysis version 6. 0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Drummond, A.J., Ma, S., Xie, D., Bayesian phylogenetics with BEAUti and the BEAST 1. 7 (2012) Mol Biol Evol, 29, pp. 1969-1973; Lu, G., Wang Gao, Q.G., Bat-to-human: Spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond' (2015) Trends Microbiol, 23, pp. 468-478",,,"Institute of Electrical and Electronics Engineers Inc.",,9781728106410,,,"English","Proc. IEEE Int. Conf. Bioinform. Comput. Biol., ICBCB",Conference Paper,"Final",,Scopus,2-s2.0-85074097192 "Adney D.R., Wang L., Van Doremalen N., Shi W., Zhang Y., Kong W.-P., Miller M.R., Bushmaker T., Scott D., de Wit E., Modjarrad K., Petrovsky N., Graham B.S., Bowen R.A., Munster V.J.","56518159500;35199353800;36009447200;56739696500;57211357998;7101828843;57191205556;54881271400;54387473900;22834240700;9243452100;7004919225;7201610365;24598913600;9332531900;","Efficacy of an adjuvanted middle east respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas",2019,"Viruses","11","3", 212,"","",,9,"10.3390/v11030212","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062416198&doi=10.3390%2fv11030212&partnerID=40&md5=b58bfde33b6a3f23a70d2cb41107c6f8","Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, United States; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Military HIV Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States; Flinders University and Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia","Adney, D.R., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, United States; Wang, L., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States; Van Doremalen, N., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Shi, W., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States; Zhang, Y., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States; Kong, W.-P., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States; Miller, M.R., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Bushmaker, T., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Scott, D., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; de Wit, E., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Modjarrad, K., Military HIV Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States; Petrovsky, N., Flinders University and Vaxine Pty Ltd, Flinders Medical Centre, Bedford Park, SA 5042, Australia; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20892, United States; Bowen, R.A., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, United States; Munster, V.J., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80521, United States, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States","MERS-CoV is present in dromedary camels throughout the Middle East and Africa. Dromedary camels are the primary zoonotic reservoir for human infections. Interruption of the zoonotic transmission chain from camels to humans, therefore, may be an effective strategy to control the ongoing MERS-CoV outbreak. Here we show that vaccination with an adjuvanted MERS-CoV Spike protein subunit vaccine confers complete protection from MERS-CoV disease in alpaca and results in reduced and delayed viral shedding in the upper airways of dromedary camels. Protection in alpaca correlates with high serum neutralizing antibody titers. Lower titers of serum neutralizing antibodies correlate with delayed and significantly reduced shedding in the nasal turbinates of dromedary camels. Together, these data indicate that induction of robust neutralizing humoral immune responses by vaccination of naïve animals reduces shedding that potentially could diminish the risk of zoonotic transmission. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Camels; MERS-CoV; One Health; Vaccines","live vaccine; neutralizing antibody; virus antigen; virus spike protein; virus vaccine; coronavirus spike glycoprotein; immunological adjuvant; neutralizing antibody; virus antibody; virus vaccine; adult; alpaca; animal experiment; animal model; animal tissue; antibody titer; Article; controlled study; dromedary; drug development; drug efficacy; expression vector; female; histopathology; humoral immunity; ID50 (median infectious dose); immune response; immunization; immunogenicity; immunohistochemistry; lung parenchyma; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; real time polymerase chain reaction; RNA extraction; sequence analysis; serology; trachea tissue; vaccination; virus detection; virus neutralization; virus shedding; virus titration; animal; blood; camel; Coronavirus infection; immunology; isolation and purification; Middle East respiratory syndrome coronavirus; New World camelid; veterinary medicine; Adjuvants, Immunologic; Animals; Antibodies, Neutralizing; Antibodies, Viral; Camelids, New World; Camelus; Coronavirus Infections; Female; Immunity, Humoral; Male; Middle East Respiratory Syndrome Coronavirus; Spike Glycoprotein, Coronavirus; Viral Vaccines; Virus Shedding","(2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., de Wit, E., Munster, V.J., Kapoor, A., Middle East Respiratory Syndrome Coronavirus Infection in Dromedary Camels in Saudi Arabia (2014) . Mbio, 5, pp. e00884-e00e14; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Hassan, A.M., Madani, T.A., Detection of the Middle East Respiratory Syndrome Coronavirus Genome in an Air Sample Originating from a Camel Barn Owned by an Infected Patient (2014) . Mbio, 5, pp. e01450-e01e14; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Webby, R.J., MERS coronaviruses in dromedary camels (2014) Egypt. Emerg. Infect. Dis, 20, pp. 1049-1053; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Drexler, J.F., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg. Infect. Dis, 20, pp. 1319-1322; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis, 14, pp. 140-145; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS Coronavirus in Dromedary Camel Herd, Saudi Arabia (2014) Emerg. Infect. Dis, 20, pp. 1231-1234; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Chu, K.W., Alnaeem, A., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19, p. 20828; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., Van Beek, J., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis, 20, pp. 552-559; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg. Infect. Dis, 20, pp. 2093-2095; Perera, R., Wang, P., Gomaa, M., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L., Moatasim, Y., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18, p. 20574; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis, 20, pp. 1339-1342; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of MERS coronavirus among dromedary camels (2014) Africa. Emerg. Infect. Dis, 20, pp. 1370-1374; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Khiyami, M.A., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; de Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol, 14, pp. 523-534; Cauchemez, S., Nouvellet, P., Cori, A., Jombart, T., Garske, T., Clapham, H., Moore, S., Collins, C., Unraveling the drivers of MERS-CoV transmission (2016) Proc. Natl. Acad. Sci USA, 113, pp. 9081-9086; Nishiura, H., Miyamatsu, Y., Chowell, G., Saitoh, M., Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case (2015) Euro Surveill, 20, p. 21181; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Hall, A.J., Peiris, J.S., Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015 (2015) Emerg. Infect. Dis, 21, pp. 2197-2200; Reusken, C.B., Farag, E.A., Haagmans, B.L., Mohran, K.A., Godeke, G.J.T., Raj, S., Alhajri, F., Al-Thani, M., Occupational Exposure to Dromedaries and Risk for MERS-CoV Infection, Qatar, 2013-2014 (2015) Emerg. Infect. Dis., 21, pp. 1422-1425; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 370, pp. 2499-2505; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis, 20, pp. 1012-1015; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 371, pp. 1359-1360; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Voermans, J., Al-Hajri, M.M., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect. Ecol. Epidemiol, 5, p. 28305; Madani, T.A., Azhar, E.I., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med, 371, pp. 1359-1360; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Lattwein, E., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis, 15, pp. 559-564; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis, 20, pp. 1999-2005; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun, 6, p. 7712; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas (2016) Emerg. Infect. Dis, 22, pp. 1031-1037; Eckersley, A.M., Petrovsky, N., Kinne, J., Wernery, R., Wernery, U., Improving the Dromedary Antibody Response: The Hunt for the Ideal Camel Adjuvant (2011) J. Camel Pract. Res, 18, pp. 35-46; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., van Kerkhove, M., Kim, J., Kieny, M.P., A roadmap for MERS-CoV research and product development: Report from a World Health Organization consultation (2016) Nat. Med, 22, pp. 701-705; Middleton, D., Pallister, J., Klein, R., Feng, Y.R., Haining, J., Arkinstall, R., Frazer, L., Wareing, M., Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health (2014) Emerg. Infect. Dis, 20, pp. 372-379; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 Euro Surveill, 2013 (18), p. 20659; van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., Talafha, H.A., Amarin, N., High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan (2017) Vector-Borne Zoonotic Dis, 17, pp. 155-159; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med, 7. , 301ra132; Crameri, G., Durr, P.A., Klein, R., Foord, A., Yu, M., Riddell, S., Haining, J., Barr, J., Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus (2016) Emerg. Infect. Dis, 22, pp. 1071-1074","Bowen, R.A.; Department of Microbiology, Immunology, and Pathology, Colorado State UniversityUnited States; email: rbowen@rams.colostate.edu",,"MDPI AG",19994915,,,"30832356","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85062416198 "Sladitschek T., Lesske M.","57207952045;57207946343;","Pericardial effusion - An untypical course of FIP-disease [Perikarderguss - ein untypischer verlauf einer fip-erkrankung]",2019,"Praktische Tierarzt","100","3",,"216","224",,,"10.2376/0032-681X-1903","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063316761&doi=10.2376%2f0032-681X-1903&partnerID=40&md5=90b24a3323f4d41515a5837b4fcaf2f3","Tonja Sladitschek, Tierarztliche Praxis fur Kleintiere, Germany","Sladitschek, T., Tonja Sladitschek, Tierarztliche Praxis fur Kleintiere, Germany; Lesske, M., Tonja Sladitschek, Tierarztliche Praxis fur Kleintiere, Germany","This case report describes (.) a cat with the suspected diagnosis of feline infectious peritonitis. The patient was initially presented with peracute dyspnea and very muffled heart sounds. Imaging was used to diagnose a high grade pericardial effusion. The initial blood test, showed hyperglobulinemia, resulting in a decreased albumin-globin ratio. The effusion diagnostics obtained a positive Rivalta's test and an inflammatory exsudate, Coronavirus RNA could be detected by real time PCR - RNA in the obtained effusion. After successful pericardiocentesis, the patient stabilizes quickly and was discharged home two days later. He was presented again a few days later with dyspnea and was euthanized by the owner's request. © 2019 Schluetersche Verlagsgesellschaft mbH and Co.KG. All Rights Reserved.","Coronavirus; Dyspnea; Real time PCR",,"Addie, D.D., Toth, S., Herrewegh, A.A., Jarred, O., Feline coronavirus in the intestinal contents of cats with feline infectious peritonitis (1996) Vet Rec, 139 (21), pp. 522-523; Addie, D.D., Paltrinieri, S., Pedersen, N.C., Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium (2004) J Feline Med Surg, 6, pp. 125-130; Addie, D.D., Beldk, S., Boucraut-Baralon, C., Egberink, H.F., Frymus, T., Gruffydd-Jones, T.J., ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 594-604; Al Miili, O., Feline infektiose peritonitis (2012) Histologische und Immunhistologische Untersuchungen, , München, LMU, veterinarmed. Fak. Diss; Baldauf, K., Herzbeuteltamponade beim hund - diagnostisches vorgehen und therapie (2014) Kleintier Konkret, 17 (4), pp. 24-32; Barlough, J.E., Stoddart, C.A., Cats and coronaviruses (1988) J Am Vet Med Assoc, 193, pp. 796-800; Baumgartner, W., Gruber, A., (2014) Allgemeine Pathologie Fur Die Tiermedizin, , Enke, Stuttgart; Berg, R., Wingfield, W., Pericardial effusion in the dog: A review of 42 cases (1984) J Am Anim Hosp, Assoc, 20, pp. 721-730; Chang, H.W., De Groot, R.J., Egberink, H.F., Rottier, P.J.M., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420; Davidson, B.J., Paling, A.C., Lahmers, S.L., Nelson, O.L., Disease association and clinical assessment of feline pericardial effusion (2008) J Am Anim Hosp Assoc, 44, pp. 5-9; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19 (4), pp. 344-350; Fischer, Y., Wess, G., Hartmann, K., Pericardial effusion in a cat with feline infectious peritonitis (2012) Schweiz Arch Tierheilkd, 154 (1), pp. 27-31; Giordano, A., Spagnolo, V., Colombo, A., Paltrinieri, S., Changes in some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection (2004) Vet J, 167, pp. 38-44; Glaus, T.M., Keene, B.W., Erkrankungen des perikards (2015) Krankheiten Der Katze., p. 557. , Lutz H (Hrsg.), 5. Aufl. Enke, Stuttgart; Hartmann, K., Feline infectious peritonitis (2005) Vet Clin North Am Small Anim Pract, 35, pp. 39-79; Hartmann, K., Ritz, S., Treatment of cats with feline infectious peritonitis (2008) Vet Immunol Immunopathol, 123, pp. 172-175; Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., Schroo, S., Frost, J., Hermanns, W., Comparison of different tests to diagnose feline infectious peritonitis (2003) J Vet Intern Med, 17, pp. 781-790; Held, S., (2014) Genauigkeit Diagnostischer Tests Fur Feline Infektiose Peritonitis (FIP) Bei Katzen mit Einem Korperhohlenerguss, , DVG service GmbH; Hirschberger, J., Hartmann, K., Wilhelm, N., Frost, J., Lutz, H., Kraft, W., Clinical symptoms and diagnosis of feline infectious peritonitis (1995) Tierarztl Prax, 23, pp. 92-99; Holzworth, J., Some important disorders of cats (1963) Cornell Vet, 53, pp. 157-160; Horzinek, M.C., Osterhaus, A.D., The virology and pathogenesis of feline infectious peritonitis. Brief review (1979) Arch Virol, 59, pp. 1-15; Humm, K.R., Keenaghan, C.E.A., Boag, A.K., Adverse events associated with pericardiocentesis in dogs: 85 cases (1999-2006) (2009) J Vet Emerg Crit Care, 19 (4), pp. 352-356; Jeffery, U., Deitz, K., Hostetter, S., Positive predictive value of albumitv. Globulin ratio for feline infectious peritonitis in a mid-western referral hospital population (2012) J Feline Med Surg, 14, pp. 903-905; Kennedy, M.A., Brenneman, K., Miilsaps, R.K., Black, J., Potgieter, L.N., Correlation of genomic detection of feline coronavirus with various diagnostic assays for feline infectious peritonitis (1998) J Vet Diagn Invest, 10, pp. 93-97; Kent, M., The cat with neurological manifestations of systemic disease. Key conditions impacting on the CNS (2009) J Feline Med Surg, 11, pp. 395-407; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet Pathol, 51, pp. 505-526; Kiss, I., Kecskemeti, S., Tanyi, J., Klingeborn, B., Belcik, S., Preliminary studies on feline coronavirus distribution in naturally and experimentally infected cats (2000) Res Vet Sci, 68, pp. 237-242; Li, X., Scott, F.W., Detection of feline coronaviruses in cell cultures and in fresh and fixed feline tissues using polymerase chain reaction (1994) Vet Microbiol, 42 (1), pp. 65-77; Litster, A.L., Buchanan, J.W., Vertebral scale system to measure heart size in radiographs of cats (2000) J Am Vet Med Assoc, 216, pp. 210-214; Martin, M., Pericardial disease in the dog (1999) J Small Anim Pract, 53, pp. 381-385; Meli, M., Kipar, A., Muller, C., Jenal, K., Gonczi, E., Borel, N., Gunn-Moore, D., Lutz, H., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats (2004) J Feline Med Surg, 6, pp. 69-81; Neu, H., Pfeifer, E.G., FIP (feline infektiose Peritonitis): Klinische friihsymptome und vorausgegangene belastungen (1985) Kleintierprax, 30, pp. 277-332; Norris, J.M., Bosward, K.L., White, J.D., Baral, R.M., Catt, M.J., Malik, R., Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990-2002) (2005) Aust Vet J, 83, pp. 666-673; Paltrinieri, S., Cammarata, P.M., Cammarata, G., Comazzi, S., Some aspects of humoral and cellular immunity in naturally occuring feline infectious peritonitis (1998) Vet Immunol Immunopathol, 65, pp. 205-220; Paltrinieri, S., Cammarata, P.M., Cammarata, G., Mambretti, M., Type IV hypersensitivity in the pathogenesis of FlPV-induced lesions (1998) Zentralbl Veterinarmed B, 45, pp. 151-159; Pedersen, N.C., An overview of feline enteric coronavirus and infectious peritonitis virus infections (1995) Feline Pract, 23, pp. 7-20; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J Feline Med Surg, 11, pp. 225-258; Pedersen, N.C., An update on feline infectious peritonitis: Diagnostics and therapeutics (2014) Vet J, 201, pp. 133-141; Pedersen, N.C., Black, J.W., Attempted immunization of cats against feline infectious peritonitis, using avirulent live virus or sublethal amounts of virulent virus (1983) Am J Vet Res, 44, pp. 229-234; Pesteanu-Somogyi, L.D., Radzai, C., Pressler, B.M., Prevalence of feline infectious peritonitis in specific cat breeds (2006) J Feline Med Surg, 8, pp. 1-5; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J Clin Microbiol, 34, pp. 3180-3184; Ritz, S., Egberink, H., Hartmann, K., Effect of feline interferonomega on the survival time and quality of life of cats with feline infectious peritonitis (2007) J Vet Intern Med, 21, pp. 1193-1197; Rohrer, C., Suter, P.F., Lutz, H., The diagnosis of feline infectious peritonitis (FIP): Retrospective and prospective study (1994) Eur J Comp Anim Pract, 4, pp. 23-29; Rush, J., Pericardial disease in the cat: A retrospective evaluation of 66 cases (1990) J Am Anim Hosp Assoc, 26, pp. 39-46; Sharif, S., Arshad, S.S., Hair-Bejo, M., Omar, A.R., Zeenathul, N.A., Alazawy, A., Diagnostic methods for feline coronavirus: A review (2010) Vet Med Int, , pii:809480; Tasker, S., Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests (2018) J Feline Med Surg, 20 (3), pp. 228-243; Tsai, H.Y., Chueh, L.L., Lin, C.N., Su, B.L., Clinicopathological findings and disease staging of feline infectious peritonitis: 51 cases from 2003 to 2009 in Taiwan (2011) J Feline Med Surg, 13, pp. 74-80; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Zoia, A., Slater, L.A., Heller, J., Connolly, D.J., Church, D.B., A new approach to pleural effusion in cats: Markers for distinguishing transudates from exudates (2009) J Feline Med Surg, 11, pp. 847-855","Sladitschek, T.; Tonja Sladitschek, Tierarztliche Praxis fur KleintiereGermany; email: T.Sladitschek@grruc.net",,"Schluetersche Verlagsgesellschaft mbH and Co.KG",0032681X,,,,"German","Prakt. Tierarzt",Article,"Final",,Scopus,2-s2.0-85063316761 "Abu Baker Farag E., Nour M., El Idrissi A., Berrada J., Moustafa A., Mehmood M., Mahmoud M.H., El-Sayed A.M., Alhajri F., Al-Hajri M., Hassan O.A., Al-Romaihi H., Al-Thani M., Al-Marri S.A., Koopmans M.P.G., Ismail M.H.","57207995599;57200036649;6701436165;6506868106;57206788656;55339884700;57200497556;57200049217;55963851700;57052928400;53866484700;55963882100;36969541400;14520560900;7006736989;57206769834;","Survey on implementation of one health approach for MERS-CoV preparedness and control in gulf cooperation council and middle east countries",2019,"Emerging Infectious Diseases","25","3",,"e1","e6",,1,"10.3201/eid2503.171702","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061979795&doi=10.3201%2feid2503.171702&partnerID=40&md5=495f7e121b9291e16558864d6062f0a1","Ministry of Public Health, Doha, Qatar; Food and Agriculture Organization of the United Nations, Rome, Italy; Institut Agronomique et Vétérinaire Hassan, Rabat, Morocco; Ministry of Municipality and Environment, Doha, Qatar; Center for Global Health of Oslo University, Oslo, Norway; Erasmus Medical Center, Rotterdam, Netherlands; University of Nyala, Nyala, Sudan","Abu Baker Farag, E., Ministry of Public Health, Doha, Qatar; Nour, M., Ministry of Public Health, Doha, Qatar; El Idrissi, A., Food and Agriculture Organization of the United Nations, Rome, Italy; Berrada, J., Institut Agronomique et Vétérinaire Hassan, Rabat, Morocco; Moustafa, A., Ministry of Public Health, Doha, Qatar; Mehmood, M., Ministry of Public Health, Doha, Qatar; Mahmoud, M.H., Ministry of Public Health, Doha, Qatar, Ministry of Municipality and Environment, Doha, Qatar; El-Sayed, A.M., Ministry of Public Health, Doha, Qatar; Alhajri, F., Ministry of Municipality and Environment, Doha, Qatar; Al-Hajri, M., Ministry of Public Health, Doha, Qatar; Hassan, O.A., Center for Global Health of Oslo University, Oslo, Norway; Al-Romaihi, H., Ministry of Public Health, Doha, Qatar; Al-Thani, M., Ministry of Public Health, Doha, Qatar; Al-Marri, S.A., Ministry of Public Health, Doha, Qatar; Koopmans, M.P.G., Erasmus Medical Center, Rotterdam, Netherlands; Ismail, M.H., Ministry of Municipality and Environment, Doha, Qatar, University of Nyala, Nyala, Sudan","In 2015, a One Health Working Group was established in Qatar to conduct a survey in the Gulf Cooperation Council countries, Egypt, and Jordan to monitor preparedness of public health and veterinary health authorities in response to the Middle East respiratory syndrome coronavirus epidemic. All but 1 country indicated they established joint One Health policy teams for investigation and response. However, the response to the questionnaires was largely limited to veterinary authorities. Critical barriers and limitations were identified. National and regional leaders, policy makers, and stakeholders should be prompted to advocate and enhance adoption of the One Health framework to mitigate the risk for Middle East respiratory syndrome and other emerging zoonotic diseases. © 2019, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"animal health; Article; disease surveillance; health care planning; health care policy; health care survey; health education; human; infection control; Jordan; knowledge; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; public health; qualitative research; questionnaire; veterinary clinic; zoonosis; animal; Coronavirus infection; health survey; leadership; Middle East; One Health; zoonosis; Animals; Coronavirus Infections; Health Education; Health Plan Implementation; Health Policy; Health Surveys; Humans; Leadership; Middle East; Middle East Respiratory Syndrome Coronavirus; One Health; Public Health Surveillance; Zoonoses","(2017) Middle East respiratory syndrome coronavirus (MERS-CoV), , https://www.who.int/emergencies/mers-cov/en, cited, May 2; (2017) Fact sheet: Middle East respiratory syndrome coronavirus (MERS-CoV), , https://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), Updated May, cited 2017 May 6; Faye, B., Camel meat in the world (2013) Camel meat and meat products, pp. 7-16. , Kadim LT, Mahgoub O, Faye B, Farouk MM, editors, Wallingford (UK): CABI International; (2017) FAOSTAT, , http://www.fao.org/faostat/en, cited, May 6; Mirzaei, F., Production and trade of camel products in some Middle East countries (2012) Journal of Development and Agricultural Economics, 16, pp. 153-160; (2017) Sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interfaces, , http://www.who.int/influenza/resources/documents/tripartite_concept_note_hanoi_042011_en.pdf, The FAO-OIE-WHO collaboration, cited, May 6; (2015) Regional Workshop on MERS-CoV and One Health, , http://www.onehealthinitiative.com/publications/Concept%20Note_MERS%20Workshop%20-%20Doha-final.pdf, Apr 27-29 Doha, Qatar, cited 2017 May 8; (2017) Operationalizing “One Health”: A policy perspective-taking stock and shaping an implementation roadmap, , https://www.cdc.gov/onehealth/pdfs/atlanta/meeting-overview.pdf, cited, May 10; (2014) Muscat declaration: Middle East respiratory syndrome coronavirus (MERS-CoV) in animal species, , http://www.fao.org/fileadmin/user_upload/newsroom/docs/Oman%20Muscat%20Declaration_Final%20May%202014.pdf, Regional technical consultation meeting, May 20-21; Muscat, Oman [cited 2017 May 1]; (2015) Strategic approach to global health security through One Health innovations: Vision 2030, , http://www.zoonotic-diseases.org/2nd-ohcea-one-health-conference, 2nd OHCEA International One Health Conference, Nov 16-20; Kampala, Uganda [cited 2017 Jun 2]; (2016) Report on One Health technical and ministerial meeting to address zoonotic diseases and related public health threats, , https://afro.who.int/publications/report-one-health-technical-and-ministerial-meeting-address-zoonotic-diseases-and, Nov 11; Dakar, Senegal [cited 2017 May 6]; (2015) Fostering interdisciplinary collaboration for global public and animal health, , http://onehealth.grforum.org/fileadmin/user_upload/Outcome_Report_One_Health.pdf, Outcome report. The 3rd GRF One Health Summit, Oct 4-6; Davos, Switzerland [cited 2017 Apr 6]; Zinsstag, J., Mackenzie, J.S., Jeggo, M., Heymann, D.L., Patz, J.A., Daszak, P., Mainstreaming one health (2012) EcoHealth., 9, pp. 107-110. , http://dx.doi.org/10.1007/s10393-012-0772-8; Lee, K., Brumme, Z.L., Operationalizing the One Health approach: The global governance challenges (2013) Health Policy Plan., 28, pp. 778-785. , http://dx.doi.org/10.1093/heapol/czs127; McGrane, J., Ormel, H.J., Padungtod, P., Lubroth, J., (2016) FAO, GHSA and One Heath: Recent updates, , https://www.ghsagenda.org/docs/default-source/default-document-library/archive-action-package-meeting/2---fao-ghsa-and-one-health_ghsa-ap-coordination-meeting_jakarta_23-25aug2016_hjo_final---508.pdf, Aug 23-25; Jakarta, Indonesia [cited 2017 Jun 6]; Coker, R., Rushton, J., Mounier-Jack, S., Karimuribo, E., Lutumba, P., Kambarage, D., Towards a conceptual framework to support one-health research for policy on emerging zoonoses (2011) Lancet Infect Dis., 11, pp. 326-331. , http://dx.doi.org/10.1016/S1473-3099(10)70312-1; Natterson-Horowitz, B., A physician’s view of One Health: Challenges and opportunities (2015) Vet Sci., 2, pp. 23-25. , http://dx.doi.org/10.3390/vetsci2010023; Hassan, O.A., Affognon, H., Rocklöv, J., Mburu, P., Sang, R., Ahlm, C., The One Health approach to identify knowledge, attitudes and practices that affect community involvement in the control of Rift Valley fever outbreaks (2017) PLoS Negl Trop Dis., 11, p. e0005383. , http://dx.doi.org/10.1371/journal.pntd.0005383; Delabouglise, A., Antoine-Moussiaux, N., Tatong, D., Chumkaeo, A., Binot, A., Fournié, G., Cultural practices shaping zoonotic diseases surveillance: The case of highly pathogenic avian influenza and Thailand native chicken farmers (2017) Transbound Emerg Dis., 64, pp. 1294-1305. , http://dx.doi.org/10.1111/tbed.12506; Lindahl, J.F., Grace, D., The consequences of human actions on risks for infectious diseases: A review (2015) Infect Ecol Epidemiol., 5, p. 30048. , http://dx.doi.org/10.3402/iee.v5.30048; Janes, C.R., Corbett, K.K., Jones, J.H., Trostle, J., Emerging infectious diseases: The role of social sciences (2012) Lancet., 380, pp. 1884-1886. , http://dx.doi.org/10.1016/S0140-6736(12)61725-5; Lapinski, M.K., Funk, J.A., Moccia, L.T., Recommendations for the role of social science research in One Health (2015) Soc Sci Med., 129, pp. 51-60. , http://dx.doi.org/10.1016/j.socscimed.2014.09.048; Moghoofei, M., Monavari, S.H., Mostafaei, S., Hadifar, S., Ghasemi, A., Babaei, F., Prevalence of influenza A infection in the Middle-East: A systematic review and meta-analysis (2018) Clin Respir J., 12, pp. 1787-1801. , http://dx.doi.org/10.1111/crj.12758; (2015) Doha declaration, , http://www.fao.org/ag/againfo/programmes/en/empres/documents/docs/Doha_Declaration_2015.pdf, Apr 27-29; Doha, Qatar [cited 2017 Feb 22]; (2017) Department of Infection Prevention and Control, , http://ngha.med.sa/English/MedicalCities/AlRiyadh/MedicalServices/Pages/InfectionPrevention.aspx, cited, Feb 22; (2008) Address by Dr Hussein A. Gezairy, Regional Director, WHO Eastern Mediterranean Region, to the Second Avian and Pandemic Influenza Training Workshop, , http://apps.who.int/iris/bitstream/10665/124794/1/message_pandemic_gcc_namru_cdc_2_saudi_jan08_en.pdf, GCC Centre for Infection Control and Saudi Society for Public Health in Collaboration with WHO, NAMRU-3 and CDC, Jan 5-9; Riyadh, Saudi Arabia [cited 2017 Feb 24]","Ismail, M.H.; Ministry of Municipality and Environment, Virology Unit, Veterinary Laboratory, Department of Animal Resources, PO Box 23211, Qatar; email: mismail_99@yahoo.com",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"30789338","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85061979795 "Setyo L., Donahoe S.L., Šlapeta J.","57193332722;6602134665;7004158093;","Fulminant Tritrichomonas foetus ‘feline genotype’ infection in a 3-month old kitten associated with viral co-infection",2019,"Veterinary Parasitology","267",,,"17","20",,,"10.1016/j.vetpar.2018.12.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061031691&doi=10.1016%2fj.vetpar.2018.12.007&partnerID=40&md5=4fc0541bab21109760060722a7046b89","Sydney School of Veterinary Science, Faculty of Science, The University of SydneyNew South Wales 2006, Australia","Setyo, L., Sydney School of Veterinary Science, Faculty of Science, The University of SydneyNew South Wales 2006, Australia; Donahoe, S.L., Sydney School of Veterinary Science, Faculty of Science, The University of SydneyNew South Wales 2006, Australia; Šlapeta, J., Sydney School of Veterinary Science, Faculty of Science, The University of SydneyNew South Wales 2006, Australia","Tritrichomonas foetus is a flagellate protist which commonly causes a waxing and waning large bowel diarrhoea in young cats. We report severe T. foetus infection of the colon, cecum and ileum with concurrent feline enteric coronavirus (FCoV) and feline panleukopenia virus (FPV) in a 3-month-old Bengal kitten with an 8-day history of vomiting, diarrhoea, failure to thrive and coughing. Protozoa filling the lumen and crypts and occasional invading into lamina propria were identified within the affected colon and confirmed by PCR as T. foetus ‘feline genotype’. Assessment of faeces by PCR revealed concurrent infection with FCoV and FPV. It is possible that immunosuppression by FPV played a role in the unprecedented T. foetus infection intensity observed histologically. Studies during and after resolution of FPV infection, will be critical to determine if T. foetus co-infection affects long-term prognosis of FPV survivors. © 2018 Elsevier B.V.","Australia; Coronavirus; Histopathology; Parvovirus; Tritrichomonas","animal experiment; animal tissue; Article; cecum; colitis; colon; Coronavirus infection; coughing; diarrhea; disease association; disease severity; domestic cat; failure to thrive; female; genotype; ileum; intestine crypt; kitten; lamina propria; mixed infection; nonhuman; nucleotide sequence; parasite identification; parasitosis; prognosis; real time polymerase chain reaction; Tritrichomonas foetus; Tritrichomonas foetus infection; vomiting; animal; animal parasitosis; case report; cat; cat disease; Coronavirinae; Coronavirus infection; feces; feline panleukopenia; Feline panleukopenia virus; genetics; isolation and purification; parasitology; polymerase chain reaction; veterinary medicine; virology; Animals; Cat Diseases; Cats; Coinfection; Colon; Coronavirus; Coronavirus Infections; Diarrhea; Feces; Feline Panleukopenia; Feline Panleukopenia Virus; Female; Genotype; Polymerase Chain Reaction; Protozoan Infections, Animal; Tritrichomonas foetus","Balboni, A., Bassi, P., Battilani, M., Biserni, R., Prosperi, S., Dondi, F., Severe, diffuse fibrinonecrotic pleuropneumonia in a cat affected by multiple viral infection (2014) Vet. Ital., 50, pp. 145-149; Bell, E.T., Gowan, R.A., Lingard, A.E., McCoy, R.J., Šlapeta, J., Malik, R., Naturally occurring Tritrichomonas foetus infections in Australian cats: 38 cases (2010) J. Feline Med. Surg., 12, pp. 889-898; Felleisen, R.S.J., Comparative sequence analysis of 5.8S rRNA genes and internal transcribed spacer (ITS) regions of trichomonadid protozoa (1997) Parasitology, 115, pp. 111-119; Gookin, J.L., Levy, M.G., Law, J.M., Papich, M.G., Poore, M.F., Breitschwerdt, E.B., Experimental infection of cats with Tritrichomonas foetus (2001) Am. J. Vet. Res., 62, pp. 1690-1697; Gookin, J.L., Stebbins, M.E., Hunt, E., Burlone, K., Fulton, M., Hochel, R., Talaat, M., Levy, M.G., Prevalence of and risk factors for feline Tritrichomonas foetus and Giardia infection (2004) J. Clin. Microbiol., 42, pp. 2707-2710; Gookin, J.L., Hanrahan, K., Levy, M.G., The condundrum of feline trichomonosis—the more we learn the ‘trickier’ it gets (2017) J. Feline Med. Surg., 19, pp. 261-274; Hale, S., Norris, J.M., Šlapeta, J., Prolonged resilience of Tritrichomonas foetus in cat faeces at ambient temperature (2009) Vet. Parasitol., 166, pp. 60-65; Kuehner, K.A., Marks, S.L., Kass, P.H., Sauter-Louis, C., Grahn, R.A., Barutzki, D., Hartmann, K., Tritrichomonas foetus infection in purebred cats in Germany: prevalence of clinical signs and the role of co-infection with other enteroparasites (2011) J. Feline Med. Surg., 13, pp. 251-258; Paris, J.K., Wills, S., Balzer, H.-J., Shaw, D.J., Gunn-Moore, D.A., Enteropathogen co-infection in UK cats with diarrhoea (2014) BMC Vet. Res., 10, p. 13; Profizi, C., Cian, A., Meloni, D., Hugonnard, M., Lambert, V., Groud, K., Gagnon, A.-C., Zenner, L., Prevalence of Tritrichomonas foetus infections in French catteries (2013) Vet. Parasitol., 196, pp. 50-55; Šlapeta, J., Craig, S., McDonell, D., Emery, D., Tritrichomonas foetus from domestic cats and cattle are genetically distinct (2010) Exp. Parasitol., 126, pp. 209-213; Šlapeta, J., Müller, N., Stack, C.M., Walker, G., Lew-Tabor, A., Tachezy, J., Frey, C.F., Comparative analysis of Tritrichomonas foetus (Riedmüller, 1928) cat genotype,T. foetus (Riedmüller, 1928) cattle genotype and Tritrichomonas suis (Davaine, 1875) at 10 DNA loci (2012) Int. J. Parasitol., 42, pp. 1143-1149; Šlapeta, J., Dowd, S.E., Alanazi, A.D., Westman, M.E., Brown, G.K., Differences in the faecal microbiome of non-diarrhoeic clinically healthy dogs and cats associated with Giardia duodenalis infection: impact of hookworms and coccidian (2015) Int. J. Parasitol., 45, pp. 585-594; Tolbert, M.K., Gookin, J.L., Mechanisms of Tritrichomonas foetus pathogenicity in cats with insights from venereal trichomonosis (2016) J. Vet. Intern. Med., 30, pp. 516-526; Truyen, U., Addie, D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Horzinek, M.C., Feline panleukopenia. ABCD guidelines on prevention and management (2009) J. Feline Med. Surg., 11, pp. 538-546; Van der Saag, M., McDonell, D., Slapeta, J., Cat genotype Tritrichomonas foetus survives passage through the alimentary tract of two common slug species (2011) Vet. Parasitol., 177, pp. 262-266; Vogel, L., Van der Lubben, M., te Lintelo, E.G., Bekker, C.P.J., Geerts, T., Schuijff, L.S., Grinwis, G.C.M., Rottier, P.J.M., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet. Res., 41, p. 71; Voyich, J.M., Ansotegui, R., Swenson, C., Bailey, J., Burgess, D.E., Antibody responses of cattle immunized with the Tf190 adhesin of Tritrichomonas foetus (2001) Clin. Diagn. Lab. Immunol., 8, pp. 1120-1125; Yaeger, M.J., Gookin, J.L., Histologic features associated with Tritrichomonas foetus-induced colitis in domestic cats (2005) Vet. Pathol., 42, pp. 797-804; Yao, C., Koster, L.S., Tritrichomonas foetus infection, a cause of chronic diarrhea in the domestic cat (2015) Vet. Res., 46, p. 35","Šlapeta, J.; Sydney School of Veterinary Science, Faculty of Science, The University of SydneyAustralia; email: jan.slapeta@sydney.edu.au",,"Elsevier B.V.",03044017,,VPARD,"30878079","English","Vet. Parasitol.",Article,"Final",,Scopus,2-s2.0-85061031691 "Alknawy B.","52563192800;","Leadership in times of crisis",2019,"BMJ Leader","3","1",,"1","5",,,"10.1136/leader-2018-000100","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076867220&doi=10.1136%2fleader-2018-000100&partnerID=40&md5=c300e8e1b4c4ad3eb134efe4c39dee93","King Saud Bin Abdulaziz University for Health Sciences, PO Box 22490, Riyadh, 11426, Saudi Arabia","Alknawy, B., King Saud Bin Abdulaziz University for Health Sciences, PO Box 22490, Riyadh, 11426, Saudi Arabia","When organisations encounter a crisis, the most senior executives are at the spotlight and have responsibility to lead the organisation to safe grounds. This necessitates mental focus to instill confidence and resilience to staff, customers and external stakeholders. In August 2015, a large medical centre in the Saudi Arabia faced a major outbreak with the Middle East Respiratory Syndrome coronavirus (MERS-CoV), and cases accumulated in an unprecedented rate, triggered by a hospital-acquired transmission in the overcrowded Emergency Department. This article summarises the leadership learning from the MERS-CoV outbreak and draws on principles from leadership in extremis studies, a perspective that emphasises specific personality traits, attitudes and styles of individual leaders. It describes phases of the crisis starting with the phase 1 of crisis escalation, which included the emergency response along with measures for building confidence and ending with phase 2 of crisis resolution in which the crisis is used to make permanent and lasting change. © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.","Chief Executive Officer; Delivery of Health Care; hospital; leadership; MERS-CoV","health care delivery; human; human experiment; leadership; learning; Middle East respiratory syndrome coronavirus; nonhuman; review","Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle east respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Kolditz, T.A., (2007) Extremis Leadership. 1st Edn., , San Francisco: Jossey-Bass; Hannah, S.T., Uhl-Bien, M., Avolio, B.J., A framework for examining leadership in extreme contexts (2009) Leadersh Q, 20, pp. 897-919; Hannah, S.T., Campbell, D.J., Matthews, M.D., Advancing a research agenda for leadership in dangerous contexts (2010) Military Psychology, 22, pp. S157-S189; Boin, A., Hart Paul, T., Stern, E., (2005) The Politics of Crisis Management: Public Leadership under Pressure, , New York: Cambridge University Press; (2018) National Events - Epi-weeks of 2018, , https://www.moh.gov.sa/en/CCC/events/national/Pages/2018.aspx, Ministry of Health, (accessed 4 Sep 2018); (2018) MERS-CoV Case in England, , https://www.gov.uk/government/news/mers-cov-case-in-england, GOV.UK, (accessed 4 Sep 2018); (2018) Passengers on Flight from Middle East Sought after Patient Diagnosed with Deadly Camel Flu in Leeds, , https://www.telegraph.co.uk/news/2018/08/23/patient-diagnosed-deadly-mers-virus-leeds-fellow-passengers, The Telegraph, (accessed 4 Sep2018); (2018) South Korean Man Infected by MERS Virus, First Case in 3 Years, , https://www.reuters.com/article/us-southkorea-health-mers/south-korean-man-infected-bymers-virus-first-case-in-3-years/, Reuters, accessed 8 Sep 2018","Alknawy, B.; King Saud Bin Abdulaziz University for Health Sciences, PO Box 22490, Saudi Arabia; email: knawyb@ngha.med.sa",,"BMJ Publishing Group",2398631X,,,,"English","BMJ Leader",Review,"Final",Open Access,Scopus,2-s2.0-85076867220 "Widagdo W., Na Ayudhya S.S., Hundie G.B., Haagmans B.L.","56387603500;57209509551;57031845300;6701371301;","Host determinants of mers-CoV transmission and pathogenesis",2019,"Viruses","11","3", 280,"","",,6,"10.3390/v11030280","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063613281&doi=10.3390%2fv11030280&partnerID=40&md5=2a55c422219031972e2487ec87531c56","Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands","Widagdo, W., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Na Ayudhya, S.S., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Hundie, G.B., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands; Haagmans, B.L., Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands","Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter-and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis—such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. T.","DPP4; Host factors; MERS-CoV; Pathogenesis; Transmission","carcinoembryonic antigen related cell adhesion molecule 1; dipeptidyl peptidase IV; glucose regulated protein 78; host factor; interferon; serine proteinase; sialic acid; virus RNA; dipeptidyl peptidase IV; antiviral activity; bronchus epithelium; camel; clinical outcome; dromedary; enzyme activity; human; immunocompromised patient; innate immunity; lung alveolus cell; lung alveolus epithelium; Middle East respiratory syndrome coronavirus; mixed infection; nonhuman; nose epithelium; pneumonia; protein expression; Review; risk factor; T cell depletion; trachea epithelium; upper respiratory tract infection; vaccination; virus cell interaction; virus characterization; virus infection; virus pathogenesis; virus replication; virus transmission; animal; bat; Coronavirus infection; host pathogen interaction; metabolism; Middle East respiratory syndrome coronavirus; pathogenicity; physiology; respiratory tract infection; viral tropism; virology; Animals; Camelus; Chiroptera; Coronavirus Infections; Dipeptidyl Peptidase 4; Host-Pathogen Interactions; Humans; Middle East Respiratory Syndrome Coronavirus; Respiratory Tract Infections; Viral Tropism; Virus Replication","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-march-2018.html; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: From discovery to intervention (2017) One Health, 3, pp. 11-16; State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans (2013) Plos Curr, 5; Moon, S.Y., Son, J.S., Infectivity of an Asymptomatic Patient With Middle East Respiratory Syndrome Coronavirus Infection (2017) Clin. Infect. Dis., 64, pp. 1457-1458; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Alrabiah, F.A., Flemban, H., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: A prospective descriptive study (2014) Clin. Microbiol. Infect., 20, pp. 469-474; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Kim, K.M., Hur, Y.J., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin. Infect. Dis., 64, pp. 551-557; Normile, D., South Korea finally MERS-free (2015) Science; http://www.who.int/csr/don/25-october-2015-mers-korea/en/, World Health Organization Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Republic of Korea—Disease Outbreak News 25 October 2015, 1 March 2019; (2017), http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1, World Health Organization MERS-CoV Global Summary and Assessment of Risk, 1 March 2019; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) Elife, 7. , eLife.31257; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis., 20, pp. 1012-1015; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Elsayed, E.A., Khalafalla, A.I., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses. Public Health, 65, pp. 322-333; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Daszak, P., Lipkin, W.I., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) Mbio, 5, p. 1146; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20, pp. 1999-2005; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., van Beek, J., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis., 20, pp. 552-559; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Zalmout, I.S., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5, p. 884; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Lang, Y., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E8508-E8517; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., Nagata, N., TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection (2019) J. Virol.; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods. Mol. Biol., 1282, pp. 1-23; Boonacker, E., van Noorden, C.J., The multifunctional or moonlighting protein CD26/DPPIV (2003) Eur. J. Cell. Biol., 82, pp. 53-73; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Bosch, B.J., Raj, V.S., Haagmans, B.L., Spiking the MERS-coronavirus receptor (2013) Cell Res, 23, pp. 1069-1070; de Wit, E., Rasmussen, A.L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D.L., Fischer, E.R., Chang, J., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16598-16603; Haagmans, B.L., van den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., de Waal, L., Verjans, G.M., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135; Raj, V.S., Smits, S.L., Provacia, L.B., van den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol, 95, pp. 408-412; Iwata-Yoshikawa, N., Fukushi, S., Fukuma, A., Suzuki, T., Takeda, M., Tashiro, M., Hasegawa, H., Nagata, N., Non Susceptibility of Neonatal and Adult Rats against the Middle East Respiratory Syndrome Coronavirus (2016) Jpn. J. Infect. Dis., 69, pp. 510-516; Chu, H., Chan, C.M., Zhang, X., Wang, Y., Yuan, S., Zhou, J., Au-Yeung, R.K., Shuai, H., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J. Biol. Chem., 293, pp. 11709-11726; Chan, C.M., Chu, H., Wang, Y., Wong, B.H., Zhao, X., Zhou, J., Yang, D., Yeung, M.L., Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus (2016) J. Virol., 90, pp. 9114-9127; Zheng, Y., Shang, J., Yang, Y., Liu, C., Wan, Y., Geng, Q., Wang, M., Li, F., Lysosomal proteases are a determinant of coronavirus tropism (2018) J. Virol., 92; Park, J.E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Jr., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 12262-12267; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) Plos Pathog, 13; Muller, C., Hardt, M., Schwudke, D., Neuman, B.W., Pleschka, S., Ziebuhr, J., Inhibition of Cytosolic Phospholipase A2alpha Impairs an Early Step of Coronavirus Replication in Cell Culture (2018) J. Virol., 92, p. 1463; Belov, G.A., van Kuppeveld, F.J., (+)RNA viruses rewire cellular pathways to build replication organelles (2012) Curr. Opin. Virol., 2, pp. 740-747; Belov, G.A., Nair, V., Hansen, B.T., Hoyt, F.H., Fischer, E.R., Ehrenfeld, E., Complex dynamic development of poliovirus membranous replication complexes (2012) J. Virol., 86, pp. 302-312; Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Enjuanes, L., de Groot, R.J., Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses (2016) Plos Pathog, 12; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., Garcia-Sastre, A., Perlman, S., Sola, I., MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) Plos Pathog, 14; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Chan, C.P., Yuen, K.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J. Virol., 88, pp. 4866-4876; Nakagawa, K., Narayanan, K., Wada, M., Popov, V.L., Cajimat, M., Baric, R.S., Makino, S., The endonucleolytic RNA cleavage function of nsp1 of Middle East respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines (2018) J. Virol., 92, p. 1157; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) Plos Biol, 6; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation (2016) Mbio, 7, p. 258; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Beall, A., MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis (2017) Mbio, 8, p. 665; Oudshoorn, D., Rijs, K., Limpens, R., Groen, K., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication (2017) Mbio, 8, p. 1658; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., Gallagher, T., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E3119-E3128; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis., 209, pp. 236-242; Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin (2013) Sci. Rep., 3, p. 1686; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Jo, I.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Chan, R.W., Chan, M.C., Agnihothram, S., Chan, L.L., Kuok, D.I., Fong, J.H., Guan, Y., Nicholls, J.M., Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J. Virol., 87, pp. 6604-6614; Chan, R.W., Hemida, M.G., Kayali, G., Chu, D.K., Poon, L.L., Alnaeem, A., Ali, M.A., Chan, M.C., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: An in-vitro and ex-vivo study (2014) Lancet Respir. Med., 2, pp. 813-822; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Tong, S., Haynes, L.M., Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in United Arab Emirates, April 2014 (2016) Am. J. Pathol., 186, pp. 652-658; Hocke, A.C., Becher, A., Knepper, J., Peter, A., Holland, G., Tonnies, M., Bauer, T.T., Muth, D., Emerging human middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs (2013) Am. J. Respir. Crit. Care Med., 188, pp. 882-886; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Myers, R., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Eurosurveillance, 17; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Muth, D., Assiri, A.M., Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection (2016) Clin. Infect. Dis., 62, pp. 477-483; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Junglen, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13, pp. 745-751; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., van Leenders, G.J., Bosch, B.J., Bensaid, A., Osterhaus, A.D., Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels (2016) J. Virol., 90, pp. 4838-4842; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl Peptidase 4 Distribution in the Human Respiratory Tract: Implications for the Middle East Respiratory Syndrome (2016) Am. J. Pathol., 186, pp. 78-86; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., van den Brand, J.M.A., Tissue Distribution of the MERS-Coronavirus Receptor in Bats (2017) Sci. Rep., 7, p. 1193; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Meyer, B., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, pp. 456-459; Yang, L., Wu, Z., Ren, X., Yang, F., Zhang, J., He, G., Dong, J., Zhang, S., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg. Infect. Dis., 20, pp. 1260-1262; Wacharapluesadee, S., Sintunawa, C., Kaewpom, T., Khongnomnan, K., Olival, K.J., Epstein, J.H., Rodpan, A., Chindamporn, A., Group C betacoronavirus in bat guano fertilizer, Thailand (2013) Emerg. Infect. Dis., 19, pp. 1349-1351; Kim, H.K., Yoon, S.W., Kim, D.J., Koo, B.S., Noh, J.Y., Kim, J.H., Choi, Y.G., Song, D., Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats (2016) Transbound. Emerg. Dis., 63, pp. 365-372; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus (2017) Mbio, 8, p. 373; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of Novel Bat Coronaviruses in South China That Use the Same Receptor as Middle East Respiratory Syndrome Coronavirus (2018) J. Virol., 92, pp. e00116-e00118; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; Widagdo, W., Okba, N.M.A., Richard, M., de Muelder, D., Bestebroer, T.M., Lexmond, P., Haagmans, B.L., Herfst, S., (2019) Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits, , J.M.A. v. d. B, Unpublished work; Vergara-Alert, J., van den Brand, J.M., Widagdo, W., Munoz, M.T., Raj, S., Schipper, D., Solanes, D., Haagmans, B.L., Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus (2017) Emerg. Infect. Dis, 23, pp. 232-240; de Wit, E., Feldmann, F., Horne, E., Martellaro, C., Haddock, E., Bushmaker, T., Rosenke, K., Saturday, G., Domestic Pig Unlikely Reservoir for MERS-CoV (2017) Emerg. Infect. Dis., 23, pp. 985-988; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas (2016) Emerg. Infect. Dis., 22, pp. 1031-1037; Crameri, G., Durr, P.A., Klein, R., Foord, A., Yu, M., Riddell, S., Haining, J., Barr, J., Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus (2016) Emerg. Infect. Dis., 22, pp. 1071-1074; Adney, D.R., Brown, V.R., Porter, S.M., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Inoculation of Goats, Sheep, and Horses with MERS-CoV Does Not Result in Productive Viral Shedding (2016) Viruses, 8, p. 230; Harris, S.R., Robinson, C., Steward, K.F., Webb, K.S., Paillot, R., Parkhill, J., Holden, M.T., Waller, A.S., Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection (2015) Genome Res, 25, pp. 1360-1371; Waller, A.S., Strangles: A pathogenic legacy of the war horse (2016) Vet. Rec., 178, pp. 91-92; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Eurosurveillance, 18; van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., Talafha, H.A., Amarin, N., High Prevalence of Middle East Respiratory Coronavirus in Young Dromedary Camels in Jordan (2017) Vector Borne Zoonotic Dis, 17, pp. 155-159; Meyer, B., Garcia-Bocanegra, I., Wernery, U., Wernery, R., Sieberg, A., Muller, M.A., Drexler, J.F., Eckerle, I., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg. Infect. Dis., 21, pp. 181-182; Hemida, M.G., Chu, D.K.W., Perera, R., Ko, R.L.W., So, R.T.Y., Ng, B.C.Y., Chan, S.M.S., Alhammadi, M.A., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound. Emerg. Dis, 64, pp. 2093-2103; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Sobhy, H., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Eurosurveillance, 22; David, D., Rotenberg, D., Khinich, E., Erster, O., Bardenstein, S., van Straten, M., Okba, N.M.A., Miculitzki, M., Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels (2018) One Health, 5, pp. 65-68; Reusken, C.B., Schilp, C., Raj, V.S., de Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., Bosch, B.J., MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic (2016) Emerg. Infect. Dis., 22, p. 1129; Vergara-Alert, J., Raj, V.S., Munoz, M., Abad, F.X., Cordon, I., Haagmans, B.L., Bensaid, A., Segales, J., Middle East respiratory syndrome coronavirus experimental transmission using a pig model (2017) Transbound. Emerg. Dis., 64, pp. 1342-1345; Widagdo, W., Okba, N.M.A., Li, W., de Jong, A., de Swart, R., Begeman, L., Cunningham, A.A., Segales, J., Species specific binding of the MERS-coronavirus S1A protein (2019) Unpublished Work; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Nam, H.S., Park, J.W., Ki, M., Yeon, M.Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int. J. Infect. Dis., 58, pp. 37-42; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 49-55; Seys, L.J.M., Widagdo, W., Verhamme, F.M., Kleinjan, A., Janssens, W., Joos, G.F., Bracke, K.R., Brusselle, G.G., DPP4, the Middle East Respiratory Syndrome Coronavirus Receptor, is Upregulated in Lungs of Smokers and Chronic Obstructive Pulmonary Disease Patients (2018) Clin. Infect. Dis., 66, pp. 45-53; Dahlin, K., Mager, E.M., Allen, L., Tigue, Z., Goodglick, L., Wadehra, M., Dobbs, L., Identification of genes differentially expressed in rat alveolar type I cells (2004) Am. J. Respir. Cell. Mol. Biol., 31, pp. 309-316; Evans, M.J., Cabral, L.J., Stephens, R.J., Freeman, G., Renewal of alveolar epithelium in the rat following exposure to NO2 (1973) Am. J. Pathol., 70, pp. 175-198; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Al Moaiqel, M., Al Oudah, N., Al Ajlan, A., Aljohani, S., Balkhy, H., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection-clinicopathological and ultrastructural study (2018) Histopathology, 72, pp. 516-524; Haagmans, B.L., Kuiken, T., Martina, B.E., Fouchier, R.A., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Chan, K.H., Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nat. Med., 10, pp. 290-293; Chen, Z., Bao, L., Chen, C., Zou, T., Xue, Y., Li, F., Lv, Q., Cui, S., Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset (2017) J. Infect. Dis., 215, pp. 1807-1815; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yu, P., Treatment With Lopinavir/Ritonavir or Interferon-beta1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset (2015) J. Infect. Dis., 212, pp. 1904-1913; Falzarano, D., de Wit, E., Feldmann, F., Rasmussen, A.L., Okumura, A., Peng, X., Thomas, M.J., Nagy, L., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) Plos. Pathog., 10; Widagdo, W., Wiersma, L.C.M., Smits, S.L., de Vries, R.D., Schipper, D., Raj, V.S., van den Ham, H.J., Kondova, I., DPP4-expressing type I pneumocytes in a fatal human MERS-coronavirus case (2019) Unpublished Work; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray, P.B., Jr., Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4 (2016) J. Infect. Dis., 213, pp. 712-722; Algaissi, A., Agrawal, A.S., Han, S., Peng, B.H., Luo, C., Li, F., Chan, T.S., Tseng, C.K., Elevated Human Dipeptidyl Peptidase 4 Expression Reduces the Susceptibility of hDPP4 Transgenic Mice to Middle East Respiratory Syndrome Coronavirus Infection and Disease (2018) J. Infect. Dis., 219, pp. 829-835; Prescott, J., Falzarano, D., de Wit, E., Hardcastle, K., Feldmann, F., Haddock, E., Scott, D., Munster, V.J., Pathogenicity and Viral Shedding of MERS-CoV in Immunocompromised Rhesus Macaques (2018) Front. Immunol., 9, p. 205; Kim, S.H., Ko, J.H., Park, G.E., Cho, S.Y., Ha, Y.E., Kang, J.M., Kim, Y.J., Jeong, B.H., Atypical presentations of MERS-CoV infection in immunocompromised hosts (2017) J. Infect. Chemother., 23, pp. 769-773; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Dada, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci. Immunol., 2, p. eaan5393; Coleman, C.M., Sisk, J.M., Halasz, G., Zhong, J., Beck, S.E., Matthews, K.L., Venkataraman, T., Frieman, M.B., CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome (2017) J. Virol., 91, p. 1825; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Jahrling, P.B., Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J. Gen. Virol., 95, pp. 571-577; Oudshoorn, D., van der Hoeven, B., Limpens, R.W., Beugeling, C., Snijder, E.J., Barcena, M., Kikkert, M., Antiviral Innate Immune Response Interferes with the Formation of Replication-Associated Membrane Structures Induced by a Positive-Strand RNA Virus (2016) Mbio, 7, p. 1991; Uno, K., Yagi, K., Yoshimori, M., Tanigawa, M., Yoshikawa, T., Fujita, S., IFN production ability and healthy ageing: Mixed model analysis of a 24 year longitudinal study in Japan (2013) BMJ Open, 3; Li, G., Ju, J., Weyand, C.M., Goronzy, J.J., Age-Associated Failure To Adjust Type I IFN Receptor Signaling Thresholds after T Cell Activation (2015) J. Immunol., 195, pp. 865-874; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice (2016) Cell Host Microbe, 19, pp. 181-193; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Alfaraj, S.H., Al-Tawfiq, J.A., Alzahrani, N.A., Altwaijri, T.A., Memish, Z.A., The impact of co-infection of influenza A virus on the severity of Middle East Respiratory Syndrome Coronavirus (2017) J. Infect., 74, pp. 521-523; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Traore, A., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 3144-3149; Vergara-Alert, J., van den Brand, J.M., Widagdo, W., Munoz, M.T., Raj, S., Schipper, D., Solanes, D., Haagmans, B.L., Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus (2017) Emerg. Infect. Dis, 23, pp. 232-240; Payne, D.C., Biggs, H.M., Al-Abdallat, M.M., Alqasrawi, S., Lu, X., Abedi, G.R., Haddadin, A., Al Nsour, M., Multihospital Outbreak of a Middle East Respiratory Syndrome Coronavirus Deletion Variant, Jordan: A Molecular, Serologic, and Epidemiologic Investigation (2018) Open Forum Infect. Dis., 5, p. ofy095; Lamers, M.M., Raj, V.S., Shafei, M., Ali, S.S., Abdallh, S.M., Gazo, M., Nofal, S., Koopmans, M.P., Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015 (2016) Emerg. Infect. Dis., 22, pp. 716-719","Haagmans, B.L.; Department of Viroscience, Erasmus Medical CenterNetherlands; email: b.haagmans@erasmusmc.nl",,"MDPI AG",19994915,,,"30893947","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85063613281 "Johnson R.I., Tachedjian M., Clayton B.A., Layton R., Bergfeld J., Wang L.-F., Marsh G.A.","57204853919;7801559070;55251380700;57204856065;22633622200;35243718700;22958167400;","Characterization of teviot virus, an Australian bat-borne paramyxovirus",2019,"Journal of General Virology","100","3", 001214,"403","413",,1,"10.1099/jgv.0.001214","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062430767&doi=10.1099%2fjgv.0.001214&partnerID=40&md5=199e56c0219f0aabbecd452b4e6d8110","CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia; Duke-NUS Medical School, Singapore","Johnson, R.I., CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia; Tachedjian, M., CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia; Clayton, B.A., CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia; Layton, R., CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia; Bergfeld, J., CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia; Wang, L.-F., Duke-NUS Medical School, Singapore; Marsh, G.A., CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia","Bats are the reservoir hosts for multiple viruses with zoonotic potential, including coronaviruses, paramyxoviruses and filoviruses. Urine collected from Australian pteropid bats was assessed for the presence of paramyxoviruses. One of the viruses isolated was Teviot virus (TevPV), a novel rubulavirus previously isolated from pteropid bat urine throughout the east coast of Australia. Here, we further characterize TevPV through analysis of whole-genome sequencing, growth kinetics, antigenic relatedness and the experimental infection of ferrets and mice. TevPV is phylogenetically and antigenically most closely related to Tioman virus (TioPV). Unlike many other rubulaviruses, cell receptor attachment by TevPV does not appear to be sialic acid-dependent, with the receptor for host cell entry being unknown. The infection of ferrets and mice suggested that TevPV has a low pathogenic potential in mammals. Infected ferrets seroconverted by 10 days post-infection without clinical signs of disease. Furthermore, infected ferrets did not shed virus in any respiratory secretions, suggesting a low risk of onward transmission of TevPV. No productive infection was observed in the mouse infection study. © 2019 The Authors.","Bat-borne; Paramyxovirus; Teviot virus; Zoonoses","cell receptor; sialic acid; virus RNA; adult; animal cell; animal experiment; animal model; animal tissue; Article; Australia; controlled study; host cell; kinetics; molecular phylogeny; mouse; Mustela putorius furo; nonhuman; Paramyxoviridae; paramyxovirus infection; priority journal; Pteropus; Pteropus alecto; Pteropus poliocephalus; Teviot virus; Teviot virus infection; urine sampling; Vero cell line; viral genetics; virogenesis; virus attachment; virus characterization; virus isolation; virus shedding; whole genome sequencing; animal; bat; genetics; isolation and purification; Paramyxovirinae; pathogenicity; phylogeny; physiology; veterinary medicine; virology; virulence; virus genome; Animals; Australia; Chiroptera; Ferrets; Genome, Viral; Mice; Paramyxoviridae Infections; Paramyxovirinae; Phylogeny; Virulence","Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Global trends in emerging infectious diseases (2008) Nature, 451, pp. 990-993; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650; Morse, S.S., Mazet, J.A., Woolhouse, M., Parrish, C.R., Carroll, D., Prediction and prevention of the next pandemic zoonosis (2012) Lancet, 380, pp. 1956-1965; Wang, L.F., Collins, P.L., Fouchier, R.A.M., Kurath, G., Lamb, R.A., Virus Taxonomy: Classification and nomenclature of viruses. In:King AMQ, Adams MJ, Carstens EB and Lefkowitz EJ (editors) (2012) Ninth Report of the International Committee on Taxonomy of Viruses., , Elsevier; Drexler, J.F., Corman, V.M., Müller, M.A., Maganga, G.D., Vallo, P., Bats host major mammalian paramyxoviruses (2012) Nat Commun, 3, p. 796; Barr, J., Smith, C., Smith, I., de Jong, C., Todd, S., Isolation of multiple novel paramyxoviruses from pteropid bat urine (2015) J Gen Virol, 96, pp. 24-29; Chua, K.B., Koh, C.L., Hooi, P.S., Wee, K.F., Khong, J.H., Isolation of nipah virus from malaysian island flying-foxes (2002) Microbes Infect, 4, pp. 145-151; Field, H., Crameri, G., Kung, N.Y., Wang, L.F., Ecological aspects of hendra virus (2012) Curr Top Microbiol Immunol, 359, pp. 11-23; Adams, M.J., Lefkowitz, E.J., King, A.M.Q., Harrach, B., Harrison, R.L., Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2017) Arch Virol, 162, pp. 2505-2538; Lamb, R.A., Parks, G.D., Fields Virology. In: Knipe DM and Howley PM (editors) (2013) Paramyxoviridae., pp. 957-995. , Philadelphia, USA: Lippincott Williams & Wilkins; Barr, J., Animal infection studies of two recently discovered African bat paramyxoviruses (2018) Achimota 1 and Achimota, 28, p. 12744; Krüger, N., Sauder, C., Hüttl, S., Papies, J., Voigt, K., Entry, replication, immune evasion, and neurotoxicity of synthetically engineered bat-borne mumps virus (2018) Cell Rep, 25, pp. 312-320; Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats (1998) Emerg Infect Dis, 4, pp. 269-271; Chant, K., Chan, R., Smith, M., Dwyer, D.E., Kirkland, P., Probable human infection with a newly described virus in the family Paramyxoviridae. The NSW Expert Group (1998) Emerg Infect Dis, 4, pp. 273-275; Albariño, C.G., Foltzer, M., Towner, J.S., Rowe, L.A., Campbell, S., Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012 (2014) Emerg Infect Dis, 20, pp. 211-216; Amman, B.R., Albariño, C.G., Bird, B.H., Nyakarahuka, L., Sealy, T.K., A recently discovered pathogenic paramyxovirus, sosuga virus, is present in rousettus aegyptiacus fruit bats at multiple locations in uganda (2015) J Wildl Dis, 51, pp. 774-779; Burroughs, A.L., Tachedjian, M., Crameri, G., Durr, P.A., Marsh, G.A., Complete genome sequence of teviot paramyxovirus, a novel rubulavirus isolated from fruit bats in australia (2015) Genome Announc, 3, p. 15; Crameri, G., Todd, S., Grimley, S., McEachern, J.A., Marsh, G.A., Establishment, immortalisation and characterisation of pteropid bat cell lines (2009) PLoS One, 4, p. e8266; Kolakofsky, D., Pelet, T., Garcin, D., Hausmann, S., Curran, J., Paramyxovirus RNA synthesis and the requirement for hexamer genome length: The rule of six revisited (1998) J Virol, 72, pp. 891-899; Miller, P.J., Boyle, D.B., Eaton, B.T., Wang, L.F., Full-length genome sequence of Mossman virus, a novel paramyxovirus isolated from rodents in Australia (2003) Virology, 317, pp. 330-344; Chua, K.B., Wang, L.F., Lam, S.K., Crameri, G., Yu, M., Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia (2001) Virology, 283, pp. 215-229; Chua, K.B., Wang, L.F., Lam, S.K., Eaton, B.T., Full length genome sequence of Tioman virus, a novel paramyxovirus in the genus Rubulavirus isolated from fruit bats in Malaysia (2002) Arch Virol, 147, pp. 1323-1348; Bowden, T.R., Westenberg, M., Wang, L.F., Eaton, B.T., Boyle, D.B., Molecular characterization of Menangle virus, a novel paramyxovirus which infects pigs, fruit bats, and humans (2001) Virology, 283, pp. 358-373; Audsley, M.D., The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with a separate “Jeilongvirus” genus (2015) J Gen Virol; Jorgensen, E.D., Collins, P.L., Lomedico, P.T., Cloning and nucleotide sequence of Newcastle disease virus hemagglutinin-neuraminidase mRNA: Identification of a putative sialic acid binding site (1987) Virology, 156, pp. 12-24; Mirza, A.M., Deng, R., Iorio, R.M., Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hemagglutinin-neuraminidase glycoprotein: Effects on antigenic structure and function (1994) J Virol, 68, pp. 5093-5099; Langedijk, J.P., Daus, F.J., van Oirschot, J.T., Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin (1997) J Virol, 71, pp. 6155-6167; Middleton, D., Hendra virus (2014) Vet Clin North Am Equine Pract, 30, pp. 579-589; Yaiw, K.C., Crameri, G., Wang, L., Chong, H.T., Chua, K.B., Serological evidence of possible human infection with Tioman virus, a newly described paramyxovirus of bat origin (2007) J Infect Dis, 196, pp. 884-886; Geoghegan, J.L., Senior, A.M., di Giallonardo, F., Holmes, E.C., Virological factors that increase the transmissibility of emerging human viruses (2016) Proc Natl Acad Sci USA, 113, pp. 4170-4175; Yaiw, K.C., Bingham, J., Crameri, G., Mungall, B., Hyatt, A., Tioman virus, a paramyxovirus of bat origin, causes mild disease in pigs and has a predilection for lymphoid tissues (2008) J Virol, 82, pp. 565-568; Pallister, J., Middleton, D., Wang, L.F., Klein, R., Haining, J., A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal hendra virus challenge (2011) Vaccine, 29, pp. 5623-5630; Bossart, K.N., Zhu, Z., Middleton, D., Klippel, J., Crameri, G., A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection (2009) PLoS Pathog, 5, p. e1000642; Dups, J., Middleton, D., Yamada, M., Monaghan, P., Long, F., A new model for Hendra virus encephalitis in the mouse (2012) PLoS One, 7, p. e40308; Rima, B.K., Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation (2015) J Gen Virol, 96, pp. 939-955; Stray, S.J., Cummings, R.D., Air, G.M., Influenza virus infection of desialylated cells (2000) Glycobiology, 10, pp. 649-658; Balkema-Buschmann, A., Proposal 2018.011M.N.v1.Paramyxoviridae, , https://talk.ictvonline.org/files/proposals/animal_dsrna_and_ssrna-_viruses/m/animal_rna_minus_newly_submitted/7393/, Re-organization of the Family Paramyxoviridae. 2018. Available from; Lunney, D., Richards, G., Dickman, C., (2008) Pteropus poliocephalus, , http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T18751A8554062.en, IUCN Red List of Threatened Species. IUCN, Gland, Available from; Carroll, D., Daszak, P., Wolfe, N.D., Gao, G.F., Morel, C.M., The global virome project (2018) Science, 359, pp. 872-874; Field, H., de Jong, C., Melville, D., Smith, C., Smith, I., Hendra virus infection dynamics in Australian fruit bats (2011) PLoS One, 6, p. e28678; Barr, J.A., Smith, C., Marsh, G.A., Field, H., Wang, L.F., Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs (2012) J Gen Virol, 93, pp. 2590-2594; Tong, S., Chern, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) J Clin Microbiol, 46, pp. 2652-2658; Li, Z., Yu, M., Zhang, H., Wang, H.Y., Wang, L.F., Improved rapid amplification of cDNA ends (RACE) for mapping both the 5' and 3' terminal sequences of paramyxovirus genomes (2005) J Virol Methods, 130, pp. 154-156; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints12 (1938) Am J Epidemiol, 27, pp. 493-497; Simmons, C.P., Bernasconi, N.L., Suguitan, A.L., Mills, K., Ward, J.M., Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza (2007) PLoS Med, 4, p. e178; Bowden, T.R., Bingham, J., Harper, J.A., Boyle, D.B., Menangle virus, a pteropid bat paramyxovirus infectious for pigs and humans, exhibits tropism for secondary lymphoid organs and intestinal epithelium in weaned pigs (2012) J Gen Virol, 93, pp. 1007-1016","Marsh, G.A.; CSIRO Health and Biosecurity, Australian Animal Health LaboratoryAustralia; email: glenn.marsh@csiro.au",,"Microbiology Society",00221317,,JGVIA,"30688635","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85062430767 "Fagre A.C., Kading R.C.","55646070000;55496905300;","Can bats serve as reservoirs for Arboviruses?",2019,"Viruses","11","3", 215,"","",,7,"10.3390/v11030215","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062415388&doi=10.3390%2fv11030215&partnerID=40&md5=78d9ece6e971a39603e8f7e6789f2fa6","Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States","Fagre, A.C., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Kading, R.C., Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States","Bats are known to harbor and transmit many emerging and re‐emerging viruses, many of which are extremely pathogenic in humans but do not cause overt pathology in their bat reservoir hosts: henipaviruses (Nipah and Hendra), filoviruses (Ebola and Marburg), and coronaviruses (SARS‐CoV and MERS‐CoV). Direct transmission cycles are often implicated in these outbreaks, with virus shed in bat feces, urine, and saliva. An additional mode of virus transmission between bats and humans requiring further exploration is the spread of disease via arthropod vectors. Despite the shared ecological niches that bats fill with many hematophagous arthropods (e.g. mosquitoes, ticks, biting midges, etc.) known to play a role in the transmission of medically important arboviruses, knowledge surrounding the potential for bats to act as reservoirs for arboviruses is limited. To this end, a comprehensive literature review was undertaken examining the current understanding and potential for bats to act as reservoirs for viruses transmitted by blood‐feeding arthropods. Serosurveillance and viral isolation from either free‐ranging or captive bats are described in relation to four arboviral groups (Bunyavirales, Flaviviridae, Reoviridae, Togaviridae). Further, ecological associations between bats and hematophagous viral vectors are characterized (e.g. bat bloodmeals in mosquitoes, ingestion of mosquitoes by bats, etc). Lastly, knowledge gaps related to hematophagous ectoparasites (bat bugs and bed bugs (Cimicidae) and bat flies (Nycteribiidae and Streblidae)), in addition to future directions for characterization of bat‐vectorvirus relationships are described. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Arboviruses; Bats; Reservoir; Wildlife; Zoonoses","Arbovirus; Bunyaviridae; Crimean-Congo hemorrhagic fever virus; enzyme linked immunosorbent assay; enzyme linked immunospot assay; Flaviviridae; human; nonhuman; Orthobunyavirus; peribunyaviridae; Phlebovirus; phylogeny; real time polymerase chain reaction; Reoviridae; reverse transcription polymerase chain reaction; Review; seroconversion; Togaviridae; veterinary medicine; virus detection; virus genome; virus identification; virus isolation; virus shedding; virus transmission; animal; Arbovirus; arthropod vector; bat; Dengue virus; Diptera; disease carrier; isolation and purification; mosquito vector; physiology; virology; West Nile virus; Zika virus; zoonosis; Animals; Arboviruses; Arthropod Vectors; Chiroptera; Dengue Virus; Diptera; Disease Reservoirs; Mosquito Vectors; West Nile virus; Zika Virus; Zoonoses","Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev, 19, pp. 531-545; Abdussalam, M., Significance of ecological studies of wild animal reservoirs of zoonoses (1959) Bull. World Health Organ, 21, p. 179; Mims, C.A., The meaning of persistent infections in nature (1975) Bull. World Health Organ, 52, p. 745; Rodhain, F., The idea of natural reservoir in arbovirology (1998) Bull. Soc. Pathol. Exot, 91, pp. 279-282; Haydon, D.T., Cleaveland, S., Taylor, L.H., Laurenson, M.K., Identifying reservoirs of infection: A conceptual and practical challenge (2002) Emerg. Infect. Dis, 8, pp. 1468-1473; Towner, J.S., Amman, B.R., Sealy, T.K., Carroll, S.A.R., Comer, J.A., Kemp, A., Swanepoel, R., Khristova, M.L., Isolation of genetically diverse Marburg viruses from Egyptian fruit bats (2009) Plos Pathog, 5; Amman, B.R., Jones, M.E., Sealy, T.K., Uebelhoer, L.S., Schuh, A.J., Bird, B.H., Coleman-McCray, J.D., Towner, J.S., Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus) (2015) J. Wildl. Dis., 51, pp. 113-124; Schuh, A.J., Amman, B.R., Jones, M.E., Sealy, T.K., Uebelhoer, L.S., Spengler, J.R., Martin, B.E., Towner, J.S., Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats (2017) Nat. Commun., 8, p. 14446; Kuno, G., Mackenzie, J.S., Junglen, S., Hubalek, Z., Plyusnin, A., Gubler, D.J., Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? (2017) Viruses, 9, p. 185; Kading, R.C., Biggerstaff, B.J., Young, G., Komar, N., Mosquitoes used to draw blood for arbovirus viremia determinations in small vertebrates (2014) Plos ONE, 9; Kumm, H.W., Yellow fever transmission experiments with South American bats (1932) Ann. Trop. Med. Parasitol, 26, pp. 207-213; Maes, P., Alkhovsky, S.V., Bào, Y., Beer, M., Birkhead, M., Briese, T., Buchmeier, M.J., Choi, I.R., Taxonomy of the family Arenaviridae and the order Bunyavirales: Update 2018 (2018) Arch. Virol, 163, pp. 2295-2310; Guo, W., Lin, A., Wang, B., Tian, J., Cong, C., Zhang, A., Wang, F., Li, D., Phylogeny and Origins of Hantaviruses Harbored by Bats, Insectivores, and Rodents (2013) PLOS Pathog, 9; Tonbak, S., Aktas, M., Altay, K., Azkur, A.K., Kalkan, A., Bolat, Y., Dumanli, N., Ozdarendeli, A., Crimean‐ Congo hemorrhagic fever virus: Genetic analysis and tick survey in Turkey (2006) J. Clin. Microbiol, 44, pp. 4120-4124; Müller, M.A., Devignot, S., Lattwein, E., Corman, V.M., Maganga, G.D., Gloza-Rausch, F., Binger, T., Cottontail, V.M., Evidence for widespread infection of African bats with Crimean (2016) Sci. Rep., 6, p. 26637; Tkachenko, E., Khanun, K., Berezin, V., Serological investigation of human and animal sera in agar gel diffusion and precipitation (AGDP) test for the presence of antibodies of Crimean hemorrhagic fever and Grand Arbaud viruses (1969) In English, NAMRU3, p. 16; Saidi, S., Casals, J., Faghih, M., Crimean hemorrhagic fever‐Congo (CHF‐C) virus antibodies in man, and in domestic and small mammals, in Iran (1975) Am. J. Trop. Med. Hyg, 24, pp. 353-357; Luz, H.R., Munoz-Leal, S., Almeida, J.C., Faccini, J.L., Labruna, M.B., Ticks parasitizing bats (Mammalia: Chiroptera) in the Caatinga Biome, Brazil (2016) Rev. Bras. Parasitol. Vet., 25, pp. 484-491; Schuh, A.J., Amman, B.R., Apanaskevich, D.A., Sealy, T.K., Nichol, S.T., Towner, J.S., No evidence for the involvement of the argasid tick Ornithodoros faini in the enzootic maintenance of marburgvirus within Egyptian rousette bats Rousettus aegyptiacus (2016) Parasit. Vectors, 9, p. 128; Hornok, S., Gorfol, T., Estok, P., Tu, V.T., Kontschan, J., Description of a new tick species, Ixodes collaris n. Sp. (Acari: Ixodidae), from bats (Chiroptera: Hipposideridae, Rhinolophidae) in Vietnam (2016) Parasit. Vectors, 9, p. 332; Williams, J.E., Imlarp, S., Top, F.H., Jr., Cavanaugh, D.C., Russell, P.K., Kaeng Khoi virus from naturally infected bedbugs (Cimicidae) and immature free (1976) Bull. World Health Organ, 53, p. 365; Neill, W., Kaeng, K., (1985) International Catalogue of Arboviruses including Certain Other Virus of Vertebrates, pp. 533-534. , 3rd ed.; Am Soc Trop Med Hyg: San Antonio, TX, USA; Spence, L., Anderson, C.R., Aitken, T.H.G., Downs, W.G., Nepuyo Virus, a New Group C Agent Isolated in Trinidad and Brazil (1966) Am. J. Trop. Med. Hyg, 15, pp. 71-74; Calisher, C.H., Chappell, W.A., Maness, K.S.C., Lord, R.D., Sudia, W.D., Isolations of Nepuyo Virus Strains from Honduras, 1967 (1971) Am. J. Trop. Med. Hyg., 20, pp. 331-337; Price, J.L., Serological Evidence of Infection of Tacaribe Virus and Arboviruses in Trinidadian Bats (1978) Am. J. Trop. Med. Hyg, 27, pp. 162-167; Chiang, J.O., De Souza, W.M., Nunes, M.R.T., Acrani, G.O., De Freitas, N.M., Da Silva, S.P., Da Silva, P.H.D., Quaresma, J.A.S., Characterization of the Gamboa virus serogroup (Orthobunyavirus genus, Peribunyaviridae family) (2018) , 98, pp. 1502-1511; Oelofsen, M., Van Der Ryst, E., Could bats act as reservoir hosts for Rift Valley fever virus? Onderstepoort (1999) J. Vet. Res, 66, pp. 51-54; Balkema-Buschmann, A., Rissmann, M., Kley, N., Ulrich, R., Eiden, M., Groschup, M.H., Productive Propagation of Rift Valley Fever Phlebovirus Vaccine Strain MP‐12 in Rousettus aegyptiacus Fruit Bats (2018) Viruses, 10, p. 681; Kading, R.C., Kityo, R.M., Mossel, E.C., Borland, E.M., Nakayiki, T., Nalikka, B., Nyakarahuka, L., Gilbert, A.T., Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats (2018) Infect. Ecol. Epidemiol, 8; Nyakarahuka, L., De St Maurice, A., Purpura, L., Ervin, E., Balinandi, S., Tumusiime, A., Kyondo, J., Lutwama, J., Prevalence and risk factors of Rift Valley fever in humans and animals from Kabale district in Southwestern Uganda, 2016 (2018) Plos Negl. Trop. Dis, 12; Chippaux, A., Chippaux-Hyppolite, C., Isolation of an Arbovirus Strain from Salivary Glands of Bats at Bangui (Central African Republic) (1965) Bull. Soc. Pathol. Exot, 58, pp. 164-169; Karabatsos, N., International catalogue of arthropod (1985) American Society for Tropical Medicine and Hygiene, p. 3. , US department of Health, Education, and Welfare: San Antonio, TX, USA; Wanzeller, A.L., Diniz, J.A., Gomes, M.L., Cruz, A.C., Soares, M.C., De Souza, W., Travassos Da Rosa, A.P., Vasconcelos, P.F., Ultrastructural, antigenic and physicochemical characterization of the Mojui dos Campos (Bunyavirus) isolated from bat in the Brazilian Amazon region (2002) Mem. Inst. Oswaldo Cruz, 97, pp. 307-311; Dacheux, L., Cervantes-Gonzalez, M., Guigon, G., Thiberge, J., Vandenbogaert, F., Maufrais, C., Caro, V., Bourhy, H., A preliminary study of viral metagenomics of French bat species in contact with humans: Identification of new mammalian viruses (2014) Plos ONE, 9; Walker, P.J., Widen, S.G., Firth, C., Blasdell, K.R., Wood, T.G., Travassos Da Rosa, A.P.A., Guzman, H., Vasilakis, N., Genomic Characterization of Yogue, Kasokero, Issyk (2015) Am. J. Trop. Med. Hyg., 93, pp. 1041-1051; Lvov, D., Karas, F., Timofeev, E., Tsyrkin, Y.M., Vargina, S., Veselovskaya, O., Osipova, N., Steblyanko, S., “Issyk (1973) Arch. Gesamte Virusforsch, 42, pp. 207-209; Kalunda, M., Mukwaya, L., Mukuye, A., Lule, M., Sekyalo, E., Wright, J., Casals, J., Kasokero virus: A new human pathogen from bats (Rousettus aegyptiacus) in Uganda (1986) Am. J. Trop. Med. Hyg, 35, pp. 387-392; Zeller, H.G., Karabatsos, N., Calisher, C.H., Digoutte, J.P., Cropp, C.B., Murphy, F.A., Shope, R.E., Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the familyBunyaviridae (1989) Arch. Virol, 108, pp. 211-227; Varma, M., Converse, J., Keterah virus infections in four species of Argas ticks (Ixodoidea: Argasidae) (1976) J. Med. Entomol, 13, pp. 65-70; Ishii, A., Ueno, K., Orba, Y., Sasaki, M., Moonga, L., Hang’Ombe, B.M., Mweene, A.S., Hall, W.W., A nairovirus isolated from African bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice (2014) Nat. Commun, 5, p. 5651; Al’Khovskii, S.V., L’Vov, D.K., Shchelkanov, M., Deriabin, P.G., Shchetinin, A.M., Samokhvalov, E.I., Aristova, V.A., Botikov, A.G., [Genetic characterization of the Uzun (2014) Vopr. Virusol, 59, pp. 23-26; Reagan, R.L., Delaha, E.C., Stewart, M.T., Brueckner, A.L., Effect of Semliki Forest virus and Bunyamwera virus in the cave bat (Myotus lucifugus) (1954) Cornell Vet, 44, pp. 298-301; Simpson Di Fau-O’Sullivan, J.P., O’Sullivan, J.P., Studies on arboviruses and bats (Chiroptera) in East Africa (1968) I. Experimental Infection of Bats and Virus Transssion Attempts in Aedes (Stegomyia) Aegypti (Linnaeus); Shepherd, R., Williams, M., Studies on viruses in East African bats (Chiroptera). 1. Haemagglutination inhibition and circulation of arboviruses (1964) Zoonoses Res, 3, pp. 125-139; Williams, M.C., Simpson, D.I., Shepherd, R.C., BATS AND ARBOVIRUSES IN EAST AFRICA (1964) Nature, 203, p. 670; Simpson, D., Williams, M., O’Sullivan, J., Cunningham, J., Mutere, F., Studies on arboviruses and bats (Chiroptera) in East Africa: II.—Isolation and haemagglutination (1968) . Ann. Trop. Med. Parasitol., 62, pp. 432-440; Main, A.J., Virologic and serologic survey for eastern equine encephalomyelitis and certain other viruses in colonial bats of New England (1979) J. Wildl. Dis, 15, pp. 455-466; Osborne, J.C., Rupprecht, C.E., Olson, J.G., Ksiazek, T.G., Rollin, P.E., Niezgoda, M., Goldsmith, C.S., Nichol, S.T., Isolation of Kaeng Khoi virus from dead Chaerephon plicata bats in Cambodia (2003) J. Gen. Virol, 84, pp. 2685-2689; Groseth, A., Mampilli, V., Weisend, C., Dahlstrom, E., Porcella, S.F., Russell, B.J., Tesh, R.B., Ebihara, H., Molecular characterization of human pathogenic bunyaviruses of the Nyando and Bwamba/Pongola virus groups leads to the genetic identification of Mojuí dos Campos and Kaeng Khoi virus (2014) Plos Negl. Trop. Dis, 8; Mourya, D.T., Yadav, P.D., Basu, A., Shete, A., Patil, D.Y., Zawar, D., Majumdar, T.D., Raut, C.G., Malsoor virus, a novel bat phlebovirus, is closely related to severe fever with thrombocytopenia syndrome virus and heartland virus (2014) J. Virol, 88, pp. 3605-3609; Boiro, I., Konstaninov, O.K., Numerov, A.D., [Isolation of Rift Valley fever virus from bats in the Republic of Guinea] (1987) Bull. Soc. Pathol. Exot. Fil, 80, pp. 62-67; Konstantinov, O., Diallo, S., Inapogi, A., Ba, A., Kamara, S., The mammals of Guinea as reservoirs and carriers of arboviruses (2006) Med. Parazitol. Parazit. Bolezn, 1, pp. 34-39; Olive, M., Goodman, D., Reynes, J., The role of wild mammals in the maintenance of Rift Valley fever virus (2012) J. Wildl. Dis, 48, pp. 241-266; Verani, P., Ciufolini, M.G., Nicoletti, L., Balducci, M., Sabatinelli, G., Coluzzi, M., Paci, P., Amaducci, L., [Ecological and epidemiological studies of Toscana virus, an arbovirus isolated from Phlebotomus] (1982) Ann. Dell’Istituto Super. Sanit, 18, pp. 397-399; Verani, P., Ciufolini, M.G., Caciolli, S., Renzi, A., Nicoletti, L., Sabatinelli, G., Bartolozzi, D., Coluzzi, M., Ecology of viruses isolated from sand flies in Italy and characterized of a new Phlebovirus (Arabia virus) (1988) Am. J. Trop. Med. Hyg, 38, pp. 433-439; Blitvich, B.J., Firth, A.E., A Review of Flaviviruses that Have No Known Arthropod Vector (2017) Viruses, 9, p. 154; Perea-Martínez, L., Moreno-Sandoval, H., Moreno-Altamirano, M.M., Salas-Rojas, M., García-Flores, M., Aréchiga-Ceballos, N., Tordo, N., Aguilar-Setién, A., Experimental infection of Artibeus intermedius bats with serotype (2013) Comp. Immunol. Microbiol. Infect. Dis, 36, pp. 193-198; Cabrera-Romo, S., Recio-Totoro, B., Alcala, A.C., Lanz, H., Del Angel, R.M., Sanchez-Cordero, V., Rodriguez-Moreno, A., Ludert, J.E., Experimental inoculation of Artibeus jamaicensis bats with dengue virus serotypes 1 or 4 showed no evidence of sustained replication (2014) Am. J. Trop. Med. Hyg, 91; Sotomayor-Bonilla, J., Chaves, A., Rico-Chávez, O., Rostal, M.K., Ojeda-Flores, R., Salas-Rojas, M., Aguilar-Setien, Á., Gutiérrez-Espeleta, G., Dengue virus in bats from southeastern Mexico (2014) Am. J. Trop. Med. Hyg, 91, pp. 129-131; Shah, K.V., Daniel, R.W., Attempts at experimental infection of the Indian fruit‐bat Pteropus giganteus with chikungunya and dengue 2 viruses and antibody survey of bat sera for some viruses (1966) Indian J. Med. Res, 54, pp. 714-722; Reagan, R.L., Brueckner, A.L., Studies of dengue fever virus in the cave bat (Myotus lucifugus) (1952) J. Infect. Dis, 91, pp. 145-146; Aguilar-Setién, A., Romero-Almaraz, M., Sánchez-Hernández, C., Figueroa, R., Juárez-Palma, L., Garcia-Flores, M., Vázquez-Salinas, C., Pierlé, S.A., Dengue virus in Mexican bats (2008) Epidemiol. Infect, 136, pp. 1678-1683; Thoisy, B.D., Lacoste, V., Germain, A., Muñoz-Jordán, J., Colón, C., Mauffrey, J., Delaval, F., Matheus, S., Dengue infection in neotropical forest mammals (2009) Vector‐Borne Zoonotic Dis, 9, pp. 157-170; Cabrera-Romo, S., Max Ramirez, C., Recio-Totoro, B., Tolentino-Chi, J., Lanz, H., Del Angel, R.M., Sanchez-Cordero, V., Ludert, J.E., No Evidence of Dengue Virus Infections in Several Species of Bats Captured in Central and Southern Mexico (2016) Zoonoses Public Health, 63, pp. 579-583; Vicente-Santos, A., Moreira-Soto, A., Soto-Garita, C., Chaverri, L.G., Chaves, A., Drexler, J.F., Morales, J.A., Corrales-Aguilar, E., Neotropical bats that co (2017) Plos Negl. Trop. Dis, 11; Stone, D., Lyons, A., Huang, Y.J., Vanlandingham, D., Higgs, S., Blitvich, B., Adesiyun, A., Cheetham, S., Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus (2018) Zoonoses Public Health, 65, pp. 505-511; La Motte, L.C., Jr., Japanese B encephalitis in bats during simulated hibernation (1958) Am. J. Hyg, 67; Sulkin, S., The bat as a reservoir of viruses in nature (1962) Prog. Med. Virol, 4, pp. 157-207; Sulkin, S.E., Allen, R., Sims, R., Studies of arthropod (1963) Am. J. Trop. Med. Hyg., 12, pp. 800-814; Ito, T., Saito, S., Susceptibility of bats to Japanese B encephalitis virus (1952) Jpn. J. Bacteriol, 7, pp. 617-622; Cross, J., Japanese encephalitis virus surveillance in Taiwan. II. Isolations from mosquitoes and bats in Taipei area 1969-1970 (1971) J. Formos. Med. Assoc, 70, pp. 681-686; Wang, J., Pan, D., Zhang, D., Fu, G., Wang, F., Tang, V., Wang, L., Liang, F., Japanese encephalitis viruses from bats in Yunnan (2009) China. Emerg. Infect. Dis, 15, pp. 939-942; Zhang, H., Zhang, Y., Huang, W., Mi, Z., Gong, H., Wang, J., Isolation of Japanese encephalitis virus from brain tissues of bat in Yunnan Province (2001) Virol. Sin, 16, pp. 74-77; Sulkin, S.E., Allen, R., Miura, T., Toyokawa, K., Studies of arthropod‐borne virus infections in chiroptera. VI. Isolation of Japanese B encephalitis virus from naturally infected bats (1970) Am. J. Trop. Med. Hyg, 19, pp. 77-87; Olson, J.G., Ksiazek, T.G., Gubler, D.J., Lubis, S.I., Simanjuntak, G., Lee, V.H., Nalim, S., See, R., A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia (1983) Ann. Trop. Med. Parasitol., 77, pp. 131-137; Cui, J., Counor, D., Shen, D., Sun, G., He, H., Deubel, V., Zhang, S., Detection of Japanese encephalitis virus antibodies in bats in Southern China (2008) Am. J. Trop. Med. Hyg, 78, pp. 1007-1011; Jiang, L., Chen, S., Zheng, X., Ma, S., Zhou, J., Zhang, Q., Li, X., Wang, Z., Detection of serum antibodies against Japanese encephalitis virus in bats in Hainan and Guangdong Provinces of China (2015) J. South. Med. Univ., 35, pp. 720-723; Rowan, L., O’Connor, J., Relationship between some coastal fauna and arthropod‐borne fevers of North Queensland (1957) Nature, 179, p. 786; Wang, S.P., Grayston, J.T., Chu, I.H., Encephalitis on Taiwan. V. Animal and bird serology (1962) Am. J. Trop. Med. Hyg., 11, pp. 155-158; Kaul, H., Venkateshan, C., Mishra, A., Modi, G., Ghosh, S., Serological evidence of arbovirus activity in birds and small mammals in Japanese encephalitis affected areas of Bankura district, West Bengal (1976) Indian J. Med. Res., 64, pp. 1735-1739; Carey, D., Reuben, R., Myers, R., George, S., Japanese encephalitis studies in Vellore, South India. Part IV. Search for virological and serological evidence of infection in animals other than man (1968) Indian J. Med. Res., 56, pp. 1340-1352; Banerjee, K., Bhat, H., Geevarghese, G., Jacob, P.G., Malunjkar, A., Antibodies against Japanese encephalitis virus in insectivorous bats from Karnataka (1988) Indian J. Med. Res, 87, p. 527; Miura, T., Toyokawa, K., Allen, R., Sulkin, S.E., Studies of arthropod‐borne virus infections in chiroptera. VII. Serologic evidence of natural Japanese B encephalitis virus infection in bats (1970) Am. J. Trop. Med. Hyg, 19, pp. 88-93; Liu, S., Li, X., Chen, Z., Chen, Y., Zhang, Q., Liao, Y., Zhou, J., Xiao, J., Comparison of genomic and amino acid sequences of eight Japanese encephalitis virus isolates from bats (2013) . Arch. Virol., 158, pp. 2543-2552; Herbold, J., Heuschele, W., Berry, R., Parsons, M., Reservoir of St. Louis encephalitis virus in Ohio bats (1983) Am. J. Vet. Res, 44, pp. 1889-1893; Pilipski, J.D., Pilipski, L.M., Risley, L.S., West Nile virus antibodies in bats from New Jersey and New York (2004) J. Wildl. Dis., 40, pp. 335-337; Sulkin, S., Sims, R., Allen, R., Studies of Arthropod (1964) Am. J. Trop. Med. Hyg., 13, pp. 475-481; Thompson, N., Auguste, A., Travassos Da Rosa, A., Carrington, C., Blitvich, B., Chadee, D., Tesh, R., Adesiyun, A., Seroepidemiology of selected alphaviruses and flaviviruses in bats in Trinidad (2015) Zoonoses Public Health, 62, pp. 53-60; Sotomayor-Bonilla, J., Abella-Medrano, C.A., Chaves, A., Alvarez-Mendizabal, P., Rico-Chavez, O., Ibanez- Bernal, S., Rostal, M.K., Gutierrez-Espeleta, G., Potential Sympatric Vectors and Mammalian Hosts of Venezuelan Equine Encephalitis Virus in Southern Mexico (2017) J. Wildl. Dis, 53, pp. 657-661; Bunde, J.M., Heske, E.J., Mateus-Pinilla, N.E., Hofmann, J.E., Novak, R.J., A survey for West Nile virus in bats from Illinois (2006) J. Wildl. Dis., 42, pp. 455-458; Davis, A., Bunning, M., Fau-Gordy, P., Gordy, P., Fau-Panella, N., Panella, N., Fau-Blitvich, B., Bowen, R., Experimental and Natural Infection of North American Bats with West Nile Virus; Hughes, T.P., Perlowagora, A., The Reaction of Certain Species of Bats to Yellow Fever Virus1 (1948) Am. J. Trop. Med. Hyg, 1, pp. 101-105; Kwagonza, L., Masiira, B., Kyobe-Bosa, H., Kadobera, D., Atuheire, E.B., Lubwama, B., Kagirita, A., Lutwama, J.J., Outbreak of yellow fever in central and southwestern Uganda, February (2018) . BMC Infect. Dis., 18, p. 548; Reagan, R.L., Rumbaugh, H., Nelson, H., Brueckner, A.L., Effect of Zika Virus and Bwamba Virus in the Cave Bat (Myotus lucifugus) (1955) Trans. Am. Microsc. Soc., 74, pp. 77-79; Kading, R.C., Schountz, T., Flavivirus Infections of Bats: Potential Role in Zika Virus Ecology (2016) Am. J. Trop. Med. Hyg, 95, pp. 993-996; Calisher, C.H., Karabatsos, N., Dalrymple, J.M., Shope, R.E., Porterfield, J.S., Westaway, E.G., Brandt, W.E., Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera (1989) J. Gen. Virol, 70, pp. 37-43; Serologic evidence of flavivirus infection in bats in the Yucatan Peninsula of Mexico (2013) J. Wildl. Dis, 49, pp. 684-689. , Machain-Williams, C.; Lopez-Uribe, M.; Talavera-Aguilar, L.; Carrillo-Navarrete, J.; Vera-Escalante, L.; Puerto-Manzano, F.; Ulloa, A.; Farfan-Ale, J.A.; Garcia-Rejon, J.; Blitvich, B.J., et al; Sotomayor-Bonilla, J., Garcia-Suarez, O., Cigarroa-Toledo, N., Cetina-Trejo, R.C., Espinosa-Garcia, A.C., Sarmiento-Silva, R.E., Machain-Williams, C., Suzan, G., Survey of mosquito (2018) Trop. Med. Health, 46, p. 35; Bittar, C., Machado, R.R.G., Comelis, M.T., Bueno, L.M., Morielle-Versute, E., Beguelini, M.R., De Souza, R.P., Rahal, P., Lack of serological and molecular evidence of arbovirus infections in bats from Brazil (2018) Plos ONE, 13; Abundes-Gallegos, J., Salas-Rojas, M., Galvez-Romero, G., Perea-Martinez, L., Obregon-Morales, C.Y., Morales-Malacara, J.B., Chomel, B.B., Garcia-Baltazar, A., Detection of Dengue Virus in Bat Flies (Diptera: Streblidae) of Common Vampire Bats, Desmodus rotundus, in Progreso, Hidalgo, Mexico (2018) Vector Borne Zoonotic Dis. (Larchmont, N.Y.), 18, pp. 70-73; Platt, K.B., Mangiafico, J.A., Rocha, O.J., Zaldivar, M.E., Mora, J., Trueba, G., Rowley, W.A., Detection of dengue virus neutralizing antibodies in bats from Costa Rica and Ecuador (2000) J. Med. Entomol, 37, pp. 965-967; O’Connor, J., Rowan, L., Lawrence, J., Relationships between the flying fox (Genus Pteropus) and arthropod-borne fevers of North Queensland (1955) Nature, 176, p. 472; Perea-Martinez, L., Moreno-Sandoval, H.N., Moreno-Altamirano, M.M., Salas-Rojas, M., Garcia-Flores, M.M., Arechiga-Ceballos, N., Tordo, N., Aguilar-Setien, A., Experimental infection of Artibeus intermedius bats with serotype (2013) Comp. Immunol. Microbiol. Infect. Dis, 36; Sulkin, S.E., Allen, R., Sims, R., Singh, K.V., Studies of arthropod-borne virus infections in Chiroptera. IV. The immune response of the big brown bat (Eptesicus f. fuscus) maintained at various environmental temperatures to experimental Japanese B encephalitis virus infection (1966) Am. J. Trop. Med. Hyg., 15, pp. 418-427; Sulkin, S., Allen, R., Sims, R., Studies of arthropod (1966) Am. J. Trop. Med. Hyg., 15, pp. 406-417; Van Den Hurk, A.F., Smith, C.S., Field, H.E., Smith, I.L., Northill, J.A., Taylor, C.T., Jansen, C.C., Mackenzie, J.S., Transmission of Japanese encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia (2009) Am. J. Trop. Med. Hyg, 81, pp. 457-462; Banerjee, K., Ilkal, M., Deshmukh, P., Susceptibility of Cynopterus sphinx (Frugivorus bat) & Suncus murinus (house shrew) to Japanese encephalitis virus. Indian (1984) J. Med. Res, 79, pp. 8-12; Rajagopalan, P., Paul, S.D., Sreenivasan, M., Isolation of Kyasanur Forest disease virus from the insectivorous bat, Rhinolophus rouxi and from Ornithodoros ticks (1969) Indian J. Med. Res., 57, pp. 805-808; Pavri, K., Singh, K., Kyasanur forest disease virus infection in the frugivorous bat, Cynopterus sphinx. Indian (1968) J. Med. Res, 56, pp. 1202-1204; Pavri, K.M., Singh, K.R., Demonstration of antibodies against the virus of Kyasanur Forest disease (KFD) in the frugivorous bat Rousettus leschenaulti, near Poona, India. Indian (1965) J. Med. Res, 53, pp. 956-961; Stanley, N.F., Choo, S.B., STUDIES OF ARBOVIRUSES IN WESTERN AUSTRALIA. SEROLOGICAL EPIDEMIOLOGY (1964) Bull. World Health Organ, 30, pp. 221-226; Doherty, R., Standfast, H., Domrow, R., Wetters, E., Whitehead, R., Carley, J., Studies of the epidemiology of arthropod-borne virus infections at Mitchell River Mission, Cape York Peninsula, North Queensland IV. Arbovirus infections of mosquitoes and mammals, 1967-1969 (1971) Trans. R. Soc. Trop. Med. Hyg, 65; Ubico, S.R., McLean, R.G., Serologic survey of neotropical bats in Guatemala for virus antibodies (1995) J. Wildl. Dis, 31, pp. 1-9; Sulkin, S.E., Allen, R., Sims, R., Studies of arthropod-borne virus infections in chiroptera. I. Susceptibility of insectivorous species to experimental infection with japanese b and st. Louis encephalitis viruses (1963) Am J Trop Med Hyg, 12, p. 800; Sulkin, S.E., Sims, R.A., Allen, R., Isolation of St. Louis encephalitis virus from bats (Tadarida b. mexicana) in Texas (1966) Science, 152, pp. 223-225; Rueger, M.E., Olson, T.A., Price, R.D., Studies of potential avian, arthropod and mammalian hosts of mosquito-borne arboviruses in the Minnesota area (1966) Am. J. Epidemiol., 83, pp. 33-37; Sulkin, S.E., Allen, R., Sims, R., Lipotropism in pathogenesis of encephalitis viruses in insectivorous bats (1960) Virology, 11, pp. 302-306; Allen, R., Taylor, S.K., Sulkin, S.E., Studies of Arthropod-Borne Virus Infections in Chiroptera (1970) Am. J. Trop. Med. Hyg, 19, pp. 851-859; Nosek, J., Gresikova, M., Rehacek, J., Persistence of Tick-Borne Encephalitis Virus in Hibernating Bats (1961) Acta Virologica, 5, pp. 112-116; Havlik, O., Kolman, J., The demonstration of antibodies against the virus of the tick-borne encephalitis in certain bats (1957) J. Hyg. Epidemiol. Microbiol. Immunol, 1, pp. 231-233; Kolman, J., Fischer, J., Havlik, O., Experimental infection of bats species Myotis myotis Borkhausen with the Czechoslovak tick-borne encephalitis virus (1960) Acta Univ. Carol. Med, 6, p. 147; Akov, Y., Goldwasser, R., Prevalence of antibodies to arboviruses in various animals in Israel (1966) Bull. World Health Organ, 34, pp. 901-909; Andral, L., Bres, P., Serie, C., Casals, J., Panthier, R., [Studies on yellow fever in Ethiopia. 3. Serological and virological studies of the woodland fauna] (1968) Bull. World Health Organ, 38, pp. 855-861; Paul, S., Rajagopalan, P., Sreenivasan, M., Isolation of the West Nile virus from the frugivorous bat, Rousettus leschenaulti (1970) Indian J. Med. Res, 58, pp. 1169-1171; Haddow, A., Williams, M., Woodall, J., Simpson, D., Goma, L., Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest (1964) Bull. World Health Organ, 31, p. 57; Laemmert, H.W., Ferreira, L.D.C., Taylor, R.M., Part II—Investigations of Vertebrate Hosts and Arthropod Vectors (1946) Am. J. Trop. Med. Hyg, 26, pp. 23-69; Sérié, C., Andral, L., Poirier, A., Lindrec, A., Neri, P., YELLOW FEVER IN ETHIOPIA. 6. EPIDEMIOLOGY (1968) Bull. World Health Organ, 38, p. 879; Reagan, B., Chang, S., Beueckner, A., Study by Electron Microscopy of Erythrocytes from Cave Bats (Myotus lucifugus) infected intraperitoneally with Yellow Fever Virus (17D Strain) (1955) Texas Rep. Biol. Med, 13, pp. 470-474; Weiss, S., Dabrowski, P.W., Kurth, A., Leendertz, S.A.J., Leendertz, F.H., A novel Coltivirus (2017) Virol. J, 14, p. 181; Chastel, C., Main, A.J., Couatarmanac’H, A., Le Lay, G., Knudson, D.L., Quillien, M.C., Beaucournu, J.C., Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France (1984) Arch. Virol, 82, pp. 161-171; Fagre, A.C., Lee, J.S., Kityo, R.M., Bergren, N.A., Mossel, E.C., Nakayiki, T., Nalikka, B., Peterhans, J.K., Discovery and Characterization of Bukakata orbivirus (Reoviridae:Orbivirus), a Novel Virus from a Ugandan Bat (2019) Viruses, 11, p. 209; (2017) Arbovirus Catalog: Chobar Gorge, , https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=111&SID=5; Attoui, H., Mendez-Lopez, M.R., Rao, S., Hurtado-Alendes, A., Lizaraso-Caparo, F., Jaafar, F.M., Samuel, A.R., Melville, L., Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia (2009) Virology, 394, pp. 298-310; (2017) Arbovirus Catalog: Fomede, , https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=149&SID=2; Boiro, I., Fidarov, F., Lomonossov, N., Linev, M., Bachkirsov, V., Inapogui, A., Isolation of the Fomédé virus from Chiroptera, Nycteris nana, in the Republic of Guinea (1986) Bull. Soc. Pathol. Exot. Fil, 79, pp. 180-182; Butenko, A., Arbovirus circulation in the Republic of Guinea (1996) Med. Parazitol. Parazit. Bolezn, pp. 40-45; Miura, T., Kitaoka, M., Viruses isolated from bats in Japan (1977) Arch. Virol, 53, pp. 281-286; Zhao, G., Krishnamurthy, S., Cai, Z., Popov, V.L., Travassos Da Rosa, A.P., Guzman, H., Cao, S., Wang, D., Identification of Novel Viruses Using VirusHunter—An Automated Data Analysis Pipeline (2013) Plos ONE, 8; Kemp, G., Le, G.G., Karabatsos, N., Rickenbach, A., Cropp, C., A new African orbivirus isolated from Eidolon helvum bats captured in Nigeria, Cameroon and the Central African Republic (1988) Bull. Soc. Pathol. Exot. Fil, 81, pp. 40-48; (2017) Arbovirus Catalog: Ife, , https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=187&SID=4; Schnagl, R.D., Holmes, I.H., Electron microscopy of Japanaut and Tilligerry viruses: Two proposed members of the orbivirus group (1975) Aust. J. Biol. Sci., 28, pp. 425-432; (2017) Arbovirus Catalog: Japanaut, , https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=207; Justines, G., Kuns, M., Matucare virus, a new agent recovered from Ornithodoros (Alectorobius) boliviensis (1970) Am. J. Trop. Med. Hyg, 19, pp. 697-702; Higgs, S., Vanlandingham, D., Chikungunya virus and its mosquito vectors (2015) Vector Borne Zoonotic Dis. (Larchmont, N.Y.), 15, pp. 231-240; Bosco-Lauth, A.M., Nemeth, N.M., Kohler, D.J., Bowen, R.A., Viremia in North American Mammals and Birds After Experimental Infection with Chikungunya Viruses (2016) Am. J. Trop. Med. Hyg, 94, pp. 504-506; Bosco-Lauth, A.M., Hartwig, A.E., Bowen, R.A., Reptiles and Amphibians as Potential Reservoir Hosts of Chikungunya Virus (2018) Am. J. Trop. Med. Hyg, 98, pp. 841-844; Lindsey, N.P., Prince, H.E., Kosoy, O., Laven, J., Messenger, S., Staples, J.E., Fischer, M., Chikungunya virus infections among travelers-United States, 2010-2013 (2015) Am. J. Trop. Med. Hyg, 92, pp. 82-87; Main, A.J., Eastern equine encephalomyelitis virus in experimentally infected bats (1979) J. Wildl. Dis, 15, pp. 467-477; Mossel, E.C., Crabtree, M.B., Mutebi, J.P., Lutwama, J.J., Borland, E.M., Powers, A.M., Miller, B.R., Arboviruses Isolated From Mosquitoes Collected in Uganda, 2008-2012 (2017) J Med Entomol, 54, p. 1403; Crabtree, M.B., Kading, R.C., Mutebi, J., Lutwama, -P.J.J., Miller, B.R., Identification of host blood from engorged mosquitoes collected in western Uganda using cytochrome oxidase I gene sequences (2013) J. Wildl. Dis, 49, pp. 611-626; Ryan, P.A., Martin, L., Mackenzie, J.S., Kay, B.H., Investigation of gray-headed flying foxes (Pteropus poliocephalus) (Megachiroptera: Pteropodidae) and mosquitoes in the ecology of Ross River virus in Australia (1997) Am. J. Trop. Med. Hyg, 57, pp. 476-482; Zhang, H., Shi, H., Liu, L., Yu, Y., Zi, D., Li, Z., Zhang, T., Wang, Z., Isolation of Chikungunya virus from bat in Yunnan Province and serological investigations (1989) Chin. J. Virol., 5, pp. 31-36; Bres, P., Chambon, L., Pape, Y., Michel, R., Les arbovirus au Senegal. II. Isolement de plusieurs souches (1963) Bull. Soc. Med. Afr. Noire Lang. Fr, 8, pp. 710-712; Brès, P., Chambon, L., Techniques pour letude de linfestation naturelle des chauves-souris par les arbovirus-interet epidemiologique au senegal Proceedings of Annales De L Institut Pasteur; Masson Editeur, p. 1964. , Paris, France; Banerjee, K., Ilkal, M., Bhat, H., Ma, S., Indian, J., (1979) Med. Res, 70, p. 364; Karstad, L., Hanson, R., Infections in wildlife with the viruses of vesicular stomatitis and eastern equine encephalomyelitis (1965) Proceedings of the Trans N am Wildl Conf, pp. 175-186. , Washington, DC, USA, 14-17 June; Daniels, J., Stuart, G., Wheeler, R., Gifford, C., Ahearn, J., Philbrook, F., Hayes, R., Maccready, R., A search for encephalitis and rabies in bats of eastern Massachusetts (1960) N. Engl.J. Med., 263, pp. 516-520; Woodall, J.P., Virus research in Amazonia (1967) Atas Do Simpósio Sobre a Biota Amazônica (Patologia), p. 6; Gard, G., Marshall, I.D., Woodroofe, G.M., Annually recurrent epidemic polyarthritis and Ross River virus activity in a coastal area of New South Wales. II. Mosquitoes, viruses, and wildlife (1973) Am. J. Trop. Med. Hyg, 22, pp. 551-560; Reagan, R.L., Yancey, F.S., Chang, S.C., Brueckner, A., Studies of the Sindbis Virus. Part I. Susceptibility of the Cave Bat by Various Routes of Exposure (1956) Am. J. Trop. Med. Hyg, 5, pp. 1032-1033; Blackburn, N., Foggin, C., Searle, L., Smith, P., Isolation of Sindbis virus from bat organs (1982) Cent. Afr. J. Med, 28, p. 201; Guzman, C., Calderon, A., Martinez, C., Oviedo, M., Mattar, S., Eco (2018) Acta Trop, 191, pp. 178-184; Wong-Chia, C., Scherer, W.F., (1971) Aislamiento Del Virus De La Encefalitis Venezolana De Un murciélago Frugivoro (Artibeus Turpis) En México; Grayson, M.A., Galindo, P., Epidemiologic studies of Venezuelan equine encephalitis virus in Almirante, Panama (1968) Am. J. Epidemiol, 88, pp. 80-96; Corristan, E., Lamotte, L., Smith, D., Susceptibility of bats to certain encephalitis viruses In Proceedings of Fed. Proc, 584p; Corristan, E., La Motte, L., Smith, D., Experimental encephalitis in bats Proceedings of CDC Confernce Teachers Vet. Pub. Health Prevent. Med. Pub. Health Workers, pp. 135-139; Correa-Giron, P., Calisher, C.H., Baer, G.M., Epidemic strain of Venezuelan equine encephalomyelitis virus from a vampire bat captured in Oaxaca, Mexico, 1970 (1972) Science, 175, pp. 546-547; McLean, R.G., Trevino, H.A., Sather, G.E., Prevalence of selected zoonotic diseases in vertebrates from Haiti, 1972 (1979) J. Wildl. Dis, 15, pp. 327-330; Fritz, G.N., Biology and ecology of bat flies (Diptera: Streblidae) on bats in the genus Carollia (1983) J. Med. Entomol, 20, pp. 1-10; Patterson, B.D., Dick, C.W., Dittmar, K., Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae) (2007) J. Trop. Ecol, 23, pp. 177-189; Bertola, P.B., Aires, C.C., Favorito, S.E., Graciolli, G., Amaku, M., Pinto-Da-rocha, R., Bat flies (Diptera: Streblidae, Nycteribiidae) parasitic on bats (Mammalia: Chiroptera) at Parque Estadual da Cantareira, São Paulo, Brazil: Parasitism rates and host (2005) Mem. Inst. Oswaldo Cruz, 100, pp. 25-32; Balvín, O., Munclinger, P., Kratochvíl, L., Vilímová, J., Mitochondrial DNA and morphology show independent evolutionary histories of bedbug Cimex lectularius (Heteroptera: Cimicidae) on bats and humans (2012) Parasitol. Res, 111, pp. 457-469; Balvín, O., Vilímová, J., Kratochvíl, L., Batbugs (Cimex pipistrelli group, Heteroptera: Cimicidae) are morphologically, but not genetically differentiated among bat hosts (2013) J. Zool. Syst. Evol. Res, 51; Bartonička, T., Gaisler, J., Seasonal dynamics in the numbers of parasitic bugs (Heteroptera, Cimicidae): A possible cause of roost switching in bats (Chiroptera, Vespertilionidae) (2007) Parasitol. Res, 100, p. 1323; Brown, C.R., Moore, A.T., Knutie, S.A., Komar, N., Overwintering of infectious Buggy Creek virus (Togaviridae: Alphavirus) in Oeciacus vicarius (Hemiptera: Cimicidae) in North Dakota (2009) J. Med. Entomol, 46, pp. 391-394; Rush, W.A., Francy, D.B., Smith, G.C., Cropp, C.B., Transmission of an arbovirus by a member of the family Cimicidae (1980) Ann. Entomol. Soc.Am., 73, pp. 315-318; Kurhade, C., Schreier, S., Lee, Y., Zegenhagen, -P.L., Hjertqvist, M., Dobler, G., Kröger, A., Överby, A.K., Correlation of Severity of Human Tick (2018) Emerg. Infect. Dis, 24, p. 1709; Tiawsirisup, S., Junpee, A., Nuchprayoon, S., Mosquito distribution and Japanese encephalitis virus infection in a bat cave and its surrounding area in Lopburi province, Central Thailand. Thai (2012) J. Vet. Med, 42, pp. 43-50; Molaei, G., Oliver, J., Andreadis, T.G., Armstrong, P.M., Howard, J.J., Molecular identification of bloodmeal sources in Culiseta melanura and Culiseta morsitans from an endemic focus of eastern equine encephalitis virus in New York (2006) Am. J. Trop. Med. Hyg., 75, pp. 1140-1147; Mutebi, J.P., Crabtree, M.B., Kading, R.C., Powers, A.M., Lutwama, J.J., Miller, B.R., Mosquitoes of western Uganda (2012) J. Med. Entomol, 49, pp. 1289-1306; Estrada-Villegas, S., Halczok, T.K., Tschapka, M., Page, R.A., Brändel, S.D., Hiller, T., Bats and their bat flies: Community composition and host specificity on a Pacific island archipelago (2018) Acta Chiropterol, 20; Dick, C.W., Patterson, B.D., Bat flies: Obligate ectoparasites of bats (2006) Micromammals and Macroparasites: From Evolutionary Ecology to Management, pp. 179-194. , Morand, S., Krasnov, B.R., Poulin, R., Eds.; Springer: Tokyo, Japan; Jansen Van Vuren, P., Wiley, M., Palacios, G., Storm, N., McCulloch, S., Markotter, W., Birkhead, M., Paweska, J.T., Isolation of a novel fusogenic orthoreovirus from Eucampsipoda africana bat flies in South Africa (2016) Viruses, 8, p. 65; Jansen Van Vuren, P., Wiley, M.R., Palacios, G., Storm, N., Markotter, W., Birkhead, M., Kemp, A., Paweska, J.T., Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana) (2017) J. Gen. Virol, 98; Brook, C.E., Bai, Y., Dobson, A.P., Osikowicz, L.M., Ranaivoson, H.C., Zhu, Q., Kosoy, M.Y., Dittmar, K., Bartonella spp. In fruit bats and blood (2015) Plos Negl. Trop. Dis, 9; Hayes, R.O., Francy, D.B., Lazuick, J.S., Smith, G.C., Gibbs, E.P.J., Role of the cliff swallow bug (Oeciacus vicarius) in the natural cycle of a western equine encephalitis-related alphavirus (1977) J. Med. Entomol, 14, pp. 257-262; Hopla, C.E., Francy, D.B., Calisher, C.H., Lazuick, J.S., Relationship of cliff swallows, ectoparasites, and an alphavirus in west-central Oklahoma (1993) J. Med. Entomol., 30, pp. 267-272; Monath, T., Lazuick, J., Cropp, C., Rush, W., Calisher, C., Kinney, R., Trent, D., Francy, D., Recovery of Tonate virus (“Bijou Bridge” strain), a member of the Venezuelan equine encephalomyelitis virus complex, from cliff swallow nest bugs (Oeciacus vicarius) and nestling birds in North America (1980) Am. J. Trop. Med. Hyg, 29, pp. 969-983; Málková, D., Holubová, J., Cerný, V., Daniel, M., Fernández, A., Herrera, M., Calisher, C., Estero real virus: A new virus isolated from argasid ticks Ornithodoros tadaridae in Cuba (1985) Acta Virol, 29, pp. 247-250; Colin-Martinez, H., Garcia-Estrada, C., Richness, infestation and specificity of spinturnicid mites (Acari: Spinturnicidae) on bats in southern Oaxaca (2016) Mexico. Exp. Appl. Acarol, 70, pp. 155-164; Moras, L.M., Bernardi, L.F.D.O., Graciolli, G., Gregorin, R., Bat flies (Diptera: Streblidae, Nycteribiidae) and mites (Acari) associated with bats (Mammalia: Chiroptera) in a high (2013) Acta Parasitol., 58, pp. 556-563; Bradshaw, G.V.R., Ross, A., Ectoparasites of Arizona Bats (1961) J. Ariz. Acad. Sci, 1, pp. 109-112; Moro, C.V., Chauve, C., Zenner, L., Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea) (2005) Parasite, 12, pp. 99-109; Bennett, A.J., Bushmaker, T., Cameron, K., Ondzie, A., Niama, F.R., Parra, H., Mombouli, -J.J., Goldberg, T.L., Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes (2019) Virology, 528, pp. 64-72; Stuart, G., Moffett, K., Bozarth, R.F., A whole genome perspective on the phylogeny of the plant virus family Tombusviridae (2004) Arch. Virol, 149, pp. 1595-1610; Dolja, V.V., Koonin, E.V., Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer (2018) Virus Res.., 244, pp. 36-52; Shi, M., Lin, X., Tian, -D.J., Chen, -H.L., Chen, -J.X., Li, C., Qin, -X.X., Eden, -P.J.-S., Redefining the invertebrate RNA virosphere (2016) Nature, 540, p. 539; Barclay, R.M., Barclay, L.E., Jacobs, D.S., Deliberate insectivory by the fruit bat Rousettus aegyptiacus (2006) Acta Chiropterol, 8, pp. 549-553; Clulow, S., Blundell, A.T., Deliberate insectivory by the fruit bat Pteropus poliocephalus by aerial hunting (2011) Acta Chiropterol, 13, pp. 201-205; Baker, K.S., Suu-Ire, R., Barr, J., Hayman, D.T., Broder, C.C., Horton, D.L., Durrant, C., Wood, J.L., Viral antibody dynamics in a chiropteran host (2014) J. Anim. Ecol, 83, pp. 415-428; Schneider, B.S., Higgs, S., The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response (2008) Trans. R. Soc. Trop. Med. Hyg, 102, pp. 400-408; Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bunning, M., Experimental infection of North American birds with the New York 1999 strain of West Nile virus (2003) Emerg. Infect. Dis, 9, pp. 311-322; Banerjee, A., Misra, V., Schountz, T., Baker, M.L., Tools to study pathogen-host interactions in bats (2018) Virus Res, 248, pp. 5-12; Kunz, T.H., Braun De Torrez, E., Bauer, D., Lobova, T., Fleming, T.H., Ecosystem services provided by bats (2011) Ann. N. Y. Acad. Sci, 1223, pp. 1-38; Amman, B.R., Nyakarahuka, L., McElroy, A.K., Dodd, K.A., Sealy, T.K., Schuh, A.J., Shoemaker, T.R., Kaboyo, W., Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts (2014) Uganda. Emerg. Infect. Dis, 20, pp. 1761-1764; Boston, E.S.M., Puechmaille, S.J., Scott, D.D., Buckley, D.J., Lundy, M.G., Montgomery, I.W., Prodöhl, P.A., Teeling, E.C., Empirical assessment of non-invasive population genetics in bats: Comparison of DNA quality from faecal and tissue samples (2012) Acta Chiropterol, 14, pp. 45-52; Puechmaille, S.J., Petit, E.J., Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session (2007) J. Appl. Ecol, 44, pp. 843-852; Young, C.C.W., Olival, K.J., Optimizing Viral Discovery in Bats (2016) Plos ONE, 11; Giles, J.R., Peel, A.J., Wells, K., Plowright, R.K., McCallum, H., Restif, O., (2018) Optimizing Non-Invasive Sampling of an Infectious Bat Virus, , 401968; Jones, M., Schuh, A., Amman, B., Sealy, T., Zaki, S., Nichol, S., Towner, J., Experimental Inoculation of Egyptian Rousette Bats (Rousettus aegyptiacus) with Viruses of the Ebolavirus and Marburgvirus Genera (2015) Viruses, 7, p. 2779","Kading, R.C.; Department of Microbiology, Immunology, and Pathology, Colorado State UniversityUnited States; email: rebekah.kading@colostate.edu",,"MDPI AG",19994915,,,"30832426","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85062415388 "Hao X., Liu R., He Y., Xiao X., Xiao W., Zheng Q., Lin X., Tao P., Zhou P., Li S.","57196076487;57207312854;57202158634;55767378600;57207304367;57196075852;57196076650;56765377700;55614521400;37104247100;","Multiplex PCR methods for detection of several viruses associated with canine respiratory and enteric diseases",2019,"PLoS ONE","14","3", e0213295,"","",,1,"10.1371/journal.pone.0213295","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062420076&doi=10.1371%2fjournal.pone.0213295&partnerID=40&md5=be80bfcf7333b1c8c1f567950d62dc4b","College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China","Hao, X., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Liu, R., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; He, Y., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Xiao, X., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Xiao, W., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Zheng, Q., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Lin, X., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Tao, P., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Zhou, P., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China; Li, S., College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, China, Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province, China","Viral respiratory and intestinal infections are the most common causes of canine viral illness. Infection with multiple pathogens occurs in many cases. Rapid diagnosis of these multiple infections is important for providing timely and effective treatment. To improve diagnosis, in this study, two new multiplex polymerase chain reactions (mPCRs) were developed for simultaneous detection of canine respiratory viruses (CRV) and canine enteric viruses (CEV) using two separate primer mixes. The viruses included canine adenovirus type 2 (CAV-2), canine distemper virus (CDV), canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine circovirus (CanineCV), canine coronavirus (CCoV) and canine parvovirus (CPV). The sensitivity of the mPCR results showed that the detection limit of both mPCR methods was 1×10 4 viral copies. Twenty nasal swabs (NS) and 20 anal swabs (AS) collected from dogs with symptoms of respiratory disease or enteric disease were evaluated using the novel mPCR methods as a clinical test. The mPCR protocols, when applied to these respiratory specimens and intestinal samples, could detect 7 viruses simultaneously, allowing rapid investigation of CRV (CAV-2, CDV, CIV and CPIV) and CEV (CAV-2, CanineCV, CCoV and CPV) status and prompt evaluation of coinfection. Our study provides an effective and accurate tool for rapid differential diagnosis and epidemiological surveillance in dogs. © 2019 Hao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"anus; Article; Canine adenovirus 2; Canine distemper virus; canine influenza; Circovirus; controlled study; Coronavirinae; diagnostic test accuracy study; differential diagnosis; dog disease; enteric virus; enteropathy; Influenza virus; intestine; limit of detection; multiplex polymerase chain reaction; nonhuman; nose smear; Parainfluenza virus infection; Paramyxovirinae; Parvoviridae; parvovirus infection; respiratory tract disease; respiratory virus; sensitivity and specificity; virus detection; animal; breathing disorder; Canine coronavirus; classification; Coronavirus infection; dog; dog disease; Enterovirus; Enterovirus infection; genetics; isolation and purification; multiplex polymerase chain reaction; procedures; veterinary medicine; virology; Animals; Coronavirus Infections; Coronavirus, Canine; Dog Diseases; Dogs; Enterovirus; Enterovirus Infections; Multiplex Polymerase Chain Reaction; Respiration Disorders","Pesavento, P.A., Murphy, B.G., Common and emerging infectious diseases in the animal shelter (2014) Veterinary Pathology, 51 (2), pp. 478-491. , https://doi.org/10.1177/0300985813511129, PMID: 24265288; Buonavoglia, C., Martella, V., Canine respiratory viruses (2007) Veterinary Research, 38 (2), pp. 355-373. , https://doi.org/10.1051/vetres:2006058, PMID: 17296161; Erles, K., Dubovi, E.J., Brooks, H.W., Brownlie, J., Longitudinal study of viruses associated with canine infectious respiratory disease (2004) J Clin Microbiol, 42 (10), pp. 4524-4529. , https://doi.org/10.1128/JCM.42.10.4524-4529.2004, PMID: 15472304; Jeoung, H.Y., Song, D.S., Jeong, W.S., Lee, W.H., Song, J.Y., An, D.J., Simultaneous detection of canine respiratory disease associated viruses by a multiplex reverse transcription-polymerase chain reaction assay (2013) The Journal of Veterinary Medical Science, 75 (1), pp. 103-106. , PMID: 22971595; Posuwan, N., Payungporn, S., Thontiravong, A., Kitikoon, P., Amonsin, A., Poovorawan, Y., Prevalence of respiratory viruses isolated from dogs in Thailand during 2008–2009 (2010) Asian Biomedicine, 4 (4), pp. 563-569; Mitchell, J.A., Cardwell, J.M., Leach, H., Walker, C.A., Le, P.S., Decaro, N., European surveillance of emerging pathogens associated with canine infectious respiratory disease (2017) Veterinary Microbiology, 212, pp. 31-38. , https://doi.org/10.1016/j.vetmic.2017.10.019, PMID: 29173585; Song, D., Kang, B., Lee, C., Jung, K., Ha, G., Kang, D., Transmission of avian influenza virus (H3N2) to dogs (2008) Emerging Infectious Diseases, 14 (5), pp. 741-746. , https://doi.org/10.3201/eid1405.071471, PMID: 18439355; Li, S., Shi, Z., Jiao, P., Zhang, G., Zhong, Z., Tian, W., Avian-origin H3N2 canine influenza A viruses in Southern China (2010) Infection Genetics & Evolution, 10 (8), pp. 1286-1288; Zhu, H., Hughes, J., Murcia, P.R., Origins and evolutionary dynamics of H3N2 canine influenza virus (2015) Journal of Virology, 89 (10), pp. 5406-5418. , https://doi.org/10.1128/JVI.03395-14, PMID: 25740996; Kim, J.K., Nam, J.H., Lyoo, K.S., Moon, H., Na, W., Song, E.J., Genetic characterization of an ancestral strain of the avian-origin H3N2 canine influenza virus currently circulating in East Asia (2016) J Microbiol Bio-Technol, 26 (6), pp. 1109-1114. , https://doi.org/10.4014/jmb.1511.11047, PMID: 27012241; Voorhees, I., Dalziel, B.D., Glaser, A., Dubovi, E.J., Murcia, P.R., Newbury, S., (2018) Multiple Incursions and Recurrent Epidemic Fade-Out of H3N2 Canine Influenza A Virus in The United States; Pollock, R.V., Carmichael, L.E., Canine viral enteritis (1983) Veterinary Clinics of North America Small Animal Practice, 13 (3), pp. 551-566. , PMID: 6316616; Studdert, M.J., Oda, C., Riegl, C.A., Roston, R.P., Aspects of the diagnosis, pathogenesis and epidemiology of canine parvovirus (1983) Australian Veterinary Journal, 60 (7), p. 197. , PMID: 6314962; Parrish, C.R., Pathogenesis of feline panleukopenia virus and canine parvovirus (1995) Baillières Clinical Hae-Matology, 8 (1), pp. 57-71. , PMID: 7663051; Miranda, C., Thompson, G., Canine parvovirus: The worldwide occurrence of antigenic variants (2016) Journal of General Virology, 97 (9), pp. 2043-2057. , https://doi.org/10.1099/jgv.0.000540, PMID: 27389721; Tennant, B.J., Gaskell, R.M., Kelly, D.F., Carter, S.D., Gaskell, C.J., Canine coronavirus infection in the dog following oronasal inoculation (1991) Research in Veterinary Science, 51 (1), p. 11. , PMID: 1654584; Pratelli, A., Martella, V., Elia, G., Tempesta, M., Guarda, F., Capucchio, M.T., Severe enteric disease in an animal shelter associated with dual infections by canine adenovirus type 1 and canine coronavi-rus (2001) Zoonoses & Public Health, 48 (5), pp. 385-392; Hamelin, C., Jouvenne, P., Assaf, R., Association of a type-2 canine adenovirus with an outbreak of diar-rhoeal disease among a large dog congregation (1985) J Diarrhoeal Dis Res, 3 (2), pp. 84-87. , PMID: 2999217; Macartney, L., Cavanagh, H.M., Spibey, N., Isolation of canine adenovirus-2 from the faeces of dogs with enteric disease and its unambiguous typing by restriction endonuclease mapping (1988) Research in Veterinary Science, 44 (1), p. 9. , PMID: 2836923; Kapoor, A., Dubovi, E.J., Henriquezrivera, J.A., Lipkin, W.I., Complete genome sequence of the first canine circovirus (2012) Journal of Virology, 86 (12), p. 7018. , https://doi.org/10.1128/JVI.00791-12, PMID: 22628401; Decaro, N., Martella, V., Desario, C., Lanave, G., Circella, E., Cavalli, A., Genomic characterization of a circovirus associated with fatal hemorrhagic enteritis in dog, Italy (2014) Plos One, 9 (8). , https://doi.org/10.1371/journal.pone.0105909, PMID: 25147946; Dowgier, G., Lorusso, E., Decaro, N., Desario, C., Mari, V., Lucente, M.S., A molecular survey for selected viral enteropathogens revealed a limited role of Canine circovirus in the development of canine acute gastroenteritis (2017) Veterinary Microbiology, 204, pp. 54-58. , https://doi.org/10.1016/j.vetmic.2017.04.007, PMID: 28532806; Cavalli, A., Desario, C., Kusi, I., Mari, V., Lorusso, E., Cirone, F., Detection and genetic characterization of Canine parvovirus and Canine coronavirus strains circulating in district of Tirana in Albania (2014) Journal of Veterinary Diagnostic Investigation Official Publication of The American Association of Veterinary Laboratory Diagnosticians Inc, 26 (4), p. 563; Costa, E.M., de Castro, T.X., Bottino, F.O., Garcia, R.C., Molecular characterization of canine coronavirus strains circulating in Brazil (2014) Veterinary Microbiology, 168 (1), pp. 8-15. , https://doi.org/10.1016/j.vetmic.2013.10.002, PMID: 24216489; Kempf, C., Schulz, B.S., Strauch, C., Sauterlouis, C., Truyen, U., Hartmann, K., Virus detection, clinical signs, and laboratory findings in dogs with acute hemorrhagic diarrhea: A retrospective study of 935 cases (2010) Tierärztliche Praxis Ausgabe K Kleintiere/Heimtiere, 38 (2), p. 79. , PMID: 22331307; Duijvestijn, M., Mughini-Gras, L., Schuurman, N., Schijf, W., Wagenaar, J., Egberink, H., Enteropathogen infections in canine puppies: (co-)occurrence, clinical relevance and risk factors (2016) Veterinary Microbiology, 195, p. 115. , https://doi.org/10.1016/j.vetmic.2016.09.006, PMID: 27771056; Liu, D., Liu, F., Guo, D., Hu, X., Li, Z., Li, Z., One-step triplex PCR/RT-PCR to detect canine distemper virus, canine parvovirus, and canine kobuvirus (2018) Journal of Veterinary Medical Science; Deng, X., Zhang, J., Su, J., Liu, H., Cong, Y., Zhang, L., A multiplex PCR method for the simultaneous detection of three viruses associated with canine viral enteric infections (2018) Archives of Virology, pp. 1-6; Elnifro, E.M., Ashshi, A.M., Cooper, R.J., Klapper, P.E., Multiplex PCR: Optimization and application in diagnostic virology (2000) Clinical Microbiology Reviews, 13 (4), pp. 559-570. , PMID: 11023957; Lin Ying, G.Q., Haibin, F., Junhuan, L., Mingmei, Y., Chengyong, L., Shuming, L., Establishment and application of duplex PCR for CPV and CCV detection (2011) Progress in Veterinary Medicine, 32 (10), pp. 71-74. , Chinese; Wang, C., Wang, Q., Hu, J., Sun, H., Pu, J., Liu, J., A multiplex RT-PCR assay for detection and differentiation of avian-origin canine H3N2, equine-origin H3N8, human-origin H3N2, and H1N1/2009 canine influenza viruses (2017) Plos One, 12 (1). , https://doi.org/10.1371/journal.pone.0170374, PMID: 28107507; Liu Dafei, J.Y., Ting, Q., Jing, C., Likui, L., Wenjun, L., Hongliang, C., Tiankuo, Y., Hongying, Z., Establishment of the multiplex PCR to the detection of CDV, CPV, CAV-I and CAV-II (2012) Chinese Journal of Preventive Veterinary Medicine, 34 (11), pp. 911-914. , Chinese; Wang, C.Y., Hsu, C.J., Chen, H.J., Chulu, J.L.C., Liu, H.J., Development of a reliable assay protocol for identification of diseases (RAPID)-bioactive amplification with probing (BAP) for detection of Newcastle disease virus (2008) Veterinary Microbiology, 130 (1-2), pp. 28-36. , https://doi.org/10.1016/j.vetmic.2007.12.015, PMID: 18261864; Piewbang, C., Rungsipipat, A., Yong, P., Techangamsuwan, S., Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs (2016) Journal of Veterinary Medical Science, 78 (12), pp. 1847-1854. , https://doi.org/10.1292/jvms.16-0342, PMID: 27628592; Apaa, T., Daly, J.M., Tarlinton, R.E., Canine parvovirus (CPV-2) variants circulating in Nigerian dogs (2016) Veterinary Record Open, 3 (1); Zhou, P., Zeng, W., Zhang, X., Li, S., The genetic evolution of canine parvovirus–A new perspective (2017) Plos One, 12 (3); Li, C., Guo, D., Wu, R., Kong, F., Zhai, J., Yuan, D., Molecular surveillance of canine distemper virus in diarrhoetic puppies in northeast China from May 2014 to April 2015 (2018) Journal of Veterinary Medical Science; Gowtage-Sequeira, S., Banyard, A.C., Barrett, T., Buczkowski, H., Funk, S.M., Cleaveland, S., Epidemiology, pathology, and genetic analysis of a canine distemper epidemic in Namibia (2009) Journal of Wildlife Diseases, 45 (4), p. 1008. , https://doi.org/10.7589/0090-3558-45.4.1008, PMID: 19901377; Li, G., He, W., Zhu, H., Bi, Y., Wang, R., Xing, G., Origin, genetic diversity, and evolutionary dynamics of novel porcine circovirus 3 (2018) Adv Sci (Weinh), 5 (9), p. 1800275. , https://doi.org/10.1002/advs.201800275, Epub 2018/09/27. PMID: 30250786; Li, G., Wang, H., Wang, S., Xing, G., Zhang, C., Zhang, W., Insights into the genetic and host adaptability of emerging porcine circovirus 3 (2018) Virulence, 9 (1), pp. 1301-1313. , https://doi.org/10.1080/21505594.2018.1492863, Epub 2018/07/06. PMID: 29973122; Jacob, J., Lorber, B., Diseases transmitted by man’s best friend: The dog (2015) Microbiol Spectr, 3 (4); Zheng, Y., Hao, X., Lin, X., Zheng, Q., Zhang, W., Zhou, P., Bacterial diversity in the feces of dogs with CPV infection (2018) Microbial Pathogenesis; Sowman, H.R., Cave, N.J., Dunowska, M., A survey of canine respiratory pathogens in New Zealand dogs (2018) New Zealand Veterinary Journal, 66 (5), pp. 236-242. , https://doi.org/10.1080/00480169.2018.1490214, PMID: 29924957; Moreno, A., Sozzi, E., Grilli, G., Gibelli, L.R., Gelmetti, D., Lelli, D., Detection and molecular analysis of Pseudorabies virus strains isolated from dogs and a wild boar in Italy (2015) Veterinary Microbiology, 177 (3-4), pp. 359-365. , https://doi.org/10.1016/j.vetmic.2015.04.001, Epub 2015/04/29. PMID: 25912160; He, W., Auclert, L.Z., Zhai, X., Wong, G., Zhang, C., Zhu, H., Interspecies transmission, genetic diversity, and evolutionary dynamics of pseudorabies virus (2018) The Journal of Infectious Diseases, , https://doi.org/10.1093/infdis/jiy731, Epub 2018/ 12/28. PMID: 30590733; Li, L., Mcgraw, S., Zhu, K., Leutenegger, C.M., Marks, S.L., Kubiski, S., Circovirus in tissues of dogs with vasculitis and hemorrhage (2013) Emerging Infectious Diseases, 19 (4), pp. 534-541. , https://doi.org/10.3201/eid1904.121390, PMID: 23628223","Zhou, P.; College of Veterinary Medicine, South China Agricultural UniversityChina; email: zhoupei@scau.edu.cn",,"Public Library of Science",19326203,,POLNC,"30830947","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85062420076 "Rosen O., Chan L.L.-Y., Abiona O.M., Gough P., Wang L., Shi W., Zhang Y., Wang N., Kong W.-P., McLellan J.S., Graham B.S., Corbett K.S.","57213934552;14821940300;57205220353;56384194900;35199353800;56739696500;57211357998;55782500200;7101828843;11140034400;7201610365;36500702900;","A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry",2019,"Journal of Virological Methods","265",,,"77","83",,3,"10.1016/j.jviromet.2018.11.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059117638&doi=10.1016%2fj.jviromet.2018.11.009&partnerID=40&md5=7ec39fca8b41bbb9c9da57fdffa7c3d3","Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States; Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States","Rosen, O., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Chan, L.L.-Y., Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States; Abiona, O.M., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Gough, P., Department of Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA 01843, United States; Wang, L., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Shi, W., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Zhang, Y., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Wang, N., Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States; Kong, W.-P., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; McLellan, J.S., Molecular Biosciences Department, University of Texas at Austin, Austin, TX 03755, United States; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Corbett, K.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States","The emergence of new pathogens, such as Middle East respiratory syndrome coronavirus (MERS-CoV), poses serious challenges to global public health and highlights the urgent need for methods to rapidly identify and characterize potential therapeutic or prevention options, such as neutralizing antibodies. Spike (S) proteins are present on the surface of MERS-CoV virions and mediate viral entry. S is the primary target for MERS-CoV vaccine and antibody development, and it has become increasingly important to understand MERS-CoV antibody binding specificity and function. Commonly used serological methods like ELISA, biolayer interferometry, and flow cytometry are informative, but limited. Here, we demonstrate a high-throughput protein binding inhibition assay using image cytometry. The image cytometry-based high-throughput screening method was developed by selecting a cell type with high DPP4 expression and defining optimal seeding density and protein binding conditions. The ability of monoclonal antibodies to inhibit MERS-CoV S binding was then tested. Binding inhibition results were comparable with those described in previous literature for MERS-CoV spike monomer and showed similar patterns as neutralization results. The coefficient of variation (CV) of our cell-based assay was <10%. The proposed image cytometry method provides an efficient approach for characterizing potential therapeutic antibodies for combating MERS-CoV that compares favorably with current methods. The ability to rapidly determine direct antibody binding to host cells in a high-throughput manner can be applied to study other pathogen-antibody interactions and thus can impact future research on viral pathogens. © 2018","Antibody binding; Antibody neutralization; Celigo; Image cytometry; Inhibition assay; MERS-CoV","dipeptidyl peptidase IV; monoclonal antibody; monomer; coronavirus spike glycoprotein; protein binding; virus antibody; antigen binding; antigenic variation; Article; BHK-21 cell line; cell count; controlled study; enzyme inhibition assay; fluorescence analysis; high throughput sequencing; host cell; image cytometry; Middle East respiratory syndrome; nonhuman; priority journal; protein binding; protein conformation; protein expression; receptor density; virus cell interaction; virus neutralization; virus spike; virus virulence; animal; cell line; high throughput screening; human; image cytometry; immunology; metabolism; Middle East respiratory syndrome coronavirus; procedures; reproducibility; sensitivity and specificity; Animals; Antibodies, Viral; Cell Line; High-Throughput Screening Assays; Humans; Image Cytometry; Middle East Respiratory Syndrome Coronavirus; Protein Binding; Reproducibility of Results; Sensitivity and Specificity; Spike Glycoprotein, Coronavirus","Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.-A., Sullivan, E., Davey, R.T., Jr., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect. Dis., 18, pp. 410-418; Chan, L.L., Smith, T., Kumph, K.A., Kuksin, D., Kessel, S., Dery, O., Cribbes, S., Qiu, J., A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry (2016) Cytotechnology, 68, pp. 2015-2025; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., Yu, Y., Tan, W., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect., 6; Corman, V.M., Muth, D., Niemeyer, D., Drosten, C., Chapter eight - hosts and sources of endemic human coronaviruses (2018) Advances in Virus Research, pp. 163-188. , M. Kielian T.C. Mettenleiter M.J. Roossinck Academic Press; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci., 112, pp. 10473-10478; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Poon, V.K.M., Lu, L., Jiang, S., Identification of a receptor-binding domain in the S protein of the novel human coronavirus middle east respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, pp. 9939-9942; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Marasco, W.A., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Wang, P., Tan, W., Ultra-potent human neutralizing antibody repertoires against MERS-CoV from a recovered patient (2018) J. Infect. Dis.; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci., 114, pp. E7348-E7357; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Eurosurveillance, 18, p. 20574; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, p. 251; Riedl, T., van Boxtel, E., Bosch, M., Parren, P.W., Gerritsen, A.F., High-throughput screening for internalizing antibodies by homogeneous fluorescence imaging of a pH-activated probe (2016) J. Biomol. Screen., 21, pp. 12-23; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J. Virol., 92 (May (10)), pp. e02002-e02017; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, p. 986; Wang, W., Wang, H., Deng, Y., Song, T., Lan, J., Wu, G., Ke, C., Tan, W., Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China (2016) Emerg. Microbes Infect., 5; WHO, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2018), World Health Organization; Yang, D., Singh, A., Wu, H., Kroe-Barrett, R., Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics (2016) Anal. Biochem., 508, pp. 78-96; Yu, X., Zhang, S., Jiang, L., Cui, Y., Li, D., Wang, D., Wang, N., Wang, X., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep., 5, p. 13133; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zhang, H., Chan, L.L., Rice, W., Kassam, N., Longhi, M.S., Zhao, H., Robson, S.C., Wu, Y., Novel high-throughput cell-based hybridoma screening methodology using the Celigo Image Cytometer (2017) J. Immunol. Methods, 447, pp. 23-30; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K.M., Wang, L., Zhou, Y., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10, p. 26","Graham, B.S.; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: bgraham@nih.gov",,"Elsevier B.V.",01660934,,JVMED,"30468747","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85059117638 "Naz R., Gul A., Javed U., Urooj A., Amin S., Fatima Z.","57205029997;13404946400;57213016224;57205021143;57209597948;54962526900;","Etiology of acute viral respiratory infections common in Pakistan: A review",2019,"Reviews in Medical Virology","29","2", e2024,"","",,3,"10.1002/rmv.2024","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058321089&doi=10.1002%2frmv.2024&partnerID=40&md5=90b53bfa7ae0b9efdf23e5d7af23a69e","Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan","Naz, R., Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; Gul, A., Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; Javed, U., Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; Urooj, A., Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; Amin, S., Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; Fatima, Z., Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan","Respiratory infections, especially those of the lower respiratory tract, remain a foremost cause of mortality and morbidity of children greater than 5 years in developing countries including Pakistan. Ignoring these acute-level infections may lead to complications. Particularly in Pakistan, respiratory infections account for 20% to 30% of all deaths of children. Even though these infections are common, insufficiency of accessible data hinders development of a comprehensive summary of the problem. The purpose of this study was to determine the prevalence rate in various regions of Pakistan and also to recognize the existing viral strains responsible for viral respiratory infections through published data. Respiratory viruses are detected more frequently among rural dwellers in Pakistan. Lower tract infections are found to be more lethal. The associated pathogens comprise respiratory syncytial virus (RSV), human metapneumovirus (HMPV), coronavirus, enterovirus/rhinovirus, influenza virus, parainfluenza virus, adenovirus, and human bocavirus. RSV is more dominant and can be subtyped as RSV-A and RSV-B (BA-9, BA-10, and BA-13). Influenza A (H1N1, H5N1, H3N2, and H1N1pdm09) and Influenza B are common among the Pakistani population. Generally, these strains are detected in a seasonal pattern with a high incidence during spring and winter time. The data presented include pneumonia, bronchiolitis, and influenza. This paper aims to emphasise the need for standard methods to record the incidence and etiology of associated pathogens in order to provide effective treatment against viral infections of the respiratory tract and to reduce death rates. © 2018 John Wiley & Sons, Ltd.","Acute viral respiratory infections; Bronchiolitis; children; developing countries; enteroviruses; epidemiology; etiology; HMPV; incidence; Influenza; Pakistan; Pneumonia; rhinoviruses; RSV; Viral respiratory infections","Adenoviridae; breathing rate; bronchiolitis; Coronavirinae; coughing; Enterovirus; human; Human bocavirus; Human metapneumovirus; Human respiratory syncytial virus; Human respiratory syncytial virus A; Influenza A virus (H1N1); Influenza A virus (H3N2); Influenza A virus (H5N1); Influenza B virus; Influenza virus; nasopharyngeal aspiration; nonhuman; Pakistan; Paramyxovirinae; pneumonia; prevalence; Review; Rhinovirus; rural population; spring; systematic review; viral respiratory tract infection; virus strain; wheezing; winter; adolescent; adult; aged; child; classification; infant; isolation and purification; middle aged; newborn; pathology; preschool child; respiratory tract infection; topography; very elderly; virus; virus infection; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Child; Child, Preschool; Humans; Infant; Infant, Newborn; Middle Aged; Pakistan; Prevalence; Respiratory Tract Infections; Topography, Medical; Virus Diseases; Viruses; Young Adult","Simoes, E.A.F., Cherian, T., Chow, J., Shahid-Sallas, S.A., Ramanan, L., John, T.J., Acute respiratory infections in children (2006) Disease Control Priorities in Developing Countries, , https://www.ncbi.nlm.nih.gov/books/NBK11786/, Jamison DT, Breman JG, Measham AR, eds., Chapter 25, Co-published by Oxford University Press, New York., 2nd, ed., Washington (DC), The International Bank for Reconstruction and Development/The World Bank, Accessed December 10, 2017; Zaidi, A.K.M., Awasthi, S., de Silva, H.J., Burden of infectious diseases in South Asia (2004) BMJ, 328 (7443), pp. 811-815. , https://doi.org/10.1136/bmj.328.7443.811; The state of the world's children 2017 statistical tables, , https://data.unicef.org/wp-content/uploads/2018/03/SOWC-2017-statistical-tables.pdf, Accessed December 9, 2017; (2017) World Population Data Sheet, , https://assets.prb.org/pdf17/2017_World_Population.pdf, Accessed December 8, 2017; Khan, T.A., Madni, S.A., Zaidi, A.K., Acute respiratory infections in Pakistan: have we made any progress? (2004) J Coll Physicians Surg Pak, 14 (7), pp. 440-448. , https://www.ncbi.nlm.nih.gov/pubmed/15279753, Accessed December 10, 2017; Khalid, S., Ghani, E., Ayyub, M., Study on etiology of viral lower respiratory tract infections in children under 10 years of age (2016) J Virol Antivir Res, 5 (4). , https://doi.org/10.4172/2324-8955.1000160; Ali, A., Akhund, T., Warraich, G.J., Respiratory viruses associated with severe pneumonia in children under 2 years old in a rural community in Pakistan (2016) J Med Virol, 88 (11), pp. 1882-1890. , https://doi.org/10.1002/jmv.24557; Bashir, U., Alam, M.M., Sadia, H., Zaidi, S.S.Z., Kazi, B.M., Molecular characterization of circulating respiratory syncytial virus (RSV) genotypes in Gilgit Baltistan Province of Pakistan during 2011-2012 winter season (2013) PLoS One, 8 (9). , https://doi.org/10.1371/journal.pone.0074018; Bashir, U., Nisar, N., Arshad, Y., Respiratory syncytial virus and influenza are the key viral pathogens in children <2 years hospitalized with bronchiolitis and pneumonia in Islamabad Pakistan (2017) Arch Virol, 162 (3), pp. 763-773. , https://doi.org/10.1007/s00705-016-3146-7; Ali, A., Yousafzai, M.T., Waris, R., RSV associated hospitalizations in children in Karachi, Pakistan: implications for vaccine prevention strategies (2017) J Med Virol, 89 (7), pp. 1151-1157. , https://doi.org/10.1002/jmv.24768; Yousafzai, M.T., Ibrahim, R., Thobani, R., Aziz, F., Ali, A., Human metapneumovirus in hospitalized children less than five years of age in Pakistan (2018) J Med Virol, 90 (6), pp. 1027-1032. , https://doi.org/10.1002/jmv.25044; Badar, N., Aamir, U.B., Mehmood, M.R., Influenza virus surveillance in Pakistan during 2008-2011 (2013) PLoS One., 8 (11). , https://doi.org/10.1371/journal.pone.0079959; Ghafoor, A., Nomani, N.K., Ishaq, Z., Diagnoses of acute lower respiratory tract infections in children in Rawalpindi and Islamabad, Pakistan (1990) Rev Infect Dis, 12 (8), pp. S907-S914. , https://www.ncbi.nlm.nih.gov/pubmed/2270413, Accessed October 10, 2018; Pneumonia, , http://www.who.int/mediacentre/factsheets/fs331/en/, Accessed December 8, 2017; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377 (9773), pp. 1264-1275. , https://doi.org/10.1016/S0140-6736(10)61459-6; Bashir, U., Nisar, N., Mahmood, N., Alam, M.M., Sadia, H., Zaidi, S.S., Molecular detection and characterization of respiratory syncytial virus B genotypes circulating in Pakistani children (2017) Infect Genet Evol, 47, pp. 125-131. , https://doi.org/10.1016/j.meegid.2016.11.024; Tariq, W.U., Waqar, T., Ali, S., Ghani, E., Winter peak of respiratory syncytial virus in Islamabad (2005) Trop Doct, 35 (1), pp. 28-29. , https://doi.org/10.1258/0049475053001958; Ali, S.A., Aziz, F., Akhtar, N., Qureshi, S., Edwards, K., Zaidi, A., Pandemic influenza A(H1N1)pdm09: an unrecognized cause of mortality in children in Pakistan (2013) Scand J Infect Dis, 45 (10), pp. 791-795. , https://doi.org/10.3109/00365548.2013.803292; Ali, A., Khowaja, A.R., Bashir, M.Z., Aziz, F., Mustafa, S., Zaidi, A., Role of human Metapneumovirus, Influenza A virus and respiratory syncytial virus in causing WHO-defined severe pneumonia in children in a developing country (2013) PLoS One, 8 (9). , https://doi.org/10.1371/journal.pone.0074756; Khan, M.Y., Iqbal, Z., Khan, J., Amin, M., Clinico-radiological profile, polymerase chain reaction (PCR)- positivity and outcome - analysis in hospitalized suspected H1N1 pneumonia; efficiency assessment of health care delivery system. A pilot study (2016) Pakistan Journal of Chest Medicine, 22 (3), pp. 92-101. , http://pjcm.net/index.php/pjcm/article/viewFile/406/350, Accessed December 12, 2017; Bourke, T., Shields, M., Bronchiolitis (2011) BMJ Clin Evid, 2011, p. 0308. , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275170/, Accessed December 12, 2017; Amber, R., Adnan, M., Tariq, A., Mussarat, S., A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms (2017) J Pharm Pharmacol, 69 (2), pp. 109-122. , https://doi.org/10.1111/jphp.12669; Influenza (Seasonal), , http://www.who.int/mediacentre/factsheets/fs211/en/, Accessed December 10, 2017; Javed, F., Manzoor, K.N., Ali, M., Zika virus: what we need to know? (2018) J Basic Microbiol, 58 (1), pp. 3-16. , https://doi.org/10.1002/jobm.201700398; Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance, , http://www.who.int/csr/disease/swineflu/guidance/surveillance/WHO_case_definition_swine_flu_2009_04_29.pdf, Accessed October 10, 2018; Nair, H., Brooks, W.A., Katz, M., Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis (2011) Lancet, 378 (9807), pp. 1917-1930. , https://doi.org/10.1016/S0140-6736(11)61051-9; (2008) Weekly epidemiological record, 83 (40), pp. 356-364. , http://www.who.int/wer/2008/wer8340.pdf?ua=1, Accessed October 10, 2018; Zaman, M., Ashraf, S., Dreyer, N.A., Toovey, S., Human infection with avian influenza virus, Pakistan, 2007 (2011) Emerg Infect Dis 2011, 17 (6), pp. 1056-1059. , https://doi.org/10.3201/eid1706.091652, June; Aamir, U.B., Badar, N., Mehmood, M.R., Molecular epidemiology of influenza A(H1N1)pdm09 viruses from Pakistan in 2009–2010 (2012) PLoS One., 7 (8). , https://doi.org/10.1371/journal.pone.0041866; Ijaz, M., Khan, M.J., Khan, J., Usama, U., Association of clinical characteristics of patients presenting with influenza like illness or severe acute respiratory illness with development of acute respiratory distress syndrome (2017) Monaldi Arch Chest Dis, 87 (1), pp. 18-21. , https://doi.org/10.4081/monaldi.2017.765","Fatima, Z.; Department of Bioinformatics and Biotechnology, International Islamic UniversityPakistan; email: zfa_11@hotmail.com",,"John Wiley and Sons Ltd",10529276,,RMVIE,"30548740","English","Rev. Med. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85058321089 "Lee S., Lee C.","57202327364;55700560700;","First detection of novel enterovirus G recombining a torovirus papain-like protease gene associated with diarrhoea in swine in South Korea",2019,"Transboundary and Emerging Diseases","66","2",,"1023","1028",,2,"10.1111/tbed.13073","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057811511&doi=10.1111%2ftbed.13073&partnerID=40&md5=13a593e38779b943293f2b9348894870","Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea","Lee, S., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea; Lee, C., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea","Enterovirus species G (EV-G) comprises a highly diversity of 20 genotypes that is prevalent in pig populations, with or without diarrhoea. In the present study, a novel EV-G strain (KOR/KNU-1811/2018) that resulted from cross-order recombination was discovered in diagnostic faecal samples from neonatal pigs with diarrhoea that were negative for swine enteric coronaviruses and rotavirus. The recombinant EV-G genome possessed an exogenous 594-nucleotide (198-amino acid) sequence, flanked by two viral 3C pro cleavage sites at the 5′ and 3′ ends in its 2C/3A junction region. This insertion encoded a predicted protease similar to the porcine torovirus papain-like cysteine protease (PLCP), which was recently found in the EV-G1, -G2, and -G17 genomes. The complete KNU-1811 genome shared 73.7% nucleotide identity with a prototype EV-G1 strain, but had 83.9%–86.7% sequence homology with the global EV-G1-PLCP strains. Genetic and phylogenetic analyses demonstrated that the Korean recombinant EV-G's own VP1 and inserted foreign PLCP genes are most closely related independently to contemporary chimeric G1-PLCP and G17-PLCP strains respectively. These results implied that the torovirus-derived PLCP gene might have undergone continuous nucleotide mutations in the respective EV-G genome following its independent acquisition through naturally occurring recombination. Our results advance the understanding of the genetic evolution of EV-G driven by infrequent viral recombination events, by which EV-G populations laterally gain an exotic gene encoding a virulence factor from heterogeneous virus families, thereby causing clinical disease in swine. © 2018 Blackwell Verlag GmbH","cross-order recombination; enterovirus G; horizontal gene transfer; papain-like cysteine protease; porcine diarrhoea; Torovirus","amino acid; complementary DNA; cysteine proteinase; papain; polyprotein; porcine torovirus papain like cysteine protease; secosteroid; unclassified drug; virulence factor; amino terminal sequence; Article; cell cycle G1 phase; Coronavirinae; diarrhea; Enterovirus G; gene; gene mutation; genetic association; genetic recombination; genetic susceptibility; genetic variability; genome analysis; horizontal gene transfer; molecular phylogeny; nonhuman; nucleotide sequence; open reading frame; PLCP gene; Porcine epidemic diarrhea virus; prevalence; reverse transcription polymerase chain reaction; Rotavirus; Sanger sequencing; sequence alignment; sequence homology; Teschovirus; Torovirus; virus detection; virus isolation; virus load; virus recombination; amino acid sequence; animal; diarrhea; Enterovirus infection; feces; genetic reassortment; genetic recombination; genetics; genotype; isolation and purification; molecular evolution; phylogeny; Picornaviridae; pig; South Korea; swine disease; Torovirus; veterinary medicine; virology; virus genome; Amino Acid Sequence; Animals; Cysteine Proteases; Diarrhea; Enterovirus Infections; Enteroviruses, Porcine; Evolution, Molecular; Feces; Genome, Viral; Genotype; Phylogeny; Reassortant Viruses; Recombination, Genetic; Republic of Korea; Sequence Homology; Swine; Swine Diseases; Torovirus","Anbalagan, S., Hesse, R.A., Hause, B.M., First identification and characterization of porcine enterovirus G in the United States (2014) PLoS One, 9. , https://doi.org/10.1371/journal.pone.0097517; Blom, N., Hansen, J., Brunak, S., Blaas, D., Cleavage site analysis in picornaviral polyproteins: Discovering cellular targets by neural networks (1996) Protein Science, 5, pp. 2203-2216. , https://doi.org/10.1002/pro.5560051107; Boros, Á., Nemes, C., Pankovics, P., Bíró, H., Kapusinszky, B., Delwart, E., Reuter, G., Characterization of a novel porcine enterovirus in wild boars in Hungary (2012) Archives of Virology, 157, pp. 981-986. , https://doi.org/10.1007/s00705-012-1255-5; Conceição-Neto, N., Theuns, S., Cui, T., Zeller, M., Yinda, C.K., Christiaens, I., Matthijnssens, J., Identification of an enterovirus recombinant with a torovirus-like gene insertion during a diarrhea outbreak in fattening pigs. Virus (2017) Evolution, 3, p. vex024. , https://doi.org/10.1093/ve/vex024; Jang, G., Lee, K.K., Kim, S.H., Lee, C., Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014–2016 (2017) Transboundary and Emerging Diseases, 64, pp. 1364-1370. , https://doi.org/10.1111/tbed.12690; Kaku, Y., Sarai, A., Murakami, Y., Genetic reclassification of porcine enteroviruses (2001) Journal of General Virology, 82, pp. 417-424. , https://doi.org/10.1099/0022-1317-82-2-417; Knowles, N.J., Hovi, T., Hyypiä, T., King, A.M.Q., Lindberg, A.M., Pallansch, M.A., Zell, R., Picornaviridae (2012) Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses, , A. M. Q. King, M. J. Adams, E. B. Carstens, E. J. Lefkowitz, (Eds.),, London, Elsevier Academic Press; Knutson, T.P., Velayudhan, B.T., Marthaler, D.G., A porcine enterovirus G associated with enteric disease contains a novel papain-like cysteine protease (2017) Journal of General Virology, 98, pp. 1305-1310. , https://doi.org/10.1099/jgv.0.000799; Lee, S., Jang, G., Lee, C., Complete genome sequence of a porcine astrovirus from South Korea (2015) Archives of Virology, 160, pp. 1819-1821. , https://doi.org/10.1007/s00705-015-2436-9; Lee, Y.N., Lee, C., Complete genome sequence of a novel porcine parainfluenza virus 5 isolate in Korea (2013) Archives of Virology, 158, pp. 1765-1772. , https://doi.org/10.1007/s00705-013-1770-z; Lee, S., Lee, C., Genomic and antigenic characterization of porcine epidemic diarrhoea virus strains isolated from South Korea, 2017 (2018) Transboundary and Emerging Diseases, 65, pp. 949-956. , https://doi.org/10.1111/tbed.12904; Lukashev, A.N., Role of recombination in evolution of enteroviruses (2005) Reviews in Medical Virology, 15, pp. 157-167. , https://doi.org/10.1002/rmv.457; Muslin, C., Joffret, M.L., Pelletier, I., Blondel, B., Delpeyroux, F., Evolution and emergence of enteroviruses through intra- and inter-species recombination: Plasticity and phenotypic impact of modular genetic exchanges in the 5′ untranslated region (2015) PLoS Pathogens, 11. , https://doi.org/10.1371/journal.ppat.1005266; Sachsenröder, J., Twardziok, S., Hammerl, J.A., Janczyk, P., Wrede, P., Hertwig, S., Johne, R., Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0034631; Semler, B.L., Wimmer, E., (2002) Molecular biology of picornaviruses, , https://doi.org/10.1128/9781555817916, Washington, D.C., ASM Press; Shan, T., Li, L., Simmonds, P., Wang, C., Moeser, A., Delwart, E., The fecal virome of pigs on a high-density farm (2011) Journal of Virology, 85, pp. 11697-11708. , https://doi.org/10.1128/jvi.05217-11; Shang, P., Misra, S., Hause, B., Fang, Y., A naturally occurring recombinant enterovirus expresses a torovirus deubiquitinase (2017) Journal of Virology, 91, pp. e00450-e00417. , https://doi.org/10.1128/JVI.00450-17; Tsuchiaka, S., Naoi, Y., Imai, R., Masuda, T., Ito, M., Akagami, M., Nagai, M., Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population (2018) PLoS One, 13. , https://doi.org/10.1371/journal.pone.0190819; Van Dung, N., Anh, P.H., Van Cuong, N., Hoa, N.T., Carrique-Mas, J., Hien, V.B., Simmonds, P., Prevalence, genetic diversity and recombination of species G enteroviruses infecting pigs in Vietnam (2014) Journal of General Virology, 95, pp. 549-556. , https://doi.org/10.1099/vir.0.061978-0; Vilar, M.J., Peralta, B., García-Bocanegra, I., Simon-Grifé, M., Bensaid, A., Casal, J., Pina-Pedrero, S., Distribution and genetic characterization of enterovirus G and sapelovirus A in six Spanish swine herds (2016) Virus Research, 215, pp. 42-49. , https://doi.org/10.1016/j.virusres.2016.01.019","Lee, C.; Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National UniversitySouth Korea; email: changhee@knu.ac.kr",,"Blackwell Publishing Ltd",18651674,,,"30431236","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85057811511 "Toh T.-H., Hii K.-C., Fieldhouse J.K., Ting J., Berita A., Nguyen T.T., Wong S.-C., Wong T.-M., Lim W.-H., Ha S.-J., Lau C.-Z., Kong S.-L., Bailey E.S., Warkentien T.E., Husain T.S., Gray G.C.","57193489148;36637458600;57203434839;57203946417;57209056278;57208893817;26030771400;57203937280;57203432671;57203435186;57209057140;57209050367;57195918393;35486179000;57209046075;16425441400;","High prevalence of viral infections among hospitalized pneumonia patients in equatorial Sarawak, Malaysia",2019,"Open Forum Infectious Diseases","6","3", ofz074,"","",,,"10.1093/ofid/ofz074","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066404949&doi=10.1093%2fofid%2fofz074&partnerID=40&md5=667f18adf6d037cf9b4214df771635ac","Clinical Research Center, Sarawak, Malaysia; Department of Paediatrics, Sarawak, Malaysia; Department of Medicine, Sibu Hospital, Ministry of Health Malaysia, Sarawak, Malaysia; Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; Department of Paediatrics, Kapit Hospital, Ministry of Health Malaysia, Sarawak, Malaysia; Duke Global Health Institute, Duke University, Box 102359, Durham, NC 27710, United States; Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore; Naval Medical Research Center-Asia, Singapore","Toh, T.-H., Clinical Research Center, Sarawak, Malaysia, Department of Paediatrics, Sarawak, Malaysia, Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; Hii, K.-C., Department of Paediatrics, Kapit Hospital, Ministry of Health Malaysia, Sarawak, Malaysia; Fieldhouse, J.K., Duke Global Health Institute, Duke University, Box 102359, Durham, NC 27710, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Ting, J., Clinical Research Center, Sarawak, Malaysia, Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; Berita, A., Department of Paediatrics, Kapit Hospital, Ministry of Health Malaysia, Sarawak, Malaysia; Nguyen, T.T., Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore; Wong, S.-C., Department of Paediatrics, Sarawak, Malaysia, Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; Wong, T.-M., Clinical Research Center, Sarawak, Malaysia, Department of Medicine, Sibu Hospital, Ministry of Health Malaysia, Sarawak, Malaysia, Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; Lim, W.-H., Clinical Research Center, Sarawak, Malaysia; Ha, S.-J., Department of Paediatrics, Sarawak, Malaysia, Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; Lau, C.-Z., Department of Paediatrics, Sarawak, Malaysia; Kong, S.-L., Department of Paediatrics, Kapit Hospital, Ministry of Health Malaysia, Sarawak, Malaysia; Bailey, E.S., Duke Global Health Institute, Duke University, Box 102359, Durham, NC 27710, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States; Warkentien, T.E., Naval Medical Research Center-Asia, Singapore; Husain, T.S., Naval Medical Research Center-Asia, Singapore; Gray, G.C., Duke Global Health Institute, Duke University, Box 102359, Durham, NC 27710, United States, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States, Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore","Background. Although pneumonia is a known cause of morbidity and mortality in Sarawak, Malaysia, the etiology and epidemiology of pneumonia are not well described in this equatorial region. Routine clinical diagnostics for pneumonia etiology at government hospitals in Sarawak had historically involved only bacterial diagnostics. Viral diagnostics were only obtained through outside consultations. Methods. From June 15, 2017 to May 14, 2018, we collected nasopharyngeal swabs from 600 patients of all ages older than 1 month hospitalized with pneumonia at Sibu and Kapit Hospitals. Specimens were examined at our collaborating institutions with a panel of molecular assays for viral pathogens including influenza A (IAV), IBV, ICV, and IDV, human adenovirus (AdV), human enterovirus (EV), human coronavirus (CoV), respiratory syncytial virus subtype A (RSV-A) or RSV-B, and parainfluenza virus (PIV) types 1-4. Results. Of 599 samples examined, 288 (48%) had molecular evidence of 1 or more respiratory viruses. Overall, the most prevalent virus detected was RSV-A (14.2%) followed by AdV (10.4%) and IAV (10.4%), then RSV-B (6.2%), EV (4.2%), IBV (2.2%), PIV-3 (1.7%), CoV (1.0%), PIV-1 (1.0%), PIV-4 (0.7%), and PIV-2 (0.2%). No specimens were confirmed positive for ICV or IDV. Conclusions. The high prevalence of viruses detected in this study suggest that respiratory viruses may be responsible for considerable morbidity in equatorial regions such as Sarawak. Access to viral diagnostics are very necessary for medical staff to determine appropriate pneumonia treatments. © The Author(s) 2019. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License","Adenoviruses; Influenza; Pneumonia; Respiratory syncytial virus; Respiratory viruses","Adenoviridae; adult; Article; asthma; child; Coronaviridae; dry eye; Enterovirus; female; government; Haemophilus influenzae; hospitalization; human; Human adenovirus A; Human respiratory syncytial virus; influenza A; influenza B; influenza C; major clinical study; malaria; male; mixed infection; morbidity; mortality; Paramyxovirinae; pneumonia; priority journal; questionnaire; real time polymerase chain reaction; respiratory syncytial virus infection; reverse transcription polymerase chain reaction; SARS coronavirus; seasonal variation; sensitivity and specificity; seroprevalence; thorax radiography; virus detection; virus genome; virus infection","Al-Tawfiq, J.A., Zumla, A., Gautret, P., Surveillance for emerging respiratory viruses (2014) Lancet Infect Dis, 14, pp. 992-1000; Tang, J.W., Lam, T.T., Zaraket, H., Global epidemiology of non-influenza RNA respiratory viruses: Data gaps and a growing need for surveillance (2017) Lancet Infect Dis, 17, pp. e320-e326; Legand, A., Briand, S., Shindo, N., Addressing the public health burden of respiratory viruses: The Battle against Respiratory Viruses (BRaVe) initiative (2013) Future Virol, 8, pp. 953-968; Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Swartz, S., Estimates of the global, regional, and national morbidity, mortality, and aeti-ologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015 (2017) The Lancet Infect Dis, 17, pp. 1133-1161; Nair, H., Simões, E.A., Rudan, I., Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: A systematic analysis (2013) Lancet, 381, pp. 1380-1390; Walker, C.L.F., Rudan, I., Liu, L., Global burden of childhood pneumonia and diarrhoea (2013) Lancet, 381, pp. 1405-1416; Song, J.H., Thamlikitkul, V., Hsueh, P.R., Clinical and economic burden of community-acquired pneumonia amongst adults in the Asia-Pacific region (2011) Int J Antimicrob Agents, 38, pp. 108-117; Peto, L., Nadjm, B., Horby, P., The bacterial aetiology of adult community-acquired pneumonia in Asia: A systematic review (2014) Trans R Soc Trop Med Hyg, 108, pp. 326-337; Azmi, S., Aljunid, S.M., Maimaiti, N., Assessing the burden of pneumonia using administrative data from Malaysia, Indonesia, and the Philippines (2016) Int J Infect Dis, 49, pp. 87-93; Khor, C.S., Sam, I.C., Hooi, P.S., Epidemiology and seasonality of respiratory viral infections in hospitalized children in Kuala Lumpur, Malaysia: A retrospective study of 27 years (2012) BMC Pediatr, 12, p. 32; Current Population Estimates, Malaysia, 2014 - 2016, , https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=155&bul_id=OWlx-dEVoYlJCS0hUZzJyRUcvZEYxZz09&menu_id=L0pheU43NWJwRWVSZkl-WdzQ4TlhUUT09, Accessed 4 October 2018; Fieldhouse, J.K., Toh, T.H., Lim, W.H., Surveillance for respiratory syncytial virus and parainfluenza virus among patients hospitalized with pneumonia in Sarawak, Malaysia (2018) PLoS One, 13; Jain, S., Williams, D.J., Arnold, S.R., Community-acquired pneumonia requiring hospitalization among U.S. children (2015) N Engl J Med, 372, pp. 835-845; Jain, S., Self, W.H., Wunderink, R.G., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N Engl J Med, 373, pp. 415-427; Reiman, J.M., Das, B., Sindberg, G.M., Humidity as a non-pharmaceutical intervention for influenza A (2018) PLoS One, 13; Shaman, J., Kohn, M., Absolute humidity modulates influenza survival, transmission, and seasonality (2009) Proc Nat Acad Sci, 106, p. 3243; Borchers, A.T., Chang, C., Gershwin, M.E., Gershwin, L.J., Respiratory syncytial virus-a comprehensive review (2013) Clin Rev Allergy Immunol, 45, pp. 331-379; Watkins, K., Sridhar, D., Pneumonia: A global cause without champions (2018) Lancet, 392, pp. 718-719","Fieldhouse, J.K.; Duke Global Health Institute, Duke University, Box 102359, United States; email: jane.fieldhouse@duke.edu",,"Oxford University Press",23288957,,,,"English","Open Forum Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85066404949 "Campbell F., Cori A., Ferguson N., Jombart T.","57189970928;34874728300;7103246319;24331843100;","Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data",2019,"PLoS Computational Biology","15","3", e1006930,"","",,1,"10.1371/journal.pcbi.1006930","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064726716&doi=10.1371%2fjournal.pcbi.1006930&partnerID=40&md5=0129034448e3a0b0903a2a13677417e8","MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health Imperial College London, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom; UK Public Health Rapid Support Team, London, United Kingdom","Campbell, F., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health Imperial College London, United Kingdom; Cori, A., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health Imperial College London, United Kingdom; Ferguson, N., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health Imperial College London, United Kingdom; Jombart, T., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health Imperial College London, United Kingdom, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom, UK Public Health Rapid Support Team, London, United Kingdom","There exists significant interest in developing statistical and computational tools for inferring ‘who infected whom’ in an infectious disease outbreak from densely sampled case data, with most recent studies focusing on the analysis of whole genome sequence data. However, genomic data can be poorly informative of transmission events if mutations accumulate too slowly to resolve individual transmission pairs or if there exist multiple pathogens lineages within-host, and there has been little focus on incorporating other types of outbreak data. We present here a methodology that uses contact data for the inference of transmission trees in a statistically rigorous manner, alongside genomic data and temporal data. Contact data is frequently collected in outbreaks of pathogens spread by close contact, including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV) and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic model that relates a set of contact data to an underlying transmission tree and integrated this in the outbreaker2 inference framework. By analyzing simulated outbreaks under various contact tracing scenarios, we demonstrate that contact data significantly improves our ability to reconstruct transmission trees, even under realistic limitations on the coverage of the contact tracing effort and the amount of non-infectious mixing between cases. Indeed, contact data is equally or more informative than fully sampled whole genome sequence data in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS outbreak in Singapore and describe the range of transmission scenarios consistent with contact data and genetic sequence in a probabilistic manner for the first time. This simple yet flexible model can easily be incorporated into existing tools for outbreak reconstruction and should permit a better integration of genomic and epidemiological data for inferring transmission chains. © 2019 Campbell et al.",,"algorithm; Article; bacterial transmission; Bayes theorem; Ebolavirus; epidemic; gene mutation; genetic database; Mycobacterium tuberculosis; nonhuman; SARS coronavirus; simulation; Singapore; symptom; virus transmission; whole genome sequencing; biological model; biology; communicable disease; contact examination; genetics; human; procedures; severe acute respiratory syndrome; software; statistics and numerical data; transmission; virology; virus genome; disease course; disease transmission; gene sequence; host pathogen interaction; infectious agent; microbial genome; probability; statistical model; symptom; Algorithms; Bayes Theorem; Communicable Diseases; Computational Biology; Contact Tracing; Disease Outbreaks; Genome, Viral; Humans; Models, Biological; SARS Virus; Severe Acute Respiratory Syndrome; Singapore; Software","Faye, O., Boelle, P.-Y., Heleze, E., Faye, O., Loucoubar, C., N‘Faly, M., Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: An observational study (2015) Lancet Infect Dis, 15, pp. 320-326. , https://doi.org/10.1016/S1473-3099(14)71075-8; Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M., Superspreading and the effect of individual variation on disease emergence. Nature (2005) Nature Publishing Group, 438, pp. 355-359; Ferguson, N.M., Donnelly, C.A., Erson, R.M., Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain (2001) Nature, 413, pp. 542-548. , https://doi.org/10.1038/35097116; Spada, E., Sagliocca, L., Sourdis, J., Garbuglia, A.R., Poggi, V., De Fusco, C., Use of the minimum spanning tree model for molecular epidemiological investigation of a nosocomial outbreak of hepatitis C virus infection (2004) J Clin Microbiol, 42, pp. 4230-4236. , https://doi.org/10.1128/JCM.42.9.4230-4236.2004; Metzker, M.L., Sequencing technologies—the next generation (2010) Nat Rev Genet, 11, pp. 31-46. , https://doi.org/10.1038/nrg2626; Jombart, T., Cori, A., Didelot, X., Cauchemez, S., Fraser, C., Ferguson, N., Bayesian reconstruction of disease outbreaks by combining epidemiologic and genomic data (2014) Plos Comput Biol, 10. , https://doi.org/10.1371/journal.pcbi.1003457; Mollentze, N., Nel, L.H., Townsend, S., Le Roux, K., Hampson, K., Haydon, D.T., A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data (2014) Proc Biol Sci, 281. , https://doi.org/10.1098/rspb.2013.3251, 20133251; Lau, M., Marion, G., Streftaris, G., Gibson, G., A Systematic Bayesian Integration of Epidemiological and Genetic Data (2015) Plos Comput Biol, 11. , https://doi.org/10.1371/journal.pcbi.1004633; Worby, C.J., O’Neill, P.D., Kypraios, T., Robotham, J.V., De Angelis, D., Cartwright, E., Reconstructing transmission trees for communicable diseases using densely sampled genetic data (2016) Ann Appl Stat, 10, pp. 395-417; Didelot, X., Fraser, C., Gardy, J., Colijn, C., Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks (2017) Mol Biol Evol, , https://doi.org/10.1093/molbev/msw275; De Maio, N., Wu, C.-H., Wilson, D.J., SCOTTI: Efficient Reconstruction of Transmission within Outbreaks with the Structured Coalescent (2016) Plos Comput Biol, 12. , https://doi.org/10.1371/journal.pcbi.1005130; Hall, M., Woolhouse, M., Rambaut, A., Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set (2015) Plos Comput Biol, 11. , https://doi.org/10.1371/journal.pcbi.1004613; Klinkenberg, D., Backer, J.A., Didelot, X., Colijn, C., Wallinga, J., Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks (2017) Plos Comput Biol, 13. , https://doi.org/10.1371/journal.pcbi.1005495; Hall, M.D., Woolhouse, M., Rambaut, A., Using genomics data to reconstruct transmission trees during disease outbreaks (2016) Rev Sci Tech, 35, pp. 287-296. , https://doi.org/10.20506/rst.35.1.2433; Didelot, X., Gardy, J., Colijn, C., Bayesian inference of infectious disease transmission from whole-genome sequence data (2014) Mol Biol Evol, 31, pp. 1869-1879. , https://doi.org/10.1093/molbev/msu121; Haydon, D.T., Chase-Topping, M., Shaw, D.J., Matthews, L., Friar, J.K., Wilesmith, J., The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak (2003) Proc Biol Sci, 270, pp. 121-127. , https://doi.org/10.1098/rspb.2002.2191; Campbell, F., Strang, C., Ferguson, N., Cori, A., Jombart, T., When are pathogen genome sequences informative of transmission events? (2018) Plos Pathog, , https://doi.org/10.1371/journal.ppat.1006885; Smith, G., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O.G., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic (2009) Nature, 459, pp. 1122-1125. , https://doi.org/10.1038/nature08182; Dye, C., Williams, B.G., Criteria for the control of drug-resistant tuberculosis (2000) Proc Natl Acad Sci U S A, 97, pp. 8180-8185. , https://doi.org/10.1073/pnas.140102797; Crum, N.F., Wallace, M.R., Lamb, C.R., Conlin, A., Amundson, D.E., Olson, P.E., Halting a pneumococcal pneumonia outbreak among United States Marine Corps trainees (2003) Am J Prev Med, 25, pp. 107-111; Stanczak-Mrozek, K.I., Manne, A., Knight, G.M., Gould, K., Witney, A.A., Lindsay, J.A., Within-host diversity of MRSA antimicrobial resistances (2015) J Antimicrob Chemother, 70, pp. 2191-2198. , https://doi.org/10.1093/jac/dkv119; Stegemann, S., Dahlberg, S., Kroger, A., Gereke, M., Bruder, D., Henriques-Normark, B., Increased susceptibility for superinfection with Streptococcus pneumoniae during influenza virus infection is not caused by TLR7-mediated lymphopenia (2009) Plos One, 4. , https://doi.org/10.1371/journal.pone.0004840; Wymant, C., Hall, M., Ratmann, O., Bonsall, D., Golubchik, T., De Cesare, M., PHYLOSCANNER: Inferring Transmission from Withinand Between-Host Pathogen Genetic Diversity (2017) Mol Biol Evol, , https://doi.org/10.1093/molbev/msx304; Dudas, G., Carvalho, L.M., Bedford, T., Tatem, A.J., Baele, G., Faria, N.R., Virus genomes reveal factors that spread and sustained the Ebola epidemic (2017) Nature, 544, pp. 309-315. , https://doi.org/10.1038/nature22040; Shen, Z., Ning, F., Zhou, W., He, X., Lin, C., Chin, D.P., Superspreading SARS events, Beijing, 2003 (2004) Emerg Infect Dis, 10, pp. 256-260. , https://doi.org/10.3201/eid1002.030732; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , https://doi.org/10.1056/NEJMoa1306742; Ebola Virus Disease in West Africa—The First 9 Months of the Epidemic and Forward Projections (2014) N Engl J Med, 371, pp. 1481-1495. , https://doi.org/10.1056/NEJMoa1411100; Agua-Agum, J., Ariyarajah, A., Aylward, B., Bawo, L., Bilivogui, P., Exposure Patterns Driving Ebola Transmission in West Africa: A Retrospective Observational Study (2016) Plos Med, 13. , https://doi.org/10.1371/journal.pmed.1002170; Broeckaert, L., Haworth-Brockman, M., (2014) You May have Come into Contact with...”: HIV Contact Tracing in Canada, , http://www.catie.ca/en/pif/fall-2014/you-may-have-come-contact-hiv-contact-tracing-canada, Prevention; Guidelines for the investigation of contacts of persons with infectious tuberculosis. Recommendations from the National Tuberculosis Controllers Association and CDC (2005) MMWR Recomm Rep, 54, pp. 1-47; (2011) R: A Language and Environment for Statistical Computing [Internet], , https://doi.org/10.1007/978-3-540-74686-7, R Foundation for Statistical Computing; Riley, S., Fraser, C., Donnelly, C.A., Ghani, A.C., Abu-Raddad, L.J., Hedley, A.J., Transmission dynamics of the etiological agent of SARS in Hong Kong: Impact of public health interventions (2003) Science, 300, pp. 1961-1966. , https://doi.org/10.1126/science.1086478; Kermack, W.O., McKendrick, A.G., (1927) A Contribution to the Mathematical Theory of Epidemics, , http://rspa.royalsocietypublishing.org/content/royprsa/115/772/700.full.pdf, A: mathematical, rspa.royalsocietypublishing.org; Althaus, C.L., Ebola superspreading (2015) Lancet Infect Dis, 15, pp. 507-508. , https://doi.org/10.1016/S1473-3099(15)70135-0; Ruan, Y.J., Wei, C.L., Ee, A.L., Vega, V.B., Thoreau, H., Su, S., Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection (2003) Lancet, 361, pp. 1779-1785; Vega, V.B., Ruan, Y., Liu, J., Lee, W.H., Wei, C.L., Se-Thoe, S.Y., Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003 (2004) BMC Infect Dis, 4, p. 32. , https://doi.org/10.1186/1471-2334-4-32; Liu, J., Lim, S.L., Ruan, Y., Ling, A.E., Ng, L., Drosten, C., SARS transmission pattern in Singapore reassessed by viral sequence variation analysis (2005) Plos Med, 2. , https://doi.org/10.1371/journal.pmed.0020043; Worby, C.J., Lipsitch, M., Hanage, W.P., Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data (2014) Plos Comput Biol, 10. , https://doi.org/10.1371/journal.pcbi.1003549; Soetens, L., Klinkenberg, D., Swaan, C., Hahné, S., Wallinga, J., Real-time Estimation of Epidemiologic Parameters from Contact Tracing Data During an Emerging Infectious Disease Outbreak (2018) EpidemiolOgy, 29, pp. 230-236. , https://doi.org/10.1097/EDE.0000000000000776; Hens, N., Calatayud, L., Kurkela, S., Tamme, T., Wallinga, J., Robust reconstruction and analysis of outbreak data: Influenza A(H1N1)v transmission in a school-based population (2012) Am J Epidemiol, 176, pp. 196-203. , https://doi.org/10.1093/aje/kws006; Jewell, C.P., Roberts, G.O., Enhancing Bayesian risk prediction for epidemics using contact tracing (2012) Biostatistics, 13, pp. 567-579. , https://doi.org/10.1093/biostatistics/kxs012; Gardy, J.L., Johnston, J.C., Ho Sui, S.J., Cook, V.J., Shah, L., Brodkin, E., Whole-genome sequencing and social-network analysis of a tuberculosis outbreak (2011) N Engl J Med, 364, pp. 730-739. , https://doi.org/10.1056/NEJMoa1003176; Bryant, J.M., Schurch, A.C., Van Deutekom, H., Harris, S.R., De Beer, J.L., De Jager, V., Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data (2013) BMC Infect Dis, 13, p. 110. , https://doi.org/10.1186/1471-2334-13-110; Cori, A., Donnelly, C.A., Dorigatti, I., Ferguson, N.M., Fraser, C., Garske, T., Key data for outbreak evaluation: Building on the Ebola experience (2017) Philos Trans R Soc Lond B Biol Sci, p. 372. , https://doi.org/10.1098/rstb.2016.0371; Fraser, C., Riley, S., Erson, R.M., Ferguson, N.M., Factors that make an infectious disease outbreak controllable (2004) Proc Natl Acad Sci U S A, 101, pp. 6146-6151. , https://doi.org/10.1073/pnas.0307506101; (2014) Contact Tracing during an Outbreak of Ebola Virus Disease, , World Health Organization; Dixon, M.G., Taylor, M.M., Dee, J., Hakim, A., Cantey, P., Lim, T., Contact Tracing Activities during the Ebola Virus Disease Epidemic in Kindia and Faranah, Guinea, 2014 (2015) Emerg Infect Dis, 21, pp. 2022-2028. , https://doi.org/10.3201//eid2111.150684; Patel, P., Borkowf, C.B., Brooks, J.T., Lasry, A., Lansky, A., Mermin, J., Estimating per-act HIV transmission risk: A systematic review (2014) AIDS, 28, pp. 1509-1519. , https://doi.org/10.1097/QAD.0000000000000298; Cauchemez, S., Ferguson, N.M., Methods to infer transmission risk factors in complex outbreak data (2012) J R Soc Interface, 9, pp. 456-469. , https://doi.org/10.1098/rsif.2011.0379; Kenah, E., Contact intervals, survival analysis of epidemic data, and estimation of R(0) (2011) Biostatistics, 12, pp. 548-566. , https://doi.org/10.1093/biostatistics/kxq068; Wallinga, J., Teunis, P., Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures (2004) Am J Epidemiol, 160, pp. 509-516. , https://doi.org/10.1093/aje/kwh255; Jou, J., Ebrahim, J., Shofer, F.S., Hamilton, K.W., Stern, J., Han, J.H., Environmental transmission of Clostridium difficile: Association between hospital room size and C. difficile Infection (2015) Infect Control Hosp Epidemiol, 36, pp. 564-568. , https://doi.org/10.1017/ice.2015.18; Grassly, N.C., Fraser, C., Mathematical models of infectious disease transmission (2008) Nat Rev Microbiol, 6, pp. 477-487. , https://doi.org/10.1038/nrmicro1845; Cori, A., Ferguson, N.M., Fraser, C., Cauchemez, S., A new framework and software to estimate time-varying reproduction numbers during epidemics (2013) Am J Epidemiol, 178, pp. 1505-1512. , https://doi.org/10.1093/aje/kwt133; Ebola Virus Disease in West Africa—The First 9 Months of the Epidemic and Forward Projections (2014) The England New Journal of Medicine, 371, pp. 1481-1495; West African Ebola Epidemic after One Year—Slowing but Not Yet under Control (2015) N Engl J Med, 372, pp. 584-587. , https://doi.org/10.1056/NEJMc1414992; Lipsitch, M., Transmission Dynamics and Control of Severe Acute Respiratory Syndrome (2003) Science, 300, pp. 1966-1970. , https://doi.org/10.1126/science.1086616; Reynolds, M.G., Anh, B.H., Thu, V.H., Montgomery, J.M., Bausch, D.G., Shah, J.J., Factors associated with nosocomial SARS-CoV transmission among healthcare workers in Hanoi, Vietnam, 2003 (2006) BMC Public Health, 6, p. 207. , https://doi.org/10.1186/1471-2458-6-207; Varia, M., Wilson, S., Sarwal, S., McGeer, A., Gournis, E., Galanis, E., Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada (2003) CMAJ, 169, pp. 285-292; Donnelly, C.A., Ghani, A.C., Leung, G.M., Hedley, A.J., Fraser, C., Riley, S., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong (2003) Lancet, 361, pp. 1761-1766. , https://doi.org/10.1016/S0140-6736(03)13410-1; Hoenen, T., Groseth, A., Feldmann, F., Marzi, A., Ebihara, H., Kobinger, G., Complete Genome Sequences of Three Ebola Virus Isolates from the 2014 Outbreak in West Africa (2014) Genome Announc, 2, pp. 647-648; Gire, S.K., Goba, A., Ersen, K.G., Sealfon, R., Park, D.J., Kanneh, L., Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak (2014) Science, 345, pp. 1369-1372. , https://doi.org/10.1126/science.1259657; Tong, Y.-G., Shi, W.-F., Di, L., Qian, J., Liang, L., Bo, X.-C., Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone (2015) Nature, , https://doi.org/10.1038/nature14490; Zhao, Z., Li, H., Wu, X., Zhong, Y., Zhang, K., Zhang, Y.-P., Moderate mutation rate in the SARS coronavirus genome and its implications (2004) BMC Evol Biol, 4, p. 21. , https://doi.org/10.1186/1471-2148-4-21; Wu, S.-F., Du, C.-J., Wan, P., Chen, T.-G., Li, J.-Q., Li, D., The genome comparison of SARS-CoV and other coronaviruses (2003) Yi Chuan = Hereditas/Zhongguo Yi Chuan Xue Hui Bian Ji, 25, pp. 373-382; Baize, S., Pannetier, D., Oestereich, L., Rieger, T., Koivogui, L., N‘Faly, M., Emergence of Zaire Ebola Virus Disease in Guinea—Preliminary Report (2014) N Engl J Med, pp. 1-8; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399. , https://doi.org/10.1126/science.1085952; Shannon, C.E., The mathematical theory of communication. 1963 (1997) MD Comput, 14, pp. 306-317","Jombart, T.; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health Imperial College LondonUnited Kingdom; email: thibautjombart@gmail.com",,"Public Library of Science",1553734X,,,"30925168","English","PLoS Comput. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85064726716 "Kim M.-A., Park J.S., Lee C.W., Choi W.-I.","57200005875;8866846500;57196256306;7402516121;","Pneumonia severity index in viral community acquired pneumonia in adults",2019,"PLoS ONE","14","3", e0210102,"","",,1,"10.1371/journal.pone.0210102","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062595717&doi=10.1371%2fjournal.pone.0210102&partnerID=40&md5=fd460823ca61b6d14aab5ad5c6ebd49a","Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, South Korea; Department of Occupational and Environmental Medicine, Sungso Hospital, Andong, South Korea","Kim, M.-A., Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, South Korea; Park, J.S., Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, South Korea; Lee, C.W., Department of Occupational and Environmental Medicine, Sungso Hospital, Andong, South Korea; Choi, W.-I., Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, South Korea","Pneumonia severity index (PSI) is an important scoring system that can assess the severity of community acquired pneumonia and determine admission status. However, there is a lack of research on whether this scoring system can be applied to viral community acquired pneumonia. The purpose of this study was to evaluate the usefulness of PSI in viral community acquired pneumonia. This retrospective cohort study included 1,434 adult patients (aged 18 years) who were admitted to the emergency department of a university hospital during 2013–2015 because of community-acquired pneumonia. Viral infections were diagnosed by multiplex PCR. Patients diagnosed with non-viral community-acquired pneumonia were included in the control group (N = 1,173). The main outcome was 30-day all-cause mortality. multivariate Cox regression analyses were performed to calculate the risk of death. Respiratory viruses were detected in 261 (18.2%) patients with community-acquired pneumonia. Two types of respiratory viruses were detected in 7 cases. Of the 254 cases detected with only one virus, 62 were influenza A, 18 were influenza B, 65 were rhinovirus, 35 were respiratory syncytial virus, 25 were metapneumovirus, 20 were parainfluenza, 17 were coronavirus, 7 were bocavirus, and 5 were adenovirus. Mortality was not significantly different between patients with respiratory virus and those without respiratory virus; the 30-day all-cause mortality rates were 20.3% and 22.4%, respectively (P = 0.45). Mortality rate increased with an increasing PSI score with or without respiratory viral infection. Pulmonary severity index was significantly associated with mortality adjusted for respiratory virus detection (hazard ratio = 1.024, 95% confidence interval = 1.020–1.028). Pneumonia severity index score is an important factor for assessing the prognosis of patients with community-acquired pneumonia, regardless of respiratory virus detection. © 2019 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"Adenoviridae; adult; aged; all cause mortality; Article; Bocaparvovirus; cohort analysis; community acquired pneumonia; computer assisted tomography; controlled study; Coronavirinae; emergency ward; female; hazard ratio; hospital admission; human; Human respiratory syncytial virus; Influenza A virus; Influenza B virus; major clinical study; male; Metapneumovirus; mortality; mortality risk; multiplex polymerase chain reaction; nose smear; outcome assessment; Paramyxovirinae; Pneumonia Severity Index; prognosis; proportional hazards model; respiratory virus; retrospective study; Rhinovirus; risk assessment; thorax radiography; throat culture; university hospital; viral respiratory tract infection; virus detection; adolescent; classification; community acquired infection; isolation and purification; middle aged; mortality; pathogenicity; Pneumovirus; respiratory tract infection; severity of illness index; South Korea; survival rate; virology; virus pneumonia; Adolescent; Adult; Aged; Community-Acquired Infections; Female; Humans; Male; Middle Aged; Pneumonia, Viral; Pneumovirus; Prognosis; Republic of Korea; Respiratory Tract Infections; Retrospective Studies; Severity of Illness Index; Survival Rate","Jain, S., Self, W.H., Wunderink, R.G., Team, C.E.S., Community-acquired pneumonia requiring hospitalization (2015) The New England Journal of Medicine, 373 (24), p. 2382. , https://doi.org/10.1056/NEJMc1511751, PMID: 26650159; Niederman, M.S., Mandell, L.A., Anzueto, A., Bass, J.B., Broughton, W.A., Campbell, G.D., Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention (2001) Am J Respir Crit Care Med, 163 (7), pp. 1730-1754. , https://doi.org/10.1164/ajrccm.163.7.at1010, PMID: 11401897; Fine, M.J., Auble, T.E., Yealy, D.M., Hanusa, B.H., Weissfeld, L.A., Singer, D.E., A prediction rule to identify low-risk patients with community-acquired pneumonia (1997) The New England Journal of Medicine, 336 (4), pp. 243-250. , https://doi.org/10.1056/NEJM199701233360402, PMID: 8995086; Lim, W.S., van der Eerden, M.M., Laing, R., Boersma, W.G., Karalus, N., Town, G.I., Defining community acquired pneumonia severity on presentation to hospital: An international derivation and validation study (2003) Thorax, 58 (5), pp. 377-382. , https://doi.org/10.1136/thorax.58.5.377, PMID: 12728155; PubMed Central PMCID: PMCPMC1746657; Huijskens, E.G., Koopmans, M., Palmen, F.M., van Erkel, A.J., Mulder, P.G., Rossen, J.W., The value of signs and symptoms in differentiating between bacterial, viral and mixed aetiology in patients with community-acquired pneumonia (2014) Journal of Medical Microbiology, 63, pp. 441-452. , https://doi.org/10.1099/jmm.0.067108-0, PMID: 24344207; Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., Community-acquired pneumonia requiring hospitalization among U.S. Adults (2015) The New England Journal of Medicine, 373 (5), pp. 415-427. , https://doi.org/10.1056/NEJMoa1500245, PMID: 26172429; PubMed Central PMCID: PMC4728150; Johansson, N., Kalin, M., Tiveljung-Lindell, A., Giske, C.G., Hedlund, J., Etiology of community-acquired pneumonia: Increased microbiological yield with new diagnostic methods (2010) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 50 (2), pp. 202-209. , https://doi.org/10.1086/648678, PMID: 20014950; Kim, J.E., Kim, U.J., Kim, H.K., Cho, S.K., An, J.H., Kang, S.J., Predictors of viral pneumonia in patients with community-acquired pneumonia (2014) PloS One, 9 (12). , https://doi.org/10.1371/journal.pone.0114710, PMID: 25531901; PubMed Central PMCID: PMC4273967; Qu, J.X., Gu, L., Pu, Z.H., Yu, X.M., Liu, Y.M., Li, R., Viral etiology of community-acquired pneumonia among adolescents and adults with mild or moderate severity and its relation to age and severity (2015) BMC Infectious Diseases, 15, p. 89. , https://doi.org/10.1186/s12879-015-0808-0, PMID: 25812108; PubMed Central PMCID: PMC4342096; Saito, A., Kohno, S., Matsushima, T., Watanabe, A., Oizumi, K., Yamaguchi, K., Prospective multicenter study of the causative organisms of community-acquired pneumonia in adults in Japan (2006) Journal of Infection and Chemotherapy: Official Journal of The Japan Society of Chemotherapy, 12 (2), pp. 63-69. , https://doi.org/10.1007/s10156-005-0425-8, PMID: 16648944; Sangil, A., Calbo, E., Robles, A., Benet, S., Viladot, M.E., Pascual, V., Aetiology of community-acquired pneumonia among adults in an H1N1 pandemic year: The role of respiratory viruses (2012) European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of The European Society of Clinical Microbiology, 31 (10), pp. 2765-2772. , https://doi.org/10.1007/s10096-012-1626-6, PMID: 22549730; Templeton, K.E., Scheltinga, S.A., van den Eeden, W.C., Graffelman, A.W., van den Broek, P.J., Claas, E.C., Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction (2005) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 41 (3), pp. 345-351. , https://doi.org/10.1086/431588, PMID: 16007532; Caliendo, A.M., Multiplex PCR and emerging technologies for the detection of respiratory pathogens (2011) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 52, pp. S326-S330. , https://doi.org/10.1093/cid/cir047, PMID: 21460291; Zumla, A., Al-Tawfiq, J.A., Enne, V.I., Kidd, M., Drosten, C., Breuer, J., Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections—needs, advances, and future prospects (2014) The Lancet Infectious Diseases, 14 (11), pp. 1123-1135. , https://doi.org/10.1016/S1473-3099(14)70827-8, PMID: 25189349; Angeles Marcos, M., Camps, M., Pumarola, T., Antonio Martinez, J., Martinez, E., Mensa, J., The role of viruses in the aetiology of community-acquired pneumonia in adults (2006) Antiviral Therapy, 11 (3), pp. 351-359. , PMID: 16759052; Hasvold, J., Sjoding, M., Pohl, K., Cooke, C., Hyzy, R.C., The role of human metapneumovirus in the critically ill adult patient (2016) J Crit Care, 31 (1), pp. 233-237. , https://doi.org/10.1016/j.jcrc.2015.09.035, PMID: 26572580; PubMed Central PMCID: PMCPMC5785276; Crotty, M.P., Meyers, S., Hampton, N., Bledsoe, S., Ritchie, D.J., Buller, R.S., Epidemiology, co-infections, and outcomes of viral pneumonia in adults: An observational cohort study (2015) Medicine, 94 (50). , https://doi.org/10.1097/MD.0000000000002332, PMID: 26683973; PubMed Central PMCID: PMCPMC5058945; Choi, S.H., Huh, J.W., Hong, S.B., Lee, J.Y., Kim, S.H., Sung, H., Clinical characteristics and outcomes of severe rhinovirus-associated pneumonia identified by bronchoscopic bronchoalveolar lavage in adults: Comparison with severe influenza virus-associated pneumonia (2015) J Clin Virol, 62, pp. 41-47. , https://doi.org/10.1016/j.jcv.2014.11.010, PMID: 25542469; Kim, K., Song, Y.H., Park, J.H., Park, H.K., Kim, S.Y., Jung, H., Rhinovirus associated severe respiratory failure in immunocompetent adult patient (2014) Tuberc Respir Dis, 77 (3), pp. 132-135. , https://doi.org/10.4046/trd.2014.77.3.132, Seoul. PMID: 25309608; PubMed Central PMCID: PMCPMC4192311; Walter, J.M., Wunderink, R.G., Severe respiratory viral infections: New evidence and changing paradigms (2017) Infect Dis Clin North Am, 31 (3), pp. 455-474. , https://doi.org/10.1016/j.idc.2017.05.004, PMID: 28687214; Kwon, Y.S., Park, S.H., Kim, M.A., Kim, H.J., Park, J.S., Lee, M.Y., Risk of mortality associated with respiratory syncytial virus and influenza infection in adults (2017) BMC Infectious Diseases, 17 (1), p. 785. , https://doi.org/10.1186/s12879-017-2897-4, PMID: 29262784; PubMed Central PMCID: PMCPMC5738863; Marx, A., Gary, H.E., Jr, Marston, B.J., Erdman, D.D., Breiman, R.F., Torok, T.J., Parainfluenza virus infection among adults hospitalized for lower respiratory tract infection (1999) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 29 (1), pp. 134-140. , https://doi.org/10.1086/520142, PMID: 10433576; Morens, D.M., Taubenberger, J.K., Fauci, A.S., Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness (2008) The Journal of Infectious Diseases, 198 (7), pp. 962-970. , https://doi.org/10.1086/591708, PMID: 18710327; PubMed Central PMCID: PMCPMC2599911; Zambon, M.C., The pathogenesis of influenza in humans (2001) Rev Med Virol, 11 (4), pp. 227-241. , PMID: 11479929; Podewils, L.J., Liedtke, L.A., McDonald, L.C., Hageman, J.C., Strausbaugh, L.J., Fischer, T.K., A national survey of severe influenza-associated complications among children and adults, 2003–2004 (2005) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 40 (11), pp. 1693-1696. , https://doi.org/10.1086/430424, PMID: 15889371; Choi, W.I., Yim, J.J., Park, J., Kim, S.C., Na, M.J., Lee, W.Y., Clinical characteristics and outcomes of H1N1-associated pneumonia among adults in South Korea (2011) Int J Tuberc Lung Dis, 15 (2), pp. 270-275. , i. PMID: 21219693; Wang, C., Armstrong, S.M., Sugiyama, M.G., Tabuchi, A., Krauszman, A., Kuebler, W.M., Influenza-Induced Priming and Leak of Human Lung Microvascular Endothelium upon Exposure to Staphylococcus aureus (2015) American Journal of Respiratory Cell and Molecular Biology, 53 (4), pp. 459-470. , https://doi.org/10.1165/rcmb.2014-0373OC, PMID: 25693001; Reddinger, R.M., Luke-Marshall, N.R., Hakansson, A.P., Campagnari, A.A., Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease (2016) mBio, 7 (4). , https://doi.org/10.1128/mBio.01235-16, PMID: 27507829; PubMed Central PMCID: PMC4981728; Speshock, J.L., Doyon-Reale, N., Rabah, R., Neely, M.N., Roberts, P.C., Filamentous influenza A virus infection predisposes mice to fatal septicemia following superinfection with Streptococcus pneumoniae serotype 3 (2007) Infection and Immunity, 75 (6), pp. 3102-3111. , https://doi.org/10.1128/IAI.01943-06, PMID: 17403870; PubMed Central PMCID: PMC1932876; Jennings, L.C., Anderson, T.P., Beynon, K.A., Chua, A., Laing, R.T., Werno, A.M., Incidence and characteristics of viral community-acquired pneumonia in adults (2008) Thorax, 63 (1), pp. 42-48. , https://doi.org/10.1136/thx.2006.075077, PMID: 17573440; Klein, E.Y., Monteforte, B., Gupta, A., Jiang, W., May, L., Hsieh, Y.H., The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis (2016) Influenza and Other Respiratory Viruses, 10 (5), pp. 394-403. , https://doi.org/10.1111/irv.12398, PMID: 27232677; PubMed Central PMCID: PMC4947938; Johnstone, J., Majumdar, S.R., Fox, J.D., Marrie, T.J., Viral infection in adults hospitalized with community-acquired pneumonia: Prevalence, pathogens, and presentation (2008) Chest, 134 (6), pp. 1141-1148. , https://doi.org/10.1378/chest.08-0888, PMID: 18689592; McIntosh, K., Community-acquired pneumonia in children (2002) The New England Journal of Medicine, 346 (6), pp. 429-437. , https://doi.org/10.1056/NEJMra011994, PMID: 11832532; Tsolia, M.N., Psarras, S., Bossios, A., Audi, H., Paldanius, M., Gourgiotis, D., Etiology of community-acquired pneumonia in hospitalized school-age children: Evidence for high prevalence of viral infections (2004) Clinical Infectious Diseases: An Official Publication of The Infectious Diseases Society of America, 39 (5), pp. 681-686. , https://doi.org/10.1086/422996, PMID: 15356783","Choi, W.-I.; Department of Internal Medicine, Keimyung University Dongsan HospitalSouth Korea; email: wichoi@dsmc.or.kr",,"Public Library of Science",19326203,,POLNC,"30840626","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85062595717 "Shin H.-S., Kim Y., Kim G., Lee J.Y., Jeong I., Joh J.-S., Kim H., Chang E., Sim S.Y., Park J.-S., Lim D.-G.","55361474100;56066688300;55915343600;57196137881;8413144500;55255891900;57207302423;57207301852;57206290607;57202424625;23470056500;","Immune Responses to Middle East Respiratory Syndrome Coronavirus during the Acute and Convalescent Phases of Human Infection",2019,"Clinical Infectious Diseases","68","6",,"984","992",,6,"10.1093/cid/ciy595","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062405648&doi=10.1093%2fcid%2fciy595&partnerID=40&md5=63a169c0145818635433a98cf2e46a23","Center for Infectious Diseases, Department of Internal Medicine, Seoul, South Korea; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul, South Korea; Center for Chronic Diseases, Research Institute, National Medical Center, 245, Euljiro, Jung-gu, Seoul, 04564, South Korea; Center for Infectious Diseases, Research Institute, National Medical Center, Seoul, South Korea","Shin, H.-S., Center for Infectious Diseases, Department of Internal Medicine, Seoul, South Korea; Kim, Y., Center for Infectious Diseases, Department of Internal Medicine, Seoul, South Korea; Kim, G., Center for Infectious Diseases, Department of Internal Medicine, Seoul, South Korea; Lee, J.Y., Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul, South Korea; Jeong, I., Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul, South Korea; Joh, J.-S., Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul, South Korea; Kim, H., Center for Chronic Diseases, Research Institute, National Medical Center, 245, Euljiro, Jung-gu, Seoul, 04564, South Korea; Chang, E., Center for Chronic Diseases, Research Institute, National Medical Center, 245, Euljiro, Jung-gu, Seoul, 04564, South Korea; Sim, S.Y., Center for Chronic Diseases, Research Institute, National Medical Center, 245, Euljiro, Jung-gu, Seoul, 04564, South Korea; Park, J.-S., Center for Infectious Diseases, Research Institute, National Medical Center, Seoul, South Korea; Lim, D.-G., Center for Chronic Diseases, Research Institute, National Medical Center, 245, Euljiro, Jung-gu, Seoul, 04564, South Korea","Background An understanding of immune responses against the Middle East respiratory syndrome (MERS) is important for the development of treatments and preventive measures. Here, we investigated the spectrum of immune responses occurring in patients with MERS during the early period of infection. Methods We obtained peripheral blood samples from 27 hospitalized patients recruited during the epidemic that occurred in 2015 in South Korea. Plasma cytokines/chemokines and antibodies were quantified. Virus-specific T cells were examined by intracellular cytokine staining after stimulation of peripheral blood mononuclear cells with overlapping peptides spanning whole virus structural proteins. Results At the acute phase of infection, elevated levels of plasma proinflammatory cytokines/chemokines were detected in proportion to the severity of the disease. Distinctively high frequencies of MERS coronavirus-reactive CD8 + T cells were also observed in patients with severe/moderate illness, whereas antibody and CD4 + T-cell responses were minimally detected at this stage. At the convalescent phase, disease severity-dependent antibody responses emerged and antigen-reactive cells were identified in both T-cell subsets. These T cells belonged to the T-helper 1 or type 1 cytotoxic T cell subtypes. While CD8 + T cells responded preferentially to the viral S protein compared with E/M/N proteins, especially at the acute stage, slightly more CD4 + T cells recognized E/M/N proteins compared with S protein at the convalescent phase. Conclusions Our findings show an association between the early CD8 + T-cell response and the severity of the infection, and also provide basic information that may help to prepare effective control strategies for MERS in humans. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.","acute phase of infection; immune response; MERS coronavirus; T lymphocytes","E protein; gamma interferon inducible protein 10; immunoglobulin G; immunoglobulin G antibody; immunoglobulin M antibody; interleukin 1 receptor blocking agent; interleukin 10; interleukin 6; interleukin 8; lysosome associated membrane protein 1; M protein; macrophage inflammatory protein 1beta; monocyte chemotactic protein 1; RANTES; tumor necrosis factor; unclassified drug; viral protein; viral S protein; adult; antibody blood level; antibody response; Article; artificial ventilation; CD4+ T lymphocyte; CD8+ T lymphocyte; clinical article; convalescence; coughing; disease severity; fever; headache; hospital patient; human; immune response; malaise; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; peripheral blood mononuclear cell; pneumonia; priority journal; respiratory failure; South Korea","Fehr, A.R., Channappanavar, R., Perlman, S., Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus (2017) Annu Rev Med, 68, pp. 387-399; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Faure, E., Poissy, J., Goffard, A., Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? (2014) PLoS One, 9, p. e88716; Guan, W.D., Mok, C.K., Chen, Z.L., Characteristics of traveler with Middle East respiratory syndrome, China, 2015 (2015) Emerg Infect Dis, 21, pp. 2278-2280; Kim, E.S., Choe, P.G., Park, W.B., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) J Korean Med Sci, 31, pp. 1717-1725; Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses (2017) Sci Immunol, 2, p. eaan5393; Yu, P., Xu, Y., Deng, W., Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus (2017) PLoS One, 12, p. e0172093; Niemeyer, D., Zillinger, T., Muth, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87, pp. 12489-12495; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111, pp. 4970-4975; Zhao, J., Zhao, J., Mangalam, A.K., Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses (2016) Immunity, 44, pp. 1379-1391; Baseler, L.J., Falzarano, D., Scott, D.P., An acute immune response to Middle East respiratory syndrome coronavirus replication contributes to viral pathogenicity (2016) Am J Pathol, 186, pp. 630-638; Li, C.K., Wu, H., Yan, H., T cell responses to whole SARS coronavirus in humans (2008) J Immunol, 181, pp. 5490-5500; Perera, R.A., Wang, P., Gomaa, M.R., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18. , pii:20574; Kim, Y., Cheon, S., Min, C.K., Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) MBio, 7, p. e00019; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the kingdom of Saudi Arabia, 2012–2015 (2016) Int J Infect Dis, 45, pp. 1-4; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Seder, R.A., Darrah, P.A., Roederer, M., T-cell quality in memory and protection: Implications for vaccine design (2008) Nat Rev Immunol, 8, pp. 247-258; Falzarano, D., De Wit, E., Rasmussen, A.L., Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19, pp. 1313-1317; Ng, D.L., Al Hosani, F., Keating, M.K., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186, pp. 652-658; Wagner, L., Yang, O.O., Garcia-Zepeda, E.A., Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans (1998) Nature, 391, pp. 908-911; Coleman, C.M., Sisk, J.M., Halasz, G., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2016) J Virol, 91, pp. e01825-e01916; Moskophidis, D., Kioussis, D., Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model (1998) J Exp Med, 188, pp. 223-232; Hu, Z., Molloy, M.J., Usherwood, E.J., CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose (2016) Cell Mol Immunol, 13, pp. 82-93; Selin, L.K., Varga, S.M., Wong, I.C., Welsh, R.M., Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations (1998) J Exp Med, 188, pp. 1705-1715; Wong, R.S., Wu, A., To, K.F., Haematological manifestations in patients with severeacuterespiratorysyndrome:retrospectiveanalysis BMJ2003, 326, pp. 1358-1362; Wong, C.K., Lam, C.W., Wu, A.K., Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome (2004) Clin Exp Immunol, 136, pp. 95-103; Chen, H., Hou, J., Jiang, X., Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals (2005) J Immunol, 175, pp. 591-598; Peng, H., Yang, L.T., Wang, L.Y., Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients (2006) Virology, 351, pp. 466-475; Yang, L., Peng, H., Zhu, Z., Persistent memory CD4+ and CD8+ T-cell responses in recovered severe acute respiratory syndrome (SARS) patients to SARS coronavirus M antigen (2007) J Gen Virol, 88, pp. 2740-2748; Chan, P.K., Ma, S., Ngai, S.M., Identification of T-cell epitopes of SARS-coronavirus for development of peptide-based vaccines and cellular immunity assessment methods (2011) Hong Kong Med J, 17, pp. S26-S30; Tang, F., Quan, Y., Xin, Z.T., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study (2011) J Immunol, 186, pp. 7264-7268; Ng, O.W., Chia, A., Tan, A.T., Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection (2016) Vaccine, 34, pp. 2008-2014","Lim, D.-G.; Center for Chronic Diseases, Research Institute, National Medical Center, 245, Euljiro, South Korea; email: dglim@nmc.or.kr",,"Oxford University Press",10584838,,CIDIE,"30060038","English","Clin. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85062405648 "Ball J.D., Elbadry M.A., Telisma T., White S.K., Chavannes S., Anilis M.G., Prosperi M., Cummings D.A.T., Lednicky J.A., Morris J.G., Beau De Rochars M.","56452288900;55538715200;56582395900;55964900800;56582438600;56582489100;22036230400;9842706300;6701315850;8769434900;8922209000;","Clinical and Epidemiologic Patterns of Chikungunya Virus Infection and Coincident Arboviral Disease in a School Cohort in Haiti, 2014-2015",2019,"Clinical Infectious Diseases","68","6",,"919","926",,4,"10.1093/cid/ciy582","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061667671&doi=10.1093%2fcid%2fciy582&partnerID=40&md5=8cc8057882666db21186c65ded3c5f2d","Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States; Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, United States; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, United States; Christianville School Clinic, Christianville Foundation, Gressier, Haiti, United States; Department of Biology, College of Liberal Arts and Sciences, United States; Department of Medicine, College of Medicine, United States; Department of Health Services Research, Management, and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, United States","Ball, J.D., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, United States; Elbadry, M.A., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, United States; Telisma, T., Christianville School Clinic, Christianville Foundation, Gressier, Haiti, United States; White, S.K., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, United States; Chavannes, S., Christianville School Clinic, Christianville Foundation, Gressier, Haiti, United States; Anilis, M.G., Christianville School Clinic, Christianville Foundation, Gressier, Haiti, United States; Prosperi, M., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, United States; Cummings, D.A.T., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Biology, College of Liberal Arts and Sciences, United States; Lednicky, J.A., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, United States; Morris, J.G., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Medicine, College of Medicine, United States; Beau De Rochars, M., Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., Gainesville, FL 32610-0009, United States, Department of Health Services Research, Management, and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, United States","Background Beginning in December 2013, an epidemic of chikungunya virus (CHIKV) infection spread across the Caribbean and into virtually all countries in the Western hemisphere, with >2.4 million cases reported through the end of 2017. Methods We monitored a cohort of school children in rural Haiti from May 2014, through February 2015, for occurrence of acute undifferentiated febrile illness, with clinical and laboratory data available for 252 illness episodes. Results Our findings document passage of the major CHIKV epidemic between May and July 2014, with 82 laboratory-confirmed cases. Subsequent peaks of febrile illness were found to incorporate smaller outbreaks of dengue virus serotypes 1 and 4 and Zika virus, with identification of additional infections with Mayaro virus, enterovirus D68, and coronavirus NL63. CHIKV and dengue virus serotype 1 infections were more common in older children, with a complaint of arthralgia serving as a significant predictor for infection with CHIKV (odds ratio, 16.2; 95% confidence interval, 8.0-34.4; positive predictive value, 66%; negative predictive value, 80%). Conclusions Viral/arboviral infections were characterized by a pattern of recurrent outbreaks and case clusters, with the CHIKV epidemic representing just one of several arboviral agents moving through the population. Although clinical presentations of these agents are similar, arthralgias are highly suggestive of CHIKV infection. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.","arbovirus; chikungunya virus; Haiti","arthralgia; chikungunya; child; cohort analysis; controlled study; Coronavirus infection; Dengue virus 4; Enterovirus D68; Enterovirus infection; epidemiological data; female; Haiti; high school; human; Human coronavirus NL63; major clinical study; male; Mayaro virus; predictive value; primary school; priority journal; receiver operating characteristic; Review; school child; Zika fever; Zika virus","Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition (2015) Lancet, 386, pp. 2145-2191; Campos, G.S., Bandeira, A.C., Sardi, S.I., Zika virus outbreak, Bahia, Brazil (2015) Emerg Infect Dis, 21, pp. 1885-1886; Yactayo, S., Staples, J.E., Millot, V., Cibrelus, L., Ramon-Pardo, P., Epidemiology of chikungunya in the Americas (2016) J Infect Dis, 214, pp. 441-445; (2017) Geographic Spread of Chikungunya in The Americas December 2013–December, , http://ais.paho.org/phip/viz/ed_chikungunya_amro.asp, Accessed 23 February 2018; Dengue: PAHO/WHO Data, Maps and Statistics, , http://www.paho.org/hq/index.php?option=com_topics&view=readall&cid=3273&Itemid=0, World Health Organization. Accessed 22 February 2018; Moreira, J., Bressan, C.S., Brasil, P., Siqueira, A.M., Epidemiology of acute febrile illness in Latin America (2018) Clin Microbiol Infect, 24, pp. 827-835; Sharp, T.M., Ryff, K.R., Alvarado, L., Surveillance for chikungunya and dengue during the first year of chikungunya virus circulation in Puerto Rico (2016) J Infect Dis, 214, pp. 475-481; Alva-Urcia, C., Aguilar-Luis, M.A., Palomares-Reyes, C., Emerging and reemerging arboviruses: A new threat in Eastern Peru (2017) PLoS One, 12, p. e0187897; Galán-Huerta, K.A., Martínez-Landeros, E., Delgado-Gallegos, J.L., Molecular and clinical characterization of chikungunya virus infections in Southeast Mexico (2018) Viruses, 10, p. 248; Sahadeo, N., Mohammed, H., Allicock, O.M., Molecular characterisation of chikungunya virus infections in Trinidad and comparison of clinical and laboratory features with dengue and other acute febrile cases (2015) PLoS Negl Trop Dis, 9, p. e0004199; Beau De Rochars, V.E.M., Alam, M.T., Telisma, T., Spectrum of outpatient illness in a school-based cohort in Haiti, with a focus on diarrheal pathogens (2015) Am J Trop Med Hyg, 92, pp. 752-757; ElBadry, M., Lednicky, J., Cella, E., Isolation of an enterovirus D68 from blood from a child with pneumonia in rural Haiti: Close phylogenetic linkage with New York strain (2016) Pediatr Infect Dis J, 35, pp. 1048-1050; Lednicky, J., Beau De Rochars, V.M., El Badry, M., Zika virus outbreak in Haiti in 2014: Molecular and clinical data (2016) PLoS Negl Trop Dis, 10, p. e0004687; Lednicky, J., De Rochars, V.M.B., Elbadry, M., Mayaro virus in child with acute gebrile illness, Haiti, 2015 (2016) Emerg Infect Dis, 22, pp. 2000-2002; Beau De Rochars, V.M., Lednicky, J., White, S., Isolation of coronavirus NL63 from blood from children in tural Haiti: Phylogenetic similarities with recent isolates from Malaysia (2017) Am J Trop Med Hyg, 96, pp. 144-147; White, S.K., Morris, J.G., Elbadry, M.A., Beau De Rochars, V.M., Okech, B.A., Lednicky, J.A., Complete genome sequences of chikungunya viruses isolated from plasma specimens collected from Haitians in 2014 (2017) Genome Announc, 5, pp. e00148-e00217; Elbadry, M., White, S., Loeb, J., Complete genomic sequence of dengue virus 1, isolated from plasma collected from a Haitian child in 2014 (2017) Genome Announc, 5, pp. e00331-e00417; Elbadry, M.A., White, S.K., Loeb, J.C., Complete genomic sequence of dengue virus serotype 4 isolated from plasma collected from a Haitian child in 2014 (2017) Genome Announc, 5, pp. e01160-e01217; White, S., Mayian, C., El Badry, M., Detection and phylogenetic characterization of arbovirus dual-infections among persons during a chikungunya fever outbreak, Haiti, 2014 PLoS Negl Trop Dis, 12, p. e0006505; Lanciotti, R.S., Kosoy, O.L., Laven, J.J., Chikungunya virus in US travelers returning from India, 2006 (2007) Emerg Infect Dis, 13, pp. 764-767; Santiago, G.A., Vergne, E., Quiles, Y., Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus (2013) PLoS Negl Trop Dis, 7, p. e2311; Lanciotti, R.S., Kosoy, O.L., Laven, J.J., Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007 (2008) Emerg Infect Dis, 14, pp. 1232-1239; De Morais Bronzoni, R.V., Baleotti, F.G., Nogueira, R.M.R., Nunes, M., Figueiredo, L.T.M., Duplex reverse transcription-PCR followed by nested PCR assays for detection and identification of Brazilian aphaviruses and flaviviruses (2005) J Clin Microbiol, 43, pp. 696-702; Hyndman, R., (2016) Forecast: Forecasting Functions for Time Series and Linear Models, , http://github.com/robjhyndman/forecast, Accessed April 2017; Cassadou, S., Boucau, S., Petit-Sinturel, M., Huc, P., Leparc-Goffart, I., Ledrans, M., Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013 (2014) Euro Surveill Bull, 19. , pii: 20752; Tomashek, K.M., Lorenzi, O.D., Andújar-Pérez, D.A., Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012–2015 (2017) PLoS Negl Trop Dis, 11, p. e0005859; Carrillo-Hernández, M.Y., Ruiz-Saenz, J., Villamizar, L.J., Gómez-Rangel, S.Y., Martínez-Gutierrez, M., Co-circulation and simultaneous co-infection of dengue, chikungunya, and Zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border (2018) BMC Infect Dis, 18, p. 61; Katzelnick, L.C., Gresh, L., Halloran, M.E., Antibody-dependent enhancement of severe dengue disease in humans (2017) Science, 358, pp. 929-932; Halai, U.A., Nielsen-Saines, K., Moreira, M.L., Maternal Zika virus disease severity, virus load, prior dengue antibodies, and their relationship to birth outcomes (2017) Clin Infect Dis, 65, pp. 877-883; Danis-Lozano, R., Díaz-González, E.E., Trujillo-Murillo, K.D.C., Clinical characterization of acute and convalescent illness of confirmed chikungunya cases from Chiapas, S. Mexico: A cross sectional study (2017) PLoS One, 12, p. e0186923; Magalhaes, T., Braga, C., Cordeiro, M.T., Zika virus displacement by a chikungunya outbreak in Recife, Brazil (2017) PLoS Negl Trop Dis, 11, p. e0006055; Sasmono, R.T., Perkasa, A., Yohan, B., Chikungunya detection during dengue outbreak in Sumatra, Indonesia: Clinical manifestations and virological profile (2017) Am J Trop Med Hyg, 97, pp. 1393-1398; Paniz-Mondolfi, A.E., Rodriguez-Morales, A.J., Blohm, G., Marquez, M., Villamil-Gomez, W.E., ChikDenMaZika syndrome: The challenge of diagnosing arboviral infections in the midst of concurrent epidemics (2016) Ann Clin Microbiol Antimicrob, 15, p. 42; White, S.K., Mavian, C., Salemi, M., A new ‘American’ subgroup of African-lineage chikungunya virus detected in and isolated from mosquitoes collected in Haiti, 2016 (2018) PLoS One, 13, p. e0196857","Morris, J.G.; Emerging Pathogens Institute, College of Public Health and Health Professions, College of Medicine, University of Florida, 2055 Mowry Rd., United States; email: jgmorris@epi.ufl.edu",,"Oxford University Press",10584838,,CIDIE,"30184178","English","Clin. Infect. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85061667671 "de Cássio Veloso de Barros B., de Castro C.M.O., Pereira D., Ribeiro L.G., Duarte J.W.B., Júnior, Casseb S.M.M., Holanda G.M., Cruz A.C.R., Sousa E.C., Júnior, Mascarenhas J.D.P.","57205146121;57208389523;57197021946;57205149638;57205409214;24437414900;57194449517;7202516692;55430043300;7006679208;","First complete genome sequence of a feline alphacoronavirus 1 strain from Brazil",2019,"Microbiology Resource Announcements","8","10", e01535-18,"","",,,"10.1128/MRA.01535-18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064667236&doi=10.1128%2fMRA.01535-18&partnerID=40&md5=30c2c45328db346dab969d4c5e41daaf","Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil","de Cássio Veloso de Barros, B., Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; de Castro, C.M.O., Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Pereira, D., Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Ribeiro, L.G., Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Duarte, J.W.B., Júnior, Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Casseb, S.M.M., Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Holanda, G.M., Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Cruz, A.C.R., Section of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Sousa, E.C., Júnior, Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Mascarenhas, J.D.P., Section of Virology, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil","We identified a strain of Alphacoronavirus 1, FCoV-SB22, from a pool of fecal samples from domestic cats from a rural settlement in the municipality of Santa Bárbara, Pará, Brazil. The nucleotide identity with feline coronavirus was 91.5%. The present study reports the first complete genome sequence of a feline coronavirus from Brazil. Copyright © 2019 de Barros et al.",,"nucleotide; Alphacoronavirus 1; Article; Brazil; domestic cat; feces; Feline coronavirus; gene sequence; nonhuman; nucleotide sequence; open reading frame; virion; virus genome; virus identification; virus strain","Tekes, G., Thiel, H.J., Feline coronaviruses: Pathogenesis of feline infectious peritonitis (2016) Advances in Virus Research: Coronaviruses, pp. 193-218. , Ziebuhr J ed, Academic Press, Amsterdam, The Netherlands; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet Pathol, 51, pp. 505-526. , https://doi.org/10.1177/0300985814522077; Le Poder, S., Pham-Hung d’Alexandry d’Orangiani, A.-L., Duarte, L., Fournier, A., Horhogea, C., Pinhas, C., Vabret, A., Eloit, M., Infection of cats with atypical feline coronaviruses harbouring a truncated form of the canine type I non-structural ORF3 gene (2013) Infect Genet Evol, 20, pp. 488-494. , https://doi.org/10.1016/j.meegid.2013.09.024; Zhong, S., Joung, J.G., Zheng, Y., Chen, Y.R., Liu, B., Shao, Y., Xiang, J.Z., Giovannoni, J.J., High-throughput Illumina strand-specific RNA sequencing library preparation (2011) Cold Spring Harb Protoc, 2011, pp. 940-949. , https://doi.org/10.1101/pdb.prot5652; Chikhi, R., Rizk, G., Space-efficient and exact de Bruijn graph representation based on a Bloom filter (2013) Algorithms Mol Biol, 8, p. 22. , https://doi.org/10.1186/1748-7188-8-22; Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Drummond, A., Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics, 28, pp. 1647-1649. , https://doi.org/10.1093/bioinformatics/bts199; Carstens, E.B., Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses (2009) (2010) Arch Virol, 155, pp. 133-146. , https://doi.org/10.1007/s00705-009-0547-x; Chang, H.W., De Groot, R.J., Egberink, H.F., Rottier, P.J.M., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J Gen Virol, 91, pp. 415-420. , https://doi.org/10.1099/vir.0.016485-0","Mascarenhas, J.D.P.; Section of Virology, Evandro Chagas Institute, Ministry of HealthBrazil; email: joanamascarenhas@iec.gov.br",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Article,"Final",Open Access,Scopus,2-s2.0-85064667236 "Aldohyan M., Al-Rawashdeh N., Sakr F.M., Rahman S., Alfarhan A.I., Salam M.","57193879175;57203527460;57207953765;57207945329;56324480400;56684435300;","The perceived effectiveness of MERS-CoV educational programs and knowledge transfer among primary healthcare workers: A cross-sectional survey",2019,"BMC Infectious Diseases","19","1", 273,"","",,1,"10.1186/s12879-019-3898-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063341800&doi=10.1186%2fs12879-019-3898-2&partnerID=40&md5=70a6377ab0a738bb1033509811052c8e","Pharmaceutical Care Department, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Research Office, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan; Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia; Department of Family Medicine and PHC-Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Science and Technology Unit, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia","Aldohyan, M., Pharmaceutical Care Department, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Al-Rawashdeh, N., Research Office, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia, Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan; Sakr, F.M., Riyadh Colleges of Dentistry and Pharmacy, Riyadh, Saudi Arabia; Rahman, S., Department of Family Medicine and PHC-Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Alfarhan, A.I., Department of Family Medicine and PHC-Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Salam, M., Science and Technology Unit, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia","Background: Knowledge transfer of Middle East respiratory syndrome coronavirus (MERS-CoV) involves the dissemination of created/acquired information on MERS-CoV in hospitals, making this information accessible to all healthcare workers (HCWs). This study evaluated the perceived effectiveness of MERS-CoV educational programs and knowledge transfer among primary care HCWs at a hospital in Saudi Arabia that witnessed the largest outbreak of confirmed MERS-CoV cases in this country. Methods: A survey was distributed among primary care HCWs at five clinics in Saudi Arabia in 2016. Those with non-direct patient care responsibilities were excluded. Their knowledge was evaluated against facts published by Mayo Clinic Foundation, and its percentage mean score (PMS) ± standard deviation was calculated. HCWs' perceived effectiveness of educational programs and knowledge transfer was classified as negative or positive. Results: Sample comprised of 404 HCWs, of which 64% were females and 36% were males. Almost 26% were ≤ 30 years old, and 42% had > 10 years of work experience. Almost 46.5% were nurses, 23.0% physicians, 18.1% were pharmacists, and 12.4% were technical staff. PMS for knowledge was 71.1 ± 19.4. The prevalence of negative perceptions towards educational programs was 22.5% and of knowledge transfer was 20.8%. Older(> 40 years of age) and more experienced(> 10 years) HCWs had the highest PMS for knowledge(73.4 ± 18.9,P = 0.005 and 76.9 ± 15.7,P < 0.001 respectively). Negative perceptions of educational programs (49.4 ± 20.7; P < 0.001) and knowledge transfer (46.0 ± 19.7; P = 0.001) were associated with a lower knowledge PMS. Males were 2.4[95% confidence interval 1.4-4.2] times and 2.0[1.1-3.5] times more likely to have negative perceptions of educational programs and knowledge transfer (adjusted (adj.)P = 0.001 and adj. P = 0.023, respectively). Physicians/pharmacists were 1.8[1.03-3.11] and 2.8[1.6-5.0] times more likely to have negative perceptions of both outcomes (adj. P = 0.038 and adj. P = 0.001, respectively). Less experienced HCWs were 2.1[1.3-3.5] times and 4.9[2.6-9.2] times more likely to exhibit negative perceptions of the two outcomes (adj. P < 0.001 each). Conclusions: A negative perception of the effectiveness of MERS-CoV knowledge transfer was associated with poorer knowledge and was more prevalent among male HCWs, physicians/pharmacists and less experienced HCWs. Hospitals should always refer to efficient knowledge sharing and educational strategies that render beneficial outcomes to patients, HCWs, and the public community. © 2019 The Author(s).","Coronavirus; Education; Knowledge transfer; MERS; Primary health","adult; article; comparative effectiveness; education; female; health care personnel; human; male; Middle East respiratory syndrome coronavirus; multicenter study; nonhuman; nurse; outcome assessment; patient care; perception; pharmacist; prevalence; primary health care; responsibility; Saudi Arabia; work experience; attitude to health; Coronavirus infection; cross-sectional study; education; health education; primary health care; statistics and numerical data; Adult; Coronavirus Infections; Cross-Sectional Studies; Female; Health Education; Health Knowledge, Attitudes, Practice; Health Personnel; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Primary Health Care","(2016), http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf?ua=1, WHO. WHO MERS-CoV Global Summary and risk assessment [cited 2018 July05]; Middle East Respiratory Syndrome 2016, , https://www.cdc.gov/coronavirus/mers, CDC. [cited 2018 July05]; Manal, M., Madeha, M., Effects of educational program on MERS- CoronaVirus among nurses students at Jazan University 1439-2017 (2017) International Journal of Advance Research, Ideas and Innovations in Technology, 4 (1), pp. 618-625; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., Hajomar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60 (3), pp. 369-377. , 1:CAS:528:DC%2BC28XhvFWlsLjL Feb 1; (2018) CDC Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.cdc.gov/coronavirus/mers/lab/lab-testing.html, CDC CDC [updated June 26, 2018; cited 2018 July 04]; Hansen, M.T., Nohria, N., Tierney, T., What's your strategy for managing knowledge? (1999) Harv Bus Rev, 77 (2), pp. 106-116. , 1:STN:280:DyaK1M3nvFCrtg%3D%3D 10387767 87; Sudhindra, S., Ganesh, L.S., Arshinder, K., Knowledge transfer: An information theory perspective. Knowledge Management Research & Practice (2017) Journal Article, 15 (3), pp. 400-412; Deepanjana, V., Hind, D., Does perception of knowledge sharing,transfer and recognition have an impact on job satisfaction? An empirical study in saudi arabia (2013) International Journal of Advanced Research in Management and Social Sciences, 2, pp. 64-81; Alateeq, M., Alrashoud, A.M., Khair, M., Salam, M., Smoking cessation advice: The self-reported attitudes and practice of primary health care physicians in a military community, Central Saudi Arabia (2016) Patient Prefer Adherence, 10, pp. 651-658. , 27175065 4854249; Yun, E.K., Predictors of attitude and intention to use knowledge management system among Korean nurses (2013) Nurse Educ Today, 33 (12), pp. 1477-1481; James, S., (2015) What is MERS-CoV, and what should i do?: Mayo Clinic, , https://www.mayoclinic.org/diseases-conditions/sars/expert-answers/what-is-mers-cov/faq-20094747, [cited 2018 July 05]; Sanchez-Polo, M.T., Cegarra-Navarro, J.G., Implementing knowledge management practices in hospital-in-the-home units (2008) J Nurs Care Qual, 23 (1), pp. 18-22; Gerrish, K., McDonnell, A., Nolan, M., Guillaume, L., Kirshbaum, M., Tod, A., The role of advanced practice nurses in knowledge brokering as a means of promoting evidence-based practice among clinical nurses (2011) J Adv Nurs, 67 (9), pp. 2004-2014; Mohammad, A., Mohammed, A., Mahmoud, S., Mohanna, S., Knowledge, attitude, and practice toward MERS-CoV among primary health-care workers in Makkah Al-Mukarramah: An intervention study (2016) International Journal of Medical Science and Public Health, 5 (5), pp. 952-959; Alshammari, F., Knowledge and perception of health practitioners towards MERS-CoV in hail region, Kingdom of Saudi Arabia (2018) American Journal of Nursing Research, 6 (1), pp. 12-17; Abbag, H.F., El-Mekki, A.A., Bshabshe Aaa, A., Mahfouz, A.A., Al-Dosry, A.A., Mirdad, R.T., Knowledge and attitude towards the Middle East respiratory syndrome coronavirus among healthcare personnel in the southern region of Saudi Arabia (2018) Journal of Infection and Public Health, 11 (5), pp. 720-722; Alsahafi, A.J., Cheng, A.C., Knowledge, attitudes and Behaviours of healthcare Workers in the Kingdom of Saudi Arabia to MERS coronavirus and other emerging infectious diseases (2016) Int J Environ Res Public Health, 13 (12), p. 1214; Linderman, A., Pesut, D., Disch, J., Sense making and knowledge transfer: Capturing the knowledge and wisdom of nursing leaders (2015) J Prof Nurs, 31 (4), pp. 290-297; Davies, A., Wong, C.A., Laschinger, H., Nurses' participation in personal knowledge transfer: The role of leader-member exchange (LMX) and structural empowerment (2011) J Nurs Manag, 19 (5), pp. 632-643; Johansson, A., Harenstam, M., Knowledge communication: A key to successful crisis management (2013) Biosecur Bioterror, 11, pp. S260-S263; Klein, J.-P., L'accréditation, source de connaissance et d'enrichissement (2014) Ann Biol Clin, 72 (2), pp. 252-254; Rushmer, R.K., Hunter, D.J., Steven, A., Using interactive workshops to prompt knowledge exchange: A realist evaluation of a knowledge to action initiative (2014) Public Health, 128 (6), pp. 552-560. , 1:STN:280:DC%2BC2cjltlSqtQ%3D%3D; Martin, S., Kaushik, P., (2003) Culture As An Issue in Knowledge Sharing: A Means of Competitive Advantage Academic Conferences Limited, pp. 206-226; D'Ortenzio, C., Uo, C., (2012) Understanding Change and Change Management Processes: A Case Study, , Australia: University of Canberra; Stirling, B.V., Harmston, J., Alsobayel, H., An educational programme for nursing college staff and students during a MERS- coronavirus outbreak in Saudi Arabia (2015) BMC Nurs, 14, p. 20; Rabaan, A.A., Alhani, H.M., Bazzi, A.M., Al-Ahmed, S.H., Questionnaire-based analysis of infection prevention and control in healthcare facilities in Saudi Arabia in regards to Middle East respiratory syndrome (2017) J. Infect. Public Health, 10 (5), pp. 548-563; Kim, J.S., Choi, J.S., Middle East respiratory syndrome-related knowledge, preventive behaviours and risk perception among nursing students during outbreak (2016) J Clin Nurs, 25 (17-18), pp. 2542-2549; Alexandra, M., Denitsa, Z., (2014) Intra-firm Knowledge Transfer-a Qualitative Case Study of Knowledge Transfer and Its Implications in A Soft Service Firm, , Sweden: Uppsala University; Karamitri, I., Talias, M.A., Bellali, T., Knowledge management practices in healthcare settings: A systematic review (2017) Int J Health Plann Manag, 32 (1), pp. 4-18. , Jan; Kumpers, S., Mur, I., Hardy, B., Maarse, H., Van Raak, A., The importance of knowledge transfer between specialist and generic services in improving health care: A cross-national study of dementia care in England and the Netherlands (2006) Int J Health Plann Manag, 21 (2), pp. 151-167; Rogers, E.M., (2010) Diffusion of Innovations, , 4 Simon and Schuster New York; Buchanan, T.W., Tranel, D., Adolphs, R., Impaired memory retrieval correlates with individual differences in cortisol response but not autonomic response (2006) Learn Mem, 13 (3), pp. 382-387; Chang, Y.-Y., Gong, Y., Peng, M.W., Expatriate knowledge transfer, subsidiary absorptive capacity, and subsidiary performance (2012) Acad Manag J., 55 (5)","Salam, M.; Science and Technology Unit, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health AffairsSaudi Arabia; email: mahmoudsalam@hotmail.com",,"BioMed Central Ltd.",14712334,,BIDMB,"30898086","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85063341800 "Yu P., Hu B., Shi Z.-L., Cui J.","57205688853;55908560200;7403733955;36162804500;","Geographical structure of bat SARS-related coronaviruses",2019,"Infection, Genetics and Evolution","69",,,"224","229",,2,"10.1016/j.meegid.2019.02.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061149975&doi=10.1016%2fj.meegid.2019.02.001&partnerID=40&md5=beba6a353ce61c5a4f289b09d795e52b","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China","Yu, P., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, University of Chinese Academy of Sciences, Beijing, 100049, China; Hu, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Cui, J., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China","Bats are the natural reservoirs of severe acute respiratory syndrome coronavirus (SARS-CoV) which caused the outbreak of human SARS in 2002–2003. We introduce the genetic diversity of SARS-related coronaviruses (SARSr-CoVs) discovered in bats and provide insights on the bat origin of human SARS. We also analyze the viral geographical structure that may improve our understanding of the evolution of bat SARSr-CoVs. © 2019","Bats; Geographical structure; Host switch; Phylogeny; SARS","human; nonhuman; phylogeny; review; SARS-related coronavirus; animal; bat; classification; disease carrier; genetic recombination; genetic variation; genetics; medical geography; molecular evolution; phylogeography; SARS coronavirus; severe acute respiratory syndrome; virology; virus genome; Animals; Chiroptera; Disease Reservoirs; Evolution, Molecular; Genetic Variation; Genome, Viral; Geography, Medical; Humans; Phylogeny; Phylogeography; Recombination, Genetic; SARS Virus; Severe Acute Respiratory Syndrome","Ar Gouilh, M., Puechmaille, S.J., Diancourt, L., Vandenbogaert, M., Serra-Cobo, J., Lopez Roig, M., Brown, P., Manuguerra, J.C., SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world (2018) Virology, 517, pp. 88-97; Balboni, A., Battilani, M., Prosperi, S., The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus (2012) New Microbiol., 35, pp. 1-16; Balboni, A., Gallina, L., Palladini, A., Prosperi, S., Battilani, M., A real-time PCR assay for bat SARS-like coronavirus detection and its application to Italian greater horseshoe bat faecal sample surveys (2012) ScientificWorldJournal, 2012; Becker, M.M., Graham, R.L., Donaldson, E.F., Rockx, B., Sims, A.C., Sheahan, T., Pickles, R.J., Denison, M.R., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 19944-19949; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 5871-5876; Chan, P.K., Chan, M.C., Tracing the SARS-coronavirus (2013) J. Thorac. Dis., 5, pp. S118-S121; CSME, C., Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Hu, Z., Zhang, S., Evolutionary relationships between bat coronaviruses and their hosts (2007) Emerg. Infect. Dis., 13, pp. 1526-1532; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nat. Methods, 9, p. 772; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Ziebuhr, J., Coronaviridae. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (2011), pp. 806-828; de Haan, C.A., Te Lintelo, E., Li, Z., Raaben, M., Wurdinger, T., Bosch, B.J., Rottier, P.J., Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range (2006) J. Virol., 80, pp. 10909-10918; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Faria, N.R., Suchard, M.A., Rambaut, A., Streicker, D.G., Lemey, P., Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints (2013) Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 368, p. 20120196; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J. Virol., 84, pp. 3134-3146; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst. Biol., 59, pp. 307-321; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Tu, C., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J. Virol., 88, pp. 7070-7082; Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J. Virol., 82, pp. 1819-1826; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13; Huson, D., Bryant, D., Application of Phylogenetic Networks in Evolutionary Studies (2006); Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Xu, J., Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms (2005) J. Virol., 79, pp. 11892-11900; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Group, t.S.W, A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 14040-14045; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Yuen, K.Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Woo, P.C., Severe Acute Respiratory Syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J. Virol., 89, pp. 10532-10547; Li, F., Receptor recognition and cross-species infections of SARS coronavirus (2013) Antivir. Res., 100, pp. 246-254; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science (New York, N.Y.), 310, pp. 676-679; Longdon, B., Brockhurst, M.A., Russell, C.A., Welch, J.J., Jiggins, F.M., The evolution and genetics of virus host shifts (2014) PLoS Pathog., 10; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: detection and analysis of recombination patterns in virus genomes (2015) Virus Evol., 1, p. vev003; Parrish, C.R., Holmes, E.C., Morens, D.M., Park, E.C., Burke, D.S., Calisher, C.H., Laughlin, C.A., Daszak, P., Cross-species virus transmission and the emergence of new epidemic diseases (2008) Microbiol. Mol. Biol. Rev., 72, pp. 457-470; Pauly, M., Pir, J.B., Loesch, C., Sausy, A., Snoeck, C.J., Hubschen, J.M., Muller, C.P., Novel Alphacoronaviruses and Paramyxoviruses cocirculate with Type 1 and Severe Acute Respiratory System (SARS)-related betacoronaviruses in synanthropic bats of luxembourg (2017) Appl. Environ. Microbiol., 83; Payne, S., Chapter 17 - Family Coronaviridae (2017) Viruses, pp. 149-158. , Academic Press; Peiris, J.S.M., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat. Med., 10, p. S88; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, p. 439; Quan, P.L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Hutchison, S.K., Lipkin, W.I., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) MBio, 1; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., Haagmans, B.L., MERS: emergence of a novel human coronavirus (2014) Curr. Opin. Virol., 5, pp. 58-62; Ren, W., Li, W., Yu, M., Hao, P., Zhang, Y., Zhou, P., Zhang, S., Shi, Z., Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis (2006) J. Gen. Virol., 87, pp. 3355-3359; Rihtaric, D., Hostnik, P., Steyer, A., Grom, J., Toplak, I., Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia (2010) Arch. Virol., 155, pp. 507-514; Schickli, J.H., Thackray, L.B., Sawicki, S.G., Holmes, K.V., The N-terminal region of the murine coronavirus spike glycoprotein is associated with the extended host range of viruses from persistently infected murine cells (2004) J. Virol., 78, pp. 9073-9083; Shi, Z., Hu, Z., A review of studies on animal reservoirs of the SARS coronavirus (2008) Virus Res., 133, pp. 74-87; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 2430-2435; Strimmer, K., von Haeseler, A., Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment (1997) Proc. Natl. Acad. Sci., 94, p. 6815; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Tu, C., Crameri, G., Kong, X., Chen, J., Sun, Y., Yu, M., Xiang, H., Wang, L.F., Antibodies to SARS coronavirus in civets (2004) Emerg. Infect. Dis., 10, pp. 2244-2248; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range (2007) J. Virol., 81, pp. 1261-1273; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Wang, N., Li, S.Y., Yang, X.L., Huang, H.M., Zhang, Y.J., Guo, H., Luo, C.M., Shi, Z.L., Serological evidence of bat SARS-related coronavirus infection in humans, China (2018) Virol. Sin., 33, pp. 104-107; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Yuen, K.Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S., Jin, Q., ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J. Infect. Dis., 213, pp. 579-583; Xia, X., DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution (2013) Mol. Biol. Evol., 30, pp. 1720-1728; Yang, L., Wu, Z., Ren, X., Yang, F., He, G., Zhang, J., Dong, J., Jin, Q., Novel SARS-like betacoronaviruses in bats, China, 2011 (2013) Emerg. Infect. Dis., 19, pp. 989-991; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J. Virol., 90, pp. 3253-3256; Yuan, J., Hon, C.C., Li, Y., Wang, D., Xu, G., Zhang, H., Zhou, P., Shi, Z., Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans (2010) J. Gen. Virol., 91, pp. 1058-1062; Zeng, L.P., Gao, Y.T., Ge, X.Y., Zhang, Q., Peng, C., Yang, X.L., Tan, B., Shi, Z.L., Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response (2016) J. Virol., 90, pp. 6573-6582; Zhong, N.S., Zheng, B.J., Li, Y.M., Poon, Xie, Z.H., Chan, K.H., Li, P.H., Guan, Y., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003 (2003) Lancet (London, England), 362, pp. 1353-1358; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Ma, J.-Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Cui, J.; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: jiecui@wh.iov.cn",,"Elsevier B.V.",15671348,,IGENC,"30735813","English","Infec. Genet. Evol.",Review,"Final",Open Access,Scopus,2-s2.0-85061149975 "Pruijssers A.J., Denison M.R.","15832723300;7101971810;","Nucleoside analogues for the treatment of coronavirus infections",2019,"Current Opinion in Virology","35",,,"57","62",,1,"10.1016/j.coviro.2019.04.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065835030&doi=10.1016%2fj.coviro.2019.04.002&partnerID=40&md5=2c63065dfe9479938b48221b58007b86","Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States","Pruijssers, A.J., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN, United States; Denison, M.R., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN, United States, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States","Recent outbreaks of SARS-Coronavirus and MERS-Coronavirus (CoV) have heightened awareness about the lack of vaccines or antiviral compounds approved for prevention or treatment of human or potential zoonotic CoVs. Anti-CoV drug development has long been challenged by the activity of a 3′ to 5′ proofreading exoribonuclease unique to CoVs. Recently, a promising nucleoside analogue with broad-spectrum activity against CoVs has been identified. This review will discuss progress made in the development of antiviral nucleoside and nucleotide analogues targeting viral RNA synthesis as effective therapeutics against CoV infections and propose promising strategies for combination therapy. © 2019",,"acyclovir fleximer; alpha2a interferon; alpha2b interferon; azauridine; beta dextro n4 hydroxycytidine; beta1a interferon; fluorouracil; galidesivir; gemcitabine; interferon beta serine; lopinavir plus ritonavir; mizoribine; nucleoside analog; nucleotide derivative; placebo; remdesivir; ribavirin; unclassified drug; virus RNA; antiviral activity; antiviral resistance; antiviral therapy; Coronavirus infection; drug dose escalation; drug efficacy; drug mechanism; drug potency; drug potentiation; drug targeting; Ebola hemorrhagic fever; EC50; human; IC50; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; Review; RNA synthesis; SARS coronavirus; severe acute respiratory syndrome; unspecified side effect; virus inhibition","Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Revised U.S. Surveillance Case Definition for Severe Acute Respiratory Syndrome (SARS) and Update on SARS Cases — United States and Worldwide, December 2003. [date unknown]; WHO | Middle East respiratory syndrome coronavirus (MERS-CoV). WHO [date unknown; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Al-Omari, A., Denison, M.R., Middle east respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594; Luo, C.-M., Wang, N., Yang, X.-L., Liu, H.-Z., Zhang, W., Li, B., Hu, B., Zhu, G.-J., Discovery of novel bat coronaviruses in South China that use the same receptor as middle east respiratory syndrome coronavirus (2018) J Virol, 92; Chu, H., Chan, C.-M., Zhang, X., Wang, Y., Yuan, S., Zhou, J., Au-Yeung, R.K.-H., Shuai, H., Middle east respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J Biol Chem, 293, pp. 11709-11726; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., Van Kerkhove, M., Kim, J., Kieny, M.-P., A roadmap for MERS-CoV research and product development: report from a world health organization consultation (2016) Nat Med, 22, pp. 701-705; Brende, B., Farrar, J., Gashumba, D., Moedas, C., Mundel, T., Shiozaki, Y., Vardhan, H., Røttingen, J.-A., CEPI-a new global R&D organisation for epidemic preparedness and response (2017) Lancet Lond Engl, 389, pp. 233-235; Mehand, M.S., Al-Shorbaji, F., Millett, P., Murgue, B., The WHO R&D blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts (2018) Antiviral Res, pp. 63-67; Perales, C., Domingo, E., Antiviral strategies based on lethal mutagenesis and error threshold (2016) Curr Top Microbiol Immunol, 392, pp. 323-339; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81, pp. 12135-12144; Smith, E.C., Blanc, H., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9; Ferron, F., Subissi, L., Silveira De Morais, A.T., Le, N.T.T., Sevajol, M., Gluais, L., Decroly, E., Canard, B., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Natl Acad Sci U S A, 115, pp. E162-E171; Tejero, H., Montero, F., Nuño, J.C., Theories of lethal mutagenesis: from error catastrophe to lethal defection (2016) Quasispecies: From Theory to Experimental Systems, pp. 161-179. , E. Domingo P. Schuster Springer International Publishing; Te, H.S., Randall, G., Jensen, D.M., Mechanism of action of ribavirin in the treatment of chronic hepatitis C (2007) Gastroenterol Hepatol, 3, pp. 218-225; Jordan, P.C., Stevens, S.K., Deval, J., Nucleosides for the treatment of respiratory RNA virus infections (2018) Antivir Chem Chemother, 26; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Trantcheva, I., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, 9. , Although nucleoside analogs have been shown effective against many RNA viruses, many do not potently inhibit CoVs. This study demonstrates potent activity of nucleoside analogue GS-5734 against a diverse spectrum of human and zoonotic CoV in human airway epithelial cultures and in mouse models of SARS-CoV and MERS-CoV disease. This is the first study to demonstrate activity of GS-5734 against CoVs; Saijo, M., Morikawa, S., Fukushi, S., Mizutani, T., Hasegawa, H., Nagata, N., Iwata, N., Kurane, I., Inhibitory effect of mizoribine and ribavirin on the replication of severe acute respiratory syndrome (SARS)-associated coronavirus (2005) Antiviral Res, 66, pp. 159-163; Feld, J.J., Hoofnagle, J.H., Mechanism of action of interferon and ribavirin in treatment of hepatitis C (2005) Nature, 436, pp. 967-972; Cameron, C.E., Castro, C., The mechanism of action of ribavirin: lethal mutagenesis of RNA virus genomes mediated by the viral RNA-dependent RNA polymerase (2001) Curr Opin Infect Dis, 14, pp. 757-764; Chan, J.F.W., Chan, K.-H., Kao, R.Y.T., To, K.K.W., Zheng, B.-J., Li, C.P.Y., Li, P.T.W., Chen, H., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67, pp. 606-616; Barnard, D.L., Day, C.W., Bailey, K., Heiner, M., Montgomery, R., Lauridsen, L., Winslow, S., Lee, J., Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin (2006) Antiviral Res, 71, pp. 53-63; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Walmsley, S.L., Derkach, P., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area (2003) JAMA, 289, pp. 2801-2809; Gross, A.E., Bryson, M.L., Oral Ribavirin for the treatment of noninfluenza respiratory viral infections: a systematic review (2015) Ann Pharmacother, 49, pp. 1125-1135; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19, pp. 1313-1317; Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin (2013) Sci Rep, 3; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the middle east respiratory syndrome coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe middle east respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14, pp. 1090-1095; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., Mushtaq, A., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Lo, M.K., Jordan, R., Arvey, A., Sudhamsu, J., Shrivastava-Ranjan, P., Hotard, A.L., Flint, M., Clarke, M.O., GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses (2017) Sci Rep, 7; Warren, T.K., Wells, J., Panchal, R.G., Stuthman, K.S., Garza, N.L., Van Tongeren, S.A., Dong, L., Pegoraro, G., Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430 (2014) Nature, 508, pp. 402-405; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Jordan, R., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) mBio, 9. , Low level resistance against the potent, broad-spectrum anti-CoV nucleoside analog GS-5734 (remdesivir) was selected by serial passage and is associated with two mutations in the viral RdRP. Remdesivir resistance decreased fitness of MHV and attenuated pathogenesis of SARS-CoV in a mouse model of SARS-CoV disease, supporting further development of remdesivir as a pan-CoV antiviral and raising important questions about the mechanism by which remdesivir overcomes CoV nsp14-ExoN activity; Urakova, N., Kuznetsova, V., Crossman, D.K., Sokratian, A., Guthrie, D.B., Kolykhalov, A.A., Lockwood, M.A., Painter, G.R., β-D-N4-hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome (2018) J Virol, 92; Ehteshami, M., Tao, S., Zandi, K., Hsiao, H.-M., Jiang, Y., Hammond, E., Amblard, F., Schinazi, R.F., Characterization of β-D-N4-hydroxycytidine as a novel inhibitor of chikungunya virus (2017) Antimicrob Agents Chemother, 61; Yoon, J.-J., Toots, M., Lee, S., Lee, M.-E., Ludeke, B., Luczo, J.M., Ganti, K., Edpuganti, V., Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses (2018) Antimicrob Agents Chemother, 62. , This study identifies the modified cytidine ribonucleoside analogue β-D-N4-hydroxycytidine as a potent broad-spectrum inhibitor of respiratory viruses including respiratory syncytial virus, influenza B virus, and influenza A viruses of human, avian, and swine origins and has a high resistance barrier. This compound also is a candidate for the treatment of CoV infection; Pyrc, K., Bosch, B.J., Berkhout, B., Jebbink, M.F., Dijkman, R., Rottier, P., van der Hoek, L., Inhibition of human coronavirus NL63 infection at early stages of the replication cycle (2006) Antimicrob Agents Chemother, 50, pp. 2000-2008; Stuyver, L.J., Whitaker, T., McBrayer, T.R., Hernandez-Santiago, B.I., Lostia, S., Tharnish, P.M., Ramesh, M., Shi, J., Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture (2003) Antimicrob Agents Chemother, 47, pp. 244-254; Barnard, D.L., Hubbard, V.D., Burton, J., Smee, D.F., Morrey, J.D., Otto, M.J., Sidwell, R.W., Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine (2004) Antivir Chem Chemother, 15, pp. 15-22; Taylor, R., Kotian, P., Warren, T., Panchal, R., Bavari, S., Julander, J., Dobo, S., Taubenheim, B., BCX4430 – a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease (2016) J Infect Public Health, 9, pp. 220-226; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Johnson, R.F., Laidlaw, M., Repurposing of clinically developed drugs for treatment of middle east respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58, pp. 4885-4893; Peters, H.L., Jochmans, D., de Wilde, A.H., Posthuma, C.C., Snijder, E.J., Neyts, J., Seley-Radtke, K.L., Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity (2015) Bioorg Med Chem Lett, 25, pp. 2923-2926; Deval, J., Fung, A., Stevens, S.K., Jordan, P.C., Gromova, T., Taylor, J.S., Hong, J., Dyatkina, N., Biochemical effect of resistance mutations against synergistic inhibitors of RSV RNA polymerase (2016) PLoS One, 11; Eyer, L., Kondo, H., Zouharova, D., Hirano, M., Valdés, J.J., Muto, M., Kastl, T., Igarashi, M., Escape of tick-borne flavivirus from 2′-C-methylated nucleoside antivirals is mediated by a single conservative mutation in NS5 that has a dramatic effect on viral fitness (2017) J Virol 91, p. e01028-17. , This study demonstrates that the nucleoside analog 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA) demonstrates potent antiviral activity against tick-borne encephalitis virus. Resistance generated by serial passaging in the presence of 7-deaza-2′-CMA was associated with a single mutation in the polymerase and resulted in resistance against a broad spectrum of derivative compounds. This finding highlights the importance combination therapy to reduce the emergence of resistant virus; Diphoko, T., Gaseitsiwe, S., Kasvosve, I., Moyo, S., Okatch, H., Musonda, R., Wainberg, M., Novitsky, V., Prevalence of rilpivirine and etravirine resistance mutations in HIV-1 subtype C-infected patients failing nevirapine or efavirenz-based combination antiretroviral therapy in botswana (2018) AIDS Res Hum Retroviruses, 34, pp. 667-671; Valdés, J.J., Butterill, P.T., Růžek, D., Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors (2017) Biochem Biophys Res Commun, 492, pp. 652-658; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.-Y., Coronaviruses - drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15, pp. 327-347; Liang, R., Wang, L., Zhang, N., Deng, X., Su, M., Su, Y., Hu, L., Jiang, S., Development of small-molecule MERS-CoV inhibitors (2018) Viruses, 10, p. 721. , Comprehensive review of small-molecule inhibitors targeting viral proteins at different stages of the MERS-CoV viral replication cycle. Illustrates chemical structure formulas of inhibitors and summarizes potency, cytotoxicity, and testing model of each inhibitor in a table; Huang, K.-W., Hsu, K.-C., Chu, L.-Y., Yang, J.-M., Yuan, H.S., Hsiao, Y.-Y., Identification of inhibitors for the DEDDh family of exonucleases and a unique inhibition mechanism by Crystal structure analysis of CRN-4 bound with 2-Morpholin-4-ylethanesulfonate (MES) (2016) J Med Chem, 59, pp. 8019-8029; Gralinski, L.E., Baric, R.S., Molecular pathology of emerging coronavirus infections (2015) J Pathol, 235, pp. 185-195; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Kojan, S., Assiri, A.M., Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19, p. 81; Chen, F., Chan, K.H., Jiang, Y., Kao, R.Y.T., Lu, H.T., Fan, K.W., Cheng, V.C.C., Lee, T.S.W., In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds (2004) J Clin Virol, 31, pp. 69-75",,,"Elsevier B.V.",18796257,,,"31125806","English","Curr. Opin. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85065835030 "Song Z., Yang Y., Wang L., Wang K., Ran L., Xie Y., Huang L., Yang Z., Yuan P., Yu Q.","23468010300;57203827123;57205147017;57203814888;57203815487;57205144682;57205142083;57191963197;57203822029;57205147590;","EIF4A2 interacts with the membrane protein of transmissible gastroenteritis coronavirus and plays a role in virus replication",2019,"Research in Veterinary Science","123",,,"39","46",,1,"10.1016/j.rvsc.2018.12.005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058779113&doi=10.1016%2fj.rvsc.2018.12.005&partnerID=40&md5=62ddfc88bf76d98628a7ed88a8fd1370","Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China","Song, Z., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Yang, Y., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Wang, L., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Wang, K., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Ran, L., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Xie, Y., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Huang, L., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Yang, Z., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Yuan, P., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China; Yu, Q., Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing, 402460, China","Transmissible gastroenteritis coronavirus (TGEV) is enteropathogenic coronavirus that causes diarrhea in pigs, and is associated with high morbidity and mortality in sucking piglets. The TGEV membrane (M) protein is a decisive protein for the proliferation of viral proteins, and is associated with virus assembly and budding. To identify the cellular proteins that interact with the TGEV M protein, yeast two-hybrid screening was employed, and seven cellular proteins were identified M-binding partners. Using the GST pull-down approach and a CO-IP assay, the M protein was found to interact with porcine intestinal cells via eukaryotic translation initiation factor 4-alpha (EIF4A2), an essential component of the cellular translational machinery. Additionally, confocal microscopy revealed that EIF4A2 and M were colocalized in the cytoplasm. Furthermore, the function of EIF4A2 in intestinal cells during TGEV infection was examined. A knockdown of EIF4A2 by siRNA markedly decreased M protein proliferation and TGEV replication in target cells. Thus demonstrating that EIF4A2 plays a significant role in TGEV replication. The present study provides mechanistic insight into the interaction between the TGEV M protein and intestinal cells which contributes to the understanding of coronavirus replication and may be useful for the development of novel therapeutic strategies for TGEV infection. © 2018","Eukaryotic translation initiation factor 4-alpha (EIF4A2); Interaction; Membrane (M) protein; TGEV","initiation factor 4A; initiation factor 4A 2; M protein; small interfering RNA; unclassified drug; initiation factor 4A; matrix protein; small interfering RNA; animal cell; animal experiment; Article; cell proliferation; confocal microscopy; controlled study; Coronavirus infection; cytoplasm; intestine epithelium cell; newborn; nonhuman; protein localization; protein protein interaction; protein RNA binding; transmissible gastroenteritis coronavirus infection; Transmissible gastroenteritis virus; viral gastroenteritis; virus pathogenesis; virus replication; animal; cell culture; gene knockdown; genetics; intestine; metabolism; physiology; pig; transmissible gastroenteritis of swine; veterinary medicine; virology; virus replication; Animals; Cells, Cultured; Eukaryotic Initiation Factor-4A; Gastroenteritis, Transmissible, of Swine; Gene Knockdown Techniques; Intestines; RNA, Small Interfering; Swine; Transmissible gastroenteritis virus; Viral Matrix Proteins; Virus Replication","Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., Laude, H., Coronavirus pseudo-particles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes (1998) J. Virol., 72, pp. 8636-8643; Chan, C.C., Dostie, J., Diem, M.D., Feng, W., Mann, M., Rappsilber, J., Eif4a3 is a novel component of the exon junction complex (2004) RNA-a Publication of the RNA Society, 10 (2), pp. 200-209; Cologna, R., Hogue, B.G., Coronavirus nucleocapsid protein RNA interactions (1998) Adv. Exp. Med. Biol., 440, pp. 355-359; Corse, E., Machamer, C.E., Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J. Virol., 74, pp. 4319-4326; De Haan, C.A., Vennema, H., Rottier, P.J., Coronavirus particles assembly: primary structure requirements of the membrane protein (1998) J. Virol., 72, pp. 6838-6850; Duque, G.A., Ospina, H.A.A., Understanding TGEV-ETEC coinfection through the lens of proteomics: a tale of porcine diarrhea (2017) Proteomics Clin. Appl., 12 (3), p. 1700143; Eleouet, J.F., Rasschaert, D., Lambert, P., Levy, L., Vende, P., Laude, H., Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus (1995) Virology, 206, pp. 817-822; Gao, L., Li, K., Zhong, L., Zhang, L.Z., Qi, X.L., Wang, Y.Q., Gao, Y.L., Wang, X.M., Eukaryotic translational initiation factor 4II reduces the replication of infectious bursal disease virus by inihiting VP1 polymerase activity (2017) Antivir. Res., pp. 102-111; Haelterman, E.O., On the pathogenesis of transmissible gastroenteritis of swine (1972) J. Am. Vet. Med. Assoc., 160 (40), pp. 534-540; Kuo, L., Masters, P.S., Evolved variants of the membrane protein can partially replace the envelope protein in murine coronavirus assembly (2010) J. Virol., 84 (24), pp. 12872-12885; Kyono, K., Miyashiro, M., Taguchi, I., Human eukaryotic initiation factor 4AII associates with hepatitis C virus NS5B protein in vitro (2002) Biochem Bioph. Res., 292 (3), p. 659; Lai, M.M.C., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res., 48, pp. 1-100; Lu, W.T., Wilczynska, A., Smith, E., Bushell, M., The diverse roles of the eif4a family: you are the company you keep (2014) Biochem. Soc. Trans., 42 (1), p. 166; Marintchev, A., Edmonds, K., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Topology and regulation of the human eif4a/4g/4h helicase complex in translation initiation (2009) Cell, 136 (3), p. 447; Mathys, H., Basquin, J., Ozgur, S., Czarnockicieciura, M., Bonneau, F., Aartse, A., Structural and biochemical insights to the role of the ccr4-not complex and ddx6 atpase in microrna repression (2014) Mol. Cell, 54 (5), pp. 751-765; Meijer, H.A., Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation (2013) Science, pp. 82-86; Mullan, B.P., Davies, G.T., Cutler, R.S., Simulation of the economic impact of transmissible gastroenteritis on commercial pig production in Australia (1994) Aust. Vet. J., 71, pp. 151-154; Ndzinu, J.K., Takeuchi, H., Saito, H., eIF4A2 is a host factor required for efficient HIV-1 replication (2018) Microbes & Infection, 20 (6), pp. 346-352; Nielsen, P.J., Trachsel, H., The mouse protein synthesis initiation factor 4A gene Family includes two related functional genes which are differentially expressed (1988) EMBO J., 7 (7), pp. 2097-2105; Piñeyro, P.E., Lozada, M.I., Alarcón, L.V., First retrospective studies with etiological confirmation of porcine transmissible gastroenteritis virus infection in Argentina [J] (2018) BMC Vet. Res., 14 (1), p. 292; Risco, C., Muntión, M., Enjuanes, L., Carrascosa, J.L., Two types of virus-related particles are found during transmissible gastroenteritis virus morphogenesis (1998) J. Virol., 72 (5), pp. 4022-4031; Schwegmann, W.C., Herrler, G., Sialic acids as receptor determinants for coronaviruses (2006) Glycoconj. J., 23, pp. 51-58; Song, Z., Haibo, F., Zhi, Z., Xianjin, D., Yue, Z., Yuntian, L., Xinzhi, C., The assembly of virus-like particles of porcine transmissible gastroenteritis virus in vitro by baculovirus expression system (2015) Turk. J. Vet. Anim. Sci., 39 (1), pp. 302-307; Song, Z., Dai, X., Ye, C., Li, Y., Wang, L., Hu, Y., Morphogenesis and proliferative rule of porcine transmissible gastroenteritis virus in porcine intestinal epithelial cells (2016) J. Virol. Methods, 238, pp. 6-12; Tacken, M.G.J., Thomas, A.A.M., Peeters, B.P.H., Rottier, P.J.M., Boot, H.J., Vp1, the rna-dependent rna polymerase and genome-linked protein of infectious bursal disease virus, interacts with the carboxy-terminal domain of translational eukaryotic initiation factor 4aii (2004) Arch. Virol., 149 (11), pp. 2245-2260; Xia, L., Yang, Y., Wang, J., Jing, Y., Yang, Q., Impact of tgev infection on the pig small intestine (2018) Virol. J., 15 (1), p. 102; Zheng, Z., Ke, X., Wang, M., He, S., Li, Q., Zheng, C., Human microrna hsa-mir-296-5p suppresses enterovirus 71 replication by targeting the viral genome (2013) J. Virol., 87 (10), pp. 5645-5656; Zhenhui, S., Xianjin, D., Xinzhi, C., Isolation and Identification of a New Strain of Porcine Transmissible Gastroenteritis Virus from Chongqing, Southwestern China (2015) Israel J. Vet. Med., 70 (4), pp. 22-30; Zou, H., Zarlenga, D.S., Sestak, K., Suo, S., Ren, X., Transmissible gastroenteritis virus: identification of m protein-binding peptide ligands with antiviral and diagnostic potential (2013) Antivir. Res., 99 (3), pp. 383-390","Song, Z.; Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of ChinaChina; email: szh7678@126.com",,"Elsevier B.V.",00345288,,RVTSA,"30583231","English","Res. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85058779113 "Alfano F., Dowgier G., Valentino M.P., Galiero G., Tinelli A., Decaro N., Fusco G.","6603883648;56971452300;57208412934;6603158418;6701370203;6701636107;7006790054;","Identification of pantropic canine coronavirus in a wolf (Canis lupus italicus) in Italy",2019,"Journal of Wildlife Diseases","55","2",,"504","508",,3,"10.7589/2018-07-182","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064722857&doi=10.7589%2f2018-07-182&partnerID=40&md5=5873397f57d8a81430eb3464123f458f","Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, Portici, NA 80055, Italy; Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy","Alfano, F., Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, Portici, NA 80055, Italy; Dowgier, G., Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy; Valentino, M.P., Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, Portici, NA 80055, Italy; Galiero, G., Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, Portici, NA 80055, Italy; Tinelli, A., Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy; Decaro, N., Department of Veterinary Medicine, University of Bari, Valenzano, BA, Italy; Fusco, G., Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, Portici, NA 80055, Italy","We report a case in an Italian wolf (Canis lupus italicus) of pantropic canine coronavirus infection, which has previously been detected only in dogs. The wolf was coinfected by canine parvovirus type 2b and canine adenovirus type 2, which highlighted the crucial role of epidemiologic surveys in European wild carnivores. © Wildlife Disease Association 2019.",,"animal; Canine coronavirus; case report; Coronavirus infection; genetics; isolation and purification; Italy; phylogeny; veterinary medicine; virology; wolf; Animals; Coronavirus Infections; Coronavirus, Canine; Italy; Phylogeny; Wolves","Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R., Prosperi, S., Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy (2001) J Gen Virol, 82, pp. 1555-1560; Buonavoglia, C., Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Castagnaro, M., Tempesta, M., Canine coronavirus highly pathogenic for dogs (2006) Emerg Infect Dis, 12, pp. 492-494; Decaro, N., Buonavoglia, C., Canine coronavirus: Not only an enteric pathogen (2011) Vet Clin North am Small Anim Pract, 41, pp. 1121-1132; Decaro, N., Cordonnier, N., Demeter, Z., Egberink, H., Elia, G., Grellet, A., Le Poder, S., Ntafis, V., European surveillance for pantropic canine coronavirus (2013) J Clin Microbiol, 51, pp. 83-88; Di Sabatino, D., Lorusso, A., Di Francesco, C.E., Gentile, L., Di Pirro, V., Bellacicco, A.L., Giovannini, A., Marsilio, F., Arctic lineage-canine distemper virus as a cause of death in Apennine wolves (Canis lupus) in Italy (2014) Plos One, 9; Dowgier, G., Lahoreau, J., Lanave, G., Losurdo, M., Varrello, K., Lucente, M.S., Ventriglia, G., Buonavoglia, C., Sequential circulation of canine adenoviruses 1 and 2 in captive wild carnivores, France (2018) Vet Microbiol, 221, pp. 67-73; (2018) FASTA Protein Similarity Search, , http://www.ebi.ac.uk/fasta33, Accessed January 2018; Ferreyra, H., Calderón, M.G., Marticorena, D., Marull, C., Leonardo, B.C., Canine distemper infection in crab-eating fox (Cerdocyon thous) from Argentina (2009) J Wildl Dis, 45, pp. 1158-1162; Martinello, F., Galuppo, F., Ostanello, F., Guberti, V., Prosperi, S., Detection of canine parvovirus in wolves from Italy (1997) J Wildl Dis, 33, pp. 628-631; Millán, J., López-Bao, J.V., García, E.J., Oleaga, Á., Llaneza, L., Palacios, V., de la Torre, A., Esperón, F., Patterns of exposure of Iberian wolves (Canis lupus) to canine viruses in human-dominated landscapes (2016) Ecohealth, 13, pp. 123-134; Mira, F., Purpari, G., Lorusso, E., Di Bella, S., Gucciardi, F., Desario, C., Macaluso, G., Guercio, A., Introduction of Asian canine parvovirus in Europe through dog importation (2018) Transbound Emerg Dis, 65, pp. 16-21; Molnar, B., Duchamp, C., Möstl, K., Diehl, P.A., Betschart, B., Comparative survey of canine parvovirus, canine distemper virus and canine enteric coronavirus infection in free-ranging wolves of central Italy and south-eastern France (2014) Eur J Wildl Res, 60, pp. 613-624; (2018) Basic Local Alignment Search Tool (BLAST), , http://blast.ncbi.nlm.nih.gov/Blast.cgi.AccessedJanuary2018; Pizzurro, F., Marcacci, M., Zaccaria, G., Orsini, M., Cito, F., Rosamilia, A., Di Renzo, L., Lorusso, A., Genome sequence of canine adenovirus type 1 isolated from a wolf (Canis lupus) in southern Italy (2017) Genome Announc, 5; Votsi, N.E., Zomeni, M.S., Pantis, J.D., Evaluating the effectiveness of Natura 2000 network for wolf conservation: A case-study in Greece (2016) Environ Manage, 57, pp. 257-270; Wang, Y., Ma, G., Lu, C., Wen, H., Detection of canine coronaviruses genotype I and II in raised Canidae animals in China (2006) Berl Munch Tierarztl Wochenschr, 119, pp. 35-39","Alfano, F.; Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, Italy; email: flora.alfano@cert.izsmportici.it",,"Wildlife Disease Association, Inc.",00903558,,,"30376395","English","J. Wildl. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85064722857 "Barbosa C.M., Durigon E.L., Thomazelli L.M., Ometto T., Marcatti R., Nardi M.S., de Aguiar D.M., Pinho J.B., Petry M.V., Neto I.S., Serafini P., Rodrigues R.C., de Azevedo Junior S.M., Góes L.G.B., de Araujo J.","57194183106;16834395300;22936349500;37049971000;57208499540;26039274200;56660526100;8983461900;15737466300;55486402100;14047316000;24825277200;6504298362;55199212600;23391861400;","Divergent coronaviruses detected in wild birds in Brazil, including a central park in São Paulo",2019,"Brazilian Journal of Microbiology","50","2",,"547","556",,,"10.1007/s42770-019-00065-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064956832&doi=10.1007%2fs42770-019-00065-7&partnerID=40&md5=4f540e0be66059e9c92c9187f9f192e2","Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil; Wildlife and Green Areas Department, São Paulo Municipality, São Paulo, Brazil; Laboratório de Virologia e Rickettsioses, Hospital Veterinário, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil; Laboratório de Ecologia de Aves, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil; Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil; Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Brasília, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres (CEMAVE), Cabedelo, Paraíba, Brazil; Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil","Barbosa, C.M., Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil; Durigon, E.L., Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil; Thomazelli, L.M., Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil; Ometto, T., Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil; Marcatti, R., Wildlife and Green Areas Department, São Paulo Municipality, São Paulo, Brazil; Nardi, M.S., Wildlife and Green Areas Department, São Paulo Municipality, São Paulo, Brazil; de Aguiar, D.M., Laboratório de Virologia e Rickettsioses, Hospital Veterinário, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil; Pinho, J.B., Laboratório de Ecologia de Aves, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil; Petry, M.V., Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil; Neto, I.S., Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Brasília, Brazil; Serafini, P., Centro Nacional de Pesquisa e Conservação de Aves Silvestres (CEMAVE), Cabedelo, Paraíba, Brazil; Rodrigues, R.C., Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil; de Azevedo Junior, S.M., Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil; Góes, L.G.B., Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil; de Araujo, J., Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, São Paulo, 05508-900, Brazil","Coronaviruses are single-stranded positive-sense RNA viruses associated with important avian diseases. Their relatively high rates of mutation and recombination frequencies allow them to adapt to new hosts and ecological niches. Although Brazil has 18% of global avian species diversity, studies regarding the presence of avian viral diseases in wild birds in South America are scarce. In this study, we performed a retrospective analysis of the presence of CoVs in 746 wild birds. Oropharyngeal and cloacal swabs were obtained and placed together in vials containing VTM transport medium collected in different regions of Brazil between 2006 and 2013. Screening for viral nucleic acid was performed using conventional RT-PCR and pancoronavirus nested PCR. Positive samples were characterized by partial sequencing of the RNA-dependent RNA polymerase (RdRp) gene, and ensuing phylogenetic analysis was performed to investigate the association between virus epidemiology and bird migration routes. Coronavirus RNA were detected and sequenced from six samples, in which three were related to gammacoronaviruses group and the other three to deltacoronavirus group. Our study documents the presence of CoVs related to avian gamma- and deltacoronaviruses circulating in both urban- and poultry-farm regions of Brazil, implicating wild birds as potential carriers of CoVs which may represent a risk to poultry farms and public health in Brazil. © 2019, Sociedade Brasileira de Microbiologia.","Brazil; Deltacoronavirus; Gammacoronavirus; South America; Wild birds","RNA directed RNA polymerase; virus RNA; animal; bird; bird disease; Brazil; Coronavirinae; Coronavirus infection; disease carrier; Gammacoronavirus; genetics; isolation and purification; nucleotide sequence; phylogeny; retrospective study; virology; wild animal; Animals; Animals, Wild; Base Sequence; Bird Diseases; Birds; Brazil; Coronavirus; Coronavirus Infections; Disease Reservoirs; Gammacoronavirus; Phylogeny; Retrospective Studies; RNA Replicase; RNA, Viral","Bande, F., Arshad, S.S., Omar, A.R., Global distributions and strain diversity of avian infectious bronchitis virus: a review (2017) Anim Health Res Rev, 18, pp. 70-83; Marandino, A., Pereda, A., Tomás, G., Phylodynamic analysis of avian infectious bronchitis virus in South America (2015) J Gen Virol, 96, pp. 1340-1346; Michael, M.C., Lai, D.C., The molecular biology of coronaviruses (1997) Adv Virus Res, 65, pp. 193-292; Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med, 234, pp. 1117-1127; Su, S., Wong, G., Shi, W., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Chan, J.F.W., To, K.K.W., Tse, H., Interspecies transmission and emergence of novel viruses: lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Cavanagh, D., Gelb, J., Jr., Infectious Bronchitis (2008) Dis. Poult, pp. 117-135. , Saif YM, (ed), 12, Blackwell, Oxford; Durães-Carvalho, R., Caserta, L.C., Barnabé, A.C.S., Coronaviruses detected in Brazilian wild birds reveal close evolutionary relationships with Beta- and Deltacoronaviruses isolated from mammals (2015) J Mol Evol, 81, pp. 21-23; de Araujo, J., de Azevedo, S.M., Gaidet, N., Avian influenza virus (H11N9) in migratory shorebirds wintering in the Amazon region, Brazil (2014) PLoS One, 9; Dusek, R.J., Hallgrimsson, G.T., Ip, H.S., North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses (2014) PLoS One; Ometto, T., Durigon, E.L., de Araujo, J., West Nile virus surveillance, Brazil, 2008-2010 (2013) Trans R Soc Trop Med Hyg, 107, pp. 723-730; Dusek, R.J., McLean, R.G., Kramer, L.D., Prevalence of West Nile virus in migratory birds during spring and fall migration (2009) Am J Trop Med Hyg, 81, pp. 1151-1158; Reed, K.D., Meece, J.K., Henkel, J.S., Shukla, S.K., Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens (2003) Clin Med Res, 1, pp. 5-12; Thomazelli, L., de Araujo, J., de Ferreira, C.S., Molecular surveillance of the Newcastle disease virus in domestic and wild birds on the north eastern coast and Amazon biome of Brazil (2012) Rev Bras Ciência Avícola, 14, pp. 01-07; (2014) Relatório Anual de rotas e áreas de concentraçào de aves migratórias no Brasil, , ICMBio, Brasília; Araujo, J., Petry, M.V., Fabrizio, T., Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes (2018) Influenza Other Respir Viruses, 12, pp. 220-231; Chu, D.K.W., Leung, C.Y.H., Gilbert, M., Avian coronavirus in wild aquatic birds (2011) J Virol, 85, pp. 12815-12820; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874; Hagemeijer, M., Rottier, P., Haan, C., Biogenesis and dynamics of the coronavirus replicative structures (2012) Viruses, 4, pp. 3245-3269; Góes, L.G.B., ACA, C., de Carvalho, C., Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil (2016) Infect Genet Evol, 44, pp. 510-513; Jordan, B.J., Hilt, D.A., Poulson, R., Identification of avian coronavirus in wild aquatic birds of the central and eastern USA (2015) J Wildl Dis, 51, pp. 218-221; Hepojoki, S., Lindh, E., Vapalahti, O., Huovilainen, A., Prevalence and genetic diversity of coronaviruses in wild birds, Finland (2017) Infect Ecol Epidemiol, 7, p. 1408360; (2008) Guia Dos Parques Municipais De São Paulo, , acessed January, 2018; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450; Scherer, A.L., Petry, M.V., Seasonal variation in shorebird abundance in the state of Rio Grande Do Sul, southern Brazil (2012) Wilson J Ornithol, 124, pp. 40-50; (2016) Embrapa Suinos E Aves, , https://www.embrapa.br/suinos-e-aves/cias/mapas, Embrapa, Accessed 20 May 2016; Lau, J.H.N., WPLSLCLCT a, K., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavi (2012) J Virol, 86, pp. 3995-4008; de Lima, F.E.S., Gil, P., Pedrono, M., Diverse gammacoronaviruses detected in wild birds from Madagascar (2015) Eur J Wildl Res, pp. 635-639; Muradrasoli, S., Bálint, Á., Wahlgren, J., Prevalence and phylogeny of coronaviruses in wild birds from the bering strait area (Beringia) (2010) PLoS One; Wille, M., Muradrasoli, S., Nilsson, A., Järhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian waterfowl (2016) PLoS One; Lee, Y.-J., Kang, H.-M., Lee, E.-K., Novel reassortant influenza A(H5N8) viruses, South Korea, 2014 (2014) Emerg Infect Dis, 20, pp. 1087-1089","de Araujo, J.; Institute of Biomedical Sciences, University of Sao Paulo, 1374 Prof. Lineu Prestes avenue, Brazil; email: jansentequila@usp.br",,"Springer",15178382,,,"30877663","English","Braz. J. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85064956832 "J Alsaadi E.A., Jones I.M.","57208746505;34769538800;","Membrane binding proteins of coronaviruses",2019,"Future Virology","14","4",,"275","286",,1,"10.2217/fvl-2018-0144","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065672669&doi=10.2217%2ffvl-2018-0144&partnerID=40&md5=8229c04df3d5cc1337ce099a4a98ce7b","Biomedical Sciences, School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom; Department of Microbiology, College of Medicine, Thiqar University, Thiqar, Iraq","J Alsaadi, E.A., Biomedical Sciences, School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom, Department of Microbiology, College of Medicine, Thiqar University, Thiqar, Iraq; Jones, I.M., Biomedical Sciences, School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom","Coronaviruses (CoVs) infect many species causing a variety of diseases with a range of severities. Their members include zoonotic viruses with pandemic potential where therapeutic options are currently limited. Despite this diversity CoVs share some common features including the production, in infected cells, of elaborate membrane structures. Membranes represent both an obstacle and aid to CoV replication - and in consequence - virus-encoded structural and nonstructural proteins have membrane-binding properties. The structural proteins encounter cellular membranes at both entry and exit of the virus while the nonstructural proteins reorganize cellular membranes to benefit virus replication. Here, the role of each protein in membrane binding is described to provide a comprehensive picture of their role in the CoV replication cycle. © 2019 2019 Ian M Jones.","bending; coronavirus; egress; fusion; membrane; peptide; replication; web","binding protein; structural protein; cell membrane; Coronavirinae; membrane binding; membrane structure; nonhuman; priority journal; protein interaction; Review; virus release; virus replication","Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res., 117 (1), pp. 17-37; Adams, M.J., Lefkowitz, E.J., King, A.M., Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016) (2016) Arch. Virol., 161 (10), pp. 2921-2949; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348 (20), pp. 1967-1976; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; Baseler, L., De Wit, E., Feldmann, H., A comparative review of animal models of middle east respiratory syndrome coronavirus infection (2016) Vet. Pathol., 53 (3), pp. 521-531; Van Doremalen, N., Munster, V.J., Animal models of Middle East respiratory syndrome coronavirus infection (2015) Antiviral Res., 122, pp. 28-38; Dent, S.D., Xia, D., Wastling, J.M., Neuman, B.W., Britton, P., Maier, H.J., The proteome of the infectious bronchitis virus Beau-R virion (2015) J. Gen. Virol., 96 (12), pp. 3499-3506; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7 (6), pp. 439-450; Reguera, J., Mudgal, G., Santiago, C., Casasnovas, J.M., A structural view of coronavirus-receptor interactions (2014) Virus Res., 194, pp. 3-15; Hurst, K.R., Kuo, L., Koetzner, C.A., Ye, R., Hsue, B., Masters, P.S., A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein (2005) J. Virol., 79 (21), pp. 13285-13297; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P.J., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding (1994) J. Virol., 68 (10), pp. 6523-6534; De Haan, C.A., Stadler, K., Godeke, G.J., Bosch, B.J., Rottier, P.J., Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion (2004) J. Virol., 78 (11), pp. 6048-6054; Ulasli, M., Verheije, M.H., De Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell Microbiol., 12 (6), pp. 844-861; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4 (6), pp. 1011-1033; Sieczkarski, S.B., Whittaker, G.R., Dissecting virus entry via endocytosis (2002) J. Gen. Virol., 83, pp. 1535-1545; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J. Virol., 89 (4), pp. 1954-1964; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu. Rev. Virol., 3 (1), pp. 237-261; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87 (23), pp. 12552-12561; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Ther. Targets, 21 (2), pp. 131-143; Eckert, D.M., Kim, P.S., Mechanisms of viral membrane fusion and its inhibition (2001) Annu. Rev. Biochem., 70, pp. 777-810; Burkard, C., Verheije, M.H., Wicht, O., Coronavirus cell entry occurs through the endo-lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10 (11), p. e1004502; Bosch, B.J., Van Der Zee, R., De Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class i virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77 (16), pp. 8801-8811; Bosch, B.J., Bartelink, W., Rottier, P.J., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class i fusion protein upstream of rather than adjacent to the fusion peptide (2008) J. Virol., 82 (17), pp. 8887-8890; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl Acad. Sci. USA, 106 (14), pp. 5871-5876; Madu, I.G., Roth, S.L., Belouzard, S., Whittaker, G.R., Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide (2009) J. Virol., 83 (15), pp. 7411-7421; Millet, J.K., Goldstein, M.E., Labitt, R.N., Hsu, H.L., Daniel, S., Whittaker, G.R., A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties (2016) Emerg. Microbes Infect., 5 (12), p. e126; Millet, J.K., Whittaker, G.R., Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; Lai, A.L., Millet, J.K., Daniel, S., Freed, J.H., Whittaker, G.R., The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner (2017) J. Mol. Biol., 429 (24), pp. 3875-3892; Chang, K.W., Sheng, Y., Gombold, J.L., Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein (2000) Virology, 269 (1), pp. 212-224; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: Crossing the host cell species barrier (2000) J. Virol., 74 (3), pp. 1393-1406; Yao, Q., Masters, P.S., Ye, R., Negatively charged residues in the endodomain are critical for specific assembly of spike protein into murine coronavirus (2013) Virology, 442 (1), pp. 74-81; Yang, J., Lv, J., Wang, Y., Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein (2012) Virology, 427 (2), pp. 98-106; Bosch, B.J., De Haan, C.A., Smits, S.L., Rottier, P.J., Spike protein assembly into the coronavirion: Exploring the limits of its sequence requirements (2005) Virology, 334 (2), pp. 306-318; Ye, R., Montalto-Morrison, C., Masters, P.S., Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: Distinct roles for charge-rich and cysteine-rich regions of the endodomain (2004) J. Virol., 78 (18), pp. 9904-9917; Gui, M., Song, W., Zhou, H., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27 (1), pp. 119-129; Walls, A.C., Tortorici, M.A., Bosch, B.J., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23 (10), pp. 899-905; Yuan, Y., Cao, D., Zhang, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Torres, J., Maheswari, U., Parthasarathy, K., Ng, L., Liu, D.X., Gong, X., Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein (2007) Protein Sci., 16 (9), pp. 2065-2071; Wilson, L., Gage, P., Ewart, G., Hexamethylene amiloride blocks e protein ion channels and inhibits coronavirus replication (2006) Virology, 353 (2), pp. 294-306; Liao, Y., Yuan, Q., Torres, J., Tam, J.P., Liu, D.X., Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein (2006) Virology, 349 (2), pp. 264-275; Boscarino, J.A., Logan, H.L., Lacny, J.J., Gallagher, T.M., Envelope protein palmitoylations are crucial for murine coronavirus assembly (2008) J. Virol., 82 (6), pp. 2989-2999; Lopez, L.A., Riffle, A.J., Pike, S.L., Gardner, D., Hogue, B.G., Importance of conserved cysteine residues in the coronavirus envelope protein (2008) J. Virol., 82 (6), pp. 3000-3010; Tseng, Y.T., Wang, S.M., Huang, K.J., Wang, C.T., SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production (2014) J. Biomed. Sci., 21, p. 34; Ruch, T.R., Machamer, C.E., The coronavirus e protein: Assembly and beyond (2012) Viruses, 4 (3), pp. 363-382; Vennema, H., Godeke, G.J., Rossen, J.W., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBO J., 15 (8), pp. 2020-2028; Chen, S.C., Lo, S.Y., Ma, H.C., Li, H.C., Expression and membrane integration of SARS-CoV e protein and its interaction with M protein (2009) Virus Genes, 38 (3), pp. 365-371; Kuo, L., Hurst-Hess, K.R., Koetzner, C.A., Masters, P.S., Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras (2016) J. Virol., 90 (9), pp. 4357-4368; Corse, E., Machamer, C.E., Infectious bronchitis virus e protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J. Virol., 74 (9), pp. 4319-4326; Mortola, E., Roy, P., Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system (2004) FEBS Lett., 576 (1-2), pp. 174-178; Madan, V., Garcia Mde, J., Sanz, M.A., Carrasco, L., Viroporin activity of murine hepatitis virus e protein (2005) FEBS Lett., 579 (17), pp. 3607-3612; Ye, Y., Hogue, B.G., Role of the coronavirus e viroporin protein transmembrane domain in virus assembly (2007) J. Virol., 81 (7), pp. 3597-3607; Castano-Rodriguez, C., Honrubia, J.M., Gutierrez-Alvarez, J., Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis (2018) MBio, 9 (3), pp. e02325-e02417; Cohen, J.R., Lin, L.D., Machamer, C.E., Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein (2011) J. Virol., 85 (12), pp. 5794-5803; Teoh, K.T., Siu, Y.L., Chan, W.L., The SARS coronavirus e protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis (2010) Mol. Biol. Cell., 21 (22), pp. 3838-3852; Arndt, A.L., Larson, B.J., Hogue, B.G., A conserved domain in the coronavirus membrane protein tail is important for virus assembly (2010) J. Virol., 84 (21), pp. 11418-11428; Hogue, B.G., Machamer, C.E., Coronavirus structural proteins and virus assembly (2008) Nidoviruses, pp. 179-200. , Perlman S, Gallagher T, Snijder E (Eds). ASM Press, Washington, DC; Ujike, M., Taguchi, F., Incorporation of spike and membrane glycoproteins into coronavirus virions (2015) Viruses, 7 (4), pp. 1700-1725; De Haan, C.A., Roestenberg, P., DeWit, M., Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein (1998) J. Biol. Chem., 273 (45), pp. 29905-29914; Oostra, M., De Haan, C.A., De Groot, R.J., Rottier, P.J., Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M (2006) J. Virol., 80 (5), pp. 2326-2336; Braakman, I., Van Anken, E., Folding of viral envelope glycoproteins in the endoplasmic reticulum (2000) Traffic, 1 (7), pp. 533-539; De Haan, C.A., De Wit, M., Kuo, L., The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain (2003) Virology, 312 (2), pp. 395-406; Kuo, L., Masters, P.S., Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus (2002) J. Virol., 76 (10), pp. 4987-4999; Neuman, B.W., Buchmeier, M.J., Supramolecular architecture of the coronavirus particle (2016) Adv. Virus Res., 96, pp. 1-27; Neuman, B.W., Kiss, G., Kunding, A.H., A structural analysis of M protein in coronavirus assembly and morphology (2011) J. Struct. Biol., 174 (1), pp. 11-22; Van Der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res., 220, pp. 70-90; Oudshoorn, D., Rijs, K., Limpens, R., Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication (2017) MBio, 8 (6), pp. e01658-e01717; Zalinger, Z.B., Elliott, R., Rose, K.M., Weiss, S.R., MDA5 is critical to host defense during infection with murine coronavirus (2015) J. Virol., 89 (24), pp. 12330-12340; He, Y., Xie, Z., Dai, J., Responses of the Toll-like receptor and melanoma differentiation-associated protein 5 signaling pathways to avian infectious bronchitis virus infection in chicks (2016) Virol. Sin., 31 (1), pp. 57-68; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antiviral Res., 149, pp. 58-74; Hagemeijer, M.C., Ulasli, M., Vonk, A.M., Reggiori, F., Rottier, P.J., De Haan, C.A., Mobility and interactions of coronavirus nonstructural protein 4 (2011) J. Virol., 85 (9), pp. 4572-4577; Oostra, M., Te Lintelo, E.G., Deijs, M., Verheije, M.H., Rottier, P.J., De Haan, C.A., Localization and membrane topology of coronavirus nonstructural protein 4: Involvement of the early secretory pathway in replication (2007) J. Virol., 81 (22), pp. 12323-12336; Beachboard, D.C., Anderson-Daniels, J.M., Denison, M.R., Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications (2015) J. Virol., 89 (4), pp. 2080-2089; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio, 4 (4), pp. e00524-e00613; Reggiori, F., Monastyrska, I., Verheije, M.H., Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication (2010) Cell Host Microbe, 7 (6), pp. 500-508; Sakai, Y., Kawachi, K., Terada, Y., Omori, H., Matsuura, Y., Kamitani, W., Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication (2017) Virology, 510, pp. 165-174; Al-Mulla, H.M., Turrell, L., Smith, N.M., Competitive fitness in coronaviruses is not correlated with size or number of double-membrane vesicles under reduced-temperature growth conditions (2014) MBio, 5 (2), pp. e01107-e01113; Maier, H.J., Neuman, B.W., Bickerton, E., Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity (2016) Sci. Rep., 6, p. 27126; Doyle, N., Neuman, B.W., Simpson, J., Infectious bronchitis virus nonstructural protein 4 alone induces membrane pairing (2018) Viruses, 10 (9), p. 477; Baliji, S., Cammer, S.A., Sobral, B., Baker, S.C., Detection of nonstructural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches (2009) J. Virol., 83 (13), pp. 6957-6962; Cottam, E.M., Maier, H.J., Manifava, M., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7 (11), pp. 1335-1347; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10 (8), pp. 1426-1441; Knoops, K., Kikkert, M., Worm, S.H., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6 (9), p. e226; Maier, H.J., Hawes, P.C., Cottam, E.M., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) MBio, 4 (5), pp. e00801-00813; Quinteros, J.A., Markham, P.F., Lee, S.W., Analysis of the complete genomic sequences of two virus subpopulations of the Australian infectious bronchitis virus vaccine VicS (2015) Avian Pathol., 44 (3), pp. 182-191; Den Boon, J.A., Ahlquist, P., Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories (2010) Annu. Rev. Microbiol., 64, pp. 241-256; Den Boon, J.A., Diaz, A., Ahlquist, P., Cytoplasmic viral replication complexes (2010) Cell Host Microbe, 8 (1), pp. 77-85; Hagemeijer, M.C., Rottier, P.J., De Haan, C.A., Biogenesis and dynamics of the coronavirus replicative structures (2012) Viruses, 4 (11), pp. 3245-3269; Miller, S., Krijnse-Locker, J., Modification of intracellular membrane structures for virus replication (2008) Nat. Rev. Microbiol., 6 (5), pp. 363-374; Strating, J.R., Van Kuppeveld, F.J., Viral rewiring of cellular lipid metabolism to create membranous replication compartments (2017) Curr. Opin. Cell Biol., 47, pp. 24-33; Volchuk, A., Amherdt, M., Ravazzola, M., Megavesicles implicated in the rapid transport of intracisternal aggregates across the Golgi stack (2000) Cell, 102 (3), pp. 335-348; Witkos, T.M., Lowe, M., Recognition and tethering of transport vesicles at the Golgi apparatus (2017) Curr. Opin. Cell Biol., 47, pp. 16-23; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J. Biol. Chem., 279 (11), pp. 10136-10141; Fung, T.S., Liao, Y., Liu, D.X., Regulation of stress responses and translational control by coronavirus (2016) Viruses, 8, p. 184; Zhao, Z., Thackray, L.B., Miller, B.C., Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3 (6), pp. 581-585; Engelman, D.M., Membranes are more mosaic than fluid (2005) Nature, 438 (7068), pp. 578-580; Derganc, J., Antonny, B., Copic, A., Membrane bending: The power of protein imbalance (2013) Trends Biochem. Sci., 38 (11), pp. 576-584; Kooijman, E.E., Chupin, V., De Kruijff, B., Burger, K.N., Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid (2003) Traffic, 4 (3), pp. 162-174; McMahon, H.T., Gallop, J.L., Membrane curvature and mechanisms of dynamic cell membrane remodelling (2005) Nature, 438 (7068), pp. 590-596; Boucrot, E., Pick, A., Camdere, G., Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains (2012) Cell, 149 (1), pp. 124-136; Peter, B.J., Kent, H.M., Mills, I.G., BAR domains as sensors of membrane curvature: The amphiphysin BAR structure (2004) Science, 303 (5657), pp. 495-499; Stachowiak, J.C., Schmid, E.M., Ryan, C.J., Membrane bending by protein-protein crowding (2012) Nat. Cell Biol., 14 (9), pp. 944-949; Lee, M.C., Orci, L., Hamamoto, S., Futai, E., Ravazzola, M., Schekman, R., Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle (2005) Cell, 122 (4), pp. 605-617; Rossman, J.S., Jing, X., Leser, G.P., Lamb, R.A., Influenza virus M2 protein mediates ESCRT-independent membrane scission (2010) Cell, 142 (6), pp. 902-913; Welsch, S., Muller, B., Krausslich, H.G., More than one door-Budding of enveloped viruses through cellular membranes (2007) FEBS Lett., 581 (11), pp. 2089-2097; Trincone, A., Schwegmann-Wessels, C., Looking for a needle in a haystack: Cellular proteins that may interact with the tyrosine-based sorting signal of the TGEV S protein (2015) Virus Res., 202, pp. 3-11; Weisz, O.A., Swift, A.M., Machamer, C.E., Oligomerization of a membrane protein correlates with its retention in the Golgi complex (1993) J. Cell. Biol., 122 (6), pp. 1185-1196; Tseng, Y.T., Wang, S.M., Huang, K.J., Lee, A.I., Chiang, C.C., Wang, C.T., Self-assembly of severe acute respiratory syndrome coronavirus membrane protein (2010) J. Biol. Chem., 285 (17), pp. 12862-12872; Venkatagopalan, P., Daskalova, S.M., Lopez, L.A., Dolezal, K.A., Hogue, B.G., Coronavirus envelope (E) protein remains at the site of assembly (2015) Virology, 478, pp. 75-85; Schmitt, A.P., Lamb, R.A., Influenza virus assembly and budding at the viral budozone (2005) Adv. Virus Res., 64, pp. 383-416; Rossman, J.S., Lamb, R.A., Viral membrane scission (2013) Annu. Rev. Cell Dev. Biol., 29, pp. 551-569; Dyall, J., Gross, R., Kindrachuk, J., Middle east respiratory syndrome and severe acute respiratory syndrome: Current therapeutic options and potential targets for novel therapies (2017) Drugs, 77 (18), pp. 1935-1966; Gao, J., Lu, G., Qi, J., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J. Virol., 87 (24), pp. 13134-13140; Sun, Y., Zhang, H., Shi, J., Zhang, Z., Gong, R., Identification of a novel inhibitor against Middle East respiratory syndrome coronavirus (2017) Viruses, 9 (9), p. 255; Sainz, B., Jr., Mossel, E.C., Gallaher, W.R., Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein (2006) Virus Res., 120 (1-2), pp. 146-155; Jeon, J.H., Lee, C., Cellular cholesterol is required for porcine nidovirus infection (2017) Arch. Virol., 162 (12), pp. 3753-3767; Yin, J., Glende, J., Schwegmann-Wessels, C., Enjuanes, L., Herrler, G., Ren, X., Cholesterol is important for a post-adsorption step in the entry process of transmissible gastroenteritis virus (2010) Antiviral Res., 88 (3), pp. 311-316; Dyall, J., Coleman, C.M., Hart, B.J., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob. Agents Chemother., 58 (8), pp. 4885-4893; Jiaming, L., Yanfeng, Y., Yao, D., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35 (1), pp. 10-18; Wirblich, C., Coleman, C.M., Kurup, D., One-Health: A safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies virus (2017) J. Virol., 91 (2), pp. e02040-e02116; Elshabrawy, H.A., Coughlin, M.M., Baker, S.C., Prabhakar, B.S., Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing (2012) PLoS ONE, 7 (11), p. e50366","Jones, I.M.; Biomedical Sciences, School of Biological Sciences, University of ReadingUnited Kingdom; email: i.m.jones@rdg.ac.uk",,"Future Medicine Ltd.",17460794,,,,"English","Future Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85065672669 "Al-Abdely H.M., Midgley C.M., Alkhamis A.M., Abedi G.R., Lu X., Binder A.M., Alanazi K.H., Tamin A., Banjar W.M., Lester S., Abdalla O., Dahl R.M., Mohammed M., Trivedi S., Algarni H.S., Sakthivel S.K., Algwizani A., Bafaqeeh F., Alzahrani A., Alsharef A.A., Alhakeem R.F., Jokhdar H.A.A., Ghazal S.S., Thornburg N.J., Erdman D.D., Assiri A.M., Watson J.T., Gerber S.I.","6602914036;56372310100;57207929673;55887217800;57216109714;57007830700;57205250746;6602551546;57189439162;57207940519;57191346377;56160038100;56453979700;56025976500;56780140000;55414566800;57192893697;15756815900;37060433400;57191347075;54796434800;6507147807;6602583744;6602664202;7005380414;36607531400;55374101200;56656063700;","Middle east respiratory syndrome coronavirus infection dynamics and antibody responses among clinically diverse patients, Saudi Arabia",2019,"Emerging Infectious Diseases","25","4",,"753","766",,4,"10.3201/eid2504.181595","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063288738&doi=10.3201%2feid2504.181595&partnerID=40&md5=6849622a58376a195374a1348ef3cd68","Ministry of Health, Riyadh, Saudi Arabia; Centers for Disease Control and Prevention, Atlanta, GA, United States; Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Alfaisal University, Saudi Arabia","Al-Abdely, H.M., Ministry of Health, Riyadh, Saudi Arabia, Alfaisal University, Saudi Arabia; Midgley, C.M., Ministry of Health, Riyadh, Saudi Arabia, Centers for Disease Control and Prevention, Atlanta, GA, United States; Alkhamis, A.M., Ministry of Health, Riyadh, Saudi Arabia; Abedi, G.R., Centers for Disease Control and Prevention, Atlanta, GA, United States; Lu, X., Centers for Disease Control and Prevention, Atlanta, GA, United States; Binder, A.M., Centers for Disease Control and Prevention, Atlanta, GA, United States; Alanazi, K.H., Ministry of Health, Riyadh, Saudi Arabia; Tamin, A., Centers for Disease Control and Prevention, Atlanta, GA, United States; Banjar, W.M., Ministry of Health, Riyadh, Saudi Arabia, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Lester, S., Centers for Disease Control and Prevention, Atlanta, GA, United States; Abdalla, O., Ministry of Health, Riyadh, Saudi Arabia; Dahl, R.M., Centers for Disease Control and Prevention, Atlanta, GA, United States; Mohammed, M., Ministry of Health, Riyadh, Saudi Arabia; Trivedi, S.; Algarni, H.S., Ministry of Health, Riyadh, Saudi Arabia; Sakthivel, S.K., Centers for Disease Control and Prevention, Atlanta, GA, United States; Algwizani, A., Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Bafaqeeh, F., Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Alzahrani, A., Ministry of Health, Riyadh, Saudi Arabia; Alsharef, A.A., Ministry of Health, Riyadh, Saudi Arabia; Alhakeem, R.F., Ministry of Health, Riyadh, Saudi Arabia; Jokhdar, H.A.A., Ministry of Health, Riyadh, Saudi Arabia; Ghazal, S.S., Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Thornburg, N.J., Centers for Disease Control and Prevention, Atlanta, GA, United States; Erdman, D.D., Centers for Disease Control and Prevention, Atlanta, GA, United States; Assiri, A.M., Ministry of Health, Riyadh, Saudi Arabia; Watson, J.T., Centers for Disease Control and Prevention, Atlanta, GA, United States; Gerber, S.I., Centers for Disease Control and Prevention, Atlanta, GA, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) shedding and antibody responses are not fully understood, particularly in relation to underlying medical conditions, clinical manifestations, and mortality. We enrolled MERS-CoV–positive patients at a hospital in Saudi Arabia and periodically collected specimens from multiple sites for real-time reverse transcription PCR and serologic testing. We conducted interviews and chart abstractions to collect clinical, epidemiologic, and laboratory information. We found that diabetes mellitus among survivors was associated with prolonged MERS-CoV RNA detection in the respiratory tract. Among case-patients who died, development of robust neutralizing serum antibody responses during the second and third weeks of illness was not sufficient for patient recovery or virus clearance. Fever and cough among mildly ill patients typically aligned with RNA detection in the upper respiratory tract; RNA levels peaked during the first week of illness. These findings should be considered in the development of infection control policies, vaccines, and antibody therapeutics. © 2019, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"antibiotic agent; bronchodilating agent; neutralizing antibody; oseltamivir; peginterferon alpha; ribavirin; steroid; virus RNA; neutralizing antibody; virus antibody; virus RNA; adult; antibody response; antibody titer; Article; artificial ventilation; blood analysis; chronic kidney failure; clinical article; clinical outcome; Coronavirus infection; coughing; diarrhea; disease severity; dyspnea; enzyme linked immunosorbent assay; feces analysis; female; fever; human; infection control; interview; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; positive end expiratory pressure; prevention and control; real time polymerase chain reaction; reverse transcription polymerase chain reaction; rhinorrhea; Saudi Arabia; serology; sore throat; thorax radiography; urinalysis; viral clearance; virus detection; virus isolation; virus load; virus transmission; vomiting; aged; blood; classification; Coronavirus infection; health survey; host pathogen interaction; immunology; middle aged; physiology; symptom assessment; virology; virus gene; Adult; Aged; Antibodies, Neutralizing; Antibodies, Viral; Coronavirus Infections; Female; Genes, Viral; Host-Pathogen Interactions; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Public Health Surveillance; RNA, Viral; Saudi Arabia; Symptom Assessment; Viral Load","Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., KSA MERS-CoV Investigation Team. Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , http://dx.doi.org/10.1056/NEJMoa1306742; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854. , http://dx.doi.org/10.1056/NEJMoa1408636; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Saudi Critical Care Trial Group. Critically ill patients with the Middle East respiratory syndrome: A multicenter retrospective cohort study (2017) Crit Care Med, 45, pp. 1683-1695. , http://dx.doi.org/10.1097/CCM.0000000000002621; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Middle East respiratory syndrome (2017) N Engl J Med, 376, pp. 584-594. , http://dx.doi.org/10.1056/NEJMsr1408795; Ko, J.H., Park, G.E., Lee, J.Y., Lee, J.Y., Cho, S.Y., Ha, Y.E., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J Infect, 73, pp. 468-475. , http://dx.doi.org/10.1016/j.jinf.2016.08.005; Senga, M., Arabi, Y.M., Fowler, R.A., Clinical spectrum of the Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) J Infect Public Health, 10, pp. 191-194. , http://dx.doi.org/10.1016/j.jiph.2016.04.008; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761. , http://dx.doi.org/10.1016/S1473-3099(13)70204-4; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306. , http://dx.doi.org/10.1016/j.ijid.2014.09.003; Middle East Respiratory Syndrome Coronaviurs (Mers-Cov) Fact Sheet, , https://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), cited 2017 Oct 30; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Increase in Middle East Respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, July 1–August 31, 2015 (2016) Open Forum Infect Dis, 3; Assiri, A., Abedi, G.R., Bin Saeed, A.A., Abdalla, M.A., Al-Masry, M., Choudhry, A.J., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40. , http://dx.doi.org/10.3201/eid2201.151370; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835. , http://dx.doi.org/10.1056/NEJMoa1405858; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55. , http://dx.doi.org/10.3201/eid2201.151340; Infection Prevention and Control during Health Care for Probable Or Confirmed Cases of Middle East Respiratory Syndrome Coronavirus (Mers-Cov) infection—interim Guidance, , https://www.who.int/csr/disease/coronavirus_infections/ipc-mers-cov/en, cited 2017 Oct 30; Management of Asymptomatic Persons Who are RT-PCR Positive for Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , https://www.who.int/csr/disease/coronavirus_infections/management_of_asymptomatic_patients/en, cited 2018 Sep 20; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: An observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308. , http://dx.doi.org/10.1016/j.ijid.2014.10.002; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61, pp. 275-278. , http://dx.doi.org/10.1016/j.jcv.2014.07.002; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375, pp. 1303-1305. , http://dx.doi.org/10.1056/NEJMc1511695; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Assiri, A., Alhakeem, R.F., Albarrak, A., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210, pp. 1590-1594. , http://dx.doi.org/10.1093/infdis/jiu292; Feikin, D.R., Alraddadi, B., Qutub, M., Shabouni, O., Curns, A., Oboho, I.K., Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 2029-2035. , http://dx.doi.org/10.3201/eid2111.150764; Guery, B., Poissy, J., El Mansouf, L., Séjourné, C., Ettahar, N., Lemaire, X., MERS-CoV study group. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272. , http://dx.doi.org/10.1016/S0140-6736(13)60982-4; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751. , http://dx.doi.org/10.1016/S1473-3099(13)70154-3; Kim, S.Y., Park, S.J., Cho, S.Y., Cha, R.H., Jee, H.G., Kim, G., Viral RNA in blood as indicator of severe outcome in Middle East respiratory syndrome coronavirus infection (2016) Emerg Infect Dis, 22, pp. 1813-1816. , http://dx.doi.org/10.3201/eid2210.160218; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6. , http://dx.doi.org/10.1038/srep25359; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132. , http://dx.doi.org/10.1093/jac/dkv085; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci Adv, 3, p. eaao4966; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084. , http://dx.doi.org/10.3201/eid2307.170310; Shin, H.S., Kim, Y., Kim, G., Lee, J.Y., Jeong, I., Joh, J.S., Immune responses to MERS coronavirus during the acute and convalescent phases of human infection (2018) Clin Infect Dis, , http://dx.doi.org/10.1093/cid/ciy595; Park, W.B., Perera, R.A., Choe, P.G., Lau, E.H., Choi, S.J., Chun, J.Y., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189. , http://dx.doi.org/10.3201/eid2112.151421; Ko, J.H., Müller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89, pp. 106-111. , http://dx.doi.org/10.1016/j.diagmicrobio.2017.07.006; Payne, D.C., Iblan, I., Rha, B., Alqasrawi, S., Haddadin, A., Al Nsour, M., Persistence of antibodies against Middle East respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826. , http://dx.doi.org/10.3201/eid2210.160706; Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Surveillance and testing for Middle East respiratory syndrome coronavirus (2017) Emerg Infect Dis, 23, pp. 682-685. , http://dx.doi.org/10.3201/eid2304.161793, Saudi Arabia, April 2015– February 2016; Corman, V.M., Ölschläger, S., Wendtner, C.M., Drexler, J.F., Hess, M., Drosten, C., Performance and clinical validation of the RealStar MERS-CoV kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) J Clin Virol, 60, pp. 168-171. , http://dx.doi.org/10.1016/j.jcv.2014.03.012; Lu, X., Whitaker, B., Sakthivel, S.K., Kamili, S., Rose, L.E., Lowe, L., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75. , http://dx.doi.org/10.1128/JCM.02533-13; Al-Abdely, H.M., Midgley, C.M., Alkhamis, A.M., Abedi, G.R., Tamin, A., Binder, A.M., Infectious MERS-CoV isolated from a mildly ill patient, Saudi Arabia (2018) Open Forum Infect Dis, 5. , http://dx.doi.org/10.1093/ofid/ofy111; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Jordan MERS-CoV Investigation Team. Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233. , http://dx.doi.org/10.1093/cid/ciu359; Trivedi, S., Miao, C., Al-Abdallat, M.M., Haddadin, A., Alqasrawi, S., Iblan, I., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90, pp. 367-371. , http://dx.doi.org/10.1002/jmv.24948; Assiri, A.M., Midgley, C.M., Abedi, G.R., Bin Saeed, A., Almasri, M.M., Lu, X., Epidemiology of a novel recombinant Middle East respiratory syndrome coronavirus in humans in Saudi Arabia (2016) J Infect Dis, 214, pp. 712-721. , http://dx.doi.org/10.1093/infdis/jiw236; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , http://dx.doi.org/1W0.1126/science.aac8608; Diabetes Country Profile, Saudi Arabia, , https://www.who.int/diabetes/country-profiles/sau_en.pdf, cited 2017 Dec 26; (2017) Age-Adjusted Prevalence of Diabetes (20–79), Saudi Arabia, , http://www.diabetesatlas.org/across-the-globe.html, cited 2017 Dec 26; Badawi, A., Ryoo, S.G., Prevalence of diabetes in the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus: A systematic review and meta-analysis (2016) J Public Health Res, 5, p. 733. , http://dx.doi.org/10.4081/jphr.2016.733; Banik, G.R., Alqahtani, A.S., Booy, R., Rashid, H., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virol Sin, 31, pp. 81-84. , http://dx.doi.org/10.1007/s12250-015-3679-z; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48, pp. 118-126. , http://dx.doi.org/10.3947/ic.2016.48.2.118; Kim, E.S., Choe, P.G., Park, W.B., Oh, H.S., Kim, E.J., Nam, E.Y., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) J Korean Med Sci, 31, pp. 1717-1725. , http://dx.doi.org/10.3346/jkms.2016.31.11.1717; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213. , http://dx.doi.org/10.1016/j.jhin.2016.10.008","Midgley, C.M.; Centers for Disease Control and Prevention, 1600 Clifton Road NE, United States; email: ydk5@cdc.gov",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"30882305","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85063288738 "Widagdo W., Okba N.M.A., Richard M., De Meulder D., Bestebroer T.M., Lexmond P., Farag E.A.B.A., Al-Hajri M., Stittelaar K.J., De Waal L., Van Amerongen G., Van Den Brand J.M.A., Haagmans B.L., Herfst S.","56387603500;56807221300;23025506300;55809541800;6602448722;16401937100;55963332900;57052928400;6602543332;57194067003;7004695265;25625734400;6701371301;6506087224;","Lack of middle east respiratory syndrome coronavirus transmission in rabbits",2019,"Viruses","11","4", 381,"","",,3,"10.3390/v11040381","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065291545&doi=10.3390%2fv11040381&partnerID=40&md5=205fc308a5dc5cbbe3f8c0ed44bf5f4e","Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Ministry of Public Health, PO Box. 42, Doha, Qatar; Viroclinics Biosciences BV, Rotterdam, 3029 AK, Netherlands; Department of Pathobiology, Utrecht University, Utrecht, 3584CS, Netherlands","Widagdo, W., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Okba, N.M.A., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Richard, M., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; De Meulder, D., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Bestebroer, T.M., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Lexmond, P., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Farag, E.A.B.A., Ministry of Public Health, PO Box. 42, Doha, Qatar; Al-Hajri, M., Ministry of Public Health, PO Box. 42, Doha, Qatar; Stittelaar, K.J., Viroclinics Biosciences BV, Rotterdam, 3029 AK, Netherlands; De Waal, L., Viroclinics Biosciences BV, Rotterdam, 3029 AK, Netherlands; Van Amerongen, G., Viroclinics Biosciences BV, Rotterdam, 3029 AK, Netherlands; Van Den Brand, J.M.A., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands, Department of Pathobiology, Utrecht University, Utrecht, 3584CS, Netherlands; Haagmans, B.L., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands; Herfst, S., Department of Viroscience, Erasmus Medical Center, Rotterdam, 3015GD, Netherlands","Middle East respiratory syndrome coronavirus (MERS-CoV) transmission from dromedaries to humans has resulted in major outbreaks in the Middle East. Although some other livestock animal species have been shown to be susceptible to MERS-CoV, it is not fully understood why the spread of the virus in these animal species has not been observed in the field. In this study, we used rabbits to further characterize the transmission potential of MERS-CoV. In line with the presence of MERS-CoV receptor in the rabbit nasal epithelium, high levels of viral RNA were shed from the nose following virus inoculation. However, unlike MERS-CoV-infected dromedaries, these rabbits did not develop clinical manifestations including nasal discharge and did shed only limited amounts of infectious virus from the nose. Consistently, no transmission by contact or airborne routes was observed in rabbits. Our data indicate that despite relatively high viral RNA levels produced, low levels of infectious virus are excreted in the upper respiratory tract of rabbits as compared to dromedary camels, thus resulting in a lack of viral transmission. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","MERS-coronavirus; Rabbits; Transmission","dipeptidyl peptidase IV; nucleoprotein; virus RNA; virus antibody; virus RNA; aged; animal experiment; animal model; animal tissue; antibody response; Article; bronchiole epithelium; cell infiltration; controlled study; cytopathogenic effect; enzyme linked immunosorbent assay; female; histochemistry; histopathology; human; in situ hybridization; inoculation; limit of detection; lower respiratory tract; lung alveolus epithelium; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; New Zealand rabbit; nonhuman; nose epithelium; nose smear; olfactory epithelium; real time polymerase chain reaction; reverse transcription polymerase chain reaction; throat culture; upper respiratory tract; Vero cell line; virus detection; virus excretion; virus infectivity; virus load; virus neutralization; virus replication; virus shedding; virus titration; virus transmission; animal; blood; camel; Coronavirus infection; disease carrier; germfree animal; immunology; Leporidae; Middle East respiratory syndrome coronavirus; nose; physiology; respiratory system; virology; Animals; Antibodies, Viral; Camelus; Coronavirus Infections; Disease Reservoirs; Female; Male; Middle East Respiratory Syndrome Coronavirus; Nose; Rabbits; Respiratory System; RNA, Viral; Specific Pathogen-Free Organisms; Virus Shedding","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., De Wit, E., Zalmout, I.S., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5. , e00884-14; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Elsayed, E.A., Khalafalla, A.I., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65, pp. 322-333; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Ben Embarek, P.K., Van Kerkhove, M.D., Reported Direct and Indirect Contact with Dromedary Camels among Laboratory-Confirmed MERS-CoV Cases (2018) Viruses, 10, p. 425; Vergara-Alert, J., Van Den Brand, J.M., Widagdo, W., Munoz, M.T., Raj, S., Schipper, D., Solanes, D., Haagmans, B.L., Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus (2017) Emerg. Infect. Dis., 23, pp. 232-240; Munster, V.J., Adney, D.R., Van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Hawkinson, A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6. , 21878; Crameri, G., Durr, P.A., Klein, R., Foord, A., Yu, M., Riddell, S., Haining, J., Barr, J., Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus (2016) Emerg. Infect. Dis., 22, pp. 1071-1074; Reusken, C.B., Schilp, C., Raj, V.S., De Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., Bosch, B.J., MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic (2016) Emerg. Infect. Dis., 22, pp. 1129-1131; David, D., Rotenberg, D., Khinich, E., Erster, O., Bardenstein, S., Van Straten, M., Okba, N.M.A., Miculitzki, M., Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels (2018) One Health, 5, pp. 65-68; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas (2016) Emerg. Infect. Dis., 22, pp. 1031-1037; Haagmans, B.L., Van Den Brand, J.M., Provacia, L.B., Raj, V.S., Stittelaar, K.J., Getu, S., De Waal, L., Verjans, G.M., Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits (2015) J. Virol., 89, pp. 6131-6135; Herfst, S., Schrauwen, E.J., Linster, M., Chutinimitkul, S., De Wit, E., Munster, V.J., Sorrell, E.M., Smith, D.J., Airborne transmission of influenza A/H5N1 virus between ferrets (2012) Science, 336, pp. 1534-1541; (2015), https://www.promedmail.org/index.php; Munster, V.J., De Wit, E., Van Den Brand, J.M., Herfst, S., Schrauwen, E.J., Bestebroer, T.M., Van De Vijver, D., Rimmelzwaan, G.F., Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets (2009) Science, 325, pp. 481-483; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., Van Leenders, G.J., Bosch, B.J., Bensaid, A., Osterhaus, A.D., Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels (2016) J. Virol., 90, pp. 4838-4842; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection (2016) J. Infect. Dis., 213, pp. 1557-1561; Houser, K.V., Broadbent, A.J., Gretebeck, L., Vogel, L., Lamirande, E.W., Sutton, T., Bock, K.W., Moore, I.N., Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody (2017) Plos Pathog, 13; Lamers, M.M., Raj, V.S., Shafei, M., Ali, S.S., Abdallh, S.M., Gazo, M., Nofal, S., Koopmans, M.P., Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015 (2016) Emerg. Infect. Dis., 22, pp. 716-719; Assiri, A.M., Midgley, C.M., Abedi, G.R., Bin Saeed, A., Almasri, M.M., Lu, X., Al-Abdely, H.M., Algarni, H.S., Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia (2016) J. Infect. Dis., 214, pp. 712-721; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Barlan, A., Zhao, J., Sarkar, M.K., Li, K., McCray, P.B., Jr., Perlman, S., Gallagher, T., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961; Van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; Bosch, B.J., Raj, V.S., Haagmans, B.L., Spiking the MERS-coronavirus receptor (2013) Cell. Res., 23, pp. 1069-1070; Adney, D.R., Brown, V.R., Porter, S.M., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Inoculation of Goats, Sheep, and Horses with MERS-CoV Does Not Result in Productive Viral Shedding (2016) Viruses, 8, p. 230; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18. , 20659; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Sobhy, H., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill, 22, p. 30487; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20, pp. 1999-2005; Vergara-Alert, J., Raj, V.S., Munoz, M., Abad, F.X., Cordon, I., Haagmans, B.L., Bensaid, A., Segales, J., Middle East respiratory syndrome coronavirus experimental transmission using a pig model (2017) Transbound Emerg. Dis., 64, pp. 1342-1345; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Kim, K.M., Hur, Y.J., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin. Infect. Dis., 64, pp. 551-557; Houser, K.V., Pearce, M.B., Katz, J.M., Tumpey, T.M., Impact of prior seasonal H3N2 influenza vaccination or infection on protection and transmission of emerging variants of influenza A(H3N2)v virus in ferrets (2013) J. Virol, 87, pp. 13480-13489; Pearce, M.B., Belser, J.A., Houser, K.V., Katz, J.M., Tumpey, T.M., Efficacy of seasonal live attenuated influenza vaccine against virus replication and transmission of a pandemic 2009 H1N1 virus in ferrets (2011) Vaccine, (29), pp. 2887-2894; Sorrell, E.M., Schrauwen, E.J., Linster, M., De Graaf, M., Herfst, S., Fouchier, R.A., Predicting “airborne” influenza viruses: (trans-) mission impossible? (2011) Curr. Opin. Virol., 1, pp. 635-642; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol, 94, pp. 1749-1760; Falzarano, D., De Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin (2013) Sci. Rep., 3, p. 1686; Scheuplein, V.A., Seifried, J., Malczyk, A.H., Miller, L., Hocker, L., Vergara-Alert, J., Dolnik, O., Spreitzer, I., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) J. Virol., 89, pp. 3859-3869; (2018) World Health Organization MERS Situation Update, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-march-2018.html; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med, 371, pp. 828-835; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Jo, I.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001","Haagmans, B.L.; Department of Viroscience, Erasmus Medical CenterNetherlands; email: b.haagmans@erasmusmc.nl",,"MDPI AG",19994915,,,"31022948","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85065291545 "Al-Tawfiq J.A., Abdrabalnabi R., Taher A., Mathew S., Rahman K.A.","9436438200;57200102604;57204811436;57204808554;57204799643;","Infection control influence of Middle East respiratory syndrome coronavirus: A hospital-based analysis",2019,"American Journal of Infection Control","47","4",,"431","434",,3,"10.1016/j.ajic.2018.09.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057238061&doi=10.1016%2fj.ajic.2018.09.015&partnerID=40&md5=b4c309c9bbdc98a46014de5d393d262c","Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, United States; Johns Hopkins University School of Medicine, Baltimore, MD, United States; Infection Control Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia","Al-Tawfiq, J.A., Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Indiana University School of Medicine, Indianapolis, IN, United States, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Abdrabalnabi, R., Infection Control Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Taher, A., Infection Control Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Mathew, S., Infection Control Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Rahman, K.A., Infection Control Unit, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) caused multiple outbreaks. Such outbreaks increase economic and infection control burdens. We studied the infection control influence of MERS-CoV using a hospital-based analysis. Methods: Our hospital had 17 positive and 82 negative cases of MERS-CoV between April 1, 2013, and June 3, 2013. The study evaluated the impact of these cases on the use of gloves, surgical masks, N95 respirators, alcohol-based hand sanitizer, and soap, as well as hand hygiene compliance rates. Results: During the study, the use of personal protective equipment during MERS-CoV compared with theperiod before MERS-CoV increased dramatically from 2,947.4 to 10,283.9 per 1,000 patient-days (P<.0000001) for surgical masks and from 22 to 232 per 1,000 patient-days (P <.0000001) for N95 masks. The use of alcohol-based hand sanitizer and soap showed a significant increase in utilized amount (P<.0000001). Hand hygiene compliance rates increased from 73% just before the occurrence of the first MERS case to 88% during MERS cases (P =.0001). The monthly added cost was $16,400 for included infection control items. Conclusions: There was a significant increase in the utilization of surgical masks, respirators, soap and alcohol-based hand sanitizers. Such an increase is a challenge and adds cost to the healthcare system. © 2018 Association for Professionals in Infection Control and Epidemiology, Inc.","Cost; Economic impact; Healthcare; MERS; Personal Protective Equipment","hand sanitizer; soap; Article; controlled study; cost benefit analysis; hand washing; health care system; health care utilization; human; infection control; major clinical study; Middle East respiratory syndrome; protocol compliance","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; (2018), http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: Accessed October 8; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of Middle East respiratory syndrome coronavirus with review of the literature (2019) JHosp Infect, 101, pp. 20-29; Shaw, K., The 2003 SARS outbreak and its impact on infection control practices (2006) Public Health, 120, pp. 8-14; Dan, Y.Y., Tambyah, P.A., Sim, J., Lim, J., Hsu, L.Y., Chow, W.L., Cost-effectiveness analysis of hospital infection control response to an epidemic respiratory virus threat (2009) Emerg Infect Dis, 15, pp. 1909-1916; Memish, Z.A., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus infection control: the missing piece? (2014) Am J Infect Control, 42, pp. 1258-1260; Maltezou, H.C., Tsiodras, S., Middle East respiratory syndrome coronavirus: implications for health care facilities (2014) Am J Infect Control, 42, pp. 1261-1265; Butt, T.S., Koutlakis-Barron, I., AlJumaah, S., AlThawadi, S., AlMofada, S., Infection control and prevention practices implemented to reduce transmission risk of Middle East respiratory syndrome-coronavirus in a tertiary care institution in Saudi Arabia (2016) Am J Infect Control, 44, pp. 605-611; Al-Tawfiq, J.A., Rothwell, S., Mcgregor, H.A., Khouri, Z.A., A multi-faceted approach of a nursing led education in response to MERS-CoV infection (2018) J Infect Public Health, 11, pp. 260-264; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome-coronavirus (MERS-CoV): a case-control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Al-Tawfiq, J.A., Hinedi, K., Abbasi, S., Babiker, M., Sunji, A., Eltigani, M., Hematologic, hepatic, and renal function changes in hospitalized patients with Middle East respiratory syndrome coronavirus (2017) Int J Lab Hematol, 39, pp. 272-278; Al-Tawfiq, J.A., Rabaan, A.A., Hinedi, K., Influenza is more common than Middle East respiratory syndrome coronavirus (MERS-CoV) among hospitalized adult Saudi patients (2017) Travel Med Infect Dis, 20, pp. 56-60; (2018), http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1, WHO MERS-CoV global summary and assessment of risk. Available from: Accessed October 8; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Curr Opin Infect Dis, 28, pp. 392-396; El Bushra, H.E., Al Arbash, H.A., Mohammed, M., Abdalla, O., Abdallah, M.N., Al-Mayahi, Z.K., Outcome of strict implementation of infection prevention control measures during an outbreak of Middle East respiratory syndrome (2017) Am J Infect Control, 45, pp. 502-507; Al-Tawfiq, J.A., Memish, Z.A., Infection control measures for the prevention of MERS coronavirus transmission in healthcare settings (2016) Expert Rev Anti Infect Ther, 14, pp. 281-283; Al-Tawfiq, J.A., Memish, Z.A., Managing MERS-CoV in the healthcare setting (2015) Hosp Pract (1995), 43, pp. 158-163; Rexroth, U., Buda, S., [Occupational health and practice management of primary care practitioners during influenza pandemic 2009/10 in Germany—a survey of 1150 physicians participating in syndromic influenza surveillance at Robert Koch Institute] (2014) Gesundheitswesen, 76, pp. 670-675; Hashikura, M., Kizu, J., Stockpile of personal protective equipment in hospital settings: preparedness for influenza pandemics (2009) Am J Infect Control, 37, pp. 703-707; Phin, N.F., Rylands, A.J., Allan, J., Edwards, C., Enstone, J.E., Nguyen-Van-Tam, J.S., Personal protective equipment in an influenza pandemic: a UK simulation exercise (2009) J Hosp Infect, 71, pp. 15-21; Al-Tawfiq, J.A., Abed, M.S., Al-Yami, N., Birrer, R.B., Promoting and sustaining a hospital-wide, multifaceted hand hygiene program resulted in significant reduction in health care-associated infections (2013) Am J Infect Control, 41, pp. 482-486; Al-Tawfiq, J.A., Treble, M., Abdrabalnabi, R., Okeahialam, C., Khazindar, S., Myers, S., Using targeted solution tools as an initiative to improve hand hygiene: challenges and lessons learned (2018) Epidemiol Infect, 146, pp. 276-282; El-Saed, A., Noushad, S., Tannous, E., Abdirizak, F., Arabi, Y., Al Azzam, S., Quantifying the Hawthorne effect using overt and covert observation of hand hygiene at a tertiary care hospital in Saudi Arabia (2018) Am J Infect Control, 46, pp. 930-935","Al-Tawfiq, J.A.; Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, PO Box 11705, Saudi Arabia; email: jaltawfi@yahoo.com",,"Mosby Inc.",01966553,,AJICD,"30502108","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85057238061 "Wang N., Luo C., Liu H., Yang X., Hu B., Zhang W., Li B., Zhu Y., Zhu G., Shen X., Peng C., Shi Z.","55908990800;55908846900;16425918800;35811468700;55908560200;56151953000;57077269800;55723768200;30567972400;57198428856;55729132200;7403733955;","Characterization of a new member of alphacoronavirus with unique genomic features in rhinolophus bats",2019,"Viruses","11","4", 379,"","",,3,"10.3390/v11040379","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065333311&doi=10.3390%2fv11040379&partnerID=40&md5=489d407b462acb418294d21d662ee7ce","CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100864, China; Center for Emerging Infectious Disease, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; EcoHealth Alliance, New York, NY 10001, United States","Wang, N., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100864, China; Luo, C., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100864, China; Liu, H., Center for Emerging Infectious Disease, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Yang, X., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hu, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhang, W., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Li, B., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhu, Y., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Zhu, G., EcoHealth Alliance, New York, NY 10001, United States; Shen, X., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100864, China; Peng, C., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Shi, Z., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China","Bats have been identified as a natural reservoir of a variety of coronaviruses (CoVs). Several of them have caused diseases in humans and domestic animals by interspecies transmission. Considering the diversity of bat coronaviruses, bat species and populations, we expect to discover more bat CoVs through virus surveillance. In this study, we described a new member of alphaCoV (BtCoV/Rh/YN2012) in bats with unique genome features. Unique accessory genes, ORF4a and ORF4b were found between the spike gene and the envelope gene, while ORF8 gene was found downstream of the nucleocapsid gene. All the putative genes were further confirmed by reverse-transcription analyses. One unique gene at the 3’ end of the BtCoV/Rh/YN2012 genome, ORF9, exhibits ~30% amino acid identity to ORF7a of the SARS-related coronavirus. Functional analysis showed ORF4a protein can activate IFN-β production, whereas ORF3a can regulate NF-αB production. We also screened the spike-mediated virus entry using the spike-pseudotyped retroviruses system, although failed to find any fully permissive cells. Our results expand the knowledge on the genetic diversity of bat coronaviruses. Continuous screening of bat viruses will help us further understand the important role played by bats in coronavirus evolution and transmission. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Alphacoronavirus; Coronavirus; Rhinolophus bat; Unique genes","beta interferon; cytochrome b; immunoglobulin enhancer binding protein; messenger RNA; reduced nicotinamide adenine dinucleotide dehydrogenase; tumor necrosis factor; virus RNA; viral protein; 3' untranslated region; 5' untranslated region; Alphacoronavirus; animal cell; apoptosis assay; Article; bat; feces analysis; gene expression; genetic transfection; genome analysis; genotype; HEK293T cell line; human; human cell; luciferase assay; molecular cloning; nested polymerase chain reaction; next generation sequencing; nonhuman; nucleotide sequence; open reading frame; ORF3a gene; ORF4a gene; phylogeny; reverse transcription polymerase chain reaction; RNA extraction; sequence analysis; sequence homology; viral tropism; virus characterization; virus detection; virus entry; virus gene; virus identification; virus isolation; Western blotting; whole genome sequencing; Alphacoronavirus; animal; China; classification; Coronavirus infection; DNA sequence; genetic variation; genetics; high throughput sequencing; isolation and purification; molecular evolution; veterinary medicine; virology; virus genome; Alphacoronavirus; Animals; China; Chiroptera; Coronavirus Infections; Evolution, Molecular; Genetic Variation; Genome, Viral; High-Throughput Nucleotide Sequencing; Open Reading Frames; Phylogeny; Sequence Analysis, DNA; Viral Proteins","David, M., Knipe, P.M.H., (2013) Fields Virology; Lippincott Williams and Wilkins, , Philadelphia, PA, USA; King, A.M.Q., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Gorbalenya, A.E., Harrach, B., Knowles, N.J., Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2018) (2018) Arch. Virol, 163, pp. 2601-2631; Virus Taxonomy, , Https://viralzone.Expasy.Org/785; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Wang, M., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol, 86, pp. 3995-4008; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Tsang, A.K.L., Hui, S.W., Fan, R.Y.Y., Martelli, P., Yuen, K.Y., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in gammacoronavirus (2014) J. Virol, 88, pp. 1318-1331; Hu, B., Ge, X.Y., Wang, L.F., Shi, Z.L., Bat origin of human coronaviruses (2015) Virol. J, 12; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J, 204, pp. 134-143; Gong, L., Li, J., Zhou, Q.F., Xu, Z.C., Chen, L., Zhang, Y., Xue, C.Y., Cao, Y.C., Bat-hku2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis, 23, pp. 1607-1609; Pan, Y.F., Tian, X.Y., Qin, P., Wang, B., Zhao, P.W., Yang, Y.L., Wang, L.X., Zhang, X.B., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol, 211, pp. 15-21; Chae, C., Kim, O., Choi, C., Min, K., Cho, W.S., Kim, J., Tai, J.H., Prevalence of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus infection in korean pigs (2000) Vet. Record, 147, pp. 606-608; Wu, Z.Q., Yang, L., Ren, X.W., He, G.M., Zhang, J.P., Yang, J., Qian, Z.H., Zhu, Y.F., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) Isme J, 10, pp. 609-620; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G.J., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Daszak, P., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2016) J. Virol, 90, pp. 3253-3256; Menachery, V.D., Yount, B.L., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Royal, S.R., Sars-like wiv1-cov poised for human emergence (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 3048-3053; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Li, W.D., Shi, Z.L., Yu, M., Ren, W.Z., Smith, C., Epstein, J.H., Wang, H.Z., Zhang, H.J., Bats are natural reservoirs of sars-like coronaviruses (2005) Science, 310, pp. 676-679; Luna, L.K.D., Heiser, V., Regamey, N., Panning, M., Drexler, J.F., Mulangu, S., Poon, L., Kaiser, L., Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and nonfluorescent low-density microarray (2007) J. Clin. Microbiol, 45, pp. 1049-1052; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat sars-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLOS Pathog, 13; Irwin, D.M., Kocher, T.D., Wilson, A.C., Evolution of the cytochrome-b gene of mammals (1991) J. Mol. Evol, 32, pp. 128-144; Mayer, F., Von Helversen, O., Cryptic diversity in european bats (2001) Proc. Biol. Sci, 268, pp. 1825-1832; Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Duran, C., Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics, 28, pp. 1647-1649; Yang, D., Leibowitz, J.L., The structure and functions of coronavirus genomic 3' and 5' ends (2015) Virus Res, 206, pp. 120-133; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., Mega6: Molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol, 30, pp. 2725-2729; Hall, B.G., Building phylogenetic trees from molecular data with MEGA (2013) Mol. Biol. Evol, 30, pp. 1229-1235; Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., Rdp3: A flexible and fast computer program for analyzing recombination (2010) Bioinformatics, 26, pp. 2462-2463; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Ray, S.C., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J. Virol, 73, pp. 152-160; Siltberg, J., Liberles, D.A., A simple covarion-based approach to analyse nucleotide substitution rates (2002) J. Evol. Biol, 15, pp. 588-594; Zimmermann, L., Stephens, A., Nam, S.Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Alva, V., A completely reimplemented mpi bioinformatics toolkit with a new hhpred server at its core (2018) J. Mol. Biol, 430, pp. 2237-2243; Huang, C., Liu, W.J., Xu, W., Jin, T., Zhao, Y., Song, J., Shi, Y., Zhou, Y., A bat-derived putative cross-family recombinant coronavirus with a reovirus gene (2016) PLOS Pathog, 12; Zeng, L.P., Gao, Y.T., Ge, X.Y., Zhang, Q., Peng, C., Yang, X.L., Tan, B., Daszak, P., Bat severe acute respiratory syndrome-like coronavirus wiv1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response (2016) J. Virol, 90, pp. 6573-6582; Zhou, P., Li, H.X., Wang, H.Z., Wang, L.F., Shi, Z.L., Bat severe acute respiratory syndrome-like coronavirus ORF3B homologues display different interferon antagonist activities (2012) J. Gen. Virol, 93, pp. 275-281; Wang, X.Y., Li, M., Zheng, H.Y., Muster, T., Palese, P., Beg, A.A., Garcia-Sastre, A., Influenza a virus NS1 protein prevents activation of NF-kappa B and induction of alpha/beta interferon (2000) J. Virol, 74, pp. 11566-11573; Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Yasui, F., Matsushima, K., Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappa B activation (2006) FEBS Lett, 580, pp. 6807-6812; Luo, H.L., Zhang, Z.F., Zheng, Z.H., Ke, X.L., Zhang, X.W., Li, Q., Liu, Y., Hu, Q.X., Human bocavirus VP2 upregulates IFN-beta pathway by inhibiting ring finger protein 125-mediated ubiquitination of retinoic acid-inducible gene-I (2013) J. Immunol, 191, pp. 660-669; Luo, C.-M., Wang, N., Yang, X.-L., Liu, H.-Z., Zhang, W., Li, B., Hu, B., Zhu, G.-J., Discovery of novel bat coronaviruses in south china that use the same receptor as MERS coronavirus (2018) J. Virol, 92; Yang, Y., Du, L.Y., Liu, C., Wang, L.L., Ma, C.Q., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus hku4 provide insight into bat-to-human transmission of mers coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Chu, D.K.W., Peiris, J.S.M., Chen, H., Guan, Y., Poon, L.L.M., Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in miniopterus bats (2008) J. Gen. Virol, 89, pp. 1282-1287; Marra, M.A., Jones, S.J.M., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Chan, S.Y., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Wang, M., Lam, C.S.F., Xu, H.F., Zheng, B.J., Complete genome sequence of bat coronavirus HKU2 from chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Ge, X.Y., Wang, N., Zhang, W., Hu, B., Li, B., Zhang, Y.Z., Zhou, J.H., Wu, L.J., Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft (2016) Virol. Sin, 31, pp. 31-40; Yuan, J.F., Hon, C.C., Li, Y., Wang, D.M., Xu, G.L., Zhang, H.J., Zhou, P., Leung, F.C.C., Intraspecies diversity of sars-like coronaviruses in Rhinolophus Sinicus and its implications for the origin of SARS coronaviruses in humans (2010) J. Gen. Virol, 91, pp. 1058-1062; De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Talbot, P.J., Family Coronaviridae (2011) Virus Taxonomy, Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , 1st ed.; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: San Diego, CA, USA; Liu, D.X., Fung, T.S., Chong, K.K.L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res, 109, pp. 97-109; Chang, H.W., De Groot, R.J., Egberink, H.F., Rottier, P.J.M., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3C gene (2010) J. Gen. Virol, 91, pp. 415-420; Chang, H.W., Egberink, H.F., Rottier, P.J.M., Sequence analysis of feline coronaviruses and the circulating virulent/avirulent theory (2011) Emerg. Infect. Dis, 17, pp. 744-746; Pedersen, N.C., Liu, H.W., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res, 165, pp. 17-28; De Haan, C.A.M., Masters, P.S., Shen, X.L., Weiss, S., Rottier, P., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; Karjee, S., Minhas, A., Sood, V., Ponia, S.S., Banerjea, A.C., Chow, V.T.K., Mukherjee, S.K., Lal, S.K., The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor (2010) J. Virol, 84, pp. 10395-10401; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Palese, P., 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase (2006) J. Virol, 80, pp. 785-793; Yuan, X.L., Wu, J., Shan, Y.J., Yao, Z.Y., Dong, B., Chen, B., Zhao, Z.H., Cong, Y.W., SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway (2006) Virology, 346, pp. 74-85; Tan, Y.J., Fielding, B.C., Goh, P.Y., Shen, S., Tan, T.H.P., Lim, S.G., Hong, W.J., Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway (2004) J. Virol, 78, pp. 14043-14047; Tan, Y.X., Tan, T.H.P., Lee, M.J.R., Tham, P.Y., Gunalan, V., Druce, J., Birch, C., Yu, V.C., Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein (2007) J. Virol, 81, pp. 6346-6355","Shi, Z.; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of SciencesChina; email: zlshi@wh.iov.cn",,"MDPI AG",19994915,,,"31022925","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85065333311 "Mishra N., Fagbo S.F., Alagaili A.N., Nitido A., Williams S.H., Ng J., Lee B., Durosinlorun A., Garcia J.A., Jain K., Kapoor V., Epstein J.H., Briese T., Memish Z.A., Olival K.J., Ian Lipkin W.","57215047165;15759665700;37096779300;56005873500;35068797500;7202427191;56399603300;35768954100;56399725300;36514705000;7102101420;8962685100;7003898074;7005059350;11141168500;7005714572;","A viral metagenomic survey identifies known and novel mammalian viruses in bats from Saudi Arabia",2019,"PLoS ONE","14","4", e0214227,"","",,,"10.1371/journal.pone.0214227","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064184661&doi=10.1371%2fjournal.pone.0214227&partnerID=40&md5=e7e11d7dba45a861e4404dca3339d36c","Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; One Health Unit, Executive Directorate for Surveillance and Response, National Center for Disease Prevention and Control, Riyadh, Saudi Arabia; Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Federal Ministry of Agriculture and Rural Development, Kaduna, Nigeria; EcoHealth Alliance, New York, NY, United States; College of Medicine, Al faisal University, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; AN-Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Mishra, N., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Fagbo, S.F., One Health Unit, Executive Directorate for Surveillance and Response, National Center for Disease Prevention and Control, Riyadh, Saudi Arabia; Alagaili, A.N., Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Nitido, A., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States, AN-Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States; Williams, S.H., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Ng, J., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Lee, B., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Durosinlorun, A., Federal Ministry of Agriculture and Rural Development, Kaduna, Nigeria; Garcia, J.A., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Jain, K., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Kapoor, V., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Epstein, J.H., EcoHealth Alliance, New York, NY, United States; Briese, T., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States; Memish, Z.A., College of Medicine, Al faisal University, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Olival, K.J., EcoHealth Alliance, New York, NY, United States; Ian Lipkin, W., Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States","Bats are implicated as natural reservoirs for a wide range of zoonotic viruses including SARS and MERS coronaviruses, Ebola, Marburg, Nipah, Hendra, Rabies and other lyssa-viruses. Accordingly, many One Health surveillance and viral discovery programs have focused on bats. In this report we present viral metagenomic data from bats collected in the Kingdom of Saudi Arabia [KSA]. Unbiased high throughput sequencing of fecal samples from 72 bat individuals comprising four species; lesser mouse-tailed bat (Rhinopoma hardwickii), Egyptian tomb bat (Taphozous perforatus), straw-colored fruit bat (Eidolon helvum), and Egyptian fruit bat (Rousettus aegyptiacus) revealed molecular evidence of a diverse set of viral families: Picornaviridae (hepatovirus, teschovirus, parechovirus), Reoviridae (rotavirus), Polyomaviridae (polyomavirus), Papillomaviridae (papillomavirus), Astroviridae (astrovirus), Caliciviridae (sapovirus), Coronaviridae (coronavirus), Adenoviridae (adenovirus), Paramyxoviridae (paramyxovirus), and unassigned mononegavirales (chuvirus). Additionally, we discovered a bastro-like virus (Middle East Hepe-Astrovirus), with a genomic organization similar to Hepeviridae. However, since it shared homology with Hepeviridae and Astroviridae at ORF1 and in ORF2, respectively, the newly discovered Hepe-Astrovirus may represent a phylogenetic bridge between Hepeviridae and Astroviridae. © 2019 Mishra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"single stranded RNA; Adenoviridae; Article; Astroviridae; bat; Coronavirinae; Eidolon helvum; Hepatovirus; high throughput sequencing; metagenomics; Mononegavirales; nonhuman; nucleotide sequence; open reading frame; Papillomaviridae; Paramyxoviridae; Parechovirus; phylogeny; Polyomavirus; Rhinopoma hardwickii; Rotavirus; Rousettus aegyptiacus; Sapovirus; Saudi Arabia; sequence homology; Taphozous perforatus; Teschovirus; virus identification; animal; bat; Caliciviridae; Egypt; feces; genetics; human; isolation and purification; mammal; metagenome; Middle East; Middle East respiratory syndrome coronavirus; phylogeny; Picornaviridae; RNA virus; virology; Animals; Caliciviridae; Chiroptera; Egypt; Feces; High-Throughput Nucleotide Sequencing; Humans; Mammals; Metagenome; Metagenomics; Middle East; Middle East Respiratory Syndrome Coronavirus; Paramyxoviridae; Phylogeny; Picornaviridae; RNA Viruses; Rotavirus; Saudi Arabia","Tsang, S., Cirranello, A., Bates, P., Simmons, N., The roles of taxonomy and systematics in bat conservation Bats in The Anthropocene: Conservation of Bats in A Changing World2016, pp. 503-538. , Springer International NY, NY, editor; Hoffmaster, E., Vonk, J., Mies, R., Education to action: Improving public perception of bats (2016) Animals, 6 (1). , https://doi.org/10.3390/ani6010006, Basel. PMID: 26784239; Vora, N.M., Osinubi, M., Wallace, R.M., Aman-Oloniyo, A., Gbadegesin, Y.H., Sebastian, Y.K., Assessment of potential zoonotic disease exposure and illness related to an annual bat festival—Idanre, Nigeria (2014) MMWR Morb Mortal Wkly Rep, 63 (15), p. 334. , PMID: 24739343; Allocati, N., Petrucci, A.G., Di Giovanni, P., Masulli, M., Di Ilio, C., De Laurenzi, V., Bat-man disease transmission: Zoonotic pathogens from wildlife reservoirs to human populations (2016) Cell Death Discov, 2, p. 16048. , https://doi.org/10.1038/cddiscovery.2016.48, Epub 2016/08/24. PMID: 27551536; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546 (7660), pp. 646-650. , https://doi.org/10.1038/nature22975, Epub 2017/06/22. PMID: 28636590; Anthony, S.J., Epstein, J.H., Murray, K.A., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Solovyov, A., A strategy to estimate unknown viral diversity in mammals (2013) MBio, 4 (5), pp. e00598-e00613. , https://doi.org/10.1128/mBio.00598-13, PMID: 24003179; Geldenhuys, M., Mortlock, M., Weyer, J., Bezuidt, O., Seamark, E.C.J., Kearney, T., A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa (2018) PLoS One, 13 (3). , https://doi.org/10.1371/journal.pone.0194527, PMID: 29579103; Salmier, A., Tirera, S., de Thoisy, B., Franc, A., Darcissac, E., Donato, D., Virome analysis of two sympatric bat species (Desmodus rotundus and Molossus molossus) in French Guiana (2017) PLoS One, 12 (11). , https://doi.org/10.1371/journal.pone.0186943, Epub 2017/11/09. PMID: 29117243; Yinda, C.K., Ghogomu, S.M., Conceicao-Neto, N., Beller, L., Deboutte, W., Vanhulle, E., Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code (2018) Virus Evol, 4 (1), p. vey008. , https://doi.org/10.1093/ve/vey008, Epub 2018/04/13. PMID: 29644096; Yinda, C.K., Zeller, M., Conceicao-Neto, N., Maes, P., Deboutte, W., Beller, L., Novel highly divergent reassortant bat rotaviruses in Cameroon, without evidence of zoonosis (2016) Sci Rep, 6, p. 34209. , https://doi.org/10.1038/srep34209, PMID: 27666390; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19 (11), pp. 1819-1823. , https://doi.org/10.3201/eid1911.131172, PMID: 24206838; Wray, A.K., Olival, K.J., Moran, D., Lopez, M.R., Alvarez, D., Navarrete-Macias, I., Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala (2016) Ecohealth, 13 (4), pp. 761-774. , https://doi.org/10.1007/s10393-016-1183-z, Epub 2016/09/24. PMID: 27660213; Young, C.C., Olival, K.J., Optimizing viral discovery in bats (2016) PLoS One, 11 (2). , https://doi.org/10.1371/journal.pone.0149237, Epub 2016/02/13. PMID: 26867024; Newman, S.H., Field, H., Epstein, J., Jong, C.D., Investigating the role of bats in emerging zoonoses FAO ANIMAL PRODUCTION AND HEALTH Manual, , NATIONS FAAOOTU, editor. ROME2011; Smith, C.S., Carol, E.D.J., Hume, E.F., Sampling small quantities of blood from microbats Acta Chiropterolo-Gica2010, pp. 255-258; Hall, R.J., Wang, J., Todd, A.K., Bissielo, A.B., Yen, S., Strydom, H., Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery (2014) J Virol Methods, 195, pp. 194-204. , https://doi.org/10.1016/j.jviromet.2013.08.035, PMID: 24036074; Tokarz, R., Williams, S.H., Sameroff, S., Sanchez Leon, M., Jain, K., Lipkin, W.I., Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses (2014) J Virol, 88 (19), pp. 11480-11492. , https://doi.org/10.1128/JVI.01858-14, PMID: 25056893; Schmieder, R., Edwards, R., Quality control and preprocessing of metagenomic datasets (2011) Bioinformatics, 27 (6), pp. 863-864. , https://doi.org/10.1093/bioinformatics/btr026, PMID: 21278185; Chevreux, B., Pfisterer, T., Drescher, B., Driesel, A.J., Muller, W.E., Wetter, T., Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs (2004) Genome Res, 14 (6), pp. 1147-1159. , https://doi.org/10.1101/gr.1917404, Epub 2004/05/14. PMID: 15140833; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054, Epub 2016/03/24. PMID: 27004904; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28 (10), pp. 2731-2739. , https://doi.org/10.1093/molbev/msr121, Epub 2011/05/07. PMID: 21546353; Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics, 28 (12), pp. 1647-1649. , https://doi.org/10.1093/bioinformatics/bts199, Epub 2012/05/01. 22543367; Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., BEaST 2: A software platform for Bayesian evolutionary analysis (2014) PLoS Comput Biol, 10 (4). , https://doi.org/10.1371/journal.pcbi.1003537, PMID: 24722319; Le, S.Q., Gascuel, O., An improved general amino acid replacement matrix (2008) Mol Biol Evol, 25 (7), pp. 1307-1320. , https://doi.org/10.1093/molbev/msn067, PMID: 18367465; Scornavacca, C., Zickmann, F., Huson, D.H., Tanglegrams for rooted phylogenetic trees and networks (2011) Bioinformatics, 27 (13), pp. i248-i256. , https://doi.org/10.1093/bioinformatics/btr210, Epub 2011/06/21. 21685078; Galili, T., Dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering (2015) Bioinformatics, 31 (22), pp. 3718-3720. , https://doi.org/10.1093/bioinformatics/btv428, PMID: 26209431; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J Virol, 73 (1), pp. 152-160. , PMID: 9847317; Harrison, D.L., Bates, P.J.J., The mammals of Arabia (1991) NHBS, (2), p. 354. , Dec 1991; Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O’Brien, S.J., Murphy, W.J., A molecular phylogeny for bats illuminates biogeography and the fossil record (2005) Science, 307 (5709), pp. 580-584. , https://doi.org/10.1126/science.1105113, PMID: 15681385; Chen, L., Liu, B., Yang, J., Jin, Q., Dbatvir: The database of bat-associated viruses (2014) Database (Oxford), 2014, p. bau021. , https://doi.org/10.1093/database/bau021, PMID: 24647629; Baltimore, D., Expression of animal virus genomes (1971) Bacteriol Rev, 35 (3), pp. 235-241. , PMID: 4329869; Spahr, C., Knauf-Witzens, T., Vahlenkamp, T., Ulrich, R.G., Johne, R., Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review (2018) Zoonoses Public Health, 65 (1), pp. 11-29. , https://doi.org/10.1111/zph.12405, Epub 2017/09/ 26. PMID: 28944602; Arias, C.F., DuBois, R.M., The astrovirus capsid: A review (2017) Viruses, 9 (1). , https://doi.org/10.3390/v9010015, PMID: 28106836; Oude Munnink, B.B., Cotten, M., Canuti, M., Deijs, M., Jebbink, M.F., van Hemert, F.J., A novel astrovirus-like RNA virus detected in human stool (2016) Virus Evol, 2 (1), p. vew005. , https://doi.org/10.1093/ve/vew005, Epub 2016/10/25. PMID: 27774298; Ondov, B.D., Bergman, N.H., Phillippy, A.M., Interactive metagenomic visualization in a Web browser (2011) BMC Bioinformatics, 12, p. 385. , https://doi.org/10.1186/1471-2105-12-385, Epub 2011/10/04. PMID: 21961884; Li, W., Wang, B., Li, B., Zhang, W., Zhu, Y., Shi, Z.L., Genomic characterization of a novel hepatovirus from great roundleaf bats in China (2018) Virol Sin, 33 (1), pp. 108-110. , https://doi.org/10.1007/s12250-018-0013-6, Epub 2018/02/21. PMID: 29460117; Drexler, J.F., Corman, V.M., Lukashev, A.N., van den Brand, J.M., Gmyl, A.P., Brunink, S., Evolutionary origins of hepatitis A virus in small mammals (2015) Proc Natl Acad Sci U S A, 112 (49), pp. 15190-15195. , https://doi.org/10.1073/pnas.1516992112, Epub 2015/11/18. PMID: 26575627; Chu, D.K., Poon, L.L., Guan, Y., Peiris, J.S., Novel astroviruses in insectivorous bats (2008) J Virol, 82 (18), pp. 9107-9114. , https://doi.org/10.1128/JVI.00857-08, Epub 2008/06/14. PMID: 18550669; Zhu, H.C., Chu, D.K., Liu, W., Dong, B.Q., Zhang, S.Y., Zhang, J.X., Detection of diverse astroviruses from bats in China (2009) J Gen Virol, 90, pp. 883-887. , https://doi.org/10.1099/vir.0.007732-0, Epub 2009/03/07. PMID: 19264622; Yinda, C.K., Conceicao-Neto, N., Zeller, M., Heylen, E., Maes, P., Ghogomu, S.M., Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon (2017) Emerg Microbes Infect, 6 (5), p. e38. , https://doi.org/10.1038/emi.2017.20, PMID: 28536431; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg Infect Dis, 16 (8), pp. 1217-1223. , https://doi.org/10.3201/eid1608.100208, Epub 2010/ 08/04. PMID: 20678314; Komoto, S., Tacharoenmuang, R., Guntapong, R., Ide, T., Tsuji, T., Yoshikawa, T., Reassortment of human and animal rotavirus gene segments in emerging DS-1-like G1P[8] rotavirus strains (2016) PLoS One, 11 (2). , https://doi.org/10.1371/journal.pone.0148416, Epub 2016/02/06. PMID: 26845439; Day, J.M., The diversity of the orthoreoviruses: Molecular taxonomy and phylogentic divides (2009) Infect Genet Evol, 9 (4), pp. 390-400. , https://doi.org/10.1016/j.meegid.2009.01.011, Epub 2009/05/23. PMID: 19460305; Calvignac-Spencer, S., Feltkamp, M.C., Daugherty, M.D., Moens, U., Ramqvist, T., Johne, R., Polyomaviridae study group of the International Committee on taxonomy of Viruses (2016) Arch Virol, 161 (6), pp. 1739-1750. , https://doi.org/10.1007/s00705-016-2794-y, Epub 2016/03/01. PMID: 26923930; Hackenbrack, N., Rogers, M.B., Ashley, R.E., Keel, M.K., Kubiski, S.V., Bryan, J.A., Evolution and Cryo-elec-tron Microscopy Capsid Structure of a North American Bat Adenovirus and Its Relationship to Other Mastadenoviruses (2017) J Virol, 91 (2). , https://doi.org/10.1128/JVI.01504-16, Epub 2016/11/04. PMID: 27807242; Yadav, P., Sudeep, A., Gokhale, M., Pawar, S., Shete, A., Patil, D., Circulation of Nipah virus in Pteropus giganteus bats in northeast region of India, 2015 (2018) Indian J Med Res, 147 (3), pp. 318-320. , https://doi.org/10.4103/ijmr.IJMR_1488_16, Epub 2018/ 06/21. PMID: 29923524; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Identification of a novel coronavirus in bats (2005) J Virol, 79 (4), pp. 2001-2009. , https://doi.org/10.1128/JVI.79.4.2001-2009.2005, Epub 2005/02/01. PMID: 15681402; Berger, A., Drosten, C., Doerr, H.W., Sturmer, M., Preiser, W., Severe acute respiratory syndrome (SARS)—paradigm of an emerging viral infection (2004) J Clin Virol, 29 (1), pp. 13-22. , PMID: 14675864; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1967-1976. , https://doi.org/10.1056/NEJMoa030747, PMID: 12690091; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538. , https://doi.org/10.1038/nature12711, PMID: 24172901; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, PMID: 23075143; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5 (2), pp. e00884-e00914. , https://doi.org/10.1128/mBio.00884-14, PMID: 24570370; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10 (8). , https://doi.org/10.3390/v10080425, Epub 2018/08/15. PMID: 30104551; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88 (19), pp. 11297-11303. , https://doi.org/10.1128/JVI.01498-14, Epub 2014/07/18. PMID: 25031349; Wacharapluesadee, S., Sintunawa, C., Kaewpom, T., Khongnomnan, K., Olival, K.J., Epstein, J.H., Group C betacoronavirus in bat guano fertilizer, Thailand (2013) Emerg Infect Dis, 19 (8), pp. 1349-1351. , https://doi.org/10.3201/eid1908.130119, Epub 2013/ 07/25. PMID: 23880503; Vu, D.L., Bosch, A., Pinto, R.M., Guix, S., Epidemiology of classic and novel human astrovirus: Gastroenteritis and beyond (2017) Viruses, 9 (2). , https://doi.org/10.3390/v9020033, Epub 2017/02/22. PMID: 28218712; Dryden, K.A., Tihova, M., Nowotny, N., Matsui, S.M., Mendez, E., Yeager, M., Immature and mature human astrovirus: Structure, conformational changes, and similarities to hepatitis E virus (2012) J Mol Biol, 422 (5), pp. 650-658. , https://doi.org/10.1016/j.jmb.2012.06.029, Epub 2012/06/30. PMID: 22743104; Sun, H., Gao, H., Chen, M., Lan, D., Hua, X., Wang, C., New serotypes of porcine teschovirus identified in Shanghai, China (2015) Arch Virol, 160 (3), pp. 831-835. , https://doi.org/10.1007/s00705-014-2326-6, Epub 2015/01/02. PMID: 25552321; Ossa, G., Kramer-Schadt, S., Peel, A.J., Scharf, A.K., Voigt, C.C., The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios (2012) PLoS One, 7 (9). , https://doi.org/10.1371/journal.pone.0045729, Epub 2012/10/03. PMID: 23029206; Cantalupo, P.G., Buck, C.B., Pipas, J.M., Complete Genome Sequence of a Polyomavirus Recovered from a Pomona Leaf-Nosed Bat (Hipposideros pomona) Metagenome Data Set (2017) Genome Announc, 5 (3). , https://doi.org/10.1128/genomeA.01053-16, Epub 2017/01/21. PMID: 28104645","Mishra, N.; Center for Infection and Immunity, Mailman School of Public Health, Columbia UniversityUnited States; email: nm2641@cumc.columbia.edu",,"Public Library of Science",19326203,,POLNC,"30969980","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85064184661 "Wang G., Liang R., Liu Z., Shen Z., Shi J., Shi Y., Deng F., Xiao S., Fu Z.F., Peng G.","57200632379;57205689632;57208236614;56921067100;57201360383;55481317400;57206759976;7402022567;7403347700;56651662900;","The N-terminal domain of spike protein is not the enteric tropism determinant for transmissible gastroenteritis virus in piglets",2019,"Viruses","11","4", 313,"","",,2,"10.3390/v11040313","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064218451&doi=10.3390%2fv11040313&partnerID=40&md5=8654a806aad82a7c23fdfcaede8d1dfd","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China","Wang, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Liang, R., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Liu, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Shen, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Shi, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Shi, Y., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Deng, F., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Fu, Z.F., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China","Transmissible gastroenteritis virus (TGEV) is the etiologic agent of transmissible gastroenteritis in pigs, and the N-terminal domain of TGEV spike protein is generally recognized as both the virulence determinant and enteric tropism determinant. Here, we assembled a full-length infectious cDNA clone of TGEV in a bacterial artificial chromosome. Using a novel approach, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems efficiently and rapidly rescued another recombinant virus with a 224-amino-acid deletion in the N-terminal domain of the TGEV Spike gene (S_NTD224), which is analogous to the N-terminal domain of porcine respiratory coronavirus. S_NTD224 notably affected the TGEV growth kinetics in PK-15 cells but was not essential for recombinant virus survival. In animal experiments with 13 two-day-old piglets, the TGEV recombinant viruses with/without S_NTD224 deletion induced obvious clinical signs and mortality. Together, our results directly demonstrated that S_NTD224 of TGEV mildly influenced TGEV virulence but was not the enteric tropism determinant and provide new insights for the development of a new attenuated vaccine against TGEV. Importantly, the optimized reverse genetics platform used in this study will simplify the construction of mutant infectious clones and help accelerate progress in coronavirus research. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","CRISPR/Cas9; Enteric tropism; Reverse genetics; Spike gene; Transmissible gastroenteritis virus","CRISPR associated endonuclease Cas9; CRISPR associated protein; virus spike protein; amino terminal sequence; animal cell; Article; bacterial artificial chromosome; controlled study; cytopathogenic effect; fluorescence microscopy; gene amplification; gene editing; gene mutation; growth curve; molecular cloning; nonhuman; piglet; plaque assay; polymerase chain reaction; Porcine respiratory coronavirus; real time polymerase chain reaction; RNA virus; sequence analysis; site directed mutagenesis; TGEV gene; Transmissible gastroenteritis virus; viral tropism; virogenesis; virus purification; virus virulence; Western blotting","De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., ; SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Lai, C.C., Jou, M.J., Huang, S.Y., Li, S.W., Wan, L., Tsai, F.J., Lin, C.W., Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease (2007) Proteomics, 7, pp. 1446-1460; Masters, P.S., Kuo, L., Ye, R., Hurst, K.R., Koetzner, C.A., Hsue, B., Genetic and molecular biological analysis of protein-protein interactions in coronavirus assembly (2006) Adv. Exp. Med. Biol., 581, pp. 163-173; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., Van Amerongen, G., Van Riel, D., Laman, J.D., Lim, W., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362, pp. 263-270; Danielsson, N., Internal Response Team, E., Catchpole, M., Novel coronavirus associated with severe respiratory disease: Case definition and public health measures (2012) Euro Surveill, 17, p. 20282; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of Porcine epidemic diarrhea in suckling Piglets, China (2012) Emerg. Infect. Dis., 18, pp. 161-163; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Schmitt, B.J., Emergence of Porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Investig., 25, pp. 649-654; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol. Biol, 1282, pp. 1-23; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: A review of 4 years with Porcine epidemic diarrhoea virus and Porcine deltacoronavirus in the United States and Canada (2018) Transbound Emerg. Dis., 65, pp. 660-675; Laude, H., Rasschaert, D., Delmas, B., Godet, M., Gelfi, J., Charley, B., Molecular biology of transmissible gastroenteritis virus (1990) Vet. Microbiol., 23, pp. 147-154; Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Stollar, S., Janies, D., Ghedin, E., Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus (2007) Virology, 358, pp. 424-435; Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420; Delmas, B., Gelfi, J., Sjostrom, H., Noren, O., Laude, H., Further characterization of aminopeptidase-N as a receptor for coronaviruses (1993) Adv. Exp. Med. Biol., 342, pp. 293-298; Schultze, B., Krempl, C., Ballesteros, M.L., Shaw, L., Schauer, R., Enjuanes, L., Herrler, G., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity (1996) J. Virol., 70, pp. 5634-5637; Ballesteros, M.L., Sanchez, C.M., Enjuanes, L., Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism (1997) Virology, 227, pp. 378-388; Kim, L., Hayes, J., Lewis, P., Parwani, A.V., Chang, K.O., Saif, L.J., Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd (2000) Arch. Virol., 145, pp. 1133-1147; Hulswit, R.J., De Haan, C.A., Bosch, B.J., Coronavirus Spike Protein and Tropism Changes (2016) Adv. Virus Res, 96, pp. 29-57; Sanchez, C.M., Izeta, A., Sanchez-Morgado, J.M., Alonso, S., Sola, I., Balasch, M., Plana-Duran, J., Enjuanes, L., Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence (1999) J. Virol., 73, pp. 7607-7618; Usami, Y., Fukai, K., Ichikawa, Y., Okuda, Y., Shibata, I., Motoyama, C., Imai, K., Kirisawa, R., Virological and serological studies of porcine respiratory coronavirus infection on a Japanese farm (2008) J. Vet. Med. Sci., 70, pp. 929-936; Almazan, F., Dediego, M.L., Galan, C., Escors, D., Alvarez, E., Ortego, J., Sola, I., Moreno, J.L., Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis (2006) J. Virol., 80, pp. 10900-10906; Yount, B., Curtis, K.M., Baric, R.S. Strategy for systematic assembly of large RNA and DNA genomes: Transmissible gastroenteritis virus model (2000) J. Virol., 74, pp. 10600-10611; Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Denison, M.R., Baric, R.S., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 12995-13000; Jengarn, J., Wongthida, P., Wanasen, N., Frantz, P.N., Wanitchang, A., Jongkaewwattana, A., Genetic manipulation of Porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone (2015) J. Gen. Virol., 96, pp. 2206-2218; Almazan, F., Dediego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andres, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. (2013) Mbio, 4. , e00650-13; Almazan, F., Gonzalez, J.M., Penzes, Z., Izeta, A., Calvo, E., Plana-Duran, J., Enjuanes, L., Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 5516-5521; Beall, A., Yount, B., Lin, C.M., Hou, Y., Wang, Q., Saif, L., Baric, R., Characterization of a pathogenic full-length cDNA clone and transmission model for Porcine epidemic diarrhea virus strain PC22A. (2016) Mbio, 7. , e01451-15; Fan, B., Yu, Z., Pang, F., Xu, X., Zhang, B., Guo, R., He, K., Li, B., Characterization of a pathogenic full-length cDNA clone of a virulent Porcine epidemic diarrhea virus strain AH2012/12 in China (2017) Virology, 500, pp. 50-61; Garcia, D.M., Costa, S., Sarraseca, J., De La Roja, N., Garcia, J., Garcia, I., Rodriguez, M.J., Generation of porcine reproductive and respiratory syndrome (PRRS) virus-like-particles (VLPs) with different protein composition (2016) J. Virol. Methods, 236, pp. 77-86; Almazan, F., Sola, I., Zuniga, S., Marquez-Jurado, S., Morales, L., Becares, M., Enjuanes, L., Coronavirus reverse genetic systems: Infectious clones and replicons (2014) Virus Res, 189, pp. 262-270; Li, C., Li, Z., Zou, Y., Wicht, O., Van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Manipulation of the Porcine epidemic diarrhea virus genome using targeted RNA recombination (2013) Plos ONE, 8; Muth, D., Meyer, B., Niemeyer, D., Schroeder, S., Osterrieder, N., Muller, M.A., Drosten, C., Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing red-mediated recombination cloning (2017) J. Gen. Virol., 98. , 2461; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J. Virol., 75, pp. 12359-12369; Van Beurden, S.J., Berends, A.J., Kramer-Kuhl, A., Spekreijse, D., Chenard, G., Philipp, H.C., Mundt, E., Verheije, M.H., A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination (2017) Virol. J., 14, p. 109; Gonzalez, J.M., Penzes, Z., Almazan, F., Calvo, E., Enjuanes, L., Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by insertion of an intron (2002) J. Virol., 76, pp. 4655-4661; Bickerton, E., Keep, S.M., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2017) Methods Mol. Biol., 1602, pp. 83-102; Masters, P.S., Rottier, P.J., Coronavirus reverse genetics by targeted RNA recombination (2005) Curr. Top. Microbiol. Immunol., 287, pp. 133-159; Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR-Cas systems (2013) Nat. Biotechnol., 31, pp. 233-239; Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., Dicarlo, J.E., Norville, J.E., Church, G.M., RNA-guided human genome engineering via Cas9 (2013) Science, 339, pp. 823-826; Tong, Y., Charusanti, P., Zhang, L., Weber, T., Lee, S.Y., CRISPR-Cas9 based engineering of actinomycetal genomes (2015) ACS Synth. Biol., 4, pp. 1020-1029; Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity (2012) Science, 337, pp. 816-821; Karvelis, T., Gasiunas, G., Siksnys, V., Programmable DNA cleavage in vitro by Cas9 (2013) Biochem. Soc. Trans, 41, pp. 1401-1406; Jiang, W., Zhao, X., Gabrieli, T., Lou, C., Ebenstein, Y., Zhu, T.F., Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters (2015) Nat. Commun., 6, p. 8101; Liu, Y., Tao, W., Wen, S., Li, Z., Yang, A., Deng, Z., Sun, Y., In vitro CRISPR/Cas9 system for efficient targeted DNA editing. (2015) Mbio, 6. , e01714-15; Curtis, K.M., Yount, B., Baric, R.S., Heterologous gene expression from transmissible gastroenteritis virus replicon particles (2002) J. Virol., 76, pp. 1422-1434; Sola, I., Alonso, S., Zuniga, S., Balasch, M., Plana-Duran, J., Enjuanes, L., Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity (2003) J. Virol., 77, pp. 4357-4369; St-Jean, J.R., Desforges, M., Almazan, F., Jacomy, H., Enjuanes, L., Talbot, P.J., Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone (2006) J. Virol., 80, pp. 3670-3674; Zeng, L.P., Gao, Y.T., Ge, X.Y., Zhang, Q., Peng, C., Yang, X.L., Tan, B., Daszak, P., Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response (2016) J. Virol., 90, pp. 6573-6582; Costantini, V., Lewis, P., Alsop, J., Templeton, C., Saif, L.J., Respiratory and fecal shedding of porcine respiratory coronavirus (PRCV) in sentinel weaned pigs and sequence of the partial S-gene of the PRCV isolates (2004) Arch. Virol., 149, pp. 957-974; Furuuchi, S., Shimizu, M., Shimizu, Y., Field trials on transmissible gastroenteritis live virus vaccine in newborn Piglets (1978) Natl. Inst. Anim. Health Q. (Tokyo), 18, pp. 135-142; Wesley, R.D., Woods, R.D., Cheung, A.K., Genetic basis for the pathogenesis of transmissible gastroenteritis virus (1990) J. Virol., 64, pp. 4761-4766; Almazan, F., Marquez-Jurado, S., Nogales, A., Enjuanes, L., Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes (2015) Methods Mol. Biol., 1282, pp. 135-152; Wu, N.C., Young, A.P., Al-Mawsawi, L.Q., Olson, C.A., Feng, J., Qi, H., Luan, H.H., Sun, R., High-throughput identification of loss-of-function mutations for anti-interferon activity in the influenza A virus NS segment (2014) J. Virol., 88, pp. 10157-10164; Wu, N.C., Young, A.P., Al-Mawsawi, L.Q., Olson, C.A., Feng, J., Qi, H., Chen, S.H., Chin, R.G., High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution (2014) Sci. Rep., 4, p. 4942; Du, Y., Xin, L., Shi, Y., Zhang, T.H., Wu, N.C., Dai, L., Gong, D., Luo, J., Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design (2018) Science, 359, pp. 290-296; Schwegmann-Wessels, C., Bauer, S., Winter, C., Enjuanes, L., Laude, H., Herrler, G., The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus (2011) Virol. J., 8, p. 435; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Saif, L.J., Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates Porcine epidemic diarrhea virus in Piglets (2017) J. Virol., 91. , e00227-17; Deng, F., Ye, G., Liu, Q., Navid, M.T., Zhong, X., Li, Y., Wan, C., Fu, Z.F., Identification and comparison of receptor binding characteristics of the spike protein of two Porcine epidemic diarrhea virus strains (2016) Viruses, 8, p. 55; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 10696-10701; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem., 287, pp. 41931-41938; Wesley, R.D., Lager, K.M., Increased litter survival rates, reduced clinical illness and better lactogenic immunity against TGEV in gilts that were primed as neonates with porcine respiratory coronavirus (PRCV) (2003) Vet. Microbiol., 95, pp. 175-186; Underdahl, N.R., Mebus, C.A., Torres-Medina, A., Recovery of transmissible gastroenteritis virus from chronically infected experimental pigs (1975) Am. J. Vet. Res., 36, pp. 1473-1476; Vancott, J.L., Brim, T.A., Simkins, R.A., Saif, L.J., Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of suckling pigs (1993) J. Immunol., 150, pp. 3990-4000","Liang, R.; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityChina; email: liangrui0123@webmail.hzau.edu.cn",,"MDPI AG",19994915,,,"30935078","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85064218451 "Ryu B., Cho S.-I., Oh M.-D., Lee J.-K., Lee J., Hwang Y.-O., Yang J.-S., Kim S.S., Bang J.H.","57215304275;57215376411;7201600302;25028188800;57215649155;57215309699;57215332405;57196231328;15070169400;","Seroprevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in public health workers responding to a MERS outbreak in Seoul, Republic of Korea, in 2015",2019,"Western Pacific surveillance and response journal : WPSAR","10","2",,"46","48",,,"10.5365/wpsar.2018.9.3.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074959273&doi=10.5365%2fwpsar.2018.9.3.002&partnerID=40&md5=3dfa364d806922db7fa333343760004e","Seoul Center for Infectious Disease Control and PreventionSeoul, South Korea; Department of Epidemiology, Seoul National University School of Public HealthSeoul, South Korea; Department of Internal Medicine, Seoul National University College of MedicineSeoul, South Korea; Department of Family Medicine, Seoul National University College of MedicineSeoul, South Korea; Seoul Metropolitan Government Research Institute of Public Health and EnvironmentSeoul, South Korea; Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Division of Infectious Diseases, Seoul Metropolitan Government-Seoul National University Boramae Medical CenterSeoul, South Korea","Ryu, B., Seoul Center for Infectious Disease Control and PreventionSeoul, South Korea, Department of Epidemiology, Seoul National University School of Public HealthSeoul, South Korea; Cho, S.-I., Seoul Center for Infectious Disease Control and PreventionSeoul, South Korea, Department of Epidemiology, Seoul National University School of Public HealthSeoul, South Korea; Oh, M.-D., Seoul Center for Infectious Disease Control and PreventionSeoul, South Korea, Department of Internal Medicine, Seoul National University College of MedicineSeoul, South Korea; Lee, J.-K., Seoul Center for Infectious Disease Control and PreventionSeoul, South Korea, Department of Family Medicine, Seoul National University College of MedicineSeoul, South Korea; Lee, J., Seoul Metropolitan Government Research Institute of Public Health and EnvironmentSeoul, South Korea; Hwang, Y.-O., Seoul Metropolitan Government Research Institute of Public Health and EnvironmentSeoul, South Korea; Yang, J.-S., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Kim, S.S., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Bang, J.H., Seoul Center for Infectious Disease Control and PreventionSeoul, South Korea, Division of Infectious Diseases, Seoul Metropolitan Government-Seoul National University Boramae Medical CenterSeoul, South Korea",[No abstract available],,,,,,"NLM (Medline)",20947313,,,"31720054","English","Western Pac Surveill Response J",Article,"Final",Open Access,Scopus,2-s2.0-85074959273 "Zhang Y., Song Z., Wang M., Lan M., Zhang K., Jiang P., Li Y., Bai J., Wang X.","57207778737;57192067781;57209950421;57207761765;57207774008;34769891500;55719067700;36436709600;14018749200;","Cholesterol 25-hydroxylase negatively regulates porcine intestinal coronavirus replication by the production of 25-hydroxycholesterol",2019,"Veterinary Microbiology","231",,,"129","138",,2,"10.1016/j.vetmic.2019.03.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062832797&doi=10.1016%2fj.vetmic.2019.03.004&partnerID=40&md5=17a335a39eca0cbf8d0f4beb9151e24e","Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China","Zhang, Y., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Song, Z., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Wang, M., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Lan, M., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Zhang, K., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiang, P., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Li, Y., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Bai, J., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Wang, X., Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China, Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China","Cholesterol 25-hydroxylase (CH25H) has been shown lately to be a host restriction factor that encodes an enzyme, which catalyzes the oxidized form of cholesterol to 25-hydroxycholesterol (25HC). A series of studies have shown that 25HC activity in hosts plays a vital role in inhibiting viral infection. In this study, we explored the antiviral effect of CH25H and 25HC on porcine epidemic diarrhea virus (PEDV), which causes high mortality rates in newborn piglets with severe diarrhea, and considerable financial loss in the swine industry worldwide. Our results showed that PEDV infection downregulated the expression of CH25H in Vero cells. An overexpression and knockdown assay indicated that CH25H has significant antiviral action against PEDV, and a CH25H mutant (CH25H-M) that lacks hydroxylase activity also retains antiviral activity to a lesser extent. Furthermore, 25HC had a broad-spectrum antiviral effect against different PEDV strains by blocking viral entry. In addition, CH25H and 25HC inhibited the replication of porcine transmissible gastroenteritis virus (TGEV). Taken together, CH25H as a natural host restriction factor could inhibit PEDV and TGEV infection. © 2019 Elsevier B.V.","25-hydroxycholesterol; Cholesterol 25-hydroxylase; Porcine epidemic diarrhea virus; Porcine transmissible gastroenteritis virus","25 hydroxycholesterol; cholesterol 25 hydroxylase; oxygenase; small interfering RNA; unclassified drug; 25-hydroxycholesterol; cholesterol 25-hydroxylase; cholesterol derivative; steroid monooxygenase; animal cell; antiviral activity; Article; diarrhea; nonhuman; piglet; Porcine epidemic diarrhea virus; Transmissible gastroenteritis virus; Vero cell line; virus entry; virus replication; animal; cell line; Chlorocebus aethiops; down regulation; gene knockdown; genetics; metabolism; mutation; physiology; pig; Porcine epidemic diarrhea virus; virus entry; virus replication; Animals; Cell Line; Cercopithecus aethiops; Down-Regulation; Gene Knockdown Techniques; Host Microbial Interactions; Hydroxycholesterols; Mutation; Porcine epidemic diarrhea virus; Steroid Hydroxylases; Swine; Vero Cells; Virus Internalization; Virus Replication","Anggakusuma, Romero-Brey, I., Berger, C., Colpitts, C.C., Boldanova, T., Engelmann, M., Todt, D., Steinmann, E., Interferon-inducible cholesterol-25-hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation (2015) Hepatology, 62, pp. 702-714; Blanc, M., Hsieh, W.Y., Robertson, K.A., Kropp, K.A., Forster, T., Shui, G., Lacaze, P., Ghazal, P., The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response (2013) Immunity, 38, pp. 106-118; Chen, J., Liu, X., Shi, D., Shi, H., Zhang, X., Feng, L., Complete genome sequence of a porcine epidemic diarrhea virus variant (2012) J. Virol., 86, p. 3408; Chen, Y., Wang, S., Yi, Z., Tian, H., Aliyari, R., Li, Y., Chen, G., Cheng, G., Interferon-inducible cholesterol-25-hydroxylase inhibits hepatitis C virus replication via distinct mechanisms (2014) Sci. Rep., 4, p. 7242; Fessler, M.B., The intracellular cholesterol landscape: dynamic integrator of the immune response (2016) Trends Immunol., 37, pp. 819-830; Gold, E.S., Diercks, A.H., Podolsky, I., Podyminogin, R.L., Askovich, P.S., Treuting, P.M., Aderem, A., 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 10666-10671; Holmes, R.S., Vandeberg, J.L., Cox, L.A., Genomics and proteomics of vertebrate cholesterol ester lipase (LIPA) and cholesterol 25-hydroxylase (CH25H) (2011) 3 Biotech, 1, pp. 99-109; Hotter, D., Sauter, D., Kirchhoff, F., Emerging role of the host restriction factor tetherin in viral immune sensing (2013) J. Mol. Biol., 425, pp. 4956-4964; Joseph, S.B., Castrillo, A., Laffitte, B.A., Mangelsdorf, D.J., Tontonoz, P., Reciprocal regulation of inflammation and lipid metabolism by liver X receptors (2003) Nat. Med., 9, pp. 213-219; Ke, W., Fang, L., Jing, H., Tao, R., Wang, T., Li, Y., Long, S., Xiao, S., Cholesterol 25-Hydroxylase inhibits porcine reproductive and respiratory syndrome virus replication through enzyme activity-dependent and -Independent mechanisms (2017) J. Virol., p. 91; Koarai, A., Yanagisawa, S., Sugiura, H., Ichikawa, T., Kikuchi, T., Furukawa, K., Akamatsu, K., Ichinose, M., 25-Hydroxycholesterol enhances cytokine release and Toll-like receptor 3 response in airway epithelial cells (2012) Respir. Res., 13, p. 63; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts (2016) Virus Res., 226, pp. 93-107; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg. Infect. Dis., 18, pp. 1350-1353; Li, C., Deng, Y.Q., Wang, S., Ma, F., Aliyari, R., Huang, X.Y., Zhang, N.N., Cheng, G., 25-Hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model (2017) Immunity, 46, pp. 446-456; Li, L., Fu, F., Xue, M., Chen, W., Liu, J., Shi, H., Chen, J., Liu, P., IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha (2017) Antiviral Res., 140, pp. 76-82; Liu, S.Y., Sanchez, D.J., Aliyari, R., Lu, S., Cheng, G., Systematic identification of type I and type II interferon-induced antiviral factors (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 4239-4244; Liu, S.Y., Aliyari, R., Chikere, K., Li, G., Marsden, M.D., Smith, J.K., Pernet, O., Cheng, G., Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol (2013) Immunity, 38, pp. 92-105; Moog, C., Aubertin, A.M., Kirn, A., Luu, B., Oxysterols, but not cholesterol, inhibit human immunodeficiency virus replication in vitro (1998) Antivir. Chem. Chemother., 9, pp. 491-496; Olsen, B.N., Schlesinger, P.H., Ory, D.S., Baker, N.A., 25-Hydroxycholesterol increases the availability of cholesterol in phospholipid membranes (2011) Biophys. J., 100, pp. 948-956; Park, K., Scott, A.L., Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons (2010) J. Leukoc. Biol., 88, pp. 1081-1087; Raniga, K., Liang, C., Interferons: reprogramming the metabolic network against viral infection (2018) Viruses, p. 10; Reboldi, A., Dang, E.V., McDonald, J.G., Liang, G., Russell, D.W., Cyster, J.G., Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon (2014) Science, 345, pp. 679-684; Rydberg, E.K., Salomonsson, L., Hulten, L.M., Noren, K., Bondjers, G., Wiklund, O., Bjornheden, T., Ohlsson, B.G., Hypoxia increases 25-hydroxycholesterol-induced interleukin-8 protein secretion in human macrophages (2003) Atherosclerosis, 170, pp. 245-252; Shrivastava-Ranjan, P., Bergeron, E., Chakrabarti, A.K., Albarino, C.G., Flint, M., Nichol, S.T., Spiropoulou, C.F., 25-hydroxycholesterol inhibition of lassa virus infection through aberrant GP1 glycosylation (2016) MBio, 7 (6). , e01808-16; Singaravelu, R., Srinivasan, P., Pezacki, J.P., Armand-Frappier Outstanding Student Award–The emerging role of 25-hydroxycholesterol in innate immunity (2015) Can. J. Microbiol., 61, pp. 521-530; Song, Z., Zhang, Q., Liu, X., Bai, J., Zhao, Y., Wang, X., Jiang, P., Cholesterol 25-hydroxylase is an interferon-inducible factor that protects against porcine reproductive and respiratory syndrome virus infection (2017) Vet. Microbiol., 210, pp. 153-161; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg Infect Dis, 20, pp. 917-919; Wang, J., Zeng, L., Zhang, L., Guo, Z.Z., Lu, S.F., Ming, S.L., Li, G.L., Chu, B.B., Cholesterol 25-hydroxylase acts as a host restriction factor on pseudorabies virus replication (2017) J. Gen. Virol., 98, pp. 1467-1476; Zeng, S., Zhang, H., Ding, Z., Luo, R., An, K., Liu, L., Bi, J., Fang, L., Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells (2015) Proteomics, 15, pp. 1819-1828; Zhang, Q., Jiang, P., Song, Z., Lv, L., Li, L., Bai, J., Pathogenicity and antigenicity of a novel NADC30-like strain of porcine reproductive and respiratory syndrome virus emerged in China (2016) Vet. Microbiol., 197, pp. 93-101","Wang, X.; Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural UniversityChina; email: xwwang@njau.edu.cn",,"Elsevier B.V.",03781135,,VMICD,"30955800","English","Vet. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85062832797 "Brini Khalifa I., Hannachi N., Guerrero A., Orth-Höller D., Bhiri S., Bougila J., Boughamoura L., Merchaoui S.N., Sboui H., Mahdhaoui N., Schiela B., Laer D.H.-V., Boukadida J., Stoiber H.","57204718583;55394365500;57190872265;53985221800;56743105100;57204736240;55985171500;57204718065;6602210666;23967718000;57197738124;57204733420;7003689431;55921089900;","Demographic and seasonal characteristics of respiratory pathogens in neonates and infants aged 0 to 12 months in the Central-East region of Tunisia",2019,"Journal of Medical Virology","91","4",,"570","581",,2,"10.1002/jmv.25347","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056840503&doi=10.1002%2fjmv.25347&partnerID=40&md5=5d19add749ab1fbc04a2b1f743adada2","Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia; Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Doctoral School of Biological Sciences, Biotechnology and Health, Higher Institute of Biotechnology of Monastir, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia; Division of Virology, Innsbruck Medical University, Innsbruck, Austria; Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria; Department of Epidemiology and Medical Statistics, Division of Medical Statistics, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Pediatric Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Neonatology Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia","Brini Khalifa, I., Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia, Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia, Doctoral School of Biological Sciences, Biotechnology and Health, Higher Institute of Biotechnology of Monastir, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia, Division of Virology, Innsbruck Medical University, Innsbruck, Austria; Hannachi, N., Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia, Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Guerrero, A., Division of Virology, Innsbruck Medical University, Innsbruck, Austria; Orth-Höller, D., Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria; Bhiri, S., Department of Epidemiology and Medical Statistics, Division of Medical Statistics, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Bougila, J., Pediatric Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Boughamoura, L., Pediatric Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Merchaoui, S.N., Neonatology Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Sboui, H., Neonatology Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Mahdhaoui, N., Neonatology Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Schiela, B., Division of Virology, Innsbruck Medical University, Innsbruck, Austria; Laer, D.H.-V., Division of Virology, Innsbruck Medical University, Innsbruck, Austria; Boukadida, J., Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia, Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia; Stoiber, H., Division of Virology, Innsbruck Medical University, Innsbruck, Austria","Background: This study aimed to characterize the epidemiology of pathogenic respiratory agents in patients aged 0 to 12 months and hospitalized for acute respiratory infections in Tunisia between 2013 and 2014. Methods: A total of 20 pathogens, including viruses, Mycoplasma pneumoniae, and Streptococcus pneumoniae, were detected using molecular sensitive assays, and their associations with the patient’s demographic data and season were analyzed. Results: Viral infectious agents were found in 449 (87.2%) of 515 specimens. Dual and multiple infectious agents were detected in 31.4% and 18.6% of the samples, respectively. Viral infection was predominant in the pediatric environment (90.8%, P < 0.001), male patients (88.0%), and spring (93.8%). Rhinovirus was the most detected virus (51.8%) followed by respiratory syncytial virus A/B (34.4%), coronavirus group (18.5%), adenovirus (17.9%), and parainfluenza viruses 1-4 (10.9%). Respiratory Syncytial virus A/B was significantly associated with gender (38.0% male cases vs 28.3% female cases, P = 0.02). Infections by Adenovirus, Bocavirus, and Metapneumovirus A/B increased with increasing age of patients (predominated cases aged 6-12 months, P < 0.001). S. pneumoniae was detected in 30.9% of th tested samples. In 18.2% of the negative viral infections, only S. pneumoniae was identified. Conclusion: A predominance of the rhinovirus infection was observed in this study. Coronavirus subtypes were described for the first time in Tunisia. The observed different pathogenic profiles across age groups could be helpful to avoid the misclassification of patients presenting with ARIs at the triage level when no standardized protocol is available. This study will provide clues for physicians informing decisions regarding preventive strategies and medication in Tunisia. © 2018 The Authors. Journal of Medical Virology Published by Wiley Periodicals, Inc.","demography; infants; molecular assays; neonates; respiratory agents; seasonality","Adenoviridae; age distribution; Article; bacterium detection; Bocaparvovirus; controlled study; Coronavirinae; female; human; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus A; infant; major clinical study; male; Metapneumovirus; microorganism detection; mixed infection; Mycoplasma pneumoniae; newborn; respiratory tract infection; retrospective study; Rhinovirus; seasonal variation; sex difference; spring; Streptococcus pneumoniae; Tunisia; viral respiratory tract infection; virus detection; bacterial infection; bacterium; classification; demography; hospitalization; isolation and purification; microbiology; molecular diagnosis; respiratory tract infection; Tunisia; virology; virus; virus infection; Bacteria; Bacterial Infections; Demography; Female; Hospitalization; Humans; Infant; Infant, Newborn; Male; Molecular Diagnostic Techniques; Respiratory Tract Infections; Tunisia; Virus Diseases; Viruses","Williams, B.G., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; Richter, J., Panayiotou, C., Tryfonos, C., Aetiology of acute respiratory tract infections in hospitalised children in cyprus (2016) PLoS One, 11; Sinaniotis, C.A., Viral pneumoniae in children: incidence and aetiology (2004) Paediatr Respir Rev, 5, pp. S197-S200; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin Microbiol Rev, 21, pp. 716-747; Berry, M., Gamieldien, J., Fielding, B., Identification of new respiratory viruses in the new millennium (2015) Viruses, 7, pp. 996-1019; Saikku, P., Atypical respiratory pathogens (1997) Clin Microbiol Infect, 3, pp. 599-604; Smith, J.A., Kauffman, C.A., Pulmonary fungal infections (2012) Respirology, 17, pp. 913-926; Hinman, A.R., Global progress in infectious disease control (1998) Vaccine, 16, pp. 1116-1121; Freymuth, F., Vabret, A., Cuvillon-Nimal, D., Comparison of multiplex PCR assays and conventional techniques for the diagnostic of respiratory virus infections in children admitted to hospital with an acute respiratory illness (2006) J Med Virol, 78, pp. 1498-1504; Gray, J., Coupland, L.J., The increasing application of multiplex nucleic acid detection tests to the diagnosis of syndromic infections (2014) Epidemiol Infect, 142, pp. 1-11; El Moussi, A., Pozo, F., Ben Hadj Kacem, M.A., Virological surveillance of influenza viruses during the 2008-09, 2009-10 and 2010-11 seasons in Tunisia (2013) PLoS One, 8; Corless, C.E., Guiver, M., Borrow, R., Edwards-Jones, V., Fox, A.J., Kaczmarski, E.B., Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR (2001) J Clin Microbiol, 39, pp. 1553-1558; Rvt, H., Elliot, A., (2006) Probability and Statistical Inference, , 7th ed, Upper Saddle River, NJ, Prentice Hall; Pierangeli, A., Gentile, M., Di Marco, P., Detection and typing by molecular techniques of respiratory viruses in children hospitalized for acute respiratory infection in Rome, Italy (2007) J Med Virol, 79, pp. 463-468; Schlaudecker, E.P., Heck, J.P., Macintyre, E.T., Etiology and seasonality of viral respiratory infections in rural Honduran children (2012) Pediatr Infect Dis J, 31, pp. 1113-1118; Al-Ayed, M.S., Asaad, A.M., Qureshi, M.A., Ameen, M.S., Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction (2014) Saudi Med J, 35, pp. 1348-1353; van der Zalm, M.M., van Ewijk, B.E., Wilbrink, B., Uiterwaal, C.S., Wolfs, T.F., van der Ent, C.K., Respiratory pathogens in children with and without respiratory symptoms (2009) J Pediatr, 154 (396-400); Suryadevara, M., Cummings, E., Bonville, C.A., Viral etiology of acute febrile respiratory illnesses in hospitalized children younger than 24 months (2011) Clin Pediatr (Phila), 50, pp. 513-517; Pavia, A.T., Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis (2011) Clin Infect Dis, 52, pp. S284-S289; Nagayama, Y., Tsubaki, T., Nakayama, S., Gender analysis in acute bronchiolitis due to respiratory syncytial virus (2006) Pediatr Allergy Immunol, 17, pp. 29-36; Leotte, J., Trombetta, H., Faggion, H.Z., Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years (2017) J Pediatr (Rio J), 93, pp. 294-300; Achten, N.B., Wu, P., Bont, L., Interference between respiratory syncytial virus and human rhinovirus infection in infancy (2017) J Infect Dis, 215, pp. 1102-1106; Toivonen, L., Schuez-Havupalo, L., Karppinen, S., Rhinovirus infections in the first 2 years of life (2016) Pediatrics, 138; Hodinka, R.L., Respiratory RNA viruses (2016) Microbiol Spectr, 4, p. 4; Cebey-López, M., Herberg, J., Pardo-Seco, J., Viral co-infections in pediatric patients hospitalized with lower tract acute respiratory infections (2015) PLoS One, 10; Cebey-López, M., Herberg, J., Pardo-Seco, J., Does viral co-infection influence the severity of acute respiratory infection in children? (2016) PLoS One, 11; Liu, T., Li, Z., Zhang, S., Viral etiology of acute respiratory tract infections in hospitalized children and adults in Shandong Province, China (2015) Virol J, 12, p. 168; Huang, G., Yu, D., Mao, N., Viral etiology of acute respiratory infection in Gansu Province, China, 2011 (2013) PLoS One, 8; Zhang, D., He, Z., Xu, L., Epidemiology characteristics of respiratory viruses found in children and adults with respiratory tract infections in southern China (2014) Int J Infect Dis, 25, pp. 159-164; Almajhdi, F.N., Alshaman, M.S., Amer, H.M., Molecular characterization and phylogenetic analysis of human parainfluenza virus type 3 isolated from Saudi Arabia (2012) J Med Virol, 84, pp. 1304-1311; Glezen, W.P., Frank, A.L., Taber, L.H., Kasel, J.A., Parainfluenza virus type 3: seasonality and risk of infection and reinfection in young children (1984) J Infect Dis, 150, pp. 851-857; Brieu, N., Guyon, G., Rodière, M., Segondy, M., Foulongne, V., Human bocavirus infection in children with respiratory tract disease (2008) Pediatr Infect Dis J, 27, pp. 969-973; Schildgen, O., Muller, A., Allander, T., Human bocavirus: passenger or pathogen in acute respiratory tract infections? (2008) Clin Microbiol Rev, 21, pp. 291-304; de Crom, S.C.M., Rossen, J.W.A., van Furth, A.M., Obihara, C.C., Enterovirus and parechovirus infection in children: a brief overview (2016) Eur J Pediatr, 175, pp. 1023-1029; Harvala, H., Robertson, I., McWilliam Leitch, E.C., Epidemiology and clinical associations of human parechovirus respiratory infections (2008) J Clin Microbiol, 46, pp. 3446-3453; Halaji, M., Hashempour, T., Pouladfar, G.R., Ghasabi, F., Khashei, R., Atypical bacterial etiology of acute respiratory infections and clinical characterizations among Iranian children (2017) Cell Mol Biol (Noisy-le-grand), 63, pp. 115-119; Marchello, C., Dale, A.P., Thai, T.N., Han, D.S., Ebell, M.H., Prevalence of atypical pathogens in patients with cough and community-acquired pneumonia: a Meta-Analysis (2016) Ann Fam Med, 14, pp. 552-566; Brealey, J.C., Chappell, K.J., Galbraith, S., Streptococcus pneumoniae colonization of the nasopharynx is associated with increased severity during respiratory syncytial virus infection in young children (2017) Respirology, 23, pp. 220-227","Brini Khalifa, I.; Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of SousseTunisia; email: ines.brini@hotmail.com",,"John Wiley and Sons Inc.",01466615,,JMVID,"30351487","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85056840503 "Wilson R.T.","16240272900;","The one-humped camel in Bangladesh",2019,"Journal of Camel Practice and Research","26","1",,"11","13",,,"10.5958/2277-8934.2019.00002.X","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072108150&doi=10.5958%2f2277-8934.2019.00002.X&partnerID=40&md5=5ce7b00d7f3667e1f5220af4c66c44d0","Bartridge House, Bartridge Partners, Umberleigh, EX37 9AS, United Kingdom","Wilson, R.T., Bartridge House, Bartridge Partners, Umberleigh, EX37 9AS, United Kingdom","The one-humped camel is non-native to Bangladesh. A very few camels have been imported from India for production purposes and others are imported for meat purpose. In spite of intensive management on the one-humped camel farm in the country, production and productivity are low. Camels suffer from several production diseases. Imports of camels from India infected with or seropositive to Middle East respiratory syndrome-related coronavirus (MERS-COV) pose a risk to human health. Climate, physical and social environments are inimical to camel production. Development efforts should concentrate on the native and adapted species already in the country in order to improve the livelihoods and welfare of the Bangladeshi people. © 2019 Camel Publishing House. All rights reserved.","Animal diseases; Introductions; Middle east respiratory syndrome-related coronavirus; Milk production",,"First ever camel farm (2016) Dhaka Tribune, , Arifur Rahman Rabbi (2016)., 12 September; (2018) Dewanbag Sharif, , http://dewanbaghsharif.net/different_projects_camel_farm.htm, Babe Madina Camel Farm. Available at:, Accessed on 2 October 2018; Statistical yearbook 2016 (2018) Food and Agriculture Organisation, Rome, , http://www.fao.org/faostat/en/#data/QA, FAO . Available at:, Accessed on 9 August 2018; Fazal, M.A., Howlader, M.M.R., Zaman, M.A., Productive and reproductive performances of camel (camelus dromedarius) in Bangladesh. (2017) Journal of Veterinary Medicine and Surgery, 1 (1). , doi:10.4172/2574-2868.100005; Hamid, M.A., Siddiky, M.N.A., Rahman, M.A., Hossain, K.M., And opportunities of buffalo farming in Bangladesh: A review (2016) South Asian Association for Regional Cooperation Journal of Agriculture, 14 (2), pp. 63-77. , http://dx.doi.org/10.3329/sja.vl4i2.31246, Scopes; Islam, A., Epstein, J.H., Rostal, M.K., Islam, S., Rahman, M., Hossain, M., Daszak, P., Middle east respiratory syndrome coronavirus antibodies in dromedary camels (2018) Emerging Infectious Diseases, 24 (5), pp. 926-928. , https://dx.doi.org/10.3201/eid2405.171192, Bangladesh, 2015; Islam, A., Islam, M.R., Ahmed, T.A.B.M., Islam, S., Howlader, M.M.R., Prevalence of camel disease in Bangladesh: A retrospective study (2016) International Journal of Natural Sciences, 6 (1), pp. 27-32; Prakash, B., Camels end up on bangladeshi platters (2005) The Times of India, p. 2005. , 21 January; Wilson, R.T., Fit for purpose-The right animal in the right place (2009) Tropical Animal Health and Production, 41, pp. 1081-1090; World development indicators database (2018) World Bank, , http://databank.worldbank.org/data/views/reports/reportwidget.aspx?Report-Name=CountryProfile&Id=b450fd57&tbar=y&dd=y&inf=n&zm=n&country=BGD, World Bank . Washington D.C Available at:, D. Accessed on 8 August 2018","Wilson, R.T.; Bartridge House, Bartridge PartnersUnited Kingdom; email: trevorbart@aol.com",,"Camel Publishing House",09716777,,,,"English","J. Camel Pract. Res.",Article,"Final",,Scopus,2-s2.0-85072108150 "Choudhry H., Bakhrebah M.A., Abdulaal W.H., Zamzami M.A., Baothman O.A., Hassan M.A., Zeyadi M., Helmi N., Alzahrani F., Ali A., Zakaria M.K., Kamal M.A., Warsi M.K., Ahmed F., Rasool M., Jamal M.S.","37004303400;56557112100;57079062200;36547061500;57189904796;57205096323;55980264000;57194395388;57188964571;56258119100;57193310951;57208735003;57201985250;57208735071;55573228100;36087509100;","Middle East respiratory syndrome: Pathogenesis and therapeutic developments",2019,"Future Virology","14","4",,"237","246",,,"10.2217/fvl-2018-0201","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065654818&doi=10.2217%2ffvl-2018-0201&partnerID=40&md5=dafe8a88645eb6143db18308c7784d68","Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Life Science and Environment Research Institute, National Center for Genome Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 12371, Saudi Arabia; Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Yemen; Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli, 25, Foggia, 71122, Italy; Pirbright Institute, Ash Road, GU240NF, Surr., United Kingdom; Department of Biochemistry, University of Jeddah, Jeddah, 23890, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia","Choudhry, H., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Bakhrebah, M.A., Life Science and Environment Research Institute, National Center for Genome Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 12371, Saudi Arabia; Abdulaal, W.H., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Zamzami, M.A., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Baothman, O.A., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Hassan, M.A., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Yemen; Zeyadi, M., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Helmi, N., Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Alzahrani, F., Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Ali, A., Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli, 25, Foggia, 71122, Italy; Zakaria, M.K., Pirbright Institute, Ash Road, GU240NF, Surr., United Kingdom; Kamal, M.A., Department of Biochemistry, University of Jeddah, Jeddah, 23890, Saudi Arabia; Warsi, M.K., Pirbright Institute, Ash Road, GU240NF, Surr., United Kingdom; Ahmed, F., Pirbright Institute, Ash Road, GU240NF, Surr., United Kingdom; Rasool, M., Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Jamal, M.S., Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia","The first case of Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in the year 2012, which spread rapidly and increased to more than 2200 in 2018. This highly pathogenic virus with high mortality rate is among one of the major public health concerns. Saudi Arabia remains to be the most affected region with the majority of MERS-CoV cases, and currently, no effective drugs and vaccines are available for prevention and treatment. A large amount of information is now available regarding the virus, its structure, route of transmission and its pathophysiology. Therefore, this review summarizes the current understanding of MERS-CoV's pathogenesis, treatment options and recent scientific advancements in vaccine and other therapeutic developments, and the major steps taken for MERS prevention control. © 2019 2019 Future Medicine Ltd.","Arabian Peninsula; coronavirus; global; macrophages; MERS; SARS; Saudi Arabia; therapeutic; vaccine; WHO","antivirus agent; monoclonal antibody; peptide; polyclonal antibody; antiviral therapy; clinical feature; convalescence; drug repositioning; human; infection control; infection prevention; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; nonhuman; pathophysiology; priority journal; public health; Review; Saudi Arabia; virus pathogenesis; World Health Organization","Zhou, J., Li, C., Zhao, G., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci. Adv., 3 (11), p. eaao4966; Cui, J., Li, F., Shi, Z.L., Origin and evolution of pathogenic coronaviruses (2019) Nat. Rev. Microbiol., 17 (3), pp. 181-192; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (9), pp. 1814-1820; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin. Infect. Dis., 59 (9), pp. 1225-1233; Shapiro, M., London, B., NigriDet, A.L., Middle east respiratory syndrome coronavirus: Review of the current situation in the world (2016) Disaster Mil. Med., 2, p. 9; De Groot, R.J., Baker, S.C., Baric, R.S., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87 (14), pp. 7790-7792; Coleman, C.M., Frieman, M.B., Emergence of the Middle East respiratory syndrome coronavirus (2013) PLoS Pathogens, 9 (9), p. e1003595; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: Recent advances (2017) F1000Res. 6(F1000 Faculty Rev), p. 1628; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Saudi Arabia, , www.who.int/csr/don/28-december-2018-mers-saudi-arabia/en/, WHO; Fehr, A.R., Channapannavar, R., Perlman, S., Middle East respiratory syndrome (MERS): Emergence of a pathogenic human coronavirus (2017) Annu. Rev. Med., 68, pp. 387-399; Lu, L., Liu, Q., Du, L., Middle East respiratory syndrome coronavirus (MERS-CoV): Challenges in identifying its source and controlling its spread (2013) Microbes Infect., 15 (8-9), pp. 625-629; Hotez, P.J., Bottazzi, M.E., Tseng, C.T., Calling for rapid development of a safe and effective MERS vaccine (2014) Microbes Infect., 16 (7), pp. 529-531; Chowell, G., Blumberg, S., Simonsen, L., Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission (2014) Epidemics, 9, pp. 40-51; Ge, X.-Y., Li, J.-L., Yang, X.-L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538; Durai, P., Batool, M., Shah, M., Middle East respiratory syndrome coronavirus: Transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp. Mol. Med., 47, p. e181; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol. J., 13, p. 87; Chan, J.F., Lau, S.K., To, K.K., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28 (2), pp. 465-522; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East respiratory syndrome (MERS): A review (2018) J. Infect. Public Health, 11 (1), pp. 9-17; Xia, S., Liu, Q., Wang, Q., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Res., 194, pp. 200-210; Surya, W., Li, Y., Verdià-Bàguena, C., MERS coronavirus envelope protein has a single transmembrane domain that forms pentamericion channels (2015) Virus Res., 201, pp. 61-66; Liu, J., Sun, Y., Qi, J., The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes (2010) J. Infect. Dis., 202 (8), pp. 1171-1180; De Haan, C.A.M., Rottier, P.J.M., Molecular interactions in the assembly of coronaviruses (2005) Adv Virus Res., pp. 165-230. , www.sciencedirect.com/bookseries/advances-in-virus-research; Cho, C.C., Lin, M.H., Chuang, C.Y., Macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV) is an efficient ADP-ribose binding module: Crystal structure and biochemical studies (2016) J. Biol. Chem., 291 (10), pp. 4894-4902; Zumla, A., Chan, J.F.W., Azhar, E.I., Coronaviruses drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15 (5), pp. 327-347; St John, S.E., Mesecar, A.D., Design, synthesis, and development of broad spectrum coronaviral 3C-like protease inhibitors to target emerging human pathogens: A phylochemical approach (2016) FASEB J., 30 (1), p. 8424; Tomar, S., Johnston, M.L., St John, S.E., Ligand-induced dimerization of Middle East respiratory syndrome (MERS) coronavirus nsp5 Protease (3CL [pro]): Implications for nsp5 regulation and the development of antivirals (2015) J. Biol. Chem., 290 (32), pp. 19403-19422; Wang, F., Chen, C., Tan, W., Structure of main protease from human coronavirus NL63: Insights for wide spectrum anti-coronavirus drug design (2016) Sci. Rep., 6, p. 22677; (2015) Centers for Disease Control and Prevention Website, , www.cdc.gov/coronavirus/mers/about/symptoms.html, Middle East Respiratory Syndrome (MERS)/symptoms and complications; Drosten, C., Seilmaier, M., Corman, V.M., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13 (9), pp. 745-751; Kindler, E., Jonsdottir, H.R., Muth, D., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) MBio, 4 (1), pp. e00611-e00612; Chan, J.F., Chan, K.H., Choi, G.K., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: Implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207 (11), pp. 1743-1752; Chan, R.W., Chan, M.C., Agnihothram, S., Tropism and innate immune responses of the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures (2013) J. Virol., 87 (12), pp. 6604-6614; Zielecki, F., Weber, M., Eickmann, M., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J. Virol., 87 (9), pp. 5300-5304; Yin, Y., Wunderink, R.G., MERS, SARS and other coronaviruses as causes of pneumonia (2018) Respirology, 23 (2), pp. 130-137; Menachery, V.D., Eisfeld, A.J., Schafer, A., Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses (2014) MBio, 5 (3), pp. e01174-e01214; Lau, S.K., Lau, C.C., Chan, K.H., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J. Gen. Virol., 94, pp. 2679-2690; Boonacker, E., Van Noorden, C.J., The multifunctional or moonlighting protein CD26/DPPIV (2003) Eur. J. Cell Biol., 82 (2), pp. 53-73; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implications for the Middle East respiratory syndrome (2016) Am. J. Pathol., 186 (1), pp. 78-86; Widagdo, W., Raj, V.S., Schipper, D., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J. Virol., 90 (9), pp. 4838-4842; Nakagawa, K., Narayanan, K., Wada, M., The endonucleolytic RNA cleavage function of nsp1 of Middle East respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines (2018) J. Virol., 92 (21), pp. e01157-e01218; Ng, D.L., Al Hosani, F., Keating, M.K., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am. J. Pathol., 186 (3), pp. 652-658; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J. Virol., 87 (11), pp. 6081-6090; Hocke, A.C., Becher, A., Knepper, J., Emerging human middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs (2013) Am. J. Respir. Crit. Care Med., 188 (7), pp. 882-886; Murray, P.J., Wynn, T.A., Protective and pathogenic functions of macrophage subsets (2011) Nat. Rev. Immunol., 11 (11), pp. 723-737; Zhou, J., Chu, H., Li, C., Active replication of MERS-CoV and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J. Infect. Dis., 209 (9), pp. 1331-1342; Guery, B., Poissy, J., El Mansouf, L., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272; Munster, V.J., De Wit, E., Feldmann, H., Pneumonia from human coronavirus in a macaque model (2013) N. Engl. J. Med., 368 (16), pp. 1560-1562; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 368, pp. 2487-2494; Orenstein, J.M., The macrophage in HIV infection (2001) Immunobiology, 204, pp. 598-602; Chu, H., Zhou, J., Wong BHet, A.L., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J. Infect. Dis., 213 (6), pp. 904-914; Cockrell, A.S., Johnson, J.C., Moore, I.N., A spike modified Middle East respiratory syndrome coronavirus (MERS-CoV) infectious clone elicits mild respiratory disease in infected rhesus macaques (2018) Sci. Rep., 8 (1), p. 10727; Chan, J.F., Yao, Y., Yeung, M.L., Treatment with lopinavir/ritonavir or interferon-?1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J. Infect. Dis., 212 (12), pp. 1904-1913; Johnson, R.F., Bagci, U., Keith, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Johnson, R.F., Via, L.E., Kumar, M.R., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430; Yao, Y., Bao, L., Deng, W., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis., 209 (2), pp. 236-242; De Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc. Natl Acad. Sci. USA, 110 (41), pp. 16598-16603; Falzarano, D., De Wit, E., Feldmann, F., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog., 10 (8), p. e1004250; Cockrell, A.S., Yount, B.L., Scobey, T., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre-and post-exposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl Acad. Sci. USA, 112 (28), pp. 8738-8743; Adedeji, A.O., Sarafianos, S.G., Antiviral drugs specific for coronaviruses in pre-clinical development (2014) Curr. Opin. Virol., 8, pp. 45-53; De Wilde, A.H., Jochmans, D., Posthuma, C.C., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58 (8), pp. 4875-4884; Cao, J., Forrest, J.C., Zhang, X., A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs (2015) Antiviral Res., 114, pp. 1-10; De Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Alisporivir inhibits MERS-and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res., 228, pp. 7-13; Marano, G., Vaglio, S., Pupella, S., Convalescent plasma: New evidence for an old therapeutic tool? (2016) Blood Transfus., 14 (2), pp. 152-157; Arabi, Y., Balkhy, H., Hajeer, A.H., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: A study protocol (2016) Springer Plus, 4 (709); Chong, Y.P., Song, J.Y., Seo, Y.B., Rapid response T. Antiviral treatment guidelines for Middle East respiratory syndrome (2015) Infect. Chemo. Ther., 47 (3), pp. 212-222; Dimitrov, D.S., Therapeutic proteins (2012) Methods Mol. Biol., 899, pp. 1-26; Carter, P.J., Potent antibody therapeutics by design (2006) Nat. Rev. Immunol., 6 (5), pp. 343-357; Meulen, J., Bakker, A.B., Van Den Brink, E.N., Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets (2004) Lancet, 363 (9427), pp. 2139-2141; Ter Meulen, J., Van Den Brink, E.N., Poon, L.L., Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants (2006) PLoS Med., 3 (7), p. e237; Du, L., Kou, Z., Ma, C., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibitsMERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS ONE, 8 (12), p. e81587; Mou, H., Raj, V.S., Van Kuppeveld, F.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87 (16), pp. 9379-9383; Du, L., Zhao, G., Yang, Y., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88 (12), pp. 7045-7053; Ying, T., Du, L., Ju, T.W., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88 (14), pp. 7796-7805; Jiang, L., Wang, N., Zuo, T., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6 (234), p. 234ra59; Tang, X.C., Agnihothram, S.S., Jiao, Y., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl Acad. Sci. USA, 111 (19), pp. E2018-E2026; Qiu, H., Sun, S., Xiao, H., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome-coronavirus infection (2016) Antiviral Res., 132, pp. 141-148; Fosgerau, K., Hoffmann, T., Peptide therapeutics: Current status and future directions (2015) Drug Discov. Today, 20 (1), pp. 122-128; Ali, M.M., Karasneh, G.A., Jarding, M.J., A 3-O-sulfated heparansulfate binding peptide preferentially targets herpes simplex virus 2-infectedcells (2012) J. Virol., 86 (12), pp. 6434-6443; Tincho, M.B., Gabere, M.N., Pretorius, A., In silico identification and molecular validation of putative antimicrobial peptides for HIV therapy (2016) J. AIDS Clin. Res., 7 (606); Melnik, L.I., Garry, R.F., Morris, C.A., Peptide inhibition of human cytomegalovirus infection (2011) Virol. J., 8 (1), p. 76; Qureshi, A., Thakur, N., Tandon, H., AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses (2014) Nucleic Acids Res., 42, pp. D1147-D1153; Fjell, C.D., Hancock, R.E.W., Cherkasov, A., AMPer: A database and an automated discovery tool for antimicrobial peptides (2007) Bioinformatics, 23 (9), pp. 1148-1155; Fjell, C.D., Hiss, J.A., Hancock, R.E.W., Designing antimicrobial pep-tides: Form follows function (2012) Nat. Rev. Drug Discov., 11 (1), pp. 37-51; Ganz, T., Defensins: Antimicrobial peptides of innate immunity (2003) Nat. Rev. Immunol., 3 (9), pp. 710-720; Harder, J., Schröder, J.M., (2015) Antimicrobial Peptides: Role in Human Health and Disease, , Harder J, Schröder JM. (Eds). Springer International Publishing","Choudhry, H.; Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz UniversitySaudi Arabia; email: hchoudhry@kau.edu.sa",,"Future Medicine Ltd.",17460794,,,,"English","Future Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85065654818 "Altan E., Seguin M.A., Leutenegger C.M., Phan T.G., Deng X., Delwart E.","37033442000;57194503095;7006706489;7102804322;55605616800;7003328241;","Nasal virome of dogs with respiratory infection signs include novel taupapillomaviruses",2019,"Virus Genes","55","2",,"191","197",,1,"10.1007/s11262-019-01634-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059855089&doi=10.1007%2fs11262-019-01634-6&partnerID=40&md5=6939c2e129fcb31acbd4859afed1af1b","Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, United States; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States; IDEXX Laboratories, Inc., Westbrook, ME 04092, United States; IDEXX Laboratories, Inc., West Sacramento, CA 95605, United States","Altan, E., Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, United States, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States; Seguin, M.A., IDEXX Laboratories, Inc., Westbrook, ME 04092, United States; Leutenegger, C.M., IDEXX Laboratories, Inc., West Sacramento, CA 95605, United States; Phan, T.G., Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, United States, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States; Deng, X., Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, United States, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States; Delwart, E., Vitalant Research Institute, 270 Masonic Ave, San Francisco, CA, United States, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States","Using viral metagenomics, we characterized the mammalian virome of nasal swabs from 57 dogs with unexplained signs of respiratory infection showing mostly negative results using the IDEXX Canine Respiratory Disease RealPCR™ Panel. We identified canine parainfluenza virus 5, canine respiratory coronavirus, carnivore bocaparvovirus 3, canine circovirus and canine papillomavirus 9. Novel canine taupapillomaviruses (CPV21-23) were also identified in 3 dogs and their complete genome sequenced showing L1 nucleotide identity ranging from 68.4 to 70.3% to their closest taupapillomavirus relative. Taupapillomavirus were the only mammalian viral nucleic acids detected in two affected dogs, while a third dog was coinfected with low levels of canine parainfluenza 5. A role for these taupapillomavirues in canine respiratory disease remains to be determined. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.","Canine; Next generation sequencing; Papillomaviridae; Papillomavirus; Respiratory infection; Taupapillomavirus","Article; Bocaparvovirus; Canine coronavirus; canine papillomavirus 9; Circovirus; dog; female; Labrador retriever; male; metagenomics; mixed infection; next generation sequencing; nonhuman; nose smear; Papillomaviridae; Parainfluenza virus 5; phylogenetic tree; priority journal; real time polymerase chain reaction; taupapillomavirus; viral respiratory tract infection; virus genome; animal; dog; dog disease; genetics; isolation and purification; metagenomics; paramyxovirus infection; pathogenicity; respiratory tract infection; veterinary medicine; virology; Animals; Coinfection; Coronavirus, Canine; Dog Diseases; Dogs; Metagenomics; Paramyxoviridae Infections; Respiratory Tract Infections","Appel, M.J., Binn, L.N., (1987) Canine infectious tracheobronchitis short review: kennel cough. Virus infections of carnivors, , Elseiver Science Publishing Co, New York; Ditchfield, J., Macpherson, L.W., Zbitnew, A., Association of canine adenovirus (Toronto A 26/61) with an outbreak of laryngotracheitis (Kennel cough): a preliminary report (1962) Can Vet J, 3, pp. 238-247. , COI: 1:STN:280:DC%2BD2svjsVSqsw%3D%3D, PID: 17421510; Erles, K., Dubovi, E.J., Brooks, H.W., Brownlie, J., Longitudinal study of viruses associated with canine infectious respiratory disease (2004) J Clin Microbiol, 42 (10), pp. 4524-4529; Crawford, P.C., Dubovi, E.J., Castleman, W.L., Stephenson, I., Gibbs, E.P., Chen, L., Smith, C., Donis, R.O., Transmission of equine influenza virus to dogs (2005) Science, 310 (5747), pp. 482-485; Martella, V., Lanave, G., Mihalov-Kovacs, E., Marton, S., Varga-Kugler, R., Kaszab, E., Di Martino, B., Banyai, K., Novel parvovirus related to primate bufaviruses in dogs (2018) Emerg Infect Dis, 24 (6), pp. 1061-1068; Taxonomy, V., (2016), https://talk.ictvonline.org/taxonomy/, Accessed February 2 2018; M’Fadyean, J., Hobday, F., Note on the experimental transmission of warts in the dog (1898) J Comp Pathol Ther, 11, pp. 341-344; Chambers, V.C., Evans, C.A., Canine oral papillomatosis. I. Virus assay and observations on the various stages of the experimental infection (1959) Cancer Res, 19, pp. 1188-1195. , COI: 1:STN:280:DyaF3c7ivFCqtw%3D%3D, PID: 13809074; Bredal, W.P., Thoresen, S.I., Rimstad, E., Aleksandersen, M., Nafstad, P.H., Diagnosis and clinical course of canine oral papillomavirus infection (1996) J Small Anim Pract, 37 (3), pp. 138-142. , COI: 1:STN:280:DyaK283kslyisg%3D%3D, PID: 8683957; Le Net, J.L., Orth, G., Sundberg, J.P., Cassonnet, P., Poisson, L., Masson, M.T., George, C., Longeart, L., Multiple pigmented cutaneous papules associated with a novel canine papillomavirus in an immunosuppressed dog (1997) Vet Pathol, 34 (1), pp. 8-14; Sundberg, J.P., Smith, E.K., Herron, A.J., Jenson, A.B., Burk, R.D., Van Ranst, M., Involvement of canine oral papillomavirus in generalized oral and cutaneous verrucosis in a Chinese Shar Pei dog (1994) Vet Pathol, 31 (2), pp. 183-187; Sundberg, J.P., O’Banion, M.K., Schmidt-Didier, E., Reichmann, M.E., Cloning and characterization of a canine oral papillomavirus (1986) Am J Vet Res, 47 (5), pp. 1142-1144. , COI: 1:CAS:528:DyaL28XktlKktLk%3D, PID: 3013052; Munday, J.S., Thomson, N.A., Luff, J.A., Papillomaviruses in dogs and cats (2017) Vet J, 225, pp. 23-31; Zhou, D., Paul, S., Alkhilaiwi, F., Clark, M., Schlegel, R., Yuan, H., (2016) Canine Papillomavirus 20 Isolate Ada, Complete Genome, , https://www.ncbi.nlm.nih.gov/nucleotide/1008264056, GenBank, Accessed Feb 2018; Tisza, M.J., Yuan, H., Richard, S., Buck, C.B., (2016) Canine Papillomavirus 19 Isolate Tvmb1, Complete Genome, , https://www.ncbi.nlm.nih.gov/nucleotide/1064859043, Accessed Feb 2018; Tisza, M.J., Yuan, H., Schlegel, R., Buck, C.B., Genomic sequence of Canine Papillomavirus 19 (2016) Genome Announc, 4 (6); Lange, C.E., Diallo, A., Zewe, C., Ferrer, L., Novel canine papillomavirus type 18 found in pigmented plaques (2016) Papillomavirus Res, 2, pp. 159-163; Lange, C.E., Favrot, C., Canine papillomaviruses (2011) Vet Clin N Am Small Anim Pract, 41 (6), pp. 1183-1195; Munday, J.S., Dunowska, M., Laurie, R.E., Hills, S., Genomic characterisation of canine papillomavirus type 17, a possible rare cause of canine oral squamous cell carcinoma (2016) Vet Microbiol, 182, pp. 135-140; Lange, C.E., Ackermann, M., Favrot, C., Tobler, K., Entire genomic sequence of novel canine papillomavirus type 13 (2012) J Virol, 86 (18), pp. 10226-10227; Victoria, J.G., Kapoor, A., Li, L., Blinkova, O., Slikas, B., Wang, C., Naeem, A., Delwart, E., Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis (2009) J Virol, 83 (9), pp. 4642-4651; Li, L., Deng, X., Mee, E.T., Collot-Teixeira, S., Anderson, R., Schepelmann, S., Minor, P.D., Delwart, E., Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent (2015) J Virol Methods, 213, pp. 139-146; Deng, X., Naccache, S.N., Ng, T., Federman, S., Li, L., Chiu, C.Y., Delwart, E.L., An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data (2015) Nucleic Acids Res; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability (2013) Mol Biol Evol, 30 (4), pp. 772-780; Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res, 30 (14), pp. 3059-3066. , COI: 1:CAS:528:DC%2BD38XlslOqu7s%3D, PID: 135756; Nei, M., Kumar, S., (2000) Molecular evolution and phylogenetics, , Oxford University Press, New York; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol Biol Evol, 30 (12), pp. 2725-2729; Saitou, N., Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4 (4), pp. 406-425; Tamura, K., Nei, M., Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method (2004) Proc Natl Acad Sci USA, 101 (30), pp. 11030-11035; Thomas, M., Myers, M.P., Massimi, P., Guarnaccia, C., Banks, L., Analysis of multiple HPV E6 PDZ interactions defines type-specific PDZ fingerprints that predict oncogenic potential (2016) PLoS Pathog, 12 (8); Wang, J., Zhou, D., Prabhu, A., Schlegel, R., Yuan, H., The canine papillomavirus and gamma HPV E7 proteins use an alternative domain to bind and destabilize the retinoblastoma protein (2010) PLoS Pathog, 6 (9); Schinazi, R.F., Goudgaon, N.M., Fulcrand, G., el Kattan, Y., Lesnikowski, Z., Ullas, G., Moravek, J., Liotta, D.C., Cellular pharmacology and biological activity of 5-carboranyl-2′-deoxyuridine (1994) Int J Radiat Oncol Biol Phys, 28 (5), pp. 1113-1120. , COI: 1:CAS:528:DyaK2cXlsVynsL4%3D, PID: 8175396; Bernard, H.U., Burk, R.D., Chen, Z., van Doorslaer, K., zur Hausen, H., de Villiers, E.M., Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments (2010) Virology, 401 (1), pp. 70-79; de Villiers, E.-M., Fauquet, C., Broker, T.R., Bernard, H.-U., zur Hausen, H., Classification of papillomaviruses (2004) Virology, 324 (1), pp. 17-27; Van Doorslaer, K., Chen, Z., Bernard, H.U., Chan, P.K.S., DeSalle, R., Dillner, J., Forslund, O., Ictv Report, C., ICTV virus taxonomy profile: Papillomaviridae (2018) J Gen Virol, 99 (8), pp. 989-990; Munday, J.S., Dunowska, M., Hills, S.F., Laurie, R.E., Genomic characterization of Felis catus papillomavirus-3: a novel papillomavirus detected in a feline Bowenoid in situ carcinoma (2013) Vet Microbiol, 165 (3-4), pp. 319-325; Dunowska, M., Munday, J.S., Laurie, R.E., Hills, S.F., Genomic characterisation of Felis catus papillomavirus 4, a novel papillomavirus detected in the oral cavity of a domestic cat (2014) Virus Genes, 48 (1), pp. 111-119; (2017) Virus Taxonomy: 2017 Release Papillomaviridae, , https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/121/papillomaviridae, ICTV, 2018; Smits, S.L., Raj, V.S., Oduber, M.D., Schapendonk, C.M., Bodewes, R., Provacia, L., Stittelaar, K.J., Haagmans, B.L., Metagenomic analysis of the ferret fecal viral flora (2013) PLoS ONE, 8 (8); Priestnall, S.L., Mitchell, J.A., Walker, C.A., Erles, K., Brownlie, J., New and emerging pathogens in canine infectious respiratory disease (2014) Vet Pathol, 51 (2), pp. 492-504; Munday, J.S., Witham, A.I., Frequent detection of papillomavirus DNA in clinically normal skin of cats infected and noninfected with feline immunodeficiency virus (2010) Vet Dermatol, 21 (3), pp. 307-310; Lange, C.E., Zollinger, S., Tobler, K., Ackermann, M., Favrot, C., Clinically healthy skin of dogs is a potential reservoir for canine papillomaviruses (2011) J Clin Microbiol, 49 (2), pp. 707-709; Joffe, D.J., Lelewski, R., Weese, J.S., McGill-Worsley, J., Shankel, C., Mendonca, S., Sager, T., Poljak, Z., Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics (2016) Can Vet J, 57 (1), pp. 46-51. , PID: 26740697","Delwart, E.; Vitalant Research Institute, 270 Masonic Ave, United States; email: Eric.Delwart@ucsf.edu",,"Springer",09208569,,VIGEE,"30632017","English","Virus Genes",Article,"Final",,Scopus,2-s2.0-85059855089 "Vitásková E., Molnár L., Holko I., Supuka P., Černíková L., Bártová E., Sedlák K.","57193122018;36630873900;6505772593;54080616200;24773442300;35304616400;6602460267;","Serologic survey of selected viral pathogens in free-ranging Eurasian brown bears (Ursus arctos arctos) from Slovakia",2019,"Journal of Wildlife Diseases","55","2",,"499","503",,2,"10.7589/2017-11-290","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064722178&doi=10.7589%2f2017-11-290&partnerID=40&md5=5e701b66868a31ae5ab8571bd1692368","State Veterinary Institute Prague, Sídlištní 136/24, Prague 6, 165 03, Czech Republic; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, Palackého tř. 1946/1, Brno, 61200, Czech Republic; University of Veterinary Medicine and Pharmacy in Košice, Clinic for Birds and Exotic Animals, Komenského 73, Košice, 041 81, Slovakia; VETSERVIS, s.r.o, Kalvária 3, Nitra, 949 01, Slovakia; Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Veterinary Sciences, Tr. A. Hlinku 2, Nitra, 949 76, Slovakia","Vitásková, E., State Veterinary Institute Prague, Sídlištní 136/24, Prague 6, 165 03, Czech Republic, University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, Palackého tř. 1946/1, Brno, 61200, Czech Republic; Molnár, L., University of Veterinary Medicine and Pharmacy in Košice, Clinic for Birds and Exotic Animals, Komenského 73, Košice, 041 81, Slovakia; Holko, I., VETSERVIS, s.r.o, Kalvária 3, Nitra, 949 01, Slovakia, Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Veterinary Sciences, Tr. A. Hlinku 2, Nitra, 949 76, Slovakia; Supuka, P., VETSERVIS, s.r.o, Kalvária 3, Nitra, 949 01, Slovakia; Černíková, L., State Veterinary Institute Prague, Sídlištní 136/24, Prague 6, 165 03, Czech Republic, University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, Palackého tř. 1946/1, Brno, 61200, Czech Republic; Bártová, E., University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, Palackého tř. 1946/1, Brno, 61200, Czech Republic; Sedlák, K., State Veterinary Institute Prague, Sídlištní 136/24, Prague 6, 165 03, Czech Republic","We tested sera of 24 free-ranging European brown bears (Ursus arctos) from six regions of Slovakia for antibodies to 10 viral agents. We tested sera by an indirect fluorescence antibody test for antibodies to canine distemper virus (CDV), canine coronavirus (CCV), canine parvovirus type 2 (CPV-2), canine adenovirus, canine parainfluenza virus type 2 (CPIV-2), and canine herpesvirus type 1 (CHV-1). We used an enzyme-linked immunosorbent assay for detection of antibodies to hepatitis E virus, bluetongue virus, West Nile virus (WNV), and Aujeszky’s disease virus (ADV). We detected antibodies to CDV, CHV-1, CPV-2, CPIV-2, CCV, WNV, and ADV in seven (29%), three (12%), two (8%), two (8%), one (4%), one (4%), and one (4%) bear, respectively. Evidence of exposure of free-ranging European brown bears to CCV and ADV has not been reported. © Wildlife Disease Association 2019.","Aujeszky’s disease virus; Coronavirus; Distemper virus; Herpesvirus; Parainfluenza; Parvovirus; West Nile virus","virus antibody; animal; bear; blood; seroepidemiology; Slovakia; veterinary medicine; virology; virus infection; Animals; Antibodies, Viral; Seroepidemiologic Studies; Slovakia; Ursidae; Virus Diseases","Aoki, E., Soma, T., Yokoyama, M., Matsubayashi, M., Sasai, K., Surveillance for antibodies against six canine viruses in wild raccoons (Procyon lotor) in Japan (2017) J Wildl Dis, 53, pp. 761-768; Banks, M., Torraca, L.S., Greenwood, A.G., Taylor, D.C., Aujeszky’s disease in captive bears (1999) Vet Rec, 145, pp. 362-365; Boadella, M., Gortázar, C.H., Vicente, J., Ruiz-Fons, F., Wild boar: An increasing concern for Aujeszky’s disease control in pigs? (2012) BMC Vet Res, 8, p. 7; Bronson, E., Spiker, H., Driscoll, C., Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA (2014) J Wildl Dis, 50, pp. 829-836; Collins, J.E., Leslie, P., Johnson, D., Nelson, D., Peden, W., Boswell, R., Draayer, H., Epizootic of adenovirus infection in American black bears (1984) J am Vet Med Assoc, 185, pp. 1430-1432; Chapron, G., Kaczensky, P., Linnell, J.D.C., von Arx, M., Huber, D., Andrén, H., López-Bao, J.V., Anders, O., Recovery of large carnivores in Europe’s modern human-dominated landscapes (2014) Science, 346, pp. 1517-1519; Di Francesco, C.E., Gentile, L., Di Pirro, V., Ladiana, L., Tagliabue, S., Marsilio, F., Serologic evidence for selected infectious diseases in Marsican brown bears (2015) J Wildl Dis, 51, pp. 209-213; Dunbar, M.R., Cunningham, M.W., Roof, J.C., Seroprevalence of selected disease agents from free-ranging black bears in Florida (1998) J Wildl Dis, 34, pp. 612-619; Farajollahi, A., Panella, N.A., Carr, P., Crans, W., Burguess, K., Komar, N., Serologic evidence of West Nile virus infection in black bears (Ursus americanus) from New Jersey (2003) J Wildl Dis, 39, pp. 894-896; Frölich, K., Czupalla, O., Haas, L., Hentschke, J., Dedek, J., Fickel, J., Epizootiological investigations of canine distemper virus in free-ranging carnivores from Germany (2000) Vet Microbiol, 74, pp. 283-292; Hammerschmidt, F., Schwaiger, K., Dähnert, L., Vina-Rodriguez, A., Höper, D., Gareis, M., Groschup, M.H., Eiden, M., Hepatitis E virus in wild rabbits and European brown hares in Germany (2017) Zoonoses Public Health, 64, pp. 612-622; Kimber, K.R., Kollias, G.V., Dubovi, E.J., Serologic survey of selected viral agents in recently captured wild North American river otters (Lontra canaden-sis) (2000) J Zoo Wildl Med, 31, pp. 168-175; Larska, M., Krzysiak, M.K., Jabłoński, A., Kęsik, J., Bernarski, M., Rola, J., Hepatitis E virus antibody prevalence in wildlife in Poland (2015) Zoonoses Public Health, 62, pp. 105-110; Madić, J., Huber, D., Lugović, B., Serologic survey for selected viral and rickettsial agents of brown bears (Ursus arctos) in Croatia (1993) J Wildl Dis, 29, pp. 572-576; Mainka, S.A., Xianmeng, Q., Tingmei, H., Appel, M.J., Serologic survey of giant pandas (Ailuropoda mela-noleuca), and domestic dogs and cats in the Wolong Reserve, China (1994) J Wildl Dis, 30, pp. 86-89; Marsilio, F., Tiscar, P.G., Gentile, L., Roth, H.U., Boscagli, G., Tempesta, M., Gatti, A., Serologic survey for selected viral pathogens in brown bears from Italy (1997) J Wildl Dis, 33, pp. 304-307; Paule, L., Ochrana a manažment velǩých šeliem na Slovensku (2015) Lešová A, Antal V, Editors. Štátna Ochrana prírody SR, Banská Bystrica, Slovakia, pp. 52-59; Philippa, J.D., Leighton, F.A., Daoust, P.Y., Nielsen, O., Pagliarulo, M., Schwantje, H., Shury, T., Kuiken, T., Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada (2004) Vet Rec, 155, pp. 135-140; Robinson, A.J., Crerar, S.K., Sharma, N.W., Muller, W.J., Bradley, M.P., Prevalence of serum antibodies to canine adenovirus and canine herpesvirus in the European red fox (Vulpes vulpes) in Australia (2005) Aust Vet J, 83, pp. 356-361; Sedlák, K., Bártová, E., Seroprevalence of antibodies to Neospora caninum and Toxoplasma gondii in zoo animals (2006) Vet Parasitol, 136, pp. 223-231; Sedlák, K., Zelená, H., Křivda, V., Šatrán, P., Surveillance of West Nile fever in horses in the Czech Republic from 2011 to 2013 (2014) Epidemiol Mikrobiol Imunol, 63, pp. 307-311; Stoneberg, R.P., Jonkel, C.J., Age determination of black bears by cementum layers (1966) J Wildl Manage, 30, pp. 411-414; Zanin, E., Capua, I., Casaccia, C., Zuin, A., Moresco, A., Isolation and characterization of Aujeszky’s disease virus in captive brown bears from Italy (1997) J Wildl Dis, 33, pp. 632-634","Bártová, E.; University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, Palackého tř. 1946/1, Czech Republic; email: bartovae@vfu.cz",,"Wildlife Disease Association, Inc.",00903558,,,"30289326","English","J. Wildl. Dis.",Article,"Final",,Scopus,2-s2.0-85064722178 "Hao Z., Fu F., Cao L., Guo L., Liu J., Xue M., Feng L.","57206252852;7201607918;55626011900;36614224600;55317283900;55496438000;55792011500;","Tumor suppressor p53 inhibits porcine epidemic diarrhea virus infection via interferon-mediated antiviral immunity",2019,"Molecular Immunology","108",,,"68","74",,1,"10.1016/j.molimm.2019.02.005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061632255&doi=10.1016%2fj.molimm.2019.02.005&partnerID=40&md5=f27a60c7e07430400fb3b7a21ec51bf7","Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China","Hao, Z., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China; Fu, F., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China; Cao, L., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China; Guo, L., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China; Liu, J., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China; Xue, M., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China; Feng, L., Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China","p53 is a tumor suppressor gene that can be activated in many contexts, such as DNA damage or stressful conditions. p53 has also been shown to be important for responses to certain viral infections. Porcine epidemic diarrhea virus (PEDV) is a major enteric pathogen of the coronavirus family that causes extensive mortality among piglets. The involvement of p53 during PEDV infection has not previously been investigated. In this study, we detected p53 upregulation in response to PEDV infection. Treatment with a p53 specific activator or p53 overexpression markedly decreased viral replication, and we showed that there was more viral progeny produced in p53 knock-out cells than in p53 wild-type cells. Finally, we demonstrated that inhibition of viral infection by p53 was mediated via p53-dependent IFN signaling, leading to IFN-stimulated response element (ISRE) activation, as well as the upregulation of IFN-stimulated genes (ISGs) and IFN-β released from infected cells. These findings demonstrate that p53 suppresses PEDV infection, offering a novel therapeutic strategy for combatting this deadly disease in piglets. © 2019","Interferon pathway; Porcine epidemic diarrhea virus; Tumor suppressor p53; Viral infection","beta interferon; interferon regulatory factor; nutlin 3; polyhistidine tag; protein p53; interferon; protein p53; animal cell; Article; cell viability assay; controlled study; cytopathogenic effect; DNA responsive element; enzyme linked immunosorbent assay; gene activation; gene expression; gene knockout; gene overexpression; genetic transcription; genetic transfection; human; human cell; ID50 (median infectious dose); immune response; immunity; luciferase assay; nonhuman; Porcine epidemic diarrhea virus; progeny; protein expression; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; signal transduction; tumor suppressor gene; upregulation; virus infection; virus replication; Western blotting; Coronavirus infection; growth, development and aging; HEK293 cell line; immunology; metabolism; physiology; Porcine epidemic diarrhea virus; virology; Coronavirus Infections; HEK293 Cells; Humans; Immunity; Interferons; Porcine epidemic diarrhea virus; Tumor Suppressor Protein p53; Virus Replication","Cao, L., Ge, X., Gao, Y., Ren, Y., Ren, X., Li, G., Porcine epidemic diarrhea virus infection induces NF-kappaB activation through the TLR2, TLR3, and TLR9 pathways in porcine intestinal epithelial cells (2015) J. Gen. Virol.; Chua, B.H., Phuektes, P., Sanders, S.A., Nicholls, P.K., McMinn, P.C., The molecular basis of mouse adaptation by human enterovirus 71 (2008) J. Gen. Virol.; Desmyter, J., Melnick, J.L., Rawls, W.E., Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero) (1968) J. Virol., 1968 (2), p. 1955. , https://doi.org/J, Virol; Dharel, N., Kato, N., Muroyama, R., Taniguchi, H., Otsuka, M., Wang, Y., Jazag, A., Omata, M., Potential contribution of tumor suppressor p53 in the host defense against hepatitis C virus (2008) Hepatology; Ding, L., Huang, Y., Dai, M., Zhao, X., Du, Q., Dong, F., Wang, L., Tong, D., Transmissible gastroenteritis virus infection induces cell cycle arrest at S and G2/M phases via p53-dependent pathway (2013) Virus Res.; Ding, L., Huang, Y., Du, Q., Dong, F., Zhao, X., Zhang, W., Xu, X., Tong, D., TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling (2014) Biochem. Biophys. Res. Commun.; Duarte, M., Gelfi, J., Lambert, P., Rasschaert, D., Laude, H., Genome organization of porcine epidemic diarrhoea virus (1993) Adv. Exp. Med. Biol., 342, pp. 55-60; Emeny, J.M., Morgan, M.J., Regulation of the interferon system: Evidence that vero cells have a genetic defect in interferon production (1979) J. Gen. Virol.; Huang, Y., Ding, L., Li, Z., Dai, M., Zhao, X., Li, W., Du, Q., Tong, D., Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signalling (2013) J. Gen. Virol.; Jarvis, M.C., Lam, H.C., Zhang, Y., Wang, L., Hesse, R.A., Hause, B.M., Vlasova, A., Marthaler, D., Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus (2016) Prev. Vet. Med.; Katze, M.G., He, Y., Gale, M., Viruses and interferon: a fight for supremacy (2002) Nat. Rev. Immunol.; Kong, N., Wu, Y., Meng, Q., Wang, Z., Zuo, Y., Pan, X., Tong, W., Tong, G., Suppression of virulent porcine epidemic diarrhea virus proliferation by the PI3K/Akt/GSK-3α/β pathway (2016) PLoS One; Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol. J.; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method (2001) Methods; Miciak, J., Bunz, F., Long story short: p53 mediates innate immunity (2016) Biochim. Biophys. Acta; Mukerjee, R., Claudio, P.P., Chang, J.R., Del Valle, L., Sawaya, B.E., Transcriptional regulation of HIV-1 gene expression by p53 (2010) Cell Cycle; Muñoz-Fontela, C., Pazos, M., Delgado, I., Murk, W., Mungamuri, S.K., Lee, S.W., García-Sastre, A., Aaronson, S.A., p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus (2011) J. Immunol.; Oren, M., Decision making by p53: life, death and cancer (2003) Cell Death Differ.; Pensaert, M.B., Martelli, P., Porcine epidemic diarrhea: a retrospect from Europe and matters of debate (2016) Virus Res.; Purvis, J.E., Karhohs, K.W., Mock, C., Batchelor, E., Loewer, A., Lahav, G., p53 dynamics control cell fate (2012) Science; Rivas, C., Aaronson, S.A., Munoz-Fontela, C., Dual role of p53 in innate antiviral immunity (2010) Viruses; Scott, A., McCluskey, B., Brown-Reid, M., Grear, D., Pitcher, P., Ramos, G., Spencer, D., Singrey, A., Porcine epidemic diarrhea virus introduction into the United States: root cause investigation (2016) Prev. Vet. Med.; Sherr, C.J., Principles of tumor suppression (2004) Cell; Shi, D., Lv, M., Chen, J., Shi, H., Zhang, S., Zhang, X., Feng, L., Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus (2014) Viruses; Sun, P., Wu, H., Huang, J., Xu, Y., Yang, F., Zhang, Q., Xu, X., Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase (2018) Virus Res., 253, pp. 1-11; Takaoka, A., Hayakawa, S., Yanai, H., Stoiber, D., Negishi, H., Kikuchi, H., Sasaki, S., Taniguchi, T., Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence (2003) Nature, 424, pp. 516-523; Turpin, E., Luke, K., Jones, J., Tumpey, T., Konan, K., Schultz-Cherry, S., Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication (2005) J. Virol.; Vogelstein, B., Lane, D., Levine, A.J., Surfing the p53 network (2000) Nature; Vousden, K.H., Lu, X., Live or let die: the cell's response to p53 (2002) Nat. Rev. Cancer; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet. Rec.; Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., Baker, S.C., Chen, Z., The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase (2013) J. Gen. Virol.; Yang, L., Xu, J., Guo, L., Guo, T., Zhang, L., Feng, L., Chen, H., Wang, Y., Porcine epidemic diarrhea virus-induced epidermal growth factor receptor activation impairs the antiviral activity of type I interferon (2018) J. Virol.; Yuan, L., Chen, Z., Song, S., Wang, S., Tian, C., Xing, G., Chen, X., Zhang, L., P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling (2015) J. Biol. Chem.; Zhang, X.-P., Liu, F., Wang, W., Two-phase dynamics of p53 in the DNA damage response (2011) Proc. Natl. Acad. Sci.; Zhang, J., Guo, L., Xu, Y., Yang, L., Shi, H., Feng, L., Wang, Y., Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells (2017) Arch. Virol.; Zhou, Y., Wu, Y., Zhu, J., Tong, W., Yu, H., Jiang, Y., Tong, G., Complete genome sequence of a virulent porcine epidemic diarrhea virus strain (2012) J. Virol.","Feng, L.; Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, China; email: fengli@163.com",,"Elsevier Ltd",01615890,,IMCHA,"30784764","English","Mol. Immunol.",Article,"Final",,Scopus,2-s2.0-85061632255 "Hatem A., Mohamed S., Abu Elhassan U.E., Ismael E.A.M., Rizk M.S., El-Kholy A., El-Harras M.","6603018220;24766529500;57208085317;57208081814;57208081304;55401193200;57208080941;","Clinical characteristics and outcomes of patients with severe acute respiratory infections (SARI): Results from the Egyptian surveillance study 2010-2014",2019,"Multidisciplinary Respiratory Medicine","14","1", 11,"","",,,"10.1186/s40248-019-0174-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063730033&doi=10.1186%2fs40248-019-0174-7&partnerID=40&md5=50ed9e7d937ace02bb40e1f3569f935b","Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt; Department of Anesthesia and Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Clinical Pathology, Faculty of Medicine, Mansura University, Mansura, Egypt","Hatem, A., Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt; Mohamed, S., Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt; Abu Elhassan, U.E., Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt; Ismael, E.A.M., Department of Chest Diseases, Faculty of Medicine, Cairo University, Cairo, Egypt; Rizk, M.S., Department of Anesthesia and Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt; El-Kholy, A., Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt; El-Harras, M., Department of Clinical Pathology, Faculty of Medicine, Mansura University, Mansura, Egypt","Background: Respiratory viral and atypical bacterial infections data in Egyptian patients are sparse. This study describes the clinical features and outcomes of patients with severe acute respiratory infections (SARI) in hospitalized patients in Egypt. Methods: SARI surveillance was implemented at Cairo University Hospital (CUH) during the period 2010-2014. All hospitalized patients meeting the WHO case definition for SARI were enrolled. Nasopharyngeal/oropharyngeal (NP/OP) swabs were collected and samples were tested using RT-PCR for influenza A, B, respiratory syncytial virus (RSV), human metapneumovirus (hMPV), parainfluenza virus (PIV 1,2,3,4), adenovirus, bocavirus, coronavirus, enterovirus, rhinovirus, and atypical bacteria. Data were analyzed to calculate positivity rates for viral pathogens and determine which pathogens related to severe outcomes or resulted in death. Results: Overall, 1,075/3,207 (33.5%) cases had a viral etiology, with a mean age of 5.74 (±13.87) years. The highest rates were reported for RSV (485 cases, 45.2%), PIV (125, 11.6%), and adenovirus (105, 9.8%). Children had a higher viral rate (981, 91.2%) compared to 94 (8.8%) cases in adults. Patients with identified viruses had significantly lower rates for ICU admission, hospital stay, mechanical ventilation, and overall mortality than those without identified viruses. No infections were independently associated with severe outcomes. Conclusions: Viral pathogens were encountered in one-third of hospitalized adult and pediatric Egyptian patients with SARI, while atypical bacteria had a minor role. Highest rates of viral infections were reported for RSV, PIV, and adenovirus. Viral infections had neither negative impacts on clinical features nor outcomes of patients with SARI in our locality. © 2019 The Author(s).","Clinical; Egypt; Outcomes; SARI; Surveillance; Viral","abnormal respiratory sound; adenovirus infection; adult; adult respiratory distress syndrome; aged; artificial ventilation; Bocaparvovirus; child; Chlamydia; clinical feature; clinical outcome; controlled study; convulsion; disease severity; Egypt; female; groups by age; hospital admission; hospital patient; hospitalization; human; Human metapneumovirus; influenza; intensive care unit; major clinical study; male; mixed infection; morbidity; mortality; Mycoplasma; overall mortality; Parainfluenza virus infection; preschool child; prodromal symptom; respiratory failure; respiratory syncytial virus infection; respiratory tract infection; reverse transcription polymerase chain reaction; Review; Rhinovirus; tachypnea; virus identification; wheezing","Murray, C., Lopez, A., Mathers, C., Stein, C., (2001) The Global Burden of Disease 2000 Project: Aims, Methods, and Data Sources. Global Programme On Evidence for Health Policy, , World Health Organization Geneva http://www.who.int/healthinfo/paper36.pdf; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23, pp. 74-98. , 1:CAS:528:DC%2BC3cXks1Sktb4%3D; (2006) WHO Pandemic Influenza Draft Protocol for Rapid Response and Containment, , World Health Organization from HTTP://www. who.int /CSR/disease /avian- influenza/guidelines/draftprotocol/en/index.html; Chapter 7: A Cough or Difficulty Breathing (2005) Handbook IMCI Integrated Management of Childhood Illness, p. 23. , World Health Organization World Health Organization Geneva; (2011) WHO Global Technical Consultation: Global Standards and Tools for Influenza Surveillance, , World Health Organization World Health Organization Geneva 8-10 MARCH 2011; (2014) WHO Surveillance Case Definitions for ILI and SARI, , World Health Organization https://www. who.int/influenza/surveillance monitoring/ili- sari-surveillance-case-definition/en/; Al-Toum, R., Bdour, S., Ayyash, H., Adenovirus Infections in Jordanian Hospitalized Pediatric Patients: Prevalence and Clinical Features (2009) J Med J, 43 (3), pp. 171-179; El Kholy, A.A., Mostafa, N.A., El-Sherbini, S.A., Morbidity and outcome of severe respiratory syncytial virus infection (2013) Pediatr Int, 55, pp. 283-288; El Kholy, A.A., Mostafa, N.A., Ali, A.A., El-Sherbini, S.A., Ismail, R.I., Magdy, R.I., Risk factors of prolonged hospital stay in children with viral severe acute respiratory infections (2014) J Infect Dev Ctries., 8, pp. 1285-1293. , https://doi.org/10.3855/jidc.4682; Agmy, G., Mohamed, S., Gad, Y., Farghally, E., Mohammedin, H., Rashed, H., Bacterial Profile, Antibiotic Sensitivity and Resistance of Lower Respiratory Tract Infections in Upper Egypt (2013) Mediterr J Hematol Infect Dis, 5 (1), p. e2013056. , 10.4084/MJHID.2013.056 24106606 3787711 Collection 2013; Breiman, R.F., Cosmas, L., Njenga, M.K., Williamson, J., Mott, J.A., Katz, M.A., Severe acute respiratory infection in children in a densely populated urban slum in Kenya, 2007-2011 (2015) BMC Infect Dis., 15, p. 95. , https://doi.org/10.1186/s12879-015-0827-x; (2009) WHO Information for Laboratory Diagnosis of Pandemic (H1N1), , https://www.who.int/csr/resources/publications/swineflu/WHO_Diagnostic_RecommendationsH1N1_20090521.pdf?ua=1, virus in humans ? revised; Horton, K.C., Dueger, E.L., Kandeel, A., Abdallat, M., El-Kholy, A., Al-Awaidy, S., Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the Eastern Mediterranean Region, 2007-2014 (2017) PLoS One, 12, p. e0180954; Wansaula, Z., Olsen, S.J., Casa, M.G., Golenko, C., Erhart, L.M., Kammerer, P., Surveillance for severe acute respiratory infections in Southern Arizona, 2010-2014 (2016) Influenza Other Respir Viruses, 10, pp. 161-169. , https://doi.org/10.1111/irv.12360; Nguyen, H.K.L., Nguyen, S.V., Nguyen, A.P., Hoang, P.M.V., Le, T.T., Nguyen, T.C., Surveillance of Severe Acute Respiratory Infection (SARI) for Hospitalized Patients in Northern Vietnam, 2011-2014 (2017) Jpn J Infect Dis., 70, pp. 522-527; Zhang, C., Zhu, N., Xie, Z., Lu, R., He, B., Liu, C., Viral etiology and clinical profiles of children with severe acute respiratory infections in China (2013) PLoS One, 8, p. e72606. , 3135-9; Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., Global burden of acute lower respiratory infections due to the respiratory syncytial virus in young children: A systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555; Shafik, C., Mohareb, E., Yassin, A.S., Amin, M.A., El Kholy, A., El-Karaksy, H., Viral etiologies of lower respiratory tract infections among Egyptian children under five years of age (2012) BMC Infect Dis., 12, pp. 350-358; Hess, B., DeSimone, J., Non-influenza Respiratory Viruses (2012) Hospital Physician Infectious Diseases Board Review Manual. 13, pp. 5-16. , V. Moudgal (eds) Turner White Communications Inc. Wayne; (2009) Respiratory Syncytial Virus and Parainfluenza Viruses, , WHO Initiative for Vaccine Research ttp://www.who.int/vaccine-research /diseases /ari /en/index2.html; Durbin, A., Karron, R., Progress in the Development of Respiratory Syncytial Virus and Parainfluenza Virus Vaccines (2003) Clin Infect Dis., 37, pp. 1668-1677. , https://doi.org/10.1086/379775; Meerhoff, T.J., Simaku, A., Ulqinaku, D., Torosyan, L., Gribkova, N., Shimanovich, V., Surveillance for severe acute respiratory infections (SARI) in hospitals in the WHO European region - An exploratory analysis of risk factors for a severe outcome in influenza-positive SARI cases (2015) BMC Infect Dis., 15, p. 1; Moesker, F.M., Van Kampen, J.J.A., Van Rossum, A.M.C., De Hoog, M., Koopmans, M.P., Osterhaus, A.D., Viruses as Sole Causative Agents of Severe Acute Respiratory Tract Infections in Children (2016) PLoS One., 11 (3), p. e0150776. , https://doi.org/10.1371/journal.pone.0150776; Henrickson, K.J., Hall, C.B., Diagnostic assays for respiratory syncytial virus disease (2007) Pediatr Infect Dis J, 26 (11), pp. S36-S40; Falsey, A.R., Criddle, M.C., Walsh, E.E., Detection of respiratory syncytial virus and human metapneumovirus by reverse transcription polymerase chain reaction in adults with and without respiratory illness (2006) J Clin Virol, 35 (1), pp. 46-50. , 1:CAS:528:DC%2BD28XkvFWj; Hasegawa, K., Jartti, T., Mansbach, J.M., Laham, F.R., Jewell, A.M., Espinola, J.A., Respiratory Syncytial Virus Genomic Load and Disease Severity among Children Hospitalized with Bronchiolitis: Multicenter Cohort Studies in the United States and Finland (2014) J Infect Dis., 211, pp. 1550-1559; Jansen, R.R., Wieringa, J., Koekkoek, S.M., Visser, C.E., Pajkrt, D., Molenkamp, R., Frequent detection of respiratory viruses without symptoms: Toward defining clinically relevant cutoff values (2011) J Clin Microbiol., 49, pp. 2631-2636; Adams, O., Weis, J., Jasinska, K., Vogel, M., Tenenbaum, T., Comparison of human metapneumovirus, respiratory syncytial virus and Rhinovirus respiratory tract infections in young children admitted to hospital (2015) J Med Virol, 87, pp. 275-280. , 1:STN:280:DC%2BC2cbntVOqtA%3D%3D; Oshansky, C.M., Gartland, A.J., Wong, S.S., Jeevan, T., Wang, D., Roddam, P.L., Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load (2014) Am J Respir Crit Care Med., 189, pp. 449-462; SacËkesen, C., Pinar, A., Sekerel, B., Akyon, Y., SaracËlar, Y., Use of polymerase chain reaction for detection of adenovirus in children with or without wheezing (2005) Turk J Pediatr, 47 (3), p. 227. , PMID: 16250306; Williams, J.V., Harris, P.A., Tollefson, S.J., Halburnt-Rush, L.L., Pingsterhaus, J.M., Edwards, K.M., Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children (2004) New Eng J Med., 350 (5), pp. 443-450; Walsh, E.E., Peterson, D.R., Falsey, A.R., Human metapneumovirus infections in adults: Another piece of the puzzle (2008) Arch Intern Med, 168 (22), p. 2489; Ali, S., Williams, J., Chen, Q., Faouri, S., Shehabi, A., Jundi, E.A., Human metapneumovirus in hospitalized children in Amman, Jordan (2010) J Med Virol., 82 (6), pp. 1012-1016; Al-Thani, A., Azzam, S., Abubakar, H., Abdel-Hadi, F., Elsheikh, M., Janahi, I., The role of human metapneumovirus in pediatric respiratory tract infection in Qatar (2010) Futur Virol, 5 (3), pp. 355-360; Feikin, D.R., Njenga, M.K., Bigogo, G., Aura, B., Aol, G., Audi, A., Etiology and Incidence of Viral and Bacterial Acute Respiratory Illness among Older Children and Adults in Rural Western Kenya, 2007-2010 (2012) PLoS One, 7 (8), p. e43656","Mohamed, S.; Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut UniversityEgypt; email: saawm220@gmail.com",,"BioMed Central Ltd.",1828695X,,,,"English","Multidiscip. Resp. Med.",Review,"Final",Open Access,Scopus,2-s2.0-85063730033 "Arabi Y.M., Deeb A.M., Al-Hameed F., Mandourah Y., Almekhlafi G.A., Sindi A.A., Al-Omari A., Shalhoub S., Mady A., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Al Harthy A., Kharaba A., Jose J., Dabbagh T., Fowler R.A., Balkhy H.H., Merson L., Hayden F.G., For the Saudi Critical Care Trials group","57211811296;56324534900;6507857242;54385796100;57189068027;26039585200;55883902400;56381466300;54583983000;56563960000;57188964531;57193446664;55385682500;13409875600;55386448900;16232591900;57203397490;57195950548;57023686400;50161809700;57192669117;56915993000;7102786298;6701797249;10639152700;7103233446;","Macrolides in critically ill patients with Middle East Respiratory Syndrome",2019,"International Journal of Infectious Diseases","81",,,"184","190",,5,"10.1016/j.ijid.2019.01.041","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062352179&doi=10.1016%2fj.ijid.2019.01.041&partnerID=40&md5=24f7ca94678364b808286483820c4df9","College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Intensive Care Department, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; Research Office, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Department of Intensive Care, Ministry of the National Guard – Health Affairs, Jeddah, Saudi Arabia; Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Intensive Care, Dr Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia; Department of Medicine, Division of Infectious Diseases, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia; Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; Department of Anesthesiology and Intensive Care, Tanta University Hospitals, Tanta, Egypt; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Department of Critical Care Medicine, King Fahad Medical City, Riyadh, Saudi Arabia; Intensive Care Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia; Department of Critical Care Medicine, King Saud University, Riyadh, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Intensive Care Department, Ministry of the National Guard - Health Affairs, Al Ahsa, Saudi Arabia; King Abdulaziz University, Department of Family and Community Medicine, Jeddah, Saudi Arabia; Intensive Care Department, King Fahd Hospital, Jeddah, Saudi Arabia; Department of Critical Care, King Fahad Hospital, Ohoud Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Department of Critical Care Medicine and Department of Medicine, Sunnybrook Hospital, Toronto, Ontario, Canada; Department of Infection Prevention and Control, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), Infectious Diseases Data Observatory, Oxford University, Oxford, United Kingdom; International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Medicine, Division of Infectious Diseases, University of Western Ontario, London, Canada; King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia","Arabi, Y.M., College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Intensive Care Department, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; Deeb, A.M., Research Office, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; Al-Hameed, F., College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia, Department of Intensive Care, Ministry of the National Guard – Health Affairs, Jeddah, Saudi Arabia; Mandourah, Y., Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Almekhlafi, G.A., Department of Intensive Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Sindi, A.A., Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Al-Omari, A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Department of Intensive Care, Dr Sulaiman Al-Habib Group Hospitals, Riyadh, Saudi Arabia; Shalhoub, S., Department of Medicine, Division of Infectious Diseases, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia, Department of Medicine, Division of Infectious Diseases, University of Western Ontario, London, Canada; Mady, A., Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia, Department of Anesthesiology and Intensive Care, Tanta University Hospitals, Tanta, Egypt; Alraddadi, B., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Almotairi, A., Department of Critical Care Medicine, King Fahad Medical City, Riyadh, Saudi Arabia; Al Khatib, K., Intensive Care Department, Al-Noor Specialist Hospital, Makkah, Saudi Arabia; Abdulmomen, A., Department of Critical Care Medicine, King Saud University, Riyadh, Saudi Arabia; Qushmaq, I., Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; Solaiman, O., King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Al-Aithan, A.M., Intensive Care Department, Ministry of the National Guard - Health Affairs, Al Ahsa, Saudi Arabia, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia; Al-Raddadi, R., King Abdulaziz University, Department of Family and Community Medicine, Jeddah, Saudi Arabia; Ragab, A., Intensive Care Department, King Fahd Hospital, Jeddah, Saudi Arabia; Al Harthy, A., Intensive Care Department, King Saud Medical City, Riyadh, Saudi Arabia; Kharaba, A., Department of Critical Care, King Fahad Hospital, Ohoud Hospital, Al-Madinah Al-Monawarah, Saudi Arabia; Jose, J., Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; Dabbagh, T., Intensive Care Department, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Fowler, R.A., Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada, Department of Critical Care Medicine and Department of Medicine, Sunnybrook Hospital, Toronto, Ontario, Canada; Balkhy, H.H., College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Department of Infection Prevention and Control, Ministry of the National Guard – Health Affairs, Riyadh, Saudi Arabia; Merson, L., International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), Infectious Diseases Data Observatory, Oxford University, Oxford, United Kingdom; Hayden, F.G., International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States; For the Saudi Critical Care Trials group","Objectives: Macrolides have been reported to be associated with improved outcomes in patients with viral pneumonia related to influenza and other viruses, possibly because of their immune-modulatory effects. Macrolides have frequently been used in patients with Middle East Respiratory Syndrome (MERS). This study investigated the association of macrolides with 90-day mortality and MERS coronavirus (CoV) RNA clearance in critically ill patients with MERS. Methods: This retrospective analysis of a multicenter cohort database included 14 tertiary-care hospitals in five cities in Saudi Arabia. Multivariate logistic-regression analysis was used to determine the association of macrolide therapy with 90-day mortality, and the Cox-proportional hazard model to determine the association of macrolide therapy with MERS-CoV RNA clearance. Results: Of 349 critically ill MERS patients, 136 (39%) received macrolide therapy. Azithromycin was most commonly used (97/136; 71.3%). Macrolide therapy was commonly started before the patient arrived in the intensive care unit (ICU) (51/136; 37.5%), or on day1 in ICU (53/136; 39%). On admission to ICU, the baseline characteristics of patients who received and did not receive macrolides were similar, including demographic data and sequential organ failure assessment score. However, patients who received macrolides were more likely to be admitted with community-acquired MERS (P = 0.02). Macrolide therapy was not independently associated with a significant difference in 90-day mortality (adjusted odds ratio [OR]: 0.84; 95% confidence interval [CI] :0.47–1.51; P = 0.56) or MERS-CoV RNA clearance (adjusted HR: 0.88; 95% CI:0.47–1.64; P = 0.68). Conclusions: These findings indicate that macrolide therapy is not associated with a reduction in 90-day mortality or improvement in MERS-CoV RNA clearance. © 2019 The Author(s)","Azithromycin; Critical care; Influenza; Macrolides; MERS-CoV; Pneumonia","azithromycin; clarithromycin; erythromycin; hypertensive factor; immunoglobulin; immunosuppressive agent; virus RNA; antiinfective agent; macrolide; adult; antibiotic therapy; Article; cohort analysis; community acquired infection; controlled study; critically ill patient; demography; female; hospital admission; human; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; multicenter study; retrospective study; Saudi Arabia; Sequential Organ Failure Assessment Score; tertiary care center; viral clearance; aged; clinical trial; Coronavirus infection; critical illness; drug effect; genetics; intensive care unit; isolation and purification; middle aged; mortality; statistics and numerical data; virology; Adult; Aged; Anti-Bacterial Agents; Coronavirus Infections; Critical Illness; Female; Humans; Intensive Care Units; Macrolides; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Retrospective Studies; Saudi Arabia","Amsden, G.W., Anti-inflammatory effects of macrolides—an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? (2005) J Antimicrob Chemother, 55 (1), pp. 10-21; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically ill patients with the middle east respiratory syndrome: a multicenter retrospective cohort study (2017) Crit Care Med, 45 (10), pp. 1683-1695; Beigelman, A., Bacharier, L.B., Baty, J., Buller, R., Mason, S., Schechtman, K.B., Does azithromycin modify viral load during severe respiratory syncytial virus bronchiolitis? (2015) J Allergy Clin Immunol, 136 (4), pp. 1129-1131; Beigelman, A., Mikols, C.L., Gunsten, S.P., Cannon, C.L., Brody, S.L., Walter, M.J., Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis (2010) Respir Res, 11, p. 90; Bermejo-Martin, J.F., Kelvin, D.J., Eiros, J.M., Castrodeza, J., Ortiz de Lejarazu, R., Macrolides for the treatment of severe respiratory illness caused by novel H1N1 swine influenza viral strains (2009) J Infect Dev Ctries, 3 (3), pp. 159-161; Gielen, V., Johnston, S.L., Edwards, M.R., Azithromycin induces anti-viral responses in bronchial epithelial cells (2010) Eur Respir J, 36 (3), pp. 646-654; Higashi, F., Kubo, H., Yasuda, H., Nukiwa, T., Yamaya, M., Additional treatment with clarithromycin reduces fever duration in patients with influenza (2014) Respir Investig, 52 (5), pp. 302-309; Hung, I.F.N., To, K.K.W., Chan, J.F.W., Cheng, V.C.C., Liu, K.S.H., Tam, A., Efficacy of clarithromycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A(H3N2) infection: an open-label randomized, controlled, phase IIb/III trial (2017) Chest, 151 (5), pp. 1069-1080; https://isaric.tghn.org/, The international severe acute respiratory and emerging infection consortium case report forms. Available from: [Accessed 1 November 2018]; Kakeya, H., Seki, M., Izumikawa, K., Kosai, K., Morinaga, Y., Kurihara, S., Efficacy of combination therapy with oseltamivir phosphate and azithromycin for influenza: a multicenter, open-label, randomized study (2014) PLoS One, 9 (3); Kanoh, S., Rubin, B.K., Mechanisms of action and clinical application of macrolides as immunomodulatory medications (2010) Clin Microbiol Rev, 23 (3), pp. 590-615; Kneyber, M.C., van Woensel, J.B., Uijtendaal, E., Uiterwaal, C.S., Kimpen, J.L., Azithromycin does not improve disease course in hospitalized infants with respiratory syncytial virus (RSV) lower respiratory tract disease: a randomized equivalence trial (2008) Pediatr Pulmonol, 43 (2), pp. 142-149; Lee, N., Wong, C.K., Chan, M.C.W., Yeung, E.S.L., Tam, W.W.S., Tsang, O.T.Y., Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: a randomized controlled trial (2017) Antiviral Res, 144, pp. 48-56; Lendermon, E.A., Coon, T.A., Bednash, J.S., Weathington, N.M., McDyer, J.F., Mallampalli, R.K., Azithromycin decreases NALP3 mRNA stability in monocytes to limit inflammasome-dependent inflammation (2017) Respir Res, 18 (1), p. 131; Martin-Loeches, I., Bermejo-Martin, J.F., Valles, J., Granada, R., Vidaur, L., Vergara-Serrano, J.C., Macrolide-based regimens in absence of bacterial co-infection in critically ill H1N1 patients with primary viral pneumonia (2013) Intensive Care Med, 39 (4), pp. 693-702; McCallum, G.B., Morris, P.S., Chatfield, M.D., Maclennan, C., White, A.V., Sloots, T.P., A single dose of azithromycin does not improve clinical outcomes of children hospitalised with bronchiolitis: a randomised, placebo-controlled trial (2013) PLoS One, 8 (9); Min, J.Y., Jang, Y.J., Macrolide therapy in respiratory viral infections (2012) Mediators Inflamm, 2012; Mosquera, R.A., Stark, J.M., Atkins, C.L., Colasurdo, G.N., Chevalier, J., Samuels, C.L., Functional and immune response to respiratory syncytial virus infection in aged BALB/c mice: a search for genes determining disease severity (2014) Exp Lung Res, 40 (1), pp. 40-49; Nakamura, H., Fujishima, S., Inoue, T., Ohkubo, Y., Soejima, K., Waki, Y., Clinical and immunoregulatory effects of roxithromycin therapy for chronic respiratory tract infection (1999) Eur Respir J, 13 (6), pp. 1371-1379; (2017), https://livertox.nih.gov/MacrolideAntibiotics.htm, Macrolide antibiotics Available from: [Accessed 1 November 2018]; Ninomiya, K., Fukui, T., Imai, T., Matsui, M., Matsuoka, K., Effect of maclorides on duration and resolution of symptoms and complication of pneumonia in children with influenza (2002) J Nippon Med Sch = Nippon Ika Daigaku zasshi, 69 (1), pp. 53-57; Pinto, L.A., Pitrez, P.M., Luisi, F., de Mello, P.P., Gerhardt, M., Ferlini, R., Azithromycin therapy in hospitalized infants with acute bronchiolitis is not associated with better clinical outcomes: a randomized, double-blinded, and placebo-controlled clinical trial (2012) J Pediatr, 161 (6), pp. 1104-1108; Schogler, A., Kopf, B.S., Edwards, M.R., Johnston, S.L., Casaulta, C., Kieninger, E., Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells (2015) Eur Respir J, 45 (2), pp. 428-439; Shinahara, W., Takahashi, E., Sawabuchi, T., Arai, M., Hirotsu, N., Takasaki, Y., Immunomodulator clarithromycin enhances mucosal and systemic immune responses and reduces re-infection rate in pediatric patients with influenza treated with antiviral neuraminidase inhibitors: a retrospective analysis (2013) PLoS One, 8 (7); Suzuki, T., Yamaya, M., Sekizawa, K., Hosoda, M., Yamada, N., Ishizuka, S., Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells (2002) Am J Respir Crit Care Med, 165 (8), pp. 1113-1118; Tahan, F., Ozcan, A., Koc, N., Clarithromycin in the treatment of RSV bronchiolitis: a double-blind, randomised, placebo-controlled trial (2007) Eur Respir J, 29 (1), pp. 91-97; Us, D., Cytokine storm in avian influenza (2008) Mikrobiyol Bul, 42 (2), pp. 365-380; Vincent, J.L., de Mendonca, A., Cantraine, F., Moreno, R., Takala, J., Suter, P.M., Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine (1998) Crit Care Med, 26 (11), pp. 1793-1800; Wales, D., Woodhead, M., The anti-inflammatory effects of macrolides (1999) Thorax, 54, pp. S58-62; Walkey, A.J., Wiener, R.S., Macrolide antibiotics and survival in patients with acute lung injury (2012) Chest, 141 (5), pp. 1153-1159; Wang, J., Nikrad, M.P., Travanty, E.A., Zhou, B., Phang, T., Gao, B., Innate immune response of human alveolar macrophages during influenza A infection (2012) PLoS One, 7 (3); Zarogoulidis, P., Papanas, N., Kioumis, I., Chatzaki, E., Maltezos, E., Zarogoulidis, K., Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases (2012) Eur J Clin Pharmacol, 68 (5), pp. 479-503; Zhang, C., Xu, Y., Jia, L., Yang, Y., Wang, Y., Sun, Y., A new therapeutic strategy for lung tissue injury induced by influenza with CR2 targeting complement inhibitor (2010) Virol J, 7, p. 30","Arabi, Y.M.; King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, P.O. Box 22490, Saudi Arabia; email: arabi@ngha.med.sa",,"Elsevier B.V.",12019712,,IJIDF,"30690213","English","Int. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85062352179 "Maboni G., Seguel M., Lorton A., Berghaus R., Sanchez S.","26635465100;45761314900;57208470244;6602231315;57200847111;","Canine infectious respiratory disease: New insights into the etiology and epidemiology of associated pathogens",2019,"PLoS ONE","14","4", e0215817,"","",,5,"10.1371/journal.pone.0215817","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064876339&doi=10.1371%2fjournal.pone.0215817&partnerID=40&md5=9b657fda9f486c096c58bfd290d1eab6","Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, United States; Odum School of Ecology, University of Georgia, Athens, GA, United States; Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States","Maboni, G., Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, United States; Seguel, M., Odum School of Ecology, University of Georgia, Athens, GA, United States; Lorton, A., Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, United States; Berghaus, R., Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States; Sanchez, S., Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, United States, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States","Canine infectious respiratory disease (CIRD) is a syndrome where multiple viral and bacterial pathogens are involved sequentially or synergistically to cause illness. There is limited information regarding the prevalence of pathogens related to CIRD in the United States as well as the role of co-infections in the pathogenesis of the syndrome. We aimed to conduct a comprehensive etiologic and epidemiologic study of multiple CIRD agents in a diverse dog population using molecular methods and statistical modeling analyses. In addition, a novel probe-based multiplex real-time PCR was developed to simultaneously detect and differentiate two species of Mycoplasma (M. canis and M. cynos). Canine adenovirus, canine distemper virus, canine parainfluenza virus, coronavirus, influenza A virus (H3N2 and H3N8), Bordetella bronchiseptica, M. canis, M. cynos and Streptococcus equi subsp. zooepidemicus were investigated in specimens from clinically ill and asymptomatic dogs received at the Athens Veterinary Diagnostic Laboratory. Results showed low occurrence of classical CIRD agents such as B. bronchiseptica, canine adenovirus and distemper virus, while highlighting the potential role of emerging bacteria such as M. canis and M. cynos. Statistical modeling analyses of CIRD pathogens emphasized the impact of co-infections on the severity of clinical presentation, and showed that host factors, such as animal age, are the most important predictors of disease severity. This study provides new insights into the current understanding of the prevalence and role of co-infections with selected viruses and bacteria in the etiology of CIRD, while underscoring the importance of molecular diagnosis and vaccination against this disease. © 2019 Maboni et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"bacterial DNA; virus DNA; Article; bacterium detection; Bordetella bronchiseptica; Canine adenovirus; Canine distemper virus; Canine parainfluenza virus; colony forming unit; Coronavirinae; disease severity; dog disease; Influenza A virus (H3N2); Influenza A virus (H3N8); mixed infection; Mycoplasma; Mycoplasma canis; Mycoplasma cyanos; nonhuman; Paramyxovirinae; real time polymerase chain reaction; respiratory tract disease; seasonal variation; species difference; Streptococcus equi; vaccination; virus detection; animal; dog; dog disease; female; male; microbiology; mixed infection; respiratory tract infection; season; veterinary medicine; Animals; Coinfection; Dog Diseases; Dogs; Female; Male; Respiratory Tract Infections; Seasons; Vaccination","Buonavoglia, C., Martella, V., Canine respiratory viruses (2007) Veterinary Research, 38 (2), pp. 355-373. , https://doi.org/10.1051/vetres:2006058, PMID: 17296161; Mitchell, J.A., Cardwell, J.M., Leach, H., Walker, C.A., Le Poder, S., Decaro, N., European surveillance of emerging pathogens associated with canine infectious respiratory disease (2017) Veterinary Microbiology, 212, pp. 31-38. , https://doi.org/10.1016/j.vetmic.2017.10.019, PMID: 29173585; Weese, S.J., Stull, J., Respiratory disease outbreak in a veterinary hospital associated with canine parainfluenza virus infection (2013) Canadian Veterinary Journal, 54, pp. 79-82. , PMID: 23814307; Rosendal, S., Vinther, O., Experimental mycoplasmal pneumonia in dogs: Electron microscopy of infected tissue (1977) Acta Pathologica Microbiologica Scandinavica Section B Microbiology, 85, pp. 462-465; Erles, K., Dubovi, E.J., Brooks, H.W., Brownlie, J., Longitudinal study of viruses associated with canine infectious respiratory disease (2004) Journal of Clinical Microbiology, 42 (10), pp. 4524-4529. , https://doi.org/10.1128/JCM.42.10.4524-4529.2004, PMID: 15472304; Mitchell, J.A., Brownlie, J., The challenges in developing effective canine infectious respiratory disease vaccines (2015) The Journal of Pharmacy and Pharmacology, 67 (3), pp. 372-381. , https://doi.org/10.1111/jphp.12380, PMID: 25736813; Appel, M.J., Percy, D.H., SV-5-like parainfluenza virus in dogs (1970) Journal of the American Veterinary Medical Association, 156, pp. 1778-1781. , PMID: 4316294; Ditchfield, J., Macpherson, L.W., Zbitnew, A., Association of canine adenovirus (Toronto A 26/61) with an outbreak of laryngotracheitis (Kennel Cough): A preliminary report (1962) Canadian Veterinary Journal, 3, pp. 238-247. , PMID: 17421510; Karpas, A.K.N., Garcia, F.G., Canine tracheobronchitis: Isolation and characterization of the agent with experimental reproduction of the disease (1968) Proceedings of the Society for Experimental Biology and Medicine, 127, pp. 45-52. , PMID: 5644666; Bemis, D.A., Bordetella and Mycoplasma respiratory infections in dogs and cats (1992) Veterinary Clinics of North America: Small Animal Practice, 22, pp. 1173-1186. , PMID: 1523788; Crawford, P.C., Dubovi, E.J., Castleman, W.L., Stephenson, I., Gibbs, E.P.J., Chen, L., Bright, R.A., Transmission of equine influenza virus to dogs (2005) Science, 310, pp. 482-485. , https://doi.org/10.1126/science.1117950, PMID: 16186182; Erles, K., Toomey, C., Brooks, H.W., Brownlie, J., Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease (2003) Virology, 310 (2), pp. 216-223. , https://doi.org/10.1016/s0042-6822(03)00160-0, PMID: 12781709; Chalker, V.J., Owen, W.M., Paterson, C., Barker, E., Brooks, H., Rycroft, A.N., Mycoplasmas associated with canine infectious respiratory disease (2004) Microbiology, 150 (10), pp. 3491-3497. , https://doi.org/10.1099/mic.0.26848-0, PMID: 15470126; Chalker, V.J., Brooks, H.W., Brownlie, J., The association of Streptococcus equi subsp. Zooepidemicus with canine infectious respiratory disease (2003) Veterinary Microbiology, 95 (1-2), pp. 149-156. , https://doi.org/10.1016/s0378-1135(03)00155-x, PMID: 12860084; Renshaw, R.W., Zylich, N.C., Laverack, M.A., Glaser, A.L., Dubovi, E.J., Pneumovirus in dogs with acute respiratory disease (2010) Emerging Infectious Diseases, 16 (6), pp. 993-995. , https://doi.org/10.3201/eid1606.091778, PMID: 20507755; Kapoor, A., Mehta, N., Dubovi, E.J., Simmonds, P., Govindasamy, L., Medina, J.L., Characterization of novel canine bocaviruses and their association with respiratory disease (2012) The Journal of General Virology, 93 (2), pp. 341-346. , https://doi.org/10.1099/vir.0.036624-0, PMID: 22031527; Bukh, J., Hepatitis C homolog in dogs with respiratory illness (2011) Proceedings of the National Academy of Sciences of the United States of America, 108 (31), pp. 12563-12564. , https://doi.org/10.1073/pnas.1107612108, PMID: 21768355; El-Attar, L.M., Mitchell, J.A., Brooks Brownlie, H., Priestnall, S.L., Brownlie, J., Detection of non-primate hepaci-viruses in UK dogs (2015) Virology, 484, pp. 93-102. , https://doi.org/10.1016/j.virol.2015.05.005, PMID: 26086431; Woo, P.C., Lau, S.K., Choi, G.K., Huang, Y., Teng, J.L., Tsoi, H.W., Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily (2012) Journal of Virology, 86 (5), pp. 2797-2808. , https://doi.org/10.1128/JVI.05481-11, PMID: 22205729; Decaro, N., Mari, V., Larocca, V., Losurdo, M., Lanave, G., Lucente, M.S., Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease (2016) Veterinary Microbiology, 192, pp. 21-25. , https://doi.org/10.1016/j.vetmic.2016.06.009, PMID: 27527760; Lavan, R., Knesl, O., Prevalence of canine infectious respiratory pathogens in asymptomatic dogs presented at US animal shelters (2015) The Journal of Small Animal Practice, 56 (9), pp. 572-576. , https://doi.org/10.1111/jsap.12389, PMID: 26199194; Payungporn, S., Crawford, P.C., Kouo, T.S., Chen, L.M., Pompey, J., Castleman, W.L., Donis, R.O., Influenza A virus (H3N8) in dogs with respiratory disease, Florida (2008) Emerging Infectious Diseases, 14, p. 902. , https://doi.org/10.3201/eid1406.071270, PMID: 18507900; Pesavento, P.A., Hurley, K.F., Bannasch, M.J., Artiushin, S., Timoney, J.F., A clonal outbreak of acute fatal hemorrhagic pneumonia in intensively housed (shelter) dogs caused by Streptococcus equi subsp. Zooepidemicus (2008) Veterinary Pathology, 45, pp. 51-53. , https://doi.org/10.1354/vp.45-1-51, PMID: 18192575; Hozbor, D., Fouque, F., Guiso, N., Detection of Bordetella bronchiseptica by the Polymerase Chain Reaction (1999) Research in Microbiology, 150, pp. 333-341. , PMID: 10422694; Chaturvedi, U., Tiwari, A.K., Ratta, B., Ravindra, P.V., Rajawat, Y.S., Palia, S.K., Detection of canine adeno-viral infections in urine and faeces by the Polymerase Chain Reaction (2008) Journal of Virological Methods, 149 (2), pp. 260-263. , https://doi.org/10.1016/j.jviromet.2008.01.024, PMID: 18329729; Saito, T.B., Alfieri, A.A., Wosiacki, S.R., Negrao, F.J., Morais, H.S., Alfieri, A.F., Detection of canine distemper virus by Reverse Transcriptase-Polymerase Chain Reaction in the urine of dogs with clinical signs of distemper encephalitis (2006) Research in Veterinary Science, 80 (1), pp. 116-119. , https://doi.org/10.1016/j.rvsc.2005.03.002, PMID: 15878186; Spackman, E., Senne, D.A., Bulaga, L.L., Myers, T.J., Perdue, M.L., Garber, L.P., Lohman, K., Suarez, D.L., Development of Real-Time RT-PCR for the detection of avian influenza virus (2003) Avian Diseases, 47, pp. 1079-1082. , https://doi.org/10.1637/0005-2086-47.s3.1079, PMID: 14575115; Escutenaire, S., Mohamed, N., Isaksson, M., Thoren, P., Klingeborn, B., Belak, S., SYBR Green Real-Time Reverse Transcription-Polymerase Chain Reaction assay for the generic detection of coronaviruses (2007) Archives of Virology, 152 (1), pp. 41-58. , https://doi.org/10.1007/s00705-006-0840-x, PMID: 16941059; Baverud, V., Johansson, S.K., Aspan, A., Real-time PCR for detection and differentiation of Streptococcus equi subsp. Equi and Streptococcus equi subsp. Zooepidemicus (2007) Veterinary Microbiology, 124 (3-4), pp. 219-229. , https://doi.org/10.1016/j.vetmic.2007.04.020, PMID: 17531409; Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments (2009) Clinical Chemistry, 55 (4), pp. 611-622. , https://doi.org/10.1373/clinchem.2008.112797, PMID: 19246619; Bustin, S.A., Beaulieu, J., Huggett, J., Jaggi, R., Kibenge, F., Olsvik, P.A., Penning, L.C., Toegel, S., MIQE précis: Practical implementation of minimum standard guidelines for fluorescence based quantitative real-time PCR experiments (2010) BMC Molecular Biology, 11, p. 74. , https://doi.org/10.1186/1471-2199-11-74, PMID: 20858237; Tsuchiaka, S., Masuda, T., Sugimura, S., Kobayashi, S., Komatsu, N., Nagai, M., Development of a novel detection system for microbes from bovine diarrhea by real-time PCR (2016) The Journal of Veterinary Medical Science, 78 (3), pp. 383-389. , https://doi.org/10.1292/jvms.15-0552, PMID: 26616156; Stimmelmayr, R.R.S., Maboni, G., Person, B.T., Sanchez, S., Morbillivirus-associated lipid pneumonia in arctic foxes (2018) Journal of Veterinary Diagnostic Investigation, 30 (6), pp. 933-936. , https://doi.org/10.1177/1040638718797382, PMID: 30205787; Yoon, I., Williams, R., Eli Levine, E., Yoon, S., Dunne, J., Martinez, N., Webs on the Web (WOW): 3D visualization of ecological networks on the WWW for collaborative research and education (2004) Proceedings of SPIE, 5295, pp. 124-132. , https://doi.org/10.1117/12.526956; (2010) Network3D Software, , Internet. Cambridge: Microsoft Research; Bartoń, K., Mumin: Multi-model inference Model Selection and Model Averaging Based on Information Criteria (AICc and Alike), , 1.1. 7. ed2012; Schulz, B.S., Kurz, S., Weber, K., Balzer, H.J., Hartmann, K., Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections (2014) Veterinary Journal, 201 (3), pp. 365-369. , https://doi.org/10.1016/j.tvjl.2014.04.019, PMID: 24980809; Zhu, H., Hughes, J., Murcia, P.R., Origins and evolutionary dynamics of H3N2 canine influenza virus (2015) Journal of Virology, 89 (10), pp. 5406-5418. , https://doi.org/10.1128/JVI.03395-14, PMID: 25740996; (2017) Influenza Risk Assessment Tool (IRAT), , https://www.cdc.gov/flu/pandemic-resources/national-strategy/risk-assessment.htm, Center for Disease Control and Prevention; Priestnall, S.L., Mitchell, J.A., Walker, C.A., Erles, K., Brownlie, J., New and emerging pathogens in canine infectious respiratory disease (2014) Veterinary Pathology, 51 (2), pp. 492-504. , https://doi.org/10.1177/0300985813511130, PMID: 24232191; Rosendal, S., Mycoplasmas as a possible cause of enzootic pneumonia in dogs (1972) Acta Veterinaria Scandinavica, 13, p. 137. , PMID: 5063299; Chalker, V.J., Canine mycoplasmas (2005) Research in Veterinary Science, 79 (1), pp. 1-8. , https://doi.org/10.1016/j.rvsc.2004.10.002, PMID: 15894017; Joffe, D.J., Lelewski, R., Weese, J.S., Mcgill-Worsley, J., Shankel, C., Mendonca, S., Sager, T., Poljak, Z., Factors associated with development of canine infectious respiratory disease complex (CIRDC) in dogs in 5 Canadian small animal clinics (2016) Canadian Veterinary Journal, 57, pp. 46-51. , PMID: 26740697; Sowman, H.R., Cave, N.J., Dunowska, M., A survey of canine respiratory pathogens in New Zealand dogs (2018) New Zealand Veterinary Journal, 66 (5), pp. 236-242. , https://doi.org/10.1080/00480169.2018.1490214, PMID: 29924957; Ruch-Gallie, R., Moroff, S., Lappin, M.R., Adenovirus 2, Bordetella bronchiseptica and Parainfluenza molecular diagnostic assay results in puppies after vaccination with modified live vaccines (2016) Journal of Veterinary Internal Medicine, 30 (1), pp. 164-166. , https://doi.org/10.1111/jvim.13821, PMID: 26692461; Anderson, T.C., Crawford, P.C., Dubovi, E.J., Gibbs, E.P.J., Hernandez, J.A., Prevalence of and exposure factors for seropositivity to H3N8 canine influenza virus in dogs with influenza-like illness in the United States (2013) Journal of the American Veterinary Medical Association, 242, pp. 209-216. , https://doi.org/10.2460/javma.242.2.209, PMID: 23276098","Maboni, G.; Athens Veterinary Diagnostic Laboratory, University of GeorgiaUnited States; email: grazieli.maboni@gmail.com",,"Public Library of Science",19326203,,POLNC,"31022218","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85064876339 "Totura A.L., Bavari S.","55207181500;7003364755;","Broad-spectrum coronavirus antiviral drug discovery",2019,"Expert Opinion on Drug Discovery","14","4",,"397","412",,3,"10.1080/17460441.2019.1581171","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062938970&doi=10.1080%2f17460441.2019.1581171&partnerID=40&md5=3c335af4a6772f0b3fc4c3d895a7a77c","Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States","Totura, A.L., Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States; Bavari, S., Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States","Introduction: The highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are lethal zoonotic viruses that have emerged into human populations these past 15 years. These coronaviruses are associated with novel respiratory syndromes that spread from person-to-person via close contact, resulting in high morbidity and mortality caused by the progression to Acute Respiratory Distress Syndrome (ARDS). Areas covered: The risks of re-emergence of SARS-CoV from bat reservoir hosts, the persistence of MERS-CoV circulation, and the potential for future emergence of novel coronaviruses indicate antiviral drug discovery will require activity against multiple coronaviruses. In this review, approaches that antagonize viral nonstructural proteins, neutralize structural proteins, or modulate essential host elements of viral infection with varying levels of efficacy in models of highly pathogenic coronavirus disease are discussed. Expert opinion: Treatment of SARS and MERS in outbreak settings has focused on therapeutics with general antiviral activity and good safety profiles rather than efficacy data provided by cellular, rodent, or nonhuman primate models of highly pathogenic coronavirus infection. Based on lessons learned from SARS and MERS outbreaks, lack of drugs capable of pan-coronavirus antiviral activity increases the vulnerability of public health systems to a highly pathogenic coronavirus pandemic. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.","acute respiratory distress syndrome; Antiviral; ARDS; bat; broad-spectrum; camel; civet; coronavirus; emerging virus; highly pathogenic virus; human cases; in vitro model; interferon; lopinavir; MERS; MERS-CoV; Middle East respiratory syndrome; pneumonia; primate model; respiratory; ribavirin; rodent model; SARS; SARS-CoV; severe acute respiratory syndrome; therapeutic; zoonosis; zoonotic","antivirus agent; lopinavir plus ritonavir; monoclonal antibody; neutralize structural protein; remdesivir; ribavirin; unclassified drug; viral protein; virus vaccine; antivirus agent; adult respiratory distress syndrome; antiviral activity; Coronaviridae infection; Coronavirinae; drug efficacy; human; immunomodulation; in vitro study; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; protein targeting; reverse genetics; Review; severe acute respiratory syndrome; animal; Coronavirus infection; disease model; drug development; drug effect; isolation and purification; procedures; SARS coronavirus; virology; Animals; Antiviral Agents; Coronavirus Infections; Disease Models, Animal; Drug Discovery; Humans; Middle East Respiratory Syndrome Coronavirus; SARS Virus; Severe Acute Respiratory Syndrome","Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1953-1966; Drosten, C., Günther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348 (20), pp. 1967-1976; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Lew, T.W.K., Kwek, T.-K., Tai, D., Acute respiratory distress syndrome in critically Ill patients with severe acute respiratory syndrome (2003) JAMA, 290 (3), pp. 374-380. , http://jama.ama-assn.org/cgi/content/abstract/290/3/374, Available from; Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, , http://www.who.int/csr/sars/country/table2004_04_21/en/index.html, [cited 2019 Jan25], Available from; (2018) MERS situation update, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-december-2018.html, Dec, [cited 2019 Jan25], Available from; Corman, V.M., Muth, D., Niemeyer, D., Chapter eight - hosts and sources of endemic human coronaviruses (2018) Advances in virus research, 100, pp. 163-188. , Kielian M., Mettenleiter T.C., Roossinck M.J., (eds), Academic Press,. In:, editors.,.,. Cambridge, MA:,. p; Davis, B.M., Foxman, B., Monto, A.S., Human coronaviruses and other respiratory infections in young adults on a university campus: prevalence, symptoms, and shedding (2018) Influenza Other Respir Viruses, 12 (5), pp. 582-590; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56. , http://www.sciencedirect.com/science/article/pii/S0166354213003161, Available from; Ge, X.-Y., Li, J.-L., Yang, X.-L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. [Letter] (2013) Nature, 503 (7477), pp. 535-538; Ziad, A.M., Nischay, M., Kevin, J.O., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis J, 19 (11), p. 1819. , http://wwwnc.cdc.gov/eid/article/19/11/13-1172, Available from; Woo, P.C.Y., Wang, M., Lau, S.K.P., Comparative analysis of twelve genomes of three novel Group 2c and Group 2d coronaviruses reveals unique group and subgroup features (2007) J Virol, 81 (4), pp. 1574-1585. , http://jvi.asm.org/content/81/4/1574.abstract, Available from; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci USA, 102 (39), pp. 14040-14045. , http://www.pnas.org/content/102/39/14040.abstract, Available from; Anthony, S.J., Gilardi, K., Menachery, V.D., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8 (2); Menachery, V.D., Yount, B.L., Jr., Debbink, K., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21, pp. 1508-1513; Menachery, V.D., Yount, B.L., Sims, A.C., SARS-like WIV1-CoV poised for human emergence (2016) Proc Nat Acad Sci, 113 (11), pp. 3048-3053. , http://www.pnas.org/content/113/11/3048.abstract, Available from; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Molecular diversity of coronaviruses in bats (2006) Virology, 351 (1), pp. 180-187. , http://www.sciencedirect.com/science/article/pii/S0042682206001425, Available from; Yang, Y., Du, L., Liu, C., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Nat Acad Sci, 111 (34), pp. 12516-12521. , http://www.pnas.org/content/111/34/12516.abstract, Available from; Wang, Q., Qi, J., Yuan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16 (3), pp. 328-337. , http://www.sciencedirect.com/science/article/pii/S1931312814003011, Available from; Guan, Y., Zheng, B.J., He, Y.Q., Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China (2003) Science, 302 (5643), pp. 276-278. , http://www.sciencemag.org/content/302/5643/276.abstract, Available from; Alagaili, A.N., Briese, T., Mishra, N., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) mBio, 5 (2); Song, H.-D., Tu, C.-C., Zhang, G.-W., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc Natl Acad Sci USA, 102 (7), pp. 2430-2435. , http://www.pnas.org/content/102/7/2430.abstract, Available from; Sheahan, T., Rockx, B., Donaldson, E., Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus (2008) J Virol, 82 (17), pp. 8721-8732. , http://jvi.asm.org/content/82/17/8721.abstract, Available from; Thompson, M.G., Shay, D.K., Zhou, H., Estimates of deaths associated with seasonal influenza - United States, 1976–2007 (2010) MMWR Morb Mortal Wkly Rep, 59 (33), pp. 1057-1062; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6 (4), pp. 269-278. , http://www.sciencedirect.com/science/article/pii/S221090991530045X, Available from; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687373/, Available from; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (5), pp. 559-564. , http://www.sciencedirect.com/science/article/pii/S1473309915700903, Available from; Chan, J., Ng, C., Chan, Y., Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) (2003) Thorax, 58 (8), pp. 686-689. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1746764/, Available from; Cockrell, A.S., Beall, A., Yount, B., Efficient reverse genetic systems for rapid genetic manipulation of emergent and preemergent infectious coronaviruses (2017) Reverse genetics of RNA viruses: methods and Protocols, pp. 59-81. , Perez D.R., (ed), New York: Springer New York,. In:, editor.,. p; Yount, B., Curtis, K.M., Baric, R.S., Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model (2000) J Virol, 74 (22), pp. 10600-10611. , http://jvi.asm.org/content/74/22/10600.abstract, Available from; Yount, B., Denison, M.R., Weiss, S.R., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76 (21), pp. 11065-11078. , http://jvi.asm.org/content/76/21/11065.abstract, Available from; Yount, B., Curtis, K.M., Fritz, E.A., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc Nat Acad Sci, 100 (22), pp. 12995-13000. , http://www.pnas.org/content/100/22/12995.abstract, Available from; Scobey, T., Yount, B.L., Sims, A.C., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Nat Acad Sci, 110 (40), pp. 16157-16162. , http://www.pnas.org/content/110/40/16157.abstract, Available from; Rockx, B., Sheahan, T., Donaldson, E., Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice (2007) J Virol, 81 (14), pp. 7410-7423. , http://jvi.asm.org/content/81/14/7410.abstract, Available from; Sheahan, T., Rockx, B., Donaldson, E., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) J Virol, 82 (5), pp. 2274-2285. , http://jvi.asm.org/content/82/5/2274.abstract, Available from; Rockx, B., Feldmann, F., Brining, D., Comparative pathogenesis of three human and zoonotic SARS-CoV strains in cynomolgus macaques (2011) PLoS ONE, 6 (4); Becker, M.M., Graham, R.L., Donaldson, E.F., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc Nat Acad Sci, 105 (50), pp. 19944-19949. , http://www.pnas.org/content/105/50/19944.abstract, Available from; Agnihothram, S., Yount, B.L., Donaldson, E.F., A mouse model for betacoronavirus Subgroup 2c Using a Bat coronavirus strain HKU5 variant (2014) mBio, 5 (2); Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134. , http://www.sciencedirect.com/science/article/pii/S0168170214004961, Available from; Chan, J.F.-W., Chan, K.-H., Choi, G.K.-Y., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation (2013) J Infect Dis, 207 (11), pp. 1743-1752. , http://jid.oxfordjournals.org/content/207/11/1743.abstract, Available from; van der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10 (4), pp. 368-373. , http://www.nature.com/nm/journal/v10/n4/suppinfo/nm1024_S1.html, Available from; Pyrc, K., Sims, A.C., Dijkman, R., Culturing the unculturable: human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures (2010) J Virol, 84 (21), pp. 11255-11263. , http://jvi.asm.org/content/84/21/11255.abstract, Available from; Lambert, F., Jacomy, H., Marceau, G., Titration of human coronaviruses, HCoV-229E and HCoV-OC43, by an indirect immunoperoxidase assay (2008) SARS- and other coronaviruses, 454, pp. 93-102. , Cavanagh D., (ed), Humana Press,. In:, editor.,.,. Totowa, NJ:,. p; Kaye, M., Druce, J., Tran, T., SARS–associated coronavirus replication in cell lines (2006) Emerg Infect Dis, 12 (1), pp. 128-133. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291385/, Available from; Warren, T.K., Jordan, R., Lo, M.K., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, p. 381; Shen, L., Yang, Y., Ye, F., Safe and sensitive antiviral screening platform based on recombinant human coronavirus OC43 expressing the luciferase reporter gene (2016) Antimicrob Agents Chemother, 60 (9), pp. 5492-5503. , http://aac.asm.org/content/60/9/5492.abstract, Available from; Severson, W.E., Shindo, N., Sosa, M., Development and validation of a high-throughput screen for inhibitors of SARS CoV and its application in screening of a 100,000-compound library (2006) J Biomol Screen, 12 (1), pp. 33-40; Ge, F., Xiong, S., Lin, F.-S., High-throughput assay using a GFP-expressing replicon for SARS-CoV drug discovery (2008) Antiviral Res, 80 (2), pp. 107-113. , http://www.sciencedirect.com/science/article/pii/S0166354208003112, Available from; Ghosh, A.K., Takayama, J., Rao, K.V., Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein-ligand X-ray structure and biological evaluation (2010) J Med Chem, 53 (13), pp. 4968-4979. , https://www.ncbi.nlm.nih.gov/pmc/PMC2918394/, Available from; Dyall, J., Coleman, C.M., Hart, B.J., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58 (8), pp. 4885-4893. , http://aac.asm.org/content/58/8/4885.abstract, Available from; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58 (8), p. 4875. , http://aac.asm.org/content/58/8/4875.abstract, Available from,):p; Elshabrawy, H.A., Fan, J., Haddad, C.S., Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay (2014) J Virol, 88 (8), pp. 4353-4365. , http://jvi.asm.org/content/88/8/4353.abstract, Available from; Sims, A.C., Baric, R.S., Yount, B., Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs (2005) J Virol, 79 (24), pp. 15511-15524. , http://jvi.asm.org/content/79/24/15511.abstract, Available from; Banach, B.S., Orenstein, J.M., Fox, L.M., Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model (2009) J Virol Methods, 156 (1-2), pp. 19-26. , http://www.sciencedirect.com/science/article/pii/S0166093408003807, Available from; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J Virol, 87 (11), pp. 6081-6090. , http://jvi.asm.org/content/87/11/6081.abstract, Available from; Chan, R.W.Y., Hemida, M.G., Kayali, G., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study (2014) Lancet Respir Med, 2 (10), pp. 813-822. , http://www.sciencedirect.com/science/article/pii/S2213260014701584, Available from; Niemeyer, B.F., Zhao, P., Tuder, R.M., Advanced microengineered lung models for translational drug discovery (2018) SLAS Discov, 23 (8), pp. 777-789; Cockrell, A.S., Leist, S.R., Douglas, M.G., Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice (2018) Mamm Genome, 29 (7-8), pp. 367-383. , https://www.ncbi.nlm.nih.gov/pmc/PMC6132729/, Available from; Sutton, T.C., Subbarao, K., Development of animal models against emerging coronaviruses: from SARS to MERS coronavirus (2015) Virology, 479-480, pp. 247-258. , http://www.sciencedirect.com/science/article/pii/S0042682215000768, Available from; Glass, W.G., Subbarao, K., Murphy, B., Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice (2004) J Immunol, 173 (6), pp. 4030-4039. , http://jimmunol.org/content/173/6/4030.abstract, Available from; Roberts, A., Vogel, L., Guarner, J., Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters (2005) J Virol, 79 (1), pp. 503-511. , http://jvi.asm.org/content/79/1/503.abstract, Available from; Chepurnov, A.A., Dadaeva, A.A., Malkova, E.M., Symptoms of infection caused by SARS coronavirus in laboratory mice and guinea pigs. [Journal article] (2004) Dokl Biol Sci, 397 (1-6), pp. 310-313; Martina, B.E.E., Haagmans, B.L., Kuiken, T., Virology: SARS virus infection of cats and ferrets (2003) Nature, 425 (6961), p. 915; Roberts, A., Deming, D., Paddock, C.D., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog, 3 (1), p. e5; Day, C.W., Baric, R., Cai, S.X., A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo (2009) Virology, 395 (2), pp. 210-222. , http://www.sciencedirect.com/science/article/pii/S0042682209005832, Available from; Sheahan, T.P., Sims, A.C., Graham, R.L., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci Transl Med, 9 (396); Zhao, J., Wohlford-Lenane, C., Zhao, J., Intranasal treatment with poly(I·C) protects aged mice from lethal respiratory virus infections (2012) J Virol, 86 (21), pp. 11416-11424. , http://jvi.asm.org/content/86/21/11416.abstract, Available from; Gralinski, L.E., Bankhead, A., Jeng, S., Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury (2013) mBio, 4 (4); Gralinski, L.E., Ferris, M.T., Aylor, D.L., Genome wide identification of SARS-CoV susceptibility loci using the collaborative cross (2015) PLoS Genet, 11 (10), p. e1005504; de Wit, E., Prescott, J., Baseler, L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) PLoS ONE, 8 (7); Coleman, C.M., Matthews, K.L., Goicochea, L., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J Gen Virol, 95, pp. 408-412; Raj, V.S., Smits, S.L., Provacia, L.B., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88 (3), pp. 1834-1838. , http://jvi.asm.org/content/88/3/1834.abstract, Available from; Haagmans, B.L., van Den Brand, J.M.A., Provacia, L.B., Asymptomatic Middle East Respiratory syndrome coronavirus infection in rabbits (2015) J Virol, 89 (11), pp. 6131-6135. , http://jvi.asm.org/content/89/11/6131.abstract, Available from; Houser, K.V., Gretebeck, L., Ying, T., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)–specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213 (10), pp. 1557-1561. , https://academic.oup.com/jid/article/213/10/1557/2459422, Available from; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Nat Acad Sci, 111 (13), pp. 4970-4975. , http://www.pnas.org/content/111/13/4970.abstract, Available from; Agrawal, A.S., Garron, T., Tao, X., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 89 (7), pp. 3659-3670. , http://jvi.asm.org/content/89/7/3659.abstract, Available from; Li, K., Wohlford-Lenane, C., Perlman, S., Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J Infect Dis, 213 (5), pp. 712-722. , https://www.ncbi.nlm.nih.gov/pmc/PMC4747621/, Available from; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Nat Acad Sci, 112, pp. 8738-8743. , http://www.pnas.org/content/early/2015/06/24/1510830112.abstract, Available from; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) J Proc National Acad Sci, 114 (15), pp. E3119-E3128. , https://www.pnas.org/content/pnas/114/15/E3119.full.pdf, Available from; Cockrell, A.S., Yount, B.L., Scobey, T., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. [Article] (2016) Nat Microbiol, 2, p. 16226; Kuiken, T., Fouchier, R.A.M., Schutten, M., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362 (9380), pp. 263-270; Rowe, T., Gao, G., Hogan, R.J., Macaque model for severe acute respiratory syndrome (2004) J Virol, 78 (20), pp. 11401-11404. , http://jvi.asm.org/content/78/20/11401.abstract, Available from; McAuliffe, J., Vogel, L., Roberts, A., Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys (2004) Virology, 330 (1), pp. 8-15. , http://www.sciencedirect.com/science/article/pii/S0042682204006087, Available from; Greenough, T.C., Carville, A., Coderre, J., Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) Infected with the severe acute respiratory syndrome-associated coronavirus (2005) Am J Pathol, 167 (2), pp. 455-463; Lawler, J.V., Endy, T.P., Hensley, L.E., Cynomolgus macaque as an animal model for severe acute respiratory syndrome (2006) PLoS Med, 3 (5), p. e149; Smits, S.L., van Den Brand, J.M.A., de Lang, A., Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different Nonhuman primate species (2011) J Virol, 85 (9), pp. 4234-4245. , http://jvi.asm.org/content/85/9/4234.abstract, Available from; Smits, S.L., de Lang, A., van Den Brand, J.M.A., Exacerbated innate host response to SARS-CoV in aged non-human primates (2010) PLoS Pathog, 6 (2), p. e1000756; de Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Nat Acad Sci, 110 (41), pp. 16598-16603. , http://www.pnas.org/content/110/41/16598.abstract, Available from; Johnson, R.F., Bagci, U., Keith, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , http://www.sciencedirect.com/science/article/pii/S0042682216000076, Available from; Falzarano, D., de Wit, E., Feldmann, F., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10 (8), p. e1004250; Johnson, R.F., Via, L.E., Kumar, M.R., Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease (2015) Virology, 485, pp. 422-430. , http://www.sciencedirect.com/science/article/pii/S0042682215003323, Available from; Chan, J.F.-W., Yao, Y., Yeung, M.-L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a Nonhuman primate model of common marmoset (2015) J Infect Dis, 212 (12), pp. 1904-1913. , http://jid.oxfordjournals.org/content/212/12/1904.abstract, Available from; Neuman, B.W., Chamberlain, P., Bowden, F., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66. , http://www.sciencedirect.com/science/article/pii/S0168170213004334, Available from; Lo, M.K., Jordan, R., Arvey, A., GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and paramyxoviruses. [Article] (2017) Sci Rep, 7, p. 43395; Dörnemann, J., Burzio, C., Ronsse, A., First newborn baby to receive experimental therapies survives ebola virus disease (2017) J Infect Dis, 215 (2), pp. 171-174. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583641/, Available from; Agostini, M.L., Andres, E.L., Sims, A.C., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) mBio, 9 (2); Wu, C.-Y., Jan, J.-T., Ma, S.-H., Small molecules targeting severe acute respiratory syndrome human coronavirus (2004) Proc Natl Acad Sci USA, 101 (27), pp. 10012-10017. , http://www.pnas.org/content/pnas/101/27/10012.full.pdf, Available from; Chu, C., Cheng, V., Hung, I., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings (2004) Thorax, 59 (3), pp. 252-256. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1746980/, Available from; Kim, U.J., Won, E.-J., Kee, S.-J., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome (2016) Antivir Ther, (21), pp. 455-459; Bin, S.Y., Heo, J.Y., Song, M.-S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2015) Clinl Infect Dis, 62 (6), pp. 755-760. , http://cid.oxfordjournals.org/content/early/2016/01/06/cid.civ1020.abstract, Available from; Arabi, Y.M., Alothman, A., Balkhy, H.H., Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19 (1), p. 81; Hart, B.J., Dyall, J., Postnikova, E., Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J Gen Virol, 95, pp. 571-577. , http://vir.sgmjournals.org/content/95/Pt_3/571.abstract, Available from; Ströher, U., DiCaro, A., Li, Y., Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-α (2004) J Infect Dis, 189 (7), pp. 1164-1167. , http://jid.oxfordjournals.org/content/189/7/1164.abstract, Available from; Falzarano, D., de Wit, E., Martellaro, C., Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. [Article] (2013) Sci Rep, 3, p. 1686. , https://www.nature.com/articles/srep01686, Available from; Ferron, F., Subissi, L., Silveira De Morais, A.T., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Nat Acad Sci, 115 (2), pp. E162-E171. , http://www.pnas.org/content/pnas/115/2/E162.full.pdf, Available from; Barnard, D.L., Day, C.W., Bailey, K., Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin (2006) Antiviral Res, 71 (1), pp. 53-63. , http://www.sciencedirect.com/science/article/pii/S0166354206000660, Available from; Falzarano, D., de Wit, E., Rasmussen, A.L., Interferon-α2b and ribavirin treatment improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4093902/, Available from; Stockman, L.J., Bellamy, R., Garner, P., SARS: systematic review of treatment effects (2006) PLoS Med, 3 (9), p. e343; Morra, M.E., Van Thanh, L., Kamel, M.G., Clinical outcomes of current medical approaches for Middle East respiratory syndrome: a systematic review and meta-analysis (2018) Rev Med Virol, 28 (3), p. e1977; DeDiego, M.L., Álvarez, E., Almazán, F., A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo (2007) J Virol, 81 (4), pp. 1701-1713. , http://jvi.asm.org/content/81/4/1701.abstract, Available from; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) mBio, 8 (4); Frieman, M., Yount, B., Sims, A., SARS coronavirus accessory ORFs encode luxury functions (2006) The Nidoviruses, 581, pp. 149-152. , Perlman S., Holmes K., (eds), Springer US,. In:, editors.,.,. New York, NY:,. p; Zhu, Z., Chakraborti, S., He, Y., Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies (2007) Proc Nat Acad Sci, 104 (29), pp. 12123-12128. , http://www.pnas.org/content/104/29/12123.abstract, Available from; Agnihothram, S., Gopal, R., Yount, B.L., Evaluation of serologic and antigenic relationships between Middle Eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses (2014) J Infect Dis, 209 (7), pp. 995-1006. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952667/, Available from; Sui, J., Deming, M., Rockx, B., Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness (2014) J Virol, 88 (23), pp. 13769-13780. , http://jvi.asm.org/content/88/23/13769.abstract, Available from; Zumla, A., Dar, O., Kock, R., Taking forward a ‘One Health’ approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential (2016) Inter J Infect Dis, 47, pp. 5-9. , http://www.sciencedirect.com/science/article/pii/S1201971216310967, Available from; Haagmans, B.L., van Den Brand, J.M.A., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2015) Science; Bolles, M., Deming, D., Long, K., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J Virol, 85 (23), pp. 12201-12215. , http://jvi.asm.org/content/85/23/12201.abstract, Available from; Sheahan, T., Whitmore, A., Long, K., Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus (2011) J Virol, 85 (1), pp. 217-230. , http://jvi.asm.org/content/85/1/217.abstract, Available from; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci USA, 102 (33), pp. 11876-11881. , http://www.pnas.org/content/pnas/102/33/11876.full.pdf, Available from; Zhou, Y., Vedantham, P., Lu, K., Protease inhibitors targeting coronavirus and filovirus entry (2015) Antiviral Res, 116, pp. 76-84. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774534/, Available from; Zhou, N., Pan, T., Zhang, J., Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) (2016) J Biol Chem, 291 (17), pp. 9218-9232. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861487/, Available from; Pfefferle, S., Schöpf, J., Kögl, M., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog, 7 (10), p. e1002331; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13. , http://www.sciencedirect.com/science/article/pii/S0168170216305524, Available from; Schoggins, J.W., Wilson, S.J., Panis, M., A diverse range of gene products are effectors of the type I interferon antiviral response (2011) Nature, 472 (7344), pp. 481-485; Cinatl, J., Morgenstern, B., Bauer, G., Treatment of SARS with human interferons (2003) Lancet, 362 (9380), pp. 293-294. , http://www.sciencedirect.com/science/article/pii/S0140673603139736, Available from; Haagmans, B.L., Kuiken, T., Martina, B.E., Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nat Med, 10 (3), pp. 290-293","Bavari, S.; Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious DiseasesUnited States; email: sina.bavari.civ@mail.mil",,"Taylor and Francis Ltd",17460441,,,"30849247","English","Expert Opin. Drug. Discov.",Review,"Final",Open Access,Scopus,2-s2.0-85062938970 "Nefedeva M., Titov I., Malogolovkin A.","57205706263;56494633200;49361674400;","Molecular characteristics of a novel recombinant of porcine epidemic diarrhea virus",2019,"Archives of Virology","164","4",,"1199","1204",,2,"10.1007/s00705-019-04166-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061211345&doi=10.1007%2fs00705-019-04166-4&partnerID=40&md5=83e28d0ad760b05861344de96c139982","Molecular Virology Laboratory, Federal Research Center for Virology and Microbiology, Academician Bakoulova Street, 1, Petushki Area, Volginsky, Vladimir Region 601125, Russian Federation","Nefedeva, M., Molecular Virology Laboratory, Federal Research Center for Virology and Microbiology, Academician Bakoulova Street, 1, Petushki Area, Volginsky, Vladimir Region 601125, Russian Federation; Titov, I., Molecular Virology Laboratory, Federal Research Center for Virology and Microbiology, Academician Bakoulova Street, 1, Petushki Area, Volginsky, Vladimir Region 601125, Russian Federation; Malogolovkin, A., Molecular Virology Laboratory, Federal Research Center for Virology and Microbiology, Academician Bakoulova Street, 1, Petushki Area, Volginsky, Vladimir Region 601125, Russian Federation","Porcine epidemic diarrhea (PED) is a contagious viral disease in pigs, caused by the coronavirus porcine epidemic diarrhea virus (PEDV). PEDV infection results in significant mortality in piglets in unvaccinated herds. Like many others RNA viruses, PEDV has high evolutionary rate and is prone to genetic mutations. In this study, we analyzed the complete genome sequence of the recently sequenced isolate PEDV/Belgorod/dom/2008. A recombination event in S gene of PEDV/Belgorod/dom/2008 was detected. Pairwise identity analysis of the whole genome sequences revealed that PEDV/Belgorod/dom/2008 is an intermediate between PEDV and transmissible gastroenteritis virus (TGEV) strains. These results can be used for further analysis of the evolutionary variability, prevalence, and epidemiology of the porcine epidemic diarrhea virus. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.",,"animal; classification; Coronavirus infection; diarrhea; feces; genetic recombination; genetics; isolation and purification; phylogeny; pig; Porcine epidemic diarrhea virus; swine disease; veterinary medicine; virology; Animals; Coronavirus Infections; Diarrhea; Feces; Phylogeny; Porcine epidemic diarrhea virus; Recombination, Genetic; Swine; Swine Diseases","Pensaert, M., Porcine epidemic diarrhea (2006) Diseases of swine, pp. 367-372. , Straw BE, (ed), 9, Blackwell, Ames; Pan, Y., Tian, X., Li, W., Zhou, Q., Wang, D., Bi, Y., Chen, F., Song, Y., Isolation and characterization of a variant porcine epidemic diarrhea virus in China (2012) Virol J, 9, p. 195; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg Infect Dis, 18, pp. 1350-1353; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Investig, 25, pp. 649-654; Chen, J.F., Sun, D.B., Wang, C.B., Shi, H.Y., Cui, X.C., Liu, S.W., Qiu, H.J., Feng, L., Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China (2008) Virus Genes, 36, pp. 355-364; Sun, M., Ma, J., Wang, Y., Wang, M., Song, W., Zhang, W., Lu, C., Yao, H., Genomic and epidemiological characteristics provide new insights into the phylogeographical and spatiotemporal spread of porcine epidemic diarrhea virus in Asia (2015) J Clin Microbiol, 53, pp. 1484-1492; Park, S.J., Moon, H.J., Yang, J.S., Lee, C.S., Song, D.S., Kang, B.K., Park, B.K., Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea (2007) Virus Genes, 35, pp. 321-332; Kubota, S., Sasaki, O., Animoto, K., Okada, N., Kitazima, T., Yasuhara, H., Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus (1999) J Vet Med Sci, 61, pp. 827-830; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet J, 204, pp. 134-143; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet Microbiol, 173, pp. 258-269; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg Infect Dis, 20, pp. 917-919; Hanke, D., Jenckel, M., Petrov, A., Ritzmann, M., Stadler, J., Akimkin, V., Blome, S., Hoper, D., Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014 (2015) Emerg Infect Dis, 21, pp. 493-496; Jarvis, M.C., Lam, H.C., Zhang, Y., Wang, L., Hesse, R.A., Hause, B.M., Vlasova, A., Marthaler, D., Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus (2015) Prev Vet Med, 123, pp. 175-184; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Collins, J., Jung, K., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014 (2014) Emerg Infect Dis, 20, pp. 1620-1628; Strizhakova, O., Hanke, D., Titov, I., Blome, S., Malogolovkin, A., Complete genome sequence of a porcine epidemic diarrhea virus isolated in Belgorod, Russia, in 2008 (2017) Genome Announc, 5, pp. e01026–17; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1, p. vev003; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Ray, S.C., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J Virol, 73, pp. 152-160; Muhire, B.M., Varsani, A., Martin, D.P., SDT: a virus classification tool based on pairwise sequence alignment and identity calculation (2014) PLoS One, 9; Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 (2013) Mol Biol Evol, 30, pp. 2725-2729; Strizhakova, O., Isolation and identification of porcine epidemic diarrhea virus in pigs under the outbreak at a large farm (2013) Sel’skokhozyaistvennaya Biologia, 4, pp. 65-69; Strizhakova, O.M., Malogolovkin, A.S., Titov, I.A., Zhivoderov, S.P., Kurinnov, V.V., Strizhakov, A.A., Biological characteristics of an epizootic isolate BS-08 of porcine epidemic diarrhea virus (2017) Veterinariya, 3, pp. 31-34; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Faccini, S., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg Infect Dis, 22, pp. 83-87; Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., Pohlmann, A., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerg Infect Dis, 22, pp. 1314-1315; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in Central Eastern Europe in 2016 (2016) Transbound Emerg Dis, 63, pp. 595-601; Li, R., Qiao, S., Yang, Y., Guo, J., Xie, S., Zhou, E., Zhang, G., Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China (2016) Virus Genes, 52, pp. 91-98","Malogolovkin, A.; Molecular Virology Laboratory, Federal Research Center for Virology and Microbiology, Academician Bakoulova Street, 1, Petushki Area, Russian Federation; email: Malogolovkin@inbox.ru",,"Springer-Verlag Wien",03048608,,ARVID,"30725181","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85061211345 "Szczepanski A., Owczarek K., Bzowska M., Gula K., Drebot I., Ochman M., Maksym B., Rajfur Z., Mitchell J.A., Pyrc K.","57200300836;57200288997;23481058600;56471818600;57208342116;35781903100;6504674925;6602347295;7406515136;8869026100;","Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors",2019,"Viruses","11","4",,"","",,1,"10.3390/v11040328","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064534200&doi=10.3390%2fv11040328&partnerID=40&md5=a84c098fb7e17d0c337896e0003f09a6","Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland; Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, 41-800, Poland; Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, Zabrze, 41-808, Poland; Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Department of Pathology and Pathogen Biology, Royal Veterinary College, HatfieldHertfordshire AL9 7TA, United Kingdom","Szczepanski, A., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Owczarek, K., Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Bzowska, M., Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland; Gula, K., Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Drebot, I., Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland; Ochman, M., Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, 41-800, Poland; Maksym, B., Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, Zabrze, 41-808, Poland; Rajfur, Z., Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland; Mitchell, J.A., Department of Pathology and Pathogen Biology, Royal Veterinary College, HatfieldHertfordshire AL9 7TA, United Kingdom; Pyrc, K., Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland","Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.","attachment receptor; bovine coronavirus; canine respiratory coronavirus; coronavirus; entry; entry receptor; HLA; human coronavirus OC43; sialic acids",,,,,"NLM (Medline)",19994915,,,"30959796","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85064534200 "Heimdal I., Moe N., Krokstad S., Christensen A., Skanke L.H., Nordbø S.A., Døllner H.","57208336040;55629336700;13807377900;7202022995;55904935000;6603717802;6603081009;","Human coronavirus in hospitalized children with respiratory tract infections: A 9-year population-based study from Norway",2019,"Journal of Infectious Diseases","219","8",,"1198","1206",,4,"10.1093/infdis/jiy646","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064510499&doi=10.1093%2finfdis%2fjiy646&partnerID=40&md5=b2663b4f9152ded1e766c4950884b0df","Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway; Department of Pediatrics, St Olavs Hospital, Trondheim University Hospital, Norway; Departments of Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Norway","Heimdal, I., Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway; Moe, N., Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway, Department of Pediatrics, St Olavs Hospital, Trondheim University Hospital, Norway; Krokstad, S., Departments of Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Norway; Christensen, A., Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway, Departments of Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Norway; Skanke, L.H., Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway, Department of Pediatrics, St Olavs Hospital, Trondheim University Hospital, Norway; Nordbø, S.A., Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway, Departments of Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Norway; Døllner, H., Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, 7006, Norway, Department of Pediatrics, St Olavs Hospital, Trondheim University Hospital, Norway","Background. Te burden of human coronavirus (HCoV)-associated respiratory tract infections (RTIs) in hospitalized children is poorly defned. We studied the occurrence and hospitalization rates of HCoV over 9 years. Methods. Children from Sør-Trøndelag County, Norway, hospitalized with RTIs and asymptomatic controls, were prospectively enrolled from 2006 to 2015. Nasopharyngeal aspirates were analyzed with semiquantitative polymerase chain reaction (PCR) tests for HCoV subtypes OC43, 229E, NL63, and HKU1, and 13 other respiratory pathogens. Results. HCoV was present in 9.1% (313/3458) of all RTI episodes: 46.6% OC43, 32.3% NL63, 16.0% HKU1, and 5.8% 229E. Hospitalization rates for HCoV-positive children with lower RTIs were 1.5 and 2.8 per 1000 <5 and <1 years of age, respectively. Te detection rate among controls was 10.2% (38/373). Codetections occurred in 68.1% of the patients and 68.4% of the controls. In a logistic regression analysis, high HCoV genomic loads (cycle threshold <28 in PCR analysis) were associated with RTIs (odds ratio = 3.12, P =.016) adjusted for relevant factors. Conclusions. HCoVs occurred in 1 of 10 hospitalized children with RTIs and asymptomatic controls. A high HCoV genomic load was associated with RTI. HCoVs are associated with a substantial burden of RTIs in need of hospitalization. © 2018 The Author(s).","Asymptomatic controls; Children; Hospitalization rates; Human coronaviruses; Respiratory tract infections","age distribution; Article; child; controlled study; Coronaviridae; disease burden; epidemiological data; female; health care survey; hospital admission; hospital patient; human; human tissue; infant; laryngitis; lower respiratory tract infection; major clinical study; male; nasopharyngeal aspiration; nonhuman; Norway; otitis media; pediatrics; pharyngitis; polymerase chain reaction; priority journal; prospective study; reverse transcription polymerase chain reaction; rhinosinusitis; tonsillitis; upper respiratory tract infection; virus detection; virus identification; virus load; age; Coronavirinae; Coronavirus infection; hospitalization; incidence; newborn; Norway; preschool child; real time polymerase chain reaction; respiratory tract infection; season; virology; Age Factors; Child; Child, Preschool; Coronavirus; Coronavirus Infections; Female; Hospitalization; Humans; Incidence; Infant; Infant, Newborn; Male; Norway; Prospective Studies; Real-Time Polymerase Chain Reaction; Respiratory Tract Infections; Seasons","Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121, pp. 190-193; McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc Natl Acad Sci U S A, 57, pp. 933-940; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br Med J, 1, pp. 1467-1470; Drosten, C., Günther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Identification of a new human coronavirus (2004) Nat Med, 10, pp. 368-373; Woo, P.C., Lau, S.K., Chu, C.M., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J Virol, 79, pp. 884-895; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534; Kristoffersen, A.W., Nordbo, S.A., Rognlien, A.G., Christensen, A., Dollner, H., Coronavirus causes lower respiratory tract infections less frequently than RSV in hospitalized Norwegian children (2011) Pediatr Infect Dis J, 30, pp. 279-283; Kuypers, J., Martin, E.T., Heugel, J., Wright, N., Morrow, R., Englund, J.A., Clinical disease in children associated with newly described coronavirus subtypes (2007) Pediatrics, 119, pp. e70-e76; Talbot, H.K., Shepherd, B.E., Crowe, J.E., Jr., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Van Der Hoek, L., Human coronaviruses: What do they cause (2007) Antivir Ther, 12, pp. 651-658; Broor, S., Dawood, F.S., Pandey, B.G., Rates of respiratory virus-associated hospitalization in children aged <5 years in rural northern India (2014) J Infect, 68, pp. 281-289; Chiu, S.S., Chan, K.H., Chu, K.W., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin Infect Dis, 40, pp. 1721-1729; Talbot, H.K., Crowe, J.E., Jr., Edwards, K.M., Coronavirus infection and hospitalizations for acute respiratory illness in young children (2009) J Med Virol, 81, pp. 853-856; Van Der Hoek, L., Ihorst, G., Sure, K., Burden of disease due to human coronavirus NL63 infections and periodicity of infection (2010) J Clin Virol, 48, pp. 104-108; Jevšnik, M., Urši, T., Zigon, N., Lusa, L., Krivec, U., Petrovec, M., Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease (2012) BMC Infect Dis, 12, p. 365; Varghese, L., Zachariah, P., Vargas, C., Epidemiology and clinical features of human coronaviruses in the pediatric population (2018) J Pediatric Infect Dis Soc, 7, pp. 151-158; Zeng, Z.Q., Chen, D.H., Tan, W.P., Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: A study of hospitalized children with acute respiratory tract infection in Guangzhou, China (2018) Eur J Clin Microbiol Infect Dis, 37, pp. 363-369; Dijkman, R., Jebbink, M.F., Gaunt, E., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Prill, M.M., Iwane, M.K., Edwards, K.M., Human coronavirus in young children hospitalized for acute respiratory illness and asymptomatic controls (2012) Pediatr Infect Dis J, 31, pp. 235-240; Dare, R.K., Fry, A.M., Chittaganpitch, M., Sawanpanyalert, P., Olsen, S.J., Erdman, D.D., Human coronavirus infections in rural Thailand: A comprehensive study using real-time reverse-transcription polymerase chain reaction assays (2007) J Infect Dis, 196, pp. 1321-1328; Singleton, R.J., Bulkow, L.R., Miernyk, K., Viral respiratory infections in hospitalized and community control children in Alaska (2010) J Med Virol, 82, pp. 1282-1290; Rhedin, S., Lindstrand, A., Hjelmgren, A., Respiratory viruses associated with community-acquired pneumonia in children: Matched case-control study (2015) Thorax, 70, pp. 847-853; Moe, N., Stenseng, I.H., Krokstad, S., The burden of human metapneumovirus and respiratory syncytial virus infections in hospitalized Norwegian children (2017) J Infect Dis, 216, pp. 110-116; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: A one-year study in Colorado (2009) J Med Virol, 81, pp. 1597-1604; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Jevšnik, M., Steyer, A., Pokorn, M., The role of human coronaviruses in children hospitalized for acute bronchiolitis, acute gastroenteritis, and febrile seizures: A 2-year prospective study (2016) PLoS One, 11, p. e0155555; Vabret, A., Dina, J., Gouarin, S., Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France (2008) J Paediatr Child Health, 44, pp. 176-181; Cui, L.J., Zhang, C., Zhang, T., Human coronaviruses HCoV-NL63 and HCoV-HKU1 in hospitalized children with acute respiratory infections in Beijing, China (2011) Adv Virol, 2011, p. 129134; Mackay, I.M., Arden, K.E., Speicher, D.J., Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004 (2012) Viruses, 4, pp. 637-653","Døllner, H.; Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyNorway; email: henrik.dollner@ntnu.no",,"Oxford University Press",00221899,,JIDIA,"30418633","English","J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85064510499 "Tang X., Lan T., Wu R., Zhou Z., Chen Y., Sun Y., Zheng Y., Ma J.","57196185375;57201787210;57196419932;57200414689;57208240447;56166199400;57208236344;57205222918;","Analysis of long non-coding RNAs in neonatal piglets at different stages of porcine deltacoronavirus infection",2019,"BMC Veterinary Research","15","1", 111,"","",,,"10.1186/s12917-019-1862-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064197552&doi=10.1186%2fs12917-019-1862-4&partnerID=40&md5=f65487e160ef6e0dfce57d0dfe284cfc","College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China","Tang, X., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Lan, T., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Wu, R., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Zhou, Z., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Chen, Y., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Sun, Y., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Zheng, Y., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Ma, J., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China","Background: PDCoV (Porcine Deltacoronavirus) is a novel porcine coronavirus that causes intestinal necrosis of piglets, thinning of the intestinal wall and severe villus atrophy in the small intestine. PDCoV is a highly contagious infectious disease characterized by diarrhea, dehydration and vomiting. It has been reported that lncRNA has a significant effect on viral replication and increased or decreased virulence. At present, there is almost no research on lncRNA related to PDCoV infection. With the development of the research, a large number of lncRNAs related to PDCoV infection have been discovered. Identifying the role of these lncRNAs in the infection process facilitates the screening of diagnostically significant biomarkers. Results: Using high throughput sequencing to screen differentially expressed long non-coding RNA (lncRNA) during PDCoV infection, we identified 99, 41 and 33 differentially expressed lncRNAs in the early, middle and late stages of infection, respectively. These lncRNAs were involved in glycolysis / gluconeogenesis, histidine metabolism and pentose and Chloroalkane and chloroalkene degradation pathway. We obtained expression data of miRNAs, lncRNAs and mRNAs during PDCoV infection and constructed and investigated an interaction network. The qRT-PCR validation results of 6 differentially expressed lncRNAs were consistent with RNA-Seq results. Conclusions: This study is the first to examine differentially expressed lncRNAs after PDCoV infection of piglets. These results can provide new insights into PDCoV infection and antiviral strategies. © 2019 The Author(s).","Functional enrichment; High throughput sequencing; Interaction network; Long non-coding RNA (lncRNA); Porcine deltacoronavirus infection","biological marker; long untranslated RNA; biological marker; long untranslated RNA; animal experiment; animal model; animal tissue; Article; Coronavirus infection; cytotoxicity assay; gene expression; gene interaction; gene ontology; gluconeogenesis; glycolysis; high throughput sequencing; infection; intestine wall; mesentery lymph node; nonhuman; piglet; porcine deltacoronavirus infection; prediction; quality control; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; RNA sequence; screening; sequence alignment; spleen; Transmissible gastroenteritis virus; upregulation; validation process; virogenesis; virus load; virus replication; animal; Coronavirinae; Coronavirus infection; genetics; newborn; pig; swine disease; veterinary medicine; virology; Animals; Animals, Newborn; Biomarkers; Coronavirus; Coronavirus Infections; Real-Time Polymerase Chain Reaction; RNA, Long Noncoding; Swine; Swine Diseases; Viral Load","Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavir (2012) J Virol, 86 (7), pp. 3995-4008. , 1:CAS:528:DC%2BC38XktlOrsr8%3D; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20 (7), p. 1227. , 10.3201/eid2007.140296 1:CAS:528:DC%2BC2cXhslaks73J 24964136 4073853; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine Deltacoronavirus in mainland China (2015) Emerg Infect Dis, 21 (12), pp. 2254-2255. , 10.3201/eid2112.150283 1:CAS:528:DC%2BC2sXivVGrtQ%3D%3D 26584185 4672429; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch Virol, 161 (10), pp. 2909-2911. , 10.1007/s00705-016-2983-8 1:CAS:528:DC%2BC28XhtFyiu7rI 27424024; Madapong, A., Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Srijangwad, A., Tripipat, T., Complete genome sequence of porcine Deltacoronavirus isolated in Thailand in 2015 (2016) Genome Announc, 4 (3), pp. e408-e416. , 10.1128/genomeA.00408-16; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Pnas., 115 (22), pp. E5135-E5143. , 10.1073/pnas.1802879115 1:CAS:528:DC%2BC1cXhvVOltLzF 29760102; Zhu, X., Liu, S., Wang, X., Luo, Z., Shi, Y., Wang, D., Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection (2018) Emerging Microbes & Infections, 7 (1), p. 65. , 10.1038/s41426-018-0068-3 1:CAS:528:DC%2BC1cXhtVOjurrJ; Luo, J., Fang, L., Dong, N., Fang, P., Ding, Z., Wang, D., Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I mediated interferon-β production (2016) Virology, 495, pp. 10-17. , 10.1016/j.virol.2016.04.025 1:CAS:528:DC%2BC28XntlSgur4%3D 27152478; Zhu, M., Liu, J., Xiao, J., Yang, L., Cai, M., Shen, H., Lnc-mg is a long non-coding RNA that promotes myogenesis (2017) Nat Commun, 8. , 14718 10.1038/ncomms14718 28281528 5353601; Rapicavoli, N.A., Qu, K., Zhang, J., Mikhail, M., Laberge, R.M., Chang, H.Y., A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics (2013) Elife., 2 (2). , e00762 10.7554/eLife.00762 23898399 3721235; Xiong, Y., Yuan, J., Zhang, C., Zhu, Y., Kuang, X., Lan, L., The STAT3-regulated long non-coding RNA Lethe promote the HCV replication (2015) Biomed Pharmacother, 72, pp. 165-171. , 10.1016/j.biopha.2015.04.019 1:CAS:528:DC%2BC2MXot1Wntrg%3D 26054691; Landeras-Bueno, S., Ortín, J., Regulation of influenza virus infection by long noncoding RNAs (2016) Virus Res, 212, pp. 78-84. , 10.1016/j.virusres.2015.08.008 1:CAS:528:DC%2BC2MXhsVKktL7M 26321158; Yin, Z., Guan, D., Fan, Q., Su, J., Zheng, W., Ma, W., LncRNA expression signatures in response to enterovirus 71 infection (2013) Biochemical & Biophysical Research Communications, 430 (2). , 629299 633 10.1016/j.bbrc.2012.11.101 1:CAS:528:DC%2BC38XhvV2rtrnM; Boltaña, S., Valenzuela-Miranda, D., Aguilar, A., Mackenzie, S., Gallardo-Escárate, C., Long noncoding RNAs (lncRNAs) dynamics evidence immunomodulation during ISAV-infected Atlantic salmon (Salmo salar) (2016) Sci Rep, 6. , 22698 10.1038/srep22698 1:CAS:528:DC%2BC28XjslCqs7Y%3D 26939752 4778034; Ma, Q., Li, L., Tang, Y., Fu, Q., Liu, S., Hu, S., Analyses of long non-coding RNAs and mRNA profiling through RNA sequencing of MDBK cells at different stages of bovine viral diarrhea virus infection (2017) Res Vet Sci, 115, pp. 508-516. , 10.1016/j.rvsc.2017.09.020 1:CAS:528:DC%2BC2sXhsFyqtrjP 28968572; Fang, L., Du, W.W., Yang, X., Chen, K., Ghanekar, A., Levy, G., Versican 3′-untranslated region (3′-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity (2013) FASEB J, 27, pp. 907-919. , 10.1096/fj.12-220905 1:CAS:528:DC%2BC3sXjvVOqtrw%3D 23180826; Ma, M.Z., Chu, B.F., Zhang, Y., Weng, M.Z., Qin, Y.Y., Gong, W., Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p (2015) Cell Death Dis, 6 (1), p. e1583. , 10.1038/cddis.2014.541 1:CAS:528:DC%2BC2MXnslOltw%3D%3D 25569100 4669740; Xia, T., Liao, Q., Jiang, X., Shao, Y., Xiao, B., Xi, Y., Long noncoding RNA associated-competing endogenous RNAs in gastric cancer (2014) Sci Rep, 4. , 6088 10.1038/srep06088 1:CAS:528:DC%2BC2MXktlOnt7k%3D 25124853 4133709; Yu, X., Tang, W., Yang, Y., Tang, L., Dai, R., Pu, B., Long noncoding RNA NKILA enhances the anti-cancer effects of baicalein in hepatocellular carcinoma via the regulation of NF-κB signaling (2018) Chem Biol Interact, 285, pp. 48-58. , 10.1016/j.cbi.2018.02.027 1:CAS:528:DC%2BC1cXjvVCksLc%3D 29481769; Li, T., Wang, S., Wu, R., Zhou, X., Zhu, D., Zhang, Y., Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing (2012) Genomics., 99 (5), pp. 292-298. , 10.1016/j.ygeno.2012.02.003 1:CAS:528:DC%2BC38XktFSju7c%3D 22374175; Roeszler, K.N., Itman, C., Sinclair, A.H., Smith, C.A., The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis (2012) Developmental Biology, 366 (2), pp. 317-326. , 1:CAS:528:DC%2BC38Xms12ktr0%3D; Divoux, A., Karastergiou, K., Xie, H., Guo, W., Perera, R.J., Fried, S.K., Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation (2014) Obesity., 22 (8), pp. 1781-1785. , 10.1002/oby.20793 1:CAS:528:DC%2BC2cXht1ChsL3K 24862299; Zhang, Q., Chen, C.Y., Yedavalli, V.S., Jeang, K.T., NEAT1 long noncoding RNA and Paraspeckle bodies modulate HIV-1 posttranscriptional expression (2013) Mbio., 4 (1), pp. 512-596. , 10.1128/mBio.00596-12 1:CAS:528:DC%2BC3sXlsFCqtrY%3D; Wang, P., Xu, J., Wang, Y., Cao, X., An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism (2017) Science., 358 (6366), pp. 1051-1055. , 10.1126/science.aao0409 1:CAS:528:DC%2BC2sXhvFahsbzJ 29074580; Butler, A.A., Leroith, D., Tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology (2001) Endocrinology., 142 (5), pp. 1685-1688. , 10.1210/endo.142.5.8148 1:CAS:528:DC%2BD3MXjt1aktr0%3D 11316729; Stratikopoulos, E., Szabolcs, M., Dragatsis, I., Klinakis, A., Efstratiadis, A., The hormonal action of IGF1 in postnatal mouse growth (2008) Proc Natl Acad Sci U S A, 105 (49), pp. 19378-19383. , 10.1073/pnas.0809223105 19033454 2614769; Zhang, Y., Li, Y., Wang, Q., Zhang, X., Wang, D., Tang, H., Identification of an lncRNA-miRNA-mRNA interaction mechanism in breast cancer based on bioinformatic analysis (2017) Mol Med Rep, 16 (4), pp. 5113-5120. , 10.3892/mmr.2017.7304 1:CAS:528:DC%2BC1cXpsV2rtw%3D%3D 28849135 5647044; Jin, J., Chu, Z., Ma, P., Meng, Y., Yang, Y., Long non-coding RNA SPRY4-IT1 promotes proliferation and invasion by acting as a ceRNA of miR-101-3p in colorectal cancer cells (2017) Tumour Biol, 39 (7). , 1010428317716250 10.1177/1010428317716250 28720069; Meier, C., Hardtstock, P., Joost, S., Alla, V., Pützer, B.M., P73 and IGF1R regulate emergence of aggressive Cancer stem-like features via miR-885-5p control (2016) Cancer Res, 76 (2), pp. 197-205. , 10.1158/0008-5472 26554827; Hu, G., Chen, D., Li, X., Yang, K., Wang, H., Wu, W., MiR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo (2010) Cancer Biol Ther, 10 (2), pp. 190-197; Chen, W., Ye, L., Wen, D., Chen, F., MiR-490-5p Inhibits Hepatocellular Carcinoma Cell Proliferation, Migration and Invasion by Directly Regulating ROBO1 (2017) Pathology & Oncology Research, 25 (1), pp. 1-9; Wen, J., Huang, Y., Li, H., Zhang, X., Cheng, P., Deng, D., Over-expression of miR-196b-5p is significantly associated with the progression of myelodysplastic syndrome (2017) Int J Hematol, 105 (6), pp. 777-783. , 10.1007/s12185-017-2201-9 1:CAS:528:DC%2BC2sXjsVCltL8%3D 28224273; Zhang, X., Tang, J., Zhi, X., Xie, K., Wang, W., Li, Z., MiR-874 functions as a tumor suppressor by inhibiting angiogenesis through STAT3/VEGF-A pathway in gastric cancer (2015) Oncotarget., 6 (3), pp. 1605-1617. , 10.18632/oncotarget.2748 25596740 4359318; White, N.M., Khella, H.W., Grigull, J., Adzovic, S., Youssef, Y.M., Honey, R.J., MiRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215 (2011) Br J Cancer, 105 (11), pp. 1741-1749. , 10.1038/bjc.2011.401 1:CAS:528:DC%2BC3MXhsFWqs7fP 22033272 3242591; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Research Volume, 226 (2), pp. 50-59. , 10.1016/j.virusres.2016.04.009 1:CAS:528:DC%2BC28Xmtlegt7o%3D December; Mai, K., Li, D., Wu, J., Wu, Z., Cheng, J., He, L., Complete genome sequences of two porcine Deltacoronavirus strains, CHN-GD16-03 and CHN-GD16-05, isolated in southern China, 2016 (2018) Genome Announc., 6 (4), pp. e01545-e01617. , https://doi.org/10.1128/genomeA.01545-17; Schmittgen, T.D., Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method (2008) Nat Protoc, 3 (6), pp. 1101-1108. , 1:CAS:528:DC%2BD1cXmvVemt7c%3D","Ma, J.; College of Animal Science, South China Agricultural University, Wushan Road 483, China; email: majy2400@scau.edu.cn",,"BioMed Central Ltd.",17466148,,,"30971240","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85064197552 "Cui W., Cui S., Chen C., Chen X., Wang Z., Yang H., Zhang L.","57207116207;57207105317;56311250800;56311720200;57192441226;55731078500;56495813000;","The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor",2019,"Biochemical and Biophysical Research Communications","511","4",,"794","799",,,"10.1016/j.bbrc.2019.02.105","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062222334&doi=10.1016%2fj.bbrc.2019.02.105&partnerID=40&md5=324452bab3a59a244335e1aeb96d5e1d","School of Life Sciences, Tianjin University, Tianjin, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China","Cui, W., School of Life Sciences, Tianjin University, Tianjin, China; Cui, S., Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Chen, C., School of Life Sciences, Tianjin University, Tianjin, China, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China; Chen, X., School of Life Sciences, Tianjin University, Tianjin, China; Wang, Z., School of Life Sciences, Tianjin University, Tianjin, China, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China; Yang, H., School of Life Sciences, Tianjin University, Tianjin, China, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Zhang, L., School of Life Sciences, Tianjin University, Tianjin, China","Mouse hepatitis virus A59 (MHV-A59) is a representative member of the genus betacoronavirus within the subfamily Coronavirinae, which infects the liver, brain and respiratory tract. Through different inoculation routes, MHV-A59 can provide animal models for encephalitis, hepatitis and pneumonia to explore viral life machinery and virus-host interactions. In viral replication, non-structural protein 5 (Nsp5), also termed main protease (Mpro), plays a dominant role in processing coronavirus-encoded polyproteins and is thus recognized as an ideal target of anti-coronavirus agents. However, no structure of the MHV-A59 Mpro has been reported, and molecular exploration of the catalysis mechanism remains hindered. Here, we solved the crystal structure of the MHV-A59 Mpro complexed with a Michael acceptor-based inhibitor, N3. Structural analysis revealed that the Cβ of the vinyl group of N3 covalently bound to C145 of the catalytic dyad of Mpro, which irreversibly inactivated cysteine protease activity. The lactam ring of the P1 side chain and the isobutyl group of the P2 side chain, which mimic the conserved residues at the same positions of the substrate, fit well into the S1 and S2 pockets. Through a comparative study with Mpro of other coronaviruses, we observed that the substrate-recognition pocket and enzyme inhibitory mechanism is highly conservative. Altogether, our study provided structural features of MHV-A59 Mpro and indicated that a Michael acceptor inhibitor is an ideal scaffold for antiviral drugs. © 2019 Elsevier Inc.","Crystal structure; Main protease; Mouse hepatitis virus A59; N3","antivirus agent; cysteine proteinase; enzyme inhibitor; glutamine; inhibitor N3; leucine; methionine; peptidomimetic agent; unclassified drug; peptide hydrolase; proteinase inhibitor; viral protein; allosterism; Article; binding affinity; binding site; catalysis; comparative study; complex formation; controlled study; covalent bond; crystal structure; drug design; drug development; enzyme activity; enzyme inhibition; enzyme structure; enzyme substrate complex; hydrogen bond; hydrophobicity; mouse; Murine hepatitis virus (strain A59); nonhuman; priority journal; sequence alignment; structure activity relation; structure analysis; virus cell interaction; virus replication; amino acid sequence; animal; chemistry; Coronavirus infection; drug effect; human; metabolism; molecular model; Murine hepatitis virus; protein conformation; virology; X ray crystallography; Amino Acid Sequence; Animals; Coronavirus Infections; Crystallography, X-Ray; Humans; Mice; Models, Molecular; Murine hepatitis virus; Peptide Hydrolases; Protease Inhibitors; Protein Conformation; Sequence Alignment; Viral Nonstructural Proteins","Masters, P.S., The Molecular Biology of Coronaviruses, Advances in Virus Research (2006), pp. 193-292. , Academic Press; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Yang, Z., Du, J., Chen, G., Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice (2014) Virol. Sin., 29, pp. 393-402; Hervé, L., Higgs, M., Pawlotsky, J.-M., Animal models in the study of hepatitis C virus-associated liver pathologies (2011) Expert Rev. Gastroenterol. Hepatol., 5, pp. 341-352; Ye, Y., Hauns, K., Langland, J.O., Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist (2007) J. Virol., 81, pp. 2554-2563; Wang, G., Chen, G., Zheng, D., PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway (2011) PLoS One, 6. , e17192-e17192; Lane, T.E., Hosking, M.P., The pathogenesis of murine coronavirus infection of the central nervous system (2010) Crit. Rev. Immunol., 30, pp. 119-130; Day, C.W., Baric, R., Cai, S.X., A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo (2009) Virology, 395, pp. 210-222; Wang, F., Chen, C., Liu, X., Crystal structure of feline infectious peritonitis virus main protease in complex with synergetic dual inhibitors (2016) J. Virol., 90, pp. 1910-1917; Xue, X., Yu, H., Yang, H., Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design (2008) J. Virol., 82, pp. 2515-2527; Haitao, Y., Mark, B., Zihe, R., Drug design targeting the main protease, the achilles heel of coronaviruses (2006) Curr. Pharmaceut. Des., 12, pp. 4573-4590; Wang, H., Xue, S., Yang, H., Recent progress in the discovery of inhibitors targeting coronavirus proteases (2016) Virol. Sin., 31, pp. 24-30; Hilgenfeld, R., From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design (2014) FEBS J., 281, pp. 4085-4096; Paasche, A., Zipper, A., Schäfer, S., Evidence for substrate binding-induced zwitterion formation in the catalytic cys-his dyad of the SARS-cov main protease (2014) Biochemistry, 53, pp. 5930-5946; Shi, J., Sivaraman, J., Song, J., Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease (2008) J. Virol., 82, pp. 4620-4629; Stobart, C.C., Lee, A.S., Lu, X., Temperature-sensitive mutants and revertants in the coronavirus nonstructural protein 5 protease (3CLpro) define residues involved in long-distance communication and regulation of protease activity (2012) J. Virol., 86, pp. 4801-4810; Stobart, C.C., Sexton, N.R., Munjal, H., Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity (2013) J. Virol., 87, pp. 12611-12618; Otwinowski, Z., Minor, W., [20] Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., pp. 307-326; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Phaser crystallographic software (2007) J. Appl. Crystallogr., 40, pp. 658-674; Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Towards automated crystallographic structure refinement with phenix.refine (2012) Acta Crystallogr. Sect. D Biol. Crystallogr., 68, pp. 352-367; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. D, 60, pp. 2126-2132; Yang, H., Xie, W., Xue, X., Design of wide-spectrum inhibitors targeting coronavirus main proteases (2005) PLoS Biol., 3. , e324-e324","Wang, Z.; School of Life Sciences, Tianjin UniversityChina; email: zefangwang@tju.edu.cn",,"Elsevier B.V.",0006291X,,BBRCA,"30833083","English","Biochem. Biophys. Res. Commun.",Article,"Final",,Scopus,2-s2.0-85062222334 "Wu J.L., Mai K.J., Li D., Wu R.T., Wu Z.X., Tang X.Y., Li Q.N., Sun Y., Lan T., Zhang X.B., Ma J.Y.","57196410875;57189711019;57197285019;57196419932;57193311808;57196185375;57208317097;56166199400;57201787210;36968813100;57205222918;","Expression profile analysis of 5-day-old neonatal piglets infected with porcine Deltacoronavirus",2019,"BMC Veterinary Research","15","1", 117,"","",,1,"10.1186/s12917-019-1848-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064425937&doi=10.1186%2fs12917-019-1848-2&partnerID=40&md5=d6b30ba1cd0cee672e082bc930ef9d9d","College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China","Wu, J.L., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Mai, K.J., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Li, D., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Wu, R.T., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Wu, Z.X., Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China; Tang, X.Y., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Li, Q.N., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Sun, Y., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Lan, T., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China; Zhang, X.B., Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China; Ma, J.Y., College of Animal Science, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China","Background: Porcine deltacoronavirus (PDCoV) is a novel coronavirus that can cause diarrhea in nursing piglets. This study was aimed to investigate the roles of host differentially expressed genes on metabolic pathways in PDCoV infections. Results: Twenty thousand six hundred seventy-four differentially expressed mRNAs were identified in 5-day-old piglets responded to PDCoV experimental infections. Many of these genes were correlated to the basic metabolism, such as the peroxisome proliferator-activated receptor (PPAR) signaling pathway which plays a critical role in digestion. At the same time, in the PPAR pathway genes of fatty acid-binding protein (FABP) family members were observed with remarkably differential expressions. The differential expressed genes were associated with appetite decrease and weight loss of PDCoV- affected piglets. Discussion: Fatty acid-binding protein 1 (FABP1) and fatty acid-binding protein 3 (FABP3) were found to be regulated by PDCoV. These two genes not only mediate fatty acid transportation to different cell organelles such as mitochondria, peroxisome, endoplasmic reticulum and nucleus, but also modulate fatty acid metabolism and storage as a signaling molecule outside the cell. Therefore, it can be preliminarily concluded that PPAR differential expression caused by PDCoV was mostly associated with weight loss and death from emaciation. Conclusions: The host differentially expressed genes were associated with infection response, metabolism signaling and organismal systems signaling pathways. The genes of FABP family members in the PPAR signaling pathway were the most highly altered and played important roles in metabolism. Alteration of these genes were most likely the reason of weight loss and other clinical symptoms. Our results provided new insights into the metabolic mechanisms and pathogenesis of PDCoV infection. Methods: Animal experiment, Determination of viral growth by real-time RT-PCR, Histopathology, Immunohistochemical staining, Microarray analysis. © 2019 The Author(s).","Metabolism; mRNA expression profile; Porcine deltacoronavirus; PPAR signaling pathway","acylglycerol; arachidonic acid; complementary DNA; fatty acid binding protein; Fatty acid binding protein 1; fatty acid binding protein 3; glycerophospholipid; peroxisome proliferator activated receptor; unclassified drug; transcriptome; animal cell; animal experiment; animal tissue; anorexia; appetite; Article; controlled study; Coronavirinae; Coronavirus infection; duodenum; fluorescence microscopy; gene expression; gene ontology; histopathology; immunohistochemistry; jejunum; metabolism; microarray analysis; newborn; nonhuman; piglet; porcine deltacoronavirus infection; real time polymerase chain reaction; regulator gene; reverse transcription polymerase chain reaction; RNA extraction; virogenesis; virus detection; vomiting; animal; Coronavirinae; Coronavirus infection; DNA microarray; genetics; pathology; pig; small intestine; swine disease; veterinary medicine; virology; Animals; Animals, Newborn; Coronavirus; Coronavirus Infections; Intestine, Small; Jejunum; Metabolic Networks and Pathways; Oligonucleotide Array Sequence Analysis; Real-Time Polymerase Chain Reaction; Swine; Swine Diseases; Transcriptome","Zhang, J.Q., Porcine deltacoronavirus: Overview of infection dynamics, diagonstic methods, prevalece and genetic evolution (2016) Virus Res, 226, pp. 71-84. , 1:CAS:528:DC%2BC28XhtVWks73M; Woo, P.C., Lau, S.K., Lam, C.S., Lai, K.K., Huang, Y., Lee, P., Luk, G.S., Yuen, K.Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J Virol, 83, pp. 908-917. , 1:CAS:528:DC%2BD1MXotlCmt7Y%3D; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008. , 1:CAS:528:DC%2BC38XktlOrsr8%3D; Homwong, N., Jarvis, M.C., Lam, H.C., Diaz, A., Rovira, A., Nelson, M., Marthaler, D., Characterization and evolution of porcine deltacoronavirus in the United States (2016) Prev Vet Med, 123, pp. 168-174; Wang, L.Y., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging Infection Diseases, 20 (7), pp. 1227-1230. , 1:CAS:528:DC%2BC2cXhslaks73J; Ma, Y., Zhang, Y., Liang, X., Origin, Evolution, and Virulence of Porcine Deltacoronaviruses in the United States (2015) MBio., 6 (2), pp. e00064-15; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg Infect Dis, 8, pp. 1347-1350; Zhai, S.L., Wei, W.K., Li, X.P., Wen, X.H., Zhou, X., Zhang, H., Lv, D.H., Wang, D., Occurrence and sequence analysis of porcine deltacoronaviruses in southern China (2016) Virol J, 13, p. 136; Thachil, A., Gerber, P.F., Xiao, C.T., Huang, Y.W., Opriessnig, T., Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies (2015) PLoS One, 249, pp. 76-78; Wang, L., Hayes, J., Sarver, C., Byrum, B., Zhang, Y., Porcine deltacoronavirus: Histological lesions and genetic characterization (2016) ArchVirol Med, 161, pp. 171-175. , 1:CAS:528:DC%2BC2MXhs1yjs7zJ; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg Infect Dis, 21, pp. 650-654. , 1:CAS:528:DC%2BC28XitVOisLjL; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., Van Dieren, B., Bosch, B.J., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc Natl Acad Sci, 115 (22), pp. E5135-E5143. , 1:CAS:528:DC%2BC1cXhvVOltLzF; Mai, K., Li, D., Wu, J., Wu, Z., Cheng, J., He, L., Tang, X., Ma, J., Complete Genome Sequences of Two Porcine Deltacoronavirus Strains, CHN-GD16-03 and CHN-GD16-05, Isolated in Southern China, 2016 (2018) Genome Announc, 6, p. 4; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolatein 5-day-old neonatal piglets (2015) Virology., 482, pp. 51-59. , 1:CAS:528:DC%2BC2MXks1aks7o%3D; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Lee, C.H., Park, B.K., Detection and phylogenetic Ananlysis of porcine Deltacoronavirus in Korean swine farms, 2015 (2016) Transbound Emerg Dis, 63, pp. 248-252. , 1:CAS:528:DC%2BC28XmtF2mt7k%3D; Chen, P.Y., (2006) Veterinary Infectious Diseases, , China Agricultural Press Beijing; Chen, J., Wang, H., Jin, L., Wang, L., Huang, X., Chen, W., Yan, M., Liu, G., Profile analysis of circRNAs induced by porcine endemic diarrhea virus infection in porcine intestinal epithelial cells (2019) Virology., 527, pp. 169-179. , 1:CAS:528:DC%2BC1cXisVChs73O; Zhao, X., Bai, X., Guan, L., MicroRNA-4331 promotes TGEV-induced mitochondrial damage via targeting RB1, up-regulating IL 1RAP, and activating p38 MAPK pathway in vitro (2017) Molecular &cellular Proteomics Mcp, pp. A117-A432; Hughes, A.L., Piontkivska, H., Evolutionary diversification of the avian fatty acid-binding proteins (2011) Gene., 490 (1-2), pp. 1-5. , 1:CAS:528:DC%2BC3MXhtlyjsL%2FL 21986036 4009381; Evans, R.M., Barish, G.D., Wang, Y.X., PPARs and the complex journey to obesity (2004) Nat Med, 10 (4), pp. 355-361. , 1:CAS:528:DC%2BD2cXis1ektLk%3D; Martin, G.G., Atshaves, B.P., McIntosh, A.L., Payne, H.R., Mackie, J.T., Kier, A.B., Schroeder, F., Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice (2009) Mol Cell Biochem, 324, pp. 101-115. , 1:CAS:528:DC%2BD1MXitlans78%3D; Qian, Q., Kuo, L., Yu, Y.-T., Rottman, J.N., A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression (1999) Circ Res, 84 (3), pp. 276-289. , 1:CAS:528:DyaK1MXhsVaks7g%3D; Mina, A., Saghar, Y., Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers (2018) Gene., 676, pp. 171-183; Georgiadi, A., Kersten, S., Mechanisms of gene regulation by fatty acids (2012) Adv Nutr, 3 (2), pp. 127-134. , 1:CAS:528:DC%2BC38XmtVGrs78%3D; Inoue, M., Takahashi, Y., Fujii, T., Kitagawa, M., Fukusato, T., Significance of downregulation of liver fatty acid-binding protein in hepatocellular (2014) World J Gastroenterol, 20 (46), pp. 17541-17551","Ma, J.Y.; College of Animal Science, South China Agricultural University, Wushan Road 483, China; email: majy2400@scau.edu.cn",,"BioMed Central Ltd.",17466148,,,"30992015","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85064425937 "Mendenhall I.H., Kerimbayev A.A., Strochkov V.M., Sultankulova K.T., Kopeyev S.K., Su Y.C.F., Smith G.J.D., Orynbayev M.B.","43161409800;57212550231;37000312900;37000385900;57205735584;7404456219;8344015800;54397222000;","Discovery and characterization of novel bat coronavirus lineages from Kazakhstan",2019,"Viruses","11","4", 356,"","",,1,"10.3390/v11040356","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065046373&doi=10.3390%2fv11040356&partnerID=40&md5=1d53350e1396b05aee66cc0e1d059b1b","Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Research Institute for Biological Safety Problems, Gvardeiskiy, Kordaiskiy rayon, Zhambylskaya oblast, 080409, Kazakhstan; SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, 168753, Singapore; Duke Global Health Institute, Duke University, Durham, NC 27710, United States","Mendenhall, I.H., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Kerimbayev, A.A., Research Institute for Biological Safety Problems, Gvardeiskiy, Kordaiskiy rayon, Zhambylskaya oblast, 080409, Kazakhstan; Strochkov, V.M., Research Institute for Biological Safety Problems, Gvardeiskiy, Kordaiskiy rayon, Zhambylskaya oblast, 080409, Kazakhstan; Sultankulova, K.T., Research Institute for Biological Safety Problems, Gvardeiskiy, Kordaiskiy rayon, Zhambylskaya oblast, 080409, Kazakhstan; Kopeyev, S.K., Research Institute for Biological Safety Problems, Gvardeiskiy, Kordaiskiy rayon, Zhambylskaya oblast, 080409, Kazakhstan; Su, Y.C.F., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Smith, G.J.D., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore, SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, 168753, Singapore, Duke Global Health Institute, Duke University, Durham, NC 27710, United States; Orynbayev, M.B., Research Institute for Biological Safety Problems, Gvardeiskiy, Kordaiskiy rayon, Zhambylskaya oblast, 080409, Kazakhstan","Coronaviruses are positive-stranded RNA viruses that infect a variety of hosts, resulting in a range of symptoms from gastrointestinal illness to respiratory distress. Bats are reservoirs for a high diversity of coronaviruses, and focused surveillance detected several strains genetically similar to MERS-coronavirus, SARS-coronavirus, and the human coronaviruses 229E and NL63. The bat fauna of central Asia, which link China to eastern Europe, are relatively less studied than other regions of the world. Kazakhstan is the world's ninth largest country; however, little is understood about the prevalence and diversity of bat-borne viruses. In this study, bat guano was collected from bat caves in three different sites of southern Kazakhstan that tested positive for coronaviruses. Our phylogenetic reconstruction indicates these are novel bat coronaviruses that belong to the genus Alphacoronavirus. In addition, two distinct lineages of Kazakhstan bat coronaviruses were detected. Both lineages are closely related to bat coronaviruses from China, France, Spain, and South Africa, suggesting that co-circulation of coronaviruses is common in multiple bat species with overlapping geographical distributions. Our study highlights the need for collaborative efforts in understudied countries to increase integrated surveillance capabilities toward better monitoring and detection of infectious diseases. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Hypsugo savii; Kazakhstan; Myotis blythii; Phylogeny; Virus discovery","virus RNA; RNA directed RNA polymerase; viral protein; virus RNA; Alphacoronavirus; Article; bat; Coronavirinae; gene amplification; gene sequence; genetic variability; geographic distribution; global positioning system; Human coronavirus 229E; Human coronavirus NL63; Kazakhstan; Middle East respiratory syndrome coronavirus; nonhuman; nucleotide sequence; phylogeny; Pipistrellus; Pipistrellus pipistrellus; prevalence; reverse transcription polymerase chain reaction; RNA extraction; SARS coronavirus; animal; classification; Coronavirus infection; disease carrier; genetic variation; genetics; phylogeography; veterinary medicine; virology; Alphacoronavirus; Animals; Chiroptera; Coronavirus Infections; Disease Reservoirs; Genetic Variation; Kazakhstan; Phylogeny; Phylogeography; RNA Replicase; RNA, Viral; Viral Proteins","Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Hutson, A.M., Mickleburgh, S.P., (2001) Microchiropteran Bats: Global Status Survey and Conservation Action Plan. IUCN, 56. , http://www.iucn.org/dbtw-wpd/edocs/2001-008.pdf, accessed on 29 January 2019; Kunz, T.H., Fenton, M.B., (2005) Bat Ecology, , University of Chicago Press: Chicago, IL, USA; Hayman, D.T., Bats as viral reservoirs (2016) Annu. Rev. Virol., 3, pp. 77-99; Smith, I., Wang, L.F., Bats and their virome: An important source of emerging viruses capable of infecting humans (2013) Curr. Opin. Virol., 3, pp. 84-91; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650; Vijaykrishna, D., Smith, G.J., Zhang, J.X., Peiris, J.S., Chen, H., Guan, Y., Evolutionary insights into the ecology of coronaviruses (2007) J. Virol., 81, pp. 4012-4020; Van Der Hoek, L., Human coronaviruses: What do they cause? (2007) Antivir. Ther., 12, p. 651; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13, p. e1006698; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Gromov, I.M., Baranova, G., Baryshnikov, G., (1981) Catalog of the Mammals of USSR, 1, p. 456. , Nauka: Alma-Ata, Kazakhstan; Bekenov, A., Butovskyi, P., Kasabekov, B., Lankin, P., Strelkov, P., Stogov, I., (1985) Mammals of Kazakhstan, 4. , Nauka: Alma-Ata, Kazakhstan; Jargalsaikhan, A., Bat study in the Kharaa region, Mongolia (2016) J. Asia-Pac. Biodivers., 9, pp. 107-115; Tiunov, M., (1997) Bats of the Russian Far East, p. 134. , Dalnauka Vladivostok; Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushi, S., Alviola, P., Iha, K., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223; Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Duran, C., Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics, 28, pp. 1647-1649; Bininda-Emonds, O.R., TransAlign: Using amino acids to facilitate the multiple alignment of protein-coding DNA sequences (2005) BMC Bioinformatics, 6, p. 156; Stamatakis, A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies (2014) Bioinformatics, 30, pp. 1312-1313; Bilgin, I.R., The conservation genetics of three cave-dwelling bat species in southeastern Europe and Anatolia (2012) Turk. J. Zool., 36, pp. 275-282; Peel, A.J., Sargan, D.R., Baker, K.S., Hayman, D.T., Barr, J.A., Crameri, G., Suu-Ire, R., Wang, L.-F., Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses (2013) Nature Commun., 4, p. 2770; Juste, J.P., Paunović, M., (2019) Hypsugo Savii. The IUCN Red List of Threatened Species 2016, , https://www.iucnredlist.org/species/44856/22072380, E.T44856A22072380 accessed on 29 January; Juste, J.P., Paunović, M., (2019) Myotis Blythii. The IUCN Red List of Threatened Species 2016: E.T14124A22053297, , https://www.iucnredlist.org/species/14124/22053297, accessed on on 29 January; Hutterer, R., Ivanova, T., Meyers-Cords, C.H., Rodrigues, L., (2005) Bat Migrations in Europe: A Review of Banding Data and Literature, 28. , Federal Agency for Nature Conservation: Bonn, Germany","Mendenhall, I.H.; Programme in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingapore; email: ian.mendenhall@duke-nus.edu.sg",,"MDPI AG",19994915,,,"30999711","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85065046373 "Yuan P., Huang S., Yang Z., Xie L., Wang K., Yang Y., Ran L., Yu Q., Song Z.","57203822029;57202003567;57191963197;57202009255;57203814888;57203827123;57203815487;57205147590;23468010300;","UBXN1 interacts with the S1 protein of transmissible gastroenteritis coronavirus and plays a role in viral replication",2019,"Veterinary Research","50","1", 28,"","",,,"10.1186/s13567-019-0648-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065181554&doi=10.1186%2fs13567-019-0648-9&partnerID=40&md5=3e718d43e009da0241b1a827b25a3576","Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China","Yuan, P., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Huang, S., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Yang, Z., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Xie, L., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Wang, K., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Yang, Y., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Ran, L., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Yu, Q., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China; Song, Z., Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing, 402460, China","Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs and is associated with high morbidity and mortality in sucking piglets. S1 is one of two protein domains in the spike (S) glycoprotein and is responsible for enteric tropism, sialic acid recognition, and host receptor binding. Although there has been extensive research on the S1 protein of TGEV, little is known about the intracellular role of TGEV-S1. In the present study, we used yeast two-hybrid screening of a cDNA library from porcine intestinal cells to identify proteins that interact with TGEV-S1. Among 120 positive clones from the library, 12 intracellular proteins were identified after sequencing and a BLAST search. These intracellular proteins are involved in protein synthesis and degradation, biological signal transduction, and negative control of signaling pathways. Using a glutathione-S-transferase (GST) pulldown assay and Co-IP, we found that UBXN1 interacts with the S1 protein. Here, we observed that TGEV infection led to increased UBXN1 expression levels during the late phase of infection in IPEC-J2 cells. Inhibition of UBXN1 in IPEC-J2 cells via siRNA interference significantly decreased the viral titer and downregulated the expression of S1. UBXN1 overexpression significantly increased the viral copy number. Additionally, we provided data suggesting that UBXN1 negatively regulates IFN-β expression after TGEV infection. Finally, our research indicated that UBXN1 plays a vital role in the process of TGEV infection, making it a candidate target for the development of a novel antiviral method. © 2019 The Author(s).",,"beta interferon; cell protein; fusion protein; glutathione transferase; protein kinase; S1 protein; small interfering RNA; unclassified drug; signal transducing adaptor protein; small interfering RNA; viral protein; animal cell; Article; bioassay; chromatin immunoprecipitation; controlled study; DNA library; down regulation; enzyme linked immunosorbent assay; gastroenteritis; gene; gene overexpression; genetic transfection; human; ID50; morbidity; mortality; nonhuman; plasmid; protein binding; protein domain; protein expression; protein interaction; protein synthesis; pulldown assay; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA interference; signal transduction; spike; Transmissible gastroenteritis virus; UBXN1 gene; virogenesis; virus load; virus replication; Western blotting; zygote; immunoprecipitation; metabolism; physiology; two hybrid system; Adaptor Proteins, Signal Transducing; Blotting, Western; Enzyme-Linked Immunosorbent Assay; Immunoprecipitation; Real-Time Polymerase Chain Reaction; RNA, Small Interfering; Signal Transduction; Transmissible gastroenteritis virus; Two-Hybrid System Techniques; Viral Proteins; Virus Replication","Weiwei, H., Qinghua, Y., Liqi, Z., Haofei, L., Shanshan, Z., Qi, G., Kongwang, H., Qian, Y., Complete genomic sequence of the coronavirus transmissible gastroenteritis virus SHXB isolated in China (2014) Arch Virol, 159, pp. 2295-2302; Zou, H., Zarlenga, D.S., Sestak, K., Suo, S., Ren, X., Transmissible gastroenteritis virus: Identification of M protein-binding peptide ligands with antiviral and diagnostic potential (2013) Antivir Res, 99, pp. 383-390. , 1:CAS:528:DC%2BC3sXhsFensbbF; Yin, J., Glende, J., Schwegmann-Wessels, C., Enjuanes, L., Herrler, G., Ren, X., Cholesterol is important for a post-adsorption step in the entry process of transmissible gastroenteritis virus (2010) Antivir Res, 88, pp. 311-316. , 1:CAS:528:DC%2BC3cXhsVGitb3N; Ahn, D.J., Youm, J.W., Kim, S.W., Yoon, W.K., Kim, H.C., Hur, T.Y., Joung, Y.H., Kim, H.S., Expression of the S glycoprotein of transmissible gastroenteritis virus (TGEV) in transgenic potato and its immunogenicity in mice (2013) Korean J Vet Res, 53, pp. 217-224; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033. , 1:CAS:528:DC%2BC38XpvFyltrk%3D; Laude, H., Godet, M., Bernard, S., Gelfi, J., Duarte, M., Delmas, B., Functional domains in the spike protein of transmissible gastroenteritis virus (1995) Adv Exp Med Biol, 380, pp. 299-304. , 1:CAS:528:DyaK28XisFyltrw%3D; Schwegmann-Wessels, C., Bauer, S., Winter, C., Enjuanes, L., Laude, H., Herrler, G., The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus (2011) Virol J, 8, p. 435. , 1:CAS:528:DC%2BC3MXht1GltLbJ; Enjuanes, L., Suñé, C., Gebauer, F., Smerdou, C., Camacho, A., Antón, I.M., González, S., Carlos, S., Antigen selection and presentation to protect against transmissible gastroenteritis coronavirus (1992) Vet Microbiol, 33, pp. 249-262. , 1:CAS:528:DyaK3sXhsVGnsLw%3D; Ren, X.F., Yin, J.C., Wei, S.I., Li, Y.J., Liu, B.Q., Construction of nucleic acid vaccines containing S gene from TGEV isolate TH-98 and their immune effect in mice (2006) Vet Sci, 36, pp. 203-206. , 1:CAS:528:DC%2BD2sXovV2is7g%3D (in Chinese); Rezvani, K., UBXD proteins: A family of proteins with diverse functions in cancer (2016) Int J Mol Sci, 17, p. E1724; Wang, Y.B., Tan, B., Mu, R., Chang, Y., Wu, M., Tu, H.Q., Zhang, Y.C., Li, H.Y., Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κb (NF-κB) signaling (2015) J Biol Chem, 290, pp. 10395-10405. , 1:CAS:528:DC%2BC2MXmsF2ksrg%3D; Meyer, H., Weihl, C.C., The VCP/p97 system at a glance: Connecting cellular function to disease pathogenesis (2014) J Cell Sci, 127, pp. 3877-3883. , 1:CAS:528:DC%2BC2cXhslGgtrnP; Wang, P., Yang, L., Cheng, G., Yang, G., Xu, Z., You, F., Sun, Q., Sutton, R.E., UBXN1 interferes with Rig-I-like receptor-mediated antiviral immune response by targeting MAVS (2013) Cell Rep, 3, pp. 1057-1070. , 1:CAS:528:DC%2BC3sXltVGju78%3D; Song, Z., Yang, Y., Wang, L., Wang, K., Ran, L., Xie, Y., Huang, L., Yu, Q., EIF4A2 interacts with the membrane protein of transmissible gastroenteritis coronavirus and plays a role in virus replication (2018) Res Vet Sci, 123, pp. 39-46; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method (2001) Methods, 25, pp. 402-408. , 1:CAS:528:DC%2BD38XhtFelt7s%3D; Robinson, J.C., Kerjan, P., Mirande, M., Macromolecular assemblage of aminoacyl-tRNA synthetases: Quantitative analysis of protein-protein interactions and mechanism of complex assembly (2000) J Mol Biol, 304, pp. 983-994. , 1:CAS:528:DC%2BD3cXovFeltLg%3D; Marquez-Jurado, S., Nogales, A., Zuñiga, S., Enjuanes, L., Almazán, F., Identification of a gamma interferon-activated inhibitor of translation-like RNA motif at the 3′ end of the transmissible gastroenteritis coronavirus genome modulating innate immune response (2015) MBio, 6, p. e00105; Kuang, Q., Purhonen, P., Ålander, J., Svensson, R., Hoogland, V., Winerdal, J., Spahiu, L., Hebert, H., Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation (2017) Sci Rep, 7, p. 7897; Schmidt-Krey, I., Mitsuoka, K., Hirai, T., Murata, K., Cheng, Y., Fujiyoshi, Y., Morgenstern, R., Hebert, H., The three-dimensional map of microsomal glutathione transferase 1 at 6 Å resolution (2000) EMBO J, 19, pp. 6311-6316. , 1:CAS:528:DC%2BD3MXjtF2hsbg%3D; Holm, P.J., Morgenstern, R., Hebert, H., The 3-D structure of microsomal glutathione transferase 1 at 6 Å resolution as determined by electron crystallography of p22 (1)2(1) crystals (2002) Biochim Biophys Acta, 1594, pp. 276-285. , 1:CAS:528:DC%2BD38XitFWmtrc%3D; Siritantikorn, A., Johansson, K., Ahlen, K., Protection of cells from oxidative stress by microsomal glutathione transferase 1 (2007) Biochem Biophys Res Commun, 355, pp. 592-596. , 1:CAS:528:DC%2BD2sXitFOltrY%3D; Otrusinová, O., Demo, G., Padrta, P., Jaseňáková, Z., Pekárová, B., Gelová, Z., Szmitkowska, A., Žídek, L., Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana (2017) J Biol Chem, 292, pp. 17525-17540; Berntsson, O., Diensthuber, R.P., Panman, M.R., Björling, A., Gustavsson, E., Hoernke, M., Hughes, A.J., Westenhoff, S., Sequential conformational transitions and alpha-helical supercoiling regulate a sensor histidine kinase (2017) Nat Commun, 8, p. 284; Gotoh, Y., Eguchi, Y., Watanabe, T., Okamoto, S., Doi, A., Utsumi, R., Two-component signal transduction as potential drug targets in pathogenic bacteria (2010) Curr Opin Microbiol, 13, pp. 232-239. , 1:CAS:528:DC%2BC3cXjvF2hs78%3D; Miki, H., Okada, Y., Hirokawa, N., Analysis of the kinesin superfamily-insights into structure and function (2005) Trends Cell Biol, 15, pp. 467-476. , 1:CAS:528:DC%2BD2MXpvFenu7g%3D; Israelson, A., Zilberberg, N., Shoshan-Barmatz, V., Azido ruthenium-a new photoreactive probe for calcium-binding proteins (2006) Nat Protoc, 1, pp. 111-117. , 1:CAS:528:DC%2BD28XhtFOitb3K; Sun, B., Wang, Z., Wang, Z., Ma, X., Zhu, F., A proteomic study of hemocyte proteins from mud crab (Scylla paramamosain) infected with white spot syndrome virus or Vibrio alginolyticus (2017) Front Immunol, 8, p. 468; Loo, Y.M., Gale, M., Jr., Immune signaling by RIG-I-like receptors (2011) Immunity, 34, pp. 680-692. , 1:CAS:528:DC%2BC3MXms12rs7s%3D; Nakhaei, P., Genin, P., Civas, A., Hiscott, J., RIG-I-like receptors: Sensing and responding to RNA virus infection (2009) Semin Immunol, 21, pp. 215-222. , 1:CAS:528:DC%2BD1MXhtFajtrfI; Hu, Y., O'Boyle, K., Auer, J., Raju, S., You, F., Wang, P., Fikrig, E., Sutton, R.E., Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα (2017) PLoS Pathog, 13, p. e1006187","Song, Z.; Department of Veterinary Medicine, College of Animal Science, Southwest UniversityChina; email: szh7678@126.com",,"BioMed Central Ltd.",09284249,,VEREE,"31029162","English","Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85065181554 "Mobaraki K., Ahmadzadeh J.","55853618500;36573331500;","Current epidemiological status of Middle East respiratory syndrome coronavirus in the world from 1.1.2017 to 17.1.2018: A cross-sectional study",2019,"BMC Infectious Diseases","19","1", 351,"","",,9,"10.1186/s12879-019-3987-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065196138&doi=10.1186%2fs12879-019-3987-2&partnerID=40&md5=679876fd0103b99a22cb64078ec7a98d","Epidemiologist in Social Determinants of Health Research Center, Urmia University of Medical Sciences, Resalat Street, Urmia, Iran","Mobaraki, K., Epidemiologist in Social Determinants of Health Research Center, Urmia University of Medical Sciences, Resalat Street, Urmia, Iran; Ahmadzadeh, J., Epidemiologist in Social Determinants of Health Research Center, Urmia University of Medical Sciences, Resalat Street, Urmia, Iran","Background: Middle East respiratory syndrome coronavirus (MERS-CoV) is considered to be responsible for a new viral epidemic and an emergent threat to global health security. This study describes the current epidemiological status of MERS-CoV in the world. Methods: Epidemiological analysis was performed on data derived from all MERS-CoV cases recorded in the disease outbreak news on WHO website between 1.1.2017 and 17.1.2018. Demographic and clinical information as well as potential contacts and probable risk factors for mortality were extracted based on laboratory-confirmed MERS-CoV cases. Results: A total of 229 MERS-CoV cases, including 70 deaths (30.5%), were recorded in the disease outbreak news on world health organization website over the study period. Based on available details in this study, the case fatality rate in both genders was 30.5% (70/229) [32.1% (55/171) for males and 25.8% (15/58) for females]. The disease occurrence was higher among men [171 cases (74.7%)] than women [58 cases (25.3%)]. Variables such as comorbidities and exposure to MERS-CoV cases were significantly associated with mortality in people affected with MERS-CoV infections, and adjusted odds ratio estimates were 2.2 (95% CI: 1.16, 7.03) and 2.3 (95% CI: 1.35, 8.20), respectively. All age groups had an equal chance of mortality. Conclusions: In today's ""global village"", there is probability of MERS-CoV epidemic at any time and in any place without prior notice. Thus, health systems in all countries should implement better triage systems for potentially imported cases of MERS-CoV to prevent large epidemics. © 2019 The Author(s).","Case fatality rate; Descriptive epidemiology; Disease outbreak; Emerging diseases; Middle East respiratory syndrome coronavirus","adolescent; adult; aged; Article; case fatality rate; child; comorbidity; cross-sectional study; emergency health service; epidemic; epidemiological data; female; health care system; human; infection control; infection prevention; infection risk; laboratory test; Lebanon; major clinical study; Malaysia; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality; nonhuman; Oman; Qatar; Saudi Arabia; school child; sex difference; United Arab Emirates; very elderly; World Health Organization; young adult; Coronavirus infection; demography; global health; isolation and purification; Middle East respiratory syndrome coronavirus; odds ratio; risk factor; Adolescent; Adult; Aged; Aged, 80 and over; Child; Coronavirus Infections; Cross-Sectional Studies; Demography; Disease Outbreaks; Female; Global Health; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Odds Ratio; Risk Factors; World Health Organization; Young Adult","Alghamdi, I.G., Hussain, I.I., Almalki, S.S., Alghamdi, M.S., Alghamdi, M.M., El-Sheemy, M.A., The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: A descriptive epidemiological analysis of data from the Saudi Ministry of Health (2014) Int J Gen Med, 7, p. 417; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg Microbes Infect, 6 (6), p. e51; Lee, J.Y., Kim, Y.-J., Chung, E.H., Kim, D.-W., Jeong, I., Kim, Y., Yun, M.-R., Joh, J.-S., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis, 17 (1), p. 498; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/; Guan, Y., Zheng, B., He, Y., Liu, X., Zhuang, Z., Cheung, C., Luo, S., Guan, Y., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302 (5643), pp. 276-278; Shapiro, M., London, B., Nigri, D., Shoss, A., Zilber, E., Fogel, I., Middle East respiratory syndrome coronavirus: Review of the current situation in the world (2016) Disaster Mil Med, 2 (1), p. 9; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveill, 19 (16). , 20781; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Al-Romaihi, H.E., Isolation of MERS coronavirus from a dromedary camel, Qatar 2014 (2014) Emerg Infect Dis, 20 (8), p. 1339; Hemida, M., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D., Peiris, M., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound Emerg Dis, 64 (2), pp. 344-353; Paden, C., Yusof, M., Al Hammadi, Z., Queen, K., Tao, Y., Eltahir, Y., Elsayed, E., Khalafalla, A., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65 (3), pp. 322-333; Middle East Respiratory Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Lessler, J., Salje, H., Van Kerkhove, M.D., Ferguson, N.M., Cauchemez, S., Rodriquez-Barraquer, I., Hakeem, R., Al-Barrak, A., Estimating the severity and subclinical burden of Middle East respiratory syndrome coronavirus infection in the Kingdom of Saudi Arabia (2016) Am J Epidemiol, 183 (7), pp. 657-663; Habibzadeh, F., Hadj ritual and risk of a pandemic (2014) Am J Infect Control, 42 (1), p. 84; Cauchemez, S., Van Kerkhove, M., Riley, S., Donnelly, C., Fraser, C., Ferguson, N., Transmission scenarios for Middle East respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart (2013) Euro Surveill., 18 (24); Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Al Aidaroos, A.Y., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Al-Tawfiq, J.A., Assiri, A., Memish, Z.A., Middle East respiratory syndrome novel corona (MERS-CoV) infection. Epidemiology and outcome update (2013) Saudi Med J, 34 (10), pp. 991-994; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; (2015) Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Summary of Current Situation, Literature Update and Risk Assessment, , Organization WH; Mailles, A., Blanckaert, K., Chaud, P., Van Der Werf, S., Lina, B., Caro, V., Campese, C., Lemaire, X., First cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, may 2013 (2013) Euro Surveill, 18 (24). , 20502","Ahmadzadeh, J.; Epidemiologist in Social Determinants of Health Research Center, Urmia University of Medical Sciences, Resalat Street, Iran; email: ahmadzadeh.j@umsu.ac.ir",,"BioMed Central Ltd.",14712334,,BIDMB,"31029095","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85065196138 "Niu J., Zhan Y., Deng Y., Tan W.","57209102341;57210312410;36238838100;7401959748;","Rapid establishment of a mouse model of MERS-CoV pseudovirus infection based on DPP4 transduction [基于DPP4转导快速建立MERS-CoV假病毒感染小鼠模型]",2019,"Chinese Journal of Microbiology and Immunology (China)","39","4",,"250","255",,,"10.3760/cma.j.issn.0254-5101.2019.04.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070272543&doi=10.3760%2fcma.j.issn.0254-5101.2019.04.002&partnerID=40&md5=5ef05919a235491f05031ccff0557d16","Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China","Niu, J., Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Zhan, Y., Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Deng, Y., Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Tan, W., Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China","Objective: To rapidly establish a mouse model for optical imaging of the dynamical process of pseudotyped Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Methods: In vitro expression in HeLa cells and functions of hDPP4 encoded by recombinant adenovirus Ad5 and pseudotyped MERS-CoV were verified. The recombinant adenovirus expressing hDPP4 (Ad5-hDPP4) was injected into BALB/c mice, which were then injected with pseudotyped MERS-CoV expressing firefly luciferase at a titer of 3×107 TCID50 (50% tissue culture infective dose) via intrathoracic (I.T.) or intraperitoneal (I.P.) injection. MERS-CoV infection and tissue distribution were observed using optical imaging techniques. Results: hDPP4 and firefly luciferase were efficiently expressed in HeLa cells. In BALB/c mice injected with Ad5-hDPP4 via I. P., firefly luciferase expression were detected in abdomen between 48-96 h after pseudotyped MERS-CoV infection. The expression of firely luciferase was also detected in chests of BALB/c mice injected with Ad5-hDPP4 via I. T. around 48 h after pseudotyped MERS-CoV infection. Conclusions: This study reported a simple and rapid method for establishing a mouse model for conveniently and dynamically monitoring pseudotyped MERS-CoV infection, which might provide an effective means for in vivo evaluation of neutralizing antibodies or entry inhibitors by visualization with optical imaging techniques. Copyright © 2019 by the Chinese Medical Association.","Animal model; Firefly luciferase; Mouse; Optical imaging; Pseudotyped Middle East respiratory syndrome coronavirus","firefly luciferase; neutralizing antibody; animal experiment; animal model; Article; Coronavirus infection; fluorescence imaging; HeLa cell line; in vitro study; in vivo study; Middle East respiratory syndrome; mouse; nonhuman; protein expression; signal transduction; tissue distribution","Zaki, A.M., Van-Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Van-Den-Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J Pathol, 235 (2), pp. 175-184; Assiri, A., Mcgeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371 (9), pp. 828-835; Middle East respiratory syndrome-MERS situation update, February 2019 http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html, [2019-01-14]; FAO-OIE-WHO MERS Technical Working Group, MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44; Van-Boheemen, S., De-Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6); Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature0, 500 (7461), pp. 227-231; Lu, L., Liu, Q., Zhu, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Wang, X., Zou, P., Wu, F., Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses (2017) Front Med, 11 (4), pp. 449-461; Niu, P., Zhang, S., Zhou, P., Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient (2018) J Infect Dis, 218 (8), pp. 1249-1260; Wang, Y., Sun, J., Zhu, A., Current understanding of Middle East respiratory syndrome coronavirus infection in human and animal models (2018) J Thorac Dis, 10, pp. S2260-S2271; Lan, J.M., Deng, Y., Tan, W.J., Advances in the animal models of MERS-CoV (2016) Chin J Virol, 32 (3), pp. 369-375. , 蓝佳明,邓瑶,谭文杰. MERS-CoV动物模型研究进展[J]. 病毒学报, 2016, 32(3): 369-375.; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114 (15), pp. E3119-E3128; Lu, S., Qin, K., Tan, W.J., Adance on laboratory diagnosis, vaccines and therapies for the Middle East respiratory syndrome coronavirus (2016) Chinese Journal of Experimental and Clinical Virology, 30 (6), pp. 582-586. , 卢帅,秦堃,谭文杰. 中东呼吸综合征冠状病毒的实验室检测以及疫苗和治疗研究进展[J]. 中华实验和临床病毒学杂志, 2016, 30(6): 582-586.; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111 (13), pp. 4970-4975; Deng, Y., Lan, J., Bao, L., Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of Middle East respiratory syndrome coronavirus (2018) Emerg Microbes Infect, 7 (1), p. 60; Li, K., Wohlford-Lenane, C., Perlman, S., Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4 (2016) J Infect Dis, 213 (5), pp. 712-722; Fan, C., Wu, X., Liu, Q., A human DPP4-Knockin mouse’s susceptibility to infection by authentic and pseudotyped MERS-CoV (2018) Viruses, 10 (9), p. E448; Grehan, K., Ferrara, F., Temperton, N., An optimised method for the production of MERS-CoV spike expressing viral pseudotypes (2015) MethodsX, X2, pp. 379-384; Liu, Q., Fan, C., Li, Q., Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection (2017) Sci Rep, 7, p. 45552; Yao, Y.F., Lan, J.M., Li, F.D., Clinical and biological character in mouse models for Middle East respiratory syndrome generated by transduction with different doses of DPP4 molecule (2015) Chin J Virol, 131 (6), pp. 593-600. , 姚艳丰,蓝佳明,李枫棣,等. 不同剂量DPP4转导后MERS-CoV感染小鼠模型的临床及生物学特征比较[J]. 病毒学报, 2015, 31(6): 593-600.; Cockrell, A.S., Yount, B.L., Scobey, T., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 12, p. 16226; De-Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci USA, 110 (41), pp. 16598-16603; Yao, Y., Bao, L., Deng, W., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J Infect Dis, 209 (2), pp. 236-242; Falzarano, D., De-Wit, E., Feldmann, F., Infection with MERS-CoV causes lethal pneumonia in the common marmoset (2014) PLoS Pathog, 10 (8); Zhao, G., Du, L., Ma, C., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol J, 10, p. 266","Tan, W.; Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionChina; email: tanwj28@163.com",,"Society of Microbiology and Immunology",02545101,,ZWMZD,,"Chinese","Chin. J. Microbiol. Immunol.",Article,"Final",,Scopus,2-s2.0-85070272543 "Lau S.K.P., Wong A.C.P., Zhang L., Luk H.K.H., Kwok J.S.L., Ahmed S.S., Cai J.-P., Zhao P.S.H., Teng J.L.L., Tsui S.K.W., Yuen K.-Y., Woo P.C.Y.","7401596211;57196150074;57208785204;56513568500;56594542200;56393567800;35557916700;57189038172;7202560229;7004961364;36078079100;7201801340;","Novel bat alphacoronaviruses in Southern China support chinese horseshoe bats as an important reservoir for potential novel coronaviruses",2019,"Viruses","11","5", 5042,"","",,1,"10.3390/v1105042","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065773852&doi=10.3390%2fv1105042&partnerID=40&md5=45d3a266476037f3426a4ff2c54418b2","Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510000, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong","Lau, S.K.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Wong, A.C.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Zhang, L., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510000, China; Luk, H.K.H., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Kwok, J.S.L., School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Ahmed, S.S., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Cai, J.-P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Zhao, P.S.H., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Teng, J.L.L., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong; Tsui, S.K.W., School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Yuen, K.-Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong; Woo, P.C.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong","While bats are increasingly recognized as a source of coronavirus epidemics, the diversity and emergence potential of bat coronaviruses remains to be fully understood. Among 1779 bat samples collected in China, diverse coronaviruses were detected in 32 samples from five different bat species by RT-PCR. Two novel alphacoronaviruses, Rhinolophus sinicus bat coronavirus HKU32 (Rs-BatCoV HKU32) and Tylonycteris robustula bat coronavirus HKU33 (Tr-BatCoV HKU33), were discovered from Chinese horseshoe bats in Hong Kong and greater bamboo bats in Guizhou Province, respectively. Genome analyses showed that Rs-BatCoV HKU32 is closely related to BatCoV HKU10 and related viruses from diverse bat families, whereas Tr-BatCoV HKU33 is closely related to BtNv-AlphaCoV and similar viruses exclusively from bats of Vespertilionidae family. The close relatedness of Rs-BatCoV HKU32 to BatCoV HKU10 which was also detected in Pomona roundleaf bats from the same country park suggests that these viruses may have the tendency of infecting genetically distant bat populations of close geographical proximity with subsequent genetic divergence. Moreover, the presence of SARSr-CoV ORF7a-like protein in Rs-BatCoV HKU32 suggests a common evolutionary origin of this accessory protein with SARS-CoV, also from Chinese horseshoe bats, an apparent reservoir for coronavirus epidemics. The emergence potential of Rs- BatCoV HKU32 should be explored. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Alphacoronavirus; Bat; Coronavirus; Discovery; Epidemics; Molecular; Novel; Species","messenger RNA; nonstructural protein 2; Alphacoronavirus; amino acid sequence; Article; bamboo; bat; China; cluster analysis; Coronavirinae; DNA sequence; epidemic; gene sequence; genetic analysis; genetic variability; genome analysis; genome size; geographic distribution; geography; nonhuman; nucleotide sequence; open reading frame; phylogeny; regulatory sequence; reverse transcription polymerase chain reaction; Rhinolophus sinicus; RNA extraction; sequence alignment; sequence analysis; Tylonycteris robustula; Vespertilionidae; virus detection; whole genome sequencing","Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Zhao, G.P., Sars molecular epidemiology: A Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era (2007) Philos. Trans. R Soc. Lond. B Biol. Sci., 362, pp. 1063-1081; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle east respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle east respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2013) Lancet Infect. Dis., 14, pp. 140-145; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.-Y., Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing sars-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular evolution of mers coronavirus: Dromedaries as a recent intermediate host or long-time animal reservoir? (2017) Int. J. Mol. Sci., 18, p. 2138; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Huang, Y., Comparative analysis of twelve genomes of three novel group 2C and group 2D coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Wong, B.H.L., Tsoi, H.-W., Yip, B.C.K., Yuen, K.-Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus hku5 in Japanese pipistrelle: Implications for the origin of the novel middle east respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 8638-8650; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Yuen, K.-Y., Genetic relatedness of the novel human group c betacoronavirus to tylonycteris bat coronavirus hku4 and pipistrellus bat coronavirus hku5 (2012) Emerg. Micro. Infect., 1, p. e35; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of middle east respiratory syndrome coronavirus by characterization of a conspecific virus from an african bat (2014) J. Virol., 88, pp. 11297-11303; Yang, L., Wu, Z., Ren, X., Yang, F., Zhang, J., He, G., Dong, J., Zhang, S., Mers-related betacoronavirus in vespertilio superans bats, China (2014) Emerg. Infect. Dis., 20, pp. 1260-1262; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus (2017) MBio, 8, pp. e00317-e00373; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Wong, A.C.P., Receptor usage of a novel bat lineage c betacoronavirus reveals evolution of middle east respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J. Infect. Dis., 218, pp. 197-207; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of novel bat coronaviruses in south china that use the same receptor as middle east respiratory syndrome coronavirus (2018) J. Virol., 92, pp. e00116-e00118; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J.M., Wolthers, K.C., Wertheimvan Dillen, P.M.E., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Cheung, M.T., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Luk, W.K., Characterization and complete genome sequence of a novel coronavirus, coronavirus hku1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Tsang, A.K.L., Fan, R.Y.Y., Luk, H.K.H., Cai, J.-P., Wang, M., Discovery of a novel coronavirus, china rattus coronavirus hku24, from norway rats supports the murine origin of betacoronavirus 1 and has implications for the ancestor of betacoronavirus lineage A (2014) J. Virol., 89, pp. 3076-3092; Lai, M.M.C., Cavanagh, D., The molecular biology of coronaviruses (1997) Advances in Virus Research, pp. 1-100. , Elsevier:Amsterdam, Netherlands; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Current Topics in Microbiology and Immunology, pp. 1-30. , Springer-Verlag: Berlin, Germany; De Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Talbot, P.J., Family Coronaviridae (2011) Virus Taxonomy, Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , 1st Edition; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier Academic Press: San Diego, CA, USA; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in saudi arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00412-e00473; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses nl63 and 229e and their recombination history (2017) J. Virol., 91, pp. e01916-e01953; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Adu-Sarkodie, Y., Evidence for an ancestral association of human coronavirus 229e with bats (2015) J. Virol., 89, pp. 11858-11870; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Muller, M.A., Adu-Sarkodie, Y., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229e in bats, ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00713-e00737; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an hku2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Zhang, X., Discovery of a novel swine enteric alphacoronavirus (seacov) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-hku2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, p. 1607; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Zheng, B.J., Complete genome sequence of bat coronavirus hku2 from chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Lau, S.K.P., Wong, E.Y.M., Tsang, C.C., Ahmed, S.S., Au-Yeung, R.K.H., Yuen, K.Y., Wernery, U., Woo, P.C.Y., Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-tomammalian transmission (2018) J. Virol., 92, pp. e00218-e00265; Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Prjibelski, A.D., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing (2012) J. Comput. Biol., 19, pp. 455-477; Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410; Lau, S.K.P., Woo, P.C.Y., Yip, C.C.Y., Fan, R.Y.Y., Huang, Y., Wang, M., Guo, R., Lai, K.K.Y., Isolation and characterization of a novel betacoronavirus subgroup a coronavirus, rabbit coronavirus hku14, from domestic rabbits (2012) J. Virol., 86, pp. 5481-5496; Katoh, K., Rozewicki, J., Yamada, K.D., Mafft online service: Multiple sequence alignment, interactive sequence choice and visualization (2017) Brief. Bioinform; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of phyml 3.0 (2010) Syst. Biol., 59, pp. 307-321; Nelson, C.A., Pekosz, A., Lee, C.A., Diamond, M.S., Fremont, D.H., Structure and intracellular targeting of the sars-coronavirus ORF7A accessory protein (2005) Structure, 13, pp. 75-85; Pekosz, A., Schaecher, S.R., Diamond, M.S., Fremont, D.H., Sims, A.C., Baric, R.S., Structure, expression, and intracellular localization of the SARS-COV accessory proteins 7A and 7B (2006) Adv. Exp. Med. Biol., 581, pp. 115-120; Lau, S.K., Li, K.S., Tsang, A.K., Shek, C.T., Wang, M., Choi, G.K., Guo, R., Lam, C.S., Recent transmission of a novel alphacoronavirus, bat coronavirus hku10, from leschenault’s rousettes to pomona leaf-nosed bats: First evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J. Virol., 86, pp. 11906-11918; Wong, A.C.P., Li, X., Lau, S.K.P., Woo, P.C.Y., Global epidemiology of bat coronaviruses (2019) Viruses, 11, p. 174; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus hku4 provide insight into bat-to-human transmission of mers coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Wang, J., Bat origins of MERS-COV supported by bat coronavirus hku4 usage of human receptor cd26 (2014) Cell. Host Microbe, 16, pp. 328-337","Yuen, K.-Y.; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong; email: kyyuen@hku.hk",,"MDPI AG",19994915,,,"31067830","English","Viruses",Article,"Final",,Scopus,2-s2.0-85065773852 "Bouwman K.M., Delpont M., Broszeit F., Berger R., Weerts E.A.W.S., Lucas M.-N., Delverdier M., Belkasmi S., Papanikolaou A., Boons G.-J., Guérin J.-L., de Vries R.P., Ducatez M.F., Verheije M.H.","57193003445;57194484751;57190127936;57208688817;55981338200;55532752500;7003552760;57200304547;57208683161;25635472000;7202258987;36458043300;10044731300;7801561319;","Guinea fowl coronavirus diversity has phenotypic consequences for glycan and tissue binding",2019,"Journal of Virology","93","10", e00067-19,"","",,1,"10.1128/JVI.00067-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065552640&doi=10.1128%2fJVI.00067-19&partnerID=40&md5=bd83798bc9d035263cfc3bc0525ed84c","Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands","Bouwman, K.M., Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Delpont, M., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Broszeit, F., Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Berger, R., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Weerts, E.A.W.S., Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Lucas, M.-N., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Delverdier, M., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Belkasmi, S., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Papanikolaou, A., Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Boons, G.-J., Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Guérin, J.-L., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; de Vries, R.P., Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Ducatez, M.F., IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France; Verheije, M.H., Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands","Guinea fowl coronavirus (GfCoV) causes fulminating enteritis that can result in a daily death rate of 20% in guinea fowl flocks. Here, we studied GfCoV diversity and evaluated its phenotypic consequences. Over the period of 2014 to 2016, affected guinea fowl flocks were sampled in France, and avian coronavirus presence was confirmed by PCR on intestinal content and immunohistochemistry of intestinal tissue. Sequencing revealed 89% amino acid identity between the viral attachment protein S1 of GfCoV/2014 and that of the previously identified GfCoV/2011. To study the receptor interactions as a determinant for tropism and pathogenicity, recombinant S1 proteins were produced and analyzed by glycan and tissue arrays. Glycan array analysis revealed that, in addition to the previously elucidated biantennary diN-acetyllactosamine (diLacNAc) receptor, viral attachment S1 proteins from GfCoV/ 2014 and GfCoV/2011 can bind to glycans capped with alpha-2,6-linked sialic acids. Interestingly, recombinant GfCoV/2014 S1 has an increased affinity for these glycans compared to that of GfCoV/2011 S1, which was in agreement with the increased avidity of GfCoV/2014 S1 for gastrointestinal tract tissues. Enzymatic removal of receptors from tissues before application of spike proteins confirmed the specificity of S1 tissue binding. Overall, we demonstrate that diversity in GfCoV S1 proteins results in differences in glycan and tissue binding properties. IMPORTANCE Avian coronaviruses cause major global problems in the poultry industry. As causative agents of huge economic losses, the detection and understanding of the molecular determinants of viral tropism are of ultimate importance. Here, we set out to study those parameters and obtained in-depth insight into the virus-host interactions of guinea fowl coronavirus (GfCoV). Our data indicate that diversity in GfCoV viral attachment proteins results in differences in degrees of affinity for glycan receptors, as well as altered avidity for intestinal tract tissues, which might have consequences for GfCoV tissue tropism and pathogenesis in guinea fowls. Copyright © 2019 Bouwman et al.","Coronavirus; Glycan receptor; Guinea fowl; Receptor affinity; Spike protein; Tissue tropism","glycan; coronavirus spike glycoprotein; polysaccharide; sialic acid derivative; virus receptor; animal tissue; Article; controlled study; Coronavirinae; genetic variability; guineafowl; immunohistochemistry; intestine tissue; molecular phylogeny; nonhuman; phenotype; polymerase chain reaction; priority journal; protein expression; receptor binding; sequence analysis; species diversity; viral tropism; virus attachment; animal; Coronavirinae; Coronavirus infection; enteritis; France; Galliformes; Gammacoronavirus; genetic variation; genetics; metabolism; pathogenicity; physiology; virology; virus attachment; Animals; Coronavirus; Coronavirus Infections; Enteritis; France; Galliformes; Gammacoronavirus; Genetic Variation; Phenotype; Polysaccharides; Receptors, Virus; Sialic Acids; Spike Glycoprotein, Coronavirus; Viral Tropism; Virus Attachment","Duraes-Carvalho, R., Caserta, L.C., Barnabe, A.C., Martini, M.C., Simas, P.V., Santos, M.M., Salemi, M., Arns, C.W., Phylogenetic and phylogeographic mapping of the avian coronavirus spike protein-encoding gene in wild and synanthropic birds (2015) Virus Res, 201, pp. 101-112. , https://doi.org/10.1016/j.virusres.2015.03.002; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect Genet Evol, 39, pp. 349-364. , https://doi.org/10.1016/j.meegid.2016.02.015; Circella, E., Camarda, A., Martella, V., Bruni, G., Lavazza, A., Buonavoglia, C., Coronavirus associated with an enteric syndrome on a quail farm (2007) Avian Pathol, 36, pp. 251-258. , https://doi.org/10.1080/03079450701344738; Ambepitiya Wickramasinghe, I.N., de Vries, R.P., Weerts, E.A.W.S., van Beurden, S.J., Peng, W., McBride, R., Ducatez, M., Verheije, M.H., Novel receptor specificity of avian gammacoronaviruses that cause enteritis (2015) J Virol, 89, pp. 8783-8792. , https://doi.org/10.1128/JVI.00745-15; Brown, P.A., Courtillon, C., Weerts, E., Andraud, M., Allee, C., Vendembeuche, A., Amelot, M., Eterradossi, N., Transmission kinetics and histopathology induced by european Turkey coronavirus during experimental infection of specific pathogen free turkeys (2018) Transbound Emerg Dis, 66, pp. 234-242. , https://doi.org/10.1111/tbed.13006; Liais, E., Croville, G., Mariette, J., Delverdier, M., Lucas, M.N., Klopp, C., Lluch, J., Guerin, J.L., Novel avian coronavirus and fulminating disease in guinea fowl France (2014) Emerg Infect Dis, 20, pp. 105-108. , https://doi.org/10.3201/eid2001.130774; Le, V.B., Schneider, J.G., Boergeling, Y., Berri, F., Ducatez, M., Guerin, J.L., Adrian, I., Riteau, B., Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis (2015) Am J Respir Crit Care Med, 191, pp. 804-819. , https://doi.org/10.1164/rccm.201406-1031OC; Jindal, N., Mor, S.K., Goyal, S.M., Enteric viruses in Turkey enteritis (2014) VirusDis, 25, pp. 173-185. , https://doi.org/10.1007/s13337-014-0198-8; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J Virol, 77, pp. 9084-9089. , https://doi.org/10.1128/JVI.77.16.9084-9089.2003; Promkuntod, N., van Eijndhoven, R.E.W., de Vrieze, G., Gröne, A., Verheije, M.H., Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus (2014) Virology, 448, pp. 26-32. , https://doi.org/10.1016/j.virol.2013.09.018; Promkuntod, N., Wickramasinghe, I.N., de Vrieze, G., Grone, A., Verheije, M.H., Contributions of the s2 spike ectodomain to attachment and host range of infectious bronchitis virus (2013) Virus Res, 177, pp. 127-137. , https://doi.org/10.1016/j.virusres.2013.09.006; Leyson, C., Franca, M., Jackwood, M., Jordan, B., Polymorphisms in the s1 spike glycoprotein of arkansas-type infectious bronchitis virus (IBV) show differential binding to host tissues and altered antigenicity (2016) Virology, 498, pp. 218-225. , https://doi.org/10.1016/j.virol.2016.08.030; Maurel, S., Toquin, D., Briand, F.X., Queguiner, M., Allee, C., Bertin, J., Ravillion, L., Eterradossi, N., First full-length sequences of the s gene of european isolates reveal further diversity among Turkey coronaviruses (2011) Avian Pathol, 40, pp. 179-189. , https://doi.org/10.1080/03079457.2011.551936; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1007009; Kimble, B., Nieto, G.R., Perez, D.R., Characterization of influenza virus sialic acid receptors in minor poultry species (2010) Virol J, 7, p. 365. , https://doi.org/10.1186/1743-422X-7-365; Hanada, K., Suzuki, Y., Gojobori, T., A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes (2004) Mol. Biol. Evol., 21, pp. 1074-1080. , https://doi.org/10.1093/molbev/msh109; Mahy, B.W.J., The evolution and emergence of RNA viruses (2010) Emerg Infect Dis, 16, p. 899. , https://doi.org/10.3201/eid1605.100164; Lee, C.W., Jackwood, M.W., Origin and evolution of Georgia 98 (GA98), a new serotype of avian infectious bronchitis virus (2001) Virus Res, 80, pp. 33-39. , https://doi.org/10.1016/S0168-1702(01)00345-8; Kant, A., Koch, G., van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A., van der Zeijst, B.A., Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide (1992) J Gen Virol, 73, pp. 591-596. , https://doi.org/10.1099/0022-1317-73-3-591; Zou, N., Wang, F., Duan, Z., Xia, J., Wen, X., Yan, Q., Liu, P., Huang, Y., Development and characterization of neutralizing monoclonal antibodies against the s1 subunit protein of QX-like avian infectious bronchitis virus strain sczy3 (2015) Monoclon. Antib. Immunodiagn. Immunother., 34, pp. 17-24. , https://doi.org/10.1089/mab.2014.0081; Toro, H., van Santen, V.L., Jackwood, M.W., Genetic diversity and selection regulates evolution of infectious bronchitis virus (2012) Avian Dis, 56, pp. 449-455. , https://doi.org/10.1637/10072-020212-Review.1; Williams, R.K., Jiang, G.S., Holmes, K.V., Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins (1991) Proc Natl Acad Sci USA, 88, pp. 5533-5536. , https://doi.org/10.1073/pnas.88.13.5533; Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., Laude, H., Aminopeptidase n is a major receptor for the entero-pathogenic coronavirus TGEV (1992) Nature, 357, pp. 417-420. , https://doi.org/10.1038/357417a0; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454. , https://doi.org/10.1038/nature02145; Alzohairy, A., BioEdit: An important software for molecular biology (2011) GERF Bull Biosci, 2, pp. 60-61; Edgar, R.C., Muscle: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32, pp. 1792-1797. , https://doi.org/10.1093/nar/gkh340; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 (2013) Mol. Biol Evol, 30, pp. 2725-2729. , https://doi.org/10.1093/molbev/mst197; Pamilo, P., Bianchi, N.O., Evolution of the Zfx and Zfy genes: Rates and interdependence between the genes (1993) Mol. Biol. Evol., 10, pp. 271-281. , https://doi.org/10.1093/oxfordjournals.molbev.a040003; Wickramasinghe, I.N., de Vries, R.P., Grone, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J Virol, 85, pp. 8903-8912. , https://doi.org/10.1128/JVI.05112-11","Ducatez, M.F.; IHAP, Université de Toulouse, INRA, ENVTFrance; email: m.ducatez@envt.fr",,"American Society for Microbiology",0022538X,,JOVIA,"30842318","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85065552640 "Chung Y.-S., Kim J.M., Kim H.M., Park K.R., Lee A., Lee N.-J., Kim M.-S., Kim J.S., Kim C.-K., Lee J.I., Kang C.","57203291955;57192934192;57007421900;57203142662;57198976637;55469303000;36680155600;57208530781;12779514400;57203893194;36879197100;","Genetic characterization of middle east respiratory syndrome coronavirus, South Korea, 2018",2019,"Emerging Infectious Diseases","25","5",,"958","962",,1,"10.3201/eid2505.181534","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065022778&doi=10.3201%2feid2505.181534&partnerID=40&md5=47042f8630d8da1304ac62e8d39c4b46","Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Seoul Institute of Public Health and Environment, Seoul, South Korea","Chung, Y.-S., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Kim, J.M., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Kim, H.M., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Park, K.R., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Lee, A., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Lee, N.-J., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Kim, M.-S., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Kim, J.S., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Kim, C.-K., Korea Centers for Disease Control and Prevention, Cheongju, South Korea; Lee, J.I., Seoul Institute of Public Health and Environment, Seoul, South Korea; Kang, C., Korea Centers for Disease Control and Prevention, Cheongju, South Korea","We evaluated genetic variation in Middle East respiratory syndrome coronavirus (MERS-CoV) imported to South Korea in 2018 using specimens from a patient and isolates from infected Caco-2 cells. The MERS-CoV strain in this study was genetically similar to a strain isolated in Riyadh, Saudi Arabia, in 2017. © 2018, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"adult; article; genetic variation; human; human cell; human tissue; Middle East respiratory syndrome coronavirus; nonhuman; Saudi Arabia; South Korea; cell line; classification; Coronavirus infection; epidemic; genetics; history; isolation and purification; Middle East respiratory syndrome coronavirus; phylogeny; South Korea; virology; coronavirus spike glycoprotein; Cell Line; Coronavirus Infections; Disease Outbreaks; History, 21st Century; Humans; Middle East Respiratory Syndrome Coronavirus; Phylogeny; Republic of Korea; Spike Glycoprotein, Coronavirus","Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303. , http://dx.doi.org/10.1128/JVI.01498-14; Lee, J.Y., Kim, Y.J., Chung, E.H., Kim, D.W., Jeong, I., Kim, Y., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis, 17, pp. 498-507. , http://dx.doi.org/10.1186/s12879-017-2576-5; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213. , http://dx.doi.org/10.1016/j.jhin.2016.10.008; Plipat, T., Buathong, R., Wacharapluesadee, S., Siriarayapon, P., Pittayawonganon, C., Sangsajja, C., Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand, June 2015 (2017) Euro Surveill, 22, p. 30598. , http://dx.doi.org/10.2807/1560-7917.ES.2017.22.33.30598; (2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) infection—Republic of Korea, , http://www.who.int/csr/don/12-september-2018-mers-republic-of-korea/en, Sep 12 [cited 2018 Dec 28]; (2018), http://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en, Jan [cited 2018 Dec 28]; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , http://dx.doi.org/10.1093/molbev/msw054; Muth, D., Corman, V.M., Meyer, B., Assiri, A., Al-Masri, M., Farah, M., Infectious Middle East respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia (2015) J Clin Microbiol, 53, pp. 2951-2955. , http://dx.doi.org/10.1128/JCM.01368-15; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., Hajomar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377. , http://dx.doi.org/10.1093/cid/ciu812; Kossyvakis, A., Tao, Y., Lu, X., Pogka, V., Tsiodras, S., Emmanouil, M., Laboratory investigation and phylogenetic analysis of an imported Middle East respiratory syndrome coronavirus case in Greece (2015) Plos One, 10. , http://dx.doi.org/10.1371/journal.pone.0125809; Kim, D.W., Kim, Y.J., Park, S.H., Yun, M.R., Yang, J.S., Kang, H.J., Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015 (2016) Emerg Infect Dis, 22, pp. 100-104. , http://dx.doi.org/10.3201/eid2201.151055; Tsiodras, S., Baka, A., Mentis, A., Iliopoulos, D., Dedoukou, X., Papamavrou, G., A case of imported Middle East respiratory syndrome coronavirus infection and public health response, Greece (2014) April 2014. Euro Surveill, 19, p. 20782. , http://dx.doi.org/10.2807/1560-7917.ES2014.19.16.20782","Kang, C.; Korea Centers for Disease Control and Prevention—Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, South Korea; email: kangchun@korea.kr",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"30753126","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85065022778 "Grunewald M.E., Chen Y., Kuny C., Maejima T., Lease R., Ferraris D., Aikawa M., Sullivan C.S., Perlman S., Fehr A.R.","57193548278;56149811900;36116725600;57205239384;57194174274;6601993620;7201578889;7202242860;7102708317;36061058900;","The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression",2019,"PLoS Pathogens","15","5", e1007756,"","",,7,"10.1371/journal.ppat.1007756","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066872871&doi=10.1371%2fjournal.ppat.1007756&partnerID=40&md5=bf045a706053c7afd93da39b048439c8","Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Department of Molecular Biosciences, University of Texas, Austin, TX, United States; Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States; McDaniel College, Westminster, MD, United States; Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States","Grunewald, M.E., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Chen, Y., Department of Molecular Biosciences, University of Texas, Austin, TX, United States; Kuny, C., Department of Molecular Biosciences, University of Texas, Austin, TX, United States; Maejima, T., Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States; Lease, R., McDaniel College, Westminster, MD, United States; Ferraris, D., McDaniel College, Westminster, MD, United States; Aikawa, M., Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States; Sullivan, C.S., Department of Molecular Biosciences, University of Texas, Austin, TX, United States; Perlman, S., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States; Fehr, A.R., Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States","ADP-ribosylation is a ubiquitous post-translational addition of either monomers or polymers of ADP-ribose to target proteins by ADP-ribosyltransferases, usually by interferon-inducible diphtheria toxin-like enzymes known as PARPs. While several PARPs have known antiviral activities, these activities are mostly independent of ADP-ribosylation. Consequently, less is known about the antiviral effects of ADP-ribosylation. Several viral families, including Coro-naviridae, Togaviridae, and Hepeviridae, encode for macrodomain proteins that bind to and hydrolyze ADP-ribose from proteins and are critical for optimal replication and virulence. These results suggest that macrodomains counter cellular ADP-ribosylation, but whether PARPs or, alternatively, other ADP-ribosyltransferases cause this modification is not clear. Here we show that pan-PARP inhibition enhanced replication and inhibited interferon production in primary macrophages infected with macrodomain-mutant but not wild-type coronavirus. Specifically, knockdown of two abundantly expressed PARPs, PARP12 and PARP14, led to increased replication of mutant but did not significantly affect wild-type virus. PARP14 was also important for the induction of interferon in mouse and human cells, indicating a critical role for this PARP in the regulation of innate immunity. In summary, these data demonstrate that the macrodomain is required to prevent PARP-mediated inhibition of coronavirus replication and enhancement of interferon production. © 2019 Grunewald et al.",,"carcinoembryonic antigen related cell adhesion molecule 1; CD11b antigen; genomic RNA; interferon; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase 12; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase 14; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase inhibitor; small interfering RNA; unclassified drug; alpha beta interferon receptor; Ifnar1 protein, mouse; interferon; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase; nicotinamide adenine dinucleotide adenosine diphosphate ribosyltransferase inhibitor; A-549 cell line; adenosine diphosphate ribosylation; animal cell; animal tissue; antiviral activity; Article; BHK-21 cell line; cell metabolism; cell proliferation assay; cell viability; Coronaviridae; Coronavirinae; enzyme activity; flow cytometry; fluorescence microscopy; gene expression; gene knockdown; gene overexpression; Hepeviridae; human; human cell; immunoblotting; in vivo study; innate immunity; macrophage; mouse; MTT assay; nonhuman; plaque assay; protein expression; protein expression level; real time polymerase chain reaction; RNA extraction; RNA sequence; Togaviridae; virus replication; animal; chemistry; Coronavirinae; Coronavirus infection; drug effect; genetics; immunology; metabolism; protein domain; virology; virulence; ADP-Ribosylation; Animals; Coronavirus; Coronavirus Infections; Humans; Immunity, Innate; Interferons; Mice; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Protein Domains; Receptor, Interferon alpha-beta; Virulence; Virus Replication","Hottiger, M.O., Hassa, P.O., Luscher, B., Schuler, H., Koch-Nolte, F., Toward a unified nomenclature for mammalian ADP-ribosyltransferases (2010) Trends Biochem Sci, 35 (4), pp. 208-219. , https://doi.org/10.1016/j.tibs.2009.12.003, 20106667; Vyas, S., Matic, I., Uchima, L., Rood, J., Zaja, R., Hay, R.T., Family-wide analysis of poly(ADP-ribose) polymerase activity (2014) Nat Commun, 5. , https://doi.org/10.1038/ncomms5426, 25043379; Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., A family of macrodomain proteins reverses cellular mono-ADP-ribosylation (2013) Nat Struct Mol Biol, 20 (4), pp. 508-514. , https://doi.org/10.1038/nsmb.2523PMID; Rosenthal, F., Feijs, K.L., Frugier, E., Bonalli, M., Forst, A.H., Imhof, R., Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases (2013) Nat Struct Mol Biol, 20 (4), pp. 502-507. , https://doi.org/10.1038/nsmb.2521, 23474714; Sharifi, R., Morra, R., Appel, C.D., Tallis, M., Chioza, B., Jankevicius, G., Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease (2013) EMBO J, 32 (9), pp. 1225-1237. , https://doi.org/10.1038/emboj.2013.51, 23481255; Palazzo, L., Mikoc, A., Ahel, I., ADP-ribosylation: New facets of an ancient modification (2017) FEBS J, 284 (18), pp. 2932-2946. , https://doi.org/10.1111/febs.14078, Epub 2017/04/07, 28383827; Rack, J.G., Perina, D., Ahel, I., Macrodomains: Structure, Function, Evolution, and Catalytic Activities (2016) Annu Rev Biochem, 85, pp. 431-454. , https://doi.org/10.1146/annurev-biochem-060815-014935, Epub 2016/02/05, 26844395; Kuny, C.V., Sullivan, C.S., Virus-Host Interactions and the ARTD/PARP Family of Enzymes (2016) Plos Pathog, 12 (3). , https://doi.org/10.1371/journal.ppat.1005453, 27010460; Messner, S., Hottiger, M.O., Histone ADP-ribosylation in DNA repair, replication and transcription (2011) Trends Cell Biol, 21 (9), pp. 534-542. , https://doi.org/10.1016/j.tcb.2011.06.001, 21741840; Yang, E., Tacchelly-Benites, O., Wang, Z., Randall, M.P., Tian, A., Benchabane, H., Wnt pathway activation by ADP-ribosylation (2016) Nat Commun, 7. , https://doi.org/10.1038/ncomms11430, Epub 2016/05/04, 2713885; Jwa, M., Chang, P., PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK-and IRE1alpha-mediated unfolded protein response (2012) Nat Cell Biol, 14 (11), pp. 1223-1230. , https://doi.org/10.1038/ncb2593, Epub 2012/10/ 30, 23103912; Goenka, S., Boothby, M., Selective potentiation of Stat-dependent gene expression by collaborator of Stat6 (CoaSt6), a transcriptional cofactor (2006) Proc Natl Acad Sci U S A, 103 (11), pp. 4210-4215. , https://doi.org/10.1073/pnas.0506981103, Epub 2006/03/16, 16537510; Goenka, S., Cho, S.H., Boothby, M., Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription (2007) J Biol Chem, 282 (26), pp. 18732-18739. , https://doi.org/10.1074/jbc.M611283200, 17478423; Mehrotra, P., Riley, J.P., Patel, R., Li, F., Voss, L., Goenka, S., PARP-14 functions as a transcriptional switch for Stat6-dependent gene activation (2011) J Biol Chem, 286 (3), pp. 1767-1776. , https://doi.org/10.1074/jbc.M110.157768, 21081493; Iwata, H., Goettsch, C., Sharma, A., Ricchiuto, P., Goh, W.W., Halu, A., PARP9 and PARP14 cross-regu-late macrophage activation via STAT1 ADP-ribosylation (2016) Nat Commun, 7. , https://doi.org/10.1038/ncomms12849PMID; Leung, A.K., Vyas, S., Rood, J.E., Bhutkar, A., Sharp, P.A., Chang, P., Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm (2011) Mol Cell, 42 (4), pp. 489-499. , https://doi.org/10.1016/j.molcel.2011.04.015, 21596313; Seo, G.J., Kincaid, R.P., Phanaksri, T., Burke, J.M., Pare, J.M., Cox, J.E., Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells (2013) Cell Host Microbe, 14 (4), pp. 435-445. , https://doi.org/10.1016/j.chom.2013.09.002, Epub 2013/10/01, 24075860; Koyuncu, E., Budayeva, H.G., Miteva, Y.V., Ricci, D.P., Silhavy, T.J., Shenk, T., Sirtuins are evolutionarily conserved viral restriction factors (2014) Mbio, 5, p. 6. , https://doi.org/10.1128/mBio.02249-14, Epub 2014/12/18, 25516616; Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells (2006) Cell, 126 (5), pp. 941-954. , https://doi.org/10.1016/j.cell.2006.06.057, Epub 2006/09/09, 16959573; Mao, Z., Hine, C., Tian, X., van Meter, M., Au, M., Vaidya, A., SIRT6 promotes DNA repair under stress by activating PARP1 (2011) Science, 332 (6036), pp. 1443-1446. , https://doi.org/10.1126/science.1202723, Epub 2011/06/18, 21680843; Daugherty, M.D., Young, J.M., Kerns, J.A., Malik, H.S., Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts (2014) Plos Genet, 10 (5). , https://doi.org/10.1371/journal.pgen.1004403, 24875882; Kerns, J.A., Emerman, M., Malik, H.S., Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein (2008) Plos Genet, 4 (1), p. e21. , https://doi.org/10.1371/journal.pgen.0040021, 18225958; Gao, G., Guo, X., Goff, S.P., Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein (2002) Science, 297 (5587), pp. 1703-1706. , https://doi.org/10.1126/science.1074276, 12215647; Zhu, Y., Chen, G., Lv, F., Wang, X., Ji, X., Xu, Y., Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation (2011) Proc Natl Acad Sci U S A, 108 (38), pp. 15834-15839. , https://doi.org/10.1073/pnas.1101676108, 21876179; Bick, M.J., Carroll, J.W., Gao, G., Goff, S.P., Rice, C.M., Macdonald, M.R., Expression of the zinc-finger antiviral protein inhibits alphavirus replication (2003) J Virol, 77 (21), pp. 11555-11562. , https://doi.org/10.1128/JVI.77.21.11555-11562.2003, 14557641; Kozaki, T., Takahama, M., Misawa, T., Matsuura, Y., Akira, S., Saitoh, T., Role of zinc-finger anti-viral protein in host defense against Sindbis virus (2015) Int Immunol, 27 (7), pp. 357-364. , https://doi.org/10.1093/intimm/dxv010, 25758257; Muller, S., Moller, P., Bick, M.J., Wurr, S., Becker, S., Gunther, S., Inhibition of filovirus replication by the zinc finger antiviral protein (2007) J Virol, 81 (5), pp. 2391-2400. , https://doi.org/10.1128/JVI.01601-06, 17182693; Guo, X., Ma, J., Sun, J., Gao, G., The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA (2007) Proc Natl Acad Sci U S A, 104 (1), pp. 151-156. , https://doi.org/10.1073/pnas.0607063104, 17185417; Liu, C.H., Zhou, L., Chen, G., Krug, R.M., Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein (2015) Proc Natl Acad Sci U S A, , https://doi.org/10.1073/pnas.1509745112, 26504237; Atasheva, S., Frolova, E.I., Frolov, I., Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication (2014) J Virol, 88 (4), pp. 2116-2130. , https://doi.org/10.1128/JVI.03443-13, 24335297; Liu, S.Y., Sanchez, D.J., Aliyari, R., Lu, S., Cheng, G., Systematic identification of type I and type II interferon-induced antiviral factors (2012) Proc Natl Acad Sci U S A, 109 (11), pp. 4239-4244. , https://doi.org/10.1073/pnas.1114981109, Epub 2012/03/01, 22371602; Atasheva, S., Akhrymuk, M., Frolova, E.I., Frolov, I., New PARP gene with an anti-alphavirus function (2012) J Virol, 86 (15), pp. 8147-8160. , https://doi.org/10.1128/JVI.00733-12, 22623789; Li, L., Zhao, H., Liu, P., Li, C., Quanquin, N., Ji, X., PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins (2018) Sci Signal, 11 (535). , https://doi.org/10.1126/scisignal.aas9332, Epub 2018/06/ 21, 29921658; Zhang, Y., Mao, D., Roswit, W.T., Jin, X., Patel, A.C., Patel, D.A., PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection (2015) Nat Immunol, 16 (12), pp. 1215-1227. , https://doi.org/10.1038/ni.3279, Epub 2015/10/20, 26479788; Grady, S.L., Hwang, J., Vastag, L., Rabinowitz, J.D., Shenk, T., Herpes simplex virus 1 infection activates poly (ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase (2012) J Virol, 86 (15), pp. 8259-8268. , https://doi.org/10.1128/JVI.00495-12, 22623791; Tempera, I., Deng, Z., Atanasiu, C., Chen, C.J., D’Erme, M., Lieberman, P.M., Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1 (2010) J Virol, 84 (10), pp. 4988-4997. , https://doi.org/10.1128/JVI.02333-09, 20219917; Ha, H.C., Juluri, K., Zhou, Y., Leung, S., Hermankova, M., Snyder, S.H., Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration (2001) Proc Natl Acad Sci U S A, 98 (6), pp. 3364-3368. , https://doi.org/10.1073/pnas.051633498, 11248084; Kozaki, T., Komano, J., Kanbayashi, D., Takahama, M., Misawa, T., Satoh, T., Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response (2017) Proc Natl Acad Sci U S A, , https://doi.org/10.1073/pnas.1621508114, 28213497; Yamada, T., Horimoto, H., Kameyama, T., Hayakawa, S., Yamato, H., Dazai, M., Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense (2016) Nat Immunol, 17 (6), pp. 687-694. , https://doi.org/10.1038/ni.3422, 27089381; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection (2016) Mbio, 7 (6). , https://doi.org/10.1128/mBio.01721-16, 27965448; Li, C., Debing, Y., Jankevicius, G., Neyts, J., Ahel, I., Coutard, B., Viral Macro Domains Reverse Protein ADP-Ribosylation (2016) J Virol, 90 (19), pp. 8478-8486. , https://doi.org/10.1128/JVI.00705-16, 27440879; Eckei, L., Krieg, S., Butepage, M., Lehmann, A., Gross, A., Lippok, B., The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases (2017) Sci Rep, 7. , https://doi.org/10.1038/srep41746PMID:28150709; Fehr, A.R., Jankevicius, G., Ahel, I., Perlman, S., Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis (2018) Trends Microbiol, 26 (7), pp. 598-610. , https://doi.org/10.1016/j.tim.2017.11.011, Epub 2017/12/23, 29268982; Abraham, R., Hauer, D., McPherson, R.L., Utt, A., Kirby, I.T., Cohen, M.S., ADP-ribosyl-binding and hydro-lase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication (2018) Proc Natl Acad Sci U S A, , https://doi.org/10.1073/pnas.1812130115, Epub 2018/10/17, 30322911; McPherson, R.L., Abraham, R., Sreekumar, E., Ong, S.E., Cheng, S.J., Baxter, V.K., ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence (2017) Proc Natl Acad Sci U S A, 114 (7), pp. 1666-1671. , https://doi.org/10.1073/pnas.1621485114, Epub 2017/02/02, 28143925; Parvez, M.K., The hepatitis E virus ORF1 ’X-domain’ residues form a putative macrodomain protein/ Appr-1’’-pase catalytic-site, critical for viral RNA replication (2015) Gene, 566 (1), pp. 47-53. , https://doi.org/10.1016/j.gene.2015.04.026, Epub 2015/04/ 15, 25870943; Eriksson, K.K., Cervantes-Barragan, L., Ludewig, B., Thiel, V., Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1’’-phosphatase, a viral function conserved in the alpha-like supergroup (2008) J Virol, 82 (24), pp. 12325-12334. , https://doi.org/10.1128/JVI.02082-08, 18922871; Kuri, T., Eriksson, K.K., Putics, A., Zust, R., Snijder, E.J., Davidson, A.D., The ADP-ribose-1’’-monopho-sphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses (2011) J Gen Virol., 92, pp. 1899-1905. , https://doi.org/10.1099/vir.0.031856-0, PMID: 21525212; Putics, A., Filipowicz, W., Hall, J., Gorbalenya, A.E., Ziebuhr, J., ADP-ribose-1""-monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture (2005) J Virol, 79 (20), pp. 12721-12731. , https://doi.org/10.1128/JVI.79.20.12721-12731.2005, 16188975; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 Macrodomain Promotes Virulence in Mice with Coronavirus-Induced Encephalitis (2015) J Virol, 89 (3), pp. 1523-1536. , https://doi.org/10.1128/JVI.02596-14, 25428866; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23. , https://doi.org/10.1007/978-1-4939-2438-7_1, 25720466; Bergmann, C.C., Lane, T.E., Stohlman, S.A., Coronavirus infection of the central nervous system: Host-virus stand-off (2006) Nat Rev Microbiol, 4 (2), pp. 121-132. , https://doi.org/10.1038/nrmicro1343, Epub 2006/01/18, 16415928; Bailey-Elkin, B.A., Knaap, R.C., Johnson, G.G., Dalebout, T.J., Ninaber, D.K., van Kasteren, P.B., Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J Biol Chem, 289 (50), pp. 34667-34682. , https://doi.org/10.1074/jbc.M114.609644, Epub 2014/10/17, 25320088; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114 (21), pp. E4251-E4E60. , https://doi.org/10.1073/pnas.1618310114, Epub 2017/05/10, 28484023; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) Plos Pathog, 13 (2). , https://doi.org/10.1371/journal.ppat.1006195, Epub 2017/02/06, 28158275; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Ribose 2’-O-methyla-tion provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat Immunol, 12 (2), pp. 137-143. , https://doi.org/10.1038/ni.1979, Epub 2011/01/11, 21217758; Kindler, E., Thiel, V., Weber, F., Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response (2016) Adv Virus Res, 96, pp. 219-243. , https://doi.org/10.1016/bs.aivir.2016.08.006, Epub 2016/10/08, 27712625; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J Virol, 87 (16), pp. 9159-9172. , https://doi.org/10.1128/JVI.01275-13, 23760243; Egloff, M.P., Malet, H., Putics, A., Heinonen, M., Dutartre, H., Frangeul, A., Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains (2006) J Virol, 80 (17), pp. 8493-8502. , https://doi.org/10.1128/JVI.00713-06, 16912299; Xu, Y., Cong, L., Chen, C., Wei, L., Zhao, Q., Xu, X., Crystal structures of two coronavirus ADP-ribose-1’’-monophosphatases and their complexes with ADP-Ribose: A systematic structural analysis of the viral ADRP domain (2009) J Virol, 83 (2), pp. 1083-1092. , https://doi.org/10.1128/JVI.01862-08, Epub 2008/11/07, 18987156; Wheeler, D.L., Sariol, A., Meyerholz, D.K., Perlman, S., Microglia are required for protection against lethal coronavirus encephalitis in mice (2018) J Clin Invest, 128 (3), pp. 931-943. , https://doi.org/10.1172/JCI97229, Epub 2018/01/30, 29376888; Ontiveros, E., Kuo, L., Masters, P.S., Perlman, S., Inactivation of expression of gene 4 of mouse hepatitis virus strain JHM does not affect virulence in the murine CNS (2001) Virology, 289 (2), pp. 230-238. , https://doi.org/10.1006/viro.2001.1167, Epub 2001/ 11/02, 11689046; Caprara, G., Prosperini, E., Piccolo, V., Sigismondo, G., Melacarne, A., Cuomo, A., PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins (2018) J Immunol, 200 (7), pp. 2439-2454. , https://doi.org/10.4049/jimmunol.1701117, Epub 2018/03/04, 29500242; Camicia, R., Bachmann, S.B., Winkler, H.C., Beer, M., Tinguely, M., Haralambieva, E., BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNgamma-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma (2013) J Cell Sci., 126, pp. 1969-1980. , https://doi.org/10.1242/jcs.118174; Der, S.D., Zhou, A., Williams, B.R., Silverman, R.H., Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays (1998) Proc Natl Acad Sci U S A, 95 (26), pp. 15623-15628. , Epub 1998/12/23, 9861020; Thorsell, A.G., Ekblad, T., Karlberg, T., Low, M., Pinto, A.F., Tresaugues, L., Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors (2017) J Med Chem, 60 (4), pp. 1262-1271. , https://doi.org/10.1021/acs.jmedchem.6b00990, 28001384; Holechek, J., Lease, R., Thorsell, A.G., Karlberg, T., McCadden, C., Grant, R., Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-ribosyl)transferases PARP10 and PARP14 (2018) Bioorg Med Chem Lett, 28 (11), pp. 2050-2054. , https://doi.org/10.1016/j.bmcl.2018.04.056, Epub 2018/05/12, 29748053; Cho, S.H., Raybuck, A., Wei, M., Erickson, J., Nam, K.T., Cox, R.G., B cell-intrinsic and-extrinsic regulation of antibody responses by PARP14, an intracellular (ADP-ribosyl)transferase (2013) J Immunol, 191 (6), pp. 3169-3178. , https://doi.org/10.4049/jimmunol.1301106, Epub 2013/08/21, 23956424; Gaddy, D.F., Lyles, D.S., Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways (2005) J Virol., 79 (7), pp. 4170-4179. , https://doi.org/10.1128/JVI.79.7.4170-4179.2005, Epub 2005/03/16, PMID: 15767418; Zhou, H., Zhao, J., Perlman, S., Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection (2010) Mbio, 1 (4). , https://doi.org/10.1128/mBio.00219-10, 20978536; Riley, J.P., Kulkarni, A., Mehrotra, P., Koh, B., Perumal, N.B., Kaplan, M.H., PARP-14 binds specific DNA sequences to promote Th2 cell gene expression (2013) Plos One, 8 (12). , https://doi.org/10.1371/journal.pone.0083127, Epub 2014/01/01, 24376650; Carter-O’connell, I., Vermehren-Schmaedick, A., Jin, H., Morgan, R.K., David, L.L., Cohen, M.S., Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14) (2018) ACS Chem Biol, 13 (10), pp. 2841-2848. , https://doi.org/10.1021/acschembio.8b00567; Park, E., Griffin, D.E., The nsP3 macro domain is important for Sindbis virus replication in neurons and neu-rovirulence in mice (2009) Virology, 388 (2), pp. 305-314. , https://doi.org/10.1016/j.virol.2009.03.031, Epub 2009/04/28, 19395054; Chiang, C., Gack, M.U., Post-translational Control of Intracellular Pathogen Sensing Pathways (2017) Trends Immunol, 38 (1), pp. 39-52. , Epub2016/11/20.https://doi.org/10.1016/j.it.2016.10.008PMID; Welsby, I., Hutin, D., Gueydan, C., Kruys, V., Rongvaux, A., Leo, O., PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation (2014) J Biol Chem, 289 (38), pp. 26642-26657. , https://doi.org/10.1074/jbc.M114.589515, 25086041; Verheugd, P., Forst, A.H., Milke, L., Herzog, N., Feijs, K.L., Kremmer, E., Regulation of NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10 (2013) Nat Commun, 4, p. 1683. , https://doi.org/10.1038/ncomms2672, Epub 2013/04/12, 23575687; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76 (21), pp. 11065-11078. , https://doi.org/10.1128/JVI.76.21.11065-11078.2002, 12368349; Whitlow, Z.W., Connor, J.H., Lyles, D.S., New mRNAs are preferentially translated during vesicular stomatitis virus infection (2008) J Virol, 82 (5). , https://doi.org/10.1128/JVI.01761-07, Epub 2007/12/21, PMID: 18094194; Zhao, J., Zhao, J., Perlman, S., De novo recruitment of antigen-experienced and naive T cells contributes to the long-term maintenance of antiviral T cell populations in the persistently infected central nervous system (2009) J Immunol, 183 (8), pp. 5163-5170. , https://doi.org/10.4049/jimmunol.0902164, Epub 2009/09/30, 19786545; Sanjana, N.E., Shalem, O., Zhang, F., Improved vectors and genome-wide libraries for CRISPR screening (2014) Nat Methods, 11 (8), pp. 783-784. , https://doi.org/10.1038/nmeth.3047, Epub 2014/07/31, 25075903; Kincaid, R.P., Burke, J.M., Cox, J.C., de Villiers, E.M., Sullivan, C.S., A human torque teno virus encodes a micro-RNA that inhibits interferon signaling (2013) Plos Pathog, 9 (12). , https://doi.org/10.1371/journal.ppat.1003818, Epub 2013/12/25, 24367263; Perlman, S., Schelper, R., Ries, D., Maternal antibody-modulated MHV-JHM infection in C57BL/6 and BALB/c mice (1987) Adv Exp Med Biol, 218, pp. 297-305. , Epub 1987/01/01. PMID: 2829543","Fehr, A.R.; Department of Microbiology and Immunology, University of IowaUnited States; email: arfehr@ku.edu",,"Public Library of Science",15537366,,,"31095648","English","PLoS Pathog.",Article,"Final",Open Access,Scopus,2-s2.0-85066872871 "Staup A.J., De Silva I.U., Catt J.T., Tan X., Hammond R.G., Johnson M.A.","57209055376;57209057322;57209047704;57194540623;57194547099;57190889816;","Structure of the SARS-unique domain C from the bat coronavirus HKU4",2019,"Natural Product Communications","14","5",,"","",,,"10.1177/1934578X19849202","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066402988&doi=10.1177%2f1934578X19849202&partnerID=40&md5=ebca7ecbc7f1524cb6aad36cf684bab7","Department of Chemistry, University of Alabama, 1720 2nd Avenue S. CHEM 201, Birmingham, AL, United States; Department of Chemistry, University of Alabama at Birmingham, 1720 2nd Avenue S. CHEM 274, Birmingham, AL 35294-0006, United States","Staup, A.J., Department of Chemistry, University of Alabama, 1720 2nd Avenue S. CHEM 201, Birmingham, AL, United States; De Silva, I.U., Department of Chemistry, University of Alabama, 1720 2nd Avenue S. CHEM 201, Birmingham, AL, United States; Catt, J.T., Department of Chemistry, University of Alabama, 1720 2nd Avenue S. CHEM 201, Birmingham, AL, United States; Tan, X., Department of Chemistry, University of Alabama, 1720 2nd Avenue S. CHEM 201, Birmingham, AL, United States; Hammond, R.G., Department of Chemistry, University of Alabama, 1720 2nd Avenue S. CHEM 201, Birmingham, AL, United States; Johnson, M.A., Department of Chemistry, University of Alabama at Birmingham, 1720 2nd Avenue S. CHEM 274, Birmingham, AL 35294-0006, United States","Coronaviruses (CoVs) that cause infections such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome phylogenetically originate from bat CoVs. The coronaviral nonstructural protein 3 (nsp3) has been implicated in viral replication, polyprotein cleavage, and host immune interference. We report the structure of the C domain from the SARS-Unique Domain of bat CoV HKU4. The protein has a frataxin fold, consisting of 5 antiparallel β strands packed against 2 α helices. Bioinformatics analyses and nuclear magnetic resonance experiments were conducted to investigate the function of HKU4 C. The results showed that HKU4 C engages in protein-protein interactions with the nearby M domain of nsp3. The HKU4 C residues involved in protein-protein interactions are conserved in group 2c CoVs, indicating a conserved function. © The Author(s) 2019","Chemical shift perturbation; Coronavirus; Functional annotation; MERS; NMR; Non-structural protein; SARS-unique domain","frataxin; hku4 protein; nonstructural protein 3; unclassified drug; viral protein; alpha helix; Article; bat; beta sheet; bioinformatics; carbon nuclear magnetic resonance; controlled study; Coronavirinae; nonhuman; nuclear Overhauser effect; protein protein interaction; proton nuclear magnetic resonance; severe acute respiratory syndrome","Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyer-Holz, D.K., Perlman, S., The NSP3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J Virol, 89 (3), pp. 1523-1536; Gralinski, L.E., Baric, R.S., Molecular pathology of emerging coronavirus infections (2015) J Pathol, 235 (2), pp. 185-195; Woo, P.C.Y., Wang, M., Lau, S.K.P., Comparative analysis of twelve genomes of three novel group 2C and group 2D coro-naviruses reveals unique group and subgroup features (2007) J Virol, 81 (4), pp. 1574-1585; Anthony, S.J., Ojeda-Flores, R., Rico-Chávez, O., Coronaviruses in bats from Mexico (2013) J Gen Virol, 94, pp. 1028-1038; Hu, B., Ge, X., Wang, L.-F., Shi, Z., Bat origin of human coronavi-ruses (2015) Virol J, 12 (1), p. 221; Hurst, K.R., Koetzner, C.A., Masters, P.S., Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex (2013) J Virol, 87 (16), pp. 9159-9172; Mu, J., Myers, R.A., Jiang, H., Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs (2010) Nat Genet, 42 (3), pp. 268-271; Fehr, A.R., Channappanavar, R., Jankevicius, G., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) MBio, 7 (6), pp. 1-12; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J Virol, 82 (11), pp. 5279-5294; Johnson, M.A., Chatterjee, A., Neuman, B.W., Wüthrich, K., SARS coronavirus unique domain: Three-domain molecular architecture in solution and RNA binding (2010) J Mol Biol, 400 (4), pp. 724-742; Mielech, A.M., Deng, X., Chen, Y., Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis (2015) J Virol, 89 (9), pp. 4907-4917; Tan, J., Vonrhein, C., Smart, O.S., The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes (2009) PLoS Pathog, 5 (5); Kusov, Y., Tan, J., Alvarez, E., Enjuanes, L., Hilgenfeld, R., A G-quadruplex-binding macrodomain within the ""SARS-unique domain"" is essential for the activity of the SARS-coronavirus replication-transcription complex (2015) Virology, 484, pp. 313-322; Drozdetskiy, A., Cole, C., Procter, J., Barton, G.J., JPred4: A protein secondary structure prediction server (2015) Nucleic Acids Res, 43, pp. W389-W394; Jaroszewski, L., Rychlewski, L., Li, Z., Li, W., Godzik, A., FFAS03: A server for profile-profile sequence alignments (2005) Nucleic Acids Res, 33, pp. W284-W288; Griesinger, C., Sorensen, O.W., Ernst, R.R., Three-dimensional Fourier spectroscopy. Application to high-resolution NMR (1969) J Magn Reson, 84 (1), pp. 14-63; Ulrich, E.L., Akutsu, H., Doreleijers, J.F., Bio mag res bank (2008) Nucleic Acids Res, 36, pp. D402-D408; Peng, J., Xu, J., A multiple-template approach to protein threading (2011) Proteins, 79 (6), pp. 1930-1939; Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C., SCOP: A structural classification of proteins database for the investigation of sequences and structures (1995) J Mol Biol, 247 (4), pp. 536-540; Adinolfi, S., Iannuzzi, C., Prischi, F., Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS (2009) Nat Struct Mol Biol, 16 (4), pp. 390-396; Serrano, P., Pedrini, B., Mohanty, B., Geralt, M., Herrmann, T., Wüthrich, K., The J-UNIO protocol for automated protein structure determination by NMR in solution (2012) J Biomol NMR, 53 (4), pp. 341-354; Chen, V.B., Arendall, W.B., Headd, J.J., Molprobity : All-atom structure validation for macromolecular crystallography (2010) Acta Crystallographica Section D Biological Crystallography, 66 (1), pp. 12-21; Holm, L., Kääriäinen, S., Rosenström, P., Schenkel, A., Searching protein structure databases with DaliLite v.3 (2008) Bioinformatics, 24 (23), pp. 2780-2781; Zhang, Y., Skolnick, J., Scoring function for automated assessment of protein structure template quality (2004) Proteins, 57 (4), pp. 702-710; Ashkenazy, H., Abadi, S., Martz, E., ConSURF 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules (2016) Nucleic Acids Res, 44, pp. W344-W350; Landau, M., Mayrose, I., Rosenberg, Y., ConSURF 2005: The projection of evolutionary conservation scores of residues on protein structures (2005) Nucleic Acids Res, 33, pp. W299-W302; Zhang, C., Freddolino, P.L., Zhang, Y., Cofactor: Improved protein function prediction by combining structure, sequence and protein-protein interaction information (2017) Nucleic Acids Res, 45, pp. W291-W299; Yang, J., Roy, A., Zhang, Y., Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment (2013) Bioinformatics, 29 (20), pp. 2588-2595; Bencze, K.Z., Kondapalli, K.C., Cook, J.D., The structure and function of frataxin (2006) Crit Rev Biochem Mol Biol, 41 (5), pp. 269-291; Tan, J., Kusov, Y., Mutschall, D., The ""SARS-unique domain"" (SUD) of SARS coronavirus is an oligo(G)-binding protein (2007) Biochem Biophys Res Commun, 364 (4), pp. 877-882; Ma-Lauer, Y., Carbajo-Lozoya, J., Hein, M.Y., P53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1 (2016) Proc Natl Acad Sci U S A, 113 (35), pp. E5192-E5201; Hammond, R.G., Tan, X., Johnson, M.A., SARS-unique fold in the Rousettus bat coronavirus HKU9 (2017) Protein Sci, 26 (9), pp. 1726-1737; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res, 194, pp. 184-190; Herrmann, T., Güntert, P., Wüthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J Mol Biol, 319 (1), pp. 209-227; Keller, R., Optimizing the Process of Nuclear Magnetic Resonance Spectrum Analysis and Computer-Aided Resonance Assignment, p. 15947. , A dissertation the Swiss federal Institute of technology Zurich (ETH Zürich) for the degree of doctor of natural sciences. Diss. ETH Nr; Fiorito, F., Herrmann, T., Damberger, F.F., Wüthrich, K., Automated amino acid side-chain NMR assignment of proteins using (13) C- And (15)N-resolved 3D [ (1)H, (1)H]-NOESY (2008) J Biomol NMR, 42 (1), pp. 23-33; Markley, J.L., Bax, A., Arata, Y., Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union task group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy (1998) J Biomol NMR, 12 (1), pp. 1-23; Güntert, P., Buchner, L., Combined automated NOE assignment and structure calculation with CYANA (2015) Journal of Biomolecular NMR, 62 (4), pp. 453-471; Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., Procheck: A program to check the stereochemical quality of protein structures (1993) Journal of Applied Crystallography, 26 (2), pp. 283-291; Berman, H., Henrick, K., Nakamura, H., Announcing the worldwide protein data bank (2003) Nat Struct Mol Biol, 10 (12), p. 980; Berman, H., Henrick, K., Nakamura, H., Markley, J.L., The worldwide protein data Bank (wwPDB): Ensuring a single, uniform archive of PDB data (2007) Nucleic Acids Res, 35, pp. D301-D303; Bhattacharya, A., Tejero, R., Montelione, G.T., Evaluating protein structures determined by structural genomics consortia (2007) Proteins, 66 (4), pp. 778-795; Koradi, R., Billeter, M., Wuthrich, K., Molmol: A program for display and analysis of macromolecular structures (1996) Journal of Molecular Graphics and Modelling, 14, pp. 29-32; Williamson, M.P., Using chemical shift perturbation to char-acterise ligand binding (2013) Prog Nucl Magn Reson Spectrosc, 73, pp. 1-16; Källberg, M., Wang, H., Wang, S., Template-based protein structure modeling using the RaptorX web server (2012) Nat Protoc, 7 (8), pp. 1511-1522","Johnson, M.A.; Department of Chemistry, University of Alabama at Birmingham, 1720 2nd Avenue S. CHEM 274, United States; email: maggiejohnson@uab.edu",,"Natural Product Incorporation",1934578X,,,,"English","Nat. Pro. Comm.",Article,"Final",Open Access,Scopus,2-s2.0-85066402988 "Maurier F., Beury D., Fléchon L., Varré J.-S., Touzet H., Goffard A., Hot D., Caboche S.","56176644600;57202206719;57207945167;14042672600;6602973717;16425384700;6505943257;23476362800;","A complete protocol for whole-genome sequencing of virus from clinical samples: Application to coronavirus OC43",2019,"Virology","531",,,"141","148",,2,"10.1016/j.virol.2019.03.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063318640&doi=10.1016%2fj.virol.2019.03.006&partnerID=40&md5=03cf8c518ba3d5dd3e6584df4788b7f8","Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000, France; Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France","Maurier, F., Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000, France; Beury, D., Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000, France; Fléchon, L., Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France; Varré, J.-S., Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France; Touzet, H., Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France; Goffard, A., Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000, France; Hot, D., Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000, France; Caboche, S., Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, F-59000, France","Genome sequencing of virus has become a useful tool for better understanding of virus pathogenicity and epidemiological surveillance. Obtaining virus genome sequence directly from clinical samples is still a challenging task due to the low load of virus genetic material compared to the host DNA, and to the difficulty to get an accurate genome assembly. Here we introduce a complete sequencing and analyzing protocol called V-ASAP for Virus Amplicon Sequencing Assembly Pipeline. Our protocol is able to generate the viral dominant genome sequence starting from clinical samples. It is based on a multiplex PCR amplicon sequencing coupled with a reference-free analytical pipeline. This protocol was applied to 11 clinical samples infected with coronavirus OC43 (HcoV-OC43), and led to seven complete and two nearly complete genome assemblies. The protocol introduced here is shown to be robust, to produce a reliable sequence, and could be applied to other virus. © 2019 The Authors","Bioinformatics; Complete genome; Coronavirus; High-throughput sequencing","amplicon; article; bioinformatics; clinical article; Coronavirinae; high throughput sequencing; multiplex polymerase chain reaction; nonhuman; pipeline; whole genome sequencing; classification; Coronavirus infection; evaluation study; genetics; human; Human coronavirus OC43; isolation and purification; procedures; virology; virus genome; whole genome sequencing; Coronavirus Infections; Coronavirus OC43, Human; Genome, Viral; Humans; Multiplex Polymerase Chain Reaction; Whole Genome Sequencing","Archer, J., Rambaut, A., Taillon, B.E., Harrigan, P.R., Lewis, M., Robertson, D.L., The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time–an ultra-deep approach (2010) PLoS Comput. Biol., 6, p. e1001022; Caboche, S., Audebert, C., Lemoine, Y., Hot, D., Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data (2014) BMC Genom., 15, p. 264; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Pybus, O.G., Nastouli, E., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg. Infect. Dis., 19. , (736–42B); Dinwiddie, D.L., Hardin, O., Denson, J.L., Kincaid, J.C., Schwalm, K.C., Stoner, A.N., Abramo, T.J., Kennedy, J.L., Complete genome sequences of four novel human coronavirus OC43 isolates associated with severe acute respiratory infection (2018) Genome Announc., 6. , (e00452-18); Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data (2012) Bioinformatics, 28, pp. 3150-3152; Garvey, M.I., Bradley, C.W., Holden, K.L., Hewins, P., Ngui, S.-L., Tedder, R., Jumaa, P., Smit, E., Use of genome sequencing to identify hepatitis C virus transmission in a renal healthcare setting (2017) J. Hosp. Infect., 96, pp. 157-162; Houldcroft, C.J., Beale, M.A., Breuer, J., Clinical and biological insights from viral genome sequencing (2017) Nat. Rev. Microbiol., 15, pp. 183-192; Houlihan, C.F., Frampton, D., Ferns, R.B., Raffle, J., Grant, P., Reidy, M., Hail, L., Nastouli, E., Use of whole-genome sequencing in the investigation of a nosocomial influenza virus outbreak (2018) J. Infect. Dis., 218, pp. 1485-1489; Huang, X., Madan, A., CAP3: a DNA sequence assembly program (1999) Genome Res., 9, pp. 868-877; Kwon, S., Lee, B., Yoon, S., CASPER: context-aware scheme for paired-end reads from high-throughput amplicon sequencing (2014) BMC Bioinforma., 15, p. S10; Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads (2011) EMBnet. J., 17, p. 10; Posada-Cespedes, S., Seifert, D., Beerenwinkel, N., Recent advances in inferring viral diversity from high-throughput sequencing data (2017) Virus Res., 239, pp. 17-32; Quick, J., Grubaugh, N.D., Pullan, S.T., Claro, I.M., Smith, A.D., Gangavarapu, K., Oliveira, G., Loman, N.J., Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples (2017) Nat. Protoc., 12, pp. 1261-1276; Radko, S., Ian Stuart, J., Zahariadis, G., Evaluation of three commercial multiplex assays for the detection of respiratory viral infections (2017) J. Virol. Methods, 248, pp. 39-43; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus OC43: genetic stability and neuroinvasion (2004) J. Virol., 78, pp. 8824-8834; Taboada, B.T., Isa, P., Espinoza, M.A., Aponte, F.E., Arias-Ortiz, M.A., Monge-Martínez, J., Rodríguez-Vázquez, R., Arias, C.F., Complete genome sequence of human coronavirus OC43 isolated from Mexico (2016) Genome Announc., 4. , (e01256-16); Vaughan, G., Forbi, J.C., Xia, G.-L., Fonseca-Ford, M., Vazquez, R., Khudyakov, Y.E., Montiel, S., Luna, N., Full-length genome characterization and genetic relatedness analysis of hepatitis A virus outbreak strains associated with acute liver failure among children (2014) J. Med. Virol., 86, pp. 202-208; Vijgen, L., Keyaerts, E., Moës, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.-M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J. Virol., 79, pp. 1595-1604","Caboche, S.; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of LilleFrance; email: segolene.caboche@pasteur-lille.fr",,"Academic Press Inc.",00426822,,VIRLA,"30878524","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85063318640 "Alfaraj S.H., Al-Tawfiq J.A., Assiri A.Y., Alzahrani N.A., Alanazi A.A., Memish Z.A.","57191595182;9436438200;57216109005;57193393571;57207848591;7005059350;","Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: A cohort study",2019,"Travel Medicine and Infectious Disease","29",,,"48","50",,1,"10.1016/j.tmaid.2019.03.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063047281&doi=10.1016%2fj.tmaid.2019.03.004&partnerID=40&md5=ba933c9ea9c6491e10ea7293c7d7692b","Corona Center, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Pediatrics, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; University of British Columbia, Vancouver, BC, Canada; Speciality Internal Medicine Unit and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Critical Care Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Department of Research, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Alfaraj, S.H., Corona Center, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Pediatrics, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, University of British Columbia, Vancouver, BC, Canada; Al-Tawfiq, J.A., Speciality Internal Medicine Unit and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Assiri, A.Y., Critical Care Department, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Saudi Arabia; Alzahrani, N.A., Corona Center, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Alanazi, A.A., Corona Center, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Department of Research, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Background: Since the emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, the virus had caused a high case fatality rate. The clinical presentation of MERS varied from asymptomatic to severe bilateral pneumonia, depending on the case definition and surveillance strategies. There are few studies examining the mortality predictors in this disease. In this study, we examined clinical predictors of mortality of Middle East Respiratory Syndrome (MERS) infection. Methods: This is a retrospective analysis of symptomatic admitted patients to a large tertiary MERS-CoV center in Saudi Arabia over the period from April 2014 to March 2018. Clinical and laboratory data were collected and analysis was done using a binary regression model. Results: A total of 314 symptomatic MERS-CoV patients were included in the analysis, with a mean age of 48 (±17.3) years. Of these cases, 78 (24.8%) died. The following parameters were associated with increased mortality, age, WBC, neutrophil count, serum albumin level, use of a continuous renal replacement therapy (CRRT) and corticosteroid use. The odd ratio for mortality was highest for CRRT and corticosteroid use (4.95 and 3.85, respectively). The use of interferon-ribavirin was not associated with mortality in this cohort. Conclusion: Several factors contributed to increased mortality in this cohort of MERS-CoV patients. Of these factors, the use of corticosteroid and CRRT were the most significant. Further studies are needed to evaluate whether these factors were a mark of severe disease or actual contributors to higher mortality. © 2019",,"corticosteroid; interferon; ribavirin; serum albumin; corticosteroid; serum albumin; adult; age; Article; continuous renal replacement therapy; female; human; leukocyte; major clinical study; male; middle aged; Middle East respiratory syndrome; mortality; neutrophil count; priority journal; retrospective study; risk factor; Saudi Arabia; symptom assessment; blood cell count; cohort analysis; Coronavirus infection; Middle East respiratory syndrome coronavirus; renal replacement therapy; tertiary care center; Adrenal Cortex Hormones; Adult; Age Factors; Blood Cell Count; Cohort Studies; Coronavirus Infections; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Renal Replacement Therapy; Retrospective Studies; Saudi Arabia; Serum Albumin; Tertiary Care Centers","Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East Respiratory Syndrome-Coronavirus (MERS-CoV): a case-controlstudy of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Mohd, H.A., Memish, Z.A., Alfaraj, S.H., McClish, D., Altuwaijri, T., Alanazi, M.S., Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia (2016) Trav Med Infect Dis, 14, pp. 464-470; Garbati, M.A., Fagbo, S.F., Fang, V.J., Skakni, L., Joseph, M., Wani, T.A., A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PLoS One, 11; Park, G.E., Kang, C.-I., Ko, J.-H., Cho, S.Y., Ha, Y.E., Kim, Y.-J., Differential Cell count and CRP level in Blood as predictors for Middle East respiratory syndrome coronavirus infection in acute febrile patients during nosocomial outbreak (2017) J Korean Med Sci, 32, p. 151; Al-Tawfiq, J.A.A., Memish, Z.A.A., Managing MERS-CoV in the healthcare setting (2015) Hosp Prog, 43, pp. 158-163; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Nam, H.-S., Park, J.W., Ki, M., Yeon, M.-Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int J Infect Dis; Al-Tawfiq, J.A., Alfaraj, S.H., Altuwaijri, T.A., Memish, Z.A., A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia (2017) J Infect, 75, pp. 378-379; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Choi, W.S., Kang, C.-I., Kim, Y., Choi, J.-P., Joh, J.S., Shin, H.-S., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48, pp. 118-126; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Sridhar, S., Brouqui, P., Parola, P., Gautret, P., Imported cases of Middle East respiratory syndrome: an update (2015) Trav Med Infect Dis, 13, pp. 106-109; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Travel implications of emerging coronaviruses: SARS and MERS-CoV (2014) Trav Med Infect Dis, 12, pp. 422-428; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of Middle eastern respiratory syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Heal Res Perspect, 7, pp. 49-55; Korea Centers for Disease Control and Prevention, Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea (2015) Osong Public Heal Res Perspect, 6, pp. 269-278. , 2015; Pavli, A., Tsiodras, S., Maltezou, H.C., Middle East respiratory syndrome coronavirus (MERS-CoV): prevention in travelers (2014) Trav Med Infect Dis, 12, pp. 602-608; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., Memishc, Z.A., Systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2017) Vaccine, 23, pp. 6-13; Al-Tawfiq, J.A., Gautret, P., Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: extent and implications for infection control: a systematic review (2018) Trav Med Infect Dis; Al-Jasser, F.S., Nouh, R.M., Youssef, R.M., Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014–2015 (2018) J Infect Public Health; Corman, V.M., Müller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 49; Al-Tawfiq, J.A., Rabaan, A.A., Hinedi, K., Influenza is more common than Middle East Respiratory Syndrome Coronavirus (MERS-CoV) among hospitalized adult Saudi patients (2017) Trav Med Infect Dis, 20, pp. 56-60; Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Expert Rev Respir Med, 10, pp. 331-338; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; Penttinen, P.M., Kaasik-Aaslav, K., Friaux, A., Donachie, A., Sudre, B., Amato-Gauci, A.J., Taking stock of the first 133 mers coronavirus cases globally-is the epidemic changing? (2013) Euro Surveill, 18; The WHO Mers-Cov Research Group, State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr, 5. , pii: ecurrents.outbreaks.0bf719e352e7478f8ad85fa30; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17, p. 615; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Almekhlafi, G.A., Hussein, M.A., Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome (2018) Am J Respir Crit Care Med, 197, pp. 757-767; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Cha, R.-H., Joh, J.-S., Jeong, I., Lee, J.Y., Shin, H.-S., Kim, G., Renal complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-cov designated hospital (2015) J Korean Med Sci, 30, pp. 1807-1814; Arabi, Y.M., Al-Omari, A., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Alraddadi, B., Critically ill patients with the Middle East respiratory syndrome (2017) Crit Care Med, 45, pp. 1683-1695; Alshahrani, M.S., Sindi, A., Alshamsi, F., Al-Omari, A., El Tahan, M., Alahmadi, B., Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus (2018) Ann Intensive Care, 8, p. 3","Memish, Z.A.; College of Medicine, Alfaisal UniversitySaudi Arabia; email: zmemish@yahoo.com",,"Elsevier USA",14778939,,TMIDA,"30872071","English","Travel Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85063047281 "He Q., Guo Z., Zhang B., Yue H., Tang C.","57196118120;57196116642;55811769500;8855570100;36646976100;","First detection of bovine coronavirus in yak (Bos grunniens) and a bovine coronavirus genome with a recombinant he gene",2019,"Journal of General Virology","100","5", 001254,"793","803",,,"10.1099/jgv.0.001254","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065680151&doi=10.1099%2fjgv.0.001254&partnerID=40&md5=a51d59cafe5e663ad813113e686bf4d8","College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, Chengdu, China","He, Q., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Guo, Z., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Zhang, B., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, Chengdu, China; Yue, H., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, Chengdu, China; Tang, C., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, Chengdu, China","The yak (Bosgrunniens) is a unique domestic bovine species that plays an indispensable role for herdsmen in the Qinghai– Tibet Plateau. Here, 336 diarrhoeic samples were collected from yaks on 29 farms in the Qinghai–Tibet Plateau from 2015 to 2017. Approximately 69.05 % (232/336) of the diarrhoeic samples were assessed as bovine coronavirus (BCoV)-positive by RT-PCR assay, and most of the detected strains showed a unique evolution based on 40 spike (S), nucleocapsid (N) and haemagglutinin-esterase (HE) gene fragments. Notably, the 12 complete S genes detected shared 1 identical amino acid mutation (E121V) in the S1 subunit compared with the other 150 complete S genes in the GenBank database. Furthermore, a BCoV strain (designated YAK/HY24/CH/2017) was isolated from one diarrhoeic sample (virus titre: 108.17TCID50 ml1), and a phylogenetic analysis based on complete genome sequences revealed that strain YAK/HY24/CH/2017 has the closest genetic relationship with the BCoV prototype strain Mebus. Interestingly, 2 significant characteristics were observed in the genome of strain YAK/HY24/CH/2017: (1) the strain had 26 unique amino acid variations in the S gene compared with the other 150 BCoV S genes in the GenBank database and (2) a recombination event was identified between the esterase and lectin domains of the HE gene. In conclusion, this study revealed the high prevalence of BCoV in yaks in the Qinghai–Tibet Plateau. To the best of our knowledge, this is the first description of the molecular prevalence of BCoV in yaks and of a BCoV genome with an HE gene recombination. © 2019 The Authors.","Bovine coronavirus; Genome; HE gene recombination; Isolation; Molecular prevalence; Yak","esterase; lectin; virus enzyme; virus hemagglutinin; amino acid analysis; amino acid sequence; Article; Bovine coronavirus; bovine viral diarrhea; DNA base composition; gene identification; gene mutation; gene sequence; genetic recombination; HRT-18 cell line; human; human cell; molecular phylogeny; nonhuman; nucleotide sequence; priority journal; recombinant gene; reverse transcription polymerase chain reaction; viral genetics; virus detection; virus gene; virus genome; virus isolation; virus load; virus nucleocapsid; virus strain; yak","Johnson, K.K., Pendell, D.L., Market impacts of reducing the prevalence of bovine respiratory disease in United States beef cattle feedlots (2017) Front Vet Sci, 4, p. 189; Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) J Virol, 82, pp. 12422-12431; Chung, J.Y., Kim, H.R., Bae, Y.C., Lee, O.S., Oem, J.K., Detection and characterization of bovine-like coronaviruses from four species of zoo ruminants (2011) Vet Microbiol, 148, pp. 396-401; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J Virol, 81, pp. 4981-4990; Elazhary, M.A., Frechette, J.L., Silim, A., Roy, R.S., Serological evidence of some bovine viruses in the caribou (Rangifer tarandus caribou) in Quebec (1981) J Wildl Dis, 17, pp. 609-612; Tsunemitsu, H., El-Kanawati, Z.R., Smith, D.R., Reed, H.H., Saif, L.J., Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea (1995) J Clin Microbiol, 33, pp. 3264-3269; Majhdi, F., Minocha, H.C., Kapil, S., Isolation and characterization of a coronavirus from elk calves with diarrhea (1997) J Clin Microbiol, 35, p. 2937; Cebra, C.K., Mattson, D.E., Baker, R.J., Sonn, R.J., Dearing, P.L., Potential pathogens in feces from unweaned llamas and alpacas with diarrhea (2003) J am Vet Med Assoc, 223, pp. 1806-1808; Kim, J.H., Jang, J.H., Yoon, S.W., Noh, J.Y., Ahn, M.J., Detection of bovine coronavirus in nasal swab of non-captive wild water deer, Korea (2018) Transbound Emerg Dis, 65, pp. 627-631; Amer, H.M., Bovine-like coronaviruses in domestic and wild ruminants (2018) Anim Health Res Rev, 19, pp. 113-124; Zhang, X.M., Herbst, W., Kousoulas, K.G., Storz, J., Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child (1994) J Med Virol, 44, pp. 152-161; Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation (2007) Virology, 363, pp. 1-10; Oma, V.S., Klem, T., Travèen, M., Alenius, S., Gjerset, B., Temporary carriage of bovine coronavirus and bovine respiratory syncytial virus by fomites and human nasal mucosa after exposure to infected calves (2018) BMC Vet Res, 14, p. 22; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J Virol, 81, pp. 4981-4990; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-ester-ase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J Virol, 87, pp. 3097-3107; Drake, J.W., Holland, J.J., Mutation rates among RNA viruses (1999) Proc Natl Acad Sci USA, 96, pp. 13910-13913; Moya, A., Holmes, E.C., Gonzèalez-Candelas, F., The population genetics and evolutionary epidemiology of RNA viruses (2004) Nat Rev Microbiol, 2, pp. 279-288; Munir, M., Cortey, M., Estimation of evolutionary dynamics and selection pressure in coronaviruses (2015) Methods Mol Biol, 1282, pp. 41-48; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146; Zhang, R.C., China: The yak (1985) World Anim Rev, 72, pp. 24-29; Schickli, J.H., Thackray, L.B., Sawicki, S.G., Holmes, K.V., The N-terminal region of the murine coronavirus spike glycoprotein is associated with the extended host range of viruses from persistently infected murine cells (2004) J Virol, 78, pp. 9073-9083; Ding, X.Z., Long, R.J., Kreuzer, M., Mi, J.D., Yang, B., Methane emissions from yak (Bos grunniens) steers grazing or kept indoors and fed diets with varying forage:Concentrate ratio during the cold season on the Qinghai-Tibetan Plateau (2010) Anim Feed Sci Technol, 162, pp. 91-98; Chen, X., Zhang, B., Yue, H., Wang, Y., Zhou, F., A novel astrovirus species in the gut of yaks with diarrhoea in the Qinghai–Tibetan Plateau, 2013 (2015) J Gen Virol, 96, pp. 3672-3680; Bleisch, W.V., Buzzard, P.J., Zhang, H., Xu, D., Liu, Z., Surveys at a Tibetan antelope Pantholops hodgsonii calving ground adjacent to the Arjinshan Nature Reserve, Xinjiang, China: Decline and recovery of a population (2009) Oryx, 43, pp. 191-196; Luo, Z., Jiang, Z., Tang, S., Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau (2015) Ecol Appl, 25, pp. 24-38; Bidokhti, M.R., Tra° Vèen, M., Krishna, N.K., Munir, M., Belèak, S., Evolutionary dynamics of bovine coronaviruses: Natural selection pattern of the spike gene implies adaptive evolution of the strains (2013) J Gen Virol, 94, pp. 2036-2049; Hasoksuz, M., Sreevatsan, S., Cho, K.O., Hoet, A.E., Saif, L.J., Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates (2002) Virus Res, 84, pp. 101-109; Martínez, N., Brandao, P.E., de Souza, S.P., Barrera, M., Santana, N., Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene (2012) Infect Genet Evol, 12, pp. 1870-1878; Vilècek, S., Jackovèa, A., Kolesèarovèa, M., Vlasèakovèa, M., Genetic variability of the S1 subunit of enteric and respiratory bovine coronavirus isolates (2017) Acta Virol, 61, pp. 212-216; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J Biol Chem, 287, pp. 41931-41938; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Spread of mutant Middle East respiratory syndrome Coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) Mbio, 7; de Haan, C.A., Te Lintelo, E., Li, Z., Raaben, M., Wurdinger, T., Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range (2006) J Virol, 80, pp. 10909-10918; McRoy, W.C., Baric, R.S., Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion (2008) J Virol, 82, pp. 1414-1424; Luytjes, W., Bredenbeek, P.J., Noten, A.F., Horzinek, M.C., Spaan, W.J., Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus (1988) Virology, 166, pp. 415-422; de Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of corona-and toroviruses (2006) Glycoconj J, 23, pp. 59-72; Smits, S.L., Gerwig, G.J., van Vliet, A.L., Lissenberg, A., Briza, P., Nidovirus sialate-O-acetylesterases: Evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes (2005) J Biol Chem, 280, pp. 6933-6941; Bakkers, M.J., Lang, Y., Feitsma, L.J., Hulswit, R.J., de Poot, S.A., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity (2017) Cell Host Microbe, 21, pp. 356-366; Guo, Z., He, Q., Zhang, B., Yue, H., Tang, C., Detection and molecular characteristics of neboviruses in dairy cows in China (2019) J Gen Virol, 100, pp. 35-45. , Epub ahead of print; Park, S.J., Jeong, C., Yoon, S.S., Choy, H.E., Saif, L.J., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) J Clin Microbiol, 44, pp. 3178-3188; Reed, L.J., Muench, H., A simple method of estimating fifty percent endpoints (1938) Am J Hyg, 27, pp. 493-497; Kumar, S., Tamura, K., Nei, M., MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment (2004) Brief Bioinform, 5, pp. 150-163; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1","Yue, H.; College of Life Science and Technology, Southwest University for NationalitiesChina; email: yhua900@163.com",,"Microbiology Society",00221317,,JGVIA,"30932810","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85065680151 "Adegboye O., Saffary T., Adegboye M., Elfaki F.","55270465600;14325990000;57208961526;10839150900;","Individual and network characteristic associated with hospital-acquired Middle East Respiratory Syndrome coronavirus",2019,"Journal of Infection and Public Health","12","3",,"343","349",,,"10.1016/j.jiph.2018.12.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058539646&doi=10.1016%2fj.jiph.2018.12.002&partnerID=40&md5=85563278b3f394fe5fedd5f450a7b1bf","Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia; Independent ResearcherMD 20876, United States; American University of Nigeria, Yola, 640001, Nigeria; Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar","Adegboye, O., Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia; Saffary, T., Independent ResearcherMD 20876, United States; Adegboye, M., American University of Nigeria, Yola, 640001, Nigeria; Elfaki, F., Department of Mathematics, Statistics and Physics, Qatar University, Doha, 2713, Qatar","Background: During outbreaks of infectious diseases, transmission of the pathogen can form networks of infected individuals connected either directly or indirectly. Methods: Network centrality metrics were used to characterize hospital-acquired Middle East Respiratory Syndrome Coronavirus (HA-MERS) outbreaks in the Kingdom of Saudi Arabia between 2012 and 2016. Covariate-adjusted multivariable logistic regression models were applied to assess the effect of individual level risk factors and network level metrics associated with increase in length of hospital stay and risk of deaths from MERS. Results: About 27% of MERS cases were hospital acquired during the study period. The median age of healthcare workers and hospitalized patients were 35 years and 63 years, respectively, Although HA-MERS were more connected, we found no significant difference in degree centrality metrics between HA-MERS and non-HA-MERS cases. Pre-existing medical conditions (adjusted Odds ratio (aOR) = 2.43, 95% confidence interval: (CI) [1.11–5.33]) and hospitalized patients (aOR = 29.99, 95% CI [1.80–48.65]) were the strongest risk predictors of death from MERS. The risk of death associated with 1-day increased length of stay was significantly higher for patients with comorbidities. Conclusion: Our investigation also revealed that patients with an HA-MERS infection experienced a significantly longer hospital stay and were more likely to die from the disease. Healthcare worker should be reminded of their potential role as hubs for pathogens because of their proximity to and regular interaction with infected patients. On the other hand, this study has shown that while healthcare workers acted as epidemic attenuators, hospitalized patients played the role of an epidemic amplifier. © 2018 The Authors","Healthcare workers; Hospital-acquired infections; MERS; Network analysis","adult; Article; clinical assessment; comorbidity; controlled study; disease association; epidemic; fatality; female; health care personnel; hospital infection; hospital patient; hospitalization; human; infection risk; length of stay; major clinical study; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; priority journal; risk assessment; risk factor; Saudi Arabia; virus transmission; community care; Coronavirus infection; cross infection; epidemic; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; statistical model; Adult; Community Networks; Coronavirus Infections; Cross Infection; Disease Outbreaks; Female; Health Personnel; Humans; Length of Stay; Logistic Models; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Saudi Arabia","Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13 (1), p. 210; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12 (1), p. 222; Al-Dorzi, H.M., Aldawood, A.S., Khan, R., Baharoon, S., Alchin, J.D., Matroud, A.A., The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: an observational study (2016) Ann Intensive Care, 6 (1), p. 101; Kucharski, A.J., Althaus, C., The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission (2015) Eurosurveillance, 20 (25), p. 21167; Nishiura, H., Miyamatsu, Y., Chowell, G., Saitoh, M., Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case (2015) Eurosurveillance, 20 (27), p. 21181; Fisman, D.N., Leung, G.M., Lipsitch, M., Nuanced risk assessment for emerging infectious diseases (2014) Lancet, 383 (9913), pp. 189-190; World Health Organization, MERS situation update, February 2018 (2018), http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-february-2018.html, Available from: [Cited 18 April 2018]; Zumla, A., Alagaili, A.N., Cotten, M., Azhar, E.L., Infectious diseases epidemic threats and mass gatherings: refocusing global attention on the continuing spread of the Middle East Respiratory syndrome coronavirus (MERS-CoV) (2016) BMC Med, 14 (1), p. 132; Adegboye, O., Gayawan, E., Hanna, F., Spatial modelling of contribution of individual level risk factors for mortality from Middle East respiratory syndrome coronavirus in the Arabian Peninsula (2017) PloS One, 12 (7); Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2018) Epidemiol Infect, 146 (4), pp. 489-495; Adegboye, O., Spatial covariate adjusted survival rates for Middle East Respiratory Syndrome (MERS) Coronavirus in the Arabian Peninsula (2018) Qatar Foundation Annual Research Conference Proceedings 2016 Mar 21 (Vol. 2016, No. 1, p. HBPP1764), Qatar: HBKU Press; Adegboye, O., Elfaki, F., Network analysis of MERS coronavirus within households, communities, and hospitals to identify most centralized and super-spreading in the Arabian Peninsula, 2012–2016 (2018) Can J Infect Dis Med Microbiol, 2018, pp. 1-9; Al-Turaiki, I., Alshahrani, M., Almutairi, T., Building predictive models for MERS-CoV infections using data mining techniques (2016) J Infect Public Health, 9 (6), pp. 744-748; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Alhamlan, F., Majumder, M., Brownstein, J., Hawkins, J., Al-Abdely, H., Alzahrani, A., Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (2017) BMJ Open, 7 (1); Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37 (10), pp. 1147-1155; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., Multistate point-prevalence survey of health care-associated infections (2014) N Engl J Med, 370 (13), pp. 1198-1208; Friedman, N.D., Bull, A.L., Russo, P.L., Gurrin, L., Richards, M., Performance of the national nosocomial infections surveillance risk index in predicting surgical site infection in Australia (2007) Infect Control Hosp Epidemiol, 28 (1), pp. 55-59; Centers for Disease Control and Prevention, Nosocomial outbreak of Middle East Respiratory Syndrome in a large tertiary care hospital (2016) Morbidity and mortality weekly report, pp. 163-164; Almutairi, A.F., Adlan, A.A., Balkhy, H.H., Abbas, O.A., Clark, A.M., “It feels like I'm the dirtiest person in the world.”: exploring the experiences of healthcare providers who survived MERS-CoV in Saudi Arabia (2018) J Infect Public Health, 11 (2), pp. 187-191; Cho, S.Y., Kang, J.-M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.-H., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388 (10048), pp. 994-1001; Rambaut, A., (2013), MERS-CoV spatial, temporal and epidemiological information;; Ministry of Health Saudi Arabia, Infection prevention/control and management guidelines for patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection (2014), http://www.moh.gov.sa/en/CCC/StaffRegulations/Corona/Documents/GuidelinesforCoronaPatients.pdf, Available from: [Cited 18 April 2018]; Chen, X., Chughtai, A.A., Dyda, A., MacIntyre, C.R., Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg Microbes Infect, 6 (6), p. e51; Borgatti, S.P., Everett, M.G., Johnson, J.C., Analyzing social networks (2018), Sage; Das, S., Handbook of research on computational methodologies in gene regulatory networks (2009), IGI Global; Borgatti, S.P., Everett, M.G., Freeman, L.C., Ucinet for Windows: software for social network analysis (2002); SAS Institute Inc, SAS 9.3 software version 6 of the SAS system for Windows (2012), SAS Institute Inc. Cary, NC; Al-Tawfiq, J.A., Rothwell, S., Mcgregor, H.A., Khouri, Z.A., A multi-faceted approach of a nursing led education in response to MERS-CoV infection (2018) J Infect Public Health, 11 (2), pp. 260-264; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59 (9), pp. 1225-1233; Balkhy, H.H., Perl, T.M., Arabi, Y.M., Preventing healthcare-associated transmission of the Middle East Respiratory Syndrome (MERS): our Achilles heel (2016), Elsevier; Arabi, Y.M., Fowler, R., Balkhy, H.H., Proceedings of the Middle East Respiratory Syndrome (MERS) Coronavirus research initiative workshop, September 9–10 2015 in Riyadh, KSA (2016) J Infect Public Health, 9 (3), pp. 205-207; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Elkheir, K.A., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22 (4), p. 647; Lee, T., Lee, H.R., Hwang, K., Identifying superspreaders for epidemics using R0-adjusted network centrality (2013) Simulation Conference (WSC), , IEEE Winter 2013 Dec 8 (pp. 2239–2249); Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infectious Dis, 22 (1), p. 49; Alqurashi, K.A., Aljabri, K.S., Bokhari, S.A., Prevalence of diabetes mellitus in a Saudi community (2011) Ann Saudi Med, 31 (1), p. 19; Taylor, S.L., Sen, S., Greenhalgh, D.G., Lawless, M., Curri, T., Palmieri, T.L., A competing risk analysis for hospital length of stay in patients with burns (2015) JAMA Surg, 150 (5), pp. 450-456; Li, J.Z., Willke, R.J., Rittenhouse, B.E., Glick, H.A., Approaches to analysis of length of hospital stay related to antibiotic therapy in a randomized clinical trial: linezolid versus vancomycin for treatment of known or suspected methicillin-resistant staphylococcus species infections (2002) Pharmacother J Hum Pharmacol Drug Ther, 22 (2P2), pp. 45S-54S; Nordström, P., Gustafson, Y., Michaëlsson, K., Nordström, A., Length of hospital stay after hip fracture and short term risk of death after discharge: a total cohort study in Sweden (2015) BMJ, 350, p. h696; Moran, J.L., Solomon, P.J., A review of statistical estimators for risk-adjusted length of stay: analysis of the Australian and New Zealand intensive care adult patient data-base, 2008–2009 (2012) BMC Med Res Methodol, 12 (1), p. 68; Glance, L.G., Stone, P.W., Mukamel, D.B., Dick, A.W., Increases in mortality, length of stay, and cost associated with hospital-acquired infections in trauma patients (2011) Arch Surgery, 146 (7), pp. 794-801; Christley, R.M., Pinchbeck, G., Bowers, R., Clancy, D., French, N., Bennett, R., Infection in social networks: using network analysis to identify high-risk individuals (2005) Am J Epidemiol, 162 (10), pp. 1024-1031","Adegboye, O.; Australian Institute of Tropical Health & Medicine, James Cook UniversityAustralia; email: oyelola.adegboye@jcu.edu.au",,"Elsevier Ltd",18760341,,,"30578142","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85058539646 "Wernery U., Woo P.C.Y.","7005483197;7201801340;","Middle East respiratory syndrome: making the case for surveillance of transboundary coronaviruses in the Middle East",2019,"Revue scientifique et technique (International Office of Epizootics)","38","1",,"61","69",,,"10.20506/rst.38.1.2941","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072746018&doi=10.20506%2frst.38.1.2941&partnerID=40&md5=7cc479845d5f1615e4eb804fadcc2aec",,"Wernery, U.; Woo, P.C.Y.","Middle East respiratory syndrome (MERS) is a zoonotic viral disease identified in both animals and human beings. More than 2,200 laboratory-confirmed cases have been reported in humans from 27 countries, with a crude case fatality rate of 35% since the disease's emergence in the Middle East in 2012. In the coming years, MERS will continue to pose a severe threat to economic development as well as to the elimination of poverty and advances in food security. An important gap in the effort to keep MERS at bay is the lack of surveillance of animals in the Middle East. The authors identify the need for international collaboration to conduct MERS coronavirus (CoV) surveillance in animals in the Middle East, since the emergence of new MERS-CoV variants with the ability to sustain efficient person-to-person transmission is a genuine threat. However, effective surveillance will be very difficult, if not impossible, to achieve. There are multiple obstacles in the region to overcome, including a lack of transparency as governments in the Middle East generally do not disclose detailed information on animal diseases. In addition, there is minimal collaboration between local and international agencies in both the human and animal health sectors and a limited number of readily available qualified laboratories to screen animals for MERS- CoV. Last, but not least, there is a lack of adequate active communication between all relevant laboratories, local and abroad. However, with the support of the Food and Agriculture Organization of the United Nations (FAO), the World Organisation for Animal Health (OIE), and other partners, the responsibility of the Mediterranean Zoonosis Control Centre in Athens, Greece, could be widened to include the countries of the Middle East. This would foster a stronger alliance and far more effective collaboration in the spirit of One Health.Le syndrome respiratoire du Moyen-Orient (MERS) est une maladie virale zoonotique qui affecte à la fois l’homme et les animaux. Plus de 2 200 cas humains confirmés au laboratoire ont été notifiés dans 27 pays depuis l’apparition de la maladie au Moyen-Orient en 2012, avec un taux brut de létalité de 35 %. Dans les années à venir, le MERS continuera à représenter une menace aussi bien pour le développement économique que pour la réussite des objectifs d’élimination de la pauvreté et de sécurisation de l’approvisionnement alimentaire. L’un des principaux obstacles empêchant de tenir le MERS en échec est l’absence de surveillance sanitaire exercée sur les populations animales au Moyen-Orient. Les auteurs soulignent la nécessité d’une collaboration internationale en matière de surveillance du coronavirus responsable du MERS (MERS-Cov) chez les animaux au Moyen-Orient, d’autant que l’émergence de nouveaux variants du MERS-CoV qui entretiennent l’infection en favorisant la transmission de personne à personne constitue un véritable danger. Toutefois, il sera extrêmement difficile, voire impossible de mettre en place une surveillance efficace. En effet les obstacles sont nombreux dans la région, en particulier l’absence de transparence puisque les gouvernements du Moyen-Orient ne publient généralement pas d’informations détaillées sur les maladies animales présentes sur leur territoire. En outre, la collaboration entre les agences locales et internationales des secteurs de la santé publique et animale est réduite au minimum et rares sont à ce jour les laboratoires possédant les compétences requises pour procéder au dépistage de l’infection par le MERS-CoV chez les animaux. Dernière difficulté mais non la moindre, les laboratoires compétents dans les pays et à l’étranger ne communiquent pas entre eux de manière proactive. Dans ce contexte, il est envisagé d’élargir la portée du Centre méditerranéen de lutte contre les zoonoses, situé à Athènes (Grèce) afin d’y intégrer les pays du Moyen-Orient, avec le soutien de l’Organisation des Nations Unies pour l’alimentation et l’agriculture (FAO), de l’Organisation mondiale de la santé animale (OIE) et d’autres partenaires. Cette initiative permettrait de renforcer les alliances et de déployer une collaboration bien plus efficace, dans une perspective Une seule santé.El síndrome respiratorio de Oriente Medio (MERS, por su acrónimo inglés) es una enfermedad viral zoonótica que se ha descrito tanto en animales como en personas. Desde que en 2012 surgió en el Oriente Medio, se han notificado más de 2 200 casos confirmados en laboratorio que afectan a personas de 27 países, con una tasa bruta de letalidad del 35%. En los próximos años, el MERS seguirá constituyendo una grave amenaza para el desarrollo económico y también para el avance hacia la eliminación de la pobreza y la seguridad alimentaria. A la hora de poner coto a la enfermedad, un importante problema es la deficiente vigilancia zoosanitaria en el Oriente Medio. Los autores señalan la necesidad de colaboración internacional para hacer efectiva en la región la vigilancia del coronavirus (CoV) del MERS en los animales, pues la aparición de nuevas variantes de este virus capaces de transmitirse eficaz y sostenidamente entre las personas constituye un verdadero peligro. Sin embargo, resultará difícil, si no imposible, efectuar una vigilancia eficaz, habida cuenta de la multitud de obstáculos que hay que superar en el Oriente Medio, incluida la falta de transparencia de los gobiernos, que no acostumbran a revelar información detallada sobre las enfermedades animales. Además, la colaboración entre instancias locales y organismos internacionales en los sectores de la salud humana y la sanidad animal es mínima, y hay contados laboratorios cualificados para la detección del MERS–CoV en animales que estén en condiciones de intervenir con presteza. Por último, pero no menos importante, no hay una adecuada comunicación activa entre todos los laboratorios competentes, ya sean de los propios países o del extranjero. No obstante, con apoyo de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), la Organización Mundial de Sanidad Animal (OIE) y otros colaboradores, sería posible extender a los países del Oriente Medio el ámbito de responsabilidad y actuación del Centro de Control de Zoonosis del Mediterráneo, sito en Atenas (Grecia), cosa que favorecería alianzas más sólidas y mucho más eficaces, conforme al espíritu de Una sola salud.","Control; Coronavirus; Epidemiology; MERS; Middle East; Middle East respiratory syndrome; Surveillance; Transboundary diseases","animal; Coronavirus infection; health survey; human; intersectoral collaboration; Middle East; Middle East respiratory syndrome coronavirus; zoonosis; Animals; Coronavirus Infections; Humans; Intersectoral Collaboration; Middle East; Middle East Respiratory Syndrome Coronavirus; Population Surveillance; Zoonoses",,,,"NLM (Medline)",02531933,,,"31564740","English","Rev. - Off. Int. Epizoot.",Review,"Final",,Scopus,2-s2.0-85072746018 "Wilson P., Zumla A.","55609288400;7006170723;","Transmission and prevention of acute viral respiratory tract infections in hospitals",2019,"Current opinion in pulmonary medicine","25","3",,"220","224",,,"10.1097/MCP.0000000000000566","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063950434&doi=10.1097%2fMCP.0000000000000566&partnerID=40&md5=0ef0210a0b39ce8b06c181300beac420","Department of Microbiology and Virology, University College London Hospitals Foundation NHS Trust; Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom","Wilson, P., Department of Microbiology and Virology, University College London Hospitals Foundation NHS Trust; Zumla, A., Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom","PURPOSE OF REVIEW: Transmission of acute respiratory tract viral infections in healthcare environments is a major problem worldwide. We review recent literature of viruses imported to hospitals from the local community and from abroad, their modes of transmission and measures required to reduce and contain them. RECENT FINDINGS: Common causes of outbreaks include influenza viruses, respiratory syncytial virus, adenovirus, and coronaviruses. Major lethal outbreaks of viral respiratory infections in hospitals have been caused by coronaviruses imported from abroad by travelers. SUMMARY: Although viruses circulating in the local community are common causes of hospital outbreaks, major outbreaks have been caused by the coronaviruses imported from abroad by travelers. A high degree of clinical awareness and rapid enforcement of infection control measures are required to prevent transmission and spread.",,,,,,"NLM (Medline)",15316971,,,"30730312","English","Curr Opin Pulm Med",Article,"Final",,Scopus,2-s2.0-85063950434 "Liang J.Q., Fang S., Yuan Q., Huang M., Chen R.A., Fung T.S., Liu D.X.","57191491545;9842744100;57201926580;57192950391;53981013500;55795740300;57190128771;","N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis",2019,"Virology","531",,,"48","56",,5,"10.1016/j.virol.2019.02.017","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063114366&doi=10.1016%2fj.virol.2019.02.017&partnerID=40&md5=0182b8ed20ff7520cdecda7d7725edc7","South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong 526238, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Zhaoqing DaHuaNong Biology Medicine Co., Ltd., Zhaoqing, Guangdong 526238, China","Liang, J.Q., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Fang, S., Agricultural School, Yangtze University, 266 Jingmilu, Jingzhou City, Hubei Province 434025, China; Yuan, Q., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Huang, M., Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong 526238, China; Chen, R.A., College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China, Zhaoqing DaHuaNong Biology Medicine Co., Ltd., Zhaoqing, Guangdong 526238, China; Fung, T.S., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China","Coronavirus membrane (M) protein is the most abundant structural protein playing a critical role in virion assembly. Previous studies show that the N-terminal ectodomain of M protein is modified by glycosylation, but its precise functions are yet to be thoroughly investigated. In this study, we confirm that N-linked glycosylation occurs at two predicted sites in the M protein ectodomain of infectious bronchitis coronavirus (IBV). Dual mutations at the two sites (N3D/N6D) did not affect particle assembly, virus-like particle formation and viral replication in culture cells. However, activation of the ER stress response was significantly reduced in cells infected with rN3D/N6D, correlated with a lower level of apoptosis and reduced production of pro-inflammatory cytokines. Taken together, this study demonstrates that although not essential for replication, glycosylation in the IBV M protein ectodomain plays important roles in activating ER stress, apoptosis and proinflammatory response, and may contribute to the pathogenesis of IBV. © 2019","Apoptosis; Coronavirus; ER stress; Glycosylation; Particle assembly; Pro-inflammatory response; Viral pathogenesis","cytokine; M protein; viral protein; cytokine; M protein, Coronavirus; matrix protein; amino terminal sequence; apoptosis; Article; avian infectious bronchitis; Avian infectious bronchitis virus; biochemical analysis; cell culture; controlled study; cytokine production; embryo; endoplasmic reticulum stress; gene mutation; glycosylation; in vivo study; nonhuman; priority journal; protein domain; protein function; reverse genetics; virus assembly; virus cell interaction; virus culture; virus like agent; virus pathogenesis; virus replication; virus virulence; Avian infectious bronchitis virus; chemistry; Coronavirus infection; genetics; glycosylation; human; immunology; metabolism; pathophysiology; protein domain; virology; Apoptosis; Coronavirus Infections; Cytokines; Endoplasmic Reticulum Stress; Glycosylation; Humans; Infectious bronchitis virus; Protein Domains; Viral Matrix Proteins","Bárcena, M., Oostergetel, G.T., Bartelink, W., Faas, F.G.A., Verkleij, A., Rottier, P.J.M., Koster, A.J., Bosch, B.J., Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 582-587; Binns, M.M., Boursnell, M.E., Tomley, F.M., Brown, T.D., Nucleotide sequence encoding the membrane protein of the IBV strain 6/82 (1986) Nucleic Acids Res., 14, p. 5558; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Cavanagh, D., Davis, P.J., Pappin, D.J., Coronavirus IBV glycopolypeptides: locational studies using proteases and saponin, a membrane permeabilizer (1986) Virus Res., 4, pp. 145-156; Collins, M.S., Alexander, D.J., Harkness, J.W., Heterogeneity of infectious bronchitis virus grown in eggs (1976) Arch. Virol., 50, pp. 55-72; De Haan, C.A., Vennema, H., Rottier, P.J., Assembly of the coronavirus envelope: homotypic interactions between the M proteins (2000) J. Virol., 74, pp. 4967-4978; Dea, S., Verbeek, A.J., Tijssen, P., Antigenic and genomic relationships among turkey and bovine enteric coronaviruses (1990) J. Virol., 64, pp. 3112-3118; Drickamer, K., Taylor, M.E., Evolving views of protein glycosylation (1998) Trends Biochem. Sci., 23, pp. 321-324; Fang, S., Chen, B., Tay, F.P.L., Ng, B.S., Liu, D.X., An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells (2007) Virology, 358, pp. 136-147; Fuerst, T.R., Niles, E.G., Studier, F.W., Moss, B., Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase (1986) Proc. Natl. Acad. Sci. USA, 83, pp. 8122-8126; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front. Microbiol., p. 5; Fung, T.S., Liu, D.X., Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun (2017) Cell Death Dis., 8, p. 3215; Fung, T.S., Liu, D.X., Post-translational modifications of coronavirus proteins: roles and function (2018) Future Virol., 13, pp. 405-430; Fung, T.S., Liao, Y., Liu, D.X., The ER stress sensor IRE1α protects cells from apoptosis induced by coronavirus infectious bronchitis virus (2014) J. Virol., 88, pp. 12752-12764; Fung, T.S., Huang, M., Liu, D.X., Coronavirus-induced ER stress response and its involvement in regulation of coronavirus–host interactions (2014) Virus Res., 194, pp. 110-123; de Haan, C.A., Kuo, L., Masters, P.S., Vennema, H., Rottier, P.J., Coronavirus particle assembly: primary structure requirements of the membrane protein (1998) J. Virol., 72, pp. 6838-6850; de Haan, C.A.M., de Wit, M., Kuo, L., Montalto-Morrison, C., Haagmans, B.L., Weiss, S.R., Masters, P.S., Rottier, P.J.M., The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain (2003) Virology, 312, pp. 395-406; Helenius, A., Aebi, M., Intracellular functions of N-linked glycans (2001) Science, 291, pp. 2364-2369; Hogue, B.G., Nayak, D.P., Expression of the porcine transmissible gastroenteritis coronavirus M protein (1990) Adv. Exp. Med. Biol., 276, pp. 121-126; Holmes, K.V., Doller, E.W., Sturman, L.S., Tunicamycin resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein (1981) Virology, 115, pp. 334-344; Hu, Y., Wen, J., Tang, L., Zhang, H., Zhang, X., Li, Y., Wang, J., Yang, H., The M protein of SARS-CoV: basic structural and immunological properties (2003) Genom. Proteom. Bioinforma., 1, pp. 118-130; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding (1994) J. Virol., 68, pp. 6523-6534; Lapps, W., Hogue, B.G., Brian, D.A., Deduced amino acid sequence and potential O-glycosylation sites for the bovine coronavirus matrix protein (1987) Adv. Exp. Med. Biol., 218, pp. 123-129; Laude, H., Gelfi, J., Lavenant, L., Charley, B., Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus (1992) J. Virol., 66, pp. 743-749; Li, F.Q., Xiao, H., Tam, J.P., Liu, D.X., Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus (2005) FEBS Lett., 579, pp. 2387-2396; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87, pp. 8124-8134; Lim, K.P., Liu, D.X., The missing link in coronavirus assembly retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-golgi compartments and physical interaction between the envelope and membrane proteins (2001) J. Biol. Chem., 276, pp. 17515-17523; Lim, X.Y., Ng, Y.L., Tam, J.P., Liu, D.X., Human coronaviruses: a review of virus–host interactions (2016) Diseases, 4, p. 26; Liu, C., Xu, H.Y., Liu, D.X., Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus (2001) J. Virol., 75, pp. 6402-6409; Liu, D.X., Inglis, S.C., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology, 185, pp. 911-917; Liu, D.X., Cavanagh, D., Green, P., Inglis, S.C., A polycistronic mRNA specified by the coronavirus infectious bronchitis virus (1991) Virology, 184, pp. 531-544; Liu, D.X., Shen, S., Xu, H.Y., Wang, S.F., Proteolytic mapping of the coronavirus infectious bronchitis virus 1b polyprotein: evidence for the presence of four cleavage sites of the 3C-like proteinase and identification of two novel cleavage products (1998) Virology, 246, pp. 288-297; Luo, H., Wu, D., Shen, C., Chen, K., Shen, X., Jiang, H., Severe acute respiratory syndrome coronavirus membrane protein interacts with nucleocapsid protein mostly through their carboxyl termini by electrostatic attraction (2006) Int. J. Biochem Cell Biol., 38, pp. 589-599; Macnaughton, M.R., Davies, H.A., Two particle types of avian infectious bronchitis virus (1980) J. Gen. Virol., 47, pp. 365-372; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Mounir, S., Talbot, P.J., Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation (1992) J. Gen. Virol., 73, pp. 2731-2736; Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Kam, J., Altmeyer, R., Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E (2005) J. Gen. Virol., 86, pp. 1423-1434; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Liao, L., Kuhn, P., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J. Virol., 82, pp. 5279-5294; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., Droese, B., Buchmeier, M.J., A structural analysis of M protein in coronavirus assembly and morphology (2011) J. Struct. Biol., 174, pp. 11-22; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Rottier, P.J., Welling, G.W., Welling-Wester, S., Niesters, H.G., Lenstra, J.A., Van, der Zeijst, B.A., Predicted membrane topology of the coronavirus protein E1 (1986) Biochemistry, 25, pp. 1335-1339; Stern, D.F., Sefton, B.M., Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins (1982) J. Virol., 44, pp. 804-812; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martínez-Sobrido, L., García-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315; Swift, A.M., Machamer, C.E., A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein (1991) J. Cell Biol., 115, pp. 19-30; Utiger, A., Tobler, K., Bridgen, A., Ackermann, M., Identification of the membrane protein of porcine epidemic diarrhea virus (1995) Virus Genes, 10, pp. 137-148; Versteeg, G.A., Van De Nes, P.S., Bredenbeek, P.J., Spaan, W.J.M., The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations (2007) J. Virol., 81, pp. 10981-10990; Voss, D., Kern, A., Traggiai, E., Eickmann, M., Stadler, K., Lanzavecchia, A., Becker, S., Characterization of severe acute respiratory syndrome coronavirus membrane protein (2006) FEBS Lett., 580, pp. 968-973; Voss, D., Pfefferle, S., Drosten, C., Stevermann, L., Traggiai, E., Lanzavecchia, A., Becker, S., Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein (2009) Virol. J., 6, p. 79; Ye, R., Montalto-Morrison, C., Masters, P.S., Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain (2004) J. Virol., 78, pp. 9904-9917","Fung, T.S.; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research CentreChina; email: tosingfung@qq.com",,"Academic Press Inc.",00426822,,VIRLA,"30852271","English","Virology",Article,"Final",,Scopus,2-s2.0-85063114366 "Sonawane A.A., Shastri J., Bavdekar S.B.","57205464431;57194224181;7005094341;","Respiratory Pathogens in Infants Diagnosed with Acute Lower Respiratory Tract Infection in a Tertiary Care Hospital of Western India Using Multiplex Real Time PCR",2019,"Indian Journal of Pediatrics","86","5",,"433","438",,3,"10.1007/s12098-018-2840-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060139613&doi=10.1007%2fs12098-018-2840-8&partnerID=40&md5=672535fe2c430731667adcb6c05fe9be","Department of Microbiology, T.N. Medical College & B.Y.L. Nair Hospital, Mumbai, Maharashtra 400008, India; Department of Pediatrics, T.N. Medical College & B.Y.L. Nair Hospital, Mumbai, India","Sonawane, A.A., Department of Microbiology, T.N. Medical College & B.Y.L. Nair Hospital, Mumbai, Maharashtra 400008, India; Shastri, J., Department of Microbiology, T.N. Medical College & B.Y.L. Nair Hospital, Mumbai, Maharashtra 400008, India; Bavdekar, S.B., Department of Pediatrics, T.N. Medical College & B.Y.L. Nair Hospital, Mumbai, India","Objective: To determine the frequency of respiratory pathogens in infants diagnosed with acute lower respiratory tract infections. Methods: A prospective cross-sectional observational study was conducted in infants hospitalized with a diagnosis of acute lower respiratory tract infection (ALRTI), in a tertiary care hospital in a metropolitan city of Western India. Nasopharyngeal swabs were analyzed by multiplex real time polymerase chain reaction, for 18 viruses and 3 bacteria (H. influenzae type b, C. pneumoniae and M. pneumoniae). The entire data was entered in Microsoft excel sheet and frequencies were determined. Results: One hundred eligible infants were enrolled. Pathogens were detected in 82 samples, which included Respiratory syncytial viruses (RSV) A / B (35.4%), Human rhinovirus (25.6%), Adenovirus (22%), Human Parainfluenza viruses (11%), Human bocavirus (9.8), Human metapneumovirus A / B (8.5%), Influenza A (H1N1) pdm 09 (6.1%), Parechovirus (3.7%), Human coronaviruses (3.66%), Haemophilus influenzae type b (6.1%), Chlamydia pneumoniae (2.4%) and Mycoplasma pneumoniae (2.4%). Influenza A (other than H1N1), Influenza B, Human Coronavirus 229E and Enterovirus were not detected. The rate of coinfection was 34% and rhinovirus was the most common of the multiple pathogens. Conclusions: Spectrum of viral etiologies of ALRTI is highlighted. Etiological diagnosis of ALRTI would enable specific antiviral therapy, restrict antibiotic use and help in knowing burden of disease. © 2019, Dr. K C Chaudhuri Foundation.","Acute lower respiratory tract infection; Co-infection; Infants; Multiplex real time PCR; Respiratory viruses; RSV","Article; bronchopneumonia; Chlamydia pneumoniae; congenital heart disease; controlled study; cross-sectional study; female; Haemophilus influenzae; Haemophilus influenzae type b; human; Human bocavirus; Human coronavirus 229E; Human metapneumovirus; Human rhinovirus; infant; influenza A; influenza A (H1N1); influenza B; low birth weight; lower respiratory tract infection; major clinical study; male; malnutrition; mixed infection; Mycoplasma pneumoniae; observational study; Paramyxovirinae; pneumonia; prematurity; prospective study; real time polymerase chain reaction; tertiary care center; adenovirus infection; bacterium; Enterovirus; Enterovirus infection; Human parainfluenza virus 1; Human parainfluenza virus 2; India; influenza; Influenza A virus (H1N1); isolation and purification; Metapneumovirus; microbiology; Pneumovirus; procedures; real time polymerase chain reaction; respiratory tract infection; Respirovirus infection; Rhinovirus; virology; virus; Adenoviridae Infections; Bacteria; Coinfection; Cross-Sectional Studies; Enterovirus; Enterovirus Infections; Female; Human bocavirus; Humans; India; Infant; Influenza A Virus, H1N1 Subtype; Influenza, Human; Male; Metapneumovirus; Parainfluenza Virus 1, Human; Parainfluenza Virus 2, Human; Prospective Studies; Real-Time Polymerase Chain Reaction; Respiratory Syncytial Viruses; Respiratory Tract Infections; Respirovirus Infections; Rhinovirus; Tertiary Care Centers; Viruses","Martins Júnior, R., Carney, S., Goldemberg, D., Detection of respiratory viruses by real-time polymerase chain reaction in outpatients with acute respiratory infection (2014) Mem Inst Oswaldo Cruz, 109, pp. 716-721; Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Murray, C.J.L., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010 (2012) Lancet, 380, pp. 2095-2128; Liu, L., Johnson, H., Cousens, S., Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000 (2012) Lancet, 379, pp. 2151-2161; Yeolekar, L., Damle, R., Kamat, A., Khude, M., Simha, V., Pandit, A., Respiratory viruses in acute respiratory tract infections in Western India (2008) Indian J Pediatr, 75, pp. 341-345; Kabra, S., Lodha, R., Broor, S., Chaudhary, R., Ghosh, M., Maitreyi, R., Etiology of acute lower respiratory tract infection (2003) Indian J Pediatr, 70, pp. 33-36; Singh, A.K., Jain, A., Jain, B., Singh, K.P., Dangi, T., Mohan, M., Dwivedi, M., Chhaddha, M.S., Viral aetiology of acute lower respiratory tract illness in hospitalized paediatric patients of a tertiary hospital: one-year prospective study (2014) Indian J Med Microbiol, 32, pp. 13-18; Mathew, J.L., Singhi, S., Ray, P., Etiology of community acquired pneumonia among children in India: prospective, cohort study (2015) J Glob Health, 5, p. 050418; Bharaj, P., Sullender, W.M., Kabra, S.K., Mani, K., Cherian, J., Tyagi, V., Chahar, H.S., Broor, S., Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007 (2009) Virol J, 6, p. 89; Broor, S., Parveen, S., Bharaj, P., A prospective three-year cohort study of the epidemiology and virology of acute respiratory infections of children in rural India (2007) PLoS One, 2; Wright, P., Cutt, F., Generic protocol to examine the incidence of lower respiratory infection due to respiratory syncytial virus in children less than five years of age [Internet] (2000) Geneva, Switzerland: World Health Organization, Department of Vaccines and Biologicals, , http://apps.who.int/iris/bitstream/handle/10665/66276/WHO_V_and_B_00.08_eng.pdf?sequence=1, Accessed 23 Aug 2018; A Manual: Measuring and Interpreting Malnutrition and Mortality (2005) Rome: CDS & World Food Programme: C, pp. 17-20; WHO Child Growth Standards (2015) Weight-For-Age; Girls Birth to 2 Years (Z-Scores), , p://www.who.int/childgrowth/standards/cht_wfa_girls_z_0_2.pdf?ua=1, [Internet]. WHO, Accessed 5 Oct; (2015) WHO Child Growth Standards, , http://www.who.int/childgrowth/standards/cht_wfa_boys_z_0_2.pdf?, Weight for age; boys birth to 2 years (z scores). Available at, ua=1 . Accessed 5 Oct; Frayha, H., Castriciano, S., Mahony, J., Chernesky, M., Nasopharyngeal swabs and nasopharyngeal aspirates equally effective for the diagnosis of viral respiratory disease in hospitalized children (1989) J Clin Microbiol, 27, pp. 1387-1389; Hoffmann, J., Rabezanahary, H., Randriamarotia, M., Ratsimbasoa, A., Najjar, J., Vernet, G., Contamin, B., Paranhos-Baccalà, G., Viral and atypical bacterial etiology of acute respiratory infections in children under 5 years old living in a rural tropical area of Madagascar (2012) PLoS One, 7; Feng, L., Li, Z., Zhao, S., Nair, H., Lai, S., Xu, W., Li, M., Yang, W., Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013 (2014) PLoS One, 9; Espínola, E., Russomando, G., Aquino, C., Basualdo, W., Phylogeny-based classification of human rhinoviruses detected in hospitalized children with acute lower respiratory infection in Paraguay, 2010-2011 (2013) J Med Virol, 85, pp. 1645-1651; Pretorius, M.A., Madhi, S.A., Cohen, C., Naidoo, D., Groome, M., Moyes, J., Buys, A., Venter, M., Respiratory viral coinfections identified by a 10-plex real-time reverse-transcription polymerase chain reaction assay in patients hospitalized with severe acute respiratory illness--South Africa, 2009-2010 (2012) J Infect Dis, 206, pp. S159-S165; Longtin, J., Bastien, M., Gilca, R., Leblanc, E., de Serres, G., Bergeron, M.G., Boivin, G., Human bocavirus infections in hospitalized children and adults (2008) Emerg Infect Dis, 14, pp. 217-221; (2015) Minister of Health & Family Welfare, , https://mohfw.gov.in/sites/default/files/54789632475632147555.pdf, Accessed 4 Oct 2015; Meerhoff, T., Houben, M., Coenjaerts, F., Detection of multiple respiratory pathogens during primary respiratory infection: nasal swab versus nasopharyngeal aspirate using real-time polymerase chain reaction (2010) Eur J Clin Microbiol Infect Dis, 29, pp. 365-371; Proenca-Modena, J.L., Pereira Valera, F.C., Jacob, M., High rates of detection of respiratory viruses in tonsillar tissues from children with chronic adenotonsillar disease (2012) PLoS One, 7; Nunes, M.C., Kuschner, Z.C., Rabede, Z., Madimabe, R., Van Niekerk, N., Moloi, J., Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children (2014) PLoS One, 9; Martin, E., Fairchok, M., Stednick, Z., Kuyperss, J., Englund, J., Epidemiology of multiple respiratory viruses in childcare attendees (2013) J Infect Dis, 207, pp. 982-989; da Silva, E.R., Pitrez, M.C.P., Arruda, E., Mattiello, R., Sarria, E.E., de Paula, F.E., Proença-Modena, J.L., Stein, R.T., Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors (2013) BMC Infect Dis, 13, p. 41; Robert, S., Lhommet, C., Brun, C., Diagnostic performance of multiplex PCR on pulmonary samples versus nasopharyngeal aspirates in community-acquired severe lower respiratory tract infections (2018) J Clin Virol, 108, pp. 1-5; Zhang, X., Lu, A., Shi, P., Wang, L., Qian, L., Diagnostic value of nasopharyngeal aspirates in children with lower respiratory tract infections (2017) Chiness Med J, 130, pp. 647-651","Sonawane, A.A.; Department of Microbiology, T.N. Medical College & B.Y.L. Nair HospitalIndia; email: dr.anujasonawane@gmail.com",,"Springer",00195456,,IJPEA,"30637585","English","Indian J. Pediatr.",Article,"Final",,Scopus,2-s2.0-85060139613 "Al Awaidy S.T., Khamis F.","6508132710;55218145400;","Middle east respiratory syndrome coronavirus (Mers-cov) in Oman: Current situation and going forward",2019,"Oman Medical Journal","34","3",,"181","183",,,"10.5001/omj.2019.36","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068791112&doi=10.5001%2fomj.2019.36&partnerID=40&md5=c4a5e100ab8f32585774e2faafae1711","Office of Health Affairs, Ministry of Health, Muscat, Oman; Department of Infectious Diseases, Royal Hospital, Muscat, Oman","Al Awaidy, S.T., Office of Health Affairs, Ministry of Health, Muscat, Oman; Khamis, F., Department of Infectious Diseases, Royal Hospital, Muscat, Oman",[No abstract available],,"asymptomatic disease; awareness; comorbidity; diabetes mellitus; disease surveillance; disease transmission; dromedary; Editorial; health care personnel; heart disease; human; hypertension; Middle East respiratory syndrome coronavirus; mortality rate; multiple organ failure; Oman; prophylaxis; real time polymerase chain reaction; respiratory tract disease; risk factor; septic shock; seroprevalence; virus transmission","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820. , Nov; MERS situation update (2019) WHO, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situationupdate-january-2019.html, January, Available from; (2018) MERS Situation Update March, , http://www.emro.who.int/images/stories/mers-cov/MERS-CoV_March_2018.pdf?ua=1, cited 2 May, Available from; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505. , Jun; Surveillance for Human Infection with Middle East Respiratory Syndrome Coronavirus (MERS- Cov), WHO, , https://apps.who.int/iris/bitstream/handle/10665/177869/WHO_MERS_SUR_15.1_eng.pdf?ua=1, cited June 2018; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015 (2015) Euro Surveill, 20 (25), pp. 7-13. , Jun; Al-Abaidani, I.S., Al-Maani, A.S., Al-Kindi, H.S., Al-Jardani, A.K., Abdel-Hady, D.M., Zayed, B.E., Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman (2014) Int J Infect Dis, 29, pp. 309-310. , Dec; Balkhair, A., Al Maamari, K., Alawi, F.B., The struggle against MERS-CoV (The novel coronavirus) (2013) Oman Med J, 28 (4), pp. 226-227. , Jul; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866. , Oct; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman (2014) 2013. Euro Surveill, 19 (16). , Apr; WHO, , https://www.who.int/csr/don/11-february-2019-mers-oman/en/, cited 11 February 2019; Sikkema, R.S., Farag, E.A., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013–2014: A case-control study (2017) J Infect Dis, 215 (11), pp. 1702-1705. , Jun; Al-Tawfiq, J.A., Abdrabalnabi, R., Taher, A., Mathew, S., Rahman, K.A., Infection control influence of Middle East respiratory syndrome coronavirus: A hospital-based analysis (2019) Am J Infect Control, 47 (4), pp. 431-434. , Apr; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: Implication for infection control (2018) Am J Infect Control, 46 (2), pp. 165-168. , Feb; Hui, D.S., Perlman, S., Zumla, A., Spread of MERS to South Korea and China (2015) Lancet Respir Med, 3 (7), pp. 509-510. , Jul","Al Awaidy, S.T.; Office of Health Affairs, Ministry of HealthOman; email: salah.awaidy@gmail.com",,"Oman Medical Specialty Board",1999768X,,,,"English","Oman Med. J.",Editorial,"Final",Open Access,Scopus,2-s2.0-85068791112 "Allal L., Mahrous H., Saad A., Refaei S., Attia M., Mahrous I., Fahim M., Elfadaly S., Abdelnabi A.","55546357300;57215712838;55497009100;57211130305;57211129881;57211130538;57211130009;57211130079;57213280753;","From Four-Way Linking to a One Health Platform in Egypt: institutionalisation of a multidisciplinary and multisectoral One Health system",2019,"Revue scientifique et technique (International Office of Epizootics)","38","1",,"261","270",,,"10.20506/rst.38.1.2958","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072746029&doi=10.20506%2frst.38.1.2958&partnerID=40&md5=fd939a29de0e45b558ca91071622f441",,"Allal, L.; Mahrous, H.; Saad, A.; Refaei, S.; Attia, M.; Mahrous, I.; Fahim, M.; Elfadaly, S.; Abdelnabi, A.","The convergence of humans, animals and our shared environment results in a dynamic in which the health of each group is inextricably linked. Taking into account the fact that the majority of emerging pathogens (e.g. highly pathogenic avian influenza [HPAI], severe acute respiratory syndrome coronavirus, Nipah virus, Middle East respiratory syndrome coronavirus) are zoonotic diseases, Egypt has established a national One Health coordination mechanism. The primary purpose of this mechanism is to provide a comprehensive, strategic approach to concurrent and future health challenges that are facing public and animal heath, including environmental impacts. In this way, the public health, animal health and environment sectors can improve disease mitigation measures, develop stronger and more stable public and animal health services, promote effective national communication strategies and improve One Health collaboration among all relevant sectors. In Egypt, the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) currently assist in hosting the country's Four-Way Linking Task Force with the participation of the convening Ministries (Ministry of Health and Population, Ministry of Environment, and Ministry of Agriculture and Land Reclamation [MOALR] - through the General Organisation for Veterinary Services and the MOALR's laboratories). In the context of the Emerging Pandemic Threats 2 Program, funded by the United States Agency for International Development (USAID), FAO plans to assist Egypt in establishing a robust, multidisciplinary and multisectoral One Health system. This system is based on the solid foundation of the Four-Way Linking Platform, which combines information from four functional streams - epidemiology, laboratories, and animal and human health. Egypt's platform will involve all sectors concerned with HPAI control and combine all stakeholders in an integrated, holistic approach to improve the detection of, response to and control of any threats at the human- animal-environment interface in Egypt.La coexistence des humains, des animaux et d’un environnement partagé crée une dynamique au sein de laquelle la santé de chaque groupe est inextricablement liée à celle des autres. Confrontée au caractère zoonotique de la majorité des agents pathogènes émergents (par exemple le virus de l’influenza aviaire hautement pathogène [IAHP], le coronavirus responsable du syndrome respiratoire aigu sévère, le virus Nipah, le coronavirus responsable du syndrome respiratoire du Moyen-Orient), l’Égypte a mis en place un mécanisme de coordination Une seule santé. Les objectifs en sont les suivants : a) mieux comprendre l’interaction des facteurs intervenant à l’interface homme–animal–environnement, b) améliorer les mesures d’atténuation de l’impact des maladies, c) oeuvrer en faveur de services de santé publique et de santé animale performants et stables, d) promouvoir des stratégies nationales de communication efficaces et une collaboration multisectorielle Une seule santé entre toutes les entités concernées. En Égypte, l’Organisation des Nations Unies pour l’alimentation et l’agriculture (FAO) et l’Organisation mondiale de la santé (OMS) contribuent à cette démarche en accueillant le Groupe de travail quadri-directionnel (Four-Way Linking) qui réunit les ministères concernés (ministère de la Santé et de la population, ministère de l’Environnement et ministère de l’Agriculture et de la revalorisation des terres [MOALR], à travers l’Organisation générale des Services vétérinaires et les laboratoires du MOALR). La FAO prévoit de fournir à l’Égypte une assistance visant à mettre en place un système robuste, multisectoriel et multidisciplinaire Une seule santé, dans le cadre de la deuxième phase du Programme sur les menaces pandémiques émergentes financé par l’Agence des États-Unis pour le développement international (USAID). Ce système est basé sur les bases solides déjà posées par la plateforme quadri-directionnelle en place, qui fait converger les informations émanant de quatre circuits opérationnels : l’épidémiologie, les laboratoires, la santé animale et la santé publique. La Plateforme égyptienne fera participer tous les secteurs impliqués dans la lutte contre l’IAHP et réunira les parties prenantes dans une démarche intégrée et holistique visant à améliorer la détection des menaces à l’interface homme–animal–environnement en Égypte ainsi que la réponse qui leur est apportée et leur contrôle.La confluencia de personas y animales en el medio común a todos nosotros da lugar a una dinámica en la que la salud de cada parte está inextricablemente ligada a la de las demás. Teniendo en cuenta que la mayoría de los patógenos emergentes (influenza aviar altamente patógena [IAAP], coronavirus del síndrome respiratorio agudo severo, virus Nipah, coronavirus del síndrome respiratorio de Oriente Medio, etc.) son zoonóticos, Egipto ha establecido un mecanismo nacional de coordinación en clave de Una sola salud con los siguientes objetivos: a) entender mejor la interrelación de distintos factores en la interfaz de personas, animales y medio ambiente; b) mejorar las medidas de mitigación de enfermedades; c) instituir servicios sólidos y estables de salud pública y sanidad animal; y d) promover dispositivos nacionales de comunicación eficaces y una colaboración multisectorial entre todas las entidades interesadas que se inscriba en los postulados de Una sola salud. En Egipto, la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) y la Organización Mundial de la Salud (OMS) prestan apoyo actualmente albergando al grupo de trabajo que en el país se dedica a la conexión cuatridimensional (Four-Way Linking) con participación de los ministerios convocantes (Ministerio de Salud y Población, Ministerio de Medio Ambiente y Ministerio de Agricultura y Recuperación de Tierras y por conducto de la Organización General de Servicios Veterinarios y los laboratorios del Ministerio de Agricultura). Como parte de la segunda fase del programa contra las amenazas pandémicas emergentes que financia la Agencia de los Estados Unidos para el Desarrollo Internacional (USAID), la FAO tiene previsto ayudar a Egipto a instituir un robusto sistema pluridisciplinar y multisectorial de Una sola salud partiendo de las sólidas bases que ha sentado el dispositivo de conexión cuatridimensional, que centraliza información procedente de cuatro grandes ámbitos de trabajo: epidemiología, laboratorios, sanidad animal y salud humana. El dispositivo egipcio federará a todos los sectores que intervienen en la lucha contra la IAAP y combinará, desde un planteamiento integrado y holístico, la labor de todos los interlocutores para detectar, controlar y combatir más eficazmente cuantas amenazas surjan en Egipto en la interfaz de personas, animales y medio ambiente.","Control; Detection; Egypt; Four-way linking; Human-animal-environment interface; Multisectoral collaboration; One Health; Response; Zoonotic disease","animal; communicable disease control; Egypt; human; interdisciplinary communication; intersectoral collaboration; One Health; United Nations; zoonosis; Animals; Communicable Disease Control; Egypt; Humans; Interdisciplinary Communication; Intersectoral Collaboration; One Health; United Nations; Zoonoses",,,,"NLM (Medline)",02531933,,,"31564724","English","Rev. - Off. Int. Epizoot.",Review,"Final",,Scopus,2-s2.0-85072746029 "Qin P., Du E.-Z., Luo W.-T., Yang Y.-L., Zhang Y.-Q., Wang B., Huang Y.-W.","57195247636;57209076396;57202267736;57195945518;57209073973;57195253684;8291778500;","Characteristics of the life cycle of porcine deltacoronavirus (PDCoV) in vitro: Replication kinetics, cellular ultrastructure and virion morphology, and evidence of inducing autophagy",2019,"Viruses","11","5", 455,"","",,4,"10.3390/v11050455","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066440229&doi=10.3390%2fv11050455&partnerID=40&md5=4edbf432c6987025e3c5603b38b4b06e","Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; YEBIO Bioengineering Co., Ltd. of Qingdao, Qingdao, 266114, China","Qin, P., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Du, E.-Z., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China, YEBIO Bioengineering Co., Ltd. of Qingdao, Qingdao, 266114, China; Luo, W.-T., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Yang, Y.-L., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Zhang, Y.-Q., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Wang, B., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Huang, Y.-W., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China","Porcine deltacoronavirus (PDCoV) causes severe diarrhea and vomiting in affected piglets. The aim of this study was to establish the basic, in vitro characteristics of the life cycle such as replication kinetics, cellular ultrastructure, virion morphology, and induction of autophagy of PDCoV. Time-course analysis of viral subgenomic and genomic RNA loads and infectious titers indicated that one replication cycle of PDCoV takes 5 to 6 h. Electron microscopy showed that PDCoV infection induced the membrane rearrangements with double-membrane vesicles and large virion-containing vacuoles. The convoluted membranes structures described in alpha-and beta-coronavirus were not observed. PDCoV infection also increased the number of autophagosome-like vesicles in the cytoplasm of cells, and the autophagy response was detected by LC3 I/II and p62 Western blot analysis. For the first time, this study presents the picture of the PDCoV infection cycle, which is crucial to help elucidate the molecular mechanism of deltacoronavirus replication. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Autophagy; Electron microscopy; Porcine deltacoronavirus (PDCoV); Ultrastructure","beta actin; genomic RNA; guide RNA; immunoglobulin light chain; sequestosome 1; virus RNA; animal cell; animal cell culture; Article; autophagosome; autophagy; cell ultrastructure; cell vacuole; cytolysis; diarrhea; electron microscopy; gene dosage; ID50 (median infectious dose); kidney cell line; light chain; LLC-PK1 cell line; nonhuman; Porcine Deltacoronavirus; Porcine respiratory coronavirus; protein expression; real time polymerase chain reaction; reverse transcription polymerase chain reaction; transmission electron microscopy; virion; virus assembly; virus entry; virus isolation; virus load; virus morphology; virus replication; virus transformation; vomiting; Western blotting","Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Dong, N., Fang, L.R., Zeng, S.L., Sun, Q.Q., Chen, H.C., Xiao, S.B., Porcine Deltacoronavirus in Mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., Tuntituvanont, A., Nilubol, D., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch. Virol., 161, pp. 2909-2911; Lee, S., Lee, C., Complete Genome Characterization of Korean Porcine Deltacoronavirus Strain KOR/KNU14-04/2014 (2014) Genome Announc, p. 2; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo (2016) Vet. Microbiol., 182, pp. 57-63; Jung, K., Hu, H., Eyerly, B., Lu, Z.Y., Chepngeno, J., Saif, L.J., Pathogenicity of 2 Porcine Deltacoronavirus Strains in Gnotobiotic Pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Ng, M.L., Tan, S.H., See, E.E., Ooi, E.E., Ling, A.E., Early events of SARS coronavirus infection in vero cells (2003) J. Med. Virol., 71, pp. 323-331; Goldsmith, C.S., Tatti, K.M., Ksiazek, T.G., Rollin, P.E., Comer, J.A., Lee, W.W., Rota, P.A., Zaki, S.R., Ultrastructural characterization of SARS coronavirus (2004) Emerg. Infect. Dis., 10, pp. 320-326; Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L., Jingqiang, Z., The life cycle of SARS coronavirus in Vero E6 cells (2004) J. Med. Virol., 73, pp. 332-337; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) Plos Biol, 6; Knoops, K., Barcena, M., Limpens, R.W., Koster, A.J., Mommaas, A.M., Snijder, E.J., Ultrastructural characterization of arterivirus replication structures: Reshaping the endoplasmic reticulum to accommodate viral RNA synthesis (2012) J. Virol., 86, pp. 2474-2487; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martinez-Sobrido, L., Garcia-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315; Ng, M.L., Tan, S.H., See, E.E., Ooi, E.E., Ling, A.E., Proliferative growth of SARS coronavirus in Vero E6 cells (2003) J. Gen. Virol., 84, pp. 3291-3303; Orenstein, J.M., Banach, B., Baker, S.C., Morphogenesis of Coronavirus HCoV-NL63 in Cell Culture: A Transmission Electron Microscopic Study (2008) Open Infect. Dis. J., 2, pp. 52-58; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., Britton, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) Mbio, 4, pp. e00801-e00813; Salanueva, I.J., Carrascosa, J.L., Risco, C., Structural maturation of the transmissible gastroenteritis coronavirus (1999) J. Virol., 73, pp. 7952-7964; Zhou, X., Cong, Y., Veenendaal, T., Klumperman, J., Shi, D., Mari, M., Reggiori, F., Ultrastructural Characterization of Membrane Rearrangements Induced by Porcine Epidemic Diarrhea Virus Infection (2017) Viruses, 9, p. 251; V’Kovski, P., Al-Mulla, H., Thiel, V., Neuman, B.W., New insights on the role of paired membrane structures in coronavirus replication (2015) Virus Res, 202, pp. 33-40; Dong, J., Wang, G., Liu, Y., Shi, W., Wu, J., Wen, H., Wang, S., Cai, X., Quantitative estimation of the replication kinetics of genotype 2 PRRSV strains with different levels of virulence in vitro (2016) J. Virol. Methods, 234, pp. 87-89; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Zhang, X., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350; Wang, B., Liu, Y., Ji, C.M., Yang, Y.L., Liang, Q.Z., Zhao, P., Xu, L.D., Qin, P., Porcine Deltacoronavirus Engages the Transmissible Gastroenteritis Virus Functional Receptor Porcine Aminopeptidase N for Infectious Cellular Entry (2018) J. Virol., 92; Qin, P., Li, H., Wang, J.W., Wang, B., Xie, R.H., Xu, H., Zhao, L.Y., Song, Y., Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and seroepidemiological survey of MRV3 in diarrheic pigs from east China (2017) Vet. Microbiol., 208, pp. 126-136; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., van der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J. Virol., 80, pp. 5927-5940; Ulasli, M., Verheije, M.H., de Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell. Microbiol., 12, pp. 844-861; Neuman, B.W., Angelini, M.M., Buchmeier, M.J., Does form meet function in the coronavirus replicative organelle (2014) Trends Microbiol, 22, pp. 642-647; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J. Biol. Chem., 279, pp. 10136-10141; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Barcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res, 220, pp. 70-90; Cook, K.L., Soto-Pantoja, D.R., Abu-Asab, M., Clarke, P.A., Roberts, D.D., Clarke, R., Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy (2014) Cell Biosci, 4, p. 16; Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adeli, K., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (2016) Autophagy, 12, pp. 1-222; Mizushima, N., Yoshimori, T., How to interpret LC3 immunoblotting (2007) Autophagy, 3, pp. 542-545; Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., Johansen, T., P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death (2005) J. Cell Biol., 171, pp. 603-614; Maier, H.J., Britton, P., Involvement of autophagy in coronavirus replication (2012) Viruses, 4, pp. 3440-3451; Guo, L., Yu, H., Gu, W., Luo, X., Li, R., Zhang, J., Xu, Y., Feng, L., Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication (2016) Sci. Rep, 6, p. 23864; Cottam, E.M., Maier, H.J., Manifava, M., Vaux, L.C., Chandra-Schoenfelder, P., Gerner, W., Britton, P., Wileman, T., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7, pp. 1335-1347; Zhao, Z., Thackray, L.B., Miller, B.C., Lynn, T.M., Becker, M.M., Ward, E., Mizushima, N.N., Virgin Iv, H.W., Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3, pp. 581-585; Schneider, M., Ackermann, K., Stuart, M., Wex, C., Protzer, U., Schatzl, H.M., Gilch, S., Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain (2012) J. Virol., 86, pp. 10112-10122; Maier, H.J., Cottam, E.M., Stevenson-Leggett, P., Wilkinson, J.A., Harte, C.J., Wileman, T., Britton, P., Visualizing the autophagy pathway in avian cells and its application to studying infectious bronchitis virus (2013) Autophagy, 9, pp. 496-509","Huang, Y.-W.; Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang UniversityChina; email: yhuang@zju.edu.cn",,"MDPI AG",19994915,,,"31109068","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85066440229 "Zhang M., Hill J.E., Fernando C., Alexander T.W., Timsit E., van der Meer F., Huang Y.","57195982995;7404770905;55312586100;7101893824;23391393000;55774976900;54389078200;","Respiratory viruses identified in western Canadian beef cattle by metagenomic sequencing and their association with bovine respiratory disease",2019,"Transboundary and Emerging Diseases","66","3",,"1379","1386",,6,"10.1111/tbed.13172","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064037189&doi=10.1111%2ftbed.13172&partnerID=40&md5=4f7c6e9db100d65adff486d7788517e9","Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada; Department of Production Animal Health, University of Calgary, Calgary, AB, Canada; Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, AB, Canada; Feedlot Health Management Services, Okotoks, AB, Canada; Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada; Prairie Diagnostic Services Inc, Saskatoon, SK, Canada","Zhang, M., Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Hill, J.E., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Fernando, C., Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Alexander, T.W., Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada; Timsit, E., Department of Production Animal Health, University of Calgary, Calgary, AB, Canada, Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, AB, Canada, Feedlot Health Management Services, Okotoks, AB, Canada; van der Meer, F., Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada; Huang, Y., Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, Prairie Diagnostic Services Inc, Saskatoon, SK, Canada","Bovine respiratory disease (BRD) causes considerable economic losses in North America. The pathogenesis involves interactions between bacteria, viruses, environment and management factors. Primary viral infection can increase the risk of secondary fatal bacterial infection. The objective of this study was to use metagenomic sequencing to characterize the respiratory viromes of paired nasal swabs and tracheal washes from western Canadian feedlot cattle, with or without BRD. A total of 116 cattle (116 nasal swabs and 116 tracheal washes) were analysed. The presence of influenza D virus (IDV), bovine rhinitis A virus (BRAV), bovine rhinitis B virus (BRBV), bovine coronavirus (BCV) and bovine respiratory syncytial virus (BRSV) was associated with BRD. Agreement between identification of viruses in nasal swabs and tracheal washes was generally weak, indicating that sampling location may affect detection of infection. This study reported several viruses for the first time in Canada and provides a basis for further studies investigating candidate viruses important to the prevention of BRD. © 2019 Blackwell Verlag GmbH","bovine coronavirus; bovine respiratory disease (BRD); bovine respiratory syncytial virus; bovine rhinitis virus; influenza D virus; metagenomic sequencing; virome","amino acid sequence; Article; beef cattle; bioinformatics; Bovine coronavirus; Bovine respiratory syncytial virus; bovine rhinitis A virus; bovine rhinitis B virus; cattle disease; controlled study; DNA extraction; DNA library; DNA sequence; Human parainfluenza virus 1; metagenomics; nonhuman; nose smear; prevalence; respiratory virus; RNA virus; sequence analysis; virus isolation; animal; Aphthovirus; bovine; Canada; cattle disease; genetics; respiratory tract infection; RNA virus infection; Thogotovirus; veterinary medicine; virology; virus genome; Animals; Aphthovirus; Canada; Cattle; Cattle Diseases; Coronavirus, Bovine; Genome, Viral; Metagenomics; Respiratory Syncytial Virus, Bovine; Respiratory Tract Infections; RNA Virus Infections; RNA Viruses; Thogotovirus","Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 12891-12896; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: A flexible trimmer for Illumina sequence data (2014) Bioinformatics (Oxford, England), 30, pp. 2114-2120. , https://doi.org/10.1093/bioinformatics/btu170; Bowland, S.L., Shewen, P.E., Bovine respiratory disease: Commercial vaccines currently available in Canada (2000) The Canadian Veterinary Journal, 41, pp. 33-48; Brister, J.R., Ako-Adjei, D., Bao, Y., Blinkova, O., NCBI viral genomes resource (2015) Nucleic Acids Research, 43, pp. D571-577. , https://doi.org/10.1093/nar/gku1207; Cibulski, S.P., Teixeira, T.F., Dos Santos, H.F., de Sales Lima, F.E., Scheffer, C.M., Varela, A.P., Roehe, P.M., Ungulate copiparvovirus 1 (bovine parvovirus 2): Characterization of a new genotype and associated viremia in different bovine age groups (2016) Virus Genes, 52, pp. 134-137. , https://doi.org/10.1007/s11262-015-1266-x; Cohen, J., A coefficient of agreement for nominal scales (1960) Educational and Psychological Measurement, 20, pp. 37-46. , https://doi.org/10.1177/001316446002000104; Cotmore, S.F., Agbandje-McKenna, M., Chiorini, J.A., Mukha, D.V., Pintel, D.J., Qiu, J., Davison, A.J., The family parvoviridae (2014) Archives of Virology, 159, pp. 1239-1247. , https://doi.org/10.1007/s00705-013-1914-1; Edwards, T.A., Control methods for bovine respiratory disease for feedlot cattle (2010) The Veterinary Clinics of North America Food Animal Practice, 26, pp. 273-284. , https://doi.org/10.1016/j.cvfa.2010.03.005; Ellis, J.A., Update on viral pathogenesis in BRD (2009) Animal Health Research Reviews, 10, pp. 149-153. , https://doi.org/10.1017/S146625230999020X; Ferguson, L., Olivier, A.K., Genova, S., Epperson, W.B., Smith, D.R., Schneider, L., Wan, X.F., Pathogenesis of influenza D virus in cattle (2016) Journal of Virology, 90, pp. 5636-5642. , https://doi.org/10.1128/JVI.03122-15; Flynn, O., Gallagher, C., Mooney, J., Irvine, C., Ducatez, M., Hause, B., Ryan, E., Influenza D virus in cattle, Ireland (2018) Emerging Infectious Diseases, 24, pp. 389-391. , https://doi.org/10.3201/eid2402.170759; Fulton, R.W., Bovine respiratory disease research (1983–2009) (2009) Animal Health Research Reviews, 10, pp. 131-139. , https://doi.org/10.1017/S146625230999017X; Griffin, D., Economic impact associated with respiratory disease in beef cattle (1997) The Veterinary Clinics of North America Food Animal Practice, 13, pp. 367-377. , https://doi.org/10.1016/s0749-0720(15)30302-9; Hause, B.M., Collin, E.A., Anderson, J., Hesse, R.A., Anderson, G., Bovine rhinitis viruses are common in U.S. cattle with bovine respiratory disease (2015) PloS One, 10. , https://doi.org/10.1371/journal.pone.0121998; Hause, B.M., Huntimer, L., Falkenberg, S., Henningson, J., Lechtenberg, K., Halbur, T., An inactivated influenza D virus vaccine partially protects cattle from respiratory disease caused by homologous challenge (2017) Veterinary Microbiology, 199, pp. 47-53. , https://doi.org/10.1016/j.vetmic.2016.12.024; Hilton, W.M., BRD in 2014: Where have we been, where are we now, and where do we want to go? (2014) Animal Health Research Reviews, 15, pp. 120-122. , https://doi.org/10.1017/S1466252314000115; Hollister, J.R., Vagnozzi, A., Knowles, N.J., Rieder, E., Molecular and phylogenetic analyses of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus (2008) Virology, 373, pp. 411-425; Landis, J.R., Koch, G.G., The measurement of observer agreement for categorical data (1977) Biometrics, 33, pp. 159-174. , https://doi.org/10.2307/2529310; Lathrop, S.L., Wittum, T.E., Brock, K.V., Loerch, S.C., Perino, L.J., Bingham, H.R., Saif, L.J., Association between infection of the respiratory tract attributable to bovine coronavirus and health and growth performance of cattle in feedlots (2000) American Journal of Veterinary Research, 61, pp. 1062-1066. , https://doi.org/10.2460/ajvr.2000.61.1062; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Durbin, R., The sequence alignment/map format and SAMtools (2009) Bioinformatics, 25, pp. 2078-2079. , https://doi.org/10.1093/bioinformatics/btp352; Mekata, H., Yamamoto, M., Hamabe, S., Tanaka, H., Omatsu, T., Mizutani, T., Okabayashi, T., Molecular epidemiological survey and phylogenetic analysis of bovine influenza D virus in Japan (2018) Transboundary and Emerging Diseases, 65, pp. e355-e360. , https://doi.org/10.1111/tbed.12765; Mitra, N., Cernicchiaro, N., Torres, S., Li, F., Hause, B.M., Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus (2016) The Journal of General Virology, 97, pp. 1771-1784. , https://doi.org/10.1099/jgv.0.000492; Mosier, D., Review of BRD pathogenesis: The old and the new (2014) Animal Health Research Reviews, 15, pp. 166-168. , https://doi.org/10.1017/S1466252314000176; Murray, G.M., O'Neill, R.G., More, S.J., McElroy, M.C., Earley, B., Cassidy, J.P., Evolving views on bovine respiratory disease: An appraisal of selected key pathogens - Part 1 (2016) Veterinary Journal, 217, pp. 95-102. , https://doi.org/10.1016/j.tvjl.2016.09.012; Ng, T.F., Kondov, N.O., Deng, X., Van Eenennaam, A., Neibergs, H.L., Delwart, E., A metagenomics and case-control study to identify viruses associated with bovine respiratory disease (2015) Journal of Virology, 89, pp. 5340-5349. , https://doi.org/10.1128/JVI.00064-15; Parker, J., Chen, J., Application of next generation sequencing for the detection of human viral pathogens in clinical specimens (2017) Journal of Clinical Virology, 86, pp. 20-26. , https://doi.org/10.1016/j.jcv.2016.11.010; Quast, M., Sreenivasan, C., Sexton, G., Nedland, H., Singrey, A., Fawcett, L., Li, F., Serological evidence for the presence of influenza D virus in small ruminants (2015) Veterinary Microbiology, 180, pp. 281-285. , https://doi.org/10.1016/j.vetmic.2015.09.005; Schmidt, M., Katano, H., Bossis, I., Chiorini, J.A., Cloning and characterization of a bovine adeno-associated virus (2004) Journal of Virology, 78, pp. 6509-6516. , https://doi.org/10.1128/jvi.78.12.6509-6516.2004; Shan, T., Li, L., Simmonds, P., Wang, C., Moeser, A., Delwart, E., The fecal virome of pigs on a high-density farm (2011) Journal of Virology, 85, pp. 11697-11708. , https://doi.org/10.1128/JVI.05217-11; Snoeck, C.J., Oliva, J., Pauly, M., Losch, S., Wildschutz, F., Muller, C.P., Ducatez, M.F., Influenza D virus circulation in cattle and swine, Luxembourg, 2012–2016 (2018) Emerging Infectious Diseases, 24, pp. 1388-1389. , https://doi.org/10.3201/eid2407.171937; Storz, J., Lin, X., Purdy, C.W., Chouljenko, V.N., Kousoulas, K.G., Enright, F.M., Loan, R.W., Coronavirus and Pasteurella infections in bovine shipping fever pneumonia and Evans' criteria for causation (2000) Journal of Clinical Microbiology, 38, pp. 3291-3298; Su, S., Fu, X., Li, G., Kerlin, F., Veit, M., Novel influenza D virus: Epidemiology, pathology, evolution and biological characteristics (2017) Virulence, 8, pp. 1580-1591. , https://doi.org/10.1080/21505594.2017; Taylor, J.D., Fulton, R.W., Lehenbauer, T.W., Step, D.L., Confer, A.W., The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? (2010) The Canadian Veterinary Journal, 51, pp. 1095-1102; Timsit, E., Christensen, H., Bareille, N., Seegers, H., Bisgaard, M., Assie, S., Transmission dynamics of Mannheimia haemolytica in newly-received beef bulls at fattening operations (2013) Veterinary Microbiology, 161, pp. 295-304. , https://doi.org/10.1016/j.vetmic.2012.07.044; Timsit, E., Hallewell, J., Booker, C., Tison, N., Amat, S., Alexander, T.W., Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease (2017) Veterinary Microbiology, 208, pp. 118-125. , https://doi.org/10.1016/j.vetmic.2017.07.013; Timsit, E., Workentine, M., van der Meer, F., Alexander, T., Distinct bacterial metacommunities inhabit the upper and lower respiratory tracts of healthy feedlot cattle and those diagnosed with bronchopneumonia (2018) Veterinary Microbiology, 221, pp. 105-113. , https://doi.org/10.1016/j.vetmic.2018.06.007; Zhang, H., Porter, E., Lohman, M., Lu, N., Peddireddi, L., Hanzlicek, G., Bai, J., Influenza C virus in cattle with respiratory disease, United States, 2016–2018 (2018) Emerging Infectious Diseases, 24, pp. 1926-1929. , https://doi.org/10.3201/eid2410.180589; Zhu, L., Xing, Z., Gai, X., Li, S., San, Z., Wang, X., Identification of a novel enterovirus E isolates HY12 from cattle with severe respiratory and enteric diseases (2014) PloS One, 9. , https://doi.org/10.1371/journal.pone.0097730","Huang, Y.; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of SaskatchewanCanada; email: yanyun.huang@usask.ca",,"Blackwell Publishing Ltd",18651674,,,"30873724","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85064037189 "Khudhair A., Killerby M.E., Al Mulla M., Elkheir K.A., Ternanni W., Bandar Z., Weber S., Khoury M., Donnelly G., Al Muhairi S., Khalafalla A.I., Trivedi S., Tamin A., Thornburg N.J., Watson J.T., Gerber S.I., Al Hosani F., Hall A.J.","57193787912;57207624890;56926568500;57201528716;57208532030;57208534432;57209138010;57205477251;57205474350;53879463500;7003866427;56025976500;6602551546;6602664202;55374101200;56656063700;55572197500;9241843500;","Risk factors for MERS-CoV seropositivity among animal market and slaughterhouse workers, Abu Dhabi, United Arab Emirates, 2014–2017",2019,"Emerging Infectious Diseases","25","5",,"","",,6,"10.3201/eid2505.181728","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065049004&doi=10.3201%2feid2505.181728&partnerID=40&md5=2be2fdd38a7238e898d8f9defb0153ea","Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Centers for Disease Control and Prevention, Atlanta, GA, United States; Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates","Khudhair, A., Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Killerby, M.E., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates, Centers for Disease Control and Prevention, Atlanta, GA, United States; Al Mulla, M., Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Elkheir, K.A., Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Ternanni, W., Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Bandar, Z., Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Weber, S., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Khoury, M., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Donnelly, G., Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Al Muhairi, S., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Khalafalla, A.I., Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates; Trivedi, S., Centers for Disease Control and Prevention, Atlanta, GA, United States; Tamin, A., Centers for Disease Control and Prevention, Atlanta, GA, United States; Thornburg, N.J., Centers for Disease Control and Prevention, Atlanta, GA, United States; Watson, J.T., Centers for Disease Control and Prevention, Atlanta, GA, United States; Gerber, S.I., Centers for Disease Control and Prevention, Atlanta, GA, United States; Al Hosani, F., Abu Dhabi Department of Health, Abu Dhabi, United Arab Emirates; Hall, A.J., Centers for Disease Control and Prevention, Atlanta, GA, United States","Camel contact is a recognized risk factor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Because specific camel exposures associated with MERS-CoV seropositivity are not fully understood, we investigated worker–camel interactions and MERS-CoV seroprevalence. We assessed worker seroprevalence in 2 slaughterhouses and 1 live-animal market in Abu Dhabi, United Arab Emirates, during 2014–2017 and administered an epidemiologic survey in 2016 and 2017. Across 3 sampling rounds during 2014–2017, we sampled 100–235 workers, and 6%–19% were seropositive for MERS-CoV at each sampling round. One (1.4%) of 70 seronegative workers tested at multiple rounds seroconverted. On multivariable analyses, working as a camel salesman, handling live camels or their waste, and having diabetes were associated with seropositivity among all workers, whereas handling live camels and either administering medications or cleaning equipment was associated with seropositivity among market workers. Characterization of high-risk exposures is critical for implementation of preventive measures. © 2019, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"virus spike protein; abattoir worker; antibody response; Article; camel; camel milk; disease surveillance; disease transmission; enzyme linked immunosorbent assay; human; limit of detection; major clinical study; marketing; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; nonhuman; nose smear; occupational exposure; prevalence; public health service; questionnaire; respiratory distress; respiratory tract infection; risk factor; serology; seroprevalence; single nucleotide polymorphism; suckling animal; United Arab Emirates; vaccination; virus detection; virus nucleocapsid","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , http://dx.doi.org/10.1056/NEJMoa1211721; Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov, cited 2019 Apr 3; WHO Mers-Cov Global Summary and Assessment of Risk, , https://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf, 21 July 2017 [cited 2018 Aug 7]; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13 (87). , http://dx.doi.org/10.1186/s12985-016-0544-0; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Animal to human interaction (2015) Pathog Glob Health, 109, pp. 354-362. , http://dx.doi.org/10.1080/20477724.2015.1122852; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, 22. , http://dx.doi.org/10.2807/1560-7917.ES.2017.22.13.30498; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., Miguel, E., Niemeyer, D., Zhao, J., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci U S A, 115, pp. 3144-3149. , http://dx.doi.org/10.1073/pnas.1718769115; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Mbio, 5, pp. 4-14. , http://dx.doi.org/10.1128/mBio.01002-14; Yusof, M.F., Eltahir, Y.M., Serhan, W.S., Hashem, F.M., Elsayed, E.A., Marzoug, B.A., Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates (2015) Virus Genes, 50, pp. 509-513. , http://dx.doi.org/10.1007/s11262-015-1174-0; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , http://dx.doi.org/10.1016/S1473-3099(13)70690-X; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill, 20. , http://dx.doi.org/10.2807/1560-7917.ES.2015.20.49.30086; Meyer, B., Müller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559. , http://dx.doi.org/10.3201/eid2004.131746; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374. , http://dx.doi.org/10.3201/eid2008.140590; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg Infect Dis, 20, pp. 1231-1234. , http://dx.doi.org/10.3201/eid2007.140571; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar (2014) April 2014. Euro Surveill, 19, p. 20829. , http://dx.doi.org/10.2807/1560-7917.ES2014.19.23.20829; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015. , http://dx.doi.org/10.3201/eid2006.140402; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5. , http://dx.doi.org/10.3402/iee.v5.28305; Paden, C., Yusof, M., Al Hammadi, Z., Queen, K., Tao, Y., Eltahir, Y., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2017) Zoonoses Public Health; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East Respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55. , http://dx.doi.org/10.3201/eid2201.151340; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564. , http://dx.doi.org/10.1016/S1473-3099(15)70090-3; Reusken, C.B., Farag, E.A., Haagmans, B.L., Mohran, K.A., Godeke, G.J.V., Raj, S., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013–2014 (2015) Emerg Infect Dis, 21, pp. 1422-1425. , http://dx.doi.org/10.3201/eid2108.150481; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) Mbio, 9, pp. 5-18. , http://dx.doi.org/10.1128/mBio.01985-18; Inovio’s MERS Vaccine Generates High Levels of Antibodies and Induces Broad-Based T Cell Responses in Phase 1 Study, , http://ir.inovio.com/news-and-media/news/press-release-details/2018/Inovios-MERS-Vaccine-Generates-High-Levels-of-Antibodies-and-Induces-Broad-based-T-Cell-Responses-in-Phase-1-Study/default.aspx, cited 2018 Aug 24; Sample, I., (2015) Man in Germany Dies of Complications Stemming from Mers Virus, , https://www.the-guardian.com/science/2015/jun/16/mers-virus-man-dies-germany; Yusof, M.F., Queen, K., Eltahir, Y.M., Paden, C.R., Al Hammadi, Z.M.A.H., Tao, Y., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi (2017) United Arab Emirates. Emerg Microbes Infect, 6. , http://dx.doi.org/10.1038/emi.2017.89; Trivedi, S., Miao, C., Al-Abdallat, M.M., Haddadin, A., Alqasrawi, S., Iblan, I., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J Med Virol, 90, pp. 367-371. , http://dx.doi.org/10.1002/jmv.24948; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2. , http://dx.doi.org/10.1126/sciimmunol.aan5393; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761. , http://dx.doi.org/10.1016/S1473-3099(13)70204-4; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Korean Society of Infectious Diseases. Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48, pp. 118-126. , http://dx.doi.org/10.3947/ic.2016.48.2.118; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Acute Middle East respiratory syndrome coronavirus infection in livestock dromedaries, Dubai, 2014 (2015) Emerg Infect Dis, 21, pp. 1019-1022. , http://dx.doi.org/10.3201/eid2106.150038; Sikkema, R.S., Farag, E.A.B.A., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013–2014: A case-control study (2017) J Infect Dis, 215, pp. 1702-1705. , http://dx.doi.org/10.1093/infdis/jix174; Choe, P.G., Perera, R.A.P.M., Park, W.B., Song, K.-H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084. , http://dx.doi.org/10.3201/eid2307.170310","Killerby, M.E.; Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H24-5, United States; email: lxo9@cdc.gov",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"31002068","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85065049004 "Ahn M., Anderson D.E., Zhang Q., Tan C.W., Lim B.L., Luko K., Wen M., Chia W.N., Mani S., Wang L.C., Ng J.H.J., Sobota R.M., Dutertre C.-A., Ginhoux F., Shi Z.-L., Irving A.T., Wang L.-F.","57146599300;25631949200;56043744800;55203300200;57206892442;57189308693;57208373086;56471443300;57201548973;57206905570;55253770500;6602797276;14068352400;12240075300;7403733955;8047804900;35243718700;","Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host",2019,"Nature Microbiology","4","5",,"789","799",,14,"10.1038/s41564-019-0371-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062060432&doi=10.1038%2fs41564-019-0371-3&partnerID=40&md5=33db63cf5813ea11c6e01b8d29b229e9","Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Functional Proteomics Laboratory, Institute of Molecular and Cellular Biology (A*STAR), Singapore, Singapore; Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore","Ahn, M., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Anderson, D.E., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Zhang, Q., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore, CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China, University of Chinese Academy of Sciences, Beijing, China; Tan, C.W., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Lim, B.L., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Luko, K., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Wen, M., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Chia, W.N., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Mani, S., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Wang, L.C., Functional Proteomics Laboratory, Institute of Molecular and Cellular Biology (A*STAR), Singapore, Singapore; Ng, J.H.J., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Sobota, R.M., Functional Proteomics Laboratory, Institute of Molecular and Cellular Biology (A*STAR), Singapore, Singapore, Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Dutertre, C.-A., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Ginhoux, F., Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Shi, Z.-L., CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Irving, A.T., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore; Wang, L.-F., Programme in Emerging Infectious Diseases, Duke–NUS Medical School, Singapore, Singapore","Bats are special in their ability to host emerging viruses. As the only flying mammal, bats endure high metabolic rates yet exhibit elongated lifespans. It is currently unclear whether these unique features are interlinked. The important inflammasome sensor, NLR family pyrin domain containing 3 (NLRP3), has been linked to both viral-induced and age-related inflammation. Here, we report significantly dampened activation of the NLRP3 inflammasome in bat primary immune cells compared to human or mouse counterparts. Lower induction of apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and secretion of interleukin-1β in response to both ‘sterile’ stimuli and infection with multiple zoonotic viruses including influenza A virus (−single-stranded (ss) RNA), Melaka virus (PRV3M, double-stranded RNA) and Middle East respiratory syndrome coronavirus (+ssRNA) was observed. Importantly, this reduction of inflammation had no impact on the overall viral loads. We identified dampened transcriptional priming, a novel splice variant and an altered leucine-rich repeat domain of bat NLRP3 as the cause. Our results elucidate an important mechanism through which bats dampen inflammation with implications for longevity and unique viral reservoir status. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.",,"cryopyrin; interleukin 1beta; toll like receptor; cryopyrin; inflammasome; interleukin 1beta; animal cell; Article; bat; bone marrow derived macrophage; cell lineage; controlled study; cytokine release; enzyme activation; enzyme linked immunosorbent assay; flow cytometry; human; human cell; immunocompetent cell; Influenza A virus; Middle East respiratory syndrome coronavirus; nonhuman; nucleotide sequence; peripheral blood mononuclear cell; priority journal; Pteropine orthoreovirus 3; RNA virus; virus cell interaction; virus load; animal; chemistry; Coronavirus infection; disease carrier; genetics; immunology; influenza; mouse; protein domain; virology; Animals; Chiroptera; Coronavirus Infections; Disease Reservoirs; Humans; Inflammasomes; Influenza A virus; Influenza, Human; Interleukin-1beta; Mice; Middle East Respiratory Syndrome Coronavirus; NLR Family, Pyrin Domain-Containing 3 Protein; Protein Domains","Leroy, E.M., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576. , COI: 1:CAS:528:DC%2BD2MXht1GqsrfL; Clayton, B.A., Wang, L.F., Marsh, G.A., Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission (2013) Zoonoses Public Health, 60, pp. 69-83. , COI: 1:STN:280:DC%2BC38jislGqtg%3D%3D; Li, W., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679. , COI: 1:CAS:528:DC%2BD2MXhtFChsLjO; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol. J., 13, p. 87; Cameron, M.J., Bermejo-Martin, J.F., Danesh, A., Muller, M.P., Kelvin, D.J., Human immunopathogenesis of severe acute respiratory syndrome (SARS) (2008) Virus Res., 133, pp. 13-19. , COI: 1:CAS:528:DC%2BD1cXjtlWksLg%3D; Liu, X., Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus (2017) Genome Biol., 18; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr. Opin. Virol., 2, pp. 264-275. , COI: 1:CAS:528:DC%2BC38XovVGrsrY%3D; Zampieri, C.A., Sullivan, N.J., Nabel, G.J., Immunopathology of highly virulent pathogens: insights from Ebola virus (2007) Nat. Immunol., 8, pp. 1159-1164. , COI: 1:CAS:528:DC%2BD2sXhtF2itbvJ; Swanepoel, R., Experimental inoculation of plants and animals with Ebola virus (1996) Emerg. Infect. Dis., 2, pp. 321-325. , COI: 1:STN:280:DyaK2s7isF2gsw%3D%3D; Watanabe, S., Bat coronaviruses and experimental infection of bats, the Philippines (2010) Emerg. Infect. Dis., 16, pp. 1217-1223. , COI: 1:CAS:528:DC%2BC3cXhtVOnsbnE; Munster, V.J., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28XivFGrsL8%3D; Middleton, D.J., Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus) (2007) J. Comp. Pathol., 136, pp. 266-272. , COI: 1:STN:280:DC%2BD2s3ovVWjsQ%3D%3D; Olival, K.J., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650. , COI: 1:CAS:528:DC%2BC2sXhtVequrbL; Wilkinson, G.S., South, J.M., Life history, ecology and longevity in bats (2002) Aging Cell, 1, pp. 124-131. , COI: 1:CAS:528:DC%2BD3sXktlSqt7g%3D; Thomas, S.P., Suthers, R.A., The physiology and energetics of bat flight (1972) J. Exp. Biol., 57, pp. 317-335; Pavlovich, S.S., The Egyptian rousette genome reveals unexpected features of bat antiviral immunity (2018) Cell, 173, pp. 1098-1110. , COI: 1:CAS:528:DC%2BC1cXosFWhsLo%3D; Zhang, G., Comparative analysis of bat genomes provides insight into the evolution of flight and immunity (2013) Science, 339, pp. 456-460. , COI: 1:CAS:528:DC%2BC3sXhtFyntLg%3D; Glennon, N.B., Jabado, O., Lo, M.K., Shaw, M.L., Transcriptome profiling of the virus-induced innate immune response in Pteropus vampyrus and its attenuation by Nipah virus interferon antagonist functions (2015) J. Virol., 89, pp. 7550-7566. , COI: 1:CAS:528:DC%2BC2MXhtFyntrfL; Wynne, J.W., Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis (2014) Genome Biol., 15. , PID: 4269970; Papenfuss, A.T., The immune gene repertoire of an important viral reservoir, the Australian black flying fox (2012) BMC Genomics, 13. , COI: 1:CAS:528:DC%2BC38Xhslamu77O; Xie, J., Dampened STING-dependent interferon activation in bats (2018) Cell Host Microbe, 23, pp. 297-301. , COI: 1:CAS:528:DC%2BC1cXjt1Sgtr4%3D; De La Cruz-Rivera, P.C., The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction (2018) J. Immunol., 200, pp. 209-217; Zhou, P., Contraction of the type I IFN locus and unusual constitutive expression of IFN-alpha in bats (2016) Proc. Natl Acad. Sci. USA, 113, pp. 2696-2701. , COI: 1:CAS:528:DC%2BC28XivVKjs74%3D; Shimada, K., Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis (2012) Immunity, 36, pp. 401-414. , COI: 1:CAS:528:DC%2BC38XisFajsL0%3D; Mariathasan, S., Cryopyrin activates the inflammasome in response to toxins and ATP (2006) Nature, 440, pp. 228-232. , COI: 1:CAS:528:DC%2BD28XitFGitLs%3D; Iyer, S.S., Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation (2013) Immunity, 39, pp. 311-323. , COI: 1:CAS:528:DC%2BC3sXht1yjtr3N; Kuriakose, T., Kanneganti, T.D., Regulation and functions of NLRP3 inflammasome during influenza virus infection (2017) Mol. Immunol., 86, pp. 56-64. , COI: 1:CAS:528:DC%2BC2sXitFersbw%3D; Sha, W., Human NLRP3 inflammasome senses multiple types of bacterial RNAs (2014) Proc. Natl Acad. Sci. USA, 111, pp. 16059-16064. , COI: 1:CAS:528:DC%2BC2cXhvVemsrnJ; Youm, Y.H., Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging (2013) Cell Metab., 18, pp. 519-532. , COI: 1:CAS:528:DC%2BC3sXhsFGnsLzF; Guo, H., Callaway, J.B., Ting, J.P., Inflammasomes: mechanism of action, role in disease, and therapeutics (2015) Nat. Med., 21, pp. 677-687; Lupfer, C., Malik, A., Kanneganti, T.D., Inflammasome control of viral infection (2015) Curr. Opin. Virol., 12, pp. 38-46. , COI: 1:CAS:528:DC%2BC2MXjvFCju70%3D; Chakrabarti, A., RNase L activates the NLRP3 inflammasome during viral infections (2015) Cell Host Microbe, 17, pp. 466-477. , COI: 1:CAS:528:DC%2BC2MXlsVOis70%3D; Tong, S., A distinct lineage of influenza A virus from bats (2012) Proc. Natl Acad. Sci. USA, 109, pp. 4269-4274. , COI: 1:CAS:528:DC%2BC38XkslCksL0%3D; Lawrence, T.M., Hudacek, A.W., de Zoete, M.R., Flavell, R.A., Schnell, M.J., Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1β release in murine dendritic cells (2013) J. Virol., 87, pp. 5848-5857. , COI: 1:CAS:528:DC%2BC3sXnsV2ltrk%3D; Johnson, N., Human rabies due to lyssavirus infection of bat origin (2010) Vet. Microbiol., 142, pp. 151-159. , COI: 1:STN:280:DC%2BC3c3otFyntA%3D%3D; Ren, R., The H7N9 influenza A virus infection results in lethal inflammation in the mammalian host via the NLRP3-caspase-1 inflammasome (2017) Sci. Rep., 7; Wang, W., Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1β secretion (2018) Nat. Commun., 9; Coates, B.M., Inhibition of the NOD-like receptor protein 3 inflammasome is protective in juvenile influenza A virus iInfection (2017) Front. Immunol., 8, p. 782; Tate, M.D., Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28Xpslyls7c%3D; Lu, A., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes (2014) Cell, 156, pp. 1193-1206. , COI: 1:CAS:528:DC%2BC2cXksVajsLY%3D; LaRock, C.N., Cookson, B.T., Burning down the house: cellular actions during pyroptosis (2013) PLoS Pathog., 9; Peterson, A.C., Russell, J.D., Bailey, D.J., Westphall, M.S., Coon, J.J., Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics (2012) Mol. Cell. Proteomics, 11, pp. 1475-1488; Bauernfeind, F.G., Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression (2009) J. Immunol., 183, pp. 787-791. , COI: 1:CAS:528:DC%2BD1MXotFWgt78%3D; O’Connor, W., Jr., Harton, J.A., Zhu, X., Linhoff, M.W., Ting, J.P., Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-κB suppressive properties (2003) J. Immunol., 171, pp. 6329-6333; Chua, K.B., A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans (2007) Proc. Natl Acad. Sci. USA, 104, pp. 11424-11429. , COI: 1:CAS:528:DC%2BD2sXnvFOms7k%3D; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol. J., 12, p. 221; Peck, K.M., Permissivity of dipeptidyl peptidase 4 orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants (2017) J. Virol., 91. , e00534-17; Coll, R.C., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases (2015) Nat. Med., 21, pp. 248-255. , COI: 1:CAS:528:DC%2BC2MXivVSit7g%3D; Zhou, P., Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28XitFCqu7vO; Netea, M.G., Wijmenga, C., O’Neill, L.A., Genetic variation in Toll-like receptors and disease susceptibility (2012) Nat. Immunol., 13, pp. 535-542. , COI: 1:CAS:528:DC%2BC38XntF2jsr4%3D; Werling, D., Jann, O.C., Offord, V., Glass, E.J., Coffey, T.J., Variation matters: TLR structure and species-specific pathogen recognition (2009) Trends Immunol., 30, pp. 124-130. , COI: 1:CAS:528:DC%2BD1MXivVertr4%3D; Py, B.F., Kim, M.S., Vakifahmetoglu-Norberg, H., Yuan, J., Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity (2013) Mol. Cell, 49, pp. 331-338. , COI: 1:CAS:528:DC%2BC38XhvVCku7nL; Mitoma, H., The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome (2013) Immunity, 39, pp. 123-135. , COI: 1:CAS:528:DC%2BC3sXhtFemu7jL; Surya, W., Li, Y., Verdia-Baguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res., 201, pp. 61-66. , COI: 1:CAS:528:DC%2BC2MXjs1Kitr8%3D; O’Shea, T.J., Bat flight and zoonotic viruses (2014) Emerg. Infect. Dis., 20, pp. 741-745; Schountz, T., Baker, M.L., Butler, J., Munster, V., Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans (2017) Front. Immunol., 8, p. 1098; Miller, M.R., Broad and temperature independent replication potential of filoviruses on cells derived from old and new world bat species (2016) J. Infect. Dis., 214, pp. S297-S302. , COI: 1:CAS:528:DC%2BC1cXktFCgurg%3D; Ying, T., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Crameri, G., Establishment, immortalisation and characterisation of pteropid bat cell lines (2009) PLoS One, 4; Ahn, J., Gutman, D., Saijo, S., Barber, G.N., STING manifests self DNA-dependent inflammatory disease (2012) Proc. Natl Acad. Sci. USA, 109, pp. 19386-19391. , COI: 1:CAS:528:DC%2BC38XhvValsr%2FL; Li, Y., Host range, prevalence, and genetic diversity of adenoviruses in bats (2010) J. Virol., 84, pp. 3889-3897. , COI: 1:CAS:528:DC%2BC3cXkvVyqs7Y%3D; Hornung, V., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization (2008) Nat. Immunol., 9, pp. 847-856. , COI: 1:CAS:528:DC%2BD1cXoslCmurs%3D; Sadler, A.J., Latchoumanin, O., Hawkes, D., Mak, J., Williams, B.R., An antiviral response directed by PKR phosphorylation of the RNA helicase A (2009) PLoS Pathog., 5; Trapnell, C., Differential gene and transcript expression analysis of RNA–seq experiments with TopHat and Cufflinks (2012) Nat. Protoc., 7, pp. 562-578. , COI: 1:CAS:528:DC%2BC38Xjt1Cjsrc%3D; Zerbino, D.R., Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res., 18, pp. 821-829. , COI: 1:CAS:528:DC%2BD1cXlslChsLg%3D; MacLean, B., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments (2010) Bioinformatics, 26, pp. 966-968. , COI: 1:CAS:528:DC%2BC3cXjvFykurk%3D; Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood (2007) Mol. Biol. Evol., 24, pp. 1586-1591. , COI: 1:CAS:528:DC%2BD2sXpsVGrs7c%3D","Irving, A.T.; Programme in Emerging Infectious Diseases, Duke–NUS Medical SchoolSingapore; email: aaron.irving@duke-nus.edu.sg",,"Nature Publishing Group",20585276,,,"30804542","English","Nat. Microbiol.",Article,"Final",,Scopus,2-s2.0-85062060432 "Vilmane A., Ziemele I., Rasa S., Terentjeva A., Murovska M., Gardovska D., Lin Y.-C., Nora-Krukle Z.","57190842089;57190839942;55596234500;57208742200;55913118800;6602279356;7406585914;54956571600;","Presence of human bocavirus 1 and other respiratory viruses in children with lower respiratory tract infection in Latvia",2019,"Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences","73","2",,"132","138",,,"10.2478/prolas-2019-0021","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065674962&doi=10.2478%2fprolas-2019-0021&partnerID=40&md5=af3fd13268cbd3ddf15cc0aacf71bbba","Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Riga, LV-1067, Latvia; Children's Clinical University Hospital, 45 Vienias Ave., Riga, LV-1004, Latvia; Department of Pediatrics, Riga Stradiņš University, 16 Dzirciema Str., Riga, LV-1007, Latvia; Institute of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 202, Taiwan; Faculty of Medicine, Riga Stradiņš University, 16 Dzirciema Str., Riga, LV-1007, Latvia","Vilmane, A., Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Riga, LV-1067, Latvia; Ziemele, I., Children's Clinical University Hospital, 45 Vienias Ave., Riga, LV-1004, Latvia, Department of Pediatrics, Riga Stradiņš University, 16 Dzirciema Str., Riga, LV-1007, Latvia; Rasa, S., Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Riga, LV-1067, Latvia; Terentjeva, A., Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Riga, LV-1067, Latvia, Faculty of Medicine, Riga Stradiņš University, 16 Dzirciema Str., Riga, LV-1007, Latvia; Murovska, M., Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Riga, LV-1067, Latvia; Gardovska, D., Children's Clinical University Hospital, 45 Vienias Ave., Riga, LV-1004, Latvia, Department of Pediatrics, Riga Stradiņš University, 16 Dzirciema Str., Riga, LV-1007, Latvia; Lin, Y.-C., Institute of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Rd, Zhongzheng District, Keelung, 202, Taiwan; Nora-Krukle, Z., Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Riga, LV-1067, Latvia","Lower respiratory tract infection (LRTI) is the major cause of morbidity and mortality of children in the world. In addition to respiratory syncytial virus, influenza virus types A and B, parainfluenza types 1, 2 and 3, and adenoviruses, several new respiratory viruses associated with LRTI were discovered in the 21 st century. These are metapneumovirus, coronaviruses NL63 and HKU1, parainfluenza virus type four and human bocavirus one (HBoV1). HBoV1 was discovered in 2005 and is considered as the fourth most prevalent respiratory virus worldwide. However, the high frequency of co-infections detected together with HBoV1 raises doubt about whether HBoV1 is a true pathogen or just a bystander. This is the first study aimed to determine the presence of HBoV1 and 18 other respiratory viruses in nasopharyngeal aspirates (NPA) of children with LRTI in Latvia. Using multiplex real-time polymerase chain reaction method, the HBoV1 genomic sequence was detected in 60.0% of NPA samples, showing that HBoV1 prevalence is high among children with LRTI in Latvia. HBoV1 mono-infection was revealed in 6.67%. The most common co-infections associated with HBoV1 were rhinovirus, adenovirus, respiratory syncytial virus A and B, metapneumovirus, and enterovirus. © 2019 Anda Vilmane et al., published by Sciendo 2019.","infants; multiplex polymerase chain reaction; parvovirus",,"Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Anderson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc. Natl. Acad. Sci. USA, 102 (36), pp. 12891-12896; (1995) The Management of Acute Respiratory Infections in Children: Practical Guidelines for Outpatient Care, 75p. , Anonymous. World Health Organization, Geneva; Arthur, J.L., Higgins, G.D., Davidson, G.P., Givney, R.C., Ratcliff, R.M., A novel bocavirus associated with acute gastroenteritis in Australian children (2009) PLoS Pathogens, 5 (4), p. e1000391; Berry, M., Gamieldien, J., Fielding, B.C., Identification of new respiratory viruses in the new millennium (2015) Viruses, 7 (3), pp. 996-1019; Bhuiyan, M.U., Snelling, T.L., West, R., Lang, J., Rahman, T., Borland, M.L., Thornton, R., Blyth, C.C., Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: A case-control study protocol (2018) BMJ Open, 8 (3), p. e020646; Brebion, A., Vanlieferinghen, P., Déchelotte, P., Boutry, M., Peigue-Lafeuille, H., Henquell, C., Fatal subacute myocarditis associated with human bocavirus 2 in a 13-month-old child (2014) J. Clin. Microbiol., 52 (3), pp. 1006-1008; Calvo, C., García-García, M.L., Pozo, F., Carballo, D., Martínez-Monteserín, E., Casas, I., Infections and coinfections by respiratory human bocavirus during eight seasons in hospitalized children (2016) J. Med. Virol., 88 (12), pp. 2052-2058; Christensen, A., Nordb, S.A., Krokstad, S., Rognlien, A.G., Dllner, H., Human bocavirus commonly involved in multiple viral airway infections (2008) J. Clin. Virol., 41 (1), pp. 34-37; Endo, R., Ishiguro, N., Kikuta, H., Teramoto, S., Shirkoohi, R., Ma, X., Ebihara, T., Ariga, T., Seroepidemiology of human bocavirus in Hokkaido prefecture, Japan (2007) J. Clin. Microbiol., 45 (10), pp. 3218-3223; Fry, A.M., Lu, X., Chittaganpitch, M., Peret, T., Fischer, J., Dowell, S.F., Anderson, L.J., Olsen, S.J., Human bocavirus: A novel parvovirus epidemiologically associated with pneumonia requiring hospitalization in Thailand (2007) J. Infect. Dis., 195 (7), pp. 1038-1045; Henrickson, K.J., Hoover, S., Kehl, K.S., Hua, W., National disease burden of respiratory viruses detected in children by polymerase chain reaction (2004) Ped. Infect. Dis. J., 23 (1), pp. S11-S18; Jula, A., Waris, M., Kantola, K., Peltola, V., Söderlund-Venermo, M., Hedman, K., Ruuskanen, O., Primary and secondary human bocavirus 1 infections in a family, Finland (2013) Emerg. Infect. Dis. J., 19 (8), pp. 1328-1331; Kahn, J.S., Kesebir, D., Cotmore, S.F., D'Abramo, A., Cosby, C., Weibel, C., Tattersall, P., Seroepidemiology of human bocavirus defined using recombinant virus-like particles (2008) J. Infect. Dis., 198 (1), pp. 41-50; Kantola, K., Hedman, L., Allander, T., Jartti, T., Lehtinen, P., Ruuskanen, O., Hedman, K., Söderlund-Venermo, M., Serodiagnosis of human bocavirus infection (2008) Clin. Infect. Dis., 46 (4), pp. 540-546; Kapoor, A., Slikas, E., Simmonds, P., Chieochansin, T., Naeem, A., Shaukat, S., Alam, M.M., Delwart, E., A new bocavirus species in human stool (2009) J. Infect. Dis., 199 (2), pp. 196-200; Kapoor, A., Simmonds, P., Slikas, E., Li, L., Bodhidatta, L., Sethabutr, O., Triki, H., Delwart, E., Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections (2010) J. Infect. Dis., 201 (11), pp. 1633-1643; Krause, J.C., Panning, M., Hengel, H., Henneke, P., The role of multiplex PCR in respiratory tract infections in children (2014) Deutsches Arzteblatt International, 111 (38), pp. 639-645; Liu, W.K., Liu, Q., Chen, D.H., Tan, W.P., Cai, Y., Qiu, S.Y., Xu, D., Zhou, R., Epidemiology of HBoV1 infection and relationship with meteorological conditions in hospitalized pediatric patients with acute respiratory illness: A 7-year study in a subtropical region (2018) BMC Infect. Dis., p. 18; Ljubin-Sternak, S., Marijan, T., Ivkoviã-Jurekoviã, I., Èepin-Bogoviã, J., Gagro, A., Vrane, J., Etiology and clinical characteristics of single and multiple respiratory virus infections diagnosed in Croatian children in two respiratory seasons (2016) J. Pathog., 2016, p. 2168780; Longtin, J., Bastien, M., Gilca, R., Leblanc, E., De Serres, G., Bergeron, M.G., Boivin, G., Human bocavirus infections in hospitalized children and adults (2008) Emerg. Infect. Dis. J., 14 (2), pp. 217-221; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin. Microbiol. Rev., 21 (4), pp. 716-747; Martin, E.T., Fairchok, M.P., Kuypers, J., Magaret, A., Zerr, D.M., Wald, A., Englund, J.A., Frequent and prolonged shedding of bocavirus in young children attending daycare (2010) J. Infect. Dis., 201 (11), pp. 1625-1632; Miron, D., Srugo, I., Kra-Oz, Z., Keness, Y., Wolf, D., Amirav, I., Kassis, I., Sole pathogen in acute bronchiolitis: Is there a role for other organisms apart from respiratory syncytial virus? (2010) Ped. Infect. Dis. J., 29 (1), pp. e7-e10; Mitui, M.T., Tabib, S.M.S.B., Matsumoto, T., Khanam, W., Ahmed, S., Mori, D., Akhter, N., Ahmed, K., Detection of human bocavirus in the cerebrospinal fluid of children with encephalitis (2012) Clin. Infect. Dis., 54, pp. 964-967; Mori, D., Ranawaka, U., Yamada, K., Rajindrajith, S., Miya, K., Perera, K.H.K., Matsumoto, T., Ahmed, K., Human bocavirus in patients with encephalitis, Sri Lanka, 2009-2010 (2013) Emerg. Infect. Dis. J., 19 (11), pp. 1859-1862; Moriyama, Y., Hamada, H., Okada, M., Tsuchiya, N., Maru, H., Shirato, Y., Maeda, Y., Terai, M., Distinctive clinical features of human bocavirus in children younger than 2 years (2010) Eur. J. Ped., 169 (9), pp. 1087-1092; Nichols, W.G., Campbell, A.J.P., Boeckh, M., Respiratory viruses other than influenza virus: Impact and therapeutic advances (2008) Clin. Microbiol. Rev., 21 (2), pp. 274-290; Jartti, T., Hedman, K., Jartti, L., Ruuskanen, O., Allander, T., Söderlund-Venermo, M., Human bocavirus-The first 5 years (2012) Rev. Med. Virol., 22, pp. 46-64; Pavia, A.T., Viral infections of the lower respiratory tract: Old viruses, new virusies, and role of diagnosis (2011) Clin. Infect. Dis., 52, pp. S284-S289; Pinky, L., Dobrovolny, H.M., Coinfections of the respiratory tract: Viral competition for resources (2016) PloS One, 11 (5), p. e0155589; Qiu, J., Söderlund-Venermo, M., Young, N.S., Human parvoviruses (2017) Clin. Microbiol. Rev., 30 (1), pp. 43-113; Roth, D.E., Caulfield, L.E., Ezzati, M., Black, R.E., Acute lower respiratory infections in childhood: Opportunities for reducing the global burden through nutritional interventions (2008) Bull. World Health Org., 86, pp. 356-364; Schildgen, V., Malecki, M., Tillmann, R.L., Brockmann, M., Schildgen, O., The human bocavirus is associated with some lung and colorectal cancers and persists in solid tumors (2013) PLoS One, 8 (6), p. e68020; Sun, H., Sun, J., Ji, W., Hao, C., Yan, Y., Chen, Z., Wang, Y., Impact of RSV coinfection on human bocavirus in children with acute respiratory infections (2018) J. Trop. Ped.; Tabasi, M., Mokhtari-Azad, T., Eshraghian, M.R., Shadab, A., Shatizadeh, S., Nazanin Shafiei-Jandaghi, Z., Yavarian, J., Human bocavirus infections among children less than two years old in Iran during fall and winter 2012-2013 (2016) Iran. J. Microbiol., 8 (1), pp. 80-84; Wang, K., Wang, W., Yan, H., Ren, P., Zhang, J., Shen, J., Deubel, V., Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection (2010) J. Clin. Virol., 47 (2), pp. 148-155; Yu, J.M., Chen, Q.Q., Hao, Y.X., Yu, T., Zeng, S.Z., Wu, X.B., Zhang, B., Duan, Z.J., Identification of human bocaviruses in the cerebrospinal fluid of children hospitalized with encephalitis in China (2013) J. Clin. Virol., 57 (4), pp. 374-377. , 16","Vilmane, A.; Institute of Microbiology and Virology, Riga Stradiņš University, 5 Ratsupites Str., Latvia; email: anda.vilmane@rsu.lv",,"Sciendo",1407009X,,,,"English","Proc. Latv. Acad. Sci., Sect. B Nat. Exact. Appl. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85065674962 "Galanti M., Birger R., Ud-Dean M., Filip I., Morita H., Comito D., Anthony S., Freyer G.A., Ibrahim S., Lane B., Ligon C., Rabadan R., Shittu A., Tagne E., Shaman J.","57204685741;14027791500;57190049156;56840469000;57201295094;56399289300;35365788200;7005953349;57208328588;57201293492;57201288760;15071174300;57204690064;57208325425;57203074277;","Longitudinal active sampling for respiratory viral infections across age groups",2019,"Influenza and other Respiratory Viruses","13","3",,"226","232",,1,"10.1111/irv.12629","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064490312&doi=10.1111%2firv.12629&partnerID=40&md5=3bf13bfb230c27bef82dff5f6ea3d462","Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Department of Systems Biology, Columbia University, New York, NY, United States; Department of Epidemiology, Columbia University, New York, NY, United States","Galanti, M., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Birger, R., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Ud-Dean, M., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Filip, I., Department of Systems Biology, Columbia University, New York, NY, United States; Morita, H., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Comito, D., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Anthony, S., Department of Epidemiology, Columbia University, New York, NY, United States; Freyer, G.A., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Ibrahim, S., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Lane, B., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Ligon, C., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Rabadan, R., Department of Systems Biology, Columbia University, New York, NY, United States; Shittu, A., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Tagne, E., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States; Shaman, J., Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States","Background: Respiratory viral infections are a major cause of morbidity and mortality worldwide. However, their characterization is incomplete because prevalence estimates are based on syndromic surveillance data. Here, we address this shortcoming through the analysis of infection rates among individuals tested regularly for respiratory viral infections, irrespective of their symptoms. Methods: We carried out longitudinal sampling and analysis among 214 individuals enrolled at multiple New York City locations from fall 2016 to spring 2018. We combined personal information with weekly nasal swab collection to investigate the prevalence of 18 respiratory viruses among different age groups and to assess risk factors associated with infection susceptibility. Results: 17.5% of samples were positive for respiratory viruses. Some viruses circulated predominantly during winter, whereas others were found year round. Rhinovirus and coronavirus were most frequently detected. Children registered the highest positivity rates, and adults with daily contacts with children experienced significantly more infections than their counterparts without children. Conclusion: Respiratory viral infections are widespread among the general population with the majority of individuals presenting multiple infections per year. The observations identify children as the principal source of respiratory infections. These findings motivate further active surveillance and analysis of differences in pathogenicity among respiratory viruses. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.","prevalence of respiratory viruses; respiratory viral infections; seasonality of respiratory viruses; susceptibility to respiratory infections","adolescent; adult; age; age determination; Article; child; cohort analysis; controlled study; Coronavirinae; disease surveillance; female; human; infection rate; infection sensitivity; longitudinal active sampling; longitudinal study; major clinical study; male; New York; nose smear; prevalence; priority journal; Rhinovirus; risk assessment; risk factor; sampling; seasonal variation; viral respiratory tract infection; virus detection; aged; classification; infant; isolation and purification; middle aged; nose mucosa; preschool child; respiratory tract infection; virology; virus; virus infection; young adult; Adolescent; Adult; Aged; Child; Child, Preschool; Female; Humans; Infant; Longitudinal Studies; Male; Middle Aged; Nasal Mucosa; New York City; Prevalence; Respiratory Tract Infections; Risk Factors; Virus Diseases; Viruses; Young Adult","NREVVS, , https://www.cdc.gov/surveillance/nrevss/index.html, accessed October 2018; FLUVIEW, , https://www.cdc.gov/flu/weekly/index.htm, accessed October 2018; Popowitch, E.B., O'Neill, S.S., Miller, M.B., Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP Fast Multiplex Assays for Detection of Respiratory Viruses (2013) J Clin Microbiol, 51, pp. 1528-1533; Thompson, W.W., Shay, D.K., Weintraub, E., Mortality associated with influenza and respiratory syncytial virus in the united states (2003) JAMA, 289 (2), pp. 179-186; Fendrick, A., Monto, A.S., Nightengale, B., Sarnes, M., The economic burden of non–influenza-related viral respiratory tract infection in the united states (2003) Arch Intern Med, 163 (4), pp. 487-494; Nair, H., Nokes, D.J., Gessner, B.D., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis (2010) Lancet, 375 (9725), pp. 1545-1555; Berman, S., Epidemiology of acute respiratory infections in children of developing countries (1991) Rev Infect Dis, 13, pp. S454-S462; Kusel, M.M.H., de Klerk, N.H., Kebadze, T., Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma (2007) J Allergy Clin Immunol, 119 (5), pp. 1105-1110; Busse, W.W., Lemanske, R.F., Gern, J.E., Role of viral respiratory infections in asthma and asthma exacerbations (2010) Lancet Infect Dis, 376, pp. 826-834; Jackson, D.J., Gangnon, R.E., Evans, M.D., Wheezing Rhinovirus Illnesses in Early Life Predict Asthma Development in High-Risk Children (2008) Am J Respir Crit Care Med, 178 (7), pp. 667-672; Birger, R., Morita, H., Comito, D., Asymptomatic Shedding of Respiratory Virus among an Ambulatory Population across Seasons (2018) mSphere, 3 (4), pp. e00249-e00218; Schwartz, B., Giebink, G.S., Henderson, F.W., Reichler, M.R., Jereb, J., Collet, J.P., Respiratory infections in day care (1994) Pediatrics, 94, pp. 1018-1020; Wald, E.R., Dashefsky, B., Byers, C., Guerra, N., Taylor, F., Frequency and severity of infections in day care (1988) J Pediatr, 112 (4), pp. 540-546; Scotta, M.C., Chakr, V.C.B.G., de Moura, A., Respiratory viral coinfection and disease severity in children: a systematic review and meta-analysis (2016) J Clin Virol, 80, pp. 45-56; Gavala, M., Bertics, P.J., Gern, J.E., Rhinoviruses, Allergic Inflammation, and Asthma (2011) Immunol Rev, 242 (1), pp. 69-90; Visseaux, B., Burdet, C., Voiriot, G., Prevalence of respiratory viruses among adults, by season, age, respiratory tract region and type of medical unit in Paris, France, from 2011 to 2016 (2017) PLoS ONE, 12 (7); Tregoning, J.S., Schwarze, J., Respiratory Viral Infections in Infants: causes, Clinical Symptoms, Virology, and Immunology (2010) Clin Microbiol Rev, 23 (1), pp. 74-98","Galanti, M.; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia UniversityUnited States; email: mg3822@cumc.columbia.edu",,"Blackwell Publishing Ltd",17502640,,,"30770641","English","Influ. Other Respir. Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85064490312 "Bradley B.T., Bryan A.","57208499590;12140505500;","Emerging respiratory infections: The infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella",2019,"Seminars in Diagnostic Pathology","36","3",,"152","159",,1,"10.1053/j.semdp.2019.04.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064905025&doi=10.1053%2fj.semdp.2019.04.006&partnerID=40&md5=b2f821e9cda6c3abf70f99de7d09c84b","University of Washington, Department of Laboratory Medicine, Box 357110, 1959 NE Pacific Street, NW120, Seattle, WA 98195-7110, United States","Bradley, B.T., University of Washington, Department of Laboratory Medicine, Box 357110, 1959 NE Pacific Street, NW120, Seattle, WA 98195-7110, United States; Bryan, A., University of Washington, Department of Laboratory Medicine, Box 357110, 1959 NE Pacific Street, NW120, Seattle, WA 98195-7110, United States","Lower respiratory infections remain one of the top global causes of death and the emergence of new diseases continues to be a concern. In the first two decades of the 21st century, we have born witness to the emergence of newly recognized coronaviruses that have rapidly spread around the globe, including severe acute respiratory syndrome virus (SARS) and Middle Eastern respiratory syndrome virus (MERS). We have also experienced the emergence of a novel H1N1 pandemic influenza strain in 2009 that caused substantial morbidity and mortality around the world and has transitioned into a seasonal strain. Although we perhaps most frequently think of viruses when discussing emerging respiratory infections, bacteria have not been left out of the mix, as we have witnessed an increase in the number of infections from Legionella spp. since the organisms’ initial discovery in 1976. Here, we explore the basic epidemiology, clinical presentation, histopathology, and clinical laboratory diagnosis of these four pathogens and emphasize themes in humans’ evolving relationship with our natural environment that have contributed to the infectious burden. Histology alone is rarely diagnostic for these infections, but has been crucial to bettering our understanding of these diseases. Together, we rely on the diagnostic acumen of pathologists to identify the clinicopathologic features that raise the suspicion of these diseases and lead to the early control of the spread in our populations. © 2019 Elsevier Inc.","Influenza; Legionella; MERS; Pathology; SARS","2009 H1N1 influenza; clinical feature; histopathology; human; Influenza virus; laboratory diagnosis; Legionella; legionnaire disease; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; morbidity; mortality; nonhuman; pandemic influenza; priority journal; respiratory tract infection; Review; SARS coronavirus; seasonal variation; severe acute respiratory syndrome; Coronavirus infection; influenza; legionnaire disease; pathology; respiratory tract infection; severe acute respiratory syndrome; Coronavirus Infections; Humans; Influenza, Human; Legionellosis; Respiratory Tract Infections; Severe Acute Respiratory Syndrome","Guan, Y., Zheng, B.J., He, Y.Q., Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China (2003) Science, 302 (5643), pp. 276-278; (2019), http://www.cdc.gov.offcampus.lib.washington.edu/dotw/sars/index.html, CDC. Disease of the Week week - SARS. Centers for Disease Control and Prevention. Published March 3, 2016. Accessed 15 January; Hu, B., Zeng, L.-P., Yang, X.-L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13 (11). , Drosten C., ed; Olsen, S.J., Chang, H.-L., Cheung, T.Y.-Y., Transmission of the severe acute respiratory syndrome on aircraft (2003) N Engl J Med, 349 (25), pp. 2416-2422; Leung, C., Kwan, Y., Ko, P., Severe acute respiratory syndrome among children (2004) Pediatrics, 113 (6), pp. e535-e543; Chan, J.C.K., Tsui, E.L.H., Wong, V.C.W., Prognostication in severe acute respiratory syndrome: a retrospective time-course analysis of 1312 laboratory-confirmed patients in Hong Kong (2007) Respirology, 12 (4), pp. 531-542; Nicholls, J.M., Poon, L.L.M., Lee, K.C., Lung pathology of fatal severe acute respiratory syndrome (2003) Lancet, 361 (9371), pp. 1773-1778; Gu, J., Gong, E., Zhang, B., Multiple organ infection and the pathogenesis of SARS (2005) J Exp Med, 202 (3), pp. 415-424; Ding, Y., Wang, H., Shen, H., The clinical pathology of severe acute respiratory syndrome (SARS): a report from China (2003) J Pathol, 200 (3), pp. 282-289; Franks, T.J., Chong, P.Y., Chui, P., Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore (2003) Hum Pathol, 34 (8), pp. 743-748; To, K.F., Tong, J.H.M., Chan, P.K.S., Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in‐situ hybridization study of fatal cases (2004) J Pathol, 202 (2), pp. 157-163; Shieh, W.-J., Hsiao, C.-H., Paddock, C.D., Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan (2005) Hum Pathol, 36 (3), pp. 303-309; Grant, P.R., Garson, J.A., Tedder, R.S., Chan, P.K.S., Tam, J.S., Sung, J.J.Y., Detection of SARS coronavirus in plasma by real-time RT-PCR (2003) N Engl J Med, 349 (25), pp. 2468-2469; Chan, K.H., Poon, L.L.L.M., Cheng, V.C.C., Detection of SARS coronavirus in patients with suspected SARS (2004) Emerg Infect Dis, 10 (2), pp. 294-299; Kuiken, T., Fouchier, R.A.M., Schutten, M., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362 (9380), pp. 263-270; Li, G., Chen, X., Xu, A., Profile of specific antibodies to the SARS-associated coronavirus (2003) N Engl J Med, 349 (5), pp. 508-509; Peiris, J.S.M., Chu, C.M., Cheng, V.C.C., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study (2003) Lancet, 361 (9371), pp. 1767-1772; Woo, P.C.Y., Lau, S.K.P., Wong, B.H.L., Longitudinal Profile of Immunoglobulin G (IgG), IgM, and IgA Antibodies against the Severe Acute Respiratory Syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus (2004) Clin Diagn Lab Immunol, 11 (4), pp. 665-668; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; WHO | Middle East respiratory syndrome coronavirus (MERS-CoV), WHO (2019), http://www.who.int/emergencies/mers-cov/en/, Accessed 16 January 2019; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19 (11), pp. 1819-1823; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376 (6), pp. 584-594; Arwady, M.A., Alraddadi, B., Basler, C., Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (8), pp. 1395-1402; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15 (5), pp. 559-564; Walker, D.H., Value of autopsy emphasized in the case report of a single patient with Middle East respiratory syndrome (2016) Am J Pathol, 186 (3), pp. 507-510; Ng, D.L., Hosani, F., Keating, M.K., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186 (3), pp. 652-658; Ng, D.L., Al Hosani, F., Keating, M.K., Clinicopathologic, Immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186 (3), pp. 652-658; Alsaad, K.O., Hajeer, A.H., Al Balwi, M., Histopathology of Middle East respiratory syndrome coronovirus (MERS‐CoV) infection – clinicopathological and ultrastructural study (2018) Histopathology, 72 (3), pp. 516-524; Cha, R., Yang, S.H., Moon, K.C., A case report of a Middle East respiratory syndrome survivor with kidney biopsy results (2016) J Korean Med Sci, 31 (4), pp. 635-640; Zhou, J., Li, C., Zhao, G., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci Adv, 3 (11), p. eaao4966; Chan, R.W.Y., Hemida, M.G., Kayali, G., Tropism and replication of Middle East respiratory syndrome coronavirus from dromedary camels in the human respiratory tract: an in-vitro and ex-vivo study (2014) Lancet Respir Med, 2 (10), pp. 813-822; Yeung, M.-L., Yao, Y., Jia, L., MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat Microbiol, 1 (3), p. 16004; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis Off Publ Infect Dis Soc Am, 62 (4), pp. 477-483; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci, 114 (15), pp. E3119-E3128; de Wit, E., Rasmussen, A.L., Falzarano, D., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci, 110 (41), pp. 16598-16603; Baseler, L.J., Falzarano, D., Scott, D.P., An acute immune response to Middle East respiratory syndrome coronavirus replication contributes to viral pathogenicity (2016) Am J Pathol, 186 (3), pp. 630-638; Yao, Y., Bao, L., Deng, W., An animal model of MERS Produced by infection of rhesus macaques With MERS coronavirus (2014) J Infect Dis, 209 (2), pp. 236-242; Kim, S.Y., Park, S.J., Cho, S.Y., Viral RNA in blood as indicator of severe outcome in Middle East respiratory syndrome coronavirus infection (2016) Emerg Infect Dis, 22 (10), pp. 1813-1816; Corman, V.M., Ölschläger, S., Wendtner, C.-M., Drexler, J.F., Hess, M., Drosten, C., Performance and clinical validation of the RealStar® MERS-CoV Kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) J Clin Virol, 60 (2), pp. 168-171; Lu, X., Whitaker, B., Sakthivel, S.K.K., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52 (1), pp. 67-75; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59 (9), pp. 1225-1233; Choe, P.G., Perera, R.A.P.M., Park, W.B., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23 (7), pp. 1079-1084; Writing committee of the WHO consultation on clinical aspects of pandemic (H1N1) 2009 influenza. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection (2010) N Engl J Med, 362 (18), pp. 1708-1719; Garten, R.J., Davis, C.T., Russell, C.A., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans (2009) Science, 325 (5937), pp. 197-201; (2019), http://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html, Past Pandemics | Pandemic Influenza (Flu) | CDC. Published August 10, 2018. Accessed 18 January; Lee, N., Chan, P.K.S., Lui, G.C.Y., Complications and outcomes of pandemic 2009 influenza A (H1N1) virus infection in hospitalized adults: how do they differ from those in seasonal influenza (2011) J Infect Dis, 203 (12), pp. 1739-1747; Cheng, V.C.C., To, K.K.W., Tse, H., Hung, I.F.N., Yuen, K.-Y., Two years after pandemic influenza A/2009/H1N1: what have we learned? (2012) Clin Microbiol Rev, 25 (2), pp. 223-263; Kumar, A., Zarychanski, R., Pinto, R., Critically ill patients with 2009 influenza A(H1N1) infection in Canada (2009) JAMA, 302 (17), p. 1872; Shieh, W.-J., Blau, D.M., Denison, A.M., 2009 pandemic influenza A (H1N1): pathology and pathogenesis of 100 fatal cases in the United States (2010) Am J Pathol, 177 (1), pp. 166-175; Shelke, V.N., Kolhapure, R.M., Kadam, D., Pathologic study of pandemic influenza A (H1N1) 2009 cases from India (2012) Pathol Int, 62 (1), pp. 36-42; Nakajima, N., Sato, Y., Katano, H., Histopathological and immunohistochemical findings of 20 autopsy cases with 2009 H1N1 virus infection (2012) Mod Pathol, 25 (1), pp. 1-13; Brooks, E.G., Bryce, C.H., Avery, C., Smelser, C., Thompson, D., Nolte, K.B., 2009 H1N1 fatalities: the new mexico experience (2012) J Forensic Sci, 57 (6), pp. 1512-1518; Mauad, T., Hajjar, L.A., Callegari, G.D., Lung pathology in fatal novel human influenza A (H1N1) infection (2010) Am J Respir Crit Care Med, 181 (1), pp. 72-79; Soto-Abraham, M.V., Soriano-Rosas, J., Díaz-Quiñónez, A., Pathological changes associated with the 2009 H1N1 virus (2009) N Engl J Med, 361 (20), pp. 2001-2003; Gill, J.R., Sheng, Z.-M., Ely, S.F., Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections (2010) Arch Pathol Lab Med, 134, pp. 235-243; Sellers, S.A., Hagan, R.S., Hayden, F.G., Fischer, W.A., The hidden burden of influenza: a review of the extra-pulmonary complications of influenza infection (2017) Influenza Other Respir Viruses, 11 (5), pp. 372-393; Guarner, J., Paddock, C.D., Shieh, W., Histopathologic and Immunohistochemical features of fatal influenza virus infection in children during the 2003–2004 season (2006) Clin Infect Dis, 43 (2), pp. 132-140; Munster, V.J., de Wit, E., van den Brand, J.M.A., Pathogenesis and transmission of swine-origin 2009 A (H1N1) influenza virus in ferrets (2009) Science, 325 (5939), pp. 481-483; Itoh, Y., Shinya, K., Kiso, M., In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses (2009) Nature, 460 (7258), pp. 1021-1025; Safronetz, D., Rockx, B., Feldmann, F., Pandemic swine-origin H1N1 influenza A virus isolates show heterogeneous virulence in macaques (2011) J Virol, 85 (3), pp. 1214-1223; Taubenberger, J.K., Morens, D.M., The pathology of influenza virus infections (2008) Annu Rev Pathol Mech Dis, 3 (1), pp. 499-522; Merckx, J., Wali, R., Schiller, I., Diagnostic accuracy of novel and traditional rapid tests for influenza infection compared with reverse transcriptase polymerase chain reaction: a systematic review and meta-analysis (2017) Ann Intern Med, 167 (6), pp. 394-409; Chartrand, C., Leeflang, M.M.G., Minion, J., Brewer, T., Pai, M., Accuracy of rapid influenza diagnostic tests: a meta-analysis (2012) Ann Intern Med, 156 (7), pp. 500-511; Kumar, S., Henrickson, K.J., Update on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic (2012) Clin Microbiol Rev, 25 (2), pp. 344-361; Lee, N., Pathogenesis of pandemic H1N1 in humans. In: Presented at the XII in - ternational symposium on respiratory viral infections, Taipei, Taiwan; To, K.K.W., Hung, I.F.N., Li, I.W.S., Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection (2010) Clin Infect Dis, 50 (6), pp. 850-859; Pierre, D.M., Baron, J., Yu, V.L., Stout, J.E., Diagnostic testing for Legionnaires’ disease (2017) Ann Clin Microbiol Antimicrob, p. 16; Muder, R.R., Victor, L.Y., Infection due to Legionella species other than L. pneumophila (2002) Clin Infect Dis, 35 (8), pp. 990-998; Sivagnanam, S., Podczervinski, S., Butler-Wu, S.M., Legionnaires’ disease in transplant recipients: a 15-year retrospective study in a tertiary referral center (2017) Transpl Infect Dis Off J Transplant Soc, 19 (5); Cunha, B.A., Burillo, A., Bouza, E., Legionnaires’ disease (2016) The Lancet, 387 (10016), pp. 376-385; (2019), https://www-nejm-org.offcampus.lib.washington.edu/doi/full/10.1056/NEJMc1505356?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed, Probable Person-to-Person Transmission of Legionnaires’ Disease | NEJM. Accessed 17 January; (2019), http://www.cdc.gov/legionella/about/history.html, Legionnaires Disease History and Patterns | Legionella | CDC. Published November 26, 2018. Accessed 17 January; Sivagnanam, S., Podczervinski, S., Butler‐Wu, S.M., Legionnaires’ disease in transplant recipients: a 15-year retrospective study in a tertiary referral center (2017) Transpl Infect Dis, 19 (5), p. e12745; Bargellini, A., Marchesi, I., Marchegiano, P., A culture-proven case of community-acquired legionella pneumonia apparently classified as nosocomial: diagnostic and public health implications (2013) Case Rep Med, 2013; Cunha, B.A., Cunha, C.B., Legionnaire's disease: a clinical diagnostic approach (2017) Infect Dis Clin North Am, 31 (1), pp. 81-93; Rudin, J.E., Wing, E.J., A comparative study of Legionella micdadei and other nosocomial acquired pneumonia (1984) Chest, 86 (5), pp. 675-680; Joshi, A.D., Swanson, M.S., Comparative analysis of Legionella pneumophila and Legionella micdadei virulence traits (1999) Infect Immun, 67 (8), pp. 4134-4142; Blackmon, J.A., Chandler, F.W., Cherry, W.B., Legionellosis (1981) Am J Pathol, 103 (3), pp. 429-465; Winn, W.C., Myerowitz, R.L., The pathology of the legionella pneumonias: a review of 74 cases and the literature (1981) Hum Pathol, 12 (5), pp. 401-422; Waldron, P.R., Martin, B.A., Ho, D.Y., Mistaken identity: Legionella micdadei appearing as acid fast bacilli on lung biopsy of a hematopoietic stem cell transplant patient (2015) Transpl Infect Dis Off J Transplant Soc, 17 (1), pp. 89-93; Kohler, R.B., Winn, W.C., Wheat, L.J., Onset and duration of urinary antigen excretion in Legionnaires disease (1984) J Clin Microbiol, 20 (4), pp. 605-607; Salipante, S.J., SenGupta, D.J., Cummings, L.A., Land, T.A., Hoogestraat, D.R., Cookson, B.T., Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology (2015) J Clin Microbiol, 53 (4), pp. 1072-1079; Avni, T., Bieber, A., Green, H., Steinmetz, T., Leibovici, L., Paul, M., Diagnostic accuracy of PCR alone and compared to urinary antigen testing for detection of Legionella spp.: a systematic review (2016) J Clin Microbiol, 54 (2), pp. 401-411; (2019), https://www.iata.org/pressroom/pr/pages/2018-09-06-01.aspx, IATA. Traveler Numbers Reach New Heights. Accessed 18 January","Bryan, A.; University of Washington, Department of Laboratory Medicine, Box 357110, 1959 NE Pacific Street, NW120, United States; email: andrewbb@uw.edu",,"W.B. Saunders",07402570,,SDPAE,"31054790","English","Semin. Diagn. Pathol.",Review,"Final",Open Access,Scopus,2-s2.0-85064905025 "Xu X., Xu Y., Zhang Q., Yang F., Yin Z., Wang L., Li Q.","55657060400;57202254318;56420753600;57201992030;57208085454;57208087422;35810725200;","Porcine epidemic diarrhea virus infections induce apoptosis in Vero cells via a reactive oxygen species (ROS)/p53, but not p38 MAPK and SAPK/JNK signalling pathways",2019,"Veterinary Microbiology","232",,,"1","12",,4,"10.1016/j.vetmic.2019.03.028","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063745163&doi=10.1016%2fj.vetmic.2019.03.028&partnerID=40&md5=55c157647cdff2003f228f079af90e06","College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China","Xu, X., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Xu, Y., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Zhang, Q., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Yang, F., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Yin, Z., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Wang, L., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Li, Q., College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China","Porcine epidemic diarrhea virus (PEDV) is a member of Coronavirus, which causes severe watery diarrhea in piglets with high morbidity and mortality. ROS and p53 play key roles in regulating many kinds of cell process during viral infection, however, the exact function in PEDV-induced apoptosis remains unclear. In this study, the pro-apoptotic effect of PEDV was examined in Vero cells and we observed that PEDV infection increased MDM2 and CBP, promoted p53 phosphorylation at serine 20 and, promoted p53 nuclear translocation, leading to p53 activation in Vero cells. Treatment with the p53 inhibitor PFT-α could significantly inhibit PEDV-induced apoptosis. We also observed PEDV infection induced time-dependent ROS accumulation. Treatment with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) or N-acetylcysteine (NAC), significantly inhibited PEDV-induced apoptosis. Moreover, further inhibition tests were established to prove that p53 was regulated by ROS in PEDV-induced apoptosis. In addition, we also found that p38 MAPK and SAPK/JNK were activated in PEDV-infected Vero cells. However, treatment with the p38 MAPK inhibitor SB203580, and the SAPK/JNK inhibitor SP600125 reversed PEDV-induced apoptosis. Taken together, the results of this study demonstrate that activated p53 and accumulated ROS participated in PEDV-induced apoptosis and p53 could be regulated by ROS during PEDV infection. Activated p38 MAPK and SAPK/JNK exerted no influence on PEDV-induced apoptosis. These findings provide new insights into the function of p53 and ROS in the interaction of PEDV with Vero cells. © 2019 Elsevier B.V.","Apoptosis; p53 pathway; PEDV; Reactive oxygen species","4 (4 fluorophenyl) 2 (4 methylsulfinylphenyl) 5 (4 pyridyl)imidazole; acetylcysteine; anthra[1,9 cd]pyrazol 6(2h) one; mitogen activated protein kinase p38; protein p53; pyrrolidine dithiocarbamate; reactive oxygen metabolite; stress activated protein kinase; acetylcysteine; benzothiazole derivative; mitogen activated protein kinase p38; pifithrin; protein p53; pyrrolidine derivative; pyrrolidine dithiocarbamic acid; reactive oxygen metabolite; thiocarbamic acid derivative; toluene; animal cell; apoptosis; apoptosis rate; Article; cell activity; cell death; cell fusion; comparative study; controlled study; cytopathogenic effect; densitometry; flow cytometry; nonhuman; pig; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; protein phosphorylation; signal transduction; Vero cell line; analogs and derivatives; animal; Chlorocebus aethiops; MAPK signaling; metabolism; physiology; Porcine epidemic diarrhea virus; Vero cell line; Acetylcysteine; Animals; Apoptosis; Benzothiazoles; Cercopithecus aethiops; MAP Kinase Signaling System; p38 Mitogen-Activated Protein Kinases; Porcine epidemic diarrhea virus; Pyrrolidines; Reactive Oxygen Species; Thiocarbamates; Toluene; Tumor Suppressor Protein p53; Vero Cells","Bálint, É., Vousden, K.H., Activation and activities of the p53 tumour suppressor protein (2001) Br. J. Cancer, 85 (12), pp. 1813-1823; Bao, F.K., The bcl-2 gene family, an important regulator of apoptosis (1996) Sheng li ke xue jin zhan [Progress Physiol.], 27 (1), pp. 67-69; Barber, N.G., Host defense, viruses and apoptosis (2001) Cell Death Differ., 8 (2), pp. 113-126; Bragado, P., Armesilla, A., Silva, A., Porras, A., Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation (2007) Apoptosis, 12 (9), pp. 1733-1742; Carpio, M.A., Michaud, M., Zhou, W., Fisher, J.K., Walensky, L.D., Katz, S.G., BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress [Cell Biology] (2015) Proc. Natl. Acad. Sci. U. S. A., 112 (23), pp. 7201-7206; Chen, C.J., Sugiyama, K., Kubo, H., Huang, C., Makino, S., Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase (2004) J. Virol., 78 (19), pp. 10410-10419; Chen, S., Cheng, A.C., Wang, M.S., Peng, X., Detection of apoptosis induced by new type gosling viral enteritis virus in vitro through fluo-rescein annexin V-FITC/PI double labeling (2008) World J. Gastroenterol., 14 (14), pp. 2174-2178; Chen, Y., Zhang, Z., Li, J., Gao, Y., Zhou, L., Ge, X., Han, J., Yang, H., Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis (2018) Virol. J., 15 (1), p. 170; Circu, M.L., Aw, T.Y., Reactive oxygen species, cellular redox systems, and apoptosis (2010) Free Radic. Biol. Med., 48 (6), pp. 749-762; Cory, S., Huang, D.C.S., Adams, J.M., The Bcl-2 family: roles in cell survival and oncogenesis (2003) Oncogene, 22 (53), pp. 8590-8607; Dabiri, Y., Schmid, A., Theobald, J., Blagojevic, B., Streciwilk, W., Ott, I., Wölfl, S., Cheng, X., A ruthenium(II) N-Heterocyclic carbene (NHC) complex with naphthalimide ligand triggers apoptosis in colorectal Cancer cells via activating the ROS-p38 MAPK pathway (2018) Int. J. Mol. Sci., 19 (12), p. E3964; De, U., Son, J.Y., Jeon, Y., Ha, S.Y., Park, Y.J., Yoon, S., Ha, K.T., Kim, H.S., Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells (2019) Food Chem. Toxicol., 123, pp. 492-500; Egberink, H.F., Ederveen, J., Callebaut, P., Horzinek, M.C., Characterization of the structural proteins of porcine epizootic diarrhea virus, strain CV777 (1988) Am. J. Vet. Res., 49 (8), pp. 1320-1324; Elmore, S., Apoptosis: a review of programmed cell death (2007) Toxicol. Pathol., 35 (4), pp. 495-516; Fuh, K.C., Meneshian, A., Patel, C.B., Takiar, V., Bulkley, G.B., Signal transduction by reactive oxygen species: alternative paradigms for signaling specificity (2002) Surgery, 131 (6), pp. 601-612; Gallenne, T., Gautier, F., Oliver, L., Hervouet, E., Noël, B., Hickman, J.A., Geneste, O., Juin, P., Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members (2009) J. Cell Biol., 185 (2), pp. 279-290; Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., Jiang, X., Ferroptosis is an autophagic cell death process (2016) Cell Res., 26 (9), pp. 1021-1032; Gary, L., Johnson, R.L., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases (2002) Science, 298 (5600), pp. 1911-1912; Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes (2010) Trends Biochem. Sci., 35 (9), pp. 505-513; Hao, W., Wang, S., Zhou, Z., Tubeimoside-1 (TBMS1) inhibits lung cancer cell growth and induces cells apoptosis through activation of MAPK-JNK pathway (2015) Int. J. Clin. Exp. Pathol., 8 (10), pp. 12075-12083; Hristov, G., Melanie, K., Li, J., El-Andaloussi, N., Mora, R., Daeffler, L., Zentgraf, H., Marchini, A., Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species (2010) J. Virol., 84 (12), pp. 5909-5922; Huang, Y., Ding, L., Li, Z., Dai, M., Zhao, X., Li, W., Du, Q., Tong, D., Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signalling (2013) J. Gen. Virol., 94, pp. 1807-1817; Kastenhuber, E.R., Lowe, S.W., Putting p53 in context (2017) Cell, 170 (6), pp. 1062-1078; Kim, Y., Lee, C., Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor (2014) Virology, 460-461, pp. 180-193; Kusanagi, K., Kuwahara, H., Katoh, T., Nunoya, T., Ishikawa, Y., Samejima, T., Tajima, M., Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate (1992) J. Vet. Med. Sci., 54 (2), pp. 313-318; Lan, H., Yuan, H., Lin, C., Sulforaphane induces p53-deficient SW480 cell apoptosis via the ROS-MAPK signaling pathway (2017) Mol. Med. Rep., 16 (5), pp. 7796-7804; Laptenko, O., Prives, C., Transcriptional regulation by p53: one protein, many possibilities (2006) Cell Death Differ., 13 (6), pp. 951-961; Lee, C., Kim, Y., Jeon, J.H., JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection (2016) Virus Res., 222, pp. 1-12; Li, W., He, Q.Z., Wu, C.Q., Pan, X.Y., Wang, J., Tan, Y., Shan, X.Y., Zeng, H.C., PFOS disturbs BDNF-ERK-CREB signaling in association with increased microRNA-22 in SH-SY5Y Cells (2015) Biomed Res. Int., 2015; Miyata, Y., Matsuo, T., Sagara, Y., Ohba, K., Ohyama, K., Sakai, H., A mini-review of reactive oxygen species in urological Cancer: correlation with NADPH oxidases, angiogenesis, and apoptosis (2017) Int. J. Mol. Sci., 18 (10), p. E2214; Mizutani, T., Fukushi, S., Saijo, M., Kurane, I., Morikawa, S., Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells (2004) Biochem. Biophys. Res. Commun., 319 (4), pp. 1228-1234; Nazim, U.M., Park, S.Y., Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS (2018) Int. J. Mol. Med., 43 (2), pp. 701-708; Reed, L.J., A simple method of estimating fifty percent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Shang, Y.Y., Yao, M., Zhou, Z.W., Cui, J., Li, X., Hu, R.Y., Yu, Y.Y., Yu, N., Alisertib promotes apoptosis and autophagy in melanoma through p38 MAPK-mediated aurora a signaling (2017) Oncotarget, 8 (63), pp. 107076-107088; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Invest., 25 (5), pp. 649-654; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review (2016) J. Vet. Med. Sci., 78 (3), pp. 355-363; Sun, P., Wu, H., Huang, J., Xu, Y., Yang, F., Zhang, Q., Xu, X., Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase (2018) Virus Res., 253, pp. 1-11; Tang, L., Wu, Y., Bcl-2 family proteins regulate apoptosis and epithelial to mesenchymal transition by calcium signals (2016) Curr. Pharm. Des., 22 (30), pp. 4700-4704; Torres, M.A., Jones, J.D., Dang, J.L., Reactive oxygen species signaling in response to pathogens (2006) Plant Physiol., 141 (2), pp. 373-378; Tung, W.H., Tsai, H.W., Lee, I.T., Hsieh, H.L., Chen, W.J., Chen, Y.L., Yang, C.M., Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signaling dependent on MAPKs and reactive oxygen species (2010) Br. J. Pharmacol., 161 (7), pp. 1566-1583; Xiao, W., Xu, Z., Chang, S., Li, B., Yu, D., Wu, H., Xie, Y., Zhu, W., Rafoxanide, an organohalogen drug, triggers apoptosis and cell cycle arrest in multiple myelomaby enhancing DNA damage responses and suppressing the p38 MAPK pathway (2019) Cancer Lett., 444, pp. 45-59; Xu, J., Zhang, S., Mitogen-activated protein kinase cascades in signaling plant growth and development (2015) Trends Plant Sci., 20 (1), pp. 56-64; Yan, Y., Du, Y., Wang, G., Deng, Y., Li, R., Li, K., The novel H7N9 influenza a virus NS1 induces p53-Mediated apoptosis of A549 cells (2016) Cell. Physiol. Biochem., 38 (4), pp. 1447-1458; Yang, D.K., Kim, H.H., Lee, S.H., Yoon, S.S., Park, J.W., Cho, I.S., Isolation and characterization of a new porcine epidemic diarrhea virus variant that occurred in Korea in 2014 (2018) J. Vet. Sci., 19 (1), pp. 71-78; Zhang, H., Huang, Y., Du, Q., Luo, X., Zhang, L., Zhao, X., Tong, D., Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway (2015) Biochem. Biophys. Res. Commun., 456 (2), pp. 649-655; Zhao, S., Gao, J., Zhu, L., Yang, Q., Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells (2014) Virus Res., 192, pp. 34-45; Zhao, X., Xiang, H., Bai, X., Fei, N., Huang, Y., Song, X., Zhang, H., Tong, D., Porcine parvovirus infection activates mitochondria-mediated apoptotic signaling pathway by inducing ROS accumulation (2016) Virol. J., 13 (1), p. 26; Zheng, H., Xu, L., Liu, Y., Li, C., Zhang, L., Wang, T., Zhao, D., Zhang, Y., MicroRNA-221-5p inhibits porcine epidemic diarrhea virus replication by targeting genomic viral RNA and activating the NF-κB pathway (2018) Int. J. Mol. Sci., 19 (11), p. E3381; Zhou, P., Tu, L., Lin, X., Hao, X., Zheng, Q., Zeng, W., Zhang, X., Li, S., Cfa-miR-143 promotes apoptosis via the p53 pathway in canine influenza virus H3N2-Infected cells (2017) Viruses, 9 (12), p. E360","Li, Q.; College of Veterinary Medicine, Northwest A&F UniversityChina; email: liqinfan2018@163.com",,"Elsevier B.V.",03781135,,VMICD,"31030832","English","Vet. Microbiol.",Article,"Final",,Scopus,2-s2.0-85063745163 "Lim L., Gupta G., Roy A., Kang J., Srivastava S., Shi J., Song J.","37072752000;57201813475;57194795099;57195507766;57194796566;55491830100;7404786795;","Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses",2019,"Progress in Biophysics and Molecular Biology","143",,,"52","66",,1,"10.1016/j.pbiomolbio.2018.08.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065774935&doi=10.1016%2fj.pbiomolbio.2018.08.009&partnerID=40&md5=1c49d81a762035d0a1b622ff52573ce1","Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong","Lim, L., Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; Gupta, G., Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; Roy, A., Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; Kang, J., Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; Srivastava, S., Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; Shi, J., Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong; Song, J., Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore","Coronavirus 3C-like and Flavivirus NS2B-NS3 proteases utilize the chymotrypsin fold to harbor their catalytic machineries but also contain additional domains/co-factors. Over the past decade, we aimed to decipher how the extra domains/co-factors mediate the catalytic machineries of SARS 3C-like, Dengue and Zika NS2B-NS3 proteases by characterizing their folding, structures, dynamics and inhibition with NMR, X-ray crystallography and MD simulations, and the results revealed: 1)the chymotrypsin fold of the SARS 3C-like protease can independently fold, while, by contrast, those of Dengue and Zika proteases lack the intrinsic capacity to fold without co-factors. 2)Mutations on the extra domain of SARS 3C-like protease can transform the active catalytic machinery into the inactive collapsed state by structurally-driven allostery. 3)Amazingly, even without detectable structural changes, mutations on the extra domain are sufficient to either inactivate or enhance the catalytic machinery of SARS 3C-like protease by dynamically-driven allostery. 4)Global networks of correlated motions have been identified: for SARS 3C-like protease, N214A inactivates the catalytic machinery by decoupling the network, while STI/A and STIF/A enhance by altering the patterns of the network. The global networks of Dengue and Zika proteases are coordinated by their NS2B-cofactors. 5)Natural products were identified to allosterically inhibit Zika and Dengue proteases through binding a pocket on the back of the active site. Therefore, by introducing extra domains/cofactors, nature develops diverse strategies to regulate the catalytic machinery embedded on the chymotrypsin fold through folding, structurally- and dynamically-driven allostery, all of which might be exploited to develop antiviral drugs. © 2018 Elsevier Ltd","3C-like protease; Chymotrypsin fold; Correlated motions; Enzymatic allostery; Flavivirus; Natural product; NS2B-NS3 protease; SARS coronavirus","chymase; allosterism; biocatalysis; chemistry; Dengue virus; enzymology; metabolism; SARS coronavirus; Zika virus; Allosteric Regulation; Biocatalysis; Chymases; Dengue Virus; SARS Virus; Zika Virus","Allaire, M., Chernaia, M.M., Malcolm, B.A., James, M.N., Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases (1994) Nature, 369, pp. 72-76; Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., Hilgenfeld, R., Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain (2002) EMBO J., 21, pp. 3213-3224; Baronti, C., Piorkowski, G., Charrel, R.N., Boubis, L., Leparc-Goffart, I., de Lamballerie, X., Complete coding sequence of Zika virus from a French Polynesia outbreak in 2013 (2014) Genome Announc., 2, p. e00500.14; Barrila, J., Bacha, U., Freire, E., Long-range cooperative interactions modulate dimerization in SARS 3CLpro (2006) Biochemistry, 45, pp. 14908-14916; Barrila, J., Gabelli, S.B., Bacha, U., Amzel, L.M., Freire, E., Mutation of Asn28 disrupts the dimerization and enzymatic activity of SARS 3CL(pro) (2010) Biochemistry, 49, pp. 4308-4317; Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., The global distribution and burden of dengue (2013) Nature, 496, pp. 504-507; Bogoch, II, Brady, O.J., Kraemer, M.U., German, M., Creatore, M.I., Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study (2016) Lancet Infect. Dis., 16, pp. 1237-1245; Chambers, T.J., Hahn, C.S., Galler, R., Rice, C.M., Flavivirus genome organization, expression, and replication (1990) Annu. Rev. Microbiol., 44, pp. 649-688; Chan, J.F.-W., Zhang, A.J., Chan, C.C.-S., Yip, C.C.-Y., Mak, W.W.-N., Zika virus infection in dexamethasone-immunosuppressed mice demonstrating disseminated infection with multi-organ involvement including orchitis effectively treated by recombinant type I interferons (2016) Biomedicine, 14, pp. 112-122; Chan, J.F., Choi, G.K., Yip, C.C., Cheng, V.C., Yuen, K.Y., Zika fever and congenital Zika syndrome: an unexpected emerging arboviral disease (2016) J. Infect., 72, pp. 507-524; Chen, H., Wei, P., Huang, C., Tan, L., Liu, Y., Only one protomer is active in the dimer of SARS 3C-like proteinase (2006) J. Biol. Chem., 281, pp. 13894-13898; Chen, S., Hu, T., Zhang, J., Chen, J., Chen, K., Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: crystal structure with molecular dynamics simulations (2008) J. Biol. Chem., 283, pp. 554-564; Chen, W.-N., Loscha, K.V., Nitsche, C., Graham, B., Otting, G., The dengue virus NS2B-NS3 protease retains the closed conformation in the complex with BPTI (2014) FEBS Lett., 588, pp. 2206-2211; Chen, X., Yang, K., Wu, C., Chen, C., Hu, C., Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease (2016) Cell Res., 26, pp. 1260-1263; Cugola, F.R., Fernandes, I.R., Russo, F.B., Freitas, B.C., Dias, J.L., The Brazilian Zika virus strain causes birth defects in experimental models (2016) Nature, 534, pp. 267-271; de la Cruz, L., Nguyen, T.H., Ozawa, K., Shin, J., Graham, B., Huber, T., Otting, G., Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts (2011) J. Am. Chem. Soc., 133, pp. 19205-19215; Dick, G., Kitchen, S., Haddow, A., Zika virus (I). Isolations and serological specificity (1952) Trans. R. Soc. Trop. Med. Hyg., 46, pp. 509-520; Dodson, G.G., Lane, D.P., Verma, C.S., Molecular simulations of protein dynamics: new windows on mechanisms in biology (2008) EMBO Rep., 9, pp. 144-150; D'Ortenzio, E., Matheron, S., de Lamballerie, X., Hubert, B., Piorkowski, G., Evidence of sexual transmission of Zika virus (2016) N. Engl. J. Med., 374, pp. 2195-2198; Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Erbel, P., Schiering, N., D'Arcy, A., Renatus, M., Kroemer, M., Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus (2006) Nat. Struct. Mol. Biol., 13, pp. 372-373; Gibbs, A.C., Steele, R., Liu, G., Tounge, B.A., Montelione, G.T., Inhibitor Bound Dengue NS2B-NS3pro reveals multiple dynamic binding modes (2018) Biochemistry, 57, pp. 1591-1602; Guarnera, E., Berezovsky, I.N., Allosteric sites: remote control in regulation of protein activity (2016) Curr. Opin. Struct. Biol., 37, pp. 1-8; Gupta, G., Lim, L., Song, J., NMR and MD studies reveal that the isolated dengue NS3 protease is an intrinsically disordered chymotrypsin fold which absolutely requests NS2B for correct folding and functional (2015) PLoS One, 10, p. e0134823; Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Dengue: a continuing global threat (2010) Nat. Rev. Microbiol., 8, pp. S7-S16; Guzman, M.G., Harris, E., (2015) Dengue. Lancet, 385, pp. 453-465; Hammes-Schiffer, S., Benkovic, S.J., Relating protein motion to catalysis (2006) Annu. Rev. Biochem., 75, pp. 519-541; Hilgenfeld, R., From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design (2014) FEBS J., 281, pp. 4085-4096; Hu, T., Zhang, Y., Li, L., Wang, K., Chen, S., Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure (2009) Virology, 388, pp. 324-334; Huan, X., Shi, J., Lim, L., Mitra, S., Zhu, W., Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations (2013) PLoS One, 8, p. e74040; Ippolito, G., Rezza, G., Preface - emerging viruses: from early detection to intervention (2017) Adv. Exp. Med. Biol., 972, pp. 1-5; Karplus, M., McCammon, J.A., Dynamics of proteins: elements and function (1983) Annu. Rev. Biochem., 52, pp. 263-300; Khosla, C., Harbury, P.B., Modular enzymes (2001) Nature, 409, pp. 247-252; Kim, Y.M., Gayen, S., Kang, C., Joy, J., Huang, Q., NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex (2013) J. Biol. Chem., 288, pp. 12891-12900; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res., 48, pp. 1-100; Laskowski, R.A., Gerick, F., Thornton, J.M., The structural basis of allosteric regulation in proteins (2009) FEBS Lett., 583, pp. 1692-1698; Lee, N.D., Hui, A., Wu, P., Chan, P., Cameron, G.M., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N. Engl. J. Med., 348, pp. 1986-1994; Lei, J., Hansen, G., Nitsche, C., Klein, C.D., Zhang, L., Hilgenfeld, R., Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor (2016) Science, 353, pp. 503-505; Li, C., Xu, D., Ye, Q., Hong, S., Jiang, Y., Zika virus disrupts neural progenitor development and leads to microcephaly in mice (2016) Cell Stem Cell., 19, pp. 120-126; Li, C., Teng, X., Qi, Y., Tang, B., Shi, H., Conformational flexibility of a short loop near the active site of the SARS-3CLpro is essential to maintain catalytic (2016) Activity Sci Rep, 6, p. 20918; Li, J., Lim, S.P., Beer, D., Patel, V., Wen, D., Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries (2005) J. Biol. Chem., 280, pp. 28766-28774; Li, M., Liu, J., Ran, X., Fang, M., Shi, J., Resurrecting abandoned proteins with pure water: CD and NMR studies of protein fragments solubilized in salt-free water (2006) Biophys. J., 91, pp. 4201-4209; Lim, L., Shi, J., Mu, Y., Song, J., Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284-T285-I286/A mutations on the extra domain (2014) PLoS One, 9, p. e101941; Lisi, G.P., Loria, J.P., Allostery in enzyme catalysis (2017) Curr. Opin. Struct. Biol., 47, pp. 123-130; Lu, G., Gong, P., A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus (2017) Virus Res., 234, pp. 34-43; Luo, D., Vasudevan, S.G., Lescar, J., The flavivirus NS2B-NS3 protease±helicase as a target for antiviral drug development (2015) Antivir. Res., 118, pp. 148-158; Ma, B., Nussinov, R., Enzyme dynamics point to stepwise conformational selection in catalysis (2010) Curr. Opin. Chem. Biol., 14, pp. 652-659; Mahawaththa, M.C., Pearce, B.J.G., Szabo, M., Graham, B., Klein, C.D., Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease (2017) Antivir. Res., 142, pp. 141-147; McClendon, C.L., Friedland, G., Mobley, D.L., Amirkhani, H., Jacobson, M.P., Quantifying correlations between allosteric sites in thermodynamic ensembles (2009) J. Chem. Theor. Comput., 5, pp. 2486-2502; Mesters, J.R., Tan, J., Hilgenfeld, R., Viral enzymes (2006) Curr. Opin. Struct. Biol., 16, pp. 776-786; Mlakar, J., Korva, M., Tul, N., Popović, M., PoljsÏak-Prijatelj, M., Zika virus associated with microcephaly (2016) N. Engl. J. Med., pp. 951-958. , 2016; Motlagh, H.N., Wrabl, J.O., Li, J., Hilser, V.J., The ensemble nature of allostery (2014) Nature, 508, pp. 331-339; Murthy, H.M., Clum, S., Padmanabhan, R., Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects (1999) J. Biol. Chem., 274, pp. 5573-5580; Murthy, H.M., Judge, K., DeLucas, L., Padmanabhan, R., Crystal structure of Dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design (2000) J. Mol. Biol., 301, pp. 759-767; Nichol, S.T., Arikawa, J., Kawaoka, Y., Emerging viral diseases (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 12411-12412; Noble, C.G., Shi, P.Y., Structural biology of dengue virus enzymes: towards rational design of therapeutics (2012) Antivir. Res., 96, pp. 115-126; Noble, C.G., Seh, C.C., Chao, A.T., Shi, P.Y., Ligand-bound structures of the dengue virus protease reveal the active conformation (2012) J. Virol., 86, pp. 438-446; Nussinov, R., Tsai, C.J., Allostery in disease and in drug discovery (2013) Cell, 153, pp. 293-305; Pan, A., Saw, W.G., Subramanian Manimekalai, M.S., Grüber, A., Joon, S., Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin (2017) Acta Crystallogr D Struct Biol., 73, pp. 402-419; Pang, Y.P., Three-dimensional model of a substrate-bound SARS chymotrypsin-like cysteine proteinase predicted by multiple molecular dynamics simulations: catalytic efficiency regulated by substrate binding (2004) Proteins, 57, pp. 747-757; Perera, R., Kuhn, R.J., Structural proteomics of dengue virus (2008) Curr. Opin. Microbiol., 11, pp. 369-377; Perona, J.J., Craik, C.S., Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold (1997) J. Biol. Chem., 272, pp. 29987-29990; Poutanen, S.M.D.E., Low, B., Henry, S., Finkelstein, D., Rose, K., Identification of severe acute respiratory syndrome in Canada (2003) N. Engl. J. Med., 348, pp. 1995-2005; Qin, H., Lim, L., Song, J., Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography, NMR and MD simulations (2012) BMC Biophys., 5, p. 2; Qin, H., Lim, L.Z., Song, J., Dynamic principle for designing antagonistic/agonistic molecules for EphA4 receptor, the only known ALS modifier (2015) ACS Chem. Biol., 10, pp. 372-378; Ramos da Silva, S., Gao, S.-J., Zika virus: an update on epidemiology, pathology, molecular biology, and animal model (2016) J. Med. Virol., 88, pp. 1291-1296; Roy, A., Lim, L., Srivastava, S., Lu, Y., Song, J., Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants (2017) PLoS One, 12, p. e0180632; Sharp, T.M., Muñoz-JordaÂn, J., Perez-Padilla, J., Bello-PagaÂn, M.I., Rivera, A., Zika virus infection associated with severe thrombocytopenia (2016) Clin. Infect. Dis., 63 (9), pp. 1198-1201; Shi, J., Wei, Z., Song, J., Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors (2004) J. Biol. Chem., 279, pp. 24765-24773; Shi, J., Song, J., The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain (2006) FEBS J., 273, pp. 1035-1045; Shi, J., Sivaraman, J., Song, J., Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease (2008) J. Virol., 82, pp. 4620-4629; Shi, J., Han, N., Lim, L., Lua, S., Sivaraman, J., Wang, L., Mu, Y., Song, J., Dynamically-driven inactivation of the catalytic machinery of the SARS 3C-like protease by the N214A mutation on the extra domain (2011) PLoS Comput. Biol., 7, p. e1001084; Sikka, V., Chattu, V.K., Popli, R.K., Galwankar, S.C., Kelkar, D., The emergence of Zika virus as a global health security threat: a review and a consensus statement of the INDUSEM Joint Working Group (JWG) (2016) J. Global Infect. Dis., 8, p. 3; Song, J., Insight into “insoluble proteins” with pure water (2009) FEBS Lett., 583, pp. 953-959; Song, J., Why do proteins aggregate? “Intrinsically insoluble proteins” and “dark mediators” revealed by studies on “insoluble proteins” solubilized in pure water (2013) F1000 Res, 2, p. 94; Song, J., Transforming cytosolic proteins into “insoluble” and membrane-toxic forms triggering diseases/aging by genetic, pathological or environmental factors (2017) Protein Pept. Lett., 24, pp. 294-306; Song, J., Environment-transformable sequence-structure relationship: a general mechanism for proteotoxicity (2018) Biophys Rev., 10, pp. 503-516; Tan, J., Verschueren, K.H., Anand, K., Shen, J., Yang, M., pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro))dimer: molecular dynamics simulations and multiple X-ray structure analyses (2005) J. Mol. Biol., 354, pp. 25-40; Tomar, S., Johnston, M.L., St John, S.E., Osswald, H.L., Nyalapatla, P.R., Denison MR, mesecar AD. Ligand-induced dimerization of Middle East respiratory syndrome (MERS)coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals (2015) J. Biol. Chem., 290, pp. 19403-19422; Tong, L., Viral proteases (2002) Chem. Rev., 102, pp. 4609-4626; Tousignant, A., Pelletier, J.N., Protein motions promote catalysis (2004) Chem. Biol., 11, pp. 1037-1042; Wikan, N., Smith, D.R., Zika virus: history of a newly emerging arbovirus (2016) Lancet Infect. Dis., 16, pp. e119-e126; Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 13190-13195; Yin, J., Niu, C., Cherney, M.M., Zhang, J., Huitema, C., A mechanistic view of enzyme inhibition and peptide hydrolysis in the active site of the SARS CoV 3C-like peptidase (2007) J. Mol. Biol., 371, pp. 1060-1074; Zhong, N., Zhang, S., Zou, P., Chen, J., Kang, X., Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain (2008) J. Virol., 82, pp. 4227-4234","Shi, J.; Department of Biomedical Sciences, City University of Hong KongHong Kong; email: jiahai.shi@cityu.edu.hk",,"Elsevier Ltd",00796107,,PBIMA,"30217495","English","Prog. Biophys. Mol. Biol.",Review,"Final",Open Access,Scopus,2-s2.0-85065774935 "Zhang H., Liang Q., Li B., Cui X., Wei X., Ding Q., Wang Y., Hu H.","56730057500;57207259804;57207250540;57207244658;57207243867;57207254145;50562587300;56555521500;","Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China",2019,"Preventive Veterinary Medicine","166",,,"8","15",,5,"10.1016/j.prevetmed.2019.02.017","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062359855&doi=10.1016%2fj.prevetmed.2019.02.017&partnerID=40&md5=449f4bcb6fefe14359c4056c22d8fece","College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China","Zhang, H., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China; Liang, Q., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Li, B., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Cui, X., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Wei, X., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Ding, Q., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Wang, Y., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China; Hu, H., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China","Porcine deltacoronavirus (PDCoV) is a novel porcine enteric coronavirus that causes diarrhea, vomiting and dehydration in piglets. This newly virus has spread rapidly and has caused serious economic losses for pig industry since the outbreak in USA in 2014. In this study, 430 faecal and intestinal samples (143 faecal samples and 287 intestinal samples) were collected from individual pigs with diarrhea and 211 serum samples were also collected from the sows with mild diarrhea in 17 regions in Henan province, China from April 2015 to March 2018. The RT-PCR detection indicated that the infection of PDCoV was high up to 23.49% (101/430), and co-infection with PEDV were common (60.40%, 61/101) in Henan pigs. The prevalence of PDCoV in suckling piglets was the highest (36.43%, 94/258). We also found that PDCoV could be detected in sows faeces and sera while the sows showed mild, self-limited diarrhea in clinic. The complete genomes of 4 PDCoV Henan strains (CH-01, HNZK-02, HNZK-04, HNZK-06) were sequenced and analyzed. Phylogenetic analysis based on the complete genome, spike and nucleocapsid gene sequences revealed that the PDCoV Henan strains were closely related to other PDCoV reference strains that located in the Chinese clade. Furthermore, the phylogenetic analysis showed PDCoV CH-01 strain was closely related to CHN-HB-2014 strain and HKU15-44 strain, while the other PDCoV Henan strains were more related to PDCoV CHJXNI2 and CH-SXD1-2015 strains, indicating that the ancestor of these sequenced strains may different. These results would support the understanding of the prevalence and evolution characteristics of PDCoV in China. © 2019 Elsevier B.V.","Complete genome; Evolution; Phylogenetic analysis; Porcine deltacoronavirus; Prevalence","vitronectin; 5' untranslated region; animal tissue; Article; China; Coronaviridae infection; Coronavirinae; diarrhea; female; gene sequence; genomics; mixed infection; molecular phylogeny; nonhuman; nucleotide sequence; open reading frame; phylogenetic tree; phylogeny; pig; piglet; porcine deltacoronavirus; priority journal; reverse transcription polymerase chain reaction; sow (swine); virus detection; virus genome; virus nucleocapsid; animal; classification; Coronavirinae; Coronavirus infection; diarrhea; feces; genetics; phylogeny; physiology; prevalence; sequence analysis; stomach juice; swine disease; veterinary medicine; virology; virus genome; Animals; China; Coronavirus; Coronavirus Infections; Diarrhea; Feces; Gastrointestinal Contents; Genome, Viral; Phylogeny; Prevalence; Sequence Analysis, RNA; Sus scrofa; Swine; Swine Diseases","Ajayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., Poljak, Z., Herd-level Prevalence and Incidence of Porcine Epidemic Diarrhoea Virus (PEDV) and Porcine Deltacoronavirus (PDCoV) in Swine Herds in Ontario, Canada. Transboundary and Emerging Diseases (2018); Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: lessons from bats and birds (2013) Trends Microbiol., 21, pp. 544-555; Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Guan, Y., Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China (2007) J. Virol., 81, pp. 6920-6926; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine Deltacoronavirus in Mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Fang, P., Fang, L., Liu, X., Hong, Y., Wang, Y., Dong, N., Ma, P., Xiao, S., Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6 (2016) Virology, 499, pp. 170-177; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new Bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J. Virol., 84, pp. 3134-3146; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Arch. Virol., 161, pp. 3421-3434; Hu, H., Jung, K., Wang, Q., Saif, L.J., Vlasova, A.N., Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian ‘fecal samples (2018) J. Virol. Methods, 256, pp. 116-122; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., Amonsin, A., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis., 22, pp. 757-759; Jang, G., Lee, K.K., Kim, S.H., Lee, C., Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016 (2017) Transbound. Emerg. Dis., 64, pp. 1364-1370; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo (2016) Vet. Microbiol., 182, pp. 57-63; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res., 226, pp. 50-59; Lee, S., Lee, C., Complete genome characterization of korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc., 2; Lee, S., Lee, C., Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus (2015) Virus Res., 208, pp. 136-145; Liu, B.J., Zuo, Y.Z., Gu, W.Y., Luo, S.X., Shi, Q.K., Hou, L.S., Zhong, F., Fan, J.H., Isolation and phylogenetic analysis of porcine deltacoronavirus from pigs with diarrhoea in Hebei province, China (2018) Transbound. Emerg. Dis., 65, pp. 874-882; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6; Mai, K., Feng, J., Chen, G., Li, D., Zhou, L., Bai, Y., Wu, Q., Ma, J., The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China (2018) Transbound. Emerg. Dis., 65, pp. 166-173; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerging Infect. Dis., 20, pp. 1347-1350; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Tripipat, T., Nilubol, D., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound. Emerg. Dis., 64, pp. 3-10; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J. Virol.; Sinha, A., Gauger, P., Zhang, J., Yoon, K.J., Harmon, K., PCR-based retrospective evaluation of diagnostic samples for emergence of porcine deltacoronavirus in US swine (2015) Vet. Microbiol., 179, pp. 296-298; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerging Infect. Dis., 20, pp. 1227-1230; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerging Infect. Dis., 20, pp. 1594-1595; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from Mainland China (2015) Genome Announc., 3; Wang, M., Wang, Y., Baloch, A.R., Pan, Y., Tian, L., Xu, F., Shivaramu, S., Zeng, Q., Detection and genetic characterization of porcine deltacoronavirus in Tibetan pigs surrounding the Qinghai-Tibet Plateau of China (2018) Transbound. Emerg. Dis., 65, pp. 363-369; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Yu, J., Chai, X., Cheng, Y., Xing, G., Liao, A., Du, L., Wang, Y., Zhou, J., Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016 (2018) Virus Res., 247, pp. 47-54; Zhai, S.L., Wei, W.K., Li, X.P., Wen, X.H., Zhou, X., Zhang, H., Lv, D.H., Wang, D., Occurrence and sequence analysis of porcine deltacoronaviruses in southern China (2016) Virol. J., 13, p. 136; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Wang, Y.; College of Animal Science and Veterinary Medicine, National Natural Science Foundation of ChinaChina; email: Ybwang8686@126.com",,"Elsevier B.V.",01675877,,PVMEE,"30935509","English","Prev. Vet. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85062359855 "Baudel H., De Nys H., Mpoudi Ngole E., Peeters M., Desclaux A.","57205579974;55805220000;6603409342;7203079647;6602254789;","Understanding Ebola virus and other zoonotic transmission risks through human–bat contacts: Exploratory study on knowledge, attitudes and practices in Southern Cameroon",2019,"Zoonoses and Public Health","66","3",,"288","295",,,"10.1111/zph.12563","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060591967&doi=10.1111%2fzph.12563&partnerID=40&md5=c128aade3a9d7ccc5c1744201c286954","TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France; Laboratoire de Virologie, CREMER, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon","Baudel, H., TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France; De Nys, H., TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France; Mpoudi Ngole, E., Laboratoire de Virologie, CREMER, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon; Peeters, M., TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France; Desclaux, A., TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERM, Montpellier, France","The ecology of Ebola virus (EBV) remains largely unknown, but the previous detection of viral RNA and anti-EBV antibodies in African bats suggests that they might play a role in the EBV reservoir. Moreover, African bats also carry other potentially zoonotic agents such as Henipah-like viruses, coronaviruses and lyssaviruses. Today only little information is available on interactions between humans and bats. The objective of our exploratory study was to describe the extent and modes of contacts between humans and bats in southern Cameroon, considered as an area at risk for future EBV outbreaks. The survey was conducted in 11 villages of four distinct rural areas in southern Cameroon. A total of 135 respondents were interviewed using semi-structured questionnaires, between February and May 2017. The study showed that direct contacts between bats and humans are relatively common. Bat bushmeat appeared to be an occasional meat resource; 40% of respondents consume bats with a median annual consumption of three, and 28% of respondents hunt them. About 22% of the respondents reported children catching bats. Indirect contact also appeared to be common; 55% of hunters use caves as shelters and 67% of interviewees eat fruits previously chewed by bats. Bat consumption varied significantly between regions (from 0% to 87%) and between pygmies and bantus in the extreme south-east of Cameroon. The study revealed considerable diversity in practices among interviewees, most of them being subsistence cultivators and relying on self-hunted bushmeat. Geographical diversity of contacts and perceptions regarding bats in Cameroon emphasizes the need to adjust zoonotic pathogen surveillance and education campaigns to the specificities of the communities and their context of interaction with wildlife. © 2019 Blackwell Verlag GmbH","bat; Cameroon; Central Africa; Ebola; risk behaviour; zoonotic transmission","article; Cameroon; cave; Central Africa; child; Ebolavirus; education; exploratory research; female; fruit; human; human experiment; infectious agent; major clinical study; male; nonhuman; perception; pygmy; rural area; structured questionnaire; wildlife; animal; attitude to health; bat; Cameroon; Ebola hemorrhagic fever; Ebolavirus; epidemiology; information processing; physiology; questionnaire; transmission; virology; zoonosis; Animals; Cameroon; Chiroptera; Data Collection; Ebolavirus; Health Knowledge, Attitudes, Practice; Hemorrhagic Fever, Ebola; Humans; Surveys and Questionnaires; Zoonoses","Baize, S., Pannetier, D., Oestereich, L., Rieger, T., Koivogui, L., Magassouba, N., Günther, S., Emergence of Zaire Ebola virus disease in Guinea (2014) The New England Journal of Medicine, 371 (15), pp. 1418-1425. , https://doi.org/10.1056/NEJMoa1404505; Baker, K.S., Todd, S., Marsh, G.A., Crameri, G., Barr, J., Kamins, A.O., Wang, L.-F., Novel, potentially zoonotic paramyxoviruses from the African straw-colored fruit bat Eidolon helvum (2013) Journal of Virology, 87 (3), pp. 1348-1358. , https://doi.org/10.1128/JVI.01202-12; Bermejo, M., Rodríguez-Teijeiro, J.D., Illera, G., Barroso, A., Vilà, C., Walsh, P.D., Ebola outbreak killed 5000 gorillas (2006) Science, 314 (5805), p. 1564. , https://doi.org/10.1126/science.1133105; Breed, A.C., Field, H.E., Epstein, J.H., Daszak, P., Emerging henipaviruses and flying foxes – Conservation and management perspectives (2006) Biological Conservation, 131 (2), pp. 211-220. , https://doi.org/10.1016/J.BIOCON.2006.04.007; Chua, K.B., Bellini, W.J., Rota, P.A., Harcourt, B.H., Tamin, A., Lam, S.K., Mahy, B.W., Nipah virus: A recently emergent deadly paramyxovirus (2000) Science, 288 (5470), pp. 1432-1435. , http://www.ncbi.nlm.nih.gov/pubmed/10827955, Retrieved from; Drexler, J.F., Corman, V.M., Müller, M.A., Maganga, G.D., Vallo, P., Binger, T., Drosten, C., Bats host major mammalian paramyxoviruses (2012) Nature Communications, 3, p. 796. , https://doi.org/10.1038/ncomms1796; Feldmann, H., Geisbert, T.W., Ebola haemorrhagic fever (2011) Lancet, 377 (9768), pp. 849-862. , https://doi.org/10.1016/S0140-6736(10)60667-8; Gbogbo, F., Kyei, M.O., Knowledge, perceptions and attitude of a community living around a colony of straw-coloured fruit bats (Eidolon helvum) in Ghana after Ebola virus disease outbreak in West Africa (2017) Zoonoses and Public Health, 64, pp. 628-635. , https://doi.org/10.1111/zph.12357; Hayman, D.T.S., Suu-Ire, R., Breed, A.C., McEachern, J.A., Wang, L., Wood, J.L.N., Cunningham, A.A., Evidence of henipavirus infection in West African fruit bats (2008) PLoS ONE, 3 (7). , https://doi.org/10.1371/journal.pone.0002739; Hayman, D.T.S., Yu, M., Crameri, G., Wang, L.-F., Suu-Ire, R., Wood, J.L.N., Cunningham, A.A., Ebola virus antibodies in fruit bats, Ghana, West Africa (2012) Emerging Infectious Diseases, 18 (7), pp. 1207-1209. , https://doi.org/10.3201/eid1807.111654; Hayman, D.T.S., Emmerich, P., Yu, M., Wang, L.-F., Suu-Ire, R., Fooks, A.R., Wood, J.L.N., Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses (2010) PLoS ONE, 5 (8). , https://doi.org/10.1371/journal.pone.0011978; Holmes, E.C., Dudas, G., Rambaut, A., Andersen, K.G., The evolution of Ebola virus: Insights from the 2013–2016 epidemic (2016) Nature, 538 (7624), pp. 193-200; Kamins, A.O., Rowcliffe, J.M., Ntiamoa-Baidu, Y., Cunningham, A.A., Wood, J.L.N., Restif, O., Characteristics and risk perceptions of ghanaians potentially exposed to bat-borne zoonoses through bushmeat (2015) EcoHealth, 12 (1), pp. 104-120. , https://doi.org/10.1007/s10393-014-0977-0; Kamins, A.O., Restif, O., Ntiamoa-Baidu, Y., Suu-Ire, R., Hayman, D.T.S., Cunningham, A.A., Rowcliffe, J.M., Uncovering the fruit bat bushmeat commodity chain and the true extent of fruit bat hunting in Ghana, West Africa (2011) Biological Conservation, 144 (12), pp. 3000-3008. , https://doi.org/10.1016/j.biocon.2011.09.003; Keele, B.F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M.L., Hahn, B.H., Chimpanzee reservoirs of pandemic and nonpandemic HIV-1 (2006) Science, 313 (5786), pp. 523-526. , https://doi.org/10.1126/science.1126531; Le Guenno, B., Formenty, P., Formentry, P., Wyers, M., Gounon, P., Walker, F., Boesch, C., Isolation and partial characterisation of a new strain of Ebola virus (1995) Lancet, 345 (8960), pp. 1271-1274. , https://doi.org/10.5555/URI:PII:S0140673695909257; Leendertz, S.A.J., Gogarten, J.F., Düx, A., Calvignac-Spencer, S., Leendertz, F.H., Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses (2016) EcoHealth, 13 (1), pp. 18-25. , https://doi.org/10.1007/s10393-015-1053-0; Leroy, E.M., Epelboin, A., Mondonge, V., Pourrut, X., Gonzalez, J.-P., Muyembe-Tamfum, J.-J., Formenty, P., Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007 (2009) Vector Borne and Zoonotic Diseases, 9 (6), pp. 723-728. , https://doi.org/10.1089/vbz.2008.0167; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Swanepoel, R., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438 (7068), pp. 575-576. , https://doi.org/10.1038/438575a; Leroy, E.M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment, J.-M., Rollin, P.E., Multiple Ebola virus transmission events and rapid decline of central African wildlife (2004) Science, 303 (5656), pp. 387-390. , https://doi.org/10.1126/science.1092528; Mari Saez, A., Weiss, S., Nowak, K., Lapeyre, V., Zimmermann, F., Dux, A., Leendertz, F.H., Investigating the zoonotic origin of the West African Ebola epidemic (2015) EMBO Molecular Medicine, 7 (1), pp. 17-23. , https://doi.org/10.15252/emmm.201404792; Mickleburgh, S., Waylen, K., Racey, P., Bats as bushmeat: A global review (2009) Oryx, 43 (2), p. 217. , https://doi.org/10.1017/S0030605308000938; Ogawa, H., Miyamoto, H., Nakayama, E., Yoshida, R., Nakamura, I., Sawa, H., Takada, A., Seroepidemiological prevalence of multiple species of filoviruses in fruit bats (Eidolon helvum) migrating in Africa (2015) Journal of Infectious Diseases, 212, pp. S101-S108. , https://doi.org/10.1093/infdis/jiv063; Pigott, D.M., Golding, N., Mylne, A., Huang, Z., Henry, A.J., Weiss, D.J., Hay, S.I., Mapping the zoonotic niche of Ebola virus disease in Africa (2014) Elife, 3. , https://doi.org/10.7554/eLife.04395; Pourrut, X., Délicat, A., Rollin, P.E., Ksiazek, T.G., Gonzalez, J.-P., Leroy, E.M., Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species (2007) The Journal of Infectious Diseases, 196, pp. S176-S183. , https://doi.org/10.1086/520541; Pourrut, X., Souris, M., Towner, J.S., Rollin, P.E., Nichol, S.T., Gonzalez, J.-P., Leroy, E., Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus (2009) BMC Infectious Diseases, 9, p. 159. , https://doi.org/10.1186/1471-2334-9-159; Seytre, B., Les errances de la communication sur la maladie à virus Ebola (2016) Bulletin De La Société De Pathologie Exotique, 109 (4), pp. 314-323. , https://doi.org/10.1007/s13149-016-0524-z; Weiss, S., Nowak, K., Fahr, J., Wibbelt, G., Mombouli, J.-V., Parra, H.-J., Leendertz, F.H., Henipavirus-related sequences in fruit bat bushmeat, Republic of Congo (2012) Emerging Infectious Diseases, 18 (9), pp. 1535-1536. , https://doi.org/10.3201/eid1809.111607; (2014) Communication pour un impaCt Comportemental (ComBi), , http://apps.who.int/iris/bitstream/handle/10665/129391/WHO_HSE_GCR_2012.13_fre.pdf;jsessionxml:id=33DB27E41552EF1971C7FA0F922F0520?sequence=1, Retrieved from; (2018) Ebola|Ebola situation reports: Democratic Republic of the Congo, , http://www.who.int/ebola/situation-reports/drc-2018/en/, WHO. Retrieved from; Wolfe, N.D., Daszak, P., Kilpatrick, A.M., Burke, D.S., Bushmeat hunting, deforestation, and prediction of zoonotic disease (2005) Emerging Infectious Diseases, 11 (12), pp. 1822-1827. , https://doi.org/10.3201/eid1112.040789; Wright, E., Hayman, D.T.S., Vaughan, A., Temperton, N.J., Wood, J.L.N., Cunningham, A.A., Fooks, A.R., Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses (2010) Virology, 408 (2), pp. 183-189. , https://doi.org/10.1016/j.virol.2010.09.014","Peeters, M.; TransVIHMI, Institut de Recherche pour le Développement (IRD), University of Montpellier, INSERMFrance; email: martine.peeters@ird.fr",,"Wiley-VCH Verlag",18631959,,,"30677236","English","Zoonoses Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85060591967 "Al Knawy B.A., Al-Kadri H.M.F., Elbarbary M., Arabi Y., Balkhy H.H., Clark A.","6602859857;6506921916;57210595370;57211811296;6701797249;7404479752;","Perceptions of postoutbreak management by management and healthcare workers of a Middle East respiratory syndrome outbreak in a tertiary care hospital: A qualitative study",2019,"BMJ Open","9","5", e017476,"","",,,"10.1136/bmjopen-2017-017476","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065495408&doi=10.1136%2fbmjopen-2017-017476&partnerID=40&md5=429a86cce3bf5af56ae8c45c2a72ad88","Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; College of Medicine, King Abdulaziz Medical City and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; College of Public Health, King Abdulla Intl. Research Center and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Pediatrics, King Abdullah Intl. Med. Research Centre and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Faculty of Nursing, University of Alberta, Edmonton, AB, Canada","Al Knawy, B.A., Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Al-Kadri, H.M.F., College of Medicine, King Abdulaziz Medical City and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Elbarbary, M., College of Public Health, King Abdulla Intl. Research Center and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Arabi, Y., Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia; Balkhy, H.H., Department of Pediatrics, King Abdullah Intl. Med. Research Centre and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Clark, A., Faculty of Nursing, University of Alberta, Edmonton, AB, Canada","Objectives This study examines perceptions of the operational and organisational management of a major outbreak of Middle East Respiratory Syndrome (MERS) caused by a novel coronavirus (MERS-CoV) in the Kingdom of Saudi Arabia (KSA). Perspectives were sought from key decision-makers and clinical staff about the factors perceived to promote and inhibit effective and rapid control of the outbreak. Setting A large teaching tertiary healthcare centre in KSA; the outbreak lasted 6 weeks from June 2015. Participants Data were collected via individual and focus group interviews with 28 key informant participants (9 management decision-makers and 19 frontline healthcare workers). Design We used qualitative methods of process evaluation to examine perceptions of the outbreak and the factors contributing to, or detracting from successful management. Data were analysed using qualitative thematic content analysis. Results Five themes and 15 subthemes were found. The themes were related to: (1) the high stress of the outbreak, (2) factors perceived to contribute to outbreak occurrence, (3) factors perceived to contribute to success of outbreak control, (4) factors inhibiting outbreak control and (5) long-term institutional gains in response to the outbreak management. Conclusion Management of the MERS-CoV outbreak at King Abdulaziz Medical City-Riyadh was widely recognised by staff as a serious outbreak of local and national significance. While the outbreak was controlled successfully in 6 weeks, progress in management was inhibited by a lack of institutional readiness to implement infection control (IC) measures and reduce patient flow, low staff morale and high anxiety. Effective management was promoted by greater involvement of all staff in sharing learning and knowledge of the outbreak, developing trust and teamwork and harnessing collective leadership. Future major IC crises could be improved via measures to strengthen these areas, better coordination of media management and proactive staff counselling and support. © 2019 Author(s) (or their employer(s)). Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.","crisis management; infection control; leadership; mers-cov; outbreak; Saudi Arabia","anxiety; Article; clinical article; epidemic; human; infection control; Middle East respiratory syndrome; morality; occupational disease; prevalence; qualitative research; social media; teamwork; tertiary care center; trust","Organization, W.H., (2015) Middle East Respiratory Syndrome Coronavirus Case Definition for Reporting to WHO, , WHO; Senga, M., Arabi, Y.M., Fowler, R.A., Clinical spectrum of the Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) J Infect Public Health, 10, pp. 191-194; Yaseen, M., Arabi, R.F., Bright, R.A., (2016) Knowledge gaps in therapeutic and non-therapeutic research on the Middle East respiratory syndrome, pp. 93-94. , wwwthelancetcom/respiratory; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., The search for therapeutic options for Middle East Respiratory Syndrome (MERS) (2016) J Infect Public Health, 9, pp. 213-215; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Group, W.M.-C.R., (2013) State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans, , PLOS Currents Outbreaks; Balkhy, H.H., Perl, T.M., Arabi, Y.M., Preventing healthcare-associated transmission of the Middle East Respiratory Syndrome (MERS): Our Achilles heel (2016) J Infect Public Health, 9, pp. 208-212; Ben Embarek, P.K., Van Kerkhove, M.D., Middle East respiratory syndrome coronavirus (MERS-CoV): Current situation 3 years after the virus was first identified (2015) Wkly Epidemiol Rec, 90, p. 2450; Khalid, I., Khalid, T.J., Qabajah, M.R., Perceived stressors and coping strategies during MERS-CoV outbreak (2016) Clinical Medicine and Research, 1303; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infection Control & Hospital Epidemiology, 37, pp. 1147-1155; Dowswell, T., Carroli, G., Duley, L., Alternative versus standard packages of antenatal care for low-risk pregnancy (2015) Cochrane Database Syst Rev, 7, p. CD000934; Koh, Y., Hegney, D., Drury, V., Nurses' perceptions of risk from emerging respiratory infectious diseases: A Singapore study (2012) Int J Nurs Pract, 18, pp. 195-204; Sarikaya, O., Erbaydar, T., Avian influenza outbreak in Turkey through health personnel's views: A qualitative study (2007) BMC Public Health, 7, p. 330; Baxter, P., Jack, S., Qualitative case study methodology: Study design and implementation for novice researchers (2008) The Qualitative Report, 13, pp. 544-559; Moore, G.F., Audrey, S., Barker, M., Process evaluation of complex interventions: Medical research council guidance (2015) BMJ, 350, p. h1258; Miles, M.B., Huberman, A.M., Qualitative data analysis: An expanded sourcebook (1994) Methodology, , 2nd edn. California: Sage; Berwick, D.M., James, B., Coye, M.J., Connections between quality measurement and improvement (2003) Medical Care, 41, pp. 1-30; Michael Stoto, P., Klaiman, T., (2012) Getting from What to Why: Using Qualitative Methods in Public Health Systems Research, , Orlando, Florida: AcademyHealth's, 2012 PHSR Interest Group Annual Meeting in Orlando, Florida; Mumford, M.D., Friedrich, T.L., Caughron, J.J., Leader cognition in real-world settings: How do leaders think about crises? (2007) The Leadership Quarterly, 18, pp. 515-543; Klein, K.J., Ziegert, J.C., Knight, A.P., Dynamic delegation: Shared, hierarchical, and deindividualized leadership in extreme action teams (2006) Administrative Science Quarterly, 51, pp. 590-621; Friedrich, T., Schuelke, M.J., Ruark, G.A., (2011) A Framework for Understanding Collective Leadership: The Selective Utilization of Leader and Team Expertise Within Networks, , Army Research Institute; Brown, J.S., (2005) Storytelling in Organizations: Why Storytelling Is Transforming 21st Century Organizations and Management, , Routledge; Clark, A.M., What are the components of complex interventions in healthcare? Theorizing approaches to parts, powers and the whole intervention (2013) Soc Sci Med, 93, pp. 185-193; Berson, Y., Avolio, B.J., Transformational leadership and the dissemination of organizational goals: A case study of a telecommunication firm (2004) The Leadership Quarterly, 15, pp. 625-646; Boies, K., Howell, J.M., Leader-member exchange in teams: An examination of the interaction between relationship differentiation and mean lmx in explaining team-level outcomes (2006) The Leadership Quarterly, 17, pp. 246-257; Parmer, J., Baur, C., Eroglu, D., Crisis and emergency risk messaging in mass media news stories: Is the public getting the information they need to protect their health? (2016) Health Commun, 31, pp. 1215-1222; Vos, S.C., Buckner, M.M., Social media messages in an emerging health crisis: Tweeting bird flu (2016) J Health Commun, 21, pp. 301-308; Chan, A.O., Kee, J.P., Chan, Y.H., Awareness and utilization of peer support programs in Singapore public general hospitals (2012) Int J Emerg Ment Health, 14, pp. 217-223; Camargo, A.L., Maluf Neto, A., Colman, F.T., Development of psychiatric risk evaluation checklist and routine for nurses in a general hospital: Ethnographic qualitative study (2015) Sao Paulo Med J, 133, pp. 350-357; Patel, A.S., Harrison, A., Bruce-Jones, W., Evaluation of the risk assessment matrix: A mental health triage tool (2009) Emerg Med J, 26, pp. 11-14; Abramowitz, S.A., Hipgrave, D.B., Witchard, A., Lessons from the west Africa ebola epidemic: A systematic review of epidemiological and social and behavioral science research priorities (2018) J Infect Dis, 218, pp. 1730-1738; Johnson, G.A., Vindrola-Padros, C., Rapid qualitative research methods during complex health emergencies: A systematic review of the literature (2017) Soc Sci Med, 189, pp. 63-75; Broom, J., Broom, A., Bowden, V., Ebola outbreak preparedness planning: A qualitative study of clinicians' experiences (2017) Public Health, 143, pp. 103-108","Al Knawy, B.A.; Department of Medicine, King Abdulaziz Medical CitySaudi Arabia; email: knawyb@ngha.med.sa",,"BMJ Publishing Group",20446055,,,"31061009","English","BMJ Open",Article,"Final",Open Access,Scopus,2-s2.0-85065495408 "Aydin Köker S., Demiraǧ B., Tahta N., Bayram N., Oymak Y., Karapinar T.H., Gözmen S., Düzgöl M., Erçan Bozyer H., Vergin C., Devrim I.","55898833100;24398463100;57205597253;57197740451;24725291500;50161759700;8240542100;57189220026;57205602880;6603060666;11939223100;","A 3-Year Retrospective Study of the Epidemiology of Acute Respiratory Viral Infections in Pediatric Patients with Cancer Undergoing Chemotherapy",2019,"Journal of Pediatric Hematology/Oncology","41","4",,"e242","e246",,3,"10.1097/MPH.0000000000001418","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060697377&doi=10.1097%2fMPH.0000000000001418&partnerID=40&md5=520991bc42f9e515c9a6a85059780229","Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Pediatric Infection, Turkey; Pediatrics, Dr. Behçet Uz Children's Hospital, Izmir, Turkey","Aydin Köker, S., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Demiraǧ, B., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Tahta, N., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Bayram, N., Pediatric Infection, Turkey; Oymak, Y., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Karapinar, T.H., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Gözmen, S., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Düzgöl, M., Pediatric Infection, Turkey; Erçan Bozyer, H., Pediatrics, Dr. Behçet Uz Children's Hospital, Izmir, Turkey; Vergin, C., Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s Hospital, Izmir, 35350, Turkey; Devrim, I., Pediatric Infection, Turkey","Background:Acute viral respiratory infections are common causes of febrile episodes in children. There are still limited data about distribution of acute viral respiratory infections in children with cancer.Objective:The first aim of this study was to evaluate the viral etiology and seasonality of acute viral respiratory infection in pediatric patients with cancer in a 3-year study. Our second aim was to evaluate the impact of viral infections on delaying the patients' chemotherapy or radiotherapy.Materials and Methods:This cross-sectional study was conducted from January 2014 to July 2017. Nasopharyngeal aspirates were analyzed in patients younger than 21 years with acute respiratory infections. Patients were treated in the Pediatric Hematology and Oncology Department of Dr. Behçet Uz Children's Hospital with real-time multiplex polymerase chain reaction. Data were analyzed to determine the frequency and seasonality of infections. The χ 2 or the Fisher exact tests were used.Results:A total of 219 samples of nasopharyngeal aspirates and blood were analyzed. The mean patient age was 76.8±59.3 months, with 46.3% female and 53.7% male children in a total of 108 patients. Of this total, 55% (60/108 cases) had multiple acute respiratory infections. Acute lymphoblastic leukemia (48.1%) was the most prevalent disease. The 3 most prevalent viruses were human rhinovirus (HRV) (33.1%), parainfluenza (PI) (18.7%), and coronavirus (CoV) (14.8%). In terms of the seasonal distribution of viruses, PI was most common in winter 2014, HRV in spring 2014, HRV in fall 2014, PI in winter 2015 and summer 2015, CoV in spring 2015, HRV in fall 2015, both influenza and HRV in winter 2016, both human metapneumovirus and bocavirus in spring 2016, HRV in summer 2016, both HRV and PI in fall 2016, both respiratory syncytial virus and influenza in winter 2017, HRV in spring 2017, and both HRV and adenovirus in summer 2017. The mean duration of neutropenia for patients with viral respiratory infection was 17.1±13.8 (range: 2 to 90) days. The mean duration of symptoms of viral respiratory infection was 6.8±4.2 (range: 2 to 31) days. A delay in chemotherapy treatment owing to viral respiratory infection was detected in 73 (33.3%) patients. The mean duration of delay in chemotherapy treatment was 9.6±5.4 (range: 3 to 31) days.Conclusions:In conclusion, we report our 3-year experience about the frequency and seasonality of respiratory viruses in children with cancer. © 2018 Wolters Kluwer Health, Inc. All rights reserved.","acute respiratory infection; children with cancer; viruses","acute lymphoblastic leukemia; Adenoviridae; Article; blood analysis; Bocaparvovirus; cancer chemotherapy; child; childhood cancer; Coronavirinae; cross-sectional study; disease duration; female; human; Human metapneumovirus; Human respiratory syncytial virus; Human rhinovirus; Influenza virus; major clinical study; male; nasopharyngeal aspiration; neutropenia; nonhuman; Paramyxovirinae; priority journal; retrospective study; seasonal variation; therapy delay; viral respiratory tract infection; adolescent; complication; neoplasm; preschool child; prevalence; respiratory tract infection; season; virology; virus infection; Adolescent; Child; Child, Preschool; Cross-Sectional Studies; Female; Humans; Male; Neoplasms; Prevalence; Respiratory Tract Infections; Retrospective Studies; Seasons; Virus Diseases","(1992) Programme for the Control of Acute Respiratory Infections: Fifth Programme Report 1990-1991, , World Health Organization (WHO) Geneva: WHO; Mackall, C.L., T-cell immunodeficiency following cytotoxic antineoplastic therapy: A review (1999) Oncologist., 4, pp. 370-384; Koskenvuo, M., Möttönen, M., Rahiala, J., Respiratory viral infections in children with leukemia (2008) Pediatr Infect Dis J., 27, pp. 974-980; Srinivasan, A., Gu, Z., Smith, T., Prospective detection of respiratory pathogens in symptomatic children with cancer (2013) Pediatr Infect Dis J., 32, pp. 99-104; Ljubin-Sternak, S., Marijan, T., Ivković-Jureković, I., Etiology and clinical characteristics of single and multiple respiratory virus infections diagnosed in croatian children in two respiratory seasons (2016) J Pathog., 2016, pp. 2168780-2168788; Benites, E.C., Cabrini, D.P., Silva, A.C., Acute respiratory viral infections in pediatric cancer patients undergoing chemotherapy (2014) J Pediatr (Rio J)., 90, pp. 370-376; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev., 23, pp. 74-98; Sloots, T.P., Whiley, D.M., Lambert, S.B., Emerging respiratory agents: New viruses for old diseases? (2008) J Clin Virol., 42, pp. 233-243; Feuillet, F., Lina, B., Rosa-Calatrava, M., Ten years of human metapneumovirus research (2012) J Clin Virol., 53, pp. 97-105; He, Y., Lin, G.Y., Wang, Q., A 3 year prospective study of the epidemiology of acute respiratory viral infections in hospitalized children in Shenzhen, China (2014) Influenza Other Respir Viruses., 8, pp. 443-451; Do, A.H., Van Doorn, H.R., Nghiem, M.N., Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008 (2011) PLoS ONE., 6, p. e18176; Stefanska, I., Romanowska, M., Donevski, S., Coinfections with influenza and other respiratory viruses (2013) Adv Exp Med Biol., 756, pp. 291-301; Maeng, S.H., Yoo, H.S., Choi, S.H., Impact of parainfluenza virus infection in pediatric cancer patients (2012) Pediatr Blood Cancer., 59, pp. 708-710; Özdemir, N., Celkan, T., Midilli, K., Novel influenza a (H1N1) infection in a pediatric hematology oncology clinic during the 2009-2010 pandemia (2011) Pediatr Hematol Oncol., 28, pp. 288-293; Tavil, B., Azik, F., Culha, V., Pandemic H1N1 influenza infection in children with acute leukemia: A single-center experience (2012) J Pediatr Hematol Oncol., 34, pp. 48-50; Peng, J., Kong, W., Guo, D., The epidemiology and etiology of influenza-like illness in Chinese children from 2008 to 2010 (2012) J Med Virol., 84, pp. 672-678; Margaret, I.P., Nelson, E.A.S., Cheuk, E.S.C., Pediatric hospitalization of acute respiratory tract infections with human bocavirus in Hong Kong (2008) J Clin Virol., 42, pp. 72-74","Aydin Köker, S.; Departments of Pediatric Hematology and Oncology, Dr. Behcet Uz Children s HospitalTurkey; email: drsultanaydin@hotmail.com",,"Lippincott Williams and Wilkins",10774114,,JPHOF,"30688827","English","J. Pediatr. Hematol. Oncol.",Article,"Final",,Scopus,2-s2.0-85060697377 "Yip L., Finn M., Granados A., Prost K., McGeer A., Gubbay J.B., Scott J., Mubareka S.","57208641927;57208654997;55362855400;57207689386;7006664445;6603333644;57202359575;14028762300;","Influenza virus RNA recovered from droplets and droplet nuclei emitted by adults in an acute care setting",2019,"Journal of Occupational and Environmental Hygiene","16","5",,"341","348",,,"10.1080/15459624.2019.1591626","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065408121&doi=10.1080%2f15459624.2019.1591626&partnerID=40&md5=b072a29cb3575479995d7b359337c833","Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Public Health Ontario, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Sinai Health System, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada","Yip, L., Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Finn, M., Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Granados, A., Public Health Ontario, Toronto, ON, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Prost, K., Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; McGeer, A., Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, Sinai Health System, Toronto, ON, Canada; Gubbay, J.B., Public Health Ontario, Toronto, ON, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Scott, J., Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Mubareka, S., Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada","Transmission in hospital settings of seasonal influenza viruses and novel agents such as the Middle East respiratory syndrome coronavirus (MERS-CoV) is well-described but poorly understood. The characterization of potentially infectious bio-aerosols in the healthcare setting remains an important yet ill-defined factor in the transmission of respiratory viruses. Empiric data describing the distribution of bio-aerosols enable discernment of potential exposure risk to respiratory viruses. We sought to determine the distribution of influenza virus RNA emitted into the air by participants with laboratory-confirmed influenza, and whether these emissions had the potential to reach healthcare workers’ breathing zones. Two-stage cyclone bio-aerosol samplers from the Centers for Disease Control and Prevention–National Institute for Occupational Safety and Health were placed 0.5–1.0 m (near field) and 2.1–2.5 m (far field) from infected patient participants, as well as in the corridor immediately outside their rooms. In addition, healthcare worker participants providing care to infected participants were recruited to wear a polytetrafluoroethylene (PTFE) filter cassette in their breathing zones. Viral RNA was detected from the air emitted by 37.5% of the 16 participants infected with influenza virus and distributed both in near and far fields and in all tested particle sizes (<1 µm, 1–4 µm, and >4 µm). Viral RNA was recovered in droplet nuclei and beyond 1 m from naturally-infected participants in the healthcare setting and from the breathing zone of one healthcare worker. There was no correlation between patient participant nasal viral load and recovery of viral RNA from the air, and we did not identify any significant association between RNA detection from the air and patient demographics or clinical presentation. A more substantial study is required to identify patient determinants of virus emission into the air and delineate implications for evidence-based policy for prevention and control. © 2019, © 2019 JOEH, LLC.","Bio-aerosols; exposure; healthcare worker; respiratory virus",,"Koh, D., Lim, M.K., Chia, S.E., SARS: Health care work can be hazardous to health (2003) Occup. Med. (Lond), 53 (4), pp. 241-243; Lim, M.K., Koh, D., SARS and occupational health in the air (2003) Occup. Environ. Med., 60 (8), pp. 539-540; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah—A link to health care facilities (2015) N. Engl. J. Med., 372 (9), pp. 846-854; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388 (10048), pp. 994-1001; Bialek, S.R., Allen, D., Alvarado-Ramy, F., First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014 (2014) MMWR Morb. Mortal. Wkly. Rep., 63 (19), pp. 431-436; Alraddadi, B.M., Al-Salmi, H.S., Jacobs-Slifka, K., Risk factors for Middle East Respiratory Syndrome Coronavirus infection among healthcare personnel (2016) Emerg. Infect. Dis., 22 (11), pp. 1915-1920; Kim, S.H., Chang, S.Y., Sung, M., Extensive viable Middle East Respiratory Syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin. Infect. Dis, 63 (3), pp. 363-369; Chowell, G., Abdirizak, F., Lee, S., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Med, 13 (1), p. 210; Taylor, G., Mitchell, R., McGeer, A., Healthcare-associated influenza in Canadian hospitals from 2006 to 2012 (2014) Infect. Control. Hosp. Epidemiol., 35 (2), pp. 169-175; Rule, A.M., Apau, O., Ahrenholz, S.H., Healthcare personnel exposure in an emergency department during influenza season (2018) PLoS One, 13 (8); Ahrenholz, S.H., Brueck, S.E., Rule, A.M., Assessment of environmental and surgical mask contamination at a student health center — 2012-2013 influenza season (2018) J. Occup. Environ. Hyg., 15 (9), pp. 664-675; Bischoff, W.E., Swett, K., Leng, I., Peters, T.R., Exposure to influenza virus aerosols during routine patient care (2013) J Infect Dis, 207 (7), pp. 1037-1046; Lindsley, W.G., Blachere, F.M., Davis, K.A., Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic (2010) Clin. Infect. Dis, 50 (5), pp. 693-698; Leung, N.H., Zhou, J., Chu, D.K., Quantification of influenza virus RNA in aerosols in patient rooms (2016) PLoS One, 11 (2); Bridges, C.B., Kuehnert, M.J., Hall, C.B., Transmission of influenza: Implications for control in health care settings (2003) Clin. Infect. Dis., 37 (8), pp. 1094-1101; Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C., Gardam, M., Transmission of influenza A in human beings (2007) Lancet Infect. Dis., 7 (4), pp. 257-265; Tellier, R., Review of aerosol transmission of influenza A virus (2006) Emerg. Infect. Dis., 12 (11), pp. 1657-1662; Cao, G., Noti, J.D., Blachere, F.M., Lindsley, W.G., Beezhold, D.H., Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler (2011) J. Environ. Monit., 13 (12), pp. 3321-3328; Mubareka, S., Granados, A., Naik, U., Influenza virus emitted by naturally-infected hosts in a healthcare setting (2015) J. Clin. Virol., 73, pp. 105-107; http://www.who.int/csr/resources/publications/swineflu/realtimeptpcr/en/, Emergencies preparedness, response. (accessed August 4, 2017; Granados, A., Petrich, A., McGeer, A., Gubbay, J.B., Measuring influenza RNA quantity after prolonged storage or multiple freeze/thaw cycles (2017) J. Virol. Methods, 247, pp. 45-50; Lee, H.K., Loh, T.P., Lee, C.K., Tang, J.W., Chiu, L., Koay, E.S., A universal influenza A and B duplex real-time RT-PCR assay (2012) J. Med. Virol., 84 (10), pp. 1646-1651; Selvaraju, S.B., Selvarangan, R., Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses (2010) J. Clin. Microbiol., 48 (11), pp. 3870-3875; Lu, X., Holloway, B., Dare, R.K., Real-time reverse transcription-PCR assay for comprehensive detection of human rhinoviruses (2008) J. Clin. Microbiol., 46 (2), pp. 533-539; Killingley, B., Greatorex, J., Digard, P., The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: Implications for infection prevention and control (2016) J. Infect. Public Health, 9 (3), pp. 278-288; Lindsley, W.G., Blachere, F.M., Thewlis, R.E., Measurements of airborne influenza virus in aerosol particles from human coughs (2010) PLoS One, 5 (11); Fabian, P., McDevitt, J.J., DeHaan, W.H., Influenza virus in human exhaled breath: An observational study (2008) PLoS One, 3 (7); Lindsley, W.G., Pearce, T.A., Hudnall, J.B., Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness (2012) J. Occup. Environ. Hyg., 9 (7), pp. 443-449; Milton, D.K., Fabian, M.P., Cowling, B.J., Grantham, M.L., McDevitt, J.J., Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks (2013) PLoS Pathog., 9 (3), p. e1003205; Lindsley, W.G., Blachere, F.M., Beezhold, D.H., Viable influenza A virus in airborne particles expelled during coughs versus exhalations (2016) Influenza Other Respir. Viruses, 10 (5), pp. 404-413; Lindsley, W.G., Noti, J.D., Blachere, F.M., Viable influenza A virus in airborne particles from human coughs (2015) J. Occup. Environ. Hyg, 12 (2), pp. 107-113; Yan, J., Grantham, M., Pantelic, J., Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community (2018) Proc. Natl. Acad. Sci. USA., 115 (5), pp. 1081-1086; Brown, J.R., Tang, J.W., Pankhurst, L., Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling (2015) J. Hosp. Infect., 91 (3), pp. 278-281; Saira, K., Lin, X., DePasse, J.V., Sequence analysis of in vivo defective interfering-like RNA of influenza A H1N1 pandemic virus (2013) J. Virol., 87 (14), pp. 8064-8074; Ke, R., Aaskov, J., Holmes, E.C., Lloyd-Smith, J.O., Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses (2013) PLoS Pathog., 9 (2), p. e1003193; Tang, J.W., Hoyle, E., Moran, S., Pareek, M., Near-patient sampling to assist infection control — A case report and discussion (2018) Int. J. Environ. Res. Public Health, 15 (2). , 238; Jones, R.M., Xia, Y., Annual burden of occupationally-acquired influenza infections in hospitals and emergency departments in the United States (2018) Risk. Anal., , 38, (3)442–453; Turnberg, W., Daniell, W., Seixas, N., Appraisal of recommended respiratory infection control practices in primary care and emergency department settings (2008) Am. J. Infect. Control., 36 (4), pp. 268-275; May, L., Lung, D., Harter, K., An intervention to improve compliance with transmission precautions for influenza in the emergency department: successes and challenges (2012) J. Emerg. Med., 42 (1), pp. 79-85; Longtin, Y., Akakpo, C., Rutschmann, O.T., Pittet, D., Sax, H., Evaluation of patients' mask use after the implementation of cough etiquette in the emergency department (2009) Infect. Control. Hosp. Epidemiol., 30 (9), pp. 904-908","Mubareka, S.; 2075 Bayview Ave suite B103Canada; email: samira.mubareka@sunnybrook.ca",,"Taylor and Francis Inc.",15459624,,JOEHA,"31050610","English","J. Occup. Environ. Hyg.",Article,"Final",,Scopus,2-s2.0-85065408121 "Sun Y., Cheng Y., Lin P., Zhang H., Yi L., Tong M., Cao Z., Li S., Cheng S., Wang J.","57190219442;54408034900;56729641900;57196154416;35345855800;57206512365;57129571800;36342483800;35434455300;35436702700;","Simultaneous detection and differentiation of canine parvovirus and feline parvovirus by high resolution melting analysis",2019,"BMC Veterinary Research","15","1", 141,"","",,,"10.1186/s12917-019-1898-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065595865&doi=10.1186%2fs12917-019-1898-5&partnerID=40&md5=50d115bc67c4c7f47da03e978df9040f","Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China","Sun, Y., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Cheng, Y., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Lin, P., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Zhang, H., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Yi, L., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Tong, M., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Cao, Z., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Li, S., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Cheng, S., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China; Wang, J., Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Street, Jingyue District, Changchun, 130112, China","Background: Canine parvovirus (CPV) and feline parvovirus (FPV) are causative agents of diarrhea in dogs and cats, which manifests as depression, vomiting, fever, loss of appetite, leucopenia, and diarrhea in young animals. CPV and FPV can single or mixed infect cats and cause disease. To diagnose sick animals effectively, an effective virus diagnostic and genome typing method with high sensitivity and specificity is required. Results: In this study, a conserved segment containing one SNP A4408C of parvovirus was used for real-time PCR amplification. Subsequently, data were auto-analyzed and plotted using Applied Biosystems® High Resolution Melt Software v3.1. Results showed that CPV and FPV can be detected simultaneously in a single PCR reaction. No cross-reactions were observed with canine adenovirus, canine coronavirus, and canine distemper virus. The assay had a detection limit of 4.2 genome copies of CPV and FPV. A total of 80 clinical samples were subjected to this assay, as well as to conventional PCR-sequence assay and virus isolation. Results showed that the percentage of agreement of the assay and other methods are high. Conclusions: In short, we have developed a diagnostic test for the accurate detection and differentiation of CPV and FPV in fecal samples, which is also cost effective. © 2019 The Author(s).","Canine parvovirus; Differentiation; Feline parvovirus; HRM; Simultaneous detection","animal experiment; Article; Canine adenovirus; Canine coronavirus; Canine distemper virus; Canine parvovirus; cat; diarrhea; DNA sequence; dog; gene amplification; gene mutation; genotype; high resolution melting analysis; nonhuman; Parvoviridae; plasmid; polymerase chain reaction; real time polymerase chain reaction; sensitivity and specificity; single nucleotide polymorphism; virus detection; virus isolation; Canine parvovirus; classification; DNA denaturation; Feline panleukopenia virus; genetics; molecular diagnosis; parvovirus infection; transition temperature; veterinary medicine; virology; Feline Panleukopenia Virus; Molecular Diagnostic Techniques; Nucleic Acid Denaturation; Parvoviridae Infections; Parvovirus, Canine; Transition Temperature","Decaro, N., Buonavoglia, C., Canine parvovirus - A review of epidemiological and diagnostic aspects, with emphasis on type 2c (2012) Vet Microbiol, 155 (1), pp. 1-12. , 1:CAS:528:DC%2BC38XovFOltA%3D%3D; Kailasan, S., Agbandje-Mckenna, M., Parrish, C.R., Parvovirus family conundrum: What makes a killer? (2015) Annu Rev Virol, 2 (1), pp. 425-450. , 1:CAS:528:DC%2BC2MXhvVSgtrvK; Cotmore, S.F., Agbandje-Mckenna, M., Chiorini, J.A., Mukha, D.V., Pintel, D.J., Qiu, J., Soderlund-Venermo, M., Gatherer, D., The family Parvoviridae (2014) Arch Virol, 159 (5), pp. 1239-1247. , 1:CAS:528:DC%2BC3sXhslCls7fM; Johnson, R.H., Margolis, G., Kilham, L., Identity of feline Ataxia virus with feline Panleucopenia virus (1967) Nature, 214 (5084), p. 175. , 1:STN:280:DyaF2s3gvF2htg%3D%3D; Wang, J., Lin, P., Zhao, H., Cheng, Y., Jiang, Z., Zhu, H., Wu, H., Cheng, S., Continuing evolution of canine parvovirus in China: Isolation of novel variants with an Ala5Gly mutation in the VP2 protein (2016) Infect Genet Evol, 38, pp. 73-78. , 1:CAS:528:DC%2BC28XjtFGitw%3D%3D; Truyen, U., Parrish, C.R., Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: Distinct host cell tropisms of each virus in vitro and in vivo (1992) J Virol, 66 (9), pp. 5399-5408. , 1:STN:280:DyaK38zmsFWhuw%3D%3D 1323703 289096; Shackelton, L.A., Parrish, C.R., Truyen, U., Holmes, E.C., High rate of viral evolution associated with the emergence of carnivore parvovirus (2005) Proc Natl Acad Sci U S A, 102 (2), pp. 379-384. , 1:CAS:528:DC%2BD2MXptFSksQ%3D%3D; Ikeda, Y., Mochizuki, M., Naito, R., Nakamura, K., Miyazawa, T., Mikami, T., Takahashi, E., Predominance of canine parvovirus (CPV) in unvaccinated cat populations and emergence of new antigenic types of CPVs in cats (2000) Virology, 278 (1), pp. 13-19. , 1:CAS:528:DC%2BD3cXosFGnsrc%3D; Clegg, S.R., Coyne, K.P., Dawson, S., Spibey, N., Gaskell, R.M., Radford, A.D., Canine parvovirus in asymptomatic feline carriers (2012) Vet Microbiol, 157 (1-2), pp. 78-85. , 1:CAS:528:DC%2BC38Xjs1GgtLg%3D; Battilani, M., Balboni, A., Giunti, M., Prosperi, S., Co-infection with feline and canine parvovirus in a cat (2013) Vet Ital, 49 (1), pp. 127-129. , 23564594; Ohshima, T., Mochizuki, M., Evidence for recombination between feline panleukopenia virus and canine parvovirus type 2 (2009) J Vet Med Sci, 71 (4), pp. 403-408; Mochizuki, M., Ohshima, T., Une, Y., Yachi, A., Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures (2008) J Vet Med Sci, 70 (12), pp. 1305-1314. , 1:CAS:528:DC%2BD1MXhsFGksr4%3D; Nakamura, M., Nakamura, K., Miyazawa, T., Tohya, Y., Mochizuki, M., Akashi, H., Monoclonal antibodies that distinguish antigenic variants of canine parvovirus (2003) Clin Diagn Lab Immunol, 10 (6), pp. 1085-1089. , 1:CAS:528:DC%2BD3sXpslGns70%3D 14607871 262441; Parrish, C.R., Aquadro, C.F., Strassheim, M.L., Evermann, J.F., Sgro, J.Y., Mohammed, H.O., Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus (1991) J Virol, 65 (12), pp. 6544-6552. , 1:CAS:528:DyaK3sXitV2jt7c%3D 1942246 250707; Decaro, N., Desario, C., Lucente, M.S., Amorisco, F., Campolo, M., Elia, G., Cavalli, A., Buonavoglia, C., Specific identification of feline panleukopenia virus and its rapid differentiation from canine parvoviruses using minor groove binder probes (2008) J Virol Methods, 147 (1), pp. 67-71. , 1:CAS:528:DC%2BD2sXhsVCjtrvL; Wu, D., Fu, X., Wen, Y., Liu, B., Deng, Z., Dai, L., Tan, D., High-resolution melting combines with Bayes discriminant analysis: A novel hepatitis C virus genotyping method (2017) Clin Exp Med, 17 (3), pp. 325-332. , 1:CAS:528:DC%2BC28XotFahs74%3D; Lieveld, M., Carregosa, A., Benoy, I., Redzic, N., Berth, M., Vanden Broeck, D., A high resolution melting (HRM) technology-based assay for cost-efficient clinical detection and genotyping of herpes simplex virus (HSV)-1 and HSV-2 (2017) J Virol Methods, 248, pp. 181-186. , 1:CAS:528:DC%2BC2sXht1CjtL3P; Erster, O., Stram, R., Menasherow, S., Rubistein-Giuni, M., Sharir, B., Kchinich, E., Stram, Y., High-resolution melting (HRM) for genotyping bovine ephemeral fever virus (BEFV) (2017) Virus Res, 229, pp. 1-8. , 1:CAS:528:DC%2BC28XitFWntLvK; Garigliany, M., Gilliaux, G., Jolly, S., Casanova, T., Bayrou, C., Gommeren, K., Fett, T., Cassart, D., Feline panleukopenia virus in cerebral neurons of young and adult cats (2016) BMC Vet Res, 12, p. 28; Brindhalakshmi, B., Mukhopadhyay, H.K., Antony, P.X., Thanislass, J., Vijayalakshmi, P., Mangadevi, N., Isolation and molecular characterization of canine and feline parvovirus strains-an updated review (2016) J Dairy Vet Anim Res., 3 (5), pp. 164-169; Chang, S.F., Sgro, J.Y., Parrish, C.R., Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties (1992) J Virol, 66 (12), pp. 6858-6867. , 1:CAS:528:DyaK3sXhvFWiuw%3D%3D 1331498 240290; Tinky, S.S., Ambily, R., Nair, S.R., Mini, M., Utility of a rapid immunochromatographic strip test in detecting canine parvovirus infection compared with polymerase chain reaction (2015) Veterinary World, 8 (4), pp. 523-526. , 1:CAS:528:DC%2BC28Xoslerur0%3D; He, J., Wang, Y., Sun, S., Zhang, X., Evaluation of chicken IgY generated against canine parvovirus viral-like particles and development of enzyme-linked immunosorbent assay and Immunochromatographic assay for canine parvovirus detection (2015) Viral Immunol, 28 (9), pp. 489-494. , 1:CAS:528:DC%2BC2MXhslKhu73L; Kim, Y.K., Lim, S.I., Choi, S., Cho, I.S., Park, E.H., An, D.J., A novel assay for detecting canine parvovirus using a quartz crystal microbalance biosensor (2015) J Virol Methods, 219, pp. 23-27. , 1:CAS:528:DC%2BC2MXlsVWjtLs%3D; Reed, G.H., Wittwer, C.T., Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis (2004) Clin Chem, 50 (10), pp. 1748-1754. , 1:CAS:528:DC%2BD2cXotVylt78%3D; Tamburro, M., Ripabelli, G., High resolution melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: A comprehensive review of the literature (2017) Ann Ig, 29 (4), pp. 293-316. , 1:STN:280:DC%2BC1cnjslKjtA%3D%3D 28569339; Liew, M., Pryor, R., Palais, R., Meadows, C., Erali, M., Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons (2004) Clin Chem, 50 (7), pp. 1156-1164. , 1:CAS:528:DC%2BD2cXlsFWgtbk%3D; Sun, Y., Cheng, Y., Lin, P., Yi, L., Tong, M., Cao, Z., Wang, G., Yuan, W., A multiplex TaqMan real-time PCR for detection and differentiation of four antigenic types of canine parvovirus in China (2018) Mol Cell Probes, 38, pp. 7-12. , 1:CAS:528:DC%2BC1cXjvVCmtbg%3D; Cheng, Y., Wang, J., Zhang, M., Zhao, J., Shao, X., Ma, Z., Zhao, H., Wu, H., Isolation and sequence analysis of a canine distemper virus from a raccoon dog in Jilin Province, China (2015) Virus Genes, 51 (2), pp. 298-301. , 1:CAS:528:DC%2BC2MXhtlejsbzE; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874. , 1:CAS:528:DC%2BC28XhsF2ltrzN; Wang, J., Cheng, Y., Zhang, M., Zhao, H., Lin, P., Yi, L., Tong, M., Cheng, S., Development of a nanoparticle-assisted PCR (nanoPCR) assay for detection of mink enteritis virus (MEV) and genetic characterization of the NS1 gene in four Chinese MEV strains (2015) BMC Vet Res, 11 (1), p. 1; Wang, H., Jin, H., Li, Q., Zhao, G., Cheng, N., Feng, N., Zheng, X., Li, L., Isolation and sequence analysis of the complete NS1 and VP2 genes of canine parvovirus from domestic dogs in 2013 and 2014 in China (2016) Arch Virol, 161 (2), pp. 385-393. , 1:CAS:528:DC%2BC2MXhvVCqsLnN","Wang, J.; Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, No. 4899, Juye Street, China; email: wangjianke@caas.cn",,"BioMed Central Ltd.",17466148,,,"31077252","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85065595865 "Munyua P.M., Njenga M.K., Osoro E.M., Onyango C.O., Bitek A.O., Mwatondo A., Muturi M.K., Musee N., Bigogo G., Otiang E., Ade F., Lowther S.A., Breiman R.F., Neatherlin J., Montgomery J., Widdowson M.-A.","36094881700;7003876196;48861906600;14039497700;56771464400;57191481811;57190392873;57208722159;36080353200;56574307700;56427841300;7004234928;34567511600;57193142397;35262685400;26429004600;","Successes and challenges of the One Health approach in Kenya over the last decade",2019,"BMC Public Health","19",, 465,"","",,,"10.1186/s12889-019-6772-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065607284&doi=10.1186%2fs12889-019-6772-7&partnerID=40&md5=357a954266183ac52e349855fb631401","Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States; Zoonotic Disease Unit, Kenya Ministry of Health, Nairobi, Kenya; Zoonotic Disease Unit, Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya; Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA, United States; Emory Global Health Institute, Emory University, Atlanta, GA, United States; Division of Global Health Protection, US Centers for Disease Control and Prevention, Dakar, Senegal","Munyua, P.M., Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya; Njenga, M.K., Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States; Osoro, E.M., Zoonotic Disease Unit, Kenya Ministry of Health, Nairobi, Kenya; Onyango, C.O., Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya; Bitek, A.O., Zoonotic Disease Unit, Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya; Mwatondo, A., Zoonotic Disease Unit, Kenya Ministry of Health, Nairobi, Kenya; Muturi, M.K., Zoonotic Disease Unit, Ministry of Agriculture Livestock and Fisheries, Nairobi, Kenya; Musee, N., Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya; Bigogo, G., Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Otiang, E., Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Ade, F., Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Lowther, S.A., Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya, Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA, United States; Breiman, R.F., Emory Global Health Institute, Emory University, Atlanta, GA, United States; Neatherlin, J., Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya, Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA, United States, Division of Global Health Protection, US Centers for Disease Control and Prevention, Dakar, Senegal; Montgomery, J., Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA, United States; Widdowson, M.-A., Division of Global Health Protection, US Centers for Disease Control and Prevention-Kenya, Nairobi, Kenya, Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA, United States","More than 75% of emerging infectious diseases are zoonotic in origin and a transdisciplinary, multi-sectoral One Health approach is a key strategy for their effective prevention and control. In 2004, US Centers for Disease Control and Prevention office in Kenya (CDC Kenya) established the Global Disease Detection Division of which one core component was to support, with other partners, the One Health approach to public health science. After catalytic events such as the global expansion of highly pathogenic H5N1 and the 2006 East African multi-country outbreaks of Rift Valley Fever, CDC Kenya supported key Kenya government institutions including the Ministry of Health and the Ministry of Agriculture, Livestock, and Fisheries to establish a framework for multi-sectoral collaboration at national and county level and a coordination office referred to as the Zoonotic Disease Unit (ZDU). The ZDU has provided Kenya with an institutional framework to highlight the public health importance of endemic and epidemic zoonoses including RVF, rabies, brucellosis, Middle East Respiratory Syndrome Coronavirus, anthrax and other emerging issues such as anti-microbial resistance through capacity building programs, surveillance, workforce development, research, coordinated investigation and outbreak response. This has led to improved outbreak response, and generated data (including discovery of new pathogens) that has informed disease control programs to reduce burden of and enhance preparedness for endemic and epidemic zoonotic diseases, thereby enhancing global health security. Since 2014, the Global Health Security Agenda implemented through CDC Kenya and other partners in the country has provided additional impetus to maintain this effort and Kenya's achievement now serves as a model for other countries in the region. Significant gaps remain in implementation of the One Health approach at subnational administrative levels; there are sustainability concerns, competing priorities and funding deficiencies. © 2019 The Author(s).","Cross-sectoral collaboration global health security; Zoonosis",,"Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451 (7181), pp. 990-993. , 1:CAS:528:DC%2BD1cXit1ygurg%3D; (2008) One Health: A New Professional Imperative, One Health Initiative Task Force: Final Report, , https://www.avma.org/KB/Resources/Reports/Documents/onehealth_final.pdf, American Veterinary Medical Association July 15 Schaumburg: American Veterinary Medical Association; (2010) People, Pathogens, and Our Planet: Volume One-Towards A One Health Approach for Controlling Zoonotic Diseases, , https://openknowledge.worldbank.org/handle/10986/2844, World Bank World Bank. © World Bank License:CC BY 3.0IG0; (2011) High-level Technical Meeting to Address Health Risks at the Human-animal Interfaces: Mexico City, , http://www.who.int/iris/handle/10665/78100, World Health Organization, Food and Agriculture Organization of the United Nations & World Organization For Animal Health Mexico 15-17 November World Health Organization; 2012; Okello, A.L., Bardosh, K., Smith, J., Welburn, S.C., One health: Past successes and future challenges in three African contexts (2014) PLoS Negl Trop Dis, 8 (5). , e2884; (2016) Economic Survey, , https://www.knbs.or.ke/download/economic-survey-2016/, Kenya National Bureau of Statistics Accessed 12 Apr 2017; Thumbi, S.M., Njenga, M.K., Marsh, T.L., Noh, S., Otiang, E., Munyua, P., Ochieng, L., Audi, A., Linking human health and livestock health: A »one-health» platform for integrated analysis of human health, livestock health, and economic welfare in livestock dependent communities (2015) PLoS One, 10 (3). , e0120761 1:STN:280:DC%2BC2Mnnt1Wmug%3D%3D; Rift Valley fever - East Africa, 1997-1998 (1998) Morb. Mortal. Wkly. Rep, 47 (13), pp. 261-264. , MMWR; Woods, C.W., Karpati, A.M., Grein, T., McCarthy, N., Gaturuku, P., Muchiri, E., Dunster, L., Swanepoel, R., An outbreak of Rift Valley fever in northeastern Kenya, 1997-98 (2002) Emerg Infect Dis, 8 (2), pp. 138-144; Breiman, R.F., Minjauw, B., Sharif, S.K., Ithondeka, P., Njenga, M.K., Rift Valley fever: Scientific pathways toward public health prevention and response (2010) Am J Trop Med Hyg, 83 (2), pp. 1-4; Munyua, P., Murithi, R.M., Wainwright, S., Githinji, J., Hightower, A., Mutonga, D., Macharia, J., Breiman, R.F., Rift Valley fever outbreak in livestock in Kenya, 2006-2007 (2010) Am J Trop Med Hyg, 83 (2), pp. 58-64; Nguku, P.M., Sharif, S.K., Mutonga, D., Amwayi, S., Omolo, J., Mohammed, O., Farnon, E.C., Rao, C., An investigation of a major outbreak of Rift Valley fever in Kenya: 2006-2007 (2010) Am J Trop Med Hyg, 83 (2), pp. 5-13; Mbabu, M., Njeru, I., File, S., Osoro, E., Kiambi, S., Bitek, A., Ithondeka, P., Gogstad, E., Establishing a one health office in Kenya (2014) Pan Afr Med J, 19, p. 106. , 25722779 4337352; National Strategic Plan for the Implemetation of One Health in Kenya 2012-2017, , http://zdukenya.org/wp-content/uploads/2012/09/ZDU_StrategicPlan_updated.pdf, Accessed 22 Mar 2018; Munyua, P., Bitek, A., Osoro, E., Pieracci, E.G., Muema, J., Mwatondo, A., Kungu, M., Njenga, K., Prioritization of zoonotic diseases in Kenya, 2015 (2016) PLoS One, 11 (8). , e0161576; Nsubuga, P., Johnson, K., Tetteh, C., Oundo, J., Weathers, A., Vaughan, J., Elbon, S., Ohuabunwo, C., Field epidemiology and laboratory training programs in sub-Saharan Africa from 2004 to 2010: Need, the process, and prospects (2011) Pan Afr Med J, 10, p. 24; (2015) EMPRES WATCH, 34. , FAO O WHO: Africa-El Niño and increased risk of Rift Valley fever-Warning to countries Rome; El Niño, East Africa, and Rift Valley Fever, , https://www.climate.gov/news-features/understanding-climate/el-ni%C3%B1o-east-africa-and-rift-valley-fever, Accessed 27 Mar 2017; Oyas, H., Holmstrom, L., Kemunto, N.P., Muturi, M., Mwatondo, A., Osoro, E., Bitek, A., Thumbi, S.M., Enhanced surveillane for Rift Valley Fever in livestock during El Nino rains and threat of RVF outbreak, Kenya, 2015-2016 (2018) PLoS Negl Trop Dis, 12 (4). , e0006353; Feikin, D.R., Audi, A., Olack, B., Bigogo, G.M., Polyak, C., Burke, H., Williamson, J., Breiman, R.F., Evaluation of the optimal recall period for disease symptoms in home-based morbidity surveillance in rural and urban Kenya (2010) Int J Epidemiol, 39 (2), pp. 450-458; Feikin, D.R., Olack, B., Bigogo, G.M., Audi, A., Cosmas, L., Aura, B., Burke, H., Breiman, R.F., The burden of common infectious disease syndromes at the clinic and household level from population-based surveillance in rural and urban Kenya (2011) PLoS One, 6 (1). , e16085 1:CAS:528:DC%2BC3MXht1Oitbc%3D; Knobel, D.L., Maina, A.N., Cutler, S.J., Ogola, E., Feikin, D.R., Junghae, M., Halliday, J.E., Cleaveland, S., Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya (2013) Am J Trop Med Hyg, 88 (3), pp. 513-518; Maina, A.N., Farris, C.M., Odhiambo, A., Jiang, J., Laktabai, J., Armstrong, J., Holland, T., O'Meara, W.P., Q fever, scrub typhus, and Rickettsial diseases in children, Kenya, 2011-2012 (2016) Emerg Infect Dis, 22 (5), pp. 883-886; Nakeel, M.J., Arimi, S.M., Kitala, P., Nduhiu, G., Njenga, J.M., Wabacha, J.K., A Sero-epidemiological survey of brucellosis, Q-fever and leptospirosis in livestock and humans and associated risk factors in Kajiado County- Kenya (2016) J Tropical Dis, 4 (3), p. 8; Osoro, E.M., Munyua, P., Omulo, S., Ogola, E., Ade, F., Mbatha, P., Mbabu, M., Maritim, M., Strong association between human and animal Brucella Seropositivity in a linked study in Kenya, 2012-2013 (2015) Am J Trop Med Hyg, 93 (2), pp. 224-231; Decision-support tool for prevention and control of Rift Valley fever epizootics in the greater horn of Africa (2010) Amer J Trop Med Hyg, 83, pp. 75-85. , Support CGfRD; Munyua, P.M., Murithi, R.M., Ithondeka, P., Hightower, A., Thumbi, S.M., Anyangu, S.A., Kiplimo, J., Breiman, R.F., Predictive factors and risk mapping for Rift Valley fever epidemics in Kenya (2016) PLoS One, 11 (1). , e0144570; Hightower, A., Kinkade, C., Nguku, P.M., Anyangu, A., Mutonga, D., Omolo, J., Njenga, M.K., Ombok, M., Relationship of climate, geography, and geology to the incidence of Rift Valley fever in Kenya during the 2006-2007 outbreak (2012) Am J Trop Med Hyg, 86 (2), pp. 373-380; Murithi, R.M., Munyua, P., Ithondeka, P.M., Macharia, J.M., Hightower, A., Luman, E.T., Breiman, R.F., Njenga, M.K., Rift Valley fever in Kenya: History of epizootics and identification of vulnerable districts (2011) Epidemiol Infect, 139 (3), pp. 372-380. , 1:STN:280:DC%2BC3M7ksFKrsQ%3D%3D; Nanyingi, M.O., Munyua, P., Kiama, S.G., Muchemi, G.M., Thumbi, S.M., Bitek, A.O., Bett, B., Njenga, M.K., A systematic review of Rift Valley fever epidemiology 1931-2014 (2015) Infection Ecol Epidemiol, 5, p. 28024; Nderitu, L., Lee, J.S., Omolo, J., Omulo, S., O'Guinn, M.L., Hightower, A., Mosha, F., Nganga, Z., Sequential Rift Valley fever outbreaks in eastern Africa caused by multiple lineages of the virus (2011) J Infect Dis, 203 (5), pp. 655-665; Anyangu, A.S., Gould, L.H., Sharif, S.K., Nguku, P.M., Omolo, J.O., Mutonga, D., Rao, C.Y., Paweska, J.T., Risk factors for severe Rift Valley fever infection in Kenya, 2007 (2010) Am J Trop Med Hyg, 83 (2), pp. 14-21; Dungu, B., Louw, I., Lubisi, A., Hunter, P., Von Teichman, B.F., Bouloy, M., Evaluation of the efficacy and safety of the Rift Valley fever clone 13 vaccine in sheep (2010) Vaccine, 28 (29), pp. 4581-4587. , 1:CAS:528:DC%2BC3cXntlansLY%3D; Njenga, M.K., Njagi, L., Thumbi, S.M., Kahariri, S., Githinji, J., Omondi, E., Baden, A., Ithondeka, P.M., Randomized controlled field trial to assess the immunogenicity and safety of rift valley fever clone 13 vaccine in livestock (2015) PLoS Negl Trop Dis, 9 (3). , e0003550; Von Teichman, B., Engelbrecht, A., Zulu, G., Dungu, B., Pardini, A., Bouloy, M., Safety and efficacy of Rift Valley fever Smithburn and clone 13 vaccines in calves (2011) Vaccine, 29 (34), pp. 5771-5777; Richards, A.L., Jiang, J., Omulo, S., Dare, R., Abdirahman, K., Ali, A., Sharif, S.K., Njenga, M.K., Human infection with rickettsia felis, Kenya (2010) Emerg Infect Dis, 16 (7), pp. 1081-1086; Maina, A.N., Knobel, D.L., Jiang, J., Halliday, J., Feikin, D.R., Cleaveland, S., Ng'Ang'A, Z., Richards, A.L., Rickettsia felis infection in febrile patients, western Kenya, 2007-2010 (2012) Emerg Infect Dis, 18 (2), pp. 328-331; Maina, A.N., Jiang, J., Omulo, S.A., Cutler, S.J., Ade, F., Ogola, E., Feikin, D.R., Mpoke, S., High prevalence of rickettsia africae variants in Amblyomma variegatum ticks from domestic mammals in rural western Kenya: Implications for human health (2014) Vector Borne Zoonotic Dis, 14 (10), pp. 693-702; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Drexler, J.F., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg Infect Dis, 20 (8), pp. 1319-1322. , 1:CAS:528:DC%2BC28XitVGksL7E; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., MERS coronavirus neutralizing antibodies in camels, eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20 (12), pp. 2093-2095; Munyua, P., Lattwein, E., Corman, V.M., Widdowson, M.-A., Njenga, M.K., Murithi, R., Osoro, E., Meyer, B., No Serologic Evidence of Middle East Respiratory Syndrome Coronavirus Infection among Camel Farmers Exposed to Highly Seropositive Camel Herds: A Household Linked Study, Kenya, 2013 (2017) The American Journal of Tropical Medicine and Hygiene, 96 (6), pp. 1318-1324; Halliday, J.E., Knobel, D.L., Allan, K.J., De Cbbm, H.I., Agwanda, B., Cutler, S.J., Olack, B., Hartskeerl, R.A., Urban leptospirosis in Africa: A cross-sectional survey of Leptospira infection in rodents in the Kibera urban settlement, Nairobi, Kenya (2013) Am J Trop Med Hyg, 89 (6), pp. 1095-1102; Halliday, J.E., Knobel, D.L., Agwanda, B., Bai, Y., Breiman, R.F., Cleaveland, S., Njenga, M.K., Kosoy, M., Prevalence and diversity of small mammal-associated Bartonella species in rural and urban Kenya (2015) PLoS Negl Trop Dis, 9 (3). , e0003608; Kosoy, M., Bai, Y., Lynch, T., Kuzmin, I.V., Niezgoda, M., Franka, R., Agwanda, B., Rupprecht, C.E., Bartonella spp. in bats, Kenya (2010) Emerg Infect Dis, 16 (12), pp. 1875-1881; Mosites, E., Aol, G., Otiang, E., Bigogo, G., Munyua, P., Montgomery, J.M., Neuhouser, M.L., Thumbi, S.M., Child height gain is associated with consumption of animal-source foods in livestock-owning households in Western Kenya (2017) Public Health Nutr, 20 (2), pp. 336-345; Mosites, E., Sammons, M., Otiang, E., Eng, A., Noecker, C., Manor, O., Hilton, S., Garland-Lewis, G., Microbiome sharing between children, livestock and household surfaces in western Kenya (2017) PLoS One, 12 (2). , e0171017","Munyua, P.M.; Division of Global Health Protection, US Centers for Disease Control and Prevention-KenyaKenya; email: ikg2@cdc.gov",,"BioMed Central Ltd.",14712458,,,,"English","BMC Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85065607284 "Bunthi C., Baggett H.C., Gregory C.J., Thamthitiwat S., Yingyong T., Paveenkittiporn W., Kerdsin A., Chittaganpitch M., Ruangchira-Urai R., Akarasewi P., Ungchusak K.","54896360000;6602985421;35799654300;24472437000;54384406400;6507608078;24467745700;8731901000;23993953600;6602210290;6701765662;","Enhanced surveillance for severe pneumonia, Thailand 2010-2015",2019,"BMC Public Health","19",, 472,"","",,,"10.1186/s12889-019-6774-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065602479&doi=10.1186%2fs12889-019-6774-5&partnerID=40&md5=2dccb2324ca425588beeaf00a7d05d66","Division of Global Health Protection, Thailand Ministry of Public Health, US Centers for Disease Control and Prevention Collaboration, Tivanond Road, Nonthaburi, 11000, Thailand; Department of Disease Control, Bureau of Epidemiology, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand; National Institute of Health, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand; Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand; Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Global Health Protection, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA 30329, United States","Bunthi, C., Division of Global Health Protection, Thailand Ministry of Public Health, US Centers for Disease Control and Prevention Collaboration, Tivanond Road, Nonthaburi, 11000, Thailand; Baggett, H.C., Division of Global Health Protection, Thailand Ministry of Public Health, US Centers for Disease Control and Prevention Collaboration, Tivanond Road, Nonthaburi, 11000, Thailand, Division of Global Health Protection, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA 30329, United States; Gregory, C.J., Division of Global Health Protection, Thailand Ministry of Public Health, US Centers for Disease Control and Prevention Collaboration, Tivanond Road, Nonthaburi, 11000, Thailand, Division of Global Health Protection, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA 30329, United States; Thamthitiwat, S., Division of Global Health Protection, Thailand Ministry of Public Health, US Centers for Disease Control and Prevention Collaboration, Tivanond Road, Nonthaburi, 11000, Thailand; Yingyong, T., Department of Disease Control, Bureau of Epidemiology, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand; Paveenkittiporn, W., National Institute of Health, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand; Kerdsin, A., Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand; Chittaganpitch, M., National Institute of Health, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand; Ruangchira-Urai, R., Siriraj Hospital, Mahidol University, Bangkok, Thailand; Akarasewi, P., Department of Disease Control, Bureau of Epidemiology, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand; Ungchusak, K., Department of Disease Control, Bureau of Epidemiology, Ministry of Public Health, Tivanond Road, Nonthaburi, 11000, Thailand","Background: The etiology of severe pneumonia is frequently not identified by routine disease surveillance in Thailand. Since 2010, the Thailand Ministry of Public Health (MOPH) and US CDC have conducted surveillance to detect known and new etiologies of severe pneumonia. Methods: Surveillance for severe community-acquired pneumonia was initiated in December 2010 among 30 hospitals in 17 provinces covering all regions of Thailand. Interlinked clinical, laboratory, pathological and epidemiological components of the network were created with specialized guidelines for each to aid case investigation and notification. Severe pneumonia was defined as chest-radiograph confirmed pneumonia of unknown etiology in a patient hospitalized ≤48 h and requiring intubation with ventilator support or who died within 48 h after hospitalization; patients with underlying chronic pulmonary or neurological disease were excluded. Respiratory and pathological specimens were tested by reverse transcription polymerase chain reaction for nine viruses, including Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and 14 bacteria. Cases were reported via a secure web-based system. Results: Of specimens from 972 cases available for testing during December 2010 through December 2015, 589 (60.6%) had a potential etiology identified; 399 (67.8%) were from children aged < 5 years. At least one viral agent was detected in 394 (40.5%) cases, with the most common of single vial pathogen detected being respiratory syncytial virus (RSV) (110/589, 18.7%) especially in children under 5 years. Bacterial pathogens were detected in 341 cases of which 67 cases had apparent mixed infections. The system added MERS-CoV testing in September 2012 as part of Thailand's outbreak preparedness; no cases were identified from the 767 samples tested. Conclusions: Enhanced surveillance improved the understanding of the etiology of severe pneumonia cases and improved the MOPH's preparedness and response capacity for emerging respiratory pathogens in Thailand thereby enhanced global health security. Guidelines for investigation of severe pneumonia from this project were incorporated into surveillance and research activities within Thailand and shared for adaption by other countries. © 2019 The Author(s).","CAP; Community-acquired pneumonia; Global health security; Severe pneumonia; Surveillance",,"Auewarakul, P., An avian influenza H5N1 virus that binds to a human-type receptor (2007) J Virol, 81 (18), pp. 9950-9955. , 1:CAS:528:DC%2BD2sXhtVeht7fP; Chotpitayasunondh, T., Human disease from influenza a (H5N1), Thailand, 2004 (2005) Emerg Infect Dis, 11 (2), pp. 201-209; Fleck, F., How SARS changed the world in less than six months (2003) Bull World Health Organ, 81 (8), pp. 625-626. , 14576896 2572529; Fleck, F., SARS virus returns to China as scientists race to find effective vaccine (2004) Bull World Health Organ, 82 (2), pp. 152-153. , 15042239 2585904; Memish, Z.A., Al-Rabeeah, A.A., Public health management of mass gatherings: The Saudi Arabian experience with MERS-CoV (2013) Bull World Health Organ, 91 (12), pp. 899-899A; Kuiken, T., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) Lancet, 362 (9380), pp. 263-270. , 1:CAS:528:DC%2BD3sXlvVSmsLs%3D; (2014) World Health Organization. Avian Influenza, Fact Sheet, , http://www.who.int/mediacentre/factsheets/avian_influenza/en/, [cited 7 Jul 2017]; (2011) World Health Organization. Cumulative Number of Confirmed Human Cases of Avian Influenza A (H5N1) Reported to WHO, , http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/, [cited 18 Feb 2016]; Hanshaoworakul, W., Severe human influenza infections in Thailand: Oseltamivir treatment and risk factors for fatal outcome (2009) PLoS One, 4 (6), p. e6051; (2016) Population Density (People per Sq. Km of Land Area), , Bank, T.W; Kumnuan Ungchusak, T.Y., Wanchai, A., Nipapan, S., Ubonrat, N., Darin, A., Wanna, H., Sopon, I., Saruvudh, S., Kingdom of Thailand Implementation of Thailand's SRRT (Surveillance and Rapid Response Team) for Outbreak Containment, , https://aseanplus3fetn.net/tree_cd_pdf/kingfdomofthailand.pdf, cited date 7 July 2017; Dibardino, D.M., Yarmus, L.B., Semaan, R.W., Transthoracic needle biopsy of the lung (2015) J Thorac Dis, 7, pp. S304-S316. , 26807279 4700361; Kodani, M., Application of TaqMan low-density arrays for simultaneous detection of multiple respiratory pathogens (2011) J Clin Microbiol, 49 (6), pp. 2175-2182; Corman, V.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17 (39). , https://www.eurosurveillance.org/content/10.2807/ese.17.39.20285-en#header; Kerdsin, A., Development of triplex SYBR green real-time PCR for detecting mycoplasma pneumoniae, Chlamydophila pneumoniae, and legionella spp. Without extraction of DNA (2010) Jpn J Infect Dis, 63 (3), pp. 173-180. , 1:CAS:528:DC%2BC3cXovFCmsrw%3D 20495268; Levine, O.S., Pneumonia etiology research for child health. Introduction (2012) Clin Infect Dis, 54, pp. S87-S88; Levine, O.S., The pneumonia etiology research for child health project: A 21st century childhood pneumonia etiology study (2012) Clin Infect Dis, 54, pp. S93-101; Turner, G.D., The role of postmortem studies in pneumonia etiology research (2012) Clin Infect Dis, 54, pp. S165-S171; Sabanathan, S., Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: Current situation and ongoing challenges (2014) J Epidemiol Community Health, 68 (6), pp. 500-502; Olsen, S.J., Incidence of respiratory pathogens in persons hospitalized with pneumonia in two provinces in Thailand (2010) Epidemiol Infect, 138 (12), pp. 1811-1822. , 1:STN:280:DC%2BC3cbhtl2gsw%3D%3D; Hajjeh, R.A., Surveillance for unexplained deaths and critical illnesses due to possibly infectious causes, United States, 1995-1998 (2002) Emerg Infect Dis, 8 (2), pp. 145-153; Weinberg, G.A., Field evaluation of TaqMan Array card (TAC) for the simultaneous detection of multiple respiratory viruses in children with acute respiratory infection (2013) J Clin Virol, 57 (3), pp. 254-260. , 1:CAS:528:DC%2BC3sXmsFers78%3D; Diaz, M.H., Optimization of multiple pathogen detection using the TaqMan Array card: Application for a population-based study of neonatal infection (2013) PLoS One, 8 (6), p. e66183. , 1:CAS:528:DC%2BC3sXhtVOhsbzM; Saha, S.K., Laboratory methods for determining etiology of neonatal infection at population-based sites in South Asia: The ANISA study (2016) Pediatr Infect Dis J, 35 (5), pp. S16-S22","Bunthi, C.; Division of Global Health Protection, Thailand Ministry of Public Health, US Centers for Disease Control and Prevention Collaboration, Tivanond Road, Thailand; email: uwz4@cdc.gov",,"BioMed Central Ltd.",14712458,,,,"English","BMC Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85065602479 "Lee H., Ren J., Pesavento R.P., Ojeda I., Rice A.J., Lv H., Kwon Y., Johnson M.E.","55644001975;57197794277;10739505100;56708534900;55551013700;57208014467;57208012825;8903066500;","Identification and design of novel small molecule inhibitors against MERS-CoV papain-like protease via high-throughput screening and molecular modeling",2019,"Bioorganic and Medicinal Chemistry","27","10",,"1981","1989",,,"10.1016/j.bmc.2019.03.050","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063591129&doi=10.1016%2fj.bmc.2019.03.050&partnerID=40&md5=ae95424d9caa33d6a0025ecf8ea8a462","Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States","Lee, H., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Ren, J., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Pesavento, R.P., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Ojeda, I., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Rice, A.J., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Lv, H., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Kwon, Y., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States; Johnson, M.E., Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. AshlandIL 60607, United States","The development of new therapeutic agents against the coronavirus causing Middle East Respiratory Syndrome (MERS) is a continuing imperative. The initial MERS-CoV epidemic was contained entirely through public health measures, but episodic cases continue, as there are currently no therapeutic agents effective in the treatment of MERS-CoV, although multiple strategies have been proposed. In this study, we screened 30,000 compounds from three different compound libraries against one of the essential proteases, the papain-like protease (PL pro ), using a fluorescence-based enzymatic assay followed by surface plasmon resonance (SPR) direct binding analysis for hit confirmation. Mode of inhibition assays and competition SPR studies revealed two compounds to be competitive inhibitors. To improve upon the inhibitory activity of the best hit compounds, a small fragment library consisting of 352 fragments was screened in the presence of each hit compound, resulting in one fragment that enhanced the IC 50 value of the best hit compound by 3-fold. Molecular docking and MM/PBSA binding energy calculations were used to predict potential binding sites, providing insight for design and synthesis of next-generation compounds. © 2019","Fragment screening; High-throughput screening; Middle East Respiratory Syndrome Coronavirus (MERS-CoV); Molecular modeling; Papain-like protease; Small molecule inhibitor","antivirus agent; benzene sulfonamide derivative; enzyme inhibitor; papain like protease; papain like protease inhibitor; pranlukast; proteinase; salazosulfapyridine; unclassified drug; zt 426; zt 470; zt 537; zt 626; zt 834; peptide hydrolase; proteinase inhibitor; viral protein; Article; competitive inhibition; controlled study; drug activity; drug binding site; drug design; drug identification; drug potentiation; drug protein binding; drug screening; drug synthesis; enzymatic assay; enzyme inhibition assay; fluorescence analysis; fragmentation reaction; high throughput screening; IC50; Middle East respiratory syndrome coronavirus; molecular docking; molecular model; nonhuman; structure activity relation; surface plasmon resonance; binding site; chemistry; drug design; electron spin resonance; enzymology; high throughput screening; human; metabolism; Middle East respiratory syndrome coronavirus; molecular library; protein tertiary structure; Binding Sites; Drug Design; Electron Spin Resonance Spectroscopy; High-Throughput Screening Assays; Humans; Middle East Respiratory Syndrome Coronavirus; Molecular Docking Simulation; Peptide Hydrolases; Protease Inhibitors; Protein Structure, Tertiary; Small Molecule Libraries; Structure-Activity Relationship; Viral Proteins","Chafekar, A., Fielding, B.C., MERS-CoV: understanding the latest human coronavirus threat (2018) Viruses, 10 (2); Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses – drug discovery and therapeutic options (2016) Nat Rev Drug Discovery, 15 (5), pp. 327-347; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Al-Tawfiq, J.A., Memish, Z.A., Update on therapeutic options for middle east respiratory syndrome coronavirus (MERS-CoV) (2017) Expert Rev Anti Infect Ther, 15 (3), pp. 269-275; Kim, U.J., Won, E.J., Kee, S.J., Jung, S.I., Jang, H.C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome (2016) Antivir Ther, 21 (5), pp. 455-459; Hui, D.S., Perlman, S., Zumla, A., Spread of MERS to South Korea and China (2015) Lancet Respir Med, 3 (7), pp. 509-510; http://www.who.int/emergencies/mers-cov/en/, World-Health-Organization. Middle East Respiratory Syndrome Coronavirus (MERS-CoV); [accessed 20 September 2016]; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14 (2), pp. 140-145; Reusken, C.B., Haagmans, B.L., Muller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88 (19), pp. 11297-11303; Lau, S.K., Li, K.S., Tsang, A.K., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (15), pp. 8638-8650; Wang, Q., Qi, J., Yuan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16 (3), pp. 328-337; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59 (9), pp. 1225-1233; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Zhou, Y., Yang, Y., Huang, J., Jiang, S., Du, L., Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain (2019) Viruses, 11 (1); Liang, R., Wang, L., Zhang, N., Development of small-molecule MERS-CoV inhibitors (2018) Viruses, 10, p. 12; Lei, J., Mesters, J.R., Drosten, C., Anemuller, S., Ma, Q., Hilgenfeld, R., Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features (2014) Antiviral Res, 109, pp. 72-82; Yang, L., Wu, Z., Ren, X., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg Infect Dis, 20 (7), pp. 1260-1262; Daczkowski, C.M., Goodwin, O.Y., Dzimianski, J.V., Farhat, J.J., Pegan, S.D., Structurally guided removal of DeISGylase biochemical activity from papain-like protease originating from middle east respiratory syndrome coronavirus (2017) J Virol, 91 (23); Mielech, A.M., Kilianski, A., Baez-Santos, Y.M., Mesecar, A.D., Baker, S.C., MERS-CoV papain-like protease has deISGylating and deubiquitinating activities (2014) Virology, 450-451, pp. 64-70; Daczkowski, C.M., Dzimianski, J.V., Clasman, J.R., Goodwin, O., Mesecar, A.D., Pegan, S.D., Structural Insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species (2017) J Mol Biol, 429 (11), pp. 1661-1683; Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., Taylor, R.D., Improved protein–ligand docking using GOLD (2003) Proteins Struct Funct Bioinf, 52 (4), pp. 609-623; Case, D.A., Babin, V., Berryman, J.T., (2014), {Amber 14};; Pettersen, E.F., Goddard, T.D., Huang, C.C., UCSF Chimera—a visualization system for exploratory research and analysis (2004) J Comput Chem, 25 (13), pp. 1605-1612; Laskowski, R.A., Swindells, M.B., LigPlot+: multiple ligand-protein interaction diagrams for drug discovery (2011) J Chem Inf Model, 51 (10), pp. 2778-2786; Arabi, Y.M., Alothman, A., Balkhy, H.H., Treatment of middle east respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19 (1), p. 81; Chen, H., Chan, J.F.-W., Yuen Treatment, K.-Y., With lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212 (12), pp. 1904-1913; Lee, H., Lei, H., Santarsiero, B.D., Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV (2015) ACS Chem Biol, 10 (6), pp. 1456-1465; Bailey-Elkin, B.A., Knaap, R.C.M., Johnson, G.G., Crystal structure of the middle east respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression (2014) J Biol Chem, 289 (50), pp. 34667-34682; (2016), Schrödinger Release 2016-1: Schrödinger Suite 2016-1 Protein Preparation Wizard; Epik Version 3.5, Schrödinger, LLC, New York, NY; Impact version 7.0, Schrödinger, LLC, New York, NY; Prime version 4.3, Schrödinger, LLC, New York, NY;; (2016), Schrödinger Release 2016-1: Ligprep, Version 3.7. Schrödinger, LLC: New York, NY;; Vanquelef, E., Simon, S., Marquant, G., Server, R.E.D., a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments (2011) Nucleic Acids Res, 39, pp. W511-W517; Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A., Development and testing of a general amber force field (2004) J Comput Chem, 25 (9), pp. 1157-1174; Kräutler, V., van Gunsteren, W.F., Hünenberger, P.H., A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations (2001) J Comput Chem, 22 (5), pp. 501-508; Miller, B.R., McGee, T.D., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E., MMPBSA.py: an efficient program for end-state free energy calculations (2012) J Chem Theor Comput, 8 (9), pp. 3314-3321","Lee, H.; Center for Biomolecular Sciences and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland, United States; email: danielhl@uic.edu",,"Elsevier Ltd",09680896,,BMECE,"30940566","English","Bioorg. Med. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85063591129 "Tien N.-Q.-D., Huy N.-X., Kim M.-Y.","37071464400;34880068400;57190847020;","Improved expression of porcine epidemic diarrhea antigen by fusion with cholera toxin B subunit and chloroplast transformation in Nicotiana tabacum",2019,"Plant Cell, Tissue and Organ Culture","137","2",,"213","223",,,"10.1007/s11240-019-01562-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061001520&doi=10.1007%2fs11240-019-01562-1&partnerID=40&md5=312400b8c676063ada5f6d1eff0737e5","Bioactive Material Science, Chonbuk National University, Jeonju, South Korea; Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea; College of Sciences, Hue University, Hue City, Viet Nam; College of Education, Hue University, Hue City, Viet Nam","Tien, N.-Q.-D., Bioactive Material Science, Chonbuk National University, Jeonju, South Korea, College of Sciences, Hue University, Hue City, Viet Nam; Huy, N.-X., Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea, College of Education, Hue University, Hue City, Viet Nam; Kim, M.-Y., Department of Molecular Biology, Chonbuk National University, Jeonju, South Korea","The porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family, which causes acute diarrhea in pigs with higher mortality in piglets less than 2 weeks old. The PEDV is one of the major concerns of the pig industry around the world, including Asian countries and Noth America since first identified in Europe. Currently, there is no PEDV licensed vaccine to effectively prevent this disease. This study was performed for the development of a mucosal PEDV vaccine and B subunit of cholera toxin (CTB) as a carrier was employed to surpass the tolerogenic nature of GALT and induce potent immune responses against the target antigen fused to CTB. An epitope (S1D) alone or conjugated with CTB was constructed into the tobacco chloroplasts expression vector which is controlled under the chloroplast rRNA operon promoter with T7g10 5′ UTR and the psbA 3′UTR as a terminator. The homoplastomic lines were obtained by third round screening via organogenesis from the leaf tissues which were verified by PCR with antigen and chloroplast specific primers and then confirmed by Southern blot analysis. While the expression level of the S1D alone as detected by Western blotting was approximately 0.07% of total soluble protein, the CTB-S1D fusion protein was expressed up to 1.4%. The fusion protein showed binding to the intestinal membrane GM1-ganglioside receptor, demonstrating its functionality. The result shows that the highest expression of S1D could be achieved by fusion with a stable CTB protein and chloroplast transformation. Furthermore, the CTB-S1D expressed in chloroplasts of Nicotiana tabacum cv. Maryland could be assembled to pentameric form which increases the possibility to develop a mucosal vaccine against PEDV. © 2019, Springer Nature B.V.","Chloroplast expression; CTB fusion protein; Porcine epidemic diarrhea virus; S1D","Diagnosis; Epidemiology; Epitopes; Mammals; Proteins; RNA; Vaccines; Viruses; Chloroplast expression; Cholera toxin B subunit; Expression vectors; Fusion proteins; Intestinal membranes; Porcine epidemic diarrhea virus; Southern blot analysis; Total soluble protein; Diseases; Diagnosis; Diseases; Mammals; Nucleic Acids; Proteins; Viruses","Boniotti, M., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg Infect Dis, 22 (1), pp. 83-87; Cavanagh, D., Coronavirus IBV: structural characterization of the spike protein (1983) J Gen Virol, 64, pp. 2577-2583; Chang, S.H., Bae, J.L., Kang, T.J., Kim, J., Chung, G.H., Lim, C.W., Laude, H., Jang, Y.S., Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus (2002) Mol Cells, 14, pp. 295-299; Cheesy, D., Cartwright, S., Virus-like particles associated with porcine epidemic diarrhoea (1978) Res Vet Sci, 25 (2), pp. 255-256; Daniell, H., Production of biopharmaceuticals and vaccines in plants via the chloroplast genome (2006) Biotechnol J, 1 (10), pp. 1071-1079; Daniell, H., Lee, S.-B., Panchal, T., Wiebe, P.O., Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts (2001) J Mol Biol, 311 (5), pp. 1001-1009; Daniell, H., Lee, S.-B., Panchal, T., Wiebe, P.O., Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts1 (2001) J Mol Biol, 311 (5), pp. 1001-1009; Daniell, H., Chebolu, S., Kumar, S., Singleton, M., Falconer, R., Chloroplast-derived vaccine antigens and other therapeutic proteins (2005) Vaccine, 23 (15), pp. 1779-1783; Davoodi-Semiromi, A., Schreiber, M., Nalapalli, S., Verma, D., Singh, N.D., Banks, R.K., Chakrabarti, D., Daniell, H., Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery (2010) Plant Biotechnol J, 8 (2), pp. 223-242; DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., Daniell, H., Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi (2001) Plant Physiol, 127 (3), pp. 852-862; Duarte, M., Laude, H., Sequence of the spike srotein of the porcine epidemic diarrhoea virus (1994) J Gen Virol, 75 (5), pp. 1195-1200; Fasano, A., Baudry, B., Pumplin, D.W., Wasserman, S.S., Tall, B.D., Ketley, J.M., Kaper, J., Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions (1991) Proc Natl Acad Sci USA, 88 (12), pp. 5242-5246; Frana, M.F., Behnke, J.N., Sturman, L.S., Holmes, K.V., Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion (1985) J Virol, 56 (3), pp. 912-920; Holmgren, J., Lycke, N., Czerkinsky, C., Cholera toxin and cholera B subunit as oral—mucosal adjuvant and antigen vector systems (1993) Vaccine, 11 (12), pp. 1179-1184; Holmgren, J., Czerkinsky, C., Eriksson, K., Mharandi, A., Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges (2003) Vaccine, 21, pp. S89-S95; Huang, Y.W., Dickerman, A.W., Piñeyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4 (5), pp. e00737-e713; Huy, N.-X., Yang, M.-S., Kim, T.-G., Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.) (2011) Mol Biotechnol, 48 (3), pp. 201-209; Huy, N.-X., Kim, S.-H., Yang, M.-S., Kim, T.-G., Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli (2012) Plant Cell Rep, 31 (10), pp. 1933-1942; Huy, N.-X., Kim, M.-Y., Kim, T.-G., Jang, Y.-S., Yang, M.-S., Immunogenicity of an S1D epitope from porcine epidemic diarrhea virus and cholera toxin B subunit fusion protein transiently expressed in infiltrated Nicotiana benthamiana leaves (2016) Plant Cell Tissue Organ Cult, 127 (2), pp. 369-380; Inka Borchers, A.M., Gonzalez-Rabade, N., Gray, J.C., Increased accumulation and stability of rotavirus VP6 protein in tobacco chloroplasts following changes to the 5′ untranslated region and the 5′ end of the coding region (2012) Plant Biotechnol J, 10 (4), pp. 422-434; Jianxiong, X., Zhiling, T., Manlin, L., Cloning and expression of antigen epitopes of spike protein of porcine epidemic diarrhea virus (2013) Guangdong J Anim Vet Sci, 2, p. 007; Kang, T.-J., Han, S.-C., Yang, M.-S., Jang, Y.-S., Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants (2006) Protein Expr Purif, 46 (1), pp. 16-22; Kim, M.-Y., Chung, N.-D., Yang, M.-S., Kim, T.-G., Expression of a cholera toxin B subunit and consensus dengue virus envelope protein domain III fusion gene in transgenic rice callus (2013) Plant Cell Tissue Organ Cult, 112 (3), pp. 311-320; Kuroda, H., Maliga, P., Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs (2001) Nucleic Acids Res, 29 (4), pp. 970-975; Kweon, C.H., Kwon, B.J., Jung, T.S., Kee, Y.J., Hur, D.H., Hwang, E.K., Rhee, J.C., An, S.H., Isolation ofporcine epidemic diarrhea virus (PEDV) in Korea (1993) Korean J Vet Res, 33 (2), pp. 249-254; Lal, P., Ramachandran, V., Goyal, R., Sharma, R., Edible vaccines: current status and future (2007) Indian J Med Microbiol, 25 (2), p. 93; Lessard, P.A., Kulaveerasingam, H., York, G.M., Strong, A., Sinskey, A.J., Manipulating gene expression for the metabolic engineering of plants (2002) Metab Eng, 4 (1), pp. 67-79; Li, W.J., Dai, L.L., Chai, Z.J., Yin, Z.J., Qu, L.Q., Evaluation of seed storage protein gene 3′-untranslated regions in enhancing gene expression in transgenic rice seed (2012) Transgenic Res, 21 (3), pp. 545-553; Liu, W.X., Liu, H.L., Chai, Z.J., Xu, X.P., Song, Y.R., Qu, L.Q., Evaluation of seed storage-protein gene 5′ untranslated regions in enhancing gene expression in transgenic rice seed (2010) Theor Appl Genet, 121 (7), pp. 1267-1274; Makadiya, N., Brownlie, R., van den Hurk, J., Berube, N., Allan, B., Gerdts, V., Zakhartchouk, A., S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen (2016) Virol J, 13 (1), p. 57; Merritt, E.A., Sarfaty, S., Akker, F.V.D., L’Hoir, C., Martial, J.A., Hol, W.G., Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide (1994) Protein Sci, 3 (2), pp. 166-175; Molina, A., Hervás-Stubbs, S., Daniell, H., Mingo-Castel, A.M., Veramendi, J., High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts (2004) Plant Biotechnol J, 2 (2), pp. 141-153; Oh, J., Lee, K.-W., Choi, H.-W., Lee, C., Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein (2014) Arch Virol, 159 (11), pp. 2977-2987; Oszvald, M., Kang, T.-J., Tomoskozi, S., Tamas, C., Tamas, L., Kim, T.-G., Yang, M.-S., Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm (2007) Mol Biotechnol, 35 (3), p. 215; Paarlberg, P.L., Updated estimated economic welfare impacts of porcine epidemic diarrhea virus(PEDV) (2014) Purdue Univ Dep Agric Econ Work Pap, 14 (4), pp. 1-38; Park, M., Kim, S.J., Vitale, A., Hwang, I., Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species (2004) Plant Physiol, 134 (2), pp. 625-639; Pensaert, M., De Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch Virol, 58 (3), pp. 243-247; Pyo, H.-M., Kim, I.-J., Kim, S.-H., Kim, H.-S., Cho, S.-D., Cho, I.-S., Hyun, B.-H., Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus (2009) Vaccine, 27 (14), pp. 2030-2036; Rasala, B.A., Muto, M., Sullivan, J., Mayfield, S.P., Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization (2011) Plant Biotechnol J, 9 (6), pp. 674-683; Ruhlman, T., Ahangari, R., Devine, A., Samsam, M., Daniell, H., Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts–oral administration protects against development of insulitis in non-obese diabetic mice (2007) Plant Biotechnol J, 5 (4), pp. 495-510; Sandhu, J., Osadjan, M., Krasnyanski, S., Domier, L., Korban, S., Buetow, D., Enhanced expression of the human respiratory syncytial virus-F gene in apple leaf protoplasts (1999) Plant Cell Rep, 18 (5), pp. 394-397; Sixma, T.K., Pronk, S.E., Kalk, K.H., Wartna, E.S., Van Zanten, B.A., Witholt, B., Hoi, W.G., Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli (1991) Nature, 351 (6325), p. 371; Song, D., Park, B., Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines (2012) Virus Genes, 44 (2), pp. 167-175; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: a review of current epidemiology and available vaccines (2015) Clin Exp Vaccine Res, 4 (2), pp. 166-176; Staub, J.M., Garcia, B., Graves, J., Hajdukiewicz, P.T., Hunter, P., Nehra, N., Paradkar, V., Spatola, L., High-yield production of a human therapeutic protein in tobacco chloroplasts (2000) Nat Biotechnol, 18 (3), pp. 333-338; Streatfield, S.J., Plant-based vaccines for animal health (2005) Rev Sci Technol, 24 (1), pp. 189-199; Sun, D., Feng, L., Shi, H., Chen, J., Cui, X., Chen, H., Liu, S., Tong, G., Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein (2008) Vet Microbiol, 131 (1), pp. 73-81; Takahashi, L., Okada, K., Oshima, K., An outbreak of swine diarrhea of a new-type associatedwith coronavirus-like particles in Japan (1983) Jpn J Vet Sci, 45 (6), pp. 829-832; Takeyama, N., Kiyono, H., Yuki, Y., Plant-based vaccines for animals and humans: recent advances in technology and clinical trials (2015) Ther Adv Vaccines, 3 (5-6), pp. 139-154; Tien, N., Kim, T.-J., Kim, T.-G., Viral hemorrhagic septicemia virus glycoprotein production in tobacco (2017) Protein Expr Purif, 133, pp. 170-176; Verma, D., Samson, N.P., Koya, V., Daniell, H., A protocol for expression of foreign genes in chloroplasts (2008) Nat Protoc, 3 (4), p. 739; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Collins, J., Saif, L.J., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014 (2014) Emerg infect dis, 20 (10), p. 1620; Wang, X., Wang, L., Huang, X., Ma, S., Yu, M., Shi, W., Qiao, X., Li, Y., Oral delivery of probioticsexpressing dendritic cell-targeting peptide fused with porcine epidemic diarrhea virus COE antigen: apromising vaccine strategy against PEDV (2017) Viruses, 9 (11), p. 312; Wu, H.-Y., Russell, M.W., Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant (1998) Vaccine, 16 (2-3), pp. 286-292; Xiao, X., Chakraborti, S., Dimitrov, A.S., Gramatikoff, K., Dimitrov, D.S., The SARS-CoV S glycoprotein: expression and functional characterization (2003) Biochem Biophys Res Commun, 312 (4), pp. 1159-1164; Yang, K.-S., Lim, S., Kwon, S.-Y., Kwak, S.-S., Kim, H.-S., Lee, H.-S., Transgenic sweetpotato (Ipomoea batatas) expressing spike gene of porcine epidemic diarrhea virus (2005) J Plant Biotechnol, 32 (4), pp. 263-268; Yang, H., Gray, B.N., Ahner, B.A., Hanson, M.R., Bacteriophage 5′ untranslated regions for control of plastid transgene expression (2013) Planta, 237 (2), pp. 517-527; Yu, J., Langridge, W.H., A plant-based multicomponent vaccine protects mice from enteric diseases (2001) Nature Biotechnol, 19 (6), p. 548","Kim, M.-Y.; Department of Molecular Biology, Chonbuk National UniversitySouth Korea; email: mkim@jbnu.ac.kr",,"Springer Netherlands",01676857,,PTCED,,"English","Plant Cell Tissue Organ Cult.",Article,"Final",,Scopus,2-s2.0-85061001520 "Workman A.M., Kuehn L.A., McDaneld T.G., Clawson M.L., Loy J.D.","33768260300;7005675647;6507947953;57204336520;55567329800;","Longitudinal study of humoral immunity to bovine coronavirus, virus shedding, and treatment for bovine respiratory disease in pre-weaned beef calves",2019,"BMC Veterinary Research","15","1", 161,"","",,1,"10.1186/s12917-019-1887-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066477190&doi=10.1186%2fs12917-019-1887-8&partnerID=40&md5=037daaef091eaca9b19d1beae5f57ef8","United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, United States; Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 E Campus Loop, Lincoln, NE 68503, United States","Workman, A.M., United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, United States; Kuehn, L.A., United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, United States; McDaneld, T.G., United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, United States; Clawson, M.L., United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, United States; Loy, J.D., Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 E Campus Loop, Lincoln, NE 68503, United States","Background: Bovine coronavirus (BCV) is associated with respiratory infections in cattle of all ages; however, a temporal study to evaluate the effect of BCV immunity on virus shedding and bovine respiratory disease (BRD) incidence in pre-weaned beef calves has not been reported. Thus, we report here a prospective study in three herds of crossbred beef calves (n = 817) with endemic BCV. Serial blood samples for measurement of serum anti-BCV antibody titers and nasal swabs for detection of BCV and other common viral and bacterial BRD pathogens were collected from all calves or subsets of calves at predetermined times from birth through weaning. The calves were monitored for BRD and those that developed signs of respiratory disease were sampled for diagnostic testing. To discover additional risk factors that could have influenced BRD development, sequence analysis of the BCV strain(s) circulating in each herd, and the prevalence of common opportunistic bacterial pathogens in the upper respiratory tract of sick and apparently healthy cattle were also evaluated. Results: Two hundred forty-eight of the 817 study calves (30.4%) were treated for BRD prior to weaning; 246 of those were from a single herd involved in two outbreaks of BRD leading to mass treatment of all calves in that group. Molecular diagnostic testing found BCV and Histophilus somni in nasal swabs taken at the time of BRD treatment. Between herd analyses revealed anti-BCV serum antibody abundance did not associate with the incidence of BRD or BCV shedding, though these measurements may have been hindered by the long periods between sample collections. Analysis of the BCV spike gene hypervariable region revealed four polymorphisms in 15 isolates from the three herds, making strain variation unlikely to account for differences in treatment rates between herds. Persistent or recurrent shedding episodes of BCV occurred in some animals treated for BRD. Conclusion: Co-detection of BCV and H. somni at the time of the disease outbreak suggests that these pathogens contributed to disease pathogenesis. Developing appropriate control measures for respiratory BCV infections may help decrease the incidence of pre-weaning BRD. The role of antibodies in protection must still be further defined. © 2019 The Author(s).","Bovine coronavirus; Bovine respiratory disease; Histophilus somni; Molecular epidemiology; Nursing-calf pneumonia; Summer pneumonia","neutralizing antibody; virus RNA; virus antibody; animal experiment; Article; artificial insemination; beef; Bovine coronavirus; breathing rate; Clostridium perfringens; colostrum; dairy cattle; enzyme linked immunosorbent assay; feces analysis; genetic polymorphism; germplasm; Histophilus somni; humoral immunity; incidence; lethargy; Mannheimia haemolytica; Moraxella bovis; multiplex polymerase chain reaction; Mycoplasma bovis; nonhuman; nose smear; passive immunization; prevalence; prospective study; real time polymerase chain reaction; rectal temperature; reverse transcription polymerase chain reaction; risk factor; RNA extraction; sequence analysis; upper respiratory tract; vaccination; virus neutralization; virus shedding; weaning; animal; blood; bovine; Bovine coronavirus; cattle disease; Coronavirus infection; genetics; humoral immunity; immunology; microbiology; mixed infection; Pasteurellaceae; physiology; veterinary medicine; virus shedding; Animals; Antibodies, Viral; Cattle; Cattle Diseases; Coinfection; Coronavirus Infections; Coronavirus, Bovine; Immunity, Humoral; Pasteurellaceae; Polymorphism, Genetic; Virus Shedding","Griffin, D., Economic impact associated with respiratory disease in beef cattle (1997) Vet Clin North Am Food Anim Pract, 13 (3), pp. 367-377. , 1:STN:280:DyaK1c%2FjsFCksw%3D%3D; Griffin, D., Chengappa, M.M., Kuszak, J., McVey, D.S., Bacterial pathogens of the bovine respiratory disease complex (2010) Vet Clin North Am Food Anim Pract, 26 (2), pp. 381-394; Mosier, D., Review of BRD pathogenesis: The old and the new (2014) Anim Health Res Rev, 15 (2), pp. 166-168; Taylor, J.D., Fulton, R.W., Lehenbauer, T.W., Step, D.L., Confer, A.W., The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? (2010) The Canadian Veterinary Journal la Revue Veterinaire Canadienne, 51 (10), pp. 1095-1102. , 21197200 2942046; McVey, D.S., BRD research needs in the next 10-20 years (2009) Anim Health Res Rev, 10 (2), pp. 165-167; Saif, L.J., Bovine respiratory coronavirus (2010) Vet Clin North Am Food Anim Pract, 26 (2), pp. 349-364; Fulton, R.W., Step, D.L., Wahrmund, J., Burge, L.J., Payton, M.E., Cook, B.J., Burken, D., Confer, A.W., Bovine coronavirus (BCV) infections in transported commingled beef cattle and sole-source ranch calves (2011) Can J Vet Res, 75 (3), pp. 191-199. , 22210995 3122965; Storz, J., Purdy, C.W., Lin, X., Burrell, M., Truax, R.E., Briggs, R.E., Frank, G.H., Loan, R.W., Isolation of respiratory bovine coronavirus, other cytocidal viruses, and Pasteurella spp from cattle involved in two natural outbreaks of shipping fever (2000) J Am Vet Med Assoc, 216 (10), pp. 1599-1604. , 1:STN:280:DC%2BD3c3osFKquw%3D%3D; Decaro, N., Campolo, M., Desario, C., Cirone, F., D'Abramo, M., Lorusso, E., Greco, G., Elia, G., Respiratory disease associated with bovine coronavirus infection in cattle herds in southern Italy (2008) Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 20 (1), pp. 28-32; Fulton, R.W., Blood, K.S., Panciera, R.J., Payton, M.E., Ridpath, J.F., Confer, A.W., Saliki, J.T., Johnson, B.J., Lung pathology and infectious agents in fatal feedlot pneumonias and relationship with mortality, disease onset, and treatments (2009) J Vet Diagn Invest, 21 (4), pp. 464-477; Gagea, M.I., Bateman, K.G., Van Dreumel, T., McEwen, B.J., Carman, S., Archambault, M., Shanahan, R.A., Caswell, J.L., Diseases and pathogens associated with mortality in Ontario beef feedlots (2006) J Vet Diagn Invest, 18 (1), pp. 18-28; Storz, J., Lin, X., Purdy, C.W., Chouljenko, V.N., Kousoulas, K.G., Enright, F.M., Gilmore, W.C., Loan, R.W., Coronavirus and Pasteurella infections in bovine shipping fever pneumonia and Evans' criteria for causation (2000) J Clin Microbiol, 38 (9), pp. 3291-3298. , 1:STN:280:DC%2BD3M%2FjvVensg%3D%3D 10970373 87376; Martin, S.W., Nagy, E., Shewen, P.E., Harland, R.J., The association of titers to bovine coronavirus with treatment for bovine respiratory disease and weight gain in feedlot calves (1998) Can J Vet Res, 62 (4), pp. 257-261. , 1:STN:280:DyaK1M%2FhsVyhtg%3D%3D 9798090 1189491; Thomas, C.J., Hoet, A.E., Sreevatsan, S., Wittum, T.E., Briggs, R.E., Duff, G.C., Saif, L.J., Transmission of bovine coronavirus and serologic responses in feedlot calves under field conditions (2006) Am J Vet Res, 67 (8), pp. 1412-1420; Workman, A.M., Kuehn, L.A., McDaneld, T.G., Clawson, M.L., Chitko-McKown, C.G., Loy, J.D., Evaluation of the effect of serum antibody abundance against bovine coronavirus on bovine coronavirus shedding and risk of respiratory tract disease in beef calves from birth through the first five weeks in a feedlot (2017) Am J Vet Res, 78 (9), pp. 1065-1076. , 1:CAS:528:DC%2BC1MXps1Oqsw%3D%3D; Heckert, R.A., Saif, L.J., Hoblet, K.H., Agnes, A.G., A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio (1990) Vet Microbiol, 22 (2-3), pp. 187-201. , 1:STN:280:DyaK3c3otFGlsg%3D%3D; Heckert, R.A., Saif, L.J., Myers, G.W., Agnes, A.G., Epidemiologic factors and isotype-specific antibody responses in serum and mucosal secretions of dairy calves with bovine coronavirus respiratory tract and enteric tract infections (1991) Am J Vet Res, 52 (6), pp. 845-851. , 1:STN:280:DyaK3MzltlyktA%3D%3D 1652904; Schiermiester, L.N., Thallman, R.M., Kuehn, L.A., Kachman, S.D., Spangler, M.L., Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle (2015) J Anim Sci, 93 (1), pp. 46-52. , 1:CAS:528:DC%2BC2MXkt1WrsL4%3D; Boxus, M., Letellier, C., Kerkhofs, P., Real time RT-PCR for the detection and quantitation of bovine respiratory syncytial virus (2005) J Virol Methods, 125 (2), pp. 125-130. , 1:CAS:528:DC%2BD2MXisFGlsr4%3D; Decaro, N., Elia, G., Campolo, M., Desario, C., Mari, V., Radogna, A., Colaianni, M.L., Buonavoglia, C., Detection of bovine coronavirus using a TaqMan-based real-time RT-PCR assay (2008) J Virol Methods, 151 (2), pp. 167-171. , 1:CAS:528:DC%2BD1cXosVyms7Y%3D; Mahlum, C.E., Haugerud, S., Shivers, J.L., Rossow, K.D., Goyal, S.M., Collins, J.E., Faaberg, K.S., Detection of bovine viral diarrhea virus by TaqMan reverse transcription polymerase chain reaction (2002) J Vet Diagn Invest, 14 (2), pp. 120-125; Wang, J., O'Keefe, J., Orr, D., Loth, L., Banks, M., Wakeley, P., West, D., Van Maanen, K., Validation of a real-time PCR assay for the detection of bovine herpesvirus 1 in bovine semen (2007) J Virol Methods, 144 (1-2), pp. 103-108. , 1:CAS:528:DC%2BD2sXotlajt7c%3D; Humphry, R.W., Cameron, A., Gunn, G.J., A practical approach to calculate sample size for herd prevalence surveys (2004) Preventive Veterinary Medicine, 65 (3-4), pp. 173-188; Loy, J.D., Leger, L., Workman, A.M., Clawson, M.L., Bulut, E., Wang, B., Development of a multiplex real-time PCR assay using two thermocycling platforms for detection of major bacterial pathogens associated with bovine respiratory disease complex from clinical samples (2018) Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 30 (6), pp. 837-847. , 1:CAS:528:DC%2BC1cXit1ymurjM; Alenius, S., Niskanen, R., Juntti, N., Larsson, B., Bovine coronavirus as the causative agent of winter dysentery: Serological evidence (1991) Acta Vet Scand, 32 (2), pp. 163-170. , 1:STN:280:DyaK383gs1eitQ%3D%3D 1666489; Ohlson, A., Heuer, C., Lockhart, C., Traven, M., Emanuelson, U., Alenius, S., Risk factors for seropositivity to bovine coronavirus and bovine respiratory syncytial virus in dairy herds (2010) Vet Rec, 167 (6), pp. 201-206. , 1:STN:280:DC%2BC3cjjt1Cquw%3D%3D; Hasoksuz, M., Vlasova, A., Saif, L.J., Detection of group 2a coronaviruses with emphasis on bovine and wild ruminant strains. Virus isolation and detection of antibody, antigen, and nucleic acid (2008) Methods Mol Biol, 454, pp. 43-59. , 1:CAS:528:DC%2BD1cXht1CmtLrK; Workman, A.M., Dickey, A.M., Heaton, M.P., Clawson, M.L., Smith, T.P., Complete genome sequences of two genotype A2 small ruminant lentiviruses isolated from infected U.S. Sheep (2017) Genome Announc, 5 (13), pp. e00109-e00117. , https://doi.org/10.1128/genomeA.00109-17; Workman, A.M., Smith, T.P., Osorio, F.A., Vu, H.L., Complete genome sequence of highly virulent porcine reproductive and respiratory syndrome virus variants that recently emerged in the United States (2016) Genome Announc, 4 (4), pp. e00772-e00816. , https://doi.org/10.1128/genomeA.00772-16; Rekik, M.R., Dea, S., Comparative sequence analysis of a polymorphic region of the spike glycoprotein S1 subunit of enteric bovine coronavirus isolates (1994) Arch Virol, 135 (3-4), pp. 319-331. , 1:CAS:528:DyaK2MXhsVehtg%3D%3D; Kanno, T., Hatama, S., Ishihara, R., Uchida, I., Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006 (2007) J Gen Virol, 88, pp. 1218-1224. , 1:CAS:528:DC%2BD2sXktFGhtL8%3D; Hasoksuz, M., Sreevatsan, S., Cho, K.O., Hoet, A.E., Saif, L.J., Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates (2002) Virus Res, 84 (1-2), pp. 101-109. , 1:CAS:528:DC%2BD38XitFWmsLs%3D; Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res, 32 (5), pp. 1792-1797. , 1:CAS:528:DC%2BD2cXisF2ks7w%3D; Lin, X., O'Reilly, K.L., Burrell, M.L., Storz, J., Infectivity-neutralizing and hemagglutinin-inhibiting antibody responses to respiratory coronavirus infections of cattle in pathogenesis of shipping fever pneumonia (2001) Clin Diagn Lab Immunol, 8 (2), pp. 357-362. , 1:CAS:528:DC%2BD3MXitlKgsbw%3D 11238222 96063; Lin, X.Q., Oe, K.L., Storz, J., Purdy, C.W., Loan, R.W., Antibody responses to respiratory coronavirus infections of cattle during shipping fever pathogenesis (2000) Arch Virol, 145 (11), pp. 2335-2349. , 1:CAS:528:DC%2BD3MXhtFChtbc%3D; Cusack, P.M., McMeniman, N., Lean, I.J., The medicine and epidemiology of bovine respiratory disease in feedlots (2003) Aust Vet J, 81 (8), pp. 480-487. , 1:STN:280:DC%2BD2c7ptVSquw%3D%3D","Workman, A.M.; United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, United States; email: Aspen.Workman@ARS.USDA.GOV",,"BioMed Central Ltd.",17466148,,,"31118011","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85066477190 "Kim H., Park M., Hwang J., Kim J.H., Chung D.-R., Lee K.-S., Kang M.","57208222690;57208883978;55614118400;57208880688;7401719232;57208886808;55453175300;","Development of Label-Free Colorimetric Assay for MERS-CoV Using Gold Nanoparticles",2019,"ACS Sensors","4","5",,"1306","1312",,4,"10.1021/acssensors.9b00175","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066044725&doi=10.1021%2facssensors.9b00175&partnerID=40&md5=292cb7e428147a90b27f356b434e7b72","Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea; Department of Medical Device Management and Research, SAIHST (Samsung AdVanced Institute for Health Sciences and Technology), Sungkyunkwan University, Seoul, South Korea; Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea","Kim, H., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea, Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Park, M., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea, Department of Medical Device Management and Research, SAIHST (Samsung AdVanced Institute for Health Sciences and Technology), Sungkyunkwan University, Seoul, South Korea, Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Hwang, J., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea; Kim, J.H., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea; Chung, D.-R., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea, Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea, Division of Infectious Diseases, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea; Lee, K.-S., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea, Department of Medical Device Management and Research, SAIHST (Samsung AdVanced Institute for Health Sciences and Technology), Sungkyunkwan University, Seoul, South Korea; Kang, M., Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea, Department of Medical Device Management and Research, SAIHST (Samsung AdVanced Institute for Health Sciences and Technology), Sungkyunkwan University, Seoul, South Korea","Worldwide outbreaks of infectious diseases necessitate the development of rapid and accurate diagnostic methods. Colorimetric assays are a representative tool to simply identify the target molecules in specimens through color changes of an indicator (e.g., nanosized metallic particle, and dye molecules). The detection method is used to confirm the presence of biomarkers visually and measure absorbance of the colored compounds at a specific wavelength. In this study, we propose a colorimetric assay based on an extended form of double-stranded DNA (dsDNA) self-assembly shielded gold nanoparticles (AuNPs) under positive electrolyte (e.g., 0.1 M MgCl2) for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). This platform is able to verify the existence of viral molecules through a localized surface plasmon resonance (LSPR) shift and color changes of AuNPs in the UV-vis wavelength range. We designed a pair of thiol-modified probes at either the 5prime; end or 3prime; end to organize complementary base pairs with upstream of the E protein gene (upE) and open reading frames (ORF) 1a on MERS-CoV. The dsDNA of the target and probes forms a disulfide-induced long self-assembled complex, which protects AuNPs from salt-induced aggregation and transition of optical properties. This colorimetric assay could discriminate down to 1 pmol/mu;L of 30 bp MERS-CoV and further be adapted for convenient on-site detection of other infectious diseases, especially in resource-limited settings. © 2019 American Chemical Society.","colorimetric assay; gold nanoparticle; label-free detection; Middle East respiratory syndrome coronavirus (MERS-CoV); molecular diagnosis","Chlorine compounds; Color; Diagnosis; Diseases; Electrolytes; Fiber optic sensors; Gold nanoparticles; Magnesium compounds; Metal nanoparticles; Molecular biology; Molecules; Probes; Self assembly; Sulfur compounds; Surface plasmon resonance; Colorimetric assays; Coronaviruses; Double-stranded DNA (ds-DNA); Label-free detection; Localized surface plasmon resonance; Molecular diagnosis; Salt-induced aggregation; Self assembled complexes; Colorimetry","State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans (2013) PLoS Curr., p. 1. , Who Mers-Cov Research, G; (2016) MediPoint: Point of Care Diagnostics - Global Analysis and Market Forecasts, pp. 1-187. , pp; Morens, D.M., Fauci, A.S., Emerging infectious diseases: Threats to human health and global stability (2013) PLoS Pathog., 9 (7), p. e1003467; Tallury, P., Malhotra, A., Byrne, L.M., Santra, S., Nanobioimaging and sensing of infectious diseases (2010) Adv. Drug Delivery Rev., 62 (45), pp. 424-437; Kim, J.W., Kim, J.H., Chung, S.J., Chung, B.H., An operationally simple colorimetric assay of hyaluronidase activity using cationic gold nanoparticles (2009) Analyst, 134 (7), pp. 1291-1293; Huang, P., Wang, H.L., Cao, Z.G., Jin, H.L., Chi, H., Zhao, J.C., Yu, B.B., Xia, X.Z., A Rapid and Specific Assay for the Detection of MERS-CoV (2018) Front. Microbiol., p. 1; Sastry, M., Rao, M., Ganesh, K.N., Electrostatic assembly of nanoparticles and biomacromolecules (2002) Acc. Chem. Res., 35 (10), pp. 847-855; Verveniotis, E., Kromka, A., Ledinsky, M., Cermak, J., Rezek, B., Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films. (2011) Nanoscale Res. Lett.; Willets, K.A., Van Duyne, R.P., Localized surface plasmon resonance spectroscopy and sensing (2007) Annu. Rev. Phys. Chem., 58, p. 267; Abbas, A., Kattumenu, R., Tian, L., Singamaneni, S., Molecular linker-mediated self-assembly of gold nanoparticles: Understanding and controlling the dynamics (2013) Langmuir, 29 (1), pp. 56-64; Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., Mirkin, C.A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles (1997) Science, 277 (5329), pp. 1078-1081; Fennell Evans, H.W., (1999) The colloidal domain: Where physics, chemistry, biology, and technology meet, , 2 nd ed. Wiley-VCH; Valentini, P., Pompa, P.P., Gold nanoparticles for naked-eye DNA detection: Smart designs for sensitive assays (2013) RSC Adv., 3 (42), pp. 19181-19190; Li, H., Rothberg, L.J., Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction (2004) J. Am. Chem. Soc., 126 (35), p. 10958; Shokri, E., Hosseini, M., Davari, M.D., Ganjali, M.R., Peppelenbosch, M.P., Rezaee, F., Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles (2017) Sci. Rep., 7, p. 1; Li, H., Rothberg, L., Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (39), pp. 14036-14039; Wang, L., Liu, X., Hu, X., Song, S., Fan, C., Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers (2006) Chem. Commun., (36), pp. 3780-3782; Polavarapu, L., Xu, Q.-H.J.L., (2008) Langmuir, 24 (19), pp. 10608-10611; Xia, F., Zuo, X., Yang, R., Xiao, Y., Kang, D., Vallée-Bélisle, A., Gong, X., Heeger, A.J., (2010) Proc. Natl. Acad. Sci. U. S. A., 107 (24), pp. 10837-10841; Laboratory testing for Middle East Respiratory Syndrome Coronavirus Interim guidance, , https://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/, W. W. H. Organization; Li, F., Zhang, H., Dever, B., Li, X.F., Le, X.C., Thermal stability of DNA functionalized gold nanoparticles (2013) Bioconjugate Chem., 24 (11), pp. 1790-1797; Pensa, E., Cortes, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M.H., Benitez, G., Salvarezza, R.C., The chemistry of the sulfur-gold interface: in search of a unified model (2012) Acc. Chem. Res., 45 (8), pp. 1183-1192; Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions (1973) Nature, Phys. Sci., 241, pp. 20-22; Sau, T.K., Pal, A., Jana, N.R., Wang, Z.L., Pal, T., Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles (2001) J. Nanopart. Res., 3 (4), pp. 257-261; Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., Turkevich method for gold nanoparticle synthesis revisited (2006) J. Phys. Chem. B, 110 (32), pp. 15700-15707; Zhao, W., Brook, M.A., Li, Y.F., Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays (2008) ChemBioChem, 9 (15), pp. 2363-2371; Dahlin, A.B., Chen, S., Jonsson, M.P., Gunnarsson, L., Kall, M., Höök, F.J.A.C., (2009) Anal. Chem., 81 (16), pp. 6572-6580; Lustemberg, P.G., Vericat, C., Benitez, G.A., Vela, M.E., Tognalli, N., Fainstein, A., Martiarena, M.L., Salvarezza, R.C., Spontaneously formed sulfur adlayers on gold in electrolyte solutions: Adsorbed sulfur or gold sulfide? (2008) J. Phys. Chem. C, 112 (30), pp. 11394-11402; Vericat, C., Vela, M.E., Andreasen, G., Salvarezza, R.C., Vazquez, L., Martin-Gago, J.A., Sulfur-substrate interactions in spontaneously formed sulfur adlayers on Au(111) (2001) Langmuir, 17 (16), pp. 4919-4924; Koczkur, K.M., Hamed, E.M., Houmam, A., Sulfur multilayer formation on Au(111): New insights from the study of hexamethyldisilathiane (2011) Langmuir, 27 (20), p. 12270; Castner, D.G., Hinds, K., Grainger, D.W., X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces (1996) Langmuir, 12 (21), pp. 5083-5086; Panagiotakos, D.B., Value of p-value in biomedical research (2008) Open Cardiovasc. Med. J., 2, pp. 97-99; Thomsen, V., Schatzlein, D., Mercuro, D., Limits of detection in spectroscopy (2003) Spectroscopy., 18 (12), pp. 112-114; Min, C.-K., Cheon, S., Ha, N.-Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, J.-H.J., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci. Rep., 6, p. 25359; Kim, S.-K., Sung, H., Kim, M.-N., Kinetic Studies and Infection Control of Respiratory Viruses (2018) Korean J Healthc Assoc Infect Control Prev., 23 (1), pp. 1-7; Al-Abdely, H.M., Midgley, C.M., Alkhamis, A.M., Abedi, G.R., Tamin, A., Binder, A.M., Alanazi, K., Sakthivel, S.K., (2018) Infectious MERS-CoV Isolated From a Mildly Ill Patient, Saudi Arabia., p. ofy111. , In; Open Forum Infectious Diseases, Oxford University Press: US; Kraaij-Dirkzwager, M., Timen, A., Dirksen, K., Gelinck, L., Leyten, E., Groeneveld, P., Jansen, C., Thurkow, I.J.E., (2014) Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, , May","Lee, K.-S.; Smart Healthcare and Device Research Center and sectCenter for Infection Prevention and Control, Samsung Medical CenterSouth Korea; email: minikang@skku.edu",,"American Chemical Society",23793694,,,"31062580","English","ACS Sensors",Article,"Final",,Scopus,2-s2.0-85066044725 "Schoeman D., Fielding B.C.","57209056563;7006525584;","Coronavirus envelope protein: Current knowledge",2019,"Virology Journal","16","1", 69,"","",,11,"10.1186/s12985-019-1182-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066411645&doi=10.1186%2fs12985-019-1182-0&partnerID=40&md5=a71218f6284e84b99f527c837b46c22f","Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa","Schoeman, D., Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa; Fielding, B.C., Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa","Background: Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. Main body: This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. Conclusions: The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs. © 2019 The Author(s).","Assembly; Budding; Coronavirus; Envelope protein; Topology; Viroporin","envelope protein; inflammasome; live vaccine; membrane protein; nucleocapsid protein; severe acute respiratory syndrome vaccine; spike protein; unclassified drug; viral protein; viroporin; virus envelope protein; virus envelope protein; amino terminal sequence; apoptosis; carboxy terminal sequence; Coronavirinae; endoplasmic reticulum stress; human; immune response; life cycle; membrane structure; Middle East respiratory syndrome; myristylation; nonhuman; palmitoylation; protein expression; protein function; protein glycosylation; protein localization; protein processing; protein protein interaction; protein structure; protein unfolding; Review; severe acute respiratory syndrome; ubiquitination; virus assembly; virus morphology; virus nucleocapsid; virus pathogenesis; virus release; animal; chemistry; Coronavirinae; Coronavirus infection; genetics; pathogenicity; SARS coronavirus; severe acute respiratory syndrome; transmission; virology; zoonosis; Animals; Coronavirus; Coronavirus Infections; Humans; SARS Virus; Severe Acute Respiratory Syndrome; Viral Envelope Proteins; Zoonoses","Van Regenmortel Mhv, Fauquet, C.M., Dhl, B., Carstens, E.B., Estes, M.K., Lemon, S.M., Coronaviridae (2000) Virus Taxonomy: Classification and Nomenclature of Viruses Seventh Report of the International Committee on Taxonomy of Viruses, pp. 835-849. , MHV v R, Fauquet CM, DHL B, Carstens EB, Estes MK, Lemon SM, et al., editors San Diego: Academic Press 0123702003; Pradesh, U., Upadhayay, P.D.D., Vigyan, P.C., Coronavirus infection in equines: A review (2014) Asian J Anim Vet Adv, 9 (3), pp. 164-176. , 1:CAS:528:DC%2BC2cXhtFSmtLjJ; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol J, 12 (1), p. 193. , 26689811 4687282 1:CAS:528:DC%2BC28XitVKitLjE; Bande, F., Arshad, S.S., Hair Bejo, M., Moeini, H., Omar, A.R., Progress and Challenges toward the Development of Vaccines against Avian Infectious Bronchitis (2015) Journal of Immunology Research, 2015, pp. 1-12; Owusu, M., Annan, A., Corman, V.M., Larbi, R., Anti, P., Drexler, J.F., Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana (2014) PLoS One, 9 (7), p. e99782. , 25080241 4117488 1:CAS:528:DC%2BC2cXhs1alu7bJ; Van Der Hoek, L., (2007) Human Coronaviruses: What Do They Cause? Antiviral Therapy, p. 651. , 12 4 Pt B; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis, 36 (8), pp. 985-989. , 12684910; Gerna, G., Campanini, G., Rovida, F., Percivalle, E., Sarasini, A., Marchi, A., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J Med Virol, 78 (7), pp. 938-949. , 1:CAS:528:DC%2BD28Xmslyjsro%3D 16721849; Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Tripey, V., Brouard, J., Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France (2008) J Paediatr Child Health, 44 (4), pp. 176-181. , 17999671; Gerna, G., Percivalle, E., Sarasini, A., Campanini, G., Piralla, A., Rovida, F., Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients (2007) J Clin Virol, 38 (3), pp. 244-250. , 1:CAS:528:DC%2BD2sXitFequro%3D 17222582 17222582; Fouchier, R.A., Kuiken, T., Schutten, M., Van Amerongen, G., Van Doornum, G.J., Van Den Hoogen, B.G., Aetiology: Koch's postulates fulfilled for SARS virus (2003) Nature., 423 (6937), p. 240. , 1:CAS:528:DC%2BD3sXjs1yntb0%3D 12748632 12748632; Mäkelä, M.J., Puhakka, T., Ruuskanen, O., Leinonen, M., Saikku, P., Kimpimäki, M., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36 (2), pp. 539-542. , 9466772 104573; Zhong, N., Zheng, B., Li, Y., Poon, L., Xie, Z., Chan, K., Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003 (2003) Lancet, 362 (9393), pp. 1353-1358. , 1:STN:280:DC%2BD3srhtVKgug%3D%3D 14585636 14585636; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.-Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp Biol Med, 234 (10), pp. 1117-1127. , 1:CAS:528:DC%2BD1MXht1ams7fM; Van Elden, L.J., Anton, M.A.M., Van Alphen, F., Hendriksen, K.A., Hoepelman, A.I., Van Kraaij, M.G., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction (2004) J Infect Dis, 189 (4), pp. 652-657. , 14767819 14767819; Kim, K.Y., Han, S.Y., Kim, H.-S., Cheong, H.-M., Kim, S.S., Kim, D.S., Human coronavirus in the 2014 winter season as a cause of lower respiratory tract infection (2017) Yonsei Med J, 58 (1), pp. 174-179. , 27873511 27873511; Dominguez, S.R., Robinson, C.C., Holmes, K.V., Detection of four human coronaviruses in respiratory infections in children: A one-year study in Colorado (2009) J Med Virol, 81 (9), pp. 1597-1604. , 19626607 2879166; Jimenez-Guardeño, J.M., Nieto-Torres, J.L., Dediego, M.L., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis (2014) PLoS Pathog, 10 (8), p. e1004320. , 25122212 4133396 1:CAS:528:DC%2BC2cXhs12isrrN; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.-W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci, 102 (39), pp. 14040-14045. , 1:CAS:528:DC%2BD2MXhtVOqsbbO 16169905 16169905; Rest, J.S., Mindell, D.P., SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting (2003) Infect Genet Evol, 3 (3), pp. 219-225. , 1:CAS:528:DC%2BD3sXns1KlsLo%3D 14522185; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining 'host jump'of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23 (8), pp. 468-478. , 1:CAS:528:DC%2BC2MXhtV2iu73E 26206723; Chan, J.F.-W., Tse, H., Jin, D.-Y., Yuen, K.-Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol, 21 (10), pp. 544-555. , To KK-W 1:CAS:528:DC%2BC3sXps12htLk%3D 23770275; Hon, C.-C., Lam, T.-Y., Shi, Z.-L., Drummond, A.J., Yip, C.-W., Zeng, F., Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus (2008) J Virol, 82 (4), pp. 1819-1826. , 1:CAS:528:DC%2BD1cXhvFart7c%3D 18057240; (2003), http://www.who.int/csr/sars/country/table2004_04_21/en/index.html, World Health Organization WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003; (2018), http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, World Health Organization WHO. WHO MERS-CoV Global Summary and Assessment of Risk, August 2018 (WHO/MERS/RA/August18); Lou, Z., Sun, Y., Rao, Z., Current progress in antiviral strategies (2014) Trends Pharmacol Sci, 35 (2), pp. 86-102. , 1:CAS:528:DC%2BC2cXhsFCrt7Y%3D 24439476; Kilianski, A., Baker, S.C., Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors (2014) Antivir Res, 101, pp. 105-112. , 1:CAS:528:DC%2BC3sXhvFymu7rI 24269477; Kilianski, A., Mielech, A., Deng, X., Baker, S.C., Assessing activity and inhibition of MERS-CoV papain-like and 3C-like proteases using luciferase-based biosensors (2013) J Virol., 66, pp. 2105-02113. , JVI; Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292. , 1:CAS:528:DC%2BD1cXhslOhtLw%3D 16877062; Liu, D.X., Fung, T.S., Chong, K.K.-L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir Res, 109, pp. 97-109. , 1:CAS:528:DC%2BC2cXht1Klsr3M 24995382; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! the coronavirus spike protein and acquisition of fusion competence (2012) Viruses., 4 (4), pp. 557-580. , 1:CAS:528:DC%2BC38XmslOqsbk%3D 22590686 3347323; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat Med, 18 (12), p. 1820. , 1:CAS:528:DC%2BC38Xhs1CktLvF 23142821 3518599; Enjuanes, L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Dediego, M.L., Recombinant live vaccines to protect against the severe acute respiratory syndrome coronavirus (2011) Replicating Vaccines, Birkhauser Advances in Infectious Diseases Book Series (BAID), pp. 73-97. , Dormitzer C.W. Mandl R. Rappuoli (eds) Springer Basel; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Castaño-Rodríguez, C., SARS coronaviruses with mutations in e protein are attenuated and promising vaccine candidates (2015) J Virol, 89 (7), pp. 03514-3566. , 1:CAS:528:DC%2BC2MXkvFKns7w%3D JVI; Dediego, M.L., Álvarez, E., Almazán, F., Rejas, M.T., Lamirande, E., Roberts, A., A severe acute respiratory syndrome coronavirus that lacks the e gene is attenuated in vitro and in vivo (2007) J Virol, 81 (4), pp. 1701-1713. , 1:CAS:528:DC%2BD2sXhslKjs7g%3D 17108030; Netland, J., Dediego, M.L., Zhao, J., Fett, C., Álvarez, E., Nieto-Torres, J.L., Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in e protein protects against lethal respiratory disease (2010) Virology., 399 (1), pp. 120-128. , 1:CAS:528:DC%2BC3cXis1WlsLY%3D 20110095 2830353; Mortola, E., Roy, P., Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system (2004) FEBS Lett, 576 (1-2), pp. 174-178. , 1:CAS:528:DC%2BD2cXot12htr0%3D 15474033; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular immunity in rhesus macaques (2017) Oncotarget., 8 (8), pp. 12686-12694. , 27050368; Kuo, L., Masters, P.S., The small envelope protein e is not essential for murine coronavirus replication (2003) J Virol, 77 (8), pp. 4597-4608. , 1:CAS:528:DC%2BD3sXivFWis7c%3D 12663766 152126; Ortego, J., Ceriani, J.E., Patiño, C., Plana, J., Enjuanes, L., Absence of e protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway (2007) Virology., 368 (2), pp. 296-308. , 1:CAS:528:DC%2BD2sXht1KrtLbO 17692883; Ruch, T.R., Machamer, C.E., The coronavirus e protein: Assembly and beyond (2012) Viruses., 4 (3), pp. 363-382. , 1:CAS:528:DC%2BC38Xlt1ChsLw%3D 22590676 3347032; Siu, Y., Teoh, K., Lo, J., Chan, C., Kien, F., Escriou, N., The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles (2008) J Virol, 82 (22), pp. 11318-11330. , 1:CAS:528:DC%2BD1cXhtlKiu7jP 18753196 2573274; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Pre-fusion structure of a human coronavirus spike protein (2016) Nature., 531 (7592), pp. 118-121. , 1:CAS:528:DC%2BC28Xjs1emtb8%3D 26935699 4860016; Song, H.C., Seo, M.-Y., Stadler, K., Yoo, B.J., Choo, Q.-L., Coates, S.R., Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein (2004) J Virol, 78 (19), pp. 10328-10335. , 1:CAS:528:DC%2BD2cXotVems7Y%3D 15367599 516425; Fehr, A.R., Perlman, S., (2015) Coronaviruses: An Overview of Their Replication and Pathogenesis, pp. 1-23. , Springer Coronaviruses; Glowacka, I., Bertram, S., Müller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J Virol, 85 (9), pp. 4122-4134. , 21325420 3126222; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8 (10), p. e76469. , 1:CAS:528:DC%2BC3sXhsF2ku7vN 24098509 3789674; De Haan, C.A., Rottier, P.J., Molecular interactions in the assembly of coronaviruses (2005) Adv Virus Res, 64, pp. 165-230. , 16139595 1:CAS:528:DC%2BD1cXhs12mu7s%3D; McBride, R., Van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses., 6 (8), pp. 2991-3018. , 25105276 4147684 1:CAS:528:DC%2BC2cXhvFyiu7%2FJ; Tooze, J., Tooze, S., Warren, G., Replication of coronavirus MHV-A59 in sac-cells: Determination of the first site of budding of progeny virions (1984) Eur J Cell Biol, 33 (2), pp. 281-293. , 1:CAS:528:DyaL2cXkt1Sgtbs%3D 6325194; Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P., Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding (1994) J Virol, 68 (10), pp. 6523-6534. , 1:CAS:528:DyaK2cXmtVSlurg%3D 8083990 237073; Boscarino, J.A., Logan, H.L., Lacny, J.J., Gallagher, T.M., Envelope protein palmitoylations are crucial for murine coronavirus assembly (2008) J Virol, 82 (6), pp. 2989-2999. , 1:CAS:528:DC%2BD1cXjtVarur8%3D 18184706 2258982; Ruch, T.R., Machamer, C.E., The hydrophobic domain of infectious bronchitis virus e protein alters the host secretory pathway and is important for release of infectious virus (2011) J Virol, 85 (2), pp. 675-685. , 1:CAS:528:DC%2BC3MXisVOktrg%3D 21047962; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., A structural analysis of M protein in coronavirus assembly and morphology (2011) J Struct Biol, 174 (1), pp. 11-22. , 1:CAS:528:DC%2BC3MXjtFSrt7w%3D 21130884; De Haan, C.A., Vennema, H., Rottier, P.J., Assembly of the coronavirus envelope: Homotypic interactions between the M proteins (2000) J Virol, 74 (11), pp. 4967-4978. , 10799570 110848; Lim, K., Liu, D., The missing link in coronavirus assembly: Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins (2001) J Biol Chem, 276 (20), pp. 17515-17523. , 1:CAS:528:DC%2BD3MXjvFGhsr4%3D 11278557; Opstelten, D.J., Raamsman, M., Wolfs, K., Horzinek, M.C., Rottier, P., Envelope glycoprotein interactions in coronavirus assembly (1995) J Cell Biol, 131 (2), pp. 339-349. , 1:CAS:528:DyaK2MXosFygtLw%3D 7593163; Escors, D., Ortego, J., Laude, H., Enjuanes, L., The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability (2001) J Virol, 75 (3), pp. 1312-1324. , 1:CAS:528:DC%2BD3MXkvVCrtg%3D%3D 11152504 114037; Narayanan, K., Maeda, A., Maeda, J., Makino, S., Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells (2000) J Virol, 74 (17), pp. 8127-8134. , 1:CAS:528:DC%2BD3cXlsl2ns7s%3D 10933723 112346; Corse, E., Machamer, C.E., Infectious bronchitis virus e protein is targeted to the Golgi complex and directs release of virus-like particles (2000) J Virol, 74 (9), pp. 4319-4326. , 1:CAS:528:DC%2BD3cXislGqsrs%3D 10756047 111949; Corse, E., Machamer, C.E., The cytoplasmic tails of infectious bronchitis virus e and M proteins mediate their interaction (2003) Virology., 312 (1), pp. 25-34. , 1:CAS:528:DC%2BD3sXlvVKjtro%3D 12890618; Bos, E.C., Luytjes, W., Van Der Meulen, H., Koerten, H.K., Spaan, W.J., The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus (1996) Virology., 218 (1), pp. 52-60. , 1:CAS:528:DyaK28XitVCmtLo%3D 8615041; Vennema, H., Godeke, G.-J., Rossen, J., Voorhout, W., Horzinek, M., Opstelten, D., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes (1996) EMBO J, 15 (8), pp. 2020-2028. , 1:CAS:528:DyaK28XivVanur8%3D 8617249 450121; Baudoux, P., Carrat, C., Besnardeau, L., Charley, B., Laude, H., Coronavirus pseudoparticles formed with recombinant M and e proteins induce alpha interferon synthesis by leukocytes (1998) J Virol, 72 (11), pp. 8636-8643. , 1:CAS:528:DyaK1cXmslaitL4%3D 9765403 110275; Venkatagopalan, P., Daskalova, S.M., Lopez, L.A., Dolezal, K.A., Hogue, B.G., Coronavirus envelope (E) protein remains at the site of assembly (2015) Virology., 478, pp. 75-85. , 1:CAS:528:DC%2BC2MXivFKjs7o%3D 25726972 4550588; Nieto-Torres, J.L., Dediego, M.L., Álvarez, E., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Llorente, M., Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein (2011) Virology., 415 (2), pp. 69-82. , 1:CAS:528:DC%2BC3MXntFCrsr8%3D 21524776 4726981; Curtis, K.M., Yount, B., Baric, R.S., Heterologous gene expression from transmissible gastroenteritis virus replicon particles (2002) J Virol, 76 (3), pp. 1422-1434. , 1:CAS:528:DC%2BD38XnvFCqsQ%3D%3D 11773416 135785; Ortego, J., Escors, D., Laude, H., Enjuanes, L., Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome (2002) J Virol, 76 (22), pp. 11518-11529. , 1:CAS:528:DC%2BD38XoslKjtrw%3D 12388713 136772; Kuo, L., Hurst, K.R., Masters, P.S., Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function (2007) J Virol, 81 (5), pp. 2249-2262. , 1:CAS:528:DC%2BD2sXitVOgsr0%3D 17182690; Arbely, E., Khattari, Z., Brotons, G., Akkawi, M., Salditt, T., Arkin, I.T., A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus e protein (2004) J Mol Biol, 341 (3), pp. 769-779. , 1:CAS:528:DC%2BD2cXmt1CisLs%3D 15288785; Raamsman, M.J., Locker, J.K., De Hooge, A., De Vries, A.A., Griffiths, G., Vennema, H., Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein e (2000) J Virol, 74 (5), pp. 2333-2342. , 1:CAS:528:DC%2BD3cXhtF2ktLo%3D 10666264 111715; Li, Y., Surya, W., Claudine, S., Torres, J., Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins (2014) J Biol Chem, 289 (18), pp. 12535-12549. , 1:CAS:528:DC%2BC2cXntlGntL0%3D 24668816 4007446; Liao, Y., Yuan, Q., Torres, J., Tam, J., Liu, D., Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein (2006) Virology., 349 (2), pp. 264-275. , 1:CAS:528:DC%2BD28XltFOms7w%3D 16507314; Surya, W., Samso, M., Torres, J., Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses (2013) Respiratory Disease and Infection - A New Insight; Torres, J., Maheswari, U., Parthasarathy, K., Ng, L., Liu, D.X., Gong, X., Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein (2007) Protein Sci, 16 (9), pp. 2065-2071. , 1:CAS:528:DC%2BD2sXhtVaks7%2FE 17766393 2206980; Verdiá-Báguena, C., Nieto-Torres, J.L., Alcaraz, A., Dediego, M.L., Torres, J., Aguilella, V.M., Coronavirus e protein forms ion channels with functionally and structurally-involved membrane lipids (2012) Virology., 432 (2), pp. 485-494. , 22832120 3438407 1:CAS:528:DC%2BC38XhtVymsb7E; Nieto-Torres, J.L., Dediego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog, 10 (5), p. e1004077. , 24788150 4006877 1:CAS:528:DC%2BC2cXhsVGktbfK; Verdiá-Báguena, C., Nieto-Torres, J.L., Alcaraz, A., Dediego, M.L., Enjuanes, L., Aguilella, V.M., Analysis of SARS-CoV e protein ion channel activity by tuning the protein and lipid charge (2013) Biochim Biophys Acta, 1828 (9), pp. 2026-2031. , 23688394 3715572 1:CAS:528:DC%2BC3sXhtFSls7nK; Wu, Q., Zhang, Y., Lü, H., Wang, J., He, X., Liu, Y., The e protein is a multifunctional membrane protein of SARS-CoV (2003) Genomics, Proteomics & Bioinformatics, 1 (2), pp. 131-144. , 1:CAS:528:DC%2BD3sXovFGlt7c%3D; Du, Y., Zuckermann, F.A., Yoo, D., Myristoylation of the small envelope protein of porcine reproductive and respiratory syndrome virus is non-essential for virus infectivity but promotes its growth (2010) Virus Res, 147 (2), pp. 294-299. , 1:CAS:528:DC%2BC3cXpt1Wl 19951726; Cohen, J.R., Lin, L.D., Machamer, C.E., Identification of a Golgi targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein (2011) J Virol, 85 (12), pp. 5794-5803. , 1:CAS:528:DC%2BC3MXntFKru78%3D 21450821 3126292; Teoh, K.-T., Siu, Y.-L., Chan, W.-L., Schlüter, M.A., Liu, C.-J., Peiris, J.M., The SARS coronavirus e protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis (2010) Mol Biol Cell, 21 (22), pp. 3838-3852. , 1:CAS:528:DC%2BC3cXhsFagsrjL 20861307 2982091; Javier, R.T., Rice, A.P., Emerging theme: Cellular PDZ proteins as common targets of pathogenic viruses (2011) J Virol, 85 (22), pp. 11544-11556. , 1:CAS:528:DC%2BC3MXhsVansLjE 21775458 3209276; Hung, A.Y., Sheng, M., PDZ domains: Structural modules for protein complex assembly (2002) J Biol Chem, 277 (8), pp. 5699-5702. , 1:CAS:528:DC%2BD38XhvFyrs7o%3D 11741967; Münz, M., Hein, J., Biggin, P.C., The role of flexibility and conformational selection in the binding promiscuity of PDZ domains (2012) PLoS Comput Biol, 8 (11), p. e1002749. , 23133356 3486844 1:CAS:528:DC%2BC38XhslWjsr%2FL; Gerek, Z.N., Keskin, O., Ozkan, S.B., Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior (2009) Proteins Struct Funct Bioinf, 77 (4), pp. 796-811. , 1:CAS:528:DC%2BD1MXhtlSru7nO; Yang, Y., Xiong, Z., Zhang, S., Yan, Y., Nguyen, J., Ng, B., Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus e protein in the absence of growth factors (2005) Biochem J, 392 (1), pp. 135-143. , 1:CAS:528:DC%2BD2MXht1OnsrnI 16048439 1317672; Jimenez-Guardeño, J.M., Regla-Nava, J.A., Nieto-Torres, J.L., Dediego, M.L., Castaño-Rodriguez, C., Fernandez-Delgado, R., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) PLoS Pathog, 11 (10), p. e1005215. , 26513244 4626112 1:CAS:528:DC%2BC28XitFSkurc%3D; Hogue, B.G., Machamer, C.E., (2008) Coronavirus Structural Proteins and Virus Assembly, pp. 179-200. , American Society of Microbiology Nidoviruses; Westerbeck, J.W., Machamer, C.E., A Coronavirus e Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway (2015) Journal of Virology, 89 (18), pp. 9313-9323. , 1:CAS:528:DC%2BC2MXhslymur3F 26136577 4542375; Yuan, Q., Liao, Y., Torres, J., Tam, J., Liu, D., Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells (2006) FEBS Lett, 580 (13), pp. 3192-3200. , 1:CAS:528:DC%2BD28XltVKmsro%3D 16684538; Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., Chu, K., Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and e (2005) J Gen Virol, 86 (5), pp. 1423-1434. , 1:CAS:528:DC%2BD2MXjvFSkt7k%3D 15831954; Corse, E., Machamer, C.E., The cytoplasmic tail of infectious bronchitis virus e protein directs Golgi targeting (2002) J Virol, 76 (3), pp. 1273-1284. , 1:CAS:528:DC%2BD38XnvFCrsg%3D%3D 11773403 135861; Maeda, J., Repass, J.F., Maeda, A., Makino, S., Membrane topology of coronavirus e protein (2001) Virology., 281 (2), pp. 163-169. , 1:CAS:528:DC%2BD3MXit1antb4%3D 11277690; Godet, M., L'Haridon, R., Vautherot, J.-F., Laude, H., TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions (1992) Virology., 188 (2), pp. 666-675. , 1:CAS:528:DyaK38XksVWlur8%3D 1316677; Hofmann, K., TMbase-A database of membrane spanning proteins segments (1993) Biol Chem Hoppe Seyler, 374, p. 166; Tusnady, G.E., Simon, I., Principles governing amino acid composition of integral membrane proteins: Application to topology prediction1 (1998) J Mol Biol, 283 (2), pp. 489-506. , 1:CAS:528:DyaK1cXntFWhtro%3D 9769220; Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes (2001) J Mol Biol, 305 (3), pp. 567-580. , 1:CAS:528:DC%2BD3MXisFCguw%3D%3D 11152613; Jones, D.T., Improving the accuracy of transmembrane protein topology prediction using evolutionary information (2007) Bioinformatics., 23 (5), pp. 538-544. , 1:CAS:528:DC%2BD2sXkt1GhsLc%3D 17237066; Nugent, T., Jones, D.T., Transmembrane protein topology prediction using support vector machines (2009) BMC Bioinformatics, 10 (1), pp. 159-169. , 19470175 2700806 1:CAS:528:DC%2BD1MXmvVCmtLc%3D; Elofsson, A., Heijne Gv. Membrane protein structure: Prediction versus reality (2007) Annu Rev Biochem, 76, pp. 125-140. , 1:CAS:528:DC%2BD2sXhtVehtb7I 17579561; Birzele, F., Kramer, S., A new representation for protein secondary structure prediction based on frequent patterns (2006) Bioinformatics., 22 (21), pp. 2628-2634. , 1:CAS:528:DC%2BD28XhtFKltr7E 16940325; Chen, K., Kurgan, L., Ruan, J., Optimization of the sliding window size for protein structure prediction (2006) 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology: IEEE, , https://doi.org/10.1109/CIBCB.2006.330959; Zviling, M., Leonov, H., Arkin, I.T., Genetic algorithm-based optimization of hydrophobicity tables (2005) Bioinformatics., 21 (11), pp. 2651-2656. , 1:CAS:528:DC%2BD2MXks1eqsrg%3D 15797910; Schlessinger, A., Rost, B., Protein flexibility and rigidity predicted from sequence (2005) Proteins Struct Funct Bioinf, 61 (1), pp. 115-126. , 1:CAS:528:DC%2BD2MXhtVSjsL7N; Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices (1999) J Mol Biol, 292 (2), pp. 195-202. , 1:CAS:528:DyaK1MXlvFyksb0%3D 10493868; Bodén, M., Yuan, Z., Bailey, T.L., Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures (2006) BMC Bioinformatics, 7 (1), p. 68. , 16478545 1386714 1:CAS:528:DC%2BD28Xjt1Gmsb4%3D; Sander, O., Sommer, I., Lengauer, T., Local protein structure prediction using discriminative models (2006) BMC Bioinformatics, 7 (1), p. 14. , 16405736 1368994 1:CAS:528:DC%2BD28Xht1Sksrc%3D; Ruch, T.R., Machamer, C.E., A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus e protein (2012) PLoS Pathog, 8 (5), p. e1002674. , 1:CAS:528:DC%2BC38Xnt1Ohsr0%3D 22570613 3343006; Rocks, O., Peyker, A., Kahms, M., Verveer, P.J., Koerner, C., Lumbierres, M., An acylation cycle regulates localization and activity of palmitoylated Ras isoforms (2005) Science., 307 (5716), pp. 1746-1752. , 1:CAS:528:DC%2BD2MXit1yrsLw%3D 15705808; Basu, J., Protein palmitoylation and dynamic modulation of protein function (2004) Curr Sci, 87, pp. 212-217. , 1:CAS:528:DC%2BD2cXnt1Kqsr4%3D; Salaun, C., Greaves, J., Chamberlain, L.H., The intracellular dynamic of protein palmitoylation (2010) J Cell Biol, 191 (7), pp. 1229-1238. , 1:CAS:528:DC%2BC3MXis1SqtQ%3D%3D 21187327 3010063; Fujiwara, Y., Kondo, H.X., Shirota, M., Kobayashi, M., Takeshita, K., Nakagawa, A., Structural basis for the membrane association of ankyrinG via palmitoylation (2016) Sci Rep, 6, p. 23981. , 1:CAS:528:DC%2BC28XlsVagu70%3D 27046665 4820748; Sobocińska, J., Roszczenko-Jasińska, P., Ciesielska, A., Kwiatkowska, K., Protein Palmitoylation and its Role in Bacterial and viral infections (2018) Front Immunol, 8, p. 2003. , 29403483 5780409 1:CAS:528:DC%2BC1cXitFKku7rM; Grosenbach, D.W., Ulaeto, D.O., Hruby, D.E., Palmitylation of the vaccinia virus 37-kDa major envelope antigen identification of a conserved acceptor motif and biological relevance (1997) J Biol Chem, 272 (3), pp. 1956-1964. , 1:CAS:528:DyaK2sXlslSitw%3D%3D 8999886; Majeau, N., Fromentin, R., Savard, C., Duval, M., Tremblay, M.J., Leclerc, D., Palmitoylation of Hepatitis C Virus Core Protein Is Important for Virion Production (2009) Journal of Biological Chemistry, 284 (49), pp. 33915-33925. , 1:CAS:528:DC%2BD1MXhsVymu7jO 19783655; Lopez, L.A., Riffle, A.J., Pike, S.L., Gardner, D., Hogue, B.G., Importance of conserved cysteine residues in the coronavirus envelope protein (2008) J Virol, 82 (6), pp. 3000-3010. , 1:CAS:528:DC%2BD1cXjtVarurw%3D 18184703 2258990; Resh, M.D., Fatty acylation of proteins: New insights into membrane targeting of myristoylated and palmitoylated proteins (1999) Biochim Biophys Acta, 1451 (1), pp. 1-16. , 1:CAS:528:DyaK1MXltV2hsbw%3D 10446384; He, M., Jenkins, P., Bennett, V., Cysteine 70 of ankyrin-G is S-palmitoylated and is required for function of ankyrin-G in membrane domain assembly (2012) J Biol Chem, 287 (52), pp. 43995-44005. , 1:CAS:528:DC%2BC38XhvVOrt7nI 23129772 3527982; Wilcox, C., Hu, J.-S., Olson, E.N., Acylation of proteins with myristic acid occurs cotranslationally (1987) Science., 238 (4831), pp. 1275-1278. , 1:CAS:528:DyaL1cXjsFaksw%3D%3D 3685978 3685978; James, G., Olson, E.N., Fatty acylated proteins as components of intracellular signaling pathways (1990) Biochemistry., 29 (11), pp. 2623-2634. , 1:CAS:528:DyaK3cXhtlCmsbY%3D 2189494 2189494; Boutin, J.A., Myristoylation (1997) Cell Signal, 9 (1), pp. 15-35. , 1:CAS:528:DyaK2sXhvVensbs%3D 9067626; Nimchuk, Z., Marois, E., Kjemtrup, S., Leister, R.T., Katagiri, F., Dangl, J.L., Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae (2000) Cell., 101 (4), pp. 353-363. , 1:CAS:528:DC%2BD3cXjsFekurk%3D 10830163; Chow, M., Newman, J., Filman, D., Hogle, J., Rowlands, D., Brown, F., Myristylation of picornavirus capsid protein VP4 and its structural significance (1987) Nature., 327 (6122), p. 482. , 1:CAS:528:DyaL2sXksFCns7k%3D 3035380; Henderson, L., Benveniste, R., Sowder, R., Copeland, T., Schultz, A., Oroszlan, S., Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne) (1988) J Virol, 62 (8), pp. 2587-2595. , 1:CAS:528:DyaL1cXltVOntbc%3D 3292789 253688; Harris, M., Hislop, S., Patsilinacos, P., Neil, J.C., In vivo derived HIV-1 nef gene products are heterogeneous and lack detectable nucleotide binding activity (1992) AIDS Res Hum Retrovir, 8 (5), pp. 537-543. , 1:CAS:528:DyaK3sXkt1Wksr8%3D 1515209; Persing, D.H., Varmus, H., Ganem, D., The preS1 protein of hepatitis B virus is acylated at its amino terminus with myristic acid (1987) J Virol, 61 (5), pp. 1672-1677. , 1:CAS:528:DyaL2sXksFGnt74%3D 3573147 254153; Álvarez, E., Dediego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño, J.M., Marcos-Villar, L., Enjuanes, L., The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated (2010) Virology., 402 (2), pp. 281-291. , 20409569 1:CAS:528:DC%2BC3cXmsVektLk%3D 20409569; Isaacson, M.K., Ploegh, H.L., Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection (2009) Cell Host Microbe, 5 (6), pp. 559-570. , 1:CAS:528:DC%2BD1MXps1egtbg%3D 19527883 19527883; Keng, C.-T., Åkerström, S., Leung, C.S.-W., Poon, L.L., Peiris, J.M., Mirazimi, A., SARS coronavirus 8b reduces viral replication by down-regulating e via an ubiquitin-independent proteasome pathway (2011) Microbes Infect, 13 (2), pp. 179-188. , 1:CAS:528:DC%2BC3MXpvFSmuw%3D%3D 21035562; Vigerust, D.J., Shepherd, V.L., Virus glycosylation: Role in virulence and immune interactions (2007) Trends Microbiol, 15 (5), pp. 211-218. , 1:CAS:528:DC%2BD2sXkvFOju7s%3D 17398101; Fung, T.S., Liu, D.X., Post-translational modifications of coronavirus proteins: Roles and function (2018) Futur Virol, 13 (6), pp. 405-430. , 1:CAS:528:DC%2BC1cXhtVSmtL%2FE; Nilsson, I., Von Heijne, G., Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane (1993) J Biol Chem, 268 (8), pp. 5798-5801. , 1:CAS:528:DyaK3sXisV2rtb0%3D 8449946; Wang, B., Wang, Y., Frabutt, D.A., Zhang, X., Yao, X., Hu, D., Zhang, Z., Zheng, Y.-H., Mechanistic understanding ofN-glycosylation in Ebola virus glycoprotein maturation and function (2017) Journal of Biological Chemistry, 292 (14), pp. 5860-5870. , 1:CAS:528:DC%2BC2sXlslCrsLw%3D 28196864; Parthasarathy, K., Ng, L., Lin, X., Liu, D.X., Pervushin, K., Gong, X., Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel (2008) Biophys J, 95 (6), pp. L39-L41. , 1:CAS:528:DC%2BD1cXhtVyktr3K 18658207 2527252; Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F.L., Yu, D., Structure and inhibition of the SARS coronavirus envelope protein ion channel (2009) PLoS Pathog, 5 (7), p. e1000511. , 19593379 2702000 1:CAS:528:DC%2BD1MXosFOls78%3D; Torres, J., Wang, J., Parthasarathy, K., Liu, D.X., The transmembrane oligomers of coronavirus protein e (2005) Biophys J, 88 (2), pp. 1283-1290. , 1:CAS:528:DC%2BD2MXhtlyjt7k%3D 15713601 1305130; Torres, J., Parthasarathy, K., Lin, X., Saravanan, R., Kukol, A., Liu, D.X., Model of a putative pore: The pentameric α-helical bundle of SARS coronavirus e protein in lipid bilayers (2006) Biophys J, 91 (3), pp. 938-947. , 1:CAS:528:DC%2BD28XnsFOjt70%3D 16698774 1563757; Torres, J., Surya, W., Li, Y., Liu, D.X., Protein-protein interactions of viroporins in coronaviruses and paramyxoviruses: New targets for antivirals? (2015) Viruses., 7 (6), pp. 2858-2883. , 1:CAS:528:DC%2BC2MXhsFKmsbrP 26053927 4488717; Surya, W., Li, Y., Verdià-Bàguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res, 201, pp. 61-66. , 1:CAS:528:DC%2BC2MXjs1Kitr8%3D 25733052; Hsieh, P.-K., Chang, S.C., Huang, C.-C., Lee, T.-T., Hsiao, C.-W., Kou, Y.-H., Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent (2005) J Virol, 79 (22), pp. 13848-13855. , 1:CAS:528:DC%2BD2MXht1ShsLzE 16254320 1280188; Tseng, Y.-T., Wang, S.-M., Huang, K.-J., Wang, C.-T., SARS-CoV envelope protein palmitoylation or nucleocapsid association is not required for promoting virus-like particle production (2014) J Biomed Sci, 21 (1), p. 34. , 24766657 4014084 1:CAS:528:DC%2BC2MXjtFyju7c%3D; Maeda, J., Maeda, A., Makino, S., Release of coronavirus e protein in membrane vesicles from virus-infected cells and e protein-expressing cells (1999) Virology., 263 (2), pp. 265-272. , 1:CAS:528:DyaK1MXmvFOmtbk%3D 10544100; Tan, Y.-J., Fielding, B.C., Goh, P.-Y., Shen, S., Tan, T.H., Lim, S.G., Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway (2004) J Virol, 78 (24), pp. 14043-14047. , 1:CAS:528:DC%2BD2cXhtFSisL3F 15564512 533950; Huang, C., Ito, N., Tseng, C.-T.K., Makino, S., Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein (2006) J Virol, 80 (15), pp. 7287-7294. , 1:CAS:528:DC%2BD28XnsVWgtrw%3D 16840309 1563709; Tan, Y.-X., Tan, T.H., Lee, M.J.-R., Tham, P.-Y., Gunalan, V., Druce, J., Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein (2007) J Virol, 81 (12), pp. 6346-6355. , 1:CAS:528:DC%2BD2sXmt1Ors7c%3D 17428862 1900074; Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-κB activation (2006) FEBS Lett, 580 (30), pp. 6807-6812. , 1:CAS:528:DC%2BD28XhtleisbnF 17141229 17141229; Yuan, X., Wu, J., Shan, Y., Yao, Z., Dong, B., Chen, B., SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway (2006) Virology., 346 (1), pp. 74-85. , 1:CAS:528:DC%2BD28XhsFKru74%3D 16303160 16303160; Pan, J.A., Peng, X., Gao, Y., Li, Z., Lu, X., Chen, Y., Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication (2008) PLoS One, 3 (10), p. e3299. , 18827877 2553179 1:CAS:528:DC%2BD1cXht1ygt77O; Dediego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology., 376 (2), pp. 379-389. , 1:CAS:528:DC%2BD1cXmvFWrtLs%3D 18452964 2810402; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J Virol, 79 (23), pp. 14909-14922. , 1:CAS:528:DC%2BD2MXht1CgsbrN 16282490 1287583; Schaecher, S.R., Touchette, E., Schriewer, J., Buller, R.M., Pekosz, A., Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis (2007) J Virol, 81 (20), pp. 11054-11068. , 1:CAS:528:DC%2BD2sXhtFelt7vE 17686858 2045523; Beale, R., Wise, H., Stuart, A., Ravenhill, B.J., Digard, P., Randow, F., A LC3-interacting motif in the influenza a virus M2 protein is required to subvert autophagy and maintain virion stability (2014) Cell Host Microbe, 15 (2), pp. 239-247. , 1:CAS:528:DC%2BC2cXisFent7c%3D 24528869 3991421; Subramani, C., Nair, V.P., Anang, S., Mandal, S.D., Pareek, M., Kaushik, N., Host-Virus Protein Interaction Network Reveals the Involvement of Multiple Host Processes in the Life Cycle of Hepatitis e Virus (2018) MSystems., 3 (1), pp. e00117-e00135. , 29404423 5781259; Benga, W.J., Krieger, S.E., Dimitrova, M., Zeisel, M.B., Parnot, M., Lupberger, J., Apolipoprotein e interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles (2010) Hepatology., 51 (1), pp. 43-53. , 1:CAS:528:DC%2BC3cXhsVCqtLY%3D 20014138 20014138; Lu, J., Qu, Y., Liu, Y., Jambusaria, R., Han, Z., Ruthel, G., Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress (2013) J Virol, 87 (13), pp. 7777-7780. , 1:CAS:528:DC%2BC3sXpvFGjsrY%3D 23637409 3700276; König, R., Stertz, S., Zhou, Y., Inoue, A., Hoffmann, H.-H., Bhattacharyya, S., Human host factors required for influenza virus replication (2010) Nature., 463 (7282), p. 813. , 20027183 2862546 1:CAS:528:DC%2BC3cXhvVKrtb4%3D; Börgeling, Y., Schmolke, M., Viemann, D., Nordhoff, C., Roth, J., Ludwig, S., Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection (2014) J Biol Chem, 289 (1), pp. 13-27. , 24189062 1:CAS:528:DC%2BC2cXit1OitA%3D%3D 24189062; Ye, Y., Hogue, B.G., Role of the coronavirus e viroporin protein transmembrane domain in virus assembly (2007) J Virol, 81 (7), pp. 3597-3607. , 1:CAS:528:DC%2BD2sXjslWqsb4%3D 17229680 1866030; Krijnse-Locker, J., Ericsson, M., Rottier, P., Griffiths, G., Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step (1994) J Cell Biol, 124 (1), pp. 55-70. , 1:STN:280:DyaK2c7isVKitw%3D%3D 8294506 8294506; Tooze, J., Tooze, S., Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: Virus budding is restricted to the Golgi region (1985) Eur J Cell Biol, 37, pp. 203-212. , 1:STN:280:DyaL2M3osFWhsg%3D%3D 2992976 2992976; Arndt, A.L., Larson, B.J., Hogue, B.G., A conserved domain in the coronavirus membrane protein tail is important for virus assembly (2010) J Virol, 84 (21), pp. 11418-11428. , 1:CAS:528:DC%2BC3cXhsVeisbzI 20719948 2953170; Nguyen, V.-P., Hogue, B.G., Protein interactions during coronavirus assembly (1997) J Virol, 71 (12), pp. 9278-9284. , 1:CAS:528:DyaK2sXnsVClu7k%3D 9371586 230230; Ho, Y., Lin, P.-H., Liu, C.Y., Lee, S.-P., Chao, Y.-C., Assembly of human severe acute respiratory syndrome coronavirus-like particles (2004) Biochem Biophys Res Commun, 318 (4), pp. 833-838. , 15147946 1:CAS:528:DC%2BD2cXktV2mtL8%3D; Almazán, F., Dediego, M.L., Sola, I., Zuñiga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio., 4 (5), pp. e00613-e00650. , 24023385 3774192 1:CAS:528:DC%2BC2cXntVarsLo%3D; Dediego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Coronavirus virulence genes with main focus on SARS-CoV envelope gene (2014) Virus Res, 194, pp. 124-137. , 1:CAS:528:DC%2BC2cXht12mtrfP 25093995 4261026; Liu, D., Inglis, S., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology., 185 (2), pp. 911-917. , 1:CAS:528:DyaK38XotVSiug%3D%3D 1962461; Yu, X., Bi, W., Weiss, S.R., Leibowitz, J.L., Mouse hepatitis virus gene 5b protein is a new virion envelope protein (1994) Virology., 202 (2), pp. 1018-1023. , 1:CAS:528:DyaK2cXlsFaqsLs%3D 8030202 8030202; Locker, J.K., Griffiths, G., Horzinek, M., Rottier, P., O-glycosylation of the coronavirus M protein: Differential localization of sialyltransferases in N-and O-linked glycosylation (1992) J Biol Chem, 267 (20), pp. 14094-14101. , 1:CAS:528:DyaK38XltVKmsLk%3D 1629209 1629209; Machamer, C.E., Mentone, S.A., Rose, J.K., Farquhar, M.G., The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex (1990) Proc Natl Acad Sci, 87 (18), pp. 6944-6948. , 1:CAS:528:DyaK3cXlvVOksbg%3D 2169615 2169615; Fischer, F., Stegen, C.F., Masters, P.S., Samsonoff, W.A., Analysis of constructed e gene mutants of mouse hepatitis virus confirms a pivotal role for e protein in coronavirus assembly (1998) J Virol, 72 (10), pp. 7885-7894. , 1:CAS:528:DyaK1cXmt1Shsb0%3D 9733825 110113; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J Virol, 76 (8), pp. 3697-3708. , 1:CAS:528:DC%2BD38XisVynu7Y%3D 11907209 136101; Goldsmith, C.S., Tatti, K.M., Ksiazek, T.G., Rollin, P.E., Comer, J.A., Lee, W.W., Ultrastructural characterization of SARS coronavirus (2004) Emerg Infect Dis, 10 (2), p. 320. , 15030705 3322934; Snijder, E.J., Van Der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J., Van Der Meulen, J., Koerten, H.K., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J Virol, 80 (12), pp. 5927-5940. , 1:CAS:528:DC%2BD28XlsFWmsL4%3D 16731931 1472606; Ulasli, M., Verheije, M.H., De Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell Microbiol, 12 (6), pp. 844-861. , 1:CAS:528:DC%2BC3cXmvVeqsbo%3D 20088951; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio., 4 (4), pp. e00513-e00524. , 23943763 3747587 1:CAS:528:DC%2BC3sXhsFSqsb7J; Hagemeijer, M.C., Monastyrska, I., Griffith, J., Van Der Sluijs, P., Voortman, J., Van Bergen En Henegouwen, P.M., Vonk, A.M., De Haan, C.A.M., Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 (2014) Virology, 458-459, pp. 125-135. , 1:CAS:528:DC%2BC2cXpvVSgs7Y%3D 24928045; Hagemeijer, M.C., Ulasli, M., Vonk, A., Reggiori, F., Rottier, P.J., De Haan, C.A., Mobility and interactions of the coronavirus nonstructural protein 4 (2011) J Virol, 85 (9), pp. 4572-4577. , 1:CAS:528:DC%2BC3MXhtVSmsLfF 21345958 3126240; Rossman, J.S., Lamb, R.A., Viral membrane scission (2013) Annu Rev Cell Dev Biol, 29, pp. 551-569. , 1:CAS:528:DC%2BC3sXhvFSqu7%2FM 24099087 4286373; Martyna, A., Gómez-Llobregat, J., Lindén, M., Rossman, J.S., Curvature Sensing by a Viral Scission Protein (2016) Biochemistry., 55 (25), pp. 3493-3496. , 1:CAS:528:DC%2BC28XpslWnsrw%3D 27299375; Roberts, K.L., Leser, G.P., Ma, C., Lamb, R.A., The amphipathic helix of influenza a virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles (2013) J Virol, 87 (18), pp. 9973-9982. , 1:CAS:528:DC%2BC3sXhsVSgtrbO 23843641 3754012; Yuan, B., Campbell, S., Bacharach, E., Rein, A., Goff, S.P., Infectivity of Moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses (2000) J Virol, 74 (16), pp. 7250-7260. , 1:CAS:528:DC%2BD3cXlt1Gku7k%3D 10906179 112246; Utley, T.J., Ducharme, N.A., Varthakavi, V., Shepherd, B.E., Santangelo, P.J., Lindquist, M.E., Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2 (2008) Proc Natl Acad Sci, 105 (29), pp. 10209-10214. , 1:CAS:528:DC%2BD1cXpt1Sjs7k%3D 18621683; Rossman, J.S., Jing, X., Leser, G.P., Lamb, R.A., Influenza virus M2 protein mediates ESCRT-independent membrane scission (2010) Cell., 142 (6), pp. 902-913. , 1:CAS:528:DC%2BC3cXhtFyitbzI 20850012 3059587; Parthasarathy, K., Lu, H., Surya, W., Vararattanavech, A., Pervushin, K., Torres, J., Expression and purification of coronavirus envelope proteins using a modified β-barrel construct (2012) Protein Expr Purif, 85 (1), pp. 133-141. , 1:CAS:528:DC%2BC38Xht12lsLbI 22819936; Shen, X., Xue, J.-H., Yu, C.-Y., Luo, H.-B., Qin, L., Yu, X.-J., Small envelope protein e of SARS: Cloning, expression, purification, CD determination, and bioinformatics analysis (2003) Acta Pharmacol Sin, 24 (6), pp. 505-511. , 1:CAS:528:DC%2BD3sXkvFShsLc%3D 12791175; Steinmann, E., Penin, F., Kallis, S., Patel, A.H., Bartenschlager, R., Pietschmann, T., Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions (2007) PLoS Pathog, 3 (7), p. e103. , 17658949 1924870 1:CAS:528:DC%2BD2sXps1Kjtbc%3D; Pinto, L.H., Lamb, R.A., Controlling influenza virus replication by inhibiting its proton channel (2007) Mol BioSyst, 3 (1), pp. 18-23. , 1:CAS:528:DC%2BD2sXht1SrsLg%3D 17216051; Takeda, M., Pekosz, A., Shuck, K., Pinto, L.H., Lamb, R.A., Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture (2002) J Virol, 76 (3), pp. 1391-1399. , 1:CAS:528:DC%2BD38XnvFCqsg%3D%3D 11773413 135863; Sakai, A., Claire, M.S., Faulk, K., Govindarajan, S., Emerson, S.U., Purcell, R.H., The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences (2003) Proc Natl Acad Sci, 100 (20), pp. 11646-11651. , 1:CAS:528:DC%2BD3sXotFKmtL0%3D 14504405; Jones, C.T., Murray, C.L., Eastman, D.K., Tassello, J., Rice, C.M., Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus (2007) J Virol, 81 (16), pp. 8374-8383. , 1:CAS:528:DC%2BD2sXoslOisLY%3D 17537845 1951341; Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., Orenstein, J., The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release (1990) J Virol, 64 (2), pp. 621-629. , 1:CAS:528:DyaK3cXpt1OlsA%3D%3D 2404139 249152; Hsu, K., Seharaseyon, J., Dong, P., Bour, S., Marbán, E., Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel (2004) Mol Cell, 14 (2), pp. 259-267. , 1:CAS:528:DC%2BD2cXjvVyisbk%3D 15099524; Lazrak, A., Iles, K.E., Liu, G., Noah, D.L., Noah, J.W., Matalon, S., Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species (2009) FASEB J, 23 (11), pp. 3829-3842. , 1:CAS:528:DC%2BD1MXhtlymtrzI 19596899 2775009; Shimbo, K., Brassard, D.L., Lamb, R.A., Pinto, L.H., Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes (1995) Biophys J, 69 (5), pp. 1819-1829. , 1:CAS:528:DyaK2MXovFyntr8%3D 8580325 1236415; Song, W., Liu, G., Bosworth, C.A., Walker, J.R., Megaw, G.A., Lazrak, A., Respiratory syncytial virus inhibits lung epithelial Na+ channels by up-regulating inducible nitric-oxide synthase (2009) J Biol Chem, 284 (11), pp. 7294-7306. , 1:CAS:528:DC%2BD1MXislWqsbw%3D 19131335 2652346; Whitehead, S.S., Bukreyev, A., Teng, M.N., Firestone, C.-Y., Claire, M.S., Elkins, W.R., Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees (1999) J Virol, 73 (4), pp. 3438-3442. , 1:CAS:528:DyaK1MXhvFynu7s%3D 10074199 104109; Wang, K., Lu, W., Chen, J., Xie, S., Shi, H., Hsu, H., PEDV ORF3 encodes an ion channel protein and regulates virus production (2012) FEBS Lett, 586 (4), pp. 384-391. , 1:CAS:528:DC%2BC38Xit12gtr4%3D 22245155; Watanabe, S., Watanabe, T., Kawaoka, Y., Influenza A virus lacking M2 protein as a live attenuated vaccine (2009) J Virol, 83 (11), pp. 5947-5950. , 1:CAS:528:DC%2BD1MXmtlGktrs%3D 19321619 2681926; Gladue, D.P., Holinka, L.G., Largo, E., Sainza, I.F., Carrillo, C., O'Donnell, V., Classical swine fever virus p7 protein is a viroporin involved in virulence in swine (2012) J Virol, 86 (12), pp. 6778-6791. , 1:CAS:528:DC%2BC38XosFensrk%3D 22496228 3393591; Pinto, L.H., Dieckmann, G.R., Gandhi, C.S., Papworth, C.G., Braman, J., Shaughnessy, M.A., A functionally defined model for the M2 proton channel of influenza a virus suggests a mechanism for its ion selectivity (1997) Proc Natl Acad Sci, 94 (21), pp. 11301-11306. , 1:CAS:528:DyaK2sXmslaqtLY%3D 9326604; Agirre, A., Barco, A., Carrasco, L., Nieva, J.L., Viroporin-mediated membrane permeabilization pore formation by nonstructural poliovirus 2B protein (2002) J Biol Chem, 277 (43), pp. 40434-40441. , 1:CAS:528:DC%2BD38XnvFynsbs%3D 12183456; Grice, A., Kerr, I., Sansom, M., Ion channels formed by HIV-1 Vpu: A modelling and simulation study (1997) FEBS Lett, 405 (3), pp. 299-304. , 1:CAS:528:DyaK2sXitVKrsrY%3D 9108308; Melton, J.V., Ewart, G.D., Weir, R.C., Board, P.G., Lee, E., Gage, P.W., Alphavirus 6K proteins form ion channels (2002) J Biol Chem, 277 (49), pp. 46923-46931. , 1:CAS:528:DC%2BD38XptFSks7Y%3D 12228229; Hyser, J.M., Estes, M.K., Pathophysiological consequences of calcium-conducting viroporins (2015) Annu Rev Virol, 2, pp. 473-496. , 1:CAS:528:DC%2BC2MXhvVSgtrrI 26958925; Gonzalez, M.E., Carrasco, L., Viroporins (2003) FEBS Lett, 552 (1), pp. 28-34. , 1:CAS:528:DC%2BD3sXntVCjtb8%3D 12972148; Suzuki, T., Orba, Y., Okada, Y., Sunden, Y., Kimura, T., Tanaka, S., The human polyoma JC virus agnoprotein acts as a viroporin (2010) PLoS Pathog, 6 (3), p. e1000801. , 20300659 2837404 1:CAS:528:DC%2BC3cXjvVKjsbg%3D; Hyser, J.M., Collinson-Pautz, M.R., Utama, B., Estes, M.K., Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity (2010) MBio., 1 (5), pp. e00210-e00265. , 1:CAS:528:DC%2BC3MXms1Cqtg%3D%3D 21151776 2999940; Wang, C., Takeuchi, K., Pinto, L., Lamb, R., Ion channel activity of influenza a virus M2 protein: Characterization of the amantadine block (1993) J Virol, 67 (9), pp. 5585-5594. , 1:CAS:528:DyaK3sXmtFKrs7k%3D 7688826 237962; Mould, J.A., Paterson, R.G., Takeda, M., Ohigashi, Y., Venkataraman, P., Lamb, R.A., Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes (2003) Dev Cell, 5 (1), pp. 175-184. , 1:CAS:528:DC%2BD3sXmt1Smsb0%3D 12852861 12852861; Pham, T., Perry, J.L., Dosey, T.L., Delcour, A.H., Hyser, J.M., The rotavirus NSP4 viroporin domain is a calcium-conducting ion channel (2017) Sci Rep, 7, p. 43487. , 28256607 5335360; Premkumar, A., Wilson, L., Ewart, G., Gage, P., Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride (2004) FEBS Lett, 557 (1-3), pp. 99-103. , 1:CAS:528:DC%2BD2cXltV2qsg%3D%3D 14741348 14741348; Zhang, R., Wang, K., Lv, W., Yu, W., Xie, S., Xu, K., The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production (2014) Biochim Biophys Acta, 1838 (4), pp. 1088-1095. , 1:CAS:528:DC%2BC3sXht1yiu77N 23906728 23906728; Li, Y., Verdià-Baguena, C., Dossena, S., Surya, W., Huang, M., Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment (2014) J Virol, 88 (20), pp. 11899-11914. , To J 25100835 4178740 1:CAS:528:DC%2BC2cXhslaqur7N; Schnell, J.R., Chou, J.J., Structure and mechanism of the M2 proton channel of influenza a virus (2008) Nature., 451 (7178), p. 591. , 1:CAS:528:DC%2BD1cXhs1Sit70%3D 18235503 3108054; Hay, A., Wolstenholme, A., Skehel, J., Smith, M.H., The molecular basis of the specific anti-influenza action of amantadine (1985) EMBO J, 4 (11), pp. 3021-3024. , 1:CAS:528:DyaL28XhvF2ls7c%3D 4065098 554613; Wilson, L., McKinlay, C., Gage, P., Ewart, G., SARS coronavirus e protein forms cation-selective ion channels (2004) Virology., 330 (1), pp. 322-331. , 1:CAS:528:DC%2BD2cXpsFenu7c%3D 15527857; Wilson, L., Gage, P., Ewart, G., Hexamethylene amiloride blocks e protein ion channels and inhibits coronavirus replication (2006) Virology., 353 (2), pp. 294-306. , 1:CAS:528:DC%2BD28XpvV2murg%3D 16815524; Lee, C., Yoo, D., Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity (2005) J Gen Virol, 86 (11), pp. 3091-3096. , 1:CAS:528:DC%2BD2MXhtFOqu7%2FF 16227232; Aguilella, V.M., Queralt-Martín, M., Aguilella-Arzo, M., Alcaraz, A., Insights on the permeability of wide protein channels: Measurement and interpretation of ion selectivity (2010) Integr Biol, 3 (3), pp. 159-172; Nieto-Torres, J.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome (2015) Virology., 485, pp. 330-339. , 1:CAS:528:DC%2BC2MXhtlyls7fP 26331680 4619128; Surya, W., Fung, T.S., Li, Y., Verdia-Baguena, C., Queralt-Martin, M., Channel-inactivating mutations and their revertant mutants in the envelope protein of infectious bronchitis virus (2017) J Virol, 91 (5), pp. e02116-e02158. , To J 27974570 5309962; Hsu, K., Han, J., Shinlapawittayatorn, K., Deschenes, I., Marbán, E., Membrane potential depolarization as a triggering mechanism for Vpu-mediated HIV-1 release (2010) Biophys J, 99 (6), pp. 1718-1725. , 1:CAS:528:DC%2BC3cXhtFynsrbL 20858415 2941015; Schubert, U., Ferrer-Montiel, A.V., Oblatt-Montal, M., Henklein, P., Strebel, K., Montal, M., Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells (1996) FEBS Lett, 398 (1), pp. 12-18. , 1:CAS:528:DyaK28Xnt1Kruro%3D 8946945; Van Kuppeveld, F.J., Hoenderop, J.G., Smeets, R.L., Willems, P.H., Dijkman, H.B., Galama, J.M., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release (1997) EMBO J, 16 (12), pp. 3519-3532. , 9218794 1169977; Wozniak, A.L., Griffin, S., Rowlands, D., Harris, M., Yi, M., Lemon, S.M., Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production (2010) PLoS Pathog, 6 (9), p. e1001087. , 20824094 2932723 1:CAS:528:DC%2BC3cXhtFekur%2FK; Westerbeck, J.W., Machamer, C.E., (2018) The Infectious Bronchitis Virus Coronavirus Envelope Protein Alters Golgi PH to Protect Spike Protein and Promote Release of Infectious Virus. BioRxiv, p. 440628; Stevens, F.J., Argon, Y., Protein folding in the ER (1999) Seminars in Cell & Developmental Biology, 10 (5), pp. 443-454. , 1:CAS:528:DyaK1MXnvFOmsL0%3D; Lim, Y.X., Ng, Y.L., Tam, J.P., Liu, D.X., Human coronaviruses: A review of virus-host interactions (2016) Diseases., 4 (3), p. 26. , 5456285 1:CAS:528:DC%2BC1cXms1Ortbw%3D 5456285; Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response (2007) Nat Rev Mol Cell Biol, 8 (7), pp. 519-529. , 1:CAS:528:DC%2BD2sXmvVaktLY%3D; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front Microbiol, 5, p. 296. , 24987391 4060729; An, S., Chen, C.-J., Yu, X., Leibowitz, J.L., Makino, S., Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of e protein as an apoptosis inducer (1999) J Virol, 73 (9), pp. 7853-7859. , 1:CAS:528:DyaK1MXltlKhu7o%3D 10438879 104316; Dediego, M.L., Nieto-Torres, J.L., Jiménez-Guardeño, J.M., Regla-Nava, J.A., Álvarez, E., Oliveros, J.C., Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis (2011) PLoS Pathog, 7 (10), p. e1002315. , 1:CAS:528:DC%2BC3MXhsVGlu7fE 22028656 3197621; Nijmeijer, S., Leurs, R., Smit, M.J., Vischer, H.F., The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning (2010) J Biol Chem, 285 (38), pp. 29632-29641. , 1:CAS:528:DC%2BC3cXhtFCnsL7I 20622011 2937994; Moore, M.L., Chi, M.H., Luongo, C., Lukacs, N.W., Polosukhin, V.V., Huckabee, M.M., A chimeric A2 strain of respiratory syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced viral load, mucus, and airway dysfunction (2009) J Virol, 83 (9), pp. 4185-4194. , 1:CAS:528:DC%2BD1MXlt1Kqtbs%3D 19211758 2668460; Wei, C., Ni, C., Song, T., Liu, Y., Yang, X., Zheng, Z., The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein (2010) J Immunol, 185, pp. 1158-1168. , 1:CAS:528:DC%2BC3cXotlymtLY%3D 20554965; Tortorella, D., Gewurz, B.E., Furman, M.H., Schust, D.J., Ploegh, H.L., Viral subversion of the immune system (2000) Annu Rev Immunol, 18 (1), pp. 861-926. , 1:CAS:528:DC%2BD3cXjs1Gmt78%3D 10837078; Cornell, C.T., Kiosses, W.B., Harkins, S., Whitton, J.L., Coxsackievirus B3 proteins directionally complement each other to downregulate surface major histocompatibility complex class i (2007) J Virol, 81 (13), pp. 6785-6797. , 1:CAS:528:DC%2BD2sXntVOisrc%3D 17442717 1933326; De Jong, A.S., Visch, H.-J., De Mattia, F., Van Dommelen, M.M., Swarts, H.G., Luyten, T., The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi (2006) J Biol Chem, 281 (20), pp. 14144-14150. , 16540472 1:CAS:528:DC%2BD28XksFeisL0%3D; Ichinohe, T., Pang, I.K., Iwasaki, A., Influenza virus activates inflammasomes via its intracellular M2 ion channel (2010) Nat Immunol, 11 (5), p. 404. , 1:CAS:528:DC%2BC3cXksFaks7Y%3D 20383149 2857582; Triantafilou, K., Kar, S., Vakakis, E., Kotecha, S., Triantafilou, M., Human respiratory syncytial virus viroporin SH: A viral recognition pathway used by the host to signal inflammasome activation (2013) Thorax., 68 (1), pp. 66-75. , 23229815 23229815; Zhang, K., Hou, Q., Zhong, Z., Li, X., Chen, H., Li, W., Porcine reproductive and respiratory syndrome virus activates inflammasomes of porcine alveolar macrophages via its small envelope protein e (2013) Virology., 442 (2), pp. 156-162. , 1:CAS:528:DC%2BC3sXnt1altbs%3D 23664331 23664331; Ito, M., Yanagi, Y., Ichinohe, T., Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome (2012) PLoS Pathog, 8 (8), p. e1002857. , 1:CAS:528:DC%2BC38Xht1SrsLzO 22916014 3415442; Chan, P.K., Chan, M.C., Tracing the SARS-coronavirus (2013) J Thorac Dis, 5, p. S118. , 23977431 3747522; Bruning, A., Aatola, H., Toivola, H., Ikonen, N., Savolainen-Kopra, C., Blomqvist, S., Rapid detection and monitoring of human coronavirus infections (2018) New Microbes New Infect, 24, pp. 52-55. , 1:STN:280:DC%2BC1MbktleksQ%3D%3D 29872531 5986163; Gretebeck, L.M., Subbarao, K., Animal models for SARS and MERS coronaviruses (2015) Curr Opin Virol, 13, pp. 123-129. , 26184451 4550498; About Coronaviruses: Prevention and Treatment 2017, , https://www.cdc.gov/coronavirus/about/prevention.html, CDC; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.-Y., Coronaviruses - Drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15 (5), pp. 327-347. , 1:CAS:528:DC%2BC28XisVyru70%3D 26868298; Lamirande, E.W., Dediego, M.L., Roberts, A., Jackson, J.P., Alvarez, E., Sheahan, T., A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters (2008) J Virol, 82 (15), pp. 7721-7724. , 1:CAS:528:DC%2BD1cXovVSlur0%3D 18463152 2493341; Fett, C., Dediego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking e protein (2013) J Virol, 87 (12), pp. 6551-6559. , 1:CAS:528:DC%2BC3sXptlKksbo%3D 23576515 3676143; Saha, A., Murakami, M., Kumar, P., Bajaj, B., Sims, K., Robertson, E.S., Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2 (2009) J Virol, 83 (9), pp. 4652-4669. , 1:CAS:528:DC%2BD1MXlt1OjsL4%3D 19244339 2668485; Tang, H., Da, L., Mao, Y., Li, Y., Li, D., Xu, Z., Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression (2009) Hepatology., 49 (1), pp. 60-71. , 1:CAS:528:DC%2BD1MXhsFGlt7s%3D 19065679; Craik, D.J., Fairlie, D.P., Liras, S., Price, D., The future of peptide-based drugs (2013) Chem Biol Drug des, 81 (1), pp. 136-147. , 1:CAS:528:DC%2BC3sXlt1yktA%3D%3D 23253135 23253135; Wilson, C., Arkin, M., Small-molecule inhibitors of IL-2/IL-2R: Lessons learned and applied (2010) Small-molecule Inhibitors of Protein-protein Interactions, pp. 25-59. , L. Vassilev D. Fry (eds) Springer Berlin Heidelberg; Newman, D.J., Cragg, G.M., Natural products as sources of new drugs over the 30 years from 1981 to 2010 (2012) J Nat Prod, 75 (3), pp. 311-335. , 1:CAS:528:DC%2BC38XitVeku78%3D 22316239 22316239; Walensky, L.D., Bird, G.H., Hydrocarbon-stapled peptides: Principles, practice, and progress (2014) J Med Chem, 57 (15), pp. 6275-6288. , 1:CAS:528:DC%2BC2cXislensbs%3D; Bernal, F., Tyler, A.F., Korsmeyer, S.J., Walensky, L.D., Verdine, G.L., Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide (2007) J Am Chem Soc, 129 (9), pp. 2456-2457. , 1:CAS:528:DC%2BD2sXhtlGltrw%3D; Stewart, M.L., Fire, E., Keating, A.E., Walensky, L.D., The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer (2010) Nat Chem Biol, 6 (8), pp. 595-601. , 1:CAS:528:DC%2BC3cXns1Gis7c%3D 20562877 3033224; Phillips, C., Roberts, L.R., Schade, M., Bazin, R., Bent, A., Davies, N.L., Design and structure of stapled peptides binding to estrogen receptors (2011) J Am Chem Soc, 133 (25), pp. 9696-9699. , 1:CAS:528:DC%2BC3MXntVems7s%3D 21612236; Zhang, H., Zhao, Q., Bhattacharya, S., Waheed, A.A., Tong, X., Hong, A., A cell-penetrating helical peptide as a potential HIV-1 inhibitor (2008) J Mol Biol, 378 (3), pp. 565-580. , 1:CAS:528:DC%2BD1cXlslWks7w%3D 18374356 2695608; Jamieson, A., Robertson, N., Regulation of protein-protein interactions using stapled peptides (2015) Rep Org Chem, 5, pp. 65-74. , 1:CAS:528:DC%2BC2MXitVGjt7fN; Cui, H.-K., Qing, J., Guo, Y., Wang, Y.-J., Cui, L.-J., He, T.-H., Stapled peptide-based membrane fusion inhibitors of hepatitis C virus (2013) Bioorg Med Chem, 21 (12), pp. 3547-3554. , 1:CAS:528:DC%2BC3sXjvVOmurs%3D 23490158; Gaillard, V., Galloux, M., Garcin, D., Eléouët, J.-F., Le Goffic, R., Larcher, T., A short double-stapled peptide inhibits respiratory syncytial virus entry and spreading (2017) Antimicrob Agents Chemother, 61 (4), p. AA. , 02241-AAC. 02216; Zhang, H., Curreli, F., Waheed, A.A., Mercredi, P.Y., Mehta, M., Bhargava, P., Dual-acting stapled peptides target both HIV-1 entry and assembly (2013) Retrovirology., 10 (1), p. 136. , 24237936 3842668 1:CAS:528:DC%2BC2cXntVaju7s%3D; Han, J., Cong, X., The stapled peptides derived from hepatitis B virus core protein hijack viral replication (2018) J Hepatol, 68, pp. S760-S7S1; Kaspar, A.A., Reichert, J.M., Future directions for peptide therapeutics development (2013) Drug Discov Today, 18 (17-18), pp. 807-817. , 1:CAS:528:DC%2BC3sXpsV2ksbs%3D 23726889; Cromm, P.M., Spiegel, J., Grossmann, T.N., Hydrocarbon stapled peptides as modulators of biological function (2015) ACS Chem Biol, 10 (6), pp. 1362-1375. , 1:CAS:528:DC%2BC2MXkvFCgsb8%3D 25798993 25798993; Klionsky, D.J., Autophagy: From phenomenology to molecular understanding in less than a decade (2007) Nat Rev Mol Cell Biol, 8 (11), pp. 931-937. , 1:CAS:528:DC%2BD2sXhtF2qsL3I 17712358 17712358; Paul, P., Münz, C., Autophagy and Mammalian Viruses (2016) Advances in Virus Research, pp. 149-195; Jackson, W.T., Viruses and the autophagy pathway (2015) Virology., 479, pp. 450-456. , 25858140 1:CAS:528:DC%2BC2MXls1GmsLw%3D; Joubert, P.-E., Werneke, S.W., De La Calle, C., Guivel-Benhassine, F., Giodini, A., Peduto, L., Chikungunya virus-induced autophagy delays caspase-dependent cell death (2012) J Exp Med, 209 (5), pp. 1029-1047. , 1:CAS:528:DC%2BC38Xmsl2itbs%3D 22508836 3348111; Orvedahl, A., Macpherson, S., Sumpter, R., Jr., Tallóczy, Z., Zou, Z., Levine, B., Autophagy protects against Sindbis virus infection of the central nervous system (2010) Cell Host Microbe, 7 (2), pp. 115-127. , 1:CAS:528:DC%2BC3cXlt1KltLg%3D 20159618 2860265; Orvedahl, A., Alexander, D., Tallóczy, Z., Sun, Q., Wei, Y., Zhang, W., HSV-1 ICP34. 5 confers neurovirulence by targeting the Beclin 1 autophagy protein (2007) Cell Host Microbe, 1 (1), pp. 23-35. , 1:CAS:528:DC%2BD2sXkvFSms7g%3D 18005679; Gannagé, M., Dormann, D., Albrecht, R., Dengjel, J., Torossi, T., Rämer, P.C., Matrix protein 2 of influenza a virus blocks autophagosome fusion with lysosomes (2009) Cell Host Microbe, 6 (4), pp. 367-380. , 19837376 2774833 1:CAS:528:DC%2BD1MXhsVCjtrrN; Tallóczy, Z., Virgin, I., Herbert, L.B., PKR-dependent xenophagic degradation of herpes simplex virus type 1 (2006) Autophagy., 2 (1), pp. 24-29. , 16874088 16874088; Kyei, G.B., Dinkins, C., Davis, A.S., Roberts, E., Singh, S.B., Dong, C., Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages (2009) J Cell Biol, 186 (2), pp. 255-268. , 1:CAS:528:DC%2BD1MXpsVGisLg%3D 19635843 2717652; Dreux, M., Gastaminza, P., Wieland, S.F., Chisari, F.V., The autophagy machinery is required to initiate hepatitis C virus replication (2009) Proc Natl Acad Sci, 106 (33), pp. 14046-14051. , 1:CAS:528:DC%2BD1MXhtFWksL%2FE 19666601 19666601; Wong, J., Zhang, J., Si, X., Gao, G., Mao, I., McManus, B.M., Autophagosome supports coxsackievirus B3 replication in host cells (2008) J Virol, 82 (18), pp. 9143-9153. , 1:CAS:528:DC%2BD1cXhtVyktbrI 18596087 2546883; Guo, L., Yu, H., Gu, W., Luo, X., Li, R., Zhang, J., Autophagy negatively regulates transmissible gastroenteritis virus replication (2016) Sci Rep, 6, p. 23864. , 1:CAS:528:DC%2BC28Xlt1Grt74%3D 27029407 4814908; Sun, M.-X., Huang, L., Wang, R., Yu, Y.-L., Li, C., Li, P.-P., Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication (2012) Autophagy., 8 (10), pp. 1434-1447. , 1:CAS:528:DC%2BC3sXisVGgsLs%3D 22739997 22739997; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J Biol Chem, 279 (11), pp. 10136-10141. , 1:CAS:528:DC%2BD2cXhvFCitbs%3D 14699140 14699140; Ao, D., Guo, H.-C., Sun, S.-Q., Sun, D.-H., Fung, T.S., Wei, Y.-Q., Viroporin activity of the foot-and-mouth disease virus non-structural 2B protein (2015) PLoS One, 10 (5), p. e0125828. , 25946195 4422707 1:CAS:528:DC%2BC2MXhvVaktbjI; Crawford, S.E., Hyser, J.M., Utama, B., Estes, M.K., Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication (2012) Proc Natl Acad Sci, 109 (50), pp. E3405-E3E13. , 1:CAS:528:DC%2BC3sXnsFeltA%3D%3D 23184977 23184977; Liu, B., Panda, D., Mendez-Rios, J.D., Ganesan, S., Wyatt, L.S., Moss, B., Identification of Poxvirus Genome Uncoating and DNA Replication Factors with Mutually Redundant Roles (2018) J Virol, 92 (7), pp. e02117-e02152. , 1:CAS:528:DC%2BC1cXhslensbfK 29343579 5972866; Castaño-Rodriguez, C., Honrubia, J.M., Gutiérrez-Álvarez, J., Dediego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis (2018) MBio., 9 (3), pp. e02317-e02325. , 29789363 5964350; Chen, I.-Y., Moriyama, M., Chang, M.-F., Ichinohe, T., Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome (2019) Front Microbiol, 10, p. 50. , 30761102 6361828","Fielding, B.C.; Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western CapeSouth Africa; email: bfielding@uwc.ac.za",,"BioMed Central Ltd.",1743422X,,,"31133031","English","Virol. J.",Review,"Final",Open Access,Scopus,2-s2.0-85066411645 "Chun J., Cho Y., Park K.H., Choi H., Cho H., Lee H.-J., Jang H., Kim K.H., Oh Y.-K., Kim Y.B.","57209240608;56017716700;57214896587;56054839600;56018042900;51360951000;57209240918;57188651295;7402125977;25923367800;","Effect of fc fusion on folding and immunogenicity of middle east respiratory syndrome coronavirus spike protein",2019,"Journal of Microbiology and Biotechnology","29","5",,"813","819",,1,"10.4014/jmb.1903.03043","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066969022&doi=10.4014%2fjmb.1903.03043&partnerID=40&md5=0557000a85dd7a94ce8f5505ece7c977","Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea; Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; WooGene B&G, Seoul, 07299, South Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, South Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea","Chun, J., Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea, Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Cho, Y., Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea, Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Park, K.H., Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea, Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Choi, H., Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea, Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Cho, H., Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Lee, H.-J., Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea; Jang, H., WooGene B&G, Seoul, 07299, South Korea; Kim, K.H., Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, South Korea; Oh, Y.-K., College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea; Kim, Y.B., Department of Bio-industrial Technologies, Konkuk University, Seoul, 05029, South Korea, Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe respiratory impairment with a reported mortality rate of ~36% in humans. The absence of clinically available MERS-CoV vaccines and treatments to date has resulted in uncontrolled incidence and propagation of the virus. In vaccine design, fusion with the IgG Fc domain is reported to increase the immunogenicity of various vaccine antigens. However, limited reports have documented the potential negative effects of Fc fusion on vaccine antigens. To determine whether Fc fusion affects the immunogenicity of MERS-CoV antigen, we constructed a Fc-associated MERS-CoV spike protein (eS770-Fc, 110 kDa), whereby human IgG4 Fc domain was fused to MERS-CoV spike protein (eS770) via a Gly/Pro linker using baculovirus as the expression system. For comparative analyses, two eS770 proteins lacking the IgG4 Fc domain were generated using the IdeS protease (eS770-ΔFc) or His tag attachment (eS770-His) and the immunogenicity of the above constructs were examined following intramuscular immunization in mice. Contrary to expectations, non-Fc spike proteins (eS770-ΔFc, eS770-His; 90 kDa) showed higher immunogenicity than the Fc fusion protein (eS770-Fc). Moreover, unlike non-Fc spike proteins, eS770-Fc immunization did not elicit neutralizing antibodies against MERS-CoV. The lower immunogenicity of Fc-fused eS770 was related to alterations in the structural conformation of the spike protein. Taken together, our results indicate that IgG Fc fusion reduces the immunogenicity of eS770 by interfering with the proper folding structure. © 2019 by The Korean Society for Microbiology and Biotechnology.","IgG Fc domain; Immunogenicity; MERS-CoV; Protein folding; Subunit vaccine","fusion protein; immunoglobulin G antibody; immunoglobulin G4; neutralizing antibody; proteinase; recombinant protein; viral protein; virus antigen; coronavirus spike glycoprotein; fusion protein; immunoglobulin Fc fragment; immunoglobulin G; neutralizing antibody; subunit vaccine; virus antibody; virus vaccine; animal experiment; Article; Baculoviridae; comparative study; controlled study; female; immunization; immunogenicity; Middle East respiratory syndrome coronavirus; mouse; nonhuman; protein aggregation; protein conformation; protein folding; protein structure; animal; Bagg albino mouse; chemistry; Coronavirus infection; genetics; immunology; pathogenicity; serodiagnosis; Sf9 cell line; vaccination; vaccine immunogenicity; Animals; Antibodies, Neutralizing; Antibodies, Viral; Antigens, Viral; Coronavirus Infections; Female; Immunization; Immunogenicity, Vaccine; Immunoglobulin Fc Fragments; Immunoglobulin G; Mice; Mice, Inbred BALB C; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Protein Folding; Recombinant Fusion Proteins; Sf9 Cells; Spike Glycoprotein, Coronavirus; Vaccination; Vaccines, Subunit; Viral Vaccines","Alsolamy, S., Arabi, Y.M., Infection with Middle East respiratory syndrome coronavirus (2015) Can. J. Respir. Ther., 51, p. 102; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., A novel nanobody targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J. Virol., 92; Lee, K., Ko, H.L., Lee, E.-Y., Park, H.-J., Kim, Y.S., Kim, Y.-S., Development of a diagnostic system for detection of specific antibodies and antigens against Middle East respiratory syndrome coronavirus (2018) Microbiol. Immunol., 62, pp. 574-584; Kim, S., Kim, S., Exploring the determinants of perceived risk of Middle East respiratory syndrome (MERS) in Korea (2018) Int. J. Environ. Res. Public Health, 15 (6); Shubin, Z., Li, W., Poonia, B., Ferrari, G., Labranche, C., Montefiori, D., An HIV envelope gp120-Fc fusion protein elicits effector antibody responses in rhesus macaques (2017) Clin. Vaccine Immunol., 24; Zhao, B., Zhang, X., Krummenacher, C., Song, S., Gao, L., Zhang, H., Immunization with Fc-based recombinant epstein-barr virus gp350 elicits potent neutralizing humoral immune response in a BALB/c mice model (2018) Front. Immunol., 9; Zhang, Y., Zhou, Z., Zhu, S.L., Zu, X., Wang, Z., Zhang, L.K., A novel RSV F-Fc fusion protein vaccine reduces lung injury induced by respiratory syncytial virus infection (2019) Antiviral Res, 165, pp. 11-22; Kuo, T.T., Aveson, V.G., Neonatal Fc receptor and IgG-based therapeutics (2011) Mabs, 3, pp. 422-430; Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K.M., A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV (2013) Virol. J., 10; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Kebriaei, A., Derakhshan, M., Meshkat, Z., Eidgahi, M.R.A., Rezaee, S.A., Farsiani, H., Construction and immunogenicity of a new Fc-based subunit vaccine candidate against Mycobacterium tuberculosis (2016) Mol. Biol. Rep., 43, pp. 911-922; Jung, S.Y., Kang, K.W., Lee, E.Y., Seo, D.W., Kim, H.L., Kim, H., Heterologous prime-boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus (2018) Vaccine, 36, pp. 3468-3476; Trivedi, S., Miao, C., Al-Abdallat, M.M., Haddadin, A., Alqasrawi, S., Iblan, I., Inclusion of MERS-spike protein ELISA in algorithm to determine serologic evidence of MERS-CoV infection (2018) J. Med. Virol., 90, pp. 367-371","Kim, Y.B.; Department of Bio-industrial Technologies, Konkuk UniversitySouth Korea; email: kimera@konkuk.ac.kr",,"Korean Society for Microbiology and Biotechnology",10177825,,JOMBE,"30982320","English","J. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85066969022 "Alejandra Tortorici M., Walls A.C., Lang Y., Wang C., Li Z., Koerhuis D., Boons G.-J., Bosch B.-J., Rey F.A., de Groot R.J., Veesler D.","6603890184;57159082300;57193546459;57208238618;57189491157;57208152605;25635472000;7003681993;7102099345;7103077066;25227836200;","Structural basis for human coronavirus attachment to sialic acid receptors",2019,"Nature Structural and Molecular Biology","26","6",,"481","489",,9,"10.1038/s41594-019-0233-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066949644&doi=10.1038%2fs41594-019-0233-y&partnerID=40&md5=095cb7f50cc2b974a2bd4823da198edd","Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, Netherlands; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands; Department of Chemistry, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States","Alejandra Tortorici, M., Department of Biochemistry, University of Washington, Seattle, WA, United States, Institut Pasteur, Unité de Virologie Structurale, Paris, France, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France; Walls, A.C., Department of Biochemistry, University of Washington, Seattle, WA, United States; Lang, Y., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Wang, C., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Li, Z., Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, Netherlands, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands; Koerhuis, D., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Boons, G.-J., Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, Netherlands, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands, Department of Chemistry, University of Georgia, Athens, GA, United States, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Rey, F.A., Institut Pasteur, Unité de Virologie Structurale, Paris, France, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France; de Groot, R.J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Veesler, D., Department of Biochemistry, University of Washington, Seattle, WA, United States","Coronaviruses cause respiratory tract infections in humans and outbreaks of deadly pneumonia worldwide. Infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host receptors and fuses the viral and cellular membranes. To understand the molecular basis of coronavirus attachment to oligosaccharide receptors, we determined cryo-EM structures of coronavirus OC43 S glycoprotein trimer in isolation and in complex with a 9-O-acetylated sialic acid. We show that the ligand binds with fast kinetics to a surface-exposed groove and that interactions at the identified site are essential for S-mediated viral entry into host cells, but free monosaccharide does not trigger fusogenic conformational changes. The receptor-interacting site is conserved in all coronavirus S glycoproteins that engage 9-O-acetyl-sialogycans, with an architecture similar to those of the ligand-binding pockets of coronavirus hemagglutinin esterases and influenza virus C/D hemagglutinin-esterase fusion glycoproteins. Our results demonstrate these viruses evolved similar strategies to engage sialoglycans at the surface of target cells. © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.",,"acetic acid derivative; esterase; glycoprotein; ligand; monosaccharide; receptor; sialic acid; sialic acid receptor; sialoglycoprotein; unclassified drug; virus fusion protein; virus hemagglutinin; cell surface receptor; coronavirus spike glycoprotein; n acetylneuraminic acid; sialic acid receptor; acetylation; Article; cell surface; conformational transition; controlled study; Coronaviridae; cryoelectron microscopy; host cell; Human parainfluenza virus 1; Influenza C virus; kinetics; ligand binding; nonhuman; priority journal; protein interaction; protein structure; surface property; target cell; virus attachment; virus cell interaction; virus entry; chemistry; Coronavirus infection; HEK293 cell line; human; Human coronavirus OC43; metabolism; molecular model; physiology; protein multimerization; virology; Coronavirus Infections; Coronavirus OC43, Human; Cryoelectron Microscopy; HEK293 Cells; Humans; Models, Molecular; N-Acetylneuraminic Acid; Protein Multimerization; Receptors, Cell Surface; Spike Glycoprotein, Coronavirus; Virus Internalization","Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF, PID: 24172901; Haagmans, B.L., Middle east respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145. , COI: 1:CAS:528:DC%2BC3sXitVWjtrbO, PID: 24355866; Su, S., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502. , COI: 1:CAS:528:DC%2BC28XksVWmsbc%3D, PID: 27012512; Isaacs, D., Flowers, D., Clarke, J.R., Valman, H.B., MacNaughton, M.R., Epidemiology of coronavirus respiratory infections (1983) Arch. Dis. Child, 58, pp. 500-503. , COI: 1:STN:280:DyaL3s3lsFemsA%3D%3D, PID: 6307189; Menachery, V.D., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513. , COI: 1:CAS:528:DC%2BC2MXhslKgt7nO, PID: 26552008; Menachery, V.D., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl Acad. Sci. USA, 113, pp. 3048-3053. , COI: 1:CAS:528:DC%2BC28XktV2msr8%3D, PID: 26976607; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13. , PID: 29190287; Bosch, B.J., van der Zee, R., de Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811. , COI: 1:CAS:528:DC%2BD3sXmt1Sit7k%3D, PID: 12885899; Walls, A.C., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , COI: 1:CAS:528:DC%2BC28Xit1aju78%3D, PID: 26855426; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134. , COI: 1:CAS:528:DC%2BC2cXhvFyjsbjN, PID: 25445340; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc. Natl Acad. Sci. USA, 106, pp. 5871-5876. , COI: 1:CAS:528:DC%2BD1MXkvFejtrY%3D, PID: 19321428; Millet, J.K., Whittaker, G.R., Host cell entry of middle east respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl Acad. Sci. USA, 111, pp. 15214-15219. , COI: 1:CAS:528:DC%2BC2cXhs1yhtb7E, PID: 25288733; Walls, A.C., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc. Natl Acad. Sci., 114, pp. 11157-11162. , COI: 1:CAS:528:DC%2BC2sXhs1SksLjI, PID: 29073020; Burkard, C., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10. , PID: 25375324; Walls, A., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy (2017) Protein Sci., 26, pp. 113-121. , COI: 1:CAS:528:DC%2BC28Xhs1yktbjI, PID: 27667334; Walls, A.C., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905. , COI: 1:CAS:528:DC%2BC28XhsV2rtb3J, PID: 27617430; Xiong, X., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2018) J. Virol., 92. , PID: 29093093; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , COI: 1:CAS:528:DC%2BC28Xjs1emtb8%3D, PID: 26935699; Kirchdoerfer, R.N., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci. Rep., 8, p. 15701. , PID: 30356097; Pallesen, J., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl Acad. Sci. USA, 114, pp. E7348-E7357. , COI: 1:CAS:528:DC%2BC2sXhtlWmsrfI, PID: 28807998; Gui, M., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129. , COI: 1:CAS:528:DC%2BC28XitFCls7jL, PID: 28008928; Shang, J., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog., 14. , PID: 29684066; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog., 14. , PID: 30102747; Shang, J., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2017) J. Virol., , https://doi.org/10.1128/JVI.01556-17; Walls, A.C., Unexpected receptor functional mimicry elucidates activation of coronavirus fusion (2019) Cell, 176, pp. 1026-1039.e15. , COI: 1:CAS:528:DC%2BC1MXisVWgu74%3D, PID: 30712865; Vijgen, L., Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J. Virol., 79, pp. 1595-1604. , COI: 1:CAS:528:DC%2BD2MXhtFCjtLc%3D, PID: 15650185; Lau, S.K., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337. , COI: 1:CAS:528:DC%2BC3MXhtlCltr3E, PID: 21849456; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc. Natl Acad. Sci. USA, 85, pp. 4526-4529. , COI: 1:CAS:528:DyaL1cXkslSjs7g%3D, PID: 3380803; Huang, X., Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme (2015) J. Virol., 89, pp. 7202-7213. , COI: 1:CAS:528:DC%2BC2MXhtFamu7jK, PID: 25926653; de Groot, R.J., Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses (2006) Glycoconj. J., 23, pp. 59-72. , PID: 16575523; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J. Virol., 87, pp. 3097-3107. , COI: 1:CAS:528:DC%2BC3sXlsV2hsr4%3D, PID: 23283955; Bakkers, M.J., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity (2017) Cell Host Microbe, 21, pp. 356-366. , COI: 1:CAS:528:DC%2BC2sXktVyltbg%3D, PID: 28279346; Zeng, Q., Langereis, M.A., van Vliet, A.L., Huizinga, E.G., de Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc. Natl Acad. Sci. USA, 105, pp. 9065-9069. , COI: 1:CAS:528:DC%2BD1cXosVCiur0%3D, PID: 18550812; Rosenthal, P.B., Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus (1998) Nature, 396, pp. 92-96. , COI: 1:CAS:528:DyaK1cXnsVSit74%3D, PID: 9817207; Song, H., An open receptor-binding cavity of hemagglutinin-esterase-fusion glycoprotein from newly-identified influenza D virus: basis for its broad cell tropism (2016) PLoS Pathog., 12. , PID: 26816272; Herrler, G., The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase (1985) EMBO J., 4, pp. 1503-1506. , COI: 1:CAS:528:DyaL2MXltlyiu78%3D, PID: 2411539; Stencel-Baerenwald, J.E., Reiss, K., Reiter, D.M., Stehle, T., Dermody, T.S., The sweet spot: defining virus-sialic acid interactions (2014) Nat. Rev. Microbiol, 12, pp. 739-749. , COI: 1:CAS:528:DC%2BC2cXhs1GmsbbO, PID: 25263223; Neu, U., Bauer, J., Stehle, T., Viruses and sialic acids: rules of engagement (2011) Curr. Opin. Struct. Biol., 21, pp. 610-618. , COI: 1:CAS:528:DC%2BC3MXht12rtbjE, PID: 21917445; Schauer, R., Kamerling, J.P., Exploration of the sialic acid world (2018) Adv. Carbohydr. Chem. Biochem, 75, pp. 1-213. , PID: 30509400; Peng, G., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem., 287, pp. 41931-41938. , COI: 1:CAS:528:DC%2BC38Xhslyks77I, PID: 23091051; Peng, G., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl Acad. Sci. USA, 108, pp. 10696-10701. , COI: 1:CAS:528:DC%2BC3MXovFenu7g%3D, PID: 21670291; Li, W., Identification of sialic acid-binding function for the middle east respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl Acad. Sci. USA, 114, pp. E8508-E8517. , COI: 1:CAS:528:DC%2BC2sXhsFajsbvF, PID: 28923942; Hulswit, R.J.G., Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A (2019) Proc. Natl Acad. Sci. USA, 116, pp. 2681-2690. , COI: 1:CAS:528:DC%2BC1MXivVajs7s%3D, PID: 30679277; Collins, A.R., HLA class I antigen serves as a receptor for human coronavirus OC43 (1993) Immunol. Invest, 22, pp. 95-103. , COI: 1:CAS:528:DyaK3sXkt1Khtrc%3D, PID: 8505072; Langereis, M.A., Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins (2015) Cell Rep., 11, pp. 1966-1978. , COI: 1:CAS:528:DC%2BC2MXhtV2it7nO, PID: 26095364; Bakkers, M.J., Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation (2016) Proc. Natl Acad. Sci. USA, 113, pp. E3111-E3119. , COI: 1:CAS:528:DC%2BC28XnvFeitr8%3D, PID: 27185912; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868. , COI: 1:CAS:528:DC%2BD2MXpvFCisLw%3D, PID: 16166518; Lu, G., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , COI: 1:CAS:528:DC%2BC3sXhtVKhtbfK, PID: 23831647; Ou, X., Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1 (2017) Nat. Commun., 8. , COI: 1:CAS:528:DC%2BC2sXot12isrw%3D, PID: 28534504; Yuan, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8. , COI: 1:CAS:528:DC%2BC2sXlvFCgt74%3D, PID: 28393837; Campbell, M.G., Veesler, D., Cheng, A., Potter, C.S., Carragher, B., A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy (2015) eLife, 4; Seetharaman, J., X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution (1998) J. Biol. Chem., 273, pp. 13047-13052. , COI: 1:CAS:528:DyaK1cXjsVeqs70%3D, PID: 9582341; Dormitzer, P.R., Sun, Z.Y., Wagner, G., Harrison, S.C., The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site (2002) EMBO J., 21, pp. 885-897. , COI: 1:CAS:528:DC%2BD38XitFylsLo%3D, PID: 11867517; Langereis, M.A., Zeng, Q., Heesters, B.A., Huizinga, E.G., de Groot, R.J., The murine coronavirus hemagglutinin-esterase receptor-binding site: a major shift in ligand specificity through modest changes in architecture (2012) PLoS Pathog., 8. , COI: 1:CAS:528:DC%2BC38Xit1Chs70%3D, PID: 22291594; Kunkel, F., Herrler, G., Structural and functional analysis of the surface protein of human coronavirus OC43 (1993) Virology, 195, pp. 195-202. , COI: 1:STN:280:DyaK3szgtl2iug%3D%3D, PID: 8317096; Fei, Y., Characterization of receptor binding profiles of influenza a viruses using an ellipsometry-based label-free glycan microarray assay platform (2015) Biomolecules, 5, pp. 1480-1498. , COI: 1:CAS:528:DC%2BC2MXht1egs7vE, PID: 26193329; Xiong, X., Receptor binding by a ferret-transmissible H5 avian influenza virus (2013) Nature, 497, pp. 392-396. , COI: 1:CAS:528:DC%2BC3sXms1Wgs7s%3D, PID: 23615615; Guo, H., Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces (2018) PLoS Pathog., 14. , PID: 30102740; Sakai, T., Takagi, H., Muraki, Y., Saito, M., Unique directional motility of influenza C Virus controlled by its filamentous morphology and short-range motions (2018) J. Virol., , https://doi.org/10.1128/JVI.01522-17; Sakai, T., Nishimura, S.I., Naito, T., Saito, M., Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery (2017) Sci. Rep., 7. , COI: 1:CAS:528:DC%2BC2sXlt12gu78%3D, PID: 28344335; Mukherjee, S., Mechanism and significance of cell type-dependent neutralization of flaviviruses (2014) J. Virol., 88, pp. 7210-7220. , PID: 24741083; Park, J.E., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl Acad. Sci. USA, 113, pp. 12262-12267. , COI: 1:CAS:528:DC%2BC28Xhs1elur3F, PID: 27791014; Owczarek, K., Early events during human coronavirus OC43 entry to the cell (2018) Sci. Rep., 8. , PID: 29740099; Wickramasinghe, I.N., de Vries, R.P., Grone, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J. Virol., 85, pp. 8903-8912. , COI: 1:CAS:528:DC%2BC3MXhtVKqtbnP, PID: 21697468; Liu, C., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J. Virol., 89, pp. 6121-6125. , COI: 1:CAS:528:DC%2BC2MXosFSjt7k%3D, PID: 25787280; Schultze, B., Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity (1996) J. Virol., 70, pp. 5634-5637. , COI: 1:CAS:528:DyaK28Xktleiuro%3D, PID: 8764078; Nilsson, E.C., The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis (2011) Nat. Med, 17, pp. 105-109. , COI: 1:CAS:528:DC%2BC3cXhsFGgtrvF, PID: 21151139; Reiter, D.M., Crystal structure of reovirus attachment protein sigma1 in complex with sialylated oligosaccharides (2011) PLoS Pathog., 7. , COI: 1:CAS:528:DC%2BC3MXhtFWiurfF, PID: 21829363; Ito, T., Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species (1997) Virology, 227, pp. 493-499. , COI: 1:CAS:528:DyaK2sXpt1Sktw%3D%3D, PID: 9018149; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , COI: 1:CAS:528:DC%2BC3sXjvFensb8%3D, PID: 23486063; Suloway, C., Automated molecular microscopy: the new Leginon system (2005) J. Struct. Biol., 151, pp. 41-60. , COI: 1:CAS:528:DC%2BD2MXlsFCltbg%3D, PID: 15890530; Tegunov, D.C., (2018) P. Real-Time Cryo-Em Data Pre-Processing with Warp, , https://www.biorxiv.org/content/10.1101/338558v1; Zivanov, J., New tools for automated high-resolution cryo-EM structure determination in RELION-3 (2018) eLife, 7; Zivanov, J., Nakane, T., Scheres, S.H.W., A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis (2019) IUCrJ, 6, pp. 5-17. , COI: 1:CAS:528:DC%2BC1MXnt1ajuw%3D%3D, PID: 30713699; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat. Methods, 14, pp. 290-296. , COI: 1:CAS:528:DC%2BC2sXitlGisbs%3D; Rosenthal, P.B., Henderson, R., Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy (2003) J. Mol. Biol., 333, pp. 721-745. , COI: 1:CAS:528:DC%2BD3sXot1Gkt7k%3D; Chen, S., High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy (2013) Ultramicroscopy, 135, pp. 24-35. , COI: 1:CAS:528:DC%2BC3sXhslWhtLzO, PID: 3834153; Goddard, T.D., Huang, C.C., Ferrin, T.E., Visualizing density maps with UCSF Chimera (2007) J. Struct. Biol., 157, pp. 281-287. , COI: 1:CAS:528:DC%2BD28XhtlaltrfL, PID: 16963278; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 486-501. , COI: 1:CAS:528:DC%2BC3cXksFKisb8%3D, PID: 20383002; Wang, R.Y., Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta (2016) eLife, 5. , PID: 27669148; Frenz, B.D.R., Automatically fixing errors in glycoprotein structures with Rosetta (2019) Structure, 27, pp. 1-6; DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D., Andre, I., Modeling symmetric macromolecular structures in Rosetta3 (2011) PLoS One, 6. , COI: 1:CAS:528:DC%2BC3MXotFantL0%3D, PID: 3120754; DiMaio, F., Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement (2015) Nat. Methods, 12, pp. 361-365. , COI: 1:CAS:528:DC%2BC2MXjtFems78%3D, PID: 25707030; Chen, V.B., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D. Biol. Crystallogr, 66, pp. 12-21. , COI: 1:CAS:528:DC%2BC3cXit1Kktg%3D%3D, PID: 20057044; Agirre, J., Privateer: software for the conformational validation of carbohydrate structures (2015) Nat. Struct. Mol. Biol., 22, pp. 833-834. , COI: 1:CAS:528:DC%2BC2MXhvVOgtLvL, PID: 26581513; Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J. Mol. Biol., 372, pp. 774-797. , COI: 1:CAS:528:DC%2BD2sXpvFGktb8%3D, PID: 17681537; Goddard, T.D., UCSF ChimeraX: Meeting modern challenges in visualization and analysis (2018) Protein Sci., 27, pp. 14-25. , COI: 1:CAS:528:DC%2BC2sXhsVertLjN, PID: 28710774; Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A., PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations (2004) Nucleic Acids Res, 32, pp. W665-W667. , COI: 1:CAS:528:DC%2BD2cXlvFKmsbY%3D, PID: 15215472; Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A., Electrostatics of nanosystems: application to microtubules and the ribosome (2001) Proc. Natl Acad. Sci. USA, 98, pp. 10037-10041. , COI: 1:CAS:528:DC%2BD3MXmvFWisbc%3D, PID: 11517324; Kaname, Y., Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64 (2010) J. Virol., 84, pp. 3210-3219. , COI: 1:CAS:528:DC%2BC3cXktFOgsb0%3D, PID: 20071581","Veesler, D.; Department of Biochemistry, University of WashingtonUnited States; email: dveesler@uw.edu",,"Nature Publishing Group",15459993,,NSMBC,"31160783","English","Nat. Struct. Mol. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85066949644 "Chernyavtseva A., Cave N.J., Munday J.S., Dunowska M.","57191877510;57192935658;56946472800;6602358317;","Differential recognition of peptides within feline coronavirus polyprotein 1 ab by sera from healthy cats and cats with feline infectious peritonitis",2019,"Virology","532",,,"88","96",,,"10.1016/j.virol.2019.04.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064969457&doi=10.1016%2fj.virol.2019.04.003&partnerID=40&md5=a8b8c115f8b196897a836a3b0178b5d3","School of Veterinary Science, Massey University, Palmerston North, New Zealand","Chernyavtseva, A., School of Veterinary Science, Massey University, Palmerston North, New Zealand; Cave, N.J., School of Veterinary Science, Massey University, Palmerston North, New Zealand; Munday, J.S., School of Veterinary Science, Massey University, Palmerston North, New Zealand; Dunowska, M., School of Veterinary Science, Massey University, Palmerston North, New Zealand","The aim of the study was to identify peptides within the polyprotein (Pp) 1 ab that are differentially recognised by cats with either enteric or systemic disease following infection with feline coronavirus. Overlapping 12-mer peptides (n = 28,426) across the entire Pp1ab were arrayed on peptide chips and reacted with pooled sera from coronavirus seropositive cats and from one seronegative cat. Eleven peptides were further tested in ELISA with individual serum samples, and three were selected for further screening. Two peptides (16433 and 4934) in the nsp3 region encoding the papain 1 and 2 proteases were identified for final testing. Peptide 4934 reacted equally with positive sera from healthy cats and cats with feline infectious peritonitis (FIP), while peptide 16433 was recognized predominantly by FIP-affected cats. The value of antibody tests based on these peptides in differentiating between the enteric and FIP forms of feline coronavirus infection remains to be determined. © 2019 Elsevier Inc.","Antibody response; Feline coronavirus; Feline enteric coronavirus; Feline infectious peritonitis; FIP; Non-structural proteins","coronavirus polyprotein 1; papain; polyprotein; polyprotein 1 ab; protein papain 1; protein papain 2; unclassified drug; animal tissue; Article; blood analysis; blood sampling; cat; controlled study; enzyme linked immunosorbent assay; feline infectious peritonitis; female; immunoassay; male; nonhuman; priority journal; protein analysis; serodiagnosis","Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M.C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J. Feline Med. Surg., 11, pp. 594-604; Addie, D.D., le Poder, S., Burr, P., Decaro, N., Graham, E., Hofmann-Lehmann, R., Jarrett, O., Meli, M.L., Utility of feline coronavirus antibody tests (2015) J. Feline Med. Surg., 17, pp. 152-162; Balint, A., Farsang, A., Szeredi, L., Zadori, Z., Belak, S., Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats (2014) Vet. Microbiol., 169, pp. 154-162; Brown, E., Lawson, S., Welbon, C., Gnanandarajah, J., Li, J., Murtaugh, M.P., Nelson, E.A., Fang, Y., Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types I and II (2009) Clin. Vaccine Immunol., 16, pp. 628-635; Duan, J., Yan, X., Guo, X., Cao, W., Han, W., Qi, C., Feng, J., Jin, G., A human SARS-CoV neutralizing antibody against epitope on S2 protein (2005) Biochem. Biophys. Res. Commun., 333, pp. 186-193; Felten, S., Leutenegger, C.M., Balzer, H.J., Pantchev, N., Matiasek, K., Wess, G., Egberink, H., Hartmann, K., Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis (2017) BMC Vet. Res., 13, p. 228; Go, Y.Y., Snijder, E.J., Timoney, P.J., Balasuriya, U.B., Characterization of equine humoral antibody response to the nonstructural proteins of equine arteritis virus (2011) Clin. Vaccine Immunol., 18, pp. 268-279; Hagemeijer, M.C., Rottier, P.J., de Haan, C.A., Biogenesis and dynamics of the coronavirus replicative structures (2012) Viruses, 4, pp. 3245-3269; Johnson, C.R., Yu, W., Murtaugh, M.P., Cross-reactive antibody responses to nsp1 and nsp2 of Porcine reproductive and respiratory syndrome virus (2007) J. Gen. Virol., 88, pp. 1184-1195; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Virus taxonomy: classification and nomenclature of viruses (2012) Ninth Report of the International Committee on Taxonomy of Viruses, 10, p. 1327. , I.U.o.M.S.V. Division Elsevier/Academic Press Amsterdam; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Legendre, A.M., Kuritz, T., Galyon, G., Baylor, V.M., Heidel, R.E., Polyprenyl immunostimulant treatment of cats with presumptive non-effusive feline infectious peritonitis in a field study (2017) Front. Vet. Sci., 4, p. 7; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: structures and functions of a large multi-domain protein (2018) Antivir. Res., 149, pp. 58-74; Oleksiewicz, M.B., Botner, A., Normann, P., Semen from boars infected with porcine reproductive and respiratory syndrome virus (PRRSV) contains antibodies against structural as well as nonstructural viral proteins (2001) Vet. Microbiol., 81, pp. 109-125; Oleksiewicz, M.B., Botner, A., Toft, P., Normann, P., Storgaard, T., Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes (2001) J. Virol., 75, pp. 3277-3290; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet. Microbiol., 175, pp. 157-166; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat. Rev. Microbiol., 7, pp. 439-450; Riemer, F., Kuehner, K.A., Ritz, S., Sauter-Louis, C., Hartmann, K., Clinical and laboratory features of cats with feline infectious peritonitis—a retrospective study of 231 confirmed cases (2000-2010) (2016) J. Feline Med. Surg., 18, pp. 348-356; Satoh, R., Furukawa, T., Kotake, M., Takano, T., Motokawa, K., Gemma, T., Watanabe, R., Hohdatsu, T., Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in the spike 2 domain and the nucleocapsid protein of feline infectious peritonitis virus (2011) Vaccine, 29, pp. 1791-1800; Takano, T., Morioka, H., Gomi, K., Tomizawa, K., Doki, T., Hohdatsu, T., Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane protein of feline infectious peritonitis virus (2014) Vaccine, 32, pp. 1834-1840; Tasker, S., Diagnosis of feline infectious peritonitis: update on evidence supporting available tests (2018) J. Feline Med. Surg., 20, pp. 228-243; Yu, H., Jiang, L.F., Fang, D.Y., Yan, H.J., Zhou, J.J., Zhou, J.M., Liang, Y., Long, B.G., Selection of SARS-coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice (2007) Virology, 359, pp. 264-274","Dunowska, M.; School of Veterinary Science, Massey UniversityNew Zealand; email: M.Dunowska@massey.ac.nz",,"Academic Press Inc.",00426822,,VIRLA,"31048107","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85064969457 "Apaydın Ç.B., Cesur N., Stevaert A., Naesens L., Cesur Z.","57209027979;6603835845;55070704100;7005160225;6603093279;","Synthesis and anti-coronavirus activity of a series of 1-thia-4-azaspiro[4.5]decan-3-one derivatives",2019,"Archiv der Pharmazie","352","6", 1800330,"","",,,"10.1002/ardp.201800330","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066334090&doi=10.1002%2fardp.201800330&partnerID=40&md5=246eb09ec4c5d6740720ac479c093266","Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey; Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium","Apaydın, Ç.B., Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey; Cesur, N., Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey; Stevaert, A., Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium; Naesens, L., Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium; Cesur, Z., Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul University, Istanbul, Turkey","A series of 1-thia-4-azaspiro[4.5]decan-3-ones bearing an amide group at C-4 and various substitutions at C-2 and C-8 were synthesized and evaluated against human coronavirus and influenza virus. Compounds 7m, 7n, 8k, 8l, 8m, 8n, and 8p were found to inhibit human coronavirus 229E replication. The most active compound was N-(2-methyl-8-tert-butyl-3-oxo-1-thia-4-azaspiro[4.5]decan-4-yl)-3-phenylpropanamide (8n), with an EC50 value of 5.5 µM, comparable to the known coronavirus inhibitor, (Z)-N-[3-[4-(4-bromophenyl)-4-hydroxypiperidin-1-yl]-3-oxo-1-phenylprop-1-en-2-yl]benzamide (K22). Compound 8n and structural analogs were devoid of anti-influenza virus activity, although their scaffold is shared with a previously discovered class of H3 hemagglutinin-specific influenza virus fusion inhibitors. These findings point to the 1-thia-4-azaspiro[4.5]decan-3-one scaffold as a versatile chemical structure with high relevance for antiviral drug development. © 2019 Deutsche Pharmazeutische Gesellschaft","antimicrobial activity; cycloaddition; structure elucidation; synthesis","1 thia 4 azaspiro[4.5]decan 3 one derivative; amantadine; amide; antivirus agent; Influenza virus hemagglutinin; n (2 methyl 3 oxo 1 thia 4 azaspiro[4.4]non 4 yl) 2 phenoxyacetamide; n (2 methyl 3 oxo 1 thia 4 azaspiro[4.4]nonan 4 yl) 3 phenylpropanamide; n (2 methyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (2 methyl 8 phenyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (2 methyl 8 tert 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (2,7 dimethyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (2,8 dimethyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (3 oxo 1 thia 4 azaspiro[4.4]non 4 yl) 2 phenoxyacetamide; n (3 oxo 1 thia 4 azaspiro[4.5]decan 4 yl) 3 phenylpropanamide; n (3 oxo 1 thia 4 azaspiro[4.6]undec 4 yl) 2 phenoxyacetamide; n (3 oxo 8 propyl 1 thia 4 azaspiro[4.5]decan 4 yl) 3 phenylpropanamide; n (7 methyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (8 ethyl 3 oxo 1 thia 4 azaspiro[4.5]decan 4 yl) 3 phenylpropanamide; n (8 methyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (8 methyl 3 oxo 1 thia 4 azaspiro[4.5]decan 4 yl) 3 phenylpropanamide; n (8 phenyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (8 phenyl 3 oxo 1 thia 4 azaspiro[4.5]decan 4 yl) 3 phenylpropanamide; n (8 tert butyl 3 oxo 1 thia 4 azaspiro[4.5]dec 4 yl) 2 phenoxyacetamide; n (8 tert butyl 3 oxo 1 thia 4 azaspiro[4.5]decan 4 yl) 3 phenylpropanamide; n [2 methyl 3 oxo 8 (trifluoromethyl) 1 thia 4 azaspiro[4.5]dec 4 yl] 2 phenoxyacetamide; n [3 oxo (8 trifluoromethyl 1 thia 4 azaspiro[4.5]decan 4 yl] 3 phenylpropanamide; n [3 oxo 8 (trifluoromethyl) 1 thia 4 azaspiro[4.5]dec 4 yl] 2 phenoxyacetamide; ribavirin; rimantadine; unclassified drug; unindexed drug; antivirus agent; heterocyclic compound; spiro compound; antiviral activity; Article; controlled study; Coronaviridae; cytotoxicity; drug efficacy; drug mechanism; drug potency; drug screening; drug synthesis; EC50; Human coronavirus 229E; Influenza A virus (H1N1); Influenza A virus (H3N2); Influenza B virus; Influenza virus; nonhuman; priority journal; structure activity relation; substitution reaction; virus replication; animal; chemical structure; chemistry; Coronavirinae; cytopathogenic effect; dog; drug design; drug effect; fibroblast; human; MDCK cell line; synthesis; virology; Animals; Antiviral Agents; Aza Compounds; Coronavirus; Cytopathogenic Effect, Viral; Dogs; Drug Design; Fibroblasts; Humans; Madin Darby Canine Kidney Cells; Molecular Structure; Spiro Compounds; Structure-Activity Relationship; Virus Replication","Holmes, K.V., (2001) Fields’ virology, pp. pp. 1187-1203. , (Ed, D. Knipe, Lippincott Williams & Wilkins, Philadelphia, USA; Kurai, D., Saraya, T., Ishii, H., Takizawa, H., (2013) Front. Microbiol., 4, p. 293; Van der Hoek, L., (2007) Antivir. Ther., 12 (4), p. 651; Gaunt, E.R., Hardie, A., Claas, E.C.J., Simmonds, P., Templeton, K.E., (2010) J. Clin. Microbiol., 48 (8), p. 2940; Pene, F., Merlat, A., Vabret, A., (2003) Clin. Infect. Dis., 37 (7), p. 929; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., (2016) Nat. Rev. Microbiol., 14 (8), p. 523; Lee, J.W., McKibbin, W.J., (2004) Learning from SARS: Preparing for the next disease outbreak: workshop summary, , (Eds, S. Knobler, A. Mahmoud, S. Lemon, National Academies Press, Washington; Who, (2018), http://www.emro.who.int/health-topics/mers-cov/situation-update.html, World Health Organization. Middle East respiratory syndrome situation update., [accessed 01/10/2018]; Vanderlinden, E., Göktaş, F., Cesur, Z., (2010) J. Virol., 84, p. 4277; Pandeya, S.N., Agarwal, A.K., Singh, A., Stables, J.P., (2003) Acta Pharm., 53, p. 15; Baltazzi, E., Delavigne, R., (1955) Compt. Rend., 241, p. 633; Niazi, S., Javali, C., Paramesh, M., Shivaraja, S., (2010) Int. J. Pharm. Pharm. Sci., 2 (3), p. 108; Prata, J.V., Clemente, D.S., Prabhakar, S., Lobo, A.M., Mourato, I., Branco, P.S., (2002) J. Chem. Soc. Perkin Trans., 1, p. 513; Lundin, A., Dijkman, R., Bergström, T., (2014) PLoS Pathog., 10 (5)","Apaydın, Ç.B.; Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul UniversityTurkey; email: caglabegum@gmail.com",,"Wiley-VCH Verlag",03656233,,ARPMA,"31073993","English","Arch. Pharm.",Article,"Final",Open Access,Scopus,2-s2.0-85066334090 "Li K., Li H., Bi Z., Song D., Zhang F., Lei D., Luo S., Li Z., Gong W., Huang D., Ye Y., Tang Y.","57200579323;57195737313;57205398065;56571933000;56764850300;57195739646;57195742163;57207967073;57195477088;56571801200;41662531500;57199306900;","Significant inhibition of re-emerged and emerging swine enteric coronavirus in vitro using the multiple shRNA expression vector",2019,"Antiviral Research","166",,,"11","18",,1,"10.1016/j.antiviral.2019.03.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063388503&doi=10.1016%2fj.antiviral.2019.03.010&partnerID=40&md5=225c422fcb151dc0bf2282ca9e73ae61","Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China","Li, K., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Li, H., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Bi, Z., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Song, D., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Zhang, F., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Lei, D., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Luo, S., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Li, Z., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Gong, W., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Huang, D., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Ye, Y., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China; Tang, Y., Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China, Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi 330045, China","Swine enteric coronaviruses (SECoVs), including porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine deltacoronavirus (PDCoV) have emerged and been prevalent in pig populations in China for the last several years. However, current traditional inactivated and attenuated PEDV vaccines are of limited efficacy against circulating PEDV variants, and there are no commercial vaccines for prevention of PDCoV and SADS-CoV. RNA interference (RNAi) is a powerful tool in therapeutic applications to inhibit viral replication in vitro. In this study, we developed a small interfering RNA generation system that expressed two different short hairpin RNAs (shRNAs) targeting the M gene of PEDV and SADS-CoV and the N gene of PDCoV, respectively. Our results demonstrated that simultaneous expression of these specific shRNA molecules inhibited expression of PEDV M gene, SADS-CoV M gene, and PDCoV N gene RNA by 99.7%, 99.4%, and 98.8%, respectively, in infected cell cultures. In addition, shRNA molecules significantly restricted the expression of M and N protein, and impaired the replication of PEDV, SADS-CoV, and PDCoV simultaneously. Taken together, this shRNAs expression system not only is proved to be a novel approach for studying functions of various genes synchronously, but also developed to test aspects of a potential therapeutic option for treatment and prevention of multiple SECoV infections. © 2019","Multi-resistance strategy; Multiple short hairpin RNAs; Swine enteric coronavirus","genomic RNA; guanine nucleotide binding protein; M protein; short hairpin RNA; small interfering RNA; viral protein; virus RNA; Article; cell culture; cell viability; controlled study; Coronavirinae; expression vector; genetic transfection; in vitro study; LLC-PK1 cell line; nonhuman; priority journal; reverse transcription polymerase chain reaction; RNA replication; swine enteric coronavirus; Vero cell line; virus load; virus replication; Western blotting","Ajayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., Poljak, Z., Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada (2018) Transbound. Emerg. Dis., 65, pp. 1197-1207; Berkhout, B., RNAi-mediated antiviral immunity in mammals (2018) Curr. Opin. Virol., 32, pp. 9-14; Bevins, S.N., Lutman, M., Pedersen, K., Barrett, N., Gidlewski, T., Deliberto, T.J., Franklin, A.B., Spillover of swine coronaviruses, United States (2018) Emerg. Infect. Dis., 24, pp. 1390-1392; Chen, Y., Mahato, R.I., siRNA pool targeting different sites of human hepatitis B surface antigen efficiently inhibits HBV infection (2008) J. Drug Target., 16, pp. 140-148; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Fang, P., Fang, L., Hong, Y., Liu, X., Dong, N., Ma, P., Bi, J., Xiao, S., Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus (2017) J. Gen. Virol., 98, pp. 173-178; Fu, X., Fang, B., Liu, Y., Cai, M., Jun, J., Ma, J., Bu, D., Zhang, G., Newly emerged porcine enteric alphacoronavirus in southern China: identification, origin and evolutionary history analysis (2018) Infect. Genet. Evol. J. Mol. Epidemiol. Evolut. Genet. Infect. Dis., 62, pp. 179-187; Giering, J.C., Grimm, D., Storm, T.A., Kay, M.A., Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic (2008) Mol. Ther. J. Am. Soc. Gene Ther., 16, pp. 1630-1636; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23; Guo, J., Fang, L., Ye, X., Chen, J., Xu, S., Zhu, X., Miao, Y., Xiao, S., Evolutionary and genotypic analyses of global porcine epidemic diarrhea virus strains (2018) Transbound. Emerg. Dis.; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Kim, S.M., Lee, K.N., Park, J.Y., Ko, Y.J., Joo, Y.S., Kim, H.S., Park, J.H., Therapeutic application of RNA interference against foot-and-mouth disease virus in vitro and in vivo (2008) Antivir. Res., 80, pp. 178-184; Kuo, L., Hurst-Hess, K.R., Koetzner, C.A., Masters, P.S., Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras (2016) J. Virol., 90, pp. 4357-4368; Lau, T.S., Li, Y., Kameoka, M., Ng, T.B., Wan, D.C., Suppression of HIV replication using RNA interference against HIV-1 integrase (2007) FEBS Lett., 581, pp. 3253-3259; Lee, S.H., Yang, D.K., Kim, H.H., Cho, I.S., Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs (2018) Clin. Exp. Vaccine Res., 7, pp. 61-69; Li, B.J., Tang, Q., Cheng, D., Qin, C., Xie, F.Y., Wei, Q., Xu, J., Lu, P.Y., Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque (2005) Nat. Med., 11, pp. 944-951; Li, J., Dai, Y., Liu, S., Guo, H., Wang, T., Ouyang, H., Tu, C., In vitro inhibition of CSFV replication by multiple siRNA expression (2011) Antivir. Res., 91, pp. 209-216; Li, K., Song, D., Zhang, F., Gong, W., Guo, N., Li, A., Zhou, X., Tang, Y., Complete genome sequence of a recombinant porcine epidemic diarrhea virus strain, CH/JXJA/2017, isolated in Jiangxi, China, in 2017 (2018) Genome Announc., 6; Li, Q., Xu, Z., Wu, T., Peng, O., Huang, L., Zhang, Y., Xue, C., Cao, Y., A flagellin-adjuvanted PED subunit vaccine improved protective efficiency against PEDV variant challenge in pigs (2018) Vaccine, 36, pp. 4228-4235; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg. Infect. Dis., 18, pp. 1350-1353; Li, Y., Wang, G., Wang, J., Man, K., Yang, Q., Cell attenuated porcine epidemic diarrhea virus strain Zhejiang 08 provides effective immune protection attributed to dendritic cell stimulation (2017) Vaccine, 35, pp. 7033-7041; Li, Y., Zheng, F., Fan, B., Muhammad, H.M., Zou, Y., Jiang, P., Development of an indirect ELISA based on a truncated S protein of the porcine epidemic diarrhea virus (2015) Can. J. Microbiol., 61, pp. 811-817; Ma, J., Zeng, L., Fan, Y., Zhou, Y., Jiang, N., Chen, Q., Significant inhibition of two different genotypes of grass carp reovirus in vitro using multiple shRNAs expression vectors (2014) Virus Res., 189, pp. 47-55; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6; Mason, P.W., Grubman, M.J., Baxt, B., Molecular basis of pathogenesis of FMDV (2003) Virus Res., 91, pp. 9-32; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada (2018) Transbound. Emerg. Dis., 65, pp. 660-675; Oh, J.N., Choi, K.H., Lee, C.K., Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs (2018) Asian-Australas. J. Anim. Sci., 31, pp. 489-498; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Park, J.E., Shin, H.J., Porcine epidemic diarrhea vaccine efficacy evaluation by vaccination timing and frequencies (2018) Vaccine, 36, pp. 2760-2763; Pulloor, N.K., Nair, S., McCaffrey, K., Kostic, A.D., Bist, P., Weaver, J.D., Riley, A.M., Krishnan, M.N., Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in Type-I interferon response (2014) PLoS Pathog., 10; Raaben, M., Groot Koerkamp, M.J., Rottier, P.J., de Haan, C.A., Type I interferon receptor-independent and -dependent host transcriptional responses to mouse hepatitis coronavirus infection in vivo (2009) BMC Genomics, 10, p. 350; Shen, H., Zhang, C., Guo, P., Liu, Z., Zhang, J., Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro (2015) Virus Gene., 51, pp. 252-259; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; Stadejek, T., Stankevicius, A., Murtaugh, M.P., Oleksiewicz, M.B., Molecular evolution of PRRSV in Europe: current state of play (2013) Vet. Microbiol., 165, pp. 21-28; Su, Y., Hou, Y., Prarat, M., Zhang, Y., Wang, Q., New variants of porcine epidemic diarrhea virus with large deletions in the spike protein, identified in the United States, 2016-2017 (2018) Arch. Virol., 163, pp. 2485-2489; Sui, H.Y., Zhao, G.Y., Huang, J.D., Jin, D.Y., Yuen, K.Y., Zheng, B.J., Small interfering RNA targeting m2 gene induces effective and long term inhibition of influenza A virus replication (2009) PLoS One, 4; Trudeau, M.P., Verma, H., Sampedro, F., Urriola, P.E., Shurson, G.C., Goyal, S.M., Environmental persistence of porcine coronaviruses in feed and feed ingredients (2017) PLoS One, 12; Wang, H., Cong, F., Zeng, F., Lian, Y., Liu, X., Luo, M., Guo, P., Ma, J., Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV) (2018) J. Virol Methods, 260, pp. 45-48; Wang, L., Su, S., Bi, Y., Wong, G., Gao, G.F., Bat-Origin coronaviruses expand their host range to pigs (2018) Trends Microbiol., 26, pp. 466-470; Watanabe, T., Hatakeyama, H., Matsuda-Yasui, C., Sato, Y., Sudoh, M., Takagi, A., Hirata, Y., Kohara, M., In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus (2014) Sci. Rep., 4, p. 4750; Wu, K., Mu, Y., Hu, J., Lu, L., Zhang, X., Yang, Y., Li, Y., Wu, J., Simultaneously inhibition of HIV and HBV replication through a dual small interfering RNA expression system (2007) Antivir. Res., 74, pp. 142-149; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Du, Y., Cao, Y., Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets (2018) Transbound. Emerg. Dis.; Yu, J., Chai, X., Cheng, Y., Xing, G., Liao, A., Du, L., Wang, Y., Zhou, J., Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016 (2018) Virus Res., 247, pp. 47-54; Zhou, J., Huang, F., Hua, X., Cui, L., Zhang, W., Shen, Y., Yan, Y., Yang, Z., Inhibition of porcine transmissible gastroenteritis virus (TGEV) replication in mini-pigs by shRNA (2010) Virus Res., 149, pp. 51-55; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J. Virol Methods, 255, pp. 66-70; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Ye, Y.; Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural UniversityChina; email: yy6157832@163.com",,"Elsevier B.V.",01663542,,ARSRD,"30905822","English","Antiviral Res.",Article,"Final",Open Access,Scopus,2-s2.0-85063388503 "Kim Y.-S., Aigerim A., Park U., Kim Y., Rhee J.-Y., Choi J.-P., Park W.B., Park S.W., Kim Y., Lim D.-G., Inn K.-S., Hwang E.-S., Choi M.-S., Shin H.-S., Cho N.-H.","57208777401;57189092175;57201359704;57196175320;55264248300;8635780700;7402229219;56108350600;56066688300;23470056500;24450477300;35322149100;56582818800;55361474100;34973855600;","Sequential emergence and wide spread of neutralization escape middle east respiratory syndrome coronavirus mutants, South Korea, 2015",2019,"Emerging Infectious Diseases","25","6",,"1161","1168",,2,"10.3201/eid2506.181722","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066421745&doi=10.3201%2feid2506.181722&partnerID=40&md5=d99b9aaf0aa379e6df6fbd27784431f3","Chungnam National University School of Medicine, Daejeon, South Korea; Seoul National University College of MedicineSeoul 03080, South Korea; Dankook University College of Medicine, Cheonan, South Korea; Seoul Medical Center, Seoul, South Korea; National Medical CenterSeoul, South Korea; Kyung Hee University, Seoul, South Korea; Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea","Kim, Y.-S., Chungnam National University School of Medicine, Daejeon, South Korea; Aigerim, A., Seoul National University College of MedicineSeoul 03080, South Korea; Park, U., Seoul National University College of MedicineSeoul 03080, South Korea; Kim, Y., Seoul National University College of MedicineSeoul 03080, South Korea, National Medical CenterSeoul, South Korea; Rhee, J.-Y., Dankook University College of Medicine, Cheonan, South Korea; Choi, J.-P., Seoul Medical Center, Seoul, South Korea; Park, W.B., Seoul National University College of MedicineSeoul 03080, South Korea; Park, S.W., Seoul National University College of MedicineSeoul 03080, South Korea; Kim, Y., Chungnam National University School of Medicine, Daejeon, South Korea; Lim, D.-G., National Medical CenterSeoul, South Korea; Inn, K.-S., Kyung Hee University, Seoul, South Korea; Hwang, E.-S., Seoul National University College of MedicineSeoul 03080, South Korea; Choi, M.-S., Seoul National University College of MedicineSeoul 03080, South Korea; Shin, H.-S., National Medical CenterSeoul, South Korea; Cho, N.-H., Seoul National University College of MedicineSeoul 03080, South Korea, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea","The unexpectedly large outbreak of Middle East respiratory syndrome in South Korea in 2015 was initiated by an infected traveler and amplified by several “superspreading” events. Previously, we reported the emergence and spread of mutant Middle East respiratory syndrome coronavirus bearing spike mutations (I529T or D510G) with reduced affinity to human receptor CD26 during the outbreak. To assess the potential association of spike mutations with superspreading events, we collected virus genetic information reported during the outbreak and systemically analyzed the relationship of spike sequences and epidemiology. We found sequential emergence of the spike mutations in 2 superspreaders. In vivo virulence of the mutant viruses seems to decline in human patients, as assessed by fever duration in affected persons. In addition, neutralizing activity against these 2 mutant viruses in serum samples from mice immunized with wild-type spike antigen were gradually reduced, suggesting emergence and wide spread of neutralization escapers during the outbreak. © 2019, Centers for Disease Control and Prevention (CDC). All rights reserved.",,"dipeptidyl peptidase IV; neutralizing antibody; transforming growth factor beta; virus spike protein; coronavirus spike glycoprotein; neutralizing antibody; adaptive immunity; adult; aged; animal experiment; animal model; antibody titer; Article; clinical article; disease severity; female; fever; gene mutation; genotype; human; hypotension; hypoxemia; immune response; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mixed infection; mouse; natural killer cell; nonhuman; plaque assay; SARS coronavirus; sequence analysis; virus load; virus mutant; virus neutralization; virus replication; virus shedding; virus transmission; virus virulence; communicable disease; Coronavirus infection; epidemic; genetics; history; immunology; Middle East respiratory syndrome coronavirus; mutation; serodiagnosis; virology; Adult; Aged; Antibodies, Neutralizing; Communicable Diseases, Emerging; Coronavirus Infections; Disease Outbreaks; Female; Genotype; History, 21st Century; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Mutation; Neutralization Tests; Spike Glycoprotein, Coronavirus","Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis., 18, pp. e217-e227. , http://dx.doi.org/10.1016/S1473-3099(18)30127-0; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278. , http://dx.doi.org/10.1016/j.phrp.2015.08.006; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416. , http://dx.doi.org/10.1056/NEJMoa1306742; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am J Infect Control., 46, pp. 1022-1025. , http://dx.doi.org/10.1016/j.ajic.2018.02.023; Parrish, C.R., Holmes, E.C., Morens, D.M., Park, E.C., Burke, D.S., Calisher, C.H., Cross-species virus transmission and the emergence of new epidemic diseases (2008) Microbiol Mol Biol Rev., 72, pp. 457-470. , http://dx.doi.org/10.1128/MMBR.00004-08; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak (2016) MBio., 7, p. e00019. , http://dx.doi.org/10.1128/mBio.00019-16; Rockx, B., Donaldson, E., Frieman, M., Sheahan, T., Corti, D., Lanzavecchia, A., Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus (2010) J Infect Dis., 201, pp. 946-955. , http://dx.doi.org/10.1086/651022; Li, W., Wong, S.K., Li, F., Kuhn, J.H., Huang, I.C., Choe, H., Animal origins of the severe acute respiratory syndrome coronavirus:Insight from ACE2-S-protein interactions (2006) J Virol., 80, pp. 4211-4219. , http://dx.doi.org/10.1128/JVI.80.9.4211-4219.2006; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci U S A., 111, pp. E2018-E2026. , http://dx.doi.org/10.1073/pnas.1402074111; Kleine-Weber, H., Elzayat, M.T., Wang, L., Graham, B.S., Müller, M.A., Drosten, C., Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization (2019) J Virol., 93, pp. E01381-E01418; Park, D., Huh, H.J., Kim, Y.J., Son, D.S., Jeon, H.J., Im, E.H., Analysis of intrapatient heterogeneity uncovers the microevolution of Middle East respiratory syndrome coronavirus (2016) Cold Spring Harb Mol Case Stud., 2, p. a001214. , http://dx.doi.org/10.1101/mcs.a001214; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep., 6, p. 25359. , http://dx.doi.org/10.1038/srep25359; Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F., MERS, SARS, and Ebola: The role of super-spreaders in infectious disease (2015) Cell Host Microbe., 18, pp. 398-401. , http://dx.doi.org/10.1016/j.chom.2015.09.013; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature., 495, pp. 251-254. , http://dx.doi.org/10.1038/nature12005; Cockrell, A.S., Peck, K.M., Yount, B.L., Agnihothram, S.S., Scobey, T., Curnes, N.R., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J Virol., 88, pp. 5195-5199. , http://dx.doi.org/10.1128/JVI.03764-13; Wu, K., Peng, G., Wilken, M., Geraghty, R.J., Li, F., Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus (2012) J Biol Chem., 287, pp. 8904-8911. , http://dx.doi.org/10.1074/jbc.M111.325803; Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms (2005) J Virol., 79, pp. 11892-11900. , http://dx.doi.org/10.1128/JVI.79.18.11892-11900.2005; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643. , http://dx.doi.org/10.1038/sj.emboj.7600640; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478. , http://dx.doi.org/10.1016/j.tim.2015.06.003; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun., 8, p. 15092. , http://dx.doi.org/10.1038/ncomms15092; Doud, M.B., Lee, J.M., Bloom, J.D., How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin (2018) Nat Commun., 9, p. 1386. , http://dx.doi.org/10.1038/s41467-018-03665-3; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med., 375, pp. 1303-1305. , http://dx.doi.org/10.1056/NEJMc1511695; Yang, J.S., Park, S., Kim, Y.J., Kang, H.J., Kim, H., Han, Y.W., Middle East respiratory syndrome in 3 persons, South Korea, 2015 (2015) Emerg Infect Dis., 21, pp. 2084-2087. , http://dx.doi.org/10.3201/eid2111.151016; Lee, J.Y., Kim, Y.J., Chung, E.H., Kim, D.W., Jeong, I., Kim, Y., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis., 17, p. 498. , http://dx.doi.org/10.1186/s12879-017-2576-5","Cho, N.-H.; Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, South Korea; email: chonh@snu.ac.kr",,"Centers for Disease Control and Prevention (CDC)",10806040,,EIDIF,"30900977","English","Emerg. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85066421745 "Shin J., Tark D., Le V.P., Choe S.E., Cha R.M., Park G.-N., Cho I.-S., Nga B.T.T., Lan N.T., An D.-J.","57206262385;36874709300;23035326400;57192301526;57194199657;57196035905;35316919900;56267503300;57212972231;8970507200;","Genetic characterization of bovine coronavirus in Vietnam",2019,"Virus Genes","55","3",,"415","420",,1,"10.1007/s11262-019-01647-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061654378&doi=10.1007%2fs11262-019-01647-1&partnerID=40&md5=ecd72d9b473cc8d6fa6e089ea09c1705","Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea; Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 54531, South Korea; Faculty of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Viet Nam","Shin, J., Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea; Tark, D., Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk 54531, South Korea; Le, V.P., Faculty of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Viet Nam; Choe, S.E., Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea; Cha, R.M., Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea; Park, G.-N., Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea; Cho, I.-S., Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea; Nga, B.T.T., Faculty of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Viet Nam; Lan, N.T., Faculty of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Viet Nam; An, D.-J., Viral Disease Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Gyeongbuk 39660, South Korea","A maximum clade credibility tree constructed using the full-length spike (S) and hemagglutinin-esterase genes revealed that Vietnamese Bovine coronavirus (BCoV) strains belong to a single cluster (C1); therefore, they might share a common origin with Cuban and Chinese BCoV strains. The omega values of cluster 1 (C1) and cluster 2 (C2) were 0.15734 and 0.11613, respectively, and naive empirical bayes analysis identified two amino acid positions (179 and 501) in the S protein in C1 and three amino acid positions (113, 501, and 525) in that of C2 that underwent positive selection (p > 99%). The evolutionary rate of C1 was estimated to be 7.6206 × 10−4 substitutions/site/year, and the most recent common ancestor (tMRCA) of Vietnamese BCoVs was estimated to date back to 1962 (95% HPD 1950–1973). The effective population sizes of C1 and C2 underwent a rapid reduction after 2000 and 2004, respectively. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.","Bovine coronavirus; Evolutionary rate; Positive selection; tMRCA","virus hemagglutinin; virus spike protein; coronavirus spike glycoprotein; virus envelope protein; amino acid sequence; Article; Bayes theorem; Bovine coronavirus; controlled study; Coronavirus infection; evolutionary rate; feces analysis; gene cluster; gene sequence; genetic analysis; last common ancestor; nonhuman; phylogeny; polymerase chain reaction; population size; prevalence; priority journal; Vietnamese; virus gene; virus strain; animal; bovine; Bovine coronavirus; cattle disease; Coronavirus infection; feces; genetics; molecular evolution; pathogenicity; transmission; veterinary medicine; Viet Nam; virology; Animals; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Evolution, Molecular; Feces; Spike Glycoprotein, Coronavirus; Vietnam; Viral Envelope Proteins","Mebus, C.A., Stair, E.L., Rhodes, M.B., Twiehaus, M.J., Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus like agent (1974) Am J Vet Res, 34, pp. 145-150; Cho, K.O., Hoet, A.E., Loerch, S.C., Wittum, T.E., Saif, L.J., Evaluation of concurrent shedding of bovine coronavirus via the respiratory tract and enteric route in feedlot cattle (2001) Am J Vet Res, 62, pp. 1436-1441; Chouljenko, V.N., Kousoulas, K.G., Lin, X., Storz, J., Nucleotide and predicted amino acid sequences of all genes encoded by the 3′ genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses (1998) Virus Genes, 17, pp. 33-42; Park, S.J., Jeong, C., Yoon, S.S., Choy, H.E., Saif, L.J., Park, S.H., Kim, Y.J., Cho, K.O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) J Clin Microbiol, 44, pp. 3178-3188; Bidokhti, M.R., Traven, M., Krishna, N.K., Munir, M., Belak, S., Alenius, S., Cortey, M., Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains (2013) J Gen Virol, 94, pp. 2036-2049; Lai, M.M.C., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S Protein of bovine coronavirus is a hemagglutinin recognizing 9-o-acetylated sialic acid as a receptor determinant (1991) J Virol, 65, pp. 6232-6237; Schultze, B., Wahn, K., Klenk, H.D., Herrler, G., Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity (1991) Virology, 180, pp. 221-228; Brandão, P.E., Gregori, F., Richtzenhain, L.J., Rosales, C.A.R., Villarreal, L.Y.B., JerezJ, A., Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43 (2006) Arch Virol, 151, pp. 1735-1748; Hasoksuz, M., Sreevatsan, S., Cho, K.O., Hoet, A.E., Saif, L.J., Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates (2002) Virus Res, 84, pp. 101-109; Chào, N.V., Hòa, N.X., Hải, P.V., Hùng, P.H.S., Application of ELISA method to determine the cause of calf diarrhea in the Hue city, Vietnam (2014) Tạp chí Khoa học, Đại học Huế, 94, pp. 17-25; Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res, 25, pp. 4876-4882; Darriba, D., Taboada, G.I., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing (2012) Nat Method, 9, p. 772; Drummond, A.J., Suchard, M.A., Cie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol, 29 (8), pp. 1969-1973; Rambaut, A., (2008) FigTree v112, , Institute of Evolutionary Biology, Univ Edinburgh, Edinburgh; Kin, N., Miszczak, F., Dianocourt, L., Caro, V., Moutou, F., Vabert, A., Ar Gouilh, M., Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect Genet Evol, 40, pp. 186-191; Martinez, N., Brandao, P.E., de Souza, S.P., Barrera, M., Santana, N., de Arce, H.D., Perez, L.J., Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene (2012) Infect Genet Evol, 12, pp. 1870-1878; Yang, Z., PMAL 4: phylogenetic analysis by maximum likelihood (2007) Mol Biol Evol, 24, pp. 1586-1591","An, D.-J.; Viral Disease Division, Animal and Plant Quarantine Agency (QIA)South Korea; email: andj67@korea.kr",,"Springer New York LLC",09208569,,VIGEE,"30771080","English","Virus Genes",Article,"Final",Open Access,Scopus,2-s2.0-85061654378 "Lee J.Y., Bae S., Myoung J.","56823058900;57210014602;7005911830;","Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus",2019,"Journal of Microbiology and Biotechnology","29","6",,"999","1007",,3,"10.4014/jmb.1905.05061","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069265813&doi=10.4014%2fjmb.1905.05061&partnerID=40&md5=c0675927fb0c126fa794e96ba665b20e","Korea Zoonosis Research Institute, Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 561-756, South Korea","Lee, J.Y., Korea Zoonosis Research Institute, Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 561-756, South Korea; Bae, S., Korea Zoonosis Research Institute, Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 561-756, South Korea; Myoung, J., Korea Zoonosis Research Institute, Genetic Engineering Research Institute, Chonbuk National University, Jeonju, 561-756, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 and related infection cases have been reported in over 20 countries. Roughly 10,000 human cases have so far been reported in total with fatality rates at up to 40%. The majority of cases have occurred in Saudi Arabia with mostly sporadic outbreaks outside the country except for the one in South Korea in 2015. The Korean MERS-CoV strain was isolated from the second Korean patient and its genome was fully sequenced and deposited. To develop virusspecific protective and therapeutic agents against the Korean isolate and to investigate molecular determinants of virus-host interactions, it is of paramount importance to generate its full-length cDNA. Here we report that two full-length cDNAs from a Korean patientisolated MERS-CoV strain were generated by a combination of conventional cloning techniques and efficient Gibson assembly reactions. The full-length cDNAs were validated by restriction analysis and their sequence was verified by Sanger method. The resulting cDNA was efficiently transcribed in vitro and the T7 promoter-driven expression was robust. The resulting reverse genetic system will add to the published list of MERS-CoV cDNAs and facilitate the development of Korean isolate-specific antiviral measures. © 2019 by The Korean Society for Microbiology and Biotechnology.","Full-length cDNA; MERS-CoV; Reverse genetics","complementary DNA; complementary DNA; virus DNA; complementary DNA; virus RNA; Article; controlled study; gene expression; human; in vitro study; Korean (people); Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; molecular cloning; nonhuman; reverse genetics; Sanger sequencing; virus isolation; virus strain; chemical interaction; genome; in vitro fertilization; Korea; Middle East respiratory syndrome coronavirus; promoter region; restriction mapping; Saudi Arabia; virus cell interaction; Coronavirus infection; genetic engineering; genetic transcription; genetics; isolation and purification; reverse genetics; virology; virus gene; virus genome; Coronavirus Infections; DNA, Complementary; Genes, Viral; Genetic Engineering; Genome, Viral; Humans; Middle East Respiratory Syndrome Coronavirus; Reverse Genetics; RNA, Viral; Transcription, Genetic","Alexandersen, S., Kobinger, G.P., Soule, G., Wernery, U., Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005 (2014) Transbound. Emerg. Dis., 61, pp. 105-108; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Ferguson, N.M., Van Kerkhove, M.D., Identification of MERS-CoV in dromedary camels (2014) Lancet Infect. Dis., 14, pp. 93-94; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; Ki, M., 2015 MERS outbreak in Korea: Hospital-tohospital transmission (2015) Epidemiol. Health., 37, p. e2015033; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin. Infect. Dis., 64, pp. 551-557; Lim, P.L., Middle East respiratory syndrome (MERS) in Asia: Lessons gleaned from the South Korean outbreak (2015) Trans. R. Soc. Trop. Med. Hyg., 109, pp. 541-542; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Med., 13, p. 210; Fung, I.C., Tse, Z.T., Chan, B.S., Fu, K.W., Middle East respiratory syndrome in the Republic of Korea: Transparency and communication are key (2015) Western Pac. Surveill. Response J., 6, pp. 1-2; Sherertz, R.J., Reagan, D.R., Hampton, K.D., Robertson, K.L., Streed, S.A., Hoen, H.M., A cloud adult: The Staphylococcus aureus-virus interaction revisited (1996) Ann. Intern. Med., 124, pp. 539-547; Almazan, F., DeDiego, M.L., Sola, I., Zuniga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Engineering a replicationcompetent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio., 4, pp. e00650-e00613; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Reverse genetics with a fulllength infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Jeon, H., Kang, Y.H., Yoo, S.M., Park, M.J., Park, J.B., Lee, S.H., Kaposi’s sarcoma-associated herpesvirus infection modulates the proliferation of glioma stem-like cells (2018) J. Microbiol. Biotechnol., 28, pp. 165-174; Park, B.J., Jung, S.T., Choi, C.S., Myoung, J., Ahn, H.S., Han, S.H., Pathogenesis of human norovirus genogroup II genotype 4 in post-weaning gnotobiotic pigs (2018) J. Microbiol. Biotechnol., 28, pp. 2133-2140; Yoon, S.J., Park, Y.J., Kim, H.J., Jang, J., Lee, S.J., Koo, S., Optimized expression, purification, and rapid detection of recombinant influenza nucleoproteins expressed in Sf9 insect cells (2018) J. Microbiol. Biotechnol., 28, pp. 1683-1690; Kang, H.S., Myoung, J., So, E.Y., Bahk, Y.Y., Kim, B.S., Transgenic expression of non-structural genes of Theiler’s virus suppresses initial viral replication and pathogenesis of demyelination (2016) J. Neuroinflammation, 13, p. 133; Kang, S., Choi, C., Choi, I., Han, K.N., Rho, S.W., Choi, J., Hepatitis E virus methyltransferase inhibits type i interferon induction by targeting RIG-I (2018) J. Microbiol. Biotechnol., 28, pp. 1554-1562; Kang, S., Myoung, J., Host innate immunity against hepatitis E virus and viral evasion mechanisms (2017) J. Microbiol. Biotechnol., 27, pp. 1727-1735; Kang, S., Myoung, J., Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas (2017) J. Microbiol., 55, pp. 319-329; Kim, E., Myoung, J., Hepatitis E virus papain-like cysteine protease inhibits type i interferon induction by down-regulating melanoma differentiation-associated gene 5 (2018) J. Microbiol. Biotechnol., 28, pp. 1908-1915; Gholamalipour, Y., Karunanayake Mudiyanselage, A., Martin, C.T., 3' end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character-RNASeq analyses (2018) Nucleic Acids Res., 46, pp. 9253-9263; Racaniello, V.R., Studying poliovirus with infectious cloned cDNA (1984) Rev. Infect. Dis. 6 Suppl, 2, pp. S514-515; Racaniello, V.R., Baltimore, D., Cloned poliovirus complementary DNA is infectious in mammalian cells (1981) Science, 214, pp. 916-919; Stobart, C.C., Moore, M.L., RNA virus reverse genetics and vaccine design (2014) Viruses, 6, pp. 2531-2550; Matsui, S.M., Kim, J.P., Greenberg, H.B., Su, W., Sun, Q., Johnson, P.C., The isolation and characterization of a Norwalk virus-specific cDNA (1991) J. Clin. Invest., 87, pp. 1456-1461; Katayama, K., Murakami, K., Sharp, T.M., Guix, S., Oka, T., Takai-Todaka, R., Plasmid-based human norovirus reverse genetics system produces reporter-tagged progeny virus containing infectious genomic RNA (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E4043-4052; Panda, S.K., Ansari, I.H., Durgapal, H., Agrawal, S., Jameel, S., The in vitro-synthesized RNA from a cDNA clone of hepatitis E virus is infectious (2000) J. Virol., 74, pp. 2430-2437; Shan, C., Xie, X., Muruato, A.E., Rossi, S.L., Roundy, C.M., Azar, S.R., An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors (2016) Cell Host Microbe, 19, pp. 891-900; Tsetsarkin, K.A., Kenney, H., Chen, R., Liu, G., Manukyan, H., Whitehead, S.S., A full-length infectious cDNA clone of Zika virus from the 2015 epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development (2016) MBio, p. 7; Yang, Y., Shan, C., Zou, J., Muruato, A.E., Bruno, D.N., de Almeida Medeiros Daniele, B., A cDNA clonelaunched platform for high-yield production of inactivated Zika vaccine (2017) EBioMedicine, 17, pp. 145-156; Zhang, L., Ji, W., Lyu, S., Qiao, L., Luo, G., Tet-inducible production of infectious Zika virus from the full-length cDNA clones of african- and asian-lineage strains (2018) Viruses, p. 10; Yount, B., Curtis, K.M., Fritz, E.A., Hensley, L.E., Jahrling, P.B., Prentice, E., Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 12995-13000; Almazan, F., Marquez-Jurado, S., Nogales, A., Enjuanes, L., Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes (2015) Methods Mol. Biol., 1282, pp. 135-152; Cockrell, A.S., Beall, A., Yount, B., Baric, R., Efficient reverse genetic systems for rapid genetic manipulation of emergent and preemergent infectious coronaviruses (2017) Methods Mol. Biol., 1602, pp. 59-81; Boehme, K.W., Ikizler, M., Kobayashi, T., Dermody, T.S., Reverse genetics for mammalian reovirus (2011) Methods, 55, pp. 109-113; Roner, M.R., Joklik, W.K., Reovirus reverse genetics: Incorporation of the CAT gene into the reovirus genome (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 8036-8041; de Wit, E., Spronken, M.I., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D., Fouchier, R.A., Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments (2004) Virus Res., 103, pp. 155-161; Jackson, D., Cadman, A., Zurcher, T., Barclay, W.S., A reverse genetics approach for recovery of recombinant influenza B viruses entirely from cDNA (2002) J. Virol., 76, pp. 11744-11747; Flatz, L., Bergthaler, A., de la Torre, J.C., Pinschewer, D.D., Recovery of an arenavirus entirely from RNA polymerase I/ II-driven cDNA (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 4663-4668; Ndung’u, T., Renjifo, B., Essex, M., Construction and analysis of an infectious human Immunodeficiency virus type 1 subtype C molecular clone (2001) J. Virol., 75, pp. 4964-4972; Prakash, K., Hodinka, R.L., Hullihen, D.M., Plotkin, S.A., Isolation and characterization of an infectious molecular clone of the MN strain of HIV-1 (1991) Biochem. Biophys. Res. Commun., 179, pp. 1377-1383; Martinez-Sobrido, L., de la Torre, J.C., Reporterexpressing, replicating-competent recombinant arenaviruses (2016) Viruse, p. 8; Castrucci, M.R., Bilsel, P., Kawaoka, Y., Attenuation of influenza A virus by insertion of a foreign epitope into the neuraminidase (1992) J. Virol., 66, pp. 4647-4653; Halfmann, P., Ebihara, H., Marzi, A., Hatta, Y., Watanabe, S., Suresh, M., Replication-deficient ebolavirus as a vaccine candidate (2009) J. Virol., 83, pp. 3810-3815; Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., 3rd, Smith, H.O., Enzymatic assembly of DNA molecules up to several hundred kilobases (2009) Nat. Methods, 6, pp. 343-345; Gibson, D.G., Enzymatic assembly of overlapping DNA fragments (2011) Methods Enzymol., 498, pp. 349-361; Fernandez-Rodriguez, J., Moser, F., Song, M., Voigt, C.A., Engineering RGB color vision into Escherichia coli (2017) Nat. Chem. Biol., 13, pp. 706-708; Song, M., Kim, J.S., Liu, L., Husain, M., Vazquez-Torres, A., Antioxidant defense by thioredoxin can occur independently of canonical thiol-disulfide oxidoreductase enzymatic activity (2016) Cell Rep., 14, pp. 2901-2911; Song, M., Sukovich, D.J., Ciccarelli, L., Mayr, J., Fernandez-Rodriguez, J., Mirsky, E.A., Control of type III protein secretion using a minimal genetic system (2017) Nat. Commun., 8, p. 14737; Dudek, T., Knipe, D.M., Replication-defective viruses as vaccines and vaccine vectors (2006) Virology, 344, pp. 230-239; Giel-Moloney, M., Rumyantsev, A.A., David, F., Figueiredo, M., Feilmeier, B., Mebatsion, T., A novel approach to a rabies vaccine based on a recombinant single-cycle flavivirus vector (2017) Vaccine, 35, pp. 6898-6904; Welch, S.K., Jolie, R., Pearce, D.S., Koertje, W.D., Fuog, E., Shields, S.L., Construction and evaluation of genetically engineered replication-defective porcine reproductive and respiratory syndrome virus vaccine candidates (2004) Vet. Immunol. Immunopathol., 102, pp. 277-290","Myoung, J.; Korea Zoonosis Research Institute, Genetic Engineering Research Institute, Chonbuk National UniversitySouth Korea; email: Jinjong.myoung@jbnu.ac.kr",,"Korean Society for Microbiology and Biotechnology",10177825,,JOMBE,"31154749","English","J. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85069265813 "Wang X., Fang L., Liu S., Ke W., Wang D., Peng G., Xiao S.","57195152238;7402470374;57201579623;57193114863;36060664000;56651662900;7402022567;","Susceptibility of porcine IPI-2I intestinal epithelial cells to infection with swine enteric coronaviruses",2019,"Veterinary Microbiology","233",,,"21","27",,2,"10.1016/j.vetmic.2019.04.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064620616&doi=10.1016%2fj.vetmic.2019.04.014&partnerID=40&md5=e4bc30413f760551696ad740f8f3fa96","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China","Wang, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Liu, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Ke, W., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China","Swine enteric coronavirus (CoV) is an important group of pathogens causing diarrhea in piglets. At least four kinds of swine enteric CoVs have been identified, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and the emerging HKU2-like porcine enteric alphacoronavirus (PEAV). The small intestines, particularly the jejunum and ileum, are the most common targets of these four CoVs in vivo, and co-infections by these CoVs are frequently observed in clinically infected pigs. This study was conducted to investigate the susceptibility of the porcine ileum epithelial cell line, IPI-2I, to different swine enteric CoVs. We found that IPI-2I cells are highly susceptible to TGEV, PDCoV, and PEAV, as demonstrated by cytopathic effect and virus multiplication. However, only a small number of cells could be infected by PEDV, possibly due to the heterogeneity of IPI-2I cells. A homogeneous cell line, designated IPI-FX, obtained from IPI-2I cells by sub-cloning with limited serial dilutions, was found to be highly susceptible to PEDV. Furthermore, IPI-FX cells were also highly susceptible to TGEV, PDCoV, as well as PEAV. Thus, this sub-cloned IPI-FX cell line is an ideal cell model to study the mechanisms of infection, particularly co-infections of swine enteric CoVs. © 2019 Elsevier B.V.","Porcine ileum epithelial cell (IPI-2I); Susceptibility; Swine enteric coronavirus","genomic RNA; virus RNA; animal cell; animal experiment; animal tissue; Article; cell count; cell heterogeneity; cell population; cloning; controlled study; ileum; ileum epithelium; infection sensitivity; intestine epithelium cell; jejunum; nonhuman; pig; porcine deltacoronavirus; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; Transmissible gastroenteritis virus; virogenesis; animal; cell culture technique; cell line; Coronavirinae; cytology; diarrhea; epithelium cell; feces; genetics; pathogenicity; phylogeny; small intestine; swine disease; veterinary medicine; virology; virus replication; Animals; Cell Culture Techniques; Cell Line; Coronavirus; Diarrhea; Epithelial Cells; Feces; Intestine, Small; Phylogeny; Porcine epidemic diarrhea virus; Swine; Swine Diseases; Virus Replication","Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., Pohlmann, A., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerg. Infect. Dis., 22, pp. 1314-1315; An, K., Fang, L., Luo, R., Wang, D., Xie, L., Yang, J., Chen, H., Xiao, S., Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway (2014) J. Proteome Res., 13, pp. 5376-5390; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in Central Eastern Europe in 2016 (2016) Transbound. Emerg. Dis., 63, pp. 595-601; Bi, J., Zeng, S., Xiao, S., Chen, H., Fang, L., Complete genome sequence of porcine epidemic diarrhea virus strain AJ1102 isolated from a suckling piglet with acute diarrhea in China (2012) J. Virol., 86, pp. 10910-10911; Brosnahan, A.J., Brown, D.R., Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations (2012) Vet. Microbiol., 156, pp. 229-237; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J. Virol., 88, pp. 8936-8945; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NF-kappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J. Am. Vet. Med. Assoc., 108, pp. 257-259; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Vet. Microbiol., 206, pp. 45-51; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new Bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J. Clin. Microbiol., 26, pp. 2235-2239; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) MBio, 4, pp. e00737-00713; Jang, G., Lee, K.K., Kim, S.H., Lee, C., Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016 (2017) Transbound. Emerg. Dis., 64, pp. 1364-1370; Jung, K., Miyazaki, A., Hu, H., Saif, L.J., Susceptibility of porcine IPEC-J2 intestinal epithelial cells to infection with porcine deltacoronavirus (PDCoV) and serum cytokine responses of gnotobiotic pigs to acute infection with IPEC-J2 cell culture-passaged PDCoV (2018) Vet. Microbiol., 221, pp. 49-58; Kaeffer, B., Bottreau, E., Velge, P., Pardon, P., Epithelioid and fibroblastic cell lines derived from the ileum of an adult histocompatible miniature boar (d/d haplotype) and immortalized by SV40 plasmid (1993) Eur. J. Cell Biol., 62, pp. 152-162; Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol. J., 12, p. 193; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China, 2011 (2012) Emerg Infect Dis, 18, pp. 1350-1353; Li, W., Wicht, O., van Kuppeveld, F.J., He, Q., Rottier, P.J., Bosch, B.J., A single point mutation creating a furin cleavage site in the spike protein renders porcine epidemic diarrhea coronavirus trypsin independent for cell entry and fusion (2015) J. Virol., 89, pp. 8077-8081; Mandelik, R., Sarvas, M., Jackova, A., Salamunova, S., Novotny, J., Vilcek, S., First outbreak with chimeric swine enteric coronavirus (SeCoV) on pig farms in Slovakia - lessons to learn (2018) Acta Vet. Hung., 66, pp. 488-492; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Pensaert, M.B., de Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch. Virol., 58, pp. 243-247; Reed, L.J., Muench, H., A simple method of estimating of fifty percent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J. Virol., 88, pp. 7952-7961; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Zhang, Q., Ke, H., Blikslager, A., Fujita, T., Yoo, D., Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling (2018) J. Virol., 92, pp. e01677-17; Zhao, S., Gao, J., Zhu, L., Yang, Q., Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells (2014) Virus Res., 192, pp. 34-45; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Zhu, X., Liu, S., Wang, X., Luo, Z., Shi, Y., Wang, D., Peng, G., Xiao, S., Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection (2018) Emerg. Microbes Infect., 7, p. 65","Fang, L.; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, China; email: fanglr@mail.hzau.edu.cn",,"Elsevier B.V.",03781135,,VMICD,"31176408","English","Vet. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85064620616 "Matsuno A.K., Gagliardi T.B., Paula F.E., Luna L.K.S., Jesus B.L.S., Stein R.T., Aragon D.C., Carlotti A.P.C.P., Arruda E.","23669971500;27367977800;27467796800;14024020500;57207299848;7402952293;22978396900;35583414500;57203044674;","Human coronavirus alone or in co-infection with rhinovirus C is a risk factor for severe respiratory disease and admission to the pediatric intensive care unit: A one-year study in Southeast Brazil",2019,"PLoS ONE","14","6", e0217744,"","",,2,"10.1371/journal.pone.0217744","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066618920&doi=10.1371%2fjournal.pone.0217744&partnerID=40&md5=78147a8de8e635df291d1a4ff85778ec","Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Department of Pediatrics, Pontifícia Universidade Católica do Rio Grande do Sul School of Medicine, Porto Alegre, Brazil","Matsuno, A.K., Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Gagliardi, T.B., Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Paula, F.E., Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Luna, L.K.S., Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Jesus, B.L.S., Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil; Stein, R.T., Department of Pediatrics, Pontifícia Universidade Católica do Rio Grande do Sul School of Medicine, Porto Alegre, Brazil; Aragon, D.C., Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Carlotti, A.P.C.P., Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Arruda, E., Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil","Objective We aimed to assess the profile of respiratory viruses in young children hospitalized for acute lower respiratory tract infection (ALRI) and its association with disease severity, defined as need for pediatric intensive care unit (PICU) admission. Design Prospective observational cohort study. Setting A tertiary-care university hospital in Brazil. Patients Children younger than three years attending the pediatric emergency room with ALRI who were admitted to the hospital. Interventions None. Measurements and main results Nasopharyngeal aspirates were collected from patients from June 1st, 2008 to May 31st, 2009within the first 48 hours of hospitalization. Nasopharyngeal aspirates were tested for 17humanrespiratory viruses by molecular and immunofluorescence based assays. Simple and multiple log-binomial regression models were constructed to assess associations of virus type with a need for PICU admission. Age, prematurity, the presence of an underlying disease and congenital heart disease were covariates. Nasopharyngeal aspirates were positive for at least one virus in 236 patients. Rhinoviruses were detected in 85.6% of samples, with a preponderance of rhinovirus C (RV-C) (61.9%). Respiratory syncytial virus was detected in 59.8% and human coronavirus (HCoV) in 11% of the samples. Co-detections of two to five viruses were found in 78% of the patients. The detection of HCoV alone (adjusted relative risk (RR) 2.18; 95% CI 1.15–4.15) or in co-infection with RV-C (adjusted RR 2.37; 95% CI 1.23–4.58) was independently associated with PICU admission. Conclusions The detection of HCoV alone or in co-infection with RV-C was independently associated with PICU admission in young children hospitalized for ALRI. © 2019 Matsuno et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"age; Article; Brazil; child; cohort analysis; congenital heart disease; controlled study; Coronaviridae; Coronaviridae infection; disease severity; emergency ward; female; hospital admission; hospital patient; hospitalization; human; Human respiratory syncytial virus; immunofluorescence test; lower respiratory tract infection; major clinical study; male; mixed infection; molecular biology; nasopharyngeal aspiration; newborn; nonhuman; observational study; pediatric intensive care unit; prematurity; prospective study; respiratory tract disease; respiratory virus; Rhinovirus; rhinovirus C; rhinovirus C infection; Rhinovirus infection; risk factor; tertiary care center; university hospital; virus detection; virus typing; Enterovirus; hospitalization; infant; mixed infection; pediatric intensive care unit; physiology; preschool child; respiratory tract infection; risk factor; virology; Brazil; Child; Child, Preschool; Coinfection; Enterovirus; Female; Hospitalization; Humans; Infant; Intensive Care Units, Pediatric; Male; Respiratory Tract Infections; Risk Factors","(2016) Global Healthy Observatory Data Repository: World Acute Respiratory Infections, , http://apps.who.int/gho/data/view.main.CM1002015WORLD-CH9?lang=en, accessed on 05 Dec 2017. In: World Health Organization internet; Rakes, G.P., Arruda, E., Ingram, J.M., Hoover, G.E., Zambrano, J.C., Hayden, F.G., Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care (1999) Am J Respir Crit Care Med, 159, pp. 785-790. , https://doi.org/10.1164/ajrccm.159.3.9801052, PMID: 10051251; Sonego, M., Pellegrin, M.C., Becker, G., Lazzerini, M., Risk factors for mortality from acute lower respiratory infections (ALRI) in children under five years of age in low and middle-income countries: A systematic review and meta-analysis of observational studies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0116380, PMID: 25635911; Arruda, E., Jones, M.H., Escremim de Paula, F., Chong, D., Bugarin, G., Notario, G., The burden of single virus and viral coinfections on severe lower respiratory tract infections among preterm infants: A prospective birth cohort study in Brazil (2014) Pediatr Infect Dis J, 33, pp. 997-1003. , https://doi.org/10.1097/INF.0000000000000349, PMID: 25361184; Walsh, E.E., Breese-Hall, C., Respiratory syncytial virus (2015) Principles and Practice of Infectious Diseases, pp. 1948-1960. , Bennett JE, Dolin R, Blaser MJ, editors. 8th Ed. Philadelphia, MS: Elsevier Saunders; Legg, J.P., Warner, J.A., Johnston, S.L., Warner, J.O., Frequency of detection of picornaviruses and seven other respiratory pathogens in infants (2005) Pediatr Infect Dis J, 24, pp. 611-616. , https://doi.org/10.1186/1471-2334-11-41, PMID: 15999002; Fawkner-Corbett, D.W., Khoo, S.K., Duarte, C.M., Bezerra, P.G., Bochkov, Y.A., Gern, J.E., Rhinovirus-C detection in children presenting with acute respiratory infection to hospital in Brazil (2016) J of Med Virol, 88, pp. 58-63. , https://doi.org/10.1002/jmv.24300; Lauinger, I.L., Bible, J.M., Halligan, E.P., Bangalore, H., Tosas, O., Aaron, E.J., Patient characteristics and severity of human rhinovirus infections in children (2013) J Clin Virol, 58, pp. 216-220. , https://doi.org/10.1016/j.jcv.2013.06.042, PMID: 23886500; Miyaji, Y., Kobayashi, M., Sugai, K., Tsukagoshi, H., Niwa, S., Fujitsuka-Nozawa, A., Severity of respiratory signs and symptoms and virus profiles in Japanese children with acute respiratory illness (2013) Microbiol Immunol, 57, pp. 811-821. , https://doi.org/10.1111/1348-0421.12102, PMID: 24117766; Chu, H.Y., Englund, J.A., Strelitz, B., Lacombe, K., Jones, C., Follmer, K., Rhinovirus disease in children seeking care in a tertiary pediatric emergency department (2016) J Pediatric Infect Dis Soc, 5, pp. 29-38. , https://doi.org/10.1093/jpids/piu099, PMID: 26908489; Nathan, A.M., Qiao, Y.L., Jafar, F.L., Chan, Y.F., Eg, K.P., Thauagnanam, S., Viruses and hospitalization for childhood lower respiratory tract infection in Malaysia: A prospective study (2017) PediatrRespirolCrit Care Med, 1, pp. 46-51. , https://doi.org/10.4103/prcm.prcm_2_17; Wishaupt, J.O., Van Der Ploeg, T., De Groot, R., Versteegh, F.G., Hartwig, N.G., Single- And multiple viral respiratory infections in children: Disease and management cannot be related to a specific pathogen (2017) BMC Infect Dis, 17, p. 62. , https://doi.org/10.1186/s12879-016-2118-6, PMID: 28077074; Costa, L.F., Queiróz, D.A.O., Silveira, H.L., Bernardino Neto, M., De Paula, N.T., Oliveira, T.F., Human rhinovirus and disease severity in children (2014) Pediatrics, 133, pp. e312-e321. , https://doi.org/10.1542/peds.2013-2216, PMID: 24420808; Cebey-López, M., Herberg, J., Pardo-Seco, J., Gómez-Carballa, A., Martinón- Torres, N., Salas, A., Does viral co-infection influence the severity of acute respiratory infection in children? (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0152481, PMID: 27096199; Scotta, M.C., Chakr, V.C.B.G., De Moura, A., Becker, R.G., De Souza, A.P., Jones, M.H., Respiratory viral coinfection and disease severity in children: A systematic review and meta-analysis (2016) J Clin Virol, 80, pp. 45-56. , https://doi.org/10.1016/j.jcv.2016.04.019, PMID: 27155055; Cintra, O.A., Owa, M.A., Machado, A.A., Cervi, M.C., Figueiredo, L.T., Rocha, G.M., Occurrence and severity of infections caused by subgroup A and B respiratory syncytial virus in children in Southeast Brazil (2001) J Med Virol, 65, pp. 408-412. , PMID: 11536252; De Souza Luna, L.K., Heiser, V., Regamey, N., Panning, M., Drexter, J.F., Mulangu, S., Generic detection of coronaviruses and differentiation at the prototype strain level by reverse transcription-PCR and non-fluorescent low-density microarray (2007) J Clin Microbiol, 45, pp. 1049-1052. , https://doi.org/10.1128/JCM.02426-06, PMID: 17229859; Lee, W.M., Lemanske, R.F., Evans, M., Vang, F., Pappas, T., Gangnon, R., Human rhinovirus species and season of infection determine illness severity (2012) Am J Respir Crit Care Med, 186, pp. 886-891. , https://doi.org/10.1164/rccm.201202-0330OC, PMID: 22923659; Lee, W.M., Kiesner, C., Pappas, T., Lee, L., Grindle, K., Jartti, T., A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants (2007) PLoS ONE, 2. , https://doi.org/10.1371/journal.pone.0000966, PMID: 17912345; Proenca-Modena, J.L., Pereira Valera, F.C., Jacob, M.G., Buzatto, G.P., Saturno, T.H., Lopes, L., High rates of detection of respiratory viruses in tonsillar tissues from children with chronic adenotonsillar disease (2012) PLoS One, 7. , https://doi.org/10.1371/journal.pone.0042136, PMID: 22870291; Blizzard, L., Hosmer, D.W., Parameter estimation and goodness-of-fit inlog binomial regression (2006) Biom J, 48, pp. 5-22. , PMID: 16544809; Renwick, N., Schweiger, B., Kapoor, V., Liu, Z., Villari, J., Bullmann, R., A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany (2007) J Infect Dis, 196, pp. 1754-1760. , https://doi.org/10.1086/524312, PMID: 18190255; Do, L.A.H., Bryant, J.E., Tran, A.T., Nguyen, B.H., Tran, T.T.L., Quynh, H.T., Respiratory syncytial virus and other viral infections among children under two years old in Southern Vietnam 2009–2010: Clinical characteristics and disease severity (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0160606, PMID: 27500954; Zhang, S., Tuo, J., Huang, X., Zhu, X., Zhang, D.M., Zhou, K., Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010–2015 in Guangzhou (2018) PLoS One, 13. , https://doi.org/10.1371/journal.pone.0191789, PMID: 29377913; Varghese, L., Zachariah, P., Vargas, C., La Russa, P., Demmer, R.T., Furuya, Y.E., Epidemiology and clinical features of human coronaviruses in the pediatric population (2017) J Pediatric Infect Dis Soc, , https://doi.org/10.1093/jpids/pix027; De Luca, M., Donà, D., Montagnani, C., Lo Vecchio, A., Romanengo, M., Tagliabue, C., Antibiotic prescriptions and prophylaxis in Italian children. Is it time to change? Data from the ARPEC project (2016) PLoS One, 11. , https://doi.org/10.1371/journal.pone.0154662, PMID: 27182926; Kelesidis, T., Braykov, N., Uslan, D.Z., Morgan, D.J., Gandra, S., Johannsson, B., Indications and types of antibiotic agents used in 6 acute care hospitals, 2009–2010: A pragmatic retrospective observational study (2016) Infect Control Hosp Epidemiol, 37, pp. 70-79. , https://doi.org/10.1017/ice.2015.226, PMID: 26456803","Matsuno, A.K.; Department of Pediatrics, Ribeirão Preto Medical School, University of São PauloBrazil; email: matsuno@fmrp.usp.br",,"Public Library of Science",19326203,,POLNC,"31158256","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85066618920 "Berryhill E.H., Magdesia K.G., Aleman M., Pusterla N.","57070321200;7003554053;7004073166;7005591152;","Clinical presentation, diagnostic findings, and outcome of adult horses with equine coronavirus infection at a veterinary teaching hospital: 33 cases (2012–2018)",2019,"Veterinary Journal","248",,,"95","100",,2,"10.1016/j.tvjl.2019.05.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065221536&doi=10.1016%2fj.tvjl.2019.05.001&partnerID=40&md5=e2bca27ea25ee33371c68edaa4272c5f","Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States","Berryhill, E.H., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Magdesia, K.G., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Aleman, M., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States","Equine coronavirus (ECoV)is a recently described enteric virus with worldwide outbreaks; however, there are little data available on clinical presentation, diagnosis, and outcome. The study objective was to document case management of ECoV in adult horses presented to a referral hospital and compare to a cohort of horses that tested negative for ECoV. A retrospective case series was performed based on positive real-time quantitative PCR results for ECoV on faeces from horses treated at the UC Davis Veterinary Medical Teaching Hospital from 1 March 2012 to 31 March 2018. Horses negative for ECoV were matched to the ECoV-positive group as controls. Data collected included signalment, history, exam findings, diagnostics, treatment, and follow-up. Thirty-three horses (median age, 11 years; range, 2–37 years)tested ECoV-positive, including three horses with co-infections. Presenting complaints for ECoV-infected horses included historic fevers (n = 25/30; 83%), anorexia (n = 14/30; 47%), and colic (n = 13/30; 43%). ECoV-positive horses had significantly lower white blood cell (median, 3.0 × 109/L; range, 0.68–16.2 × 109/L), neutrophil (median, 1.26 × 109/L; range, 0.15–14.4 × 109/L), and lymphocyte (median, 0.86 × 109/L; range, 0.42–3.47 × 109/L)counts than ECoV-negative horses. Electrolyte and metabolic derangements and scant faeces were common. Twenty-seven horses were hospitalised for a median of 5 days (range, 0.5–14 days), with 26/27 (96%)horses surviving to discharge. ECoV infection should be a differential diagnosis for adult horses with fever, colic, anorexia, and leukopenia. The disease has a low mortality rate, but horses may require intensive care to resolve severe leukopenia, systemic inflammation, and metabolic disturbances. © 2019 Elsevier Ltd","Colic; Diarrhea; Fever; Gastrointestinal; Infectious","Actinobacillus; adult; animal cell; animal tissue; anorexia; Article; autopsy; biochemical analysis; clinical feature; cohort analysis; colic; comparative study; controlled study; Coronavirus infection; disease severity; feces analysis; female; fever; gelding; horse disease; length of stay; leukopenia; lymphocyte count; male; mare; metabolic disorder; mixed infection; mortality rate; neutrophil count; nonhuman; outcome assessment; peritonitis; quantitative analysis; real time polymerase chain reaction; retrospective study; stallion; survival rate; teaching hospital; thrombocytopenia; veterinary clinic; animal; Betacoronavirus 1; California; clinical trial; Coronavirus infection; epidemic; horse; horse disease; hospital; information processing; isolation and purification; multicenter study; veterinary medicine; Animals; Betacoronavirus 1; California; Coronavirus Infections; Disease Outbreaks; Female; Horse Diseases; Horses; Hospitals, Animal; Male; Records","Barsnick, R.J., Hurcombe, S.D., Dembek, K., Frazer, M.L., Slovis, N.M., Saville, W.J., Toribio, R.E., Somatotropic axis resistance and ghrelin in critically ill foals (2014) Equine Veterinary Journal, 46, pp. 45-49; Fielding, C.L., Higgins, J.K., Higgins, J.C., McIntosh, S., Scott, E., Giannitti, F., Mete, A., Pusterla, N., Disease associated with equine coronavirus infection and high case fatality rate (2015) Journal of Veterinary Internal Medicine, 29, pp. 307-310; Holm, S., A simple sequentially rejective multiple test procedure (1979) Scandinavian Journal of Statistics, 2, pp. 65-70; Kooijman, L.F., Mapes, S., Pusterla, N., Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses (2016) Journal of Veterinary Diagnostic Investigation, 28, pp. 414-418; Kooijman, L.J., James, K., Mapes, S.M., Theelen, M.J., Pusterla, N., Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA (2017) The Veterinary Journal, 220, pp. 91-94; Miszczak, F., Tesson, V., Kin, N., Dina, J., Balasuriya, U.B., Pronost, S., Vabret, A., First detection of equine coronavirus (ECoV)in Europe (2014) Veterinary Microbiology, 171, pp. 206-209; Nemoto, M., Oue, Y., Morita, Y., Kanno, T., Kinoshita, Y., Niwa, H., Ueno, T., Tsujimura, K., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Archives of Virology, 159, pp. 3329-3334; Nemoto, M., Morita, Y., Niwa, H., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Rapid detection of equine coronavirus by reverse transcription loop-mediated isothermal amplification (2015) Journal of Virological Methods, pp. 215-216. , 13-26; Oue, Y., Morita, Y., Kondo, T., Nemoto, M., Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012 (2013) Journal of Veterinary Internal Medicine, 75, pp. 1261-1265; Pusterla, N., Mapes, S., Wademan, C., White, B.A., Sapp, K., Burns, P., Ormond, C., Magdesian, K.G., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Veterinary Microbiology, 162, pp. 228-231; Pusterla, N., Vin, R., Leutenegger, C.M., Mittel, L.D., Divers, T.J., Enteric coronavirus infection in adult horses (2018) The Veterinary Journal, 231, pp. 13-18; Schaefer, E., Harms, C., Viner, M., Barnum, S., Pusterla, N., Investigation of an experimental infection model of equine coronavirus in adult horses (2018) Journal of Veterinary Internal Medicine, 32, pp. 2099-2104; Slovis, N.M., Elam, J., Estrada, M., Leutenegger, C.M., Infectious agents associated with diarrhea in neonatal foals in central Kentucky: a comprehensive molecular study (2014) Equine Veterinary Journal, 46, pp. 311-316","Berryhill, E.H.; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., United States; email: ehberryhill@vmth.ucdavis.edu",,"Bailliere Tindall Ltd",10900233,,VTJRF,"31113572","English","Vet. J.",Article,"Final",Open Access,Scopus,2-s2.0-85065221536 "Shehata M.M., Mostafa A., Teubner L., Mahmoud S.H., Kandeil A., Elshesheny R., Boubak T.A., Frantz R., Pietra L.L., Pleschka S., Osman A., Kayali G., Chakraborty T., Ali M.A., Mraheil M.A.","55857867300;35091393800;57193242508;57191913086;37034258700;36456637800;57209737879;57192591897;57209739119;6602999462;7202452924;24366561300;57200424492;55262803600;12244400100;","Bacterial outer membrane vesicles (OMVs)-based dual vaccine for influenza a H1N1 virus and MERS-CoV",2019,"Vaccines","7","2", 46,"","",,1,"10.3390/vaccines7020046","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068574148&doi=10.3390%2fvaccines7020046&partnerID=40&md5=d03319e86941f8d6a535f7ff9a345c82","Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt; Institute of Medical Virology, Justus-Liebig University Giessen, Giessen, 35392, Germany; Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, 35392, Germany; Biological Department, Faculty of Science, King Abdul Aziz University, Jeddah, 80203, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 38105, Egypt; Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas, Houston, TX 77030, United States; Human Link, Baabda, 1109, Lebanon","Shehata, M.M., Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt; Mostafa, A., Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt, Institute of Medical Virology, Justus-Liebig University Giessen, Giessen, 35392, Germany; Teubner, L., Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, 35392, Germany; Mahmoud, S.H., Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt; Kandeil, A., Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt; Elshesheny, R., Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt; Boubak, T.A., Biological Department, Faculty of Science, King Abdul Aziz University, Jeddah, 80203, Saudi Arabia; Frantz, R., Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, 35392, Germany; Pietra, L.L., Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, 35392, Germany; Pleschka, S., Institute of Medical Virology, Justus-Liebig University Giessen, Giessen, 35392, Germany; Osman, A., Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 38105, Egypt; Kayali, G., Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas, Houston, TX 77030, United States, Human Link, Baabda, 1109, Lebanon; Chakraborty, T., Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, 35392, Germany; Ali, M.A., Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, 12622, Egypt; Mraheil, M.A., Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, 35392, Germany","Vaccination is the most functional medical intervention to prophylactically control severe diseases caused by human-to-human or animal-to-human transmissible viral pathogens. Annually, seasonal influenza epidemics attack human populations leading to 290–650 thousand deaths/year worldwide. Recently, a novel Middle East Respiratory Syndrome Coronavirus emerged. Together, those two viruses present a significant public health burden in areas where they circulate. Herein, we generated a bacterial outer membrane vesicles (OMVs)-based vaccine presenting the antigenic stable chimeric fusion protein of the H1-type haemagglutinin (HA) of the pandemic influenza A virus (H1N1) strain from 2009 (H1N1pdm09) and the receptor binding domain (RBD) of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (OMVs-H1/RBD). Our results showed that the chimeric antigen could induce specific neutralizing antibodies against both strains leading to protection of immunized mice against H1N1pdm09 and efficient neutralization of MERS-CoV. This study demonstrate that OMVs-based vaccines presenting viral antigens provide a safe and reliable approach to protect against two different viral infections. © 2019, MDPI AG. All rights reserved.","H1N1pdm; Influenza vaccine; MERS-CoV; OMVs","chimeric antigen receptor; fusion protein; hemagglutinin; inactivated vaccine; influenza vaccine; virus vaccine; animal experiment; animal model; Article; bacterial outer membrane; controlled study; Escherichia coli; female; immunization; immunoblotting; influenza; Influenza A virus (H1N1); MDCK cell line; membrane vesicle; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; nonhuman; plaque reduction neutralization test; receptor binding; ultracentrifugation; vaccination; Vero C1008 cell line; viral plaque assay; virus strain","Bhuyan, G.S., Hossain, M.A., Sarker, S.K., Rahat, A., Islam, M.T., Haque, T.N., Begum, N., Islam, N.N., Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city (2017) Plos ONE, 12; (2019), https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, (accessed on 12 May; Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Swartz, S., Fullman, N., Reiner, R.C., Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the Global Burden of Disease Study 2015 (2017) Lancet Infect. Dis, 17, pp. 1133-1161; (2019), https://www.who.int/influenza/surveillance:monitoring/bod/en, (accessed on 12 May; Potter, C.W., A history of influenza (2001) J. Appl. Microbiol, 91, pp. 572-579; Parry, J., H7N9 avian flu infects humans for the first time (2013) BMJ, 346; Bahgat, M.M., Kutkat, M.A., Nasraa, M.H., Mostafa, A., Webby, R., Bahgat, I.M., Ali, M.A., Characterization of an avian influenza virus H5N1 Egyptian isolate (2009) J. Virol. Methods, 159, pp. 244-250; Chen, H., Yuan, H., Gao, R., Zhang, J., Wang, D., Xiong, Y., Fan, G., Zhou, J., Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: A descriptive study (2014) Lancet, 383, pp. 714-721; Shi, W., Shi, Y., Wu, Y., Liu, D., Gao, G.F., Origin and molecular characterization of the human-infecting H6N1 influenza virus in Taiwan (2013) Protein Cell, 4, pp. 846-853; Lessler, J., Reich, N.G., Cummings, D.A., Nair, H.P., Jordan, H.T., Thompson, N., (2009) Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school, 361, pp. 2628-2636; Neumann, G., Noda, T., Kawaoka, Y., Emergence and pandemic potential of swine-origin H1N1 influenza virus (2009) Nature, 459, pp. 931-939; (2019), https://www.who.int/emergencies/mers-cov/en, (accessed on 14 May; Chafekar, A., Fielding, B.C., MERS-CoV: Understanding the Latest Human Coronavirus Threat (2018) Viruses, p. 10; Mostafa, A., Pleschka, S., Influenza H3N2 Vaccines (2017) Recent Challenges. Trends Microbiol, , 10. 1016/j. tim. 2017. 12. 003; Zost, S.J., Parkhouse, K., Gumina, M.E., Kim, K., Diaz Perez, S., Wilson, P.C., Treanor, J.J., Hensley, S.E., Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 12578-12583; Wu, N.C., Zost, S.J., Thompson, A.J., Oyen, D., Nycholat, C.M., McBride, R., Paulson, J.C., Wilson, I.A., A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine (2017) Plos Pathogens, 13; Gerritzen, M.J.H., Martens, D.E., Wijffels, R.H., Van Der Pol, L., Stork, M., Bioengineering bacterial outer membrane vesicles as vaccine platform (2017) Biotechnol. Adv, 35, pp. 565-574; Anand, D., Chaudhuri, A., Bacterial outer membrane vesicles: New insights and applications (2016) Mol. Membr. Biol, 33, pp. 125-137; Zollinger, W.D., Poolman, J.T., Maiden, M.C., Meningococcal serogroup B vaccines: Will they live up to expectations? (2011) Expert. Rev. Vaccines, 10, pp. 559-561; Fantappie, L., De Santis, M., Chiarot, E., Carboni, F., Bensi, G., Jousson, O., Margarit, I., Grandi, G., Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen (2014) J. Extracell Vesicles, p. 3; Mostafa, A., Kanrai, P., Ziebuhr, J., Pleschka, S., Improved dual promotor-driven reverse genetics system for influenza viruses (2013) J. Virol. Methods, 193, pp. 603-610; Bommakanti, G., Citron, M.P., Hepler, R.W., Callahan, C., Heidecker, G.J., Najar, T.A., Lu, X., Casimiro, D.R., Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 13701-13706; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High Prevalence of MERS-CoV Infection in Camel Workers in Saudi Arabia (2018) Mbio, p. 9; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Sobhy, H., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro. Surveill, p. 22; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Zhang, S., Zhou, P., Wang, P., Li, Y., Jiang, L., Jia, W., Wang, H., Shi, X., Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein (2018) Cell Rep, 24, pp. 441-452; Wang, C., Zheng, X., Gai, W., Wong, G., Wang, H., Jin, H., Feng, N., Li, N., Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antiviral Res, 140, pp. 55-61; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Jiang, S., Gao, J., Receptorbinding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum. Vaccin. Immunother, 13, pp. 1615-1624; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Zhou, Y., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) Plos ONE, 8; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., Li, J., Wang, Y., A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV (2018) J. Virol; Shehata, M.M., Gomaa, M.R., Ali, M.A., Kayali, G., Middle East respiratory syndrome coronavirus: A comprehensive review (2016) Front. Med, 10, pp. 120-136; Mostafa, A., Kanrai, P., Ziebuhr, J., Pleschka, S., The PB1 segment of an influenza A virus H1N1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs (2016) J. Gen. Virol, 97, pp. 620-631; Khanna, M., Sharma, S., Kumar, B., Rajput, R., Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development (2014) Biomed. Res. Int; Lynch, M., Evolution of the mutation rate (2010) Trends Genet, 26, pp. 345-352; Pritsch, M., Ben-Khaled, N., Chaloupka, M., Kobold, S., Berens-Riha, N., Peter, A., Liegl, G., Loscher, T., Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C. 1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45 (2016) J. Immunol. Res; Adriani, R., Mousavi Gargari, S.L., Nazarian, S., Sarvary, S., Noroozi, N., Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions (2018) Vaccine, 36, pp. 322-330; Choi, H.I., Kim, M., Jeon, J., Han, J.K., Kim, K.S., Overexpression of MicA induces production of OmpCenriched outer membrane vesicles that protect against Salmonella challenge (2017) Biochem. Biophys. Res. Commun, 490, pp. 991-996; Roy, N., Barman, S., Ghosh, A., Pal, A., Chakraborty, K., Das, S.S., Saha, D.R., Koley, H., Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model (2010) FEMS Immunol. Med. Microbiol, 60, pp. 18-27; De Oliveira Santos, F.A., Lincopan, N., De Gaspari, E., Evaluation of intranasal and subcutaneous route of immunization in neonatal mice using DODAB-BF as adjuvant with outer membrane vesicles of Neisseria meningitis B (2018) Immunobiology; Persson, G., Pors, S.E., Thofner, I.C.N., Bojesen, A.M., Vaccination with outer membrane vesicles and the fimbrial protein FlfA offers improved protection against lesions following challenge with Gallibacterium anatis (2018) Vet. Microbiol, 217, pp. 104-111; Zhang, X., Yang, F., Zou, J., Wu, W., Jing, H., Gou, Q., Li, H., Zhang, J., Immunization with Pseudomonas aeruginosa outer membrane vesicles stimulates protective immunity in mice (2018) Vaccine, 36, pp. 1047-1054; Van Der Pol, L., Stork, M., Van Der Ley, P., Outer membrane vesicles as platform vaccine technology (2015) Biotechnol. J, 10, pp. 1689-1706; Wang, S., Huang, W., Li, K., Yao, Y., Yang, X., Bai, H., Sun, W., Ma, Y., Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor (2017) Int. J. Nanomed, 12, pp. 6813-6825; Bae, E.H., Seo, S.H., Kim, C.U., Jang, M.S., Song, M.S., Lee, T.Y., Jeong, Y.J., Lee, P., Bacterial Outer Membrane Vesicles Provide Broad-Spectrum Protection against Influenza Virus Infection via Recruitment and Activation of Macrophages (2019) J. Innate Immun; Raetz, C.R., Whitfield, C., Lipopolysaccharide endotoxins (2002) Annu. Rev. Biochem, 71, pp. 635-700; Van Der Ley, P., Van Den Dobbelsteen, G., Next-generation outer membrane vesicle vaccines against neisseria meningitidis based on nontoxic lps mutants (2011) Hum. Vaccines, 7, pp. 886-890; Mamat, U., Wilke, K., Bramhill, D., Schromm, A.B., Lindner, B., Kohl, T.A., Corchero, J.L., Head, S.R., Detoxifying escherichia coli for endotoxin-free production of recombinant proteins (2015) Microbial. Cell Factories, 14, p. 57; Mamat, U., Woodard, R.W., Wilke, K., Souvignier, C., Mead, D., Steinmetz, E., Terry, K., Knox, C., Endotoxin-free protein production—ClearColi™ technology (Application Note) (2013) Nature Methods, 10, p. 916; Bottero, D., Zurita, M.E., Gaillard, M.E., Carriquiriborde, F., Martin Aispuro, P., Elizagaray, M., Bartel, E., Hozbor, D., Outer-membrane-vesicle-associated o antigen, a crucial component for protecting against bordetella parapertussis infection (2018) Front. Immunology, 9, pp. 2501-2502; Rappazzo, C.G., Watkins, H.C., Guarino, C.M., Chau, A., Lopez, J.L., Delisa, M.P., Leifer, C.A., Putnam, D., Recombinant m2e outer membrane vesicle vaccines protect against lethal influenza a challenge in balb/c mice (2016) Vaccine, 34, pp. 1252-1258; Watkins, H.C., Rappazzo, C.G., Higgins, J.S., Sun, X., Brock, N., Chau, A., Misra, A., Maines, T.R., Safe Recombinant Outer Membrane Vesicles that Display M2e Elicit Heterologous Influenza Protection (2017) Mol. Ther, 25, pp. 989-1002","Ali, M.A.; Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC)Egypt; email: Mohamedahmedali2004@yahoo.com",,"MDPI AG",2076393X,,,,"English","Vaccines",Article,"Final",Open Access,Scopus,2-s2.0-85068574148 "Park S., Park J.Y., Song Y., How S.H., Jung K.-S., on behalf of the Respiratory Infections Assembly of the APSR","56117612300;57193095178;7404920196;55665235100;56770520700;","Emerging respiratory infections threatening public health in the Asia-Pacific region: A position paper of the Asian Pacific Society of Respirology",2019,"Respirology","24","6",,"590","597",,1,"10.1111/resp.13558","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064566343&doi=10.1111%2fresp.13558&partnerID=40&md5=5c17c62ac9d3d93a3ff96af40086ad8c","Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea; Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia","Park, S., Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea; Park, J.Y., Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea; Song, Y., Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; How, S.H., Department of Internal Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia; Jung, K.-S., Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea; on behalf of the Respiratory Infections Assembly of the APSR","In past decades, we have seen several epidemics of respiratory infections from newly emerging viruses, most of which originated in animals. These emerging infections, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and the pandemic influenza A(H1N1) and avian influenza (AI) viruses, have seriously threatened global health and the economy. In particular, MERS-CoV and AI A(H7N9) are still causing infections in several areas, and some clustering of cases of A(H5N1) and A(H7N9) may imply future possible pandemics. Additionally, given the inappropriate use of antibiotics and international travel, the spread of carbapenem-resistant Gram-negative bacteria is also a significant concern. These infections with epidemic or pandemic potential present a persistent threat to public health and a huge burden on healthcare services in the Asia-Pacific region. Therefore, to enable efficient infection prevention and control, more effective international surveillance and collaboration systems, in the context of the ‘One Health’ approach, are necessary. © 2019 Asian Pacific Society of Respirology","avian influenza; pandemic; respiratory infection; virus","influenza vaccine; severe acute respiratory syndrome vaccine; Asia; avian influenza (H5N1); avian influenza virus; aviation; cluster analysis; disease burden; disease control; disease surveillance; economic aspect; epidemic; geographic distribution; global health; human; influenza A; influenza A (H7N9); intermethod comparison; life threat; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; One Health; Pacific islands; priority journal; public health; respiratory tract infection; Review; SARS-related coronavirus; severe acute respiratory syndrome","Kotsimbos, T., Waterer, G., Jenkins, C., Kelly, P.M., Cheng, A., Hancox, R.J., Holmes, M., Irving, L., (2010), Influenza A/H1N1_09 Australia and New Zealand's winter of discontent., Am. J. Respir. Crit. Care Med, 181 300–6; http://apps.who.int/iris/bitstream/10665/252537/1/WER9151_52.pdf?ua=1, Weekly epidemiological record. [Accessed 5 Nov 2017.] Available from; Yoo, B.K., How to improve influenza vaccination rates in the U.S (2011) J. Prev. Med. Public Health, 44, pp. 141-148; Elbahesh, H., Saletti, G., Gerlach, T., Rimmelzwaan, G.F., Broadly protective influenza vaccines: design and production platforms (2018) Curr. Opin. Virol., 26, pp. 1-9; Hui, D.S.C., Lee, N., Chan, P.K.S., A clinical approach to the threat of emerging influenza viruses in the Asia-Pacific region (2017) Respirology, 22, pp. 1300-1312; https://www.cdc.gov/flu/avianflu/h7n9-virus.htm, Asian lineage avian influenza A(H7N9) virus. [Accessed 5 Nov 2017.] Available from; http://www.who.int/csr/don/26-october-2017-ah7n9-china/en/, Emergencies preparedness, response. Human infection with avian influenza A(H7N9) virus – China. [Accessed 5 Nov 2017.] Available from; Lai, S., Qin, Y., Cowling, B.J., Ren, X., Wardrop, N.A., Gilbert, M., Tsang, T.K., Jiang, H., Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data (2016) Lancet Infect. Dis., 16, pp. e108-e118; Hui, D.S., Review of clinical symptoms and spectrum in humans with influenza A/H5N1 infection (2008) Respirology, 13, pp. S10-S13; http://www.fao.org/ag/againfo/programmes/en/empres/h7n9/situation_update.html, H7N9 situation update. [Accessed 20 Aug 2018.] Available from; Li, Q., Zhou, L., Zhou, M., Chen, Z., Li, F., Wu, H., Xiang, N., Wang, D., Epidemiology of human infections with avian influenza A(H7N9) virus in China (2014) N. Engl. J. Med., 370, pp. 520-532; Tanner, W.D., Toth, D.J., Gundlapalli, A.V., The pandemic potential of avian influenza A(H7N9) virus: a review (2015) Epidemiol. Infect., 143, pp. 3359-3374; Zhang, R., Chen, T., Ou, X., Liu, R., Yang, Y., Ye, W., Chen, J., Zhang, X., Clinical, epidemiological and virological characteristics of the first detected human case of avian influenza A(H5N6) virus (2016) Infect. Genet. Evol., 40, pp. 236-242; http://www.wpro.who.int/emerging_diseases/ai_weekly_584_wpro_20170512.pdf, Avian influenza weekly update number 584. [Accessed 15 Nov 2017.] Available from; Yang, Z.F., Mok, C.K., Peiris, J.S., Zhong, N.S., Human infection with a novel avian influenza A(H5N6) virus (2015) N. Engl. J. Med., 373, pp. 487-489; http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface:25_02_2016.pdf, Influenza at the human-animal interface. [Accesssed 17 Nov 2017.] Available from; Cheng, V.C., Chan, J.F., Wen, X., Wu, W.L., Que, T.L., Chen, H., Chan, K.H., Yuen, K.Y., Infection of immunocompromised patients by avian H9N2 influenza A virus (2011) J. Infect., 62, pp. 394-399; Bui, C.M., Chughtai, A.A., Adam, D.C., MacIntyre, C.R., An overview of the epidemiology and emergence of influenza A infection in humans over time (2017) Arch. Public Health, 75, pp. 15-21; Liu, M., Li, X., Yuan, H., Zhou, J., Wu, J., Bo, H., Xia, W., Gao, R., Genetic diversity of avian influenza A (H10N8) virus in live poultry markets and its association with human infections in China (2015) Sci. Rep., 5, p. 7632; Xu, Y., Cao, H., Liu, H., Sun, H., Martin, B., Zhao, Y., Wang, Q., Zong, Y., Identification of the source of A (H10N8) virus causing human infection (2015) Infect. Genet. Evol., 30, pp. 159-163; https://www.cdc.gov/mmwr/volumes/65/wr/mm6542a1.htm, Morbidity and Mortality Weekly Report. [Accessed 20 November 2017.] Available from; https://www.cdc.gov/flu/swineflu/h3n2v-case-count.htm, Influenza (flu). Case count detected U.S. human infections with H3N2v by state since August 2011. [Accessed 20 Nov 2017.] Available from; Jhung, M.A., Epperson, S., Biggerstaff, M., Allen, D., Balish, A., Barnes, N., Beaudoin, A., Blanton, L., Outbreak of variant influenza A(H3N2) virus in the United States (2013) Clin. Infect. Dis., 57, pp. 1703-1712; Zhou, L., Tan, Y., Kang, M., Liu, F., Ren, R., Wang, Y., Chen, T., Wu, J., Preliminary epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1355-1359; http://www.oie.int/en/for-the-media/press-releases/detail/article/oie-expert-mission-finds-live-bird-markets-play-a-key-role-in-poultry-and-human-infections-with-infl/, OIE expert mission finds live bird markets play a key role in poultry and human infections with influenza A(H7N9). [Accessed 5 Nov 2017.] Available from; Yuen, K.Y., Chan, P.K., Peiris, M., Tsang, D.N., Que, T.L., Shortridge, K.F., Cheung, P.T., Sung, R., Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus (1998) Lancet, 351, pp. 467-471; Abdel-Ghafar, A.N., Chotpitayasunondh, T., Gao, Z., Hayden, F.G., Nguyen, D.H., de Jong, M.D., Naghdaliyev, A., Soeroso, S., (2008), Update on avian influenza A (H5N1) virus infection in humans. N. Engl. J. Med., 358 261–73; http://www.who.int/csr/don/2012_03_12/en/, Emergencies preparedness, response. Avian influenza – situation in Viet Nam – update. [Accessed 5 Dec 2017.] Available from; Wang, H., Feng, Z., Shu, Y., Yu, H., Zhou, L., Zu, R., Huai, Y., Wen, L., Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China (2008) Lancet, 371, pp. 1427-1434; Wang, T.T., Parides, M.K., Palese, P., Seroevidence for H5N1 influenza infections in humans: meta-analysis (2012) Science, 335, p. 1463; Wei, S.H., Yang, J.R., Wu, H.S., Chang, M.C., Lin, J.S., Lin, C.Y., Liu, Y.L., Chuang, J.H., Human infection with avian influenza A H6N1 virus: an epidemiological analysis (2013) Lancet Respir. Med., 1, pp. 771-778; http://apps.who.int/iris/bitstream/10665/259277/1/WER9242-633-647.pdf?ua=1, Zoonotic influenza viruses antigenic and genetic charateristics and development of candidate vaccine viruses for pandemic preparedness. [Accessed 13 Nov 2017.] Available from; Khan, S.U., Anderson, B.D., Heil, G.L., Liang, S., Gray, G.C., A systematic review and meta-analysis of the seroprevalence of influenza A(H9N2) infection among humans (2015) J. Infect. Dis., 212, pp. 562-569; Gu, M., Xu, L., Wang, X., Liu, X., Current situation of H9N2 subtype avian influenza in China (2017) Vet. Res., 48, pp. 49-58; Liu, D., Shi, W., Shi, Y., Wang, D., Xiao, H., Li, W., Bi, Y., Yan, J., Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses (2013) Lancet, 381, pp. 1926-1932; Liu, D., Shi, W., Shi, Y., Wang, D., Xiao, H., Li, W., Bi, Y., Yan, J., Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study (2014) Lancet, 383, pp. 714-721; http://www.who.int/csr/resources/publications/WHO_CDS_CSR_ARO_2004_1/en/, WHO guidelines for the global surveillance of severe acute respiratory syndrome (SARS). Updated recommendations, October 2004. [Accessed 20 Nov 2017.] Available from; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Kim, G., Kim, H.O., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect. Chemother., 48, pp. 118-126; http://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV). [Accessed 26 Nov 2017.] Available from; http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1, WHO MERS-CoV global summary and assessment of risk. [Accessed 20 Nov 2017.] Available from; Yin, Y., Wunderink, R.G., MERS, SARS and other coronaviruses as causes of pneumonia (2018) Respirology, 23, pp. 130-137; http://www.who.int/csr/don/2004_05_18a/en/, Emergencies preparedness, reponse. China's latest SARS outbreak has been contained, but biosafety concerns remain – Update 7. [Accessed 26 Nov 2017.] Available from; Chan-Yeung, M., Xu, R.H., SARS: epidemiology (2003) Respirology, 8, pp. 9-14. , (Suppl.); Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Park, S.W., Cho, S.I., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J. Korean Med. Sci., 32, pp. 744-749; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect. Dis., 18, pp. e217-e227; http://www.who.int/csr/don/10-november-2017-mers-oman/en/, Emergencies preparedness, response. Middle East respiratory syndrome coronavirus (MERS-CoV) – Oman. [Accessed 26 Nov 2017.] Available from; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., To, K.F., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N. Engl. J. Med., 348, pp. 1986-1994; Chen, W.Q., Ling, W.H., Lu, C.Y., Hao, Y.T., Lin, Z.N., Ling, L., Huang, J., Yan, G.M., Which preventive measures might protect health care workers from SARS? (2009) BMC Public Health, 9, pp. 81-88; Christian, M.D., Poutanen, S.M., Loutfy, M.R., Muller, M.P., Low, D.E., Severe acute respiratory syndrome (2004) Clin. Infect. Dis., 38, pp. 1420-1427; http://www.who.int/csr/sars/country/table2004_04_21/en/index.html, Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. [Accessed 20 Nov 2017.] Available from; https://www.cdc.gov/coronavirus/mers/risk.html, Middle East respiratory syndrome (MERS). People who may be at incresaed risk for MERS. [Accessed 10 Mar 2018.] Available from; Logan, L.K., Weinstein, R.A., The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace (2017) J. Infect. Dis., 15, pp. 28-36; Hsu, L.Y., Apisarnthanarak, A., Khan, E., Suwantarat, N., Ghafur, A., Tambyah, P.A., Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia (2017) Clin. Microbiol. Rev., 30, pp. 1-22; Du, H., Chen, L., Tang, Y.W., Kreiswirth, B.N., Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae (2016) Lancet Infect. Dis., 16, pp. 287-288; Patel, G., Bonomo, R.A., ""Stormy waters ahead"": global emergence of carbapenemases (2013) Front. Microbiol., 4, p. 48; Dortet, L., Poirel, L., Nordmann, P., Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria (2014) Biomed. Res. Int., 2014, p. 249856; Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Huang, X., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study (2016) Lancet Infect. Dis., 16, pp. 161-168; http://www.who.int/infection-prevention/publications/guidelines-cre/en/, Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae,, Acinetobacter baumannii, Pseudomonas aeruginosa, in health care facilities. [Accessed 20 Aug 2018.] Available from; https://ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/ears-net, European Antimicrobial Resistance Surveillance Network (EARS-Net). [Accessed 31 Dec 2018.] Available from; https://www.who.int/glass/en/, Global antimicrobial resistance surveillance system (GLASS). [Accessed 31 Dec 2018.] Available from; Llor, C., Bjerrum, L., Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem (2014) Ther. Adv. Drug Saf., 5, pp. 229-241; https://www.who.int/antimicrobial-resistance/global-action-plan/en/, Global action plan on antimicrobial resistance. [Accessed 31 Dec 2018.] Available from; http://www.who.int/csr/bioriskreduction/infection_control/publication/en/, Emergencies preparedness, response. Infection prevention and control of epidemic-and pandemic prone acute respiratory infections in health care. [Accessed 10 Mar 2018.] Available from; Leder, K., Newman, D., Respiratory infections during air travel (2005) Intern. Med. J., 35, pp. 50-55; Mangili, A., Vindenes, T., Gendreau, M., Infectious risks of air travel (2015) Microbiol. Spectr., 3, pp. 1-10; Leitmeyer, K., European risk assessment guidance for infectious diseases transmitted on aircraft – the RAGIDA project (2011) Euro. Surveill., 16, p. pii: 19845; https://ecdc.europa.eu/en/publications-data/risk-assessment-guidelines-infectious-diseases-transmitted-aircraft-ragida, Risk assessment guidelines for infectious diseases transmitted on aircraft (RAGIDA) influenza. [Accessed 20 Aug 2018.] Available from; https://www.cdc.gov/quarantine/contact-investigation.html, Quarantine and isolation. Protecting travelers' health from airport to community investigating contagious diseases on flights. [Accessed 20 Aug 2018.] Available from; http://www.who.int/ihr/travel/A(H1N1)_air_transport_guidance.pdf, WHO technical advice for case management of influenza A(H1N1) in air transport. [Accessed 20 Aug 2018.] Available from; http://www.who.int/foodsafety/areas_work/zoonose/concept-note/en/, FAO/OIE/WHO collaboration (tripartite). [Accessed 15 Nov 2017.] Available from; http://www.who.int/features/qa/one-health/en/, One Health. [Accessed 15 Nov 2017.] Available from; McCloskey, B., Dar, O., Zumla, A., Heymann, D.L., Emerging infectious diseases and pandemic potential: status quo and reducing risk of global spread (2014) Lancet Infect. Dis., 14, pp. 1001-1010; Heymann, D.L., Dar, O.A., Prevention is better than cure for emerging infectious diseases (2014) BMJ, 348, p. g1499; Vong, S., O'Leary, M., Feng, Z., Early response to the emergence of influenza A(H7N9) virus in humans in China: the central role of prompt information sharing and public communication (2014) Bull. World Health Organ., 92, pp. 303-308; McNabb, S.J., Shaikh, A.T., Nuzzo, J.B., Zumla, A.I., Heymann, D.L., Triumphs, trials, and tribulations of the global response to MERS coronavirus (2014) Lancet Respir. Med., 2, pp. 436-437","Jung, K.-S.; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart HospitalSouth Korea; email: pulmoks@hallym.ac.kr",,"Blackwell Publishing",13237799,,RSPIF,"30985968","English","Respirology",Review,"Final",Open Access,Scopus,2-s2.0-85064566343 "Liang Q., Zhang H., Li B., Ding Q., Wang Y., Gao W., Guo D., Wei Z., Hu H.","57207259804;56730057500;57207250540;57207254145;50562587300;57210111185;55716399400;7402258727;56555521500;","Susceptibility of chickens to porcine deltacoronavirus infection",2019,"Viruses","11","6", 573,"","",,5,"10.3390/v11060573","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069542966&doi=10.3390%2fv11060573&partnerID=40&md5=c1c4ddab99589771083e267cd2b98867","Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China; Henan Qixiang Biological Technology Co. Ltd, Jiaozuo, Henan 454000, China","Liang, Q., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Zhang, H., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China; Li, B., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Ding, Q., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Wang, Y., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China; Gao, W., Henan Qixiang Biological Technology Co. Ltd, Jiaozuo, Henan 454000, China; Guo, D., Henan Qixiang Biological Technology Co. Ltd, Jiaozuo, Henan 454000, China; Wei, Z., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China; Hu, H., Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China","Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus with worldwide distribution. PDCoV belongs to the Deltacoronavirus (DCoV) genus, which mainly includes avian coronaviruses (CoVs). PDCoV has the potential to infect human and chicken cells in vitro, and also has limited infectivity in calves. However, the origin of PDCoV in pigs, the host range, and cross-species infection of PDCoV still remain unclear. To determine whether PDCoV really has the ability to infect chickens in vivo, the three lines of chicken embryos and specific pathogen free (SPF) chickens were inoculated with PDCoV HNZK-02 strain to investigate PDCoV infection in the current study. Our results indicated that PDCoV can infect chicken embryos and could be continuously passaged on them. Furthermore, we observed that PDCoV-inoculated chickens showed mild diarrhea symptoms and low fecal viral RNA shedding. PDCoV RNA could also be detected in multiple organs (lung, kidney, jejunum, cecum, and rectum) and intestinal contents of PDCoV-inoculated chickens until 17 day post-inoculation by real-time quantitative PCR (qRT-PCR). A histology analysis indicated that PDCoV caused mild lesions in the lung, kidney, and intestinal tissues. These results prove the susceptibility of chickens to PDCoV infection, which might provide more insight about the cross-species transmission of PDCoV. © 2019 by the authors.","Chicken embryos; Cross-species transmission; Porcine deltacoronavirus (PDCoV); SPF chickens","virus RNA; animal cell; animal experiment; animal model; animal tissue; Article; autopsy; Avian coronavirus; body temperature disorder; controlled study; Coronavirinae; disease predisposition; embryo; feces analysis; gene sequence; germfree chicken; histology; host range; interspecific hybrid; limit of detection; LLC-PK1 cell line; nonhuman; nucleotide sequence; nucleotide sequence; phylogeny; Porcine circovirus 2; porcine deltacoronavirus; porcine epidemic diarrhea; Porcine reproductive and respiratory syndrome virus; porcine rotavirus; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; sequence alignment; virus detection; virus infection; virus infectivity; virus load; virus shedding; virus transmission","Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission (2010) J. Virol, 84, pp. 3134-3146; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Chan, J.F., To, K.K., Tse, H., Jin, D.-Y., Yuen, K.-Y., Interspecies transmission and emergence of novel viruses: Lessons from bats and birds (2013) Trends Microbiol, 21, pp. 544-555; Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Yang, L.Q., Detection of a Novel and Highly Divergent Coronavirus from Asian Leopard Cats and Chinese Ferret Badgers in Southern China (2007) J. Virol, 81, pp. 6920-6926; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Wang, M., Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus andBetacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus (2012) J. Virol, 86, pp. 3995-4008; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., (20), pp. 1227-1230; Hu, H., Jung, K., Vlasova, A.N., Saif, L.J., Experimental infection of gnotobiotic pigs with the cell-culture-adapted porcine deltacoronavirus strain OH-FD22 (2016) Arch. Virol, 161, pp. 3421-3434; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid Detection, Complete Genome Sequencing, and Phylogenetic Analysis of Porcine Deltacoronavirus (2014) Emerg. Infect. Dis, 20, pp. 1347-1350; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Lee, C.H., Park, B.K., Detection and Phylogenetic Analysis of Porcine Deltacoronavirus in Korean Swine Farms, 2015 (2016) Transbound. Emerg. Dis, 63, pp. 248-252; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., Amonsin, A., Porcine Deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis, 22, pp. 757-759; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Tripipat, T., Chongcharoen, W., Different Lineage of Porcine Deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound. Emerg. Dis, 64, pp. 3-10; Ajayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., Poljak, Z., Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada (2018) Transbound. Emerg. Dis, 65, pp. 1197-1207; Zhang, H., Liang, Q., Li, B., Cui, X., Wei, X., Ding, Q., Wang, Y., Hu, H., Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China (2019) Prev. Veter-Med, 166, pp. 8-15; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Huang, D., Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo (2016) Veter-Microbiol, 182, pp. 57-63; Martina, B.E., Haagmans, B.L., Kuiken, T., Fouchier, R.A., Rimmelzwaan, G.F., Van Amerongen, G., Peiris, J.S., Osterhaus, A.D., Virology: SARS virus infection of cats and ferrets (2003) Nature, 425, p. 915; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.-Y., Siu, L.Y., Peiris, M., MERS Coronavirus in Dromedary Camel Herd, Saudi Arabia (2014) Emerg. Infect. Dis, 20, pp. 1231-1234; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Zhang, L.J., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Chen, W., Yan, M., Yang, L., Ding, B., He, B., Wang, Y., Liu, X., You, B., SARS-associated Coronavirus Transmitted from Human to Pig (2005) Emerg. Infect. Dis, 11, pp. 446-448; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Derscheid, R., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 Porcine Deltacoronavirus Strains in Gnotobiotic Pigs (2015) Emerg. Infect. Dis, 21, pp. 650-654; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Veter-Microbiol, 196, pp. 98-106; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch. Virol, 162, pp. 2357-2362; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., Van Dieren, B., Bosch, B.-J., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc. Natl. Acad. Sci. USA, 115, pp. E5135–E5143; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and Characterization of Porcine Deltacoronavirus from Pigs with Diarrhea in the United States (2015) J. Clin. Microbiol, 53, pp. 1537-1548; Liang, Q., Li, B., Zhang, H., Hu, H., Complete Genome Sequences of Two Porcine Deltacoronavirus Strains from Henan Province, China (2019) Microbiol. Resour. Announc, 8, pp. e01517-e01518; Jung, K., Kim, J., Ha, Y., Choi, C., Chae, C., The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets (2006) Veter-J, 171, pp. 445-450; Geoghegan, J.L., Holmes, E.C., Duchêne, S., Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families (2017) Plos Pathog., 13; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) Mbio, 6","Wei, Z.; Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural UniversityChina; email: weizhanyong@henau.edu.cn",,"MDPI AG",19994915,,,,"English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85069542966 "Hashem A.M., Al-Subhi T.L., Badroon N.A., Hassan A.M., Bajrai L.H.M., Banassir T.M., Alquthami K.M., Azhar E.I.","57200589744;57193537649;57193674942;7402686960;56205682100;57192830711;57206656569;23090055800;","MERS-CoV, influenza and other respiratory viruses among symptomatic pilgrims during 2014 Hajj season",2019,"Journal of Medical Virology","91","6",,"911","917",,,"10.1002/jmv.25424","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061826952&doi=10.1002%2fjmv.25424&partnerID=40&md5=701da3fc9c81d9012fb52e93b72d8a3a","Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Regional Laboratory, Ministry of Health, Makkah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia","Hashem, A.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Al-Subhi, T.L., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Badroon, N.A., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Hassan, A.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Bajrai, L.H.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Banassir, T.M., Regional Laboratory, Ministry of Health, Makkah, Saudi Arabia; Alquthami, K.M., Regional Laboratory, Ministry of Health, Makkah, Saudi Arabia; Azhar, E.I., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia","More than two million Muslims visit Makkah, Saudi Arabia, annually to perform the religious rituals of Hajj where the risk of spreading respiratory infections is very common. The aim here was to screen symptomatic pilgrims for Middle East respiratory syndrome coronavirus (MERS-CoV) and other viral etiologies. Thus, 132 nasopharyngeal samples were collected from pilgrims presenting with acute respiratory symptoms at the healthcare facilities in the holy sites during the 5 days of the 2014 Hajj season. Samples were tested using real-time reverse transcription polymerase chain reactions and microarray. Demographic data including age, sex, and country of origin were obtained for all participants. While we did not detect MERS-CoV in any of the samples, several other viruses were detected in 50.8% of the cases. Among the detected viruses, 64.2% of the cases were due to a single-virus infection and 35.8% were due to the coinfections with up to four viruses. The most common respiratory virus was influenza A, followed by non-MERS human coronaviruses, rhinoviruses, and influenza B. Together, we found that it was not MERS-CoV but other respiratory viruses that caused acute respiratory symptoms among pilgrims. The observed high prevalence of influenza viruses underscores the need for more effective surveillance during the Hajj and adoption of stringent vaccination requirements from all pilgrims. © 2019 Wiley Periodicals, Inc.","Hajj; influenza; Middle East respiratory syndrome-coronavirus; respiratory infections; Saudi Arabia; viruses","adult; age distribution; aged; Article; controlled study; demography; disease surveillance; female; geographic origin; health care facility; human; influenza; influenza A; influenza B; Islam; major clinical study; male; microarray analysis; Middle East respiratory syndrome coronavirus; mixed infection; Muslim; nasopharynx; prevalence; real time polymerase chain reaction; respiratory virus; Rhinovirus; sampling; Saudi Arabia; sex difference; very elderly; viral respiratory tract infection; virus detection; virus infection; Coronavirinae; Coronavirus infection; influenza; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; mixed infection; Orthomyxoviridae; respiratory tract infection; Rhinovirus; season; travel; virology; young adult; Adult; Aged; Aged, 80 and over; Coinfection; Coronavirus; Coronavirus Infections; Female; Humans; Influenza, Human; Islam; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Nasopharynx; Orthomyxoviridae; Prevalence; Respiratory Tract Infections; Rhinovirus; Saudi Arabia; Seasons; Travel; Young Adult","Memish, Z.A., Zumla, A., Alhakeem, R.F., Hajj: infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: a systematic review (2016) Travel Med Infect Dis, 14, pp. 92-109; Ahmed, Q.A., Arabi, Y.M., Memish, Z.A., Health risks at the Hajj (2006) Lancet, 367, pp. 1008-1015; Alzeer, A., Respiratory tract infection during Hajj (2009) Ann Thorac Med, 4, pp. 50-53; Madani, T.A., Ghabrah, T.M., Al-Hedaithy, M.A., Causes of hospitalization of pilgrims in the Hajj season of the Islamic year 1423 (2003) (2006) Ann Saudi Med, 26, pp. 346-351; Erdem, H., Ak, O., Elaldi, N., Infections in travellers returning to Turkey from the Arabian peninsula: a retrospective cross-sectional multicenter study (2016) Eur J Clin Microbiol Infect Dis, 35, pp. 903-910; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual Hajj: potential risks and mitigation strategies (2013) Curr Opin Pulm Med, 19, pp. 192-197; Deris, Z.Z., Hasan, H., Sulaiman, S.A., Wahab, M.S.A., Naing, N.N., Othman, N.H., The prevalence of acute respiratory symptoms and role of protective measures among Malaysian hajj pilgrims (2010) J Travel Med, 17, pp. 82-88; Balkhy, H.H., Memish, Z.A., Bafaqeer, S., Almuneef, M.A., Influenza a common viral infection among Hajj pilgrims: time for routine surveillance and vaccination (2004) J Travel Med, 11, pp. 82-86; Annan, A., Owusu, M., Marfo, K.S., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Tropical Med Int Health, 20, pp. 807-812; Benkouiten, S., Charrel, R., Belhouchat, K., Circulation of respiratory viruses among pilgrims during the 2012 Hajj pilgrimage (2013) Clin Infect Dis, 57, pp. 992-1000; Benkouiten, S., Charrel, R., Belhouchat, K., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Rashid, H., Shafi, S., Booy, R., Influenza and respiratory syncytial virus infections in British Hajj pilgrims (2008) Emerg Health Threats J, 1; Memish, Z.A., Assiri, A.M., Hussain, R., Alomar, I., Stephens, G., Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic (2012) J Travel Med, 19, pp. 15-21; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian Hajj pilgrims returning to Shiraz, Fars province, Iran (2012) Influenza Other Respir Viruses, 6, pp. e77-e79; Ma, X., Liu, F., Liu, L., No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China, 2013-2015 (2017) BMC Infect Dis, 17, p. 715; Al-Abdallat, M.M., Rha, B., Alqasrawi, S., Acute respiratory infections among returning Hajj pilgrims-Jordan, 2014 (2017) J Clin Virol, 89, pp. 34-37; Atabani, S.F., Wilson, S., Overton-Lewis, C., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013–2015 (2016) Int J Infect Dis, 47, pp. 10-14; Memish, Z.A., Almasri, M., Turkestani, A., Al-Shangiti, A.M., Yezli, S., Etiology of severe community-acquired pneumonia during the 2013 Hajj-part of the MERS-CoV surveillance program (2014) Int J Infect Dis, 25, pp. 186-190; Barasheed, O., Rashid, H., Alfelali, M., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2017), www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV)., (accessed December 15; Assiri, A., Abedi, G.R., Saeed, A.A.B., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Al-Dorzi, H.M., Alsolamy, S., Arabi, Y.M., Critically ill patients with Middle East respiratory syndrome coronavirus infection (2016) Crit Care, 20, p. 65; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics, and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Gautret, P., Charrel, R., Belhouchat, K., Lack of nasal carriage of novel corona virus (HCoV-EMC) in French Hajj pilgrims returning from the Hajj 2012, despite a high rate of respiratory symptoms (2013) Clin Microbiol Infect, 19, pp. E315-E317; Gautret, P., Charrel, R., Benkouiten, S., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Memish, Z.A., Assiri, A., Almasri, M., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210, pp. 1067-1072; Refaey, S., Amin, M.M., Roguski, K., Cross-sectional survey and surveillance for influenza viruses and MERS-CoV among Egyptian pilgrims returning from Hajj during 2012-2015 (2017) Influenza Other Respir Viruses, 11, pp. 57-60; Koul, P.A., Mir, H., Saha, S., Influenza not MERS CoV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, north India, 2014-15 (2017) Travel Med Infect Dis, 15, pp. 45-47; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B viruses but Not MERS-CoV in Hajj pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21, pp. 726-727; Kraaij–dirkzwager, M., Timen, A., Dirksen, K., Middle east respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014 (2014) Euro Surveill, 19. , pii 20817; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Abdulhaq, A.A., Basode, V.K., Hashem, A.M., Patterns of human respiratory viruses and lack of MERS-coronavirus in patients with acute upper respiratory tract infections in southwestern province of Saudi Arabia (2017) Adv Virol, 2017, pp. 4247853-4247857; Yavarian, J., Shafiei Jandaghi, N.Z., Naseri, M., Influenza virus but not MERS coronavirus circulation in Iran, 2013-2016: comparison between pilgrims and general population (2018) Travel Med Infect Dis, 21, pp. 51-55; Mackay, I., Arden, K., An opportunistic pathogen afforded ample opportunities: Middle East respiratory syndrome coronavirus (2017) Viruses, 9, p. 369. , piiE369; Imani, R., Karimi, A., Habibian, R., Acute respiratory viral infections among Tamattu'-Hajj pilgrims in Iran (2013) Life Sci J, 10, pp. 449-453; Alborzi, A., Aelami, M.H., Ziyaeyan, M., Viral etiology of acute respiratory infections among Iranian Hajj pilgrims, 2006 (2009) J Travel Med, 16, pp. 239-242; Madani, T.A., Ghabrah, T.M., Meningococcal, influenza virus, and hepatitis B virus vaccination coverage level among health care workers in Hajj (2007) BMC Infect Dis, 7, p. 80; Kandeel, A., Deming, M., Elkreem, E.A., Pandemic (H1N1) 2009 and Hajj pilgrims who received predeparture vaccination, Egypt (2011) Emerg Infect Dis, 17, pp. 1266-1268; Ziyaeyan, M., Alborzi, A., Jamalidoust, M., Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj pilgrims from southern Iran: a real-time RT-PCR-based study (2012) Influenza Other Respir Viruses, 6, pp. e80-e84; Alfelali, M., Khandaker, G., Booy, R., Rashid, H., Mismatching between circulating strains and vaccine strains of influenza: effect on Hajj pilgrims from both hemispheres (2015) Hum Vaccin Immunother, 28; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome (2014) J Infect Dis, 210, pp. 1590-1594","Azhar, E.I.; Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz UniversitySaudi Arabia; email: eazhar@kau.edu.sa",,"John Wiley and Sons Inc.",01466615,,JMVID,"30729547","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85061826952 "Alhamlan F.S., Majumder M.S., Brownstein J.S.","55546656500;56519491600;8872411400;","Correction: Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (BMJ Open (2017) 7 (e011865) DOI: 10.1136/bmjopen-2016-011865)",2019,"BMJ Open","9","6", e011865corr1,"","",,,"10.1136/bmjopen-2016-011865corr1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067098371&doi=10.1136%2fbmjopen-2016-011865corr1&partnerID=40&md5=a5a1777a87c142295570b7c489d3cb4b",,"Alhamlan, F.S.; Majumder, M.S.; Brownstein, J.S.","There was an error in the affiliation of A BinSaeed. The correct affiliation for A BinSaeed is 'Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia'. © Author(s) (or their employer(s)) 2019.",,"erratum; error",,,,"BMJ Publishing Group",20446055,,,"31175202","English","BMJ Open",Erratum,"Final",Open Access,Scopus,2-s2.0-85067098371 "Alfaraj S.H., Al-Tawfiq J.A., Memish Z.A.","57191595182;9436438200;7005059350;","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature",2019,"Journal of Microbiology, Immunology and Infection","52","3",,"501","503",,6,"10.1016/j.jmii.2018.04.005","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066614988&doi=10.1016%2fj.jmii.2018.04.005&partnerID=40&md5=1ed6181b6fb46ab221d23f0ebfd9af5b","University of British Columbia, Vancouver, Canada; Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital (“PMAH”), Ministry of Health, Riyadh, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, United States; Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital (“PMAH”), Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Alfaraj, S.H., University of British Columbia, Vancouver, Canada, Corona Center, Infectious Diseases Division, Department of Pediatric, Prince Mohamed Bin Abdulaziz Hospital (“PMAH”), Ministry of Health, Riyadh, Saudi Arabia; Al-Tawfiq, J.A., Indiana University School of Medicine, Indianapolis, IN, United States, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital (“PMAH”), Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States",[No abstract available],"MERS-CoV; Pregnancy; Saudi Arabia","adult; case report; clinical article; contact examination; end stage renal disease; female; hemodialysis; hospital discharge; hospitalization; human; hypertension; Letter; lung auscultation; medical history; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nasopharyngeal swab; pharynx examination; pregnancy; real time polymerase chain reaction; respiratory tract examination; reverse transcription polymerase chain reaction; tracheal aspiration procedure; Coronavirus infection; immunology; Middle East respiratory syndrome coronavirus; nasopharynx; pathology; pregnancy; pregnancy complication; pregnancy outcome; Saudi Arabia; virology; Adult; Coronavirus Infections; Female; Humans; Middle East Respiratory Syndrome Coronavirus; Nasopharynx; Pregnancy; Pregnancy Complications, Infectious; Pregnancy Outcome; Saudi Arabia","WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) – update (2018), http://www.who.int/csr/don/2018_12_02/en/; Park, M.H., Kim, H.R., Choi, D.H., Sung, J.H., Kim, J.H., Emergency cesarean section in an epidemic of the Middle East respiratory syndrome: a case report (2016) Korean J Anesthesiol, 69, pp. 287-291; Assiri, A., Abedi, G.R., Al Masri, M., Bin Saeed, A., Gerber, S.I., Watson, J.T., Middle East respiratory syndrome coronavirus infection during pregnancy: a report of 5 cases from Saudi Arabia (2016) Clin Infect Dis, 63, pp. 951-953; Alserehi, H., Wali, G., Alshukairi, A., Alraddadi, B., Impact of Middle East respiratory syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome (2016) BMC Infect Dis, 16, p. 105; Malik, A., El Masry, K.M., Ravi, M., Sayed, F., Middle East respiratory syndrome coronavirus during pregnancy, Abu Dhabi, United Arab Emirates, 2013 (2016) Emerg Infect Dis, 22; Payne, D.C., Iblan, I., Alqasrawi, S., Al Nsour, M., Rha, B., Tohme, R.A., Stillbirth during infection with Middle East respiratory syndrome coronavirus (2014) J Infect Dis, 209, pp. 1870-1872; Jeong, S., Sung, S., Sung, J., Ahn, S., Kang, E., Chang, Y., MERS-CoV infection in a pregnant woman in Korea (2017) J Korean Med Sci, 32, pp. 1717-1720","Memish, Z.A.P.O. Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Elsevier Ltd",16841182,,JMIIF,"29907538","English","J. Microbiol. Immunol. Infect.",Letter,"Final",Open Access,Scopus,2-s2.0-85066614988 "Weber D.J., Sickbert-Bennett E.E., Kanamori H., Rutala W.A.","34574035300;6507075079;22953281700;7005060448;","New and emerging infectious diseases (Ebola, Middle Eastern respiratory syndrome coronavirus, carbapenem-resistant Enterobacteriaceae, Candida auris): Focus on environmental survival and germicide susceptibility",2019,"American Journal of Infection Control","47",,,"A29","A38",,1,"10.1016/j.ajic.2019.03.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065676481&doi=10.1016%2fj.ajic.2019.03.004&partnerID=40&md5=499367b81f549bdeda2dc3dce7997a12","Department of Hospital Epidemiology, University of North Carolina Hospitals, Chapel Hill, NC,, United States; Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC,, United States; Infection Control and Laboratory Diagnostics, Tohoku University, Sendai, Japan","Weber, D.J., Department of Hospital Epidemiology, University of North Carolina Hospitals, Chapel Hill, NC,, United States, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC,, United States; Sickbert-Bennett, E.E., Department of Hospital Epidemiology, University of North Carolina Hospitals, Chapel Hill, NC,, United States, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC,, United States; Kanamori, H., Infection Control and Laboratory Diagnostics, Tohoku University, Sendai, Japan; Rutala, W.A., Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC,, United States",[No abstract available],"Disinfection; Environment; Surface","2 propanol; alcohol; chlorhexidine gluconate; chloroxylenol; disinfectant agent; germicide; glutaraldehyde; hydrogen peroxide; hypochlorite; hypochlorite sodium; peracetic acid; phthalaldehyde; povidone iodine; quaternary ammonium derivative; triclosan; unclassified drug; antisepsis; bacterial colonization; bacterial transmission; bacterium contamination; Candida auris; carbapenem-resistant Enterobacteriaceae; case fatality rate; disinfection; Ebolavirus; environmental survival; epidemic; fluid therapy; fungal colonization; fungal contamination; fungus transmission; hand washing; health care facility; human; infection prevention; medication therapy management; microbiology; Middle East respiratory syndrome coronavirus; mortality; oxygen therapy; parenteral nutrition; Review; risk reduction; sexual transmission; survival; ultraviolet radiation; viral contamination; virus transmission","Emerging infections: microbial threats to health in the United States (1992), National Academy Press Washington (DC); Microbial threats to health: emergence, detection, and response (2001), National Academy Press Washington (DC); Fraser, D.W., Tsai, T.R., Orenstein, W., Legionnaires’ disease: description of an epidemic of pneumonia (1977) New Engl J Med, 297, pp. 1189-1197; McDade, J.E., Shepard, C.C., Fraser, D.W., Tsai, T.R., Redus, M.A., Dowdle, W.R., Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease (1977) New Engl J Med, 297, pp. 1197-1203; Pneumonia–Los Angeles (1981) MMWR, 30, pp. 1-3; Pneumocystis carinii pneumonia among persons with hemophilia A (1982) MMWR, 31, pp. 365-367; Barre-Sinoussi, F., Chermann, J.C., Rey, F., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) (1983) Science, 220, pp. 868-871; Rutala, W.A., Weber, D.J., Disinfection and sterilization in health care facilities: an overview and current issues (2016) Infect Dis Clin North Am, 30, pp. 609-637; Rutala, W.A., Weber, D.J., Disinfection, sterilization, and antisepsis: an overview (2016) Am J Infect Control, 44 (5), pp. e1-e6; Weber, D.J., Rutala, W.A., Fischer, W.A., Kanamori, H., Sickbert-Bennett, E.E., Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A (H5N1) and A (H7N9) (2016) Am J Infect Control, 44 (5), pp. e91-100; (2019), http://www.searo.who.int/topics/emerging_diseases/en/, World Health Organization. Emerging diseases. Available from: Accessed February 7; (2019), https://wwwnc.cdc.gov/eid/page/background-goals, Centers for Disease Control and Epidemiology. What are “emerging” infectious diseases? Available from: Accessed February 7; Wilson, M.E., Travel and the emergence of infectious diseases (1995) Emerg Infect Dis, 1, pp. 39-46; Morse, S.S., Factors in the emergence of infectious diseases (1995) Emerg Infect Dis, 1, pp. 7-14; Pike, B.L., Saylors, K.E., Fair, J.N., The origin and prevention of epidemics (2010) Clin Infect Dis, 50, pp. 1636-1640; van Doorn, H.R., Emerging infectious diseases (2014) Medicine (Abingdon), 42, pp. 60-63; Rosenthal, S.R., Ostfeld, R.S., McGarvey, S.T., Lurie, M.N., Smith, K.F., Redefining disease emergence to improve prioritization and macro-ecological analyses (2015) One Health, 1, pp. 17-23; Brookes, V.J., Hernández-Jover, M., Black, P.F., Ward, M.P., Preparedness for emerging infectious diseases: pathways from anticipation to action (2015) Epidemiol Infect, 143, pp. 2043-2058; Graham, B.S., Sullivan, N.J., Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic (2018) Nat Immunol, 19, pp. 20-28; Kading, R.C., Golnar, A.J., Hamer, S.A., Hamer, G.L., Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases (2018) PLoS Negl Trop Dis, 12; Rutala, W.A., Weber, D.J., Registration of disinfectants based on relative microbiocidal activity (2004) Infect Control Hosp Epidemiol, 25, pp. 333-341; Shears, P., O'Dempsey, T.J.D., Ebola virus disease in Africa: epidemiology and nosocomial transmission (2015) J Hosp Infect, 90, pp. 1-9; (2019), https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html, Centers for Disease Control and Prevention. 2014-2016 Ebola outbreak in West Africa. Available from: Accessed February 7; Selvaraj, S.A., Lee, K.E., Harrell, M., Ivanov, I., Allegranzi, B., Infection rates and risk factors for infection among health workers during Ebola and Marburg virus outbreaks: a systematic review (2018) J Infect Dis, 218, pp. 679-689; Koenig, K.L., Majestic, C., Burns, M.J., Ebola virus disease: essential public health principles for clinicians (2014) West J Emerg Med, 15, pp. 728-731; Lui, W.B., Li, Z.X., Du, Y., Cao, G.W., Ebola virus disease: from epidemiology to prophylaxis (2015) Mil Med, 2, p. 7; Murray, M.J., Ebola virus disease: a review of its past and present (2015) Anesth-Analg, 121, pp. 798-809; Fischer, W.A., Uyeki, T.M., Tauxe, R.V., Ebola virus disease: what clinicians in the United States need to know (2015) Am J Infect Control, 43, pp. 788-793; To, K.K., Chan, J.F., Tsang, A.K., Cheng, V.C., Yuen, K.Y., Ebola virus disease: a highly fatal infectious disease reemerging in West Africa (2015) Microbes Infect, 17, pp. 84-97; Khalafallah, M.T., Aboshady, O.A., Moawed, S.A., Ramadan, M.S., Ebola virus disease: essential clinical knowledge (2017) Avicenna J Med, 7, pp. 96-102; (2019), https://www.cdc.gov/vhf/ebola/transmission/index.html, Centers for Disease Control and Prevention. Ebola transmission. Available from: Accessed February 7; (2019), https://www.cdc.gov/vhf/ebola/treatment/index.html, Centers for Disease Control and Prevention. Ebola treatment. Available from: Accessed February 7; Malvy, D., McElroy, A.K., de Clerck, H., Günther, S., van Griensven, J., Ebola virus disease (2019) Lancet, 393, pp. 936-948; Trad, M.A., Naughton, W., Yeung, A., Mazlin, L., O'Sullivan, M., Gilroy, N., Ebola virus disease: an update on current prevention and management strategies (2017) J Clin Virol, 86, pp. 5-13; Dhama, K., Karthik, K., Khandia, R., Advances in designing and developing vaccines, drugs, and therapies to counter Ebola virus (2018) Front Immunol, 9, p. 1803; Vetter, P., Fischer, W.A., 2nd, Schibler, M., Jacobs, M., Bausch, D.G., Kaiser, L., Ebola virus shedding and transmission: review of current evidence (2016) J Infect Dis, 214, pp. 177-184; Bausch, D.G., Towner, J.S., Dowell, S.F., Kaducu, F., Lukwiya, M., Sanchez, A., Assessment of the risk of Ebola virus transmission from bodily fluids and fomites (2007) J Infect Dis, 196, pp. 142-147; Puro, V., Fusco, F.M., Petrecchia, A., Sampling surfaces for Ebola virus persistence after cleaning procedures in high-level isolation settings: the experience with 2 patients at the Lazzaro Spallanzani National Institute for Infectious Diseases (2016) Infect Control Hosp Epidemiol, 37, pp. 723-725; Youkee, D., Brown, C.S., Lilburn, P., Assessment of environmental contamination and environmental decontamination practices within an Ebola holding unit, Freetown, Sierra Leone (2015) PLoS One, 10; Poliquin, P.G., Vogt, F., Kasztura, M., Environmental contamination and persistence of Ebola virus RNA in an Ebola treatment center (2016) J Infect Dis, 214, pp. 145-152; Kapetshi, J., Fausther-Bovendo, H., Corbett, C., Contribution of environment sample-based detection to Ebola outbreak management (2018) J Infect Dis, 218, pp. 292-296; Palich, R., Irenge, L.M., Barte de Sainte Fare, E., Augier, A., Malvy, D., Gala, J.L., Ebola virus RNA detection on fomites in close proximity to confirmed Ebola patients; N'Zerekore, Guinea, 2015 (2017) PLoS One, 12; Piercy, T.J., Smither, S.J., Steward, J.A., Eastaugh, L., Lever, M.S., The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol (2010) J Appl Microbiol, 109, pp. 1531-1539; Fischer, R., Judson, S., Miazgowicz, K., Bushmaker, T., Prescott, J., Munster, V.J., Ebola virus stability on surfaces and in fluids in simulated outbreak environments (2015) Emerg Infect Dis, 21, pp. 1243-1246; Cook, B.W., Cutts, T.A., Nikiforuk, A.M., Poliquin, P.G., Court, D.A., Strong, J.E., Evaluating environmental persistence and disinfection of the Ebola virus Makona variant (2015) Viruses, 7, pp. 1975-1986; Westhoff Smith, D., Hill-Batorski, L., N'jai, A., Eisfeld, A.J., Neumann, G., Halfmann, P., Ebola virus stability under hospital and environmental conditions (2016) J Infect Dis, 214, pp. 142-144; Schuit, M., Miller, D.M., Reddick-Elick, M.S., Differences in the comparative stability of Ebola virus Makona-C05 and Yambuku-Mayinga in blood (2016) PLoS One, 11; Palyi, B., Magyar, N., Henczko, J., Szalai, B., Farkas, A., Strecker, T., Determining the effect of different environmental conditions on Ebola virus viability in clinically relevant specimens (2018) Emerg Microbes Infect, 7, p. 5; Fischer, R.J., Bushmaker, T., Judson, S., Munster, V.J., Comparison of the aerosol stability of 2 strains of Zaire Ebola virus from the 1976 and 2013 outbreaks (2016) J Infect Dis, 214, pp. 290-293; Prescott, J., Bushmaker, T., Fischer, R., Miazgowicz, K., Judson, S., Munster, V.J., Postmortem stability of Ebola virus (2015) Emerg Infect Dis, 21, pp. 856-859; Weber, D.J., Fischer, W.A., Wohl, D.A., Rutala, W.A., Protecting healthcare personnel from acquiring Ebola virus disease (2015) Infect Control Hosp Epidemiol, 36, pp. 1229-1232; Hewlett, A.L., Varkey, J.B., Smith, P.W., Ribner, B.S., Ebola virus disease: preparedness and infection control lessons from two biocontainment units (2015) Curr Opin Infect Dis, 28, pp. 343-348; van Kampen, J.J.A., Tintu, A., Russcher, H., Ebola virus inactivation by detergents is annulled in serum (2017) J Infect Dis, 216, pp. 859-866; Cook, B.W., Cutts, T.A., Nikiforuk, A.M., Leung, A., Kobasa, D., Theriault, S.S., The disinfection characteristics of Ebola virus outbreak variants (2016) Sci Rep, 6, p. 38293; Smither, S., Phelps, A., Eastaugh, L., Ngugi, S., O'Brien, L., Dutch, A., Effectiveness of four disinfectants against Ebola virus on different materials (2016) Viruses, 8, p. 185; Smither, S.J., Eastaugh, L., Filone, C.M., Two-center evaluation of disinfectant efficacy against Ebola virus in clinical and laboratory matrices (2018) Emerg Infect Dis, 24, pp. 135-139; (2019), https://www.cdc.gov/vhf/ebola/clinicians/cleaning/hospitals.html, Centers for Disease Control and Prevention. Interim guidance for environmental infection control in hospitals for Ebola virus. Available from: Accessed February 7; Kampf, G., Efficacy of ethanol against viruses in hand disinfection (2018) J Hosp Infect, 98, pp. 331-338; Eggers, M., Eichmann, M., Kowalski, K., Zorn, J., Reimer, K., Povidone-iodine hand wash and hand rub products demonstrate excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses (2015) BMC Infect Dis, 15, p. 375; Tomas, M.E., Cadnum, J.L., Jencson, A., Donskey, C.J., The Ebola disinfection booth: evaluation of an enclosed ultraviolet light booth for disinfection of contaminated personal protective equipment prior to removal (2015) Infect Control Hosp Epidemiol, 36, pp. 1226-1228; Rabaan, A.A., Middle East respiratory syndrome coronavirus: five years later (2017) Expert Rev Respir Med, 11, pp. 901-912; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: from discovery to intervention (2016) One Health, 3, pp. 11-16; Al-Osail, A.M., Al-Wazzah, M.J., The history and epidemiology of Middle East respiratory syndrome corona virus (2017) Multidiscip Respir Med, 12, p. 20; (2019), https://www.who.int/emergencies/mers-cov/en/, World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: Accessed February 7; (2019), https://www.cdc.gov/coronavirus/mers/us.html, Centers for Disease Control and Prevention. MERS in the US. Available from: Accessed February 7; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) N Engl J Med, 376. , 584-94; Hui, D.S., Epidemic and emerging coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome) (2017) Clin Chest Med, 38, pp. 71-86; Chafekar, A., Fielding, B.C., MERS-CoV: understanding the latest human coronavirus threat (2018) Viruses, 10; Al-Omari, A., Rabaan, A.A., Salih, S., Al-Tawfiq, J.A., Memish, Z.A., MERS coronavirus outbreak: implications for emerging viral infections (2019) Diagn Microbiol Infect Dis, 93, pp. 265-285; Dawson, P., Malik, M.R., Parvez, F., Morse, S.S., What have we learned about Middle East respiratory syndrome coronavirus emergence in humans? A systematic literature review (2019) Vector Borne Zoonotic Dis, 19, pp. 174-192; Al-Tawfiq, J.A., Gautret, P., Asymptomatic Middle East respiratory syndrome coronavirus (MERS-CoV) infection: extent and implications for infection control: a systematic review (2019) Travel Med Infect Dis, 27, pp. 27-32; Kang, C.K., Song, K.H., Choe, P.G., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; Alfaraj, S.H., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus intermittent positive cases: implications for infection control (2019) Am J Infect Control, 47, pp. 290-293; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e222; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of Middle East respiratory syndrome coronavirus with review of the literature (2019) J Hosp Infect, 101, pp. 20-29; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Euro Surveill, 20, pp. 1-6; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Oh, M.D., Park, W.B., Park, S.W., Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J Intern Med, 33, pp. 233-246; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Curr Opin Infect Dis, 28, pp. 392-396; Bin, S.Y., Heo, J.Y., Song, M.S., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Kim, S.H., Chang, S.Y., Sung, M., Park, J.H., Bin Kim, H., Lee, H., Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18; Otter, J.A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S.D., Weber, D.J., Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination (2016) J Hosp Infect, 92, pp. 235-250; Casanova, L.M., Jeon, S., Rutala, W.A., Weber, D.J., Sobsey, M.D., Effects of air temperature and relative humidity on coronavirus survival on surfaces (2010) Appl Environ Microbiol, 76, pp. 2712-2717; Hulkower, R.L., Casanova, L.M., Rutala, W.A., Weber, D.J., Sobsey, M.D., Inactivation of surrogate coronaviruses on hard surfaces by health care germicides (2011) Am J Infect Control, 39, pp. 401-407; (2019), https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, Centers for Disease Control and Prevention. Interim infection prevention and control recommendations for hospitalized patients with Middle East respiratory syndrome coronavirus (MERS-CoV). Available from: Accessed February 8; (2019), https://www.cdc.gov/hai/organisms/cre/definition.html, Centers for Disease Control and Prevention. FAQs about choosing and implementing a CRE definition. Available from: Accessed February 8; (2019), https://www.cdc.gov/hai/organisms/cre/trackingcre.html, Centers for Disease Control and Prevention. Tracking CRE. Available from: Accessed February 8; Temkin, E., Adler, A., Lerner, A., Carmeli, Y., Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management (2014) Ann N Y Acad Sci, 1323, pp. 22-42; Martirosov, D.M., Lodise, T.P., Emerging trends in epidemiology and management of infections caused by carbapenem-resistant Enterobacteriaceae (2016) Diagn Microbiol Infect Dis, 85, pp. 266-275; Potter, R.F., D'Souza, A.W., Dantas, G., The rapid spread of carbapenem-resistant Enterobacteriaceae (2016) Drug Resist Updat, 29, pp. 30-46; Iovleva, A., Doi, Y., Carbapenem-resistant Enterobacteriaceae (2017) Clin Lab Med, 37, pp. 303-315; Thaden, J.T., Pogue, J.M., Kaye, K.S., Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae (2017) Virulence, 8, pp. 403-416; Trecarichi, E.M., Tumbarello, M., Therapeutic options for carbapenem-resistant Enterobacteriaceae infections (2017) Virulence, 8, pp. 470-484; Zimmerman, F.S., Assous, M.V., Bdolah-Abram, T., Lachish, T., Yinnon, A.M., Wiener-Well, Y., Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge (2013) Am J Infect Control, 41, pp. 190-194; Bitterman, R., Geffen, Y., Rabino, G., Eluk, O., Warman, S., Greenblatt, A.S., Rate of colonization of health care workers by carbapenem-resistant Enterobacteriaceae in an endemic hospital: a prospective study (2016) Am J Infect Control, 44, pp. 1053-1054; Rutala, W.A., Weber, D.J., Outbreaks of carbapenem-resistant Enterobacteriaceae infections associated with duodenoscopes: what can we do to prevent infections? (2016) Am J Infect Control, 44 (5), pp. e47-e51; O'Horo, J.C., Farrell, A., Sohail, M.R., Safdar, N., Carbapenem-resistant Enterobacteriaceae and endoscopy: an evolving threat (2016) Am J Infect Control, 44, pp. 1032-1036; Rutala, W.A., Kanamori, H., Sickbert-Bennett, E.E., Weber, D.J., What's new in reprocessing endoscopes: are we going to ensure “the needs of the patient come first” by shifting from disinfection to sterilization? Am J Infect Control 2019;47; Kizny Gordon, A.E., Mathers, A.J., Cheong, E.Y.L., Gottlieb, T., Kotay, S., Walker, A.S., The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature (2017) Clin Infect Dis, 64, pp. 1435-1444; Kanamori, H., Weber, D.J., Rutala, W.A., Healthcare outbreaks associated with a water reservoir and infection prevention strategies (2016) Clin Infect Dis, 62, pp. 1423-1435; Lewis, S.S., Smith, B.A., Sickbert-Bennett, E.E., Weber, D.J., Water as a source for colonization and infection with multidrug-resistant pathogens: focus on sinks (2018) Infect Control Hosp Epidemiol, 39, pp. 1463-1466; Köck, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A.W., Mevius, D., Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review (2018) Clin Microbiol Infect, 24, pp. 1241-1250; Friedman, N.D., Carmeli, Y., Walton, A.L., Schwaber, M.J., Carbapenem-resistant Enterobacteriaceae: a strategic roadmap for infection control (2017) Infect Control Hosp Epidemiol, 38, pp. 580-594; French, C.E., Coope, C., Conway, L., Higgins, J.P., McCulloch, J., Okoli, G., Control of carbapenemase-producing Enterobacteriaceae outbreaks in acute settings: an evidence review (2017) J Hosp Infect, 95, pp. 3-45; Goodman, K.E., Simner, P.J., Tamma, P.D., Milstone, A.M., Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE) (2016) Expert Rev Anti Infect Ther, 14, pp. 95-108; (2019), https://www.who.int/infection-prevention/publications/guidelines-cre/en/, World Health Organization. Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. Available from: Accessed February 7; (2019), https://www.cdc.gov/hai/organisms/cre/index.html, Centers for Disease Control and Prevention. Carbapenem-resistant Enterobacteriaceae in healthcare settings. Available from: Accessed February 7; Munoz-Price, L.S., Quinn, J.P., Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae (2013) Curr Opin Infect Dis, 26, pp. 378-387; Lerner, A., Adler, A., Abu-Hanna, J., Meitus, I., Navon-Venezia, S., Carmeli, Y., Environmental contamination by carbapenem-resistant Enterobacteriaceae (2013) J Clin Microbiol, 51, pp. 177-181; Decraene, V., Phan, H.T.T., George, R., Wyllie, D.H., Akinremi, O., Aiken, Z., A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control (2018) Antimicrob Agents Chemother, 26, p. 62; Lerner, A., Adler, A., Abu-Hanna, J., Cohen Percia, S., Kazma Matalon, M., Carmeli, Y., Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration (2015) Clin Microbiol Infect, 21. , 470.e1-7; Liu, C.Y., Lai, C.C., Chiang, H.T., Predominance of methicillin-resistant Staphylococcus aureus in the residents and environments of long-term care facilities in Taiwan (2019) J Microbiol Immunol Infect, 52, pp. 62-74; Havill, N.L., Boyce, J.M., Otter, J.A., Extended survival of carbapenem-resistant Enterobacteriaceae on dry surfaces (2014) Infect Control Hosp Epidemiol, 35, pp. 445-447; Weber, D.J., Rutala, W.A., Kanamori, H., Gergen, M.F., Sickbert-Bennett, E.E., Carbapenem-resistant Enterobacteriaceae: frequency of hospital room contamination and survival on various inoculated surfaces (2015) Infect Control Hosp Epidemiol, 36, pp. 590-593; Weber, D.J., Rutala, W.A., Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? (2006) Infect Control Hosp Epidemiol, 27, pp. 1107-1119; Kanamori, H., Rutala, W.A., Gergen, M.F., Sickbert-Bennett, E.E., Weber, D.J., Germicidal activity against carbapenem/colistin-resistant Enterobacteriaceae using a quantitative carrier test method (2018) Antimicrob Agents Chemother, 62; Kanamori, H., Rutala, W.A., Gergen, M.F., Weber, D.J., Patient room decontamination against carbapenem-resistant Enterobacteriaceae and methicillin-resistant Staphylococcus aureus using a fixed cycle-time ultraviolet-C device and two different radiation designs (2016) Infect Control Hosp Epidemiol, 37. , 994-6; Rock, C., Curless, M.S., Nowakowski, E., Ross, T., Carson, K.A., Trexler, P., UV-C light disinfection of carbapenem-resistant Enterobacteriaceae from high-touch surfaces in a patient room and bathroom (2016) Infect Control Hosp Epidemiol, 37, pp. 996-997; Satoh, K., Makimura, K., Hasumi, Y., Nishiyama, Y., Uchida, K., Yamaguchi, H., Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital (2009) Microbiol Immunol, 53, pp. 41-44; Lockhart, S.R., Etienne, K.A., Vallabhaneni, S., Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses (2017) Clin Infect Dis, 64, pp. 134-140; Jeffery-Smith, A., Taori, S.K., Schelenz, S., Jeffery, K., Johnson, E.M., Borman, A., Candida auris: a review of the literature (2017) Clin Microbiol Rev, 31. , e00029-17; Lamoth, F., Kontoyiannis, D.P., The Candida auris alert: facts and perspectives (2018) J Infect Dis, 217, pp. 516-520; (2019), https://www.cdc.gov/fungal/candida-auris/index.html, Centers for Disease Control and Epidemiology. Candida auris. Available from: Accessed January 26; (2019), https://www.cdc.gov/fungal/candida-auris/c-auris-drug-resistant.html, Centers for Disease Control and Epidemiology. Candida auris: a drug-resistant germ that spreads in healthcare facilities. Available from: Accessed February 7; Tsay, S., Kallen, A., Jackson, B.R., Chiller, T.M., Vallabhaneni, S., Approach to the investigation and management of patients with Candida auris, an emerging multidrug-resistant yeast (2018) Clin Infect Dis, 66, pp. 306-331; Sekyere, J.O., Candida auris: a systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen (2018) Microbiologyopen, 7, p. e00578; Cortegiani, A., Misseri, G., Fasciana, T., Giammanco, A., Giarratano, A., Chowdhary, A., Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris (2018) J Intensive Care, 6, p. 69; Bidaud, A.L., Chowdhary, A., Dannaoui, E., Candida auris: an emerging drug resistant yeast–a mini-review (2018) J Mycol Med, 28, pp. 568-573; Spivak, E.S., Hanson, K.E., Candida auris: an emerging fungal pathogen (2018) J Clin Microbiol, 56; Forsberg, K., Woodworth, K., Walters, M., Berkow, E.L., Jackson, B., Chiller, T., Candida auris: the recent emergence of a multidrug-resistant fungal pathogen (2019) Med Mycol, 57, pp. 1-12; Vallabhaneni, S., Kallen, A., Tsay, S., Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus-United States, May 2013-August 2016 (2016) MMWR Morb Mortal Wkly Rep, 65. , 1234-7; Adams, E., Quinn, M., Tsay, S., Candida auris in healthcare facilities, New York, USA, 2013-2017 (2018) Emerg Infect Dis, 24, pp. 1816-1824; Schelenz, S., Hagen, F., Rhodes, J.L., First hospital outbreak of the globally emerging Candida auris in a European hospital (2016) Antimicrob Resist Infect Control, 5, p. 35; Calvo, B., Melo, A.S., Perozo-Mena, A., First report of Candida auris in America: clinical and microbiological aspects of 18 episodes of candidemia (2016) J Infect, 73, pp. 369-374; Ruiz-Gaitán, A., Moret, A.M., Tasias-Pitarch, M., An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital (2018) Mycoses, 61, pp. 498-505; Eyre, D.W., Sheppard, A.E., Madder, H., A Candida auris outbreak and its control in an intensive care setting (2018) N Engl J Med, 379, pp. 1322-1331; Khan, Z., Ahmad, S., Benwan, K., Invasive Candida auris infections in Kuwait hospitals: epidemiology, antifungal treatment and outcome (2018) Infection, 46, pp. 641-650; Biswal, M., Rudramurthy, S.M., Jain, N., Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions (2017) J Hosp Infect, 97, pp. 363-370; Shackleton, J., Schelenz, S., Rochon, M., Hall, A., Ryan, L., Cervera-Jackson, R., The impact of environmental decontamination in a Candida auris outbreak (2016) J Hosp Infect, 94, pp. 88-89; Azar, M.M., Turbett, S.E., Fishman, J.A., Pierce, V.M., Donor-derived transmission of Candida auris during lung transplantation (2017) Clin Infect Dis, 65, pp. 1040-1042; Piedrahita, C.T., Cadnum, J.L., Jencson, A.L., Shaikh, A.A., Ghannoum, M.A., Donskey, C.J., Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida species (2017) Infect Control Hosp Epidemiol, 38, pp. 1107-1109; Welsh, R.M., Bentz, M.L., Shams, A., Houston, H., Lyons, A., Rose, L.J., Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface (2017) J Clin Microbiol, 55, pp. 2996-3005; Ku, T.S.N., Walraven, C.J., Lee, S.A., Candida auris: disinfectants and implications for infection control (2018) Front Microbiol, 9, p. 726; Abdolrasouli, A., Armstrong-James, D., Ryan, L., Schelenz, S., In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with Candida auris (2017) Mycoses, 60, pp. 758-763; Moore, G., Schelenz, S., Borman, A.M., Johnson, E.M., Brown, C.S., Yeasticidal activity of chemical disinfectants and antiseptics against Candida auris (2017) J Hosp Infect, 97, pp. 371-375; Cadnum, J.L., Shaikh, A.A., Piedrahita, C.T., Sankar, T., Jencson, A.L., Larkin, E.L., Effectiveness of disinfectants against Candida auris and other Candida species (2017) Infect Control Hosp Epidemiol, 38, pp. 1240-1243; Rutala, W.A., Kanamori, H., Gergen, M.F., Sickbert-Bennett, E.E., Weber, D.J., Susceptibility of Candida auris and Candida albicans to 21 germicides used in healthcare facilities (2019) Infection Control Hosp Epidemiol, 40, pp. 380-382; (2019), https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html, Centers for Disease Control and Prevention. Infection prevention and control for Candida auris. Available from: Accessed February 7; Cadnum, J.L., Shaikh, A.A., Piedrahita, C.T., Jencson, A.L., Larkin, E.L., Ghannoum, M.A., Relative resistance of the emerging fungal pathogen Candida auris and other Candida species to killing by ultraviolet light (2018) Infect Control Hosp Epidemiol, 39, pp. 94-96; Kean, R., McKloud, E., Townsend, E.M., Sherry, L., Delaney, C., Jones, B.L., The comparative efficacy of antiseptics against Candida auris biofilms (2018) Int J Antimicrob Agents, 52, pp. 673-677","Weber, D.J.2163 Bioinformatics, CB #7030, United States; email: dweber@unch.unc.edu",,"Mosby Inc.",01966553,,AJICD,"31146847","English","Am. J. Infect. Control",Review,"Final",Open Access,Scopus,2-s2.0-85065676481 "Farag E., Nour M., Islam M.M., Mustafa A., Khalid M., Sikkema R.S., Alhajri F., Bu-Sayaa A., Haroun M., Van Kerkhove M.D., Elkholy A., Malik S.M.R., Reusken C., Koopmans M., AlHajri M.M.","55963332900;57200036649;57214493887;57198011752;57208247266;25923062900;55963851700;57208237407;56375788100;15761388700;57191446321;57209615870;6602366009;7006736989;55963202700;","Qatar experience on One Health approach for middle-east respiratory syndrome coronavirus, 2012–2017: A viewpoint",2019,"One Health","7",, 100090,"","",,,"10.1016/j.onehlt.2019.100090","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064193909&doi=10.1016%2fj.onehlt.2019.100090&partnerID=40&md5=e6e9e7acb53a1bc8c70aee90028297cf","Ministry of Public of Health, Doha, Qatar; Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Geneva, Switzerland; Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt","Farag, E., Ministry of Public of Health, Doha, Qatar; Nour, M., Ministry of Public of Health, Doha, Qatar; Islam, M.M., Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Mustafa, A., Ministry of Public of Health, Doha, Qatar; Khalid, M., Ministry of Public of Health, Doha, Qatar; Sikkema, R.S., Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Alhajri, F., Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Bu-Sayaa, A., Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Haroun, M., Ministry of Public of Health, Doha, Qatar, Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar; Van Kerkhove, M.D., Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Geneva, Switzerland; Elkholy, A., Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt; Malik, S.M.R., Infectious Hazard Management, Department of Health Emergency, World Health Organization, Eastern Mediterranean Regional Office, Cairo, Egypt; Reusken, C., Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Koopmans, M., Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; AlHajri, M.M., Ministry of Public of Health, Doha, Qatar","The emergence of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) in the Middle East in 2012 was associated with an overwhelming uncertainty about its epidemiological and clinical characteristics. Once dromedary camels (Camelus dromedarius) was found to be the natural reservoir of the virus, the public health systems across the Arabian Peninsula encountered an unprecedented pressure to control its transmission. This view point describes how the One Health approach was used in Qatar to manage the MERS-CoV outbreak during the period 2012–2017. One Health focuses on the association between the human, animals and environment sectors for total health and wellbeing of these three sectors. To manage the MERS outbreak in Qatar through a One Health approach, the Qatar National Outbreak Control Taskforce (OCT) was reactivated in November 2012. The animal health sector was invited to join the OCT. Later on, technical expertise was requested from the WHO, FAO, CDC, EMC, and PHE. Subsequently, a comprehensive One Health roadmap was delivered through leadership and coordination; surveillance and investigation; epidemiological studies and increase of local diagnostic capacity. The joint OCT, once trained had easy access to allocated resources and high risk areas to provide more evidence on the potential source of the virus and to investigate all reported cases within 24–48 h. Lack of sufficient technical guidance on veterinary surveillance and poor risk perception among the vulnerable population constituted major obstacles to maintain systematic One Health performance. © 2019 The Authors","MERS-CoV; One Health; Qatar","Article; diagnostic value; human; infection control; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; One Health; Qatar","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820. , (Epub 2012 Oct 17); Sikkema, R., Farag, E., Islam, M., Atta, M., Reusken, C., Al-Hajri, M., Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review (2019) Epidemiol. Infect., 147, p. E84; Regional office of the Eastern Mediterranean, World Health Organization, MERS Situation Update, February 2019 http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html, (accessed 13rd March 2019); Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Zumla, A., Dar, O., Kock, R., Muturi, M., Ntoumi, F., Kaleebu, P., Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential (2016) Int. J. Infect. Dis., 47, pp. 5-9; Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) https://www.cdc.gov/onehealth/basics/index.html, (accessed 13rd March 2019); Farag, E.A.B.A., Reusken, C.B.E.M., Haagmans, B.L., Mohran, K.A., Raj, V.S., Pas, S.D., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infection Ecology & Epidemiology, 5; Raj, V.S., Farag, E., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1339-1342; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill., 19 (23). , pii=20829; Reusken, C.B.E.M., Farag, E.A.B.A., Haagmans, B.L., Mohran, K.A., Godeke, G.-J., Raj, V.S., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013–2014 (2015) Emerg. Infect. Dis., 21 (8), pp. 1422-1425; Reusken, C.B.E.M., Schilp, C., Raj, V.S., Bruin, E.D., Kohl, R.H.G., Farag, E.A.B.A., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic [letter] (2016) Emerg. Infect. Dis., 22 (6), pp. 1129-1131; Sikkema, R.S., Farag, E.A., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Identification of risk factors for primary MERS-CoV infection in camel workers in Qatar, 2013-2014; a case-control study (2017) J. Infect. Dis., 215 (11), pp. 1702-1705; The report of the Joint External Evaluation mission, International health regulations, zoonotic disease surveillance capacity evaluation report, Qatar (2016); Farag, E., Sikkema, R.S., Vinks, T., Islam, M.M., Nour, M., Al-Romaihi, H., Drivers of MERS-CoV emergence in Qatar (2019) Viruses, 11 (1), p. 22; Makhlouf, M.M., Omer, S.R., Elyamani, R.A.A., Aabdien, M.H., Sharaf, M.Q., El-Sayed, A.M., (2015), 2015 et al., Use of Health Belief Model to assess risk perception and practices of camel farm owners in Doha about MERS-COV Journal of Emergency Medicine, Trauma & Acute Care, 126 International Conference in Emergency Medicine and Public Health – Qatar 2016 doi:","Farag, E.; Ministry of Public of HealthQatar; email: eabdfarag@moph.gov.qa",,"Elsevier B.V.",23527714,,,,"English","One Health",Article,"Final",Open Access,Scopus,2-s2.0-85064193909 "Wang B.X., Fish E.N.","7405916408;7005707926;","Global virus outbreaks: Interferons as 1st responders",2019,"Seminars in Immunology","43",, 101300,"","",,1,"10.1016/j.smim.2019.101300","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075407523&doi=10.1016%2fj.smim.2019.101300&partnerID=40&md5=213a55b2cdbc32fbbe98c54f11888000","Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada","Wang, B.X., Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Fish, E.N., Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada, Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada","Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-Α/Β present as ideal candidate broad-spectrum antivirals. © 2019","Antiviral; Immune response; Interferons-Α/Β","alpha interferon; antivirus agent; beta interferon; interferon; antiviral activity; avian influenza (H5N1); Coronavirinae; Ebolavirus; epidemic; human; immunocompetent cell; nonhuman; Review; SARS coronavirus; signal transduction; virus immunity; virus infection; Zika virus","Isaacs, A., Lindenmann, J., Virus interference. I. The interferon (1957) Proc. R. Soc. Lond. B Biol. Sci., 147, pp. 258-267; Au, W.C., Moore, P.A., LaFleur, D.W., Tombal, B., Pitha, P.M., Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes (1998) J. Biol. Chem., 273, pp. 29210-29217; Juang, Y.T., Lowther, W., Kellum, M., Au, W.C., Lin, R., Hiscott, J., Pitha, P.M., Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3 (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 9837-9842; Libermann, T.A., Baltimore, D., Activation of interleukin-6 gene expression through the NF-kappa B transcription factor (1990) Mol. Cell. Biol., 10, pp. 2327-2334; Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., Akira, S., Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8 (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 10193-10197; Sato, M., Hata, N., Asagiri, M., Nakaya, T., Taniguchi, T., Tanaka, N., Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7 (1988) FEBS Lett., 441, pp. 106-110; Falvo, J.V., Parekh, B.S., Lin, C.H., Fraenkel, E., Maniatis, T., Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation (2000) Mol. Cell. Biol., 20, pp. 4814-4825; Panne, D., Maniatis, T., Harrison, S.C., An atomic model of the interferon-beta enhanceosome (2007) Cell, 129, pp. 1111-1123; Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Akira, S., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses (2006) Nature, 441, pp. 101-105; Errett, J.S., Suthar, M.S., McMillan, A., Diamond, M.S., Gale, M., Jr, The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection (2013) J. Virol., 87, pp. 11416-11425; Yan, H., Krishnan, K., Greenlund, A.C., Gupta, S., Lim, J.T., Schreiber, R.D., Schindler, C.W., Krolewski, J.J., Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein (1996) EMBO J., 15, pp. 1064-1074; Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J.E., Jr., Kuriyan, J., Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA (1998) Cell, 93, pp. 827-839; Braunstein, J., Brutsaert, S., Olson, R., Schindler, C., STATs dimerize in the absence of phosphorylation (2003) J. Biol. Chem., 278, pp. 34133-34140; Fish, E.N., Platanias, L.C., Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes (2014) Mol. Cancer Res., 12, pp. 1691-1703; Fu, X.Y., Kessler, D.S., Veals, S.A., Levy, D.E., Darnell, J.E., Jr., ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 8555-8559; Qureshi, S.A., Salditt-Georgieff, M., Darnell, J.E., Jr., Tyrosine-phosphorylated Stat1 and Stat2 plus a 48-kDa protein all contact DNA in forming interferon-stimulated-gene factor 3 (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 3829-3833; Ehret, G.B., Reichenbach, P., Schindler, U., Horvath, C.M., Fritz, S., Nabholz, M., Bucher, P., DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites (2001) J. Biol. Chem., 276, pp. 6675-6688; Uddin, S., Majchrzak, B., Woodson, J., Arunkumar, P., Alsayed, Y., Pine, R., Young, P.R., Platanias, L.C., Activation of the p38 mitogen-activated protein kinase by type I interferons (1999) J. Biol. Chem., 274, pp. 30127-30131; Dyson, M.H., Thomson, S., Inagaki, M., Goto, H., Arthur, S.J., Nightingale, K., Iborra, F.J., Mahadevan, L.C., MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2 (2005) J. Cell. Sci., 118, pp. 2247-2259; Kaur, S., Sassano, A., Dolniak, B., Joshi, S., Majchrzak-Kita, B., Baker, D.P., Hay, N., Platanias, L.C., Role of the Akt pathway in mRNA translation of interferon-stimulated genes (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 4808-4813; Rusinova, I., Forster, S., Yu, S., Kannan, A., Masse, M., Cumming, H., Chapman, R., Hertzog, P.J., Interferome v2.0: an updated database of annotated interferon-regulated genes (2013) Nucleic Acids Res., 41, pp. D1040-1046; Mangeat, B., Turelli, P., Caron, G., Friedli, M., Perrin, L., Trono, D., Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts (2003) Nature, 424, pp. 99-103; Yu, Q., Konig, R., Pillai, S., Chiles, K., Kearney, M., Palmer, S., Richman, D., Landau, N.R., Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome (2004) Nat. Struct. Mol. Biol., 11, pp. 435-442; Neil, S.J., Zang, T., Bieniasz, P.D., Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu (2008) Nature, 451, pp. 425-430; Perez-Caballero, D., Zang, T., Ebrahimi, A., McNatt, M.W., Gregory, D.A., Johnson, M.C., Bieniasz, P.D., Tetherin inhibits HIV-1 release by directly tethering virions to cells (2009) Cell, 139, pp. 499-511; Kolakofsky, D., Kowalinski, E., Cusack, S., A structure-based model of RIG-I activation (2012) RNA, 18, pp. 2118-2127; Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Akira, S., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction (2005) Nat. Immunol., 6, pp. 981-988; Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Fujita, T., The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses (2004) Nat. Immunol., 5, pp. 730-737; Oshiumi, H., Miyashita, M., Okamoto, M., Morioka, Y., Okabe, M., Matsumoto, M., Seya, T., DDX60 is involved in RIG-I-dependent and independent antiviral responses, and its function is attenuated by virus-induced EGFR activation (2015) Cell Rep., 11, pp. 1193-1207; Miyashita, M., Oshiumi, H., Matsumoto, M., Seya, T., DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling (2011) Mol. Cell. Biol., 31, pp. 3802-3819; Min, J.Y., Li, S., Sen, G.C., Krug, R.M., A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis (2007) Virology, 363, pp. 236-243; Lemaire, P.A., Anderson, E., Lary, J., Cole, J.L., Mechanism of PKR activation by dsRNA (2008) J. Mol. Biol., 381, pp. 351-360; Brass, A.L., Huang, I.C., Benita, Y., John, S.P., Krishnan, M.N., Feeley, E.M., Ryan, B.J., Elledge, S.J., The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus (2009) Cell, 139, pp. 1243-1254; Desai, T.M., Marin, M., Chin, C.R., Savidis, G., Brass, A.L., Melikyan, G.B., IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion (2014) PLoS Pathog., 10; Huang, I.C., Bailey, C.C., Weyer, J.L., Radoshitzky, S.R., Becker, M.M., Chiang, J.J., Brass, A.L., Farzan, M., Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus (2011) PLoS Pathog., 7; Schmid, S., Mordstein, M., Kochs, G., Garcia-Sastre, A., Tenoever, B.R., Transcription factor redundancy ensures induction of the antiviral state (2010) J. Biol. Chem., 285, pp. 42013-42022; Pine, R., Constitutive expression of an ISGF2/IRF1 transgene leads to interferon-independent activation of interferon-inducible genes and resistance to virus infection (1992) J. Virol., 66, pp. 4470-4478; Zhao, C., Hsiang, T.Y., Kuo, R.L., Krug, R.M., ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 2253-2258; Malakhova, O.A., Yan, M., Malakhov, M.P., Yuan, Y., Ritchie, K.J., Kim, K.I., Peterson, L.F., Zhang, D.E., Protein ISGylation modulates the JAK-STAT signaling pathway (2003) Genes Dev., 17, pp. 455-460; Shi, H.X., Yang, K., Liu, X., Liu, X.Y., Wei, B., Shan, Y.F., Zhu, L.H., Wang, C., Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification (2010) Mol. Cell. Biol., 30, pp. 2424-2436; Espert, L., Degols, G., Gongora, C., Blondel, D., Williams, B.R., Silverman, R.H., Mechti, N., ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses (2003) J. Biol. Chem., 278, pp. 16151-16158; Zhou, Z., Wang, N., Woodson, S.E., Dong, Q., Wang, J., Liang, Y., Rjinbrand, R., Li, K., Antiviral activities of ISG20 in positive-strand RNA virus infections (2011) Virology, 409, pp. 175-188; Kochs, G., Reichelt, M., Danino, D., Hinshaw, J.E., Haller, O., Assay and functional analysis of dynamin-like Mx proteins (2005) Methods Enzymol., 404, pp. 632-643; Nigg, P.E., Pavlovic, J., Oligomerization and GTP-binding requirements of MxA for viral target recognition and antiviral activity against influenza A virus (2015) J. Biol. Chem., 290, pp. 29893-29906; Verhelst, J., Parthoens, E., Schepens, B., Fiers, W., Saelens, X., Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly (2012) J. Virol., 86, pp. 13445-13455; Rusch, L., Zhou, A., Silverman, R.H., Caspase-dependent apoptosis by 2″,5″-oligoadenylate activation of RNase L is enhanced by IFN-beta (2000) J. Interferon Cytokine Res., 20, pp. 1091-1100; Hovanessian, A.G., Svab, J., Marie, I., Robert, N., Chamaret, S., Laurent, A.G., Characterization of 69- and 100-kDa forms of 2-5A-synthetase from interferon-treated human cells (1988) J. Biol. Chem., 263, pp. 4945-4949; Li, G., Xiang, Y., Sabapathy, K., Silverman, R.H., An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase (2004) J. Biol. Chem., 279, pp. 1123-1131; Zhu, J., Zhang, Y., Ghosh, A., Cuevas, R.A., Forero, A., Dhar, J., Ibsen, M.S., Sarkar, S.N., Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor (2014) Immunity, 40, pp. 936-948; Wang, X., Hinson, E.R., Cresswell, P., The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts (2007) Cell Host Microbe, 2, pp. 96-105; Laguette, N., Sobhian, B., Casartelli, N., Ringeard, M., Chable-Bessia, C., Segeral, E., Yatim, A., Benkirane, M., SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx (2011) Nature, 474, pp. 654-657; Lahouassa, H., Daddacha, W., Hofmann, H., Ayinde, D., Logue, E.C., Dragin, L., Bloch, N., Margottin-Goguet, F., SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates (2012) Nat. Immunol., 13, pp. 223-228; Goldstone, D.C., Ennis-Adeniran, V., Hedden, J.J., Groom, H.C., Rice, G.I., Christodoulou, E., Walker, P.A., Webb, M., HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (2011) Nature, 480, pp. 379-382; Ryoo, J., Choi, J., Oh, C., Kim, S., Seo, M., Kim, S.Y., Seo, D., Ahn, K., The ribonuclease activity of SAMHD1 is required for HIV-1 restriction (2014) Nat. Med., 20, pp. 936-941; Stremlau, M., Perron, M., Lee, M., Li, Y., Song, B., Javanbakht, H., Diaz-Griffero, F., Sodroski, J., Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5514-5519; Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Garcia-Sastre, A., Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I (2009) Cell Host Microbe, 5, pp. 439-449; Hayakawa, S., Shiratori, S., Yamato, H., Kameyama, T., Kitatsuji, C., Kashigi, F., Goto, S., Takaoka, A., ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses (2011) Nat. Immunol., 12, pp. 37-44; Gao, G., Guo, X., Goff, S.P., Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein (2002) Science, 297, pp. 1703-1706; Burke, J.D., Platanias, L.C., Fish, E.N., Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against Coxsackie virus B3 (2014) J. Virol., 88, pp. 3485-3495; Essers, M.A., Offner, S., Blanco-Bose, W.E., Waibler, Z., Kalinke, U., Duchosal, M.A., Trumpp, A., IFNalpha activates dormant haematopoietic stem cells in vivo (2009) Nature, 458, pp. 904-908; Sato, T., Onai, N., Yoshihara, H., Arai, F., Suda, T., Ohteki, T., Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion (2009) Nat. Med., 15, pp. 696-700; Conrady, C.D., Zheng, M., Mandal, N.A., van Rooijen, N., Carr, D.J., IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice (2013) Mucosal Immunol., 6, pp. 45-55; Fujita, H., Asahina, A., Tada, Y., Fujiwara, H., Tamaki, K., Type I interferons inhibit maturation and activation of mouse Langerhans cells (2005) J. Invest. Dermatol., 125, pp. 126-133; Kim, M.O., Suh, H.S., Brosnan, C.F., Lee, S.C., Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-beta (2004) J. Neurochem., 90, pp. 297-308; Menten, P., Proost, P., Struyf, S., Van Coillie, E., Put, W., Lenaerts, J.P., Conings, R., Van Damme, J., Differential induction of monocyte chemotactic protein-3 in mononuclear leukocytes and fibroblasts by interferon-alpha/beta and interferon-gamma reveals MCP-3 heterogeneity (1999) Eur. J. Immunol., 29, pp. 678-685; Thomas, K.E., Galligan, C.L., Newman, R.D., Fish, E.N., Vogel, S.N., Contribution of interferon-beta to the murine macrophage response to the toll-like receptor 4 agonist, lipopolysaccharide (2006) J. Biol. Chem., 281, pp. 31119-31130; Antonelli, A., Ferrari, S.M., Fallahi, P., Ghiri, E., Crescioli, C., Romagnani, P., Vitti, P., Ferrannini, E., Interferon-alpha, -beta and -gamma induce CXCL9 and CXCL10 secretion by human thyrocytes: modulation by peroxisome proliferator-activated receptor-gamma agonists (2010) Cytokine, 50, pp. 260-267; Coelho, L.F., Magno de Freitas Almeida, G., Mennechet, F.J., Blangy, A., Uze, G., Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 11917-11922; Shiow, L.R., Rosen, D.B., Brdickova, N., Xu, Y., An, J., Lanier, L.L., Cyster, J.G., Matloubian, M., CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs (2006) Nature, 440, pp. 540-544; Seo, S.U., Kwon, H.J., Ko, H.J., Byun, Y.H., Seong, B.L., Uematsu, S., Akira, S., Kweon, M.N., Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice (2011) PLoS Pathog., 7; Stock, A.T., Smith, J.M., Carbone, F.R., Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection (2014) J. Exp. Med., 211, pp. 751-759; Xin, L., Vargas-Inchaustegui, D.A., Raimer, S.S., Kelly, B.C., Hu, J., Zhu, L., Sun, J., Soong, L., Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites (2010) J. Immunol., 184, pp. 7047-7056; Lee, P.Y., Li, Y., Kumagai, Y., Xu, Y., Weinstein, J.S., Kellner, E.S., Nacionales, D.C., Reeves, W.H., Type I interferon modulates monocyte recruitment and maturation in chronic inflammation (2009) Am. J. Pathol., 175, pp. 2023-2033; Murooka, T.T., Rahbar, R., Platanias, L.C., Fish, E.N., CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1 (2008) Blood, 111, pp. 4892-4901; Colvin, R.A., Campanella, G.S., Sun, J., Luster, A.D., Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function (2004) J. Biol. Chem., 279, pp. 30219-30227; Carr, M.W., Roth, S.J., Luther, E., Rose, S.S., Springer, T.A., Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 3652-3656; Zucchetto, A., Tripodo, C., Benedetti, D., Deaglio, S., Gaidano, G., Del Poeta, G., Gattei, V., Monocytes/macrophages but not T lymphocytes are the major targets of the CCL3/CCL4 chemokines produced by CD38(+)CD49d(+) chronic lymphocytic leukaemia cells (2010) Br. J. Haematol., 150, pp. 111-113; Sakamoto, E., Hato, F., Kato, T., Sakamoto, C., Akahori, M., Hino, M., Kitagawa, S., Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2 (2005) J. Leukoc. Biol., 78, pp. 301-309; Hunter, C.A., Gabriel, K.E., Radzanowski, T., Neyer, L.E., Remington, J.S., Type I interferons enhance production of IFN-gamma by NK cells (1997) Immunol. Lett., 59, pp. 1-5; Nguyen, K.B., Salazar-Mather, T.P., Dalod, M.Y., Van Deusen, J.B., Wei, X.Q., Liew, F.Y., Caligiuri, M.A., Biron, C.A., Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection (2002) J. Immunol., 169, pp. 4279-4287; Lee, C.K., Rao, D.T., Gertner, R., Gimeno, R., Frey, A.B., Levy, D.E., Distinct requirements for IFNs and STAT1 in NK cell function (2000) J. Immunol., 165, pp. 3571-3577; Martinez, J., Huang, X., Yang, Y., Direct action of type I IFN on NK cells is required for their activation in response to vaccinia viral infection in vivo (2008) J. Immunol., 180, pp. 1592-1597; Swann, J.B., Hayakawa, Y., Zerafa, N., Sheehan, K.C., Scott, B., Schreiber, R.D., Hertzog, P., Smyth, M.J., Type I IFN contributes to NK cell homeostasis, activation, and antitumor function (2007) J. Immunol., 178, pp. 7540-7549; Kirou, K.A., Vakkalanka, R.K., Butler, M.J., Crow, M.K., Induction of Fas ligand-mediated apoptosis by interferon-alpha (2000) Clin. Immunol., 95, pp. 218-226; Yanguez, E., Garcia-Culebras, A., Frau, A., Llompart, C., Knobeloch, K.P., Gutierrez-Erlandsson, S., Garcia-Sastre, A., Guerra, S., Correction: ISG15 regulates peritoneal macrophages functionality against viral infection (2016) PLoS Pathog., 12; Pogue, S.L., Preston, B.T., Stalder, J., Bebbington, C.R., Cardarelli, P.M., The receptor for type I IFNs is highly expressed on peripheral blood B cells and monocytes and mediates a distinct profile of differentiation and activation of these cells (2004) J. Interferon Cytokine Res., 24, pp. 131-139; Dauer, M., Schad, K., Junkmann, J., Bauer, C., Herten, J., Kiefl, R., Schnurr, M., Eigler, A., IFN-alpha promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4 (2006) J. Leukoc. Biol., 80, pp. 278-286; Luft, T., Pang, K.C., Thomas, E., Hertzog, P., Hart, D.N., Trapani, J., Cebon, J., Type I IFNs enhance the terminal differentiation of dendritic cells (1998) J. Immunol., 161, pp. 1947-1953; Dauer, M., Obermaier, B., Herten, J., Haerle, C., Pohl, K., Rothenfusser, S., Schnurr, M., Eigler, A., Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors (2003) J. Immunol., 170, pp. 4069-4076; Paquette, R.L., Hsu, N.C., Kiertscher, S.M., Park, A.N., Tran, L., Roth, M.D., Glaspy, J.A., Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells (1998) J. Leukoc. Biol., 64, pp. 358-367; Gautier, G., Humbert, M., Deauvieau, F., Scuiller, M., Hiscott, J., Bates, E.E., Trinchieri, G., Garrone, P., A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells (2005) J. Exp. Med., 201, pp. 1435-1446; Simmons, D.P., Wearsch, P.A., Canaday, D.H., Meyerson, H.J., Liu, Y.C., Wang, Y., Boom, W.H., Harding, C.V., Type I IFN drives a distinctive dendritic cell maturation phenotype that allows continued class II MHC synthesis and antigen processing (2012) J. Immunol., 188, pp. 3116-3126; Montoya, M., Schiavoni, G., Mattei, F., Gresser, I., Belardelli, F., Borrow, P., Tough, D.F., Type I interferons produced by dendritic cells promote their phenotypic and functional activation (2002) Blood, 99, pp. 3263-3271; Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Taniguchi, T., IRF-7 is the master regulator of type-I interferon-dependent immune responses (2005) Nature, 434, pp. 772-777; Izaguirre, A., Barnes, B.J., Amrute, S., Yeow, W.S., Megjugorac, N., Dai, J., Feng, D., Fitzgerald-Bocarsly, P., Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells (2003) J. Leukoc. Biol., 74, pp. 1125-1138; Huber, J.P., Farrar, J.D., Regulation of effector and memory T-cell functions by type I interferon (2011) Immunology, 132, pp. 466-474; Curtsinger, J.M., Valenzuela, J.O., Agarwal, P., Lins, D., Mescher, M.F., Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation (2005) J. Immunol., 174, pp. 4465-4469; Kolumam, G.A., Thomas, S., Thompson, L.J., Sprent, J., Murali-Krishna, K., Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection (2005) J. Exp. Med., 202, pp. 637-650; Aichele, P., Unsoeld, H., Koschella, M., Schweier, O., Kalinke, U., Vucikuja, S., CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion (2006) J. Immunol., 176, pp. 4525-4529; Thompson, L.J., Kolumam, G.A., Thomas, S., Murali-Krishna, K., Innate inflammatory signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T cells for clonal expansion and memory formation (2006) J. Immunol., 177, pp. 1746-1754; Agarwal, P., Raghavan, A., Nandiwada, S.L., Curtsinger, J.M., Bohjanen, P.R., Mueller, D.L., Mescher, M.F., Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory (2009) J. Immunol., 183, pp. 1695-1704; Le Bon, A., Thompson, C., Kamphuis, E., Durand, V., Rossmann, C., Kalinke, U., Tough, D.F., Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN (2006) J. Immunol., 176, pp. 2074-2078; Huber, J.P., Ramos, H.J., Gill, M.A., Farrar, J.D., Cutting edge: type I IFN reverses human Th2 commitment and stability by suppressing GATA3 (2010) J. Immunol., 185, pp. 813-817; Moschen, A.R., Geiger, S., Krehan, I., Kaser, A., Tilg, H., Interferon-alpha controls IL-17 expression in vitro and in vivo (2008) Immunobiology, 213, pp. 779-787; Deonarain, R., Verma, A., Porter, A.C., Gewert, D.R., Platanias, L.C., Fish, E.N., Critical roles for IFN-beta in lymphoid development, myelopoiesis, and tumor development: links to tumor necrosis factor alpha (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 13453-13458; Braun, D., Caramalho, I., Demengeot, J., IFN-alpha/beta enhances BCR-dependent B cell responses (2002) Int. Immunol., 14, pp. 411-419; Evans, S.S., Collea, R.P., Appenheimer, M.M., Gollnick, S.O., Interferon-alpha induces the expression of the L-selectin homing receptor in human B lymphoid cells (1993) J. Cell Biol., 123, pp. 1889-1898; Hamilton, J.A., Wu, Q., Yang, P., Luo, B., Liu, S., Hong, H., Li, J., Mountz, J.D., Cutting edge: endogenous IFN-Β regulates survival and development of transitional B cells (2017) J. Immunol., 199, pp. 2618-2623; Yao, Y., Richman, L., Higgs, B.W., Morehouse, C.A., de los Reyes, M., Brohawn, P., Zhang, J., Jallal, B., Neutralization of interferon-alpha/beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in systemic lupus erythematosus (2009) Arthritis Rheum., 60, pp. 1785-1796; Litinskiy, M.B., Nardelli, B., Hilbert, D.M., He, B., Schaffer, A., Casali, P., Cerutti, A., DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL (2002) Nat. Immunol., 3, pp. 822-829; Joo, H., Coquery, C., Xue, Y., Gayet, I., Dillon, S.R., Punaro, M., Zurawski, G., Oh, S., Serum from patients with SLE instructs monocytes to promote IgG and IgA plasmablast differentiation (2012) J. Exp. Med., 209, pp. 1335-1348; Castigli, E., Wilson, S.A., Scott, S., Dedeoglu, F., Xu, S., Lam, K.P., Bram, R.J., Geha, R.S., TACI and BAFF-R mediate isotype switching in B cells (2005) J. Exp. Med., 201, pp. 35-39; Castigli, E., Scott, S., Dedeoglu, F., Bryce, P., Jabara, H., Bhan, A.K., Mizoguchi, E., Geha, R.S., Impaired IgA class switching in APRIL-deficient mice (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 3903-3908; Jego, G., Palucka, A.K., Blanck, J.P., Chalouni, C., Pascual, V., Banchereau, J., Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6 (2003) Immunity, 19, pp. 225-234; Fros, J.J., Liu, W.J., Prow, N.A., Geertsema, C., Ligtenberg, M., Vanlandingham, D.L., Schnettier, E., Pijlman, G.P., Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling (2010) J. Virol., 84, pp. 10877-10887; Feng, Q., Langereis, M.A., Lork, M., Nguyen, M., Hato, S.V., Lanke, K., Emdad, L., van Kuppeveld, F.J., Enterovirus 2Apro targets MDA5 and MAVS in infected cells (2014) J. Virol., 88, pp. 3369-3378; Mukherjee, A., Morosky, S.A., Delorme-Axford, E., Dybdahl-Sissoko, N., Oberste, M.S., Wang, T., Coyne, C.B., The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling (2011) PLoS Pathog., 7; Munoz-Jordan, J.L., Sanchez-Burgos, G.G., Laurent-Rolle, M., Garcia-Sastre, A., Inhibition of interferon signaling by dengue virus (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 14333-14338; Munoz-Jordan, J.L., Laurent-Rolle, M., Ashour, J., Martinez-Sobrido, L., Ashok, M., Lipkin, W.I., Garcia-Sastre, A., Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses (2005) J. Virol., 79, pp. 8004-8013; Rodriguez-Madoz, J.R., Belicha-Villanueva, A., Bernal-Rubio, D., Ashour, J., Ayllon, J., Fernandez-Sesma, A., Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex (2010) J. Virol., 84, pp. 9760-9774; Mazzon, M., Jones, M., Davidson, A., Chain, B., Jacobs, M., Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation (2009) J. Infect. Dis., 200, pp. 1261-1270; Zhang, A.P., Bornholdt, Z.A., Liu, T., Abelson, D.M., Lee, D.E., Li, S., Woods, V.L., Jr., Saphire, E.O., The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold (2012) PLoS Pathog., 8; Reid, S.P., Leung, L.W., Hartman, A.L., Martinez, O., Shaw, M.L., Carbonnelle, C., Volchkov, V.E., Basler, C.F., Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation (2006) J. Virol., 80, pp. 5156-5167; Basler, C.F., Wang, X., Muhlberger, E., Volchkov, V., Paragas, J., Klenk, H.D., Garcia-Sastre, A., Palese, P., The Ebola virus VP35 protein functions as a type I IFN antagonist (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 12289-12294; Cardenas, W.B., Loo, Y.M., Gale, M., Jr., Hartman, A.L., Kimberlin, C.R., Martinez-Sobrido, L., Saphire, E.O., Basler, C.F., Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling (2006) J. Virol., 80, pp. 5168-5178; Bentz, G.L., Liu, R., Hahn, A.M., Shackelford, J., Pagano, J.S., Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-beta (2010) Virology, 402, pp. 121-128; Hahn, A.M., Huye, L.E., Ning, S., Webster-Cyriaque, J., Pagano, J.S., Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1 (2005) J. Virol., 79, pp. 10040-10052; Wu, L., Fossum, E., Joo, C.H., Inn, K.S., Shin, Y.C., Johannsen, E., Hutt-Fletcher, L.M., Jung, J.U., Epstein-Barr virus LF2: an antagonist to type I interferon (2009) J. Virol., 83, pp. 1140-1146; Jiang, J., Tang, H., Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein (2010) Protein Cell, 1, pp. 1106-1117; Chen, J., Wu, M., Zhang, X., Zhang, W., Zhang, Z., Chen, L., He, J., Yuan, Z., Hepatitis B virus polymerase impairs interferon-alpha-induced STAT activation through inhibition of importin-alpha5 and protein kinase C-delta (2013) Hepatology, 57, pp. 470-482; Wang, H., Ryu, W.S., Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion (2010) PLoS Pathog., 6; Bode, J.G., Ludwig, S., Ehrhardt, C., Albrecht, U., Erhardt, A., Schaper, F., Heinrich, P.C., Häussinger, D., IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3 (2003) FASEB J., 17, pp. 488-490; Taylor, D.R., Shi, S.T., Romano, P.R., Barber, G.N., Lai, M.M., Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein (1999) Science, 285, pp. 107-110; Baril, M., Racine, M.E., Penin, F., Lamarre, D., MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease (2009) J. Virol., 83, pp. 1299-1311; Li, K., Foy, E., Ferreon, J.C., Nakamura, M., Ferreon, A.C., Ikeda, M., Ray, S.C., Lemon, S.M., Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 2992-2997; Kumthip, K., Chusri, P., Jilg, N., Zhao, L., Fusco, D.N., Zhao, H., Goto, K., Lin, W., Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling (2012) J. Virol., 86, pp. 8581-8591; Gale, M., Jr, Blakely, C.M., Kwieciszewski, B., Tan, S.L., Dossett, M., Tang, N.M., Tang, N.M., Katze, M.G., Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation (1998) Mol. Cell. Biol., 18, pp. 5208-5218; Paulus, C., Krauss, S., Nevels, M., A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 3840-3845; Huh, Y.H., Kim, Y.E., Kim, E.T., Park, J.J., Song, M.J., Zhu, H., Hayward, G.S., Ahn, J.H., Binding STAT2 by the acidic domain of human cytomegalovirus IE1 promotes viral growth and is negatively regulated by SUMO (2008) J. Virol., 82, pp. 10444-10454; Taylor, R.T., Bresnahan, W.A., Human cytomegalovirus immediate-early 2 gene expression blocks virus-induced beta interferon production (2005) J. Virol., 79, pp. 3873-3877; Marshall, E.E., Bierle, C.J., Brune, W., Geballe, A.P., Essential role for either TRS1 or IRS1 in human cytomegalovirus replication (2009) J. Virol., 83, pp. 4112-4120; Kim, Y.J., Kim, E.T., Kim, Y.E., Lee, M.K., Kwon, K.M., Kim, K.I., Stamminger, T., Ahn, J.H., Consecutive inhibition of ISG15 expression and ISGylation by cytomegalovirus regulators (2016) PLoS Pathog., 12; Cai, R., Carpick, B., Chun, R.F., Jeang, K.T., Williams, B.R., HIV-I TAT inhibits PKR activity by both RNA-dependent and RNA-independent mechanisms (2000) Arch. Biochem. Biophys., 373, pp. 361-367; Stopak, K., de Noronha, C., Yonemoto, W., Greene, W.C., HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability (2003) Mol. Cell, 12, pp. 591-601; Bartlett, E.J., Cruz, A.M., Esker, J., Castano, A., Schomacker, H., Surman, S.R., Hennessey, M., Schmidt, A.C., Human parainfluenza virus type 1 C proteins are nonessential proteins that inhibit the host interferon and apoptotic responses and are required for efficient replication in nonhuman primates (2008) J. Virol., 82, pp. 8965-8977; Schaap-Nutt, A., D'Angelo, C., Scull, M.A., Amaro-Carambot, E., Nishio, M., Pickles, R.J., Collins, P.L., Schmidt, A.C., Human parainfluenza virus type 2 V protein inhibits interferon production and signaling and is required for replication in non-human primates (2010) Virology, 397, pp. 285-298; Nees, M., Geoghegan, J.M., Hyman, T., Frank, S., Miller, L., Woodworth, C.D., Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes (2001) J. Virol., 75, pp. 4283-4296; Ronco, L.V., Karpova, A.Y., Vidal, M., Howley, P.M., Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity (1998) Genes Dev., 12, pp. 2061-2072; Spann, K.M., Tran, K.C., Collins, P.L., Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-kappaB, and proinflammatory cytokines (2005) J. Virol., 79, pp. 5353-5362; Kotla, S., Peng, T., Bumgarner, R.E., Gustin, K.E., Attenuation of the type I interferon response in cells infected with human rhinovirus (2008) Virology, 374, pp. 399-410; Paladino, P., Collins, S.E., Mossman, K.L., Cellular localization of the herpes simplex virus ICP0 protein dictates its ability to block IRF3-mediated innate immune responses (2010) PLoS One, 5; Johnson, K.E., Song, B., Knipe, D.M., Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling (2008) Virology, 374, pp. 487-494; He, B., Gross, M., Roizman, B., The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 843-848; Sanchez, R., Mohr, I., Inhibition of cellular 2″-5″ oligoadenylate synthetase by the herpes simplex virus type 1 Us11 protein (2007) J. Virol., 81, pp. 3455-3464; Jia, D., Rahbar, R., Chan, R.W., Lee, S.M., Chan, M.C., Wang, B.X., Baker, D.P., Fish, E.N., Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling (2010) PLoS One, 5; Mibayashi, M., Martinez-Sobrido, L., Loo, Y.M., Cardenas, W.B., Gale, M., Jr., Garcia-Sastre, A., Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus (2007) J. Virol., 81, pp. 514-524; Twu, K.Y., Noah, D.L., Rao, P., Kuo, R.L., Krug, R.M., The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target (2006) J. Virol., 80, pp. 3957-3965; Bergmann, M., Garcia-Sastre, A., Carnero, E., Pehamberger, H., Wolff, K., Palese, P., Muster, T., Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication (2000) J. Virol., 74, pp. 6203-6206; Chen, Z., Li, Y., Krug, R.M., Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3″-end processing machinery (1999) EMBO J., 18, pp. 2273-2283; Min, J.Y., Krug, R.M., The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2″-5″ oligo (A) synthetase/RNase L pathway (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 7100-7105; Dauber, B., Schneider, J., Wolff, T., Double-stranded RNA binding of influenza B virus nonstructural NS1 protein inhibits protein kinase R but is not essential to antagonize production of alpha/beta interferon (2006) J. Virol., 80, pp. 11667-11677; Lin, C.W., Cheng, C.W., Yang, T.C., Li, S.W., Cheng, M.H., Wan, L., Lin, Y.J., Kao, M.C., Interferon antagonist function of Japanese encephalitis virus NS4A and its interaction with DEAD-box RNA helicase DDX42 (2008) Virus Res., 137, pp. 49-55; Lin, R.J., Chang, B.L., Yu, H.P., Liao, C.L., Lin, Y.L., Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism (2006) J. Virol., 80, pp. 5908-5918; Yang, T.C., Li, S.W., Lai, C.C., Lu, K.Z., Chiu, M.T., Hsieh, T.H., Wan, L., Lin, C.W., Proteomic analysis for Type I interferon antagonism of Japanese encephalitis virus NS5 protein (2013) Proteomics, 13, pp. 3442-3456; Hastie, K.M., Kimberlin, C.R., Zandonatti, M.A., MacRae, I.J., Saphire, E.O., Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3″ to 5″ exonuclease activity essential for immune suppression (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 2396-2401; Martinez-Sobrido, L., Giannakas, P., Cubitt, B., Garcia-Sastre, A., de la Torre, J.C., Differential inhibition of type I interferon induction by arenavirus nucleoproteins (2007) J. Virol., 81, pp. 12696-12703; Zhou, S., Cerny, A.M., Zacharia, A., Fitzgerald, K.A., Kurt-Jones, E.A., Finberg, R.W., Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus (2010) J. Virol., 84, pp. 9452-9462; Kash, J.C., Muhlberger, E., Carter, V., Grosch, M., Perwitasari, O., Proll, S.C., Thomas, M.J., Katze, M.G., Global suppression of the host antiviral response by Ebola- and Marburgviruses: increased antagonism of the type I interferon response is associated with enhanced virulence (2006) J. Virol., 80, pp. 3009-3020; Ramanan, P., Edwards, M.R., Shabman, R.S., Leung, D.W., Endlich-Frazier, A.C., Borek, D.M., Otwinowski, Z., Amarasinghe, G.K., Structural basis for Marburg virus VP35-mediated immune evasion mechanisms (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 20661-20666; Valmas, C., Basler, C.F., Marburg virus VP40 antagonizes interferon signaling in a species-specific manner (2011) J. Virol., 85, pp. 4309-4317; Takayama, I., Sato, H., Watanabe, A., Omi-Furutani, M., Sugai, A., Kanki, K., Yoneda, M., Kai, C., The nucleocapsid protein of measles virus blocks host interferon response (2012) Virology, 424, pp. 45-55; Ramachandran, A., Parisien, J.P., Horvath, C.M., STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition (2008) J. Virol., 82, pp. 8330-8338; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Müller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495; Kubota, T., Yokosawa, N., Yokota, S., Fujii, N., Tashiro, M., Kato, A., Mumps virus V protein antagonizes interferon without the complete degradation of STAT1 (2005) J. Virol., 79, pp. 4451-4459; Shaw, M.L., Garcia-Sastre, A., Palese, P., Basler, C.F., Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively (2004) J. Virol., 78, pp. 5633-5641; Brzozka, K., Finke, S., Conzelmann, K.K., Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2 (2006) J. Virol., 80, pp. 2675-2683; Brzozka, K., Finke, S., Conzelmann, K.K., Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3 (2005) J. Virol., 79, pp. 7673-7681; Lieu, K.G., Brice, A., Wiltzer, L., Hirst, B., Jans, D.A., Blondel, D., Moseley, G.W., The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling (2013) J. Virol., 87, pp. 8261-8265; Barro, M., Patton, J.T., Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7 (2007) J. Virol., 81, pp. 4473-4481; Graff, J.W., Ettayebi, K., Hardy, M.E., Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP: a novel mechanism of IFN antagonism (2009) PLoS Pathog., 5; Siu, K.L., Chan, C.P., Kok, K.H., Chiu-Yat Woo, P., Jin, D.Y., Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain (2014) Cell. Mol. Immunol., 11, pp. 141-149; Siu, K.L., Kok, K.H., Ng, M.H., Poon, V.K., Yuen, K.Y., Zheng, B.J., Jin, D.Y., Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex (2009) J. Biol. Chem., 284, pp. 16202-16209; Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 12885-12890; Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.T., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J. Virol., 82, pp. 4471-4479; Wathelet, M.G., Orr, M., Frieman, M.B., Baric, R.S., Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain (2007) J. Virol., 81, pp. 11620-11633; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Li, K., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J. Biol. Chem., 282, pp. 32208-32221; Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., Baric, R.S., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J. Virol., 81, pp. 9812-9824; Xiang, Y., Condit, R.C., Vijaysri, S., Jacobs, B., Williams, B.R., Silverman, R.H., Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus (2002) J. Virol., 76, pp. 5251-5259; Davies, M.V., Chang, H.W., Jacobs, B.L., Kaufman, R.J., The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms (1993) J. Virol., 67, pp. 1688-1692; Alcami, A., Symons, J.A., Smith, G.L., The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN (2000) J. Virol., 74, pp. 11230-11239; Laurent-Rolle, M., Boer, E.F., Lubick, K.J., Wolfinbarger, J.B., Carmody, A.B., Rockx, B., Liu, W., Best, S.M., The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling (2010) J. Virol., 84, pp. 3503-3515; Guo, J.T., Hayashi, J., Seeger, C., West Nile virus inhibits the signal transduction pathway of alpha interferon (2005) J. Virol., 79, pp. 1343-1350; Laurent-Rolle, M., Morrison, J., Rajsbaum, R., Macleod, J.M., Pisanelli, G., Pham, A., Miorin, J.A.L., Garcia-Sastre, A., The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon (2014) Cell Host Microbe, 16, pp. 314-327; Kumar, A., Hou, S., Airo, A.M., Limonta, D., Mancinelli, V., Branton, W., Power, C., Hobman, T.C., Zika virus inhibits type-I interferon production and downstream signaling (2016) EMBO Rep., 17, pp. 1766-1775; World Heath Organization, https://www.who.int, 2019 (accessed July 31, 2019); Negro, F., Adverse effects of drugs in the treatment of viral hepatitis (2010) Best Pract. Res. Clin. Gastroenterol., 24, pp. 183-192; Dhillon, S., Kaker, A., Dosanjh, A., Japra, D., Vanthiel, D.H., Irreversible pulmonary hypertension associated with the use of interferon alpha for chronic hepatitis C (2010) Dig. Dis. Sci., 55, pp. 1785-1790; Kim, S.R., Imoto, S., Mita, K., Taniguchi, M., Sasase, N., Muramatsu, A., Kudo, M., Hayashi, Y., Pegylated interferon plus ribavirin combination therapy for chronic hepatitis C with high viral load of serum hepatitis C virus RNA, genotype 1b, discontinued on attaining sustained virological response at week 16 after onset of acute pancreatitis (2009) Digestion, 79, pp. 36-39; Yamazaki, M., Sato, A., Takeda, T., Komatsu, M., Distinct clinical courses in type 1 diabetes mellitus induced by peg-interferon-alpha treatment for chronic hepatitis C (2010) Int. Med., 49, pp. 403-407; Formann, E., Jessner, W., Bennett, L., Ferenci, P., Twice-weekly administration of peginterferon-alpha-2b improves viral kinetics in patients with chronic hepatitis C genotype 1 (2003) J. Viral Hepat., 10, pp. 271-276; Mangia, A., Santoro, R., Minerva, N., Ricci, G.L., Carretta, V., Persico, M., Vinelli, F., Andriulli, A., Peginterferon alfa-2b and ribavirin for 12 vs. 24 weeks in HCV genotype 2 or 3 (2005) N. Engl. J. Med., 352, pp. 2609-2617; Shiffman, M.L., Suter, F., Bacon, B.R., Nelson, D., Harley, H., Sola, R., Shafran, S.D., Zeuzem, S., ACCELERATE Investigators, Peginterferon alfa-2a and ribavirin for 16 or 24 weeks in HCV genotype 2 or 3 (2007) N. Engl. J. Med., 357, pp. 124-134; Yu, M.L., Dai, C.Y., Huang, J.F., Hou, N.J., Lee, L.P., Hsieh, M.Y., Chiu, C.F., Chuang, W.L., A randomised study of peginterferon and ribavirin for 16 versus 24 weeks in patients with genotype 2 chronic hepatitis C (2007) Gut, 56, pp. 553-559; Dalgard, O., Bjoro, K., Ring-Larsen, H., Bjornsson, E., Holberg-Petersen, M., Skovlund, E., Reichard, O., Verbaan, H., North-C Group, Pegylated interferon alfa and ribavirin for 14 versus 24 weeks in patients with hepatitis C virus genotype 2 or 3 and rapid virological response (2008) Hepatology, 47, pp. 35-42; Varghese, R., Al-Khaldi, J., Asker, H., Fadili, A.A., Al Ali, J., Hassan, F.A., Treatment of chronic hepatitis C genotype 4 with peginterferon alpha-2a plus ribavirin (2009) Hepatogastroenterology, 56, pp. 218-222; Manns, M.P., McHutchison, J.G., Gordon, S.C., Rustgi, V.K., Shiffman, M., Reindollar, R., Goodman, Z.D., Albrecht, J.K., Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial (2001) Lancet, 358, pp. 958-965; Fried, M.W., Shiffman, M.L., Reddy, K.R., Smith, C., Marinos, G., Goncales, F.L., Jr., Haussinger, D., Yu, J., Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection (2002) N. Engl. J. Med., 347, pp. 975-982; Hadziyannis, S.J., Sette, H., Jr., Morgan, T.R., Balan, V., Diago, M., Marcellin, P., Ramadori, G., Ackrill, A.M., PEGASYS International Study Group, Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose (2004) Ann. Intern. Med., 140, pp. 346-355; Legrand-Abravanel, F., Colson, P., Leguillou-Guillemette, H., Alric, L., Ravaux, I., Lunel-Fabiani, F., Bouviers-Alias, M., Izopet, J., Influence of the HCV subtype on the virological response to pegylated interferon and ribavirin therapy (2009) J. Med. Virol., 81, pp. 2029-2035; Inoue, Y., Hiramatsu, N., Oze, T., Yakushijin, T., Mochizuki, K., Hagiwara, H., Oshita, M., Hayashi, N., Factors affecting efficacy in patients with genotype 2 chronic hepatitis C treated by pegylated interferon alpha-2b and ribavirin: reducing drug doses has no impact on rapid and sustained virological responses (2010) J. Viral Hepat., 17, pp. 336-344; Poordad, F., Reddy, K.R., Martin, P., Rapid virologic response: a new milestone in the management of chronic hepatitis C (2008) Clin. Infect. Dis., 46, pp. 78-84; Federico, A., Masarone, M., Romano, M., Dallio, M., Rosato, V., Persico, M., Rapid virological response represents the highest prediction factor of response to antiviral treatment in HCV-related chronic hepatitis: a multicenter retrospective study (2015) Hepat. Mon., 15; Kim, K.A., Lin, W., Tai, A.W., Shao, R.X., Weinberg, E., De Sa Borges, C.B., Bhan, A.K., Chung, R.T., Hepatic SOCS3 expression is strongly associated with non-response to therapy and race in HCV and HCV/HIV infection (2009) J. Hepatol., 50, pp. 705-711; Persico, M., Capasso, M., Russo, R., Persico, E., Croce, L., Tiribelli, C., Iolascon, A., Elevated expression and polymorphisms of SOCS3 influence patient response to antiviral therapy in chronic hepatitis C (2008) Gut, 57, pp. 507-515; Hijikata, M., Ohta, Y., Mishiro, S., Identification of a single nucleotide polymorphism in the MxA gene promoter (G/T at nt –88) correlated with the response of hepatitis C patients to interferon (2000) Intervirology, 43, pp. 124-127; Matsuyama, N., Mishiro, S., Sugimoto, M., Furuichi, Y., Hashimoto, M., Hijikata, M., Ohta, Y., The dinucleotide microsatellite polymorphism of the IFNAR1 gene promoter correlates with responsiveness of hepatitis C patients to interferon (2003) Hepatol. Res., 25, pp. 221-225; Pang, P.S., Planet, P.J., Glenn, J.S., The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy (2009) PLoS One, 4, p. e6579; Brunetto, M.R., Moriconi, F., Bonino, F., Lau, G.K., Farci, P., Yurdaydin, C., Piratvisuth, T., Marcellin, P., Hepatitis B virus surface antigen levels: a guide to sustained response to peginterferon alfa-2a in HBeAg-negative chronic hepatitis B (2009) Hepatology, 49, pp. 1141-1150; Caruntu, F.A., Streinu-Cercel, A., Gheorghe, L.S., Grigorescu, M., Sporea, I., Stanciu, C., Andronescu, D., Voiosu, R., Efficacy and safety of peginterferon alpha-2a (40KD) in HBeAg-positive chronic hepatitis B patients (2009) J. Gastrointestin. Liver Dis., 18, pp. 425-431; Keating, G.M., Peginterferon-alpha-2a (40 kD): a review of its use in chronic hepatitis B (2009) Drugs, 69, pp. 2633-2660; Alric, L., Bonnet, D., Laurent, G., Kamar, N., Izopet, J., Chronic hepatitis E virus infection: successful virologic response to pegylated interferon-alpha therapy (2010) Ann. Intern. Med., 153, pp. 135-136; Kamar, N., Abravanel, F., Garrouste, C., Cardeau-Desangles, I., Mansuy, J.M., Weclawiak, H., Izopet, J., Rostaing, L., Three-month pegylated interferon-alpha-2a therapy for chronic hepatitis E virus infection in a haemodialysis patient (2010) Nephrol. Dial. Transplant., 25, pp. 2792-2795; van de Garde, M.D.B., Pas, S.D., van Oord, G.W., Gama, L., Choi, Y., de Man, R.A., Boonstra, A., Vanwolleghem, T., Interferon-alpha treatment rapidly clears Hepatitis E virus infection in humanized mice (2017) Sci. Rep., 7, p. 8267; Haagmans, B.L., Kuiken, T., Martina, B.E., Fouchier, R.A., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Osterhaus, A.D., Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nat. Med., 10, pp. 290-293; Blatt, L.M., Davis, J.M., Klein, S.B., Taylor, M.W., The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon (1996) J. Interferon Cytokine Res., 16, pp. 489-499; Klein, S.B., Blatt, L.M., Taylor, M.W., Cell surface binding characteristics correlate with consensus type I interferon enhanced activity (1996) J. Interferon Cytokine Res., 16, pp. 1-6; Melian, E.B., Plosker, G.L., IFN alfacon-1: a review of pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C (2001) Drugs, 61, pp. 1661-1691; Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Ward, S., Wolff, B., Lho, H., Pham, D.H., Fish, E.N., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study (2003) JAMA, 290, pp. 3222-3228; Kumaki, Y., Day, C.W., Wandersee, M.K., Schow, B.P., Madsen, J.S., Grant, D., Roth, J.P., Barnard, D.L., Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu-3 cells (2008) Biochem. Biophys. Res. Commun., 371, pp. 110-113; Kumaki, Y., Day, C.W., Bailey, K.W., Wandersee, M.K., Wong, M.H., Madsen, J.R., Madsen, J.S., Barnard, D.L., Induction of interferon-gamma-inducible protein 10 by SARS-CoV infection, interferon alfacon 1 and interferon inducer in human bronchial epithelial Calu-3 cells and BALB/c mice (2010) Antivir. Agents Chemother., 20, pp. 169-177; Smith, L.M., Hensley, L.E., Geisbert, T.W., Johnson, J., Stossel, A., Honko, A., Yen, J.Y., Karp, C.L., Interferon Β therapy prolongs survival in rhesus macaque models of Ebola and Marburg hemorrhagic fever (2013) J. Infect. Dis., 208, pp. 310-318; Jahrling, P.B., Geisbert, T.W., Geisbert, J.B., Swearengen, J.R., Bray, M., Jaax, N.K., Huggins, J.W., Peters, C.J., Evaluation of immune globulin and recombinant interferon-Α2b for treatment of experimental Ebola virus infections (1999) J. Infect. Dis., 179, pp. S224-234; Qiu, X., Wong, G., Fernando, L., Aubet, J., Bello, A., Strong, J., Alimonti, J.B., Kobinger, G.P., mABs and Ad-vectored IFN-Α therapy rescue Ebola-infected nonhuman primates when administered after the detection of viremia and symptoms (2013) Sci. Transl. Med., 5, p. 207ra. , 143; McCarthy, S.D.S., Majchrzak-Kita, B., Racine, T., Kozlowski, H.N., Baker, D.P., Hoenen, T., Kobinger, G.P., Branch, D.R., A rapid screening assay identifies monotherapy with interferon-Β and combination therapies with nucleoside analogs as effective inhibitors of Ebola virus (2016) PLoS Negl. Trop. Dis., 10; Konde, M.K., Baker, D.P., Traore, F.A., Sow, M.S., Camara, A., Barry, A.A., Mara, D., Fish, E.N., Interferon Β-1a for the treatment of Ebola virus disease: a historically controlled, single-arm proof-of-concept trial (2017) PLoS One, 12; Wang, B.X.W.B.X., Wei, L., Kotra, L.P., Brown, E.G., Fish, E.N., A conserved residue, tyrosine (Y) 84, in H5N1 influenza A virus NS1 regulates IFN signaling responses to enhance viral infection (2017) Viruses, 9, p. E107; Slonchak, A., Clarke, B., Mackenzie, J., Amarilla, A.A., Setoh, Y.X., Khromykh, A.A., West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles (2019) BMC Genomics, 20, p. 474; Konishi, H., Okamoto, K., Ohmori, Y., Yoshino, H., Ohmori, H., Ashihara, M., Hirata, Y., Sudoh, M., An orally available, small-molecule interferon inhibits viral replication (2012) Sci. Rep., 2, p. 259; Furutani, Y., Toguchi, M., Shiozaki-Sato, Y., Qin, X.Y., Ebisui, E., Higuchi, S., Sudoh, M., Kojima, S., An interferon-like small chemical compound CDM-3008 suppresses hepatitis B virus through induction of interferon-stimulated genes (2019) PLoS One, 14; Sun, J., Ennis, J., Turner, J.D., Chu, J.J., Single dose of an adenovirus vectored mouse interferon-Α protects mice from lethal EV71 challenge (2016) Antiviral Res., 134, pp. 207-215; Richardson, J.S., Wong, G., Pillet, S., Schindle, S., Ennis, J., Turner, J., Strong, J.E., Kobinger, G.P., Evaluation of different strategies for post-exposure treatment of Ebola virus infection in rodents (2011) J. Bioterror. Biodef., S1, p. 007; Dagley, A., Ennis, J., Turner, J.D., Rood, K.A., Van Wettere, A.J., Gowen, B.B., Julander, J.G., Protection against Chikungunya virus induced arthralgia following prophylactic treatment with adenovirus vectored interferon (mDEF201) (2014) Antiviral Res., 108, pp. 1-9; Gowen, B.B., Ennis, J., Bailey, K.W., Vest, Z., Scharton, D., Sefing, E.J., Turner, J.D., Single-dose intranasal treatment with DEF201 (adenovirus vectored consensus interferon) prevents lethal disease due to Rift Valley fever virus challenge (2014) Viruses, 6, pp. 1410-1423; Baek, Y.H., Song, M.S., Lee, E.-Y., Kim, Y.I., Kim, E.H., Park, S.J., Park, K.J., Choi, Y.K., Profiling and characterization of influenza N1 strains potentially resistant to multiple neuraminidase inhibitors (2015) J. Virol., 89, pp. 287-299","Fish, E.N.; Toronto General Hospital Research Institute, University Health Network, 67 College Street, Canada; email: en.fish@utoronto.ca",,"Academic Press",10445323,,SEIME,"31771760","English","Semin. Immunol.",Review,"Final",Open Access,Scopus,2-s2.0-85075407523 "Valkó A., Bálint Á., Bozsa Á., Cságola A.","57194560762;8308795400;57205359697;13003178800;","Prevalence of antibodies against transmissible gastroenteritis virus (TGEV) in Hungary",2019,"Veterinary and Animal Science","7",, 100042,"","",,,"10.1016/j.vas.2018.11.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059743841&doi=10.1016%2fj.vas.2018.11.003&partnerID=40&md5=297f52916e3638bf1ea7bec88a436328","Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23-25, Budapest, 1143, Hungary; National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2, Budapest, 1149, Hungary; Ceva-Phylaxia Co. Ltd, Szállás u. 5, Budapest, 1107, Hungary","Valkó, A., Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23-25, Budapest, 1143, Hungary; Bálint, Á., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2, Budapest, 1149, Hungary; Bozsa, Á., National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2, Budapest, 1149, Hungary; Cságola, A., Ceva-Phylaxia Co. Ltd, Szállás u. 5, Budapest, 1107, Hungary","Transmissible gastroenteritis (TGE) is a highly contagious enteric disease of swine, which became infrequent with the appearance of porcine respiratory coronavirus (PRCV). TGE was last reported in Hungary in 2013 and the virus has not been found since, therefore a serological survey was planned to estimate the level of protection against it. 908 sera of sows from 93 farms were selected together with 174 archive samples from one farm covering a wider age group. All samples were screened with an indirect immunofluorescence (IF) test with a positive result of 15.42% and 17.82%, respectively. All IF-positive samples were examined with a commercial ELISA, revealing seropositivity against PRCV in almost all cases. These findings should serve as a recommendation to not omit TGE from the diagnostics of diarrhoea in swine. © 2018 The Authors","ELISA; Hungary; Indirect immunofluorescence; Transmissible gastroenteritis","Article; blood sampling; enzyme linked immunosorbent assay; groups by age; Hungary; immunofluorescence test; nonhuman; pig farming; porcine epidemic diarrhea; Porcine respiratory coronavirus; prevalence; sow (swine); statistically significant result; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus","Ballesteros, M.L., Sanchez, C.M., Enjuanes, L., Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism (1997) Virology, 227, pp. 378-388; Carman, S., Josephson, G., McEwen, B., Maxie, G., Antochi, M., Eernisse, K., Field validation of a commercial blocking ELISA to differentiate antibody to transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus and to identify TGEV-infected swine herds (2002) Journal of Veterinary Diagnostic Investigation, 14, pp. 97-105; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) Journal of the American Veterinary Medical Association, 108, pp. 257-259; Laude, H., Van Reeth, K., Pensaert, M., Porcine respiratory coronavirus: Molecular features and virus-host interactions (1993) Veterinary Research, 24, pp. 125-150; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) Journal of Virology, 89, pp. 3332-3342; Lőrincz, M., Biksi, I., Andersson, S., Cságola, A., Tuboly, T., Sporadic re-emergence of enzootic porcine transmissible gastroenteritis in Hungary (2013) Acta Veterinaria Hungarica, 62, pp. 125-133; Miyazaki, A., Fukuda, M., Kuga, K., Takagi, M., Tsunemitsu, H., Prevalence of antibodies against transmissible gastroenteritis virus and porcine respiratory coronavirus among pigs in six regions in Japan (2010) Journal of Veterinary Medical Science, 72, pp. 943-946; Pensaert, M., Cox, E., Van Deun, K., Callebaut, P., A sero-epizootiological study of porcine respiratory coronavirus in belgian swine (1993) Veterinary Quarterly, 15, pp. 16-20; Saif, L.J., Pensaert, M.P., Sestak, K., Yeo, S., Jung, K., Coronaviruses (2012) Diseases of swine, pp. 1821-1914. , J.J. Zimmerman L.A. Karriker A. Ramirez K.J. Schwartz G.W. Stevenson Wiley-Blackwell New Jersey; Tuboly, T., Nagy, É., Construction and characterization of recombinant porcine adenovirus serotype 5 expressing the transmissible gastroenteritis virus spike gene (2001) Journal of General Virology, 82, pp. 183-190","Valkó, A.; Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23-25, Hungary; email: valko.anna@univet.hu",,"Elsevier B.V.",2451943X,,,,"English","Vet. Animal Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85059743841 "Chen I.-C.M., Loh J.P., Chuah C.X.P., Christine Gao Q.H., Sun Y., Ng S.H., Koh W.-H.V., Goh E.H., Zhao X., Tambyah P.A., Cook A.R., Chng J., Pang J., Tan B.-H., Lee V.J.","57210803344;43861544000;57205669706;57210792145;57208883449;35102935200;56123831600;57191832534;56124278500;35499886400;23392022000;36809220000;53880337700;56061612500;57189576036;","Evidence for cross-protection against subsequent febrile respiratory illness episodes from prior infections by different viruses among singapore military recruits 2009-2014",2019,"Journal of Infectious Diseases","219","12",,"1913","1923",,1,"10.1093/infdis/jiz046","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066944628&doi=10.1093%2finfdis%2fjiz046&partnerID=40&md5=62f80aac5ffa598e377d9303976fd9e0","Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital System, Singapore; Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Infectious Disease Research and Training Office, National Centre for Infectious Diseases, Singapore; DSO National Laboratories, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Biodefence Centre, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Infection and Immunity, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore","Chen, I.-C.M., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore, Infectious Disease Research and Training Office, National Centre for Infectious Diseases, Singapore; Loh, J.P., DSO National Laboratories, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Chuah, C.X.P., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Christine Gao, Q.H., Biodefence Centre, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Sun, Y., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore, Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Ng, S.H., DSO National Laboratories, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Koh, W.-H.V., DSO National Laboratories, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Goh, E.H., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Zhao, X., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Tambyah, P.A., Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital System, Singapore; Cook, A.R., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Chng, J., Biodefence Centre, Headquarters Medical Corps, Singapore Armed Forces, Singapore; Pang, J., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore, Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore; Tan, B.-H., DSO National Laboratories, Headquarters Medical Corps, Singapore Armed Forces, Singapore, Infection and Immunity, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Lee, V.J., Saw Swee Hock School of Public Health, National University of Singapore, National University Hospital System, Singapore, Biodefence Centre, Headquarters Medical Corps, Singapore Armed Forces, Singapore","Background. Few studies have evaluated the relative cross-protection conferred by infection with different groups of viruses through studies of sequential infections in humans. We investigated the presence of short-lived relative cross-protection conferred by specific prior viral infections against subsequent febrile respiratory illness (FRI). Methods. Men enlisted in basic military training between December 2009 and December 2014 were recruited, with the first FRI as the study entry point. ResPlex II assays and real-time polymerase chain reaction assays were used to detect viral pathogens in nasal wash samples, and survival analyses were performed to determine whether infection with particular viruses conferred short-lived relative cross-protection against FRI. Results. Prior infection with adenovirus (hazard ratio [HR], 0.24; 95% confidence interval [CI],.14-.44) or influenza virus (HR, 0.52; 95% CI,.38-.73) conferred relative protection against subsequent FRI episode. Results were statistically significant even after adjustment for the interval between enlistment and FRI (P <.001). Adenovirus-positive participants with FRI episodes tended to be protected against subsequent infection with adenovirus, coronavirus, enterovirus/rhinovirus, and influenza virus (P =.062-.093), while men with influenza virus-positive FRI episodes tended be protected against subsequent infection with adenovirus (P =.044) and influenza virus (P =.081). Conclusion. Prior adenovirus or influenza virus infection conferred cross-protection against subsequent FRI episodes relative to prior infection due to other circulating viruses. © 2019 The Author(s).","Antibodies; Cell-mediated immunity; Cohort studies; Cross-protection; Serology; Surveillance; Vaccine","Adenoviridae; adult; Article; cellular immunity; clinical feature; cohort analysis; controlled study; Coronavirinae; disease control; disease course; Enterovirus; evidence based practice; febrile respiratory illness; female; human; infection control; Influenza virus; major clinical study; male; nose smear; population distribution; priority journal; real time polymerase chain reaction; respiratory tract disease; Rhinovirus; Singapore; soldier; survival rate; virus detection; virus infection; virus load; virus virulence; cross protection; immunology; military personnel; respiratory tract infection; survival analysis; virology; virus; virus infection; Cross Protection; Female; Humans; Male; Military Personnel; Respiratory Tract Infections; Singapore; Survival Analysis; Virus Diseases; Viruses","McKinney, H.H., Mosaic diseases in the Canary Islands, West Africa and Gibraltar (1929) J Agric Res, 39, pp. 577-578; Henle, W., Interference phenomena between animal viruses; A review (1950) J Immunol, 64, pp. 203-236; Isaacs, A., Lindenmann, J., Classics in oncology: Virus interference: I. The interferon (1988) CA Cancer J Clin, 38, pp. 280-290; Chan, K.F., Carolan, L.A., Korenkov, D., Investigating viral interference between influenza a virus and human respira-tory syncytial virus in a ferret model of infection (2018) J Infect Dis, 218, pp. 406-417; Costa-Hurtado, M., Afonso, C.L., Miller, P.J., Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys (2014) Vet Res, 45, p. 1; Laurie, K.L., Guarnaccia, T.A., Carolan, L.A., Interval between infections and viral hierarchy are determinants of viral interference following influenza virus infection in a ferret model (2015) J Infect Dis, 212, pp. 1701-1710; Yang, L., Chan, K.H., Suen, L.K.P., Impact of the 2009 H1N1 pandemic on age-specific epidemic curves of other respiratory viruses: A comparison of pre-pandemic, pandemic and post-pandemic periods in a subtropical city (2015) PLoS One, 10, p. e0125447; Van, A.L., Bijkerk, P., Fanoy, E., Early occurrence of influenza A epidemics coincided with changes in occurrence of other respiratory virus infections (2016) Influenza Other Respir Viruses, 10, pp. 14-26; Zheng, X., Song, Z., Li, Y., Zhang, J., Wang, X.-L., Possible interference between seasonal epidemics of influenza and other respiratory viruses in Hong Kong, 2014-2017 (2017) BMC Infect Dis, 17, p. 772; Linde, A., Rotzén-Ostlund, M., Zweygberg-Wirgart, B., Rubinova, S., Brytting, M., Does viral interference affect spread of influenza? (2009) Euro Surveill Bull, 14 (40); Wang, Z., Malanoski, A.P., Lin, B., Broad spectrum respiratory pathogen analysis of throat swabs from military recruits reveals interference between rhinoviruses and adenoviruses (2010) Microb Ecol, 59, pp. 623-634; Greer, R.M., McErlean, P., Arden, K.E., Do rhinoviruses reduce the probability of viral co-detection during acute respiratory tract infections? (2009) J Clin Virol, 45, pp. 10-15; Casalegno, J.S., Ottmann, M., Duchamp, M.B., Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France (2010) Clin Microbiol Infect, 16, pp. 326-329; Ho, H.P., Zhao, X., Pang, J., Effectiveness of seasonal influenza vaccinations against laboratory-confirmed influenza-associated infections among Singapore military personnel in 2010-2013 (2014) Influenza Other Respir Viruses, 8, pp. 557-566; Pang, J., Jin, J., Loh, J.P., Risk factors for febrile respiratory illness and mono-viral infections in a semi-closed military environment: A case-control study (2015) BMC Infect Dis, 15, p. 288; Tan, X.Q., Zhao, X., Lee, V.J., Respiratory viral pathogens among Singapore military servicemen 2009-2012: Epidemiology and clinical characteristics (2014) BMC Infect Dis, 14, p. 204; Hsu, J.P., Zhao, X., Mi-C, C., Rate of decline of antibody titers to pandemic influenza A (H1N1-2009) by he-magglutination inhibition and virus microneutralization assays in a cohort of seroconverting adults in Singapore (2014) BMC Infect Dis, 14, p. 414; Young, B., Sadarangani, S., Jiang, L., Wilder-Smith, A., Chen, M.I., Duration of influenza vaccine effectiveness: A systematic review, meta-analysis, and meta-regression of test-negative design case-control studies (2018) J Infect Dis, 217, pp. 731-741; Young, B., Zhao, X., Cook, A.R., Parry, C.M., Wilder-Smith, A., I-Cheng, M.C., Do antibody responses to the influenza vaccine persist year-round in the elderly? A systematic review and meta-analysis (2017) Vaccine, 35, pp. 212-221; Goh, E.H., Jiang, L., Hsu, J.P., Epidemiology and relative severity of influenza subtypes in Singapore in the post-pandemic period from 2009 to 2010 (2017) Clin Infect Dis, 65, pp. 1905-1913; Schultz-Cherry, S., Viral interference: The case of influenza viruses (2015) J Infect Dis, 212, pp. 1690-1691; Takeda, K., Akira, S., Toll-like receptors (2007) Curr Protoc Immunol, , Chapter 14:Unit 14.12; Khaitov, M.R., Laza-Stanca, V., Edwards, M.R., Respiratory virus induction of alpha-, beta-and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells (2009) Allergy, 64, pp. 375-386; Pinky, L., Dobrovolny, H.M., Coinfections of the respiratory tract: Viral competition for resources (2016) PLoS One, 11, p. e0155589; Anestad, G., Interference between outbreaks of respiratory syncytial virus and influenza virus infection (1982) Lancet, 1, p. 502; Lau, Y.-F., W-Hv, K., Kan, C., Epidemiologic analysis of respiratory viral infections among Singapore military servicemen in 2016 (2018) BMC Infect Dis, 18, p. 123; Beilharz, M.W., Cummins, M.J., Bennett, A.L., Cummins, J.M., Oromucosal administration of interferon to humans (2010) Pharmaceuticals (Basel), 3, pp. 323-344; Jiang, L., Lee, V.J., Cui, L., Detection of viral respiratory pathogens in mild and severe acute respiratory infections in Singapore (2017) Sci Rep, 7, p. 42963","Chen, I.-C.M.16 Jalan Tan Tock Seng, Singapore; email: mark_ic_chen@ncid.sg",,"Oxford University Press",00221899,,JIDIA,"30722024","English","J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85066944628 "LIU G.S., LI H., ZHAO S.C., LU R.J., NIU P.H., TAN W.J.","57203376871;57209656874;57204690915;7402970093;56810700700;7401959748;","Viral and Bacterial Etiology of Acute Febrile Respiratory Syndrome among Patients in Qinghai, China",2019,"Biomedical and Environmental Sciences","32","6",,"438","445",,1,"10.3967/bes2019.058","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068358335&doi=10.3967%2fbes2019.058&partnerID=40&md5=650fff8c1c5de71b28a95885add3b4f6","NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Center for Disease Control and Prevention of Qinghai Province, Xining, Qinghai 810007, China","LIU, G.S., NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; LI, H., Center for Disease Control and Prevention of Qinghai Province, Xining, Qinghai 810007, China; ZHAO, S.C., Center for Disease Control and Prevention of Qinghai Province, Xining, Qinghai 810007, China; LU, R.J., NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; NIU, P.H., NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; TAN, W.J., NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China","Objective: This study was conducted to investigate the viral and bacterial etiology and epidemiology of patients with acute febrile respiratory syndrome (AFRS) in Qinghai using a commercial routine multiplex-ligation-nucleic acid amplification test (NAT)-based assay. Methods: A total of 445 nasopharyngeal swabs specimens from patients with AFRS were analyzed using the RespiFinderSmart22kit (PathoFinder BV, Netherlands) and the LightCycler 480 real-time PCR system. Results: Among the 225 (225/445, 51%) positive specimens, 329 positive pathogens were detected, including 298 (90.58%) viruses and 31 (9%) bacteria. The most commonly detected pathogens were influenza virus (IFV; 37.39%; 123/329), adenovirus (AdV; 17.02%; 56/329), human coronaviruses (HCoVs; 10.94%; 36/329), rhinovirus/enterovirus (RV/EV; 10.03%; 33/329), parainfluenza viruses (PIVs; 8.51%; 28/329), and Mycoplasma pneumoniae (M. pneu; 8.51%; 28/329), respectively. Among the co-infected cases (17.53%; 78/445), IFV/AdV and IFV/M. pneu were the most common co-infections. Most of the respiratory viruses were detected in summer and fall. Conclusion: In our study, IFV-A was the most common respiratory pathogen among 22 detected pathogens, followed by AdV, HCoV, RV/EV, PIV, and M. pneu. Bacteria appeared less frequently than viruses, and co-infection was the most common phenomenon among viral pathogens. Pathogens were distributed among different age groups and respiratory viruses were generally active in July, September, and November. Enhanced surveillance and early detection can be useful in the diagnosis, treatment, and prevention of AFRS, as well as for guiding the development of appropriate public health strategies. © 2019 The Editorial Board of Biomedical and Environmental Sciences","Acute febrile respiratory syndrome; Prevalence; Seasonal distribution; Viral and bacterial etiology","adolescent; adult; age; aged; child; China; female; human; infant; male; middle aged; nasopharynx; preschool child; season; sentinel surveillance; severe acute respiratory syndrome; virology; young adult; Adolescent; Adult; Age Factors; Aged; Child; Child, Preschool; China; Female; Humans; Infant; Male; Middle Aged; Nasopharynx; Seasons; Sentinel Surveillance; Severe Acute Respiratory Syndrome; Young Adult","Goktas, S., Sirin, M.C., Prevalence and Seasonal Distribution of Respiratory Viruses During the 2014 - 2015 Season in Istanbul (2016) Jundishapur J Microbiol, 9; WHO, the top 10 global causes of deaths (2016), http://www.who.int/mediacentre/factsheets/fs310/en/, [2018-5-24]; Njouom, R., Yekwa, E.L., Cappy, P., Viral etiology of influenza-like illnesses in Cameroon, January-December 2009 (2012) J Infect Dis, 206, pp. S29-S35; Paba, P., Farchi, F., Mortati, E., Screening of respiratory pathogens by Respiratory Multi Well System (MWS) r-gene assay in hospitalized patients (2014) New Microbiol, 37, pp. 231-236; Dabisch-Ruthe, M., Vollmer, T., Adams, O., Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay (2012) BMC Infect Dis, 12, p. 163; Bruijnesteijn van Coppenraet, L.E., Swanink, C.M., van Zwet, A.A., Comparison of two commercial molecular assays for simultaneous detection of respiratory viruses in clinical samples using two automatic electrophoresis detection systems (2010) J Virol Methods, 169, pp. 188-192; Paranhos-Baccala, G., Komurian-Pradel, F., Richard, N., Mixed respiratory virus infections (2008) J Clin Virol, 43, pp. 407-410; Brittain-Long, R., Westin, J., Olofsson, S., Prospective evaluation of a novel multiplex real-time PCR assay for detection of fifteen respiratory pathogens-duration of symptoms significantly affects detection rate (2010) J Clin Virol, 47, pp. 263-267; Yu, J., Xie, Z., Zhang, T., Comparison of the prevalence of respiratory viruses in patients with acute respiratory infections at different hospital settings in North China, 2012-2015 (2018) BMC Infect Dis, 18, p. 72; Liu, G.S., Niu, P.H., Zhao, S.C., Detection of six common human paramyxoviruses in patients with acute febrile respiratory symptoms using a novel multiplex real-time RT-PCR assay (2019) J Med Virol, 91, pp. 564-569; Niu, P., Shen, J., Zhu, N., Two-tube multiplex real-time reverse transcription PCR to detect six human coronaviruses (2016) Virol Sin, 31, pp. 85-88; Zaas, A.K., Garner, B.H., Tsalik, E.L., The current epidemiology and clinical decisions surrounding acute respiratory infections (2014) Trends Mol Med, 20, pp. 579-588; Pillet, S., Lardeux, M., Dina, J., Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections (2013) PLoS One, 8; Quick, J., Cumley, N., Wearn, C.M., Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing (2014) BMJ Open, 4; Yoshii, Y., Shimizu, K., Morozumi, M., Detection of pathogens by real-time PCR in adult patients with acute exacerbation of bronchial asthma (2017) BMC Pulm Med, 17, p. 150; Chen, H., Weng, H., Lin, M., The Clinical Significance of FilmArray Respiratory Panel in Diagnosing Community-Acquired Pneumonia (2017) Biomed Res Int, 2017; Parrott, G., Kinjo, T., Nabeya, D., Evaluation of Anyplex II RV16 and RB5 real-time RT-PCR compared to Seeplex (R) RV15 OneStep ACE and PneumoBacter ACE for the simultaneous detection of upper respiratory pathogens (2017) J Infect Chemother, 23, pp. 859-861; Richter, J., Panayiotou, C., Tryfonos, C., Aetiology of Acute Respiratory Tract Infections in Hospitalised Children in Cyprus (2016) PLoS One, 11; Do, A.H., van Doorn, H.R., Nghiem, M.N., Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008 (2011) PLoS One, 6; Brittain-Long, R., Nord, S., Olofsson, S., Multiplex real-time PCR for detection of respiratory tract infections (2008) J Clin Virol, 41, pp. 53-56; Javadi, A., Adibi, P., Ataei, B., Surveillance of acute respiratory infections among outpatients: A pilot study in Isfahan city (2015) J Res Med Sci, 20, pp. 115-121; Cicek, C., Arslan, A., Karakus, H.S., Prevalence and seasonal distribution of respiratory viruses in patients with acute respiratory tract infections, 2002-2014 (2015) Mikrobiyol Bul, 49, pp. 188-200; Yuksel, H., Yilmaz, O., Akcali, S., Common viral etiologies of community acquired lower respiratory tract infections in young children and their relationship with long term complications (2008) Mikrobiyol Bul, 42, pp. 429-435; Liao, X., Hu, Z., Liu, W., New Epidemiological and Clinical Signatures of 18 Pathogens from Respiratory Tract Infections Based on a 5-Year Study (2015) PLoS One, 10; Li, Y., Zhou, W., Zhao, Y., Molecular typing and epidemiology profiles of human adenovirus infection among paediatric patients with severe acute respiratory infection in China (2015) PLoS One, 10; Seo, Y.B., Cheong, H.J., Song, J.Y., Epidemiologic differences of four major respiratory viruses between children, adolescents, and adults in Korea (2014) J Infect Chemother, 20, pp. 672-677; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc Natl Acad Sci USA, 101, pp. 6212-6216; Liu, W.K., Liu, Q., Chen, D.H., Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study (2014) PLoS One, 9; Jin, Y., Zhang, R.F., Xie, Z.P., Newly identified respiratory viruses associated with acute lower respiratory tract infections in children in Lanzou, China, from 2006 to 2009 (2012) Clin Microbiol Infect, 18, pp. 74-80; Pan, Y., Zhang, Y., Shi, W., Human parainfluenza virus infection in severe acute respiratory infection cases in Beijing, 2014-2016: A molecular epidemiological study (2017) Influenza Other Respir Viruses, 11, pp. 564-568; Malasao, R., Okamoto, M., Chaimongkol, N., Molecular Characterization of Human Respiratory Syncytial Virus in the Philippines, 2012-2013 (2015) PLoS One, 10; Goka, E.A., Vallely, P.J., Mutton, K.J., Single and multiple respiratory virus infections and severity of respiratory disease: a systematic review (2014) Paediatr Respir Rev, 15, pp. 363-370; Zhang, D., He, Z., Xu, L., Epidemiology characteristics of respiratory viruses found in children and adults with respiratory tract infections in southern China (2014) Int J Infect Dis, 25, pp. 159-164; Jansen, R.R., Wieringa, J., Koekkoek, S.M., Frequent detection of respiratory viruses without symptoms: toward defining clinically relevant cutoff values (2011) J Clin Microbiol, 49, pp. 2631-2636","TAN, W.J.; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionChina; email: tanwj28@163.com",,"Elsevier Ltd",08953988,,,"31262389","English","Biomed. Environ. Sci.",Article,"Final",,Scopus,2-s2.0-85068358335 "Blanco A., Abid I., Al-Otaibi N., Pérez-Rodríguez F.J., Fuentes C., Guix S., Pintó R.M., Bosch A.","57195943758;15126636800;55909919600;36240733400;23099863900;6603190558;57188985183;56574774600;","Glass Wool Concentration Optimization for the Detection of Enveloped and Non-enveloped Waterborne Viruses",2019,"Food and Environmental Virology","11","2",,"184","192",,1,"10.1007/s12560-019-09378-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066163504&doi=10.1007%2fs12560-019-09378-0&partnerID=40&md5=239481fb463138288b2ec17df7fd04be","Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain; Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia","Blanco, A., Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain; Abid, I., Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia; Al-Otaibi, N., Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia; Pérez-Rodríguez, F.J., Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain; Fuentes, C., Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain; Guix, S., Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain; Pintó, R.M., Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain; Bosch, A., Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain","An extremely affordable virus concentration method based on adsorption-elution to glass wool and subsequent reconcentration through polyethylene glycol 6000 (PEG) precipitation was optimized to recover not only non-enveloped viruses but also enveloped viruses. Hepatitis A virus (HAV) and transmissible gastroenteritis virus (TGEV) were employed as surrogates for naked and enveloped viruses, respectively, to set up the methodology. Initial experimentation in small-volume samples showed that both types of particles readily adsorbed to the positively charged glass wool but were poorly detached from it through standard elution with 0.05 M glycine with 3% of beef extract buffer, pH 9.5, with elution efficiencies of 7.2% and 2.6%, for HAV and TGEV, respectively. To improve the recovery of enveloped viruses, several modifications in the elution were assayed: increasing the elution pH, extending glass wool and eluent contact time, adding a detergent, or performing the elution by recirculation or under agitation. Considering practicability and performance, recircularization of the eluent at pH 11.0 for 20 min was the elution procedure of choice, with efficiencies of 25.7% and 18.8% for HAV and TGEV in 50 L of water. Additionally, employing 20% PEG instead of 10% for virus reconcentration improved recoveries up to 47% and 51%, respectively. The optimized procedure was applied to detect naturally occurring HAV and coronaviruses in surface water of Wadi Hanifa, Riyadh. HAV was detected in 38% of the samples, while one sample was positive for an alphacoronavirus. This cheap virus detection system enables the comprehensive surveillance of viruses present in water samples. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.","Coronavirus; Enveloped viruses; Hepatitis A virus; Non-enveloped viruses; Water concentration","buffer; detergent; glycine; macrogol 6000; polysorbate 80; water; fresh water; glass; Article; contact time; filtration; Hepatitis A virus; nonhuman; pH; priority journal; Saudi Arabia; Transmissible gastroenteritis virus; virus concentration; virus detection; virus genome; adsorption; chemistry; devices; evaluation study; Hepatitis A virus; isolation and purification; procedures; Transmissible gastroenteritis virus; virology; virus; Adsorption; Fresh Water; Glass; Hepatitis A virus; Transmissible gastroenteritis virus; Virology; Viruses","Bailey, M., Haverson, K., Miller, B., Jones, P., Sola, I., Enjuanes, L., Effects of infection with transmissible gastroenteritis virus on concomitant immune responses to dietary and injected antigens (2004) Clinical and Diagnostic Laboratory Immunology, 11 (2), pp. 337-343; Bean, B., Moore, B.M., Sterner, B., Peterson, L.R., Gerding, D.N., Balfour, H.H., Jr., Survival of influenza viruses on environmental surfaces (1982) The Journal of Infectious Diseases, 146 (1), pp. 47-51; Blanco, A., Guix, S., Fuster, N., Fuentes, C., Bartolome, R., Cornejo, T., Norovirus in bottled water associated with gastroenteritis outbreak, Spain, 2016 (2017) Emerging Infectious Diseases, 23 (9), pp. 1531-1534; Bosch, A., (2007) Human viruses in water. Perspectives in medical virology, 17. , 1, Elsevier, Amsterdam; Bosch, A., Guix, S., Sano, D., Pinto, R.M., New tools for the study and direct surveillance of viral pathogens in water (2008) Current Opinion in Biotechnology, 19 (3), pp. 295-301; Casanova, L.M., Jeon, S., Rutala, W.A., Weber, D.J., Sobsey, M.D., Effects of air temperature and relative humidity on coronavirus survival on surfaces (2010) Applied and Environmental Microbiology, 76 (9), pp. 2712-2717; (2017) Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Middle East Respiratory Syndrome Coronavirus (MERS-CoV)–Version 2, , https://www.cdc.gov/coronavirus/mers/guidelines-lab-biosafety.html; Chu, C.M., Cheng, V.C.C., Hung, I.F.N., Chan, K.S., Tang, B.S.F., Tsang, T.H.F., Viral load distribution in SARS outbreak (2005) Emerging Infectious Diseases, 11 (12), pp. 1882-1886; Costafreda, M.I., Bosch, A., Pintó, R.M., Development, evaluation, and standardization of a real-time taqman reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples (2006) Applied and Environmental Microbiology, 72 (6), pp. 3846-3855; Costafreda, M.I., Pérez-Rodriguez, F.J., D’Andrea, L., Guix, S., Ribes, E., Bosch, A., Hepatitis A virus adaptation to cellular shutoff is driven by dynamic adjustments of codon usage and results in the selection of populations with altered capsids (2014) Journal of Virology, 88 (9), pp. 5029-5041; Drosten, C., Is MERS another SARS? (2013) The Lancet Infectious Diseases, 13 (9), pp. 727-728. , S1473-3099(13)70159-2 [pii]; Dublineau, A., Batéjat, C., Pinon, A., Burguière, A.M., Leclercq, I., Manuguerra, J.-C., Persistence of the 2009 Pandemic Influenza A (H1N1) virus in water and on non-porous surface (2011) PLoS ONE, 6 (11); Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) Elife, 7; Gantzer, C., Senouci, S., Maul, A., Levi, Y., Schwartzbrod, L., Enterovirus genomes in wastewater: concentration on glass wool and glass powder and detection by RT-PCR (1997) Journal of Virological Methods, 65 (2), pp. 265-271; Ge, X.-Y., Yang, W.-H., Zhou, J.-H., Li, B., Zhang, W., Shi, Z.-L., Detection of alpha- and betacoronaviruses in rodents from Yunnan, China (2017) Virology Journal, 14 (1), p. 98; Gouilh, M.A., Puechmaille, S.J., Gonzalez, J.-P., Teeling, E., Kittayapong, P., Manuguerra, J.-C., SARS-Coronavirus ancestor’s foot-prints in South-East Asian bat colonies and the refuge theory (2011) Infection, Genetics and Evolution, 11 (7), pp. 1690-1702; Ikner, L.A., Gerba, C.P., Bright, K.R., Concentration and recovery of viruses from water: A comprehensive review (2012) Food and Environmental Virology, 4 (2), pp. 41-67; (2006) Water Quality -- Sampling for Microbiological Analysis, p. 18. , ISO 19458:2006; (2017) Microbiology of the Food Chain – Horizontal Method for Determination of Hepatitis a Virus and Norovirus Using Real-Time RT-PCR – Part 1: Method for Quantification, 2017, p. 31. , ISO 15216-1; Kamar, N., Dalton, H.R., Abravanel, F., Izopet, J., Hepatitis E virus infection (2014) Clinical Microbiology Reviews, 27 (1), pp. 116-138; Kiulia, N.M., Netshikweta, R., Page, N.A., van Zyl, W.B., Kiraithe, M.M., Nyachieo, A., The detection of enteric viruses in selected urban and rural river water and sewage in Kenya, with special reference to rotaviruses (2010) Journal of Applied Microbiology, 109 (3), pp. 818-828; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Molecular Biology and Evolution, 33 (7), pp. 1870-1874. , [pii]; Lambertini, E., Spencer, S.K., Bertz, P.D., Loge, F.J., Kieke, B.A., Borchardt, M.A., Concentration of enteroviruses, adenoviruses, and noroviruses from drinking water by use of glass wool filters (2008) Applied and Environmental Microbiology, 74 (10), pp. 2990-2996; Lowther, J.A., Bosch, A., Butot, S., Ollivier, J., Mäde, D., Rutjes, S.A., Validation of ISO method 15216 part 1 – Quantification of hepatitis A virus and norovirus in food matrices (2017) International Journal of Food Microbiology; McKinney, K.R., Gong, Y.Y., Lewis, T.G., Environmental transmission of SARS at Amoy Gardens (2006) Journal of Environmental Health, 68 (9), p. 26; Moreno, J.L., Zuniga, S., Enjuanes, L., Sola, I., Identification of a coronavirus transcription enhancer (2008) Journal of Virology, 82 (8), pp. 3882-3893; Pérez-Sautu, U., Sano, D., Guix, S., Kasimir, G., Pintó, R.M., Bosch, A., Human norovirus occurrence and diversity in the Llobregat river catchment, Spain (2012) Environmental Microbiology, 14 (2), pp. 494-502; Pintó, R.M., Costafreda, M.I., Perez Rodr¡guez, F.J., Andrea, D., Bosch, A., Hepatitis A virus: State of the art (2010) Food and Environmental Virology, 2 (3), pp. 127-135; Sanchez, C.M., Jimenez, G., Laviada, M.D., Correa, I., Sune, C., Bullido, M., Antigenic homology among coronaviruses related to transmissible gastroenteritis virus (1990) Virology, 174 (2), pp. 410-417; Sanchez, G., Bosch, A., Survival of enteric viruses in the environment and food (2016) Viruses in foods. Food Microbiology, pp. 367-392. , Goyal SMC, (ed), 2, Springer, New York; Sano, D., Perez-Sautu, U., Guix, S., Pinto, R.M., Miura, T., Okabe, S., Quantification and genotyping of human sapoviruses in the llobregat River Catchment, Spain (2011) Applied and Environmental Microbiology, 77 (3), pp. 1111-1114; Tsoleridis, T., Onianwa, O., Horncastle, E., Dayman, E., Zhu, M., Danjittrong, T., Discovery of Novel Alphacoronaviruses in European Rodents and Shrews (2016) Viruses, 8 (3), p. 84; Ueki, Y., Sano, D., Watanabe, T., Akiyama, K., Omura, T., Norovirus pathway in water environment estimated by genetic analysis of strains from patients of gastroenteritis, sewage, treated wastewater, river water and oysters (2005) Water Research, 39 (18), pp. 4271-4280; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) EuroSurveillance, 18 (38), p. 20590; Vemulapalli, R., Gulani, J., Santrich, C., A real-time TaqMan RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples (2009) Journal of Virological Methods, 162 (1-2), pp. 231-235; Wang, W., Lin, X.-D., Guo, W.-P., Zhou, R.-H., Wang, M.-R., Wang, C.-Q., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; (2018) MERS Situation Update, , http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-june-2018.html; Worobey, M., Phylogenetic evidence against evolutionary stasis and natural abiotic reservoirs of influenza A virus (2008) The Journal of Virology, 82 (7), pp. 3769-3774; Zhang, G., Shoham, D., Gilichinsky, D., Davydov, S., Castello, J.D., Rogers, S.O., Evidence of influenza A virus RNA in Siberian lake ice (2006) Journal of Virology, 80 (24), pp. 12229-12235; Zhou, J., Li, C., Zhao, G., Chu, H., Wang, D., Yan, H.H.-N., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Science Advances","Bosch, A.; Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of BarcelonaSpain; email: abosch@ub.edu",,"Springer New York LLC",18670334,,,"30903596","English","Food Environ. Virol.",Article,"Final",,Scopus,2-s2.0-85066163504 "Al-Romaihi H.E., Smatti M.K., Ganesan N., Nadeem S., Farag E., Coyle P.V., Nader J.D., Al-Khatib H.A., Elmagboul E.B., Al Dhahry S., Al-Marri S.A., Al Thani A.A., Al Khal A., Al Maslamani M.A., Yassine H.M.","55963882100;57196485779;57190401483;57209346208;55963332900;57209340359;57209336278;57203535671;57184282600;57215476884;14520560900;26640267200;6507333591;9338131400;23098797900;","Epidemiology of respiratory infections among adults in Qatar (2012-2017)",2019,"PLoS ONE","14","6", e0218097,"","",,,"10.1371/journal.pone.0218097","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067506434&doi=10.1371%2fjournal.pone.0218097&partnerID=40&md5=be1134cdd8c2b346512125081d38c757","Ministry of Public Health, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar; Hamad Medical Corporation, Doha, Qatar; Hamad Bin Khalifa University, Doha, Qatar; College of Health Sciences, Qatar University, QU Health, Doha, Qatar","Al-Romaihi, H.E., Ministry of Public Health, Doha, Qatar; Smatti, M.K., Biomedical Research Center, Qatar University, Doha, Qatar; Ganesan, N., Ministry of Public Health, Doha, Qatar; Nadeem, S., Ministry of Public Health, Doha, Qatar; Farag, E., Ministry of Public Health, Doha, Qatar; Coyle, P.V., Hamad Medical Corporation, Doha, Qatar; Nader, J.D., Hamad Medical Corporation, Doha, Qatar; Al-Khatib, H.A., Hamad Bin Khalifa University, Doha, Qatar; Elmagboul, E.B., Hamad Medical Corporation, Doha, Qatar; Al Dhahry, S., Hamad Medical Corporation, Doha, Qatar; Al-Marri, S.A., Ministry of Public Health, Doha, Qatar; Al Thani, A.A., Biomedical Research Center, Qatar University, Doha, Qatar, College of Health Sciences, Qatar University, QU Health, Doha, Qatar; Al Khal, A., Hamad Medical Corporation, Doha, Qatar; Al Maslamani, M.A., Hamad Medical Corporation, Doha, Qatar; Yassine, H.M., Biomedical Research Center, Qatar University, Doha, Qatar, College of Health Sciences, Qatar University, QU Health, Doha, Qatar","Background Limited data is available about the etiology of influenza like illnesses (ILIs) in Qatar. Objectives This study aimed at providing preliminary estimates of influenza and other respiratory infections circulating among adults in Qatar. Methods We retrospectively collected data of about 44,000 patients who visited Hamad General Hospital clinics, sentinel sites, and all primary healthcare centers in Qatar between 2012 and 2017. All samples were tested for influenza viruses, whereas about 38,000 samples were tested for influenza and a panel of respiratory viruses using Fast Track Diagnostics (FTD) RT-PCR kit. Results Among all ILIs cases, 20,278 (46.5%) tested positive for at least one respiratory pathogen. Influenza virus was predominating (22.6%), followed by human rhinoviruses (HRVs) (9.5%), and human coronaviruses (HCoVs) (5%). A detection rate of 2-3% was recorded for mycoplasma pneumonia, adenoviruses, human parainfluenza viruses (HPIVs), respiratory syncytial virus (RSV), and human metapneumovirus (HMPV). ILIs cases were reported throughout the year, however, influenza, RSV, and HMPV exhibited strong seasonal peaks in the winter, while HRVs circulated more during fall and spring. Elderly (>50 years) had the lowest rates of influenza A (13.9%) and B (4.2%), while presenting the highest rates of RSV (3.4%) and HMPV (3.3%). While males had higher rates of HRVs (11.9%), enteroviruses (1.1%) and MERS CoV (0.2%), females had higher proportions of influenza (26.3%), HPIVs (3.2%) and RSV (3.6%) infections. Conclusion This report provides a comprehensive insight about the epidemiology of ILIs among adults in the Qatar, as a representative of Gulf States. These results would help in improvement and optimization of diagnostic procedures, as well as control and prevention of the respiratory infections. ©2019 Al-Romaihi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"adenovirus infection; adolescent; adult; age distribution; Article; Coronavirus infection; Enterovirus infection; female; flu like syndrome; human; Human metapneumovirus infection; influenza A; influenza B; major clinical study; male; Middle East respiratory syndrome; Mycoplasma pneumonia; Parainfluenza virus infection; Qatar; respiratory syncytial virus infection; respiratory tract infection; retrospective study; reverse transcription polymerase chain reaction; Rhinovirus infection; seasonal variation; sex ratio; general hospital; middle aged; respiratory tract infection; virology; virus infection; young adult; Adolescent; Adult; Female; Hospitals, General; Humans; Male; Middle Aged; Qatar; Respiratory Tract Infections; Retrospective Studies; Virus Diseases; Young Adult","Up to 650 000 people die of respiratory diseases linked to seasonal flu each year: WHO; 2017; Monto, A.S., Epidemiology of viral respiratory infections (2002) The American Journal of Medicine, 112 (6), pp. 4-12; Njouom, R., Yekwa, E.L., Cappy, P., Vabret, A., Boisier, P., Rousset, D., Viral etiology of influenza-like illnesses in Cameroon, January-December 2009 (2012) J Infect Dis., 206, pp. 29-35; Caini, S., El-Guerche, S.B.C., Ciblak, M.A., Paget, J., Epidemiology of seasonal influenza in the Middle East and North Africa regions, 2010-2016: Circulating influenza A and B viruses and spatial timing of epidemics (2018) Influenza other Respir Viruses, 12 (3), pp. 344-352. , PMID: 29405575; Barakat, A., Ihazmad, H., Benkaroum, S., Cherkaoui, I., Benmamoun, A., Youbi, M., Influenza surveillance among outpatients and inpatients in Morocco, 1996-2009 (2011) PLoS One., 6 (9), p. e24579. , PMID: 21931764; Gouya, M., Rezaei, F., Haghdoost, A., Nabavi, M., Farahi, K.S., Mostafavi, E., Estimation of influenza and severe acute respiratory illness incidence (burden) in three provinces of the Islamic Republic of Iran, 2012 and 2013 (2016) East Mediterr Health J., 22 (7), pp. 432-439. , PMID: 27714736; Chlif, S., Aissi, W., Bettaieb, J., Kharroubi, G., Nouira, M., Yazidi, R., Modelling of seasonal influenza and estimation of the burden in Tunisia (2016) East Mediterr Health J, 22 (7), pp. 460-467. , PMID: 27714740; Razanajatovo, N.H., Richard, V., Hoffmann, J., Reynes, J.M., Razafitrimo, G.M., Randremanana, R.V., Viral etiology of influenza-like illnesses in Antananarivo, Madagascar, July 2008 to June 2009 (2011) PLoS One, 6 (3), p. e17579. , PMID: 21390235; Arango, A.E., Jaramillo, S., Perez, J., Ampuero, J.S., Espinal, D., Donado, J., Influenza-like illness sentinel surveillance in one hospital in Medellin, Colombia. 2007-2012 (2015) Influenza other Respir Viruses, 9 (1), pp. 1-13. , PMID: 25100179; Bellei, N., Carraro, E., Perosa, A., Watanabe, A., Arruda, E., Granato, C., Acute respiratory infection and influenza- like illness viral etiologies in Brazilian adults (2008) J Med Virol, 80 (10), pp. 1824-1827. , PMID: 18712837; (2014) Demography, Migration, and Labour Market in Qatar, 8. , Bel-Air FD. Gulf Research Center. 2014; WHO surveillance case definitions for ILI and SARI. WHO; 2014; Lowen, A.C., Mubareka, S., Steel, J., Palese, P., Influenza virus transmission is dependent on relative humidity and temperature (2007) PLoS Pathog, 3 (10), pp. 1470-1476. , PMID: 17953482; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin, R.V., Pas, S.D., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol, 5, p. 28305. , PMID: 26183160; Otomaru, H., Kamigaki, T., Tamaki, R., Opinion, J., Santo, A., Daya, E., Influenza and other respiratory viruses detected by influenza-like illness surveillance in Leyte Island, the Philippines, 2010-2013 (2015) PLoS One, 10 (4), p. e0123755. , PMID: 25893441; Puzelli, S., Valdarchi, C., Ciotti, M., Dorrucci, M., Farchi, F., Babakir-Mina, M., Viral causes of influenzalike illness: Insight from a study during the winters 2004-2007 (2009) J Med Virol., 81 (12), pp. 2066-2071. , PMID: 19856468; Laguna-Torres, V.A., Gómez, J., Ocaña, V., Aguilar, P., Saldarriaga, T., Chavez, E., Influenza-like illness sentinel surveillance in Peru (2009) PLoS One., 4 (7), p. e6118. , PMID: 19568433; Ren, L., Gonzalez, R., Wang, Z., Xiang, Z., Wang, Y., Zhou, H., Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005-2007 (2009) Clin Microbiol Infect, 15 (12), pp. 1146-1153. , PMID: 19456830; Sagna, T., Ilboudo, A.K., Wandaogo, C., Cisse, A., Sana, M., Tialla, D., Preliminary results of official influenza and acute respiratory infection surveillance in two towns of Burkina Faso, 2013-2015 (2018) BMC Infect Dis, 18 (1), p. 330. , PMID: 30012098; Carhan, A., Altas, A.B., Albayrak, N., Uyar, Y., Influenza surveillance results in 2007-2008 winter season in nine provinces of Turkey (2009) Mikrobiyol Bul, 43 (2), pp. 235-241. , PMID: 19621608; Pellegrinelli, L., Bubba, L., Galli, C., Anselmi, G., Primache, V., Binda, S., Epidemiology and molecular characterization of influenza viruses, human parechoviruses and enteroviruses in children up to 5 years with influenza-like illness in Northern Italy during seven consecutive winter seasons (2010-2017) (2017) J Gen Virol, 98 (11), pp. 2699-2711. , PMID: 29106347; De, C.S.C., Rossen, J.W., Van Furth, A.M., Obihara, C.C., Enterovirus and parechovirus infection in children: A brief overview (2016) Eur J Pediatr., 175 (8), pp. 1023-1029. , PMID: 27156106; Joki-Korpela, P., Hyypia, T., Diagnosis and epidemiology of echovirus 22 infections (1998) Clin Infect Dis., 27 (1), pp. 129-136. , PMID: 9675466; Mizuta, K., Abiko, C., Aoki, Y., Ikeda, T., Itagaki, T., Katsushima, F., Epidemiology of parainfluenza virus types 1, 2 and 3 infections based on virus isolation between 2002 and 2011 in Yamagata, Japan (2012) Microbiol Immunol, 56 (12), pp. 855-858. , PMID: 22946520; Liu, W.K., Liu, Q., Chen, D.H., Liang, H.X., Chen, X.K., Huang, W.B., Epidemiology and clinical presentation of the four human parainfluenza virus types (2013) BMC Infect Dis, 13, p. 28. , PMID: 23343342; Suwannakarn, K., Chieochansin, T., Vichiwattana, P., Korkong, S., Theamboonlers, A., Poovorawan, Y., Prevalence and genetic characterization of human coronaviruses in southern Thailand from July 2009 to January 2011 (2014) Southeast Asian J Trop Med Public Health, 45 (2), pp. 326-336. , PMID: 24968672; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44 (6), pp. 2063-2071. , PMID: 16757599; Zhang, S.F., Tuo, J.L., Huang, X.B., Zhu, X., Zhang, D.M., Zhou, K., Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou (2018) PLoS One, 13 (1), p. e0191789. , PMID: 29377913; Nguyen, D.N.T., Mai, L.Q., Bryant, J.E., Hang, N.L.K., Hoa, L.N.M., Nadjm, B., Epidemiology and etiology of influenza-like-illness in households in Vietnam; it's not all about the kids (2016) J Clin Virol, 82, pp. 126-132. , PMID: 27479176; Ahn, J.G., Kim, D.S., Kim, K.H., Clinical characteristics and cytokine profiles of children with acute lower respiratory tract infections caused by human rhinovirus (2018) PLoS One, 13 (7), p. e0198624. , PMID: 29969445; Mak, G.C., Wong, A.H., Ho, W.Y., Lim, W., The impact of pandemic influenza A (H1N1) 2009 on the circulation of respiratory viruses 2009-2011 (2012) Influenza other Respir Viruses, 6 (3), pp. 6-10. , PMID: 22212717; Qatar Population 2018. World population review; 2018; (2018) Average Age of Expatriates Living in the Gulf Cooperation Council as of March 2018, , by country. Statista; Petrosillo, N., Di, B.S., Drapeau, C.M., Grilli, E., The novel influenza A (H1N1) virus pandemic: An update (2009) Ann Thorac Med, 4 (4), pp. 163-172. , PMID: 19881161; Sood, N., Dharsandia, M., Patankar, M., Vegad, M., Kinetics of pandemic influenza virus 2009 virus in Gujarat, Western India: An investigation of signature features (2012) Annals of Tropical Medicine and Public Health, 5 (4), pp. 321-326; Dawood, F.S., Jain, S., Finelli, L., Shaw, M.W., Lindstrom, S., Garten, R.J., Emergence of a novel swine-origin influenza A (H1N1) virus in humans (2009) N Engl J Med, 360 (25), pp. 2605-2615. , PMID: 19423869; Peiris, J.S., Poon, L.L., Guan, Y., Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans (2009) J Clin Virol, 45 (3), pp. 169-173. , PMID: 19540800; Worby, C.J., Chaves, S.S., Wallinga, J., Lipsitch, M., Finelli, L., Goldstein, E., On the relative role of different age groups in influenza epidemics (2015) Epidemics, 13, pp. 10-16. , 003 PMID: 26097505; Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine (2009) MMWRMorb Mortal Wkly Rep, 58 (19), pp. 521-524. , CDC) CfDCaP., :, PMID: 19478718; Druce, J., Tran, T., Kelly, H., Kaye, M., Chibo, D., Kostecki, R., Laboratory diagnosis and surveillance of human respiratory viruses by PCR in Victoria, Australia, 2002-2003 (2005) J Med Virol., 75 (1). , 122-9. PMID: 15543580; Klein, S.L., Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases (2012) Bioessays, 34 (12), pp. 1050-1059; (2017) Travel Advice on MERS-CoV for Pilgrimages, , WHO; Cabalion, S., Abu, B.E., Abdelahdi, O., Al-Romaihi, H., Keck, F., (2018) Middle East Respiratory Syndrome Coronavirus and Human-camel Relationships in Qatar",,,"Public Library of Science",19326203,,POLNC,"31194775","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85067506434 "Jang W.M., Cho S., Jang D.H., Kim U.-N., Jung H., Lee J.Y., Eun S.J.","37052176000;57202913898;57209685134;56206473600;56438404000;55981456400;23496211100;","Preventive behavioral responses to the 2015 middle east respiratory syndrome coronavirus outbreak in Korea",2019,"International Journal of Environmental Research and Public Health","16","12", 2216,"","",,,"10.3390/ijerph1612216","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068460216&doi=10.3390%2fijerph1612216&partnerID=40&md5=978f3467735d1244c285610e3c4a5c8c","Health Review and Assessment Committee, Health Insurance Review and Assessment Service, Wonju, 26465, South Korea; Department of Health Policy and Management, Seoul National University College of Medicine, Seoul, 03080, South Korea; Research Analytics & Communication, Gallup Korea, Seoul, 03167, South Korea; Bureau of Health Policy, Ministry of Health and Welfare, Sejong, 30113, South Korea; Department of Public Health and Community Medicine, Seoul Metropolitan Government—Seoul National University Boramae Medical Center, Seoul, 07061, South Korea; Department of Preventive Medicine, Chungnam National University College of Medicine, Daejeon, 35015, South Korea","Jang, W.M., Health Review and Assessment Committee, Health Insurance Review and Assessment Service, Wonju, 26465, South Korea; Cho, S., Department of Health Policy and Management, Seoul National University College of Medicine, Seoul, 03080, South Korea; Jang, D.H., Research Analytics & Communication, Gallup Korea, Seoul, 03167, South Korea; Kim, U.-N., Bureau of Health Policy, Ministry of Health and Welfare, Sejong, 30113, South Korea; Jung, H., Health Review and Assessment Committee, Health Insurance Review and Assessment Service, Wonju, 26465, South Korea, Department of Health Policy and Management, Seoul National University College of Medicine, Seoul, 03080, South Korea; Lee, J.Y., Department of Health Policy and Management, Seoul National University College of Medicine, Seoul, 03080, South Korea, Department of Public Health and Community Medicine, Seoul Metropolitan Government—Seoul National University Boramae Medical Center, Seoul, 07061, South Korea; Eun, S.J., Department of Preventive Medicine, Chungnam National University College of Medicine, Daejeon, 35015, South Korea","This study examined the public’s preventive behavioral responses during the 2015 Middle East respiratory syndrome coronavirus (MERS‐CoV) outbreak in Korea and the influencing factors. Two cross‐sectional telephone surveys were conducted by Gallup Korea using random digit dialing in June 2015 (n = 2004). The main outcome variables were nonpharmaceutical preventive measures (survey (1): Measures for reducing transmission (handwashing, face masks); and survey (2): Measures for avoiding contact with others). Multiple logistic regression was used to identify the factors influencing preventive behaviors. In survey (1), 60.3% of respondents reported more frequent handwashing and 15.5% reported wearing face masks at least once due to the MERS‐CoV epidemic. In survey (2), 41–56% of respondents reported practicing avoidance measures. The concerned group was more likely to practice reducing transmission measures (odds ratio (OR) 4.5; 95% confidence interval (CI) 3.3–6.1) and avoidance measures (OR = 9.6; 95% CI, 6.4–14.4). The respondents who had low trust in president or ruling party had a higher practice rate of reducing transmission measures (OR = 1.7; 95% CI, 1.2–2.6) and avoidance measures (OR = 2.1; 95% CI, 1.2– 3.5). Cooperative prevention measures need appropriated public concern based on effective risk communication. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Disease outbreaks; Disease prevention and control; Health survey; Middle East respiratory syndrome coronavirus","disease spread; disease transmission; disease treatment; epidemiology; health risk; health survey; public health; respiratory disease; adult; aged; Article; clinical outcome; clinical practice; controlled study; cross-sectional study; disease transmission; epidemic; female; hand washing; health behavior; human; incidence; infection prevention; Korea; major clinical study; male; middle aged; Middle East respiratory syndrome; random digit dialing; telephone interview; Coronavirus infection; Middle East respiratory syndrome coronavirus; odds ratio; primary prevention; questionnaire; South Korea; young adult; Korea; Coronavirus; Adult; Aged; Coronavirus Infections; Cross-Sectional Studies; Disease Outbreaks; Female; Health Behavior; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Odds Ratio; Primary Prevention; Republic of Korea; Surveys and Questionnaires; Young Adult","(2016) Ministry of Health and Welfare. the 2015 MERS Outbreak in the Republic of Korea: Learning from MERS; Ministry of Health and Welfare: Sejong, , Korea; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) across the Gulf Corporation Council countries: Four years update (2017) Plos ONE, 12; (2015) World Health Organization, , Geneva, Switzerland; Hui, D.S., Perlman, S., Zumla, A., Spread of MERS to South Korea and China (2015) Lancet Respir. Med., 3, pp. 509-510; Su, S., Wong, G., Liu, Y., Gao, G.F., Li, S., Bi, Y., MERS in South Korea and China: A potential outbreak threat? (2015) Lancet, 385, pp. 2349-2350; Ro, J.S., Lee, J.S., Kang, S.C., Jung, H.M., Worry experienced during the 2015 Middle East Respiratory Syndrome (MERS) pandemic in Korea (2017) Plos ONE, 12; Choi, J.W., Kim, K.H., Moon, J.M., Kim, M.S., Public health crisis response and establishment of a crisis communication system in South Korea: Lessons learned from the MERS outbreak (2015) J. Korean Med. Assoc., 58, pp. 624-634; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Jo, I.J., MERS‐CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Oh, M.-D., Park, W.B., Park, S.-W., Choe, P.G., Bang, J.H., Song, K.-H., Kim, E.S., Kim, N.J., Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J. Intern. Med., 33, pp. 233-246; Lee, S.S., Wong, N.S., Probable transmission chains of Middle East respiratory syndrome coronavirus and the multiple generations of secondary infection in South Korea (2015) Int. J. Infect. Dis., 38, pp. 65-67; World Health Organization. Managing Epidemics, Key Facts About Major Deadly Diseases (2018) World Health Organization, , Geneva, Switzerland; Ahmed, F., Zviedrite, N., Uzicanin, A., Effectiveness of workplace social distancing measures in reducing influenza transmission: A systematic review (2018) BMC Public Health, 18; Fung, I.C., Cairncross, S., Effectiveness of handwashing in preventing SARS: A review (2006) Trop. Med. Int. Health, 11, pp. 1749-1758; Steelfisher, G.K., Blendon, R.J., Bekheit, M.M., Lubell, K., The publicʹs response to the 2009 H1N1 influenza pandemic (2010) N. Engl. J. Med., 362, p. e65; Lau, J.T., Yang, X., Tsui, H., Kim, J.H., Monitoring community responses to the SARS epidemic in Hong Kong: From day 10 to day 62 (2003) J. Epidemiol. Community Health, 57, pp. 864-870; Rubin, G.J., Amlot, R., Page, L., Wessely, S., Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: Cross sectional telephone survey (2009) BMJ, 339, p. b2651; Bults, M., Beaujean, D.J., de Zwart, O., Kok, G., van Empelen, P., van Steenbergen, J.E., Richardus, J.H., Voeten, H.A., Perceived risk, anxiety, and behavioural responses of the general public during the early phase of the Influenza A (H1N1) pandemic in the Netherlands: Results of three consecutive online surveys (2011) BMC Public Health, 11; Wertz, D.C., Sorenson, J.R., Liebling, L., Kessler, L., Heeren, T.C., Knowledge and attitudes of AIDS health care providers before and after education programs (1987) Public Health Rep, 102, pp. 248-254; Suchitra, J.B., Lakshmi Devi, N., Impact of education on knowledge, attitudes and practices among various categories of health care workers on nosocomial infections (2007) Indian J. Med. Microbiol., 25, pp. 181-187; Jones, J.H., Salathe, M., Early assessment of anxiety and behavioral response to novel swine‐origin influenza A(H1N1) (2009) Plos ONE, 4; Choi, J.-S., Kim, J.-S., Factors influencing preventive behavior against Middle East respiratory syndrome-coronavirus among nursing students in South Korea (2016) Nurse Educ. Today, 40, pp. 168-172; Kim, E.Y., Liao, Q., Yu, E.S., Kim, J.H., Yoon, S.W., Lam, W.W., Fielding, R., Middle East respiratory syndrome in South Korea during 2015: Risk‐related perceptions and quarantine attitudes (2016) Am. J. Infect. Control, 44, pp. 1414-1416; Hsu, L.Y., Surveys of knowledge, attitudes and practices on the influenza A (H1N1) pandemic (2010) Ann. Acad. Med. Singap., 39, pp. 336-337; Rubin, G.J., Amlot, R., Page, L., Wessely, S., Methodological challenges in assessing general population reactions in the immediate aftermath of a terrorist attack (2008) Int. J. Methods Psychiatr. Res., 17, pp. S29-S35. , Suppl. 2","Lee, J.Y.; Department of Health Policy and Management, Seoul National University College of MedicineSouth Korea; email: jylee2000@gmail.com",,"MDPI AG",16617827,,,"31216779","English","Int. J. Environ. Res. Public Health",Article,"Final",,Scopus,2-s2.0-85068460216 "Huang X., Li M., Xu Y., Zhang J., Meng X., An X., Sun L., Guo L., Shan X., Ge J., Chen J., Luo Y., Wu H., Zhang Y., Jiang Q., Ning X.","57201271678;57208904751;57209057453;57205105270;57209046742;57209045653;57190294884;57205102738;57205095843;57205097127;57209048785;57208208730;55928019600;57184027500;26653523000;23983203900;","Novel Gold Nanorod-Based HR1 Peptide Inhibitor for Middle East Respiratory Syndrome Coronavirus",2019,"ACS Applied Materials and Interfaces","11","22",,"19799","19807",,1,"10.1021/acsami.9b04240","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066409468&doi=10.1021%2facsami.9b04240&partnerID=40&md5=c7da31396bdf175caeccb61ed1bc9f3e","Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China; State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital, Nanjing University Medical School, Nanjing, 210008, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China","Huang, X., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Li, M., Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China; Xu, Y., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Zhang, J., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Meng, X., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; An, X., State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital, Nanjing University Medical School, Nanjing, 210008, China; Sun, L., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Guo, L., State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Shan, X., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Ge, J., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Chen, J., Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China; Luo, Y., Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China; Wu, H., Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China; Zhang, Y., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China; Jiang, Q., State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital, Nanjing University Medical School, Nanjing, 210008, China; Ning, X., Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China","Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory syndrome-like illness with high pathogenicity and mortality due to the lack of effective therapeutics. Currently, only few antiviral agents are available for the treatment of MERS, but their effects have been greatly impaired by low antiviral activity, poor metabolic stability, and serious adverse effects. Therefore, the development of effective treatment for MERS is urgently needed. In this study, a series of heptad repeat 1 (HR1) peptide inhibitors have been developed to inhibit HR1/HR2-mediated membrane fusion between MERS-CoV and host cells, which is the major pathway of MERS-CoV-induced host infections. Particularly, peptide pregnancy-induced hypertension (PIH) exhibits potent inhibitory activity with IC50 of 1.171 μM, and its inhibitory effects can be further increased to 10-fold by forming a gold nanorod complex (PIH-AuNRs). In addition, PIH-AuNRs display enhanced metabolic stability and biocompatibility in vitro and in vivo and, therefore, effectively prevent MERS-CoV-associated membrane fusion. In summary, PIH-AuNRs represent a novel class of antiviral agents and have a great potential in treating MERS in the clinic. © 2019 American Chemical Society.","gold nanorods; inhibitors; MERS; peptides; viral infections","Biocompatibility; Cell membranes; Corrosion inhibitors; Diseases; Gold compounds; Metabolism; Nanorods; Peptides; Antiviral activities; Gold nanorod; Inhibitory activity; MERS; Metabolic stability; Pregnancy-induced hypertensions; Severe acute respiratory syndrome; Viral infections; Antiviral agents; antivirus agent; gold; nanotube; peptide; animal; cell line; chemistry; circular dichroism; drug effect; female; human; Middle East respiratory syndrome coronavirus; mouse; pathogenicity; protein secondary structure; Animals; Antiviral Agents; Cell Line; Circular Dichroism; Female; Gold; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Nanotubes; Peptides; Protein Structure, Secondary","De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Christian, D., Luis, E., Fouchier, R.A.M., Memish, Z.A., Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Alabdullatif, Z.N., Makhdoom, H., Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Memish, Z.A., Zumla, A.I., Abdullah, A., Middle East Respiratory Syndrome Coronavirus Infections in Health Care Workers (2013) N. Engl. J. Med., 369, pp. 884-886; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, Demographic, and Clinical Characteristics of 47 cases of Middle East Respiratory Syndrome Coronavirus Disease from Saudi Arabia: A Descriptive Study (2013) Lancet Infect. Dis., 13, pp. 752-761; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Kwok-Yung, Y., Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-like Disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Leung, C.H.C., Gomersall, C.D., Middle East Respiratory Syndrome (2014) Intensive Care Med., 40, pp. 1015-1017; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and Interferon Therapy in Patients Infected with the Middle East Respiratory Syndrome Coronavirus: An Observational Study (2014) Int. J. Infect. Dis., 20, pp. 42-46; Omrani, A.S., Saad, M.M., Kamran, B., Abdelkarim, B., Mohammed, A.M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and Interferon Alfa-2a for Severe Middle East Respiratory Syndrome Coronavirus Infection: A Retrospective Cohort Study (2014) Lancet Infect. Dis., 14, pp. 1090-1095; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., Mushtaq, A., IFN-alpha2a or IFN-beta1a in Combination with Ribavirin to Treat Middle East Respiratory Syndrome Coronavirus Pneumonia: A Retrospective Study (2015) J. Antimicrob. Chemother., 70, pp. 2129-2132; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM Structures of MERS-CoV and SARS-CoV Spike Glycoproteins Reveal the Dynamic Receptor Binding Domains (2017) Nat. Commun., 8, p. 15092; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Drosten, C., The Spike Protein of the Emerging Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can be Activated by TMPRSS2, and is Targeted by Neutralizing Antibodies (2013) J. Virol., 87, pp. 5502-5511; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl Peptidase 4 is a Functional Receptor for the Emerging Human Coronavirus-EMC (2013) Nature, 495, pp. 251-254; Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Gao, G.F., Structure of the Fusion Core and Inhibition of Fusion by a Heptad Repeat Peptide Derived from the S Protein of Middle East Respiratory Syndrome Coronavirus (2013) J. Virol., 87, pp. 13134-13140; Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide (1963) J. Am. Chem. Soc., 85, pp. 2149-2154; Bosch, B.J., Van Der Zee, R., De Haan, C.A., Rottier, P.J., The Coronavirus Spike Protein is a Class i Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex (2003) J. Virol., 77, pp. 8801-8811; Tripet, B., Howard, M.W., Jobling, M., Holmes, R.K., Holmes, K.V., Hodges, R.S., Structural Characterization of the SARS-coronavirus Spike S Fusion Protein Core (2004) J. Biol. Chem., 279, pp. 20836-20849; Fosgerau, K., Hoffmann, T., Peptide Therapeutics: Current Status and Future Directions (2015) Drug Discovery Today, 20, pp. 122-128; Chan, J.F.W., Chan, K.H., Choi, K.Y., To, K.K.W., Tse, H., Cai, J.P., Yeung, M.L., Yuen, K.Y., Differential Cell Line Susceptibility to the Emerging Novel Human Betacoronavirus 2c EMC/2012: Implications for Disease Pathogenesis and Clinical Manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Jiang, S., Structure-based Discovery of Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor (2014) Nat. Commun., 5, p. 3067; Jenssen, H., Hamill, P., Hancock, R.E.W., Peptide Antimicrobial Agents (2006) Clin. Microbiol. Rev., 19, pp. 491-511; Kaspar, A.A., Reichert, J.M., Future Directions for Peptide Therapeutics Development (2013) Drug Discovery Today, 18, pp. 807-817; Chakravarthy, K.V., Bonoiu, A.C., Davis, W.G., Ranjan, P., Ding, H., Hu, R., Bowzard, J.B., Prasad, P.N., Gold Nanorod Delivery of an ssRNA Immune Activator Inhibits Pandemic H1N1 Influenza Viral Replication (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 10172-10177; Wang, Y., Black, K.C.L., Luehmann, H., Li, W., Zhang, Y., Cai, X., Wan, D., Xia, Y., Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment (2013) ACS Nano, 7, pp. 2068-2077; Yan, E., Cao, M., Wang, Y., Hao, X., Pei, S., Gao, J., Wang, Y., Zhang, D., Gold Nanorods Contained Polyvinyl Alcohol/Chitosan Nanofiber Matrix for Cell Imaging and Drug Delivery (2016) Mater. Sci. Eng., C, 58, p. 1090; Zheng, M., Huang, X., Nanoparticles Comprising a Mixed Monolayer for Specific Bindings with Biomolecules (2004) J. Am. Chem. Soc., 126, pp. 12047-12054; Moghimi, S.M., Patel, H.M., Serum-mediated Recognition of Liposomes by Phagocytic Cells of the Reticuloendothelial System - The Concept of Tissue Specificity (1998) Adv. Drug Delivery Rev., 32, pp. 45-60; Papisov, M.I., Theoretical Considerations of RES-avoiding Liposomes: Molecular Mechanics and Chemistry of Liposome Interactions (1998) Adv. Drug Delivery Rev., 32, pp. 119-138; Cho, W.-S., Cho, M., Jeong, J., Choi, M., Cho, H.Y., Han, B.S., Kim, S.H., Jeong, J., Acute Toxicity and Pharmacokinetics of 13 nm-sized PEG-coated Gold Nanoparticles (2009) Toxicol. Appl. Pharmacol., 236, pp. 16-24; Libutti, S.K., Paciotti, G.F., Byrnes, A.A., Alexander, H.R., Jr., Gannon, W.E., Walker, M., Seidel, G.D., Tamarkin, L., Phase i and Pharmacokinetic Studies of CYT-6091, a Novel PEGylated Colloidal Gold-rhTNF Nanomedicine (2010) Clin. Cancer Res., 16, pp. 6139-6149; Balasubramanian, S.K., Jittiwat, J., Manikandan, J., Ong, C.N., Yu, L.E., Ong, W.Y., Biodistribution of Gold Nanoparticles and Gene Expression Changes in the Liver and Spleen after Intravenous Administration in Rats (2010) Biomaterials, 31, pp. 2034-2042; De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J.A.M., Geertsma, R.E., Particle Size-dependent Organ Distribution of Gold Nanoparticles after Intravenous Administration (2008) Biomaterials, 29, pp. 1912-1919","Zhang, Y.; Nanjing National Laboratory of Microstructures, College of Engineering and Applied Sciences, Nanjing UniversityChina; email: zhangyu2007sm@163.com",,"American Chemical Society",19448244,,,"31099550","English","ACS Appl. Mater. Interfaces",Article,"Final",,Scopus,2-s2.0-85066409468 "Plotkin S.A.","7203070407;","The New Coronavirus, the Current King of China",2019,"Journal of the Pediatric Infectious Diseases Society","9","1",,"1","2",,,"10.1093/jpids/piaa018","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081074235&doi=10.1093%2fjpids%2fpiaa018&partnerID=40&md5=f86aa683c42474f38104af64e015def5","Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States; Vaxconsult, Doylestown, PA, United States","Plotkin, S.A., Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States, Vaxconsult, Doylestown, PA, United States",[No abstract available],,"live vaccine; messenger RNA; virus vaccine; Article; China; Coronavirinae; Coronavirus infection; disease carrier; electron microscopy; epidemic; high throughput sequencing; hospitalization; human; Middle East respiratory syndrome; mortality rate; nonhuman; priority journal; SARS coronavirus; SARS coronavirus 2; severe acute respiratory syndrome; upper respiratory tract infection; virus attenuation; virus neutralization; virus transmission","Talbot, H.K., Shepherd, B.E., Crowe, J.E., Jr., The pediatric burden of human coronaviruses evaluated for twenty years (2009) Pediatr Infect Dis J, 28, pp. 682-687; Nokso-Koivisto, J., Pitkäranta, A., Blomqvist, S., Respiratory coronavirus infections in children younger than two years of age (2000) Pediatr Infect Dis J, 19, pp. 164-166; Van Elden, L.J., Van Loon, A.M., Van Alphen, F., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-Time reverse-Transcriptase polymerase chain reaction (2004) J Infect Dis, 189, pp. 652-657; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229e and oc43 infection in diverse adult populations (2013) J Infect Dis, 208, pp. 1634-1642; Principi, N., Bosis, S., Esposito, S., Effects of coronavirus infections in children (2010) Emerg Infect Dis, 16, pp. 183-188; Varghese, L., Zachariah, P., Vargas, C., Epidemiology and clinical features of human coronaviruses in the pediatric population (2018) J Pediatric Infect Dis Soc, 7, pp. 151-158; Perlman, S., Dandekar, A.A., Immunopathogenesis of coronavirus infections: Implications for sars (2005) Nat Rev Immunol, 5, pp. 917-927; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., Mers-cov in upper respiratory tract and lungs of dromedary camels Saudi Arabia 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1153-1158; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 Mers-cov outbreak in jeddah-A link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Perlman, S., McCray, P.B., Jr., Person-To-person spread of the mers coronavirus-An evolving picture (2013) N Engl J Med, 369, pp. 466-467; Rasmussen, S.A., Gerber, S.I., Swerdlow, D.L., Middle east respiratory syndrome coronavirus: Update for clinicians (2015) Clin Infect Dis, 60, pp. 1686-1689; Müller, M.A., Meyer, B., Corman, V.M., Presence of middle east respiratory syndrome coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, p. 629; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against middle east respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132; Chan, J.F., Kok, K.H., Zhu, Z., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan (2020) Emerg Microbes Infect, 9, pp. 221-236; Gallagher, T., Perlman, S., Public health: Broad reception for coronavirus (2013) Nature, 495, pp. 176-177; Yang, X.L., Hu, B., Wang, B., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J Virol, 90, pp. 3253-3256; Regla-Nava, J.A., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Severe acute respiratory syndrome coronaviruses with mutations in the e protein are attenuated and promising vaccine candidates (2015) J Virol, 89, pp. 3870-3887; Zhou, J., Wang, W., Zhong, Q., Immunogenicity, safety, and protective efficacy of an inactivated sars-Associated coronavirus vaccine in rhesus monkeys (2005) Vaccine, 23, pp. 3202-3209; Spruth, M., Kistner, O., Savidis-Dacho, H., A double-inactivated whole virus candidate sars coronavirus vaccine stimulates neutralising and protective antibody responses (2006) Vaccine, 24, pp. 652-661; Taylor, D.R., Obstacles and advances in sars vaccine development (2006) Vaccine, 24, pp. 863-871; Martin, J.E., Louder, M.K., Holman, L.A., A sars DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase i clinical trial (2008) Vaccine, 26, pp. 6338-6343. , VRC 301 Study Team; Plotkin, S.A., Mahmoud, A.A.F., Farrar, J., Establishing a global vaccine-development fund (2015) N Engl J Med, 373, pp. 297-300; Plotkin, S.A., Vaccines for epidemic infections and the role of cepi (2017) Hum Vaccin Immunother, 13, pp. 2755-2762; Gouglas, D., Christodoulou, M., Plotkin, S.A., Hatchett, R., Cepi: Driving progress towards epidemic preparedness and response (2019) Epidemiol Rev; (2020) Coronavirus Disease (COVID-19) Outbreak., , https://www.who.int/emergencies/diseases/novel-coronavirus-2019, World Health Organization. Accessed 12 February","Plotkin, S.A.; Vaxconsult, 4650 Wismer Rd, United States; email: stanley.plotkin@vaxconsult.com",,"Oxford University Press",20487193,,,"32083284","English","J. Pediatric Infect. Dis. Soc.",Article,"Final",Open Access,Scopus,2-s2.0-85081074235 "Zhang D., Lou X., Yan H., Pan J., Mao H., Tang H., Shu Y., Zhao Y., Liu L., Li J., Chen D., Zhang Y., Ma X.","56185648300;56485152100;57202749708;57203494498;23991347500;40662086100;36906610100;25423303000;57199085752;57204395453;57209365080;53879012600;35800071500;","Respiratory virus associated with surgery in children patients",2019,"Respiratory Research","20","1", 126,"","",,,"10.1186/s12931-019-1086-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067551125&doi=10.1186%2fs12931-019-1086-y&partnerID=40&md5=071b5ff3a5e3cd76d7963959acfa066a","NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China; Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, China; Department of Laboratory Medicine, Sixth People Hospital of Wenzhou, Wenzhou, China","Zhang, D., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China, Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Lou, X., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Yan, H., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Pan, J., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Mao, H., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Tang, H., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, China; Shu, Y., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, China; Zhao, Y., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, China; Liu, L., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, China; Li, J., Department of Pathology, Children's Hospital, Zhejiang University, School of Medicine, Hangzhou, China; Chen, D., Department of Laboratory Medicine, Sixth People Hospital of Wenzhou, Wenzhou, China; Zhang, Y., Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, China; Ma, X., NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China","Background: Viral respiratory infection (VRI) is a common contraindication to elective surgery. Asymptomatic shedding among pediatric surgery patients (PSPs) could potentially lead to progression of symptomatic diseases and cause outbreaks of respiratory diseases. The aim of this study is to investigate the incidence of infection among mild symptomatic PSP group and asymptomatic PSP group after surgical procedure. Methods: We collected the induced sputum from enrolled 1629 children (under 18 years of age) with no respiratory symptom prior to pediatric surgery between March 2017 and February 2019. We tested 16 different respiratory virus infections in post-surgery mild symptomatic PSP group and asymptomatic PSP group using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assay panel. We analyzed symptom data and quantitative viral load to investigate the association between viruses, symptoms and viral quantity in qRT-PCR-positive PSPs. Results: Out of 1629 children enrolled, a total of 204 respiratory viruses were present in 171 (10.50%) PSPs including 47 patients with mild symptoms and 124 with no symptoms after surgery. Commonly detected viruses were human rhino/enterovirus (HRV/EV, 42.19%), parainfluenza virus 3 (PIV3, 24.48%), coronavirus (CoV NL63, OC43, HKU1, 11.46%), and respiratory syncytial virus (RSV, 9.9%). PIV3 infection with a higher viral load was frequently found in PSPs presenting with mild symptoms, progressing to pneumonia with radiographic evidence after surgery. HRV/EV were the most commonly detected pathogens in both asymptomatic and mild symptomatic PSPs. CoV (OC43, HKU1) infections with a higher viral load were mostly observed in asymptomatic PSPs progressing to alveolar or interstitial infiltration. Conclusions: Our study suggested that PIV3 is a new risk factor for VRI in PSPs. Employing a more comprehensive, sensitive and quantitative method should be considered for preoperative testing of respiratory viruses in order to guide optimal surgical timing. © 2019 The Author(s).","mRT-PCR; Pediatric surgical patients; Respiratory virus; Symptoms","Article; asymptomatic disease; child; clinical feature; Coronavirus infection; disease severity; Enterovirus infection; female; human; incidence; major clinical study; male; Parainfluenza virus 3 infection; Parainfluenza virus infection; pneumonia; real time polymerase chain reaction; respiratory syncytial virus infection; retrospective study; reverse transcription polymerase chain reaction; Rhinovirus infection; risk factor; sputum analysis; trend study; viral respiratory tract infection; virus load; infant; newborn; preschool child; respiratory tract infection; sputum; virology; virus infection; Child; Child, Preschool; Female; Humans; Infant; Infant, Newborn; Male; Respiratory Tract Infections; Retrospective Studies; Sputum; Virus Diseases","Walker, C., Rudan, I., Liu, L., Nair, H., Theodoratou, E., Bhutta, Z., O'Brien, K., Black, R., Global burden of childhood pneumonia and diarrhoea (2013) Lancet, 381, pp. 1405-1416; Rudan, I., O'Brien, K., Nair, H., Liu, L., Theodoratou, E., Qazi, S., Lukšić, I., Campbell, H., Epidemiology and etiology of childhood pneumonia in 2010: Estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries (2013) J Glob Health, 3, p. 010401; Shah, D.P., Shah, P.K., Azzi, J.M., Chemaly, R.F., Parainfluenza virus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 370, pp. 358-364. , 1:CAS:528:DC%2BC2MXhvVKmt73P; Couch, R.B., Englund, J.A., Whimbey, E., Respiratory viral infections in immunocompetent and immunocompromised persons (1997) Am J Med, 102, pp. 2-9. , 1:STN:280:DC%2BD3czis1Wiug%3D%3D discussion 25-26; Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Swartz, S., Fullman, N., Reiner, R.C., Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the global burden of disease study 2015 (2017) Lancet Infect Dis, 17, pp. 1133-1161; Shah, D.P., Shah, P.K., Azzi, J.M., El Chaer, F., Chemaly, R.F., Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review (2016) Cancer Lett, 379, pp. 100-106. , 1:CAS:528:DC%2BC28XptVCksb4%3D; Paulsen, G.C., Danziger-Isakov, L., Respiratory viral infections in solid organ and hematopoietic stem cell transplantation (2017) Clin Chest Med, 38, pp. 707-726; Seo, S., Waghmare, A., Scott, E.M., Xie, H., Kuypers, J.M., Hackman, R.C., Campbell, A.P., Jerome, K.R., Human rhinovirus detection in the lower respiratory tract of hematopoietic cell transplant recipients: Association with mortality (2017) Haematologica, 102, pp. 1120-1130. , 1:CAS:528:DC%2BC1cXitVWlu7%2FI; Lehners, N., Tabatabai, J., Prifert, C., Wedde, M., Puthenparambil, J., Weissbrich, B., Biere, B., Schnitzler, P., Long-term shedding of influenza virus, parainfluenza virus, respiratory syncytial virus and nosocomial epidemiology in patients with hematological disorders (2016) PLoS One, 11, p. e0148258; Birger, R., Morita, H., Comito, D., Filip, I., Galanti, M., Lane, B., Ligon, C., Ud-Dean, M., Asymptomatic shedding of respiratory virus among an ambulatory population across seasons (2018) MSphere, 3, pp. e00249-e00318; Advani, S., Sengupta, A., Forman, M., Valsamakis, A., Milstone, A.M., Detecting respiratory viruses in asymptomatic children (2012) Pediatr Infect Dis J, 31, pp. 1221-1226; Van Der Zalm, M.M., Van Ewijk, B.E., Wilbrink, B., Uiterwaal, C.S., Wolfs, T.F., Van Der Ent, C.K., Respiratory pathogens in children with and without respiratory symptoms (2009) J Pediatr, 154, pp. 396-400; Peck, A.J., Englund, J.A., Kuypers, J., Guthrie, K.A., Corey, L., Morrow, R., Hackman, R.C., Boeckh, M., Respiratory virus infection among hematopoietic cell transplant recipients: Evidence for asymptomatic parainfluenza virus infection (2007) Blood, 110, pp. 1681-1688. , 1:CAS:528:DC%2BD2sXhtVSgsbnJ; Shaman, J., Morita, H., Birger, R., Boyle, M., Comito, D., Lane, B., Ligon, C., Planet, P., Asymptomatic summertime shedding of respiratory viruses (2018) J Infect Dis, 217, pp. 1074-1077; Moynihan, K., Barlow, A., Alphonso, N., Anderson, B., Johnson, J., Nourse, C., Schlebusch, S., Schlapbach, L.J., Impact of viral respiratory pathogens on outcomes after pediatric cardiac surgery (2017) Pediatr Crit Care Med, 18, pp. 219-227; Spaeder, M.C., Carson, K.A., Vricella, L.A., Alejo, D.E., Holmes, K.W., Impact of the viral respiratory season on postoperative outcomes in children undergoing cardiac surgery (2011) Pediatr Cardiol, 32, pp. 801-806; Dj, J., Re, G., Md, E., Pa, S., Cj, K., Ka, R., El, A., Kt, C.-D., Rhinovirus illnesses during infancy predict subsequent childhood wheezing (2005) J Allergy Clin Immunol, 116, pp. 571-577; Zhang, D., Mao, H., Lou, X., Pan, J., Yan, H., Tang, H., Shu, Y., Ma, X., Clinical evaluation of a panel of multiplex quantitative real-time reverse transcription polymerase chain reaction assays for the detection of 16 respiratory viruses associated with community-acquired pneumonia (2018) Archives of Virology, 163 (10), pp. 2855-2860. , 1:CAS:528:DC%2BC1cXht1ers7zN; Jain, S., Williams, D.J., Arnold, S.R., Ampofo, K., Bramley, A.M., Reed, C., Stockmann, C., Self, W.H., Community-acquired pneumonia requiring hospitalization among U.S. Children (2015) N Engl J Med, 372, pp. 835-845. , 1:CAS:528:DC%2BC2MXjvFGns7w%3D; Fry, A.M., Lu, X., Olsen, S.J., Chittaganpitch, M., Sawatwong, P., Chantra, S., Baggett, H.C., Erdman, D., Human rhinovirus infections in rural Thailand: Epidemiological evidence for rhinovirus as both pathogen and bystander (2011) PLoS One, 6, p. e17780. , 1:CAS:528:DC%2BC3MXks1Kkt7g%3D; Iwane, M.K., Prill, M.M., Lu, X., Miller, E.K., Edwards, K.M., Hall, C.B., Griffin, M.R., Williams, J.V., Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children (2011) J Infect Dis, 204, pp. 1702-1710; Jacobs, S.E., Lamson, D.M., Soave, R., Guzman, B.H., Shore, T.B., Ritchie, E.K., Zappetti, D., Van Besien, K., Clinical and molecular epidemiology of human rhinovirus infections in patients with hematologic malignancy (2015) J Clin Virol, 71, pp. 51-58. , 1:CAS:528:DC%2BC2MXht1OhurvO; Zhu, Y., Zembower, T.R., Metzger, K.E., Lei, Z., Green, S.J., Qi, C., Investigation of respiratory syncytial virus outbreak on an adult stem cell transplant unit by use of whole-genome sequencing (2017) J Clin Microbiol, 55, pp. 2956-2963. , 1:CAS:528:DC%2BC1cXitVemtrfF; Abedi, G.R., Prill, M.M., Langley, G.E., Wikswo, M.E., Weinberg, G.A., Curns, A.T., Schneider, E., Estimates of parainfluenza virus-associated hospitalizations and cost among children aged less than 5 years in the United States, 1998-2010 (2016) J Pediatric Infect Dis Soc, 5, pp. 7-13; Zeng, Z.Q., Chen, D.H., Tan, W.P., Qiu, S.Y., Xu, D., Liang, H.X., Chen, M.X., Zhou, R., Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: A study of hospitalized children with acute respiratory tract infection in Guangzhou, China (2018) Eur J Clin Microbiol Infect Dis, 37, pp. 363-369; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Lee, P., Lee, R.A., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J Clin Microbiol, 44, pp. 2063-2071. , 1:CAS:528:DC%2BD28XmvFKgs7g%3D; Gaunt, E., Hardie, A., Claas, E., Simmonds, P., Templeton, K., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947. , 1:CAS:528:DC%2BC3cXht1Omu7jK","Zhang, Y.; Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, China; email: yjzhang@cdc.zj.cn",,"BioMed Central Ltd.",14659921,,RREEB,"31208426","English","Respir. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85067551125 "Huang X., Chen J., Yao G., Guo Q., Wang J., Liu G.","57204877284;55683764700;55119092400;55460042600;42062600500;55604879900;","A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses",2019,"Applied Microbiology and Biotechnology","103","12",,"4943","4952",,1,"10.1007/s00253-019-09835-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065030049&doi=10.1007%2fs00253-019-09835-7&partnerID=40&md5=2e03696e26edf41fbfcfc3a5a1db91cc","College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, Urumqi, Xinjiang 830052, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, Lanzhou, Gansu 730046, China","Huang, X., College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, Urumqi, Xinjiang 830052, China, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, Lanzhou, Gansu 730046, China; Chen, J., State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, Lanzhou, Gansu 730046, China; Yao, G., College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, Urumqi, Xinjiang 830052, China; Guo, Q., College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, Urumqi, Xinjiang 830052, China; Wang, J., College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, Urumqi, Xinjiang 830052, China; Liu, G., College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, Urumqi, Xinjiang 830052, China, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, Lanzhou, Gansu 730046, China","Swine enteric coronaviruses are a group of most significant pathogens causing diarrhea in piglets with similar clinical symptoms and pathological changes. To develop a simple, rapid, accurate, and high-throughput detection method for diagnosis and differential diagnosis on swine enteric coronaviruses, specific primers and probes were designed based on the highly conserved regions of transmissible gastroenteritis virus (TGEV) N, porcine epidemic diarrhea virus (PEDV) M, porcine deltacoronavirus (PDCoV) M, and porcine enteric alphacoronavirus (PEAV) N genes respectively. A TaqMan-probe-based multiplex real-time RT-qPCR assay was developed and optimized to simultaneously detect these swine enteric coronaviruses. The results showed that the limit of detection can reach as low as 10 copies in singular real-time RT-qPCR assays and 100 copies in multiplex real-time RT-qPCR assay, with all correlation coefficients (R2) at above 0.99, and the amplification efficiency at between 90 and 120%. This multiplex real-time RT-qPCR assay demonstrated high sensitivity, extreme specificity, and excellent repeatability. The multiplex real-time RT-qPCR assay was then employed to detect the swine enteric coronavirus from 354 field diarrheal samples. The results manifested that TGEV and PDCoV were the main pathogens in these samples, accompanied by co-infections. This well-established multiplex real-time RT-qPCR assay provided a rapid, efficient, specific, and sensitive tool for detection of swine enteric coronaviruses. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.","Diagnosis; Multiplex real-time RT-qPCR; Swine enteric coronaviruses; TaqMan probe","Diagnosis; Probes; Viruses; Amplification efficiencies; Coronaviruses; Correlation coefficient; High-throughput detection; Porcine epidemic diarrhea virus; Real time; TaqMan probes; Transmissible gastroenteritis virus; Polymerase chain reaction; bioassay; detection method; gastroenteritis; optimization; pathology; polymerase chain reaction; probe; real time; virus; Alphacoronavirus; Article; controlled study; Coronavirinae; nonhuman; pig; porcine deltacoronavirus; Porcine epidemic diarrhea virus; real time polymerase chain reaction; sensitivity and specificity; Transmissible gastroenteritis virus; virus detection; virus gene; animal; classification; Coronavirinae; Coronavirus infection; diarrhea; differential diagnosis; feces; genetics; isolation and purification; limit of detection; multiplex polymerase chain reaction; procedures; real time polymerase chain reaction; reproducibility; swine disease; transmissible gastroenteritis of swine; veterinary medicine; virology; Enteric coronavirus; Porcine epidemic diarrhea virus; Suidae; Sus; Transmissible gastroenteritis virus; primer DNA; Animals; Coronavirus; Coronavirus Infections; Diagnosis, Differential; Diarrhea; DNA Primers; Feces; Gastroenteritis, Transmissible, of Swine; Limit of Detection; Multiplex Polymerase Chain Reaction; Porcine epidemic diarrhea virus; Real-Time Polymerase Chain Reaction; Reproducibility of Results; Sensitivity and Specificity; Swine; Swine Diseases; Transmissible gastroenteritis virus","Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., Pohlmann, A., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerg Infect Dis, 22 (7), pp. 1314-1315; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in central eastern Europe in 2016 (2016) Transbound Emerg Dis, 63 (6), pp. 595-601; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Faccini, S., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg Infect Dis, 22 (1), pp. 83-87; Butler, J.E., Lager, K.M., Golde, W., Faaberg, K.S., Sinkora, M., Loving, C., Zhang, Y.I., Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic (2014) Immunol Res, 59 (1-3), pp. 81-108; Chang, C.Y., Deng, M.C., Wang, F.I., Tsai, H.J., Yang, C.H., Chang, C., Huang, Y.L., The application of a duplex reverse transcription real-time PCR for the surveillance of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 (2014) J Virol Methods, 201, pp. 13-19; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg Infect Dis, 23 (9), pp. 1607-1609. , (,),., (,):., https://doi.org/10.3201/eid2309.170915; Hsu, T.H., Liu, H.P., Chin, C.Y., Wang, C., Zhu, W.Z., Wu, B.L., Chang, Y.C., Detection, sequence analysis, and antibody prevalence of porcine deltacoronavirus in Taiwan (2018) Arch Virol, 163, pp. 3113-3117; Huang, Y.L., Pang, V.F., Pan, C.H., Chen, T.H., Jong, M.H., Huang, T.S., Jeng, C.R., Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus (2009) J Virol Methods, 160 (1-2), pp. 111-118; Luo, S.X., Fan, J.H., Opriessnig, T., Di, J.M., Liu, B.J., Zuo, Y.Z., Development and application of a recombinant M protein-based indirect ELISA for the detection of porcine deltacoronavirus IgG antibodies (2017) J Virol Methods, 249, pp. 76-78; Lyoo, K.S., Yeom, M., Kim, J., Kim, D., Ha, G., Na, W., Le, V.P., Song, D., Development of rapid immunochromatographic strip test for the detection of porcine epidemic diarrhoea virus (2017) Vet Rec, 181 (22), pp. 596-601; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6 (2); Ma, Y., Zhang, Y., Liang, X., Oglesbee, M., Krakowka, S., Niehaus, A., Wang, G., Li, J., Two-way antigenic cross-reactivity between porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) Vet Microbiol, 186, pp. 90-96; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbiol, 211, pp. 15-21; Song, D.S., Kang, B.K., Oh, J.S., Ha, G.W., Yang, J.S., Moon, H.J., Jang, Y.S., Park, B.K., Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group a rotavirus (2006) J Vet Diagn Investig, 18 (3), pp. 278-281; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound Emerg Dis, 62 (6), pp. 575-580; Su, M., Li, C., Guo, D., Wei, S., Wang, X., Geng, Y., Yao, S., Sun, D., A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus (2016) J Vet Med Sci, 78 (4), pp. 601-606; Su, Y., Liu, Y., Chen, Y., Xing, G., Hao, H., Wei, Q., Liang, Y., Zhang, G., A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses (2018) Mol Cell Probes, 37, pp. 6-11; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis, 18 (1), pp. 161-163; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20 (7), pp. 1227-1230; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2 (8), pp. 1804-1820; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008; Yang, W., Chen, W., Huang, J., Jin, L., Zhou, Y., Chen, J., Zhang, N., Liu, G., Generation, identification and functional analysis of monoclonal antibodies against porcine epidemic diarrhea virus nucleocapsid (2019) Appl Microbiol Biotechnol, 103, pp. 3705-3714. , (,),.,:, -,., https://doi.org/10.1007/s00253-019-09702-5; Zhang, J., Tsai, Y.L., Lee, P.Y., Chen, Q., Zhang, Y., Chiang, C.J., Shen, Y.H., Wang, H.T., Evaluation of two singleplex reverse transcription-insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus (2016) J Virol Methods, 234, pp. 34-42; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J Virol Methods, 255, pp. 66-70; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258","Wang, J.; College of Veterinary Medicine, Xinjiang Agricultural University, 311 East Noda Road, China; email: Wangjinquan163@163.com",,"Springer Verlag",01757598,,AMBID,"31025076","English","Appl. Microbiol. Biotechnol.",Article,"Final",Open Access,Scopus,2-s2.0-85065030049 "Kim Y., Kim J., Oh S.S., Kim S.-W., Ku M.","36501848000;57209746591;26023532100;55933677600;57104727600;","Subgroup analysis of an epidemic response network of organizations: 2015 MERS outbreak in Korea",2019,"ACM International Conference Proceeding Series",,,,"177","185",,1,"10.1145/3325112.3325260","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068595248&doi=10.1145%2f3325112.3325260&partnerID=40&md5=920c8fc2ec0b186bcd1dc4cefe910b5f","School of Public Affairs, Arizona State University, Phoenix, AZ, United States; Department of Computer Science and Engineering, Hanyang University, Seoul, South Korea; Department of Public Administration, Hanyang University, Seoul, South Korea; Department of Public Management, John Jay College, New York, United States","Kim, Y., School of Public Affairs, Arizona State University, Phoenix, AZ, United States; Kim, J., Department of Computer Science and Engineering, Hanyang University, Seoul, South Korea; Oh, S.S., Department of Public Administration, Hanyang University, Seoul, South Korea; Kim, S.-W., Department of Computer Science and Engineering, Hanyang University, Seoul, South Korea; Ku, M., Department of Public Management, John Jay College, New York, United States","This paper analyzes subgroups in an epidemic response network to gain decision-making insights. We collected relational data among organizations in news articles during the 2015 Middle East Respiratory Syndrome (MERS) Coronavirus outbreak in South Korea. The MERS response network consisted of a total of 998 organizations and 1,968 edges. We identified and examined 28 subgroups. We found that the subgroup structure can be explained by three factors: activeness in the response, geographical location, and organizational function. Two core subgroups that actively responded to the outbreak consisted of heterogeneous organizations at multiple governmental levels and in multiple sectors. This implies that subgroups of heterogeneous organizations are worthy of greater attention than are homogeneous subgroups in the epidemic response network. © 2019 Association for Computing Machinery.","MERS; Response Network; Subgroup Analysis","Artificial intelligence; Decision making; Coronaviruses; Geographical locations; MERS; News articles; Organizational functions; Relational data; Subgroup Analysis; Subgroup structure; Epidemiology","Boin, A., Hart, T., Organising for effective emergency management: Lessons from research (2010) Australian Journal of Public Administration, 69 (4), pp. 357-371. , 2010; Borgatti, S.P., (2013) Analyzing Social Networks, , Sage; Butts, C.T., Interorganizational collaboration in the Hurricane Katrina response (2012) Journal of Social Structure, 13, pp. 1-37. , 2012; Celik, S., Corbacioglu, S., From linearity to complexity: Emergent characteristics of the 2006 Avian Influenza Response System in Turkey (2016) Safety Science, 90, pp. 5-13. , 2016; Comfort, L.K., Crisis management in hindsight: Cognition, coordination, communication (2007) Public Administration Review, 67, pp. 189-197. , Dec 2007; Comfort, L.K., Haase, T.W., Communication, coherence, and collective action (2006) Public Works Management & Policy, 10 (4), pp. 328-343. , 2006; DeJong, M., A comparison of three diversity indices based on their components of richness and evenness (1975) Oikos, 26 (2), pp. 222-227. , 1975; Everett, M.G., Borgatti, S.P., The centrality of groups and classes (1999) Journal of Mathematical Sociology, 23 (3), pp. 181-201. , 1999; Girvan, M., Newman, M.E.J., Community structure in social and biological networks (2002) Proceedings of the National Academy of Sciences, 99, p. 12. , 2002; Gleiser, P., Danon, L., Community structure in jazz (2003) Advances in Complex Systems, 6 (4), pp. 565-573. , 2003; Go, D.Y., Park, J., A comparative study of infectious disease government in Korea: What we can learn from the 2003 SARS and the 2015 MERS Outbreak (2018) Journal of the Korea Association for Policy Studies, 27 (1), pp. 243-280. , 2018; Guimerà, R., Self-similar community structure in a network of human interactions (2003) Physical Review e - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 68 (6), pp. 1-4. , 2003; Hagen, L., Crisis communications in the age of social media: A network analysis of Zika-related Tweets (2017) Social Science Computer Review, 36 (5), pp. 523-541. , 2017; Hodge, J.G., Pandemic and all-hazards preparedness act (2007) Journal of American Medical Association, 297 (13), pp. 1708-1711. , 2007; Hossain, L., Networks of preparedness and response during Australian H1N1 outbreak (2015) Disaster Medicine and Public Health Preparedness, 9 (2), pp. 155-165. , 2015; Hossain, L., Kuti, M., Disaster response preparedness coordination through social networks (2010) Disasters, 34 (3), pp. 755-786. , 2010; Jones, E.C., Faas, A.J., Social Network Analysis of Disaster Response, Recovery, and Adaptation, , Butterworth-Heinemann; Kapucu, N., Examining intergovernmental and interorganizational response to catastrophic disasters: Toward a network-centered approach (2010) Administration and Society, 42 (2), pp. 222-247. , 2010; Kapucu, N., Demiroz, F., Interorganizational networks in disaster management (2017) Social Network Analysis of Disaster Response, Recovery, and Adaptation, pp. 25-39. , A.J. Jones, Eric; Faas, ed. Butterworth-Heinemann; Kim, Y., Zhang, J., Digital government and wicked problems (2016) Government Information Quarterly, 33 (4), pp. 769-776. , 2016; King, J.M., Challenges of designing and implementing high consequence infectious disease response (2018) Disaster Medicine and Public Health Preparedness, 12 (5), pp. 563-566. , 2018; Middle East Respiratory Syndrome Coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health and Research Perspective, 6 (4), pp. 269-278. , Korea Centers for Disease Control and Prevention KCDC 2015; (2016) The 2015 MERS White Paper, , Korea Ministry of Health and Welfare; Kunin, M., Response of general practitioners to infectious disease public health crises: An integrative systematic review of the literature (2013) Disaster Medicine and Public Health Preparedness, 7 (5), pp. 522-533. , 2013; Lim, S., Blackhole: Robust community detection inspired by graph drawing (2016) 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016, pp. 25-36. , 2016; Liu, M., Kim, Y., Special issue on internet plus government: New opportunities to solve public problems? (2018) Government Information Quarterly, 35 (1), pp. 88-97. , 2018; (2008) A Framework for Improving Cross-Sector Coordination for Emergency Preparedness and Response, , McKing Consulting Corporation; (2009) Applications of Social Network Analysis for Building Community Disaster Resilience: Workshop Summary, , National Research Council; Newman, M.E.J., Girvan, M., Finding and evaluating community structure in networks (2004) Physical Review e - Statistical, Nonlinear, and Soft Matter Physics, 69 (22), pp. 1-15. , 2004; Palen, L., Crisis in a networked world (2009) Social Science Computer Review, 27 (4), pp. 467-480. , 2009; Perry, R.W., Lindell, M.K., Preparedness for emergency response: Guidelines for the emergency planning process (2003) Disasters, 27 (4), pp. 336-350. , 2003; Qadir, J., Crisis analytics: Big data driven crisis response (2016) Journal of International Humanitarian Action, pp. 1-21. , 2016; Ramos, M., E-health: Agent-based Models to Simulate Behavior of Individuals during an Epidemic Outbreak (2018) 19th Annual International Conference on Digital Government Research, pp. 1-10. , dg.o 2018). 2018; Reuter, C., Social media in crisis management: An evaluation and analysis of crisis informatics research (2018) International Journal of Human-Computer Interaction, 34 (4), pp. 280-294. , 2018; Robinson, S., (2013) The Core and Periphery of Emergency Management Networks, , 2013 pdf; Sell, T.K., Public health resilience checklist for high-consequence infectious diseases - Informed by the domestic Ebola response in the United States (2018) Journal of Public Health Management and Practice, 24 (6), pp. 510-518. , 2018; Seo, K., Epidemic crisis management systems in South Korea (2015) Chung-Ang Public Administration Review, 29 (4), pp. 219-242. , 2015; Silk, B.J., Infectious disease threats and opportunities for prevention (2018) Journal of Public Health Management and Practice, 24 (6), pp. 503-505. , 2018; Swaan, C.M., Ebola preparedness in the Netherlands: The need for coordination between the public health and the curative sector (2018) Journal of Public Health Management and Practice, 24 (1), pp. 18-25. , 2018; Topper, C.M., Carley, K.M., A structural perspective on the emergence of network organizations (1999) Journal of Mathematical Sociology, 24 (1), pp. 67-96. , 1999; Treurniet, W., Shaping comprehensive emergency response networks (2014) Network Topology in Command and Control: Organization, Operation, and Evolution, pp. 26-48. , R.H. Monsuur, H.; Janssen, ed. IGI Global; Turnock, B.J., (2004) Public Health: What It Is and How It Works, , Jones and Bartlett; Wasserman, S., Faust, K., (1994) Social Network Analysis: Methods and Applications, , Cambridge University Press; WHO MERS Global Summary and Assessment of Risk, , https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august2018.pdf, Accessed: 2018-12-29; Williams, H.A., CDC's early response to a novel viral disease, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), September 2012-May2014 (2015) Public Health Reports, 130, pp. 307-317. , 2015; Zhong, W., Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: Case study of a 2009 H1N1 outbreak in Arizona (2013) Computational and Mathematical Organization Theory, 19 (4), pp. 622-645. , 2013",,"Chen Y.-C.Salem F.Zuiderwijk A.","Association for Computing Machinery",,9781450372046,,,"English","ACM Int. Conf. Proc. Ser.",Conference Paper,"Final",,Scopus,2-s2.0-85068595248 "Wang L., Yang S., Yan X., Liu T., Feng Z., Li G.","57188769579;57188761560;57195197248;57209565581;57188769082;57188758042;","Comparing the yield of oropharyngeal swabs and sputum for detection of 11 common pathogens in hospitalized children with lower respiratory tract infection",2019,"Virology Journal","16","1", 84,"","",,2,"10.1186/s12985-019-1177-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068124808&doi=10.1186%2fs12985-019-1177-x&partnerID=40&md5=72b4b791db6739efc02c5ddf0d6ee71a","Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China; Hebei General Hospital, Shijiazhuang, 050000, China","Wang, L., Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China; Yang, S., Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China; Yan, X., Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China; Liu, T., Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China; Feng, Z., Hebei General Hospital, Shijiazhuang, 050000, China; Li, G., Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China","Background: Advances in molecular laboratory techniques are changing the prospects for the diagnosis of viral infectious diseases. Multiplex polymerase chain reaction assay (multiplex-PCR) can detect dozens of pathogens simultaneously, greatly reducing turnaround time (TAT) and improving detection sensitivity. But as a double-edged sword, due to the high sensitivity of PCR, the type of respiratory specimens is critical to diagnosis. In this work, we performed a head-to-head comparison to evaluate the multiplex-PCR yields between two samples, sputum and flocked oropharyngeal swabs (OPS). Methods: Eleven common respiratory pathogens were tested in hospitalized children< 13 years of age who met the criteria for lower respiratory tract infection by GeXP-based multiplex-PCR of paired OPS and sputum. Results: From January to June 2018, 440 children with paired OPS and sputum were tested. The positive rate was 84% (369/440) for OPS and 88% (386/440) for sputum (p =.007). The frequency of detection of HRV, RSV, Influenza A virus, HMPV, parainfluenza virus, adenovirus, M. pneumoniae, coronavirus, bocavirus and C. pneumoniae in sputa was higher than that of OPSs (all p <.001). Both types of specimens had similarly very good kappa values for most of pathogens, except for Mycoplasma pneumonia (κ = 0.61) and Chlamydia pneumoniae (κ = 0.24). Additionally, 79.3% (349/440) of cases showed consistent results between the two types of samples, and they were significantly younger than patients with inconsistent results (p =.002). Conclusions: Flocked oropharyngeal swabs and sputum performed similarly for the detection of common respiratory pathogens in hospitalized children by multiplex-PCR, except for Mycoplasma pneumoniae and Chlamydia pneumoniae. Young patients are likely to have consistent results between the two specimens. © 2019 The Author(s).","Children; LRTI; Oropharyngeal swabs; Sputum","Adenoviridae; Article; Bocaparvovirus; child; Chlamydia pneumoniae; controlled study; Coronavirinae; female; hospitalized child; human; Human metapneumovirus; Human rhinovirus; Influenza A virus; lower respiratory tract infection; major clinical study; male; microorganism detection; multiplex polymerase chain reaction; Mycoplasma pneumonia; nonhuman; Paramyxovirinae; Rous sarcoma virus; sputum analysis; throat culture; adenovirus infection; bacterium; comparative study; genetics; hospitalization; infant; isolation and purification; microbiology; Mycoplasma pneumoniae; newborn; oropharynx; pathogenicity; preschool child; respiratory tract infection; sputum; virology; virus; Adenoviridae Infections; Bacteria; Child; Child, Preschool; Female; Hospitalization; Humans; Infant; Infant, Newborn; Male; Multiplex Polymerase Chain Reaction; Mycoplasma pneumoniae; Oropharynx; Respiratory Tract Infections; Sputum; Viruses","Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: A systematic analysis for the global burden of disease study 2015 (2017) Lancet Infect Dis, 17, pp. 1133-1161; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin Microbiol Rev, 21, pp. 716-747. , 1:CAS:528:DC%2BD1cXhtlClurfK; Bhat, N., O'Brien, K.L., Karron, R.A., Driscoll, A.J., Murdoch, D.R., Pneumonia methods working G: Use and evaluation of molecular diagnostics for pneumonia etiology studies (2012) Clin Infect Dis, 54, pp. S153-S158; Raty, R., Ronkko, E., Kleemola, M., Sample type is crucial to the diagnosis of mycoplasma pneumoniae pneumonia by PCR (2005) J Med Microbiol, 54, pp. 287-291. , 1:CAS:528:DC%2BD2MXktlegsbs%3D; Abanses, J.C., Dowd, M.D., Simon, S.D., Sharma, V., Impact of rapid influenza testing at triage on management of febrile infants and young children (2006) Pediatr Emerg Care, 22, pp. 145-149; Meerhoff, T.J., Houben, M.L., Coenjaerts, F.E., Kimpen, J.L., Hofland, R.W., Schellevis, F., Bont, L.J., Detection of multiple respiratory pathogens during primary respiratory infection: Nasal swab versus nasopharyngeal aspirate using real-time polymerase chain reaction (2010) Eur J Clin Microbiol Infect Dis, 29, pp. 365-371. , 1:STN:280:DC%2BC3c7ptVaqsw%3D%3D; Lambert, S.B., Whiley, D.M., O'Neill, N.T., Andrews, E.C., Canavan, F.M., Bletchly, C., Siebert, D.J., Nissen, M.D., Comparing nose-throat swabs and nasopharyngeal aspirates collected from children with symptoms for respiratory virus identification using real-time polymerase chain reaction (2008) Pediatrics, 122, pp. e615-e620; Stensballe, L.G., Trautner, S., Kofoed, P.E., Nante, E., Hedegaard, K., Jensen, I.P., Aaby, P., Comparison of nasopharyngeal aspirate and nasal swab specimens for detection of respiratory syncytial virus in different settings in a developing country (2002) Tropical Med Int Health, 7, pp. 317-321. , 1:STN:280:DC%2BD383islaktA%3D%3D; Zampoli, M., Pillay, K., Carrara, H., Zar, H.J., Morrow, B., Microbiological yield from induced sputum compared to oropharyngeal swab in young children with cystic fibrosis (2016) J Cyst Fibros, 15, pp. 605-610; Jeong, J.H., Kim, K.H., Jeong, S.H., Park, J.W., Lee, S.M., Seo, Y.H., Comparison of sputum and nasopharyngeal swabs for detection of respiratory viruses (2014) J Med Virol, 86, pp. 2122-2127. , 1:CAS:528:DC%2BC2cXhvVSjsbnN; Lahti, E., Peltola, V., Waris, M., Virkki, R., Rantakokko-Jalava, K., Jalava, J., Eerola, E., Ruuskanen, O., Induced sputum in the diagnosis of childhood community-acquired pneumonia (2009) Thorax, 64, pp. 252-257. , 1:STN:280:DC%2BD1M7nt1Clug%3D%3D; Chau, J.T., Peebles, K., Belessis, Y., Jaffe, A., Doumit, M., Distress during airway sampling in children with cystic fibrosis (2018) Arch Dis Child; Thea, D.M., Seidenberg, P., Park, D.E., Mwananyanda, L., Fu, W., Shi, Q., Baggett, H.C., Howie, S.R.C., Limited utility of polymerase chain reaction in induced sputum specimens for determining the causes of childhood pneumonia in resource-poor settings: Findings from the pneumonia etiology research for child health (PERCH) study (2017) Clin Infect Dis, 64, pp. S289-S300; Jourdain, S., Smeesters, P.R., Denis, O., Dramaix, M., Sputael, V., Malaviolle, X., Van Melderen, L., Vergison, A., Differences in nasopharyngeal bacterial carriage in preschool children from different socio-economic origins (2011) Clin Microbiol Infect, 17, pp. 907-914. , 1:STN:280:DC%2BC3MnhvFCgsw%3D%3D; Landis, J.R., Koch, G.G., The measurement of observer agreement for categorical data (1977) Biometrics, 33, pp. 159-174. , 1:STN:280:DyaE2s7jsFWqtA%3D%3D; Brittain-Long, R., Nord, S., Olofsson, S., Westin, J., Anderson, L.M., Lindh, M., Multiplex real-time PCR for detection of respiratory tract infections (2008) J Clin Virol, 41, pp. 53-56. , 1:CAS:528:DC%2BD1cXhtlGltA%3D%3D; Gadsby, N.J., Russell, C.D., McHugh, M.P., Mark, H., Conway Morris, A., Laurenson, I.F., Hill, A.T., Templeton, K.E., Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia (2016) Clin Infect Dis, 62, pp. 817-823. , 1:CAS:528:DC%2BC1cXitVGqsb4%3D; Putot, A., Tetu, J., Perrin, S., Bailly, H., Piroth, L., Besancenot, J.F., Bonnotte, B., Charles, P.E., Impact of microbiological samples in the hospital management of community-acquired, nursing home-acquired and hospital-acquired pneumonia in older patients (2016) Eur J Clin Microbiol Infect Dis, 35, pp. 489-495. , 1:STN:280:DC%2BC28rptFCnuw%3D%3D; Huijskens, E.G., Rossen, J.W., Kluytmans, J.A., Van Der Zanden, A.G., Koopmans, M., Evaluation of yield of currently available diagnostics by sample type to optimize detection of respiratory pathogens in patients with a community-acquired pneumonia (2014) Influenza Other Respir Viruses, 8, pp. 243-249; Nunes, M.C., Soofie, N., Downs, S., Tebeila, N., Mudau, A., De Gouveia, L., Madhi, S.A., Comparing the yield of nasopharyngeal swabs, nasal aspirates, and induced sputum for detection of Bordetella pertussis in hospitalized infants (2016) Clin Infect Dis, 63, pp. S181-S186; Lim, W.S., Baudouin, S.V., George, R.C., Hill, A.T., Jamieson, C., Le Jeune, I., Macfarlane, J.T., Levy, M.L., BTS guidelines for the management of community acquired pneumonia in adults: Update 2009 (2009) Thorax, 64, pp. iii1-ii55; Cho, M.C., Kim, H., An, D., Lee, M., Noh, S.A., Kim, M.N., Chong, Y.P., Woo, J.H., Comparison of sputum and nasopharyngeal swab specimens for molecular diagnosis of mycoplasma pneumoniae, Chlamydophila pneumoniae, and legionella pneumophila (2012) Ann Lab Med, 32, pp. 133-138. , 1:CAS:528:DC%2BC38Xmt1CisLs%3D; Collier, A.M., Clyde, W.A., Jr., Appearance of mycoplasma pneumoniae in lungs of experimentally infected hamsters and sputum from patients with natural disease (1974) Am Rev Respir Dis, 110, pp. 765-773. , 1:STN:280:DyaE2M%2Flt12rtQ%3D%3D 4429272; Kuoppa, Y., Boman, J., Scott, L., Kumlin, U., Eriksson, I., Allard, A., Quantitative detection of respiratory chlamydia pneumoniae infection by real-time PCR (2002) J Clin Microbiol, 40, pp. 2273-2274. , 1:CAS:528:DC%2BD38XltFOnurk%3D; Ishiwada, N., Sugimoto, K., Uehara, S., Koori, Y., Suruga, Y., Numazaki, Y., Suzuki, H., Niimi, H., (1996) Kansenshogaku Zasshi, 70, pp. 470-478. , 1:STN:280:DyaK283osFSgsg%3D%3D The etiology of acute lower respiratory tract infections in infants; Rhedin, S., Lindstrand, A., Hjelmgren, A., Ryd-Rinder, M., Ohrmalm, L., Tolfvenstam, T., Ortqvist, A., Henriques-Normark, B., Respiratory viruses associated with community-acquired pneumonia in children: Matched case-control study (2015) Thorax, 70, pp. 847-853; Homaira, N., Luby, S.P., Petri, W.A., Vainionpaa, R., Rahman, M., Hossain, K., Snider, C.B., Zesmin, F., Incidence of respiratory virus-associated pneumonia in urban poor young children of Dhaka, Bangladesh, 2009-2011 (2012) PLoS One, 7, p. e32056. , 1:CAS:528:DC%2BC38XjsVyisbo%3D","Feng, Z.; Hebei General HospitalChina; email: fzshan@139.com",,"BioMed Central Ltd.",1743422X,,,"31234918","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85068124808 "Jiao S., Lin C., Du L., Liu J., Gu J., Zhou J.","57208087693;56518411000;57200567662;57197746059;35302463200;54682580100;","Porcine deltacoronavirus induces mitochondrial apoptosis in ST cells",2019,"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","35","6",,"1050","1058",,,"10.13345/j.cjb.180512","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068570983&doi=10.13345%2fj.cjb.180512&partnerID=40&md5=8f38a3db7ffb369c6f519e091a2b788c","Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang 310058, China","Jiao, S., Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Lin, C., Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang 310058, China; Du, L., Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Liu, J., Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Gu, J., Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Zhou, J., Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang 310058, China","猪丁型冠状病毒 (Porcine deltacoronavirus,PDCoV) 是一种新型的猪肠道致病性冠状病毒,可引起猪群剧烈腹泻及呕吐,但致病机制尚不清楚。本研究检测了PDCoV 感染诱导的细胞凋亡。Caspase 酶活性检测显示,在PDCoV 感染的细胞中,caspase 3、caspase 8 和caspase 9 的活性随病毒感染量的增多而显著提高,类似的现象未能在紫外灭活病毒感染的细胞中观察到,表明PDCoV 感染可同时激活内源性与外源性细胞凋亡通路,并暗示细胞凋亡的诱导依赖于病毒复制。为深入探究PDCoV 诱导的内源性细胞凋亡,分别检测胞浆和线粒体中细胞色素C 与凋亡诱导因子。结果显示,与正常细胞相比,PDCoV 感染细胞从线粒体释放到胞浆的细胞色素C 显著增多,且其释放量随着感染时间的延长而增多,而凋亡诱导因子始终定位于线粒体,提示PDCoV 感染通过促使线粒体膜间隙的细胞色素C 进入胞浆而启动caspase 依赖的线粒体凋亡通路。本研究初步揭示了PDCoV 诱导细胞凋亡的机制。.Porcine deltacoronavirus (PDCoV) is a newly emerging enteropathogenic swine coronavirus causing acute diarrhea and vomiting in pigs. The apoptosis of ST cells induced by PDCoV infection was studied in this research. In ST cells, caspase activity assay showed that the activity of caspase 3, caspase 8 and caspase 9 increased significantly with the infection of PDCoV, but not observed in UV irradiated PDCoV-infected cells, indicating that PDCoV infection activated both endogenous and exogenous apoptotic pathways in ST cells, and the induction of apoptosis depended on viral replication. To further investigate the endogenous apoptosis induced by PDCoV, cytochrome C and apoptosis-inducing factors in cytoplasm and mitochondria were detected. Compared with normal cells, the amount of cytochrome C released from mitochondria to cytoplasm increased significantly in PDCoV-infected cells, and the release increased with the prolongation of infection, while the apoptosis-inducing factor was always localized to mitochondria, suggesting that PDCoV induced apoptosis was initiated through caspase-dependent mitochondrial apoptosis pathway by promoting cytochrome C in the mitochondrial membrane gap into the cytosol. In conclusion, this study reveals the mechanism of PDCoV inducing apoptosis.","cytochrome C; mitochondrial apoptosis; porcine deltacoronavirus","animal; apoptosis; Coronavirinae; Coronavirus infection; mitochondrion; pig; swine disease; Animals; Apoptosis; Coronavirus; Coronavirus Infections; Mitochondria; Swine; Swine Diseases",,,,"NLM (Medline)",10003061,,,"31232001","Chinese","Sheng Wu Gong Cheng Xue Bao",Article,"Final",,Scopus,2-s2.0-85068570983 "Fung T.S., Liu D.X.","55795740300;57190128771;","The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus",2019,"Virology","533",,,"34","44",,3,"10.1016/j.virol.2019.05.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065852766&doi=10.1016%2fj.virol.2019.05.002&partnerID=40&md5=e1f484fcdf4e282b2830c4cb30f8885c","South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China","Fung, T.S., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China; Liu, D.X., South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou, Guangdong 510642, China","Coronavirus infection induces the generation of autophagosomes, and certain host proteins regulating cellular autophagy are hijacked by some coronaviruses to facilitate the formation of double membrane vesicles. However, mechanisms underlying coronavirus-induced autophagy remain largely unknown. In this study, we demonstrate that autophagosome formation and apparent autophagic flux are induced in cells infected with infectious bronchitis virus (IBV)– a gammacoronavirus. Notably, IBV-induced autophagy was dependent on autophagy related 5 (ATG5)but not beclin1 (BECN1), although both are essential proteins in the canonical autophagy pathway. Moreover, the ER stress sensor inositol requiring enzyme 1 (IRE1), but not its substrate X-box protein 1 (XBP1), was also essential for the induction of autophagy during IBV infection. Finally, the anti-apoptotic extracellular signal-regulated kinase 1/2 (ERK1/2)also contributed to IBV-induced autophagy. Our findings add new knowledge to the regulatory mechanisms governing coronavirus-induced autophagy, highlighting an extensive cross-talk among cellular signaling pathways during coronavirus infection. © 2019 Elsevier Inc.","Autophagy; Coronavirus; ER stress; Mitogen-activated protein kinase; Unfolded protein response","activating transcription factor 6; autophagy related protein 5; beclin 1; mitogen activated protein kinase; mitogen activated protein kinase 1; mitogen activated protein kinase 3; protein IRE1; stress activated protein kinase; X box binding protein 1; autophagy related protein 5; beclin 1; BECN1 protein, human; ERN1 protein, human; MAPK1 protein, human; mitogen activated protein kinase 1; mitogen activated protein kinase 3; protein serine threonine kinase; ribonuclease; Article; autophagosome; autophagy; Avian infectious bronchitis virus; controlled study; endoplasmic reticulum stress; NCI-H1299 cell line; nonhuman; priority journal; unfolded protein response; Avian infectious bronchitis virus; Coronavirus infection; endoplasmic reticulum stress; genetics; human; metabolism; pathophysiology; physiology; virology; Autophagy; Autophagy-Related Protein 5; Beclin-1; Coronavirus Infections; Endoplasmic Reticulum Stress; Endoribonucleases; Humans; Infectious bronchitis virus; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Protein-Serine-Threonine Kinases","Abernathy, E., Mateo, R., Majzoub, K., van Buuren, N., Bird, S.W., Carette, J.E., Differential and convergent utilization of autophagy components by positive-strand RNA viruses (2019) PLoS Biol., 17 (1). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334974/, [cited 2019 Apr 28];17(1). Available from; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) mBio, 4 (4). , e00524-13; Backer, J.M., The regulation and function of Class III PI3Ks: novel roles for Vps34 (2008) Biochem. J., 410 (1), pp. 1-17; Cagnol, S., Chambard, J.-C., ERK and cell death: mechanisms of ERK-induced cell death – apoptosis, autophagy and senescence (2010) FEBS J., 277 (1), pp. 2-21; Cagnol, S., Van Obberghen-Schilling, E., Chambard, J.-C., Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death (2006) Apoptosis Int. J. Prog. Cell Death, 11 (3), pp. 337-346; Chen, X., Wang, K., Xing, Y., Tu, J., Yang, X., Zhao, Q., Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity (2014) Protein Cell, 5 (12), pp. 912-927; Cong, Y., Verlhac, P., Reggiori, F., The interaction between Nidovirales and autophagy components (2017) Viruses, 9 (7); Corona Velazquez, A., Corona, A.K., Klein, K.A., Jackson, W.T., Poliovirus induces autophagic signaling independent of the ULK1 complex (2018) Autophagy, 14 (7), pp. 1201-1213; Cottam, E.M., Maier, H.J., Manifava, M., Vaux, L.C., Chandra-Schoenfelder, P., Gerner, W., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7 (11), pp. 1335-1347; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10 (8), pp. 1426-1441; de Haan, C.A.M., Reggiori, F., Are nidoviruses hijacking the autophagy machinery? (2008) Autophagy, 4 (3), pp. 276-279; Fung, T.S., Liu, D.X., Coronavirus infection, ER stress, apoptosis and innate immunity (2014) Front. Microbiol., 5, p. 296. , http://journal.frontiersin.org/article/10.3389/fmicb.2014.00296/abstract, [cited 2018 Mar 20];5. Available from:; Fung, T.S., Liu, D.X., Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun (2017) Cell Death Dis., 8 (12), p. 3215; Fung, T.S., Liu, D.X., Post-translational modifications of coronavirus proteins: roles and function (2018) Future Virol., 13 (6), pp. 405-430; Fung, T.S., Liao, Y., Liu, D.X., The endoplasmic reticulum stress sensor IRE1α protects cells from apoptosis induced by the coronavirus infectious bronchitis virus (2014) J. Virol., 88 (21), pp. 12752-12764; Fung, T.S., Liao, Y., Liu, D.X., Regulation of stress responses and translational control by coronavirus (2016) Viruses, 8 (12), p. 184; Furuya, N., Yu, J., Byfield, M., Pattingre, S., Levine, B., The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function (2005) Autophagy, 1 (1), pp. 46-52; Geng, J., Klionsky, D.J., The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’’ review series (2008) EMBO Rep., 9 (9), pp. 859-864; Heaton, N.S., Randall, G., Dengue virus and autophagy (2011) Viruses, 3 (8), pp. 1332-1341; Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy (2009) Mol. Biol. Cell, 20 (7), pp. 1981-1991; Ke, P.-Y., Chen, S.S.-L., Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro (2011) J. Clin. Investig., 121 (1), pp. 37-56; Kim, H.J., Lee, S., Jung, J.U., When autophagy meets viruses: a double-edged sword with functions in defense and offense (2010) Semin. Immunopathol., 32 (4), pp. 323-341; Kimura, S., Noda, T., Yoshimori, T., Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 (2007) Autophagy, 3 (5), pp. 452-460; Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (2016) Autophagy, 12 (1), pp. 1-222; Knoops, K., Kikkert, M., Van Den Worm, S.H.E., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6 (9), p. e226; Knoops, K., Kikkert, M., Van Den Worm, S.H.E., Zevenhoven-Dobbe, J.C., Van Der Meer, Y., Koster, A.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6 (9), p. e226; Kroemer, G., Mariño, G., Levine, B., Autophagy and the integrated stress response (2010) Mol. Cell, 40 (2), pp. 280-293; Li, F.Q., Xiao, H., Tam, J.P., Liu, D.X., Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus (2005) FEBS Lett., 579 (11), pp. 2387-2396; Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., Induction of autophagy and inhibition of tumorigenesis by beclin 1 (1999) Nature, 402 (6762), pp. 672-676; Liang, J.Q., Fang, S., Yuan, Q., Huang, M., Chen, R.A., Fung, T.S., N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis (2019) Virology, 531, pp. 48-56; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87 (14), pp. 8124-8134; Lim, Y., Ng, Y., Tam, J., Liu, D.X., Human coronaviruses: a review of virus–host interactions (2016) Diseases, 4 (4), p. 26; Liu, D.X., Inglis, S.C., Association of the infectious bronchitis virus 3c protein with the virion envelope (1991) Virology, 185 (2), pp. 911-917; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) mBio, 4 (5), pp. e00801-e00813; Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G., Self-eating and self-killing: crosstalk between autophagy and apoptosis (2007) Nat. Rev. Mol. Cell Biol., 8 (9), pp. 741-752; Man, N., Chen, Y., Zheng, F., Zhou, W., Wen, L.-P., Induction of genuine autophagy by cationic lipids in mammalian cells (2010) Autophagy, 6 (4), pp. 449-454; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., A protein conjugation system essential for autophagy (1998) Nature, 395 (6700), pp. 395-398; Mizushima, N., Levine, B., Cuervo, A.M., Klionsky, D.J., Autophagy fights disease through cellular self-digestion (2008) Nature, 451 (7182), pp. 1069-1075; Ng, L.F., Liu, D.X., Identification of a 24-kDa polypeptide processed from the coronavirus infectious bronchitis virus 1a polyprotein by the 3C-like proteinase and determination of its cleavage sites (1998) Virology, 243 (2), pp. 388-395; Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Autophagy is activated for cell survival after endoplasmic reticulum stress (2006) Mol. Cell Biol., 26 (24), pp. 9220-9231; Ogier-Denis, E., Pattingre, S., El Benna, J., Codogno, P., Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells (2000) J. Biol. Chem., 275 (50), pp. 39090-39095; Ohsumi, Y., Molecular dissection of autophagy: two ubiquitin-like systems (2001) Nat. Rev. Mol. Cell Biol., 2 (3), pp. 211-216; Oostra, M., Hagemeijer, M.C., van Gent, M., Bekker, C.P., te Lintelo, E.G., Rottier, P.J., Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning (2008) J. Virol., 82 (24), pp. 12392-12405; Reggiori, F., Monastyrska, I., Verheije, M.H., Calì, T., Ulasli, M., Bianchi, S., Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication (2010) Cell Host Microbe, 7 (6), pp. 500-508; Shi, Y., He, X., Zhu, G., Tu, H., Liu, Z., Li, W., Coxsackievirus A16 elicits incomplete autophagy involving the mTOR and ERK pathways (2015) PLoS One, 10 (4). , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390341/, cited 2017 Jul 12];10(4). Available from:; Sivaprasad, U., Basu, A., Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells (2008) J. Cell Mol. Med., 12 (4), pp. 1265-1271; Snijder, E.J., van der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J.M., van der Meulen, J., Koerten, H.K., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J. Virol., 80 (12), pp. 5927-5940; Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., Ohsumi, Y., The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation (2001) EMBO J., 20 (21), pp. 5971-5981; Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P., Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 (2000) Science, 287 (5453), pp. 664-666; Wong, J., Zhang, J., Si, X., Gao, G., Mao, I., McManus, B.M., Autophagosome supports coxsackievirus B3 replication in host cells (2008) J. Virol., 82 (18), pp. 9143-9153; Yang, Z., Klionsky, D.J., Eaten alive: a history of macroautophagy (2010) Nat. Cell Biol., 12 (9), pp. 814-822; Zhao, Z., Thackray, L.B., Miller, B.C., Lynn, T.M., Becker, M.M., Ward, E., Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3 (6), pp. 581-585; Zhu, B., Zhou, Y., Xu, F., Shuai, J., Li, X., Fang, W., Porcine circovirus type 2 induces autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in PK-15 cells (2012) J. Virol., 86 (22), pp. 12003-12012; Zhu, L., Mou, C., Yang, X., Lin, J., Yang, Q., Mitophagy in TGEV infection counteracts oxidative stress and apoptosis (2016) Oncotarget, 7 (19), pp. 27122-27141","Liu, D.X.; South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research CentreChina; email: dxliu0001@163.com",,"Academic Press Inc.",00426822,,VIRLA,"31082732","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85065852766 "Eichenberger E.M., Soave R., Zappetti D., Small C.B., Shore T., van Besien K., Douglass C., Westblade L.F., Satlin M.J.","56664224600;35548248100;57212305270;57202553984;7003274925;7005269818;57204534521;6506389941;36769145900;","Incidence, significance, and persistence of human coronavirus infection in hematopoietic stem cell transplant recipients",2019,"Bone Marrow Transplantation","54","7",,"1058","1066",,2,"10.1038/s41409-018-0386-z","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055998885&doi=10.1038%2fs41409-018-0386-z&partnerID=40&md5=a58b8c18fbb666bb5347ab9408a55c0a","Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States; Department of Infectious Disease, Duke University Medical Center, Durham, United States; Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States; Division of Pulmonary & Critical Care Medicine, Weill Cornell Medicine, New York, NY, United States; Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States","Eichenberger, E.M., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Department of Infectious Disease, Duke University Medical Center, Durham, United States; Soave, R., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States; Zappetti, D., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Division of Pulmonary & Critical Care Medicine, Weill Cornell Medicine, New York, NY, United States; Small, C.B., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States; Shore, T., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States; van Besien, K., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, United States; Douglass, C., Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States; Westblade, L.F., Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States; Satlin, M.J., Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, United States, Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States","Hematopoietic stem cell transplant (HSCT) recipients are at increased risk of respiratory viral infections and their associated complications. Unlike other respiratory viruses, little is known about the clinical significance of human coronavirus infection (HCoV) in this population. We retrospectively identified all HSCT recipients who were transplanted between May 2013 and June 2017 at our institution and characterized the cumulative incidence of post-transplant HCoV infection. Of 678 patients who underwent HSCT during the study period, 112 (17%) developed HCoV infection, making HCoV the fourth most common respiratory viral infection. Thirty-four (30%) HCoV-infected patients progressed to proven or probable lower respiratory tract infection (LRTI). Age ≥50, graft-versus-host disease, corticosteroids, hypoalbuminemia, and inpatient status at the time of infection were independently associated with progression to LRTI. Twenty-seven (59%) patients who underwent repeat NP swab had persistent viral shedding for ≥21 days, with a median duration of 4 weeks of viral shedding. We conclude that HCoV is common and clinically significant in HSCT recipients, with nearly one-third of patients progressing to proven or probable LRTI. Evaluating for LRTI risk factors found in this study may identify patients who require closer surveillance and aggressive supportive care when infected with HCoV. © 2018, Springer Nature Limited.",,"alemtuzumab; corticosteroid; thymocyte antibody; adult; aged; Article; controlled study; Coronaviridae; Coronavirus infection; disease course; female; graft recipient; graft versus host reaction; hematopoietic stem cell transplantation; hospital patient; human; human cell; hypoalbuminemia; incidence; infection risk; lower respiratory tract infection; major clinical study; male; nonhuman; persistent virus infection; priority journal; retrospective study; risk factor; throat culture; viral respiratory tract infection; virus shedding","Chemaly, R.F., Shah, D.P., Boeckh, M.J., Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies (2014) Clin Infect Dis, 59, pp. S344-S351. , COI: 1:CAS:528:DC%2BC28XhvFWlsL%2FE; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Xie, H., Yeung, C.C., Leisenring, W.M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin Infect Dis, 64, pp. 1532-1539. , COI: 1:CAS:528:DC%2BC1cXitFalu7nF; Pinana, J.L., Madrid, S., Perez, A., Hernandez-Boluda, J.C., Gimenez, E., Terol, M.J., Epidemiologic and clinical characteristics of coronavirus and bocavirus respiratory infections after allogeneic stem cell transplantation: a prospective single-center study (2018) Biol Blood Marrow Transplant, 24, pp. 563-570; Agostini, M.L., Andrews, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) Mbio, 9, pp. 18-e00221; Milano, F., Campbel, A.P., Guthrie, K.A., Kuypers, J., Englund, J.A., Corey, L., Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients (2010) Blood, 115, pp. 2088-2094. , COI: 1:CAS:528:DC%2BC3cXhtFensbfF; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J Clin Virol, 53, pp. 135-139; Sipulwa, L.A., Ongus, J.R., Coldren, R.L., Bulimo, W.D., Molecular characterization of human coronaviruses and their circulation dynamics in Kenya, 2009–2012 (2016) Virol J, 13, p. 18; Hakki, M., Rattray, R.M., Press, R.D., The clinical impact of coronavirus infection in patients with hematologic malignancies and hematopoietic stem cell transplant recipients (2015) J Clin Virol, 68, pp. 1-5; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947. , COI: 1:CAS:528:DC%2BC3cXht1Omu7jK; Renaud, C., Campbell, A.P., Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients (2011) Curr Opin Infect Dis, 24, pp. 333-343; Weigt, S.S., Gregson, A.L., Deng, J.C., Lynch, J.P., 3rd, Belperio, J.A., Respiratory viral infections in hematopoietic stem cell and solid organ transplant recipients (2011) Semin Respir Crit Care Med, 32, pp. 471-493; Ogimi, C., Greninger, A.L., Waghmare, A.A., Kuypers, J.M., Shean, R.C., Xie, H., Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: risk factors and viral genome evolution (2017) J Infect Dis, 216, pp. 203-209. , COI: 1:CAS:528:DC%2BC1cXitFCqs7bI; Hirsch, H.H., Martino, R., Ward, K.N., Boeckh, M., Einsele, H., Ljungman, P., Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parinfleunza virus, metapneumovirus, rhinovirus and coronavirus (2013) Clin Infect Dis, 56, pp. 258-266; Lehners, N., Tabatabai, J., Prifert, C., Wedde, M., Puthenparambil, J., Weissbrich, B., Long-term shedding of influenza virus, arainfluenza virus, respiratory syncytial virus and nosocomial epidemiology in patients with hematological disorders (2016) PLoS One, 11","Eichenberger, E.M.; Department of Internal Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical CenterUnited States; email: emily.eichenberger@gmail.com",,"Nature Publishing Group",02683369,,BMTRE,"30385869","English","Bone Marrow Transplant.",Article,"Final",Open Access,Scopus,2-s2.0-85055998885 "Luk H.K.H., Li X., Fung J., Lau S.K.P., Woo P.C.Y.","56513568500;57206782771;57204950810;7401596211;7201801340;","Molecular epidemiology, evolution and phylogeny of SARS coronavirus",2019,"Infection, Genetics and Evolution","71",,,"21","30",,8,"10.1016/j.meegid.2019.03.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062891159&doi=10.1016%2fj.meegid.2019.03.001&partnerID=40&md5=909f59934bb6f7df8baa4ffe59818cce","Department of Microbiology, The University of Hong Kong, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310006, China","Luk, H.K.H., Department of Microbiology, The University of Hong Kong, Hong Kong; Li, X., Department of Microbiology, The University of Hong Kong, Hong Kong; Fung, J., Department of Microbiology, The University of Hong Kong, Hong Kong; Lau, S.K.P., Department of Microbiology, The University of Hong Kong, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310006, China; Woo, P.C.Y., Department of Microbiology, The University of Hong Kong, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310006, China","Shortly after its emergence in southern China in 2002/2003, Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) was confirmed to be the cause of SARS. Subsequently, SARS-related CoVs (SARSr-CoVs) were found in palm civets from live animal markets in Guangdong and in various horseshoe bat species, which were believed to be the ultimate reservoir of SARSr-CoV. Till November 2018, 339 SARSr-CoV genomes have been sequenced, including 274 from human, 18 from civets and 47 from bats [mostly from Chinese horseshoe bats (Rhinolophus sinicus), n = 30; and greater horseshoe bats (Rhinolophus ferrumequinum), n = 9]. The human SARS-CoVs and civet SARSr-CoVs were collected in 2003/2004, while bat SARSr-CoVs were continuously isolated in the past 13 years even after the cessation of the SARS epidemic. SARSr-CoVs belong to the subgenus Sarbecovirus (previously lineage B) of genus Betacoronavirus and occupy a unique phylogenetic position. Overall, it is observed that the SARSr-CoV genomes from bats in Yunnan province of China possess the highest nucleotide identity to those from civets. It is evident from both multiple alignment and phylogenetic analyses that some genes of a particular SARSr-CoV from bats may possess higher while other genes possess much lower nucleotide identity to the corresponding genes of SARSr-CoV from human/civets, resulting in the shift of phylogenetic position in different phylogenetic trees. Our current model on the origin of SARS is that the human SARS-CoV that caused the epidemic in 2002/2003 was probably a result of multiple recombination events from a number of SARSr-CoV ancestors in different horseshoe bat species. © 2019","Evolution; Molecular epidemiology; Phylogeny; SARS coronavirus","Betacoronavirus; epidemic; gene sequence; molecular epidemiology; molecular evolution; nonhuman; phylogenetic tree; phylogeny; priority journal; Review; Sarbecovirus; SARS coronavirus; sequence homology; virus classification; virus genome; virus isolation; virus recombination; animal; bat; China; classification; disease carrier; genetic recombination; genetics; human; molecular epidemiology; molecular evolution; phylogeny; SARS coronavirus; severe acute respiratory syndrome; virology; Viverridae; zoonosis; Animals; China; Chiroptera; Disease Reservoirs; Evolution, Molecular; Genome, Viral; Humans; Molecular Epidemiology; Phylogeny; Recombination, Genetic; SARS Virus; Severe Acute Respiratory Syndrome; Viverridae; Zoonoses","Campanella, J.J., Bitincka, L., Smalley, J., MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences (2003) BMC Bioinformatics, 4, p. 29; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A., Holmes, K.V., Perlman, S., Ziebuhr, J., Coronaviridae (2011) Virus Taxonomy, Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , International Union of Microbiological Societies, Virology Division; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Tu, C., Identification of diverse Alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J. Virol., 88, pp. 7070-7082; Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol., 72, pp. 4508-4514; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Shi, Z.L., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13; Hu, D., Zhu, C., Ai, L., He, T., Wang, Y., Ye, F., Yang, L., Wang, C., Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats (2018) Emerg. Microbes Infect., 7, p. 154; Hulswit, R.J., de Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv. Virus Res., 96, pp. 29-57; Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Xu, J., Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms (2005) J. Virol., 79, pp. 11892-11900; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 14040-14045; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Yuen, K.Y., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Lau, S.K.P., Li, K.S.M., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K.Y., Yuen, K.Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819; Lau, S.K.P., Poon, R.W.S., Wong, B.H.L., Wang, M., Huang, Y., Xu, H., Guo, R., Yuen, K.Y., Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup (2010) J. Virol., 84, pp. 11385-11394; Lau, S.K.P., Lee, P., Tsang, A.K.L., Yip, C.C.Y., Tse, H., Lee, R.A., So, L.Y., Yuen, K.Y., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337; Lau, S.K., Woo, P.C., Yip, C.C., Fan, R.Y., Huang, Y., Wang, M., Guo, R., Yuen, K.Y., Isolation and characterization of a novel Betacoronavirus subgroup a coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J. Virol., 86, pp. 5481-5496; Lau, S.K.P., Li, K.S.M., Tsang, A.K.L., Shek, C.T., Wang, M., Choi, G.K.Y., Guo, R., Yuen, K.Y., Recent transmission of a novel Alphacoronavirus, bat coronavirus HKU10, from Leschenault's Rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders (2012) J. Virol., 86, pp. 11906-11918; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of Pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 8638-8650; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Tsang, A.K.L., Fan, R.Y.Y., Luk, H.K.H., Cai, J.-P., Yuen, K.-Y., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage a (2014) J. Virol., 89, pp. 3076-3092; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Woo, P.C., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J. Virol., 89, pp. 10532-10547; Lau, S.K., Tsang, A.K., Shakeel Ahmed, S., Mahbub Alam, M., Ahmed, Z., Wong, P.C., Yuen, K.Y., Woo, P.C., First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh (2016) New Microbes New Infect., 11, pp. 54-56; Lau, S.K.P., Wong, E.Y.M., Tsang, C.C., Ahmed, S.S., Au-Yeung, R.K.H., Yuen, K.Y., Wernery, U., Woo, P.C.Y., Discovery and sequence analysis of four Deltacoronaviruses from birds in the Middle East reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission (2018) J. Virol., 92; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Woo, P.C.Y., Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of MERS-related coronavirus spike proteins for human DPP4 binding (2018) J. Infect. Dis., 218, pp. 197-207; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J., 24, pp. 1634-1643; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir. Res., 109, pp. 97-109; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 3048-3053; Muth, D., Corman, V.M., Roth, H., Binger, T., Dijkman, R., Gottula, L.T., Gloza-Rausch, F., Drosten, C., Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission (2018) Sci. Rep., 8; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Song, H.D., Tu, C.C., Zhang, G.W., Wang, S.Y., Zheng, K., Lei, L.C., Chen, Q.X., Zhao, G.P., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc. Natl. Acad. Sci., 102, pp. 2430-2435; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol., 80, pp. 7481-7490; Terada, Y., Matsui, N., Noguchi, K., Kuwata, R., Shimoda, H., Soma, T., Mochizuki, M., Maeda, K., Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses (2014) PLoS One, 9; Tu, C., Crameri, G., Kong, X., Chen, J., Sun, Y., Yu, M., Xiang, H., Wang, L.F., Antibodies to SARS coronavirus in civets (2004) Emerg. Infect. Dis., 10, pp. 2244-2248; Wang, N., Li, S.Y., Yang, X.L., Huang, H.M., Zhang, Y.J., Guo, H., Luo, C.M., Shi, Z.L., Serological evidence of bat SARS-related coronavirus infection in humans, China (2018) Virol. Sin., 33, pp. 104-107; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Wong, B.H.L., Tsoi, H.-W., Yip, B.C.K., Yuen, K.-Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Woo, P.C.Y., Lau, S.K.P., Yip, C.C.Y., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) J. Virol., 80, pp. 7136-7145; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Yuen, K.Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Woo, P.C., Lau, S.K., Lam, C.S., Tsang, A.K., Hui, S.W., Fan, R.Y., Martelli, P., Yuen, K.Y., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus (2014) J. Virol., 88, pp. 1318-1331; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Yuen, K.Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg. Infect. Dis., 20, pp. 560-572; Woo, P.C., Lau, S.K., Tsang, C.C., Lau, C.C., Wong, P.C., Chow, F.W., Fong, J.Y., Yuen, K.Y., Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region (2017) Emerg. Microbes Infect., 6, p. e53; World Health Organisation, Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July (2004), p. 2003; Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S., Jin, Q., ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus (2016) J. Infect. Dis., 213, pp. 579-583; Yang, Z.Y., Werner, H.C., Kong, W.P., Leung, K., Traggiai, E., Lanzavecchia, A., Nabel, G.J., Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses (2005) Proc. Natl. Acad. Sci., 102, pp. 797-801; Yang, L., Wu, Z., Ren, X., Yang, F., He, G., Zhang, J., Dong, J., Jin, Q., Novel SARS-like betacoronaviruses in bats, China, 2011 (2013) Emerg. Infect. Dis., 19, pp. 989-991; Yang, X.L., Hu, B., Wang, B., Wang, M.N., Zhang, Q., Zhang, W., Wu, L.J., Shi, Z.L., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus (2015) J. Virol., 90, pp. 3253-3256; Zeng, L.P., Gao, Y.T., Ge, X.Y., Zhang, Q., Peng, C., Yang, X.L., Tan, B., Shi, Z.L., Bat severe acute respiratory syndrome-like coronavirus WIV1 encodes an extra accessory protein, ORFX, involved in modulation of the host immune response (2016) J. Virol., 90, pp. 6573-6582","Lau, S.K.P.; State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Block T, Queen Mary HospitalHong Kong; email: skplau@hku.hk",,"Elsevier B.V.",15671348,,IGENC,"30844511","English","Infec. Genet. Evol.",Review,"Final",Open Access,Scopus,2-s2.0-85062891159 "Al-Baadani A., Elzein F., Alhemyadi S., Khan O., Albenmousa A., Idrees M.","57209739375;56026924500;57209740329;57209740933;36520797800;18434167700;","Characteristics and outcome of viral pneumonia caused by influenza and Middle East respiratory syndrome-coronavirus infections: A 4-year experience from a tertiary care center",2019,"Annals of Thoracic Medicine","14","3",,"179","185",,,"10.4103/atm.ATM_179_18","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068571644&doi=10.4103%2fatm.ATM_179_18&partnerID=40&md5=7cf3fe82afad1b731c9553d67c44654b","Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia","Al-Baadani, A., Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Elzein, F., Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Alhemyadi, S., Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Khan, O., Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Albenmousa, A., Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Idrees, M., Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia","BACKGROUND: After the emergence of new influenza viruses, the morbidity and mortality of viral pneumonia have received a great attention. OBJECTIVES: The objective of this study is to describe the epidemiologic, clinical and laboratory changes, and outcomes of viral pneumonia caused by influenza and the Middle East respiratory syndrome-coronavirus (MERS-CoV) infections. METHODS: In a retrospective cohort study, the medical records of all patients diagnosed with viral pneumonia at Prince Sultan Military Medical City, Riyadh, Saudi Arabia, during the period from January 2012 to December 2015 were screened. Cases who were > 18 years old and were confirmed by a respiratory viral panel to have viral pneumonia either MERS-CoV or influenza viruses were included in the analysis. Sociodemographic, clinical, laboratory, and outcome data were extracted from patients' medical files. The data were analyzed descriptively and inferentially to identify the predictors of poor outcome. RESULTS: A total of 448 patients with confirmed viral pneumonia were included, of those, 216 (48.2%) were caused by influenza A (non H1N1)/influenza B, 150 (33.5%) by H1N1, and 82 (18.3%) by MERS-CoV. The majority of patients presented with fever (82%), shortness of breath (64%), and flu-like symptoms (54.9%), particularly in MERS-CoV infected cases (92%). The peak incidence of viral pneumonia was in early spring and autumn. The mortality rate was 13.8%, and it was significantly higher among MERS-CoV cases. The predictors of death were age > 65 years, male gender, and associated comorbidities particularly diabetes mellitus, hypertension, and chronic kidney diseases. The number of comorbid illnesses was directly related to the increase in mortality in this group of patients. CONCLUSION: Viral pneumonia caused by influenza and MERS-CoV carries a high mortality rate, particularly among MERS-CoV infected cases. Old age, male gender, and comorbid illnesses are predictors of poor outcome. Routine testing for newly emergent viruses is warranted for adults who have been hospitalized with pneumonia. © 2019 Annals of Thoracic Medicine.","H1N1; influenza; Middle East respiratory syndrome-coronavirus; Viral pneumonia","C reactive protein; creatine kinase; hemoglobin; adult; Article; case fatality rate; cerebrovascular accident; chronic kidney failure; cohort analysis; comorbidity; CURB65 score; diabetes mellitus; dialysis; dyspnea; female; flu like syndrome; gender; heart failure; hospital mortality; human; hypertension; immobility; incidence; influenza; Influenza A virus (H1N1); influenza B; major clinical study; male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality rate; outcome assessment; prevalence; respiratory tract disease assessment; retrospective study; tertiary care center; thorax radiography; virus pneumonia","File, T.M., Communityacquired pneumonia (2003) Lancet, 362, pp. 1991-2001; Galván, J.M., Rajas, O., Aspa, J., Review of nonbacterial infections in respiratory medicine: Viral pneumonia (2015) Arch Bronconeumol, 51, pp. 590-597; Sangil, A., Calbo, E., Robles, A., Benet, S., Viladot, M.E., Pascual, V., Aetiology of communityacquired pneumonia among adults in an H1N1 pandemic year: The role of respiratory viruses (2012) Eur J Clin Microbiol Infect Dis, 31, pp. 2765-2772; Louie, J.K., Acosta, M., Winter, K., Jean, C., Gavali, S., Schechter, R., Influenza A(H1N1) infection in California (2009) JAMA, 302, pp. 1896-1902; Domínguez-Cherit G, L., Critically ill patients with 2009 influenza A(H1N1) in Mexico (2009) JAMA, 302, pp. 1880-1887; (2014) CDC Health Update: Swine Influenza A(H1N1) Update: Influenza Activity United States, , Centers for Disease Control and Prevention Centers for Disease Control and Prevention; 29 September, 8 February 2013 [Last accessed on 2017 Feb 21]; Distribution of Con Firmed Cases of Influenza A(H1N1) by Age. WHO European Region, , http://www.euro.who.int/influenza/AH1N0090508_5, World Health Organization [Last accessed on 2009 Apr/May]; Dawood, F.S., Jain, S., Finelli, L., Shaw, M.W., Lindstrom, S., Emergence of a novel swineorigin influenza A(H1N1) virus in humans (2009) N Engl J Med, 360, pp. 2605-2615. , Novel SwineOrigin Influenza A(H1N1) Virus Investigation Team; AlMazroa, M.A., Memish, Z.A., AlWadey, A.M., Pandemic influenza A(H1N1) in Saudi Arabia: Description of the first one hundred cases (2010) Ann Saudi Med, 30, pp. 11-14; Acute Respiratory Update, , http://www.who.int/vacCine_Research/diseases/ari/en/index5, World Health Organization [Last accessed on 2017 Feb 21]; Middle East Respiratory Syndrome Coronavirus (MERSCoV), , http://www.who.int/emergencies/merscov/en, World Health Organization [ Last accessed on 2017 Feb 21]; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary middle east respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Assiri, A., Al-Tawfiq, J.A., AlRabeeah, A.A., AlRabiah, F.A., AlHajjar, S., AlBarrak, A., Epidemiological, demographic, clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., BaffoeBonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of middle east respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Bialek, S.R., Allen, D., Alvarado-Ramy, F., Arthur, R., Balajee, A., Bell, D., First confirmed cases of Middle East respiratory syndrome coronavirus (MERScoV) infection in the United States, updated information on the epidemiology of MERScoV infection, guidance for the public, clinicians, public health authorities-May 2014 (2014) MMWR Morb Mortal Wkly Rep, 63, pp. 431-436; Delaney, J.W., Fowler, R.A., 2009 influenza A(H1N1): A clinical review (2010) Hosp Pract (1995), 38, pp. 74-81; Dee, S., Jayathissa, S., Clinical and epidemiological characteristics of the hospitalised patients due to pandemic H1N1 2009 viral infection: Experience at Hutt hospital, New Zealand (2010) N Z Med J, 123, pp. 45-53; Appuhamy, R.D., Beard, F.H., Phung, H.N., Selvey, C.E., Birrell, F.A., Culleton, T.H., The changing phases of pandemic (H1N1) 2009 in Queensland: An overview of public health actions and epidemiology (2010) Med J Aust, 192, pp. 94-97; Lan, Y.C., Su, M.C., Chen, C.H., Huang, S.H., Chen, W.L., Tien, N., Lan, Y.C., Tien, N., Epidemiology of pandemic influenza A/H1N1 virus during 2009-2010 in Taiwan (2013) Virus Res, 177, pp. 46-54; Glezen, W.P., Serious morbidity and mortality associated with influenza epidemics (1982) Epidemiol Rev, 4, pp. 25-44; Serfling, R.E., Sherman, I.L., Houseworth, W.J., Excess pneumoniainfluenza mortality by age and sex in three major influenza A2 epidemics, United States 1957-58, 1960 and 1963 (1967) Am J Epidemiol, 86, pp. 433-441; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012-2015 (2016) Int J Infect Dis, 45, pp. 1-4; Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; GarciáGarciá Ml, C., Spectrum of respiratory viruses in children with communityacquired pneumonia (2012) Pediatr Infect Dis J, 31, pp. 808-813; Johnstone, J., Majumdar, S.R., Fox, J.D., Marrie, T.J., Viral infection in adults hospitalized with communityacquired pneumonia: Prevalence, pathogens, presentation (2008) Chest, 134, pp. 1141-1148; Sizun, J., Yu, M.W., Talbot, P.J., Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: A possible source ofhospitalacquired infections (2000) J Hosp Infect, 46, pp. 55-60; Rabenau, H.F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W., Doerr, H.W., Stability and inactivation of SARS coronavirus (2005) Med Microbiol Immunol, 194, pp. 1-6; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A singlecenter experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Shalhoub, S., Farahat, F., AlJiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN2a or IFN1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11, pp. 128-131; Badawi, A., Ryoo, S.G., Prevalence of diabetes in the 2009 influenza A(H1N1) and the Middle East respiratory syndrome coronavirus: A systematic review and metaanalysis (2016) J Public Health Res, 5, p. 733; Mertz, D., Kim, T.H., Johnstone, J., Lam, P.P., Science, M., Kuster, S.P., Populations at risk for severe or complicated influenza illness: Systematic review and metaanalysis (2013) BMJ, 347, p. f5061; Bisno, A.L., Griffin, J.P., Van Epps, K.A., Niell, H.B., Rytel, M.W., Pneumonia and Hong Kong influenza: A prospective study of the 1968-1969 epidemic (1971) Am J Med Sci, 261, pp. 251-263; Nichol, K.L., Wuorenma, J., Von Sternberg, T., Benefits of influenza vaccination for low, intermediate, highrisk senior citizens (1998) Arch Intern Med, 158, pp. 1769-1776","Idrees, M.; Department of Medicine, Prince Sultan Military Medical CitySaudi Arabia; email: majidrees@gmail.com",,"Wolters Kluwer Medknow Publications",18171737,,,,"English","Ann. Thorac. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85068571644 "Momattin H., Al-Ali A.Y., Al-Tawfiq J.A.","55831793800;57195490867;9436438200;","A Systematic Review of therapeutic agents for the treatment of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)",2019,"Travel Medicine and Infectious Disease","30",,,"9","18",,3,"10.1016/j.tmaid.2019.06.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068090083&doi=10.1016%2fj.tmaid.2019.06.012&partnerID=40&md5=e210bfb0b508983140ca77cb78cdb29d","Department of Pharmacy Services, King Khalid Hospital, Najran, Saudi Arabia; Department of Pharmacy Services, Dhahran Eye Specialist Hospital, Dhahran, Saudi Arabia; Infectious Disease Unit, Specialty Internal Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States","Momattin, H., Department of Pharmacy Services, King Khalid Hospital, Najran, Saudi Arabia; Al-Ali, A.Y., Department of Pharmacy Services, Dhahran Eye Specialist Hospital, Dhahran, Saudi Arabia; Al-Tawfiq, J.A., Infectious Disease Unit, Specialty Internal Medicine Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States","Background: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was first described in 2012 and attracted a great international attention due to multiple healthcare associated outbreaks. The disease carries a high case fatality rate of 34.5%, and there is no internationally or nationally recommended therapy. Method: We searched MEDLINE, Science Direct, Embase and Scopus databases for relevant papers published till March 2019 describing in vitro, in vivo or human therapy of MERS. Results: Initial search identified 62 articles: 52 articles were from Medline, 6 from Embase, and 4 from Science Direct. Based on the inclusions and exclusions criteria, 30 articles were included in the final review and comprised: 22 in vitro studies, 8 studies utilizing animal models, 13 studies in humans, and one study included both in vitro and animal model. There are a few promising therapeutic agents on the horizon. The combination of lopinavir/ritonavir and interferon-beta- 1b showed excellent results in common marmosets and currently is in a randomized control trial. Ribavirin and interferon were the most widely used combination and experience comes from a number of observational studies. Although, the data are heterogenous, this combination might be of potential benefit and deserve further investigation. There were no randomized clinical trials to recommend specific therapy for the treatment of MERS-CoV infection. Only one such study is planned for randomization and is pending completion. The study is based on a combination of lopinavir/ritonavir and interferon-beta- 1b. A fully human polyclonal IgG antibody (SAB-301) was safe and well tolerated in healthy individuals and this agent may deserve further testing for efficacy. Conclusion: Despite multiple studies in humans there is no consensus on the optimal therapy for MERS-CoV. Randomized clinical trials are needed and potential therapies should be evaluated only in such clinical trials. In order to further enhance the therapeutic aroma for MERS-CoV infection, repurposing old drugs against MERS-CoV is an interesting strategy and deserves further consideration and use in clinical settings. © 2019 Elsevier Ltd","MERS; Middle east respiratory syndrome coronavirus; Therapy","alpha2a interferon; alpha2b interferon; antivirus agent; chloroquine; chlorpromazine; cyclophilin; cyclosporine; gamma interferon; immunoglobulin G; immunoglobulin G antibody; interferon; interferon beta serine; interleukin 15; interleukin 2; interleukin 2 receptor; interleukin 6; lopinavir; lopinavir plus ritonavir; monocyte chemotactic protein 1; nelfinavir; nitazoxanide; peginterferon alpha; peginterferon alpha2b; remdesivir; resveratrol; ribavirin; ritonavir; saracatinib; teicoplanin; toremifene; antivirus agent; beta interferon; immunoglobulin G; lopinavir; lopinavir-ritonavir drug combination; ritonavir; Article; Callithrix jacchus; drug efficacy; drug tolerability; Embase; human; in vitro study; in vivo study; Medline; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; randomized controlled trial (topic); ScienceDirect; Scopus; systematic review; treatment indication; virus replication; animal; Coronavirus infection; drug combination; Animals; Antiviral Agents; Coronavirus Infections; Drug Combinations; Humans; Immunoglobulin G; Interferon-beta; Lopinavir; Middle East Respiratory Syndrome Coronavirus; Ritonavir","Middle, W.H.O., East respiratory syndrome coronavirus (MERS-CoV) - update: 2 DECEMBER 2013 2013 http://www.who.int/csr/don/2013_12_02/en/; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of the Middle East respiratory syndrome coronavirus (MERS-CoV) with review of the literature (2018) J Hosp Infect; Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Expert Rev Respir Med, 10, pp. 331-338; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of middle east respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368, pp. 2487-2494; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in hafr Al-batin, kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23, pp. 63-68; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia (2014) Clin Infect Dis, 60, pp. 369-377. , 2015; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Assiri, A., Alharby, K.D., Almahallawi, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV): a cluster analysis with implications for global management of suspected cases (2015) Trav Med Infect Dis, 13, pp. 311-314; El Bushra, H.E., Abdalla, M.N., Al Arbash, H., Alshayeb, Z., Al-Ali, S., Latif, Z.A.-A., An outbreak of Middle East respiratory syndrome (MERS) due to coronavirus in Al-Ahssa region, Saudi Arabia (2015) East Mediterr Health J, 22, pp. 468-475. , 2016; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Notes from the field: nosocomial outbreak of Middle East respiratory syndrome in a large tertiary care hospital–Riyadh, Saudi Arabia (2015) MMWR Morb Mortal Wkly Rep, 65, pp. 163-164. , 2016; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Bin Saeed, A., Abdalla, O., Increase in Middle East respiratory syndrome-coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus (2016) Open Forum Infect Dis, 3, p. ofw165. , July 1-August 31, 2015; Nazer, R.I., Outbreak of Middle East respiratory syndrome-coronavirus causes high fatality after cardiac operations (2017) Ann Thorac Surg, 104, pp. e127-e129; Assiri, A., Abedi, G.R., Bin Saeed, A.A., Abdalla, M.A., al-Masry, M., Choudhry, A.J., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22, pp. 32-40; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu dhabi (2016) Emerg Infect Dis, 22, pp. 647-656; Cauchemez, S., Van Kerkhove, M.D., Riley, S., Donnelly, C.A., Fraser, C., Ferguson, N.M., Transmission scenarios for middle east respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart (2013), 18, p. 20503. , pii; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Hijawi, B., Abdallat, M., Sayaydeh, A., Alqasrawi, S., Haddadin, A., Jaarour, N., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East Mediterr Health J, 19, pp. S12-S18; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., MERS-CoV outbreak in Jeddah–a link to health care facilities (2014) N Engl J Med, 372, pp. 846-854. , 2015; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11, pp. 128-131; Fagbo, S.F., Skakni, L., Chu, D.K.W., Garbati, M.A., Joseph, M., Peiris, M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia (2014) Emerg Infect Dis, 21. , 2015 1981–8; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20, p. 123; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement (2009) Open Med, 3, pp. e123-e130; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J Gen Virol, 95, pp. 571-577; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W.A.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) J Gen Virol, 94, pp. 1749-1760; Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V.J., Feldmann, H., Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin (2013) Sci Rep, 3, p. 1686; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67, pp. 606-616; Wu, C.-Y., Jan, J.-T., Ma, S.-H., Kuo, C.-J., Juan, H.-F., Cheng, Y.-S.E., Small molecules targeting severe acute respiratory syndrome human coronavirus (2004) Proc Natl Acad Sci Unit States Am, 101, pp. 10012-10017; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob Agents Chemother, 58, pp. 4875-4884; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus (MERS-CoV) infection mediated by the Transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the Transmembrane serine protease TMPRSS2 (2013) J Virol, 87, pp. 12552-12561; Nitazoxanide, R.J.-F., A new drug candidate for the treatment of Middle East respiratory syndrome coronavirus (2016) J Infect Public Health, 9, pp. 227-230; Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Glycopeptide Antibiotics potently inhibit Cathepsin L in the late Endosome/Lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV) (2016) J Biol Chem, 291, pp. 9218-9232; Tai, W., Zhao, G., Sun, S., Guo, Y., Wang, Y., Tao, X., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Cyclosporin A inhibits the replication of diverse coronaviruses (2011) J Gen Virol, 92, pp. 2542-2548; Cong, Y., Hart, B.J., Gross, R., Zhou, H., Frieman, M., Bollinger, L., MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells (2018) PLoS One, 13; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58, pp. 4885-4893; Coleman, C.M., Sisk, J.M., Mingo, R.M., Nelson, E.A., White, J.M., Frieman, M.B., Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion (2016) J Virol, 90, pp. 8924-8933; Shin, J.S., Jung, E., Kim, M., Baric, R.S., Go, Y.Y., Saracatinib inhibits Middle East respiratory syndrome-coronavirus replication in vitro (2018) Viruses, 10, p. 283; Lin, S.-C., Ho, C.-T., Chuo, W.-H., Li, S., Wang, T.T., Lin, C.-C., Effective inhibition of MERS-CoV infection by resveratrol (2017) BMC Infect Dis, 17, p. 144; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading Exoribonuclease (2018) mBio, 9. , pii: e00221-18; Lundin, A., Dijkman, R., Bergström, T., Kann, N., Adamiak, B., Hannoun, C., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS Pathog, 10; Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V.K.-M., A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses (2016) Sci Rep, 6, p. 22008; Hindawi, S.I., Hashem, A.M., Damanhouri, G.A., El-Kafrawy, S.A., Tolah, A.M., Hassan, A.M., Inactivation of Middle East respiratory syndrome-coronavirus in human plasma using amotosalen and ultraviolet A light (2018) Transfusion, 58, pp. 52-59; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19, pp. 1313-1317; Chan, J.F.-W., Yao, Y., Yeung, M.-L., Deng, W., Bao, L., Jia, L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212, pp. 1904-1913; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antivir Res, 132, pp. 141-148; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Protective effect of intranasal Regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J Infect Dis, 212, pp. 1894-1903; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J Virol, 92; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.-A., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Transl Med, 8, p. 326ra21; Tawalah, H., Al-Qabandi, S., Sadiq, M., Chehadeh, C., Al-Hujailan, G., Al-Qaseer, M., The most effective therapeutic regimen for patients with severe Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2015) J Infect Dis Ther, 3, pp. 1-5; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14, pp. 1090-1095; Momattin, H., Mohammed, K., Zumla, A., Memish, Z.A., Al-Tawfiq, J.A., Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)–possible lessons from a systematic review of SARS-CoV therapy (2013) Int J Infect Dis, 17, pp. e792-e798; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132; Kim, U.J., Won, E.-J., Kee, S.-J., Jung, S.-I., Jang, H.-C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome: a case report (2015) Antivir Ther; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44, pp. 528-532; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al Mutairy, E., Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: a preliminary report of two cases (2015) Antivir Ther, 20, pp. 87-91; Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., Treatment outcomes for patients with middle Eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the kingdom of Saudi Arabia (2016) BMC Infect Dis, 16, p. 174; Khalid, M., Khan, B., Al Rabiah, F., Alismaili, R., Saleemi, S., Rehan-Khaliq, A.M., Middle Eastern respiratory syndrome corona virus (MERS CoV): case reports from a tertiary care hospital in Saudi Arabia (2014) Ann Saudi Med, 34, pp. 396-400; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.-A., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect Dis, 18, pp. 410-418; Al-Tawfiq, J.A., Memish, Z.A., Update on therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Expert Rev Anti Infect Ther, 15, pp. 269-275; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19, p. 81; Khalid, I., Alraddadi, B.M., Dairi, Y., Khalid, T.J., Kadri, M., Alshukairi, A.N., Acute management and Long-term survival Among subjects with severe Middle East respiratory syndrome coronavirus pneumonia and ARDS (2016) Respir Care, 61, pp. 340-348; Malik, A., El Masry, K.M., Ravi, M., Sayed, F., Middle East respiratory syndrome coronavirus during pregnancy, Abu dhabi, United Arab Emirates (2013) Emerg Infect Dis, 22. , 2016","Al-Tawfiq, J.A.; Dhahran Health Center, P.O. Box 76, Room A-428-2, Building 61, Saudi Arabia; email: jaffar.tawfiq@jhah.com",,"Elsevier USA",14778939,,TMIDA,"31252170","English","Travel Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85068090083 "Hoang V.-T., Sow D., Dogue F., Edouard S., Drali T., Yezli S., Alotaibi B., Raoult D., Parola P., Pommier de Santi V., Gautret P.","57202332027;6603822766;57202319078;6602956342;55607739300;35996197300;55393168700;36040059800;7006212186;26429906300;36893462000;","Acquisition of respiratory viruses and presence of respiratory symptoms in French pilgrims during the 2016 Hajj: A prospective cohort study",2019,"Travel Medicine and Infectious Disease","30",,,"32","38",,5,"10.1016/j.tmaid.2019.03.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062805724&doi=10.1016%2fj.tmaid.2019.03.003&partnerID=40&md5=ee65bbb440328dbcbb4b90f7ed070812","Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacie, Viet Nam; Service de Parasitologie-Mycologie, Faculté de médecine, Unversité Cheikh Anta Diop, Dakar, Senegal; Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; French Military Center for Epidemiology and Public Health Marseille, France","Hoang, V.-T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacie, Viet Nam; Sow, D., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France, Service de Parasitologie-Mycologie, Faculté de médecine, Unversité Cheikh Anta Diop, Dakar, Senegal; Dogue, F., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Edouard, S., Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; Drali, T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Yezli, S., The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Alotaibi, B., The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Raoult, D., Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; Parola, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Pommier de Santi, V., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France, French Military Center for Epidemiology and Public Health Marseille, France; Gautret, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France","Background: Viral respiratory tract infections are frequent among Hajj pilgrims. However, it is still not known whether viruses are responsible for the symptoms observed in sick pilgrims or whether they only colonize sick and asymptomatic pilgrims. Patients and methods: A prospective cohort study was conducted among French Hajj pilgrims in 2016. Medical follow-up and systematic nasal swabbing were performed pre- and post-Hajj. Additional samples were obtained per-Hajj, at symptom onset in ill pilgrims. Viruses were identified using the BioFire FilmArray® Respiratory multiplex qualitative PCR panel. Results: 109 pilgrims were included. 83.5% presented respiratory symptoms during Hajj and 39.5% were still symptomatic on return. 5.5% of pre-Hajj, 95.2% of per-Hajj (at symptom onset) and 46.5% of post-Hajj samples tested positive (p < 0.0001). Acquisition rates of rhinovirus/enterovirus, coronavirus 229E and influenza A virus were respectively 38.6%, 19.8% and 2.0%. Although rhinovirus/enterovirus, coronavirus 229E and influenza A clearance were respectively 70.6%, 71.4% and 100% on return, overall virus carriage proportion on return was 75.0% in pilgrims with influenza-like illness and 44.0% in those who have never experienced this symptoms or resolved it (OR = 4.05, 95% CI [1.02–16.02]). Conclusions: Viruses likely play some role in the pathogenesis of the respiratory tract infections at the Hajj. Point of care-rapid multiplex PCR assays are valuable diagnosis tools in this context when used at respiratory symptom onset or soon after. © 2019 Elsevier Ltd","Hajj; Mass gathering; PCR; Respiratory tract infection; Viruses","adult; aged; Article; cohort analysis; controlled study; Coronavirinae; Enterovirus; female; flu like syndrome; follow up; human; Influenza A virus; major clinical study; male; polymerase chain reaction; priority journal; prospective study; respiratory virus; Rhinovirus; France; Islam; middle aged; pathology; respiratory tract infection; Saudi Arabia; travel; very elderly; virology; virus; virus infection; Adult; Aged; Aged, 80 and over; Cohort Studies; Female; France; Humans; Islam; Male; Middle Aged; Respiratory Tract Infections; Saudi Arabia; Travel; Virus Diseases; Viruses","Ahmed, Q.A., Arabi, Y.M., Memish, Z.A., Health risks at the Hajj (2006) Lancet, 367, pp. 1008-1015; Yezli, S., Assiri, A.M., Alhakeem, R.F., Turkistani, A.M., Alotaibi, B., Meningococcal disease during the Hajj and Umrah mass gatherings (2016) Int J Infect Dis, 47, pp. 60-64; Yezli, S., The threat of meningococcal disease during the Hajj and Umrah mass gatherings: a comprehensive review (2018) Trav Med Infect Dis, 24, pp. 51-58; Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Hajj: infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual Hajj: potential risks and mitigation strategies (2013) Curr Opin Pulm Med, 19, pp. 192-197; Al-Tawfiq, J.A., Gautret, P., Benkouiten, S., Memish, Z.A., Mass gatherings and the spread of respiratory infections. Lessons from the Hajj (2016) Ann Am Thorac Soc, 13, pp. 759-765; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: a systematic review (2016) Trav Med Infect Dis, 14, pp. 92-109; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Trav Med Infect Dis, 23, pp. 6-13; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Travel implications of emerging coronaviruses: SARS and MERS-CoV (2014) Trav Med Infect Dis, 12, pp. 422-428; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., The spectrum of respiratory pathogens among returning Hajj pilgrims: myths and reality (2016) Int J Infect Dis, 47, pp. 83-85; Rashid, H., Shafi, S., El Bashir, H., Haworth, E., Memish, Z.A., Ali, K.A., Influenza and the Hajj: defining influenza-like illness clinically (2008) Int J Infect Dis, 12, pp. 102-103; Benkouiten, S., Gautret, P., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Comparison of nasal swabs with throat swabs for the detection of respiratory viruses by real-time reverse transcriptase PCR in adult Hajj pilgrims (2015) J Infect, 70, pp. 207-210; Leber, A.L., Everhart, K., Daly, J.A., Hopper, A., Harrington, A., Schreckenberger, P., Multicenter evaluation of BioFire FilmArray respiratory panel 2 for detection of viruses and bacteria in nasopharyngeal swab samples (2018) J Clin Microbiol, 56. , pii: e01945-17; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Salez, N., Nougairede, A., Circulation of respiratory viruses among pilgrims during the 2012 Hajj pilgrimage (2013) Clin Infect Dis, 57, pp. 992-1000; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Memish, Z.A., Sudhanva, M., Viral respiratory infections at the Hajj: comparison between UK and Saudi pilgrims (2008) Clin Microbiol Infect, 14, pp. 569-574; Memish, Z.A., Assiri, A.M., Hussain, R., Alomar, I., Ftephens, G., Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic (2012) J Travel Med, 19, pp. 15-21; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Azeem, M., Bokhary, H., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect, 21. , 571.e1-8; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20, pp. 807-812; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Petersen, E., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013-2015 (2016) Int J Infect Dis, 47, pp. 10-14; Alnabulsi, H., Drury, J., Social identification moderates the effect of crowd density on safety at the Hajj (2014) Proc Natl Acad Sci U S A, 111, pp. 9091-9096; Kandeel, A., Deming, M., Elkreem, E.A., El-Refay, S., Afifi, S., Abukela, M., Pandemic (H1N1) 2009 and Hajj pilgrims who received predeparture vaccination, Egypt (2011) Emerg Infect Dis, 17, pp. 1266-1268; Memish, Z.A., Assiri, A.M., Hussain, R., Alomar, I., Ftephens, G., Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic (2012) J Travel Med, 19, pp. 15-21; Ziyaeyan, M., Alborzi, A., Jamalidoust, M., Moeini, M., Pouladfar, G.R., Pourabbas, B., Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims from Southern Iran: a real-time RT-PCR-based study (2012) Influenza Other Respir Viruses, 6, pp. e80-e84; Ma, X., Liu, F., Liu, L., Zhang, L., Lu, M., Abudukadeer, A., No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China, 2013-2015 (2017) BMC Infect Dis, 17, p. 715; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian Hajj pilgrims returning to Shiraz, Fars province, Iran (2012) Influenza Other Respir Viruses, 6, pp. e77-e79; Refaey, S., Amin, M.M., Roguski, K., Azziz-Baumgartner, E., Uyeki, T.M., Labib, M., Cross-sectional survey and surveillance for influenza viruses and MERS-CoV among Egyptian pilgrims returning from Hajj during 2012-2015 (2017) Influenza Other Respir Viruses, 11, pp. 57-60; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.A., Influenza not MERS CoV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, north India, 2014-15 (2017) Trav Med Infect Dis, 15, pp. 45-47; Al-Abdallat, M.M., Rha, B., Alqasrawi, S., Payne, D.C., Iblan, Binder, A.M., Acute respiratory infections among returning Hajj pilgrims-Jordan, 2014 (2017) J Clin Virol, 89, pp. 34-37; Muraduzzaman, A.K.M., Khan, M.H., Parveen, R., Sultana, S., Alam, A.N., Akram, A., Event based surveillance of Middle East Respiratory Syndrome Coronavirus (MERS- CoV) in Bangladesh among pilgrims and travelers from the Middle East: an update for the period 2013-2016 (2018) PLoS One, 13; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B viruses but not MERS-CoV in Hajj pilgrims, Austria (2014) Emerg Infect Dis, 21, pp. 726-727. , 2015; Griffiths, K., Charrel, R., Lagier, J.C., Nougairede, A., Simon, F., Parola, P., Infections in symptomatic travelers returning from the Arabian peninsula to France: a retrospective cross-sectional study (2016) Trav Med Infect Dis, 14, pp. 414-416; Yavarian, J., Shafiei Jandaghi, N.Z., Naseri, M., Hemmati, P., Dadras, M., Gouya, M.M., Influenza virus but not MERS coronavirus circulation in Iran, 2013-2016: comparison between pilgrims and general population (2018) Trav Med Infect Dis, 21, pp. 51-55; Assiri, A.M., Asiri, S.I., Banassir, T., Baljoon, M.J., Jokhdar, H., Burden of influenza-related severe acute respiratory infections during Hajj season 1438 (2017). Lessons and future directions (2018) Saudi Med J, 39, pp. 524-525","Gautret, P.; VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin 13385 Marseille Cedex 05, France; email: philippe.gautret@ap-hm.fr",,"Elsevier USA",14778939,,TMIDA,"30858034","English","Travel Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85062805724 "Li F., Du L.","26028899600;8686996200;","MERS Coronavirus: An emerging zoonotic virus",2019,"Viruses","11","7", 663,"","",,1,"10.3390/v11070663","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072113649&doi=10.3390%2fv11070663&partnerID=40&md5=a16f082db5ebbaa19afc471f21d0fadc","Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, United States; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States","Li, F., Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, United States; Du, L., Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, United States",[No abstract available],,"dipeptidyl peptidase IV; DNA vaccine; monoclonal antibody; neutralizing antibody; bat; CD8+ T lymphocyte; dromedary; Editorial; gene expression; human; Human immunodeficiency virus; immune response; Influenza virus; Middle East respiratory syndrome coronavirus; nonhuman; SARS coronavirus; simian acquired immunodeficiency syndrome; vaccination; Vaccinia virus; virus transmission; zoonosis","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R.S., Li, F., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 12516-12521; Wang, L.F., Shi, Z., Zhang, S., Field, H., Daszak, P., Eaton, B.T., Review of bats and SARS (2006) Emerg. Infect. Dis, 12, pp. 1834-1840; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV-a target for vaccine and therapeutic development (2009) Nat. Rev. Microbiol., 7, pp. 226-236; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) Mbio, 9, pp. e01985-e01e18; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Hunter, J.C., Nguyen, D., Aden, B., Al, B.Z., Al, D.W., Abu, E.K., Khudair, A., Imambaccus, H., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg. Infect. Dis., 22, pp. 647-656; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., MERS-CoV outbreak in Jeddah—A link to health care facilities (2014) N. Engl. J. Med., 2015 (372), pp. 846-854; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Zhou, Y., Jiang, S., Du, L., Prospects for a MERS-CoV spike vaccine (2018) Expert Rev. Vaccines, 17, pp. 677-686; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.A., Sullivan, E., Davey, R., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: A phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect. Dis., 18, pp. 410-418; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Farag, E., Sikkema, R.S., Vinks, T., Islam, M.M., Nour, M., Al-Romaihi, H., Al, T.M., Al-Marri, S., Drivers of Mers-Cov Emergence in Qatar. Viruses2018, 11, p. 22; Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Qin, C., From SARS to MERS, thrusting coronaviruses into the spotlight (2019) Viruses, 11, p. 59; Widagdo, W., Sooksawasdi Na Ayudhya, S., Hundie, G.B., Haagmans, B.L., Host determinants of MERS-CoV transmission and pathogenesis (2019) Viruses, 11, p. 280; Yan, B., Chu, H., Yang, D., Sze, K.H., Lai, P.M., Yuan, S., Shuai, H., Chan, J.F., Characterization of the lipidomic profile of human coronavirus-infected cells: Implications for lipid metabolism remodeling upon coronavirus replication (2019) Viruses, 11, p. 73; Adney, D.R., Van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., De Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20, pp. 1999-2005; Yao, Y., Bao, L., Deng, W., Xu, L., Li, F., Lv, Q., Yu, P., Zhu, H., An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus (2014) J. Infect. Dis., 209, pp. 236-242; Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerg. Infect. Dis., 22, pp. 1031-1037; De Wit, E., Prescott, J., Baseler, L., Bushmaker, T., Thomas, T., Lackemeyer, M.G., Martellaro, C., Haagmans, B.L., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters (2013) Plos ONE, 28, p. 8; Raj, V.S., Smits, S.L., Provacia, L.B., Van Den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J. Virol., 88, pp. 1834-1838; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Du, L., Multi-organ damage in human dipeptidyl peptidase 4 transgenic mice infected with Middle East respiratory syndrome-coronavirus (2015) Plos ONE, 10, p. e0145561; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Gallagher, T., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., Gallagher, T., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E3119-E3128; Widagdo, W., Okba, N.M.A., Richard, M., De Meulder, D., Bestebroer, T.M., Lexmond, P., Farag, E.A.B.A., De Waal, L., Lack of Middle East respiratory syndrome coronavirus transmission in rabbits (2019) Viruses, 11, p. 381; Fan, C., Wu, X., Liu, Q., Li, Q., Liu, S., Lu, J., Yang, Y., Liang, C., A human DPP4-knockin mouse's susceptibility to infection by authentic and pseudotyped MERS-CoV (2018) Viruses, 10, p. 448; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.L., Baric, R.S., Li, F., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 10777-10783; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Wang, Q., Yu, F., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat. Commun., 5, p. 3067; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu. Rev. Virol., 3, pp. 237-261; Schindewolf, C., Menachery, V.D., Middle East respiratory syndrome vaccine candidates: Cautious optimism (2019) Viruses, 11, p. 74; Zhou, Y., Yang, Y., Huang, J., Jiang, S., Du, L., Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain (2019) Viruses, 11, p. 60; Adney, D.R., Wang, L., Van Doremalen, N., Shi, W., Zhang, Y., Kong, W.P., Miller, M.R., De Wit, E., Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas (2019) Viruses, 11, p. 212; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Jiang, S., Gao, J., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transgenic mice from MERS-CoV infection (2017) Hum. Vaccines Immunother., 13, pp. 1615-1624; Veit, S., Jany, S., Fux, R., Sutter, G., Volz, A., CD8+ T cells responding to the Middle East respiratory syndrome coronavirus nucleocapsid protein delivered by vaccinia virus MVA in mice (2018) Viruses, 10, p. 718; Zhao, G., He, L., Sun, S., Qiu, H., Tai, W., Chen, J., Li, J., Wang, Y., A novel nanobody targeting Middle East respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV (2018) J. Virol., 92, pp. e00837-e00e18; He, L., Tai, W., Li, J., Chen, Y., Gao, Y., Li, J., Sun, S., Zhao, G., Enhanced ability of oligomeric nanobodies targeting MERS coronavirus receptor-binding domain (2019) Viruses, 11, p. 166; De Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., Van Nieuwkoop, S., Bestebroer, T.M., Van Den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; Han, H.J., Liu, J.W., Yu, H., Yu, X.J., Neutralizing monoclonal antibodies as promising therapeutics against Middle East respiratory syndrome coronavirus infection (2018) Viruses, 10, p. 680; Xia, S., Lan, Q., Pu, J., Wang, C., Liu, Z., Xu, W., Wang, Q., Lu, L., Potent MERS-CoV fusion inhibitory peptides identified from HR2 domain in spike protein of bat coronavirus HKU4 (2019) Viruses, 11, p. 56; Wang, C., Hua, C., Xia, S., Li, W., Lu, L., Jiang, S., Combining a fusion inhibitory peptide targeting the MERS-CoV S2 protein HR1 domain and a neutralizing antibody specific for the S1 protein receptor-binding domain (RBD) showed potent synergism against pseudotyped MERS-CoV with or without mutations in RBD (2019) Viruses, 11, p. 31; Jiang, Y., Li, J., Teng, Y., Sun, H., Tian, G., He, L., Li, P., Li, J., Complement receptor C5aR1 inhibition reduces pyroptosis in hDPP4-transgenic mice infected with MERS-CoV (2019) Viruses, 11, p. 39; Liang, R., Wang, L., Zhang, N., Deng, X., Su, M., Su, Y., Hu, L., Jiang, S., Development of small-molecule MERS-CoV inhibitors (2018) Viruses, 10, p. 721","Li, F.; Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of MinnesotaUnited States; email: lifang@umn.edu",,"MDPI AG",19994915,,,"31331035","English","Viruses",Editorial,"Final",Open Access,Scopus,2-s2.0-85072113649 "Zhao Y., Cheng J., Yan S., Jia W., Zhang K., Zhang G.","56337056300;56336769800;57192089044;57204458625;57208738626;55738965300;","S gene and 5a accessory gene are responsible for the attenuation of virulent infectious bronchitis coronavirus",2019,"Virology","533",,,"12","20",,4,"10.1016/j.virol.2019.04.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065840348&doi=10.1016%2fj.virol.2019.04.014&partnerID=40&md5=59b2166214b0a16171db5d1ddf142315","Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China","Zhao, Y., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Cheng, J., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Yan, S., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Jia, W., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Zhang, K., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Zhang, G., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China","To explore the critical genes associated with infectious bronchitis virus (IBV)virulence, we compared the genome sequences of virulent YN strain and its attenuated strain aYN. Accumulation of mutations in the S gene and the accessory gene 5a were observed, suggesting a potential role in the loss of viral pathogenicity. Two recombinant IBVs (rIBVs)with replacement of the S gene or 5a with corresponding regions from aYN were rescued to verify this speculation. Embryo mortality time/rate showed that rYN-S-aYN and rYN-5a-aYN had an attenuated phenotype in ovo. Replication assay in ovo and in vitro demonstrated the rIBVs had similar replication patterns with wild-type rIBV. Both rIBVs showed reduced mortality, tissue lesions and tissue virus titers in chicken. In conclusion, S gene and 5a accessory gene are responsible for the attenuation of virulent IBV. Insight into the genes responsible for virus attenuation will facilitate the development of future vaccines against IBV. © 2019 The Authors","5a gene; IBV; Infections bronchitis virus; S gene; Virulence","5a accessory gene; Article; Avian infectious bronchitis virus; chicken; embryo; gene function; gene mutation; gene sequence; genetic association; in vitro study; mortality; nonhuman; phenotype; priority journal; S gene; tissue injury; virus attenuation; virus gene; virus genome; virus load; virus recombinant; virus replication; virus strain; virus virulence; wild type; animal; Avian infectious bronchitis virus; bird disease; Coronavirus infection; genetics; metabolism; pathogenicity; veterinary medicine; virology; virulence; coronavirus spike glycoprotein; S protein, avian infectious bronchitis virus; Animals; Chickens; Coronavirus Infections; Infectious bronchitis virus; Poultry Diseases; Spike Glycoprotein, Coronavirus; Virulence","Ambali, A.G., Jones, R.C., Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus (1990) Avian Dis., 34, pp. 809-817; Ammayappan, A., Upadhyay, C., Gelb, J.J., Vakharia, V.N., Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI (2009) Arch. Virol., 154, pp. 495-499; Armesto, M., Cavanagh, D., Britton, P., The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity (2009) PLoS One, 4; Bande, F., Arshad, S.S., Bejo, M.H., Moeini, H., Omar, A.R., Progress and challenges toward the development of vaccines against avian infectious bronchitis (2015) J. Immunol. Res., pp. 1-12. , 2015; Bentley, K., Keep, S.M., Armesto, M., Britton, P., Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses (2013) J. Virol., 87, pp. 2128-2136; Bijlenga, G., Cook, J.K., Jr, G.J., de Wit, J.J., Development and use of the H strain of avian infectious bronchitis virus from The Netherlands as a vaccine: a review (2004) Avian Pathol., 33, pp. 550-557; Britton, P., Evans, S., Dove, B., Davies, M., Casais, R., Cavanagh, D., Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection (2005) J. Virol. Methods, 123, pp. 203-211; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J. Virol., 75, pp. 12359-12369; Casais, R., Davies, M., Cavanagh, D., Britton, P., Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication (2005) J. Virol., 79, pp. 8065-8078; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol., 34, pp. 439-448; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, p. 281; Cavanagh, D., Davis, P.J., Mockett, A.P., Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype)spike glycoprotein are associated with neutralization epitopes (1988) Virus Res., 11, pp. 141-150; Cavanagh, D., Casais, R., Armesto, M., Hodgson, T., Izadkhasti, S., Davies, M., Lin, F., Britton, P., Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins (2007) Vaccine, 25, pp. 5558-5562; Chen, B.Y., Itakura, C., Cytopathology of chick renal epithelial cells experimentally infected with avian infectious bronchitis virus (1996) Avian Pathol., 25, pp. 675-690; Cook, J.K., Darbyshire, J.H., Peters, R.W., The use of chicken tracheal organ cultures for the isolation and assay of avian infectious bronchitis virus (1976) Arch. Virol., 50, pp. 109-118; Cook, J.K., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol., 41, pp. 239-250; de Haan, C.A., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; de Wit, J.J., Cook, J.K.A., van der Heijden, H.M.J.F., Infectious bronchitis virus variants: a review of the history, current situation and control measures (2011) Avian Pathol., 40, pp. 223-235; Falkner, F.G., Moss, B., Transient dominant selection of recombinant vaccinia viruses (1990) J. Virol., 64, pp. 3108-3111; Feng, J.L., Hu, Y.X., Ma, Z.J., Yu, Q., Zhao, J.X., Zhang, G.Z., Virulent avian infectious bronchitis virus, People's Republic of China (2012) Emerg. Infect. Dis., 18. , 1994–2001; Gelb, J.J., Cloud, S.S., Effect of serial embryo passage of an Arkansas-type avian infectious bronchitis virus isolate on clinical response, virus recovery, and immunity (1983) Avian Dis., 27, pp. 679-687; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J. Virol., 78, pp. 3863-3871; Hertzig, T., Scandella, E., Schelle, B., Ziebuhr, J., Siddell, S.G., Ludewig, B., Thiel, V., Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA (2004) J. Gen. Virol., 85, pp. 1717-1725; Hodgson, T., Casais, R., Dove, B., Britton, P., Cavanagh, D., Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity (2004) J. Virol., 78, pp. 13804-13811; Hodgson, T., Britton, P., Cavanagh, D., Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication (2006) J. Virol., 80, pp. 296-305; Huo, Y.F., Huang, Q.H., Lu, M., Wu, J.Q., Lin, S.Q., Zhu, F., Zhang, X.M., Xu, C.T., Attenuation mechanism of virulent infectious bronchitis virus strain with QX genotype by continuous passage in chicken embryos (2016) Vaccine, 34, pp. 83-89; Keep, S., Bickerton, E., Armesto, M., Britton, P., The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain (2018) J. Gen. Virol., 99, pp. 1097-1102; Laconi, A., van Beurden, S.J., Berends, A.J., Krämer-Kühl, A., Jansen, C.A., Spekreijse, D., Chénard, G., Hélène Verheije, M., Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo (2018) J. Gen. Virol., 99, pp. 1381-1390; Maiti, N.K., Sharma, S.N., Sambyal, D.S., Isolation of infectious bronchitis virus from intestine and reproductive organs of laying hens with dropped egg production (1985) Avian Dis., 29, pp. 509-513; Moore, K.M., Jackwood, M.W., Hilt, D.A., Identification of amino acids involved in a serotype and neutralization specific epitope with in the s1 subunit of avian infectious bronchitis virus (1997) Arch. Virol., 142, pp. 2249-2256; Muneer, M.A., Newman, J.A., Halvorson, D.A., Sivanandan, V., Coon, C.N., Effects of avian infectious bronchitis virus (Arkansas strain)on vaccinated laying chickens (1987) Avian Dis., 31, pp. 820-828; Phillips, J.E., Jackwood, M.W., Mckinley, E.T., Thor, S.W., Hilt, D.A., Acevedol, N.D., Williams, S.M., Robertson, J.S., Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus (2012) Virus Gene., 44, pp. 63-74; Shan, D., Fang, S., Han, Z., Ai, H., Zhao, W., Chen, Y., Jiang, L., Liu, S., Effects of hypervariable regions in spike protein on pathogenicity, tropism, and serotypes of infectious bronchitis virus (2018) Virus Res., 250, pp. 104-113; Tannock, G.A., Bryce, D.A., Paul, J.A., Evaluation of chicken kidney and chicken embryo kidney cultures for the large-scale growth of attenuated influenza virus master strain A/Ann/Arbor/6/60-ca (1985) Vaccine, 3, pp. 333-339; Thiel, V., Siddell, S.G., Reverse genetics of coronaviruses using vaccinia virus vectors (2005) Curr. Top. Microbiol. Immunol., 287, pp. 199-227; Thiel, V., Herold, J., Schelle, B., Siddell, S.G., Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus (2001) J. Gen. Virol., 82, pp. 1273-1281; Xu, G., Cheng, J.L., Ma, S.H., Jia, W.F., Yan, S.H., Zhang, G.Z., Pathogenicity differences between a newly emerged TW-like strain and a prevalent QX-like strain of infectious bronchitis virus (2018) Vet. Microbiol., 227, pp. 20-28; Zhao, Y., Liu, X.Y., Cheng, J.L., Wu, Y.P., Zhang, G.Z., Molecular characterization of an infectious bronchitis virus strain isolated from northern China in 2012 (2014) Arch. Virol., 159, pp. 3457-3461; Zhao, Y., Cheng, J.L., Liu, X.Y., Zhao, J., Hu, Y.X., Zhang, G.Z., Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine (2015) Vet. Microbiol., 180, pp. 49-58; Zhou, Y.S., Zhang, Y., Wang, H.N., Fan, W.Q., Yang, X., Zhang, A.Y., Zeng, F.Y., Zeng, C., Establishment of reverse genetics system for infectious bronchitis virus attenuated vaccine strain H120 (2013) Vet. Microbiol., 162, pp. 53-61","Zhang, G.; College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, China; email: zhanggz@cau.edu.cn",,"Academic Press Inc.",00426822,,VIRLA,"31078931","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85065840348 "Derrar F., Izri K., Kaddache C., Boukari R., Hannoun D.","56624395600;56624572000;25627681600;25627134100;56624467400;","Virologic study of acute lower respiratory tract infections in children admitted to the paediatric department of Blida University Hospital, Algeria",2019,"New Microbes and New Infections","30",, 100536,"","",,2,"10.1016/j.nmni.2019.100536","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065253070&doi=10.1016%2fj.nmni.2019.100536&partnerID=40&md5=e26741459ee952bdd79ee8651697d1d3","Viral Respiratory Unit, Virology Department, Institut Pasteur of Algeria, Algiers, Algeria; Paediatric Department, University Hospital of Blida, Blida, Algeria; National Institut of Public Health, Algeria","Derrar, F., Viral Respiratory Unit, Virology Department, Institut Pasteur of Algeria, Algiers, Algeria; Izri, K., Viral Respiratory Unit, Virology Department, Institut Pasteur of Algeria, Algiers, Algeria; Kaddache, C., Paediatric Department, University Hospital of Blida, Blida, Algeria; Boukari, R., Paediatric Department, University Hospital of Blida, Blida, Algeria; Hannoun, D., National Institut of Public Health, Algeria","Acute lower respiratory tract infections (ALRTI)such as pneumonia and bronchiolitis are major causes of mortality and morbidity in children under 5 years of age. The main microbial agents responsible for ALRTI are either bacterial agents (Streptococcus pneumoniae, Haemophilus influenzae type b, Mycoplasma pneumoniae)or viruses (respiratory syncytial virus (RSV, also known as human orthopneumovirus), Myxovirus influenzae, Myxovirus parainfluenzae, adenovirus)[1]. More recently, other viruses (rhinovirus, metapneumovirus, coronavirus, bocavirus)have been implicated in ALRTI; their identification has been facilitated by new molecular biology techniques such as real-time PCR. To our knowledge, these emerging viruses have never been the subject of epidemiologic studies in our country. © 2019 The Authors","Algeria; ALRT; children; hMPv; PCR; RSV","Article; breathing rate; bronchiolitis; child; comorbidity; Coronaviridae; Coronavirus infection; cyanosis; female; fever; Haemophilus influenzae; Haemophilus influenzae type b; hospitalization; human; Human metapneumovirus; Human rhinovirus; hypothermia; infant; lower respiratory tract infection; major clinical study; male; Metapneumovirus; mixed infection; Mycoplasma pneumoniae; nasopharyngeal aspiration; nose smear; Paramyxovirinae; pneumonia; prematurity; prevalence; priority journal; real time polymerase chain reaction; respiratory distress; respiratory tract infection; Streptococcus pneumoniae; tachypnea; virus detection; wheezing","Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23, pp. 74-98; Wardlaw, T.M., Johansson, E.W., Hodge, M., World Health Organization, Pneumonia: the forgotten killer of children (2006), https://www.who.int/maternal_child_adolescent/documents/9280640489/en/, World Health Organization Geneva Available at:; Bilan d’évaluation du PNL, I.R.A., Algiers, Algeria (2010), Ministry of Health, Population and Hospital Reform (MSPRH); World Health Organization, World health statistics (2009), World Health Organization Geneva; Bellau-Pujol, S., Vabret, A., Legrand, L., Dina, J., Gouarin, S., Petitjean-Lecherbonnier, J., Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses (2005) J Virol Methods, 126, pp. 53-63; Perkins, S.M., Webb, D.L., Torrance, S.A., El Saleeby, C., Harrison, L.M., Aitken, J.A., Comparison of real-time reverse transcriptase PCR assay and a culture technique for quantitative assessment of viral load in children naturally infected with respiratory syncytial virus (2005) J Clin Microbiol, 50, pp. 2356-2362; Scagnolari, M.F., Perangeli, B.E., De Angelis, A.G., Moretti, B.R., Respiratory syncytial virus, human bocavirus and rhinovirus bronchiolitis in infants (2010) Arch Dis Chil, 95, pp. 35-41; Niang, M.N., Diop, O.M., Sarr, F.D., Goudiaby, D., Malou-Sompy, H., Ndiaye, K., Viral etiology of respiratory infections in children under 5 years old living in tropical rural areas of Senegal: the EVIRA project (2010) J Med Virol, 82, pp. 866-872; Malekshahi, S.S., Azad, T.M., Yavarian, J., Shahmahmoodi, S., Naseri, M., Rezaei, F., Molecular detection of respiratory viruses in clinical specimens from children with acute respiratory disease in Iran (2010) Pediatr Infect Dis J, 29, pp. 931-933; Don, M., Fasoli, L., Paldanius, M., Vainionpää, R., Kleemola, M., Räty, R., Aetiology of community acquired pneumonia: serological results of a paediatric survey (2005) Scand J Infect Dis, 37, pp. 806-812; Manoha, C., Espinosa, S., Aho, S.L., Huet, F., Pothier, P., Epidemiological and clinical features of hMPV, RSV and RVs infections in young children (2007) J Clin Virol, 38, pp. 221-226; Freymuth, F., Quibriac, M., Petitjean, J., Daon, F., Amiel, M.L., [Viruses responsible for respiratory infections in pediatrics. Evaluation of 3480 nasal aspirates performed in children over a 6-year period] (1987) Ann Pediatr (Paris), 34, pp. 493-501; Kaplan, N.M., Dove, W., Abd-Eldayem, S.A., Abu-Zeid, A.F., Shamoon, H.E., Hart, C.A., Molecular epidemiology and disease severity of respiratory syncytial virus in relation to other potential pathogens in children hospitalized with acute respiratory infection in Jordan (2008) J Med Virol, 80, pp. 168-174; Bezerra, P.G., Britto, M.C., Correia, J.B., Duarte Mdo, C., Fonceca, A.M., Rose, K., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) PLoS One, 6; Heikkinen, T., Marttila, J., Salmi, A.A., Ruuskanen, O., Nasal swab versus nasopharyngeal aspirate for isolation of respiratory viruses (2002) J Clin Microbiol, 40, pp. 4337-4339; Ali, S.A., Williams, J.V., Chen, Q., Faouri, S., Shehabi, A., Jundi, E.A., Human metapneumovirus in hospitalized children in Amman, Jordan (2010) J Med Virol, 82, pp. 1012-1016; van Woensel, J.B., van Aalderen, W.M., Kimpen, J.L., Viral lower respiratory tract infection in infants and young children (2003) BMJ, 327, pp. 36-40; Freymuth, F., Vabret, A., Legrand, L., Dina, J., Gouarin, S., Cuvillon-Nimal, D., Brouard, J., Human metapneumovirus (2009) Pathol Biol (Paris), 57, pp. 133-141; Bonzel, L., Tenenbaum, T., Schroten, H., Schildgen, O., Schweitzer-Krantz, S., Adams, O., Frequent detection of viral coinfection in children hospitalized with acute respiratory tract infection using a real-time polymerase chain reaction (2008) Pediatr Infect Dis J, 27, pp. 589-594; Wertz, G.W., Moudy, R.M., Antigenic and genetic variation in human respiratory syncytial virus (2004) Pediatr Infect Dis J, 23, pp. S19-S24; El-Hajje, M.J., Moulin, F., de Suremain, N., Marc, E., Cosnes-Lambe, C., Pons-Catalano, C., Respiratory syncytial virus in hospitalized children. A 3-year study (2008) Presse Med, 37, pp. 37-43; Fodha, I., Landolsi, N., Vabret, A., Sboui, H., Trabelsi, A., Freymuth, F., Epidemiology and clinical presentation of respiratory syncytial virus infection in a Tunisian neonatal unit from 2000 to 2002 (2004) Ann Trop Pediatr, 24, pp. 219-225; Guittet, V., Brouard, J., Vabret, A., Lafay, F., Guillois, B., Duhamel, J.F., [Rhinovirus and acute respiratory infections in hospitalized children. Retrospective study, 1998–2000] (2003) Arch Pediatr, 10, pp. 417-423; Piotrowska, Z., Vázquez, M., Shapiro, E.D., Weibel, C., Ferguson, D., Landry, M.L., Rhinoviruses are a major cause of wheezing and hospitalization in children less than 2 years of age (2009) Pediatr Infect Dis J, 28, pp. 25-29; Kusel, M.M.H., de Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., Sly, P.D., Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: a birth cohort study (2006) Pediatr Infect Dis J, 25, pp. 680-686; Blomqvist, S., Roivainen, M., Puhakka, T., Hovi, T., Virological and serological analysis of rhinovirus infections during the first two years of life in a cohort of children (2006) J Med Virol, 66, pp. 263-268; Miller, E.K., Lu, X., Erdman, D.D., Poehling, K.A., Zhu, Y., Griffin, M.R., New vaccine surveillance network. Rhinovirus-associated hospitalizations in young children (2007) J Infect Dis, 195, pp. 773-781; Peltola, V., Jartti, T., Putto-Laurila, A., Mertsola, J., Vainionpää, R., Waris, M., Rhinovirus infection in children: a retrospective and prospective hospital-based study (2009) J Med Virol, 81, pp. 1831-1838; Coiras, M.T., Aguilar, J.C., García, M.L., Casas, I., Pérez-Breña, P., Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested–PCR assays (2004) J Med Virol, 72, pp. 484-495; Iwane, M.K., Prill, M.M., Lu, X., Miller, E.K., Edwards, K.M., Hall, C.B., Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children (2011) J Infect Dis, 204, pp. 1702-1710; Smuts, H.E., Workman, L.J., Zar, H.J., Human rhinovirus infection in young African children with acute wheezing (2011) BMC Infect Dis, 11, p. 65; Mackay, I.M., Human rhinovirus: the cold wars resume (2008) J Clin Virol, 42, pp. 297-320; van der Zalm, M.M., van Ewijk, B.E., Wilbrink, B., Uiterwaal, C.S., Wolfs, T.F., van der Ent, C.K., Respiratory pathogens in children with and without respiratory symptoms (2009) J Pediatr, 154, pp. 396-400; Wilson, N.M., Virus infections, wheeze and asthma (2003) Paediatr Respir Rev, 4, pp. 184-192; van den Hoogen, B.G., de Jong, J.C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R.A., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat Med, 7, pp. 719-724; Williams, J.V., Edwards, K.M., Weinberg, G.A., Griffin, M.R., Hall, C.B., Zhu, Y., Population-based incidence of human metapneumovirus in hospitalized children (2010) J Infect Dis, 201, pp. 1890-1898; Foulongne, V., Guyon, G., Rodière, M., Segondy, M., Human metapneumovirus infection in young children hospitalized with respiratory tract disease (2006) Pediatr Infect Dis J, 25, pp. 354-359; van den Hoogen, B.G., Osterhaus, D.M., Fouchier, R.A., Clinical impact and diagnosis of human metapneumovirus infection (2004) Pediatr Infect Dis J, 23 (1 Suppl. l), pp. S25-S32; Xepapadaki, P., Psarras, S., Bossios, A., Tsolia, M., Gourgiotis, D., Liapi-Adamidou, G., Human metapneumovirus as a causative agent of acute bronchiolitis in infants (2004) J Clin Virol, 30, pp. 267-270; Mammas, I.N., Koutsaftiki, C., Nika, E., Vagia, F., Zaravinos, A., Priftis, K.N., Detection of human metapneumovirus in infants with acute respiratory tract infection (2011) Mol Med Rep, 4, pp. 267-271; Regamey, N., Kaiser, L., Roiha, H.L., Deffernez, C., Kuehni, C.E., Latzin, P., Viral etiology of acute respiratory infections with cough in infancy: a community based birth cohort study (2008) Pediatr Infect Dis J, 27, pp. 100-105; Akinloye, O.M., Rönkkö, E., Savolainen-Kopra, C., Ziegler, T., Iwalokun, B.A., Deji-Agboola, M.A., Specific viruses detected in Nigerian children in association with acute respiratory disease (2011) J Trop Med, 1-6; Semple, M.G., Cowell, A., Dove, W., Greensill, J., McNamara, P.S., Halfhide, C., Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis (2005) J Infect Dis, 191, pp. 382-386; Greensill, J., McNamara, P., Dove, W., Flanagan, B., Smyth, R., Human metapneumovirus in severe respiratory syncytial virus bronchiolitis (2003) Emerg Infect Dis, 9, pp. 372-375; Berkley, J.A., Munywoki, P., Ngama, M., Kazungu, S., Abwao, J., Bett, A., Viral etiology of severe pneumonia among Kenyan infants and children (2010) JAMA, 303, pp. 2051-2057","Derrar, F.; Viral Respiratory Unit, Virology Department, Institut Pasteur of Algeria, Sidi-fredj, Bp, Algeria; email: fderrar@pasteur.dz",,"Elsevier Ltd",20522975,,,,"English","New Microbes New Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85065253070 "Beigel J.H., Nam H.H., Adams P.L., Krafft A., Ince W.L., El-Kamary S.S., Sims A.C.","6506675950;57204326065;57208215063;35617956900;36947370900;6507720581;7102763252;","Advances in respiratory virus therapeutics – A meeting report from the 6th isirv Antiviral Group conference",2019,"Antiviral Research","167",,,"45","67",,9,"10.1016/j.antiviral.2019.04.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064122575&doi=10.1016%2fj.antiviral.2019.04.006&partnerID=40&md5=e54f534e8cfc0a537b4c0f0ae1579399","National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, United States; Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S Food and Drug Administration, Silver Spring, MD, United States; Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States","Beigel, J.H., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Nam, H.H., Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Adams, P.L., Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC, United States; Krafft, A., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Ince, W.L., Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S Food and Drug Administration, Silver Spring, MD, United States; El-Kamary, S.S., Division of Antiviral Products, Office of Antimicrobial Products, Office of New Drugs, Center for Drug Evaluation and Research, U.S Food and Drug Administration, Silver Spring, MD, United States; Sims, A.C., Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States","The International Society for Influenza and other Respiratory Virus Diseases held its 6th Antiviral Group (isirv-AVG) conference in Rockville, Maryland, November 13–15, 2018. The three-day program was focused on therapeutics towards seasonal and pandemic influenza, respiratory syncytial virus, coronaviruses including MERS-CoV and SARS-CoV, human rhinovirus, and other respiratory viruses. Updates were presented on several influenza antivirals including baloxavir, CC-42344, VIS410, immunoglobulin, immune plasma, MHAA4549A, pimodivir (JNJ-63623872), umifenovir, and HA minibinders; RSV antivirals including presatovir (GS-5806), ziresovir (AK0529), lumicitabine (ALS-008176), JNJ-53718678, JNJ-64417184, and EDP-938; broad spectrum antivirals such as favipiravir, VH244, remdesivir, and EIDD-1931/EIDD-2801; and host directed strategies including nitazoxanide, eritoran, and diltiazem. Other topics included considerations of novel endpoints such as ordinal scales and patient reported outcomes (PRO), and study design issues, and other regulatory considerations for antiviral drug development. The aim of this report is to provide a summary of the presentations given at this meeting. © 2019","Antiviral therapy; Coronavirus; Host-directed therapeutics; Influenza; Respiratory syncytial virus","1,4 dihydro 2,4,6 trimethyl 3,5 pyridinedicarboxylic acid methyl 2 phenylthioethyl ester; ak 0529; antivirus agent; arbidol; baloxavir; baloxavir marboxil; cc 42344; df 2162; diltiazem; doxycycline; edp 938; eidd 1931; eidd 2801; eritoran; favipiravir; gedivumab; immunoglobulin; Influenza virus hemagglutinin; jnj 53718678; lumicitabine; monoclonal antibody; nitazoxanide; oseltamivir; peptide conjugate vaccine; pimodivir; presatovir; protein M2 1; remdesivir; sialidase inhibitor; umifenovir; unclassified drug; unindexed drug; vh 244; vis 410; ziresovir; antibody titer; antiviral activity; antiviral resistance; antiviral susceptibility; antiviral therapy; artificial ventilation; bacterial infection; bacterial pneumonia; cell metabolism; cell migration; clinical outcome; clinical pharmacology; clinical trial (topic); Coronavirinae; drug absorption; drug design; drug distribution; drug dose regimen; drug effect; drug efficacy; drug metabolism; drug monitoring; drug potentiation; drug repositioning; drug screening; drug targeting; food and drug administration; gene expression; health program; hospital patient; host cell; human; Human respiratory syncytial virus; Human rhinovirus; IC50; immunocompromised patient; immunogenicity; influenza; influenza A; influenza B; Influenza B virus; leukocyte activation; lower respiratory tract infection; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mortality; nonhuman; nuclear export; outcome assessment; pandemic influenza; patient-reported outcome; pharmacodynamics; preclinical study; priority journal; randomized controlled trial (topic); respiratory virus; Review; RNA splicing; SARS coronavirus; seasonal influenza; secondary infection; survival; therapeutic index; treatment response; trough concentration; upper respiratory tract infection; viral respiratory tract infection; virus genome; virus load; virus replication","Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Denison, M.R., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) mBio, 9; Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., Bawayan, M.F., Sood, G., Treatment outcomes for patients with middle eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia (2016) BMC Infect. Dis., 16, p. 174; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int. J. Infect. Dis., 20, pp. 42-46; Anderson, L.J., Parker, R.A., Strikas, R.L., Association between respiratory syncytial virus outbreaks and lower respiratory tract deaths of infants and young children (1990) J. Infect. Dis., 161, pp. 640-646; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Mazet, J.A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) mBio, 8; Arabi, Y., Balkhy, H., Hajeer, A.H., Bouchama, A., Hayden, F.G., Al-Omari, A., Al-Hameed, F.M., Fowler, R., Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol (2015) SpringerPlus, 4, p. 709; Arabi, Y.M., Shalhoub, S., Omari, A.A., Mandourah, Y., Al-Hameed, F., Sindi, A., Alraddadi, B., Aldawood, A.S., Effect of ribavirin and interferon on the outcome of critically ill patients with MERS (2017) Am. J. Respir. Crit. Care Med., 195, p. A6067; Arabi, Y.M., Al-Enezi, F., Longuere, K.S., Balkhy, H.H., Al-Sultan, M., Al-Omari, A., Al-Hameed, F.M., Fowler, R., Feasibility of a randomized controlled trial to assess treatment of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in Saudi Arabia: a survey of physicians (2016) BMC Anesthesiol., 16, p. 36; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Kojan, S., Hussein, M.A., Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-beta1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19, p. 81; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Bouchama, A., Luke, T., Baillie, J.K., Al-Omari, A., Fowler, R.A., Middle East respiratory syndrome (2017) N. Engl. J. Med., 376, pp. 584-594; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Sindi, A.A., Almekhlafi, G.A., Hussein, M.A., Jose, J., Fowler, R.A., Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome (2018) Am. J. Respir. Crit. Care Med., 197, pp. 757-767; Baranovich, T., Saito, R., Suzuki, Y., Zaraket, H., Dapat, C., Caperig-Dapat, I., Oguma, T., Suzuki, H., Emergence of H274Y oseltamivir-resistant A(H1N1) influenza viruses in Japan during the 2008-2009 season (2010) J. Clin. Virol., 47, pp. 23-28; Beaird, O.E., Freifeld, A., Ison, M.G., Lawrence, S.J., Theodoropoulos, N., Clark, N.M., Razonable, R.R., Kaul, D.R., Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: a survey of institutions in the Midwestern respiratory virus collaborative (2016) Transpl. Infect. Dis., 18, pp. 210-215; Becker, M.M., Graham, R.L., Donaldson, E.F., Rockx, B., Sims, A.C., Sheahan, T., Pickles, R.J., Denison, M.R., Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 19944-19949; Beigel, J.H., Tebas, P., Elie-Turenne, M.C., Bajwa, E., Bell, T.E., Cairns, C.B., Shoham, S., Team, I.R.C.S., Immune plasma for the treatment of severe influenza: an open-label, multicentre, phase 2 randomised study (2017) Lancet Respir. Med., 5, pp. 500-511; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.A., Sullivan, E., Davey, R.T., Jr., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect. Dis., 18, pp. 410-418; Beigi, R.H., Han, K., Venkataramanan, R., Hankins, G.D., Clark, S., Hebert, M.F., Easterling, T., Caritis, S.N., Pharmacokinetics of oseltamivir among pregnant and nonpregnant women (2011) Am. J. Obstet. Gynecol., 204, pp. S84-S88; Belardo, G., Frazia, S.L., Cenciarelli, O., Carta, S., Rossignol, J.-F., Santoro, M.G., Nitazoxanide, a novel potential anti-influenza drug (2011) Acting in Synergism with Neuraminidase Inhibitors, IDSA Poster Abstract Session, October 22, 2011, , (Boston, MA); Blaising, J., Polyak, S.J., Pecheur, E.I., Arbidol as a broad-spectrum antiviral: an update (2014) Antivir. Res., 107, pp. 84-94; Borghardt, J.M., Kloft, C., Sharma, A., Inhaled therapy in respiratory disease: the complex interplay of pulmonary kinetic processes (2018) Can. Respir. J., 2018; Bright, R.A., Medina, M.J., Xu, X., Perez-Oronoz, G., Wallis, T.R., Davis, X.M., Povinelli, L., Klimov, A.I., Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern (2005) Lancet, 366, pp. 1175-1181; Byrn, R.A., Jones, S.M., Bennett, H.B., Bral, C., Clark, M.P., Jacobs, M.D., Kwong, A.D., Charifson, P.S., Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit (2015) Antimicrob. Agents Chemother., 59, pp. 1569-1582; Carson, G.L., Castle, L., George, M., Horby, P., Longuere, K.S., Merson, L., Murthy, S., Webb, S., Short period incidence sTudy of severe acute respiratory infection (SPRINT-SARI) initial data from a global observational study to better describe SARI epidemiology in critically ill patients (2016) Int. J. Infect. Dis., 53, p. 101; Centers for Disease, C., Prevention, Update: influenza activity--United States, September 28, 2008-April 4, 2009, and composition of the 2009-10 influenza vaccine (2009) MMWR Morb. Mortal. Wkly. Rep., 58, pp. 369-374; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Li, P.T., Yuen, K.Y., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J. Infect., 67, pp. 606-616; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yuen, K.Y., Treatment with lopinavir/ritonavir or interferon-beta1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J. Infect. Dis., 212, pp. 1904-1913; Chevalier, A., Silva, D.A., Rocklin, G.J., Hicks, D.R., Vergara, R., Murapa, P., Bernard, S.M., Baker, D., Massively parallel de novo protein design for targeted therapeutics (2017) Nature, 550, pp. 74-79; Chu, C.M., Cheng, V.C., Hung, I.F., Wong, M.M., Chan, K.H., Chan, K.S., Kao, R.Y., Group, H.U.S.S., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings (2004) Thorax, 59, pp. 252-256; Coates, M., Brookes, D., Kim, Y.I., Allen, H., Fordyce, E.A.F., Meals, E.A., Colley, T., Rapeport, G., Preclinical characterization of PC786, an inhaled small-molecule respiratory syncytial virus L protein polymerase inhibitor (2017) Antimicrob. Agents Chemother., 61; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226; Croxtall, J.D., Perry, C.M., Lopinavir/Ritonavir: a review of its use in the management of HIV-1 infection (2010) Drugs, 70, pp. 1885-1915; de Jong, M.D., Ison, M.G., Monto, A.S., Metev, H., Clark, C., O'Neil, B., Elder, J., Sheridan, W.P., Evaluation of intravenous peramivir for treatment of influenza in hospitalized patients (2014) Clin. Infect. Dis., 59, pp. e172-185; de Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., van Nieuwkoop, S., Bestebroer, T.M., van den Hoogen, B.G., Snijder, E.J., Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; DeVincenzo, J.P., El Saleeby, C.M., Bush, A.J., Respiratory syncytial virus load predicts disease severity in previously healthy infants (2005) J. Infect. Dis., 191, pp. 1861-1868; DeVincenzo, J.P., McClure, M.W., Symons, J.A., Fathi, H., Westland, C., Chanda, S., Lambkin-Williams, R., Fry, J., Activity of oral ALS-008176 in a respiratory syncytial virus challenge study (2015) N. Engl. J. Med., 373, pp. 2048-2058; DeVincenzo, J.P., Whitley, R.J., Mackman, R.L., Scaglioni-Weinlich, C., Harrison, L., Farrell, E., McBride, S., Chien, J.W., Oral GS-5806 activity in a respiratory syncytial virus challenge study (2014) N. Engl. J. Med., 371, pp. 711-722; DeVincenzo, J.P., Wilkinson, T., Vaishnaw, A., Cehelsky, J., Meyers, R., Nochur, S., Harrison, L., Lambkin-Williams, R., Viral load drives disease in humans experimentally infected with respiratory syncytial virus (2010) Am. J. Respir. Crit. Care Med., 182, pp. 1305-1314; Dias, A., Bouvier, D., Crepin, T., McCarthy, A.A., Hart, D.J., Baudin, F., Cusack, S., Ruigrok, R.W., The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit (2009) Nature, 458, pp. 914-918; Dimmock, N.J., Rainsford, E.W., Scott, P.D., Marriott, A.C., Influenza virus protecting RNA: an effective prophylactic and therapeutic antiviral (2008) J. Virol., 82, pp. 8570-8578; Dobson, J., Whitley, R.J., Pocock, S., Monto, A.S., Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials (2015) Lancet, 385, pp. 1729-1737; Dumitrescu, L., Constantinescu, C.S., Tanasescu, R., Recent developments in interferon-based therapies for multiple sclerosis (2018) Expert Opin. Biol. Ther., 18, pp. 665-680; El Saleeby, C.M., Bush, A.J., Harrison, L.M., Aitken, J.A., Devincenzo, J.P., Respiratory syncytial virus load, viral dynamics, and disease severity in previously healthy naturally infected children (2011) J. Infect. Dis., 204, pp. 996-1002; European Medicines Agency, (2018) Guidelines on the Clinical Evaluation of Medicinal Products Indicated for the Prophylaxis or Treatment of Respiratory Syncytial Virus (RSV) Disease, , Agency, E.M. EMA/CHMP/257022/2017; Falsey, A.R., Hennessey, P.A., Formica, M.A., Cox, C., Walsh, E.E., Respiratory syncytial virus infection in elderly and high-risk adults (2005) N. Engl. J. Med., 352, pp. 1749-1759; Falsey, A.R., McElhaney, J.E., Beran, J., van Essen, G.A., Duval, X., Esen, M., Galtier, F., Taylor, S., Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness (2014) J. Infect. Dis., 209, pp. 1873-1881; Falzarano, D., de Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Feldmann, H., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat. Med., 19, pp. 1313-1317; Finberg, R.W., Lanno, R., Anderson, D., Fleischhackl, R., van Duijnhoven, W., Kauffman, R.S., Kosoglou, T., Leopold, L., Phase 2b study of pimodivir (JNJ-63623872) as monotherapy or in combination with oseltamivir for treatment of acute uncomplicated seasonal influenza A: TOPAZ trial (2019) J. Infect. Dis., 219 (7), pp. 1026-1034; Fleishman, S.J., Whitehead, T.A., Ekiert, D.C., Dreyfus, C., Corn, J.E., Strauch, E.M., Wilson, I.A., Baker, D., Computational design of proteins targeting the conserved stem region of influenza hemagglutinin (2011) Science, 332, pp. 816-821; Fukao, K., Noshi, T., Yamamoto, A., Kitano, M., Ando, Y., Noda, T., Baba, K., Naito, A., Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza A virus infection (2019) J. Antimicrob. Chemother., 74, pp. 654-662; Furuta, Y., Gowen, B.B., Takahashi, K., Shiraki, K., Smee, D.F., Barnard, D.L., Favipiravir (T-705), a novel viral RNA polymerase inhibitor (2013) Antivir. Res., 100, pp. 446-454; Gaggar, A., Jackson, P.L., Noerager, B.D., O'Reilly, P.J., McQuaid, D.B., Rowe, S.M., Clancy, J.P., Blalock, J.E., A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation (2008) J. Immunol., 180, pp. 5662-5669; Gamino-Arroyo, A.E., Guerrero, M.L., McCarthy, S., Ramirez-Venegas, A., Llamosas-Gallardo, B., Galindo-Fraga, A., Moreno-Espinosa, S., Beigel, J.H., Efficacy and safety of nitazoxanide in addition to standard of care for the treatment of severe acute respiratory illness (2019) Clin. Infect. Dis., , [Epub ahead of print]; Global Burden of Disease Collaborators, Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 (2018) Lancet Infect. Dis., 18, pp. 1191-1210; Greer, L.G., Leff, R.D., Rogers, V.L., Roberts, S.W., McCracken, G.H., Jr., Wendel, G.D., Jr., Sheffield, J.S., Pharmacokinetics of oseltamivir in breast milk and maternal plasma (2011) Am. J. Obstet. Gynecol., 204, pp. 524 e521-524; Gubareva, L.V., Besselaar, T.G., Daniels, R.S., Fry, A., Gregory, V., Huang, W., Hurt, A.C., Meijer, A., Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015-2016 (2017) Antivir. Res., 146, pp. 12-20; Gubareva, L.V., Mishin, V.P., Patel, M.C., Chesnokov, A., Nguyen, H.T., De La Cruz, J., Spencer, S., Wentworth, D.E., Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons (2019) Euro Surveill., 24; Gupta, P., Kamath, A.V., Park, S., Chiu, H., Lutman, J., Maia, M., Tan, M.-W., Deng, R., Preclinical pharmacokinetics of MHAA4549A, a human monoclonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A (2016) mAbs, 8, pp. 991-997; Haffizulla, J., Hartman, A., Hoppers, M., Resnick, H., Samudrala, S., Ginocchio, C., Bardin, M., Rossignol, J.F., Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial (2014) Lancet Infect. Dis., 14, pp. 609-618; Hall, C.B., Weinberg, G.A., Iwane, M.K., Blumkin, A.K., Edwards, K.M., Staat, M.A., Auinger, P., Szilagyi, P., The burden of respiratory syncytial virus infection in young children (2009) N. Engl. J. Med., 360, pp. 588-598; Hart, B.J., Dyall, J., Postnikova, E., Zhou, H., Kindrachuk, J., Johnson, R.F., Olinger, G.G., Jr., Hensley, L., Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays (2014) J. Gen. Virol., 95, pp. 571-577; Hayden, F.G., Sugaya, N., Hirotsu, N., Lee, N., de Jong, M.D., Hurt, A.C., Ishida, T., Baloxavir Marboxil Investigators, G., Baloxavir marboxil for uncomplicated influenza in adults and adolescents (2018) N. Engl. J. Med., 379, pp. 913-923; Hershberger, E., Sloan, S., Narayan, K., Hay, C.A., Smith, P., Engler, F., Jeeninga, R., Oldach, D., Safety and efficacy of monoclonal antibody VIS410 in adults with uncomplicated influenza A infection: results from a randomized, double-blind, phase-2, placebo-controlled study (2019) EBioMedicine, 40, pp. 574-582; Hui, D.S., Lee, N., Chan, P.K., Beigel, J.H., The role of adjuvant immunomodulatory agents for treatment of severe influenza (2018) Antivir. Res., 150, pp. 202-216; Hung, I.F., To, K.K., Lee, C.K., Lee, K.L., Chan, K., Yan, W.W., Liu, R., Yuen, K.Y., Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection (2011) Clin. Infect. Dis., 52, pp. 447-456; Hung, I.F.N., To, K.K.W., Chan, J.F.W., Cheng, V.C.C., Liu, K.S.H., Tam, A., Chan, T.C., Yuen, K.Y., Efficacy of clarithromycin-naproxen-oseltamivir combination in the treatment of patients hospitalized for influenza A(H3N2) infection: an open-label randomized, controlled, phase IIb/III trial (2017) Chest, 151, pp. 1069-1080; Hung, I.F.N., To, K.K.W., Lee, C.K., Lee, K.L., Yan, W.W., Chan, K., Chan, W.M., Yuen, K.Y., Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection (2013) Chest, 144, pp. 464-473; Ison, M., Options IX (2016), Chicago. Abstract LBP-17; Ison, M.G., Improving delivery of early treatment to influenza-infected patients (2017) Clin. Infect. Dis., 66, pp. 1042-1044; Ison, M.G., de Jong, M.D., Gilligan, K.J., Higgs, E.S., Pavia, A.T., Pierson, J., Hayden, F.G., End points for testing influenza antiviral treatments for patients at high risk of severe and life-threatening disease (2010) J. Infect. Dis., 201, pp. 1654-1662; Ison, M.G., Portsmouth, S., Yoshida, Y., Shishido, T., Hayden, F., Uehara, T., LB16. Phase 3 trial of baloxavir marboxil in high-risk influenza patients (CAPSTONE-2 study) (2018) Open Forum Infect. Dis., 5, pp. S764-S765; Jones, J.C., Kumar, G., Barman, S., Najera, I., White, S.W., Webby, R.J., Govorkova, E.A., Identification of the I38T PA substitution as a resistance marker for next-generation influenza virus endonuclease inhibitors (2018) mBio, 9; Jones, J.C., Marathe, B.M., Lerner, C., Kreis, L., Gasser, R., Pascua, P.N., Najera, I., Govorkova, E.A., A novel endonuclease inhibitor exhibits broad-spectrum anti-influenza virus activity in vitro (2016) Antimicrob. Agents Chemother., 60, pp. 5504-5514; Ju, H., Zhang, J., Huang, B., Kang, D., Huang, B., Liu, X., Zhan, P., Inhibitors of influenza virus polymerase acidic (PA) endonuclease: contemporary developments and perspectives (2017) J. Med. Chem., 60, pp. 3533-3551; Kadam, R.U., Wilson, I.A., Structural basis of influenza virus fusion inhibition by the antiviral drug arbidol (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. 206-214; Kawai, N., Ikematsu, H., Hirotsu, N., Maeda, T., Kawashima, T., Tanaka, O., Yamauchi, S., Kashiwagi, S., Clinical effectiveness of oseltamivir and zanamivir for treatment of influenza A virus subtype H1N1 with the H274Y mutation: a Japanese, multicenter study of the 2007-2008 and 2008-2009 influenza seasons (2009) Clin. Infect. Dis., 49, pp. 1828-1835; Kim, Y.I., DeVincenzo, J.P., Jones, B.G., Rudraraju, R., Harrison, L., Meyers, R., Cehelsky, J., Hurwitz, J.L., Respiratory syncytial virus human experimental infection model: provenance, production, and sequence of low-passaged memphis-37 challenge virus (2014) PLoS One, 9; Kim, Y.I., Pareek, R., Murphy, R., Harrison, L., Farrell, E., Cook, R., DeVincenzo, J., The antiviral effects of RSV fusion inhibitor, MDT-637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin (2017) Influenza Other Respir Viruses, 11, pp. 525-530; King, J., IDWeek 2016 (2016), New Orleans. Abstract 638; Laursen, N.S., Friesen, R.H.E., Zhu, X., Jongeneelen, M., Blokland, S., Vermond, J., van Eijgen, A., Wilson, I.A., Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin (2018) Science, 362, pp. 598-602; Lee, N., Wong, C.K., Chan, M.C.W., Yeung, E.S.L., Tam, W.W.S., Tsang, O.T.Y., Choi, K.W., Hui, D.S.C., Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: a randomized controlled trial (2017) Antivir. Res., 144, pp. 48-56; Leneva, I.A., Burtseva, E.I., Yatsyshina, S.B., Fedyakina, I.T., Kirillova, E.S., Selkova, E.P., Osipova, E., Maleev, V.V., Virus susceptibility and clinical effectiveness of anti-influenza drugs during the 2010-2011 influenza season in Russia (2016) Int. J. Infect. Dis., 43, pp. 77-84; Li, S.F., Gong, M.J., Zhao, F.R., Shao, J.J., Xie, Y.L., Zhang, Y.G., Chang, H.Y., Type I interferons: distinct biological activities and current applications for viral infection (2018) Cell. Physiol. Biochem., 51, pp. 2377-2396; Lina, B., Boucher, C., Osterhaus, A., Monto, A.S., Schutten, M., Whitley, R.J., Nguyen-Van-Tam, J.S., Five years of monitoring for the emergence of oseltamivir resistance in patients with influenza A infections in the influenza resistance information study (2018) Influenza Other Respir Viruses, 12, pp. 267-278; Lipworth, B.J., Pharmacokinetics of inhaled drugs (1996) Br. J. Clin. Pharmacol., 42, pp. 697-705; Lo, M.K., Jordan, R., Arvey, A., Sudhamsu, J., Shrivastava-Ranjan, P., Hotard, A.L., Flint, M., Spiropoulou, C.F., GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses (2017) Sci. Rep., 7, p. 43395; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.A., Matsushita, H., Frieman, M.B., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci. Transl. Med., 8. , 326ra321; Luke, T.C., Kilbane, E.M., Jackson, J.L., Hoffman, S.L., Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? (2006) Ann. Intern. Med., 145, pp. 599-609; Martinon-Torres, F., Rusch, S., Huntjens, D., Remmerie, B., Vingerhoets, J., McFadyen, K., Stevens, M., Antiviral effects, pharmacokinetics and safety of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678 (2018) RSV-infected Infants with Bronchiolitis, in the Phase 1b Study 53718678RSV1005, , IDWeek 2018 San Francisco, CA; Marty, F.M., Vidal-Puigserver, J., Clark, C., Gupta, S.K., Merino, E., Garot, D., Chapman, M.J., Peppercorn, A.F., Intravenous zanamivir or oral oseltamivir for hospitalised patients with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial (2017) Lancet Respir. Med., 5, pp. 135-146; McBride, J.M., Lim, J.J., Burgess, T., Deng, R., Derby, M.A., Maia, M., Horn, P., Tavel, J.A., Phase 2 randomized trial of the safety and efficacy of MHAA4549A, a broadly neutralizing monoclonal antibody, in a human influenza a virus challenge model (2017) Antimicrob. Agents Chemother., 61, p. 17; McKimm-Breschkin, J.L., Jiang, S., Hui, D.S., Beigel, J.H., Govorkova, E.A., Lee, N., Prevention and treatment of respiratory viral infections: presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference (2018) Antivir. Res., 149, pp. 118-142; Memoli, M.J., Athota, R., Reed, S., Czajkowski, L., Bristol, T., Proudfoot, K., Hagey, R., Taubenberger, J.K., The natural history of influenza infection in the severely immunocompromised vs nonimmunocompromised hosts (2014) Clin. Infect. Dis., 58, pp. 214-224; Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante, J.A., Graham, R.L., Baric, R.S., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513; Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S., Gralinski, L.E., Graham, R.L., Baric, R.S., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 3048-3053; Nicholson, E.G., Munoz, F.M., A review of therapeutics in clinical development for respiratory syncytial virus and influenza in children (2018) Clin. Ther., 40, pp. 1268-1281; Noshi, T., Kitano, M., Taniguchi, K., Yamamoto, A., Omoto, S., Baba, K., Hashimoto, T., Naito, A., In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit (2018) Antivir. Res., 160, pp. 109-117; Olsson, B., Bondesson, E., Borgström, L., Edsbäcker, S., Eirefelt, S., Ekelund, K., Pulmonary drug metabolism, clearance, and absorption (2011) Controlled Pulmonary Drug Delivery, pp. 21-50; Omoto, S., Speranzini, V., Hashimoto, T., Noshi, T., Yamaguchi, H., Kawai, M., Kawaguchi, K., Cusack, S., Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil (2018) Sci. Rep., 8, p. 9633; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect. Dis., 14, pp. 1090-1095; Pascua, P.N.Q., Mostafa, H.H., Marathe, B.M., Vogel, P., Russell, C.J., Webby, R.J., Govorkova, E.A., Pathogenicity and peramivir efficacy in immunocompromised murine models of influenza B virus infection (2017) Sci. Rep., 7, p. 7345; Patel, M.C., Shirey, K.A., Boukhvalova, M.S., Vogel, S.N., Blanco, J.C.G., Serum high-mobility-group box 1 as a biomarker and a therapeutic target during respiratory virus infections (2018) mBio, 9; Perkins, S.M., Webb, D.L., Torrance, S.A., El Saleeby, C., Harrison, L.M., Aitken, J.A., Patel, A., DeVincenzo, J.P., Comparison of a real-time reverse transcriptase PCR assay and a culture technique for quantitative assessment of viral load in children naturally infected with respiratory syncytial virus (2005) J. Clin. Microbiol., 43, pp. 2356-2362; Perrin-Cocon, L., Aublin-Gex, A., Sestito, S.E., Shirey, K.A., Patel, M.C., Andre, P., Blanco, J.C., Lotteau, V., TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection (2017) Sci. Rep., 7, p. 40791; Perron, M., Stray, K., Kinkade, A., Theodore, D., Lee, G., Eisenberg, E., Sangi, M., Cihlar, T., GS-5806 inhibits a broad range of respiratory syncytial virus clinical isolates by blocking the virus-cell fusion process (2015) Antimicrob. Agents Chemother., 60, pp. 1264-1273; Perry, M.E., Taylor, G.P., Sabin, C.A., Conway, K., Flanagan, S., Dwyer, E., Stevenson, J., deRuiter, A., Lopinavir and atazanavir in pregnancy: comparable infant outcomes, virological efficacies and preterm delivery rates (2016) HIV Med., 17, pp. 28-35; Peterson, R.L., Vock, D.M., Powers, J.H., Emery, S., Cruz, E.F., Hunsberger, S., Jain, M.K., Neaton, J.D., Analysis of an ordinal endpoint for use in evaluating treatments for severe influenza requiring hospitalization (2017) Clin. Trials, 14, pp. 264-276; Piacentini, S., La Frazia, S., Riccio, A., Pedersen, J.Z., Topai, A., Nicolotti, O., Rossignol, J.F., Santoro, M.G., Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57 (2018) Sci. Rep., 8, p. 10425; Piao, W., Shirey, K.A., Ru, L.W., Lai, W., Szmacinski, H., Snyder, G.A., Sundberg, E.J., Toshchakov, V.Y., A decoy peptide that disrupts TIRAP recruitment to TLRs is protective in a murine model of influenza (2015) Cell Rep., 11, pp. 1941-1952; Pizzorno, A., Terrier, O., Nicolas de Lamballerie, C., Julien, T., Padey, B., Traversier, A., Roche, M., Rosa-Calatrava, M., Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures (2019) Front. Immunol., 10, p. 60; Powers, J.H., 3rd, Bacci, E.D., Guerrero, M.L., Leidy, N.K., Stringer, S., Kim, K., Memoli, M.J., Ruiz-Palacios, G.M., Reliability, validity, and responsiveness of InFLUenza patient-reported outcome (FLU-PRO(c)) scores in influenza-positive patients (2018) Value Health, 21, pp. 210-218; Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., Baric, R., Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge (2008) J. Virol., 82, pp. 3220-3235; Rockx, B., Sheahan, T., Donaldson, E., Harkema, J., Sims, A., Heise, M., Pickles, R., Baric, R., Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice (2007) J. Virol., 81, pp. 7410-7423; Rodrigo, C., Leonardi-Bee, J., Nguyen-Van-Tam, J., Lim, W.S., Corticosteroids as adjunctive therapy in the treatment of influenza (2016) Cochrane Database Syst. Rev., 3; Rojas-Quintero, J., Wang, X., Tipper, J., Burkett, P.R., Zuniga, J., Ashtekar, A.R., Polverino, F., Owen, C.A., Matrix metalloproteinase-9 deficiency protects mice from severe influenza A viral infection (2018) JCI Insight, 3; Rossignol, J.F., Nitazoxanide: a first-in-class broad-spectrum antiviral agent (2014) Antivir. Res., 110, pp. 94-103; Royal College of Physicians, O.M., NEWS2 National Early Warning Score (2018); Shah, P., Grein, J., Vakil, N., Hirai-Yang, A., Murthy, R., 1062: compassionate use of intravenous (IV) zanamivir during the 2013-2014 influenza season: case series of three patients (2014) Open Forum Infect. Dis., 1. , S311-S311; Shakya, A., Bhat, H.R., Ghosh, S.K., Update on nitazoxanide: a multifunctional chemotherapeutic agent (2018) Curr. Drug Discov. Technol., 15, pp. 201-213; Shalhoub, S., Al-Hameed, F., Mandourah, Y., Balkhy, H.H., Al-Omari, A., Al Mekhlafi, G.A., Kharaba, A., Arabi, Y.M., Critically ill healthcare workers with the middle east respiratory syndrome (MERS): a multicenter study (2018) PLoS One, 13; Sheahan, T., Rockx, B., Donaldson, E., Corti, D., Baric, R., Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus (2008) J. Virol., 82, pp. 8721-8732; Sheahan, T., Rockx, B., Donaldson, E., Sims, A., Pickles, R., Corti, D., Baric, R., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) J. Virol., 82, pp. 2274-2285; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Leist, S.R., Baric, R.S., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci. Transl. Med., 9; Shi, T., McAllister, D.A., O'Brien, K.L., Simoes, E.A.F., Madhi, S.A., Gessner, B.D., Polack, F.P., Nair, H., Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study (2017) Lancet, 390, pp. 946-958; Shirey, K.A., Lai, W., Scott, A.J., Lipsky, M., Mistry, P., Pletneva, L.M., Karp, C.L., Vogel, S.N., The TLR4 antagonist Eritoran protects mice from lethal influenza infection (2013) Nature, 497, pp. 498-502; Siegel, D., Hui, H.C., Doerffler, E., Clarke, M.O., Chun, K., Zhang, L., Neville, S., Mackman, R.L., Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses (2017) J. Med. Chem., 60, pp. 1648-1661; Stachulski, A.V., Swift, K., Cooper, M., Reynolds, S., Norton, D., Slonecker, S.D., Rossignol, J.F., Synthesis and pre-clinical studies of new amino-acid ester thiazolide prodrugs (2017) Eur. J. Med. Chem., 126, pp. 154-159; Stevaert, A., Dallocchio, R., Dessi, A., Pala, N., Rogolino, D., Sechi, M., Naesens, L., Mutational analysis of the binding pockets of the diketo acid inhibitor L-742,001 in the influenza virus PA endonuclease (2013) J. Virol., 87, pp. 10524-10538; Stevens, M., Rusch, S., DeVincenzo, J., Kim, Y.I., Harrison, L., Meals, E.A., Boyers, A., Verloes, R., Antiviral activity of oral JNJ-53718678 in healthy adult volunteers challenged with respiratory syncytial virus: a placebo-controlled study (2018) J. Infect. Dis., 218, pp. 748-756; Takashita, E., Morita, H., Ogawa, R., Nakamura, K., Fujisaki, S., Shirakura, M., Kuwahara, T., Odagiri, T., Susceptibility of influenza viruses to the novel cap-dependent endonuclease inhibitor baloxavir marboxil (2018) Front. Microbiol., 9, p. 3026; Temple, R.J., A Regulatory Authority's Opinion about Surrogate Endpoints (1995), J. Wiley New York; Tharakaraman, K., Subramanian, V., Viswanathan, K., Sloan, S., Yen, H.L., Barnard, D.L., Leung, Y.H., Shriver, Z., A broadly neutralizing human monoclonal antibody is effective against H7N9 (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 10890-10895; Trevejo, J.M., Asmal, M., Vingerhoets, J., Polo, R., Robertson, S., Jiang, Y., Kieffer, T.L., Leopold, L., Pimodivir treatment in adult volunteers experimentally inoculated with live influenza virus: a Phase IIa, randomized, double-blind, placebo-controlled study (2018) Antivir. Ther., 23, pp. 335-344; Guidance for Industry - Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims (2009); Guidance for Industry - Influenza: Developing Drugs for Treatment And/or Prophylaxis (2011); Guidance for Industry - Immunogenicity Assessment for Therapeutic Protein Products (2014); Respiratory Syncytial Virus Infection: Developing Antiviral Drugs for Prophylaxis and Treatment (2017), Guidance for Industry; Critical Path Innovation Meetings (CPIM) (2018); Wang, C.H., Chung, F.T., Lin, S.M., Huang, S.Y., Chou, C.L., Lee, K.Y., Lin, T.Y., Kuo, H.P., Adjuvant treatment with a mammalian target of rapamycin inhibitor, sirolimus, and steroids improves outcomes in patients with severe H1N1 pneumonia and acute respiratory failure (2014) Crit. Care Med., 42, pp. 313-321; Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Bavari, S., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 381-385; Wetherall, N.T., Trivedi, T., Zeller, J., Hodges-Savola, C., McKimm-Breschkin, J.L., Zambon, M., Hayden, F.G., Evaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility network (2003) J. Clin. Microbiol., 41, pp. 742-750; Xofluza, Highlights of Prescribing Information (2018); Yang, S.G., Cao, B., Liang, L.R., Li, X.L., Xiao, Y.H., Cao, Z.X., Jia, H.Y., Wang, C., Antiviral therapy and outcomes of patients with pneumonia caused by influenza A pandemic (H1N1) virus (2012) PLoS One, 7; Yoon, J.J., Toots, M., Lee, S., Lee, M.E., Ludeke, B., Luczo, J.M., Ganti, K., Plemper, R.K., Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses (2018) Antimicrob. Agents Chemother., 62; Zeng, L.Y., Yang, J., Liu, S., Investigational hemagglutinin-targeted influenza virus inhibitors (2017) Expert Opin. Investig. Drugs, 26, pp. 63-73","Beigel, J.H.; National Institute of Allergy and Infectious Diseases (NIAID), 5601 Fishers Lane, Room 7E60, MSC 9826, United States; email: jbeigel@niaid.nih.gov",,"Elsevier B.V.",01663542,,ARSRD,"30974127","English","Antiviral Res.",Review,"Final",,Scopus,2-s2.0-85064122575 "Zhao Y., Liu F., Li Q., Wu M., Lei L., Pan Z.","57208224450;57208228253;55565474400;57208223479;56567341000;7402644818;","A multiplex RT-PCR assay for rapid and simultaneous detection of four RNA viruses in swine",2019,"Journal of Virological Methods","269",,,"38","42",,2,"10.1016/j.jviromet.2019.04.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064163146&doi=10.1016%2fj.jviromet.2019.04.001&partnerID=40&md5=4ddb6a4f470883bdacad1ac8adce74af","State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China","Zhao, Y., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Liu, F., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Li, Q., Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Wu, M., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Lei, L., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Pan, Z., State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China","A multiplex reverse transcription polymerase chain rection (mRT-PCR) was developed for simultaneous detection of four RNA viruses in swine. The conserved target sequences directed to classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis coronavirus (TGEV) were selected based on alignments of genomic sequences and then specific primers were designed. The mRT-PCR assay was developed and evaluated for its specificity and sensitivity. The expected product from the single viral template was amplified by mRT-PCR and no spurious PCR amplification occurred from the genomic RNA or DNA of other pathogens. For single virus or different combinations of two viruses the detection limit of mRT-PCR was consistent with a single RT-PCR wtith 1 × 103 copies. For different combinations of the three viruses or four viruses, sensitivity of PEDV detection partially decreased. All of positive clinical specimens by the mRT-PCR were identically confirmed using Taqman RT-qPCR. Therefore, the mRT-PCR is a useful tool for epidemiological studies and laboratory diagnosis of single virus and/or mixed infections in swine. © 2019 Elsevier B.V.","Multiplex RT-PCR; Simultaneous detection; Swine; Virus infection","genomic DNA; genomic RNA; animal tissue; Article; Classical swine fever virus; controlled study; gene sequence; intestine; kidney; lung; lymph node; multiplex polymerase chain reaction; multiplex reverse transcription polymerase chain reaction; nonhuman; pig; Porcine epidemic diarrhea virus; Porcine reproductive and respiratory syndrome virus; priority journal; reverse transcription polymerase chain reaction; RNA extraction; RNA virus; sensitivity and specificity; spleen; Transmissible gastroenteritis virus; virus detection","Aguero, M., Fernandez, J., Romero, L.J., Zamora, M.J., Sanchez, C., Belak, S., Arias, M., Sanchez-Vizcaino, J.M., A highly sensitive and specific gel-based multiplex RT-PCR assay for the simultaneous and differential diagnosis of African swine fever and Classical swine fever in clinical samples (2004) Vet. Res., 35, pp. 551-563; Cha, R.S., Thilly, W.G., Specificity, efficiency, and fidelity of PCR (1993) PCR Methods Appl., 3, pp. S18-29; Chen, R., Huang, W., Lin, Z., Zhou, Z., Yu, H., Zhu, D., Development of a novel real-time RT-PCR assay with LUX primer for the detection of swine transmissible gastroenteritis virus (2004) J. Virol. Methods, 122, pp. 57-61; Dieffenbach, C.W., Lowe, T.M., Dveksler, G.S., General concepts for PCR primer design (1993) PCR Methods Appl., 3, pp. S30-37; Ducatelle, R., Coussement, W., Debouck, P., Hoorens, J., Pathology of experimental CV777 coronavirus enteritis in piglets. II. Electron microscopic study (1982) Vet. Pathol., 19, pp. 57-66; Elnifro, E.M., Ashshi, A.M., Cooper, R.J., Klapper, P.E., Multiplex PCR: optimization and application in diagnostic virology (2000) Clin. Microbiol. Rev., 13, pp. 559-570; Haelterman, E.O., On the pathogenesis of transmissible gastroenteritis of swine (1972) J. Am. Vet. Med. Assoc., 160, pp. 534-540; Henegariu, O., Heerema, N.A., Dlouhy, S.R., Vance, G.H., Vogt, P.H., Multiplex PCR: critical parameters and step-by-step protocol (1997) Biotechniques, 23, pp. 504-511; Hofmann, M., Wyler, R., Propagation of the virus of porcine epidemic diarrhea in cell culture (1988) J. Clin. Microbiol., 26, pp. 2235-2239; Hu, L., Lin, X.Y., Yang, Z.X., Yao, X.P., Li, G.L., Peng, S.Z., Wang, Y., A multiplex PCR for simultaneous detection of classical swine fever virus, African swine fever virus, highly pathogenic porcine reproductive and respiratory syndrome virus, porcine reproductive and respiratory syndrome virus and pseudorabies in swines (2015) Pol. J. Vet. Sci., 18, pp. 715-723; Lim, S.I., Song, J.Y., Kim, J., Hyun, B.H., Kim, H.Y., Cho, I.S., Kim, B., An, D.J., Safety of classical swine fever virus vaccine strain LOM in pregnant sows and their offspring (2016) Vaccine, 34, pp. 2021-2026; Liu, S., Zhao, Y., Hu, Q., Lv, C., Zhang, C., Zhao, R., Hu, F., Cui, S., A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens (2011) J. Virol. Methods, 172, pp. 88-92; Lurchachaiwong, W., Payungporn, S., Srisatidnarakul, U., Mungkundar, C., Theamboonlers, A., Poovorawan, Y., Rapid detection and strain identification of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR (2008) Lett. Appl. Microbiol., 46, pp. 55-60; Reid, S.M., Forsyth, M.A., Hutchings, G.H., Ferris, N.P., Comparison of reverse transcription polymerase chain reaction, enzyme linked immunosorbent assay and virus isolation for the routine diagnosis of foot-and-mouth disease (1998) J. Virol. Methods, 70, pp. 213-217; Risatti, G.R., Callahan, J.D., Nelson, W.M., Borca, M.V., Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay (2003) J. Clin. Microbiol., 41, pp. 500-505; Settypalli, T.B., Lamien, C.E., Spergser, J., Lelenta, M., Wade, A., Gelaye, E., Loitsch, A., Diallo, A., One-Step Multiplex RT-qPCR Assay for the detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae (2016) PLoS One, 11; Terpstra, C., Wensvoort, G., Natural infections of pigs with bovine viral diarrhoea virus associated with signs resembling swine fever (1988) Res. Vet. Sci., 45, pp. 137-142; Thonur, L., Maley, M., Gilray, J., Crook, T., Laming, E., Turnbull, D., Nath, M., Willoughby, K., One-step multiplex real time RT-PCR for the detection of bovine respiratory syncytial virus, bovine herpesvirus 1 and bovine parainfluenza virus 3 (2012) BMC Vet. Res., 8, p. 37; Wang, L., Zhang, Y., Byrum, B., Development and evaluation of a duplex real-time RT-PCR for detection and differentiation of virulent and variant strains of porcine epidemic diarrhea viruses from the United States (2014) J. Virol. Methods, 207, pp. 154-157; Wu, L., Ding, L., Pei, Z., Huo, X., Wen, G., Pan, Z., A multiplex reverse transcription-PCR assay for the detection of influenza A virus and differentiation of the H1, H3, H5 and H9 subtypes (2013) J. Virol. Methods, 188, pp. 47-50; Young, B., Dewey, C., Poljak, Z., Rosendal, T., Carman, S., Clinical signs and their association with herd demographics and porcine reproductive and respiratory syndrome (PRRS) control strategies in PRRS PCR-positive swine herds in Ontario (2010) Can. J. Vet. Res., 74, pp. 170-177; Yue, F., Cui, S., Zhang, C., Yoon, K.J., A multiplex PCR for rapid and simultaneous detection of porcine circovirus type 2, porcine parvovirus, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus in clinical specimens (2009) Virus Genes, 38, pp. 392-397","Pan, Z.; State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan UniversityChina; email: zspan@whu.edu.cn",,"Elsevier B.V.",01660934,,JVMED,"30951787","English","J. Virol. Methods",Article,"Final",,Scopus,2-s2.0-85064163146 "Gaffar B.O., El Tantawi M., Al-Ansari A.A., Al-AnsariAlAgl A.S., Farooqi F.A., Almas K.M.","56201019900;24449343600;23110235000;57210991867;56449028500;7003303780;","Knowledge and practices of dentists regarding MERS-CoV: A cross-sectional survey in Saudi Arabia",2019,"Saudi Medical Journal","40","7",,"714","720",,,"10.15537/smj.2019.7.24304","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070457367&doi=10.15537%2fsmj.2019.7.24304&partnerID=40&md5=7f04a2de9c6159f9b604bd7e2db06a21","Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Deanship of Academic Affairs, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia","Gaffar, B.O., Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; El Tantawi, M., Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Al-Ansari, A.A., Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Al-AnsariAlAgl, A.S., Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Farooqi, F.A., Deanship of Academic Affairs, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Almas, K.M., Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia","Objectives: To assess virus knowledge among dentists in Saudi Arabia and to identify factors associated with recommended management practices of patients. Method: A structured questionnaire was distributed to dentists in major Saudi cities between September 2016 and December 2017. The questionnaire investigated participants’ knowledge about Middle East Respiratory Syndrome Coronavirus (MERS-CoV) transmission, consequences, patient identification and history taking practices. Data was collected using paper-based questionnaires or an online link sent to dentists registered with Saudi Dental Society nationwide. The analysis was carried using Statistical Package for Social Sciences for Windows, version 22.0 (IBM Corp., Armonk, NY, USA) logistic regression, odds ratio and confidence intervals to identify the relationship between variables. Results: A total of 423 dentists responded the paperbased questionnaire. Overall the knowledge was good with gaps in history taking practices. Best management practices of MERS-CoV patients were significantly higher among dentists with better knowledge of virus transmission (odd ration [OR]=1.16, p<0.0001), patients’ identification (OR=1.40, p<0.0001) and those knowing that corona infection can be fatal (OR= 2.44, p=0.02). Conclusion: Best management practices depends on correct patient identification. Educational campaigns should target dentists, given the unique nature of dental practice. © 2019, Saudi Arabian Armed Forces Hospital. All rights reserved.",,"adult; anamnesis; article; city; controlled study; dental practice; dentist; human; Middle East respiratory syndrome coronavirus; nonhuman; patient identification; Saudi Arabia; sociology; structured questionnaire; virus transmission; clinical competence; Coronavirus infection; cross-sectional study; female; infection control; male; Middle East respiratory syndrome coronavirus; patient isolation; questionnaire; Saudi Arabia; Adult; Clinical Competence; Coronavirus Infections; Cross-Sectional Studies; Dentists; Female; Humans; Infection Control, Dental; Male; Medical History Taking; Middle East Respiratory Syndrome Coronavirus; Patient Isolation; Saudi Arabia; Surveys and Questionnaires","van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3, pp. e00412-e00473; Aleanizy, F.S., Mohmed, N., Alqahtani, F.Y., Mohamed, R.A., Outbreak of Middle East respiratory syndrome coronavirus in Saudi Arabia: A retrospective study (2017) BMC Infect Dis, 17, p. 23; Alsolamy, S., Middle East respiratory syndrome: Knowledge to date (2015) Crit Care Med, 43, pp. 1283-1290; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, p. 87; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah-a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Liu, S., Chan, T.C., Chu, Y.T., Wu, J.T., Geng, X., Zhao, N., Comparative epidemiology of human infections with Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses among healthcare personnel (2016) PLoS One, 11; Kasem, S., Qasim, I., Al-Doweriej, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Saleh, M., The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons (2018) J Infect Public Health, 11, pp. 884-888; (2015) Middle East respiratory syndrome coronavirus (MERS-CoV): Summary of current situation, , http://apps.who.int/iris/bitstream/handle/10665/179184/WHO_MERS_RA_15.1_eng.pdf?sequence=2, literature update and risk assessment-as of 5 February, Updated 2015, February 2019, Available from; Monaghan, N.P., Emerging infections-implications for dental care (2016) Br Dent J, 221, pp. 13-15; Saeed, A.A., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Surveillance and Testing for Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, April 20150-February 2016 (2017) Emerg Infect Dis, 23, pp. 682-685; Baseer, M.A., Ansari, S.H., AlShamrani, S.S., Alakras, A.R., Mahrous, R., Alenazi, A.M., Awareness of droplet and airborne isolation precautions among dental health professionals during the outbreak of corona virus infection in Riyadh city, Saudi Arabia (2016) J Clin Exp Dent, 8, pp. 379-387; Kharma, M.Y., Alalwani, M.S., Amer, M.F., Tarakji, B., Aws, G., Assessment of the awareness level of dental students toward middle east respiratory syndrome-coronavirus (2015) J Int Soc Prev Community Dent, 5, pp. 163-169; Alqahtani, A.S., Knowledge and attitude toward Middle East respiratory syndrome coronavirus among heath colleges’ students in Najran, Saudi Arabia (2017) Int J Community Med Public Health, 4, pp. 2641-2647; Nour, M.O., Babilghith, A.O., Natto, H.A., Al-Amin, F.O., Alawneh, S.M., Knowledge, attitude and practices of healthcare providers towards MERS-CoV infection at Makkah hospitals, KSA (2015) Int Res J Med Med Sci, 3, p. 103; Abolfotouh, M.A., AlQarni, A.A., Al-Ghamdi, S.M., Salam, M., Al-Assiri, M.H., Balkhy, H.H., An assessment of the level of concern among hospital-based health-care workers regarding MERS outbreaks in Saudi Arabia (2017) BMC Infect Dis, 17, p. 4; Almutairi, M.A., Awareness About Middle East Respiratory Syndrome-Corona Virus (Mers-Cov) Among Dental Students in Riyadh, Saudi Arabia (2016) PODJ, 36, pp. 426-429; Zemouri, C., de Soet, H., Crielaard, W., Laheij, A., A scoping review on bio-aerosols in healthcare and the dental environment (2017) PloS one, 12; Zingg, W., Holmes, A., Dettenkofer, M., Goetting, T., Secci, F., Clack, L., Hospital organisation, management, and structure for prevention of health-care-associated infection: A systematic review and expert consensus (2015) Lancet Infect Dis, 15, pp. 212-224; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., de Wit, E., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5, pp. e00884-e00914; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerg Microbes Infect, 6; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8, pp. e00373-e00417; Woo, P.C., Lau, S.K., Chen, Y., Wong, E.Y., Chan, K.H., Chen, H., Rapid detection of MERS coronavirus-like viruses in bats: Potential for tracking MERS coronavirus transmission and animal origin (2018) Emerg Microbes Infect, 7, p. 18; Mirza, M.B., Bhagat, T.V., Inderjit, M.G., Aljeaidi, Z.A., Middle East respiratory syndrome and precautions to be taken by dental surgeons (2016) J Health Spec, 4, pp. 105-109; Offner, D., Munch, L.A., Musset, A.M., Dental Students and Patients with a Communicable Infectious Disease: Any Alteration in the Relationship? (2017) Divers Equal Health Care, 14, pp. 249-253","Gaffar, B.O.; Dental Sciences Department, College of Dentistry, Imam Abdulrahman bin Faisal UniversitySaudi Arabia; email: bgosman@iau.edu.sa",,"Saudi Arabian Armed Forces Hospital",03795284,,SAMJD,"31287133","English","Saudi Med. J.",Article,"Final",Open Access,Scopus,2-s2.0-85070457367 "Ngeleka M., Godson D., Vanier G., Desmarais G., Wojnarowicz C., Sayi S., Huang Y., Movasseghi R., Fairbrother J.M.","6701670009;6701614362;6507700709;57204497696;10138772100;57194480959;54389078200;57209466160;7006363554;","Frequency of Escherichia coli virotypes in calf diarrhea and intestinal morphologic changes associated with these virotypes or other diarrheagenic pathogens",2019,"Journal of Veterinary Diagnostic Investigation","31","4",,"611","615",,,"10.1177/1040638719857783","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067867253&doi=10.1177%2f1040638719857783&partnerID=40&md5=d5765c894db403e3c58a565bad1104b0","Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada","Ngeleka, M., Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; Godson, D., Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; Vanier, G., GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada; Desmarais, G., GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada; Wojnarowicz, C., Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; Sayi, S., Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; Huang, Y., Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; Movasseghi, R., Prairie Diagnostic Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada; Fairbrother, J.M., GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, Canada","Calf diarrhea is a common cause of pre-weaning morbidity and mortality in cattle operations. We evaluated the role of Escherichia coli by assessing the frequency of genes encoding virulence factors (virotypes) in E. coli from feces or intestinal contents, and the association of these virotypes or other diarrheagenic pathogens with intestinal morphologic changes in calves with or without diarrhea. E. coli was isolated from 408 feces and 105 intestines of calves with diarrhea and compared to those isolated from 635 feces and 100 intestines of calves without diarrhea, from 2002 to 2016. Virotype EAST1:F17, in combination with minor virotypes, was the most commonly detected type, but without differences in frequency between the 2 groups of calves. No significant intestinal morphologic changes were observed with the different E. coli virotypes in either group of calves, except for bacterial attachment to enterocytes for virotype STa:F5, which was detected only in calves with diarrhea. These observations suggest that E. coli, excluding virotype STa:F5, is not a significant diarrhea-causing agent in calves. However, the intestinal lesions observed in ~82% of calves with diarrhea were attributed to other diarrheagenic pathogens that include bovine coronavirus, Clostridium perfringens, Cryptosporidium spp., Eimeria spp., rotavirus, and Salmonella spp. © 2019 The Author(s).","bovine; Escherichia coli; virotypes","virulence factor; animal; bovine; cattle disease; diarrhea; Escherichia coli; Escherichia coli infection; feces; intestine; isolation and purification; microbiology; pathogenicity; veterinary medicine; virulence; Animals; Cattle; Cattle Diseases; Diarrhea; Escherichia coli; Escherichia coli Infections; Feces; Intestines; Virulence; Virulence Factors","Barrow, P.A., Salmonella (2010) Prescott, Songer, and Thoen’s Pathogenesis of Bacterial Infections in Animals, pp. 231-265. , Gyles C.L., (ed), 4th ed., Ames, IA, Wiley-Blackwell, In:, ed; Bertin, Y., Association of genes encoding P fimbriae, CS31A antigen and EAST-1 toxin among CNF1-producing Escherichia coli strains from cattle with septicemia and diarrhea (1998) FEMS Microbiol Lett, 162, pp. 235-239; Bessalah, S., Antimicrobial resistance and molecular characterization of virulence genes, phylogenetic groups of Escherichia coli isolated from diarrheic and healthy camel-calves in Tunisia (2016) Comp Immunol Microbiol Infect Dis, 49, pp. 1-7; Bowman, D.D., Diagnostic parasitology (1999) Georgis’s Parasitology for Veterinarians, pp. 285-396. , Bowman D.D., (ed), 7th ed., Philadelphia, PA, Saunders, In:, ed; Butler, D.G., Clarke, R.C., Diarrhoea and dysentery in calves (1994) Escherichia coliin Domestic Animals and Humans, 1, pp. 91-116. , Gyles C.L., (ed), 1st ed, Wallingford, UK, CAB International, In:, ed; Carter, G.R., Wise, D.J., Enterobacteriaceae I (2003) Essentials of Veterinary Bacteriology and Mycology, pp. 129-135. , 6th ed., Ames, IA, Wiley-Blackwell, In; Cho, Y.I., Yoon, K.J., An overview of calf diarrhea: infectious etiology, diagnosis, and intervention (2014) J Vet Sci, 15, pp. 1-17; Daugschies, A., Najdrowski, M., Eimeriosis in cattle: current understanding (2005) J Vet Med B Infect Dis Vet Public Health, 52, pp. 417-427; Gyles, C.L., Fairbrother, J.M., Escherichia coli (2010) Prescott, Songer, and Thoen’s Pathogenesis of Bacterial Infections in Animals, pp. 267-298. , Gyles C.L., (ed), 4th ed., Ames, IA, Wiley-Blackwell, In:, ed; Harel, J., Detection of genes for fimbrial antigens and enterotoxins associated with Escherichia coli serogroups isolated from pigs with diarrhea (1991) J Clin Microbiol, 29, pp. 745-752; Luna, L.G., Methods for staining cellular entities, bacteria, fungi and spirochetes (1992) Histopathologic Methods and Color Atlas of Special Stains and Tissue Artifacts, pp. 67-102. , Downers Grove, IL, American Histolabs Johnson Printers, In:, :, :, –, 180–229; Maluta, R.P., Potentially pathogenic Escherichia coli in healthy, pasture-raised sheep on farms and at the abattoir in Brazil (2013) Vet Microbiol, 169, pp. 89-95; Nathan, E., Changes in the rates of field isolation and antimicrobial susceptibility of bacterial pathogens collected from fall placed feedlot steers between arrival at the feedlot and 90–120 days on feed (2017) Bovine Pract, 51, pp. 163-171; Ngeleka, M., Isolation and association of Escherichia coli AIDA-I/STb, rather than EAST1 pathotype, with diarrhea in piglets and antibiotic sensitivity of isolates (2003) J Vet Diagn Invest, 15, pp. 242-252; Seyedehameneh, J., Dynamics of extended-spectrum cephalosporin resistance in pathogenic Escherichia coli isolated from diseased pigs in Quebec, Canada (2016) Int J Antimicrob Agents, 48, pp. 194-202; Songer, J.G., Enteric clostridia (2010) Prescott, Songer, and Thoen’s Pathogenesis of Bacterial Infections in Animals, pp. 211-229. , Gyles C.L., (ed), 4th ed., Ames, IA, Wiley-Blackwell, In:, ed; Steele, A.D., Rotavirus infections (2014) Tustin’s Infectious Diseases of Livestock, pp. 1256-1264. , Coetzer J.A.W., (ed), 2nd ed., Cape Town, Southern Africa, Oxford University Press, In:, ed; Umpierrez, A., Prevalence of Escherichia coli adhesion-related genes in neonatal calf diarrhea in Uruguay (2016) J Infect Dev Ctries, 10, pp. 472-477; Uzal, F.A., Alimentary system: infectious and parasitic diseases of the alimentary tract (2016) Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals, Vol 2, pp. 117-244. , Maxie M.G., (ed), 6th ed., St. Louis, MO, Elsevier, In:, ed; Wu, G., Genes associated with Escherichia coli isolates from calves with diarrhoea and/or septicaemia (2010) Vet Rec, 166, pp. 691-692","Ngeleka, M.; Prairie Diagnostic Services, Western College of Veterinary Medicine, University of SaskatchewanCanada; email: musangu.ngeleka@pds.usask.ca",,"SAGE Publications Inc.",10406387,,,"31184286","English","J. Vet. Diagn. Invest.",Article,"Final",Open Access,Scopus,2-s2.0-85067867253 "Kim J., Yang Y.L., Jang Y.-S.","7601388100;57203310838;7201869082;","Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages",2019,"Immunobiology","224","4",,"502","510",,1,"10.1016/j.imbio.2019.05.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065840652&doi=10.1016%2fj.imbio.2019.05.004&partnerID=40&md5=f8a4da9cc01c0c2afad2e100a4d44f55","Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University54896, South Korea; Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54856, South Korea","Kim, J., Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University54896, South Korea; Yang, Y.L., Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54856, South Korea; Jang, Y.-S., Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University54896, South Korea, Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54856, South Korea","Beta-defensins contribute to host innate defense against various pathogens, including viruses, although the details of their roles in innate immune cells are unclear. We previously reported that human β-defensin 2 (HBD 2) activates primary innate immunity against viral infection and suggested that it plays a role in the induction of the adaptive immune response. We analyzed the mechanisms by which HBD 2 primes innate antiviral immunity and polarized activation of macrophage-like THP-1 cells using the receptor-binding domain (RBD) of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein (S RBD) as a model antigen. The expression of nucleotide-binding oligomerization domain containing 2 (Nod2), type I interferons, (IFNs), and proinflammatory mediators was enhanced in S RBD-HBD 2-treated THP-1 cells. S RBD-HBD 2 treatment also enhanced phosphorylation and activation of receptor-interacting serine/threonine-protein kinase 2 and IFN regulatory factor 3 compared to S RBD alone. Finally, HBD 2-conjugated S RBD interacted with C-C chemokine receptor 2 (CCR2), and Nod2 was involved in HBD 2-mediated CCR2 signaling, which was associated with the activation and M1 polarization of THP-1 cells. Therefore, HBD 2 promotes CCR2-mediated Nod2 signaling, which induces production of type I IFNs and an inflammatory response, and enhances primary innate immunity leading to an effective adaptive immune response to HBD 2-conjugated antigen. © 2019 Elsevier GmbH","Adaptive immunity; Defensin; Innate immunity; Signaling; Virus","autacoid; beta defensin 2; caspase recruitment domain protein 15; chemokine receptor CCR2; interferon; interferon regulatory factor 3; receptor interacting protein serine threonine kinase 2; virus spike protein; beta defensin; caspase recruitment domain protein 15; CCR2 protein, human; chemokine receptor CCR2; cytokine; DEFB4A protein, human; NOD2 protein, human; Article; cell polarity; controlled study; human; human cell; inflammation; innate immunity; interferon production; macrophage activation; Middle East respiratory syndrome coronavirus; oligomerization; priority journal; protein analysis; protein binding; protein domain; protein expression; protein function; protein phosphorylation; protein protein interaction; signal transduction; THP-1 cell line; virus cell interaction; virus immunity; animal; Chlorocebus aethiops; genetics; host pathogen interaction; immunology; macrophage; macrophage activation; metabolism; Vero cell line; Animals; beta-Defensins; Chlorocebus aethiops; Cytokines; Host-Pathogen Interactions; Humans; Immunity, Innate; Macrophage Activation; Macrophages; Nod2 Signaling Adaptor Protein; Receptors, CCR2; Signal Transduction; THP-1 Cells; Vero Cells","Akira, S., Uematsu, S., Takeuchi, O., Pathogen recognition and innate immunity (2006) Cell, 124, pp. 783-801; Boyton, R.J., Openshaw, P.J., Pulmonary defences to acute respiratory infection (2002) Br. Med. Bull., 61, pp. 1-12; Daigneault, M., Preston, J.A., Marriott, H.M., Whyte, M.K., Dockrell, D.H., The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages (2010) PLoS One, 5, p. e8668; Ferran, M.C., Skuse, G.R., Evasion of host innate immunity by emerging viruses: antagonizing host RIG-I pathways (2017) J. Emerg. Dis. Virol., 3 (3); Fujimoto, I., Pan, J., Takizawa, T., Nakanishi, Y., Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages (2000) J. Virol., 74, pp. 3399-3403; Funderburg, N., Lederman, M.M., Feng, Z., Drage, M.G., Jadlowsky, J., Harding, C.V., Weinberg, A., Sieg, S.F., Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2 (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 18631-18635; Gallenga, C.E., Pandolfi, F., Caraffa, A., Kritas, S.K., Ronconi, G., Toniato, E., Martinotti, S., Conti, P., Interleukin-1 family cytokines and mast cells: activation and inhibition (2019) J. Biol. Regul. Homeost. Agents, 33, pp. 1-6; Ginhoux, F., Schultze, J.L., Murray, P.J., Ochando, J., Biswas, S.K., New insights into the multidimensional concept of macrophage ontogeny, activation and function (2016) Nat. Immunol., 17, pp. 34-40; González‐Navajas, J.M., Lee, J., David, M., Raz, E., Immunomodulatory functions of type I interferons (2012) Nat. Rev. Immunol., 12, pp. 125-135; Gordon, S., Martinez, F.O., Alternative activation of macrophages: mechanism and functions (2010) Immunity, 32, pp. 593-604; Haller, O., Kochs, G., Weber, F., The interferon response circuit: induction and suppression by pathogenic viruses (2006) Virology, 344, pp. 119-130; Hoesel, B., Schmid, J.A., The complexity of NF-κB signaling in inflammation and cancer (2013) Mol. Cancer, 12, p. 86; Iida, S., Kohro, T., Kodama, T., Nagata, S., Fukunaga, R., Identification of CCR2, flotillin, and gp49B genes as new G-CSF targets during neutrophilic differentiation (2005) J. Leukoc. Biol., 78, pp. 481-490; Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., Akira, S., Host innate immune receptors and beyond: making sense of microbial infections (2008) Cell Host Microbe, 3, pp. 352-363; Kato, H., Takahasi, K., Fujita, T., RIG‐I‐like receptors: cytoplasmic sensors for non‐self RNA (2011) Immunol. Rev., 243, pp. 91-98; Kim, J., Yang, Y.L., Jang, S.H., Jang, Y.S., Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity (2018) Virol. J., 15, p. 124; Kritas, S.K., Gallenga, C.E., D Ovidio, C., Ronconi, G., Caraffa, A., Toniato, E., Lauritano, D., Conti, P., Impact of mold on mast cell-cytokine immune response (2018) J. Biol. Regul. Homeost. Agents, 32, pp. 763-768; Lafferty, M.K., Sun, L., Christensen-Quick, A., Lu, W., Garzino-Demo, A., Human beta defensin 2 selectively inhibits HIV-1 in highly permissive CCR6+CD4+ T cells (2017) Viruses, 9, p. 111; Li, K., Zhong, B., Regulation of cellular antiviral signaling by modifications of ubiquitin and ubiquitin-like molecules (2018) Immune Netw., 18, p. e4; Lugering, A., Floer, M., Westphal, S., Maaser, C., Spahn, T.W., Schmidt, M.A., Domschke, W., Kucharzik, T., Absence of CCR6 inhibits CD4+ regulatory T-cell development and M-cell formation inside peyer's patches (2005) Am. J. Pathol., 166, pp. 1647-1654; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.K., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments–the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Manicassamy, B., Manicassamy, S., Belicha-Villanueva, A., Pisanelli, G., Pulendran, B., Garcia-Sastre, A., Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 11531-11536; Marvin, S.A., Russier, M., Huerta, C.T., Russell, C.J., Schultz-Cherry, S., Influenza virus overcomes cellular blocks to productively replicate, impacting macrophage function (2017) J. Virol., 91, pp. e01417-16; McDonald, K.G., McDonough, J.S., Wang, C., Kucharzik, T., Williams, I.R., Newberry, R.D., CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles (2007) Am. J. Pathol., 170, pp. 1229-1240; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Müller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495; Osterholzer, J.J., Ames, T., Polak, T., Sonstein, J., Moore, B.B., Chensue, S.W., Toews, G.B., Curtis, J.L., CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen (2005) J. Immunol., 175, pp. 874-883; Perlman, S., Dandekar, A.A., Immunopathogenesis of coronavirus infections: implications for SARS (2005) Nat. Rev. Immunol., 5, pp. 917-927; Röhrl, J., Yang, D., Oppenheim, J.J., Hehlgans, T., Specific binding and chemotactic activity of mBD4 and its functional orthologue hBD2 to CCR6-expressing cells (2010) J. Biol. Chem., 285, pp. 7028-7034; Röhrl, J., Yang, D., Oppenheim, J.J., Hehlgans, T., Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2 (2010) J. Immunol., 184, pp. 6688-6694; Sabbah, A., Chang, T.H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P.H., Xiang, Y., Bose, S., Activation of innate immune antiviral responses by Nod2 (2009) Nat. Immunol., 10, pp. 1073-1080; Saijo, K., Glass, C.K., Microglial cell origin and phenotypes in health and disease (2011) Nat. Rev. Immunol., 11, pp. 775-787; Seo, B.S., Lee, S.H., Lee, J.E., Yoo, Y.C., Lee, J., Park, S.R., Dectin-1 stimulation selectively reinforces LPS-driven IgG1 production by mouse B cells (2013) Immune Netw., 13, pp. 205-212; Seth, R.B., Sun, L., Ea, C.K., Chen, Z.J., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF‐κB and IRF3 (2005) Cell, 122, pp. 669-682; Shim, Y.R., Lee, H.K., Caspase-1 independent viral clearance and adaptive immunity against mucosal respiratory syncytial virus infection (2015) Immune Netw., 15, pp. 73-82; Shokri, S., Mahmoudvand, S., Taherkhani, R., Farshadpour, F., Modulation of the immune response by Middle East respiratory syndrome coronavirus (2019) J. Cell. Physiol., 234, pp. 2143-2151; Smith, J.J., Travis, S.M., Greenberg, E.P., Welsh, M.J., Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid (1996) Cell, 85, pp. 229-236; Stolzenberg, E.D., Anderson, G.M., Ackermann, M.R., Whitlock, R.H., Zasloff, M., Epithelial antibiotic induced in states of disease (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 8686-8690; Tsai, W.H., Huang, D.Y., Yu YH, C.C.Y., Lin, W.W., Dual roles of NOD2 in TLR4-mediated signal transduction and -induced inflammatory gene expression in macrophages (2011) Cell. Microbiol., 13, pp. 717-730; Varvara, G., Tettamanti, L., Gallenga, C.E., Caraffa, A., D'Ovidio, C., Mastrangelo, F., Ronconi, G., Conti, P., Stimulated mast cells release inflammatory cytokines: potential suppression and therapeutical aspects (2018) J. Biol. Regul. Homeost. Agents, 32, pp. 1355-1360; Wiese, K.M., Koch, C.M., Coates, B., Ridge, K.M., Protection from influenza A virus infection by modulating nucleotide-binding oligomerization domain containing 2 (NOD2) signaling (2017) FASEB J., 31. , 937.7; Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V.K., Chan, C.C., Zheng, B.J., A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses (2016) Sci. Rep., 6, p. 22008; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Becker, S., Weber, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 5300-5304","Jang, Y.-S.; Department of Molecular Biology, Chonbuk National UniversitySouth Korea; email: yongsuk@jbnu.ac.kr",,"Elsevier GmbH",01712985,,ZIMMD,"31126693","English","Immunobiology",Article,"Final",Open Access,Scopus,2-s2.0-85065840652 "Candela M.G., Pardavila X., Ortega N., Lamosa A., Mangas J.G., Martínez-Carrasco C.","22953062700;28167589700;7004458467;57208546741;7003264331;56087511800;","Canine distemper virus may affect European wild cat populations in Central Spain",2019,"Mammalian Biology","97",,,"9","12",,,"10.1016/j.mambio.2019.04.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065057710&doi=10.1016%2fj.mambio.2019.04.006&partnerID=40&md5=f4ee523e87607c78688d442fb4162cd2","Animal Health Department, Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain; Sorex Ecoloxía e Medio Ambiente S. L, Spain; Ecology Area, Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Madrid, Spain","Candela, M.G., Animal Health Department, Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain; Pardavila, X., Sorex Ecoloxía e Medio Ambiente S. L, Spain; Ortega, N., Animal Health Department, Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain; Lamosa, A., Sorex Ecoloxía e Medio Ambiente S. L, Spain; Mangas, J.G., Ecology Area, Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Madrid, Spain; Martínez-Carrasco, C., Animal Health Department, Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain","The main objective of this brief communication is to inform about the exposure to certain pathogens of interest for mesocarnivores in wildcats (Felis silvestris silvestris) that inhabit a human-domestic-wild ecotone located in a Natural Park (Serranía de Cuenca, Central Spain). Blood and mucosal swabs (nasal, conjunctival and rectal) samples were collected from nine alive animals to detect canine distemper virus (CDV), parvovirus (CPV/FPV), feline leukaemia virus (FeLV), feline coronavirus (FCoV), feline immunodeficiency virus (FIV), Leptospira interrogans, Chlamydia felis, Ehrlichia canis, Toxoplasma gondii, and Neospora caninum. ELISA, immunochromatograpy, microscopy agglutination test and PCR assays were used. The results show the first worldwide detection of exposure of wildcats to L. interrogans (3 positive/9 analysed) and the first detection of exposure to CVD (7/9), of carriers of C. felis (2/9) and of fecal spreading of CPV-FPV (2/9) in wildcats in Spain. Exposure to T. gondii and CPV-FPV was detected in 5 of the 9 wildcats analysed, and to FelV in 4 of 9. No FIV, FCoV, Ehrlichia canis and Neospora caninum were detected. The results reveal the circulation of pathogens among the wildcat population studied, but more vigilance is needed for an accurate assessment of the impact of these pathogens on the health status of this population. © 2019 Deutsche Gesellschaft für Säugetierkunde","Diseases; Leptospira; Mesocarnivores; Parvovirus; Wildlife","bioassay; carnivore; detection method; ecotone; felid; immune response; viral disease; virus; wild population; Castilla-La Mancha; Serrania de Cuenca; Spain; Animalia; Canine distemper virus; Chlamydia; Ehrlichia canis; Felidae; Feline coronavirus; Feline immunodeficiency virus; Felis; Felis silvestris; Leptospira; Leptospira interrogans; Neospora caninum; Parvovirus; Toxoplasma gondii","Afonso, E., Thulliez, P., Gilot-Fromont, E., Local meteorological conditions, dynamics of seroconversion to Toxoplasma gondii in cats (Felis catus) and oocyst burden in a rural environment (2010) Epidemiol. Infect., 138 (8), pp. 1105-1113. , 2010; Andre-Fontaine, G., Canine leptospirosis. Do we have a problem? (2006) Vet. Microbiol., 117, pp. 19-24; Artois, M., Remond, M., Viral diseases as a threat to free-living wild cats (Felis silvestris) in continental Europe (1994) Vet. Rec., 134, pp. 651-652; Biek, R., Ruth, T.K., Murphy, K.M., Anderson, C.R., Poss, M., Examining effects of persistent retroviral infection on fitness and pathogen susceptibility in a natural feline host (2006) Can. J. Cool-Revue Canadienne De Zoologie, 84 (3), pp. 365-373; Bradley, C., Altizer, S., Urbanization and the ecology of wildlife diseases (2007) Trends Ecol. Evol., 22, pp. 95-102; Candela, M.G., Caballol, A., Atance, P.M., Wide exposure to Coxiella burnetii in ruminant and feline species living in a natural environment: zoonoses in a human–livestock–wildlife interface (2017) Epid. Infect., 145 (3), pp. 478-481; Daniels, M.J., Golder, M.C., Jarrett, O., MacDonald, W., Feline viruses in wildcats from Scotland (1999) J. Wildl. Dis., 35 (1), pp. 121-124; Despommier, D., Ellis, B.R., Wilcox, B.A., The role of ecotones in emerging infectious diseases (2006) EcoHealth, 3 (4), pp. 281-289; Duarte, A., Fernandes, M., Santos, N., Tavares, L., Virological survey in free-ranging wildcats (Felis silvestris) and feral domestic cats in Portugal (2012) Vet. Microbiol., 158 (3), pp. 400-404; Duarte, M.D., Henriques, A.M., Barros, S.C., Fagulha, T., Mendonça, P., Carvalho, P., Barros, T., Snapshot of viral infections in wild carnivores reveals ubiquity of parvovirus and susceptibility of Egyptian mongoose to feline panleukopenia virus (2013) PLoS One, 8 (3); Dubey, J.P., Beattie, C.P., Toxoplasmosis of Animals and Man (1988), CRC Press Boca Raton; Fromont, E., Sager, A., Leger, F., Bourguemestre, F., Jouquelet, E., Stahl, P., Artois, M., Prevalence and pathogenicity of retroviruses in wildcats in France (2000) Vet. Rec., 146 (11), pp. 317-319; García, A., Martínez, R., García, L., Benítez-Medina, J.M., Risco, D., García, W.L., Rey, J., Kodjo, A., Prevalence of Shiga toxin-producing Escherichia coli and pathogenic Leptospira spp. in rodents from outdoor farms in Western Spain (2013) Turk. J. Vet. Anim. Sci., 37 (6), pp. 750-753; Garcıa-Bocanegra, I., Dubey, J.P., Martınez, F., Vargas, A., Cabezon, O., Zorrilla, I., Arenas, A., Almerıa, S., Factors affecting seroprevalence of Toxoplasma gondii in the endangered Iberian lynx (Lynx pardinus) (2010) Vet. Parasitol., 2010 (167), pp. 36-42; Gotteland, C., Gilot-Fromont, E., Aubert, D., Poulle, M.L., Dupui, E., Dardé, M.L., Forin-Wiart, M.A., Villena, I., Spatial distribution of Toxoplasma gondii oocysts in soil in a rural area: influence of cats and land use (2014) Vet. Parasitol., 205, pp. 629-637; Hassell, J.M., Begon, M., Ward, M.J., Fèvre, E.M., Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface (2017) Trends Ecol Evol., 32 (1), pp. 55-67; Hollings, T., Jones, M., Mooney, N., McCallum, H., Wildlife disease ecology in changing landscapes: mesopredator release and toxoplasmosis (2013) Int. J. Parasitol. Parasites Wildl., 2, pp. 110-118; Hosie, M.J., Robertson, C., Jarrett, O., Prevalence of feline leukemia virus and antibodies to feline immunodeficiency virus in cats in the United Kingdom (1989) Vet Rec., 128, pp. 293-297; León, C.I., García-Bocanegra, I., McCain, E., Rodríguez, E., Zorrilla, I., Gómez, A.M., Ruiz, C., Gómez-Guillamón, F., Prevalence of selected pathogens in small carnivores in reintroduction areas of the Iberian lynx (Lynx pardinus) (2017) Vet. Rec., 180 (10), p. 252; Leutenegger, C.M., Hofmann-Lehmann, R., Riols, C., Liberek, M., Worel, G., Lups, P., Fehr, D., Lutz, H., Viral infections in free-living populations of the European wildcat (1999) J. Wildl. Dis., 35, pp. 678-686; López-Martín, J.M., García, F.J., Such, A., Virgós, E., Lozano, J., Duarte, J., España, A., Felis silvestris (Schreber, 1777). Ficha Libro Rojo (2007) Atlas y Libro Rojo de los Mamíferos Terrestres de España, pp. 336-338. , L.J. Palomo J. y Gisbert J.C. Blanco Dirección General para la Biodiversidad -SECEM-SECEMU Madrid; Martín-Atance, P., Seroepidemiología de infecciones asociadas al síndrome de mortalidad perinatal congénita e interacciones entre rumiantes silvestres y domésticos en la Serranía Alta de Cuenca. PhD Thesis (2009), p. 556 pp. , Animal Health Department, University of Murcia Spain; McFarlane, R., Sleigh, A., McMichael, T., Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region (2012) EcoHealth, 9, pp. 24-35; Meli, M.L., Cattori, V., Martínez, F., López, G., Vargas, A., Simón, M.A., Zorrilla, I., Lutz, H., Feline leukemia virus and other pathogens as important threats to the survival of the critically endangered Iberian lynx (Lynx pardinus) (2009) PLoS One, 4 (3). , e4744; Millán, J., Rodríguez, A., A serological survey of common feline pathogens in free-living European wildcats (Felissilvestris) in central Spain (2009) Eur. J. Wildl. Res., 55 (3), pp. 285-291; Millán, J., Candela, M.G., López-Bao, J.V., Pereira, M., Jiménez, M.A., León-Vizcaíno, L., Leptospirosis in wild and domestic carnivores in natural areas in Andalusia, Spain (2009) Vector Borne Zoonotic Dis., 9, pp. 549-554; Millán, J., Cabezón, O., Pabón, M., Dubey, J.P., Almería, S., Seroprevalence of Toxoplasma gondii and Neospora caninum in feral cats (Felis silvestris catus) in Majorca, Balearic Islands, Spain (2009) Vet. Parasitol., 165, pp. 323-326; Millán, J., Oleaga, Á., López-Bao, J.V., Candela, M.G., Rodríguez, A., León-Vizcaíno, L., Using a top predator as a sentinel for environmental contamination with pathogenic bacteria: the Iberian wolf and leptospires (2014) Mem. Inst. Oswaldo Cruz., 109 (8), pp. 1041-1044; Monterroso, P., Brito, J.C., Ferreras, P., Alves, P.C., Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation (2009) J. Zool., 279, pp. 27-35; Nietfeld, J.C., Chlamydial infections in small ruminants (2001) Vet. Clin. North Am. Food Anim. Pract., 17, pp. 301-314; Nowell, K., Jdeidi, T., Masseti, M., Nader, I., de Smet, K., Cuzin, F., Felissilvestris. The IUCN Red List of Threatened Species 2010: e. T60354712A12918931. Downloaded on 18 March 2019 (2010); Sobrino, R., Cabezon, O., Millan, J., Pabon, J., Arnal, M.C., Luco, D.F., Gortazar, C., Almeria, C., Seroprevalence of Toxoplasma gondii antibodies in wild carnivores from Spain (2007) Vet. Parasitol., 148, pp. 187-192; Steinel, A., Parrish, C.R., Bloom, M.E., Truyen, U., Parvovirus infections in wild carnivores (2001) J. Wildl. Dis., 37, pp. 594-607; Sykes, J.E., Feline chlamydiosis (2005) Clin. Technol. Small Anim. Pract., 20, pp. 129-134; Tenter, A.M., Heckeroth, A.R., Weiss, L.M., Toxoplasma gondii: from animals to humans (2000) Int. J. Parasitol., 30, pp. 1217-1258; Yan, C., Fukushi, H., Matsudate, H., Ishicara, K., Yasuda, K., Kitagawa, H., Yamaguchi, T., Hirai, K., Seroepidemiological investigations of feline chlamydiosis in cats and humans in Japan (2000) Microbiol. Immunol., 44 (3), pp. 155-160","Candela, M.G.; Animal Health Department, Campus Mare Nostrum, University of MurciaSpain; email: monica@um.es",,"Elsevier GmbH",16165047,,MBAIC,,"English","Mamm. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85065057710 "Civljak R., Tot T., Falsey A.R., Huljev E., Vranes J., Ljubin-Sternak S.","7801604292;56580046500;7003365074;57207454943;15924666100;55881670900;","Viral pathogens associated with acute respiratory illness in hospitalized adults and elderly from Zagreb, Croatia, 2016 to 2018",2019,"Journal of Medical Virology","91","7",,"1202","1209",,3,"10.1002/jmv.25437","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062553951&doi=10.1002%2fjmv.25437&partnerID=40&md5=eac2558c89479a5f131daa4ca3ed686f","Department of Respiratory Tract Infections, Dr Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of MedicineZagreb, Croatia; Department of Microbiology, General Hospital Karlovac, Karlovac, Croatia; Department of Medicine, Rochester General Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Department of Clinical Microbiology, Dr Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia; Department of Medical Microbiology, University of Zagreb School of MedicineZagreb, Croatia","Civljak, R., Department of Respiratory Tract Infections, Dr Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of MedicineZagreb, Croatia; Tot, T., Department of Microbiology, General Hospital Karlovac, Karlovac, Croatia; Falsey, A.R., Department of Medicine, Rochester General Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Huljev, E., Department of Respiratory Tract Infections, Dr Fran Mihaljevic University Hospital for Infectious Diseases, University of Zagreb School of MedicineZagreb, Croatia; Vranes, J., Department of Clinical Microbiology, Dr Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia, Department of Medical Microbiology, University of Zagreb School of MedicineZagreb, Croatia; Ljubin-Sternak, S., Department of Clinical Microbiology, Dr Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia, Department of Medical Microbiology, University of Zagreb School of MedicineZagreb, Croatia","Aims: To investigate the viral etiology of acute respiratory infection (ARI) in hospitalized adults and elderly patients in Croatia, compare the prevalence of detected viruses, and to determine clinical characteristics and seasonal occurrence of investigated infections. Methods: From January 2016 to June 2018, a total of 182 adult patients presented with symptoms of ARI and admitted to the hospital were tested for 15 respiratory viruses by multiplex reverse-transcription polymerase chain reaction. Clinical data were collected by retrospective analysis of the patient's chart. Results: A virus was identified in 106 (58.5%) of the patients. The most commonly detected virus was influenza virus (41.5%), followed by respiratory syncytial virus (13.8%), human metapneumovirus (13.0%), parainfluenza viruses (12.2%), rhinoviruses (11.4%), adenovirus and coronaviruses with equal frequencies (3.3%), and enterovirus (1.6%). The serum level of C-reactive protein and white blood cell count were significantly lower in patients with respiratory viruses identified when compared with those in whom no virus was detected (P < 0.001 and P = 0.007, respectively). There were no differences in clinical symptoms according to the type of the detected virus, except for more frequent illness exposure recall for influenza infection (P = 0.010). Influenza, parainfluenza, and pneumoviruses were detected mostly in winter months, while rhinoviruses in autumn and spring. Conclusions: In addition to influenza, pneumoviruses, rhinoviruses, and parainfluenza viruses play an important role in etiology of ARIs in adults. Fast and accurate laboratory diagnosis for respiratory viruses in routine practice is needed for clinicians optimally manage patients with ARI and potentially avoid the unnecessary use of antimicrobial drugs. © 2019 Wiley Periodicals, Inc.","human metapneumovirus; influenza; multiplex reverse-transcription polymerase chain reaction; respiratory syncytial virus","C reactive protein; Adenoviridae; adult; aged; Article; Coronavirinae; Croatia; disease association; Enterovirus; female; hospital admission; hospitalization; human; human cell; Human respiratory syncytial virus; influenza; Influenza virus; leukocyte count; major clinical study; male; medical record; Metapneumovirus; Parainfluenza virus infection; Paramyxovirinae; Pneumovirus infection; prevalence; protein blood level; respiratory tract infection; respiratory virus; retrospective study; reverse transcription polymerase chain reaction; Rhinovirus; seasonal variation; virus detection; virus identification; virus virulence","Mizgerd, J.P., Lung infection—a public health priority (2006) PLOS Med, 3; Dumpis, U., Hahlin, A., Varvuolyte, S., Antibiotic prescription and clinical management of common infections among general practitioners in Latvia, Lithuania, and Sweden: a pilot survey with a simple protocol (2018) Eur J Clin Microbiol Infect Dis., 37 (2), pp. 355-361; Fridkin, S., Baggs, J., Fagan, R., Vital signs: improving antibiotic use among hospitalized patients (2014) MMWR Morb Mortal Wkly Rep, 63 (9), pp. 194-200; Oliveira, R.R., Costa, J.R., Mathias, T.A., Hospitalization of children under five years of age due to avoidable causes (2012) Rev Lat Am Enfermagem, 20 (1), pp. 135-142; Goto, T., Yoshida, K., Tsugawa, Y., Camargo, C.A., Jr., Hasegawa, K., Infectious disease-related emergency department visits of elderly adults in the United States, 2011-2012 (2016) J Am Geriatr Soc, 64 (1), pp. 31-36; Larbi, A., Franceschi, C., Mazzatti, D., Solana, R., Wikby, A., Pawelec, G., Aging of the immune system as a prognostic factor for human longevity (2008) Physiology, 23, pp. 64-74; Berry, M., Gamieldien, J., Fielding, B.C., Identification of new respiratory viruses in the new millennium (2015) Viruses, 7 (3), pp. 996-1019; Falsey, A.R., Baran, A., Walsh, E.E., Should clinical case definitions of influenza in hospitalized older adults include fever? (2015) Influenza Other Respir Viruses, 9, pp. 23-29; Ye, C., Zhu, W., Yu, J., Viral pathogens among elderly people with acute respiratory infections in Shanghai, China: preliminary results from a laboratory-based surveillance, 2012-2015 (2017) J Med Virol, 89 (10), pp. 1700-1706; Falsey, A.R., Walsh, E.E., Hayden, F.G., Rhinovirus and coronavirus infection-associated hospitalizations among older adults (2002) J Infect Dis, 185 (9), pp. 1338-1341; Walsh, E.E., Falsey, A.R., Respiratory syncytial virus infection in adult populations (2012) Infect Disord Drug Targets, 12 (2), pp. 98-102; Falsey, A.R., McElhaney, J.E., Beran, J., Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness (2014) J Infect Dis, 209 (12), pp. 1873-1881; Hasvold, J., Sjoding, M., Pohl, K., Cooke, C., Hyzy, R.C., The role of human metapneumovirus in the critically ill adult patient (2016) J Crit Care, 31 (1), pp. 233-237; Haber, N., Respiratory syncytial virus infection in elderly adults (2018) Med Mal Infect, 48 (16), pp. 377-382. , pii S0399-077X30734-X; Afonso, C.L., Amarasinghe, G.K., Banyai, K., Taxonomy of the order mononegavirales: update 2016 (2016) Arch Virol, 161, pp. 2351-2360; Ljubin Sternak, S., Santak, M., Cepin-Bogovic, J., Detection of genetic lineages of human metapneumovirus in Croatia during the winter season 2005/2006 (2008) J Med Virol, 80 (7), pp. 1282-1287; Syha, R., Beck, R., Hetzel, J., Human metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections (2012) Eur J Radiol, 81 (12), pp. 4173-4178; Mlinaric-Galinovic, G., Vilibic-Cavlek, T., Ljubin-Sternak, S., Eleven consecutive years of respiratory syncytial virus outbreaks in Croatia (2009) Pediatr Int, 51, pp. 237-240; Ljubin-Sternak, S., Mlinarić-Galinović, G., Buntić, A.M., Seasonal occurence of human metapneumovirus infections in Croatia (2014) Pediatr Infect Dis J, 33 (2), pp. 165-167; Ljubin-Sternak, S., Marijan, T., Ivkovic-JurekovicI, Cepin-Bogovic, J., Gagro, A., Vranes, J., Etiology and Clinical characteristics of single and multiple respiratory virus infections diagnosed in croatian children in two respiratoy seasons (2016) J Pathog, 2016, p. 2168780; Cillóniz, C., Civljak, R., Nicolini, A., Torres, A., Polymicrobial community-acquired pneumonia: An emerging entity (2016) Respirology, 21 (1), pp. 65-75; Alimi, Y., Lim, W.S., Lansbury, L., Leonardi-Bee, J., Nguyen-Van-Tam, J.S., Systematic review of respiratory viral pathogens identified in adults with community-acquired pneumonia in Europe (2017) J Clin Virol, 95, pp. 26-35; Han, L.L., Alexander, J.P., Anderson, L.J., Respiratory syncytial virus pneumonia among the elderly: an assessment of disease burden (1999) J Infect Dis, 179, pp. 25-30; Branche, A.R., Falsey, A.R., Respiratory syncytial virus infection in older adults: an under-recognized problem (2015) Drugs Aging, 32 (4), pp. 261-269; Self, W.H., Williams, D.J., Zhu, Y., Respiratory viral detection in children and adults: comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J Infect Dis, 213 (4), pp. 584-591; Bozio, C.H., Flanders, W.D., Finelli, L., Use of multiple imputation to estimate the proportion of respiratory virus detections among patients hospitalized with community-acquired pneumonia (2018) Open Forum Infect Dis, 5 (4), pp. 1-7. , ofy061; Tsagarakis, N.J., Sideri, A., Makridis, P., Triantafyllou, A., Stamoulakatou, A., Papadogeorgaki, E., Age-related prevalence of common upper respiratory pathogens, based on the application of the FilmArray Respiratory panel in a tertiary hospital in Greece (2018) Medicine, 97 (22); Gorse, G.J., O'Connor, T.Z., Hall, S.L., Vitale, J.N., Nichol, K.L., Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease (2009) J Infect Dis, 199 (6), pp. 847-857; Walsh, E.E., Shin, J.H., Falsey, A.R., Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations (2013) J Infect Dis, 208 (10), pp. 1634-1642; Mijac, M., Ljubin-Sternak, S., Ivkovic-Jurekovic, I., Human bocavirus in nasopharyngeal secretion of hospitalized children with acute respiratory tract infection—first year results of four-year prospective study (2018) Infektološki Glasnik, , In press; Casiano-Colón, A.E., Hulbert, B.B., Mayer, T.K., Walsh, E.E., Falsey, A.R., Lack of sensitivity of rapid antigen tests for the diagnosis of respiratory syncytial virus infection in adults (2003) J Clin Virol, 28 (2), pp. 169-174; Falsey, A.R., Formica, M.A., Walsh, E.E., Diagnosis of respiratory syncytial virus infection: comparison of reverse transcription-PCR to viral culture and serology in adults with respiratory illness (2002) J Clin Microbiol, 40 (3), pp. 817-820; Pillet, S., Lardeux, M., Dina, J., Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections (2013) PLOS One, 8 (8); Semret, M., Schiller, I., Jardin, B.A., Multiplex respiratory virus testing for antimicrobial stewardship: a prospective assessment of antimicrobial use and clinical outcomes among hospitalized adults (2017) J Infect Dis, 216 (8), pp. 936-944; Branche, A.R., Falsey, A.R., Viral diagnostics: only half the battle (2017) J Infect Dis, 216 (8), pp. 923-925; Branche, A.R., Walsh, E.E., Vargas, R., Serum procalcitonin measurement and viral testing to guide antibiotic use for respiratory infections in hospitalized adults: a randomized controlled trial (2015) J Infect Dis, 212 (11), pp. 1692-1700; Schuetz, P., Wirz, Y., Sager, R., Procalcitonin to initiate or discontinue antibiotics inacute respiratory tract infections (2017) Cochrane Database Syst Rev, 10, p. 10; Leotte, J., Trombetta, H., Faggion, H.Z., Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years (2017) J Pediatr, 93 (3), pp. 294-300; Obando-Pacheco, P., Justicia-Grande, A.J., Rivero-Calle, I., Respiratory syncytial virus seasonality: a global overview (2018) J Infect Dis, 217 (9), pp. 1356-1364; Mazur, N.I., Higgins, D., Nunes, M.C., The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates (2018) Lancet Infect Dis, 18 (10), pp. e295-e311. , Epub 2018 Jun 18","Ljubin-Sternak, S.; Department of Clinical Microbiology, Dr Andrija Stampar Teaching Institute of Public HealthCroatia; email: sljsternak@stampar.hr",,"John Wiley and Sons Inc.",01466615,,JMVID,"30801727","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85062553951 "Soudani N., Caniza M.A., Assaf-Casals A., Shaker R., Lteif M., Su Y., Tang L., Akel I., Muwakkit S., Chmaisse A., Homsi M., Dbaibo G., Zaraket H.","56105890900;15074084100;57188537436;57191444283;56451182100;57194788568;56597282700;56518176600;6602381431;57204737915;57203261009;7003602816;23767455900;","Prevalence and characteristics of acute respiratory virus infections in pediatric cancer patients",2019,"Journal of Medical Virology","91","7",,"1191","1201",,2,"10.1002/jmv.25432","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062333882&doi=10.1002%2fjmv.25432&partnerID=40&md5=8640ccf49ec7e19d2fcdd13ca919654e","Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Department of Biology, Faculty of Sciences, EDST, Lebanese University, Lebanon; Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States; Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, TN, United States; Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, United States; Children’s Cancer Center of Lebanon, American University of Beirut, Beirut, Lebanon","Soudani, N., Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Department of Biology, Faculty of Sciences, EDST, Lebanese University, Lebanon; Caniza, M.A., Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN, United States, Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, TN, United States; Assaf-Casals, A., Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Shaker, R., Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Lteif, M., Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Su, Y., Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, United States; Tang, L., Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, TN, United States; Akel, I., Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Muwakkit, S., Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Children’s Cancer Center of Lebanon, American University of Beirut, Beirut, Lebanon; Chmaisse, A., Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Homsi, M., Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, TN, United States; Dbaibo, G., Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Department of Pediatrics and Adolescent Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Zaraket, H., Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut Faculty of Medicine, Beirut, Lebanon, Center for Infectious Diseases Research, American University of Beirut Faculty of Medicine, Beirut, Lebanon","Background: Patients with pediatric cancer have a higher risk of morbidity and mortality because of respiratory viral infections than other patient populations. Objectives: To investigate the causative viruses of respiratory infections and their burden among patients with pediatric cancer in Lebanon. Study design: Nasopharyngeal swabs along with clinical and demographic data were collected from patients with pediatric cancer presenting febrile episodes with upper respiratory tract symptoms. Total nucleic acid was extracted from specimens followed by the real-time PCR analysis targeting 14 respiratory viruses to estimate the frequency of infections. Results: We obtained 89 nasopharyngeal swabs from patients with pediatric cancer (mean age, 5.8 ± 4.2 years). Real-time PCR confirmed viral infection in 77 swabs (86.5%). Among these, 151 respiratory viruses were detected. Several viruses cocirculated within the same period; respiratory syncytial virus (RSV) being the most common (45.45%), followed by parainfluenza virus (PIV; 26%), influenza type B (26%), human metapneumovirus (24.6%), and human coronavirus (HCoV; 24.6%). Coinfections were detected in 55% of the subjects, and most of them involved RSV with one or more other viruses. A strong correlation was found between PIV, Flu (influenza of any type), RSV, and HCoV with the incidence of coinfections. RSV was associated with lower respiratory tract infections, nasal congestion, bronchitis, and bacteremia. HCoV was associated with bronchiolitis; rhinovirus was associated with hospital admission. Conclusion: Patients with pediatric cancer have a high burden of respiratory viral infections and a high incidence of coinfections. Molecular diagnostics can improve management of febrile episodes and reduce antibiotic use. © 2019 Wiley Periodicals, Inc.","coinfection; patients with pediatric cancer; prevalence; real-time PCR; respiratory tract infections; virus infections","antibiotic therapy; Article; bacteremia; biopsy technique; bronchiolitis; bronchitis; child; childhood cancer; Coronavirus infection; correlational study; demography; disease association; disease burden; DNA extraction; female; fever; hospital admission; human; human cell; Human metapneumovirus infection; human tissue; influenza B; Lebanon; lower respiratory tract infection; major clinical study; male; mixed infection; morbidity; nasopharynx; nose obstruction; Parainfluenza virus infection; prevalence; real time polymerase chain reaction; respiratory syncytial virus infection; Rhinovirus infection; specimen handling; upper respiratory tract infection; viral respiratory tract infection; virus detection","Corti, M., Palmero, D., Eiguchi, K., Respiratory infections in immunocompromised patients (2009) Curr Opin Pulm Med, 15 (3), pp. 209-217. , https://doi.org/10.1097/MCP.0b013e328329bd2c; Hakim, H., Dallas, R., Zhou, Y., Acute respiratory infections in children and adolescents with acute lymphoblastic leukemia (2016) Cancer, 122 (5), pp. 798-805. , https://doi.org/10.1002/cncr.29833; Benites, E.C.A., Cabrini, D.P., Silva, A.C.B., Acute respiratory viral infections in pediatric cancer patients undergoing chemotherapy (2014) J Pediatr (Rio J), 90 (4), pp. 370-376. , https://doi.org/10.1016/j.jped.2014.01.006; Fazekas, T., Eickhoff, P., Rauch, M., Prevalence and clinical course of viral upper respiratory tract infections in immunocompromised pediatric patients with malignancies or after hematopoietic stem cell transplantation (2012) J Pediatr Hematol Oncol, 34 (6), pp. 442-449. , https://doi.org/10.1097/MPH.0b013e3182580bc8; Perlin, E., Bang, K.M., Shah, A., The impact of pulmonary infections on the survival of lung cancer patients (1990) Cancer, 66 (3), pp. 593-596; Kohno, S., Kola, H., Oka, M., The pattern of respiratory infection in patients with lung cancer (1994) Tohoku J Exp Med, 173 (4), pp. 405-411; Lustberg, M.B., Management of neutropenia in cancer patients (2012) Clin Adv Hematol Oncol HO, 10 (12), pp. 825-826; Rolston, K.V.I., Infections in cancer patients with solid tumors: a review (2017) Infect Dis Ther, 6 (1), pp. 69-83. , https://doi.org/10.1007/s40121-017-0146-1; Aronchick, J.M., Pulmonary infections in cancer and bone marrow transplant patients (2000) Semin Roentgenol, 35 (2), pp. 140-151. , https://doi.org/10.1053/ro.2000.6152; Godbole, G., Gant, V., Respiratory tract infections in the immunocompromised (2013) Curr Opin Pulm Med, 19 (3), pp. 244-250. , https://doi.org/10.1097/MCP.0b013e32835f82a9; Mendoza Sánchez, M.C., Ruiz-Contreras, J., Vivanco, L., Respiratory virus infections in children with cancer or HIV infection (2006) J Pediatr Hematol Oncol, 28 (3), pp. 154-159. , https://doi.org/10.1097/01.mph.0000210061.96075.8e; von Lilienfeld-Toal, M., Berger, A., Christopeit, M., Community acquired respiratory virus infections in cancer patients—guideline on diagnosis and management by the infectious diseases working party of the German society for haematology and medical oncology (2016) Eur J Cancer, 67, pp. 200-212. , https://doi.org/10.1016/j.ejca.2016.08.015; Hussain, Z., Ansari, J.A., Salman, M., Khan, E.A., Asghar, J., An evaluation of acute respiratory infection surveillance systems in Gilgit-Baltistan Pakistan (2016) JPMA J Pak Med Assoc, 66 (6), pp. 682-687; Dizon, D.S., Krilov, L., Cohen, E., Clinical cancer advances 2016: annual report on progress against cancer from the American society of clinical oncology (2016) J Clin Oncol, 34 (9), pp. 987-1011. , https://doi.org/10.1200/JCO.2015.65.8427; Akinosoglou, K.S., Karkoulias, K., Marangos, M., Infectious complications in patients with lung cancer (2013) Eur Rev Med Pharmacol Sci, 17 (1), pp. 8-18; Freifeld, A.G., Bow, E.J., Sepkowitz, K.A., Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America (2011) Clin Infect Dis, 52 (4), pp. e56-e93. , https://doi.org/10.1093/cid/cir073; Christensen, M.S., Nielsen, L.P., Hasle, H., Few but severe viral infections in children with cancer: a prospective RT-PCR and PCR-based 12-month study (2005) Pediatr Blood Cancer, 45 (7), pp. 945-951. , https://doi.org/10.1002/pbc.20469; Torres, J.P., De la Maza, V., Kors, L., Respiratory viral infections and coinfections in children with cancer, fever and neutropenia: clinical outcome of infections caused by different respiratory viruses (2016) Pediatr Infect Dis J, 35 (9), pp. 949-954. , https://doi.org/10.1097/INF.0000000000001209; Söderman, M., Rhedin, S., Tolfvenstam, T., Frequent respiratory viral infections in children with febrile neutropenia - a prospective follow-up study (2016) PLoS One, 11 (6). , https://doi.org/10.1371/journal.pone.0157398; Vliora, C., Syridou, G., Papaevangelou, V., Viral respiratory infections in children receiving chemotherapy or undergoing stem cell transplantation (2014) Clin Microbiol Open Access, 3 (1), p. 137. , https://doi.org/10.4172/2327-5073.1000137; Meerhoff, T.J., Simaku, A., Ulqinaku, D., Surveillance for severe acute respiratory infections (SARI) in hospitals in the WHO European region - an exploratory analysis of risk factors for a severe outcome in influenza-positive SARI cases (2015) BMC Infect Dis, 15, p. 1. , https://doi.org/10.1186/s12879-014-0722-x; Peret, T.C., Golub, J.A., Anderson, L.J., Hall, C.B., Schnabel, K.C., Circulation patterns of genetically distinct group A and B strains of human respiratory syncytial virus in a community (1998) J Gen Virol, 79, pp. 2221-2229. , https://doi.org/10.1099/0022-1317-79-9-2221; Sato, M., Saito, R., Sakai, T., Molecular epidemiology of respiratory syncytial virus infections among children with acute respiratory symptoms in a community over three seasons (2005) J Clin Microbiol, 43 (1), pp. 36-40. , https://doi.org/10.1128/JCM.43.1.36-40.2005; Rotzén-Östlund, M., Eriksson, M., Tiveljung Lindell, A., Allander, T., Zweygberg Wirgart, B., Grillner, L., Children with multiple viral respiratory infections are older than those with single viruses (2014) Acta Paediatr, 103 (1), pp. 100-104. , https://doi.org/10.1111/apa.12440; Aberle, J.H., Aberle, S.W., Pracher, E., Hutter, H.-P., Kundi, M., Popow-Kraupp, T., Single versus dual respiratory virus infections in hospitalized infants: impact on clinical course of disease and interferon-gamma response (2005) Pediatr Infect Dis J, 24 (7), pp. 605-610; Cilla, G., Oñate, E., Perez-Yarza, E.G., Montes, M., Vicente, D., Perez-Trallero, E., Viruses in community-acquired pneumonia in children aged less than 3 years old: high rate of viral coinfection (2008) J Med Virol, 80 (10), pp. 1843-1849. , https://doi.org/10.1002/jmv.21271; Asner, S.A., Science, M.E., Tran, D., Smieja, M., Merglen, A., Mertz, D., Clinical disease severity of respiratory viral co-infection versus single viral infection: a systematic review and meta-analysis (2014) PLoS One, 9 (6). , https://doi.org/10.1371/journal.pone.0099392; Katsimpardi, K., Papadakis, V., Pangalis, A., Infections in a pediatric patient cohort with acute lymphoblastic leukemia during the entire course of treatment (2006) Support Care Cancer, 14 (3), pp. 277-284. , https://doi.org/10.1007/s00520-005-0884-6; Koskenvuo, M., Möttönen, M., Rahiala, J., Respiratory viral infections in children with leukemia (2008) Pediatr Infect Dis J, 27 (11), pp. 974-980. , https://doi.org/10.1097/INF.0b013e31817b0799; Mossong, J., Hens, N., Jit, M., Social contacts and mixing patterns relevant to the spread of infectious diseases (2008) PLoS Med, 5 (3). , https://doi.org/10.1371/journal.pmed.0050074; Stein, M.L., Van steenbergen, J.E., Buskens, V., Comparison of contact patterns relevant for transmission of respiratory pathogens in Thailand and the Netherlands using respondent-driven sampling (2014) PLoS One, 9 (11). , https://doi.org/10.1371/journal.pone.0113711; Rhedin, S., Lindstrand, A., Rotzen-Ostlund, M., Clinical utility of PCR for common viruses in acute respiratory illness (2014) Pediatrics, 133 (3), pp. e538-e545. , https://doi.org/10.1542/peds.2013-3042; Vallières, E., Renaud, C., Clinical and economical impact of multiplex respiratory virus assays (2013) Diagn Microbiol Infect Dis, 76 (3), pp. 255-261. , https://doi.org/10.1016/j.diagmicrobio.2013.03.008; van Elden, L.J.R., van Kraaij, M.G.J., Nijhuis, M., Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia (2002) Clin Infect Dis, 34 (2), pp. 177-183. , https://doi.org/10.1086/338238; Hall, C.B., Powell, K.R., MacDonald, N.E., Respiratory syncytial viral infection in children with compromised immune function (1986) N Engl J Med, 315 (2), pp. 77-81. , https://doi.org/10.1056/NEJM198607103150201; Whimbey, E., Englund, J.A., Couch, R.B., Community respiratory virus infections in immunocompromised patients with cancer (1997) Am J Med, 102 (3A), pp. 10-18. , discussion 25-26; Anaissie, E.J., Mahfouz, T.H., Aslan, T., The natural history of respiratory syncytial virus infection in cancer and transplant patients: implications for management (2004) Blood, 103 (5), pp. 1611-1617. , https://doi.org/10.1182/blood-2003-05-1425; El Saleeby, C.M., Somes, G.W., DeVincenzo, J.P., Gaur, A.H., Risk factors for severe respiratory syncytial virus disease in children with cancer: the importance of lymphopenia and young age (2008) Pediatrics, 121 (2), pp. 235-243. , https://doi.org/10.1542/peds.2007-1102; Salzer, W., Dinndorf, P., Dreyer, Z., Hilden, J., Reaman, G.H., Analysis of infectious complications in infants with acute lymphoblastic leukemia treated on the Children’s Cancer Group Protocol 1953: a report from the Children’s Oncology Group (2009) J Pediatr Hematol Oncol, 31 (6), pp. 398-405. , https://doi.org/10.1097/MPH.0b013e3181a6dec0; Torres, H.A., Aguilera, E.A., Mattiuzzi, G.N., Characteristics and outcome of respiratory syncytial virus infection in patients with leukemia (2007) Haematologica, 92 (9), pp. 1216-1223; Wu, H., Pfarr, D.S., Johnson, S., Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract (2007) J Mol Biol, 368 (3), pp. 652-665. , https://doi.org/10.1016/j.jmb.2007.02.024; Weisman, L.E., Motavizumab, a second-generation humanized mAb for the prevention of respiratory syncytial virus infection in high-risk populations (2009) Curr Opin Mol Ther, 11 (2), pp. 208-218; Neuzil, K.M., Progress toward a respiratory syncytial virus vaccine (2016) Clin Vaccine Immunol, 23 (3), pp. 186-188. , https://doi.org/10.1128/CVI.00037-16; Turner, T., Kopp, B., Paul, G., Hayes jr, D., Thompson, R., Landgrave, L., Respiratory syncytial virus: current and emerging treatment options (2014) Clin Outcomes Res CEOR, 6, pp. 217-225. , https://doi.org/10.2147/CEOR.S60710; Anderson, L.J., Dormitzer, P.R., Nokes, D.J., Rappuoli, R., Roca, A., Graham, B.S., Strategic priorities for respiratory syncytial virus (RSV) vaccine development (2013) Vaccine, 31, pp. B209-B215. , https://doi.org/10.1016/j.vaccine.2012.11.106; Olchanski, N., Hansen, R.N., Pope, E., Palivizumab prophylaxis for respiratory syncytial virus: examining the evidence around value (2018) Open Forum Infect Dis, 5 (3). , https://doi.org/10.1093/ofid/ofy031; Adams, O., Bonzel, L., Kovacevic, A., Mayatepek, E., Hoehn, T., Vogel, M., Palivizumab-resistant human respiratory syncytial virus infection in infancy (2010) Clin Infect Dis, 51 (2), pp. 185-188. , https://doi.org/10.1086/653534; Zhu, Q., Patel, N.K., McAuliffe, J.M., Natural polymorphisms and resistance-associated mutations in the fusion protein of respiratory syncytial virus (RSV): effects on RSV susceptibility to palivizumab (2012) J Infect Dis, 205 (4), pp. 635-638. , https://doi.org/10.1093/infdis/jir790; Joseph, C., Togawa, Y., Shindo, N., Bacterial and viral infections associated with influenza (2013) Influenza Other Respir Viruses, 7, pp. 105-113. , https://doi.org/10.1111/irv.12089; Ljungman, P., Gleaves, C.A., Meyers, J.D., Respiratory virus infection in immunocompromised patients (1989) Bone Marrow Transplant, 4 (1), pp. 35-40; Martin, E.T., Fairchok, M.P., Stednick, Z.J., Kuypers, J., Englund, J.A., Epidemiology of multiple respiratory viruses in childcare attendees (2013) J Infect Dis, 207 (6), pp. 982-989. , https://doi.org/10.1093/infdis/jis934","Dbaibo, G.; Center for Infectious Diseases Research, American University of Beirut Faculty of MedicineLebanon; email: gdbaibo@aub.edu.lb",,"John Wiley and Sons Inc.",01466615,,JMVID,"30763464","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85062333882 "Etemadi M.R., jalilian F.A., Othman N., Lye M.-S., Ansari S., Yubbu P., Sekawi Z.","55362630200;57195727450;16031506800;35973928500;57208089096;56901881300;24767961300;","Diversity of respiratory viruses detected among hospitalized children with acute lower respiratory tract infections at Hospital Serdang, Malaysia",2019,"Journal of Virological Methods","269",,,"1","6",,2,"10.1016/j.jviromet.2019.03.013","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063759469&doi=10.1016%2fj.jviromet.2019.03.013&partnerID=40&md5=a26181498d3964b44c0903bedb5056c1","Department of Biology, Faculty of Basic Sciences, Islamic Azad University of Arak, Arak, Iran; Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Pediatrics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Community Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Department of Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia","Etemadi, M.R., Department of Biology, Faculty of Basic Sciences, Islamic Azad University of Arak, Arak, Iran, Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; jalilian, F.A., Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Othman, N., Department of Pediatrics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Lye, M.-S., Department of Community Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Ansari, S., Department of Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Yubbu, P., Department of Pediatrics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia; Sekawi, Z., Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia","Background: The role of respiratory viruses as the major cause of acute lower respiratory tract infections (ALRTIs) in children is becoming increasingly evident due to the use of sensitive molecular detection methods. The aim of this study was to use conventional and molecular detection methods to assess the epidemiology of respiratory viral infections in children less than five years of age that were hospitalized with ALRTIs. Methods: The cross-sectional study was designed to investigate the occurrence of respiratory viruses including respiratory syncytisl virus (RSV), human metapneumovirus (HMPV), influenza virus A and B (IFV-A and B), parainfluenzavirus 1, 2, 3 and 4 (PIV 1, 2, 3 and 4), human rhinoviruses (HRV), human enterovirus (HEV), human coronaviruses (HCoV) 229E and OC43, human bocavirus (HBoV) and human adenovirus (HAdV) in hospitalized children with ALRTIs, at Hospital Serdang, Malaysia, from June 16 to December 21, 2009. The study was also designed in part to assess the performance of the conventional methods against molecular methods. Results: Viral pathogens were detected in 158 (95.8%) of the patients. Single virus infections were detected in 114 (67.9%) patients; 46 (27.9%) were co-infected with different viruses including double-virus infections in 37 (22.4%) and triple-virus infections in 9 (5.5%) cases. Approximately 70% of samples were found to be positive using conventional methods compared with 96% using molecular methods. A wide range of respiratory viruses were detected in the study. There was a high prevalence of RSV (50.3%) infections, particularly group B viruses. Other etiological agents including HAdV, HMPV, IFV-A, PIV 1–3, HBoV, HCoV-OC43 and HEV were detected in 14.5, 9.6, 9.1, 4.8, 3.6, 2.4 and 1.8 percent of the samples, respectively. Conclusion: Our results demonstrated the increased sensitivity of molecular detection methods compared with conventional methods for the diagnosis of ARTIs in hospitalized children. This is the first report of HMPV infections in Malaysia. © 2019 Elsevier B.V.","Hospitalized; Malaysia; Respiratory virus","Article; cell culture technique; child; child hospitalization; controlled study; cross-sectional study; diagnostic test accuracy study; diagnostic value; Enterovirus; epidemiological monitoring; human; Human adenovirus C; Human bocavirus; Human coronavirus 229E; Human coronavirus OC43; Human metapneumovirus; Human metapneumovirus infection; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; Human rhinovirus; immunofluorescence test; infant; Influenza A virus; Influenza B virus; intermethod comparison; lower respiratory tract infection; major clinical study; Malaysia; microbial diversity; mixed infection; molecular diagnosis; multiplex polymerase chain reaction; nonhuman; prevalence; priority journal; respiratory virus; reverse transcription polymerase chain reaction; sensitivity analysis; sensitivity and specificity; viral respiratory tract infection; virus detection; virus virulence","Adcock, P.M., Stout, G.G., Hauck, M.A., Marshall, G.S., Effect of rapid viral diagnosis on the management of children hospitalized with lower respiratory tract infection (1997) Pediatr. Infect. Dis. J., 16, p. 842; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc. Natl. Acad. Sci. U. S. A., 102 (12891), p. 12896; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 12891-12896; Allander, T., Andreasson, K., Gupta, S., Bjerkner, A., Bogdanovic, G., Persson, M.A.A., Dalianis, T., Andersson, B., Identification of a third human polyomavirus (2007) J. Virol., 81, pp. 4130-4136; Arden, K.E., McErlean, P., Nissen, M.D., Sloots, T.P., Mackay, I.M., Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections (2006) J. Med. Virol., 78, pp. 1232-1240; Bastien, N., Brandt, K., Dust, K., Ward, D., Li, Y., Human bocavirus infection, Canada (2006) Emerging Infect. Diseases, 12, pp. 848-850; Bellau-Pujol, S., Vabret, A., Legrand, L., Dina, J., Gouarin, S., Petitjean-Lecherbonnier, J., Pozzetto, B., Freymuth, F., Development of three multiplex RT-PCR assays for the detection of 12 respiratory RNA viruses (2005) J. Virol. Methods, 126, pp. 53-63; Calvo, C., Pozo, F., García-García, M.L., Sanchez, M., Lopez-Valero, M., Pérez-Breña, P., Casas, I., Detection of new respiratory viruses in hospitalized infants with bronchiolitis: a three-year prospective study (2010) Acta Paediatr., 99, pp. 883-887; Casas, I., Avellon, A., Mosquera, M., Jabado, O., Echevarria, J.E., Campos, R.H., Rewers, M., Palacios, G., Molecular identification of adenoviruses in clinical samples by analyzing a partial hexon genomic region (2005) J. Clin. Microbiol., 43, pp. 6176-6182; Chan, P., Goh, A., Chua, K.B., Kharullah, N.S., Hooi, P.S., Viral aetiology of lower respiratory tract infection in young Malaysian children (1999) J. Paediatr. Child Health, 35, pp. 287-290; Chen, H.-L., Chiou, S.-S., Hsiao, H.-P., Ke, G.-M., Lin, Y.-C., Lin, K.-H., Jong, Y.-J., Respiratory adenoviral infections in children: a study of hospitalized cases in Southern Taiwan in 2001-2002 (2004) J. Trop. Pediatr., 50, pp. 279-284; Chung, J.Y., Han, T.H., Kim, S.W., Kim, C.K., Hwang, E.S., Detection of viruses identified recently in children with acute wheezing (2007) J. Med. Virol., 79, pp. 1238-1243; Coiras, M.T., Perez-Brena, P., Garcia, M.L., Casas, I., Simultaneous detection of influenza A, B, and C viruses, respiratory syncytial virus, and adenoviruses in clinical samples by multiplex reverse transcription nested-PCR assay (2003) J. Med. Virol., 69, pp. 132-144; Coiras, M.T., Aguilar, J.C., Garcia, M.L., Casas, I., Perez Brena, P., Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested PCR assays (2004) J. Med. Virol., 72, pp. 484-495; Etemadi, M., Azizi jalilian, F., Sekawi, Z., First detected human bocavirus in a malaysian child with pneumonia and pre-existing asthma: a case report (2012) Med. J. Malaysia, 76, pp. 429-430; Foulongne, V., Guyon, G., Rodière, M., Segondy, M., Human metapneumovirus infection in young children hospitalized with respiratory tract disease (2006) Pediatr. Infect. Dis. J., 25, pp. 354-359; Foulongne, V., Rodiere, M., Segondy, M., Human bocavirus in children (2006) Emerg Infect. Dis., 12 (862), p. 863; Franz, A., Adams, O., Willems, R., Bonzel, L., Neuhausen, N., Schweizer-Krantz, S., Ruggeberg, J.U., Tenenbaum, T., Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection (2010) J. Clin. Virol., 48, pp. 239-245; Freymuth, F., Vabret, A., Cuvillon-Nimal, D., Simon, S., Dina, J., Legrand, L., Gouarin, S., Brouard, J., Comparison of multiplex PCR assays and conventional techniques for the diagnostic of respiratory virus infections in children admitted to hospital with an acute respiratory illness (2006) J. Med. Virol., 78, pp. 1498-1504; Grimwood, K., Cohet, C., Rich, F.J., Cheng, S., Wood, C., Redshaw, N., Cunningham, C.W., Kirman, J.R., Risk Factors for Respiratory Syncytial Virus Bronchiolitis Hospital Admission in New Zealand 136 (2008), pp. 1333-1341; Gruteke, P., Glas, A.S., Dierdorp, M., Vreede, W.B., Pilon, J.W., Bruisten, S.M., Practical implementation of a multiplex PCR for acute respiratory tract infections in children (2004) J. Clin. Microbiol., 42, pp. 5596-5603; Hall, C.B., Weinberg, G.A., Iwane, M.K., Blumkin, A.K., Edwards, K.M., Staat, M.A., Auinger, P., Szilagyi, P., The burden of respiratory syncytial virus infection in young children (2009) N. Engl. J. Med., 360, pp. 588-598; Ieven, M., Currently used nucleic acid amplification tests for the detection of viruses and atypicals in acute respiratory infections (2007) J. Clin. Virol., 40, pp. 259-276; Irmen, K.E., Kelleher, J.J., Use of monoclonal antibodies for rapid diagnosis of respiratory viruses in a community hospital (2000) Clin. Vaccine Immunol., 7, pp. 396-403; Jartti, T., Lehtinen, P., Vuorinen, T., Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children (2004) Emerging Infect. Dis., 10, pp. 1095-1101; Jennings, L.C., Anderson, T.P., Werno, A.M., Beynon, K.A., Murdoch, D.R., Viral etiology of acute respiratory tract infections in children presenting to hospital: role of polymerase chain reaction and demonstration of multiple infections (2004) Pediatr. Infect. Dis. J., 23, pp. 1003-1007; John, T.J., Cherian, T., Steinhoff, M.C., Simoes, E.A.F., John, M., Etiology of acute respiratory infections in children in tropical southern India (1991) Rev. Infect. Dis., 13, pp. 463-469; Kesson, A.M., Respiratory virus infections (2007) Paediatr. Respir. Rev., 8, pp. 240-248; Kim, J.O., Hodinka, R.L., Serious respiratory illness associated with rhinovirus infection in a pediatric population (1998) Clin. Diagn. Virol., 10, pp. 57-65; Lanata, C.F., Rudan, I., Boschi-Pinto, C., Tomaskovic, L., Cherian, T., Weber, M., Campbell, H., Methodological and quality issues in epidemiological studies of acute lower respiratory infections in children in developing countries (2004) Int. J. Epidemiol., 33, pp. 1362-1372; LaSala, P.R., Bufton, K.K., Ismail, N., Smith, M.B., Prospective comparison of R-mix (TM) shell vial system with direct antigen tests and conventional cell culture for respiratory virus detection (2007) J. Clin. Virol., 38, pp. 210-216; Lau, S.K.P., Yip, C.C.Y., Lin, A.W.C., Lee, R.A., So, L.Y., Lau, Y.L., Chan, K.H., Yuen, K.Y., Clinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup (2009) J. Infect. Dis., 200, pp. 1096-1103; Lee, W.-M., Kiesner, C., Pappas, T., Lee, I., Grindle, K., Jartti, T., Jakiela, B., Gern, J.E., A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants (2007) PLoS One, 2, p. e966; Lee, J., Choi, E.H., Lee, H.J., Clinical severity of respiratory adenoviral infection by serotypes in Korean children over 17 consecutive years (1991-2007) (2010) J. Clin. Virol., 49, pp. 115-120; Leland, D.S., Ginocchio, C.C., Role of cell culture for virus detection in the age of technology (2007) Clin. Microbiol. Rev., 20, pp. 49-58; Linsuwanon, P., Payungporn, S., Samransamruajkit, R., Posuwan, N., Makkoch, J., Theanboonlers, A., Poovorawan, Y., High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease (2009) J. Infect., 59, pp. 115-121; Lu, X., Erdman, D.D., Molecular typing of human adenoviruses by PCR and sequencing of a partial region of the hexon gene (2006) Arch. Virol., 151, pp. 1587-1602; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin. Microbiol. Rev., 21, pp. 716-747; Miller, E.K., Lu, X., (2007), Erdman, DeanآD., Poehling, KatherineآA., Zhu, Y., Griffin, MarieآR., Hartert, TinaآV., Anderson, LarryآJ., Weinberg, GeoffreyآA., Hall, CarolineآB., Iwane, MarikaآK., Edwards, KathrynآM., Rhinovirus-Associated Hospitalizations in Young Children; Miller, E.K., Khuri-Bulos, N., Williams, J.V., Shehabi, A.A., Faouri, S., Al Jundi, I., Chen, Q., Halasa, N.B., Human rhinovirus C associated with wheezing in hospitalised children in the Middle East (2009) J. Clin. Virol., 46, pp. 85-89; Nathan, A.M., Qiao, Y.L., Jafar, F.L., Chan, Y.-F., Eg, K.P., Thavagnanam, S., Bakar, S.A., Anne deBruyne, J., Viruses and hospitalization for childhood lower respiratory tract infection in Malaysia: a prospective study (2017) Pediatr. Respirol. Crit. Care Med., 1, p. 46; Oliveira, D.B.L., Durigon, E.L., Carvalho, A.C.L., Leal, A.L., Souza, T.S., Thomazelli, L.M., Moraes, C.T.P., Stewien, K.E., Epidemiology and genetic variability of human metapneumovirus during a 4-year-long study in Southeastern Brazil (2009) J. Med. Virol., 81, pp. 915-921; Osiowy, C., Direct detection of respiratory syncytial virus, parainfluenza virus, and adenovirus in clinical respiratory specimens by a multiplex reverse transcription-PCR assay (1998) J. Clin. Microbiol., 36, p. 3149; Papadopoulos, N.G., Moustaki, M., Tsolia, M., Bossios, A., Astra, E., Prezerakou, A., Gourgiotis, D., Kafetzis, D., Association of rhinovirus infection with increased disease severity in acute bronchiolitis (2002) Am. J. Respir. Crit. Care Med., 165, pp. 1285-1289; Paranhos-Baccalà, G., Komurian-Pradel, F., Richard, N., Vernet, G., Lina, B., Floret, D., Mixed respiratory virus infections (2008) J. Clin. Virol., 43, pp. 407-410; Peltola, V., Jartti, T., Putto-Laurila, A., Rhinovirus infections in children: a retrospective and prospective hospital-based study (2009) J. Med. Virol., 81 (1831), p. 1838; Richard, N., Komurian-Pradel, F., Javouhey, E., Perret, M., Rajoharison, A., Bagnaud, A., Billaud, G., Floret, D., The impact of dual viral infection in infants admitted to a pediatric intensive care unit associated with severe bronchiolitis (2008) Pediatr. Infect. Dis. J., 27, pp. 213-217; Rocholl, C., Gerber, K., Daly, J., Pavia, A.T., Byington, C.L., Adenoviral infections in children: the impact of rapid diagnosis (2004) Pediatrics, 113, pp. e51-56; Rovida, F., Percivalle, E., Zavattoni, M., Torsellini, M., Sarasini, A., Campanini, G., Paolucci, S., Gerna, G., Monoclonal antibodies versus reverse transcription PCR for detection of respiratory viruses in a patient population with respiratory tract infections admitted to hospital (2005) J. Med. Virol., 75, pp. 336-347; Rudan, I., Boschi-Pinto, C., Biloglav, Z., Mulholland, K., Campbell, H., Epidemiology and etiology of childhood pneumonia (2008) Bull. World Health Organ., 86, pp. 408-416; Tan, B.H., Loo, L.H., Lim, E.A.S., Seah, S.L.K., Lin, R.T.P., Tee, N.W.S., Sugrue, R.J., Human rhinovirus group C in hospitalized children, Singapore (2009) Emerging Infectious Diseases, 15, p. 1318; Tsolia, M.N., Psarras, S., Bossios, A., Audi, H., Paldanius, M., Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections (2004) Clin. Infect. Dis., 39, pp. 681-686; van de Pol, A., Wolfs, T., Jansen, N., van Loon, A., Rossen, J., Diagnostic value of real-time polymerase chain reaction to detect viruses in young children admitted to the paediatric intensive care unit with lower respiratory tract infection (2006) Crit. Care, 10, p. R61; van den Hoogen, B.G., van Doornum, G., Fockens, J.C., Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients (2003) J. Infect. Dis., 188, pp. 1571-1577; Videla, C., Carballal, G., Kajon, A., Genomic analysis of adenovirus isolated from Argentinian children with acute lower respiratory infections (1999) J. Clin. Virol., 14, pp. 67-71; Weber, M., Hartley, J., Ashworth, M., Malone, M., Sebire, N., Virological investigations in sudden unexpected deaths in infancy (SUDI) (1998) Forensic Sci. Med. Pathol., 6, pp. 261-267; Weinberg, G.A., Erdman, D.D., Edwards, K.M., Hall, C.B., Walker, F.J., Griffin, M.R., Schwartz, B., Superiority of reverse transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children (2004) J. Infect. Dis., 189, pp. 706-710; WHO, Acute Respiratory Infections: Influenza (Update September 2009) (2009), pp. 1-7; Williams, J.V., Tollefson, S.J., Heymann, P.W., Human metapneumovirus infection in children hospitalized for wheezing (2005) J. Allergy Clin. Immunol., 115, pp. 1311-1312; Wolf, D.G., Greenberg, D., Kalkstein, D., Comparison of human metapneumovirus, respiratory syncytial virus and influenza a virus lower respiratory tract infections in hospitalized young children (2006) Pediatr. Infect. Dis. J., 25; Woo, P.C., Chiu, S.S., Seto, W.H., Peiris, M., Cost-effectiveness of rapid diagnosis of viral respiratory tract infections in pediatric patients (1997) J. Clin. Microbiol., 35, p. 1579; Zamberi, S., Zulkifli, I., Ilina, I., Respiratory viruses detected in hospitalised paediatric patients with respiratory infections (2003) Med. J. Malaysia, 58, p. 681","jalilian, F.A.; Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical SciencesIran; email: azizifarid@gmail.com",,"Elsevier B.V.",01660934,,JVMED,"30910688","English","J. Virol. Methods",Article,"Final",Open Access,Scopus,2-s2.0-85063759469 "Al-Ahmadi K., Alahmadi S., Al-Zahrani A.","24066132400;57208393587;23487960500;","Spatiotemporal clustering of middle east respiratory syndrome coronavirus (MERS-CoV) incidence in Saudi Arabia, 2012–2019",2019,"International Journal of Environmental Research and Public Health","16","14", 2520,"","",,,"10.3390/ijerph16142520","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070019790&doi=10.3390%2fijerph16142520&partnerID=40&md5=bc7ccc30e0e2f06d669bbd84d3409cf7","King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia; King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia","Al-Ahmadi, K., King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia; Alahmadi, S., King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia; Al-Zahrani, A., King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia","Middle East respiratory syndrome coronavirus (MERS-CoV) is a great public health concern globally. Although 83% of the globally confirmed cases have emerged in Saudi Arabia, the spatiotemporal clustering of MERS-CoV incidence has not been investigated. This study analysed the spatiotemporal patterns and clusters of laboratory-confirmed MERS-CoV cases reported in Saudi Arabia between June 2012 and March 2019. Temporal, seasonal, spatial and spatiotemporal cluster analyses were performed using Kulldorff’s spatial scan statistics to determine the time period and geographical areas with the highest MERS-CoV infection risk. A strongly significant temporal cluster for MERS-CoV infection risk was identified between April 5 and May 24, 2014. Most MERS-CoV infections occurred during the spring season (41.88%), with April and May showing significant seasonal clusters. Wadi Addawasir showed a high-risk spatial cluster for MERS-CoV infection. The most likely high-risk MERS-CoV annual spatiotemporal clusters were identified for a group of cities (n = 10) in Riyadh province between 2014 and 2016. A monthly spatiotemporal cluster included Jeddah, Makkah and Taif cities, with the most likely high-risk MERS-CoV infection cluster occurring between April and May 2014. Significant spatiotemporal clusters of MERS-CoV incidence were identified in Saudi Arabia. The findings are relevant to control the spread of the disease. This study provides preliminary risk assessments for the further investigation of the environmental risk factors associated with MERS-CoV clusters. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Epidemiology; GIS; Middle East respiratory syndrome; Outbreak; Saudi Arabia; Spatiotemporal cluster","disease incidence; disease spread; epidemiology; GIS; respiratory disease; spatiotemporal analysis; Article; city; cluster analysis; Coronavirinae; environmental factor; epidemic; geographic distribution; human; incidence; infection control; infection risk; major clinical study; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; retrospective study; risk assessment; Saudi Arabia; seasonal variation; spatiotemporal analysis; Coronavirus infection; incidence; Middle East respiratory syndrome coronavirus; season; Saudi Arabia; Coronavirus; Cluster Analysis; Coronavirus Infections; Humans; Incidence; Middle East Respiratory Syndrome Coronavirus; Retrospective Studies; Saudi Arabia; Seasons; Spatio-Temporal Analysis","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820; Emergencies: Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , https://www.who.int/emergencies/mers-cov/en/, accessed on 27 April 2019; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS Coronavirus (2014) N. Engl. J. Med, 370, pp. 2499-2505; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Assiri, A., Al-Tawfiq, J.A., Community case clusters of middle east respiratory syndrome Coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A descriptive genomic study (2014) Int. J. Infect. Dis, 23, pp. 63-68; Sikkema, R.S., Farag, E.A.B.A., Islam, M., Atta, M., Reusken, C.B.E.M., Al-Hajri, M.M., Koopmans, M.P.G., Global status of middle east respiratory syndrome Coronavirus in dromedary camels: A systematic review (2019) Epidemiol. Infect, 147; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Lattwein, E., Presence of middle east respiratory syndrome Coronavirus antibodies in Saudi Arabia: A nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis, 15, pp. 559-564; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., Bokhari, A., Boudjelal, M., High prevalence of MERS-CoV infection in Camel workers in Saudi Arabia (2018) Mbio, 9, pp. e01985-e01e18; Khudhair, A., Killerby, M.E., Al Mulla, M., Abou Elkheir, K., Ternanni, W., Bandar, Z., Weber, S., Al Muhairi, S., Risk factors for MERS-CoV seropositivity among animal market and slaughterhouse workers, Abu Dhabi, United Arab Emirates, 2014–2017 (2019) Emerg. Infect. Dis., 25, p. 927; Kayali, G., Peiris, M., A more detailed picture of the epidemiology of middle east respiratory syndrome Coronavirus (2015) Lancet Infect. Dis, 15, pp. 495-497; Faostat, , http://www.fao.org/faostat/en/#data, accessed on 19 June 2019; Faye, B., Camel meat in the world (2013) Camel Meat and Meat Products, pp. 7-16. , Kadim, I., Maghoub, O., Faye, B., Farouk, M., Eds.; CABI: Oxfordshire, UK; Babiker, I.A., Peri-urban Camel (Camelus dromendarius) Production System in Saudi Arabia: A note (2014) J. Anim. Res, 4, pp. 53-57; https://Www.Mewa.Gov.Sa/Ar/Pages/Default.Aspx, accessed on 19 June 2019; Numbering and Tracking Camels Electronically, , https://www.spa.gov.sa/viewstory.php?lang=ar&newsid=1936043; Drosten, C., Meyer, B., Müller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Madani, H., Lattwein, E., Transmission of MERS-Coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle east respiratory syndrome Coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect. Dis, 18, pp. e217-e227; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of middle east respiratory syndrome Coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated middle east respiratory syndrome Coronavirus infections (2013) N. Engl. J. Med, 369, pp. 1761-1762; Alenazi, T.H., Al Arbash, H., El-Saed, A., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y.M., Al Johani, S.M., Balkhy, H.H., Identified transmission dynamics of middle east respiratory syndrome Coronavirus infection during an outbreak: Implications of an overcrowded emergency department (2017) Clin. Infect. Dis, 65, pp. 675-679; Hastings, D., Tokars, J., Aziz, I., Alkhaldi, K., Bensadek, A., Alraddadi, B., Jokhdar, H., Garout, M.A., Outbreak of middle east respiratory syndrome at tertiary care hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., (22), pp. 794-801; Arwady, M.A., Alraddadi, B., Basler, C., Azhar, E.I., Abuelzein, E., Sindy, A.I., Sadiq, B.M., Banjar, A., Middle east respiratory syndrome Coronavirus transmission in extended family, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 1395-1402; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the middle east respiratory syndrome Coronavirus (MERS-CoV) across the Gulf corporation council countries: Four years update (2017) Plos ONE, 12; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk factors for primary middle east respiratory syndrome Coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 49-55; Alqahtani, F.Y., Aleanizy, F.S., Ali El-Hadi Mohamed, R., Alanazi, M.S., Mohamed, N., Alrasheed, M.M., Abanmy, N., Alhawassi, T., Prevalence of comorbidities in cases of middle east respiratory syndrome Coronavirus: A retrospective study (2018) Epidemiol. Infect, 147; Congdon, P., Spatiotemporal frameworks for infectious disease diffusion and epidemiology (2016) Int. J. Environ. Res. Public Health, 13, p. 1261; Cromley, E.K., GIS and disease (2003) Annu. Rev. Public Health, 24, pp. 7-24; Ruankaew, N., GIS and epidemiology (2005) J. Med. Assoc. Thail, 88, pp. 1735-1738; Smith, C.M., Le Comber, S.C., Fry, H., Bull, M., Leach, S., Hayward, A.C., Spatial methods for infectious disease outbreak investigations: Systematic literature review (2015) Eurosurveillance, p. 20; Reeves, T., Samy, A.M., Peterson, A.T., MERS-CoV geography and ecology in the middle east: Analyses of reported camel exposures and a preliminary risk map (2015) BMC Res. Notes, 8, p. 801; Adegboye, O.A., Gayawan, E., Hanna, F., Spatial modelling of contribution of individual level risk factors for mortality from middle east respiratory syndrome Coronavirus in the Arabian Peninsula (2017) Plos ONE, 12; Gikonyo, S., Kimani, T., Matere, J., Kimutai, J., Kiambi, S.G., Bitek, A.O., Ngeiywa, K.J.Z.J., Morzaria, S., Mapping potential amplification and transmission hotspots for MERS-CoV, Kenya (2018) Ecohealth, 15, pp. 372-387; Poletto, C., Colizza, V., Boelle, P.Y., Quantifying spatiotemporal heterogeneity of MERS-CoV transmission in the middle east region: A combined modelling approach (2016) Epidemics, 15, pp. 1-9; Command and Control Center, , https://www.moh.gov.sa/en/CCC/Pages/default.aspx, accessed on 30 April 2019; Emergencies Preparedness, Response, , https://www.who.int/csr/don/archive/year/en, Disease Outbreaks by Year, accessed on 30 April 2019; Middle East Respiratory Syndrome Coronavirus; Guidelines for Healthcare Professionals, , https://www.moh.gov.sa/CCC/healthp/regulations/Documents/MERS-CoV%20Guidelines%20for%20Healthcare%20Professionals%20-%20May%202018%20-%20v5.1%20%281%29.pdf, Version 5.1, accessed on 17 June 2019; Lawson, A.B., (2009) Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, , CRC: Boca Raton, FL, USA; Software for Exploratory Spatial Data Analysis (ESDA), , https://geodacenter.github.io/download.html, accessed on 28 September 2018; The General Population and Housing Census, , https://www.stats.gov.sa/en/13, accessed on 13 February 2018; Software for the Spatial and Space-Time Scan Statistics Information Management Services, , https://www.satscan.org/, accessed on 5 January 2018; Kulldorff, M., Satscantm User Guide for Version 9.6, , https://www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download, accessed on 25 March 2018; Faye, B., Bonnet, P., Current situation and perspectives (2012) Proceedings of the 3Rd ISOCARD Conference, pp. 2-15. , Camel sciences and economy in the world, 29 January–1 February 2012, Johnson, E., Mahgoub, O., Eljack, A., Kadim, I., Bobade, P., Tageldin, M., Al-Marzooqi, W., Ahmed, Y., Eds.; Sultan Qaboos University: Mascate, Oman; Gaili, E.S.E., Al-Eknah, M., Mansour, H., Systems of camel management in Saudi Arabia. (2000) Arab J. Agric. Res, 116, pp. 148-156; Almutairi, S.E., Boujenane, I., Musaad, A., Awad-Acharari, F., Genetic and nongenetic effects for milk yield and growth traits in Saudi camels (2010) Trop. Anim. Health Prod, 42, pp. 1845-1853; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I.A., Dalab, A.H.S., Al-Busadah, K.A.S., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013–2014 (2015) Emerg. Infect. Dis., 21, pp. 1153-1158; Chen, X., Chughtai, A.A., Dyda, A., Macintyre, C.R., Comparative epidemiology of middle east respiratory syndrome Coronavirus (MERS-CoV) in Saudi Arabia and South Korea (2017) Emerg. Microbes Infect., 6, p. e51; Eifan, S.A., Nour, I., Hanif, A., Zamzam, A.M.M., Aljohani, S.M., A pandemic risk assessment of middle east respiratory syndrome Coronavirus (MERS-CoV) in Saudi Arabia (2017) Saudi J. Biol. Sci, 24, pp. 1631-1638; Nassar, M.S., Bakhrebah, M.A., Meo, S.A., Alsuabeyl, M.S., Zaher, W.A., Global seasonal occurrence of middle east respiratory syndrome Coronavirus (MERS-CoV) infection (2018) Eur. Rev. Med. Pharmacol. Sci, 22, pp. 3913-3918; Sharif-Yakan, A., Kanj, S.S., Emergence of MERS-CoV in the middle east: Origins, transmission, treatment, and perspectives (2014) Plos Pathog, 10; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) Lancet, 383, pp. 1869-1871; Kasem, S., Qasim, I., Al-Doweriej, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Saleh, M., Hussien, R., The prevalence of middle east respiratory syndrome Coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons (2018) J. Infect. Public Health, 11, pp. 884-888; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of middle east respiratory syndrome Coronavirus: Estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; He, D., Chiu, A.P., Lin, Q., Cowling, B.J., Differences in the seasonality of middle east respiratory syndrome Coronavirus and influenza in the middle east (2015) Int. J. Infect. Dis, 40, pp. 15-16; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Travel Med. Infect. Dis., 23, pp. 6-13; Assiri, A.M., Biggs, H.M., Abedi, G.R., Lu, X., Saeed, A.B., Abdalla, O., Mohammed, M., Alhakeem, R.F., Increase in middle east respiratory syndrome-Coronavirus cases in Saudi Arabia linked to hospital outbreak with continued circulation of recombinant virus, 1 July–31 August 2015. (2016) Open Forum Infect, , 3, ofw165; Emergencies Preparedness, Response: Disease Outbreak News: Middle East Respiratory Syndrome Coronavirus (MERS-CoV)—The Kingdom of Saudi Arabia, , https://www.who.int/csr/don/24-April-2019-mers-saudi-arabia/en/, accessed on 24 April 2019; Weekly Monitor, Mers-Cov, , https://www.moh.gov.sa/en/CCC/Documents/Volume-2-Issue-11-Tuesday-March-15-2016.pdf, 15 March 2016, accessed on 20 April 2018; WHO Mers-Cov Global Summary and Assessment of Risk, , https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, accessed on 25 August 2018","Alahmadi, S.; King Abdulaziz City for Science and Technology, P.O. Box 6086, Saudi Arabia; email: salahmdi@kacst.edu.sa",,"MDPI AG",16617827,,,"31311073","English","Int. J. Environ. Res. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85070019790 "Markotter W., Geldenhuys M., Van Vuren P.J., Kemp A., Mortlock M., Mudakikwa A., Nel L., Nziza J., Paweska J., Weyer J.","12752757200;55788436500;57196080513;57194513165;56866315900;6507684167;7004259830;57202235320;7004330281;23991418800;","Paramyxo- And coronaviruses in Rwandan bats",2019,"Tropical Medicine and Infectious Disease","4","3", 99,"","",,1,"10.3390/tropicalmed4030099","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072122045&doi=10.3390%2ftropicalmed4030099&partnerID=40&md5=5dd31aee4d2c239e5fc9526038c0c2e7","Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa; Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg, 2131, South Africa; Rwanda Development Board, Department of tourism and Conservation, P.O Box 6239, Kigali, Rwanda; Centre for Viral Zoonoses, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa; Mountain Gorilla Veterinary Project, P.O Box 115, Musanze, Rwanda","Markotter, W., Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa; Geldenhuys, M., Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa; Van Vuren, P.J., Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa, Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg, 2131, South Africa; Kemp, A., Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg, 2131, South Africa; Mortlock, M., Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa; Mudakikwa, A., Rwanda Development Board, Department of tourism and Conservation, P.O Box 6239, Kigali, Rwanda; Nel, L., Centre for Viral Zoonoses, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa; Nziza, J., Mountain Gorilla Veterinary Project, P.O Box 115, Musanze, Rwanda; Paweska, J., Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa, Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg, 2131, South Africa; Weyer, J., Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, 0001, South Africa, Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg, 2131, South Africa","A high diversity of corona- and paramyxoviruses have been detected in different bat species at study sites worldwide, including Africa, however no biosurveillance studies from Rwanda have been reported. In this study, samples from bats collected from caves in Ruhengeri, Rwanda, were tested for the presence of corona- and paramyxoviral RNA using reverse transcription PCR assays. Positive results were further characterized by DNA sequencing and phylogenetic analysis. In addition to morphological identification of bat species, we also did molecular confirmation of species identities, contributing to the known genetic database available for African bat species. We detected a novel Betacoronavirus in two Geoffroy's horseshoe bats (Rhinolophus clivosus) bats. We also detected several different paramyxoviral species from various insectivorous bats. One of these viral species was found to be homologous to the genomes of viruses belonging to the Jeilongvirus genus. Additionally, a Henipavirus-related sequence was detected in an Egyptian rousette fruit bat (Rousettus aegyptiacus). These results expand on the known diversity of corona- and paramyxoviruses and their geographical distribution in Africa. © 2019 by the authors.","Barcoding; Bat; Caves; Coronavirus; Henipavirus; Jeilongvirus; Paramyxovirus; Rwanda; Surveillance","virus RNA; Africa; animal tissue; Article; bat; Betacoronavirus; controlled study; Coronavirinae; DNA sequencing; Epomophorus; flying fox; genus; geographic distribution; Henipavirus; Hipposideros ruber; host; Jeilongvirus; nonhuman; Paramyxoviridae; phylogeny; reverse transcription polymerase chain reaction; Rhinolophus; Rhinolophus clivosus; Rousettus aegyptiacus; Rwanda; species; virus genome","Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650; Olival, K.J., Hayman, D.T.S., Filoviruses in bats: Current knowledge and future directions (2014) Viruses, 6, pp. 1759-1788; Drexler, J.F., Corman, V.M., Müller, M.A., Maganga, G.D., Vallo, P., Binger, T., Gloza-Rausch, F., Seebens, A., Bats host major mammalian paramyxoviruses (2012) Nat. Commun., 3, pp. 1-12; Markotter, W., Coertse, J., Bat lyssaviruses (2018) Rev. Sci. Tech. OIE, 37, pp. 385-400; Wong, A.C.P., Li, X., Lau, S.K.P., Woo, P.C.Y., Global epidemiology of bat coronaviruses (2019) Viruses, 11, p. 174; Chan, E.H., Brewer, T.F., Madoff, L.C., Pollack, M.P., Sonricker, A.L., Keller, M., Freifeld, C.C., Brownstein, J.S., Global capacity for emerging infectious disease detection (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 21701-21706; Daszak, P., Cunningham, A.A., Hyatt, A.D., Emerging infectious diseases of wildlife- Threats to biodiversity and human health (2000) Science, 287, pp. 443-449; Emperador, D.M., Mazzola, L.T., Wonderly Trainor, B., Chua, A., Kelly-Cirino, C., Diagnostics for filovirus detection: Impact of recent outbreaks on the diagnostic landscape (2019) BMJ Glob. Heal., 4; Amman, B.R., Albarino, C.G., Bird, B.H., Nyakarahuka, L., Sealy, T.K., Balinandi, S., Schuh, A.J., Jones, M.E.B., A recently discovered pathogenic paramyxovirus, Sosuga virus, is present in Rousettus aegyptiacus fruit bats at multiple locations in Uganda (2015) J. Wildl. Dis., 51, pp. 774-779; Peel, A.J., Sargan, D.R., Baker, K.S., Hayman, D.T.S., Barr, J.A., Crameri, G., Suu-Ire, R., Wang, L.F., Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses (2013) Nat. Commun., 4, pp. 1-14; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Hicks, A.L., Daszak, P., Global patterns in coronavirus diversity (2017) Virus Evol, 3, pp. 1-15; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-259; Cui, J., Li, F., Shi, Z.L., Origin and evolution of pathogenic coronaviruses (2019) Nat. Rev. Microbiol., 17, pp. 181-192; Leopardi, S., Holmes, E.C., Gastaldelli, M., Tassoni, L., Priori, P., Scaravelli, D., Zamperin, G., De Benedictis, P., Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses (2018) Infect. Genet. Evol., 58, pp. 279-289; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Yordanov, S., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Hu, B., Zeng, L.P., Yang, X.L., Ge, X.Y., Zhang, W., Li, B., Xie, J.Z., Wang, N., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog, 13, pp. 1-28; Ge, X., Li, J., Yang, X., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and Characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Yang, X.-L., Hu, B., Wang, B., Wang, M.-N., Zhang, Q., Zhang, W., Wu, L.-J., Daszak, P., Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of Severe Acute Respiratory Syndrome coronavirus (2016) J. Virol., 90, pp. 3253-3256; Tong, S., Conrardy, C., Ruone, S., Kuzmin, I.V., Guo, X., Tao, Y., Niezgoda, M., Breiman, R.F., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg. Infect. Dis., 15, pp. 482-485; Pfefferle, S., Oppong, S., Drexler, J.F., Gloza-Rausch, F., Ipsen, A., Seebens, A., Müller, M.A., Adu-Sarkodie, Y., Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana (2009) Emerg. Infect. Dis., 15, pp. 1377-1384; Quan, P.-L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Hutchison, S.K., Niezgoda, M., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) MBio, 1, pp. e0020810-e0020818; Geldenhuys, M., Weyer, J., Nel, L.H., Markotter, W., Coronaviruses in South African bats (2013) Vector Borne Zoonotic Dis, 13, pp. 516-519; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Preiser, W., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg. Infect. Dis., 19, pp. 1697-1699; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J. Virol., 91, pp. e01953-e01956; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8, pp. 1-13; Geldenhuys, M., Mortlock, M., Weyer, J., Bezuidt, O., Seamark, E., Kearney, T., Gleasner, C., Markotter, W., A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa (2018) PLoS ONE, 13; Virtue, E.R., Marsh, G.A., Wang, L.-F., Paramyxoviruses infecting humans: The old, the new and the unknown (2009) Future Microbiol, 4, pp. 537-554; ICTV Virus Taxonomy: 2018b Release, , https://talk.ictvonline.org/taxonomy/, online: accessed on 1 May 2019; Murray, K., Selleck, P., Hooper, P., Hyatt, A., Gould, A., Gleeson, L., Westbury, H., Rodwell, B., A morbillivirus that caused fatal disease in horses and humans (1995) Science, 268, pp. 94-97; Chua, K.B., Goh, K.J., Wong, K.T., Kamarulzaman, A., Seow, P., Tan, K., Ksiazek, T.G., Lam, S.K., Fatal encephalitis due to Nipah virus among pig farmers in Malaysia (1999) Lancet, 354, pp. 1257-1259; Albariño, C.G., Foltzer, M., Towner, J.S., Rowe, L.A., Campbell, S., Jaramillo, C.M., Bird, B.H., Rota, P., Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012 (2014) Emerg. Infect. Dis., 20; Halpin, K., Young, P.L., Field, H.E., Mackenzie, J.S., Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus (2000) J. Gen. Virol., 81, pp. 1927-1932; Chua, K.B., Koh, C.L., Hooi, P.S., Wee, K.F., Khong, J.H., Chua, B.H., Chan, Y.P., Lam, S.K., Isolation of Nipah virus from Malaysian Island flying-foxes (2002) Microbes Infect, 4, pp. 145-151; Baker, K.S., Todd, S., Marsh, G., Wood, J.L.N., Wang, L.F., Murcia, P.R., Cunningham, A.A., Co-circulation of diverse paramyxoviruses in an urban African fruit bat population (2012) J. Gen. Virol., 93, pp. 850-856; Mortlock, M., Kuzmin, I.V., Weyer, J., Gilbert, A.T., Agwanda, B., Rupprecht, C.E., Nel, L.H., Markotter, W., Novel paramyxoviruses in bats from sub-Saharan Africa, 2007-2012 (2015) Emerg. Infect. Dis., 21, pp. 1840-1843; Mortlock, M., Dietrich, M., Weyer, J., Paweska, J.T., Markotter, W., Co-circulation and excretion dynamics of diverse rubula-and related viruses in Egyptian rousette bats from South Africa (2019) Viruses, 11, p. 37; Van Cakenberghe, V., Gembu Tungaluna, G.-C., Musaba Akawa, P., Seamark, E., Verheyen, E., The bats of the Congo and of Rwanda and Burundi revisited (Mammalia: Chiroptera) (2017) Eur. J. Taxon., pp. 1-327; Greenberg, J.A., Dimenna, M.A., Hanelt, B., Hofkin, B.V., Analysis of post-blood meal flight distances in mosquitoes utilizing zoo animal blood meals (2012) J. Vector Ecol., 37, pp. 83-89; Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates (1994) Mol. Mar. Biol. Biotechnol., 3, pp. 294-299; Lassen, S.B., Nielsen, S.A., Skovgård, H., Kristensen, M., Molecular identification of bloodmeals from biting midges (Diptera: Ceratopogonidae: Culicoides latreille) in Denmark (2011) Parasitol. Res., 108, pp. 823-829; Tong, S., Chern, S.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) J. Clin. Microbiol., 46, pp. 2652-2658; Hall, T., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and high-performance computing (2015) Nat. Methods, 9, pp. 6-9; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUTI and the BEAST 1.7 (2012) Mol. Biol. Evol., 29, pp. 1969-1973; Miller, M.A., Pfeiffer, W., Schwartz, T., Creating the CIPRES science gateway for inference of large phylogenetic trees (2010) Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1-8. , New Orleans, LA, USA, 14 November; Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., Posterior summarization in Bayesian phylogenetics using tracer 1.7 (2018) Syst. Biol., 67, pp. 901-904; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., Mega X: Molecular evolutionary genetics analysis across computing platforms (2018) Mol. Biol. Evol., 35, pp. 1547-1549; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Hu, Z., Zhang, H., Zhang, S., Bats are natural reservoirs of SARS-Like coronaviruses (2005) Science, 310, pp. 676-679; Mélade, J., Wieseke, N., Ramasindrazana, B., Flores, O., Lagadec, E., Gomard, Y., Goodman, S.M., Pascalis, H., An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism (2016) Sci. Rep., 6, pp. 1-12; Willoughby, A.R., Phelps, K.L., Phelps, K.L., Olival, K.J., A comparative analysis of viral richness and viral sharing in cave-roosting bats (2017) Diversity, 9, p. 35; Kurth, A., Kohl, C., Brinkmann, A., Ebinger, A., Harper, J.A., Wang, L.-F., Mühldorfer, K., Wibbelt, G., Novel paramyxoviruses in free-ranging European bats (2012) PLoS ONE, 7; Vidgen, M.E., De Jong, C., Rose, K., Hall, J., Field, H.E., Smith, C.S., Novel paramyxoviruses in Australian flying-fox populations support host-virus coevolution (2015) J. Gen. Virol., 96, pp. 1619-1625; Wilkinson, D.A., Temmam, S., Lebarbenchon, C., Lagadec, E., Chotte, J., Guillebaud, J., Ramasindrazana, B., Goodman, S.M., Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean (2012) Virus Res, 170, pp. 159-163","Markotter, W.; Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of PretoriaSouth Africa; email: wanda.markotter@up.ac.za",,"MDPI AG",24146366,,,,"English","Trop. Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85072122045 "Kim Y.-J., Lee E.S., Lee Y.-S.","35280110200;57208755324;35741096500;","High mortality from viral pneumonia in patients with cancer",2019,"Infectious Diseases","51","7",,"502","509",,1,"10.1080/23744235.2019.1592217","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065697392&doi=10.1080%2f23744235.2019.1592217&partnerID=40&md5=d1991bfbbfd3f70af6963701c630a140","Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Emergency Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea","Kim, Y.-J., Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Lee, E.S., Department of Emergency Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea; Lee, Y.-S., Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea","Background: With the advancement of diagnostic methods, a viral infection is increasingly recognized in adult patients with pneumonia and the outcomes can be fatal especially in high-risk patients. We aimed to examine the clinical characteristics of adults with viral pneumonia and also to determine the associated factors with short-term mortality in those patients. Methods: Adult patients who were diagnosed as viral pneumonia between January 2010 and December 2015 were consecutively included. Data were collected through reviews of electronic medical records. The primary outcome was 30-day mortality. Results: A total of 1503 patients with viral pneumonia were included with a mean age of 66.0 years and male predominance in 60%. The most common viral pathogen was rhinovirus, followed by influenza virus and parainfluenza virus (PIV). Viral-bacterial co-infection and multiple viral infections were found in 24.5% and 5.2%, respectively. The 30-day mortality was 7.1% in total patients and it was not different according to viral pathogens. However, cancer patients had higher mortality than non-cancer patients for the PIV (12.3% vs. 3.8%, p <.05) and coronavirus (24.4% vs. 3.0%, p <.01) infections. On the multivariate analysis, old age (≥65) (OR 1.66, 95% CI: 1.06–2.60), viral-bacterial co-infection (OR 1.61, 95% CI: 1.05–2.48), malignancy (OR 2.26, 95% CI: 1.50–3.40), and shock at the initial presentation (OR 2.12, 95% CI: 1.03–4.37) were significantly associated with mortality. Conclusions: The mortality from viral pneumonia was high in adult patients. Old age, viral-bacterial co-infection, underlying malignancy, and initial shock were independent predictors of mortality. © 2019, © 2019 Society for Scandinavian Journal of Infectious Diseases.","cancer; outcome; Viral pneumonia","aged; Article; electronic medical record; female; human; influenza; major clinical study; male; malignant neoplasm; mixed infection; mortality rate; observational study; Parainfluenza virus infection; patient risk; retrospective study; Rhinovirus infection; risk factor; seasonal variation; survival rate; trend study; virus pneumonia; adolescent; adult; bacterial pneumonia; bacterium; classification; complication; isolation and purification; middle aged; mortality; neoplasm; pathology; survival analysis; very elderly; virus; virus pneumonia; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Bacteria; Coinfection; Female; Humans; Male; Middle Aged; Neoplasms; Pneumonia, Bacterial; Pneumonia, Viral; Retrospective Studies; Survival Analysis; Viruses; Young Adult","Pfuntner, A., Wier, L.M., Stocks, C., (2006), Most Frequent Conditions U.S. Hospitals, 2011: Statistical Brief #162. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD; Jain, S., Self, W.H., Wunderink, R.G., Community-acquired pneumonia requiring hospitalization among US adults (2015) N Engl J Med, 373, pp. 415-427; Jain, S., Williams, D.J., Arnold, S.R., Community-acquired pneumonia requiring hospitalization among US children (2015) N Engl J Med, 372, pp. 835-845; Ieven, M., Coenen, S., Loens, K., Aetiology of lower respiratory tract infection in adults in primary care: a prospective study in 11 European countries (2018) Clin Microbiol Infect, , 24:1158–1163; Ruuskanen, O., Lahti, E., Jennings, L.C., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; Lim, W.S., van der Eerden, M.M., Laing, R., Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study (2003) Thorax, 58, pp. 377-382; Crotty, M.P., Meyers, S., Hampton, N., Epidemiology, co-infections, and outcomes of viral pneumonia in adults: an observational cohort study (2015) Medicine (Baltimore), 94, p. e2332; Falsey, A.R., Hennessey, P.A., Formica, M.A., Respiratory syncytial virus infection in elderly and high-risk adults (2005) N Engl J Med, 352, pp. 1749-1759; Katsurada, N., Suzuki, M., Aoshima, M., The impact of virus infections on pneumonia mortality is complex in adults: a prospective multicentre observational study (2017) BMC Infect Dis, 17, p. 755; Kwon, Y.S., Park, S.H., Kim, M.A., Risk of mortality associated with respiratory syncytial virus and influenza infection in adults (2017) BMC Infect Dis, 17, p. 785; Lee, N., Lui, G.C., Wong, K.T., High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections (2013) Clin Infect Dis, 57, pp. 1069-1077; Schnell, D., Mayaux, J., de Bazelaire, C., Risk factors for pneumonia in immunocompromised patients with influenza (2010) Respir Med, 104, pp. 1050-1056; Waghmare, A., Campbell, A.P., Xie, H., Respiratory syncytial virus lower respiratory disease in hematopoietic cell transplant recipients: viral RNA detection in blood, antiviral treatment, and clinical outcomes (2013) Clin Infect Dis, 57, pp. 1731-1741; Chemaly, R.F., Vigil, K.J., Saad, M., A multicenter study of pandemic influenza A (H1N1) infection in patients with solid tumors in 3 countries: early therapy improves outcomes (2012) Cancer, 118, pp. 4627-4633; von Lilienfeld-Toal, M., Berger, A., Christopeit, M., Community acquired respiratory virus infections in cancer patients–Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for Haematology and Medical Oncology (2016) Eur J Cancer, 67, pp. 200-212; Jennings, L.C., Anderson, T.P., Beynon, K.A., Incidence and characteristics of viral community-acquired pneumonia in adults (2008) Thorax, 63, pp. 42-48; Metersky, M.L., Masterton, R.G., Lode, H., Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza (2012) Int J Infect Dis, 16, pp. e321-e331; Bakaletz, L.O., Viral-bacterial co-infections in the respiratory tract (2017) Curr Opin Microbiol, 35, pp. 30-35; Bellinghausen, C., Rohde, G.G., Savelkoul, P.H., Viral-bacterial interactions in the respiratory tract (2016) J Gen Virol, 97, pp. 3089-3102; Ruuskanen, O., Jarvinen, A., What is the real role of respiratory viruses in severe community-acquired pneumonia? (2014) Clin Infect Dis, 59, pp. 71-73; Cawcutt, K., Kalil, A.C., Pneumonia with bacterial and viral coinfection (2017) Curr Opin Crit Care, 23, pp. 385-390; Martin-Loeches, I., Schultz, J.M., Vincent, J.L., Increased incidence of co-infection in critically ill patients with influenza (2017) Intensive Care Med, 43, pp. 48-58; Miao, X.Y., Ji, X.B., Lu, H.W., Distribution of major pathogens from sputum and bronchoalveolar lavage fluid in patients with noncystic fibrosis bronchiectasis: a systematic review (2015) Chin Med J (Engl), 128, pp. 2792-2797; Jartti, T., Lehtinen, P., Vuorinen, T., Persistence of rhinovirus and enterovirus RNA after acute respiratory illness in children (2004) J Med Virol, 72, pp. 695-699; Jain, S., Self, W.H., Wunderink, R.G., Community-acquired pneumonia requiring hospitalization (2015) N Engl J Med, 373, p. 2382; Hall, C.B., Respiratory syncytial virus and parainfluenza virus (2001) N Engl J Med, 344, pp. 1917-1928; Kakiuchi, S., Tsuji, M., Nishimura, H., Human parainfluenza virus type 3 infections in hematopoietic stem cell transplantation patients: the mode of nosocomial infections and the prognosis (2018) Jpn J Infect Dis, , 71:109–115; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin Infect Dis, 64, pp. 1532-1539; Hermann, B., Lehners, N., Brodhun, M., Influenza virus infections in patients with malignancies–characteristics and outcome of the season 2014/15. A survey conducted by the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO) (2017) Eur J Clin Microbiol Infect Dis, 36, pp. 565-573","Lee, Y.-S.; Department of Emergency Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43 gil, Songpa-gu, South Korea; email: ysdoc@amc.seoul.kr",,"Taylor and Francis Ltd.",23744235,,,"31081422","English","Infect. Dis.",Article,"Final",,Scopus,2-s2.0-85065697392 "Jia Z., Yan L., Ren Z., Wu L., Wang J., Guo J., Zheng L., Ming Z., Zhang L., Lou Z., Rao Z.","57201518411;55461189200;57210836685;57209564081;57211090996;57210062435;57210061321;57193347594;57204450684;7101735895;55891591900;","Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis",2019,"Nucleic acids research","47","12",,"6538","6550",,4,"10.1093/nar/gkz409","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069295046&doi=10.1093%2fnar%2fgkz409&partnerID=40&md5=deb507619be42ae877419230f59b0148","Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300353, China; Shanghai Institute for Advanced Immunochemical Studies and iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Protein Chemistry Facility, Center for Biomedical Analysis of Tsinghua University, Beijing, 100084, China; State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China","Jia, Z., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Yan, L., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Ren, Z., State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300353, China; Wu, L., Shanghai Institute for Advanced Immunochemical Studies and iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; Wang, J., State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Guo, J., Protein Chemistry Facility, Center for Biomedical Analysis of Tsinghua University, Beijing, 100084, China; Zheng, L., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Ming, Z., State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China; Zhang, L., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Lou, Z., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Rao, Z., Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300353, China, Shanghai Institute for Advanced Immunochemical Studies and iHuman Institute, ShanghaiTech University, Shanghai, 201210, China","To date, an effective therapeutic treatment that confers strong attenuation toward coronaviruses (CoVs) remains elusive. Of all the potential drug targets, the helicase of CoVs is considered to be one of the most important. Here, we first present the structure of the full-length Nsp13 helicase of SARS-CoV (SARS-Nsp13) and investigate the structural coordination of its five domains and how these contribute to its translocation and unwinding activity. A translocation model is proposed for the Upf1-like helicase members according to three different structural conditions in solution characterized through H/D exchange assay, including substrate state (SARS-Nsp13-dsDNA bound with AMPPNP), transition state (bound with ADP-AlF4-) and product state (bound with ADP). We observed that the β19-β20 loop on the 1A domain is involved in unwinding process directly. Furthermore, we have shown that the RNA dependent RNA polymerase (RdRp), SARS-Nsp12, can enhance the helicase activity of SARS-Nsp13 through interacting with it directly. The interacting regions were identified and can be considered common across CoVs, which provides new insights into the Replication and Transcription Complex (RTC) of CoVs. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.",,,,,,"NLM (Medline)",13624962,,,"31131400","English","Nucleic Acids Res.",Article,"Final",Open Access,Scopus,2-s2.0-85069295046 "New R.R.C., Moore B.D., Butcher W., Mahood R., Lever M.S., Smither S., O'Brien L., Weller S.A., Bayliss M., Gibson L.C.D., Macleod C., Bogus M., Harvey R., Almond N., Williamson E.D.","7006352215;7402320195;55366399200;57202912234;7004501781;15763746300;12791931000;7202503364;37036813100;57209199849;57202915083;55636084500;36679089500;35560340800;18938037700;","Antibody-mediated protection against MERS-CoV in the murine model",2019,"Vaccine","37","30",,"4094","4102",,,"10.1016/j.vaccine.2019.05.074","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066780154&doi=10.1016%2fj.vaccine.2019.05.074&partnerID=40&md5=dfdd00358ee450fbc2075c26e4e8362f","Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Pure & Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom; Vaxcine (UK) Ltd, c/o London Bioscience Innovation CentreLondon, United Kingdom; Scottish Biomedical Drug Discovery, West of Scotland Science Park, Glasgow, United Kingdom; National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Faculty of Science and Technology, Middlesex University, The BurroughsLondon, United Kingdom","New, R.R.C., Vaxcine (UK) Ltd, c/o London Bioscience Innovation CentreLondon, United Kingdom, Faculty of Science and Technology, Middlesex University, The BurroughsLondon, United Kingdom; Moore, B.D., Pure & Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom; Butcher, W., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Mahood, R., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Lever, M.S., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Smither, S., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; O'Brien, L., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Weller, S.A., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Bayliss, M., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom; Gibson, L.C.D., Scottish Biomedical Drug Discovery, West of Scotland Science Park, Glasgow, United Kingdom; Macleod, C., Pure & Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom; Bogus, M., Vaxcine (UK) Ltd, c/o London Bioscience Innovation CentreLondon, United Kingdom; Harvey, R., National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Almond, N., National Institute for Biological Standards and Control, Potters Bar, United Kingdom; Williamson, E.D., Defence Science & Technology Laboratory, Porton Down, Salisbury, United Kingdom","Murine antisera with neutralising activity for the coronavirus causative of Middle East respiratory syndrome (MERS) were induced by immunisation of Balb/c mice with the receptor binding domain (RBD) of the viral Spike protein. The murine antisera induced were fully-neutralising in vitro for two separate clinical strains of the MERS coronavirus (MERS-CoV). To test the neutralising capacity of these antisera in vivo, susceptibility to MERS-CoV was induced in naive recipient Balb/c mice by the administration of an adenovirus vector expressing the human DPP4 receptor (Ad5-hDPP4) for MERS-CoV, prior to the passive transfer of the RBD-specific murine antisera to the transduced mice. Subsequent challenge of the recipient transduced mice by the intra-nasal route with a clinical isolate of the MERS-CoV resulted in a significantly reduced viral load in their lungs, compared with transduced mice receiving a negative control antibody. The murine antisera used were derived from mice which had been primed sub-cutaneously with a recombinant fusion of RBD with a human IgG Fc tag (RBD-Fc), adsorbed to calcium phosphate microcrystals and then boosted by the oral route with the same fusion protein in reverse micelles. The data gained indicate that this dual-route vaccination with novel formulations of the RBD-Fc, induced systemic and mucosal anti-viral immunity with demonstrated in vitro and in vivo neutralisation capacity for clinical strains of MERS-CoV. © 2019","Coronavirus; MERS; Mucosal immunity; Neutralising antibody; Novel vaccine formulation; Respiratory infection; Systemic immunity; Vaccination","adenovirus vector; calcium phosphate; dipeptidyl peptidase IV; fusion protein; immunoglobulin A; immunoglobulin G; mifamurtide; receptor binding domain Fc protein; recombinant protein; unclassified drug; animal cell; animal experiment; animal model; animal tissue; antibody titer; Article; Bagg albino mouse; controlled study; embryo; emulsion; female; human; human cell; in vitro study; in vivo study; lung parenchyma; micelle; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; mucosal immunity; murine; nonhuman; phylogeny; priority journal; receptor binding; vaccination; virus expression; virus immunity; virus isolation; virus load; virus neutralization; virus strain","(2019), WHO February; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., KSA MERS-CoV Investigation Team. Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3 (6), pp. e00473-e512; Mohd, H.A., Al-Tawfi, A., Memish, Z.A., MERS-CoV origin and animal reservoir (2016) Virol J, 13, p. 87; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg Infect Dis, 20, pp. 560-572; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathogens Global Health, 109, pp. 354-362; Bosch, B.J., Raj, V.S., Haagmans, B.L., Spiking the MERS-coronavirus receptor (2013) Cell Res, 23, pp. 1069-1070; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Crystal structure of the receptor-binding domain from newly emerged middle east respiratory syndrome coronavirus (2013) J Virol, 87, pp. 10777-10783; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PLoS ONE, 8 (12), p. e81587; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Receptor-binding domain of MERS-CoV with optimal immunogen dosage and immunization interval protects human transduced mice from MERS-CoV infection (2017) Human Vacc Immunother, 113, pp. 1615-1624; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712-; Du, L., Tai, W., Yang, Y., Zhao, G., Introduction of neutralising immunogenncity index to the rational design of MERS coronavirus sub-unit vaccines (2016) Nat Commun, 7, p. 13473; Lan, J., Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge (2015) EBioMedicine, 2, pp. 1438-1446; Wang, Q., Wong, G., Lu, G., Yan, J., Gao, G.F., MERS-CoV spike protein: targets for vaccines and therapeutics (2016) Antiviral Res, 133, pp. 165-177; Excler, J.L., Delvecchio, C.J., Wiley, R.E., Williams, M., Yoon, I.K., Toward developing a preventive MERS-CoV vaccine—report from a workshop organized by the Saudi Arabia ministry of health and the international vaccine institute, Riyadh, Saudi Arabia, November 14–15, 2015 (2016) Emerg Infect Dis; Jones, S., Asokanathan, C., Kimiec, D., Irvine, J., Fleck, R., Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity (2014) Vaccine, 32, pp. 4234-4242; Domingos, M., Lewis, D.J., Jansen, T., Zimmerman, D.H., Williamson, E.D., A new oil-based antigen delivery formulation for both oral and parenteral vaccination (2008) Open Drug Deliv J, 9, pp. 52-60; Prabakaran, M., Madhan, S., Prabhu, N., Geng, G.Y., New, R., Kwang, J., Reverse micelle-encapsulated recombinant baculovirus as an oral vaccine against H5N1 infection in mice (2010) Antiviral Res, 86 (2), pp. 180-187; Moore, B.D., New, R.R.C., Butcher, W., Mahood, R., Steward, J., Bayliss, M., Macleod, C., Williamson, E.D., Dual route vaccination for plague with emergency use applications (2018) Vaccine, 36, pp. 5210-5217; van Boheemen, S., de Graaf, M., Lauber, C., Bestebtoer, T.M., Raj, V.S., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3 (6), pp. e00473-e481; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, 17 (40), p. 20290; Zhao, J., Li, K., Wohlford-Lenan, C., Agnihothram, S.S., Fett, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) PNAS, 111, pp. 4970-4975; Lu, X., Whitaker, B., Sakthivel, S.K.K., Kamili, S., Rose, L.E., Real-time reverse transcription-PCR assay panel for middle east respiratory syndrome coronavirus (2014) J Clin Micro, 52 (1), pp. 67-75; Schoenen, H., Bodendorfer, B., Hitchens, K., Manzanero, S., Werninghaus, K., Nimmerjahn, F., Agger, E.M., Lang, R., Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. (2010) J Immunol, 184 (6), pp. 2756-2760; Ma, F., Zhang, J., Zhang, J., Zhang, C., The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice (2010) Cell Mol Immunol, 7 (5), pp. 381-388; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35 (30), pp. 3780-3788; Wang, C., Zheng, X., Gia, W., Wong, G., Wang, H., Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antiviral Res, 140, pp. 55-61; Guo, X., Deng, Y., Chen, H., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145 (4), pp. 476-484; Raviprakash, K., Wang, D., Ewing, D., A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus (2008) J Virol, 82, pp. 6927-6934; van Endert, P., Intracellular recycling and cross-presentation by MHC class I molecules (2016) Immunol Rev, 272, pp. 80-96; Czajkowsky, D.M., Hu, J., Shao, Z., Pleass, R.J., Fc-fusion proteins: new developments and future perspectives (2012) EMBO Mol Med, 4 (10), pp. 1015-1028; Rath, T., Baker, K., Dumont, J.A., Peters, R.T., Jiang, H., Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics (2015) Crit Rev Biotechnol, 35 (2), pp. 235-254; Sabir, J.S.M., Lam, T.T., Ahmed, M.M.M., Li, L., Shen, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (6268), pp. 77-81; Tai, W., Wanga, Y., Fett, C.A., Zhao, G., Lid, F., Recombinant receptor-binding domains of multiple middle east respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants (2017) J Virol, 91 (1), pp. e01651-e1716","Williamson, E.D.; Defence Science & Technology Laboratory, Porton Down, United Kingdom; email: dewilliamson@dstl.gov.uk",,"Elsevier Ltd",0264410X,,VACCD,"31178378","English","Vaccine",Article,"Final",Open Access,Scopus,2-s2.0-85066780154 "Lin L.C.-W., Huang C.-Y., Yao B.-Y., Lin J.-C., Agrawal A., Algaissi A., Peng B.-H., Liu Y.-H., Huang P.-H., Juang R.-H., Chang Y.-C., Tseng C.-T., Chen H.-W., Hu C.-M.J.","57201064836;57190762338;57190767031;57190767803;57204367081;57046024300;7102873025;57206822446;54392967300;7103278528;23466271800;7402541658;14059700300;35306784100;","Viromimetic STING Agonist-Loaded Hollow Polymeric Nanoparticles for Safe and Effective Vaccination against Middle East Respiratory Syndrome Coronavirus",2019,"Advanced Functional Materials","29","28", 1807616,"","",,1,"10.1002/adfm.201807616","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064522604&doi=10.1002%2fadfm.201807616&partnerID=40&md5=236e9dce5c13bb55ea5be7739678c99c","Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan; Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Medical Laboratories Technology, Jazan University, Jazan, 45142, Saudi Arabia; Department of Neurosciences, Cell Biology & Anatomy, The University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan; Center for Biodefense and Emerging Disease, The University of Texas Medical Branch, Galveston, TX 77555, United States","Lin, L.C.-W., Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Huang, C.-Y., Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan; Yao, B.-Y., Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Lin, J.-C., Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Agrawal, A., Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, United States; Algaissi, A., Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, United States, Department of Medical Laboratories Technology, Jazan University, Jazan, 45142, Saudi Arabia; Peng, B.-H., Department of Neurosciences, Cell Biology & Anatomy, The University of Texas Medical Branch, Galveston, TX 77555, United States; Liu, Y.-H., Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Huang, P.-H., Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan; Juang, R.-H., Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan; Chang, Y.-C., Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan; Tseng, C.-T., Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, United States, Center for Biodefense and Emerging Disease, The University of Texas Medical Branch, Galveston, TX 77555, United States; Chen, H.-W., Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan; Hu, C.-M.J., Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan","The continued threat of emerging, highly lethal infectious pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) calls for the development of novel vaccine technology that offers safe and effective prophylactic measures. Here, a novel nanoparticle vaccine is developed to deliver subunit viral antigens and STING agonists in a virus-like fashion. STING agonists are first encapsulated into capsid-like hollow polymeric nanoparticles, which show multiple favorable attributes, including a pH-responsive release profile, prominent local immune activation, and reduced systemic reactogenicity. Upon subsequent antigen conjugation, the nanoparticles carry morphological semblance to native virions and facilitate codelivery of antigens and STING agonists to draining lymph nodes and immune cells for immune potentiation. Nanoparticle vaccine effectiveness is supported by the elicitation of potent neutralization antibody and antigen-specific T cell responses in mice immunized with a MERS-CoV nanoparticle vaccine candidate. Using a MERS-CoV-permissive transgenic mouse model, it is shown that mice immunized with this nanoparticle-based MERS-CoV vaccine are protected against a lethal challenge of MERS-CoV without triggering undesirable eosinophilic immunopathology. Together, the biocompatible hollow nanoparticle described herein provides an excellent strategy for delivering both subunit vaccine candidates and novel adjuvants, enabling accelerated development of effective and safe vaccines against emerging viral pathogens. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim","cdGMP adjuvant; hollow nanoparticle; Middle East respiratory syndrome coronavirus; STING; virus mimicry","Antigens; Biocompatibility; Immunization; Mammals; Polymers; T-cells; Vaccines; Viruses; cdGMP adjuvant; Coronaviruses; Hollow nanoparticles; Immune activation; Infectious pathogens; Polymeric nanoparticles; STING; Vaccine technologies; Nanoparticles","Lin, L.C.W., Chattopadhyay, S., Lin, J.-C., Hu, C.M.J., (2018) Adv. Healthcare Mater., 7, p. 1701395; Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V., Randolph, G.J., O'Neil, C.P., Lee, L.K., Hubbell, J.A., (2007) Nat. Biotechnol., 25, p. 1159; Fromen, C.A., Robbins, G.R., Shen, T.W., Kai, M.P., Ting, J.P.Y., DeSimone, J.M., (2015) Proc. Natl. Acad. Sci. USA, 112, p. 488; Blander, J.M., Medzhitov, R., (2006) Nature, 440, p. 808; Ishikawa, H., Ma, Z., Barber, G.N., (2009) Nature, 461, p. 788; Sun, L., Wu, J., Du, F., Chen, X., Chen, Z.J., (2013) Science, 339, p. 786; Burdette, D.L., Monroe, K.M., Sotelo-Troha, K., Iwig, J.S., Eckert, B., Hyodo, M., Hayakawa, Y., Vance, R.E., (2011) Nature, 478, p. 515; Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., Chen, Z.J., (2013) Science, 339, p. 826; Guo, F., Han, Y., Zhao, X., Wang, J., Liu, F., Xu, C., Wei, L., Chang, J., (2015) Antimicrob. Agents Chemother., 59, p. 1273; Crouse, J., Kalinke, U., Oxenius, A., (2015) Nat. Rev. Immunol., 15, p. 231; Hanson, M.C., Crespo, M.P., Abraham, W., Moynihan, K.D., Szeto, G.L., Chen, S.H., Melo, M.B., Irvine, D.J., (2015) J. Clin. Invest., 125, p. 2532; Junkins, R.D., Gallovic, M.D., Johnson, B.M., Collier, M.A., Watkins-Schulz, R., Cheng, N., David, C.N., Ting, J.P.Y., (2018) J. Controlled Release, 270, p. 1; Neuhaus, V., Chichester, J.A., Ebensen, T., Schwarz, K., Hartman, C.E., Shoji, Y., Guzmán, C.A., Braun, A., (2014) Vaccine, 32, p. 3216; (2018) WHO MERS-CoV Global Summary and Assessment of Risk, , World Health Organization, Geneva, Switzerland; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., (2012) N. Engl. J. Med., 367, p. 1814; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., Grehan, K., Gilbert, S.C., (2017) Vaccine, 35, p. 3780; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D.M.E., (2016) Science, 351, p. 77; Kim, E., Okada, K., Kenniston, T., Raj, V.S., AlHajri, M.M., Farag, E.A.B.A., AlHajri, F., Gambotto, A., (2014) Vaccine, 32, p. 5975; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D.M.E., Sutter, G., (2013) J. Virol., 87, p. 11950; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Sutter, G., (2015) J. Virol., 89, p. 8651; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Tan, W., (2015) Immunology, 145, p. 476; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T.K., Zhou, Y., Jiang, S., (2014) Vaccine, 32, p. 2100; Tang, J., Zhang, N., Tao, X., Zhao, G., Guo, Y., Tseng, C.T.K., Jiang, S., Zhou, Y., (2015) Hum. Vaccines Immunother., 11, p. 1244; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Glenn, G.M., Frieman, M.B., (2014) Vaccine, 32, p. 3169; Coleman, C.M., Venkataraman, T., Liu, Y.V., Glenn, G.M., Smith, G.E., Flyer, D.C., Frieman, M.B., (2017) Vaccine, 35, p. 1586; Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Tan, W., (2014) PLoS One, 9; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Tao, X., Du, L., (2016) Cell Mol. Immunol., 13, p. 180; Lan, J., Yao, Y., Deng, Y., Chen, H., Lu, G., Wang, W., Bao, L., Tan, W., (2015) EBioMed., 2, p. 1438; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Couch, R.B., Tseng, C.K., (2016) Hum Vaccines Immunother., , https://doi.org/10.1080/21645515.2016.11776881; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Layqah, L.A., Zhao, J., (2017) Sci. Immunol., 2; Channappanavar, R., Zhao, J., Perlman, S., (2014) Immunol. Res., 59, p. 118; Discher, B.M., Won, Y.Y., Ege, D.S., Lee, J.C., Bates, F.S., Discher, D.E., Hammer, D.A., (1999) Science, 284, p. 1143; Qi, H., Zhou, H., Tang, Q., Lee, J.Y., Fan, Z., Kim, S., Staub, M.C., Li, C.Y., (2018) Nat. Commun., 9, p. 3005; Colombo, S., Cun, D., Remaut, K., Bunker, M., Zhang, J., Martin-Bertelsen, B., Yaghmur, A., Foged, C., (2015) J. Controlled Release, 201, p. 22; Pinkerton, N.M., Grandeury, A., Fisch, A., Brozio, J., Riebesehl, B.U., Prud'homme, R.K., (2013) Mol. Pharmaceutics, 10, p. 319; Schonhorn, H., (1967) J. Chem. Eng. Data, 12, p. 524; Banerjee, P., Biswas, A., Biswas, T., (2008) Int. Immunol., 20, p. 1551; Crowe, S.R., Turner, S.J., Miller, S.C., Roberts, A.D., Rappolo, R.A., Doherty, P.C., Ely, K.H., Woodland, D.L., (2003) J. Exp. Med., 198, p. 399; Deng, L., Chang, T.Z., Wang, Y., Li, S., Wang, S., Matsuyama, S., Yu, G., Wang, B.Z., (2018) Proc. Natl. Acad. Sci. USA, 115; Gold, M.C., Munks, M.W., Wagner, M., Koszinowski, U.H., Hill, A.B., Fling, S.P., (2002) J. Immunol., 169, p. 359; Ye, Y., Wang, C., Zhang, X., Hu, Q., Zhang, Y., Liu, Q., Wen, D., Gu, Z., (2017) Sci. Immunol., 2; Jiang, X., Shen, C., Rey-Ladino, J., Yu, H., Brunham, R.C., (2008) Infect. Immun., 76, p. 2392; Silva, J.M., Vandermeulen, G., Oliveira, V.G., Pinto, S.N., Rodrigues, C., Salgado, A., Afonso, C.A., Florindo, H.F., (2014) Nanomedicine, 9, p. 2639; Junt, T., Moseman, E.A., Iannacone, M., Massberg, S., Lang, P.A., Boes, M., Fink, K., von Andrian, U.H., (2007) Nature, 450, p. 110; Gonzalez, S.F., Lukacs-Kornek, V., Kuligowski, M.P., Pitcher, L.A., Degn, S.E., Kim, Y.A., Cloninger, M.J., Carroll, M.C., (2010) Nat. Immunol., 11, p. 427; Norbury, C.C., Malide, D., Gibbs, J.S., Bennink, J.R., Yewdell, J.W., (2002) Nat. Immunol., 3, p. 265; Kaech, S.M., Cui, W., (2012) Nat. Rev. Immunol., 12, p. 749; Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., Gao, G.F., (2017) Antiviral Res., 137, p. 82; Liu, W.J., Lan, J., Liu, K., Deng, Y., Yao, Y., Wu, S., Chen, H., Tan, W., (2017) J. Immunol., 198, p. 873; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Perlman, S., (2014) Proc. Natl. Acad. Sci. USA, 111, p. 4970; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Funkhouser, W., Baric, R.S., (2011) J. Virol., 85, p. 12201; Tseng, C.T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P.C., Garron, T., Atmar, R.L., Peters, C.J., Couch, R.B., (2012) PLoS One, 7; Weingartl, H., Czub, M., Czub, S., Neufeld, J., Marszal, P., Gren, J., Smith, G., Cao, J., (2004) J. Virol., 78, p. 12672; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.H., Couch, R.B., Tseng, C.T., (2016) Hum Vaccines Immunother., 12, p. 2351; Honda-Okubo, Y., Barnard, D., Ong, C.H., Peng, B.H., Tseng, C.T.K., Petrovsky, N., (2015) J. Virol., 89, p. 2995; Zhao, J., Zhao, J., Mangalam, A.K., Channappanavar, R., Fett, C., Meyerholz, D.K., Agnihothram, S., Perlman, S., (2016) Immunity, 44, p. 1379; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Weiner, D.B., (2015) Sci. Transl. Med., 7, p. 301ra132; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D.M.E., (2016) Science, 351, p. 77; Wang, L.S., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Graham, B.S., (2018) Virol. J., 15, p. 92; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., Chen, Y., Jiang, S., (2013) PLoS One, 8; Nuhn, L., Vanparijs, N., De Beuckelaer, A., Lybaert, L., Verstraete, G., Deswarte, K., Lienenklaus, S., De Geest, B.G., (2016) Proc. Natl. Acad. Sci. USA, 113, p. 8098; Ilyinskii, P.O., Roy, C.J., O'Neil, C.P., Browning, E.A., Pittet, L.A., Altreuter, D.H., Alexis, F., Kishimoto, T.K., (2014) Vaccine, 32, p. 2882; Lynn, G.M., Laga, R., Darrah, P.A., Ishizuka, A.S., Balaci, A.J., Dulcey, A.E., Pechar, M., Seder, R.A., (2015) Nat. Biotechnol., 33, p. 1201; Koshy, S.T., Cheung, A.S., Gu, L., Graveline, A.R., Mooney, D.J., (2017) Adv. Biosyst., 1, p. 1600013; Goodwin, T.J., Huang, L., (2017) Vaccine, 35, p. 2550; Junkins, R.D., Gallovic, M.D., Johnson, B.M., Collier, M.A., Watkins-Schulz, R., Cheng, N., David, C.N., Ting, J.P., (2018) J Control Release, 270, p. 1; Collier, M.A., Junkins, R.D., Gallovic, M.D., Johnson, B.M., Johnson, M.M., Macintyre, A.N., Sempowski, G.D., Ainslie, K.M., (2018) Mol. Pharmaceutics, 15, p. 4933; Wilson, D.R., Sen, R., Sunshine, J.C., Pardoll, D.M., Green, J.J., Kim, Y.J., (2018) Nanomedicine, 14, p. 237; Aroh, C., Wang, Z.H., Dobbs, N., Luo, M., Chen, Z.J., Gao, J.M., Yan, N., (2017) J. Immunol., 199, p. 3840; Chattopadhyay, S., Chen, J.Y., Chen, H.W., Hu, C.J., (2017) Nanotheranostics, 1, p. 244; Fallet, B., Narr, K., Ertuna, Y.I., Remy, M., Sommerstein, R., Cornille, K., Kreutzfeldt, M., Pinschewer, D.D., (2016) Sci. Immunol., 1, p. 6817; Segura-Cerda, C.A., Aceves-Sanchez, M.J., Marquina-Castillo, B., Mata-Espinoza, D., Barrios-Payan, J., Vega-Dominguez, P.J., Pedroza-Roldan, C., Flores-Valdez, M.A., (2018) Vaccine, 36, p. 2069; Tzeng, A., Kauke, M.J., Zhu, E.F., Moynihan, K.D., Opel, C.F., Yang, N.J., Mehta, N., Wittrup, K.D., (2016) Cell Rep., 17, p. 2503; Sivick, K.E., Desbien, A.L., Glickman, L.H., Reiner, G.L., Corrales, L., Surh, N.H., Hudson, T.E., McWhirter, S.M., (2018) Cell Rep., 25, p. 3074; Boxx, G.M., Cheng, G., (2016) Cell Host Microbe, 19, p. 760; Stifter, S.A., Feng, C.G., (2015) J. Immunol., 194, p. 2455; Moreira-Teixeira, L., Mayer-Barber, K., Sher, A., O'Garra, A., (2018) J. Exp. Med., 215, p. 1273; Li, X.-D., Wu, J., Gao, D., Wang, H., Sun, L., Chen, Z.J., (2013) Science, 341, p. 1390; Moreira-Teixeira, L., Mayer-Barber, K., Sher, A., O'Garra, A., (2018) J. Exp. Med., 215, p. 1273; Wang, L.S., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Graham, B.S., (2015) Nat. Commun., 6, p. 7712; Ma, C.Q., Wang, L.L., Tao, X.R., Zhang, N.R., Yang, Y., Tseng, C.T.K., Li, F., Du, L.Y., (2014) Vaccine, 32, p. 6170; Coleman, C.M., Liu, Y.V., Mu, H.Y., Taylor, J.K., Massare, M., Flyer, D.C., Glenn, G.M., Frieman, M.B., (2014) Vaccine, 32, p. 3169; Houser, K.V., Broadbent, A.J., Gretebeck, L., Vogel, L., Lamirande, E.W., Sutton, T., Bock, K.W., Subbarao, K., (2017) PLoS Pathog., 13; Hashem, A.M., Algaissi, A., Agrawal, A., Al-Amri, S.S., Alhabbab, R.Y., Sohrab, S.S., Almasoud, A., Tseng, C.T.K., (2019) J. Infect. Dis., , https://doi.org/10.1093/infdis/jiz137; Irvine, D.J., Swartz, M.A., Szeto, G.L., (2013) Nat. Mater., 12, p. 978; Tamborrini, M., Geib, N., Marrero-Nodarse, A., Jud, M., Hauser, J., Aho, C., Lamelas, A., Robinson, J.A., (2015) Vaccines, 3, p. 850; Hrkach, J., Von Hoff, D., Mukkaram Ali, M., Andrianova, E., Auer, J., Campbell, T., De Witt, D., Zale, S., (2012) Sci. Transl. Med., 4, p. 128ra39; Galloway, A.L., Murphy, A., DeSimone, J.M., Di, J., Herrmann, J.P., Hunter, M.E., Kindig, J.P., Hubby, B., (2013) Nanomedicine, 9, p. 523; Thompson, E.A., Ols, S., Miura, K., Rausch, K., Narum, D.L., Spangberg, M., Juraska, M., Lore, K., (2018) JCI Insight, 3, p. 120692; Agrawal, A.S., Garron, T., Tao, X., Peng, B.-H., Wakamiya, M., Chan, T.-S., Couch, R.B., Tseng, C.T.K., (2015) J. Virol., 89, p. 3659; Roy, A.B., Petrova, O.E., Sauer, K., (2013) Bio-Protocol, 3; Spangler, C., Böhm, A., Jenal, U., Seifert, R., Kaever, V., (2010) J. Microbiol. Methods, 81, p. 226; Matheu, M.P., Sen, D., Cahalan, M.D., Parker, I., (2008) J. Visualized Exp., 9, p. 773; Tao, X., Garron, T., Agrawal, A.S., Algaissi, A., Peng, B.H., Wakamiya, M., Chan, T.S., Tseng, C.T., (2016) J. Virol., 90, p. 57; Nyon, M.P., Du, L., Tseng, C.K., Seid, C.A., Pollet, J., Naceanceno, K.S., Agrawal, A., Hotez, P.J., (2018) Vaccine, 36, p. 1853; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., (2015) J. Virol., 89, p. 3659","Tseng, C.-T.; Department of Microbiology and Immunology, The University of Texas Medical BranchUnited States; email: sktseng@utmb.edu",,"Wiley-VCH Verlag",1616301X,,AFMDC,,"English","Adv. Funct. Mater.",Article,"Final",Open Access,Scopus,2-s2.0-85064522604 "Yoon J.-S., Kim G., Jarhad D.B., Kim H.-R., Shin Y.-S., Qu S., Sahu P.K., Kim H.O., Lee H.W., Wang S.B., Kong Y.J., Chang T.-S., Ogando N.S., Kovacikova K., Snijder E.J., Posthuma C.C., Van Hemert M.J., Jeong L.S.","57191746584;56412298300;56469732000;57191723553;57196417379;56856433400;56412477700;7410132302;7501494177;56158126100;57209637912;7404726037;57209637757;57194004967;7006058325;6507457020;55291601300;57202587840;","Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues",2019,"Journal of Medicinal Chemistry","62","13",,"6346","6362",,2,"10.1021/acs.jmedchem.9b00781","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068313505&doi=10.1021%2facs.jmedchem.9b00781&partnerID=40&md5=9e92f290f594ddd7d119520d565f27a0","Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea; College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757, South Korea; Future Medicine Co. Ltd., Seoul, 06665, South Korea; College of Pharmacy, Ewha Womans University, Seoul, 120-750, South Korea; Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, Netherlands; College of Pharmaceutical Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China","Yoon, J.-S., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea; Kim, G., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea, College of Pharmacy, Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757, South Korea; Jarhad, D.B., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea; Kim, H.-R., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea; Shin, Y.-S., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea; Qu, S., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea, College of Pharmaceutical Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China; Sahu, P.K., Future Medicine Co. Ltd., Seoul, 06665, South Korea; Kim, H.O., Future Medicine Co. Ltd., Seoul, 06665, South Korea; Lee, H.W., Future Medicine Co. Ltd., Seoul, 06665, South Korea; Wang, S.B., College of Pharmacy, Ewha Womans University, Seoul, 120-750, South Korea; Kong, Y.J., College of Pharmacy, Ewha Womans University, Seoul, 120-750, South Korea; Chang, T.-S., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea, College of Pharmacy, Ewha Womans University, Seoul, 120-750, South Korea; Ogando, N.S., Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, Netherlands; Kovacikova, K., Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, Netherlands; Snijder, E.J., Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, Netherlands; Posthuma, C.C., Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, Netherlands; Van Hemert, M.J., Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, Netherlands; Jeong, L.S., Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea","The 6′-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell S-adenosyl-l-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6′-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and N6-methyladenosine analogues 2a-e showed potent inhibition against SAH hydrolase, while only the adenosine derivatives 2a-c exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6′,6′-Difluoroaristeromycin (2c) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug 3a also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6′-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses. © 2019 American Chemical Society.",,"1 [2 fluoro 4,5 dihydroxy 3 (hydroxymethyl)cyclopentyl]pyrimidine 2,4 dione; 1 [2,2 difluoro 4,5 dihydroxy 3 (hydroxymethyl)cyclopentyl]pyrimidine 2,4 dione; 3 (6 amino 9h purin 9 yl) 4 fluoro 5 (hydroxymethyl)cyclopentane 1,2 diol; 3 (6 amino 9h purin 9 yl) 4,4 difluoro 5 (hydroxymethyl)cyclopentane 1,2 diol; 4 (benzyloxy) 6 (tert butoxymethyl) 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxol 5 ol; 4 (benzyloxy) 6 (tert butoxymethyl) 5 fluoro 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxole; 4 (tert butoxy) 5 (tert butoxymethyl) 6 fluorotetrahydro 3ah cyclopenta[d][1,3,2]dioxathiole 2 oxide; 4 (tert butoxy) 5 (tert butoxymethyl) 6 fluorotetrahydro 3ah cyclopenta[d][1,3,2]dioxathiole 2,2 dioxide; 4 (tert butoxy) 5 (tert butoxymethyl) 6 hydroxytetrahydro 3ah cyclopenta[d][1,3,2]dioxathiole 2 oxide; 4 azido 6 (tert butoxymethyl) 5 fluoro 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxole; 4 azido 6 (tert butoxymethyl) 5,5 difluoro 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxole; 4 fluoro 3 (hydroxymethyl) 5 [6 (methylamino) 9h purin 9 yl]cyclopentane 1,2 diol; 4,4 difluoro 3 (hydroxymethyl) 5 [6 (methylamino) 9h purin 9 yl]cyclopentane 1,2 diol; 6 (tert butoxymethyl) 5 fluoro 2,2 dimethyldihydro 3ah cyclopenta[d][1,3]dioxol 4(5h) one; 6 (tert butoxymethyl) 5 fluoro 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxol 4 ol; 6 (tert butoxymethyl) 5 [(tert butyldimethylsilyl)oxy] 2,2 dimethyldihydro 3ah cyclopenta[d][1,3]dioxol 4(5h) one; 6 (tert butoxymethyl) 5 [(tertbutyldimethylsilyl)oxy] 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxol 4 ol; 6 (tert butoxymethyl) 5,5 difluoro 2,2 dimethyldihydro 3ah cyclopenta[d][1,3]dioxol 4(5h) one; 6 (tert butoxymethyl) 5,5 difluoro 2,2 dimethyltetrahydro 3ah cyclopental[d][1,3]dioxol 4 ol; 9 [6 (tert butoxymethyl) 5 fluoro 2,2 dimethyltetrahydro 4h cyclopenta[d][1,3]dioxol 4 yl] 6 chloro 9h purine; 9 [6 (tert butoxymethyl) 5,5 difluoro 2,2 dimethyltetrahydro 4h cyclopenta[d][1,3]dioxol 4 yl] 6 chloro 9h purine; antivirus agent; aristeromycin; n [[6 (tert butoxymethyl) 5 fluoro 2,2 dimethyltetrahydro 4h cyclopenta[d][1,3]dioxol 4 yl]carbamoyl] 3 methoxyacrylamide; n [[6 (tert butoxymethyl) 5,5 difluoro 2,2 dimethyltetrahydro 4h cyclopenta[d][1,3]dioxol 4 yl]carbamoyl] 3 methoxyacrylamide; n4 [6 (tert butoxymethyl) 5 fluoro 2,2 dimethyltetrahydro 4h cyclopenta[d][1,3]dioxol 4 yl] 6 chloropyrimidine 4,5 diamine; n4 [6 (tert butoxymethyl) 5,5 difluoro 2,2 dimethyltetrahydro 4h cyclopenta[d][1,3]dioxol 4 yl] 6 chloropyrimidine 4,5 diamine; unclassified drug; unindexed drug; [[4 (benzyloxy) 6 (tert butoxymethyl) 2,2 dimethyltetrahydro 3ah cyclopenta[d][1,3]dioxol 5 yl]oxy](tert butyl)dimethylsilane; [[6 (tert butoxymethyl) 2,2 dimethyl 6,6a dihydro 3ah cyclopenta[d][1,3]dioxol 4 yl]oxy]triethylsilane; antiviral activity; Article; CC50 (cytotoxic concentration); controlled study; drug design; drug synthesis; EC50; electrophilicity; fluorination; microwave radiation; nonhuman; RNA virus; X ray crystallography","Baltimore, D., Expression of animal virus genomes (1971) Bacteriol. Rev., 35, pp. 235-241; Modrow, S., Falke, D., Truyen, U., Schätzl, H., (2013) Viruses with Single-Stranded, Positive-Sense RNA Genomes. Molecular Virology, pp. 185-349. , Springer Berlin Heidelberg: Berlin, Heidelberg; Thiel, V., (2007) Coronaviruses: Molecular and Cellular Biology, , 1 st ed. Caister Academic Press: Poole, UK; Zumla, A., Hui, D.S., Perlman, S., Middle East Respiratory Syndrome (2015) Lancet, 386, pp. 995-1007; Caglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M.R., Bordi, L., Chikungunya virus infection: An overview (2013) New Microbiol., 36, pp. 211-227; Musso, D., Gubler, D.J., Zika Virus (2016) Clin. Microbiol. Rev., 29, pp. 487-524; Agumadu, V.C., Ramphul, K., Zika Virus: A Review of Literature (2018) Cureus, 10, p. e3025; Forgie, S., Marrie, T., Healthcare-Associated Atypical Pneumonia (2009) Semin. Respir. Crit. Care Med., 30, pp. 067-085; Chan-Yeung, M., Xu, R.-H., SARS: Epidemiology (2003) Respirology, 8, pp. S9-S14; Hui, D.S., Azhar, E.I., Kim, Y.-J., Memish, Z.A., Oh, M.-D., Zumla, A., Middle East Respiratory Syndrome Coronavirus: Risk Factors and Determinants of Primary, Household, and Nosocomial Transmission (2018) Lancet Infect. Dis., 18, pp. e217-e227; Schwartz, O., Albert, M.L., Biology and Pathogenesis of Chikungunya Virus (2010) Nat. Rev. Microbiol., 8, pp. 491-500; Presti, A.L., Lai, A., Cella, E., Zehender, G., Ciccozzi, M., Chikungunya Virus, Epidermiology, Clinics, and Pathogenesis: A Review (2014) Asian Pac. J. Trop. Med., 7, pp. 925-932; Ng, L.F.P., Immunopathology of Chikungunya Virus Infection: Lessons Learned from Patients and Animal Models (2017) Ann. Rev. Virol., 4, pp. 413-427; Abushouk, A.I., Negida, A., Ahmed, H., An Updated Review of Zika Virus (2016) J. Clin. Virol., 84, pp. 53-58; Musso, D., Roche, C., Robin, E., Nhan, T., Teissier, A., Cao-Lormeau, V.-M., Potential Sexual Transmission of Zika Virus (2015) Emerg. Infect. Dis., 21, pp. 359-361; Oster, A.M., Russell, K., Stryker, J.E., Friedman, A., Kachur, R.E., Petersen, E.E., Jamieson, D.J., Brooks, J.T., Update: Interim Guidance for Prevention of Sexual Transmission of Zika Virus (2016) Morb. Mortal.Wkly Rep., 65, pp. 323-325; Ahlquist, P., RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing (2002) Science, 296, pp. 1270-1273; Coutard, B., Barral, K., Lichière, J., Selisko, B., Martin, B., Aouadi, W., Lombardia, M.O., Decroly, E., Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives (2017) J. Virol., 91, pp. e02202-e02216; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis ofS-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity (2016) J. Virol., 90, pp. 7248-7256; Decroly, E., Ferron, F., Lescar, J., Canard, B., Conventional and Unconventional Mechanisms for Capping Viral mRNA (2011) Nat. Rev. Microbiol., 10, pp. 51-65; Cougot, N., Van Dijk, E., Babajko, S., Séraphin, B., Cap-tabolism (2004) Trends Biochem. Sci., 29, pp. 436-444; Ferron, F., Decroly, E., Selisko, B., Canard, B., The Viral RNA Capping Machinery as a Target for Antiviral Drugs (2012) Antiviral Res., 96, pp. 21-31; Turner, M.A., Yang, X., Yin, D., Kuczera, K., Borchardt, R.T., Howell, P.L., Structure and Function of S-Adenosylhomocysteine Hydrolase (2000) Cell Biochem. Biophys., 33, pp. 101-125; Cantoni, G.L., Borchardt, R.T., Creveling, C.R., Ueland, P.M., The Centrality of S-Adenosylhomocysteinase in the Regulation of the Biological Utilization of S-Adenosylmethionine (1986) Biological Methylation and Drug Design, pp. 227-238. , Humana Press: Clifton, NJ; Wolfe, M.S., Borchardt, R.T., S-Adenosyl-L-Homocysteine Hydrolase as a Target for Antiviral Chemotherapy (1991) J. Med. Chem., 34, pp. 1521-1530; De Clercq, E., Strategies in the Design of Antiviral Drugs (2002) Nat. Rev. Drug Discovery, 1, pp. 13-25; Jordheim, L.P., Durantel, D., Zoulim, F., Dumontet, C., Advances in the Development of Nucleoside and Nucleotide Analogues for Cancer and Viral Diseases (2013) Nat. Rev. Drug Discovery, 12, pp. 447-464; Kusaka, T., Yamamoto, H., Shibata, M., Muroi, M., Kishi, T., Mizuno, K., Streptomyces Citricolor Nov. Sp. And a New Antibiotic, Aristeromycin (1968) J. Antibiot., 21, pp. 255-263; Shealy, Y.F., Clayton, J.D., 9-[β-DL-2α,3α-Dihydroxy-4β-(hydroxymethyl)- cyclopentyl]adenine, the Carbocyclic Analog of Adenosine1,2 (1966) J. Am. Chem. Soc., 88, pp. 3885-3887; Shealy, Y.F., Clayton, J.D., Synthesis of Carbocyclic Analogs of Purine Ribonucleosides (1969) J. Am. Chem. Soc., 91, pp. 3075-3083; Shealy, F.Y., Thorpe, M.C., Coburn, W.C.J., Jr., Clayton, J.D., Identity of the Synthetic Carbocylic Analog of Adenosine and Aristeromycin (1980) Chem. Pharm. Bull., 28, pp. 3114-3117; Arita, M., Adachi, K., Ito, Y., Sawai, H., Ohno, M., Enantioselective synthesis of the carbocyclic nucleosides (-)-aristeromycin and (-)-neplanocin A by a chemicoenzymatic approach (1983) J. Am. Chem. Soc., 105, pp. 4049-4055; Yoshikawa, M., Okaichi, Y., Cheon Cha, B., Kitagawa, I., Synthesis of (-)-Aristeromycin from D-glucose (1990) Tetrahedron, 46, pp. 7459-7470; Wolfe, M.S., Lee, Y., Bartlett, W.J., Borcherding, D.R., Borchardt, R.T., 4 ′-Modified Analogs of Aristeromycin and Neplanocin A: Synthesis and Inhibitory Activity Toward S-Adenosyl-L-Homocysteine Hydrolase (1992) J. Med. Chem., 35, pp. 1782-1791; Madhavan, G.V.B., Martin, J.C., A Novel and Stereospecific Synthesis of (±)- And (-)-Aristeromycin (1986) J. Org. Chem., 51, pp. 1287-1293; Bennett, L.L., Jr., Allan, P.W., Rose, L.M., Comber, R.N., Secrist, J.A., Differences in the Metabolism and Metabolic Effects of the Carbocyclic Adenosine Analogs, Neplanocin A and Aristeromycin (1986) Mol. Pharmacol., 29, pp. 383-390; Bennett, L.L., Bowdon, B.J., Allan, P.W., Rose, L.M., Evidence that the Carbocyclic Analog of Adenosine Has Different Mechanisms of Cytotoxicity to Cells with Adenosine Kinase Activity and to Cells Lacking this Enzyme (1986) Biochem. Pharmacol., 35, pp. 4106-4109; Madhavan, G.V.B., McGee, D.P.C., Rydzewski, R.M., Boehme, R., Martin, J.C., Prisbe, E.J., Synthesis and Antiviral Evaluation of 6′-Substituted Aristeromycins: Potential Mechanism-Based Inhibitors of S-Adenosylhomocysteine Hydrolase (1988) J. Med. Chem., 31, pp. 1798-1804; Verheyden, J.P., Martin, J.C., Madhaven, B., McGee, D.P.C., Prisbe, E.J., (1986) Purinyl or Pyrimidinyl Substituted Hydroxycyclopentane Compounds Useful As Antivirals, , U.S. Patent 4,605,659, Aug 12; Yin, X.Q., Schneller, S.W., Chiral syntheses of 6′-β-fluoroaristeromycin, 6′-β-fluoro-5′-noraristeromycin and aristeromycin (2005) Tetrahedron Lett., 46, pp. 7535-7538; Jeong, L.S., Moon, H.R., Park, J.G., Shin, D.H., Choi, W.J., Lee, K.M., Kim, H.O., Kim, J.H., Synthesis and Biological Evaluation of Halo-neplanocin A as Novel Mechanism-Based Inhibitors ofS-Adenosylhomocysteine Hydrolase (2003) Nucleotides Nucleic Acids, 22, pp. 589-592; Jeong, L.S., Yoo, S.J., Lee, K.M., Koo, M.J., Choi, W.J., Kim, H.O., Moon, H.R., Chun, M.W., Design, Synthesis, and Biological Evaluation of Fluoroneplanocin A as the Novel Mechanism-Based Inhibitor ofS-Adenosylhomocysteine Hydrolase (2003) J. Med. Chem., 46, pp. 201-203; Lee, K.M., Choi, W.J., Lee, Y., Lee, H.J., Zhao, L.X., Lee, H.W., Park, J.G., Jeong, L.S., X-ray Crystal Structure and Binding Mode Analysis of HumanS-Adenosylhomocysteine Hydrolase Complexed with Novel Mechanism-Based Inhibitors, Haloneplanocin A Analogues (2011) J. Med. Chem., 54, pp. 930-938; Chandra, G., Moon, Y.W., Lee, Y., Jang, J.Y., Song, J., Nayak, A., Oh, K., Jeong, L.S., Structure-Activity Relationships of Neplanocin A Analogues as S-Adenosylhomocysteine Hydrolase Inhibitors and Their Antiviral and Antitumor Activities (2015) J. Med. Chem., 58, pp. 5108-5120; Kim, G., Yoon, J.-S., Jarhad, D.B., Shin, Y.S., Majik, M.S., Mulamoottil, V.A., Hou, X., Jeong, L.S., Asymmetric Synthesis of (-)-6′-β-Fluoro-aristeromycin via Stereoselective Electrophilic Fluorination (2017) Org. Lett., 19, pp. 5732-5735; Siddiqui, A.Q., Ballatore, C., McGuigan, C., De Clercq, E., Balzarini, J., De Clercq, E., The Presence of Substituents on the Aryl Moiety of the Aryl Phosphoramidate Derivative of d4T Enhances Anti-HIV Efficacy in Cell Culture: A Structure-Activity Relationship (1999) J. Med. Chem., 42, pp. 393-399; Mehellou, Y., Rattan, H.S., Balzarini, J., The ProTide Prodrug Technology: From the Concept to the Clinic (2018) J. Med. Chem., 61, pp. 2211-2226; Mehellou, Y., Balzarini, J., McGuigan, C., Aryloxy Phosphoramidate Triesters: A Technology for Delivering Monophosphorylated Nucleosides and Sugars into Cells (2009) Chem. Med. Chem., 4, pp. 1779-1791; McGuigan, C., Pathirana, R.N., Balzarini, J., De Clercq, E., Intracellular Delivery of Bioactive AZT Nucleotides by Aryl Phosphate Derivatives of AZT (1993) J. Med. Chem., 36, pp. 1048-1052; McGuigan, C., Harris, S.A., Daluge, S.M., Gudmundsson, K.S., McLean, E.W., Burnette, T.C., Marr, H., Balzarini, J., Application of Phosphoramidate Pronucleotide Technology to Abacavir Leads to a Significant Enhancement of Antiviral Potency (2005) J. Med. Chem., 48, pp. 3504-3515; McGuigan, C., Hassan-Abdallah, A., Srinivasan, S., Wang, Y., Siddiqui, A., Daluge, S.M., Gudmundsson, K.S., Balzarini, J., Application of Phosphoramidate ProTide Technology Significantly Improves Antiviral Potency of Carbocyclic Adenosine Derivatives (2006) J. Med. Chem., 49, pp. 7215-7226; Sofia, M.J., Bao, D., Chang, W., Du, J., Nagarathnam, D., Rachakonda, S., Reddy, P.G., Furman, P.A., Discovery of a β-d-2′-Deoxy-2′-α-fluoro-2′-β-C-methyluridine Nucleotide Prodrug (PSI-7977) for the Treatment of Hepatitis C Virus (2010) J. Med. Chem., 53, pp. 7202-7218; Slusarczyk, M., Lopez, M.H., Balzarini, J., Mason, M., Jiang, W.G., Blagden, S., Thompson, E., McGuigan, C., Application of ProTide Technology to Gemcitabine: A Successful Approach to Overcome the Key Cancer Resistance Mechanisms Leads to a New Agent (NUC-1031) in Clinical Development (2014) J. Med. Chem., 57, pp. 1531-1542; Choi, W.J., Park, J.G., Yoo, S.J., Kim, H.O., Moon, H.R., Chun, M.W., Jung, Y.H., Jeong, L.S., Syntheses ofd- andl-Cyclopentenone Derivatives Using Ring-Closing Metathesis: Versatile Intermediates for the Synthesis ofd- andl-Carbocyclic Nucleosides (2001) J. Org. Chem., 66, pp. 6490-6494; Moon, H.R., Choi, W.J., Kim, H.O., Jeong, L.S., Improved and Alternative Synthesis of d- And l-Cyclopentenone Derivatives, the Versatile Intermediates for the Synthesis of Carbocyclic Nucleosides (2002) Tetrahedron:Asymmetry, 13, pp. 1189-1193; Mulamoottil, V.A., Nayak, A., Jeong, L.S., Recent Advances in the Synthesis of Carbocyclic Nucleosides via Ring-Closing Metathesis (2014) Asian J. Org. Chem., 3, pp. 748-761; Gilman, H., Jones, R.G., Woods, L.A., The Preparation of Methylcopper and Some Observations on the Decomposition of Organocopper Compounds (1952) J. Org. Chem., 17, pp. 1630-1634; Song, G.Y., Paul, V., Choo, H., Morrey, J., Sidwell, R.W., Schinazi, R.F., Chu, C.K., Enantiomeric Synthesis ofd- andl-Cyclopentenyl Nucleosides and Their Antiviral Activity against HIV and West Nile Virus (2001) J. Med. Chem., 44, pp. 3985-3993; Rubottom, G.M., Gruber, J.M., Boeckman, R.K., Ramaiah, M., Medwid, J.B., Clarification of the Mechanism of Rearrangement of Enol Silyl Ether Epoxides (1978) Tetrahedron Lett., 19, pp. 4603-4606; Montgomery, J.A., Temple, C., Jr., Synthesis of Potential Anticancer Agents. IX. 9-Ethyl-6-substituted-purines2 (1957) J. Am. Chem. Soc., 79, pp. 5238-5242; Shaw, G., Warrener, R.N., Purines, pyrimidines, and glyoxalines. Part VIII. New syntheses of uracils and thymines (1958) J. Chem. Soc., pp. 157-159; Jeong, L.S., Buenger, G., McCormack, J.J., Cooney, D.A., Hao, Z., Marquez, V.E., Carbocyclic Analogues of the Potent Cytidine Deaminase Inhibitor 1-(β-d-Ribofuranosyl)-1,2-dihydropyrimidin-2-one (Zebularine) (1998) J. Med. Chem., 41, pp. 2572-2578; Divakar, K.J., Reese, C.B., 4-(1,2,4-Triazol-1-yl)- And 4-(3-nitro-1,2,4-triazol-1-yl)-1-(β-D-2,3,5-tri- O-acetylarabinofuranosyl)pyrimidin-2(1 H)-ones. Valuable Intermediates in the Synthesis of Derivatives of 1-β-D-Arabinofuranosyl)cytosine (Ara-C) (1982) J. Chem. Soc., Perkin Trans. 1, pp. 1171-1176; Ross, B.S., Ganapati Reddy, P., Zhang, H.-R., Rachakonda, S., Sofia, M.J., Synthesis of Diastereomerically Pure Nucleotide Phosphoramidates (2011) J. Org. Chem., 76, pp. 8311-8319; Lozada-Ramírez, J.D., Martínez-Martínez, I., Sánchez-Ferrer, A., García-Carmona, F., A Colorimetric Assay for S-Adenosylhomocysteine Hydrolase (2006) J. Biochem. Biophys. Methods, 67, pp. 131-140; Scholte, F.E.M., Tas, A., Martina, B.E.E., Cordioli, P., Narayanan, K., Makino, S., Snijder, E.J., Van Hemert, M.J., Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates (2013) PLoS One, 8, p. e71047; Van Boheemen, S., Tas, A., Anvar, S.Y., Van Grootveld, R., Albulescu, I.C., Bauer, M.P., Feltkamp, M.C., Van Hemert, M.J., Quasispecies Composition and Evolution of a Typical Zika Virus Clinical Isolate from Suriname (2017) Sci. Rep., 7, p. 2368; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans (2012) MBio, 3, pp. e00473-e00512; Albulescu, I.C., Kovacikova, K., Tas, A., Snijder, E.J., Van Hemert, M.J., Suramin Inhibits Zika Virus Replication by Interfering with Virus Attachment and Release of Infectious Particles (2017) Antiviral Res., 143, pp. 230-236; De Wilde, A.H., Jochmans, D., Posthuma, C.C., Zevenhoven-Dobbe, J.C., Van Nieuwkoop, S., Bestebroer, T.M., Van Den Hoogen, B.G., Snijder, E.J., Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture (2014) Antimicrob. Agents Chemother., 58, pp. 4875-4884; Van Den Worm, S.H.E., Eriksson, K.K., Zevenhoven, J.C., Weber, F., Züst, R., Kuri, T., Dijkman, R., Davidson, A.D., Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination (2012) PLoS One, 7, p. e32857","Jeong, L.S.; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National UniversitySouth Korea; email: lakjeong@snu.ac.kr",,"American Chemical Society",00222623,,JMCMA,"31244113","English","J. Med. Chem.",Article,"Final",Open Access,Scopus,2-s2.0-85068313505 "Tao Y., Tong S.","36744564300;55783951400;","Complete genome sequence of a severe acute respiratory syndrome-related coronavirus from kenyan bats",2019,"Microbiology Resource Announcements","8","28", e00548-19,"","",,1,"10.1128/MRA.00548-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069638444&doi=10.1128%2fMRA.00548-19&partnerID=40&md5=c959d62c1775d8310e2123f84830edf5","Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","Tao, Y., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Tong, S., Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","We identified a strain of betacoronavirus BtKY72/Rhinolophus sp./Kenya/ 2007 (here BtKY72) from rectal swab samples in Kenyan bats. This paper reports the complete genomic sequence of BtKY72, which is closely related to BtCoV/BM48-31/ Bulgaria/2008, a severe acute respiratory syndrome (SARS)-related virus from Rhinolophus bats in Europe. © 2019 American Society for Microbiology. All rights reserved.",,"article; Bulgaria; controlled study; genome; Kenya; nonhuman; SARS-related coronavirus","Cherry, J.D., Krogstad, P., SARS: The first pandemic of the 21st century (2004) Pediatr Res, 56, pp. 1-5; Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Sung, J.J., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1986-1994; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , members of the SARS Study Group; Zhong, N., Ding, Y., Mao, Y., Wang, Q., Wang, G., Wang, D., Cong, Y., Pan, J., Consensus for the management of severe acute respiratory syndrome (2003) Chin Med J (Engl), 116, pp. 1603-1635. , Chinese Medical Association, China Association of Chinese Medicine; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Group, S.W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Doerr, H.W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Poon, L.L., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronaviruslike virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Tong, S., Conrardy, C., Ruone, S., Kuzmin, I.V., Guo, X., Tao, Y., Niezgoda, M., Rupprecht, C.E., Detection of novel SARS-like and other coronaviruses in bats from Kenya (2009) Emerg Infect Dis, 15, pp. 482-485; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol, 91, pp. e01953-e02016; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Tu, C., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J Virol, 88, pp. 7070-7082; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Guan, Y., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J Virol, 80, pp. 7481-7490; Yuan, J., Hon, C.C., Li, Y., Wang, D., Xu, G., Zhang, H., Zhou, P., Shi, Z., Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans (2010) J Gen Virol, 91, pp. 1058-1062; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Drosten, C., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J Virol, 84, pp. 11336-11349; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst Biol, 59, pp. 307-321","Tong, S.; Division of Viral Diseases, Centers for Disease Control and PreventionUnited States; email: sot1@cdc.gov",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Article,"Final",Open Access,Scopus,2-s2.0-85069638444 "Chae J.-B., Park J., Jung S.-H., Kang J.-H., Chae J.-S., Choi K.-S.","57037983200;8730126700;57210209134;57210211499;7102478039;7403949556;","Acute phase response in bovine coronavirus positive post-weaned calves with diarrhea",2019,"Acta Veterinaria Scandinavica","61","1", 36,"","",,1,"10.1186/s13028-019-0471-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069929780&doi=10.1186%2fs13028-019-0471-3&partnerID=40&md5=09219017ea053b16996cf75affc03507","Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Choong Ang Vaccine Laboratories Co.Ltd., CAVAC, Daejeon, 34055, South Korea; College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; National Institute of Animal Science, Rural Development Administration, Wanju, 53365, South Korea; College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, South Korea","Chae, J.-B., Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea, Choong Ang Vaccine Laboratories Co.Ltd., CAVAC, Daejeon, 34055, South Korea; Park, J., College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; Jung, S.-H., National Institute of Animal Science, Rural Development Administration, Wanju, 53365, South Korea; Kang, J.-H., College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, South Korea; Chae, J.-S., Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Choi, K.-S., College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, South Korea","Bovine coronavirus (BCoV) is associated with severe diarrhea in calves, winter dysentery in adult cattle, and respiratory diseases in cattle of all ages. This study aimed to investigate the relationship between white blood cell counts and haptoglobin (Hp) and serum amyloid A (SAA) levels in post-weaned calves with diarrhea caused by BCoV and those that recovered from diarrhea. Blood and fecal samples were collected twice from the same animals; 17 post-weaned calves with diarrhea (first) and 15 post-weaned calves that recovered from diarrhea (second). Real-time polymerase chain reaction revealed that all 17 fecal samples from post-weaned calves with diarrhea and one out of 15 from diarrhea-recovered calves were positive for BCoV and negative for Cryptosporidium spp., Escherichia coli K99, Salmonella spp., bovine rotavirus, and bovine viral diarrhea virus. No Eimeria oocysts were detected using the flotation method. In comparison with post-weaned calves with diarrhea, in diarrhea-recovered calves, the lymphocyte count was significantly higher (P = 0.018), and the monocyte count was significantly lower (P = 0.001); however, the number of monocytes was still high. Post-weaned calves with diarrhea had a significantly higher Hp concentration (P < 0.001) compared with diarrhea-recovered calves. The results indicated that increased Hp concentration and monocytosis but not SAA may be associated with diarrhea caused by BCoV. The present study suggests that the monitoring of Hp concentration and monocyte count is useful in the diagnosis of post-weaned calves with diarrhea caused by BCoV in this field. © 2019 The Author(s).","Bovine coronavirus; Haptoglobin; Serum amyloid A","haptoglobin; serum amyloid A; haptoglobin; serum amyloid A; acute phase response; animal experiment; Article; Bovine coronavirus; calf (bovine); diarrhea; feces analysis; flotation; leukocyte count; lymphocyte count; monocyte count; monocytosis; nonhuman; protein blood level; real time polymerase chain reaction; acute phase response; animal; blood; bovine; Bovine coronavirus; cattle disease; complication; Coronavirus infection; diarrhea; feces; female; immunology; veterinary medicine; virology; weaning; Acute-Phase Reaction; Animals; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; Diarrhea; Feces; Female; Haptoglobins; Lymphocyte Count; Serum Amyloid A Protein; Weaning","Fulton, R.W., Herd, H.R., Sorensen, N.J., Confer, A.W., Ritchey, J.W., Ridpath, J.F., Burge, L.J., Enteric disease in postweaned beef calves associated with Bovine coronavirus clade 2 (2015) J Vet Diagn Invest, 27, pp. 97-101; Clark, M.A., Bovine coronavirus (1993) Br Vet J, 149, pp. 51-70. , 1:CAS:528:DyaK3sXksVCkt7g%3D; Gunn, L., Collins, P.J., O'Connell, M.J., O'Shea, H., Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains (2015) Ir Vet J., 68, p. 31. , 1:STN:280:DC%2BC28rmtlSmuw%3D%3D; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin North Am Food Anim Pract., 26, pp. 123-146; Cray, C., Zaias, J., Altman, N.H., Acute phase response in animals: A review (2009) Comp Med, 59, pp. 517-526. , 1:CAS:528:DC%2BC3cXht1ahsbzM 20034426 2798837; Eckersall, P.D., Bell, R., Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine (2010) Vet J., 185, pp. 23-27. , 1:CAS:528:DC%2BC3cXnsVaqs7c%3D; Deignan, T., Alwan, A., Kelly, J., McNair, J., Warren, T., O'Farrelly, C., Serum haptoglobin: An objective indicator of experimentally-induced Salmonella infection in calves (2000) Res Vet Sci, 69, pp. 153-158. , 1:CAS:528:DC%2BD3cXotVOlsr8%3D; Lassen, B., Bangoura, B., Lepik, T., Orro, T., Systemic acute phase proteins response in calves experimentally infected with Eimeria zuernii (2015) Vet Parasitol, 212, pp. 140-146. , 1:CAS:528:DC%2BC2MXhtFyqsb7I; Seppa-Lassila, L., Orro, T., Lassen, B., Lasonen, R., Autio, T., Pelkonen, S., Soveri, T., Intestinal pathogens, diarrhoea and acute phase proteins in naturally infected dairy calves (2015) Comp Immunol Microbiol Infect Dis, 41, pp. 10-16; Cho, Y.I., Kim, W.I., Liu, S., Kinyon, J.M., Yoon, K.J., Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces (2010) J Vet Diagn Invest, 22, pp. 509-517; Mahlum, C.E., Haugerud, S., Shivers, J.L., Rossow, K.D., Goyal, S.M., Collins, J.E., Faaberg, K.S., Detection of bovine viral diarrhea virus by TaqMan reverse transcription polymerase chain reaction (2002) J Vet Diagn Invest, 14, pp. 120-125; Natsuaki, S., Goto, K., Nakamura, K., Yamada, M., Ueo, H., Komori, T., Shirakawa, H., Uchinuno, Y., Fatal winter dysentery with severe anemia in an adult cow (2007) J Vet Med Sci, 69, pp. 957-960; Park, S.J., Kim, G.Y., Choy, H.E., Hong, Y.J., Saif, L.J., Jeong, J.H., Park, S.I., Shin, S.S., Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves (2007) Arch Virol, 152, pp. 1885-1900. , 1:CAS:528:DC%2BD2sXhtFSlur%2FI; Roland, L., Drillich, M., Iwersen, M., Hematology as a diagnostic tool in bovine medicine (2014) J Vet Diagn Invest, 26, pp. 592-598; Khan, I.S., Singh, C., Tejinder, S., Dua, K., Age related changes in blood biochemical and hematological profile of buffalo in calves (2018) J Vet Sci Technol., 9, p. 512. , 10.4172/2157-7579.1000512; Feldman, B.F., Zinkl, J.G., Jain, N.C., (2000) Schalm's veterinary hematology, pp. 200-204. , 5 Lippincott Williams & Wilkins Philadelphia; Jones, M.L., Allison, R.W., Evaluation of the ruminant complete blood cell count (2007) Vet Clin North Am Food Anim Pract., 23, pp. 377-402; Carter, J.N., Meredith, G.L., Montelongo, M., Gill, D.R., Krehbiel, C.R., Payton, M.E., Confer, A.W., Relationship of Vitamin E supplementation and antimicrobial treatment with acute-phase protein responses in cattle affected by naturally acquired respiratory tract disease (2002) Am J Vet Res, 63, pp. 1111-1117. , 1:CAS:528:DC%2BD38XmsF2qs7o%3D; Heegaard, P.M., Godson, D.L., Toussaint, M.J., Tjornehoj, K., Larsen, L.E., Viuff, B., Ronsholt, L., The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus (2000) Vet Immunol Immunopathol, 77, pp. 151-159. , 1:CAS:528:DC%2BD3cXovFGmsLk%3D; Lomborg, S.R., Nielsen, L.R., Heegaard, P.M., Jacobsen, S., Acute phase proteins in cattle after exposure to complex stress (2008) Vet Res Commun, 32, pp. 575-582. , 1:STN:280:DC%2BD1cngs12qtg%3D%3D; Horadagoda, N.U., Knox, K.M., Gibbs, H.A., Reid, S.W., Horadagoda, A., Edwards, S.E., Eckersall, P.D., Acute phase proteins in cattle: Discrimination between acute and chronic inflammation (1999) Vet Rec., 144, pp. 437-441. , 1:STN:280:DyaK1M3nsVynsQ%3D%3D; Nazifi, S., Razavi, S.M., Esmailnejad, Z., Gheisari, H., Study on acute phase proteins (haptoglobin, serum amyloid A, fibrinogen, and ceruloplasmin) changes and their diagnostic values in bovine tropical theileriosis (2009) Parasitol Res, 105, pp. 41-46. , 1:STN:280:DC%2BD1MzlvFyqtg%3D%3D","Choi, K.-S.; College of Ecology and Environmental Science, Kyungpook National UniversitySouth Korea; email: kschoi3@knu.ac.kr",,"BioMed Central Ltd.",0044605X,,AVSCA,"31345246","English","Acta Vet. Scand.",Article,"Final",Open Access,Scopus,2-s2.0-85069929780 "Zhao S., Li W., Schuurman N., Van Kuppeveld F., Bosch B.-J., Egberink H.","57210714952;54966542700;36763486200;7004255109;7003681993;7004767057;","Serological screening for coronavirus infections in cats",2019,"Viruses","11","8", 743,"","",,1,"10.3390/v11080743","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071281278&doi=10.3390%2fv11080743&partnerID=40&md5=e9b2e9a11cd3f178657d967a7d7a4dbb","Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands","Zhao, S., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands; Li, W., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands; Schuurman, N., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands; Van Kuppeveld, F., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands; Bosch, B.-J., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands; Egberink, H., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, Netherlands","Coronaviruses (CoVs) are widespread among mammals and birds and known for their potential for cross-species transmission. In cats, infections with feline coronaviruses (FCoVs) are common. Several non-feline coronaviruses have been reported to infect feline cells as well as cats after experimental infection, supported by their ability to engage the feline receptor ortholog for cell entry. However, whether cats might become naturally infected with CoVs of other species is unknown. We analyzed coronavirus infections in cats by serological monitoring. In total 137 cat serum samples and 25 FCoV type 1 or type 2-specific antisera were screened for the presence of antibodies against the S1 receptor binding subunit of the CoV spike protein, which is immunogenic and possesses low amino acid sequence identity among coronavirus species. Seventy-eight sera were positive for antibodies that recognized one or more coronavirus S1s whereas 1 serum exclusively reacted with human coronavirus 229E (HCoV-229E) and two sera exclusively reacted with porcine delta coronavirus (PDCoV). We observed antigenic cross-reactivity between S1s of type 1 and type 2 FCoVs, and between FCoV type 1 and porcine epidemic diarrhea virus (PEDV). Domain mapping of antibody epitopes indicated the presence of conserved epitope(s) particularly in the CD domains of S1. The cross-reactivity of FCoV type 1 and PEDV was also observed at the level of virus neutralization. To conclude, we provide the first evidence of antigenic cross-reactivity among S1 proteins of coronaviruses, which should be considered in the development of serological diagnoses. In addition, the potential role of cats in cross-species transmission of coronaviruses cannot be excluded. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Cats; Coronaviruses; Cross-reaction; Cross-species transmission; ELISA; Spike protein; Virus neutralization","neutralizing antibody; amino acid sequence; animal cell; antibody screening; antigen binding; Article; bioassay; blood sampling; controlled study; Coronavirus infection; enzyme linked immunosorbent assay; genetic transfection; hepatoma cell; Huh-7 cell line; human; human cell; microscopy; nonhuman; phylogeny; plasmid; protein expression; protein structure; receptor binding; recombinant porcine epidemic diarrhea virus; serology; seroprevalence; Vero cell line; virus detection; virus infectivity; virus isolation; virus neutralization; virus neutralization assay; virus recombinant; virus replication","Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol, 86, pp. 3995-4008; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., Dimaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol, 14, p. 523; Bolles, M., Donaldson, E., Baric, R., SARS-CoV and emergent coronaviruses: Viral determinants of interspecies transmission (2011) Curr. Opin. Virol, 1, pp. 624-634; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: Transmission and phylogenetic evolution (2014) Trends Microbiol, 22, pp. 573-579; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Al Masri, M., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9864-9869; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Adu-Sarkodie, Y., Evidence for an Ancestral Association of Human Coronavirus 229E with Bats (2015) J. Virol, 89, pp. 11858-11870; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: Porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J. Virol, 80, pp. 7270-7274; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Kuzmin, I.V., Tong, S., Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History (2017) J. Virol, 91, pp. e01953-e01e16; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat. Rev. Microbiol, 7, pp. 439-450; Le Poder, S., Feline and canine coronaviruses: Common genetic and pathobiological features (2011) Adv. Virol., 2011, p. 609465; Katz, J.M., Hancock, K., Xu, X., Serologic assays for influenza surveillance, diagnosis and vaccine evaluation (2011) Expert Rev. Anti. Infect, 9, pp. 669-683; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci, 54, pp. 557-562; Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Lutz, H., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J. Feline Med. Surg, 11, pp. 594-604; Shiba, N., Maeda, K., Kato, H., Mochizuki, M., Iwata, H., Differentiation of feline coronavirus type I and II infections by virus neutralization test (2007) Vet. Microbiol, 124, pp. 348-352; Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., De Groot, R.J., Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus (1998) J. Virol, 72, pp. 4508-4514; Terada, Y., Matsui, N., Noguchi, K., Kuwata, R., Shimoda, H., Soma, T., Mochizuki, M., Maeda, K., Emergence of Pathogenic Coronaviruses in Cats by Homologous Recombination between Feline and Canine Coronaviruses (2014) Plos ONE, 9; Pedersen, N.C., Virology and immunopathogenesis (2014) Vet. J, 201, pp. 123-132. , An update on feline infectious peritonitis; Tresnan, D.B., Levis, R., Holmes, K.V., Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I (1996) J. Virol, 70, pp. 8669-8674; Dye, C., Temperton, N., Siddell, S.G., Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines (2007) J. Gen. Virol, 88, p. 1753; Barlough, J.E., Stoddart, C.A., Sorresso, G.P., Jacobson, R.H., Scott, F.W., Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus (1984) Lab. Anim. Sci, 34, pp. 592-597; Barlough, J.E., Johnson-Lussenburg, C.M., Stoddart, C.A., Jacobson, R.H., Scott, F.W., Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus (1985) Can. J. Comp. Med, 49, pp. 303-307; Tresnan, D.B., Holmes, K.V., Feline aminopeptidase N is a receptor for all group I coronaviruses (1998) Coronaviruses and Arteriviruses, 440, pp. 69-75. , Springer: Boston, MA, USA; Wang, Y.T., Chueh, L.L., Wan, C.H., An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections (2014) BMC Vet. Res, 10, p. 186; Tekelioglu, B.K., Berriatua, E., Turan, N., Helps, C.R., Kocak, M., Yilmaz, H., A retrospective clinical and epidemiological study on feline coronavirus (FCoV) in cats in Istanbul, Turkey (2015) Prev. Vet. Med, 119, pp. 41-47; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clin. Diagn. Lab. Immunol, 12, pp. 1209-1215; Hulswit, R., De Haan, C., Bosch, B.-J., Coronavirus spike protein and tropism changes (2016) Advances in Virus Research, 96, pp. 29-57. , Elsevier: Amsterdam, The Netherlands; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Reusken, C., Mou, H., Godeke, G.J., Van Der Hoek, L., Meyer, B., Muller, M.A., Haagmans, B., Dittmer, U., Specific serology for emerging human coronaviruses by protein microarray (2013) Eurosurveillance, 18, p. 20441; Leung, G.M., Chung, P.-H., Tsang, T., Lim, W., Chan, S.K., Chau, P., Donnelly, C.A., Riley, S., SARS-CoV antibody prevalence in all Hong Kong patient contacts (2004) Emerg. Infect. Dis, 10, p. 1653; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis, 13, pp. 859-866; Dortmans, J.C.F.M., Li, W., Van Der Wolf, P.J., Buter, G.J., Franssen, P.J.M., Van Schaik, G., Houben, M., Bosch, B.J., Porcine epidemic diarrhea virus (PEDV) introduction into a naive Dutch pig population in 2014 (2018) Vet. Microbiol., 221, pp. 13-18; Haijema, B.J., Volders, H., Rottier, P.J.M., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J. Virol, 78, pp. 3863-3871; Vogel, L., Van Der Lubben, M., Te Lintelo, E.G., Bekker, C.P., Geerts, T., Schuijff, L.S., Grinwis, G.C., Rottier, P.J., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet. Res, 41, p. 71; Li, W., Hulswit, R.J.G., Kenney, S.P., Widjaja, I., Jung, K., Alhamo, M.A., Van Dieren, B., Bosch, B.J., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc. Natl Acad. Sci. USA, 115, pp. E5135-E5143; Li, C.H., Li, Z., Zou, Y., Wicht, O., Van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Manipulation of the Porcine Epidemic Diarrhea Virus Genome Using Targeted RNA Recombination (2013) Plos ONE, 8; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., Van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J. Virol, 88, pp. 7952-7961; Li, C., Li, W., Lucio De Esesarte, E., Guo, H., Van Den Elzen, P., Aarts, E., Van Den Born, E., Bosch, B.J., Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies (2017) J. Virol, 91, pp. e00273-e00e17; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Lang, Y., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl Acad. Sci. USA, 114, pp. E8508-E8517; Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Bordoli, L., SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res, 42, pp. W252-W258; Hohdatsu, T., Okada, S., Koyama, H., Characterization of Monoclonal-Antibodies against Feline Infectious Peritonitis Virus Type-II and Antigenic Relationship between Feline, Porcine, and Canine Coronaviruses (1991) Arch. Virol, 117, pp. 85-95; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J. Feline Med. Surg, 11, pp. 225-258; Bell, E.T., Toribio, J.A., White, J.D., Malik, R., Norris, J.M., Seroprevalence study of feline coronavirus in owned and feral cats in Sydney, Australia (2006) Aust. Vet. J, 84, pp. 74-81; An, D.J., Jeoung, H.Y., Jeong, W., Park, J.Y., Lee, M.H., Park, B.K., Prevalence of Korean cats with natural feline coronavirus infections (2011) Virol. J, 8, p. 455; Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J. Gen. Virol, 84, pp. 2735-2744; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis, 18, pp. 1089-1095; Okda, F.A., Lawson, S., Singrey, A., Nelson, J., Hain, K.S., Joshi, L.R., Christopher-Hennings, J., Diel, D.G., The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes (2017) Virology, 509, pp. 185-194; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs (2009) J. Virol, 83, pp. 1532-1537; Truong, Q.L., Seo, T.W., Yoon, B.I., Kim, H.C., Han, J.H., Hahn, T.W., Prevalence of swine viral and bacterial pathogens in rodents and stray cats captured around pig farms in Korea (2013) J. Vet. Med. Sci, 75, pp. 1647-1650; Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Jrijer, J., Bagato, O., Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals (2019) Emerg. Microbes. Infect, 8, pp. 103-108","Egberink, H.; Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Netherlands; email: H.F.Egberink@uu.nl",,"MDPI AG",19994915,,,"31412572","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85071281278 "Kim Y., Son K., Kim Y.-S., Lee S.-Y., Jheong W., Oem J.-K.","57193715617;57193703804;57214047069;57203436336;24076289900;6506283913;","Complete genome analysis of a SARS-like bat coronavirus identified in the Republic of Korea",2019,"Virus Genes","55","4",,"545","549",,,"10.1007/s11262-019-01668-w","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065669232&doi=10.1007%2fs11262-019-01668-w&partnerID=40&md5=e7146b6c465311aecd60e3b659ca8894","Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, South Korea; Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea","Kim, Y., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, South Korea, Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea; Son, K., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, South Korea; Kim, Y.-S., Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea; Lee, S.-Y., Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea; Jheong, W., Environmental Health Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, South Korea; Oem, J.-K., Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National University, Jeonju, South Korea","Bats have been widely known as natural reservoir hosts of zoonotic diseases, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) caused by coronaviruses (CoVs). In the present study, we investigated the whole genomic sequence of a SARS-like bat CoV (16BO133) and found it to be 29,075 nt in length with a 40.9% G+C content. Phylogenetic analysis using amino acid sequences of the ORF 1ab and the spike gene showed that the bat coronavirus strain 16BO133 was grouped with the Beta-CoV lineage B and was closely related to the JTMC15 strain isolated from Rhinolophus ferrumequinum in China. However, 16BO133 was distinctly located in the phylogenetic topology of the human SARS CoV strain (Tor2). Interestingly, 16BO133 showed complete elimination of ORF8 regions induced by a frame shift of the stop codon in ORF7b. The lowest amino acid identity of 16BO133 was identified at the spike region among various ORFs. The spike region of 16BO133 showed 84.7% and 75.2% amino acid identity with Rf1 (SARS-like bat CoV) and Tor2 (human SARS CoV), respectively. In addition, the S gene of 16BO133 was found to contain the amino acid substitution of two critical residues (N479S and T487 V) associated with human infection. In conclusion, we firstly carried out whole genome characterization of the SARS-like bat coronavirus discovered in the Republic of Korea; however, it presumably has no human infectivity. However, continuous surveillance and genomic characterization of coronaviruses from bats are necessary due to potential risks of human infection induced by genetic mutation. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.","Bat; Frame shift; SARS-like coronavirus; Whole genome; Zoonotic disease","amino acid sequence; amino acid substitution; Article; bat; China; frameshift mutation; genome analysis; molecular phylogeny; nonhuman; nucleotide sequence; open reading frame; priority journal; residue analysis; Rhinolophus ferrumequinum; SARS coronavirus; South Korea; stop codon; virus isolation; virus strain; whole genome sequencing; animal; Betacoronavirus; classification; genetics; human; isolation and purification; molecular typing; phylogeny; SARS coronavirus; sequence analysis; species difference; virology; virus genome; Animals; Betacoronavirus; Chiroptera; Genome, Viral; Humans; Molecular Typing; Phylogeny; Republic of Korea; SARS Virus; Sequence Analysis, Protein; Species Specificity; Whole Genome Sequencing","Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr Top Microbiol Immunol, 287, pp. 1-30; Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A.E., Enjuanes, L., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae (2003) Arch Virol, 148, pp. 2207-2235; Xu, L., Zhang, F., Yang, W., Jiang, T., Lu, G., He, B., Li, X., Tu, C., Detection and characterization of diverse alpha- and betacoronaviruses from bats in China (2016) Virol Sin, 31, pp. 69-77; Kim, H.K., Yoon, S.W., Kim, D.J., Koo, B.S., Noh, J.Y., Kim, J.H., Choi, Y.G., Jeong, D.G., Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in faeces of Korean bats (2016) Transbound Emerg Dis, 63, pp. 365-372; Yang, L., Wu, Z., Ren, X., Yang, F., He, G., Zhang, J., Dong, J., Jin, Q., Novel SARS-like betacoronaviruses in bats, China (2011) Emerg Infect Dis, 19, pp. 989-991; Ren, W., Li, W., Yu, M., Hao, P., Zhang, Y., Zhou, P., Zhang, S., Shi, Z., Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis (2006) J Gen Virol, 87, pp. 3355-3359; He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Tu, C., Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China (2014) J Virol, 88, pp. 7070-7082; Nuttall, I., Dye, C., Epidemiology. The SARS wake-up call (2013) Science, 339, pp. 1287-1288; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L.J., Wong, S.K., Moore, M.J., Marasco, W.A., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association (2004) Proc Natl Acad Sci U S A, 101, pp. 2536-2541; Qu, X.X., Hao, P., Song, X.J., Jiang, S.M., Liu, Y.X., Wang, P.G., Rao, X., Deng, H.K., Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy (2005) J Biol Chem, 280, pp. 29588-29595; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045; Lee, S., Jo, S.D., Son, K., An, I., Jeong, J., Wang, S.J., Kim, Y., Oem, J.K., Genetic characteristics of coronaviruses from Korean bats in 2016 (2018) Microb Ecol, 75, pp. 174-182; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Farzan, M., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; Belouzard, S., Chu, V.C., Whittaker, G.R., Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites (2009) Proc Natl Acad Sci U S A, 106, pp. 5871-5876; Spiga, O., Bernini, A., Ciutti, A., Chiellini, S., Menciassi, N., Finetti, F., Causarono, V., Niccolai, N., Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein (2003) Biochem Biophys Res Commun, 310, pp. 78-83; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Wang, L.F., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Woo, P.C., Severe Acute Respiratory Syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J Virol, 89, pp. 10532-10547","Oem, J.-K.; Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Chonbuk National UniversitySouth Korea; email: jku0623@jbnu.ac.kr",,"Springer New York LLC",09208569,,VIGEE,"31076983","English","Virus Genes",Article,"Final",Open Access,Scopus,2-s2.0-85065669232 "Siu K.-L., Yuen K.-S., Castano-Rodriguez C., Ye Z.-W., Yeung M.-L., Fung S.-Y., Yuan S., Chan C.-P., Yuen K.-Y., Enjuanes L., Jin D.-Y.","7102312040;55588721400;55988452600;56611152500;37040000300;56956400000;55364121100;36193690700;36078079100;7006565392;7201973614;","Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC",2019,"FASEB Journal","33","8",,"8865","8877",,3,"10.1096/fj.201802418R","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070788848&doi=10.1096%2ffj.201802418R&partnerID=40&md5=bf076b001f17dde519799e590b6f48a3","School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas (CNB-CSIC), Madrid, Spain","Siu, K.-L., School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; Yuen, K.-S., School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; Castano-Rodriguez, C., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas (CNB-CSIC), Madrid, Spain; Ye, Z.-W., Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; Yeung, M.-L., School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; Fung, S.-Y., School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; Yuan, S., Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; Chan, C.-P., School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; Yuen, K.-Y., Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; Enjuanes, L., Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas (CNB-CSIC), Madrid, Spain; Jin, D.-Y., School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong","Severe acute respiratory syndrome Coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)–mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro–IL-1β gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro–IL-1β transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1β secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV–infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.—Siu, K.-L., Yuen, K.-S., Castano-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 33, 8865–8877 (2019). www.fasebj.org. © FASEB","SARS Coronavirus","apoptosis-associated speck like protein containing a caspase recruitment domain; beta tubulin; canakinumab; caveolin; CRISPR associated endonuclease Cas9; cryopyrin; deubiquitinase; guide RNA; hypoxanthine phosphoribosyltransferase; immunoglobulin enhancer binding protein; inflammasome; interleukin 1beta; interleukin 1beta converting enzyme; ion channel; lamin A; lamin C; messenger RNA; open reading frame 3a protein; procaspase 1; protein p50; tumor necrosis factor receptor associated factor; tumor necrosis factor receptor associated factor 3; unclassified drug; viral protein; A-549 cell line; Article; controlled study; cytokine release; cytoplasm; enzyme linked immunosorbent assay; gene expression; genetic transcription; HEK293 cell line; Huh-7 cell line; human; human cell; immunoprecipitation; in vitro study; nonhuman; point mutation; priority journal; promoter region; protein processing; real time polymerase chain reaction; RNA interference; SARS coronavirus; severe acute respiratory syndrome; ubiquitination; virus genome; Western blotting","Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome Coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Tang, B.S., Chan, K.H., Cheng, V.C., Woo, P.C., Lau, S.K., Lam, C.C., Chan, T.L., Yuen, K.Y., Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome Coronavirus and human Coronavirus 229E (2005) J. Virol., 79, pp. 6180-6193; De Lang, A., Baas, T., Teal, T., Leijten, L.M., Rain, B., Osterhaus, A.D., Haagmans, B.L., Katze, M.G., Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques (2007) PLoS Pathog., 3; Broz, P., Dixit, V.M., Inflammasomes: mechanism of assembly, regulation and signalling (2016) Nat. Rev. Immunol., 16, pp. 407-420; Agostini, L., Martinon, F., Burns, K., McDermott, M.F., Hawkins, P.N., Tschopp, J., NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells auto-inflammatory disorder (2004) Immunity, 20, pp. 319-325; Haneklaus, M., O'Neill, L.A., NLRP3 at the interface of metabolism and inflammation (2015) Immunol. Rev., 265, pp. 53-62; Gram, A.M., Frenkel, J., Ressing, M.E., Inflammasomes and viruses: cellular defence versus viral offence (2012) J. Gen. Virol., 93, pp. 2063-2075; Stewart, M.K., Cookson, B.T., Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses (2016) Nat. Rev. Microbiol., 14, pp. 346-359; Ichinohe, T., Pang, I.K., Iwasaki, A., Influenza virus activates inflammasomes via its intracellular M2 ion channel (2010) Nat. Immunol., 11, pp. 404-410; Ito, M., Yanagi, Y., Ichinohe, T., Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome (2012) PLoS Pathog., 8; Guo, H.C., Jin, Y., Zhi, X.Y., Yan, D., Sun, S.Q., NLRP3 inflammasome activation by viroporins of animal viruses (2015) Viruses, 7, pp. 3380-3391; McAuley, J.L., Tate, M.D., MacKenzie-Kludas, C.J., Pinar, A., Zeng, W., Stutz, A., Latz, E., Mansell, A., Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease (2013) PLoS Pathog., 9; Nieto-Torres, J.L., DeDiego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Enjuanes, L., Severe acute respiratory syndrome Coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog., 10; Lu, W., Zheng, B.J., Xu, K., Schwarz, W., Du, L., Wong, C.K., Chen, J., Sun, B., Severe acute respiratory syndrome-associated Coronavirus 3a protein forms an ion channel and modulates virus release (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 12540-12545; Chen, C.C., Krüger, J., Sramala, I., Hsu, H.J., Henklein, P., Chen, Y.M., Fischer, W.B., ORF8a of SARS-CoV forms an ion channel: experiments and molecular dynamics simulations (2011) Biochim. Biophys. Acta, 1808, pp. 572-579; Castaño-Rodriguez, C., Honrubia, J.M., Gutiérrez-Álvarez, J., DeDiego, M.L., Nieto-Torres, J.L., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Enjuanes, L., Role of severe acute respiratory syndrome Coronavirus viroporins E., 3a, and 8a in replication and pathogenesis (2018) MBio, 9, pp. e02325-e02317; Nieto-Torres, J.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Castaño-Rodriguez, C., Fernandez-Delgado, R., Torres, J., Enjuanes, L., Severe acute respiratory syndrome Coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome (2015) Virology, 485, pp. 330-339; Minakshi, R., Padhan, K., Rehman, S., Hassan, M.I., Ahmad, F., The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain (2014) Virus Res., 191, pp. 180-183; Tan, Y.J., Lim, S.G., Hong, W., Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) Coronavirus (2006) Antiviral Res., 72, pp. 78-88; Narayanan, K., Huang, C., Makino, S., SARS Coronavirus accessory proteins (2008) Virus Res., 133, pp. 113-121; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome Coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J. Virol., 79, pp. 14909-14922; Minakshi, R., Padhan, K., Rani, M., Khan, N., Ahmad, F., Jameel, S., The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor (2009) PLoS One, 4; Freundt, E.C., Yu, L., Goldsmith, C.S., Welsh, S., Cheng, A., Yount, B., Liu, W., Lenardo, M.J., The open reading frame 3a protein of severe acute respiratory syndrome-associated Coronavirus promotes membrane rearrangement and cell death (2010) J. Virol., 84, pp. 1097-1109; Chan, C.M., Tsoi, H., Chan, W.M., Zhai, S., Wong, C.O., Yao, X., Chan, W.Y., Chan, H.Y., The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function (2009) Int. J. Biochem. Cell Biol., 41, pp. 2232-2239; Oostra, M., de Haan, C.A., de Groot, R.J., Rottier, P.J., Glycosylation of the severe acute respiratory syndrome Coronavirus triple-spanning membrane proteins 3a and M (2006) J. Virol., 80, pp. 2326-2336; Padhan, K., Tanwar, C., Hussain, A., Hui, P.Y., Lee, M.Y., Cheung, C.Y., Peiris, J.S., Jameel, S., Severe acute respiratory syndrome Coronavirus Orf3a protein interacts with caveolin (2007) J. Gen. Virol., 88, pp. 3067-3077; Tan, Y.J., Tham, P.Y., Chan, D.Z., Chou, C.F., Shen, S., Fielding, B.C., Tan, T.H., Hong, W., The severe acute respiratory syndrome Coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells (2005) J. Virol., 79, pp. 10083-10087; Kanzawa, N., Nishigaki, K., Hayashi, T., Ishii, Y., Furukawa, S., Niiro, A., Yasui, F., Kannagi, M., Augmentation of chemokine production by severe acute respiratory syndrome Coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation (2006) FEBS Lett., 580, pp. 6807-6812; Hiscott, J., Marois, J., Garoufalis, J., D'Addario, M., Roulston, A., Kwan, I., Pepin, N., Fenton, M., Characterization of a functional NF-κ B site in the human interleukin 1 β promoter: evidence for a positive autoregulatory loop (1993) Mol. Cell. Biol., 13, pp. 6231-6240; Zhou, R., Yazdi, A.S., Menu, P., Tschopp, J., A role for mitochondria in NLRP3 inflammasome activation (2011) Nature, 469, pp. 221-225. , erratum 475, 122; Reiley, W., Zhang, M., Wu, X., Granger, E., Sun, S.C., Regulation of the deubiquitinating enzyme CYLD by IkappaB kinase γ-dependent phosphorylation (2005) Mol. Cell. Biol., 25, pp. 3886-3895; Zeng, W., Xu, M., Liu, S., Sun, L., Chen, Z.J., Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3 (2009) Mol. Cell, 36, pp. 315-325; Siu, K.L., Kok, K.H., Ng, M.H., Poon, V.K., Yuen, K.Y., Zheng, B.J., Jin, D.Y., Severe acute respiratory syndrome Coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex (2009) J. Biol. Chem., 284, pp. 16202-16209; Siu, K.L., Chan, C.P., Kok, K.H., Chiu-Yat Woo, P., Jin, D.Y., Suppression of innate antiviral response by severe acute respiratory syndrome Coronavirus M protein is mediated through the first transmembrane domain (2014) Cell. Mol. Immunol., 11, pp. 141-149; Lui, P.Y., Wong, L.Y., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Chan, C.P., Jin, D.Y., Middle East respiratory syndrome Coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg. Microbes Infect., 5; De Valck, D., Jin, D.Y., Heyninck, K., Van de Craen, M., Contreras, R., Fiers, W., Jeang, K.T., Beyaert, R., The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases (1999) Oncogene, 18, pp. 4182-4190; Siu, Y.T., Ching, Y.P., Jin, D.Y., Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation (2008) Mol. Biol. Cell, 19, pp. 4750-4761; Ng, M.H., Ho, T.H., Kok, K.H., Siu, K.L., Li, J., Jin, D.Y., MIP-T3 is a negative regulator of innate type I IFN response (2011) J. Immunol., 187, pp. 6473-6482; Chaudhary, V., Zhang, S., Yuen, K.S., Li, C., Lui, P.Y., Fung, S.Y., Wang, P.H., Jin, D.Y., Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation (2015) J. Gen. Virol., 96, pp. 3204-3211; Lui, P.Y., Wong, L.R., Ho, T.H., Au, S.W.N., Chan, C.P., Kok, K.H., Jin, D.Y., PACT facilitates RNA-induced activation of MDA5 by promoting MDA5 oligomerization (2017) J. Immunol., 199, pp. 1846-1855; Cheng, Y., Gao, W.W., Tang, H.M., Deng, J.J., Wong, C.M., Chan, C.P., Jin, D.Y., β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H (2016) Sci. Rep., 6, p. 23938; Fett, C., DeDiego, M.L., Regla-Nava, J.A., Enjuanes, L., Perlman, S., Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein (2013) J. Virol., 87, pp. 6551-6559; Almazán, F., Dediego, M.L., Galán, C., Escors, D., Alvarez, E., Ortego, J., Sola, I., Enjuanes, L., Construction of a severe acute respiratory syndrome Coronavirus infectious cDNA clone and a replicon to study Coronavirus RNA synthesis (2006) J. Virol., 80, pp. 10900-10906; Yeung, M.L., Yao, Y., Jia, L., Chan, J.F., Chan, K.H., Cheung, K.F., Chen, H., Yuen, K.Y., MERS Coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat. Microbiol., 1, p. 16004; Wang, P.H., Ye, Z.W., Deng, J.J., Siu, K.L., Gao, W.W., Chaudhary, V., Cheng, Y., Jin, D.Y., Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16 (2018) EMBO Rep., 19; Wang, P.H., Fung, S.Y., Gao, W.W., Deng, J.J., Cheng, Y., Chaudhary, V., Yuen, K.S., Jin, D.Y., A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing (2018) Nucleic Acids Res., 46, pp. 4054-4071; Chan, C.P., Yuen, C.K., Cheung, P.H., Fung, S.Y., Lui, P.Y., Chen, H., Kok, K.H., Jin, D.Y., Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase (2018) FASEB J., 32, pp. 4380-4393; Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., Genome engineering using the CRISPR-Cas9 system (2013) Nat. Protoc., 8, pp. 2281-2308; Yuen, K.S., Chan, C.P., Wong, N.H., Ho, C.H., Ho, T.H., Lei, T., Deng, W., Jin, D.Y., CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells (2015) J. Gen. Virol., 96, pp. 626-636; Kaminski, J.J., Schattgen, S.A., Tzeng, T.C., Bode, C., Klinman, D.M., Fitzgerald, K.A., Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation (2013) J. Immunol., 191, pp. 3876-3883; Place, D.E., Kanneganti, T.D., Recent advances in inflammasome biology (2018) Curr. Opin. Immunol., 50, pp. 32-38; Guan, K., Wei, C., Zheng, Z., Song, T., Wu, F., Zhang, Y., Cao, Y., Zhong, H., MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 ligase TRAF3 (2015) J. Immunol., 194, pp. 4880-4890; Lupfer, C., Malik, A., Kanneganti, T.D., Inflammasome control of viral infection (2015) Curr. Opin. Virol., 12, pp. 38-46; Oeckinghaus, A., Hayden, M.S., Ghosh, S., Crosstalk in NF-κB signaling pathways (2011) Nat. Immunol., 12, pp. 695-708; Ye, H., Park, Y.C., Kreishman, M., Kieff, E., Wu, H., The structural basis for the recognition of diverse receptor sequences by TRAF2 (1999) Mol. Cell, 4, pp. 321-330; Chiu, H.W., Chen, C.H., Chang, J.N., Chen, C.H., Hsu, Y.H., Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy (2016) J. Mol. Med. (Berl.), 94, pp. 809-819. , erratum 821; Gazdar, A.F., Girard, L., Lockwood, W.W., Lam, W.L., Minna, J.D., Lung cancer cell lines as tools for biomedical discovery and research (2010) J. Natl. Cancer Inst., 102, pp. 1310-1321; Van Opdenbosch, N., Gurung, P., Vande Walle, L., Fossoul, A., Kanneganti, T.D., Lamkanfi, M., Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation (2014) Nat. Commun., 5, p. 3209; Kayagaki, N., Phung, Q., Chan, S., Chaudhari, R., Quan, C., O'Rourke, K.M., Eby, M., Dixit, V.M., DUBA: a deubiquitinase that regulates type I interferon production (2007) Science, 318, pp. 1628-1632; Heyninck, K., Beyaert, R., The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6 (1999) FEBS Lett., 442, pp. 147-150; Parvatiyar, K., Barber, G.N., Harhaj, E.W., TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases (2010) J. Biol. Chem., 285, pp. 14999-15009; Trompouki, E., Hatzivassiliou, E., Tsichritzis, T., Farmer, H., Ashworth, A., Mosialos, G., CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members (2003) Nature, 424, pp. 793-796; Stutz, A., Horvath, G.L., Monks, B.G., Latz, E., ASC speck formation as a readout for inflammasome activation (2013) Methods Mol. Biol., 1040, pp. 91-101; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr., Graham, R.L., McAnarney, E.T., Baric, R.S., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8; Yue, Y., Nabar, N.R., Shi, C.S., Kamenyeva, O., Xiao, X., Hwang, I.Y., Wang, M., Kehrl, J.H., SARS-Coronavirus open reading frame-3a drives multimodal necrotic cell death (2018) Cell Death Dis., 9, p. 904; Chen, I.Y., Moriyama, M., Chang, M.F., Ichinohe, T., Severe acute respiratory syndrome Coronavirus viroporin 3a activates the NLRP3 inflammasome (2019) Front. Microbiol., 10, p. 50; Kumar, M., Roe, K., Orillo, B., Muruve, D.A., Nerurkar, V.R., Gale, M., Jr., Verma, S., Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis (2013) J. Virol., 87, pp. 3655-3667. , erratum 92, e02176-17; Sears, C., Olesen, J., Rubin, D., Finley, D., Maniatis, T., NF-κ B p105 processing via the ubiquitin-proteasome pathway (1998) J. Biol. Chem., 273, pp. 1409-1419; Kravtsova-Ivantsiv, Y., Shomer, I., Cohen-Kaplan, V., Snijder, B., Superti-Furga, G., Gonen, H., Sommer, T., Ciechanover, A., KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth (2015) Cell, 161, pp. 333-347","Enjuanes, L.; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Cientificas (CNB-CSIC)Spain; email: l.enjuanes@cnb.csic.es",,"John Wiley and Sons Inc.",08926638,,FAJOE,"31034780","English","FASEB J.",Article,"Final",Open Access,Scopus,2-s2.0-85070788848 "Chen S., Liu D., Tian J., Kang H., Guo D., Jiang Q., Liu J., Li Z., Hu X., Qu L.","57193357295;8379509200;55250898000;56574568500;16039024000;53163966300;55184705100;57189626856;56599303100;53164772600;","Molecular characterization of HLJ-073, a recombinant canine coronavirus strain from China with an ORF3abc deletion",2019,"Archives of Virology","164","8",,"2159","2164",,,"10.1007/s00705-019-04296-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066490269&doi=10.1007%2fs00705-019-04296-9&partnerID=40&md5=949e1dc02039ef1094ada36e7b56e195","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China","Chen, S., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Liu, D., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Tian, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Kang, H., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Guo, D., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Jiang, Q., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Liu, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Li, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Hu, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Qu, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China","Canine enteric coronaviruses (CCoVs) are important enteric pathogens of dogs. CCoVs with different variations are typically pantropic and pathogenic in dogs. In this study, we isolated a CCoV, designated HLJ-073, from a dead 6-week-old male Pekingese with gross lesions and diarrhea. Interestingly, sequence analysis suggested that HLJ-073 contained a 350-nt deletion in ORF3abc compared with reference CCoV isolates, resulting in the loss of portions of ORF3a and ORF3c and the complete loss of ORF3b. Phylogenetic analysis based on the S gene showed that HLJ-073 was more closely related to members of the FCoV II cluster than to members of the CCoV I or CCoV II cluster. Furthermore, recombination analysis suggested that HLJ-073 originated from the recombination of FCoV 79-1683 and CCoV A76, which were both isolated in the United States. Cell tropism experiments suggested that HLJ-073 could effectively replicate in canine macrophages/monocytes and human THP-1 cells. This is the first report of the isolation of strain HLJ-073 in China, and this virus has biological characteristics that are different from those of other reported CCoVs. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.","Canine coronavirus; ORF3abc; Pantropic; Recombination; Viral cell tropism","coronavirus spike glycoprotein; animal; Canine coronavirus; cell culture; China; Coronavirus infection; diarrhea; DNA sequence; dog; dog disease; gene deletion; genetics; human; male; phylogeny; procedures; THP-1 cell line; virology; Animals; Cells, Cultured; China; Coronavirus Infections; Coronavirus, Canine; Diarrhea; Dog Diseases; Dogs; Humans; Male; Phylogeny; Sequence Analysis, DNA; Sequence Deletion; Spike Glycoprotein, Coronavirus; THP-1 Cells","Enjuanes, L., Spaan, W., Snijder, E., Cavanagh, D., Virus taxonomy, 6th report of the International Committee on Taxonomy of Viruses (1995) Arch Virol Suppl, 10, pp. 1-586; Balint, A., Farsang, A., Zadori, Z., Hornyak, A., Dencso, L., Almazan, F., Enjuanes, L., Belak, S., Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism (2012) J Virol, 86, pp. 6258-6267; Binn, L.N., Lazar, E.C., Keenan, K.P., Huxsoll, D.L., Marchwicki, R.H., Strano, A.J., Recovery and characterization of a coronavirus from military dogs with diarrhea (1974) Proc Annu Meet US Anim Health Assoc, 78, pp. 359-366; Buonavoglia, C., Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Castagnaro, M., Tempesta, M., Canine coronavirus highly pathogenic for dogs (2006) Emerg Infect Dis, 12, pp. 492-494; Canio, B., Nicola, D., Vito, M., Gabriella, E., Marco, C., Costantina, D., Massimo, C., Maria, T., Canine coronavirus highly pathogenic for dogs (2006) Emerg Infect Dis, 12, pp. 492-494; Carmichael, L.E., Binn, L.N., New enteric viruses in the dog (1981) Adv Vet Sci Comp Med, 25, pp. 1-37; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: viral evolution and pathobiology (2008) Vet Microbiol, 132, pp. 221-234; Decaro, N., Elia, G., Martella, V., Campolo, M., Mari, V., Desario, C., Lucente, M.S., Gibbons, R.H., Immunity after natural exposure to enteric canine coronavirus does not provide complete protection against infection with the new pantropic CB/05 strain (2010) Vaccine, 28, pp. 724-729; Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Buonavoglia, C., Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs (2009) J Virol, 83, pp. 1532-1537; Decaro, N., Pratelli, A., Campolo, M., Elia, G., Martella, V., Tempesta, M., Buonavoglia, C., Quantitation of canine coronavirus RNA in the faeces of dogs by TaqMan RT-PCR (2004) J Virol Methods, 119, pp. 145-150; Decaro, N., Mari, V., von Reitzenstein, M., Lucente, M.S., Cirone, F., Elia, G., Martella, V., Buonavoglia, C., A pantropic canine coronavirus genetically related to the prototype isolate CB/05 (2012) Vet Microbiol, 159, pp. 239-244; Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Cirone, F., Tempesta, M., Buonavoglia, C., Molecular characterisation of the virulent canine coronavirus CB/05 strain (2007) Virus Res, 125, pp. 54-60; Hu, X., Jr., Li, N., Jr., Tian, Z., Jr., Yin, X., Jr., Qu, L., Qu, J., Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China (2015) BMC Vet Res, 11, p. 72; Le Poder, S., Feline and canine coronaviruses: common genetic and pathobiological features (2011) Adv Virol, 2011, pp. 1-11; Li, L., Lyu, D., Preparation and characterization of mouse polyclonal antibody against conserved region of human FOXO3 (2017) Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol Immunol, 33, pp. 838-844; Licitra, B.N., Duhamel, G.E., Whittaker, G.R., Canine enteric coronaviruses: emerging viral pathogens with distinct recombinant spike proteins (2014) Viruses, 6, pp. 3363-3376; Ntafis, V., Xylouri, E., Mari, V., Papanastassopoulou, M., Papaioannou, N., Thomas, A., Buonavoglia, C., Decaro, N., Molecular characterization of a canine coronavirus NA/09 strain detected in a dog’s organs (2012) Arch Virol, 157, pp. 171-175; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc Natl Acad Sci USA, 108, pp. 10696-10701; Pratelli, A., Martella, V., Decaro, N., Tinelli, A., Camero, M., Cirone, F., Elia, G., Buonavoglia, C., Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy (2003) J Virol Methods, 110, pp. 9-17; Regan, A.D., Millet, J.K., Tse, L.P., Chillag, Z., Rinaldi, V.D., Licitra, B.N., Dubovi, E.J., Whittaker, G.R., Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain (2012) Virology, 430, pp. 90-99; Sanchez-Morgado, J.M., Poynter, S., Morris, T.H., Molecular characterization of a virulent canine coronavirus BGF strain (2004) Virus Res, 104, pp. 27-31; Wang, X., Li, C., Guo, D., Wang, X., Wei, S., Geng, Y., Wang, E., Sun, D., Co-circulation of canine coronavirus I and IIa/b with high prevalence and genetic diversity in heilongjiang province, Northeast China (2016) PLoS One, 11; Tuchiya, K., Kasaoka, T., Azetaka, M., Takahashi, E., Konishi, S., Plaque assay for canine coronavirus in CRFK cells (1987) Nihon Juigaku Zasshi, 49, pp. 571-573; Wesley, R.D., The S gene of canine coronavirus, strain UCD-1, is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus (1999) Virus Res, 61, pp. 145-152","Hu, X.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: huxiaoliang@caas.cn",,"Springer-Verlag Wien",03048608,,ARVID,"31152250","English","Arch. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85066490269 "Lorusso E., Mari V., Losurdo M., Lanave G., Trotta A., Dowgier G., Colaianni M.L., Zatelli A., Elia G., Buonavoglia D., Decaro N.","8343554300;23019251100;36632768300;55903623000;57194853417;56971452300;16021482700;6603131947;7005135633;7004335810;6701636107;","Discrepancies between feline coronavirus antibody and nucleic acid detection in effusions of cats with suspected feline infectious peritonitis",2019,"Research in Veterinary Science","125",,,"421","424",,3,"10.1016/j.rvsc.2017.10.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032800272&doi=10.1016%2fj.rvsc.2017.10.004&partnerID=40&md5=b97d01be8792f177a0daba85bbc836c5","Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, via Manfredonia 20, Foggia, 71121, Italy; Medical Consultancy Services, 60, Suite 6, G Cali Street, Ta' Xbiex, XBX 1424, Malta","Lorusso, E., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Mari, V., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Losurdo, M., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Lanave, G., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Trotta, A., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Dowgier, G., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Colaianni, M.L., Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, via Manfredonia 20, Foggia, 71121, Italy; Zatelli, A., Medical Consultancy Services, 60, Suite 6, G Cali Street, Ta' Xbiex, XBX 1424, Malta; Elia, G., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Buonavoglia, D., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy; Decaro, N., Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Bari, 70010, Italy","Intra-vitam diagnosis of feline infectious peritonitis (FIP) is a challenge for veterinary diagnosticians, since there are no highly specific and sensitive assays currently available. With the aim to contribute to fill this diagnostic gap, a total of 61 effusions from cats with suspected effusive FIP were collected intra-vitam for detection of feline coronavirus (FCoV) antibodies and RNA by means of indirect immunofluorescence (IIF) assay and real-time RT-PCR (qRT-PCR), respectively. In 5 effusions there was no evidence for either FCoV RNA or antibodies, 51 and 52 specimens tested positive by IIF and qRT-PCR, respectively, although antibody titres ≥ 1:1600, which are considered highly suggestive of FIP, were detected only in 37 effusions. Three samples with high antibody levels tested negative by qRT-PCR, whereas 18 qRT-PCR positive effusions contained no or low-titre antibodies. qRT-PCR positive samples with low antibody titres mostly contained low FCoV RNA loads, although the highest antibody titres were detected in effusions with CT values > 30. In conclusion, combining the two methods, i.e., antibody and RNA detection would help improving the intra-vitam diagnosis of effusive FIP. © 2017 Elsevier Ltd","Antibodies; Diagnosis; Effusions; Feline infectious peritonitis; Viral RNA","virus antibody; virus RNA; virus antibody; virus RNA; antibody detection; antibody titer; Article; ascites fluid; controlled study; feline infectious peritonitis; Feline infectious peritonitis virus; immunofluorescence; nonhuman; pleura effusion; quantitative analysis; real time polymerase chain reaction; RNA analysis; virus detection; virus load; animal; ascites fluid; cat; chemistry; Feline coronavirus; feline infectious peritonitis; genetics; immunology; reverse transcription polymerase chain reaction; veterinary medicine; virology; Animals; Antibodies, Viral; Ascitic Fluid; Cats; Coronavirus, Feline; Feline Infectious Peritonitis; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Viral","Addie, D.D., Jarrett, O., Feline coronavirus antibodies in cats (1992) Vet. Rec., 131, pp. 202-203; Addie, D.D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M.C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J. Feline Med. Surg., 11, pp. 594-604; Addie, D.D., le Poder, S., Burr, P., Decaro, N., Graham, E., Hofmann-Lehmann, R., Jarrett, O., Meli, M.L., Utility of feline coronavirus antibody tests (2015) J. Feline Med. Surg., 17, pp. 152-162; Buonavoglia, C., Sagazio, P., Cirone, F., Tempesta, M., Marsilio, F., Isolamento e caratterizzazione di uno stipite di virus della peritonite infettiva felina (1995) Vet. Dermatol., 9, pp. 91-94; Campolo, M., Desario, C., Ricci, D., Elia, G., Decaro, N., Martella, V., Tempesta, M., Buonavoglia, C., Identification of a feline coronavirus type I strain from a cat with feline infectious peritonitis by RT-PCR and phylogenetic analysis (2005) New Microbiol., 28, pp. 127-133; Can-Sahna, K., Soydal Ataseven, V., Pinar, D., Oğuzoğlu, T.C., The detection of feline coronaviruses in blood samples from cats by mRNA RT-PCR (2007) J. Feline Med. Surg., 9, pp. 369-372; Decaro, N., Buonavoglia, C., Canine coronavirus: not only an enteric pathogen (2011) Vet. Clin. North Am. Small Anim. Pract., 41, pp. 1121-1132; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Fischer, A., Matiasek, L.A., Matiasek, K., Hartmann, K., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J. Feline Med. Surg., 18, pp. 104-109; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 344-350; Felten, S., Weider, K., Doenges, S., Gruendl, S., Matiasek, K., Hermanns, W., Mueller, E., Hartmann, K., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 321-335; Fish, E.J., Diniz, P.P.V., Juan, Y.C., Bossong, F., Collisson, E.W., Drechsler, Y., Kaltenboeck, B., A cross-sectional quantitative RT-PCR study of feline coronavirus viremia and replication in peripheral blood of healthy shelter cats in Southern California (2017) J. Feline Med. Surg.; Giori, L., Giordano, A., Giudice, C., Grieco, V., Paltrinieri, S., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J. Small Anim. Pract., 52, pp. 152-157; Guihot, A., Luyt, C.E., Parrot, A., Rousset, D., Cavaillon, J.M., Boutolleau, D., Fitting, C., FluBAL Study Group, Low titers of serum antibodies inhibiting hemagglutination predict fatal fulminant influenza A(H1N1) 2009 infection (2014) Am. J. Respir. Crit. Care Med., 189, pp. 1240-1249; Gut, M., Leutenegger, C.M., Huder, J.B., Pedersen, N.C., Lutz, H., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses (1999) J. Virol. Methods, 77, pp. 37-46; Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., Schroo, S., Frost, J., Hermanns, W., Comparison of different tests to diagnose feline infectious peritonitis (2003) J. Vet. Intern. Med., 17, pp. 781-790; Hornyák, A., Bálint, A., Farsang, A., Balka, G., Hakhverdyan, M., Rasmussen, T.B., Blomberg, J., Belák, S., Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR) (2012) J. Virol. Methods, 181, pp. 155-163; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707; Longstaff, L., Porter, E., Crossley, V.J., Hayhow, S.E., Helps, C.R., Tasker, S., Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 240-245; Macdonald, R.A., Hosking, C.S., Jones, C.L., The measurement of relative antibody affinity by ELISA using thiocyanate elution (1988) J. Immunol. Methods, 106, pp. 191-194; Meli, M.L., Burr, P., Decaro, N., Graham, E., Jarrett, O., Lutz, H., McDonald, M., Addie, D.D., Samples with high virus load cause a trend toward lower signal in feline coronavirus antibody tests (2013) J. Feline Med. Surg., 15, pp. 295-299; Pedersen, N.C., The history and interpretation of feline coronavirus serology (1995) Feline Pract., 23, pp. 46-51; Pullen, G.R., Fitzgerald, M.G., Hosking, C.S., Antibody avidity determination by ELISA using thiocyanate elution (1986) J. Immunol. Methods, 86, pp. 83-87; Quirós-Roldán, E., Piédrola, G., Maroto, M.C., Anti-hepatitic C virus antibodies hidden in circulating antibody/antigen aggregates in HCV-RNA positive patients (2000) Microbios, 103, pp. 59-64; Simons, F.A., Vennema, H., Rofina, J.E., Pol, J.M., Horzinek, M.C., Rottier, P.J., Egberink, H.F., A mRNA PCR for the diagnosis of feline infectious peritonitis (2004) J. Virol. Methods, 124, pp. 111-116; Soma, T., Wada, M., Taharaguchi, S., Tajima, T., Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis (2013) J. Vet. Med. Sci., 75, pp. 1389-1392","Decaro, N.; Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3, Valenzano, Italy; email: nicola.decaro@uniba.it",,"Elsevier B.V.",00345288,,RVTSA,"29113645","English","Res. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85032800272 "Kandeil A., Gomaa M., Nageh A., Shehata M.M., Kayed A.E., Sabir J.S.M., Abiadh A., Jrijer J., Amr Z., Said M.A., Byarugaba D.K., Wabwire-Mangen F., Tugume T., Mohamed N.S., Attar R., Hassan S.M., Linjawi S.A., Moatassim Y., Kutkat O., Mahmoud S., Bagato O., Shama N.M.A., El-Shesheny R., Mostafa A., Perera R.A.P.M., Chu D.K.W., Hassan N., Elsokary B., Saad A., Sobhy H., Masry I.E., McKenzie P.P., Webby R.J., Peiris M., Makonnen Y.J., Ali M.A., Kayali G.","37034258700;55535974200;57210358784;55857867300;55536161900;57194035277;36019970300;56166161700;7003284275;57193072028;55889102200;6603960741;56045280300;57210143356;57210356100;55928749900;6507066983;55443467800;57192873994;57191913086;55443270100;57210356718;36456637800;35091393800;43861730800;7201734326;57209588266;57193719276;55497009100;56416347800;56108567800;7006529917;35448064800;7005486823;55957694400;55262803600;24366561300;","Middle east respiratory syndrome coronavirus (Mers-cov) in dromedary camels in africa and middle east",2019,"Viruses","11","8", 717,"","",,3,"10.3390/v11080717","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070457737&doi=10.3390%2fv11080717&partnerID=40&md5=b88e2bbcea325acd8d86ae1e529141d3","Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Nature Link, Sfax, 3000, Tunisia; Department of Biology, Jordan University of, Science and Technology, Irbid, 22110, Jordan; Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Al Fanar, 90656, Lebanon; Department of Epidemiology and Biostatistics, School of Medicine, Makerere University, Kampala, 7062, Uganda; Department of Genebank and Genetic Sequence, Forensic DNA Research and Training Center, Al-Nahrain University, Baghdad, 10072, Iraq; Department of Biological Sciences, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Princess Doctor Najla Saud Al-Saud, Distinguished Research Center for Biotechnology, Jeddah, 22252, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; King Fahad Medical Center, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; School of Public Health, The University of Hong Kong, 7 Sassoon Rd, Hong Kong; General Organizations of Veterinary Services, Ministry of Agriculture and Land Reclamation, Nadi Saed St. 1, Dokki, Giza, 12618, Egypt; Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary, Animal Diseases, Dokki, Giza 12611, Egypt; Animal Health Services (AGAH), Emergency Centre for Transboundary Animal Diseases (ECTAD), Dokki, Giza, 12611, Egypt; Human Link, Hazmieh, 1109, Lebanon; Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, United States","Kandeil, A., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Gomaa, M., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Nageh, A., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Shehata, M.M., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Kayed, A.E., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Sabir, J.S.M., Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, 80203, Saudi Arabia, Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Abiadh, A., Nature Link, Sfax, 3000, Tunisia; Jrijer, J., Nature Link, Sfax, 3000, Tunisia; Amr, Z., Department of Biology, Jordan University of, Science and Technology, Irbid, 22110, Jordan; Said, M.A., Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Al Fanar, 90656, Lebanon; Byarugaba, D.K., Department of Epidemiology and Biostatistics, School of Medicine, Makerere University, Kampala, 7062, Uganda; Wabwire-Mangen, F., Department of Epidemiology and Biostatistics, School of Medicine, Makerere University, Kampala, 7062, Uganda; Tugume, T., Department of Epidemiology and Biostatistics, School of Medicine, Makerere University, Kampala, 7062, Uganda; Mohamed, N.S., Department of Genebank and Genetic Sequence, Forensic DNA Research and Training Center, Al-Nahrain University, Baghdad, 10072, Iraq; Attar, R., Department of Biological Sciences, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Hassan, S.M., Department of Biological Sciences, King Abdulaziz University, Jeddah, 80203, Saudi Arabia, Princess Doctor Najla Saud Al-Saud, Distinguished Research Center for Biotechnology, Jeddah, 22252, Saudi Arabia, Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Linjawi, S.A., King Fahad Medical Center, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Moatassim, Y., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Kutkat, O., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Mahmoud, S., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Bagato, O., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Shama, N.M.A., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; El-Shesheny, R., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; Mostafa, A., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt; Perera, R.A.P.M., School of Public Health, The University of Hong Kong, 7 Sassoon Rd, Hong Kong; Chu, D.K.W., School of Public Health, The University of Hong Kong, 7 Sassoon Rd, Hong Kong; Hassan, N., General Organizations of Veterinary Services, Ministry of Agriculture and Land Reclamation, Nadi Saed St. 1, Dokki, Giza, 12618, Egypt; Elsokary, B., General Organizations of Veterinary Services, Ministry of Agriculture and Land Reclamation, Nadi Saed St. 1, Dokki, Giza, 12618, Egypt; Saad, A., Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary, Animal Diseases, Dokki, Giza 12611, Egypt; Sobhy, H., Food and Agriculture Organization of the United Nations, Emergency Center for Transboundary, Animal Diseases, Dokki, Giza 12611, Egypt; Masry, I.E., Animal Health Services (AGAH), Emergency Centre for Transboundary Animal Diseases (ECTAD), Dokki, Giza, 12611, Egypt; McKenzie, P.P., St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; Webby, R.J., St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States; Peiris, M., School of Public Health, The University of Hong Kong, 7 Sassoon Rd, Hong Kong; Makonnen, Y.J., Animal Health Services (AGAH), Emergency Centre for Transboundary Animal Diseases (ECTAD), Dokki, Giza, 12611, Egypt; Ali, M.A., Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research Centre, Giza, 12622, Egypt, Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, 80203, Saudi Arabia, Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 80203, Saudi Arabia; Kayali, G., Human Link, Hazmieh, 1109, Lebanon, Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, United States","Dromedary camels are the natural reservoirs of the Middle East respiratory syndrome coronavirus (MERS-CoV). Camels are mostly bred in East African countries then exported into Africa and Middle East for consumption. To understand the distribution of MERS-CoV among camels in North Africa and the Middle East, we conducted surveillance in Egypt, Senegal, Tunisia, Uganda, Jordan, Saudi Arabia, and Iraq. We also performed longitudinal studies of three camel herds in Egypt and Jordan to elucidate MERS-CoV infection and transmission. Between 2016 and 2018, a total of 4027 nasal swabs and 3267 serum samples were collected from all countries. Real-time PCR revealed that MERS-CoV RNA was detected in nasal swab samples from Egypt, Senegal, Tunisia, and Saudi Arabia. Microneutralization assay showed that antibodies were detected in all countries. Positive PCR samples were partially sequenced, and a phylogenetic tree was built. The tree suggested that all sequences are of clade C and sequences from camels in Egypt formed a separate group from previously published sequences. Longitudinal studies showed high seroprevalence in adult camels. These results indicate the widespread distribution of the virus in camels. A systematic active surveillance and longitudinal studies for MERS-CoV are needed to understand the epidemiology of the disease and dynamics of viral infection. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Contract number I-005-436; Department of Health and Human Services; Epidemiology; General Organization for Veterinary Services; Jeddah; King Abdulaziz University; MERS coronavirus; National Institutes of Health; National Research Center and the Deanship of Scientific Research; Saudi Arabia; Surveillance; The funding agencies had no role in writing the manuscript; This work was supported by the National Institute of Allergy and Infectious Diseases; Through project jointly implemented by the Food and Agriculture Organization; Under contract number HHSN272201400006C and by the United States Agency for International Development (USAID) in the framework of OSRO/EGY/505/USA; Virus infection; Virus transmission","RNA antibody; adult; antibody detection; antibody titer; Article; blood sampling; cytopathogenic effect; disease transmission; female; gene sequence; geographic distribution; geometry; longitudinal study; male; microneutralization assay; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; nose smear; phylogenetic tree; phylogeny; real time polymerase chain reaction; reverse transcription polymerase chain reaction; sequence analysis; serology; seroprevalence; serum sampling; vaccination; virus detection; virus neutralization; virus titration","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in saudi arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Zalmout, I.S., Middle east respiratory syndrome coronavirus infection in dromedary camels in saudi arabia (2014) Mbio, 5, pp. e00884-14; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., van Beek, J., Antibodies against mers coronavirus in dromedary camels, united arab emirates, 2003 and 2013 (2014) Emerg. Infect. Dis, 20, pp. 552-559; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., Human infection with mers coronavirus after exposure to infected camels, saudi arabia, 2013 (2014) Emerg. Infect. Dis, 20, pp. 1012-1015; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of mers coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Hassan, A.M., Madani, T.A., Detection of the middle east respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) Mbio, 5; Kim, Y., Cheon, S., Min, C.K., Sohn, K.M., Kang, Y.J., Cha, Y.J., Kang, J.I., Kim, G., Spread of mutant middle east respiratory syndrome coronavirus with reduced affinity to human cd26 during the south korean outbreak (2016) Mbio, 7; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of middle east respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 368, pp. 2487-2494; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., Hajomar, W., Landt, O., Eckerle, I., (2015) Al Shangiti, A.; Et Al. an Observational, Laboratory-Based Study of Outbreaks of Middle East Respiratory Syndrome Coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am., 60, pp. 369-377; http://faostat3.fao.org/browse/Q/QA/E; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Drexler, J.F., Antibodies against mers coronavirus in dromedary camels, kenya, 1992–2013 (2014) Emerg. Infect. Dis, 20, p. 1319; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Moatasim, Y., Seroepidemiology for mers coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in egypt, june 2013 (2013) Euro Surveill, 18; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., Mers coronavirus in dromedary camel herd, saudi arabia (2014) Emerg. Infect. Dis., 20, p. 1231; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Shamaki, D., Geographic distribution of mers coronavirus among dromedary camels, africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., El-Taweel, A.N., Bagato, O., Systematic, active surveillance for middle east respiratory syndrome coronavirus in camels in egypt (2017) Emerg. Microbes Infect., 6, p. e1; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Musa, B.E., Mers coronavirus neutralizing antibodies in camels, eastern africa, 1983–1997 (2014) Emerg. Infect. Dis, 20, pp. 2093-2095; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle east respiratory syndrome coronavirus (Mers-cov): Animal to human interaction (2015) Pathog. Glob. Health, 109, pp. 354-362; Corman, V.M., Muller, M.A., Costabel, U., Timm, J., Binger, T., Meyer, B., Kreher, P., Eschbach-Bludau, M., Nitsche, A.; et al. Assays for laboratory confirmation of novel human coronavirus (hcov-emc) infections (2012) Euro Surveill, 17, p. 20334; WHO. Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, , www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf?ua=1, (accessed on 15 August 2018); Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Voermans, J., Al-Hajri, M.M., High proportion of mers-cov shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, qatar 2014 (2015) Infect. Ecol. Epidemiol., 5; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Webby, R.J., Mers coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20, pp. 1049-1053; Faye, B., Camel Meat in the World (2013) CAB International, , Oxfordshire, UK; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Yau, E., Poon, L.L., Longitudinal study of middle east respiratory syndrome coronavirus infection in dromedary camel herds in saudi arabia, 2014–2015 (2017) Emerg. Microbes Infect, 6, p. e56; Wilson, R.T., The one-humped camel in uganda (2017) J. Camel Pract. Res., 24, pp. 1-7; Ommeh, S., Zhang, W., Zohaib, A., Chen, J., Zhang, H., Hu, B., Ge, X.Y., Obanda, V., Genetic evidence of middle east respiratory syndrome coronavirus (Mers-cov) and widespread seroprevalence among camels in kenya (2018) Virol. Sin., 33, pp. 484-492; Kasem, S., Qasim, I., Al-Hufofi, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Gaafer, A., Al-Romaihi, A., Cross-sectional study of mers-cov-specific rna and antibodies in animals that have had contact with mers patients in saudi arabia (2018) J. Infect. Public Health, 11, pp. 331-338; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Traore, A., Mers coronaviruses from camels in africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. USA, 115, pp. 3144-3149; Kandeil, A., Shehata, M.M., El Shesheny, R., Gomaa, M.R., Ali, M.A., Kayali, G., Complete genome sequence of middle east respiratory syndrome coronavirus isolated from a dromedary camel in egypt (2016) Genome Announc, 4, pp. 140-145; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Khazanehdari, K., Nagy, P., Acute middle east respiratory syndrome coronavirus infection in livestock dromedaries, dubai, 2014 (2015) Emerg. Infect. Dis, 21, pp. 1019-1022","Ali, M.A.; Center of Scientific Excellence for Influenza Virus, Environmental Research Division, National Research CentreEgypt; email: mohamedahmedali2004@yahoo.com",,"MDPI AG",19994915,,,"31387326","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85070457737 "Meazzi S., Stranieri A., Lauzi S., Bonsembiante F., Ferro S., Paltrinieri S., Giordano A.","55911542600;56584016900;6508381103;55785163400;56524195700;7003879241;7201681218;","Feline gut microbiota composition in association with feline coronavirus infection: A pilot study",2019,"Research in Veterinary Science","125",,,"272","278",,1,"10.1016/j.rvsc.2019.07.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069452027&doi=10.1016%2fj.rvsc.2019.07.003&partnerID=40&md5=452b764c70d10af753d2e9124e28b81f","Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milano, MI 20122, Italy; Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, Lodi, LO 26900, Italy; Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 15, Legnaro, PD 35020, Italy","Meazzi, S., Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milano, MI 20122, Italy, Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, Lodi, LO 26900, Italy; Stranieri, A., Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milano, MI 20122, Italy, Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, Lodi, LO 26900, Italy; Lauzi, S., Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milano, MI 20122, Italy, Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, Lodi, LO 26900, Italy; Bonsembiante, F., Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 15, Legnaro, PD 35020, Italy; Ferro, S., Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 15, Legnaro, PD 35020, Italy; Paltrinieri, S., Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milano, MI 20122, Italy, Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, Lodi, LO 26900, Italy; Giordano, A., Department of Veterinary Medicine, University of Milan, Via Celoria 10, Milano, MI 20122, Italy, Veterinary Teaching Hospital, University of Milan, via dell'Università, 6, Lodi, LO 26900, Italy","Feline coronaviruses (FCoV) colonize the intestinal tract, however, due to not fully understood mutations, they can spread systemically and cause feline infectious peritonitis (FIP). Recent studies on human medicine report that gut microbiota is involved in the development of systemic disorders and could influence the immune response to viral diseases. The aim of this study was to provide preliminary data on the fecal microbiota composition in healthy cats compared to FCoV-infected cats, with and without FIP. Cats were equally grouped as healthy FCoV-negative, healthy FCoV-positive or FIP affected (total n = 15). Fecal sample were evaluated for the microbiota composition. A total of 3,231,916 sequences were analyzed. The samples' alpha-diversity curves did not reach a proper plateau and, for the beta-diversity, the samples seemed not to group perfectly by category, even if the healthy FCoV-positive group showed a hybrid microbial composition between FCoV-negative and FIP groups. Although there were no taxa significantly linked to the different conditions, some peculiar patterns were recognized: Firmicutes was always the most represented phylum, followed by Bacteroidetes and Actinobacteria. In FCoV-positive cats, the Firmicutes and Bacteroidetes were respectively over- and under-represented, compared to the other groups. Among FIP cats, three subjects shared a similar microbiome, one cat showed a different microbial profile and the other one had the lowest number of diverse phyla. Despite the limited number of animals, some differences in the fecal microbiome between the groups were observed, suggesting to further investigate the possible correlation between gut microbiota and FCoV infection in cats. © 2019 Elsevier Ltd","Feline coronavirus; Feline infectious peritonitis; Gut microbiota","Actinobacteria; animal tissue; Article; Bacteroidetes; controlled study; Coronavirus infection; disease association; feces analysis; feces microflora; Feline coronavirus; female; Firmicutes; intestine flora; male; microbiological examination; nonhuman; phylum; pilot study; species composition; taxonomy; animal; case control study; cat; feces; Feline coronavirus; feline infectious peritonitis; physiology; virology; Animals; Case-Control Studies; Cats; Coronavirus, Feline; Feces; Feline Infectious Peritonitis; Gastrointestinal Microbiome; Pilot Projects","Block, K., Zheng, Z., Dent, A., Kee, B., Huang, H., Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells (2016) J. Immunol., 196 (4), pp. 1550-1557; Desai, A.R., Musil, K.M., Carr, A.P., Hill, J.E., Characterization and quantification of feline fecal microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure (2009) Vet. Microbiol., 137 (1-2), pp. 120-128; Duthie, S., Eckersall, P.D., Addie, D.D., Lawrence, C.E., Jarrett, O., Value of alpha 1-acid glycoprotein in the diagnosis of feline infectious peritonitis (1997) Vet. Rec., 141 (12), pp. 299-303; Frank, D., St Amand, A., Feldman, R., Boedeker, E., Harpaz, N., Pace, N., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (34), pp. 13780-13785; Giordano, A., Stranieri, A., Rossi, G., Paltrinieri, S., High diagnostic accuracy of the Sysmex XT-2000iV delta total nucleated cells on effusions for feline infectious peritonitis (2015) Vet. Clin. Pathol., 44 (2), pp. 295-302; Goedert, J., Effect of HIV, immune deficiency, and confounding on the distal gut microbiota (2016) EBioMedicine, 5, pp. 14-15; Handl, S., Dowd, S.E., Garcia-Mazcorro, J.F., Steiner, J.M., Suchodolski, J.S., Massive parallel 16S rRNAgene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats (2011) FESM Microbiol. Ecol., 76, pp. 301-310; Hazuchova, K., Held, S., Neiger, R., Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions (2017) J. Feline Med. Surg., 19 (8), pp. 809-816; Herrewegh, A., de Groot, R., Cepica, A., Egberink, H., Horzinek, M., Rottier, P., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) J. Clin. Microbiol., 33 (3), pp. 684-689; Kaakoush, N.O., Day, A.S., Huinao, K.D., Leach, S.T., Lemberg, D.A., Dowd, S.E., Mitchell, H.M., Microbial dysbiosis in pediatric patients with Crohn's disease (2012) J. Clin. Microbiol., 50 (10), pp. 3258-3266; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51 (2), pp. 505-526; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707; Koh, H., Kim, M., Lee, J., Kim, H., Park, S., Changes in the swine gut microbiota in response to porcine epidemic Diarrhea infection (2015) Microbes Environ., 30 (3), pp. 284-287; Ley, R., Bäckhed, F., Turnbaugh, P., Lozupone, C., Knight, R., Gordon, J., Obesity alters gut microbial ecology (2005) Proc. Natl. Acad. Sci. U. S. A., 102 (31), pp. 11070-11075; Liu, S., Zhao, L., Zhai, Z., Zhao, W., Ding, J., Dai, R., Sun, T., Meng, H., Porcine epidemic Diarrhea virus infection induced the unbalance of gut microbiota in piglets (2015) Curr. Microbiol., 71 (6), pp. 643-649; Lopes, M., Carneiro, M., Dos Santos, L., Vieira, L., Indigenous microbiota and Leishmaniasis (2016) Parasite Immunol., 38 (1), pp. 37-44; McMurdie, P.J., Holmes, S., phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data (2013) PLoS One, 8 (4); Modi, S., Collins, J., Relman, D., Antibiotics and the gut microbiota (2014) J. Clin. Invest., 124 (10), pp. 4212-4218; Paltrinieri, S., Giordano, A., Tranquillo, V., Guazzetti, S., Critical assessment of the diagnostic value of feline alpha1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach (2007) J. Vet. Diagn. Investig., 19 (3), pp. 266-272; Pedersen, N., An update on feline infectious peritonitis: virology and Immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N., An update on feline infectious peritonitis: diagnostics and therapeutics (2014) Vet. J., 201, pp. 133-141; Płoneczka-Janeczko, K., Bania, J., Bierowiec, K., Kiełbowicz, M., Kiełbowicz, Z., Bacterial diversity in feline conjunctiva based on 16S rRNA gene sequence analysis: a pilot study (2017) Biomed. Res. Int., 3710404; Robinson, M., Smyth, G., Small-sample estimation of negative binomial dispersion, with applications to SAGE data (2008) Biostatistics, 9 (2), pp. 321-332; Round, J., Mazmanian, S., The gut microbiota shapes intestinal immune responses during health and disease (2009) Nat. Rev. Immunol., 9 (5), pp. 313-323; Sato, J., Kanazawa, A., Ikeda, F., Yoshihara, T., Goto, H., Abe, H., Komiya, K., Watada, H., Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes (2014) Diabetes Care, 37 (8), pp. 2343-2350; Schmid, S.M., Suchodolski, J.S., Price, J.M., Tolbert, M.K., Omeprazole minimally alters the Fecal microbial Community in six Cats: a pilot study (2018) Front. Vet. Sci., 16 (5), p. 79; Shin, N.R., Whon, T.W., Bae, J.W., Proteobacteria: microbial signature of dysbiosis in gut microbiota (2015) Trends Biotechnol., 33 (9), pp. 496-503; Stranieri, A., Giordano, A., Bo, S., Braghiroli, C., Paltrinieri, S., Frequency of electrophoretic changes consistent with feline infectious peritonitis in two different time periods (2004-2009 vs 2013-2014) (2017) J. Feline Med. Surg., 19 (8), pp. 880-887; Stranieri, A., Paltrinieri, S., Giordano, A., Diagnosing feline infectious peritonitis using the Sysmex XT-2000iV based on frozen supernatants from cavitary effusions (2017) J. Vet. Diagn. Investig., 29 (3), pp. 321-324; Stranieri, A., Giordano, A., Paltrinieri, S., Giudice, C., Cannito, V., Lauzi, S., Comparison of the performance of laboratory tests in the diagnosis of feline infectious peritonitis (2018) J. Vet. Diagn. Investig., 30 (3), pp. 459-463; Suchodolski, J., Diagnosis and interpretation of intestinal dysbiosis in dogs and cats (2016) Vet. J., 215, pp. 30-37; Suchodolski, J.S., Dowd, S.E., Wilke, V., Steiner, J.M., Jergens, A.E., 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease (2012) PLoS One, 7 (6); Suchodolski, J.S., Foster, M.L., Sohail, M.U., Leutenegger, C., Queen, E.V., Steiner, J.M., Marks, S.L., The fecal microbiome in cats with diarrhea (2015) PLoS One, 10 (5); Tasker, S., Diagnosis of feline infectious peritonitis: update on evidence supporting available tests (2018) J. Feline Med. Surg., 20 (3), pp. 228-243; Tincati, C., Douek, D., Marchetti, G., Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection (2016) AIDS Res. Ther., 13, p. 19; Tizard, I.R., Jones, S.W., The microbiota regulates immunity and immunologic diseases in dogs and cats (2018) Vet. Clin. North Am. Small Anim. Pract., 48 (2), pp. 307-322; Vieira, S., Pagovich, O., Kriegel, M., Diet, microbiota and autoimmune diseases (2014) Lupus, 23 (6), pp. 518-526; Weese, J., Nichols, J., Jalali, M., Litster, A., The rectal microbiota of cats infected with feline immunodeficiency virus infection and uninfected controls (2015) Vet. Microbiol., 180, pp. 96-102; Williams, A., Probert, C., Stepankova, R., Tlaskalova-Hogenova, H., Phillips, A., Bland, P., Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse (2006) Immunology, 119 (4), pp. 470-478; Zini, E., Nolli, S., Ferri, F., Massari, F., Gerardi, G., Nicoli, S., Romanelli, G., Ferro, S., Pheochromocytoma in dogs undergoing Adrenalectomy (2018) Vet. Pathol., 56 (3), pp. 358-368","Meazzi, S.; Department of Veterinary Medicine, University of Milan, Via Celoria 10, Italy; email: sara.meazzi@unimi.it",,"Elsevier B.V.",00345288,,RVTSA,"31326703","English","Res. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85069452027 "Migault C., Kanagaratnam L., Hentzien M., Giltat A., Nguyen Y., Brunet A., Thibault M., Legall A., Drame M., Bani-Sadr F.","57194699168;54383263300;55327773300;57191964241;55184927700;57200935854;57209419396;57209418027;24466356800;7003717448;","Effectiveness of an education health programme about Middle East respiratory syndrome coronavirus tested during travel consultations",2019,"Public Health","173",,,"29","32",,,"10.1016/j.puhe.2019.05.017","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067700634&doi=10.1016%2fj.puhe.2019.05.017&partnerID=40&md5=4d7ca089b91ee7f90f13c0f7783de7d4","CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; CHU Reims, Hôpital Robert Debré, Pôle Recherche et Innovations, Unité d'aide méthodologique, Reims, F-51092, France; Université de Reims Champagne-Ardenne, Faculté de médecine, EA-4684 / SFR CAP-SANTE, Reims, F-51095, France; Université de Reims Champagne-Ardenne, Faculté de médecine, EA 3797, Reims, F-51095, France","Migault, C., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; Kanagaratnam, L., CHU Reims, Hôpital Robert Debré, Pôle Recherche et Innovations, Unité d'aide méthodologique, Reims, F-51092, France; Hentzien, M., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; Giltat, A., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; Nguyen, Y., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France, Université de Reims Champagne-Ardenne, Faculté de médecine, EA-4684 / SFR CAP-SANTE, Reims, F-51095, France; Brunet, A., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; Thibault, M., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; Legall, A., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France; Drame, M., CHU Reims, Hôpital Robert Debré, Pôle Recherche et Innovations, Unité d'aide méthodologique, Reims, F-51092, France, Université de Reims Champagne-Ardenne, Faculté de médecine, EA 3797, Reims, F-51095, France; Bani-Sadr, F., CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et Tropicales, Reims, F-51092, France, Université de Reims Champagne-Ardenne, Faculté de médecine, EA-4684 / SFR CAP-SANTE, Reims, F-51095, France","Objective: We aimed to evaluate the level of knowledge of Middle East respiratory syndrome coronavirus (MERS-CoV) among Hajj pilgrims before and after an education health programme during international vaccine consultations in France. Study design: A cross-sectional study was performed in the consultation for travel medicine and international vaccination in Reims University Hospital between July 2014 and October 2015. Methods: Consecutive adults (>18 years old) who attended for pre-Hajj meningococcal vaccination were eligible to complete an anonymous questionnaire with closed answers to evaluate their level of knowledge about MERS-CoV. To evaluate the effectiveness of the information given during the consultation, the same questionnaire was completed by the Hajj pilgrim before and after the consultation, where the information about MERS-CoV was provided. Results: Among 82 Hajj pilgrim adults enrolled in the study, less than 25% were aware of the routes of transmission, symptoms and preventive behaviours to adopt abroad or in case of fever. Pilgrims had a higher rate of correct responses on each question at the time they completed the second questionnaire, as compared with the first, with 11 of 13 questions answered significantly better after delivery of educational information about MERS-CoV. However, although the rate of correct answers to the questions about routes of transmission, symptoms, preventive behaviours to adopt in case of fever and time delay between return and potential MERS-CoV occurrence increased significantly after receiving the information, the rates remained below 50%. Conclusion: Information given during travel consultations significantly increases the general level of knowledge, but not enough to achieve epidemic control. © 2019 The Royal Society for Public Health","Education health programme; International travel; MERS-CoV; Middle east respiratory syndrome coronavirus; Pilgrims","Meningococcus vaccine; disease control; disease transmission; health care; health education; health services; health status; public health; respiratory disease; viral disease; adult; Article; clinical feature; consultation; cross-sectional study; emporiatrics; epidemic; female; fever; France; health education; health program; health survey; human; infection control; infection prevention; male; meningococcosis; Middle East respiratory syndrome coronavirus; religion; travel; university hospital; virus transmission; adolescent; attitude to health; Coronavirus infection; health education; health promotion; organization and management; patient referral; procedures; program evaluation; psychology; questionnaire; respiratory tract infection; travel; vaccination; virology; Middle East; Coronavirus; Adolescent; Adult; Coronavirus Infections; Cross-Sectional Studies; Female; France; Health Education; Health Knowledge, Attitudes, Practice; Health Promotion; Humans; Male; Middle East Respiratory Syndrome Coronavirus; Program Evaluation; Referral and Consultation; Respiratory Tract Infections; Surveys and Questionnaires; Travel; Vaccination","Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015 (2016) Int J Infect Dis, 45, pp. 1-4; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Hui, D.S., Azhar, E.I., Kim, Y.-J., Memish, Z.A., Oh, M., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18. , Published Online First; Wagman, J.A., Gray, R.H., Campbell, J.C., Thoma, M., Ndyanabo, A., Ssekasanvu, J., Effectiveness of an integrated intimate partner violence and HIV prevention intervention in Rakai, Uganda: analysis of an intervention in an existing cluster randomised cohort (2015) Lancet Glob Health, 3, pp. e23-e33; Jewkes, R., Nduna, M., Levin, J., Jama, N., Dunkle, K., Puren, A., Impact of Stepping Stones on incidence of HIV and HSV-2 and sexual behaviour in rural South Africa: cluster randomised controlled trial (2008) BMJ, 337. , a506–a506; Gautret, P., Benkouiten, S., Salaheddine, I., Belhouchat, K., Drali, T., Parola, P., Hajj pilgrims knowledge about Middle East respiratory syndrome coronavirus, August to September 2013 (2013) Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, 18, p. 20604; Althobaity, H.M., Alharthi, R.A.S., Altowairqi, M.H., Alsufyani, Z.A., Aloufi, N.S., Altowairqi, A.E., Knowledge and awareness of Middle East respiratory syndrome coronavirus among Saudi and Non-Saudi Arabian pilgrims (2017) Int J Health Sci, 11, pp. 20-25; Kim, J.S., Choi, J.S., Middle East respiratory syndrome-related knowledge, preventive behaviours and risk perception among nursing students during outbreak (2016) J Clin Nurs, 25, pp. 2542-2549; Robert, A., Nguyen, Y., Bajolet, O., Vuillemin, B., Defoin, B., Vernet-Garnier, V., Knowledge of antibiotics and antibiotic resistance in patients followed by family physicians (2017) Med Maladies Infect, 47, pp. 142-151; Winnock, M., Bani-Sadr, F., Pambrun, E., Loko, M.-A., Lascoux-Combe, C., Garipuy, D., Prevalence of immunity to hepatitis viruses A and B in a large cohort of HIV/HCV-coinfected patients, and factors associated with HAV and HBV vaccination (2011) Vaccine, 29, pp. 8656-8660; Bani-Sadr, F., Loko, M.-A., Pambrun, E., Winnock, M., Carrieri, P., Gilbert, C., Correlates of HIV sustained viral suppression in HIV/hepatitis C virus coinfected patients: possible role of the hepatitis C virus sustained viral response (2014) AIDS, 28, pp. 1155-1160; Ruiz-Perez, I., Murphy, M., Pastor-Moreno, G., Rojas-García, A., Rodríguez-Barranco, M., The effectiveness of HIV prevention interventions in socioeconomically disadvantaged ethnic minority women: a systematic review and meta-analysis (2017) Am J Public Health, 107, pp. e13-e21; DiClemente, R.J., Salazar, L.F., Crosby, R.A., Rosenthal, S.L., Prevention and control of sexually transmitted infections among adolescents: the importance of a socio-ecological perspective—a commentary (2005) Publ Health, 119, pp. 825-836","Bani-Sadr, F.; CHU Reims, Hôpital Robert Debré, Unité des Maladies Infectieuses et TropicalesFrance; email: fbanisadr@chu-reims.fr",,"Elsevier B.V.",00333506,,PUHEA,"31252151","English","Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85067700634 "Hasegawa K., Goto T., Hirayama A., Laham F.R., Mansbach J.M., Piedra P.A., Camargo C.A.","47061524200;57206624221;57196377269;8579156400;6506455627;7003456433;57203082774;","Respiratory Virus Epidemiology among US Infants with Severe Bronchiolitis: Analysis of 2 Multicenter, Multiyear Cohort Studies",2019,"Pediatric Infectious Disease Journal","38","8",,"E180","E183",,1,"10.1097/INF.0000000000002279","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069899832&doi=10.1097%2fINF.0000000000002279&partnerID=40&md5=a7c48d8c1867f325a4785bdac52ca519","Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Department of Infectious Disease, Arnold Palmer Hospital for Children, Orlando, FL, United States; Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, United States","Hasegawa, K., Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Goto, T., Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Hirayama, A., National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Laham, F.R., Department of Infectious Disease, Arnold Palmer Hospital for Children, Orlando, FL, United States; Mansbach, J.M., Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Piedra, P.A., Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, United States; Camargo, C.A., Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States","In 2 multicenter cohort studies of 2912 infants hospitalized for bronchiolitis during 2007-2014, the 5 most common pathogens were RSV (76.5%), rhinovirus (23.8%), coronavirus (6.9%), adenovirus (6.4%) and human metapneumovirus (6.0%). Hospitalization months significantly differed for these common pathogens (P ≤ 0.01), except for coronavirus (P = 0.30). There was a significant heterogeneity in temporal patterns by region in RSV-A and -B (both P < 0.001). © 2019 Wolters Kluwer Health, Inc. All rights reserved.","bronchiolitis; children; epidemiology; respiratory syncytial virus; rhinovirus","Adenoviridae; Article; artificial ventilation; bronchiolitis; cohort analysis; Coronavirinae; disease severity; female; hospitalization; human; Human metapneumovirus; Human respiratory syncytial virus; infant; major clinical study; male; mixed infection; multicenter study; priority journal; prospective study; respiratory virus; Rhinovirus infection","Hasegawa, K., Tsugawa, Y., Brown, D.F., Trends in bronchiolitis hospitalizations in the United States, 2000-2009 (2013) Pediatrics, 132, pp. 28-36; Hasegawa, K., Mansbach, J.M., Camargo, C.A., Jr., Infectious pathogens and bronchiolitis outcomes (2014) Expert Rev Anti Infect Ther, 12, pp. 817-828; Killerby, M.E., Biggs, H.M., Haynes, A., Human coronavirus circulation in the United States 2014-2017 (2018) J Clin Virol, 101, pp. 52-56; Binder, A.M., Biggs, H.M., Haynes, A.K., Human adenovirus surveillance - United States, 2003-2016 (2017) Morb Mortal Wkly Rep, 66, pp. 1039-1042; Respiratory syncytial virus activity - United States, July 2011-January 2013 (2013) MMWR Morbid Mort Week Rep, 62, pp. 141-144; Haynes, A.K., Fowlkes, A.L., Schneider, E., Human metapneumovirus circulation in the United States, 2008 to 2014 (2016) Pediatrics, 137, p. e20152927; Iwane, M.K., Prill, M.M., Lu, X., Human rhinovirus species associated with hospitalizations for acute respiratory illness in young US children (2011) J Infect Dis, 204, pp. 1702-1710; Miller, E.K., Lu, X., Erdman, D.D., Rhinovirus-associated hospitalizations in young children (2007) J Infect Dis, 195, pp. 773-781; Linder, J.E., Kraft, D.C., Mohamed, Y., Human rhinovirus C: Age, season, and lower respiratory illness over the past 3 decades (2013) J Allergy Clin Immunol, 131, pp. 69e1-77e1; Ralston, S.L., Lieberthal, A.S., Meissner, H.C., Clinical practice guideline: The diagnosis, management, and prevention of bronchiolitis (2014) Pediatrics, 134, pp. e1474-e1502; Hasegawa, K., Jartti, T., Mansbach, J.M., Respiratory syncytial virus genomic load and disease severity among children hospitalized with bronchiolitis: Multicenter cohort studies in the United States and Finland (2015) J Infect Dis, 211, pp. 1550-1559; Devincenzo, J.P., Whitley, R.J., Mackman, R.L., Oral GS-5806 activity in a respiratory syncytial virus challenge study (2014) N Engl J Med, 371, pp. 711-722; Hasegawa, K., Piedra, P.A., Bauer, C.S., Nasopharyngeal CCL5 in infants with severe bronchiolitis and risk of recurrent wheezing: A multi-center prospective cohort study (2018) Clin Exp Allergy, 48, pp. 1063-1067; Dumas, O., Hasegawa, K., Mansbach, J.M., Severe bronchiolitis profiles and risk of recurrent wheezing by age 3 years (2018) J Allergy Clin Immunol; Mochizuki, H., Kusuda, S., Okada, K., Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing. Six-year follow-up study (2017) Am J Respir Crit Care Med, 196, pp. 29-38; Esquivel, A., Busse, W.W., Calatroni, A., Effects of omalizumab on rhinovirus infections, illnesses, and exacerbations of asthma (2017) Am J Respir Crit Care Med, 196, pp. 985-992","Hasegawa, K.; Department of Emergency Medicine, Massachusetts General Hospital, 125 Nashua Street, United States; email: khasegawa1@partners.org",,"Lippincott Williams and Wilkins",08913668,,PIDJE,"31306402","English","Pediatr. Infect. Dis. J.",Article,"Final",Open Access,Scopus,2-s2.0-85069899832 "Berryhill E.H., Magdesian K.G., Aleman M., Pusterla N.","57070321200;7003554053;7004073166;7005591152;","Erratum to: “Clinical presentation, diagnostic findings, and outcome of adult horses with equine coronavirus infection at a veterinary teaching hospital: 33 cases (2012–2018)” (The Veterinary Journal (2019) 248 (95–100), (S1090023318303289), (10.1016/j.tvjl.2019.05.001))",2019,"Veterinary Journal","250",,,"14","",,,"10.1016/j.tvjl.2019.05.014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067032886&doi=10.1016%2fj.tvjl.2019.05.014&partnerID=40&md5=6d7f5b7e8733055d75667a06c1c5d426","Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States","Berryhill, E.H., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Magdesian, K.G., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Aleman, M., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States","The publisher regrets that in the above referenced paper there was an error in the spelling of the second author name. The name is now represented correctly above. © 2019 Elsevier GmbH",,"erratum; error",,"Berryhill, E.H.; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., United States; email: ehberryhill@ucdavis.edu",,"Bailliere Tindall Ltd",10900233,,VTJRF,"31383414","English","Vet. J.",Erratum,"Final",Open Access,Scopus,2-s2.0-85067032886 "Ghalyanchilangeroudi A., Hosseini H., Fallah Mehrabadi M.H., Ghafouri S.A., Modiri Hamdan A., Ziafati Z., Esmaeelzadeh Dizaji R., Mohammadi P.","57188934848;56566215500;57057224300;53463480700;57208760447;57203534654;57208752106;57204530557;","Genotyping of avian infectious bronchitis virus in Iran: Detection of D274 and changing in the genotypes rate",2019,"Comparative Immunology, Microbiology and Infectious Diseases","65",,,"110","115",,,"10.1016/j.cimid.2019.05.011","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065711919&doi=10.1016%2fj.cimid.2019.05.011&partnerID=40&md5=7b9005e7c8431dad823391e47dae5547","Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Alborz, Iran; Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran; Iranian Veterinary Organization, Tehran, Iran","Ghalyanchilangeroudi, A., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Hosseini, H., Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Alborz, Iran; Fallah Mehrabadi, M.H., Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran; Ghafouri, S.A., Iranian Veterinary Organization, Tehran, Iran; Modiri Hamdan, A., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Ziafati, Z., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Esmaeelzadeh Dizaji, R., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Mohammadi, P., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran","The coronavirus avian Infectious bronchitis virus (IBV) poses economic threats to poultry farms worldwide, affecting the performance of both meat-type and egg-laying birds. To define the evolution of recent IBVs in Iran, a genetic analysis based on hypervariable nucleotide sequences of S1 gene was carried out. Tracheal swab samples were collected from 170 Broiler flocks during 2017. Ten tracheal swabs from each flock pooled. From a total number of 170 flocks tested, 84.71% found to be positive. Phylogenetic tree analysis revealed the presence of D274 as a first time in Iran. IS/1494/06 was showed to be dominant IBV type circulating in broiler farms with a significantly higher prevalence than other four genotypes. Considering fluctuations in QX-type prevalence in recent years, continuous monitoring is necessary to reduce economic consequences in layer and broiler farms. The findings highlight the importance of using modified vaccination strategies that are adapted to the changing disease scenario. © 2019 Elsevier Ltd","Avian infectious bronchitis virus; D274; Iran; Phylogenetic analysis; Spike","Article; Avian infectious bronchitis virus; broiler; genotyping technique; geographic distribution; Iran; nonhuman; nucleotide sequence; phylogenetic tree; prevalence; S1 gene; sequence homology; virus gene; agricultural land; animal; Avian infectious bronchitis virus; bird disease; chicken; classification; Coronavirus infection; genetics; genotype; isolation and purification; phylogeny; trachea; veterinary medicine; virology; Animals; Chickens; Coronavirus Infections; Farms; Genotype; Infectious bronchitis virus; Iran; Phylogeny; Poultry Diseases; Prevalence; Trachea","Casais, R., Davies, M., Cavanagh, D., Britton, P., Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication (2005) J. Virol., 79 (13), pp. 8065-8078; Hodgson, T., Britton, P., Cavanagh, D., Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication (2006) J. Virol., 80 (1), pp. 296-305; Liu, S., Zhang, Q., Chen, J., Han, Z., Liu, X., Feng, L., Shao, Y., Tong, G., Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004 (2006) Arch. Virol., 151 (6), pp. 1133-1148; Rottier, P., Van Beurden, S., Verheije, M., Mundt, E., Vaccine Against Infectious Bronchitis Virus (2017), US Patent App. 15/622,672; Sun, C., Han, Z., Ma, H., Zhang, Q., Yan, B., Shao, Y., Xu, J., Liu, S., Phylogenetic analysis of infectious bronchitis coronaviruses newly isolated in China, and pathogenicity and evaluation of protection induced by Massachusetts serotype H120 vaccine against QX-like strains (2011) Avian Pathol., 40 (1), pp. 43-54; Abolnik, C., Genomic and single nucleotide polymorphism analysis of infectious bronchitis coronavirus, Infection (2015) Genet. Evol., 32, pp. 416-424; Cook, J.K., Orbell, S.J., Woods, M.A., Huggins, M.B., Breadth of protection of the respiratory tract provided by different live-attenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous serotypes (1999) Avian Pathol., 28 (5), pp. 477-485; Bijlenga, G., Cook, J.K., Gelb, J., de Wit, J.J., Development and use of the H strain of avian infectious bronchitis virus from the Netherlands as a vaccine: a review (2004) Avian Pathol., 33 (6), pp. 550-557; Terregino, C., Toffan, A., Serena Beato, M., De Nardi, R., Vascellari, M., Meini, A., Ortali, G., Capua, I., Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes (2008) Avian Pathol., 37 (5), pp. 487-493; Abro, S.H., Renström, L.H., Ullman, K., Belák, S., Baule, C., Characterization and analysis of the full-length genome of a strain of the European QX-like genotype of infectious bronchitis virus (2012) Arch. Virol., 157 (6), pp. 1211-1215; Awad, F., Hutton, S., Forrester, A., Baylis, M., Ganapathy, K., Heterologous live infectious bronchitis virus vaccination in day-old commercial broiler chicks: clinical signs, ciliary health, immune responses and protection against variant infectious bronchitis viruses (2016) Avian Pathol., 45 (2), pp. 169-177; Hamadan, A.M., Ghalyanchilangeroudi, A., Hashemzadeh, M., Hosseini, H., Karimi, V., Yahyaraeyat, R., Najafi, H., Genotyping of Avian infectious bronchitis viruses in Iran (2015–2017) reveals domination of IS-1494 like virus (2017) Virus Res., 240, pp. 101-106; Callison, S.A., Hilt, D.A., Boynton, T.O., Sample, B.F., Robison, R., Swayne, D.E., Jackwood, M.W., Development and evaluation of a real-time Taqman RT-PCR assay for the detection of infectious bronchitis virus from infected chickens (2006) J. Virol. Methods, 138 (1), pp. 60-65; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., , msw054; De Wit, J., Cook, J.K., Van der Heijden, H.M., Infectious bronchitis virus variants: a review of the history, current situation and control measures (2011) Avian Pathol., 40 (3), pp. 223-235; Najafi, H., Langeroudi, A.G., Hashemzadeh, M., Karimi, V., Madadgar, O., Ghafouri, S.A., Maghsoudlo, H., Farahani, R.K., Molecular characterization of infectious bronchitis viruses isolated from broiler chicken farms in Iran, 2014-2015 (2016) Arch. Virol., 161 (1), pp. 53-62; Ganapathy, K., Ball, C., Forrester, A., Genotypes of infectious bronchitis viruses circulating in the Middle East between 2009 and 2014 (2015) Virus Res., 210, pp. 198-204; Seger, W., GhalyanchiLangeroudi, A., Karimi, V., Madadgar, O., Marandi, M.V., Hashemzadeh, M., Genotyping of infectious bronchitis viruses from broiler farms in Iraq during 2014-2015 (2016) Arch. Virol., 161 (5), pp. 1229-1237; Bochkov, Y.A., Batchenko, G.V., Shcherbakova, L.O., Borisov, A.V., Drygin, V.V., Molecular epizootiology of avian infectious bronchitis in Russia (2006) Avian Pathol., 35 (5), pp. 379-393; Awad, F., Chhabra, R., Baylis, M., Ganapathy, K., An overview of infectious bronchitis virus in chickens (2014) World's Poult. Sci. J., 70 (2), pp. 375-384; Karimi, V., Mohammadi, P., Ghalyanchilangeroudi, A., Ghafouri, S.A., Hashemzadeh, M., Farahani, R.K., Maghsouldoo, H., Isakakroudi, N., Including 793/B type avian infectious bronchitis vaccine in 1-day-old chicken increased the protection against QX genotype (2019) Trop. Anim. Health Prod., pp. 1-7; Davelaar, F., Kouwenhoven, B., Burger, A., Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler production in the Netherlands (1984) Vet. Quarterly, 6 (3), pp. 114-120; Cavanagh, D., Davis, P.J., Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes (1988) J. General Virol., 69 (3), pp. 621-629; Kusters, J.G., Niesters, H.G., Bleumink-Pluym, N.M., Davelaar, F.G., Horzinek, M.C., Van der Zeijst, B.A., Molecular epidemiology of infectious bronchitis virus in the Netherlands (1987) J. General Virol., 68 (2), pp. 343-352; Cook, J.K., The classification of new serotypes of infectious bronchitis virus isolated from poultry flocks in Britain between 1981 and 1983 (1984) Avian Pathol., 13 (4), pp. 733-741; Meulemans, G., Boschmans, M., Decaesstecker, M., Van den Berg, T., Denis, P., Cavanagh, D., Epidemiology of infectious bronchitis virus in Belgian broilers: a retrospective study, 1986 to 1995 (2001) Avian Pathol., 30 (4), pp. 411-421; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis., 56 (4), pp. 634-641; Cavanagh, D., Mawditt, K., Britton, P., Naylor, C., Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions (1999) Avian Pathol., 28 (6), pp. 593-605; Worthington, K.J., Currie, R., Jones, R.C., A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006 (2008) Avian Pathol., 37 (3), pp. 247-257; Ovchinnikova, E.V., Bochkov, Y.A., Shcherbakova, L.O., Nikonova, Z.B., Zinyakov, N.G., Elatkin, N.P., Mudrak, N.S., Drygin, V.V., Molecular characterization of infectious bronchitis virus isolates from Russia and neighbouring countries: identification of intertypic recombination in the S1 gene (2011) Avian Pathol., 40 (5), pp. 507-514; Roussan, D., Totanji, W., Khawaldeh, G., Molecular subtype of infectious bronchitis virus in broiler flocks in Jordan (2008) Poult. Sci., 87 (4), pp. 661-664; Awad, F., Forrester, A., Baylis, M., Lemiere, S., Ganapathy, K., Protection conferred by live infectious bronchitis vaccine viruses against variant Middle East IS/885/00-like and IS/1494/06-like isolates in commercial broiler chicks (2015) Vet. Record Open, 2 (2); Habibi, M., Karimi, V., Langeroudi, A., Ghafouri, S., Hashemzadeh, M., Farahani, R., Maghsoudloo, H., Seifouri, P., Combination of H120 and 1/96 avian infectious bronchitis virus vaccine strains protect chickens against challenge with IS/1494/06 (variant 2)-like infectious bronchitis virus (2017) Acta Virolo., 61 (2), pp. 150-160; MOHAMMADI, P., KARIMI, V., HASHEMZADEH, M., GHALYANCHI, L.A., GHAFOURI, S., KHALTABADI, F.R., MAGHSOUDLOO, H., ABDOLLAHI, H., Combination of H120 and 793/B Types of Infectious Bronchitis Virus Vaccine Protects Chickens against Challenge with OX Like Strain of the Virus (2014)","Hosseini, H.; Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad UniversityIran; email: hosseini.ho@gmail.com",,"Elsevier Ltd",01479571,,CIMID,"31300098","English","Comp. Immunol. Microbiol. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85065711919 "Frans G., Beuselinck K., Peeters B., Van Ranst M., Saegeman V., Desmet S., Lagrou K.","56105319300;6508246784;57191405970;7005113740;8567511500;35740187100;19134962000;","Migrating a lab-developed MERS-CoV real-time PCR to 3 “Sample to Result” systems: experiences on optimization and validation",2019,"Diagnostic Microbiology and Infectious Disease","94","4",,"349","354",,2,"10.1016/j.diagmicrobio.2019.02.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063498648&doi=10.1016%2fj.diagmicrobio.2019.02.006&partnerID=40&md5=484a7e032c239d4d9dcdf3554d5c8fde","Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium","Frans, G., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium; Beuselinck, K., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium; Peeters, B., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium; Van Ranst, M., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium; Saegeman, V., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium; Desmet, S., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium; Lagrou, K., Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium","The goal of the study was to adapt our Middle East respiratory syndrome coronavirus (MERS-CoV) lab-developed test (LDT) to 3 “Sample to Result” (S2R) systems: BD MAX (BD), ELITe InGenius (ELITechGroup), and ARIES (Luminex). The BD MAX and InGenius system allowed use of lab-developed primers and TaqMan probes, while ARIES required conversion to MultiCode primers for melting curve analysis. Each device required ≤1 day of training and assay optimization. No discordant results were noted after analysis of 32 External Quality Control (EQC) samples. On a 10-fold dilution series of a MERS-CoV–positive EQC sample, InGenius obtained the highest detection rate. Laboratory technicians rated the ARIES as the user-friendliest. It also required the least hands-on time. BD MAX had the lowest turnaround time and highest throughput. While each device had distinguishing system properties with associated (dis)advantages, the 3 S2R systems were comparable in terms of assay development and validation. © 2019 Elsevier Inc.","ARIES; BD MAX; ELITe InGenius; Middle East respiratory syndrome coronavirus; Sample to result systems","article; clinical article; controlled study; dilution; DNA probe; human; laboratory personnel; melting point; Middle East respiratory syndrome coronavirus; nonhuman; real time polymerase chain reaction; turnaround time; validation process; Coronavirus infection; genetics; isolation and purification; laboratory technique; Middle East respiratory syndrome coronavirus; procedures; real time polymerase chain reaction; validation study; primer DNA; virus RNA; Clinical Laboratory Techniques; Coronavirus Infections; DNA Primers; Middle East Respiratory Syndrome Coronavirus; Real-Time Polymerase Chain Reaction; RNA, Viral","Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Beal, S.G., Assarzadegan, N., Rand, K.H., Sample-to-result molecular infectious disease assays: clinical implications, limitations and potential (2016) Expert Rev Mol Diagn, 16, pp. 323-341; van Boheemen, S., de Graag, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3; Clancy, A., Crowley, B., Niesters, H., Herra, C., The development of a qualitative real-time RT-PCR assay for the detection of hepatitis C virus (2008) Eur J Clin Microbiol Infect Dis, 27, pp. 1177-1182; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Detection of an novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17; Felder, R.A., Jackson, K.D., Walter, A.M., Process evaluation of an open architecture real-time molecular laboratory platform (2014) J Lab Autom, 19, pp. 468-473; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J Virol, 87, pp. 7790-7792; Johnson, S.C., Sherrill, C.B., Marshall, D.J., Moser, M.J., Prudent, J.R., A third base pair for the polymerase chain reaction: inserting isoC and isoG (2004) Nucleic Acids Res, 32, pp. 1937-1941; Juretschko, S., Mahony, J., Buller, R.S., Manji, R., Dunbar, S., Walker, K., Multicenter clinical evaluation of the Luminex Aries Flu A/B & RSV assay for pediatric and adult respiratory tract specimens (2017) J Clin Microbiol, 55, pp. 2431-2438; Lu, X., Whitaker, B., Sakthivel, S.K., Kamili, S., Rose, L.E., Lowe, L., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52, pp. 67-75; Sherrill, C.B., Marshall, D.J., Moser, M.J., Larsen, C.A., Daude-Snow, L., Jurczyk, S., Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence (2004) J Am Chem Soc, 126, pp. 4550-4556; Voermans, J.J., Seven-Deniz, S., Fraaij, P.L., van der Eijk, A.A., Koopmans, M.P., Pas, S.D., Performance evaluation of a rapid molecular diagnostic, MultiCode based, sample-to-answer assay for the simultaneous detection of influenza A, B and respiratory syncytial viruses (2016) J Clin Virol, 85, pp. 65-70; World Health Organization (WHO), Laboratory testing for Middle East respiratory syndrome coronavirus (MERS-CoV) — interim guidance (updated) (2015), https://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en/, (Accessed 15 October 2018); Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820","Beuselinck, K.; Department of Laboratory Medicine, University Hospitals Leuven, Herestraat 49, Belgium; email: kurt.beuselinck@uzleuven.be",,"Elsevier Inc.",07328893,,DMIDD,"30929995","English","Diagn. Microbiol. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85063498648 "Shiu E.Y.C., Leung N.H.L., Cowling B.J.","56297808000;56148875100;8644765500;","Controversy around airborne versus droplet transmission of respiratory viruses: Implication for infection prevention",2019,"Current Opinion in Infectious Diseases","32","4",,"372","379",,2,"10.1097/QCO.0000000000000563","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068963897&doi=10.1097%2fQCO.0000000000000563&partnerID=40&md5=c0c9e17c2796a7c48bfa04fc3ea8adb1","WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong","Shiu, E.Y.C., WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong; Leung, N.H.L., WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong; Cowling, B.J., WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong","Purpose of reviewHealth agencies recommend transmission-based precautions, including contact, droplet and airborne precautions, to mitigate transmission of respiratory viruses in healthcare settings. There is particular controversy over the importance of aerosol transmission and whether airborne precautions should be recommended for some respiratory viruses. Here, we review the current recommendations of transmission-based precautions and the latest evidence on the aerosol transmission of respiratory viruses.Recent findingsViral nucleic acids, and in some instances viable viruses, have been detected in aerosols in the air in healthcare settings for some respiratory viruses such as seasonal and avian influenza viruses, Middle East respiratory syndrome-coronavirus and respiratory syncytial virus. However, current evidences are yet to demonstrate that these viruses can effectively spread via airborne route between individuals, or whether preventive measures in airborne precautions would be effective.SummaryStudies that use transmission events as outcome to demonstrate human-to-human transmission over the aerosol route or quantitative measurement of infectious respiratory viruses in the air are needed to evaluate the infectiousness of respiratory viruses over the aerosol route. When a respiratory virus in concern only leads to disease with low severity, airborne precautions are not likely to be justified. © 2019 Wolters Kluwer Health, Inc. All rights reserved.","aerosol; droplet; healthcare settings; infection control; respiratory viruses","aerosol; airborne virus; avian influenza; avian influenza virus; Human respiratory syncytial virus; infection control; infection prevention; Middle East respiratory syndrome coronavirus; nonhuman; respiratory virus; Review; seasonal influenza; virus transmission","National hospital ambulatory medical care survey: 2016 emergency department summary tables (2016) National Center for Health Statistics, , https://www.cdc.gov/nchs/data/nhamcs/web_tables/2016_ed_web_tables.pdf, Centers for Disease Control and Prevention. (Accessed 25 March 2019); (2014) Infection Prevention and Control of Epidemic-and Pandemic Prone Acute Respiratory Infections in Healthcare-WHOguidelines, , http://www.who.int/csr/bioriskreduction/infection_control/publication/en/, World Health Organization. (Accessed 29 August 2017); Siegel, J.D., Rhinehart, E., Jackson, M., 2007 Guideline for isolation precautions:preventing transmission of infectious agents in healthcare settings (2007) Centers for Disease Control and Prevention, , https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html, (Accessed 9 April 2019); Roy, C.J., Milton, D.K., Airborne transmission of communicable infection: The elusive pathway (2004) N Engl J Med, 350, pp. 1710-1712; Seto, W.H., Airborne transmission and precautions: Facts and myths (2015) J Hosp Infect, 89, pp. 225-228; Tellier, R., Li, Y., Cowling, B.J., Recognition of aerosol transmission of infectious agents: A commentary (2019) BMC Infect Dis, 19, p. 101; Facts about spread of respiratory diseases (2019) How to Prevent the Spread of Respiratory Illnesses in Disaster Evacuation Centers, , https://www.cdc.gov/disasters/disease/respiratoryic.html, Centers for Disease Control and Prevention. (Accessed 25 March 2019); Brankston, G., Gitterman, L., Hirji, Z., Transmission of influenza A in human beings (2007) Lancet Infect Dis, 7, pp. 257-265; Killingley, B., Nguyen-Van-Tam, J., Routes of influenza transmission (2013) Influenza Other Respir Viruses, 7, pp. 42-51; Hinds William, C., (2012) Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, , Hoboken, New Jersey, USA: John Wiley & Sons; Liu, L., Wei, J., Li, Y., Evaporation and dispersion of respiratory droplets from coughing (2017) Indoor Air, 27, pp. 179-190; Grayson, S.A., Griffiths, P.S., Perez, M.K., Detection of airborne respiratory syncytial virus in a pediatric acute care clinic (2017) Pediatr Pulmonol, 52, pp. 684-688; Thomas, R.J., Particle size and pathogenicity in the respiratory tract (2013) Virulence, 4, pp. 847-858; Alford, R.H., Kasel, J.A., Gerone, P.J., Human influenza resulting from aerosol inhalation (1966) Proc Soc Exp Biol Med, 122, pp. 800-804; Wonderlich, E.R., Swan, Z.D., Bissel, S.J., Widespread virus replication in alveoli drives acute respiratory distress syndrome in aerosolized H5N1 influenza infection of macaques (2017) J Immunol, 198, pp. 1616-1626; Gralton, J., Tovey, E., McLaws, M.L., The role of particle size in aerosolised pathogen transmission: A review (2011) J Infect, 62, pp. 1-13; Nicas, M., Nazaroff, W.W., Hubbard, A., Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens (2005) J Occup Environ Hyg, 2, pp. 143-154; Tellier, R., Aerosol transmission of influenza A virus: A review of new studies (2009) J R Soc Interface, 6, pp. S783-S790; Moss, W.J., Measles (2017) Lancet, 390, pp. 2490-2502; Remington, P.L., Hall, W.N., Davis, I.H., Airborne transmission of measles in a physician's office (1985) JAMA, 253, pp. 1574-1577; Bloch, A.B., Orenstein, W.A., Ewing, W.M., Measles outbreak in a pediatric practice: Airborne transmission in an office setting (1985) Pediatrics, 75, pp. 676-683; Fiebelkorn, A.P., Redd, S.B., Kuhar, D.T., Measles in healthcare facilities in the United States during the postelimination era, 2001-2014 (2015) Clin Infect Dis, 61, pp. 615-618; Lake, J.G., Luvsansharav, U.O., Hagan, J.E., Healthcare-associated measles after a nationwide outbreak in Mongolia (2018) Clin Infect Dis, 67, pp. 288-290; George, F., Valente, J., Augusto, G.F., Measles outbreak after 12 years without endemic transmission, Portugal, February to May 2017 (2017) Euro Surveill, 22, p. 30548; Hahne, S.J., Nic Lochlainn, L.M., Van Burgel, N.D., Measles outbreak among previously immunized healthcare workers, the Netherlands, 2014 (2016) J Infect Dis, 214, pp. 1980-1986; Lee, C.T., Hagan, J.E., Jantsansengee, B., Increase in infant measles deaths during a nationwide measles outbreak-Mongolia, 2015-2016 J Infect Dis 2019; Turgeon, N., Hamelin, M.E., Verreault, D., Design and validation with influenza A virus of an aerosol transmission chamber for ferrets (2019) Int J Environ Res Public Health, 16; Zhou, J., Wei, J., Choy, K.T., Defining the sizes of airborne particles that mediate influenza transmission in ferrets (2018) Proc Natl Acad Sci U S A, 115, pp. E2386-E2392; Leung, N.H., Zhou, J., Chu, D.K., Quantification of Influenza Virus RNA in Aerosols in Patient Rooms (2016) PLoS One, 11, p. e0148669; Bischoff, W.E., Swett, K., Leng, I., Exposure to influenza virus aerosols during routine patient care (2013) J Infect Dis, 207, pp. 1037-1046; Lindsley, W.G., Blachere, F.M., Davis, K.A., Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical clinic (2010) Clin Infect Dis, 50, pp. 693-698; Pan, M., Bonny, T.S., Loeb, J., Collection of viable aerosolized influenza virus and other respiratory viruses in a student healthcare center through waterbased condensation growth (2017) MSphere, 2; Rule, A.M., Apau, O., Ahrenholz, S.H., Healthcare personnel exposure in an emergency department during influenza season (2018) PLoS One, 13, p. e0203223; Yan, J., Grantham, M., Pantelic, J., Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community (2018) Proc Natl Acad Sci U S A, 115, pp. 1081-1086; Lindsley, W.G., Blachere, F.M., Thewlis, R.E., Measurements of airborne influenza virus in aerosol particles from human coughs (2010) PLoS One, 5, p. e15100; (2014) Interim Guidance for Infection Control Within Healthcare Settings When Caring for Confirmed Cases, Probable Cases, and Cases under Investigation for Infection with Novel Influenza A Viruses Associated with Severe Disease, , https://www.cdc.gov/flu/avianflu/novel-flu-infection-control.htm, Centers for Disease Control and Prevention. (Accessed 9 April 2019); Wu, Y., Shi, W., Lin, J., Aerosolized avian influenza A (H5N6) virus isolated from a live poultry market, China (2017) J Infect, 74, pp. 89-91; Bui, V.N., Nguyen, T.T., Nguyen-Viet, H., Bioaerosol sampling to detect avian influenza virus in Hanoi's largest live poultry market (2019) Clin Infect Dis, 68, pp. 972-975; Torremorell, M., Alonso, C., Davies, P.R., Investigation into the airborne dissemination of H5N2 highly pathogenic avian influenza virus during the 2015 spring outbreaks in the Midwestern United States (2016) Avian Dis, 60, pp. 637-643; Zeng, X., Liu, M., Zhang, H., Avian influenza H9N2 virus isolated from air samples in LPMs in Jiangxi, China (2017) Virol J, 14, p. 136; Bertran, K., Balzli, C., Kwon, Y.K., Airborne transmission of highly pathogenic influenza virus during processing of infected poultry (2017) Emerg Infect Dis, 23, pp. 1806-1814; Cho, S.Y., Kang, J.M., Ha, Y.E., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Fehr, A.R., Channappanavar, R., Perlman, S., Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus (2017) Annu Rev Med, 68, pp. 387-399; Kim, K.H., Tandi, T.E., Choi, J.W., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95, pp. 207-213; Mackay, I.M., Arden, K.E., Middle East respiratory syndrome: An emerging coronavirus infection tracked by the crowd (2015) Virus Res, 202, pp. 60-88; Kim, S.H., Chang, S.Y., Sung, M., Extensive Viable Middle East Respiratory Syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards (2016) Clin Infect Dis, 63, pp. 363-369; (2015) Infection Prevention and Control during Healthcare for Probable or Confirmed Cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection: Interim Guidance, , https://www.who.int/csr/disease/coronavirus_infections/ipc-mers-cov/en/, World HealthOrganization. (Accessed 8 April 2019); WHO MERS global summary and assessment of risk (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, World Health Organization. (Accessed 14 April 2019); (2017) Interim Infection Prevention and Control Recommendations for Hospitalized Patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html, Centers for Disease Control and Prevention. Accessed 9 April 2019; French, C.E., McKenzie, B.C., Coope, C., Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: A systematic review (2016) Influenza Other Respir Viruses, 10, pp. 268-290; RSV transmission (2018) Respiratory Syncytial Virus Infection (RSV), , https://www.cdc.gov/rsv/about/transmission.html, Centers for Disease Control and Prevention. Accessed 25 March 2019; Kulkarni, H., Smith, C.M., Lee Ddo, H., Evidence of respiratory syncytial virus spread by aerosol. Time to revisit infection control strategies? (2016) Am J Respir Crit Care Med, 194, pp. 308-316; Ofner, M., Lem, M., Sarwal, S., Cluster of severe acute respiratory syndrome cases among protected health-care workers-Toronto, Canada, April 2003 (2003) JAMA, 289, pp. 2788-2789; (2003) MMWR, 52, pp. 433-436; O'Neil, C.A., Li, J., Leavey, A., Characterization of aerosols generated during patient care activities (2017) Clin Infect Dis, 65, pp. 1335-1341; Tran, K., Cimon, K., Severn, M., Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: A systematic review (2012) PLoS One, 7, p. e35797; Thompson, K.A., Pappachan, J.V., Bennett, A.M., Influenza aerosols in UK hospitals during the H1N1 (2009) pandemic-the risk of aerosol generation during medical procedures (2013) PLoS One, 8, p. e56278; Tseng, C.C., Chang, L.Y., Li, C.S., Detection of airborne viruses in a pediatrics department measured using real-time qPCR coupled to an air-sampling filter method (2010) J Environ Health, 73, pp. 22-28; Mitchell, A.B., Tang, B., Shojaei, M., A novel sampling method to detect airborne influenza and other respiratory viruses in mechanically ventilated patients: A feasibility study (2018) Ann Intensive Care, 8, p. 45; Li, Y., Wong, T., Chung, J., In vivo protective performance of N95 respirator and surgical facemask (2006) Am J Ind Med, 49, pp. 1056-1065; Qian, Y., Willeke, K., Grinshpun, S.A., Performance of N95 respirators: Filtration efficiency for airborne microbial and inert particles (1998) Am Ind Hyg Assoc J, 59, pp. 128-132; Lee, S.A., Grinshpun, S.A., Reponen, T., Respiratory performance offered by N95 respirators and surgical masks: Human subject evaluation with NaCl aerosol representing bacterial and viral particle size range (2008) Ann Occup Hyg, 52, pp. 177-185; Balazy, A., Toivola, M., Adhikari, A., Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? (2006) Am J Infect Control, 34, pp. 51-57; Smith, J.D., MacDougall, C.C., Johnstone, J., Effectiveness of N95 respirators versus surgical masks in protecting healthcare workers from acute respiratory infection: A systematic review and meta-analysis (2016) CMAJ, 188, pp. 567-574; Atkinson, J., Chartier, Y., Pessoa-Silva, C.L., (2009) Natural Ventilation for Infection Control in Health-care Settings: WHO Guidelines 2009, , https://www.who.int/water_sanitation_health/publications/natural_ventilation/en/, (Accessed 9 April 2019); Gao, X., Wei, J., Cowling, B.J., Potential impact of a ventilation intervention for influenza in the context of a dense indoor contact network in Hong Kong (2016) Sci Total Environ, 569-570, pp. 373-381; Prevention strategies for seasonal influenza in healthcare settings (2018) Influenza (Flu), , https://www.cdc.gov/flu/professionals/infectioncontrol/healthcaresettings.htm, Centers for Disease Control and Prevention. (Accessed 14 April 2019); Frequently asked questions on Middle East respiratory syndrome coronavirus (MERS-CoV) (2019) Emergencies Preparedness, Response, , https://www.who.int/csr/disease/coronavirus_infections/faq/en/, World Health Organization. (Accessed 14 April 2019)","Leung, N.H.L.; WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, 7 Sassoon Road, Hong Kong; email: leungnan@hku.hk",,"Lippincott Williams and Wilkins",09517375,,COIDE,"31135389","English","Curr. Opin. Infect. Dis.",Review,"Final",,Scopus,2-s2.0-85068963897 "Butler M.G., Kimonis V., Dykens E., Gold J.A., Tamura R., Miller J.L., Driscoll D.J.","35465715100;7003844615;7006694461;22940626400;35974609400;56961206800;7202812293;","Birth seasonality studies in a large Prader–Willi syndrome cohort",2019,"American Journal of Medical Genetics, Part A","179","8",,"1531","1534",,,"10.1002/ajmg.a.61263","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067834279&doi=10.1002%2fajmg.a.61263&partnerID=40&md5=cdfa8134f8aa5c9e955f967367b49ced","Department of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States; Department of Pediatrics, University of California, Irvine, CA, United States; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States; Department of Pediatrics, Loma Linda University Medical School, Loma Linda, CA, United States; Health Informatics Institute, University of South Florida College of Medicine, Tampa, FL, United States; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States","Butler, M.G., Department of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States; Kimonis, V., Department of Pediatrics, University of California, Irvine, CA, United States; Dykens, E., Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States; Gold, J.A., Department of Pediatrics, Loma Linda University Medical School, Loma Linda, CA, United States; Tamura, R., Health Informatics Institute, University of South Florida College of Medicine, Tampa, FL, United States; Miller, J.L., Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States; Driscoll, D.J., Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States","Prader-Willi syndrome (PWS) is generally due to sporadic paternal deletions of the chromosome 15q11-q13 region followed by maternal disomy 15. Advanced maternal age is more commonly seen in those with maternal disomy 15. Environmental factors (e.g., drug use, occupational chemical exposure, infectious agents, and irradiation) could account for chromosome changes. Previous evidence of differences in male and female gametogenesis could suggest an environmental role in the causation of the paternal 15q11-q13 deletion seen in PWS. Certain occupations such as hydrocarbon-exposing occupations (e.g., landscaping, farming, and painting) and viral exposure (e.g., human coronavirus 229E causing upper respiratory infections in adults with an incorporation site in the human genome at chromosome 15q11) can be seasonal in nature and contribute to chromosome damage. To assess, we reviewed birth seasonality data in a large cohort of individuals with PWS recruited nationally (N = 355) but no significant differences were seen by month between those with the 15q11-q13 deletion compared with maternal disomy 15 when analyzing quarterly seasonal patterns. Although early evidence supported birth seasonality differences in PWS, a larger number of individuals in our recent study using advanced genetic testing methods did not find this observation. © 2019 Wiley Periodicals, Inc.","birth seasonality; environmental factors; Prader–Willi syndrome (PWS); PWS genetic subtypes","aging; Article; birth rate; chromosome 15q; chromosome deletion; disomy; DNA methylation; Down syndrome; environmental factor; gametogenesis; gene; gene mutation; genetic analysis; genetic identification; genetic screening; genome imprinting; happy puppet syndrome; hormone synthesis; human; hypothalamus hypophysis system; hypoxia; incidence; influenza; Klinefelter syndrome; Korean (people); meiosis; ovary function; ovulation; Prader Willi syndrome; priority journal; seasonal variation; spermatogenesis; Turner syndrome; UBE3A gene; United States; viral upper respiratory tract infection","Akefeldt, A., Anvret, M., Grandell, U., Nordlinder, R., Gillberg, C., Parental exposure to hydrocarbons in Prader-Willi syndrome (1995) Developmental Medicine & Child Neurology, 37 (12), pp. 1101-1109; Ayabe, T., Matsubara, K., Ogata, T., Ayabe, A., Murakami, N., Nagai, T., Fukami, M., Birth seasonality in Prader-Willi syndrome resulting from chromosome 15 microdeletion (2013) American Journal of Medical Genetics A, 161A (6), pp. 1495-1497; Bauchinger, M., Dresp, J., Schmid, E., Hauf, R., Chromosome changes in lymphocytes after occupational exposure to pentachlorophenol (PCP) (1982) Mutation Research, 102 (1), pp. 83-88; Butler, M.G., Single gene and syndromic causes of obesity: Illustrative examples (2016) Progress in Molecular Biology and Translational Science, 140, pp. 1-45. , https://doi.org/10.1016/bs.pmbts.2015.12.003; Butler, M.G., Hartin, S.N., Hossain, W.A., Manzardo, A.M., Kimonis, V., Dykens, E., Driscoll, D.J., Molecular genetic classification in Prader-Willi syndrome: A multisite cohort study (2019) Journal of Medical Genetics, 56 (3), pp. 149-153. , https://doi.org/10.1136/jmedgenet-2018-105301; Butler, M.G., Kimonis, V., Dykens, E., Gold, J.A., Miller, J., Tamura, R., Driscoll, D.J., Prader-Willi syndrome and early-onset morbid obesity NIH rare disease consortium: A review of natural history study (2018) American Journal of Medical Genetics A, 176 (2), pp. 368-375. , https://doi.org/10.1002/ajmg.a.38582; Butler, M.G., Ledbetter, D.H., Mascarello, J.T., Birth seasonality in Prader-Willi syndrome (1985) Lancet, 2 (8459), pp. 828-829; Butler, M.G., Lee, P.D.K., Whitman, B.Y., (2006) Management of Prader-Willi Syndrome, , (Eds.). (, 3rd, ed.)., New York, NY, Springer-Verlag Publishers; Butler, M.G., Sturich, J., Myers, S.E., Gold, J.A., Kimonis, V., Driscoll, D.J., Is gestation in Prader-Willi syndrome affected by the genetic subtype? (2009) Journal of Assisted Reproduction Genetics, 26 (8), pp. 461-466. , https://doi.org/10.1007/s10815-009-9341-7; Cassidy, S.B., Gainey, A.J., Butler, M.G., Occupational hydrocarbon exposure among fathers of Prader-Willi syndrome patients with and without deletions of 15q (1989) American Journal of Human Genetics, 44, pp. 806-810; Cassidy, S.B., Schwartz, S., Miller, J.L., Driscoll, D.J., Prader-Willi syndrome (2012) Genetics in Medicine, 14 (1), pp. 10-26. , https://doi.org/10.1038/gim.0b013e31822bead0; Dagli, A., Buiting, K., Williams, C.A., Molecular and clinical aspects of Angelman syndrome (2012) Molecular Syndromology, 2, pp. 100-112; Gaulden, M.E., Maternal age effect: The enigma of down syndrome and other trisomic conditions (1992) Mutatation Research, 296 (1-2), pp. 69-88; Haglund, U., Lundberg, I., Zech, L., Chromosome aberrations and sister chromatid exchanges in Swedish paint industry workers (1980) Scandinavian Journal of Work, Environment & Health, 6, pp. 291-298; Jongbloet, P.H., Month of birth and gametopathy. An investigation into patients with Down's, Klinefelter's and Turner's syndrome (1971) Clinical Genetics, 2, pp. 315-330; Jongbloet, P.H., The effect of preovulatory overripeness of human eggs on development (1975) Aging Gametes, 1975, pp. 300-329. , R. J. Blandau, (Ed.),, Basel, S Karger AG; Kucerová, M., Polívková, Z., Bátora, J., Comparative evaluation of the frequency of chromosomal aberrations and the SCE numbers in peripheral lymphocytes of workers occupationally exposed to vinyl chloride monomer (1979) Mutation Research, 67 (1), pp. 97-100; Lam, D.A., Miron, J.A., (1987) The seasonality of births in human populations, , Ann Arbor, MI, Population Studies Center, University of Michigan; Levine, R.J., Male factors contributing to the seasonality of human reproduction (1994) Annals of the New York Academy of Sciences, 709, pp. 29-45; Nicholls, R.D., Knoll, J.H., Butler, M.G., Karam, S., Lalande, M., Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome (1989) Nature, 342 (6247), pp. 281-285. , 16; Polani, P.E., Briggs, J.H., Ford, C.E., Clarke, C.M., Berg, J.M., A Mongol girl with 46 chromosomes (1960) Lancet, 1 (7127), pp. 721-724; Roenneberg, T., Aschoff, J., Annual rhythm of human reproduction: II. Environmental correlations (1990) Journal of Biological Rhythms, 5, pp. 217-239; Sakaguchi, A.Y., Shows, T.B., Coronavirus 229E susceptibility in man-mouse hybrids is located on human chromosome 15 (1982) Somatic Cell and Molecular Genetics, 8 (1), pp. 83-94; Stolwijk, A.M., Jongbloet, P.H., Zielhuis, G.A., Gabreëls, F.J., Seasonal variation in the prevalence of down syndrome at birth: A review (1997) Journal of Epidemiology and Community Health, 51 (4), pp. 350-353; Strakowski, S.M., Butler, M.G., Paternal hydrocarbon exposure in Prader-Willi syndrome (1987) Lancet, 2 (8573), p. 1458; Videbech, P., Nielsen, J., Chromosome abnormalities and season of birth (1984) Human Genetics, 65, pp. 221-231; Yang, A., Lee, Y.H., Nam, S.Y., Jeong, Y.J., Kyung, Y., Huh, R., Jin, D.K., Birth seasonality in Korean Prader-Willi syndrome with chromosome 15 microdeletion (2015) Annals of Pediatric Endocrinology & Metabolism, 20 (1), pp. 40-45","Butler, M.G.; Department of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical CenterUnited States; email: mbutler4@kumc.edu",,"Wiley-Liss Inc.",15524825,,AJMGD,"31225937","English","Am. J. Med. Genet. Part A",Article,"Final",Open Access,Scopus,2-s2.0-85067834279 "Chen J., Fang P., Wang M., Peng Q., Ren J., Wang D., Peng G., Fang L., Xiao S., Ding Z.","57209421496;57189253798;57195153534;56564688800;57202979551;36060664000;56651662900;7402470374;7402022567;56152913000;","Porcine deltacoronavirus nucleocapsid protein antagonizes IFN-β production by impairing dsRNA and PACT binding to RIG-I",2019,"Virus Genes","55","4",,"520","531",,3,"10.1007/s11262-019-01673-z","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067673411&doi=10.1007%2fs11262-019-01673-z&partnerID=40&md5=21f31bd44fccf41c89ac9cae16180b68","Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China","Chen, J., Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; Fang, P., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wang, M., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Peng, Q., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Ren, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Ding, Z., Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China, Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China","Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in newborn piglets. Previous studies have suggested that PDCoV infection antagonizes RIG-I-like receptor (RLR)-mediated IFN-β production to evade host innate immune defense, and PDCoV-encoded nonstructural protein nsp5 and accessory protein NS6 are associated with this process. However, whether the structural protein(s) of PDCoV also antagonize IFN-β production remains unclear. In this study, we found that PDCoV nucleocapsid (N) protein, the most abundant viral structural protein, suppressed Sendai virus (SEV)-induced IFN-β production and transcription factor IRF3 activation, but did not block IFN-β production induced by overexpressing RIG-I/MDA5. Furthermore, study revealed that PDCoV N protein interacted with RIG-I and MDA5 in an in vitro overexpression system and evident interactions between N protein and RIG-I could be detected in the context of PDCoV infection, which interfered with the binding of dsRNA and protein activator of protein kinase R (PACT) to RIG-I. Together, our results demonstrate that PDCoV N protein is an IFN antagonist and utilizes diverse strategies to attenuate RIG-I recognition and activation. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.","Interferon; Nucleocapsid; Porcine deltacoronavirus; RIG-I; RNA binding","beta interferon; double stranded RNA; interferon induced helicase C domain containing protein 1; interferon regulatory factor 3; nucleocapsid protein; retinoic acid inducible protein I; beta interferon; DDX58 protein, human; double stranded RNA; interferon regulatory factor 3; nucleocapsid protein; PRKRA protein, human; protein binding; retinoic acid inducible protein I; RNA binding protein; Article; attenuation; carboxy terminal sequence; controlled study; Coronavirinae; in vitro study; molecular recognition; nonhuman; Porcine deltacoronavirus; priority journal; protein binding; protein domain; protein expression; protein protein interaction; quantitative analysis; real time polymerase chain reaction; Sendai virus; animal; Coronavirinae; Coronavirus infection; genetics; HEK293 cell line; human; immunology; isolation and purification; pig; swine disease; veterinary medicine; virology; Animals; Coronavirus; Coronavirus Infections; DEAD Box Protein 58; HEK293 Cells; Humans; Interferon Regulatory Factor-3; Interferon-beta; Nucleocapsid Proteins; Protein Binding; RNA, Double-Stranded; RNA-Binding Proteins; Sendai virus; Swine; Swine Diseases","Masters, P.S., The molecular biology of coronaviruses (2006) Adv Virus Res, 66, pp. 193-292; Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Lau, C.C.Y., Tsang, A.K.L., Lau, J.H.N., Bai, R., Yuen, K., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86, pp. 3995-4008; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53, pp. 1537-1548; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20, pp. 1227-1230; Li, G., Chen, Q., Harmon, K.M., Yoon, K.J., Schwartz, K.J., Hoogland, M.J., Gauger, P.C., Zhang, J., Full-Length Genome Sequence of Porcine Deltacoronavirus Strain USA/IA/2014/8734 (2014) Genome Announc, 2; Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete Genome Sequence of Strain SDCV/USA/Illinois121/2014, a Porcine Deltacoronavirus from the United States (2014) Genome Announc, 2; Lee, S., Lee, C., Complete Genome Characterization of Korean Porcine Deltacoronavirus Strain KOR/KNU14-04 (2014) Genome Announc, 2. , (,), /2014; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in china: identification, prevalence and full-length genome sequence analysis (2015) Transbound Emerg Dis, 62, pp. 575-580; Madapong, A., Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Srijangwad, A., Tripipat, T., Wegner, M., Nilubol, D., Complete Genome Sequence of Porcine Deltacoronavirus Isolated in Thailand in 2015 (2016) Genome Announc, 4; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Tripipat, T., Nilubol, D., Different Lineage of Porcine Deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound Emerg Dis, 64, pp. 3-10; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg Infect Dis, 21, pp. 650-654; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch Virol, 162, pp. 2357-2362; McBride, R., van Zyl, M., Fielding, B.C., The coronavirus nucleocapsid is a multifunctional protein (2014) Viruses, 6, pp. 2991-3018; Wu, C., Chen, P., Yeh, S.H., Nucleocapsid phosphorylation and RNA helicase DDX1 recruitment enables coronavirus transition from discontinuous to continuous transcription (2014) Cell Host Microbe, 16, pp. 462-472; Kuo, L., Koetzner, C.A., Masters, P.S., A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging (2016) Virology, 494, pp. 100-107; Chang, C., Chen, C., Chiang, M., Hsu, Y., Huang, T., Transient oligomerization of the SARS-CoV N protein–implication for virus ribonucleoprotein packaging (2013) PLoS ONE, 8; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) J Virol, 84, pp. 10276-10288; Zhu, Y., Qu, J., Differential characteristics of the early stage of lung inflammation induced by SARS-CoV Nucleocapsid protein related to age in the mouse (2009) Inflamm Res, 58, pp. 312-320; Xu, X., Zhang, H., Zhang, Q., Huang, Y., Dong, J., Liang, Y., Liu, H., Tong, D., Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression (2013) Vet Microbiol, 164, pp. 212-221; Cui, L., Wang, H., Ji, Y., Yang, J., Xu, S., Huang, X., Wang, Z., Chen, Y., The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells (2015) J Virol, 89, pp. 9029-9043; Ding, L., Huang, Y., Du, Q., Dong, F., Zhao, X., Zhang, W., Xu, X., Tong, D., TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling (2014) Biochem Biophys Res Commun, 445, pp. 497-503; Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., Zhang, H., Xiao, S., Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1 (2014) J Virol, 88, pp. 8936-8945; Ding, Z., Fang, L., Yuan, S., Zhao, L., Wang, X., Long, S., Wang, M., Xiao, S., The nucleocapsid proteins of mouse hepatitis virus and severe acute respiratory syndrome coronavirus share the same IFN-beta antagonizing mechanism: attenuation of PACT-mediated RIG-I/MDA5 activation (2017) Oncotarget, 8, pp. 49655-49670; Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., Ma, Q., Cao, C., The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination (2017) J Virol, 91; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in Mainland China (2015) Emerg Infect Dis, 21, pp. 2254-2255; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet Microbiol, 196, pp. 98-106; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K., Kew, C., Lui, P., Chan, C., Jin, D.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88, pp. 4866-4876; Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Maniatis, T., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway (2003) Nat Immunol, 4, pp. 491-496; Sharma, S., tenOever, B.R., Grandvaux, N., Zhou, G., Lin, R., Hiscott, J., Triggering the interferon antiviral response through an IKK-related pathway (2003) Science, 300, pp. 1148-1151; Ramos, H.J., Gale, M.J., RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity (2011) Curr Opin Virol, 1, pp. 167-176; Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., Fujita, T., Hopfner, K.P., The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I (2008) Mol Cell, 29, pp. 169-179; Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Hartmann, G., 5′-Triphosphate RNA is the ligand for RIG-I (2006) Science, 314, pp. 994-997; Wu, B., Peisley, A., Richards, C., Yao, H., Zeng, X., Lin, C., Chu, F., Hur, S., Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5 (2013) Cell, 152, pp. 276-289; Wu, B., Hur, S., How RIG-I like receptors activate MAVS (2015) Curr Opin Virol, 12, pp. 91-98; Lu, C., Ranjith-Kumar, C.T., Hao, L., Kao, C., Li, P., Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate (2011) Nucleic Acids Res, 39, pp. 1565-1575; Luo, D., Kohlway, A., Pyle, A.M., Duplex RNA activated ATPases (DRAs): Platforms for RNA sensing, signaling and processing (2013) RNA Biol, 10, pp. 111-120; Lu, C., Xu, H., Ranjith-Kumar, C.T., Brooks, M.T., Hou, T., Hu, F., Herr, A.B., Li, P., The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain (2010) Structure, 18, pp. 1032-1043; Kohlway, A., Luo, D., Rawling, D.C., Ding, S., Pyle, A.M., Defining the functional determinants for RNA surveillance by RIG-I (2013) EMBO Rep, 14, pp. 772-779; Kok, K.H., Lui, P., Ng, M.H., Siu, K.L., Au, S.W., Jin, D.Y., The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response (2011) Cell Host Microbe, 9, pp. 299-309; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu Rev Virol, 2, pp. 265-288; Luo, J., Fang, L., Dong, N., Fang, P., Ding, Z., Wang, D., Chen, H., Xiao, S., Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-beta production (2016) Virology, 495, pp. 10-17; Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M.F., Xiao, S., Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38; Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Lv, M., Xiao, S., Porcine Deltacoronavirus nsp5 Antagonizes Type I Interferon Signaling by Cleaving STAT2 (2017) J Virol, 91, pp. e00003-e00017; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Wang, D., Xiao, S., Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA (2018) J Virol, 92, pp. e00712-e00718; Ding, B., Qin, Y., Chen, M., Nucleocapsid proteins: roles beyond viral RNA packaging (2016) Wiley Interdiscip Rev RNA, 7, pp. 213-226; Ye, Y., Hauns, K., Langland, J.O., Jacobs, B.L., Hogue, B.G., Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist (2007) J Virol, 81, pp. 2554-2563; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Kowalinski, E., Lunardi, T., McCarthy, A.A., Louber, J., Brunel, J., Grigorov, B., Gerlier, D., Cusack, S., Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA (2011) Cell, 147, pp. 423-435; Luo, D., Ding, S., Vela, A., Kohlway, A., Lindenbach, B.D., Pyle, A.M., Structural insights into RNA recognition by RIG-I (2011) Cell, 147, pp. 409-422; Jiang, F., Ramanathan, A., Miller, M.T., Tang, G., Gale, M.J., Patel, S.S., Marcotrigiano, J., Structural basis of RNA recognition and activation by innate immune receptor RIG-I (2011) Nature, 479, pp. 423-427; Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M., Chen, Z., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity (2010) Cell, 141, pp. 315-330; Patel, J.R., Jain, A., Chou, Y.Y., Baum, A., Ha, T., Garcia-Sastre, A., ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon (2013) EMBO Rep, 14, pp. 780-787; Peisley, A., Wu, B., Yao, H., Walz, T., Hur, S., RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner (2013) Mol Cell, 51, pp. 573-583; Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Jung, J.U., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity (2007) Nature, 446, pp. 916-920; Lee, Y.F., Nomoto, A., Detjen, B.M., Wimmer, E., A protein covalently linked to poliovirus genome RNA (1977) Proc Natl Acad Sci USA, 74, pp. 59-63; Barral, P.M., Sarkar, D., Fisher, P.B., Racaniello, V.R., RIG-I is cleaved during picornavirus infection (2009) Virology, 391, pp. 171-176; Feng, Q., Langereis, M.A., Lork, M., Nguyen, M., Hato, S.V., Lanke, K., Emdad, L., van Kuppeveld, F.J., Enterovirus 2Apro targets MDA5 and MAVS in infected cells (2014) J Virol, 88, pp. 3369-3378; Mukherjee, A., Morosky, S.A., Delorme-Axford, E., Dybdahl-Sissoko, N., Oberste, M.S., Wang, T., Coyne, C.B., The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling (2011) PLoS Pathog, 7; Papon, L., Oteiza, A., Imaizumi, T., Kato, H., Brocchi, E., Lawson, T.G., Akira, S., Mechti, N., The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection (2009) Virology, 393, pp. 311-318; Varga, Z.T., Grant, A., Manicassamy, B., Palese, P., Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential (2012) J Virol, 86, pp. 8359-8366; Varga, Z.T., Ramos, I., Hai, R., Schmolke, M., Garcia-Sastre, A., Fernandez-Sesma, A., Palese, P., The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein (2011) PLoS Pathog, 7; Yoshizumi, T., Ichinohe, T., Sasaki, O., Otera, H., Kawabata, S., Mihara, K., Koshiba, T., Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity (2014) Nat Commun, 5, p. 4713; Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I., Carnero, E., Farzan, M., Garcia-Sastre, A., Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I (2009) Cell Host Microbe, 5, pp. 439-449; Rajsbaum, R., Albrecht, R.A., Wang, M., Maharaj, N.P., Versteeg, G.A., Nistal-Villan, E., Garcia-Sastre, A., Gack, M.U., Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein (2012) PLoS Pathog, 8; Schmidt, A., Schwerd, T., Hamm, W., Hellmuth, J.C., Cui, S., Wenzel, M., Hoffmann, F.S., Rothenfusser, S., 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I (2009) Proc Natl Acad Sci USA, 106, pp. 12067-12072; Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Akira, S., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses (2006) Nature, 441, pp. 101-105; Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Akira, S., Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5 (2008) J Exp Med, 205, pp. 1601-1610; Li, J., Liu, Y., Zhang, X., Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5 (2010) J Virol, 84, pp. 6472-6482; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NF-kappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178; Reikine, S., Nguyen, J.B., Modis, Y., Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5 (2014) Front Immunol, 5, p. 342; Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Gale, M.J., Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2 (2007) Proc Natl Acad Sci USA, 104, pp. 582-587","Ding, Z.; Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, China; email: dingzhenhuz@jxau.edu.cn",,"Springer New York LLC",09208569,,VIGEE,"31129785","English","Virus Genes",Article,"Final",Open Access,Scopus,2-s2.0-85067673411 "Farrag M.A., Hamed M.E., Amer H.M., Almajhdi F.N.","56437770100;57209102493;36602135700;35174148500;","Epidemiology of respiratory viruses in Saudi Arabia: toward a complete picture",2019,"Archives of Virology","164","8",,"1981","1996",,,"10.1007/s00705-019-04300-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066481806&doi=10.1007%2fs00705-019-04300-2&partnerID=40&md5=39fd0f8fa8389c639432024b9c12533a","Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt","Farrag, M.A., Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia; Hamed, M.E., Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia; Amer, H.M., Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Almajhdi, F.N., Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia","Acute lower respiratory tract infection is a major health problem that affects more than 15% of the total population of Saudi Arabia each year. Epidemiological studies conducted over the last three decades have indicated that viruses are responsible for the majority of these infections. The epidemiology of respiratory viruses in Saudi Arabia is proposed to be affected mainly by the presence and mobility of large numbers of foreign workers and the gathering of millions of Muslims in Mecca during the Hajj and Umrah seasons. Knowledge concerning the epidemiology, circulation pattern, and evolutionary kinetics of respiratory viruses in Saudi Arabia are scant, with the available literature being inconsistent. This review summarizes the available data on the epidemiology and evolution of respiratory viruses. The demographic features associated with Middle East respiratory syndrome-related coronavirus infections are specifically analyzed for a better understanding of the epidemiology of this virus. The data support the view that continuous entry and exit of pilgrims and foreign workers with different ethnicities and socioeconomic backgrounds in Saudi Arabia is the most likely vehicle for global dissemination of respiratory viruses and for the emergence of new viruses (or virus variants) capable of greater dissemination. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.",,"animal; Coronavirus infection; human; Islam; isolation and purification; Middle East respiratory syndrome coronavirus; respiratory tract infection; Saudi Arabia; travel; virology; Animals; Coronavirus Infections; Humans; Islam; Middle East Respiratory Syndrome Coronavirus; Respiratory Tract Infections; Saudi Arabia; Travel","Williams, B.G., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; Black, R.E., Cousens, S., Johnson, H.L., Lawn, J.E., Rudan, I., Bassani, D.G., Jha, P., Mathers, C., Global, regional, and national causes of child mortality in 2008: a systematic analysis (2010) Lancet, 375, pp. 1969-1987; Bryce, J., Boschi-Pinto, C., Shibuya, K., Black, R.E., WHO estimates of the causes of death in children (2005) Lancet, 365, pp. 1147-1152; Fahey, T., Stocks, N., Thomas, T., Systematic review of the treatment of upper respiratory tract infection (1998) Arch Dis Child, 79, pp. 225-230; Raymond, F., Carbonneau, J., Boucher, N., Robitaille, L., Boisvert, S., Wu, W.K., De Serres, G., Corbeil, J., Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children (2009) J Clin Microbiol, 47, pp. 743-750; Fagbo, S.F., Garbati, M.A., Hasan, R., AlShahrani, D., Al-Shehri, M., AlFawaz, T., Hakawi, A., Skakni, L., Acute viral respiratory infections among children in MERS-endemic Riyadh, Saudi Arabia, 2012–2013 (2017) J Med Virol, 89, pp. 195-201; (2016) Saudi Arabia labor market report 2016, , 3rd edn. Kingdom of Saudi Arabia; Simpson, C.R., Steiner, M.F., Cezard, G., Bansal, N., Fischbacher, C., Douglas, A., Bhopal, R., researchers, S., Ethnic variations in morbidity and mortality from lower respiratory tract infections: a retrospective cohort study (2015) J R Soc Med, 108, pp. 406-417; Ahmed, Q.A., Memish, Z.A., Hajj 2016: Required vaccinations, crowd control, novel wearable tech and the Zika threat (2016) Travel Med Infect Dis, 14, pp. 429-432; Balaban, V., Stauffer, W.M., Hammad, A., Afgarshe, M., Abd-Alla, M., Ahmed, Q., Memish, Z.A., Marano, N., Protective practices and respiratory illness among US travelers to the 2009 Hajj (2012) J Travel Med, 19, pp. 163-168; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual Hajj: potential risks and mitigation strategies (2013) Curr Opin Pulm Med, 19, pp. 192-197; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Nougairede, A., Salez, N., Memish, Z.A., Gautret, P., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 1821-1827; Charrel, R.N., Hajj, Umrah, and other mass gatherings: which pathogens do you expect? Beware of the tree that hides the forest! (2014) Travel Med Infect Dis, 12, pp. 418-419; Gautret, P., Charrel, R., Benkouiten, S., Belhouchat, K., Nougairede, A., Drali, T., Salez, N., Parola, P., Lack of MERS coronavirus but prevalence of influenza virus in French pilgrims after 2013 Hajj (2014) Emerg Infect Dis, 20, pp. 728-730; Almajhdi, F.N., A report on the association of influenza B virus with respiratory tract infection of hospitalized children in Saudi Arabia (2009) Saudi J Biol Sci, 16, pp. 109-111; Almajhdi, F.N., Ali, G., Report on influenza A and B viruses: their coinfection in a Saudi leukemia patient (2013) Biomed Res Int, 2013, p. 290609; Almajhdi, F.N., Hemagglutinin-neuraminidase gene sequence-based reclassification of human parainfluenza virus 3 variants (2015) Intervirology, 58, pp. 35-40; Almajhdi, F.N., Alshaman, M.S., Amer, H.M., Human parainfluenza virus type 2 hemagglutinin-neuramindase gene: sequence and phylogenetic analysis of the Saudi strain Riyadh 105/2009 (2012) Virol J, 9, p. 316; Almajhdi, F.N., Alshaman, M.S., Amer, H.M., Molecular characterization and phylogenetic analysis of human parainfluenza virus type 3 isolated from Saudi Arabia (2012) J Med Virol, 84, pp. 1304-1311; Almajhdi, F.N., Farrag, M.A., Amer, H.M., Group B strains of human respiratory syncytial virus in Saudi Arabia: molecular and phylogenetic analysis (2014) Virus Genes, 48, pp. 252-259; Almajhdi, F.N., Farrag, M.A., Amer, H.M., Genetic diversity in the G protein gene of group A human respiratory syncytial viruses circulating in Riyadh, Saudi Arabia (2014) Arch Virol, 159, pp. 73-81; Amer, H.M., Molecular epidemiology of human metapneumovirus in Riyadh Province, Saudi Arabia (2016) J Mol Microbiol Biotechnol, 26, pp. 414-421; Amer, H.M., Alshaman, M.S., Farrag, M.A., Hamad, M.E., Alsaadi, M.M., Almajhdi, F.N., Epidemiology of 11 respiratory RNA viruses in a cohort of hospitalized children in Riyadh, Saudi Arabia (2016) J Med Virol, 88, pp. 1086-1091; Lu, G., Liu, D., SARS-like virus in the Middle East: a truly bat-related coronavirus causing human diseases (2012) Protein Cell, 3, pp. 803-805; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Yao, Q., Masters, P.S., Ye, R., Negatively charged residues in the endodomain are critical for specific assembly of spike protein into murine coronavirus (2013) Virology, 442, pp. 74-81; Perlman, S., Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects (1998) Adv Exp Med Biol, 440, pp. 503-513; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664; (2005), http://www.who.int/csr/sars/country/table2004_04_21/en/, Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003, 2005, Accessed 14 Nov 2014; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Memish, Z.A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Cauchemez, S., Van Kerkhove, M.D., Riley, S., Donnelly, C.A., Fraser, C., Ferguson, N.M., Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart (2013) Euro Surveill, 18 (24), p. 20503; (2018) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/, Accessed 14 Nov 2014; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., Landt, O., Memish, Z.A., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Alsahafi, A.J., Cheng, A.C., The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015 (2016) Int J Infect Dis, 45, pp. 1-4; Alsahafi, A.J., Cheng, A.C., Knowledge, attitudes and behaviours of healthcare workers in the Kingdom of Saudi Arabia to MERS coronavirus and other emerging infectious diseases (2016) Int J Environ Res Public Health; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Sieberg, A., Memish, Z.A., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, p. 629; Chan, J.F., Chan, K.H., Kao, R.Y., To, K.K., Zheng, B.J., Li, C.P., Li, P.T., Yuen, K.Y., Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus (2013) J Infect, 67, pp. 606-616; Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Yuen, K.Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) J Virol, 84, pp. 2808-2819; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) MBio, 5. , e00884-14; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 8638-8650; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., Drosten, C., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg Infect Dis, 20, pp. 552-559; Hu, B., Ge, X., Wang, L.F., Shi, Z., Bat origin of human coronaviruses (2015) Virol J, 12, p. 221; Cauchemez, S., Nouvellet, P., Cori, A., Jombart, T., Garske, T., Clapham, H., Moore, S., Ferguson, N.M., Unraveling the drivers of MERS-CoV transmission (2016) Proc Natl Acad Sci USA, 113, pp. 9081-9086; Alhakeem, R.F., Midgley, C.M., Assiri, A.M., Alessa, M., Al Hawaj, H., Saeed, A.B., Almasri, M.M., Watson, J.T., Exposures among MERS case–patients, Saudi Arabia, January–February 2016 (2016) Emerg Infect Dis, 22, pp. 2020-2022; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al Nsour, M., Jordan, M.-C.I.T., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Bin, S.Y., Heo, J.Y., Song, M.S., Lee, J., Kim, E.H., Park, S.J., Kwon, H.I., Choi, Y.K., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin Infect Dis, 62, pp. 755-760; Guery, B., Poissy, J., el Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., van der Werf, S., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Gulland, A., Novel coronavirus spreads to Tunisia (2013) BMJ, 346, p. f3372; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370, pp. 2499-2505; Chu, H., Zhou, J., Wong, B.H., Li, C., Cheng, Z.S., Lin, X., Poon, V.K., Yuen, K.Y., Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, pp. 1012-1015; El Bushra, H.E., Abdalla, M.N., Al Arbash, H., Alshayeb, Z., Al-Ali, S., Latif, Z.A., Al-Bahkit, H., Saeed, A.B., An outbreak of Middle East Respiratory Syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia, 2015 (2016) East Mediterr Health J, 22, pp. 468-475; Meyer, B., Garcia-Bocanegra, I., Wernery, U., Wernery, R., Sieberg, A., Muller, M.A., Drexler, J.F., Eckerle, I., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg Infect Dis, 21, pp. 181-182; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Raj, V.S., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg Infect Dis, 20, pp. 1999-2005; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Corman, V.M., Olschlager, S., Wendtner, C.M., Drexler, J.F., Hess, M., Drosten, C., Performance and clinical validation of the RealStar MERS-CoV Kit for detection of Middle East respiratory syndrome coronavirus RNA (2014) J Clin Virol, 60, pp. 168-171; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill; Sikkema, R.S., Farag, E., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Al-Thani, M., Reusken, C., Risk factors for primary middle east respiratory syndrome coronavirus infection in camel workers in Qatar during 2013–2014: a case–control study (2017) J Infect Dis, 215, pp. 1702-1705; To, K.K., Ng, K.H., Que, T.L., Chan, J.M., Tsang, K.Y., Tsang, A.K., Chen, H., Yuen, K.Y., Avian influenza A H5N1 virus: a continuous threat to humans (2012) Emerg Microbes Infect, 1; (2018) International Committee on Taxonomy of Viruses, 10Th Report, , https://talk.ictvonline.org/taxonomy/, Accessed 25 Jan 2019; Tong, S., Tian, J., Wang, H., Huang, Z., Yu, M., Sun, L., Liu, R., Ning, Z., H9N2 avian influenza infection altered expression pattern of sphiogosine-1-phosphate receptor 1 in BALB/c mice (2013) Virol J, 10, p. 296; Mancini, D.A., Mendonca, R.M., Pereira, A.S., Kawamoto, A.H., Vannucchi, C.I., Pinto, J.R., Mori, E., Mancini Filho, J., Influenza viruses in adult dogs raised in rural and urban areas in the state of Sao Paulo, Brazil (2012) Rev Inst Med Trop Sao Paulo, 54, pp. 311-314; Swayne, D.E., King, D.J., Avian influenza and Newcastle disease (2003) J Am Vet Med Assoc, 222, pp. 1534-1540; Molinari, N.A., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., Bridges, C.B., The annual impact of seasonal influenza in the US: measuring disease burden and costs (2007) Vaccine, 25, pp. 5086-5096; Garten, R.J., Davis, C.T., Russell, C.A., Shu, B., Lindstrom, S., Balish, A., Sessions, W.M., Cox, N.J., Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans (2009) Science, 325, pp. 197-201; Parry, J., H7N9 avian flu infects humans for the first time (2013) BMJ, 346, p. f2151; To, K.K., Tsang, A.K., Chan, J.F., Cheng, V.C., Chen, H., Yuen, K.Y., Emergence in China of human disease due to avian influenza A(H10N8)—cause for concern? (2014) J Infect, 68, pp. 205-215; Arabia, M., (2017) Influenza Surveillance in Saudi Arabia, , https://www.moh.gov.sa/CCC/healthp/regulations/Documents/ISSA%20Protocol.pdf, Accessed 13 Dec 2018; Reed, C., Angulo, F.J., Swerdlow, D.L., Lipsitch, M., Meltzer, M.I., Jernigan, D., Finelli, L., Estimates of the prevalence of pandemic (H1N1) 2009, United States, April–July 2009 (2009) Emerg Infect Dis, 15, pp. 2004-2007; AlMazroa, M.A., Memish, Z.A., AlWadey, A.M., Pandemic influenza A (H1N1) in Saudi Arabia: description of the first one hundred cases (2010) Ann Saudi Med, 30, pp. 11-14; BinSaeed, A.A., Characteristics of pandemic influenza A (H1N1) infection in patients presenting to a university hospital in Riyadh, Saudi Arabia (2010) Ann Saudi Med, 30, pp. 59-62; Al Subaie, S.S., Al Saadi, M.A., Features associated with severe disease in hospitalized children with 2009 influenza A (H1N1) infection at a university hospital in Riyadh, Saudi Arabia (2012) Ann Saudi Med, 32, pp. 53-58; Affifi, R.M., Omar, S.R., El Raggal, A.A., A novel influenza A (H1N1) outbreak experience among residents of a long term-care facility in Saudi Arabia during 2010 seasonal flu circulation (2012) Infect Dis Rep, 4; Altayep, K.M., Ahmed, H.G., Tallaa, A.T., Alzayed, A.S., Alshammari, A.J., Ali Talla, A.T., Epidemiology and clinical complication patterns of influenza A (H1N1 virus) in Northern Saudi Arabia (2017) Infect Dis Rep, 9, p. 6930; Balkhy, H.H., El-Saed, A., Sallah, M., Epidemiology of H1N1 (2009) influenza among healthcare workers in a tertiary care center in Saudi Arabia: a 6-month surveillance study (2010) Infect Control Hosp Epidemiol, 31, pp. 1004-1010; Agha, A., Alrawi, A., Munayco, C.V., Alayed, M.S., Al-Hakami, M., Korairi, H., Bella, A., Characteristics of patients hospitalized with 2009 H1N1 influenza in a tertiary care hospital in southern Saudi Arabia (2012) Mediterr J Hematol Infect Dis, 4; Al-Tawfiq, J.A., Abed, M., Saadeh, B.M., Ghandour, J., Shaltaf, M., Babiker, M.M., Pandemic influenza A (2009 H1N1) in hospitalized patients in a Saudi Arabian hospital: epidemiology and clinical comparison with H1N1-negative patients (2011) J Infect Public Health, 4, pp. 228-234; de la Torre, J.C., Molecular biology of borna disease virus: prototype of a new group of animal viruses (1994) J Virol, 68, pp. 7669-7675; Feldmann, H., Klenk, H.D., Marburg and Ebola viruses (1996) Adv Virus Res, 47, pp. 1-52; Huang, Y.T., Wertz, G.W., The genome of respiratory syncytial virus is a negative-stranded RNA that codes for at least seven mRNA species (1982) J Virol, 43, pp. 150-157; Collins, P.L., Hill, M.G., Cristina, J., Grosfeld, H., Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus (1996) Proc Natl Acad Sci USA, 93, pp. 81-85; Mufson, M.A., Orvell, C., Rafnar, B., Norrby, E., Two distinct subtypes of human respiratory syncytial virus (1985) J Gen Virol, 66, pp. 2111-2124; Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., O’Brien, K.L., Campbell, H., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555; Paramore, L.C., Ciuryla, V., Ciesla, G., Liu, L., Economic impact of respiratory syncytial virus-related illness in the US: an analysis of national databases (2004) Pharmacoeconomics, 22, pp. 275-284; Abraha, H.Y., Lanctôt, K.L., Paes, B., Risk of respiratory syncytial virus infection in preterm infants: reviewing the need for prevention (2015) Expert Rev Respir Med, 9, pp. 779-799; Rudan, I., Tomaskovic, L., Boschi-Pinto, C., Campbell, H., Global estimate of the incidence of clinical pneumonia among children under five years of age (2004) Bull World Health Organ, 82, pp. 895-903; Weber, M.W., Mulholland, E.K., Greenwood, B.M., Respiratory syncytial virus infection in tropical and developing countries (1998) Trop Med Int Health, 3, pp. 268-280; Reeves, R.M., Hardelid, P., Gilbert, R., Warburton, F., Ellis, J., Pebody, R.G., Estimating the burden of respiratory syncytial virus (RSV) on respiratory hospital admissions in children less than five years of age in England, 2007-2012 (2017) Influenza Other Respir Viruses, 11, pp. 122-129; Hall, C.B., Respiratory syncytial virus and parainfluenza virus (2001) N Engl J Med, 344, pp. 1917-1928; Walsh, E.E., Falsey, A.R., Respiratory syncytial virus infection in adult populations (2012) Infect Disord Drug Targets, 12, pp. 98-102; Fodha, I., Vabret, A., Trabelsi, A., Freymuth, F., Epidemiological and antigenic analysis of respiratory syncytial virus in hospitalised Tunisian children, from 2000 to 2002 (2004) J Med Virol, 72, pp. 683-687; Waris, M., Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with alternating prevalence of groups A and B (1991) J Infect Dis, 163, pp. 464-469; Rajala, M.S., Sullender, W.M., Prasad, A.K., Dar, L., Broor, S., Genetic variability among Group A and B respiratory syncytial virus isolates from a large referral hospital in New Delhi, India (2003) J Clin Microbiol, 41, pp. 2311-2316; Trento, A., Abrego, L., Rodriguez-Fernandez, R., Gonzalez-Sanchez, M.I., Gonzalez-Martinez, F., Delfraro, A., Pascale, J.M., Melero, J.A., Conservation of G-Protein Epitopes in Respiratory Syncytial Virus (Group A) Despite Broad Genetic Diversity: Is Antibody Selection Involved in Virus Evolution? (2015) J Virol, 89, pp. 7776-7785; Eshaghi, A., Duvvuri, V.R., Lai, R., Nadarajah, J.T., Li, A., Patel, S.N., Low, D.E., Gubbay, J.B., Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication (2012) PLoS One, 7; Al-Alaiyan, S., Pollack, P., Notario, G.F., Safety and pharmacokinetics of extended use of palivizumab in Saudi Arabian infants and children (2015) Drugs Context, 4, p. 212270; Bakir, T.M., Halawani, M., Ramia, S., Viral aetiology and epidemiology of acute respiratory infections in hospitalized Saudi children (1998) J Trop Pediatr, 44, pp. 100-103; Henrickson, K.J., Parainfluenza viruses (2003) Clin Microbiol Rev, 16, pp. 242-264; Cortez, K.J., Erdman, D.D., Peret, T.C., Gill, V.J., Childs, R., Barrett, A.J., Bennett, J.E., Outbreak of human parainfluenza virus 3 infections in a hematopoietic stem cell transplant population (2001) J Infect Dis, 184, pp. 1093-1097; Aguilar, J.C., Perez-Brena, M.P., Garcia, M.L., Cruz, N., Erdman, D.D., Echevarria, J.E., Detection and identification of human parainfluenza viruses 1, 2, 3, and 4 in clinical samples of pediatric patients by multiplex reverse transcription-PCR (2000) J Clin Microbiol, 38, pp. 1191-1195; Lau, S.K., To, W.K., Tse, P.W., Chan, A.K., Woo, P.C., Tsoi, H.W., Leung, A.F., Yuen, K.Y., Human parainfluenza virus 4 outbreak and the role of diagnostic tests (2005) J Clin Microbiol, 43, pp. 4515-4521; Templeton, K.E., Bredius, R.G., Claas, E.C., Kroes, A.C., Walther, F.J., Parainfluenza virus 4 detection in infants (2005) Eur J Pediatr, 164, pp. 528-529; Glezen, W.P., Frank, A.L., Taber, L.H., Kasel, J.A., Parainfluenza virus type 3: seasonality and risk of infection and reinfection in young children (1984) J Infect Dis, 150, pp. 851-857; Shay, D.K., Holman, R.C., Newman, R.D., Liu, L.L., Stout, J.W., Anderson, L.J., Bronchiolitis-associated hospitalizations among US children, 1980–1996 (1999) JAMA, 282, pp. 1440-1446; Counihan, M.E., Shay, D.K., Holman, R.C., Lowther, S.A., Anderson, L.J., Human parainfluenza virus-associated hospitalizations among children less than five years of age in the United States (2001) Pediatr Infect Dis J, 20, pp. 646-653; Iwane, M.K., Edwards, K.M., Szilagyi, P.G., Walker, F.J., Griffin, M.R., Weinberg, G.A., Coulen, C., New Vaccine Surveillance, N., Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children (2004) Pediatrics, 113, pp. 1758-1764; Laurichesse, H., Dedman, D., Watson, J.M., Zambon, M.C., Epidemiological features of parainfluenza virus infections: laboratory surveillance in England and Wales, 1975-1997 (1999) Eur J Epidemiol, 15, pp. 475-484; Wang, F., Zhao, L.Q., Zhu, R.N., Deng, J., Sun, Y., Ding, Y.X., Tian, R., Qian, Y., Parainfluenza Virus Types 1, 2, and 3 in Pediatric Patients with Acute Respiratory Infections in Beijing During 2004 to 2012 (2015) Chin Med J (Engl), 128, pp. 2726-2730; Liu, W.K., Liu, Q., Chen, D.H., Liang, H.X., Chen, X.K., Huang, W.B., Qin, S., Zhou, R., Epidemiology and clinical presentation of the four human parainfluenza virus types (2013) BMC Infect Dis, 13, p. 28; Al-Hajjar, S., Akhter, J., Al Jumaah, S., Hussain Qadri, S.M., Respiratory viruses in children attending a major referral centre in Saudi Arabia (1998) Ann Trop Paediatr, 18, pp. 87-92; Alshehri, M.A., Almegamesi, T.M., Alfrayh, A.S., Predictors of short-term hospital readmissions of asthmatic children (2005) J Fam Commun Med, 12, pp. 11-17; Meqdam, M.M., Subaih, S.H., Thwiny, I.R., Rapid detection and clinical features of influenza and parainfluenza in infants and young children hospitalized with acute lower respiratory illnesses (2005) J Trop Pediatr, 51, pp. 160-165; Legrand, L., Vabret, A., Dina, J., Petitjean-Lecherbonnier, J., Stephanie, G., Cuvillon, D., Tripey, V., Freymuth, F., Epidemiological and phylogenic study of human metapneumovirus infections during three consecutive outbreaks in Normandy, France (2011) J Med Virol, 83, pp. 517-524; Maggi, F., Pifferi, M., Vatteroni, M., Fornai, C., Tempestini, E., Anzilotti, S., Lanini, L., Bendinelli, M., Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy (2003) J Clin Microbiol, 41, pp. 2987-2991; Al Hajjar, S., Al Thawadi, S., Al Seraihi, A., Al Muhsen, S., Imambaccus, H., Human metapneumovirus and human coronavirus infection and pathogenicity in Saudi children hospitalized with acute respiratory illness (2011) Ann Saudi Med, 31, pp. 523-527; Al-Ayed, M.S., Asaad, A.M., Qureshi, M.A., Ameen, M.S., Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction (2014) Saudi Med J, 35, pp. 1348-1353; Greenberg, S.B., Update on rhinovirus and coronavirus infections (2011) Semin Respir Crit Care Med, 32, pp. 433-446; Jansen, R.R., Wieringa, J., Koekkoek, S.M., Visser, C.E., Pajkrt, D., Molenkamp, R., de Jong, M.D., Schinkel, J., Frequent detection of respiratory viruses without symptoms: toward defining clinically relevant cutoff values (2011) J Clin Microbiol, 49, pp. 2631-2636; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23, pp. 74-98; Al-Ghamdi, S.M., Akbar, H.O., Qari, Y.A., Fathaldin, O.A., Al-Rashed, R.S., Pattern of admission to hospitals during muslim pilgrimage (Hajj) (2003) Saudi Med J, 24, pp. 1073-1076; Baharoon, S., Al-Jahdali, H., Al Hashmi, J., Memish, Z.A., Ahmed, Q.A., Severe sepsis and septic shock at the Hajj: etiologies and outcomes (2009) Travel Med Infect Dis, 7, pp. 247-252; Mandourah, Y., Al-Radi, A., Ocheltree, A.H., Ocheltree, S.R., Fowler, R.A., Clinical and temporal patterns of severe pneumonia causing critical illness during Hajj (2012) BMC Infect Dis, 12, p. 117; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Akkad, N., Gessner, B.D., Impact of the Hajj on pneumococcal transmission (2015) Clin Microbiol Infect, 21 (77), pp. e11-e78; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Travel Med Infect Dis, 23, pp. 6-13; Memish, Z.A., Assiri, A., Almasri, M., Alhakeem, R.F., Turkestani, A., Al Rabeeah, A.A., Al-Tawfiq, J.A., Yezli, S., Prevalence of MERS-CoV nasal carriage and compliance with the Saudi health recommendations among pilgrims attending the 2013 Hajj (2014) J Infect Dis, 210, pp. 1067-1072; Aberle, J.H., Popow-Kraupp, T., Kreidl, P., Laferl, H., Heinz, F.X., Aberle, S.W., Influenza A and B Viruses but Not MERS-CoV in Hajj Pilgrims, Austria, 2014 (2015) Emerg Infect Dis, 21, pp. 726-727; Koul, P.A., Mir, H., Saha, S., Chadha, M.S., Potdar, V., Widdowson, M.A., Lal, R.B., Krishnan, A., Influenza not MERS CoV among returning Hajj and Umrah pilgrims with respiratory illness, Kashmir, north India, 2014–15 (2017) Travel Med Infect Dis, 15, pp. 45-47; Ma, X., Liu, F., Liu, L., Zhang, L., Lu, M., Abudukadeer, A., Wang, L., Hu, K., No MERS-CoV but positive influenza viruses in returning Hajj pilgrims, China, 2013–2015 (2017) BMC Infect Dis, 17, p. 715; Al-Abdallat, M.M., Rha, B., Alqasrawi, S., Payne, D.C., Iblan, I., Binder, A.M., Haddadin, A., Gerber, S.I., Acute respiratory infections among returning Hajj pilgrims-Jordan, 2014 (2017) J Clin Virol, 89, pp. 34-37; Refaey, S., Amin, M.M., Roguski, K., Azziz-Baumgartner, E., Uyeki, T.M., Labib, M., Kandeel, A., Cross-sectional survey and surveillance for influenza viruses and MERS-CoV among Egyptian pilgrims returning from Hajj during 2012–2015 (2017) Influenza Other Respir Viruses, 11, pp. 57-60; Barasheed, O., Rashid, H., Alfelali, M., Tashani, M., Azeem, M., Bokhary, H., Kalantan, N., Hajj Research, T., Viral respiratory infections among Hajj pilgrims in 2013 (2014) Virol Sin, 29, pp. 364-371; Al-Tawfiq, J.A., Gautret, P., Memish, Z.A., Expected immunizations and health protection for Hajj and Umrah 2018 -An overview (2017) Travel Med Infect Dis, 19, pp. 2-7; Ashshi, A., Azhar, E., Johargy, A., Asghar, A., Momenah, A., Turkestani, A., Alghamdi, S., Barbour, E.K., Demographic distribution and transmission potential of influenza A and 2009 pandemic influenza A H1N1 in pilgrims (2014) J Infect Dev Ctries, 8, pp. 1169-1175; Khan, K., Memish, Z.A., Chabbra, A., Liauw, J., Hu, W., Janes, D.A., Sears, J., Gardam, M., Global public health implications of a mass gathering in Mecca, Saudi Arabia during the midst of an influenza pandemic (2010) J Travel Med, 17, pp. 75-81; Rashid, H., Shafi, S., Booy, R., El Bashir, H., Ali, K., Zambon, M., Memish, Z., Haworth, E., Influenza and respiratory syncytial virus infections in British Hajj pilgrims (2008) Emerg Health Threats J, 1; Yavarian, J., Shafiei Jandaghi, N.Z., Naseri, M., Hemmati, P., Dadras, M., Gouya, M.M., Mokhtari Azad, T., Influenza virus but not MERS coronavirus circulation in Iran, 2013-2016: Comparison between pilgrims and general population (2018) Travel Med Infect Dis, 21, pp. 51-55; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: a systematic review (2016) Travel Med Infect Dis, 14, pp. 92-109; Moattari, A., Emami, A., Moghadami, M., Honarvar, B., Influenza viral infections among the Iranian Hajj pilgrims returning to Shiraz, Fars province, Iran (2012) Influenza Other Respir Viruses, 6, pp. e77-e79; Rashid, H., Shafi, S., Haworth, E., El Bashir, H., Memish, Z.A., Sudhanva, M., Smith, M., Booy, R., Viral respiratory infections at the Hajj: comparison between UK and Saudi pilgrims (2008) Clin Microbiol Infect, 14, pp. 569-574; Haworth, E., Rashid, H., Booy, R., Prevention of pandemic influenza after mass gatherings—learning from Hajj (2010) J R Soc Med, 103, pp. 79-80; Mandourah, Y., Ocheltree, A., Al Radi, A., Fowler, R., The epidemiology of Hajj-related critical illness: lessons for deployment of temporary critical care services (2012) Crit Care Med, 40, pp. 829-834; Alzeer, A.H., Respiratory tract infection during Hajj (2009) Ann Thorac Med, 4, pp. 50-53; Annan, A., Owusu, M., Marfo, K.S., Larbi, R., Sarpong, F.N., Adu-Sarkodie, Y., Amankwa, J., Eckerle, I., High prevalence of common respiratory viruses and no evidence of Middle East respiratory syndrome coronavirus in Hajj pilgrims returning to Ghana, 2013 (2015) Trop Med Int Health, 20, pp. 807-812; Balkhy, H.H., Memish, Z.A., Bafaqeer, S., Almuneef, M.A., Influenza a common viral infection among Hajj pilgrims: time for routine surveillance and vaccination (2004) J Travel Med, 11, pp. 82-86; Al-Tawfiq, J.A., Memish, Z.A., Mass gatherings and infectious diseases: prevention, detection, and control (2012) Infect Dis Clin North Am, 26, pp. 725-737; Gautret, P., Bauge, M., Simon, F., Benkouiten, S., Parola, P., Brouqui, P., Travel reported by pilgrims from Marseille, France before and after the 2010 Hajj (2012) J Travel Med, 19, pp. 130-132; Benkouiten, S., Charrel, R., Belhouchat, K., Drali, T., Salez, N., Nougairede, A., Zandotti, C., Gautret, P., Circulation of respiratory viruses among pilgrims during the 2012 Hajj pilgrimage (2013) Clin Infect Dis, 57, pp. 992-1000; Atabani, S.F., Wilson, S., Overton-Lewis, C., Workman, J., Kidd, I.M., Petersen, E., Zumla, A., Osman, H., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013–2015 (2016) Int J Infect Dis, 47, pp. 10-14; Jamjoom, G.A., Al-Semrani, A.M., Board, A., Al-Frayh, A.R., Artz, F., Al-Mobaireek, K.F., Respiratory syncytial virus infection in young children hospitalized with respiratory illness in Riyadh (1993) J Trop Pediatr, 39, pp. 346-349; Chowdhury, D., Al-Howasi, M., Ramia, S., Al-Frayh, A.R., Khalil, M., Chowdhury, S., Respiratory syncytial virus in Saudi patients admitted to hospital with bronchiolitis: Use of direct fluorescent antibody tests as a rapid diagnostic tool (1996) Ann Saudi Med, 16, pp. 90-92; Kilani, R.A., Respiratory syncytial virus (RSV) outbreak in the NICU: description of eight cases (2002) J Trop Pediatr, 48, pp. 118-122; Mb, S.M., Respiratory syncytial virus infection in patients visiting King Khaled university hospital (2005) Minoufia Med J, 18 (18), pp. 11-18; Meqdam, M.M., Subaih, S.H., Rapid detection and clinical features of infants and young children with acute lower respiratory tract infection due to respiratory syncytial virus (2006) FEMS Immunol Med Microbiol, 47, pp. 129-133; Akhter, J.A.J.S.D.F., Al Hefdi, R., Al Hassan, I., Etiology of respiratory viral infections using rapid virus isolation methods at a tertiary care center in Riyadh, Saudi Arabia (2009) Saudi Pharm J, 17, pp. 177-181; Almajhdi, F.N.A.A.-J.M.E., Latif, A., Gissmann, L., Amer, H.M., Prevalence of respiratory syncytial virus infection in Riyadh during the winter season 2007–2008 and different risk factors impact (2009) Int J Virol, 5, pp. 154-163; Memish, Z.A., Assiri, A.M., Hussain, R., Alomar, I., Stephens, G., Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic (2012) J Travel Med, 19, pp. 15-21; Ahmed, A., Haider, S.H., Parveen, S., Arshad, M., Alsenaidy, H.A., Baaboud, A.O., Mobaireek, K.F., Sullender, W., Co-circulation of 72bp duplication group A and 60bp duplication group B respiratory syncytial virus (RSV) strains in Riyadh, Saudi Arabia during 2014 (2016) PLoS One, 11; Abdulhaq, A.A., Basode, V.K., Hashem, A.M., Alshrari, A.S., Badroon, N.A., Hassan, A.M., Alsubhi, T.L., Azhar, E.I., Patterns of human respiratory viruses and lack of MERS-coronavirus in patients with acute upper respiratory tract infections in Southwestern Province of Saudi Arabia (2017) Adv Virol, 2017, p. 4247853; Albogami, S.S., Alotaibi, M.R., Alsahli, S.A., Masuadi, E., Alshaalan, M., Seasonal variations of respiratory viruses detected from children with respiratory tract infections in Riyadh, Saudi Arabia (2018) J Infect Public Health, 11, pp. 183-186; Abdel-Moneim, A.S., Kamel, M.M., Al-Ghamdi, A.S., Al-Malky, M.I., Detection of bocavirus in children suffering from acute respiratory tract infections in Saudi Arabia (2013) PLoS One, 8; Ali, M., Han, S., Gunst, C.J., Lim, S., Luinstra, K., Smieja, M., Throat and nasal swabs for molecular detection of respiratory viruses in acute pharyngitis (2015) Virol J, 12, p. 178; El-Sheikh, S.M., El-Assouli, S.M., Mohammed, K.A., Albar, M., Bacteria and viruses that cause respiratory tract infections during the pilgrimage (Haj) season in Makkah, Saudi Arabia (1998) Trop Med Int Health, 3, pp. 205-209","Almajhdi, F.N.; Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Saudi Arabia; email: majhdi@ksu.edu.sa",,"Springer-Verlag Wien",03048608,,ARVID,"31139937","English","Arch. Virol.",Review,"Final",Open Access,Scopus,2-s2.0-85066481806 "Pascual-iglesias A., Sanchez C.M., Penzes Z., Sola I., Enjuanes L., Zuñiga S.","57189495794;57193985365;55761804900;7003336781;7006565392;6603777678;","Recombinant chimeric transmissible gastroenteritis virus (TGEV) - porcine epidemic diarrhea virus (PEDV) virus provides protection against virulent PEDV",2019,"Viruses","11","8", 682,"","",,2,"10.3390/v11080682","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070239265&doi=10.3390%2fv11080682&partnerID=40&md5=995290bb13f500720bbee8e5c228dd0e","Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Madrid, 28049, Spain; Ceva Animal Health, Ceva-Phylaxia, Szallas u. 5, Budapest, 1107, Hungary","Pascual-iglesias, A., Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Madrid, 28049, Spain; Sanchez, C.M., Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Madrid, 28049, Spain; Penzes, Z., Ceva Animal Health, Ceva-Phylaxia, Szallas u. 5, Budapest, 1107, Hungary; Sola, I., Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Madrid, 28049, Spain; Enjuanes, L., Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Madrid, 28049, Spain; Zuñiga, S., Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Madrid, 28049, Spain","Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV- RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS- SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Attenuated virus; Enteric virus; Modified live-vaccine; PEDV; Protection","Haemophilus influenzae type b vaccine; amino terminal sequence; animal cell; animal experiment; animal model; Article; BHK cell line; controlled study; Coronaviridae infection; humoral immunity; jejunum; molecular cloning; nonhuman; Porcine epidemic diarrhea virus; restriction site; RNA extraction; RNA virus; segmental duplication; Transmissible gastroenteritis virus; United States; vaccination; Vero cell line; virus genome; virus load; virus recombinant; virus strain; virus titration; virus virulence","Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu. Rev. Anim. Biosci., 3, pp. 375-395; Zhang, B., Tang, C., Yue, H., Ren, Y., Song, Z., Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China (2014) J. Gen. Virol., 95, pp. 1603-1611; Pensaert, M.B., Martelli, P., Porcine epidemic diarrhea: A retrospect from Europe and matters of debate (2016) Virus Res, 226, pp. 1-6; Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada (2018) Transbound. Emerg. Dis., 65, pp. 660-675; Paarlberg, P.L., Estimated Economic Welfare Impacts of Porcine Epidemic Diarrhea Virus (PEDV) (2014) Department of Agricultural Economics Purdue University, , https://ageconsearch.umn.edu/bitstream/174517/174512/174514-174514.Updated%174520Estimated%174520Economic%174520Welfare%174520Impacts%174520of%174520PEDV.pdf, accessed on 6 April 2018; Weng, L., Weersink, A., Poljak, Z., de Lange, K., von Massow, M., An economic evaluation of intervention strategies for porcine epidemic diarrhea (PED) (2016) Prev. Vet. Med., 134, pp. 58-68; de Groot, R.J., Baker, S.C., Baric, R., Enjuanes, L., Gorbalenya, A.E., Holmes, K.V., Perlman, S., Talbot, P.J., Family Coronaviridae (2012) Virus Taxonomy, pp. 774-796. , King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier: Amsterdam, The Netherlands; Wong, A.C.P., Li, X., Lau, S.K.P., Woo, P.C.Y., Global epidemiology of bat coronaviruses (2019) Viruses, 11, p. 174; Enjuanes, L., Gorbalenya, A.E., de Groot, R.J., Cowley, J.A., Ziebuhr, J., Snijder, E.J., The Nidovirales (2008) Encyclopedia of Virology, pp. 419-430. , 3rd ed.; Mahy, B.W.J., Van Regenmortel, M., Walker, P., Majumder-Russell, D., Eds.; Elsevier Ltd.: Oxford, UK; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg. Infect. Dis., 20, pp. 662-665; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143; Lin, C.M., Ghimire, S., Hou, Y., Boley, P., Langel, S.N., Vlasova, A.N., Saif, L.J., Wang, Q., Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs (2019) BMC Vet. Res., 15; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: A review of current epidemiology and available vaccines (2015) Clin. Exp. Vaccine Res., 4, pp. 166-176; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review (2016) J. Vet. Med. Sci., 78, pp. 355-363; Crawford, K., Lager, K.M., Kulshreshtha, V., Miller, L.C., Faaberg, K.S., Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada (2016) Virus Res, 226, pp. 108-116; Baek, P.S., Choi, H.W., Lee, S., Yoon, I.J., Lee, Y.J., Lee, D., Lee, S., Lee, C., Efficacy of an inactivated genotype 2b porcine epidemic diarrhea virus vaccine in neonatal piglets (2016) Vet. Immunol. Immunopathol, 174, pp. 45-49; Lee, S.H., Yang, D.K., Kim, H.H., Cho, I.S., Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs (2018) Clin. Exp. Vaccine Res., 7, pp. 61-69; Li, B., Du, L., Yu, Z., Sun, B., Xu, X., Fan, B., Guo, R., He, K., Poly (D,l-lactide-co-glycolide) nanoparticle-entrapped vaccine induces a protective immune response against porcine epidemic diarrhea virus infection in piglets (2017) Vaccine, 35, pp. 7010-7017; Makadiya, N., Brownlie, R., van den Hurk, J., Berube, N., Allan, B., Gerdts, V., Zakhartchouk, A., S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen (2016) Virol. J., 13, 57p; Opriessnig, T., Gerber, P.F., Shen, H., de Castro, A., Zhang, J., Chen, Q., Halbur, P., Evaluation of the efficacy of a commercial inactivated genogroup 2b-based porcine epidemic diarrhea virus (PEDV) vaccine and experimental live genogroup 1b exposure against 2b challenge (2017) Vet. Res., 48, p. 69; Subramaniam, S., Yugo, D.M., Heffron, C.L., Rogers, A.J., Sooryanarain, H., Leroith, T., Overend, C., Meng, X.J., Vaccination of sows with a dendritic cell-targeted porcine epidemic diarrhea virus S1 protein-based candidate vaccine reduced viral shedding but exacerbated gross pathological lesions in suckling neonatal piglets (2018) J. Gen. Virol., 99, pp. 230-239; Oh, J., Lee, K.W., Choi, H.W., Lee, C., Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein (2014) Arch. Virol., 159, pp. 2977-2987; Paudel, S., Park, J.E., Jang, H., Hyun, B.H., Yang, D.G., Shin, H.J., Evaluation of antibody response of killed and live vaccines against porcine epidemic diarrhea virus in a field study (2014) Vet. Q., 34, pp. 194-200; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Vet. Microbiol., 206, pp. 45-51; Langel, S.N., Paim, F.C., Lager, K.M., Vlasova, A.N., Saif, L.J., Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts (2016) Virus Res, 226, pp. 93-107; Ayudhya, S.N., Assavacheep, P., Thanawongnuwech, R., One world—one health: The threat of emerging swine diseases. An Asian perspective (2012) Transbound. Emerg. Dis., 59, pp. 9-17; Ackerman, M., A PEDV re-break (2015) Proceedings of the 46Th American Association of Swine Veterinarians Annual Meeting, , Orlando, FL, USA, 28 February–3 March 2015; Li, R., Qiao, S., Yang, Y., Guo, J., Xie, S., Zhou, E., Zhang, G., Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China (2016) Virus Genes, 52, pp. 91-98; Almazan, F., Gonzalez, J.M., Penzes, Z., Izeta, A., Calvo, E., Plana-Duran, J., Enjuanes, L., Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 5516-5521; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu. Rev. Virol., 3, pp. 237-261; Gebauer, F., Posthumus, W.P., Correa, I., Sune, C., Smerdou, C., Sanchez, C.M., Lenstra, J.A., Enjuanes, L., Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein (1991) Virology, 183, pp. 225-238; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) Plos Pathog, 8; Ballesteros, M.L., Sanchez, C.M., Enjuanes, L., Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism (1997) Virology, 227, pp. 378-388; Sanchez, C.M., Izeta, A., Sanchez-Morgado, J.M., Alonso, S., Sola, I., Balasch, M., Plana-Duran, J., Enjuanes, L., Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence (1999) J. Virol., 73, pp. 7607-7618; Phillips, J.J., Chua, M.M., Lavi, E., Weiss, S.R., Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: The murine coronavirus spike protein is a major determinant of neurovirulence (1999) J. Virol., 73, pp. 7752-7760; Miura, T.A., Travanty, E.A., Oko, L., Bielefeldt-Ohmann, H., Weiss, S.R., Beauchemin, N., Holmes, K.V., The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a-/- Mice (2008) J. Virol, 82, pp. 755-763; Sheahan, T., Rockx, B., Donaldson, E., Corti, D., Baric, R., Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus (2008) J. Virol., 82, pp. 8721-8732; Ribes, J.M., Ortego, J., Ceriani, J., Montava, R., Enjuanes, L., Buesa, J., Transmissible gastroenteritis virus (TGEV)-based vectors with engineered murine tropism express the rotavirus VP7 protein and immunize mice against rotavirus (2011) Virology, 410, pp. 107-118; Kuo, L., Godeke, G.-J., Raamsman, M.J.B., Masters, P.S., Rottier, P.J.M., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: Crossing the host cell species barrier (2000) J. Virol., 74, pp. 1393-1406; van Beurden, S.J., Berends, A.J.A., Spekreijse, D., Chenard, G., Philipp, H.C., Mundt, E., Rottier, P.J.M., Verheije, M.H., A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination (2017) Virol. J, 14, p. 109; Enjuanes, L., Zuñiga, S.C.J., Canton, J., Sola, I., Molecular basis of coronavirus virulence and vaccine development (2016) Adv. Virus Res., 96, pp. 245-286; Hain, K.S., Joshi, L.R., Okda, F., Nelson, J., Singrey, A., Lawson, S., Martins, M., Nelson, E.A., Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus (2016) J. Gen. Virol., 97, pp. 2719-2731; Yuan, X., Lin, H., Li, B., He, K., Fan, H., Efficacy and immunogenicity of recombinant swinepox virus expressing the truncated S protein of a novel isolate of porcine epidemic diarrhea virus (2017) Arch. Virol., 162, pp. 3779-3789; Ortego, J., Sola, I., Almazan, F., Ceriani, J.E., Riquelme, C., Balasch, M., Plana, J., Enjuanes, L., Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence (2003) Virology, 308, pp. 13-22; Delmas, B., Gelfi, J., Kut, E., Sjostrom, H., Noren, O., Laude, H., Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site (1994) J. Virol, 68, pp. 5216-5224; Hoang, H., Killian, M.L., Madson, D.M., Arruda, P.H., Sun, D., Schwartz, K.J., Yoon, K.J., Full-Length genome sequence of a plaque-cloned virulent Porcine Epidemic Diarrhea Virus isolate (USA/Iowa/18984/2013) from a Midwestern, U.S. Swine Herd (2013) Genome Announc, 1, p. 1049; Almazan, F., Galan, C., Enjuanes, L., Engineering infectious cDNAs of coronavirus as bacterial artificial chromosomes (2008) Methods Mol. Biol., 454, pp. 275-291; Hofmann, M., Wyler, R., Propagation of the Virus of porcine epidemic diarrhea in cell culture (1988) J. Clin. Microbiol., 26, pp. 2235-2239; Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, NY, USA; Zuñiga, S., Cruz, J.L., Sola, I., Mateos-Gomez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J. Virol., 84, pp. 2169-2175; Cruz, J.L.G., Becares, M., Sola, I., Oliveros, J.C., Enjuanes, L., Zuñiga, S., Alphacoronavirus protein 7 modulates host innate immune response (2013) J. Virol., 87, pp. 9754-9767; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408; Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Shipley, G.L., The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments (2009) Clin. Chem., 55, pp. 611-622; Chen, J., Wang, C., Shi, H., Qiu, H., Liu, S., Chen, X., Zhang, Z., Feng, L., Molecular epidemiology of porcine epidemic diarrhea virus in China (2010) Arch. Virol., 155, pp. 1471-1476; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39; Lin, C.M., Gao, X., Oka, T., Vlasova, A.N., Esseili, M.A., Wang, Q., Saif, L.J., Antigenic relationships among Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus strains (2015) J. Virol., 89, pp. 3332-3342; Annamalai, T., Lin, C.M., Gao, X., Liu, X., Lu, Z., Saif, L.J., Wang, Q., Cross protective immune responses in nursing piglets infected with a US spike-insertion deletion porcine epidemic diarrhea virus strain and challenged with an original US PEDV strain (2017) Vet. Res., 48, 61p; Poonsuk, K., Zhang, J., Chen, Q., Gonzalez, W., da Silva Carrion, L.C., Sun, Y., Ji, J., Zimmerman, J., Quantifying the effect of lactogenic antibody on porcine epidemic diarrhea virus infection in neonatal piglets (2016) Vet. Microbiol., 197, pp. 83-92; Chang, Y.C., Kao, C.F., Chang, C.Y., Jeng, C.R., Tsai, P.S., Pang, V.F., Chiou, H.Y., Chang, H.W., Evaluation and comparison of the pathogenicity and host immune responses induced by a G2b Taiwan porcine epidemic diarrhea virus (Strain Pintung 52) and Its highly cell-culture passaged strain in conventional 5-week-old pigs (2017) Viruses, 9, p. 121; Lee, S., Son, K.Y., Noh, Y.H., Lee, S.C., Choi, H.W., Yoon, I.J., Lee, C., Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus (2017) Vet. Microbiol., 207, pp. 248-258; Li, Y., Wang, G., Wang, J., Man, K., Yang, Q., Cell attenuated porcine epidemic diarrhea virus strain Zhejiang08 provides effective immune protection attributed to dendritic cell stimulation (2017) Vaccine, 35, pp. 7033-7041; Yang, D.K., Kim, H.H., Lee, S.H., Yoon, S.S., Park, J.W., Cho, I.S., Isolation and characterization of a new porcine epidemic diarrhea virus variant that occurred in Korea in 2014 (2018) J. Vet. Sci., 19, pp. 71-78; Kweon, C.H., Kwon, B.J., Lee, J.G., Kwon, G.O., Kang, Y.B., Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate (1999) Vaccine, 17, pp. 2546-2553; Lin, C.M., Hou, Y., Marthaler, D., Gao, X., Liu, X., Zheng, L., Saif, L.J., Wang, Q., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet. Microbiol., 201, pp. 62-71; Boniotti, M.B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., Faccini, S., Marthaler, D., Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy (2016) Emerg. Infect. Dis., 22, pp. 83-87; Akimkin, V., Beer, M., Blome, S., Hanke, D., Hoper, D., Jenckel, M., Pohlmann, A., New chimeric porcine coronavirus in swine feces, Germany, 2012 (2016) Emerg. Infect. Dis., 22, pp. 1314-1315; Belsham, G.J., Rasmussen, T.B., Normann, P., Vaclavek, P., Strandbygaard, B., Botner, A., Characterization of a novel chimeric swine enteric coronavirus from diseased pigs in Central Eastern Europe in 2016 (2016) Transbound. Emerg. Dis., 63, pp. 595-601; Zuniga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J. Virol., 78, pp. 980-994; Guardeno, J.M.J.A.J.L., Dediego, M.L., Rodriguez, C., Delgado, R., Perlman, S., Enjuanes, L., Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine (2015) Plos Pathog, 11; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med., 18, pp. 1820-1826; Menachery, V.D., Yount, B.L., Jr., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity (2014) J. Virol., 88, pp. 4251-4264; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuñiga, S., Mutagenesis of coronavirus Nsp14 reveals its potential role in modulation of the innate immune response (2016) J. Virol., 90, pp. 5399-5414","Enjuanes, L.; Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Spain; email: L.Enjuanes@cnb.csic.es",,"MDPI AG",19994915,,,"31349683","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85070239265 "Jonsdottir H.R., Marti S., Geerts D., Rodriguez R., Thiel V., Dijkman R.","55615246700;9247038100;6603915542;36052106600;35238592100;13807789300;","Establishment of primary transgenic human airway epithelial cell cultures to study respiratory virus–host interactions",2019,"Viruses","11","8", 747,"","",,,"10.3390/v11080747","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071280229&doi=10.3390%2fv11080747&partnerID=40&md5=dd304de5c5bf8d380972354a9312dec6","Institute of Virology and Immunology, 3012 Bern & 3147, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland; Department of Medical Biology, Amsterdam University Medical Center, 1105 AZ, Amsterdam, Netherlands; Institute of Pathology, Cantonal Hospital St. Gallen, 9007, St. Gallen, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, 3010, Switzerland; SPIEZ Laboratory, Spiez, 3700, Switzerland; Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland","Jonsdottir, H.R., Institute of Virology and Immunology, 3012 Bern & 3147, Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland, SPIEZ Laboratory, Spiez, 3700, Switzerland, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland; Marti, S., Institute of Virology and Immunology, 3012 Bern & 3147, Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland; Geerts, D., Department of Medical Biology, Amsterdam University Medical Center, 1105 AZ, Amsterdam, Netherlands; Rodriguez, R., Institute of Pathology, Cantonal Hospital St. Gallen, 9007, St. Gallen, Switzerland; Thiel, V., Institute of Virology and Immunology, 3012 Bern & 3147, Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland; Dijkman, R., Institute of Virology and Immunology, 3012 Bern & 3147, Mittelhäusern, Switzerland, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland, Institute for Infectious Diseases, University of Bern, Bern, 3010, Switzerland","Primary human airway epithelial cell (hAEC) cultures represent a universal platform to propagate respiratory viruses and characterize their host interactions in authentic target cells. To further elucidate specific interactions between human respiratory viruses and important host factors in the airway epithelium, it is important to make hAEC cultures amenable to genetic modification. However, the short and finite lifespan of primary cells in cell culture creates a bottleneck for the genetic modification of these cultures. In the current study, we show that the incorporation of the Rho-associated protein kinase (ROCK) inhibitor (Y-27632) during cell propagation extends the life span of primary human cells in vitro and thereby facilitates the incorporation of lentivirus-based expression systems. Using fluorescent reporters for fluorescence-activated cell sorting (FACS)-based sorting, we generated homogenously fluorescent hAEC cultures that differentiate normally after lentiviral transduction. As a proof-of-principle, we demonstrate that host gene expression can be modulated post-differentiation via inducible short hairpin (sh)RNA-mediated knockdown. Importantly, functional characterization of these transgenic hAEC cultures with exogenous poly (I:C), as a proxy for virus infection, demonstrates that such modifications do not influence the host innate immune response. Moreover, the propagation kinetics of both human coronavirus 229E (HCoV-229E) and human respiratory syncytial virus (hRSV) were not affected. Combined, these results validate our newly established protocol for the genetic modification of hAEC cultures, thereby unlocking a unique potential for detailed molecular characterization of virus–host interactions in human respiratory epithelium. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Human airway epithelial cell cultures; Respiratory viruses; Virus-host interactions","isopropyl thiogalactoside; Rho kinase; short hairpin RNA; airway epithelium cell; Article; bronchoscopy; cell culture; cell viability; confocal microscopy; controlled study; DNA modification; flow cytometry; fluorescence microscopy; gene expression; gene knockdown; genetic transduction; genetic transfection; human; human cell; Human respiratory syncytial virus; immune response; immunofluorescence test; lung resection; phenotype; protein expression; protein phosphorylation; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA extraction; transgenic organism; upregulation; virus cell interaction; virus infection; virus replication","Rackley, C.R., Stripp, B.R., Building and maintaining the epithelium of the lung (2012) J. Clin. Investig, 122, pp. 2724-2730; Randell, S.H., Boucher, R.C., Effective mucus clearance is essential for respiratory health (2006) Am. J. Respir. Cell Mol. Biol, 35, pp. 20-28; Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell, S.H., Hogan, B.L.M., Basal cells as stem cells of the mouse trachea and human airway epithelium (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 12771-12775; Pezzulo, A.A., Starner, T.D., Scheetz, T.E., Traver, G.L., Tilley, A.E., Harvey, B.-G., Crystal, R.G., Zabner, J., The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia (2011) Am. J. Physiol. Cell. Mol. Physiol, 300, pp. L25-L31; De Jong, P.M., Van Sterkenburg, M.A.J.A., Kempenaar, J.A., Dijkman, J.H., Ponec, M., Serial culturing of human bronchial epithelial cells derived from biopsies (1993) Vitr. Cell. Dev. Biol. Anim. J. Soc. Vitr. Biol, 29, pp. 379-387; De Jong, P.M., Van Sterkenburg, M.A., Hesseling, S.C., Kempenaar, J.A., Mulder, A.A., Mommaas, A.M., Dijkman, J.H., Ponec, M., Ciliogenesis in human bronchial epithelial cells cultured at the air-liquid interface (1994) Am. J. Respir. Cell. Mol. Biol., 10; Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D., Human and avian influenza viruses target different cell types in cultures of human airway epithelium (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 4620-4624; Zhang, L., Bukreyev, A., Thompson, C.I., Watson, B., Peeples, M.E., Collins, P.L., Pickles, R.J., Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium (2005) J. Virol, 79, pp. 1113-1124; Sims, A.C., Baric, R.S., Yount, B., Burkett, S.E., Collins, P.L., Pickles, R.J., Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs (2005) J. Virol, 79, pp. 15511-15524; Dijkman, R., Koekkoek, S.M., Molenkamp, R., Schildgen, O., Van Der Hoek, L., Human bocavirus can be cultured in differentiated human airway epithelial cells (2009) J. Virol, 83, pp. 7739-7748; Pyrc, K., Sims, A.C., Dijkman, R., Jebbink, M., Long, C., Deming, D., Donaldson, E., Van Der Hoek, L., Culturing the unculturable: Human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures (2010) J. Virol., 84; Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Geffers, R., Muller, M.A., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) Mbio, 4, pp. e00611-e00e12; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Deijs, M., Jónsdóttir, H.R., Molenkamp, R., Ieven, M., Van Der Hoek, L., Isolation and Characterization of Current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J. Virol., 87; Tseng, C.-T.K., Huang, C., Newman, P., Wang, N., Narayanan, K., Watts, D.M., Makino, S., Chan, T.-S., Severe Acute Respiratory Syndrome Coronavirus Infection of Mice Transgenic for the Human Angiotensin-Converting Enzyme 2 Virus Receptor (2007) J. Virol, 81, pp. 1162-1173; Barnard, D.L., Animal models for the study of influenza pathogenesis and therapy (2009) Antiviral Res, 82, pp. A110-A122; Gray, T.E., Guzman, K., Davis, C.W., Abdullah, L.H., Nettesheim, P., Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells (1996) Am. J. Respir. Cell. Mol. Biol, 14, pp. 104-112; Liu, X., Ory, V., Chapman, S., Yuan, H., Albanese, C., Kallakury, B., Timofeeva, O.A., Simic, V., ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells (2012) Am. J. Pathol, 180, pp. 599-607; Suprynowicz, F.A., Upadhyay, G., Krawczyk, E., Kramer, S.C., Hebert, J.D., Liu, X., Yuan, H., Boucher, R.C., Jr, Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 20035-20040; Jonsdottir, H.R., Dijkman, R., Characterization of human coronaviruses on well-differentiated human airway epithelial cell cultures (2015) Methods Mol. Biol, 1282, pp. 73-87; Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., Conklin, D.S., Short hairpin RNAs (ShRNAs) induce sequence-specific silencing in mammalian cells (2002) Genes Dev, 16, pp. 948-958; Taxman, D.J., Moore, C.B., Guthrie, E.H., Huang, M.T., Short Hairpin, R., Design, Delivery, and Assessment of Gene Knockdown (2010) Methods in Molecular Biology, 629, pp. 139-156. , Clifton, N.J.Springer: Berlin, Germany; Mao, Y., Yan, R., Li, A., Zhang, Y., Li, J., Du, H., Chen, B., Sumners, C., Lentiviral Vectors Mediate Long-Term and High Efficiency Transgene Expression in HEK 293T cells (2015) Int. J. Med. Sci, 12, pp. 407-415; Everman, J.L., Rios, C., Seibold, M.A., Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9 (2018) Methods in Molecular Biology, 1706, pp. 267-292. , Clifton, N.J., Ed.; Springer: Berlin, Germany; Munye, M.M., Shoemark, A., Hirst, R.A., Delhove, J.M., Sharp, T.V., McKay, T.R., O’Callaghan, C., Hart, S.L., BMI-1 extends proliferative potential of human bronchial epithelial cells while retaining their mucociliary differentiation capacity (2017) Am. J. Physiol. Lung Cell. Mol. Physiol, 312, pp. L258-L267; Sinn, P.L., Hwang, B.-Y., Li, N., Ortiz, J.L.S., Shirazi, E., Parekh, K.R., Cooney, A.L., McCray, P.B., Novel GP64 envelope variants for improved delivery to human airway epithelial cells (2017) Gene Ther, 24, pp. 674-679; Eekels, J.J., Geerts, D., Jeeninga, R.E., Berkhout, B., Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors (2011) Antivir. Res, 89, pp. 43-53; https://www.broadinstitute.org/rnai/public/; Cervantes-Barragan, L., Zust, R., Maier, R., Sierro, S., Janda, J., Levy, F., Speiser, D., Ludewig, B., Dendritic cell-specific antigen delivery by coronavirus vaccine vectors induces long-lasting protective antiviral and antitumor immunity (2010) Mbio, 1, pp. e00171-e00e10; Lemon, K., Nguyen, D.T., Ludlow, M., Rennick, L.J., Yuksel, S., Van Amerongen, G., McQuaid, S., Duprex, W.P., Recombinant subgroup B human respiratory syncytial virus expressing enhanced green fluorescent protein efficiently replicates in primary human cells and is virulent in cotton rats (2015) J. Virol, 89, pp. 2849-2856; Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408; Vijgen, L., Keyaerts, E., Moes, E., Maes, P., Duson, G., Van Ranst, M., Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E (2005) J. Clin. Microbiol, 43, pp. 5452-5456; Van De Pol, A.C., Van Loon, A.M., Wolfs, T.F., Jansen, N.J., Nijhuis, M., Breteler, E.K., Schuurman, R., Rossen, J.W., Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms (2007) J. Clin. Microbiol, 45, pp. 2260-2262; Jonsdottir, H.R., Thiel, V., Dijkman, R., (2012) Lentiviral Transduction of Well-Differentiated Haec Cultures, , Institute of Virology and Immunology: Bern, BE, Switzerland; Kremer, K.L., Dunning, K.R., Parsons, D.W., Anson, D.S., Gene delivery to airway epithelial cells in vivo: A direct comparison of apical and basolateral transduction strategies using pseudotyped lentivirus vectors (2007) J. Gene Med, 9, pp. 362-368; Jonsdottir, H.R., Thiel, V., Dijkman, R., (2012) Suspension Transduction of Undifferentiated Haec Cultures, , Institute of Virology and Immunolog: Bern, BE, Switzerland; Jonsdottir, H.R., Thiel, V., Dijkman, R., (2013) Influence of Y-27632 on Epithelial Structure and Morphology of Well-Differentiated Haec Cultures, , Institute of Virology and Immunology: Bern, BE, Switzerland; Arason, A.J., Jonsdottir, H.R., Halldorsson, S., Benediktsdottir, B.E., Bergthorsson, J.T., Ingthorsson, S., Baldursson, O., Magnusson, M.K., DeltaNp63 Has a Role in Maintaining Epithelial Integrity in Airway Epithelium (2014) Plos ONE, 9, p. e88683; Lauber, C., Vieyres, G., Terczynska-Dyla, E., Anggakusumadijkman, R., Gad, H.H., Akhtar, H., Geffers, R., Thiel, V., Transcriptome analysis reveals a classical interferon signature induced by IFNlambda4 in human primary cells (2015) Genes Immun, 16, pp. 414-421; Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A., Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 (2001) Nature, 413, pp. 732-738; Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Ishii, K.J., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses (2006) Nature, 441, pp. 101-105; Haller, O., Staeheli, P., Schwemmle, M., Kochs, G., Mx GTPases: Dynamin-like antiviral machines of innate immunity (2015) Trends Microbiol, 23, pp. 154-163; Mou, H., Vinarsky, V., Tata, P.R., Brazauskas, K., Choi, S.H., Crooke, A.K., Zhang, B., Bihler, H., Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells (2016) Cell Stem Cell, 19, pp. 217-231; Brody, S.L., Kaiko, G.E., Harnessing TGF-β and BMP signaling for expansion of p63-positive epithelial stem cells (2016) Stem Cell Investig, 3, p. 82; Guyot, B., Maguer-Satta, V., Blocking TGF-β and BMP SMAD-dependent cell differentiation is a master key to expand all kinds of epithelial stem cells (2016) Stem Cell Investig, 3, p. 88; Zhang, C., Lee, H.J., Shrivastava, A., Wang, R., McQuiston, T.J., Challberg, S.S., Pollok, B.A., Wang, T., Long-Term In Vitro Expansion of Epithelial Stem Cells Enabled by Pharmacological Inhibition of PAK1-ROCK-Myosin II and TGF-β Signaling (2018) Cell Rep., 25, pp. 598-610; Liu, Y.P., Schopman, N.C.T., Berkhout, B., Dicer-independent processing of short hairpin RNAs (2013) Nucleic Acids Res, 41, pp. 3723-3733; Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., Guimaraes, C., Bassik, M.C., Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation (2014) Cell, 159, pp. 647-661; Cui, L., Wang, H., Ji, Y., Yang, J., Xu, S., Huang, X., Wang, Z., Zhou, X., The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells (2015) J. Virol, 89, pp. 9029-9043","Dijkman, R.; Institute of Virology and Immunology, 3012 Bern & 3147, Switzerland; email: ronald.dijkman@vetsuisse.unibe.ch",,"MDPI AG",19994915,,,"31412613","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85071280229 "Steensels D., Reynders M., Descheemaeker P., Curran M.D., Hites M., Etienne I., Montesinos I.","53881924300;34971862100;6602317954;7102337863;23088536200;7004248276;6506683961;","Epidemiology and clinical impact of viral, atypical, and fungal respiratory pathogens in symptomatic immunocompromised patients: a two-center study using a multi-parameter customized respiratory Taqman® array card",2019,"European Journal of Clinical Microbiology and Infectious Diseases","38","8",,"1507","1514",,,"10.1007/s10096-019-03579-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066153398&doi=10.1007%2fs10096-019-03579-y&partnerID=40&md5=abf309dafab77703755c8730703daced","Department of Clinical Microbiology, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium; Department of Clinical Microbiology, AZ St-Jan Brugge-Oostende Hospital, Bruges, Belgium; Public Health England, Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge, United Kingdom; Department of Infectious Diseases, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium; Department of Pulmonology – Pulmonary Transplant, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium","Steensels, D., Department of Clinical Microbiology, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium; Reynders, M., Department of Clinical Microbiology, AZ St-Jan Brugge-Oostende Hospital, Bruges, Belgium; Descheemaeker, P., Department of Clinical Microbiology, AZ St-Jan Brugge-Oostende Hospital, Bruges, Belgium; Curran, M.D., Public Health England, Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge, United Kingdom; Hites, M., Department of Infectious Diseases, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium; Etienne, I., Department of Pulmonology – Pulmonary Transplant, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium; Montesinos, I., Department of Clinical Microbiology, CUB-Erasme, Université Libre de Bruxelles, Brussels, Belgium","The prevalence of respiratory viruses in immunocompromised adult patients and the association with clinical outcomes is still underexplored. Our goal was to assess the epidemiology and the potential clinical impact of respiratory viral infections in a high-risk patient population. Two large hospitals performed a respiratory Taqman array card (TAC), targeting 24 viruses, 8 bacteria, and 2 fungi simultaneously, on 435 samples from 397 symptomatic immunocompromised patients. Clinical details were collected retrospectively using a structured case report form. An overall positivity rate of 68% was found (51% mono- and 17% co-infections). Pathogen distribution was as follows: influenza A (20.7%), rhinoviruses (15.2%), coronaviruses (7.8%), Pneumocystis jirovecii (7.4%), RSV (7.1%), and CMV (6.0%) were the most frequently encountered, followed by HSV (5.5%), hMPV (4.4%), parainfluenza viruses (3.9%), influenza B (3.7%), and Aspergillus species (3.7%). Other pathogens were not detected or detected only in ≤ 1% of samples. Hospital and ICU admission rates were 84% and 11%, respectively. The presence of a pathogen was strongly associated with higher need for supplemental oxygen (p = 0.001), but it had no impact on ICU admission, mechanical ventilation requirement, antibacterial therapy, or mortality. In conclusion, our study described the epidemiology of respiratory pathogens in a large group of symptomatic immunocompromised patients and provides evidence of a relationship between pathogen detection and the need for supplemental oxygen. This association was still found after the exclusion of the results positive for influenza viruses, suggesting that non-influenza viruses contribute to severe respiratory illness in patients with compromised immunity. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.","Clinical impact; Epidemiology; Immunocompromised host; Respiratory tract infections","adult; aged; Article; artificial ventilation; Aspergillus; atypical respiratory tract disease; Coronavirinae; female; fungal respiratory tract infection; hospital admission; human; immunocompromised patient; Influenza A virus; Influenza B virus; intensive care unit; major clinical study; male; nonhuman; oxygen therapy; Paramyxovirinae; Pneumocystis jiroveci; priority journal; respiratory tract infection; Rhinovirus; viral respiratory tract infection; adolescent; bacterial infection; bacterium; clinical trial; devices; fungus; isolation and purification; microarray analysis; microbiology; middle aged; mixed infection; molecular diagnosis; multicenter study; mycosis; prevalence; respiratory tract infection; retrospective study; very elderly; virology; virus; virus infection; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Bacteria; Bacterial Infections; Coinfection; Female; Fungi; Humans; Immunocompromised Host; Male; Microarray Analysis; Middle Aged; Molecular Diagnostic Techniques; Mycoses; Prevalence; Respiratory Tract Infections; Retrospective Studies; Virus Diseases; Viruses; Young Adult","Chemaly, R.F., Shah, D.P., Boeckh, M.J., Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies (2014) Clin Infect Dis, 59, pp. S344-S351; Vakil, E., Evans, S.E., Viral pneumonia in patients with hematologic malignancy or hematopoietic stem cell transplantion (2017) Clin Chest Med, 38, pp. 97-111; Abbas, S., Raybould, J.E., Sastry, S., de la Cruz, O., Respiratory viruses in transplant recipients: more than just a cold. Clinical syndromes and infection prevention principles (2017) Int J Infect Dis, 62, pp. 86-93; Magnusson, J., Westin, J., Andersson, L.M., Brittain-Long, R., Riise, G.C., The impact of viral respiratory tract infections on long-term morbidity and mortality following lung transplantation: a retrospective cohort study using a multiplex PCR panel (2013) Transplantation, 95 (2), pp. 383-388; Steensels, D., Reynders, M., Descheemaeker, P., Curran, M.D., Jacobs, F., Denis, O., Delforge, M.-L., Montesinos, I., Clinical evaluation of a multi-parameter customized respiratory TaqMan® array card compared to conventional methods in immunocompromised patients (2015) J Clin Virol, 72, pp. 36-41; Steensels, D., Reynders, M., Descheemaeker, P., Curran, M.D., Jacobs, F., Denis, O., Delforge, M.-L., Montesinos, I., Performance evaluation of direct fluorescent antibody, Focus Diagnostics Simplexa™ Flu A/B & RSV and multi-parameter customized respiratory Taqman® array card in immunocompromised patients (2017) J Virol Methods, 245, pp. 61-65; Steensels, D., Delforge, M.-L., Lagrou, K., Beuselinck, K., Montesinos, I., Development of a customized TaqMan® Array card for simultaneous detection of 32 respiratory pathogens (2017) Adv Techn Clin Microbiol, 2, pp. 1-8; Virological Surveillance of Influenza in Belgium: Season 2014-2015, , Reference number: D/2015/2505/60; Drieghe, S., Ryckaert, I., Beuselinck, K., Lagrou, K., Padalko, E., Epidemiology of respiratory viruses in bronchoalveolar lavage samples in a tertiary hospital (2014) J Clin Virol, 59, pp. 208-211; Garbino, J., Soccal, P.M., Aubert, J.D., Rochat, T., Meylan, P., Thomas, Y., Respiratory viruses in bronchoalveolar lavage: a hospital-based cohort study in adults (2009) Thorax, 64, pp. 399-404; Manuel, O., López-Medrano, F., Keiser, L., Welte, T., Carratalà, J., Cordero, E., Hirsch, H.H., ESCMID Study Group of Infection in Compromised Hosts (ESGICH). Influenza and other respiratory virus infections in solid organ transplant recipients (2014) Clin Microbiol Infect, 20, pp. 102-108; Weigt, S.S., Gregson, A.L., Deng, J.C., Lynch, J.P., 3rd, Belperio, J.A., Respiratory viral infections in hematopoietic stem cell and solid organ transplant recipients (2011) Semin Respir Crit Care Med, 32, pp. 471-493; Tasaka, S., Tokuda, H., Pneumocystis jirovecii pneumonia in non-HIV-infected patients in the era of novel immunosuppressive therapies (2012) J Infect Chemother, 18, pp. 793-806; Cordonnier, C., Cesaro, S., Maschmeyer, G., Einsele, H., Donnelly, J.P., Alanio, A., Hauser, P.M., Maertens, J., Pneumocystis jirovecii pneumonia: still a concern in patients with haematological malignancies and stem cell transplant recipients (2016) J Antimicrob Chemother, 71, pp. 2379-2385; Lee, H.Y., Kang, H.S., Lee, H.Y., Rhee, C.K., Lee, S.Y., Kim, S.C., Kim, S.J., Kang, J.Y., Clinical significance of positive Pneumocystis jirovecii polymerase chain reaction in non-human immunodeficiency virus immunocompromised patients in a real practice (2017) Korean J Intern Med, 32, pp. 478-485; Königshausen, E., Hengel, H., Adams, O., Bry, H., Steiner, S., Priegnitz, C., Hansen, A., Voiculescu, A., Pulmonary cytomegalovirus replication in renal transplant patients with late onset pneumonitis (2016) Ann Transplant, 21, pp. 235-240; Santos, C.A., Brennan, D.C., Yusen, R.D., Olsen, M.A., Incidence, risk factors and outcomes of delayed-onset cytomegalovirus disease in a large retrospective cohort of lung transplant recipients (2015) Transplantation, 99, pp. 1658-1666; Aisenberg, G.M., Torres, H.A., Tarrand, J., Safdar, A., Bodey, G., Chemaly, R.F., Herpes simplex virus lower respiratory tract infection in patients with solid tumors (2009) Cancer, 115, pp. 199-206; Simoons-Smit, A.M., Kraan, E.M., Beishuizen, A., Strack van Schijndel, R.J., Vandenbroucke-Grauls, C.M., Herpes simplex virus type 1 and respiratory disease in critically-ill patients: real pathogen or innocent bystander? (2006) Clin Microbiol Infect, 12, pp. 1050-1059; De Vos, N., Van Hoovels, L., Vankeerberghen, A., Van Vaerenbergh, K., Boel, A., Demeyer, I., Creemers, L., De Beenhouwer, H., Monitoring of herpes simplex virus in the lower respiratory tract of critically ill patients using real-time PCR: a prospective study (2009) Clin Microbiol Infect, 15, pp. 358-363; Kosmidis, C., Denning, D.W., The clinical spectrum of pulmonary aspergillosis (2015) Thorax, 70, pp. 270-277; Garbino, J., Gerbase, M.W., Wunderli, W., Deffernez, C., Thomas, Y., Rochat, T., Ninet, B., Kaiser, L., Lower respiratory viral illnesses: improved diagnosis by molecular methods and clinical impact (2004) Am J Respir Crit Care Med, 170, pp. 1197-1203; Sundell, N., Andersson, L.M., Brittain-Long, R., Sundvall, P.D., Alsiö, Å., Lindh, M., Gustavsson, L., Westin, J., PCR detection of respiratory pathogens in asymptomatic and symptomatic adults (2019) J Clin Microbiol, 57, pp. e00716-e00718; Walker, Ison, Respiratory viral infections among hospitalized adults: experience of a single tertiary healthcare hospital (2014) Influenza Other Respir Viruses, 8, pp. 282-292","Steensels, D.; Department of Clinical Microbiology, CUB-Erasme, Université Libre de BruxellesBelgium; email: deborah.steensels@zol.be",,"Springer Verlag",09349723,,EJCDE,"31111372","English","Eur. J. Clin. Microbiol. Infect. Dis.",Article,"Final",,Scopus,2-s2.0-85066153398 "Kenmoe S., Bigna J.J., Fatawou Modiyingi A., Ndangang M.S., Ngoupo P.A., Simo F.B.N., Tchatchouang S., Temfack E., Njouom R.","55973828400;55895190700;57209570446;57192575105;57189764629;57203148888;56140068000;55342123100;8725019300;","Case fatality rate and viral aetiologies of acute respiratory tract infections in HIV positive and negative people in Africa: The VARIAFRICA-HIV systematic review and meta-analysis",2019,"Journal of Clinical Virology","117",,,"96","102",,,"10.1016/j.jcv.2019.06.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068118579&doi=10.1016%2fj.jcv.2019.06.006&partnerID=40&md5=f06b7f176f8fbd62c2b5ff1fac2db526","National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Department of Medical Information and Informatics, Rouen University Hospital, Rouen, France; Department of Internal Medicine, Douala General Hospital, Douala, Cameroon","Kenmoe, S., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Bigna, J.J., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Fatawou Modiyingi, A., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Ndangang, M.S., Department of Medical Information and Informatics, Rouen University Hospital, Rouen, France; Ngoupo, P.A., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Simo, F.B.N., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Tchatchouang, S., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon; Temfack, E., Department of Internal Medicine, Douala General Hospital, Douala, Cameroon; Njouom, R., National Influenza Centre, Centre Pasteur of Cameroon, Yaoundé, Cameroon","Background: To set priorities for efficient control of acute respiratory tract infection (ARTI) in Africa, it is necessary to have accurate estimate of its burden, especially among HIV-infected populations. Objectives: To compare case fatality rate (CFR) and viral aetiologies of ARTI between HIV-positive and HIV-negative populations in Africa. Study design: We searched PubMed, EMBASE, Web of Knowledge, Africa Journal Online, and Global Index Medicus to identify studies published from January 2000 to April 2018. Random-effect meta-analysis method was used to assess association (pooled weighted odds ratios (OR) with 95% confidence interval (CI)). Results: A total of 36 studies (126,526 participants) were included. CFR was significantly higher in patients with HIV than in HIV-negative controls (OR 4.10, 95%CI: 2.63–6.27, I²: 93.7%). The risk was significantly higher among children ≤5 years (OR 5.51, 95%CI 2.83–10.74) compared to people aged >5 years (OR 1.48, 95%CI 1.17–1.89); p = 0.0002. There was no difference between children (15 years) and adults and between regions of Africa. There was no difference for viral respiratory aetiologies (Enterovirus, Adenovirus, Bocavirus, Coronavirus, Metapneumovirus, Parainfluenza, Influenza, and Respiratory Syncytial Virus) of ARTI between HIV-positive and HIV-negative people, except for Rhinovirus where being HIV-negative was associated with Rhinovirus (OR 0.70; 95%CI 0.51–0.97, I²: 63.4%). Conclusions: This study shows an increased risk of deaths among HIV-infected individuals with ARTI, however with no difference in viral aetiologies compared to HIV-negative individuals in Africa. ARTI deserves more attention from HIV health-care providers for efficient control. Specific strategies are needed for HIV-positive children under 5. © 2019 Elsevier B.V.","Acute respiratory infections; Africa; AIDS; Epidemiology; HIV; Mortality","Adenoviridae; Africa; Bocaparvovirus; case fatality rate; clinical assessment; comparative study; Coronavirinae; disease association; Embase; Enterovirus; human; Human immunodeficiency virus; Human immunodeficiency virus infection; Human respiratory syncytial virus; infection risk; influenza; managed care; Medline; meta analysis; Metapneumovirus; online analysis; Paramyxovirinae; population; priority journal; respiratory tract infection; Review; Rhinovirus; risk assessment; risk factor; systematic review; virus etiology; Web of Science","Liu, L., Oza, S., Hogan, D., Perin, J., Rudan, I., Lawn, J.E., Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis (2015) Lancet, 385, pp. 430-440; Figueiredo-Mello, C., Naucler, P., Negra, M.D., Levin, A.S., Prospective etiological investigation of community-acquired pulmonary infections in hospitalized people living with HIV (2017) Medicine, 96, p. e5778; Muller, A., Klinkenberg, D., Vehreschild, J., Cornely, O., Tillmann, R.L., Franzen, C., Low prevalence of human metapneumovirus and human bocavirus in adult immunocompromised high risk patients suspected to suffer from Pneumocystis pneumonia (2009) J. Infect., 58, pp. 227-231; Garbino, J., Inoubli, S., Mossdorf, E., Weber, R., Tamm, M., Soccal, P., Respiratory viruses in HIV-infected patients with suspected respiratory opportunistic infection (2008) AIDS, 22, pp. 701-705; Gona, P., Van Dyke, R.B., Williams, P.L., Dankner, W.M., Chernoff, M.C., Nachman, S.A., Incidence of opportunistic and other infections in HIV-infected children in the HAART era (2006) Jama, 296, pp. 292-300; Madhi, S., Ramasamy, N., Petersen, K., Madhi, A., Klugman, K., Severe lower respiratory tract infections associated with human parainfluenza viruses 1-3 in children infected and noninfected with HIV type 1 (2002) Eur. J. Clin. Microbiol. Infect. Dis., 21, pp. 499-505; Iuliano, A.D., Roguski, K.M., Chang, H.H., Muscatello, D.J., Palekar, R., Tempia, S., Estimates of global seasonal influenza-associated respiratory mortality: a modelling study (2018) Lancet, 391, pp. 1285-1300; UNAIDS, Global HIV & AIDS Statistics - 2018 Fact Sheet (2018), UNAIDS; Duque, J., McMorrow, M.L., Cohen, A.L., Influenza vaccines and influenza antiviral drugs in Africa: are they available and do guidelines for their use exist? (2014) BMC Public Health, 14, p. 41; Madhi, S.A., Venter, M., Madhi, A., Petersen, K., Klugman, K.P., Differing manifestations of respiratory syncytial virus-associated severe lower respiratory tract infections in human immunodeficiency virus type 1-infected and uninfected children (2001) Pediatr. Infect. Dis. J., 20, pp. 164-170; Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (2009) J. Clin. Epidemiol., 62, pp. 1006-1012; McHugh, M.L., Interrater reliability: the kappa statistic (2012) Biochem. Med. (Zagreb), 22, pp. 276-282; Wells, G.A., Shea, B., O'Connell, D., Peterson, J., Welch, V., Losos, M., The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses (2018), The Ottawa Hospital; DerSimonian, R., Laird, N., Meta-analysis in clinical trials revisited (2015) Contemp. Clin. Trials, 45, pp. 139-145; Egger, M., Davey Smith, G., Schneider, M., Minder, C., Bias in meta-analysis detected by a simple, graphical test (1997) Bmj., 315, pp. 629-634; Higgins, J.P., Thompson, S.G., Quantifying heterogeneity in a meta-analysis (2002) Stat. Med., 21, pp. 1539-1558; Cochran, W.G., The combination of estimates from different experiments (1954) Biometrics, 10, pp. 101-129; Annamalay, A.A., Abbott, S., Sikazwe, C., Khoo, S.K., Bizzintino, J., Zhang, G., Respiratory viruses in young South African children with acute lower respiratory infections and interactions with HIV (2016) J. Clin. Virol., 81, pp. 58-63; Annamalay, A.A., Lanaspa, M., Khoo, S.K., Madrid, L., Acácio, S., Zhang, G., Rhinovirus species and clinical features in children hospitalised with pneumonia from Mozambique (2016) Trop. Med. Int. Health, 21, pp. 1171-1180; Cohen, A.L., Sahr, P.K., Treurnicht, F., Walaza, S., Groome, M.J., Kahn, K., Parainfluenza virus infection among human immunodeficiency virus (HIV)-infected and HIV-uninfected children and adults hospitalized for severe acute respiratory illness in South Africa, 2009-2014 (2015) Open Forum Infect. Dis., 2, pp. 1-9; Cohen, C., Walaza, S., Moyes, J., Groome, M., Tempia, S., Pretorius, M., Epidemiology of Severe Acute Respiratory Illness (SARI) among adults and children aged ≥5 years in a high HIV-prevalence setting, 2009-2012 (2015) PLoS One, 10; Cohen, C., Walaza, S., Moyes, J., Groome, M., Tempia, S., Pretorius, M., Epidemiology of viral-associated acute lower respiratory tract infection among children <5 years of age in a high HIV prevalence setting, South Africa, 2009-2012 (2015) Pediatr. Infect. Dis. J., 34, pp. 66-72; Cohen, C., Moyes, J., Tempia, S., Groome, M., Walaza, S., Pretorius, M., Mortality amongst patients with influenza-associated severe acute respiratory illness, South Africa, 2009-2013 (2015) PLoS One, 10; Cohen, C., Moyes, J., Tempia, S., Groome, M., Walaza, S., Pretorius, M., Epidemiology of acute lower respiratory tract infection in HIV exposed uninfected infants (2016) Pediatrics, 137; Graham, S.M., Mankhambo, L., Phiri, A., Kaunda, S., Chikaonda, T., Mukaka, M., Impact of human immunodeficiency virus infection on the etiology and outcome of severe pneumonia in malawian children (2011) Pediatr. Infect. Dis. J., 30, pp. 33-38; Hellferscee, O., Treurnicht, F.K., Tempia, S., Variava, E., Dawood, H., Kahn, K., Enterovirus D68 and other enterovirus serotypes identified in South African patients with severe acute respiratory illness, 2009–2011 (2017) Influenza Other Respir. Viruses, 11, pp. 211-219; Hooli, S., Colbourn, T., Lufesi, N., Costello, A., Nambiar, B., Thammasitboon, S., Predicting hospitalised paediatric pneumonia mortality risk: An external validation of RISC and mRISC, and local tool development (RISC-Malawi) from Malawi (2016) PLoS One, 11; Jeena, P., Thea, D.M., MacLeod, W.B., Chisaka, N., Fox, M.P., Coovadia, H.M., Failure of standard antimicrobial therapy in children aged 3-59 months with mild or asymptomatic HIV infection and severe pneumonia (2006) Bull. World Health Organ., 84, pp. 269-275; Kelly, M.S., Wirth, K.E., Steenhoff, A.P., Cunningham, C.K., Arscott-Mills, T., Boiditswe, S.C., Treatment failures and excess mortality among HIV-exposed, uninfected children with pneumonia (2015) J. Pediatric Infect. Dis. Soc., 4, pp. e117-e126; Madhi, S.A., Petersen, K., Madhi, A., Khoosal, M., Klugman, K.P., Increased disease burden and antibiotic resistance of bacteria causing severe community-acquired lower respiratory tract infections in human immunodeficiency virus type 1-infected children (2000) Clin. Infect. Dis., 31, pp. 170-176; Madhi, S.A., Schoub, B., Simmank, K., Blackburn, N., Klugman, K.P., Increased burden of respiratory viral associated severe lower respiratory tract infections in children infected with human immunodeficiency virus type-1 (2000) J. Pediatr., 137, pp. 78-84; Madhi, S.A., Ludewick, H., Kuwanda, L., Van Niekerk, N., Cutland, C., Little, T., Pneumococcal coinfection with human metapneumovirus (2006) J. Infect. Dis., 193, pp. 1236-1243; Madhi, S.A., Ludewick, H., Kuwanda, L., Van Niekerk, N., Cutland, C., Klugman, K.P., Seasonality, incidence, and repeat human metapneumovirus lower respiratory tract infections in an area with a high prevalence of human immunodeficiency virus type-1 infection (2007) Pediatr. Infect. Dis. J., 26, pp. 693-699; Majozi, N.P., Nkwanyana, N., Thula, S., Coutsoudis, A., Association between HIV and proven viral lower respiratory tract infection in paediatric intensive care unit patients at Inkosi Albert Luthuli Central Hospital, Durban, South Africa (2017) SAJCH South Afr. J. Child Health, 11, pp. 154-158; Moyes, J., Cohen, C., Pretorius, M., Groome, M., Von Gottberg, A., Wolter, N., Epidemiology of respiratory syncytial virus-associated acute lower respiratory tract infection hospitalizations among HIV-infected and HIV-uninfected South African children, 2010-2011 (2013) J. Infect. Dis., 208, pp. S217-S226; Moyes, J., Walaza, S., Pretorius, M., Groome, M., von Gottberg, A., Wolter, N., Respiratory syncytial virus in adults with severe acute respiratory illness in a high HIV prevalence setting (2017) J. Infect., 75, pp. 346-355; Ngari, M.M., Fegan, G., Mwangome, M.K., Ngama, M.J., Mturi, N., Scott, J.A.G., Mortality after inpatient treatment for severe pneumonia in children: a cohort study (2017) Paediatr. Perinat. Epidemiol., 31, pp. 233-242; Nunes, M.C., Kuschner, Z., Rabede, Z., Madimabe, R., Van Niekerk, N., Moloi, J., Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children (2014) PLoS One, 9; Peterson, I., Bar-Zeev, N., Kennedy, N., Ho, A., Newberry, L., Joaquin, M.A.S., Respiratory virus-associated severe acute respiratory illness and viral clustering in malawian children in a setting with a high prevalence of HIV infection, malaria, and malnutrition (2016) J. Infect. Dis., 214, pp. 1700-1711; Scott, J.A.G., Hall, A.J., Muyodi, C., Lowe, B., Ross, M., Chohan, B., Aetiology, outcome, and risk factors for mortality among adults with acute pneumonia in Kenya (2000) Lancet, 355, pp. 1225-1230; Sigaúque, B., Roca, A., Bassat, Q., Morais, L., Quintó, L., Berenguera, A., Severe pneumonia in Mozambican young children: clinical and radiological characteristics and risk factors (2009) J. Trop. Pediatr., 55, pp. 379-387; Srinivasan, M.G., Ndeezi, G., Katureebe Mboijana, C., Kiguli, S., Bimenya, G.S., Nankabirwa, V., Zinc adjunct therapy reduces case fatality in severe childhood pneumonia: a randomized double blind placebo-controlled trial (2012) BMC Med., 14; Sutcliffe, C.G., Thea, D.M., Seidenberg, P., Chipeta, J., Mwyanayanda, L., Somwe, S.W., A clinical guidance tool to improve the care of children hospitalized with severe pneumonia in Lusaka, Zambia (2016) BMC Pediatr., 16; Tempia, S., Walaza, S., Moyes, J., Cohen, A.L., von Mollendorf, C., McMorrow, M.L., Attributable fraction of influenza virus detection to mild and severe respiratory illnesses in HIV-Infected and HIV-uninfected patients, South Africa, 2012–2016 (2017) Emerging Infect. Dis., 23, pp. 1124-1132; Venter, M., Lassaunière, R., Kresfelder, T.L., Westerberg, Y., Visser, A., Contribution of common and recently described respiratory viruses to annual hospitalizations in children in South Africa (2011) J. Med. Virol., 83, pp. 1458-1468; Yone, E.W.P., Balkissou, A.D., Kengne, A.P., Kuaban, C., Influence of HIV infection on the clinical presentation and outcome of adults with acute community-acquired pneumonia in Yaounde, Cameroon: a retrospective hospital-based study (2012) BMC Pulm. Med., 12; Zar, H.J., Hanslo, D., Tannenbaum, E., Klein, M., Argent, A., Eley, B., Aetiology and outcome of pneumonia in human immunodeficiency virus-infected children hospitalized in South Africa (2001) Acta Paediatr. Int. J. Paediatr., 90, pp. 119-125; Zash, R.M., Shapiro, R.L., Leidner, J., Wester, C., McAdam, A.J., Hodinka, R.L., The aetiology of diarrhoea, pneumonia and respiratory colonization of HIV-exposed infants randomized to breast- or formula-feeding (2016) Paediatr. Int. Child Health, 36, pp. 189-197; Jeena, P.M., Minkara, A.K., Corr, P., Bassa, F., McNally, L.M., Coovadia, H.M., Impact of HIV-1 status on the radiological presentation and clinical outcome of children with WHO defined community-acquired severe pneumonia (2007) Arch. Dis. Child., 92, pp. 976-979; Lazzerini, M., Seward, N., Lufesi, N., Banda, R., Sinyeka, S., Masache, G., Mortality and its risk factors in Malawian children admitted to hospital with clinical pneumonia, 2001-12: a retrospective observational study (2016) Lancet Glob. Health, 4, pp. e57-e68; Feikin, D.R., Njenga, M.K., Bigogo, G., Aura, B., Aol, G., Audi, A., Etiology and Incidence of viral and bacterial acute respiratory illness among older children and adults in rural western Kenya, 2007-2010 (2012) PLoS One, 7; Ho, A., Aston, S.J., Jary, H., Mitchell, T., Alaerts, M., Menyere, M., Impact of human immunodeficiency virus on the burden and severity of influenza illness in malawian adults: a prospective cohort and parallel case-control study (2018) Clin. Infect. Dis., 66, pp. 865-876; Nyawanda, B.O., Mott, J.A., Njuguna, H.N., Mayieka, L., Khagayi, S., Onkoba, R., Evaluation of case definitions to detect respiratory syncytial virus infection in hospitalized children below 5 years in Rural Western Kenya, 2009-2013 (2016) BMC Infect. Dis., 16, p. 218; Perreau, M., Levy, Y., Pantaleo, G., Immune response to HIV (2013) Curr. Opin. HIV AIDS, 8, pp. 333-340; Walker, B., McMichael, A., The T-cell response to HIV (2012) Cold Spring Harb. Perspect. Med., 2; Chakrabarti, L.A., Simon, V., Immune mechanisms of HIV control (2010) Curr. Opin. Immunol., 22, pp. 488-496; Malinis, M., Myers, J., Bordon, J., Peyrani, P., Kapoor, R., Nakamatzu, R., Clinical outcomes of HIV-infected patients hospitalized with bacterial community-acquired pneumonia (2010) Int. J. Infect. Dis., 14, pp. e22-e27; Barakat, L.A., Juthani-Mehta, M., Allore, H., Trentalange, M., Tate, J., Rimland, D., Comparing clinical outcomes in HIV-infected and uninfected older men hospitalized with community-acquired pneumonia (2015) HIV Med., 16, pp. 421-430; Christensen, D., Feldman, C., Rossi, P., Marrie, T., Blasi, F., Luna, C., HIV infection does not influence clinical outcomes in hospitalized patients with bacterial community-acquired pneumonia: results from the CAPO international cohort study (2005) Clin. Infect. Dis., 41, pp. 554-556; Cilloniz, C., Garcia-Vidal, C., Moreno, A., Miro, J.M., Torres, A., Community-acquired bacterial pneumonia in adult HIV-infected patients (2018) Expert Rev. Anti. Ther., 16, pp. 579-588; Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Infectious diseases. 2017;17:1133-1161; Castro, H., Judd, A., Gibb, D.M., Butler, K., Lodwick, R.K., van Sighem, A., Risk of triple-class virological failure in children with HIV: a retrospective cohort study (2011) Lancet, 377, pp. 1580-1587; WHO, HIV/AIDS: Key Facts (2018), WHO; Crothers, K., Thompson, B.W., Burkhardt, K., Morris, A., Flores, S.C., Diaz, P.T., HIV-associated lung infections and complications in the era of combination antiretroviral therapy (2011) Proc. Am. Thorac. Soc., 8, pp. 275-281; Benito, N., Moreno, A., Miro, J.M., Torres, A., Pulmonary infections in HIV-infected patients: an update in the 21st century (2012) Eur. Respir. J., 39, pp. 730-745; Davis, J.L., Fei, M., Huang, L., Respiratory infection complicating HIV infection (2008) Curr. Opin. Infect. Dis., 21, pp. 184-190; Feldman, C., Anderson, R., Bacterial respiratory infections complicating human immunodeficiency virus (2016) Semin. Respir. Crit. Care Med., 37, pp. 214-229; Sazawal, S., Black, R.E., Effect of pneumonia case management on mortality in neonates, infants, and preschool children: a meta-analysis of community-based trials (2003) Lancet Infect. Dis., 3, pp. 547-556; Madhi, S.A., Klugman, K.P., Acute respiratory infections (2006) Disease and Mortality in Sub-Saharan Africa, , D.T. Jamison R.G. Feachem M.W. Makgoba E.R. Bos F.K. Baingana K.J. Hofman The International Bank for Reconstruction and Development/The World Bank Washington (DC); Jeena, P., The role of HIV infection in acute respiratory infections among children in sub-Saharan Africa (2005) Int. J. Tuberc. Lung Dis., 9, pp. 708-715; Suthar, A.B., Vitoria, M.A., Nagata, J.M., Anglaret, X., Mbori-Ngacha, D., Sued, O., Co-trimoxazole prophylaxis in adults, including pregnant women, with HIV: a systematic review and meta-analysis (2015) Lancet HIV, 2, pp. e137-e150; WHO, Co-trimoxazole Prophylaxis for Malaria and Bacterial Infections in People With HIV (2014), WHO; Fawzi, W.W., Msamanga, G.I., Spiegelman, D., Wei, R., Kapiga, S., Villamor, E., A randomized trial of multivitamin supplements and HIV disease progression and mortality (2004) N. Engl. J. Med., 351, pp. 23-32; WHO, Guideline on When to Start Antiretroviral Therapy and on Pre-exposure Prophylaxis for HIV (2015), WHO; Bigna, J.J., Plottel, C.S., Koulla-Shiro, S., Challenges in initiating antiretroviral therapy for all HIV-infected people regardless of CD4 cell count (2016) Infect. Dis. Poverty, 5, p. 85","Njouom, R.; National Influenza Centre, Centre Pasteur of CameroonCameroon; email: njouom@pasteur-yaounde.org",,"Elsevier B.V.",13866532,,JCVIF,"31272038","English","J. Clin. Virol.",Review,"Final",,Scopus,2-s2.0-85068118579 "Jeon J.-H., Han M., Chang H.-E., Park S.-S., Lee J.-W., Ahn Y.-J., Hong D.-J.","57203248595;55830888800;16066658100;57209540747;57209532952;57209529361;26667641900;","Incidence and seasonality of respiratory viruses causing acute respiratory infections in the Northern United Arab Emirates",2019,"Journal of Medical Virology","91","8",,"1378","1384",,1,"10.1002/jmv.25464","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068047705&doi=10.1002%2fjmv.25464&partnerID=40&md5=1ac609d9b7c354ea4a51a3a58b9a224b","Department of Infectious Disease, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates; Department of Infectious Disease, Division of Internal Medicine, Veterans Health System Medical Center, Seoul, South Korea; Department of Laboratory Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Kyunggi-do, South Korea; Division of Intensive Care Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates; Division of Intensive Care Medicine, Seoul National University Hospital, Seoul, South Korea","Jeon, J.-H., Department of Infectious Disease, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Department of Infectious Disease, Division of Internal Medicine, Veterans Health System Medical Center, Seoul, South Korea; Han, M., Department of Laboratory Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea; Chang, H.-E., Department of Laboratory Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Department of Laboratory Medicine, Seoul National University Bundang Hospital, Kyunggi-do, South Korea; Park, S.-S., Division of Intensive Care Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Division of Intensive Care Medicine, Seoul National University Hospital, Seoul, South Korea; Lee, J.-W., Division of Intensive Care Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Division of Intensive Care Medicine, Seoul National University Hospital, Seoul, South Korea; Ahn, Y.-J., Division of Intensive Care Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Division of Intensive Care Medicine, Seoul National University Hospital, Seoul, South Korea; Hong, D.-J., Department of Laboratory Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates, Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea","Background: The data on the seasonality of respiratory viruses helps to ensure the optimal vaccination period and to monitor the possible outbreaks of variant type. Objectives: This study was designed to describe the molecular epidemiology and seasonality of acute respiratory infection (ARI)-related respiratory viruses in the United Arab Emirates (UAE). Methods: Both upper and lower respiratory specimens were collected for the analysis from all the patients who visited the Sheikh Khalifa Specialty Hospital (SKSH) with ARI for over 2 years. The multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) test was used to detect respiratory viruses, which include human adenovirus, influenza virus (FLU) A and B, respiratory syncytial virus, parainfluenza viruses, human rhinovirus (HRV), human metapneumovirus, human enterovirus, human coronavirus, and human bocavirus. Results: A total of 1,362 respiratory samples were collected from 733 (53.8%) male and 629 (46.2%) female patients with ARI who visited the SKSH between November 2015 and February 2018. The rRT-PCR test revealed an overall positivity rate of 37.2% (507/1362). The positive rate increased during winter; it was highest in December and lowest in September. FLU was the most frequently detected virus (273/1362 [20.0%]), followed by human rhinovirus (146/1362 [10.7%]). The FLU positivity rate showed two peaks, which occurred in August and December. The peak-to-low ratio for FLU was 2.26 (95% confidence interval: 1.52-3.35). Conclusions: The pattern of FLU in the UAE parallels to that of temperate countries. The trend of the small peak of FLU in the summer suggests a possibility of semi-seasonal pattern in the UAE. © 2019 Wiley Periodicals, Inc.","human influenza; molecular epidemiology; respiratory tract infections; seasons; United Arab Emirates (UAE)","adolescent; adult; aged; Article; child; Coronaviridae; Enterovirus; female; human; Human adenovirus C; Human bocavirus; Human metapneumovirus; Human respiratory syncytial virus; Human rhinovirus; incidence; Influenza A virus; Influenza B virus; major clinical study; male; molecular epidemiology; Paramyxovirinae; real time polymerase chain reaction; respiratory virus; reverse transcription polymerase chain reaction; seasonal variation; summer; United Arab Emirates; viral respiratory tract infection; virus detection; winter","Fendrick, A.M., Monto, A.S., Nightengale, B., Sarnes, M., The economic burden of non-influenza-related viral respiratory tract infection in the United States (2003) Arch Intern Med, 163 (4), pp. 487-494; Schnell, D., Gits-Muselli, M., Canet, E., Burden of respiratory viruses in patients with acute respiratory failure (2014) J Med Virol, 86 (7), pp. 1198-1202; Rockman, S., Dyson, A., Koernig, S., Evaluation of the bioactivity of influenza vaccine strains in vitro suggests that the introduction of new strains in the 2010 Southern Hemisphere trivalent influenza vaccine is associated with adverse events (2014) Vaccine, 32 (30), pp. 3861-3868; Morikawa, S., Kohdera, U., Hosaka, T., Seasonal variations of respiratory viruses and etiology of human rhinovirus infection in children (2015) J Clin Virol, 73, pp. 14-19; Tanner, H., Boxall, E., Osman, H., Respiratory viral infections during the 2009-2010 winter season in Central England, UK: incidence and patterns of multiple virus co-infections (2012) Eur J Clin Microbiol Infect Dis, 31 (11), pp. 3001-3006; Kim, J.M., Jung, H.D., Cheong, H.M., Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea (2018) J Med Virol, 90, pp. 1177-1183; Bautista, E., Chotpitayasunondh, T., Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection (2010) N Engl J Med, 362 (18), pp. 1708-1719; Bloom-Feshbach, K., Alonso, W.J., Charu, V., Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review (2013) PLoS One, 8 (2); Ambrosioni, J., Bridevaux, P.O., Wagner, G., Mamin, A., Kaiser, L., Epidemiology of viral respiratory infections in a tertiary care centre in the era of molecular diagnosis, Geneva, Switzerland, 2011-2012 (2014) Clin Microbiol Infect, 20 (9), pp. O578-O584; Paynter, S., Humidity and respiratory virus transmission in tropical and temperate settings (2015) Epidemiol Infect, 143 (6), pp. 1110-1118; Tang, J.W., Loh, T.P., Correlations between climate factors and incidence--a contributor to RSV seasonality (2014) Rev Med Virol, 24 (1), pp. 15-34; Tamerius, J.D., Shaman, J., Alonso, W.J., Environmental predictors of seasonal influenza epidemics across temperate and tropical climates (2013) PLoS Pathog, 9 (3); Ratnam, I., Black, J., Leder, K., Incidence and risk factors for acute respiratory illnesses and influenza virus infections in Australian travellers to Asia (2013) J Clin Virol, 57 (1), pp. 54-58; Albogami, S.S., Alotaibi, M.R., Alsahli, S.A., Masuadi, E., Alshaalan, M., Seasonal variations of respiratory viruses detected from children with respiratory tract infections in Riyadh, Saudi Arabia (2018) J Infect Public Health, 11 (2), pp. 183-186; Brookhart, M.A., Rothman, K.J., Simple estimators of the intensity of seasonal occurrence (2008) BMC Med Res Methodol, 8, p. 67; Edwards, J.H., The recognition and estimation of cyclic trends (1961) Ann Hum Genet, 25, pp. 83-87; Christiansen, C.F., Pedersen, L., Sorensen, H.T., Rothman, K.J., Methods to assess seasonal effects in epidemiological studies of infectious diseases--exemplified by application to the occurrence of meningococcal disease (2012) Clin Microbiol Infect, 18 (10), pp. 963-969; Johansson, N., Kalin, M., Tiveljung-Lindell, A., Giske, C.G., Hedlund, J., Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods (2010) Clin Infect Dis, 50 (2), pp. 202-209; Chitnis, A.S., Truelove, S.A., Druckenmiller, J.K., Heffernan, R.T., Davis, J.P., Epidemiologic and clinical features among patients hospitalized in Wisconsin with 2009 H1N1 influenza A virus infections, april to august 2009 (2010) WMJ, 109 (4), pp. 201-208; Chan, P.K., Tam, W.W., Lee, T.C., Hospitalization Incidence, mortality, and seasonality of common respiratory viruses over a period of 15 years in a developed subtropical city (2015) Medicine, 94 (46); Avitsur, R., Mays, J.W., Sheridan, J.F., Sex differences in the response to influenza virus infection: modulation by stress (2011) Horm Behav, 59 (2), pp. 257-264; Calvo, C., Garcia-Garcia, M.L., Blanco, C., Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain (2008) J Clin Virol, 42 (3), pp. 268-272; Daubin, C., Parienti, J.J., Vincent, S., Epidemiology and clinical outcome of virus-positive respiratory samples in ventilated patients: a prospective cohort study (2006) Crit Care, 10 (5), p. R142; Al-Awaidy, S., Hamid, S., Al Obaidani, I., The burden of influenza-associated hospitalizations in Oman, january 2008-june 2013 (2015) PLoS One, 10 (12); Ruuskanen, O., Lahti, E., Jennings, L.C., Murdoch, D.R., Viral pneumonia (2011) Lancet, 377 (9773), pp. 1264-1275; Abdel-Hady, D.M., Al Balushi, R.M., Al Abri, B.A., Estimating the burden of influenza-associated hospitalization and deaths in Oman (2012-2015) (2018) Influenza other Respir Viruses, 12 (1), pp. 146-152; Zarowitz, B.J., Tangalos, E., Lefkovitz, A., Thrombotic risk and immobility in residents of long-term care facilities (2010) J Am Med Dir Assoc, 11 (3), pp. 211-221; Monto, A.S., Gravenstein, S., Elliott, M., Colopy, M., Schweinle, J., Clinical signs and symptoms predicting influenza infection (2000) Arch Intern Med, 160 (21), pp. 3243-3247; Brittain-Long, R., Andersson, L.M., Olofsson, S., Lindh, M., Westin, J., Seasonal variations of 15 respiratory agents illustrated by the application of a multiplex polymerase chain reaction assay (2012) Scand J Infect Dis, 44 (1), pp. 9-17; Goka, E., Vallely, P., Mutton, K., Klapper, P., Influenza A viruses dual and multiple infections with other respiratory viruses and risk of hospitalisation and mortality (2013) Influenza other Respir Viruses, 7 (6), pp. 1079-1087; Al-Ayed, M.S., Asaad, A.M., Qureshi, M.A., Ameen, M.S., Viral etiology of respiratory infections in children in southwestern Saudi Arabia using multiplex reverse-transcriptase polymerase chain reaction (2014) Saudi Med J, 35 (11), pp. 1348-1353; Khamis, F.A., Al-Kobaisi, M.F., Al-Areimi, W.S., Al-Kindi, H., Al-Zakwani, I., Epidemiology of respiratory virus infections among infants and young children admitted to hospital in Oman (2012) J Med Virol, 84 (8), pp. 1323-1329; Shek, L.P., Lee, B.W., Epidemiology and seasonality of respiratory tract virus infections in the tropics (2003) Paediatr Respir Rev, 4 (2), pp. 105-111; Heikkinen, T., Jarvinen, A., The common cold (2003) Lancet, 361 (9351), pp. 51-59; Ramaekers, K., Keyaerts, E., Rector, A., Prevalence and seasonality of six respiratory viruses during five consecutive epidemic seasons in Belgium (2017) J Clin Virol, 94, pp. 72-78; Jacobs, S.E., Lamson, D.M., St, George, K., Walsh, T.J., Human rhinoviruses (2013) Clin Microbiol Rev, 26 (1), pp. 135-162; Chew, F.T., Doraisingham, S., Ling, A.E., Kumarasinghe, G., Lee, B.W., Seasonal trends of viral respiratory tract infections in the tropics (1998) Epidemiol Infect, 121 (1), pp. 121-128; Straliotto, S.M., Siqueira, M.M., Muller, R.L., Fischer, G.B., Cunha, M.L., Nestor, S.M., Viral etiology of acute respiratory infections among children in Porto Alegre, RS, Brazil (2002) Rev Soc Bras Med Trop, 35 (4), pp. 283-291; Tsai, H.P., Kuo, P.H., Liu, C.C., Wang, J.R., Respiratory viral infections among pediatric inpatients and outpatients in Taiwan from 1997 to 1999 (2001) J Clin Microbiol, 39 (1), pp. 111-118; Fisman, D., Seasonality of viral infections: mechanisms and unknowns (2012) Clin Microbiol Infect, 18 (10), pp. 946-954; Wei, J., Li, Y., Airborne spread of infectious agents in the indoor environment (2016) Am J Infect Control, 44 (9), pp. S102-S108; Grohskopf, L.A., Sokolow, L.Z., Broder, K.R., Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices - United States, 2017-18 influenza season (2017) MMWR Recomm Rep, 66 (2), pp. 1-20; Casado, I., Dominguez, A., Toledo, D., Repeated influenza vaccination for preventing severe and fatal influenza infection in older adults: a multicentre case-control study (2018) CMAJ, 190 (1), pp. E3-E12; Templeton, K.E., Scheltinga, S.A., Beersma, M.F., Kroes, A.C., Claas, E.C., Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4 (2004) J Clin Microbiol, 42 (4), pp. 1564-1569; Moorthy, M., Castronovo, D., Abraham, A., Deviations in influenza seasonality: odd coincidence or obscure consequence? (2012) Clin Microbiol Infect, 18 (10), pp. 955-962","Hong, D.-J.; Department of Laboratory Medicine, Sheikh Khalifa Specialty HospitalUnited Arab Emirates; email: duckjin.hong@sksh.ae",,"John Wiley and Sons Inc.",01466615,,JMVID,"30900750","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85068047705 "Zhou F., Wang Y., Liu Y., Liu X., Gu L., Zhang X., Pu Z., Yang G., Liu B., Nie Q., Xue B., Feng J., Guo Q., Liu J., Fan H., Chen J., Zhang Y., Xu Z., Pang M., Chen Y., Nie X., Cai Z., Xu J., Peng K., Li X., Xiang P., Zhang Z., Jiang S., Su X., Zhang J., Li Y., Jin X., Jiang R., Dong J., Song Y., Zhou H., Wang C., Cao B.","56399869200;56536593400;36701495400;57192259055;54887557200;57213540917;55644528000;57210590477;57201743051;57210590299;57210591216;57210591088;55260822400;57210591100;57210590583;57191521684;57191852749;57189363746;57210590377;57210591316;24076677700;57210591364;14119255300;57210591482;57214904302;8649079600;57210591633;36113870300;57210590727;57196387373;36079598900;57210590999;57203365859;57210591634;7404920196;57210591492;57196394775;57204799449;","Disease severity and clinical outcomes of community-acquired pneumonia caused by non-influenza respiratory viruses in adults: A multicentre prospective registry study from the CAP-China Network",2019,"European Respiratory Journal","54","2", 1802406,"","",,3,"10.1183/13993003.02406-2018","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071056573&doi=10.1183%2f13993003.02406-2018&partnerID=40&md5=6dc46d3bb5084de3986076dbfccb9ea0","Dept of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China; Tsinghua University, Peking University Joint Center for Life Sciences, Beijing, China; Dept of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China; Dept of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Dept of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China; Dept of Infectious Diseases, Yantai Yu Huang-Ding Hospital, Yantai, China; Dept of Pulmonary and Critical Care Medicine, Weifang No. 2 People's Hospital, Weifang, China; Dept of Respiratory and Critical Care Medicine, Linzi District People's Hospital, Zibo, China; Dept of Respiratory and Critical Care Medicine, Liangxiang Hospital, Beijing, China; Dept of Respiratory Medicine, Chuiyangliu Hospital Affiliated, Tshinghua University, Beijing, China; Dept of Respiratory Medicine, General Hospital of Tianjin Medical University, Tianjin, China; Dept of Respiratory Emergency and Critical Care Medicine, First Affiliated Hospital, Soochow University, Jiangsu, China; Dept of Respiratory Medicine, Beijing Huairou Hospital, University of Chinese Academy of Science, Beijing, China; Dept of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China; Dept of Respiratory Medicine, Fuxing Hospital, Capital Medical University, Beijing, China; Dept of Respiratory Medicine, Daxing Teaching Hospital, Capital Medical University, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Dept of Respiratory Medicine, First Hospital, Shanxi Medical University, Taiyuan, China; Dept of Pulmonary and Critical Care Medicine, Shengjing Hospital, China Medical University, Beijing, China; Dept of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Second Hospital, Hebei Medical University, Shijiazhuang, China; Dept of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China; Dept of Respiratory Medicine, Beijing No. 6 Hospital, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Beijing Changping Hospital, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Peking University Shougang Hospital, Beijing, China; Dept of Respiratory Medicine, Beijing Shijingshan Hospital, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Shandong Province Hospital, Jinan, China; Dept of Respiratory Medicine, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing, China; Dept of Respiratory Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Beijing Hospital, Beijing, China; Dept of Respiratory Medicine, Beijing Pinggu Hospital, Beijing, China; Infectious Disease Diagnosis and Treatment Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Dept of Infectious Diseases, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, China; Dept of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Dept of Respiratory Medicine, Beijing Electric Power Hospital, Beijing, China","Zhou, F., Dept of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China, Tsinghua University, Peking University Joint Center for Life Sciences, Beijing, China; Wang, Y., Dept of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China, Tsinghua University, Peking University Joint Center for Life Sciences, Beijing, China; Liu, Y., Dept of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China, Tsinghua University, Peking University Joint Center for Life Sciences, Beijing, China; Liu, X., Dept of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China; Gu, L., Dept of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Zhang, X., Dept of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China; Pu, Z., Dept of Infectious Diseases, Yantai Yu Huang-Ding Hospital, Yantai, China; Yang, G., Dept of Pulmonary and Critical Care Medicine, Weifang No. 2 People's Hospital, Weifang, China; Liu, B., Dept of Respiratory and Critical Care Medicine, Linzi District People's Hospital, Zibo, China; Nie, Q., Dept of Respiratory and Critical Care Medicine, Liangxiang Hospital, Beijing, China; Xue, B., Dept of Respiratory Medicine, Chuiyangliu Hospital Affiliated, Tshinghua University, Beijing, China; Feng, J., Dept of Respiratory Medicine, General Hospital of Tianjin Medical University, Tianjin, China; Guo, Q., Dept of Respiratory Emergency and Critical Care Medicine, First Affiliated Hospital, Soochow University, Jiangsu, China; Liu, J., Dept of Respiratory Medicine, Beijing Huairou Hospital, University of Chinese Academy of Science, Beijing, China; Fan, H., Dept of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China; Chen, J., Dept of Respiratory Medicine, Fuxing Hospital, Capital Medical University, Beijing, China; Zhang, Y., Dept of Respiratory Medicine, Daxing Teaching Hospital, Capital Medical University, Beijing, China; Xu, Z., Dept of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Pang, M., Dept of Respiratory Medicine, First Hospital, Shanxi Medical University, Taiyuan, China; Chen, Y., Dept of Pulmonary and Critical Care Medicine, Shengjing Hospital, China Medical University, Beijing, China; Nie, X., Dept of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China; Cai, Z., Dept of Pulmonary and Critical Care Medicine, Second Hospital, Hebei Medical University, Shijiazhuang, China; Xu, J., Dept of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China; Peng, K., Dept of Respiratory Medicine, Beijing No. 6 Hospital, Beijing, China; Li, X., Dept of Pulmonary and Critical Care Medicine, Beijing Changping Hospital, Beijing, China; Xiang, P., Dept of Pulmonary and Critical Care Medicine, Peking University Shougang Hospital, Beijing, China; Zhang, Z., Dept of Respiratory Medicine, Beijing Shijingshan Hospital, Beijing, China; Jiang, S., Dept of Pulmonary and Critical Care Medicine, Shandong Province Hospital, Jinan, China; Su, X., Dept of Respiratory Medicine, Nanjing General Hospital of Nanjing Military Command, PLA, Nanjing, China; Zhang, J., Dept of Respiratory Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Li, Y., Dept of Pulmonary and Critical Care Medicine, Beijing Hospital, Beijing, China; Jin, X., Dept of Respiratory Medicine, Beijing Pinggu Hospital, Beijing, China; Jiang, R., Infectious Disease Diagnosis and Treatment Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Dong, J., Dept of Infectious Diseases, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, China; Song, Y., Dept of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Zhou, H., Dept of Respiratory Medicine, Beijing Electric Power Hospital, Beijing, China; Wang, C., Dept of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China, Tsinghua University, Peking University Joint Center for Life Sciences, Beijing, China; Cao, B., Dept of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, National Clinical Research Center of Respiratory Diseases, Beijing, China, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China, Tsinghua University, Peking University Joint Center for Life Sciences, Beijing, China","Although broad knowledge of influenza viral pneumonia has been established, the significance of non-influenza respiratory viruses in community-acquired pneumonia (CAP) and their impact on clinical outcomes remains unclear, especially in the non-immunocompromised adult population. Hospitalised immunocompetent patients with CAP were prospectively recruited from 34 hospitals in mainland China. Respiratory viruses were detected by molecular methods. Comparisons were conducted between influenza and non-influenza viral infection groups. In total, 915 out of 2336 adult patients with viral infection were enrolled in the analysis, with influenza virus (28.4%) the most frequently detected virus, followed by respiratory syncytial virus (3.6%), adenovirus (3.3%), human coronavirus (3.0%), parainfluenza virus (2.2%), human rhinovirus (1.8%) and human metapneumovirus (1.5%). Non-influenza viral infections accounted for 27.4% of viral pneumonia. Consolidation was more frequently observed in patients with adenovirus infection. The occurrence of complications such as sepsis (40.1% versus 39.6%; p=0.890) and hypoxaemia (40.1% versus 37.2%; p=0.449) during hospitalisation in the influenza viral infection group did not differ from that of the noninfluenza viral infection group. Compared with influenza virus infection, the multivariable adjusted odds ratios of CURB-65 (confusion, urea >7 mmol L-1, respiratory rate ≫30 breaths min-1, blood pressure <90 mmHg (systolic) or ≪60 mmHg (diastolic), age ≫65 years) ≫3, arterial oxygen tension/inspiratory oxygen fraction <200 mmHg, and occurrence of sepsis and hypoxaemia for non-influenza respiratory virus infection were 0.87 (95% CI 0.26-2.84), 0.72 (95% CI 0.26-1.98), 1.00 (95% CI 0.63-1.58) and 1.05 (95% CI 0.66-1.65), respectively. The hazard ratio of 90-day mortality was 0.51 (95% CI 0.13-1.91). The high incidence of complications in non-influenza viral pneumonia and similar impact of noninfluenza respiratory viruses relative to influenza virus on disease severity and outcomes suggest more attention should be given to CAP caused by non-influenza respiratory viruses. © ERS 2019.",,"Adenoviridae; adenovirus infection; adult; age; aged; arterial oxygen tension; Article; breathing rate; China; clinical outcome; cohort analysis; community acquired pneumonia; confusion; Coronaviridae; diastolic blood pressure; disease registry; disease severity; female; human; Human metapneumovirus; Human respiratory syncytial virus; Human rhinovirus; hypoxemia; immunocompetence; incidence; Influenza virus; length of stay; major clinical study; male; mortality rate; non influenza viral infection; Parainfluenza virus infection; Paramyxovirinae; priority journal; prospective study; sepsis; systolic blood pressure; virus pneumonia","Mandell, L.A., Community-acquired pneumonia: An overview (2015) Postgrad Med, 127, pp. 607-615; Burk, M., El-Kersh, K., Saad, M., Viral infection in community-acquired pneumonia: A systematic review and meta-analysis (2016) Eur Respir Rev, 25, pp. 178-188; Cavallazzi, R., Ramirez, J.A., Influenza and viral pneumonia (2018) Clin Chest Med, 39, pp. 703-721; Ruuskanen, O., Lahti, E., Jennings, L.C., Viral pneumonia (2011) Lancet, 377, pp. 1264-1275; Haas, L.E., Thijsen, S.F., Van Elden, L., Human metapneumovirus in adults (2013) Viruses, 5, pp. 87-110; Griffiths, C., Drews, S.J., Marchant, D.J., Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment (2017) Clin Microbiol Rev, 30, pp. 277-319; Branche, A.R., Falsey, A.R., Parainfluenza virus infection (2016) Semin Respir Crit Care Med, 37, pp. 538-554; Choi, S.H., Huh, J.W., Hong, S.B., Clinical characteristics and outcomes of severe rhinovirus-associated pneumonia identified by bronchoscopic bronchoalveolar lavage in adults: Comparison with severe influenza virus-associated pneumonia (2015) J Clin Virol, 62, pp. 41-47; Vabret, A., Mourez, T., Gouarin, S., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin Infect Dis, 36, pp. 985-989; Liao, R.S., Appelgate, D.M., Pelz, R.K., An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility for the elderly in Oregon (2012) J Clin Virol, 53, pp. 171-173; Jacobs, S.E., Lamson, D.M., Soave, R., Clinical and molecular epidemiology of human rhinovirus infections in patients with hematologic malignancy (2015) J Clin Virol, 71, pp. 51-58; Mandell, L.A., Wunderink, R.G., Anzueto, A., Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults (2007) Clin Infect Dis, 44, pp. S27-S72; Weinberg, G.A., Schnabel, K.C., Erdman, D.D., Field evaluation of TaqMan Array Card (TAC) for the simultaneous detection of multiple respiratory viruses in children with acute respiratory infection (2013) J Clin Virol, 57, pp. 254-260; Qu, J.X., Gu, L., Zh, P., Viral etiology of community-acquired pneumonia among adolescents and adults with mild or moderate severity and its relation to age and severity (2015) BMC Infect Dis, 15, p. 89; Sanz, F., Gimeno, C., Lloret, T., Relationship between the presence of hypoxemia and the inflammatory response measured by C-reactive protein in bacteremic pneumococcal pneumonia (2011) Eur Respir J, 38, p. 2492; Singer, M., Deutschman, C.S., Seymour, C.W., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) (2016) JAMA, 315, pp. 801-810; Lim, W.S., Baudouin, S.V., George, R.C., BTS guidelines for the management of community acquired pneumonia in adults: Update 2009 (2009) Thorax, 64, pp. iii1-iii55; Voiriot, G., Visseaux, B., Cohen, J., Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia (2016) Crit Care, 20, p. 375; Radovanovic, D., Sotgiu, G., Jankovic, M., An international perspective on hospitalized patients with viral community-acquired pneumonia (2019) Eur J Intern Med, 60, pp. 54-70; Jain, S., Self, W.H., Wunderink, R.G., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N Engl J Med, 373, pp. 415-427; Huang, H.H., Zhang, Y.Y., Xiu, Q.Y., Community-acquired pneumonia in Shanghai, China: Microbial etiology and implications for empirical therapy in a prospective study of 389 patients (2006) Eur J Clin Microbiol Infect Dis, 25, pp. 369-374; Liu, Y., Chen, M., Zhao, T., Causative agent distribution and antibiotic therapy assessment among adult patients with community acquired pneumonia in Chinese urban population (2009) BMC Infect Dis, 9, p. 31; Lui, G., Ip, M., Lee, N., Role of ""atypical pathogens"" among adult hospitalized patients with community-acquired pneumonia (2009) Respirology, 14, pp. 1098-1105; Ngeow, Y.F., Suwanjutha, S., Chantarojanasriri, T., An Asian study on the prevalence of atypical respiratory pathogens in community-acquired pneumonia (2005) Int J Infect Dis, 9, pp. 144-153; Song, J.H., Oh, W.S., Kang, C.I., Epidemiology and clinical outcomes of community-acquired pneumonia in adult patients in Asian countries: A prospective study by the Asian network for surveillance of resistant pathogens (2008) Int J Antimicrob Agents, 31, pp. 107-114; Gong, C., Zhang, T., Luo, M., Distribution of the atypical pathogens of community-acquired pneumonia to disease severity (2018) J Thorac Dis, 10, pp. 5991-6001; Tao, R.J., Luo, X.L., Xu, W., Viral infection in community acquired pneumonia patients with fever: A prospective observational study (2018) J Thorac Dis, 10, pp. 4387-4395; Luan, Y., Sun, Y., Duan, S., Pathogenic bacterial profile and drug resistance analysis of community-acquired pneumonia in older outpatients with fever (2018) J Int Med Res, 46, pp. 4596-4604; Zhan, Y., Yang, Z., Chen, R., Respiratory virus is a real pathogen in immunocompetent community-acquired pneumonia: Comparing to influenza like illness and volunteer controls (2014) BMC Pulm Med, 14, p. 144; Musher, D.M., Abers, M.S., Bartlett, J.G., Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus (2017) Clin Infect Dis, 65, pp. 1736-1744; Liu, Y.F., Gao, Y., Chen, M.F., Etiological analysis and predictive diagnostic model building of community-acquired pneumonia in adult outpatients in Beijing, China (2013) BMC Infect Dis, 13, p. 309; Cao, B., Ren, L.L., Zhao, F., Viral and Mycoplasma pneumoniae community-acquired pneumonia and novel clinical outcome evaluation in ambulatory adult patients in China (2010) Eur J Clin Microbiol Infect Dis, 29, pp. 1443-1448; Li, X., Chen, B., Zhang, S., Rapid detection of respiratory pathogens for community-acquired pneumonia by capillary electrophoresis-based multiplex PCR (2019) SLAS Technol, 24, pp. 105-116; Chen, H., Weng, H., Lin, M., The clinical significance of FilmArray Respiratory Panel in diagnosing community-acquired pneumonia (2017) Biomed Res Int, 2017, p. 7320859; Wilkinson, T.M.A., Aris, E., Bourne, S., A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD (2017) Thorax, 72, pp. 919-927; Jafarinejad, H., Moghoofei, M., Mostafaei, S., Worldwide prevalence of viral infection in AECOPD patients: A meta-analysis (2017) Microb Pathog, 113, pp. 190-196; Jain, S., Epidemiology of viral pneumonia (2017) Clin Chest Med, 38, pp. 1-9; Tan, D., Zhu, H., Fu, Y., Severe community-acquired pneumonia caused by human adenovirus in immunocompetent adults: A multicenter case series (2016) PLoS One, 11, p. e0151199; Cao, B., Huang, G.H., Zh, P., Emergence of community-acquired adenovirus type 55 as a cause of community-onset pneumonia (2014) Chest, 145, pp. 79-86; Lynch, J.P., Adenovirus: Epidemiology, global spread of novel serotypes, and advances in treatment and prevention (2016) Semin Respir Crit Care Med, 37, pp. 586-602; Gilca, R., Amini, R., Douville-Fradet, M., Other respiratory viruses are important contributors to adult respiratory hospitalizations and mortality even during peak weeks of the influenza season (2014) Open Forum Infect Dis, 1, p. ofu086; Bjarnason, A., Westin, J., Lindh, M., Incidence, etiology, and outcomes of community-acquired pneumonia: A population-based study (2018) Open Forum Infect Dis, 5, p. ofy010; Deng, J.C., Viral-bacterial interactions - Therapeutic implications (2013) Influenza Other Respir Viruses, 7, pp. 24-35; Shah, R.D., Wunderink, R.G., Viral pneumonia and acute respiratory distress syndrome (2017) Clin Chest Med, 38, pp. 113-125; Widmer, K., Zhu, Y., Williams, J.V., Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults (2012) J Infect Dis, 206, pp. 56-62; Widmer, K., Griffin, M.R., Zhu, Y., Respiratory syncytial virus- And human metapneumovirus-associated emergency department and hospital burden in adults (2014) Influenza Other Respir Viruses, 8, pp. 347-352; Ackerson, B., Tseng, H.F., Sy, L.S., Severe morbidity and mortality associated with respiratory syncytial virus versus influenza infection in hospitalized older adults (2019) Clin Infect Dis, 69, pp. 197-203; Van Asten, L., Van Den Wijngaard, C., Van Pelt, W., Mortality attributable to 9 common infections: Significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons (2012) J Infect Dis, 206, pp. 628-639; Lee, N., Lui, G.C., Wong, K.T., High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections (2013) Clin Infect Dis, 57, pp. 1069-1077; Joseph, C., Togawa, Y., Shindo, N., Bacterial and viral infections associated with influenza (2013) Influenza Other Respir Viruses, 7, pp. 105-113; Miller, J.M., Binnicker, M.J., Campbell, S., A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology (2018) Clin Infect Dis, 67, pp. e1-e94; Self, W.H., Balk, R.A., Grijalva, C.G., Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (2017) Clin Infect Dis, 65, pp. 183-190; Brendish, N.J., Malachira, A.K., Armstrong, L., Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): A pragmatic, open-label, randomised controlled trial (2017) Lancet Respir Med, 5, pp. 401-411; Andrews, D., Chetty, Y., Cooper, B.S., Multiplex PCR point of care testing versus routine, laboratory-based testing in the treatment of adults with respiratory tract infections: A quasi-randomised study assessing impact on length of stay and antimicrobial use (2017) BMC Infect Dis, 17, p. 671; Keske, S., Ergonul, O., Tutucu, F., The rapid diagnosis of viral respiratory tract infections and its impact on antimicrobial stewardship programs (2018) Eur J Clin Microbiol Infect Dis, 37, pp. 779-783; Semret, M., Schiller, I., Jardin, B.A., Multiplex respiratory virus testing for antimicrobial stewardship: A prospective assessment of antimicrobial use and clinical outcomes among hospitalized adults (2017) J Infect Dis, 216, pp. 936-944; Afzal, Z., Minard, C.G., Stager, C.E., Clinical diagnosis, viral PCR, and antibiotic utilization in community-acquired pneumonia (2016) Am J Ther, 23, pp. e766-e772; Hernes, S.S., Hagen, E., Quarsten, H., No impact of early real-time PCR screening for respiratory viruses on length of stay and use of antibiotics in elderly patients hospitalized with symptoms of a respiratory tract infection in a single center in Norway (2014) Eur J Clin Microbiol Infect Dis, 33, pp. 359-364; Duan, S.C., Gu, X.Y., Fan, G.H., The clinical value of a new molecular point-of-care testing in hospitalized lower respiratory tract infection patients: A randomized controlled study (2019) Am J Respir Crit Care Med, 199, p. A209; Blatt, S.P., Yultyev, A., Huang, M., Impact of respiratory virus molecular testing on antibiotic utilization in community-acquired pneumonia (2017) Am J Infect Control, 45, pp. 1396-1398; Hayden, F.G., Sugaya, N., Hirotsu, N., Baloxavir marboxil for uncomplicated influenza in adults and adolescents (2018) N Engl J Med, 379, pp. 913-923; Finberg, R.W., Lanno, R., Anderson, D., Phase 2b study of pimodivir ( JNJ-63623872) as monotherapy or in combination with oseltamivir for treatment of acute uncomplicated seasonal influenza A: TOPAZ trial (2019) J Infect Dis, 219, pp. 1026-1034; Koszalka, P., Tilmanis, D., Hurt, A.C., Influenza antivirals currently in late-phase clinical trial (2017) Influenza Other Respir Viruses, 11, pp. 240-246; Moss, R.B., Hansen, C., Sanders, R.L., A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection (2012) J Infect Dis, 206, pp. 1844-1851; Thammawat, S., Sadlon, T.A., Adamson, P., Effect of sialidase fusion protein (DAS 181) on human metapneumovirus infection of Hep-2 cells (2015) Antivir Chem Chemother, 24, pp. 161-165; Salvatore, M., Satlin, M.J., Jacobs, S.E., DAS181 for treatment of parainfluenza virus infections in hematopoietic stem cell transplant recipients at a single center (2016) Biol Blood Marrow Transplant, 22, pp. 965-970; McKimm-Breschkin, J.L., Jiang, S., Hui, D.S., Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference (2018) Antiviral Res, 149, pp. 118-142; Grimley, M.S., Chemaly, R.F., Englund, J.A., Brincidofovir for asymptomatic adenovirus viremia in pediatric and adult allogeneic hematopoietic cell transplant recipients: A randomized placebo-controlled phase II trial (2017) Biol Blood Marrow Transplant, 23, pp. 512-521; Peto, L., Nadjm, B., Horby, P., The bacterial aetiology of adult community-acquired pneumonia in Asia: A systematic review (2014) Trans R Soc Trop Med Hyg, 108, pp. 326-337","Cao, B.; Dept of Pulmonary and Critical Care Medicine, National Clinical Research Center of Respiratory Diseases, 2 Yinghua Dongjie, China; email: caobin_ben@163.com",,"European Respiratory Society",09031936,,ERJOE,"31164430","English","Eur. Respir. J.",Article,"Final",Open Access,Scopus,2-s2.0-85071056573 "Ahmed A.M.S., Abou-Elkhair R.A.I., El-Torky A.M., Hassan A.E.A.","57208031067;8501459500;6506894276;7402686984;","3-Trifluoromethylpyrazolones derived nucleosides: Synthesis and antiviral evaluation",2019,"Nucleosides, Nucleotides and Nucleic Acids","38","8",,"590","603",,,"10.1080/15257770.2019.1591445","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063607423&doi=10.1080%2f15257770.2019.1591445&partnerID=40&md5=1a6e16d66b48db0f1d9097468e0f8504","Applied Nucleic Acids Research Center, Zagazig University, Zagazig, Egypt; Chemistry Department Faculty of Science, Zagazig University, Zagazig, Egypt","Ahmed, A.M.S., Applied Nucleic Acids Research Center, Zagazig University, Zagazig, Egypt, Chemistry Department Faculty of Science, Zagazig University, Zagazig, Egypt; Abou-Elkhair, R.A.I., Applied Nucleic Acids Research Center, Zagazig University, Zagazig, Egypt, Chemistry Department Faculty of Science, Zagazig University, Zagazig, Egypt; El-Torky, A.M., Applied Nucleic Acids Research Center, Zagazig University, Zagazig, Egypt; Hassan, A.E.A., Applied Nucleic Acids Research Center, Zagazig University, Zagazig, Egypt, Chemistry Department Faculty of Science, Zagazig University, Zagazig, Egypt","Dengue (DENV) viral infection is a global public health problem that infrequently develops life threatening diseases such as dengue hemorrhagic fever (DFS) and dengue shock syndrome (DSS). Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human corona virus with 38% fatality rate of infected patients. A series of 4-arylhydrazono-5-trifluoromethyl-pyrazolones, their ribofuranosyl, and 5′-deoxyribofuranosyl nucleosides were synthesized, geometry optimized using Density functional theory (DFT), and evaluated for their antiviral activity. 2-Nitrophenylhydrazonopyra-zolone derivative 5 showed significant activity against MERS-CoV (EC50 = 4.6 μM). The nucleoside analog 8 showed moderate activity against DENV-2 (EC50 = 10 μM), while the activity was abolished with the corresponding 5′-deoxyribonucleoside analogs. The identified hits in this study set this category of compounds for further future optimizations. © 2019, © 2019 Taylor & Francis Group, LLC.","antiviral activity; dengue virus 2; Hydrazonopyrazolones; MERS-CoV; nucleosides","1,2,3 tri o acetyl 5' deoxy beta dextro ribofuranose; 2 [(2,3,5 tri o benzoyl beta dextro ribofuranosy)] 4 [2 (3 nitrophenyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; 2 [(2,3,5 tri o benzoyl beta dextro ribofuranosyl)] 4 [2 (2 nitrophenyl)hydrazono] 3 (trifluoromethyl) 1h pyrazol 5(4h) one; 2 [(2,3,5 tri o benzoyl beta dextro ribofuranosyl)] 4 [2 (4 tolyl)hydrazono] 3 (trifluoromethyl) 1h pyrazol 5(4h) one; 2 [(2,3,5 tri o benzoyl beta dextro ribofuranosyl)] 5 (trifluoromethyl) 4 [2 [2 (trifluoromethyl)phenyl]hydrazono] 2,4 dihydro 3h pyrazol 3 one; 2 [(5 deoxy 2,3 di o acetyl beta dextro ribofuranosyl)] 4 [(2 nitrophenyl)hydrazono] 3 (trifluoromethyl) 1h pyrazol 5(4H) ONE; 2 [(5 deoxy 2,3 di o acetyl beta dextro ribofuranosyl)] 4 [2 (3 nitrophenyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; 2 [(5 deoxy 2,3 di o acetyl beta dextro ribofuranosyl)] 5 (trifluoromethyl) 4 [2 [2 (trifluoromethyl)phenyl]hydrazono] 2,4 dihydro 3h pyrazol 3 one; 2 [(5 deoxy 2,3, di o acetyl beta dextro ribofuranosyl)] 4 (4 tolylhydrazono) 3 (trifluoromethyl 1h pyrazol 5(4h) one; 2 [(5 deoxy beta dextro ribofuranosyl)] 4 (4 tolylhydrazono) 3 (trifluoromethyl) 1h pyrazol 5(4h) one; 2 [(5 deoxy beta dextro ribofuranosyl)] 4 [(2 nitrophenylhydrazono)] 3 (trifluoromethyl) 1h pyrazol 5(4h) one; 2 [(5 deoxy beta dextro ribofuranosyl)] 4 [2 (3 nitrophenyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; 2 [(5 deoxy beta dextro ribofuranosyl)] 5 (trifluoromethyl) 4 [2 [2 (trifluoromethyl)phenyl]hydrazono] 2,4 dihydro 3h pyrazol 3 one; 2 [(beta dextro ribofuranosyl)] 4 [2 (2 nitrophenyl)hydrazono] 3 (trifluoromethyl) 1h pyrazol 5(4h) one; 2 [(beta dextro ribofuranosyl)] 4 [2 (3 nitrophenyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; 2 [(beta dextro ribofuranosyl)] 5 (trifluoromethyl) 4 [2 [2 (trifluoromethyl)phenyl]hydrazineeylidene] 2,4 dihydro 3h pyrazol 3 one; 2 [beta dextro ribofuranosyl] 4 [2 (4 tolyl)hydrazono] 3 (trifluoromethyl) 1h pyrazol 5(4h) one; 3 (trifluoromethyl) 4 [2 [3 (trifluoromethyl)phenyl]hydrazono] 1h pyrazol 5(4h) one; 3 trifluoromethylpyrazolone derivative; 4 (arylhydrazono) 3 trifluoromethyl 1h pyrazol 5(4h) one; 4 [2 (2 nitrophenyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; 4 [2 (3 nitrophenyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; 4 [2 (4 tolyl)hydrazono] 5 (trifluoromethyl) 2,4 dihydro 3h pyrazol 3 one; antivirus agent; deoxyribonucleoside; nucleoside analog; unclassified drug; antivirus agent; nucleoside; pyrazolone derivative; antiviral activity; Article; concentration response; controlled study; dengue hemorrhagic fever; dengue shock syndrome; Dengue virus 2; density functional theory; drug cytotoxicity; drug screening; drug structure; drug synthesis; EC50; geometry; Middle East respiratory syndrome coronavirus; nonhuman; chemical structure; chemistry; Dengue virus; drug design; drug effect; Hepacivirus; Hepatitis B virus; human; Influenzavirus A; Pneumovirus; structure activity relation; synthesis; virus replication; Antiviral Agents; Dengue Virus; Drug Design; Hepacivirus; Hepatitis B virus; Humans; Influenzavirus A; Middle East Respiratory Syndrome Coronavirus; Molecular Structure; Nucleosides; Pyrazolones; Respiratory Syncytial Viruses; Structure-Activity Relationship; Virus Replication","Shepard, D.S., Undurraga, E.A., Halasa, Y.A., Stanaway, J.D., The Global Economic Burden of Dengue: A Systematic Analysis (2016) Lancet. Infect. Dis., 16, pp. 935-941; Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Sankoh, O., The Global Distribution and Burden of Dengue (2013) Nature, 496, pp. 504-507. , et al; Fibriansah, G., Lok, S.M., The Development of Therapeutic Antibodies against Dengue Virus (2016) Antiviral Res., 128, pp. 7-19; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus (2013) N Engl. J. Med., 369, pp. 407-416. , et al; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; http://www.who.int/mediacentre/factsheets/mers-cov/en/, Middle East Respiratory Syndrome Coronavirus (MERS-CoV; Arnost, M., Pierce, A., Ter Haar, E., Lauffer, D., Madden, J., Tanner, K., Green, J., Aryl, (3-Aryl-4-(arylhydrazono)-1H-Pyrazol-5-Ones: Highly Ligand Efficient and Potent Inhibitors of GSK3beta (2010) Bioorg. Med. Chem. Lett., 20, pp. 1661-1664; Chung, D.-H., Strouse, J.J., Sun, Y., Arterburn, J.B., Parker, W.B., Jonsson, C.B., Synthesis and anti- Hantaan Virus Activity of N1-3-Fluorophenyl-Inosine (2009) Antiviral Res., 83, pp. 80-85; Sidwell, R.W., Huffman, J.H., Khare, G.P., Allen, L.B., Withowski, J.T., Robins, R.K., Broad- spectrum antiviral activity of Virazole. 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (1972) Science, 177, pp. 705-706. , a). (b; Sidwell, R.W., Robins, R.K., Ribavirin: An Antiviral Agent (1979) Pharmacol. Ther., 6, pp. 123-146; Mizuno, K., Tsujino, M., Takeda, M., Hayashi, M., Atsumi, K., Asano, K., Matsuda, T., Studies on Bredinin. I. Isolation, Characterization and Biological Properties (1974) J. Antibiot, 27, pp. 775-782. , a). (b; Yoshioka, H., Nakatsu, K., Mizuno, K., Studies on Bredinin. II. Molecular Structure of Bredinin (1975) Tetrahedron Lett., 46, pp. 4031-4034; Amemiya, H., Itoh, H., (1993) Immunosuppressive Drugs: Developments in Anti-Rejection Therapy, pp. 161-176. , Thomson A.W., Starzl T.E., (eds), Edward Arnold Ltd, London: (a), eds.,;. (b; Gruber, S.A., Locoregional Immunosuppression of Organ Transplants (1992) Immunol. Rev, 129, pp. 5-30. , –,. (c; Truka, L., Dayton, J., Sinclair, G., Thompson, C.B., Mitchell, B.S., Guanine Ribonucleotide Depletion Inhibits T-Cell Activation. Mechanism of Action of the Immunosuppressive Drug Mizoribine (1991) J. Clin. Invest., 87 (3), pp. 940-948; Ichinose, K., Origuchi, T., Kawashiri, S.-Y., Iwamoto, N., Fujikawa, K., Aramaki, T., Kamachi, M., Nakamura, N., Efficacy and Safety of Mizoribine by One Single Dose Administration for Patients with Rheumatoid Arthritis (2010) Intern. Med., 49, pp. 2211-2218. , et al; Franchetti, P., Cappellacci, L., Grifantini, M., IMP Dehydrogenase as a Target of Antitumor and Antiviral Chemotherapy (1996) Farmaco, 51, pp. 457-469; Aromi, G., Bell, A.R., Helliwell, M., Raftery, J., Teat, S.J., A Systematic Exploration of Nickel-Pyrazolinato Chemistry with Alkali Metals: New Cages from Serendipitous Assembly (2003) Chem. Eur. J., 9, pp. 3024-3032; Zohdi, H.F., Rateb, N.M., Haikal, A., (2001) Molecules, 6, p. M261. , a),. (b; Abdou, I.M., Saleh, A.M., Zohdi, H.F., Synthesis and Antitumor Activity of 5-Trifluoromethyl-2,4-Dihydropyrazol-3-One Nucleosides (2004) Molecules, 9, pp. 109-116. , –,. (c; Muralikrishna, S., Jagadeeswararao, P., Ravisankarareddy, P., Synthesis of 7-(Morpholinomethyl)-9-(Trifluoromethyl)-4-((4-(Trifluoromethyl)Phenyl)Amino)-1-Thia-4,7,8-Triazaspiro[4.4]Non-8-Ene-3,6-Dione (2017) Heterocyclic Lett, 7 (4), pp. 1097-1105. , –,. (d; Nasser, S., Khalil, A.M., A Facile Synthesis, Structure, and Antimicrobial Evaluation of Novel 4-Arylhydrazono-5-Trifluoromethyl-2,4-Dihydropyrazol-3-Ones, Their N- and N,O-Bis-β-D-Glucosides (2009) Carbohyd. Res, 344, pp. 1654-1659; Dalya Al-Saad, M.G.M., Quadrelli, P., Pericyclic Reactions for Anti-HPVAntivirals: Unconventional Nucleoside Analogue Synthesis via Nitrosocarbonyl Chemistry (2017) Chemistry Select, 2, pp. 10340-10346. , a), and. (b; Davoodnia, A., Attar, P., Morsali, A., Eshghi, H., Tavakoli-Hoseini, N., Khadem, S., Experimental and Theoretical Studies on the Tautomerism in 2-Aminopyridines and 2(1H)-Pyridinones: Synthesis of 2-Amino-4-aryl-3-cyano-6-(3,4-dimethoxyphenyl)pyridines and 4-Aryl-3-cyano-6-(3,4-dimethoxyphenyl)-2(1H)-pyridinones (2011) Bull. Korean Chem. Soc., 32 (6), pp. 1873-1878; Bozhok Grigorii, T., Sivets Alexander, S., Baranovsky Elena, G., Kalinichenko, V.N., Synthesis of Novel 6-Substituted Thymine Ribonucleosides and Their 3′-Fluorinated Analogues (2016) Tetrahedron, 72, pp. 6518-6527; Mekala, N., Murthy, V.R.K., Rao, V.L.N., Dammalapati, A., Parimi, R., Safe and Alternate Process for the Reductions of Methanesulfonates: Application in the Synthesis of 1,2,3-Triacetyl-5- deoxy-D-Ribofuranoside (2016) Org. Process Res. Dev., 20, pp. 609-614. , Moturu, −; (2016) Spartan 16, , Wavefunction, Inc, Irvine, CA; Lewers, E.G., (2016) Computational Chemistry, pp. 253-258. , Springer Nature, Peterborough:; p","Hassan, A.E.A.; Applied Nucleic Acids Research Center, Zagazig UniversityEgypt; email: habdallaa@aol.com",,"Taylor and Francis Inc.",15257770,,NNNAF,"30929566","English","Nucleosides Nucleotides Nucleic Acids",Article,"Final",,Scopus,2-s2.0-85063607423 "Wang Y., Sun A., Sun Y., Zhang S., Xia T., Guo T., Hao Z., Sun L., Jiang Y., Qiao X., Cui W., Tang L., Xu Y., Li Y., Wang L.","57204446496;57210341044;57210338834;57204449782;57210341616;57202162860;57204449053;57193538385;56003035300;35330912300;57201756492;36169591400;34772167800;56178878700;57193361612;","Porcine transmissible gastroenteritis virus inhibits NF-κB activity via nonstructural protein 3 to evade host immune system",2019,"Virology Journal","16","1", 97,"","",,,"10.1186/s12985-019-1206-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070359002&doi=10.1186%2fs12985-019-1206-9&partnerID=40&md5=7c93c22fc1c088efbfd532d7acbe2937","Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China; Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China","Wang, Y., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Sun, A., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Sun, Y., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Zhang, S., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Xia, T., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Guo, T., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Hao, Z., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Sun, L., College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China; Jiang, Y., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Qiao, X., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Cui, W., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Tang, L., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Xu, Y., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Li, Y., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China; Wang, L., Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China, Northeastern Science Inspection Station, China Ministry of Agriculture, Key Laboratory of Animal Pathogen Biology, Harbin, Heilongjiang, China","Background: Transmissible gastroenteritis virus (TGEV), a member of the family Coronaviridae, causes lethal watery diarrhea in piglets. Previous studies have revealed that the coronaviruses develop various strategies to evade the host innate immunity through the inhibition of nuclear factor kappa B (NF-κB) signaling pathway. However, the ability of TGEV to inhibit the host innate immune response by modulating the NF-κB signaling pathway is not clear. Methods: In this study, a dual luciferase reporter assay was used to confirm the inhibition of NF-κB by TGEV infection and to identify the major viral proteins involved in the inhibition of NF-κB signaling. Real-time quantitative PCR was used to quantify the mRNA expression of inflammatory factors. The deubiquitination of Nsp3 domains and its effect on IκBα and p65 were analyzed by western blotting. The ubiquitination level of IκBα was analyzed by immunoprecipitation. Results: In ST and IPEC-J2 cells, TGEV exhibited a dose-dependent inhibition of NF-κB activity. Individual TGEV protein screening revealed the high potential of non-structural protein 3 (Nsp3) to inhibit NF-κB signaling, and leading to the downregulation of the NF-κB-induced cytokine production. We demonstrated that the inhibitory effect of Nsp3 was mainly mediated through the suppression of IκBα degradation as well as the inhibition of p65 phosphorylation and nuclear translocation. Furthermore, the amino acid residues at positions 590-1,215 in Nsp3 were demonstrated to inhibit the degradation of IκBα by inhibiting the IκBα ubiquitination. Conclusion: TGEV infection can inhibit the activation of the NF-κB signaling pathway, which is mainly mediated by Nsp3 through the canonical pathway. The amino acid residues at positions 590-1,215 in Nsp3 compose the critical domain that mediates NF-κB inhibition. We speculate that this inhibitory effect is likely to be related to the structure of PLP2 with deubiquitinating enzyme activity of the amino acid residues at positions 590-1,215 in Nsp3. Our study provides a better understanding of the TGEV-mediated innate immune modulation and lays the basis for studies on the pathogenesis of coronavirus. © 2019 The Author(s).","NF-κB; Nsp3; PLP; TGEV; Ubiquitination","I kappa B kinase alpha; immunoglobulin enhancer binding protein; messenger RNA; nonstructural protein 3; papain; protein papain like protease 2; synaptotagmin I; unclassified drug; viral protein; immunoglobulin enhancer binding protein; nonstructural protein, coronavirus; viral protein; animal cell; Article; controlled study; cytokine production; deubiquitination; down regulation; enzyme activation; enzyme activity; enzyme degradation; enzyme inhibition; enzyme repression; gene expression; host resistance; immune system; immunomodulation; immunoprecipitation; innate immunity; IPEC-J2 cell line; luciferase assay; nonhuman; pathogenesis; pig; protein analysis; protein phosphorylation; real time polymerase chain reaction; signal transduction; swine testicular cell line; testicular cell line; Transmissible gastroenteritis virus; ubiquitination; Western blotting; animal; cell line; genetics; immune evasion; immunology; innate immunity; physiology; signal transduction; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; virus replication; Animals; Cell Line; Down-Regulation; Gastroenteritis, Transmissible, of Swine; Host Microbial Interactions; Immune Evasion; Immunity, Innate; NF-kappa B; Signal Transduction; Swine; Transmissible gastroenteritis virus; Viral Nonstructural Proteins; Virus Replication","Guo, J., Li, F., Qian, S., Bi, D., He, Q., Jin, H., Luo, R., Li, Z., TGEV infection up-regulates FcRn expression via activation of NF-kappaB signaling (2016) Sci Rep, 6, p. 32154. , 1:CAS:528:DC%2BC28XhsVSrt7%2FN; Pritchard, G.C., Paton, D.J., Wibberley, G., Ibata, G., Transmissible gastroenteritis and porcine epidemic diarrhoea in Britain (1999) Vet Rec, 144, pp. 616-618. , 1:STN:280:DyaK1MzhvFaktw%3D%3D; Doyle, L.P., Transmissible gastroenteritis of pigs (1951) North Am Vet, 32, pp. 477-478. , 1:STN:280:DyaG3M%2Fot1yjug%3D%3D 14853258; Eleouet, J.F., Rasschaert, D., Lambert, P., Levy, L., Vende, P., Laude, H., Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus (1995) Virology, 206, pp. 817-822. , 1:CAS:528:DyaK2MXjs1Wktbg%3D; Huang, C., Lokugamage, K.G., Rozovics, J.M., Narayanan, K., Semler, B.L., Makino, S., Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate (2011) J Virol, 85, pp. 638-643. , 1:CAS:528:DC%2BC3MXitlCisrg%3D; Bowie, A.G., Unterholzner, L., Viral evasion and subversion of pattern-recognition receptor signalling (2008) Nat Rev Immunol, 8, pp. 911-922. , 1:CAS:528:DC%2BD1cXhsVWlsb7P; Sadler, A.J., Williams, B.R., Interferon-inducible antiviral effectors (2008) Nat Rev Immunol, 8, pp. 559-568. , 1:CAS:528:DC%2BD1cXns1ehs78%3D; Randall, R.E., Goodbourn, S., Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures (2008) J Gen Virol, 89, pp. 1-47. , 1:CAS:528:DC%2BD1cXns1Wiug%3D%3D; Hayden, M.S., Ghosh, S., NF-kappaB in immunobiology (2011) Cell Res, 21, pp. 223-244. , 1:CAS:528:DC%2BC3MXhsVOmurk%3D; Liang, P., Zhang, H., Wang, G., Li, S., Cong, S., Luo, Y., Zhang, B., KPNB1, XPO7 and IPO8 mediate the translocation ofNF-kappaB/p65 into the nucleus (2013) Traffic, 14, pp. 1132-1143. , 1:CAS:528:DC%2BC3sXhsF2gsL7F 23906023; Li, J., Liu, Y., Zhang, X., Murine coronavirus induces type i interferon in oligodendrocytes through recognition by RIG-I and MDA5 (2010) J Virol, 84, pp. 6472-6482. , 1:CAS:528:DC%2BC3cXptVehtbc%3D; Fang, Y., Fang, L., Wang, Y., Lei, Y., Luo, R., Wang, D., Chen, H., Xiao, S., Porcine reproductive and respiratory syndrome virus nonstructural protein 2 contributes to NF-kappaB activation (2012) Virol J, 9, p. 83. , 1:CAS:528:DC%2BC38XhsVaktL7N; Cong, F., Liu, X., Han, Z., Shao, Y., Kong, X., Liu, S., Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection (2013) BMC Genomics, 14, p. 743. , 1:CAS:528:DC%2BC3sXhvVyhtrrE; Ch'Ng, W.C., Abd-Aziz, N., Ong, M.H., Stanbridge, E.J., Shafee, N., Human renal carcinoma cells respond to Newcastle disease virus infection through activation of the p38 MAPK/NF-kappaB/IkappaBalpha pathway (2015) Cell Oncol (Dordr), 38, pp. 279-288. , 1:CAS:528:DC%2BC2MXotFCgt7Y%3D; Khatiwada, S., Delhon, G., Nagendraprabhu, P., Chaulagain, S., Luo, S., Diel, D.G., Flores, E.F., Rock, D.L., A parapoxviral virion protein inhibits NF-kappaB signaling early in infection (2017) PLoS Pathog, 13, p. e1006561; Dufrasne, F.E., Lucchetti, M., Martin, A., Andre, E., Dessilly, G., Kabamba, B., Goubau, P., Ruelle, J., Modulation of the NF-kappaB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism (2018) Virology, 513, pp. 11-16. , 1:CAS:528:DC%2BC2sXhs1elu7nJ; Beidas, M., Chehadeh, W., Effect of human coronavirus OC43 structural and accessory proteins on the transcriptional activation of antiviral response elements (2018) Intervirology, 61, pp. 30-35. , 1:CAS:528:DC%2BC1cXhsFyqurbI; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., Garcia-Sastre, A., Perlman, S., Sola, I., MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) PLoS Pathog, 14, p. e1006838; Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., Liu, H.J., Tong, D., Porcine epidemic diarrhea virus e protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression (2013) Virol J, 10, p. 26. , 1:CAS:528:DC%2BC3sXjtVSrt7g%3D; Zhang, Q., Ma, J., Yoo, D., Inhibition of NF-kappaB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion (2017) Virology, 510, pp. 111-126. , 1:CAS:528:DC%2BC2sXhtF2hsbjN; Wang, L., Qiao, X., Zhang, S., Qin, Y., Guo, T., Hao, Z., Sun, L., Jiang, Y., Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-kappaB activation (2018) Virulence, 9, pp. 1685-1698. , 1:CAS:528:DC%2BC1cXitVaqur7L; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NF-kappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178. , 1:CAS:528:DC%2BC2sXms1Cgsbs%3D; Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A., Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3 (2001) Nature, 413, pp. 732-738. , 1:CAS:528:DC%2BD3MXnvFegsL0%3D; Salminen, A., Huuskonen, J., Ojala, J., Kauppinen, A., Kaarniranta, K., Suuronen, T., Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging (2008) Ageing Res Rev, 7, pp. 83-105. , 1:CAS:528:DC%2BD1cXmsVyksr0%3D; Dediego, M.L., Nieto-Torres, J.L., Regla-Nava, J.A., Jimenez-Guardeno, J.M., Fernandez-Delgado, R., Fett, C., Castano-Rodriguez, C., Enjuanes, L., Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival (2014) J Virol, 88, pp. 913-924; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein (2018) Antivir Res, 149, pp. 58-74. , 1:CAS:528:DC%2BC2sXhvVaqsbvE; Wang, G., Chen, G., Zheng, D., Cheng, G., Tang, H., PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type i interferon signaling pathway (2011) PLoS One, 6, p. e17192. , 1:CAS:528:DC%2BC3MXisl2gurw%3D; Tan, J., Vonrhein, C., Smart, O.S., Bricogne, G., Bollati, M., Kusov, Y., Hansen, G., Hilgenfeld, R., The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes (2009) PLoS Pathog, 5, p. e1000428; Giridharan, S., Srinivasan, M., Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation (2018) J Inflamm Res, 11, pp. 407-419; Blackwell, T.S., Christman, J.W., The role of nuclear factor-kappa B in cytokine gene regulation (1997) Am J Respir Cell Mol Biol, 17, pp. 3-9. , 1:CAS:528:DyaK2sXksF2ktL8%3D; Lan, W., Petznick, A., Heryati, S., Rifada, M., Tong, L., Nuclear factor-kappaB: Central regulator in ocular surface inflammation and diseases (2012) Ocul Surf, 10, pp. 137-148; Li, Q., Verma, I.M., NF-κB regulation in the immune system (2002) Nat Rev Immunol, 2, p. 725. , 1:CAS:528:DC%2BD38XnsVGqsbg%3D; Yu, X., Lan, P., Hou, X., Han, Q., Lu, N., Li, T., Jiao, C., Tian, Z., HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production via suppressing the NF-kappaB pathway and ROS production (2017) J Hepatol, 66, pp. 693-702. , 1:CAS:528:DC%2BC2sXmsFWlug%3D%3D; Villalba, M., Fredericksen, F., Otth, C., Olavarria, V.H., Molecular characterization of the bovine IER3 gene: Down-regulation of IL-8 by blocking NF-kappaB activity mediated by IER3 overexpression in MDBK cells infected with bovine viral diarrhea virus-1 (2017) Mol Immunol, 92, pp. 169-179. , 1:CAS:528:DC%2BC2sXhslKnu7jO; Wojdyla, J.A., Manolaridis, I., Van Kasteren, P.B., Kikkert, M., Snijder, E.J., Gorbalenya, A.E., Tucker, P.A., Papain-like protease 1 from transmissible gastroenteritis virus: Crystal structure and enzymatic activity toward viral and cellular substrates (2010) J Virol, 84, pp. 10063-10073. , 1:CAS:528:DC%2BC3cXhtlarsrfJ; Chen, X., Wang, K., Xing, Y., Tu, J., Yang, X., Zhao, Q., Li, K., Chen, Z., Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity (2014) Protein Cell, 5, pp. 912-927. , 1:CAS:528:DC%2BC2cXhslyksrvO; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling (2009) J Virol, 83, pp. 6689-6705. , 1:CAS:528:DC%2BD1MXnvF2ltbg%3D; Yuan, L., Chen, Z., Song, S., Wang, S., Tian, C., Xing, G., Chen, X., Zhang, L., P53 degradation by a coronavirus papain-like protease suppresses type i interferon signaling (2015) J Biol Chem, 290, pp. 3172-3182. , 1:CAS:528:DC%2BC2MXhvVersb8%3D; Hu, J., Haseebuddin, M., Young, M., Colburn, N.H., Suppression of p65 phosphorylation coincides with inhibition of IkappaBalpha polyubiquitination and degradation (2005) Mol Carcinog, 44, pp. 274-284. , 1:CAS:528:DC%2BD2MXhtlWmsrvE","Li, Y.; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural UniversityChina; email: yijingli@163.com",,"BioMed Central Ltd.",1743422X,,,"31382996","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85070359002 "Ogando N.S., Ferron F., Decroly E., Canard B., Posthuma C.C., Snijder E.J.","57209637757;8526522800;6603700686;7003995150;6507457020;7006058325;","The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity",2019,"Frontiers in Microbiology","10",, 1813,"","",,2,"10.3389/fmicb.2019.01813","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072725123&doi=10.3389%2ffmicb.2019.01813&partnerID=40&md5=7e874aa145b9bc27fe553ef09ee11270","Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France; European Virus Bioinformatics Center, Jena, Germany","Ogando, N.S., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Ferron, F., Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France, European Virus Bioinformatics Center, Jena, Germany; Decroly, E., Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France; Canard, B., Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France; Posthuma, C.C., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Snijder, E.J., Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","Among RNA viruses, the order Nidovirales stands out for including viruses with the largest RNA genomes currently known. Nidoviruses employ a complex RNA-synthesizing machinery comprising a variety of non-structural proteins (nsps). One of the postulated drivers of the expansion of nidovirus genomes is the presence of a proofreading 3′-to-5′ exoribonuclease (ExoN) belonging to the DEDDh family. ExoN may enhance the fidelity of RNA synthesis by correcting nucleotide incorporation errors made by the RNA-dependent RNA polymerase. Here, we review our current understanding of ExoN evolution, structure, and function. Most experimental data are derived from studies of the ExoN domain of coronaviruses (CoVs), which were triggered by the bioinformatics-based identification of ExoN in the genome of severe acute respiratory syndrome coronavirus (SARS-CoV) and its relatives in 2003. Although convincing data supporting the proofreading hypothesis have been obtained, from biochemical assays and studies with CoV mutants lacking ExoN functionality, the features of ExoN from most other nidovirus families remain to be characterized. Remarkably, viable ExoN knockout mutants were obtained only for two CoVs, mouse hepatitis virus (MHV) and SARS-CoV, whose RNA synthesis and replication kinetics were mildly affected by the lack of ExoN function. In several other CoV species, ExoN inactivation was not tolerated, and knockout mutants could not be rescued when launched using a reverse genetics system. This suggests that ExoN is also critical for primary viral RNA synthesis, a property that poorly matches the profile of an enzyme that would merely boost long-term replication fidelity. In CoVs, ExoN resides in a bifunctional replicase subunit (nsp14) whose C-terminal part has (N7-guanine)-methyltransferase activity. The crystal structure of SARS-CoV nsp14 has shed light on the interplay between these two domains, and on nsp14’s interactions with nsp10, a co-factor that strongly enhances ExoN activity in vitro assays. Further elucidation of the structure-function relationships of ExoN and its interactions with other (viral and/or host) members of the CoV replication machinery will be key to understanding the enzyme’s role in viral RNA synthesis and pathogenesis, and may contribute to the design of new approaches to combat emerging nidoviruses. © Copyright © 2019 Ogando, Ferron, Decroly, Canard, Posthuma and Snijder.","coronavirus; exoribonuclease; N7-methyltransferase; nidovirus; non-structural protein 14; proofreading","aurintricarboxylic acid; beta interferon; DNA directed DNA polymerase beta; exonuclease; exoribonuclease; methyltransferase; nonstructural protein 1; nucleotidyltransferase; RNA directed RNA polymerase; RNA polymerase; s adenosylmethionine; Sindbis virus nonstructural protein 4; zinc binding protein; alanine-scanning mutagenesis; Arterivirus; Coronaviridae infection; double-stranded RNA virus; enzyme activity; gene expression; gene knockout; genome analysis; human; immune evasion; innate immunity; Middle East respiratory syndrome coronavirus; Murine hepatitis virus; Nidovirales; Nidovirales infection; nonhuman; pathogenesis; phenotypic variation; reverse transcription polymerase chain reaction; Review; RNA capping; RNA replication; RNA synthesis; SARS coronavirus; sequence alignment; severe acute respiratory syndrome; site directed mutagenesis; virus cell interaction; virus genome","Acevedo, A., Brodsky, L., Andino, R., Mutational and fitness landscapes of an RNA virus revealed through population sequencing (2014) Nature, 505, pp. 686-690. , 24284629; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) mBio, 9, pp. e00221-e218. , 29511076; Ahn, D.G., Choi, J.K., Taylor, D.R., Oh, J.W., Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates (2012) Arch. Virol, 157, pp. 2095-2104. , 22791111; Aouadi, W., Eydoux, C., Coutard, B., Martin, B., Debart, F., Vasseur, J.J., Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay (2017) Antiviral Res, 144, pp. 330-339. , 28676301; Barnes, M.H., Spacciapoli, P., Li, D.H., Brown, N.C., The 3’-5’ exonuclease site of DNA polymerase III from gram-positive bacteria: definition of a novel motif structure (1995) Gene, 165, pp. 45-50. , 7489914; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuniga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J. Virol, 90, pp. 5399-5414. , 27009949; Beese, L.S., Steitz, T.A., Structural basis for the 3’-5’ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism (1991) EMBO J, 10, pp. 25-33. , 1989886; Bernad, A., Blanco, L., Lazaro, J.M., Martin, G., Salas, M., A conserved 3’—-5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases (1989) Cell, 59, pp. 219-228. , 2790959; Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E.J., Canard, B., In vitro reconstitution of SARS-coronavirus mRNA cap methylation (2010) PLoS Pathog, 6 (e1000863). , 20421945; Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., Decroly, E., RNA 3’-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex (2012) Proc. Natl. Acad. Sci. U.S.A, 109, pp. 9372-9377. , 22635272; Bouvet, M., Lugari, A., Posthuma, C.C., Zevenhoven, J.C., Bernard, S., Betzi, S., Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes (2014) J. Biol. Chem, 289, pp. 25783-25796. , 25074927; Bukhari, K., Mulley, G., Gulyaeva, A.A., Zhao, L., Shu, G., Jiang, J., Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus (2018) Virology, 524, pp. 160-171. , 30199753; Byszewska, M., Smietanski, M., Purta, E., Bujnicki, J.M., RNA methyltransferases involved in 5’ cap biosynthesis (2014) RNA Biol, 11, pp. 1597-1607. , 25626080; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis of S-Adenosyl-l-Methionine-Binding residues in coronavirus nsp14 N7-Methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity (2016) J. Virol, 90, pp. 7248-7256. , 27252528; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Sexton, N.R., Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2018) J. Virol, 92 (e01531-17). , 29046453; Chen, P., Jiang, M., Hu, T., Liu, Q., Chen, X.S., Guo, D., Biochemical characterization of exoribonuclease encoded by SARS coronavirus (2007) J. Biochem. Mol. Biol, 40, pp. 649-655. , 17927896; Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase (2009) Proc. Natl. Acad. Sci. U.S.A, 106, pp. 3484-3489. , 19208801; Chen, Y., Tao, J., Sun, Y., Wu, A., Su, C., Gao, G., Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7-methyltransferase (2013) J. Virol, 87, pp. 6296-6305. , 23536667; Chouhan, B.P.S., Maimaiti, S., Gade, M., Laurino, P., Rossmann-Fold methyltransferases: taking a “beta-Turn” around their cofactor, S-adenosylmethionine (2019) Biochemistry, 58, pp. 166-170. , 30406995; Crotty, S., Cameron, C.E., Andino, R., RNA virus error catastrophe: direct molecular test by using ribavirin (2001) Proc. Natl. Acad. Sci. U.S.A, 98, pp. 6895-6900. , 11371613; Crotty, S., Maag, D., Arnold, J.J., Zhong, W., Lau, J.Y., Hong, Z., The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen (2000) Nat. Med, 6, pp. 1375-1379. , 11100123; Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex (2011) PLoS Pathog, 7 (e1002059). , a, 21637813; Decroly, E., Ferron, F., Lescar, J., Canard, B., Conventional and unconventional mechanisms for capping viral mRNA (2011) Nat. Rev. Microbiol, 10, pp. 51-65. , b, 22138959; Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-methyltransferase activity (2008) J. Virol, 82, pp. 8071-8084. , 18417574; den Boon, J.A., Snijder, E.J., Chirnside, E.D., de Vries, A.A., Horzinek, M.C., Spaan, W.J., Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily (1991) J. Virol, 65, pp. 2910-2920; Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol, 8, pp. 270-279. , 21593585; Derbyshire, V., Grindley, N.D., Joyce, C.M., The 3’-5’ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction (1991) EMBO J, 10, pp. 17-24. , 1989882; Deutscher, M.P., Marlor, C.W., Purification and characterization of Escherichia coli RNase T (1985) J. Biol. Chem, 260, pp. 7067-7071. , 3888994; Drake, J.W., Holland, J.J., Mutation rates among RNA viruses (1999) Proc. Natl. Acad. Sci. U.S.A, 96, pp. 13910-13913. , 10570172; Durzynska, I., Sauerwald, M., Karl, N., Madhugiri, R., Ziebuhr, J., Characterization of a bafinivirus exoribonuclease activity (2018) J. Gen. Virol, 99, pp. 1253-1260. , 30058998; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog, 6 (e1000896). , 20463816; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J. Virol, 81, pp. 12135-12144. , 17804504; Eigen, M., Error catastrophe and antiviral strategy (2002) Proc. Natl. Acad. Sci. U.S.A, 99, pp. 13374-13376; Ferron, F., Subissi, L., Silveira De Morais, A.T., Le, N.T.T., Sevajol, M., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc. Natl. Acad. Sci. U.S.A, 115, pp. E162-E171. , 29279395; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37. , 16503362; Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P., Blinov, V.M., Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis (1989) Nucleic Acids Res, 17, pp. 4847-4861. , 2526320; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol, 76, pp. 3697-3708. , 11907209; Graepel, K.W., Lu, X., Case, J.B., Sexton, N.R., Smith, E.C., Denison, M.R., Proofreading-Deficient coronaviruses adapt for increased fitness over long-term passage without reversion of exoribonuclease-inactivating mutations (2017) mBio, 8 (e01503-e17). , 29114026; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat. Med, 18, pp. 1820-1826. , 23142821; Habjan, M., Penski, N., Spiegel, M., Weber, F., T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus (2008) J. Gen. Virol, 89, pp. 2157-2166. , 18753225; Hastie, K.M., Kimberlin, C.R., Zandonatti, M.A., MacRae, I.J., Saphire, E.O., Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression (2011) Proc. Natl. Acad. Sci. U.S.A, 108, pp. 2396-2401. , 21262835; Imbert, I., Guillemot, J.C., Bourhis, J.M., Bussetta, C., Coutard, B., Egloff, M.P., A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus (2006) EMBO J, 25, pp. 4933-4942. , 17024178; Jin, X., Chen, Y., Sun, Y., Zeng, C., Wang, Y., Tao, J., Characterization of the guanine-N7 methyltransferase activity of coronavirus nsp14 on nucleotide GTP (2013) Virus Res, 176, pp. 45-52. , 23702198; Kindler, E., Thiel, V., To sense or not to sense viral RNA–essentials of coronavirus innate immune evasion (2014) Curr. Opin. Microbiol, 20, pp. 69-75. , 24908561; Kirchdoerfer, R.N., Ward, A.B., Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors (2019) Nat. Commun, 10 (2342). , 31138817; Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol, 6 (e226). , 18798692; Lam, V., Duca, K.A., Yin, J., Arrested spread of vesicular stomatitis virus infections in vitro depends on interferon-mediated antiviral activity (2005) Biotechnol. Bioeng, 90, pp. 793-804. , 15834946; Lauber, C., Goeman, J.J., del Carmen Parquet, M., Nga, P.T., Snijder, E.J., Morita, K., The footprint of genome architecture in the largest genome expansion in RNA viruses (2013) PLoS Pathog, 9 (e1003500). , 23874204; Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M., Ruben, M., Overkleeft, H.S., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses (2015) Nucleic Acids Res, 43, pp. 8416-8434. , 26304538; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc. Natl. Acad. Sci. U.S.A, 112, pp. 9436-9441. , 26159422; Manrubia, S.C., Domingo, E., Lazaro, E., Pathways to extinction: beyond the error threshold (2010) Philos. Trans. R. Soc. Lond. B Biol. Sci, 365, pp. 1943-1952. , 20478889; Martin, J.L., McMillan, F.M., SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold (2002) Curr. Opin. Struct. Biol, 12, pp. 783-793. , 12504684; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Discovery of an RNA virus 3’->5’ exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc. Natl. Acad. Sci. U.S.A, 103, pp. 5108-5113. , 16549795; Neuman, B.W., How the double spherules of infectious bronchitis virus impact our understanding of RNA virus replicative organelles (2013) mBio, 4 (e0987-13). , 24345746; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res, 194, pp. 49-66. , 24355834; Nga, P.T., Parquet Mdel, C., Lauber, C., Parida, M., Nabeshima, T., Yu, F., Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes (2011) PLoS Pathog, 7 (e1002215). , 21931546; Pasternak, A.O., Spaan, W.J., Snijder, E.J., Nidovirus transcription: how to make sense? (2006) J. Gen. Virol, 87, pp. 1403-1421. , 16690906; Pfeiffer, J.K., Kirkegaard, K., Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice (2005) PLoS Pathog, 1 (e11). , 16220146; Posthuma, C.C., Te Velthuis, A.J.W., Snijder, E.J., Nidovirus RNA polymerases: complex enzymes handling exceptional RNA genomes (2017) Virus Res, 234, pp. 58-73. , 28174054; Rao, S.T., Rossmann, M.G., Comparison of super-secondary structures in proteins (1973) J. Mol. Biol, 76, pp. 241-256; Russier, M., Reynard, S., Carnec, X., Baize, S., The exonuclease domain of Lassa virus nucleoprotein is involved in antigen-presenting-cell-mediated NK cell responses (2014) J. Virol, 88, pp. 13811-13820. , 25253342; Saberi, A., Gulyaeva, A.A., Brubacher, J.L., Newmark, P.A., Gorbalenya, A.E., A planarian nidovirus expands the limits of RNA genome size (2018) PLoS Pathog, 14 (e1007314). , 30383829; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J. Virol, 81, pp. 20-29; Schubert, H.L., Blumenthal, R.M., Cheng, X., Many paths to methyltransfer: a chronicle of convergence (2003) Trends Biochem. Sci, 28, pp. 329-335. , 12826405; Sevajol, M., Subissi, L., Decroly, E., Canard, B., Imbert, I., Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus (2014) Virus Res, 194, pp. 90-99. , 25451065; Sexton, N.R., Smith, E.C., Blanc, H., Vignuzzi, M., Peersen, O.B., Denison, M.R., Homology-Based identification of a mutation in the coronavirus RNA-Dependent RNA polymerase that confers resistance to multiple mutagens (2016) J. Virol, 90, pp. 7415-7428. , 27279608; Sheahan, T.P., Sims, A.C., Graham, R.L., Menachery, V.D., Gralinski, L.E., Case, J.B., Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses (2017) Sci. Transl. Med, 9 (eaal3653). , 28659436; Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., Author correction: the evolutionary history of vertebrate RNA viruses (2018) Nature, 561 (E6). , a, 29946168; Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., The evolutionary history of vertebrate RNA viruses (2018) Nature, 556, pp. 197-202. , b; Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Redefining the invertebrate RNA virosphere (2016) Nature, 540, pp. 539-543. , 27880757; Siddell, S.G., Walker, P.J., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Additional changes to taxonomy ratified in a special vote by the international committee on taxonomy of viruses (October 2018) (2019) Arch. Virol, 164, pp. 943-946. , 30663020; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9 (e1003565). , 23966862; Smith, E.C., Case, J.B., Blanc, H., Isakov, O., Shomron, N., Vignuzzi, M., Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity (2015) J. Virol, 89, pp. 6418-6426. , 25855750; Smith, E.C., Denison, M.R., Implications of altered replication fidelity on the evolution and pathogenesis of coronaviruses (2012) Curr. Opin. Virol, 2, pp. 519-524. , 22857992; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J. Mol. Biol, 331, pp. 991-1004. , 12927536; Snijder, E.J., Decroly, E., Ziebuhr, J., The nonstructural proteins directing coronavirus RNA synthesis and processing (2016) Adv. Virus Res, 96, pp. 59-126. , 27712628; Soding, J., Protein homology detection by HMM-HMM comparison (2005) Bioinformatics, 21, pp. 951-960. , 15531603; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu. Rev. Virol, 2, pp. 265-288. , 26958916; Steinhauer, D.A., Domingo, E., Holland, J.J., Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase (1992) Gene, 122, pp. 281-288. , 1336756; Steitz, T.A., Steitz, J.A., A general two-metal-ion mechanism for catalytic RNA (1993) Proc. Natl. Acad. Sci. U.S.A, 90, pp. 6498-6502. , 8341661; Subissi, L., Imbert, I., Ferron, F., Collet, A., Coutard, B., Decroly, E., SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets (2014) Antiviral Res, 101, pp. 122-130. , a, 24269475; Subissi, L., Posthuma, C.C., Collet, A., Zevenhoven-Dobbe, J.C., Gorbalenya, A.E., Decroly, E., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc. Natl. Acad. Sci. U.S.A, 111, pp. E3900-E3909. , b, 25197083; Sun, Y., Wang, Z., Tao, J., Wang, Y., Wu, A., Yang, Z., Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine-N7-methyltransferase (2014) Antiviral Res, 104, pp. 156-164. , 24530452; te Velthuis, A.J., Arnold, J.J., Cameron, C.E., van den Worm, S.H., Snijder, E.J., The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent (2010) Nucleic Acids Res, 38, pp. 203-214. , 19875418; Tvarogova, J., Madhugiri, R., Bylapudi, G., Ferguson, L.J., Karl, N., Ziebuhr, J., Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3’-terminal adenylyltransferase activity (2019) J. Virol, 93 (e0291-19). , 30918070; Ulferts, R., Mettenleiter, T.C., Ziebuhr, J., Characterization of Bafinivirus main protease autoprocessing activities (2011) J. Virol, 85, pp. 1348-1359. , 21068254; Vignuzzi, M., Stone, J.K., Arnold, J.J., Cameron, C.E., Andino, R., Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population (2006) Nature, 439, pp. 344-348. , 16327776; Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys (2016) Nature, 531, pp. 381-385. , 26934220; Xiao, Y., Ma, Q., Restle, T., Shang, W., Svergun, D.I., Ponnusamy, R., Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity (2012) J. Virol, 86, pp. 4444-4454. , 22318142; Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G., Ding, J., Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design (2003) Nucleic Acids Res, 31, pp. 7117-7130. , 14654687; Yekwa, E., Aphibanthammakit, C., Carnec, X., Picard, C., Canard, B., Baize, S., Arenaviridae exoribonuclease presents genomic RNA edition capacity (2019) bioRxiv, , 541698; Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer (2005) Nat. Struct. Mol. Biol, 12, pp. 980-986. , 16228002; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol, 81, pp. 853-879. , 10725411; Zimmermann, L., Stephens, A., Nam, S.Z., Rau, D., Kubler, J., Lozajic, M., A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core (2018) J. Mol. Biol, 430, pp. 2237-2243. , 29258817; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov, 15, pp. 327-347. , 26868298; Zuo, Y., Deutscher, M.P., Exoribonuclease superfamilies: structural analysis and phylogenetic distribution (2001) Nucleic Acids Res, 29, pp. 1017-1026. , 11222749; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat. Immunol, 12, pp. 137-143. , 21217758","Snijder, E.J.; Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: E.J.Snijder@lumc.nl",,"Frontiers Media S.A.",1664302X,,,,"English","Front. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85072725123 "Usaini S., Hassan A.S., Garba S.M., Lubuma J.M.-S.","55228666900;15077911600;24376429200;6602950766;","Modeling the transmission dynamics of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with latent immigrants",2019,"Journal of Interdisciplinary Mathematics","22","6",,"903","930",,,"10.1080/09720502.2019.1692429","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076905168&doi=10.1080%2f09720502.2019.1692429&partnerID=40&md5=6fd57a7a153f7a1716a1e74fea6397fb","Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa","Usaini, S., Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa; Hassan, A.S., Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa; Garba, S.M., Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa; Lubuma, J.M.-S., Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa","A new deterministic mathematical model for the transmission dynamics of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is proposed and fully analyzed. The presented model exhibits a unique endemic equilibrium and there is no infection free equilibrium due to constant influx of latent immigrants. An invasion threshold parameter is derived and stability analysis of the full model and its two special cases is carried out. The impact of quarantine and isolation is assessed via threshold analysis approach, while the impact of immigration on the disease prevalence is discussed. Indeed, we showed that MERS-CoV can be controlled by quick isolation or monitoring close contacts and quarantining of suspected latent immigrants. Further, numerical simulations of the model reveal that the disease can be contained if these preventive measures are combined with high reduction of immigration rate. © 2019, © 2019 Taru Publications.","(2010) 34D23; 93C15; 93D20; Isolation; Middle East Respiratory Syndrome; Quarantine",,"Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., de Wit, E., Munster, V.J., Lipkin, W.I., Middle East Respiratory Syndrome Coronavirus Infection in Dromedary Camels in Saudi Arabia (2014) mBio, 5 (2), pp. e00884-e814; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Alabdullatif, Z.N., Memish, Z.A., Hospital outbreak of Middle East Respiratory Syndrome Coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East (2012) Euro Surveill, 17 (40); Brauer, F., van den Driessche, P., Models for the transmission of disease with immigration of infectives (2001) Math. Biosci, 171, pp. 143-154; Castillo-Chavez, C., Feng, Z., Huang, W., On the computation of R0 and its role on global stability (2002) Mathematical approaches for emerging and reemerging infectious diseases:an introduction, pp. 261-274. , Castillo-Chavez C., Blower S., van der Driessche P., Kirschner D., Yakubu A., (eds), Springer, and,. In:, (eds; Castillo-Chavez, C., Song, B., Dynamical models of tuberculosis and their applications (2004) Math. Biosci. Engineer, 1 (2), pp. 361-404; Cauchemez, S., Fraser, C., Kerkhove, M.D.V., Donnelly, C.A., Riley, S., Rambaut, A., Enouf, V., Ferguson, N.M., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; (2014), http://www.cidrap.umn.edu/news-perspective/2013/09/eight-472new-saudi-cases-push-global-mers-total-130, Accessed September 14 2014; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A.M., Ziebuhr, J., Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol, 87 (14), pp. 7790-7792; Gumel, A.B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Gabrielson, D., Sahai, B.M., Modelling strategies for controlling SARS outbreaks (2004) Proc. R. Soc. Lond. B, 271, pp. 2223-2232; Guo, H., Li, M.Y., Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations (2012) Discrete Contin. Dyn. Syst., Ser. B, 17 (7), pp. 2413-2430; Haagmans, B.L., Al Dhahiry, S.H.S., Reusken, C.B.E.M., Raj, V.S., Galiano, M., Myers, R., Godeke, G.-J., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145; Hale, J.K., Lunel, S.M.V., (1993) Introduction to functional differential equations, , Springer-Verlag, Berlin, Heidelrberg, New York; (2014), http://www.healthmap.org/en/, Accessed March 14 2014; Hemidal, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18 (50). , http://www.eurosurveillance.org/, pii=20659. Available online; Kupperschmidt, K., Researchers scramble to understand camel connection to MERS (2013) SCIENCE, 341; Lee, J., Chowell, G., Jung, E., A dynamic compartmental model for the middle east respiratory syndrome outbreak in the republic of korea: A retrospective analysis on control interventions and superspreading events (2016) Journal of theoretical biology, 408, pp. 118-126; Lancaster, P., (1969) Theory of Matrices, , New York; Penttinen, P.M., Kaasik-Aaslav, K., Friaux, A., Donachie, A., Sudre, B., Amato-Gauci, A.J., Memish, Z.A., Coulombier, D., Taking stock of the first 133 MERS coronavirus cases globally–Is the epidemic changing? (2013) Euro Surveill, 18 (39), pp. 1-5; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18 (36). , http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20574, pii=20574. Available online; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18 (50). , http://www.eurosurveillance.org/View-Article.aspx?ArticleId=20662, pii=20662. Available online: //; Safi, M.A., Gumel, A.B., Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine (2011) Computers and Mathematics with applications, 61, pp. 3044-3070; Safi, M.A., Gumel, A.B., Qualitative study of a quarantine/isolation model with multiple disease stages (2011) Applied Mathematics and Computation, 218, pp. 1941-1961; (2014) Global Alert and Response (GAR): Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/csr/don/20140411mers/en/, update // (accessedApril21,2014) (accessed April 21, 2014; Global Alert and Response (GAR): novel coronavirus infection, , http://www.who.int/csr/don/20130801/en/index.html, accessed Aug 1, 2014; Xia, Z.-Q., Zhang, J., Xue, Y.-K., Sun, G.-Q., Jin, Z., Modeling the transmission of middle east respiratory syndrome corona virus in the republic of korea (2015) PloS one, 10. , p; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820","Usaini, S.; Department of Mathematics and Applied Mathematics, University of PretoriaSouth Africa; email: s3.usaini@gmail.com",,"Taru Publications",09720502,,,,"English","J. Interdiscip. Math.",Article,"Final",,Scopus,2-s2.0-85076905168 "Zhao Y., Lu R., Shen J., Xie Z., Liu G., Tan W.","56247482700;7402970093;55726253800;7402267422;57203376871;7401959748;","Comparison of viral and epidemiological profiles of hospitalized children with severe acute respiratory infection in Beijing and Shanghai, China",2019,"BMC Infectious Diseases","19","1", 729,"","",,1,"10.1186/s12879-019-4385-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071012377&doi=10.1186%2fs12879-019-4385-5&partnerID=40&md5=f3c51d9a1f6b1665f368a3b667e311cf","Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China; National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, Changping District, 102206, China; Children's Hospital, Fudan University, Shanghai, China; Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China","Zhao, Y., Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China, National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, Changping District, 102206, China; Lu, R., National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, Changping District, 102206, China; Shen, J., Children's Hospital, Fudan University, Shanghai, China; Xie, Z., Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics (Capital Medical University), Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China; Liu, G., Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China; Tan, W., Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical University, Zhejiang, China, National Institute for Viral Disease Control and Prevention, China CDC, 155Changbai Road, Beijing, Changping District, 102206, China","Background: No comparison data have been reported on viral and epidemiological profiles of hospitalized children with severe acute respiratory infection (SARI) in Beijing or Shanghai, China. Methods: We collected 700 nasopharyngeal aspirates (NPA) from hospitalized children with SARI in Beijing (northern China) and Shanghai (southern China). Multiple respiratory viruses (including 15 common viruses) were screened by validated polymerase chain reaction (PCR) or real-time reverse transcription-PCR assays and confirmed by sequencing. Demographic data and the distribution of viral infections were also examined. Results: Of 700 samples, 547 (78.1%) tested positive for viral infections. The picornaviruses (PIC), which included rhinovirus (RV) and enterovirus (EV), were the most common (34.0%), followed by respiratory syncytial virus (RSV) (28.3%), human bocavirus (HBoV) (19.1%), adenovirus (ADV) (13.7%), human coronaviruses (HCoV) (10.7%), influenza A and B (8.9%), parainfluenza virus (PIV 1-3) (7.9%), and human metapneumovirus (HMPV) (5.0%). PIC (RV/EV) and RSV were the most prevalent etiological agents of SARI in both cities. The total and age-matched prevalence of RSV, HCoV, and hMPV among SARI children under 5 years old were significantly higher in Beijing than in Shanghai. Different age and seasonal distribution patterns of the viral infections were found between Beijing and Shanghai. Conclusions: Viral infection was tested and shown to be the most prevalent etiological agent among children with SARI in either the Beijing or the Shanghai area, while showing different patterns of viral and epidemiological profiles. Our findings provide a better understanding of the roles of geographic location and climate in respiratory viral infections in hospitalized children with SARI. © 2019 The Author(s).","Beijing; Children; Epidemiological profile; Nasopharyngeal aspirates; Polymerase chain reaction; Severe acute respiratory infection; Shanghai; Virus","Adenoviridae; adolescent; Article; child; China; climate; controlled study; Coronaviridae; demography; Enterovirus; female; geographic distribution; groups by age; hospitalized child; human; Human bocavirus; Human metapneumovirus; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human respiratory syncytial virus; infant; Influenza A virus; Influenza B virus; major clinical study; male; nasopharyngeal aspiration; nonhuman; Picornaviridae; polymerase chain reaction; preschool child; prevalence; real time reverse transcription polymerase chain reaction; respiratory virus; Rhinovirus; school child; seasonal variation; severe acute respiratory infection; viral respiratory tract infection; virus identification; adenovirus infection; comparative study; hospitalization; influenza; newborn; paramyxovirus infection; parvovirus infection; picornavirus infection; respiratory syncytial virus infection; respiratory tract infection; Respirovirus infection; virology; Adenoviridae Infections; Beijing; Child, Preschool; China; Female; Hospitalization; Humans; Infant; Infant, Newborn; Influenza, Human; Male; Paramyxoviridae Infections; Parvoviridae Infections; Picornaviridae Infections; Prevalence; Respiratory Syncytial Virus Infections; Respiratory Tract Infections; Respirovirus Infections","Liu, L., Johnson, H.L., Cousens, S., Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000 (2012) Lancet, 379, pp. 2151-2161; Williams, B., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of world-wide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; (2011) WHO Global Technical Consultation: Global Standards and Tools for Influenza Surveillance, , World Health Organization World Health Organization Geneva; Byington, C.L., Enriquez, F.R., Hoff, C., Serious bacterial infections in febrile infants 1 to 90 days old with and without viral infections (2004) Pediatrics., 113 (6), pp. 1662-1666; Wang, Y., Zhu, N., Li, Y., Lu, R., Wang, H., Liu, G., Zou, X., Tan, W., Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China (2016) Clin Microbiol Infect, 22 (5), pp. 458e1-458e9. , 1:STN:280:DC%2BC28njt1OgtQ%3D%3D; Wang, Y., Li, Y., Liu, J., Zhao, Y., Xie, Z., Shen, J., Tan, W., Genetic characterization of human bocavirus among children with severe acute respiratory infection in China (2016) J Inf Secur, 73 (2), pp. 155-163; Chittaganpitch, M., Waicharoen, S., Yingyong, T., Viral etiologies of influenza-like illness and severe acute respiratory infections in Thailand (2018) Influenza Other Respi Viruses, 12 (4), pp. 482-489. , 1:CAS:528:DC%2BC1cXhtFOnur7P; Kenmoe, S., Tchendjou, P., Vernet, M.A., Viral etiology of severe acute respiratory infections in hospitalized children in Cameroon, 2011-2013 (2016) Influenza Other Respi Viruses, 10 (5), pp. 386-393; Choi, E.H., Lee, H.J., Kim, S.J., The association of newly identified respiratory viruses with lower respiratory tract infections in Korean children, 2000-2005 (2006) Clin Infect Dis, 43, pp. 585-592. , 1:CAS:528:DC%2BD28XpsFKmtLs%3D; Rakocevic, B., Grgurevic, A., Trajkovic, G., Severe acute respiratory infection surveillance in Montenegro, 2014-2017 (2018) Curr Med Res Opin, 34 (8), pp. 1513-15172; Ouedraogo, S., Traoré, B., Nene Bi, Z.A., Viral Etiology of Respiratory Tract Infections in Children at the Pediatric Hospital in Ouagadougou (Burkina Faso) (2014) PLoS One, 9 (10), p. e110435. , 10.1371/journal.pone.0110435 1:CAS:528:DC%2BC2cXhvFaiu7jE 25360527 4215928; Pale, M., Nacoto, A., Tivane, A., Respiratory syncytial and influenza viruses in children under 2 years old with severe acute respiratory infection (SARI) in Maputo, 2015 (2017) PLoS One, 12 (11). , e0186735; Horton, K.C., Dueger, E.L., Kandeel, A., Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the eastern Mediterranean region, 2007-2014 (2017) PLoS One, 12 (7). , e0180954; Pan, Y., Zhang, Y., Shi, W., Human parainfluenza virus infection in severe acute respiratory infection cases in Beijing, 2014-2016: A molecular epidemiological study (2017) Influenza Other Respi Viruses, 11 (6), pp. 564-568. , 1:CAS:528:DC%2BC2sXhvFWmsrjJ; Zhang, C., Zhu, N., Xie, Z., Lu, R., He, B., Liu, C., Ma, X., Tan, W., Viral etiology and clinical profiles of children with severe acute respiratory infections in China (2013) PLoS One, 8 (8). , e72606 1:CAS:528:DC%2BC3sXhtlOhtbzK; Lu, R., Yu, X., Wang, W., Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays (2012) PLoS One, 7 (6). , e38638 1:CAS:528:DC%2BC38XptFaltb8%3D; Yu, X., Lu, R., Wang, Z., Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing (2012) PLoS One, 7 (2). , e32174 1:CAS:528:DC%2BC38Xjs1ejsbg%3D; Beck, E.T., Henrickson, K.J., Molecular diagnosis of respiratory viruses (2010) Future Microbiol, 5, pp. 901-916. , 1:CAS:528:DC%2BC3cXmvFeju7w%3D; Dong, W., Chen, Q., Hu, Y., Epidemiological and clinical characteristics of respiratory viral infections in children in Shanghai, China (2016) Arch Virol, 161 (7), pp. 1907-1913. , 1:CAS:528:DC%2BC28XntVOrsLg%3D; Ren, L., Gonzalez, R., Wang, Z., Prevalence of human respiratory viruses in adults with acute respiratory tract infections in Beijing, 2005-2007 (2009) Clin Microbiol Infect, 15, pp. 1146-1153. , 1:STN:280:DC%2BD1MjntFCmug%3D%3D; Bharaj, P., Sullender, W.M., Kabra, S.K., Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007 (2009) Virol J, 26 (6), p. 89; Brittain-Long, R., Andersson, L.M., Olofsson, S., Seasonal variations of 15 respiratory agents illustrated by the application of a multiplex polymerase chain reaction assay (2011) Scand J Infect Dis, 44 (1), pp. 9-17; Berkley, J.A., Munywoki, P., Ngama, M., Viral etiology of severe pneumonia among Kenyan young infants and children (2010) JAMA, 303, pp. 2051-2057. , 1:CAS:528:DC%2BC3cXntVWrtb0%3D; Jones, A.H., Ampofo, W., Akuffo, R., Sentinel surveillance for influenza among severe acute respiratory infection and acute febrile illness inpatients at three hospitals in Ghana (2016) Influenza Other Respi Viruses, 10 (5), pp. 367-374; Yu, J., Xie, Z., Zhang, T., Comparison of the prevalence of respiratory viruses in patients with acute respiratory infections at different hospital settings in North China, 2012-2015 (2018) BMC Infect Dis, 18 (1), p. 72; Moesker, F.M., Van Kampen, J.J., Van Rossum, A.M., Viruses as sole causative agents of severe acute respiratory tract infections in children (2016) PLoS One, 11 (3). , e0150776; Larcher, C., Jeller, V., Fischer, H., Huemer, H.P., Prevalence of respiratory viruses, including newly identified viruses, in hospitalised children in Austria (2006) Eur J Clin Microbiol Infect Dis, 25, pp. 681-686. , 1:STN:280:DC%2BD28nnvFKksA%3D%3D; Kwofie, T.B., Anane, Y.A., Nkrumah, B., Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana (2012) Virol J, 9, p. 78; Durigon, G.S., Oliveira, D.B., Felicio, M.C., Poor outcome of acute respiratory infection in young children with underlying health condition in Brazil (2015) Int J Infect Dis, 34, pp. 3-7; Feng, L., Li, Z., Zhao, S., Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013 (2014) PLoS One, 9 (6), p. e99419; Panda, S., Mohakud, N.K., Suar, M., Kumar, S., Etiology, seasonality, and clinical characteristics of respiratory viruses in children with respiratory tract infections in eastern India (Bhubaneswar, Odisha) (2017) J Med Virol, 89 (3), pp. 553-558; Huang, G., Yu, D., Mao, N., Viral etiology of acute respiratory infection in Gansu Province, China, 2011 (2013) PLoS One, 8 (5). , e64254 1:CAS:528:DC%2BC3sXot1yntLg%3D; Schildgen, V., Van Den Hoogen, B., Fouchier, R., Human Metapneumovirus: Lessons learned over the first decade (2011) Clin Microbiol Rev, 24, pp. 734-754; Gaunt, E.R., Hardie, A., Claas, E.C.J., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947. , 1:CAS:528:DC%2BC3cXht1Omu7jK; Fu, Y., Pan, L., Sun, Q., The clinical and etiological characteristics of influenza-like illness (ILI) in outpatients in Shanghai, China, 2011 to 2013 (2015) PLoS One, 10 (3). , e0119513; Lepiller, Q., Barth, H., Lefebvre, F., High incidence but low burden of coronaviruses and preferential associations between respiratory viruses (2013) J Clin Microbiol, 51, pp. 3039-3046. , 1:STN:280:DC%2BC3sfgsVOlsw%3D%3D; Ren, L., Gonzalez, R., Xu, J., Prevalence of human coronaviruses in adults with acute respiratory tract infections in Beijing, China (2011) J Med Virol, 83, pp. 291-297; Manning, A., Russell, V., Eastick, K., Epidemiological profile and clinical associations of human bocavirus and other human parvoviruses (2006) J Infect Dis, 194, pp. 1283-1290. , 1:CAS:528:DC%2BD28Xht1ehsr7P; Moesker, F.M., Van Kampen, J.J., Van Der Eijk, A.A., Human bocavirus infection as a cause of severe acute respiratory tract infection in children (2015) Clin Microbiol Infect, 21 (10), pp. 964e1-964e8. , 1:STN:280:DC%2BC2MblvFClsg%3D%3D; Lagare, A., Maïnassara, H.B., Issaka, B., Sidiki, A., Tempia, S., Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger (2015) BMC Infect Dis, 15, p. 515","Tan, W.; Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Medical Virology, Wenzhou Medical UniversityChina; email: tanwj28@163.com",,"BioMed Central Ltd.",14712334,,BIDMB,"31429710","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85071012377 "Lee J.Y., Bae S., Myoung J.","56823058900;57210014602;7005911830;","Middle East Respiratory Syndrome Coronavirus-Encoded Accessory Proteins Impair MDA5-and TBK1-Mediated Activation of NF-κB",2019,"Journal of microbiology and biotechnology","29","8",,"1316","1323",,5,"10.4014/jmb.1908.08004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071714764&doi=10.4014%2fjmb.1908.08004&partnerID=40&md5=20066796d7b80369d8bbb3d0b391deea","Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University, South Korea","Lee, J.Y., Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University, South Korea; Bae, S., Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University, South Korea; Myoung, J., Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging coronavirus which is zoonotic from bats and camels. Its infection in humans can be fatal especially in patients with preexisting conditions due to smoking and chronic obstructive pulmonary disease (COPD). Among the 25 proteins encoded by MERS-CoV, 5 accessory proteins seem to be involved in viral evasion of the host immune responses. Here we report that ORF4a, ORF4b, and ORF8b proteins, alone or in combination, effectively antagonize nuclear factor kappa B (NF-κB) activation. Interestingly, the inhibition of NF-κB by MERS-CoV accessory proteins was mostly at the level of pattern recognition receptors: melanoma differentiationassociated gene 5 (MDA5). ORF4a and ORF4b additively inhibit MDA5-mediated activation of NF-κB while that of retinoic acid-inducible gene 1 (RIG-I) is largely not perturbed. Of note, ORF8b was found to be a novel antagonist of MDA5-mediated NF-kκB activation. In addition, ORF8b also strongly inhibits Tank-binding kinase 1 (TBK1)-mediated induction of NF-κB signaling. Taken together, MERS-CoV accessory proteins are involved in viral escape of NF-κB-mediated antiviral immune responses.","inhibition; MERS-CoV; NF-κB","IFIH1 protein, human; immunoglobulin enhancer binding protein; interferon induced helicase C domain containing protein 1; protein serine threonine kinase; TBK1 protein, human; viral protein; animal; Coronavirus infection; genetics; HEK293 cell line; host pathogen interaction; human; immunology; metabolism; Middle East respiratory syndrome coronavirus; signal transduction; Animals; Coronavirus Infections; HEK293 Cells; Host-Pathogen Interactions; Humans; Interferon-Induced Helicase, IFIH1; Middle East Respiratory Syndrome Coronavirus; NF-kappa B; Protein-Serine-Threonine Kinases; Signal Transduction; Viral Proteins",,,,"NLM (Medline)",17388872,,,"31434175","English","J. Microbiol. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85071714764 "Li E., Chi H., Huang P., Yan F., Zhang Y., Liu C., Wang Z., Li G., Zhang S., Mo R., Jin H., Wang H., Feng N., Wang J., Bi Y., Wang T., Sun W., Gao Y., Zhao Y., Yang S., Xia X.","57193533169;57188849905;57193760636;56959769400;57211359107;57210893186;57210897155;57196354857;57210150583;57210894640;57215553943;36487256300;35175960300;56414620200;35093646300;55709791700;56281723400;14060009300;55199696000;35212814200;12787855600;","A novel bacterium-like particle vaccine displaying the MERS-CoV receptor-binding domain induces specific mucosal and systemic immune responses in mice",2019,"Viruses","11","9", 799,"","",,1,"10.3390/v11090799","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071736609&doi=10.3390%2fv11090799&partnerID=40&md5=f68d7493443eaf9cb54448acb2674c3f","College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Animal Science and Technology College, Jilin Agricultural University, Changchun, 130118, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China; College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China","Li, E., College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; Chi, H., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Huang, P., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Animal Science and Technology College, Jilin Agricultural University, Changchun, 130118, China; Yan, F., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China; Zhang, Y., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China; Liu, C., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Animal Science and Technology College, Jilin Agricultural University, Changchun, 130118, China; Wang, Z., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Animal Science and Technology College, Jilin Agricultural University, Changchun, 130118, China; Li, G., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China; Zhang, S., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China; Mo, R., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Animal Science and Technology College, Jilin Agricultural University, Changchun, 130118, China; Jin, H., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Wang, H., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Feng, N., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Wang, J., Animal Science and Technology College, Jilin Agricultural University, Changchun, 130118, China; Bi, Y., CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Wang, T., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Sun, W., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Gao, Y., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Zhao, Y., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Yang, S., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China; Xia, X., Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130000, China","Middle East respiratory syndrome coronavirus (MERS-CoV), a new coronavirus that has been causing severe and fatal acute respiratory illnesses in humans since its outbreak in 2012, has raised public fear worldwide. The development of prophylactics and therapeutics is urgently needed to prevent and control MERS-CoV infections. In this study, a bacterium (Lactococcus lactis)-like particle (BLP) vaccine displaying the MERS-CoV receptor-binding domain (RBD) was developed, and gram-positive enhancer matrix (GEM) particles were used as substrates to externally bind to the MERS-CoV RBD through a protein anchor (PA). The designs included different numbers of lysin motif (LysM) repeats in the PAs linked by linkers (RBD-linker-PA2 (RLP2), RBD-linker-PA3 (RLP3) and RBD-PA3 (RP3)), and three LysM repeats and a linker in the fusion proteins increased the binding activity to the RBD. The specific immune responses were tested by intranasally immunizing mice with RLP3-GEM with or without the adjuvant GEL01. The results showed that GEL01-adjuvanted RLP3-GEM increased the systemic humoral, cellular and local mucosal immune responses in the mouse model, especially in the intestinal tract. The above results indicate that the MERS-CoV BLP product has the potential to be developed into a promising mucosal candidate vaccine to protect against MERS-CoV infections. © 2019 by the authors.","Bacterium-like particles; Intranasal administration; MERS-CoV; Mucosal immune; Subunit vaccine",,"Milne-Price, S., Miazgowicz, K.L., Munster, V.J., The emergence of the Middle East respiratory syndrome coronavirus (2014) Pathog. Dis., 71, pp. 119-134. , CrossRef PubMed; Su, S., Wong, G., Shi, W.F., Liu, J., Lai, A.C.K., Zhou, J.Y., Liu, W.J., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502. , CrossRef PubMed; (2019) Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , https://www.Who.Int/emergencies/mers-cov/en/, accessed on 19 July; Ki, M., 2015 mers outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiol. Health, 37. , CrossRef PubMed; Su, S., Wong, G., Liu, Y., Gao, G.F., Li, S., Bi, Y., MERS in South Korea and China: A potential outbreak threat? (2015) Lancet, 385, pp. 2349-2350; Wang, C., Zheng, X.X., Gai, W.W., Wong, G., Wang, H.L., Jin, H.L., Feng, N., Li, N., Novel chimeric virus-like particles vaccine displaying mers-cov receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antivir. Res., 140, pp. 55-61. , CrossRef PubMed; Du, L.Y., Kou, Z.H., Ma, C.Q., Tao, X.R., Wang, L.L., Zhao, G.Y., Chen, Y.Q., Zhou, Y.S., A truncated receptor-binding domain of mers-cov spike protein potently inhibits mers-cov infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS ONE, 8. , CrossRef PubMed; Zhou, J., Li, C., Zhao, G.Y., Chu, H., Wang, D., Yan, H.H.N., Poon, V.K.M., Zhao, X.Y., Human intestinal tract serves as an alternative infection route for middle east respiratory syndrome coronavirus (2017) Sci. Adv., 3. , CrossRef PubMed; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., Perlman, S., Xia, X., DNA vaccine encoding middle east respiratory syndrome coronavirus s1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Alhabbab, R.Y., Hashem, A.M., Immunogenicity of candidate mers-cov DNA vaccines based on the spike protein (2017) Sci. Rep., 7, p. 44875; Muthumani, K., Falzarano, D., Reuschel, E.L., Tingey, C., Flingai, S., Villarreal, D.O., Wise, M., Aljuaid, A., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci. Transl. Med., 7; Jia, W.X., Channappanavar, R., Zhang, C., Li, M.X., Zhou, H.X., Zhang, S.Y., Zhou, P.P., Shi, X.L., Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against mers-cov infection (2019) Emerg. Microbes Infect., 8, pp. 760-772; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after mers-cov infection in dromedary camels (2016) Science, 351, pp. 77-81; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Becker, S., Protective efficacy of recombinant modified vaccinia virus Ankara delivering middle east respiratory syndrome coronavirus spike glycoprotein (2015) J. Virol., 89, pp. 8651-8656; Guo, X.J., Deng, Y., Chen, H., Lan, J.M., Wang, W., Zou, X.H., Hung, T., Tan, W.J., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of middle east respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Liu, R.Q., Ge, J.Y., Wang, J.L., Shao, Y., Zhang, H.L., Wang, J.L., Wen, Z.Y., Bu, Z.G., Newcastle disease virus-based mers-cov candidate vaccine elicits high-level and lasting neutralizing antibodies in bactrian camels (2017) J. Integr. Agric., 16, pp. 2264-2273; Malczyk, A.H., Kupke, A., Prufer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., Beissert, T., Tondera, C., A highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J. Virol., 89, pp. 11654-11667; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., Hensley, L.E., Schnell, M.J., One-health: A safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies virus (2017) J. Virol., 91; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Li, N., Mers-cov virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694; Maslow, J.N., Vaccines for emerging infectious diseases: Lessons from mers coronavirus and zika virus (2017) Hum. Vaccines Immunother., 13, pp. 2918-2930; Zhang, N.R., Jiang, S.B., Du, L.Y., Current advancements and potential strategies in the development of mers-cov vaccines (2014) Expert Rev. Vaccines, 13, pp. 761-774; Du, L.Y., Zhao, G.Y., Kou, Z.H., Ma, C.Q., Sun, S.H., Poon, V.K.M., Lu, L., Zheng, B.J., Identification of a receptor-binding domain in the s protein of the novel human coronavirus middle east respiratory syndrome coronavirus as an essential target for vaccine development (2013) J. Virol., 87, p. 11963; Zhang, N.R., Tang, J., Lu, L., Jiang, S.B., Du, L.Y., Receptor-binding domain-based subunit vaccines against mers-cov (2015) Virus Res, 202, pp. 151-159; Lan, J.M., Deng, Y., Chen, H., Lu, G.W., Wang, W., Guo, X.J., Lu, Z.Z., Tan, W.J., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the middle east respiratory coronavirus (mers-cov) receptor-binding domain as an antigen (2014) PLoS ONE, 9; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new middle east respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Ma, C.Q., Wang, L.L., Tao, X.R., Zhang, N.R., Yang, Y., Tseng, C.T.K., Li, F., Du, L.Y., Searching for an ideal vaccine candidate among different mers coronavirus receptor-binding fragments - The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Van Roosmalen, M.L., Kanninga, R., El Khattabi, M., Neef, J., Audouy, S., Bosma, T., Kuipers, A., Kok, J., Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria (2006) Methods, 38, pp. 144-149; Lee, S.Y., Choi, J.H., Xu, Z.H., Microbial cell-surface display (2003) Trends Biotechnol, 21, pp. 45-52; Bosma, T., Kanninga, R., Neef, J., Audouy, S.A.L., Van Roosmalen, M.L., Steen, A., Buist, G., Robillard, G., Novel surface display system for proteins on non-genetically modified Gram-positive bacteria (2006) Appl. Environ. Microb., 72, pp. 880-889; Ramasamy, R., Yasawardena, S., Zomer, A., Venema, G., Kok, J., Leenhouts, K., Immunogenicity of a malaria parasite antigen displayed by lactococcus lactis in oral immunisations (2006) Vaccine, 24, pp. 3900-3908; Audouy, S.A.L., Van Selm, S., Van Roosmalen, M.L., Post, E., Kanninga, R., Neef, J., Estevao, S., Leenhouts, K., Development of lactococcal gem-based pneumococcal vaccines (2007) Vaccine, 25, pp. 2497-2506; Li, P.C., Qiao, X.W., Zheng, Q.S., Hou, J.B., Immunogenicity and immunoprotection of porcine circovirus type 2 (pcv2) cap protein displayed by lactococcus lactis (2016) Vaccine, 34, pp. 696-702; Buist, G., Steen, A., Kok, J., Kuipers, O.R., Lysm, a widely distributed protein motif for binding to (peptido)glycans (2008) Mol. Microbiol., 68, pp. 838-847; Michon, C., Langella, P., Eijsink, V.G.H., Mathiesen, G., Chatel, J.M., Display of recombinant proteins at the surface of lactic acid bacteria: Strategies and applications (2016) Microb. Cell Fact., 15, p. 70; Steen, A., Buist, G., Horsburgh, G.J., Venema, G., Kuipers, O.P., Foster, S.J., Kok, J., Acma of lactococcus lactis is an n-acetylglucosaminidase with an optimal number of lysm domains for proper functioning (2005) FEBS J, 272, pp. 2854-2868; Qiao, X., Li, P., Zheng, Q., Chen, J., Yu, X., Hou, L., Wu, N., Hou, J., Comparison of the binding activity of lactococcus lactis peptidoglycan protein anchor with different number of motifs (2015) Wei Sheng Wu Xue Bao = Acta Microbiol. Sin., 55, pp. 193-197; Li, Y., Wan, Y.H., Liu, P.P., Zhao, J.C., Lu, G.W., Qi, J.X., Wang, Q.H., Liu, W.J., A humanized neutralizing antibody against mers-cov targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Zhang, W.F., Wang, L.Y., Liu, Y., Chen, X.M., Liu, Q., Jia, J.L., Yang, T.Y., Ma, G.H., Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation (2014) Biomaterials, 35, pp. 6086-6097; Lindsey, W.B., Lowdell, M.W., Marti, G.E., Abbasi, F., Zenger, V., King, K.M., Lamb, L.S., Jr., Cd69 expression as an index of t-cell function: Assay standardization, validation and use in monitoring immune recovery (2007) Cytotherapy, 9, pp. 123-132; Assiri, A., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, p. 886; Ma, C.Q., Li, Y., Wang, L.L., Zhao, G.Y., Tao, X.R., Tseng, C.T.K., Zhou, Y.S., Jiang, S.B., Intranasal vaccination with recombinant receptor-binding domain of mers-cov spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal mers vaccines (2014) Vaccine, 32, pp. 2100-2108; Salminen, S., Von Wright, A., Morelli, L., Marteau, P., Brassart, D., De Vos, W.M., Fonden, R., Mogensen, G., Demonstration of safety of probiotics—A review (1998) Int. J. Food Microbiol., 44, pp. 93-106; Nganou-Makamdop, K., Van Roosmalen, M.L., Audouy, S.A.L., Van Gemert, G.J., Leenhouts, K., Hermsen, C.C., Sauerwein, R.W., Bacterium-like particles as multi-epitope delivery platform for plasmodium berghei circumsporozoite protein induce complete protection against malaria in mice (2012) Malar. J., 11, p. 50; Li, B., Chen, X.R., Yu, J.F., Zhang, Y., Mo, Z.J., Gu, T.J., Kong, W., Wu, Y.G., Protection elicited by nasal immunization with pneumococcal surface protein a (pspa) adjuvanted with bacterium-like particles against streptococcus pneumoniae infection in mice (2018) Microb. Pathog., 123, pp. 115-119; Heine, S.J., Franco-Mahecha, O.L., Chen, X.T., Choudhari, S., Blackwelder, W.C., Van Roosmalen, M.L., Leenhouts, K., Pasetti, M.F., Shigella ipab and ipad displayed on l-lactis bacterium-like particles induce protective immunity in adult and infant mice (2015) Immunol. Cell Biol., 93, pp. 641-652; Ramirez, K., Ditamo, Y., Rodriguez, L., Picking, W.L., Van Roosmalen, M.L., Leenhouts, K., Pasetti, M.F., Neonatal mucosal immunization with a non-living, non-genetically modified lactococcus lactis vaccine carrier induces systemic and local th1-type immunity and protects against lethal bacterial infection (2010) Mucosal. Immunol., 3, pp. 159-171; Rigter, A., Widjaja, I., Versantvoort, H., Coenjaerts, F.E.J., Van Roosmalen, M., Leenhouts, K., Rottier, P.J.M., De Haan, C.A.M., A protective and safe intranasal rsv vaccine based on a recombinant prefusion-like form of the f protein bound to bacterium-like particles (2013) PLoS ONE, 8; Bateman, A., Bycroft, M., The structure of a lysm domain from e-coli membrane-bound lytic murein transglycosylase d (mltd) (2000) J. Mol. Biol., 299, pp. 1113-1119; Okano, K., Zhang, Q., Kimura, S., Narita, J., Tanaka, T., Fukuda, H., Kondo, A., System using tandem repeats of the ca peptidoglycan-binding domain from lactococcus lactis for display of both n- And c-terminal fusions on cell surfaces of lactic acid bacteria (2008) Appl. Environ. Microb., 74, pp. 1117-1123; Chen, X.Y., Zaro, J.L., Shen, W.C., Fusion protein linkers: Property, design and functionality (2013) Adv. Drug Deliv. Rev., 65, pp. 1357-1369; Deville, S., Ben Arous, J., Bertrand, F., Borisov, V., Dupuis, L., Efficacy of intranasal and spray delivery of adjuvanted live vaccine against infectious bronchitis virus in experimentally infected poultry (2012) Procedia Vaccinol, 6, pp. 85-92; Nimmerjahn, F., Ravetch, J.V., Divergent immunoglobulin g subclass activity through selective fc receptor binding (2005) Science, 310, pp. 1510-1512. , CrossRef PubMed; Sancho, D., Gomez, M., Sanchez-Madrid, F., Cd69 is an immunoregulatory molecule induced following activation (2005) Trends Immunol, 26, pp. 136-140. , CrossRef PubMed; Vialle, R., Dupuis, L., Deville, S., Bertrand, F., Gaucheron, J., Aucouturier, J., Microgel particulate adjuvant: Characterisation and mechanisms of action (2010) Procedia Vaccinol, 2, pp. 12-16","Chi, H.; Changchun Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: ch_amms@163.com",,"MDPI AG",19994915,,,"31470645","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85071736609 [No author name available],[No author id available],"Erratum: Epidemiology of a novel recombinant middle east respiratory syndrome coronavirus in humans in Saudi Arabia (Journal of Infectious Diseases (2016) 214 (712-721) DOI: 10.1093/infdis/jiw236)",2019,"Journal of Infectious Diseases","220","7",,"1235","",,,"10.1093/infdis/jiz255","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072018538&doi=10.1093%2finfdis%2fjiz255&partnerID=40&md5=d7f821970e78fa94234c620c4d420917",,"","In the 1 September 2016 issue of the Journal, in the article by Assiri et al (Assiri AM, Midgley CM, Abedi GR, et al. Epidemiology of a novel recombinant Middle East respiratory syndrome coronavirus in humans in Saudi Arabia. J Infect Dis 2016; 214:712-21), affiliation 2 for Abdulaziz Bin Saeed should read ""Department of Family and Community Medicine, College of Medicine, King Saud University"" (not ""Department of Family and Community Medicine, King Saud Medical City""). The authors regret this error. © 2019 The Author(s). Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.",,"erratum",,,,"Oxford University Press",00221899,,JIDIA,"31505660","English","J. Infect. Dis.",Erratum,"Final",Open Access,Scopus,2-s2.0-85072018538 "Joo Y.B., Lim Y.-H., Kim K.-J., Park K.-S., Park Y.-J.","57206562322;35210754700;25031739600;56942653400;55236811400;","Respiratory viral infections and the risk of rheumatoid arthritis",2019,"Arthritis Research and Therapy","21","1", 199,"","",,1,"10.1186/s13075-019-1977-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071698709&doi=10.1186%2fs13075-019-1977-9&partnerID=40&md5=082b0558ffdfd5453f6abd061c3c627e","Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea; Institute of Environmental Medicine, Seoul National University, Medical Research Center, Seoul, South Korea; Environmental Health Center, Seoul National University, College of Medicine, Seoul, South Korea","Joo, Y.B., Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea; Lim, Y.-H., Institute of Environmental Medicine, Seoul National University, Medical Research Center, Seoul, South Korea, Environmental Health Center, Seoul National University, College of Medicine, Seoul, South Korea; Kim, K.-J., Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea; Park, K.-S., Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea; Park, Y.-J., Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea","Background: We aimed to investigate the effects of ambient respiratory viral infections in the general population on rheumatoid arthritis (RA) development. Methods: Data of weekly incident RA (2012-2013) were obtained from the Korean National Health Insurance claims database, and those of weekly observations on eight respiratory viral infections were obtained from the Korea Centers for Disease Control and Prevention database. We estimated the percentage change in incident RA associated with ambient mean respiratory viral infections using a generalized linear model, after adjusting for time trend, air pollution, and meteorological data. Results: A total of 24,117 cases of incident RA (mean age 54.7 years, 18,688 [77.5%] women) were analyzed. Ambient respiratory viral infections in the population were associated with a higher number of incident RA over time, and its effect peaked 6 or 7 weeks after exposure. Among the 8 viruses, parainfluenza virus (4.8% for 1% respiratory viral infection increase, 95% CI 1.6 to 8.1, P =.003), coronavirus (9.2%, 3.9 to 14.8, P <.001), and metapneumovirus (44%, 2.0 to 103.4, P =.038) were associated with increased number of incident RA. The impact of these respiratory viral infections remained significant in women (3.8%, 12.1%, and 67.4%, respectively, P <.05) and in older patients (10.7%, 14.6%, and 118.2%, respectively, P <.05). Conclusions: Ambient respiratory viral infections in the population were associated with an increased number of incident RA, especially in women and older patients, suggesting that respiratory viral infections can be a novel environmental risk factor for the development of RA. © 2019 The Author(s).","Respiratory viral infections; Rheumatoid arthritis; Risk factor","adult; air pollution; Article; controlled study; Coronavirinae; disease association; disease course; exposure variable; female; geriatrics; human; Korea; major clinical study; male; Metapneumovirus; meteorology; nonhuman; Paramyxovirinae; rheumatoid arthritis; viral respiratory tract infection","Firestein, G.S., Evolving concepts of rheumatoid arthritis (2003) Nature., 423, pp. 356-361. , 1:CAS:528:DC%2BD3sXjs1ynu7c%3D; Firestein, G.S., McInnes, I.B., Immunopathogenesis of rheumatoid arthritis (2017) Immunity., 46, pp. 183-196. , 1:CAS:528:DC%2BC2sXjtlerur8%3D; McInnes, I.B., Schett, G., The pathogenesis of rheumatoid arthritis (2011) N Engl J Med, 365, pp. 2205-2219. , 1:CAS:528:DC%2BC3MXhs1ajsrrM; Aletaha, D., Smolen, J.S., Diagnosis and management of rheumatoid arthritis: A review (2018) Jama., 320, pp. 1360-1372; Catrina, A.I., Ytterberg, A.J., Reynisdottir, G., Malmstrom, V., Klareskog, L., Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis (2014) Nat Rev Rheumatol, 10, pp. 645-653. , 1:CAS:528:DC%2BC2cXht1GksLrF; Kallberg, H., Ding, B., Padyukov, L., Bengtsson, C., Ronnelid, J., Klareskog, L., Alfredsson, L., Smoking is a major preventable risk factor for rheumatoid arthritis: Estimations of risks after various exposures to cigarette smoke (2011) Ann Rheum Dis, 70, pp. 508-511; Jacoby, R.K., Jayson, M.I., Cosh, J.A., Onset, early stages, and prognosis of rheumatoid arthritis: A clinical study of 100 patients with 11-year follow-up (1973) Br Med J, 2, pp. 96-100. , 1:STN:280:DyaE3s7ms1arsA%3D%3D; Rozin, A., Balbir-Gurman, A., Schapira, D., Seasonal distribution of relapse onset in rheumatoid arthritis and spondyloarthropathy: The possible effect of the solar factor (2003) Clin Exp Rheumatol, 21, pp. 161-169. , 1:STN:280:DC%2BD3s3is1Wguw%3D%3D 12747269; Jin, Y., De Pedro-Cuesta, J., Soderstrom, M., Stawiarz, L., Link, H., Seasonal patterns in optic neuritis and multiple sclerosis: A meta-analysis (2000) J Neurol Sci, 181, pp. 56-64. , 1:STN:280:DC%2BD3M%2FpvVejsA%3D%3D; Tremlett, H., Van Der Mei, I.A., Pittas, F., Blizzard, L., Paley, G., Mesaros, D., Woodbaker, R., Taylor, B.V., Monthly ambient sunlight, infections and relapse rates in multiple sclerosis (2008) Neuroepidemiology., 31, pp. 271-279; De Keyser, J., Zwanikken, C., Boon, M., Effects of influenza vaccination and influenza illness on exacerbations in multiple sclerosis (1998) J Neurol Sci, 159, pp. 51-53; Edwards, S., Zvartau, M., Clarke, H., Irving, W., Blumhardt, L.D., Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis (1998) J Neurol Neurosurg Psychiatry, 64, pp. 736-741. , 1:STN:280:DyaK1czgvFGitA%3D%3D; Oikonen, M., Laaksonen, M., Aalto, V., Ilonen, J., Salonen, R., Eralinna, J.P., Panelius, M., Salmi, A., Temporal relationship between environmental influenza A and Epstein-Barr viral infections and high multiple sclerosis relapse occurrence (2011) Multiple Sclerosis, 17, pp. 672-680; Kriesel, J.D., White, A., Hayden, F.G., Spruance, S.L., Petajan, J., Multiple sclerosis attacks are associated with picornavirus infections (2004) Multiple Sclerosis, 10, pp. 145-148; Kriesel, J.D., Sibley, W.A., The case for rhinoviruses in the pathogenesis of multiple sclerosis (2005) Multiple Sclerosis, 11, pp. 1-4; Blackmore, S., Hernandez, J., Juda, M., Ryder, E., Freund, G.G., Johnson, R.W., Steelman, A.J., Influenza infection triggers disease in a genetic model of experimental autoimmune encephalomyelitis (2017) Proc Natl Acad Sci U S A, 114, pp. E6107-e6116. , 1:CAS:528:DC%2BC2sXhtFCgsr%2FK; Hwang, H.H., Lim, I.S., Choi, B.S., Yi, D.Y., Analysis of seasonal tendencies in pediatric Henoch-Schonlein purpura and comparison with outbreak of infectious diseases (2018) Medicine., 97, p. e12217; Sandberg, M.E., Bengtsson, C., Klareskog, L., Alfredsson, L., Saevarsdottir, S., Recent infections are associated with decreased risk of rheumatoid arthritis: A population-based case-control study (2015) Ann Rheum Dis, 74, pp. 904-907; Arleevskaya, M.I., Shafigullina, A.Z., Filina, Y.V., Lemerle, J., Renaudineau, Y., Associations between viral infection history symptoms, granulocyte reactive oxygen species activity, and active rheumatoid arthritis disease in untreated women at onset: Results from a longitudinal cohort study of Tatarstan women (2017) Front Immunol, 8, p. 1725; http://www.cdc.go.kr/CDC/info/CdcKrInfo0502.jsp?menuIds=HOME006-MNU3003-MNU2953, Accessed 21 Dec 2018; Kim, J.M., Jung, H.D., Cheong, H.M., Lee, A., Lee, N.J., Chu, H., Lee, J.Y., Choi, J.H., Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea (2018) J Med Virol, 90, pp. 1177-1183. , 1:CAS:528:DC%2BC1cXhtV2jtrjK; Kim, L., Kim, J.A., Kim, S., A guide for the utilization of Health Insurance Review and Assessment Service National Patient Samples (2014) Epidemiol Health, 36, p. e2014008; Sung, Y.K., Cho, S.K., Choi, C.B., Bae, S.C., Prevalence and incidence of rheumatoid arthritis in South Korea (2013) Rheumatol Int, 33, pp. 1525-1532; Won, S., Cho, S.K., Kim, D., Han, M., Lee, J., Jang, E.J., Sung, Y.K., Bae, S.C., Update on the prevalence and incidence of rheumatoid arthritis in Korea and an analysis of medical care and drug utilization (2018) Rheumatol Int, 38, pp. 649-656; https://www.airkorea.or.kr/index, Accessed 21 Dec 2018; http://www.kma.go.kr/, Accessed 21 Dec 2018; Tutuncu, Z., Reed, G., Kremer, J., Kavanaugh, A., Do patients with older-onset rheumatoid arthritis receive less aggressive treatment? (2006) Ann Rheum Dis, 65, pp. 1226-1229. , 1:STN:280:DC%2BD28vnvFKrsw%3D%3D; Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J.C., Saunders, L.D., Ghali, W.A., Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data (2005) Med Care, 43, pp. 1130-1139; Cimmino, M.A., Caporali, R., Montecucco, C.M., Rovida, S., Baratelli, E., Broggini, M., A seasonal pattern in the onset of polymyalgia rheumatica (1990) Ann Rheum Dis, 49, pp. 521-523. , 1:STN:280:DyaK3czktlCmtA%3D%3D; Van Der Linden, M.P., Le Cessie, S., Raza, K., Van Der Woude, D., Knevel, R., Huizinga, T.W., Van Der Helm-Van Mil, A.H., Long-term impact of delay in assessment of patients with early arthritis (2010) Arthritis Rheum, 62, pp. 3537-3546; Olson, J.K., Croxford, J.L., Miller, S.D., Virus-induced autoimmunity: Potential role of viruses in initiation, perpetuation, and progression of T-cell-mediated autoimmune disease (2001) Viral Immunol, 14, pp. 227-250. , 1:CAS:528:DC%2BD3MXmvV2nuro%3D; Shoenfeld, Y., Zandman-Goddard, G., Stojanovich, L., Cutolo, M., Amital, H., Levy, Y., Abu-Shakra, M., Blank, M., The mosaic of autoimmunity: Hormonal and environmental factors involved in autoimmune diseases - 2008 (2008) Isr Med Assoc J, 10, pp. 8-12. , 18300563; Klein, S.L., Flanagan, K.L., Sex differences in immune responses (2016) Nat Rev Immunol, 16, pp. 626-638. , 1:CAS:528:DC%2BC28XhtlChsLfE; Vom Steeg, L.G., Klein, S.L., SeXX matters in infectious disease pathogenesis (2016) PLoS Pathogens, 12, p. e1005374; Griesbeck, M.A.M., Sex differences in the manifestations of HIV-1 infection (2015) Sex and Gender Differences in Infection and Treatments for Infectious Diseases, pp. 103-181. , S.L. Klein C.W. Roberts (eds) Springer International Publishing Switzerland; Abadom, T.R., Smith, A.D., Tempia, S., Madhi, S.A., Cohen, C., Cohen, A.L., Risk factors associated with hospitalisation for influenza-associated severe acute respiratory illness in South Africa: A case-population study (2016) Vaccine., 34, pp. 5649-5655; Klein, S.L.P.A., Passaretti, C., Anker, M., Olukoya, P., (2010) Sex, Gender and Influenza, , World Health Organization Geneva; Marks, M., Marks, J.L., Viral arthritis (2016) Clin Med, 16, pp. 129-134","Park, Y.-J.; Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, Catholic University of KoreaSouth Korea; email: jwas@catholic.ac.kr",,"BioMed Central Ltd.",14786354,,ARTRC,"31470887","English","Arthritis Res. Ther.",Article,"Final",Open Access,Scopus,2-s2.0-85071698709 "Setianingsih T.Y., Wiyatno A., Hartono T.S., Hindawati E., Rosamarlina, Dewantari A.K., Myint K.S., Lisdawati V., Safari D.","55382259900;57190985615;57210165041;57210157354;57210149983;57204655492;7003758970;56786334300;23493586700;","Detection of multiple viral sequences in the respiratory tract samples of suspected Middle East respiratory syndrome coronavirus patients in Jakarta, Indonesia 2015–2016",2019,"International Journal of Infectious Diseases","86",,,"102","107",,1,"10.1016/j.ijid.2019.06.022","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069627763&doi=10.1016%2fj.ijid.2019.06.022&partnerID=40&md5=f2ac275941c968fb01baeb69c2d204e7","Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia; Eijkman Institute of Molecular Biology, Jakarta, Indonesia","Setianingsih, T.Y., Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia; Wiyatno, A., Eijkman Institute of Molecular Biology, Jakarta, Indonesia; Hartono, T.S., Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia; Hindawati, E., Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia; Rosamarlina, Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia; Dewantari, A.K., Eijkman Institute of Molecular Biology, Jakarta, Indonesia; Myint, K.S., Eijkman Institute of Molecular Biology, Jakarta, Indonesia; Lisdawati, V., Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia; Safari, D., Eijkman Institute of Molecular Biology, Jakarta, Indonesia","Objectives: The identification and analysis of viral etiological agents from suspected Middle East respiratory syndrome coronavirus (MERS-CoV) cases admitted to Prof. Dr. Sulianti Saroso Infectious Disease Hospital (IDH) using molecular assays. Methods: Biological samples were collected from 13 hospitalized patients suspected of MERS-CoV infection in Prof. Dr. Sulianti Saroso IDH from July 2015 to December 2016. The majority of patients presented with pneumonia, with symptoms including fever (≥37.5 °C), labored breathing, and cough, and with a history of travel to the Middle East. Viral RNA was isolated and converted to cDNA, which was used as a template for the detection of 12 viral panels using conventional PCR and sequencing. Results: Viral etiological agents detected in the patients were enterovirus D68, dengue virus type 3, rhinovirus C, human coronavirus 229E, herpes simplex virus type 1, influenza virus H1N1, influenza virus H3N2, human metapneumovirus, and rhinovirus A60. Conclusions: The sequences of nine viral agents under different taxa were detected in suspected MERS-CoV patients, including influenza virus, paramyxovirus, coronavirus, enterovirus, human metapneumovirus, and herpesvirus. © 2019 The Author(s)","Indonesia; MERS-CoV; PCR; Pneumonia; Viral","complementary DNA; virus RNA; adult; aged; Article; breathing; clinical article; coughing; Dengue virus 3; Enterovirus D68; female; fever; hospital patient; human; Human alphaherpesvirus 1; Human coronavirus 229E; Human metapneumovirus; Human rhinovirus A60; Indonesia; Influenza A virus (H1N1); Influenza A virus (H3N2); male; middle aged; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; pneumonia; polymerase chain reaction; respiratory system; Rhinovirus; virus etiology; chemistry; Coronavirinae; Coronavirus infection; genetics; hospitalization; isolation and purification; Middle East; respiratory system; sequence analysis; travel; virology; virus; Adult; Aged; Coronavirus; Coronavirus Infections; Female; Hospitalization; Humans; Indonesia; Male; Middle Aged; Middle East; Respiratory System; RNA, Viral; Sequence Analysis, RNA; Travel; Viruses","Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (September). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594447/, [Cited 23 May 2018]. Available from:; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (September). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5594447/, [Cited 23 May 2018]. Available from:; Amin, M., Bakhtiar, A., Subarjo, M., Aksono, E., Widiyanti, P., Shimizu, K., Screening for Middle East respiratory syndrome coronavirus among febrile Indonesian Hajj pilgrims: A study on 28,197 returning pilgrims (2018) J Infect Prev, 19 (September (5)), pp. 236-239; Annamalay, A.A., Jroundi, I., Bizzintino, J., Khoo, S.-K., Zhang, G., Lehmann, D., Rhinovirus C is associated with wheezing and rhinovirus A is associated with pneumonia in hospitalized children in Morocco (2016) J Med Virol, (September); Anthony, S.J., Epstein, J.H., Murray, K.A., Navarrete-Macias, I., Zambrana-Torrelio, C.M., Solovyov, A., A strategy to estimate unknown viral diversity in mammals (2013) mBio, 4 (5). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760253/, [Internet] Available from:; Anthony, S.J., Johnson, C.K., Greig, D.J., Kramer, S., Che, X., Wells, H., Global patterns in coronavirus diversity (2017) Virus Evol, 3 (June (1)). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467638/, Available from:; Arden, K.E., Faux, C.E., O'Neill, N.T., McErlean, P., Nitsche, A., Lambert, S.B., Molecular characterization and distinguishing features of a novel human rhinovirus (HRV) C, HRVC-QCE, detected in children with fever, cough and wheeze during 2003 (2010) J Clin Virol, 47 (March (3)), pp. 219-223; Bosis, S., Esposito, S., Enterovirus D68-associated community-acquired pneumonia in the pediatric age group (2017) Curr Infect Dis Rep, 19 (March (3)), p. 12; Butler, D., South Korean MERS outbreak is not a global threat (2015) Nat News, , http://www.nature.com/news/south-korean-mers-outbreak-is-not-a-global-threat-1.17709, [Cited 21 April 2017]. Available from:; Choi, S.-H., Hong, S.-B., Kim, T., Kim, S.-H., Huh, J.W., Do, K.-H., Clinical and molecular characterization of rhinoviruses A, B, and C in adult patients with pneumonia (2015) J Clin Virol, 63 (February), pp. 70-75; Chong, Y.P., Song, J.Y., Seo, Y.B., Choi, J.-P., Shin, H.-S., Antiviral treatment guidelines for Middle East respiratory syndrome (2015) Infect Chemother, 47 (September (3)), pp. 212-222; Duke, J.D., Sagar, A.S., Varicella pneumonia (2018) QJM Mon J Assoc Phys, 111 (November (11)), p. 827; Dyda, A., Stelzer-Braid, S., Adam, D., Chughtai, A.A., MacIntyre, C.R., The association between acute flaccid myelitis (AFM) and enterovirus D68 (EV-D68)—what is the evidence for causation? (2018) Eurosurveillance, 23 (January (3)). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792700/, Available from:; Esposito, S., Zampiero, A., Ruggiero, L., Madini, B., Niesters, H., Principi, N., Enterovirus D68-associated community-acquired pneumonia in children living in Milan, Italy (2015) J Clin Virol, 68 (July), pp. 94-96; Esposito, S., Zampiero, A., Bianchini, S., Mori, A., Scala, A., Tagliabue, C., Epidemiology and clinical characteristics of respiratory infections due to adenovirus in children living in Milan, Italy, during 2013 and 2014 (2016) PLoS One, 11 (4); Hui, D.S., Azhar, E.I., Kim, Y.-J., Memish, Z.A., Oh, M.-D., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, (April); Jallow, M.M., Fall, A., Kiori, D., Sy, S., Goudiaby, D., Barry, M.A., Epidemiological, clinical and genotypic features of human metapneumovirus in patients with influenza-like illness in Senegal, 2012 to 2016 (2019) BMC Infect Dis, 19 (May). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532257/, Available from:; Kaufman, H.E., Azcuy, A.M., Varnell, E.D., Sloop, G.D., Thompson, H.W., Hill, J.M., HSV-1 DNA in tears and saliva of normal adults (2005) Invest Ophthalmol Vis Sci, 46 (January (1)), pp. 241-247; Kumar, P., Srivastava, M., Prophylactic and therapeutic approaches for human metapneumovirus (2018) Virusdisease, 29 (December (4)), pp. 434-444; Kuwahara-Ota, S., Chinen, Y., Mizuno, Y., Takimoto-Shimomura, T., Matsumura-Kimoto, Y., Tanba, K., Human herpesvirus-6 pneumonitis in a patient with follicular lymphoma following immunochemotherapy with rituximab (2018) Infect Drug Resist, 11, pp. 701-705; Langelier, C., White, C.V., Sontag, M.K., Mourani, P.M., DeRisi, J.L., Complete genome sequence of a divergent human rhinovirus C isolate from an infant with severe community-acquired pneumonia in Colorado, USA (2017) Genome Announc, 5 (November (48)). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722057/, [Cited 17 May 2018]. Available from:; Looker, K.J., Magaret, A.S., May, M.T., Turner, K.M.E., Vickerman, P., Gottlieb, S.L., Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012 (2015) PLoS One, 10 (10); Luginbuehl, M., Imhof, A., Klarer, A., Herpes simplex type 1 pneumonitis and acute respiratory distress syndrome in a patient with chronic lymphatic leukemia: a case report (2017) J Med Case Rep, 11 (November). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700675/, Available from:; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12 (December (1)), p. 222; Mackay, I.M., Arden, K.E., An opportunistic pathogen afforded ample opportunities: Middle East respiratory syndrome coronavirus (2017) Viruses, 9 (December (12)). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744144/, [Cited 20 April 2018]. Available from:; Messacar, K., Abzug, M.J., Dominguez, S.R., 2014 outbreak of enterovirus D68 in North America (2016) J Med Virol, 88 (May (5)), pp. 739-745; NICE, Pneumonia overview–NICE pathways (2019), https://pathways.nice.org.uk/pathways/pneumonia, [Cited 2019 May 27]. Available from:; Noorwali, A.A., Turkistani, A.M., Asiri, S.I., Trabulsi, F.A., Alwafi, O.M., Alzahrani, S.H., Descriptive epidemiology and characteristics of confirmed cases of Middle East respiratory syndrome coronavirus infection in the Makkah Region of Saudi Arabia, March to June 2014 (2015) Ann Saudi Med, 35 (June (3)), pp. 203-209; Oong, X.Y., Chook, J.B., Ng, K.T., Chow, W.Z., Chan, K.G., Hanafi, N.S., The role of human metapneumovirus genetic diversity and nasopharyngeal viral load on symptom severity in adults (2018) Virol J, 15 (1), p. 91; Park, W.B., Jun, K.I., Kim, G., Choi, J.-P., Rhee, J.-Y., Cheon, S., Correlation between pneumonia severity and pulmonary complications in Middle East respiratory syndrome (2018) J Korean Med Sci, 33 (June (24)), p. e169; Plipat, T., Buathong, R., Wacharapluesadee, S., Siriarayapon, P., Pittayawonganon, C., Sangsajja, C., Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand, June 2015 (2017) Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, 22 (August (33)); Prasetyo, A.A., Desyardi, M.N., Tanamas, J., Suradi, Reviono, Harsini, Respiratory viruses and torque teno virus in adults with acute respiratory infections (2015) Intervirology, 58 (1), pp. 57-68; Premila Devi, J., Noraini, W., Norhayati, R., Chee Kheong, C., Badrul, A.S., Zainah, S., Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: preparedness and response, April 2014 (2014) Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, 19 (May (18)); Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., Alhani, H.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66 (September (9)), pp. 1261-1274; Racelis, S., de los Reyes, V.C., Sucaldito, M.N., Deveraturda, I., Roca, J.B., Tayag, E., Contact tracing the first Middle East respiratory syndrome case in the Philippines, February 2015 (2015) West Pac Surveill Response J WPSAR, 6 (September (3)), pp. 3-7; Taniguchi, A., Kawada, J.-I., Go, K., Fujishiro, N., Hosokawa, Y., Maki, Y., Comparison of clinical characteristics of human metapneumovirus and respiratory syncytial virus infection in hospitalized young children (2019) Jpn J Infect Dis, (February); WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) (2019), http://www.who.int/emergencies/mers-cov/en/, WHO [Cited 23 May 2018]. Available from:; Wiyatno, A., Febrianti, E.Z., Dewantari, A.K., Myint, K.S., Safari, D., Idris, N.S., Characterization of rhinovirus C from a 4-year-old boy with acute onset dilated cardiomyopathy in Jakarta, Indonesia (2018) JMM Case Rep, (January); Yang, Y.-M., Hsu, C.-Y., Lai, C.-C., Yen, M.-F., Wikramaratna, P.S., Chen, H.-H., Impact of comorbidity on fatality rate of patients with middle east respiratory syndrome (2017) Sci Rep, 7 (September). , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596001/, [Cited 23 May 2018]. Available from:; Yin, Y., Wunderink, R.G., MERS, SARS and other coronaviruses as causes of pneumonia (2018) Respirology, 23 (2), pp. 130-137; Zhang, T., Ren, L., Luo, M., Li, A., Gong, C., Chen, M., Enterovirus D68–associated severe pneumonia, China, 2014 (2015) Emerg Infect Dis J, 21 (May (5)). , https://wwwnc.cdc.gov/eid/article/21/5/15-0036_article, [Cited 17 May 2018]. Available from:","Safari, D.; Eijkman Institute of Molecular BiologyIndonesia; email: safari@eijkman.go.id",,"Elsevier B.V.",12019712,,IJIDF,"31238156","English","Int. J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85069627763 "Modjarrad K., Roberts C.C., Mills K.T., Castellano A.R., Paolino K., Muthumani K., Reuschel E.L., Robb M.L., Racine T., Oh M.-D., Lamarre C., Zaidi F.I., Boyer J., Kudchodkar S.B., Jeong M., Darden J.M., Park Y.K., Scott P.T., Remigio C., Parikh A.P., Wise M.C., Patel A., Duperret E.K., Kim K.Y., Choi H., White S., Bagarazzi M., May J.M., Kane D., Lee H., Kobinger G., Michael N.L., Weiner D.B., Thomas S.J., Maslow J.N.","9243452100;57207457607;57198776458;57192937823;26667992400;6603596895;56074520600;7103268631;21233866000;7201600302;35240340000;57195398196;7402539983;6603640784;57193548026;7004359463;57193549491;57214716916;57210747084;57210744672;55875855400;55328075200;55910316700;57210751146;57195398830;55452541300;6701540875;56303854900;57210747243;57193549919;57027479500;7006822219;7202357355;55316011000;7006432089;","Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial",2019,"The Lancet Infectious Diseases","19","9",,"1013","1022",,10,"10.1016/S1473-3099(19)30266-X","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071376935&doi=10.1016%2fS1473-3099%2819%2930266-X&partnerID=40&md5=bd2653f79c21b77eee5fc77ff1a0ecc3","Walter Reed Army Institute for Research, Silver Spring, MD, United States; ICON Clinical Research Management, Gaithersburg, MD, United States; GeneOne Life Science, Seoul, South Korea; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Wistar Institute, Philadelphia, PA, United States; Université Laval, Quebec City, QC, Canada; Seoul National University College of Medicine, Seoul, South Korea; Inovio Pharmaceuticals, Plymouth MeetingPA, United States; Emmes Corporation, Rockville, MD, United States","Modjarrad, K., Walter Reed Army Institute for Research, Silver Spring, MD, United States; Roberts, C.C., GeneOne Life Science, Seoul, South Korea; Mills, K.T., ICON Clinical Research Management, Gaithersburg, MD, United States; Castellano, A.R., Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Paolino, K., Walter Reed Army Institute for Research, Silver Spring, MD, United States; Muthumani, K., Wistar Institute, Philadelphia, PA, United States; Reuschel, E.L., Wistar Institute, Philadelphia, PA, United States; Robb, M.L., Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Racine, T., Université Laval, Quebec City, QC, Canada; Oh, M.-D., Seoul National University College of Medicine, Seoul, South Korea; Lamarre, C., Université Laval, Quebec City, QC, Canada; Zaidi, F.I., Wistar Institute, Philadelphia, PA, United States; Boyer, J., Inovio Pharmaceuticals, Plymouth MeetingPA, United States; Kudchodkar, S.B., GeneOne Life Science, Seoul, South Korea; Jeong, M., GeneOne Life Science, Seoul, South Korea; Darden, J.M., Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Park, Y.K., GeneOne Life Science, Seoul, South Korea; Scott, P.T., Walter Reed Army Institute for Research, Silver Spring, MD, United States; Remigio, C., GeneOne Life Science, Seoul, South Korea; Parikh, A.P., Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; Wise, M.C., Inovio Pharmaceuticals, Plymouth MeetingPA, United States; Patel, A., Wistar Institute, Philadelphia, PA, United States; Duperret, E.K., Wistar Institute, Philadelphia, PA, United States; Kim, K.Y., Wistar Institute, Philadelphia, PA, United States; Choi, H., Wistar Institute, Philadelphia, PA, United States; White, S., Inovio Pharmaceuticals, Plymouth MeetingPA, United States; Bagarazzi, M., Inovio Pharmaceuticals, Plymouth MeetingPA, United States; May, J.M., Emmes Corporation, Rockville, MD, United States; Kane, D., GeneOne Life Science, Seoul, South Korea; Lee, H., GeneOne Life Science, Seoul, South Korea; Kobinger, G., Université Laval, Quebec City, QC, Canada; Michael, N.L., Walter Reed Army Institute for Research, Silver Spring, MD, United States; Weiner, D.B., Wistar Institute, Philadelphia, PA, United States; Thomas, S.J., Walter Reed Army Institute for Research, Silver Spring, MD, United States; Maslow, J.N., GeneOne Life Science, Seoul, South Korea","Background: Middle East respiratory syndrome (MERS) coronavirus causes a highly fatal lower-respiratory tract infection. There are as yet no licensed MERS vaccines or therapeutics. This study (WRAIR-2274) assessed the safety, tolerability, and immunogenicity of the GLS-5300 MERS coronavirus DNA vaccine in healthy adults. Methods: This study was a phase 1, open-label, single-arm, dose-escalation study of GLS-5300 done at the Walter Reed Army Institute for Research Clinical Trials Center (Silver Spring, MD, USA). We enrolled healthy adults aged 18–50 years; exclusion criteria included previous infection or treatment of MERS. Eligible participants were enrolled sequentially using a dose-escalation protocol to receive 0·67 mg, 2 mg, or 6 mg GLS-5300 administered by trained clinical site staff via a single intramuscular 1 mL injection at each vaccination at baseline, week 4, and week 12 followed immediately by co-localised intramuscular electroporation. Enrolment into the higher dose groups occurred after a safety monitoring committee reviewed the data following vaccination of the first five participants at the previous lower dose in each group. The primary outcome of the study was safety, assessed in all participants who received at least one study treatment and for whom post-dose study data were available, during the vaccination period with follow-up through to 48 weeks after dose 3. Safety was measured by the incidence of adverse events; administration site reactions and pain; and changes in safety laboratory parameters. The secondary outcome was immunogenicity. This trial is registered at ClinicalTrials.gov (number NCT02670187) and is completed. Findings: Between Feb 17 and July 22, 2016, we enrolled 75 individuals and allocated 25 each to 0·67 mg, 2 mg, or 6 mg GLS-5300. No vaccine-associated serious adverse events were reported. The most common adverse events were injection-site reactions, reported in 70 participants (93%) of 75. Overall, 73 participants (97%) of 75 reported at least one solicited adverse event; the most common systemic symptoms were headache (five [20%] with 0·67 mg, 11 [44%] with 2 mg, and seven [28%] with 6 mg), and malaise or fatigue (five [20%] with 0·67 mg, seven [28%] with 2 mg, and two [8%] with 6 mg). The most common local solicited symptoms were administration site pain (23 [92%] with all three doses) and tenderness (21 [84%] with all three doses). Most solicited symptoms were reported as mild (19 [76%] with 0·67 mg, 20 [80%] with 2 mg, and 17 [68%] with 6 mg) and were self-limiting. Unsolicited symptoms were reported for 56 participants (75%) of 75 and were deemed treatment-related for 26 (35%). The most common unsolicited adverse events were infections, occurring in 27 participants (36%); six (8%) were deemed possibly related to study treatment. There were no laboratory abnormalities of grade 3 or higher that were related to study treatment; laboratory abnormalities were uncommon, except for 15 increases in creatine phosphokinase in 14 participants (three participants in the 0·67 mg group, three in the 2 mg group, and seven in the 6 mg group). Of these 15 increases, five (33%) were deemed possibly related to study treatment (one in the 2 mg group and four in the 6 mg group). Seroconversion measured by S1-ELISA occurred in 59 (86%) of 69 participants and 61 (94%) of 65 participants after two and three vaccinations, respectively. Neutralising antibodies were detected in 34 (50%) of 68 participants. T-cell responses were detected in 47 (71%) of 66 participants after two vaccinations and in 44 (76%) of 58 participants after three vaccinations. There were no differences in immune responses between dose groups after 6 weeks. At week 60, vaccine-induced humoral and cellular responses were detected in 51 (77%) of 66 participants and 42 (64%) of 66, respectively. Interpretation: The GLS-5300 MERS coronavirus vaccine was well tolerated with no vaccine-associated serious adverse events. Immune responses were dose-independent, detected in more than 85% of participants after two vaccinations, and durable through 1 year of follow-up. The data support further development of the GLS-5300 vaccine, including additional studies to test the efficacy of GLS-5300 in a region endemic for MERS coronavirus. Funding: US Department of the Army and GeneOne Life Science. © 2019 Elsevier Ltd",,"creatine kinase; DNA vaccine; gls 5300; neutralizing antibody; unclassified drug; virus vaccine; abnormal laboratory result; adult; antibody response; arthralgia; Article; CD4+ T lymphocyte; CD8+ T lymphocyte; cellular immunity; DNA immunization; drug dose comparison; drug dose escalation; drug monitoring; drug safety; drug tolerability; electroporation; enzyme linked immunosorbent assay; fatigue; female; follow up; headache; human; human cell; humoral immunity; immune response; injection site contusion; injection site erythema; injection site induration; injection site pain; injection site pruritus; injection site reaction; injection site swelling; malaise; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; myalgia; nausea; normal human; open study; outcome assessment; phase 1 clinical trial; priority journal; seroconversion; side effect; United States; vaccine immunogenicity","Corman, V.M., Eckerle, I., Zaki, A., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17. , PII: 20285; MERS situation update (2019), http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-may-2019.html, (Accessed 16 July 2019); Middle East respiratory syndrome coronavirus (MERS-CoV) (2018), http://www.who.int/emergencies/mers-cov/en/, (Accessed 16 July 2019); Bak, S.L., Jun, K.I., Jung, J., An atypical case of Middle East Respiratory syndrome in a returning traveler to Korea from Kuwait (2018) J Korean Med Sci, 33, p. e348; Middle East respiratory syndrome coronavirus (MERS-CoV)—UK (2018), http://www.who.int/csr/don/31-august-2018-mers-united-kingdom/en/, (Accessed 13 September 2018); Middle East respiratory syndrome coronavirus (MERS-CoV) infection—South Korea (2018), http://www.who.int/csr/don/12-september-2018-mers-republic-of-korea/en/, (Accessed 13 September 2018); Oh, M.D., Park, W.B., Park, S.W., Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J Intern Med, 33, pp. 233-246; Coleman, C.M., Venkatraman, N., Liu, T., MERS-CoV spike nanoparticles protect mice from MERS-CoV infection (2017) Vaccine, 35, pp. 1586-1589; Malczyk, A.H., Kupke, A., Prufer, S., A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J Virol, 89, pp. 11654-11667; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6; Choe, P.G., Perera, R.A., Park, W.B., MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015 (2017) Emerg Infect Dis, 23, pp. 1079-1084; Payne, D.C., Iblan, I., Rha, B., Persistence of antibodies against Middle East respiratory coronavirus (2016) Emerg Infect Dis, 22, pp. 1824-1826; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2; Luke, T., Wu, H., Zhao, J., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci Transl Med, 8; Pascal, K.E., Coleman, C.M., Mujica, A.O., Pre- and postexposure efficacy of fully immunized antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) PNAS, 112, pp. 8738-8743; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Park, W.B., Perera, R.A., Choe, P.G., Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea (2015) Emerg Infect Dis, 21, pp. 2186-2189; Diehl, M.C., Lee, J.C., Daniels, S.E., Tolerability of intramuscular and intradermal delivery by CELLECTRA((R)) adaptive constant current electroporation device in healthy volunteers (2013) Hum Vaccin Immunother, 9, pp. 2246-2252; Toxicity grading scale for healthy adult and adolescent volunteers enrolled in preventive vaccine clinical trials (2007), http://www.fda.gov/cber/guidelines.htm, (Accessed 30 May 2015); Trimble, C.L., Morrow, M.P., Kraynyak, K.A., Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial (2015) Lancet, 386, pp. 2078-2088; Maslow, J.N., Vaccines for emerging infectious diseases: lessons from MERS coronavirus and Zika virus (2017) Hum Vaccin Immunother, 12, pp. 2918-2930; Bodmer, B.S., Fiedler, A.H., Hanauer, J.R.H., Prüfer, S., Mülebach, M.D., Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate mouse model (2018) Virology, 521, pp. 99-107; Munster, V.J., Wells, D., Lanmbe, T., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28; Haagmans, B.L., van den Brand, J.M., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS coronavirus infection in dromedary camels (2016) Science, 351, pp. 77-81; Song, F., Fux, R., Provacia, L.B., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87, pp. 11950-11954; Volz, A., Kupke, A., Song, F., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East Respiratory Syndrome coronavirus spike glycoprotein (2015) J Virol, 89, pp. 8651-8656","Roberts, C.C.; GeneOne Life ScienceUnited States; email: croberts@geneonels-us.com",,"Lancet Publishing Group",14733099,,LIDAB,"31351922","English","Lancet Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85071376935 "Kleine-Weber H., Pöhlmann S., Hoffmann M.","57204592347;57210095234;35080416400;","Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells",2019,"Virology","535",,,"261","265",,1,"10.1016/j.virol.2019.07.016","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069715901&doi=10.1016%2fj.virol.2019.07.016&partnerID=40&md5=63309a9c599c945385de97c1f11a2de3","Infection Biology Unit, Deutsches Primatenzentrum, Kellnerweg 4, Göttingen, 37077, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, Göttingen, 37073, Germany","Kleine-Weber, H., Infection Biology Unit, Deutsches Primatenzentrum, Kellnerweg 4, Göttingen, 37077, Germany, Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, Göttingen, 37073, Germany; Pöhlmann, S., Infection Biology Unit, Deutsches Primatenzentrum, Kellnerweg 4, Göttingen, 37077, Germany, Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, Göttingen, 37073, Germany; Hoffmann, M., Infection Biology Unit, Deutsches Primatenzentrum, Kellnerweg 4, Göttingen, 37077, Germany","The highly pathogenic Middle East respiratory syndrome (MERS)-related coronavirus (CoV) is transmitted from dromedary camels, the natural reservoir, to humans. For at present unclear reasons, MERS cases have so far only been observed in the Arabian Peninsula, although MERS-CoV also circulates in African dromedary camels. A recent study showed that MERS-CoV found in North/West- (Morocco) and West-African (Burkina Faso and Nigeria) dromedary camels are genetically distinct from Arabian viruses and have reduced replicative capacity in human cells, potentially due to amino acid changes in one or more viral proteins. Here, we show that the spike (S) proteins of the prototypic Arabian MERS-CoV strain, human betacoronavirus 2c EMC/2012, and the above stated African MERS-CoV variants do not appreciably differ in expression, DPP4 binding and ability to drive entry into target cells. Thus, virus-host-interactions at the entry stage may not limit spread of North- and West-African MERS-CoV in human cells. © 2019","Dromedary camel; Entry; MERS-coronavirus; Spike; Zoonosis","amino acid; dipeptidyl peptidase IV; virus spike protein; animal cell; Article; Betacoronavirus; controlled study; dromedary; embryo; enzyme binding; human; human cell; Middle East respiratory syndrome coronavirus; nonhuman; North African; priority journal; protein expression; target cell; virus cell interaction; virus entry; virus isolation; virus replication; virus strain; West African","Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Makonnen, Y.J., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill., 22; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., El-Taweel, A.N., Kayali, G., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg. Microb. Infect., 6, p. e1; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Team, K.M.-C.I., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Berger Rentsch, M., Zimmer, G., A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon (2011) PLoS One, 6; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill., 20; Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20, pp. 1049-1053; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. U. S. A., 115, pp. 3144-3149; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Muller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322; Deem, S.L., Fevre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.J., Koopmans, M., Reusken, C.B., Serological evidence of MERS-cov antibodies in dromedary camels (Camelus dromedaries) in Laikipia County, Kenya (2015) PLoS One, 10, p. e0140125; Gierer, S., Muller, M.A., Heurich, A., Ritz, D., Springstein, B.L., Karsten, C.B., Schendzielorz, A., Pöhlmann, S., Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity (2015) J. Infect. Dis., 211, pp. 889-897; Harriman, K., Brosseau, L., Trivedi, K., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 369, p. 1761; Kiambi, S., Corman, V.M., Sitawa, R., Githinji, J., Ngoci, J., Ozomata, A.S., Gardner, E., Fasina, F.O., Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017 (2018) Emerg. Microb. Infect., 7, p. 195; Kleine-Weber, H., Elzayat, M.T., Hoffmann, M., Pöhlmann, S., Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein (2018) Sci. Rep., 8, p. 16597; Kleine-Weber, H., Elzayat, M.T., Wang, L., Graham, B.S., Müller, M.A., Drosten, C., Pöhlmann, S., Hoffmann, M., Mutations in the spike protein of Middle East respiratory syndrome coronavirus transmitted in Korea increase resistance to antibody-mediated neutralization (2019) J. Virol., 93; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annu Rev Virol, 3, pp. 237-261; Liljander, A., Meyer, B., Jores, J., Muller, M.A., Lattwein, E., Njeru, I., Bett, B., Corman, V.M., MERS-CoV antibodies in humans, Africa, 2013-2014 (2016) Emerg. Infect. Dis., 22, pp. 1086-1089; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 369, pp. 1761-1762; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., El Berbri, I., Peiris, M., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill., 22; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 15214-15219; Munyua, P., Corman, V.M., Bitek, A., Osoro, E., Meyer, B., Muller, M.A., Lattwein, E., Njenga, M.K., No serologic evidence of middle East respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: a household linked study, Kenya, 2013 (2017) Am. J. Trop. Med. Hyg., 96, pp. 1318-1324; Ommeh, S., Zhang, W., Zohaib, A., Chen, J., Zhang, H., Hu, B., Ge, X.Y., Shi, Z.L., Genetic evidence of Middle East respiratory syndrome coronavirus (MERS-Cov) and widespread seroprevalence among camels in Kenya (2018) Virol. Sin., 33, pp. 484-492; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill., 18. , pii=20574; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20, pp. 1370-1374; Shirato, K., Melaku, S.K., Kawachi, K., Nao, N., Iwata-Yoshikawa, N., Kawase, M., Kamitani, W., Sentsui, H., Middle East respiratory syndrome coronavirus in dromedaries in Ethiopia is Antigenically different from the Middle East isolate EMC (2019) Front. Microbiol., 10, p. 1326; So, R.T., Perera, R.A., Oladipo, J.O., Chu, D.K., Kuranga, S.A., Chan, K.H., Lau, E.H., Peiris, M., Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016 (2018) Euro Surveill., 23; van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., Talafha, H.A., Richt, J.A., High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis., 17, pp. 155-159; van Doremalen, N., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Robertson, S., Scott, D., Kinne, J., Munster, V.J., Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 (2014) J. Virol., 88, pp. 9220-9232; WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) (2019), https://www.who.int/emergencies/mers-cov/en/; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820","Pöhlmann, S.; Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, Germany; email: spoehlmann@dpz.eu",,"Academic Press Inc.",00426822,,VIRLA,"31357164","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85069715901 "Lee J.Y., Bae S., Myoung J.","56823058900;57210014602;7005911830;","Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design",2019,"Journal of Microbiology","57","9",,"803","811",,5,"10.1007/s12275-019-9272-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071494457&doi=10.1007%2fs12275-019-9272-7&partnerID=40&md5=754bb74137c1650adac7284769d0fdac","Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, South Korea","Lee, J.Y., Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, South Korea; Bae, S., Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, South Korea; Myoung, J., Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) is a causative agent of severe-to-fatal pneumonia especially in patients with pre-existing conditions, such as smoking and chronic obstructive pulmonary disease (COPD). MERS-CoV transmission continues to be reported in the Saudi Arabian Peninsula since its discovery in 2012. However, it has rarely been epidemic outside the area except one large outbreak in South Korea in May 2015. The genome of the epidemic MERS-CoV isolated from a Korean patient revealed its homology to previously reported strains. MERS-CoV encodes 5 accessory proteins and generally, they do not participate in the genome transcription and replication but rather are involved in viral evasion of the host innate immune responses. Here we report that ORF8b, an accessory protein of MERS-CoV, strongly inhibits both MDA5- and RIG-I-mediated activation of interferon beta promoter activity while downstream signaling molecules were left largely unaffected. Of note, MDA5 protein levels were significantly down-regulated by ORF8b and co-expression of ORF4a and ORF4b. These novel findings will facilitate elucidation of mechanisms of virus-encoded evasion strategies, thus helping design rationale antiviral countermeasures against deadly MERS-CoV infection. © 2019, The Microbiological Society of Korea.","accessory protein; interferon beta; MERS-CoV; ORF8b","beta interferon; DDX58 protein, human; IFIH1 protein, human; interferon induced helicase C domain containing protein 1; retinoic acid inducible protein I; virus vaccine; Coronavirus infection; drug design; genetics; host pathogen interaction; human; immunology; metabolism; Middle East respiratory syndrome coronavirus; promoter region; Saudi Arabia; virology; Coronavirus Infections; DEAD Box Protein 58; Drug Design; Host-Pathogen Interactions; Humans; Interferon-beta; Interferon-Induced Helicase, IFIH1; Middle East Respiratory Syndrome Coronavirus; Promoter Regions, Genetic; Saudi Arabia; Viral Vaccines","Abdul-Rasool, S., Fielding, B.C., Understanding human coronavirus HCoV-NL63 (2010) Open Virol. J., 4, pp. 76-84; Akira, S., Uematsu, S., Takeuchi, O., Pathogen recognition and innate immunity (2006) Cell, 124, pp. 783-801; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg. Infect. Dis., 22, pp. 49-55; Banerjee, A., Falzarano, D., Rapin, N., Lew, J., Misra, V., Interferon regulatory factor 3-mediated signaling limits Middle-East respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat (2019) Viruses, 11, p. 152; Bradburne, A.F., Bynoe, M.L., Tyrrell, D.A., Effects of a “new” human respiratory virus in volunteers (1967) Br. Med. J., 3, pp. 767-769; Cardenas, W.B., Loo, Y.M., Gale, M., Jr., Hartman, A.L., Kimberlin, C.R., Martinez-Sobrido, L., Saphire, E.O., Basler, C.F., Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling (2006) J. Virol., 80, pp. 5168-5178; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Chan, C.P., Yuen, C.K., Cheung, P.H., Fung, S.Y., Lui, P.Y., Chen, H., Kok, K.H., Jin, D.Y., Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase (2018) FASEB J., 32, pp. 4380-4393; Chau, T.L., Gioia, R., Gatot, J.S., Patrascu, F., Carpentier, I., Chapelle, J.P., O’Neill, L., Chariot, A., Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? (2008) Trends Biochem. Sci., 33, pp. 171-180; Cho, M., Myoung, J., OX40 and 4-1BB downregulate Kaposi’s sarcoma-associated herpesvirus replication in lymphatic endothelial cells, but 4-1BB and not OX40 inhibits viral replication in B-cells (2015) J. Gen. Virol., 96, pp. 3635-3645; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Viboud, C., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med., 13, p. 210; Clement, J.F., Meloche, S., Servant, M.J., The IKK-related kinases: from innate immunity to oncogenesis (2008) Cell Res., 18, pp. 889-899; Comar, C.E., Goldstein, S.A., Li, Y., Yount, B., Baric, R.S., Weiss, S.R., Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection (2019) mBio, 10, pp. e00319-e319; Corman, V.M., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., Evan Boheemen, S., Bestebroer, T.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17, p. 20285; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Maniatis, T., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway (2003) Nat. Immunol., 4, pp. 491-496; Fung, I.C., Tse, Z.T., Chan, B.S., Fu, K.W., Middle East respiratory syndrome in the Republic of Korea: transparency and communication are key (2015) Western Pac. Surveill. Response J., 6, pp. 1-2; Gatot, J.S., Gioia, R., Chau, T.L., Patrascu, F., Warnier, M., Close, P., Chapelle, J.P., Siebenlist, U., Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF (2007) J. Biol. Chem., 282, pp. 31131-31146; Goldstein, S.A., Weiss, S.R., Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances (2017) F1000Res, 6, p. 1628; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Goubau, D., Schlee, M., Deddouche, S., Pruijssers, A.J., Zillinger, T., Goldeck, M., Schuberth, C., Rehwinkel, J., Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates (2014) Nature, 514, pp. 372-375; Grandvaux, N., Servant, M.J., tenOever, B., Sen, G.C., Balachandran, S., Barber, G.N., Lin, R., Hiscott, J., Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes (2002) J. Virol., 76, pp. 5532-5539; Ha, S., Choi, I.S., Choi, C., Myoung, J., Infection models of human norovirus: challenges and recent progress (2016) Arch. Virol., 161, pp. 779-788; Hacker, H., Karin, M., Regulation and function of IKK and IKK-related kinases (2006) Sci. STKE, 2006, p. re13; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; Hayman, D.T., Bats as viral reservoirs (2016) Annu. Rev. Virol., 3, pp. 77-99; Ho, T.H., Kew, C., Lui, P.Y., Chan, C.P., Satoh, T., Akira, S., Jin, D.Y., Kok, K.H., PACT- and RIG-I-dependent activation of type I interferon production by a defective interfering RNA derived from measles virus vaccine (2016) J. Virol., 90, pp. 1557-1568; Honda, K., Takaoka, A., Taniguchi, T., Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors (2006) Immunity, 25, pp. 349-360; Honda, K., Taniguchi, T., IRFs: master regulators of signalling by toll-like receptors and cytosolic pattern-recognition receptors (2006) Nat. Rev. Immunol., 6, pp. 644-658; Islam, M.N., Lee, K.W., Yim, H.S., Lee, S.H., Jung, H.C., Lee, J.H., Jeong, J.Y., Optimizing T4 DNA polymerase conditions enhances the efficiency of one-step sequence- and ligation-independent cloning (2017) Biotechniques, 63, pp. 125-130; Jeong, J.Y., Yim, H.S., Ryu, J.Y., Lee, H.S., Lee, J.H., Seen, D.S., Kang, S.G., One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies (2012) Appl. Environ. Microbiol., 78, pp. 5440-5443; Kang, S., Choi, C., Choi, I., Han, K.N., Rho, S.W., Choi, J., Kwon, J., Myoung, J., Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I (2018) J. Microbiol. Biotechnol., 28, pp. 1554-1562; Kang, S., Myoung, J., Host innate immunity against hepatitis E virus and viral evasion mechanisms (2017) J. Microbiol. Biotechnol., 27, pp. 1727-1735; Kang, S., Myoung, J., Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas (2017) J. Microbiol., 55, pp. 319-329; Kang, H.S., Myoung, J., So, E.Y., Bahk, Y.Y., Kim, B.S., Transgenic expression of non-structural genes of Theiler’s virus suppresses initial viral replication and pathogenesis of demyelination (2016) J. Neuroinflammation, 13, p. 133; Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Akira, S., IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction (2005) Nat. Immunol., 6, pp. 981-988; Kew, C., Lui, P.Y., Chan, C.P., Liu, X., Au, S.W., Mohr, I., Jin, D.Y., Kok, K.H., Suppression of PACT-induced type I interferon production by herpes simplex virus 1 Us11 protein (2013) J. Virol., 87, pp. 13141-13149; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol. Health, 37; Kim, Y.J., Cho, Y.J., Kim, D.W., Yang, J.S., Kim, H., Park, S., Han, Y.W., Kim, A.R., Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/KNIH/002_05_2015, isolated in South Korea (2015) Genome Announc., 3, pp. e00787-e715; Kim, E., Myoung, J., Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5 (2018) J. Microbiol. Biotechnol., 28, pp. 1908-1915; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERSCoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; Kindler, E., Thiel, V., Weber, F., Interaction of SARS and MERS coronaviruses with the antiviral interferon response (2016) Adv. Virus Res., 96, pp. 219-243; Kok, K.H., Lui, P.Y., Ng, M.H., Siu, K.L., Au, S.W., Jin, D.Y., The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response (2011) Cell Host Microbe, 9, pp. 299-309; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Lau, S.K., Woo, P.C., Yip, C.C., Tse, H., Tsoi, H.W., Cheng, V.C., Lee, P., Lee, R.A., Coronavirus HKU1 and other coronavirus infections in Hong Kong (2006) J. Clin. Microbiol., 44, pp. 2063-2071; Lee, J.Y., Lee, J.S., Materne, E.C., Rajala, R., Ismail, A.M., Seto, D., Dyer, D.W., Chodosh, J., Bacterial RecA protein promotes adenoviral recombination during in vitro infection (2018) mSphere, 3, pp. e00105-e118; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Lim, P.L., Middle East respiratory syndrome (MERS) in Asia: lessons gleaned from the South Korean outbreak (2015) Trans. R. Soc. Trop. Med. Hyg., 109, pp. 541-542; Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., Du, F., Grishin, N.V., Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation (2015) Science, 347, p. aaa2630; Lui, P.Y., Wong, L.R., Ho, T.H., Au, S.W.N., Chan, C.P., Kok, K.H., Jin, D.Y., PACT facilitates RNA-induced activation of MDA5 by promoting MDA5 oligomerization (2017) J. Immunol., 199, pp. 1846-1855; Lundin, A., Dijkman, R., Bergstrom, T., Kann, N., Adamiak, B., Hannoun, C., Kindler, E., Kint, J., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus (2014) PLoS Pathog., 10; Luthra, P., Sun, D., Silverman, R.H., He, B., Activation of IFN-β expression by a viral mRNA through RNase L and MDA5 (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 2118-2123; Malathi, K., Dong, B., Gale, M., Jr., Silverman, R.H., Small self-RNA generated by RNase L amplifies antiviral innate immunity (2007) Nature, 448, pp. 816-819; Matthews, K.L., Coleman, C.M., van der Meer, Y., Snijder, E.J., Frieman, M.B., The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling (2014) J. Gen. Virol., 95, pp. 874-882; Maxmen, A., Bats are global reservoir for deadly coronaviruses (2017) Nature, 546, p. 340; Medzhitov, R., Recognition of microorganisms and activation of the immune response (2007) Nature, 449, pp. 819-826; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implications for the Middle East respiratory syndrome (2016) Am. J. Pathol., 186, pp. 78-86; Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., Tschopp, J., Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus (2005) Nature, 437, pp. 1167-1172; Motz, C., Schuhmann, K.M., Kirchhofer, A., Moldt, M., Witte, G., Conzelmann, K.K., Hopfner, K.P., Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling (2013) Science, 339, pp. 690-693; Nam, H.S., Park, J.W., Ki, M., Yeon, M.Y., Kim, J., Kim, S.W., High fatality rates and associated factors in two hospital outbreaks of MERS in Daejeon, the Republic of Korea (2017) Int. J. Infect. Dis., 58, pp. 37-42; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495; Oh, M.D., The Korean Middle East respiratory syndrome coronavirus outbreak and our responsibility to the global scientific community (2016) Infect. Chemother., 48, pp. 145-146; Park, M.K., Cho, H., Roh, S.W., Kim, S.J., Myoung, J., Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication (2019) Sci. Rep., 9, p. 2372; Park, Y.S., Lee, C., Kim, K.M., Kim, S.W., Lee, K.J., Ahn, J., Ki, M., The first case of the 2015 Korean Middle East respiratory syndrome outbreak (2015) Epidemiol. Health, 37; Prins, K.C., Cardenas, W.B., Basler, C.F., Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1 (2009) J. Virol., 83, pp. 3069-3077; Prins, K.C., Delpeut, S., Leung, D.W., Reynard, O., Volchkova, V.A., Reid, S.P., Ramanan, P., Volchkov, V.E., Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs (2010) J. Virol., 84, pp. 3004-3015; Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Chen, M.H., Characterization of a novel coronavirus associated with severe acute respiratory syndrome (2003) Science, 300, pp. 1394-1399; Runge, S., Sparrer, K.M., Lassig, C., Hembach, K., Baum, A., Garcia-Sastre, A., Soding, J., Hopfner, K.P., In vivo ligands of MDA5 and RIG-I in measles virus-infected cells (2014) PLoS Pathog., 10; Seth, R.B., Sun, L., Ea, C.K., Chen, Z.J., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 (2005) Cell, 122, pp. 669-682; Seys, L.J.M., Widagdo, W., Verhamme, F.M., Kleinjan, A., Janssens, W., Joos, G.F., Bracke, K.R., Brusselle, G.G., DPP4, the Middle East respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients (2018) Clin. Infect. Dis., 66, pp. 45-53; Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Chan, C.P., Yuen, K.Y., Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J. Virol., 88, pp. 4866-4876; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br. Med. J., 1, pp. 1467-1470; Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Corbet, S., Freymuth, F., Detection of the new human coronavirus HKU1: a report of 6 cases (2006) Clin. Infect. Dis., 42, pp. 634-639; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D.M.E., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) mBio, 3, pp. e00473-e412; van den Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of Middle East respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184; van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Versteeg, G.A., Bredenbeek, P.J., van den Worm, S.H., Spaan, W.J., Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition (2007) Virology, 361, pp. 18-26; Weber, F., Wagner, V., Rasmussen, S.B., Hartmann, R., Paludan, S.R., Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses (2006) J. Virol., 80, pp. 5059-5064; Widagdo, W., Sooksawasdi Na Ayudhya, S., Hundie, G.B., Haagmans, B.L., Host determinants of MERS-CoV transmission and pathogenesis (2019) Viruses, 11, p. 280; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Luk, W.K., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Woo, P.C., Lau, S.K., Tsoi, H.W., Huang, Y., Poon, R.W., Chu, C.M., Lee, R.A., Wong, B.H., Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia (2005) J. Infect. Dis., 192, pp. 1898-1907; Yang, Y., Ye, F., Zhu, N., Wang, W., Deng, Y., Zhao, Z., Tan, W., Middle East respiratory syndrome coronavirus ORF 4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets (2015) Sci. Rep., 5, p. 17554; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Yip, C.W., Hon, C.C., Shi, M., Lam, T.T., Chow, K.Y., Zeng, F., Leung, F.C., Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses (2009) Infect. Genet. Evol., 9, pp. 1185-1196; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Zhou, H., Perlman, S., Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by double-stranded RNA (2007) J. Virol., 81, pp. 568-574; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Becker, S., Weber, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 5300-5304; Zust, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Diamond, M.S., Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 (2011) Nat. Immunol., 12, pp. 137-143","Myoung, J.; Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National UniversitySouth Korea; email: Jinjong.myoung@jbnu.ac.kr",,"Microbiological Society of Korea",12258873,,,"31452044","English","J. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85071494457 "keha A., Xue L., Yan S., Yue H., Tang C.","57209102421;57209104180;57209098159;8855570100;36646976100;","Prevalence of a novel bovine coronavirus strain with a recombinant hemagglutinin/esterase gene in dairy calves in China",2019,"Transboundary and Emerging Diseases","66","5",,"1971","1981",,2,"10.1111/tbed.13228","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066489953&doi=10.1111%2ftbed.13228&partnerID=40&md5=5baf943f5b590686d49ca6985c29b916","College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China","keha, A., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Xue, L., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Yan, S., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China; Yue, H., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China; Tang, C., College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China, Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China","Bovine coronavirus (BCoV) is the causative agent of diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract illnesses in cattle across the world. In this study, a total of 190 faecal samples from dairy calves with diarrhoea were collected from 14 farms in six Chinese provinces, and BCoV was detected in 18.95% (36/190) of the samples by reverse transcriptase polymerase chain reaction. Full-length spike, hemagglutinin/esterase (HE), nucleocapsid and transmembrane genes were simultaneously cloned from 13 clinical samples (eight farms in four provinces), and most of the BCoV strains showed a unique evolutionary pattern based on the phylogenetic analysis of these genes. Interesting, 10 of the 13 strains were identified as HE recombinant strains, and these strains had experienced the same recombination event and carried the same recombination sites located between the esterase and lectin domain. They also shared an identical aa variant (F181V) in the R2-loop. Moreover, 9/10 strains displayed another identical aa variant (P, S158A) in the adjacent R1-loop of the HE gene, which differs from the other available BCoV HE sequences in the GenBank database. Our results showed that BCoV is widely circulating in dairy cattle in China, contributing to the diagnosis and control of dairy calves diarrhoea. Furthermore, a BCoV strain that carries a recombinant HE gene has spread in dairy calves in China. To the best of our knowledge, this is the first description of an HE recombination event occurring in BCoV; this is also the first description of the molecular prevalence of BCoV in China. Our findings will enhance current understanding about the genetic evolution of BCoV. © 2019 Blackwell Verlag GmbH","bovine coronavirus; China; dairy calves; hemagglutinin/esterase gene; prevalence; recombination","esterase; hemagglutinin; membrane protein; recombinant protein; hemagglutinin esterase; recombinant protein; viral protein; virus fusion protein; virus hemagglutinin; Article; Bovine coronavirus; Coronavirus infection; dairy cattle; diarrhea; feces analysis; molecular dynamics; nonhuman; nucleotide sequence; phylogeny; prevalence; reverse transcription polymerase chain reaction; RNA extraction; sequence analysis; virus detection; virus gene; virus nucleocapsid; animal; bovine; Bovine coronavirus; cattle disease; China; Coronavirus infection; dairying; DNA sequence; feces; genetics; molecular evolution; prevalence; veterinary medicine; virology; Animals; Cattle; Cattle Diseases; China; Coronavirus Infections; Coronavirus, Bovine; Dairying; Diarrhea; Evolution, Molecular; Feces; Hemagglutinins, Viral; Phylogeny; Prevalence; Recombinant Proteins; Sequence Analysis, DNA; Viral Fusion Proteins; Viral Proteins","Azizzadeh, M., Shooroki, H.F., Kamalabadi, A.S., Stevenson, M.A., Factors affecting calf mortality in Iranian holstein dairy herds (2012) Preventive Veterinary Medicine, 104 (3-4), pp. 335-340. , https://doi.org/10.1016/j.prevetmed.2011.12.007; Bakkers, M.J.G., Lang, Y., Feitsma, L.J., Hulswit, R.J.G., Poot, S.A.H.D., Vliet, A.L.W.V., Huizinga, E.G., Betacoronavirus adaptation to humans involved progress loss of hemagglutinin-esterase lectin activity (2017) Cell Host & Microbe, 21 (3), p. 356. , https://doi.org/10.1016/j.chom.2017.02.008; Bidokhti, M.R., Tråvén, M., Krishna, N.K., Munir, M., Belák, S., Alenius, S., Cortey, M., Evolutionary dynamics of bovine coronaviruses: Natural selection pattern of the spike gene implies adaptive evolution of the strains (2013) Journal of General Virology, 94 (9), pp. 2036-2049. , https://doi.org/10.1099/vir.0.054940-0; Bok, M., Miño, S., Rodriguez, D., Badaracco, A., Nuñes, I., Souza, S.P., Parreño, V., Molecular and antigenic characterization of bovine coronavirus circulating in argentinean cattle during 1994–2010 (2015) Veterinary Microbiology, 181 (3-4), pp. 221-229. , https://doi.org/10.1016/j.vetmic.2015.10.017; Chen, N., Li, S., Zhou, R., Zhu, M., He, S., Ye, M., Zhu, J., Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants (2017) Virus Research, 242, pp. 90-95. , https://doi.org/10.1016/j.virusres2017.09.013; Deregt, D., Babiuk, L.A., Monoclonal antibodies to bovine coronavirus: chacteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins (1987) Virology, 161 (2), p. 420. , https://doi.org/10.1016/0042-6822(87)90134-6; Deregt, D., Gifford, G.A., Ijaz, M.K., Watts, T.C., Gilchrist, J.E., Haines, D.M., Babiuk, L.A., Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: Demonstration of in vivo virus-neutralizing activity (1989) Journal of General Virology, 70 (4), pp. 993-998. , https://doi.org/10.1099/0022-1317-70-4-993; Forni, D., Filippi, G., Cagliani, R., De Gioia, L., Pozzoli, U., Al-Daghri, N., Sironi, M., The heptad repeat region is a major selection target in MERS-CoV and related corona- viruses (2015) Scientific Reports, 5, p. 14480. , https://doi.org/10.1038/srep14480; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279 (2), pp. 371-374. , https://doi.org/10.1006/viro.2000.0757; Gélinas, A.M., Boutin, M., Sasseville, A.M., Dea, S., Bovine coronaviruses associated with enteric and respiratory diseases in Canadian dairy cattle display different reactivities to anti-HE monoclonal antibodies and distinct amino acid changes in their HE, S and ns4.9 protein (2001) Virus Research, 76 (1), pp. 43-57. , https://doi.org/10.1016/S0168-1702(01)00243-X; Groot, R.J.D., Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses (2006) Glycoconjugate Journal, 23 (1-2), pp. 59-72. , https://doi.org/10.1007/s10719-006-5438-8; Hasoksuz, M., Sreevatsan, S., Cho, K.O., Hoet, A.E., Saif, L.J., Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates (2002) Virus Research, 84 (1), pp. 101-109. , https://doi.org/10.1016/S0168-1702(02)00004-7; Herrewegh, A.A.P.M., Smeenk, I., Horzinek, M.C., Rottier, P.J.M., Groot, R.J.D., Feline coronavirus type ii strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus, type I and canine coronavirus (1998) Journal of Virology, 72 (5), p. 4508; Hurst, K.R., Ye, R., Goebel, S.J., Jayaraman, P., Masters, P.S., An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA (2010) Journal of Virology, 84 (19), p. 1027. , https://doi.org/10.1128/JVI.01287-10; Johnson, K.K., Pendell, D.L., Market impacts of reducing the prevalence of bovine respiratory disease in United States beef cattle feedlots (2017) Frontiers in Veterinary Science, 4, p. 189. , https://doi.org/10.3389/fvets.2017.00189; Kienzle, T.E., Abraham, S., Hogue, B.G., Brian, D.A., Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein (1990) Journal of Virology, 64 (4), p. 1834; Kin, N., Miszczak, F., Lin, W., Gouilh, M., Vabret, A., Consortium, E., Genomic analysis of 15 human coronaviruses OC43 (HCoV-OC43s) circulating in france from 2001 to 2013 reveals a high intra-specific diversity with new recombinant genotypes (2015) Viruses, 7 (5), pp. 2358-2377. , https://doi.org/10.3390/v7052358; Ko, C.K., Kang, M.I., Lim, G.K., Kim, G.Y., Yoon, S.S., Park, J.T., Cho, K.O., Molecular characterization of HE, M, and E genes of winter dysentery bovine coronavirus circulated in korea during 2002–2003 (2006) Virus Genes, 32 (2), pp. 129-136. , https://doi.org/10.1007/s11262-005-6867-3; Lai, M.M.C., Cavanagh, D., The molecular biology of coronaviruses (1997) Advances in Virus Research, 48 (48), pp. 1-100. , https://doi.org/10.1016/S0168-1702(96)01421-9; Langereis, M.A., Zeng, Q., Heesters, B., Huizinga, E.G., Groot, R.J.D., The murine coronavirus hemagglutinin-esterase receptor-binding site: A major shift in ligand specificity through modest changes in architecture (2012) PLoS Path, 8 (1). , https://doi.org/10.1371/journal.ppat.1002492; Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., Yuen, K.Y., Molecular epidemiology of human coronavirus oc43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) Journal of Virology, 85 (21), p. 11325. , https://doi.org/10.1128/JVI.05512-11; Lau, S.K.P., Li, K.S.M., Huang, Y., Shek, C.-T., Tse, H., Wang, M., Yuen, K.-Y., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events (2010) Journal of Virology, 84 (6), p. 2808. , https://doi.org/10.1128/JVI.02219-09; Li, F., Structure, function, and evolution of coronavirus spike proteins (2016) Annual Review of Virology, 3 (1), pp. 1954-1964. , https://doi.org/10.1146/annurev-virology-110615-042301; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Farzan, M., Receptor and viral determinants of SARA-coronavirus adaptation to human ACE 2 (2005) Embo Journal, 24 (8), pp. 1634-1643. , https://doi.org/10.1038/sj.emboj.7600640; Luo, Z., Weiss, S.R., Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein (1998) Virology, 244 (2), pp. 483-494. , https://doi.org/10.1006/viro.1998.9121; Luytjes, W., Bredenbeek, P.J., Noten, A.F., Horzinek, M.C., Spaan, W.J., Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza c virus (1988) Virology, 166 (2), pp. 415-422. , https://doi.org/10.1016/0042-6822(88)90512-0; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes. Virus (2015) Evolution, 1 (1), p. vev003. , https://doi.org/10.1093/ve/vev003; Martínez, N., Brandão, P.E., de Souza, S.P., Barrera, M., Santana, N., de Arce, H.D., Pérez, L.J., Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene (2012) Infection Genetics & Evolution, 12 (8), pp. 1870-1878. , https://doi.org/10.1016/j.meegid.2012.05.007; Matrosovich, M., Herrler, G., Klenk, H.D., Sialic acid receptors of viruses (2013) Topics in Current Chemistry, 367, pp. 1-28. , https://doi.org/10.1007/128_2013_466; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species—a mechanism for coronavirus persistence and survival (2017) Current Opinion in Virology, 23, pp. 1-7. , https://doi.org/10.1016/j.coviro.2017.01.002; Minami, S., Kuroda, Y., Terada, Y., Yonemitsu, K., Van Nguyen, D., Kuwata, R., Maeda, K., Detection of novel ferret coronaviruses and evidence of recombination among ferret coronaviruses (2016) Virus Genes, 52 (6), pp. 1-5. , https://doi.org/10.1007/s11262-016-1365-3; Oostra, M., Haan, C.A.M.D., Groot, R.J.D., Rottier, A.P.J.M., Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3A and M (2006) Journal of Virology, 80 (5), p. 2326. , https://doi.org/10.1128/JVI.80.5.2326-2336.2006; Park, S.-J., Jeong, C., Yoon, S.-S., Choy, H.E., Saif, L.J., Park, S.-H., Cho, K.-O., Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons (2006) Journal of Clinical Microbiology, 44 (9), pp. 3178-3188. , https://doi.org/10.1128/JCM.02667-05; Park, S.J., Lim, G.K., Park, S.I., Kim, H.H., Koh, H.B., Cho, K.O., Detection and molecular characterization of calf diarrhoea bovine coronaviruses circulating in South Korea during 2004–2005 (2010) Zoonoses & Public Health, 54 (6-7), pp. 223-230. , https://doi.org/10.1111/j.1863-2378.2007.01045.x; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) Journal of Biological Chemistry, 287 (50), p. 41931. , https://doi.org/10.1074/jbc.M112.418210; Schultze, B., Wahn, K., Klenk, H.D., Herrler, G., Isolated he-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor– destroying and receptor-binding activity (1991) Virology, 180 (1), pp. 221-228. , https://doi.org/10.1016/0042-6822(91)90026-8; Sheahan, T., Rockx, B., Donaldson, E., Sims, A., Pickles, R., Corti, D., Baric, R., Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium (2008) Journal of Virology, 82 (5), pp. 2274-2285. , https://doi.org/10.1128/JVI.02041-07; Smits, S.L., Gerwig, G.J., van Vliet, A.L., Lissenberg, A., Briza, P., Kamerling, J.P., de Groot, R.J., Nidovirus sialate-o-acetylesterases: Evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes (2005) The Journal of Biological Chemistry, 280 (8), pp. 6933-6941. , https://doi.org/10.1074/jbc.M409683200; Wang, Y., Liu, D.I., Shi, W., Lu, R., Wang, W., Zhao, Y., Tan, W., Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the first imported case in china: Phylogenetics and coalescence analysis (2015) Molecular Biology and Physiology, 6 (5), pp. 01280-1315. , https://doi.org/10.1128/mBio.01280-15; Woo, P.C., Lau, S.K., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Experimental Biology & Medicine, 234 (10), pp. 1117-1127. , https://doi.org/10.3181/0903-MR-94; Yoo, D., Deregt, D., A single amino acid change within antigenic domain ii of the spike protein of bovine coronavirus confers resistance to virus neutralization (2001) Clinical & Diagnostic Laboratory Immunology, 8 (2), p. 297. , https://doi.org/10.1128/CDLI.8.2.297-302.2001","Tang, C.; College of Life Science and Technology, Southwest University for NationalitiesChina; email: tangcheng101@163.com",,"Blackwell Publishing Ltd",18651674,,,"31077561","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85066489953 "Zhou L., Li Q.N., Su J.N., Chen G.H., Wu Z.X., Luo Y., Wu R.T., Sun Y., Lan T., Ma J.Y.","55861714100;57208317097;57209805627;57193314304;57193311808;57205188876;57196419932;56166199400;57201787210;7406199976;","The re-emerging of SADS-CoV infection in pig herds in Southern China",2019,"Transboundary and Emerging Diseases","66","5",,"2180","2183",,1,"10.1111/tbed.13270","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068769675&doi=10.1111%2ftbed.13270&partnerID=40&md5=e50424bb577556c8d5f702772ca5e024","College of Animal Science, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China","Zhou, L., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Li, Q.N., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Su, J.N., College of Animal Science, South China Agricultural University, Guangzhou, China; Chen, G.H., College of Animal Science, South China Agricultural University, Guangzhou, China; Wu, Z.X., College of Animal Science, South China Agricultural University, Guangzhou, China; Luo, Y., College of Animal Science, South China Agricultural University, Guangzhou, China; Wu, R.T., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Sun, Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China; Lan, T., College of Animal Science, South China Agricultural University, Guangzhou, China; Ma, J.Y., College of Animal Science, South China Agricultural University, Guangzhou, China, Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China","A new highly virulent swine acute diarrhoea syndrome coronavirus (SADS-CoV) emerged in Guangdong province in 2017 followed by fatal diarrhoea that involved the death of 24,693 piglets. And yet from May 2017 to January 2019, there were no new SADS cases arising in pig herds in Guangdong. In this study, we reported the recent diarrhoea outbreak of SADS-CoV in Southern China on February 2019. Intestinal samples collected from diarrhoeal piglets were detected for common swine virus and confirmed that SADS-CoV was responsible for the diarrhoea case. Meanwhile, serological investigation of sows’ sera implied that SADS-CoV has existed in the farm and PEDV antibody may not directly contribute to the amplification of SADS-CoV. Homology and phylogenetic analysis of the whole genome showed that the re-emerging SADS-CoV strain shared high sequence identities with existing SADS-CoV strains and all strains clustered together in Alpha coronavirus. All in all, the report herein emphasized the re-emerging of SADS-CoV and highlights continuous monitoring for this virus. © 2019 Blackwell Verlag GmbH","phylogenetic analysis; re-emerging; SADS-CoV; Southern China","Alphacoronavirus; Article; China; Circovirus; Coronavirinae; diarrhea; immunogenicity; nonhuman; phylogenetic tree; phylogeny; pig; Porcine epidemic diarrhea virus; Porcine reproductive and respiratory syndrome virus; Reoviridae; reverse transcription polymerase chain reaction; sequence alignment; seroconversion; sow (swine); swine acute diarrhoea syndrome coronavirus; vaccination; virus detection; virus neutralization; virus strain; animal; Coronavirus infection; diarrhea; epidemic; genetics; physiology; swine disease; veterinary medicine; virology; Swine acute diarrhea syndrome coronavirus; Alphacoronavirus; Animals; China; Coronavirus Infections; Diarrhea; Disease Outbreaks; Phylogeny; Swine; Swine Diseases","Cui, J., Li, F., Shi, Z., Origin and evolution of pathogenic coronavirus (2019) Nat Rew Microbiol, 17, pp. 181-192; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine Deltacoronavirus in mainland China (2015) Emerging Infectious Diseases, 21, pp. 2254-2255. , https://doi.org/10.3201/eid2112.150283; Felsenstein, J., Confidence limits on phylogenies: An approach using the bootstrap (1985) Evolution, 39, pp. 783-791; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Cao, Y., A new bat-HKU–like coronavirus in swine, China, 2017 (2017) Emerging Infectious Diseases, 23, pp. 1607-1609; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Molecular Biology and Evolution, 33, pp. 1870-1874; Li, K., Li, H., Bi, Z., Gu, J., Gong, W., Luo, S., Tang, Y., Complete genome sequence of a novel swine acute diarrhea syndrome coronavirus, CH/FJWT/2018, isolated in fujian, china, in 2018 (2018) Microbiol Resour Announc, 7 (22); Li, W., Frank, J., He, Q., Peter, J., Berend-Jan, B., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Research, 226, pp. 117-127. , https://doi.org/10.1016/j.virusres.2016.05.031; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.-L., Huang, Y.-W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Veterinary Microbiology, 211, pp. 15-21. , https://doi.org/10.1016/j.vetmic.2017.09.020; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Cao, Y., Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets (2019) Transboundary and Emerging Diseases, 66, pp. 119-130; Xuan, H., Xing, D., Wang, D., Zhu, W., Zhao, F., Gong, H., Fei, S., Study on the culture of porcine epidemic diarrhea virus adapted to fetal porcine intestine primary cell monolayer (1984) Chin. J. Vet. Sci., 4, pp. 202-208; Zhou, L., Sun, Y., Lan, T., Wu, R., Chen, J., Wu, Z., Ma, J., Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China (2019) Transboundary and Emerging Diseases, 66, pp. 687-695. , https://doi.org/10.1111/tbed.13008; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Ma, J.-Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9","Ma, J.Y.; College of Animal Science, South China Agricultural UniversityChina; email: majy2400@scau.edu.cn",,"Blackwell Publishing Ltd",18651674,,,"31207129","English","Transboundary Emer. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85068769675 "Manuel O., Estabrook M., the American Society of Transplantation Infectious Diseases Community of Practice","24174793000;6603875560;","RNA respiratory viral infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice",2019,"Clinical Transplantation","33","9", e13511,"","",,8,"10.1111/ctr.13511","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063326744&doi=10.1111%2fctr.13511&partnerID=40&md5=3f6404c2027e14b32997c912756f33be","Infectious Diseases Service and Transplantation Center, University Hospital and University of Lausanne, Lausanne, Switzerland; Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States","Manuel, O., Infectious Diseases Service and Transplantation Center, University Hospital and University of Lausanne, Lausanne, Switzerland; Estabrook, M., Division of Pediatric Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States; the American Society of Transplantation Infectious Diseases Community of Practice","These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of RNA respiratory viral infections in the pre- and post-transplant period. Viruses reviewed include influenza, respiratory syncytial virus (RSV), parainfluenza, rhinovirus, human metapneumovirus (hMPV), and coronavirus. Diagnosis is by nucleic acid testing due to improved sensitivity, specificity, broad range of detection of viral pathogens, automatization, and turnaround time. Respiratory viral infections may be associated with acute rejection and chronic lung allograft dysfunction in lung transplant recipients. The cornerstone of influenza prevention is annual vaccination and in some cases antiviral prophylaxis. Treatment with neuraminidase inhibitors and other antivirals is reviewed. Prevention of RSV is limited to prophylaxis with palivizumab in select children. Therapy of RSV upper or lower tract disease is controversial but may include oral or aerosolized ribavirin in some populations. There are no approved vaccines or licensed antivirals for parainfluenza, rhinovirus, hMPV, and coronavirus. Potential management strategies for these viruses are given. Future studies should include prospective trials using contemporary molecular diagnostics to understand the true epidemiology, clinical spectrum, and long-term consequences of respiratory viruses as well as to define preventative and therapeutic measures. © 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd","antibiotic prophylaxis; antibiotic: antiviral; guidelines; infection and infectious agents; viral: influenza","antivirus agent; sialidase inhibitor; virus RNA; antiviral therapy; Article; graft recipient; human; Human metapneumovirus; Human metapneumovirus infection; Human respiratory syncytial virus; influenza; Influenza virus; organ transplantation; Parainfluenza virus infection; priority journal; respiratory syncytial virus infection; Rhinovirus; Rhinovirus infection; risk factor; viral respiratory tract infection; virology","Manuel, O., Estabrook, M., RNA respiratory viruses in solid organ transplantation (2013) Am J Transplant, 13, pp. 212-219; Couch, R.B., Englund, J.A., Whimbey, E., Respiratory viral infections in immunocompetent and immunocompromised persons (1997) Am J Med, 102 (3A), pp. 2-9. , discussion 25-6; López-Medrano, F., Aguado, J.M., Lizasoain, M., Clinical implications of respiratory virus infections in solid organ transplant recipients: a prospective study (2007) Transplantation, 84 (7), pp. 851-856; Peck, A., Englund, J., Kuypers, J., Respiratory virus infection among hematopoietic cell transplant recipients: evidence for asymptomatic parainfluenza virus infection (2007) Blood, 110 (5), pp. 1681-1688; Billings, J.L., Hertz, M.I., Savik, K., Wendt, C.H., Respiratory viruses and chronic rejection in lung transplant recipients (2002) J Heart Lung Transplant, 21 (5), pp. 559-566; Ison, M.G., Gubareva, L.V., Atmar, R.L., Treanor, J., Hayden, F.G., Recovery of drug-resistant influenza virus from immunocompromised patients: a case series (2006) J Infect Dis, 193 (6), pp. 760-764; Kumar, D., Ferreira, V.H., Blumberg, E., A five-year prospective multi-center evaluation of influenza infection in transplant recipients (2018) Clin Infect Dis, 67, pp. 1322-1329; van de Veerdonk, F.L., Kolwijck, E., Lestrade, P.P., Influenza-associated aspergillosis in critically ill patients (2017) Am J Respir Crit Care Med, 196 (4), pp. 524-527; Khalifah, A.P., Hachem, R.R., Chakinala, M.M., Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death (2004) Am J Respir Crit Care Med, 170 (2), pp. 181-187; Kumar, D., Erdman, D., Keshavjee, S., Clinical impact of community-acquired respiratory viruses on bronchiolitis obliterans after lung transplant (2005) Am J Transplant, 5 (8), pp. 2031-2036; Peghin, M., Hirsch, H., Len, Ó., Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: a 5-year prospective study (2017) Am J Transplant, 17 (5), pp. 1304-1312; Martin-Gandul, C., Mueller, N.J., Pascual, M., Manuel, O., The impact of infection on chronic allograft dysfunction and allograft survival after solid organ transplantation (2015) Am J Transplant, 15 (12), pp. 3024-3040; Vu, D.L., Bridevaux, P.O., Aubert, J.D., Soccal, P.M., Kaiser, L., Respiratory viruses in lung transplant recipients: a critical review and pooled analysis of clinical studies (2011) Am J Transplant, 11 (5), pp. 1071-1078; Ison, M.G., Respiratory viral infections in transplant recipients (2007) Antivir Ther, 12 (4), pp. 627-638; Danziger-Isakov, L., Steinbach, W.J., Paulsen, G., Multicenter consortium to define the epidemiology and outcomes of pediatric solid organ transplant recipients with inpatient respiratory virus infection (2018) J Pediatric Infect Dis Soc, , [Epub ahead of print]; Helantera, I., Anttila, V.J., Lappalainen, M., Lempinen, M., Isoniemi, H., Outbreak of influenza A(H1N1) in a kidney transplant unit-protective effect of vaccination (2015) Am J Transplant, 15 (9), pp. 2470-2474; Mahony, J.B., Detection of respiratory viruses by molecular methods (2008) Clin Microbiol Rev, 21 (4), pp. 716-747; Nolte, F., Marshall, D., Rasberry, C., MultiCode-PLx system for multiplexed detection of seventeen respiratory viruses (2007) J Clin Microbiol, 45 (9), pp. 2779-2786; Mahony, J., Chong, S., Merante, F., Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay (2007) J Clin Microbiol, 45 (9), pp. 2965-2970; Rand, K.H., Rampersaud, H., Houck, H.J., Comparison of two multiplex methods for detection of respiratory viruses: FilmArray RP and xTAG RVP (2011) J Clin Microbiol, 49 (7), pp. 2449-2453; Forman, M.S., Advani, S., Newman, C., Gaydos, C.A., Milstone, A.M., Valsamakis, A., Diagnostic performance of two highly multiplexed respiratory virus assays in a pediatric cohort (2012) J Clin Virol, 55, pp. 168-172; Hayden, R.T., Gu, Z., Rodriguez, A., Comparison of two broadly multiplexed PCR systems for viral detection in clinical respiratory tract specimens from immunocompromised children (2012) J Clin Virol, 53 (4), pp. 308-313; Pabbaraju, K., Wong, S., Tokaryk, K.L., Fonseca, K., Drews, S.J., Comparison of the Luminex xTAG respiratory viral panel with xTAG respiratory viral panel fast for diagnosis of respiratory virus infections (2011) J Clin Microbiol, 49 (5), pp. 1738-1744; Cohen, D.M., Kline, J., May, L.S., Accurate PCR detection of influenza A/B and respiratory syncytial viruses by use of cepheid xpert Flu+RSV xpress assay in point-of-care settings: comparison to prodesse ProFlu (2018) J Clin Microbiol, 56 (2); Miller, S., Moayeri, M., Wright, C., Castro, L., Pandori, M., Comparison of GeneXpert FluA PCR to direct fluorescent antibody and respiratory viral panel PCR assays for detection of 2009 novel H1N1 influenza virus (2010) J Clin Microbiol, 48 (12), pp. 4684-4685; Chartrand, C., Leeflang, M.M., Minion, J., Brewer, T., Pai, M., Accuracy of rapid influenza diagnostic tests: a meta-analysis (2012) Ann Intern Med, 156 (7), pp. 500-511; Englund, J.A., Piedra, P.A., Jewell, A., Patel, K., Baxter, B.B., Whimbey, E., Rapid diagnosis of respiratory syncytial virus infections in immunocompromised adults (1996) J Clin Microbiol, 34 (7), pp. 1649-1653; Roghmann, M., Ball, K., Erdman, D., Lovchik, J., Anderson, L.J., Edelman, R., Active surveillance for respiratory virus infections in adults who have undergone bone marrow and peripheral blood stem cell transplantation (2003) Bone Marrow Transplant, 32 (11), pp. 1085-1088; Rovida, F., Percivalle, E., Zavattoni, M., Monoclonal antibodies versus reverse transcription-PCR for detection of respiratory viruses in a patient population with respiratory tract infections admitted to hospital (2005) J Med Virol, 75 (2), pp. 336-347; Landry, M.L., Ferguson, D., SimulFluor respiratory screen for rapid detection of multiple respiratory viruses in clinical specimens by immunofluorescence staining (2000) J Clin Microbiol, 38 (2), pp. 708-711; Perez-Padilla, R., de la Rosa-Zamboni, D., Ponce de Leon, S., Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico (2009) N Engl J Med, 361 (7), pp. 680-689; Cordero, E., Pérez-Romero, P., Moreno, A., Pandemic influenza A(H1N1) virus infection in solid organ transplant recipients: impact of viral and non-viral co-infection (2012) Clin Microbiol Infect, 18 (1), pp. 67-73; Kumar, D., Michaels, M.G., Morris, M.I., Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: a multicentre cohort study (2010) Lancet Infect Dis, 10 (8), pp. 521-526; Minnema, B.J., Patel, M., Rotstein, C., Comparison of hospitalized solid organ transplant recipients and nonimmunocompromised patients with pandemic H1N1 infection: a retrospective cohort study (2011) Transplantation, 92 (2), pp. 230-234; Ng, B., Glanville, A.R., Snell, G., The impact of pandemic influenza A H1N1 2009 on Australian lung transplant recipients (2011) Am J Transplant, 11 (3), pp. 568-574; Kumar, D., Blumberg, E.A., Danziger-Isakov, L., Influenza vaccination in the organ transplant recipient: review and summary recommendations (2011) Am J Transplant, 11 (10), pp. 2020-2030; Manuel, O., Pascual, M., Hoschler, K., Humoral response to the influenza A H1N1/09 monovalent AS03-adjuvanted vaccine in immunocompromised patients (2011) Clin Infect Dis, 52 (2), pp. 248-256; Schuurmans, M.M., Tini, G.M., Dalar, L., Fretz, G., Benden, C., Boehler, A., Pandemic 2009 H1N1 influenza virus vaccination in lung transplant recipients: coverage, safety and clinical effectiveness in the Zurich cohort (2011) J Heart Lung Transplant, 30 (6), pp. 685-690; Hurst, F.P., Lee, J.J., Jindal, R.M., Agodoa, L.Y., Abbott, K.C., Outcomes associated with influenza vaccination in the first year after kidney transplantation (2011) Clin J Am Soc Nephrol, 6 (5), pp. 1192-1197; Kumar, D., Cordero, E., Blumberg, E., A prospective multicenter study of seasonal influenza infection in transplant recipients, , American Transplant Congress; Boston 2012; Chong, P.P., Handler, L., Weber, D.J., A systematic review of safety and immunogenicity of influenza vaccination strategies in solid organ transplant recipients (2018) Clin Infect Dis, 66 (11), pp. 1802-1811; Cordero, E., Roca-Oporto, C., Bulnes-Ramos, A., Two doses of inactivated influenza vaccine improve immune response in solid organ transplant recipients: results of TRANSGRIPE 1–2, a randomized controlled clinical trial (2017) Clin Infect Dis, 64 (7), pp. 829-838; Natori, Y., Shiotsuka, M., Slomovic, J., A double-blind, randomized trial of high-dose vs standard-dose influenza vaccine in adult solid-organ transplant recipients (2018) Clin Infect Dis, 66 (11), pp. 1698-1704; Ison, M., Skakaly, P., Shapira, M.Y., Krivan, G., Nist, A., Dutkowski, R., Efficacy and safety of oral oseltamivir for influenza prophylaxis in transplant recipients (2012) Antivir Ther, 17, pp. 955-964; Fiore, A.E., Fry, A., Shay, D., Antiviral agents for the treatment and chemoprophylaxis of influenza –- recommendations of the Advisory Committee on Immunization Practices (ACIP) (2011) MMWR Recomm Rep, 60 (1), pp. 1-24; Fiore, A.E., Fry, A., Shay, D., Gubareva, L., Bresee, J.S., Uyeki, T.M., Antiviral agents for the treatment and chemoprophylaxis of influenza –- recommendations of the Advisory Committee on Immunization Practices (ACIP) (2011) MMWR Recomm Rep, 60 (1), pp. 1-24; Watanabe, A., Chang, S.C., Kim, M.J., Chu, D.W., Ohashi, Y., Long-acting neuraminidase inhibitor laninamivir octanoate versus oseltamivir for treatment of influenza: A double-blind, randomized, noninferiority clinical trial (2010) Clin Infect Dis, 51 (10), pp. 1167-1175; Low, C.Y., Kee, T., Chan, K.P., Pandemic (H1N1) 2009 infection in adult solid organ transplant recipients in Singapore (2010) Transplantation, 90 (9), pp. 1016-1021; Smud, A., Nagel, C.B., Madsen, E., Pandemic influenza A/H1N1 virus infection in solid organ transplant recipients: a multicenter study (2010) Transplantation, 90 (12), pp. 1458-1462; Marty, F.M., Vidal-Puigserver, J., Clark, C., Intravenous zanamivir or oral oseltamivir for hospitalised patients with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial (2017) Lancet Respir Med, 5 (2), pp. 135-146; Ison, M.G., Fraiz, J., Heller, B., Intravenous peramivir for treatment of influenza in hospitalized patients (2014) Antivir Ther, 19 (4), pp. 349-361; Ison, M.G., Sharma, A., Shepard, J.A., Wain, J.C., Ginns, L.C., Outcome of influenza infection managed with oseltamivir in lung transplant recipients (2008) J Heart Lung Transplant, 27 (3), pp. 282-288; Hayden, F.G., Sugaya, N., Hirotsu, N., Baloxavir Marboxil for uncomplicated influenza in adults and adolescents (2018) N Engl J Med, 379 (10), pp. 913-923; Khanna, N., Steffen, I., Studt, J.-D., Outcome of influenza infections in outpatients after allogeneic hematopoietic stem cell transplantation (2009) Transpl Infect Dis, 11 (2), pp. 100-105; Watcharananan, S.P., Suwatanapongched, T., Wacharawanichkul, P., Chantratitaya, W., Mavichak, V., Mossad, S.B., Influenza A/H1N1 2009 pneumonia in kidney transplant recipients: characteristics and outcomes following high-dose oseltamivir exposure (2010) Transpl Infect Dis, 12 (2), pp. 127-131; Effect of double dose oseltamivir on clinical and virological outcomes in children and adults admitted to hospital with severe influenza: double blind randomised controlled trial (2013) BMJ, 346, p. f3039; Lam, H., Jeffery, J., Sitar, D.S., Aoki, F.Y., Oseltamivir, an influenza neuraminidase inhibitor drug, does not affect the steady-state pharmacokinetic characteristics of cyclosporine, mycophenolate, or tacrolimus in adult renal transplant patients (2011) Ther Drug Monit, 33 (6), pp. 699-704; Ison, M.G., Antivirals and resistance: influenza virus (2011) Curr Opin Virol, 1 (6), pp. 563-573; Calatayud, L., Lackenby, A., Reynolds, A., Oseltamivir-resistant pandemic (H1N1) 2009 virus infection in England and Scotland, 2009–2010 (2011) Emerg Infect Dis, 17 (10), pp. 1807-1815; Obando-Pacheco, P., Justicia-Grande, A.J., Rivero-Calle, I., Respiratory syncytial virus seasonality: a global overview (2018) J Infect Dis, 217 (9), pp. 1356-1364; Paulsen, G.C., Danziger-Isakov, L., Respiratory viral infections in solid organ and hematopoietic stem cell transplantation (2017) Clin Chest Med, 38 (4), pp. 707-726; Blanchard, S.S., Gerrek, M., Siegel, C., Czinn, S.J., Significant morbidity associated with RSV infection in immunosuppressed children following liver transplantation: case report and discussion regarding need of routine prophylaxis (2006) Pediatr Transplant, 10 (7), pp. 826-829; Bridevaux, P.-O., Aubert, J.-D., Soccal, P.M., Incidence and outcomes of respiratory viral infections in lung transplant recipients: a prospective study (2014) Thorax, 69 (1), pp. 32-38; Flynn, J.D., Akers, W.S., Jones, M., Treatment of respiratory syncytial virus pneumonia in a lung transplant recipient: case report and review of the literature (2004) Pharmacotherapy, 24 (7), pp. 932-938; Krinzman, S., Basgoz, N., Kradin, R., Respiratory syncytial virus-associated infections in adult recipients of solid organ transplants (1998) J Heart Lung Transplant, 17 (2), pp. 202-210; McCurdy, L.H., Milstone, A., Dummer, S., Clinical features and outcomes of paramyxoviral infection in lung transplant recipients treated with ribavirin (2003) J Heart Lung Transplant, 22 (7), pp. 745-753; Wendt, C.H., Community respiratory viruses: organ transplant recipients (1997) Am J Med, 102 (3A), pp. 31-36. , discussion 42–3; Siegel, J.D., Rhinehart, E., Jackson, J., Chiarello, L., 2007 Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings June 2007, , http://www.cdc.gov/ncidod/dhqp/pdf/isolation2007.pdf, Accessed August 31, 2018; Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group (1998) Pediatrics, 102 (3), pp. 531-537; Chiu, S.N., Wang, J.N., Fu, Y.C., Efficacy of a novel palivizumab prophylaxis protocol for respiratory syncytial virus infection in congenital heart disease: a multicenter study (2018) J Pediatr, 195, pp. 108-114.e1; Feltes, T.F., Cabalka, A.K., Meissner, H., Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease (2003) J Pediatr, 143 (4), pp. 532-540; Pignotti, M.S., Carmela Leo, M., Pugi, A., Consensus conference on the appropriateness of palivizumab prophylaxis in respiratory syncytial virus disease (2016) Pediatr Pulmonol, 51 (10), pp. 1088-1096; Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection (2014) Pediatrics, 134 (2), pp. 415-420; Michaels, M.G., Fonseca-Aten, M., Green, M., Respiratory syncytial virus prophylaxis: a survey of pediatric solid organ transplant centers (2009) Pediatr Transplant, 13, pp. 451-456; Danziger-Isakov, L.A., Arslan, D., Sweet, S., Benden, C., Goldfarb, S., Wong, J., RSV prevention and treatment in pediatric lung transplant patients: a survey of current practices among the International Pediatric Lung Transplant Collaborative (2012) Pediatr Transplant, 16, pp. 638-644; Beaird, O., Freifeld, A., Ison, M., Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: a survey of institutions in the Midwestern Respiratory Virus Collaborative (2016) Transpl Infect Dis, 18 (2), pp. 210-215; Shah, J.N., Chemaly, R.F., Management of RSV infections in adult recipients of hematopoietic stem cell transplantation (2011) Blood, 117 (10), pp. 2755-2763; Glanville, A.R., Scott, A., Morton, J.M., Intravenous ribavirin is a safe and cost-effective treatment for respiratory syncytial virus infection after lung transplantation (2005) J Heart Lung Transplant, 24 (12), pp. 2114-2119; Pelaez, A., Lyon, G.M., Force, S.D., Efficacy of oral ribavirin in lung transplant patients with respiratory syncytial virus lower respiratory tract infection (2009) J Heart Lung Transplant, 28 (1), pp. 67-71; Burrows, F.S., Carlos, L.M., Benzimra, M., Oral ribavirin for respiratory syncytial virus infection after lung transplantation: efficacy and cost-efficiency (2015) J Heart Lung Transplant, 34 (7), pp. 958-962; Li, L., Avery, R., Budev, M., Mossad, S., Danziger-Isakov, L., Oral versus inhaled ribavirin therapy for respiratory syncytial virus infection after lung transplantation (2012) J Heart Lung Transplant, 31 (8), pp. 839-844; Liu, V., Dhillon, G.S., Weill, D., A multi-drug regimen for respiratory syncytial virus and parainfluenza virus infections in adult lung and heart-lung transplant recipients (2010) Transpl Infect Dis, 12 (1), pp. 38-44; Trang, T.P., Whalen, M., Hilts-Horeczko, A., Doernberg, S.B., Liu, C., Comparative effectiveness of aerosolized versus oral ribavirin for the treatment of respiratory syncytial virus infections: a single-center retrospective cohort study and review of the literature (2018) Transpl Infect Dis, 20 (2); German, P., Xin, Y., Chien, J.W., Phase 1 first-in-human, single- and multiple-ascending dose, and food effect studies to assess the safety, tolerability, and pharmacokinetics of presatovir for the treatment of respiratory syncytial virus infection (2018) J Clin Pharmacol, , https://doi.org/10.1002/jcph.1112, [Epub ahead of print]; Vilchez, R.A., Dauber, J., McCurry, K., Iacono, A., Kusne, S., Parainfluenza virus infection in adult lung transplant recipients: an emergent clinical syndrome with implications on allograft function (2003) Am J Transplant, 3 (2), pp. 116-120; Raad, I., Abbas, J., Whimbey, E., Infection control of nosocomial respiratory viral disease in the immunocompromised host (1997) Am J Med, 102 (3A), pp. 48-52. , discussion 3-4; Salvatore, M., Satlin, M.J., Jacobs, S.E., DAS181 for treatment of parainfluenza virus infections in hematopoietic stem cell transplant recipients at a single center (2016) Biol Blood Marrow Transplant, 22 (5), pp. 965-970; Hopkins, P., McNeil, K., Kermeen, F., Human metapneumovirus in lung transplant recipients and comparison to respiratory syncytial virus (2008) Am J Respir Crit Care Med, 178 (8), pp. 876-881; Larcher, C., Geltner, C., Fischer, H., Nachbaur, D., Muller, L.C., Huemer, H.P., Human metapneumovirus infection in lung transplant recipients: clinical presentation and epidemiology (2005) J Heart Lung Transplant, 24 (11), pp. 1891-1901; Shahda, S., Carlos, W.G., Kiel, P.J., Khan, B.A., Hage, C.A., The human metapneumovirus: a case series and review of the literature (2011) Transpl Infect Dis, 13 (3), pp. 324-328; Raza, K., Ismailjee, S.B., Crespo, M., Successful outcome of human metapneumovirus (hMPV) pneumonia in a lung transplant recipient treated with intravenous ribavirin (2007) J Heart Lung Transplant, 26 (8), pp. 862-864; Safdar, A., Immune modulatory activity of ribavirin for serious human metapneumovirus disease: early i.v. therapy may improve outcomes in immunosuppressed SCT recipients (2008) Bone Marrow Transplant, 41 (8), pp. 707-708; Ison, M.G., Hayden, F.G., Kaiser, L., Corey, L., Boeckh, M., Rhinovirus infections in hematopoietic stem cell transplant recipients with pneumonia (2003) Clin Infect Dis, 36 (9), pp. 1139-1143; Kaiser, L., Aubert, J.-D., Pache, J.-C., Chronic rhinoviral infection in lung transplant recipients (2006) Am J Respir Crit Care Med, 174 (12), pp. 1392-1399; van Kraaij, M., van Elden, L., van Loon, A.M., Frequent detection of respiratory viruses in adult recipients of stem cell transplants with the use of real-time polymerase chain reaction, compared with viral culture (2005) Clin Infect Dis, 40 (5), pp. 662-669; DeVincenzo, J.P., Whitley, R.J., Mackman, R.L., Oral GS-5806 activity in a respiratory syncytial virus challenge study (2014) N Engl J Med, 371 (8), pp. 711-722; Simoes, E.A., DeVincenzo, J.P., Boeckh, M., Challenges and opportunities in developing respiratory syncytial virus therapeutics (2015) J Infect Dis, 211, pp. S1-S20; McLaughlin, L.P., Lang, H., Williams, E., Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes (2016) Cytotherapy, 18 (12), pp. 1515-1524; Tzannou, I., Nicholas, S.K., Lulla, P., Immunologic profiling of human metapneumovirus for the development of targeted immunotherapy (2017) J Infect Dis, 216 (6), pp. 678-687","Manuel, O.; Infectious Diseases Service and Transplantation Center, University Hospital and University of LausanneSwitzerland; email: oriol.manuel@chuv.ch",,"Blackwell Publishing Ltd",09020063,,CLTRE,"30817023","English","Clin. Transplant.",Article,"Final",Open Access,Scopus,2-s2.0-85063326744 "Yoon I.-K., Kim J.H.","35093599900;7601367709;","First clinical trial of a MERS coronavirus DNA vaccine",2019,"The Lancet Infectious Diseases","19","9",,"924","925",,1,"10.1016/S1473-3099(19)30397-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071363871&doi=10.1016%2fS1473-3099%2819%2930397-4&partnerID=40&md5=759a1180a88470fe23fa21f5df10ea0c","International Vaccine Institute, Gwanak-gu, Seoul, 08826, South Korea","Yoon, I.-K., International Vaccine Institute, Gwanak-gu, Seoul, 08826, South Korea; Kim, J.H., International Vaccine Institute, Gwanak-gu, Seoul, 08826, South Korea",[No abstract available],,"DNA vaccine; Middle East respiratory syndrome coronavirus DNA vaccine; neutralizing antibody; unclassified drug; virus vaccine; antibody titer; cellular immunity; clinical trial (topic); DNA immunization; human; humoral immunity; immune response; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; Note; priority journal; public health; seroconversion; vaccine immunogenicity; viral clearance","MERS: progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44; Dighe, A., Jombart, T., Van Kerkhove, M.D., Ferguson, N., A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: implications for animal vaccination (2019) Epidemics, , published online June 5; Targeting diseases with epidemic potential (2019), https://cepi.net/research_dev/priority-diseases, (Accessed 17 June 2019); List of Blueprint priority diseases (2019), https://www.who.int/blueprint/priority-diseases/en, (Accessed 17 June 2019); Target product profiles for MERS-CoV vaccines (2017), https://www.who.int/blueprint/what/research-development/MERS_CoV_TPP_15052017.pdf?ua=1, (Accessed 17 June 2019); Modjarrad, K., Roberts, C.C., Mills, K.T., Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial (2019) Lancet Infect Dis, , published online July 24; Skariyachan, S., Challapilli, S.B., Packirisamy, S., Kumargowda, S.T., Sridhar, V.S., Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for Middle East respiratory syndrome coronavirus infections (2019) Front Microbiol, 10, p. 569; Zhao, J., Li, K., Wohlford-Lenane, C., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111, pp. 4970-4975; Agrawal, A.S., Tao, X., Algaissi, A., Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum Vaccin Immunother, 12, pp. 2351-2356; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7",,,"Lancet Publishing Group",14733099,,LIDAB,"31351923","English","Lancet Infect. Dis.",Note,"Final",Open Access,Scopus,2-s2.0-85071363871 "Molesan A., Goodman L., Ford J., Lovering S.J., Kelly K.","56596796800;12791805300;57196236495;57209206802;36131547400;","The Causes of Canine Myocarditis and Myocardial Fibrosis Are Elusive by Targeted Molecular Testing: Retrospective Analysis and Literature Review",2019,"Veterinary Pathology","56","5",,"761","777",,,"10.1177/0300985819839241","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066817306&doi=10.1177%2f0300985819839241&partnerID=40&md5=414e26e718de204ba932a56f0c71bdcc","Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States","Molesan, A., Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Goodman, L., Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Ford, J., Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Lovering, S.J., Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Kelly, K., Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States","Myocarditis can cause death or permanent heart damage. As epidemiologic and etiopathologic data for canine myocarditis are lacking, we performed a retrospective study using nucleic acid extracted from archived (2007 to 2015) tissues from myocarditis cases and control dogs without myocardial lesions. Heart tissue from pediatric/juvenile and adult dogs was tested with a comprehensive panel of conventional and real-time polymerase chain reaction (PCR) assays targeting recognized agents of canine myocarditis based on a literature review and informed by the comparative epidemiology of human myocarditis. The PCR screen, which included canine parvovirus 2 (CPV-2), canine distemper virus, canine herpesvirus, Borrelia spp, West Nile virus, adenovirus, parainfluenza virus, pneumovirus, respiratory coronavirus, influenza virus, Bartonella spp, Rickettsia spp, Mycoplasma spp, and Neospora caninum, did not detect agents in 35 of 66 cases (53%; 95% confidence interval [CI], 41%–65%) and was frequently negative in adults (21/26); by comparison, agents were not detected in 27 of 57 controls (47%; 95% CI, 35%–60%). Canine distemper virus, herpesvirus, adenovirus, coronavirus, parainfluenza virus, Mycoplasma haemocanis, and N. caninum were occasionally detected in both cases and controls; thus, PCR detection was not considered to indicate causation. We previously reported that CPV-2 continues to be associated with myocarditis in young dogs despite widespread vaccination; in adults, CPV-2 was detected in 2 of 26 cases and 4 of 22 controls. As several agents were similarly detected in cases and controls, it is unclear if these are cardiopathogenic, incidental, or latent. West Nile virus was detected at the analytic limit in 1 adult case. We did not detect Borrelia spp, Bartonella spp, Rickettsia spp, or influenza A virus in the myocarditis cases. These data demonstrate the limitations of current targeted diagnostic tests and the need for additional research to identify unknown agents and develop testing strategies for canine myocarditis. © The Author(s) 2019.","dogs; heart; inflammation; molecular diagnostics; myocardial fibrosis; polymerase chain reaction; review","angiography; Article; ataxia; atrioventricular conduction; bacterial endocarditis; bacterium detection; Bartonella; Borrelia; Borrelia infection; Bovine coronavirus; Canid herpesvirus 1; canine distemper; Canine distemper virus; Canine parvovirus; cardiac muscle cell; cell infiltration; Chagas disease; coccidioidomycosis; congestive cardiomyopathy; Coronavirinae; dog; Ehrlichia canis; Escherichia coli; gangrene; heart arrhythmia; heart injury; heart muscle biopsy; heart muscle fibrosis; Herpesviridae; histopathology; Human adenovirus 1; hypophysitis; immunization; immunofluorescence; immunohistochemistry; immunoreactivity; in situ hybridization; Influenza virus; interstitial pneumonia; Leishmania; leukocytosis; limit of detection; lymphadenopathy; lymphoid hyperplasia; Melissa officinalis; meningoencephalitis; mixed infection; Mycoplasma; myocarditis; Neospora caninum; nonhuman; Paramyxovirinae; pericarditis; piroplasmosis; Pneumovirus; prevalence; Prototheca zopfii; protothecosis; pyelonephritis; real time polymerase chain reaction; retrospective study; Rickettsia; sepsis; seroprevalence; splenomegaly; tachycardia; tracheobronchitis; vaccination; virus detection; virus myocarditis; West Nile virus; animal; dog disease; fibrosis; human; myocarditis; pathology; veterinary medicine; Animals; Dog Diseases; Dogs; Fibrosis; Humans; Myocarditis; Retrospective Studies","Agungpriyono, D.R., Uchida, K., Tabaru, H., Subacute massive necrotizing myocarditis by canine parvovirus type 2 infection with diffuse leukoencephalomalacia in a puppy (1999) Vet Pathol, 36 (1), pp. 77-80; Appel, M.J., Allan, S., Jacobson, R.H., Experimental Lyme disease in dogs produces arthritis and persistent infection (1993) J Infect Dis, 167 (3), pp. 651-664; Baneth, G., Barta, J.R., Shkap, V., Genetic and antigenic evidence supports the separation of Hepatozoon canis and Hepatozoon americanum at the species level (2000) J Clin Microbiol, 38 (3), pp. 1298-1301; Baneth, G., Harmelin, A., Presentey, B.Z., Hepatozoon canis infection in two dogs (1995) J Am Vet Med Assoc, 206 (12), pp. 1891-1894; Baneth, G., Weigler, B., Retrospective case-control study of hepatozoonosis in dogs in Israel (1997) J Vet Intern Med, 11 (6), pp. 365-370; Barber, J.S., Trees, A.J., Clinical aspects of 27 cases of neosporosis in dogs (1996) Vet Rec, 139 (18), pp. 439-443; Barber, J.S., Trees, A.J., Naturally occurring vertical transmission of Neospora caninum in dogs (1998) Int J Parasitol, 28 (1), pp. 57-64; Barker, E.N., Tasker, S., Day, M.J., Development and use of real-time PCR to detect and quantify Mycoplasma haemocanis and “Candidatus Mycoplasma haematoparvum” in dogs (2010) Vet Microbiol, 140 (1-2), pp. 167-170; Barton, C.L.R.E., Craig, T.M., Green, R.W., Canine hepatozoonosis: a retrospective study of 15 naturally occurring cases (1985) J Am Animal Hospital Assoc, 21, pp. 125-134; Basso, W., Venturini, L., Venturini, M.C., Prevalence of Neospora caninum infection in dogs from beef-cattle farms, dairy farms, and from urban areas of Argentina (2001) J Parasitol, 87 (4), pp. 906-907; Bastianello, S.S., Canine parvovirus myocarditis: clinical signs and pathological lesions encountered in natural cases (1981) J S Afr Vet Assoc, 52 (2), pp. 105-108; Bowles, N.E., Ni, J., Kearney, D.L., Detection of viruses in myocardial tissues by polymerase chain reaction: evidence of adenovirus as a common cause of myocarditis in children and adults (2003) J Am Coll Cardiol, 42 (3), pp. 466-472; Breinholt, J.P., Moulik, M., Dreyer, W.J., Viral epidemiologic shift in inflammatory heart disease: the increasing involvement of parvovirus B19 in the myocardium of pediatric cardiac transplant patients (2010) J Heart Lung Transplant, 29 (7), pp. 739-746; Breitschwerdt, E.B., Atkins, C.E., Brown, T.T., Bartonella vinsonii subsp. berkhoffii and related members of the alpha subdivision of the Proteobacteria in dogs with cardiac arrhythmias, endocarditis, or myocarditis (1999) J Clin Microbiol, 37 (11), pp. 3618-3626; Brinkhof, B., Spee, B., Rothuizen, J., Development and evaluation of canine reference genes for accurate quantification of gene expression (2006) Anal Biochem, 356 (1), pp. 36-43; Brodey, R.S., Roszel, J.F., Rhodes, W.H., Disseminated coccidioidomycosis in a dog (1970) J Am Vet Med Assoc, 157 (7), pp. 926-933; Bruchim, Y., Elad, D., Klainbart, S., Disseminated aspergillosis in two dogs in Israel (2006) Mycoses, 49 (2), pp. 130-133; Buckweitz, S., Kleiboeker, S., Marioni, K., Serological, reverse transcriptase-polymerase chain reaction, and immunohistochemical detection of West Nile virus in a clinically affected dog (2003) J Vet Diagn Invest, 15 (4), pp. 324-329; Buonavoglia, C., Decaro, N., Martella, V., Canine coronavirus highly pathogenic for dogs (2006) Emerg Infect Dis, 12 (3), pp. 492-494; Burgener, I.A., Kovacevic, A., Mauldin, G.N., Cardiac troponins as indicators of acute myocardial damage in dogs (2006) J Vet Intern Med, 20 (2), pp. 277-283; Burrough, E., Deitz, K., Kinyon, J., Disseminated aspergillosis in a dog due to Aspergillus alabamensis (2012) Med Mycol Case Rep, 1 (1), pp. 1-4; Caforio, A.L., Marcolongo, R., Jahns, R., Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management (2013) Heart Fail Rev, 18 (6), pp. 715-732; Calabrese, F., Thiene, G., Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects (2003) Cardiovasc Res, 60 (1), pp. 11-25; Calvert, C.A., Thomason, J.D., Cardiovacular infections (2013) Infectious Diseases of the Dog and Cat, , Greene C.E., (ed), St Louis, MO, Elsevier, In:, ed; Cannon, A.B., Luff, J.A., Brault, A.C., Acute encephalitis, polyarthritis, and myocarditis associated with West Nile virus infection in a dog (2006) J Vet Intern Med, 20 (5), pp. 1219-1223; Cannon, S.H., Levy, J.K., Kirk, S.K., Infectious diseases in dogs rescued during dogfighting investigations (2016) Vet J, 211, pp. 64-69; Carpenter, J.L., Roberts, R.M., Harpster, N.K., Intestinal and cardiopulmonary forms of parvovirus infection in a litter of pups (1980) J Am Vet Med Assoc, 176 (11), pp. 1269-1273; Cassidy, J.P., Callanan, J.J., McCarthy, G., Myocarditis in sibling boxer puppies associated with Citrobacter koseri infection (2002) Vet Pathol, 39 (3), pp. 393-395; Church, W.M., Sisson, D.D., Oyama, M.A., Third degree atrioventricular block and sudden death secondary to acute myocarditis in a dog (2007) J Vet Cardiol, 9 (1), pp. 53-57; Clift, S.J., Penrith, M.L., Tissue and cell tropism of African horse sickness virus demonstrated by immunoperoxidase labeling in natural and experimental infection in horses in South Africa (2010) Vet Pathol, 47 (4), pp. 690-697; Cruz-Chan, J.V., Bolio-Gonzalez, M., Colin-Flores, R., Immunopathology of natural infection with Trypanosoma cruzi in dogs (2009) Vet Parasitol, 162 (1-2), pp. 151-155; Decaro, N., Martella, V., Buonavoglia, C., Canine adenoviruses and herpesvirus (2008) Vet Clin North Am Small Anim Pract, 38 (4), pp. 799-814. , viii; Detmer, S.E., Bouljihad, M., Hayden, D.W., Fatal pyogranulomatous myocarditis in 10 Boxer puppies (2016) J Vet Diagn Invest, 28 (2), pp. 144-149; Diniz, P.P., de Morais, H.S., Breitschwerdt, E.B., Serum cardiac troponin I concentration in dogs with ehrlichiosis (2008) J Vet Intern Med, 22 (5), pp. 1136-1143; Donovan, T.A., Fox, P.R., Balakrishnan, N., Pyogranulomatous pancarditis with intramyocardial Bartonella henselae san antonio 2 (BhSA2) in a dog (2017) J Vet Intern Med, 31 (1), pp. 142-148; Dubey, J.P., Lindsay, D.S., A review of Neospora caninum and neosporosis (1996) Vet Parasitol, 67 (1-2), pp. 1-59; Dvir, E., Lobetti, R.G., Jacobson, L.S., Electrocardiographic changes and cardiac pathology in canine babesiosis (2004) J Vet Cardiol, 6 (1), pp. 15-23; Eiden, M., Vina-Rodriguez, A., Hoffmann, B., Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains (2010) J Vet Diagn Invest, 22 (5), pp. 748-753; Evermann, J.F., Lincoln, J.D., McKiernan, A.J., Isolation of a paramyxovirus from the cerebrospinal fluid of a dog with posterior paresis (1980) J Am Vet Med Assoc, 177 (11), pp. 1132-1134; Fairley, C.K., Ryan, M., Wall, P.G., The organisms reported to cause infective myocarditis and pericarditis in England and Wales (1996) J Infect, 32 (3), pp. 223-225; Fenimore, A., Varanat, M., Maggi, R., Bartonella spp. DNA in cardiac tissues from dogs in Colorado and Wyoming (2011) J Vet Intern Med, 25 (3), pp. 613-616; Fish, A.E., Pride, Y.B., Pinto, D.S., Lyme carditis (2008) Infect Dis Clin North Am, 22 (2), pp. 275-288. , vi; Fonfara, S., Loureiro, J., Swift, S., Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs (2010) Vet J, 184 (3), pp. 334-339; Ford, J., McEndaffer, L., Renshaw, R., Parvovirus infection is associated with myocarditis and myocardial fibrosis in young dogs (2017) Vet Pathol, 54 (6), pp. 964-971; Fraga Veloso, G., Fraga Manteiga, E., Trehy, M., Septic pericarditis and myocardial abscess in an English Springer Spaniel (2014) J Vet Cardiol, 16 (1), pp. 39-44; Goodman, L.B., Anderson, R.R., Slater, M., High-throughput detection of respiratory pathogens in animal specimens by nanoscale PCR (2016) J Vis Exp, (117), p. 54781; Greene, C.E., Trypanosomiasis (2013) Infectious Diseases of the Dog and Cat, , Greene C.E., (ed), St Louis, MO, Elsevier, In:, ed; Greene, C.E., Hepatozoonosis (2013) Infectious Diseases of the Dog and Cat, , Greene C.E., (ed), St Louis, MO, Elsevier, In:, ed; Hamacher, L., Dorfelt, R., Muller, M., Serum cardiac troponin I concentrations in dogs with systemic inflammatory response syndrome (2015) J Vet Intern Med, 29 (1), pp. 164-170; Harcourt, R.A., Spurling, N.W., Pick, C.R., Parvovirus infection in a beagle colony (1980) J Small Anim Pract, 21 (5), pp. 293-302; Harrison, L.R., Styer, E.L., Pursell, A.R., Fatal disease in nursing puppies associated with minute virus of canines (1992) J Vet Diagn Invest, 4 (1), pp. 19-22; Hayes, M.A., Russell, R.G., Babiuk, L.A., Sudden death in young dogs with myocarditis caused by parvovirus (1979) J Am Vet Med Assoc, 174 (11), pp. 1197-1203; Headley, S.A., Alfieri, A.A., Fritzen, J.T., Concomitant canine distemper, infectious canine hepatitis, canine parvoviral enteritis, canine infectious tracheobronchitis, and toxoplasmosis in a puppy (2013) J Vet Diagn Invest, 25 (1), pp. 129-135; Heinritz, C.K., Gilson, S.D., Soderstrom, M.J., Subtotal pericardectomy and epicardial excision for treatment of coccidioidomycosis-induced effusive-constrictive pericarditis in dogs: 17 cases (1999–2003) (2005) J Am Vet Med Assoc, 227 (3), pp. 435-440; Higgins, R.J., Krakowka, S., Metzler, A.E., Canine distemper virus-associated cardiac necrosis in the dog (1981) Vet Pathol, 18 (4), pp. 472-486; Jager, M.C., Sloma, E.A., Shelton, M., Naturally acquired canine herpesvirus-associated meningoencephalitis (2017) Vet Pathol, 54 (5), pp. 820-827; Janus, I., Noszczyk-Nowak, A., Nowak, M., Myocarditis in dogs: etiology, clinical and histopathological features (11 cases: 2007–2013) (2014) Ir Vet J, 67 (1), p. 28; Jardine, J.E., Dubey, J.P., Canine neosporosis in South Africa (1992) Vet Parasitol, 44 (3-4), pp. 291-294; Johnson, L.R., Herrgesell, E.J., Davidson, A.P., Clinical, clinicopathologic, and radiographic findings in dogs with coccidioidomycosis: 24 cases (1995–2000) (2003) J Am Vet Med Assoc, 222 (4), pp. 461-466; Jubb, K.V.F., Kennedy, P.C., The lungs (1970) Pathology of Domestic Animals, p. 219. , Jubb K.V.F., Kennedy P.C., (eds), 2nd ed, New York, NY, Academic Press, In:, ed; Kabay, M.J., Robinson, W.F., Huxtable, C.R., The pathology of disseminated Aspergillus terreus infection in dogs (1985) Vet Pathol, 22 (6), pp. 540-547; Kaneshige, T., Machida, N., Nakao, S., Complete atrioventricular block associated with lymphocytic myocarditis of the atrioventricular node in two young adult dogs (2007) J Comp Pathol, 137 (2-3), pp. 146-150; Karjalainen, J., Heikkila, J., Incidence of three presentations of acute myocarditis in young men in military service: a 20-year experience (1999) Eur Heart J, 20 (15), pp. 1120-1125; Kjos, S.A., Snowden, K.F., Craig, T.M., Distribution and characterization of canine Chagas disease in Texas (2008) Vet Parasitol, 152 (3-4), pp. 249-256; Krakowka, S., Transplacentally acquired microbial and parasitic diseases of dogs (1977) J Am Vet Med Assoc, 171 (8), pp. 750-753; Kubanek, M., Sramko, M., Berenova, D., Detection of Borrelia burgdorferi sensu lato in endomyocardial biopsy specimens in individuals with recent-onset dilated cardiomyopathy (2012) Eur J Heart Fail, 14 (6), pp. 588-596; Kuhl, U., Pauschinger, M., Noutsias, M., High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction (2005) Circulation, 111 (7), pp. 887-893; Kul, O., Atmaca, H.T., Anteplioglu, T., Neospora caninum: the first demonstration of the enteroepithelial stages in the intestines of a naturally infected dog (2015) J Comp Pathol, 153 (1), pp. 9-13; Lamm, C.G., Ferguson, A.C., Lehenbauer, T.W., Streptococcal infection in dogs: a retrospective study of 393 cases (2010) Vet Pathol, 47 (3), pp. 387-395; Ledbetter, E.C., Kim, S.G., Dubovi, E.J., Experimental reactivation of latent canine herpesvirus-1 and induction of recurrent ocular disease in adult dogs (2009) Vet Microbiol, 138 (1-2), pp. 98-105; Lenihan, P., Bassett, H.F., Weavers, E.D., Demonstration by electron microscopy of parvovirus-like particles in canine parvovirus myocarditis (1980) Vet Rec, 107 (9), pp. 201-202; Leone, O., Veinot, J.P., Angelini, A., 2011 Consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology (2012) Cardiovasc Pathol, 21 (4), pp. 245-274; Levy, S.A., Duray, P.H., Complete heart block in a dog seropositive for Borrelia burgdorferi: similarity to human Lyme carditis (1988) J Vet Intern Med, 2 (3), pp. 138-144; Lichtensteiger, C.A., Heinz-Taheny, K., Osborne, T.S., West Nile virus encephalitis and myocarditis in wolf and dog (2003) Emerg Infect Dis, 9 (10), pp. 1303-1306; Lindsay, D.S., Dubey, J.P., Canine neosporosis (2000) J Vet Parasitol, 14 (1), pp. 1-11; Littman, M.P., Gerber, B., Goldstein, R.E., ACVIM consensus update on Lyme borreliosis in dogs and cats (2018) J Vet Intern Med, 32 (3), pp. 887-903; Lobetti, R., Dvir, E., Pearson, J., Cardiac troponins in canine babesiosis (2002) J Vet Intern Med, 16 (1), pp. 63-68; MacDonald, K.A., Chomel, B.B., Kittleson, M.D., A prospective study of canine infective endocarditis in Northern California (1999–2001): emergence of Bartonella as a prevalent etiologic agent (2004) J Vet Intern Med, 18 (1), pp. 56-64; Maddy, K.T., Disseminated coccidioidomycosis of the dog (1958) J Am Vet Med Assoc, 132 (11), pp. 483-489; Maxie, M.G., (2016) Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals, , St Louis, MO, Elsevier; Maxson, T.R., Meurs, K.M., Lehmkuhl, L.B., Polymerase chain reaction analysis for viruses in paraffin-embedded myocardium from dogs with dilated cardiomyopathy or myocarditis (2001) Am J Vet Res, 62 (1), pp. 130-135; McAllister, M.M., Funnell, O., Donahoe, S.L., Unusual presentation of neosporosis in a neonatal puppy from a litter of bulldogs (2016) Aust Vet J, 94 (11), pp. 411-414; McCully, R.M., Basson, P.A., Bigalke, R.D., Observations on naturally acquired hepatozoonosis of wild carnivores and dogs in the Republic of South Africa (1975) Onderstepoort J Vet Res, 42 (4), pp. 117-133; McEffander, L.A., Erb, H.N., Molesan, A., Kelly feline panleukopenia virus is not associated with myocarditis or endomyocardial restrictive cardiomyopathy in cats (2017) Vet Pathol, 54 (4), pp. 669-675; Meseck, E.K., Njaa, B.L., Haley, N.J., Use of a multiplex polymerase chain reaction to rapidly differentiate Neospora caninum from Toxoplasma gondii in an adult dog with necrotizing myocarditis and myocardial infarct (2005) J Vet Diagn Invest, 17 (6), pp. 565-568; Messick, J.B., Harvey, J.W., Hemotrophic mycoplasmosis (haemobartonellosis) (2013) Infectious Diseases of the Dog and Cat, pp. 310-319. , Greene C.E., (ed), St Louis, MO, Elsevier, In:, ed; Meunier, P.C., Cooper, B.J., Appel, M.J., Experimental viral myocarditis: parvoviral infection of neonatal pups (1984) Vet Pathol, 21 (5), pp. 509-515; Nho, W.G., Sur, J.H., Doster, A.R., Detection of canine parvovirus in naturally infected dogs with enteritis and myocarditis by in situ hybridization (1997) J Vet Diagn Invest, 9 (3), pp. 255-260; O’Dell, N., Arnot, L., Janisch, C.E., Clinical presentation and pathology of suspected vector transmitted African horse sickness in South African domestic dogs from 2006 to 2017 (2018) Vet Rec, 182 (25), p. 715; Odin, M., Dubey, J.P., Sudden death associated with Neospora caninum myocarditis in a dog (1993) J Am Vet Med Assoc, 203 (6), pp. 831-833; Pariaut, R., Saelinger, C., Cardiovascular disorders (2016) Clinical Medicine of the dog and Cat, , Schaer M.G.F., (ed), Boca Raton, FL, CRC Press, In:, ed; Parker, J.S., Murphy, W.J., Wang, D., Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells (2001) J Virol, 75 (8), pp. 3896-3902; Parrish, C.R., Pathogenesis of feline panleukopenia virus and canine parvovirus (1995) Baillieres Clin Haematol, 8 (1), pp. 57-71; Percy, D.H., Carmichael, L.E., Albert, D.M., Lesions in puppies surviving infection with canine herpesvirus (1971) Vet Pathol, 8 (1), pp. 37-53; Piccirillo, B.J., Pride, Y.B., Reading between the Lyme: is Borrelia burgdorferi a cause of dilated cardiomyopathy? The debate continues (2012) Eur J Heart Fail, 14 (6), pp. 567-568; Pitorri, F., Dell’Orco, M., Carmichael, N., Use of real-time quantitative PCR to document successful treatment of Mycoplasma haemocanis infection with doxycycline in a dog (2012) Vet Clin Pathol, 41 (4), pp. 493-496; Pollack, A., Kontorovich, A.R., Fuster, V., Viral myocarditis—diagnosis, treatment options, and current controversies (2015) Nat Rev Cardiol, 12 (11), pp. 670-680; Prandini da Costa Reis, R., Crisman, R., Roser, M., Neonatal neosporosis in a 2-week-old Bernese mountain dog infected with multiple Neospora caninum strains based on MS10 microsatellite analysis (2016) Vet Parasitol, 221, pp. 134-138; Priestnall, S.L., Mitchell, J.A., Walker, C.A., New and emerging pathogens in canine infectious respiratory disease (2014) Vet Pathol, 51 (2), pp. 492-504; Reed, R.E., Diagnosis of disseminated canine coccidioidomycosis (1956) J Am Vet Med Assoc, 128 (4), pp. 196-201; Ribas, T., Pipe-Martin, H., Kim, K.S., Fungal myocarditis and pericardial effusion secondary to Inonotus tropicalis (phylum Basidiomycota) in a dog (2015) J Vet Cardiol, 17 (2), pp. 142-148; Robinson, W.F., Huxtable, C.R., Pass, D.A., Canine parvoviral myocarditis: a morphologic description of the natural disease (1980) Vet Pathol, 17 (3), pp. 282-293; Rosa, F.A., Leite, J.H., Braga, E.T., Cardiac lesions in 30 dogs naturally infected with Leishmania infantum chagasi (2014) Vet Pathol, 51 (3), pp. 603-606; Rutgers, C.K.J., Cole, C.R., Severe rocky mountain spotted fever in five dogs (1985) J Am Anim Hosp Assoc, 21, pp. 361-369; Santilli, R.A., Battaia, S., Perego, M., Bartonella-associated inflammatory cardiomyopathy in a dog (2017) J Vet Cardiol, 19 (1), pp. 74-81; Saunders, A.B., Gordon, S.G., Rector, M.H., Bradyarrhythmias and pacemaker therapy in dogs with Chagas disease (2013) J Vet Intern Med, 27 (4), pp. 890-894; Schmiedt, C., Kellum, H., Legendre, A.M., Cardiovascular involvement in 8 dogs with Blastomyces dermatitidis infection (2006) J Vet Intern Med, 20 (6), pp. 1351-1354; Schultz, J.C., Hilliard, A.A., Cooper, L.T., Jr., Diagnosis and treatment of viral myocarditis (2009) Mayo Clin Proc, 84 (11), pp. 1001-1009; Shelnutt, L.M., Balakrishnan, N., DeVanna, J., Death of military working dogs due to Bartonella vinsonii subspecies berkhoffii genotype III endocarditis and myocarditis (2017) Mil Med, 182 (3), pp. e1864-e1869; Shubitz, L.F., Matz, M.E., Noon, T.H., Constrictive pericarditis secondary to Coccidioides immitis infection in a dog (2001) J Am Vet Med Assoc, 218 (4), pp. 537-540. , 526; Sime, T.A., Powell, L.L., Schildt, J.C., Parvoviral myocarditis in a 5-week-old Dachshund (2015) J Vet Emerg Crit Care (San Antonio), 25 (6), pp. 765-769; Stanek, G., Fingerle, V., Hunfeld, K.P., Lyme borreliosis: clinical case definitions for diagnosis and management in Europe (2011) Clin Microbiol Infect, 17 (1), pp. 69-79; Stanek, G., Klein, J., Bittner, R., Isolation of Borrelia burgdorferi from the myocardium of a patient with longstanding cardiomyopathy (1990) N Engl J Med, 322 (4), pp. 249-252; Steele, K.E., Linn, M.J., Schoepp, R.J., Pathology of fatal West Nile virus infections in native and exotic birds during the 1999 outbreak in New York City, New York (2000) Vet Pathol, 37 (3), pp. 208-224; Stenner, V.J., Mackay, B., King, T., Protothecosis in 17 Australian dogs and a review of the canine literature (2007) Med Mycol, 45 (3), pp. 249-266; Straubinger, R.K., PCR-based quantification of Borrelia burgdorferi organisms in canine tissues over a 500-day postinfection period (2000) J Clin Microbiol, 38 (6), pp. 2191-2199; Sykes, J.E., Canine viral respiratory infections (2014) Canine and Feline Infectious Diseases, , Sykes J.E., (ed), St Louis, MO, Elsevier/Saunders, In:, ed; Sykes, J.E., Infectious canine hepatitis (2014) Canine and Feline Infectious Diseases, , Sykes J.E., (ed), St Louis, MO, Elsevier/Saunders, In:, ed; Sykes, J.E., Kittleson, M.D., Chomel, B.B., Clinicopathologic findings and outcome in dogs with infective endocarditis: 71 cases (1992–2005) (2006) J Am Vet Med Assoc, 228 (11), pp. 1735-1747; Sykes, J.E., Kittleson, M.D., Pesavento, P.A., Evaluation of the relationship between causative organisms and clinical characteristics of infective endocarditis in dogs: 71 cases (1992–2005) (2006) J Am Vet Med Assoc, 228 (11), pp. 1723-1734; Torrent, E., Leiva, M., Segales, J., Myocarditis and generalised vasculitis associated with leishmaniosis in a dog (2005) J Small Anim Pract, 46 (11), pp. 549-552; Van Rensberg, I.B., De Clerk, J., Groenewald, H.B., An outbreak of African horsesickness in dogs (1981) J S Afr Vet Assoc, 52 (4), pp. 323-325; Van Rensburg, I.B., Meintjes, R., Bacterial myocarditis secondary to parvovirus enteritis in a puppy (1986) J S Afr Vet Assoc, 57 (2), pp. 115-116; Van Sittert, S.J., Drew, T.M., Kotze, J.L., Occurrence of African horse sickness in a domestic dog without apparent ingestion of horse meat (2013) J South African Vet Assoc, 84 (1), p. a948; Vandevelde, M., Canine distemper (2013) Infectious Diseases of the Dog and Cat, pp. 25-42. , Greene C.E., (ed), St Louis, MO, Elsevier, In:, ed; Varanat, M., Maggi, R.G., Linder, K.E., Cross-contamination in the molecular detection of Bartonella from paraffin-embedded tissues (2009) Vet Pathol, 46 (5), pp. 940-944; Vitt, J.P., Saunders, A.B., O’Brien, M.T., Diagnostic features of acute Chagas myocarditis with sudden death in a family of boxer dogs (2016) J Vet Intern Med, 30 (4), pp. 1210-1215; Williams, G.D., Adams, L.G., Yaeger, R.G., Naturally occurring trypanosomiasis (Chagas’ disease) in dogs (1977) J Am Vet Med Assoc, 171 (2), pp. 171-177; Woolley, R., Blundell, R., Else, R., Atrial myocarditis as a cause of sinus arrest in a dog (2007) J Small Anim Pract, 48 (8), pp. 455-457; Yamage, M., Flechtner, O., Gottstein, B., Neospora caninum: specific oligonucleotide primers for the detection of brain “cyst” DNA of experimentally infected nude mice by the polymerase chain reaction (PCR) (1996) J Parasitol, 82 (2), pp. 272-279; Young, J.K., Baker, D.C., Burney, D.P., Naturally occurring Tyzzer’s disease in a puppy (1995) Vet Pathol, 32 (1), pp. 63-65; Zicola, A., Jolly, S., Mathijs, E., Fatal outbreaks in dogs associated with pantropic canine coronavirus in France and Belgium (2012) J Small Anim Pract, 53 (5), pp. 297-300","Kelly, K.; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityUnited States; email: kkb55@cornell.edu",,"SAGE Publications Inc.",03009858,,VTPHA,"31106678","English","Vet. Pathol.",Article,"Final",,Scopus,2-s2.0-85066817306 "de Wilde A.H., Linda Boomaars-Van der Zanden A., de Jong A.W.M., Bárcena M., Snijder E.J., Posthuma C.C.","24474438300;57211006180;57210857635;7004544950;7006058325;6507457020;","Adaptive mutations in replicase transmembrane subunits can counteract inhibition of equine arteritis virus RNA synthesis by cyclophilin inhibitors",2019,"Journal of Virology","93","18", e00490-19,"","",,,"10.1128/JVI.00490-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071710007&doi=10.1128%2fJVI.00490-19&partnerID=40&md5=5f4490a5d99f93f44310ebdcabc90371","Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands; Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands","de Wilde, A.H., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands, Janssen Vaccines and Prevention, Pharmaceutical Companies of Johnson and Johnson, Leiden, Netherlands; Linda Boomaars-Van der Zanden, A., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; de Jong, A.W.M., Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands; Bárcena, M., Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands; Snijder, E.J., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; Posthuma, C.C., Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands","Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales. In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ~2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV’s CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors. IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds. © 2019 American Society for Microbiology. All Rights Reserved.","Alisporivir; Arterivirus; Cyclosporine; Drug resistance; Host factors; Nidovirus; Nonstructural proteins; Replication","alisporivir; cyclosporine; host factor; nonstructural protein 10; nonstructural protein 2; nonstructural protein 5; RNA directed RNA polymerase; unclassified drug; viral protein; virus RNA; alisporivir; cyclophilin inhibitor; cyclosporine; membrane protein; mutant protein; replicase; virus enzyme; 5' untranslated region; antiviral susceptibility; Article; BHK-21 cell line; concentration (parameter); controlled study; Equine arteritis virus; gene mutation; gene sequence; Huh-7 cell line; in vitro study; nonhuman; priority journal; protein analysis; RNA synthesis; virus genome; virus inhibition; virus mutation; virus replication; virus resistance; 293T cell line; adaptation; antiviral activity; cell line; drug mechanism; drug sensitivity; enzyme subunit","Siddell, S.G., Walker, P.J., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Gorbalenya, A.E., Davison, A., Additional changes to taxonomy ratified in a special vote by the international committee on taxonomy of viruses (october 2018) (2019) Arch Virol, 164, pp. 943-946. , https://doi.org/10.1007/s00705-018-04136-2; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Cui, J., Li, F., Shi, Z.L., Origin and evolution of pathogenic coronaviruses (2019) Nat Rev Microbiol, 17, pp. 181-192. , https://doi.org/10.1038/s41579-018-0118-9; Holtkamp, D.J., Kliebenstein, J.B., Neumann, E.J., Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on united states pork producers (2013) J Swine Health Prod, 21, pp. 72-84; Balasuriya, U.B., Carossino, M., Reproductive effects of arteriviruses: Equine arteritis virus and porcine reproductive and respiratory syndrome virus infections (2017) Curr Opin Virol, 27, pp. 57-70. , https://doi.org/10.1016/j.coviro.2017.11.005; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J Gen Virol, 94, pp. 2141-2163. , https://doi.org/10.1099/vir.0.056341-0; Knoops, K., Barcena, M., Limpens, R.W., Koster, A.J., Mommaas, A.M., Snijder, E.J., Ultrastructural characterization of arterivirus replication structures: Reshaping the endoplasmic reticulum to accommodate viral RNA synthesis (2012) J Virol, 86, pp. 2474-2487. , https://doi.org/10.1128/JVI.06677-11; Zhang, W., Chen, K., Zhang, X., Guo, C., Chen, Y., Liu, X., An integrated analysis of membrane remodeling during porcine reproductive and respiratory syndrome virus replication and assembly (2018) PLoS One, 13. , https://doi.org/10.1371/journal.pone.0200919; van der Hoeven, B., Oudshoorn, D., Koster, A.J., Snijder, E.J., Kikkert, M., Bárcena, M., Biogenesis and architecture of arterivirus replication organelles (2016) Virus Res, 220, pp. 70-90. , https://doi.org/10.1016/j.virusres.2016.04.001; Snijder, E.J., van Tol, H., Roos, N., Pedersen, K.W., Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex (2001) J Gen Virol, 82, pp. 985-994. , https://doi.org/10.1099/0022-1317-82-5-985; van Hemert, M.J., de Wilde, A.H., Gorbalenya, A.E., Snijder, E.J., The in vitro RNA synthesizing activity of the isolated arterivirus replication/ transcription complex is dependent on a host factor (2008) J Biol Chem, 283, pp. 16525-16536. , https://doi.org/10.1074/jbc.M708136200; de Wilde, A.H., Li, Y., van der Meer, Y., Vuagniaux, G., Lysek, R., Fang, Y., Snijder, E.J., van Hemert, M.J., Cyclophilin inhibitors block arterivirus replication by interfering with viral RNA synthesis (2013) J Virol, 87, pp. 1454-1464. , https://doi.org/10.1128/JVI.02078-12; de Wilde, A.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Thiel, V., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, M.J., Cyclosporin a inhibits the replication of diverse coronaviruses (2011) J Gen Virol, 92, pp. 2542-2548. , https://doi.org/10.1099/vir.0.034983-0; de Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., van Nieuwkoop, S., Limpens, R.W.A.L., Posthuma, C.C., van den Hoogen, B.G., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin a or interferon-alpha treatment (2013) J Gen Virol, 94, pp. 1749-1760. , https://doi.org/10.1099/vir.0.052910-0; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C.C., Müller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Brunn, A., The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors (2011) PLoS Pathog, 7. , https://doi.org/10.1371/journal.ppat.1002331; Tanaka, Y., Sato, Y., Sasaki, T., Suppression of coronavirus replication by cyclophilin inhibitors (2013) Viruses, 5, pp. 1250-1260. , https://doi.org/10.3390/v5051250; Wang, P., Heitman, J., The cyclophilins (2005) Genome Biol, 6, p. 226. , https://doi.org/10.1186/gb-2005-6-7-226; Dunyak, B.M., Gestwicki, J.E., Peptidyl-proline isomerases (PPIases): Targets for natural products and natural product-inspired compounds (2016) J Med Chem, 59, pp. 9622-9644. , https://doi.org/10.1021/acs.jmedchem.6b00411; Schreiber, S.L., Crabtree, G.R., The mechanism of action of cyclosporin a and FK506 (1992) Immunol Today, 13, pp. 136-142. , https://doi.org/10.1016/0167-5699(92)90111-J; de Wilde, A.H., Pham, U., Posthuma, C.C., Snijder, E.J., Cyclophilins and cyclophilin inhibitors in nidovirus replication (2018) Virology, 522, pp. 46-55. , https://doi.org/10.1016/j.virol.2018.06.011; Naoumov, N.V., Cyclophilin inhibition as potential therapy for liver diseases (2014) J Hepatol, 61, pp. 1166-1174. , https://doi.org/10.1016/j.jhep.2014.07.008; de Wilde, A.H., Falzarano, D., Zevenhoven-Dobbe, J.C., Beugeling, C., Fett, C., Martellaro, C., Posthuma, C.C., Snijder, E.J., Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model (2017) Virus Res, 228, pp. 7-13. , https://doi.org/10.1016/j.virusres.2016.11.011; Frausto, S.D., Lee, E., Tang, H., Cyclophilins as modulators of viral replication (2013) Viruses, 5, pp. 1684-1701. , https://doi.org/10.3390/v5071684; Carbajo-Lozoya, J., Ma-Lauer, Y., Malesevic, M., Theuerkorn, M., Kahlert, V., Prell, E., von Brunn, B., von Brunn, A., Human coronavirus NL63 replication is cyclophilin a-dependent and inhibited by non-immunosuppressive cyclosporine a-derivatives including alisporivir (2014) Virus Res, 184 C, pp. 44-53. , https://doi.org/10.1016/j.virusres.2014.02.010; von Brunn, A., Ciesek, S., von Brunn, B., Carbajo-Lozoya, J., Genetic deficiency and polymorphisms of cyclophilin a reveal its essential role for human coronavirus 229e replication (2015) Curr Opin Virol, 14, pp. 56-61. , https://doi.org/10.1016/j.coviro.2015.08.004; de Wilde, A.H., Zevenhoven-Dobbe, J.C., Beugeling, C., Chatterji, U., de Jong, D., Gallay, P., Szuhai, K., Snijder, E.J., Coronaviruses and arteriviruses display striking differences in their cyclophilin a-dependence during replication in cell culture (2018) Virology, 517, pp. 148-156. , https://doi.org/10.1016/j.virol.2017.11.022; de Wilde, A.H., Boomaars-Van der Zanden, A.L., de Jong, A.W.M., Barcéna, M., Snijder, E.J., Posthuma, C.C., Adaptive mutations in replicase transmembrane subunits can counteract inhibition of equine arteritis virus RNA synthesis by cyclophilin inhibitors (2019) bioRxiv, , https://doi.org/10.1101/587261; Madan, V., Paul, D., Lohmann, V., Bartenschlager, R., Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation (2014) Gastroenterology, 146, pp. 1361-1372.e9. , https://doi.org/10.1053/j.gastro.2014.01.055; Chatterji, U., Bobardt, M., Tai, A., Wood, M., Gallay, P.A., Cyclophilin and NS5A inhibitors, but not other anti-hepatitis c virus (HCV) agents, preclude HCV-mediated formation of double-membrane-vesicle viral factories (2015) Antimicrob Agents Chemother, 59, pp. 2496-2507. , https://doi.org/10.1128/AAC.04958-14; Pedersen, K.W., van Der, M.Y., Roos, N., Snijder, E.J., Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex (1999) J Virol, 73, pp. 2016-2026; Snijder, E.J., Wassenaar, A.L., Spaan, W.J., Proteolytic processing of the replicase ORF1a protein of equine arteritis virus (1994) J Virol, 68, pp. 5755-5764; Wassenaar, A.L., Spaan, W.J., Gorbalenya, A.E., Snijder, E.J., Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: Evidence that NSP2 acts as a cofactor for the NSP4 serine protease (1997) J Virol, 71, pp. 9313-9322; Piotukh, K., Gu, W., Kofler, M., Labudde, D., Helms, V., Freund, C., Cyclophilin a binds to linear peptide motifs containing a consensus that is present in many human proteins (2005) J Biol Chem, 280, pp. 23668-23674. , https://doi.org/10.1074/jbc.M503405200; Foster, T.L., Gallay, P., Stonehouse, N.J., Harris, M., Cyclophilin a interacts with domain II of hepatitis c virus NS5A and stimulates RNA binding in an isomerase-dependent manner (2011) J Virol, 85, pp. 7460-7464. , https://doi.org/10.1128/JVI.00393-11; Ngure, M., Issur, M., Shkriabai, N., Liu, H.W., Cosa, G., Kvaratskhelia, M., Gotte, M., Interactions of the disordered domain II of hepatitis c virus NS5A with cyclophilin a, NS5B, and viral RNA show extensive overlap (2016) ACS Infect Dis, 2, pp. 839-851. , https://doi.org/10.1021/acsinfecdis.6b00143; Coelmont, L., Hanoulle, X., Chatterji, U., Berger, C., Snoeck, J., Bobardt, M., Lim, P., Neyts, J., DEB025 (alisporivir) inhibits hepatitis c virus replication by preventing a cyclophilin a induced cis-trans isomerisation in domain II of NS5A (2010) PLoS One, 5. , https://doi.org/10.1371/journal.pone.0013687; Kaul, A., Stauffer, S., Berger, C., Pertel, T., Schmitt, J., Kallis, S., Zayas, M., Bartenschlager, R., Essential role of cyclophilin a for hepatitis c virus replication and virus production and possible link to polyprotein cleavage kinetics (2009) PLoS Pathog, 5. , https://doi.org/10.1371/journal.ppat.1000546; Badillo, A., Receveur-Brechot, V., Sarrazin, S., Cantrelle, F.X., Delolme, F., Fogeron, M.L., Molle, J., Penin, F., Overall structural model of NS5A protein from hepatitis c virus and modulation by mutations confering resistance of virus replication to cyclosporin a (2017) Biochemistry, 56, pp. 3029-3048. , https://doi.org/10.1021/acs.biochem.7b00212; Azouzi, S., El Kirat, K., Morandat, S., The potent antimalarial drug cyclosporin a preferentially destabilizes sphingomyelin-rich membranes (2010) Langmuir, 26, pp. 1960-1965. , https://doi.org/10.1021/la902580w; Dynarowicz-Latka, P., Wnetrzak, A., Makyla-Juzak, K., Cyclosporin a in membrane lipids environment: Implications for antimalarial activity of the drug—the langmuir monolayer studies (2015) J Membr Biol, 248, pp. 1021-1032. , https://doi.org/10.1007/s00232-015-9814-9; Bouvier, N., Flinois, J.P., Gilleron, J., Sauvage, F.L., Legendre, C., Beaune, P., Thervet, E., Pallet, N., Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: A role for endothelial phenotypic changes and death (2009) Am J Physiol Renal Physiol, 296, pp. F160-F169. , https://doi.org/10.1152/ajprenal.90567.2008; Ram, B.M., Ramakrishna, G., Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine a treated cancer cervix cells is mediated by cyclophilin b inhibition (2014) Biochim Biophys Acta, 1843, pp. 2497-2512. , https://doi.org/10.1016/j.bbamcr.2014.06.020; van Kasteren, P.B., Bailey-Elkin, B.A., James, T.W., Ninaber, D.K., Beugeling, C., Khajehpour, M., Snijder, E.J., Kikkert, M., Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells (2013) Proc Natl Acad Sci U S A, 110, pp. E838-E847. , https://doi.org/10.1073/pnas.1218464110; Nedialkova, D.D., Gorbalenya, A.E., Snijder, E.J., Arterivirus nsp1 modulates the accumulation of minus-strand templates to control the relative abundance of viral mRNAs (2010) PLoS Pathog, 6. , https://doi.org/10.1371/journal.ppat.1000772; van Kasteren, P.B., Beugeling, C., Ninaber, D.K., Frias-Staheli, N., van Boheemen, S., García-Sastre, A., Snijder, E.J., Kikkert, M., Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling (2012) J Virol, 86, pp. 773-785. , https://doi.org/10.1128/JVI.06277-11; Bryans, J.T., Crowe, M.E., Doll, E.R., McCollum, W.H., Isolation of a filterable agent causing arteritis of horses and abortion by mares; its differentiation from the equine abortion (influenza) virus (1957) Cornell Vet, 47, pp. 3-41; de Vries, A.A., Chirnside, E.D., Horzinek, M.C., Rottier, P.J., Structural proteins of equine arteritis virus (1992) J Virol, 66, pp. 6294-6303; van Dinten, L.C., den Boon, J.A., Wassenaar, A.L., Spaan, W.J., Snijder, E.J., An infectious arterivirus cDNA clone: Identification of a replicase point mutation that abolishes discontinuous mRNA transcription (1997) Proc Natl Acad Sci U S A, 94, pp. 991-996. , https://doi.org/10.1073/pnas.94.3.991; Beerens, N., Snijder, E.J., An RNA pseudoknot in the 3= end of the arterivirus genome has a critical role in regulating viral RNA synthesis (2007) J Virol, 81, pp. 9426-9436. , https://doi.org/10.1128/JVI.00747-07; Knoops, K., Swett-Tapia, C., van den Worm, S.H., Te Velthuis, A.J., Koster, A.J., Mommaas, A.M., Snijder, E.J., Kikkert, M., Integrity of the early secretory pathway promotes, but is not required for, severe acute respiratory syndrome coronavirus RNA synthesis and virus-induced remodeling of endoplasmic reticulum membranes (2010) J Virol, 84, pp. 833-846. , https://doi.org/10.1128/JVI.01826-09; Chojnacki, S., Cowley, A., Lee, J., Foix, A., Lopez, R., Programmatic access to bioinformatics tools from EMBL-EBI update: 2017 (2017) Nucleic Acids Res, 45, pp. W550-W553. , https://doi.org/10.1093/nar/gkx273","Snijder, E.J.; Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: e.j.snijder@lumc.nl",,"American Society for Microbiology",0022538X,,JOVIA,"31243130","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85071710007 "Cheng Y., He B., Yang J., Ye F., Lin S., Yang F., Chen Z., Chen Z., Cao Y., Lu G.","57204723820;57209599380;57214921422;57208686217;57204809013;57201312721;57204728421;57201318860;57201311378;35111348400;","Crystal structure of the S1 subunit N-terminal domain from DcCoV UAE-HKU23 spike protein",2019,"Virology","535",,,"74","82",,,"10.1016/j.virol.2019.06.015","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068208383&doi=10.1016%2fj.virol.2019.06.015&partnerID=40&md5=28892d02d89c4138f97b3f015dbdfaa8","West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Disaster Medicine Center, Sichuan University, Chengdu, Sichuan 610041, China","Cheng, Y., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China, Disaster Medicine Center, Sichuan University, Chengdu, Sichuan 610041, China; He, B., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China, Disaster Medicine Center, Sichuan University, Chengdu, Sichuan 610041, China; Yang, J., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Ye, F., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Lin, S., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Yang, F., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Chen, Z., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Chen, Z., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China; Cao, Y., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China, Disaster Medicine Center, Sichuan University, Chengdu, Sichuan 610041, China; Lu, G., West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China","The DcCoV UAE-HKU23 coronavirus is a newly-found betacoronavirus (betaCoV) that can infect human cells. The viral spike protein plays pivotal roles in mediating receptor-recognition and membrane-fusion, and is therefore a key factor involved in viral pathogenesis and inter-species transmission. Here we reported the structural and functional characterization of the spike N-terminal domain (NTD) from DcCoV UAE-HKU23 (HKU23-NTD). Via mucin-binding assays, we showed that HKU23-NTD is able to bind sugars. We further solved the structure of HKU23-NTD, performed structure-guided mutagenesis and successfully located the potential sugar-binding pockets in the structure. Furthermore, via comparison of available betaCoV NTD structures, we demonstrated that betaCoV NTDs contain a conserved β-sandwich core, but exhibit variant folds in the peripheral elements located in the top-ceiling region and on the lateral side. While showing different compositions and structures, these peripheral elements are topologically equivalent β-sandwich-core insertions, highlighting a divergent evolution process for betaCoVs to form different lineages. © 2019 Elsevier Inc.","Crystal structure; DcCoV UAE-HKU23; Evolution; N-terminal domain (NTD); Spike (S)","coronavirus spike glycoprotein; mucin; sugar; amino terminal sequence; animal cell; Article; baculovirus expression system; Betacoronavirus; binding assay; controlled study; crystal structure; insect cell; mutagenesis; nonhuman; priority journal; protein folding; protein function; protein interaction; protein structure; virus strain; X ray crystallography","Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: transmission and phylogenetic evolution (2014) Trends Microbiol., 22, pp. 573-579; Alejandra Tortorici, M., Walls, A.C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.J., Veesler, D., Structural basis for human coronavirus attachment to sialic acid receptors (2019) Nat. Struct. Mol. Biol., 26 (6), pp. 481-489; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Hoschler, K., Zambon, M., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill., 17, p. 20290. , bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Debreczeni, J.E., Emsley, P., Handling ligands with Coot (2012) Acta Crystallogr. Sect. D Biol. Crystallogr., 68, pp. 425-430; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J. Virol., 87, pp. 3097-3107; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. Sect. D Biol. Crystallogr., 60, pp. 2126-2132; Fernandes, P., Barois, P., Wang, S.T., Liu, Z.Q., McCoy, B.K., Huang, C.C., Pindak, R., Nguyen, H.T., Polarization studies of resonant forbidden reflections in liquid crystals (2007) Phys. Rev. Lett., 99, p. 227801; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol., 25, pp. 35-48; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279, pp. 371-374; Gouet, P., Courcelle, E., Stuart, D.I., Metoz, F., ESPript: analysis of multiple sequence alignments in PostScript (1999) Bioinformatics, 15, pp. 305-308; Han, X., Qi, J., Song, H., Wang, Q., Zhang, Y., Wu, Y., Lu, G., Gao, G.F., Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein (2017) Virology, 507, pp. 101-109; Hulswit, R.J.G., Lang, Y., Bakkers, M.J.G., Li, W., Li, Z., Schouten, A., Ophorst, B., de Groot, R.J., Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A (2019) Proc. Natl. Acad. Sci. U.S.A., 116, pp. 2681-2690; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Kunkel, F., Herrler, G., Structural and functional analysis of the surface protein of human coronavirus OC43 (1993) Virology, 195, pp. 195-202; Lai, M.M.C., Perlman, S., Anderson, L.J., Coronaviridae (2007) Fields Virology, pp. 1305-1336; Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M., AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR (1996) J. Biomol. NMR, 8, pp. 477-486; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. U.S.A., 114, pp. E8508-e8517; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Farzan, M., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Li, W., Sui, J., Huang, I.C., Kuhn, J.H., Radoshitzky, S.R., Marasco, W.A., Choe, H., Farzan, M., The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2 (2007) Virology, 367, pp. 367-374; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol., 23, pp. 468-478; Menachery, V.D., Graham, R.L., Baric, R.S., Jumping species-a mechanism for coronavirus persistence and survival (2017) Curr. Opin. Virol., 23, pp. 1-7; Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures (2011) Acta Crystallogr. Sect. D Biol. Crystallogr., 67, pp. 355-367; Otwinowski, Z., Minor, W., [20] Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol., 276, pp. 307-326; Ou, X., Guan, H., Qin, B., Mu, Z., Wojdyla, J.A., Wang, M., Dominguez, S.R., Cui, S., Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1 (2017) Nat. Commun., 8, p. 15216; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 10696-10701; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem., 287, pp. 41931-41938; Ravindranath, M.H., Higa, H.H., Cooper, E.L., Paulson, J.C., Purification and characterization of an O-acetylsialic acid-specific lectin from a marine crab Cancer antennarius (1985) J. Biol. Chem., 260, pp. 8850-8856; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant (1991) J. Virol., 65, pp. 6232-6237; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.W., Read, R.J., Adams, P.D., Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard (2008) Acta Crystallogr. Sect. D Biol. Crystallogr., 64, pp. 61-69; Vabret, A., Mourez, T., Gouarin, S., Petitjean, J., Freymuth, F., An outbreak of coronavirus OC43 respiratory infection in Normandy, France (2003) Clin. Infect. Dis., 36, pp. 985-989; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Wang, S.M., Huang, K.J., Wang, C.T., BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface (2014) Virology, 449, pp. 287-296; Weinstein, R.A., Planning for epidemics—the lessons of SARS (2004) N. Engl. J. Med., 350, pp. 2332-2334; WHO, MERS Situation Update, January 2019 (2019); Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Wilson, K.S., Overview of the CCP4 suite and current developments (2011) Acta Crystallogr. Sect. D Biol. Crystallogr., 67, pp. 235-242; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Yuen, K.Y., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Woo, P.C., Lau, S.K., Fan, R.Y., Lau, C.C., Wong, E.Y., Joseph, S., Tsang, A.K., Yuen, K.Y., Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the Middle East: minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23 (2016) Int. J. Mol. Sci., 17; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Yuen, K.Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg. Infect. Dis., 20, pp. 560-572; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Zeng, Q., Langereis, M.A., van Vliet, A.L., Huizinga, E.G., de Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 9065-9069; Zwart, P.H., Afonine, P.V., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., McKee, E., Adams, P.D., Automated structure solution with the PHENIX suite (2008) Methods Mol. Biol., 426, pp. 419-435","Lu, G.; West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of BiotherapyChina; email: lugw@scu.edu.cn",,"Academic Press Inc.",00426822,,VIRLA,"31279241","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85068208383 "Park B.K., Lee S.I., Bae J.-Y., Park M.-S., Lee Y., Kwon H.-J.","36010594000;57190686484;55201437800;7404491121;57190190649;7401838287;","Production of a Monoclonal Antibody Targeting the M Protein of MERS-CoV for Detection of MERS-CoV Using a Synthetic Peptide Epitope Formulated with a CpG–DNA–Liposome Complex",2019,"International Journal of Peptide Research and Therapeutics","25","3",,"819","826",,1,"10.1007/s10989-018-9731-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049598107&doi=10.1007%2fs10989-018-9731-8&partnerID=40&md5=7190b09890813ca04d2e420a5163005d","Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, South Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea","Park, B.K., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Lee, S.I., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea; Bae, J.-Y., Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Park, M.-S., Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, 02841, South Korea; Lee, Y., Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, South Korea; Kwon, H.-J., Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea, Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, South Korea","The Middle East respiratory syndrome-related coronavirus (MERS-CoV) contains four major structural proteins, the spike glycoprotein, nucleocapsid phosphoprotein, membrane (M) glycoprotein and small envelope glycoprotein. The M protein of MERS-CoV has a role in the morphogenesis or assembly of the virus and inhibits type I interferon expression in infected cells. Here, we produced a monoclonal antibody specific against the M protein of MERS-CoV by injecting BALB/c mice with a complex containing the epitope peptide and CpG–DNA encapsulated with a phosphatidyl-β-oleoyl-γ-palmitoyl ethanolamine (DOPE):cholesterol hemisuccinate (CHEMS). The monoclonal antibody was reactive to the epitope peptide of the M protein of MERS-CoV which was confirmed by western blotting and immunoprecipitations. Indirect immunofluorescence assay and confocal image analysis showed that the monoclonal antibody binds specifically to the M protein of MERS-CoV in the virus-infected cells. Further studies using this monoclonal antibody may provide important information on the function of the M protein and its future application in diagnostics. © 2018, Springer Nature B.V.","B cell epitope; M protein; MERS-CoV; Monoclonal antibody","cholesterol hydrogen succinate; CpG oligodeoxynucleotide; epitope; liposome; M protein; monoclonal antibody; monoclonal antibody M158 2D6F11; recombinant protein; synthetic peptide; unclassified drug; animal cell; animal experiment; antibody production; antibody specificity; antigen antibody reaction; antigen recognition; Article; controlled study; female; Middle East respiratory syndrome coronavirus; mouse; nonhuman; virus detection","Almazán, F., DeDiego, M.L., Sola, I., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio; Anderson, R.M., Fraser, C., Ghani, A.C., Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic (2004) Philos Trans R Soc Lond B, 359 (1447), pp. 1091-1105; Du, L., Zhao, G., Yang, Y., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88 (12), pp. 7045-7053; Durai, P., Batool, M., Shah, M., Choi, S., Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control (2015) Exp Mol Med, 47; Gao, J., Lu, G., Qi, J., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus (2013) J Virol, 87 (24), pp. 13134-13140; Girard, M.P., Cherian, T., Pervikov, Y., Kieny, M.P., A review of vaccine research and development: human acute respiratory infections (2005) Vaccine, 23 (50), pp. 5708-5724; Holmes, K.V., SARS coronavirus: a new challenge for prevention and therapy (2003) J Clin Invest, 111 (11), pp. 1605-1609; Kim, D., Kwon, S., Rhee, J.W., Production of antibodies with peptide-CpG-DNA-liposome complex without carriers (2011) BMC Immunol, 12, p. 29; Kim, D., Kwon, H.J., Lee, Y., Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA (2011) BMB Rep, 44 (9), pp. 607-613; Kwon, S., Kim, D., Park, B.K., Prevention and therapy of hepatocellular carcinoma by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex without carriers (2012) PLoS ONE, 7 (3); Lee, K.W., Jung, J., Lee, Y., Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA (2006) Mol Immunol, 43 (13), pp. 2107-2118; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J Virol, 89 (4), pp. 1954-1964; Li, Y., Wan, Y., Liu, P., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25 (11), pp. 1237-1249; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Lu, L., Liu, Q., Zhu, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Lui, P.Y., Wong, L.Y., Fung, C.L., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg Microbes Infect, 5; Mackay, I.M., Arden, K.E., An opportunistic pathogen afforded ample opportunities: Middle East respiratory syndrome coronavirus (2017) Viruses; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East respiratory syndrome (MERS): a review (2018) J Infect Public Health, 11 (1), pp. 9-17; Ohnuma, K., Haagmans, B.L., Hatano, R., Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody (2013) J Virol, 87 (24), pp. 13892-13899; Park, B.K., Choi, S.H., Kim, Y.E., Monoclonal antibodies against the human respiratory syncytial virus obtained by immunization with epitope peptides and CpG-DNA-liposome complex (2015) Monoclon Antib Immunodiagn Immunother, 34 (2), pp. 101-109; Peiris, J.S., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat Med, 10, pp. S88-S97; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495 (7440), pp. 251-254; Raj, V.S., Smits, S.L., Provacia, L.B., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88 (3), pp. 1834-1838; Rhee, J.W., Kim, D., Park, B.K., Immunization with a hemagglutinin-derived synthetic peptide formulated with a CpG-DNA-liposome complex induced protection against lethal influenza virus infection in mice (2012) PLoS ONE, 7 (11); Scobey, T., Yount, B.L., Sims, A.C., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc Natl Acad Sci USA, 110 (40), pp. 16157-16162; Tao, X., Garron, T., Agrawal, A.S., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J Virol, 90 (1), pp. 57-67; State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr; van Boheemen, S., de Graaf, M., Lauber, C., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Wu, G., Kim, D., Kim, J.N., A Mucin1 C-terminal subunit-directed monoclonal antibody targets overexpressed Mucin1 in breast cancer (2018) Theranostics, 8 (1), pp. 78-91; Yang, Y., Zhang, L., Geng, H., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4 (12), pp. 951-961; Yin, Y., Wunderink, R.G., MERS, SARS and other coronaviruses as causes of pneumonia (2018) Respirology, 23 (2), pp. 130-137; Yokoyama, W.M., Christensen, M., Santos, G.D., Miller, D., Production of monoclonal antibodies (2006) Curr Protoc Immunol; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Zhang, E.X., Oh, O.S., See, W., Assessment of the risk posed to Singapore by the 2015 Middle East respiratory syndrome outbreak in the Republic of Korea (2016) Western Pac Surveill Response J, 7 (2), pp. 17-25","Kwon, H.-J.; Department of Microbiology, College of Medicine, Hallym UniversitySouth Korea; email: hjookwon@hallym.ac.kr",,"Springer Netherlands",15733149,,IJPRF,,"English","Int. J. Pept. Res. Ther.",Article,"Final",Open Access,Scopus,2-s2.0-85049598107 "Souza L.C., Blawid R., Silva J.M.F., Nagata T.","57203189459;14065978600;57194429144;7403105141;","Human virome in nasopharynx and tracheal secretion samples",2019,"Memorias do Instituto Oswaldo Cruz","114","9", e190198,"","",,1,"10.1590/0074-02760190198","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073064966&doi=10.1590%2f0074-02760190198&partnerID=40&md5=c7c1bff170fb64a6137a239864670a79","Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia Microbiana, Brasília, DF, Brazil; Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, PE, Brazil; Laboratório Central de Saúde Pública do Distrito Federal, Brasília, DF, Brazil; Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, Brasília, DF, Brazil","Souza, L.C., Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia Microbiana, Brasília, DF, Brazil, Laboratório Central de Saúde Pública do Distrito Federal, Brasília, DF, Brazil; Blawid, R., Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, PE, Brazil; Silva, J.M.F., Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, Brasília, DF, Brazil; Nagata, T., Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia Microbiana, Brasília, DF, Brazil, Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, Brasília, DF, Brazil","BACKGROUND In Brazil the implementation of the Sentinel Surveillance System of Influenza began in 2000. Central public health laboratories use reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for diagnosis of respiratory viruses, but this protocol identifies only specific targets, resulted in inconclusive diagnosis for many samples. Thus, high-throughput sequencing (HTS) would be complementary method in the identification of pathogens in inconclusive samples for RT-qPCR or other specific detection protocols. OBJECTIVES This study aimed to detect unidentified viruses using HTS approach in negative samples of nasopharynx/tracheal secretions by the standard RT-qPCR collected in the Federal District, Brazil. METHODS Nucleic acids were extracted from samples collected in winter period of 2016 and subjected to HTS. The results were confirmed by the multiplex PR21 RT-qPCR, which identifies 21 respiratory pathogens. FINDINGS The main viruses identified by HTS were of families Herpesviridae, Coronaviridae, Parvoviridae and Picornaviridae, with the emphasis on rhinoviruses. The presence of respiratory viruses in the samples was confirmed by the PR21 multiplex RT-qPCR. Coronavirus, enterovirus, bocavirus and rhinovirus were found by multiplex RT-qPCR as well as by HTS analyses. MAIN CONCLUSIONS Wide virus diversity was found by different methodologies and high frequency of rhinovirus occurrence was confirmed in population in winter, showing its relevance for public health. © 2019, Fundacao Oswaldo Cruz. All rights reserved.","High-throughput sequencing; Public health; Respiratory virus; RT-qPCR","virus DNA; virus RNA; classification; Coronaviridae; genetics; Herpesviridae; human; isolation and purification; nasopharynx; Parvoviridae; Picornaviridae; real time polymerase chain reaction; reverse transcription polymerase chain reaction; trachea; virology; Coronaviridae; DNA, Viral; Herpesviridae; Humans; Nasopharynx; Parvoviridae; Picornaviridae; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Viral; Trachea","(2016) Guide to the influenza surveillance laboratory network in Brazil, , http://bvsms.saude.gov.br/bvs/publicacoes/guia_laboratorial_influenza_vigilancia_influenza_brasil.pdf, [homepage on the Internet] / Ministry of Health, Health Surveillance Secretariat, Communicable Disease Surveillance Department. Brasilia: Ministry of Health, updated 2019 Jan 22; cited 2019 May 9, Available from; Juvén, T., Mertsola, J., Waris, M., Leinonen, M., Meurman, O., Roivainen, M., Etiology of community-acquired pneumonia in 254 hospitalized children (2000) Pediatr Infect Dis J., 19 (4), pp. 293-298; Morens, D.M., Folkers, G.K., Fauci, A.S., The challenge of emerging and re-emerging infectious diseases (2004) Nature., 430, pp. 242-249; Chang, Y., Cesarman, E., Pessin, M.S., Lee, F., Culpepper, J., Knowles, D.M., Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma (1994) Science., 266 (5192), pp. 1865-1869; Allander, T., Tammi, M.T., Eriksson, M., Bjerkner, A., Tiveljung-Lindell, A., Andersson, B., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci USA., 102 (36), pp. 12891-12896; Jones, M.S., Kapoor, A., Lukashov, V.V., Simmonds, P., Hecht, F., Delwart, E., New DNA viruses identified in patients with acute viral infection syndrome (2005) J Virol., 79 (13), pp. 8230-8236; Simons, J.N., Pilot-Matias, T.J., Leary, T.P., Dawson, G.J., Desai, S.M., Schlauder, G.G., Identification of two flavivirus like genomes in the GB hepatitis agent (1995) Proc Natl Acad Sci USA., 92 (8), pp. 3401-3405; Nishizawa, T., Okamoto, H., Konishi, K., Yoshizawa, H., Miyakawa, Y., Mayumi, M., A novel DNA virus (TTV) associated with elevated transaminase levels in post transfusion hepatitis of unknown etiology (1997) Biochem Biophys Res Commun., 241 (1), pp. 92-97; Gaynor, A.M., Nissen, M.D., Whiley, D.M., Mackay, I.M., Lambert, S.B., Wu, G., Identification of a novel polyomavirus from patients with acute respiratory tract infections (2007) PLoS Pathog., 3 (5), p. e64; Allander, T., Andreasson, K., Gupta, S., Bjerkner, A., Bogdanovic, G., Persson, M.A., Identification of a third human polyomavirus (2007) J Virol., 81 (8), pp. 4130-4136; Palacios, G., Druce, J., Du, L., Tran, T., Birch, C., Briese, T., A new arenavirus in a cluster of fatal transplant-associated diseases (2008) N Engl J Med., 358, pp. 991-998; Conteville, L.C., de Filippis, A.M.B., Nogueira, R.M.R., de Mendonça, M.C.L., Vicente, A.C.P., Metagenomic analysis reveals Hepatitis A virus in suspected yellow fever cases in Brazil (2018) Mem Inst Oswaldo Cruz., 113 (1), pp. 66-67; Yongfeng, H., Fan, Y., Jie, D., Jian, Y., Ting, Z., Lilian, S., Direct pathogen detection from swab samples using a new high-throughput sequencing technology (2011) Clin Microbiol Infect., 17 (2), pp. 241-244; Yozwiak, N.L., Skewes-Cox, P., Gordon, A., Saborio, S., Kuan, G., Balmaseda, A., Human enterovirus 109: A novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua (2010) J Virol., 84 (18), pp. 9047-9058; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: A flexible trimmer for Illumina sequence data (2014) Bioinformatics., 30 (15), pp. 2114-2120; Menzel, P., Ng, K.L., Krogh, A., Fast and sensitive taxonomic classification for metagenomics with Kaiju (2016) Nat Commun., 7, p. 11257; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics., 25 (14), pp. 1754-1760; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., The sequence alignment/map format and SAMtools (2009) Bioinformatics., 25 (16), pp. 2078-2079; Zerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res., 18, pp. 821-829; Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing (2012) J Comput Biol., 19 (5), pp. 455-477; Blawid, R., Silva, J.M.F., Nagata, T., Discovering and sequencing new plant viral genomes by next-generation sequencing: Description of a practical pipeline (2017) Ann Appl Biol., 170 (3), pp. 301-314; Capobianchi, M.R., Giombini, E., Rozera, G., Next-generation sequencing technology in clinical virology (2013) Clin Microbiol Infect., 19 (1), pp. 15-22; Thorburn, F., Bennett, S., Modha, S., Murdoch, D., Gunson, R., Murcia, P.R., The use of next generation sequencing in the diagnosis and typing of respiratory infections (2015) J Clin Virol., 69, pp. 96-100; Arruda, E., Hayden, F.G., McAuliffe, J.F., Sota, M.A., Mota, S.B., McAuliffe, M.I., Acute respiratory viral infections in ambulatory children in urban northeast Brazil (1991) J Infect Dis., 164 (2), pp. 1261-1268; Costa, L.F., Yokosawa, J., Mantese, O.C., Oliveira, T.F.M., Silveira, H.L., Nepomuceno, L.L., Respiratory viruses in children younger than five years old with acute respiratory disease from 2001 to 2004 in Uberlândia, MG, Brazil (2006) Mem Inst Oswaldo Cruz., 101 (3), pp. 301-306; Fawkner-Corbett, D.W., Khoo, S.K., Duarte, M.C., Bezerra, P., Bochkov, Y.A., Gern, J.E., Rhinovirus-C detection in children presenting with acute respiratory infection to hospital in Brazil (2015) J Med Virol., 88 (1), pp. 58-63; Moreira, L.P., Kamikawa, J., Watanabe, A.S., Carraro, E., Leal, E., Arruda, E., Frequency of human rhinovirus species in outpatient children with acute respiratory infections at primary care level in Brazil (2011) Pediatr Infect Dis J., 30 (7), pp. 612-614; Leotte, J., Trombetta, H., Faggion, H.Z., Almeida, B.M., Nogueira, M.B., Vidal, L.R., Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years (2017) J Pediatr., 93 (3), pp. 294-300; Huei-Min, H., Shu-Li, Y., Chih-Jung, C., Cheng-Hsun, C., Chen-Yen, K., Kuan-Ying, A.H., Molecular epidemiology and clinical features of rhinovirus infections among hospitalized patients in a medical center in Taiwan (2019) J Microbiol Immunol Infect., 52 (2), pp. 233-241; Bellei, N., Carraro, E., Perosa, A., Watanabe, A., Arruda, E., Granato, C., Acute respiratory infections and influenza-like illness viral etiologies in Brazilian adults (2008) J Med Virol., 80 (10), pp. 1824-1827","Nagata, T.; Universidade de Brasília, Departamento de Biologia Celular, Pós-Graduação em Biologia MicrobianaBrazil; email: tatsuya@unb.br",,"Fundacao Oswaldo Cruz",00740276,,,"31596309","English","Mem. Inst. Oswaldo Cruz",Article,"Final",Open Access,Scopus,2-s2.0-85073064966 "Canuti M., Kroyer A.N.K., Ojkic D., Whitney H.G., Robertson G.J., Lang A.S.","23059513900;57209577325;6508364184;7006323673;7402368684;26636497400;","Discovery and characterization of novel rna viruses in aquatic North American wild birds",2019,"Viruses","11","9", 768,"","",,,"10.3390/v11090768","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071463376&doi=10.3390%2fv11090768&partnerID=40&md5=b8a0d8859f9523286542d7f4150feb45","Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; Animal Health Laboratory, Laboratory Services Division, University of Guelph, 419 Gordon St, Guelph, ON N1H 6R8, Canada; Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street,, Mount Pearl, NL A1N 4T3, Canada","Canuti, M., Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; Kroyer, A.N.K., Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; Ojkic, D., Animal Health Laboratory, Laboratory Services Division, University of Guelph, 419 Gordon St, Guelph, ON N1H 6R8, Canada; Whitney, H.G., Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; Robertson, G.J., Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street,, Mount Pearl, NL A1N 4T3, Canada; Lang, A.S., Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada","Wild birds are recognized viral reservoirs but our understanding about avian viral diversity is limited. We describe here three novel RNA viruses that we identified in oropharyngeal/cloacal swabs collected from wild birds. The complete genome of a novel gull metapneumovirus (GuMPV B29) was determined. Phylogenetic analyses indicated that this virus could represent a novel avian metapneumovirus (AMPV) sub-group, intermediate between AMPV-C and the subgroup of the other AMPVs. This virus was detected in an American herring (1/24, 4.2%) and great black-backed (4/26, 15.4%) gulls. A novel gull coronavirus (GuCoV B29) was detected in great black-backed (3/26, 11.5%) and American herring (2/24, 8.3%) gulls. Phylogenetic analyses of GuCoV B29 suggested that this virus could represent a novel species within the genus Gammacoronavirus, close to other recently identified potential novel avian coronaviral species. One GuMPV–GuCoV co-infection was detected. A novel duck calicivirus (DuCV-2 B6) was identified in mallards (2/5, 40%) and American black ducks (7/26, 26.9%). This virus, of which we identified two different types, was fully sequenced and was genetically closest to other caliciviruses identified in Anatidae, but more distant to other caliciviruses from birds in the genus Anas. These discoveries increase our knowledge about avian virus diversity and host distributions. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Avian viruses; Calicivirus; Coronavirus; Metapneumovirus; Novel viruses; Viral epidemiology; Virus discovery","polyprotein; viral protein; virus RNA; amino acid sequence; Anas platyrhynchos; Article; Avian metapneumovirus; bird; Caliciviridae; calicivirus infection; Coronavirinae; electrophoresis; Gammacoronavirus; gene mutation; gene sequence; genome analysis; Human metapneumovirus; Metapneumovirus; mixed infection; molecular diagnosis; nested polymerase chain reaction; nonhuman; nucleotide sequence; nucleotide sequence; open reading frame; phylogenetic tree; phylogeny; phylogeography; polymerase chain reaction; RNA virus; sequence analysis; sequence homology; virus identification; virus isolation","Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M., Lemmon, A.R., A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing (2015) Nature, 526, pp. 569-573; Şekercioğlu, Ç.H., Daily, G.C., Ehrlich, P.R., Ecosystem consequences of bird declines (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 18042-18047; Viana, D.S., Santamaría, L., Figuerola, J., Migratory birds as global dispersal vectors (2016) Trends Ecol. E, 31, pp. 763-775; Bauer, S., Hoye, B.J., Migratory animals couple biodiversity and ecosystem functioning worldwide (2014) Science, 344; Canuti, M., Munro, H.J., Robertson, G.J., Kroyer, A.N.K., Roul, S., Ojkic, D., Whitney, H.G., Lang, A.S., New insight into avian papillomavirus ecology and evolution from characterization of novel wild bird papillomaviruses (2019) Front. Microbiol., 10; Chung, D.M., Ferree, E., Simon, D.M., Yeh, P.J., Patterns of bird-bacteria associations (2018) Ecohealth, 15, pp. 627-641; Olsen, B., Munster, V.J., Wallensten, A., Waldenström, J., Osterhaus, A.D.M.E., Fouchier, R.A.M., Global patterns of influenza A virus in wild birds (2006) Science, 312, pp. 384-388; Reed, K.D., Meece, J.K., Henkel, J.S., Shukla, S.K., Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens (2003) Clin. Med. Res., 1, pp. 5-12; Chamings, A., Nelson, T.M., Vibin, J., Wille, M., Klaassen, M., Alexandersen, S., Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds (2018) Sci. Rep., 8, p. 5980; Bodewes, R., Novel viruses in birds: Flying through the roof or is a cage needed? (2018) Veterinary J, 233, pp. 55-62; Chan, J.F.-W., To, K.K.-W., Chen, H., Yuen, K.-Y., Cross-species transmission and emergence of novel viruses from birds (2015) Curr. Opin. Virol., 10, pp. 63-69; Wille, M., Eden, J.-S., Shi, M., Klaassen, M., Hurt, A.C., Holmes, E.C., Virus–virus interactions and host ecology are associated with RNA virome structure in wild birds (2018) Mol. Ecol., 27, pp. 5263-5278; Verhoeven, J.T.P., Canuti, M., Munro, H.J., Dufour, S.C., Lang, A.S., ViDiT-CACTUS: An inexpensive and versatile library preparation and sequence analysis method for virus discovery and other microbiology applications (2018) Can. J. Microbiol., 64, pp. 761-773; Rima, B., Collins, P., Easton, A., Fouchier, R., Kurath, G., Lamb, R.A., Lee, B., Wang, L., ICTV Virus Taxonomy Profile: Pneumoviridae (2017) J. Gen. Virol., 98, pp. 2912-2913; Retallack, H., Clubb, S., Derisi, J.L., Genome sequence of a divergent avian metapneumovirus from a monk parakeet (Myiopsitta monachus) (2019) Microbiol. Resour. Announc., 8; Cook, J.K., Avian pneumovirus infections of turkeys and chickens (2000) Vet. J., 160, pp. 118-125; Umar, S., Sabir, H., Ahmed, A., Subhan, S., Avian metapneumovirus infection in poultry (2016) World’s Poultry Sci. J., 72, pp. 833-846; Jardine, C.M., Parmley, E.J., Buchanan, T., Nituch, L., Ojkic, D., Avian metapneumovirus subtype C in wild waterfowl in Ontario, Canada (2018) Transbound. Emerg. Dis., 65, pp. 1098-1102; Bennett, R.S., Nezworski, J., Velayudhan, B.T., Nagaraja, K.V., Zeman, D.H., Dyer, N., Graham, T., Halvorson, D.A., Evidence of avian pneumovirus spread beyond Minnesota among wild and domestic birds in central North America (2004) Avian Dis, 48, pp. 902-908; van Boheemen, S., Bestebroer, T.M., Verhagen, J.H., Osterhaus, A.D.M.E., Pas, S.D., Herfst, S., Fouchier, R.A.M., A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study (2012) Plos ONE, 7; Rizotto, L.S., Simão, R.M., Scagion, G.P., Simasaki, A.A., Caserta, L.C., Benassi, J.C., Arns, C.W., Simão, R.M., Detection of avian metapneumovirus subtype A from wild birds in the State of São Paulo, Brazil (2019) Pesquisa Veterinária Brasileira, 39, pp. 209-213; Shin, H.-J., Njenga, M.K., McComb, B., Halvorson, D.A., Nagaraja, K.V., Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys (2000) J. Clin. Microbiol., 38, pp. 4282-4284; Coronaviridae, I.C.T.V., Taxonomy, V., (2018) Release, , https://talk.ictvonline.org, accessed on 17 May 2019); Miłek, J., Blicharz-Domańska, K., Coronaviruses in avian species – review with focus on epidemiology and diagnosis in wild birds (2018) J. Vet. Res., 62, pp. 249-255; Cook, J.K.A., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol, 41, pp. 239-250; Chen, Y.-N., Wu, C.C., Lin, T.L., Turkey coronavirus: An updated review (2015) Taiwan Vet. J., 41, pp. 1-10; Abdelmohsen Rohaim, M., Fawzi El Naggar, R., Maher Helal, A., Mohamed Bayoumi, M., Ahmed El-Saied, M., Abdelazez Ahmed, K., Zubair Shabbir, M., Munir, M., Genetic diversity and phylodynamics of avian coronaviruses in Egyptian wild birds (2019) Viruses, 11; Chu, D.K.W., Leung, C.Y.H., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Poon, L.L.M., Avian coronavirus in wild aquatic birds (2011) J. Virol., 85, pp. 12815-12820; de Sales Lima, F.E., Gil, P., Pedrono, M., Minet, C., Kwiatek, O., Campos, F.S., Spilki, F.R., Maminiaina, O.F., Diverse gammacoronaviruses detected in wild birds from Madagascar (2015) Eur. J. Wildl. Res., 61, pp. 635-639; Hughes, L.A., Savage, C., Naylor, C., Bennett, M., Chantrey, J., Jones, R., Genetically diverse coronaviruses in wild bird populations of Northern England (2009) Emerg. Infect. Dis., 15, pp. 1091-1094; Muradrasoli, S., Mohamed, N., Hornyák, Á., Fohlman, J., Olsen, B., Belák, S., Blomberg, J., Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos) (2009) J. Virol. Methods, 159, pp. 277-287; Chen, G.-Q., Zhuang, Q.-Y., Wang, K.-C., Liu, S., Shao, J.-Z., Jiang, W.-M., Hou, G.-Y., Li, Y.-P., Identification and survey of a novel avian coronavirus in ducks (2013) Plos ONE, 8; Papineau, A., Berhane, Y., Wylie, T.N., Wylie, K.M., Sharpe, S., Lung, O., Genome organization of Canada goose coronavirus, a novel species identified in a mass die-off of Canada geese (2019) Sci. Rep., 9, p. 5954; Zhuang, Q.-Y., Wang, K.-C., Liu, S., Hou, G.-Y., Jiang, W.-M., Wang, S.-C., Li, J.-P., Chen, J.-M., Genomic analysis and surveillance of the coronavirus dominant in ducks in China (2015) Plos ONE, 10; (2018) Release, , https://talk.ictvonline.org/, accessed on 17 May 2019; Day, J.M., Ballard, L.L., Duke, M.V., Scheffler, B.E., Zsak, L., Metagenomic analysis of the turkey gut RNA virus community (2010) Virol. J., 7, p. 313; Desselberger, U., Caliciviridae other than noroviruses (2019) Viruses, 11, p. 286; Wolf, S., Reetz, J., Otto, P., Genetic characterization of a novel calicivirus from a chicken (2011) Arch. Virol., 156, pp. 1143-1150; Wolf, S., Reetz, J., Hoffmann, K., Gründel, A., Schwarz, B.-A., Hänel, I., Otto, P.H., Discovery and genetic characterization of novel caliciviruses in German and Dutch poultry (2012) Arch. Virol., 157, pp. 1499-1507; Liao, Q., Wang, X., Wang, D., Zhang, D., Complete genome sequence of a novel calicivirus from a goose (2014) Arch. Virol., 159, pp. 2529-2531; de Souza, W.M., Fumagalli, M.J., de Araujo, J., Ometto, T., Modha, S., Thomazelli, L.M., Durigon, E.L., Figueiredo, L.T.M., Discovery of novel astrovirus and calicivirus identified in ruddy turnstones in Brazil (2019) Sci. Rep., 9, p. 5556; Wille, M., Shi, M., Klaassen, M., Hurt, A., Holmes, E., Virome heterogeneity and connectivity in waterfowl and shorebird communities (2019) ISME J; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33, pp. 1870-1874; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol. Biol. E, 30, pp. 772-780; Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses (2009) Bioinformatics, 25, pp. 1972-1973; Sánchez, R., Serra, F., Tárraga, J., Medina, I., Carbonell, J., Pulido, L., de María, A., Gabaldón, T., Phylemon 2.0: A suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing (2011) Nucleic Acids Res, 39, pp. W470-W474; Felsenstein, J., Evolutionary trees from DNA sequences: A maximum likelihood approach (1981) J. Mol. Evol., 17, pp. 368-376; Felsenstein, J., Confidence limits on phylogenies: An approach using the bootstrap (1985) Evolution, 39, p. 783; Le, S.Q., Gascuel, O., An improved general amino acid replacement matrix (2008) Mol. Biol. E, 25, pp. 1307-1320; Yun, B., Guan, X., Liu, Y., Gao, Y., Wang, Y., Qi, X., Cui, H., Gao, L., Trypsin-and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294 (2015) Sci. Rep., 5; van den Hoogen, B.G., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Analysis of the genomic sequence of a human metapneumovirus (2002) Virology, 295, pp. 119-132; Turpin, E.A., Stallknecht, D.E., Slemons, R.D., Zsak, L., Swayne, D.E., Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA (2008) Avian Pathol, 37, pp. 343-351; Heffels-Redmann, U., Neumann, U., Braune, S., Cook, J.K.A., Prüter, J., Serological evidence for susceptibility of sea gulls to avian pneumovirus (APV) infection. Proceedings international symposium on infectious bronchitis and pneumovirus infections in poultry (1998) Rauischholzhausen, pp. 23-25. , Germany; Fang, S., Shen, H., Wang, J., Tay, F.P.L., Liu, D.X., Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase (2010) J. Virol., 84, pp. 7325-7336; Gadlage, M.J., Denison, M.R., Exchange of the coronavirus replicase polyprotein cleavage sites alters protease specificity and processing (2010) J. Virol., 84, pp. 6894-6898; Kindler, E., Thiel, V., To sense or not to sense viral RNA–essentials of coronavirus innate immune evasion (2014) Curr. Opin. Microbiol., 20, pp. 69-75; Cho, C.-C., Lin, M.-H., Chuang, C.-Y., Hsu, C.-H., Macro domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an efficient ADP-ribose binding module: Crystal structure and biochemical studies (2016) J. Biol. Chem., 291, pp. 4894-4902; Keep, S., Bickerton, E., Armesto, M., Britton, P., The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain (2018) J. Gen. Virol., 99, pp. 1097-1102; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879; Domanska-Blicharz, K., Jacukowicz, A., Lisowska, A., Wyrostek, K., Minta, Z., Detection and molecular characterization of infectious bronchitis-like viruses in wild bird populations (2014) Avian Pathol, 43, pp. 406-413; Hepojoki, S., Lindh, E., Vapalahti, O., Huovilainen, A., Prevalence and genetic diversity of coronaviruses in wild birds, Finland (2017) Infect. Ecol. Epidemiol., 7; Wille, M., Muradrasoli, S., Nilsson, A., Järhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian waterfowl (2016) Plos ONE, 11; Jordan, B.J., Hilt, D.A., Poulson, R., Stallknecht, D.E., Jackwood, M.W., Identification of avian coronavirus in wild aquatic birds of the central and eastern USA (2015) JWDI, 51, pp. 218-221; Kim, H.-R., Oem, J.-K., Surveillance of avian coronaviruses in wild bird populations of Korea (2014) J. Wildl. Dis., 50, pp. 964-968; Canuti, M., Lang, A.S., (2019), Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada. unpublished work; L’Homme, Y., Sansregret, R., Plante-Fortier, E., Lamontagne, A.-M., Ouardani, M., Lacroix, G., Simard, C., Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae (2009) Virus Genes, 39, pp. 66-75; Mikalsen, A.B., Nilsen, P., Frøystad-Saugen, M., Lindmo, K., Eliassen, T.M., Rode, M., Evensen, Ø., Characterization of a novel calicivirus causing systemic infection in Atlantic salmon (Salmo salar L.): Proposal for a new genus of Caliciviridae (2014) Plos ONE, 9; Wang, F., Wang, M., Dong, Y., Zhang, B., Zhang, D., Genetic characterization of a novel calicivirus from a goose (2017) Arch. Virol., 162, pp. 2115-2118; Wang, Y., Yang, S., Liu, D., Zhou, C., Li, W., Lin, Y., Wang, X., Li, C., The fecal virome of red-crowned cranes (2019) Arch. Virol., 164, pp. 3-16","Canuti, M.; Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., Canada; email: marta.canuti@gmail.com",,"MDPI AG",19994915,,,"31438486","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85071463376 "Li Y.-T., Liang Y., Ling Y.-S., Duan M.-Q., Pan L., Chen Z.-G.","40261942500;57210121498;57210106909;57195285879;57191753409;13104469200;","The spectrum of viral pathogens in children with severe acute lower respiratory tract infection: A 3-year prospective study in the pediatric intensive care unit",2019,"Journal of Medical Virology","91","9",,"1633","1642",,4,"10.1002/jmv.25502","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069456977&doi=10.1002%2fjmv.25502&partnerID=40&md5=b818ceb22166be3bc80bece83cb6486d","Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China","Li, Y.-T., Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Liang, Y., Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Ling, Y.-S., Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Duan, M.-Q., Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Pan, L., Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Chen, Z.-G., Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China","Background: No comprehensive analysis is available on the viral etiology and clinical characterization among children with severe acute lower respiratory tract infection (SALRTI) in Southern China. Methods: Cohort of 659 hospitalized children (2 months to 14 years) with SALRTI admitted to the Pediatric Intensive Care Unit (PICU) in the Guangzhou from May 2015 to April 2018 was enrolled in this study. Nasopharyngeal aspirate specimens or induced sputum were tested for eight categories respiratory viral targets. The viral distribution and its clinical characters were statistically analyzed. Results: Viral pathogen was detected in 326 (49.5%) of children with SALRTI and there were 36 (5.5%) viral coinfections. Overall, the groups of viruses identified were, in descending order of prevalence: Influenza virus (IFV) (n = 94, 14.3%), respiratory syncytial virus (RSV) (n = 75, 11.4%), human rhinovirus (HRV) (n = 56, 8.5%), adenovirus (ADV) (n = 55, 8.3%), parainfluenza (PIV) (n = 47, 7.1%), human coronavirus (HCoV) (n = 15, 2.3%), human metapneumovirus (HMPV) (n = 14, 2.1%) and human bocavirus (HBoV) (n = 11, 1.7%). The positive rate in younger children (< 5 years) was significantly higher than the positive rate detected in elder children (> 5 years) (52.5% vs 35.1%, P = 0.001). There were clear seasonal peaks for IFV, RSV, HRV, ADV, PIV, and HMPV. And the individuals with different viral infection varied significantly in terms of clinical profiles. Conclusions: Viral infections are present in a consistent proportion of patients admitted to the PICU. IFV, RSV, HRV, and ADV accounted for more than two-thirds of all viral SALRTI. Our findings could help the prediction, prevention and potential therapeutic approaches of SALRTI in children. © 2019 Wiley Periodicals, Inc.","epidemiology; respiratory tract; severe acute lower respiratory infection; virus","Adenoviridae; adolescent; Article; child; child hospitalization; China; clinical feature; cohort analysis; Coronaviridae; disease severity; female; human; Human bocavirus; Human metapneumovirus; Human rhinovirus; infant; Influenza virus; intensive care; lower respiratory tract infection; major clinical study; male; mixed infection; nasopharyngeal aspiration; Parainfluenza virus infection; pediatric intensive care unit; Pneumovirus; prospective study; sputum analysis; virus infection","Kassebaum, N., Kyu, H.H., Zoeckler, L., Child and adolescent health from 1990 to 2015: findings from the Global Burden of Diseases, Injuries, and Risk Factors 2015 Study (2017) JAMA Pediatrics, 171 (6), pp. 573-592; Disease, G.B.D., Injury, I., Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 (2017) Lancet, 390 (10100), pp. 1211-1259; McAllister, D.A., Liu, L., Shi, T., Global, regional, and national estimates of pneumonia morbidity and mortality in children younger than 5 years between 2000 and 2015: a systematic analysis (2019) Lancet Global Health, 7 (1), pp. e47-e57; Nair, H., Simoes, E.A., Rudan, I., Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis (2013) Lancet, 381 (9875), pp. 1380-1390; Lozano, R., Naghavi, M., Foreman, K., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 (2012) Lancet, 380 (9859), pp. 2095-2128; (2017) Lancet, 390 (10100), pp. 1151-1210; Rudan, I., O'Brien, K.L., Nair, H., Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries (2013) J Glob Health, 3 (1), p. 010401; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23 (1), pp. 74-98; Gootz, T.D., The global problem of antibiotic resistance (2010) Crit Rev Immunol, 30 (1), pp. 79-93; http://www.who.int/csr/resources/publications/surveillance/WHO_CDS_CSR_ISR_99_2_EN/en, 2nd ed. WHO; 1999., Accessed April 12, 2014; (2005), http://whqlibdoc.who.int/publications/2005/9241546441.pdf, WHO;, Accessed April 13, 2014; Zhang, S.F., Tuo, J.L., Huang, X.B., Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou (2018) PLOS One, 13 (1); Yu, J., Jing, H., Lai, S., Etiology of diarrhea among children under the age five in China: results from a five-year surveillance (2015) J Infect, 71 (1), pp. 19-27; Zhang, D., He, Z., Xu, L., Epidemiology characteristics of respiratory viruses found in children and adults with respiratory tract infections in southern China (2014) Jiangsu Med J, 25, pp. 159-164; Wen Kuan, L., Qian, L., De Hui, C., Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study (2014) PLOS One, 9 (5); Lin, X., Xia, H., Ding-Mei, Z., Surveillance and genome analysis of human bocavirus in patients with respiratory infection in Guangzhou, China (2012) PLOS One, 7 (9); Piralla, A., Mariani, B., Rovida, F., Baldanti, F., Frequency of respiratory viruses among patients admitted to 26 Intensive Care Units in seven consecutive winter-spring seasons (2009-2016) in Northern Italy (2017) J Clin Virol, 92, pp. 48-51; Visseaux, B., Burdet, C., Voiriot, G., Prevalence of respiratory viruses among adults, by season, age, respiratory tract region and type of medical unit in Paris, France, from 2011 to 2016 (2017) PLOS One, 12 (7); Xu, W., Guo, L., Dong, X., Detection of viruses and mycoplasma pneumoniae in hospitalized patients with severe acute respiratory infection in Northern China, 2015-2016 (2018) Jpn J Infect Dis, 71, pp. 134-139; Alvarez-Lerma, F., Marin-Corral, J., Vila, C., Characteristics of patients with hospital-acquired influenza A (H1N1)pdm09 virus admitted to the intensive care unit (2017) J Hosp Infect, 95 (2), pp. 200-206; Guerrier, G., Goyet, S., Chheng, E.T., Acute viral lower respiratory tract infections in Cambodian children: clinical and epidemiologic characteristics (2013) Pediatr Infect Dis J, 32 (1), pp. e8-e13; Gaunt, E.R., Harvala, H., Mcintyre, C., Templeton, K.E., Simmonds, P., Disease burden of the most commonly detected respiratory viruses in hospitalized patients calculated using the disability adjusted life year (DALY) model (2011) J Clin Virol, 52 (3), pp. 215-221; Feng, L., Li, Z., Zhao, S., Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013 (2014) PLOS One, 9 (6); Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin Respir Crit Care Med, 37 (4), pp. 555-571; Yan, Y., Huang, L., Wang, M., Clinical and epidemiological profiles including meteorological factors of low respiratory tract infection due to human rhinovirus in hospitalized children (2017) Ital J Pediatr, 43 (1), p. 23; Zeng, S.Z., Xiao, N.G., Xie, Z.P., Prevalence of human rhinovirus in children admitted to hospital with acute lower respiratory tract infections in Changsha, China (2014) J Med Virol, 86 (11), pp. 1983-1989; Sk, L., Cc, Y., Hw, T., Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children (2007) J Clin Microbiol, 45 (11), pp. 3655-3664; Lion, T., Adenovirus infections in immunocompetent and immunocompromised patients (2014) Clin Microbiol Rev, 27 (3), pp. 441-462; Bezerra, P.G., Britto, M.C., Correia, J.B., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) PLOS One, 6 (4); Zhang, S.Y., Luo, Y.P., Huang, D.D., Fatal pneumonia cases caused by human adenovirus 55 in immunocompetent adults (2016) Infect Diseases, 48 (1), pp. 40-47; Strauß, R., Ewig, S., Richter, K., König, T., Heller, G., Bauer, T.T., The prognostic significance of respiratory rate in patients with pneumonia: a retrospective analysis of data from 705,928 hospitalized patients in Germany from 2010-2012 (2014) Dtsch Arztebl Int, 111 (29-30), pp. 503-550; Tan, D., Zhu, H., Fu, Y., Severe community-acquired pneumonia caused by human adenovirus in immunocompetent adults: a multicenter case series (2016) PLOS One, 11 (3), p. e0151199; Sun, B., He, H., Wang, Z., Emergent severe acute respiratory distress syndrome caused by adenovirus type 55 in immunocompetent adults in 2013: a prospective observational study (2014) Crit Care, 18 (4), p. 456; Cassir, N., Hraiech, S., Nougairede, A., Zandotti, C., Fournier, P.E., Papazian, L., Outbreak of adenovirus type 1 severe pneumonia in a French intensive care unit, September-October 2012 (2014) Euro Surveillance, 19 (39), p. 20914; Qu, J.X., Gu, L., Pu, Z.H., Viral etiology of community-acquired pneumonia among adolescents and adults with mild or moderate severity and its relation to age and severity (2015) BMC Infect Diseases, 15 (1), p. 89; Feikin, D.R., M Kariuki, N., Godfrey, B., Viral and bacterial causes of severe acute respiratory illness among children aged less than 5 years in a high malaria prevalence area of western Kenya, 2007-2010 (2013) Pediatr Infect Dis J, 32 (1), pp. 14-19","Chen, Z.-G.; Department of Pediatric Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen UniversityChina; email: chzhgui@mail.sysu.edu.cn",,"John Wiley and Sons Inc.",01466615,,JMVID,"31081548","English","J. Med. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85069456977 "Valtonen M., Waris M., Vuorinen T., Eerola E., Hakanen A.J., Mjosund K., Grönroos W., Heinonen O.J., Ruuskanen O.","57214607843;7003873654;7005778445;7004403865;7004665090;57209099249;57209105029;7101628821;55068112200;","Common cold in Team Finland during 2018 Winter Olympic Games (PyeongChang): Epidemiology, diagnosis including molecular point-of-care testing (POCT) and treatment",2019,"British Journal of Sports Medicine","53","17",,"1093","1098",,1,"10.1136/bjsports-2018-100487","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066469720&doi=10.1136%2fbjsports-2018-100487&partnerID=40&md5=e7395678e8c48383882e702f49f3395f","Research Center for Olympic Sports, Jyvaskyla, Finland; Institute of Biomedicine, University of Turku, Turku, Finland; Department of Clinical Virology, Turku University Hospital, Turku, Finland; Department of Clinical Microbiology, Turku University Hospital, Turku, Finland; Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, Turku, Finland; Department of Paediatrics, Turku University Hospital Research Centre, Turku, Finland","Valtonen, M., Research Center for Olympic Sports, Jyvaskyla, Finland; Waris, M., Institute of Biomedicine, University of Turku, Turku, Finland, Department of Clinical Virology, Turku University Hospital, Turku, Finland; Vuorinen, T., Institute of Biomedicine, University of Turku, Turku, Finland, Department of Clinical Virology, Turku University Hospital, Turku, Finland; Eerola, E., Institute of Biomedicine, University of Turku, Turku, Finland, Department of Clinical Microbiology, Turku University Hospital, Turku, Finland; Hakanen, A.J., Institute of Biomedicine, University of Turku, Turku, Finland, Department of Clinical Microbiology, Turku University Hospital, Turku, Finland; Mjosund, K., Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, Turku, Finland; Grönroos, W., Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, Turku, Finland; Heinonen, O.J., Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, Turku, Finland; Ruuskanen, O., Department of Paediatrics, Turku University Hospital Research Centre, Turku, Finland","The common cold is the main cause of medical time loss in elite sport. Rapid diagnosis has been a challenge that may be amenable to molecular point-of-care testing (POCT). Methods We performed a prospective observational study of the common cold in Team Finland during the 2018 Winter Olympic Games. There were 44 elite athletes and 68 staff members. The chief physician recorded the symptoms of the common cold daily on a standardised form. Two nasal swabs were taken at the onset of symptoms. One swab was analysed within 45 min using a molecular POCT for respiratory syncytial virus and influenza A and B viruses. After the Games, the other swab was tested for 16 possible causative respiratory viruses using PCR in laboratory-based testing. Results 20 out of 44 (45%) athletes and 22 out of 68 (32%) staff members experienced symptoms of the common cold during a median stay of 21 days. Eleven (26%) samples tested virus-positive using POCT. All subjects with influenza (n=6) and 32 close contacts were treated with oseltamivir. The aetiology of the common cold was finally detected in 75% of the athletes and 68 % of the staff members. Seven virus clusters were identified. They were caused by coronaviruses 229E, NL63 and OC43, influenza B virus, respiratory syncytial virus A, rhinovirus and human metapneumovirus. The virus infections spread readily within the team, most commonly within the same sport discipline. Conclusions The cold was indeed a common illness in Team Finland during the Winter Olympic Games. POCT proved to be clinically valuable, especially for influenza. The aetiology of the common cold was identified in most cases. © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.","athlete; infection; olympics; respiratory; sports","adult; athlete; common cold; competitive behavior; female; history; human; male; middle aged; point of care testing; prospective study; season; South Korea; sport; young adult; Adult; Anniversaries and Special Events; Athletes; Common Cold; Competitive Behavior; Female; Humans; Male; Middle Aged; Point-of-Care Testing; Prospective Studies; Republic of Korea; Seasons; Sports; Young Adult","Walsh, N.P., Gleeson, M., Pyne, D.B., Position statement. Part two: Maintaining immune health (2011) Exerc Immunol Rev, 17, pp. 64-103; Simpson, R.J., Kunz, H., Agha, N., Exercise and the regulation of immune functions (2015) Prog Mol Biol Transl Sci, 135, pp. 355-380; Colbey, C., Cox, A.J., Pyne, D.B., Upper respiratory symptoms, gut health and mucosal immunity in athletes (2018) Sports Med, 48, pp. 65-77; Shaw, D.M., Merien, F., Braakhuis, A., T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise (2018) Cytokine, 104, pp. 136-142; Walsh, N.P., Recommendations to maintain immune health in athletes (2018) Eur J Sport Sci, 18, pp. 820-831; Svendsen, I.S., Taylor, I.M., Tønnessen, E., Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers (2016) Br J Sports Med, 50, pp. 809-815; The Most Dreaded Opponent at the Olympics: The Common Cold, 2018, , https://www.nytimes.com/2018/02/11/sports/olympics/commoncold-athletes.html, The New York Times; Heikkinen, T., Järvinen, A., The common cold (2003) Lancet, 361, pp. 51-59; Mäkelä, M.J., Puhakka, T., Ruuskanen, O., Viruses and bacteria in the etiology of the common cold (1998) J Clin Microbiol, 36, pp. 539-542; Van Beek, J., Veenhoven, R.H., Bruin, J.P., Influenza-like illness incidence is not reduced by influenza vaccination in a cohort of older adults, despite effectively reducing laboratory-confirmed influenza virus infections (2017) J Infect Dis, 216, pp. 415-424; Byington, C.L., Ampofo, K., Stockmann, C., Community surveillance of respiratory viruses among families in the Utah better identification of Germs-Longitudinal viral Epidemiology (BIG-LoVE) study (2015) Clin Infect Dis, 61, pp. 1217-1224; Ma, X., Conrad, T., Alchikh, M., Can we distinguish respiratory viral infections based on clinical features A prospective pediatric cohort compared to systematic literature review (2018) Rev Med Virol, 28, p. e1997; Lau, M.S.Y., Cowling, B.J., Cook, A.R., Inferring influenza dynamics and control in households (2015) Proc Natl Acad Sci U S A, 112, pp. 9094-9099; Paules, C., Subbarao, K., Influenza (2017) Lancet, 390, pp. 697-708; Brendish, N.J., Malachira, A.K., Armstrong, L., Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): A pragmatic, open-label, randomised controlled trial (2017) Lancet Respir Med, 5, pp. 401-411; Cohen, D.M., Kline, J., May, L.S., Accurate PCR detection of influenza A/B and respiratory syncytial viruses by use of Cepheid Xpert Flu+RSV Xpress assay in point-of-care settings: Comparison to Prodesse ProFlu (2018) J Clin Microbiol, 56, pp. e01237-e01317; Puhakka, T., Mäkelä, M.J., Malmström, K., The common cold: Effects of intranasal fluticasone propionate treatment (1998) J Allergy Clin Immunol, 101, pp. 726-731; Jokela, P., Vuorinen, T., Waris, M., Performance of the Alere i influenza A&B assay and mariPOC test for the rapid detection of influenza A and B viruses (2015) J Clin Virol, 70, pp. 72-76; Osterback, R., Tevaluoto, T., Ylinen, T., Simultaneous detection and differentiation of human rhino-and enteroviruses in clinical specimens by real-time PCR with locked nucleic acid probes (2013) J Clin Microbiol, 51, pp. 3960-3967; Engebretsen, L., Steffen, K., Alonso, J.M., Sports injuries and illnesses during the winter Olympic Games 2010 (2010) Br J Sports Med, 44, pp. 772-780; Soligard, T., Steffen, K., Palmer-Green, D., Sports injuries and illnesses in the Sochi 2014 Olympic winter games (2015) Br J Sports Med, 49, pp. 441-447; Ip, D.K.M., Lau, L.L.H., Leung, N.H.L., Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the community (2017) Clin Infect Dis, 64, pp. 736-742; Svendsen, I.S., Gleeson, M., Haugen, T.A., Effect of an intense period of competition on race performance and self-reported illness in elite cross-country skiers (2015) Scand J Med Sci Sports, 25, pp. 846-853; Lee, N., Hui, D.S.C., Zuo, Z., A prospective intervention study on higher-dose oseltamivir treatment in adults hospitalized with influenza A and B infections (2013) Clin Infect Dis, 57, pp. 1511-1519; Lee, N., Chan, M.C.W., Lui, G.C.Y., High viral load and respiratory failure in adults hospitalized for respiratory syncytial virus infections (2015) J Infect Dis, 212, pp. 1237-1240; Ng, K.T., Oong, X.Y., Lim, S.H., Viral load and sequence analysis reveal the symptom severity, diversity, and transmission clusters of rhinovirus infections (2018) Clin Infect Dis, 67, pp. 261-268; Davis, B.M., Foxman, B., Monto, A.S., Human coronaviruses and other respiratory infections in young adults on a university campus: Prevalence, symptoms, and shedding (2018) Influenza Other Respir Viruses, 12, pp. 582-590; Birger, R., Morita, H., Comito, D., Asymptomatic shedding of respiratory virus among an ambulatory population across seasons (2018) MSphere, 3, pp. E00249-E00318; Sundell, N., Andersson, L.-M., Brittain-Long, R., PCR detection of respiratory pathogens in asymptomatic and symptomatic adults (2019) J Clin Microbiol, 57, pp. e00716-e00718; Spence, L., Brown, W.J., Pyne, D.B., Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes (2007) Med Sci Sports Exerc, 39, pp. 577-586; Cox, A.J., Gleeson, M., Pyne, D.B., Clinical and laboratory evaluation of upper respiratory symptoms in elite athletes (2008) Clin J Sport Med, 18, pp. 438-445; Zhang, Y., Sakthivel, S.K., Bramley, A., Serology enhances molecular diagnosis of respiratory virus infections other than influenza in children and adults hospitalized with community-acquired pneumonia (2017) J Clin Microbiol, 55, pp. 79-89; Leitmeyer, K., Adlhoch, C., Review article: Influenza transmission on aircraft: A systematic literature review (2016) Epidemiology, 27, pp. 743-751; Lessler, J., Reich, N.G., Brookmeyer, R., Incubation periods of acute respiratory viral infections: A systematic review (2009) Lancet Infect Dis, 9, pp. 291-300; Kulkarni, H., Smith, C.M., Lee, D.D.H., Evidence of respiratory syncytial virus spread by aerosol (2016) Time to Revisit Infection Control Strategies. Am J Respir Crit Care Med, 194, pp. 308-316; Yan, J., Grantham, M., Pantelic, J., Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a College Community (2018) Proc Natl Acad Sci U S A, 115, pp. 1081-1086; Bonny, T.S., Yezli, S., Lednicky, J.A., Isolation and identification of human coronavirus 229E from frequently touched environmental surfaces of a university classroom that is cleaned daily (2018) Am J Infect Control, 46, pp. 105-107; Sassi, H.P., Reynolds, K.A., Pepper, I.L., Evaluation of hospital-grade disinfectants on viral deposition on surfaces after toilet flushing (2018) Am J Infect Control, 46, pp. 507-511; Kutter, J.S., Spronken, M.I., Fraaij, P.L., Transmission routes of respiratory viruses among humans (2018) Curr Opin Virol, 28, pp. 142-151","Valtonen, M.; Research Center for Olympic SportsFinland; email: maarit.valtonen@kihu.fi",,"BMJ Publishing Group",03063674,,BJSMD,"31142472","English","Br. J. Sports Med.",Article,"Final",Open Access,Scopus,2-s2.0-85066469720 "Dinan A.M., Keep S., Bickerton E., Britton P., Firth A.E., Brierley I.","55963425900;54880051000;55841113600;57203302770;8700328700;7004639098;","Comparative analysis of gene expression in virulent and attenuated strains of infectious bronchitis virus at subcodon resolution",2019,"Journal of Virology","93","18", e00714-19,"","",,,"10.1128/JVI.00714-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071712315&doi=10.1128%2fJVI.00714-19&partnerID=40&md5=433b9c94bb50e141c6ed75230c51b683","Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom; Pirbright Institute, Woking, Surrey, United Kingdom","Dinan, A.M., Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom; Keep, S., Pirbright Institute, Woking, Surrey, United Kingdom; Bickerton, E., Pirbright Institute, Woking, Surrey, United Kingdom; Britton, P., Pirbright Institute, Woking, Surrey, United Kingdom; Firth, A.E., Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom; Brierley, I., Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom","Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome (~27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection. IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection. © 2019 Dinan et al.","Avian coronavirus; Differential gene expression; Ribosome profiling; RNA virus; RNASeq; Translation","genomic RNA; messenger RNA; virus RNA; transcriptome; animal cell; Article; avian infectious bronchitis; Avian infectious bronchitis virus; CK cell line; comparative study; controlled study; gene expression; gene expression regulation; host cell; immune response; nonhuman; open reading frame; priority journal; ribosomal frameshifting; RNA fingerprinting; RNA sequence; RNA synthesis; RNA transcription; transcription regulation; upregulation; virus attenuation; virus cell interaction; virus gene; virus nucleocapsid; virus strain; virus transcription; virus virulence; codon; DNA flanking region; kidney cell; ribosome; RNA translation; RNA virus infection; strain difference; virus genome","Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathol, 34, pp. 439-448. , https://doi.org/10.1080/03079450500367682; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet Res, 38, pp. 281-297. , https://doi.org/10.1051/vetres:2006055; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37. , https://doi.org/10.1016/j.virusres.2006.01.017; Brierley, I., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., Brown, T.D., Inglis, S.C., An efficient ribosomal frameshifting signal in the polymerase-encoding region of the coronavirus IBV (1987) EMBO J, 6, pp. 3779-3785. , https://doi.org/10.1002/j.1460-2075.1987.tb02713.x; Brierley, I., Digard, P., Inglis, S.C., Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot (1989) Cell, 57, pp. 537-547. , https://doi.org/10.1016/0092-8674(89)90124-4; Liu, D.X., Xu, H.Y., Brown, T.D., Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: Identification of a 10-kilodalton polypeptide and determination of its cleavage sites (1997) J Virol, 71, pp. 1814-1820; Brockway, S.M., Clay, C.T., Lu, X.T., Denison, M.R., Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase (2003) J Virol, 77, pp. 10515-10527. , https://doi.org/10.1128/JVI.77.19.10515-10527.2003; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J Virol, 81, pp. 20-29. , https://doi.org/10.1128/JVI.01358-06; Brown, T.D., Boursnell, M.E., Binns, M.M., Tomley, F.M., Cloning and sequencing of 5’ terminal sequences from avian infectious bronchitis virus genomic RNA (1986) J Gen Virol, 67, pp. 221-228. , https://doi.org/10.1099/0022-1317-67-2-221; Sawicki, S.G., Sawicki, D.L., Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands (1995) Adv Exp Med Biol, 380, pp. 499-506. , https://doi.org/10.1007/978-1-4615-1899-0_79; Sawicki, S.G., Sawicki, D.L., A new model for coronavirus transcription (1998) Adv Exp Med Biol, 440, pp. 215-219; Pasternak, A.O., van den Born, E., Spaan, W.J., Snijder, E.J., Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis (2001) EMBO J, 20, pp. 7220-7228. , https://doi.org/10.1093/emboj/20.24.7220; Zúñiga, S., Sola, I., Alonso, S., Enjuanes, L., Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis (2004) J Virol, 78, pp. 980-994. , https://doi.org/10.1128/jvi.78.2.980-994.2004; Sola, I., Moreno, J.L., Zúñiga, S., Alonso, S., Enjuanes, L., Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis (2005) J Virol, 79, pp. 2506-2516. , https://doi.org/10.1128/JVI.79.4.2506-2516.2005; Van Roekel, H., Clarke, M.K., Bullis, K.L., Olesiuk, O.M., Sperling, F.G., Infectious bronchitis (1951) Am J Vet Res, 12, pp. 140-146; Beaudette, F.R., Hudson, C.R., Cultivation of the virus of infectious bronchitis (1937) J Am Vet Med Assoc, 90, pp. 51-60; Cunningham, C.H., Spring, M.P., Nazerian, K., Replication of avian infectious bronchitis virus in african green monkey kidney cell line VERO (1972) J Gen Virol, 16, pp. 423-427. , https://doi.org/10.1099/0022-1317-16-3-423; Otsuki, K., Noro, K., Yamamoto, H., Tsubokura, M., Studies on avian infectious bronchitis virus (IBV). II. Propagation of IBV in several cultured cells (1979) Arch Virol, 60, pp. 115-122. , https://doi.org/10.1007/BF01348027; Alonso-Caplen, F.V., Matsuoka, Y., Wilcox, G.E., Compans, R.W., Replication and morphogenesis of avian coronavirus in vero cells and their inhibition by monensin (1984) Virus Res, 1, pp. 153-167. , https://doi.org/10.1016/0168-1702(84)90070-4; Casais, R., Dove, B., Cavanagh, D., Britton, P., Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism (2003) J Virol, 77, pp. 9084-9089. , https://doi.org/10.1128/JVI.77.16.9084-9089.2003; Bickerton, E., Maier, H.J., Stevenson-Leggett, P., Armesto, M., Britton, P., The s2 subunit of infectious bronchitis virus beaudette is a determinant of cellular tropism (2018) J Virol, 92, pp. e01044-e01118. , https://doi.org/10.1128/JVI.01044-18; Hodgson, T., Casais, R., Dove, B., Britton, P., Cavanagh, D., Recombinant infectious bronchitis coronavirus beaudette with the spike protein gene of the pathogenic m41 strain remains attenuated but induces protective immunity (2004) J Virol, 78, pp. 13804-13811. , https://doi.org/10.1128/JVI.78.24.13804-13811.2004; Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., Weissman, J.S., Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling (2009) Science, 324, pp. 218-223. , https://doi.org/10.1126/science.1168978; Stern-Ginossar, N., Decoding viral infection by ribosome profiling (2015) J Virol, 89, pp. 6164-6166. , https://doi.org/10.1128/JVI.02528-14; Irigoyen, N., Firth, A.E., Jones, J.D., Chung, B.Y., Siddell, S.G., Brierley, I., High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling (2016) PLoS Pathog, 12. , https://doi.org/10.1371/journal.ppat.1005473; Irigoyen, N., Dinan, A.M., Brierley, I., Firth, A.E., Ribosome profiling of the retrovirus murine leukemia virus (2018) Retrovirology, 15, p. 10. , https://doi.org/10.1186/s12977-018-0394-5; Stewart, H., Brown, K., Dinan, A.M., Irigoyen, N., Snijder, E.J., Firth, A.E., Transcriptional and translational landscape of equine torovirus (2018) J Virol, 92, pp. e00589-e00618. , https://doi.org/10.1128/JVI.00589-18; Dinan, A.M., Keep, S., Bickerton, E., Britton, P., Firth, A.E., Brierley, I., Comparative analysis of gene expression in virulent and attenuated strains of infectious bronchitis virus at sub-codon resolution (2019) bioRxiv, , https://doi.org/10.1101/612614; Wolin, S.L., Walter, P., Ribosome pausing and stacking during translation of a eukaryotic mRNA (1988) EMBO J, 7, pp. 3559-3569. , https://doi.org/10.1002/j.1460-2075.1988.tb03233.x; Jukes, T.H., On the prevalence of certain codons (“RNY”) in genes for proteins (1996) J Mol Evol, 42, pp. 377-381. , https://doi.org/10.1007/BF02498631; Fuchs, R.T., Sun, Z., Zhuang, F., Robb, G.B., Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure (2015) PLoS One, 10. , https://doi.org/10.1371/journal.pone.0126049; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J Virol, 87, pp. 5182-5192. , https://doi.org/10.1128/JVI.00100-13; Stirrups, K., Shaw, K., Evans, S., Dalton, K., Casais, R., Cavanagh, D., Britton, P., Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus (2000) J Gen Virol, 81, pp. 1687-1698. , https://doi.org/10.1099/0022-1317-81-7-1687; Bentley, K., Keep, S.M., Armesto, M., Britton, P., Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses (2013) J Virol, 87, pp. 2128-2136. , https://doi.org/10.1128/JVI.02967-12; Jonassen, C.M., Kofstad, T., Larsen, I.L., Løvland, A., Handeland, K., Follestad, A., Lillehaug, A., Molecular identification and characterization of novel coronaviruses infecting graylag geese (anser anser), feral pigeons (columbia livia) and mallards (anas platyrhynchos) (2005) J Gen Virol, 86, pp. 1597-1607. , https://doi.org/10.1099/vir.0.80927-0; Papineau, A., Berhane, Y., Wylie, T.N., Wylie, K.M., Sharpe, S., Lung, O., Genome organization of Canada goose coronavirus, a novel species identified in a mass die-off of Canada geese (2019) Sci Rep, 9, p. 5954. , https://doi.org/10.1038/s41598-019-42355-y; Gomaa, M.H., Barta, J.R., Ojkic, D., Yoo, D., Complete genomic sequence of Turkey coronavirus (2008) Virus Res, 135, pp. 237-246. , https://doi.org/10.1016/j.virusres.2008.03.020; Cao, J., Wu, C.C., Lin, T.L., Complete nucleotide sequence of polyprotein gene 1 and genome organization of Turkey coronavirus (2008) Virus Res, 136, pp. 43-49. , https://doi.org/10.1016/j.virusres.2008.04.015; Reddy, V.R., Theuns, S., Roukaerts, I.D., Zeller, M., Matthijnssens, J., Nauwynck, H.J., Genetic characterization of the belgian nephropathogenic infectious bronchitis virus (NIBV) reference strain b1648 (2015) Viruses, 7, pp. 4488-4506. , https://doi.org/10.3390/v7082827; Ingolia, N.T., Lareau, L.F., Weissman, J.S., Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes (2011) Cell, 147, pp. 789-802. , https://doi.org/10.1016/j.cell.2011.10.002; Oostra, M., Te Lintelo, E.G., Deijs, M., Verheije, M.H., Rottier, P.J., de Haan, C.A., Localization and membrane topology of coronavirus nonstructural protein 4: Involvement of the early secretory pathway in replication (2007) J Virol, 81, pp. 12323-12336. , https://doi.org/10.1128/JVI.01506-07; Doyle, N., Neuman, B.W., Simpson, J., Hawes, P.C., Mantell, J., Verkade, P., Alrashedi, H., Maier, H.J., Infectious bronchitis virus nonstructural protein 4 alone induces membrane pairing (2018) Viruses, 10, p. E477. , https://doi.org/10.3390/v10090477; Boursnell, M.E., Brown, T.D., Foulds, I.J., Green, P.F., Tomley, F.M., Binns, M.M., Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus (1987) J Gen Virol, 68, pp. 57-77. , https://doi.org/10.1099/0022-1317-68-1-57; Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., von Mering, C., The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible (2017) Nucleic Acids Res, 45, pp. D362-D368. , https://doi.org/10.1093/nar/gkw937; An, H., Cai, Z., Yang, Y., Wang, Z., Liu, D.X., Fang, S., Identification and formation mechanism of a novel noncoding RNA produced by avian infectious bronchitis virus (2019) Virology, 528, pp. 176-180. , https://doi.org/10.1016/j.virol.2018.12.019; Atkins, J.F., Loughran, G., Bhatt, P.R., Firth, A.E., Baranov, P.V., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use (2016) Nucleic Acids Res, 44, pp. 7007-7078. , https://doi.org/10.1093/nar/gkw530; Brierley, I., Pennell, S., Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting (2001) Cold Spring Harbor Symp Quant Biol, 66, pp. 233-248. , https://doi.org/10.1101/sqb.2001.66.233; Firth, A.E., Brierley, I., Non-canonical translation in RNA viruses (2012) J Gen Virol, 93, pp. 1385-1409. , https://doi.org/10.1099/vir.0.042499-0; Gerashchenko, M.V., Gladyshev, V.N., Translation inhibitors cause abnormalities in ribosome profiling experiments (2014) Nucleic Acids Res, 42, p. e134. , https://doi.org/10.1093/nar/gku671; Duncan, C.D.S., Mata, J., Effects of cycloheximide on the interpretation of ribosome profiling experiments in schizosaccharomyces pombe (2017) Sci Rep, 7, p. 10331. , https://doi.org/10.1038/s41598-017-10650-1; Sabi, R., Tuller, T., A comparative genomics study on the effect of individual amino acids on ribosome stalling (2015) BMC Genomics, 16, p. S5. , https://doi.org/10.1186/1471-2164-16-S10-S5; Sabi, R., Tuller, T., Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in saccharomyces cerevisiae (2017) RNA, 23, pp. 983-994. , https://doi.org/10.1261/rna.059188.116; Ingolia, N.T., Ribosome profiling: New views of translation, from single codons to genome scale (2014) Nat Rev Genet, 15, pp. 205-213. , https://doi.org/10.1038/nrg3645; Chadani, Y., Niwa, T., Chiba, S., Taguchi, H., Ito, K., Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing (2016) Proc Natl Acad Sci U S A, 113, pp. E829-E838. , https://doi.org/10.1073/pnas.1520560113; Kumari, R., Michel, A.M., Baranov, P.V., Pausepred and RFEET: Webtools for inferring ribosome pauses and visualizing footprint density from ribosome profiling data (2018) RNA, 24, pp. 1297-1304. , https://doi.org/10.1261/rna.065235.117; Cong, F., Liu, X., Han, Z., Shao, Y., Kong, X., Liu, S., Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection (2013) BMC Genomics, 14, p. 743. , https://doi.org/10.1186/1471-2164-14-743; Chhabra, R., Ball, C., Chantrey, J., Ganapathy, K., Differential innate immune responses induced by classical and variant infectious bronchitis viruses in specific pathogen free chicks (2018) Dev Comp Immunol, 87, pp. 16-23. , https://doi.org/10.1016/j.dci.2018.04.026; Zhang, J., Kaiser, M.G., Deist, M.S., Gallardo, R.A., Bunn, D.A., Kelly, T.R., Dekkers, J.C.M., Lamont, S.J., Transcriptome analysis in spleen reveals differential regulation of response to newcastle disease virus in two chicken lines (2018) Sci Rep, 8, p. 1278. , https://doi.org/10.1038/s41598-018-19754-8; Tagliabracci, V.S., Wiley, S.E., Guo, X., Kinch, L.N., Durrant, E., Wen, J., Xiao, J., Dixon, J.E., A single kinase generates the majority of the secreted phosphoproteome (2015) Cell, 161, pp. 1619-1632. , https://doi.org/10.1016/j.cell.2015.05.028; Lin, S.Y., Chen, H.W., Infectious bronchitis virus variants: Molecular analysis and pathogenicity investigation (2017) Int J Mol Sci, 18, p. E2030. , https://doi.org/10.3390/ijms18102030; Wickramasinghe, I.N., de Vries, R.P., Gröne, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J Virol, 85, pp. 8903-8912. , https://doi.org/10.1128/JVI.05112-11; Armesto, M., Cavanagh, D., Britton, P., The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity (2009) PLoS One, 4. , https://doi.org/10.1371/journal.pone.0007384; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J Virol, 75, pp. 12359-12369. , https://doi.org/10.1128/JVI.75.24.12359-12369.2001; Kottier, S.A., Cavanagh, D., Britton, P., Experimental evidence of recombination in coronavirus infectious bronchitis virus (1995) Virology, 213, pp. 569-580. , https://doi.org/10.1006/viro.1995.0029; Hennion, R., Hill, G., Coronaviruses (2015) Methods in Molecular Biology, 1282, pp. 57-62. , Maier HJ, Bickerton E, Britton ed, Springer, New York, NY; Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., Weissman, J.S., The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments (2012) Nat Protoc, 7, pp. 1534-1550. , https://doi.org/10.1038/nprot.2012.086; Guo, H., Ingolia, N.T., Weissman, J.S., Bartel, D.P., Mammalian microRNAs predominantly act to decrease target mRNA levels (2010) Nature, 466, pp. 835-840. , https://doi.org/10.1038/nature09267; Chung, B.Y., Hardcastle, T.J., Jones, J.D., Irigoyen, N., Firth, A.E., Baulcombe, D.C., Brierley, I., The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for ribo-seq data analysis (2015) RNA, 21, pp. 1731-1745. , https://doi.org/10.1261/rna.052548.115; Aird, D., Ross, M.G., Chen, W.S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D.B., Gnirke, A., Analyzing and minimizing PCR amplification bias in illumina sequencing libraries (2011) Genome Biol, 12, p. R18. , https://doi.org/10.1186/gb-2011-12-2-r18; Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol, 10, p. R25. , https://doi.org/10.1186/gb-2009-10-3-r25; Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Gingeras, T.R., STAR: Ultrafast universal RNA-seq aligner (2013) Bioinformatics, 29, pp. 15-21. , https://doi.org/10.1093/bioinformatics/bts635; Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M.R., Armean, I.M., Bennett, R., Vullo, A., Ensembl 2019 (2019) Nucleic Acids Res, 47, pp. D745-D751. , https://doi.org/10.1093/nar/gky1113; Anders, S., Pyl, P.T., Huber, W., HTSeq—a python framework to work with high-throughput sequencing data (2015) Bioinformatics, 31, pp. 166-169. , https://doi.org/10.1093/bioinformatics/btu638; Alexa, A., Rahnenfuhrer, J., (2018) topGO: Enrichment Analysis for Gene Ontology, , R package version 2.34.0. R Foundation for Statistical Computing, Vienna, Austria","Brierley, I.; Division of Virology, Department of Pathology, University of CambridgeUnited Kingdom; email: ib103@cam.ac.uk",,"American Society for Microbiology",0022538X,,JOVIA,"31243124","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85071712315 "Yates M.K., Chatterjee P., Flint M., Arefeayne Y., Makuc D., Plavec J., Spiropoulou C.F., Seley-Radtke K.L.","57194016925;57204716643;15024426400;57210894689;8957525800;7003379618;35467087700;12808128300;","Probing the effects of pyrimidine functional group switches on acyclic fleximer analogues for antiviral activity",2019,"Molecules","24","17", 3184,"","",,,"10.3390/molecules24173184","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071776398&doi=10.3390%2fmolecules24173184&partnerID=40&md5=4e791ca4d7c182b46f64400137c33cf2","Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, United States; Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States; Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia","Yates, M.K., Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, United States; Chatterjee, P., Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States; Flint, M., Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States; Arefeayne, Y., Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, United States; Makuc, D., Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia; Plavec, J., Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia; Spiropoulou, C.F., Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States; Seley-Radtke, K.L., Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, United States","Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogues have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogues is the development of antiviral resistance. In that regard, flexible nucleoside analogues known as “fleximers” have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein. © 2019 by the authors.","Filovirus; Flavivirus; Fleximers; Nucleoside; SAR","antivirus agent; dyes, reagents, indicators, markers and buffers; lipid; pyrimidine; pyrimidine derivative; chemistry; conformation; drug effect; Ebolavirus; human; proton nuclear magnetic resonance; structure activity relation; tumor cell line; Antiviral Agents; Cell Line, Tumor; Ebolavirus; Humans; Indicators and Reagents; Lipids; Molecular Conformation; Proton Magnetic Resonance Spectroscopy; Pyrimidines; Structure-Activity Relationship","Seley-Radtke, K.L., Yates, M.K., The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold (2018) Antiviral Res, 154, pp. 66-86; Yates, M.K., Seley-Radtke, K.L., The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold (2019) Antiviral Res, 162, pp. 5-21; Seley, K.L., Zhang, L., Hagos, A., Fleximers”. Design and synthesis of two novel split nucleosides (2001) Org. Lett., 3, pp. 3209-3210; Seley, K.L., Zhang, L., Hagos, A., Quirk, S., Fleximers”. Design and synthesis of a new class of novel shape-modified nucleosides1 (2002) J. Org. Chem., 67, pp. 3365-3373; Seley, K.L., Quirk, S., Salim, S., Zhang, L., Hagos, A., Unexpected inhibition of S-adenosyl-L-homocysteine hydrolase by a guanosine nucleoside (2003) Bioorg. Med. Chem. Lett., 13, pp. 1985-1988; Quirk, S., Seley, K.L., Identification of catalytic amino acids in the human GTP fucose pyrophosphorylase active site (2005) Biochemistry, 44, pp. 13172-13178; Seley, K.L., Salim, S., Zhang, L., O’Daniel, P.I., Molecular chameleons”. Design and synthesis of a second series of flexible nucleosides (2005) J. Org. Chem., 70, pp. 1612-1619; Quirk, S., Seley, K.L., Substrate discrimination by the human GTP fucose pyrophosphorylase (2005) Biochemistry, 44, pp. 10854-10863; Zhang, Z., Wauchope, O.R., Seley-Radtke, K.L., Mechanistic studies in the synthesis of a series of thieno-expanded xanthosine and guanosine nucleosides (2008) Tetrahedron, 64, pp. 10791-10797; O’Daniel, P.I., Jefferson, M., Wiest, O., Seley-Radtke, K.L., A computational study of expanded heterocyclic nucleosides in DNA (2008) J. Biomol. Struct. Dyn., 26, pp. 283-292; Wauchope, O.R., Tomney, M.J., Pepper, J.L., Korba, B.E., Seley-Radtke, K.L., Tricyclic 20-C-modified nucleosides as potential anti-HCV therapeutics (2010) Org. Lett., 12, pp. 4466-4469; Zimmermann, S.C., Sadler, J.M., Andrei, G., Snoeck, R., Balzarini, J., Seley-Radtke, K.L., Carbocyclic 50-nor “reverse” fleximers. Design, synthesis, and preliminary biological activity (2011) Med. Chem. Comm., 2, pp. 650-654; Wauchope, O.R., Johnson, C., Krishnamoorthy, P., Andrei, G., Snoeck, R., Balzarini, J., Seley-Radtke, K.L., Synthesis and biological evaluation of a series of thieno-expanded tricyclic purine 2’-deoxy nucleoside analogues (2012) Bioorg. Med. Chem., 20, pp. 3009-3015; Wauchope, O.R., Velasquez, M., Seley-Radtke, K., Synthetic routes to a series of proximal and distal 20-deoxy fleximers (2012) Synthesis (Stuttg), 44, pp. 3496-3504; Zimmermann, S.C., Sadler, J.M., O’Daniel, P.I., Kim, N.T., Seley-Radtke, K.L., Reverse” carbocyclic fleximers: Synthesis of a new class of adenosine deaminase inhibitors (2013) Nucleosides Nucleotides Nucleic Acids, 32, pp. 137-154; Zimmermann, S.C., O’Neill, E., Ebiloma, G.U., Wallace, L.J., De Koning, H.P., Seley-Radtke, K.L., Design and synthesis of a series of truncated neplanocin fleximers (2014) Molecules, 19, pp. 21200-21214; Peters, H.L., Jochmans, D., De Wilde, A.H., Posthuma, C.C., Snijder, E.J., Neyts, J., Seley-Radtke, K.L., Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity (2015) Bioorg. Med. Chem. Lett., 25, pp. 2923-2926; Chen, Z., Jochmans, D., Ku, T., Paeshuyse, J., Neyts, J., Seley-Radtke, K.L., Bicyclic and tricyclic ""expanded"" nucleobase analogues of sofosbuvir: New scaffolds for hepatitis C therapies (2015) ACS Infect. Dis., 1, pp. 357-366; Chen, Z., Ku, T.C., Seley-Radtke, K.L., Thiophene-expanded guanosine analogues of Gemcitabine (2015) Bioorg. Med. Chem. Lett., 25, pp. 4274-4276; Yates, M.K., Raje, M.R., Chatterjee, P., Spiropoulou, C.F., Bavari, S., Flint, M., Soloveva, V., Seley-Radtke, K.L., Flex-nucleoside analogues-Novel therapeutics against filoviruses (2017) Bioorg. Med. Chem. Lett., 27, pp. 2800-2802; Polak, M., Seley, K.L., Plavec, J., Conformational properties of shape modified nucleosides–fleximers (2004) J. Am. Chem. Soc., 126, pp. 8159-8166; Ku, T., Lopresti, N., Shirley, M., Mori, M., Marchant, J., Heng, X., Botta, M., Seley-Radtke, K.L., Synthesis of distal and proximal fleximer base analogues and evaluation in the nucleocapsid protein of HIV-1 (2019) Bioorg. Med. Chem., 27, pp. 2883-2892; Welch, S.R., Guerrero, L.W., Chakrabarti, A.K., McMullan, L.K., Flint, M., Bluemling, G.R., Painter, G.R., Albariño, C.G., Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems (2016) Antiviral Res, 136, pp. 9-18; Albariño, C.G., Wiggleton Guerrero, L., Lo, M.K., Nichol, S.T., Towner, J.S., Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein (2015) Virology, 484, pp. 259-264","Seley-Radtke, K.L.; Department of Chemistry and Biochemistry, University of Maryland, Baltimore CountyUnited States; email: kseley@umbc.edu",,"MDPI AG",14203049,,MOLEF,"31480658","English","Molecules",Article,"Final",Open Access,Scopus,2-s2.0-85071776398 "Zhang W., Jang S., Jonsson C.B., Allen L.J.S.","55744292100;7402219118;7102791844;7401631105;","Models of cytokine dynamics in the inflammatory response of viral zoonotic infectious diseases",2019,"Mathematical medicine and biology : a journal of the IMA","36","3",,"269","295",,,"10.1093/imammb/dqy009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072019518&doi=10.1093%2fimammb%2fdqy009&partnerID=40&md5=f846830661fad83e6270801e8a365dd1","Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, United States; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States","Zhang, W., Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, United States; Jang, S., Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, United States; Jonsson, C.B., Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States; Allen, L.J.S., Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, United States","Inflammatory responses to an infection from a zoonotic pathogen, such as avian influenza viruses, hantaviruses and some coronaviruses, are distinctly different in their natural reservoir versus human host. While not as well studied in the natural reservoirs, the pro-inflammatory response and viral replication appear controlled and show no obvious pathology. In contrast, infection in humans results in an initial high viral load marked by an aggressive pro-inflammatory response known as a cytokine storm. The key difference in the course of the infection between the reservoir and human host is the inflammatory response. In this investigation, we apply a simple two-component differential equation model for pro-inflammatory and anti-inflammatory responses and a detailed mathematical analysis to identify specific regions in parameter space for single stable endemic equilibrium, bistability or periodic solutions. The extensions of the deterministic model to two stochastic models account for variability in responses seen at the cell (local) or tissue (global) levels. Numerical solutions of the stochastic models exhibit outcomes that are typical of a chronic infection in the natural reservoir or a cytokine storm in human infection. In the chronic infection, occasional flare-ups between high and low responses occur when model parameters are in a region of bistability or periodic solutions. The cytokine storm with a vigorous pro-inflammatory response and less vigorous anti-inflammatory response occurs in the parameter region for a single stable endemic equilibrium with a strong pro-inflammatory response. The results of the model analyses and the simulations are interpreted in terms of the functional role of the cytokines and the inflammatory responses seen in infection of the natural reservoir or of the human host. © The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.","cytokine storm; deterministic model; stochastic model; viral zoonoses",,,,,"NLM (Medline)",14778602,,,"29961899","English","Math Med Biol",Article,"Final",,Scopus,2-s2.0-85072019518 "Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M., Sompallae R., McCray P.B., Jr., Meyerholz D.K., Perlman S.","35309748500;36061058900;57210471516;6602418655;6507096336;7202425293;25633172500;7007180790;6602303240;57204567845;","IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes",2019,"Journal of Clinical Investigation","129","9",,"3625","3639",,2,"10.1172/JCI126363","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070807480&doi=10.1172%2fJCI126363&partnerID=40&md5=e292dd7e178a2db6a622e57f043e8d2c","Department of Microbiology and Immunology, University of Iowa, BSB 3-712, Iowa City, IA 52242, United States; Department of Acute and Tertiary Care, Microbiology and Immunology, 701E Molecular Sciences Building, 858 Madison Avenue, Memphis, TN 38163, United States; Department of Microbiology and Immunology, University of Tennessee Health Sciences Center, Memphis, TN, United States; Department of Pediatrics, University of Iowa, Iowa City, IA, United States; University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, United States; Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany; Department of Pathology, University of Iowa, Iowa City, IA, United States; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States","Channappanavar, R., Department of Microbiology and Immunology, University of Iowa, BSB 3-712, Iowa City, IA 52242, United States, Department of Acute and Tertiary Care, Microbiology and Immunology, 701E Molecular Sciences Building, 858 Madison Avenue, Memphis, TN 38163, United States, Department of Microbiology and Immunology, University of Tennessee Health Sciences Center, Memphis, TN, United States; Fehr, A.R., Department of Microbiology and Immunology, University of Iowa, BSB 3-712, Iowa City, IA 52242, United States, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States; Zheng, J., Department of Microbiology and Immunology, University of Iowa, BSB 3-712, Iowa City, IA 52242, United States; Wohlford-Lenane, C., Department of Pediatrics, University of Iowa, Iowa City, IA, United States; Abrahante, J.E., University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, United States; Mack, M., Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany; Sompallae, R., Department of Pathology, University of Iowa, Iowa City, IA, United States; McCray, P.B., Jr., Department of Microbiology and Immunology, University of Iowa, BSB 3-712, Iowa City, IA 52242, United States, Department of Pediatrics, University of Iowa, Iowa City, IA, United States; Meyerholz, D.K., Department of Pathology, University of Iowa, Iowa City, IA, United States; Perlman, S., Department of Microbiology and Immunology, University of Iowa, BSB 3-712, Iowa City, IA 52242, United States, Department of Pediatrics, University of Iowa, Iowa City, IA, United States, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China","Type 1 IFNs (IFN-I) generally protect mammalian hosts from virus infections, but in some cases, IFN-I is pathogenic. Because IFN-I is protective, it is commonly used to treat virus infections for which no specific approved drug or vaccine is available. The Middle East respiratory syndrome-coronavirus (MERS-CoV) is such an infection, yet little is known about the role of IFN-I in this setting. Here, we show that IFN-I signaling is protective during MERS-CoV infection. Blocking IFN-I signaling resulted in delayed virus clearance, enhanced neutrophil infiltration, and impaired MERS-CoV-specific T cell responses. Notably, IFN-I administration within 1 day after infection (before virus titers peak) protected mice from lethal infection, despite a decrease in IFN-stimulated gene (ISG) and inflammatory cytokine gene expression. In contrast, delayed IFN-β treatment failed to effectively inhibit virus replication; increased infiltration and activation of monocytes, macrophages, and neutrophils in the lungs; and enhanced proinflammatory cytokine expression, resulting in fatal pneumonia in an otherwise sublethal infection. Together, these results suggest that the relative timing of the IFN-I response and maximal virus replication is key in determining outcomes, at least in infected mice. By extension, IFN-αβ or combination therapy may need to be used cautiously to treat viral infections in clinical settings. © 2019 American Society for Clinical Investigation. All rights reserved.",,"alpha beta interferon receptor; beta interferon; cytosol receptor; genomic RNA; interferon; interleukin 1beta; interleukin 6; pattern recognition receptor; prostaglandin E receptor; sirtuin 1; toll like receptor 7; airway epithelium cell; animal experiment; animal model; animal tissue; Article; bone marrow derived macrophage; cell activation; cell infiltration; clinical outcome; complement activation; controlled study; cytokine response; disease exacerbation; gene expression; gene expression profiling; hematopoietic cell; histology; Human adenovirus 5; innate immunity; LD50; lung; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; monocyte; mortality rate; mouse; neutrophil; neutrophil chemotaxis; nonhuman; pneumonia; priority journal; protein expression; respiratory virus; severe acute respiratory syndrome; T lymphocyte; viral clearance; virus load; virus replication","Bloom, D.E., Black, S., Rappuoli, R., Emerging infectious diseases: A proactive approach (2017) Proc Natl Acad Sci U S A, 114 (16), pp. 4055-4059; Assiri, A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Peiris, J.S., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; Su, S., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24 (6), pp. 490-502; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, World Health Organization web site. Updated September 21, 2018. Accessed June 14, 2019; Menachery, V.D., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat Med, 21 (12), pp. 1508-1513; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538; De Wit, E., Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques (2013) Proc Natl Acad Sci U S A, 110 (41), pp. 16598-16603; Li, K., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci U S A, 114 (15), pp. E3119-E3128; Cockrell, A.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226; Baseler, L.J., An acute immune response to Middle East respiratory syndrome coronavirus replication contributes to viral pathogenicity (2016) Am J Pathol, 186 (3), pp. 630-638; Van Den Brand, J.M., Haagmans, B.L., Van Riel, D., Osterhaus, A.D., Kuiken, T., The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models (2014) J Comp Pathol, 151 (1), pp. 83-112; Channappanavar, R., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19 (2), pp. 181-193; Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: A complex web of host defenses (2014) Annu Rev Immunol, 32, pp. 513-545; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon (2012) Curr Opin Virol, 2 (3), pp. 264-275; Omrani, A.S., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study (2014) Lancet Infect Dis, 14 (11), pp. 1090-1095; Kim, U.J., Won, E.J., Kee, S.J., Jung, S.I., Jang, H.C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome (2016) Antivir Ther (Lond), 21 (5), pp. 455-459; Loutfy, M.R., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: A preliminary study (2003) JAMA, 290 (24), pp. 3222-3228; Gao, L., A randomized controlled trial of low-dose recombinant human interferons alpha-2b nasal spray to prevent acute viral respiratory infections in military recruits (2010) Vaccine, 28 (28), pp. 4445-4451; Davidson, S., Crotta, S., McCabe, T.M., Wack, A., Pathogenic potential of interferon αβ in acute influenza infection (2014) Nat Commun, 5, p. 3864; Davidson, S., Maini, M.K., Wack, A., Disease-promoting effects of type I interferons in viral, bacterial, and coinfections (2015) J Interferon Cytokine Res, 35 (4), pp. 252-264; Wilson, E.B., Blockade of chronic type I interferon signaling to control persistent LCMV infection (2013) Science, 340 (6129), pp. 202-207; Teijaro, J.R., Persistent LCMV infection is controlled by blockade of type I interferon signaling (2013) Science, 340 (6129), pp. 207-211; Stockman, L.J., Bellamy, R., Garner, P., SARS: Systematic review of treatment effects (2006) PLoSMed, 3 (9); Shalhoub, S., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J Antimicrob Chemother, 70 (7), pp. 2129-2132; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) Int J Infect Dis, 20, pp. 42-46; Cervantes-Barragan, L., Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon (2007) Blood, 109 (3), pp. 1131-1137; Roth-Cross, J.K., Bender, S.J., Weiss, S.R., Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia (2008) J Virol, 82 (20), pp. 9829-9838; Zarember, K.A., Godowski, P.J., Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines (2002) J Immunol, 168 (2), pp. 554-561; Ioannidis, I., Ye, F., McNally, B., Willette, M., Flaño, E., Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells (2013) J Virol, 87 (6), pp. 3261-3270; Zielecki, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared with those of severe acute respiratory syndrome coronavirus (2013) J Virol, 87 (9), pp. 5300-5304; Peiris, J.S., Severe acute respiratory syndrome (SARS) (2003) J Clin Virol, 28 (3), pp. 245-247; Franks, T.J., Lung pathology of severe acute respiratory syndrome (SARS): A study of 8 autopsy cases from Singapore (2003) Hum Pathol, 34 (8), pp. 743-748; Ng, D.L., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186 (3), pp. 652-658; Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci U S A, 111 (13), pp. 4970-4975; Kaner, R.J., Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor (1999) Am J Respir Cell Mol Biol, 20 (3), pp. 361-370; Law, H.K., Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells (2005) Blood, 106 (7), pp. 2366-2374; Cheung, C.Y., Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: Possible relevance to pathogenesis (2005) J Virol, 79 (12), pp. 7819-7826; Gu, J., Multiple organ infection and the pathogenesis of SARS (2005) J Exp Med, 202 (3), pp. 415-424; Nicholls, J.M., Lung pathology of fatal severe acute respiratory syndrome (2003) Lancet, 361 (9371), pp. 1773-1778; Cervantes-Barragán, L., Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection (2009) J Immunol, 182 (2), pp. 1099-1106; Koestner, W., Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice (2018) PLoS Pathog, 14 (8); Monto, A.S., Albrecht, J.K., Schwartz, S.A., Demonstration of dose-response relationship in seasonal prophylaxis of respiratory infections with alpha-2b interferon (1988) Antimicrob Agents Chemother, 32 (1), pp. 47-50; Farr, B.M., Gwaltney, J.M., Adams, K.F., Hayden, F.G., Intranasal interferon-alpha 2 for prevention of natural rhinovirus colds (1984) Antimicrob Agents Chemother, 26 (1), pp. 31-34; Kim, E.S., Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection (2016) J Korean Med Sci, 31 (11), pp. 1717-1725; Min, C.K., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6, p. 25359; Kolumam, G.A., Thomas, S., Thompson, L.J., Sprent, J., Murali-Krishna, K., Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection (2005) J Exp Med, 202 (5), pp. 637-650; Curtsinger, J.M., Valenzuela, J.O., Agarwal, P., Lins, D., Mescher, M.F., Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation (2005) J Immunol, 174 (8), pp. 4465-4469; Zhao, J., Zhao, J., Legge, K., Perlman, S., Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice (2011) J Clin Invest, 121 (12), pp. 4921-4930; Zhao, J., Zhao, J., Perlman, S., T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice (2010) J Virol, 84 (18), pp. 9318-9325; Coleman, C.M., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91 (1), pp. e01825-e01916; Seo, S.U., Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice (2011) PLoS Pathog, 7 (2); Tynell, J., Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells (2016) J Gen Virol, 97 (2), pp. 344-355; Zhou, J., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: Implications for pathogenesis (2014) J Infect Dis, 209 (9), pp. 1331-1342; Chu, H., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J Infect Dis, 213 (6), pp. 904-914; Scheuplein, V.A., High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus (2015) J Virol, 89 (7), pp. 3859-3869; Bang, F.B., Warwick, A., Mouse macrophages as host cells for the mouse hepatitis virus and the genetics basis of their susceptibility (1960) Proc Natl Acad Sci U S A, 46 (8), pp. 1065-1075; Kantoch, M., Warwick, A., Bang, F.B., The cellular nature of genetic susceptibility to a virus (1963) J Exp Med, 117, pp. 781-798; Koyama, S., Differential role of TLR- And RLR-signaling in the immune responses to influenza A virus infection and vaccination (2007) J Immunol, 179 (7), pp. 4711-4720; Goritzka, M., Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes (2015) J Exp Med, 212 (5), pp. 699-714; Siu, K.L., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88 (9), pp. 4866-4876; Gralinski, L.E., Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis (2018) MBio, 9 (5), pp. e01753-e01818; Wang, Y., Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection (2012) Cell Host Microbe, 11 (6), pp. 631-642; Davidson, S., IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment (2016) EMBOMol Med, 8 (9), pp. 1099-1112; Falzarano, D., Treatment with interferonα2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317; Khalid, M., Al Rabiah, F., Khan, B., Al Mobeireek, A., Butt, T.S., Al Mutairy, E., Ribavirin and interferonα2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: A preliminary report of two cases (2015) Antivir Ther (Lond), 20 (1), pp. 87-91; Meyerholz, D.K., Beck, A.P., Principles and approaches for reproducible scoring of tissue stains in research (2018) Lab Invest, 98 (7), pp. 844-855; Mack, M., Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice (2001) J Immunol, 166 (7), pp. 4697-4704; Zhou, H., Zhao, J., Perlman, S., Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection (2010) MBio, 1 (4), pp. e00219-e00310; Lee, P.Y., Type I interferon modulates monocyte recruitment and maturation in chronic inflammation (2009) Am J Pathol, 175 (5), pp. 2023-2033; Zhao, J., Intranasal treatment with poly(I•C) protects aged mice from lethal respiratory virus infections (2012) J Virol, 86 (21), pp. 11416-11424","Channappanavar, R.; Department of Microbiology and Immunology, University of Iowa, BSB 3-712, United States; email: rchanna1@uthsc.edu",,"American Society for Clinical Investigation",00219738,,JCINA,"31355779","English","J. Clin. Invest.",Article,"Final",Open Access,Scopus,2-s2.0-85070807480 "Eymery M., Morfin F., Doleans-Jordheim A., Perceval M., Ohlmann C., Mainguy C., Reix P.","57210886810;6701392530;15756975000;16029653400;57194230997;56922010600;6602294991;","Viral respiratory tract infections in young children with cystic fibrosis: A prospective full-year seasonal study",2019,"Virology Journal","16","1", 111,"","",,,"10.1186/s12985-019-1208-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071746317&doi=10.1186%2fs12985-019-1208-7&partnerID=40&md5=c803a62846d540277558b92946946560","Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; Laboratory of Virology, Institut des Agents Infectieux, Groupement Hospitalier Nord, Lyon, F69317, France; Centre National de Référence des Virus Respiratoires France Sud, Hospices Civils de Lyon, Lyon, France; Faculté de Pharmacie, CIRI, Inserm U1111 CNRS UMR5308, Virpath, Univ Lyon, Université Lyon 1, Lyon, France; Equipe de Recherche, Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup, Villeurbanne, France; Laboratory of Bacteriology, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, F69317, France; UMR 5558 (EMET), CNRS, LBBE, Université de Lyon, Villeurbanne, France; Centre de Ressources et de Compétence Pour la Mucoviscidose, 59 boulevard Pinel, Bron Cedex, 69677, France","Eymery, M., Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France, Centre de Ressources et de Compétence Pour la Mucoviscidose, 59 boulevard Pinel, Bron Cedex, 69677, France; Morfin, F., Laboratory of Virology, Institut des Agents Infectieux, Groupement Hospitalier Nord, Lyon, F69317, France, Centre National de Référence des Virus Respiratoires France Sud, Hospices Civils de Lyon, Lyon, France, Faculté de Pharmacie, CIRI, Inserm U1111 CNRS UMR5308, Virpath, Univ Lyon, Université Lyon 1, Lyon, France; Doleans-Jordheim, A., Equipe de Recherche, Bactéries Pathogènes Opportunistes et Environnement, UMR CNRS 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup, Villeurbanne, France, Laboratory of Bacteriology, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, F69317, France; Perceval, M., Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; Ohlmann, C., Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; Mainguy, C., Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; Reix, P., Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France, UMR 5558 (EMET), CNRS, LBBE, Université de Lyon, Villeurbanne, France","Background: Viral respiratory tract infections are common during early childhood. How they impact cystic fibrosis lung disease history in young children is poorly known. The principal aim of our study was to determinate respiratory tract infections frequency in this cystic fibrosis young population. Secondary outcomes were nature of viral agents recovered and impact of such infections. Methods: We conducted a prospective cohort study of 25 children affected by cystic fibrosis and aged less than 2 years. Nasal samplings were taken systematically monthly or bimonthly with additional samples taken during respiratory tract infections episodes. Ten pathogens were tested by a combination of five duplex RT-PCRs or PCRs: influenza A and B, respiratory syncytial virus (RSV), metapneumovirus (MPV), rhinovirus/enterovirus (RV/EV)), coronavirus (HKU1, NL63, 229E and OC43), parainfluenza virus (1-4), adenovirus and bocavirus (Respiratory Multi-Well System MWS r-gene®, BioMérieux, Marcy l'Étoile, France). Cycle thresholds (CTs) were reported for all positive samples and considered positive for values below 40. Quantitative variables were compared using a nonparametric statistical test (Wilcoxon signed rank for paired comparisons). Pearson's correlation coefficient (r) was used to assess relationships between two variables. Statistical analyses were performed using SAS v9.4 (SAS Institute, Cary, NC, USA) or GraphPad Prism V6.00 (GraphPad Software, La Jolla, CA, USA). The significance level was set at 0.05. Results: The mean age at inclusion was 9.6 ± 6.7 months. The patients had 3.4 ± 1.7 respiratory tract infections episodes per child per year. Forty-four respiratory tract infections (69%) were associated with virus: rhinovirus and enterovirus (RV/EV) were implied in 61% of them and respiratory syncytial virus (RSV) in 14%. Only one patient required hospitalization for lower respiratory tract infections. 86% of the patients were treated by antibiotics for a mean of 13.8 ± 6.2 days. RSV infections (n = 6) were usually of mild severity. Conclusions: Respiratory tract infections in young children with cystic fibrosis were of mild severity, rarely requiring hospitalization. Unsurprisingly, RV/EV were the most frequent agents. RSV-related morbidity seems low in this population. This raises the question of the usefulness of RSV preventive medication in this young population. © 2019 The Author(s).","Children; Cystic fibrosis; Respiratory virus","complication; Coronavirus infection; cystic fibrosis; female; France; genetics; human; infant; isolation and purification; male; mixed infection; pathogenicity; picornavirus infection; prospective study; respiratory syncytial virus infection; respiratory tract infection; season; severity of illness index; virology; virus; Coinfection; Coronavirus Infections; Cystic Fibrosis; Female; France; Humans; Infant; Male; Picornaviridae Infections; Prospective Studies; Respiratory Syncytial Virus Infections; Respiratory Tract Infections; Seasons; Severity of Illness Index; Viruses","Asner, S., Waters, V., Solomon, M., Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis (2012) J Cyst Fibros, 11 (5), pp. 433-439. , 22579414; Burns, J.L., Emerson, J., Kuypers, J., Respiratory viruses in children with cystic fibrosis: Viral detection and clinical findings (2012) Influenza Other Respir Viruses, 6 (3), pp. 218-223. , 21955319; Cousin, M., Molinari, N., Foulongne, V., Rhinovirus-associated pulmonary exacerbations show a lack of FEV1 improvement in children with cystic fibrosis (2016) Influenza Other Respir Viruses, 10 (2), pp. 109-112. , 26493783 4746558; Dijkema, J.S., Van Ewijk, B.E., Wilbrink, B., Frequency and duration of rhinovirus infections in children with cystic fibrosis and healthy controls: A longitudinal cohort study (2016) Pediatr Infect Dis J, 35 (4), pp. 379-383. , 26658528; Kieninger, E., Singer, F., Tapparel, C., High rhinovirus burden in lower airways of children with cystic fibrosis (2013) Chest, 143 (3), pp. 782-790. , 23188200; Korten, I., Kieninger, E., Klenja, S., Respiratory viruses in healthy infants and infants with cystic fibrosis: A prospective cohort study (2017) Thorax; Miro-Canis, S., Capilla-Rubio, S., Marzo-Checa, L., Multiplex PCR reveals that viruses are more frequent than bacteria in children with cystic fibrosis (2017) J Clin Virol, 86, pp. 1-4. , 1:CAS:528:DC%2BC28XhvFKnsbjM 27886635; Muller, L., Mack, I., Tapparel, C., Human rhinovirus types and association with respiratory symptoms during the first year of life (2015) Pediatr Infect Dis J, 34 (8), pp. 907-909. , 26020408; Van Ewijk, B.E., Van Der Zalm, M.M., Wolfs, T.F., Prevalence and impact of respiratory viral infections in young children with cystic fibrosis: Prospective cohort study (2008) Pediatrics, 122 (6), pp. 1171-1176. , 19047230; Etherington, C., Naseer, R., Conway, S.P., The role of respiratory viruses in adult patients with cystic fibrosis receiving intravenous antibiotics for a pulmonary exacerbation (2014) J Cyst Fibros, 13 (1), pp. 49-55. , 1:STN:280:DC%2BC3sfksFKqtA%3D%3D 23891398; Flight, W.G., Bright-Thomas, R.J., Tilston, P., Incidence and clinical impact of respiratory viruses in adults with cystic fibrosis (2014) Thorax, 69 (3), pp. 247-253. , 24127019; Frickmann, H., Jungblut, S., Hirche, T.O., Spectrum of viral infections in patients with cystic fibrosis (2012) Eur J Microbiol Immunol (Bp), 2 (3), pp. 161-175. , 1:STN:280:DC%2BC2cflslKisg%3D%3D; Goffard, A., Lambert, V., Salleron, J., Virus and cystic fibrosis: Rhinoviruses are associated with exacerbations in adult patients (2014) J Clin Virol, 60 (2), pp. 147-153. , 1:CAS:528:DC%2BC2cXksFWrt7k%3D 24637203; Hoek, R.A., Paats, M.S., Pas, S.D., Incidence of viral respiratory pathogens causing exacerbations in adult cystic fibrosis patients (2013) Scand J Infect Dis, 45 (1), pp. 65-69. , 22992129; Wark, P.A., Tooze, M., Cheese, L., Whitehead, B., Viral infections trigger exacerbations of cystic fibrosis in adults and children (2012) Eur Respir J, 40 (2), pp. 510-512. , 22855475; Abman, S.H., Ogle, J.W., Butler-Simon, N., Role of respiratory syncytial virus in early hospitalizations for respiratory distress of young infants with cystic fibrosis (1988) J Pediatr, 113 (5), pp. 826-830. , 1:STN:280:DyaL1M%2Fjs1Gnug%3D%3D 3183835; Armstrong, D., Grimwood, K., Carlin, J.B., Severe viral respiratory infections in infants with cystic fibrosis (1998) Pediatr Pulmonol, 26 (6), pp. 371-379. , 1:STN:280:DyaK1M7gtlartA%3D%3D 9888211; Collinson, J., Nicholson, K.G., Cancio, E., Effects of upper respiratory tract infections in patients with cystic fibrosis (1996) Thorax, 51 (11), pp. 1115-1122. , 1:STN:280:DyaK2s7hvVSisA%3D%3D 8958895 1090523; Ramsey, B.W., Gore, E.J., Smith, A.L., The effect of respiratory viral infections on patients with cystic fibrosis (1989) Am J Dis Child, 143 (6), pp. 662-668. , 1:STN:280:DyaL1M3ntVelug%3D%3D 2543212; Somayaji, R., Goss, C.H., Khan, U., Cystic fibrosis pulmonary exacerbations attributable to respiratory syncytial virus and influenza: A population-based study (2017) Clin Infect Dis, 64 (12), pp. 1760-1767. , 28329304 5848232; Metz, J., Eber, E., Resch, B., Respiratory syncytial virus infection-associated hospitalization rates in infants and children with cystic fibrosis (2017) Pediatr Infect Dis J, 36 (6), pp. 545-548. , 28005688; Buchs, C., Dalphin, M.L., Sanchez, S., Palivizumab prophylaxis in infants with cystic fibrosis does not delay first isolation of Pseudomonas aeruginosa or Staphylococcus aureus (2017) Eur J Pediatr, 176 (7), pp. 891-897. , 1:CAS:528:DC%2BC2sXnvVGjtbc%3D 28508992; Gangell, C.L., Shackleton, C., Poreddy, S., Feasibility of parental collected nasal swabs for virus detection in young children with cystic fibrosis (2014) J Cyst Fibros, 13 (6), pp. 661-666. , 1:STN:280:DC%2BC2crksVaitQ%3D%3D 24637444; Emerson, J., Cochrane, E., McNamara, S., Home self-collection of nasal swabs for diagnosis of acute respiratory virus infections in children with cystic fibrosis (2013) J Pediatric Infect Dis Soc, 2 (4), pp. 345-351. , 24363931 3869469; Kieninger, E., Vareille, M., Kopf, B.S., Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis (2012) Eur Respir J, 39 (2), pp. 297-304. , 1:CAS:528:DC%2BC38XlsV2lur8%3D 21719483; Esther, C.R., Jr., Lin, F.C., Kerr, A., Respiratory viruses are associated with common respiratory pathogens in cystic fibrosis (2014) Pediatr Pulmonol, 49 (9), pp. 926-931. , 24167159; Hiatt, P.W., Grace, S.C., Kozinetz, C.A., Effects of viral lower respiratory tract infection on lung function in infants with cystic fibrosis (1999) Pediatrics, 103 (3), pp. 619-626. , 1:STN:280:DyaK1M7mtVOhtg%3D%3D 10049966; Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection (2014) Pediatrics, 134 (2), pp. e620-e638. , American Academy of Pediatrics Committee on Infectious D, American Academy of Pediatrics Bronchiolitis Guidelines C; Flight, W.G., Bright-Thomas, R.J., Tilston, P., Chronic rhinovirus infection in an adult with cystic fibrosis (2013) J Clin Microbiol, 51 (11), pp. 3893-3896. , 23966488 3889793; Psoter, K.J., De Roos, A.J., Wakefield, J., Season is associated with Pseudomonas aeruginosa acquisition in young children with cystic fibrosis (2013) Clin Microbiol Infect, 19 (11), pp. E483-E489. , 1:STN:280:DC%2BC3sjltFGjtA%3D%3D 23795938; Psoter, K.J., De Roos, A.J., Wakefield, J., Seasonality of acquisition of respiratory bacterial pathogens in young children with cystic fibrosis (2017) BMC Infect Dis, 17 (1), p. 411. , 28599639 5466772","Eymery, M.; Service de Pneumologie Pédiatrique et CRCM Enfant, Hôpital Femme Mère Enfant, Hospices Civils de LyonFrance; email: mathilde.eymery@chu-lyon.fr",,"BioMed Central Ltd.",1743422X,,,"31481063","English","Virol. J.",Article,"Final",Open Access,Scopus,2-s2.0-85071746317 "Alsaadi E.A.J., Neuman B.W., Jones I.M.","57210942912;8263558000;34769538800;","A Fusion Peptide in the Spike Protein of MERS Coronavirus",2019,"Viruses","11","9",,"","",,1,"10.3390/v11090825","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071973133&doi=10.3390%2fv11090825&partnerID=40&md5=524bfff6e50d6accdf887b5e994c35c9","School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom; Biology Department, CASE, Texas A&M University, Texarkana, TX 75503, USA","Alsaadi, E.A.J., School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom; Neuman, B.W., Biology Department, CASE, Texas A&M University, Texarkana, TX 75503, USA; Jones, I.M., School of Biological Sciences, University of Reading, Reading, RG6 6AJ, United Kingdom","Coronaviruses represent current and emerging threats for many species, including humans. Middle East respiratory syndrome-related coronavirus (MERS-CoV) is responsible for sporadic infections in mostly Middle Eastern countries, with occasional transfer elsewhere. A key step in the MERS-CoV replication cycle is the fusion of the virus and host cell membranes mediated by the virus spike protein, S. The location of the fusion peptide within the MERS S protein has not been precisely mapped. We used isolated peptides and giant unilamellar vesicles (GUV) to demonstrate membrane binding for a peptide located near the N-terminus of the S2 domain. Key residues required for activity were mapped by amino acid replacement and their relevance in vitro tested by their introduction into recombinant MERS S protein expressed in mammalian cells. Mutations preventing membrane binding in vitro also abolished S-mediated syncytium formation consistent with the identified peptide acting as the fusion peptide for the S protein of MERS-CoV.","coronavirus; fusion assay; membrane; MERS; peptide; spike protein",,,,,"NLM (Medline)",19994915,,,"31491938","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85071973133 "Drews F.A., Mulvey D., Stratford K., Samore M.H., Mayer J.","6701748906;57208390797;57209235516;7004341520;55169106500;","Evaluation of a Redesigned Personal Protective Equipment Gown",2019,"Clinical Infectious Diseases","69",,,"S199","S205",,1,"10.1093/cid/ciz520","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072147943&doi=10.1093%2fcid%2fciz520&partnerID=40&md5=291cd2a0f3949c772b2464cfb32ca4e5","Department of Psychology, Department of Internal Medicine, University of Utah, 380S 1530E BEH, Salt Lake City, UT 84112, United States; Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States","Drews, F.A., Department of Psychology, Department of Internal Medicine, University of Utah, 380S 1530E BEH, Salt Lake City, UT 84112, United States, Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States; Mulvey, D., Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States; Stratford, K., Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States; Samore, M.H., Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States; Mayer, J., Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States","Background: In healthcare, the goal of personal protective equipment (PPE) is to protect healthcare personnel (HCP) and patients from body fluids and infectious organisms via contact, droplet, or airborne transmission. The critical importance of using PPE properly is highlighted by 2 potentially fatal viral infections, severe acute respiratory syndrome-associated coronavirus and Ebola virus, where HCP became infected while caring for patients due to errors in the use of PPE. However, PPE in dealing with less dangerous, but highly infectious organisms is important as well. This work proposes a framework to test and evaluate PPE with a focus on gown design. Methods: An observational study identified issues with potential for contamination related to gown use. After redesigning the existing gown, a high-fidelity patient simulator study with 40 HCP as participants evaluated the gown redesign using 2 commonly performed tasks. Variables of interest were nonadherence to procedural standards, use problems with the gown during task performance, and usability and cognitive task load ratings of the standard and redesigned gowns. Results: While no differences were found in terms of nonadherence and use problems between the current and the redesigned gown, differences in usability and task load ratings suggested that the redesigned gown is perceived more favorably by HCP. Conclusions: This work proposes a framework to guide the evaluation of PPE. The results suggest that the current design of the PPE gown can be improved in usability and user satisfaction. Although our data did not find an increase in adherence to protocol when using the redesigned gown, it is likely that higher usability and lower task load could result in higher adherence over longer periods of use. © 2019 The Author(s). Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.","evaluation; gown; PPE; usability","Article; controlled study; equipment design; human; observational study; priority journal; protocol compliance; satisfaction; task performance","Ebola Virus Disease Outbreak, , http://www.who.int/csr/disease/ebola/en/, World Health Organization Accessed 10 July 2018; Health care without avoidable infections The Critical Role of Infection Prevention and Control, , http://www.who.int/infection-prevention/en/, World Health Organization Accessed 20 August 2018; Svenson, O., The accident evolution and barrier function (AEB) model applied to incident analysis in the processing industries (1991) Risk Anal, 11, pp. 499-507; Cavazza, N., Serpe, A., Effects of safety climate on safety norm violations: Exploring the mediating role of attitudinal ambivalence toward personal protective equipment (2009) J Safety Res, 40, pp. 277-283; Zohar, D., Safety climate in industrial organizations: Theoretical and applied implications (1980) J Appl Psychol, 65, pp. 96-102; Beam, E.L., Gibbs, S.G., Boulter, K.C., Beckerdite, M.E., Smith, P.W., A method for evaluating health care workers' personal protective equipment technique (2011) Am J Infect Control, 39, pp. 415-420; Krein, S.L., Mayer, J., Harrod, M., Identification and characterization of failures in infectious agent transmission precaution practices in hospitals: A qualitative study (2018) JAMA Intern Med, 178, pp. 1051-1057; Singleton, K., Johnson, A.M., Utilizing human factors engineering in the design of a storage cart for personal protective equipment (2018) Am J Infect Cont, 46, p. S83; Mulvey, D., Mayer, J., Visnovsky, L., Samore, M., Drews, F., Frequent and unexpected deviations from personal protective equipment use guidelines increase contamination risks (2019) Am J Infect Control; Hart, S.G., Staveland, L.E., Development of NASA-TLX (task load index): Results of empirical and theoretical research (1988) Advances in Psychology, 52, pp. 139-183. , Hancock PA, Meshkati N, eds. North-Holland Elsevier; Bangor, A., Kortum, P.T., Miller, J.T., An empirical evaluation of the system usability scale (2008) Int J Hum Comput Interaction, 24, pp. 574-594; Mitchell, R., Roth, V., Gravel, D., Are health care workers protected? An observational study of selection and removal of personal protective equipment in Canadian acute care hospitals (2013) Am J Infect Control, 41, pp. 240-244. , Canadian Nosocomial Infection Surveillance Program; Casanova, L., Alfano-Sobsey, E., Rutala, W.A., Weber, D.J., Sobsey, M., Virus transfer from personal protective equipment to healthcare employees' skin and clothing (2008) Emerg Infect Dis, 14, pp. 1291-1293; Kang, J., O'Donnell, J.M., Colaianne, B., Bircher, N., Ren, D., Smith, K.J., Use of personal protective equipment among health care personnel: Results of clinical observations and simulations (2017) Am J Infect Control, 45, pp. 17-23; Devaraj, S., Kohli, R., Performance impacts of information technology: Is actual usage the missing link? (2003) Manag Sci, 49, pp. 273-289; Venkatesh, V., Agarwal, R., Turning visitors into customers: A usability-centric perspective on purchase behavior in electronic channels 2006 Manag Sci, 52 (3), pp. 367-382; Drews, F.A., Visnowky, L., Meyer, J., Human factors engineering contributions to infection prevention and control (2019) Hum Factors, 18; Holden, R.J., Carayon, P., Gurses, A.P., SEIPS 2.0: A human factors framework for studying and improving the work of healthcare professionals and patients (2013) Ergonomics, 56, pp. 1669-1686","Drews, F.A.; Department of Psychology, Department of Internal Medicine, University of Utah, 380S 1530E BEH, United States; email: drews@psych.utah.edu",,"Oxford University Press",10584838,,CIDIE,"31517973","English","Clin. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85072147943 "Banerjee A., Baid K., Mossman K.","56412355200;56491107900;35243393500;","Molecular Pathogenesis of Middle East Respiratory Syndrome (MERS) Coronavirus",2019,"Current Clinical Microbiology Reports","6","3",,"139","147",,,"10.1007/s40588-019-00122-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068816138&doi=10.1007%2fs40588-019-00122-7&partnerID=40&md5=1cdd464194553d89f28b6c38f86c4c4f","Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada","Banerjee, A., Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Baid, K., Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Mossman, K., Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada, Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada","Purpose of Review: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is listed in the World Health Organization’s blueprint of priority diseases that need immediate research. Camels are reservoirs of this virus, and the virus spills over into humans through direct contact with camels. Human-to-human transmission and travel-associated cases have been identified as well. Limited studies have characterized the molecular pathogenesis of MERS-CoV. Most studies have used ectopic expression of viral proteins to characterize MERS-CoV and its ability to modulate antiviral responses in human cells. Studies with live virus are limited, largely due to the requirement of high containment laboratories. In this review, we have summarized current studies on MERS-CoV molecular pathogenesis and have mentioned some recent strategies that are being developed to control MERS-CoV infection. Recent Findings: Multiple antiviral molecules with the potential to inhibit MERS-CoV infection by disrupting virus-receptor interactions are being developed and tested. Although human vaccine candidates are still being developed, a candidate camel vaccine is being tested for efficacy. Combination of supportive treatment with interferon and antivirals is also being explored. Summary: New antiviral molecules that inhibit MERS-CoV and host cell receptor interaction may become available in the future. Additional studies are required to identify and characterize the pathogenesis of MERS-CoV EMC/2012 and other circulating strains. An effective MERS-CoV vaccine, for humans and/or camels, along with an efficient combination antiviral therapy may help us prevent future MERS cases. © 2019, Springer Nature Switzerland AG.","Coronavirus; MERS; Pathogenesis; Therapeutics",,"Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc Soc Exp Biol Med, 121 (1), pp. 190-193; McIntosh, K., Dees, J.H., Becker, W.B., Kapikian, A.Z., Chanock, R.M., Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease (1967) Proc Natl Acad Sci U S A, 57 (4), pp. 933-940; (2004) Severe Acute Respiratory Syndrome, , https://www.cdc.gov/sars/about/fs-sars.html, Accessed February 20 2019; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310 (5748), pp. 676-679; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503 (7477), pp. 535-538. , (,):., https://doi.org/10.1038/nature12711; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84 (7), pp. 3134-3146; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102 (39), pp. 14040-14045; Sharif-Yakan, A., Kanj, S.S., Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives (2014) PLoS Pathog, 10 (12); Siu, K.L., Yeung, M.L., Kok, K.H., Yuen, K.S., Kew, C., Lui, P.Y., Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response (2014) J Virol, 88 (9), pp. 4866-4876. , (,):., https://doi.org/10.1128/JVI.03649-13; Niemeyer, D., Zillinger, T., Muth, D., Zielecki, F., Horvath, G., Suliman, T., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J Virol, 87 (22), pp. 12489-12495. , (,):., https://doi.org/10.1128/JVI.01845-13; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4 (12), pp. 951-961. , (,):., https://doi.org/10.1007/s13238-013-3096-8; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) Mbio, 5 (3), pp. e01146-14. , https://doi.org/10.1128/mBio.01146-14; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16 (3), pp. 328-337. , (,):., https://doi.org/10.1016/j.chom.2014.08.009; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19 (10), pp. 1697-1699. , (,):., https://doi.org/10.3201/eid1910.130946; Moreno, A., Lelli, D., de Sabato, L., Zaccaria, G., Boni, A., Sozzi, E., Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy (2017) Virol J, 14 (1), p. 239. , https://doi.org/10.1186/s12985-017-0907-1; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus (2018) J Virol, , https://doi.org/10.1128/JVI.00116-18, This study discovered that spike protein from bat coronaviruses in China can bind to DPP4. This study further confirmed the role of bats as evolutionary hosts of MERS-CoV; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus (2017) MBio, 8 (2). , (,)., https://doi.org/10.1128/mBio.00373-17; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19 (11), pp. 1819-1823. , https://doi.org/10.3201/eid1911.131172; Tao, Y., Shi, M., Chommanard, C., Queen, K., Zhang, J., Markotter, W., Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history (2017) J Virol, 91 (5). , (,)., https://doi.org/10.1128/JVI.01953-16; Farag, E., Sikkema, R.S., Vinks, T., Islam, M.M., Nour, M., Al-Romaihi, H., Drivers of MERS-CoV emergence in Qatar (2018) Viruses, 11 (1). , (,)., https://doi.org/10.3390/v11010022; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20 (8), pp. 1370-1374; Chastel, C., Middle East respiratory syndrome (MERS): bats or dromedary, which of them is responsible? (2014) Bull Soc Pathol Exot, 107 (2), pp. 69-73; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Hajjar, S.A., Memish, Z.A., McIntosh, K., Middle East respiratory syndrome coronavirus (MERS-CoV): a perpetual challenge (2013) Ann Saudi Med, 33 (5), pp. 427-436; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J Virol, 81 (1), pp. 20-29; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature., 495 (7440), pp. 251-254; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Sola, I., Enjuanes, L., Adaptive evolution of MERS-CoV to species variation in DPP4 (2018) Cell Rep, 24 (7), pp. 1730-1737. , This study identifies that the spike protein of MERS-CoV is capable of adapting to interact with DPP4 from different species to initiate cellular entry and replication; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14 (8), pp. 523-534; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426 (6965), pp. 450-454. , (,):., https://doi.org/10.1038/nature02145; Perlman, S., Netland, J., Coronaviruses post-SARS: update on replication and pathogenesis (2009) Nat Rev Microbiol., 7 (6), pp. 439-450; Sawicki, S.G., Sawicki, D.L., Younker, D., Meyer, Y., Thiel, V., Stokes, H., Functional and genetic analysis of coronavirus replicase-transcriptase proteins (2005) PLoS Pathog, 1 (4). , (,):,., https://doi.org/10.1371/journal.ppat.0010039; Ng, D.L., Al Hosani, F., Keating, M.K., Gerber, S.I., Jones, T.L., Metcalfe, M.G., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186 (3), pp. 652-658; Walker, D.H., Value of autopsy emphasized in the case report of a single patient with Middle East respiratory syndrome (2016) Am J Pathol, 186 (3), pp. 507-510; Lau, S.K., Lau, C.C., Chan, K.H., Li, C.P., Chen, H., Jin, D.Y., Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: Implications for pathogenesis and treatment (2013) J Gen Virol, 94, pp. 2679-2690. , https://doi.org/10.1099/vir.0.055533-0, In this study, Lau et al. demonstrated for the first time that MERS-CoV induces a delayed inflammatory response (‘cytokine storm’), which may contribute to its pathogenesis. The authors also confirm that MERS-CoV can attenuate the antiviral interferon response; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinskiyount, L.E., Graham, R.L., Jr., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) Mbio, 8 (4). , https://doi.org/10.1128/mBio.00665-17, This study characterized the role of MERS-CoV accessory proteins. The authors identified the role of ORF5 and explored the option of using a ORF5 deletion MERS-CoV mutant as a live attenuated vaccine; Janeway, C.A., Jr., Medzhitov, R., Innate immune recognition (2002) Annu Rev Immunol, 20, pp. 197-216; Kawai, T., Akira, S., Innate immune recognition of viral infection (2006) Nat Immunol, 7 (2), pp. 131-137; Koyama, S., Ishii, K.J., Coban, C., Akira, S., Innate immune response to viral infection (2008) Cytokine., 43 (3), pp. 336-341; Kok, K.H., Lui, P.Y., Ng, M.H., Siu, K.L., Au, S.W., Jin, D.Y., The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response (2011) Cell Host Microbe, 9 (4), pp. 299-309; Panne, D., McWhirter, S.M., Maniatis, T., Harrison, S.C., Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch (2007) J Biol Chem, 282 (31), pp. 22816-22822. , (,):., https://doi.org/10.1074/jbc.M703019200; Lui, P.Y., Wong, L.Y., Fung, C.L., Siu, K.L., Yeung, M.L., Yuen, K.S., Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 (2016) Emerg Microbes Infect, 5. , This study identified the role of MERS-CoV M protein suppressing innate antiviral responses human cells. M protein interacts with cellular kinase TBK1 and inhibits the phosphorylation of a key transcription factor, IRF3; Canton, J., Fehr, A.R., Fernandez-Delgado, R., Gutierrez-Alvarez, F.J., Sanchez-Aparicio, M.T., Garcia-Sastre, A., MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection (2018) PLoS Pathog, 14 (1). , This study identified the role of MERS-CoV accessory protein 4b inhibiting NFκB-mediated innate immune response. ORF4b outcompetes NFκB for KPNA4 binding and translocation to the nucleus of the cell; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89 (21), pp. 10970-10981; Ko, J.H., Muller, M.A., Seok, H., Park, G.E., Lee, J.Y., Cho, S.Y., Serologic responses of 42 MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89 (2), pp. 106-111; Choi, J.Y., Oh, J.O., Ahn, J.Y., Choi, H., Kim, J.H., Seong, H., Absence of neutralizing activity in serum 1 year after successful treatment with antivirals and recovery from MERS in South Korea (2019) Clin Exp Vaccine Res, 8 (1), pp. 86-88. , https://doi.org/10.7774/cevr.2019.8.1.86; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2 (14). , (,)., https://doi.org/10.1126/sciimmunol.aan5393; Deng, X., Hackbart, M., Mettelman, R.C., O’Brien, A., Mielech, A.M., Yi, G., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci U S A, 114 (21), pp. E4251-E4460; Dorrington, K.J., Properties of the Fc receptor on macrophages (1976) Immunol Commun, 5 (4), pp. 263-280; Zhou, Y., Yang, Y., Huang, J., Jiang, S., Du, L., Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain (2019) Viruses, 11 (1). , (,)., https://doi.org/10.3390/v11010060; Liang, R., Wang, L., Zhang, N., Deng, X., Su, M., Su, Y., Development of small-molecule MERS-CoV inhibitors (2018) Viruses, 10 (12). , (,)., https://doi.org/10.3390/v10120721; Xia, S., Lan, Q., Pu, J., Wang, C., Liu, Z., Xu, W., Potent MERS-CoV fusion inhibitory peptides identified from HR2 domain in spike protein of bat coronavirus HKU4 (2019) Viruses, 11 (1). , (,)., https://doi.org/10.3390/v11010056; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8 (10); Chu, H., Chan, C.M., Zhang, X., Wang, Y., Yuan, S., Zhou, J., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J Biol Chem, 293 (30), pp. 11709-11726. , (,):., https://doi.org/10.1074/jbc.RA118.001897; Banerjee, A., Falzarano, D., Rapin, N., Lew, J., Misra, V., Interferon regulatory factor 3-mediated signaling limits middle-east respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat (2019) Viruses, 11 (2). , (,)., https://doi.org/10.3390/v11020152; Adney, D., Wang, L., van Doremalen, N., Shi, W., Zhang, Y., Kong, W.-P., Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas (2019) Viruses, 11 (3). , (,)., https://doi.org/10.3390/v11030212; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study (2014) Int J Infect Dis, 20, pp. 42-46; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-beta1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials., 19 (1), p. 81; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24 (6), pp. 490-502. , (,):., https://doi.org/10.1016/j.tim.2016.03.003; Tseng, C.T., Sbrana, E., Iwata-Yoshikawa, N., Newman, P.C., Garron, T., Atmar, R.L., Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus (2012) Plos One, 7 (4). , https://doi.org/10.1371/journal.pone.0035421; Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge (2011) J Virol, 85 (23), pp. 12201-12215. , (,):., https://doi.org/10.1128/JVI.06048-11","Mossman, K.; Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster UniversityCanada; email: mossk@mcmaster.ca",,"Springer",21965471,,,,"English","Curr. Clin. Microbiol. Reports",Review,"Final",Open Access,Scopus,2-s2.0-85068816138 "Li B., Zheng L., Li H., Ding Q., Wang Y., Wei Z.","57207250540;34772257400;57211040303;57207254145;50562587300;7402258727;","Porcine deltacoronavirus causes diarrhea in various ages of field-infected pigs in China",2019,"Bioscience Reports","39","9", BSR20190676,"","",,,"10.1042/BSR20190676","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072363843&doi=10.1042%2fBSR20190676&partnerID=40&md5=698aae4c907f655e3729906821662067","College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China","Li, B., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Zheng, L., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Li, H., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Ding, Q., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Wang, Y., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China; Wei, Z., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China, Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, China","Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes acute diarrhea in suckling piglets. In Henan province of China, three swine farms broke out diarrhea in different ages of pigs during June of 2017, March of 2018 and January of 2019, respectively. PCR method, Taqman real-time RT-PCR method, sequencing, histopathology and immunohistochemistry (IHC) were conducted with the collected samples, and the results showed that PDCoV was detected among the suckling piglets, commercial fattening pigs and sows with diarrhea. PDCoV-infected suckling piglets were characterized with thin and transparent intestinal walls from colon to caecum, spot hemorrhage at mesentery and intestinal bleeding. PDCoV RNA was detected in multiple organs and tissues by Taqman real-time RT-PCR, which had high copies in ileum, inguinal lymph node, rectum and spleen. PDCoV antigen was detected in the basal layer of jejunum and ileum by IHC. In this research, we found that PDCoV could infect various ages of farmed pigs with watery diarrhea and anorexia in different seasons in a year. © 2019 The Author(s).",,"eosin; hematoxylin; virus antigen; virus RNA; age; animal cell; animal experiment; animal tissue; anorexia; Article; bleeding; cecum; China; colon; controlled study; Coronavirinae; Coronavirus infection; deltacoronavirus infection; diarrhea; epidemic; female; gene dosage; genomics; histopathology; ileum; immunohistochemistry; inguinal lymph node; intestinal bleeding; intestine wall; jejunum; mesentery hemorrhage; nonhuman; pig; Porcine deltacoronavirus; real time reverse transcription polymerase chain reaction; rectum; RNA analysis; seasonal variation; sequence analysis; sow (swine); spleen; suckling animal; virus identification","Tohru, S., Tomoyuki, S., Naoto, I., Genetic characterization and pathogenicity of Japanese porcine deltacoronavirus (2018) Infect. Genet. Evol., 61, pp. 176-182. , https://doi.org/10.1016/j.meegid.2018.03.030; Woo, P.C., Lau, S.K., Lam, C.S., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008. , https://doi.org/10.1128/JVI.06540-11; Marthaler, D., Raymond, L., Jiang, Y., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350. , https://doi.org/10.3201/eid2008.140526; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230. , https://doi.org/10.3201/eid2007.140296; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc, 2, pp. e01191-e01214. , https://doi.org/10.1128/genomeA.01191-14; Ajayi, T., Dara, R., Misener, M., Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada (2018) Transbound. Emerg. Dis., 65, pp. 1197-1207; Liu, B.J., Zuo, Y.Z., Gu, W.Y., Isolation and phylogenetic analysis of porcine deltacoronavirus from pigs with diarrhoea in Hebei province, China (2018) Transbound Emerg. Dis., 65, pp. 874-882. , https://doi.org/10.1111/tbed.12821; Van, P.L., Sok, S., Byung, H.A., A novel strain of porcine deltacoronavirus in Vietnam (2018) Arch. Virol., 163, pp. 203-207. , https://doi.org/10.1007/s00705-017-3594-8; Woo, P.C., Huang, Y., Lau, S.K., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820. , https://doi.org/10.3390/v2081803; Jung, K., Hu, H., Eyerly, B., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654. , https://doi.org/10.3201/eid2104.141859; Ma, Y., Zhang, Y., Liang, X., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6, pp. e00064-e00115. , https://doi.org/10.1128/mBio.00064-15; Qi, C., Phillip, G., Molly, S., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59. , https://doi.org/10.1016/j.virol.2015.03.024; Sarah, V.S., John, D.L., Bruce, B., Experimental infection of conventional nursing pigs and their dams with Porcine deltacoronavirus (2016) J. Vet. Diagn. Invest., 28, pp. 486-497. , https://doi.org/10.1177/1040638716654200; McCluskey, B.J., Haley, C., Rovira, A., Retrospective testing and case series study of porcine delta coronavirus in U.S. Swine herds (2016) Prev. Vet. Med., 123, pp. 185-191. , https://doi.org/10.1016/j.prevetmed.2015.10.018; Honglei, Z., Qingqing, L., Bingxiao, L., Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China (2019) Prev. Vet. Med., 166, pp. 8-15. , https://doi.org/10.1016/j.prevetmed.2019.02.017; Peng, Z., Hang, F., Tian, L., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis (2015) Vet. J., 204, pp. 134-143. , https://doi.org/10.1016/j.tvjl.2015.02.017; Alonso, C., Raynor, P.C., Goyal, S., Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms (2017) J. Vet. Diagn. Invest., 29, pp. 298-304. , https://doi.org/10.1177/1040638717700221; Goede, D., Morrison, R.B., Production impact & time to stability in sow herds infected with porcine epidemic diarrhea virus (PEDV) (2016) Prev. Vet. Med., 123, pp. 202-207; Schwegmann, W.C., Herrler, G., Transmissible gastroenteritis virus infection: A vanishing specter (2006) Dtsch. Tierarztl. Wochenschr., 113, pp. 157-159; Dewey, C.E., Carman, S., Hazlett, M., Endemic transmissible gastroenteritis: Difficulty in diagnosis and attempted confirmation using a transmission trial (1999) Swine Health Prod, 7, pp. 73-78; Lei, M., Fanwen, Z., Feng, C., Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus (2019) J. Virol. Methods, 265, pp. 66-70. , https://doi.org/10.1016/j.jviromet.2018.12.010; Jung, K., Wang, Q.H., Scheuer, K.A., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg. Infect. Dis., 20, pp. 662-665. , https://doi.org/10.3201/eid2004.131685; Kwonil, J., Hui, H., Linda, J.S., Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res, 226, pp. 50-59. , https://doi.org/10.1016/j.virusres.2016.04.009; Jung, K., Kim, J., Ha, Y., The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets (2006) Vet. J., 171, pp. 445-450. , https://doi.org/10.1016/j.tvjl.2005.02.016; Janetanakit, T., Lumyai, M., Bunpapong, N., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis., 22, pp. 757-759. , https://doi.org/10.3201/eid2204.151852; Dong, N., Fang, L.R., Yang, H., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106. , https://doi.org/10.1016/j.vetmic.2016.10.022; Hui, H., Kwonil, J., Qiuhong, W., Development of a one-step RT-PCR assay for detection of pancoronaviruses(α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian fecal samples (2018) J. Virol. Methods, 256, pp. 116-122. , https://doi.org/10.1016/j.jviromet.2018.02.021; Zhang, J.Q., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res, 226, pp. 71-84. , https://doi.org/10.1016/j.virusres.2016.05.028; Mengjia, Z., Dejian, L., Xiaoli, L., Genomic characterization and pathogenicity of porcine deltacoronavirus strain CHN-HG-2017 from China (2019) Arch. Virol., 164, pp. 413-425. , https://doi.org/10.1007/s00705-018-4081-6; Nan, D., Liurong, F., Hao, Y., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106. , https://doi.org/10.1016/j.vetmic.2016.10.022; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus induces apoptosis in swine testicular and LLC porcine kidney cell lines in vitro but not in infected intestinal enterocytes in vivo (2016) Vet. Microbiol., 182, pp. 57-63. , https://doi.org/10.1016/j.vetmic.2015.10.022","Wang, Y.; College of Animal Science and Veterinary Medicine, Henan Agricultural UniversityChina; email: 935612880@qq.com",,"Portland Press Ltd",01448463,,BRPTD,"31488617","English","Biosci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85072363843 "Wang N., Rosen O., Wang L., Turner H.L., Stevens L.J., Corbett K.S., Bowman C.A., Pallesen J., Shi W., Zhang Y., Leung K., Kirchdoerfer R.N., Becker M.M., Denison M.R., Chappell J.D., Ward A.B., Graham B.S., McLellan J.S.","55782500200;57213934552;35199353800;57077956900;57211006113;36500702900;57213929773;35070274500;56739696500;57211357998;7401860408;16068684500;7402282339;7101971810;7102682277;55945233700;7201610365;11140034400;","Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD",2019,"Cell Reports","28","13",,"3395","3405.e6",,2,"10.1016/j.celrep.2019.08.052","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072157077&doi=10.1016%2fj.celrep.2019.08.052&partnerID=40&md5=7b52bc0d29e52f073e045423d3d2b32b","Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States","Wang, N., Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Rosen, O., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Wang, L., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Turner, H.L., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Stevens, L.J., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Corbett, K.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Bowman, C.A., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Pallesen, J., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Shi, W., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Zhang, Y., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Leung, K., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; Kirchdoerfer, R.N., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Becker, M.M., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Denison, M.R., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Chappell, J.D., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Ward, A.B., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Graham, B.S., Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States; McLellan, J.S., Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States","Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines. © 2019 The Author(s)Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. © 2019 The Author(s)","coronavirus; crystal structure; DPP4; electron microscopy; membrane fusion; MERS-CoV; receptor-binding","dipeptidyl peptidase IV; epitope; immunoglobulin G antibody; immunoglobulin G2 antibody; neutralizing antibody; unclassified drug; vitronectin; amino acid substitution; amino terminal sequence; animal cell; antigen binding; Article; binding affinity; cell cycle G2 phase; cell surface; complex formation; controlled study; cryoelectron microscopy; crystal structure; disulfide bond; enzyme inhibition; genetic conservation; genetic variability; HEK293 cell line; human; hydrogen bond; in vitro study; Middle East respiratory syndrome coronavirus; molecular dynamics; nonhuman; priority journal; protein binding; protein conformation; protein expression; protein glycosylation; protein localization; protein structure; receptor binding; structure activity relation; structure analysis; surface plasmon resonance; virus attachment; virus cell interaction; virus neutralization; virus spike","Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., PHENIX: building new software for automated crystallographic structure determination (2002) Acta. Crystallogr. D Biol. Crystallogr., 58, pp. 1948-1954; Almazán, F., DeDiego, M.L., Sola, I., Zuñiga, S., Nieto-Torres, J.L., Marquez-Jurado, S., Andrés, G., Enjuanes, L., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4, p. e00650-13; Assiri, A.M., Midgley, C.M., Abedi, G.R., Bin Saeed, A., Almasri, M.M., Lu, X., Al-Abdely, H.M., Algarni, H.S., Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia (2016) J. Infect. Dis., 214, pp. 712-721; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370, pp. 2499-2505; Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., Leslie, A.G., iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 271-281; Chan, C.M., Chu, H., Wang, Y., Wong, B.H., Zhao, X., Zhou, J., Yang, D., Yeung, M.L., Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus (2016) J. Virol., 90, pp. 9114-9127; Chen, Y., Lu, S., Jia, H., Deng, Y., Zhou, J., Huang, B., Yu, Y., Lou, Y., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect., 6, p. e60; Chu, H., Chan, C.M., Zhang, X., Wang, Y., Yuan, S., Zhou, J., Au-Yeung, R.K., Shuai, H., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J. Biol. Chem., 293, pp. 11709-11726; Conway, P., Tyka, M.D., DiMaio, F., Konerding, D.E., Baker, D., Relaxation of backbone bond geometry improves protein energy landscape modeling (2014) Protein Sci., 23, pp. 47-55; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 10473-10478; Coughlin, M.M., Babcook, J., Prabhakar, B.S., Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms (2009) Virology, 394, pp. 39-46; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., Landt, O., Al Shangiti, A., An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 (2015) Clin. Infect. Dis., 60, pp. 369-377; Du, L., Tai, W., Yang, Y., Zhao, G., Zhu, Q., Sun, S., Liu, C., Perlman, S., Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines (2016) Nat. Commun., 7, p. 13473; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60, pp. 2126-2132; Evans, P.R., Murshudov, G.N., How good are my data and what is the resolution? (2013) Acta Crystallogr. D Biol. Crystallogr., 69, pp. 1204-1214; Fehr, A.R., Athmer, J., Channappanavar, R., Phillips, J.M., Meyerholz, D.K., Perlman, S., The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis (2015) J. Virol., 89, pp. 1523-1536; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., Welsch, K., Drosten, C., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J. Virol., 87, pp. 5502-5511; Greenough, T.C., Babcock, G.J., Roberts, A., Hernandez, H.J., Thomas, W.D., Jr., Coccia, J.A., Graziano, R.F., Finberg, R.W., Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice (2005) J. Infect. Dis., 191, pp. 507-514; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129; Guo, Y., Tisoncik, J., McReynolds, S., Farzan, M., Prabhakar, B.S., Gallagher, T., Rong, L., Caffrey, M., Identification of a new region of SARS-CoV S protein critical for viral entry (2009) J. Mol. Biol., 394, pp. 600-605; Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Wenjie, T., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35, pp. 10-18; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6, p. 234ra59; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol. Health, 37, p. e2015033; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121; Krempl, C., Schultze, B., Laude, H., Herrler, G., Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus (1997) J. Virol., 71, pp. 3285-3287; Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J. Mol. Biol., 372, pp. 774-797; Künkel, F., Herrler, G., Structural and functional analysis of the surface protein of human coronavirus OC43 (1993) Virology, 195, pp. 195-202; Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., Pulokas, J., Yoshioka, C., Lau, P.W., Appion: an integrated, database-driven pipeline to facilitate EM image processing (2009) J. Struct. Biol., 166, pp. 95-102; Li, F., Receptor recognition mechanisms of coronaviruses: a decade of structural studies (2015) J. Virol., 89, pp. 1954-1964; Li, F., Structure, Function, and Evolution of Coronavirus Spike Proteins (2016) Annu. Rev. Virol., 3, pp. 237-261; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Lang, Y., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E8508-E8517; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res., 25, pp. 1237-1249; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Bao, J., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., Phaser crystallographic software (2007) J. Appl. Cryst., 40, pp. 658-674; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 15214-15219; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., Van Kerkhove, M., Kim, J., Kieny, M.P., A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation (2016) Nat. Med., 22, pp. 701-705; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol. J., 13, p. 87; Nagae, M., Ikeda, A., Hane, M., Hanashima, S., Kitajima, K., Sato, C., Yamaguchi, Y., Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid (2013) J. Biol. Chem., 288, pp. 33784-33796; Naldini, L., Blömer, U., Gage, F.H., Trono, D., Verma, I.M., Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 11382-11388; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854; Ogura, T., Iwasaki, K., Sato, C., Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking (2003) J. Struct. Biol., 143, pp. 185-200; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., Shi, W., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. USA, 114, pp. E7348-E7357; Peng, G., Sun, D., Rajashankar, K.R., Qian, Z., Holmes, K.V., Li, F., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 10696-10701; Peng, G., Xu, L., Lin, Y.L., Chen, L., Pasquarella, J.R., Holmes, K.V., Li, F., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem., 287, pp. 41931-41938; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera—a visualization system for exploratory research and analysis (2004) J. Comput. Chem., 25, pp. 1605-1612; Potter, C.S., Chu, H., Frey, B., Green, C., Kisseberth, N., Madden, T.J., Miller, K.L., Reilein, A., Leginon: a system for fully automated acquisition of 1000 electron micrographs a day (1999) Ultramicroscopy, 77, pp. 153-161; Potterton, E., Briggs, P., Turkenburg, M., Dodson, E., A graphical user interface to the CCP4 program suite (2003) Acta. Crystallogr. D Biol. Crystallogr., 59, pp. 1131-1137; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat. Methods, 14, pp. 290-296; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., Baric, R., Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge (2008) J. Virol., 82, pp. 3220-3235; Rosen, O., Chan, L.L., Abiona, O.M., Gough, P., Wang, L., Shi, W., Zhang, Y., McLellan, J.S., A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry (2019) J. Virol. Methods, 265, pp. 77-83; Schultze, B., Gross, H.J., Brossmer, R., Herrler, G., The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant (1991) J. Virol., 65, pp. 6232-6237; Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery, V.D., Graham, R.L., Kim, J.D., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 16157-16162; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog., 14, p. e1007009; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State (2018) J. Virol., 92, p. e01556-17; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog., 14, p. e1007236; Stewart, S.A., Dykxhoorn, D.M., Palliser, D., Mizuno, H., Yu, E.Y., An, D.S., Sabatini, D.M., Sharp, P.A., Lentivirus-delivered stable gene silencing by RNAi in primary cells (2003) RNA, 9, pp. 493-501; Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Carragher, B., Automated molecular microscopy: the new Leginon system (2005) J. Struct. Biol., 151, pp. 41-60; Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., Ludtke, S.J., EMAN2: an extensible image processing suite for electron microscopy (2007) J. Struct. Biol., 157, pp. 38-46; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E2018-E2026; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3. , e00473-12; Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S., Carragher, B., DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy (2009) J. Struct. Biol., 166, pp. 205-213; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Cameroni, E., Lanzavecchia, A., Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion (2019) Cell, 176, pp. 1026-1039.e15; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6, p. 7712; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Becker, M.M., Wang, N., Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape (2018) J. Virol., 92, p. e02002-17; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Middle East respiratory syndrome coronavirus (MERS-CoV) (2018), https://www.who.int/emergencies/mers-cov/en/, World Health Organization; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections (2018) J. Virol., 92, p. e01628-17; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8, p. 15092; Yusof, M.F., Queen, K., Eltahir, Y.M., Paden, C.R., Al Hammadi, Z.M.A.H., Tao, Y., Li, Y., Zhang, J., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg. Microbes Infect., 6, p. e101; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhang, K., Gctf: Real-time CTF determination and correction (2016) J. Struct. Biol., 193, pp. 1-12; Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., Agard, D.A., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy (2017) Nat. Methods, 14, pp. 331-332; Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J., Lindahl, E., Scheres, S.H., New tools for automated high-resolution cryo-EM structure determination in RELION-3 (2018) eLife, 7, p. e42166","McLellan, J.S.; Department of Molecular Biosciences, The University of Texas at AustinUnited States; email: jmclellan@austin.utexas.edu",,"Elsevier B.V.",22111247,,,"31553909","English","Cell Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85072157077 "Gardner E.G., Kiambi S., Sitawa R., Kelton D., Kimutai J., Poljak Z., Tadesse Z., Von Dobschuetz S., Wiersma L., Greer A.L.","57193719177;56771335800;57204807029;7003316905;57200034767;8966822700;57212936501;20436883300;57213341936;15026202400;","Force of infection of Middle East respiratory syndrome in dromedary camels in Kenya",2019,"Epidemiology and infection","147",,,"e275","",,,"10.1017/S0950268819001663","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072566261&doi=10.1017%2fS0950268819001663&partnerID=40&md5=a6cc0fb307c1327cdbf62071ccc2f08f","University of Guelph, Guelph, ON, Canada; Food and Agriculture Organization of the United Nations, Nairobi, Kenya; Directorate of Veterinary Services, Nairobi, Kenya; Food and Agriculture Organization of the United Nations, Nairobi, Italy","Gardner, E.G., University of Guelph, Guelph, ON, Canada; Kiambi, S., Food and Agriculture Organization of the United Nations, Nairobi, Kenya; Sitawa, R., Directorate of Veterinary Services, Nairobi, Kenya; Kelton, D., University of Guelph, Guelph, ON, Canada; Kimutai, J., Food and Agriculture Organization of the United Nations, Nairobi, Kenya; Poljak, Z., University of Guelph, Guelph, ON, Canada; Tadesse, Z., Food and Agriculture Organization of the United Nations, Nairobi, Kenya; Von Dobschuetz, S., Food and Agriculture Organization of the United Nations, Nairobi, Italy; Wiersma, L., Food and Agriculture Organization of the United Nations, Nairobi, Italy; Greer, A.L., University of Guelph, Guelph, ON, Canada","Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic disease transmitted from dromedary camels to people, which can result in outbreaks with human-to-human transmission. Because it is a subclinical infection in camels, epidemiological measures other than prevalence are challenging to assess. This study estimated the force of infection (FOI) of MERS-CoV in camel populations from age-stratified serological data. A cross-sectional study of MERS-CoV was conducted in Kenya from July 2016 to July 2017. Seroprevalence was stratified into four age groups: <1, 1-2, 2-3 and >3 years old. Age-independent and age-dependent linear and quadratic generalised linear models were used to estimate FOI in pastoral and ranching camel herds. Models were compared based on computed AIC values. Among pastoral herds, the age-dependent quadratic FOI was the best fit model, while the age-independent FOI was the best fit for the ranching herd data. FOI provides an indirect estimate of infection risk, which is especially valuable where direct estimates of incidence and other measures of infection are challenging to obtain. The FOIs estimated in this study provide important insight about MERS-CoV dynamics in the reservoir species, and contribute to our understanding of the zoonotic risks of this important public health threat.","Dromedary camels; emerging infections; force of infection; MERS-CoV; reservoir","animal; asymptomatic infection; camel; Coronavirus infection; cross-sectional study; isolation and purification; Kenya; Middle East respiratory syndrome coronavirus; prevalence; veterinary medicine; Animals; Asymptomatic Infections; Camelus; Coronavirus Infections; Cross-Sectional Studies; Kenya; Middle East Respiratory Syndrome Coronavirus; Prevalence",,,,"NLM (Medline)",14694409,,,"31547888","English","Epidemiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85072566261 "Fan W., Tang N., Dong Z., Chen J., Zhang W., Zhao C., He Y., Li M., Wu C., Wei T., Huang T., Mo M., Wei P.","55480413000;57204062925;57202752561;57211120905;57211116867;57211115940;57145099600;57199160279;57190024711;23994653000;57194973252;24402879800;57203920061;","Genetic analysis of avian coronavirus infectious bronchitis virus in yellow chickens in Southern China over the past decade: Revealing the changes of genetic diversity, dominant genotypes, and selection pressure",2019,"Viruses","11","10", 898,"","",,1,"10.3390/v11100898","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072695098&doi=10.3390%2fv11100898&partnerID=40&md5=a0216b30b7ad9df4f6006b14b45be1fc","College of Animal Science and Technology, Guangxi University, Nanning, 530004, China","Fan, W., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Tang, N., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Dong, Z., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Chen, J., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Zhang, W., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Zhao, C., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; He, Y., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Li, M., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Wu, C., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Wei, T., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Huang, T., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Mo, M., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Wei, P., College of Animal Science and Technology, Guangxi University, Nanning, 530004, China","The high mutation rates of infectious bronchitis virus (IBV) pose economic threats to the poultry industry. In order to track the genetic evolutionary of IBV isolates circulating in yellow chickens, we continued to conduct the genetic analyses of the structural genes S1, E, M, and N from 64 IBV isolates in southern China during 2009-2017. The results showed that the dominant genotypes based on the four genes had changed when compared with those during 1985-2008. Based on the S1 gene phylogenetic tree, LX4-type (GI-19) was the most dominant genotype, which was different from that during 1985-2008. The second most dominant genotype was LDT3-A-type, but this genotype disappeared after 2012. New-type 1 (GVI-1) isolates showed increasing tendency and there were four aa (QKEP) located in the hypervariable region (HVR) III and one aa (S) insertion in all the New-type 1 isolates. Both the analyses of amino acid entropy and molecular evolutionary rate revealed that the variations from large to small were S1, E, M, and N. Purifying selection was detected in the S1, E, M, and N gene proteins, which was different from the positive selection during 1985-2008. Six isolates were confirmed to be recombinants, possibly generated from a vaccine virus of the 4/91-type or LDT3-A-type and a circulating virus. The estimated times for the most recent common ancestors based on the S1, E, M, and N genes were the years of 1744, 1893, 1940, and 1945, respectively. Bayesian skyline analysis revealed a sharp decrease in genetic diversity of all the four structural genes after 2010 and since late 2015, the viral population rapidly rose. In conclusion, the IBVs circulating in southern China over the past decade have experienced a remarkable change in genetic diversity, dominant genotypes, and selection pressure, indicating the importance of permanent monitoring of circulating strains and the urgency for developing new vaccines to counteract the emerging LX4-type and New-type IBVs. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Entropy; Genotype; Infectious bronchitis virus; Molecular evolutionary rate; Recombination; Selection pressure","membrane protein; nucleocapsid protein; virus envelope protein; virus spike protein; amino acid sequence; Article; Avian coronavirus; Avian infectious bronchitis virus; Bayes theorem; chicken; China; entropy; evolutionary rate; Fourier transform; gene amplification; gene insertion; gene sequence; genetic analysis; genetic recombination; genetic selection; genetic variability; genotype; glycosylation; Monte Carlo method; mutation rate; nonhuman; phylogeny; population size; RNA extraction; sequence alignment; sequence analysis; structural gene; virus envelope","Li, M., Wang, X.Y., Wei, P., Chen, Q.Y., Wei, Z.J., Mo, M.L., Serotype and genotype diversity of infectious bronchitis viruses isolated during 1985-2008 in Guangxi, China (2012) Arch. Virol., 157, pp. 467-474; Li, M., Mo, M.L., Huang, B.C., Fan, W.S., Wei, Z.J., Wei, T.C., Li, K.R., Wei, P., Continuous evolution of avian infectious bronchitis virus resulting in different variants co-circulating in southern China (2013) Arch. Virol., 158, pp. 1783-1786; Mo, M.L., Huang, B.C., Wei, P., Wei, T.C., Chen, Q.Y., Wang, X.Y., Li, M., Fan, W.S., Complete genome sequences of two Chinese virulent avian coronavirus infectious bronchitis virus variants (2012) J. Virol., 86, pp. 10903-10904; Mo, M.L., Li, M., Huang, B.C., Fan, W.S., Wei, P., Wei, T.C., Cheng, Q.Y., Lang, Y.H., Molecular characterization of major structural protein genes of avian coronavirus infectious bronchitis virus isolates in southern China (2013) Viruses, 5, pp. 3007-3020; Feng, K.Y., Xue, Y., Wang, F., Chen, F., Shu, D.M., Xie, Q.M., Analysis of S1 gene of avian infectious bronchitis virus isolated in southern China during 2011-2012 (2014) Virus Genes., 49, pp. 292-303; Fan, W.S., Li, H.M., He, Y.N., Tang, N., Zhang, L.H., Wang, H.Y., Zhong, L., Huang, T., Immune protection conferred by three commonly used commercial live attenuated vaccines against the prevalent local strains of avian infectious bronchitis virus in southern China (2018) J. Vet. Med. Sci., 80, pp. 1438-1444; Jiang, L., Han, Z.X., Chen, Y.Q., Zhao, W.J., Sun, J.F., Zhao, Y., Liu, S.W., Characterization of the complete genome, antigenicity, pathogenicity, tissue tropism, and shedding of a recombinant avian infectious bronchitis virus with a ck/ch/ljl/140901-like backbone and an s2 fragment from a 4/91-like virus (2018) Virus Res., 244, pp. 99-109; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet. Res., 38, pp. 281-297; Hong, S.M., Kwon, H.J., Choi, K.S., Kim, J.H., Comparative genomics of QX-like infectious bronchitis viruses in Korea (2017) Arch. Virol., 162, pp. 1237-1250; Kusters, J.G., Jager, E.J., Lenstra, J.A., Koch, G., Posthumus, W.P., Meloen, R.H., Van Der Zeijst, B.A., Analysis of an immunodominant region of infectious bronchitis virus (1989) J. Immunol., 143, pp. 2692-2698; Cavanagh, D., Davis, P.J., Cook, J.A., Li, D., Kant, A., Koch, G., Location of the amino acid differences in the s1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus (1992) Avian Pathol., 21, pp. 33-43; Fleming, J.O., Shubin, R.A., Sussman, M.A., Casteel, N., Stohlman, S.A., Monoclonal antibodies to the matrix (E1) glycoprotein of mouse hepatitis virus protect mice from encephalitis (1989) Virology, 168, pp. 162-167; Wickramasinghe, A.I.N., Van Beurden, S.J., Weerts, E.A., Verheije, M.H., The avian coronavirus spike protein (2014) Virus Res., 194, pp. 37-48; Feng, K.Y., Chen, T., Zhang, X., Shao, G.M., Cao, Y., Chen, D.K., Lin, W.C., Xie, Q.M., Molecular characteristic and pathogenicity analysis of a virulent recombinant avian infectious bronchitis virus isolated in China (2018) Poult. Sci., 97, pp. 3519-3531; Feng, K.Y., Wang, F., Xue, Y., Zhou, Q.F., Chen, F., Bi, Y.Z., Xie, Q.M., Epidemiology and characterization of avian infectious bronchitis virus strains circulating in southern China during the period from 2013-2015 (2017) Sci. Rep., 7, p. 6576; Lin, S.Y., Chen, H.W., Infectious bronchitis virus variants: Molecular analysis and pathogenicity investigation (2017) Int. J. Mol. Sci., 18, p. 2030; Xu, L.W., Ren, M.T., Sheng, J., Ma, T.X., Han, Z.X., Zhao, Y., Sun, J.F., Liu, S.W., Genetic and biological characteristics of four novel recombinant avian infectious bronchitis viruses isolated in China (2019) Virus Res., 263, pp. 87-97; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect. Genet. Evol., 39, pp. 349-364; Bande, F., Arshad, S.S., Omar, A.R., Hair-Bejo, M., Mahmuda, A., Nair, V., Global distributions and strain diversity of avian infectious bronchitis virus: A review (2017) Anim. Health Res. Rev., 18, pp. 70-83; Marandino, A., Vagnozzi, A., Craig, M.I., Tomas, G., Techera, C., Panzera, Y., Vera, F., Perez, R., Genetic and antigenic heterogeneity of infectious bronchitis virus in South America: Implications for control programmes (2019) Avian Pathol., 48, pp. 270-277; Irvine, R.M., Cox, W.J., Ceeraz, V., Reid, S.M., Ellis, R.J., Jones, R.M., Errington, J., Clark, M.I., Detection of IBV QX in commercial broiler flocks in the UK (2010) Vet. Rec., 167, pp. 877-879; Naguib, M.M., Hoeper, D., Arafa, A., Setta, A.M., Abed, M., Monne, I., Beer, M., Harder, T.C., Full genome sequence analysis of a newly emerged qx-like infectious bronchitis virus from Sudan reveals distinct spots of recombination (2016) Infect. Genet. Evol., 46, pp. 42-49; Franzo, G., Massi, P., Tucciarone, C.M., Barbieri, I., Tosi, G., Fiorentini, L., Ciccozzi, M., Moreno, A., Think globally, act locally: Phylodynamic reconstruction of infectious bronchitis virus (ibv) qx genotype (gi-19 lineage) reveals different population dynamics and spreading patterns when evaluated on different epidemiological scales (2017) PLoS ONE, 12, p. e0184401; Hamadan, A.M., Ghalyanchilangeroudi, A., Hashemzadeh, M., Hosseini, H., Karimi, V., Yahyaraeyat, R., Najafi, H., Genotyping of avian infectious bronchitis viruses in Iran (2015-2017) reveals domination of IS-1494 like virus (2017) Virus Res., 240, pp. 101-106; Khanh, N.P., Tan, S.W., Yeap, S.K., Satharasinghe, D.A., Hair-Bejo, M., Bich, T.N., Omar, A.R., Molecular characterization of qx-like and variant infectious bronchitis virus strains in Malaysia based on partial genomic sequences comprising the s-3a/3b-e-m-intergenic region-5a/5b-n gene order (2017) Avian Dis., 61, pp. 442-452; Jackwood, M.W., Lee, D.H., Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry (2017) PLoS ONE, 12, p. e0176709; Toro, H., Van Santen, V.L., Jackwood, M.W., Genetic diversity and selection regulates evolution of infectious bronchitis virus (2012) Avian Dis., 56, pp. 449-455; McKinley, E.T., Hilt, D.A., Jackwood, M.W., Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination (2008) Vaccine, 26, pp. 1274-1284; Van Santen, V.L., Toro, H., Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines (2008) Avian Pathol., 37, pp. 293-306; Zhao, Y., Zhang, H., Zhao, J., Zhong, Q., Jin, J.H., Zhang, G.Z., Evolution of infectious bronchitis virus in China over the past two decades (2016) J. Gen. Virol., 97, pp. 1566-1574; Li, H.J., Wang, P.K., Lin, L.L., Shi, M.Y., Gu, Z.M., Huang, T., Mo, M.L., Wei, P., The emergence of the infection of subgroup j avian leucosis virus escalated the tumour incidence in commercial yellow chickens in southern China in recent years (2019) Transbound Emerg. Dis., 66, pp. 312-316; Wei, P., Liang, Y.D., Wei, F.Y., Current status of poultry production in Guangxi and prospect of poultry industry in China (2013) China Poult., 35, pp. 2-6. , In Chinese; Wei, P., Challenge and development opportunity of quality chicken industry in China: A review about 9 issues on the topic (2019) China Poult., 41, pp. 1-6. , In Chinese; Wu, X., Yang, X., Xu, P.W., Zhou, L., Zhang, Z.K., Wang, H.N., Genome sequence and origin analyses of the recombinant novel IBV virulent isolate SAIBK2 (2016) Virus Genes, 52, pp. 509-520; Xia, J., He, X., Yao, K.C., Du, L.J., Liu, P., Yan, Q.G., Wen, Y.P., Huang, Y., Phylogenetic and antigenic analysis of avian infectious bronchitis virus in southwestern China, 2012-2016 (2016) Infect. Genet. Evol., 45, pp. 11-19; Mo, M.L., Hong, S.M., Kwon, H.J., Kim, I.H., Song, C.S., Kim, J.H., Genetic diversity of spike, 3a, 3b and e genes of infectious bronchitis viruses and emergence of new recombinants in korea (2013) Viruses, 5, pp. 550-567; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol., 30, pp. 2725-2729; Carranza, C., Astolfi-Ferreira, C.S., Santander Parra, S.H., Nunez, L.F.N., Penzes, Z., Chacon, J.L., Sesti, L., Piantino Ferreira, A.J., Genetic characterisation and analysis of infectious bronchitis virus isolated from Brazilian flocks between 2010 and 2015 (2017) Brit. Poult. Sci., 58, pp. 610-623; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and parallel computing (2012) Nat. Methods., 9, p. 772; Wei, T.C., Deng, Q.M., Zhai, G.S., He, C.W., Li, H.Q., Zhang, Y.Q., Zeng, R.L., Wei, P., Re-emergence of a genotype VIII virulent newcastle disease virus isolated from Chinese game fowl after 13years (2019) Transbound Emerg. Dis., 66, pp. 1077-1084; Zhao, W.J., Gao, M.Y., Xu, Q.Q., Xu, Y., Zhao, Y., Chen, Y.Q., Zhang, T.T., Li, H.X., Origin and evolution of LX4 genotype infectious bronchitis coronavirus in China (2017) Vet. Microbiol., 198, pp. 9-16; Chen, Y.Q., Jiang, L., Zhao, W.J., Liu, L.L., Zhao, Y., Shao, Y.H., Li, H.X., Liu, S.W., Identification and molecular characterization of a novel serotype infectious bronchitis virus (gi-28) in China (2017) Vet. Microbiol., 198, pp. 108-115; Xu, L.W., Han, Z.X., Jiang, L., Sun, J.F., Zhao, Y., Liu, S.W., Genetic diversity of avian infectious bronchitis virus in China in recent years (2018) Infect. Genet. Evol., 66, pp. 82-94; Wang, C.H., Tsai, C.T., Genetic grouping for the isolates of avian infectious bronchitis virus in Taiwan (1996) Arch. Virol., 141, pp. 1677-1688; Huang, Y.P., Wang, C.H., Development of attenuated vaccines from taiwanese infectious bronchitis virus strains (2006) Vaccine, 24, pp. 785-791; Xu, Q.Q., Han, Z.X., Wang, Q.L., Zhang, T.T., Gao, M.Y., Zhao, Y., Shao, Y.H., Liu, S.W., Emergence of novel nephropathogenic infectious bronchitis viruses currently circulating in Chinese chicken flocks (2016) Avian Pathol., 45, pp. 54-65; Zhang, Z.K., Zhou, Y.S., Wang, H.N., Zeng, F.Y., Yang, X., Zhang, Y., Zhang, A.Y., Molecular detection and smoothing spline clustering of the ibv strains detected in China during 2011-2012 (2016) Virus Res., 211, pp. 145-150; Zou, N.L., Zhao, F.F., Wang, Y.P., Liu, P., Cao, S.J., Wen, X.T., Huang, Y., Genetic analysis revealed lx4 genotype strains of avian infectious bronchitis virus became predominant in recent years in sichuan area, China (2010) Virus Genes, 41, pp. 202-209; Luo, H.B., Qin, J.P., Chen, F., Xie, Q.M., Bi, Y.Z., Cao, Y.C., Xue, C.Y., Phylogenetic analysis of the S1 glycoprotein gene of infectious bronchitis viruses isolated in China during 2009-2010 (2012) Virus Genes, 44, pp. 19-23; Xu, G., Liu, X.Y., Zhao, Y., Chen, Y., Zhao, J., Zhang, G.Z., Characterization and analysis of an infectious bronchitis virus strain isolated from southern China in 2013 (2016) Virol. J., 13, p. 40; Lin, Y.C., Chu, P.Y., Chang, M.Y., Hsiao, K.L., Lin, J.H., Liu, H.F., Spatial temporal dynamics and molecular evolution of re-emerging rabies virus in Taiwan (2016) Int. J. Mol. Sci., 17, p. 392; Liu, S.W., Chen, J.F., Chen, J.D., Kong, X.G., Shao, Y.H., Han, Z.X., Feng, L., Liu, M., Isolation of avian infectious bronchitis coronavirus from domestic peafowl (pavo cristatus) and teal (anas) (2005) J. Gen. Virol., 86, pp. 719-725; Chu, D.K., Leung, C.Y., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Guan, Y., Poon, L.L., Avian coronavirus in wild aquatic birds (2011) J. Virol., 85, pp. 12815-12820; Li, L.L., Xue, C.Y., Chen, F., Qin, J.P., Xie, Q.M., Bi, Y.Z., Cao, Y.C., Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004-2008 (2010) Vet. Microbiol., 143, pp. 145-154; Jiang, L., Zhao, W.J., Han, Z.X., Chen, Y.Q., Zhao, Y., Sun, J.F., Li, H.X., Liu, S.W., Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from south China (2017) Infect. Genet. Evol., 54, pp. 437-446; Tang, N., (2018) Sequence Analysis of Structural Genes and Serotype Identification of Guangxi Infectious Bronchitis Virus Isolate from 2015 to 2017, , (Guangxi University, Nanning, China). Personal communication; Abozeid, H.H., Paldurai, A., Khattar, S.K., Afifi, M.A., El-Kady, M.F., El-Deeb, A.H., Samal, S.K., Complete genome sequences of two avian infectious bronchitis viruses isolated in Egypt: Evidence for genetic drift and genetic recombination in the circulating viruses (2017) Infect. Genet. Evol., 53, pp. 7-14; Fraga, A.P., Graf, T., Pereira, C.S., Ikuta, N., Fonseca, K.A.S., Lunge, V.R., Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil (2018) Infect. Genet. Evol., 61, pp. 77-83; Zhou, H.S., Zhang, M.H., Tian, X., Shao, H.X., Qian, K., Ye, J.Q., Qin, A.J., Identification of a novel recombinant virulent avian infectious bronchitis virus (2017) Vet. Microbiol., 199, pp. 120-127; Han, Z.X., Zhao, W.J., Chen, Y.Q., Xu, Q.Q., Sun, J.F., Zhang, T.T., Zhao, Y., Wang, Q.L., Genetic, antigenic, and pathogenic characteristics of avian infectious bronchitis viruses genotypically related to 793/b in China (2017) Vet. Microbiol., 203, pp. 125-135; Schikora, B.M., Shih, L.M., Hietala, S.K., Genetic diversity of avian infectious bronchitis virus California variants isolated between 1988 and 2001 based on the S1 subunit of the spike glycoprotein (2003) Arch. Virol., 148, pp. 115-136; Tang, X.C., Li, G., Vasilakis, N., Zhang, Y., Shi, Z.L., Zhong, Y., Wang, L.F., Zhang, S.Y., Differential stepwise evolution of sars coronavirus functional proteins in different host species (2009) BMC Evol. Biol., 9, p. 52; McKinley, E.T., Jackwood, M.W., Hilt, D.A., Kissinger, J.C., Robertson, J.S., Lemke, C., Paterson, A.H., Attenuated live vaccine usage affects accurate measures of virus diversity and mutation rates in avian coronavirus infectious bronchitis virus (2011) Virus Res., 158, pp. 225-234; An, D.J., Lim, S.I., Choe, S.E., Kim, K.S., Cha, R.M., Cho, I.S., Song, J.Y., Park, B.K., Evolutionary dynamics of classical swine fever virus in South Korea: 1987-2017 (2018) Vet. Microbiol., 225, pp. 79-88; Zhao, Z.M., Li, H.P., Wu, X.Z., Zhong, Y.X., Zhang, K.Q., Zhang, Y.P., Boerwinkle, E., Fu, Y.X., Moderate mutation rate in the SARS coronavirus genome and its implications (2004) BMC Evol. Biol., 4, p. 21; Kuroda, M., Niwa, S., Sekizuka, T., Tsukagoshi, H., Yokoyama, M., Ryo, A., Sato, H., Kozawa, K., Molecular evolution of the vp1, vp2, and vp3 genes in human rhinovirus species c (2015) Sci. Rep., 5, p. 8185; Shaha, M., Chakraborty, S., Hossain, M.S., Hashem, A., Salimullah, M., Molecular evolution and genomics of hepatitis B virus subgenotype C2 strain predominant in the chronic patients in Bangladesh (2018) Virus Dis., 29, pp. 486-490; Franzo, G., Naylor, C.J., Lupini, C., Drigo, M., Catelli, E., Listorti, V., Pesente, P., Cecchinato, M., Continued use of ibv 793b vaccine needs reassessment after its withdrawal led to the genotype's disappearance (2014) Vaccine, 32, pp. 6765-6767; Franzo, G., Tucciarone, C.M., Blanco, A., Nofrarias, M., Biarnes, M., Cortey, M., Majo, N., Cecchinato, M., Effect of different vaccination strategies on IBV QX population dynamics and clinical outbreaks (2016) Vaccine, 34, pp. 5670-5676","Mo, M.; College of Animal Science and Technology, Guangxi UniversityChina; email: momeilan@163.com",,"MDPI AG",19994915,,,"31561498","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85072695098 "Pearson M., LaVoy A., Evans S., Vilander A., Webb C., Graham B., Musselman E., LeCureux J., Van De Woude S., Dean G.A.","57211140294;6506551896;57195241933;57118071400;7202857970;57205442008;57201880998;26640520300;37003187900;56750899800;","Mucosal immune response to feline enteric coronavirus infection",2019,"Viruses","11","10", 906,"","",,2,"10.3390/v11100906","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072777074&doi=10.3390%2fv11100906&partnerID=40&md5=7e9986febadec695c6bb9d36ef61e2fd","Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, United States","Pearson, M., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; LaVoy, A., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Evans, S., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Vilander, A., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Webb, C., Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, United States; Graham, B., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Musselman, E., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; LeCureux, J., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Van De Woude, S., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States; Dean, G.A., Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States","Feline infectious peritonitis is a devastating, fatal disease of domestic cats caused by a pathogenic mutant virus derived from the ubiquitous feline enteric coronavirus (FECV). Infection by FECV is generally subclinical, and little is known about the mucosal immune response that controls and eliminates the virus. We investigated the mucosal immune response against FECV in an endemically infected breeding colony over a seven-month period. Thirty-three cats were grouped according to FECV seropositivity and fecal virus shedding into naïve/immunologically quiescent, convalescent and actively infected groups. Blood, fecal samples and colon biopsies were collected to assess the mucosal and systemic immunologic and virologic profile. Results showed that cats with active FECV infections have strong systemic IgG and mucosal IgA responses that wane after virus clearance. Significant FECV-specific mucosal T cell IFNγ responses were not detected in any of the three groups. A shift toward an inflammatory state in the mucosa was suggested by increased IL17:FoxP3 expression. However, no histologic abnormalities were observed, and no shifts in lymphocyte subpopulation phenotype or proliferation were noted. Together, the results suggest that control of FECV is mediated by humoral mucosal and systemic responses and that perturbations in the primary reservoir organ (colon) are minimal. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Feline enteric coronavirus; Feline infectious peritonitis; Mucosal immunity","gamma interferon; immunoglobulin A; immunoglobulin G; interleukin 17; transcription factor FOXP3; animal cell; animal tissue; Article; blood cell count; blood sampling; cat; cell proliferation; colon biopsy; colonoscopy; enzyme linked immunosorbent assay; enzyme linked immunospot assay; feces analysis; Feline coronavirus; feline infectious peritonitis; flow cytometry; genome; germfree animal; histology; immune response; immunohistochemistry; immunophenotyping; lymphocyte; mucosal immunity; nonhuman; peripheral blood mononuclear cell; peritonitis; phenotype; procedures, parameters and devices; RNA extraction; serotype; viral clearance","Pedersen, N.C., An update on feline infectious peritonitis: Diagnostics and therapeutics (2014) Vet. J., 201, pp. 133-141; Pedersen, N.C., An update on feline infectious peritonitis: Virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J.Gen. Virol., 91, pp. 1698-1707; Vogel, L., Van Der Lubben, M., Te Lintelo, E.G., Bekker, C.P., Geerts, T., Schuij, L.S., Grinwis, G.C., Rottier, P.J., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet. Res., 41, p. 71; Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type i feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments (1997) J. Am. Vet. Med. Assoc., 210, pp. 1307-1312; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10, pp. 529-541; Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Lutz, H., Feline infectious peritonitis Abcd guidelines on prevention and management (2009) J. Feline Med. Surg., 11, pp. 594-604; Pedersen, N.C., Sato, R., Foley, J.E., Poland, A.M., Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus (2004) J. Feline Med. Surg., 6, pp. 83-88; Stevens, R., Howard, K.E., Nordone, S., Burkhard, M., Dean, G.A., Oral immunization with recombinant listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus (2004) J. Virol., 78, pp. 8210-8218; Burkhard, M.J., Mathiason, C.K., Bowdre, T., Hoover, E.A., Feline immunodeficiency virus Gag-and Env-specific immune responses after vaginal versus intravenous infection (2001) AIDS Res. Hum. Retrovir., 17, pp. 1767-1778; Howard, K.E., Fisher, I.L., Dean, G.A., Jo Burkhard, M., Methodology for isolation and phenotypic characterization of feline small intestinal leukocytes (2005) J. Immunol. Methods, 302, pp. 36-53; Simões, R.D., Howard, K.E., Dean, G.A., In vivo assessment of natural killer cell responses during chronic feline immunodeficiency virus infection (2012) PLoS ONE, 7, p. e37606; Dye, C., Helps, C.R., Siddell, S.G., Evaluation of real-time rt-PCR for the quantification of fcov shedding in the faeces of domestic cats (2008) J. Feline Med. Surg., 10, pp. 167-174; Lankford, S., Petty, C., La Voy, A., Reckling, S., Tompkins, W., Dean, G.A., Cloning of feline foxp3 and detection of expression in cd4+cd25+ regulatory t cells (2008) Vet. Immunol. Immunopathol., 122, pp. 159-166; Stevens, R., Lavoy, A., Nordone, S., Burkhard, M., Dean, G.A., Pre-existing immunity to pathogenic listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant listeria monocytogenes vaccine (2005) Vaccine, 23, pp. 1479-1490; Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Lenth, R., (2018) Estimated Marginal Means, Aka Least-Squares Means, , R Package Version 1.2.3; Wickham, H., (2018) Dplyr: A Grammar of Data Manipulation, , R Package Version 0.7.4; Wickham, H., (2009) Ggplot2 Elegant Graphics for Data Analysis Introduction, , In Use R; Springer: New York, NY, USA; Beagley, K.W., Fujihashi, K., Lagoo, A.S., Lagoo-Deenadaylan, S., Black, C.A., Murray, A.M., Sharmanov, A.T., Elson, C.O., Differences in intraepithelial lymphocyte t cell subsets isolated from murine small versus large intestine (1995) J. Immunol., 154, pp. 5611-5619; Veazey, R.S., Rosenzweig, M., Shvetz, D.E., Pauley, D.R., DeMaria, M., Chalifoux, L.V., Johnson, R.P., Lackner, A.A., Characterization of gut-associated lymphoid tissue (galt) of normal rhesus macaques (1997) Clin. Immunol Immunopathol., 82, pp. 230-242; Weigmann, B., Tubbe, I., Seidel, D., Nicolaev, A., Becker, C., Neurath, M.F., Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue (2007) Nat. Protoc., 2, pp. 2307-2311; Zeitz, M., Schieferdecker, H.L., Ullrich, R., Jahn, H.U., James, S.P., Riecken, E.O., Phenotype and function of lamina propria t lymphocytes (1991) Immunol Res., 10, pp. 199-206; Barker, E.N., Tasker, S., Gruffydd-Jones, T.J., Tuplin, C.K., Burton, K., Porter, E., Day, M.J., Helps, C.R., Phylogenetic analysis of feline coronavirus strains in an epizootic outbreak of feline infectious peritonitis (2013) J. Vet. Intern. Med., 27, pp. 445-450; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Addie, D.D., Jarrett, O., Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats (2001) Vet. Rec., 148, pp. 649-653; Berdoz, J., Blanc, C.T., Reinhardt, M., Kraehenbuhl, J.P., Corthesy, B., In vitro comparison of the antigen-binding and stability properties of the various molecular forms of IgA antibodies assembled and produced in CHO cells (1999) Proc. Natl Acad. Sci. USA, 96, pp. 3029-3034; Magnusson, K.E., Stjernstrom, I., Mucosal barrier mechanisms (1982) Interplay between Secretory IgA (SIgA), IgG and Mucins on the Surface Properties and Association of Salmonellae with Intestine and Granulocytes. Immunology, 45, pp. 239-248; Brandtzaeg, P., Induction of secretory immunity and memory at mucosal surfaces (2007) Vaccine, 25, pp. 5467-5484; Macpherson, A.J., McCoy, K.D., Johansen, F.E., Brandtzaeg, P., The immune geography of IgA induction and function (2008) Mucosal Immunol., 1, pp. 11-22; Desmarets, L.M., Vermeulen, B.L., Theuns, S., Conceicao-Neto, N., Zeller, M., Roukaerts, I.D., Acar, D.D., Matthijnssens, J., Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures (2016) Sci. Rep., 6, p. 20022; Crossfield, L., Fortuna, L., Carling, R., Scurrell, E., Matas Riera, M., Chang, Y.M., Dawson, C., Thaung, C., Immunohistochemical characterization of feline lymphoplasmacytic anterior uveitis (2019) Vet. Ophthalmol., 22, pp. 206-212; De Groot-Mijnes, J.D., Van Dun, J.M., Van Der Most, R.G., De Groot, R.J., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2005) J. Virol., 79, pp. 1036-1044; Hayashi, T., Sasaki, N., Ami, Y., Fujiwara, K., Role of thymus-dependent lymphocytes and antibodies in feline infectious peritonitis after oral infection (1983) Nihon Juigaku Zasshi, 45, pp. 759-766; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34, pp. 3180-3184; Weiss, R.C., Cox, N.R., Evaluation of immunity to feline infectious peritonitis in cats with cutaneous viral-induced delayed hypersensitivity (1989) Vet. Immunol. Immunopathol., 21, pp. 293-309; Mustaa-Kamal, F., Liu, H., Pedersen, N.C., Sparger, E.E., Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV) (2019) BMC Vet. Res., 15, p. 165; Amanna, I.J., Slifka, M.K., Mechanisms that determine plasma cell lifespan and the duration of humoral immunity (2010) Immunol. Rev., 236, pp. 125-138; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res., 165, pp. 17-28","Dean, G.A.; Department of Microbiology, Immunology and Pathology, Colorado State UniversityUnited States; email: Gregg.dean@colostate.edu",,"MDPI AG",19994915,,,"31569783","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85072777074 "Styczyński J.","7003815017;","ABC of viral infections in hematology: Focus on herpesviruses",2019,"Acta Haematologica Polonica","50","3",,"159","166",,,"10.2478/ahp-2019-0026","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073256713&doi=10.2478%2fahp-2019-0026&partnerID=40&md5=e7d8a55a49f5570ea00e5a2ec33a764e","Department of Pediatric Hematology and Oncology, Jurasz University Hospital, Collegium Medicum UMK, Curie-Sklodowskiej 9 Street, Bydgoszcz, 85-094, Poland","Styczyński, J., Department of Pediatric Hematology and Oncology, Jurasz University Hospital, Collegium Medicum UMK, Curie-Sklodowskiej 9 Street, Bydgoszcz, 85-094, Poland","Viruses are a form of life that possess genes but do not have a cellular structure. Viruses do not have their own metabolism, and they require a host cell to make new products; therefore, they cannot naturally reproduce outside a host cell. The objective of this paper is to present the basic practical clinical roles of viruses in patients with hematological diseases including malignancies and non-malignan- cies, as well as those undergoing hematopoietic cell transplantation (HCT), with the focus on herpesviruses causing latent infections in severely immunocompromised patients. From the hematologist point of view, viruses can play a major role in four conditions: causing infections; causing lymphoproliferations and/or malignancies; causing (pan)cytopenia; and used as vectors in treatment (e.g., gene therapy, CAR-T cells). Taking into account the role of viruses in hematology, infection is the most frequent condition. Among DNA viruses, the highest morbidity potential for human is expressed by Herpesviridiae (herpesviruses), Adenoviridae (adenovirus; ADV), Polyomavirus (BKV, JCV), and Bocavirus. RNA viruses can play a role in pathogenesis of different clinical conditions and diseases: lymphoproliferative disorders and malignancy, possibly causing NHL, AML, MDS, and others (HCV, HIV, and others); pancytopenia and aplastic anemia (HIV, HCV, Dengue virus); respiratory infections (community-acquired respiratory virus infections; CARV) caused by Orthomyxoviruses (e.g. influenza A/B), Paramyxoviruses (e.g. human parainfluenza virus PIV-1, -2, -3, and -4; respiratory syncytial virus RSV-A and -B), picornaviruses (e.g., human rhinovirus), coronaviruses (e.g., human coronavirus), Pneumoviridiae (e.g., human metapneumovirus), and potentially other viruses. © 2019 Polish Society of Hematology and Transfusion Medicine, Insitute of Hematology and Transfusion Medicine. Published by Sciendo.","CMV; EBV; herpesviruses; HHV-6; VZV","antineoplastic agent; antivirus agent; virus vaccine; age; clinical feature; diagnostic test; disease association; disease severity; hematologic disease; hematologic malignancy; hematology; hematopoietic stem cell transplantation; Herpes simplex virus; herpes virus infection; human; Human herpesvirus 7; Human herpesvirus 8; immunocompromised patient; immunosuppressive treatment; incidence; infection prevention; infection risk; Kaposi sarcoma; outcome assessment; patient risk; phase 3 clinical trial (topic); Review; risk assessment; risk factor; serology; seroprevalence; symptom; vaccination; virus classification; virus infection; virus reactivation","Wimmer, E., Mueller, S., Tumpey, T.M., Taubenberger, J.K., Synthetic viruses: A new opportunity to understand and prevent viral disease (2009) Nat Biotechnol, 27, pp. 1163-1172; Parker, M.T., An ecological framework of the human virome provides classification of current knowledge and identifies areas of forthcoming discovery (2016) Yale J Biol Med, 89, pp. 339-351; O'Leary, N.A., Wright, M.W., Brister, J.R., Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation (2016) Nucleic Acids Res, 44, pp. D733-D745; Van Regenmortel, M.H., Mahy, B.W., Emerging issues in virus taxonomy (2004) Emerg Infect Dis, 10, pp. 8-13; Styczynski, J., Reusser, P., Einsele, H., Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: Guidelines from the second european conference on infections in leukemia (2009) Bone Marrow Transplant, 43, pp. 757-770; Ljungman, P., De La-Camara, R., Cordonnier, C., Management of CMV, HHV-6, HHV-7 and kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT (2008) Bone Marrow Transplant, 42, pp. 227-240; Styczynski, J., Managing post-transplant lymphoproliferative disorder (2017) Expert Opinion Orphan Drugs, 5, pp. 19-35; Styczynski, J., Who Is the patient at risk of CMV recurrence: A review of the current scientific evidence with a focus on hematopoietic cell transplantation (2018) Infect Dis Ther, 7, pp. 1-16; Manicklal, S., Emery, V.C., Lazzarotto, T., Boppana, S.B., Gupta, R.K., The ""silent"" global burden of congenital cytomegalovirus (2013) Clin Microbiol Rev, 26, pp. 86-102; Cesaro, S., Tridello, G., Van Der-Werf, S., Incidence and outcome of kaposi sarcoma after hematopoietic stem cell transplantation: A retrospective analysis and a review of the literature, on behalf of infectious diseases working party of EBMT (2019) Bone Marrow Transplant, , accepted for publication; Ljungman, P., Brand, R., Factors influencing cytomegalovirus seropositivity in stem cell transplant patients and donors (2007) Haematologica, 92, pp. 1139-1142; Hyde, T.B., Schmid, D.S., Cannon, M.J., Cytomegalovirus seroconversion rates and risk factors: Implications for congenital CMV (2010) Rev Med Virol, 20, pp. 311-326; Cannon, M.J., Schmid, D.S., Hyde, T.B., Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection (2010) Rev Med Virol, 20, pp. 202-213; Hill, J.A., Magaret, A.S., Hall-Sedlak, R., Outcomes of hematopoietic cell transplantation using donors or recipients with inherited chromosomally integrated HHV-6 (2017) Blood, 130, pp. 1062-1069; Hill, J.A., Mayer, B.T., Xie, H., The cumulative burden of double-stranded DNA virus detection after allogeneic HCT is associated with increased mortality (2017) Blood, 129, pp. 2316-2325; Ward, K.N., Child and adult forms of human herpesvirus 6 encephalitis: Looking back, looking forward (2014) Curr Opin Neurol, 27, pp. 349-355; Schmidt-Hieber, M., Schwender, J., Heinz, W.J., Viral encephalitis after allogeneic stem cell transplantation: A rare complication with distinct characteristics of different causative agents (2011) Haematologica, 96, pp. 142-149; Wu, M., Huang, F., Jiang, X., Herpesvirus-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation (2013) PLoS One, 8; Styczyński, J., Czyzewski, K., Siewiera, K., Viral infections in children undergoing hematopoietic stem cell transplantation (2015) Acta Haematol Pol, 46, pp. 312-317; Styczyński, J., Czyzewski, K., Fraczkiewicz, J., Viral infections in children undergoing hematopoietic stem cell transplantation: Report 2016 of polish pediatric infectious working group of polish society of pediatric oncology and hematology (2017) Acta Haematol Pol, 48, pp. 23-27; Czyzewski, K., Styczyński, J., Giebel, S., Age-dependent determinants of infectious complications profile in children and adults after hematopoietic cell transplantation: Lesson from the nationwide study (2019) Ann Hematol, , e-pub ahaed of print; Ljungman, P., De La-Camara, R., Robin, C., Guidelines for the management of cytomegalovirus infection in patients with haematological malignancies and after stem cell transplantation from the 2017 european conference on infections in leukaemia (ECIL 7) (2019) Lancet Infect Dis, , e-pub ahaed of print; Styczynski, J., Van Der-Velden, W., Fox, C.P., Management of Epstein-Barr virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: Sixth european conference on infections in leukemia (ECIL-6) guidelines (2016) Haematologica, 101, pp. 803-811; Winston, D.J., Mullane, K.M., Cornely, O.A., Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: An international, multicentre, randomised, double-blind, placebo-controlled trial (2018) Lancet, 391, pp. 2116-2127; Mikulska, M., Cesaro, S., De Lavallade, H., Vaccination of patients with haematological malignancies who did not have transplantations: Guidelines from the 2017 european conference on infections in leukaemia (ECIL 7) (2019) Lancet Infect Dis, 19, pp. e188-e199; Cordonnier, C., Einarsdottir, S., Cesaro, S., Vaccination of haemopoietic stem cell transplant recipients: Guidelines of the 2017 european conference on infections in leukaemia (ECIL 7) (2019) Lancet Infect Dis, 19, pp. e200-e212; Cordonnier, C., Mikulska, M., Einarsdottir, S., Cesaro, S., Ljungman, P., 2017 ECIL 7 vaccine guidelines (2019) Lancet Infect Dis, 19, pp. 694-695; Hus, I., Piekarska, A., Roliński, J., Szczepienia ochronne u dorosłych chorych na nowotwory hematologiczne oraz u chorych z asplenia - Zalecenia PTHiT i sekcji do spraw zakażeń PALG (2018) Acta Haematol Pol, 49, pp. 93-101; Piekarska, A., Giebel, S., Basak, G., Szczepienia ochronne u chorych dorosłych po przeszczepieniu komórek krwiotwórczych - Zalecenia sekcji do spraw zakażeń PALG (2017) Acta Haematol Pol, 48, pp. 1-9; Erard, V., Guthrie, K.A., Seo, S., Reduced mortality of cytomegalovirus pneumonia after hematopoietic cell transplantation due to antiviral therapy and changes in transplantation practices (2015) Clin Infect Dis, 61, pp. 31-39; Styczynski, J., Gil, L., Tridello, G., Response to rituximab-based therapy and risk factor analysis in Epstein Barr virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: A study from the infectious diseases working party of the european group for blood and marrow transplantation (2013) Clin Infect Dis, 57, pp. 794-802; Ogata, M., Oshima, K., Ikebe, T., Clinical characteristics and outcome of human herpesvirus-6 encephalitis after allogeneic hematopoietic stem cell transplantation (2017) Bone Marrow Transplant, 52, pp. 1563-1570; Green, M.L., Leisenring, W., Xie, H., Cytomegalovirus viral load and mortality after haemopoietic stem cell transplantation in the era of pre-emptive therapy: A retrospective cohort study (2016) Lancet Haematol, 3, pp. e119-e127; Ljungman, P., Brand, R., Hoek, J., Infectious diseases working party of the european group for B, marrow T: Donor cytomegalovirus status influences the outcome of allogeneic stem cell transplant: A study by the european group for blood and marrow transplantation (2014) Clin Infect Dis, 59, pp. 473-481; Styczynski, J., Tridello, G., Gil, L., Impact of donor Epstein-Barr virus serostatus on the incidence of graft-versus-host disease in patients with acute leukemia after hematopoietic stem-cell transplantation: A study from the acute leukemia and infectious diseases working parties of the european society for blood and marrow transplantation (2016) J Clin Oncol, 34, pp. 2212-2220; Dierickx, D., Habermann, T.M., Post-transplantation lymphoproliferative disorders in adults (2018) N Engl J Med, 378, pp. 549-562; Seo, H.M., Kim, Y.S., Bang, C.H., Antiviral prophylaxis for preventing herpes zoster in hematopoietic stem cell transplant recipients: A systematic review and meta-analysis (2017) Antiviral Res, 140, pp. 106-115","Styczyński, J.; Department of Pediatric Hematology and Oncology, Jurasz University Hospital, Collegium Medicum UMK, Curie-Sklodowskiej 9 Street, Poland; email: jstyczynski@cm.umk.pl",,"Sciendo",00015814,,AHPLB,,"English","Acta Haematol. Pol.",Review,"Final",Open Access,Scopus,2-s2.0-85073256713 "Kane M., Golovkina T.V.","7202168148;7003303107;","Mapping Viral Susceptibility Loci in Mice",2019,"Annual Review of Virology","6",,,"525","546",,,"10.1146/annurev-virology-092818-015544","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072764160&doi=10.1146%2fannurev-virology-092818-015544&partnerID=40&md5=e43f15981c81890a88862c476776af0a","Center for Microbial Pathogenesis, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States; Department of Microbiology, University of Chicago, Chicago, IL 60637, United States","Kane, M., Center for Microbial Pathogenesis, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States; Golovkina, T.V., Department of Microbiology, University of Chicago, Chicago, IL 60637, United States","Genetic alleles that contribute to enhanced susceptibility or resistance to viral infections and virally induced diseases have often been first identified in mice before humans due to the significant advantages of the murine system for genetic studies. Herein we review multiple discoveries that have revealed significant insights into virus-host interactions, all made using genetic mapping tools in mice. Factors that have been identified include innate and adaptive immunity genes that contribute to host defense against pathogenic viruses such as herpes viruses, flaviviruses, retroviruses, and coronaviruses. Understanding the genetic mechanisms that affect infectious disease outcomes will aid the development of personalized treatment and preventive strategies for pathogenic infections. © 2019 by Annual Reviews. All rights reserved.","genes; infection; innate and adaptive immunity; positional cloning; virus","Myxovirus resistance protein; oligoadenylate synthetase 1b; synthetase; unclassified drug; adaptive immunity; antiviral activity; Article; Coronavirinae; cytomegalovirus infection; Flavivirus; Flavivirus infection; Friend murine leukemia virus; gene locus; gene mapping; genetic regulation; herpes virus infection; host resistance; human; innate immunity; lung disease; mouse; Murine cytomegalovirus; natural killer cell; nonhuman; priority journal; retroposon; Retroviridae; vascular disease; virus cell interaction; virus infection; virus infectivity; virus pathogenesis","Kenney, A.D., Dowdle, J.A., Bozzacco, L., McMichael, T.M., Gelais, C., Human genetic determinants of viral diseases (2017) Annu. Rev. Genet., 51, pp. 241-263; Blackwell, J.M., Jamieson, S.E., Burgner, D., HLA and infectious diseases (2009) Clin. Microbiol. Rev., 22, pp. 370-385; Kauppi, L., Jeffreys, A.J., Keeney, S., Where the crossovers are: Recombination distributions in mammals (2004) Nat. Rev. Genet., 5, pp. 413-424; Davisson, M.T., Bergstrom, D.E., Reinholdt, L.G., Donahue, L.R., Discovery genetics\-The history and future of spontaneous mutation research (2012) Curr. Protoc. Mouse Biol., 2, pp. 103-118; Strong, L.C., (1978) Inbred Mice in Science, , In Origin of Inbred Mice, ed. HI Morse, pp. 45-68. New York: Academic; Bonhomme, F., Guenet, J.L., Dod, B., Moriwaki, K., Bulfield, G., The polyphyletic origin of laboratory inbred mice and their rate of evolution (1987) Biol. J. Linn. Soc., 30, pp. 51-58; Wiltshire, T., Pletcher, M.T., Batalov, S., Barnes, S.W., Tarantino, L.M., Genome-wide singlenucleotide polymorphism analysis defines haplotype patterns in mouse (2003) PNAS, 100, pp. 3380-3385; Russell, W.L., Kelly, E.M., Hunsicker, P.R., Bangham, J.W., Maddux, S.C., Phipps, E.L., Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse (1979) PNAS, 76, pp. 5818-5819; Takeda, J., Keng, V.W., Horie, K., Germline mutagenesis mediated by Sleeping Beauty transposon system in mice (2007) Genome Biol., 8, p. S14; Li, L., Liu, P., Sun, L., Bin, Z., Fei, J., PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice (2016) Sci. Rep., 6, p. 27788; Churchill, G.A., Airey, D.C., Allayee, H., Angel, J.M., Attie, A.D., The Collaborative Cross, a community resource for the genetic analysis of complex traits (2004) Nat. Genet., 36, pp. 1133-1137; Medzhitov, R., Janeway, C.A., Jr., Innate immunity: The virtues of a nonclonal system of recognition (1997) Cell, 91, pp. 295-298; Kawai, T., Akira, S., The role of pattern-recognition receptors in innate immunity: Update on Tolllike receptors (2010) Nat. Immunol., 11, pp. 373-384; Ichinohe, T., Pang, I.K., Iwasaki, A., Influenza virus activates inflammasomes via its intracellular M2 ion channel (2010) Nat. Immunol., 11, pp. 404-410; Pertel, T., Hausmann, S., Morger, D., Zuger, S., Guerra, J., TRIM5 is an innate immune sensor for the retrovirus capsid lattice (2011) Nature, 472, pp. 361-365; Fletcher, A.J., Vaysburd, M., Maslen, S., Zeng, J., Skehel, J.M., Trivalent RING assembly on retroviral capsids activates TRIM5 ubiquitination and innate immune signaling (2018) Cell Host Microbe, 24, pp. 761-775; Booth, T.W., Scalzo, A.A., Carrello, C., Lyons, P.A., Farrell, H.E., Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice (1993) Arch. Virol., 132, pp. 209-220; Mannini, A., Medearis, D.N., Jr., Mouse salivary gland virus infections (1961) Am. J. Hyg., 73, pp. 329-343; Webb, J.R., Lee, S.H., Vidal, S.M., Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match (2002) Genes Immun., 3, pp. 250-262; Crozat, K., Georgel, P., Rutschmann, S., Mann, N., Du, X., Analysis of the MCMV resistome by ENU mutagenesis (2006) Mamm. Genome, 17, pp. 398-406; Moresco, E.M., Beutler, B., Resisting viral infection: The gene by gene approach (2011) Curr. Opin. Virol., 1, pp. 513-518; Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection (2004) PNAS, 101, pp. 3516-3521; Tabeta, K., Hoebe, K., Janssen, E.M., Du, X., Georgel, P., The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9 (2006) Nat. Immunol., 7, pp. 156-164; Pelka, K., Bertheloot, D., Reimer, E., Phulphagar, K., Schmidt, S.V., The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport (2018) Immunity, 48, pp. 911-922; Crane, M.J., Gaddi, P.J., Salazar-Mather, T.P., UNC93B1 mediates innate inflammation and antiviral defense in the liver during acute murine cytomegalovirus infection (2012) PLOS ONE, 7, p. e39161; Casrouge, A., Zhang, S.Y., Eidenschenk, C., Jouanguy, E., Puel, A., Herpes simplex virus encephalitis in human UNC-93B deficiency (2006) Science, 314, pp. 308-312; Cerwenka, A., Lanier, L.L., Natural killer cell memory in infection, inflammation and cancer (2016) Nat. Rev. Immunol., 16, pp. 112-123; Moussa, P., Marton, J., Vidal, S.M., Fodil-Cornu, N., Genetic dissection of NK cell responses (2012) Front. Immunol., 3, p. 425; Lee, S.H., Webb, J.R., Vidal, S.M., Innate immunity to cytomegalovirus: The Cmv1 locus and its role in natural killer cell function (2002) Microbes Infect., 4, pp. 1491-1503; Shellam, G.R., Allan, J.E., Papadimitriou, J.M., Bancroft, G.J., Increased susceptibility to cytomegalovirus infection in beige mutant mice (1981) PNAS, 78, pp. 5104-5108; Bancroft, G.J., Shellam, G.R., Chalmer, J.E., Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: Correlation with patterns of resistance (1981) J. Immunol., 126, pp. 988-994; Bukowski, J.F., Woda, B.A., Welsh, R.M., Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice (1984) J. Virol., 52, pp. 119-128; Welsh, R.M., Dundon, P.L., Eynon, E.E., Brubaker, J.O., Koo, G.C., O'Donnell, C.L., Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK 1 1) (1990) Nat. Immun. Cell Growth Regul., 9, pp. 112-120; Scalzo, A.A., Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen (1990) J. Exp. Med., 171, pp. 1469-1483; Forbes, C.A., Brown, M.G., Cho, R., Shellam, G.R., Yokoyama, W.M., Scalzo, A.A., The Cmv1 host resistance locus is closely linked to the Ly49 multigene family within the natural killer cell gene complex on mouse chromosome 6 (1997) Genomics, 41, pp. 406-413; Brown, M.G., Zhang, J., Du, Y., Stoll, J., Yokoyama, W.M., Scalzo, A.A., Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the Prp gene cluster on mouse chromosome 6 (1999) J. Immunol., 163, pp. 1991-1999; Ortaldo, J.R., Winkler-Pickett, R., Mason, A.T., Mason, L.H., The Ly-49 family: Regulation of cytotoxicity and cytokine production in murine CD3+ cells (1998) J. Immunol., 160, pp. 1158-1165; Daniels, K.A., Devora, G., Lai, W.C., O'Donnell, C.L., Bennett, M., Welsh, R.M., Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to ly49h (2001) J. Exp. Med., 194, pp. 29-44; Lee, S.H., Girard, S., Macina, D., Busa, M., Zafer, A., Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily (2001) Nat. Genet., 28, pp. 42-45; Brown, M.G., Dokun, A.O., Heusel, J.W., Smith, H.R., Beckman, D.L., Vital involvement of a natural killer cell activation receptor in resistance to viral infection (2001) Science, 292, pp. 934-937; Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B., Lanier, L.L., Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors (2002) Science, 296, pp. 1323-1326; Brown, M.G., Scalzo, A.A., Stone, L.R., Clark, P.Y., Du, Y., Natural killer gene complex (Nkc) allelic variability in inbred mice: Evidence for Nkc haplotypes (2001) Immunogenetics, 53, pp. 584-591; Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J.H., Activation ofNKcells and T cells by NKG2D, a receptor for stress-inducible MICA (1999) Science, 285, pp. 727-729; Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A., Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity (1997) Nature, 388, pp. 394-397; Medzhitov, R., Toll-like receptors and innate immunity (2001) Nat. Rev. Immunol., 1, pp. 135-145; Chesebro, B., Wehrly, K., Identification of a non-H-2 gene (Rfv-3) influencing recovery from viremia and leukemia induced by Friend virus complex (1979) PNAS, 76, pp. 425-429; Hasenkrug, K.J., Valenzuela, A., Letts, V.A., Nishio, J., Chesebro, B., Frankel, W.N., Chromosome mapping of Rfv3, a host resistance gene to Friend murine retrovirus (1995) J. Virol., 69, pp. 2617-2620; Super, H.J., Hasenkrug, K.J., Simmons, S., Brooks, D.M., Konzek, R., Fine mapping of the friend retrovirus resistance gene, Rfv3, on mouse chromosome 15 (1999) J. Virol., 73, pp. 7848-7852; Miyazawa, M., Tsuji-Kawahara, S., Kanari, Y., Host genetic factors that control immune responses to retrovirus infections (2008) Vaccine, 26, pp. 2981-2996; Santiago, M.L., Montano, M., Benitez, R., Messer, R.J., Yonemoto, W., Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection (2008) Science, 321, pp. 1343-1346; Jarmuz, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, I., An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22 (2002) Genomics, 79, pp. 285-296; Stavrou, S., Ross, S.R., APOBEC3 proteins in viral immunity (2015) J. Immunol., 195, pp. 4565-4570; Case, L.K., Petell, L., Yurkovetskiy, L., Purdy, A., Savage, K.J., Golovkina, T.V., Replication of beta-and gammaretroviruses is restricted in I/LnJ mice via the same genetic mechanism (2008) J. Virol., 82, pp. 1438-1447; Purdy, A., Case, L., Duvall, M., Overstrom-Coleman, M., Monnier, N., Unique resistance of I/LnJ mice to a retrovirus is due to sustained interferon γ-dependent production of virus-neutralizing antibodies (2003) J. Exp. Med., 197, pp. 233-243; Case, L.K., Purdy, A., Golovkina, T.V., Molecular and cellular basis of the retrovirus resistance in I/LnJ mice (2005) J. Immunol., 175, pp. 7543-7549; Golovkina, T.V., A novel mechanism of resistance tomousemammary tumor virus infection (2000) J. Virol., 74, pp. 2752-2759; Kane, M., Case, L.K., Wang, C., Yurkovetskiy, L., Dikiy, S., Golovkina, T.V., Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry (2011) Immunity, 35, pp. 135-145; Denzin, L.K., Khan, A.A., Virdis, F., Wilks, J., Kane, M., Neutralizing antibody responses to viral infections are linked to the non-classical MHC class II gene H2-Ob (2017) Immunity, 47, pp. 310-322; Karlsson, L., Surh, C.D., Sprent, J., Peterson, P.A., A novel class II MHC molecule with unusual tissue distribution (1991) Nature, 351, pp. 485-488; Denzin, L.K., Sant'Angelo, D.B., Hammond, C., Surman, M.J., Cresswell, P., Negative regulation by HLA-do of MHC class II-restricted antigen processing (1997) Science, 278, pp. 106-109; Denzin, L.K., Inhibition of HLA-dm mediated MHC class II peptide loading by HLA-do promotes self tolerance (2013) Front. Immunol., 4, p. 465; Mellins, E.D., Stern, L.J., HLA-dm and HLA-do, key regulators of MHC-II processing and presentation (2014) Curr. Opin. Immunol., 26, pp. 115-122; Blum, J.S., Wearsch, P.A., Cresswell, P., Pathways of antigen processing (2013) Annu. Rev. Immunol., 31, pp. 443-473; Guce, A.I., Mortimer, S.E., Yoon, T., Painter, C.A., Jiang, W., HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism (2013) Nat. Struct. Mol. Biol., 20, pp. 90-98; Oldstone, M.B., Dixon, F.J., Mitchell, G.F., McDevitt, H.O., Histocompatibility-linked genetic control of disease susceptibility: Murine lymphocytic choriomeningitis virus infection (1973) J. Exp. Med., 137, pp. 1201-1212; Cespedes, I.S., Toka, F.N., Schollenberger, A., Gierynska, M., Niemialtowski, M., Pathogenesis of mousepox in h-2d mice: Evidence for MHC class i-restricted cd8+ andmhc class II-restricted cd4+ ctl antiviral activity in the lymph nodes, spleen and skin, but not in the conjunctivae (2001) Microbes Infect., 3, pp. 1063-1072; Clatch, R.J., Melvold, R.W., Miller, S.D., Lipton, H.L., Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease in mice is influenced by the H-2D region: Correlation with TEMV-specific delayed-type hypersensitivity (1985) J. Immunol., 135, pp. 1408-1414; Xie, X., Dighe, A., Clark, P., Sabastian, P., Buss, S., Brown, M.G., Deficient major histocompatibility complex-linked innate murine cytomegalovirus immunity in ma/my l-h2b mice and viral downregulation of h-2k class i proteins (2007) J. Virol., 81, pp. 229-236; Chalmer, J.E., Mackenzie, J.S., Stanley, N.F., Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse (1977) J. Gen. Virol., 37, pp. 107-114; Bieniasz, P.D., Intrinsic immunity: A front-line defense against viral attack (2004) Nat. Immunol., 5, pp. 1109-1115; Malim, M.H., Bieniasz, P.D., HIV restriction factors and mechanisms of evasion (2012) Cold Spring Harb. Perspect. Med., 2, p. a006940; Blanco-Melo, D., Venkatesh, S., Bieniasz, P.D., Intrinsic cellular defenses against human immunodeficiency viruses (2012) Immunity, 37, pp. 399-411; Lindenmann, J., Lane, C.A., Hobson, D., The resistance of A2G mice to myxoviruses (1963) J. Immunol., 90, pp. 942-951; Haller, O., Arnheiter, H., Gresser, I., Lindenmann, J., Genetically determined, interferon-dependent resistance to influenza virus in mice (1979) J. Exp. Med., 149, pp. 601-612; Lindenmann, J., Inborn resistance ofmice to myxoviruses: Macrophages express phenotype in vitro (1978) J. Exp. Med., 147, pp. 531-540; Fiske, R.A., Klein, P.A., Effect of immunosuppression on the genetic resistance of A2G mice to neurovirulent influenza virus (1975) Infect. Immun., 11, pp. 576-587; Horisberger, M.A., Staeheli, P., Haller, O., Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus (1983) PNAS, 80, pp. 1910-1914; Staeheli, P., Colonno, R.J., Cheng, Y.S., Different mRNAs induced by interferon in cells from inbred mouse strains A/J and A2G (1983) J. Virol., 47, pp. 563-567; Staeheli, P., Pravtcheva, D., Lundin, L.G., Acklin, M., Ruddle, F., Interferon-regulated influenza virus resistance gene Mx is localized on mouse chromosome 16 (1986) J. Virol., 58, pp. 967-969; Staeheli, P., Grob, R., Meier, E., Sutcliffe, J.G., Haller, O., Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation (1988) Mol. Cell. Biol., 8, pp. 4518-4523; Jin, H.K., Takada, A., Kon, Y., Haller, O., Watanabe, T., Identification of the murine Mx2 gene: Interferon-induced expression of theMx2 protein from the feral mouse gene confers resistance to vesicular stomatitis virus (1999) J. Virol., 73, pp. 4925-4930; Haller, O., Staeheli, P., Schwemmle, M., Kochs, G., Mx GTPases: Dynamin-like antiviral machines of innate immunity (2015) Trends Microbiol., 23, pp. 154-163; Kane, M., Yadav, S.S., Bitzegeio, J., Kutluay, S.B., Zang, T., MX2 is an interferon-induced inhibitor of HIV-1 infection (2013) Nature, 502, pp. 563-566; Goujon, C., Moncorge, O., Bauby, H., Doyle, T., Ward, C.C., HumanMX2 is an interferon-induced post-entry inhibitor of HIV-1 infection (2013) Nature, 502, pp. 559-562; Schilling, M., Bulli, L., Weigang, S., Graf, L., Naumann, S., Human MxB protein is a panherpesvirus restriction factor (2018) J. Virol., 92, pp. e01056-e01118; Liu, Z., Pan, Q., Ding, S., Qian, J., Xu, F., The interferon-inducible MxB protein inhibits HIV-1 infection (2013) Cell Host Microbe, 14, pp. 398-410; Crameri, M., Bauer, M., Caduff, N., Walker, R., Steiner, F., MxB is an interferon-induced restriction factor of human herpesviruses (2018) Nat. Commun., 9, p. 1980; Lynch, C.J., Hughes, T.P., The inheritance of susceptibility to yellow fever encephalitis in mice (1936) Genetics, 21, pp. 104-112; Green, M.C., (1989) Catalog of Mutant Genes and Polymorphic Loci, , In Genetic Variants and Strains of the Laboratory Mouse, ed. MF Lyon, AG Searle, pp. 12-403. New York: Oxford Univ. Press; Sangster, M.Y., Heliams, D.B., MacKenzie, J.S., Shellam, G.R., Genetic studies of flavivirus resistance in inbred strains derived from wild mice: Evidence for a new resistance allele at the flavivirus resistance locus (Flv) (1993) J. Virol., 67, pp. 340-347; Sangster, M.Y., Shellam, G.R., Genetically controlled resistance to flaviviruses within the housemouse complex of species (1986) Curr. Top. Microbiol. Immunol., 127, pp. 313-318; Webster, L.T., Clow, A.D., Experimental encephalitis (St Louis type) in mice with high inborn resistance: A chronic subclinical infection (1936) J. Exp. Med., 63, pp. 827-845; Goodman, G.T., Koprowski, H., Study of the mechanism of innate resistance to virus infection (1962) J. Cell Comp. Physiol., 59, pp. 333-373; Brinton, M.A., Arnheiter, H., Haller, O., Interferon independence of genetically controlled resistance to flaviviruses (1982) Infect. Immun., 36, pp. 284-288; Sangster, M.Y., Urosevic, N., Mansfield, J.P., Mackenzie, J.S., Shellam, G.R., Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5 (1994) J. Virol., 68, pp. 448-452; Urosevic, N., Mansfield, J.P., Mackenzie, J.S., Shellam, G.R., Low resolution mapping around the flavivirus resistance locus (Flv) on mouse chromosome 5 (1995) Mamm. Genome, 6, pp. 454-458; Perelygin, A.A., Scherbik, S.V., Zhulin, I.B., Stockman, B.M., Li, Y., Brinton, M.A., Positional cloning of the murine flavivirus resistance gene (2002) PNAS, 99, pp. 9322-9327; Mashimo, T., Lucas, M., Simon-Chazottes, D., Frenkiel, M.P., Montagutelli, X., A nonsense mutation in the gene encoding 2-5-oligoadenylate synthetase/L1 isoform is associated withWest Nile virus susceptibility in laboratory mice (2002) PNAS, 99, pp. 11311-11316; Scherbik, S.V., Kluetzman, K., Perelygin, A.A., Brinton, M.A., Knock-in of the Oas1br allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype (2007) Virology, 368, pp. 232-237; Mashimo, T., Simon-Chazottes, D., Guenet, J.L., Innate resistance to flavivirus infections and the functions of 2-5 oligoadenylate synthetases (2008) Curr. Top. Microbiol. Immunol., 321, pp. 85-100; Scherbik, S.V., Paranjape, J.M., Stockman, B.M., Silverman, R.H., Brinton, M.A., RNase L plays a role in the antiviral response toWest Nile virus (2006) J. Virol., 80, pp. 2987-2999; Rios, J.J., Fleming, J.G., Bryant, U.K., Carter, C.N., Huber, J.C., OAS1 polymorphisms are associated with susceptibility toWest Nile encephalitis in horses (2010) PLOS ONE, 5, p. e10537; Lim, J.K., Lisco, A., McDermott, D.H., Huynh, L., Ward, J.M., Genetic variation in OAS1 is a risk factor for initial infection withWest Nile virus in man (2009) PLOS Pathog., 5, p. e1000321; Li, C.Z., Kato, N., Chang, J.H., Muroyama, R., Shao, R.X., Polymorphism ofOAS-1 determines liver fibrosis progression in hepatitis C by reduced ability to inhibit viral replication (2009) Liver Int., 29, pp. 1413-1421; Garcia-Alvarez, M., Berenguer, J., Jimenez-Sousa, M.A., Pineda-Tenor, D., Aldamiz-Echevarria, T., Mx1, oas1 and oas2 polymorphisms are associated with the severity of liver disease in HIV/hcvcoinfected patients: A cross-sectional study (2017) Sci. Rep., 7, p. 41516; Suzuki, S., FV-4: A new gene affecting the splenomegaly induction by Friend leukemia virus (1975) Jpn. J. Exp. Med., 45, pp. 473-478; Ikeda, H., Odaka, T., Cellular expression of murine leukemia virus gp70-related antigen on thymocytes of uninfected mice correlates with Fv-4 gene-controlled resistance to Friend leukemia virus infection (1983) Virology, 128, pp. 127-139; Ikeda, H., Sugimura, H., Fv-4 resistance gene: A truncated endogenous murine leukemia virus with ecotropic interference properties (1989) J. Virol., 63, pp. 5405-5412; Johnson, W.E., Endogenous retroviruses in the genomics era (2015) Annu. Rev. Virol., 2, pp. 135-159; Blanco-Melo, D., Gifford, R.J., Bieniasz, P.D., Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors (2017) ELife, 6, p. e22519; Lilly, F., Susceptibility to two strains of Friend leukemia virus in mice (1967) Science, 155, pp. 461-462; Pincus, T., Hartley, J.W., Rowe, W.P., A major genetic locus affecting resistance to infection with murine leukemia viruses (1971) I. Tissue Culture Studies of Naturally Occurring Viruses. J. Exp. Med., 133, pp. 1219-1233; Hartley, J.W., Rowe, W.P., Huebner, R.J., Host-range restrictions of murine leukemia viruses inmouse embryo cell cultures (1970) J. Virol., 5, pp. 221-225; Lilly, F., Fv-2: Identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice (1970) J. Natl. Cancer Inst., 45, pp. 163-169; Rowe, W.P., Humphrey, J.B., Lilly, F., A major genetic locus affecting resistance to infection with murine leukemia viruses 3 Assignment of the Fv-1 locus to linkage group 8 of the mouse (1973) J. Exp. Med., 137, pp. 850-853; DesGroseillers, L., Jolicoeur, P., Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses (1983) J. Virol., 48, pp. 685-696; Boone, L.R., Innes, C.L., Heitman, C.K., Abrogation of Fv-1 restriction by genome-deficient virions produced by a retrovirus packaging cell line (1990) J. Virol., 64, pp. 3376-3381; Bassin, R.H., Duran-Troise, G., Gerwin, B.I., Rein, A., Abrogation of Fv-1b restriction with murine leukemia viruses inactivated by heat or by gamma irradiation (1978) J. Virol., 26, pp. 306-315; Best, S., Le Tissier, P., Towers, G., Stoye, J.P., Positional cloning of the mouse retrovirus restriction gene Fv1 (1996) Nature, 382, pp. 826-829; Young, G.R., Yap, M.W., Michaux, J.R., Steppan, S.J., Stoye, J.P., Evolutionary journey of the retroviral restriction gene Fv1 (2018) PNAS, 115, pp. 10130-10135; Yap, M.W., Colbeck, E., Ellis, S.A., Stoye, J.P., Evolution of the retroviral restriction gene Fv1: Inhibition of non-MLV retroviruses (2014) PLOS Pathog., 10, p. e1003968; Bieniasz, P.D., Restriction factors: A defense against retroviral infection (2003) TrendsMicrobiol., 11, pp. 286-291; Stremlau, M., Owens, C.M., Perron, M.J., Kiessling, M., Autissier, P., Sodroski, J., The cytoplasmic body component TRIM5αrestricts HIV-1 infection in OldWorld monkeys (2004) Nature, 427, pp. 848-853; Jia, X., Zhao, Q., Xiong, Y., HIV suppression by host restriction factors and viral immune evasion (2015) Curr. Opin. Struct. Biol., 31, pp. 106-114; Rasmussen, A.L., Okumura, A., Ferris, M.T., Green, R., Feldmann, F., Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance (2014) Science, 346, pp. 987-991; Savant, S., La Porta, S., Budnik, A., Busch, K., Hu, J., The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells (2015) Cell Rep., 12, pp. 1761-1773; Ghosh, C.C., David, S., Zhang, R., Berghelli, A., Milam, K., Gene control of tyrosine kinase TIE2 and vascular manifestations of infections (2016) PNAS, 113, pp. 2472-2477; Higgins, S.J., De Ceunynck, K., Kellum, J.A., Chen, X., Gu, X., Tie2 protects the vasculature against thrombus formation in systemic inflammation (2018) J. Clin. Invest., 128, pp. 1471-1484; Vikkula, M., Boon, L.M., Carraway, K.L., III, Calvert, J.T., Diamonti, A.J., Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2 (1996) Cell, 87, pp. 1181-1190; Zheng, Q., Du, J., Zhang, Z., Xu, J., Fu, L., Association study between of Tie2/angiopoietin-2 and VEGF/KDR pathway gene polymorphisms and vascular malformations (2013) Gene, 523, pp. 195-198; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Peiris, J.S., Chu, C.M., Cheng, V.C., Chan, K.S., Hung, I.F., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study (2003) Lancet, 361, pp. 1767-1772; Ip, W.K., Chan, K.H., Law, H.K., Tso, G.H., Kong, E.K., Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection (2005) J. Infect. Dis., 191, pp. 1697-1704; Gralinski, L.E., Ferris, M.T., Aylor, D.L., Whitmore, A.C., Green, R., Genome wide identification of sars-cov susceptibility loci using the collaborative cross (2015) PLOS Genet., 11, p. e1005504; Ozato, K., Shin, D.M., Chang, T.H., Morse, H.C., III, TRIM family proteins and their emerging roles in innate immunity (2008) Nat. Rev. Immunol., 8, pp. 849-860; Gralinski, L.E., Menachery, V.D., Morgan, A.P., Totura, A.L., Beall, A., Allelic variation in the Tolllike receptor adaptor protein Ticam2 contributes to SARS-coronavirus pathogenesis in mice (2017) G3 Genes Genomes Genet., 7, pp. 1653-1663; Seya, T., Oshiumi, H., Sasai, M., Akazawa, T., Matsumoto, M., Ticam-1 and ticam-2: Toll-like receptor adapters that participate in induction of type 1 interferons (2005) Int. J. Biochem. Cell Biol., 37, pp. 524-529; Pavlovic, J., Haller, O., Staeheli, P., Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle (1992) J. Virol., 66, pp. 2564-2569; Golovkina, T.V., Chervonsky, A.V., Dudley, J.P., Ross, S.R., Transgenic mouse mammary tumor virus superantigen expression prevents viral infection (1992) Cell, 69, pp. 637-645; Held, W., Waanders, G., Shakhov, A.N., Scarpellino, L., Acha-Orbea, H., MacDonald, H.R., Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission (1993) Cell, 74, pp. 529-540; Fang, M., Lanier, L.L., Sigal, L.J., A role for NKG2D in NK cell-mediated resistance to poxvirus disease (2008) PLOS Pathog., 4, p. e30; Fang, M., Orr, M.T., Spee, P., Egebjerg, T., Lanier, L.L., Sigal, L.J., CD94 is essential forNKcell-mediated resistance to a lethal viral disease (2011) Immunity, 34, pp. 579-589; Stier, M.T., Spindler, K.R., Polymorphisms in Ly6 genes in Msq1 encoding susceptibility to mouse adenovirus type 1 (2012) Mamm. Genome, 23, pp. 250-258; Zinkernagel, R.M., Pfau, C.J., Hengartner, H., Althage, A., Susceptibility to murine lymphocytic choriomeningitis maps to class i MHC genes-A model for MHC/disease associations (1985) Nature, 316, pp. 814-817","Golovkina, T.V.; Department of Microbiology, University of ChicagoUnited States; email: tgolovki@bsd.uchicago.edu",,"Annual Reviews Inc.",2327056X,,,"31567067","English","Annu. Rev. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85072764160 "Lunn T.J., Restif O., Peel A.J., Munster V.J., De Wit E., Sokolow S., Van Doremalen N., Hudson P., McCallum H.","57189365229;13606349100;35559421700;9332531900;22834240700;57210714432;36009447200;7202250860;7005980838;","Dose-response and transmission: The nexus between reservoir hosts, nvironment and recipient hosts",2019,"Philosophical Transactions of the Royal Society B: Biological Sciences","374","1782", 20190016,"","",,3,"10.1098/rstb.2019.0016","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071280808&doi=10.1098%2frstb.2019.0016&partnerID=40&md5=3da7fb44260dae0f53aa8f3a255ec39b","Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, QLD 4111, Australia; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, United States; Stanford Woods Institute for the Environment, Stanford University, Serra Mall, Stanford, CA 94305, United States; Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, PA 16801, United States","Lunn, T.J., Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, QLD 4111, Australia; Restif, O., Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom; Peel, A.J., Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, QLD 4111, Australia; Munster, V.J., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, United States; De Wit, E., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, United States; Sokolow, S., Stanford Woods Institute for the Environment, Stanford University, Serra Mall, Stanford, CA 94305, United States; Van Doremalen, N., Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, MT 59840, United States; Hudson, P., Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, PA 16801, United States; McCallum, H., Environmental Futures Research Institute, Griffith University, Kessels Road, Nathan, QLD 4111, Australia","Dose is the nexus between exposure and all upstream processes that determine pathogen pressure, and is thereby an important element underlying disease dynamics. Understanding the relationship between dose and disease is particularly important in the context of spillover, where nonlinearities in the dose-response could determine the likelihood of transmission. There is a need to explore dose-response models for directly transmitted and zoonotic pathogens, and how these interactions integrate within-host factors to consider, for example, heterogeneity in host susceptibility and dosedependent antagonism. Here, we review the dose-response literature and discuss the unique role dose-response models have to play in understanding and predicting spillover events. We present a re-analysis of dose- response experiments for two important zoonotic pathogens (Middle East respiratory syndrome coronavirus and Nipah virus), to exemplify potential difficulties in differentiating between appropriate models with small exposure experiment datasets. We also discuss the data requirements needed for robust selection between dose-response models. We then suggest how these processes could be modelled to gain more realistic predictions of zoonotic transmission outcomes and highlight the exciting opportunities that could arise with increased collaboration between the virology and epidemiology disciplines. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'. © 2019 The Author(s) Published by the Royal Society. All rights reserved.","Infection; Infectious disease; Modelling; Nonlinearities; Spillover; Virus","Coronavirus; Nipah virus","Conlan, A.J., Line, J.E., Hiett, K., Coward, C., Van Diemen, P.M., Stevens, M.P., Jones, M.A., Maskell, D.J., Transmission and dose-response experiments for social animals: A reappraisal of the colonization biology of Campylobacter jejuni in chickens (2011) J. R. Soc. Interface, 8, pp. 1720-1735; Teunis, P., Takumi, K., Shinagawa, K., Dose response for infection by Escherichia coli O157:H7 from outbreak data (2004) Risk Anal., 24, pp. 401-407; Toth, D.J.A., Quantitative models of the dose-response and time course of inhalational anthrax in humans (2013) PLoS Pathog., 9, p. 18; Haas, C.N., Thayyar-Madabusi, A., Rose, J.B., Gerba, C.P., Development of a dose-response relationship for Escherichia coli O157:H7 (2000) Int. J. Food Microbiol., 56, pp. 153-159; Manlove, K.R., Cassirer, E.F., Plowright, R.K., Cross, P.C., Hudson, P.J., Contact and contagion: Bighorn sheep demographic states vary in probability of transmission given contact (2017) J. Anim. Ecol., 86, pp. 908-920; French, N.P., Kelly, L., Jones, R., Clancy, D., Doseresponse relationships for foot and mouth disease in cattle and sheep (2002) Epidemiol. Infect., 128, pp. 325-332; Armstrong, T.W., Haas, C.N., Legionnaires' disease: Evaluation of a quantitative microbial risk assessment model (2008) J. Water Health, 6, pp. 149-166; Evers, E.G., Chardon, J.E., A swift quantitative microbiological risk assessment (sQMRA) tool (2010) Food Control, 21, pp. 319-330; Brouwer, A.F., Weir, M.H., Eisenberg, M.C., Meza, R., Eisenberg, J.N., Dose-response relationships for environmentally mediated infectious disease transmission models (2017) PLoS Comput. Biol., 13, p. e1005481; Gale, P., Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus (2018) Microbial Risk Analysis, 8, pp. 1-13; Regoes, R.R., Hottinger, J.W., Sygnarski, L., Ebert, D., The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle (2003) Epidemiol. Infect., 131, pp. 957-966; Ben-Ami, F., Regoes, R.R., Ebert, D., A quantitative test of the relationship between parasite dose and infection probability across different host-parasite combinations (2008) Proc. R. Soc. B, 275, pp. 853-859; Van Der Werf, W., Hemerik, L., Vlak, J.M., Zwart, M.P., Heterogeneous host susceptibility enhances prevalence of mixed-genotype micro-parasite infections (2011) PLoS Comput. Biol., 7, p. e1002097; Plowright, R.K., Parrish, C.R., McCallum, H., Hudson, P.J., Ko, A.I., Graham, A.L., Lloyd-Smith, J.O., Pathways to zoonotic spillover (2017) Nat. Rev. Microbiol., 15, pp. 502-510; De Wit, E., Bushmaker, T., Scott, D., Feldmann, H., Munster, V.J., Nipah virus transmission in a hamster model (2011) PLoS Negl. Trop. Dis., 5, p. e1432; Teunis, P., Havelaar, A., The Beta Poisson doseresponse model is not a single-hit model (2000) Risk Anal., 20, pp. 513-520; Fulton, R.W., The effect of dilution on necrotic ringspot virus infectivity and the enhancement of infectivity by noninfective virus (1962) Virology, 18, pp. 477-485; Sanchez-Navarro, J.A., Zwart, M.P., Elena, S.F., Effects of the number of genome segments on primary and systemic infections with a multipartite plant RNA virus (2013) J. Virol., 87, pp. 10805-10815; Cornforth, D.M., Matthews, A., Brown, S.P., Raymond, B., Bacterial cooperation causes systematic errors in pathogen risk assessment due to the failure of the independent action hypothesis (2015) PLoS Pathog., 11, p. 13; Landsberger, M., Gandon, S., Meaden, S., Rollie, C., Chevallereau, A., Chabas, H., Buckling, A., Van Houte, S., Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity (2018) Cell, 174, pp. 908-916. , e912; Teunis, P.F., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L., Norwalk virus: How infectious is it? (2008) J. Med. Virol., 80, pp. 1468-1476; Enger, K.S., Nelson, K.L., Clasen, T., Rose, J.B., Eisenberg, J.N., Linking quantitative microbial risk assessment and epidemiological data: Informing safe drinking water trials in developing countries (2012) Environ. Sci. Technol., 46, pp. 5160-5167; Teunis, P., Van Den Brandhof, W., Nauta, M., Wagenaar, J., Van Den Kerkhof, H., Van Pelt, W., A reconsideration of the Campylobacter dose-response relation (2005) Epidemiol. Infect., 133, pp. 583-592; Teunis, P.F., Kasuga, F., Fazil, A., Ogden, I.D., Rotariu, O., Strachan, N.J., Dose-response modeling of Salmonella using outbreak data (2010) Int. J. Food Microbiol., 144, pp. 243-249; Buchanan, R.L., Havelaar, A.H., Smith, M.A., Whiting, R.C., Julien, E., The key events dose-response framework: Its potential for application to foodborne pathogenic microorganisms (2009) Crit. Rev. Food Sci. Nutr., 49, pp. 718-728; Fazil, A.M., (2005) A Primer on Risk Assessment Modelling: Focus on Seafood Products, , Rome, Italy: Food &Agriculture Org; McCallum, H., Breaking beta: Deconstructing the parasite transmission function (2017) Phil. Trans. R. Soc. B, 372, p. 20160084; Anderson, R.M., May, R.M., Population biology of infectious diseases (1979) Part I. Nature, 280, pp. 361-367; Anderson, R.M., May, R.M., (1991) Infectious Diseases of Humans, , Oxford, UK: Oxford University Press; Anderson, R.M., May, R.M., The population dynamics of microparasites and their invertebrate hosts (1981) Phil. Trans. R. Soc. Lond. B, 291, pp. 451-524; Aiello, C.M., Nussear, K.E., Esque, T.C., Emblidge, P.G., Sah, P., Bansal, S., Hudson, P.J., Host contact and shedding patterns clarify variation in pathogen exposure and transmission in threatened tortoise Gopherus agassizii: Implications for disease modelling and management (2016) J. Anim. Ecol., 85, pp. 829-842; Munster, V.J., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28; Ngo, T.T., Senior, A.M., Culina, A., Santos, E.S., Vlak, J.M., Zwart, M.P., Quantitative analysis of the dose-response of white spot syndrome virus in shrimp (2018) J. Fish Dis., 41, pp. 1733-1744; Plowright, R.K., Ecological dynamics of emerging bat virus spillover (2015) Proc. R. Soc. B, 282, p. 20142124; Price, D.J., Breuze, A., Dybowski, R., Mastroeni, P., Restif, O., An efficient moments-based inference method for within-host bacterial infection dynamics (2017) PLoS Comput. Biol., 13, p. e1005841; Gostic, K.M., Wunder Jr, E.A., Bisht, V., Hamond, C., Julian, T.R., Ko, A.I., Lloyd-Smith, J.O., Mechanistic dose-response modelling of animal challenge data shows that intact skin is a crucial barrier to leptospiral infection (2019) Phil. Trans. R. Soc. B, 374, p. 20190367; Tamura S-I., Kurata, T., Defense mechanisms against influenza virus infection in the respiratory tract mucosa (2004) Jpn J. Infect. Dis., 57, pp. 236-247; Pujol, J.M., Eisenberg, J.E., Haas, C.N., Koopman, J.S., The effect of ongoing exposure dynamics in dose response relationships (2009) PLoS Comput. Biol., 5, p. e1000399","Lunn, T.J.; Environmental Futures Research Institute, Griffith University, Kessels Road, Australia; email: tamika.lunn@griffithuni.edu.au",,"Royal Society Publishing",09628436,,PTRBA,"31401955","English","Philos. Trans. R. Soc. B Biol. Sci.",Review,"Final",Open Access,Scopus,2-s2.0-85071280808 "Li Z., Tomlinson A.C.A., Wong A.H.M., Zhou D., Desforges M., Talbot P.J., Benlekbir S., Rubinstein J.L., Rini J.M.","55635136900;57197795871;55443364700;55444226800;6701643379;7102670281;26040493100;7102355745;7003834680;","The human coronavirus HCoV-229E S-protein structure and receptor binding",2019,"eLife","8",, e51230,"","",,1,"10.7554/eLife.51230","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074473579&doi=10.7554%2feLife.51230&partnerID=40&md5=c945bb567bc257015c42ce35452063e9","Department of Molecular Genetics, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada; The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, ON M5G 1L7, Canada","Li, Z., Department of Molecular Genetics, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Tomlinson, A.C.A., Department of Biochemistry, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Wong, A.H.M., Department of Biochemistry, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Zhou, D., Department of Molecular Genetics, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada; Desforges, M., Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada; Talbot, P.J., Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada; Benlekbir, S., The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Rubinstein, J.L., Department of Biochemistry, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada, Department of Medical Biophysics, The University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Toronto, ON M5G 1L7, Canada; Rini, J.M., Department of Molecular Genetics, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada, Department of Biochemistry, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada","The coronavirus S-protein mediates receptor binding and fusion of the viral and host cell membranes. In HCoV-229E, its receptor binding domain (RBD) shows extensive sequence variation but how S-protein function is maintained is not understood. Reported are the X-ray crystal structures of Class III-V RBDs in complex with human aminopeptidase N (hAPN), as well as the electron cryomicroscopy structure of the 229E S-protein. The structures show that common core interactions define the specificity for hAPN and that the peripheral RBD sequence variation is accommodated by loop plasticity. The results provide insight into immune evasion and the cross-species transmission of 229E and related coronaviruses. We also find that the 229E S-protein can expose a portion of its helical core to solvent. This is undoubtedly facilitated by hydrophilic subunit interfaces that we show are conserved among coronaviruses. These interfaces likely play a role in the S-protein conformational changes associated with membrane fusion. © 2019, eLife Sciences Publications Ltd. All rights reserved.",,"microsomal aminopeptidase; virus spike protein; vitronectin; affinity chromatography; Article; cloning; conformational transition; cryoelectron microscopy; crystal structure; crystallization; gene construct; genetic transfection; glycosylation; HEK293S cell line; human; human cell; Human coronavirus 229E; Human coronavirus NL63; hydrogen bond; immune evasion; membrane fusion; model; nonhuman; plasmid; protein degradation; protein domain; protein expression; protein folding; protein motif; protein stability; protein structure; protein subunit; receptor binding; sequence homology; virus isolation; X ray diffraction","Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11 (12), pp. 836-848; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses (2016) Trends Microbiol, 24 (6), pp. 490-502; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular Evolution of Human Coronavirus Genomes (2017) Trends Microbiol, 25 (1), pp. 35-48; Peck, K.M., Burch, C.L., Heise, M.T., Baric, R.S., Coronavirus Host Range Expansion and Middle East Respiratory Syndrome Coronavirus Emergence: Biochemical Mechanisms and Evolutionary Perspectives (2015) Annu Rev Virol, 2 (1), pp. 95-117; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48 (8), pp. 2940-2947; Lim, Y.X., Ng, Y.L., Tam, J.P., Liu, D.X., Human Coronaviruses: A Review of Virus-Host Interactions (2016) Diseases, 4 (3); Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., Holmes, K.V., Human aminopeptidase N is a receptor for human coronavirus 229E (1992) Nature, 357 (6377), pp. 420-422; Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., Pohlmann, S., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry (2005) Proc Natl Acad Sci U S A, 102 (22), pp. 7988-7993; Vlasak, R., Luytjes, W., Spaan, W., Palese, P., Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses (1988) Proc Natl Acad Sci U S A, 85 (12), pp. 4526-4529; Hulswit, R.J.G., Lang, Y., Bakkers, M.J.G., Li, W., Li, Z., Schouten, A., Ophorst, B., de Groot, R.J., Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A (2019) Proc Natl Acad Sci U S A, 116 (7), pp. 2681-2690; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Drexler, J.F., Evidence for an Ancestral Association of Human Coronavirus 229E with Bats (2015) J Virol, 89 (23), pp. 11858-11870; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Drosten, C., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci U S A, 113 (35), pp. 9864-9869; Crossley, B.M., Mock, R.E., Callison, S.A., Hietala, S.K., Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E (2012) Viruses, 4 (12), pp. 3689-3700; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) Plos Pathog, 8 (8); Wong, A.H.M., Tomlinson, A.C.A., Zhou, D., Satkunarajah, M., Chen, K., Sharon, C., Desforges, M., Rini, J.M., Receptor-binding loops in alphacoronavirus adaptation and evolution (2017) Nat Commun, 8 (1), p. 1735; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Elsayed, E.A., Al Muhairi, S.S.M., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65 (3), pp. 322-333; Li, F., Structure, Function, and Evolution of Coronavirus Spike Proteins (2016) Annu Rev Virol, 3 (1), pp. 237-261; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), pp. 118-121; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., Dimaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23 (10), pp. 899-905; Kirchdoerfer, R.N., Wang, N., Pallesen, J., Wrapp, D., Turner, H.L., Cottrell, C.A., Corbett, K.S., Ward, A.B., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci Rep, 8 (1); Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., Dimaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531 (7592), pp. 114-117; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114 (42), pp. 11157-11162; Gui, M., Song, W., Zhou, H., Xu, J., Chen, S., Xiang, Y., Wang, X., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res, 27 (1), pp. 119-129; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) Plos Pathog, 14 (8); Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) Plos Pathog, 14 (4); Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State (2018) J Virol, 92 (4); Tortorici, M.A., Walls, A.C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.J., Veesler, D., Structural basis for human coronavirus attachment to sialic acid receptors (2019) Nat Struct Mol Biol, 26 (6), pp. 481-489; Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Cameroni, E., Veesler, D., Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion (2019) Cell, 176 (5), pp. 1026-1039; Xu, Y., Liu, Y., Lou, Z., Qin, L., Li, X., Bai, Z., Pang, H., Rao, Z., Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core (2004) J Biol Chem, 279 (29), pp. 30514-30522; Yan, L., Meng, B., Xiang, J., Wilson, I.A., Yang, B., Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 A resolution (2018) Acta Crystallogr D Struct Biol, 74 (9), pp. 841-851; Zhang, W., Zheng, Q., Yan, M., Chen, X., Yang, H., Zhou, W., Rao, Z., Structural characterization of the HCoV-229E fusion core (2018) Biochem Biophys Res Commun, 497 (2), pp. 705-712; Tao, Y., Strelkov, S.V., Mesyanzhinov, V.V., Rossmann, M.G., Structure of bacteriophage T4 fibritin: A segmented coiled coil and the role of the C-terminal domain (1997) Structure, 5 (6), pp. 789-798; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci U S A, 114 (35), p. E7348; Hakansson-McReynolds, S., Jiang, S., Rong, L., Caffrey, M., Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state (2006) J Biol Chem, 281 (17), pp. 11965-11971; Hensley, S.E., Das, S.R., Bailey, A.L., Schmidt, L.M., Hickman, H.D., Jayaraman, A., Viswanathan, K., Yewdell, J.W., Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift (2009) Science, 326 (5953), pp. 734-736; de Vries, R.P., de Vries, E., Martinez-Romero, C., McBride, R., van Kuppeveld, F.J., Rottier, P.J., Garcia-Sastre, A., de Haan, C.A., Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: Maintaining optimal receptor binding by compensatory substitutions (2013) J Virol, 87 (24), pp. 13868-13877; Lynch, R.M., Wong, P., Tran, L., O'dell, S., Nason, M.C., Li, Y., Wu, X., Mascola, J.R., HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies (2015) J Virol, 89 (8), pp. 4201-4213; Rockx, B., Donaldson, E., Frieman, M., Sheahan, T., Corti, D., Lanzavecchia, A., Baric, R.S., Escape from human monoclonal antibody neutralization affects in vitro and in vivo fitness of severe acute respiratory syndrome coronavirus (2010) J Infect Dis, 201 (6), pp. 946-955; Harrison, S.C., Viral membrane fusion (2015) Virology, 479-480, pp. 498-507; Rey, F.A., Lok, S.M., Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines (2018) Cell, 172 (6), pp. 1319-1334; Li, Z., Michael, I.P., Zhou, D., Nagy, A., Rini, J.M., Simple piggyBac transposon-based mammalian cell expression system for inducible protein production (2013) Proc Natl Acad Sci U S A, 110 (13), pp. 5004-5009; Reeves, P.J., Callewaert, N., Contreras, R., Khorana, H.G., Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line (2002) Proc Natl Acad Sci U S A, 99 (21), pp. 13419-13424; Wong, A.H., Zhou, D., Rini, J.M., The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing (2012) J Biol Chem, 287 (44), pp. 36804-36813; Takegawa, K., Yamabe, K., Fujita, K., Tabuchi, M., Mita, M., Izu, H., Watanabe, A., Iwahara, S., Cloning, sequencing, and expression of Arthrobacter protophormiae endo-beta-N-acetylglucosaminidase in Escherichia coli (1997) Arch Biochem Biophys, 338 (1), pp. 22-28; Kabsch, W., Xds (2010) Acta Crystallogr D Biol Crystallogr, 66 (2), pp. 125-132; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326; Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132; Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures (2011) Acta Crystallogr D Biol Crystallogr, 67 (4), pp. 355-367; Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Adams, P.D., Towards automated crystallographic structure refinement with phenix.Refine (2012) Acta Crystallogr D Biol Crystallogr, 68 (4), pp. 352-367; Fernandez-Leiro, R., Scheres, S.H.W., A pipeline approach to single-particle processing in RELION (2017) Acta Crystallogr D Struct Biol, 73 (6), pp. 496-502; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., CryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat Methods, 14 (3), pp. 290-296; Zhang, K., Gctf: Real-time CTF determination and correction (2016) J Struct Biol, 193 (1), pp. 1-12; Rohou, A., Grigorieff, N., CTFFIND4: Fast and accurate defocus estimation from electron micrographs (2015) J Struct Biol, 192 (2), pp. 216-221; Russo, C.J., Passmore, L.A., Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy (2014) Science, 346 (6215), pp. 1377-1380; Marr, C.R., Benlekbir, S., Rubinstein, J.L., Fabrication of carbon films with approximately 500nm holes for cryo-EM with a direct detector device (2014) J Struct Biol, 185 (1), pp. 42-47; Tivol, W.F., Briegel, A., Jensen, G.J., An improved cryogen for plunge freezing (2008) Microsc Microanal, 14 (5), pp. 375-379; Rubinstein, J.L., Brubaker, M.A., Alignment of cryo-EM movies of individual particles by optimization of image translations (2015) J Struct Biol, 192 (2), pp. 188-195; Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J., The Phyre2 web portal for protein modeling, prediction and analysis (2015) Nat Protoc, 10 (6), pp. 845-858; Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., Adams, P.D., Real-space refinement in PHENIX for cryo-EM and crystallography (2018) Acta Crystallogr D Struct Biol, 74, pp. 531-544. , Pt 6; Wang, R.Y., Song, Y., Barad, B.A., Cheng, Y., Fraser, J.S., Dimaio, F., Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta (2016) Elife, 5; Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., Ferrin, T.E., UCSF ChimeraX: Meeting modern challenges in visualization and analysis (2018) Protein Sci, 27 (1), pp. 14-25; Croll, T.I., ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps (2018) Acta Crystallogr D Struct Biol, 74 (6), pp. 519-530; Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Richardson, D.C., MolProbity: More and better reference data for improved all-atom structure validation (2018) Protein Sci, 27 (1), pp. 293-315; Barad, B.A., Echols, N., Wang, R.Y., Cheng, Y., Dimaio, F., Adams, P.D., Fraser, J.S., EMRinger: Side chain-directed model and map validation for 3D cryo-electron microscopy (2015) Nat Methods, 12 (10), pp. 943-946; Afonine, P.V., Klaholz, B.P., Moriarty, N.W., Poon, B.K., Sobolev, O.V., Terwilliger, T.C., Adams, P.D., Urzhumtsev, A., New tools for the analysis and validation of cryo-EM maps and atomic models (2018) Acta Crystallogr D Struct Biol, 74, pp. 814-840. , Pt 9; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera--a visualization system for exploratory research and analysis (2004) J Comput Chem, 25 (13), pp. 1605-1612","Rini, J.M.; Department of Molecular Genetics, The University of Toronto, 1 King's College Circle, Medical Sciences Building, Canada; email: james.rini@utoronto.ca",,"eLife Sciences Publications Ltd",2050084X,,,"31650956","English","eLife",Article,"Final",Open Access,Scopus,2-s2.0-85074473579 "Perera K.D., Rathnayake A., Liu H., Pedersen N.C., Groutas W.C., Chang K.-O., Kim Y.","57204455854;57192253855;36480358500;7202299909;7005127415;56155853500;55747316900;","Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor",2019,"Veterinary Microbiology","237",, 108398,"","",,2,"10.1016/j.vetmic.2019.108398","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071399407&doi=10.1016%2fj.vetmic.2019.108398&partnerID=40&md5=fd23b716c36bb47ae3403535b2d72cb2","Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Department of Chemistry, Wichita State University, Wichita, KS, United States; Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States","Perera, K.D., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Rathnayake, A., Department of Chemistry, Wichita State University, Wichita, KS, United States; Liu, H., Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States; Pedersen, N.C., Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, United States; Groutas, W.C., Department of Chemistry, Wichita State University, Wichita, KS, United States; Chang, K.-O., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States; Kim, Y., Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States","Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients. © 2019 Elsevier B.V.","3C-like protease; Antivirals; Feline coronavirus; Feline infectious peritonitis virus; Genetic barrier; Resistance","3c like protease; proteinase; proteinase inhibitor; unclassified drug; virus enzyme; proteinase inhibitor; viral protein; virus RNA; amino acid sequence; amino acid substitution; animal experiment; antiviral therapy; Article; crystal structure; Feline coronavirus; feline infectious peritonitis; Feline infectious peritonitis virus; fluorescence resonance energy transfer; human; hydrogen bond; IC50; male; nonhuman; sequence alignment; virus resistance; virus strain; animal; binding site; case report; cat; cat disease; chemistry; complication; Coronaviridae infection; enzymology; Feline coronavirus; feline infectious peritonitis; metabolism; molecular model; nucleotide sequence; protein conformation; veterinary medicine; virology; Amino Acid Sequence; Animals; Base Sequence; Binding Sites; Cat Diseases; Cats; Coronaviridae Infections; Coronavirus, Feline; Feline Infectious Peritonitis; Male; Models, Molecular; Protease Inhibitors; Protein Conformation; RNA, Viral; Sequence Alignment; Viral Proteins","Addie, D., Houe, L., Maitland, K., Passantino, G., Decaro, N., Effect of cat litters on feline coronavirus infection of cell culture and cats (2019) J. Feline Med. Surg., , 1098612X19848167; Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; Barker, E.N., Tasker, S., Gruffydd-Jones, T.J., Tuplin, C.K., Burton, K., Porter, E., Day, M.J., Siddell, S.G., Phylogenetic analysis of feline coronavirus strains in an epizootic outbreak of feline infectious peritonitis (2013) J. Vet. Intern. Med., 27, pp. 445-450; Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Mostl, K., Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis (2004) Vet. Microbiol., 99, pp. 31-42; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion Peptide and feline coronavirus virulence (2012) Emerg Infect Dis, 18, pp. 1089-1095; DeLano, W.L., The PyMOL Molecular Graphics System (2010), http://www.pymol.org, DeLano Scientific LLC San Carlos, CA; Deng, X., StJohn, S.E., Osswald, H.L., O'Brien, A., Banach, B.S., Sleeman, K., Ghosh, A.K., Baker, S.C., Coronaviruses resistant to a 3C-like protease inhibitor are attenuated for replication and pathogenesis, revealing a low genetic barrier but high fitness cost of resistance (2014) J. Virol., 88, pp. 11886-11898; Gotte, M., The distinct contributions of fitness and genetic barrier to the development of antiviral drug resistance (2012) Curr. Opin. Virol., 2, pp. 644-650; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog., 12; Kim, Y., Lovell, S., Tiew, K.C., Mandadapu, S.R., Alliston, K.R., Battaile, K.P., Groutas, W.C., Chang, K.O., Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses (2012) J. Virol., 86, pp. 11754-11762; Kim, Y., Mandadapu, S.R., Groutas, W.C., Chang, K.O., Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease (2013) Antiviral Res., 97, pp. 161-168; Kim, Y., Scott, L., Kok-Chuan, T., Sivakoteswara Rao, M., Kevin, R.A., Kevin, P.B., William, C.G., Kyeong-Ok, C., Broad-spectrum antivirals against 3C or 3C-Like proteases of Picornaviruses, noroviruses, and coronaviruses (2012) J. Virol., 86, p. 11754; Kim, Y., Shivanna, V., Narayanan, S., Prior, A.M., Weerasekara, S., Hua, D.H., Kankanamalage, A.C., Chang, K.O., Broad-spectrum inhibitors against 3C-Like proteases of feline coronaviruses and feline caliciviruses (2015) J. Virol., 89, pp. 4942-4950; King, A.M., Lefkowitz, E., Adams, M.J., Carstens, E.B., Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (2011), Elsevier; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland (2005) Clin. Diagn. Lab. Immunol., 12, pp. 1209-1215; Kuntal, B.K., Aparoy, P., Reddanna, P., EasyModeller: a graphical interface to MODELLER (2010) BMC Res. Notes, 3, p. 226; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19, pp. 1066-1073; McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R., Analysis tool web services from the EMBL-EBI (2013) Nucleic Acids Res., 41, pp. W597-600; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10, pp. 529-541; Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2018) J. Feline Med. Surg., 20, pp. 378-392; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus Res., 165, pp. 17-28; Piovesan, D., Minervini, G., Tosatto, S.C., The RING 2.0 web server for high quality residue interaction networks (2016) Nucleic Acids Res., 44, pp. W367-374; Strasfeld, L., Chou, S., Antiviral drug resistance: mechanisms and clinical implications (2010) Infect. Dis. Clin. North Am., 24, pp. 809-833; Wang, Y.T., Chueh, L.L., Wan, C.H., An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections (2014) BMC Vet. Res., 10, p. 186","Kim, Y.; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State UniversityUnited States; email: ykim@ksu.edu",,"Elsevier B.V.",03781135,,VMICD,"31585653","English","Vet. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85071399407 "Lim X.F., Lee C.B., Pascoe S.M., How C.B., Chan S., Tan J.H., Yang X., Zhou P., Shi Z., Sessions O.M., Wang L.-F., Ng L.C., Anderson D.E., Yap G.","54894040900;57215287132;57215287652;57208748804;57215288662;57214415742;35811468700;56996599500;7403733955;8418684600;35243718700;35574464200;25631949200;16044482100;","Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches",2019,"The Journal of general virology","100","10",,"1363","1374",,2,"10.1099/jgv.0.001307","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072942733&doi=10.1099%2fjgv.0.001307&partnerID=40&md5=1c7ba17952e11b17979c0f7a4180fb4e","Environmental Health Institute, National Environment Agency, Singapore; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Sungei Buloh Wetlands Reserve National Parks Board, Singapore; Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore","Lim, X.F., Environmental Health Institute, National Environment Agency, Singapore, Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Lee, C.B., Sungei Buloh Wetlands Reserve National Parks Board, Singapore; Pascoe, S.M., Sungei Buloh Wetlands Reserve National Parks Board, Singapore; How, C.B., Sungei Buloh Wetlands Reserve National Parks Board, Singapore; Chan, S., Sungei Buloh Wetlands Reserve National Parks Board, Singapore; Tan, J.H., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Yang, X., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Zhou, P., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Shi, Z., Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Sessions, O.M., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Department of Pharmacy, National University of Singapore, Singapore; Wang, L.-F., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Ng, L.C., Environmental Health Institute, National Environment Agency, Singapore; Anderson, D.E., Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Yap, G., Environmental Health Institute, National Environment Agency, Singapore","Bats are important reservoirs and vectors in the transmission of emerging infectious diseases. Many highly pathogenic viruses such as SARS-CoV and rabies-related lyssaviruses have crossed species barriers to infect humans and other animals. In this study we monitored the major roost sites of bats in Singapore, and performed surveillance for zoonotic pathogens in these bats. Screening of guano samples collected during the survey uncovered a bat coronavirus (Betacoronavirus) in Cynopterus brachyotis, commonly known as the lesser dog-faced fruit bat. Using a capture-enrichment sequencing platform, the full-length genome of the bat CoV was sequenced and found to be closely related to the bat coronavirus HKU9 species found in Leschenault's rousette discovered in the Guangdong and Yunnan provinces.","bats; Betacoronavirus; capture enrichment; Singapore",,,,,"NLM (Medline)",14652099,,,"31418677","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85072942733 "Graepel K.W., Agostini M.L., Lu X., Sexton N.R., Denisona M.R.","55660767100;57203043706;56137171400;55892070600;55223989600;","Fitness barriers limit reversion of a proofreading-deficient coronavirus",2019,"Journal of Virology","93","20", e00711-19,"","",,,"10.1128/JVI.00711-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072791846&doi=10.1128%2fJVI.00711-19&partnerID=40&md5=9bb601c61193947200b4183e62962db3","Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States","Graepel, K.W., Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States; Agostini, M.L., Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States; Lu, X., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States; Sexton, N.R., Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States; Denisona, M.R., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States","The 3'-to-5' exoribonuclease in coronavirus (CoV) nonstructural protein 14 (nsp14-ExoN) mediates RNA proofreading during genome replication. ExoN catalytic residues are arranged in three motifs: I (DE), II (E), and III (D). Alanine replacement of the motif I residues (AA-E-D; four nucleotide substitutions) in murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV yields viable mutants with impaired replication and fitness, increased mutation rates, and attenuated virulence in vivo. Despite these impairments, MHV- and SARS-CoV ExoN motif I AA mutants (ExoN-AA) have not reverted at motif I in diverse in vitro and in vivo environments, suggesting that profound fitness barriers prevent motif I reversion. To test this hypothesis, we engineered MHV-ExoN-AA with 1, 2, or 3 nucleotide mutations along genetic pathways to AA-to-DE reversion. We show that engineered intermediate revertants were viable but had no increased replication or competitive fitness compared to that of MHV-ExoN-AA. In contrast, a low-passage-number (passage 10 [P10]) MHVExoN- AA showed increased replication and competitive fitness without reversion of ExoN-AA. Finally, engineered reversion of ExoN-AA to ExoN-DE in the presence of ExoN-AA passage-adaptive mutations resulted in significant fitness loss. These results demonstrate that while reversion is possible, at least one alternative adaptive pathway is more rapidly advantageous than intermediate revertants and may alter the genetic background to render reversion detrimental to fitness. Our results provide an evolutionary rationale for lack of ExoN-AA reversion, illuminate potential multiprotein replicase interactions and coevolution, and support future studies aimed at stabilizing attenuated CoV ExoN-AA mutants. IMPORTANCE Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants. © 2019 American Society for Microbiology. All Rights Reserved.","Adaptive evolution; Competitive fitness; Coronavirus; Exoribonuclease; Plus-strand RNA virus; Proofreading; Replication fidelity; RNA virus","exoribonuclease; nsp12 protein; unclassified drug; viral protein; adaptation; amino acid substitution; animal cell; Article; competitive fitness; controlled study; Coronavirinae; exon; genetic engineering; genetic stability; molecular cloning; molecular evolution; Murine hepatitis virus; newborn; nonhuman; nucleic acid base substitution; priority journal; protein motif; reproductive fitness; revertant; virus infectivity; virus mutant; virus recombinant; virus replication","Sanjuan, R., Nebot, M.R., Chirico, N., Mansky, L.M., Belshaw, R., Viral mutation rates (2010) J Virol, 84, pp. 9733-9748. , https://doi.org/10.1128/JVI.00694-10; Domingo, E., Sheldon, J., Perales, C., Viral quasispecies evolution (2012) Microbiol Mol Biol Rev, 76, pp. 159-216. , https://doi.org/10.1128/MMBR.05023-11; Dolan, P.T., Whitfield, Z.J., Andino, R., Mapping the evolutionary potential of RNA viruses (2018) Cell Host Microbe, 23, pp. 435-446. , https://doi.org/10.1016/j.chom.2018.03.012; Stern, A., Yeh Te, M., Zinger, T., Smith, M., Wright, C., Ling, G., Nielsen, R., Andino, R., The evolutionary pathway to virulence of an RNA virus (2017) Cell, 169, pp. 35-35e19. , https://doi.org/10.1016/j.cell.2017.03.013; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis (2009) Nat Rev Microbiol, 7, pp. 439-450. , https://doi.org/10.1038/nrmicro2147; Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Denison, M.R., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) MBio, 9, pp. e00221-e00318. , https://doi.org/10.1128/mBio.00221-18; Graepel, K.W., Lu, X., Case, J.B., Sexton, N.R., Smith, E.C., Denison, M.R., Proofreading-deficient coronaviruses adapt for increased fitness over long-term passage without reversion of exoribonuclease-inactivating mutations (2017) MBio, 8, pp. e01503-e01517. , https://doi.org/10.1128/mBio.01503-17; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9, p. e1003565. , https://doi.org/10.1371/journal.ppat.1003565; Sexton, N.R., Smith, E.C., Blanc, H., Vignuzzi, M., Peersen, O.B., Denison, M.R., Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens (2016) J Virol, 90, pp. 7415-7428. , https://doi.org/10.1128/JVI.00080-16; Case, J.B., Li, Y., Elliott, R., Lu, X., Graepel, K.W., Sexton, N.R., Smith, E.C., Denison, M.R., Murine hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity (2017) J Virol, 92, pp. e0153117-e0153138. , https://doi.org/10.1128/JVI.01531-17; Smith, E.C., Case, J.B., Blanc, H., Isakov, O., Shomron, N., Vignuzzi, M., Denison, M.R., Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity (2015) J Virol, 89, pp. 6418-6426. , https://doi.org/10.1128/JVI.00110-15; Graham, R.L., Becker, M.M., Eckerle, L.D., Bolles, M., Denison, M.R., Baric, R.S., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease (2012) Nat Med, 18, pp. 1820-1826. , https://doi.org/10.1038/nm.2972; Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L., Denison, M.R., High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants (2007) J Virol, 81, pp. 12135-12144. , https://doi.org/10.1128/JVI.01296-07; Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Denison, M.R., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing (2010) PLoS Pathog, 6, p. e1000896. , https://doi.org/10.1371/journal.ppat.1000896; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., III, Leist, S.R., Yount, B.L., Jr., McAnarney, E.T., Baric, R.S., Combination attenuation offers strategy for live-attenuated coronavirus vaccines (2018) J Virol, 92, pp. e00710-e00718. , https://doi.org/10.1128/JVI.00710-18; Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Rao, Z., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc Natl Acad Sci U S A, 112, pp. 9436-9441. , https://doi.org/10.1073/pnas.1508686112; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L.M., Guan, Y., Gorbalenya, A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J Mol Biol, 331, pp. 991-1004. , https://doi.org/10.1016/S0022-2836(03)00865-9; Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., Decroly, E., RNA 3=-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex (2012) Proc Natl Acad Sci U S A, 109, pp. 9372-9377. , https://doi.org/10.1073/pnas.1201130109; Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., Ziebuhr, J., Discovery of an RNA virus 3=5= exoribonuclease that is critically involved in coronavirus RNA synthesis (2006) Proc Natl Acad Sci U S A, 103, pp. 5108-5113. , https://doi.org/10.1073/pnas.0508200103; Becares, M., Pascual-Iglesias, A., Nogales, A., Sola, I., Enjuanes, L., Zuniga, S., Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response (2016) J Virol, 90, pp. 5399-5414. , https://doi.org/10.1128/JVI.03259-15; Graepel, K.W., Agostini, M.L., Lu, X., Sexton, N.R., Denison, M.R., Fitness barriers limit reversion of a proofreading-deficient coronavirus (2019) BioRxiv, , https://doi.org/10.1101/618249; Steitz, T.A., Steitz, J.A., A general two-metal-ion mechanism for catalytic RNA (1993) Proc Natl Acad Sci U S A, 90, pp. 6498-6502. , https://doi.org/10.1073/pnas.90.14.6498; Chen, P., Jiang, M., Hu, T., Liu, Q., Chen, X.S., Guo, D., Biochemical characterization of exoribonuclease encoded by SARS coronavirus (2007) J Biochem Mol Biol, 40, pp. 649-655; Derbyshire, V., Grindley, N.D., Joyce, C.M., The 3=5= exonuclease of DNA polymerase i of Escherichia coli: Contribution of each amino acid at the active site to the reaction (1991) EMBO J, 10, pp. 17-24. , https://doi.org/10.1002/j.1460-2075.1991.tb07916.x; Case, J.B., Ashbrook, A.W., Dermody, T.S., Denison, M.R., Mutagenesis of S-adenosyl-l-methionine-binding residues in coronavirus nsp14 N7- methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity (2016) J Virol, 90, pp. 7248-7256. , https://doi.org/10.1128/JVI.00542-16; Das, S.R., Hensley, S.E., Ince, W.L., Brooke, C.B., Subba, A., Delboy, M.G., Russ, G., Yewdell, J.W., Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection (2013) Cell Host Microbe, 13, pp. 314-323. , https://doi.org/10.1016/j.chom.2013.02.008; Nakajima, K., Nobusawa, E., Nagy, A., Nakajima, S., Accumulation of amino acid substitutions promotes irreversible structural changes in the hemagglutinin of human influenza AH3 virus during evolution (2005) J Virol, 79, pp. 6472-6477. , https://doi.org/10.1128/JVI.79.10.6472-6477.2005; Koel, B.F., Burke, D.F., Van Der Vliet, S., Bestebroer, T.M., Rimmelzqaan, G.F., Osterhaus, A.D.M.E., Smith, D.J., Fouchier, R.A.M., Epistatic interactions can moderate the antigenic effect of substitutions in hemagglutinin of influenza H3NII virus (2018) BioRxiv, , https://doi.org/10.1101/506030; Fitzsimmons, W.J., Woods, R.J., McCrone, J.T., Woodman, A., Arnold, J.J., Yennawar, M., Evans, R., Lauring, A.S., A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus (2018) PLoS Biol, 16, p. e2006459. , https://doi.org/10.1371/journal.pbio.2006459; Regoes, R.R., Hamblin, S., Tanaka, M.M., Viral mutation rates: Modelling the roles of within-host viral dynamics and the trade-off between replication fidelity and speed (2013) Proc Biol Sci, 280, p. 20122047. , https://doi.org/10.1098/rspb.2012.2047; Pandey, V.N., Kaushik, N., Rege, N., Sarafianos, S.G., Yadav, P.N., Modak, M.J., Role of methionine 184 of human immunodeficiency virus type-1 reverse transcriptase in the polymerase function and fidelity of DNA synthesis (1996) Biochemistry, 35, pp. 2168-2179. , https://doi.org/10.1021/bi9516642; Elena, S.F., Sanjuan, R., Adaptive value of high mutation rates of RNA viruses: Separating causes from consequences (2005) J Virol, 79, pp. 11555-11558. , https://doi.org/10.1128/JVI.79.18.11555-11558.2005; Ferron, F., Subissi, L., Silveira De Morais, A.T., Le, N.T.T., Sevajol, M., Gluais, L., Decroly, E., Imbert, I., Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA (2018) Proc Natl Acad Sci U S A, 115, pp. E162-E171. , https://doi.org/10.1073/pnas.1718806115; Dolan, P.T., Whitfield, Z.J., Andino, R., Mechanisms and concepts in RNA virus population dynamics and evolution (2018) Annu Rev Virol, 5, pp. 69-92. , https://doi.org/10.1146/annurev-virology-101416-041718; Arnold, J.J., Vignuzzi, M., Stone, J.K., Andino, R., Cameron, C.E., Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase (2005) J Biol Chem, 280, pp. 25706-25716. , https://doi.org/10.1074/jbc.M503444200; Chen, W., Baric, R.S., Molecular anatomy of mouse hepatitis virus persistence: Coevolution of increased host cell resistance and virus virulence (1996) J Virol, 70, pp. 3947-3960; Yount, B., Denison, M.R., Weiss, S.R., Baric, R.S., Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59 (2002) J Virol, 76, pp. 11065-11078. , https://doi.org/10.1128/jvi.76.21.11065-11078.2002; Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., Pease, L.R., Site-directed mutagenesis by overlap extension using the polymerase chain reaction (1989) Gene, 77, pp. 51-59. , https://doi.org/10.1016/0378-1119(89)90358-2","Denisona, M.R.; Department of Pediatrics, Vanderbilt University Medical CenterUnited States; email: mark.denison@vumc.org",,"American Society for Microbiology",0022538X,,JOVIA,"31341046","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85072791846 "Kawase M., Kataoka M., Shirato K., Matsuyama S.","25958099400;7201555212;7101969487;7201442043;","Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion",2019,"Journal of virology","93","19",,"","",,,"10.1128/JVI.00785-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072153971&doi=10.1128%2fJVI.00785-19&partnerID=40&md5=8766de1a25c337ae080c5128568db3b4","Department of Virology III, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan; Department of Pathology, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan; Department of Virology III, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan","Kawase, M., Department of Virology III, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan; Kataoka, M., Department of Pathology, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan; Shirato, K., Department of Virology III, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan; Matsuyama, S., Department of Virology III, Murayama Branch, National Institute of Infectious DiseasesTokyo, Japan","A fusion protein expressed on the surface of enveloped viruses mediates fusion of the viral and cellular membranes to facilitate virus infection. Pre- and postfusion structures of viral fusion proteins have been characterized, but conformational changes between them remain poorly understood. Here, we examined the intermediate conformation of the murine coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular protease following receptor binding. Western blot analysis of protease digestion products revealed that two subunits (67 and 69 kDa) are produced from a single spike protein (180 kDa). These two subunits were considered to be by-products derived from conformational changes and were useful for probing the intermediate conformation of the spike protein. Interaction with a heptad repeat (HR) peptide revealed that these subunits adopt packed and unpacked conformations, respectively, and two-dimensional electrophoresis revealed a trimeric assembly. Based on biochemical observations, we propose an asymmetric trimer model for the intermediate structure of the spike protein. Receptor binding induces the membrane-binding potential of the trimer, in which at least one HR motif forms a packed-hairpin structure, while membrane fusion subunits are covered by the receptor-binding subunit, thereby preventing the spike protein from forming the typical homotrimeric prehairpin structure predicted by the current model of class I viral fusion protein. Subsequent proteolysis induces simultaneous packing of the remaining unpacked HRs upon assembly of three HRs at the central axis to generate a six-helix bundle. Our model proposes a key mechanism for membrane fusion of enveloped viruses.IMPORTANCE Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the mechanism underlying activation of viral fusion protein at the priming stage. However, characterizing the subsequent triggering stage underpinning transition from pre- to postfusion structures is difficult because single-particle cryoEM excludes unstable structures that appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed to capture features of unstable proteins. Here, we analyzed protease digestion products of a coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate state, which involves a compact structure and conformational changes that overcome steric hindrance within the three fusion protein subunits. Copyright © 2019 American Society for Microbiology.","conformational change; coronavirus; intermediate; membrane fusion; spike; Western blotting",,,,,"NLM (Medline)",10985514,,,"31315988","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85072153971 "Acar D.D., Stroobants V.J.E., Favoreel H., Saelens X., Nauwynck H.J.","56330090400;57193837916;6602142263;6603597808;7007141390;","Identification of peptide domains involved in the subcellular localization of the feline coronavirus 3b protein",2019,"The Journal of general virology","100","10",,"1417","1430",,,"10.1099/jgv.0.001321","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072944248&doi=10.1099%2fjgv.0.001321&partnerID=40&md5=19e9bfcb80e415b8bb543718d441d2bb","Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium","Acar, D.D., Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Stroobants, V.J.E., Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Favoreel, H., Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Saelens, X., VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium; Nauwynck, H.J., Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium","Feline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53-57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10-35, in which a Tom20 recognition motif (residues 13-17) and two other overlapping hexamers (residues 24-30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61-65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.","accessory protein; feline coronavirus; mitochondria; nucleolus",,,,,"NLM (Medline)",14652099,,,"31483243","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85072944248 "Naskalska A., Dabrowska A., Szczepanski A., Milewska A., Jasik K.P., Pyrc K.","35389200500;57203821204;57200300836;55200074700;6602601631;8869026100;","Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor",2019,"Journal of virology","93","19",,"","",,,"10.1128/JVI.00355-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072153784&doi=10.1128%2fJVI.00355-19&partnerID=40&md5=0745ebc1a8049d2e28fdcdedc08aa4bd","Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Microbiology Department, Faculty of Biochemistry, Biophysics, Biotechnology, Jagiellonian University, Krakow, Poland; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; School of Pharmacy, Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland; Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland","Naskalska, A., Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland, Microbiology Department, Faculty of Biochemistry, Biophysics, Biotechnology, Jagiellonian University, Krakow, Poland; Dabrowska, A., Microbiology Department, Faculty of Biochemistry, Biophysics, Biotechnology, Jagiellonian University, Krakow, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Szczepanski, A., Microbiology Department, Faculty of Biochemistry, Biophysics, Biotechnology, Jagiellonian University, Krakow, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Milewska, A., Microbiology Department, Faculty of Biochemistry, Biophysics, Biotechnology, Jagiellonian University, Krakow, Poland, Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Jasik, K.P., School of Pharmacy, Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland; Pyrc, K., Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland","Human coronavirus NL63 (HCoV-NL63) is a common respiratory virus that causes moderately severe infections. We have previously shown that the virus uses heparan sulfate proteoglycans (HSPGs) as the initial attachment factors, facilitating viral entry into the cell. In the present study, we show that the membrane protein (M) of HCoV-NL63 mediates this attachment. Using viruslike particles lacking the spike (S) protein, we demonstrate that binding to the cell is not S protein dependent. Furthermore, we mapped the M protein site responsible for the interaction with HSPG and confirmed its relevance using a viable virus. Importantly, in silico analysis of the region responsible for HSPG binding in different clinical isolates and the Amsterdam I strain did not exhibit any signs of cell culture adaptation.IMPORTANCE It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development. Copyright © 2019 American Society for Microbiology.","attachment; HCoV-NL63; heparan sulfate proteoglycans; membrane protein; viruslike particles",,,,,"NLM (Medline)",10985514,,,"31315999","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85072153784 "Al-Tawfiq J.A., Memish Z.A.","9436438200;7005059350;","Middle East respiratory syndrome coronavirus in the last two years: Health care workers still at risk",2019,"American Journal of Infection Control","47","10",,"1167","1170",,2,"10.1016/j.ajic.2019.04.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065900943&doi=10.1016%2fj.ajic.2019.04.007&partnerID=40&md5=2e25628094c2fd75ac5bd7d4530b3cae","Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Quality and Patient Safety Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Department of Medicine, Indiana University School of Medicine, IN, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital (“PMAH”), Ministry of Health, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Al-Tawfiq, J.A., Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Quality and Patient Safety Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia, Department of Medicine, Indiana University School of Medicine, IN, United States, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine, Prince Mohamed Bin Abdulaziz Hospital (“PMAH”), Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Background: An important emerging respiratory virus is the Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV had been associated with a high case fatality rate especially among severe cases. Methods: This is a retrospective analysis of reported MERS-CoV cases between December 2016 and January 2019, as retrieved from the World Health Organization. The aim of this study is to examine the epidemiology of reported cases and quantify the percentage of health care workers (HCWs) among reported cases. Results: There were 403 reported cases with a majority being men (n = 300; 74.4%). These cases were reported from Lebanon, Malaysia, Oman, Qatar, Saudi Arabia, and United Arab Emirates. HCWs represented 26% and comorbidities were reported among 71% of non-HCWs and 1.9% among HCWs (P < .0001). Camel exposure and camel milk ingestion were reported in 64% each, and the majority (97.8%) of those with camel exposures had camel milk ingestion. There were 58% primary cases and 42% were secondary cases. The case fatality rate was 16% among HCWs compared with 34% among other patients (P = .001). The mean age ± SD was 47.65 ± 16.28 for HCWs versus 54.23 ± 17.34 for non-HCWs (P = .001). Conclusions: MERS-CoV infection continues to have a high case fatality rate and a large proportion of patients were HCWs. Further understanding of the disease transmission and prevention mainly in health care settings are needed. © 2019 Association for Professionals in Infection Control and Epidemiology, Inc.","emerging infectious disease; Healthcare workers; MERS; MERS-CoV; Middle East Respiratory Syndrome Coronavirus; transmission","adult; Article; camel milk; case fatality rate; comorbidity; disease association; exposure; female; health care personnel; high risk population; human; infection risk; ingestion; Lebanon; major clinical study; Malaysia; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; occupational health; Oman; Qatar; retrospective study; risk assessment; Saudi Arabia; sex ratio; United Arab Emirates; virus transmission","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Al-Tawfiq, J.A., Gautret, P., Asymptomatic Middle East respiratory syndrome coronavirus (MERS-CoV) infection: extent and implications for infection control: a systematic review (2019) Travel Med Infect Dis, 27, pp. 27-32; Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Expert Rev Respir Med, 10, pp. 331-338; Harcourt, J.L., Rudoler, N., Tamin, A., Leshem, E., Rasis, M., Giladi, M., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health, 65, pp. 749-754; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Memish, Z.A., Al-Tawfiq, J.A., Alhakeem, R.F., Assiri, A., Alharby, K.D., Almahallawi, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV): a cluster analysis with implications for global management of suspected cases (2015) Travel Med Infect Dis, 13, pp. 311-314; Ko, J.-H., Park, G.E., Lee, J.Y., Lee, J.Y., Cho, S.Y., Ha, Y.E., Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients (2016) J Infect, 73, pp. 468-475; Park, M.H., Kim, H.R., Choi, D.H., Sung, J.H., Kim, J.H., Emergency cesarean section in an epidemic of the Middle East respiratory syndrome: a case report (2016) Korean J Anesthesiol, 69, pp. 287-291; Al-Tawfiq, J.A., Rabaan, A.A., Hinedi, K., Influenza is more common than Middle East respiratory syndrome coronavirus (MERS-CoV) among hospitalized adult Saudi patients (2017) Travel Med Infect Dis, 20, pp. 56-60; Middle East respiratory syndrome coronavirus (MERS-CoV) (2017), http://www.who.int/emergencies/mers-cov/en/, WHO Available from: (Accessed 30 April 2017); Al-Tawfiq, J.A., Memish, Z.A., Lack of seasonal variation of Middle East respiratory syndrome coronavirus (MERS-CoV) (2019) Travel Med Infect Dis, 27, pp. 125-126; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of the Middle East respiratory syndrome coronavirus with review of the literature (2019) J Hosp Infect, 101, pp. 20-29; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Curr Opin Infect Dis, 28, pp. 392-396; Middle East respiratory syndrome coronavirus (MERS-CoV) WHO MERS-CoV global summary and assessment of risk global summary (2017), http://www.who.int/emergencies/mers-cov/risk-assessment-july-2017.pdf?ua=1, Available from: (Accessed 14 September 2017); Alanazi, K.H., Killerby, M.E., Biggs, H.M., Abedi, G.R., Jokhdar, H., Alsharef, A.A., Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia, 2017 (2019) Infect Control Hosp Epidemiol, 40, pp. 79-88; Amer, H., Alqahtani, A.S., Alaklobi, F., Altayeb, J., Memish, Z.A., Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): revision of screening strategies urgently needed (2018) Int J Infect Dis, 71, pp. 113-116; Amer, H., Alqahtani, A.S., Alzoman, H., Aljerian, N., Memish, Z.A., Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017 (2018) Am J Infect Control, 46, pp. 1022-1025; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59, pp. 1225-1233; Memish, Z.A., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus infection control: the missing piece? (2014) Am J Infect Control, 42, pp. 1258-1260; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Fagbo, S.F., Skakni, L., Chu, D.K.W., Garbati, M.A., Joseph, M., Peiris, M., Molecular epidemiology of hospital outbreak of Middle East respiratory syndrome, Riyadh, Saudi Arabia, 2014 (2015) Emerg Infect Dis, 21, pp. 1981-1988; Al-Tawfiq, J.A., Hinedi, K., Memish, Z.A., Systematic review of the prevalence of Mycobacterium tuberculosis resistance in Saudi Arabia (2015) J Chemother, 27, pp. 378-382; Al Hosani, F.I., Pringle, K., Al Mulla, M., Kim, L., Pham, H., Alami, N.N., Response to emergence of Middle East respiratory syndrome coronavirus, Abu Dhabi, United Arab Emirates, 2013–2014 (2016) Emerg Infect Dis, 22, pp. 1162-1168; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y., Hijazi, R., Description of a hospital outbreak of Middle East respiratory syndrome in a large tertiary care hospital in Saudi Arabia (2016) Infect Control Hosp Epidemiol, 37, pp. 1147-1155; Alfaraj, S.H., Al-Tawfiq, J.A., Gautret, P., Alenazi, M.G., Asiri, A.Y., Memish, Z.A., Evaluation of visual triage for screening of Middle East respiratory syndrome coronavirus patients (2018) New Microbes New Infect, 26, pp. 49-52; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2018) Am J Infect Control, 46, pp. 165-168; Aly, M., Elrobh, M., Alzayer, M., Aljuhani, S., Balkhy, H., Occurrence of the Middle East respiratory syndrome coronavirus (MERS-CoV) across the Gulf Corporation Council countries: four years update (2017) PLoS One, 12; Al-Tawfiq, J.A., Alfaraj, S.H., Altuwaijri, T.A., Memish, Z.A., A cohort-study of patients suspected for MERS-CoV in a referral hospital in Saudi Arabia (2017) J Infect, 75, pp. 378-379; Alfaraj, S.H., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus intermittent positive cases: implications for infection control (2019) Am J Infect Control, 47, pp. 290-293; Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus: epidemiology and disease control measures (2014) Infect Drug Resist, 7, pp. 281-287; State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr, 5; Liu, S., Chan, T.-C., Chu, Y.-T., Wu, J.T.-S., Geng, X., Zhao, N., Comparative epidemiology of human infections with Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses among healthcare personnel (2016) PLoS One, 11; Conzade, R., Grant, R., Malik, M.R., Elkholy, A., Elhakim, M., Samhouri, D., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10, p. 425; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., Dalab, A.H., Al-Busadah, K.A., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerg Infect Dis, 21, pp. 1153-1158; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63, pp. 1-9; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Middle East respiratory syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill, 18, p. 20659; Kasem, S., Qasim, I., Al-Doweriej, A., Hashim, O., Alkarar, A., Abu-Obeida, A., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons (2018) J Infect Public Health, 11, pp. 884-888","Al-Tawfiq, J.A.; Quality and Patient Safety Department, Johns Hopkins Aramco Healthcare, Dhahran Health Center, PO Box 76, Room A-428-2, Building 61, Saudi Arabia; email: jaltawfi@yahoo.com",,"Mosby Inc.",01966553,,AJICD,"31128983","English","Am. J. Infect. Control",Article,"Final",Open Access,Scopus,2-s2.0-85065900943 "Hiebl A., Auer A., Bagrinovschi G., Stejskal M., Hirt R., Rümenapf H.T., Tichy A., Künzel F.","57210207006;57210202938;55860354500;57210212879;7003608237;57210207407;23098909500;23097857600;","Detection of selected viral pathogens in dogs with canine infectious respiratory disease in Austria",2019,"Journal of Small Animal Practice","60","10",,"594","600",,1,"10.1111/jsap.13051","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069926009&doi=10.1111%2fjsap.13051&partnerID=40&md5=29ae1fd7d56d3e7bd71036e663286877","Clinic for Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Institute of Virology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Kleintierklinik Breitensee Wien, Vienna, 1140, Austria; Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, 1210, Austria","Hiebl, A., Clinic for Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Auer, A., Institute of Virology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Bagrinovschi, G., Institute of Virology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Stejskal, M., Kleintierklinik Breitensee Wien, Vienna, 1140, Austria; Hirt, R., Clinic for Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Rümenapf, H.T., Institute of Virology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Tichy, A., Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, 1210, Austria; Künzel, F., Clinic for Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, 1210, Austria","Objectives: To assess the prevalence of canine parainfluenza virus, canine adenovirus type 2, canine distemper virus, canine respiratory coronavirus and influenza virus A infections in: (1) privately-owned or, (2) kennelled dogs showing signs consistent with canine infectious respiratory disease and, (3) clinically healthy dogs in Vienna, Austria. Materials and Methods: Prospectively, nasal and tonsillar swabs from 214 dogs affected with infectious respiratory disease, and 50 healthy control dogs were tested for nucleic acids specific to the various viral infections. Concurrent bronchoalveolar lavage fluid from 31 dogs with chronic respiratory disease was investigated for the same viral pathogens. Additionally, anti-canine respiratory coronavirus antibody concentrations were measured in paired blood samples from 30 acutely diseased dogs. Results: Canine respiratory coronavirus (7.5%) and canine parainfluenza virus (6.5%) were the most commonly detected viruses in samples from the upper airways of dogs with respiratory infections. Serological results showed a significant seroconversion in response to coronavirus in 50% of the examined cases. None of the samples was positive for influenza virus A-specific nucleic acid. Canine coronavirus-specific nucleic acid was detected in 4.0% of healthy dogs. Clinical Significance: Canine coronavirus should be considered as a clinically relevant cause of infectious respiratory disease in crowded dog populations. For sample collection, the nasal mucosa can be recommended as the favoured site. Analysis of paired serum samples aids verification of canine coronavirus infection in respiratory disease. © 2019 The Authors Journal of Small Animal Practice published by John Wiley & Sons Ltd on behalf of British Small Animal Veterinary Association",,"DNA; nucleic acid; RNA; adenovirus infection; adolescent; animal tissue; antibody blood level; antibody titer; Article; Austria; blood sampling; bronchoalveolar lavage fluid; canine distemper; Chihuahua (dog); chronic respiratory tract disease; controlled study; Coronavirus infection; coughing; DNA sequence; dog; dog disease; dyspnea; female; fever; influenza A; Labrador retriever; male; microorganism detection; nonhuman; nucleic acid analysis; Parainfluenza virus infection; purebred dog; respiratory tract disease; RNA sequence; rottweiler; seroconversion; upper respiratory tract infection; virus detection","Buonavoglia, C., Martella, V., Canine respiratory viruses (2007) Veterinary Research, 38, pp. 355-373. , &; Chalker, V.J., Brooks, H.W., Brownlie, J., The association of Streptococcus equi subsp. zooepidemicus with canine infectious respiratory disease (2003) Veterinary Microbiology, 95, pp. 149-156. , &; Chvala, S., Benetka, V., Möstl, K., Simultaneous canine distemper virus, canine adenovirus type 2, and mycoplasma cynos infection in a dog with pneumonia (2007) Veterinary Pathology, 44, pp. 508-512; Crawford, P.C., Dubovi, E.J., Castleman, W.L., Transmission of equine influenza virus to dogs (2005) Science, 310, pp. 482-485; Daly, J.M., Blunden, A.S., Macrae, S., Transmission of equine influenza virus to English foxhounds (2008) Emerging Infectious Diseases, 14, pp. 461-464; Day, M.J., Horzinek, M.C., Schultz, R.D., WSAVA guidelines for the vaccination of dogs and cats (2016) Journal of Small Animal Practice, 57, pp. 4-8; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: viral evolution and pathobiology (2008) Veterinary Microbiology, 132, pp. 221-234. , &; Decaro, N., Buonavoglia, C., Canine coronavirus: not only an enteric pathogen (2011) Veterinary Clinics of North America Small Animal Practice, 41, pp. 1121-1132. , &; Decaro, N., Desario, C., Elia, G., Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy (2007) Veterinary Microbiology, 121, pp. 225-230; Decaro, N., Mari, V., Larocca, V., Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease (2016) Veterinary Microbiology, 192, pp. 21-25; Elia, G., Decaro, N., Martella, V., Detection of canine distemper virus in dogs by real-time RT-PCR (2006) Journal of Virological Methods, 136, pp. 171-176; Erles, K., Brownlie, J., Investigation into the causes of canine infectious respiratory disease: antibody responses to canine respiratory coronavirus and canine herpesvirus in two kennelled dog populations (2005) Archives of Virology, 150, pp. 1493-1504. , &; Erles, K., Brownlie, J., Canine respiratory coronavirus: an emerging pathogen in the canine infectious respiratory disease complex (2008) Veterinary Clinics of North America Small Animal Practice, 38, pp. 815-825. , &; Erles, K., Toomey, C., Brooks, H.W., Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease (2003) Virology, 310, pp. 216-223; Erles, K., Dubovi, E.J., Brooks, H.W., Longitudinal study of viruses associated with canine infectious respiratory disease (2004) Journal of Clinical Microbiology, 42, pp. 4524-4529; (2014), https://www.ema.europa.eu/en/documents/assessment-report/versican-plus-dhppi/l4-epar-public-assessment-report_en.pdf, Accessed March 08, 2019; Ford, R.B., Canine infectious respiratory disease (2012) Infectious Diseases of the Dog and Cat, pp. 55-67. , 4th edn., Ed, C. E. Greene, Elsevier Saunders, St. Louis, MO, USA, pp; Frisk, A.L., König, M., Moritz, A., Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper (1999) Journal of Clinical Microbiology, 37, pp. 3634-3643; Kapoor, A., Simmonds, P., Gerold, G., Characterization of a canine homolog of hepatitis C virus (2011) Proceedings of the National Academy of Sciences of the U.S.A., 108, pp. 11608-11613; Kapoor, A., Mehta, N., Dubovi, E.J., Characterization of novel canine bocaviruses and their association with respiratory diseases (2012) Journal of General Virology, 93, pp. 341-346; Kawakami, K., Ogawa, H., Maeda, K., Nosocomial outbreak of serious canine infectious tracheobronchitis (kennel cough) caused by canine herpesvirus infection (2010) Journal of Clinical Microbiology, 48, pp. 1176-1181; Kirkland, P.D., Finlaison, D.S., Crispe, E., Influenza virus transmission from horses to dogs, Australia (2010) Emerging Infectious Diseases, 16, pp. 699-702; Lavan, R., Knesl, O., Prevalence of canine infectious respiratory pathogens in asymptomatic dogs presented at US animal shelters (2015) Journal of Small Animal Practice, 56, pp. 572-576. , &; Li, S., Shi, Z., Jiao, P., Avian-origin H3N2 canine influenza A viruses in Southern China (2010) Infection, Genetics and Evolution, 10, pp. 1286-1288; Lin, D., Sun, S., Du, L., Natural and experimental infection of dogs with pandemic H1N1/2009 influenza virus (2012) Journal of General Virology, 93, pp. 119-123; (2017), https://www.wien.gv.at/statistik/aktuell/html, Accessed September 20, 2018; Mitchell, J.A., Brooks, H.W., Szladovits, B., Tropism and pathological findings associated with canine respiratory coronavirus (CRCoV) (2013) Veterinary Microbiology, 162, pp. 582-594; Mitchell, J.A., Cardwell, J.M., Renshaw, R.W., Detection of canine pneumovirus in dogs with canine infectious respiratory disease (2013) Journal of Clinical Microbiology, 51, pp. 4112-4119; Mitchell, J.A., Cardwell, J.M., Leach, H., European surveillance of emerging pathogens associated with canine infectious respiratory disease (2017) Veterinary Microbiology, 212, pp. 31-38; Mochizuki, M., Yachi, A., Ohshima, T., Etiological study of upper respiratory infections of household dogs (2008) Journal of Veterinary Medical Science, 70, pp. 563-569; Nell, B., Gelbmann, W., Möstl, K., Studies on the occurrence of bacteria, fungi, chlamydia, mycoplasma, herpesvirus and adenovirus in cases of follicular conjunctivitis, erosive keratitis and chronic superficial keratitis of the dog (2000) Wiener Tierärztliche Monatsschrift, 87, pp. 314-321. , &; Payungporn, S., Crawford, P.C., Kouo, T.S., Influenza A virus (H3N8) in dogs with respiratory disease, Florida (2008) Emerging Infectious Diseases, 14, pp. 902-908; Priestnall, S.L., Mitchell, J.A., Walker, C.A., New and emerging pathogens in canine infectious respiratory disease (2014) Veterinary Pathology, 51, pp. 492-504; Renshaw, R.W., Zylich, N.C., Laverack, M.A., Pneumovirus in dogs with acute respiratory disease (2010) Emerging Infectious Disease, 16, pp. 993-995; Schulz, B.S., Kurz, S., Weber, K., Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections (2014) Veterinary Journal, 201, pp. 365-369; Schulz, B.S., Klinkenberg, C., Fux, R., Prevalence of canine influenza virus A (H3N8) in dogs in Germany (2014) Veterinary Journal, 202, pp. 184-185; Song, D., Kang, B., Lee, C., Transmission of avian influenza virus (H3N2) to dogs (2008) Emerging Infectious Diseases, 14, pp. 741-746; Song, Q., Zhang, F., Liu, J., Dog to dog transmission of a novel influenza virus (H5N2) isolated from a canine (2013) Veterinary Microbiology, 161, pp. 331-333; Spiss, S., Benetka, V., Künzel, F., Enteric and respiratory coronavirus infections in Austrian dogs: serological and virological investigations of prevalence and clinical importance in respiratory and enteric disease (2012) Wiener Tierärztliche Monatsschrift, 99, pp. 67-81; Sun, X., Xu, X., Liu, Q., Evidence of an avian-like H9N2 influenza A virus among dogs in Guangxi, China (2013) Infection, Genetics and Evolution, 20, pp. 471-475; Viitanen, S.J., Lappalainen, A., Rajamäki, M.M., Co-infections with respiratory viruses in dogs with bacterial pneumonia (2015) Journal of Veterinary Internal Medicine, 29, pp. 544-551. , &; (2009), http://www.who.int/csr/resources/publications/swineflu/WHO_Diagnostic_RecommendationsH1N1_20090521.pdf, information for laboratory diagnosis of pandemic (H1N1), virus in humans - revised, Accessed October 03, 2018; Wilkes, R.P., Sanchez, E., Riley, M.C., (2014) Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains, 26, pp. 27-34; Xie, X., Ma, K., Liu, Y., Influenza A virus infection in dogs: epizootiology, evolution and prevention - a review (2016) Acta Veterinaria Hungarica, 64, pp. 125-139. , &; Yachi, A., Mochizuki, M., Survey of dogs in Japan for group 2 canine coronavirus infection (2006) Journal of Clinical Microbiology, 44, pp. 2615-2618. , &; Yoon, K.J., Cooper, V.L., Schwartz, K.J., Influenza virus infection in racing greyhounds (2005) Emerging Infectious Diseases, 11, pp. 1974-1976","Hiebl, A.; Clinic for Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine ViennaAustria; email: andreas.hiebl@vetmeduni.ac.at",,"Blackwell Publishing Ltd",00224510,,JAPRA,"31301071","English","J. Small Anim. Pract.",Article,"Final",Open Access,Scopus,2-s2.0-85069926009 "Paul A.E.H., Stayt J.","36242146300;57212034114;","The intestinal microbiome in dogs and cats with diarrhoea as detected by a faecal polymerase chain reaction-based panel in Perth, Western Australia",2019,"Australian Veterinary Journal","97","10",,"418","421",,,"10.1111/avj.12867","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072671893&doi=10.1111%2favj.12867&partnerID=40&md5=1736cb7a05f839d9057777b85d9bd470","Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Ln, Hursley, Winchester, SO21 2LL, United Kingdom; Vetpath Laboratory Services, 39 Epsom Ave, Perth, WA 6104, Australia","Paul, A.E.H., Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Ln, Hursley, Winchester, SO21 2LL, United Kingdom; Stayt, J., Vetpath Laboratory Services, 39 Epsom Ave, Perth, WA 6104, Australia","This study reports the prevalence of potential faecal pathogens in the microbiome detected in a cohort of cats and dogs with diarrhoea in Perth, Western Australia. Records from a commercial diagnostic laboratory using faecal PCR testing between July 2014 and August 2015 were reviewed.Of 289 feline faecal samples reviewed, Salmonella spp. (1.7%), Campylobacter spp. (47.6%), Clostridium perfringens (81.3%), Giardia spp. (11.1%), Toxoplasma gondii (1.2%), Tritrichomonas foetus (4.8%), panleukopenia virus (6.5%) and coronavirus (39.5%) were detected. In dogs, Salmonella spp. (5.4%), Campylobacter spp. (36.3%), C. perfringens (85.4%), Giardia spp. (6.2%), parvovirus (9.4%), coronavirus (4.7%) and distemper virus (1.5%) were detected. © 2019 Australian Veterinary Association","cats; diarrhoea; dogs; faecal microbiome","Article; Campylobacter; Canine coronavirus; Canine distemper virus; Canine parvovirus; cat; cat breed; Clostridium perfringens; diagnostic value; diarrhea; dog; dog breed; feces analysis; Feline panleukopenia virus; female; Giardia; intestine flora; male; microorganism detection; mixed infection; multiplex polymerase chain reaction; nonhuman; polymerase chain reaction; Salmonella; Toxoplasma gondii; Tritrichomonas foetus; Western Australia; animal; case report; cat; cat disease; Coronavirinae; diarrhea; dog; dog disease; feces; Gram negative bacterium; isolation and purification; microbiology; polymerase chain reaction; veterinary medicine; Animals; Cat Diseases; Cats; Coronavirus; Diarrhea; Dog Diseases; Dogs; Feces; Female; Gastrointestinal Microbiome; Giardia; Gram-Negative Bacteria; Male; Polymerase Chain Reaction; Western Australia","da Rocha Gizzi, A.B., Tostes Oliveira, S., Leutenegger, L.M., Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel (2014) BMC Vet Res, 10, p. 23; Paris, J.K., Wills, S., Balzer, H.J., Enteropathogen co-infection in UKcats with diarrhoea (2014) BMC Vet Res, 10, p. 13; Sabshin, S.J., Levy, J.K., Tupler, T., Enteropathogens identified in cats entering a Florida animal shelter with normal feces or diarrhea (2012) J Am Vet Med Assoc, 241, pp. 331-337; Marks, S.L., Rankin, S.C., Byrne, B.A., Enteropathogenic bacteria in dogs and cats: diagnosis, epidemiology, treatment, and control (2011) J Vet Intern Med, 25, pp. 1195-1208; Mekaru, S.R., Marks, S.L., Felley, A.J., Comparison of direct immunofluorescence, immunoassays, and fecal flotation for detection of Cryptosporidium spp. and Giardia spp. in naturally exposed cats in 4 Northern California animal shelters (2007) J Vet Intern Med, 21, pp. 959-965; Fayer, R., Trout, J.M., Xiao, L., Cryptosporidium canis n. sp. from domestic dogs (2001) J Parasitol, 87, pp. 1415-1422; Marks, S.L., Hanson, T.E., Melli, A.C., Comparison of direct immunofluorescence, modified acid-fast staining, and enzyme immunoassay techniques for detection of Cryptosporidium spp in naturally exposed kittens (2004) J Am Vet Med Assoc, 225, pp. 1549-1553; Bouzid, M., Halai, K., Jeffreys, D., The prevalence of Giardia infection in dogs and cats, a systematic review and meta-analysis of prevalence studies from stool samples (2015) Vet Parasitol, 207, pp. 181-202; Rishniw, M., Liotta, J., Bellosa, M., Comparison of 4 giardia diagnostic tests in diagnosis of naturally acquired canine chronic subclinical giardiasis (2010) J Vet Intern Med, 24, pp. 293-297; Beyhan, Y.E., Taş Cengiz, Z., Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens (2017) Turk J Med Sci, 47, pp. 1295-1299; Pederson, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J Feline Med Surg, 10, pp. 529-541; McCaw, D.L., Hoskins, J.D., Canine viral enteritis (2006) Infectious diseases of the dog and cat, pp. 63-73. , Greene CE, editor., 3rd edn., Saunders Elsevier; Gookin, J.L., Stebbins, M.E., Hunt, E., Prevalence of and risk factors for feline Tritrichomonas foetus and giardia infection (2004) J Clin Microbiol, 42, pp. 2707-2710; Bissett, S., Stone, B.S., Malik, R., Observed occurrence of Tritrichomonas foetus and other enteric parasites in Australian cattery and shelter cats (2009) J Feline Med Surg, 11, pp. 803-807; Yao, C., Köster, L.S., Tritrichomonas foetus infection, a cause of chronic diarrhea in the domestic cat (2015) Vet Res, 46, p. 35; Chaban, B., Ngeleka, M., Hill, J.E., Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals (2010) BMC Microbiol, 10, p. 73","Paul, A.E.H.; Anderson Moores Veterinary Specialists, The Granary, Bunstead Barns, Poles Ln, Hursley, United Kingdom; email: amanda.paul@andersonmoores.com",,"Blackwell Publishing",00050423,,,"31556108","English","Austr. Vet. J.",Article,"Final",Open Access,Scopus,2-s2.0-85072671893 "Yang Y.-L., Liang Q.-Z., Xu S.-Y., Mazing E., Xu G.-H., Peng L., Qin P., Wang B., Huang Y.-W.","57195945518;57202265671;57210371642;57210372891;57210374604;57210800179;57195247636;57195253684;8291778500;","Characterization of a novel bat-HKU2-like swine enteric alphacoronavirus (SeACoV) infection in cultured cells and development of a SeACoV infectious clone",2019,"Virology","536",,,"110","118",,,"10.1016/j.virol.2019.08.006","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070514589&doi=10.1016%2fj.virol.2019.08.006&partnerID=40&md5=6619095371400f71501c13f0f4b60e0b","Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China","Yang, Y.-L., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Liang, Q.-Z., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Xu, S.-Y., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Mazing, E., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Xu, G.-H., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Peng, L., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Qin, P., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Wang, B., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Huang, Y.-W., Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China","Swine enteric alphacoronavirus (SeACoV), also known as swine acute diarrhea syndrome coronavirus (SADS-CoV), belongs to the species Rhinolophus bat coronavirus HKU2. Herein, we report on the primary characterization of SeACoV in vitro. Four antibodies against the SeACoV spike, membrane, nucleocapsid and nonstructural protein 3 capable of reacting with viral antigens in SeACoV-infected Vero cells were generated. We established a DNA-launched SeACoV infectious clone based on the cell adapted passage-10 virus and rescued the recombinant virus with a unique genetic marker in cultured cells. Six subgenomic mRNAs containing the leader-body junction sites, including a bicistronic mRNA encoding the accessory NS7a and NS7b genes, were experimentally identified in SeACoV-infected cells. Cellular ultrastructural changes induced by SeACoV infection were visualized by electron microscopy. The availability of the SeACoV infectious clone and a panel of antibodies against different viral proteins will facilitate further studies on understanding the molecular mechanisms of SeACoV replication and pathogenesis. © 2019 Elsevier Inc.","Electron microscopy (EM); Infectious clone; Subgenomic mRNAs; Swine enteric alphacoronavirus (SeACoV); Viral antibodies","DNA; membrane protein; messenger RNA; nonstructural protein 3; nucleocapsid protein; polyclonal antibody; virus antigen; virus spike protein; Alphacoronavirus; animal cell; Article; cell culture; cell ultrastructure; controlled study; electron microscopy; genetic marker; in vitro study; molecular cloning; molecular mechanics; nonhuman; nucleotide sequence; pathogenesis; priority journal; swine enteric alphacoronavirus; Vero cell line; virus infection; virus recombinant; virus replication","Almazan, F., Sola, I., Zuniga, S., Marquez-Jurado, S., Morales, L., Becares, M., Enjuanes, L., Coronavirus reverse genetic systems: infectious clones and replicons (2014) Virus Res., 189, pp. 262-270; Donaldson, E.F., Yount, B., Sims, A.C., Burkett, S., Pickles, R.J., Baric, R.S., Systematic assembly of a full-length infectious clone of human coronavirus NL63 (2008) J. Virol., 82, pp. 11948-11957; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Wang, D., Xiao, S., Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA (2018) J. Virol., 92; Goldsmith, C.S., Tatti, K.M., Ksiazek, T.G., Rollin, P.E., Comer, J.A., Lee, W.W., Rota, P.A., Zaki, S.R., Ultrastructural characterization of SARS coronavirus (2004) Emerg. Infect. Dis., 10, pp. 320-326; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) mBio, 4. , e00737-00713; Huang, Y.W., Fang, Y., Meng, X.J., Identification and characterization of a porcine monocytic cell line supporting porcine reproductive and respiratory syndrome virus (PRRSV) replication and progeny virion production by using an improved DNA-launched PRRSV reverse genetics system (2009) Virus Res., 145, pp. 1-8; Huang, Y.W., Harrall, K.K., Dryman, B.A., Beach, N.M., Kenney, S.P., Opriessnig, T., Vaughn, E.M., Meng, X.J., Expression of the putative ORF1 capsid protein of Torque teno sus virus 2 (TTSuV2) and development of Western blot and ELISA serodiagnostic assays: correlation between TTSuV2 viral load and IgG antibody level in pigs (2011) Virus Res., 158, pp. 79-88; Ji, C.M., Wang, B., Zhou, J., Huang, Y.W., Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells (2018) Virology, 517, pp. 16-23; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Yuen, K.Y., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Liu, D.X., Fung, T.S., Chong, K.K.L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antivir. Res., 109, pp. 97-109; Ortego, J., Sola, I., Almazan, F., Ceriani, J.E., Riquelme, C., Balasch, M., Plana, J., Enjuanes, L., Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence (2003) Virology, 308, pp. 13-22; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Prentice, E., McAuliffe, J., Lu, X., Subbarao, K., Denison, M.R., Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins (2004) J. Virol., 78, pp. 9977-9986; Qin, P., Du, E.Z., Luo, W.T., Yang, Y.L., Zhang, Y.Q., Wang, B., Huang, Y.W., Characteristics of the life cycle of porcine deltacoronavirus (PDCoV) in vitro: replication kinetics, cellular ultrastructure and virion morphology, and evidence of inducing autophagy (2019) Viruses-Basel, 11, p. 455; Qin, P., Li, H., Wang, J.W., Wang, B., Xie, R.H., Xu, H., Zhao, L.Y., Huang, Y.W., Genetic and pathogenic characterization of a novel reassortant mammalian orthoreovirus 3 (MRV3) from a diarrheic piglet and seroepidemiological survey of MRV3 in diarrheic pigs from east China (2017) Vet. Microbiol., 208, pp. 126-136; Salanueva, I.J., Carrascosa, J.L., Risco, C., Structural maturation of the transmissible gastroenteritis coronavirus (1999) J. Virol., 73, pp. 7952-7964; Sola, I., Almazan, F., Zuniga, S., Enjuanes, L., Continuous and discontinuous RNA synthesis in coronaviruses (2015) Annu. Rev. Virol., 2, pp. 265-288; Sola, I., Alonso, S., Zuniga, S., Balasch, M., Plana-Duran, J., Enjuanes, L., Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity (2003) J. Virol., 77, pp. 4357-4369; Tsoleridis, T., Chappell, J.G., Onianwa, O., Marston, D.A., Fooks, A.R., Monchatre-Leroy, E., Umhang, G., Ball, J.K., Shared common ancestry of rodent alphacoronaviruses sampled globally (2019) Viruses, 11; Ulasli, M., Verheije, M.H., de Haan, C.A., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell Microbiol., 12, pp. 844-861; V'Kovski, P., Al-Mulla, H., Thiel, V., Neuman, B.W., New insights on the role of paired membrane structures in coronavirus replication (2015) Virus Res., 202, pp. 33-40; Verheije, M.H., Hagemeijer, M.C., Ulasli, M., Reggiori, F., Rottier, P.J., Masters, P.S., de Haan, C.A., The coronavirus nucleocapsid protein is dynamically associated with the replication-transcription complexes (2010) J. Virol., 84, pp. 11575-11579; Wang, J., Lei, X., Qin, P., Zhao, P., Wang, B., Wang, Y., Li, Y., Huang, Y.W., Development and application of real-time RT-PCR and S1 protein-based indirect ELISA for porcine deltacoronavirus (2017) Sheng wu gong cheng xue bao = Chin. J. Biotechnol., 33, pp. 1265-1275; Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., Emerging and re-emerging coronaviruses in pigs (2019) Curr. Opin. Virol., 34, pp. 39-49; Wang, W., Lin, X.D., Guo, W.P., Zhou, R.H., Wang, M.R., Wang, C.Q., Ge, S., Zhang, Y.Z., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27; Wang, W., Lin, X.D., Liao, Y., Guan, X.Q., Guo, W.P., Xing, J.G., Holmes, E.C., Zhang, Y.Z., Discovery of a highly divergent coronavirus in the asian house shrew from China illuminates the origin of the alphacoronaviruses (2017) J. Virol., 91. , e00764-00717; Wang, Y., Liu, R., Lu, M., Yang, Y., Zhou, D., Hao, X., Zhou, D., Zhao, Z., Enhancement of safety and immunogenicity of the Chinese Hu191 measles virus vaccine by alteration of the S-adenosylmethionine (SAM) binding site in the large polymerase protein (2018) Virology, 518, pp. 210-220; Xu, Z.C., Zhang, Y., Gong, L., Huang, L.C., Lin, Y., Qin, J.R., Du, Y.P., Cao, Y.C., Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets (2019) Transbound Emerg. Dis., 66, pp. 119-130; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J. Virol., 79, pp. 14909-14922; Yue, Y., Nabar, N.R., Shi, C.S., Kamenyeva, O., Xiao, X., Hwang, I.Y., Wang, M., Kehrl, J.H., SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death (2018) Cell Death Dis., 9, p. 904; Zhou, L., Sun, Y., Lan, T., Wu, R.T., Chen, J.W., Wu, Z.X., Xie, Q.M., Ma, J.Y., Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China (2019) Transbound Emerg. Dis., 66, pp. 687-695; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Huang, Y.-W.; Department of Veterinary Medicine, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, China; email: yhuang@zju.edu.cn",,"Academic Press Inc.",00426822,,VIRLA,"31419711","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85070514589 "Liu X., Fang P., Fang L., Hong Y., Zhu X., Wang D., Peng G., Xiao S.","57191494359;57189253798;7402470374;57191481585;56367538000;36060664000;56651662900;7402022567;","Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity",2019,"Molecular Immunology","114",,,"100","107",,,"10.1016/j.molimm.2019.07.003","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069751786&doi=10.1016%2fj.molimm.2019.07.003&partnerID=40&md5=71c64e3c2e6efd42010ff627dc1185ae","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China","Liu, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Fang, P., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Hong, Y., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Zhu, X., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Peng, G., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China","Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus causing diarrhea and intestinal damage in nursing piglets. Previous work showed that PDCoV infection inhibits type I interferon (IFN) production. To further identify and characterize the PDCoV-encoded IFN antagonists will broaden our understanding of its pathogenesis. Nonstructural protein 15 (nsp15) encodes an endoribonuclease that is highly conserved among vertebrate nidoviruses (coronaviruses and arteriviruses) and plays a critical role in viral replication and transcription. Here, we found that PDCoV nsp15 significantly inhibits Sendai virus (SEV)-induced IFN-β production. PDCoV nsp15 disrupts the phosphorylation and nuclear translocation of NF-κB p65 subunit, but not antagonizes the activation of transcription factor IRF3. Interestingly, site-directed mutagenesis found that PDCoV nsp15 mutants (H129A, H234A, K269A) lacking endoribonuclease activity also suppress SEV-induced IFN-β production and NF-κB activation, suggesting that the endoribonuclease activity is not required for its ability to antagonize IFN-β production. Taken together, our results demonstrate that PDCoV nsp15 is an IFN antagonist and it inhibits interferon-β production via an endoribonuclease activity-independent mechanism. © 2019 Elsevier Ltd","Endoribonuclease activity; Interferon production; Nonstructural protein 15 (nsp15); Porcine deltacoronavirus","beta interferon; interferon regulatory factor 3; nonstructural protein 15; ribonuclease; transcription factor RelA; unclassified drug; viral protein; beta interferon; immunoglobulin enhancer binding protein; interferon; nonstructural protein 15, SARS coronovirus; ribonuclease; RNA directed RNA polymerase; viral protein; animal cell; Article; controlled study; Coronavirinae; deltacoronavirus; enzyme activation; enzyme activity; gene expression; HEK293T cell line; interferon production; LLC-PK1 cell line; luciferase assay; nonhuman; pig; priority journal; promoter region; protein phosphorylation; real time polymerase chain reaction; Sendai virus; site directed mutagenesis; virus replication; Western blotting; animal; cell line; Coronavirinae; Coronavirus infection; HEK293 cell line; human; immunology; metabolism; pig; signal transduction; swine disease; virology; Animals; Cell Line; Coronavirus; Coronavirus Infections; Endoribonucleases; HEK293 Cells; Humans; Interferon Type I; Interferon-beta; NF-kappa B; RNA Replicase; Signal Transduction; Swine; Swine Diseases; Viral Nonstructural Proteins; Virus Replication","Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins (2017) MBio, 8. , e02320-16; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Deng, X., Baker, S.C., An “old” protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses (2018) Virology, 517, pp. 157-163; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. e4251-e4260; Deng, X., van Geelen, A., Buckley, A.C., O'Brien, A., Pillatzki, A., Lager, K.M., Faaberg, K.S., Baker, S.C., Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses (2019) J. Virol., 93. , e02000-18; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Fang, P., Fang, L., Hong, Y., Liu, X., Dong, N., Ma, P., Bi, J., Xiao, S., Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus (2017) J. Gen. Virol., 98, pp. 173-178; Fang, P., Fang, L., Liu, X., Hong, Y., Wang, Y., Dong, N., Ma, P., Xiao, S., Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6 (2016) Virology, 499, pp. 170-177; Fang, P., Fang, L., Ren, J., Hong, Y., Liu, X., Zhao, Y., Wang, D., Xiao, S., Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA (2018) J. Virol., 92. , e00712-18; Frieman, M., Ratia, K., Johnston, R.E., Mesecar, A.D., Baric, R.S., Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling (2009) J. Virol., 83, pp. 6689-6705; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Ivanov, K.A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A.E., Ziebuhr, J., Major genetic marker of nidoviruses encodes a replicative endoribonuclease (2004) Proc. Natl. Acad. Sci. U S A., 101, pp. 12694-12699; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Kesdaengsakonwut, S., Amonsin, A., Porcine deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis., 22, pp. 757-759; Jang, G., Lee, K.K., Kim, S.H., Lee, C., Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016 (2017) Transbound. Emerg. Dis., 64, pp. 1364-1370; Jung, K., Hu, H., Saif, L.J., Porcine deltacoronavirus infection: etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis (2016) Virus Res., 226, pp. 50-59; Jung, K., Hu, H., Saif, L.J., Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus (2017) Arch. Virol., 162, pp. 2357-2362; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog., 13; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Lee, C.H., Park, B.K., Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015 (2016) Transbound. Emerg. Dis., 63, pp. 248-252; Lei, Y., Moore, C.B., Liesman, R.M., O'Connor, B.P., Bergstralh, D.T., Chen, Z.J., Pickles, R.J., Ting, J.P., MAVS-mediated apoptosis and its inhibition by viral proteins (2009) PLoS One, 4, p. e5466; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., Tuntituvanont, A., Nilubol, D., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch. Virol., 161, pp. 2909-2911; Luo, J., Fang, L., Dong, N., Fang, P., Ding, Z., Wang, D., Chen, H., Xiao, S., Porcine deltacoronavirus (PDCoV) infection suppresses RIG-I-mediated interferon-beta production (2016) Virology, 495, pp. 10-17; Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., Li, J., Origin, evolution, and virulence of porcine deltacoronaviruses in the United States (2015) mBio, 6; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities (2014) Virus Res., 194, pp. 184-190; Nedialkova, D.D., Ulferts, R., van den Born, E., Lauber, C., Gorbalenya, A.E., Ziebuhr, J., Snijder, E.J., Biochemical characterization of arterivirus nonstructural protein 11 reveals the nidovirus-wide conservation of a replicative endoribonuclease (2009) J. Virol., 83, pp. 5671-5682; Ricagno, S., Egloff, M.P., Ulferts, R., Coutard, B., Nurizzo, D., Campanacci, V., Cambillau, C., Canard, B., Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 11892-11897; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Tripipat, T., Nilubol, D., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound. Emerg. Dis., 64, pp. 3-10; Shi, X., Wang, L., Li, X., Zhang, G., Guo, J., Zhao, D., Chai, S., Deng, R., Endoribonuclease activities of porcine reproductive and respiratory syndrome virus nsp11 was essential for nsp11 to inhibit IFN-beta induction (2011) Mol. Immunol., 48, pp. 1568-1572; Shi, Y., Li, Y., Lei, Y., Ye, G., Shen, Z., Sun, L., Luo, R., Peng, G., A dimerization-dependent mechanism drives the endoribonuclease function of porcine reproductive and respiratory syndrome virus nsp11 (2016) J. Virol., 90, pp. 4579-4592; Snijder, E.J., Kikkert, M., Fang, Y., Arterivirus molecular biology and pathogenesis (2013) J. Gen. Virol., 94, pp. 2141-2163; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound. Emerg. Dis., 62, pp. 575-580; Sun, Y., Ke, H., Han, M., Chen, N., Fang, W., Yoo, D., Nonstructural protein 11 of porcine reproductive and respiratory syndrome virus suppresses both MAVS and RIG-I expression as one of the mechanisms to antagonize type I interferon production (2016) PLoS One, 11; Suzuki, T., Shibahara, T., Imai, N., Yamamoto, T., Ohashi, S., Genetic characterization and pathogenicity of Japanese porcine deltacoronavirus (2018) Infect. Genet. Evol., 61, pp. 176-182; Wang, Y.W., Yue, H., Fang, W., Huang, Y.W., Complete genome sequence of porcine deltacoronavirus strain CH/Sichuan/S27/2012 from Mainland China (2015) Genome Announc., 3. , e00945-15; Wang, L., Hayes, J., Sarver, C., Byrum, B., Zhang, Y., Porcine deltacoronavirus: histological lesions and genetic characterization (2016) Arch. Virol., 161, pp. 171-175; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2016) J. Virol., 90, pp. 2090-2101; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., Emerging and re-emerging coronaviruses in pigs (2019) Curr. Opin. Virol., 34, pp. 39-49; Wathelet, M.G., Lin, C.H., Parekh, B.S., Ronco, L.V., Howley, P.M., Maniatis, T., Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo (1998) Mol. Cell, 1, pp. 507-518; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Xu, X., Zhai, Y., Sun, F., Lou, Z., Su, D., Xu, Y., Zhang, R., Rao, Z., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 (2006) J. Virol., 80, pp. 7909-7917; Zhang, J., Porcine deltacoronavirus: overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res., 226, pp. 71-84; Zhang, L., Li, L., Yan, L., Ming, Z., Jia, Z., Lou, Z., Rao, Z., Structural and biochemical characterization of endoribonuclease Nsp15 encoded by middle east respiratory syndrome coronavirus (2018) J. Virol., 92. , e00893-18; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zheng, A., Shi, Y., Shen, Z., Wang, G., Shi, J., Xiong, Q., Fang, L., Peng, G., Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer (2018) J. Biol. Chem., 293, pp. 12054-12067; Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M.F., Xiao, S., Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO (2017) Virology, 502, pp. 33-38; Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Lv, M., Xiao, S., Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2 (2017) J. Virol., 91. , e00003-17; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879","Xiao, S.; College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, China; email: vet@mail.hzau.edu.cn",,"Elsevier Ltd",01615890,,IMCHA,"31351410","English","Mol. Immunol.",Article,"Final",Open Access,Scopus,2-s2.0-85069751786 "Zumla A., Memish Z.A., Hui D.S., Perlman S.","7006170723;7005059350;7101862411;57204567845;","Vaccine against Middle East respiratory syndrome coronavirus",2019,"The Lancet Infectious Diseases","19","10",,"1054","1055",,1,"10.1016/S1473-3099(19)30477-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072545367&doi=10.1016%2fS1473-3099%2819%2930477-3&partnerID=40&md5=fedaf744b683271b654c062730e3e782","Division of Infection and Immunity, Center for Clinical Microbiology, University College London, London, United Kingdom; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom; Infectious Diseases Division, Department of Medicine and Department of Research, Prince Mohamed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia; Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Division of Respiratory Medicine and Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China; Department of Microbiology and Immunology and Department of Pediatrics, University of Iowa, Iowa City, IA 52242, United States","Zumla, A., Division of Infection and Immunity, Center for Clinical Microbiology, University College London, London, United Kingdom, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom; Memish, Z.A., Infectious Diseases Division, Department of Medicine and Department of Research, Prince Mohamed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hui, D.S., Division of Respiratory Medicine and Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, China; Perlman, S., Department of Microbiology and Immunology and Department of Pediatrics, University of Iowa, Iowa City, IA 52242, United States",[No abstract available],,"DNA vaccine; neutralizing antibody; virus vaccine; aging; cellular immunity; health care personnel; human; humoral immunity; immune deficiency; Letter; Middle East respiratory syndrome; phase 1 clinical trial (topic); priority journal; susceptible population; virus immunity","Modjarrad, K., Roberts, C.C., Mills, K.T., Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial (2019) Lancet Infect Dis, 19, pp. 1013-1022; WHO target product profiles for MERS-CoV vaccines (2017), https://www.who.int/blueprint/what/research-development/MERS_CoV_TPP_15052017.pdf, (Accessed 3 August 2019); Yoon, I.-K., Kim, J.H., First clinical trial of a MERS coronavirus DNA vaccine (2019) Lancet Infect Dis, 19, pp. 924-925; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227; Maslow, J.N., Vaccines for emerging infectious diseases: lessons from MERS coronavirus and Zika virus (2017) Hum Vaccin Immunother, 13, pp. 2918-2930; Schindewolf, C., Menachery, V.D., Middle East respiratory syndrome vaccine candidates: cautious optimism (2019) Viruses, 11, p. e74; Perlman, S., Azhar, E.I., Memish, Z.A., Hui, D.S., Zumla, A., Confronting the persisting threat of the Middle East respiratory syndrome to global health security (2019) Lancet Infect Dis, , published online July 3",,,"Lancet Publishing Group",14733099,,LIDAB,"31559955","English","Lancet Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85072545367 "Shen X., Sabir J.S.M., Irwin D.M., Shen Y.","55450870000;57194035277;35237354400;35312068500;","Vaccine against Middle East respiratory syndrome coronavirus",2019,"The Lancet Infectious Diseases","19","10",,"1053","1054",,1,"10.1016/S1473-3099(19)30476-1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072511376&doi=10.1016%2fS1473-3099%2819%2930476-1&partnerID=40&md5=2d1c9db02b37b1c988a2842e4f9ab9ca","College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Centre of Excellence in Bionanoscience Research, and Genomic and Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Laboratory Medicine and Pathobiology, and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China","Shen, X., College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Sabir, J.S.M., Centre of Excellence in Bionanoscience Research, and Genomic and Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Irwin, D.M., Department of Laboratory Medicine and Pathobiology, and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Shen, Y., College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China",[No abstract available],,"gls 5300 vaccine; unclassified drug; virus vaccine; biosafety; cellular immunity; clinical trial (topic); dromedary; human; humoral immunity; infection prevention; Letter; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; One Health; post exposure prophylaxis; prevention and control; priority journal; SARS coronavirus; severe acute respiratory syndrome; vaccination; veterinary medicine; virus transmission","Modjarrad, K., Roberts, C.C., Mills, K.T., Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial (2019) Lancet Infect Dis, 19, pp. 1013-1022; WHO MERS global summary and assessment of risk (2018), https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, (Accessed 3 September 2019); Sabir, J.S.M., Lam, T.T.Y., Ahmed, M.M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Reusken, C.B., Haagmans, B.L., Muller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7",,,"Lancet Publishing Group",14733099,,LIDAB,"31559953","English","Lancet Infect. Dis.",Letter,"Final",Open Access,Scopus,2-s2.0-85072511376 "Stolz D., Papakonstantinou E., Grize L., Schilter D., Strobel W., Louis R., Schindler C., Hirsch H.H., Tamm M.","57203082091;7003948513;25647591500;55202295700;6701635889;55556102200;7101692455;7202406848;7006098027;","Time-course of upper respiratory tract viral infection and COPD exacerbation",2019,"European Respiratory Journal","54","4", 1900407,"","",,1,"10.1183/13993003.00407-2019","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073124725&doi=10.1183%2f13993003.00407-2019&partnerID=40&md5=979f0862bfcd96eabdd284a58ec112f2","Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, University of Basel, Basel, Switzerland; Dept of Biomedicine, University of Basel, Basel, Switzerland; University of Basel, Basel, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland; Lindenhof Hospital, Bern, Switzerland; Pneumology Dept, University of Liege, CHU Liege, Liege, Belgium","Stolz, D., Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, University of Basel, Basel, Switzerland, Dept of Biomedicine, University of Basel, Basel, Switzerland; Papakonstantinou, E., Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, University of Basel, Basel, Switzerland, Dept of Biomedicine, University of Basel, Basel, Switzerland; Grize, L., University of Basel, Basel, Switzerland, Swiss Tropical and Public Health Institute, Basel, Switzerland; Schilter, D., Lindenhof Hospital, Bern, Switzerland; Strobel, W., Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, University of Basel, Basel, Switzerland, Dept of Biomedicine, University of Basel, Basel, Switzerland; Louis, R., Pneumology Dept, University of Liege, CHU Liege, Liege, Belgium; Schindler, C., University of Basel, Basel, Switzerland, Swiss Tropical and Public Health Institute, Basel, Switzerland; Hirsch, H.H., Dept of Biomedicine, University of Basel, Basel, Switzerland; Tamm, M., Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, University of Basel, Basel, Switzerland, Dept of Biomedicine, University of Basel, Basel, Switzerland","Viral respiratory tract infections have been implicated as the predominant risk factor for acute exacerbations of chronic obstructive pulmonary disease (AECOPD). We aimed to evaluate, longitudinally, the association between upper respiratory tract infections (URTI) caused by viruses and AECOPD. Detection of 18 viruses was performed in naso- and oropharyngeal swabs from 450 COPD patients (Global Initiative for Chronic Obstructive Lung Disease stages 2-4) who were followed for a mean of 27 months. Swabs were taken during stable periods (n=1909), at URTI onset (n=391), 10 days after the URTI (n=356) and during an AECOPD (n=177) and tested using a multiplex nucleic acid amplification test. Evidence of at least one respiratory virus was significantly higher at URTI onset (52.7%), 10 days after the URTI (15.2%) and during an AECOPD (38.4%), compared with the stable period (5.3%, p<0.001). During stable visits, rhinovirus accounted for 54.2% of all viral infections, followed by coronavirus (20.5%). None of the viruses were identified in two consecutive stable visits. Patients with a viral infection at URTI onset did not have a higher incidence of exacerbation than patients without viral infection (p=0.993). The incidence of any viral infection during an AECOPD was similar between URTI-related AECOPD and non-URTI-related AECOPD (p=0.359). Only 24% of the patients that had a URTI-related AECOPD had the same virus at URTI onset and during an AECOPD. Detection of parainfluenza 3 at URTI onset was associated with a higher risk of an AECOPD ( p=0.003). Rhinovirus and coronavirus were the most frequently detected viruses during AECOPD visits, accounting for 35.7% and 25.9% of all viral infections, respectively. The prevalence of viral infection during the stable period of COPD was low. The risk of exacerbation following the onset of URTI symptoms depends on the particular virus associated with the event and was significant only for parainfluenza 3. © ERS 2019.",,"beta 2 adrenergic receptor stimulating agent; beta adrenergic receptor stimulating agent; corticosteroid; placebo; adult; aged; Article; chronic obstructive lung disease; controlled study; Coronavirus infection; disease association; disease course; disease exacerbation; disease predisposition; female; follow up; human; Human parainfluenza virus 3; longitudinal study; low drug dose; lung function test; major clinical study; male; microbiological examination; nasopharyngeal swab; nucleic acid amplification; oropharyngeal swab; Parainfluenza virus infection; patient monitoring; priority journal; quality of life; respiratory tract examination; Rhinovirus infection; upper respiratory tract infection; viral respiratory tract infection; virus detection","Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017 (2018) Lancet, 392, pp. 1859-1922. , GBD 2017 DALYs and HALE Collaborators; Seemungal, T., Sykes, A., Recent advances in exacerbations of COPD (2008) Thorax, 63, pp. 850-852; Kim, E.Y., Battaile, J.T., Patel, A.C., Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease (2008) Nat Med, 14, pp. 633-640; Aaron, S.D., Donaldson, G.C., Whitmore, G.A., Time course and pattern of COPD exacerbation onset (2012) Thorax, 67, pp. 238-243; Hurst, J.R., Donaldson, T.M.A., Wilkinson, W.R., Epidemiological relationships between the common cold and exacerbation frequency in COPD (2005) Eur Respir J, 26, pp. 846-852; Johnston, N.W., Olsson, M., Edsbäcker, S., Colds as predictors of the onset and severity of COPD exacerbations (2017) Int J Chron Obstruct Pulmon Dis, 12, pp. 839-848; Rohde, G., Borg, I., Wiethege, A., Inflammatory response in acute viral exacerbations of COPD (2008) Infection, 36, pp. 427-433; Hutchinson, A.F., Ghimire, A.K., Thompson, M.A., A community-based, time-matched, case-control study of respiratory viruses and exacerbations of COPD (2007) Respir Med, 101, pp. 2472-2481; Seemungal, T., Harper-Owen, R., Bhowmik, A., Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease (2001) Am J Respir Crit Care Med, 164, pp. 1618-1623; Sethi, S., Murphy, T.F., Infection in the pathogenesis and course of chronic obstructive pulmonary disease (2008) N Engl J Med, 359, pp. 2355-2365; Falsey, A.R., Hennessey, P.A., Formica, M.A., Respiratory syncytial virus infection in elderly and high-risk adults (2005) N Engl J Med, 352, pp. 1749-1759; Hamelin, M.E., Cote, S., Laforge, J., Human metapneumovirus infection in adults with community-acquired pneumonia and exacerbation of chronic obstructive pulmonary disease (2005) Clin Infect Dis, 41, pp. 498-502; Stolz, D., Hirsch, H.H., Schilter, D., Intensified therapy with inhaled corticosteroids and long-acting β2-agonists at the onset of upper respiratory tract infection to prevent chronic obstructive pulmonary disease exacerbations. A multicenter, randomized, double-blind, placebo-controlled trial (2018) Am J Respir Crit Care Med, 197, pp. 1136-1146; Beckmann, C., Hirsch, H.H., Comparing Luminex NxTAG-Respiratory Pathogen Panel and RespiFinder-22 for multiplex detection of respiratory pathogens (2016) J Med Virol, 88, pp. 1319-1324; Podbielski, A., Herrmann, M., Kniehl, E., (2010) Mikrobiologisch-infektiologische Qualitätsstandard (MiQ) 2 Auflage 2010, , Munich, Urban and Fischer Elsevier GmbH; Wedzicha, J.A., Role of viruses in exacerbations of chronic obstructive pulmonary disease (2004) Proc Am Thor Soc, 1, pp. 115-120; Utokaparch, S., Sze, M.A., Gosselink, J.V., Respiratory viral detection and small airway inflammation in lung tissue of patients with stable, mild COPD (2012) COPD, 2, pp. 197-203; Mallia, P., Footitt, J., Sotero, R., Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease (2012) Am J Respir Crit Care Med, 186, pp. 1117-1124; Molyneaux, P., Mallia, P., Cox, M.J., Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease (2013) Am J Respir Crit Care Med, 188, pp. 1224-1231; Hogg, J.C., Role of latent viral infections in chronic obstructive pulmonary disease and asthma (2001) Am J Respir Crit Care Med, 164, pp. S71-S75; Higashimoto, Y., Elliot, W.M., Behzad, A.R., Inflammatory mediator mRNA expression by adenovirus E1A-transfected bronchial epithelial cells (2002) Am J Respir Crit Care Med, 166, pp. 200-207; Gwaltney, J.M., Clinical significance and pathogenesis of viral respiratory infections (2002) Am J Med, 112, pp. 13S-18S; Edwards, M.R., Strong, K., Cameron, A., Viral infections in allergy and immunology: How allergic inflammation influences viral infections and illness (2017) J Allergy Clin Immunol, 140, pp. 909-920; Dai, M.Y., Qiao, J.P., Xu, Y.H., Respiratory infectious phenotypes in acute exacerbation of COPD: An aid to length of stay and COPD Assessment Test (2015) Int J Chron Obstruct Pulmon Dis, 10, pp. 2257-2263; Teran, L.M., Johnston, S.L., Schroder, J.M., Role of nasal interleukin-8 in neutrophil recruitment and activation in children with virus-induced asthma (1997) Am J Respir Crit Care Med, 155, pp. 1362-1366; Grunberg, K., Smits, H.H., Timmers, M.C., Experimental rhinovirus 16 infection Effects on cell differentials and soluble markers in sputum in asthmatic subjects (1997) Am J Respir Crit Care Med, 156, pp. 609-616; Zwaans, W.A., Mallia, P., Van Winden, M.E., The relevance of respiratory viral infections in the exacerbations of chronic obstructive pulmonary disease - A systematic review (2014) J Clin Virol, 61, pp. 181-188; Barrett, B., Brown, R., Voland, R., Relations among questionnaire and laboratory measures of rhinovirus infection (2006) Eur Respir J, 28, pp. 358-363; Barrett, B., Brown, R.L., Mundt, M.P., Validation of a short form Wisconsin Upper Respiratory Symptom Survey (WURSS-21) (2009) Health Qual Life Outcomes, 7, p. 76; Jones, P.W., Beeh, K.M., Chapman, K.R., Minimal clinically important differences in pharmacological trials (2014) Am J Respir Crit Care Med, 189, pp. 250-255; Celli, B.R., MacNee, W., Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ ERS position paper (2004) Eur Respir J, 23, pp. 932-946. , 41; Fisher, C.E., Boeckh, M., Jerome, K.R., Evaluating addition of self-collected throat swabs to nasal swabs for respiratory virus detection (2019) J Clin Virol, 115, pp. 43-46; Huijskens, E.G., Rossen, J.W., Kluytmans, J.A., Evaluation of yield of currently available diagnostics by sample type to optimize detection of respiratory pathogens in patients with a community-acquired pneumonia (2014) Influenza Other Respir Viruses, 8, pp. 243-249","Stolz, D.; Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital Basel, Petersgraben 4, Switzerland; email: daiana.stolz@usb.ch",,"European Respiratory Society",09031936,,ERJOE,"31391222","English","Eur. Respir. J.",Article,"Final",Open Access,Scopus,2-s2.0-85073124725 "Wahl A., De C., Abad Fernandez M., Lenarcic E.M., Xu Y., Cockrell A.S., Cleary R.A., Johnson C.E., Schramm N.J., Rank L.M., Newsome I.G., Vincent H.A., Sanders W., Aguilera-Sandoval C.R., Boone A., Hildebrand W.H., Dayton P.A., Baric R.S., Pickles R.J., Braunstein M., Moorman N.J., Goonetilleke N., Victor Garcia J.","15754569600;57191887086;57215945781;6504642396;57190731261;57170359900;57193921756;57197867717;57190348102;56244062500;57200090069;57202765522;37105005000;36130980400;57210645639;7005212344;7006230860;57205312930;7004225327;7006357699;6508066048;6506006823;6506607789;","Precision mouse models with expanded tropism for human pathogens",2019,"Nature Biotechnology","37","10",,"1163","1173",,7,"10.1038/s41587-019-0225-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071193693&doi=10.1038%2fs41587-019-0225-9&partnerID=40&md5=b4a1d85efab6e15a5c54a3f4117cf0ae","Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, United States; Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States; BD Life Sciences, San Jose, CA, United States","Wahl, A., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; De, C., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Abad Fernandez, M., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States; Lenarcic, E.M., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States; Xu, Y., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States; Cockrell, A.S., Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Cleary, R.A., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Johnson, C.E., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Schramm, N.J., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States; Rank, L.M., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States; Newsome, I.G., Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, United States; Vincent, H.A., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States; Sanders, W., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States; Aguilera-Sandoval, C.R., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States, BD Life Sciences, San Jose, CA, United States; Boone, A., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States; Hildebrand, W.H., Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Dayton, P.A., Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, United States; Baric, R.S., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States; Pickles, R.J., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States; Braunstein, M., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States; Moorman, N.J., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States; Goonetilleke, N., Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States, UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States; Victor Garcia, J., Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, NC, United States","A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics. © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.",,"Biological organs; Bone; Mammals; Pathogens; T-cells; Viruses; Coronaviruses; Hematopoietic cell; Human pathogens; Mesenchymal cells; Mouse models; Respiratory syncytial virus; T-cell response; Virus replication; Cytology; adaptive immunity; animal experiment; animal model; animal tissue; Article; Cytomegalovirus; disease model; human; human cell; Human respiratory syncytial virus; human tissue; humoral immunity; Middle East respiratory syndrome coronavirus; mouse; nonhuman; priority journal; T lymphocyte; tropism; virus infection; virus replication; Zika virus; animal; antigen presenting cell; Coronavirus infection; female; gene expression regulation; genetics; immunohistochemistry; immunology; lung; male; metabolism; physiology; SCID mouse; tropism; virology; Zika fever; cytokine; virus antibody; Animals; Antibodies, Viral; Antigen-Presenting Cells; Coronavirus Infections; Cytokines; Cytomegalovirus; Disease Models, Animal; Female; Gene Expression Regulation; Humans; Immunohistochemistry; Lung; Male; Mice; Mice, SCID; Middle East Respiratory Syndrome Coronavirus; Tropism; Virus Replication; Zika Virus; Zika Virus Infection","Cockrell, A.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226. , COI: 1:CAS:528:DC%2BC2sXkvFyqs7g%3D; Morrison, T.E., Diamond, M.S., Animal models of Zika virus infection, pathogenesis, and immunity (2017) J. Virol., 91, pp. e00009-e17. , COI: 1:CAS:528:DC%2BC2sXhtV2ntrrP, PID: 28148798; Safronetz, D., Geisbert, T.W., Feldmann, H., Animal models for highly pathogenic emerging viruses (2013) Curr. Opin. Virol., 3, pp. 205-209; Schmitt, K., Zika viral infection and neutralizing human antibody response in a BLT humanized mouse model (2018) Virology, 515, pp. 235-242. , COI: 1:CAS:528:DC%2BC1cXkslOqug%3D%3D; Crawford, L.B., Streblow, D.N., Hakki, M., Nelson, J.A., Caposio, P., Humanized mouse models of human cytomegalovirus infection (2015) Curr. Opin. Virol., 13, pp. 86-92. , COI: 1:CAS:528:DC%2BC2MXhtVKmsbnP; Taylor, G., Animal models of respiratory syncytial virus infection (2017) Vaccine, 35, pp. 469-480. , COI: 1:CAS:528:DC%2BC28XhvFKnurnF; Gupta, U.D., Katoch, V.M., Animal models of tuberculosis (2005) Tuberculosis (Edinb.), 85, pp. 277-293. , COI: 1:STN:280:DC%2BD2MnhsVensw%3D%3D; Fonseca, K.L., Rodrigues, P.N.S., Olsson, I.A.S., Saraiva, M., Experimental study of tuberculosis: from animal models to complex cell systems and organoids (2017) PLoS Pathog., 13; Pickles, R.J., DeVincenzo, J.P., Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis (2015) J. Pathol., 235, pp. 266-276; Perlman, R.L., Mouse models of human disease: an evolutionary perspective (2016) Evol. Med. Public Health, 2016, pp. 170-176. , PID: 27121451; Shultz, L.D., Brehm, M.A., Garcia-Martinez, J.V., Greiner, D.L., Humanized mice for immune system investigation: progress, promise and challenges (2012) Nat. Rev. Immunol., 12, pp. 786-798. , COI: 1:CAS:528:DC%2BC38XhsV2rsbjK; Garcia, J.V., Humanized mice for HIV and AIDS research (2016) Curr. Opin. Virol., 19, pp. 56-64; Wahl, A., A cluster of virus-encoded microRNAs accelerates acute systemic Epstein–Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo (2013) J. Virol., 87, pp. 5437-5446. , COI: 1:CAS:528:DC%2BC3sXnsV2ls7w%3D; Melkus, M.W., Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1 (2006) Nat. Med., 12, pp. 1316-1322. , COI: 1:CAS:528:DC%2BD28XhtFKlsLbO; Islas-Ohlmayer, M., Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein–Barr virus (2004) J. Virol., 78, pp. 13891-13900. , COI: 1:CAS:528:DC%2BD2cXhtFSisLzI; Bente, D.A., Melkus, M.W., Garcia, J.V., Rico-Hesse, R., Dengue fever in humanized NOD/SCID mice (2005) J. Virol., 79, pp. 13797-13799. , COI: 1:CAS:528:DC%2BD2MXhtFOhs7vO; Smith, M.S., Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model (2010) Cell Host Microbe, 8, pp. 284-291. , COI: 1:CAS:528:DC%2BC3cXhtFGjtr7I; Crawford, L.B., Human cytomegalovirus induces cellular and humoral virus-specific immune responses in humanized BLT mice (2017) Sci. Rep., 7; Wang, L.X., Humanized-BLT mouse model of Kaposi’s sarcoma-associated herpesvirus infection (2014) Proc. Natl Acad. Sci. USA, 111, pp. 3146-3151. , COI: 1:CAS:528:DC%2BC2cXjtVGrsLY%3D; Cockrell, A.S., Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 5195-5199; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J. Gen. Virol., 95, pp. 408-412. , COI: 1:CAS:528:DC%2BC2cXhtVOgsrnP; Martinez-Torres, F., Nochi, T., Wahl, A., Garcia, J.V., Denton, P.W., Hypogammaglobulinemia in BLT humanized mice—an animal model of primary antibody deficiency (2014) PloS ONE, 9; Nochi, T., Denton, P.W., Wahl, A., Garcia, J.V., Cryptopatches are essential for the development of human GALT (2013) Cell Rep., 3, pp. 1874-1884. , COI: 1:CAS:528:DC%2BC3sXpvVGks70%3D; Dudek, T.E., Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice (2012) Sci. Transl. Med., 4, p. 143ra198; Brainard, D.M., Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice (2009) J. Virol., 83, pp. 7305-7321. , COI: 1:CAS:528:DC%2BD1MXosFKluro%3D; Zhou, J., Chu, H., Chan, J.F., Yuen, K.Y., Middle East respiratory syndrome coronavirus infection: virus-host cell interactions and implications on pathogenesis (2015) Virol. J., 12; Frumence, E., The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-β production and apoptosis induction (2016) Virology, 493, pp. 217-226. , COI: 1:CAS:528:DC%2BC28Xls1Krsrs%3D; Liu, S., DeLalio, L.J., Isakson, B.E., Wang, T.T., AXL-mediated productive infection of human endothelial cells by Zika virus (2016) Circ. Res., 119, pp. 1183-1189. , COI: 1:CAS:528:DC%2BC28XhvVaqs7rM; Hamel, R., Biology of Zika virus infection in human skin cells (2015) J. Virol., 89, pp. 8880-8896. , COI: 1:CAS:528:DC%2BC2MXhtlGjtLnO; Franks, T.J., Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function (2008) Proc. Am. Thorac. Soc., 5, pp. 763-766; Sousa, A.Q., Postmortem findings for 7 neonates with congenital Zika virus infection (2017) Emerg. Infect. Dis., 23, pp. 1164-1167; Cunha, B.A., Cytomegalovirus pneumonia: community-acquired pneumonia in immunocompetent hosts (2010) Infect. Dis. Clin. North Am., 24, pp. 147-158; Gordon, C.L., Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection (2017) J. Exp. Med., 214, pp. 651-667. , COI: 1:CAS:528:DC%2BC2sXhtV2ju7bO, PID: 28130404; Lyon, S.M., Rossman, M.D., Pulmonary tuberculosis (2017) Microbiol. Spectr., 5, pp. 1-13; Gessner, R., High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: in vitro and in vivo studies (2010) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, pp. 1772-1781; Gessner, R.C., Frederick, C.B., Foster, F.S., Dayton, P.A., Acoustic angiography: a new imaging modality for assessing microvasculature architecture (2013) International J. Biomed. Imaging, 2013, p. 936593; Davis, L.S., Inflammation, immune reactivity, and angiogenesis in a severe combined immunodeficiency model of rheumatoid arthritis (2002) Am. J. Pathol., 160, pp. 357-367; Huang, S.Y., Tien, H.F., Su, F.H., Hsu, S.M., Nonirradiated NOD/SCID-human chimeric animal model for primary human multiple myeloma: a potential in vivo culture system (2004) Am. J. Pathol., 164, pp. 747-756; Hou, W., Determination of the cell permissiveness spectrum, mode of RNA replication, and RNA-protein interaction of Zika virus (2017) BMC Infect. Dis., 17; Liesman, R.M., RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction (2014) J. Clin. Invest., 124, pp. 2219-2233. , COI: 1:CAS:528:DC%2BC2cXotVSntrg%3D; Aherne, W., Bird, T., Court, S.D., Gardner, P.S., McQuillin, J., Pathological changes in virus infections of the lower respiratory tract in children (1970) J. Clin. Pathol., 23, pp. 7-18. , COI: 1:STN:280:DyaE3c7mtFaitg%3D%3D; Arend, K.C., Ziehr, B., Vincent, H.A., Moorman, N.J., Multiple transcripts encode full-length human cytomegalovirus IE1 and IE2 proteins during lytic infection (2016) J. Virol., 90, pp. 8855-8865. , COI: 1:CAS:528:DC%2BC28XhslCitLrF; Azevedo, L.S., Cytomegalovirus infection in transplant recipients (2015) Clinics (Sao Paulo), 70, pp. 515-523; Sathaliyawala, T., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets (2013) Immunity, 38, pp. 187-197. , COI: 1:CAS:528:DC%2BC38XhvVOqsLfF; Pitt, E.A., The D-form of a novel heparan binding peptide decreases cytomegalovirus infection in vivo and in vitro (2016) Antiviral Res., 135, pp. 15-23. , COI: 1:CAS:528:DC%2BC28Xhs1Cltb3J; Sinzger, C., Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E (2008) J. Gen. Virol., 89, pp. 359-368. , COI: 1:CAS:528:DC%2BD1cXhvFaqsLs%3D; Ostermann, E., Spohn, M., Indenbirken, D., Brune, W., Complete genome sequence of a human cytomegalovirus strain AD169 bacterial artificial chromosome clone (2016) Genome Announc., 4, pp. 1-2; Wang, D., Shenk, T., Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism (2005) J. Virol., 79, pp. 10330-10338. , COI: 1:CAS:528:DC%2BD2MXntFCrurw%3D; Munro, S.C., Diagnosis of and screening for cytomegalovirus infection in pregnant women (2005) J. Clin. Microbiol., 43, pp. 4713-4718. , COI: 1:CAS:528:DC%2BD2MXhtVOrtLbK; Gamadia, L.E., Rentenaar, R.J., van Lier, R.A., ten Berge, I.J., Properties of CD4(+) T cells in human cytomegalovirus infection (2004) Hum. Immunol., 65, pp. 486-492. , COI: 1:CAS:528:DC%2BD2cXksVCjtro%3D; Vaz-Santiago, J., Ex vivo stimulation and expansion of both CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells of human cytomegalovirus-seropositive blood donors by using a soluble recombinant chimeric protein, IE1-pp65 (2001) J. Virol., 75, pp. 7840-7847. , COI: 1:CAS:528:DC%2BD3MXmtFejtrk%3D; Sinclair, E., CMV antigen-specific CD4+ and CD8+ T cell IFNγ expression and proliferation responses in healthy CMV-seropositive individuals (2004) Viral Immunol., 17, pp. 445-454. , COI: 1:CAS:528:DC%2BD2cXntlequrg%3D; Gillespie, G.M., Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors (2000) J. Virol., 74, pp. 8140-8150. , COI: 1:CAS:528:DC%2BD3cXlsl2ns7k%3D; Nastke, M.D., Major contribution of codominant CD8 and CD4 T cell epitopes to the human cytomegalovirus-specific T cell repertoire (2005) Cell. Mol. Life Sci., 62, pp. 77-86. , COI: 1:CAS:528:DC%2BD2MXjslaksL0%3D; Kessing, C.F., In vivo suppression of HIV rebound by didehydro-cortistatin a, a “block-and-lock” strategy for HIV-1 treatment (2017) Cell Rep., 21, pp. 600-611. , COI: 1:CAS:528:DC%2BC2sXhs1yjtr%2FF; Kovarova, M., A long-acting formulation of the integrase inhibitor raltegravir protects humanized BLT mice from repeated high-dose vaginal HIV challenges (2016) J. Antimicrob. Chemother., 71, pp. 1586-1596. , COI: 1:CAS:528:DC%2BC28XhsVKgsr%2FL; Tsai, P., CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice (2016) Mol. Ther. Oncolytics, 3, p. 15024. , COI: 1:CAS:528:DC%2BC28XmsVKrurc%3D; Lilleri, D., Zelini, P., Fornara, C., Comolli, G., Gerna, G., Inconsistent responses of cytomegalovirus-specific T cells to pp65 and IE-1 versus infected dendritic cells in organ transplant recipients (2007) Am. J. Transplant., 7, pp. 1997-2005. , COI: 1:CAS:528:DC%2BD2sXpt1ejurY%3D; Jackson, S.E., Mason, G.M., Okecha, G., Sissons, J.G., Wills, M.R., Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells (2014) J. Virol., 88, pp. 10894-10908. , COI: 1:CAS:528:DC%2BC2cXhs1yktrnI; Braendstrup, P., Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2 (2014) PloS ONE, 9; Khan, N., Cobbold, M., Keenan, R., Moss, P.A., Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype (2002) J. Infect. Dis., 185, pp. 1025-1034. , COI: 1:CAS:528:DC%2BD38Xjs12mu7w%3D; Sacre, K., Expansion of human cytomegalovirus (HCMV) immediate-early 1-specific CD8+ T cells and control of HCMV replication after allogeneic stem cell transplantation (2008) J. Virol., 82, pp. 10143-10152. , COI: 1:CAS:528:DC%2BD1cXht1amtrvE; Honeycutt, J.B., Macrophages sustain HIV replication in vivo independently of T cells (2016) J. Clin. Invest., 126, pp. 1353-1366; Olesen, R., ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions (2016) J. Clin. Invest., 126, pp. 892-904; Shelton, S.E., Quantification of microvascular tortuosity during tumor evolution using acoustic angiography (2015) Ultrasound Med. Biol., 41, pp. 1896-1904; Honeycutt, J.B., HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy (2017) Nat. Med., 23, pp. 638-643. , COI: 1:CAS:528:DC%2BC2sXmtFGhtLs%3D; Fulcher, M.L., Gabriel, S., Burns, K.A., Yankaskas, J.R., Randell, S.H., Well-differentiated human airway epithelial cell cultures (2005) Methods Mol. Med., 107, pp. 183-206. , COI: 1:CAS:528:DC%2BD2MXjt1aqtw%3D%3D, PID: 15492373; Zhang, S., Neutralization mechanism of a highly potent antibody against Zika virus (2016) Nat. Commun., 7. , COI: 1:CAS:528:DC%2BC28XitFSns7zM; Lanciotti, R.S., Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007 (2008) Emerg. Infect. Dis., 14, pp. 1232-1239. , COI: 1:CAS:528:DC%2BD1cXhtVCnsb%2FK; Hallak, L.K., Spillmann, D., Collins, P.L., Peeples, M.E., Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection (2000) J. Virol., 74, pp. 10508-10513. , COI: 1:CAS:528:DC%2BD3cXnvF2rtr4%3D; O’Connor, C.M., Shenk, T., Human cytomegalovirus pUS27 G protein-coupled receptor homologue is required for efficient spread by the extracellular route but not for direct cell-to-cell spread (2011) J. Virol., 85, pp. 3700-3707; Wang, D., Bresnahan, W., Shenk, T., Human cytomegalovirus encodes a highly specific RANTES decoy receptor (2004) Proc. Natl Acad. Sci. USA, 101, pp. 16642-16647. , COI: 1:CAS:528:DC%2BD2cXhtVOisbnF; Ziehr, B., Lenarcic, E., Cecil, C., Moorman, N.J., The eIF4AIII RNA helicase is a critical determinant of human cytomegalovirus replication (2016) Virology, 489, pp. 194-201. , COI: 1:CAS:528:DC%2BC2MXitV2kurrN; Goonetilleke, N., Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes (2006) J. Virol., 80, pp. 4717-4728. , COI: 1:CAS:528:DC%2BD28XkslCht7w%3D","Wahl, A.; Division of Infectious Diseases, International Center for the Advancement of Translational Science, Center for AIDS Research, University of North Carolina, School of MedicineUnited States; email: angela_wahl@med.unc.edu",,"Nature Publishing Group",10870156,,NABIF,"31451733","English","Nat. Biotechnol.",Article,"Final",,Scopus,2-s2.0-85071193693 "Wille M., Shi M., Klaassen M., Hurt A.C., Holmes E.C.","36572831000;25951822000;7004383496;6603378203;55535773400;","Virome heterogeneity and connectivity in waterfowl and shorebird communities",2019,"ISME Journal","13","10",,"2603","2616",,3,"10.1038/s41396-019-0458-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068203239&doi=10.1038%2fs41396-019-0458-0&partnerID=40&md5=2128677902b743c738261bb8889de56e","WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; Centre for Integrative Ecology, Deakin University, Geelong, Australia","Wille, M., WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Shi, M., Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; Klaassen, M., Centre for Integrative Ecology, Deakin University, Geelong, Australia; Hurt, A.C., WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Holmes, E.C., Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia","Models of host-microbe dynamics typically assume a single-host population infected by a single pathogen. In reality, many hosts form multi-species aggregations and may be infected with an assemblage of pathogens. We used a meta-transcriptomic approach to characterize the viromes of nine avian species in the Anseriformes (ducks) and Charadriiformes (shorebirds). This revealed the presence of 27 viral species, of which 24 were novel, including double-stranded RNA viruses (Picobirnaviridae and Reoviridae), single-stranded RNA viruses (Astroviridae, Caliciviridae, Picornaviridae), a retro-transcribing DNA virus (Hepadnaviridae), and a single-stranded DNA virus (Parvoviridae). These viruses comprise multi-host generalist viruses and those that are host-specific, indicative of both virome connectivity (host sharing) and heterogeneity (host specificity). Virome connectivity was apparent in two well described multi-host virus species -avian coronavirus and influenza A virus- and a novel Rotavirus species that were shared among some Anseriform species, while virome heterogeneity was reflected in the absence of viruses shared between Anseriformes and Charadriiformes, as well as differences in viral abundance and alpha diversity among species. Overall, we demonstrate complex virome structures across host species that co-exist in multi-species aggregations. © 2019, The Author(s).",,"abundance; connectivity; heterogeneity; host-pathogen interaction; infectious disease; species diversity; virus; waterfowl; Anas; Anatidae; Anseriformes; Astroviridae; Aves; Caliciviridae; Charadriiformes; Coronavirus; DNA viruses; Hepadnaviridae; Influenza A virus; Parvoviridae; Picornaviridae; Reoviridae; RNA viruses; Rotavirus; animal; biodiversity; Charadriiformes; classification; genetics; isolation and purification; phylogeny; virology; virus; waterfowl; wild animal; Animals; Animals, Wild; Anseriformes; Biodiversity; Charadriiformes; Phylogeny; Viruses","Ostfeld, R.S., Keesing, F., Effects of host diversity on infectious disease (2012) Annu Rev Ecol Evol S., 43, pp. 157-182; Keesing, F., Holt, R.D., Ostfeld, R.S., Effects of species diversity on disease risk (2006) Ecol Lett., 9, pp. 485-498. , COI: 1:STN:280:DC%2BD283jsFKmtA%3D%3D; Johnson, P.T., Preston, D.L., Hoverman, J.T., LaFonte, B.E., Host and parasite diversity jointly control disease risk in complex communities (2013) Proc Natl Acad Sci USA., 110, pp. 16916-16921. , COI: 1:CAS:528:DC%2BC3sXhslejsbvI; LoGiudice, K., Ostfeld, R.S., Schmidt, K.A., Keesing, F., The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk (2003) Proc Natl Acad Sci USA., 100, pp. 567-571. , COI: 1:CAS:528:DC%2BD3sXnvVKntQ%3D%3D; Milholland, M.T., Castro-Arellano, I., Suzan, G., Garcia-Pena, G.E., Lee, T.E., Rohde, R.E., Global diversity and distribution of hantaviruses and their hosts (2018) EcoHealth., 15, pp. 163-208; Haydon, D.T., Cleaveland, S., Taylor, L.H., Laurenson, M.K., Identifying reservoirs of infection: a conceptual and practical challenge (2002) Emerg Infect Dis., 8, pp. 1468-1473; Altizer, S., Nunn, C.L., Thrall, P.H., Gittleman, J.L., Antonovics, J., Cunningham, A.A., Social organization and parasite risk in mammals: Integrating theory and empirical studies (2003) Ann Rev Ecol Evol Syst., 34, pp. 517-547; Streicker, D.G., Fenton, A., Pedersen, A.B., Differential sources of host species heterogeneity influence the transmission and control of multihost parasites (2013) Ecol Lett., 16, pp. 975-984; Geoghegan, J.L., Holmes, E.C., Predicting virus emergence amid evolutionary noise (2017) Open Biol, 7, p. 10; Ballard, J.R., Mickley, R., Gibbs, S.E.J., Dwyer, C., Soos, C., Harms, N.J., Prevalence and distribution of Wellfleet Bay virus exposure in the Common Eider (Somateria mollissima) (2017) J Wildl Dis, 53, pp. 81-90; Alexander, D.J., Newcastle disease and other avian paramyxoviruses (2000) Rev Sci Tech OIE, 19, pp. 443-462. , COI: 1:STN:280:DC%2BD38%2FgsVymuw%3D%3D; Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Human infection with a novel avian-origin influenza A (H7N9) virus (2013) N Engl J Med, 368, pp. 1888-1897. , COI: 1:CAS:528:DC%2BC3sXnsl2gsrc%3D; Wille, M., Avril, A., Tolf, C., Schager, A., Larsson, S., Borg, O., Temporal dynamics, diversity, and interplay in three components of the viriodiversity of a Mallard population: Influenza A virus, avian paramyxovirus and avian coronavirus (2015) Infect Genet Evol, 29, pp. 129-137; van Dijk, J.G.B., Verhagen, J.H., Wille, M., Waldenström, J., Host and virus ecology as determinants of influenza A virus transmission in wild birds (2018) Curr Opin Virol, 28, pp. 26-36; Dann, P., Foraging behaviour and diets of red-necked stints and curlew sandpipers in south-eastern Australia (2000) Wildl Res., 27, pp. 61-68; Wikramaratna, P.S., Pybus, O.G., Gupta, S., Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains (2014) Proc Natl Acad Sci USA., 111, pp. 10767-10772. , COI: 1:CAS:528:DC%2BC2cXhtVaisrnO; Ren, H.G., Jin, Y., Hu, M.D., Zhou, J., Song, T., Huang, Z.S., Ecological dynamics of influenza A viruses: cross-species transmission and global migration (2016) Sci Rep, 6, p. 36839. , COI: 1:CAS:528:DC%2BC28XhvFahurrP; Olsen, B., Munster, V.J., Wallensten, A., Waldenström, J., Osterhaus ADME, Fouchier RAM. Global patterns of influenza A virus in wild birds (2006) Science, 312, pp. 384-388. , COI: 1:CAS:528:DC%2BD28XjslSktbc%3D; Munster, V.J., Baas, C., Lexmond, P., Waldenström, J., Wallensten, A., Fransson, T., Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds (2007) PLoS Pathog, 3; Maxted, A.M., Luttrell, M.P., Goekjian, V.H., Brown, J.D., Niles, L.J., Dey, A.D., Avian influenza virus infection dynamics in shorebird hosts (2012) J Wildl Dis, 48, pp. 322-334; Bröjer, C., Ågren, E.O., Uhlhorn, H., Bernodt, K., Mörner, T., Jansson, D.S., Pathology of natural highly pathogenic avian influenza H5N1 infection in wild tufted ducks (Aythya fuligula) (2009) J Vet Diagn Invest, 21, pp. 579-587; Pantin-Jackwood, M.J., Costa-Hurtado, M., Shepherd, E., DeJesus, E., Smith, D., Spackman, E., Pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in Mallards (2016) J Virol, 90, pp. 9967-9982. , COI: 1:CAS:528:DC%2BC28XitVaiu7nI; Kim, J.-K., Negovetich, N.J., Forrest, H.L., Webster, R.G., Ducks: the “trojan horses” of H5N1 influenza (2009) Influenza Other Respir Viruses, 3, pp. 121-128; Magor, K.E., Immunoglobulin genetics and antibody responses to influenza in ducks (2011) Dev Comp Immunol., 35, pp. 1008-1016. , COI: 1:CAS:528:DC%2BC3MXot1ejtro%3D; Hill, S.C., Manvell, R.J., Schulenburg, B., Shell, W., Wikramaratna, P.S., Perrins, C., Antibody responses to avian influenza viruses in wild birds broaden with age (2016) Proc Biol Sci; Ferenczi, M., (2016) Avian Influenza Virus Dynamics in Australian Wild Birds, , PhD Thesis: Deakin University; Geelong, Australia; Ferenczi, M., Beckmann, C., Warner, S., Loyn, R., O’Riley, K., Wang, X., Avian influenza infection dynamics under variable climatic conditions, viral prevalence is rainfall driven in waterfowl from temperate, south-east Australia (2016) Vet Res, 47, p. 23; Wille, M., Eden, J.-S., Shi, M., Klaassen, M., Hurt, A.C., Holmes, E.C., Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds (2018) Molecular Ecology, 27 (24), pp. 5263-5278; Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., The evolutionary history of vertebrate RNA viruses (2018) Nature, 556, pp. 197-202. , COI: 1:CAS:528:DC%2BC1cXosVCnsLw%3D; Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Redefining the invertebrate RNA virosphere (2016) Nature, 540, pp. 539-543. , COI: 1:CAS:528:DC%2BC28XhvFelsbfM; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 (2010) Syst Biol, 59, pp. 307-321. , COI: 1:CAS:528:DC%2BC3cXks1Kms7s%3D; Lagkouvardos, I., Fischer, S., Kumar, N., Clavel, T., Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons (2017) Peerj, 5; Minchin, P.R., An evaluation of the relative robustness of techniques for ecological ordination (1987) Vegetatio, 69, pp. 89-107; Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J., The vegan package (2007) Commun Ecol Package, 10, pp. 631-637; McMurdie, P.J., Holmes, S., phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data (2013) PLoS One, 8; Brooks, A.W., Kohl, K.D., Brucker, R.M., van Opstal, E.J., Bordenstein, S.R., Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history (2016) PLoS Biol, 14; Robinson, D.F., Foulds, L.R., Comparison of phylogenetic trees (1981) Math Biosci, 53, pp. 131-147; Schliep, K.P., phangorn: phylogenetic analysis in R (2011) Bioinformatics, 27, pp. 592-593. , COI: 1:CAS:528:DC%2BC3MXitVWhur0%3D; Penny, D., Hendy, M.D., The use of tree comparison metrics (1985) Syst Zool, 34, pp. 75-82; Geoghegan, J.L., Duchene, S., Holmes, E.C., Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families (2017) PLoS Pathog., 13, p. 2; Paradis, E., Claude, J., Strimmer, K., APE: analyses of phylogenetics and evolution in R language (2004) Bioinformatics., 20, pp. 289-290. , COI: 1:CAS:528:DC%2BD2cXms1eitg%3D%3D; Barth, J.M.I., Matschiner, M., Robertson, B.C., Phylogenetic position and subspecies divergence of the Endangered New Zealand Dotterel (Charadrius obscurus) (2013) Plos One., 8. , COI: 1:CAS:528:DC%2BC3sXhslWksL%2FP; Baker, A.J., Pereira, S.L., Paton, T.A., Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds (2007) Biol Lett-Uk, 3, pp. 205-209; Gibson, R., Baker, A., Multiple gene sequences resolve phylogenetic relationships in the shorebird suborder Scolopaci (Aves: Charadriiformes) (2012) Mol Phylogenet Evol, 64, pp. 66-72; Sun, Z.L., Pan, T., Hu, C.C., Sun, L., Ding, H.W., Wang, H., Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses (2017) Plos One, 12; Revell, L.J., phytools: an R package for phylogenetic comparative biology (and other things) (2012) Methods Ecol Evol., 3, pp. 217-223; Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 (2014) Genome Biology., 15; Latorre-Margalef, N., Tolf, C., Grosbois, V., Avril, A., Bengtsson, D., Wille, M., Osterhaus, A.D.M.E., Waldenström, J., Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe (2014) Proceedings of the Royal Society B: Biological Sciences, 281 (1781), p. 20140098; Wilcox, B.R., Knutsen, G.A., Berdeen, J., Goekjian, V.H., Poulson, R., Goyal, S., Influenza A viruses in ducks in Northwestern Minnesota: fine scale spatial and temporal variation in prevalence and subtype diversity (2011) PLoS One, 6; Wille, M., Lindqvist, K., Muradrasoli, S., Olsen, B., Jarhult, J.D., Urbanization and the dynamics of RNA viruses in Mallards (Anas platyrhynchos) (2017) Infect Genet Evol, 51, pp. 89-97. , COI: 1:CAS:528:DC%2BC2sXkvF2mtrk%3D; Wille, M., Muradrasoli, S., Nilsson, A., Jarhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian waterfowl (2016) PLoS One, 11; Chamings, A., Nelson, T.M., Vibin, J., Wille, M., Klaassen, M., Alexandersen, S., Detection and characterisation of coronaviruses in migratory and non-migratory Australian wild birds (2018) Sci Rep, 8, p. 5980; Hoque, M.A., Burgess, G.W., Cheam, A.L., Skerratt, L.F., Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia (2015) Prev Vet Med, 118, pp. 169-181; Hoque, M.A., Burgess, G.W., Karo-Karo, D., Cheam, A.L., Skerratt, L.F., Monitoring of wild birds for Newcastle disease virus in north Queensland, Australia (2012) Prev Vet Med, 103, pp. 49-62. , COI: 1:STN:280:DC%2BC38%2FotVSktg%3D%3D; de Souza, W.M., Romeiro, M.F., Fumagalli, M.J., Modha, S., de Araujo, J., Queiroz, L.H., Chapparvoviruses occur in at least three vertebrate classes and have a broad biogeographic distribution (2017) J Gen Virol, 98, pp. 225-229; Roediger, B., Lee, Q., Tikoo, S., Cobbin, J.C.A., Henderson, J.M., Jormakka, M., An atypical parvovirus drives chronic tubulointerstitial nephropathy and kidney fibrosis (2018) Cell., 175, pp. 530-43 e24. , COI: 1:CAS:528:DC%2BC1cXhslahs7%2FK; Jourdain, E., van Riel, D., Munster, V.J., Kuiken, T., Waldenström, J., Olsen, B., Ellström, P., The Pattern of Influenza Virus Attachment Varies among Wild Bird Species (2011) PLoS ONE, 6 (9); Hall, S.R., Sivars-Becker, L., Becker, C., Duffy, M.A., Tessier, A.J., Caceres, C.E., Eating yourself sick: transmission of disease as a function of foraging ecology (2007) Ecol Lett, 10, pp. 207-218; Lozano, G.A., Optimal foraging theory—a possible role for parasites (1991) Oikos, 60, pp. 391-395; Roche, B., Lebarbenchon, C., Gauthier-Clerc, M., Chang, C.M., Thomas, F., Renaud, F., Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005–2006 epidemics in the Camargue area (2009) Infect Genet Evol, 9, pp. 800-805; Hoye, B.J., Fouchier, R.A.M., Klaassen, M., Host behaviour and physiology underpin individual variation in avian influenza virus infection in migratory Bewick’s Swans (2012) Proc Biol Sci, 279, pp. 529-534. , COI: 1:CAS:528:DC%2BC38XksFejsbs%3D; Guo, H., Mason, W.S., Aldrich, C.E., Saputelli, J.R., Miller, D.S., Jilbert, A.R., Identification and characterization of avihepadnaviruses isolated from exotic anseriformes maintained in captivity (2005) J Virol, 79, pp. 2729-2742. , COI: 1:CAS:528:DC%2BD2MXitlaqtbk%3D","Wille, M.; WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and ImmunityAustralia; email: michelle.wille@influenzacentre.org",,"Nature Publishing Group",17517362,,,"31239538","English","ISME J.",Article,"Final",Open Access,Scopus,2-s2.0-85068203239 "Li Y.-H., Hu C.-Y., Wu N.-P., Yao H.-P., Li L.-J.","57204732943;57197797482;57039481000;7401677994;55540790300;","Molecular Characteristics, Functions, and Related Pathogenicity of MERS-CoV Proteins",2019,"Engineering","5","5",,"940","947",,1,"10.1016/j.eng.2018.11.035","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073584097&doi=10.1016%2fj.eng.2018.11.035&partnerID=40&md5=9167a5acb00e4d82aa868d838bb87f0d","State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31003, China","Li, Y.-H., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31003, China; Hu, C.-Y., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31003, China; Wu, N.-P., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31003, China; Yao, H.-P., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31003, China; Li, L.-J., State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31003, China","Middle East respiratory syndrome (MERS) is a viral respiratory disease caused by a de novo coronavirus—MERS-CoV—that is associated with high mortality. However, the mechanism by which MERS-CoV infects humans remains unclear. To date, there is no effective vaccine or antibody for human immunity and treatment, other than the safety and tolerability of the fully human polyclonal Immunoglobulin G (IgG) antibody (SAB-301) as a putative therapeutic agent specific for MERS. Although rapid diagnostic and public health measures are currently being implemented, new cases of MERS-CoV infection are still being reported. Therefore, various effective measures should be taken to prevent the serious impact of similar epidemics in the future. Further investigation of the epidemiology and pathogenesis of the virus, as well as the development of effective therapeutic and prophylactic anti-MERS-CoV infections, is necessary. For this purpose, detailed information on MERS-CoV proteins is needed. In this review, we describe the major structural and nonstructural proteins of MERS-CoV and summarize different potential strategies for limiting the outbreak of MERS-CoV. The combination of computational biology and virology can accelerate the advanced design and development of effective peptide therapeutics against MERS-CoV. In summary, this review provides important information about the progress of the elimination of MERS, from prevention to treatment. © 2019 THE AUTHORS","Accessory protein; MERS-CoV; Nonstructural protein; Spike protein; Structural protein","Antibodies; Viruses; Computational biology; Effective measures; MERS-CoV; Molecular characteristics; Nonstructural proteins; Peptide therapeutics; Spike protein; Structural proteins; Diagnosis","Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18 (8), pp. e217-e227; Lee, H., Lei, H., Santarsiero, B.D., Gatuz, J.L., Cao, S., Rice, A.J., Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV (2015) ACS Chem Biol, 10 (6), pp. 1456-1465; Choi, J., Kim, M.G., Oh, Y.K., Kim, Y.B., Progress of Middle East respiratory syndrome coronavirus vaccines: a patent review (2017) Expert Opin Ther Pat, 27 (6), pp. 721-731; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci USA, 114 (35), pp. E7348-E7357; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.A., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect Dis, 18 (4), pp. 410-418; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3 (6), pp. e00473-512; Frey, K.G., Redden, C.L., Bishop-Lilly, K.A., Johnson, R., Hensley, L.E., Raviprakash, K., Full-genome sequence of human betacoronavirus 2c Jordan-N3/2012 after serial passage in mammalian cells (2014) Genome Announc, 2 (3), pp. e00324-414; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Cotten, M., Lam, T.T., Watson, S.J., Palser, A.L., Petrova, V., Grant, P., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerg Infect Dis, 19 (5), pp. 736-742; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: from discovery to intervention (2016) One Health, 3, pp. 11-16; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309 (5742), pp. 1864-1868; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines (2013) PLoS One, 8 (12); Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32 (18), pp. 2100-2108; Mou, H., Raj, V.S., Van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J Virol, 87 (16), pp. 9379-9383; Lan, J., Yao, Y., Deng, Y., Hu, Y., Bao, L., Huang, B., The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection (2017) Vaccine, 35 (1), pp. 10-18; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Lu, L., Liu, Q., Zhu, Y., Chan, K.H., Qin, L., Li, Y., Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor (2014) Nat Commun, 5, p. 3067; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res, 202, pp. 120-134; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23 (8), pp. 468-478; Surya, W., Li, Y., Verdià-Bàguena, C., Aguilella, V.M., Torres, J., MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels (2015) Virus Res, 201, pp. 61-66; Westerbeck, J.W., Machamer, C.E., A coronavirus E protein is present in two distinct pools with different effects on assembly and the secretory pathway (2015) J Virol, 89 (18), pp. 9313-9323; Xie, Q., He, X., Yang, F., Liu, X., Li, Y., Liu, Y., Analysis of the genome sequence and prediction of B-cell epitopes of the envelope protein of Middle East respiratory syndrome-coronavirus (2018) IEEE/ACM Trans Comput Biol Bioinform, 15 (4), pp. 1344-1350; Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes (2010) J Infect Dis, 202 (8), pp. 1171-1180; De Haan, C.A., Rottier, P.J., Molecular interactions in the assembly of coronaviruses (2005) Adv Virus Res, 64, pp. 165-230; Lin, S.C., Ho, C.T., Chuo, W.H., Li, S., Wang, T.T., Lin, C.C., Effective inhibition of MERS-CoV infection by resveratrol (2017) BMC Infect Dis, 17 (1), p. 144; Szelazek, B., Kabala, W., Kus, K., Zdzalik, M., Twarda-Clapa, A., Golik, P., Structural characterization of human coronavirus NL63 N protein (2017) J Virol, 91 (11), pp. e02503-16; Hu, Y., Li, W., Gao, T., Cui, Y., Jin, Y., Li, P., The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination (2017) J Virol, 91 (8), pp. e02143-16; Grunewald, M.E., Fehr, A.R., Athmer, J., Perlman, S., The coronavirus nucleocapsid protein is ADP-ribosylated (2018) Virology, 517, pp. 62-68; Papageorgiou, N., Lichière, J., Baklouti, A., Ferron, F., Sévajol, M., Canard, B., Structural characterization of the N-terminal part of the MERS-CoV nucleocapsid by X-ray diffraction and small-angle X-ray scattering (2016) Acta Crystallogr D Struct Biol, 72, pp. 192-202; Banda, N.K., Acharya, S., Scheinman, R.I., Mehta, G., Takahashi, M., Endo, Y., Deconstructing the lectin pathway in the pathogenesis of experimental inflammatory arthritis: essential role of the lectin ficolin B and mannose-binding protein-associated serine protease 2 (2017) J Immunol, 199 (5), pp. 1835-1845; Bolwig, G.M., Bruder, J.T., Hearing, P., Different binding site requirements for binding and activation for the bipartite enhancer factor EF-1A (1992) Nucleic Acids Res, 20 (24), pp. 6555-6564; Forni, D., Cagliani, R., Clerici, M., Sironi, M., Molecular evolution of human coronavirus genomes (2017) Trends Microbiol, 25 (1), pp. 35-48; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Jr, Graham, R.L., MERS-CoV accessory ORFs play key role for infection and pathogenesis (2017) MBio, 8 (4), pp. e00665-717; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4 (12), pp. 951-961; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7 (2); Rabouw, H.H., Langereis, M.A., Knaap, R.C., Dalebout, T.J., Canton, J., Sola, I., Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses (2016) PLoS Pathog, 12 (10); Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses—drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15 (5), pp. 327-347; Lei, J., Kusov, Y., Hilgenfeld, R., Nsp3 of coronaviruses: structures and functions of a large multi-domain protein (2018) Antiviral Res, 149, pp. 58-74; Báez-Santos, Y.M., St John, S.E., Mesecar, A.D., The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds (2015) Antiviral Res, 115, pp. 21-38; Kankanamalage, A.C.G., Kim, Y., Damalanka, V.C., Rathnayake, A.D., Fehr, A.R., Mehzabeen, N., Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element (2018) Eur J Med Chem, 150, pp. 334-346; Kandeel, M., Altaher, A., Synonymous and biased codon usage by MERS CoV papain-like and 3CL-proteases (2017) Biol Pharm Bull, 40 (7), pp. 1086-1091; Forni, D., Cagliani, R., Mozzi, A., Pozzoli, U., Al-Daghri, N., Clerici, M., Extensive positive selection drives the evolution of nonstructural proteins in lineage C betacoronaviruses (2016) J Virol, 90 (7), pp. 3627-3639; Oudshoorn, D., Rijs, K., Limpens, R.W.A.L., Groen, K., Koster, A.J., Snijder, E.J., Expression and cleavage of Middle East respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication (2017) MBio, 8 (6), pp. e01658-717; Terada, Y., Kawachi, K., Matsuura, Y., Kamitani, W., MERS coronavirus nsp1 participates in an efficient propagation through a specific interaction with viral RNA (2017) Virology, 511, pp. 95-105; Zhang, R., Li, Y., Cowley, T.J., Steinbrenner, A.D., Phillips, J.M., Yount, B.L., The nsp1, nsp13, and M proteins contribute to the hepatotropism of murine coronavirus JHM.WU (2015) J Virol, 89 (7), pp. 3598-3609; Adedeji, A.O., Lazarus, H., Biochemical characterization of Middle East respiratory syndrome coronavirus helicase (2016) mSphere, 1 (5), pp. e00235-316; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog, 13 (2); Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc Natl Acad Sci USA, 114 (21), pp. E4251-E4260; Aouadi, W., Blanjoie, A., Vasseur, J.J., Debart, F., Canard, B., Decroly, E., Binding of the methyl donor S-adenosyl-I-methionine to Middle East respiratory syndrome coronavirus 2′-O-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10 (2017) J Virol, 91 (5), pp. e02217-316; Angelini, M.M., Akhlaghpour, M., Neuman, B.W., Buchmeier, M.J., Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles (2013) MBio, 4 (4), pp. e00524-613; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., 3rd, Leist, S.R., Yount, B.L., Jr, Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere, 2 (6), pp. e00346-417; Alfuwaires, M., Altaher, A., Kandeel, M., Molecular dynamic studies of interferon and innate immunity resistance in MERS CoV Non-Structural Protein 3 (2017) Biol Pharm Bull, 40 (3), pp. 345-351; Huang, Y.P., Cho, C.C., Chang, C.F., Hsu, C.H., NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV) (2016) Biomol NMR Assign, 10 (2), pp. 245-248; Phua, K.K.L., Liu, Y., Sim, S.H., Non-linear enhancement of mRNA delivery efficiencies by influenza A derived NS1 protein engendering host gene inhibition property (2017) Biomaterials, 133, pp. 29-36; Qian, W., Wei, X., Guo, K., Li, Y., Lin, X., Zou, Z., The C-terminal effector domain of non-structural protein 1 of influenza A virus blocks IFN-β production by targeting TNF receptor-associated factor 3 (2017) Front Immunol, 8, p. 779; Kuo, R.L., Li, L.H., Lin, S.J., Li, Z.H., Chen, G.W., Chang, C.K., Role of N terminus-truncated NS1 proteins of influenza A virus in inhibiting IRF3 activation (2016) J Virol, 90 (9), pp. 4696-4705; Schierhorn, K.L., Jolmes, F., Bespalowa, J., Saenger, S., Peteranderl, C., Dzieciolowski, J., Influenza a virus virulence depends on two amino acids in the N-terminal domain of its NS1 protein to facilitate inhibition of the RNA-dependent protein kinase PKR (2017) J Virol, 91 (10), pp. e00198-217; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J Virol, 89 (21), pp. 10970-10981; Peters, H.L., Jochmans, D., de Wilde, A.H., Posthuma, C.C., Snijder, E.J., Neyts, J., Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity (2015) Bioorg Med Chem Lett, 25 (15), pp. 2923-2926; Dyall, J., Coleman, C.M., Hart, B.J., Venkataraman, T., Holbrook, M.R., Kindrachuk, J., Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection (2014) Antimicrob Agents Chemother, 58 (8), pp. 4885-4893; De Wilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment (2013) J Gen Virol, 94, pp. 1749-1760; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): a review (2018) J Infect Public Health, 11 (1), pp. 9-17; Kim, Y.S., Son, A., Kim, J., Kwon, S.B., Kim, M.H., Kim, P., Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles (2018) Front Immunol, 9, p. 1093; Corti, D., Passini, N., Lanzavecchia, A., Zambon, M., Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome (2016) J Infect Public Health, 9 (3), pp. 231-235; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc Natl Acad Sci USA, 111 (19), pp. E2018-E2026; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6 (234), p. 234ra59; Niu, P., Zhang, S., Zhou, P., Huang, B., Deng, Y., Qin, K., Ultrapotent human neutralizing antibody repertoires against Middle East respiratory syndrome coronavirus from a recovered patient (2018) J Infect Dis, 218 (8), pp. 1249-1260; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci USA, 112 (28), pp. 8738-8743; De Wit, E., Feldmann, F., Okumura, A., Horne, E., Haddock, E., Saturday, G., Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets (2018) Antiviral Res, 156, pp. 64-71; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88 (12), pp. 7045-7053; Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., Alhani, H.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66 (9), pp. 1261-1274; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res, 132, pp. 141-148; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25 (11), pp. 1237-1249; Zhang, N., Channappanavar, R., Ma, C., Wang, L., Tang, J., Garron, T., Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus (2016) Cell Mol Immunol, 13 (2), pp. 180-190; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Shirato, K., Kawase, M., Matsuyama, S., Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J Virol, 87 (23), pp. 12552-12561; Gierer, S., Bertram, S., Kaup, F., Wrensch, F., Heurich, A., Krämer-Kühl, A., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies (2013) J Virol, 87 (10), pp. 5502-5511; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc Natl Acad Sci USA, 111 (42), pp. 15214-15219; Coleman, C.M., Sisk, J.M., Mingo, R.M., Nelson, E.A., White, J.M., Frieman, M.B., Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion (2016) J Virol, 90 (19), pp. 8924-8933; Wrensch, F., Winkler, M., Pöhlmann, S., IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms (2014) Viruses, 6 (9), pp. 3683-3698; Liu, S., Wu, S., Jiang, S., HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds (2007) Curr Pharm Des, 13 (2), pp. 143-162; Fehr, A.R., Perlman, S., Coronaviruses: an overview of their replication and pathogenesis (2015) Methods Mol Biol, 1282, pp. 1-23; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531 (7592), pp. 118-121; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23 (10), pp. 899-905; Walls, A., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J., DiMaio, F., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy (2017) Protein Sci, 26 (1), pp. 113-121; Gao, X., Zhou, H., Wu, C., Xiao, Y., Ren, L., Paranhos-Baccalà, G., Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection (2015) J Infect, 71 (5), pp. 599-602; Yamaoka, Y., Matsuyama, S., Fukushi, S., Matsunaga, S., Matsushima, Y., Kuroyama, H., Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen (2016) Front Microbiol, 7, p. 50","Yao, H.-P.; State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesChina; email: yaohangping@zju.edu.cn",,"Elsevier Ltd",20958099,,,,"English","Engineering",Review,"Final",Open Access,Scopus,2-s2.0-85073584097 "Kato H., Takayama-Ito M., Iizuka-Shiota I., Fukushi S., Posadas-Herrera G., Horiya M., Satoh M., Yoshikawa T., Yamada S., Harada S., Fujii H., Shibamura M., Inagaki T., Morimoto K., Saijo M., Lim C.-K.","57039414500;9436765600;57198510316;7004841901;36562196800;11839463000;56400030500;7402717902;54391931400;57193704092;57193715318;57193706641;57193709831;7402234948;7006135257;8847724400;","Development of a recombinant replicationdeficient rabies virus-based bivalent-vaccine against MERS-CoV and rabies virus and its humoral immunogenicity in mice",2019,"PLoS ONE","14","10", e0223684,"","",,,"10.1371/journal.pone.0223684","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072987392&doi=10.1371%2fjournal.pone.0223684&partnerID=40&md5=b566327c4c4ae3fc3569661f0f1ef761","Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan; Department of Pharmacy, Yasuda Women's University, Hiroshima, Hiroshima, Japan","Kato, H., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Takayama-Ito, M., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Iizuka-Shiota, I., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Fukushi, S., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Posadas-Herrera, G., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Horiya, M., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Satoh, M., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Yoshikawa, T., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Yamada, S., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Harada, S., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Fujii, H., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Shibamura, M., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Inagaki, T., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan; Morimoto, K., Department of Pharmacy, Yasuda Women's University, Hiroshima, Hiroshima, Japan; Saijo, M., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Lim, C.-K., Department of Virology i, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan","Middle East respiratory syndrome-coronavirus (MERS-CoV) is an emerging virus that causes severe disease with fatal outcomes; however, there are currently no approved vaccines or specific treatments against MERS-CoV. Here, we developed a novel bivalent vaccine against MERS-CoV and rabies virus (RV) using the replication-incompetent P-genedeficient RV (RVΔP), which has been previously established as a promising and safe viral vector. MERS-CoV spike glycoprotein comprises S1 and S2 subunits, with the S1 subunit being a primary target of neutralizing antibodies. Recombinant RVΔP, which expresses S1 fused with transmembrane and cytoplasmic domains together with 14 amino acids from the ectodomains of the RV-glycoprotein (RV-G), was developed using a reverse genetics method and named RVΔP-MERS/S1. Following generation of RVΔP-MERS/S1 and RVΔP, our analysis revealed that they shared similar growth properties, with the expression of S1 in RVΔP-MERS/S1-infected cells confirmed by immunofluorescence and western blot, and the immunogenicity and pathogenicity evaluated using mouse infection experiments. We observed no rabies-associated signs or symptoms in mice inoculated with RVΔP-MERS/ S1. Moreover, virus-specific neutralizing antibodies against both MERS-CoV and RV were induced in mice inoculated intraperitoneally with RVΔP-MERS/S1. These findings indicate that RVΔP-MERS/S1 is a promising and safe bivalent-vaccine candidate against both MERS-CoV and RV. © 2019 Rahman et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",,"amino acid; glycoprotein; glycoprotein S1; glycoprotein S2; neutralizing antibody; unclassified drug; virus vaccine; virus vector; coronavirus spike glycoprotein; neutralizing antibody; recombinant vaccine; virus antibody; virus vaccine; adult; animal experiment; animal model; Article; Bagg albino mouse; clinical effectiveness; controlled study; cytoplasm; drug effect; drug efficacy; drug response; female; humoral immunity; immunofluorescence; Institute for Cancer Research mouse; Middle East respiratory syndrome; mouse; nonhuman; protein subunit; protein targeting; rabies; reverse genetics; treatment outcome; vaccine immunogenicity; virus recombinant; virus replication; Western blotting; animal; Chlorocebus aethiops; Coronavirus infection; genetics; HEK293 cell line; human; immunology; Middle East respiratory syndrome coronavirus; physiology; Rabies virus; tumor cell line; Vero cell line; Animals; Antibodies, Neutralizing; Antibodies, Viral; Cell Line, Tumor; Chlorocebus aethiops; Coronavirus Infections; Female; HEK293 Cells; Humans; Immunogenicity, Vaccine; Mice; Mice, Inbred BALB C; Mice, Inbred ICR; Middle East Respiratory Syndrome Coronavirus; Rabies virus; Spike Glycoprotein, Coronavirus; Vaccines, Synthetic; Vero Cells; Viral Vaccines; Virus Replication","Zumla, A., Hui, D.S., Perlman, S., Middle east respiratory syndrome (2015) Lancet, 386, pp. 995-1007. , https://doi.org/10.1016/S0140-6736(15)60454-8, PMID: 26049252; Jfw, C., Skp, L., Kkw, T., Vcc, C., Pcy, W., Yuen, K.-Y., Middle East Respiratory Syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522. , https://doi.org/10.1128/CMR.00102-14, PMID: 25810418; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721, PMID: 23075143; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , http://www.who.int/emergencies/mers-cov/en/, World Health Organization. [cited 2019 May 9]; Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y., The characteristics of Middle Eastern Respiratory Syndrome coronavirus transmission dynamics in South Korea (2016) Osong Public Health Res Perspect, 7, pp. 49-55. , https://doi.org/10.1016/j.phrp.2016.01.001, PMID: 26981343; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34, pp. 2982-2987. , https://doi.org/10.1016/j.vaccine.2016.03.104, PMID: 27083424; Graham, R.L., Donaldson, E.F., Baric, R.S., A decade after SARS: Strategies for controlling emerging coronaviruses (2013) Nat Rev Microbiol, 11, pp. 836-848. , https://doi.org/10.1038/nrmicro3143, PMID: 24217413; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , https://doi.org/10.1038/nature12005, PMID: 23486063; Li, F., Receptor recognition mechanisms of coronaviruses: A decade of structural studies (2015) J Virol, 89, pp. 1954-1964. , https://doi.org/10.1128/JVI.02615-14, PMID: 25428871; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , https://doi.org/10.1038/nature12328, PMID: 23831647; Du, L., Zhao, G., Kou, Z., Ma, C., Sun, S., Vkm, P., Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East Respiratory Syndrome coronavirus as an essential target for vaccine development (2013) J Virol, 87, pp. 9939-9942. , https://doi.org/10.1128/JVI.01048-13, PMID: 23824801; Du, L., Kou, Z., Ma, C., Tao, X., Wang, L., Zhao, G., A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: Implication for developing therapeutics and vaccines (2013) PLoS One, 8. , https://doi.org/10.1371/journal.pone.0081587, PMID: 24324708; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., C-Tk, T., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108. , https://doi.org/10.1016/j.vaccine.2014.02.004, PMID: 24560617; Liu, R., Wang, J., Shao, Y., Wang, X., Zhang, H., Shuai, L., A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization (2018) Antiviral Res, 150, pp. 30-38. , https://doi.org/10.1016/j.antiviral.2017.12.007, PMID: 29246504; Wirblich, C., Coleman, C.M., Kurup, D., Abraham, T.S., Bernbaum, J.G., Jahrling, P.B., One-Health: A safe, efficient, dual-use vaccine for humans and animals against Middle East Respiratory Syndrome coronavirus and rabies virus (2017) J Virol, 91, pp. e02016-e02040. , https://doi.org/10.1128/JVI.02040-16, PMID: 27807241; Knipe, D.M., Howley, P.M., (2013) Fields Virology, , 6th ed. Philadelphia: Lippincott-Raven Publishers; Dacheux, L., Delmas, O., Bourhy, H., Human rabies encephalitis prevention and treatment: Progress since Pasteur's discovery (2011) Infect Disord Drug Targets, 11, pp. 251-299. , PMID: 21488832; Human rabies: 2016 updates and call for data Wkly Epidemiol Rec., 2017 (92), pp. 77-86. , World Health Organization, PMID: 28211265; Gomme, E.A., Wanjalla, C.N., Wirblich, C., Schnell, M.J., Rabies virus as a research tool and viral vaccine vector (2011) Adv Virus Res, 79, pp. 139-164. , https://doi.org/10.1016/B978-0-12-387040-7.00009-3, PMID: 21601047; Chenik, M., Schnell, M., Conzelmann, K.K., Blondel, D., Mapping the interacting domains between the rabies virus polymerase and phosphoprotein (1998) J Virol, 72, pp. 1925-1930. , PMID: 9499045; Schnell, M.J., Conzelmann, K.K., Polymerase activity of in vitro mutated rabies virus L protein (1995) Virology, 214, pp. 522-530. , https://doi.org/10.1006/viro.1995.0063, PMID: 8553554; Morimoto, K., Shoji, Y., Inoue, S., Characterization of P gene-deficient rabies virus: Propagation, pathogenicity and antigenicity (2005) Virus Res, 111, pp. 61-67. , https://doi.org/10.1016/j.virusres.2005.03.011, PMID: 15896403; Mebatsion, T., Weiland, F., Conzelmann, K.K., Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G (1999) J Virol, 73, pp. 242-250. , PMID: 9847327; Cenna, J., Hunter, M., Tan, G.S., Papaneri, A.B., Ribka, E.P., Schnell, M.J., Replication-deficient rabies virus-based vaccines are safe and immunogenic in mice and nonhuman primates (2009) J Infect Dis, 200, pp. 1251-1260. , https://doi.org/10.1086/605949, PMID: 19764884; Ito, N., Sugiyama, M., Yamada, K., Shimizu, K., Takayama-Ito, M., Hosokawa, J., Characterization of M gene-deficient rabies virus with advantages of effective immunization and safety as a vaccine strain (2005) Microbiol Immunol, 49, pp. 971-979. , https://doi.org/10.1111/j.1348-0421.2005.tb03692.x, PMID: 16301807; Shoji, Y., Inoue, S., Nakamichi, K., Kurane, I., Sakai, T., Morimoto, K., Generation and characterization of P gene-deficient rabies virus (2004) Virology, 318, pp. 295-305. , https://doi.org/10.1016/j.virol.2003.10.001, PMID: 14972555; Schnell, M.J., Mebatsion, T., Conzelmann, K.K., Infectious rabies viruses from cloned cDNA (1994) EMBO J, 13, pp. 4195-4203. , PMID: 7925265; Mebatsion, T., Schnell, M.J., Cox, J.H., Finke, S., Conzelmann, K.K., Highly stable expression of a foreign gene from rabies virus vectors (1996) Proc Natl Acad Sci U S A, 93, pp. 7310-7314. , https://doi.org/10.1073/pnas.93.14.7310, PMID: 8692989; Takayama-Ito, M., Lim, C.-K., Yamaguchi, Y., Posadas-Herrera, G., Kato, H., Iizuka-Shiota, I., Replication-incompetent rabies virus vector harboring Glycoprotein gene of Lymphocytic Choriomeningitis Virus (LCMV) protects mice from lethal LCMV challenge (2018) PLoS Negl Trop Dis, 16, p. e0006398; Schnell, M.J., Foley, H.D., Siler, C.A., McGettigan, J.P., Dietzschold, B., Pomerantz, R.J., Recombinant rabies virus as potential live-viral vaccines for HIV-1 (2000) Proc Natl Acad Sci U S A, 97, pp. 3544-3549. , https://doi.org/10.1073/pnas.050589197, PMID: 10706640; Faber, M., Lamirande, E.W., Roberts, A., Rice, A.B., Koprowski, H., Dietzschold, B., A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARSCoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies (2005) J Gen Virol, 86, pp. 1435-1440. , https://doi.org/10.1099/vir.0.80844-0, PMID: 15831955; Conzelmann, K.K., Cox, J.H., Schneider, L.G., Thiel, H.J., Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19 (1990) Virology, 175, pp. 485-499. , https://doi.org/10.1016/0042-6822(90)90433-r, PMID: 2139267; Foley, H.D., McGettigan, J.P., Siler, C.A., Dietzschold, B., Schnell, M.J., A recombinant rabies virus expressing vesicular stomatitis virus glycoprotein fails to protect against rabies virus infection (2000) Proc Natl Acad Sci U S A, 97, pp. 14680-14685. , https://doi.org/10.1073/pnas.011510698, PMID: 11114165; McGettigan, J.P., Naper, K., Orenstein, J., Koser, M., McKenna, P.M., Schnell, M.J., Functional human immunodeficiency virus type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and env expressed from a single rhabdovirusbased vaccine vector genome (2003) J Virol, 77, pp. 10889-10899. , https://doi.org/10.1128/JVI.77.20.10889-10899.2003, PMID: 14512539; McGettigan, J.P., Sarma, S., Orenstein, J.M., Pomerantz, R.J., Schnell, M.J., Expression and immunogenicity of human immunodeficiency virus type 1 Gag expressed by a replication-competent rhabdovirus-based vaccine vector (2001) J Virol, 75, pp. 8724-8732. , https://doi.org/10.1128/JVI.75.18.8724-8732.2001, PMID: 11507217; McGettigan, J.P., Pomerantz, R.J., Siler, C.A., McKenna, P.M., Foley, H.D., Dietzschold, B., Second-generation rabies virus-based vaccine vectors expressing human immunodeficiency virus type 1 gag have greatly reduced pathogenicity but are highly immunogenic (2003) J Virol, 77, pp. 237-244. , https://doi.org/10.1128/JVI.77.1.237-244.2003, PMID: 12477829; Orciari, L.A., Niezgoda, M., Hanlon, C.A., Shaddock, J.H., Sanderlin, D.W., Yager, P.A., Rapid clearance of SAG-2 rabies virus from dogs after oral vaccination (2001) Vaccine, 19, pp. 4511-4518. , https://doi.org/10.1016/s0264-410x(01)00186-4, PMID: 11483278; Papaneri, A.B., Wirblich, C., Cooper, K., Jahrling, P.B., Schnell, M.J., Blaney, J.E., (2012) Further Characterization of the Immune Response in Mice to Inactivated and Live Rabies Vaccines Expressing Ebola Virus Glycoprotein, 21 (30), pp. 6136-6141. , http://www.ncbi.nlm.nih.gov/pubmed/22884661, Sep. [cited 2018 Oct 9]. Vaccine. https://doi.org/10.1016/j.vaccine.2012.07.073; Koprowski, H., Black, J., Nelsen, D.J., Studies on chick-embryo-adapted-rabies virus. VI. Further changes in pathogenic properties following prolonged cultivation in the developing chick embryo (1954) J Immunol, 72, pp. 94-106. , PMID: 13118196; Inoue, K., Shoji, Y., Kurane, I., Iijima, T., Sakai, T., Morimoto, K., An improved method for recovering rabies virus from cloned cDNA (2003) J Virol Methods, 107, pp. 229-236. , https://doi.org/10.1016/s0166-0934(02)00249-5, PMID: 12505638; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in speciesindependent antibody detection by competitive ELISA (2018) J Virol Methods, 251, pp. 22-29. , https://doi.org/10.1016/j.jviromet.2017.10.008, PMID: 28993122; Luo, T.R., Minamoto, N., Ito, H., Goto, H., Hiraga, S., Ito, N., A virus-neutralizing epitope on the glycoprotein of rabies virus that contains Trp251 is a linear epitope (1997) Virus Res, 51, pp. 35-41. , https://doi.org/10.1016/s0168-1702(97)00080-4, PMID: 9381793; Shirato, K., Azumano, A., Nakao, T., Hagihara, D., Ishida, M., Tamai, K., Middle East Respiratory Syndrome coronavirus infection not found in camels in Japan (2015) Jpn J Infect Dis, 68, pp. 256-258. , https://doi.org/10.7883/yoken.JJID.2015.094, PMID: 25993975; Fukushi, S., Mizutani, T., Saijo, M., Kurane, I., Taguchi, F., Tashiro, M., Evaluation of a novel vesicular stomatitis virus pseudotype-based assay for detection of neutralizing antibody responses to SARSCoV (2006) J Med Virol, 78, pp. 1509-1512. , https://doi.org/10.1002/jmv.20732, PMID: 17063504; Krämer, B., Schildger, H., Behrensdorf-Nicol, H.A., Hanschmann, K.M., Duchow, K., The rapid fluorescent focus inhibition test is a suitable method for batch potency testing of inactivated rabies vaccines (2009) Biologicals, 37, pp. 119-126. , https://doi.org/10.1016/j.biologicals.2009.01.001, PMID: 19181541; Krämer, B., Bruckner, L., Daas, A., Milne, C., Collaborative study for validation of a serological potency assay for rabies vaccine (inactivated) for veterinary use (2010) Pharmeur Bio Sci Notes, 2010, pp. 37-55. , PMID: 21144488; Cho, H., Excler, J.-L., Kim, J.H., Yoon, I.-K., Development of Middle East Respiratory Syndrome coronavirus vaccines-advances and challenges (2018) Hum Vaccin Immunother, 14, pp. 304-313. , https://doi.org/10.1080/21645515.2017.1389362, PMID: 29048984; Alharbi, N.K., Vaccines against Middle East Respiratory Syndrome coronavirus for humans and camels (2017) Rev Med Virol, 27, p. e1917; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Middle East Respiratory Syndrome coronavirus spike protein delivered by Modified Vaccinia Virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87, pp. 11950-11954. , https://doi.org/10.1128/JVI.01672-13, PMID: 23986586; Malczyk, A.H., Kupke, A., Prüfer, S., Scheuplein, V.A., Hutzler, S., Kreuz, D., A highly immunogenic and protective Middle East Respiratory Syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J Virol, 89, pp. 11654-11667. , https://doi.org/10.1128/JVI.01815-15, PMID: 26355094; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East Respiratory Syndrome coronavirus (2015) Immunology, 145, pp. 476-484. , https://doi.org/10.1111/imm.12462, PMID: 25762305; Kim, E., Okada, K., Kenniston, T., Raj, V.S., AlHajri, M.M., Eaba, F., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982. , https://doi.org/10.1016/j.vaccine.2014.08.058, PMID: 25192975; Blaney, J.E., Marzi, A., Willet, M., Papaneri, A.B., Wirblich, C., Feldmann, F., Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine (2013) PLoS Pathog, 9, p. e1003389. , https://doi.org/10.1371/journal.ppat.1003389, PMID: 23737747; Siler, C.A., McGettigan, J.P., Dietzschold, B., Herrine, S.K., Dubuisson, J., Pomerantz, R.J., Live and killed rhabdovirus-based vectors as potential hepatitis C vaccines (2002) Virology, 292, pp. 24-34. , https://doi.org/10.1006/viro.2001.1212, PMID: 11878905; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249. , https://doi.org/10.1038/cr.2015.113, PMID: 26391698; Uyeki, T.M., Erlandson, K.J., Korch, G., O'Hara, M., Wathen, M., Hu-Primmer, J., Development of medical countermeasures to Middle East Respiratory Syndrome coronavirus (2016) Emerg Infect Dis, 22; Rabies vaccines: WHO position paper-April 2018 Wkly Epidemiol Rec., 2018 (16), pp. 201-220. , World Health Organization; Papaneri, A.B., Wirblich, C., Cann, J.A., Cooper, K., Jahrling, P.B., Schnell, M.J., A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence (2012) Virology, 434, pp. 18-26. , https://doi.org/10.1016/j.virol.2012.07.020, PMID: 22889613; Blaney, J.E., Wirblich, C., Papaneri, A.B., Johnson, R.F., Myers, C.J., Juelich, T.L., Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses (2011) J Virol, 85, pp. 10605-10616. , https://doi.org/10.1128/JVI.00558-11, PMID: 21849459; Yu, G.M., Zu, S.L., Zhou, W.W., Wang, X.J., Shuai, L., Wang, X.L., Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels (2017) J Vet Sci, 18, pp. 351-359. , https://doi.org/10.4142/jvs.2017.18.S1.351, PMID: 27515260; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alghamdi, A., Sanki, M.A., Al-Muhanna, M.K., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Sci Rep, 7, p. 44875. , https://doi.org/10.1038/srep44875, PMID: 28332568; Chi, H., Zheng, X., Wang, X., Wang, C., Wang, H., Gai, W., DNA vaccine encoding Middle East Respiratory Syndrome coronavirus S1 protein induces protective immune responses in mice (2017) Vaccine, 35, pp. 2069-2075. , https://doi.org/10.1016/j.vaccine.2017.02.063, PMID: 28314561; Kim, E., Okada, K., Kenniston, T., Raj, V.S., AlHajri, M.M., Eaba, F., Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982. , https://doi.org/10.1016/j.vaccine.2014.08.058, PMID: 25192975; Iwata-Yoshikawa, N., Uda, A., Suzuki, T., Tsunetsugu-Yokota, Y., Sato, Y., Morikawa, S., Effects of Tolllike receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine (2014) J Virol, 88, pp. 8597-8614. , https://doi.org/10.1128/JVI.00983-14, PMID: 24850731; Cbem, R., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.-J., Danmarwa, A., Geographic distribution of MERS coronavirus among dromedary camels Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590, PMID: 25062254; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Middle East Respiratory Syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6, PMID: 23933067","Lim, C.-K.; Department of Virology i, National Institute of Infectious DiseasesJapan; email: ck@niid.go.jp",,"Public Library of Science",19326203,,POLNC,"31589656","English","PLoS ONE",Article,"Final",Open Access,Scopus,2-s2.0-85072987392 "Jang G., Park J., Lee C.","56608747100;57210160562;55700560700;","Complete genome sequences of novel S-deletion variants of porcine epidemic diarrhea virus identified from a recurrent outbreak on Jeju Island, South Korea",2019,"Archives of Virology","164","10",,"2621","2625",,,"10.1007/s00705-019-04360-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069714139&doi=10.1007%2fs00705-019-04360-4&partnerID=40&md5=2d459445d4e5e70ee35873b6cc77b765","Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea","Jang, G., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; Park, J., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; Lee, C., Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea","Porcine epidemic diarrhea virus (PEDV) is a deadly epizootic swine coronavirus that is of importance to the world pork industry. Since the re-emergence of the virulent genotype 2b (G2b) in 2014, Jeju Island in South Korea has faced periodic outbreaks, leading to the occurrence of endemics in provincial herds. In this study, we examined the complete genome sequences and molecular characteristics of novel G2b PEDV variants with a two-amino-acid deletion in the neutralizing epitope of the spike (S) gene, which were concurrently identified on a re-infected farm and its neighboring farm on Jeju Island. Whole-genome sequencing of the Jeju S-DEL isolates KNU-1829 and KNU-1830 revealed the presence of a continuous 9-nucleotide deletion within the nonstructural protein coding region. Their genomes were 28,023 nucleotides in length, 15 nucleotides shorter than those of the classical G2b PEDV strains. The two S-DEL isolates had 96.4–99.2% and 98.3–99.7% identity at the S-gene and full-genome level, respectively, to other global G2b PEDV strains. Genetic and antigenic analyses indicated that the S-DEL isolates are most closely related to the primary strain identified from the initial exposure at the same farm, but the virus appears to undergo continuous evolution, possibly leading to antigenic drift under recurrent or endemic pressure. This study provides important information about the antigenic diversity of PEDV circulating in the endemic areas, which arises from continuous non-lethal mutations to ensure viral fitness in the host environment. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.",,"coronavirus spike glycoprotein; viral protein; virus RNA; agricultural land; animal; classification; Coronavirus infection; DNA sequence; epidemic; gene deletion; gene order; genetics; island (geological); isolation and purification; phylogeny; pig; Porcine epidemic diarrhea virus; sequence homology; South Korea; swine disease; veterinary medicine; virology; virus genome; Animals; Coronavirus Infections; Disease Outbreaks; Farms; Gene Order; Genome, Viral; Islands; Phylogeny; Porcine epidemic diarrhea virus; Republic of Korea; RNA, Viral; Sequence Analysis, DNA; Sequence Deletion; Sequence Homology, Nucleic Acid; Spike Glycoprotein, Coronavirus; Swine; Swine Diseases; Viral Nonstructural Proteins","Andersen, P.H., Nielsen, M., Lund, O., Prediction of residues in discontinuous B-cell epitopes using protein 3D structures (2006) Protein Sci, 15, pp. 2558-2567; Fan, B., Jiao, D., Zhao, X., Pang, F., Xiao, Q., Yu, Z., Mao, A., Li, B., Characterization of Chinese porcine epidemic diarrhea virus with novel insertions and deletions in genome (2017) Sci Rep, 7, p. 44209; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Wang, Q., Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets (2017) J Virol, 91, p. e00227; Hulswit, R.J., de Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57; Kuo, L., Godeke, G.J., Raamsman, M.J., Masters, P.S., Rottier, P.J., Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier (2000) J Virol, 74, pp. 1393-1406; Lee, C., Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus (2015) Virol J, 12, p. 193; Lee, D.K., Cha, S.Y., Lee, C., The N-terminal region of the porcine epidemic diarrhea virus spike protein is important for the receptor binding (2011) Korean J Microbiol Biotechnol, 39, pp. 140-145; Lee, D.K., Park, C.K., Kim, S.H., Lee, C., Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea (2010) Virus Res, 149, pp. 175-182; Lee, S., Ko, D.H., Kwak, W.K., Lim, C.H., Moon, S.U., Lee, D.S., Lee, C., Reemergence of porcine epidemic diarrhea virus on Jeju Island (2014) Korean J Vet Res, 54, pp. 185-188; Lee, S., Lee, C., Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013 (2014) Emerg Infect Dis, 20, pp. 1223-1226; Lee, S., Lee, C., Complete genome sequence of a novel S-insertion variant of porcine epidemic diarrhea virus from South Korea (2017) Arch Virol, 162, pp. 2919-2922; Lee, S., Lee, D.U., Noh, Y.H., Lee, S.C., Choi, H.W., Yang, H.S., Seol, J.H., Lee, C., Molecular characteristics and pathogenic assessment of porcine epidemic diarrhea virus isolates from the 2018 endemic outbreaks on Jeju Island, South Korea (2019) Transb Emerg Dis; Li, C., Li, W., de Esesarte, E.L., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J Virol, 12, pp. e00273-e00275; Lin, C.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Hu, H., Wang, Q., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Vet Res, 46, p. 134; Okda, F.A., Lawson, S., Singrey, A., Nelson, J., Hain, K.S., Joshi, L.R., Christopher-Hennings, J., Diel, D.G., The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes (2017) Virology, 509, pp. 185-194; Suzuki, T., Shibahara, T., Yamaguchi, R., Nakade, K., Yamamoto, T., Miyazaki, A., Ohashi, S., Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets (2016) J Gen Virol, 97, pp. 1823-1828; Van Diep, N., Norimine, J., Sueyoshi, M., Lan, N.T., Yamaguchi, R., Novel porcine epidemic diarrhea virus (PEDV) variants with large deletions in the spike (S) gene coexist with PEDV strains possessing an intact S Gene in domestic pigs in Japan: a new disease situation (2017) PLoS One, 12","Lee, C.; Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National UniversitySouth Korea; email: changhee@knu.ac.kr",,"Springer-Verlag Wien",03048608,,ARVID,"31350613","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85069714139 "Basso W., Görner D., Globokar M., Keidel A., Pantchev N.","6602634089;57209467912;57096327900;57209475671;23489943400;","First autochthonous case of clinical Hepatozoon felis infection in a domestic cat in Central Europe",2019,"Parasitology International","72",, 101945,"","",,,"10.1016/j.parint.2019.101945","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067876611&doi=10.1016%2fj.parint.2019.101945&partnerID=40&md5=d14f279b7e6ebbc2a28034d45409d226","Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, CH-3012, Switzerland; Tierarztpraxis Görner, Gölbeszeile 28, Eisenstadt, A-7000, Austria; IDEXX Laboratories, Mörikestrasse 28/3, Ludwigsburg, D-71636, Germany","Basso, W., Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, CH-3012, Switzerland; Görner, D., Tierarztpraxis Görner, Gölbeszeile 28, Eisenstadt, A-7000, Austria; Globokar, M., IDEXX Laboratories, Mörikestrasse 28/3, Ludwigsburg, D-71636, Germany; Keidel, A., IDEXX Laboratories, Mörikestrasse 28/3, Ludwigsburg, D-71636, Germany; Pantchev, N., IDEXX Laboratories, Mörikestrasse 28/3, Ludwigsburg, D-71636, Germany","Three different Hepatozoon (Apicomplexa, Hepatozoidae) species have been described infecting domestic cats in Europe (i.e. H. felis, H. canis and H. silvestris), however, reports on clinical hepatozoonosis are uncommon and treatment protocols are not clearly defined. A six-year-old male European short-hair cat from Austria presented poor general condition, lethargy, anorexia, icterus, a painful abdomen, fever, ruffled hair and a tick infestation, and it had never left Austria. Laboratory tests revealed leukopenia, thrombocytopenia and increased serum levels of symmetric dimethylarginine (SDMA) and bilirubin. In May Grünwald-Giemsa-stained blood smears, structures resembling Hepatozoon gamonts were observed inside neutrophil granulocytes. A PCR targeting a fragment of the 18S rRNA gene of Hepatozoon spp. and DNA sequencing allowed the diagnosis of H. felis-DNA in blood samples. The cat was treated with imidocarb dipropionate (6 mg/kg body weight, repeated after 14 days) and doxycycline monohydrate (5 mg/kg body weight twice a day, p.o., for four weeks) and recovered completely. A broad haematological and biochemical laboratory control after six months showed all evaluated parameters under normal ranges. Coinfection with other feline pathogens (i.e. feline leukaemia virus, feline immunodeficiency virus, feline Coronavirus, Leishmania and Dirofilaria immitis) could not be detected. This study reveals the presence of H. felis in Austria and provides more evidence on the geographical distribution and pathogenicity of this parasite for domestic cats. To the authors' knowledge, this is the first autochthonous case of feline hepatozoonosis in Central Europe. © 2019 Elsevier B.V.","Apicomplexa; Austria; Hepatozoon felis; Imidocarb; PCR","6 n,n' dimethylarginine; bilirubin; doxybene; doxycycline; imidocarb dipropionate; RNA 18S; antiprotozoal agent; imidocarb; RNA 18S; abdominal pain; animal experiment; anorexia; Article; Austria; bilirubin blood level; biochemical analysis; blood smear; controlled study; DNA sequence; domestic cat; Europe; fever; gamont; geographic distribution; Giemsa stain; hematological parameters; Hepatozoon; Hepatozoon felis; hepatozoonosis; jaundice; laboratory test; lethargy; leukopenia; male; mixed infection; neutrophil; nonhuman; nucleotide sequence; parasite virulence; poor general condition; priority journal; real time polymerase chain reaction; thrombocytopenia; tick infestation; animal; case report; cat; cat disease; Coccidia; coccidiosis; genetics; isolation and purification; parasitology; polymerase chain reaction; treatment outcome; veterinary medicine; Animals; Antiprotozoal Agents; Austria; Cat Diseases; Cats; Coccidiosis; Eucoccidiida; Imidocarb; Male; Polymerase Chain Reaction; RNA, Ribosomal, 18S; Sequence Analysis, DNA; Treatment Outcome","Baneth, G., Sheiner, A., Eyal, O., Hahn, S., Beaufils, J.-P., Anug, Y., Talmi-Frank, D., Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission (2013) Parasit. Vectors, 6, p. 102; Hodzic, A., Alic, A., Prasovic, S., Otranto, D., Baneth, G., Duscher, G.G., Morphological and molecular characterization of a new species of Hepatozoon (Adeleorina: Hepatozoidae) from the European wild cat (Felis silvestris silvestris) (2017) Parasitology, 144 (5), pp. 650-661; Baneth, G., Perspectives on canine and feline hepatozoonosis (2011) Vet. Parasitol., 181 (1), pp. 3-11; Smith, T.G., The genus Hepatozoon (Apicomplexa: Adeleina) (1996) J. Parasitol., 82 (4), pp. 565-585; Johnson, E.M., Panciera, R.J., Allen, K.E., Sheets, M.E., Beal, J.D., Ewing, S.A., Little, S.E., Alternate pathway of infection with Hepatozoon americanum and the epidemiologic importance of predation (2009) J. Vet. Intern. Med., 23 (6), pp. 1315-1318; Murata, T., Inoue, M., Tateyama, S., Taura, Y., Nakama, S., Vertical transmission of Hepatozoon canis in dogs (1993) J. Vet. Med. Sci., 55 (5), pp. 867-868; Giannelli, A., Latrofa, M.S., Nachum-Biala, Y., Hodžić, A., Greco, G., Attanasi, A., Annoscia, G., Baneth, G., Three different Hepatozoon species in domestic cats from southern Italy (2017) Ticks Tick Borne Dis., 8 (5), pp. 721-724; Kegler, K., Nufer, U., Alic, A., Posthaus, H., Olias, P., Basso, W., Fatal infection with emerging apicomplexan parasite Hepatozoon silvestris in a domestic cat (2018) Parasit. Vectors, 11, p. 428; Attipa, C., Neofytou, K., Yiapanis, C., Martínez-Orellana, P., Baneth, G., Nachum-Biala, Y., Brooks-Brownlie, H., Tasker, S., Follow-up monitoring in a cat with leishmaniosis and coinfections with Hepatozoon felis and ‘Candidatus Mycoplasma haemominutum (2017) JFMS Open Rep., 3 (2), pp. 1-6; Vilhena, H., Martinez-Díaz, V.L., Cardoso, L., Vieira, L., Altet, L., Francino, O., Pastor, J., Silvestre-Ferreira, A.C., Feline vector-borne pathogens in the North and Centre of Portugal (2013) Parasit. Vectors, 6, p. 99; Maia, C., Ramos, C., Coimbra, M., Bastos, F., Martins, Â., Pinto, P., Nunes, M., Campino, L., Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal (2014) Parasit. Vectors, 7, p. 115; Attipa, C., Papasouliotis, K., Solano-Gallego, L., Baneth, G., Nachum-Biala, Y., Sarvani, E., Knowles, T.G., Tasker, S., Prevalence study and risk factor analysis of selected bacterial, protozoal and viral, including vector-borne, pathogens in cats from Cyprus (2017) Parasit. Vectors, 10, p. 130; Oliveira, A.C., Luz, M.F., Granada, S., Vilhena, H., Nachum-Biala, Y., Lopes, A.P., Cardoso, L., Baneth, G., Molecular detection of Anaplasma bovis, Ehrlichia canis and Hepatozoon felis in cats from Luanda, Angola (2018) Parasit. Vectors, 11, p. 167; Díaz-Regañón, D., Villaescusa, A., Ayllón, T., Rodríguez-Franco, F., Baneth, G., Calleja-Bueno, L., García-Sancho, M., Sainz, A., Molecular detection of Hepatozoon spp. and Cytauxzoon sp. in domestic and stray cats from Madrid, Spain (2017) Parasit. Vectors, 10, p. 112; Jittapalapong, S., Rungphisutthipongse, O., Maruyama, S., Schaefer, J.J., Stich, R.W., Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand (2006) Ann. N. Y. Acad. Sci., 1081, pp. 479-488; Criado-Fornelio, A., Buling, A., Cunha-Filho, N.A., Ruas, J.L., Farias, N.A.R., Rey-Valeiron, C., Pingret, J.L., Barba-Carretero, J.C., Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp (2007) Vet. Parasitol., 150 (4), pp. 352-356; Margalit Levi, M., Nachum-Biala, Y., King, R., Baneth, G., A survey of Babesia spp. and Hepatozoon spp. in wild canids in Israel (2018) Parasit. Vectors, 11, p. 150; Cardoso, L., Cortes, H.C.E., Eyal, O., Reis, A., Lopes, A.P., Vila-Viçosa, M.J., Rodrigues, P.A., Baneth, G., Molecular and histopathological detection of Hepatozoon canis in red foxes (Vulpes vulpes) from Portugal (2014) Parasit. Vectors, 7, p. 113; Farkas, R., Solymosi, N., Takács, N., Hornyák, Á., Hornok, S., Nachum-Biala, Y., Baneth, G., First molecular evidence of Hepatozoon canis infection in red foxes and golden jackals from Hungary (2014) Parasit. Vectors, 7, p. 303; Pawar, R.M., Poornachandar, A., Srinivas, P., Rao, K.R., Lakshmikantan, U., Shivaji, S., Molecular characterization of Hepatozoon spp. infection in endangered Indian wild felids and canids (2012) Vet. Parasitol., 186 (3-4), pp. 475-479; Penzhorn, B.L., Netherlands, E.C., Cook, C.A., Smit, N.J., Vorster, I., Harrison-White, R.F., Oosthuizen, M.C., Occurrence of Hepatozoon canis (Adeleorina: Hepatozoidae) and Anaplasma spp. (Rickettsiales: Anaplasmataceae) in black-backed jackals (Canis mesomelas) in South Africa (2018) Parasit. Vectors, 11, p. 158; Duscher, G.G., Leschnik, M., Fuehrer, H.-P., Joachim, A., Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria (2015) Int. J. Parasitol., 4 (1), pp. 88-96; Tabar, M.-D., Altet, L., Francino, O., Sánchez, A., Ferrer, L., Roura, X., Vector-borne infections in cats: molecular study in Barcelona area (Spain) (2008) Vet. Parasitol., 151 (2-4), pp. 332-336; Ortuño, A., Castellà, J., Criado-Fornelio, A., Buling, A., Barba-Carretero, J.C., Molecular detection of a Hepatozoon species in stray cats from a feline colony in North-Eastern Spain (2008) Vet. J., 177 (1), pp. 134-135; Criado-Fornelio, A., Buling, A., Pingret, J.L., Etievant, M., Boucraut-Baralon, C., Alongi, A., Agnone, A., Torina, A., Hemoprotozoa of domestic animals in France: prevalence and molecular characterization (2009) Vet. Parasitol., 159 (1), pp. 73-76; Ernst, R., Ogeer, J., McCrann, D., Cross, J., Strong-Townsend, M., Friis, H., Coyne, M., Murphy, R., Comparative performance of IDEXX SDMA test and the DLD SDMA ELISA for the measurement of SDMA in canine and feline serum (2018) PLoS ONE, 13 (10); Dyachenko, V., Pantchev, N., Balzer, H.-J., Meyersen, A., Straubinger, R.K., First case of Anaplasma platys infection in a dog from Croatia (2012) Parasit. Vectors, 5, p. 49; Hartmann, K., Griessmayr, P., Schulz, B., Greene, C.E., Vidyashankar, A.N., Jarrett, O., Egberink, H.F., Quality of different in-clinic test systems for feline immunodeficiency virus and feline leukaemia virus infection (2007) J. Feline Med. Surg., 9 (6), pp. 439-445; Lloret, A., Addie, D.D., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Möstl, K., Hepatozoonosis in cats: ABCD guidelines on prevention and management (2015) J. Feline Med. Surg., 17 (7), pp. 642-644; Wolf, D., Failing, K., Taubert, A., Pantchev, N., Serological diagnosis of canine leishmaniosis: comparison of three commercially available tests (2014) Parasitol. Res., 113 (5), pp. 1997-2002; Beall, M.J., Arguello-Marin, A., Drexel, J., Liu, J., Chandrashekar, R., Alleman, A.R., Validation of immune complex dissociation methods for use with heartworm antigen tests (2017) Parasit. Vectors, 10, p. 481; Klopfer, U., Nobel, T.A., Neumann, F., Hepatozoon-like parasite (schizonts) in the myocardium of the domestic cat (1973) Vet. Pathol., 10 (3), pp. 185-190; Dandrieux, J.R.S., Sacchini, F., Harms, G., Globokar, M., Balzer, H.-J., Pantchev, N., Canine Leishmania infantum infection: an imported case in UK after staying in the Canary Islands (2018) Parasitol. Res., 117 (1), pp. 331-334; Baneth, G., Aroch, I., Tal, N., Harrus, S., Hepatozoon species infection in domestic cats: a retrospective study (1998) Vet. Parasitol., 79 (2), pp. 123-133; Relford, R., Robertson, J., Clements, C., Symmetric dimethylarginine: improving the diagnosis and staging of chronic kidney disease in small animals (2016) Vet. Clin. Small Anim., 46 (6), pp. 941-960; Tuna, G.E., Bakırcı, S., Dinler, C., Battal, G., Ulutaş, B., Molecular identification and clinicopathological findings of Hepatozoon sp. infection in a cat: first report from Turkey (2018) Turkiye Parazitol. Derg., 42 (4), pp. 286-289; Vilhena, H., Tvarijonaviciute, A., Cerón, J.J., Vieira, L., Pastor, J., Silvestre-Ferreira, A.C., Acute phase proteins response in cats naturally infected with Hepatozoon felis and Babesia vogeli (2017) Vet. Clin. Pathol., 46 (1), pp. 72-76; Maia, C., Ferreira, A., Nunes, M., Vieira, M.L., Campino, L., Cardoso, L., Molecular detection of bacterial and parasitic pathogens in hard ticks from Portugal (2014) Ticks Tick Borne Dis., 5 (4), pp. 409-414; Duplan, F., Davies, S., Filler, S., Abdullah, S., Keyte, S., Newbury, H., Helps, C.R., Tasker, S., Anaplasma phagocytophilum, Bartonella spp., Haemoplasma species and Hepatozoon spp. in ticks infesting cats: a large-scale survey (2018) Parasit. Vectors, 11, p. 201; Kamani, J., Harrus, S., Nachum-Biala, Y., Salant, H., Mumcuoglu, K.Y., Baneth, G., Pathogenic and endosymbiont apicomplexans in Ctenocephalides felis (Siphonaptera: Pulicidae) from cats in Jerusalem, Israel (2018) Comp. Immunol. Microbiol. Inf. Dis., 57, pp. 29-33; Sasanelli, M., Paradies, P., Greco, B., Eyal, O., Zaza, V., Baneth, G., Failure of imidocarb dipropionate to eliminate Hepatozoon canis in naturally infected dogs based on parasitological and molecular evaluation methods (2010) Vet. Parasitol., 171, pp. 194-199; De Tommasi, A.S., Giannelli, A., de Caprariis, D., Ramos, R.A., Di Paola, G., Crescenzo, G., Dantas-Torres, F., Otranto, D., Failure of imidocarb dipropionate and toltrazuril/emodepside plus clindamycin in treating Hepatozoon canis infection (2014) Vet. Parasitol., 200, pp. 242-245","Basso, W.; Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Switzerland; email: walter.basso@vetsuisse.unibe.ch",,"Elsevier Ireland Ltd",13835769,,PAINF,"31228586","English","Parasitol. Int.",Article,"Final",,Scopus,2-s2.0-85067876611 "Dörfelt S., Matiasek L.A., Felten S., Sangl L., Hartmann K., Matiasek K.","57203360489;15051105400;57193734979;57193733754;7201407340;55853997300;","Antigens under cover—The preservation and demasking of selected antigens for successful poststaining immunocytochemistry of effusion, brain smears, and lymph node aspirates",2019,"Veterinary Clinical Pathology","48","S1",,"98","107",,1,"10.1111/vcp.12702","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062352329&doi=10.1111%2fvcp.12702&partnerID=40&md5=d97672e59b2d3a062b59c8a82f3a49a1","Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany; Anicura Small Animal Clinic, Babenhausen, Germany; Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany","Dörfelt, S., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany; Matiasek, L.A., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany, Anicura Small Animal Clinic, Babenhausen, Germany; Felten, S., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany; Sangl, L., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany; Hartmann, K., Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany; Matiasek, K., Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-Universitaet, Munich, Germany","Background: In clinical cytology, the applicability of an ancillary test such as immunocytochemistry is too often limited by low sample volume, poor cell representation, and sample preservation. Diagnosticians often read Romanowsky-stained cytology, although specific techniques such as immunocytochemistry are often essential for a definitive diagnosis. Objectives: The goal of the present study aimed to investigate if immunocytochemistry on previously-stained cytologic specimens was possible. Different pretreatments were examined to determine which treatment preserved antigenicity best. Methods: One hundred and twenty-two impression smears and 64 fine-needle aspirate preparations of brain and lymph nodes were processed and evaluated microscopically. The impact of staining cytologic preparations with a modified Wright's stain, using a destaining method, performing a coverslipping and decoverslipping process, and subjecting smears to a microwave treatment (MWT) were examined for the immunolabeling of selected nuclear, cytoplasmic, and plasmalemmal antigens, as well as intracellular feline coronavirus (FCoV). Biotinylated secondary antibodies were used, and the bound primary antibody was visualized using an ABC amplification kit. Results: Cellular antigens were reliably detected with immunocytochemistry after smears were stained with a Romansky stain and were coverslipped early after staining and stayed coverslipped until immediately before immunolabeling. The staining intensity reached the same levels as that of the controls if the films underwent MWT in citrate buffer. In contrast, FCoV antigen detection was abolished after any physicochemical interference. Conclusions: Poststaining immunocytochemistry represents a practical tool for additional investigations on prestained cytologic specimens when searching for cellular antigens. Paired untreated samples should be kept in case the workup requires testing for more vulnerable viral antigens. © 2019 American Society for Veterinary Clinical Pathology","coverslip; destaining; feline infectious peritonitis; microwave; neurocytology","CD3 antigen; cell antigen; citric acid; glial fibrillary acidic protein; impression material; neuron specific nuclear protein; antibody; cell nucleus antigen; coloring agent; eosin; glial fibrillary acidic protein; Romanowsky-Giemsa stain; virus antigen; animal experiment; animal tissue; antibody labeling; antigen detection; Article; astrocyte; brain; cat; cellular distribution; cytology; cytoplasm; Feline infectious peritonitis virus; fine needle aspiration biopsy; immunocytochemistry; immunoreactivity; lymph node; lymphocyte; microwave irradiation; nonhuman; pig; virus nucleocapsid; animal; brain; comparative study; cytodiagnosis; Feline coronavirus; Giemsa stain; immunohistochemistry; immunology; lymph node; microwave radiation; pathology; sensitivity and specificity; specimen handling; staining; veterinary medicine; Animals; Antibodies; Antigens, Nuclear; Antigens, Viral; Azure Stains; Biopsy, Fine-Needle; Brain; Cats; Coloring Agents; Coronavirus, Feline; Cytodiagnosis; Cytoplasm; Eosine Yellowish-(YS); Glial Fibrillary Acidic Protein; Immunohistochemistry; Lymph Nodes; Microwaves; Sensitivity and Specificity; Specimen Handling; Staining and Labeling; Swine","Beraki, E., Olsen, T.K., Sauer, T., Establishing a protocol for immunocytochemical staining and chromogenic in situ hybridization of Giemsa and Diff-Quick prestained cytological smears (2012) Cytojournal, 9, p. 8; Marcos, R., Santos, M., Santos, N., Use of destained cytology slides for the application of routine special stains (2009) Vet Clin Pathol, 38, pp. 94-102; McKee, P.H., Immunocytochemistry and cutaneous neoplasia (‘something will turn up’, Micawber 1863) (1990) Clin Exp Dermatol, 15, pp. 235-244; Mandal, P.K., Mondal, S.K., Roy, S., Adhikari, A., Basu, N., Sinha, S.K., Immunocytochemistry: It’s role in diagnosis of undifferentiated neoplasms by fine needle aspiration cytology (2013) J Cytol, 30, pp. 121-124; Dalquen, P., Sauter, G., Epper, R., Kleiber, B., Feichter, G., Gudat, F., Immunocytochemistry in diagnostic cytology (1993) Recent Results Cancer Res, 133, pp. 47-80; Höinghaus, R., Hewicker-Trautwein, M., Mischke, R., Immunocytochemical differentiation of neoplastic and hyperplastic canine epithelial lesions in cytologic imprint preparations (2007) Vet J, 173, pp. 79-90; Mason, D.Y., Gatter, K.C., The role of immunocytochemistry in diagnostic pathology (1987) J Clin Pathol, 40, pp. 1042-1054; Ponce, F., Magnol, J.P., Marchal, T., High-grade canine T-cell lymphoma/leukemia with plasmacytoid morphology: a clinical pathological study of nine cases (2003) J Vet Diagn Invest, 15, pp. 330-337; Gründl, S., Matiasek, K., Matiasek, L., Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in the central nervous system (2017) J Feline Med Surg, 19, pp. 576-585; Ives, E.J., Vanhaesebrouck, A.E., Cian, F., Immunocytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages (2013) J Feline Med Surg, 15, pp. 1149-1153; Corkill, M.E., Katz, R., Immunocytochemical staining of c-erb B-2 oncogene in fine-needle aspirates of breast carcinoma: a comparison with tissue sections and other breast cancer prognostic factors (1994) Diagn Cytopathol, 11, pp. 250-254; Iwa, N., Yutani, C., Ishibashi-Ueda, H., Katayama, Y., Immunocytochemical demonstration of glial fibrillary acidic protein in imprint smears of human brain tumors (1988) Diagn Cytopathol, 4, pp. 74-77; Nordgård, S., Bofin, A., Hagmar, B., Ki-67 antigen detection in unstained and destained cytological samples (2002) Ana Quant Cytol Histol, 24, pp. 198-204; Shtilbans, V., Szporn, A.H., Wu, M., Burstein, D.E., p63 immunostaining in destained bronchoscopic cytological specimens (2005) Diagn Cytopathol, 32, pp. 198-203; Choi, U.S., Kim, D.Y., Immunocytochemical detection of KI-67 in Diff-Quick-stained cytological smears of canine mammary gland tumours (2011) Cytopathology, 22, pp. 115-120; Kirbis, I.S., Flezar, M.S., Krasovec, M.U., MIB-1 immunostaining on cytological samples: a protocol without antigen retrieval (2004) Cytopathology, 15, pp. 154-159; Abendroth, C.S., Dabbs, D.J., Immunocytochemical staining of unstained versus previously stained cytologic preparations (1995) Acta Cytol, 39, pp. 379-386; Oza, N., Sanghvi, K., Shet, T., Mammary analogue secretory carcinoma of parotid: Is preoperative cytological diagnosis possible? (2016) Diagn Cytopathol, 44, pp. 519-525; Kim, D.H., Kwon, M.S., Role of fine needle aspiration cytology, cell block preparation and CD63, P63 and CD56 immunostaining in classifying the specific tumor type of the lung (2010) Acta Cytol, 54, pp. 55-59; Cheng, L., Reiter, R.E., Jin, Y., Immunocytochemical analysis of prostate stem cell antigen as adjunct marker for detection of urothelial transitional cell carcinoma in voided urine specimens (2003) J Urol, 169, pp. 2094-2100; Darvishian, F., Stier, E.A., Soslow, R.A., Lin, O., Immunoreactivity of p16 in anal cytology specimens: histologic correlation (2006) Cancer, 108, pp. 66-71; Zhang, L., Krausz, T., DeMay, R.M., A pilot study of Galectin-3, HBME-1, and p27 triple immunostaining pattern for diagnosis of indeterminate thyroid nodules in cytology with correlation to histology (2015) Appl Immunohistochem Mol Morphol, 23, pp. 481-490; Cajulis, R.S., Szumel, R., Frias-Hidvegi, D., Combs, S.G., Radosevich, J.A., Monoclonal antibody 44–3A6 as an adjunct in cytodiagnosis of adenocarcinomas in body fluids (1993) Diagn Cytopathol, 9, pp. 179-183; Dabbs, D.J., Wang, X., Immunocytochemistry on cytologic specimens of limited quantity (1998) Diagn Cytopathol, 18, pp. 166-169; Matiasek, K., Pumarola, M., Rosati, M., International Veterinary Epilepsy Task Force recommendations for systematic sampling and processing of brains from epileptic dogs and cats (2015) BMC Vet Res, 28, p. 216; Wünsche, S., Rosati, M., Matiasek, K., Diagnostic yield and accuracy of postmortem cytological sampling from the brain surface of animals with neurological abnormalities (2016) Vet J, 211, pp. 57-63; Grahn, B., Peiffer, R., Cullen, C., Haines, D., Classification of feline intraocular neoplasms based on morphology, histochemical staining, and immunohistochemical labelling (2006) Vet Ophthalmol, 9, pp. 395-403; Lumsden, J.H., Baker, R., Cytopathology techniques and interpretation (2000) Color Atlas of Cytology of the Dog and Cat, pp. 7-20. , Baker R, Lumsden JH, eds., 1st edn, St. Louis, MO, Mosby; Meinkoth, J.H., Cowell, R.L., Sample collection and preparation in cytology: increasing diagnostic yield (2002) Vet Clin North Am Small Anim Pract, 32, pp. 1187-1207; Tyler, R.D., Cowell, R.L., Baldwin, C.J., Morton, R.J., Introduction (1999) Diagnostic Cytology and Hematology of the Dog and Cat, pp. 1-19. , Cowell RL, Tyler RD, Meinkoth JH, eds., 2nd edn, St. Louis, MO, Mosby; Chen, J.T., Lane, M.A., Clark, D.P., Inhibitors of the polymerase chain reaction in Papanicolaou stain. Removal with a simple destaining procedure (1996) Acta Cytol, 40, pp. 873-877; Jörundsson, E., Lumsden, J.H., Jacobs, R.M., Rapid staining techniques in cytopathology: a review and comparison of modified protocols for hematoxylin and eosin, Papanicolaou and Romanowsky stains (1999) Vet Clin Pathol, 28, pp. 100-108; Howat, W.J., Wilson, B.A., Tissue fixation and the effect of molecular fixatives on downstream staining procedures (2014) Methods, 70, pp. 12-19; Aoki, J., Sasaki, N., Hino, N., Nanba, K., A study on the appropriate fixation for the procedures for the better preservation of cellular antigenicity and morphology of the blood smear in immunocytochemistry: an improvement of the immunostain technique using alkaline-phosphatase (ALP) as a labeling enzyme (1991) Rinsho Ketsueki, 32, pp. 11-18; Skoog, L., Tani, E., Immunocytochemistry: an indispensable technique in routine cytology (2011) Cytopathology, 22, pp. 215-229; Suthipintawong, C., Leong, A., Vinyuvat, S., Immunostaining of cell preparations: a comparative evaluation of common fixatives and protocols (1996) Diagn Cytopathol, 15, pp. 167-174; Ramos-Vara, J.A., Miller, M.A., When tissue and antibodies get along: revisiting the technical aspects of immunohistochemistry – the red, brown, and blue technique (2014) Vet Pathol, 51, pp. 42-87; Shi, S.R., Cote, R.J., Taylor, C.R., Antigen retrieval techniques: current perspectives (2001) J Histochem Cytochem, 49, pp. 931-937; Demirezen, S., Kakudo, K., Kawashima, T., Katsuoka, Y., Osamura, R.Y., Immunocytochemical detection of Chlamydia trachomatis on cytological specimens (1986) Tokai J Exp Clin Med, 11, pp. 229-234","Matiasek, K.; Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximillians-UniversitaetGermany; email: kaspar.matiasek@neuropathologie.de",,"American Society for Veterinary Clinical Pathology",02756382,,,"30802342","English","Vet. Clin. Pathol.",Article,"Final",Open Access,Scopus,2-s2.0-85062352329 "Dunbar D., Kwok W., Graham E., Armitage A., Irvine R., Johnston P., McDonald M., Montgomery D., Nicolson L., Robertson E., Weir W., Addie D.D.","57200853598;57205453243;25959545000;57205454430;57205457232;7402074763;57193931768;57205452462;6701397969;55901874200;34574247100;7003910352;","Diagnosis of non-effusive feline infectious peritonitis by reverse transcriptase quantitative PCR from mesenteric lymph node fine-needle aspirates",2019,"Journal of Feline Medicine and Surgery","21","10",,"910","921",,2,"10.1177/1098612X18809165","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060084717&doi=10.1177%2f1098612X18809165&partnerID=40&md5=5c25886407711f940372344f6e22fbb1","Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Infectious Diseases and Public Health, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong; Greenside Veterinary Practice Ltd, Greenside Farm, St Boswells, United Kingdom; QCMD, Glasgow, United Kingdom; Feline Vet, New Priory Veterinary Surgery, Brighton, United Kingdom","Dunbar, D., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Kwok, W., Department of Infectious Diseases and Public Health, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong; Graham, E., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Armitage, A., Greenside Veterinary Practice Ltd, Greenside Farm, St Boswells, United Kingdom; Irvine, R., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Johnston, P., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; McDonald, M., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Montgomery, D., QCMD, Glasgow, United Kingdom; Nicolson, L., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Robertson, E., Feline Vet, New Priory Veterinary Surgery, Brighton, United Kingdom; Weir, W., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Addie, D.D., Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom","Objectives: The aim of this study was to evaluate a feline coronavirus (FCoV) reverse transcriptase quantitative PCR (RT-qPCR) on fine-needle aspirates (FNAs) from mesenteric lymph nodes (MLNs) collected in sterile saline for the purpose of diagnosing non-effusive feline infectious peritonitis (FIP) in cats. Methods: First, the ability of the assay to detect viral RNA in MLN FNA preparations compared with MLN biopsy preparations was assessed in matched samples from eight cats. Second, a panel of MLN FNA samples was collected from a series of cats representing non-effusive FIP cases (n = 20), FCoV-seropositive individuals (n = 8) and FCoV-seronegative individuals (n = 18). Disease status of the animals was determined using a combination of gross pathology, histopathology and/or ‘FIP profile’, consisting of serology, clinical pathology and clinical signs. Results: Viral RNA was detected in 18/20 non-effusive FIP cases; it was not detected in two cases that presented with neurological FIP. Samples from 18 seronegative non-FIP control cats and 7/8 samples from seropositive non-FIP control cats contained no detectable viral RNA. Thus, as a method for diagnosing non-effusive FIP, MLN FNA RT-qPCR had an overall sensitivity of 90.0% and specificity of 96.1%. Conclusions and relevance: In cases with a high index of suspicion of disease, RT-qPCR targeting FCoV in MLN FNA can provide important information to support the ante-mortem diagnosis of non-effusive FIP. Importantly, viral RNA can be reliably detected in MLN FNA samples in saline submitted via the national mail service. When applied in combination with biochemistry, haematology and serological tests in cases with a high index of suspicion of disease, the results of this assay may be used to support a diagnosis of non-effusive FIP. © The Author(s) 2018.","biopsy; coronavirus; diagnosis; Feline infectious peritonitis; fine-needle aspirate; mesenteric lymph node; non-effusive FIP; polymerase chain reaction; RT-PCR","virus RNA; animal experiment; animal tissue; Article; autopsy; bronchopneumonia; controlled study; diagnostic test accuracy study; Feline coronavirus; feline infectious peritonitis; fine needle aspiration biopsy; histopathology; immunofluorescence test; immunohistochemistry; laparotomy; lymph node biopsy; mesentery lymph node; nonhuman; priority journal; reverse transcription polymerase chain reaction; RNA extraction; sensitivity and specificity","Le Poder, S., Feline and canine coronaviruses: common genetic and pathobiological features (2011) Adv Virol, , 2011; Pedersen, N.C., Sato, R., Foley, J.E., Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus (2004) J Feline Med Surg, 6, pp. 83-88; Mochizuki, M., Osawa, N., Ishida, T., Feline coronavirus participation in diarrhea of cats (1999) J Vet Med Sci, 61, pp. 1071-1073; Addie, D.D., Toth, S., Murray, G.D., Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus (1995) Am J Vet Res, 56, pp. 429-434; Kipar, A., May, H., Menger, S., Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis (2005) Vet Pathol, 42, pp. 321-330; Addie, D., Belak, S., Boucraut-Baralon, C., Feline infectious peritonitis. ABCD guidelines on prevention and management (2009) J Feline Med Surg, 11, pp. 594-604; Felten, S., Leutenegger, C.M., Balzer, H.-J., Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis (2017) BMC Vet Res, 13, p. 228; Egberink, H.F., Herrewegh, A.P.M., Schuurman, N.M.P., FIP, easy to diagnose? (1995) Vet Q, 17, pp. 24-25; Doenges, S.J., Weber, K., Dorsch, R., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 344-350; Longstaff, L., Porter, E., Crossley, V.J., Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 240-245; Tasker, S., Diagnosis of feline infectious peritonitis: update on evidence supporting available tests (2018) J Feline Med Surg, 20, pp. 228-243; Barker, E.N., Stranieri, A., Helps, C.R., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Vet Res, 48, p. 60; Kipar, A., Koehler, K., Bellmann, S., Feline infectious peritonitis presenting as a tumour in the abdominal cavity (1999) Vet Rec, 144, pp. 118-122; Garner, M.M., Ramsell, K., Morera, N., Clinicopathologic features of a systemic coronavirus-associated disease resembling feline infectious peritonitis in the domestic ferret (Mustela putorius) (2008) Vet Pathol, 45, pp. 236-246; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963–2008 (2009) J Feline Med Surg, 11, pp. 225-258; Kipar, A., Köhler, K., Leukert, W., A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection (2001) J Comp Pathol, 125, pp. 182-191; Lewis, K.M., O’Brien, R.T., Abdominal ultrasonographic findings associated with feline infectious peritonitis: a retrospective review of 16 cases (2010) J Am Animal Hosp Assoc, 46, pp. 152-160; Cohen, T.M., Blois, S., Vince, A.R., Fatal extraintestinal toxoplasmosis in a young male cat with enlarged mesenteric lymph nodes (2016) Canadian Vet J, 57, pp. 483-486; Riemer, F., Kuehner, K.A., Ritz, S., Clinical and laboratory features of cats with feline infectious peritonitis – a retrospective study of 231 confirmed cases (2000–2010) (2016) J Feline Med Surg, 18, pp. 348-356; Rohrer, C., Suter, P.F., Lutz, H., The diagnostic of the feline infectious peritonitis (FIP)-retrospective and prospective investigations (1993) Kleintierpraxis, 38, pp. 379-383; Cave, T.A., Golder, M.C., Simpson, J., Risk factors for feline coronavirus seropositivity in cats relinquished to a UK rescue charity (2004) J Feline Med Surg, 6, pp. 53-58; Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., An appraisal of the value of laboratory tests in the diagnosis of feline infectious peritonitis (1994) Am Anim Hosp Assoc (USA), 30, pp. 345-350; Addie, D.D., le Poder, S., Burr, P., Utility of feline coronavirus antibody tests (2015) J Feline Med Surg, 17, pp. 152-162; Giordano, A., Paltrinieri, S., Bertazzolo, W., Sensitivity of Tru-cut and fine-needle aspiration biopsies of liver and kidney for diagnosis of feline infectious peritonitis (2005) Vet Clin Pathol, 34, pp. 368-374; Giori, L., Giordano, A., Giudice, C., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J Small Anim Prac, 52, pp. 152-157; Duthie, S., Eckersall, P.D., Addie, D.D., Value of alpha 1-acid glycoprotein in the diagnosis of feline infectious peritonitis (1997) Vet Rec, 141, pp. 299-303; Gut, M., Leutenegger, C.M., Huder, J.B., One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses (1999) J Virolog Meth, 77, pp. 37-46; Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infections in kittens (1992) Vet Rec, 130, pp. 133-137; Team, R.C., (2013) R: A language and environment for statistical computing, , Vienna, R Foundation for Statistical Computing; Wickham, H., (2016) ggplot2: elegant graphics for data analysis, , Springer; Nakazawa, M., (2018) Functions for medical statistics book with some demographic data, , https://CRAN.R-project.org/package=fmsb, accessed April 12, 2018, R package version 0.6.3; Felten, S., Weider, K., Doenges, S., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) J Feline Med Surg, 19, pp. 321-335; Norris, J.M., Bosward, K.L., White, J.D., Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990–2002) (2005) Austral Vet J, 83, pp. 666-673; Meli, M., Kipar, A., Müller, C., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats (2004) J Feline Med Surg, 6, pp. 69-81; Kipar, A., Baptiste, K., Barth, A., Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats (2006) J Feline Med Surg, 8, pp. 69-72; Addie, D.D., Jarrett, O., Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats (2001) Vet Rec, 148, pp. 649-653; Addie, D.D., Schaap, I.A.T., Nicolson, L., Persistence and transmission of natural type I feline coronavirus infection (2003) J Gen Virol, 84, pp. 2735-2744; Felten, S., Matiasek, K., Gruendl, S., Utility of an immunocytochemical assay using aqueous humor in the diagnosis of feline infectious peritonitis (2018) Vet Ophthalmol, 21, pp. 27-34; Gruendl, S., Matiasek, K., Matiasek, L., Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in the central nervous system (2017) J Feline Med Surg, 19, pp. 576-585","Addie, D.D.; Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of GlasgowUnited Kingdom; email: draddie@catvirus.com",,"SAGE Publications Ltd",1098612X,,,"30407137","English","J. Feline Med. Surg.",Article,"Final",,Scopus,2-s2.0-85060084717 "Kim S.I., Kim S., Kim J., Chang S.Y., Shim J.M., Jin J., Lim C., Baek S., Min J.-Y., Park W.B., Oh M.-D., Kim S., Chung J.","57193702957;57211317245;57193556376;57003991600;57195372747;57211312236;57211318064;57211318426;57004256300;7402229219;7201600302;57206698790;7404003124;","Generation of a nebulizable CDR-modified MERS-cov neutralizing human antibody",2019,"International Journal of Molecular Sciences","20","20", 5073,"","",,,"10.3390/ijms20205073","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073427274&doi=10.3390%2fijms20205073&partnerID=40&md5=594a741632d638796ce82c37074698a0","Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea; Respiratory Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; Zoonotic Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea","Kim, S.I., Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea; Kim, S., Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea, Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea; Kim, J., Respiratory Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; Chang, S.Y., Respiratory Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; Shim, J.M., Zoonotic Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; Jin, J., New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, South Korea; Lim, C., New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, South Korea; Baek, S., New Drug Development Center, 123 Osongsaengmyeng-ro, Cheongju-si, Chungbuk 28160, South Korea; Min, J.-Y., Respiratory Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; Park, W.B., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea; Oh, M.-D., Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea; Kim, S., Zoonotic Virus Laboratory, Institut Pasteur KoreaGyeonggi-do 13488, South Korea; Chung, J., Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea, Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea","Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Aerosol delivery; Antibody engineering; Complementarity-determining regions; MERS-CoV; Nebulizer; Neutralizing antibody; Pulmonary disease","amino acid; immunoglobulin G1; neutralizing antibody; palivizumab; recombinant antibody; single chain fragment variable antibody; virus antibody; virus glycoprotein; neutralizing antibody; virus antibody; antibody blood level; Article; biopanning; clone; codon; complementarity determining region; controlled study; enzyme linked immunosorbent assay; flow cytometry; high performance liquid chromatography; human; human cell; hydrophobicity; IC50; immunogenetics; isoelectric point; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; molecular weight; nebulization; nonhuman; peripheral blood mononuclear cell; phage display; photon correlation spectroscopy; protein stability; Sanger sequencing; Vero cell line; animal; Chlorocebus aethiops; complementarity determining region; genetics; immunology; inhalational drug administration; Middle East respiratory syndrome coronavirus; Administration, Inhalation; Animals; Antibodies, Neutralizing; Antibodies, Viral; Chlorocebus aethiops; Complementarity Determining Regions; Humans; Middle East Respiratory Syndrome Coronavirus; Vero Cells","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) Mbio, 3; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Kawaji, H., Rehli, M., Baillie, J.K., de Hoon, M.J., Haberle, V., Lassmann, T., Kulakovskiy, I.V., A promoter-level mammalian expression atlas (2014) Nature, 507, pp. 462-470. , the, R.P.; Clst; Forrest, A.R; Chan, J.F., Choi, G.K., Tsang, A.K., Tee, K.M., Lam, H.Y., Yip, C.C., To, K.K., Lau, S.K., Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses (2015) J. Clin. Microbiol, 53, pp. 2722-2726; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns” (2013) J. Med. Assoc., 112, pp. 372-381; Oh, M.D., Park, W.B., Choe, P.G., Choi, S.J., Kim, J.I., Chae, J., Park, S.S., Kim, E.J., Viral Load Kinetics of MERS Coronavirus Infection (2016) N. Engl. J. Med., 375, pp. 1303-1305; Guery, B., Poissy, J., El Mansouf, L., Sejourne, C., Ettahar, N., Lemaire, X., Vuotto, F., Enouf, V., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission (2013) Lancet, 381, pp. 2265-2272; Oh, M.D., Park, W.B., Park, S.W., Choe, P.G., Bang, J.H., Song, K.H., Kim, E.S., Kim, N.J., Middle East respiratory syndrome: What we learned from the 2015 outbreak in the Republic of Korea (2018) Korean J. Intern. Med., 33, pp. 233-246; Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Geffers, R., Muller, M.A., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) Mbio, 4, pp. 11-12; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Becker, S., Weber, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 5300-5304; Corti, D., Misasi, J., Mulangu, S., Stanley, D.A., Kanekiyo, M., Wollen, S., Ploquin, A., Bailey, M., Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody (2016) Science, 351, pp. 1339-1342; Gunn, B.M., Yu, W.H., Karim, M.M., Brannan, J.M., Herbert, A.S., Wec, A.Z., Halfmann, P.J., Gangavarapu, K., A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus (2018) Cell Host Microbe, 24, pp. 221-233; Walker, L.M., Burton, D.R., Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray (2018) Nat. Rev. Immunol., 18, pp. 297-308; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert. Opin. Targets, 21, pp. 131-143; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Vanzetta, F., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 10473-10478; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Guo, J., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6, p. 59; Luke, T., Wu, H., Zhao, J., Channappanavar, R., Coleman, C.M., Jiao, J.A., Matsushita, H., Ork, B.L., Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo (2016) Sci. Transl. Med., 8; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre-and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 8738-8743; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Zhu, Q., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 2018-2026; Ying, T., Du, L., Ju, T.W., Prabakaran, P., Lau, C.C., Lu, L., Liu, Q., Wang, Y., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Dimitrov, D.S., Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection (2016) Sci. Rep., 6; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2; Fan, C., Wu, X., Liu, Q., Li, Q., Liu, S., Lu, J., Yang, Y., Wang, Y., A Human DPP4-Knockin Mouse's Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV (2018) Viruses, 10; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection (2016) J. Infect. Dis., 213, pp. 1557-1561; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Bohorova, N., (2016) 3B11-N, a Monoclonal Antibody against Mers-Cov, Reduces Lung Pathology in Rhesus Monkeys Following Intratracheal Inoculation of Mers-Cov Jordan-N3/2012. Virology, 490, pp. 49-58; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25, pp. 1237-1249; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antivir. Res., 132, pp. 141-148; Hart, T.K., Cook, R.M., Zia-Amirhosseini, P., Minthorn, E., Sellers, T.S., Maleeff, B.E., Eustis, S., Appelbaum, E.R., Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys (2001) J. Allergy Clin. Immunol, 108, pp. 250-257; Koleba, T., Ensom, M.H., Pharmacokinetics of intravenous immunoglobulin: A systematic review (2006) Pharmacotherapy, 26, pp. 813-827; Guilleminault, L., Azzopardi, N., Arnoult, C., Sobilo, J., Herve, V., Montharu, J., Guillon, A., Le Pape, A., Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system (2014) J. Control. Release, 196, pp. 344-354; Bitonti, A.J., Dumont, J.A., Pulmonary administration of therapeutic proteins using an immunoglobulin transport pathway (2006) Adv. Drug Deliv. Rev., 58, pp. 1106-1118; Bitonti, A.J., Dumont, J.A., Low, S.C., Peters, R.T., Kropp, K.E., Palombella, V.J., Stattel, J.M., Song, J.J., Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 9763-9768; Low, S.C., Nunes, S.L., Bitonti, A.J., Dumont, J.A., Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis (2005) Hum. Reprod., 20, pp. 1805-1813; van Heeke, G., Allosery, K., de Brabandere, V., de Smedt, T., Detalle, L., de Fougerolles, A., Nanobodies(R) as inhaled biotherapeutics for lung diseases (2017) Pharm. Ther., 169, pp. 47-56; Kim, Y.S., Aigerim, A., Park, U., Kim, Y., Rhee, J.Y., Choi, J.P., Park, W.B., Lim, D.G., Sequential Emergence and Wide Spread of Neutralization Escape Middle East Respiratory Syndrome Coronavirus Mutants, South Korea, 2015 (2019) Emerg. Infect. Dis., 25, pp. 1161-1168; Noh, J., Kim, O., Jung, Y., Han, H., Kim, J.E., Kim, S., Lee, S., Kim, S.I., High-throughput retrieval of physical DNA for NGS-identifiable clones in phage display library (2019) Mabs, 11, pp. 532-545; Ying, T., Prabakaran, P., Du, L., Shi, W., Feng, Y., Wang, Y., Wang, L., Dimitrov, D.S., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6, p. 8223; Pommie, C., Levadoux, S., Sabatier, R., Lefranc, G., Lefranc, M.P., IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties (2004) J. Mol. Recognit., 17, pp. 17-32; Tartaglia, G.G., Cavalli, A., Pellarin, R., Caflisch, A., Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences (2005) Protein Sci, 14, pp. 2723-2734; Igawa, T., Tsunoda, H., Tachibana, T., Maeda, A., Mimoto, F., Moriyama, C., Nanami, M., Aso, Y., Reduced elimination of IgG antibodies by engineering the variable region (2010) Protein Eng. Des. Sel., 23, pp. 385-392; Feige, M.J., Hendershot, L.M., Buchner, J., How antibodies fold (2010) Trends Biochem. Sci., 35, pp. 189-198; Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M., Popovic, B., Rapid and accurate in silico solubility screening of a monoclonal antibody library (2017) Sci. Rep., 7, p. 8200; Larios Mora, A., Detalle, L., Gallup, J.M., van Geelen, A., Stohr, T., Duprez, L., Ackermann, M.R., Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs (2018) Mabs, 10, pp. 778-795; Respaud, R., Marchand, D., Parent, C., Pelat, T., Thullier, P., Tournamille, J.F., Viaud-Massuard, M.C., Vecellio, L., Effect of formulation on the stability and aerosol performance of a nebulized antibody (2014) Mabs, 6, pp. 1347-1355; Moussa, E.M., Panchal, J.P., Moorthy, B.S., Blum, J.S., Joubert, M.K., Narhi, L.O., Topp, E.M., Immunogenicity of Therapeutic Protein Aggregates (2016) J. Pharm. Sci., 105, pp. 417-430; Beck-Broichsitter, M., Kleimann, P., Schmehl, T., Betz, T., Bakowsky, U., Kissel, T., Seeger, W., Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers (2012) Eur. J. Pharm. Biopharm., 82, pp. 272-280; Rosenberg, A.S., Effects of protein aggregates: An immunologic perspective (2006) AAPS J, 8, pp. 501-507; Ewert, S., Huber, T., Honegger, A., Pluckthun, A., Biophysical properties of human antibody variable domains (2003) J. Mol. Biol., 325, pp. 531-553; Honegger, A., Malebranche, A.D., Rothlisberger, D., Pluckthun, A., The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains (2009) Protein Eng. Des. Sel., 22, pp. 121-134; Chennamsetty, N., Voynov, V., Kayser, V., Helk, B., Trout, B.L., Design of therapeutic proteins with enhanced stability (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 11937-11942; Wang, X., Das, T.K., Singh, S.K., Kumar, S., Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies (2009) Mabs, 1, pp. 254-267; Wu, S.J., Luo, J., O’Neil, K.T., Kang, J., Lacy, E.R., Canziani, G., Baker, A., Raju, T.S., Structure-based engineering of a monoclonal antibody for improved solubility (2010) Protein Eng. Des. Sel., 23, pp. 643-651; Jespers, L., Schon, O., Famm, K., Winter, G., Aggregation-resistant domain antibodies selected on phage by heat denaturation (2004) Nat. Biotechnol., 22, pp. 1161-1165; Perchiacca, J.M., Bhattacharya, M., Tessier, P.M., Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions (2011) Proteins, 79, pp. 2637-2647; Dudgeon, K., Rouet, R., Kokmeijer, I., Schofield, P., Stolp, J., Langley, D., Stock, D., Christ, D., General strategy for the generation of human antibody variable domains with increased aggregation resistance (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 10879-10884; Agrawal, A.S., Garron, T., Tao, X., Peng, B.H., Wakamiya, M., Chan, T.S., Couch, R.B., Tseng, C.T., Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease (2015) J. Virol., 89, pp. 3659-3670; Li, K., Wohlford-Lenane, C., Perlman, S., Zhao, J., Jewell, A.K., Reznikov, L.R., Gibson-Corley, K.N., McCray, P.B., Jr., Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4 (2016) J. Infect. Dis., 213, pp. 712-722; Zhao, G., Jiang, Y., Qiu, H., Gao, T., Zeng, Y., Guo, Y., Yu, H., Du, L., Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus (2015) Plos ONE, 10; Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., Bates, A.M., Gallagher, T., Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. E3119-E3128; Kanof, M.E., Smith, P.D., Zola, H., Isolation of whole mononuclear cells from peripheral blood and cord blood (2001) Curr. Protoc. Immunol.; Carlos, F.B.I.I.I., Dennis, R.B., Jamie, K.S., Gregg, J.S., Phage Display: A Laboratory Manual (2001) Cold Spring Harbor Laboratory Press; Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C., Barbas, C.F., 3Rd, Generation of human scFv antibody libraries: PCR amplification and assembly of light-and heavy-chain coding sequences (2011) Cold Spring Harb. Protoc., 2011; Lee, Y., Kim, H., Chung, J., An antibody reactive to the Gly63-Lys68 epitope of NT-proBNP exhibits O-glycosylation-independent binding (2014) Exp. Mol. Med., 46, p. 114; Lee, S., Yoon, I.H., Yoon, A., Cook-Mills, J.M., Park, C.G., Chung, J., An antibody to the sixth Ig-like domain of VCAM-1 inhibits leukocyte transendothelial migration without affecting adhesion (2012) J. Immunol., 189, pp. 4592-4601; Jin, J., Park, G., Park, J.B., Kim, S., Kim, H., Chung, J., An anti-EGFR x cotinine bispecific antibody complexed with cotinine-conjugated duocarmycin inhibits growth of EGFR-positive cancer cells with KRAS mutations (2018) Exp. Mol. Med., 50, p. 67; Reed, L.J., Muench, H., A Simple Method for Estimating Fifty Per Cent (1938) Endpoints. Am. J. Epidemiol., 27, pp. 493-497","Chung, J.; Department of Biochemistry and Molecular Biology, Seoul National University College of MedicineSouth Korea; email: jjhchung@snu.ac.kr",,"MDPI AG",16616596,,,"31614869","English","Int. J. Mol. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85073427274 "Abdirizak F., Lewis R., Chowell G.","56816947600;57213746115;9845935500;","Evaluating the potential impact of targeted vaccination strategies against severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks in the healthcare setting",2019,"Theoretical Biology and Medical Modelling","16","1", 16,"","",,1,"10.1186/s12976-019-0112-6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072927731&doi=10.1186%2fs12976-019-0112-6&partnerID=40&md5=efb7be2a83407b5c2351ce4d3f442147","Department of Population Health Sciences, School of Public Health, Georgia State University, P.O. Box 3984, Atlanta, GA 30302-3984, United States","Abdirizak, F., Department of Population Health Sciences, School of Public Health, Georgia State University, P.O. Box 3984, Atlanta, GA 30302-3984, United States; Lewis, R., Department of Population Health Sciences, School of Public Health, Georgia State University, P.O. Box 3984, Atlanta, GA 30302-3984, United States; Chowell, G., Department of Population Health Sciences, School of Public Health, Georgia State University, P.O. Box 3984, Atlanta, GA 30302-3984, United States","Background: Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are two coronaviruses with demonstrated potential to generate significant nosocomial outbreaks. In particular, MERS continues to pose a significant threat in the Middle East since 2012. Currently, no licensed vaccine or drug treatment is available to treat patients infected with either coronavirus. However, there are some MERS vaccines in the preclinical stage of development. We sought to evaluate the potential impact of targeted vaccination strategies for mitigating SARS and MERS outbreaks in healthcare settings using simple mathematical models and detailed historic transmission trees describing the progression of past nosocomial outbreaks of SARS and MERS. Results: Our findings suggest that vaccination strategies targeting patients and healthcare workers, which have been disproportionately affected during past outbreaks, and assuming two vaccination coverage levels at 50 and 75% have the potential to avert nearly 50% or more of MERS or SARS cases. Conclusion: Our modeling results informed by historic outbreak data for SARS and MERS suggest that vaccination strategies targeting patients could be an effective measure to mitigate and prevent outbreaks in the healthcare setting. © 2019 The Author(s).","And infection control and prevention; Coronavirus; Hospital transmission; MERS; Middle East; Nosocomial; SARS; South Korea; Stochastic simulation; Vaccination strategy; Vaccine","Coronavirus infection; epidemic; health care delivery; health care personnel; human; immunology; Middle East respiratory syndrome coronavirus; SARS coronavirus; severe acute respiratory syndrome; vaccination; virology; Coronavirus Infections; Delivery of Health Care; Disease Outbreaks; Health Personnel; Humans; Middle East Respiratory Syndrome Coronavirus; SARS Virus; Severe Acute Respiratory Syndrome; Vaccination","(2013) SARS Response Timeline, , Centers for Disease Control and Prevention; (2003) Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003, , World Health Organization; (2003) Update 28-affected Areas, Status of SARS Outbreaks in Individual Countries, , World Health Organization; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: The hallmark of Middle East respiratory syndrome coronavirus with review of the literature (2019) J Hosp Infect, 101 (1), pp. 20-29. , 1:STN:280:DC%2BC1MbjsFemtQ%3D%3D; (2017) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-factsheet, , World Health Organization; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, may to June 2015 (2015) Euro Surveill, 20 (25), pp. 7-13. , 1:STN:280:DC%2BC2Mbps1Gguw%3D%3D; Choi, J.Y., An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015 (2015) Yonsei Med J, 56 (5), pp. 1174-1176; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; Park, J.W., Lee, K.J., Lee, K.H., Lee, S.H., Cho, J.R., Mo, J.W., Choi, S.Y., Hong, J.Y., Hospital outbreaks of Middle East respiratory syndrome, Daejeon, South Korea, 2015 (2017) Emerg Infect Dis, 23 (6), pp. 898-905; (2016) MERS Statistics, , Ministry of Health & Welfare of South Korea; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Viboud, C., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Med, 13, p. 210; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Housa, A., Banjar, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (1), pp. 49-55. , 1:CAS:528:DC%2BC2sXmvFWgsQ%3D%3D; Assiri, A., Abedi, G.R., Saeed, A.A., Abdalla, M.A., Al-Masry, M., Choudhry, A.J., Lu, X., Binder, A.M., Multifacility outbreak of Middle East respiratory syndrome in Taif, Saudi Arabia (2016) Emerg Infect Dis, 22 (1), pp. 32-40. , 1:CAS:528:DC%2BC28XitFCksrnF; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., 2014 MERS-CoV outbreak in Jeddah-A link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854. , 1:CAS:528:DC%2BC2MXkt1WqtLk%3D; Balkhy, H.H., Alenazi, T.H., Alshamrani, M.M., Baffoe-Bonnie, H., Al-Abdely, H.M., El-Saed, A., Al Arbash, H.A., Bin Saeed, A., Notes from the field: Nosocomial outbreak of Middle East respiratory syndrome in a large tertiary care hospital-Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb Mortal Wkly Rep, 65 (6), pp. 163-164; Alenazi, T.H., Al Arbash, H., El-Saed, A., Alshamrani, M.M., Baffoe-Bonnie, H., Arabi, Y.M., Al Johani, S.M., Balkhy, H.H., Identified transmission dynamics of Middle East respiratory syndrome coronavirus infection during an outbreak: Implications of an overcrowded emergency department (2017) Clin Infect Dis, 65 (4), pp. 675-679; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., Hospital-associated Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 369 (18), pp. 1761-1762. , 1:CAS:528:DC%2BC3sXhslCjsb%2FP; (2013) Severe Acute Respiratory Syndrome (SARS), , Centers for Disease Control and Prevention; Chafekar, A., Fielding, B.C., MERS-CoV: Understanding the latest human coronavirus threat (2018) Viruses, 10, p. 2; Modjarrad, K., MERS-CoV vaccine candidates in development: The current landscape (2016) Vaccine, 34 (26), pp. 2982-2987. , 1:CAS:528:DC%2BC28XmtVanuro%3D; Coltart, C.E., Johnson, A.M., Whitty, C.J., Role of healthcare workers in early epidemic spread of Ebola: Policy implications of prophylactic compared to reactive vaccination policy in outbreak prevention and control (2015) BMC Med, 13, p. 271; (2015) Information on Middle East Respiratory Syndrome (MERS) Reported in South Korea, , orea MoHWoS:, In; (2016) Global Alert and Response (GAR): Coronavirus Infections, , World Health Organization; (2016) Middle East Respiratory Syndrome Information, , Korean Centers for Disease Control; Goh, K.T., Cutter, J., Heng, B.H., Ma, S., Koh, B.K., Kwok, C., Toh, C.M., Chew, S.K., Epidemiology and control of SARS in Singapore (2006) Ann Acad Med Singap, 35 (5), pp. 301-316; Varia, M., Wilson, S., Sarwal, S., McGeer, A., Gournis, E., Galanis, E., Henry, B., Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada (2003) CMAJ, 169 (4), pp. 285-292; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416. , 1:CAS:528:DC%2BC3sXht1GmsrrL; Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F., MERS, SARS, and Ebola: The role of super-spreaders in infectious disease (2015) Cell Host Microbe, 18 (4), pp. 398-401. , 1:CAS:528:DC%2BC2MXhs1Sqtr%2FF; (2013) Understanding How Vaccines Work, , Centers for Disease Control and Prevention; (2014) Statistical Yearbook 1435H, , Kingdom of Saudi Arabia Ministry of Health; (2017) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , World Health Organization:, In","Abdirizak, F.; Department of Population Health Sciences, School of Public Health, Georgia State University, P.O. Box 3984, United States; email: fabdirizak@gmail.com",,"BioMed Central Ltd.",17424682,,,"31587665","English","Theor. Biol. Med. Model.",Article,"Final",Open Access,Scopus,2-s2.0-85072927731 "Hashem A.M., Algaissi A., Agrawal A.S., Al-Amri S.S., Alhabbab R.Y., Sohrab S.S., Almasoud A.S., Alharbi N.K., Peng B.-H., Russell M., Li X., Tseng C.-T.K.","57200589744;57046024300;57204367081;56136290100;53863098400;7003696284;57211276540;55266214200;7102873025;46761461200;35330008400;7402541658;","A Highly Immunogenic, Protective, and Safe Adenovirus-Based Vaccine Expressing Middle East Respiratory Syndrome Coronavirus S1-CD40L Fusion Protein in a Transgenic Human Dipeptidyl Peptidase 4 Mouse Model",2019,"Journal of Infectious Diseases","220","10",,"1558","1567",,4,"10.1093/infdis/jiz137","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064499357&doi=10.1093%2finfdis%2fjiz137&partnerID=40&md5=3b45abb44e577bee3bb2132a3674ed9d","Department of Medical Microbiology and Parasitology, Faculty of Medicine, P.O. Box 80205, Jeddah, 21859, Saudi Arabia; Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Department of Neurosciences Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, United States; Center for Vaccine Evaluation, Biologics and Genetic Therapies Dir. Health Canada, Ottawa, ON, Canada; Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, United States","Hashem, A.M., Department of Medical Microbiology and Parasitology, Faculty of Medicine, P.O. Box 80205, Jeddah, 21859, Saudi Arabia, Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia, Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Algaissi, A., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States, Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Saudi Arabia; Agrawal, A.S., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States; Al-Amri, S.S., Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia, Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Alhabbab, R.Y., Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia, Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Sohrab, S.S., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Almasoud, A.S., Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Alharbi, N.K., Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Peng, B.-H., Department of Neurosciences Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, United States; Russell, M., Center for Vaccine Evaluation, Biologics and Genetic Therapies Dir. Health Canada, Ottawa, ON, Canada; Li, X., Center for Vaccine Evaluation, Biologics and Genetic Therapies Dir. Health Canada, Ottawa, ON, Canada; Tseng, C.-T.K., Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, United States, Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, United States","Background: Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. Methods: We extended and optimized our previous recombinant adenovirus 5 (rAd5)-based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. Results: Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1- but not rAd5-S1/F/CD40L-immunized mice exhibited marked pulmonary perivascular hemorrhage post-MERS-CoV challenge despite the observed protection. Conclusions: Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines. © 2019 The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.","adenovirus; CD40L; immunopathology; MERS-CoV; vaccine","adenovirus vaccine; CD40 ligand; immunoglobulin G; Middle East respiratory syndrome coronavirus S1 subunit vaccine; neutralizing antibody; recombinant adenovirus 5 vaccine; unclassified drug; virus vaccine; amino terminal sequence; animal experiment; animal model; animal tissue; Article; codon; controlled study; enzyme linked immunosorbent assay; immunogenicity; lung hemorrhage; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; morbidity; mortality; mouse; nonhuman; priority journal; real time reverse transcription polymerase chain reaction; vaccination; virus load; virus titration","Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; (2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Saudi Arabia Disease Outbreak News, 26 January 2018, , http://www.who.int/csr/don/26-january-2018-mers-saudi-arabia/en/, World Health Organization. Accessed 29 October; Park, S.H., Kim, Y.S., Jung, Y., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infect Chemother, 48, pp. 99-107; Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Raj, V.S., Mou, H., Smits, S.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; He, Y., Zhou, Y., Liu, S., Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: Implication for developing subunit vaccine (2004) Biochem Biophys Res Commun, 324, pp. 773-781; He, Y., Li, J., Du, L., Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: Revealing the critical antigenic determinants in inactivated SARS-CoV vaccine (2006) Vaccine, 24, pp. 5498-5508; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.J., Jiang, S., The spike protein of SARS-CoV-A target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7, pp. 226-236; Wang, L., Shi, W., Joyce, M.G., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712; Coleman, C.M., Liu, Y.V., Mu, H., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Sci Rep, 7, p. 44875; Ma, C., Wang, L., Tao, X., Searching for an ideal vaccine candidate among different MERS coronavirus receptorbinding fragments-The importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; Song, F., Fux, R., Provacia, L.B., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J Virol, 87, pp. 11950-11954; Guo, X., Deng, Y., Chen, H., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Haagmans, B.L., Van Den Brand, J.M., Raj, V.S., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Muthumani, K., Falzarano, D., Reuschel, E.L., A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates (2015) Sci Transl Med, 7, p. 301ra132; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788; Zhou, Y., Jiang, S., Du, L., Prospects for a MERS-CoV spike vaccine (2018) Expert Rev Vaccines, 17, pp. 677-686; Weingartl, H., Czub, M., Czub, S., Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets (2004) J Virol, 78, pp. 12672-12676; Tseng, C.T., Sbrana, E., Iwata-Yoshikawa, N., Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus (2012) PLoS One, 7, p. e35421; Yang, Z.Y., Werner, H.C., Kong, W.P., Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses (2005) Proc Natl Acad Sci U S A, 102, pp. 797-801; Czub, M., Weingartl, H., Czub, S., He, R., Cao, J., Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets (2005) Vaccine, 23, pp. 2273-2279; Deming, D., Sheahan, T., Heise, M., Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants (2006) PLoS Med, 3, p. e525; Jaume, M., Yip, M.S., Kam, Y.W., SARS CoV subunit vaccine: Antibody-mediated neutralisation and enhancement (2012) Hong Kong Med J, 18, pp. 31-36; Olsen, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., Scott, F.W., Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages (1992) J Virol, 66, pp. 956-965; Weiss, R.C., Scott, F.W., Antibody-mediated enhancement of disease in feline infectious peritonitis: Comparisons with dengue hemorrhagic fever (1981) Comp Immunol Microbiol Infect Dis, 4, pp. 175-189; He, Y., Zhou, Y., Wu, H., Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: Implication for developing SARS diagnostics and vaccines (2004) J Immunol, 173, pp. 4050-4057; Agrawal, A.S., Tao, X., Algaissi, A., Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum Vaccin Immunother, 12, pp. 2351-2356; Van Kooten, C., Banchereau, J., CD40-CD40 ligand (2000) J Leukoc Biol, 67, pp. 2-17; Ma, D.Y., Clark, E.A., The role of CD40 and CD154/CD40L in dendritic cells (2009) Semin Immunol, 21, pp. 265-272; Bishop, G.A., Hostager, B.S., The CD40-CD154 interaction in B cell-T cell liaisons (2003) Cytokine Growth Factor Rev, 14, pp. 297-309; Allen, R.C., Armitage, R.J., Conley, M.E., CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome (1993) Science, 259, pp. 990-993; Cao, J., Wang, X., Du, Y., Li, Y., Wang, X., Jiang, P., CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine (2010) Vaccine, 28, pp. 7514-7522; Gomez, C.E., Najera, J.L., Sanchez, R., Jimenez, V., Esteban, M., Multimeric soluble CD40 ligand (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens (2009) Vaccine, 27, pp. 3165-3174; Huang, D., Pereboev, A.V., Korokhov, N., Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40(+) cells (2008) Gene Ther, 15, pp. 298-308; Yao, Q., Fischer, K.P., Li, L., Immunogenicity and protective efficacy of a DNA vaccine encoding a chimeric protein of avian influenza hemagglutinin subtype H5 fused to CD154 (CD40L) in Pekin ducks (2010) Vaccine, 28, pp. 8147-8156; Hashem, A.M., Gravel, C., Chen, Z., CD40 ligand preferentially modulates immune response and enhances protection against influenza virus (2014) J Immunol, 193, pp. 722-734; Fan, X., Hashem, A.M., Chen, Z., Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes (2015) Mucosal Immunol, 8, pp. 211-220; Grehan, K., Ferrara, F., Temperton, N., An optimised method for the production of MERS-CoV spike expressing viral pseudotypes (2015) MethodsX, 2, pp. 379-384; Tao, X., Garron, T., Agrawal, A.S., Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease (2016) J Virol, 90, pp. 57-67; Kim, E., Okada, K., Kenniston, T., Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice (2014) Vaccine, 32, pp. 5975-5982; Munster, V.J., Wells, D., Lambe, T., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines, 2, p. 28; Johnson, T.R., Parker, R.A., Johnson, J.E., Graham, B.S., IL-13 is sufficient for respiratory syncytial virus G glycoproteininduced eosinophilia after respiratory syncytial virus challenge (2003) J Immunol, 170, pp. 2037-2045; Kapikian, A.Z., Mitchell, R.H., Chanock, R.M., Shvedoff, R.A., Stewart, C.E., An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine (1969) Am J Epidemiol, 89, pp. 405-421; Kim, H.W., Canchola, J.G., Brandt, C.D., Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine (1969) Am J Epidemiol, 89, pp. 422-434; Tai, W., Zhao, G., Sun, S., A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection (2016) Virology, 499, pp. 375-382; Volz, A., Kupke, A., Song, F., Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J Virol, 89, pp. 8651-8656; Malczyk, A.H., Kupke, A., Prufer, S., A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform (2015) J Virol, 89, pp. 11654-11667; Van Doremalen, N., Hijazeen, Z.S., Holloway, P., High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis, 17, pp. 155-159; Reusken, C.B., Haagmans, B.L., Muller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866","Hashem, A.M.; Department of Medical Microbiology and Parasitology, Faculty of Medicine, P.O. Box 80205, Saudi Arabia; email: amhashem@kau.edu.sa",,"Oxford University Press",00221899,,JIDIA,"30911758","English","J. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85064499357 "Judson S.D., Munster V.J.","56507469500;9332531900;","Nosocomial transmission of emerging viruses via aerosol-generating medical procedures",2019,"Viruses","11","10", 940,"","",,1,"10.3390/v11100940","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073295063&doi=10.3390%2fv11100940&partnerID=40&md5=031b38a9933ac6ea1cb2374d23c7d79d","Department of Medicine, University of Washington, Seattle, WA 98195, United States; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States","Judson, S.D., Department of Medicine, University of Washington, Seattle, WA 98195, United States, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States; Munster, V.J., Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States","Recent nosocomial transmission events of emerging and re-emerging viruses, including Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Crimean-Congo hemorrhagic fever orthonairovirus, have highlighted the risk of nosocomial transmission of emerging viruses in health-care settings. In particular, concerns and precautions have increased regarding the use of aerosol-generating medical procedures when treating patients with such viral infections. In spite of increasing associations between aerosol-generating medical procedures and the nosocomial transmission of viruses, we still have a poor understanding of the risks of specific procedures and viruses. In order to identify which aerosol-generating medical procedures and emerging viruses pose a high risk to health-care workers, we explore the mechanisms of aerosol-generating medical procedures, as well as the transmission pathways and characteristics of highly pathogenic viruses associated with nosocomial transmission. We then propose how research, both in clinical and experimental settings, could advance current infection control guidelines. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Aerosols; Cross infection; Ebolavirus; Health personnel; Hemorrhagic fevers; Infection control; Risk; Viral; Virus diseases; Viruses","virus RNA; aerosol; Arenaviridae; bronchoscopy; Crimean-Congo hemorrhagic fever virus; cross infection; disease transmission; Ebolavirus; environmental temperature; Filoviridae; health care; health care personnel; hemorrhagic fever; hospital infection; human; humidity; manual ventilation; medical procedures; Middle East respiratory syndrome coronavirus; nebulization; Nipah virus; nonhuman; Orthomyxoviridae; Paramyxoviridae; respiratory virus; resuscitation; Review; risk factor; suction; tertiary care center; ultraviolet radiation; virus; virus infection","McCarthy, M., Texas healthcare worker is diagnosed with Ebola (2014) BMJ, 349, p. g6200; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al-Rabeeah, A.A., Cummings, A.D.T., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Viboud, C., Transmission characteristics of MERS and SARS in the healthcare setting: A comparative study (2015) BMC Med., 13, p. 210; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Abu Elkheir, K., Khudair, A., Imambaccus, H., Transmission of middle east respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg. Infect. Dis., 22, pp. 647-656; Pshenichnaya, N.Y., Nenadskaya, S.A., Probable Crimean-Congo hemorrhagic fever virus transmission occurred after aerosol-generating medical procedures in Russia: Nosocomial cluster (2015) Int. J. Infect. Dis., 33, pp. 120-122; Davies, A., Thomson, G., Walker, J., Bennett, A., A review of the risks and disease transmission associated with aerosol generating medical procedures (2009) J. Infect. Prev., 10, pp. 122-126; Judson, S., Prescott, J., Munster, V., Understanding ebola virus transmission (2015) Viruses, 7, pp. 511-521; Thomas, R.J., Particle size and pathogenicity in the respiratory tract (2013) Virulence, 4, pp. 847-858; Tellier, R., Review of aerosol transmission of influenza A virus (2006) Emerg. Infect. Dis., 12, pp. 1657-1662; Tran, K., Cimon, K., Severn, M., Pessoa-Silva, C.L., Conly, J., Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: A systematic review (2012) PLoS ONE, 7; Fowler, R.A., Guest, C.B., Lapinsky, S.E., Sibbald, W.J., Louie, M., Tang, P., Simor, A.E., Stewart, T.E., Transmission of severe acute respiratory syndrome during intubation and mechanical ventilation (2004) Am. J. Respir. Crit. Care Med., 169, pp. 1198-1202; Christian, M.D., Loutfy, M., McDonald, L.C., Martinez, K.F., Ofner, M., Wong, T., Wallington, T., Green, K., Possible SARS coronavirus transmission during cardiopulmonary resuscitation (2004) Emerg. Infect. Dis., 10, pp. 287-293; Wong, K.C., Leung, K.S., Transmission and prevention of occupational infections in orthopaedic surgeons (2004) J. Bone Joint Surg. Am., 86 A, pp. 1065-1076; Garden, J.M., Viral disease transmitted by laser-generated plume (aerosol) (2002) Arch. Dermatol., 138, p. 1303; Shiu, E.Y., Leung, N.H., Cowling, B.J., Controversy around airborne versus droplet transmission of respiratory viruses (2019) Curr. Opin. Infect. Dis., 32, pp. 372-379; Mehand, M.S., Al-Shorbaji, F., Millett, P., Murgue, B., The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts (2018) Antiviral Res., 159, pp. 63-67; Lloyd-Smith, J.O., George, D., Pepin, K.M., Pitzer, V.E., Pulliam, J.R.C., Dobson, A.P., Hudson, P.J., Grenfell, B.T., Epidemic dynamics at the human-animal interface (2009) Science, 326, pp. 1362-1367; Drosten, C., Virus ecology: A gap between detection and prediction (2013) Emerg. Microbes Infect., 2, p. e31; Kenyon, R.H., McKee, K.T., Zack, P.M., Rippy, M.K., Vogel, A.P., York, C., Meegan, J., Peters, C.J., Aerosol infection of rhesus macaques with Junin virus (1992) Intervirology, 33, pp. 23-31; Malhotra, S., Yen, J.Y., Honko, A.N., Garamszegi, S., Caballero, I.S., Johnson, J.C., Mucker, E.M., Connor, J.H., Transcriptional profiling of the circulating immune response to lassa virus in an aerosol model of exposure (2013) PLoS Negl. Trop. Dis., 7; Bell, T.M., Shaia, C.I., Bunton, T.E., Robinson, C.G., Wilkinson, E.R., Hensley, L.E., Cashman, K.A., Pathology of experimental machupo virus infection, chicava strain, in cynomolgus macaques (macaca fascicularis) by intramuscular and aerosol exposure (2014) Vet. Pathol., 52, pp. 26-37; Pedrosa, P.B.S., Cardoso, A.T.O., Viral infections in workers in hospital and research laboratory settings: A comparative review of infection modes and respective biosafety aspects (2011) Int. J. Infect. Dis., 15, pp. e366-e376; Alimonti, J., Leung, A., Jones, S., Gren, J., Qiu, X., Fernando, L., Balcewich, B., Grolla, A., Evaluation of transmission risks associated with in vivo replication of several high containment pathogens in a biosafety level 4 laboratory (2014) Sci. Rep., 4, p. 5824; Johnson, K.M., McCormick, J.B., Webb, P., Smith, E.S., Elliott, L.H., King, I.J., Clinical virology of Lassa fever in hospitalized patients (1987) J. Infect. Dis., 155, pp. 456-464; Peters, C.J., Kuehne, R.W., Mercado, R.R., Le Bow, R.H., Spertzel, R.O., Hemorrhagic fever in cochabamba, Bolivia, 1971 (1974) Am J Epidemiol., 99, pp. 425-433; Weber, D.J., Rutala, W., Risks and prevention of nosocomial transmission of rare zoonotic diseases (2001) Clin. Infect. Dis., 32, pp. 446-456; Walker, D.H., McCormick, J.B., Johnson, K.M., Webb, P.A., Komba-Kono, G., Elliott, L.H., Gardner, J.J., Pathologic and virologic study of fatal Lassa fever in man (1982) Am. J. Pathol., 107, pp. 349-356; Gaidamovich, S.Y., Butenko, A.M., Leschinskaya, H.V., Human laboratory acquired arbo-, arena-, and hantavirus infections (2000) J. Am. Biol. Saf. Assocation, 5, pp. 5-11; Pettersson, L., Klingström, J., Hardestam, J., Lundkvist, Å., Ahlm, C., Evander, M., Hantavirus RNA in saliva from patients with hemorrhagic fever with renal syndrome (2008) Emerg. Infect. Dis., 14, pp. 406-411; Martinez-Valdebenito, C., Calvo, M., Vial, C., Mansilla, R., Marco, C., Palma, R.E., Vial, P.A., Ferrés, M., Person-to-person household and nosocomial transmission of andes (2014) Emerg. Infect. Dis., 20, pp. 1629-1636; Green, W., Feddersen, R., Yousef, O., Behr, M., Smith, K., Nestler, J., Jenison, S., Hjelle, B., Tissue distribution of hantavirus antigen in naturally infected humans and deer mice (1998) J. Infect. Dis., 177, pp. 1696-1700; Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, A.R.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med.; Nakayama, E., Saijo, M., Animal models for Ebola and Marburg virus infections (2013) Front. Microbiol., 4, pp. 1-20; Bausch, D.G., Towner, J.S., Dowell, S.F., Kaducu, F., Lukwiya, M., Sanchez, A., Nichol, S.T., Rollin, P.E., Assessment of the risk of ebola virus transmission from bodily fluids and fomites (2007) J. Infect. Dis., 196, pp. S142-S147; Simpson, D.I.H., Marburg agent disease: In monkeys (1969) Trans. R Soc. Trop Med. Hyg., 63, pp. 303-309; Martines, R.B., Ng, D.L., Greer, P.W., Rollin, P.E., Zaki, S.R., Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses (2015) J. Pathol., 235, pp. 153-174; Beigel, J.H., Farrar, J., Han, A.M., Hayden, F.G., Hyer, R., De Jong, M.D., Lochindarat, S., Hien, T.T., Avian influenza A (H5N1) infection in humans (2005) N. Engl. J. Med., 353, pp. 1374-1385; Hammoud, D.A., Lentz, M.R., Lara, A., Bohannon, J.K., Feuerstein, I., Huzella, L., Jahrling, P.B., Rojas, O., Aerosol exposure to intermediate size Nipah virus particles induces neurological disease in African green monkeys (2018) PLoS Negl. Trop. Dis., 12, p. e0006978; Chua, K.B., Lam, S.K., Goh, K.J., Hooi, P.S., Ksiazek, T.G., Kamarulzaman, A., Olson, J., Tan, C.T., The presence of nipah virus in respiratory secretions and urine of patients during an outbreak of nipah virus encephalitis in Malaysia (2001) J. Infect., 42, pp. 40-43; Sazzad, H.M.S., Hossain, M.J., Gurley, E.S., Ameen, K.M.H., Parveen, S., Islam, M.S., Faruque, L.I., Lo, M.K., Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh (2013) Emerg. Infect. Dis., 19, pp. 210-217; Wong, K.T., Robertson, T., Ong, B.B., Chong, J.W., Yaiw, K.C., Wang, L.F., Ansford, J., Tannenberg, A., Human Hendra virus infection causes acute and relapsing encephalitis (2009) Neuropathol. Appl. Neurobiol., 35, pp. 296-305; Mekibib, B., Ariën, K.K., Aerosol transmission of filoviruses (2016) Viruses, 8, p. 148; Richard, M., Fouchier, R.A.M., Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential (2016) FEMS Microbiol. Rev., 40, pp. 68-85; Chen, H., Liu, S., Liu, J., Chai, C., Mao, H., Yu, Z., Tang, Y., Zhu, C., Nosocomial co-transmission of avian influenza a(h7n9) and a(h1n1)pdm09 viruses between 2 patients with hematologic disorders (2016) Emerg. Infect. Dis., 22, pp. 598-607; Fang, C.-F., Ma, M.-J., Zhan, B.-D., Lai, S.-M., Hu, Y., Yang, X.-X., Li, J., Zhang, J.-M., Nosocomial transmission of avian influenza a (h7n9) virus in China: Epidemiological investigation (2015) BMJ, 351, p. h5765; Lietz, J., Westermann, C., Nienhaus, A., Schablon, A., The occupational risk of influenza a (h1n1) infection among healthcare personnel during the 2009 pandemic: A systematic review and meta-analysis of observational studies (2016) PLoS ONE, 11, p. e0162061; Schultsz, C., Dong, V.C., Chau, N.V.V., Le, N.T.H., Lim, W., Thanh, T.T., Dolecek, C., Farrar, J., Avian influenza h5n1 and healthcare workers (2005) Emerg. Infect. Dis., 11, pp. 1158-1159; Van Riel, D., Munster, V.J., De Wit, E., Rimmelzwaan, G.F., Fouchier, R.A.M., Osterhaus, A.D.M.E., Kuiken, T., H5N1 virus attachment to lower respiratory tract (2006) Science, 312, p. 399; Munster, V.J., De Wit, E., Van Den Brand, J.M.A., Herfst, S., Schrauwen, E.J.A., Bestebroer, T.M., Van De Vijver, D., Rimmelzwaan, G.F., Pathogenesis and transmission of swine-origin 2009 a(h1n1) influenza virus in ferrets (2009) Science, 325, pp. 481-483; Verreault, D., Moineau, S., Duchaine, C., Methods for sampling of airborne viruses (2008) Microbiol. Mol. Biol. Rev., 72, pp. 413-444; Rule, A.M., Apau, O., Ahrenholz, S.H., Brueck, S.E., Lindsley, W.G., De Perio, M.A., Noti, J.D., Grigorovitch, A., Healthcare personnel exposure in an emergency department during influenza season (2018) PLoS ONE, 13, p. e0203223; Thompson, K.-A., Pappachan, J.V., Bennett, A.M., Mittal, H., Macken, S., Dove, B.K., Nguyen-Van-Tam, J.S., Hoffman, P., Influenza aerosols in UK hospitals during the h1n1 (2009) pandemic\-The risk of aerosol generation during medical procedures (2013) PLoS ONE, 8, p. e56278; Blachere, F.M., Lindsley, W.G., McMillen, C.M., Beezhold, D.H., Fisher, E.M., Shaffer, R.E., Noti, J.D., Assessment of influenza virus exposure and recovery from contaminated surgical masks and N95 respirators (2018) J. Virol. Methods, 260, pp. 98-106; Simonds, A., Hanak, A., Chatwin, M., Morrell, M., Hall, A., Parker, K., Siggers, J., Dickinson, R., Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: Implications for management of pandemic influenza and other airborne infections (2010) Health Technol. Assess., 14; Fischer, R.J., Bushmaker, T., Judson, S., Munster, V.J., Comparison of the aerosol stability of 2 strains of zaire ebolavirus from the 1976 and 2013 outbreaks (2016) J. Infect. Dis., 214, pp. S290-S293; Piercy, T.J., Smither, S.J., Steward, J.A., Eastaugh, L., Lever, M.S., The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol (2010) J. Appl. Microbiol., 109, pp. 1531-1539; Garibaldi, B.T., Chertow, D.S., High-containment pathogen preparation in the intensive care unit (2017) Infect. Dis. Clin. North Am., 31, pp. 561-576; http://www.cdc.gov/vhf/ebola/healthcare-us/hospitals/infection-control.html, Infection Prevention and Control Recommendations for Hospitalized Patients Under Investigation (PUIs) for Ebola Virus Disease (EVD) in U.S. Hospitals | Ebola Hemorrhagic Fever | CDC (accessed on 4 October 2019); http://www.cdc.gov/hicpac/pdf/isolation/Isolation2007.pdf, 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings. (accessed on 4 October 2019); http://www.cdc.gov/coronavirus/mers/interim-guidance.html, MERS-CoV | Interim Guidance for Health Professionals | CDC. (accessed on 4 October 2019)","Munster, V.J.; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: munstervj@niaid.nih.gov",,"MDPI AG",19994915,,,"31614743","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85073295063 "Nemoto M., Schofield W., Cullinane A.","35203813900;57211322000;7004909392;","The first detection of equine coronavirus in adult horses and foals in Ireland",2019,"Viruses","11","10", 946,"","",,2,"10.3390/v11100946","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073449841&doi=10.3390%2fv11100946&partnerID=40&md5=1bc5ca8c68ae1804f1d60ce2350d7f0d","Virology Unit, Irish Equine Centre, Johnstown, Naas, Co., Kildare, W91 RH93, Ireland; Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, 329-0412, Japan; Troytown Grey Abbey Equine Hospital, Green Road, Co. Kildare, R51 YV04, Ireland","Nemoto, M., Virology Unit, Irish Equine Centre, Johnstown, Naas, Co., Kildare, W91 RH93, Ireland, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, 329-0412, Japan; Schofield, W., Troytown Grey Abbey Equine Hospital, Green Road, Co. Kildare, R51 YV04, Ireland; Cullinane, A., Virology Unit, Irish Equine Centre, Johnstown, Naas, Co., Kildare, W91 RH93, Ireland","The objective of this study was to investigate the presence of equine coronavirus (ECoV) in clinical samples submitted to a diagnostic laboratory in Ireland. A total of 424 clinical samples were examined from equids with enteric disease in 24 Irish counties between 2011 and 2015. A real-time reverse transcription polymerase chain reaction was used to detect ECoV RNA. Nucleocapsid, spike and the region from the p4.7 to p12.7 genes of positive samples were sequenced, and sequence and phylogenetic analyses were conducted. Five samples (1.2%) collected in 2011 and 2013 tested positive for ECoV. Positive samples were collected from adult horses, Thoroughbred foals and a donkey foal. Sequence and/or phylogenetic analysis showed that nucleocapsid, spike and p12.7 genes were highly conserved and were closely related to ECoVs identified in other countries. In contrast, the region from p4.7 and the non-coding region following the p4.7 gene had deletions or insertions. The differences in the p4.7 region between the Irish ECoVs and other ECoVs indicated that the Irish viruses were distinguishable from those circulating in other countries. This is the first report of ECoV detected in both foals and adult horses in Ireland. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Enteric disease; Equine coronavirus; Ireland","adult; Article; Coronavirinae; foal; gene expression; gene sequence; horse; Ireland; nonhuman; nucleotide sequence; phylogeny; real time reverse transcription polymerase chain reaction; sequence analysis; virus detection; virus nucleocapsid","Nemoto, M., Oue, Y., Murakami, S., Kanno, T., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Complete genome analysis of equine coronavirus isolated in Japan (2015) Arch. Virol., 160, pp. 2903-2906; Zhang, J., Guy, J.S., Snijder, E.J., Denniston, D.A., Timoney, P.J., Balasuriya, U.B., Genomic characterization of equine coronavirus (2007) Virology, 369, pp. 92-104; Pusterla, N., Mapes, S., Wademan, C., White, A., Ball, R., Sapp, K., Burns, P., Bartol, J., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet. Microbiol., 162, pp. 228-231; Oue, Y., Ishihara, R., Edamatsu, H., Morita, Y., Yoshida, M., Yoshima, M., Hatama, S., Kanno, T., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet. Microbiol., 150, pp. 41-48; Oue, Y., Morita, Y., Kondo, T., Nemoto, M., Epidemic of equine coronavirus at Obihiro Racecourse, Hokkaido, Japan in 2012 (2013) J. Vet. Med. Sci., 75, pp. 1261-1265; Narita, M., Nobumoto, K., Takeda, H., Moriyama, T., Morita, Y., Nakaoka, Y., Prevalence of disease with inference of equine coronavirus infection among horses stabled in a draft-horse racecourse (2011) J. Jpn. Vet. Med. Assoc., 64, pp. 535-539; Nemoto, M., Oue, Y., Morita, Y., Kanno, T., Kinoshita, Y., Niwa, H., Ueno, T., Tsujimura, K., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Arch. Virol., 159, pp. 3329-3334; Pusterla, N., Holzenkaempfer, N., Mapes, S., Kass, P., Prevalence of equine coronavirus in nasal secretions from horses with fever and upper respiratory tract infection (2015) Vet. Rec., 177, p. 289; Miszczak, F., Tesson, V., Kin, N., Dina, J., Balasuriya, U.B., Pronost, S., Vabret, A., First detection of equine coronavirus (ECoV) in Europe (2014) Vet. Microbiol., 171, pp. 206-209; Pusterla, N., Vin, R., Leutenegger, C.M., Mittel, L.D., Divers, T.J., Enteric coronavirus infection in adult horses (2018) Vet. J., 231, pp. 13-18; Pusterla, N., Vin, R., Leutenegger, C., Mittel, L., Divers, T., Equine coronavirus: An emerging enteric virus of adult horses (2016) Equine Vet. Educ., 28, pp. 216-223; Slovis, N., Elam, J., Estrada, M., Leutenegger, C., Infectious agents associated with diarrhoea in neonatal foals in central Kentucky: A comprehensive molecular study (2014) Equine Vet. J., 46, pp. 311-316; Nemoto, M., Oue, Y., Higuchi, T., Kinoshita, Y., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Low prevalence of equine coronavirus in foals in the largest Thoroughbred horse breeding region of Japan, 2012-2014 (2015) Acta Vet. Scand., 57, p. 53; Bryan, J., Marr, C.M., Mackenzie, C.J., Mair, T.S., Fletcher, A., Cash, R., Phillips, M., Foote, A.K., Detection of equine coronavirus in horses in the United Kingdom (2019) Vet. Rec., 184, p. 123; Hemida, M.G., Chu, D.K.W., Perera, R., Ko, R.L.W., So, R.T.Y., Ng, B.C.Y., Chan, S.M.S., Alhammadi, M.A., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound. Emerg. Dis., 64, pp. 2093-2103; Nemoto, M., Morita, Y., Niwa, H., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Rapid detection of equine coronavirus by reverse transcription loop-mediated isothermal amplification (2015) J. Virol. Methods, 215, pp. 13-16; Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739; http://www.met.ie/climate/irish-climatemonthly-summary.asp, Met Eireann: The Irish Meteorological Service (accessed on 12 September 2019); https://www.hri.ie/uploadedFiles/HRI-Corporate/HRI_Corporate/Press_O_ce/Economic_Impact/HRI%20Report.pdf, Economic Impact of Irish Breeding and Racing. 2017. (accessed on 12 September 2019); Kooijman, L.J., James, K., Mapes, S.M., Theelen, M.J., Pusterla, N., Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA (2017) Vet. J., 220, pp. 91-94; Sebastian, M.M., Bernard, W.V., Riddle, T.W., Latimer, C.R., Fitzgerald, T.D., Harrison, L.R., Review paper: Mare reproductive loss syndrome (2008) Vet. Pathol., 45, pp. 710-722","Cullinane, A.; Virology Unit, Irish Equine Centre, Johnstown, Naas, Co.Ireland; email: acullinane@irishequinecentre.ie",,"MDPI AG",19994915,,,"31615132","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85073449841 "Noyola D.E., Hunsberger S., Valdés Salgado R., Powers J.H., Galindo-Fraga A., Ortiz-Hernández A.A., Ramirez-Venegas A., Moreno-Espinosa S., Llamosas-Gallardo B., Guerrero M.L., Beigel J.H., Ruiz-Palacios G., Perez-Patrigeon S., Ruiz-Palacios G.M., Guerrero M.L., Galindo-Fraga A., Aguilar-Cruz D., Roa B., Cruz I., Pérez-Patrigeon S., Del Pilar Ramos-Cervantes M., García-Andrade L.A., Ibarra V., Martínez J., Ledesma F., Isidoro-Fernández D.G., Flores J., Valdez-Vazquez R., Jiménez-Escobar I., Corona A.L., Farfán-Zúñiga A.M., Rodríguez-Zulueta P., Hernández-Delgado L., Martínez-García J., Llamosas-Gallardo B., Ortiz-Hernández A., Estévez J., Andrade D., Ramírez-Venegas A., Nolasco A., Paulin P., Bautista N.E., Velásquez J., Moreno-Espinosa S., López-Martínez B., González M., Mendoza L., Gamiño-Arroyo A.E., Magaña-Aquino M., Pérez-González L.F., Araujo-Meléndez J., Gómez-Gómez A., Del Carmen Báez-Cruz J., Perea N., Fuentes E., Sandoval-Fuentes A., Noyola D.E., García-Sepúlveda C.A., Hernández-Ramírez D., Galán-Herrera J.F., Arroyo H., Mascareñas N., Barrera C., Segura S., Mejía M., Lane C., Smolskis M., Follmann D., Hunsberger S., Gu W., Beigel J.H., Engel T., Freimanis-Hance L., Trejos-Salguero I., Bertucci Y.","6701473723;7003410346;57212713111;57158523600;6508359924;6506986080;55993674700;23966912200;6508011014;57206162016;6506675950;7006106839;56013554700;57208807561;8245833100;6508359924;57211711537;57211712952;57211712708;56013554700;57211712052;57211712381;57211715725;57211711412;57212903539;57211712454;57214543068;6504726578;6507368238;57211713573;57211712896;55795595700;23995585200;57211712935;6508011014;57211711189;57207250973;55656599800;55993674700;55734878900;57211711985;57211712770;57211713757;23966912200;35580841500;57208811306;57211713376;56437695700;15044871000;16242309400;55652253700;16301193100;57211715567;57209106835;57211711161;57211711671;6701473723;56000851900;57212270952;37024274800;57197343749;57211711811;57211711126;57211714172;57211711374;57198147955;6508304782;7005319077;7003410346;21734415100;6506675950;57211714064;23396818200;57211714593;35315446500;","Comparison of Rates of Hospitalization between Single and Dual Virus Detection in a Mexican Cohort of Children and Adults with Influenza-Like Illness",2019,"Open Forum Infectious Diseases","6","11", ofz424,"","",,,"10.1093/ofid/ofz424","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074896551&doi=10.1093%2fofid%2fofz424&partnerID=40&md5=d86613b3eb0b0296fa600723ccd82159","Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Westat, Rockville, MD, United States; Clinical Research Directorate, Frederick National Laboratory for Cancer Research Sponsored, National Cancer Institute, Frederick, MD, United States; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico; Instituto Nacional de Pediatría, Mexico city, Mexico; Instituto Nacional de Enfermedades Respiratorias Ismaél Cosío Villegas, Mexico city, Mexico; Hospital Infantil ""dr. Federico Gomez, Mexico city, Mexico","Noyola, D.E., Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, ; Hunsberger, S., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, ; Valdés Salgado, R., Westat, Rockville, MD, United States; Powers, J.H., Clinical Research Directorate, Frederick National Laboratory for Cancer Research Sponsored, National Cancer Institute, Frederick, MD, United States; Galindo-Fraga, A., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico, ; Ortiz-Hernández, A.A., Instituto Nacional de Pediatría, Mexico city, Mexico; Ramirez-Venegas, A., Instituto Nacional de Enfermedades Respiratorias Ismaél Cosío Villegas, Mexico city, Mexico, ; Moreno-Espinosa, S., Hospital Infantil ""dr. Federico Gomez, Mexico city, Mexico, ; Llamosas-Gallardo, B., Instituto Nacional de Pediatría, Mexico city, Mexico, ; Guerrero, M.L., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico; Beigel, J.H., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, ; Ruiz-Palacios, G., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico; Perez-Patrigeon, S., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico, ; Ruiz-Palacios, G.M.; Guerrero, M.L.; Galindo-Fraga, A., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico, ; Aguilar-Cruz, D.; Roa, B.; Cruz, I.; Pérez-Patrigeon, S., Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Vasco de Quiroga #15 Col, Belisario Dominguez Sección XVI, 14080, Mexico, ; Del Pilar Ramos-Cervantes, M.; García-Andrade, L.A.; Ibarra, V.; Martínez, J.; Ledesma, F.; Isidoro-Fernández, D.G.; Flores, J.; Valdez-Vazquez, R.; Jiménez-Escobar, I.; Corona, A.L.; Farfán-Zúñiga, A.M.; Rodríguez-Zulueta, P.; Hernández-Delgado, L.; Martínez-García, J.; Llamosas-Gallardo, B., Instituto Nacional de Pediatría, Mexico city, Mexico, ; Ortiz-Hernández, A.; Estévez, J.; Andrade, D.; Ramírez-Venegas, A., Instituto Nacional de Enfermedades Respiratorias Ismaél Cosío Villegas, Mexico city, Mexico, ; Nolasco, A.; Paulin, P.; Bautista, N.E.; Velásquez, J.; Moreno-Espinosa, S., Hospital Infantil ""dr. Federico Gomez, Mexico city, Mexico, ; López-Martínez, B.; González, M.; Mendoza, L.; Gamiño-Arroyo, A.E.; Magaña-Aquino, M.; Pérez-González, L.F.; Araujo-Meléndez, J.; Gómez-Gómez, A.; Del Carmen Báez-Cruz, J.; Perea, N.; Fuentes, E.; Sandoval-Fuentes, A.; Noyola, D.E., Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico, ; García-Sepúlveda, C.A.; Hernández-Ramírez, D.; Galán-Herrera, J.F.; Arroyo, H.; Mascareñas, N.; Barrera, C.; Segura, S.; Mejía, M.; Lane, C.; Smolskis, M.; Follmann, D.; Hunsberger, S., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, ; Gu, W.; Beigel, J.H., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, ; Engel, T.; Freimanis-Hance, L.; Trejos-Salguero, I.; Bertucci, Y.","Background: Molecular detection methods allow for the simultaneous detection of several infectious agents. This study assesses whether co-infection with 2 viruses as compared with 1 is associated with increased hospitalization in those with acute respiratory infections. Methods: We prospectively enrolled a cohort of pediatric and adult participants with influenza-like illness during 2010-2014 in Mexico. Clinical information and respiratory samples were collected at enrollment. Respiratory viruses were detected with multiplex polymerase chain reaction (PCR) and influenza-specific reverse transcription PCR assays. Participants were followed for 14 and 28 days after inclusion. Severity of disease, as measured by hospitalization with acute respiratory infections, was compared between single and dual viral infections. Results: Among 5662 participants in the study, either 1 (n = 3285) or 2 (n = 641) viruses were detected in 3926 participants. Rhinovirus (n = 1433), influenza (n = 888), and coronaviruses (n = 703) were the most frequently detected viruses (either alone or in co-infection). Bocavirus, respiratory syncytial virus (RSV), metapneumovirus, and rhinovirus cases were hospitalized more often than other viruses. Bocavirus+rhinovirus cases were hospitalized more often than those with rhinovirus alone (but not bocavirus alone). RSV cases were more likely to be hospitalized than cases with co-infections of RSV and parainfluenza virus or coronavirus. Metapneumovirus cases were hospitalized more often than those co-infected with metapneumovirus+coronavirus. Conclusions: In this study, detection of 2 viruses did not significantly increase hospitalizations compared with single virus infections. Larger studies will allow for distinguishing between sequential and simultaneous infection and for a better understanding of the role of each virus during the evolution of acute respiratory episodes. © 2019 The Author(s).","acute respiratory infections; coinfection; hospitalization; influenza; severity","acute disease; adolescent; adult; Article; Bocaparvovirus; child; cohort analysis; comparative study; Coronavirinae; disease severity; female; flu like syndrome; hospitalization; human; Human metapneumovirus; Human respiratory syncytial virus; influenza; Influenza virus; logistic regression analysis; lower respiratory tract infection; major clinical study; male; Mexican; Mexico City; mixed infection; multiplex polymerase chain reaction; nonhuman; Paramyxovirinae; priority journal; prospective study; respiratory virus; reverse transcription polymerase chain reaction; Rhinovirus; viral respiratory tract infection; virus detection","Estimates of the global, regional, and national morbidity, mortality, and aetologies of lower respiratory tract infection in 195 countries: A systematic analysis of the Global Burden of Disease Study 2015 (2017) Lancet Infect Dis, 17, pp. 1133-1161. , GBD 2015 LRI Collaborators; Van Den Hoogen, B.G., De Jong, J.C., Groen, J., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat Med, 7, pp. 719-724; Kahn, J.S., McIntosh, K., History and recent advances in coronavirus discovery (2005) Pediatr Infect Dis J, 24 (11), pp. S223-S227; Allander, T., Tammi, M.T., Eriksson, M., Cloning of a human parvovirus by molecular screening of respiratory tract samples (2005) Proc Natl Acad Sci U S A, 102, pp. 12891-12896; Lamson, D., Renwick, N., Kapoor, V., Mass Tag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004-2005 (2006) J Infect Dis, 194, pp. 1398-1402; Taboada, B., Espinoza, M.A., Isa, P., Is there still room for novel viral pathogens in pediatric respiratory tract infections? (2014) PLoS One, 9, p. e113570; Ortiz-Hernández, A.A., Nishimura, K.K., Noyola, D.E., Differential risk of hospitalization among single virus infections causing influenza like illnesses (2019) Influenza Other Respir Viruses, 13, pp. 36-43; Pavia, A.T., Viral infections of the lower respiratory tract: Old viruses, new viruses, and the role of diagnosis (2011) Clin Infect Dis, 52, pp. S284-S289; García-García, M.L., Calvo, C., Rey, C., Human metapnuemovirus infections in hospitalized children and comparison with other respiratory viruses 2005-2014 prospective study (2017) PLoS One, 12, p. e0173504; Wong-Chew, R.M., García-León, M.L., Noyola, D.E., Respiratory viruses detected in Mexican children younger than 5 years old with community-acquired pneumonia: A national multicenter study (2017) Int J Infect Dis, 62, pp. 32-38; Wishaupt, J.O., Van Der Ploeg, T., De Groot, R., Single-and multiple viral respiratory infections in children: Disease and management cannot be related to a specific pathogen (2017) BMC Infect Dis, 7, pp. 62-73; Drews, A.L., Atmar, R.L., Glezen, W.P., Dual respiratory virus infections (1997) Clin Infect Dis, 25, pp. 1421-1429; Chauhan, J.C., Slamon, N.B., The impact of multiple viral respiratory infections on outcomes for critically ill children (2017) Pediatr Crit Care Med, 18, pp. e333-e338; Antalis, E., Oikonomopoulou, Z., Kottaridi, C., Mixed viral infections of the respiratory tract; An epidemiological study during consecutive winter seasons (2018) J Med Virol, 90, pp. 663-670; Moe, N., Krokstad, S., Stenseng, I.H., Comparing human metapneumovirus and respiratory syncytial virus: Viral co-detections, genotypes and risk factors for severe disease (2017) PLoS One, 12, p. e0170200; Lim, F.J., De Klerk, N., Blyth, C.C., Systematic review and meta-analysis of respiratory viral coinfections in children (2016) Respirology, 21, pp. 648-655; Galindo-Fraga, A., Ortiz-Hernández, A.A., Ramírez-Venegas, A., Clinical characteristics and outcomes of influenza and other influenza-like illnesses in Mexico City (2013) Int J Infect Dis, 17, pp. e510-e517. , La Red ILI 002 Study Group; Paulin-Prado, P., Nishimura, K., Freimanis-Hance, L., Clinical characteristics of asthmatic patients with influenza-like illness and risk of severe exacerbations in Mexico (2016) Ann Allergy Asthma Immunol, 116, pp. 402-407; Gamino-Arroyo, A.E., Moreno-Espinosa, S., Llamosas-Gallardo, B., Epidemiology and clinical characteristics of respiratory syncytial virus infections among children and adults in Mexico (2017) Influenza Other Respir Viruses, 11, pp. 48-56; (2019) CDC Protocol of Realtime RTPCR for Swine Influenza A (H1N1), , http://www.who.int/csr/resources/publications/swineflu/CDCrealtimeRTPCRprotocol_20090428.pdf, World Health Organization. Accessed 01 March; Peci, A., Winter, A.L., Gubbay, J.B., Community-acquired respiratory viruses and co-infection among patients of Ontario sentinel practices, April 2009 to February 2010 (2013) Influenza Other Respir Viruses, 7, pp. 559-566; Shinjoh, M., Omoe, K., Saito, N., In vitro growth profiles of respiratory syncytial virus in the presence of influenza virus (2000) Acta Virol, 44, pp. 91-97; Zheng, X., Song, Z., Li, Y., Possible interference between seasonal epidemics of influenza and other respiratory viruses in Hong Kong, 2014-2017 (2017) BMC Infect Dis, 17, pp. 772-779; Calvo, C., García-García, M.L., Pozo, F., Respiratory syncytial virus coinfections with rhinovirus and human bocavirus in hospitalized children (2015) Medicine (Baltimore), 94, pp. 1-7; Dávila-Torres, J., Chowell, G., Borja-Aburto, V.H., Intense seasonal A/H1N1 influenza in Mexico, winter 2013-2014 (2015) Arch Med Res, 46, pp. 63-70; Ropero-Álvarez, A.M., El Omeiri, N., Kurtis, H.J., Influenza vaccination in the Americas: Progress and challenges after the 2009 A(H1N1) influenza pandemic (2016) Hum Vaccin Immunother, 12, pp. 2206-2214; Havers, F., Sokolow, L., Shay, D.K., Case-control study of vaccine effectiveness in preventing laboratory-confirmed influenza hospitalizations in older adults, United States, 2010-2011 (2016) Clin Infect Dis, 63, pp. 1304-1311; Shi, T., McAllister, D.A., O'Brien, K.L., Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study (2017) Lancet, 390, pp. 946-958. , RSV Global Epidemiology Network; Falsey, A.R., McElhaney, J.E., Beran, J., Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness (2014) J Infect Dis, 209, pp. 1873-1881; Williams, J.V., Harris, P.A., Tollefson, S.J., Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children (2004) N Engl J Med, 350, pp. 443-450; Martin, E.T., Fairchok, M.P., Kuypers, J., Frequent and prolonged shedding of bocavirus in young children attending daycare (2010) J Infect Dis, 201, pp. 1625-1632; Rhedin, S., Lindstrand, A., Hjelmgren, A., Respiratory viruses associated with community-acquired pneumonia in children: Matched case-control study (2015) Thorax, 70, pp. 847-853; Moesker, F.M., Van Kampen, J.J., Van Der Eijk, A.A., Human bocavirus infection as a cause of severe acute respiratory tract infection in children (2015) Clin Microbiol Infect, 21, pp. 964e1-964e8; Zhao, B., Yu, X., Wang, C., High human bocavirus viral load is associated with disease severity in children under five years of age (2013) PLoS One, 8, pp. 1-8; Principi, N., Piralla, A., Zampiero, A., Bocavirus infection in otherwise healthy children with respiratory disease (2015) PLoS One, 10, pp. 1-15; Zhou, L., Zheng, S., Xiao, Q., Single detection of human bocavirus 1 with a high viral load in severe respiratory tract infections in previously healthy children (2014) BMC Infect Dis, 14, pp. 1-8; Jiang, W., Yin, F., Zhou, W., Clinical significance of different virus load of human bocavirus in patients with lower respiratory tract infection (2016) Sci Rep, 6, pp. 1-6; Powers, J.H., 3rd, Bacci, E.D., Guerrero, M.L., Reliability, Validity, and Responsiveness of InFLUenza Patient-Reported Outcome (FLU-PRO) scores in influenza-positive patients (2018) Value Health, 21, pp. 210-218; Gregianini, T.S., Varella, I.R.S., Fisch, P., Dual and triple infections with influenza A and B viruses: A case-control study in Southern Brazil (2019) J Infect Dis, 220, pp. 961-968; Choi, S.H., Chung, J.W., Kim, H.R., Clinical relevance of multiple respiratory virus detection in adult patients with acute respiratory illness (2015) J Clin Microbiol, 53, pp. 1172-1177","Perez-Patrigeon, S.; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Departamento de Infectología, Belisario Dominguez Sección XVI, Vasco de Quiroga #15 Col, Mexico; email: santiago.perez@infecto.mx",,"Oxford University Press",23288957,,,,"English","Open Forum Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85074896551 "Kulcsar K.A., Coleman C.M., Beck S.E., Frieman M.B.","55805281200;55890959400;57192810526;9240056500;","Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection",2019,"JCI Insight","4","20", e131774,"","",,2,"10.1172/jci.insight.131774","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078200507&doi=10.1172%2fjci.insight.131774&partnerID=40&md5=6eced8584f9327d7268581f82c9534d8","Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States","Kulcsar, K.A., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Coleman, C.M., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Beck, S.E., Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Frieman, M.B., Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States","Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 in Saudi Arabia and has caused over 2400 cases and more than 800 deaths. Epidemiological studies identified diabetes as the primary comorbidity associated with severe or lethal MERS-CoV infection. Understanding how diabetes affects MERS is important because of the global burden of diabetes and pandemic potential of MERS-CoV. We used a model in which mice were made susceptible to MERS-CoV by expressing human DPP4, and type 2 diabetes was induced by administering a high-fat diet. Upon infection with MERS-CoV, diabetic mice had a prolonged phase of severe disease and delayed recovery that was independent of virus titers. Histological analysis revealed that diabetic mice had delayed inflammation, which was then prolonged through 21 days after infection. Diabetic mice had fewer inflammatory monocyte/macrophages and CD4+ T cells, which correlated with lower levels of Ccl2 and Cxcl10 expression. Diabetic mice also had lower levels of Tnfa, Il6, Il12b, and Arg1 expression and higher levels of Il17a expression. These data suggest that the increased disease severity observed in individuals with MERS and comorbid type 2 diabetes is likely due to a dysregulated immune response, which results in more severe and prolonged lung pathology. © 2019, American Society for Clinical Investigation.",,"arginase 1; gamma interferon inducible protein 10; interleukin 12p40; interleukin 17; interleukin 6; monocyte chemotactic protein 1; tumor necrosis factor; animal cell; animal experiment; animal model; animal tissue; Article; CD4+ T lymphocyte; comorbidity; controlled study; disease association; disease severity; immune response; lipid diet; macrophage; male; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; monocyte; mouse; non insulin dependent diabetes mellitus; nonhuman; protein expression; virus pathogenesis; virus titration","Cotten, M., Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus (2013) Emerging Infect Dis, 19 (5), pp. 736-42B; Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.who.int/emergencies/mers-cov/en/Updated.2019, World Health Organization, World Health Organization website. Accessed October 1 2019; Cho, S.Y., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001. , 10048; Azhar, E.I., Evidence for camel-To-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14 (2), pp. 140-145; Meyer, B., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerging Infect Dis, 22 (12), pp. 2171-2173; Hui, D.S., Azhar, E.I., Kim, Y.J., Memish, Z.A., Oh, M.D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18 (8), pp. e217-e227; Al-Tawfiq, J.A., Assiri, A., Memish, Z.A., Middle East respiratory syndrome novel corona MERS-CoV infection. Epidemiology and outcome update (2013) Saudi Med J, 34 (10), pp. 991-994; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Ng, D.L., Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014 (2016) Am J Pathol, 186 (3), pp. 652-658; Alsaad, K.O., Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection-clinicopathological and ultrastructural study (2018) Histopathology, 72 (3), pp. 516-524; Ahmed, A.E., The predictors of 3-And 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (1), p. 615; Matsuyama, R., Nishiura, H., Kutsuna, S., Hayakawa, K., Ohmagari, N., Clinical determinants of the severity of Middle East respiratory syndrome (MERS): A systematic review and meta-Analysis (2016) BMC Public Health, 16 (1), p. 1203; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of death and severe disease in patients with Middle East respiratory syndrome coronavirus, 2012-2015 (2016) Am J Epidemiol, 184 (6), pp. 460-464; Yang, Y.M., Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome (2017) Sci Rep, 7 (1), p. 11307; Choi, W.S., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48 (2), pp. 118-126; Alraddadi, B.M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerging Infect Dis, 22 (1), pp. 49-55; Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients (2014) Clin Infect Dis, 59 (2), pp. 160-165; Banik, G.R., Alqahtani, A.S., Booy, R., Rashid, H., Risk factors for severity and mortality in patients with MERS-CoV: Analysis of publicly available data from Saudi Arabia (2016) Virol Sin, 31 (1), pp. 81-84; Alqahtani, F.Y., Prevalence of comorbidities in cases of Middle East respiratory syndrome coronavirus: A retrospective study (2018) Epidemiol Infect [Published Online Ahead of Print November 5 2018]; Al-Tawfiq, J.A., Gautret, P., Asymptomatic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: Extent and implications for infection control: A systematic review Travel Med Infect Dis, 2019 (27), pp. 27-32; Arwady, M.A., Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia 2014 (2016) Emerging Infect Dis, 22 (8), pp. 1395-1402; Garbati, M.A., A comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PLoS ONE, 11 (11), p. e0165978; Klekotka, R.B., Mizgała, E., Król, W., The etiology of lower respiratory tract infections in people with diabetes (2015) Pneumonol Alergol Pol, 83 (5), pp. 401-408; International Diabetes Federation. IDF Diabetes Atlas, , http://www.diabetesatlas.org, 8th ed. International Diabetes Federation website. Updated 2017. Accessed October 8 2019; Zmora, N., Bashiardes, S., Levy, M., Elinav, E., The role of the immune system in metabolic health and disease (2017) Cell Metab, 25 (3), pp. 506-521; McLaughlin, T., Ackerman, S.E., Shen, L., Engleman, E., Role of innate and adaptive immunity in obesity-Associated metabolic disease (2017) J Clin Invest, 127 (1), pp. 5-13; Meshkani, R., Vakili, S., Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications (2016) Clin Chim Acta, 462, pp. 77-89; Xia, C., Rao, X., Zhong, J., Role of T lymphocytes in type 2 diabetes and diabetes-Associated inflammation (2017) J Diabetes Res, 2017 (4), pp. 6494795-6494796; Hodgson, K., Morris, J., Bridson, T., Govan, B., Rush, C., Ketheesan, N., Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections (2015) Immunology, 144 (2), pp. 171-185; Coleman, C.M., Matthews, K.L., Goicochea, L., Frieman, M.B., Wild-Type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus (2014) J Gen Virol, 95, pp. 408-412; Lu, G., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Peck, K.M., Cockrell, A.S., Yount, B.L., Scobey, T., Baric, R.S., Heise, M.T., Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection (2015) J Virol, 89 (8), pp. 4696-4699; Pascal, K.E., Pre-And postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci USA, 112 (28), pp. 8738-8743; Coleman, C.M., CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome (2017) J Virol, 91 (1), pp. e01825-e01916; Li, K., Mouse-Adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114 (15), pp. E3119-E3128; Cockrell, A.S., A mouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat Microbiol, 2, p. 16226; Zhao, J., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc Natl Acad Sci USA, 111 (13), pp. 4970-4975; Iwata-Yoshikawa, N., Acute respiratory infection in human dipeptidyl peptidase 4-Transgenic mice infected with Middle East respiratory syndrome coronavirus (2019) J Virol, 93 (6), p. e0181818; Heydemann, A., An overview of murine high fat diet as a model for type 2 diabetes mellitus (2016) J Diabetes Res, 2016, p. 2902351; Islam, M.S., Loots du T. Experimental rodent models of type 2 diabetes: A review (2009) Methods Find Exp Clin Pharmacol, 31 (4), pp. 249-261; Poissy, J., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61 (2), pp. 275-278; Page, C., Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection (2012) J Virol, 86 (24), pp. 13334-13349; Deacon, C.F., Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes (2019) Front Endocrinol (Lausanne), 10, p. 80; Klemann, C., Wagner, L., Stephan, M., Von Hörsten, S., Cut to the chase: A review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system (2016) Clin Exp Immunol, 185 (1), pp. 1-21; Berger, J.P., A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice (2018) Endocrinol Diabetes Metab, 1 (1), p. e00002; https://www.jax.org/jax-mice-And-services/strain-data-sheet-pages/phenotype-information-380050, Updated 2019. Accessed October 8 2019 The Jackson Laboratory. Phenotype information for diet-induced obese C57Bl/6J. The Jackson Laboratory website; Karlsson, E.A., Hertz, T., Johnson, C., Mehle, A., Krammer, F., Schultz-Cherry, S., Obesity outweighs protection conferred by adjuvanted influenza vaccination (2016) MBio, 7 (4), pp. e01144-e01216; Kosaraju, R., B cell activity is impaired in human and mouse obesity and is responsive to an essential fatty acid upon murine influenza infection (2017) J Immunol, 198 (12), pp. 4738-4752; O'Brien, K.B., Impaired wound healing predisposes obese mice to severe influenza virus infection (2012) J Infect Dis, 205 (2), pp. 252-261; Milner, J.J., Obesity increases mortality and modulates the lung metabolome during pandemic H1N1 influenza virus infection in mice (2015) J Immunol, 194 (10), pp. 4846-4859; Green, W.D., Beck, M.A., Obesity impairs the adaptive immune response to influenza virus (2017) Ann Am Thorac Soc, 14, pp. S406-S409; King, A.J., The use of animal models in diabetes research (2012) Br J Pharmacol, 166 (3), pp. 877-894; Singer, K., Differences in hematopoietic stem cells contribute to sexually dimorphic inflammatory responses to high fat diet-induced obesity (2015) J Biol Chem, 290 (21), pp. 13250-13262; Karastergiou, K., Smith, S.R., Greenberg, A.S., Fried, S.K., Sex differences in human adipose tissues-The biology of pear shape (2012) Biol Sex Differ, 3 (1), p. 13; Shin, H.S., Immune responses to Middle East respiratory syndrome coronavirus during the acute and convalescent phases of human infection (2019) Clin Infect Dis, 68 (6), pp. 984-992; Zhao, J., Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses (2017) Sci Immunol, 2 (14), p. eaan5393; Kumar, N.P., Sridhar, R., Nair, D., Banurekha, V.V., Nutman, T.B., Babu, S., Type 2 diabetes mellitus is associated with altered CD8(+) T and natural killer cell function in pulmonary tuberculosis (2015) Immunology, 144 (4), pp. 677-686; Cheung, K.P., Taylor, K.R., Jameson, J.M., Immunomodulation at epithelial sites by obesity and metabolic disease (2012) Immunol Res, 52 (3), pp. 182-199; Mahallawi, W.H., Khabour, O.F., Zhang, Q., Makhdoum, H.M., Suliman, B.A., MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile (2018) Cytokine, 104, pp. 8-13; Maroof, A., Yorgensen, Y.M., Li, Y., Evans, J.T., Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection (2014) PLoS Pathog, 10 (1), p. e1003875; McKinstry, K.K., IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge (2009) J Immunol, 182 (12), pp. 7353-7363; Kumar, N.P., Sridhar, R., Banurekha, V.V., Jawahar, M.S., Nutman, T.B., Babu, S., Expansion of pathogen-specific T-helper 1 and T-helper 17 cells in pulmonary tuberculosis with coincident type 2 diabetes mellitus (2013) J Infect Dis, 208 (5), pp. 739-748; Matsuzaki, G., Umemura, M., Interleukin-17 family cytokines in protective immunity against infections: Role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s (2018) Microbiol Immunol, 62 (1), pp. 1-13; Alim, M.A., Sikder, S., Bridson, T.L., Rush, C.M., Govan, B.L., Ketheesan, N., Anti-mycobacterial function of macrophages is impaired in a diet induced model of type 2 diabetes (2017) Tuberculosis (Edinb, 102, pp. 47-54; Hodgson, K.A., Morris, J.L., Feterl, M.L., Govan, B.L., Ketheesan, N., Altered macrophage function is associated with severe Burkholderia pseudomallei infection in a murine model of type 2 diabetes (2011) Microbes Infect, 13 (14-15), pp. 1177-1184; Williams, N.L., Morris, J.L., Rush, C., Govan, B.L., Ketheesan, N., Impact of streptozotocin-induced diabetes on functional responses of dendritic cells and macrophages towards Burkholderia pseudomallei (2011) FEMS Immunol Med Microbiol, 61 (2), pp. 218-227; Li, K., Mouse-Adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice (2017) Proc Natl Acad Sci USA, 114 (15), pp. E3119-E3128","Frieman, M.B.685 West Baltimore Street, Room 380, United States; email: mfrieman@som.umaryland.edu",,"American Society for Clinical Investigation",23793708,,,"31550243","English","JCI Insight",Article,"Final",Open Access,Scopus,2-s2.0-85078200507 "Nelemans T., Kikkert M.","57211366260;6602465125;","Viral innate immune evasion and the pathogenesis of emerging RNA virus infections",2019,"Viruses","11","10", 961,"","",,1,"10.3390/v11100961","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073657444&doi=10.3390%2fv11100961&partnerID=40&md5=d5ca58ad0373b00317412f64962bd694","Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands","Nelemans, T., Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands; Kikkert, M., Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands","Positive-sense single-stranded RNA (+ssRNA) viruses comprise many (re-)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form the important first line of defence against these viruses. Given their genetic flexibility, these viruses have therefore developed multiple strategies to evade the innate immune response in order to optimize their replication capacity. Already many molecular mechanisms of innate immune evasion by +ssRNA viruses have been identified. However, research addressing the effect of host innate immune evasion on the pathology caused by viral infections is less prevalent in the literature, though very relevant and interesting. Since interferons have been implicated in inflammatory diseases and immunopathology in addition to their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. Therefore, this review discusses what is currently known about the role of interferons and host immune evasion in the pathogenesis of emerging coronaviruses, alphaviruses and flaviviruses. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Innate immune evasion; Positive-sense single-stranded RNA viruses; Type I and III interferons; Viral pathogenesis","deubiquitinase; gamma interferon; interferon; interferon induced helicase C domain containing protein 1; interferon regulatory factor 9; Janus kinase 1; myeloid differentiation factor 88; nucleotide binding oligomerization domain like receptor; retinoic acid inducible protein I; STAT1 protein; STAT2 protein; tetratricopeptide repeat protein; toll like receptor 7; tumor necrosis factor receptor associated factor 6; Alphavirus; clinical outcome; Coronavirinae; gene expression; genome; immune evasion; immunopathology; innate immunity; messenger RNA synthesis; nonhuman; open reading frame; positive-strand RNA virus; Review; RNA virus infection; virus load; virus pathogenesis","Brechot, C., Bryant, J., Endtz, H., Garry, R.F., Griffin, D.E., Lewin, S.R., Mercer, N., Vahlne, A., 2018 International meeting of the global virus network (2019) Antiviral Res., 163, pp. 140-148; https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(MERS-CoV), WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) (accessed on 16 September 2019); Akira, S., Uematsu, S., Takeuchi, O., Pathogen recognition and innate immunity (2006) Cell, 124, pp. 783-801; Ivashkiv, L.B., Donlin, L.T., Regulation of type i interferon responses (2014) Nat. Rev. Immunol., 14, pp. 36-49; McNab, F., Mayer-Barber, K., Sher, A., Wack, A., O'Garra, A., Type i interferons in infectious disease (2015) Nat. Rev. Immunol., 15, pp. 87-103; Hilleman, M.R., Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 14560-14566; Beachboard, D.C., Horner, S.M., Innate immune evasion strategies of DNA and RNA viruses (2016) Curr. Opin. Microbiol., 32, pp. 113-119; García-Sastre, A., Ten strategies of interferon evasion by viruses (2017) Cell Host. Microbe, 22, pp. 176-184; Harak, C., Lohmann, V., Ultrastructure of the replication sites of positive-strand RNA viruses (2015) Virology, 479, pp. 418-433; Overby, A.K., Popov, V.L., Niedrig, M., Weber, F., Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles (2010) J. Virol., 84, pp. 8470-8483; Chen, S., Wu, Z., Wang, M., Cheng, A., Innate immune evasion mediated by flaviviridae non-structural proteins (2017) Viruses, 9; Uno, N., Ross, T.M., Dengue virus and the host innate immune response (2018) Emerg. Microbes Infect., 7, p. 167; Gokhale, N.S., Vazquez, C., Horner, S.M., Hepatitis c virus strategies to evade antiviral responses (2014) Future Virol., 9, pp. 1061-1075; Kindler, E., Thiel, V., Weber, F., Interaction of sars and mers coronaviruses with the antiviral interferon response (2016) Adv. Virus Res., 96, pp. 219-243; Pardy, R.D., Valbon, S.F., Richer, M.J., Running interference: Interplay between zika virus and the host interferon response (2019) Cytokine, 119, pp. 7-15; Channappanavar, R., Perlman, S., Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology (2017) Semin. Immunopathol., 39, pp. 529-539; Li, S.F., Gong, M.J., Zhao, F.R., Shao, J.J., Xie, Y.L., Zhang, Y.G., Chang, H.Y., Type i interferons: Distinct biological activities and current applications for viral infection (2018) Cell Physiol. Biochem., 51, pp. 2377-2396; Onoguchi, K., Yoneyama, M., Takemura, A., Akira, S., Taniguchi, T., Namiki, H., Fujita, T., Viral infections activate types i and III interferon genes through a common mechanism (2007) J. Biol. Chem., 282, pp. 7576-7581; Egli, A., Santer, D.M., O'Shea, D., Tyrrell, D.L., Houghton, M., The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections (2014) Emerg. Microbes Infect., 3, p. e51; Sommereyns, C., Paul, S., Staeheli, P., Michiels, T., IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo (2008) PLoS Pathog., 4, p. e1000017; Lazear, H.M., Schoggins, J.W., Diamond, M.S., Shared and Distinct Functions of Type i and Type III Interferons (2019) Immunity, 50, pp. 907-923; Kotenko, S.V., Durbin, J.E., Contribution of type III interferons to antiviral immunity: Location, location, location (2017) J. Biol. Chem., 292, pp. 7295-7303; Jensen, S., Thomsen, A.R., Sensing of RNA viruses: A review of innate immune receptors involved in recognizing RNA virus invasion (2012) J. Virol., 86, pp. 2900-2910; Levy, D.E., Marié, I.J., Durbin, J.E., Induction and function of type i and III interferon in response to viral infection (2011) Curr. Opin. Virol., 1, pp. 476-486; Chow, K.T., Gale, M., Loo, Y.M., Rig-i and other RNA sensors in antiviral immunity (2018) Annu. Rev. Immunol., 36, pp. 667-694; Belgnaoui, S.M., Paz, S., Hiscott, J., Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter (2011) Curr. Opin. Immunol., 23, pp. 564-572; Uzé, G., Monneron, D., IL-28 and IL-29: Newcomers to the interferon family (2007) Biochimie, 89, pp. 729-734; Jilg, N., Lin, W., Hong, J., Schaefer, E.A., Wolski, D., Meixong, J., Goto, K., Fusco, D.N., Kinetic Differences in the induction of interferon stimulated genes by interferon-and interleukin 28B are altered by infection with hepatitis C virus (2014) Hepatology, 59, pp. 1250-1261; Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions (2011) Curr. Opin. Virol., 1, pp. 519-525; Tak, P.P., Firestein, G.S., NF-kappaB: A key role in inflammatory diseases (2001) J. Clin. Invest., 107, pp. 7-11; Pahl, H.L., Activators and target genes of Rel/NF-kappaB transcription factors (1999) Oncogene, 18, pp. 6853-6866; Liu, T., Zhang, L., Joo, D., Sun, S.C., Nf-b signaling in inflammation (2017) Signal Transduct. Target. Ther., 2; Issues consensus document on the epidemiology of SARS (2003) Wkly. Epidemiol. Rec., 78, pp. 373-375. , WHO; Drosten, C., Günther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med, 348, pp. 1953-1966; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Gorbalenya, A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage (2003) J. Mol. Biol., 331, pp. 991-1004; Liu, D.X., Fung, T.S., Chong, K.K., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res., 109, pp. 97-109; Haagmans, B.L., Kuiken, T., Martina, B.E., Fouchier, R.A., Rimmelzwaan, G.F., Van Amerongen, G., Van Riel, D., Chan, K.H., Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques (2004) Nat. Med., 10, pp. 290-293; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated type i interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in sars-cov-infected mice (2016) Cell Host Microbe, 19, pp. 181-193; Falzarano, D., DeWit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-2b and ribavirin improves outcome in mers-cov-infected rhesus macaques (2013) Nat. Med., 19, pp. 1313-1317; Chan, J.F., Yao, Y., Yeung, M.L., Deng, W., Bao, L., Jia, L., Li, F., Yu, P., Treatment with lopinavir/ritonavir or interferon-1b improves outcome of mers-cov infection in a nonhuman primate model of common marmoset (2015) J. Infect. Dis., 212, pp. 1904-1913; Kumaki, Y., Ennis, J., Rahbar, R., Turner, J.D., Wandersee, M.K., Smith, A.J., Bailey, K.W., Li, J.K., Single-dose intranasal administration with mdef201 (adenovirus vectored mouse interferon-) confers protection from mortality in a lethal sars-cov balb/c mouse model (2011) Antiviral Res., 89, pp. 75-82; Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Ward, S., Wolff, B., Lho, H., Pham, D.H., Chang, M., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: Apreliminary study (2003) JAMA, 290, pp. 3222-3228; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study (2014) Lancet Infect. Dis., 14, pp. 1090-1095; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., Mushtaq, A., IFN-2a or IFN-1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J. Antimicrob. Chemother., 70, pp. 2129-2132; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) Int. J. Infect. Dis., 20, pp. 42-46; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Kojan, S., Assiri, A.M., Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-1b (MIRACLE trial): Study protocol for a randomized controlled trial (2018) Trials, 19, p. 81; Smits, S.L., De Lang, A., Van Den Brand, J.M., Leijten, L.M., Van Ijcken, W.F., Eijkemans, M.J., Van Amerongen, G., Osterhaus, A.D., Exacerbated innate host response to sars-cov in aged non-human primates (2010) PLoS Pathog., 6, p. e1000756; Yu, S.Y., Hu, Y.W., Liu, X.Y., Xiong, W., Zhou, Z.T., Yuan, Z.H., Gene expression profiles in peripheral blood mononuclear cells of SARS patients (2005) World J. Gastroenterol., 11, pp. 5037-5043; Reghunathan, R., Jayapal, M., Hsu, L.Y., Chng, H.H., Tai, D., Leung, B.P., Melendez, A.J., Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome (2005) BMC Immunol., 6, p. 2; Faure, E., Poissy, J., Goffard, A., Fournier, C., Kipnis, E., Titecat, M., Bortolotti, P., Dessein, R., Distinct immune response in two mers-cov-infected patients: Can we go from bench to bedside? (2014) PLoS ONE, 9, p. e88716; Hogan, R.J., Gao, G., Rowe, T., Bell, P., Flieder, D., Paragas, J., Kobinger, G.P., Boyer, J., Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1 (2004) J. Virol., 78, pp. 11416-11421; Frieman, M.B., Chen, J., Morrison, T.E., Whitmore, A., Funkhouser, W., Ward, J.M., Lamirande, E.W., Subbarao, K., SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism (2010) PLoS Pathog., 6, p. e1000849; Mordstein, M., Neugebauer, E., Ditt, V., Jessen, B., Rieger, T., Falcone, V., Sorgeloos, F., Kochs, G., Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections (2010) J. Virol., 84, pp. 5670-5677; Mahlakõiv, T., Ritz, D., Mordstein, M., DeDiego, M.L., Enjuanes, L., Müller, M.A., Drosten, C., Staeheli, P., Combined action of type i and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread (2012) J. Gen. Virol., 93, pp. 2601-2605; Totura, A.L., Whitmore, A., Agnihothram, S., Schäfer, A., Katze, M.G., Heise, M.T., Baric, R.S., Toll-like receptor 3 signaling via trif contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) MBio, 6, pp. e00638-e00715; Sheahan, T., Morrison, T.E., Funkhouser, W., Uematsu, S., Akira, S., Baric, R.S., Heise, M.T., Myd88 is required for protection from lethal infection with a mouse-adapted sars-cov (2008) PLoS Pathog., 4, p. e1000240; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Gale, M.J., Baric, R.S., McCray, P.B., Rapid generation of a mouse model for Middle East respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 4970-4975; Nicholls, J.M., Poon, L.L., Lee, K.C., Ng, W.F., Lai, S.T., Leung, C.Y., Chu, C.M., Lim, W., Lung pathology of fatal severe acute respiratory syndrome (2003) Lancet, 361, pp. 1773-1778; Lo, A.W., Tang, N.L., To, K.F., How the sars coronavirus causes disease: Host or organism? (2006) J. Pathol., 208, pp. 142-151; Wong, C.K., Lam, C.W., Wu, A.K., Ip, W.K., Lee, N.L., Chan, I.H., Lit, L.C., Chung, S.S., Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome (2004) Clin. Exp. Immunol., 136, pp. 95-103; Chien, J.Y., Hsueh, P.R., Cheng, W.C., Yu, C.J., Yang, P.C., Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome (2006) Respirology, 11, pp. 715-722; Huang, K.J., Su, I.J., Theron, M., Wu, Y.C., Lai, S.K., Liu, C.C., Lei, H.Y., An interferon-gamma-related cytokine storm in SARS patients (2005) J. Med. Virol., 75, pp. 185-194; Cameron, M.J., Ran, L., Xu, L., Danesh, A., Bermejo-Martin, J.F., Cameron, C.M., Muller, M.P., Poutanen, S.M., Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome (2007) J. Virol., 81, pp. 8692-8706; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Shin, H.M., Kim, J.H., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci. Rep., 6, p. 25359; Kim, E.S., Choe, P.G., Park, W.B., Oh, H.S., Kim, E.J., Nam, E.Y., Na, S.H., Bang, J.H., Clinical progression and cytokine profiles of middle east respiratory syndrome coronavirus infection (2016) J. Korean Med. Sci., 31, pp. 1717-1725; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Genrich, G.L., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog., 3, p. e5; DeDiego, M.L., Nieto-Torres, J.L., Regla-Nava, J.A., Jimenez-Guardeño, J.M., Fernandez-Delgado, R., Fett, C., Castaño-Rodriguez, C., Enjuanes, L., Inhibition of NF-B-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival (2014) J. Virol., 88, pp. 913-924; DeWilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; Zielecki, F., Weber, M., Eickmann, M., Spiegelberg, L., Zaki, A.M., Matrosovich, M., Becker, S., Weber, F., Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 5300-5304; Nieto-Torres, J.L., DeDiego, M.L., Verdiá-Báguena, C., Jimenez-Guardeño, J.M., Regla-Nava, J.A., Fernandez-Delgado, R., Castaño-Rodriguez, C., Aguilella, V.M., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis (2014) PLoS Pathog., 10, p. e1004077; Kopecky-Bromberg, S.A., Martínez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists (2007) J. Virol., 81, pp. 548-557; Zhao, J., Falcón, A., Zhou, H., Netland, J., Enjuanes, L., Breña, P.P., Perlman, S., Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication (2009) J. Virol., 83, pp. 2368-2373; Dediego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology, 376, pp. 379-389; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J. Virol., 79, pp. 14909-14922; Schaecher, S.R., Stabenow, J., Oberle, C., Schriewer, J., Buller, R.M., Sagartz, J.E., Pekosz, A., An immunosuppressed Syrian golden hamster model for SARS-CoV infection (2008) Virology, 380, pp. 312-321; Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L., Graham, R.L., McAnarney, E.T., Beall, A., Mers-cov accessory orfs play key role for infection and pathogenesis (2017) MBio, 8; Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C., Baric, R.S., Amouse model for MERS coronavirus-induced acute respiratory distress syndrome (2016) Nat. Microbiol., 2, p. 16226; Thornbrough, J.M., Jha, B.K., Yount, B., Goldstein, S.A., Li, Y., Elliott, R., Sims, A.C., Weiss, S.R., Middle east respiratory syndrome coronavirus ns4b protein inhibits host rnase l activation (2016) MBio, 7, p. e00258; Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S.A., Palese, P., Baric, R.S., Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane (2007) J. Virol., 81, pp. 9812-9824; Fehr, A.R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D.K., Perlman, S., The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection (2016) MBio, 7; Mielech, A.M., Chen, Y., Mesecar, A.D., Baker, S.C., Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deisgylating activities (2014) Virus Res., 194, pp. 184-190; Knaap, R.C.M., Fernández-Delgado, R., Dalebout, T.J., Oreshkova, N., Bredenbeek, P.J., Enjuanes, L., Sola, I., Kikkert, M., (2019) The Deubiquitinating Activity of Middle East Respiratory Syndrome Coronavirus Papain-like Protease Delays the Innate Immune Response and Enhances Virulence in A Mouse Model, , bioRxiv; Menachery, V.D., Yount, B.L., Josset, L., Gralinski, L.E., Scobey, T., Agnihothram, S., Katze, M.G., Baric, R.S., Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity (2014) J. Virol., 88, pp. 4251-4264; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., Graham, R.L., Cockrell, A.S., Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) MSphere, 2; Morales, L., Oliveros, J.C., Fernandez-Delgado, R., TenOever, B.R., Enjuanes, L., Sola, I., Sars-cov-encoded small rnas contribute to infection-associated lung pathology (2017) Cell Host Microbe, 21, pp. 344-355; Cunha, R.V.D., Trinta, K.S., Chikungunya virus: Clinical aspects and treatment-A review (2017) Mem. Inst. Oswaldo Cruz, 112, pp. 523-531; Galán-Huerta, K.A., Rivas-Estilla, A.M., Fernández-Salas, I., Farfan-Ale, J.A., Ramos-Jiménez, J., Chikungunya virus: A general overview (2015) Medicina Universitaria, 17, pp. 175-183; Leung, J.Y., Ng, M.M., Chu, J.J., Replication of alphaviruses: A review on the entry process of alphaviruses into cells (2011) Adv. Virol., 2011, p. 249640; Schilte, C., Couderc, T., Chretien, F., Sourisseau, M., Gangneux, N., Guivel-Benhassine, F., Kraxner, A., Michault, A., Type i IFN controls chikungunya virus via its action on nonhematopoietic cells (2010) J. Exp. Med., 207, pp. 429-442; Gardner, J., Anraku, I., Le, T.T., Larcher, T., Major, L., Roques, P., Schroder, W.A., Suhrbier, A., Chikungunya virus arthritis in adult wild-type mice (2010) J. Virol., 84, pp. 8021-8032; Labadie, K., Larcher, T., Joubert, C., Mannioui, A., Delache, B., Brochard, P., Guigand, L., Verrier, B., Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages (2010) J. Clin. Invest., 120, pp. 894-906; Chow, A., Her, Z., Ong, E.K., Chen, J.M., Dimatatac, F., Kwek, D.J., Barkham, T., Leo, Y.S., Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor (2011) J. Infect. Dis., 203, pp. 149-157; Ng, L.F., Chow, A., Sun, Y.J., Kwek, D.J., Lim, P.L., Dimatatac, F., Ng, L.C., Her, Z., Il-1beta, il-6, and rantes as biomarkers of chikungunya severity (2009) PLoS ONE, 4, p. e4261; Teng, T.S., Kam, Y.W., Lee, B., Hapuarachchi, H.C., Wimal, A., Ng, L.C., Ng, L.F., A systematic meta-analysis of immune signatures in patients with acute chikungunya virus infection (2015) J. Infect. Dis., 211, pp. 1925-1935; Messaoudi, I., Vomaske, J., Totonchy, T., Kreklywich, C.N., Haberthur, K., Springgay, L., Brien, J.D., Streblow, D.N., Chikungunya virus infection results in higher and persistent viral replication in aged rhesus macaques due to defects in anti-viral immunity (2013) PLoS Negl. Trop. Dis., 7, p. e2343; Ng, L.F.P., Immunopathology of chikungunya virus infection: Lessons learned from patients and animal models (2017) Annu. Rev. Virol., 4, pp. 413-427; Her, Z., Teng, T.S., Tan, J.J., Teo, T.H., Kam, Y.W., Lum, F.M., Lee, W.W., Andiappan, A.K., Loss of tlr3 aggravates chikv replication and pathology due to an altered virus-specific neutralizing antibody response (2015) EMBO Mol. Med., 7, pp. 24-41; Rudd, P.A., Wilson, J., Gardner, J., Larcher, T., Babarit, C., Le, T.T., Anraku, I., Gale, M., Interferon response factors 3 and 7 protect against Chikungunya virus hemorrhagic fever and shock (2012) J. Virol., 86, pp. 9888-9898; Gardner, C.L., Burke, C.W., Higgs, S.T., Klimstra, W.B., Ryman, K.D., Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate (2012) Virology, 425, pp. 103-112; Couderc, T., Chrétien, F., Schilte, C., Disson, O., Brigitte, M., Guivel-Benhassine, F., Touret, Y., Schuffenecker, I., A mouse model for Chikungunya: Young age and inefficient type-I interferon signaling are risk factors for severe disease (2008) PLoS Pathog., 4, p. e29; Teng, T.S., Foo, S.S., Simamarta, D., Lum, F.M., Teo, T.H., Lulla, A., Yeo, N.K., Leo, Y.S., Viperin restricts chikungunya virus replication and pathology (2012) J. Clin. Invest., 122, pp. 4447-4460; Poddar, S., Hyde, J.L., Gorman, M.J., Farzan, M., Diamond, M.S., The interferon-stimulated gene ifitm3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses (2016) J. Virol., 90, pp. 8780-8794; Clavarino, G., Cláudio, N., Couderc, T., Dalet, A., Judith, D., Camosseto, V., Schmidt, E.K., Gatti, E., Induction of gadd34 is necessary for dsrna-dependent interferon-production and participates in the control of chikungunya virus infection (2012) PLoS Pathog., 8, p. e1002708; Werneke, S.W., Schilte, C., Rohatgi, A., Monte, K.J., Michault, A., Arenzana-Seisdedos, F., Vanlandingham, D.L., Albert, M.L., Isg15 is critical in the control of chikungunya virus infection independent of ube1l mediated conjugation (2011) PLoS Pathog., 7, p. e1002322; Hawman, D.W., Stoermer, K.A., Montgomery, S.A., Pal, P., Oko, L., Diamond, M.S., Morrison, T.E., Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response (2013) J. Virol., 87, pp. 13878-13888; Fros, J.J., Pijlman, G.P., Alphavirus infection: Host cell shut-off and inhibition of antiviral responses (2016) Viruses, 8; White, L.K., Sali, T., Alvarado, D., Gatti, E., Pierre, P., Streblow, D., Defilippis, V.R., Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shuto (2011) J. Virol., 85, pp. 606-620; Frolova, E.I., Fayzulin, R.Z., Cook, S.H., Griffin, D.E., Rice, C.M., Frolov, I., Roles of nonstructural protein nsP2 and Alpha/Beta interferons in determining the outcome of Sindbis virus infection (2002) J. Virol., 76, pp. 11254-11264; Chan, Y.H., Teo, T.H., Utt, A., Tan, J.J., Amrun, S.N., Abu Bakar, F., Yee, W.X., Lee, B., Mutating chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate (2019) EMBO Mol. Med., 11, p. e10092; Fernandez-Garcia, M.D., Mazzon, M., Jacobs, M., Amara, A., Pathogenesis of flavivirus infections: Using and abusing the host cell (2009) Cell Host Microbe, 5, pp. 318-328; Mustafa, M.S., Rasotgi, V., Jain, S., Gupta, V., Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control (2015) Med. J. Armed Forces India, 71, pp. 67-70; Guzman, M.G., Harris, E., Dengue (2015) Lancet, 385, pp. 453-465; Paixão, E.S., Teixeira, M.G., Rodrigues, L.C., Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases (2018) BMJ Glob. Health, 3, p. e000530; Noorbakhsh, F., Abdolmohammadi, K., Fatahi, Y., Dalili, H., Rasoolinejad, M., Rezaei, F., Salehi-Vaziri, M., Zaim, M., Zika virus infection, basic and clinical aspects: A review article (2019) Iran J. Public Health, 48, pp. 20-31; Da Silva, M.H.M., Moises, R.N.C., Alves, B.E.B., Pereira, H.W.B., De Paiva, A.A.P., Morais, I.C., Nascimento, Y.M., Nascimento, M.S.L., Innate immune response in patients with acute Zika virus infection (2019) Med. Microbiol. Immunol.; Lum, F.M., Lye, D.C.B., Tan, J.J.L., Lee, B., Chia, P.Y., Chua, T.K., Amrun, S.N., Ling, W.P., Longitudinal study of cellular and systemic cytokine signatures to define the dynamics of a balanced immune environment during disease manifestation in zika virus-infected patients (2018) J. Infect. Dis., 218, pp. 814-824; Kam, Y.W., Leite, J.A., Lum, F.M., Tan, J.J.L., Lee, B., Judice, C.C., Teixeira, D.A.T., Angerami, R., Specific biomarkers associated with neurological complications and congenital central nervous system abnormalities from zika virus-infected patients in Brazil (2017) J. Infect. Dis., 216, pp. 172-181; Her, Z., Kam, Y.W., Gan, V.C., Lee, B., Thein, T.L., Tan, J.J., Lee, L.K., Rénia, L., Severity of plasma leakage is associated with high levels of interferon-inducible protein 10, hepatocyte growth factor, matrix metalloproteinase 2 (mmp-2), and mmp-9 during dengue virus infection (2017) J. Infect. Dis., 215, pp. 42-51; Zhao, L., Huang, X., Hong, W., Qiu, S., Wang, J., Yu, L., Zeng, Y., Zhang, F., Slow resolution of inflammation in severe adult dengue patients (2016) BMC Infect. Dis., 16, p. 291; Pandey, N., Jain, A., Garg, R.K., Kumar, R., Agrawal, O.P., Lakshmana Rao, P.V., Serum levels of IL-8, IFN, IL-10, and TGF and their gene expression levels in severe and non-severe cases of dengue virus infection (2015) Arch. Virol., 160, pp. 1463-1475; Malavige, G.N., Gomes, L., Alles, L., Chang, T., Salimi, M., Fernando, S., Nanayakkara, K.D., Ogg, G.S., Serum IL-10 as a marker of severe dengue infection (2013) BMC Infect. Dis., 13, p. 341; Butthep, P., Chunhakan, S., Yoksan, S., Tangnararatchakit, K., Chuansumrit, A., Alteration of cytokines and chemokines during febrile episodes associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever (2012) Pediatr. Infect. Dis. J., 31, pp. e232-e238; Rossi, S.L., Tesh, R.B., Azar, S.R., Muruato, A.E., Hanley, K.A., Auguste, A.J., Langsjoen, R.M., Weaver, S.C., Characterization of a novel murine model to study zika virus (2016) Am. J. Trop. Med. Hyg., 94, pp. 1362-1369; Dowall, S.D., Graham, V.A., Rayner, E., Atkinson, B., Hall, G., Watson, R.J., Bosworth, A., Hewson, R., A susceptible mouse model for zika virus infection (2016) PLoS Negl. Trop. Dis., 10, p. e0004658; Aliota, M.T., Caine, E.A., Walker, E.C., Larkin, K.E., Camacho, E., Osorio, J.E., Characterization of lethal zika virus infection in ag129 mice (2016) PLoS Negl. Trop. Dis., 10, p. e0004682; Julander, J.G., Siddharthan, V., Small-animal models of zika virus (2017) J. Infect. Dis., 216, pp. S919-S927; Shresta, S., Kyle, J.L., Snider, H.M., Basavapatna, M., Beatty, P.R., Harris, E., Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T-and B-cell-dependent immunity are less critical (2004) J. Virol., 78, pp. 2701-2710; Johnson, A.J., Roehrig, J.T., New mouse model for dengue virus vaccine testing (1999) J. Virol., 73, pp. 783-786; Shresta, S., Sharar, K.L., Prigozhin, D.M., Beatty, P.R., Harris, E., Murine model for dengue virus-induced lethal disease with increased vascular permeability (2006) J. Virol., 80, pp. 10208-10217; Orozco, S., Schmid, M.A., Parameswaran, P., Lachica, R., Henn, M.R., Beatty, R., Harris, E., Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor (2012) J. Gen. Virol., 93, pp. 2152-2157; Smith, D.R., Hollidge, B., Daye, S., Zeng, X., Blancett, C., Kuszpit, K., Bocan, T., Minogue, T., Neuropathogenesis of zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type i interferon (2017) PLoS Negl. Trop. Dis., 11, p. e0005296; Khan, S., Woodru, E.M., Trapecar, M., Fontaine, K.A., Ezaki, A., Borbet, T.C., Ott, M., Sanjabi, S., Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication (2016) J. Exp. Med., 213, pp. 2913-2929; Lazear, H.M., Govero, J., Smith, A.M., Platt, D.J., Fernandez, E., Miner, J.J., Diamond, M.S., A mouse model of zika virus pathogenesis (2016) Cell Host Microbe, 19, pp. 720-730; Christofferson, R.C., McCracken, M.K., Johnson, A.M., Chisenhall, D.M., Mores, C.N., Development of a transmission model for dengue virus (2013) Virol. J., 10, p. 127; Piret, J., Carbonneau, J., Rhéaume, C., Baz, M., Boivin, G., Predominant role of IPS-1 over TRIF adaptor proteins in early innate immune response against Zika virus in mice (2018) J. Gen. Virol., 99, pp. 209-218; Perry, S.T., Prestwood, T.R., Lada, S.M., Benedict, C.A., Shresta, S., Cardif-mediated signaling controls the initial innate response to dengue virus in vivo (2009) J. Virol., 83, pp. 8276-8281; Chen, S.T., Lin, Y.L., Huang, M.T., Wu, M.F., Cheng, S.C., Lei, H.Y., Lee, C.K., Hsieh, S.L., CLEC5A is critical for dengue-virus-induced lethal disease (2008) Nature, 453, pp. 672-676; Sariol, C.A., Martínez, M.I., Rivera, F., Rodríguez, I.V., Pantoja, P., Abel, K., Arana, T., White, L.J., Decreased dengue replication and an increased anti-viral humoral response with the use of combined Toll-like receptor 3 and 7/8 agonists in macaques (2011) PLoS ONE, 6, p. e19323; Weisblum, Y., Oiknine-Djian, E., Vorontsov, O.M., Haimov-Kochman, R., Zakay-Rones, Z., Meir, K., Shveiky, D., Roseman, M., Zika virus infects early-and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface (2017) J. Virol., 91; Chen, J., Liang, Y., Yi, P., Xu, L., Hawkins, H.K., Rossi, S.L., Soong, L., Sun, J., Outcomes of congenital zika disease depend on timing of infection and maternal-fetal interferon action (2017) Cell Rep., 21, pp. 1588-1599; Miner, J.J., Cao, B., Govero, J., Smith, A.M., Fernandez, E., Cabrera, O.H., Garber, C., Noguchi, K.K., Zika virus infection during pregnancy in mice causes placental damage and fetal demise (2016) Cell, 165, pp. 1081-1091; Yockey, L.J., Jurado, K.A., Arora, N., Millet, A., Rakib, T., Milano, K.M., Hastings, A.K., Horvath, T.L., Type i interferons instigate fetal demise after zika virus infection (2018) Sci. Immunol., 3; Bayer, A., Lennemann, N.J., Ouyang, Y., Bramley, J.C., Morosky, S., Marques, E.T., Cherry, S., Coyne, C.B., Type III interferons produced by human placental trophoblasts confer protection against zika virus infection (2016) Cell Host Microbe, 19, pp. 705-712; Corry, J., Arora, N., Good, C.A., Sadovsky, Y., Coyne, C.B., Organotypic models of type III interferon-mediated protection from zika virus infections at the maternal-fetal interface (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 9433-9438; Jagger, B.W., Miner, J.J., Cao, B., Arora, N., Smith, A.M., Kovacs, A., Mysorekar, I.U., Diamond, M.S., Gestational stage and ifn-signaling regulate zikv infection in utero (2017) Cell Host Microbe, 22, pp. 366-376; Beatty, P.R., Puerta-Guardo, H., Killingbeck, S.S., Glasner, D.R., Hopkins, K., Harris, E., Dengue virus ns1 triggers endothelial permeability and vascular leak that is prevented by ns1 vaccination (2015) Sci. Transl. Med., 7, p. 304ra141; Ashour, J., Laurent-Rolle, M., Shi, P.Y., García-Sastre, A., Ns5 of dengue virus mediates stat2 binding and degradation (2009) J. Virol., 83, pp. 5408-5418; Ashour, J., Morrison, J., Laurent-Rolle, M., Belicha-Villanueva, A., Plumlee, C.R., Bernal-Rubio, D., Williams, K.L., Schindler, C., Mouse stat2 restricts early dengue virus replication (2010) Cell Host Microbe, 8, pp. 410-421; Ding, Q., Gaska, J.M., Douam, F., Wei, L., Kim, D., Balev, M., Heller, B., Ploss, A., Species-specific disruption of sting-dependent antiviral cellular defenses by the zika virus ns2b3 protease (2018) Proc. Natl. Acad. Sci. USA, 115, pp. E6310-E6318; Zheng, Y., Liu, Q., Wu, Y., Ma, L., Zhang, Z., Liu, T., Jin, S., Cui, J., Zika virus elicits inflammation to evade antiviral response by cleaving cgas via ns1-caspase-1 axis (2018) EMBO J., 37; Xia, H., Luo, H., Shan, C., Muruato, A.E., Nunes, B.T.D., Medeiros, D.B.A., Zou, J., Vasconcelos, P.F.C., An evolutionary ns1 mutation enhances zika virus evasion of host interferon induction (2018) Nat. Commun., 9, p. 414","Kikkert, M.; Department of Medical Microbiology, Leiden University Medical CenterNetherlands; email: m.kikkert@lumc.nl",,"MDPI AG",19994915,,,"31635238","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85073657444 "Cheng J., Zhao Y., Xu G., Zhang K., Jia W., Sun Y., Zhao J., Xue J., Hu Y., Zhang G.","56336769800;56337056300;57209229025;57208738626;57204458625;57211195802;57161191500;50062099200;15044694100;55738965300;","The S2 subunit of QX-type infectious bronchitis coronavirus spike protein is an essential determinant of neurotropism",2019,"Viruses","11","10", 972,"","",,2,"10.3390/v11100972","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074140882&doi=10.3390%2fv11100972&partnerID=40&md5=0525a78f15fc652df7a698cccd40a0b2","Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China","Cheng, J., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Zhao, Y., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Xu, G., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Zhang, K., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Jia, W., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sun, Y., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Zhao, J., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Xue, J., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Hu, Y., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Zhang, G., Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China","Some coronaviruses (CoVs) have an extra furin cleavage site (RRKR/S, furin-S2' site) upstream of the fusion peptide in the spike protein, which plays roles in virion adsorption and fusion. Mutation of the S2' site of QX genotype (QX-type) infectious bronchitis virus (IBV) spike protein (S) in a recombinant virus background results in higher pathogenicity, pronounced neural symptoms and neurotropism when compared with conditions in wild-type IBV (WT-IBV) infected chickens. In this study, we present evidence suggesting that recombinant IBV with a mutant S2' site (furin-S2' site) leads to higher mortality. Infection with mutant IBV induces severe encephalitis and breaks the blood-brain barrier. The results of a neutralization test and immunoprotection experiment show that an original serum and vaccine can still provide effective protection in vivo and in vitro. This is the first demonstration of IBV-induced neural symptoms in chickens with encephalitis and the furin-S2' site as a determinant of neurotropism. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Coronavirus; Encephalitis; Furin-S2' site; Infectious bronchitis virus; Neurotropism; QXtype","virus spike protein; animal tissue; Article; Avian infectious bronchitis virus; brain tissue; chicken; controlled study; Coronavirinae; electroporation; embryo; genome; genotype; growth curve; histopathology; hyperplasia; ID50; immunohistochemistry; kidney interstitium; microglia; neurotropism; nonhuman; pathogenicity; trachea tissue; virus recombinant","Woo, P.C.Y., Lau, S.K.P., Huang, Y., Yuen, K.Y., Coronavirus diversity, phylogeny and interspecies jumping (2009) Exp. Biol. Med., 234, pp. 1117-1127; Jackwood, M.W., Review of infectious bronchitis virus around the world (2012) Avian Dis., 56, pp. 634-641; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Hofmann-Winkler, H., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87, pp. 6150-6160; Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Cheung, M.T., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Sun, N., Grzybicki, D., Castro, R.F., Murphy, S., Perlman, S., Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus (1995) Virology, 213, pp. 482-493; Bergmann, C.C., Lane, T.E., Stohlman, S.A., Coronavirus infection of the central nervous system: Host-virus stand-o (2006) Nat. Rev. Microbiol., 4, pp. 121-132; Arbour, N., Côté, G., Lachance, C., Tardieu, M., Cashman, N.R., Talbot, P.J., Acute and persistent infection of human neural cell lines by human coronavirus OC43 (1999) J. Virol., 73, pp. 3338-3350; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus OC43: Genetic stability and neuroinvasion (2004) J. Virol., 78, pp. 8824-8834; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus oc43 infection induces chronic encephalitis leading to disabilities in balb/c mice (2006) Virology, 349, pp. 335-346; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by human respiratory coronaviruses (2002) J. Virol., 74, pp. 8913-8921; Tecchio, C., Micheletti, A., Cassatella, M.A., Neutrophil-derived cytokines: Facts beyond expression (2014) Front. Immunol., 5, p. 508; Cheng, J., Huo, C., Zhao, J., Liu, T., Li, X., Yan, S., Pathogenicity differences between QX-like and Mass-type infectious bronchitis viruses (2018) Vet. Microbiol., 213, pp. 129-135; Yan, S., Liu, X., Zhao, J., Xu, G., Zhao, Y., Zhang, G., Analysis of antigenicity and pathogenicity reveals major differences among QX-like infectious bronchitis viruses and other serotypes (2017) Vet. Microbiol., 203, pp. 167-173; Xu, G., Cheng, J., Ma, S., Jia, W., Yan, S., Zhang, G., Pathogenicity differences between a newly emerged TW-like strain and a prevalent QX-like strain of infectious bronchitis virus (2016) Vet. Microbiol., 227, pp. 20-28; Zhong, Q., Hu, Y.X., Jin, J.H., Zhao, Y., Zhao, J., Zhang, G.Z., Pathogenicity of virulent infectious bronchitis virus isolate YN on hen ovary and oviduct (2016) Vet. Microbiol., 193, pp. 100-105; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 65, pp. 193-292; De Haan, C.A.M., Rottier, P.J.M., Molecular interactions in the assembly of coronaviruses (2005) Adv. Virus Res., 64, pp. 165-230; Bosch, B.J., Van Der Zee, R., De Haan, C.A.M., Rottier, P.J.M., The coronavirus spike protein is a class i virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Maier, H.J., Bickerton, E., Britton, P., (2015) Coronaviruses: Methods and Protocols, , Humana Press: Totowa, NJ, USA; Bosch, B.J., Bartelink, W., Rottier, P.J.M., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class i fusion protein upstream of rather than adjacent to the fusion peptide (2008) J. Virol., 82, pp. 8887-8890; Burkard, C., Verheije, M.H., Wicht, O., Van Kasteren, S.I., Van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., De Haan, C.A., Coronavirus cell entry occurs through the mndo-/lysosomal pathway in a proteolysis-dependent manner (2014) PLoS Pathog., 10, p. e1004502; Alonso-Caplen, F.V., Matsuoka, Y., Wilcox, G.E., Compans, R.W., Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin (1984) Virus Res., 1, pp. 153-167; Stevenson-Leggett, P., Bickerton, E., Britton, P., Armesto, M., Maier, H.J., The S2 subunit of infectious bronchitis virus beaudette is a determinant of cellular tropism (2018) J. Virol., 92, p. e01044; Bickerton, E., Dowgier, G., Britton, P., Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: Potential for a new generation of vaccines that replicate in Vero cells (2018) J. Gen. Virol., 99, pp. 1681-1685; Feng, J., Hu, Y., Ma, Z., Yu, Q., Zhao, J., Liu, X., Zhang, G., Virulent avian infectious bronchitis virus, People's Republic of China (2012) Emerg. Infect. Dis., 18, pp. 1994-2001; Yan, S., Zhao, J., Xie, D., Huang, X., Cheng, J., Guo, Y., Liu, C., Zhang, G., Attenuation, safety, and efficacy of a QX-like infectious bronchitis virus serotype vaccine (2018) Vaccine, 36, pp. 1880-1886; Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., Reverse genetics system for the avian coronavirus infectious bronchitis virus reverse genetics system for the avian coronavirus infectious bronchitis virus (2001) J. Virol., 75, pp. 12359-12369; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Zhao, Y., Cheng, J.L., Liu, X.Y., Zhao, J., Hu, Y.X., Zhang, G.Z., Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine (2015) Vet. Microbiol., 180, pp. 49-58; Kawase, M., Shirato, K., Matsuyama, S., Taguchi, F., Protease-mediated entry via the endosome of human coronavirus 229E (2008) J. Virol., 83, pp. 712-721; Lane, T.E., Asensio, V.C., Yu, N., Paoletti, A.D., Campbell, I.L., Buchmeier, M.J., Dynamic regulation of alpha-and beta-chemokine ex-pression in the central nervous system during mouse hepatitis virus-induced demyelinating disease (1998) J. Immunol., 160, pp. 970-978; Hosking, M.P., Liu, L., Ransoho, R.M., Lane, T.E., A protective role for ELR+ chemokines during acute viral encephalomyelitis (2009) PLoS Pathog., 5, p. e1000648; Le Coupanec, A., Desforges, M., Meessen-Pinard, M., Dubé, M., Day, R., Seidah, N.G., Talbot, P.J., Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system (2015) PLoS Pathog., 11, p. e1005261; Jacomy, H., St-Jean, J.R., Brison, E., Marceau, G., Desforges, M., Talbot, P.J., Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination (2010) J. Neurovirol., 16, pp. 279-293; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog., 14, p. e1007009","Zhang, G.; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural UniversityChina; email: zhanggz@cau.edu.cn",,"MDPI AG",19994915,,,"31652591","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85074140882 "Habib A.M.G., Ali M.A.E., Zouaoui B.R., Taha M.A.H., Mohammed B.S., Saquib N.","57211392319;57211390945;57211385692;57211398519;57211391791;6508358421;","Clinical outcomes among hospital patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection",2019,"BMC Infectious Diseases","19","1", 870,"","",,,"10.1186/s12879-019-4555-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073724637&doi=10.1186%2fs12879-019-4555-5&partnerID=40&md5=c3c7af678535b4656d821a7743ac78e7","College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Bukayriah, Al-Qassim, 51941, Saudi Arabia; Buraidah Central Hospital, Buraidah, Saudi Arabia","Habib, A.M.G., College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Bukayriah, Al-Qassim, 51941, Saudi Arabia; Ali, M.A.E., College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Bukayriah, Al-Qassim, 51941, Saudi Arabia; Zouaoui, B.R., College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Bukayriah, Al-Qassim, 51941, Saudi Arabia; Taha, M.A.H., College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Bukayriah, Al-Qassim, 51941, Saudi Arabia; Mohammed, B.S., Buraidah Central Hospital, Buraidah, Saudi Arabia; Saquib, N., College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Bukayriah, Al-Qassim, 51941, Saudi Arabia","Background: Mortality is high among patients with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection. We aimed to determine hospital mortality and the factors associated with it in a cohort of MERS-CoV patients. Methods: We reviewed hospital records of confirmed cases (detection of virus by polymerase chain reaction from respiratory tract samples) of MERS-CoV patients (n = 63) admitted to Buraidah Central Hospital in Al-Qassim, Saudi Arabia between 2014 and 2017. We abstracted data on demography, vital signs, associated conditions presented on admission, pre-existing chronic diseases, treatment, and vital status. Bi-variate comparisons and multiple logistic regressions were the choice of data analyses. Results: The mean age was 60 years (SD = 18.2); most patients were male (74.6%) and Saudi citizens (81%). All but two patients were treated with Ribavirin plus Interferon. Hospital mortality was 25.4%. Patients who were admitted with septic shock and/or organ failure were significantly more likely to die than patients who were admitted with pneumonia and/or acute respiratory distress syndrome (OR = 47.9, 95% CI = 3.9, 585.5, p-value 0.002). Age, sex, and presence of chronic conditions were not significantly associated with mortality. Conclusion: Hospital mortality was 25%; septic shock/organ failure at admittance was a significant predictor of mortality. © 2019 The Author(s).","Interferon alpha; MERS-CoV; Mortality; Ribavirin","antivirus agent; interferon plus ribavirin; unclassified drug; alpha interferon; ribavirin; abdominal pain; adult; adult respiratory distress syndrome; Article; breathing rate; clinical outcome; cohort analysis; controlled study; diarrhea; diastolic blood pressure; disease association; female; heart rate; high risk patient; hospital patient; human; length of stay; major clinical study; male; middle aged; Middle East respiratory syndrome; mortality rate; mortality risk; multiple organ failure; pneumonia; polymerase chain reaction; prognosis; risk assessment; risk factor; Saudi Arabia; septic shock; septicemia; survival analysis; systolic blood pressure; virus detection; aged; complication; Coronavirus infection; epidemiology; genetics; hospital mortality; hospital patient; Middle East respiratory syndrome coronavirus; mortality; pneumonia; statistical model; treatment outcome; virus pneumonia; Adult; Aged; Antiviral Agents; Cohort Studies; Coronavirus Infections; Female; Hospital Mortality; Humans; Inpatients; Interferon-alpha; Logistic Models; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Pneumonia; Pneumonia, Viral; Polymerase Chain Reaction; Ribavirin; Saudi Arabia; Treatment Outcome","(2018) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fact Sheet, , World Health Organization; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24 (6), pp. 490-502. , 1:CAS:528:DC%2BC28XksVWmsbc%3D; Mohd, H.A., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir (2016) Virol J, 13, p. 87; Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F., MERS, SARS, and Ebola: The role of super-spreaders in infectious disease (2015) Cell Host Microbe, 18 (4), pp. 398-401. , 1:CAS:528:DC%2BC2MXhs1Sqtr%2FF; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17 (9), pp. e668-e672; Khalid, I., Alraddadi, B.M., Dairi, Y., Khalid, T.J., Kadri, M., Alshukairi, A.N., Qushmaq, I.A., Acute management and long-term survival among subjects with severe Middle East respiratory syndrome coronavirus pneumonia and ARDS (2016) Respir Care, 61 (3), pp. 340-348; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin Ther Targets, 21 (2), pp. 131-143. , 1:CAS:528:DC%2BC28XitFOiurfL; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Liu, W., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res, 25 (11), pp. 1237-1249. , 1:CAS:528:DC%2BC2MXhsFGhs77F; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., Tao, X., Tseng, C.T., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88 (12), pp. 7045-7053; Raj, V.S., Smits, S.L., Provacia, L.B., Van Den Brand, J.M., Wiersma, L., Ouwendijk, W.J., Bestebroer, T.M., Rottier, P.J., Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus (2014) J Virol, 88 (3), pp. 1834-1838; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antivir Res, 132, pp. 141-148. , 1:CAS:528:DC%2BC28XhtVGitLrF; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Sisk, J.M., Pre- And postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc Natl Acad Sci U S A, 112 (28), pp. 8738-8743. , 1:CAS:528:DC%2BC2MXhtVOrs7%2FN; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Bohorova, N., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , 1:CAS:528:DC%2BC28XhtVegtr0%3D; Mo, Y., Fisher, D., A review of treatment modalities for Middle East respiratory syndrome (2016) J Antimicrob Chemother, 71 (12), pp. 3340-3350. , 1:CAS:528:DC%2BC2sXhvVCmsb8%3D; Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Alsulami, A., Bawayan, M.F., Sood, G., Treatment outcomes for patients with middle eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia (2016) BMC Infect Dis, 16, p. 174; Arabi, Y.M., Alothman, A., Balkhy, H.H., Al-Dawood, A., AlJohani, S., Al Harbi, S., Kojan, S., Assiri, A.M., Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-beta1b (MIRACLE trial): Study protocol for a randomized controlled trial (2018) Trials, 19 (1), p. 81; Modjarrad, K., Treatment strategies for Middle East respiratory syndrome coronavirus (2016) J Virus Erad, 2 (1), pp. 1-4. , 26866060 4745090; Falzarano, D., De Wit, E., Rasmussen, A.L., Feldmann, F., Okumura, A., Scott, D.P., Brining, D., Baseler, L., Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques (2013) Nat Med, 19 (10), pp. 1313-1317. , 1:CAS:528:DC%2BC3sXhtl2ktr3J; Choi, W.S., Kang, C.I., Kim, Y., Choi, J.P., Joh, J.S., Shin, H.S., Kim, G., Kim, H.O., Clinical presentation and outcomes of Middle East respiratory syndrome in the Republic of Korea (2016) Infect Chemother, 48 (2), pp. 118-126. , 1:CAS:528:DC%2BC2sXhsVSktb3E; Al-Tawfiq, J.A., Momattin, H., Dib, J., Memish, Z.A., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) Int J Infect Dis, 20, pp. 42-46. , 1:CAS:528:DC%2BC2cXhtlGmsLg%3D; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Hassan, S., Alwan, A., Abudayah, A., Altayyar, S., Alghamedi, A., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Crit Care, 20 (1), p. 123; Sherbini, N., Iskandrani, A., Kharaba, A., Khalid, G., Abduljawad, M., Al-Jahdali, H., Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data (2017) J Epidemiol Glob Health, 7 (1), pp. 29-36; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Hawa, H., Al Raiy, B., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160 (6), pp. 389-397; Al-Hameed, F., Wahla, A.S., Siddiqui, S., Ghabashi, A., Al-Shomrani, M., Al-Thaqafi, A., Tashkandi, Y., Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia (2016) J Intensive Care Med, 31 (5), pp. 344-348; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Memish, Z.A., Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients (2014) Clin Infect Dis, 59 (2), pp. 160-165; Shalhoub, S., Farahat, F., Al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., Mushtaq, A., IFN-a2a or IFN-b1a in combination with ribavirin to treat middle Eastrespiratory syndrome coronavirus pneumonia: A retrospective study (2015) J Antimicrob Chemother, 70, pp. 2129-2132. , 1:CAS:528:DC%2BC28XhtF2ltbbL; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Selim, M.A., Al Aidaroos, A.Y., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: A single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect Dis, 13 (9), pp. 752-761; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Almakhlafi, G.A., Albarrak, A.M., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study (2014) Lancet Infect Dis, 14 (11), pp. 1090-1095. , 1:CAS:528:DC%2BC2cXhs1KltbnL; Alraddadi, B., Bawareth, N., Omar, H., Alsalmi, H., Alshukairi, A., Qushmaq, I., Feteih, M., Khalid, I., Patient characteristics infected with Middle East respiratory syndrome coronavirus infection in a tertiary hospital (2016) Ann Thorac Med, 11 (2), pp. 128-131; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Rha, B., Tohme, R.A., Abedi, G.R., Al Nsour, M., Farag, N.H., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59 (9), pp. 1225-1233. , 1:CAS:528:DC%2BC2sXhsFChsLbE","Saquib, N.; College of Medicine, Sulaiman Al Rajhi Colleges, P.O. Box 777, Saudi Arabia; email: a.saquib@sr.edu.sa",,"BioMed Central Ltd.",14712334,,BIDMB,"31640578","English","BMC Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85073724637 "Singh G., Singh P., Pillatzki A., Nelson E., Webb B., Dillberger-Lawson S., Ramamoorthy S.","57200544329;55649567410;36451363100;7402264552;57210477329;57211620339;8578268000;","A Minimally Replicative Vaccine Protects Vaccinated Piglets Against Challenge With the Porcine Epidemic Diarrhea Virus",2019,"Frontiers in Veterinary Science","6",, 347,"","",,,"10.3389/fvets.2019.00347","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074666302&doi=10.3389%2ffvets.2019.00347&partnerID=40&md5=697740378855715cbfebc67e20b1303e","Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States; Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States; Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States","Singh, G., Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States; Singh, P., Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States; Pillatzki, A., Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States; Nelson, E., Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States; Webb, B., Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States; Dillberger-Lawson, S., Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States; Ramamoorthy, S., Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States","Porcine epidemic diarrhea virus (PEDV), is an economically important enteric coronavirus, with over a 90% mortality rate in neonatal piglets. The virus emerged in the US in 2013, resulting in severe production losses. Effective vaccine development against PEDV is a challenge. Inactivated vaccines are of questionable efficacy. Attenuated vaccines, while more effective, require a relatively long lead development time, are associated with safety concerns and are also unable to prevent new field outbreaks. To combine the safety and efficacy advantages of inactivated and attenuated PEDV vaccines, respectively, in this study, we tested the hypothesis that subjecting PEDV virions to heat treatment at 44°C for 10 min to reversibly unfold structural proteins, followed by exposure to RNAse to fragment the genome, would result in a vaccine preparation with intact viral structure/antigenicity but highly diminished replicative abilities. We expected the vaccine to be both safe and effective in a piglet challenge model. Following the heat and RNAse treatment, PEDV virions had an intact electron microscopic ultrastructure and were amplified only in the 3rd passage in Vero cells, indicating that diminished replication was achieved in vitro. Strong PEDV spike-protein specific and virus neutralizing antibody responses were elicited in vaccinated piglets. Upon challenge, all vaccinated pigs were protected against fecal viral shedding and intestinal pathology, while the unvaccinated controls were not. The vaccine virus was not detected in the fecal matter of vaccinated pigs prior to challenge; nor did they develop intestinal lesions. Thus, the described approach has significant promise in improving current approaches for PEDV immunization. © Copyright © 2019 Singh, Singh, Pillatzki, Nelson, Webb, Dillberger-Lawson and Ramamoorthy.","antibody; PEDV; porcine epidemic diarrhea virus; spike; vaccine","inactivated virus vaccine; live vaccine; neutralizing antibody; ribonuclease; structural protein; animal experiment; animal model; animal tissue; antibody response; Article; controlled study; drug efficacy; drug safety; heat treatment; in vitro study; nonhuman; piglet; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; protein unfolding; vaccination; vaccine immunogenicity; Vero cell line; virion; virus genome; virus replication; virus shedding","Lee, C., Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus (2015) Virol J, 12, p. 193. , 26689811; Song, D., Moon, H., Kang, B., Porcine epidemic diarrhea: a review of current epidemiology and available vaccines (2015) Clin Exp Vaccine Res, 4, pp. 166-176. , 26273575; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg Infect Dis, 20, pp. 917-919. , 24750580; Jarvis, M.C., Lam, H.C., Zhang, Y., Wang, L., Hesse, R.A., Hause, B.M., Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus (2016) Prev Vet Med, 123, pp. 175-184. , 26611651; Paarlberg, P.L., Updated estimated economic welfare impacts of porcine epidemic diarrhea virus (PEDV) (2014) Working Papers 14-4, , West Lafayette, Purdue University, College of Agriculture, Department of Agricultural Economics, In; Schulz, L.L., Tonsor, G.T., Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States (2015) J Anim Sci, 93, pp. 5111-5118. , 26641031; Gerdts, V., Zakhartchouk, A., Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses (2017) Vet Microbiol, 206, pp. 45-51. , 27964998; Crawford, K., Lager, K.M., Kulshreshtha, V., Miller, L.C., Faaberg, K.S., Status of vaccines for porcine epidemic diarrhea virus in the United States and Canada (2016) Virus Res, 226, pp. 108-116. , 27545066; Lee, S.H., Yang, D.K., Kim, H.H., Cho, I.S., Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs (2018) Clin Exp Vaccine Res, 7, pp. 61-69. , 29399581; Schwartz, T.J., Rademacher, C.J., Gimenez-Lirola, L.G., Sun, Y., Zimmerman, J.J., (2015) Evaluation of the Effects of PEDV Vaccine on PEDV Naive and Previously PEDV Exposed Sows in a Challenge Model Comparing Immune Response and Preweaning Mortality, , American Association of Swine Veterinarians; Hills, T., Jakeman, P.G., Carlisle, R.C., Klenerman, P., Seymour, L.W., Cawood, R., A rapid-response humoral vaccine platform exploiting pre-existing non-cognate populations of anti-vaccine or anti-viral CD4+ T helper cells to confirm B cell activation (2016) PLoS ONE, 11, p. e0166383. , 27861512; Attia, Y., Schmerold, I., Honel, A., The legal foundation of the production and use of herd-specific vaccines in Europe (2013) Vaccine, 31, pp. 3651-3655. , 23764532; Collin, E.A., Anbalagan, S., Okda, F., Batman, R., Nelson, E., Hause, B.M., An inactivated vaccine made from a U.S. field isolate of porcine epidemic disease virus is immunogenic in pigs as demonstrated by a dose-titration (2015) BMC Vet. Res, 11, p. 62. , 25881296; Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., Emerging and re-emerging coronaviruses in pigs (2019) Curr Opin Virol, 34, pp. 39-49. , 30654269; Song, Q., Stone, S., Drebes, D., Greiner, L.L., Dvorak, C.M.T., Murtaugh, M.P., Characterization of anti-porcine epidemic diarrhea virus neutralizing activity in mammary secretions (2016) Virus Res, 226, pp. 85-92. , 27287711; Wang, Y., Wu, X., Wang, Y., Li, B., Zhou, H., Yuan, G., Low stability of nucleocapsid protein in SARS virus (2004) Biochemistry, 43, pp. 11103-11108. , 15323569; Seo, H.S., Application of radiation technology in vaccines development (2015) Clin Exp Vaccine Res, 4, pp. 145-158. , 26273573; Okda, F., Liu, X., Singrey, A., Clement, T., Nelson, J., Christopher-Hennings, J., Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of Porcine Epidemic Diarrhea Virus (2015) BMC Vet Res, 11, p. 180. , 26232106; Song, Y., Singh, P., Nelson, E., Ramamoorthy, S., A computationally designed serological assay for porcine epidemic diarrhea virus (2016) J Clin Microbiol, 54, pp. 2039-2046. , 27225413; Kärber, G., Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche (1931) Arch Exp Pathol Pharmakol, 162, pp. 480-483; Booth, D.S., Avila-Sakar, A., Cheng, Y., Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition (2011) J Vis Exp, 58, p. 3227; Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data (2018) Gigascience, 7, pp. 1-6. , 29220494; Kim, D., Langmead, B., Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements (2015) Nat Methods, 12, pp. 357-360. , 25751142; McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data (2010) Genome Res, 20, pp. 1297-1303. , 20644199; McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Analysis tool web services from the EMBL-EBI (2013) Nucleic Acids Res, 41, pp. W597-W600. , 23671338; Li, B., Dewey, C.N., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome (2011) BMC Bioinformatics, 12, p. 323; Leng, N., Dawson, J.A., Thomson, J.A., Ruotti, V., Rissman, A.I., Smits, B.M., EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments (2013) Bioinformatics, 29, pp. 1035-1043. , 23428641; Thomas, J.T., Chen, Q., Gauger, P.C., Gimenez-Lirola, L.G., Sinha, A., Harmon, K.M., Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs (2015) PLoS ONE, 10, p. e0139266. , 26441071; Lin, C.M., Ghimire, S., Hou, Y., Boley, P., Langel, S.N., Vlasova, A.N., Pathogenicity and immunogenicity of attenuated porcine epidemic diarrhea virus PC22A strain in conventional weaned pigs (2019) BMC Vet Res, 15, p. 26. , 30634958; Delrue, I., Verzele, D., Madder, A., Nauwynck, H.J., Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges (2012) Expert Rev Vaccines, 11, pp. 695-719. , 22873127; Ramamoorthy, S., Lindsay, D.S., Schurig, G.G., Boyle, S.M., Duncan, R.B., Vemulapalli, R., Vaccination with gamma-irradiated Neospora caninum tachyzoites protects mice against acute challenge with (2006) N. caninum J Eukaryot Microbiol, 53, pp. 151-156. , 16579818; McCormick, J.B., Mitchell, S.W., Kiley, M.P., Ruo, S., Fisher-Hoch, S.P., Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys (1992) J Med Virol, 37, pp. 1-7. , 1619397; Subramaniam, S., Yugo, D.M., Heffron, C.L., Rogers, A.J., Sooryanarain, H., LeRoith, T., Vaccination of sows with a dendritic cell-targeted porcine epidemic diarrhea virus S1 protein-based candidate vaccine reduced viral shedding but exacerbated gross pathological lesions in suckling neonatal piglets (2018) J Gen Virol, 99, pp. 230-239. , 29300158; Darnell, M.E., Taylor, D.R., Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products (2006) Transfusion, 46, pp. 1770-1777. , 17002634; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014 (2014) Emerg Infect Dis, 20, pp. 1620-1628. , 25279722; Sun, J., Li, Q., Shao, C., Ma, Y., He, H., Jiang, S., Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene (2018) Vet Microbiol, 221, pp. 81-89. , 29981713; Smith, E.C., Blanc, H., Surdel, M.C., Vignuzzi, M., Denison, M.R., Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics (2013) PLoS Pathog, 9, p. 1003565. , 23966862; Rodriguez-Calvo, T., Ojosnegros, S., Sanz-Ramos, M., Garcia-Arriaza, J., Escarmis, C., Domingo, E., New vaccine design based on defective genomes that combines features of attenuated and inactivated vaccines (2010) PLoS ONE, 5, p. e10414. , 20454676; Chang, S.H., Bae, J.L., Kang, T.J., Kim, J., Chung, G.H., Lim, C.W., Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus (2002) Mol Cells, 14, pp. 295-299. , 12442904; Chang, C.Y., Hsu, W.T., Chao, Y.C., Chang, H.W., Display of porcine epidemic diarrhea virus spike protein on baculovirus to improve immunogenicity and protective efficacy (2018) Viruses, 10, p. E346. , 29954081; Greiner, L.J.C., Graham, A., Mellor, J., Lowe, J., Evaluation of a PED vaccine on piglet mortality and sow immunity (2015) Meeting of the American Association of Swine Veterinarians, , Orlando, FL, In; Hain, K.S., Joshi, L.R., Okda, F., Nelson, J., Singrey, A., Lawson, S., Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus (2016) J Gen Virol, 97, pp. 2719-2731. , 27558814; Opriessnig, T., Gerber, P.F., Shen, H., de Castro, A., Zhang, J., Chen, Q., Evaluation of the efficacy of a commercial inactivated genogroup 2b-based porcine epidemic diarrhea virus (PEDV) vaccine and experimental live genogroup 1b exposure against 2b challenge (2017) Vet Res, 48, p. 69. , 29073936; Chen, P., Wang, K., Hou, Y., Li, H., Li, X., Yu, L., Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011-2017 (2019) Infect Genet Evol, 69, pp. 153-165. , 30677534; Jang, G., Won, H., Lee, D.U., Noh, Y.H., Lee, S.C., Choi, H.W., Assessment of the safety and efficacy of an attenuated live vaccine based on highly virulent genotype 2b porcine epidemic diarrhea virus in nursing piglets (2019) Vet Microbiol, 231, pp. 120-128. , 30955799; Gerber, P.F., Xiao, C.T., Lager, K., Crawford, K., Kulshreshtha, V., Cao, D., Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge (2016) Vet Res, 47, p. 118. , 27871312; de Arriba, M.L., Carvajal, A., Pozo, J., Rubio, P., Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus (2002) J Virol Methods, 105, pp. 37-47; de Arriba, M.L., Carvajal, A., Pozo, J., Rubio, P., Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus (2002) Vet Immunol Immunopathol, 85, pp. 85-97; Crawford, K., Lager, K., Miller, L., Opriessnig, T., Gerber, P., Hesse, R., Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs (2015) Vet Res, 46, p. 49. , 25943434; Lin, C.M., Annamalai, T., Liu, X., Gao, X., Lu, Z., El-Tholoth, M., Experimental infection of a US spike-insertion deletion porcine epidemic diarrhea virus in conventional nursing piglets and cross-protection to the original US PEDV infection (2015) Vet Res, 46, p. 134. , 26589292; Chang, Y.C., Kao, C.F., Chang, C.Y., Jeng, C.R., Tsai, P.S., Pang, V.F., Evaluation and comparison of the pathogenicity and host immune responses induced by a G2b Taiwan porcine epidemic diarrhea virus (Strain Pintung 52) and its highly cell-culture passaged strain in conventional 5-week-old pigs (2017) Viruses, 9, p. E121. , 28534849; Li, Q., Xu, Z., Wu, T., Peng, O., Huang, L., Zhang, Y., A flagellin-adjuvanted PED subunit vaccine improved protective efficiency against PEDV variant challenge in pigs (2018) Vaccine, 36, pp. 4228-4235. , 29891346","Ramamoorthy, S.; Department of Microbiological Sciences, North Dakota State UniversityUnited States; email: sheela.ramamoorthy@ndsu.edu",,"Frontiers Media S.A.",22971769,,,,"English","Front. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85074666302 "Liu P., Chen W., Chen J.-P.","57211487837;57211493446;55914036300;","Viral metagenomics revealed sendai virus and coronavirus infection of malayan pangolins (manis javanica)",2019,"Viruses","11","11", 979,"","",,11,"10.3390/v11110979","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074173596&doi=10.3390%2fv11110979&partnerID=40&md5=f7a516f481a21271fc1200446a6837ed","Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory OfWild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China; Guangzhou Zoo, Guangzhou, 510230, China","Liu, P., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory OfWild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China; Chen, W., Guangzhou Zoo, Guangzhou, 510230, China; Chen, J.-P., Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory OfWild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China","Pangolins are endangered animals in urgent need of protection. Identifying and cataloguing the viruses carried by pangolins is a logical approach to evaluate the range of potential pathogens and help with conservation. This study provides insight into viral communities of Malayan Pangolins (Manis javanica) as well as the molecular epidemiology of dominant pathogenic viruses between Malayan Pangolin and other hosts. A total of 62,508 de novo assembled contigs were constructed, and a BLAST search revealed 3600 ones (≥300 nt) were related to viral sequences, of which 68 contigs had a high level of sequence similarity to known viruses, while dominant viruses were the Sendai virus and Coronavirus. This is the first report on the viral diversity of pangolins, expanding our understanding of the virome in endangered species, and providing insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into other mammals. © y the authors.","Coronavirus; Manis javanica; Molecular epidemiology; Sendai virus; Virome","contig; animal experiment; Article; Caudovirales; controlled study; Coronavirus infection; gene expression; gene sequence; genome analysis; Herpesviridae; metagenomics; microbial community; microbial diversity; molecular genetics; nonhuman; Paramyxoviridae; Pholidota (animal); phylogeny; Sendai virus; Sendai virus infection; sequence analysis; species identification; ultrasound; virus like agent; whole genome sequencing","Gaudin, T.J., Emry, R.J., Wible, J.R., The phylogeny of living and extinct pangolins (mammalia, pholidota) and associated taxa: A morphology based analysis (2009) J. Mamm. Evol., 16, pp. 235-305; Meyer, W., Liumsiricharoen, M., Suprasert, A., Fleischer, L.G., Hewicker-Trautwein, M., Immunohistochemical demonstration of keratins in the epidermal layers of the Malayan pangolin (Manis javanica), with remarks on the evolution of the integumental scale armour (2013) Eur. J. Histochem., 57, pp. 172-177; Wang, X., Chen, W., Xiang, R., Li, L., Chen, J., Zhong, R., Xiang, H., Chen, J., Complete genome sequence of parainfluenza virus 5 (piv5) from a sunda pangolin (manis javanica) in China (2019) J. Wildl. Dis., 55, pp. 5-8; Wu, Z., Ren, X., Yang, L., Hu, Y., Yang, J., He, G., Zhang, J., Du, J., Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces (2012) J. Virol., 86, pp. 10999-11012; Zhang, W., Li, L., Deng, X., Kapusinszky, B., Pesavento, P.A., Delwart, E., Faecal virome of cats in an animal shelter (2014) J. Gen. Virol., 95, pp. 2553-2564; Li, L., Giannitti, F., Low, J., Keyes, C., Ullmann, L.S., Deng, X., Aleman, M., Delwart, E., Exploring the virome of diseased horses (2015) J. Gen. Virol., 96, pp. 2721-2733; Ng, T.F.F., Kondov, N.O., Deng, X., Van Eenennaam, A., Neibergs, H.L., Delwart, E., A metagenomics and case-control study to identify viruses associated with bovine respiratory disease (2015) J. Virol., 89, pp. 5340-5349; Lima, D.A., Cibulski, S.P., Finkler, F., Teixeira, T.F., Varela, A.P.M., Cerva, C., Loiko, M.R., Mayer, F.Q., Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses (2017) J. Gen. Virol., 98, pp. 690-703; Blomström, A.L., Ye, X., Fossum, C., Wallgren, P., Berg, M., Characterisation of the virome of tonsils from conventional pigs and from specific pathogen-free pigs (2018) Viruses, 10, p. 382; Moreno-Gallego, J.L., Chou, S.P., Di Rienzi, S.C., Goodrich, J.K., Spector, T.D., Bell, J.T., Youngblut, N.D., Ley, R.E., Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins (2019) Cell Host Microbe, 25, pp. 261-272; Noell, K., Kolls, J.K., Further defining the human virome using ngs: Identification of redondoviridae (2019) Cell Host Microbe, 25, pp. 634-635; Tang, P., Chiu, C., Metagenomics for the discovery of novel human viruses (2010) Future Microbiol., 5, pp. 177-189; Chiu, C.Y., Viral pathogen discovery (2013) Curr. Opin. Microbiol., 16, pp. 468-478; Culligan, E.P., Sleator, R.D., Marchesi, J.R., Hill, C., Metagenomics and novel gene discovery: Promise and potential for novel therapeutics (2014) Virulence, 5, pp. 37-41; Pallen, M.J., Diagnostic metagenomics: Potential applications to bacterial, viral and parasitic infections (2014) Parasitology, 141, pp. 1856-1862; Wooley, J.C., Ye, Y., Metagenomics: Facts and artifacts, and computational challenges (2010) J. Comput. Sci. Technol., 25, pp. 71-81; Cardenas, E., Tiedje, J.M., New tools for discovering and characterizing microbial diversity (2008) Curr. Opin. Biotechnol., 19, pp. 544-549; Wei, H.Y., Huang, S., Yao, T., Gao, F., Jiang, J.Z., Wang, J.Y., Detection of viruses in abalone tissue using metagenomics technology (2018) Aquac. Res., 49, pp. 2704-2713; Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Li, Z., Soapnuke: Amapreduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data (2018) Gigascience, 7, pp. 1-6; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760; Li, D., Luo, R., Liu, C.M., Leung, C.M., Ting, H.F., Sadakane, K., Yamashita, H., Lam, T.W., Megahit v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices (2016) Methods, 102, pp. 3-11; Li, W., Godzik, A., Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences (2006) Bioinformatics, 22, pp. 1658-1659; Katoh, K., Standley, D.M., Mafft multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol. Biol. Evol., 30, pp. 772-780; Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A., Minh, B.Q., W-iq-tree: A fast online phylogenetic tool for maximum likelihood analysis (2016) Nucleic Acids Res., 44, pp. W232-W235; Mendenhall, I.H., Wen, D.L.H., Jayakumar, J., Gunalan, V., Wang, L., Mauer-Stroh, S., Su, Y.C.F., Smith, G.J.D., Diversity and evolution of viral pathogen community in cave nectar bats (eonycteris spelaea) (2019) Viruses, 11, p. 250; Hu, D., Zhu, C., Wang, Y., Ai, L., Yang, L., Ye, F., Ding, C., Zhu, J., Virome analysis for identification of novel mammalian viruses in bats from Southeast China (2017) Sci. Rep., 7, p. 10917; Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Délicat, A., Swanepoel, R., Fruit bats as reservoirs of Ebola virus (2005) Nature, 438, pp. 575-576; Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., Schountz, T., Bats: Important reservoir hosts of emerging viruses (2006) Clin. Microbiol. Rev., 19, pp. 531-545; Wang, L.F., Shi, Z., Zhang, S., Field, H., Daszak, P., Eaton, B.T., Review of bats and sars (2006) Emerg. Infect. Dis., 12, pp. 1834-1840; Swanepoel, R., Smit, S.B., Rollin, P.E., Formenty, P., Leman, P.A., Kemp, A., Burt, F.J., Bausch, D.G., Studies of reservoir hosts for marburg virus (2007) Emerg. Infect. Dis., 13, pp. 1847-1851; Chu, D.K.W., Poon, L.L.M., Guan, Y., Peiris, J.S.M., Novel astroviruses in insectivorous bats (2008) J. Virol., 82, pp. 9107-9114; Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Yuan, J., Shi, Z., Host range, prevalence, and genetic diversity of adenoviruses in bats (2010) J. Virol., 84, pp. 3889-3897; Wong, S., Lau, S., Woo, P., Yuen, K.Y., Bats as a continuing source of emerging infections in humans (2007) Rev. Med. Virol., 17, pp. 67-91; Freuling, C.M., Beer, M., Conraths, F.J., Finke, S., Hoffmann, B., Keller, B., Kliemt, J., Teifke, J.P., Novel lyssavirus in natterer's bat, Germany (2011) Emerg. Infect. Dis., 17, pp. 1519-1522; Lau, S.K.P., Woo, P.C.Y., Lai, K.K.Y., Huang, Y., Yip, C.C.Y., Shek, C.-T., Lee, P., Yuen, K.-Y., Complete genome analysis of three novel picornaviruses from diverse bat species (2011) J. Virol., 85, pp. 8819-8828; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.W., Wong, B.H.L., Wong, S.S.Y., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Smith, I., Broos, A., De Jong, C., Zeddeman, A., Smith, C., Smith, G., Moore, F., Marsh, G., Identifying hendra virus diversity in pteropid bats (2011) PLoS ONE, 6, p. e25275; Luis, A.D., Hayman, D.T.S., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R.C., Mills, J.N., Cunningham, A.A., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc. R. Soc. B Biol. Sci., 280, p. 20122753; Shan, T., Li, L., Simmonds, P., Wang, C., Moeser, A., Delwart, E., The fecal virome of pigs on a high-density farm (2011) J. Virol., 85, pp. 11697-11708; Lager, K.M., Ng, T.F., Bayles, D.O., Alt, D.P., Delwart, E.L., Cheung, A.K., Diversity of viruses detected by deep sequencing in pigs from a common background (2012) J. Vet. Diagn. Investig., 24, pp. 1177-1179; Amimo, J.O., El Zowalaty, M.E., Githae, D., Wamalwa, M., Djikeng, A., Nasrallah, G.K., Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa (2016) Arch. Virol., 161, pp. 887-897; Faísca, P., Desmecht, D., Sendai virus, the mouse parainfluenza type 1: A longstanding pathogen that remains up-to-date (2007) Res. Vet. Sci., 82, pp. 115-125; Fukumi, H., Fumio, T., Nishikawa, T., A pneumotropic virus from mice causing hemagglutination (1954) J. Med. Sci. Biol., 7, pp. 345-363; Parker, J.C., Tennant, R.W., Ward, T.G., Rowe, W.P., Enzootic sendai virus infections in mouse breeder colonies within the United States (1964) Science, 146, pp. 936-938; Zurcher, C., Burek, J.D., Van, M.N., Meihuizen, S.P., A naturally occurring epizootic caused by Sendai virus in breeding and aging rodent colonies I. Infection in the mouse (1977) Lab. Anim. Sci., 27, pp. 955-962; Parker, J.C., Reynolds, R.K., Natural history of sendai virus infection in mice (1968) Am. J. Epidemiol., 88, pp. 112-125; Noh, J.Y., Jeong, D.G., Yoon, S.W., Kim, J.H., Choi, Y.G., Kang, S.Y., Kim, H.K., Isolation and characterization of novel bat paramyxovirus B16-40 potentially belonging to the proposed genus Shaanvirus (2018) Sci. Rep., 8, p. 12533; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol. Mol. Biol. Rev., 69, pp. 635-664; Holmes, K.V., Lai, M.M.C., Coronaviridae: The viruses and their replication (1996) Fields Virol., 1, pp. 1075-1093; Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S., Smith, L.G., Characterization of a coronavirus isolated from a diarrheic foal (2000) J. Clin. Microbiol., 38, pp. 4523-4526; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of middle east respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Sabir, J.S.M., Lam, T.T., Mohamed, M.M., Li, L., Shen, Y., Abo-Aba, S.E.M., Qureshi, M.I., Smith, D.K., Co-circulation of three camel coronavirus species and recombination of mers-covs in Saudi Arabia (2015) Science, 351, pp. 81-84; Epstein, J.H., McEachern, J., Zhang, J., Daszak, P., Wang, H., Field, H., Li, W., Yu, M., Bats are natural reservoirs of sars-like coronaviruses (2005) Science, 310, pp. 676-679; Wang, L.F., Eaton, B.T., Bats, civets and the emergence of sars (2007) Curr. Top. Microbiol. Immunol., 315, pp. 325-344","Chen, J.-P.; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory OfWild Animal Conservation and Utilization, Guangdong Institute of Applied Biological ResourcesChina; email: chenjp@giabr.gd.cn",,"MDPI AG",19994915,,,"31652964","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85074173596 "Lau S.K.P., Luk H.K.H., Wong A.C.P., Fan R.Y.Y., Lam C.S.F., Li K.S.M., Ahmed S.S., Chow F.W.N., Cai J.-P., Zhu X., Chan J.F.W., Lau T.C.K., Cao K., Li M., Woo P.C.Y., Yuen K.-Y.","7401596211;56513568500;57196150074;15519269300;25950267400;24759122500;56393567800;57205312932;35557916700;36464568600;24278817900;36981810500;15845100900;35319923400;7201801340;36078079100;","Identification of a novel betacoronavirus (merbecovirus) in amur hedgehogs from China",2019,"Viruses","11","11", 980,"","",,2,"10.3390/v11110980","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074139277&doi=10.3390%2fv11110980&partnerID=40&md5=4698180882b8e928ae52fbc78c555187","Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong; Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, 999077, Hong Kong; Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 999077, Hong Kong","Lau, S.K.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, 999077, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong; Luk, H.K.H., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Wong, A.C.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Fan, R.Y.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Lam, C.S.F., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Li, K.S.M., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Ahmed, S.S., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Chow, F.W.N., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Cai, J.-P., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong; Zhu, X., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China, Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Chan, J.F.W., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, 999077, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong; Lau, T.C.K., Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, 999077, Hong Kong; Cao, K., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China, Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Li, M., Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China, Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Woo, P.C.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, 999077, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong; Yuen, K.-Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, Hong Kong, State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong, Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, 999077, Hong Kong, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, University of Hong Kong, Hong Kong, 999077, Hong Kong","While dromedaries are the immediate animal source of Middle East Respiratory Syndrome (MERS) epidemic, viruses related to MERS coronavirus (MERS-CoV) have also been found in bats as well as hedgehogs. To elucidate the evolution of MERS-CoV-related viruses and their interspecies transmission pathway, samples were collected from different mammals in China. A novel coronavirus related to MERS-CoV, Erinaceus amurensis hedgehog coronavirus HKU31 (Ea-HedCoV HKU31), was identified from two Amur hedgehogs. Genome analysis supported that Ea-HedCoV HKU31 represents a novel species under Merbecovirus, being most closely related to Erinaceus CoV from European hedgehogs in Germany, with 79.6% genome sequence identity. Compared to other members of Merbecovirus, Ea-HedCoV HKU31 possessed unique non-structural proteins and putative cleavage sites at ORF1ab. Phylogenetic analysis showed that Ea-HedCoV HKU31 and BetaCoV Erinaceus/VMC/DEU/2012 were closely related to NeoCoV and BatCoV PREDICT from African bats in the spike region, suggesting that the latter bat viruses have arisen from recombination between CoVs from hedgehogs and bats. The predicted HKU31 receptor-binding domain (RBD) possessed only one out of 12 critical amino acid residues for binding to human dipeptidyl peptidase 4 (hDPP4), the MERS-CoV receptor. The structural modeling of the HKU31-RBD-hDPP4 binding interphase compared to that of MERS-CoV and Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) suggested that HKU31-RBD is unlikely to bind to hDPP4. Our findings support that hedgehogs are an important reservoir of Merbecovirus, with evidence of recombination with viruses from bats. Further investigations in bats, hedgehogs and related animals are warranted to understand the evolution of MERS-CoV-related viruses. © 2019 by the authors.","China; Coronavirus; Hedgehog; Merbecovirus; Novel species","amino acid; animal cell; animal experiment; Article; Betacoronavirus; China; controlled study; DNA sequence; Erinaceus amurensis; Erinaceus amurensis hedgehog coronavirus HKU31; gene expression; gene sequence; genome analysis; geographic distribution; hedgehog; hydrogen bond; Merbecovirus; Middle East respiratory syndrome coronavirus; nonhuman; nucleotide sequence; nucleotide sequence; phylogeny; real time reverse transcription polymerase chain reaction; receptor binding; regulatory sequence; RNA extraction; rodent; sequence alignment; sequence analysis; shrew; Vero C1008 cell line; virus detection; virus identification; virus isolation; virus load; virus recombination; whole genome sequencing","World Health Organization. Latest Disease Outbreak News: Middle East Respiratory Coronavirus (MERS-CoV); World Health Organization: Geneva, Switzerland, 2017; Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis.; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Diab, A., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2013) Lancet Infect. Dis.; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.Y., Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing Sars-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Corman, V.M., Kallies, R., Philipps, H., Gopner, G., Muller, M.A., Eckerle, I., Brunink, S., Drexler, J.F., Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs (2014) J. Virol., 88, pp. 717-724; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.Y., Genetic relatedness of the novel human group c betacoronavirus to tylonycteris bat coronavirus HKU4 and pipistrellus bat coronavirus HKU5 (2012) Emerg. Microbes Infect., 1; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an african bat (2014) J. Virol., 88, pp. 11297-11303; Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Hicks, A., Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus (2017) Am. Soc. Microbiol., 8, p. e00373; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Wong, A.C.P., Receptor usage of a novel bat lineage c betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 Binding (2018) J. Infect. Dis., 218, pp. 197-207; Luo, C.M., Wang, N., Yang, X.L., Liu, H.Z., Zhang, W., Li, B., Hu, B., Zhu, G.J., Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus (2018) J. Virol., 92; Lai, M.M.C., Cavanagh, D., The molecular biology of coronaviruses (1997) Advances in Virus Research, pp. 1-100. , Elsevier: Amsterdam, The Netherlands; Brian, D.A., Baric, R.S., (2005) Coronavirus Genome Structure and Replication. In Current Topics in Microbiology and Immunology, pp. 77-110. , Springer-Verlag: Berlin, Germany; De Groot, R.J., Baric, R., Enjuanes, L., Gorbalenya, A., Holmes, K.V., Perlman, S., Poon, L., Woo, P.C., (2011) Coronaviridae. In Virus Taxonomy, Classification and Nomenclature of Viruses; Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806-828. , International Union of Microbiological Societies, Virology Division; Microbiology Society London, UK; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Huang, Y., Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features (2007) J. Virol., 81, pp. 1574-1585; Mihindukulasuriya, K.A., Wu, G., St Leger, J., Nordhausen, R.W., Wang, D., Identification of a novel coronavirus from a beluga whale by using a panviral microarray (2008) J. Virol., 82, pp. 5084-5088; Wong, A.C.P., Li, X., Lau, S.K.P., Woo, P.C.Y., Global epidemiology of bat coronaviruses (2019) Viruses, 11; Drosten, C., Günther, S., Preiser, W., Van Der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., Fouchier, R.A.M., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Fouchier, R.A.M., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., De Jong, J.C., Simon, J.H., Osterhaus, A.D.M.E., A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 6212-6216; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Cheung, M.T., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Luk, W.K., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Van Boheemen, S., De Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Snijder, E.J., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) J. Virol., 87, pp. 7790-7792; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Tsang, A.K.L., Fan, R.Y.Y., Luk, H.K.H., Cai, J.-P., Wang, M., Discovery of a novel coronavirus, China rattus coronavirus HKU24, from Norway rats supports the murine origin of betacoronavirus 1 and has implications for the ancestor of betacoronavirus lineage, a (2014) J. Virol., 89, pp. 3076-3092; Woo, P.C.Y., Lau, S.K.P., Li, K.S.M., Poon, R.W.S., Wong, B.H.L., Tsoi, H.-W., Yip, B.C.K., Yuen, K.-Y., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187; Lau, S.K., Li, K.S., Tsang, A.K., Lam, C.S., Ahmed, S., Chen, H., Chan, K.H., Yuen, K.Y., Genetic characterization of betacoronavirus lineage c viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: Implications for the origin of the novel Middle East respiratory syndrome coronavirus (2013) J. Virol., 87, pp. 8638-8650; Yang, L., Wu, Z., Ren, X., Yang, F., Zhang, J., He, G., Dong, J., Zhang, S., MERS-related betacoronavirus in Vespertilio superans bats, China (2014) Emerg. Infect. Dis., 20, pp. 1260-1262; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Muller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Monchatre-Leroy, E., Boue, F., Boucher, J.M., Renault, C., Moutou, F., Ar Gouilh, M., Umhang, G., Identification of alpha and beta coronavirus in wildlife species in France: Bats, rodents, rabbits, and hedgehogs (2017) Viruses, 9, p. 364; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Lau, S.K., Woo, P.C., Li, K.S., Zhang, H.J., Fan, R.Y., Zhang, A.J., Chan, B.C., Yuen, M.C., Identification of novel rosavirus species that infects diverse rodent species and causes multisystemic dissemination in mouse model (2016) PLoS Pathog., 12, p. e1005911; Lau, S.K.P., Wong, A.C.P., Lau, T.C.K., Woo, P.C.Y., Molecular Evolution of MERS Coronavirus: Dromedaries as a recent intermediate host or long-time animal reservoir? (2017) Int. J. Mol. Sci., 18; Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O., New algorithms andmethods to estimatemaximum-likelihood phylogenies: Assessing the performance of PhyML 3.0 (2010) Syst. Biol., 59, pp. 307-321; Lau, S.K.P., Woo, P.C.Y., Yip, C.C.Y., Fan, R.Y.Y., Huang, Y., Wang, M., Guo, R., Lai, K.K.Y., Isolation and characterization of a novel betacoronavirus subgroup a coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J. Virol., 86, pp. 5481-5496; Lau, S.K.P., Fan, R.Y.Y., Luk, H.K.H., Zhu, L., Fung, J., Li, K.S.M., Wong, E.Y.M., Kok, R.K.H., Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins (2018) Emerg. Microbes Infect., 7, p. 209; Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Birney, E., Biswas, M., Bucher, P., Croning, M.D., The InterPro database, an integrated documentation resource for protein families, domains and functional sites (2001) Nucleic Acids Res., 29, pp. 37-40; Bateman, A., The Pfam protein families database (2002) Nucleic Acids Res., 30, pp. 276-280; Sonnhammer, E.L., Von Heijne, G., Krogh, A., A hidden Markov model for predicting transmembrane helices in protein sequences (1998) Proc. Int Conf. Intell. Syst. Mol. Biol., 6, pp. 175-182; Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evol. Biol., 7, p. 214; Lu, G.W., Hu, Y.W., Wang, Q.H., Qi, J.X., Gao, F., Li, Y., Zhang, Y.F., Bao, J.K., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Liu, X., Structure ofMERS-CoV spike receptor-binding domain complexedwith human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Wang, J., Bat origins ofMERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell HostMicrobe, 16, pp. 328-337; Lau, S.K.P., Li, K.S.M., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K.Y., Guo, R., Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related rhinolophus bat coronavirus in China reveal bats as a reservoir for Acute, self-limiting infection that allows recombination events (2010) J. Virol., 84, pp. 2808-2819; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Lau, S.K., Feng, Y., Chen, H., Luk, H.K., Yang, W.H., Li, K.S., Zhang, Y.Z., Chow, W.N., Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination (2015) J. Virol., 89, pp. 10532-10547; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) MBio, 5; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Khiyami, M.A., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Enouf, V., Ferguson, N.M., Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect. Dis., 14, pp. 50-56; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Guggemos, W., Junglen, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect. Dis., 13, pp. 745-751; De Benedictis, P., Marciano, S., Scaravelli, D., Priori, P., Zecchin, B., Capua, I., Monne, I., Cattoli, G., Alpha and lineage C betaCoV infections in Italian bats (2014) Virus Genes, 48, pp. 366-371; Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Yordanov, S., Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences (2010) J. Virol., 84, pp. 11336-11349; Annan, A., Baldwin, H.J., Corman, V.M., Klose, S.M., Owusu, M., Nkrumah, E.E., Badu, E.K., Meyer, B., Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe (2013) Emerg. Infect. Dis., 19, pp. 456-459; Falcon, A., Vazquez-Moron, S., Casas, I., Aznar, C., Ruiz, G., Pozo, F., Perez-Brena, P., Garin, I., Detection of alpha and betacoronaviruses in multiple Iberian bat species (2011) Arch. Virol., 156, pp. 1883-1890; Lelli, D., Papetti, A., Sabelli, C., Rosti, E., Moreno, A., Boniotti, M.B., Detection of coronaviruses in bats of various species in Italy (2013) Viruses, 5, pp. 2679-2689","Yuen, K.-Y.; Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong KongHong Kong; email: kyyuen@hku.hk",,"MDPI AG",19994915,,,"31653070","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85074139277 "Wang W., Yang R., Song Q., Wang H., Deng Y., Zhao L., Tan W.","7501755105;57213171662;57214944902;37008111500;36238838100;57214293698;57203643436;","Establishment and evaluation of receptor binding domain (RBD)-based ELISA for Middle East respiratory syndrome coronavirus (MERS-CoV) antibody detection [基于受体结合区(RBD)的ELISA在MERS-CoV抗体检测中的应用评价]",2019,"Chinese Journal of Microbiology and Immunology (China)","39","10",,"763","770",,,"10.3760/cma.j.issn.0254-5101.2019.10.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077654305&doi=10.3760%2fcma.j.issn.0254-5101.2019.10.007&partnerID=40&md5=d1f50340a3b88d173689d8b4fc9360d1","Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China","Wang, W., Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Yang, R., Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Song, Q., Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Wang, H., Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Deng, Y., Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Zhao, L., Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Tan, W., Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China","Objective: To establish an indirect enzyme-linked immunosorbent assay (ELISA)and to compare the efficiency of receptor binding domain (RBD) proteins in different forms for Middle East respiratory syndrome coronavirus (MERS-CoV) antibody detection. Methods: The monomeric and trimeric forms of MERS-CoV RBD were expressed in Bac-insect cells, 293T cells and ExpiCHO-S™ expression system and then purified. The purified RBD proteins were identified with native gel electrophoresis and Western blot. Then, an equal amount of each RBD protein was used as coating antigen to establish an ELISA for detecting MERS-CoV IgG titer. For comparison, the newly developed ELISA and the commercial MERS-CoV IgG antibody detection kit (Euroimmune with S1 as the coating antigen) were used to measure the MERS-CoV antibody reference panel supplied by World Health Organization (WHO). Results: The purified monomeric and trimeric MERS-CoV RBD were successfully prepared using 293T cells and ExpiCHO-S™ system. RBD antigens of different forms and from different systems could recognize MERS-CoV specific antibody without having any cross reaction with the sera from healthy adults. The in-house RBD-based ELISA had good detection consistency with the Euroimmune commercial kit. The positive samples showed higher and more concentrated values based on the RBD trimer than the monomer. Conclusions: Novel indirect ELISA methods based on the monomeric and trimeric forms of RBD protein were established. The trimetric form-based ELISA achieved higher detection efficiency than the one using the monomer antigen, suggesting that it could be uses as a competent alternative to the commercial kit. Copyright © 2019 by the Chinese Medical Association.","Antibody; Enzyme-linked immunosorbent assay (ELISA); Middle East respiratory syndrome coronavirus (MERS-CoV); Receptor binding domain (RBD)","cell protein; immunoglobulin G; receptor binding domain protein; unclassified drug; virus antibody; 293T cell; antibody detection; Article; Bac insect cell; cells; controlled study; enzyme linked immunosorbent assay; gel electrophoresis; insect cell; Middle East respiratory syndrome coronavirus; nonhuman; protein expression; protein purification; Western blotting","Rabaan, A.A., Bazzi, A.M., Al-Ahmed, S.H., Molecular aspects of MERS-CoV (2017) Front Med, 11 (3), pp. 365-377; Zaki, A.M., Van-Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367 (19), pp. 1814-1820; Aly, M., Elrobh, M., Alzayer, M., Occurrence of the middle east respiratory syndrome coronavirus (MERS-CoV) across the gulf corporation council countries: four years update (2017) PLoS One, 12 (10); Al-Tayib, O.A., An overview of the most significant zoonotic viral pathogens transmitted from animal to human in Saudi Arabia (2019) Pathogens, 8 (1). , pii: E25; Kim, K.H., Tandi, T.E., Choi, J.W., Middle east respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications (2017) J Hosp Infect, 95 (2), pp. 207-213; Uyeki, T.M., Erlandson, K.J., Korch, G., Development of medical countermeasures to middle east respiratory syndrome coronavirus (2016) Emerg Infect Dis, 22 (7); Rabaan, A.A., Alahmed, S.H., Bazzi, A.M., A review of candidate therapies for Middle East respiratory syndrome from a molecular perspective (2017) J Med Microbiol, 66 (9), pp. 1261-1274; Spanakis, N., Tsiodras, S., Haagmans, B.L., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents, 44 (6), pp. 528-532; Kelly-Cirino, C., Mazzola, L.T., Chua, A., An updated roadmap for MERS-CoV research and product development: focus on diagnostics (2019) BMJ Glob Health, 4; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17 (49). , pii: 20334; Guery, B., Poissy, J., El-Mansouf, L., Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission (2013) Lancet, 381 (9885), pp. 2265-2272; Chan, J.F., Lau, S.K., To, K.K., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28 (2), pp. 465-522; Lu, X., Whitaker, B., Sakthivel, S.K., Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus (2014) J Clin Microbiol, 52 (1), pp. 67-75; Ko, J.H., Müller, M.A., Seok, H., MERS-coronavirus-infected patients according to the disease severity (2017) Diagn Microbiol Infect Dis, 89 (2), pp. 106-111; Meyer, B., Drosten, C., Müller, M.A., Serological assays for emerging coronaviruses: challenges and pitfalls (2014) Virus Res, 194, pp. 175-183; Wang, W.L., Wang, H.J., Deng, Y., Serological study of an imported case of Middle East respiratory syndrome and his close contacts in China, 2015 (2016) Biomed Environ Sci, 29 (3), pp. 219-223; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62 (4), pp. 477-483; Wang, W., Wang, H., Deng, Y., Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China (2016) Emerg Microbes Infect, 5 (11), p. e113; Lee, K., Ko, H.L., Lee, E.Y., Development of a diagnostic system for detection of specific antibodies and antigens against Middle East respiratory syndrome coronavirus (2018) Microbiol Immunol, 62 (9), pp. 574-584; Yamaoka, Y., Matsuyama, S., Fukushi, S., Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen (2016) Front Microbiol, 7, p. 509; De-Sousa, R., Reusken, C., Koopmans, M., MERS coronavirus: data gaps for laboratory preparedness (2014) J Clin Virol, 59 (1), pp. 4-11; Chafekar, A., Fielding, B.C., MERS-CoV: understanding the latest human coronavirus threat (2018) Viruses, 10 (2); Hong, K.H., Choi, J.P., Hong, S.H., Predictors of mortality in Middle East respiratory syndrome (MERS) (2018) Thorax, 73 (3), pp. 286-289; Hemida, M.G., Perera, R.A., Al-Jassim, R.A., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill, 19 (23); Lu, G., Hu, Y., Wang, Q., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500 (7461), pp. 227-231; Lan, J., Deng, Y., Chen, H., Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen (2014) PLoS One, 9 (11); Song, Q.Q., Wang, W.L., Zhan, Y., Optimization of signal peptide sequencesof spike protein subunit of MERS-CoV for secretory expression in eukaryotic cells (2019) Chin J Virol, 35 (1), pp. 20-26. , 宋倩倩,王文玲,詹瑛,等. 真核表达MERS?CoV刺突蛋白亚单位的信号肽序列优化研究[J]. 病毒学报,2019,35(1):20-26. DOI:10.13242/j.cnki.bingduxuebao.003487; Wang, H.J., Wang, W.L., Lan, J.M., Screening of mouse-derived monoclonal antibodies against the receptor binding domain of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein (2016) Chin J Microbiol Immunol, 36 (2), pp. 88-92. , 王慧娟,王文玲,蓝佳明,等. 小鼠抗中东呼吸综合征冠状病毒刺突蛋白受体结合区单克隆抗体的筛选[J]. 中华微生物学和免疫学杂志,2016, 36(2): 88-92. DOI: 10.3760/cma.j.issn.0254-5101.2016.02.002; Perera, R.A., Wang, P., Gomaa, M.R., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18 (36). , pii=20574; Reusken, C.B., Ababneh, M., Raj, V.S., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill, 18 (50), p. 20662","Tan, W.; Key Laboratory of Biosafety, Ministry of Health of the People's Republic of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and PreventionChina; email: tanwj@ivdc.chinacdc.cn",,"Society of Microbiology and Immunology",02545101,,ZWMZD,,"Chinese","Chin. J. Microbiol. Immunol.",Article,"Final",,Scopus,2-s2.0-85077654305 "Alsubaie S., Hani Temsah M., Al-Eyadhy A.A., Gossady I., Hasan G.M., Al-Rabiaah A., Jamal A.A., Alhaboob A.A., Alsohime F., Somily A.M.","6504556179;57215049700;24554080400;57215032881;56192222200;14622214200;35487621700;56192940900;57201799198;16835635500;","Middle East Respiratory Syndrome Coronavirus epidemic impact on healthcare workers' risk perceptions, work and personal lives",2019,"Journal of infection in developing countries","13","10",,"920","926",,1,"10.3855/jidc.11753","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078475832&doi=10.3855%2fjidc.11753&partnerID=40&md5=a813712dc03fa1b97d57ba7b2542dac5","College of Medicine, King Saud University, Riyadh, Saudi Arabia; College of Medicine, King Saud University, Riyadh, Saudi Arabia; College of Medicine, King Saud University, Riyadh, Saudi Arabia; Departments of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia; Pediatric Department, Pediatric Intensive Care Unit, King Saud University Medical City, Riyadh, Saudi Arabia; College of Medicine, King Saud University, Riyadh, Saudi Arabia; College of Medicine, King Saud University, Riyadh, Saudi Arabia","Alsubaie, S., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Hani Temsah, M., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Al-Eyadhy, A.A., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Gossady, I., Departments of Family and Community Medicine, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia; Hasan, G.M., Pediatric Department, Pediatric Intensive Care Unit, King Saud University Medical City, Riyadh, Saudi Arabia; Al-Rabiaah, A., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Jamal, A.A., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Alhaboob, A.A., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Alsohime, F., College of Medicine, King Saud University, Riyadh, Saudi Arabia; Somily, A.M., College of Medicine, King Saud University, Riyadh, Saudi Arabia","INTRODUCTION: Middle East respiratory syndrome coronavirus (MERS-CoV) continues to cause frequent outbreaks in hospitals in Saudi Arabia. Since healthcare workers (HCWs) have a higher risk of acquiring and spreading MERS-CoV, we aimed to evaluate the perceived risk and anxiety level of HCWs in Saudi Arabia regarding MERS. METHODOLOGY: An anonymous, self-administered questionnaire was sent online to HCWs at King Khalid University Hospital in Saudi Arabia. The total knowledge and anxiety scores were calculated. Logistic regression analyses were used to identify predictors of high anxiety scores. RESULTS: Of 591 (70%) HCWs that responded, 284 (55%), 164 (32%), and 68 (13.2%) were physicians, nurses, and technicians, respectively. Physicians obtained a lower median knowledge score (6/9) compared to other professions (7/9). The mean anxiety score was similar for physicians and other HCWs (3/5); however, non-physicians expressed higher levels of anxiety toward the risk of transmitting MERS-CoV to their families, with an anxiety score of 4/5. The ability of the virus to cause severe disease or death was the most frequently reported reason for worry by physicians (89.7%) and non-physicians (87.2%). Overall, 80% of physicians and 90% of non-physicians reported improvement in adherence to hand hygiene and standard precautions while in hospital (p = 0.002). Concern over transmitting MERS-CoV to family members was the most predictive factor for anxiety among non-physician HCWs. CONCLUSION: A significant proportion of HCWs expressed anxiety about the risk of acquiring MERS-CoV infection. Healthcare institutions need to develop an integrated psychological response for HCWs to the occupational and psychological challenge of MERS-CoV outbreaks. Copyright (c) 2019 Sarah Alsubaie, Mohamad Hani Temsah, Ayman Al-Eyadhy, Ibrahim Gossady, Gamal Hasan, Abdulkarim Al-rabiaah, Amr Jamal, Ali Alhaboob, Fahad Alsohime, Ali Mohammed Somily.","anxiety; Attitude; Health-care worker; MERS-CoV; Risk perception; Saudi Arabia",,,,,"NLM (Medline)",19722680,,,"32084023","English","J Infect Dev Ctries",Article,"Final",Open Access,Scopus,2-s2.0-85078475832 "Masters P.S.","7006234572;","Coronavirus genomic RNA packaging",2019,"Virology","537",,,"198","207",,,"10.1016/j.virol.2019.08.031","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071862299&doi=10.1016%2fj.virol.2019.08.031&partnerID=40&md5=3d0a5c92f362363f7622d4ef2d6cf373","Wadsworth Center, New York State Department of Health, Albany, NY, 12201, United States","Masters, P.S., Wadsworth Center, New York State Department of Health, Albany, NY, 12201, United States","RNA viruses carry out selective packaging of their genomes in a variety of ways, many involving a genomic packaging signal. The first coronavirus packaging signal was discovered nearly thirty years ago, but how it functions remains incompletely understood. This review addresses the current state of knowledge of coronavirus genome packaging, which has mainly been studied in two prototype species, mouse hepatitis virus and transmissible gastroenteritis virus. Despite the progress that has been made in the mapping and characterization of some packaging signals, there is conflicting evidence as to whether the viral nucleocapsid protein or the membrane protein plays the primary role in packaging signal recognition. The different models for the mechanism of genomic RNA packaging that have been prompted by these competing views are described. Also discussed is the recent exciting discovery that selective coronavirus genome packaging is critical for in vivo evasion of the host innate immune response. © 2019 Elsevier Inc.","Coronavirus; Innate immunity; Membrane protein; Mouse hepatitis virus; Nucleocapsid protein; Packaging signal; RNA virus; Viral genome packaging","genomic RNA; guanine nucleotide binding protein; M protein; membrane protein; nucleocapsid protein; viral protein; virus RNA; Betacoronavirus; complex formation; Coronavirinae; human; immune evasion; in vivo study; innate immunity; Murine hepatitis virus; nonhuman; priority journal; protein protein interaction; Review; RNA packaging; RNA structure; Transmissible gastroenteritis virus; viral phenomena and functions; virus genome","Anokhina, V.S., McAnany, J.D., Ciesla, J.H., Hilimire, T.A., Santoso, N., Miao, H., Miller, B.L., Enhancing the ligand efficiency of anti-HIV compounds targeting frameshift-stimulating RNA (2019) Bioorg. Med. Chem., 27, pp. 2972-2977; Athmer, J., Fehr, A.R., Grunewald, M., Smith, E.C., Denison, M.R., Perlman, S., In situ tagged nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins (2017) mBio, 8. , e02320-16; Athmer, J., Fehr, A.R., Grunewald, M.E., Qu, W., Wheeler, D.L., Graepel, K.W., Channappanavar, R., Perlman, S., Selective packaging in murine coronavirus promotes virulence by limiting type I interferon responses (2018) mBio, 9. , e00272-18; Bárcena, M., Oostergetel, G.T., Bartelink, W., Faas, F.G., Verkleij, A., Rottier, P.J., Koster, A.J., Bosch, B.J., Cryo-electron tomography of mouse hepatitis virus: insights into the structure of the coronavirion (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 582-587; Baric, R.S., Nelson, G.W., Fleming, J.O., Deans, R.J., Keck, J.G., Casteel, N., Stohlman, S.A., Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription (1988) J. Virol., 62, pp. 4280-4287; Barrows, N.J., Campos, R.K., Liao, K.C., Prasanth, K.R., Soto-Acosta, R., Yeh, S.C., Schott-Lerner, G., Garcia-Blanco, M.A., Biochemistry and molecular biology of flaviviruses (2018) Chem. Rev., 118, pp. 4448-4482; Becker, T., Bhushan, S., Jarasch, A., Armache, J.P., Funes, S., Jossinet, F., Gumbart, J., Beckmann, R., Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome (2009) Science, 326, pp. 1369-1373; Bolte, H., Rosu, M.E., Hagelauer, E., García-Sastre, A., Schwemmle, M., Packaging of the influenza virus genome is governed by a plastic network of RNA- and nucleoprotein-mediated interactions (2019) J. Virol., 93. , e01861-18; Borodavka, A., Tuma, R., Stockley, P.G., Evidence that viral RNAs have evolved for efficient, two-stage packaging (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 15769-15774; Bos, E.C., Luytjes, W., van der Meulen, H.V., Koerten, H.K., Spaan, W.J., The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus (1996) Virology, 218, pp. 52-60; Bost, A.G., Prentice, E., Denison, M.R., Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection (2001) Virology, 285, pp. 21-29; Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., Huang, T.H., The SARS coronavirus nucleocapsid protein—forms and functions (2014) Antivir. Res., 103, pp. 39-50; Chang, C.K., Hsu, Y.L., Chang, Y.H., Chao, F.A., Wu, M.C., Huang, Y.S., Hu, C.K., Huang, T.H., Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging (2009) J. Virol., 83, pp. 2255-2264; Chen, S.C., van den Born, E., van den Worm, S.H., Pleij, C.W., Snijder, E.J., Olsthoorn, R.C., New structure model for the packaging signal in the genome of group IIa coronaviruses (2007) J. Virol., 81, pp. 6771-6774; Chen, S.C., Olsthoorn, R.C., Group-specific structural features of the 5'-proximal sequences of coronavirus genomic RNAs (2010) Virology, 401, pp. 29-41; Chou, Y.Y., Vafabakhsh, R., Doganay, S., Gao, Q., Ha, T., Palese, P., One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 9101-9106; Cologna, R., Hogue, B.G., Identification of a bovine coronavirus packaging signal (2000) J. Virol., 74, pp. 580-583; Cologna, R., Spagnolo, J.F., Hogue, B.G., Identification of nucleocapsid binding sites within coronavirus-defective genomes (2000) Virology, 277, pp. 235-249; Dalton, K., Casais, R., Shaw, K., Stirrups, K., Evans, S., Britton, P., Brown, T.D., Cavanagh, D., Cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging (2001) J. Virol., 75, pp. 125-133; Deng, X., Baker, S.C., An “old” protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses (2018) Virology, 517, pp. 157-163; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Einav, S., Gerber, D., Bryson, P.D., Sklan, E.H., Elazar, M., Maerkl, S.J., Glenn, J.S., Quake, S.R., Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis (2008) Nat. Biotechnol., 26, pp. 1019-1027; Escors, D., Izeta, A., Capiscol, C., Enjuanes, L., Transmissible gastroenteritis coronavirus packaging signal is located at the 5' end of the virus genome (2003) J. Virol., 77, pp. 7890-7902; Escors, D., Ortego, J., Laude, H., Enjuanes, L., The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability (2001) J. Virol., 75, pp. 1312-1324; Fosmire, J.A., Hwang, K., Makino, S., Identification and characterization of a coronavirus packaging signal (1992) J. Virol., 66, pp. 3522-3530; Gui, M., Liu, X., Guo, D., Zhang, Z., Yin, C.C., Chen, Y., Xiang, Y., Electron microscopy studies of the coronavirus ribonucleoprotein complex (2017) Protein Cell, 8, pp. 219-224; Hofmann, M.A., Sethna, P.B., Brian, D.A., Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture (1990) J. Virol., 64, pp. 4108-4114; Hsieh, P.K., Chang, S.C., Huang, C.C., Lee, T.T., Hsiao, C.W., Kou, Y.H., Chen, I.Y., Chang, M.F., Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent (2005) J. Virol., 79, pp. 13848-13855; Hsin, W.C., Chang, C.H., Chang, C.Y., Peng, W.H., Chien, C.L., Chang, M.F., Chang, S.C., Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus (2018) J. Biomed. Sci., 25, p. 47; Hsu, J.C., Reid, D.W., Hoffman, A.M., Sarkar, D., Nicchitta, C.V., Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs (2018) RNA, 24, pp. 688-703; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Hurst, K.R., Kuo, L., Koetzner, C.A., Ye, R., Hsue, B., Masters, P.S., A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein (2005) J. Virol., 79, pp. 13285-13297; Ingemarsdotter, C.K., Zeng, J., Long, Z., Lever, A.M.L., Kenyon, J.C., An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation (2018) Retrovirology, 15, p. 25; Jiang, P., Liu, Y., Ma, H.C., Paul, A.V., Wimmer, E., Picornavirus morphogenesis (2014) Microbiol. Mol. Biol. Rev., 78, pp. 418-437; Joseph, J.S., Saikatendu, K.S., Subramanian, V., Neuman, B.W., Buchmeier, M.J., Stevens, R.C., Kuhn, P., Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch (2007) J. Virol., 81, pp. 6700-6708; Keane, S.C., Heng, X., Lu, K., Kharytonchyk, S., Ramakrishnan, V., Carter, G., Barton, S., Summers, M.F., Structure of the HIV-1 RNA packaging signal (2015) Science, 348, pp. 917-921; Keane, S.C., Van, V., Frank, H.M., Sciandra, C.A., McCowin, S., Santos, J., Heng, X., Summers, M.F., NMR detection of intermolecular interaction sites in the dimeric 5'-leader of the HIV-1 genome (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 13033-13038; Kim, D.Y., Firth, A.E., Atasheva, S., Frolova, E.I., Frolov, I., Conservation of a packaging signal and the viral genome RNA packaging mechanism in alphavirus evolution (2011) J. Virol., 85, pp. 8022-8036; Kuo, L., Koetzner, C.A., Masters, P.S., A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging (2016) Virology, 494, pp. 100-107; Kuo, L., Masters, P.S., Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus (2002) J. Virol., 76, pp. 4987-4999; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J. Virol., 87, pp. 5182-5192; Kuo, L., Hurst-Hess, K.R., Koetzner, C.A., Masters, P.S., Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras (2016) J. Virol., 90, pp. 4357-4368; Kuo, L., Koetzner, C.A., Hurst, K.R., Masters, P.S., Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein (2014) J. Virol., 88, pp. 4451-4465; Lau, S.K., Woo, P.C., Yip, C.C., Fan, R.Y., Huang, Y., Wang, M., Guo, R., Yuen, K.Y., Isolation and characterization of a novel betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J. Virol., 86, pp. 5481-5496; Law, M.J., Lee, D.S., Lee, C.S., Anglim, P.P., Haworth, I.S., Laird-Offringa, I.A., The role of the C-terminal helix of U1A protein in the interaction with U1hpII RNA (2013) Nucleic Acids Res., 41, pp. 7092-7100; Makino, S., Yokomori, K., Lai, M.M., Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal (1990) J. Virol., 64, pp. 6045-6053; Masters, P.S., The molecular biology of coronaviruses (2006) Adv. Virus Res., 66, pp. 193-292; Masters, P.S., Perlman, S., Coronaviridae. p 825-858 (2013) Fields Virology, 1. , sixth ed. D.M. Knipe P.M. Howley J.I. Cohen D.E. Griffin R.A. Lamb M.A. Martin V.R. Racaniello B. Roizman Lippincott Williams & Wilkins Philadelphia, PA; Mendes, A., Kuhn, R.J., Alphavirus nucleocapsid packaging and assembly (2018) Viruses, 10, p. E138; Méndez, A., Smerdou, C., Izeta, A., Gebauer, F., Enjuanes, L., Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: packaging and heterogeneity (1996) Virology, 217, pp. 495-507; Molenkamp, R., Spaan, W.J., Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal (1997) Virology, 239, pp. 78-86; Morales, L., Mateos-Gomez, P.A., Capiscol, C., del Palacio, L., Enjuanes, L., Sola, I., Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process (2013) J. Virol., 87, pp. 11579-11590; Narayanan, K., Makino, S., Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging (2001) J. Virol., 75, pp. 9059-9067; Narayanan, K., Chen, C.J., Maeda, J., Makino, S., Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal (2003) J. Virol., 77, pp. 2922-2927; Narayanan, K., Maeda, A., Maeda, J., Makino, S., Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells (2000) J. Virol., 74, pp. 8127-8134; Nemoto, M., Oue, Y., Murakami, S., Kanno, T., Bannai, H., Tsujimura, K., Yamanaka, T., Kondo, T., Complete genome analysis of equine coronavirus isolated in Japan (2015) Arch. Virol., 160, pp. 2903-2906; Neuman, B.W., Adair, B.D., Yoshioka, C., Quispe, J.D., Orca, G., Kuhn, P., Milligan, R.A., Buchmeier, M.J., Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy (2006) J. Virol., 80, pp. 7918-7928; Neuman, B.W., Joseph, J.S., Saikatendu, K.S., Serrano, P., Chatterjee, A., Johnson, M.A., Liao, L., Kuhn, P., Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 (2008) J. Virol., 82, pp. 5279-5294; Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., Droese, B., Buchmeier, M.J., A structural analysis of M protein in coronavirus assembly and morphology (2011) J. Struct. Biol., 174, pp. 11-22; Nugent, C.I., Johnson, K.L., Sarnow, P., Kirkegaard, K., Functional coupling between replication and packaging of poliovirus replicon RNA (1999) J. Virol., 73, pp. 427-435; Onafuwa-Nuga, A.A., Telesnitsky, A., King, S.R., 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles (2006) RNA, 12, pp. 542-546; Sarute, N., Ross, S.R., New world arenavirus biology (2017) Annu Rev Virol, 4, pp. 141-158; Sethna, P.B., Hung, S.L., Brian, D.A., Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 5626-5630; Song, Y., Gorbatsevych, O., Liu, Y., Mugavero, J., Shen, S.H., Ward, C.B., Asare, E., Wimmer, E., Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes (2017) Proc. Natl. Acad. Sci. U.S.A., 114, pp. E8731-E8740; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martínez-Sobrido, L., García-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315; Sturman, L.S., Holmes, K.V., Behnke, J., Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid (1980) J. Virol., 33, pp. 449-462; Tanner, E.J., Liu, H.M., Oberste, M.S., Pallansch, M., Collett, M.S., Kirkegaard, K., Dominant drug targets suppress the emergence of antiviral resistance (2014) Elife, 3. , e03830; van der Most, R.G., Bredenbeek, P.J., Spaan, W.J., A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs (1991) J. Virol., 65, pp. 3219-3226; Verma, S., Bednar, V., Blount, A., Hogue, B.G., Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein (2006) J. Virol., 80, pp. 4344-4355; Verma, S., Lopez, L.A., Bednar, V., Hogue, B.G., Importance of the penultimate positive charge in mouse hepatitis coronavirus A59 membrane protein (2007) J. Virol., 81, pp. 5339-5348; Xu, X., Zhai, Y., Sun, F., Lou, Z., Su, D., Xu, Y., Zhang, R., Rao, Z., New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 (2006) J. Virol., 80, pp. 7909-7917; Yabukarski, F., Lawrence, P., Tarbouriech, N., Bourhis, J.M., Delaforge, E., Jensen, M.R., Ruigrok, R.W., Jamin, M., Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone (2014) Nat. Struct. Mol. Biol., 21, pp. 754-759; Zhang, J., Guy, J.S., Snijder, E.J., Denniston, D.A., Timoney, P.J., Balasuriya, U.B., Genomic characterization of equine coronavirus (2007) Virology, 369, pp. 92-104; Zhang, L., Li, L., Yan, L., Ming, Z., Jia, Z., Lou, Z., Rao, Z., Structural and biochemical characterization of endoribonuclease nsp15 encoded by Middle East respiratory syndrome coronavirus (2018) J. Virol., 92. , e00893-18; Zhao, X., Shaw, K., Cavanagh, D., Presence of subgenomic mRNAs in virions of coronavirus IBV (1993) Virology, 196, pp. 172-178; Ziebuhr, J., The coronavirus replicase (2005) Curr. Top. Microbiol. Immunol., 287, pp. 57-94","Masters, P.S.; Wadsworth Center, New York State Department of Health, Albany, United States; email: Paul.Masters@health.ny.gov",,"Academic Press Inc.",00426822,,VIRLA,"31505321","English","Virology",Review,"Final",Open Access,Scopus,2-s2.0-85071862299 "Han Y., Zhang J., Shi H., Zhou L., Chen J., Zhang X., Liu J., Zhang J., Wang X., Ji Z., Jing Z., Cong G., Ma J., Shi D., Li F.","57211015266;57211015345;55233443300;55861714100;8320190900;55851450100;55317283900;57192714108;56979423400;57192713776;57197728593;57211012099;7406199976;54399296900;57192650695;","Epitope mapping and cellular localization of swine acute diarrhea syndrome coronavirus nucleocapsid protein using a novel monoclonal antibody",2019,"Virus Research","273",, 197752,"","",,1,"10.1016/j.virusres.2019.197752","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072260631&doi=10.1016%2fj.virusres.2019.197752&partnerID=40&md5=064f9dd0b16dded4e447d2d0a6ae0406","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China","Han, Y., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Shi, H., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhou, L., College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China; Chen, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Liu, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Wang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Ji, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Jing, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Cong, G., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Ma, J., College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China; Shi, D., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Li, F., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China","A swine acute diarrhea syndrome coronavirus (SADS-CoV) that causes severe diarrhea in suckling piglets was identified in Southern China in 2017. To develop an antigen that is specific, sensitive, and easy to prepare for serological diagnosis, antigenic sites in the SADS-CoV nucleocapsid (N) protein were screened. We generated and characterized an N-reactive monoclonal antibody (mAb) 3E9 from mice immunized with recombinant N protein. Through fine epitope mapping of mAb 3E9 using a panel of eukaryotic-expressed polypeptides with GFP-tags, we identified the motif 343DAPVFTPAP351 as the minimal unit of the linear B-cell epitope recognized by mAb 3E9. Protein sequence alignment indicated that 343DAPVFTPAP351 was highly conserved in different SADS-CoV strains and SADS-related coronaviruses from bat, with one substitution in this motif in HKU2-related bat coronavirus. Using mAb 3E9, we observed that N protein was expressed in the cytoplasm and was in the nucleolus during SADS-CoV replication. N protein was immunoprecipitated from SADS-CoV-infected Vero E6 cells. Taken together, our results indicated that 3E9 mAb could be a useful tool to investigate the structure and function of N protein during viral replication. © 2019 Elsevier B.V.","Epitope mapping; Monoclonal antibody; N protein; Swine acute diarrhea syndrome coronavirus","guanine nucleotide binding protein; monoclonal antibody; monoclonal antibody 3E9; nucleocapsid protein; recombinant protein; unclassified drug; amino acid sequence; animal cell; animal experiment; animal model; Article; B lymphocyte; bacterium culture; cellular distribution; controlled study; Coronavirinae; cytoplasm; epitope mapping; female; mouse; nonhuman; nucleolus; polyacrylamide gel electrophoresis; priority journal; protein expression; protein localization; sequence analysis; suckling animal; swine acute diarrhea syndrome coronavirus; Vero C1008 cell line; virus detection; virus nucleocapsid; virus replication","Almazan, F., Galan, C., Enjuanes, L., The nucleoprotein is required for efficient coronavirus genome replication (2004) J. Virol., 78 (22), pp. 12683-12688; Chang, M.S., Lu, Y.T., Ho, S.T., Wu, C.C., Wei, T.Y., Chen, C.J., Hsu, Y.T., Yang, Y.C., Antibody detection of SARS-CoV spike and nucleocapsid protein (2004) Biochem. Biophys. Res. Commun., 314 (4), pp. 931-936; Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Lee, S.J., Huang, T.H., The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure (2005) FEBS Lett., 579 (25), pp. 5663-5668; Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Lee, S.J., Huang, T.H., Modular organization of SARS coronavirus nucleocapsid protein (2006) J. Biomed. Sci., 13 (1), pp. 59-72; Chen, C.Y., Chang, C.K., Chang, Y.W., Sue, S.C., Bai, H.I., Riang, L., Hsiao, C.D., Huang, T.H., Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA (2007) J. Mol. Biol., 368 (4), pp. 1075-1086; Enjuanes, L., Almazan, F., Sola, I., Zuniga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu. Rev. Microbiol., 60, pp. 211-230; Fan, H., Ooi, A., Tan, Y.W., Wang, S., Fang, S., Liu, D.X., Lescar, J., The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties (2005) Structure, 13 (12), pp. 1859-1868; Fu, X., Fang, B., Liu, Y., Cai, M., Jun, J., Ma, J., Bu, D., Zhang, G., Newly emerged porcine enteric alphacoronavirus in southern China: Identification, origin and evolutionary history analysis (2018) Infect. Genet. Evol., 62, pp. 179-187; Galfre, G., Milstein, C., Preparation of monoclonal antibodies: strategies and procedures (1981) Meth. Enzymol., 73, pp. 3-46; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new Bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerging Infect. Dis., 23 (9); He, Y., Zhou, Y., Wu, H., Kou, Z., Liu, S., Jiang, S., Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus (2004) J. Clin. Microbiol., 42 (11), pp. 5309-5314; Jaru-Ampornpan, P., Jengarn, J., Wanitchang, A., Jongkaewwattana, A., Porcine epidemic diarrhea virus 3C-Like protease-mediated nucleocapsid processing: possible link to viral cell culture adaptability (2017) J. Virol., 91 (2); Jayaram, H., Fan, H., Bowman, B.R., Ooi, A., Jayaram, J., Collisson, E.W., Lescar, J., Prasad, B.V., X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation (2006) J. Virol., 80 (13), pp. 6612-6620; Kuo, S.M., Kao, H.W., Hou, M.H., Wang, C.H., Lin, S.H., Su, H.L., Evolution of infectious bronchitis virus in Taiwan: positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity (2013) Vet. Microbiol., 162 (2-4), pp. 408-418; Lai, M.M., Coronavirus: organization, replication and expression of genome (1990) Annu. Rev. Microbiol., 44, pp. 303-333; Laude, H., Masters, P.S., The coronavirus nucleocapsid protein (1995) The Coronaviridae, pp. 141-163. , S.G. Siddell Springer US Boston, MA; Lo, Y.S., Lin, S.Y., Wang, S.M., Wang, C.T., Chiu, Y.L., Huang, T.H., Hou, M.H., Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein (2013) FEBS Lett., 587 (2), pp. 120-127; Nelson, G.W., Stohlman, S.A., Tahara, S.M., High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA (2000) J. Gen. Virol., 81, pp. 181-188; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Parker, M.M., Masters, P.S., Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein (1990) Virology, 179 (1), pp. 463-468; Rowland, R.R., Chauhan, V., Fang, Y., Pekosz, A., Kerrigan, M., Burton, M.D., Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells (2005) J. Virol., 79 (17), pp. 11507-11512; Shi, D., Lv, M., Chen, J., Shi, H., Zhang, S., Zhang, X., Feng, L., Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus (2014) Viruses, 6 (3), pp. 1253-1273; Shi, D., Shi, H., Sun, D., Chen, J., Zhang, X., Wang, X., Zhang, J., Feng, L., Nucleocapsid interacts with NPM1 and protects it from proteolytic cleavage, enhancing cell survival, and is involved in PEDV growth (2017) Sci. Rep., 7, p. 39700; Spencer, K.A., Hiscox, J.A., Characterisation of the RNA binding properties of the coronavirus infectious bronchitis virus nucleocapsid protein amino-terminal region (2006) FEBS Lett., 580 (25), pp. 5993-5998; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24 (6), pp. 490-502; Timani, K.A., Liao, Q., Ye, L., Zeng, Y., Liu, J., Zheng, Y., Yang, X., Zhu, Y., Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus (2005) Virus Res., 114 (1-2), pp. 23-34; Wang, H., Cong, F., Zeng, F., Lian, Y., Liu, X., Luo, M., Guo, P., Ma, J., Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV) (2018) J. Virol. Methods, 260, pp. 45-48; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86 (7), pp. 3995-4008; You, J., Dove, B.K., Enjuanes, L., DeDiego, M.L., Alvarez, E., Howell, G., Heinen, P., Hiscox, J.A., Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein (2005) J. Gen. Virol., 86, pp. 3303-3310; Yu, I.M., Gustafson, C.L., Diao, J., Burgner, J.W., 2nd, Li, Z., Zhang, J., Chen, J., Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain (2005) J. Biol. Chem., 280 (24), pp. 23280-23286; Zhang, X., Shi, H., Chen, J., Shi, D., Li, C., Feng, L., EF1A interacting with nucleocapsid protein of transmissible gastroenteritis coronavirus and plays a role in virus replication (2014) Vet. Microbiol., 172 (3-4), pp. 443-448; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J. Virol. Methods, 255, pp. 66-70; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258; Zuniga, S., Cruz, J.L., Sola, I., Mateos-Gomez, P.A., Palacio, L., Enjuanes, L., Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription (2010) J. Virol., 84 (4), pp. 2169-2175","Ma, J.; College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, China; email: majy2400@scau.edu.cn",,"Elsevier B.V.",01681702,,VIRED,"31518629","English","Virus Res.",Article,"Final",Open Access,Scopus,2-s2.0-85072260631 "Kim D.E., Min J.S., Jang M.S., Lee J.Y., Shin Y.S., Park C.M., Song J.H., Kim H.R., Kim S., Jin Y.-H., Kwon S.","57211583540;57211581365;57211332495;57211338356;57213264469;57204517688;56488904000;8932057300;57206698790;57192311673;35727732800;","Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus oc43 infection of mrc-5 human lung cells",2019,"Biomolecules","9","11", 696,"","",,,"10.3390/biom9110696","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074499162&doi=10.3390%2fbiom9110696&partnerID=40&md5=2236b4edcc718aa1e94fbc8c9dc1bee4","Herbal Medicine Research Division, Korea Institute of O, riental Medicine, Daejeon, 34054, South Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Department of Non-Clinical Studies, Korea Institute, of Toxicology, Daejeon, 34114, South Korea; Zoonotic Virus Laboratory, Institute Pasteur Korea, Seongnam, 13488, South Korea; KM Application Center, Korea Institute of, Oriental Medicine, Daegu, 41062, South Korea","Kim, D.E., Herbal Medicine Research Division, Korea Institute of O, riental Medicine, Daejeon, 34054, South Korea, Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Min, J.S., Herbal Medicine Research Division, Korea Institute of O, riental Medicine, Daejeon, 34054, South Korea, Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Jang, M.S., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea, Department of Non-Clinical Studies, Korea Institute, of Toxicology, Daejeon, 34114, South Korea; Lee, J.Y., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Shin, Y.S., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Park, C.M., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Song, J.H., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Kim, H.R., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea; Kim, S., Zoonotic Virus Laboratory, Institute Pasteur Korea, Seongnam, 13488, South Korea; Jin, Y.-H., Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea, KM Application Center, Korea Institute of, Oriental Medicine, Daegu, 41062, South Korea; Kwon, S., Herbal Medicine Research Division, Korea Institute of O, riental Medicine, Daejeon, 34054, South Korea, Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea","Stephania tetrandra and other related species of Menispermaceae are the major sources of the bis-benzylisoquinoline alkaloids tetrandrine (TET), fangchinoline (FAN), and cepharanthine (CEP). Although the pharmacological properties of these compounds include anticancer and anti-inflammatory activities, the antiviral effects of these compounds against human coronavirus (HCoV) remain unclear. Hence, the aims of the current study were to assess the antiviral activities of TET, FAN, and CEP and to elucidate the underlying mechanisms in HCoV-OC43-infected MRC-5 human lung cells. These compounds significantly inhibited virus-induced cell death at the early stage of virus infection. TET, FAN, and CEP treatment dramatically suppressed the replication of HCoV-OC43 as well as inhibited viral S and N protein expression. The virus-induced host response was reduced by compound treatment as compared with the vehicle control. Taken together, these findings demonstrate that TET, FAN, and CEP are potential natural antiviral agents for the prevention and treatment of HCoV-OC43 infection. © 2019, MDPI AG. All rights reserved.","Antiviral effect; Bis-benzylisoquinoline alkaloids; Cepharanthine; Fangchinoline; Human coronavirus strain OC43; MRC-5 human lung cell; Tetrandrine","bisbenzylisoquinoline derivative; cepharanthine; fangquinoline; tetrandrine; unclassified drug; Vpr protein; Vps protein; antiinflammatory activity; antineoplastic activity; antiviral activity; Article; cell death; cell viability; copy number variation; Coronaviridae; human; human cell; Human coronavirus OC43; IC50; immunohistochemistry; lung alveolus cell; Menispermaceae; MRC-5 cell line; MTS assay; pharmacology; protein expression; real time polymerase chain reaction; Stephania tetrandra; virus infection; virus titration; Western blotting","Lin, L.-T., Hsu, W.-C., Lin, C.-C., Antiviral Natural Products and Herbal Medicines (2014) J. Tradit. Complement. Med., 4, pp. 24-35; Martin, K.W., Ernst, E., Antiviral agents from plants and herbs: A systematic review (2003) Antivir. Ther., 8, pp. 77-90; Jassim, S., Naji, M., Novel antiviral agents: A medicinal plant perspective (2003) J. Appl. Microbiol., 95, pp. 412-427; Akram, M., Tahir, I.M., Shah, S.M.A., Mahmood, Z., Altaf, A., Ahmad, K., Munir, N., Mehboob, H., Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review (2018) Phytother. Res., 32, pp. 811-822; Bhagya, N., Chandrashekar, K., Tetrandrine – A molecule of wide bioactivity (2016) Phytochemistry, 125, pp. 5-13; Weber, C., Opatz, T.B.A., (2019) Alkaloids Chem. Biol., 81, pp. 1-114; Hu, S., Dutt, J., Zhao, T., Foster, C.S., Tetrandrine potently inhibits herpes simplex virus type-1-induced keratitis in BALB/c mice (1997) Ocul. Immunol. Inflamm., 5, pp. 173-180; Liou, J.-T., Chen, Z.-Y., Ho, L.-J., Yang, S.-P., Chang, D.-M., Liang, C.-C., Lai, J.-H., Differential effects of triptolide and tetrandrine on activation of COX-2, NF-κB, and AP-1 and virus production in dengue virus-infected human lung cells (2008) Eur. J. Pharmacol., 589, pp. 288-298; Sakurai, Y., Kolokoltsov, A.A., Chen, C.-C., Tidwell, M.W., Bauta, W.E., Klugbauer, N., Grimm, C., Davey, R.A., Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment (2015) Science, 347, pp. 995-998; Wan, Z., Lu, Y., Liao, Q., Wu, Y., Chen, X., Fangchinoline Inhibits Human Immunodeficiency Virus Type 1 Replication by Interfering with gp160 Proteolytic Processing (2012) Plos ONE, 7; Baba, M., Okamoto, M., Kashiwaba, N., Ono, M., Anti-HIV-1 activity and structure-activity relationship of cepharanoline derivatives in chronically infected cells (2001) Antivir. Chem. Chemother., 12, pp. 307-312; Liu, X., Wang, Y., Zhang, M., Li, G., Cen, Y., Study on the inhibitory effect of cepharanthine on herpes simplex type-1 virus (HSV-1) in vitro (2004) Zhong Yao Cai, 27, pp. 107-110; Lim, Y.X., Ng, Y.L., Tam, J.P., Liu, D.X., Human Coronaviruses: A Review of Virus-Host Interactions (2016) Diseases, 4, p. 26; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.-Y., Chan, J.F.-W., Coronaviruses—drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; 2018 Annual Review of Diseases Prioritized under the Research and Development Blueprint, , https://www.who.int/emergencies/diseases/2018prioritization-report.pdf?ua=1; Monto, A.S., Lim, S.K., The Tecumseh Study of Respiratory Illness. VI. Frequency of and Relationship between Outbreaks of Coronavims Infection (1974) J. Infect. Dis., 129, pp. 271-276; Macnaughton, M.R., Occurrence and frequency of coronavirus infections in humans as determined by enzyme-linked immunosorbent assay (1982) Infect. Immun., 38, pp. 419-423; Zhang, R., Wang, K., Ping, X., Yu, W., Qian, Z., Xiong, S., Sun, B., The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis (2015) J. Virol., 89, pp. 11383-11395; Myint, S.H., Human coronavirus infections (1995) The Coronaviridae, pp. 389-401. , Springer: Boston, MA, USA,; pp; Marra, M.A., Jones, S.J.M., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S.N., Khattra, J., Chan, S.Y., (2003) The Genome Sequence of the Sars-Associated Coronavirus. Science, 300, pp. 1399-1404; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human Respiratory Coronavirus OC43: Genetic Stability and Neuroinvasion (2004) J. Virol., 78, pp. 8824-8834; Beidas, M., Chehadeh, W., PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins (2018) Arch. Virol., 163, pp. 2065-2072; Huang, X., Dong, W., Milewska, A., Golda, A., Qi, Y., Zhu, Q.K., Marasco, W.A., Pyrc, K., Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme (2015) J. Virol., 89, pp. 7202-7213; Tian, D.-D., Zhang, R.-X., Wu, N., Yuan, W., Luo, S.-H., Chen, H., Liu, Y., Deng, Z.-L., Tetrandrine inhibits the proliferation of human osteosarcoma cells by upregulating the PTEN pathway (2017) Oncol. Rep., 37, pp. 2795-2802; Xu, W., Wang, X., Tu, Y., Masaki, H., Tanaka, S., Onda, K., Sugiyama, K., Hirano, T., Tetrandrine and cepharanthine induce apoptosis through caspase cascade regulation, cell cycle arrest, MAPK activation and PI3K/Akt/mTOR signal modification in glucocorticoid resistant human leukemia Jurkat T cells (2019) Chem. Interact., 310; Gaunt, E.R., Hardie, A., Claas, E.C.J., Simmonds, P., Templeton, K.E., Epidemiology and Clinical Presentations of the Four Human Coronaviruses 229E, HKU1, NL63, and OC43 Detected over 3 Years Using a Novel Multiplex Real-Time PCR Method (2010) J. Clin. Microbiol., 48, pp. 2940-2947; Herman, P., Verlinden, Y., Breyer, D., van Cleemput, E., Brochier, B., Sneyers, M., Snacken, R., Liesnard, C., (2019) Biosafety Risk Assessment of the Severe Acute Respiratory Syndrome (SARS) Coronavirus and Containment Measures for the Diagnostic and Research Laboratories, , https://www.sciensano.be/fr/biblio/biosafety-risk-assessment-severe-acute-respiratory-syndrome-sars-coronavirus-and-containment, accessed on 4 November; Shahkarami, M., Yen, C., Glaser, C., Xia, D., Watt, J., Wadford, D.A., Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, California, USA, 2013-2014 (2015) Emerg. Infect. Dis, 21, pp. 1664-1666; Okamoto, M., Ono, M., Baba, M., Potent Inhibition of HIV Type 1 Replication by an Antiinflammatory Alkaloid, Cepharanthine, in Chronically Infected Monocytic Cells (1998) AIDS Res. Hum. Retrovir., 14, pp. 1239-1245; Hulswit, R., de Haan, C., Bosch, B.-J., Coronavirus Spike Protein and Tropism Changes (2016) Adv. Virus Res., 96, pp. 29-57; Matrosovich, M., Herrler, G., Klenk, H.D., Sialic Acid Receptors of Viruses (2015) Top. Curr. Chem., 367, pp. 1-28; Hulswit, R.J.G., Lang, Y., Bakkers, M.J.G., Li, W., Li, Z., Schouten, A., Ophorst, B., Bosch, B.-J., Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A (2019) Proc. Natl. Acad. Sci, 116, pp. 2681-2690; Zeng, Q., Langereis, M.A., van Vliet, A.L.W., Huizinga, E.G., de Groot, R.J., Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution (2008) Proc. Natl. Acad. Sci, 105, pp. 9065-9069; Stoltz, M., Klingstrom, J., Alpha/Beta Interferon (IFN-α/β)-Independent Induction of IFN-λ1 (Interleukin-29) in Response to Hantaan Virus Infection (2010) J. Virol., 84, pp. 9140-9148; Kimura, H., Yoshizumi, M., Ishii, H., Oishi, K., Ryo, A., Cytokine production and signaling pathways in respiratory virus infection (2013) Front. Microbiol., 4, p. 276; Seki, E., Yoshizumi, M., Tanaka, R., Ryo, A., Ishioka, T., Tsukagoshi, H., Kozawa, K., Goya, T., Cytokine profiles, signalling pathways and effects of fluticasone propionate in respiratory syncytial virus-infected human foetal lung fibroblasts (2013) Cell Boil. Int., 37, pp. 326-339","Kwon, S.; Herbal Medicine Research Division, Korea Institute of O, riental MedicineSouth Korea; email: sunohkwon@kiom.re.kr",,"MDPI AG",2218273X,,,,"English","Biomolecules",Article,"Final",Open Access,Scopus,2-s2.0-85074499162 "Abbad A., Perera R.A., Anga L., Faouzi A., Minh N.N.T., Malik S.M.M.R., Iounes N., Maaroufi A., Van Kerkhove M.D., Peiris M., Nourlil J.","57212140364;43861730800;56607393800;36930281300;57212146418;57212142249;57212141392;55519879800;15761388700;7005486823;6504114936;","Middle East respiratory syndrome coronavirus (MERS-CoV) neutralising antibodies in a high-risk human population, Morocco, November 2017 to January 2018",2019,"Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin","24","48",,"","",,1,"10.2807/1560-7917.ES.2019.24.48.1900244","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076014631&doi=10.2807%2f1560-7917.ES.2019.24.48.1900244&partnerID=40&md5=f6dafd82d557a4de982f7b33a9737991","These authors contributed equally to this work; Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'Sik, Université Hassan II, Casablanca, Morocco; Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; School of Public Health, University of Hong-Kong, Hong Kong SAR, China; Health Emergencies Programme, World Health Organization, Regional Office for the Eastern MediterraneanCairo, Egypt; Health Emergencies Programme, World Health OrganizationGeneva, Switzerland; HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China","Abbad, A., These authors contributed equally to this work, Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'Sik, Université Hassan II, Casablanca, Morocco, Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Perera, R.A., These authors contributed equally to this work, School of Public Health, University of Hong-Kong, Hong Kong SAR, China; Anga, L., Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Faouzi, A., Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Minh, N.N.T., Health Emergencies Programme, World Health Organization, Regional Office for the Eastern MediterraneanCairo, Egypt; Malik, S.M.M.R., Health Emergencies Programme, World Health Organization, Regional Office for the Eastern MediterraneanCairo, Egypt; Iounes, N., Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'Sik, Université Hassan II, Casablanca, Morocco; Maaroufi, A., Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Van Kerkhove, M.D., Health Emergencies Programme, World Health OrganizationGeneva, Switzerland; Peiris, M., School of Public Health, University of Hong-Kong, Hong Kong SAR, China, HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China; Nourlil, J., Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco","BackgroundMiddle East respiratory syndrome coronavirus (MERS-CoV) remains a major concern for global public health. Dromedaries are the source of human zoonotic infection. MERS-CoV is enzootic among dromedaries on the Arabian Peninsula, the Middle East and in Africa. Over 70% of infected dromedaries are found in Africa. However, all known zoonotic cases of MERS have occurred in the Arabian Peninsula with none being reported in Africa.AimWe aimed to investigate serological evidence of MERS-CoV infection in humans living in camel-herding areas in Morocco to provide insights on whether zoonotic transmission is taking place.MethodsWe carried out a cross sectional seroprevalence study from November 2017 through January 2018. We adapted a generic World Health Organization MERS-CoV questionnaire and protocol to assess demographic and risk factors of infection among a presumed high-risk population. ELISA, MERS-CoV spike pseudoparticle neutralisation tests (ppNT) and plaque neutralisation tests (PRNT) were used to assess MERS-CoV seropositivity.ResultsSerum samples were collected from camel slaughterhouse workers (n = 137), camel herders (n = 156) and individuals of the general population without occupational contact with camels but living in camel herding areas (n = 186). MERS-CoV neutralising antibodies with ≥ 90% reduction of plaque numbers were detected in two (1.5%) slaughterhouse workers, none of the camel herders and one individual from the general population (0.5%).ConclusionsThis study provides evidence of zoonotic transmission of MERS-CoV in Morocco in people who have direct or indirect exposure to dromedary camels.","dromedaries; MERS-CoV; Middle East Respiratory Syndrome Coronavirus; Morocco; transmission; zoonosis",,,,,"NLM (Medline)",15607917,,,"31796154","English","Euro Surveill.",Article,"Final",Open Access,Scopus,2-s2.0-85076014631 "Weng J.-R., Lin C.-S., Lai H.-C., Lin Y.-P., Wang C.-Y., Tsai Y.-C., Wu K.-C., Huang S.-H., Lin C.-W.","57211701863;57169020500;8383593900;57211112871;36462112800;57211111209;56428256700;7405421039;35269379500;","Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63",2019,"Virus Research","273",, 197767,"","",,1,"10.1016/j.virusres.2019.197767","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072653742&doi=10.1016%2fj.virusres.2019.197767&partnerID=40&md5=f007a441100a49ad0cc7c1870755518f","Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Gastroenterology, Kuang Tien General Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Hepato-gastroenterology, department of internal medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan; Chinese Medicine Research center, China Medical University, Taichung, Taiwan","Weng, J.-R., Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Lin, C.-S., Division of Gastroenterology, Kuang Tien General Hospital, Taichung, Taiwan; Lai, H.-C., School of Chinese Medicine, China Medical University, Taichung, Taiwan, Division of Hepato-gastroenterology, department of internal medicine, China Medical University Hospital, Taichung, Taiwan; Lin, Y.-P., Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Wang, C.-Y., Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Tsai, Y.-C., Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Wu, K.-C., School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Huang, S.-H., Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan; Lin, C.-W., Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan, Chinese Medicine Research center, China Medical University, Taichung, Taiwan","Human coronavirus NL63 (HCoV-NL63), one of the main circulating HCoVs worldwide, causes respiratory tract illnesses like runny nose, cough, bronchiolitis and pneumonia. Recently, a severe respiratory illness outbreak of HCoV-NL63 has been reported in a long-term care facility. Sambucus FormosanaNakai, a species of elderberry, is a traditional medicinal herb with anti-inflammatory and antiviral potential. The study investigated the antiviral activity of Sambucus FormosanaNakai stem ethanol extract and some phenolic acid constituents against HCoV-NL63. The extract was less cytotoxic and concentration-dependently increased anti-HCoV-NL63 activities, including cytopathicity, sub-G1 fraction, virus yield (IC50 = 1.17 μg/ml), plaque formation (IC50 = 4.67 μg/ml) and virus attachment (IC50 = 15.75 μg/ml). Among the phenolic acid constituents in Sambucus FormosanaNakai extract, caffeic acid, chlorogenic acid and gallic acid sustained the anti-HCoV-NL63 activity that was ranked in the following order of virus yield reduction: caffeic acid (IC50 = 3.54 μM) > chlorogenic acid (IC50 = 43.45 μM) > coumaric acid (IC50 = 71.48 μM). Caffeic acid significantly inhibited the replication of HCoV-NL63 in a cell-type independent manner, and specifically blocked virus attachment (IC50 = 8.1 μM). Therefore, the results revealed that Sambucus Formosana Nakai stem ethanol extract displayed the strong anti-HCoV-NL63 potential; caffeic acid could be the vital component with anti-HCoV-NL63 activity. The finding could be helpful for developing antivirals against HCoV-NL63. © 2019 Elsevier B.V.","Antiviral; Attachment inhibition; Caffeic acid; Human coronavirus NL63; Sambucus FormosanaNakai; Virus yield","alcohol; antivirus agent; caffeic acid; chlorogenic acid; coumaric acid; gallic acid; plant extract; sambucus formosananakai extract; unclassified drug; airway epithelium cell; antiviral activity; Article; Calu-3 cell line; concentration response; controlled study; cytotoxicity test; human; human cell; Human coronavirus NL63; IC50; priority journal; Sambucus; sambucus formosananakai; virucidal activity; virus attachment; virus infectivity","Amoros, M., Simões, C.M., Girre, L., Sauvager, F., Cormier, M., Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis (1992) J. Nat. Prod., 55 (12), pp. 1732-1740; Barak, V., Halperin, T., Kalickman, I., The effect of sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. inflammatory cytokines (2001) Eur. Cytokine Networks, 12 (2), pp. 290-296; Benevides Bahiense, J., Marques, F.M., Figueira, M.M., Vargas, T.S., Kondratyuk, T.P., Endringer, D.C., Scherer, R., Fronza, M., Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis (2017) Pharm. Biol., 55 (1), pp. 991-997; Chen, F., Liu, D.L., Wang, W., Lv, X.M., Li, W., Shao, L.D., Wang, W.J., Bioactive triterpenoids from Sambucus javanica Blume (2019) Nat. Prod. Res., 10 (2), pp. 1-6; Chen, W., Li, K.Q., Xiong, X.J., Zhang, J.H., Research on the effective chemical constituents of Sumbucus chinensis Lindl. against hepatitis (2001) J Nanchang Univ., 25 (2), pp. 165-167; Chiou, S.Y., Sung, J.M., Huang, P.W., Lin, S.D., Antioxidant, antidiabetic, and antihypertensive properties of echinacea purpurea flower extract and caffeic acid derivatives using in vitro models (2017) J. Med. Food, 20 (2), pp. 171-179; Cui, L.J., Zhang, C., Zhang, T., Lu, R.J., Xie, Z.D., Zhang, L.L., Liu, C.Y., Tan, W.J., Human coronaviruses HCoV-NL63 and HCoV-HKU1 in hospitalized children with acute respiratory infections in Beijing (2011) China Adv. Virol., 2011; Davis, B.M., Foxman, B., Monto, A.S., Baric, R.S., Martin, E.T., Uzicanin, A., Rainey, J.J., Aiello, A.E., Human coronaviruses and other respiratory infections in young adults on a university campus: prevalence, symptoms, and shedding (2018) Influenza Other Respi. Viruses, 12, pp. 582-590; Hong, D., Yang, Q., Malécot, V., Boufford, D.E., Sambucus javanica (2013) Flora of China, , Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria Cambridge, MA; Dijkman, R., Jebbink, M.F., Gaunt, E., Rossen, J.W., Templeton, K.E., Kuijpers, T.W., van der Hoek, L., The dominance of human coronavirus OC43 and NL63 infections in infants (2012) J. Clin. Virol., 53 (2), pp. 135-139; Ding, Y., Cao, Z., Cao, L., Ding, G., Wang, Z., Xiao, W., Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase (2017) Sci. Rep., 7, p. 45723; Fal, A.M., Conrad, F., Schönknecht, K., Sievers, H., Pawińska, A., Antiviral activity of the “Virus Blocking Factor” (VBF) derived i.a. From Pelargonium extract and Sambucus juice against different human-pathogenic cold viruses in vitro (2016) Wiad. Lek., 69 (3), pp. 499-511; Geng, H., Cui, L., Xie, Z., Lu, R., Zhao, L., Tan, W., Characterization and complete genome sequence of human coronavirus NL63 isolated in China (2012) J. Virol., 86 (17), pp. 9546-9547; Govea-Salas, M., Rivas-Estilla, A.M., Rodríguez-Herrera, R., Lozano-Sepúlveda, S.A., Aguilar-Gonzalez, C.N., Zugasti-Cruz, A., Salas-Villalobos, T.B., Morlett-Chávez, J.A., Gallic acid decreases hepatitis C virus expression through its antioxidant capacity (2016) Exp. Ther. Med., 11 (2), pp. 619-624; Hand, J., Rose, E.B., Salinas, A., Lu, X., Sakthivel, S.K., Schneider, E., Watson, J.T., Severe respiratory illness outbreak associated with human coronavirus NL63 in a long-term care facility (2018) Emerg. Infect. Dis., 24 (10), pp. 1964-1966; Huang, S.H., Su, M.C., Tien, N., Huang, C.J., Lan, Y.C., Lin, C.S., Chen, C.H., Lin, C.W., Epidemiology of human coronavirus NL63 infection among hospitalized patients with pneumonia in Taiwan (2017) J. Microbiol. Immunol. Infect., 50 (6), pp. 763-770; Ikeda, K., Tsujimoto, K., Uozaki, M., Nishide, M., Suzuki, Y., Koyama, A.H., Yamasaki, H., Inhibition of multiplication of herpes simplex virus by caffeic acid (2011) Int. J. Mol. Med., 28 (4), pp. 595-598; Krawitz, C., Mraheil, M.A., Stein, M., Imirzalioglu, C., Domann, E., Pleschka, S., Hain, T., Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses (2011) BMC Complement. Altern. Med., 11, p. 16; Langland, J., Jacobs, B., Wagner, C.E., Ruiz, G., Cahill, T.M., Antiviral activity of metal chelates of caffeic acid and similar compounds towards herpes simplex, VSV-Ebola pseudotyped and vaccinia viruses (2018) Antiviral Res., 160, pp. 143-150; Lednicky, J.A., Waltzek, T.B., McGeehan, E., Loeb, J.C., Hamilton, S.B., Luetke, M.C., Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells (2013) Virol. J., 10, p. 213; Li, X., Liu, Y., Hou, X., Peng, H., Zhang, L., Jiang, Q., Shi, M., Shi, W., Chlorogenic acid inhibits the replication and viability of enterovirus 71 in vitro (2013) PLoS One, 8 (9); Li, S.W., Lin, C.W., Human coronaviruses: clinical features and phylogenetic analysis (2013) Biomed., 3, pp. 43-50. , (Taipei); Liao, Q.F., Xie, S.P., Chen, X.H., Bi, K.S., Study on the chemical constituents of Sumbucus chinensis Lindl (2006) Zhong Yao Cai., 29 (9), pp. 916-918; Lin, C.N., Tome, W.P., Antihepatotoxic principles of Sambucus formosana (1988) Planta Med., 54 (3), pp. 223-224; Mahmood, N., Pizza, C., Aquino, R., De, T., Piacente, S., Colman, S., Burke, A., Hay, A.J., Inhibition of HIV infection by flavanoids (1993) Antiviral Res., 22, pp. 189-199; Mandrone, M., Lorenzi, B., Maggio, A., La Mantia, T., Scordino, M., Bruno, M., Poli, F., Polyphenols pattern and correlation with antioxidant activities of berries extracts from four different populations of sicilian Sambucus Nigra L (2014) Nat. Prod. Res., 28 (16), pp. 1246-1253; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J. Virol., 88 (22), pp. 13221-13230; Pinto, J., Spínola, V., Llorent-Martínez, E.J., Fernández-de Córdova, M.L., L, M.-G., Castilho, P.C., Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion (2017) Food Res. Int., 100 (Pt3), pp. 404-410; Pliszka, B., Polyphenolic content, antiradical activity, stability and microbiological quality of elderberry (Sambucus Nigra L.) extracts (2017) Acta Sci. Pol. Technol. Aliment., 16 (4), pp. 393-401; Porter, R.S., Bode, R.F., A review of the antiviral properties of black elder (Sambucus Nigra L.) products (2017) Phytother. Res., 31 (4), pp. 533-554; Roschek, B.J., Fink, R.C., McMichael, M.D., Li, D., Alberte, R.S., Elderberry flavonoids bind to and prevent H1N1 infection in vitro (2009) Phytochemistry, 70 (10), pp. 1255-1261; Serkedjieva, J., Manolova, N., Zgorniak-Nowosielska, I., Antiviral activity of the infusion (SHS-174) from flowers of Sambucus Nigra L., aerial parts of Hypericum Perforatum L., and roots of Saponaria Officinalis L. Against influenza and herpes simplex viruses (1990) Phytother. Res., 4, pp. 97-100; Shen, J., Wang, G., Zuo, J., Caffeic acid inhibits HCV replication via induction of IFNα antiviralresponse through p62-mediated Keap1/Nrf2 signaling pathway (2018) Antiviral Res., 154, pp. 166-173; Tanida, I., Shirasago, Y., Suzuki, R., Abe, R., Wakita, T., Hanada, K., Fukasawa, M., Inhibitory effects of caffeic acid, a coffee-related organic acid, on the propagation of hepatitis C virus (2015) Jpn. J. Infect. Dis., 68 (4), pp. 268-275; Turek, S., Cisowski, W., Free and chemically bonded phenolic acids in barks of Viburnum Opulus L. And Sambucus Nigra L (2007) Acta Pol. Pharm., 64 (4), pp. 377-383; Utsunomiya, H., Ichinose, M., Ikeda, K., Uozaki, M., Morishita, J., Kuwahara, T., Koyama, A.H., Yamasaki, H., Inhibition by caffeic acid of the influenza A virus multiplication in vitro (2014) Int. J. Mol. Med., 34 (4), pp. 1020-1024; Wang, C.Y., Huang, S.C., Zhang, Y., Lai, Z.R., Kung, S.H., Chang, Y.S., Lin, C.W., Antiviral ability of Kalanchoe gracilis leaf extract against enterovirus 71 and coxsackievirus A16 (2012) Evid. Complement. Alternat. Med., 2012; Wang, C.Y., Hour, M.J., Lai, H.C., Chen, C.H., Chang, P.J., Huang, S.H., Lin, C.W., Epigallocatechin-3-gallate inhibits the early stages of Japanese encephalitis virus infection (2018) Virus Res., 253, pp. 140-146; Wang, G.F., Shi, L.P., Ren, Y.D., Liu, Q.F., Liu, H.F., Zhang, R.J., Li, Z., Zuo, J.P., Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro (2009) Antiviral Res., 83 (2), pp. 186-190; Yang, K.C., Chiu, S.T., Caprifoliaceae (1998) Flora of Taiwan, , 2nd ed; Yang, Y.J., Lin, J.H., Study on the chemical constituents of Sumbucus Chinensis Lindl (2004) J Chin Med Mater, 27 (7), pp. 491-492; You, H.L., Huang, C.C., Chen, C.J., Chang, C.C., Liao, P.L., Huang, S.T., Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid (2018) J. Chin. Med. Assoc., 81 (5), pp. 458-468; Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., Mumcuoglu, M., Inhibition of several strains of Influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus Nigra L.) during an outbreak of influenza B panama (1995) J. Altern. Complement. Med., 1 (4), pp. 361-369; Zhang, T., Yang, D., Wang, Y., Chen, X., Bi, K., Simultaneous determination of four components in the herbs of Sumbucus chinensis Lindl. By high performance liquid chromatography (2010) Asian J. Tradit. Med., 5 (2), pp. 70-74; Zozimus Divya Lobo, C., Syed Mohamed, A., Vedhi, C., Rajesh, S.V., Aroulmoji, V., Shanmugam, G., Identification of potent angiotensin converting enzyme 2 inhibitors through virtual screening and structure-based pharmacophore design (2017) Int J Adv Sci Eng, 4 (1), pp. 474-480","Lin, C.-W.; Department of Medical Laboratory Science and Biotechnology, China Medical University, 91 Hsueh-Shih Road, Taiwan; email: cwlin@mail.cmu.edu.tw",,"Elsevier B.V.",01681702,,VIRED,"31560964","English","Virus Res.",Article,"Final",Open Access,Scopus,2-s2.0-85072653742 "Ahmed A.E.","35278332600;","Diagnostic delays in Middle East respiratory syndrome coronavirus patients and health systems",2019,"Journal of Infection and Public Health","12","6",,"767","771",,1,"10.1016/j.jiph.2019.04.002","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064316429&doi=10.1016%2fj.jiph.2019.04.002&partnerID=40&md5=2ac26d306baea9b206c5b995a07476c3","College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia","Ahmed, A.E., College of Public Health and Health Informatics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia","Background: Although Middle East respiratory syndrome coronavirus (MERS-CoV) diagnostic delays remain a major challenge in health systems, the source of delays has not been recognized in the literature. The aim of this study is to quantify patient and health-system delays and to identify their associated factors. Methods: The study of 266 patients was based on public source data from the World Health Organization (WHO) (January 2, 2017–May 16, 2018). The diagnostic delays, patient delays, and health-system delays were calculated and modelled using a Poisson regression analysis. Results: In 266 MERS-CoV patients reported during the study period, the median diagnostic delays, patient delays, and health-system delays were 5 days (interquartile [IQR] range: 3–8 days), 4 days (IQR range: 2–7 days), and 2 days (IQR range: 1–2 days), respectively. Both patient delay (r = 0.894, P = 0.001) and health-system delay (r = 0.163, P = 0.025) were positively correlated with diagnostic delay. Older age was associated with longer health-system delay (adjusted relative ratios (aRR), 1.011; 95% confidence intervals (CI), 1.004–1.017). Diagnostic delay (aRR, 1.137; 95% CI, 1.006–1.285) and health-system delays (aRR, 1.217; 95% CI, 1.003–1.476) were significantly longer in patients who died. Conclusion: Delays in MERS-CoV diagnosis exist and may be attributable to patient delay and health-system delay as both were significantly correlated with longer diagnosis delay. Early MERS-CoV diagnosis may require more sensitive risk assessment tools to reduce avoidable delays, specifically those related to patients and health system. © 2019 The Author","Coronavirus; Diagnostic delay; Health-system delay; MERS-CoV; Patient delay; Saudi Arabia","age; aged; article; controlled study; delayed diagnosis; female; human; major clinical study; male; Middle East respiratory syndrome coronavirus; nonhuman; regression analysis; risk assessment; Saudi Arabia; World Health Organization; adolescent; adult; child; Coronavirus infection; isolation and purification; middle aged; Middle East respiratory syndrome coronavirus; very elderly; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Child; Coronavirus Infections; Delayed Diagnosis; Female; Humans; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Young Adult","Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study (2014) Int J Infect Dis, 23 (June), pp. 63-68; Ahmed, A.E., Alshukairi, A.N., Al-Jahdali, H., Alaqeel, M., Siddiq, S.S., Alsaab, H.A., Development of a risk-prediction model for Middle East respiratory syndrome coronavirus infection in dialysis patients (2018) Hemodial Int, (April); Ahmed, A.E., Al-Jahdali, H., Alshukairi, A.N., Alaqeel, M., Siddiq, S.S., Alsaab, H., Early identification of pneumonia patients at increased risk of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2018) Int J Infect Dis, 70 (May), pp. 51-56; Ahmed, A.E., Al-Jahdali, H., Alaqeel, M., Siddiq, S.S., Alsaab, H.A., Sakr, E.A., Factors associated with recovery delay in a sample of patients diagnosed by MERS-CoV rRT-PCR: a Saudi Arabian multicenter retrospective study (2018) Influenza Other Respir Virus, (April); Ahmed, A.E., Diagnostic delays in 537 symptomatic cases of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2017) Int J Infect Dis, 62 (September), pp. 47-51; Park, H.Y., Lee, E.J., Ryu, Y.A., Kim, Y., Kim, H., Lee, H., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Eurosurveillance, 20 (June (25)), p. 21169; Ahmed, A.E., The predictors of 3-and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (December (1)), p. 615; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: a worldwide study (2018) Epidemiol Infect, 146 (March (4)), pp. 489-495; Bawazir, A., Al-Mazroo, E., Jradi, H., Ahmed, A., Badri, M., MERS-CoV infection: mind the public knowledge gap (2018) J Infect Public Health, 11 (January (1)), pp. 89-93; Al Mohaissen, M., Awareness among a Saudi Arabian university community of Middle East respiratory syndrome coronavirus following an outbreak (2017) East Mediterr Health J, 23 (5), pp. 351-360; Alsahafi, A.J., Cheng, A.C., Knowledge, attitudes and behaviours of healthcare workers in the kingdom of Saudi Arabia to MERS coronavirus and other emerging infectious diseases (2016) Int J Environ Res Public Health, 13 (December (12)), p. 1214; Al Ghamdi, M., Alghamdi, K.M., Ghandoora, Y., Alzahrani, A., Salah, F., Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia (2016) BMC Infect Dis, 16 (December (1)), p. 174; Omrani, A.S., Shalhoub, S., Middle East respiratory syndrome coronavirus (MERS-CoV): what lessons can we learn? (2015) J Hosp Infect, 91 (November (3)), pp. 188-196; www.moh.gov.sa/en/CCC/Regulations/Case%20Definition.pdf, Case definition and surveillance guidance — updated June 2015. [Accessed July 5, 2018]; http://www.who.int/csr/disease/coronavirus_infections/case_definition/en/, Middle East respiratory syndrome coronavirus: case definition for reporting to WHO. [Accessed July 5, 2018]","Ahmed, A.E.; College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, MC 2350, P.O. Box 22490, Saudi Arabia; email: ahmeda5@vcu.edu",,"Elsevier Ltd",18760341,,,"31006635","English","J. Infect. Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85064316429 "Castells M., Giannitti F., Caffarena R.D., Casaux M.L., Schild C., Castells D., Riet-Correa F., Victoria M., Parreño V., Colina R.","35228674100;40461337200;57211610710;57203834906;57194044151;8152710500;7006691882;16426432300;6603502038;6602160256;","Bovine coronavirus in Uruguay: genetic diversity, risk factors and transboundary introductions from neighboring countries",2019,"Archives of Virology","164","11",,"2715","2724",,1,"10.1007/s00705-019-04384-w","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071761480&doi=10.1007%2fs00705-019-04384-w&partnerID=40&md5=5a17530195a8ba0475c983ee49971f02","Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, 50000, Uruguay; Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay; Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, Montevideo, Uruguay; Centro de Investigación y Experimentación Dr. Alejandro Gallinal, Secretariado Uruguayo de la Lana, Ruta 7 km 140, Cerro Colorado, FL, Uruguay; Sección de Virus Gastroentéricos, Instituto de Virología, CICV y A, INTA Castelar, Buenos Aires, Argentina","Castells, M., Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, 50000, Uruguay, Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay; Giannitti, F., Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay; Caffarena, R.D., Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay, Facultad de Veterinaria, Universidad de la República, Alberto Lasplaces 1620, Montevideo, Uruguay; Casaux, M.L., Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay; Schild, C., Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay; Castells, D., Centro de Investigación y Experimentación Dr. Alejandro Gallinal, Secretariado Uruguayo de la Lana, Ruta 7 km 140, Cerro Colorado, FL, Uruguay; Riet-Correa, F., Instituto Nacional de Investigación Agropecuaria (INIA), Plataforma de Investigación en Salud Animal, Ruta 50 km 11, La Estanzuela, Colonia, 70000, Uruguay; Victoria, M., Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, 50000, Uruguay; Parreño, V., Sección de Virus Gastroentéricos, Instituto de Virología, CICV y A, INTA Castelar, Buenos Aires, Argentina; Colina, R., Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Salto, 50000, Uruguay","Bovine coronavirus (BCoV) is a recognized cause of severe neonatal calf diarrhea, with a negative impact on animal welfare, leading to economic losses to the livestock industry. Cattle production is one of the most important economic sectors in Uruguay. The aim of this study was to determine the frequency of BCoV infections and their genetic diversity in Uruguayan calves and to describe the evolutionary history of the virus in South America. The overall detection rate of BCoV in Uruguay was 7.8% (64/824): 7.7% (60/782) in dairy cattle and 9.5% (4/42) in beef cattle. The detection rate of BCoV in samples from deceased and live calves was 10.0% (6/60) and 7.6% (58/763), respectively. Interestingly, there was a lower frequency of BCoV detection in calves born to vaccinated dams (3.3%, 8/240) than in calves born to unvaccinated dams (12.2%, 32/263) (OR: 4.02, 95%CI: 1.81–8.90; p = 0.00026). The frequency of BCoV detection was higher in colder months (11.8%, 44/373) than in warmer months (1.5%, 3/206) (OR: 9.05, 95%CI: 2.77–29.53, p = 0.000013). Uruguayan strains grouped together in two different lineages: one with Argentinean strains and the other with Brazilian strains. Both BCoV lineages were estimated to have entered Uruguay in 2013: one of them from Brazil (95%HPD interval: 2011–2014) and the other from Argentina (95%HPD interval: 2010–2014). The lineages differed by four amino acid changes, and both were divergent from the Mebus reference strain. Surveillance should be maintained to detect possible emerging strains that can clearly diverge at the antigenic level from vaccine strains. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.",,"virus antigen; virus DNA; animal; Argentina; bovine; Bovine coronavirus; Brazil; cattle disease; Coronavirus infection; dysentery; genetic variation; genetics; immunology; isolation and purification; Uruguay; vaccination; veterinary medicine; virology; Animals; Antigens, Viral; Argentina; Brazil; Cattle; Cattle Diseases; Coronavirus Infections; Coronavirus, Bovine; DNA, Viral; Dysentery; Genetic Variation; Uruguay; Vaccination","Clark, M.A., Bovine coronavirus (1993) Br Vet J, 149 (1), pp. 51-70; Waltner-Toews, D., Martin, S.W., Meek, A.H., The effect of early calfhood health status on survivorship and age at first calving (1986) Can J Vet Res, 50 (3), pp. 314-317; Donovan, G.A., Dohoo, I.R., Montgomery, D.M., Bennett, F.L., Calf and disease factors affecting growth in female Holstein calves in Florida, USA (1998) Prev Vet Med, 33 (1-4), pp. 1-10; Østerås, O., Solbu, H., Refsdal, A.O., Roalkvam, T., Filseth, O., Minsaas, A., Results and evaluation of thirty years of health recordings in the Norwegian dairy cattle population (2007) J Dairy Sci, 90 (9), pp. 4483-4497; Windeyer, M.C., Leslie, K.E., Godden, S.M., Hodgins, D.C., Lissemore, K.D., LeBlanc, S.J., Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age (2014) Prev Vet Med, 113 (2), pp. 231-240; Urie, N.J., Lombard, J.E., Shivley, C.B., Kopral, C.A., Adams, A.E., Earleywine, T.J., Olson, J.D., Garry, F.B., Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves (2018) J Dairy Sci, 101 (10), pp. 9229-9244; (2018) Anuario estadístico Agropecuario, , https://descargas.mgap.gub.uy/DIEA/Anuarios/Anuario2018/Anuario_2018.pdf; (2018) Meat Market Review, April. FAO, Rome; The world dairy situation 2013 (2013) Bulletin of the International Dairy Federation, 470. , 2013; (2018) Coronaviridae, , https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/222/coronaviridae, EC 50, Washington, DC, July 2018; Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Halpin, R., Wang, S., Saif, L.J., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) J Virol, 82 (24), pp. 12422-12431; Giannitti, F., Diab, S., Mete, A., Stanton, J.B., Fielding, L., Crossley, B., Sverlow, K., Pusterla, N., Necrotizing enteritis and hyperammonemic encephalopathy associated with equine coronavirus infection in equids (2015) Vet Pathol, 52 (6), pp. 1148-1156; Masters, P.S., Perlman, S., Coronaviridae (2013) Fields virology, , Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B, (eds), 6, Lippincott Williams and Wilkins, Philadelphia; King, B., Brian, D.A., Bovine coronavirus structural proteins (1982) J Virol, 42 (2), pp. 700-707; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv Virus Res, 48, pp. 1-100; Cavanagh, D., The coronavirus surface glycoprotein (1995) The Coronaviridae. The viruses, , Siddell SG, (ed), Springer, Boston; Brandão, P.E., Gregori, F., Richtzenhain, L.J., Rosales, C.A., Villarreal, L.Y., Jerez, J.A., Molecular analysis of Brazilian strains of bovine coronavirus (BCoV) reveals a deletion within the hypervariable region of the S1 subunit of the spike glycoprotein also found in human coronavirus OC43 (2006) Arch Virol, 151 (9), pp. 1735-1748; Bok, M., Miño, S., Rodriguez, D., Badaracco, A., Nuñes, I., Souza, S.P., Bilbao, G., Parreño, V., Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994–2010 (2015) Vet Microbiol, 181 (3-4), pp. 221-229; Beuttemmuller, E.A., Alfieri, A.F., Headley, S.A., Alfieri, A.A., Brazilian strain of bovine respiratory coronavirus is derived from dual enteric and respiratory tropism (2017) Genet Mol Res; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33 (7), pp. 1870-1874; Trifinopoulos, J., Nguyen, L.T., von Haeseler, A., Minh, B.Q., W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis (2016) Nucleic Acids Res, 44 (W1), pp. W232-W235; Anisimova, M., Gascuel, O., Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative (2006) Syst Biol, 55 (4), pp. 539-552; Rambaut, A., Lam, T.T., Max Carvalho, L., Pybus, O.G., Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen) (2016) Virus Evol, 2 (1), p. vew007; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Mol Biol Evol, 10 (3), pp. 512-526; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Mol Biol Evol, 29 (8), pp. 1969-1973; Korber, B., Myers, G., Signature pattern analysis: a method for assessing viral sequence relatedness (1992) AIDS Res Hum Retroviruses, 8 (9), pp. 1549-1560; Stipp, D.T., Barry, A.F., Alfieri, A.F., Takiuchi, E., Amude, A.M., Alfieri, A.A., Frequency of BCoV detection by a semi-nested PCR assay in faeces of calves from Brazilian cattle herds (2009) Trop Anim Health Prod, 41 (7), pp. 1563-1567; de Mira Fernandes, A., Fernandes, A., Brandão, P.E., Dos Santos Lima, M., de Souza Nunes Martins, M., da Silva, T.G., da Silva Cardoso Pinto, V., Pituco, E.M., Genetic diversity of BCoV in Brazilian cattle herds (2018) Vet Med Sci; Gomez, D.E., Weese, J.S., Viral enteritis in calves (2017) Can Vet J, 58 (12), pp. 1267-1274; Castells, M., Schild, C., Caffarena, D., Bok, M., Giannitti, F., Armendano, J., Riet-Correa, F., Colina, R., Prevalence and viability of group A rotavirus in dairy farm water sources (2018) J Appl Microbiol, 124 (3), pp. 922-929; Blanchard, P.C., Diagnostics of dairy and beef cattle diarrhea (2012) Vet Clin N Am Food Anim Pract, 28 (3), pp. 443-464; Hulbert, L.E., Moisá, S.J., Stress, immunity, and the management of calves (2016) J Dairy Sci, 99 (4), pp. 3199-3216; Murphy, F.A., Gibbs, E.P.J., Horzinek, M.C., Studdert, M.J., (1999) Coronaviridae. Veterinary virology, , 3, Academic Press, New York; Svensson, C., Lundborg, K., Emanuelson, U., Olsson, S.O., Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases (2003) Prev Vet Med, 58 (3-4), pp. 179-197; Cho, Y.I., Han, J.I., Wang, C., Cooper, V., Schwartz, K., Engelken, T., Yoon, K.J., Case-control study of microbiological etiology associated with calf diarrhea (2013) Vet Microbiol, 166 (3-4), pp. 375-385; Cho, Y.I., Yoon, K.J., An overview of calf diarrhea—infectious etiology, diagnosis, and intervention (2014) J Vet Sci., 15 (1), pp. 1-17; Evermann, J.F., Benfield, D.A., Coronaviral infections (2001) Infectious diseases of wild mammals, pp. 245-253. , Williams ES, Barker IK, (eds), 3, Iowa State University Press, Ames; Collins, J.K., Riegel, C.A., Olson, J.D., Fountain, A., Shedding of enteric coronavirus in adult cattle (1987) Am J Vet Res, 48 (3), pp. 361-365; Mawatari, T., Hirano, K., Ikeda, H., Tsunemitsu, H., Suzuki, T., Surveillance of diarrhea-causing pathogens in dairy and beef cows in Yamagata Prefecture, Japan from 2002 to 2011 (2014) Microbiol Immunol, 58 (9), pp. 530-535; Boileau, M.J., Kapil, S., Bovine coronavirus associated syndromes (2010) Vet Clin N Am Food Anim Pract, 26 (1), pp. 123-146; Bulgin, M.S., Ward, A.C., Barrett, D.P., Lane, V.M., Detection of rotavirus and coronavirus shedding in two beef cow herds in Idaho (1989) Can Vet J, 30 (3), pp. 235-239; Gunn, L., Collins, P.J., O’Connell, M.J., O’Shea, H., Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains (2015) Ir Vet J, 68, p. 31; Fulton, R.W., Herd, H.R., Sorensen, N.J., Confer, A.W., Ritchey, J.W., Ridpath, J.F., Burge, L.J., Enteric disease in postweaned beef calves associated with Bovine coronavirus clade 2 (2015) J Vet Diagn Investig, 27 (1), pp. 97-101; Vijgen, L., Keyaerts, E., Lemey, P., Maes, P., Van Reeth, K., Nauwynck, H., Pensaert, M., Van Ranst, M., Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 (2006) J Virol, 80 (14), pp. 7270-7274; Bidokhti, M.R., Tråvén, M., Krishna, N.K., Munir, M., Belák, S., Alenius, S., Cortey, M., Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains (2013) J Gen Virol, 94, pp. 2036-2049","Colina, R.; Laboratorio de Virología Molecular, CENUR Litoral Norte, Centro Universitario de Salto, Universidad de la República, Rivera 1350, Uruguay; email: rodneycolina1@gmail.com",,"Springer-Verlag Wien",03048608,,ARVID,"31456086","English","Arch. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85071761480 "Corman V.M., Lienau J., Witzenrath M.","34876424800;8341159200;6506508523;","Coronaviruses as the cause of respiratory infections [Coronaviren als Ursache respiratorischer Infektionen]",2019,"Internist","60","11",,"1136","1145",,1,"10.1007/s00108-019-00671-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071648563&doi=10.1007%2fs00108-019-00671-5&partnerID=40&md5=d7c5ea977ba82a8994935b1927ddc5a0","Institut für Virologie, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Arbeitsbereich Pulmonale Inflammation, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany; Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany","Corman, V.M., Institut für Virologie, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Lienau, J., Arbeitsbereich Pulmonale Inflammation, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany; Witzenrath, M., Arbeitsbereich Pulmonale Inflammation, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany","Background: There are six human pathogenic coronaviruses (CoV), which mainly cause infections of the respiratory system. In everyday clinical practice, it is helpful to know the relevance and characteristics of these pathogens. Objective: To present the epidemiology, clinical picture and differences of human pathogenic CoV and to provide information on the diagnostics and treatment of patients suspected of having CoV infections. Material and methods: Selective literature search, presentation of results and discussion of fundamental works and expert recommendations, including publications by the World Health Organization (WHO), the European Centre for Disease Prevention and Control (ECDC) and the Robert Koch Institute. Results: The four endemic human CoVs (HCoV-NL63, HCoV-229E, HCoV-OC43 and HCoV-HKU1) mainly cause mild respiratory tract infections. In addition to these four endemic HCoV, the two epidemic CoV, severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV can cause severe pneumonia. The SARS-CoV has not been detected in humans in the last 15 years and MERS-CoV has been circulating mainly on the Arabian Peninsula since 2012; however, neither a specific treatment nor approved vaccines exist for any of the six human pathogenic CoVs. Conclusion: All six human CoVs can be diagnosed using RT-PCR on respiratory specimens but this is rarely necessary for the four endemic strains. In current clinical practice SARS-CoV has no importance as it has not been detected in humans for 15 years; however, a possible MERS-CoV infection should be taken into account in patients with typical symptoms and travel history to endemic regions. In this case, rapid diagnostic and general hygiene practices are important to prevent further transmission. © 2019, Springer Medizin Verlag GmbH, ein Teil von Springer Nature.","Common cold; Middle East respiratory syndrome coronavirus (MERS-CoV); Pneumonia; Respiratory tract infections; Severe acute respiratory syndrome (SARS)","Coronavirus vaccine; unclassified drug; virus vaccine; Article; clinical practice; Coronavirinae; Coronavirus infection; human; Middle East respiratory syndrome; nonhuman; severe acute respiratory syndrome; syndrome; viral respiratory tract infection; virus detection; virus pneumonia; Betacoronavirus; Coronavirus infection; Human coronavirus 229E; Human coronavirus NL63; Human coronavirus OC43; respiratory tract infection; severe acute respiratory syndrome; virology; Betacoronavirus; Coronavirus; Coronavirus 229E, Human; Coronavirus Infections; Coronavirus NL63, Human; Coronavirus OC43, Human; Humans; Respiratory Tract Infections; Severe Acute Respiratory Syndrome","Arabi, Y.M., Alothman, A., Balkhy, H.H., Treatment of middle east respiratory syndrome with a combination of lopinavir-ritonavir and interferon-beta1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19, p. 81; Chu, D.K.W., Hui, K.P.Y., Perera, R., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci USA, 115, pp. 3144-3149; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with middle east respiratory syndrome Coronavirus infection (2016) Clin Infect Dis, 62, pp. 477-483; Corman, V.M., Muth, D., Niemeyer, D., Hosts and sources of endemic human Coronaviruses (2018) Adv Virus Res, 100, pp. 163-188; Drosten, C., Meyer, B., Muller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; (2014) European Centre for Disease Prevention and Control. Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV) – tenth update, 31 May 2014, , European Centre for Disease Prevention and Control, Stockholm; Eichenberger, E.M., Soave, R., Zappetti, D., Incidence, significance, and persistence of human coronavirus infection in hematopoietic stem cell transplant recipients (2018) Bone Marrow Transplant.; Esper, F., Ou, Z., Huang, Y.T., Human coronaviruses are uncommon in patients with gastrointestinal illness (2010) J Clin Virol, 48, pp. 131-133; Friedman, N., Alter, H., Hindiyeh, M., Human Coronavirus infections in Israel: epidemiology, clinical symptoms and summer seasonality of HcoV-HKU1 (2018) Viruses; Hui, D.S., Azhar, E.I., Kim, Y.J., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227; (2019) ICTV Virus Taxonomy: 2018b Release; Kiambi, S., Corman, V.M., Sitawa, R., Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017 (2018) Emerg Microbes Infect, 7, p. 195; Mackay, I.M., Arden, K.E., MERS coronavirus: diagnostics, epidemiology and transmission (2015) Virol J, 12, p. 222; Mackay, I.M., Arden, K.E., Speicher, D.J., Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004 (2012) Viruses, 4, pp. 637-653; Mayer, K., Nellessen, C., Hahn-Ast, C., Fatal outcome of human coronavirus NL63 infection despite successful viral elimination by IFN-alpha in a patient with newly diagnosed ALL (2016) Eur J Haematol, 97, pp. 208-210; Mehand, M.S., Al-Shorbaji, F., Millett, P., The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts (2018) Antiviral Res., 159, pp. 63-67; Morfopoulou, S., Brown, J.R., Davies, E.G., Human Coronavirus OC43 associated with fatal encephalitis (2016) N Engl J Med, 375, pp. 497-498; Omrani, A.S., Saad, M.M., Baig, K., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study (2014) Lancet Infect Dis, 14, pp. 1090-1095; Paloniemi, M., Lappalainen, S., Vesikari, T., Commonly circulating human coronaviruses do not have a significant role in the etiology of gastrointestinal infections in hospitalized children (2015) J Clin Virol, 62, pp. 114-117; (2014) Empfehlungen Des RKI für Das Management Von Kontaktpersonen laborbestätigter Symptomatischer MERS-Fälle; Stand 3, , https://www.rki.de/DE/Content/InfAZ/M/MERS_Coronavirus/MERS-CoV_Management_Kontaktpersonen.html, In, Berlin; (2015) Schwere respiratorische Erkrankungen in Verbindung mit Middle East Respiratory Syndrome Coronavirus (MERS-CoV). FALLDEFINITION zur Fallfindung, Meldung und Übermittlung, , https://www.rki.de/DE/Content/InfAZ/M/MERS_Coronavirus/Corona_Falldefinition.pdf?__blob=publicationFile; Shaman, J., Morita, H., Birger, R., Asymptomatic summertime shedding of respiratory viruses (2018) J Infect Dis, 217, pp. 1074-1077; Van Elden, L.J., Van Loon, A.M., Van Alphen, F., Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction (2004) J Infect Dis, 189, pp. 652-657; (2004) Severe Acute Respiratory Syndrome (SARS) – Disease Outbreak News, , https://www.who.int/csr/sars/archive/en/, May 2004; (2018) Laboratory testing for middle east respiratory syndrome Coronavirus, interim guidance (WHO/MERS/LAB/15.1/rev1/2018), , World Health Organization, Geneva, Switzerland; (2019) Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (MERS-CoV) infection is suspected. Interim guidance, Updated January 2019 (WHO/MERS/Clinical/15.1 Revision 1), , World Health Organization, Geneva, Switzerland; (2019) Middle East Respiratory Syndrome Coronavirus (Mers-Cov) – MERS Situation Update, , https://www.who.int/emergencies/mers-cov/en/, April 2019. In; Yeh, E.A., Collins, A., Cohen, M.E., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatr Electron Pages, 113, pp. e73-e76; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Zohaib, A., Saqib, M., Athar, M.A., Countrywide survey for MERS-Coronavirus antibodies in dromedaries and humans in Pakistan (2018) Virol Sin, 33, pp. 410-417","Witzenrath, M.; Arbeitsbereich Pulmonale Inflammation, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Germany; email: martin.witzenrath@charite.de",,"Springer Verlag",00209554,,INTEA,"31455974","German","Internist",Article,"Final",Open Access,Scopus,2-s2.0-85071648563 "Shan L., Fu F., Xue M., Zhu X., Li L., Feng L., Liu P.","57194456559;7201607918;55496438000;57189215015;57116608200;55792011500;36804440700;","Interferon gamma inhibits transmissible gastroenteritis virus infection mediated by an IRF1 signaling pathway",2019,"Archives of Virology","164","11",,"2659","2669",,1,"10.1007/s00705-019-04362-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070214870&doi=10.1007%2fs00705-019-04362-2&partnerID=40&md5=631306f533961d009003330673c22f73","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China","Shan, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Fu, F., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Xue, M., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Zhu, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Li, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Feng, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Liu, P., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China","Interferon gamma (IFN-γ) is best known for its ability to regulate host immune responses; however, its direct antiviral activity is less well studied. Transmissible gastroenteritis virus (TGEV) is an economically important swine enteric coronavirus and causes acute diarrhea in piglets. At present, little is known about the function of IFN-γ in the control of TGEV infection. In this study, we demonstrated that IFN-γ inhibited TGEV infection directly in ST cells and intestine epithelial IPEC-J2 cells and that the anti-TGEV activity of IFN-γ was independent of IFN-α/β. Moreover, IFN-γ suppressed TGEV infection in ST cells more efficiently than did IFN-α, and the combination of IFN-γ and IFN-α displayed a synergistic effect against TGEV. Mechanistically, using overexpression and functional knockdown experiments, we demonstrated that porcine interferon regulatory factor 1 (poIRF1) elicited by IFN-γ primarily mediated IFN-γ signaling cascades and the inhibition of TGEV infection by IFN-γ. Importantly, we found that TGEV elevated the expression of poIRF1 and IFN-γ in infected small intestines and peripheral blood mononuclear cells. Thus, IFN-γ plays a crucial role in curtailing enteric coronavirus infection and may serve as an effective prophylactic and/or therapeutic agent against TGEV infection. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature.",,"alpha interferon; gamma interferon; interferon regulatory factor 1; small interfering RNA; animal; cell line; Chlorocebus aethiops; genetics; immunology; metabolism; pig; RNA interference; signal transduction; transmissible gastroenteritis of swine; Transmissible gastroenteritis virus; Vero cell line; Animals; Cell Line; Cercopithecus aethiops; Gastroenteritis, Transmissible, of Swine; Interferon Regulatory Factor-1; Interferon-alpha; Interferon-gamma; RNA Interference; RNA, Small Interfering; Signal Transduction; Swine; Transmissible gastroenteritis virus; Vero Cells","van Boxel-Dezaire, A.H., Stark, G.R., Cell type-specific signaling in response to interferon-gamma (2007) Curr Top Microbiol Immunol, 316, pp. 119-154; Barkhouse, D.A., Garcia, S.A., Bongiorno, E.K., Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon (2015) J Virol, 89, pp. 312-322; Schroder, K., Hertzog, P.J., Ravasi, T., Interferon-gamma: an overview of signals, mechanisms and functions (2004) J Leukoc Biol, 75, pp. 163-189; Rhein, B.A., Powers, L.S., Rogers, K., Interferon-gamma Inhibits Ebola Virus Infection (2015) PLoS Pathog, 11; Chaudhary, V., Yuen, K.S., Chan, J.F., Selective activation of Type II interferon signaling by Zika virus NS5 protein (2017) J Virol; Sainz, B., Jr., Mossel, E.C., Peters, C.J., Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (2004) Virology, 329, pp. 11-17; Lin, C.M., Gao, X., Oka, T., Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains (2015) J Virol, 89, pp. 3332-3342; Debouck, P., Pensaert, M., Experimental infection of pigs with a new porcine enteric coronavirus, CV 777 (1980) Am J Vet Res, 41, pp. 219-223; Zhang, X., Zhu, Y., Zhu, X., Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China (2017) Emerg Microbes Infect, 6; Brim, T.A., VanCott, J.L., Lunney, J.K., Lymphocyte proliferation responses of pigs inoculated with transmissible gastroenteritis virus or porcine respiratory coronavirus (1994) Am J Vet Res, 55, pp. 494-501; Charley, B., Laude, H., Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1 (1988) J Virol, 62, pp. 8-11; Xue, M., Fu, F., Ma, Y., The PERK Arm of the Unfolded Protein Response Negatively Regulates Transmissible Gastroenteritis Virus Replication by Suppressing Protein Translation and Promoting Type I Interferon Production (2018) J Virol; Riffault, S., Carrat, C., van Reeth, K., Interferon-alpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets (2001) Vet Res, 32, pp. 71-79; Xia, L., Yang, Y., Wang, J., Impact of TGEV infection on the pig small intestine (2018) Virol J, 15, p. 102; Guzylack-Piriou, L., Piersma, S., McCullough, K., Role of natural interferon-producing cells and T lymphocytes in porcine monocyte-derived dendritic cell maturation (2006) Immunology, 118, pp. 78-87; Bigley, N.J., Complexity of Interferon-gamma Interactions with HSV-1 (2014) Front Immunol, 5, p. 15; Valente, G., Ozmen, L., Novelli, F., Distribution of interferon-gamma receptor in human tissues (1992) Eur J Immunol, 22, pp. 2403-2412; Wen, K., Bui, T., Li, G., Characterization of immune modulating functions of gammadelta T cell subsets in a gnotobiotic pig model of human rotavirus infection (2012) Comp Immunol Microbiol Infect Dis, 35, pp. 289-301; McNeal, M.M., Stone, S.C., Basu, M., IFN-gamma is the only anti-rotavirus cytokine found after in vitro stimulation of memory CD4+ T cells from mice immunized with a chimeric VP6 protein (2007) Viral Immunol, 20, pp. 571-584; Liu, S.Y., Sanchez, D.J., Aliyari, R., Systematic identification of type I and type II interferon-induced antiviral factors (2012) Proc Natl Acad Sci USA, 109, pp. 4239-4244; Morrow, A.N., Schmeisser, H., Tsuno, T., A novel role for IFN-stimulated gene factor 3II in IFN-gamma signaling and induction of antiviral activity in human cells (2011) J Immunol, 186, pp. 1685-1693; Ramana, C.V., Gil, M.P., Schreiber, R.D., Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling (2002) Trends Immunol, 23, pp. 96-101; Song, J.H., Wang, C.X., Song, D.K., Interferon gamma induces neurite outgrowth by up-regulation of p35 neuron-specific cyclin-dependent kinase 5 activator via activation of ERK1/2 pathway (2005) J Biol Chem, 280, pp. 12896-12901; Liu, F., Li, G., Wen, K., Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics (2010) Viral Immunol, 23, pp. 135-149; Splichal, I., Rehakova, Z., Sinkora, M., In vivo study of interferon-alpha-secreting cells in pig foetal lymphohaematopoietic organs following in utero TGEV coronavirus injection (1997) Res Immunol, 148, pp. 247-256; Desmyter, J., Melnick, J.L., Rawls, W.E., Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero) (1968) J Virol, 2, pp. 955-961; Carlin, A.F., Plummer, E.M., Vizcarra, E.A., An IRF-3-, IRF-5-, and IRF-7-Independent Pathway of Dengue Viral Resistance Utilizes IRF-1 to Stimulate Type I and II Interferon Responses (2017) Cell Rep, 21, pp. 1600-1612; Ksienzyk, A., Neumann, B., Kroger, A., IRF-1 is critical for IFNgamma mediated immune surveillance (2012) Oncoimmunology, 1, pp. 533-534; Kimura, T., Nakayama, K., Penninger, J., Involvement of the IRF-1 transcription factor in antiviral responses to interferons (1994) Science (New York, NY), 264, pp. 1921-1924; Wang, F., Cai, R., He, D., Serum IFN-gamma-inducible chemokines CXCL9 and CXCL10 are elevated in non-immediate drug hypersensitivity reactions (2016) Asian Pac J Allergy Immunol, 34, pp. 236-241; Farrar, M.A., Schreiber, R.D., The molecular cell biology of interferon-gamma and its receptor (1993) Annu Rev Immunol, 11, pp. 571-611; Jordan, L.T., Derbyshire, J.B., Antiviral action of interferon-alpha against porcine transmissible gastroenteritis virus (1995) Vet Microbiol, 45, pp. 59-70; Okuse, C., Rinaudo, J.A., Farrar, K., Enhancement of antiviral activity against hepatitis C virus in vitro by interferon combination therapy (2005) Antiviral Res, 65, pp. 23-34; Maloney, N.S., Thackray, L.B., Goel, G., Essential cell-autonomous role for interferon (IFN) regulatory factor 1 in IFN-gamma-mediated inhibition of norovirus replication in macrophages (2012) J Virol, 86, pp. 12655-12664; Brien, J.D., Daffis, S., Lazear, H.M., Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection (2011) PLoS Pathog, 7; Ueki, I.F., Min-Oo, G., Kalinowski, A., Respiratory virus-induced EGFR activation suppresses IRF1-dependent interferon lambda and antiviral defense in airway epithelium (2013) J Exp Med, 210, pp. 1929-1936; Nair, S., Michaelsen-Preusse, K., Finsterbusch, K., Interferon regulatory factor-1 protects from fatal neurotropic infection with vesicular stomatitis virus by specific inhibition of viral replication in neurons (2014) PLoS Pathog, 10; Li, Y., Chang, H., Yang, X., Antiviral activity of porcine interferon regulatory factor 1 against swine viruses in cell culture (2015) Viruses, 7, pp. 5908-5918","Liu, P.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: liupinghuang@caas.cn",,"Springer-Verlag Wien",03048608,,ARVID,"31385116","English","Arch. Virol.",Article,"Final",,Scopus,2-s2.0-85070214870 "Ramírez-Olivencia G., Estébanez M., Membrillo F.J., Ybarra M.D.C.","18837927800;55005536500;57202433305;57202435473;","Use of ribavirin in viruses other than hepatitis C. A review of the evidence [Uso de ribavirina en virus distintos de la hepatitis C. Una revisión de la evidencia]",2019,"Enfermedades Infecciosas y Microbiologia Clinica","37","9",,"602","608",,,"10.1016/j.eimc.2018.05.008","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048322618&doi=10.1016%2fj.eimc.2018.05.008&partnerID=40&md5=27d8b07f5b0b26f37b04613c84072f17","Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain","Ramírez-Olivencia, G., Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain; Estébanez, M., Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain; Membrillo, F.J., Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain; Ybarra, M.D.C., Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain","Ribavirin is a molecule with antiviral activity against different viruses. In clinical practice, it has made its niche almost exclusively for the treatment of the hepatitis C virus. However, there are other diseases in which it could be of benefit and it has the advantage of being suitable for oral, intravenous and inhaled administration. We conducted a review of the indications of the main drug agencies (Spanish, European and American) and other possible indications, mainly haemorrhagic fevers and coronavirus. © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica","1-f8-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide; Ribavirin; Virazole","ribavirin; antiviral therapy; bleeding; Coronavirinae; drug indication; fever; hepatitis C; human; Review; virus infection","Sidwell, R.W., Huffman, J.H., Khare, G.P., Allen, L.B., Witkowski, J.T., Robins, R.K., Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (1972) Science., 177, pp. 705-706; Graci, J.D., Cameron, C.E., Mechanisms of action of ribavirin against distinct viruses (2006) Rev Med Virol., 16, pp. 37-48; https://www.aemps.gob.es/, Agencia Española de Medicamentos y Productos Sanitarios, AEMPS [consultado 26 Nov 2017]. Disponible en:; http://www.ema.europa.eu/ema/, European Medicines Agency [consultado 26 Nov 2017]. Disponible en:; Food, U.S., https://www.fda.gov/, Drug Administration Home Page [consultado 26 Nov 2017]. Disponible en:; Ventre, K., Randolph, A., Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children (2004) Cochrane Database Syst Rev., 12 (5); Shah, J.N., Chemaly, R.F., Management of RSV infections in recipients of hematopoietic stem cell transplantation (2015) Blood., 117, pp. 2755-2764; Gavin, P.J., Katz, B.Z., Intravenous ribavirin treatment for severe adenovirus disease in immunocompromised children (2002) Pediatrics., 110 (1), p. e9; Miyamura, K., Hamaguchi, M., Taji, H., Kanie, T., Kohno, A., Tanimoto, M., Successful ribavirin therapy for severe adenovirus hemorrhagic cystitis after allogeneic marrow transplant from close HLA donors rather than distant donors (2000) Bone Marrow Transplant., 25, pp. 545-548; Tan, D., Zhu, H., Fu, Y., Tong, F., Yao, D., Walline, J., Severe community-acquired pneumonia caused by human adenovirus in immunocompetent adults: A multicenter case series (2016) PLoS One., 11, p. e0151199; Gu, L., Liu, Z., Li, X., Qu, J., Guan, W., Liu, Y., Severe community-acquired pneumonia caused by adenovirus type 11 in immunocompetent adults in Beijing (2012) J Clin Virol., 54, pp. 295-301; Omar, H., Yun, Z., Lewensohn-Fuchs, I., Pérez-Bercoff, L., Örvell, C., Engström, L., Poor outcome of adenovirus infections in adult hematopoietic stem cell transplant patients with sustained adenovirus viremia (2010) Transpl Infect Dis., 12, pp. 465-469; Schleuning, M., Buxbaum-Conradi, H., Jäger, G., Kolb, H.-J., Intravenous ribavirin for eradication of respiratory syncytial virus (RSV) and adenovirus isolates from the respiratory and/or gastrointestinal tract in recipients of allogeneic hematopoietic stem cell transplants (2004) Hematol J., 5, pp. 135-144; Bordigoni, P., Carret, A.S., Venard, V., Witz, F., le Faou, A., Treatment of adenovirus infections in patients undergoing allogeneic hematopoietic stem cell transplantation (2001) Clin Infect Dis., 32, pp. 1290-1297; Yoon, B.W., Song, Y.G., Lee, S.H., Severe community-acquired adenovirus pneumonia treated with oral ribavirin: A case report (2017) BMC Res Notes., 10, p. 47; Park, U.J., Hyun, S.K., Kim, H.T., Cho, W.H., Han, S.Y., Successful treatment of disseminated adenovirus infection with ribavirin and intravenous immunoglobulin in an adult renal transplant recipient: A case report (2015) Transplant Proc., 47, pp. 791-793; Ramirez, J., Bostock, I.C., Martin-Onraet, A., Calleja, S., Sanchez-Cedillo, A., Navarro-Vargas, L.A., Fever, haematuria, and acute graft dysfunction in renal transplant recipients secondary to adenovirus infection: Two case reports (2013) Case Rep Nephrol., 2013. , 195753; Ulrych, E.E., Dzieciątkowski, T., Przybylski, M., Zduńczyk, D., Boguradzki, P., Torosian, T., Disseminated adenovirus disease in immunocompromised patient successfully treated with oral ribavirin: A case report (2011) Arch Immunol Ther Exp (Warsz)., 59, pp. 473-477; Abe, S., Miyamura, K., Oba, T., Terakura, S., Kasai, M., Kitaori, K., Oral ribavirin for severe adenovirus infection after allogeneic marrow transplantation (2003) Bone Marrow Transplant., 32, pp. 1107-1108; Emovon, O.E., Lin, A., Howell, D.N., Afzal, F., Baillie, M., Rogers, J., Refractory adenovirus infection after simultaneous kidney-pancreas transplantation: Successful treatment with intravenous ribavirin and pooled human intravenous immunoglobulin (2003) Nephrol Dial Transplant., 18, pp. 2436-2438; Arav-Boger, R., Echavarria, M., Forman, M., Charache, P., Persaund, D., Clearance of adenoviral hepatitis with ribavirin therapy in a pediatric liver transplant recipient (2000) Pediatr Infect Dis J., 19, pp. 1097-1100; Shetty, A.K., Gans, H.A., So, S., Millan, M.T., Arvin, A.M., Gutierrez, K.M., Intravenous ribavirin therapy for adenovirus pneumonia (2000) Pediatr Pulmonol., 29, pp. 69-73; Chakrabarti, S., Collingham, K.E., Fegan, C.D., Milligan, D.W., Fulminant adenovirus hepatitis following unrelated bone marrow transplantation: Failure of intravenous ribavirin therapy (1999) Bone Marrow Transplant., 23, pp. 1209-1211; Jurado Chacón, M., Hernández Mohedo, F., Navarro Marí, J.M., Ferrer Chaves, C., Escobar Vedia, J.L., de Pablos Gallego, J.M., Adenovirus pneumonitis successfully treated with intravenous ribavirin (1998) Haematologica., 83, pp. 1128-1129; Mann, D., Moreb, J., Smith, S., Gian, V., Failure of intravenous ribavirin in the treatment of invasive adenovirus infection following allogeneic bone marrow transplantation: A case report (1998) J Infect., 36, pp. 227-228; Maslo, C., Girard, P.M., Urban, T., Guessant, S., Rozenbaum, W., Ribavirin therapy for adenovirus pneumonia in an AIDS patient (1997) Am J Respir Crit Care Med., 156 (4), pp. 1263-1264; Aebi, C., Headrick, C.L., McCracken, G.H., Lindsay, C.A., Intravenous ribavirin therapy in a neonate with disseminated adenovirus infection undergoing extracorporeal membrane oxygenation: Pharmacokinetics and clearance by hemofiltration (1997) J Pediatr., 130, pp. 612-615; Sabroe, I., McHale, J., Tait, D.R., Lynn, W.A., Ward, K.N., Shaunak, S., Treatment of adenoviral pneumonitis with intravenous ribavirin and immunoglobulin (1995) Thorax., 50, pp. 1219-1220; Kapelushnik, J., Or, R., Delukina, M., Nagler, A., Livni, N., Engelhard, D., Intravenous ribavirin therapy for adenovirus gastroenteritis after bone marrow transplantation (1995) J Pediatr Gastroenterol Nutr., 21, pp. 110-112; Jurado, M., Navarro, J.M., Hernández, J., Molina, M.A., DePablos, J.M., Adenovirus-associated haemorrhagic cystitis after bone marrow transplantation successfully treated with intravenous ribavirin (1995) Bone Marrow Transplant., 15, pp. 651-652; Wulffraat, N.M., Geelen, S.P., van Dijken, P.J., de Graeff-Meeder, B., Kuis, W., Boven, K., Recovery from adenovirus pneumonia in a severe combined immunodeficiency patient treated with intravenous ribavirin (1995) Transplantation., 59, p. 927; Cassano, W.F., Intravenous ribavirin therapy for adenovirus cystitis after allogeneic bone marrow transplantation (1991) Bone Marrow Transplant., 7, pp. 247-248; Murphy, G.F., Wood, D.P., McRoberts, J.W., Henslee-Downey, P.J., Adenovirus-associated hemorrhagic cystitis treated with intravenous ribavirin (1993) J Urol., 149, pp. 565-566; Liles, W.C., Cushing, H., Holt, S., Bryan, C., Hackman, R.C., Severe adenoviral nephritis following bone marrow transplantation: Successful treatment with intravenous ribavirin (1993) Bone Marrow Transplant., 12, pp. 409-412; Hromas, R., Clark, C., Blanke, C., Tricot, G., Cornetta, K., Hedderman, A., Failure of ribavirin to clear adenovirus infections in T cell-depleted allogeneic bone marrow transplantation (1994) Bone Marrow Transplant., 14, pp. 663-664; Moreli, M.L., Marques-Silva, A.C., Pimentel, V.A., da Costa, V.G., Effectiveness of the ribavirin in treatment of hantavirus infections in the Americas and Eurasia: A meta-analysis (2014) Virusdisease., 25, pp. 385-389; Malinin, O.V., Platonov, A.E., Insufficient efficacy and safety of intravenous ribavirin in treatment of haemorrhagic fever with renal syndrome caused by Puumala virus (2017) Infect Dis (Auckl)., 49, pp. 514-520; McCormick, J.B., King, I.J., Webb, P.A., Scribner, C.L., Craven, R.B., Johnson, K.M., Lassa fever effective therapy with ribavirin (1986) N Engl J Med., 314, pp. 20-26; Fisher-Hoch, S.P., Gborie, S., Parker, L., Huggins, J., Unexpected adverse reactions during a clinical trial in rural West Africa (1992) Antiviral Res., 19, pp. 139-147; Hadi, C.M., Goba, A., Khan, S.H., Bangura, J., Sankoh, M., Koroma, S., Ribavirin for Lassa Fever postexposure prophylaxis (2010) Emerg Infect Dis., 16, pp. 2009-2011; Isa, S.E., Okwute, A., Iraoyah, K.O., Nathan, S.Y., Simji, G.S., Okolo, M.O., Postexposure prophylaxis for Lassa fever: Experience from a recent outbreak in Nigeria (2016) Niger Med J., 57, pp. 246-250; Koksal, I., Yilmaz, G., Aksoy, F., Aydin, H., Yavuz, I., Iskender, S., The efficacy of ribavirin in the treatment of Crimean-Congo hemorrhagic fever in Eastern Black Sea region in Turkey (2010) J Clin Virol., 47, pp. 65-68; Soares-Weiser, K., Thomas, S., Thomson, G., Garner, P., Ribavirin for Crimean-Congo hemorrhagic fever: Systematic review and meta-analysis (2010) BMC Infect Dis., 10, p. 207; Ascioglu, S., Leblebicioglu, H., Vahaboglu, H., Chan, K.A., Ribavirin for patients with Crimean-Congo haemorrhagic fever: A systematic review and meta-analysis (2011) J Antimicrob Chemother., 66, pp. 1215-1222; Enria, D.A., Briggiler, A.M., Levis, S., Vallejos, D., Maiztegui, J.I., Canonico, P.G., Tolerance and antiviral effect of ribavirin in patients with Argentine hemorrhagic fever (1987) Antiviral Res., 7, pp. 353-359; Enria, D.A., Maiztegui, J.I., Antiviral treatment of Argentine hemorrhagic fever (1994) Antiviral Res., 23, pp. 23-31; Enria, D.A., Briggiler, A.M., Sánchez, Z., Treatment of Argentine hemorrhagic fever (2008) Antiviral Res., 78, pp. 132-139; Kilgore, P.E., Ksiazek, T.G., Rollin, P.E., Mills, J.N., Villagra, M.R., Montenegro, M.J., Treatment of Bolivian hemorrhagic fever with intravenous ribavirin (1997) Clin Infect Dis., 24, pp. 718-722; Barry, M., Russi, M., Armstrong, L., Geller, D., Tesh, R., Dembry, L., Brief report: Treatment of a laboratory-acquired Sabiá virus infection (1995) N Engl J Med., 333, pp. 294-296; Omrani, A.S., Saad, M.M., Baig, K., Bahloul, A., Abdul-Matin, M., Alaidaroos, A.Y., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: A retrospective cohort study (2014) Lancet Infect Dis., 14, pp. 1090-1095; Lee, J.Y., Kim, Y.-J., Chung, E.H., Kim, D.-W., Jeong, I., Kim, Y., The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015 (2017) BMC Infect Dis., 17, p. 498; Luo, Y., Ou, R., Ling, Y., Qin, T., [The therapeutic effect of high flow nasal cannula oxygen therapy for the first imported case of Middle East respiratory syndrome to China] (2015) Zhonghua Wei Zhong Bing Ji Jiu Yi Xue., 27, pp. 841-844; Malik, A., el Masry, K.M., Ravi, M., Sayed, F., Middle East respiratory syndrome coronavirus during pregnancy, Abu Dhabi United Arab Emirates, 2013 (2016) Emerg Infect Dis., 22, pp. 515-517; Kim, U.J., Won, E.-J., Kee, S.-J., Jung, S.-I., Jang, H.-C., Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome (2016) Antivir Ther., 21, pp. 455-459; Spanakis, N., Tsiodras, S., Haagmans, B.L., Raj, V.S., Pontikis, K., Koutsoukou, A., Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen (2014) Int J Antimicrob Agents., 44, pp. 528-532; Khalid, I., Alraddadi, B.M., Dairi, Y., Khalid, T.J., Kadri, M., Alshukairi, A.N., Acute management and long-term survival among subjects with severe Middle East respiratory syndrome coronavirus pneumonia and ARDS (2016) Respir Care., 61, pp. 340-348; Shalhoub, S., Farahat, F., al-Jiffri, A., Simhairi, R., Shamma, O., Siddiqi, N., IFN-α2a or IFN-β1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: A retrospective study (2015) J Antimicrob Chemother., 70, pp. 2129-2132; Khalid, M., Khan, B., al Rabiah, F., Alismaili, R., Saleemi, S., Rehan-Khaliq, A.M., Middle Eastern Respiratory Syndrome Corona Virus (MERS CoV): Case reports from a tertiary care hospital in Saudi Arabia (2014) Ann Saudi Med., 34, pp. 396-400; Khalid, M., al Rabiah, F., Khan, B., al Mobeireek, A., Butt, T.S., al Mutairy, E., Ribavirin and interferon-α2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus: A preliminary report of two cases (2015) Antivir Ther., 20, pp. 87-91; Al-Tawfiq, J., Momattin, A., Dib, H., Memish, J.Z., Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study (2014) Int J Infect Dis., 20, pp. 42-46","Ramírez-Olivencia, G.; Unidad de Aislamiento de Alto Nivel, Hospital Central de la Defensa Gómez UllaSpain; email: germano.76@gmail.com",,"Elsevier Doyma",0213005X,,EIMCE,"29907366","English; Spanish","Enferm. Infecc. Microbiol. Clin.",Review,"Final",Open Access,Scopus,2-s2.0-85048322618 "Johnson B.A., Hage A., Kalveram B., Mears M., Plante J.A., Rodriguez S.E., Ding Z., Luo X., Bente D., Bradrick S.S., Freiberg A.N., Popov V., Rajsbaum R., Rossi S., Russell W.K., Menachery V.D.","57183432200;57195549543;8377359600;57211527870;56005979900;57189693899;57211526099;57202629184;8864079300;6507510263;24758111700;7404534315;6506681196;7202574067;7201960781;24281639500;","Peptidoglycan-associated cyclic lipopeptide disrupts viral infectivity",2019,"Journal of Virology","93","22", e01282-19,"","",,,"10.1128/JVI.01282-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074308329&doi=10.1128%2fJVI.01282-19&partnerID=40&md5=4defc1f49235bb325e3d8abb645b685e","Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; UTMB Electron Microscopy Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX, United States; UTMB Mass Spectrometry Facility, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX, United States","Johnson, B.A., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Hage, A., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Kalveram, B., Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Mears, M., Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Plante, J.A., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Rodriguez, S.E., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Ding, Z., Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, UTMB Electron Microscopy Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Luo, X., Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, UTMB Mass Spectrometry Facility, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Bente, D., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Bradrick, S.S., Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Freiberg, A.N., Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Popov, V., Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, UTMB Electron Microscopy Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Rajsbaum, R., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Rossi, S., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Russell, W.K., Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, UTMB Mass Spectrometry Facility, University of Texas Medical Branch at Galveston, Galveston, TX, United States; Menachery, V.D., Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States, Institute for Human Infections and Immunity, University of Texas Medical Branch at Galveston, Galveston, TX, United States","Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo. Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection. IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment. © 2019 American Society for Microbiology.","Coronavirus; Cyclic lipopeptide; MERS-CoV; Microbiome; SARS-CoV; Surfactin","alcohol; bacterium lipopolysaccharide; colistin; daptomycin; fengycin; iturin A; lipopeptide; peptidoglycan; peptidoglycan associated cyclic lipopeptide; polymyxin B; polypeptide antibiotic agent; ramoplanin; surfactin; unclassified drug; antiviral activity; Article; Bacillus subtilis; Chikungunya virus; concentration response; controlled study; Crimean-Congo hemorrhagic fever virus; Dugbe virus; Ebolavirus; incubation time; Influenza virus; inoculation; mass spectrometry; Mayaro virus; Middle East respiratory syndrome coronavirus; Nipah virus; nonhuman; priority journal; SARS coronavirus; species difference; temperature dependence; virion; virucidal activity; virus inhibition; virus virulence; Zika virus","Man, W.H., De Steenhuijsen Piters, W.A., Bogaert, D., The microbiota of the respiratory tract: Gatekeeper to respiratory health (2017) Nat Rev Microbiol, 15, pp. 259-270; Thaiss, C.A., Zmora, N., Levy, M., Elinav, E., The microbiome and innate immunity (2016) Nature, 535, pp. 65-74; Karst, S.M., The influence of commensal bacteria on infection with enteric viruses (2016) Nat Rev Microbiol, 14, pp. 197-204; Berger, A.K., Yi, H., Kearns, D.B., Mainou, B.A., Bacteria and bacterial envelope components enhance mammalian reovirus thermostability (2017) PLoS Pathog, 13, p. e1006768; Rowe, H.M., Meliopoulos, V.A., Iverson, A., Bomme, P., Schultz-Cherry, S., Rosch, J.W., Direct interactions with influenza promote bacterial adherence during respiratory infections (2019) Nat Microbiol, 4, p. 1328; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res, 101, pp. 45-56; Gralinski, L.E., Menachery, V.D., Morgan, A.P., Totura, A.L., Beall, A., Kocher, J., Plante, J., Baric, R.S., Allelic variation in the toll-like receptor adaptor protein (2017) G3 (Bethesda), 7, pp. 1653-1663; Totura, A.L., Whitmore, A., Agnihothram, S., Schafer, A., Katze, M.G., Heise, M.T., Baric, R.S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) MBio, 6, p. e00638; Sheahan, T., Morrison, T.E., Funkhouser, W., Uematsu, S., Akira, S., Baric, R.S., Heise, M.T., MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV (2008) PLoS Pathog, 4, p. e1000240; Johnson, B.A., Hage, A., Kalveram, B., Mears, M., Plante, J.A., Rodriguez, S.E., Ding, Z., Menachery, V.D., (2019) Peptidoglycan Associated Cyclic Lipopeptide Disrupts Viral Infectivity, , bioRxiv; Vollmer, W., Blanot, D., De Pedro, M.A., Peptidoglycan structure and architecture (2008) FEMS Microbiol Rev, 32, pp. 149-167; Yang, H., Li, X., Li, X., Yu, H., Shen, Z., Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC (2015) Anal Bioanal Chem, 407, pp. 2529-2542; Cochrane, S.A., Vederas, J.C., Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates (2016) Med Res Rev, 36, pp. 4-31; Meena, K.R., Kanwar, S.S., Lipopeptides as the antifungal and anti-bacterial agents: Applications in food safety and therapeutics (2015) Biomed Res Int, 2015, p. 473050; Seydlova, G., Svobodova, J., Review of surfactin chemical properties and the potential biomedical applications (2008) Cent Eur J Med, 3, pp. 123-133; Mustafa, S., Balkhy, H., Gabere, M.N., Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review (2018) J Infect Public Health, 11, pp. 9-17; (2004) WHO SARS Risk Assessment and Preparedness Framework, , World Health Organization, WHO Press, Geneva, Switzerland; (2017) WHO MERS-CoV Global Summary and Assessment of Risk, , World Health Organization, WHO Press, Geneva, Switzerland; Yuan, L., Zhang, S., Wang, Y., Li, Y., Wang, X., Yang, Q., Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses (2018) J Virol, 92, pp. e00809-e00818; Yoshino, N., Takeshita, R., Kawamura, H., Sasaki, Y., Kagabu, M., Sugiyama, T., Muraki, Y., Sato, S., Mast cells partially contribute to mucosal adjuvanticity of surfactin in mice (2018) Immun Inflamm Dis, 6, pp. 117-127; Wang, X., Hu, W., Zhu, L., Yang, Q., Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells (2017) Biosci Rep, 37, pp. BSR20170082; Pang, X., Zhao, J., Fang, X., Liu, H., Zhang, Y., Cen, S., Yu, L., Surfactin derivatives from Micromonospora sp. CPCC 202787 and their anti-HIV activities (2017) J Antibiot (Tokyo), 70, pp. 105-108; Miller, M.A., Stabenow, J.M., Parvathareddy, J., Wodowski, A.J., Fabrizio, T.P., Bina, X.R., Zalduondo, L., Bina, J.E., Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: Effect of instillation volume and form of anesthesia (2012) PLoS One, 7, p. e31359; Southam, D.S., Dolovich, M., O Byrne, P.M., Inman, M.D., Distribution of intranasal instillations in mice: Effects of volume, time, body position, and anesthesia (2002) Am J Physiol Lung Cell Mol Physiol, 282, pp. L833-L839; Nielsen, D.S., Shepherd, N.E., Xu, W., Lucke, A.J., Stoermer, M.J., Fairlie, D.P., Orally absorbed cyclic peptides (2017) Chem Rev, 117, pp. 8094-8128; Chen, H., Langer, R., Oral particulate delivery: Status and future trends (1998) Adv Drug Deliv Rev, 34, pp. 339-350; Yuan, L., Zhang, S., Peng, J., Li, Y., Yang, Q., Synthetic surfactin analogues have improved anti-PEDV properties (2019) PLoS One, 14, p. e0215227; Carrillo, C., Teruel, J.A., Aranda, F.J., Ortiz, A., Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin (2003) Biochim Biophys Acta, 1611, pp. 91-97; Ivanova, P.T., Myers, D.S., Milne, S.B., McClaren, J.L., Thomas, P.G., Brown, H.A., Lipid composition of viral envelope of three strains of influenza virus-not all viruses are created equal (2015) ACS Infect Dis, 1, pp. 399-452; Van Meer, G., Voelker, D.R., Feigenson, G.W., Membrane lipids: Where they are and how they behave (2008) Nat Rev Mol Cell Biol, 9, pp. 112-124; Harrison, M.S., Sakaguchi, T., Schmitt, A.P., Paramyxovirus assembly and budding: Building particles that transmit infections (2010) Int J Biochem Cell Biol, 42, pp. 1416-1429; Rossman, J.S., Lamb, R.A., Influenza virus assembly and budding (2011) Virology, 411, pp. 229-236; Bavari, S., Bosio, C.M., Wiegand, E., Ruthel, G., Will, A.B., Geisbert, T.W., Hevey, M., Aman, M.J., Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses (2002) J Exp Med, 195, pp. 593-602; Brown, R.S., Wan, J.J., Kielian, M., The alphavirus exit pathway: What we know and what we wish we knew (2018) Viruses, 10, p. E89; Taylor, S.D., Palmer, M., The action mechanism of daptomycin (2016) Bioorg Med Chem, 24, pp. 6253-6268; She, A.Q., Gang, H.Z., Mu, B.Z., Temperature influence on the structure and interfacial properties of surfactin micelle: A molecular dynamics simulation study (2012) J Phys Chem B, 116, pp. 12735-12743; Kuhn, R.J., Dowd, K.A., Beth Post, C., Pierson, T.C., Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host (2015) Virology, 479-480, pp. 508-517; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092; Hoefler, B.C., Gorzelnik, K.V., Yang, J.Y., Hendricks, N., Dorrestein, P.C., Straight, P.D., Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition (2012) Proc Natl Acad Sci U S A, 109, pp. 13082-13087; Kuss, S.K., Best, G.T., Etheredge, C.A., Pruijssers, A.J., Frierson, J.M., Hooper, L.V., Dermody, T.S., Pfeiffer, J.K., Intestinal microbiota promote enteric virus replication and systemic pathogenesis (2011) Science, 334, pp. 249-252; De Steenhuijsen Piters, W.A., Sanders, E.A., Bogaert, D., The role of the local microbial ecosystem in respiratory health and disease (2015) Philos Trans R Soc Lond B Biol Sci, 370, p. 20140294; Jezewska-Frąckowiak, J., Seroczyńska, K., Banaszczyk, J., Jedrzejczak, G., Zylicz-Stachula, A., Skowron, P.M., The promises and risks of probiotic Bacillus species (2018) Acta Biochim Pol, 65, pp. 509-519; Burja, A.M., Abou-Mansour, E., Banaigs, B., Payri, C., Burgess, J.G., Wright, P.C., Culture of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides (2002) J Microbiol Methods, 48, pp. 207-219; Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., Imanaka, T., A new lipopeptide biosurfactant produced by Arthrobacter sp (1993) Strain MIS38. J Bacteriol, 175, pp. 6459-6466; Dalili, D., Amini, M., Faramarzi, M.A., Fazeli, M.R., Khoshayand, M.R., Samadi, N., Isolation and structural characterization of coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity (2015) Colloids Surf B Biointerfaces, 135, pp. 425-432; Kindler, E., Jonsdottir, H.R., Muth, D., Hamming, O.J., Hartmann, R., Rodriguez, R., Geffers, R., Thiel, V., Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential (2013) MBio, 4, p. e00611; Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D., Subbarao, K., A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice (2007) PLoS Pathog, 3, p. e5; Sims, A.C., Tilton, S.C., Menachery, V.D., Gralinski, L.E., Schafer, A., Matzke, M.M., Webb-Robertson, B.J., Baric, R.S., Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells (2013) J Virol, 87, pp. 3885-3902; Josset, L., Menachery, V.D., Gralinski, L.E., Agnihothram, S., Sova, P., Carter, V.S., Yount, B.L., Katze, M.G., Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus (2013) MBio, 4, p. e00165; Bradrick, S.S., Lieben, E.A., Carden, B.M., Romero, J.R., A predicted secondary structural domain within the internal ribosome entry site of echovirus 12 mediates a cell-type-specific block to viral replication (2001) J Virol, 75, pp. 6472-6481; Plante, K.S., Rossi, S.L., Bergren, N.A., Seymour, R.L., Weaver, S.C., Extended preclinical safety, efficacy and stability testing of a live-attenuated Chikungunya vaccine candidate (2015) PLoS Negl Trop Dis, 9, p. e0004007; Freiberg, A.N., Worthy, M.N., Lee, B., Holbrook, M.R., Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection (2010) J Gen Virol, 91, pp. 765-772; Bente, D.A., Alimonti, J.B., Shieh, W.J., Camus, G., Stroher, U., Zaki, S., Jones, S.M., Pathogenesis and immune response of Crimean-Congo hemor-rhagic fever virus in a STAT-1 knockout mouse model (2010) J Virol, 84, pp. 11089-11100; Widman, D.G., Young, E., Yount, B.L., Plante, K.S., Gallichotte, E.N., Carbaugh, D.L., Peck, K.M., Baric, R.S., A reverse genetics platform that spans the Zika virus family tree (2017) MBio, 8, pp. e02014-e02016; Rajsbaum, R., Albrecht, R.A., Wang, M.K., Maharaj, N.P., Versteeg, G.A., Nistal-Villan, E., Garcia-Sastre, A., Gack, M.U., Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein (2012) PLoS Pathog, 8, p. e1003059; Bharaj, P., Atkins, C., Luthra, P., Giraldo, M.I., Dawes, B.E., Miorin, L., Johnson, J.R., Rajsbaum, R., The host E3-ubiquitin ligase TRIM6 ubiquitinates the Ebola virus VP35 protein and promotes virus replication (2017) J Virol, 91, pp. e00833-e00917; Wu, Y.S., Ngai, S.C., Goh, B.H., Chan, K.G., Lee, L.H., Chuah, L.H., Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery (2017) Front Pharmacol, 8, p. 761; Kim, H.-S., Yoon, B.-D., Lee, C.-H., Suh, H.-H., Oh, H.-M., Katsuragi, T., Tani, Y., Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9 (1997) J Ferment Bioeng, 84, pp. 41-46; Abdel-Mawgoud, A.M., Aboulwafa, M.M., Hassouna, N.A., Characterization of surfactin produced by Bacillus subtilis isolate BS5 (2008) Appl Biochem Biotechnol, 150, pp. 289-303; Berryman, M.A., Rodewald, R.D., An enhanced method for postembedding immunocytochemical staining which preserves cell membranes (1990) J Histochem Cytochem, 38, pp. 159-170; Gilling, D.H., Kitajima, M., Torrey, J.R., Bright, K.R., Mechanisms of antiviral action of plant antimicrobials against murine norovirus (2014) Appl Environ Microbiol, 80, pp. 4898-4910; Sheahan, T., Whitmore, A., Long, K., Ferris, M., Rockx, B., Funkhouser, W., Donaldson, E., Baric, R.S., Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus (2011) J Virol, 85, pp. 217-230","Menachery, V.D.; Department of Microbiology and Immunology, University of Texas Medical Branch at GalvestonUnited States; email: Vimenach@utmb.edu",,"American Society for Microbiology",0022538X,,JOVIA,"31462558","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85074308329 "Villanueva J., Schweitzer B., Odle M., Aden T.","7102616821;57211591278;57211589667;26027416600;","Detecting Emerging Infectious Diseases: An Overview of the Laboratory Response Network for Biological Threats",2019,"Public Health Reports","134","2_suppl",,"16S","21S",,1,"10.1177/0033354919874354","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074548768&doi=10.1177%2f0033354919874354&partnerID=40&md5=6c99b3c15f2dfed2c7061e9b5983e50b","Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","Villanueva, J., Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Schweitzer, B., Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Odle, M., Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States; Aden, T., Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States","The Laboratory Response Network (LRN) was established in 1999 to ensure an effective laboratory response to high-priority public health threats. The LRN for biological threats (LRN-B) provides a laboratory infrastructure to respond to emerging infectious diseases. Since 2012, the LRN-B has been involved in 3 emerging infectious disease outbreak responses. We evaluated the LRN-B role in these responses and identified areas for improvement. LRN-B laboratories tested 1097 specimens during the 2014 Middle East Respiratory Syndrome Coronavirus outbreak, 180 specimens during the 2014-2015 Ebola outbreak, and 92 686 specimens during the 2016-2017 Zika virus outbreak. During the 2014-2015 Ebola outbreak, the LRN-B uncovered important gaps in biosafety and biosecurity practices. During the 2016-2017 Zika outbreak, the LRN-B identified the data entry bottleneck as a hindrance to timely reporting of results. Addressing areas for improvement may help LRN-B reference laboratories improve the response to future public health emergencies. © 2019, Association of Schools and Programs of Public Health.","bioterrorism; counterterrorism; emergency preparedness; emerging infectious diseases; laboratory; public health preparedness; terrorism","Article; Ebola hemorrhagic fever; epidemic; human; Middle East respiratory syndrome; population risk; priority journal; public health problem; risk factor; trend study; virus infection; Zika fever; bioterrorism; civil defense; communicable disease; epidemic; isolation and purification; laboratory; Middle East respiratory syndrome coronavirus; organization and management; public health; United States; Zika virus; Bioterrorism; Civil Defense; Communicable Diseases, Emerging; Disease Outbreaks; Humans; Laboratories; Middle East Respiratory Syndrome Coronavirus; Public Health; United States; Zika Virus","Mangal, C.N., Maryogo-Robinson, L., Leveraging the Laboratory Response Network model for the global health security agenda (2014) Biosecur Bioterror, 12 (5), pp. 274-283; (2013) Laboratory Response Network (LRN) Sentinel Level Clinical Laboratory Protocols, , https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C, Accessed February 26, 2018; https://www.cdc.gov/coronavirus/mers/index.html, Updated July 13, 2016, Accessed February 26, 2018; (2019) Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.who.int/emergencies/mers-cov/en, Accessed May 24, 2019; Middle East Respiratory Syndrome (MERS) transmission, , https://www.cdc.gov/coronavirus/mers/about/transmission.html, Reviewed August 2019, Accessed May 24, 2019; https://www.cdc.gov/vhf/ebola/index.html, Updated June 13, 2017, Accessed February 26, 2018; History of Ebola virus disease, , https://www.cdc.gov/vhf/ebola/history/summaries.html, Reviewed September 2018, Accessed May 24, 2019; Zika virus: about Zika, , https://www.cdc.gov/zika/about/index.html, Updated September 29, 2016, Accessed February 26, 2018; (2019) Zika: the origin and spread of mosquito-borne virus, , https://www.who.int/bulletin/online_first/16-171082/en, Accessed May 24, 2019; (2015), https://www.cdc.gov/media/releases/2015/s1231-zika.html, Atlanta, GA, Centers for Disease Control and Prevention, December 31, Accessed February 26, 2018; 109th Congress Pub L No 417, , https://www.congress.gov/109/plaws/publ417/PLAW-109publ417.htm, December 2006, Accessed May 24, 2019; (2017) Public health emergency declaration, , https://www.phe.gov/Preparedness/legal/Pages/phedeclaration.aspx, Accessed February 26, 2018; Lu, X., Whitaker, B., Sakthivel, S.K.K., Real-time reverse transcription-PCR assay panel for Middle East Respiratory Syndrome Coronavirus (2014) J Clin Microbiol, 52 (1), pp. 67-75; (2013) Emergency use authorization, , https://www.fda.gov/EmergencyPreparedness/Counterterrorism/MedicalCountermeasures/MCMLegalRegulatoryandPolicyFramework/ucm182568.htm#current, Accessed February 26, 2018; Schneider, E., Chommanard, C., Rudd, J.M., Whitaker, B.L., Lowe, L., Gerber, S.I., Evaluation of patients under investigation for MERS-CoV infection, United States, January 2013–October 2014 (2015) Emerg Infect Dis, 21 (7), pp. 1220-1223; Ebola virus disease distribution map: cases of Ebola virus disease in Africa since 1976, , https://www.cdc.gov/vhf/ebola/history/distribution-map.html, Reviewed June 2019, Accessed August 2, 2018; Bausch, D.G., West Africa 2013 Ebola: from virus outbreak to humanitarian crisis (2017) Marburg- and Ebolaviruses: From Ecosystems to Molecules, 411, pp. 63-92. , Mühlberger E., Hensley L.L., Towner J.S., (eds), Berlin, Springer, In:, eds; (2015) Guidance for U.S. laboratories for managing and testing routine clinical specimens when there is a concern about Ebola virus disease, , https://www.cdc.gov/vhf/ebola/healthcare-us/laboratories/safe-specimen-management.html, Accessed February 26, 2018; 2014-2016 Ebola outbreak in West Africa, , https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/united-states-imported-case.html, Updated December 16, 2014, Accessed February 26, 2018; Guidance for US laboratories testing for Zika virus infection: 2017, , https://www.cdc.gov/zika/laboratories/lab-guidance.html, Reviewed October 2018, Accessed August 2, 2018; Severe acute respiratory syndrome (SARS). SARS basics fact sheet, , https://www.cdc.gov/sars/about/fs-sars.html, Updated December 6, 2017, Accessed February 26, 2018; Franz, D.R., Jahrling, P.B., Friedlander, A.M., Clinical recognition and management of patients exposed to biological warfare agents (1997) JAMA, 278 (5), pp. 399-411; (2018) CDC/APHL Biosafety and Biosecurity Program, , https://www.aphl.org/policy/Advocacy_Documents/CDC-APHL-Biosafety-and-Biosecurity-Program-2018.pdf, Accessed December 16, 2018; Oduyebo, T., Polen, K.D., Walke, H.T., Update: interim guidance for health care providers caring for pregnant women with possible Zika virus exposure—United States (including U.S. territories), July 2017 (2017) MMWR Morb Mortal Wkly Rep, 66 (21), pp. 781-793; Staples, J.E., Dziuban, E.J., Fischer, M., Interim guidelines for the evaluation and testing of infants with possible congenital Zika virus infection—United States, 2016 (2016) MMWR Morb Mortal Wkly Rep, 65 (3), pp. 63-67; Fleming-Dutra, K.E., Nelson, J.M., Fischer, M., Update: interim guidelines for health care providers caring for infants and children with possible Zika virus infection—United States, February 2016 (2016) MMWR Morb Mortal Wkly Rep, 65 (7), pp. 182-187; Russell, K., Oliver, S.E., Lewis, L., Update: interim guidance for the evaluation and management of infants with possible congenital Zika virus infection—United States, August 2016 (2016) MMWR Morb Mortal Wkly Rep, 65 (33), pp. 870-878","Villanueva, J.; Laboratory Preparedness and Response Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and PreventionUnited States; email: jfv3@cdc.gov",,"SAGE Publications Ltd",00333549,,PHRPA,"31682559","English","Public Health Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85074548768 "Tamin A., Queen K., Paden C.R., Lu X., Andres E., Sakthivel S.K., Li Y., Tao Y., Zhang J., Kamili S., Assiri A.M., Alshareef A., Alaifan T.A., Altamimi A.M., Jokhdar H., Watson J.T., Gerber S.I., Tong S., Thornburg N.J.","6602551546;55601440700;57193553180;57216109714;57215133999;55414566800;57171026600;36744564300;57196378566;55413138700;36607531400;57215137176;57215130981;57211564261;6507147807;55374101200;56656063700;55783951400;6602664202;","Isolation and growth characterization of novel full length and deletion mutant human MERS-CoV strains from clinical specimens collected during 2015",2019,"The Journal of general virology","100","11",,"1523","1529",,,"10.1099/jgv.0.001334","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074446696&doi=10.1099%2fjgv.0.001334&partnerID=40&md5=4776778a53506b101d5093b62e08d3db","National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Batelle, Columbus, OH, USA; IHRC, Atlanta, United States; Kingdom of Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia","Tamin, A., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Queen, K., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Paden, C.R., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Lu, X., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Andres, E., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Sakthivel, S.K., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States, Batelle, Columbus, OH, USA; Li, Y., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Tao, Y., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Zhang, J., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States, IHRC, Atlanta, United States; Kamili, S., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States, IHRC, Atlanta, United States; Assiri, A.M., Kingdom of Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia; Alshareef, A., Kingdom of Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia; Alaifan, T.A., Kingdom of Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia; Altamimi, A.M., Kingdom of Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia; Jokhdar, H., Kingdom of Saudi Arabia Ministry of Health, Riyadh, Saudi Arabia; Watson, J.T., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Gerber, S.I., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Tong, S., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States; Thornburg, N.J., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, United States","Middle East respiratory syndrome (MERS) is a viral respiratory illness first reported in Saudi Arabia in September 2012 caused by the human coronavirus (CoV), MERS-CoV. Using full-genome sequencing and phylogenetic analysis, scientists have identified three clades and multiple lineages of MERS-CoV in humans and the zoonotic host, dromedary camels. In this study, we have characterized eight MERS-CoV isolates collected from patients in Saudi Arabia in 2015. We have performed full-genome sequencing on the viral isolates, and compared them to the corresponding clinical specimens. All isolates were clade B, lineages 4 and 5. Three of the isolates carry deletions located on three independent regions of the genome in the 5'UTR, ORF1a and ORF3. All novel MERS-CoV strains replicated efficiently in Vero and Huh7 cells. Viruses with deletions in the 5'UTR and ORF1a exhibited impaired viral release in Vero cells. These data emphasize the plasticity of the MERS-CoV genome during human infection.","clinical isolates; coronavirus; genomic sequences; growth kinetics; MERS-CoV; Middle East respiratory syndrome human coronavirus; phylogeny",,,,,"NLM (Medline)",14652099,,,"31592752","English","J. Gen. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85074446696 "Hoy C.F.O., Kushiro K., Yamaoka Y., Ryo A., Takai M.","57200627531;12802845300;57189218165;6603577101;7202740653;","Rapid multiplex microfiber-based immunoassay for anti-MERS-CoV antibody detection",2019,"Sensing and Bio-Sensing Research","26",, 100304,"","",,,"10.1016/j.sbsr.2019.100304","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073550122&doi=10.1016%2fj.sbsr.2019.100304&partnerID=40&md5=bdea45b3e629f96a2ee4498484c8755a","Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan; Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan","Hoy, C.F.O., Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Kushiro, K., Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Yamaoka, Y., Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan, Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Japan; Ryo, A., Department of Microbiology, School of Medicine, Yokohama City University, Yokohama, Japan; Takai, M., Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan","On-site multiplex biosensors for innate immunity antibodies are ideal tools for monitoring health status of individuals against various diseases. This study introduces a novel antibody immunoassay testing platform incorporating microfiber-based arrays of antigens to capture specific antibodies. The fabrication and setup of the device revolved around electrospun polystyrene (ESPS) microfibers that act as three-dimensional membrane filters, capable of rapid and multifold analyte capture. In particular, the ESPS microfibers were patterned through localized oxygen plasma to create hydrophilic zones that facilitate fluid flows and immobilizations of antigens. The bulk of this robust antibody immunoassay platform could be installed into a compact syringe-driven cassette device, which could perform multiplex antibody immunoassay for antibodies specifically against Middle East respiratory syndrome coronavirus (MERS-CoV) with rapid preparation amounting to a total of 5 min, as well as high sensitivity and specificity for the MERS-CoV down to 200 μg/mL. © 2019 The Authors","MERS; Microfiber; Multiplex immunoassay; POC; Rapid",,"Wilkins, J., Gallimore, J.R., Moore, E.G., Pepys, M.B., Rapid automated high sensitivity enzyme immunoassay of C-reactive protein (1998) Clin. Chem., 44, pp. 1358-1361; Chon, H., Lee, S., Son, S.W., Oh, C.H., Choo, J., Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hallow gold nanospheres (2009) Anal. Chem., 81, pp. 3029-3034; Tajima, N., Takai, M., Ishihara, K., Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity (2011) Anal. Chem., 83, pp. 1969-1976; Lim, C.T., Zhang, Y., Bead-based microfluidic immunoassays: the next generation (2007) Biosens. Bioelectron., 22, pp. 1197-1204; Takai, M., Highly sensitive and rapid biosensing on a three-dimensional polymer platform (2018) Polym. J., 50, pp. 847-855; Li, Z.H., Wang, Y., Wang, J., Tang, Z.W., Pounds, J.G., Lin, Y.H., Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip (2010) Anal. Chem., 82, pp. 7008-7014; Qu, H.H., Zhang, Y., Qu, B.P., Kong, H., Qin, G.F., Liu, S.C., Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin (2016) Biosens. Bioelectron., 81, pp. 358-362; Lin, C.C., Wang, J.H., Wu, H.W., Lee, G.B., Microfluidic immunoassays (2010) Jala-J Lab. Autom., 15, pp. 253-274; Auroux, P.A., Iossifidis, D., Reyes, D.R., Manz, A., Micro total analysis systems. 2. Analytical standard operations and applications (2002) Anal. Chem., 74, pp. 2637-2652; Reyes, D.R., Iossifidis, D., Auroux, P.A., Manz, A., Micro total analysis systems. 1. Introduction, theory, and technology (2002) Anal. Chem., 74, pp. 2623-2636; Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., Diagnostics for the developing world: microfluidic paper-based analytical devices (2010) Anal. Chem., 82, pp. 3-10; Yamada, K., Henares, T.G., Suzuki, K., Citterio, D., Paper-based inkjet-printed microfluidic analytical devices (2015) Angew. Chem. Int. Ed., 54, pp. 5294-5310; Abe, K., Suzuki, K., Citterio, D., Inkjet-printed microfluidic multianalyte chemical sensing paper (2008) Anal. Chem., 80, pp. 6928-6934; Li, X., Ballerini, D.R., Shen, W., A perspective on paper-based microfluidics: current status and future trends (2012) Biomicrofluidics, 6; Sato, K., Tokeshi, M., Kimura, H., Kitamori, T., Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis (2001) Anal. Chem., 73, pp. 1213-1218; Swartzman, E.E., Miraglia, S.J., Mellentin-Michelotti, J., Evangelista, L., Yuan, P.M., A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology (1999) Anal. Biochem., 271, pp. 143-151; Lee, B.S., Lee, J.N., Park, J.M., Lee, J.G., Kim, S., Cho, Y.K., A fully automated immunoassay from whole blood on a disc (2009) Lab Chip, 9, pp. 1548-1555; Kellar, K.L., Kalwar, R.R., Dubois, K.A., Crouse, D., Chafin, W.D., Kane, B.E., Multiplexed fluorescent bead-based immunoassays for quantitation of human cytokines in serum and culture supernatants (2001) Cytometry, 45, pp. 27-36; Bruls, D.M., Evers, T.H., Kahlman, J.A.H., van Lankvelt, P.J.W., Ovsyanko, M., Pelssers, E.G.M., Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles (2009) Lab Chip, 9, pp. 3504-3510; Fu, Q., Zhu, J., Van Eyk, J.E., Comparison of multiplex immunoassay platforms (2010) Clin. Chem., 56, pp. 314-318; Smits, G.P., van Gageldonk, P.G., Schouls, L.M., van der Klis, F.R.M., Berbers, G.A.M., Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus (2012) Clin. Vaccine Immunol., 19, pp. 396-400; Yu, X., Xia, Y.Q., Tang, Y., Zhang, W.L., Yeh, Y.T., Lu, H.G., A nanostructured microfluidic immunoassay platform for highly sensitive infectious pathogen detection (2017) Small, 13; Kaminska, A., Witkowska, E., Winkler, K., Dziecielewski, I., Weyher, J.L., Waluk, J., Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system (2015) Biosens. Bioelectron., 66, pp. 461-467; Yamaoka, Y., Matsuyama, S., Fukushi, S., Matsunaga, S., Matsushima, Y., Kuroyama, H., Development of monoclonal antibody and diagnostic test for Middle East respiratory syndrome coronavirus using cell-free synthesized nucleocapsid antigen (2016) Front. Microbiol., 7; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Chen, Y., Chan, K.H., Kang, Y.H., Chen, H.L., Luk, H.K.H., Poon, R.W.S., A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus (2015) Emerg. Microb. Infect., 4; Alsolamy, S., Arabi, Y.M., Infection with Middle East respiratory syndrome coronavirus (2015) Can. J. Respir. Ther., 51, p. 102; Hotez, P.J., Bottazzi, M.E., Tseng, C.T.K., Zhan, B., Lustigman, S., Du, L.Y., Calling for rapid development of a safe and effective MERS vaccine (2014) Microb. Infect., 16, pp. 529-531; de Haas, R., van den Hof, S., Berbers, G.A., de Melker, H.E., Conyn-van Spaendonck, M.A., Prevalence of antibodies against rubella virus in The Netherlands 9 years after changing from selective to mass vaccination (1999) Epidemiol. Infect., 123, pp. 263-270; van den Hof, S., Beaumont, M.T., Berbers, G.A., de Melker, H.E., Antibodies against mumps in The Netherlands as assessed by indirect ELISA and virus neutralization assay (2003) Epidemiol. Infect., 131, pp. 703-709; Harmsen, T., Jongerius, M.C., Vanderzwan, C.W., Plantinga, A.D., Kraaijeveld, C.A., Berbers, G.A.M., Comparison of a neutralization enzyme-immunoassay and an enzyme-linked-immunosorbent-assay for evaluation of immune status of children vaccinated for mumps (1992) J. Clin. Microbiol., 30, pp. 2139-2144; Celikbas, A., Ergonul, O., Aksaray, S., Tuygun, N., Esener, H., Tanir, G., Measles, rubella, mumps, and varicella seroprevalence among health care workers in Turkey: is prevaccination screening cost-effective? (2006) Am. J. Infect. Contr., 34, pp. 583-587; Craft, J.E., Grodzicki, R.L., Steere, A.C., Antibody-response in lyme-disease - evaluation of diagnostic-tests (1984) JID (J. Infect. Dis.), 149, pp. 789-795; Harboe, N., Ingild, A., Immunization, isolation of immunoglobulins, estimation of antibody titer (1973) Scand. J. Immunol., 2, pp. 161-164; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA (2018) J. Virol. Methods, 251, pp. 22-29; Kelly-Cirino, C., Mazzola, L.T., Chua, A., Oxenford, C.J., Van Kerkhove, M.D., An updated roadmap for MERS-CoV research and product development: focus on diagnostics (2019) BMJ Glob. Health, 4; Hoy, C.F.O., Kushiro, K., Takai, M., Fabrication and assessment of an electrospun polymeric microfiber-based platform under bulk flow conditions with rapid and efficient antigen capture (vol 143, pg 865 (2018) Analyst, 143 (2018), p. 1713; Choi, S., Choi, E.Y., Kim, D.J., Kim, J.H., Kim, T.S., Oh, S.W., A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I) (2004) Clin. Chim. Acta, 339, pp. 147-156; Wu, D.P., Han, D.W., Steckl, A.J., Immunoassay on free-standing electrospun membranes (2010) Acs Appl. Mater. Inter., 2, pp. 252-258; Attwood, S.J., Kershaw, R., Uddin, S., Bishop, S.M., Welland, M.E., Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces (2019) J. Mater. Chem. B, 7, pp. 2349-2361; Whyman, G., Bormashenko, E., Stein, T., The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon (2008) Chem. Phys. Lett., 450, pp. 355-359; Peterfi, Z., Kocsis, B., Comparison of blocking agents for an ELISA for LPS (2000) J. Immunoass., 21, pp. 341-354; Kim, W.S., Nishizawa, T., Yoshimizu, M., Non-specific adsorption of fish immunoglobulin M (IgM) to blocking reagents on ELISA plate wells (2007) Dis. Aquat. Org., 78, pp. 55-59; Contarini, G., Povolo, M., Phospholipids in milk fat: composition, biological and technological significance, and analytical strategies (2013) Int. J. Mol. Sci., 14, pp. 2808-2831; Sato, K., Tokeshi, M., Odake, T., Kimura, H., Ooi, T., Nakao, M., Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip (2000) Anal. Chem., 72, pp. 1144-1147; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin. Infect. Dis., 62, pp. 477-483; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg. Infect. Dis., 20, pp. 1319-1322; Mubarak, A., Alturaiki, W., Hemida, M.G., Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development (2019) J. Immunol. Res., 2019, p. 11. , 6491738","Takai, M.; Department of Bioengineering, School of Engineering, The University of TokyoJapan; email: takai@bis.t.u-tokyo.ac.jp",,"Elsevier B.V.",22141804,,,,"English","Sens. Bio-Sens. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85073550122 "Mettelman R.C., O'Brien A., Whittaker G.R., Baker S.C.","56512278300;37073014800;7006825143;7403307881;","Generating and evaluating type I interferon receptor-deficient and feline TMPRSS2-expressing cells for propagating serotype I feline infectious peritonitis virus",2019,"Virology","537",,,"226","236",,1,"10.1016/j.virol.2019.08.030","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072217734&doi=10.1016%2fj.virol.2019.08.030&partnerID=40&md5=bb47b9f5523f618d8a435b379cf5ba22","Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States; Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States","Mettelman, R.C., Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States; O'Brien, A., Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States; Whittaker, G.R., Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Baker, S.C., Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States","Feline coronavirus infection can progress to a fatal infectious peritonitis, which is a widespread feline disease without an effective vaccine. Generating feline cells with reduced ability to respond to interferon (IFN) is an essential step facilitating isolation of new candidate vaccine strains. Here, we describe the use of Crispr/Cas technology to disrupt type I IFN signaling in two feline cell lines, AK-D and Fcwf-4 CU, and evaluate the replication kinetics of a serotype I feline infectious peritonitis virus (FIPV) within these cells. We report that polyclonal cell populations and a clonal isolate, termed Fcwf-4 IRN, exhibited significantly diminished IFN-responsiveness and allowed FIPV replication kinetics comparable to parental cells. Furthermore, we demonstrate that replication of FIPV is enhanced by ectopic expression of a host serine protease, TMPRSS2, in these cells. We discuss the potential of these cells for isolating new clinical strains and for propagating candidate vaccine strains of FIPV. © 2019 Elsevier Inc.","AK-D cells; Crispr/Cas gene editing; Fcwf-4 CU cells; Feline coronavirus; FIPV; IFNαR-deficient cells; Interferon signaling-deficient cells; TMPRSS2-expressing cells","interferon; membrane protein; protein TMPRSS2; unclassified drug; animal cell; animal tissue; Article; cell population; controlled study; CRISPR Cas system; DNA end joining repair; Feline infectious peritonitis virus; gene editing; genetic transcription; immune response; innate immunity; nonhuman; priority journal; protein cleavage; protein expression; protein localization; quantitative analysis; reverse transcription polymerase chain reaction; signal transduction; stop codon; upregulation; virus replication; virus strain","Addie, D.D., Feline coronaviral infections (2011) Infectious Diseases of the Dog and Cat, pp. 92-108. , C. Greene Saunders; Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infections in kittens (1992) Vet. Rec., 130, pp. 133-137; Addie, D.D., Schaap, I.A.T., Nicolson, L., Jarrett, O., Persistence and transmission of natural type I feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Bertram, S., Dijkman, R., Habjan, M., Heurich, A., Gierer, S., Glowacka, I., Welsch, K., Pohlmann, S., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium (2013) J. Virol., 87, pp. 6150-6160; Channappanavar, R., Fehr, A.R., Vijay, R., Mack, M., Zhao, J., Meyerholz, D.K., Perlman, S., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193; Corapi, W.V., Olsen, C.W., Scott, F.W., Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus (1992) J. Virol., 66, pp. 6695-6705; de Groot-Mijnes, J.D.F., van Dun, J.M., van der Most, R.G., de Groot, R.J., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2004) J. Virol., 79, pp. 1036-1044; de Haan, C.A.M., Haijema, B.J., Schellen, P., Schreur, P.W., Te Lintelo, E., Vennema, H., Rottier, P.J.M., Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation (2008) J. Virol., 82, pp. 6078-6083; Dedeurwaerder, A., Desmarets, L.M., Olyslaegers, D.A.J., Vermeulen, B.L., Dewerchin, H.L., Nauwynck, H.J., The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes (2013) Vet. Microbiol., 162, pp. 447-455; Dedeurwaerder, A., Olyslaegers, D.A.J., Desmarets, L.M.B., Roukaerts, I.D.M., Theuns, S., Nauwynck, H.J., ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response (2014) J. Gen. Virol., 95, pp. 393-402; Deng, X., Hackbart, M., Mettelman, R.C., O'Brien, A., Mielech, A.M., Yi, G., Kao, C.C., Baker, S.C., Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages (2017) Proc. Natl. Acad. Sci., 114, pp. E4251-E4260; Deng, X., van Geelen, A., Buckley, A.C., O'Brien, A., Pillatzki, A., Lager, K.M., Faaberg, K.S., Baker, S.C., Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses (2019) J. Virol., 93, pp. e02000-18; Du, Y., Xin, L., Shi, Y., Zhang, T.H., Wu, N.C., Dai, L., Gong, D., Sun, R., Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design (2018) Science, 359, pp. 290-296; Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Perlman, S., Gallagher, T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog., 13; Fensterl, V., Sen, G.C., The ISG56/IFIT1 gene family (2011) J. Interferon Cytokine Res., 31, pp. 71-78; Glowacka, I., Bertram, S., Muller, M.A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Pohlmann, S., Evidence that TMPRSS2 activates the Severe Acute Respiratory Syndrome Coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response (2011) J. Virol., 85, pp. 4122-4134; Hoebe, K., Janssen, E., Beutler, B., The interface between innate and adaptive immunity (2004) Nat. Immunol., 5, pp. 971-974; Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., Differences in virus receptor for type I and type II feline infectious peritonitis virus (1998) Arch. Virol., 143, pp. 839-850; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci., 54, pp. 557-562; Hohdatsu, T., Okada, S., Koyama, H., Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses (1991) Arch. Virol., 117, pp. 85-95; Huber, J.P., David Farrar, J., Regulation of effector and memory T-cell functions by type I interferon (2011) Immunology, 132, pp. 466-474; Kessler, Y., Helfer-Hungerbuehler, A.K., Cattori, V., Meli, M.L., Zellweger, B., Ossent, P., Riond, B., Hofmann-Lehmann, R., Quantitative TaqMan®real-time PCR assays for gene expression normalisation in feline tissues (2009) BMC Mol. Biol., 10, p. 106; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog., 12; Kim, Y., Lovell, S., Tiew, K.-C., Mandadapu, S.R., Alliston, K.R., Battaile, K.P., Groutas, W.C., Chang, K.-O., Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses (2012) J. Virol., 86, pp. 11754-11762; Kim, Y., Mandadapu, S., Groutas, W., Chang, K., Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease (2013) Antivir. Res., 97, pp. 161-168; Kim, Y., Shivanna, V., Narayanan, S., Prior, A.M., Weerasekara, S., Hua, D.H., Kankanamalage, A.C., Chang, K.O., Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses (2015) J. Virol., 89, pp. 4942-4950; Kindler, E., Gil-Cruz, C., Spanier, J., Li, Y., Wilhelm, J., Rabouw, H.H., Züst, R., Thiel, V., Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication (2017) PLoS Pathog., 13; Kipar, A., Meli, M.L., Feline infectious peritonitis: still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Krenke, B.E., Ekenberg, S., Frackman, S., Hoffmann, K., Sprecher, C.J., Storts, D.R., Development of a novel, fluorescent, two-primer approach to quantitative PCR (2005) Promega Profiles DNA, pp. 3-5; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19, pp. 1066-1073; Meager, A., The Interferons : Characterization and Application (2006), Wiley-VCH; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., Leist, S.R., Yount, B.L., McAnarney, E.T., Baric, R.S., Combination attenuation offers strategy for live attenuated coronavirus vaccines (2018) J. Virol., 92. , e00710-18; Merck Veterinary Manual, Gastric dilation and volvulus in small animals: diseases of the stomach and intestines in small animals (2015), http://www.merckvetmanual.com, [WWW Document] accessed 7.1.18; Millet, J.K., Whittaker, G.R., Host cell proteases: critical determinants of coronavirus tropism and pathogenesis (2015) Virus Res., 202, pp. 120-134; O'Brien, A., Mettelman, R.C., Volk, A., André, N.M., Whittaker, G.R., Baker, S.C., Characterizing replication kinetics and plaque production of type I feline infectious peritonitis virus in three feline cell lines (2018) Virology, 525, pp. 1-9; Olsen, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., Scott, F.W., Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages (1992) J. Virol., 66, pp. 956-965; Park, J.-E., Li, K., Barlan, A., Fehr, A.R., Perlman, S., McCray, P.B., Gallagher, T., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl. Acad. Sci., 113, pp. 12262-12267; Pedersen, N.C., An update on feline infectious peritonitis: diagnostics and therapeutics (2014) Vet. J., 201, pp. 133-141; Pedersen, N.C., An update on feline infectious peritonitis: virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenic differences between various feline coronavirus isolates (1984) Molecular Biology and Pathogenesis of Coronaviruses, pp. 365-380. , Springer Boston, MA; Pedersen, N.C., Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Eckstrand, C., Groutas, W.C., Bannasch, M., Chang, K.O., Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis (2018) J. Feline Med. Surg., 20, pp. 378-392; Pedersen, N.C., Perron, M., Bannasch, M., Montgomery, E., Murakami, E., Liepnieks, M., Liu, H., Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis (2019) J. Feline Med. Surg., 21, pp. 271-281; Reinke, L.M., Spiegel, M., Plegge, T., Hartleib, A., Nehlmeier, I., Gierer, S., Hoffmann, M., Pöhlmann, S., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2 (2017) PLoS One, 12; Rose, K.M., Weiss, S.R., Murine coronavirus cell type dependent interaction with the type I interferon response (2009) Viruses, 1, pp. 689-712; Satoh, R., Kaku, A., Satomura, M., Kohori, M., Noura, K., Furukawa, T., Kotake, M., Hohdatsu, T., Development of monoclonal antibodies (MAbs) to feline interferon (fIFN)-γ as tools to evaluate cellular immune responses to feline infectious peritonitis virus (FIPV) (2011) J. Feline Med. Surg., 13, pp. 427-435; Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Zhang, F., Genome-scale CRISPR-Cas9 knockout screening in human cells (2014) Science (80-), 343, pp. 84-87; Shirato, K., Kanou, K., Kawase, M., Matsuyama, S., Clinical isolates of human coronavirus 229E bypass the endosome for cell entry (2016) J. Virol., 91. , e01387-16; Shirato, K., Kawase, M., Matsuyama, S., Middle East Respiratory Syndrome Coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Siegrist, C.-A., (2013) Vaccine Immunology, Vaccines, pp. 14-32. , S.A. Plotkin W.A. Orenstein P.A. Offit Elsevier Inc; St John, S.E., Therkelsen, M.D., Nyalapatla, P.R., Osswald, H.L., Ghosh, A.K., Mesecar, A.D., St John, S.E., Mesecar, A.D., X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: structural implications for drug design (2015) Bioorg. Med. Chem. Lett, 25, pp. 5072-5077; Tang, F., Quan, Y., Xin, Z.-T., Wrammert, J., Ma, M.-J., Lv, H., Wang, T.-B., Cao, W.-C., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study (2011) J. Immunol., 186, pp. 7264-7268; Tekes, G., Spies, D., Bank-Wolf, B., Thiel, V., Thiel, H.-J.H.-J., A reverse genetics approach to study feline infectious peritonitis (2012) J. Virol., 86, pp. 6994-6998; Thiel, V., Thiel, H.-J., Tekes, G., Tackling feline infectious peritonitis via reverse genetics (2014) Bioengineered, 5, pp. 396-400; Totura, A.L., Baric, R.S., SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon (2012) Curr. Opin. Virol., 2, pp. 264-275; Tough, D.F., Modulation of T-cell function by type I interferon (2012) Immunol. Cell Biol., 90, pp. 492-497; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Whittaker, G.R., André, N.M., Millet, J.K., Improving virus taxonomy by recontextualizing sequence-based classification with biologically relevant data: the case of the Alphacoronavirus 1 species (2018) mSphere, 3, pp. e00413-e00417","Baker, S.C.; Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of MedicineUnited States; email: sbaker1@luc.edu",,"Academic Press Inc.",00426822,,VIRLA,"31539770","English","Virology",Article,"Final",,Scopus,2-s2.0-85072217734 "Hoang V.-T., Goumballa N., Dao T.-L., Ly T.D.A., Ninove L., Ranque S., Raoult D., Parola P., Sokhna C., Pommier de Santi V., Gautret P.","57202332027;57208027842;57208530490;57196149513;26656109700;57200105390;36040059800;7006212186;6601979166;26429906300;36893462000;","Respiratory and gastrointestinal infections at the 2017 Grand Magal de Touba, Senegal: A prospective cohort survey",2019,"Travel Medicine and Infectious Disease","32",, 101410,"","",,3,"10.1016/j.tmaid.2019.04.010","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065013475&doi=10.1016%2fj.tmaid.2019.04.010&partnerID=40&md5=1ebbde7911cedca42870aeef2f4e207e","Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Viet Nam; VITROME, Campus International IRD/UCAD de Hann, Dakar, Senegal; Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France; Aix Marseille Univ, MEPHI, IHU-Méditerranée Infection, Marseille, France; French Military Center for Epidemiology and Public Health Marseille, France","Hoang, V.-T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacy, Viet Nam; Goumballa, N., VITROME, Campus International IRD/UCAD de Hann, Dakar, Senegal; Dao, T.-L., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacy, Viet Nam; Ly, T.D.A., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Ninove, L., Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France; Ranque, S., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Raoult, D., Aix Marseille Univ, MEPHI, IHU-Méditerranée Infection, Marseille, France; Parola, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Sokhna, C., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; Pommier de Santi, V., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France, French Military Center for Epidemiology and Public Health Marseille, France; Gautret, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France","Background: The Grand Magal of Touba is the largest Muslim pilgrimage in Senegal with a potential for infectious disease transmission. Methods: Clinical follow-up, adherence to preventive measures and qPCR-based respiratory and gastrointestinal pathogens carriage pre- and post-Magal, were assessed. Results: 110 pilgrims from South Senegal were included. The duration of stay in Touba was 3 days. 41.8% and 14.5% pilgrims reported respiratory and gastrointestinal symptoms. Most individuals having the onset of symptoms during their stay in Touba, or soon after returning. The acquisition of rhinoviruses, coronaviruses and adenovirus was 13.0, 16.7 and 4.6% respectively and that of Streptococcus pneumoniae and Haemophilus influenzae was 3.7% and 26.9%. Acquisition of gastrointestinal viruses and parasites was low, while bacterial acquisition ranged from 2.2% for Campylobacter jejuni to 33.0% for enteropathogenic Escherichia coli. Conclusion: This preliminary study confirms that Grand Magal pilgrims are likely to be exposed to communicable disease risk as observed in other pilgrimage settings. Further study including larger numbers of pilgrims are needed to investigate potential risk factors for respiratory and gastrointestinal infections at the Grand Magal. © 2019 Elsevier Ltd","Gastrointestinal infection; Grand magal; PCR; Pilgrims; Respiratory tract infections; Touba","antibiotic agent; Adenoviridae; adolescent; adult; aged; antibiotic therapy; Article; bacterial transmission; Campylobacter jejuni; child; clinical feature; cohort analysis; constipation; Coronaviridae; coughing; diarrhea; disease transmission; enteropathogenic Escherichia coli; female; fever; gastrointestinal infection; Haemophilus influenzae; health care survey; human; Human rhinovirus; infant; Influenza B virus; longitudinal study; major clinical study; male; microorganism detection; nonhuman; parasite transmission; priority journal; prospective study; religion; respiratory tract infection; rhinitis; Rhinovirus; Senegal; sore throat; Streptococcus pneumoniae; virus transmission; voice disorder; vomiting","Sokhna, C., Mboup, B.M., Sow, P.G., Camara, G., Dieng, M., Sylla, M., Communicable and non-communicable disease risks at the Grand Magal of Touba: the largest mass gathering in Senegal (2017) Trav Med Infect Dis, 19, pp. 56-60; Rashid, H., Shaf, S., El Bashir, H., Haworth, E., Memish, Z.A., Ali, K.A., Influenza and the Hajj: defining influenza-like illness clinically (2008) Int J Infect Dis, 12 (1), pp. 102-103. , Epub 2007 May 30. PMID: 17540601; Ninove, L., Nougairede, A., Gazin, C., Thirion, L., Delogu, I., Zandotti, C., Charrel, R.N., De Lamballerie, X., RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests (2011) PLoS One, 6, p. e16142. , https://doi:10.1371/journal.pone.0016142; Memish, Z.A., Assiri, A., Turkestani, A., Yezli, S., Al Masri, M., Charrel, R., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect, 21, p. 571. , https://doi:10.1016/j.cmi.2015.02.008, e1-8 Epub 2015 Feb 17; Cohen-Bacrie, S., Ninove, L., Nougairède, A., Charrel, R., Richet, H., Minodier, P., Revolutionizing clinical microbiology laboratory organization in hospitals with in situ point-of-care (2011) PLoS One, 6, p. e22403. , https://doi:10.1371/journal.pone.0022403, Epub 2011 Jul 19; Vuong, J., Collard, J.M., Whaley, M.J., Bassira, I., Seidou, I., Diarra, S., Development of real-time PCR methods for the detection of bacterial meningitis pathogens without DNA extraction (2016) PLoS One, 11, p. e0147765. , https://doi:10.1371/journal.pone.0147765; Appelt, S., Armougom, F., Le Bailly, M., Robert, C., Drancourt, M., Polyphasic analysis of a middle ages coprolite microbiota, Belgium (2014) PLoS One, 9, p. e88376. , https://doi:10.1371/journal.pone.0088376, eCollection 2014; Menu, E., Mary, C., Toga, I., Raoult, D., Ranque, S., Bittar, F., Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples (2018) BMC Res Notes, 11, p. 206. , https://doi:10.1186/s13104-018-3300-2; Jiang, Y., Fang, L., Shi, X., Zhang, H., Li, Y., Lin, Y., Simultaneous detection of five enteric viruses associated with gastroenteritis by use of a PCR assay: a single real-time multiplex reaction and its clinical application (2014) J Clin Microbiol, 52, pp. 1266-1268. , https://doi:10.1128/JCM.00245-14; Gerber, P.F., Xiao, C.-T., Cao, D., Meng, X.-J., Opriessnig, T., Comparison of real-time reverse transcriptase PCR assays for detection of swine hepatitis E virus in fecal samples (2014) J Clin Microbiol, 52, pp. 1045-1051. , https://doi:10.1128/JCM.03118-13; Jothikumar, N., Cromeans, T.L., Sobsey, M.D., Robertson, B.H., Development and evaluation of a broadly reactive TaqMan assay for rapid detection of hepatitis a virus (2005) Appl Environ Microbiol, 71, pp. 3359-3363. , https://doi:10.1128/AEM.71.6.3359-3363; Van Lint, P., De Witte, E., De Henau, H., De Muynck, A., Verstraeten, L., Van Herendael, B., Evaluation of a real-time multiplex PCR for the simultaneous detection of Campylobacter jejuni, Salmonella spp., Shigella spp./EIEC, and Yersinia enterocolitica in fecal samples (2015) Eur J Clin Microbiol Infect Dis, 34, pp. 535-542. , https://doi:10.1007/s10096-014-2257-x, Epub 2014 Oct 19; Hardegen, C., Messler, S., Henrich, B., Pfeffer, K., Würthner, J., MacKenzie, C.R., A set of novel multiplex Taqman real-time PCRs for the detection of diarrhoeagenic Escherichia coli and its use in determining the prevalence of EPEC and EAEC in a university hospital (2010) Ann Clin Microbiol Antimicrob, 9, p. 5. , https://doi:10.1186/1476-0711-9-5; Abubakar, I., Gautret, P., Brunette, G.W., Blumberg, L., Johnson, D., Poumerol, G., Global perspectives for prevention of infectious diseases associated with mass gatherings (2012) Lancet Infect Dis, 12, pp. 66-74. , https://doi:10.1016/S1473-3099(11)70246-8; World Health Organization, Public health for mass gatherings: key considerations (2015), http://apps.who.int/iris/bitstream/handle/10665/162109/WHO_HSE_GCR_2015.5_eng.pdf;jsessionid=92D12CF6BBA72B7635B2BC5AB159FB1E?sequence=1, WHO Geneva (Accessed 8 November 2018); Manga, N.M., Ndour, C.T., Diop, S.A., Dia, N.M., Ka-Sall, R., Diop, B.M., Cholera in Senegal from 2004 to 2006: lessons learned from successive outbreaks (2008) Med Trop, 68 (6), pp. 589-592. , PMID: 19639824; Diagne, C.T., Barry, M.A., Ba, Y., Faye, O., Sall, A.A., Dengue epidemic in Touba, Senegal: implications for the Grand magal pilgrimage for travelers (2018) J Travel Med; Sokhna, C., Goumballa, N., Gautret, P., The Grand Magal of Touba in the time of a dengue outbreak in Senegal (2019) Trav Med Infect Dis; Memish, Z.A., Zumla, A., Alhakeem, R.F., Hajj: infectious disease surveillance and control (2014) Lancet, 383, pp. 2073-2082. , https://doi:10.1016/S0140-6736(14)60381-0, Epub 2014 May 20; Pane, M., Imari, S., Alwi, Q., Nyoman Kandun, I., Cook, A.R., Samaan, G., Causes of mortality for Indonesian Hajj Pilgrims: comparison between routine death certificate and verbal autopsy findings (2013) PLoS One, 8 (8), p. e73243; Khan, I.D., Khan, S.A., Asima, B., Hussaini, S.B., Zakiuddin, M., Faisal, F.A., Morbidity and mortality amongst Indian Hajj pilgrims: a 3-year experience of Indian Hajj medical mission in mass-gathering medicine (2018) J Infect Public Health, 11, pp. 165-170; Ahmed, Q.A., Arabi, Y.M., Memish, Z.A., Health risks at the Hajj (2006) Lancet, 367 (9515), pp. 1008-1015. , PMID:16564364; Al-Tawfiq, J.A., Gautret, P., Memish, Z.A., Expected immunizations and health protection for Hajj and Umrah 2018 -An overview (2017) Trav Med Infect Dis, 19, pp. 2-7; Hoang, V.T., Gautret, P., Infectious diseases and mass gatherings (2018) Curr Infect Dis Rep, 20 (11), p. 44. , https://doi:10.1007/s11908-018-0650-9, PMID: 30155747","Gautret, P.; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée InfectionFrance; email: philippe.gautret@ap-hm.fr",,"Elsevier USA",14778939,,TMIDA,"31048009","English","Travel Med. Infect. Dis.",Article,"Final",Open Access,Scopus,2-s2.0-85065013475 "Lee S.-H., Kim H.-Y., Choi E.W., Kim D.","57192516814;53877655700;7402121847;55742960400;","Causative agents and epidemiology of diarrhea in Korean native calves",2019,"Journal of Veterinary Science","20","6", e64,"","",,,"10.4142/jvs.2019.20.e64","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075750811&doi=10.4142%2fjvs.2019.20.e64&partnerID=40&md5=a2fbacf8747ea9e7e12ebfb31e2dad51","Laboratory of Large Animal Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Kangwondaehak-gil, Chuncheon, 24341, South Korea; Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, South Korea; Department of Veterinary Clinical Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea","Lee, S.-H., Laboratory of Large Animal Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Kangwondaehak-gil, Chuncheon, 24341, South Korea; Kim, H.-Y., Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, South Korea; Choi, E.W., Department of Veterinary Clinical Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea; Kim, D., Laboratory of Large Animal Medicine, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Kangwondaehak-gil, Chuncheon, 24341, South Korea","Calf diarrhea caused by infectious agents is associated with economic losses in the cattle industry. The purpose of this study was to identify the causative agents and epidemiological characteristics of diarrhea in Korean native calves (KNC). In total, 207 diarrheal KNC aged less than 7 months were investigated. Fecal samples collected from the rectum were examined for causative agents using polymerase chain reaction (PCR) or real-time PCR and the number of oocysts were counted. Fourteen causative agents were detected from 164 of the 207 diarrheal KNC. Rotavirus was the most common agent (34.8%), followed by Eimeria spp. (31.7%), Escherichia coli (22.0%), Giardia spp. (14.0%), Clostridium difficile (9.8%), bovine viral diarrhea virus (8.5%), coronavirus (7.9%), Cryptosporidium spp. (7.3%), torovirus (6.7%), parvovirus (5.5%), norovirus (4.9%), kobuvirus (1.8%), adenovirus (1.2%), and Salmonella spp. (0.6%). About 95 (57.9%) of 164 calves were infected with a single causative agent and 42.1% were infected by multiple agents. No significant difference was observed in mortality between calves infected with a single agent and multiple agents. The occurrence of diarrhea caused by rotavirus, Eimeria spp., kobuvirus, and Giardia spp. was significantly different based on onset age, and the prevalence of diarrhea caused by rotavirus or C. difficile was significantly different between seasons. This study help the understanding of KNC diarrhea for the development of an effective strategy for disease prevention and control, especially in Eastern provinces of South Korea. © 2019 The Korean Society of Veterinary Science.","Calf; Causative agents; Diarrhea; Korean native calves; Prevalence","animal; bovine; cattle disease; diarrhea; feces; microbiology; parasitology; South Korea; veterinary medicine; virology; Animals; Cattle; Cattle Diseases; Diarrhea; Feces; Republic of Korea","Izzo, M.M., Kirkland, P.D., Mohler, V.L., Perkins, N.R., Gunn, A.A., House, J.K., Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea (2011) Aust Vet J, 89, pp. 167-173; Hur, T.Y., Jung, Y.H., Choe, C.Y., Cho, Y.I., Kang, S.J., Lee, H.J., Ki, K.S., Suh, G.H., The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea (2013) Korean J Vet Res, 53, pp. 103-108; Kim, D., Han, H.R., A quantitative study of the transfer of colostral immunoglobulins to the newborn Korean native calf (1990) Korean J Vet Res, 29, pp. 75-81; Kim, D., Han, H.R., Changes in the serum immunoglobulin levels and viral antibody titers of colostrum - conferred Korean native calves during the first 12 weeks postpartum (1990) Korean J Vet Res, 29, pp. 83-90; Crouch, C.F., Oliver, S., Francis, M.J., Serological, colostral and milk responses of cows vaccinated with a single dose of a combined vaccine against rotavirus, coronavirus and Escherichia coli F5 (K99) (2001) Vet Rec, 149, pp. 105-108; Bendali, F., Bichet, H., Schelcher, F., Sanaa, M., Pattern of diarrhoea in newborn beef calves in south-west France (1999) Vet Res, 30, pp. 61-74; Kirisawa, R., Takeyama, A., Koiwa, M., Iwai, H., Detection of bovine torovirus in fecal specimens of calves with diarrhea in Japan (2007) J Vet Med Sci, 69, pp. 471-476; Park, S.I., Jeong, C., Kim, H.H., Park, S.H., Park, S.J., Hyun, B.H., Yang, D.K., Cho, K.O., Molecular epidemiology of bovine noroviruses in South Korea (2007) Vet Microbiol, 124, pp. 125-133; Mauroy, A., Scipioni, A., Mathijs, E., Saegerman, C., Mast, J., Bridger, J.C., Ziant, D., Thiry, E., Epidemiological study of bovine norovirus infection by RT-PCR and a VLP-based antibody ELISA (2009) Vet Microbiol, 137, pp. 243-251; Jeoung, H.Y., Lim, J.A., Jeong, W., Oem, J.K., An, D.J., Three clusters of bovine kobuvirus isolated in Korea, 2008-2010 (2011) Virus Genes, 42, pp. 402-406; Gülaçti, I., Isidan, H., Sözdutmaz, I., Detection of bovine torovirus in fecal specimens from calves with diarrhea in Turkey (2014) Arch Virol, 159, pp. 1623-1627; Kailasan, S., Halder, S., Gurda, B., Bladek, H., Chipman, P.R., McKenna, R., Brown, K., Agbandje-McKenna, M., Structure of an enteric pathogen, bovine parvovirus (2015) J Virol, 89, pp. 2603-2614; Peter, S.G., Gitau, G.K., Richards, S., Vanleeuwen, J.A., Uehlinger, F., Mulei, C.M., Kibet, R.R., Risk factors associated with Cryptosporidia, Eimeria, and diarrhea in smallholder dairy farms in Mukurwe-ini Sub-County, Nyeri County, Kenya (2016) Vet World, 9, pp. 811-819; Rodriguez-Palacios, A., Stämpfli, H.R., Duffield, T., Peregrine, A.S., Trotz-Williams, L.A., Arroyo, L.G., Brazier, J.S., Weese, J.S., Clostridium difficile PCR ribotypes in calves, Canada (2006) Emerg Infect Dis, 12, pp. 1730-1736; Berge, A.C., Besser, T.E., Moore, D.A., Sischo, W.M., Evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves (2009) J Dairy Sci, 92, pp. 286-295; Hensgens, M.P., Keessen, E.C., Squire, M.M., Riley, T.V., Koene, M.G., de Boer, E., Lipman, L.J., Kuijper, E.J., European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridium difficile (ESGCD). Clostridium difficile infection in the community: a zoonotic disease? (2012) Clin Microbiol Infect, 18, pp. 635-645; Lyoo, Y.S., Detection of Torovirus-like particles from calves with diarrhea (1997) Korean J Vet Res, 37, pp. 155-159; Gül, A., Ciçek, M., Kilinç, O., Prevalence of Eimeria spp., Cryptosporidium spp (2008) and Giardia spp. in calves in the Van province. Turkiye Parazitol Derg, 32, pp. 202-204; Heo, J.H., Cho, M.H., Lee, K.C., Park, M.N., Cho, E.J., Choi, M.S., Kim, C.H., Kim, J.S., An epidemiological study on the calves with clinical diarrhea in southern Gyeonnam (2008) Korean J Vet Serv, 31, pp. 305-313; Koutny, H., Joachim, A., Tichy, A., Baumgartner, W., Bovine Eimeria species in Austria (2012) Parasitol Res, 110, pp. 1893-1901; Gillhuber, J., Rügamer, D., Pfister, K., Scheuerle, M.C., Giardiosis and other enteropathogenic infections: a study on diarrhoeic calves in Southern Germany (2014) BMC Res Notes, 7, p. 112; Jeong, M.H., Lee, M.K., Kim, H.S., Lee, S.U., Seong, M.H., Park, D.Y., Hwang, B.W., Cho, J.H., Detection of etiologic agents in diarrhea fecal samples from calves in Gyeongnam province, Korea (2012) Korean J Vet Serv, 35, pp. 339-342; Sibley, S.D., Goldberg, T.L., Pedersen, J.A., Detection of known and novel adenoviruses in cattle wastes via broad-spectrum primers (2011) Appl Environ Microbiol, 77, pp. 5001-5008; Yamashita, T., Ito, M., Kabashima, Y., Tsuzuki, H., Fujiura, A., Sakae, K., Isolation and characterization of a new species of kobuvirus associated with cattle (2003) J Gen Virol, 84, pp. 3069-3077; Park, S.J., Oh, E.H., Park, S.I., Kim, H.H., Jeong, Y.J., Lim, G.K., Hyun, B.H., Cho, K.O., Molecular epidemiology of bovine toroviruses circulating in South Korea (2008) Vet Microbiol, 126, pp. 364-371; Franck, S.M., Bosworth, B.T., Moon, H.W., Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains from calves (1998) J Clin Microbiol, 36, pp. 1795-1797; Arnold, T., Scholz, H.C., Marg, H., Rösler, U., Hensel, A., Impact of invA-PCR and culture detection methods on occurrence and survival of salmonella in the flesh, internal organs and lymphoid tissues of experimentally infected pigs (2004) Vet Med B Infect Dis Vet Public Health, 51, pp. 459-463; Shabana, I.I., Zaraket, H., Suzuki, H., Molecular studies on diarrhea-associated Escherichia coli isolated from humans and animals in Egypt (2013) Vet Microbiol, 167, pp. 532-539; Cortés, C., De la Fuente, R., Blanco, J., Blanco, M., Blanco, J.E., Dhabi, G., Mora, A., Orden, J.A., Serotypes, virulence genes and intimin types of verotoxin-producing Escherichia coli and enteropathogenic E (2005) coli isolated from healthy dairy goats in Spain. Vet Microbiol, 110, pp. 67-76; Kato, H., Kato, N., Watanabe, K., Iwai, N., Nakamura, H., Yamamoto, T., Suzuki, K., Wasito, E.B., Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR (1998) J Clin Microbiol, 36, pp. 2178-2182; Diagnostic parasitology (2013) Veterinary Parasitology Reference Manual, pp. 3-10. , Foreyt WJ (ed.). 5th ed, Blackwell Publishing, Ames; Lee, S.H., VanBik, D., Kim, H.Y., Lee, Y.R., Kim, J.W., Chae, M., Oh, S.I., Kwak, D., Multilocus typing of Cryptosporidium spp (2016) in young calves with diarrhea in Korea. Vet Parasitol, 229, pp. 81-89; Lee, S.H., VanBik, D., Kim, H.Y., Cho, A., Kim, J.W., Byun, J.W., Oem, J.K., Kwak, D., Prevalence and molecular characterisation of Giardia duodenalis in calves with diarrhoea (2016) Vet Rec, 178, p. 633; Lee, B.S., A study of natural seasons in Korea (1979) J Korean Geogr Soc, 14, pp. 1-11; Gebeyehu, E.B., Seon, M.G., Jung, B.Y., Byun, J.W., Oem, J.K., Kim, H.Y., Kwak, D., Prevalence of gastrointestinal parasites in Korean native goats (Capra hircus aegarus) (2013) J Anim Plant Sci, 23, pp. 986-989; Björkman, C., Svensson, C., Christensson, B., de Verdier, K., Cryptosporidium parvum and Giardia intestinalis in calf diarrhoea in Sweden (2003) Acta Vet Scand, 44, pp. 145-152; Brandão, P.E., Villarreal, L.Y., de Souza, S.L., Richtzenhain, L.J., Jerez, J.A., Mixed infections by bovine coronavirus, rotavirus and Cryptosporidium parvum in an outbreak of neonatal diarrhea in beef cattle (2007) Arq Inst Biol (Sao Paulo), 74, pp. 33-34; Barry, A.F., Alfieri, A.F., Stipp, D.T., Alfieri, A.A., Bovine coronavirus detection in a collection of diarrheic stool samples positive for group A bovine rotavirus (2009) Braz Arch Biol Technol, 52, pp. 45-49; Enemark, H.L., Dahl, J., Enemark, J.M., Eimeriosis in Danish dairy calves--correlation between species, oocyst excretion and diarrhoea (2013) Parasitol Res, 112, pp. 169-176; Cho, Y.I., Yoon, K.J., An overview of calf diarrhea - infectious etiology, diagnosis, and intervention (2014) J Vet Sci, 15, pp. 1-17","Choi, E.W.; Department of Veterinary Clinical Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, South Korea; email: ewchoi@kangwon.ac.kr",,"Korean Society of Veterinary Science",1229845X,,,"31775191","English","J. Vet. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85075750811 "Deschamp A.R., Hatch J.E., Slaven J.E., Gebregziabher N., Storch G., Hall G.L., Stick S., Ranganathan S., Ferkol T.W., Davis S.D.","56001524000;55944922000;57202504805;55360618800;7006444717;7402065421;35373713500;7102368342;7004258506;7404120963;","Early respiratory viral infections in infants with cystic fibrosis",2019,"Journal of Cystic Fibrosis","18","6",,"844","850",,3,"10.1016/j.jcf.2019.02.004","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062080257&doi=10.1016%2fj.jcf.2019.02.004&partnerID=40&md5=085584151276e45bf48e3a25f27518be","Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, United States; Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7220, United States; Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pediatrics, Washington University, St Louis Children's Hospital, St. Louis, MO, United States; Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia; Department of Pediatrics, University of Western Australia, Telethon Kids Institute, Perth, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia","Deschamp, A.R., Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center, Omaha, NE, United States; Hatch, J.E., Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7220, United States; Slaven, J.E., Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States; Gebregziabher, N., Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States; Storch, G., Department of Pediatrics, Washington University, St Louis Children's Hospital, St. Louis, MO, United States; Hall, G.L., Children's Lung Health, Telethon Kids Institute, School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia; Stick, S., Department of Pediatrics, University of Western Australia, Telethon Kids Institute, Perth, Australia; Ranganathan, S., Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia, Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia, Department of Paediatrics, University of Melbourne, Parkville, Australia; Ferkol, T.W., Department of Pediatrics, Washington University, St Louis Children's Hospital, St. Louis, MO, United States; Davis, S.D., Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7220, United States","Background: Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. Methods: Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. Results: Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. Conclusions: Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF. © 2019","Bacteria; Cystic fibrosis; Inflammation; Pathogens; Viruses","amoxicillin plus clavulanic acid; antibiotic therapy; Article; bacterial colonization; bacterium isolate; bronchoscopy; cohort analysis; controlled study; Coronavirinae; cystic fibrosis; female; human; Human metapneumovirus; Human respiratory syncytial virus; Human rhinovirus; infant; infant disease; lung function test; lung lavage; major clinical study; male; mixed infection; multiplex polymerase chain reaction; neutrophil count; nonhuman; nose smear; Paramyxovirinae; pneumonia; prescription; prospective study; respiratory tract inflammation; respiratory virus; retrospective study; Rhinovirus; viral respiratory tract infection; virus detection","Rosenfeld, M., Gibson, R.L., McNamara, S., Emerson, J., Burns, J.L., Castile, R., Early pulmonary infection, inflammation and clinical outcomes in infants with cystic fibrosis (2001) Pediatr Pulmonol, 32, pp. 356-366; Dakin, C.J., Numa, A.H., Wang, H., Morton, J.R., Vertzyas, C.C., Henry, R.L., Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis (2002) Am J Respir Crit Care Med, 165 (7), pp. 904-910; Armstrong, D.S., Hook, S.M., Jamsen, K.M., Nixon, G.M., Carzino, R., Carlin, J.B., Lower airway inflammation in infants with cystic fibrosis detected by newborn screening (2005) Pediatr Pulmonol, 40 (6), pp. 500-510; Sly, P.D., Brennan, S., Gangell, C., de Klerk, N., Murray, C., Mott, L., Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening (2009) Am J Respir Crit Care Med, 180 (2), pp. 146-152; van Ewijk, B.E., van der Zalm, M.M., Wolfs, T.F., Fleer, A., Kimpen, J.L., Wilbrink, B., Prevalence and impact of respiratory viral infections in young children with cystic fibrosis: prospective cohort study (2008) Pediatrics, 122 (6), pp. 1171-1176; Esther, C.R., Jr., Lin, F.C., Kerr, A., Miller, M.B., Gilligan, P.H., Respiratory viruses are associated with common respiratory pathogens in cystic fibrosis (2014) Pediatr Pulmonol, 49 (9), pp. 926-931; Burns, J.L., Emerson, J., Kuypers, J., Campbell, A.P., Gibson, R.L., McNamara, S., Respiratory viruses in children with cystic fibrosis: viral detection and clinical findings (2012) Influenza Other Respi Viruses, 6 (3), pp. 218-223; Hiatt, P.W., Grace, S.C., Kozinetz, C.A., Raboudi, S.H., Treece, D.G., Taber, L.H., Effects of viral lower respiratory tract infection on lung function in infants with cystic fibrosis (1999) Pediatrics, 103 (3), pp. 619-626; Armstrong, D., Grimwood, K., Carlin, J.B., Carzino, R., Hull, J., Olinsky, A., Severe viral respiratory infections in infants with cystic fibrosis (1998) Pediatr Pulmonol, 26 (6), pp. 371-379; Smyth, A.R., Smyth, R.L., Tong, C.Y., Hart, C.A., Heaf, D.P., Effect of respiratory virus infections including rhinovirus on clinical status in cystic fibrosis (1995) Arch Dis Child, 73 (2), pp. 117-120; Cousin, M., Molinari, N., Foulongne, V., Caimmi, D., Vachier, I., Abely, M., Rhinovirus-associated pulmonary exacerbations show a lack of FEV1 improvement in children with cystic fibrosis (2016) Influenza Other Respi Viruses, 10 (2), pp. 109-112; Kua, K.P., Lee, S.W.H., Systematic review of the safety and efficacy of Palivizumab among infants and young children with cystic fibrosis (2017) Pharmacotherapy, 37 (6), pp. 755-769; Buchs, C., Dalphin, M.L., Sanchez, S., Perceval, M., Coutier, L., Mainguy, C., Palivizumab prophylaxis in infants with cystic fibrosis does not delay first isolation of Pseudomonas aeruginosa or Staphylococcus aureus (2017) Eur J Pediatr, 176 (7), pp. 891-897; Stocks, J., Godfrey, S., Beardsmore, C., Bar-Yishay, E., Castile, R., Plethysmographic measurements of lung volume and airway resistance (2001) Eur Respir J, 17 (2), pp. 302-312; ATS/ERS statement: raised volume forced expirations in infants: guidelines for current practice (2005) Am J Respir Crit Care Med, 172 (11), pp. 1463-1471; Rennard, S.I., Basset, G., Lecossier, D., O'Donnell, K.M., Pinkston, P., Martin, P.G., Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution (1986) J Appl Physiol, 60 (2), pp. 532-538; Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., Conde, J.G., Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support (2009) J Biomed Inform, 42 (2), pp. 377-381; http://www.who.int/childgrowth/software/en/, WHO. Child Growth Standards, Anthro version 3.2.2 2011. Available from:; Kusel, M.M., de Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., Sly, P.D., Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: a birth cohort study (2006) Pediatr Infect Dis J, 25 (8), pp. 680-686; Muller, L., Mack, I., Tapparel, C., Kaiser, L., Alves, M.P., Kieninger, E., Human rhinovirus types and association with respiratory symptoms during the first year of life (2015) Pediatr Infect Dis J, 34 (8), pp. 907-909; Stelzer-Braid, S., Liu, N., Doumit, M., D'Cunha, R., Belessis, Y., Jaffe, A., Association of rhinovirus with exacerbations in young children affected by cystic fibrosis: preliminary data (2017) J Med Virol, 89 (8), pp. 1494-1497; Korten, I., Kieninger, E., Klenja, S., Mack, I., Schlapfer, N., Barbani, M.T., Respiratory viruses in healthy infants and infants with cystic fibrosis: a prospective cohort study (2018) Thorax, 73 (1), pp. 13-20; Principi, N., Zampiero, A., Gambino, M., Scala, A., Senatore, L., Lelii, M., Prospective evaluation of rhinovirus infection in healthy young children (2015) J Clin Virol, 66, pp. 83-89; Mack, I., Kieninger, E., Cangiano, G., Tapparel, C., Kuehni, C., Spycher, B., Rhinovirus infections and associated respiratory morbidity in infants: a prospective cohort study (2016) Pediatr Infect Dis J, 35 (10), pp. 1069-1074; Esposito, S., Molteni, C.G., Daleno, C., Valzano, A., Tagliabue, C., Galeone, C., Collection by trained pediatricians or parents of mid-turbinate nasal flocked swabs for the detection of influenza viruses in childhood (2010) Virol J, 7, p. 85; Emerson, J., Cochrane, E., McNamara, S., Kuypers, J., Gibson, R.L., Campbell, A.P., Home self-collection of nasal swabs for diagnosis of acute respiratory virus infections in children with cystic fibrosis (2013) J Pediatr Infect Dis Soc, 2 (4), pp. 345-351; Sarna, M., Lambert, S.B., Sloots, T.P., Whiley, D.M., Alsaleh, A., Mhango, L., Viruses causing lower respiratory symptoms in young children: findings from the ORChID birth cohort (2018) Thorax, 73 (10), pp. 969-979; Gangell, C.L., Shackleton, C., Poreddy, S., Kappers, J., Gaydon, J.E., Sloots, T.P., Feasibility of parental collected nasal swabs for virus detection in young children with cystic fibrosis (2014) J Cyst Fibros; Pillarisetti, N., Williamson, E., Linnane, B., Skoric, B., Robertson, C.F., Robinson, P., Infection, inflammation, and lung function decline in infants with cystic fibrosis (2011) Am J Respir Crit Care Med, 184 (1), pp. 75-81; Olesen, H.V., Nielsen, L.P., Schiotz, P.O., Viral and atypical bacterial infections in the outpatient pediatric cystic fibrosis clinic (2006) Pediatr Pulmonol, 41 (12), pp. 1197-1204; Sajjan, U., Wang, Q., Zhao, Y., Gruenert, D.C., Hershenson, M.B., Rhinovirus disrupts the barrier function of polarized airway epithelial cells (2008) Am J Respir Crit Care Med, 178 (12), pp. 1271-1281; Van Ewijk, B.E., Wolfs, T.F., Aerts, P.C., Van Kessel, K.P., Fleer, A., Kimpen, J.L., RSV mediates Pseudomonas aeruginosa binding to cystic fibrosis and normal epithelial cells (2007) Pediatr Res, 61 (4), pp. 398-403; Stark, J.M., Stark, M.A., Colasurdo, G.N., LeVine, A.M., Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection (2006) J Med Virol, 78 (6), pp. 829-838; Finney, L.J., Belchamber, K.B.R., Fenwick, P.S., Kemp, S.V., Edwards, M.R., Mallia, P., Human rhinovirus impairs the innate immune response to Bacteria in alveolar macrophages in COPD (2018) Am J Respir Crit Care Med; Oliver, B.G., Lim, S., Wark, P., Laza-Stanca, V., King, N., Black, J.L., Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages (2008) Thorax, 63 (6), pp. 519-525; Jubrail, J., Africano-Gomez, K., Herit, F., Baturcam, E., Mayer, G., Cunoosamy, D.M., HRV16 impairs macrophages cytokine response to a secondary bacterial trigger (2018) Front Immunol, 9, p. 2908; Ben-David, D., Rubinstein, E., Appropriate use of antibiotics for respiratory infections: review of recent statements and position papers (2002) Curr Opin Infect Dis, 15 (2), pp. 151-156; File, T.M., Jr., Judicious use of antibiotics to treat respiratory tract infections (2002) Curr Opin Infect Dis, 15 (2), pp. 149-150; Prevaes, S.M., de Winter-de Groot, K.M., Janssens, H.M., de Steenhuijsen Piters, W.A., Tramper-Stranders, G.A., Wyllie, A.L., Development of the nasopharyngeal microbiota in infants with cystic fibrosis (2016) Am J Respir Crit Care Med, 193 (5), pp. 504-515; Mika, M., Korten, I., Qi, W., Regamey, N., Frey, U., Casaulta, C., The nasal microbiota in infants with cystic fibrosis in the first year of life: a prospective cohort study (2016) Lancet Respir Med, 4, pp. 627-635; Pittman, J.E., Wylie, K.M., Akers, K., Storch, G.A., Hatch, J., Quante, J., Association of antibiotics, airway microbiome, and inflammation in infants with cystic fibrosis (2017) Ann Am Thorac Soc, 14 (10), pp. 1548-1555; Waters, V., Ratjen, F., Pulmonary exacerbations in children with cystic fibrosis (2015) Ann Am Thorac Soc, 12, pp. S200-S206","Deschamp, A.R.; Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital and Medical Center Omaha, 984220 Nebraska Medical CenterUnited States; email: ashley.deschamp@unmc.edu",,"Elsevier B.V.",15691993,,JCFOA,"30826285","English","J. Cyst. Fibrosis",Article,"Final",Open Access,Scopus,2-s2.0-85062080257 "Baharoon S., Memish Z.A.","24477253100;7005059350;","MERS-CoV as an emerging respiratory illness: A review of prevention methods",2019,"Travel Medicine and Infectious Disease","32",, 101520,"","",,6,"10.1016/j.tmaid.2019.101520","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076228479&doi=10.1016%2fj.tmaid.2019.101520&partnerID=40&md5=91ae5e9c033d564b1222e11a80f10a07","Infectious Disease Division, Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Department of Critical Care, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Professor of Critical Care, King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine and Research Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Baharoon, S., Infectious Disease Division, Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia, Department of Critical Care, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia, Professor of Critical Care, King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia; Memish, Z.A., Infectious Diseases Division, Department of Medicine and Research Department, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States","Introduction: Middle East Respiratory Coronavirus Virus (MERS-CoV) first emerged from Saudi Arabia in 2012 and has since been recognized as a significant human respiratory pathogen on a global level. Methods: In this narrative review, we focus on the prevention of MERS-CoV. We searched PubMed, Embase, Cochrane, Scopus, and Google Scholar, using the following terms: ‘MERS’, ‘MERS-CoV’, ‘Middle East respiratory syndrome’ in combination with ‘prevention’ or ‘infection control’. We also reviewed the references of each article to further include other studies or reports not identified by the search. Results: As of Nov 2019, a total of 2468 laboratory-confirmed cases of MERS-CoV were diagnosed mostly from Middle Eastern regions with a mortality rate of at least 35%. A major outbreak that occurred outside the Middle East (in South Korea) and infections reported from 27 countries. MERS-CoV has gained recognition as a pathogen of global significance. Prevention of MERS-CoV infection is a global public health priority. Healthcare facility transmission and by extension community transmission, the main amplifier of persistent outbreaks, can be prevented through early identification and isolation of infected humans. While MERS-CoV vaccine studies were initially hindered by multiple challenges, recent vaccine development for MERS-CoV is showing promise. Conclusions: The main factors leading to sustainability of MERS-CoV infection in high risk courtiers is healthcare facility transmission. MERS-CoV transmission in healthcare facility mainly results from laps in infection control measures and late isolation of suspected cases. Preventive measures for MERS-CoV include disease control in camels, prevention of camel to human transmission. © 2019 Elsevier Ltd","Infection control; MERS-CoV; Outbreaks; Prevention; Saudi Arabia","virus vaccine; disease transmission; health care facility; human; infection control; infection prevention; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; post exposure prophylaxis; priority journal; respiratory tract disease; Review; travel; virology","Corman, V.M., Muth, D., Niemeyer, D., Drosten, C., Hosts and sources of endemic human coronaviruses (2018) Adv Virus Res, 100, pp. 163-188; Al Hajjar, S., Memish, Z.A., McIntosh, K., Middle East respiratory syndrome coronavirus (MERS-CoV): a perpetual challenge (2013) Ann Saudi Med, 33 (5), pp. 427-436; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: spike features determining ‘host jump'of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends Microbiol, 23, pp. 468-478; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.-Y., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin Microbiol Rev, 28, pp. 465-522; Fong, I.W., Emerging Zoonoses (2017), Emerg Infect Dis 21st Century Springer Int; Graham, R.L., Baric, R.S., Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission (2010) J Virol, 84, pp. 3134-3146; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antivir Res, 100, pp. 286-295; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, p. 523; Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013 (2014) Emerg Infect Dis, 20, p. 1319; Chu, D.K.W., Oladipo, J.O., Perera, R.A.P.M., Kuranga, S.A., Chan, S.M.S., Poon, L.L.M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria (2015) Euro Surveill, 2015 (20); Organization WH, Middle East respiratory syndrome coronavirus (MERS-CoV) https://www.who.int/emergencies/mers-cov/en; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A.T., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Hunter, J.C., Nguyen, D., Aden, B., Al Bandar, Z., Al Dhaheri, W., Elkheir, K.A., Transmission of Middle East respiratory syndrome coronavirus infections in healthcare settings, Abu Dhabi (2016) Emerg Infect Dis, 22, p. 647; Saeed, A.B., Abedi, G.R., Alzahrani, A.G., Salameh, I., Abdirizak, F., Alhakeem, R., Surveillance and testing for middle east respiratory syndrome coronavirus, Saudi Arabia, April 2015–February 2016 (2017) Emerg Infect Dis, (23), p. 682; Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, (2015) Osong Public Heal Res Perspect, 2015, pp. 269-278. , 6; Chafekar, A., Fielding, B.C., MERS-CoV: understanding the latest human coronavirus threat (2018) Viruses, 10, p. 93; Virlogeux, V., Fang, V.J., Park, M., Wu, J.T., Cowling, B.J., Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia (2016) Sci Rep, 6; Alraddadi, B.M., Watson, J.T., Almarashi, A., Abedi, G.R., Turkistani, A., Sadran, M., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia (2014) Emerg Infect Dis, 2016 (22), p. 49; Al-Tawfiq, J.A., Hinedi, K., Ghandour, J., Khairalla, H., Musleh, S., Ujayli, A., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients (2014) Clin Infect Dis, 59, pp. 160-165; Song, Y., Yang, J.-S., Yoon, H.J., Nam, H.-S., Lee, S.Y., Cheong, H.-K., Asymptomatic Middle East Respiratory Syndrome coronavirus infection using a serologic survey in Korea (2018) Epidemiol Health, p. 40; Drosten, C., Seilmaier, M., Corman, V.M., Hartmann, W., Scheible, G., Sack, S., Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection (2013) Lancet Infect Dis, 13, pp. 745-751; Arabi, Y.M., Arifi, A.A., Balkhy, H.H., Najm, H., Aldawood, A.S., Ghabashi, A., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection (2014) Ann Intern Med, 160, pp. 389-397; Alfaraj, S.H., Al-Tawfiq, J.A., Assiri, A.Y., Alzahrani, N.A., Alanazi, A.A., Memish, Z.A., Clinical predictors of mortality of Middle East Respiratory Syndrome (MERS) infection: a cohort study 2019 (2019) Trav Med Infect Dis, 29, pp. 48-50; Saad, M., Omrani, A.S., Baig, K., Bahloul, A., Elzein, F., Matin, M.A., Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia (2014) Int J Infect Dis, 29, pp. 301-306; Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Memish, Z.A., Al-Tawfiq, J.A., Assiri, A., AlRabiah, F.A., Al Hajjar, S., Albarrak, A., Middle East respiratory syndrome coronavirus disease in children (2014) Pediatr Infect Dis J, 33, pp. 904-906; Al-Tawfiq, J.A., Kattan, R.F., Memish, Z.A., Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia (2016) World J Clin Pediatr, 5, p. 391; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Memish, Z.A., Middle East respiratory syndrome coronavirus in pediatrics: a report of seven cases from Saudi Arabia (2019) Front Med, 13, pp. 126-130; Group WHOM-CR, State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans (2013) PLoS Curr, p. 5; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities (2015) N Engl J Med, 372, pp. 846-854; Amer, H., Alqahtani, A.S., Alaklobi, F., Altayeb, J., Memish, Z.A., Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): revision of screening strategies urgently needed (2018) Int J Infect Dis, 71, pp. 113-116; Omrani, A.S., Matin, M.A., Haddad, Q., Al-Nakhli, D., Memish, Z.A., Albarrak, A.M., A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17, pp. e668-e672; Al-Abdely, H.M., Midgley, C.M., Alkhamis, A.M., Abedi, G.R., Tamin, A., Binder, A.M., (2018) Infectious MERS-CoV isolated from a mildly ill patient, Saudi Arabia. Open forum Infect. Dis., 5. , Oxford University Press US p. ofy111; Drosten, C., Meyer, B., Muller, M.A., Corman, V.M., Al-Masri, M., Hossain, R., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371, pp. 828-835; Memish, Z.A., Al-Tawfiq, J.A., Makhdoom, H.Q., Al-Rabeeah, A.A., Assiri, A., Alhakeem, R.F., Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study (2014) Clin Microbiol Infect, 20, pp. 469-474; Poissy, J., Goffard, A., Parmentier-Decrucq, E., Favory, R., Kauv, M., Kipnis, E., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases (2014) J Clin Virol, 61, pp. 275-278; Min, C.-K., Cheon, S., Ha, N.-Y., Sohn, K.M., Kim, Y., Aigerim, A., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Sci Rep, 6; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Han, H.-J., Wen, H., Zhou, C.-M., Chen, F.-F., Luo, L.-M., Liu, J., Bats as reservoirs of severe emerging infectious diseases (2015) Virus Res, 205, pp. 1-6; Kim, Y.-J., Cho, Y.-J., Kim, D.-W., Yang, J.-S., Kim, H., Park, S., Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/KNIH/002_05_2015, isolated in South Korea (2015) Genome Announc, 3. , e00787–15; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) PLoS One, 8; Hulswit, R.J.G., de Haan, C.A.M., Bosch, B.-J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57. , Elsevier; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, p. 251; Chen, Y., Rajashankar, K.R., Yang, Y., Agnihothram, S.S., Liu, C., Lin, Y.-L., Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus (2013) J Virol, 87, pp. 10777-10783; Ithete, N.L., Stoffberg, S., Corman, V.M., Cottontail, V.M., Richards, L.R., Schoeman, M.C., Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa (2013) Emerg Infect Dis, 19, p. 1697; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antivir Res, 101, pp. 45-56; Yinda, C.K., Ghogomu, S.M., Conceição-Neto, N., Beller, L., Deboutte, W., Vanhulle, E., Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code (2018) Virus Evol, 4. , vey008; Hemida, M.G., Perera, R.A., Al, R.A.J., Kayali, G., Siu, L.Y., Wang, P., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill Bull Eur Sur Les Mal Transm Eur Commun Dis Bull, p. 19; Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus (2014) Proc Natl Acad Sci, 111, pp. 12516-12521; Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R.S., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J Virol, 89, pp. 9119-9123; Omrani, A.S., Al-Tawfiq, J.A., Memish, Z.A., Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction (2015) Pathog Glob Health, 109, pp. 354-362; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., de Wit, E., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) mBio, 5. , e00884–14; Briese, T., Mishra, N., Jain, K., Zalmout, I.S., Jabado, O.J., Karesh, W.B., Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia (2014) mBio, 5. , e01146–14; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Rabeeah, A., A Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia (2013) Emerg Infect Dis, 20 (6), pp. 1012-1015. , 2014 Jun; Azhar, E.I., Hashem, A.M., El-Kafrawy, S.A., Sohrab, S.S., Aburizaiza, A.S., Farraj, S.A., Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient (2014) mBio, 5 (4). , e01450–14; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19, p. 1819; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) mBio, 9. , e01985–18; Kandeil, A., Gomaa, M., Shehata, M., El-Taweel, A., Kayed, A.E., Abiadh, A., Middle East respiratory syndrome coronavirus infection in non-camelid domestic mammals (2019) Emerg Microb Infect, 8, pp. 103-108; Gossner, C., Danielson, N., Gervelmeyer, A., Berthe, F., Faye, B., Kaasik Aaslav, K., Human–dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection (2016) Zoonoses Public Health, 63, pp. 1-9; Funk, A.L., Goutard, F.L., Miguel, E., Bourgarel, M., Chevalier, V., Faye, B., MERS-CoV at the animal–human interface: inputs on exposure pathways from an expert-opinion elicitation (2016) Front Vet Sci, 3, p. 88; Thomas, H.L., Zhao, H., Green, H.K., Boddington, N.L., Carvalho, C.F.A., Osman, H.K., Enhanced MERS coronavirus surveillance of travelers from the Middle East to England (2014) Emerg Infect Dis, 20, p. 1562; Ryu, S., Kim, J.J., Cowling, B.J., Kim, C., Surveillance and public health response for travelers returning from MERS-CoV affected countries to Gyeonggi Province, Korea, 2016-2017 (2018) Trav Med Infect Dis, p. 101350; Müller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Al-Tawfiq, J.A., Memish, Z.A., Lack of seasonal variation of Middle East respiratory syndrome coronavirus (MERS-CoV) (2018); Nassar, M.S., Bakhrebah, M.A., Meo, S.A., Alsuabeyl, M.S., Zaher, W.A., Global seasonal occurrence of middle east respiratory syndrome coronavirus (MERS-CoV) infection (2018) Eur Rev Med Pharmacol Sci, 22, pp. 3913-3918; Sharif-Yakan, A., Kanj, S.S., Emergence of MERS-CoV in the Middle East: origins, transmission, treatment, and perspectives (2014) PLoS Pathog, 10; Choe, P.G., Perera, R., Park, W.B., Song, K.-H., Bang, J.H., Kim, E.S., MERS-CoV antibody responses 1 year after symptom onset, South Korea (2015) Emerg Infect Dis, 2017 (23), p. 1079; Al-Tawfiq, J.A., Memish, Z.A., Drivers of MERS-CoV transmission: what do we know? (2016) Expert Rev Respir Med, 10, pp. 331-338; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: implication for infection control (2018) Am J Infect Contr, 46, pp. 165-168; Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13, p. 210; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2015) Clin Infect Dis, 62, pp. 477-483; Al-Tawfiq, J.A., Auwaerter, P.G., Healthcare-associated infections: the hallmark of Middle East respiratory syndrome coronavirus with review of the literature (2019) J Hosp Infect, 101, pp. 20-29; Al-Gethamy, M., Corman, V.M., Hussain, R., Al-Tawfiq, J.A., Drosten, C., Memish, Z.A., A case of long-term excretion and subclinical infection with Middle East respiratory syndrome coronavirus in a healthcare worker (2014) Clin Infect Dis, 60, pp. 973-974; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) Int J Infect Dis, 29, pp. 307-308; Gardner, E.G., Kelton, D., Poljak, Z., Van Kerkhove, M., von Dobschuetz, S., Greer, A.L., A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome (2019) BMC Infect Dis, 19, p. 113; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35, pp. 3780-3788; Haagmans, B.L., van den Brand, J.M.A., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (80), pp. 77-81; Almutairi, S.E., Boujenane, I., Musaad, A., Awad-Acharari, F., Non-genetic factors influencing reproductive traits and calving weight in Saudi camels (2010) Trop Anim Health Prod, 42, pp. 1087-1092; Wernery, U., Camelid immunoglobulins and their importance for the new-born–a review (2001) J Vet Med Ser B, 48, pp. 561-568; Martinez-Bakker, M., Bakker, K.M., King, A.A., Rohani, P., Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics (2014) Proc R Soc B Biol Sci, 281; Hakawi, A., 1. World Health Organization. Home care for patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection presenting with mild symptoms and management of contacts: interim guidance. No. WHO/MERS/IPC/18.1 (2018), p. 2018. , World Health Organization; Lai, M.Y.Y., Cheng, P.K.C., Lim, W.W.L., Survival of severe acute respiratory syndrome coronavirus (2005) Clin Infect Dis, 41, pp. e67-71; Al-Hazmi, A., Gosadi, I., Somily, A., Alsubaie, S., Saeed A Bin. Knowledge, attitude and practice of secondary schools and university students toward Middle East Respiratory Syndrome epidemic in Saudi Arabia: a cross-sectional study (2018) Saudi J Biol Sci, 25, pp. 572-577; Al Mohaissen, M., Awareness among a Saudi Arabian university community of Middle East respiratory syndrome coronavirus following an outbreak (2017) EMHJ-Eastern Mediterr Heal J, 23, pp. 351-360; Van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18; Kang, C.K., Song, K.-H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32, pp. 744-749; Cho, S.Y., Kang, J.-M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.-H., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Alanazi, K.H., Killerby, M.E., Biggs, H.M., Abedi, G.R., Jokhdar, H., Alsharef, A.A., Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia (2017) Infect Control Hosp Epidemiol, 2019 (40), pp. 79-88; Sung, M., Jo, S., Lee, S.-E., Ki, M., Choi, B., Hong, J., Airflow as a possible transmission route of Middle East respiratory syndrome at an initial outbreak hospital in Korea (2018) Int J Environ Res Public Health, 15, p. 2757; Xie, X., Li, Y., Chwang, A.T., Ho, P.L., Seto, W.H., How far droplets can move in indoor environments–revisiting the Wells evaporation-falling curve (2007) Indoor Air, 17, pp. 211-225; WHO, Essential environmental health standards in health care https://www.who.int/water_sanitation_health/publications/ehs_hc/en/; WHO, Natural ventilation for infection control in health-care settings https://www.who.int/water_sanitation_health/publications/natural_ventilation/en/; Kim, J.Y., Song, J.Y., Yoon, Y.K., Choi, S.-H., Song, Y.G., Kim, S.-R., Middle East respiratory syndrome infection control and prevention guideline for healthcare facilities (2015) Infect Chemother, 47, pp. 278-302; Al-Tawfiq, J.A., Rabaan, A.A., Hinedi, K., Influenza is more common than Middle East Respiratory Syndrome Coronavirus (MERS-CoV) among hospitalized adult Saudi patients (2017) Trav Med Infect Dis, 20, pp. 56-60; Ahmed, A.E., Al-Jahdali, H., Alshukairi, A.N., Alaqeel, M., Siddiq, S.S., Alsaab, H., Early identification of pneumonia patients at increased risk of Middle East respiratory syndrome coronavirus infection in Saudi Arabia (2018) Int J Infect Dis, 70, pp. 51-56; Kapoor, M., Pringle, K., Kumar, A., Dearth, S., Liu, L., Lovchik, J., Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States (2014) Clin Infect Dis, 59, pp. 1511-1518; Park, G.E., Ko, J.-H., Peck, K.R., Lee, J.Y., Lee, J.Y., Cho, S.Y., Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea (2016) Ann Intern Med, 165, pp. 87-93; Stirling, B., Communicating the changing role of a nurse in an epidemic: the example of the MERS-CoV outbreak in Saudi Arabia (2017) J Health Commun, 2; Al-Tawfiq, J.A., Abdrabalnabi, R., Taher, A., Mathew, S., Rahman, K.A., Infection control influence of Middle East respiratory syndrome coronavirus: a hospital-based analysis (2019) Am J Infect Contr, 47, pp. 431-434; Kim, Y., Healthcare policy and healthcare utilization behavior to improve hospital infection control after the Middle East respiratory syndrome outbreak (2015) J Korean Med Assoc Uisa Hyophoe Chi, p. 58; Al-Tawfiq, J.A., Rothwell, S., Mcgregor, H.A., Khouri, Z.A., A multi-faceted approach of a nursing led education in response to MERS-CoV infection (2018) J Infect Public Health, 11, pp. 260-264; Bermingham, A., Chand, M.A., Brown, C.S., Aarons, E., Tong, C., Langrish, C., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012 (2012) Euro Surveill, (17); Buchholz, U., Müller, M.A., Nitsche, A., Sanewski, A., Wevering, N., Bauer-Balci, T., (2012) Contact investigation of a case of human novel coronavirus infection treated in a German hospital, p. 2013; IATA, Air passenger market analysis (2014), https://www.iata.org/whatwedo/Documents/economics/passenger-analysis-dec-2014.pdf; Hoda, J., Identification of information types and sources by the public for promoting awareness of Middle East respiratory syndrome coronavirus in Saudi Arabia (2015) Health Educ Res, 31, pp. 12-23; Aldohyan, M., Al-Rawashdeh, N., Sakr, F.M., Rahman, S., Alfarhan, A.I., Salam, M., The perceived effectiveness of MERS-CoV educational programs and knowledge transfer among primary healthcare workers: a cross-sectional survey (2019) BMC Infect Dis, 19, p. 273; Farag, E.A.B., Nour, M., El Idrissi, A., Berrada, J., Moustafa, A., Mehmood, M., Survey on implementation of one health approach for MERS-CoV preparedness and control in Gulf cooperation council and Middle East countries (2019) Emerg Infect Dis, p. 25; Vergara-Alert, J., Vidal, E., Bensaid, A., Segalés, J., Searching for animal models and potential target species for emerging pathogens: experience gained from Middle East respiratory syndrome (MERS) coronavirus (2017) One Heal, 3, pp. 34-40; Zhao, J., Alshukairi, A.N., Baharoon, S.A., Ahmed, W.A., Bokhari, A.A., Nehdi, A.M., Recovery from the Middle East respiratory syndrome is associated with antibody and T cell responses (2017) Sci Immunol, 2. , eaan5393; Modjarrad, K., MERS-CoV vaccine candidates in development: the current landscape (2016) Vaccine, 34, pp. 2982-2987; Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., Jiang, S., The spike protein of SARS-CoV—a target for vaccine and therapeutic development (2009) Nat Rev Microbiol, 7, p. 226; Adney, D.R., Wang, L., van Doremalen, N., Shi, W., Zhang, Y., Kong, W.-P., Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike Protein Vaccine in dromedary camels and alpacas (2019) Viruses, 11, p. 212; Agrawal, A.S., Tao, X., Algaissi, A., Garron, T., Narayanan, K., Peng, B.-H., Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus (2016) Hum Vaccines Immunother, 12, pp. 2351-2356; Park, S.Y., Lee, J.S., Son, J.S., Ko, J.H., Peck, K.R., Jung, Y., Post-exposure prophylaxis for Middle East respiratory syndrome in healthcare workers (2019) J Hosp Infect, 101, pp. 42-46; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)–specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J Infect Dis, 213, pp. 1557-1561; Widjaja, I., Wang, C., van Haperen, R., Gutiérrez-Álvarez, J., van Dieren, B., Okba, N.M.A., Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein (2019) Emerg Microb Infect, 8, pp. 516-530; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc Natl Acad Sci, 112, pp. 10473-10478; Du, L., Zhao, G., Yang, Y., Qiu, H., Wang, L., Kou, Z., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J Virol, 88, pp. 7045-7053; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.-M.V., Wu, Y., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci Transl Med, 6. , 234ra59-234ra59; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antivir Res, 132, pp. 141-148; Beigel, J.H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J.-A., Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study (2018) Lancet Infect Dis, 18, pp. 410-418; Wang, L., Shi, W., Chappell, J.D., Joyce, M.G., Zhang, Y., Kanekiyo, M., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the Middle East respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape (2018) J Virol, 92, pp. e02002-e02017","Memish, Z.A.; College of Medicine, Alfaisal University, P.O. Box 54146, Saudi Arabia; email: zmemish@yahoo.com",,"Elsevier USA",14778939,,TMIDA,"31730910","English","Travel Med. Infect. Dis.",Review,"Final",Open Access,Scopus,2-s2.0-85076228479 "Piewbang C., Rungsipipat A., Poovorawan Y., Techangamsuwan S.","57079193100;6602407400;7102786191;12786419600;","Cross-sectional investigation and risk factor analysis of community-acquired and hospital-associated canine viral infectious respiratory disease complex",2019,"Heliyon","5","11", e02726,"","",,,"10.1016/j.heliyon.2019.e02726","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074280433&doi=10.1016%2fj.heliyon.2019.e02726&partnerID=40&md5=fff7ef972d8f3d26a19c7268e83817a1","Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Diagnosis and Monitoring of Animal Pathogens Research Unit (DMAP-RU), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand","Piewbang, C., Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Rungsipipat, A., Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Poovorawan, Y., Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Techangamsuwan, S., Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand, Diagnosis and Monitoring of Animal Pathogens Research Unit (DMAP-RU), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand","Canine infectious respiratory disease complex (CIRDC) is associated with multiple factors. The possible transmission source can be via community-acquired infection (CAI) or hospital-associated infection (HAI), but the variable factors within these two routes are not well described. This study aimed to (i) investigate a cross-sectional incidence of canine respiratory viruses, including influenza (CIV), parainfluenza, distemper (CDV), respiratory coronavirus (CRCoV), adenovirus-2, and herpesvirus, in respiratory-diseased dogs, and (ii) analyze the possibly related risk factors. In total 209 dogs with respiratory illness, consisting of 133 CAI and 76 HAI dogs, were studied. Both nasal and oropharyngeal swabs were sampled from each dog and subjected for CIRDC virus detection using multiplex PCRs. Common six viruses associated with CIRDC were detected in both groups with CIV and CRCoV being predominantly found. Only CDV was significantly more prevalent in CAI than HAI dogs. Multiple virus detections were found in 81.2% and 78.9% of CAI and HAI dogs, respectively. Co-detection of CIV and CRCoV was represented the highest proportion and most often found with other CIRD viruses. Moreover, the clinical severity level was notably related to the age of infected dogs, but not to the vaccination status, sex and transmission route. Since healthy or control dogs were not included in this study, the prevalence of the CIRD virus infections could not be assessed. © 2019 The Author(s)Zoology, Veterinary medicine, Respiratory system, Infectious disease, Clinical research, Dogs, CIRDC, Hospital association respiratory virus Thailand, Community-acquired © 2019 The Author(s)","CIRDC; Clinical research; Community-acquired; Dogs; Hospital association; Infectious disease; Respiratory system; Respiratory virus; Thailand; Veterinary medicine; Zoology",,"Buonavoglia, C., Martella, V., Canine respiratory viruses (2007) Vet. Res., 38, pp. 355-373; Monteiro, F.L., Cargnelutti, J.F., Martins, M., Anziliero, D., Erhardt, M.M., Weiblen, R., Flores, E.F., Detection of respiratory viruses in shelter dogs maintained under varying environmental conditions (2016) Braz. J. Microbiol., 47, pp. 876-881; Schulz, B.S., Kurz, S., Weber, K., Balzer, H.J., Hartmann, K., Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections (2014) Vet. J., 201, pp. 365-369; Decaro, N., Camero, M., Greco, G., Zizzo, N., Tinelli, A., Campolo, M., Pratelli, A., Buonavoglia, C., Canine distemper and related diseases: report of a severe outbreak in a kennel (2004) New Microbiol., 27, pp. 177-181; Decaro, N., Martella, V., Buonavoglia, C., Canine adenoviruses and herpesvirus (2008) Vet. Clin. North Am. Small Anim. Pract., 38, pp. 799-814. , viii; Mitchell, J.A., Cardwell, J.M., Leach, H., Walker, C.A., Le Poder, S., Decaro, N., Rusvai, M., Brownlie, J., European surveillance of emerging pathogens associated with canine infectious respiratory disease (2017) Vet. Microbiol., 212, pp. 31-38; Erles, K., Dubovi, E.J., Brooks, H.W., Brownlie, J., Longitudinal study of viruses associated with canine infectious respiratory disease (2004) J. Clin. Microbiol., 42, pp. 4524-4529; Erles, K., Toomey, C., Brooks, H.W., Brownlie, J., Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease (2003) Virology, 310, pp. 216-223; Crawford, P.C., Dubovi, E.J., Castleman, W.L., Stephenson, I., Gibbs, E.P., Chen, L., Smith, C., Donis, R.O., Transmission of equine influenza virus to dogs (2005) Science, 310, pp. 482-485; Renshaw, R.W., Zylich, N.C., Laverack, M.A., Glaser, A.L., Dubovi, E.J., Pneumovirus in dogs with acute respiratory disease (2010) Emerg. Infect. Dis., 16, pp. 993-995; Piewbang, C., Techangamsuwan, S., Phylogenetic evidence of a novel lineage of canine pneumovirus and a naturally recombinant strain isolated from dogs with respiratory illness in Thailand (2019) BMC Vet. Res., 15, p. 300; Buonavoglia, C., Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Castagnaro, M., Tempesta, M., Canine coronavirus highly pathogenic for dogs (2006) Emerg. Infect. Dis., 12, pp. 492-494; Kapoor, A., Mehta, N., Dubovi, E.J., Simmonds, P., Govindasamy, L., Medina, J.L., Street, C., Lipkin, W.I., Characterization of novel canine bocaviruses and their association with respiratory disease (2012) J. Gen. Virol., 93, pp. 341-346; Piewbang, C., Jo, W.K., Puff, C., Ludlow, M., van der Vries, E., Banlunara, W., Rungsipipat, A., Osterhaus, A., Canine bocavirus type 2 infection associated with intestinal lesions (2018) Vet. Pathol., , 300985818755253; Kapoor, A., Simmonds, P., Gerold, G., Qaisar, N., Jain, K., Henriquez, J.A., Firth, C., Lipkin, W.I., Characterization of a canine homolog of hepatitis C virus (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 11608-11613; Piewbang, C., Jo, W.K., Puff, C., van der Vries, E., Kesdangsakonwut, S., Rungsipipat, A., Kruppa, J., Osterhaus, A., Novel canine circovirus strains from Thailand: evidence for genetic recombination (2018) Sci. Rep., 8, p. 7524; Piewbang, C., Rungsipipat, A., Poovorawan, Y., Techangamsuwan, S., Viral molecular and pathological investigations of Canid herpesvirus 1 infection associated respiratory disease and acute death in dogs (2017) Acta Vet. Brno, 67, p. 11; Piewbang, C., Radtanakatikanon, A., Puenpa, J., Poovorawan, Y., Techangamsuwan, S., Genetic and evolutionary analysis of a new Asia-4 lineage and naturally recombinant canine distemper virus strains from Thailand (2019) Sci. Rep., 9, p. 3198; Weese, J.S., Stull, J., Respiratory disease outbreak in a veterinary hospital associated with canine parainfluenza virus infection (2013) Can. Vet. J., 54, pp. 79-82; Musher, D.M., Thorner, A.R., Community-acquired pneumonia (2014) N. Engl. J. Med., 371, pp. 1619-1628; Kumagai, K., Yamaguchi, R., Uchida, K., Tateyama, S., Lymphoid apoptosis in acute canine distemper (2004) J. Vet. Med. Sci., 66, pp. 175-181; Priestnall, S.L., Mitchell, J.A., Brooks, H.W., Brownlie, J., Erles, K., Quantification of mRNA encoding cytokines and chemokines and assessment of ciliary function in canine tracheal epithelium during infection with canine respiratory coronavirus (CRCoV) (2009) Vet. Immunol. Immunopathol., 127, pp. 38-46; Mitchell, J.A., Cardwell, J.M., Renshaw, R.W., Dubovi, E.J., Brownlie, J., Detection of canine pneumovirus in dogs with canine infectious respiratory disease (2013) J. Clin. Microbiol., 51, pp. 4112-4119; Viitanen, S.J., Lappalainen, A., Rajamaki, M.M., Co-infections with respiratory viruses in dogs with bacterial pneumonia (2015) J. Vet. Intern. Med., 29, pp. 544-551; Jeoung, H.Y., Song, D.S., Jeong, W.S., Lee, W.H., Song, J.Y., An, D.J., Simultaneous detection of canine respiratory disease associated viruses by a multiplex reverse transcription-polymerase chain reaction assay (2013) J. Vet. Med. Sci., 75, pp. 103-106; Piewbang, C., Rungsipipat, A., Poovorawan, Y., Techangamsuwan, S., Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs (2016) J. Vet. Med. Sci., 78, pp. 1847-1854; Rodriguez, H., Hartert, T.V., Gebretsadik, T., Carroll, K.N., Larkin, E.K., A simple respiratory severity score that may be used in evaluation of acute respiratory infection (2016) BMC Res. Notes, 9, p. 85; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology (2010) Clin. Microbiol. Rev., 23, pp. 74-98; Nayani, K., Naeem, R., Munir, O., Naseer, N., Feroze, A., Brown, N., Mian, A.I., The clinical respiratory score predicts paediatric critical care disposition in children with respiratory distress presenting to the emergency department (2018) BMC Pediatr., 18, p. 339; Ferguson, P.E., Gilroy, N.M., Sloots, T.P., Nissen, M.D., Dwyer, D.E., Sorrell, T.C., Evaluation of a clinical scoring system and directed laboratory testing for respiratory virus infection in hematopoietic stem cell transplant recipients (2011) Transpl. Infect. Dis., 13, pp. 448-455; Priestnall, S.L., Mitchell, J.A., Walker, C.A., Erles, K., Brownlie, J., New and emerging pathogens in canine infectious respiratory disease (2014) Vet. Pathol., 51, pp. 492-504; Decaro, N., Pinto, P., Mari, V., Elia, G., Larocca, V., Camero, M., Terio, V., Buonavoglia, C., Full-genome analysis of a canine pneumovirus causing acute respiratory disease in dogs, Italy (2014) PLoS One, 9; Decaro, N., Buonavoglia, C., An update on canine coronaviruses: viral evolution and pathobiology (2008) Vet. Microbiol., 132, pp. 221-234; Kawakami, K., Ogawa, H., Maeda, K., Imai, A., Ohashi, E., Matsunaga, S., Tohya, Y., Mochizuki, M., Nosocomial outbreak of serious canine infectious tracheobronchitis (kennel cough) caused by canine herpesvirus infection (2010) J. Clin. Microbiol., 48, pp. 1176-1181; Maboni, G., Seguel, M., Lorton, A., Berghaus, R., Sanchez, S., Canine infectious respiratory disease: new insights into the etiology and epidemiology of associated pathogens (2019) PLoS One, 14; Radtanakatikanon, A., Keawcharoen, J., Charoenvisal, N.T., Poovorawan, Y., Prompetchara, E., Yamaguchi, R., Techangamsuwan, S., Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand (2013) Vet. Microbiol., 166, pp. 76-83; Bunpapong, N., Nonthabenjawan, N., Chaiwong, S., Tangwangvivat, R., Boonyapisitsopa, S., Jairak, W., Tuanudom, R., Amonsin, A., Genetic characterization of canine influenza A virus (H3N2) in Thailand (2014) Virus Genes, 48, pp. 56-63; Mochizuki, M., Yachi, A., Ohshima, T., Ohuchi, A., Ishida, T., Etiologic study of upper respiratory infections of household dogs (2008) J. Vet. Med. Sci., 70, pp. 563-569; Decaro, N., Mari, V., Larocca, V., Losurdo, M., Lanave, G., Lucente, M.S., Corrente, M., Buonavoglia, C., Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease (2016) Vet. Microbiol., 192, pp. 21-25; Decaro, N., Desario, C., Elia, G., Mari, V., Lucente, M.S., Cordioli, P., Colaianni, M.L., Buonavoglia, C., Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy (2007) Vet. Microbiol., 121, pp. 225-230; An, D.J., Jeoung, H.Y., Jeong, W., Chae, S., Song, D.S., Oh, J.S., Park, B.K., A serological survey of canine respiratory coronavirus and canine influenza virus in Korean dogs (2010) J. Vet. Med. Sci., 72, pp. 1217-1219; Chilvers, M.A., McKean, M., Rutman, A., Myint, B.S., Silverman, M., O'Callaghan, C., The effects of coronavirus on human nasal ciliated respiratory epithelium (2001) Eur. Respir. J., 18, pp. 965-970; Cilloniz, C., Ewig, S., Polverino, E., Marcos, M.A., Prina, E., Sellares, J., Ferrer, M., Torres, A., Community-acquired pneumonia in outpatients: aetiology and outcomes (2012) Eur. Respir. J., 40, pp. 931-938; Huijskens, E.G., Koopmans, M., Palmen, F.M., van Erkel, A.J., Mulder, P.G., Rossen, J.W., The value of signs and symptoms in differentiating between bacterial, viral and mixed aetiology in patients with community-acquired pneumonia (2014) J. Med. Microbiol., 63, pp. 441-452","Techangamsuwan, S.; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn UniversityThailand; email: somporn62@hotmail.com",,"Elsevier Ltd",24058440,,,,"English","Heliyon",Article,"Final",Open Access,Scopus,2-s2.0-85074280433 "Neisi N., Abbasi S., Makvandi M., Salmanzadeh S., Biparva S., Nahidsamiei R., Ghandali M.V., Rasti M., Angali K.A.","36918973500;57190860017;16070408100;55214823100;57213456762;57208525658;57213456700;55313187000;55826792900;","Detection of common respiratory viruses in patients with acute respiratory infections using multiplex real-time RT-PCR",2019,"Jundishapur Journal of Microbiology","12","11", e96513,"","",,,"10.5812/jjm.96513","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077808027&doi=10.5812%2fjjm.96513&partnerID=40&md5=1fb675eee9ae06e439909785801ea8a0","Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Abadan Faculty of Medical Sciences, Abadan, Iran; Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Biostatistics Department, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran","Neisi, N., Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Abbasi, S., Abadan Faculty of Medical Sciences, Abadan, Iran; Makvandi, M., Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Salmanzadeh, S., Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Biparva, S., Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Nahidsamiei, R., Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Ghandali, M.V., Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Rasti, M., Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Angali, K.A., Biostatistics Department, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran","Background: Acute respiratory infection (ARI) is caused by human metapneumovirus (HMPV), respiratory syncytial virus type A and B (RSV-A, RSV-B), human parainfluenza viruses 1, 2, and 3 (HPIV-1, HPIV-2, and HPIV-3), influenza viruses A and B (IfV-A, IfV-B), and human coronaviruses (OC43/HKU1, NL63, 229E) worldwide. Objectives: This study was conducted to assess the causative agents of viral ARI among hospitalized adults by real-time PCR. Methods: Clinical nasopharyngeal swabs of 112 patients including 55 (49.1%) males and 57 (50.89%) females with ARI were analyzed using multiplex real-time RT-PCR. Results: Out of 112 specimens, 61 (54.46%) were positive including 10 (8.9%) for influenza H3N2, one (0.89%) for influenza B, 28 (25%) for RSV-A, 17 (15.17%) for HMPV-A, two (1.78%) for HPIV-1, and three (2.67%) for HPIV-3. Two (1.78%) specimens were positive for two agents, RSV-A/HMPV-A and RSV-A/HPIV-3. The distribution of viral infections was 30 among males (26.78%) and 31 (27.67%) among females (P = 0.862). High frequency of RSV-A infection (46%) and the low frequency of influenza B virus infection (0.89%) were detected among patients. The remaining 51 (45.53%) samples were negative for RSV-B, HMPV-B, IfV-A, HPIV2-4A-4B, and HCoVs (OC43/HKU1, NL63, 229E). Conclusions: The role of other viruses such as human adenoviruses rhinovirus/enterovirus (RV/EV), human bocavirus (HBoV), and human parechovirus (HpeV) was not investigated. Multiplex PCR can be used as a rapid test for the diagnosis of viruses causing acute respiratory infection, which results in decreased length of hospitalization. © 2019, Author(s).","Acute Respiratory Infection; Genotype; Real-Time Polymerase Chain Reaction","nucleoprotein; Adenoviridae; adult; age; aged; controlled study; cross-sectional study; DNA synthesis; Enterovirus; female; human; Human bocavirus; Human metapneumovirus; Human parainfluenza virus 3; Human parechovirus; Human respiratory syncytial virus; Influenza A virus (H3N2); influenza B; Influenza B virus; major clinical study; male; multiplex real time polymerase chain reaction; nonhuman; nucleotide sequence; respiratory tract infection; respiratory virus; Review; RNA extraction; season; sex difference; virus detection; virus load","Blot, M., Bonniaud-Blot, P., Favrolt, N., Bonniaud, P., Chavanet, P., Piroth, L., Update on childhood and adult infectious tracheitis (2017) Med Mal Infect, 47 (7), pp. 443-452. , 28757125; Afonso, C.L., Amarasinghe, G.K., Banyai, K., Bao, Y., Basler, C.F., Bavari, S., Taxonomy of the order Mononegavirales: Update 2016 (2016) Arch Virol, 161 (8), pp. 2351-2360; Huck, B., Scharf, G., Neumann-Haefelin, D., Puppe, W., Weigl, J., Falcone, V., Novel human metapneumovirus sublineage (2006) Emerg Infect Dis, 12 (1), pp. 147-150; Saikusa, M., Kawakami, C., Nao, N., Takeda, M., Usuku, S., Sasao, T., 180-nucleotide duplication in the G gene of human metapneumovirus A2b subgroup strains circulating in Yokohama city, Japan, since 2014 (2017) Front Microbiol, 8, p. 402; Falsey, A.R., Erdman, D., Anderson, L.J., Walsh, E.E., Human metapneumovirus infections in young and elderly adults (2003) J Infect Dis, 187 (5), pp. 785-790. , 12599052; Nam, H.H., Ison, M.G., Respiratory syncytial virus infection in adults (2019) BMJ, 366. , 31506273; Balmaks, R., Ribakova, I., Gardovska, D., Kazaks, A., Molecular epidemiology of human respiratory syncytial virus over three consecutive seasons in Latvia (2014) J Med Virol, 86 (11), pp. 1971-1982. , 24301088; Eshaghi, A., Duvvuri, V.R., Lai, R., Nadarajah, J.T., Li, A., Patel, S.N., Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: A novel genotype with a 72 nucleotide G gene duplication (2012) Plos One, 7 (3); Khor, C.S., Sam, I.C., Hooi, P.S., Chan, Y.F., Displacement of predominant respiratory syncytial virus genotypes in Malaysia between 1989 and 2011 (2013) Infect Genet Evol, 14, pp. 357-360. , 23305888; Russell, E., Ison, M.G., Parainfluenza virus in the hospitalized adult (2017) Clin Infect Dis, 65 (9), pp. 1570-1576. , 28591775; Pan, Y., Zhang, Y., Shi, W., Peng, X., Cui, S., Zhang, D., Human parainfluenza virus infection in severe acute respiratory infection cases in Beijing, 2014-2016: A molecular epidemiological study (2017) Influenza Other Respir Viruses, 11 (6), pp. 564-568; Bailey, E.S., Choi, J.Y., Fieldhouse, J.K., Borkenhagen, L.K., Zemke, J., Zhang, D., The continual threat of influenza virus infections at the human-animal interface: What is new from a one health perspective? (2018) Evol Med Public Health, 2018 (1), pp. 192-198; White, S.K., Ma, W., McDaniel, C.J., Gray, G.C., Lednicky, J.A., Serologic evidence of exposure to influenza D virus among persons with occupational contact with cattle (2016) J Clin Virol, 81, pp. 31-33. , 27294672; Matoba, Y., Abiko, C., Ikeda, T., Aoki, Y., Suzuki, Y., Yahagi, K., Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan (2015) Jpn J Infect Dis, 68 (2), pp. 138-141. , 25420656; Cutrera, R., Baraldi, E., Indinnimeo, L., Miraglia Del Giudice, M., Piacen-Tini, G., Scaglione, F., Management of acute respiratory diseases in the pediatric population: The role of oral corticosteroids (2017) Ital J Pediatr, 43 (1), p. 31; Watzinger, F., Ebner, K., Lion, T., Detection and monitoring of virus infections by real-time PCR (2006) Mol Aspects Med, 27 (2-3), pp. 254-298. , 16481036; Tsuji, S., Iguchi, Y., Shibata, N., Teramura, I., Kitagawa, T., Yamanaka, H., Real-time multiplex PCR for simultaneous detection of multiple species from environmental DNA: An application on two Japanese medaka species (2018) Sci Rep, 8 (1), p. 9138; Belongia, E.A., King, J.P., Kieke, B.A., Pluta, J., Al-Hilli, A., Meece, J.K., Clinical features, severity, and incidence of RSV illness during 12 consecutive seasons in a community cohort of adults ≥ 60 years old (2018) Open Forum Infect Dis, 5 (12); McCracken, J.P., Prill, M.M., Arvelo, W., Lindblade, K.A., Lopez, M.R., Estevez, A., Respiratory syncytial virus infection in Guatemala, 2007-2012 (2013) J Infect Dis, 208, pp. S197-S206. , 24265479; Widmer, K., Zhu, Y., Williams, J.V., Griffin, M.R., Edwards, K.M., Talbot, H.K., Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults (2012) J Infect Dis, 206 (1), pp. 56-62; Arjeyni, Y., Faghihloo, E., Samimi Rad, K., Salimi, V., Mahmoudi, M., Mokhtari-Azad, T., Molecular epidemiology of human respiratory syncytial virus in Iranian >/=60 years old hospitalized patients with acute respiratory symptoms (2017) Arch Iran Med, 20 (6), pp. 368-375; Birger, R., Morita, H., Comito, D., Filip, I., Galanti, M., Lane, B., Asymp-tomatic shedding of respiratory virus among an ambulatory population across seasons (2018) Msphere, 3 (4); Han, S.B., Shin, J.A., Kim, S., Lee, J.W., Lee, D.G., Chung, N.G., Respiratory viral infections in children and adolescents with hematological malignancies (2019) Mediterr J Hematol Infect Dis, 11 (1); Pourakbari, B., Mahmoudi, S., Movahedi, Z., Halimi, S., Momeni, S., Hosseinpour-Sadeghi, R., Viral etiology of acute lower respiratory tract infections in hospitalized young children in a children’s referral hospital in Iran (2014) Turk J Pediatr, 56 (4), pp. 354-359; Tabasi, M., Mokhtari-Azad, T., Eshraghian, M.R., Shadab, A., Shatizadeh, S., Shafiei-Jandaghi, N.Z., Human bocavirus infections among children less than two years old in Iran during fall and winter 2012-2013 (2016) Iran J Microbiol, 8 (1), pp. 80-84; Madhi, A., Ghalyanchilangeroudi, A., Soleimani, M., Evidence of human coroanvirus (229E), in patients with respiratory infection, Iran, 2015: The first report (2016) Iran J Microbiol, 8 (5), pp. 316-320; Yoshida, L.M., Suzuki, M., Nguyen, H.A., Le, M.N., Dinh Vu, T., Yoshino, H., Respiratory syncytial virus: Co-infection and paediatric lower respiratory tract infections (2013) Eur Respir J, 42 (2), pp. 461-469. , 23645407; Petrarca, L., Nenna, R., Frassanito, A., Pierangeli, A., Leonardi, S., Scagno-Lari, C., Acute bronchiolitis: Influence of viral co-infection in infants hospitalized over 12 consecutive epidemic seasons (2018) J Med Virol, 90 (4), pp. 631-638. , 29226974; Ge, X., Han, Z., Chen, H., Cheng, J., Gao, M., Sun, H., Characterization of acute respiratory infections among 340 infants in Wuxi, Jiangsu province (2015) Ann Transl Med, 3 (18), p. 264; Elliot, A.J., Cross, K.W., Fleming, D.M., Acute respiratory infections and winter pressures on hospital admissions in England and Wales 1990-2005 (2008) J Public Health (Oxf), 30 (1), pp. 91-98. , 18258786; Shah, D.P., Ghantoji, S.S., Shah, J.N., El Taoum, K.K., Jiang, Y., Popat, U., Impact of aerosolized ribavirin on mortality in 280 allogeneic haematopoietic stem cell transplant recipients with respiratory syncytial virus infections (2013) J Antimicrob Chemother, 68 (8), pp. 1872-1880; Brittain-Long, R., Westin, J., Olofsson, S., Lindh, M., Andersson, L.M., Access to a polymerase chain reaction assay method targeting 13 respiratory viruses can reduce antibiotics: A randomised, controlled trial (2011) BMC Med, 9, p. 44; Assih, M., Feteke, L., Bisseye, C., Ouermi, D., Djigma, F., Karou, S.D., Molecular diagnosis of the human immunodeficiency, Hepatitis B and C viruses among blood donors in Lome (Togo) by multiplex real time PCR (2016) Pan Afr Med J, 25, p. 242; Yooda, A.P., Soubeiga, S.T., Nebie, K.Y., Diarra, B., Sawadogo, S., Ouattara, A.K., Impact of multiplex PCR in reducing the risk of residual transfusion-transmitted human immunodeficiency and hepatitis B and C viruses in Burkina Faso (2018) Mediterr J Hematol Infect Dis, 10 (1)","Makvandi, M.; Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical SciencesIran; email: manoochehrmakvandi29@yahoo.com",,"Kowsar Medical Publishing Company",20083645,,,,"English","Jundishapur J. Microbiol.",Review,"Final",Open Access,Scopus,2-s2.0-85077808027 "Pauly M., Snoeck C.J., Phoutana V., Keosengthong A., Sausy A., Khenkha L., Nouanthong P., Samountry B., Jutavijittum P., Vilivong K., Hübschen J.M., Black A.P., Pommasichan S., Muller C.P.","56046220100;25723840400;57203318657;57203315476;25522782300;57203747846;13604791500;20434480400;6602798325;56054795700;16686256900;57197473094;57203321070;55758464800;","Cross-species transmission of poultry pathogens in backyard farms: ducks as carriers of chicken viruses",2019,"Avian Pathology","48","6",,"503","511",,,"10.1080/03079457.2019.1628919","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074184994&doi=10.1080%2f03079457.2019.1628919&partnerID=40&md5=0b0b07ffcf4476ccee81b79aa2bfa846","Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; The Faculty of Agriculture, National University of Laos–Nabong Campus, Vientiane, Laos; Lao-Lux-Laboratory, Institute Pasteur du Laos, Vientiane, Laos; Department of Pathology, Faculty of Basic Sciences, Ministry of Public Health, University of Health Sciences, Vientiane, Laos; Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; National Centre for Laboratory and Epidemiology, Lao Ministry of Health, Vientiane, Laos; Laboratoire National de Santé, Dudelange, Luxembourg","Pauly, M., Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Snoeck, C.J., Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Phoutana, V., The Faculty of Agriculture, National University of Laos–Nabong Campus, Vientiane, Laos; Keosengthong, A., The Faculty of Agriculture, National University of Laos–Nabong Campus, Vientiane, Laos; Sausy, A., Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Khenkha, L., Lao-Lux-Laboratory, Institute Pasteur du Laos, Vientiane, Laos; Nouanthong, P., Lao-Lux-Laboratory, Institute Pasteur du Laos, Vientiane, Laos; Samountry, B., Department of Pathology, Faculty of Basic Sciences, Ministry of Public Health, University of Health Sciences, Vientiane, Laos; Jutavijittum, P., Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Vilivong, K., National Centre for Laboratory and Epidemiology, Lao Ministry of Health, Vientiane, Laos; Hübschen, J.M., Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Black, A.P., Lao-Lux-Laboratory, Institute Pasteur du Laos, Vientiane, Laos; Pommasichan, S., The Faculty of Agriculture, National University of Laos–Nabong Campus, Vientiane, Laos; Muller, C.P., Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg, Lao-Lux-Laboratory, Institute Pasteur du Laos, Vientiane, Laos, Laboratoire National de Santé, Dudelange, Luxembourg","In backyard farms of Lao People’s Democratic Republic, mixed-species rearing of poultry is a breeding-ground for cross-species transmission. Here, the epidemiology of viruses circulating among backyard poultry in Vientiane Province was assessed to guide future control strategies. Oral/tracheal and cloacal swabs, collected from 605 poultry (308 ducks, 297 chickens) between 2011 and 2015, were screened by PCR for Newcastle disease virus (NDV), coronavirus (CoV) and chicken anaemia virus (CAV). Chicken sera were screened for anti-NDV antibodies by ELISA. Statistical and phylogenetic analyses revealed transmission patterns and relationships. Closely related strains co-circulated in chickens and ducks. While CoV RNA was detected in oral/tracheal swabs of 9.3% of the chickens and 2.4% of the ducks, rates were higher in faecal swabs of both species (27.3% and 48.2%). RNA of infectious bronchitis virus (IBV) and duck CoV was found in faecal swabs of chickens (19.7% and 7.1%) and ducks (4.1% and 44.1%). Moreover, DNA of the generally chicken-specific CAV was detected in oral/tracheal swabs of chickens (18.1%) and, sporadically, of ducks (2.4%). Despite serological evidence of NDV circulation or vaccination (86.9%), NDV RNA was not detected. We found a high prevalence and indication for cross-species transmission of different CoV strains in backyard poultry. Interestingly, ducks served as biological, or at least mechanical, carriers of viral strains closely related not only to IBV, but also to CAV. Bird containment and poultry species separation could be first steps to avoid cross-species transmission and emergence of novel strains with broad host range and enhanced pathogenicity. RESEARCH HIGHLIGHTS High rates of avian viruses were detected by PCR in backyard poultry from Lao PDR. Diverse coronavirus and chicken anemia virus strains co-circulated. Phylogenetic analyses suggested virus transmission between chickens and ducks. Serological evidence of Newcastle disease was found, but viral RNA was not detected. © 2019, © 2019 Houghton Trust Ltd.","bird health; chicken; duck; Laos; Poultry diseases; smallholders","RNA directed RNA polymerase; virus antibody; virus RNA; Article; Avian infectious bronchitis virus; bird disease; blood analysis; chicken; chicken anemia virus; controlled study; Coronavirinae; duck; feces analysis; female; infection control; infectious agent; male; Newcastle disease virus; nonhuman; nucleotide sequence; phylogeny; poultry farming; prevalence; screening; species; vaccination; virus detection; virus infection; virus strain; virus transmission; animal; bird disease; blood; chicken; Circoviridae infection; Coronavirus infection; duck; enzymology; genetics; heterozygote; host range; immunology; isolation and purification; Laos; Newcastle disease; veterinary medicine; virology; Animals; Antibodies, Viral; Carrier State; Chicken anemia virus; Chickens; Circoviridae Infections; Coronavirus; Coronavirus Infections; Ducks; Host Specificity; Laos; Newcastle Disease; Newcastle disease virus; Phylogeny; Poultry Diseases; RNA, Viral","Alexander, D.J., Newcastle disease in the European Union 2000 to 2009 (2011) Avian Pathology, 40, pp. 547-558; Bagust, T.J., Poultry health and disease control in developing countries (2013) Poultry development review, , Rome: Food and Agriculture Organization of the United Nations,. In; Beard, C.W., Hanson, R.P., Newcastle disease (1984) Diseases of poultry, pp. 452-470. , Hofstad M.S., Barnes H.J., Calnek B.W., Reid W.M., Yoder J.H.W., (eds), 8th ed, Ames: Iowa State University Press, &,. (Eds; Cardona, C.J., Oswald, W.B., Schat, K.A., Distribution of chicken anaemia virus in the reproductive tissues of specific-pathogen-free chickens (2000) The Journal of General Virology, 81, pp. 2067-2075; Cavanagh, D., Coronaviruses in poultry and other birds (2005) Avian Pathology, 34, pp. 439-448; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Veterinary Research, 38, pp. 281-297; Chen, G.Q., Zhuang, Q.Y., Wang, K.C., Liu, S., Shao, J.Z., Jiang, W.M., Chen, J.M., Identification and survey of a novel avian coronavirus in ducks (2013) PLoS One, 8; Chu, D.K., Leung, C.Y., Gilbert, M., Joyner, P.H., Ng, E.M., Tse, T.M., Poon, L.L., Avian coronavirus in wild aquatic birds (2011) Journal of Virology, 85, pp. 12815-12820; Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Molecular Biology and Evolution, 29, pp. 1969-1973; Ducatez, M.F., Chen, H., Guan, Y., Muller, C.P., Molecular epidemiology of chicken anemia virus (CAV) in southeastern Chinese live birds markets (2008) Avian Diseases, 52, pp. 68-73; Ducatez, M.F., Owoade, A.A., Abiola, J.O., Muller, C.P., Molecular epidemiology of chicken anemia virus in Nigeria (2006) Archives of Virology, 151, pp. 97-111; Fang, L., Li, Y., Wang, Y., Fu, J., Cui, S., Li, X., Zhao, P., Genetic analysis of two chicken infectious anemia virus variants-related Gyrovirus in stray mice and dogs: the first report in China, 2015 (2017) Biomed Research International, 2017: 6707868, 1–9; Farkas, T., Maeda, K., Sugiura, H., Kai, K., Hirai, K., Otsuki, K., Hayashi, T., A serological survey of chickens, Japanese quail, pigeons, ducks and crows for antibodies to chicken anaemia virus (CAV) in Japan (1998) Avian Pathology, 27, pp. 316-320; Gouy, M., Guindon, S., Gascuel, O., Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building (2010) Molecular Biology and Evolution, 27, pp. 221-224; Guindon, S., Lethiec, F., Duroux, P., Gascuel, O., PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference (2005) Nucleic Acids Research, 33, pp. W557-W559; Hailemariam, Z., Omar, A.R., Hair-Bejo, M., Giap, T.C., Detection and characterization of chicken anemia virus from commercial broiler breeder chickens (2008) Virology Journal, 5, p. 128; Jackwood, M.W., Hilt, D.A., McCall, A.W., Polizzi, C.N., McKinley, E.T., Williams, S.M., Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers (2009) Avian Diseases, 53, pp. 175-183; Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics (oxford, England), 28, pp. 1647-1649; Li, F., Structure, Function, and evolution of coronavirus spike Proteins (2016) Annual Review of Virology, 3, pp. 237-261; Li, Y., Fang, L., Cui, S., Fu, J., Li, X., Zhang, H., Zhao, P., Genomic characterization of recent chicken anemia virus isolates in China (2017) Frontiers in Microbiology, 8, p. 401; Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Liu, M., Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas) (2005) Journal of General Virology, 86, pp. 719-725; McNulty, M.S., Chicken anaemia agent: a review (1991) Avian Pathology, 20, pp. 187-203; Mia, K.L., Suarez, D.L., Afonso, C.L., Detection of a broad range of class I and II Newcastle disease viruses using a multiplex real-time reverse transcription polymerase chain reaction assay (2008) Journal of Veterinary Diagnostic Investigation, 20, pp. 414-425; Miller, M.M., Ealey, K.A., Oswald, W.B., Schat, K.A., Detection of chicken anemia virus DNA in embryonal tissues and eggshell membranes (2003) Avian Diseases, 47, pp. 662-671; Muradrasoli, S., Mohamed, N., Hornyak, A., Fohlman, J., Olsen, B., Belak, S., Blomberg, J., Broadly targeted multiprobe QPCR for detection of coronaviruses: coronavirus is common among mallard ducks (Anas platyrhynchos) (2009) Journal of Virological Methods, 159, pp. 277-287; Pauly, M., Pir, J.B., Loesch, C., Sausy, A., Snoeck, C.J., Hubschen, J.M., Muller, C.P., Novel Alphacoronaviruses and Paramyxoviruses cocirculate with Type 1 and severe acute respiratory system (SARS)-related Betacoronaviruses in synanthropic bats of Luxembourg (2017) Applied and Environmental Microbiology, , 83:e01326–17; Raj, G.D., Jones, R.C., Infectious bronchitis virus: immunopathogenesis of infection in the chicken (1997) Avian Pathology, 26, pp. 677-706; Renshaw, R.W., Soine, C., Weinkle, T., O’Connell, P.H., Ohashi, K., Watson, S., Schat, K.A., A hypervariable region in VP1 of chicken infectious anemia virus mediates rate of spread and cell tropism in tissue culture (1996) Journal of Virology, 70, pp. 8872-8878; Shi, P., Yu, L., Fu, Y.-X., Huang, J.-F., Zhang, K.-Q., Zhang, Y.-P., Evolutionary implications of avian infectious bronchitis virus (AIBV) analysis (2006) Cell Research, 16, pp. 323-327; Smyth, J.A., Moffett, D.A., Connor, T.J., McNulty, M.S., Chicken anaemia virus inoculated by the oral route causes lymphocyte depletion in the thymus in 3-week-old and 6-week-old chickens (2006) Avian Pathology, 35, pp. 254-259; Snoeck, C.J., Komoyo, G.F., Mbee, B.P., Nakoune, E., Le Faou, A., Okwen, M.P., Muller, C.P., Epidemiology of chicken anemia virus in Central African Republic and Cameroon (2012) Virology Journal, 9, p. 189; Sommer, F., Cardona, C., Chicken anemia virus in broilers: dynamics of the infection in two commercial broiler flocks (2003) Avian Diseases, 47, pp. 1466-1473; Stür, W., Gray, G., Bastin, G., (2002) Review of the Livestock Sector in the Lao People’s Democratic Republic, , Retrieved from Kenya; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22, pp. 4673-4680; Toro, H., van Santen, V.L., Li, L., Lockaby, S.B., van Santen, E., Hoerr, F.J., Epidemiological and experimental evidence for immunodeficiency affecting avian infectious bronchitis (2006) Avian Pathology, 35, pp. 455-464; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: an attempt to harmonize virus classification (2016) Infection, Genetics and Evolution, 39, pp. 349-364; Wille, M., Muradrasoli, S., Nilsson, A., Jarhult, J.D., High prevalence and putative lineage maintenance of avian coronaviruses in Scandinavian Waterfowl (2016) PLoS One, 11; (2013) Newcastle Disease, OIE Technical Disease Cards; Yamaguchi, S., Imada, T., Kaji, N., Mase, M., Tsukamoto, K., Tanimura, N., Yuasa, N., Identification of a genetic determinant of pathogenicity in chicken anaemia virus (2001) Journal of General Virology, 82, pp. 1233-1238; Yao, S., Ou, C., Liu, X., Wang, X., Yao, Z., Liu, J., Isolation of a novel serotype strain of infectious bronchitis virus ZZ2004 from ducks in China (2016) Virus Genes, 52, pp. 660-670; Zhao, Y., Zhang, H., Zhao, J., Zhong, Q., Jin, J.H., Zhang, G.Z., Evolution of infectious bronchitis virus in China over the past two decades (2016) Journal of General Virology, 97, pp. 1566-1574","Pauly, M.; Department of Infection and Immunity, Luxembourg Institute of HealthLuxembourg; email: maude.pauly@lih.lu",,"Taylor and Francis Ltd.",03079457,,AVPAD,"31199168","English","Avian Pathol.",Article,"Final",,Scopus,2-s2.0-85074184994 "Vandendriessche S., Padalko E., Wollants E., Verfaillie C., Verhasselt B., Coorevits L.","53664633100;6603018263;6602841165;57204179213;6701844386;56524546000;","Evaluation of the Seegene Allplex™ Respiratory Panel for diagnosis of acute respiratory tract infections",2019,"Acta Clinica Belgica: International Journal of Clinical and Laboratory Medicine","74","6",,"379","385",,1,"10.1080/17843286.2018.1531605","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054793624&doi=10.1080%2f17843286.2018.1531605&partnerID=40&md5=506d30dc36cab4a78a468a49fa9a2058","Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium; Rega Institute, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Lucas Ghent, Ghent, Belgium","Vandendriessche, S., Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium; Padalko, E., Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium; Wollants, E., Rega Institute, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Verfaillie, C., Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Lucas Ghent, Ghent, Belgium; Verhasselt, B., Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium; Coorevits, L., Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium","Objectives: The Seegene AllplexTM Respiratory panel was retrospectively challenged using a collection of quality control samples (QCMD) and clinical samples previously analysed with validated routine methods. Methods: A collection of 111 samples [43 QCMD samples, 13 bronchoalveolar lavage fluids and 55 nasopharyngeal aspirates/swabs] was tested with Seegene AllplexTM. The clinical samples were tested previously using either FTD® Respiratory Pathogens 21 qPCR assay (Fast Track Diagnostics), an in-house multiplex PCR for Bordetella, or BioGX Sample-ReadyTM Atypical pneumo panel (Becton Dickinson). Samples were stored at −80°C prior to analysis with Seegene Allplex™, nucleic acids were automatically extracted with NucliSENS Easymag (bioMérieux). Samples returning discordant results were subjected to repeat testing and/or additional testing by reference laboratories. Results: Seegene correctly identified 41/43 QCMD samples (95.4%); two samples positive for respiratory syncytial virus (RSV) and human metapneumovirus, respectively, were only correctly identified following repeat testing. In the 56 clinical samples, overall, 97 pathogens were identified: 65 pathogens (67.0%) were detected both by routine methods and Seegene, 24 pathogens (24.7%) only by routine methods, and 8 pathogens (8.2%) only by Seegene. The majority of discordant results was detected in samples with low pathogen load (22/32, 68.8%) and in samples containing multiple pathogens (25/32, 78.1%). Full agreement between methods was observed for influenza, RSV, adenovirus, Bordetella (para)pertussis and Chlamydiapneumoniae. Discordance was observed for human metapneumovirus, coronavirus OC43, bocavirus and parainfluenza virus, mainly type 4. Conclusion: Overall, the Seegene AllplexTM assay performed well for routine detection of important respiratory targets. Acceptable agreement was observed between Seegene and other routine assays. © 2018, © 2018 Acta Clinica Belgica.","molecular detection; multiplex PCR; real-time PCR; Respiratory pathogens","bacterial DNA; DNA virus; acute disease; bronchoalveolar lavage fluid; diagnostic kit; genetics; human; microbiology; nasopharynx; nucleic acid amplification; procedures; reproducibility; respiratory tract infection; sensitivity and specificity; specimen handling; virology; Acute Disease; Bronchoalveolar Lavage Fluid; DNA Viruses; DNA, Bacterial; Humans; Nasopharynx; Nucleic Acid Amplification Techniques; Reagent Kits, Diagnostic; Reproducibility of Results; Respiratory Tract Infections; Sensitivity and Specificity; Specimen Handling","Gaunt, E.R., Harvala, H., McIntyre, C., Disease burden of the most commonly detected respiratory viruses in hospitalized patients calculated using the disability adjusted life year (DALY) model (2011) J Clin Virol, 52 (3), pp. 215-221; Pillet, S., Lardeux, M., Dina, J., Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections (2013) PLoS One, 8 (8); Ramanan, P., Bryson, A.L., Binnicker, M.J., Syndromic panel-based testing in clinical microbiology (2017) Clin Microbiol Rev, 31 (1), p. e00024; Lee, Y.J., Kim, D., Lee, K., Single-channel multiplexing without melting curve analysis in real-time PCR (2014) Sci Rep, 4, p. 7439; Drieghe, S., Ryckaert, I., Beuselinck, K., Epidemiology of respiratory viruses in bronchoalveolar lavage samples in a tertiary hospital.J (2014) Clin Virol, 59 (3), pp. 208-211; Thoelen, I., Lemey, P., Van Der Donck, I., Molecular typing and epidemiology of enteroviruses identified from an outbreak of aseptic meningitis in Belgium during the summer of 2000 (2003) J Med Virol, 70 (3), pp. 420-429. , Jul; Kiang, D., Kalra, I., Yagi, S., Assay for 5ʹ noncoding region analysis of all human rhinovirus prototype strains (2008) J Clin Microbiol, 46 (11), pp. 3736-3745. , Epub 2008 Aug 27; Gimferrer, L., Andrés, C., Rando, A., Evaluation of seegene allplex respiratory panel 1 kit for the detection of influenza virus and human respiratory syncytial virus (2018) J Clin Virol, 105, pp. 31-34; Barratt, K., Anderson, T.P., Fahey, J.A., Comparison of the fast track diagnostics respiratory 21 and Seegene Allplex multiplex polymerase chain reaction assays for the detection of respiratory viruses (2017) Br J Biomed Sci, 74 (2), pp. 85-89; Cebey-López, M., Herberg, J., Pardo-Seco, J., Does viral co-infection influence the severity of acute respiratory infection in children? (2016) PLoS One, 11 (4); Liu, W.K., Liu, Q., Chen, D.H., Epidemiology and clinical presentation of the four human parainfluenza virus types (2013) BMC Infect Dis, 13, p. 28; Rhedin, S., Lindstrand, A., Rotzén-Östlund, M., Clinical utility of PCR for common viruses in acute respiratory illness (2014) Pediatrics, 133 (3), pp. e538-e545; Huh, H.J., Kim, J.Y., Kwon, H.J., Performance evaluation of allplex respiratory panels 1, 2, and 3 for detection of respiratory viruses and influenza A virus subtypes (2017) J Clin Microbiol, 55 (2), pp. 479-484; Pawełczyk, M., Kowalski, M.L., The role of human parainfluenza virus infections in the immunopathology of the respiratory tract (2017) Curr Allergy Asthma Rep, 17 (3), p. 16; Henrickson, K.J., Parainfluenza viruses (2003) Clin Microbiol Rev, 16 (2), pp. 242-264; Coughtrie, A.L., Whittaker, R.N., Begum, N., Evaluation of swabbing methods for estimating the prevalence of bacterial carriage in the upper respiratory tract: a cross sectional study (2014) BMJ Open, 4 (10), p. e005341; Gadsby, N.J., Russell, C.D., McHugh, M.P., Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia (2016) Clin Infect Dis, 62 (7), pp. 817-823","Vandendriessche, S.; Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Corneel Heymanslaan 10, Belgium; email: stien.vandendriessche@ugent.be",,"Taylor and Francis Ltd.",17843286,,ACCBA,"30307378","English","Acta Clin. Belg. Int. J. Clin. Lab. Med.",Article,"Final",,Scopus,2-s2.0-85054793624 "Doyle N., Hawes P.C., Simpson J., Adams L.H., Maier H.J.","36183228800;24528127600;57188586590;57211618519;56219677100;","The porcine deltacoronavirus replication organelle comprises double-membrane vesicles and zippered endoplasmic reticulum with double-membrane spherules",2019,"Viruses","11","11", 1030,"","",,,"10.3390/v11111030","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074625017&doi=10.3390%2fv11111030&partnerID=40&md5=f5e47e53961653e8c9dfb89b3d35bafb","Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, United Kingdom","Doyle, N., Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, United Kingdom; Hawes, P.C., Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, United Kingdom; Simpson, J., Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, United Kingdom; Adams, L.H., Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, United Kingdom; Maier, H.J., Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, United Kingdom","Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus-host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus. © 2019 by the authors.","Coronavirus; DMV; Double-membrane spherule; Double-membrane vesicle; Porcine deltacoronavirus; Replication organelle; Spherule; Zippered ER","virus RNA; animal cell; Article; cell membrane; cell organelle; cell vacuole; confocal microscopy; controlled study; Coronavirinae; cytopathogenic effect; double membrane spherule; electron microscopy; endoplasmic reticulum; ID50 (median infectious dose); immunofluorescence; LLC-PK1 cell line; nonhuman; pig; population dynamics; porcine deltacoronavirus; progeny; protein synthesis; real time polymerase chain reaction; reverse transcription polymerase chain reaction; RNA synthesis; tissue culture; transmission electron microscopy; virogenesis; virus cell interaction; virus load; virus replication; virus titration; Western blotting","Grimley, P.M., Berezesky, I.K., Friedman, R.M., Cytoplasmic structures associated with an arbovirus infection: Loci of viral ribonucleic acid synthesis (1968) J. Virol., 2, pp. 1326-1338; Grimley, P.M., Levin, J.G., Berezesky, I.K., Friedman, R.M., Specific membranous structures associated with the replication of group A arboviruses (1972) J. Virol., 10, pp. 492-503; Kopek, B.G., Perkins, G., Miller, D.J., Ellisman, M.H., Ahlquist, P., Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle (2007) PLoS Biol., 5, p. e220; Kujala, P., Ikaheimonen, A., Ehsani, N., Vihinen, H., Auvinen, P., Kaariainen, L., Biogenesis of the Semliki Forest virus RNA replication complex (2001) J. Virol., 75, pp. 3873-3884; Avila-Perez, G., Rejas, M.T., Rodriguez, D., Ultrastructural characterization of membranous torovirus replication factories (2016) Cell Microbiol., 18, pp. 1691-1708; Belov, G.A., Nair, V., Hansen, B.T., Hoyt, F.H., Fischer, E.R., Ehrenfeld, E., Complex dynamic development of poliovirus membranous replication complexes (2012) J. Virol., 86, pp. 302-312; Gosert, R., Egger, D., Lohmann, V., Bartenschlager, R., Blum, H.E., Bienz, K., Moradpour, D., Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons (2003) J. Virol., 77, pp. 5487-5492; Knoops, K., Barcena, M., Limpens, R.W., Koster, A.J., Mommaas, A.M., Snijder, E.J., Ultrastructural characterization of arterivirus replication structures: Reshaping the endoplasmic reticulum to accommodate viral RNA synthesis (2012) J. Virol., 86, pp. 2474-2487; Limpens, R.W.A.L., Van Der Schaar, H.M., Kumar, D., Koster, A.J., Snijder, E.J., Van Kuppeveld, F.J.M., Bárcena, M., The transformation of enterovirus replication structures: A three-dimensional study of singleand double-membrane compartments (2011) MBio, 2, pp. e00166-e00211; Monaghan, P., Cook, H., Jackson, T., Ryan, M., Wileman, T., The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells (2004) J. Gen. Virol., 85, pp. 933-946; Gillespie, L.K., Hoenen, A., Morgan, G., Mackenzie, J.M., The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex (2010) J. Virol., 84, pp. 10438-10447; Offerdahl, D.K., Dorward, D.W., Hansen, B.T., Bloom, M.E., A three-dimensional comparison of tick-borne flavivirus infection in mammalian and tick cell lines (2012) PLoS ONE, 7, p. e47912; Schwartz, M., Chen, J., Lee, W.-M., Janda, M., Ahlquist, P., Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 11263-11268; Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K., Walther, P., Fuller, S.D., Bartenschlager, R., Composition and three-dimensional architecture of the dengue virus replication and assembly sites (2009) Cell Host Microbe, 5, pp. 365-375; Westaway, E.G., Mackenzie, J.M., Kenney, M.T., Jones, M.K., Khromykh, A.A., Ultrastructure of Kunjin virus-infected cells: Colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures (1997) J. Virol., 71, pp. 6650-6661; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zhou, L., Li, Q.N., Su, J.N., Chen, G.H., Wu, Z.X., Luo, Y., Wu, R.T., Ma, J.Y., The re-emerging of SADS-CoV infection in pig herds in Southern China (2019) Transbound Emerg. Dis., 6, pp. 2180-2183; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Knoops, K., Kikkert, M., Van Den Worm, S.H.E., Zevenhoven-Dobbe, J.C., Van Der Meer, Y., Koster, A.J., Mommaas, A.M., Snijder, E.J., Sars-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS Biol., 6, p. e226; Ulasli, M., Verheije, M.H., De Haan, C.A.M., Reggiori, F., Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus (2010) Cell. Microbiol., 12, pp. 844-861; Zhou, X., Cong, Y., Veenendaal, T., Klumperman, J., Shi, D., Mari, M., Reggiori, F., Ultrastructural characterization of membrane rearrangements induced by porcine epidemic diarrhea virus infection (2017) Viruses, 9, p. 251; DeWilde, A.H., Raj, V.S., Oudshoorn, D., Bestebroer, T.M., Van Nieuwkoop, S., Limpens, R.W., Posthuma, C.C., Haagmans, B.L., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment (2013) J. Gen. Virol., 94, pp. 1749-1760; Maier, H.J., Hawes, P.C., Cottam, E.M., Mantell, J., Verkade, P., Monaghan, P., Wileman, T., Britton, P., Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes (2013) MBio, 4, pp. e00801-e00813; Maier, H.J., Neuman, B.W., Bickerton, E., Keep, S.M., Alrashedi, H., Hall, R., Britton, P., Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity (2016) Sci. Rep., 6, p. 27126; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008; Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., Xiao, S., Porcine deltacoronavirus in mainland China (2015) Emerg. Infect. Dis., 21, pp. 2254-2255; Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Lee, C.H., Park, B.K., Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015 (2016) Transbound Emerg. Dis., 63, pp. 248-252; Lorsirigool, A., Saeng-Chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., Tuntituvanont, A., Nilubol, D., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch Virol., 161, pp. 2909-2911; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1227-1230; Wang, M., Wang, Y., Baloch, A.R., Pan, Y., Tian, L., Xu, F., Shivaramu, S., Zeng, Q., Detection and genetic characterization of porcine deltacoronavirus in tibetan pigs surrounding the qinghai-tibet plateau of China (2018) Transbound Emerg. Dis., 65, pp. 363-369; Jung, K., Hu, H., Eyerly, B., Lu, Z., Chepngeno, J., Saif, L.J., Pathogenicity of 2 porcine deltacoronavirus strains in gnotobiotic pigs (2015) Emerg. Infect. Dis., 21, pp. 650-654; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet. Microbiol., 196, pp. 98-106; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J. Clin. Microbiol., 53, pp. 1537-1548; Jang, G., Kim, S.H., Lee, Y.J., Kim, S., Lee, D.S., Lee, K.K., Lee, C., Isolation and characterization of Korean porcine deltacoronavirus strain KNU16-07 (2018) J. Vet. Sci., 19, pp. 577-581; Qin, P., Du, E.Z., Luo, W.T., Yang, Y.L., Zhang, Y.Q., Wang, B., Huang, Y.W., Characteristics of the life cycle of porcine deltacoronavirus (pdcov) in vitro: Replication kinetics, cellular ultrastructure and virion morphology, and evidence of inducing autophagy (2019) Viruses, 11, p. 455; Hull, R.N., Cherry, W.R., Weaver, G.W., The origin and characteristics of a pig kidney cell strain, LLC-PK (1976) Vitro, 12, pp. 670-677; Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete genome sequence of strain sdcv/USA/illinois121/2014, a porcine deltacoronavirus from the United States (2014) Genome Announc., 2, pp. e00218-e00314; Hagemeijer, M.C., Vonk, A.M., Monastyrska, I., Rottier, P.J., De Haan, C.A., Visualizing coronavirus RNA synthesis in time by using click chemistry (2012) J. Virol., 86, pp. 5808-5816; Rouiller, I., Brookes, S.M., Hyatt, A.D., Windsor, M., Wileman, T., African swine fever virus is wrapped by the endoplasmic reticulum (1998) J. Virol., 72, pp. 2373-2387; Sola, I., Galán, C., Mateos-Gómez, P.A., Palacio, L., Zúñiga, S., Cruz, J.L., Almazán, F., Enjuanes, L., The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites (2011) J. Virol., 85, pp. 5136-5149; Gui, M., Liu, X., Guo, D.Y., Zhang, Z., Yin, C.C., Chen, Y., Xiang, Y., Electron microscopy studies of the coronavirus ribonucleoprotein complex (2017) Protein Cell, 8, pp. 219-224; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708; Snijder, E.J., Van Der Meer, Y., Zevenhoven-Dobbe, J., Onderwater, J.J.M., Van Der Meulen, J., Koerten, H.K., Mommaas, A.M., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex (2006) J. Virol., 80, pp. 5927-5940; Sawicki, S.G., Sawicki, D.L., Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis (1986) J. Virol., 57, pp. 328-334; Sawicki, S.G., Sawicki, D.L., Coronavirus transcription: A perspective (2005) Curr. Top. Microbiol. Immunol., 287, pp. 31-55; Sawicki, S.G., Sawicki, D.L., Siddell, S.G., A contemporary view of coronavirus transcription (2007) J. Virol., 81, pp. 20-29; Goldsmith, C.S., Tatti, K.M., Ksiazek, T.G., Rollin, P.E., Comer, J.A., Lee, W.W., Rota, P.A., Zaki, S.R., Ultrastructural characterization of SARS coronavirus (2004) Emerg. Infect. Dis., 10, pp. 320-326; Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martinez-Sobrido, L., Garcia-Sastre, A., Weber, F., Kochs, G., The intracellular sites of early replication and budding of SARS-coronavirus (2007) Virology, 361, pp. 304-315; Harrison, S.M., Dove, B.K., Rothwell, L., Kaiser, P., Tarpey, I., Brooks, G., Hiscox, J.A., Characterisation of cyclin D1 down-regulation in coronavirus infected cells (2007) Febs. Lett., 581, pp. 1275-1286; Surjit, M., Liu, B.P., Jameel, S., Chow, V.T.K., Lal, S.K., The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors (2004) Biochem. J., 383, pp. 13-18; Zhao, G., Shi, S.Q., Yang, Y., Peng, J.P., M and N proteins of SARS coronavirus induce apoptosis in HPF cells (2006) Cell Biol. Toxicol., 22, pp. 313-322; Zhou, B., Liu, J.L., Wang, Q., Liu, X., Li, X.R., Li, P., Ma, Q.J., Cao, C., The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1 alpha (2008) J. Virol., 82, pp. 6962-6971; Hagemeijer, M.C., Monastyrska, I., Griffth, J., Van Der Sluijs, P., Voortman, J., Henegouwen, P.M.V.B.E., Vonk, A.M., De Haan, C.A.M., Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 (2014) Virology, 458, pp. 125-135","Maier, H.J.; Pirbright Institute, Ash Road, United Kingdom; email: helena.maier@pirbright.ac.uk",,"MDPI AG",19994915,,,"31694296","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85074625017 "Tahir Ul Qamar M., Saleem S., Ashfaq U.A., Bari A., Anwar F., Alqahtani S.","57208324147;57211644653;36930000500;57204449090;8523662400;57209140965;","Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: An immune-informatics study",2019,"Journal of Translational Medicine","17","1", 362,"","",,1,"10.1186/s12967-019-2116-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074697820&doi=10.1186%2fs12967-019-2116-8&partnerID=40&md5=1b911ceb8c8155eb8ce1d608e5b801b4","College of Informatics, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia; Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan; Department of Chemistry, University of Sargodha, Sargodha, Pakistan","Tahir Ul Qamar, M., College of Informatics, Huazhong Agricultural University, Wuhan, China; Saleem, S., Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan; Ashfaq, U.A., Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan; Bari, A., College of Informatics, Huazhong Agricultural University, Wuhan, China; Anwar, F., Department of Chemistry, University of Sargodha, Sargodha, Pakistan; Alqahtani, S., Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia","Background: Middle East Respiratory Syndrome Coronavirus (MERS-COV) is the main cause of lung and kidney infections in developing countries such as Saudi Arabia and South Korea. This infectious single-stranded, positive (+) sense RNA virus enters the host by binding to dipeptidyl-peptide receptors. Since no vaccine is yet available for MERS-COV, rapid case identification, isolation, and infection prevention strategies must be used to combat the spreading of MERS-COV infection. Additionally, there is a desperate need for vaccines and antiviral strategies. Methods: The present study used immuno-informatics and computational approaches to identify conserved B-and T cell epitopes for the MERS-COV spike (S) protein that may perform a significant role in eliciting the resistance response to MERS-COV infection. Results: Many conserved cytotoxic T-lymphocyte epitopes and discontinuous and linear B-cell epitopes were predicted for the MERS-COV S protein, and their antigenicity and interactions with the human leukocyte antigen (HLA) B7 allele were estimated. Among B-cell epitopes, QLQMGFGITVQYGT displayed the highest antigenicity-score, and was immensely immunogenic. Among T-cell epitopes, MHC class-I peptide YKLQPLTFL and MHC class-II peptide YCILEPRSG were identified as highly antigenic. Furthermore, docking analyses revealed that the predicted peptides engaged in strong bonding with the HLA-B7 allele. Conclusion: The present study identified several MERS-COV S protein epitopes that are conserved among various isolates from different countries. The putative antigenic epitopes may prove effective as novel vaccines for eradication and combating of MERS-COV infection. © 2019 The Author(s).","Computational approaches; MERS-COV; Spike protein; T-And B-cell epitopes; Vaccine design","glutaminylleucylglutaminylmethionylglycylphenylalanylglycylisoleucylthreonylvalylglutaminyltyrosylglycylthreonine; HLA B7 antigen; peptide vaccine; tyrosylcysteinylisoleucylleucylglutamylprolylarginylserylglycine; tyrosyllysylleucylglutaminylprolylleucylthreonylphenylalanylleucine; unclassified drug; virus spike protein; amino acid sequence; antigenicity; Article; B lymphocyte; bioinformatics; controlled study; gene frequency; immune informatics; immunogenicity; Middle East respiratory syndrome coronavirus; molecular docking; nonhuman; physical chemistry; prediction; scoring system; T lymphocyte; virus isolation","Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Assiri, A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20, p. 1012. , 24857749 4036761; Xia, S., Lan, Q., Pu, J., Wang, C., Liu, Z., Xu, W., Wang, Q., Lu, L., Potent MERS-CoV Fusion Inhibitory Peptides Identified from HR2 Domain in Spike Protein of Bat Coronavirus HKU4 (2019) Viruses, 11, p. 56. , 1:CAS:528:DC%2BC1MXhtlOrtLjJ 6357153 6357153; Dawson, P., Malik, M.R., Parvez, F., Morse, S.S., What have we learned about Middle East respiratory syndrome coronavirus emergence in humans? A systematic literature review (2019) Vector-Borne Zoonotic Dis, 19, pp. 174-192. , 30676269 6396572; Cho, S.Y., Kang, J.-M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.-H., Lee, J.Y., Jo, I.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001. , 27402381; Shammah, A., Budoor, H., Suad, M., Richard, K., Maha, S., Asokan, G., Middle East Respiratory Syndrome Corona Virus (MERS-CoV): Levels of Knowledge and Awareness in Bahrain (2018) KnE Life Sci, 4, pp. 98-114; Alshahrani, M.S., Sindi, A., Alshamsi, F., Al-Omari, A., El Tahan, M., Alahmadi, B., Zein, A., Alamri, S., Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus (2018) Annals Intens Care, 8, p. 3; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Res, 100, pp. 286-295. , 1:CAS:528:DC%2BC3sXhvVWltbbK 24012996; Luo, C.-M., Wang, N., Yang, X.-L., Liu, H.-Z., Zhang, W., Li, B., Hu, B., Zhu, G.-J., Discovery of novel bat coronaviruses in south China that use the same receptor as Middle East respiratory syndrome coronavirus (2018) J Virol, 92, pp. e00116-e00118. , 1:CAS:528:DC%2BC1cXhvFWmu7rJ 29669833 6002729; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386, pp. 995-1007. , 26049252 4721578; Alfaraj, S.H., Al-Tawfiq, J.A., Altuwaijri, T.A., Alanazi, M., Alzahrani, N., Memish, Z.A., Middle East respiratory syndrome coronavirus transmission among health care workers: Implication for infection control (2018) Am J Infect Control, 46, pp. 165-168. , 28958446; De Wit, E., Van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat Rev Microbiol, 14, p. 523. , 27344959 1:CAS:528:DC%2BC28XhtVGiur7L; Cockrell, A.S., Johnson, J.C., Moore, I.N., Liu, D.X., Bock, K.W., Douglas, M.G., Graham, R.L., Bartos, C., A spike-modified Middle East respiratory syndrome coronavirus (MERS-CoV) infectious clone elicits mild respiratory disease in infected rhesus macaques (2018) Sci Rep, 8, p. 10727. , 30013082 6048037 1:CAS:528:DC%2BC1cXitVajsbnI; Qamar, M.T., Bari, A., Adeel, M.M., Maryam, A., Ashfaq, U.A., Du, X., Muneer, I., Wang, J., Peptide vaccine against chikungunya virus: Immuno-informatics combined with molecular docking approach (2018) J Transl Med, 16, p. 298. , 1:CAS:528:DC%2BC1MXhtFKmsLnP; Ahmad, B., Ashfaq, U.A., Rahman, M.-U., Masoud, M.S., Yousaf, M.Z., Conserved B and T cell epitopes prediction of ebola virus glycoprotein for vaccine development: An immuno-informatics approach (2019) Microb Pathog, 132, pp. 243-253. , 1:CAS:528:DC%2BC1MXps1Whu7w%3D 31075428; Momtaz, F., Foysal, J., Rahman, M., Fotedar, R., Design of epitope based vaccine against shrimp white spot syndrome virus (WSSV) by targeting the envelope proteins: An immunoinformatic approach (2019) Turkish J Fisher Aquatic Sci, 19, pp. 59-69; Amer, H., Alqahtani, A.S., Alaklobi, F., Altayeb, J., Memish, Z.A., Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): Revision of screening strategies urgently needed (2018) Int J Infect Dis, 71, pp. 113-116. , 29649550; Hui, D.S., Azhar, E.I., Kim, Y.-J., Memish, Z.A., Oh, M.-D., Zumla, A., Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18, pp. e217-e227. , 29680581; Assiri, A.M., Midgley, C.M., Abedi, G.R., Bin Saeed, A., Almasri, M.M., Lu, X., Al-Abdely, H.M., Algarni, H.S., Epidemiology of a novel recombinant Middle East respiratory syndrome coronavirus in humans in Saudi Arabia (2016) J Infect Dis, 214, pp. 712-721. , 27302191 5712457; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Shi, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , 1:CAS:528:DC%2BC2sXlvFCgt74%3D 28393837 5394239; Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A., ExPASy: The proteomics server for in-depth protein knowledge and analysis (2003) Nucleic Acids Res, 31, pp. 3784-3788. , 1:CAS:528:DC%2BD3sXltVWjtLc%3D 12824418 168970; Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., Jones, D.T., Scalable web services for the PSIPRED Protein Analysis Workbench (2013) Nucleic Acids Res, 41, pp. W349-W357. , 23748958 3692098; Ferrè, F., Clote, P., DiANNA 11: An extension of the DiANNA web server for ternary cysteine classification (2006) Nucleic Acids Research, 34, pp. W182-W185. , 16844987 1538812 1:CAS:528:DC%2BD28Xps1yiur4%3D; Doytchinova, I.A., Flower, D.R., VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines (2007) BMC Bioinform, 8, p. 4. , 1:CAS:528:DC%2BD2sXhvFCnsLk%3D; Dimitrov, I., Flower, D.R., Doytchinova, I., AllerTOP-A server for in silico prediction of allergens (2013) BMC Bioinformatics. BioMed Central, p. S4; Peters, B., Sidney, J., Bourne, P., Bui, H.-H., Buus, S., Doh, G., Fleri, W., Lund, O., The immune epitope database and analysis resource: From vision to blueprint (2005) PLoS Biol, 3, p. e91. , 15760272 1065705 1:CAS:528:DC%2BD2MXisVymsrw%3D; Manzalawy, Y., Dobbs, D., Honavar, V., Predicting linear B-cell epitopes using string kernels (2008) J Mol Recog., 21, pp. 243-255. , 1:CAS:528:DC%2BD1cXovFeis7w%3D; Fieser, T.M., Tainer, J.A., Geysen, H.M., Houghten, R.A., Lerner, R.A., Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix (1987) Proc Natl Acad Sci, 84, pp. 8568-8572. , 1:CAS:528:DyaL1cXntlCisg%3D%3D 2446325; Jespersen, M.C., Peters, B., Nielsen, M., Marcatili, P., BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes (2017) Nucleic Acids Research, 45, pp. W24-W29. , 1:CAS:528:DC%2BC1cXhs1aisbs%3D 28472356 5570230; Koehl, P., Levitt, M., Structure-based conformational preferences of amino acids (1999) Proc Natl Acad Sci, 96, pp. 12524-12529. , 1:CAS:528:DyaK1MXnt1yru7g%3D 10535955; Yao, B., Zheng, D., Liang, S., Zhang, C., Conformational B-cell epitope prediction on antigen protein structures: A review of current algorithms and comparison with common binding site prediction methods (2013) PLoS ONE, 8, p. e62249. , 1:CAS:528:DC%2BC3sXntVWjtLc%3D 23620816 3631208; Haste Andersen, P., Nielsen, M., Lund, O., Prediction of residues in discontinuous B-cell epitopes using protein 3D structures (2006) Protein Sci, 15, pp. 2558-2567. , 17001032 2242418 1:CAS:528:DC%2BD28XhtFygsrfL; Sun, P., Ju, H., Liu, Z., Ning, Q., Zhang, J., Zhao, X., Huang, Y., Li, Y., Bioinformatics resources and tools for conformational B-cell epitope prediction (2013) Comput Math Methods Med, 2013. , 943636 10.1155/2013/943636 23970944 3736542; Delano, W.L., Pymol: An open-source molecular graphics tool (2002) CCP4 Newslett Prot Crystallogr, 40, pp. 82-92; Zhang, M., Ishii, K., Hisaeda, H., Murata, S., Chiba, T., Tanaka, K., Li, Y., Himeno, K., Ubiquitin-fusion degradation pathway plays an indispensable role in naked DNA vaccination with a chimeric gene encoding a syngeneic cytotoxic T lymphocyte epitope of melanocyte and green fluorescent protein (2004) Immunology, 112, pp. 567-574. , 1:CAS:528:DC%2BD2cXmslKgtbY%3D 15270727 1782537; Yang, X., Yu, X., An introduction to epitope prediction methods and software (2009) Rev Med Virol, 19, pp. 77-96. , 1:CAS:528:DC%2BD1MXkt1eltr8%3D 19101924; Singh, H., Raghava, G., ProPred: Prediction of HLA-DR binding sites (2001) Bioinformatics, 17, pp. 1236-1237. , 1:CAS:528:DC%2BD38XmtVCksQ%3D%3D 11751237; Dimitrov, I., Naneva, L., Doytchinova, I., Bangov, I., AllergenFP: Allergenicity prediction by descriptor fingerprints (2013) Bioinformatics, 30, pp. 846-851. , 24167156 1:CAS:528:DC%2BC2cXks12jsb4%3D; Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., GenBank (2008) Nucleic Acids Res, 37, pp. D26-D31. , 18940867 2686462 1:CAS:528:DC%2BD1cXhsFejtLzF; http://www.clcbio.com/products/clcgenomicsworkbench, Workbench CG: v3. 6.(2010). Now new version; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , 1:CAS:528:DC%2BC28XhsF2ltrzN; Maupetit, J., Derreumaux, P., Tuffery, P., PEP-FOLD: An online resource for de novo peptide structure prediction (2009) Nucleic Acids Res, 37, pp. W498-W503. , 1:CAS:528:DC%2BD1MXosFSrsb0%3D 19433514 2703897; Brennan, R.M., Petersen, J., Neller, M.A., Miles, J.J., Burrows, J.M., Smith, C., McCluskey, J., Burrows, S.R., The impact of a large and frequent deletion in the human TCR β locus on antiviral immunity (2012) J Immunol, 188, pp. 2742-2748. , 1:CAS:528:DC%2BC38Xjt1Gnt7Y%3D 22323539; Qamar, M.U., Kiran, S., Ashfaq, U.A., Javed, M.R., Anwar, F., Ali, M.A., Discovery of novel dengue NS2B/NS3 protease inhibitors using pharmacophore modeling and molecular docking based virtual screening of the zinc database (2016) Int J Pharmacol, 12, pp. 621-632. , 1:CAS:528:DC%2BC1cXpvVymsbs%3D; Qamar, M.T., Mumtaz, A., Ashfaq, U.A., Adeel, M.M., Fatima, T., Potential of plant alkaloids as dengue ns3 protease inhibitors: Molecular docking and simulation approach (2014) Bangladesh J Pharmacol, 9, pp. 262-267; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera-a visualization system for exploratory research and analysis (2004) J Comput Chem, 25, pp. 1605-1612. , 1:CAS:528:DC%2BD2cXmvVOhsbs%3D; Douglas, M.G., Kocher, J.F., Scobey, T., Baric, R.S., Cockrell, A.S., Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease (2018) Virology, 517, pp. 98-107. , 1:CAS:528:DC%2BC2sXitVehu7rO 29277291; Okba, N.M., Raj, V.S., Haagmans, B.L., Middle East respiratory syndrome coronavirus vaccines: Current status and novel approaches (2017) Curr Opin Virol, 23, pp. 49-58. , 1:CAS:528:DC%2BC2sXlsFKqs74%3D 28412285; Ranjbar, M.M., Ali, A., Ghorban, K., Ghalyanchi Langeroudi, A., Dadmanesh, M., Amini, H.-R., Moghaddam, B., Immnoinformatics: Novel view in understanding of immune system function, databases and prediction of immunogenic epitopes (2015) Koomesh, 1, pp. 18-26; Bakhshesh, M., Ranjbar, M.M., Almasi, S., Immunoinformatic analysis of glycoprotein from bovine ephemeral fever virus (2018) Biomed Biotechnol Res J, 2, p. 208; Wang, L., Shi, W., Joyce, M.G., Modjarrad, K., Zhang, Y., Leung, K., Lees, C.R., Kanekiyo, M., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat Commun, 6, p. 7712. , 1:CAS:528:DC%2BC2MXhtlWhtbbP 26218507 4525294; Zhou, Y., Yang, Y., Huang, J., Jiang, S., Du, L., Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain (2019) Viruses, 11, p. 60. , 1:CAS:528:DC%2BC1MXhtlOrtL3E 6357101 6357101; Li, Y.-H., Gao, H., Xiao, Y., Weng, T., Yu, D., Hu, C., Yao, H.-P., Li, L.-J., Bioinformatics analysis on potential anti-viral targets against spike protein of MERS-CoV 2018 9th International Conference on Information Technology in Medicine and Education ITME, pp. 67-71. , IEEE; 2018; Mubarak, A., Alturaiki, W., Hemida, M.G., Middle east respiratory syndrome coronavirus (MERS-CoV): Infection, immunological response, and vaccine development (2019) J Immunol Res, 2019. , 6491738 10.1155/2019/6491738 1:CAS:528:DC%2BC1MXhtlGqs77O 31089478 6476043; Shi, J., Zhang, J., Li, S., Sun, J., Teng, Y., Wu, M., Li, J., Wang, H., Epitope-based vaccine target screening against highly pathogenic MERS-CoV: An in silico approach applied to emerging infectious diseases (2015) PLoS ONE, 10, p. e0144475. , 26641892 4671582 1:CAS:528:DC%2BC2MXitVyrsLzE","Tahir Ul Qamar, M.; College of Informatics, Huazhong Agricultural UniversityChina; email: m.tahirulqamar@webmail.hzau.edu.cn",,"BioMed Central Ltd.",14795876,,,"31703698","English","J. Transl. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85074697820 "Franzo G., Legnardi M., Tucciarone C.M., Drigo M., Martini M., Cecchinato M.","55961557100;57200640902;56593241700;6508295555;56074528900;6506249397;","Evolution of infectious bronchitis virus in the field after homologous vaccination introduction",2019,"Veterinary Research","50","1", 92,"","",,,"10.1186/s13567-019-0713-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074742231&doi=10.1186%2fs13567-019-0713-4&partnerID=40&md5=87428710d047f13780803438d2383bfc","Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy","Franzo, G., Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy; Legnardi, M., Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy; Tucciarone, C.M., Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy; Drigo, M., Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy; Martini, M., Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy; Cecchinato, M., Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro, PD, 35020, Italy","Despite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevance for animal and especially human health. © 2019 The Author(s).",,"avian infectious bronchitis virus vaccine; live vaccine; viral protein; coronavirus spike glycoprotein; live vaccine; virus RNA; virus vaccine; animal experiment; Article; avian infectious bronchitis; Avian infectious bronchitis virus; broiler; gene sequence; genetic distance; genetic heterogeneity; immunity; molecular epidemiology; natural selection; nonhuman; nucleotide sequence; protein quaternary structure; vaccination; animal; Avian infectious bronchitis virus; bird disease; chicken; Coronavirus infection; evolution; genetics; immunology; Italy; vaccination; veterinary medicine; Animals; Biological Evolution; Chickens; Coronavirus Infections; Infectious bronchitis virus; Italy; Poultry Diseases; RNA, Viral; Spike Glycoprotein, Coronavirus; Vaccination; Vaccines, Attenuated; Viral Vaccines","Jackwood, M.W., Hall, D., Handel, A., Molecular evolution and emergence of avian gammacoronaviruses (2012) Infect Genet Evol, 12, pp. 1305-1311. , 1:CAS:528:DC%2BC38XnslOhtrw%3D 22609285 22609285; King, A.M.Q., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Gorbalenya, A.E., Harrach, B., Davison, A.J., Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018) (2018) Arch Virol, 163, pp. 2601-2631. , 1:CAS:528:DC%2BC1cXptl2gsrs%3D 29754305 29754305; Cavanagh, D., Coronavirus avian infectious bronchitis virus (2007) Vet Res, 38, pp. 281-297. , 1:CAS:528:DC%2BD2sXktFCjsLw%3D 17296157 17296157; Tan, L., Liao, Y., Fan, J., Zhang, Y., Mao, X., Sun, Y., Song, C., Ding, C., Prediction and identification of novel IBV S1 protein derived CTL epitopes in chicken (2016) Vaccine, 34, pp. 380-386. , 1:CAS:528:DC%2BC2MXhvFCqur7K 26620841 26620841; Wickramasinghe, I.N.A., Van Beurden, S.J., Weerts, E.A.W.S., Verheije, M.H., The avian coronavirus spike protein (2014) Virus Res, 194, pp. 37-48. , 1:CAS:528:DC%2BC2cXhslOktLfI 25451062 25451062; Valastro, V., Holmes, E.C., Britton, P., Fusaro, A., Jackwood, M.W., Cattoli, G., Monne, I., S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification (2016) Infect Genet Evol, 39, pp. 349-364. , 26883378 26883378; Moreno, A., Franzo, G., Massi, P., Tosi, G., Blanco, A., Antilles, N., Biarnes, M., Cecchinato, M., A novel variant of the infectious bronchitis virus resulting from recombination events in Italy and Spain (2017) Avian Pathol, 46, pp. 28-35. , 27329854 27329854; Duffy, S., Shackelton, L.A., Holmes, E.C., Rates of evolutionary change in viruses: Patterns and determinants (2008) Nat Rev Genet, 9, pp. 267-276. , 1:CAS:528:DC%2BD1cXjtlGntbo%3D 18319742 18319742; De Wit, J.J.S., Cook, J.K.A., Van Der Heijden, H.M.J.F., Infectious bronchitis virus variants: A review of the history, current situation and control measures (2011) Avian Pathol, 40, pp. 223-235; Bande, F., Arshad, S.S., Hair Bejo, M., Moeini, H., Omar, A.R., Progress and challenges toward the development of vaccines against avian infectious bronchitis (2015) J Immunol Res, 2015, p. 424860. , 25954763 4411447; Cook, J.K.A., Orbell, S.J., Woods, M.A., Huggins, M.B., Breadth of protection of the respiratory tract provided by different live-attenuated infectious bronchitis vaccines against challenge with infectious bronchitis viruses of heterologous serotypes (1999) Avian Pathol, 28, pp. 477-485. , 1:STN:280:DC%2BC28jktlKruw%3D%3D 26911602 26911602; Holmes, E.C., (2009) Evolution and Emergence of RNA Viruses, , Oxford University Press New York; Read, A.F., Baigent, S.J., Powers, C., Kgosana, L.B., Blackwell, L., Smith, L.P., Kennedy, D.A., Nair, V.K., Imperfect vaccination can enhance the transmission of highly virulent pathogens (2015) PLoS Biol, 13, p. e1002198. , 26214839 4516275 1:CAS:528:DC%2BC28Xoslensr4%3D; Gandon, S., MacKinnon, M.J., Nee, S., Read, A.F., Imperfect vaccines and the evolution of pathogen virulence (2001) Nature, 414, pp. 751-756. , 1:CAS:528:DC%2BD38Xhtlyjsg%3D%3D 11742400; FitzSimons, D., François, G., Hall, A., McMahon, B., Meheus, A., Zanetti, A., Duval, B., Damme, P.V., Long-term efficacy of hepatitis B vaccine, booster policy, and impact of hepatitis B virus mutants (2005) Vaccine, 23, pp. 4158-4166. , 1:CAS:528:DC%2BD2MXlt1Kjtrg%3D 15964484; Cecchinato, M., Catelli, E., Lupini, C., Ricchizzi, E., Clubbe, J., Battilani, M., Naylor, C.J., Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction (2010) Vet Microbiol, 146, pp. 24-34. , 1:CAS:528:DC%2BC3cXhtlOhs7%2FF 20447777; Franzo, G., Tucciarone, C.M., Cecchinato, M., Drigo, M., Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: A large scale epidemiological study (2016) Sci Rep, 6, p. 39458. , 1:CAS:528:DC%2BC28XitFGjtLnP 27991573 5171922; Read, A.F., MacKinnon, M.J., Pathogen evolution in a vaccinated world (2010) Evol Heal Dis, 2, pp. 139-152; Franzo, G., Massi, P., Tucciarone, C.M., Barbieri, I., Tosi, G., Fiorentini, L., Ciccozzi, M., Moreno, A., Think globally, act locally: Phylodynamic reconstruction of infectious bronchitis virus (IBV) QX genotype (GI-19 lineage) reveals different population dynamics and spreading patterns when evaluated on different epidemiological scales (2017) PLoS ONE, 12, p. e0184401. , 28880958 5589226 1:CAS:528:DC%2BC1cXosVygtL4%3D; Ignjatovic, J., Sapats, S., Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus (2005) Arch Virol, 150, pp. 1813-1831. , 1:CAS:528:DC%2BD2MXos1eksro%3D 15868095 15868095; Franzo, G., Tucciarone, C.M., Blanco, A., Nofrarías, M., Biarnés, M., Cortey, M., Majó, N., Cecchinato, M., Effect of different vaccination strategies on IBV QX population dynamics and clinical outbreaks (2016) Vaccine, 34, pp. 5670-5676. , 27670071 27670071; Franzo, G., Naylor, C.J., Lupini, C., Drigo, M., Catelli, E., Listorti, V., Pesente, P., Cecchinato, M., Continued use of IBV 793B vaccine needs reassessment after its withdrawal led to the genotype's disappearance (2014) Vaccine, 32, pp. 6765-6767. , 25446828 25446828; Cavanagh, D., Mawditt, K., Britton, P., Naylor, C.J., Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions (1999) Avian Pathol, 28, pp. 593-605. , 1:CAS:528:DC%2BD3cXnsFGqsw%3D%3D; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol Biol Evol, 30, pp. 772-780. , 1:CAS:528:DC%2BC3sXksFWisLc%3D 3603318 3603318; Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A., Minh, B.Q., W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis (2016) Nucleic Acids Res, 44, pp. W232-W235. , 1:CAS:528:DC%2BC2sXhtV2isbfN 27084950 4987875; Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: More models, new heuristics and parallel computing (2012) Nat Methods, 9, p. 772. , 1:CAS:528:DC%2BC38XhtFWmsbfP 22847109 4594756; Abascal, F., Zardoya, R., Telford, M.J., TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations (2010) Nucleic Acids Res, 38, pp. W7-W13. , 1:CAS:528:DC%2BC3cXotVSqu7k%3D 20435676 2896173; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1, p. vev003. , 27774277 5014473; Kosakovsky Pond, S.L., Frost, S.D., Muse, S.V., HyPhy: Hypothesis testing using phylogenies (2005) Bioinformatics, 21, pp. 676-679. , 1:CAS:528:DC%2BD2MXhslSlurs%3D; Kosakovsky Pond, S.L., Frost, S.D., Not so different after all: A comparison of methods for detecting amino acid sites under selection (2005) Mol Biol Evol, 22, pp. 1208-1222. , 15703242 1:CAS:528:DC%2BD2MXjvVKitbw%3D 15703242; Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S.L., Scheffler, K., FUBAR: A fast, unconstrained Bayesian AppRoximation for inferring selection (2013) Mol Biol Evol, 30, pp. 1196-1205. , 1:CAS:528:DC%2BC3sXlvFWgsLk%3D 23420840 3670733; Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K., Kosakovsky Pond, S.L., Detecting individual sites subject to episodic diversifying selection (2012) PLoS Genet, 8, p. e1002764. , 1:CAS:528:DC%2BC38XhtVOnsLnI 22807683 3395634; Murrell, B., De Oliveira, T., Seebregts, C., Kosakovsky Pond, S.L., Scheffler, K., Modeling HIV-1 drug resistance as episodic directional selection (2012) PLoS Comput Biol, 8, p. e1002507. , 1:CAS:528:DC%2BC38Xns1Gntbg%3D 22589711 3349733; Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., Schwede, T., SWISS-MODEL: Homology modelling of protein structures and complexes (2018) Nucleic Acids Res, 46, pp. W296-W303. , 1:CAS:528:DC%2BC1MXosVyru70%3D 29788355 6030848; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera-A visualization system for exploratory research and analysis (2004) J Comput Chem, 25, pp. 1605-1612. , 1:CAS:528:DC%2BD2cXmvVOhsbs%3D; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14, p. e1007009. , 29684066 5933801 1:CAS:528:DC%2BC1cXhvVWkt7rE; Gandon, S., Day, T., The evolutionary epidemiology of vaccination (2007) J R Soc Interface, 4, pp. 803-817. , 17264055 2394540; Wilson, B.A., Garud, N.R., Feder, A.F., Assaf, Z.J., Pennings, P.S., The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens (2016) Mol Ecol, 25, pp. 42-66. , 1:CAS:528:DC%2BC28XjtVOhsg%3D%3D 26578204; Moya, A., Holmes, E.C., González-Candelas, F., The population genetics and evolutionary epidemiology of RNA viruses (2004) Nat Rev Microbiol, 2, pp. 279-288. , 1:CAS:528:DC%2BD2cXit12nt78%3D 15031727; Kant, A., Koch, G., Van Roozelaar, D.J., Kusters, J.G., Poelwijk, F.A.J., Van Der Zeijst, B.A.M., Location of antigenic sites defined by neutralizing monoclonal antibodies on the S1 avian infectious bronchitis virus glycopolypeptide (1992) J Gen Virol, 73, pp. 591-596. , 1:CAS:528:DyaK38XhslWrsL8%3D 1372036 1372036; Zou, N., Xia, J., Wang, F., Duan, Z., Miao, D., Yan, Q., Cao, S., Huang, Y., Two novel neutralizing antigenic epitopes of the s1 subunit protein of a QX-like avian infectious bronchitis virus strain Sczy3 as revealed using a phage display peptide library (2015) Vet Immunol Immunopathol, 168, pp. 49-55. , 1:CAS:528:DC%2BC2MXhtlygu7vI 26315775 26315775; Terregino, C., Toffan, A., Serena Beato, M., De Nardi, R., Vascellari, M., Meini, A., Ortali, G., Capua, I., Pathogenicity of a QX strain of infectious bronchitis virus in specific pathogen free and commercial broiler chickens, and evaluation of protection induced by a vaccination programme based on the Ma5 and 4/91 serotypes (2008) Avian Pathol, 37, pp. 487-493. , 1:CAS:528:DC%2BD1cXhtFeitb3E 18798022 18798022; De Wit, J.J., Swart, W.A.J.M., Fabri, T.H.F., Efficacy of infectious bronchitis virus vaccinations in the field: Association between the α-IBV IgM response, protection and vaccine application parameters (2010) Avian Pathol, 39, pp. 123-131. , 20390547 1:CAS:528:DC%2BC3cXkslKru7w%3D 20390547","Franzo, G.; Department of Animal Medicine Production and Health (MAPS), University of Padua, Viale dell'Università 16, Italy; email: giovanni.franzo@unipd.it",,"BioMed Central Ltd.",09284249,,VEREE,"31706335","English","Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85074742231 "Kamau E., Luka M.M., de Laurent Z.R., Adema I., Agoti C.N., James Nokesa D.","57192954963;57211853894;57190957784;57211859792;36489084300;57190074933;","Genome sequences of human coronavirus OC43 and NL63, associated with respiratory infections in Kilifi, Kenya",2019,"Microbiology Resource Announcements","8","46", e00730-19,"","",,,"10.1128/MRA.00730-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075125918&doi=10.1128%2fMRA.00730-19&partnerID=40&md5=da1470278f22bfa90192665a2f199fc7","KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Public Health, Pwani University, Kilifi, Kenya; School of Life Sciences and Zeeman Institute SBIDER, University of Warwick, Coventry, United Kingdom","Kamau, E., KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Luka, M.M., KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya, Department of Public Health, Pwani University, Kilifi, Kenya; de Laurent, Z.R., KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Adema, I., KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Agoti, C.N., KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; James Nokesa, D., School of Life Sciences and Zeeman Institute SBIDER, University of Warwick, Coventry, United Kingdom","Coding-complete genomes of two human coronavirus OC43 strains and one NL63 strain were obtained by metagenomic sequencing of clinical samples collected in 2017 and 2018 in Kilifi, Kenya. Maximum likelihood phylogenies showed that the OC43 strains were genetically dissimilar and that the NL63 strain was closely related to NL63 genotype B viruses. © 2019 Kamau et al.",,"complementary DNA; contig; virus RNA; abdominal pain; Adenoviridae; adolescent; Article; child; coughing; female; fever; human; Human coronavirus NL63; Human coronavirus OC43; Human respiratory syncytial virus; infant; Influenza virus; Kenya; male; metagenomics; nonhuman; nucleotide sequence; phylogeny; respiratory tract infection; Rhinovirus; RNA extraction; school child; sequence alignment; virus genome; virus isolation","Wevers, B.A., van der Hoek, L., Recently discovered human coronaviruses (2009) Clin Lab Med, 29, pp. 715-724. , https://doi.org/10.1016/j.cll.2009.07.007; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502. , https://doi.org/10.1016/j.tim.2016.03.003; Zhu, Y., Li, C., Chen, L., Xu, B., Zhou, Y., Cao, L., Shang, Y., Shen, K., A novel human coronavirus OC43 genotype detected in mainland China (2018) Emerg Microbes Infect, 7, p. 173. , https://doi.org/10.1038/s41426-018-0171-5; Dominguez, S.R., Sims, G.E., Wentworth, D.E., Halpin, R.A., Robinson, C.C., Town, C.D., Holmes, K.V., Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination (2012) J Gen Virol, 93, pp. 2387-2398. , https://doi.org/10.1099/vir.0.044628-0; Kamau, E., Agoti, C.N., Ngoi, J.M., de Laurent, Z.R., Gitonga, J., Cotten, M., Phan, M.V.T., Warimwe, G.M., Complete genome sequences of dengue virus type 2 strains from Kilifi, Kenya (2019) Microbiol Resour Announc, 8, pp. e01566-e01618. , https://doi.org/10.1128/MRA.01566-18; Katoh, K., Standley, D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability (2013) Mol Biol Evol, 30, pp. 772-780. , https://doi.org/10.1093/molbev/mst010; Stamatakis, A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies (2014) Bioinformatics, 30, pp. 1312-1313. , https://doi.org/10.1093/bioinformatics/btu033; Weiss, S.R., Navas-Martin, S., Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus (2005) Microbiol Mol Biol Rev, 69, pp. 635-664. , https://doi.org/10.1128/MMBR.69.4.635-664.2005; Hammitt, L.L., Kazungu, S., Welch, S., Bett, A., Onyango, C.O., Gunson, R.N., Scott, J.A., Nokes, D.J., Added value of an oropharyngeal swab in detection of viruses in children hospitalized with lower respiratory tract infection (2011) J Clin Microbiol, 49, pp. 2318-2320. , https://doi.org/10.1128/JCM.02605-10","Kamau, E.; KEMRI-Wellcome Trust Research ProgrammeKenya; email: ekamau@kemri-wellcome.org",,"American Society for Microbiology",2576098X,,,,"English","Micro. Res. Ann",Article,"Final",Open Access,Scopus,2-s2.0-85075125918 "Salamatbakhsh M., Mobaraki K., Sadeghimohammadi S., Ahmadzadeh J.","57211228027;55853618500;57211847384;36573331500;","The global burden of premature mortality due to the Middle East respiratory syndrome (MERS) using standard expected years of life lost, 2012 to 2019",2019,"BMC Public Health","19","1", 1523,"","",,1,"10.1186/s12889-019-7899-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075114007&doi=10.1186%2fs12889-019-7899-2&partnerID=40&md5=5546071308e9622948aa6f977c06886a","Critical Care Nursing, Urmia University of Medical Sciences, Urmia, Iran; Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Critical Care Nursing, School of Nursing and Midwifery, Zanjan University of Medical Sciences, Zanjan, Iran","Salamatbakhsh, M., Critical Care Nursing, Urmia University of Medical Sciences, Urmia, Iran; Mobaraki, K., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran; Sadeghimohammadi, S., Critical Care Nursing, School of Nursing and Midwifery, Zanjan University of Medical Sciences, Zanjan, Iran; Ahmadzadeh, J., Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran","Background: It has been 8 years since the first case of Middle East respiratory syndrome coronavirus (MERS-CoV) was reported in Saudi Arabia and the disease is still being reported in 27 countries; however, there is no international study to estimate the overall burden related of this emerging infectious disease. The present study was conducted to assess the burden of premature mortality due to Middle East respiratory syndrome (MERS) worldwide. Methods: In this retrospective analysis, we have utilized publicly available data from the WHO website related to 1789 MERS patients reported between September 23, 2012 and May 17, 2019. To calculate the standard expected years of life lost (SEYLL), life expectancy at birth was set according to the 2000 global burden of disease study on levels 25 and 26 of West model life tables from Coale-Demeny at 82.5 and 80 years for females and males, respectively. Results: Overall, the total SEYLL in males and females was 10,702 and 3817.5 years, respectively. The MERS patients within the age range of 30-59 year-olds had the highest SEYLL (8305.5 years) in comparison to the patients within the age groups 0-29 (SEYLL = 3744.5 years) and ≥ 60 years (SEYLL = 2466.5 years). The total SEYLL in all age groups in 2012, 2013, 2014, 2015, 2016, 2017, 2018, and 2019 were 71.5, 2006.5, 3162, 4425.5, 1809.5, 878, 1257.5 and 909 years, respectively. The most SEYLL related to MERS-CoV infection was in the early four years of the onset of the pandemic (2012 to 2015) and in the last four years of the MERS-CoV pandemic (216 to 2019), a significant reduction was observed in the SEYLL related to MERS-CoV infection in the MERS patients. Conclusion: We believe that the findings of this study will shed light about the burden of premature mortality due to MERS infection in the world and the results may provide necessary information for policy-makers to prevent, control, and make a quick response to the outbreak of MERS-CoV disease. © 2019 The Author(s).","Burden of disease; Premature mortality; Standard expected years of life; Worldwide","administrative personnel; adolescent; adult; aged; child; communicable disease; Coronavirus infection; epidemic; female; global health; human; infant; life expectancy; life table; male; middle aged; Middle East respiratory syndrome coronavirus; mortality; newborn; pandemic; premature mortality; preschool child; retrospective study; Saudi Arabia; virology; young adult; Administrative Personnel; Adolescent; Adult; Aged; Child; Child, Preschool; Communicable Diseases, Emerging; Coronavirus Infections; Disease Outbreaks; Female; Global Health; Humans; Infant; Infant, Newborn; Life Expectancy; Life Tables; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Mortality, Premature; Pandemics; Retrospective Studies; Saudi Arabia; Young Adult","Maniecka-Bryła, I., Bryła, M., Bryła, P., Pikala, M., The burden of premature mortality in Poland analysed with the use of standard expected years of life lost (2015) BMC Public Health, 15 (1), p. 101; Yen, E.Y., Singh, R.R., CS-32 SLE-YPLL (years of potential life lost) as a measure of relative burden of premature mortality (2018) Arch Dis Child.; Marshall, R., Standard expected years of life lost as a measure of disease burden: An investigation of its presentation, meaning and interpretation (2010) Handbook Dis Burdens Qual Life Measures., pp. 401-413; Gardner, J.W., Sanborn, J.S., Years of Potential Life Lost (YPLL) - What Does it Measure? (1990) Epidemiology, 1 (4), pp. 322-329. , 1:STN:280:DyaK3M7ptFSgug%3D%3D; Gordis, L., Chapter 4: Measuring the Occurrence of Disease: Mortality (2008) Epidemiology, pp. 42-45. , 4th edn. Philadelphia: Saunders;; Mobaraki, K., Ahmadzadeh, J., The comparison trend of suicide in Hamadan province in 2006 to 2010: A death registry system-based study (2019) J Urmia Univ Med Sci, 30 (1), pp. 41-48; Dziankowska-Zaborszczyk, E., Bryla, M., Ciabiada-Bryla, B., Maniecka-Bryla, I., Standard expected years of life lost (SEYLL) due to chronic obstructive pulmonary disease (COPD) in Poland from 1999 to 2014 (2019) PLoS One, 14 (3), p. e0213581. , 1:CAS:528:DC%2BC1MXnvFaktLY%3D; Penner, D., Pinheiro, P., Krämer, A., Measuring the burden of disease due to premature mortality using standard expected years of life lost (SEYLL) in North Rhine-Westphalia, a Federal State of Germany, in 2005 (2010) J Public Health, 18 (4), pp. 319-325; Mobaraki, K., Ahmadzadeh, J., Current epidemiological status of Middle East respiratory syndrome coronavirus in the world from 1.1. 2017 to 17.1. 2018: A cross-sectional study (2019) BMC Infect Dis, 19 (1), p. 351; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., Banjar, A.A., Al-Mugti, H., Aloraini, M.S., Alkhaldi, K.Z., Gerber, S.I., 2014 MERS-CoV outbreak in Jeddah - A link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854. , 1:CAS:528:DC%2BC2MXkt1WqtLk%3D; Widjaja, I., Wang, C., Van Haperen, R., Gutiérrez-Álvarez, J., Van Dieren, B., Okba, N.M., Raj, V.S., Grosveld, F., Towards a solution to MERS: Protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein (2019) Emerg Microbes Infect, 8 (1), pp. 516-530; Ahmadzadeh, J., Mobaraki, K., Epidemiological status of the Middle East respiratory syndrome coronavirus in 2019: An update from January 1 to march 31, 2019 (2019) Int J Gen Med, 12 (1), pp. 305-311; Poorolajal, J., Esmailnasab, N., Ahmadzadeh, J., Motlagh, T.A., The Burden of Premature Mortality in Hamadan Province in 2006 and 2010 Using Standard Expected Years of Potential Life Lost: A Population-based Study (2012) Epidemiology and Health, 34, p. e2012005; Plass, D., Chau, P.Y.K., Thach, T.Q., Jahn, H.J., Lai, P.C., Wong, C.M., Kraemer, A., Quantifying the burden of disease due to premature mortality in Hong Kong using standard expected years of life lost (2013) BMC Public Health, 13 (1), p. 863; Murray, C.J., Lopez, A.D., Organization, W.H., (1996) The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020: Summary; Aghazadeh-Attari, J., Entezarmahdi, R., Ahmadzadeh, J., Mobaraki, K., Mansorian, B., Karimi, H., Mirghaffarzadeh, S., Mohebbi, I., The Burden of Premature Mortality Related to Suicide in West Azerbaijan from 2014 to 2016 (2019) Crisis., , https://doi.org/10.1027/0227-5910/a000581; Mobaraki, K., Salamatbakhsh, M., Ahmadzadeh, J., Standard Expected Years of Life Lost as a Neglected Index for Calculating the Burden of Premature Mortality due to Middle East Respiratory Syndrome (2019) Health Secur, 17 (5), pp. 407-409; Yang, Y.-M., Hsu, C.-Y., Lai, C.-C., Yen, M.-F., Wikramaratna, P.S., Chen, H.-H., Wang, T.-H., Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome (2017) Sci Rep, 7 (1), p. 11307; Ahmed, A.E., Estimating survival rates in MERS-CoV patients 14 and 45 days after experiencing symptoms and determining the differences in survival rates by demographic data, disease characteristics and regions: A worldwide study (2018) Epidemiol Infect, 146 (4), pp. 489-495; Rabaan, A.A., Middle East respiratory syndrome coronavirus: Five years later (2017) Expert Rev Respiratory Med, 11 (11), pp. 901-912. , 1:CAS:528:DC%2BC2sXhsVSlsbnI; Aghazadeh-Attari, J., Mohebbi, I., Mansorian, B., Ahmadzadeh, J., Mirza-Aghazadeh-Attari, M., Mobaraki, K., Oshnouei, S., Epidemiological factors and worldwide pattern of Middle East respiratory syndrome coronavirus from 2013 to 2016 (2018) Int J Gen Med, 11, p. 121; Maniecka-Bryła, I., Paciej-Gołȩbiowska, P., Dziankowska-Zaborszczyk, E., Bryła, M., Lost life years due to premature mortality caused by diseases of the respiratory system (2018) Adv Clin Exp Med, 27 (6), pp. 741-748; Ghani, A., Donnelly, C., Cox, D., Griffin, J., Fraser, C., Lam, T., Ho, L., Hedley, A., Methods for estimating the case fatality ratio for a novel, emerging infectious disease (2005) Am J Epidemiol, 162 (5), pp. 479-486. , 1:STN:280:DC%2BD2Mvkt1Sgug%3D%3D; Chan, J., Ng, C., Chan, Y., Mok, T., Lee, S., Chu, S., Law, W., Li, P., Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) (2003) Thorax, 58 (8), pp. 686-689. , 1:STN:280:DC%2BD3szltlyquw%3D%3D","Ahmadzadeh, J.; Social Determinants of Health Research Center, Urmia University of Medical SciencesIran; email: Ahmadzadeh.j@umsu.ac.ir",,"BioMed Central Ltd.",14712458,,,"31727042","English","BMC Public Health",Article,"Final",Open Access,Scopus,2-s2.0-85075114007 "Felten S., Hartmann K.","57193734979;7201407340;","Diagnosis of feline infectious peritonitis: A review of the current literature",2019,"Viruses","11","11", 1068,"","",,,"10.3390/v11111068","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075034377&doi=10.3390%2fv11111068&partnerID=40&md5=25d32e7992e05c19bb9882dc35febe9c","Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany","Felten, S., Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany; Hartmann, K., Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Munich, 80539, Germany","Feline infectious peritonitis (FIP) is a fatal disease that poses several challenges for veterinarians: clinical signs and laboratory changes are non-specific, and there are two pathotypes of the etiologic agent feline coronavirus (FCoV), sometimes referred to as feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV) that vary fundamentally in their virulence, but are indistinguishable by a number of diagnostic methods. This review focuses on all important steps every veterinary practitioner has to deal with and new diagnostic tests that can be considered when encountering a cat with suspected FIP with the aim to establish a definitive diagnosis. It gives an overview on all available direct and indirect diagnostic tests and their sensitivity and specificity reported in the literature in different sample material. By providing summarized data for sensitivity and specificity of each diagnostic test and each sample material, which can easily be accessed in tables, this review can help to facilitate the interpretation of different diagnostic tests and raise awareness of their advantages and limitations. Additionally, diagnostic trees depict recommended diagnostic steps that should be performed in cats suspected of having FIP based on their clinical signs or clinicopathologic abnormalities. These steps can easily be followed in clinical practice. © 2019 MDPI AG. All rights reserved.","Antibody; Diagnosis; FIP; ICC; IHC; Immunocytochemistry; Immunohistochemistry; RT-PCR","antigen antibody complex; aqueous humor; ascites; blood; cerebrospinal fluid; diagnostic accuracy; feline infectious peritonitis; Feline infectious peritonitis virus; gene mutation; gene sequence; genotype; histopathology; immunocytochemistry; immunohistochemistry; macrophage; nonhuman; pathology; pleura effusion; predictive value; prospective study; reverse transcription polymerase chain reaction; Review; Sanger sequencing; sensitivity and specificity; virus detection; virus replication; virus transmission","Pedersen, N.C., Allen, C.E., Lyons, L.A., Pathogenesis of feline enteric coronavirus infection (2008) J. Feline Med. Surg., 10, pp. 529-541; Pedersen, N.C., Sato, R., Foley, J.E., Poland, A.M., Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus (2004) J. Feline Med. Surg., 6, pp. 83-88; Vogel, L., Van Der Lubben, M., Te Lintelo, E.G., Bekker, C.P., Geerts, T., Schuij, L.S., Grinwis, G.C., Rottier, P.J., Pathogenic characteristics of persistent feline enteric coronavirus infection in cats (2010) Vet. Res., 41, pp. 71-82; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Pedersen, N.C., Boyle, J.F., Floyd, K., Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture (1981) Am. J. Vet. Res., 42, pp. 363-367; Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis (1981) Am. J. Vet. Res., 42, pp. 368-377; Riemer, F., Kuehner, K.A., Ritz, S., Sauter-Louis, C., Hartmann, K., Clinical and laboratory features of cats with feline infectious peritonitis-A retrospective study of 231 confirmed cases (2000-2010) (2016) J. Feline Med. Surg., 18, pp. 348-356; Pesteanu-Somogyi, L.D., Radzai, C., Pressler, B.M., Prevalence of feline infectious peritonitis in specific cat breeds (2006) J. Feline Med. Surg., 8, pp. 1-5; Rohrbach, B.W., Legendre, A.M., Baldwin, C.A., Lein, D.H., Reed, W.M., Wilson, R.B., Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals (2001) J. Am. Vet. Med. Assoc., 218, pp. 1111-1115; Foley, J., Pedersen, N., The inheritance of susceptibility to feline infectious peritonitis in purebred catteries (1996) Feline Pract., 24, pp. 14-22; Giori, L., Giordano, A., Giudice, C., Grieco, V., Paltrinieri, S., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J. Small Anim. Pract., 52, pp. 152-157; Pedersen, N.C., A review of feline infectious peritonitis virus infection: 1963-2008 (2009) J. Feline Med. Surg., 11, pp. 225-258; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet. Pathol., 51, pp. 505-526; Singh, M., Foster, D.J., Child, G., Lamb, W.A., Inflammatory cerebrospinal fluid analysis in cats: Clinical diagnosis and outcome (2005) J. Feline Med. Surg., 7, pp. 77-93; Stranieri, A., Giordano, A., Paltrinieri, S., Giudice, C., Cannito, V., Lauzi, S., Comparison of the performance of laboratory tests in the diagnosis of feline infectious peritonitis (2018) J. Vet. Diagn. Investig., 30, pp. 459-463; Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., Schroo, S., Frost, J., Hermanns, W., Comparison of different tests to diagnose feline infectious peritonitis (2003) J. Vet. Intern. Med., 17, pp. 781-790; Paltrinieri, S., Comazzi, S., Spagnolo, V., Giordano, A., Laboratory changes consistent with feline infectious peritonitis in cats from multicat environments (2002) J. Vet. Med. A. Physiol. Pathol. Clin. Med., 49, pp. 503-510; Paltrinieri, S., Grieco, V., Comazzi, S., Cammarata Parodi, M., Laboratory profiles in cats with different pathological and immunohistochemical findings due to feline infectious peritonitis (fip) (2001) J. Feline Med. Surg., 3, pp. 149-159; Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., Feline infectious peritonitis: Areview of clinicopathological changes in 65 cases, and a critical assessment of their diagnostic value (1991) Vet. Rec., 129, pp. 209-212; Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., An appraisal of the value of laboratory tests in the diagnosis of feline infectious peritonitis (1994) J. Am. Anim. Hosp. Assoc., 30, pp. 345-350; Norris, J.M., Bosward, K.L., White, J.D., Baral, R.M., Catt, M.J., Malik, R., Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990-2002) (2005) Aust. Vet. J., 83, pp. 666-673; Tsai, H.Y., Chueh, L.L., Lin, C.N., Su, B.L., Clinicopathological findings and disease staging of feline infectious peritonitis: 51 cases from 2003 to 2009 in Taiwan (2011) J. Feline Med. Surg., 13, pp. 74-80; Jeffery, U., Deitz, K., Hostetter, S., Positive predictive value of albumin: Globulin ratio for feline infectious peritonitis in a mid-western referral hospital population (2012) J. Feline Med. Surg., 14, pp. 903-905; Taylor, S.S., Tappin, S.W., Dodkin, S.J., Papasouliotis, K., Casamian-Sorrosal, D., Tasker, S., Serum protein electrophoresis in 155 cats (2010) J. Feline Med. Surg., 12, pp. 643-653; Duthie, S., Eckersall, P.D., Addie, D.D., Lawrence, C.E., Jarrett, O., Value of alpha 1-acid glycoprotein in the diagnosis of feline infectious peritonitis (1997) Vet. Rec., 141, pp. 299-303; Giordano, A., Spagnolo, V., Colombo, A., Paltrinieri, S., Changes in some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection (2004) Vet. J., 167, pp. 38-44; Hazuchova, K., Held, S., Neiger, R., Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions (2017) J. Feline Med. Surg., 19, pp. 809-816; Paltrinieri, S., Giordano, A., Tranquillo, V., Guazzetti, S., Critical assessment of the diagnostic value of feline alpha1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach (2007) J. Vet. Diagn. Investig., 19, pp. 266-272; Selting, K.A., Ogilvie, G.K., Lana, S.E., Fettman, M.J., Mitchener, K.L., Hansen, R.A., Richardson, K.L., Scherk, M.A., Serum alhpa 1-acid glycoprotein concentrations in healthy and tumor-bearing cats (2000) J. Vet. Intern. Med., 14, pp. 503-506; Ceron, J.J., Eckersall, P.D., Martynez-Subiela, S., Acute phase proteins in dogs and cats: Current knowledge and future perspectives (2005) Vet. Clin. Pathol., 34, pp. 85-99; Paltrinieri, S., Metzger, C., Battilani, M., Pocacqua, V., Gelain, M.E., Giordano, A., Serum alpha1-acid glycoprotein (agp) concentration in non-symptomatic cats with feline coronavirus (fcov) infection (2007) J. Feline Med. Surg., 9, pp. 271-277; Paltrinieri, S., Marchini, I., Gelain, M.E., Flow cytometric detection of alpha-1-acid glycoprotein on feline circulating leucocytes (2012) Aust. Vet. J., 90, pp. 291-296; Fischer, Y., Wess, G., Hartmann, K., Pericardial effusion in a cat with feline infectious peritonitis (2012) Schweizer Archiv Tierheilkunde, 154, pp. 27-31; Pedersen, N.C., An update on feline infectious peritonitis: Diagnostics and therapeutics (2014) Vet. J., 201, pp. 133-141; Hirschberger, J., Cytology of body cavity effusions (1995) Tierärztliche Prax., 23, pp. 192-199; Hirschberger, J., Koch, S., Validation of the determination of the activity of adenosine deaminase in the body effusions of cats (1995) Res. Vet. Sci., 59, pp. 226-229; Hirschberger, J., Sauer, G., Clinical and chemical investigations of body cavity effusions (1991) Tieraerztliche Prax., 19, pp. 431-434; Shelly, S., Scarlett-Kranz, J., Blue, J., Protein electrophoresis on effusions from cats as a diagnostic test for feline infectious peritonitis (1988) J. Am. Anim. Hosp. Assoc., 24, pp. 495-500; Fischer, Y., Sauter-Louis, C., Hartmann, K., Diagnostic accuracy of the rivalta test for feline infectious peritonitis (2012) Vet. Clin. Pathol., 41, pp. 558-567; Berti-Bock, G., Vial, F., Premuda, L., Rulliere, R., Exudates, transudates and the rivalta reaction (1895) (1979) Current Status and Historical Premises. Minerva. Med., 70, pp. 3573-3580; Giordano, A., Stranieri, A., Rossi, G., Paltrinieri, S., High diagnostic accuracy of the sysmex xt-2000iv delta total nucleated cells on effusions for feline infectious peritonitis (2015) Vet. Clin. Pathol., 44, pp. 295-302; Stranieri, A., Paltrinieri, S., Giordano, A., Diagnosing feline infectious peritonitis using the sysmex xt-2000iv based on frozen supernatants from cavitary effusions (2017) J. Vet. Diagn. Investig., 29, pp. 321-324; Crawford, A.H., Stoll, A.L., Sanchez-Masian, D., Shea, A., Michaels, J., Fraser, A.R., Beltran, E., Clinicopathologic features and magnetic resonance imaging findings in 24 cats with histopathologically confirmed neurologic feline infectious peritonitis (2017) J. Vet. Intern. Med., 31, pp. 1477-1486; Steinberg, T.A., Boettcher, I.C., Matiasek, K., Hirschvogel, K., Hartmann, K., Kunz, A., Fischer, A., Use of albumin quotient and igg index to differentiate blood-vs brain-derived proteins in the cerebrospinal fluid of cats with feline infectious peritonitis (2008) Vet. Clin. Pathol., 37, pp. 207-216; Foley, J.E., Lapointe, J.M., Koblik, P., Poland, A., Pedersen, N.C., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J. Vet. Intern. Med., 12, pp. 415-423; Boettcher, I.C., Steinberg, T., Matiasek, K., Greene, C.E., Hartmann, K., Fischer, A., Use of anti-coronavirus antibody testing of cerebrospinal fluid for diagnosis of feline infectious peritonitis involving the central nervous system in cats (2007) J. Am. Vet. Med. Assoc., 230, pp. 199-205; Ziolkowska, N., Pazdzior-Czapula, K., Lewczuk, B., Mikulska-Skupien, E., Przybylska-Gornowicz, B., Kwiecinska, K., Ziolkowski, H., Feline infectious peritonitis: Immunohistochemical features of ocular inflammation and the distribution of viral antigens in structures of the eye (2017) Vet. Pathol., 54, pp. 933-944; Doherty, M.J., Ocular manifestations of feline infectious peritonitis (1971) J. Am. Vet. Med. Assoc., 159, pp. 417-424; Peiffer, R.L., Jr., Wilcock, B.P., Histopathologic study of uveitis in cats: 139 cases (1978-1988) (1991) J. Am. Vet. Med. Assoc., 198, pp. 135-138; Linn-Pearl, R.N., Powell, R.M., Newman, H.A., Gould, D.J., Validity of aqueocentesis as a component of anterior uveitis investigation in dogs and cats (2015) Vet. Ophthalmol., 18, pp. 326-334; Wiggans, K.T., Vernau, W., Lappin, M.R., Thomasy, S.M., Maggs, D.J., Diagnostic utility of aqueocentesis and aqueous humor analysis in dogs and cats with anterior uveitis (2014) Vet. Ophthalmol., 17, pp. 212-220; Lappin, M.R., Feline infectious uveitis (2000) J. Feline Med. Surg., 2, pp. 159-163; Kipar, A., Bellmann, S., Gunn-Moore, D.A., Leukert, W., Kohler, K., Menger, S., Reinacher, M., Histopathological alterations of lymphatic tissues in cats without feline infectious peritonitis after long-term exposure to fip virus (1999) Vet. Microbiol., 69, pp. 131-137; Meli, M., Kipar, A., Muller, C., Jenal, K., Gonczi, E., Borel, N., Gunn-Moore, D., Reinacher, M., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (fcov) type i and in naturally fcov-infected cats (2004) J. Feline Med. Surg., 6, pp. 69-81; Gunn-Moore, D.A., Caney, S.M., Gruffydd-Jones, T.J., Helps, C.R., Harbour, D.A., Antibody and cytokine responses in kittens during the development of feline infectious peritonitis (fip) (1998) Vet. Immunol. Immunopathol., 65, pp. 221-242; Pedersen, N.C., Boyle, J.F., Immunologic phenomena in the effusive form of feline infectious peritonitis (1980) Am. J. Vet. Res., 41, pp. 868-876; Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet. Microbiol., 175, pp. 157-166; Desmarets, L.M., Vermeulen, B.L., Theuns, S., Conceicao-Neto, N., Zeller, M., Roukaerts, I.D., Acar, D.D., Matthijnssens, J., Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures (2016) Sci. Rep., 6, p. 20022; Stoddart, M.E., Whicher, J.T., Harbour, D.A., Cats inoculated with feline infectious peritonitis virus exhibit a biphasic acute phase plasma protein response (1988) Vet. Rec., 123, pp. 622-624; Pedersen, N.C., Serologic studies of naturally occurring feline infectious peritonitis (1976) Am. J. Vet. Res., 37, pp. 1449-1453; Addie, D.D., Jarrett, O., Feline coronavirus antibodies in cats (1992) Vet. Rec., 131, pp. 202-203; Addie, D.D., Le Poder, S., Burr, P., Decaro, N., Graham, E., Hofmann-Lehmann, R., Jarrett, O., Meli, M.L., Utility of feline coronavirus antibody tests (2015) J. Feline Med. Surg., 17, pp. 152-162; Osterhaus, A.D., Horzinek, M.C., Reynolds, D.J., Seroepidemiology of feline infectious peritonitis virus infections using transmissible gastroenteritis virus as antigen (1977) Zentralblatt für Veterinärmedizin Reihe B, 24, pp. 835-841; Horzinek, M.C., Osterhaus, A.D., Feline infectious peritonitis: A worldwide serosurvey (1979) Am. J. Vet. Res., 40, pp. 1487-1492; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clin. Diagn. Lab. Immunol., 12, pp. 1209-1215; Addie, D.D., McLachlan, S.A., Golder, M., Ramsey, I., Jarrett, O., Evaluation of an in-practice test for feline coronavirus antibodies (2004) J. Feline Med. Surg., 6, pp. 63-67; Pratelli, A., Comparison of serologic techniques for the detection of antibodies against feline coronaviruses (2008) J. Vet. Diagn. Investig., 20, pp. 45-50; Pedersen, N.C., The history and interpretation of feline coronavirus serology (1995) Feline Pract., 23, pp. 46-51; Barlough, J.E., Stoddart, C.A., Cats and coronaviruses (1988) J. Am. Vet. Med. Assoc., 193, pp. 796-800; Addie, D.D., Dennis, J.M., Toth, S., Callanan, J.J., Reid, S., Jarrett, O., Long-term impact on a closed household of pet cats of natural infection with feline coronavirus, feline leukaemia virus and feline immunodeficiency virus (2000) Vet. Rec., 146, pp. 419-424; Addie, D.D., Jarrett, O., A study of naturally occurring feline coronavirus infections in kittens (1992) Vet. Rec., 130, pp. 133-137; Addie, D.D., Toth, S., Murray, G.D., Jarrett, O., Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus (1995) Am. J. Vet. Res., 56, pp. 429-434; Sparkes, A.H., Gruffydd-Jones, T.J., Howard, P.E., Harbour, D.A., Coronavirus serology in healthy pedigree cats (1992) Vet. Rec., 131, pp. 35-36; Scott, F.W., Fip antibody test-interpretation and recommendations (1979) J. Am. Vet. Med. Assoc., 175, pp. 1164-1168; Gerber, J.D., Ingersoll, J.D., Gast, A.M., Christianson, K.K., Selzer, N.L., Landon, R.M., Pfeiffer, N.E., Beckenhauer, W.H., Protection against feline infectious peritonitis by intranasal inoculation of a temperature-sensitive fipv vaccine (1990) Vaccine, 8, pp. 536-542; Wasmoen, T.L., Kadakia, N.P., Unfer, R.C., Fickbohm, B.L., Cook, C.P., Chu, H.J., Acree, W.M., Protection of cats from infectious peritonitis by vaccination with a recombinant raccoon poxvirus expressing the nucleocapsid gene of feline infectious peritonitis virus (1995) Adv. Exp. Med. Biol., 380, pp. 221-228; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J. Virol., 78, pp. 3863-3871; Hirschberger, J., Hartmann, K., Wilhelm, N., Frost, J., Lutz, H., Kraft, W., Clinical symptoms and diagnosis of feline infectious peritonitis (1995) Tierarztliche Prax., 23, pp. 92-99; Kennedy, M.A., Abd-Eldaim, M., Zika, S.E., Mankin, J.M., Kania, S.A., Evaluation of antibodies against feline coronavirus 7b protein for diagnosis of feline infectious peritonitis in cats (2008) Am. J. Vet. Res., 69, pp. 1179-1182; Kennedy, M.A., Brenneman, K., Millsaps, R.K., Black, J., Potgieter, L.N., Correlation of genomic detection of feline coronavirus with various diagnostic assays for feline infectious peritonitis (1998) J. Vet. Diagn. Investig., 10, pp. 93-97; Meli, M.L., Burr, P., Decaro, N., Graham, E., Jarrett, O., Lutz, H., McDonald, M., Addie, D.D., Samples with high virus load cause a trend toward lower signal in feline coronavirus antibody tests (2013) J. Feline Med. Surg., 15, pp. 295-299; Hartmann, K., Feline infectious peritonitis (2005) Vet. Clin. N. Am. Small. Anim. Pract., 35, pp. 39-79; Addie, D., Jarrett, O., (1993) Isolation of Immune Complexes in Feline Infectious Peritonitis, p. 60. , In Proceedings of the IXth International Congress of Virology Abstracts, Glasgow, UK, 8-13 August; Negrin, A., Lamb, C.R., Cappello, R., Cherubini, G.B., Results of magnetic resonance imaging in 14 cats with meningoencephalitis (2007) J. Feline Med. Surg., 9, pp. 109-116; Addie, D.D., Jarrett, O., Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats (2001) Vet. Rec., 148, pp. 649-653; Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., Persistence and transmission of natural type i feline coronavirus infection (2003) J. Gen. Virol., 84, pp. 2735-2744; Soma, T., Ishii, H., Detection of feline coronavirus antibody, feline immunodeficiency virus antibody, and feline leukemia virus antigen in ascites from cats with effusive feline infectious peritonitis (2004) J. Vet. Med. Sci., 66, pp. 89-90; Addie, D., Belak, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Lutz, H., Feline infectious peritonitis abcd guidelines on prevention and management (2009) J. Feline Med. Surg., 11, pp. 594-604; Lorusso, E., Mari, V., Losurdo, M., Lanave, G., Trotta, A., Dowgier, G., Colaianni, M.L., Buonavoglia, D., Discrepancies between feline coronavirus antibody and nucleic acid detection in effusions of cats with suspected feline infectious peritonitis (2017) Res. Vet. Sci.; Soma, T., Saito, N., Kawaguchi, M., Sasai, K., Feline coronavirus antibody titer in cerebrospinal fluid from cats with neurological signs (2018) J. Vet. Med. Sci., 80, pp. 59-62; Weiss, R.C., Scott, F.W., Pathogenesis of feline infetious peritonitis: Pathologic changes and immunofluorescence (1981) Am. J. Vet. Res., 42, pp. 2036-2048; Weiss, R.C., Scott, F.W., Antibody-mediated enhancement of disease in feline infectious peritonitis: Comparisons with dengue hemorrhagic fever (1981) Comp. Immunol. Microbiol. Infect. Dis., 4, pp. 175-189; Paltrinieri, S., Cammarata Parodi, M., Cammarata, G., Comazzi, S., Some aspects of humoral and cellular immunity in naturally occuring feline infectious peritonitis (1998) Vet. Immunol. Immunopathol., 65, pp. 205-220; Jacobse-Geels, H.E., Daha, M.R., Horzinek, M.C., Isolation and characterization of feline c3 and evidence for the immune complex pathogenesis of feline infectious peritonitis (1980) J. Immunol., 125, pp. 1606-1610; Jacobse-Geels, H.E., Daha, M.R., Horzinek, M.C., Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis (1982) Am. J. Vet. Res., 43, pp. 666-670; Horzinek, M.C., Osterhaus, A.D., The virology and pathogenesis of feline infectious peritonitis (1979) Brief Review. Arch. Virol., 59, pp. 1-15; Weiss, R.C., Dodds, W.J., Scott, F.W., Disseminated intravascular coagulation in experimentally induced feline infectious peritonitis (1980) Am. J. Vet. Res., 41, pp. 663-671; Horzinek, M.C., Ederveen, J., Egberink, H., Jacobse-Geels, H.E., Niewold, T., Prins, J., Virion polypeptide specificity of immune complexes and antibodies in cats inoculated with feline infectious peritonitis virus (1986) Am. J. Vet. Res., 47, pp. 754-761; Pfeiffer, N., (1991) Prospects and Problems of Coronaviral Serology, pp. 30-34. , In Proceedings of the Symposium New Perspectives on Prevention of Feline Infectious Peritonitis, Orlando, FL, USA; Schroo, S., (1994) Kompetitiver Elisa Zum Nachweis von Löslichen Immunkomplexen in Serum und Exsudaten Fip-Verdächtiger Katzen, , Ph.D. Thesis, Justus-Liebig-Universität Gießen, Gießen, Germany; Stoddart, C.A., Scott, F.W., Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence (1989) J. Virol., 63, pp. 436-440; Kipar, A., Bellmann, S., Kremendahl, J., Kohler, K., Reinacher, M., Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis (1998) Vet. Immunol. Immunopathol., 65, pp. 243-257; Kipar, A., May, H., Menger, S., Weber, M., Leukert, W., Reinacher, M., Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis (2005) Vet. Pathol., 42, pp. 321-330; Weiss, R.C., Scott, F.W., Pathogenesis of feline infectious peritonitis: Nature and development of viremia (1981) Am. J. Vet. Res., 42, pp. 382-390; Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., Absence of surface expression of feline infectious peritonitis virus (fipv) antigens on infected cells isolated from cats with fip (2007) Vet. Microbiol., 121, pp. 131-137; Gunn-Moore, D.A., Gruffydd-Jones, T.J., Harbour, D.A., Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis (1998) Vet. Microbiol., 62, pp. 193-205; Kipar, A., Baptiste, K., Barth, A., Reinacher, M., Natural fcov infection: Cats with fip exhibit significantly higher viral loads than healthy infected cats (2006) J. Feline Med. Surg., 8, pp. 69-72; Pedersen, N.C., Liu, H., Scarlett, J., Leutenegger, C.M., Golovko, L., Kennedy, H., Kamal, F.M., Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats (2012) Virus. Res., 165, pp. 17-28; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707; Addie, D.D., Paltrinieri, S., Pedersen, N.C., Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium (2004) J. Feline Med. Surg., 6, pp. 125-130; Hok, K., Demonstration of feline infectious peritonitis virus in conjunctival epithelial cells from cats (1989) A Simple and Reliable Method for Clinical Veterinary Virology Screening. Apmis, 97, pp. 820-824; Walter, J., Dohse, K., Rudolph, R., Eine modifikation der abc-methode (avidin-biotin-peroxidase-complex) für den nachweis von viralen antigenen bei der infektion der katze durch ein coronavirus (fip) und der infektion des hundes durch das parvovirus-typ 2 (1989) J. Vet. Med. Ser. B, 36, pp. 321-332; Hok, K., A comparison between immunofluorescence staining on smears from membrana nictitans (m3 test), immunohistopathology and routine pathology in cats with suspected feline infectious peritonitis (fip) (1991) Acta. Vet. Scand., 32, pp. 171-176; Hok, K., Demonstration of feline corona virus (fcv) antigen in organs of cats suspected of feline infectious peritonitis (fip) disease (1990) Apmis, 98, pp. 659-664; Tammer, R., Evensen, O., Lutz, H., Reinacher, M., Immunohistological demonstration of feline infectious peritonitis virus antigen in paraffn-embedded tissues using feline ascites or murine monoclonal antibodies (1995) Vet. Immunol. Immunopathol., 49, pp. 177-182; Rissi, D.R., A retrospective study of the neuropathology and diagnosis of naturally occurring feline infectious peritonitis (2018) J. Vet. Diagn. Investig., 30, pp. 392-399; Giordano, A., Paltrinieri, S., Bertazzolo, W., Milesi, E., Parodi, M., Sensitivity of tru-cut and fine needle aspiration biopsies of liver and kidney for diagnosis of feline infectious peritonitis (2005) Vet. Clin. Pathol., 34, pp. 368-374; Felten, S., Hartmann, K., Doerfelt, S., Sangl, L., Hirschberger, J., Matiasek, K., Immunocytochemistry of mesenteric lymph node fine-needle aspirates in the diagnosis of feline infectious peritonitis (2019) J. Vet. Diagn. Investig., 31, pp. 210-216; Dunbar, D., Kwok, W., Graham, E., Armitage, A., Irvine, R., Johnston, P., McDonald, M., Robertson, E., Diagnosis of non-effusive feline infectious peritonitis by reverse transcriptase quantitative PCR from mesenteric lymph node fine-needle aspirates (2018) J. Feline Med. Surg.; Declercq, J., De Bosschere, H., Schwarzkopf, I., Declercq, L., Papular cutaneous lesions in a cat associated with feline infectious peritonitis (2008) Vet. Dermatol., 19, pp. 255-258; Bauer, B.S., Kerr, M.E., Sandmeyer, L.S., Grahn, B.H., Positive immunostaining for feline infectious peritonitis (fip) in a sphinx cat with cutaneous lesions and bilateral panuveitis (2013) Vet. Ophthalmol., 16, pp. 160-163; Rota, A., Paltrinieri, S., Jussich, S., Ubertalli, G., Appino, S., Priapism in a castrated cat associated with feline infectious peritonitis (2008) J. Feline Med. Surg., 10, pp. 181-184; Stephenson, N., Swift, P., Moeller, R.B., Worth, S.J., Foley, J., Feline infectious peritonitis in a mountain lion (puma concolor), California, USA (2013) J. Wildl. Dis., 49, pp. 408-412; Mwase, M., Shimada, K., Mumba, C., Yabe, J., Squarre, D., Madarame, H., Positive immunolabelling for feline infectious peritonitis in an african lion (panthera leo) with bilateral panuveitis (2015) J. Comp. Pathol., 152, pp. 265-268; Cammarata Parodi, M., Cammarata, G., Paltrinieri, S., Lavazza, A., Ape, F., Using direct immunofluorescence to detect coronaviruses in peritoneal and pleural effusions (1993) J. Small Anim. Pract., 34, pp. 609-613; Paltrinieri, S., Cammarata Parodi, M., Cammarata, G., In vivo diagnosis of feline infectious peritonitis by comparison of protein content, cytology, and direct immunofluorescence test on peritoneal and pleural effusions (1999) J. Vet. Diagn. Investig., 11, pp. 358-361; Felten, S., Matiasek, K., Gruendl, S., Sangl, L., Wess, G., Hartmann, K., Investigation into the utility of an immunocytochemical assay in body cavity effusions for diagnosis of feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 410-418; Litster, A.L., Pogranichniy, R., Lin, T.L., Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis (2013) Vet. J., 198, pp. 362-366; Ives, E.J., Vanhaesebrouck, A.E., Cian, F., Immunocytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages (2013) J. Feline Med. Surg., 15, pp. 1149-1153; Gruendl, S., Matiasek, K., Matiasek, L., Fischer, A., Felten, S., Jurina, K., Hartmann, K., Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in the central nervous system (2017) J. Feline Med. Surg., 19, pp. 576-585; Jinks, M.R., English, R.V., Gilger, B.C., Causes of endogenous uveitis in cats presented to referral clinics in North Carolina (2016) Vet. Ophthalmol., 19, pp. 30-37; Felten, S., Matiasek, K., Gruendl, S., Sangl, L., Hartmann, K., Utility of an immunocytochemical assay using aqueous humor in the diagnosis of feline infectious peritonitis (2018) Vet. Ophthalmol., 21, pp. 27-34; Li, X., Scott, F.W., Detection of feline coronaviruses in cell cultures and in fresh and fixed feline tissues using polymerase chain reaction (1994) Vet. Microbiol., 42, pp. 65-77; Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., Ott, R.L., Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683 (1984) Am. J. Vet. Res., 45, pp. 2580-2585; Barker, E.N., Stranieri, A., Helps, C.R., Porter, E.L., Davidson, A.D., Day, M.J., Knowles, T., Tasker, S., Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis (2017) Vet. Res., 48, p. 60; Kipar, A., Meli, M.L., Failing, K., Euler, T., Gomes-Keller, M.A., Schwartz, D., Lutz, H., Reinacher, M., Natural feline coronavirus infection: Differences in cytokine patterns in association with the outcome of infection (2006) Vet. Immunol. Immunopathol., 112, pp. 141-155; Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G., Helps, C.R., Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis (2014) Vet. Res., 45, pp. 49-59; Addie, D.D., Belák, S., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Lloret, A., Feline Infectious Peritonitis, , http://www.abcdcatsvets.org/feline-infectious-peritonitis, accessed on 8 August 2019; Hornyak, A., Balint, A., Farsang, A., Balka, G., Hakhverdyan, M., Rasmussen, T.B., Blomberg, J., Belak, S., Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (p-sg-qpcr) (2012) J. Virol. Methods, 181, pp. 155-163; Freiche, G.M., Guidez, C.L., Duarte, M., Le Poder, Y.B., Sequencing of 3c and spike genes in feline infectious peritonitis: Which samples are the most relevant for analysis? A retrospective study of 33 cases from 2008 to 2014 (2016) J. Vet. Intern. Med, 30, p. 436; Felten, S., Emmler, L., Matiasek, K., Balzer, H.-J., Pantchev, N., Leutenegger, C.M., Hartmann, K., (2018) Detection of Mutated and Non-mutated Feline Coronavirus in Tissues and Body Fluids of Cats with Feline Infectious Peritonitis, p. 76. , In Proceedings of the 2018 ISCAID Symposium, Portland, OR, USA, 30 September-3 October; Sangl, L., Matiasek, K., Felten, S., Grundl, S., Bergmann, M., Balzer, H.J., Pantchev, N., Hartmann, K., Detection of feline coronavirus mutations in paraffn-embedded tissues in cats with feline infectious peritonitis and controls (2019) J. Feline Med. Surg., 21, pp. 133-142; Herrewegh, A.A., De Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR (1995) J. Clin. Microbiol., 33, pp. 684-689; Herrewegh, A.A., Mahler, M., Hedrich, H.J., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J., De Groot, R.J., Persistence and evolution of feline coronavirus in a closed cat-breeding colony (1997) Virology, 234, pp. 349-363; Egberink, H.F., Herrewegh, A.P., Schuurman, N.M., Van Der Linde-Sipman, J.S., Horzinek, M.C., De Groot, R.J., Fip, easy to diagnose? (1995) Vet. Q., 17, pp. 24-25; Fehr, D., Bolla, S., Herrewegh, A.A., Horzinek, M.C., Lutz, H., Detection of feline coronavirus using rt PCR: Basis for the study of the pathogenesis of feline infectious peritonitis (fip) (1996) Schweiz. Arch. Tierheilkd., 138, pp. 74-79; Fish, E.J., Diniz, P.P.V., Juan, Y.C., Bossong, F., Collisson, E.W., Drechsler, Y., Kaltenboeck, B., Cross-sectional quantitative rt-PCR study of feline coronavirus viremia and replication in peripheral blood of healthy shelter cats in southern California (2018) J. Feline Med. Surg., 20, pp. 295-301; Simons, F.A., Vennema, H., Rofina, J.E., Pol, J.M., Horzinek, M.C., Rottier, P.J., Egberink, H.F., A mRNA PCR for the diagnosis of feline infectious peritonitis (2005) J. Virol. Methods, 124, pp. 111-116; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., Comparison of real-time reverse transcriptase polymerase chain reaction of peripheral blood mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 344-350; Sharif, S., Arshad, S.S., Hair-Bejo, M., Omar, A.-R., Zeenathul, N.A., Rahman, N.-A., Alazawy, A., Evaluation of feline coronavirus viraemia in clinically healthy and ill cats with feline infectious peritonitis (2011) J. Anim. Vet. Adv., 10, pp. 18-22; Can-Sahna, K., Soydal Ataseven, V., Pinar, D., Oguzoglu, T.C., The detection of feline coronaviruses in blood samples from cats by mRNA rt-PCR (2007) J. Feline Med. Surg., 9, pp. 369-372; Ritz, S., Egberink, H., Hartmann, K., Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis (2007) J. Vet. Intern. Med., 21, pp. 1193-1197; Rottier, P.J., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein (2005) J. Virol., 79, pp. 14122-14130; Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., Replication of feline coronaviruses in peripheral blood monocytes (2005) Arch. Virol., 150, pp. 2483-2500; Stranieri, A., Lauzi, S., Giordano, A., Paltrinieri, S., Reverse transcriptase loop-mediated isothermal amplification for the detection of feline coronavirus (2017) J. Virol. Methods, 243, pp. 105-108; Felten, S., Weider, K., Doenges, S., Gruendl, S., Matiasek, K., Hermanns, W., Mueller, E., Weber, K., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 321-335; Felten, S., Leutenegger, C.M., Balzer, H.J., Pantchev, N., Matiasek, K., Wess, G., Egberink, H., Hartmann, K., Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis (2017) BMC Vet. Res., 13, p. 228; Gamble, D.A., Lobbiani, A., Gramegna, M., Moore, L.E., Colucci, G., Development of a nested PCR assay for detection of feline infectious peritonitis virus in clinical specimens (1997) J. Clin. Microbiol., 35, pp. 673-675; Gunther, S., Felten, S., Wess, G., Hartmann, K., Weber, K., Detection of feline coronavirus in effusions of cats with and without feline infectious peritonitis using loop-mediated isothermal amplification (2018) J. Virol. Methods, 256, pp. 32-36; Longsta, L., Porter, E., Crossley, V.J., Hayhow, S.E., Helps, C.R., Tasker, S., Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis (2017) J. Feline Med. Surg., 19, pp. 240-245; Soma, T., Wada, M., Taharaguchi, S., Tajima, T., Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis (2013) J. Vet. Med. Sci., 75, pp. 1389-1392; Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Fischer, A., Matiasek, L.A., Matiasek, K., Hartmann, K., Detection of feline coronavirus in cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and without neurological signs (2016) J. Feline Med. Surg., 18, pp. 104-109; Webb, A.A., Muir, G.D., The blood-brain barrier and its role in inflammation (2000) J. Vet. Intern. Med., 14, pp. 399-411; Felten, S., Sangl, L., Matiasek, K., Leutenegger, C.M., Pantchev, N., Balzer, H.-J., Hartmann, K., (2016) Comparison of Different Diagnostic Methods in Aqueous Humor to Diagnose Feline Infectious Peritonitis, , In Proceedings of the 2016 ISCAID Symposium, Bristol, UK, 16-19 October; Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol., 8, pp. 270-279; Kiss, I., Kecskemeti, S., Tanyi, J., Klingeborn, B., Belak, S., Preliminary studies on feline coronavirus distribution in naturally and experimentally infected cats (2000) Res. Vet. Sci., 68, pp. 237-242; Hora, A.S., Tonietti, P.O., Taniwaki, S.A., Asano, K.M., Maiorka, P., Richtzenhain, L.J., Brandao, P.E., Feline coronavirus 3c protein: A candidate for a virulence marker? (2016) Biomed. Res. Int., 2016, p. 8560691; Poland, A.M., Vennema, H., Foley, J.E., Pedersen, N.C., Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus (1996) J. Clin. Microbiol., 34, pp. 3180-3184; Borschensky, C.M., Reinacher, M., Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected fip cats (2014) Res. Vet. Sci., 97, pp. 333-340; Bank-Wolf, B.R., Stallkamp, I., Wiese, S., Moritz, A., Tekes, G., Thiel, H.J., Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis (2014) Vet. Microbiol., 173, pp. 177-188; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Chang, H.W., De Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Hsieh, L.E., Huang, W.P., Tang, D.J., Wang, Y.T., Chen, C.T., Chueh, L.L., 3c protein of feline coronavirus inhibits viral replication independently of the autophagy pathway (2013) Res. Vet. Sci., 95, pp. 1241-1247; Balint, A., Farsang, A., Zadori, Z., Hornyak, A., Dencso, L., Almazan, F., Enjuanes, L., Belak, S., Molecular characterization of feline infectious peritonitis virus strain df-2 and studies of the role of orf3abc in viral cell tropism (2012) J. Virol., 86, pp. 6258-6267; Balint, A., Farsang, A., Zadori, Z., Belak, S., Comparative in vivo analysis of recombinant type II feline coronaviruses with truncated and completed orf3 region (2014) PLoS ONE, 9, p. e88758; Dedeurwaerder, A., Desmarets, L.M., Olyslaegers, D.A., Vermeulen, B.L., Dewerchin, H.L., Nauwynck, H.J., The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes (2013) Vet. Microbiol., 162, pp. 447-455; Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., De Groot, R.J., The molecular genetics of feline coronaviruses: Comparative sequence analysis of the orf7a/7b transcription unit of different biotypes (1995) Virology, 212, pp. 622-631; Takano, T., Tomiyama, Y., Katoh, Y., Nakamura, M., Satoh, R., Hohdatsu, T., Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: Influences of viral replication in monocytes/macrophages and virulence in cats (2011) Virus. Res., 156, pp. 72-80; Dedeurwaerder, A., Olyslaegers, D.A., Desmarets, L.M., Roukaerts, I.D., Theuns, S., Nauwynck, H.J., Orf7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against ifn-alpha-induced antiviral response (2014) J. Gen. Virol., 95, pp. 393-402; Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., Deletions in the 7a orf of feline coronavirus associated with an epidemic of feline infectious peritonitis (2001) Vet. Microbiol., 81, pp. 227-234; Lin, C.N., Su, B.L., Huang, H.P., Lee, J.J., Hsieh, M.W., Chueh, L.L., Field strain feline coronaviruses with small deletions in orf7b associated with both enteric infection and feline infectious peritonitis (2009) J. Feline Med. Surg., 11, pp. 413-419; Heald-Sargent, T., Gallagher, T., Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence (2012) Viruses, 4, pp. 557-580; Bosch, B.J., Van Der Zee, R., De Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class i virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Jaimes, J.A., Whittaker, G.R., Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function (2018) Virology, 517, pp. 108-121; Chang, H.W., Egberink, H.F., Halpin, R., Spiro, D.J., Rottier, P.J., Spike protein fusion peptide and feline coronavirus virulence (2012) Emerg. Infect. Dis., 18, pp. 1089-1095; Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., Whittaker, G.R., Mutation in spike protein cleavage site and pathogenesis of feline coronavirus (2013) Emerg. Infect. Dis., 19, pp. 1066-1073; Lewis, C.S., Porter, E., Matthews, D., Kipar, A., Tasker, S., Helps, C.R., Siddell, S.G., Genotyping coronaviruses associated with feline infectious peritonitis (2015) J. Gen. Virol., 96, pp. 1358-1368; Felten, S., Leutenegger, C.M., Balzer, H.J., Pantchev, N., Matiasek, K., Sangl, L., Doenges, S., Hartmann, K., Evaluation of a discriminative realtime rt-PCR in cerebrospinal fluid for the diagnosis of feline infectious peritonitis (2017) Proceedings of the 27th ECVIM-CA Congress, , St. Julian's, Malta, 14-16 September","Felten, S.; Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, Germany; email: s.felten@medizinische-kleintierklinik.de",,"MDPI AG",19994915,,,"31731711","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85075034377 "Santilli R.A., Grego E., Battaia S., Gianella P., Tursi M., Di Girolamo N., Biasato I., Perego M.","7003333094;6601987054;57189305140;6503920913;8596706800;55323270400;56741307800;15061671400;","Prevalence of selected cardiotropic pathogens in the myocardium of adult dogs with unexplained myocardial and rhythm disorders or with congenital heart disease",2019,"Journal of the American Veterinary Medical Association","255","10",,"1150","1160",,1,"10.2460/javma.255.10.1150","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060656768&doi=10.2460%2fjavma.255.10.1150&partnerID=40&md5=608bfc36869df60b5c8ac4977c1a44ce","Dipartimento di Cardiologia, Clinica Veterinaria Malpensa, Via Marconi, 27, Samarate, Varese, 21017, Italy; Dipartimento di Scienze Veteri-narie, L'Universita di Torino, Grugliasco, Torino, Italy; Ospedale Veterinario I Portoni Rossi, Via Roma, 57/a, Zola Predosa, Bologna, 40069, Italy; EBMVet, Via Sigismondo Trecchi 20, Cremona, 26100, Italy","Santilli, R.A., Dipartimento di Cardiologia, Clinica Veterinaria Malpensa, Via Marconi, 27, Samarate, Varese, 21017, Italy; Grego, E., Dipartimento di Scienze Veteri-narie, L'Universita di Torino, Grugliasco, Torino, Italy; Battaia, S., Ospedale Veterinario I Portoni Rossi, Via Roma, 57/a, Zola Predosa, Bologna, 40069, Italy; Gianella, P., Dipartimento di Scienze Veteri-narie, L'Universita di Torino, Grugliasco, Torino, Italy; Tursi, M., Dipartimento di Scienze Veteri-narie, L'Universita di Torino, Grugliasco, Torino, Italy; Di Girolamo, N., EBMVet, Via Sigismondo Trecchi 20, Cremona, 26100, Italy; Biasato, I., Dipartimento di Scienze Veteri-narie, L'Universita di Torino, Grugliasco, Torino, Italy; Perego, M., Dipartimento di Cardiologia, Clinica Veterinaria Malpensa, Via Marconi, 27, Samarate, Varese, 21017, Italy","OBJECTIVE To determine the prevalence of nucleic acid from selected cardiotropic pathogens in endomyocardial biopsy samples from dogs with unexplained myocardial and rhythm disorders (UMRD) and compare prevalence with that for a group of control dogs with congenital heart disease (CHD). ANIMALS 47 client-owned dogs. PROCEDURES Right ventricular endomyocardial biopsy was performed in dogs with UMRD (dilated cardiomyopathy [n = 25], atrioventricular block [6], and nonfamilial ventricular [4] and supraventricular arrhythmias [2]) or CHD (10) that required right ventricular catheterization. Biopsy samples were evaluated histologically, and PCR assays were used for detection of nucleic acid from 12 pathogens. RESULTS 197 biopsy samples were collected from dogs with UMRD (n = 172) or CHD (25). At least 1 pathogen was detected in 21 of 37 (57%; 95% confidence interval [CI], 41% to 71%) dogs with UMRD, and canine coronavirus was detected in 1 of 10 (10%; 95% CI, 2% to 40%) dogs with CHD. Dogs with UMRD were significantly more likely than dogs with CHD to have pathogens detected in biopsy samples (OR, 11.8; 95% CI, 1.3 to 103.0). The most common pathogens in dogs with UMRD were canine distemper virus, canine coronavirus, canine parvovirus 2, and Bartonella spp. No pathogens were detected in available blood samples from dogs with pathogens detected in biopsy samples. CONCLUSIONS AND CLINICAL RELEVANCE Detection of nucleic acids from selected cardiotropic pathogens in myocardial tissue from dogs with UMRD suggested a possible association between the 2. Further studies are needed to explore whether this association is causative or clinically important. © 2019 American Veterinary Medical Association. All rights reserved.",,"nucleic acid; adult; animal experiment; animal tissue; atrioventricular block; Bartonella; blood analysis; Canine coronavirus; Canine distemper virus; Conference Paper; congenital heart disease; congestive cardiomyopathy; controlled study; cross-sectional study; dog; female; heart catheterization; heart muscle biopsy; heart supraventricular arrhythmia; heart ventricle arrhythmia; histology; infectious agent; male; nonhuman; polymerase chain reaction; prevalence; prospective study","Caforio, A.L.P., Pankuweit, S., Arbustini, E., Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases (2013) Eur Heart J, 34, pp. 2636-2648; Cooper, L.T., Baughman, K.L., Feldman, A.M., The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology (2007) Circulation, 116, pp. 2216-2233; Kühl, U., Pauschinger, M., Seeberg, B., Viral persistence in the myocardium is associated with progressive cardiac dysfunction (2005) Circulation, 112, pp. 1965-1970; Maxson, T.R., Meurs, K.M., Lehmkuhl, L.B., Polymerase chain reaction analysis for viruses in paraffin-embedded myocardium from dogs with dilated cardiomyopathy or myocarditis (2001) Am J Vet Res, 62, pp. 130-135; Kaneshige, T., Mda, N., Nakao, S., Complete atrioventricular block associated with lymphocytic myocarditis of the atrioventricular node in two young adult dogs (2007) J Comp Pathol, 137, pp. 146-150; Janus, I., Noszczyk-Nowak, A., Nowak, M., Myocarditis in dogs: Etiology, clinical and histopathological features (11 cases: 2007-2013) (2014) Ir Vet J, 67, pp. 28-35; Costagliola, A., Piegari, G., Otrocka-Domagala, I., Immunopathological features of canine myocarditis associated with Leishmania infantum infection (2016) Biomed Res Int, 2016, p. 8016186; Santilli, R.A., Battaia, S., Perego, M., Bartonella-associated inflammatory cardiomyopathy in a dog (2017) J Vet Cardiol, 19, pp. 74-81; Martínez-Hernández, L., Casamian-Sorrosal, D., Barrera-Chacón, R., Comparison of myocardial damage among dogs at different stages of clinical leishmaniasis and dogs with idiopathic chronic kidney disease (2017) Vet J, 221, pp. 1-5; Santilli, R.A., Perego, M., Tursi, M., Role of right endomyocardial biopsy to characterize unexplained myocardial and rhythm disorders in the dog (2016) J Vet Intern Med, 30, pp. 369-370; Ford, J., McEndaffer, L., Renshaw, R., Parvovirus infection is associated with myocarditis and myocardial fibrosis in young dogs (2017) Vet Pathol, 54, pp. 964-971; Ponikowski, P., Voors, A.A., Anker, S.D., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC (2016) Eur J Heart Fail, 18, pp. 891-975; Ardehali, H., Qasim, A., Cappola, T., Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy (2004) Am Heart J, 147, pp. 919-923; Caforio, A.L.P., Calabrese, F., Angelini, A., A prospective study of biopsy-proven myocarditis: Prognostic relevance of clinical and aetiopathogenetic features at diagnosis (2007) Eur Heart J, 28, pp. 1326-1333; Kindermann, I., Barth, C., Mahfoud, F., Update on myocarditis (2012) J Am Coll Cardiol, 59, pp. 779-792; Schultheiss, H.P., Kühl, U., Overview on chronic viral cardiomyopathy/chronic myocarditis (2006) Ernst Schering Res Found Workshop, 55, pp. 3-18; McEntee, K., Flandre, T., Dessy, C., Metabolic and structural abnormalities in dogs with early left ventricular dysfunction induced by incessant tachycardia (2001) Am J Vet Res, 62, pp. 889-894; Keene, B.W., Kittleson, M.E., Atkins, C.E., Modified transvenous endomyocardial biopsy technique in dogs (1990) Am J Vet Res, 51, pp. 1769-1772; Aretz, H.T., Billingham, M.E., Edwards, W.D., Myocarditis. A histopathologic definition and classification (1987) Am J Cardiovasc Pathol, 1, pp. 3-14; Homan, W.L., Limper, L., Verlaan, M., Comparison of the internal transcribed spacer, ITS 1, from Toxoplasma gondii isolates and Neospora caninum (1997) Parasitol Res, 83, pp. 285-289; Woodall, C.J., Maclaren, L.J., Watt, N.J., Differential levels of mRNAs for cytokines, the interleukin-2 receptor and class II DR/DQ genes in ovine interstitial pneumonia induced by maedi visna virus infection (1997) Vet Pathol, 34, pp. 204-211; Kühl, U., Pauschinger, M., Noutsias, M., High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction (2005) Circulation, 111, pp. 887-893; Nowalany-Kozielska, E., Kozieł, M., Domal-Kwiatkowska, D., Clinical significance of viral genome persistence in the myocardium of patients with dilated cardiomyopathy (2015) Inter-Virology, 58, pp. 350-356; Kirkewood, B.R., Sterne, J.A., (2003) Essential Medical Statistics. 2nd Ed., pp. 420-421. , Hoboken, NJ: Wiley-Blackwell; Bursac, Z., Gauss, C.H., Williams, D.K., Purposeful selection of variables in logistic regression (2008) Source Code Biol Med, 3, p. 17; Day, M.J., Horzinek, M.C., Schultz, R.D., WSAVA guidelines for the vaccination of dogs and cats (2016) J Small Anim Pract, 57, pp. E1-E45; Breitschwerdt, E.B., Atkins, C.E., Brown, T.T., Bartonella vinsonii subsp berkhoffii and related members of the alpha subdivision of the Proteobacteria in dogs with cardiac arrhythmias, endocarditis, or myocarditis (1999) J Clin Microbiol, 37, pp. 3618-3626; Lang, K., Sigusch, H.H., Börner, A., Minimal myocardial lesions caused by endomyocardial biopsy can be detected by a commercially available cardiac troponin-T enzyme-linked immunosorbent assay (1996) Eur J Clin Invest, 26, pp. 451-453; Robinson, W.F., Robinson, N.A., The cardiovascular system (2016) Pathology of Domestic Animals. 6th Ed., pp. 1-100. , Maxie MG, ed. St Louis: Elsevier Saunders; Kimura, Y., Fukushima, R., Hirakawa, A., Epidemiological and clinical features of the endomyocardial form of restrictive cardiomyopathy in cats: A review of 41 cases (2016) J Vet Med Sci, 78, pp. 781-784; Guedes, P.M.M., Veloso, V.M., Afonso, L.C.C., Development of chronic cardiomyopathy in canine Chagas disease correlates with high IFN-gamma, TNF-alpha, and low IL-10 production during the acute infection phase (2009) Vet Immunol Immunopathol, 130, pp. 43-52; Santilli, R.A., Porteiro Vazquez, D.M., Vezzosi, T., Long-term intrinsic rhythm evaluation in dogs with atrioventricular block (2016) J Vet Intern Med, 30, pp. 58-62; Alexander, L.K., Keene, B.W., Yount, B.L., ECG changes after rabbit coronavirus infection (1999) J Electrocardiol, 32, pp. 21-32; Sousa, M.G., Carareto, R., Silva, J.G., Assessment of the electrocardiogram in dogs with visceral leishmaniasis (2013) Pesqui Vet Bras, 33, pp. 643-647; Patterson, D.F., Detweiler, D.K., Hubben, K., Spontaneous abnormal cardiac arrhythmias and conduction disturbances in the dog. A clinical and pathologic study of 3,000 dogs (1961) Am J Vet Res, 22, pp. 355-369; Calabrese, F., Basso, C., Carturan, E., Arrhythmogenic right ventricular cardiomyopathy/dysplasia: Is there a role for viruses? (2006) Cardiovasc Pathol, 15, pp. 11-17; Chimenti, C., Frustaci, A., Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies: A retrospective study over a 28-year period (2013) Circulation, 128, pp. 1531-1541; Begieneman, M.P., Emmens, R.W., Rijvers, L., Ventricular myocarditis coincides with atrial myocarditis in patients (2016) Cardiovasc Pathol, 25, pp. 141-148; Ukena, C., Mahfoud, F., Kindermann, I., Prognostic electrocardiographic parameters in patients with suspected myocarditis (2011) Eur J Heart Fail, 13, pp. 398-405; Deckers, J.W., Hare, J.M., Baughman, K.L., Complications of transvenous right ventricular endomyocardial biopsy in adult patients with cardiomyopathy: A seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center (1992) J Am Coll Cardiol, 19, pp. 43-47; Hu, R.L., Huang, G., Qiu, W., Detection and differentiation of CAV-1 and CAV-2 by polymerase chain reaction (2001) Vet Res Commun, 25, pp. 77-84; Erles, K., Dubovi, E.J., Brooks, H.W., Study of viruses associated with canine infectious respiratory disease (2004) J Clin Microbiol, 42, pp. 4524-4529; Jensen, W.A., Fall, M.Z., Rooney, J., Rapid identification and differentiation of Bartonella species using a single-step PCR assay (2000) J Clin Microbiol, 38, pp. 1717-1722; Rijpkema, S.G., Molkenboer, M.J., Schouls, L.M., Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes (1995) J Clin Microbiol, 33, pp. 3091-3095; Pratelli, A., Tempesta, M., Greco, G., Development of a nested PCR assay for the detection of canine coronavirus (1999) J Virol Methods, 80, pp. 11-15; Schulze, C., Baumgärtner, W., Nested polymerase chain reaction and in situ hybridization for diagnosis of canine herpesvirus infection in puppies (1998) Vet Pathol, 35, pp. 209-217; Kumar, M., Nandi, S., Development of a SYBR Green based real-time PCR assay for detection and quantitation of canine parvovirus in faecal samples (2010) J Virol Methods, 169, pp. 198-201; Yi, L., Cheng, S., Xu, H., Development of a combined canine distemper virus specific RT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and genetic characterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs (2012) J Virol Methods, 179, pp. 281-287; Johnson, N., Wakeley, P.R., Mansfield, K.L., Assessment of a novel real-time pan-flavivirus RT-polymerase chain reaction (2010) Vector Borne Zoonotic Dis, 10, pp. 665-671; Di Muccio, T., Veronesi, F., Antognoni, M.T., Diagnostic value of conjunctival swab sampling associated with nested PCR for different categories of dogs naturally exposed to Leishmania infantum infection (2012) J Clin Microbiol, 50, pp. 2651-2659","Santilli, R.A.; Dipartimento di Cardiologia, Clinica Veterinaria Malpensa, Via Marconi, 27, Italy; email: r.santilli@ecgontheweb.com",,"American Veterinary Medical Association",00031488,,JAVMA,"31687895","English","J. Am. Vet. Med. Assoc.",Conference Paper,"Final",,Scopus,2-s2.0-85060656768 "Łoczechin A., Séron K., Barras A., Giovanelli E., Belouzard S., Chen Y.-T., Metzler-Nolte N., Boukherroub R., Dubuisson J., Szunerits S.","57205036619;6603256161;24474334200;55827049400;6507480311;55961742900;6701586433;8544985800;7102542575;6603003806;","Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus",2019,"ACS Applied Materials and Interfaces","11","46",,"42964","42974",,,"10.1021/acsami.9b15032","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074684272&doi=10.1021%2facsami.9b15032&partnerID=40&md5=b52729f4f4219c75adde8cd55af2c7f7","University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes, UMR 8520, IEMN, Lille, F-59000, France; Inorganic Chemistry i, Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum, 44801, Germany; University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, U1019 - UMR 8204, Lille, F-59000, France; Center of Molecular Spectroscopy and Simulation of Solvent-driven Processes (ZEMOS), Ruhr-University Bochum, Bochum, 44801, Germany","Łoczechin, A., University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes, UMR 8520, IEMN, Lille, F-59000, France, Inorganic Chemistry i, Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum, 44801, Germany; Séron, K., University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, U1019 - UMR 8204, Lille, F-59000, France; Barras, A., University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes, UMR 8520, IEMN, Lille, F-59000, France; Giovanelli, E., University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes, UMR 8520, IEMN, Lille, F-59000, France; Belouzard, S., University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, U1019 - UMR 8204, Lille, F-59000, France; Chen, Y.-T., Center of Molecular Spectroscopy and Simulation of Solvent-driven Processes (ZEMOS), Ruhr-University Bochum, Bochum, 44801, Germany; Metzler-Nolte, N., Inorganic Chemistry i, Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum, 44801, Germany; Boukherroub, R., University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes, UMR 8520, IEMN, Lille, F-59000, France; Dubuisson, J., University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, U1019 - UMR 8204, Lille, F-59000, France; Szunerits, S., University of Lille, CNRS, Centrale Lille, ISEN, University of Valenciennes, UMR 8520, IEMN, Lille, F-59000, France","Therapeutic options for the highly pathogenic human coronavirus (HCoV) infections are urgently needed. Anticoronavirus therapy is however challenging, as coronaviruses are biologically diverse and rapidly mutating. In this work, the antiviral activity of seven different carbon quantum dots (CQDs) for the treatment of human coronavirus HCoV-229E infections was investigated. The first generation of antiviral CQDs was derived from hydrothermal carbonization of ethylenediamine/citric acid as carbon precursors and postmodified with boronic acid ligands. These nanostructures showed a concentration-dependent virus inactivation with an estimated EC50 of 52 ± 8 μg mL-1. CQDs derived from 4-aminophenylboronic acid without any further modification resulted in the second-generation of anti-HCoV nanomaterials with an EC50 lowered to 5.2 ± 0.7 μg mL-1. The underlying mechanism of action of these CQDs was revealed to be inhibition of HCoV-229E entry that could be due to interaction of the functional groups of the CQDs with HCoV-229E entry receptors; surprisingly, an equally large inhibition activity was observed at the viral replication step. Copyright © 2019 American Chemical Society.","antiviral therapy; boronic acid; carbon quantum dots (CQDs); human coronavirus (HCoV); multivalent interactions","Carbon; Carbonization; Nanocrystals; Viruses; Antiviral therapy; Boronic acid; Carbon quantum dots; Coronaviruses; Multivalent interactions; Semiconductor quantum dots","Nii-Trebi, N.I., Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges (2017) BioMed Res. Int., 2017, pp. 1-15; http://www.who.int/csr/research-and-development/meeting-report-prioritization.pdf, accessed 16 September 2019; Al Hajjar, S., Ziad Memish A, Z.A., McIntosh, K., Middle East Respiratory Syndrome Coronavirus (MERS-CoV): A Perpetual Challenge (2013) Ann. Saudi Med., 33, pp. 427-436; http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-november-2017.html, accessed 16 September 2019; Mo, Y., Fisher, D., A Review of Treatment Modalities of Middle Repsiratorey Syndroms (2016) J. Antimicrob. Chemother., 71, pp. 3340-3350; Uyeki, T.M., Erlandson, K.J., Korch, G., O'Hara, M., Wathen, M., Hu-Primmer, J., Hojvat, S., Donabedian, A., Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus (2016) Emerging Infect. Dis., 22, pp. 1-6; Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., Yuen, K.-Y., Coronavirus-Drug Discovery and Therapeutic Options (2016) Nat. Rev. Drug Discovery, 15, pp. 327-347; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-Cov Spike Protein: A Key Target for Antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Lu, L., Liu, Q., Zhu, Y., Chan, K.-H., Qin, L., Li, Y., Wang, Q., Jiang, S., Structures-Based Discovery of Middle East Repiratory Syndrome Coronavirus Fusion Inhibitor (2014) Nat. Commun., 5 (3067), pp. 1-15; Szunerits, S., Barras, A., Khanal, M., Pagneux, Q., Boukherroub, R., Nanostructures for the Inhibition of Viral Infections (2015) Molecules, 20, pp. 14051-14081; Lim, S.Y., Shen, W., Gao, Z., Carbon Quantum Dots and Their Applications (2015) Chem. Soc. Rev., 44, pp. 362-381; Barras, A., Pagneux, Q., Sane, F., Wang, Q., Boukherroub, R., Hober, D., Szunerits, S., High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1 (2016) ACS Appl. Mater. Interfaces, 8, pp. 9004-9013; Fahmi, M.Z., Sukmayani, W., Qamariyah Khairunisa, S., Witaningrum, A.M., Indriati, D.W., Matondang, M.Q.Y., Chang, J.-Y., Kameokaf, M., Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry (2016) RSC Adv., 6, pp. 92996-93002; Du, T., Liang, J., Dong, N., Liu, L., Fang, L., Xiao, S., Ha, H., Carbon Dots As Inhibitors of Virus by Activation of Type i Interferon Response (2016) Carbon, 110, pp. 278-285; Trippier, P.C., Balzarini, J., McGuigan A, C., Phenylboronic-Acid-Based Carbohydrate Binders As Antiviral Therapeutics: Bisphenylboronic Acids (2011) Chem. Chemother., 21, pp. 129-142; Khanal, M., Barras, A., Vausseilin, T., Fénéant, L., Boukherroub, R., Siriwardena, A., Dubuisson, J., Szunerits, S., Boronic Acid-Modified Lipid Nanocapsules: A Novel Platform for the Highly Efficient Inhibition of Hepatitis C Viral Entry (2015) Nanoscale, 7, pp. 1392-1402; Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj R, R., Chand S, S., Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices (2011) J. Am. Chem. Soc., 133, pp. 9960-9963; Yaoping, H., Jing, Y., Jiangwei, T., Jun-Sheng, Y., How Do Nitrogen-Doped Carbon Dots Generate from Molecular Precursors? An Investigation of the Formation Mechanism and A Solution-Based Large-Scale Synthesis (2015) J. Mater. Chem. B, 3, pp. 5608-5614; Hu, C., Liu, Y., Yang, Y., Cui, J., Huang, Z., Wang, Y., Yang, L., Rong, J., One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots from Oxidized Debris of Graphene Oxide (2013) J. Mater. Chem. B, 1, pp. 39-42; Wang, S., Cole, I.S., Zhao, D., Li, Q., The Dual Roles of Functional Groups in the Photoluminescence of Graphene Quantum Dots (2016) Nanoscale, 8 (14), pp. 7449-7458; Kim, T.H., White, A.R., Sirdaarta, J.P., Ji, W., Cock, I.E., St. John, J., Boyd, S.E., Li, Q., Yellow-Emitting Carbon Nanodots and Their Flexible and Transparent Films for White LEDs (2016) ACS Appl. Mater. Interfaces, 8, pp. 33102-33111; Agalave, S.G., Maujan, S.R., Pore, V.S., Click Chemistry: 1,2,3-Triazoles as Pharmacophores (2011) Chem. - Asian J., 6, pp. 2696-2718; Hilimire, T.A., Chamberlain, J.M., Anokhina, V., Bennett, R.P., Myers, J.R., Ashton, J.M., Stewart, R.A., Miller, B.L., HIV-1 Frameshift RNA-Targeted Triazoles Inhibit Propagation of Replication-Competent and Multi-Drug-Resistant HIV in Human Cells (2017) ACS Chem. Biol., 12, pp. 1674-1682. , O, S; Yan, J., Fang, H., Wang, B., Boronolectins and Fluorescent Boronolectins: An Examination of the Detailed Chemistry Issues Important for the Design (2005) Med. Res. Rev., 25, pp. 490-520; O'Keefe, B.R., Giomarelli, B., Barnard, D.L., Shenoy, S.R., Chan, P.K.S., McMahon, J.B., Palmer, K.E., McCray, P.B., Broad-Spectrum in Vitro Activity and in Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae (2010) J. Virol., 84, pp. 2511-2521; Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Lee, S.-T., Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design (2010) Angew. Chem., Int. Ed., 49, pp. 4430-4434; Shen, P., Xia, Y., Synthesis-Modification Integration: One-Step Fabrication of Boronic Acid Functionalized Carbon Dots for Fluorescent Blood Sugar Sensing (2014) Anal. Chem., 86, pp. 5323-5329; Wang, Y., Lu, L., Peng, H., Xu, J., Wang, F., Qi, R., Xu, Z., Zhang, W., Multi-Doped Carbon Dots with Ratiometric Ph Sensing Properties for Monitoring Enzyme Catalytic Reactions (2016) Chem. Commun., 52, pp. 9247-9250; De Moor, J.E., Van Der Kelen, P., Studies on Trivalent Boron Compounds II. Dipole Moment Measurements (1967) J. Organomet. Chem., 9, pp. 23-29; Beachell, H.C., Beistel, D.W., Nuclear Magnetic Resonance Spectra of Phenylboronic Acids (1964) Inorg. Chem., 3, pp. 1028-1032; Good, C.D., Ritter, D.M., Alkenylboranes. II. Improved Preparative Methods and New Observations on Methylvinylboranes (1962) J. Am. Chem. Soc., 84, pp. 1162-1166; Wang, Y., Lu, L., Peng, H., Xu, J., Wang, F., Qi, R., Xu, Z., Zhang, W., Multi-Doped Carbon Dots with Ratiometric Ph Sensing Properties for Monitoring Enzyme Catalytic Reactions (2016) Chem. Commun., 52, pp. 9247-9250; Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Yang, B., Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging (2013) Angew. Chem., Int. Ed., 52, pp. 3953-3957; Khanal, M., Vausselin, T., Barras, A., Bande, O., Turcheniuk, K., Benazza, M., Zaitsev, V., Szunerits, S., Phenylboronic-Acid-Modified Nanoparticles: Potential Antiviral Therapeutics (2013) ACS Appl. Mater. Interfaces, 5, pp. 12488-12498","Séron, K.; University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, U1019 - UMR 8204France; email: karin.seron@ibl.cnrs.fr",,"American Chemical Society",19448244,,,"31633330","English","ACS Appl. Mater. Interfaces",Article,"Final",Open Access,Scopus,2-s2.0-85074684272 "Giersing B.K., Vekemans J., Nava S., Kaslow D.C., Moorthy V., the WHO Product Development for Vaccines Advisory Committee","6507433608;7003555847;57189098796;7005919154;57191861075;","Report from the World Health Organization's third Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 8–10th June 2016",2019,"Vaccine","37","50",,"7315","7327",,10,"10.1016/j.vaccine.2016.10.090","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014249666&doi=10.1016%2fj.vaccine.2016.10.090&partnerID=40&md5=ffa020721c7321ca64e0ad016dceaa14","Initiative for Vaccine Research, World Health Organization, Geneva 27, CH-1211, Switzerland; University of Texas Medical Branch, Galveston, TX, United States; PATH, Seattle, WA 98109, United States","Giersing, B.K., Initiative for Vaccine Research, World Health Organization, Geneva 27, CH-1211, Switzerland; Vekemans, J., Initiative for Vaccine Research, World Health Organization, Geneva 27, CH-1211, Switzerland; Nava, S., University of Texas Medical Branch, Galveston, TX, United States; Kaslow, D.C., PATH, Seattle, WA 98109, United States; Moorthy, V., Initiative for Vaccine Research, World Health Organization, Geneva 27, CH-1211, Switzerland; the WHO Product Development for Vaccines Advisory Committee","The third meeting of WHO's Product Development for Vaccines Advisory Committee (PDVAC) was held in June 2016, with a remit to revisit the pathogen areas for which significant progress has occurred since recommendations from the 2015 meeting, as well as to consider new advances in the development of vaccines against other pathogens. Since the previous meeting, significant progress has been made with regulatory approvals of the first malaria and dengue vaccines, and the first phase III trials of a respiratory syncytial virus (RSV) vaccine candidate has started in the elderly and pregnant women. In addition, PDVAC has also supported vaccine development efforts against important emerging pathogens, including Middle Eastern Coronavirus (MERS CoV) and Zika virus. Trials of HIV and tuberculosis vaccine candidates are steadily progressing towards pivotal data points, and the leading norovirus vaccine candidate has entered a phase IIb efficacy study. WHO's Immunization, Vaccine and Biologicals (IVB) department is actively working in several pathogen areas on the recommendation of PDVAC, as well as continuing horizon scanning for advances in the development of vaccines that may benefit low and middle income countries (LMICs), such as the recent licensure of the enterovirus 71 (EV71) vaccine in China. Following on from discussions with WHO's Strategic Advisory Group of Experts (SAGE) on Immunization, PDVAC will also look beyond licensure and consider data needs for vaccine recommendation and implementation to reduce the delay between vaccine approval and vaccine impact. © 2017 World Health Organization","Bacterial; LMICs; PDVAC; Product development; SAGE; Vaccine; Viral","bacterial vaccine; BCG vaccine; dengue vaccine; Ebola vaccine; Escherichia coli vaccine; Helicobacter pylori vaccine; herpes simplex vaccine; Human immunodeficiency virus vaccine; influenza vaccine; malaria vaccine; respiratory syncytial virus vaccine; Rotavirus vaccine; Shigella vaccine; Staphylococcus vaccine; Streptococcus vaccine; virus vaccine; Zika virus vaccine; antibiotic resistance; China; chlamydiasis; Clostridium difficile infection; Conference Paper; Coronavirus infection; dengue; drug approval; drug efficacy; drug safety; Ebola hemorrhagic fever; Enterovirus infection; Escherichia coli infection; group A streptococcal infection; group B streptococcal infection; health care planning; Helicobacter infection; herpes simplex; human; Human immunodeficiency virus infection; immunization; influenza; low income country; malaria; middle income country; nonhuman; norovirus infection; pregnant woman; priority journal; product development; respiratory syncytial virus infection; Rotavirus infection; shigellosis; Staphylococcus aureus infection; tuberculosis; World Health Organization; Zika fever","http://www.who.int/immunization_standards/vaccine_quality/TRS_978_61st_report_Annex_6_PQ_vaccine_procedure.pdf?ua=1, Procedure for assessing the acceptability, in principle, of vaccines for purchase by United Nations agencies. <>; http://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf, Tackling drug resistant infections globally: Final report and recommendation. <>; Lipsitch, M., Siber, G.R., How can vaccines contribute to solving the antimicrobial resistance problem? (2016) MBio, 7 (3); http://who.int/immunization/research/vaccine_pipeline_tracker_spreadsheet/en/, WHO Vaccine Pipeline tracker. <>; , pp. 2863-3006. , Giersing Birgitte K, Modjarrad Kayvon, Moorthy Vasee S, WHO Product Development for Vaccines Advisory Committee (PDVAC) Pipeline Analyses for 25 Pathogens, vol. 34(26); (2015), http://www.who.int/wer/2015/wer9050.pdf?ua=1, Weekly epidemiological record, 11 Dec 2015, No. 50 90, 681–700. <>; (2016), http://www.who.int/wer/2016/wer9121.pdf?ua=1, Weekly epidemiological record 27 May 2016, No 21 91, 265–284. <>; O'Brien, K., Binka, F., Marsh, K., Abramson, J.S., (2016), 387 (10031), pp. 1887-9. , Mind the gap: jumping from vaccine licensure to routine use; http://www.who.int/immunization/global_vaccine_action_plan/DoV_GVAP_2012_2020/en/, <>; SAGE, G.V., http://www.who.int/immunization/global_vaccine_action_plan/SAGE_GVAP_Assessment_Report_2015_EN.pdf, AP Assessment Report 2015. <>; Global, T.B., http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1, Report 2015. <>; http://www.who.int/tb/End_TB_brochure.pdf, The End TB Strategy. <>; Knight, G.M., Impact and cost-effectiveness of new tuberculosis vaccines in low- and middle-income countries (2014) Proc Natl Acad Sci USA, 111 (43), pp. 15520-15525; Evans, T.G., Schrager, L., Thole, J., Status of vaccine research and development of vaccines for tuberculosis (2016) Vaccine, 34 (26), pp. 2911-2914. , Evans PDVAC paper; Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand (2009) N Engl J Med, 361 (23), pp. 2209-2220; https://www.niaid.nih.gov/news-events/first-new-hiv-vaccine-efficacy-study-seven-years-has-begun, <>; http://apps.who.int/iris/bitstream/10665/200018/1/9789241565158_eng.pdf?ua=1, WHO World Malaria Report 2015: <>; Report from the World Health Organization's Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 7–9th Sep 2015. Giersing BK, Modjarrad K, Kaslow DC, Moorthy VS et al. Vaccine, 2016 Jun 3;34(26):2865–9; http://www.who.int/immunization/topics/malaria/vaccine_roadmap/TRM_update_nov13.pdf?ua=1, Malaria vaccine roadmap: <>; http://www.who.int/immunization/research/meetings_workshops/8th_influenza_vaccine_chicago2016/en/, WHO global consultation on universal influenza vaccines, August 2016. <>; http://collections.plos.org/norovirus, The Global Burden of Norovirus & Prospects for Vaccine Development. <>; Lopman, B.A., Steele, D., Kirkwood, C.D., Parashar, U.D., The vast and varied global burden of norovirus: prospects for prevention and control (2016) PLoS Med, 13 (4), p. e1001999; https://www.takeda.com/news/2016/20160620_7467.html; Tate, J.E., Burton, A.H., Boschi-Pinto, C., Global, regional, and national estimates of rotavirus mortality in children <5 Years of Age, 2000–2013 (2016) Clin Infect Dis, 1 (62), pp. S96-S105; http://www.who.int/biologicals/publications/trs/areas/vaccines/rotavirus/Annex%203%20rotavirus%20vaccines.pdf?ua=1, WHO guidance document for the quality, safety and efficacy of oral live attenuated rotavirus vaccines. <>; Lessa, F.C., Gould, C.V., McDonald, L.C., Current status of Clostridium difficile infection epidemiology (2012) Clin Infect Dis, 55, pp. S65-S70; de Bruyn, G., Saleh, J., Workman, D., Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: a randomized Phase 2 clinical trial (2016) Vaccine, 34 (19), pp. 2170-2178. , 27; Sheldon, E., Kitchin, N., Peng, Y., A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults (2016) Vaccine, 34 (18), pp. 2082-2091; Bézay, N., Ayad, A., Dubischar, K., Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers (2016) Vaccine, 34 (23), pp. 2585-2592; http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx; Zeng, M., Mao, X.H., Li, J.X., Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial (2015) Lancet, 386, pp. 1457-1464; , 33 (47), pp. 6371-6502. , Edited by M. Nesin, J. Read, M. Koso-Thomas, M. Brewinski Isaacs and A. Sobanjo-ter Meulen Advancing Maternal Immunization Programs through Research in Low and Medium Income Countries Pages; Nair, H., Nokes, D.J., Gessner, B.D., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis (2010) Lancet, 375 (9725), pp. 1545-1555; http://www.uu.nl/en/news/first-consortium-of-local-manufacturers-to-make-affordable-biosimilars-available-for-low-income; Kobayashia Miwako, Schrag Stephanie J, Vekemans Johan, Moorthy Vasee S. WHO consultation on Group B Streptococcus vaccine development: report from a meeting held on 27–28 April 2016, Vekemans (in preparation); https://brightoncollaboration.org/public/what-we-do/Projects/Gaia.html, Global Alignment of Immunization Safety Assessment in Pregnancy: <>; http://www.aeras.org/img/uploads/attachments/120/tb_vaccine_rd_business_case_2014_2.pdf, TB Vaccine Research & Development: A Business Case for Investment. <>; http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1, Global Action Plan on Antimicrobial Resistance: <>; Pendleton, J.N., Gorman, S.P., Gilmore, B.F., Clinical relevance of the ESKAPE pathogens (2013) Expert Rev Anti-infective Ther, 11 (3), pp. 297-308; Seale, A.C., Davies, M.R., Anampiu, K., Invasive group A streptococcus infection among children, Rural Kenya (2016) Emerg Infect Dis, 22 (2), pp. 224-232; Anderson, A.S., Miller, A.A., Donald, R.G., Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors (2012) Hum Vaccin Immunother, 8 (11), pp. 1585-1594; http://apps.who.int/gb/ebwha/pdf_files/WHA69/A69_33-en.pdf?ua=1, Global Health Sector Strategy on Sexually Transmitted Infections <>; Gottlieb, S.L., Deal, C.D., Giersing, B., The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps (2016) Vaccine, 34 (26), pp. 2939-2947; Looker, K.J., Magaret, A.S., Turner, K.M., Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012 (2015) PLoS ONE, 10 (1), p. e114989; Looker, K.J., Magaret, A.S., May, M.T., Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012 (2015) PLoS ONE, 10 (10), p. e0140765; http://www.genocea.com/platform-pipeline/pipeline/gen003-for-genital-herpes/; Newman, L., Rowley, J., Vander Hoorn, S., Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting (2015) PLoS ONE, 10 (12), p. e0143304; Cates, W., Jr., Washington, A.E., Rubin, G.L., Peterson, H.B., The pill, chlamydia and PID (1985) Fam Plann Perspect, 17 (4), pp. 175-176; Xing, W., Liao, Q., Viboud, C., Hand, foot, and mouth disease in China, 2008–12: an epidemiological study (2014) Lancet Infect Dis, 14 (4), pp. 308-318; Li, R., Liu, L., Mo, Z., An inactivated enterovirus 71 vaccine in healthy children (2014) N Engl J Med, 370 (9), pp. 829-837; Zhu, F., Xu, W., Xia, J., Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China (2014) N Engl J Med, 370 (9), pp. 818-828; http://ecdc.europa.eu/en/publications/Publications/07-06-2016-RRA-Enterovirus%2071-Spain.pdf; WHO, R., Roadmap, D., http://www.who.int/csr/research-and-development/WHO-R_D-Final10.pdf?ua=1, <>; Modjarrad, K., Moorthy, V.S., Ben Embarek, P., A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation (2016) Nat Med, 22 (7), pp. 701-705; Henao-Restrepo, A.M., Preziosi, M.P., Wood, D., On a path to accelerate access to Ebola vaccines: the WHO's research and development efforts during the 2014–2016 Ebola epidemic in West Africa (2016) Curr Opin Virol, 17, pp. 138-144; http://www.who.int/immunization/research/development/zika/en/; Vannice, K.S., Giersing, B.K., Kaslow, D.C., Meeting Report: WHO consultation on considerations for regulatory expectations of Zika virus vaccines for use during an emergency (2019) Vaccine, 37, pp. 7443-7450; Black, R.E., Cousens, S., Johnson, H.L., Global, regional, and national causes of child mortality in 2008: a systematic analysis (2010) Lancet, 375 (9730), pp. 1969-1987; http://www.who.int/gho/immunization/en/; Lanzieri, T.M., Dollard, S.C., Bialek, S.R., Grosse, S.D., Systematic review of the birth prevalence of congenital cytomegalovirus infection in developing countries (2014) Int J Infect Dis, 22, pp. 44-48","Moorthy, V.; World Health Organization, Initiative for Vaccine Research, 20 Avenue Appia, Switzerland; email: moorthyv@who.int",,"Elsevier Ltd",0264410X,,VACCD,"28262332","English","Vaccine",Conference Paper,"Final",Open Access,Scopus,2-s2.0-85014249666 "Zhao S., Smits C., Schuurman N., Barnum S., Pusterla N., Van Kuppeveld F., Bosch B.-J., Van Maanen K., Egberink H.","57210714952;57212148938;36763486200;57195680555;7005591152;7004255109;7003681993;6602635031;7004767057;","Development and validation of a S1 protein-based ELISA for the specific detection of antibodies against equine coronavirus",2019,"Viruses","11","12", 1109,"","",,1,"10.3390/v11121109","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076057401&doi=10.3390%2fv11121109&partnerID=40&md5=92e57071ebeab8c0069e0a294f483e9d","Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584CL, Netherlands; GD Animal Health, Department of Small Ruminants, Horses and Companion Animals, Arnsbergstraat 7, Deventer, 7418EZ, Netherlands; Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States","Zhao, S., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584CL, Netherlands; Smits, C., GD Animal Health, Department of Small Ruminants, Horses and Companion Animals, Arnsbergstraat 7, Deventer, 7418EZ, Netherlands; Schuurman, N., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584CL, Netherlands; Barnum, S., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Pusterla, N., Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis, CA 95616, United States; Van Kuppeveld, F., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584CL, Netherlands; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584CL, Netherlands; Van Maanen, K., GD Animal Health, Department of Small Ruminants, Horses and Companion Animals, Arnsbergstraat 7, Deventer, 7418EZ, Netherlands; Egberink, H., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584CL, Netherlands","Equine coronavirus (ECoV) is considered to be involved in enteric diseases in foals. Recently, several outbreaks of ECoV infection have also been reported in adult horses from the USA, France and Japan. Epidemiological studies of ECoV infection are still limited, and the seroprevalence of ECoV infection in Europe is unknown. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) method utilizing ECoV spike S1 protein was developed in two formats, and further validated by analyzing 27 paired serum samples (acute and convalescent sera) from horses involved in an ECoV outbreak and 1084 sera of horses with unknown ECoV exposure. Both formats showed high diagnostic accuracy compared to virus neutralization (VN) assay. Receiver-operating characteristic (ROC) analyses were performed to determine the best cut-off values for both ELISA formats, assuming a test specificity of 99%. Employing the developed ELISA method, we detected seroconversion in 70.4% of horses from an ECoV outbreak. Among the 1084 horse sera, seropositivity varied from 25.9% (young horses) to 82.8% (adult horses) in Dutch horse populations. Further, sera of Icelandic horses were included in this study and a significant number of sera (62%) were found to be positive. Overall, the results demonstrated that the ECoV S1-based ELISA has reliable diagnostic performance compared to the VN assay and is a useful assay to support seroconversion in horses involved with ECoV outbreaks and to estimate ECoV seroprevalence in populations of horses. © 2019 by the authors.","ELISA; Equine coronavirus; Seroprevalence; Spike S1 protein; Virus neutralization","antibody conjugate; neutralizing antibody; ribosome protein; S1 protein; unclassified drug; amino acid sequence; animal experiment; antibody detection; Article; controlled study; Coronavirinae; Coronavirus infection; cytopathogenic effect; diagnostic accuracy; enzyme linked immunosorbent assay; Equus; horse; human; human cell; nonhuman; plasmid; polyacrylamide gel electrophoresis; protein expression; receiver operating characteristic; sensitivity and specificity; seroconversion; seroprevalence; virus load; virus neutralization","Cui, J., Li, F., Shi, Z.L., Origin and evolution of pathogenic coronaviruses (2019) Nat. Rev. Microbiol., 17, pp. 181-192; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24, pp. 490-502; Zhang, J., Guy, J.S., Snijder, E.J., Denniston, D.A., Timoney, P.J., Balasuriya, U.B.R., Genomic characterization of equine coronavirus (2007) Virology, 369, pp. 92-104; Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S., Smith, L.G., Characterization of a coronavirus isolated from a diarrheic foal (2000) J. Clin. Microbiol., 38, pp. 4523-4526; Oue, Y., Ishihara, R., Edamatsu, H., Morita, Y., Yoshida, M., Yoshima, M., Hatama, S., Kanno, T., Isolation of an equine coronavirus from adult horses with pyrogenic and enteric disease and its antigenic and genomic characterization in comparison with the NC99 strain (2011) Vet. Microbiol., 150, pp. 41-48; Miszczak, F., Tesson, V., Kin, N., Dina, J., Balasuriya, U.B.R., Pronost, S., Vabret, A., First detection of equine coronavirus (ECoV) in Europe (2014) Vet. Microbiol., 171, pp. 206-209; Pusterla, N., Mapes, S., Wademan, C., White, A., Ball, R., Sapp, K., Burns, P., Bartol, J., Emerging outbreaks associated with equine coronavirus in adult horses (2013) Vet. Microbiol., 162, pp. 228-231; Oue, Y., Morita, Y., Kondo, T., Nemoto, M., Epidemic of equine coronavirus at obihiro racecourse, hokkaido, Japan in 2012 (2013) J. Vet. Med. Sci., 75, pp. 1261-1265; Nemoto, M., Schofield, W., Cullinane, A., The first detection of equine coronavirus in adult horses and foals in Ireland (2019) Viruses, 11, p. 946; Pusterla, N., Vin, R., Leutenegger, C.M., Mittel, L.D., Divers, T.J., Enteric coronavirus infection in adult horses (2018) Vet. J., 231, pp. 13-18; Pusterla, N., James, K., Mapes, S., Bain, F., Frequency of molecular detection of equine coronavirus in faeces and nasal secretions in 277 horses with acute onset of fever (2019) Vet. Rec., 184, p. 385; Fielding, C.L., Higgins, J.K., Higgins, J.C., Mcintosh, S., Scott, E., Giannitti, F., Mete, A., Pusterla, N., Disease associated with equine coronavirus infection and high case fatality rate (2015) J. Vet. Intern. Med., 29, pp. 307-310; Berryhill, E.H., Magdesia, K.G., Aleman, M., Pusterla, N., Clinical presentation, diagnostic findings, and outcome of adult horses with equine coronavirus infection at a veterinary teaching hospital: 33 cases (2012-2018) (2019) Vet. J., 248, pp. 95-100; Sanz, M.G., Kwon, S.Y., Pusterla, N., Gold, J.R., Bain, F., Evermann, J., Evaluation of equine coronavirus fecal shedding among hospitalized horses (2019) J. Vet. Intern. Med., 33, pp. 918-922; Nemoto, M., Oue, Y., Morita, Y., Kanno, T., Kinoshita, Y., Niwa, H., Ueno, T., Tsujimura, K., Experimental inoculation of equine coronavirus into Japanese draft horses (2014) Arch. Virol., 159, pp. 3329-3334; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Moatasim, Y., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Eurosurveillance, 18, p. 20574; Payne, D.C., Iblan, I., Rha, B., Alqasrawi, S., Haddadin, A., Al-Nsour, M., Alsanouri, T., Miao, C., Persistence of antibodies against middle east respiratory syndrome coronavirus (2016) Emerg. Infect. Dis., 22, pp. 1824-1826; Tråvén, M., Näslund, K., Linde, N., Linde, B., Silván, A., Fossum, C., Hedlund, K.O., Larsson, B., Experimental reproduction of winter dysentery in lactating cows using BCV-comparison with BCV infection in milk-fed calves (2001) Vet. Microbiol., 81, pp. 127-151; Dortmans, J.C.F.M., Li, W., Van-Der-Wolf, P.J., Buter, G.J., Franssen, P.J.M., Van-Schaik, G., Houben, M., Bosch, B.J., Porcine epidemic diarrhea virus (PEDV) introduction into a naive Dutch pig population in 2014 (2018) Vet. Microbiol., 221, pp. 13-18; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Corman, V.M., Middle east respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866; Leung, G.M., Chung, P.H., Tsang, T., Lim, W., Chan, S.K.K., Chau, P., Donnelly, C.A., Riley, S., SARS-CoV antibody prevalence in all Hong Kong patient contacts (2004) Emerg. Infect. Dis., 10, pp. 1653-1656; Walls, A.C., Tortorici, M.A., Bosch, B.-J., Frenz, B., Rottier, P.J.M., Di-Maio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Hulswit, R.J.G., De-Haan, C.A.M., Bosch, B.-J., Coronavirus spike protein and tropism changes (2016) Advances in Virus Research, 96, pp. 29-57. , Elsevier: Amsterdam, The Netherlands; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; Meyer, B., Drosten, C., Müller, M.A., Serological assays for emerging coronaviruses: Challenges and pitfalls (2014) Virus Res., 194, pp. 175-183; Zhao, S., Li, W., Schuurman, N., Van-Kuppeveld, F., Bosch, B.-J., Egberink, H., Serological screening for coronavirus infections in cats (2019) Viruses, 11, p. 743; Kooijman, L.J., Mapes, S.M., Pusterla, N., Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses (2016) J. Vet. Diagn. Invest, 28, pp. 414-418; Bryan, J., Marr, C.M., Mackenzie, C.J., Mair, T.S., Fletcher, A., Cash, R., Phillips, M., Foote, A.K., Detection of equine coronavirus in horses in the United Kingdom (2019) Vet. Rec., 184, p. 123; Wurm, F.M., Production of recombinant protein therapeutics in cultivated mammalian cells (2004) Nat. Biotechnol., 22, pp. 1393-1398; Reusken, C., Mou, H., Godeke, G., Van-Der-Hoek, L., Meyer, B., Müller, M., Haagmans, B., Dittmer, U., Specific serology for emerging human coronaviruses by protein microarray (2013) Eurosurveillance, 18, p. 20441; Okba, N.M.A., Raj, V.S., Widjaja, I., Geurtsvan-Kessel, C.H., De-Bruin, E., Chandler, F.D., Park, W.B., Al-Hajri, M., Sensitive and specific detection of low-level antibody responses in mild middle east respiratory syndrome coronavirus infections (2019) Emerg. Infect. Dis., 25, pp. 1868-1877; Hemida, M.G., Chu, D.K.W., Perera, R.A.P.M., Ko, R.L.W., So, R.T.Y., Ng, B.C.Y., Chan, S.M.S., Alhammadi, M.A., Coronavirus infections in horses in Saudi Arabia and Oman (2017) Transbound. Emerg. Dis., 64, pp. 2093-2103; Kooijman, L.J., James, K., Mapes, S.M., Theelen, M.J.P., Pusterla, N., Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA (2017) Vet. J., 220, pp. 91-94; He, Y., Zhou, Y., Wu, H., Luo, B., Chen, J., Li, W., Jiang, S., Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: Implication for developing SARS diagnostics and vaccines (2004) J. Immunol., 173, pp. 4050-4057; He, Y., Li, J., Heck, S., Lustigman, S., Jiang, S., Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: Implication for vaccine design (2006) J. Virol., 80, pp. 5757-5767; Bass, E.P., Sharpee, R.L., Coronavirus and gastroenteritis in foals (1975) Lancet (London, England), 2, p. 822; Durham, P.J.K., Stevenson, B.J., Farquharson, B.C., Rotavirus and coronavirus associated diarrhoea in domestic animals (1979) N. Z. Vet. J., 27, pp. 30-32; Huang, J.C., Wright, S.L., Shipley, W.D., Isolation of coronavirus-like agent from horses suffering from acute equine diarrhoea syndrome (1983) Vet. Rec., 113, pp. 262-263; Mair, T.S., Taylor, F.G., Harbour, D.A., Pearson, G.R., Concurrent cryptosporidium and coronavirus infections in an arabian foal with combined immunodeficiency syndrome (1990) Vet. Rec., 126, pp. 127-130; Björnsdóttir, S., Harris, S.R., Svansson, V., Gunnarsson, E., Sigurdardóttir, O.G., Gammeljord, K., Steward, K.F., Charbonneau, A.R.L., Genomic dissection of an icelandic epidemic of respiratory disease in horses and associated zoonotic cases (2017) MBio, p. 8","Van Maanen, K.; GD Animal Health, Department of Small Ruminants, Horses and Companion Animals, Arnsbergstraat 7, Netherlands; email: c.v.maanen@gddiergezondheid.nl",,"MDPI AG",19994915,,,"31801275","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85076057401 "So R.T.Y., Chu D.K.W., Miguel E., Perera R.A.P.M., Oladipo J.O., Fassi-Fihri O., Aylet G., Ko R.L.W., Zhou Z., Cheng M.-S., Kuranga S.A., Roger F.L., Chevalier V., Webby R.J., Woo P.C.Y., Poon L.L.M., Peiris M.","57193613725;7201734326;55508587300;43861730800;57003293300;6603071678;57211772088;57193609536;57204118575;57211774205;7801633865;56216788500;55884078800;35448064800;7201801340;7005441747;7005486823;","Diversity of dromedary camel coronavirus HKU23 in African camels revealed multiple recombination events among closely related betacoronaviruses of the subgenus embecovirus",2019,"Journal of Virology","9","23", e01236-19,"","",,,"10.1128/JVI.01236-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074962491&doi=10.1128%2fJVI.01236-19&partnerID=40&md5=5838b99b7490118f43923fc6d901e00b","School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France; MIVEGEC Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, IRD L'Institut de Recherche pour le Développement, CNRS Centre National de Recherche Scientifique, Universitè de Montpellier, Montpellier, France; Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria; Institut Agronomique et Vétérinaire, Hassan II Université, Rabat, Morocco; Pan African Veterinary Center of the African Union (AU-PANVAC), Debre Zeit, Ethiopia; Kasetsart University, Bangkok, Thailand; Institut Pasteur du Cambodge, Phnom Penh, Cambodia; St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong","So, R.T.Y., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Chu, D.K.W., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Miguel, E., MIVEGEC Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, IRD L'Institut de Recherche pour le Développement, CNRS Centre National de Recherche Scientifique, Universitè de Montpellier, Montpellier, France; Perera, R.A.P.M., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Oladipo, J.O., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria; Fassi-Fihri, O., Institut Agronomique et Vétérinaire, Hassan II Université, Rabat, Morocco; Aylet, G., Pan African Veterinary Center of the African Union (AU-PANVAC), Debre Zeit, Ethiopia; Ko, R.L.W., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Zhou, Z., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Cheng, M.-S., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Kuranga, S.A., Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria; Roger, F.L., Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France, Kasetsart University, Bangkok, Thailand; Chevalier, V., Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; Webby, R.J., St. Jude Children's Research Hospital, Memphis, TN, United States; Woo, P.C.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Poon, L.L.M., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong; Peiris, M., School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong","Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3= end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV). IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution. Copyright © 2019 American Society for Microbiology. All Rights Reserved.","Betacoronaviruses; Coronaviruses; Dromedary camels; Evolution; Phylogeny; Recombination","Article; Betacoronavirus; camel; Coronavirinae; Ethiopia; gene identification; gene sequence; gene structure; genetic recombination; geography; microbial diversity; Morocco; Nigeria; nonhuman; open reading frame; priority journal; virus genome; virus recombination; 3' untranslated region; Betacoronavirus; dromedary; dromedary camel coronavirus HKU23; Embecovirus; geographic distribution; human; Middle East respiratory syndrome coronavirus; rabbit coronavirus HKU14; structural homology; virus identification; virus recombination; virus virulence","Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , https://doi.org/10.1038/s41586-018-0010-9; Vijgen, L., Keyaerts, E., Moes, E., Thoelen, I., Wollants, E., Lemey, P., Vandamme, A.M., Van Ranst, M., Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event (2005) J Virol, 79, pp. 1595-1604. , https://doi.org/10.1128/JVI.79.3.1595-1604.2005; Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., Juma Ngeiywa, K.J., Drosten, C., Link of a ubiquitous human coronavirus to dromedary camels (2016) Proc Natl Acad Sci U S A, 113, pp. 9864-9869. , https://doi.org/10.1073/pnas.1604472113; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., Stohr, K., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441. , https://doi.org/10.1056/NEJMra032498; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102, pp. 14040-14045. , https://doi.org/10.1073/pnas.0506735102; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Shi, Z.L., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , https://doi.org/10.1038/nature12711; Makino, S., Keck, J.G., Stohlman, S.A., Lai, M.M., High-frequency RNA recombination of murine coronaviruses (1986) J Virol, 57, pp. 729-737; Cheng, C.P., Nagy, P.D., Mechanism of RNA recombination in carmo- And tombusviruses: Evidence for template switching by the RNA-dependent RNA polymerase in vitro (2003) J Virol, 77, pp. 12033-12047. , https://doi.org/10.1128/jvi.77.22.12033-12047.2003; Fu, K., Baric, R.S., Evidence for variable rates of recombination in the MHV genome (1992) Virology, 189, pp. 88-102. , https://doi.org/10.1016/0042-6822(92)90684-h; Kempf, B.J., Peersen, O.B., Barton, D.J., Poliovirus polymerase Leu420 facilitates RNA recombination and ribavirin resistance (2016) J Virol, 90, pp. 8410-8421. , https://doi.org/10.1128/JVI.00078-16; Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D., Baric, R.S., Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity (2011) RNA Biol, 8, pp. 270-279. , https://doi.org/10.4161/rna.8.2.15013; Luytjes, W., Bredenbeek, P.J., Noten, A.F., Horzinek, M.C., Spaan, W.J., Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronaviruses and influenza C virus (1988) Virology, 166, pp. 415-422. , https://doi.org/10.1016/0042-6822(88)90512-0; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820. , https://doi.org/10.1056/NEJMoa1211721; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill, 18. , https://doi.org/10.2807/1560-7917.es2013.18.36.20574, pii=20574; Reusken, C.B.E.M., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect Dis, 13, pp. 859-866. , https://doi.org/10.1016/S1473-3099(13)70164-6; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation (2014) Lancet Infect Dis, 14, pp. 140-145. , https://doi.org/10.1016/S1473-3099(13)70690-X; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., Channappanavar, R., Peiris, M., 5 March 2018, posting date. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity Proc Natl Acad Sci U S A, , https://doi.org/10.1073/pnas.1718769115; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , https://doi.org/10.1126/science.aac8608; Woo, P.C., Lau, S.K., Wernery, U., Wong, E.Y., Tsang, A.K., Johnson, B., Yip, C.C., Yuen, K.Y., Novel betacoronavirus in dromedaries of the Middle East, 2013 (2014) Emerg Infect Dis, 20, pp. 560-572. , https://doi.org/10.3201/eid2004.131769; Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H., Lau, S.K., Peiris, J.S., Identification of a novel coronavirus in bats (2005) J Virol, 79, pp. 2001-2009. , https://doi.org/10.1128/JVI.79.4.2001-2009.2005; Simmonds, P., SSE: A nucleotide and amino acid sequence analysis platform (2012) BMC Res Notes, 5, p. 50. , https://doi.org/10.1186/1756-0500-5-50; Fu, K., Baric, R.S., Map locations of mouse hepatitis virus temperature-sensitive mutants: Confirmation of variable rates of recombination (1994) J Virol, 68, pp. 7458-7466; Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., So, L.Y., Yuen, K.Y., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J Virol, 85, pp. 11325-11337. , https://doi.org/10.1128/JVI.05512-11; Kin, N., Miszczak, F., Diancourt, L., Caro, V., Moutou, F., Vabret, A., Ar Gouilh, M., Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern (2016) Infect Genet Evol, 40, pp. 186-191. , https://doi.org/10.1016/j.meegid.2016.03.006; Mounir, S., Talbot, P.J., Human coronavirus OC43 RNA 4 lacks two open reading frames located downstream of the S gene of bovine coronavirus (1993) Virology, 192, pp. 355-360. , https://doi.org/10.1006/viro.1993.1043; Abraham, S., Kienzle, T.E., Lapps, W.E., Brian, D.A., Sequence and expression analysis of potential nonstructural proteins of 4.9, 4.8, 12.7, and 9.5 kDa encoded between the spike and membrane protein genes of the bovine coronavirus (1990) Virology, 177, pp. 488-495. , https://doi.org/10.1016/0042-6822(90)90513-q; Saif, L.J., Bovine respiratory coronavirus (2010) Vet Clin North Am Food Anim Pract, 26, pp. 349-364. , https://doi.org/10.1016/j.cvfa.2010.04.005; So, R.T., Perera, R.A., Oladipo, J.O., Chu, D.K., Kuranga, S.A., Chan, K.H., Lau, E.H., Peiris, M., 23 August 2018, posting date. Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016 Euro Surveill, , https://doi.org/10.2807/1560-7917.ES.2018.23.32.1800175; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., El Berbri, I., Peiris, M., Posting date. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill, , https://doi.org/10.2807/1560-7917.ES.2017.22.13.30498, 30 March; Reusken, C.B., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg Infect Dis, 20, pp. 1370-1374. , https://doi.org/10.3201/eid2008.140590; Hasoksuz, M., Alekseev, K., Vlasova, A., Zhang, X., Spiro, D., Halpin, R., Wang, S., Saif, L.J., Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe (2007) J Virol, 81, pp. 4981-4990. , https://doi.org/10.1128/JVI.02361-06; Jin, L., Cebra, C.K., Baker, R.J., Mattson, D.E., Cohen, S.A., Alvarado, D.E., Rohrmann, G.F., Analysis of the genome sequence of an alpaca coronavirus (2007) Virology, 365, pp. 198-203. , https://doi.org/10.1016/j.virol.2007.03.035; Decaro, N., Martella, V., Elia, G., Campolo, M., Mari, V., Desario, C., Lucente, M.S., Buonavoglia, C., Biological and genetic analysis of a bovine-like coronavirus isolated from water buffalo (Bubalus bubalis) calves (2008) Virology, 370, pp. 213-222. , https://doi.org/10.1016/j.virol.2007.08.031; Alekseev, K.P., Vlasova, A.N., Jung, K., Hasoksuz, M., Zhang, X., Halpin, R., Wang, S., Saif, L.J., Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences (2008) J Virol, 82, pp. 12422-12431. , https://doi.org/10.1128/JVI.01586-08; Keha, A., Xue, L., Yan, S., Yue, H., Tang, C., Prevalence of a novel bovine coronavirus strain with a recombinant hemagglutinin/esterase gene in dairy calves in China (2019) Transbound Emerg Dis, 66, p. 1971. , https://doi.org/10.1111/tbed.13228; Jeong, J.H., Kim, G.Y., Yoon, S.S., Park, S.J., Kim, Y.J., Sung, C.M., Shin, S.S., Cho, K.O., Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002-2003 (2005) Virus Res, 108, pp. 207-212. , https://doi.org/10.1016/j.virusres.2004.07.003; Shin, J., Tark, D., Le, V.P., Choe, S., Cha, R.M., Park, G.N., Cho, I.S., An, D.J., Genetic characterization of bovine coronavirus in Vietnam (2019) Virus Genes, 55, pp. 415-420. , https://doi.org/10.1007/s11262-019-01647-1; Martínez, N., Brandão, P.E., De Souza, S.P., Barrera, M., Santana, N., De Arce, H.D., Pérez, L.J., Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene (2012) Infect Genet Evol, 12, pp. 1870-1878. , https://doi.org/10.1016/j.meegid.2012.05.007; Lau, S.K., Woo, P.C., Yip, C.C., Fan, R.Y., Huang, Y., Wang, M., Guo, R., Yuen, K.Y., Isolation and characterization of a novel betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits (2012) J Virol, 86, pp. 5481-5496. , https://doi.org/10.1128/JVI.06927-11; Schultze, B., Wahn, K., Klenk, H.D., Herrler, G., Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity (1991) Virology, 180, pp. 221-228. , https://doi.org/10.1016/0042-6822(91)90026-8; Bakkers, M.J., Lang, Y., Feitsma, L.J., Hulswit, R.J., De Poot, S.A., Van Vliet, A.L., Margine, I., De Groot, R.J., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity (2017) Cell Host Microbe, 21, pp. 356-366. , https://doi.org/10.1016/j.chom.2017.02.008; Lau, S.K., Woo, P.C., Li, K.S., Tsang, A.K., Fan, R.Y., Luk, H.K., Cai, J.P., Yuen, K.Y., Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of betacoronavirus 1 and has implications for the ancestor of betacoronavirus lineage A (2015) J Virol, 89, pp. 3076-3092. , https://doi.org/10.1128/JVI.02420-14; Wang, W., Lin, X.D., Guo, W.P., Zhou, R.H., Wang, M.R., Wang, C.Q., Ge, S., Zhang, Y.Z., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China (2015) Virology, 474, pp. 19-27. , https://doi.org/10.1016/j.virol.2014.10.017; Wu, Z., Lu, L., Du, J., Yang, L., Ren, X., Liu, B., Jiang, J., Jin, Q., Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases (2018) Microbiome, 6, p. 178. , https://doi.org/10.1186/s40168-018-0554-9; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinformatics, 25, pp. 1754-1760. , https://doi.org/10.1093/bioinformatics/btp324; Kumar, S., Stecher, G., Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , https://doi.org/10.1093/molbev/msw054; Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., IQ-Tree: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies (2015) Mol Biol Evol, 32, pp. 268-274. , https://doi.org/10.1093/molbev/msu300; Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Ray, S.C., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J Virol, 73, pp. 152-160; Woo, P.C., Lau, S.K., Fan, R.Y., Lau, C.C., Wong, E.Y., Joseph, S., Tsang, A.K., Yuen, K.Y., 17 May 2016, posting date. Isolation and characterization of dromedary camel coronavirus UAEHKU23 from dromedaries of the Middle East: Minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23 Int J Mol Sci, , https://doi.org/10.3390/ijms17050691","Peiris, M.; School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong KongHong Kong; email: malik@hku.hk",,"American Society for Microbiology",0022538X,,JOVIA,"31534035","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85074962491 "Papineau A., Berhane Y., Wylie T.N., Wylie K.M., Sharpe S., Lung O.","57208264286;8603548800;6603776479;7006257144;57208257774;6602410548;","Genome Organization of Canada Goose Coronavirus, A Novel Species Identified in a Mass Die-off of Canada Geese",2019,"Scientific Reports","9","1", 5954,"","",,4,"10.1038/s41598-019-42355-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064258301&doi=10.1038%2fs41598-019-42355-y&partnerID=40&md5=45e229c6a79e9e210478fd23ae7a5138","National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics, Washington University School of Medicine, St. Louis, St. Louis, MO, United States; McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, United States; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada","Papineau, A., National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada, Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Berhane, Y., National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada; Wylie, T.N., Department of Pediatrics, Washington University School of Medicine, St. Louis, St. Louis, MO, United States, McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, United States; Wylie, K.M., Department of Pediatrics, Washington University School of Medicine, St. Louis, St. Louis, MO, United States, McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, United States; Sharpe, S., Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Lung, O., National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada, Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada","The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-off of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab. © 2019, The Author(s).",,,"Tsang, K.W., A cluster of cases of severe acute respiratory syndrome in Hong Kong (2003) N. Engl. J. Med., 348, pp. 1977-1985; Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet. Rec., 100, pp. 243-244. , COI: 1:STN:280:DyaE2s3jsleksQ%3D%3D; Woo, P.C.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86, pp. 3995-4008. , COI: 1:CAS:528:DC%2BC38XktlOrsr8%3D; Woo, P.C.Y., Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus (2009) J. Virol., 83, pp. 908-917. , COI: 1:CAS:528:DC%2BD1MXotlCmt7Y%3D; de Groot, R.J., (2008) Revision of the Family Coronaviridae. Taxonomic Proposal to the ICTV Executive Committee, pp. 1-37; Fabricant, J., The early history of infectious bronchitis (1998) Avian Dis., 42, pp. 648-650. , COI: 1:STN:280:DyaK1M%2FpsVWisg%3D%3D; Bande, F., Global distributions and strain diversity of avian infectious bronchitis virus: a review (2017) Anim. Health Res. Rev., 18, pp. 70-83; Lin, T.L., Characterization of turkey coronavirus from turkey poults with acute enteritis (2002) Vet. Microbiol., 84, pp. 179-186. , COI: 1:CAS:528:DC%2BD3MXos1Kjsr4%3D; Mihindukulasuriya, K.A., Wu, G., St Leger, J., Nordhausen, R.W., Wang, D., Identification of a novel coronavirus from a beluga whale by using a panviral microarray (2008) J. Virol., 82, pp. 5084-5088. , COI: 1:CAS:528:DC%2BD1cXlvVKitrs%3D; Woo, P.C.Y., Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus (2014) J. Virol., 88, pp. 1318-1331; Jones, R.C., Viral respiratory diseases (ILT, aMPV infections, IB): are they ever under control? (2010) Br. Poult. Sci., 51, pp. 1-11. , COI: 1:CAS:528:DC%2BC3cXkslOgtbg%3D; Jonassen, C.M., Molecular identification and characterization of novel coronaviruses infecting graylag geese (Anser anser), feral pigeons (Columbia livia) and mallards (Anas platyrhynchos) (2005) J. Gen. Virol., 86, pp. 1597-1607. , COI: 1:CAS:528:DC%2BD2MXlsFensr8%3D; Cao, J., Wu, C.-C., Lin, T.L., Complete nucleotide sequence of polyprotein gene 1 and genome organization of turkey coronavirus (2008) Virus Res., 136, pp. 43-49. , COI: 1:CAS:528:DC%2BD1cXotlajurY%3D; Mardani, K., Noormohammadi, A.H., Hooper, P., Ignjatovic, J., Browning, G.F., Infectious bronchitis viruses with a novel genomic organization (2008) J. Virol., 82, pp. 2013-2024. , COI: 1:CAS:528:DC%2BD1cXhvFartbg%3D; Jonassen, C.M., Jonassen, T.O., Grinde, B., A common RNA motif in the 3′ end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus (1998) J. Gen. Virol., 79, pp. 715-718. , COI: 1:CAS:528:DyaK1cXit1WmtLk%3D; Dufour, D., Mateos-Gomez, P.A., Enjuanes, L., Gallego, J., Sola, I., Structure and functional relevance of a transcription-regulating sequence involved in coronavirus discontinuous RNA synthesis (2011) J. Virol., 85, pp. 4963-4973. , COI: 1:CAS:528:DC%2BC3MXhs1WltL7E; Bentley, K., Keep, S.M., Armesto, M., Britton, P., Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses (2013) J. Virol., 87, pp. 2128-2136. , COI: 1:CAS:528:DC%2BC3sXlt1Slu7Y%3D; Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., Virus-encoded proteinases and proteolytic processing in the Nidovirales (2000) J. Gen. Virol., 81, pp. 853-879. , COI: 1:CAS:528:DC%2BD3cXisVektLg%3D; Kint, J., Infectious bronchitis coronavirus limits interferon production by inducing a host shutoff that requires accessory protein 5b (2016) J. Virol., 90, pp. 7519-7528. , COI: 1:CAS:528:DC%2BC28XhslyrtL%2FN; Hodgson, T., Britton, P., Cavanagh, D., Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication (2006) J. Virol., 80, pp. 296-305. , COI: 1:CAS:528:DC%2BD28XjslaltLs%3D; Laconi, A., Deletion of accessory genes 3a, 3b, 5a or 5b from avian coronavirus infectious bronchitis virus induces an attenuated phenotype both in vitro and in vivo (2018) J. Gen. Virol., 99, pp. 1381-1390; Liu, D.X., Cavanagh, D., Green, P., Inglis, S.C., A polycistronic mRNA specified by the coronavirus infectious bronchitis virus (1991) Virology, 184, pp. 531-544. , COI: 1:CAS:528:DyaK38XltVGhu7Y%3D; Brooks, J.E., Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes (2004) Virus Res., 100, pp. 191-198. , COI: 1:CAS:528:DC%2BD2cXhs12ls7o%3D; Hewson, K.A., Ignjatovic, J., Browning, G.F., Devlin, J.M., Noormohammadi, A.H., Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion (2011) Arch. Virol., 156, pp. 245-252. , COI: 1:CAS:528:DC%2BC3MXhtleit7Y%3D; Simon-Loriere, E., Holmes, E.C., Why do RNA viruses recombine? (2011) Nat. Rev. Microbiol., 9, pp. 617-626. , COI: 1:CAS:528:DC%2BC3MXotlCksb8%3D; Wylie, T.N., Wylie, K.M., Herter, B.N., Storch, G.A., Enhanced virome sequencing using targeted sequence capture (2015) Genome Res., 25, pp. 1910-1920. , COI: 1:CAS:528:DC%2BC28XksVCmtr4%3D; Bolger, A.M., Lohse, M., Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data (2014) Bioinformatics, 30, pp. 2114-2120. , COI: 1:CAS:528:DC%2BC2cXht1Sqt7nP; Tausch, S.H., Renard, B.Y., Nitsche, A., Dabrowski, P.W., RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data (2015) PLoS ONE, 10; Bankevich, A., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing (2012) J. Comput. Biol., 19, pp. 455-477. , COI: 1:CAS:528:DC%2BC38XmsFOmt7k%3D; El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Finn, R.D., The Pfam protein families database in 2019 (2018) Nucleic Acids Research, 47 (D1), pp. D427-D432; Larkin, M.A., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , COI: 1:CAS:528:DC%2BD2sXhtlaqsL%2FM; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms (2018) Mol. Biol. Evol., 35, pp. 1547-1549. , COI: 1:CAS:528:DC%2BC1MXis1Ontrc%3D","Lung, O.; National Centre for Foreign Animal Disease, Canadian Food Inspection AgencyCanada; email: Oliver.Lung@canada.ca",,"Nature Publishing Group",20452322,,,"30976080","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85064258301 "Chen F., Knutson T.P., Rossow S., Saif L.J., Marthaler D.G.","56172967400;8081993500;7003522308;57205309530;55326638400;","Decline of transmissible gastroenteritis virus and its complex evolutionary relationship with porcine respiratory coronavirus in the United States",2019,"Scientific Reports","9","1", 3953,"","",,2,"10.1038/s41598-019-40564-z","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062632638&doi=10.1038%2fs41598-019-40564-z&partnerID=40&md5=1cad193ded3510990b23705ad98ae5d9","Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Department of Veterinary Preventive Medicine, The Ohio State University, Food Animal Health Research Program, OARDC, CFAES, Wooster, OH, United States; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States","Chen, F., Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Knutson, T.P., Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Rossow, S., Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States; Saif, L.J., Department of Veterinary Preventive Medicine, The Ohio State University, Food Animal Health Research Program, OARDC, CFAES, Wooster, OH, United States; Marthaler, D.G., Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States","The epidemiology and genetic diversity of transmissible gastroenteritis virus (TGEV) in the United States (US) was investigated by testing clinical cases for TGEV by real time RT-PCR between January 2008 and November 2016. Prevalence of TGEV ranged between 3.8–6.8% and peaked during cold months until March 2013, in which prevalence decreased to < 0.1%. Nineteen complete TGEV genomes and a single strain of porcine respiratory coronavirus (PRCV) from the US were generated and compared to historical strains to investigate the evolution of these endemic coronaviruses. Sixteen of our TGEV strains share 8 unique deletions and 119 distinct amino acid changes, which might greatly affect the biological characteristics of the variant TGEV, and resulted in a “variant” genotype of TGEV. The “variant” genotype shared similar unique deletions and amino acid changes with the recent PRCV strain identified in this study, suggesting a recombination event occurred between the ‘‘variant’’ TGEV and PRCV. Moreover, the results indicate the “variant” genotype is the dominant genotype circulating in the US. Therefore, this study provides insight into the occurrence, origin, genetic characteristics, and evolution of TGEV and PRCV circulating in the US. © 2019, The Author(s).",,,"Bohl, E.H., Transmissible gastroenteritis virus (Classical enteric variant) and transmissible gastroenteritis virus (respiratory variant) (1989) In Virus Infections of Porcines, pp. 139-165. , (eds Pensaert, M. & Pensaert, M. B.), Elsevier Science; Pritchard, G.C., Paton, D.J., Wibberley, G., Ibata, G., Transmissible gastroenteritis and porcine epidemic diarrhoea in Britain (1999) Vet. Rec., 144, pp. 616-618. , COI: 1:STN:280:DyaK1MzhvFaktw%3D%3D; Saif, L., Pensaert, M.B., Sestak, K., Yeo, S., Jung, K., (2012) Diseases of swine. In Coronaviruses, 501, p. 524. , eds Zimmerman, J. J. & ebrary, I.) 10th ed, Chichester, West Sussex; Ames, Iowa: Wiley-Blackwell; Williams, R., Esterhuysen, J.J., Robinson, J.T., Pseudorabies and transmissible gastroenteritis: a serological survey in South Africa (1994) Onderstepoort J. Vet. Res., 61, pp. 67-70. , COI: 1:STN:280:DyaK2M3gs1OgtQ%3D%3D, PID: 7898899; Doyle, L.P., Hutchings, L.M., A transmissible gastroenteritis in pigs (1946) J. Am. Vet. Med. Assoc., 108, pp. 257-259. , COI: 1:STN:280:DyaH28%2FjvVGnug%3D%3D, PID: 21020443; Sanchez, C.M., Genetic evolution and tropism of transmissible gastroenteritis coronaviruses (1992) Virology, 190, pp. 92-105. , COI: 1:CAS:528:DyaK3sXltFSitr4%3D; Rasschaert, D., Duarte, M., Laude, H., Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions (1990) J. Gen. Virol., 71, pp. 2599-2607. , COI: 1:CAS:528:DyaK3MXhsl2isrY%3D; Hess, R.G., Bollwahn, W., Pospischil, A., Heinritzi, K., Bachmann, P.A., Current aspects in the etiology of viral diarrheas of swine: occurrence of infections with the epizootic viral diarrhea (EVD) virus (1980) Berl. Munch. Tierarztl. Wochenschr., 93, pp. 445-449. , COI: 1:STN:280:DyaL3M7jtlCjtw%3D%3D, PID: 6258554; Cubero, M.J., Transmissible gastroenteritis in pigs in south east Spain: prevalence and factors associated with infection (1993) Vet. Rec., 132, pp. 238-241. , COI: 1:STN:280:DyaK3s3ht1CmtQ%3D%3D; Hu, X., Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China (2015) BMC Vet. Res., 11, p. 72; Takahashi, K., Okada, K., Ohshima, K., An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan (1983) Nippon Juigaku Zasshi, 45, pp. 829-832. , COI: 1:STN:280:DyaL2c7msFOjug%3D%3D; Muley, T., (2012) The Possible Role of Transmissible Gastroenteritis Virus (TGE) and Porcine Respiratory Corona Virus (PRCV) in the Mortality of Ugandan Back-Yard Piglets, , Swedish University of Agricultural Sciences; Martins, A., Diagnosis to Detect Porcine Transmissible Gastroenteritis Virus (TGEV) by Optical and Transmission Electron Microscopy Techniques (2013) Int. J. Morphol., 31, pp. 706-715; Hou, Y., Complete genome of transmissible gastroenteritis virus AYU strain isolated in Shanghai, China (2012) J. Virol., 86, pp. 11912-11935. , COI: 1:CAS:528:DC%2BC38XhsFCmurrL; Weiwei, H., Complete genomic sequence of the coronavirus transmissible gastroenteritis virus SHXB isolated in China (2014) Archives of Virology, 159, pp. 2295-2302; Zhenhui, S., Isolation and Identi cation of a New Strain of Porcine Transmissible Gastroenteritis Virus from Chongqing, Southwestern China (2015) Israel Journal of Veterinary Medicine, 707, pp. 22-30; Züst, R., Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines (2007) PLoS Pathog., 3; Nogales, A., Márquez-Jurado, S., Galán, C., Enjuanes, L., Almazán, F., Transmissible gastroenteritis coronavirus RNA-dependent RNA polymerase and nonstructural proteins 2, 3, and 8 are incorporated into viral particles (2012) J. Virol., 86, pp. 1261-1266. , COI: 1:CAS:528:DC%2BC38XovVOntQ%3D%3D; Putics, A., Gorbalenya, A.E., Ziebuhr, J., Identification of protease and ADP-ribose 1”-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3 (2006) J. Gen. Virol., 87, pp. 651-656. , COI: 1:CAS:528:DC%2BD28XitVahtrg%3D; Ballesteros, M.L., Sánchez, C.M., Enjuanes, L., Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism (1997) Virology, 227, pp. 378-388. , COI: 1:CAS:528:DyaK2sXpt1SlsQ%3D%3D; Delmas, B., Rasschaert, D., Godet, M., Gelfi, J., Laude, H., Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S (1990) J. Gen. Virol., 71, pp. 1313-1323. , COI: 1:CAS:528:DyaK3cXksFGmtrw%3D; Krempl, C., Schultze, B., Laude, H., Herrler, G., Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus (1997) J. Virol., 71, pp. 3285-3287. , COI: 1:CAS:528:DyaK2sXhvVCqtLs%3D, PID: 9060696; Sánchez, C.M., Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence (1999) J. Virol., 73, pp. 7607-7618. , PID: 10438851; Godet, M., Grosclaude, J., Delmas, B., Laude, H., Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein (1994) J. Virol., 68, pp. 8008-8016. , COI: 1:CAS:528:DyaK2MXitFylsrk%3D, PID: 7525985; Zhang, X., Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus (2007) Virology, 358, pp. 424-435; Usami, Y., Virological and serological studies of porcine respiratory coronavirus infection on a Japanese farm (2008) J. Vet. Med. Sci., 70, pp. 929-936. , COI: 1:CAS:528:DC%2BD1cXht1yitr7M; Vaughn, E.M., Halbur, P.G., Paul, P.S., Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes (1995) J. Virol., 69, pp. 3176-3184. , COI: 1:CAS:528:DyaK2MXltVaiurw%3D, PID: 7707547; Wang, L., Zhang, Y., Genomic Characterization of a New PRCV Variant, United States, 2014 (2017) Transbound Emerg Dis, 64, pp. 672-674. , COI: 1:STN:280:DC%2BC287gsV2isg%3D%3D; Brim, T.A., VanCott, J.L., Lunney, J.K., Saif, L.J., Cellular immune responses of pigs after primary inoculation with porcine respiratory coronavirus or transmissible gastroenteritis virus and challenge with transmissible gastroenteritis virus (1995) Vet. Immunol. Immunopathol., 48, pp. 35-54. , COI: 1:STN:280:DyaK287gslSjsw%3D%3D; Cox, E., Pensaert, M.B., Callebaut, P., Intestinal protection against challenge with transmissible gastroenteritis virus of pigs immune after infection with the porcine respiratory coronavirus (1993) Vaccine, 11, pp. 267-272. , COI: 1:STN:280:DyaK3s7nsFWgsw%3D%3D; VanCott, J.L., Brim, T.A., Lunney, J.K., Saif, L.J., Contribution of antibody-secreting cells induced in mucosal lymphoid tissues of pigs inoculated with respiratory or enteric strains of coronavirus to immunity against enteric coronavirus challenge (1994) J. Immunol., 152, pp. 3980-3990. , COI: 1:STN:280:DyaK2c7psVWlsg%3D%3D, PID: 8144965; Wesley, R.D., Woods, R.D., Induction of protective immunity against transmissible gastroenteritis virus after exposure of neonatal pigs to porcine respiratory coronavirus (1996) Am. J. Vet. Res., 57, pp. 157-162. , COI: 1:STN:280:DyaK283htlWgsw%3D%3D, PID: 8633800; Marthaler, D., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg. Infect. Dis., 20, pp. 1347-1350. , PID: 25075556; Sun, R.-Q., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerging Infect. Dis., 18, pp. 161-163; Stevenson, G.W., Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences (2013) J. Vet. Diagn. Invest., 25, pp. 649-654; Marthaler, D., Jiang, Y., Collins, J., Rossow, K., Complete Genome Sequence of Strain SDCV/USA/Illinois121/2014, a Porcine Deltacoronavirus from the United States (2014) Genome Announc, 2. , https://doi.org/10.1128/genomeA.00218-14; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US states, 2014 (2014) Emerg. Infect. Dis., 20, pp. 1594-1595; Vlasova, A.N., Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014 (2014) Emerg. Infect. Dis., 20, pp. 1620-1628; (2018) College of Veterinary Medicine - University of Minnesota, , https://www.vetmed.umn.edu/centers-programs/swine-program/outreach-leman-mshmp/mshmp/ped-charts, pboyer. PED charts, (Accessed: 15th August 2018); Akimkin, V., New Chimeric Porcine Coronavirus in Swine Feces, Germany, 2012 (2016) Emerging Infect. Dis., 22, pp. 1314-1315. , COI: 1:CAS:528:DC%2BC2sXhsFelurrF; Belsham, G.J., Characterization of a Novel Chimeric Swine Enteric Coronavirus from Diseased Pigs in Central Eastern Europe in 2016 (2016) Transbound Emerg Dis, 63, pp. 595-601. , COI: 1:CAS:528:DC%2BC28XhslSrtL%2FO; Boniotti, M.B., Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy (2016) Emerging Infect. Dis., 22, pp. 83-87. , COI: 1:CAS:528:DC%2BC28XitFCksrbJ; Litwin, S., Jores, R., Shannon Information as a Measure of Amino Acid Diversity Theoretical and Experimental Insights into Immunology, pp. 2789-3187. , https://doi.org/10.1007/978-3-642-76977-1, eds Perelson, A. S. & Weisbuch, G., (Springer Berlin Heidelberg, 1992); Pensaert, M., Callebaut, P., Vergote, J., Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis (1986) Vet Q, 8, pp. 257-261. , COI: 1:STN:280:DyaL28zhslKjsQ%3D%3D; Miyazaki, A., Fukuda, M., Kuga, K., Takagi, M., Tsunemitsu, H., Prevalence of antibodies against transmissible gastroenteritis virus and porcine respiratory coronavirus among pigs in six regions in Japan (2010) J. Vet. Med. Sci., 72, pp. 943-946; Huang, S., A new virus associated with transmissible gastroenteritis virus-porcine respiratory coronavirus type (1992) Chinese Journal of Veterinary Medicine, pp. 48-49; Schulz, L.L., Tonsor, G.T., Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States (2015) J. Anim. Sci., 93, pp. 5111-5118. , COI: 1:CAS:528:DC%2BC28XktlOgsro%3D; Niederwerder, M.C., Hesse, R.A., Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada (2018) Transbound Emerg Dis, 65, pp. 660-675. , COI: 1:STN:280:DC%2BC1MvmsFyntg%3D%3D; Huang, S., A new virus associated with transmissible gastroenteritis virus-porcine respiratory coronavirus type (1992) Chinese Journal of Veterinary Medicine, 1, pp. 48-49; Chasey, D., Cartwright, S.F., Virus-like particles associated with porcine epidemic diarrhoea (1978) Res. Vet. Sci., 25, pp. 255-256. , COI: 1:STN:280:DyaE1M%2Fns1SgtQ%3D%3D; Jarvis, M.C., Lam, H.C., Rovira, A., Marthaler, D.G., Complete Genome Sequence of Porcine Epidemic Diarrhea Virus Strain COL/Cundinamarca/2014 from Colombia (2016) Genome Announc, 4. , &; Pensaert, M., Cox, E., van Deun, K., Callebaut, P., A sero-epizootiological study of porcine respiratory coronavirus in Belgian swine (1993) Vet Q, 15, pp. 16-20. , COI: 1:STN:280:DyaK3s3mvFCitQ%3D%3D; HaiE, S., Application of n-PCR for Detection and Differentiation of TGE Virus and Porcine Respiratory Coronavirus (2003) Chinese Journal of Animal Quarantine, 20, pp. 21-22; Wang, K., PEDV ORF3 encodes an ion channel protein and regulates virus production (2012) FEBS Lett., 586, pp. 384-391. , COI: 1:CAS:528:DC%2BC38Xit12gtr4%3D; Ye, S., Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV (2015) Virus Genes, 51, pp. 385-392. , COI: 1:CAS:528:DC%2BC2MXhslGlsL%2FO; Liu, D.X., Fung, T.S., Chong, K.K.-L., Shukla, A., Hilgenfeld, R., Accessory proteins of SARS-CoV and other coronaviruses (2014) Antiviral Res., 109, pp. 97-109. , COI: 1:CAS:528:DC%2BC2cXht1Klsr3M; de Haan, C.A.M., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J.M., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis (2001) Vet. Microbiol., 81, pp. 227-234. , COI: 1:CAS:528:DC%2BD3MXktV2ntLo%3D; Lin, C.-N., Field strain feline coronaviruses with small deletions in ORF7b associated with both enteric infection and feline infectious peritonitis (2009) J. Feline Med. Surg., 11, pp. 413-419; Oostra, M., de Haan, C.A.M., Rottier, P.J.M., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J. Virol., 81, pp. 13876-13888. , COI: 1:CAS:528:DC%2BD2sXhsValsbfO; : A language and environment for statistical computing (2014) R Foundation for Statistical Computing, Vienna, Austria, , http://www.R-project.org/; Wickham, H., (2009) Ggplot2, , https://doi.org/10.1007/978-0-387-98141-3, Springer New York; Becker, R.A., Wilks, A.R., Brownrigg, R., Minka, T.P., Maps: Draw geographical maps (2014) R Package Version, 2, pp. 3-9; Kearse, M., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data (2012) Bioinformatics, 28, pp. 1647-1649; MATLAB and Statistics Toolbox, , The MathWorks, Inc; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: Detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1, p. vev003; Lole, K.S., Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination (1999) J. Virol., 73, pp. 152-160. , COI: 1:CAS:528:DyaK1cXotFSlu70%3D, PID: 9847317; Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 (2013) Mol. Biol. Evol., 30, pp. 2725-2729. , COI: 1:CAS:528:DC%2BC3sXhvVKhurzP; Biasini, M., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information (2014) Nucleic Acids Res., 42, pp. W252-W258. , COI: 1:CAS:528:DC%2BC2cXhtFCqs73I; Walls, A.C., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905. , COI: 1:CAS:528:DC%2BC28XhsV2rtb3J; The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC","Marthaler, D.G.; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of MinnesotaUnited States; email: marth027@umn.edu",,"Nature Publishing Group",20452322,,,"30850666","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85062632638 "Zhou J., Fang L., Yang Z., Xu S., Lv M., Sun Z., Chen J., Wang D., Gao J., Xiao S.","57194013386;7402470374;57215297738;56912579200;57194003481;57209097874;57192309339;36060664000;57215294718;7402022567;","Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach",2019,"FASEB journal : official publication of the Federation of American Societies for Experimental Biology","33","12",,"14575","14587",,,"10.1096/fj.201901624RR","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076196653&doi=10.1096%2ffj.201901624RR&partnerID=40&md5=ba8454472a6339e5c16dadc198f6f21e","State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China","Zhou, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Fang, L., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Yang, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Xu, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Lv, M., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Sun, Z., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Chen, J., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Wang, D., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Gao, J., Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China; Xiao, S., State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China","Coronaviruses (CoVs) infect humans and multiple other animal species, causing highly prevalent and severe diseases. 3C-like proteases (3CLpros) from CoVs (also called main proteases) are essential for viral replication and are also involved in polyprotein cleavage and immune regulation, making them attractive and effective targets for the development of antiviral drugs. Herein, the 3CLpro from the porcine epidemic diarrhea virus, an enteropathogenic CoV, was used as a model to identify novel crucial residues for enzyme activity. First, we established a rapid, sensitive, and efficient luciferase-based biosensor to monitor the activity of PDEV 3CLproin vivo. Using this luciferase biosensor, along with confirming the well-known catalytic residues (His41 and Cys144), we identified 4 novel proteolytically inactivated mutants of PDEV 3CLpro, which was also confirmed in mammalian cells by biochemical experiments. Our molecular dynamics (MD) simulations showed that the hydrogen bonding interactions occurring within and outside of the protease's active site and the dynamic fluctuations of the substrate, especially the van der Waals contacts, were drastically altered, a situation related to the loss of 3CLpro activity. These data suggest that changing the intermolecular dynamics in protein-substrate complexes eliminates the mechanism underlying the protease activity. The discovery of novel crucial residues for enzyme activity in the binding pocket could potentially provide more druggable sites for the design of protease inhibitors. In addition, our in-depth study of the dynamic substrate's envelope model using MD simulations is an approach that could augment the discovery of new inhibitors against 3CLpro in CoVs and other viral 3C proteases.-Zhou, J., Fang, L., Yang, Z., Xu, S., Lv, M., Sun, Z., Chen, J., Wang, D., Gao, J., Xiao, S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach.","biosensor; catalytic residue; molecular dynamics; molecular mechanism","3C proteases; cysteine proteinase; viral protein; amino acid sequence; cell line; chemistry; Coronavirinae; enzyme activation; enzymology; genetics; human; hydrogen bond; metabolism; molecular model; mutation; protein tertiary structure; Amino Acid Sequence; Cell Line; Coronavirus; Cysteine Endopeptidases; Enzyme Activation; Humans; Hydrogen Bonding; Models, Molecular; Mutation; Protein Structure, Tertiary; Viral Proteins",,,,"NLM (Medline)",15306860,,,"31690127","English","FASEB J.",Article,"Final",Open Access,Scopus,2-s2.0-85076196653 "Gassen N.C., Niemeyer D., Muth D., Corman V.M., Martinelli S., Gassen A., Hafner K., Papies J., Mösbauer K., Zellner A., Zannas A.S., Herrmann A., Holsboer F., Brack-Werner R., Boshart M., Müller-Myhsok B., Drosten C., Müller M.A., Rein T.","36608022500;50361719200;22135222000;34876424800;57209200241;55062467000;54787505600;57190291611;57204092416;56506839100;55241681900;57202738112;56253704800;7004196231;7004718516;56234961000;7003813990;24068857400;57209054753;","SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection",2019,"Nature Communications","10","1", 5770,"","",,,"10.1038/s41467-019-13659-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076800479&doi=10.1038%2fs41467-019-13659-4&partnerID=40&md5=8d3f74d28b55a70e5cec45e75cdaa632","Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg Campus 1, Bonn, 53127, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany; German Centre for Infection Research (DZIF), Berlin, Germany; Faculty of Biology, Genetics, Ludwig-Maximilian-University Munich (LMU), Martinsried, 82152, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC 27599-7096, United States; Department of Genetics, University of North Carolina at Chapel Hil, Chapel Hill, NC 27599, United States; HIV-Cell-Interactions Group, Institute of Virology, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany; Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, United Kingdom; Munich Cluster for Systems Neurology - SYNERGY, Feodor-Lynen-Str. 17, Munich, 81377, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 2-4 Bolshaya Pirogovskaya st., Moscow, 119991, Russian Federation; Faculty of Medicine, Physiological Chemistry, Ludwig-Maximilian-University Munich (LMU), Martinsried, 82152, Germany","Gassen, N.C., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany, Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg Campus 1, Bonn, 53127, Germany; Niemeyer, D., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany; Muth, D., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany; Corman, V.M., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany; Martinelli, S., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany; Gassen, A., Faculty of Biology, Genetics, Ludwig-Maximilian-University Munich (LMU), Martinsried, 82152, Germany; Hafner, K., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany; Papies, J., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany; Mösbauer, K., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany; Zellner, A., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany; Zannas, A.S., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States, Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC 27599-7096, United States, Department of Genetics, University of North Carolina at Chapel Hil, Chapel Hill, NC 27599, United States; Herrmann, A., HIV-Cell-Interactions Group, Institute of Virology, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany; Holsboer, F., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany; Brack-Werner, R., HIV-Cell-Interactions Group, Institute of Virology, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany; Boshart, M., Faculty of Biology, Genetics, Ludwig-Maximilian-University Munich (LMU), Martinsried, 82152, Germany; Müller-Myhsok, B., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, United Kingdom, Munich Cluster for Systems Neurology - SYNERGY, Feodor-Lynen-Str. 17, Munich, 81377, Germany; Drosten, C., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany; Müller, M.A., Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany, German Centre for Infection Research (DZIF), Berlin, Germany, Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 2-4 Bolshaya Pirogovskaya st., Moscow, 119991, Russian Federation; Rein, T., Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Munich, 80804, Germany, Faculty of Medicine, Physiological Chemistry, Ludwig-Maximilian-University Munich (LMU), Martinsried, 82152, Germany","Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions. © 2019, The Author(s).",,"beclin 1; S phase kinase associated protein 2; cell component; degradation; immune response; infectivity; inhibition; physiological response; protein; virus; animal cell; Article; autophagosome; autophagy; controlled study; flow cytometry; gene overexpression; genetic transfection; human; human cell; IC50; immunoprecipitation; Middle East respiratory syndrome; nonhuman; phenotype; prevalence; protein degradation; protein expression; protein phosphorylation; real time polymerase chain reaction; toxicity assay; ubiquitination; viral plaque assay; virus inhibition; virus replication; Western blotting; Middle East; Coronavirus","Bento, C.F., Mammalian autophagy: how does it work? (2016) Annu. Rev. Biochem., 85, pp. 685-713. , COI: 1:CAS:528:DC%2BC28XisVGitL0%3D; Gassen, N.C., Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans (2014) PLoS. Med., 11. , PID: 4227651; Rein, T., FK506 binding protein 51 integrates pathways of adaptation: FKBP51 shapes the reactivity to environmental change (2016) Bioessays, 38, pp. 894-902. , COI: 1:CAS:528:DC%2BC28Xhtl2msLfJ; Levine, B., Liu, R., Dong, X., Zhong, Q., Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology (2015) Trends Cell Biol., 25, pp. 533-544. , COI: 1:CAS:528:DC%2BC2MXoslCms7o%3D, PID: 4554927; Itakura, E., Kishi, C., Inoue, K., Mizushima, N., Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG (2008) Mol. Biol. Cell, 19, pp. 5360-5372. , COI: 1:CAS:528:DC%2BD1cXhsVynu77M, PID: 2592660; Diao, J., ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes (2015) Nature, 520, pp. 563-566. , COI: 1:CAS:528:DC%2BC2MXjt1Sntbc%3D, PID: 4442024; Huang, W., Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein (2012) Cell Res, 22, pp. 473-489. , COI: 1:CAS:528:DC%2BC38Xjt1WjtbY%3D, PID: 3292424; Wang, R.C., Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation (2012) Science, 338, pp. 956-959. , COI: 1:CAS:528:DC%2BC38Xhs1GntL7F, PID: 3507442; Reidick, C., El, M.F., Meyer, H.E., Stenmark, H., Platta, H.W., Regulation of the tumor-suppressor function of the class III phosphatidylinositol 3-kinase complex by ubiquitin and SUMO (2014) Cancers (Basel), 7, pp. 1-29. , COI: 1:CAS:528:DC%2BC1cXlsVKiurk%3D; Jin, S., USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1 (2016) EMBO J., 35, pp. 866-880. , COI: 1:CAS:528:DC%2BC28XksVOjsrs%3D, PID: 4972138; Liu, J., Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 (2011) Cell, 147, pp. 223-234. , COI: 1:CAS:528:DC%2BC3MXht1GrsLnM, PID: 3441147; Boutouja, F., Brinkmeier, R., Mastalski, T., El, M.F., Platta, H.W., Regulation of the tumor-suppressor BECLIN 1 by distinct ubiquitination cascades (2017) Int J. Mol. Sci., 18, p. E2541. , COI: 1:CAS:528:DC%2BC1cXitFCqurfF; Dong, X., Levine, B., Autophagy and viruses: adversaries or allies? (2013) J. Innate. Immun., 5, pp. 480-493. , COI: 1:CAS:528:DC%2BC3sXhtFyhu77J, PID: 3790331; Knoops, K., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum (2008) PLoS. Biol., 6. , COI: 1:CAS:528:DC%2BD1cXht1Chtb7L, PID: 2535663; Cottam, E.M., Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate (2011) Autophagy, 7, pp. 1335-1347. , COI: 1:CAS:528:DC%2BC38Xjs1Smsb0%3D, PID: 3242798; Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N., Denison, M.R., Coronavirus replication complex formation utilizes components of cellular autophagy (2004) J. Biol. Chem., 279, pp. 10136-10141. , COI: 1:CAS:528:DC%2BD2cXhvFCitbs%3D; Cong, Y., Verlhac, P., Reggiori, F., The interaction between nidovirales and autophagy components (2017) Viruses, 9, p. E182. , COI: 1:CAS:528:DC%2BC1cXitVGgtLfL; Lundin, A., Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus (2014) PLoS. Pathog., 10. , COI: 1:CAS:528:DC%2BC2cXhsVGkur7J, PID: 4038610; Corman, V.M., Viral shedding and antibody response in 37 patients with middle east respiratory syndrome coronavirus infection (2016) Clin. Infect. Dis., 62, pp. 477-483. , COI: 1:CAS:528:DC%2BC1cXitVGqsrY%3D; Reusken, C.B., Middle east respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866. , COI: 1:CAS:528:DC%2BC3sXht1Ggt7nM; Müller, M.A., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg. Infect. Dis., 20, pp. 2093-2095. , COI: 1:CAS:528:DC%2BC2sXivVKmug%3D%3D, PID: 4257824; Kindrachuk, J., Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis (2015) Antimicrob. Agents Chemother., 59, pp. 1088-1099. , COI: 1:CAS:528:DC%2BC2MXisVagsbw%3D, PID: 4335870; Kim, Y.C., Guan, K.L., mTOR: a pharmacologic target for autophagy regulation (2015) J. Clin. Invest, 125, pp. 25-32. , PID: 4382265; Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K., Baker, S.C., RNA replication of mouse hepatitis virus takes place at double-membrane vesicles (2002) J. Virol., 76, pp. 3697-3708. , COI: 1:CAS:528:DC%2BD38XisVynu7Y%3D, PID: 136101; Reggiori, F., Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication (2010) Cell Host. Microbe, 7, pp. 500-508. , COI: 1:CAS:528:DC%2BC3cXos1Kqs7o%3D; Zhao, Z., Coronavirus replication does not require the autophagy gene ATG5 (2007) Autophagy, 3, pp. 581-585. , COI: 1:CAS:528:DC%2BD2sXhtlOhs7nE; Guo, L., Autophagy negatively regulates transmissible gastroenteritis virus replication (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28Xlt1Grt74%3D, PID: 4814908; Zhu, L., Mou, C., Yang, X., Lin, J., Yang, Q., Mitophagy in TGEV infection counteracts oxidative stress and apoptosis (2016) Oncotarget, 7, pp. 27122-27141. , PID: 5053637; Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22, pp. 481-490. , COI: 1:CAS:528:DC%2BC3MXhsFKltbnI, PID: 3229651; Los, G.V., Wood, K., The HaloTag: a novel technology for cell imaging and protein analysis (2007) Methods Mol. Biol., 356, pp. 195-208. , COI: 1:CAS:528:DC%2BD28XhtFOntbbI; Pei, H., FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt (2009) Cancer Cell, 16, pp. 259-266. , COI: 1:CAS:528:DC%2BD1MXhsVChs7vL, PID: 2755578; Gassen, N.C., FKBP51 inhibits GSK3beta and augments the effects of distinct psychotropic medications (2016) Mol. Psychiatry, 21, pp. 277-289. , COI: 1:CAS:528:DC%2BC2MXlvFWqsbs%3D; Gassen, N.C., Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine (2015) Sci. Signal., 8, p. ra119. , COI: 1:CAS:528:DC%2BC28XnsVSit7c%3D; Taipale, M., A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways (2014) Cell, 158, pp. 434-448. , COI: 1:CAS:528:DC%2BC2cXhtFyjtLbK, PID: 4104544; Shi, C.S., Kehrl, J.H., TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy (2010) Sci. Signal., 3, p. ra42. , PID: 20501938; Akiyama, T., Mitochondria-nucleus shuttling FK506-binding protein 51 interacts with TRAF proteins and facilitates the RIG-I-like receptor-mediated expression of type I IFN (2014) PLoS. One, 9. , COI: 1:CAS:528:DC%2BC2cXhsFegs7fM, PID: 4006813; Chen, Q., Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy (2008) Blood, 111, pp. 4690-4699. , COI: 1:CAS:528:DC%2BD1cXlsVSrs7Y%3D, PID: 2343599; Shin, H.J., AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy (2016) Nature, 534, pp. 553-557. , COI: 1:CAS:528:DC%2BC28XhtVSksbnP, PID: 5568428; Ikeda, F., Dikic, I., Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects' review series (2008) EMBO Rep., 9, pp. 536-542. , COI: 1:CAS:528:DC%2BD1cXmsFyktLY%3D, PID: 2427391; Chen, T., mUbiSiDa: a comprehensive database for protein ubiquitination sites in mammals (2014) PLoS. One, 9. , COI: 1:CAS:528:DC%2BC2cXlsVKmu7w%3D, PID: 3894998; Gao, D., Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction (2009) Nat. Cell Biol., 11, pp. 397-408. , COI: 1:CAS:528:DC%2BD1MXjvVynu7o%3D, PID: 2910589; Sierecki, E., Sinko, W., McCammon, J.A., Newton, A.C., Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening (2010) J. Med. Chem., 53, pp. 6899-6911. , COI: 1:CAS:528:DC%2BC3cXhtFGrurnO, PID: 2951065; Klionsky, D.J., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (2016) Autophagy, 12, pp. 1-222. , PID: 4835977; Rico-Bautista, E., Yang, C.C., Lu, L., Roth, G.P., Wolf, D.A., Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells (2010) Bmc. Biol., 8. , COI: 1:CAS:528:DC%2BC3MXlvVSitw%3D%3D, PID: 3025922; Wu, L., Specific small molecule inhibitors of Skp2-mediated p27 degradation (2012) Chem. Biol., 19, pp. 1515-1524. , COI: 1:CAS:528:DC%2BC38XhvVymu77O, PID: 3530153; Aghajanyy, M., Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase (2010) Nat. Biotechnol., 28, pp. 738-742. , COI: 1:CAS:528:DC%2BC3cXnvFyktL8%3D, PID: 2902569; Itakura, E., Kishi-Itakura, C., Mizushima, N., The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes (2012) Cell, 151, pp. 1256-1269. , COI: 1:CAS:528:DC%2BC38XhvVaisrvK; Cottam, E.M., Whelband, M.C., Wileman, T., Coronavirus NSP6 restricts autophagosome expansion (2014) Autophagy, 10, pp. 1426-1441. , PID: 4203519; Oudshoorn, D., Expression and cleavage of middle east respiratory syndrome coronavirusnsp3–4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication (2017) MBio, 8, pp. e01658-e1617. , COI: 1:CAS:528:DC%2BC1cXisVKmtLjE, PID: 5698553; Muth, D., Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission (2018) Sci. Rep., 8. , COI: 1:CAS:528:DC%2BC1MXhtFWgsLo%3D, PID: 6181990; Niemeyer, D., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist (2013) J. Virol., 87, pp. 12489-12495. , COI: 1:CAS:528:DC%2BC3sXhslSqsL7O, PID: 3807936; Orvedahl, A., Autophagy protects against Sindbis virus infection of the central nervous system (2010) Cell Host. Microbe, 7, pp. 115-127. , COI: 1:CAS:528:DC%2BC3cXlt1KltLg%3D, PID: 2860265; Shoji-Kawata, S., Identification of a candidate therapeutic autophagy-inducing peptide (2013) Nature, 494, pp. 201-206. , COI: 1:CAS:528:DC%2BC3sXis1aiu70%3D, PID: 3788641; Malik, S.A., BH3 mimetics activate multiple pro-autophagic pathways (2011) Oncogene, 30, pp. 3918-3929. , COI: 1:CAS:528:DC%2BC3MXktFKlsLY%3D; Matsunaga, K., Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages (2009) Nat. Cell Biol., 11, pp. 385-396. , COI: 1:CAS:528:DC%2BD1MXjvVymsr4%3D; Wu, C.Y., Small molecules targeting severe acute respiratory syndrome human coronavirus (2004) Proc. Natl Acad. Sci. USA, 101, pp. 10012-10017. , COI: 1:CAS:528:DC%2BD2cXlvFOiu7Y%3D; Xu, D., USP14 regulates autophagy by suppressing K63 ubiquitination of Beclin 1 (2016) Genes Dev., 30, pp. 1718-1730. , COI: 1:CAS:528:DC%2BC28Xhsl2js7vJ, PID: 5002977; Xu, C., Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination (2014) Autophagy, 10, pp. 2239-2250. , COI: 1:CAS:528:DC%2BC2MXmtlSnsrc%3D; Liu, C.C., Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination (2016) Mol. Cell, 61, pp. 84-97. , COI: 1:CAS:528:DC%2BC2MXitVSksb3N; Platta, H.W., Abrahamsen, H., Thoresen, S.B., Stenmark, H., Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1 (2012) Biochem. J., 441, pp. 399-406. , COI: 1:CAS:528:DC%2BC3MXhs1CgsL7P; Fimia, G.M., Ambra1 regulates autophagy and development of the nervous system (2007) Nature, 447, pp. 1121-1125. , COI: 1:CAS:528:DC%2BD2sXntlOlu7s%3D; Jin, J., Arias, E.E., Chen, J., Harper, J.W., Walter, J.C., A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1 (2006) Mol. Cell, 23, pp. 709-721. , COI: 1:CAS:528:DC%2BD28XhtVSkt7rJ, PID: 16949367; Xia, P., WASH inhibits autophagy through suppression of Beclin 1 ubiquitination (2013) EMBO J., 32, pp. 2685-2696. , COI: 1:CAS:528:DC%2BC3sXhtlWkur%2FP, PID: 3801434; Ashkenazi, A., Polyglutamine tracts regulate beclin 1-dependent autophagy (2017) Nature, 545, pp. 108-111. , COI: 1:CAS:528:DC%2BC2sXmslehsrc%3D, PID: 5420314; Gusho, E., Baskar, D., Banerjee, S., New advances in our understanding of the “unique” RNase L in host pathogen interaction and immune signaling (2016) Cytokine, (16), pp. 30456-30462. , https://doi.org/10.1016/j.cyto.2016.08.009; Yang, Y., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961. , COI: 1:CAS:528:DC%2BC3sXhvFKgtbjN, PID: 4875403; Ambjorn, M., IFNB1/interferon-beta-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function (2013) Autophagy, 9, pp. 287-302. , COI: 1:CAS:528:DC%2BC3sXltl2hsbk%3D, PID: 3590251; Scobey, T., Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus (2013) Proc. Natl Acad. Sci. USA, 110, pp. 16157-16162; Almazán, F., Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate (2013) MBio, 4, pp. e00650-e613. , COI: 1:CAS:528:DC%2BC2cXntVarsLo%3D, PID: 3774192; Skotland, T., Iversen, T.G., Torgersen, M.L., Sandvig, K., Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo (2015) Molecules, 20, pp. 13313-13323. , COI: 1:CAS:528:DC%2BC2MXht1OjtLzP, PID: 6332435; Campbell, G.R., Spector, S.A., Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy (2012) PLoS. Pathog., 8. , COI: 1:CAS:528:DC%2BC38XnslOltb4%3D, PID: 3349755; Orvedahl, A., HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein (2007) Cell Host. Microbe, 1, pp. 23-35. , COI: 1:CAS:528:DC%2BD2sXkvFSms7g%3D; Akhrymuk, I., Kulemzin, S.V., Frolova, E.I., Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II (2012) J. Virol., 86, pp. 7180-7191. , COI: 1:CAS:528:DC%2BC38XhtVansL7I, PID: 3416352; Kim, D.Y., New world and old world alphaviruses have evolved to exploit different components of stress granules, FXR and G3BP proteins, for assembly of viral replication complexes (2016) PLoS. Pathog., 12. , COI: 1:CAS:528:DC%2BC2sXht1Gls7s%3D, PID: 4980055; Galluzzi, L., Molecular definitions of autophagy and related processes (2017) EMBO J., 36, pp. 1811-1836. , COI: 1:CAS:528:DC%2BC2sXpsVCmsrg%3D, PID: 5494474; Smith, T.C., Kinkel, A.W., Gryczko, C.M., Goulet, J.R., Absorption of pyrvinium pamoate (1976) Clin. Pharmacol. Ther., 19, pp. 802-806. , COI: 1:CAS:528:DyaE28XksFKmsr0%3D; Andrews, P., Thyssen, J., Lorke, D., The biology and toxicology of molluscicides, Bayluscide (1982) Pharmacol. Ther., 19, pp. 245-295. , COI: 1:STN:280:DyaL3s3itF2ktg%3D%3D; Costabile, G., Toward repositioning niclosamide for antivirulence therapy of pseudomonas aeruginosa lung infections: development of inhalable formulations through nanosuspension technology (2015) Mol. Pharm., 12, pp. 2604-2617. , COI: 1:CAS:528:DC%2BC2MXotlWns7k%3D; Rubinsztein, D.C., Codogno, P., Levine, B., Autophagy modulation as a potential therapeutic target for diverse diseases (2012) Nat. Rev. Drug Discov., 11, pp. 709-730. , COI: 1:CAS:528:DC%2BC38Xht1yntLjK, PID: 22935804; Rubinsztein, D.C., Bento, C.F., Deretic, V., Therapeutic targeting of autophagy in neurodegenerative and infectious diseases (2015) J. Exp. Med., 212, pp. 979-990. , COI: 1:CAS:528:DC%2BC2MXhtFymu7rN, PID: 4493419; Zschocke, J., Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons–dissociation from cholesterol homeostasis (2011) Neuropsychopharmacology, 36, pp. 1754-1768. , COI: 1:CAS:528:DC%2BC3MXnsFKksLc%3D, PID: 3138654; Corman, V.M., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Eur. Surveill., 17, p. 20285; Miracco, C., Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours (2007) Int J. Oncol., 30, pp. 429-436. , COI: 1:CAS:528:DC%2BD2sXhvFyrurY%3D; Byrnes, A.P., Griffin, D.E., Binding of Sindbis virus to cell surface heparan sulfate (1998) J. Virol., 72, pp. 7349-7356. , COI: 1:CAS:528:DyaK1cXlsVSmsr8%3D, PID: 109959; Muth, D., Transgene expression in the genome of Middle East respiratory syndrome coronavirus based on a novel reverse genetics system utilizing Red-mediated recombination cloning (2017) J. Gen. Virol., 98, pp. 2461-2469. , COI: 1:CAS:528:DC%2BC1cXhtlGgu77L, PID: 5725994; Tischer, B.K., Smith, G.A., Osterrieder, N., En passant mutagenesis: a two step markerless red recombination system (2010) Methods Mol. Biol., 634, pp. 421-430. , COI: 1:CAS:528:DC%2BC3cXhtVeit7nO; Wochnik, G.M., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) J. Biol. Chem., 280, pp. 4609-4616. , COI: 1:CAS:528:DC%2BD2MXhtVymsbw%3D; Kimura, S., Noda, T., Yoshimori, T., Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 (2007) Autophagy, 3, pp. 452-460. , COI: 1:CAS:528:DC%2BD2sXhtVGrtb%2FN; Mizushima, N., Yoshimori, T., Levine, B., Methods in mammalian autophagy research (2010) Cell, 140, pp. 313-326. , COI: 1:CAS:528:DC%2BC3cXlt1KlsLc%3D, PID: 2852113","Gassen, N.C.; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 10, Germany; email: ncgassen@psych.mpg.de",,"Nature Research",20411723,,,"31852899","English","Nat. Commun.",Article,"Final",Open Access,Scopus,2-s2.0-85076800479 "Hemida M.G., Alnaeem A.","37037447300;6504163054;","Some One Health based control strategies for the Middle East respiratory syndrome coronavirus",2019,"One Health","8",, 100102,"","",,3,"10.1016/j.onehlt.2019.100102","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070950196&doi=10.1016%2fj.onehlt.2019.100102&partnerID=40&md5=148a1edc87ce43b667d90c437e494f58","Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia; Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia","Hemida, M.G., Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia, Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt; Alnaeem, A., Department of Clinical Studies, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia","The Middle East respiratory syndrome coronavirus (MERS-CoV) presents an ideal example for developing One Health concepts. Dromedary camels are the principal reservoir for the virus. Infected camels shed the virus in body secretions, particularly nasal discharges. MERS-CoV has the potential to remain active in the environment for some time under optimum conditions of temperature and humidity. This shedding sustains the virus in endemic communities and thus contact with camels is considered a major risk factor for human infection. Reducing virus shedding from camels will have a great positive impact on reducing the human risk of infection. Our main objective is to highlight the potential aspects of reducing virus shedding from camels to the environment, thereby reducing the possibility of human infection. We will focus on the potential roles of camel markets, camel shows, importation, transportation and grazing in the amplification and shedding of the virus, providing some novel concepts for the control approaches for the MERS-CoV. © 2019","Dromedary camel; Human; MERS-CoV; One Health; Shedding; Transmission","MERS CoV S1 vaccine; unclassified drug; virus vaccine; breeding; camel; competition; dairy product; dietary intake; disease surveillance; grazing; human; infection control; infection risk; market; meat; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; One Health; Review; risk reduction; Saudi Arabia; slaughterhouse; traffic and transport; vaccination; virus shedding; virus transmission","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; WHO, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) (2019), http://www.who.int/emergencies/mers-cov/en/2019, World Health Organization Available:; Hemida, M.G., Chu, D.K., Poon, L.L., Perera, R.A., Alhammadi, M.A., Ng, H.Y., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis., 20 (7), pp. 1231-1234; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370 (26), pp. 2499-2505; Peiris, J.S., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat. Med., 10 (12), pp. S88-S97; Wang, M., Yan, M., Xu, H., Liang, W., Kan, B., Zheng, B., SARS-CoV infection in a restaurant from palm civet (2005) Emerg. Infect. Dis., 11 (12), pp. 1860-1865; Cheng, V.C., Chan, J.F., To, K.K., Yuen, K.Y., Clinical management and infection control of SARS: lessons learned (2013) Antivir. Res., 100 (2), pp. 407-419; Mendez, D., Buttner, P., Speare, R., Hendra virus in Queensland, Australia, during the winter of 2011: veterinarians on the path to better management strategies (2014) Prev Vet Med., 117 (1), pp. 40-51; Middleton, D., Pallister, J., Klein, R., Feng, Y.R., Haining, J., Arkinstall, R., Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health (2014) Emerg. Infect. Dis., 20 (3), pp. 372-379; Wiethoelter, A.K., Schembri, N., Dhand, N.K., Sawford, K., Taylor, M.R., Moloney, B., Australian horse owners and their biosecurity practices in the context of Hendra virus (2017) Prev Vet Med., 148, pp. 28-36; Kung, N.Y., Field, H.E., McLaughlin, A., Edson, D., Taylor, M., Flying-foxes in the Australian urban environment-community attitudes and opinions (2015) One Health., 1, pp. 24-30; Khanvilkar, A.V., Samant, S.R., Ambore, B.N., Reproduction in Camel (2009) Veterinary World., 2 (2), pp. 72-73; Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg Microbes Infect., 6 (1), p. e1; Kamau, E., Ongus, J., Gitau, G., Galgalo, T., Lowther, S.A., Bitek, A., Knowledge and practices regarding Middle East Respiratory Syndrome Coronavirus among camel handlers in a Slaughterhouse, Kenya, 2015 (2019) Zoonoses Public Health, 66 (1), pp. 169-173; Muller, M.A., Meyer, B., Corman, V.M., Al-Masri, M., Turkestani, A., Ritz, D., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect. Dis., 15 (5), pp. 559-564; Zohaib, A., Saqib, M., Athar, M.A., Chen, J., Sial, A.U., Khan, S., Countrywide survey for MERS-coronavirus antibodies in dromedaries and humans in Pakistan (2018) Virol. Sin., 33 (5), pp. 410-417; Woo, P.C., Lau, S.K., Fan, R.Y., Lau, C.C., Wong, E.Y., Joseph, S., Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the Middle East: minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23 (2016) Int. J. Mol. Sci., 17 (5); Yusof, M.F., Eltahir, Y.M., Serhan, W.S., Hashem, F.M., Elsayed, E.A., Marzoug, B.A., Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates (2015) Virus Genes, 50 (3), pp. 509-513; Yusof, M.F., Queen, K., Eltahir, Y.M., Paden, C.R., Al Hammadi, Z., Tao, Y., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg Microbes Infect., 6 (11), p. e101; Hemida, M.G., Al-Naeem, A., Perera, R.A., Chin, A.W., Poon, L.L., Peiris, M., Lack of middle East respiratory syndrome coronavirus transmission from infected camels (2015) Emerg. Infect. Dis., 21 (4), pp. 699-701; Al Kahlout, R.A., Nasrallah, G.K., Farag, E.A., Wang, L., Lattwein, E., Muller, M.A., Comparative serological study for the prevalence of anti-MERS coronavirus antibodies in high- and low-risk groups in Qatar (2019) J Immunol Res, 2019; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect Ecol Epidemiol., 5; Reusken, C.B., Farag, E.A., Haagmans, B.L., Mohran, K.A., GJt, G., Raj, S., Occupational exposure to dromedaries and risk for MERS-CoV infection, Qatar, 2013-2014 (2015) Emerg. Infect. Dis., 21 (8), pp. 1422-1425; Sikkema, R.S., Farag, E., Himatt, S., Ibrahim, A.K., Al-Romaihi, H., Al-Marri, S.A., Risk factors for primary middle east respiratory syndrome coronavirus infection in Camel workers in Qatar during 2013-2014: a case-control study (2017) J. Infect. Dis., 215 (11), pp. 1702-1705; Alshukairi, A.N., Zheng, J., Zhao, J., Nehdi, A., Baharoon, S.A., Layqah, L., High prevalence of MERS-CoV infection in camel workers in Saudi Arabia (2018) MBio., 9 (5); Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill., 20 (49); Chu, D.K., Poon, L.L., Gomaa, M.M., Shehata, M.M., Perera, R.A., Abu Zeid, D., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20 (6), pp. 1049-1053; Chu, D.K.W., Chan, S.M.S., Perera, R., Miguel, E., Roger, F., Chevalier, V., A46 MERS-CoV in Arabian camels in Africa and Central Asia (2017) Virus Evol., 3. , Suppl 1; Kiambi, S., Corman, V.M., Sitawa, R., Githinji, J., Ngoci, J., Ozomata, A.S., Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017 (2018) Emerg Microbes Infect., 7 (1), p. 195; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill., 22 (13); van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., High prevalence of Middle East respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis., 17 (2), pp. 155-159; Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. U. S. A., 115 (12), pp. 3144-3149; van Doremalen, N., Bushmaker, T., Karesh, W.B., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus in milk (2014) Emerg. Infect. Dis., 20 (7), pp. 1263-1264; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill., 19, p. 23; Funk, A.L., Goutard, F.L., Miguel, E., Bourgarel, M., Chevalier, V., Faye, B., MERS-CoV at the animal-human interface: inputs on exposure pathways from an expert-opinion elicitation (2016) Front Vet Sci., 3, p. 88; Falzarano, D., Kamissoko, B., de Wit, E., Maiga, O., Cronin, J., Samake, K., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health., 3, pp. 41-43; Harcourt, J.L., Rudoler, N., Tamin, A., Leshem, E., Rasis, M., Giladi, M., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health, 65 (6), pp. 749-754. , Epub 2018 May 31; WHO, Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do (2013), http://wwwwhoint/entity/csr/disease/coronavirus_infections/InterimGuidance_ClinicalManagement_NovelCoronavirus_11Feb13updf, Available online; WHO, Infection prevention and control during health care for probable or confirmed cases of novel coronavirus (nCoV) infection Interim guidance (2013), http://wwwwhoint/entity/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13pdf, Available online; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., Dalab, A.H., Al-Busadah, K.A., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerg. Infect. Dis., 21 (7), pp. 1153-1158; WHO, (2012), http://www.who.int/entity/csr/disease/coronavirus_infections/LaboratoryTestingNovelCoronavirus_21Dec12.pdf, Available online; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerg Microbes Infect., 6 (6); Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill., 19 (23); Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill., 18 (50); Reusken, C.B., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13 (10), pp. 859-866; Adney, D.R., Wang, L., van Doremalen, N., Shi, W., Zhang, Y., Kong, W.P., Efficacy of an adjuvanted Middle East Respiratory Syndrome coronavirus spike protein vaccine in dromedary camels and alpacas (2019) Viruses., 11 (3); Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine., 35 (30), pp. 3780-3788; Munster, V.J., Wells, D., Lambe, T., Wright, D., Fischer, R.J., Bushmaker, T., Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model (2017) NPJ Vaccines., 2, p. 28; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies (2013) J. Virol., 87 (21), pp. 11950-11954; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Protective efficacy of recombinant modified vaccinia virus ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein (2015) J. Virol., 89 (16), pp. 8651-8656; WHO, MERS-CoV global summary and assessment of risk (2018) WHO/MERS/RA/August18 Geneva, Switzerland: World Health Organization; 2018 Licence: CC BY-NC-SA 30 IGO","Hemida, M.G.; Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofof, Al-Hasa, Saudi Arabia; email: mhemida@kfu.edu.sa",,"Elsevier B.V.",23527714,,,,"English","One Health",Review,"Final",Open Access,Scopus,2-s2.0-85070950196 "Takano T., Wakayama Y., Doki T.","55251249800;57212604253;55758877000;","Endocytic pathway of feline coronavirus for cell entry: Differences in serotype-dependent viral entry pathway",2019,"Pathogens","8","4", 300,"","",,,"10.3390/pathogens8040300","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077190346&doi=10.3390%2fpathogens8040300&partnerID=40&md5=6874cd640609a5c7b5c464bbe5414d96","Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Towada, 034-8628, Japan","Takano, T., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Towada, 034-8628, Japan; Wakayama, Y., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Towada, 034-8628, Japan; Doki, T., Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Towada, 034-8628, Japan","Feline coronavirus (FCoV) is a pathogen causing a lethal infectious disease in cats, feline infectious peritonitis. It has two serotypes (type I FCoV and type II FCoV). According to our previous study, type I FCoV infection is inhibited by compounds inducing intracellular cholesterol accumulation, whereas type II FCoV infection is not inhibited. Intracellular cholesterol accumulation was reported to disrupt late endosome function. Based on these findings, types I and II FCoV are considered to enter the cytosol through late and early endosomes, respectively. We investigated whether the antiviral activities of a late endosome trafficking inhibitor and cholesterol-accumulating agents are different between the FCoV serotypes. The late endosome trafficking inhibitor did not inhibit type II FCoV infection, but it inhibited type I FCoV infection. Type I FCoV infection was inhibited by cholesterol-accumulating triazoles, but not by non-cholesterol-accumulating triazoles. These phenomena were observed in both feline cell lines and feline primary macrophages. This study provides additional information on the differences in intracellular reproductive cycle between type I and type II FCoV. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Feline coronavirus; Feline infectious peritonitis; Late endosome; Macrophage; Serotype","25 hydroxycholesterol; 4 bromobenzaldehyde n (2,6 dimethylphenyl) semicarbazone; cholesterol; fluconazole; guanine nucleotide binding protein; itraconazole; nucleocapsid protein; posaconazole; semicarbazone derivative; triazole derivative; unclassified drug; voriconazole; animal cell; antiviral activity; Article; cell culture; cell membrane transport; cell migration; cell viability; controlled study; cytosol; cytotoxicity; cytotoxicity assay; endocytosis; endosome; Feline coronavirus; feline infectious peritonitis; immunofluorescence test; KU-2 cell line; macrophage; nonhuman; protein expression; virus entry; virus infection","Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Motokawa, K., Hohdatsu, T., Aizawa, C., Koyama, H., Hashimoto, H., Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I (1995) Arch. Virol., 140, pp. 469-480; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci., 54, pp. 557-562; Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., Feline coronavirus serotypes 1 and 2: Seroprevalence and association with disease in Switzerland (2005) Clin. Diagn. Lab. Immunol., 12, pp. 1209-1215; Wang, Y.T., Chueh, L.L., Wan, C.H., An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections (2014) BMC Vet. Res., 10; Tekes, G., Thiel, H.J., Feline coronaviruses: Pathogenesis of feline infectious peritonitis (2016) Adv. Virus Res., 96, pp. 193-218; Pedersen, N.C., An update on feline infectious peritonitis: Virology and immunopathogenesis (2016) Vet. J., 201, pp. 123-132; Stoddart, C.A., Scott, F.W., Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence (1989) J. Virol., 63, pp. 436-440; Takano, T., Hohdatsu, T., Toda, A., Tanabe, M., Koyama, H., TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages (2007) Virology, 364, pp. 64-72; Takano, T., Ohyama, T., Kokumoto, A., Satoh, R., Hohdatsu, T., Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP (2011) Virus Res, 158, pp. 161-168; Takano, T., Endoh, M., Fukatsu, H., Sakurada, H., Doki, T., Hohdatsu, T., The cholesterol transport inhibitor U18666A inhibits type I feline coronavirus infection (2017) Antivir. Res., 145, pp. 96-102; Takano, T., Akiyama, M., Doki, T., Hohdatsu, T., Antiviral activity of itraconazole against type I feline coronavirus infection (2019) Vet. Res., 50; Xu, J., Dang, Y., Ren, Y.R., Liu, J.O., Cholesterol trafficking is required for mTOR activation in endothelial cells (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 4764-4769; Poh, M.K., Shui, G., Xie, X., Shi, P.Y., Wenk, M.R., Gu, F., U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication (2012) Antivir. Res., 93, pp. 191-198; Lyu, J., Yang, E.J., Shim, J.S., Cholesterol trafficking: An emerging therapeutic target for angiogenesis and cancer (2019) Cells, 8, p. 389; Amini Bavil Olyaee, S., Choi, Y.J., Lee, J.H., Shi, M., Huang, I.C., Farzan, M., Jung, J.U., The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry (2013) Cell Host Microbe, 13, pp. 452-464; Sobo, K., Le Blanc, I., Luyet, P.P., Fivaz, M., Ferguson, C., Parton, R.G., Gruenberg, J., van der Goot, F.G., Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking (2007) Plos ONE, 2; Strating, J.R., van der Linden, L., Albulescu, L., Bigay, J., Arita, M., Delang, L., Leyssen, P., Thibaut, H.J., Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein (2015) Cell Rep, 10, pp. 600-615; Civra, A., Francese, R., Gamba, P., Testa, G., Cagno, V., Poli, G., Lembo, D., 25-Hydroxycholesterol and 27- hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes (2018) Redox Biol, 19, pp. 318-330; Gillespie, E.J., Ho, C.L.C., Balaji, K., Clemens, D.L., Deng, G., Wang, Y.E., Elsaesser, H.J., Dixon, S.D., Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses (2013) Proc. Natl. Acad. Sci. USA, 110, pp. E4904-E4912; Vonderheit, A., Helenius, A., Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes (2005) Plos Biol, 3; Saeed, M.F., Kolokoltsov, A.A., Albrecht, T., Davey, R.A., Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes (2010) Plos Pathog, 6; Gastaldelli, M., Imelli, N., Boucke, K., Amstutz, B., Meier, O., Greber, U.F., Infectious adenovirus type 2 transport through early but not late endosomes (2008) Traffic, 9, pp. 2265-2278; van der Meer, Y., Snijder, E.J., Dobbe, J.C., Schleich, S., Denison, M.R., Spaan, W.J., Locker, J.K., Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication (1999) J. Virol., 73, pp. 7641-7657; Quirin, K., Eschli, B., Scheu, I., Poort, L., Kartenbeck, J., Helenius, A., Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes (2008) Virology, 378, pp. 21-33; Burkard, C., Verheije, M.H., Wicht, O., van Kasteren, S.I., van Kuppeveld, F.J., Haagmans, B.L., Pelkmans, L., de Haan, C.A., Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner (2014) Plos Pathog, 10; Stadler, K., Ha, H.R., Ciminale, V., Spirli, C., Saletti, G., Schiavon, M., Bruttomesso, D., Pettenazzo, A., Amiodarone alters late endosomes and inhibits SARS coronavirus infection at a post-endosomal level (2008) Am. J. Respir. Cell Mol. Biol., 39, pp. 142-149; Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., Mechanisms of coronavirus cell entry mediated by the viral spike protein (2012) Viruses, 4, pp. 1011-1033; de Haan, C.A., Stadler, K., Godeke, G.J., Bosch, B.J., Rottier, P.J., Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion (2004) J. Virol., 78, pp. 6048-6054; Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., Bates, P., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 4240-4245; Bosch, B.J., Bartelink, W., Rottier, P.J., Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide (2008) J. Virol., 82, pp. 8887-8890; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) Plos ONE, 8; Simmons, G., Zmora, P., Gierer, S., Heurich, A., Pöhlmann, S., Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research (2013) Antivir. Res., 100, pp. 605-614; Cermak, S., Kosicek, M., Mladenovic-Djordjevic, A., Smiljanic, K., Kanazir, S., Hecimovic, S., Loss of Cathepsin B and l leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer’s proteins (2016) Plos ONE, 11; Regan, A.D., Shraybman, R., Cohen, R.D., Whittaker, G.R., Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses (2008) Vet. Microbiol., 132, pp. 235-248; Liu, S.Y., Aliyari, R., Chikere, K., Li, G., Marsden, M.D., Smith, J.K., Pernet, O., Zack, J.A., Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25- hydroxycholesterol (2013) Immunity, 38, pp. 92-105; Li, C., Deng, Y.Q., Wang, S., Ma, F., Aliyari, R., Huang, X.Y., Zhang, N.N., Liu, P., 25-Hydroxycholesterol protects host against Zika virus infection and its associated microcephaly in a mouse model (2017) Immunity, 46, p. 446-456; Civra, A., Cagno, V., Donalisio, M., Biasi, F., Leonarduzzi, G., Poli, G., Lembo, D., Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol (2014) Sci. Rep., 4; Shrivastava Ranjan, P., Bergeron, É., Chakrabarti, A.K., Albariño, C.G., Flint, M., Nichol, S.T., Spiropoulou, C.F., 25-Hydroxycholesterol inhibition of Lassa virus infection through aberrant GP1 glycosylation (2016) Mbio, 7; Dong, H., Zhou, L., Ge, X., Guo, X., Han, J., Yang, H., Antiviral effect of 25-hydroxycholesterol against porcine reproductive and respiratory syndrome virus in vitro (2018) Antivir. Ther., 23, pp. 395-404; Shawli, G.T., Adeyemi, O.O., Stonehouse, N.J., Herod, M.R., The Oxysterol 25-Hydroxycholesterol Inhibits Replication of Murine Norovirus (2019) Viruses, 11, p. 97; Kumar, N., Singhal, O.P., Cholesterol oxides and atherosclerosis: A review (1991) J. Sci. Food Agric., 55, pp. 497-510; Shibata, N., Glass, C.K., Macrophages, oxysterols and atherosclerosis (2010) Circ. J., 74, pp. 2045-2051; Takano, T., Katada, Y., Moritoh, S., Ogasawara, M., Satoh, K., Satoh, R., Tanabe, M., Hohdatsu, T., Analysis of the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection: Aminopeptidase N is not important and a process of acidification of the endosome is necessary (2008) J. Gen. Virol., 89, pp. 1025-1029; Trinh, M.N., Lu, F., Li, X., Das, A., Liang, Q., de Brabander, J.K., Brown, M.S., Goldstein, J.L., Triazoles inhibit cholesterol export from lysosomes by binding to NPC1 (2017) Proc. Natl. Acad. Sci. USA, 114, pp. 89-94; Kwon, H.J., Abi-Mosleh, L., Wang, M.L., Deisenhofer, J., Goldstein, J.L., Brown, M.S., Infante, R.E., Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol (2009) Cell, 137, pp. 1213-1224; Head, S.A., Shi, W.Q., Yang, E.J., Nacev, B.A., Hong, S.Y., Pasunooti, K.K., Li, R.J., Liu, J.O., Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis (2016) ACS Chem. Biol., 12, pp. 174-182; Takano, T., Satomi, Y., Oyama, Y., Doki, T., Hohdatsu, T., Differential effect of cholesterol on type I and II feline coronavirus infection (2016) Arch. Virol., 161, pp. 125-133; O’Brien, A., Mettelman, R.C., Volk, A., André, N.M., Whittaker, G.R., Baker, S.C., Characterizing replication kinetics and plaque production of type I feline infectious peritonitis virus in three feline cell lines (2018) Virology, 525, pp. 1-9; Mettelman, R.C., O’Brien, A., Whittaker, G.R., Baker, S.C., Generating and evaluating type I interferon receptor-deficient and feline TMPRSS2-expressing cells for propagating serotype I feline infectious peritonitis virus (2019) Virology, 537, pp. 226-236; Hohdatsu, T., Sasamoto, S., Koyama, H., Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): Preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683 (1991) Vet. Microbiol., 28, pp. 13-24","Takano, T.; Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Aomori, Japan; email: takanot@vmas.kitasato-u.ac.jp",,"MDPI AG",20760817,,,,"English","Pathogens",Article,"Final",Open Access,Scopus,2-s2.0-85077190346 "Sun Y., Cheng J., Luo Y., Yan X.L., Wu Z.X., He L.L., Tan Y.R., Zhou Z.H., Li Q.N., Zhou L., Wu R.T., Lan T., Ma J.Y.","56166199400;57200407299;57205188876;57208907179;57193311808;57196422834;57211109902;57200414689;57208317097;55861714100;57196419932;57201787210;7406199976;","Attenuation of a virulent swine acute diarrhea syndrome coronavirus strain via cell culture passage",2019,"Virology","538",,,"61","70",,,"10.1016/j.virol.2019.09.009","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072686211&doi=10.1016%2fj.virol.2019.09.009&partnerID=40&md5=23409445a8d6f8027a70562f6e8f9d46","College of Animal Science, South China Agricultural University, Guangzhou, China","Sun, Y., College of Animal Science, South China Agricultural University, Guangzhou, China; Cheng, J., College of Animal Science, South China Agricultural University, Guangzhou, China; Luo, Y., College of Animal Science, South China Agricultural University, Guangzhou, China; Yan, X.L., College of Animal Science, South China Agricultural University, Guangzhou, China; Wu, Z.X., College of Animal Science, South China Agricultural University, Guangzhou, China; He, L.L., College of Animal Science, South China Agricultural University, Guangzhou, China; Tan, Y.R., College of Animal Science, South China Agricultural University, Guangzhou, China; Zhou, Z.H., College of Animal Science, South China Agricultural University, Guangzhou, China; Li, Q.N., College of Animal Science, South China Agricultural University, Guangzhou, China; Zhou, L., College of Animal Science, South China Agricultural University, Guangzhou, China; Wu, R.T., College of Animal Science, South China Agricultural University, Guangzhou, China; Lan, T., College of Animal Science, South China Agricultural University, Guangzhou, China; Ma, J.Y., College of Animal Science, South China Agricultural University, Guangzhou, China","Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly identified enteric alphacoronavirus that causes fatal diarrhea in newborn piglets in China. Here, we propagated a virulent strain SADS-CoV/CN/GDWT/2017 in Vero cells for up to 83 passages. Four strains of SADS-CoV/GDWT-P7, -P18, -P48 and -P83 were isolated and characterized. Sequence alignments showed that these four novel strains exhibited 16 nucleotide mutations and resultant 10 amino acid substitutions in open reading frame 1a/1b, spike, NS3a, envelope, membrane and nucleocapsid proteins. Furthermore, a 58-bp deletion in NS7a/7b was found in P48 and P83 strains, which led to the loss of NS7b and 38 amino acid changes of NS7a. Pig infection studies showed that the P7 strain caused typical watery diarrhea, while the P83 strain induced none-to-mild, delayed and transient diarrhea. This is the first report on cell adaption of a virulent SADS-CoV strain, which gives information on the potential virulence determinants of SADS-CoV. © 2019 Elsevier Inc.","Attenuation; Cell adaptation; Genomic analysis; NS7a/7b; Pathogenicity; SADS-CoV","membrane protein; nucleocapsid protein; virus envelope protein; virus spike protein; Alphacoronavirus; amino acid substitution; animal cell; animal experiment; animal model; animal tissue; Article; controlled study; diarrhea; genetic variation; newborn; nonhuman; NS7a gene; NS7b gene; open reading frame; piglet; point mutation; priority journal; sequence alignment; swine acute diarrhea syndrome coronavirus; Vero cell line; viral tropism; virus attenuation; virus gene; virus virulence","Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric vral vaccines (2015) Annu. Rev. Anim. Biosci., 3, pp. 6.1-6.21; Chang, Y.C., Kao, C.F., Chang, C.Y., Jeng, C.R., Tsai, P.S., Pang, V.F., Evaluation and comparison of the pathogenicity and host immune responses induced by a G2b Taiwan porcine epidemic diarrhea virus (strain Pintung 52) and its highly cell-culture passaged strain in conventional 5-week-old pigs (2017) Viruses, 9, p. 121; Chen, F., Zhu, Y., Wu, M., Ku, X., Ye, S., Li, Z., Guo, X., Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus (2015) Viruses, 7, pp. 5525-5538; Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D., Multiple sequence alignment with the Clustal series of programs (2003) Nucleic Acids Res., 31, pp. 3497-3500; Cruz, J.L.G., Sola, I., Becares, M., Alberca, B., Plana, J., Enjuanes, L., Zuñiga, S., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) PLoS Pathog., 7 (6); Cruz, J.L.G., Becares, M., Sola, I., Oliveros, J.C., Enjuanes, L., Zúñigaa, S., Alphacoronavirus protein 7 modulates host innate immune response (2013) J. Virol., 87, pp. 9754-9767; Dedeurwaerder, A., Olyslaegers, D.A.J., Desmarets, L.M.B., Roukaerts, I.D.M., Theuns, S., Nauwynck, H.J., ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-a-induced antiviral response (2014) J. Gen. Virol., 95, pp. 393-402; Fu, X., Fang, B., Liu, Y., Cai, M., Jun, J., Ma, J., Newly emerged porcine enteric alphacoronavirus in southern China: identification, origin and evolutionary history analysis (2018) Infect. Genet. Evol., 62, pp. 179-187; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., A new bat-HKU2–like coronavirus in swine, China, 2017 (2017) Emerg. Infect. Dis., 23, pp. 1607-1609; Haijema, B.J., Volders, H., Rottier, P.J., Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis (2004) J. Virol., 78, pp. 3863-3870; Hulswit, R.J.G., de Haan, C.A.M., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv. Virus Res., 96, pp. 29-57; Jengarn, J., Wongthida, P., Wanasen, N., Frantz, P.N., Wanitchang, A., Jongkaewwattana, A., Genetic manipulation of porcine epidemic diarrhoea virus recovered from a full-length infectious cDNA clone (2015) J. Gen. Virol., 96, pp. 2206-2218; Kao, C.F., Chiou, H.Y., Chang, Y.C., Hsueh, C.S., Jeng, C.R., Tsai, P.S., The characterization of immunoprotection induced by a cDNA clone derived from the attenuated Taiwan porcine epidemic diarrhea virus Pintung 52 Strain (2018) Viruses, 10, p. 543; Ke, Y., Yu, D., Zhang, F., Gao, J., Wang, X., Fang, X., Wang, H., Recombinant vesicular stomatitis virus expressing the spike protein of genotype 2b porcine epidemic diarrhea virus: a platform for vaccine development against emerging epidemic isolates (2019) Virology, 533, pp. 77-85; Kim, S.H., Lee, J.M., Jung, J., Kim, I.J., Hyun, B.H., Kim, H.I., Genetic characterization of porcine epidemic diarrhea virus in Korea from 1998 to 2013 (2015) Arch. Virol., 160, pp. 1055-1064; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular Evolutionary Genetics analysis version 7.0 for bigger datasets (2016) Mol. Biol. Evol., 33 (7), pp. 1870-1874; Lee, S., Son, K.Y., Noh, Y.H., Lee, S.C., Choi, H.W., Yoon, I.J., Lee, C., Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus (2017) Vet. Microbiol., 207, pp. 248-258; Li, Z., Chen, F., Yuan, Y., Zeng, X., Wei, Z., Zhu, L., Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) strains in China (2013) Arch. Virol., 158, pp. 1267-1273; Li, Y., Wang, G., Wang, J., Man, K., Yang, Q., Cell attenuated porcine epidemic diarrhea virus strain Zhejiang08 provides effective immune protection attributed to dendritic cell stimulation (2017) Vaccine, 35 (50), pp. 7033-7041; Lin, C.M., Hou, Y., Marthaler, D.G., Gao, X., Liu, X., Zheng, L., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet. Microbiol., 201, pp. 62-71; Liu, X., Zhang, Q., Zhang, L., Zhou, P., Yang, J., Fang, Y., A newly isolated Chinese virulent genotype GIIb porcine epidemic diarrhea virus strain: biological characteristics, pathogenicity and immune protective effects as an inactivated vaccine candidate (2019) Virus Res., 259, pp. 18-27; Mai, K., Feng, J., Chen, G., Li, D., Zhou, L., Bai, Y., The detection and phylogenetic analysis of porcine deltacoronavirus from Guangdong Province in Southern China (2017) Transboundary Emerg. Dis., 65 (1), pp. 166-173; Ortego, J., Sola, I., Almazan, F., Ceriani, J.E., Riquelme, C., Balasch, M., Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence (2003) Virology, 308, pp. 13-22; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Park, S.J., Kim, H.K., Song, D.S., An, D.J., Park, B.K., Complete genome sequences of a Korean virulent porcine epidemic diarrhea virus and its attenuated counterpart (2012) J. Virol., 86 (10), p. 5964; Park, J.E., Kang, K.J., Ryu, J.H., Park, J.Y., ang, H., Sung, J.J., Porcine epidemic diarrhea vaccine evaluation using a newly isolated strain from Korea (2018) Vet. Microbiol., 221, pp. 19-26; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27, pp. 493-497; Sato, T., Takeyama, N., Katsumata, A., Tuchiya, K., Kodama, T., Kusanagi, K., Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo (2011) Virus Genes, 43, pp. 72-78; Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review (2016) J. Vet. Med. Sci., 78, pp. 355-363; Tamura, K., Nei, M., Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method (2004) Proc. Natl. Acad. Sci., 101, pp. 11030-11035; Wang, Q., Vlasova, A.N., Kenney, S.P., Saif, L.J., Emerging and re-emerging coronaviruses in pigs (2019) Curr. Opin. Virol., 34, pp. 39-49; Wongthida, P., Liwnaree, B., Wanasen, N., Narkpuk, J., Jongkaewwattana, A., The role of ORF3 accessory protein in replication of cell-adapted porcine epidemic diarrhea virus (PEDV) (2017) Achieve Virol., 162, pp. 2553-2563; Wu, Q., Zhao, X., Bai, Y., Sun, B., Xie, Q., Ma, J., The first identification and complete genome of Senecavirus A affecting pig with idiopathic vesicular disease in China (2017) Transboundary Emerg. Dis., 64, pp. 1633-1640; Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase (2013) J. Gen. Virol., 94, pp. 1554-1567; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets (2019) Transboundary Emerg. Dis., 66, pp. 119-130; Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Stollar, S., Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus (2007) Virology, 358, pp. 424-435; Zhou, P., Fan, H., Lan, T., Yang, X., Zhang, W., Zhu, Y., Fatal swine acute diarrhea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Zhou, L., Sun, Y., Wu, J., Mai, K., Chen, G., Wu, Z., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J. Virol Methods, 255, pp. 66-70; Zhou, L., Li, Q.N., Su, J.N., Chen, G.H., Wu, Z.X., Luo, Y., The Re-emerging of SADS-CoV Infection in Pig Herds in Southern China. Transboundary And Emerging Diseases (2019), accepted; Zhou, L., Sun, Y., Lan, T., Wu, R., Chen, J., Wu, Z., Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China (2019) Transboundary Emerg. Dis., 66 (2), pp. 687-695; Zuñiga, S., Pascual-Iglesias, A., Sanchez, C.M., Sola, I., Enjuanes, L., Virulence factors in porcine coronaviruses and vaccine design (2016) Virus Res., 226, pp. 142-151","Lan, T.; College of Animal Science, South China Agricultural UniversityChina; email: lantian2016@scau.edu.cn",,"Academic Press Inc.",00426822,,VIRLA,"31580972","English","Virology",Article,"Final",Open Access,Scopus,2-s2.0-85072686211 "Shi C.-S., Nabar N.R., Huang N.-N., Kehrl J.H.","36136238400;54943565900;56668276400;7005076525;","SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes",2019,"Cell Death Discovery","5","1", 101,"","",,5,"10.1038/s41420-019-0181-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071104997&doi=10.1038%2fs41420-019-0181-7&partnerID=40&md5=ef3f11d8b7442a624324b0e841c8e629","B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States","Shi, C.-S., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Nabar, N.R., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Huang, N.-N., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Kehrl, J.H., B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States","The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death. © 2019, The Author(s).",,,"Peiris, J.S., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat. Med., 10, pp. S88-S97. , COI: 1:CAS:528:DC%2BD2cXhtVeht7fJ; Stadler, K., SARS—beginning to understand a new virus (2003) Nat. Rev. Microbiol., 1, pp. 209-218. , COI: 1:CAS:528:DC%2BD3sXpsVaqsb0%3D; Balboni, A., Battilani, M., Prosperi, S., The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus (2012) New Microbiol., 35, pp. 1-16. , COI: 1:CAS:528:DC%2BC3sXhvFSlu7nO, PID: 22378548; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med, 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P; Franks, T.J., Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore (2003) Hum. Pathol., 34, pp. 743-748; Nicholls, J., Dong, X.P., Jiang, G., Peiris, M., SARS: clinical virology and pathogenesis (2003) Respirology, 8, pp. S6-S8; Huang, K.J., An interferon‐γ‐related cytokine storm in SARS patients (2004) J. Med. Virol., 75, pp. 185-194; He, L., Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2 + cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS (2006) J. Pathol., 210, pp. 288-297. , COI: 1:CAS:528:DC%2BD28Xht1GktbvI; Channappanavar, R., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19, pp. 181-193. , COI: 1:CAS:528:DC%2BC28XhvFOks78%3D; McBride, R., Fielding, B.C., The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis (2012) Viruses, 4, pp. 2902-2923. , COI: 1:CAS:528:DC%2BC38XhvVSrtrvE; Yue, Y., SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death (2018) Cell Death Dis., 9, p. 904; Shi, C.S., SARS-Coronavirus Open Reading Frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome (2014) J. Immunol., 193, pp. 3080-3089. , COI: 1:CAS:528:DC%2BC2cXhsV2qur3E; Wong, H.H., Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 (2018) Virology, 515, pp. 165-175. , COI: 1:CAS:528:DC%2BC1cXitlanuw%3D%3D; Oostra, M., de Haan, C.A., Rottier, P.J., The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 (2007) J. Virol., 81, pp. 13876-13888. , COI: 1:CAS:528:DC%2BD2sXhsValsbfO; Le, T.M., Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus (2007) FEBS J., 274, pp. 4211-4222. , COI: 1:CAS:528:DC%2BD2sXhtVSmt7vL; Keng, C.T., SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway (2011) Microbes Infect., 13, pp. 179-188. , COI: 1:CAS:528:DC%2BC3MXpvFSmuw%3D%3D; Keng, C.T., The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells (2006) Virology, 354, pp. 132-142. , COI: 1:CAS:528:DC%2BD28XhtVWqtLrO; Coll, R.C., O’Neill, L., Schroder, K., Questions and controversies in innate immune research: what is the physiological role of NLRP3? (2016) Cell Death Discov., 2, p. 16019. , COI: 1:CAS:528:DC%2BC28Xht1ais7rJ; Ng, P.C., Inflammatory cytokine profile in children with severe acute respiratory syndrome (2004) Pediatrics, 113, pp. e7-e14; Walsh, I., Seno, F., Tosatto, S.C.E., Trovato, A., PASTA 2.0: an improved server for protein aggregation prediction (2014) Nucleic Acids Res., 42, pp. W301-W307. , COI: 1:CAS:528:DC%2BC2cXhtFCqs7vF; Ogen-Shtern, N., Ben David, T., Lederkremer, G.Z., Protein aggregation and ER stress (2016) Brain Res., 1648, pp. 658-666. , COI: 1:CAS:528:DC%2BC28XltlOqt70%3D; Nishitoh, H., CHOP is a multifunctional transcription factor in the ER stress response (2012) J. Biochem., 151, pp. 217-219. , COI: 1:CAS:528:DC%2BC38XjtlKksL8%3D; Eskelinen, E.-L., Saftig, P., Autophagy: a lysosomal degradation pathway with a central role in health and disease (2009) Biochim. Biophys. Acta, 1793, pp. 664-673. , COI: 1:CAS:528:DC%2BD1MXjslOlsbs%3D; Nabar, N.R., Shi, C.-S., Kehrl, J.H., Signaling by the toll-like receptors induces autophagy through modification of beclin-1: Molecular mechanism (2017) Immunology, Vol. 1: Immunotoxicology, Immunopathology, and Immunotherapy, pp. 75-84. , Hayat M. A., Academic Press; Santaguida, S., Vasile, E., White, E., Amon, A., Aneuploidy-induced cellular stresses limit autophagic degradation (2015) Genes Dev., 29, pp. 2010-2021. , COI: 1:CAS:528:DC%2BC2MXhslCku77O; Nabar, N.R., Kehrl, J.H., The transcription factor EB links cellular stress to the immune response (2017) Yale J. Biol. Med., 90, pp. 301-315. , COI: 1:CAS:528:DC%2BC1MXhslOktr8%3D, PID: 28656016; Aits, S., Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay (2015) Autophagy, 11, pp. 1408-1424. , COI: 1:CAS:528:DC%2BC2MXhvVWqt7jJ; Martina, J.A., Diab, H.I., Brady, O.A., Puertollano, R., TFEB and TFE3 are novel components of the integrated stress response (2016) EMBO J., 35, pp. 479-495. , COI: 1:CAS:528:DC%2BC28Xhtleitrk%3D; Sardiello, M., A gene network regulating lysosomal biogenesis and function (2009) Science, 325, pp. 473-477. , COI: 1:CAS:528:DC%2BD1MXovVCgt7g%3D; Medina, D.L., Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB (2015) Nat. Cell Biol., 17, pp. 288-299; Settembre, C., TFEB links autophagy to lysosomal biogenesis (2011) Science, 332, pp. 1429-1433. , COI: 1:CAS:528:DC%2BC3MXntlOltLw%3D; Klionsky, D.J., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (2016) Autophagy, 12, pp. 1-222; He, Y., Hara, H., Nunez, G., Mechanism and regulation of NLRP3 inflammasome activation (2016) Trends Biochem. Sci., 41, pp. 1012-1021. , COI: 1:CAS:528:DC%2BC28XhsFamtb%2FI; Vural, A., Nabar, N.R., Hwang, I.-Y., Sohn, S., Park, C., Karlsson, M.C.I., Blumer, J.B., Kehrl, J.H., Gαi2 Signaling Regulates Inflammasome Priming and Cytokine Production by Biasing Macrophage Phenotype Determination (2019) The Journal of Immunology, 202 (5), pp. 1510-1520; Chen, J., Chen, Z.J., PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation (2018) Nature, 564, pp. 71-76. , COI: 1:CAS:528:DC%2BC1cXitlGgur%2FJ; Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China (2004) Science, 303, pp. 1666-1669; Currais, A., Fischer, W., Maher, P., Schubert, D., Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain (2017) FASEB J., 31, pp. 5-10. , COI: 1:CAS:528:DC%2BC2sXivFCgtL8%3D; Liu, X.-D., Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress (2012) J. Biol. Chem., 287, pp. 19687-19698. , COI: 1:CAS:528:DC%2BC38XnvVSqtb4%3D; Moshe, A., Gorovits, R., Virus-induced aggregates in infected cells (2012) Viruses, 4, pp. 2218-2232; Sung, S.-C., Chao, C.-Y., Jeng, K.-S., Yang, J.-Y., Lai, M.M.C., The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 (2009) Virology, 387, pp. 402-413. , COI: 1:CAS:528:DC%2BD1MXltVyltbs%3D; Zhang, K., Kaufman, R.J., From endoplasmic-reticulum stress to the inflammatory response (2008) Nature, 454, pp. 455-462. , COI: 1:CAS:528:DC%2BD1cXovV2mtbo%3D; Pastore, N., TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages (2016) Autophagy, 12, pp. 1240-1258. , COI: 1:CAS:528:DC%2BC28XpvV2ltLs%3D; Kanneganti, T.D., Central roles of NLRs and inflammasomes in viral infection (2010) Nat. Rev. Immunol., 10, pp. 688-698. , COI: 1:CAS:528:DC%2BC3cXhtFKrtrjL; Harris, J., Autophagy and inflammasomes (2017) Mol. Immunol., 86, pp. 10-15. , COI: 1:CAS:528:DC%2BC2sXjtl2nurw%3D; Ichinohe, T., Pang, I.K., Iwasaki, A., Influenza virus activates inflammasomes via its intracellular M2 ion channel (2010) Nat. Immunol., 11, pp. 404-410. , COI: 1:CAS:528:DC%2BC3cXksFaks7Y%3D; Ito, M., Yanagi, Y., Ichinohe, T., Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome (2012) PLoS Pathog., 8. , COI: 1:CAS:528:DC%2BC38Xht1SrsLzO; McAuley, J.L., Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease (2013) PLoS Pathog., 9. , COI: 1:CAS:528:DC%2BC3sXpslOhtLw%3D; Marra, M.A., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, p. 1399. , COI: 1:CAS:528:DC%2BD3sXktFGkt7c%3D; Shi, C.S., Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction (2012) Nat. Immunol., 13, pp. 255-263. , COI: 1:CAS:528:DC%2BC38XhtlOlsb0%3D","Nabar, N.R.; B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of HealthUnited States; email: neel.nabar@nih.gov",,"Springer Nature",20587716,,,,"English","Cell Death Discov.",Article,"Final",Open Access,Scopus,2-s2.0-85071104997 "Trivedi S.U., Miao C., Sanchez J.E., Caidi H., Tamin A., Haynes L., Thornburg N.J.","56025976500;8624002000;57205668309;56025899300;6602551546;7101765135;6602664202;","Development and Evaluation of a Multiplexed Immunoassay for Simultaneous Detection of Serum IgG Antibodies to Six Human Coronaviruses",2019,"Scientific Reports","9","1", 1390,"","",,1,"10.1038/s41598-018-37747-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061039024&doi=10.1038%2fs41598-018-37747-5&partnerID=40&md5=7c5c5160f3e7bb482f086779db9bbaea","Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 100 ORAU way, Oak Ridge, TN 37830, United States; National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States","Trivedi, S.U., Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 100 ORAU way, Oak Ridge, TN 37830, United States; Miao, C., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States; Sanchez, J.E., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States; Caidi, H., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States; Tamin, A., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States; Haynes, L., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States; Thornburg, N.J., National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NE, Atlanta, GA 30329, United States","Known human coronaviruses (hCoV) usually cause mild to moderate upper-respiratory tract illnesses, except SARS-CoV and MERS-CoV, which, in addition to mild illness can also be associated with severe respiratory diseases and high mortality rates. Well-characterized multiplexed serologic assays are needed to aid in rapid detection and surveillance of hCoVs. The present study describes development and evaluation of a multiplexed magnetic microsphere immunoassay (MMIA) to simultaneously detect immunoglobulin G (IgG) antibodies specific for recombinant nucleocapsid proteins (recN) from hCoVs 229E, NL63, OC43, HKU1, SARS-CoV, and MERS-CoV. We used paired human sera to screen for IgG with reactivity against six hCoVs to determine assay sensitivity, specificity and reproducibility. We found no signal interference between monoplex and multiplex assay formats (R2 range = 0.87–0.97). Screening of paired human sera using MMIA, resulted in 92 of 106 (sensitivity: 86%) as positive and 68 of 80 (specificity: 84%) as negative. This study serves as a proof of concept that it is feasible to develop and use a multiplexed microsphere immunoassay as a next generation screening tool for use in large scale seroprevalence studies of hCoVs. © 2019, The Author(s).",,,"Cabeca, T.K., Granato, C., Bellei, N., Epidemiological and clinical features of human coronavirus infections among different subsets of patients (2013) Influenza Other Respir. Viruses, 7, pp. 1040-1047. , COI: 1:CAS:528:DC%2BC3sXhslCrsbzJ; Su, S., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses (2016) Trends Microbiol., 24, pp. 490-502. , COI: 1:CAS:528:DC%2BC28XksVWmsbc%3D; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - drug discovery and therapeutic options (2016) Nat. Rev. Drug Discov., 15, pp. 327-347. , COI: 1:CAS:528:DC%2BC28XisVyru70%3D; Wevers, B.A., van der Hoek, L., Recently discovered human coronaviruses (2009) Clin. Lab. Med., 29, pp. 715-724; de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Dijkman, R., van der Hoek, L., Human Coronaviruses 229E and NL63: Close Yet Still So Far (2009) J. Formos. Med. Assoc., 108 (4), pp. 270-279. , COI: 1:CAS:528:DC%2BD1MXlvFCmtLk%3D; Zuwala, K., The nucleocapsid protein of human coronavirus NL63 (2015) PLoS One, 10; Coleman, C.M., Frieman, M.B., Coronaviruses: important emerging human pathogens (2014) J. Virol., 88, pp. 5209-5212; Morris-Cunnington, M.C., A Population-based Seroprevalence Study of Hepatitis A Virus Using Oral Fluid in England and Wales (2004) American J. of Epidemiol., 159, pp. 786-794. , COI: 1:STN:280:DC%2BD2c7ls1KqsA%3D%3D; Zhang, Y., A duplex recombinant viral nucleoprotein microbead immunoassay for simultaneous detection of seroresponses to human respiratory syncytial virus and metapneumovirus infections (2014) J. Virol. Methods, 206, pp. 55-62. , COI: 1:CAS:528:DC%2BC2cXhtFyqtr3K; Gao, X., Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection (2015) J. Infect., 71, pp. 599-602; Smits, G.P., van Gageldonk, P.G., Schouls, L.M., van der Klis, F.R., Berbers, G.A., Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus (2012) Clin. Vaccine Immunol., 19, pp. 396-400. , COI: 1:CAS:528:DC%2BC38XkvVOiurY%3D; Basile, A.J., Multiplex microsphere immunoassays for the detection of IgM and IgG to arboviral diseases (2013) PLoS One, 8. , COI: 1:CAS:528:DC%2BC3sXhsFKitLfK; Greiner, M., Sohr, D., Gobel, P., A modified ROC analysis for the selection of cut-off values and the definition of intermediate results of serodiagnostic tests (1995) J. Immunol. Methods, 185, pp. 123-132. , COI: 1:CAS:528:DyaK2MXnslymu78%3D; Gardner, I.A., Greiner, M., Receiver-operating characteristic curves and likelihood ratios: improvements over traditional methods for the evaluation and application of veterinary clinical pathology tests (2006) Vet. Clin. Pathol., 35, pp. 8-17; Sun, Z.F., Meng, X.J., Antigenic cross-reactivity between nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus and polyclonal antisera of antigenic group I animal coronaviruses: Implication for SARS diagnosis (2004) J. Clin. Microbiol., 42, pp. 2351-2352. , COI: 1:STN:280:DC%2BD2c3jtF2lsA%3D%3D; Che, X., Antigenic cross-reactivity between Severe Acute Respiratory Syndrome-Associated coronavirus and human coronaviruses 229E and OC43 (2005) J. Infect. Dis., 191, pp. 2033-2037. , COI: 1:CAS:528:DC%2BD2MXlvFShsr8%3D; Haynes, L.M., Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins (2007) Clin. Vaccine Immunol., 14, pp. 331-333. , COI: 1:CAS:528:DC%2BD2sXjsVSlsr4%3D; Blanchard, E.G., Miao, C., Haupt, T.E., Anderson, L.J., Haynes, L.M., Development of a recombinant truncated nucleocapsid protein based immunoassay for detection of antibodies against human coronavirus OC43 (2011) J. Virol. Methods, 177, pp. 100-106. , COI: 1:CAS:528:DC%2BC3MXhtVGrs7nM","Thornburg, N.J.; National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention 1600 Clifton Rd NEUnited States; email: nax3@cdc.gov",,"Nature Publishing Group",20452322,,,"30718599","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85061039024 "Yaghoubi H., Ghalyanchi Langeroudi A., Karimi V., Ghafouri S.A., Hashemzadeh M., Hosseini H., Fallah Mehrabadi M.H., Sadat Mousavi F., Najafi H.","57213597545;57213600361;9736157200;53463480700;55322612500;56566215500;57057224300;57213589970;55999257500;","Molecular Detection of Gamma Coronaviruses in Bird Parks of Iran",2019,"Archives of Razi Institute","74","4",,"349","355",,,"10.22092/ari.2018.116786.1176","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077896453&doi=10.22092%2fari.2018.116786.1176&partnerID=40&md5=94d969694026dbd0398b574ce4cb2d48","Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of TehranTehran, Iran; Department of Avian Diseases, Faculty of Veterinary Medicine, University of TehranTehran, Iran; Department of clinical sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj BranchAlborz, Iran; Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran","Yaghoubi, H., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of TehranTehran, Iran; Ghalyanchi Langeroudi, A., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of TehranTehran, Iran; Karimi, V., Department of Avian Diseases, Faculty of Veterinary Medicine, University of TehranTehran, Iran; Ghafouri, S.A., Department of clinical sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Hashemzadeh, M., Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Hosseini, H., Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj BranchAlborz, Iran; Fallah Mehrabadi, M.H., Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Sadat Mousavi, F., Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of TehranTehran, Iran; Najafi, H., Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran","Gamma Coronaviruses (GCoVs) are distributed worldwide, affecting a wide range of bird species, the beluga whale, and bottlenose dolphins. Because of the limited proofreading capability in the viral encoded polymerase, they emerge genetically diverse. There has been no molecular surveillance data to describe the epidemiology of GCOVs in avian species. The present study was conducted to detect GCOVs in Tehran birds&rsquo; parks, 2015. Cloacal swabs (267 samples) from eight different bird species ((Chickens (Gallus gallus), Pheasant (Phasianus colchicus), Turkey (Meleagris gallopavo), Partridge (Perdix perdix), Quail (Coturnix coturnix), Duck (Anas platyrhynchos), Goose (Anserini),and Guinea fowl (Numididae)) were collected, the viral RNA was extracted, the RT-PCR was performed using QIAGEN one step RT-PCR kit and the primers targeting &ldquo;3&#39;-UTR&rdquo; and &ldquo;Nucleocapsid&rdquo; genes. The detection rate was approximately 8.99%. GCOVs were detected in the chicken, quail, pheasant, turkey, and the partridge with different prevalence rates. Phylogenetic tree based on partial nucleotide sequences of the N gene clustered the samples into two groups. It is the first report of GCOVs in non-commercial birds in Iran. According to our results, GCOVs are circulating in different avian species, and further studies are needed to isolate these viruses and evaluate their pathogenesis. Copyright © 2019, Archives of Razi Institute. Published by Kowsar.","Bird Parks; Gamma coronavirus; Iran; Molecular detection; Phylogenetic Analysis",,,,,"NLM (Medline)",20089872,,,"31939251","English","Arch Razi Inst",Article,"Final",,Scopus,2-s2.0-85077896453 "Bernard-Stoecklin S., Nikolay B., Assiri A., Bin Saeed A.A., Ben Embarek P.K., El Bushra H., Ki M., Malik M.R., Fontanet A., Cauchemez S., Van Kerkhove M.D.","54997917000;54417768800;36607531400;6506049842;6507130584;6701457097;6603678673;37031425300;7004853555;11940936200;15761388700;","Comparative Analysis of Eleven Healthcare-Associated Outbreaks of Middle East Respiratory Syndrome Coronavirus (Mers-Cov) from 2015 to 2017",2019,"Scientific Reports","9","1", 7385,"","",,5,"10.1038/s41598-019-43586-9","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065757290&doi=10.1038%2fs41598-019-43586-9&partnerID=40&md5=ad9623bf88ee1429bc6b61a0d9a9af61","Formerly Outbreak Investigation Task Force, Centre for Global Health, Institut Pasteur, Paris, 75015, France; Direction of infectious diseases, Santé publique France, Saint-Maurice, 94410, France; Mathematical Modelling of Infectious Diseases, Institut Pasteur, UMR2000, CNRS, Paris, 75015, France; Ministry of Health, Riyadh, Saudi Arabia; Formerly Ministry of Health, Riyadh, Saudi Arabia; Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia; International Food Safety Authorities Network (INFOSAN) Management, Department of Food Safety and Zoonoses, World Health Organization, Geneva, Switzerland; Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea; Infectious Hazard Management Unit, Department of Health Emergencies, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt; Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, 75015, France; Centre for Global Health, Institut Pasteur, Paris, 75015, France; Conservatoire National des Arts et Métiers, Paris, France; Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Geneva, Switzerland","Bernard-Stoecklin, S., Formerly Outbreak Investigation Task Force, Centre for Global Health, Institut Pasteur, Paris, 75015, France, Direction of infectious diseases, Santé publique France, Saint-Maurice, 94410, France; Nikolay, B., Mathematical Modelling of Infectious Diseases, Institut Pasteur, UMR2000, CNRS, Paris, 75015, France; Assiri, A., Ministry of Health, Riyadh, Saudi Arabia; Bin Saeed, A.A., Formerly Ministry of Health, Riyadh, Saudi Arabia, Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Ben Embarek, P.K., International Food Safety Authorities Network (INFOSAN) Management, Department of Food Safety and Zoonoses, World Health Organization, Geneva, Switzerland; El Bushra, H., Formerly Ministry of Health, Riyadh, Saudi Arabia; Ki, M., Department of Cancer Control and Policy, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea; Malik, M.R., Infectious Hazard Management Unit, Department of Health Emergencies, World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt; Fontanet, A., Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, 75015, France, Centre for Global Health, Institut Pasteur, Paris, 75015, France, Conservatoire National des Arts et Métiers, Paris, France; Cauchemez, S., Mathematical Modelling of Infectious Diseases, Institut Pasteur, UMR2000, CNRS, Paris, 75015, France; Van Kerkhove, M.D., Formerly Outbreak Investigation Task Force, Centre for Global Health, Institut Pasteur, Paris, 75015, France, Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Geneva, Switzerland","Since its emergence in 2012, 2,260 cases and 803 deaths due to Middle East respiratory syndrome coronavirus (MERS-CoV) have been reported to the World Health Organization. Most cases were due to transmission in healthcare settings, sometimes causing large outbreaks. We analyzed epidemiologic and clinical data of laboratory-confirmed MERS-CoV cases from eleven healthcare-associated outbreaks in the Kingdom of Saudi Arabia and the Republic of Korea between 2015–2017. We quantified key epidemiological differences between outbreaks. Twenty-five percent (n = 105/422) of MERS cases who acquired infection in a hospital setting were healthcare personnel. In multivariate analyses, age ≥65 (OR 4.8, 95%CI: 2.6–8.7) and the presence of underlying comorbidities (OR: 2.7, 95% CI: 1.3–5.7) were associated with increased mortality whereas working as healthcare personnel was protective (OR 0.07, 95% CI: 0.01–0.34). At the start of these outbreaks, the reproduction number ranged from 1.0 to 5.7; it dropped below 1 within 2 to 6 weeks. This study provides a comprehensive characterization of MERS HCA-outbreaks. Our results highlight heterogeneities in the epidemiological profile of healthcare-associated outbreaks. The limitations of our study stress the urgent need for standardized data collection for high-threat respiratory pathogens, such as MERS-CoV. © 2019, The Author(s).",,,"Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P; Hijawi, B., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation (2013) East. Mediterr. Health J., 19, pp. S12-S18; Middle East Respiratory Syndrome Coronavirus (MERS-cov), , http://www.who.int/emergencies/mers-cov/en/, (Accessed: 7 October 2018); Who|Middle East Respiratory Syndrome Coronavirus (Mers-Cov), , http://www.who.int/emergencies/mers-cov/en/, (Accessed: 3rd October 2016); Cauchemez, S., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility (2014) Lancet Infect Dis, 14, pp. 50-56; Chowell, G., Blumberg, S., Simonsen, L., Miller, M.A., Viboud, C., Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission (2014) Epidemics, 9, pp. 40-51; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382, pp. 694-699; Alanazi, K.H., Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia, 2017 (2019) Infection Control Hospital Epidemiology, 40, pp. 79-88; Nazer, R.I., Outbreak of Middle East Respiratory Syndrome-Coronavirus Causes High Fatality After Cardiac Operations (2017) The Annals of Thoracic Surgery, 104, pp. e127-e129; Bushra, E.H.E., An outbreak of Middle East Respiratory Syndrome (MERS) due to coronavirus in Al-Ahssa Region, Saudi Arabia, 2015 (2016) East. Mediterr. Health J., 22, pp. 468-475; Alsharef, A.A., Increase in Middle East Respiratory Syndrome-Coronavirus Cases in Saudi Arabia Linked to Hospital Outbreak With Continued Circulation of Recombinant Virus (2016) Ofid, 3. , July 1–August 31, 2015; Baffoe-Bonnie, H., Identified Transmission Dynamics of Middle East Respiratory Syndrome Coronavirus Infection During an Outbreak: Implications of an Overcrowded Emergency Department (2017) CLINID, 65, pp. 675-679; Balkhy, H.H., Description of a Hospital Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital in Saudi Arabia (2016) Infection Control Hospital Epidemiology, 37, pp. 1147-1155; Assiri, A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416. , COI: 1:CAS:528:DC%2BC3sXht1GmsrrL; Assiri, A., Multifacility Outbreak of Middle East Respiratory Syndrome in Taif, Saudi Arabia (2016) Emerging Infect. Dis., 22, pp. 32-40. , COI: 1:CAS:528:DC%2BC28XitFCksrnF; Balkhy, H.H., Notes from the Field: Nosocomial Outbreak of Middle East Respiratory Syndrome in a Large Tertiary Care Hospital–Riyadh, Saudi Arabia, 2015 (2016) MMWR Morb. Mortal. Wkly. Rep., 65, pp. 163-164; Ki, M., 2015 MERS outbreak in Korea: hospital-to-hospital transmission (2015) Epidemiol Health, 37; Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278; Alhamlan, F.S., Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015 (2017) BMJ Open, 7. , COI: 1:STN:280:DC%2BC1c7lt1emsw%3D%3D; MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44; Hastings, D.L., Outbreak of Middle East Respiratory Syndrome at Tertiary Care Hospital, Jeddah, Saudi Arabia, 2014 (2016) Emerging Infect. Dis., 22, pp. 794-801; Oboho, I.K., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N. Engl. J. Med., 372, pp. 846-854. , COI: 1:CAS:528:DC%2BC2MXkt1WqtLk%3D; Lee, J., Chowell, G., Jung, E., A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events (2016) J. Theor. Biol., 408, pp. 118-126; Borgundvaag, B., SARS outbreak in the Greater Toronto Area: the emergency department experience (2004) CMAJ, 171, pp. 1342-1344; Shen, Z., Superspreading SARS events, Beijing, 2003 (2004) Emerging Infect. Dis., 10, pp. 256-260; Chen, M.I.C., Loon, S.-C., Leong, H.-N., Leo, Y.-S., Understanding the super-spreading events of SARS in Singapore (2006) Ann. Acad. Med. Singap., 35, pp. 390-394. , COI: 1:CAS:528:DC%2BD28XktVCmur8%3D, PID: 16865188; Ben Embarek, P.K., Van Kerkhove, M.D., Middle East respiratory syndrome coronavirus (MERS-CoV): current situation 3 years after the virus was first identified (2015) Wkly. Epidemiol. Rec., 90, pp. 245-250. , PID: 25980038; Drosten, C., Transmission of MERS-coronavirus in household contacts (2014) N. Engl. J. Med., 371, pp. 828-835; Kim, J.Y., Middle East Respiratory Syndrome Infection Control and Prevention Guideline for Healthcare Facilities (2015) Infect Chemother, 47, pp. 278-302; Han, H.-J., Yu, H., Yu, X.-J., Evidence for zoonotic origins of Middle East respiratory syndrome coronavirus (2016) J. Gen. Virol., 97, pp. 274-280. , COI: 1:CAS:528:DC%2BC28Xht1GnurrN; Assiri, A., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study (2013) Lancet Infect Dis, 13, pp. 752-761; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, p. 18; Van Kerkhove, M.D., Peiris, M.J.S., Malik, M.R., Ben Embarek, P., Interpreting Results From Environmental Contamination Studies of Middle East Respiratory Syndrome Coronavirus (2016) Clin. Infect. Dis., 63, p. 1142; Balkhy, H.H., Perl, T.M., Arabi, Y.M., Preventing healthcare-associated transmission of the Middle East Respiratory Syndrome (MERS): Our Achilles heel (2016) J Infect Public Health, 9, pp. 208-212; Liu, S., Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel (2016) PLoS ONE, 11; Bushra, E.H.E., Outcome of strict implementation of infection prevention control measures during an outbreak of Middle East respiratory syndrome (2017) American Journal of Infection Control, 45, pp. 502-507; Middle East respiratory syndrome coronavirus (2015) Case Definition for Reporting to WHO, , http://www.who.int/csr/disease/coronavirus_infections/mers_cov_interim_case_definition_Jul2015.pdf?ua=1, WHO website, (Accessed: 4 October 2016); Wallinga, J., Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures (2004) Am. J. Epidemiol., 160, pp. 509-516; Obadia, T., Haneef, R., Boëlle, P.-Y., The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks (2012) BMC Medical Informatics and Decision Making, 12, p. 147; Cauchemez, S., Unraveling the drivers of MERS-CoV transmission (2016) Proc. Natl. Acad. Sci. USA, 113, pp. 9081-9086. , COI: 1:CAS:528:DC%2BC28Xht1ehurnP; Ministry of Health, Kingdom of Saudi Arabia Infection Prevention and Control Guidelines for the Middle East Respiratory Syndrome Coronavirus (Mers-Cov)., , https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Guidelines%20MERS-CoV.PDF, moh.gov.sa, (Accessed: 7 October 2018); Surveillance for human infection with Middle East respiratory syndrome coronavirus (MERS-CoV), , http://www.who.int/csr/disease/coronavirus_infections/surveillance-human-infection-mers/en/, (Accessed: 7 October 2018); Choi, S., Jung, E., Choi, B.Y., Hur, Y.J., Ki, M., High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea (2018) Journal of Hospital Infection, 99, pp. 162-168. , COI: 1:STN:280:DC%2BC1M%2Fjtl2jug%3D%3D; Management of asymptomatic persons who are RTPCR positive for Middle East respiratory syndrome coronavirus (MERS-CoV), , http://apps.who.int/iris/bitstream/handle/10665/272948/WHO-MERS-IPC-18.1-eng.pdf?ua=1, WHO website, (Accessed: 7 October 2018); Home care for patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection presenting with mild symptoms and management of contacts, , http://apps.who.int/iris/bitstream/handle/10665/272948/WHO-MERS-IPC-18.1-eng.pdf?ua=1, (Accessed: 7 October 2018); (2018) MERS Daily Report Sept 20 Press Release, , http://www.cdc.go.kr/CDC/eng/info/CdcKPress.jsp?menuIds=HOME002-MNU0576-MNU0586&fid=8652&q_type=&q_value=&cid=140796&pageNum=, Accessed: 7 October; Middle East respiratory syndrome coronavirus (MERS-CoV) infection – Republic of Korea, , http://www.who.int/csr/don/12-september-2018-mers-republic-of-korea/en/, (Accessed: 7 October 2018); Nishiura, H., Miyamatsu, Y., Chowell, G., Saitoh, M., Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case (2015) Euro Surveill, 20. , &; Kim, Y., The Characteristics of Middle Eastern Respiratory Syndrome Coronavirus Transmission Dynamics in South Korea (2016) Osong Public Health Res Perspect, 7, pp. 49-55; Chowell, G., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study (2015) BMC Med, 13; Kim, S.W., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2016) CLINID, 64, pp. 557-768; Arabi, Y.M., Middle East Respiratory Syndrome (2017) N. Engl. J. Med., 376, pp. 584-594; Rivers, C.M., Majumder, M.S., Lofgren, E.T., Risks of Death and Severe Disease in Patients With Middle East Respiratory Syndrome Coronavirus, 2012–2015 (2016) Am. J. Epidemiol., 184, pp. 460-464; Song, Y.-J., Asymptomatic infection of Middle East respiratory syndrome coronavirus using serologic survey in Korea (2018) Epidemiol Health, , https://doi.org/10.4178/epih.e2018014; (2016) Disease Outbreak News, , http://www.who.int/csr/don/en/, WHO website, Accessed: 10 November","Van Kerkhove, M.D.; Infectious Hazards Management, Health Emergencies Programme, World Health OrganizationSwitzerland; email: vankerkhovem@who.int",,"Nature Publishing Group",20452322,,,"31089148","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85065757290 "Lee S., Nedumaran B., Hypolite J., Caldwell B., Rudolph M.C., Malykhina A.P.","55940282600;23976497500;6701327860;56927819700;7102832292;6603344476;","Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis",2019,"Scientific Reports","9","1", 10869,"","",,,"10.1038/s41598-019-47407-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069722612&doi=10.1038%2fs41598-019-47407-x&partnerID=40&md5=142bb354cada0b1132dd82d5d584f7a0","Department of Urology, University of California San Diego, La Jolla, CA, United States; Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, United States; Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, Co, United States; NORC Metabolic and Cellular Analysis Core Center for Women’s Health Research, University of Colorado Denver, Aurora, Co, United States","Lee, S., Department of Urology, University of California San Diego, La Jolla, CA, United States; Nedumaran, B., Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, United States; Hypolite, J., Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, United States; Caldwell, B., Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, United States; Rudolph, M.C., Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, Co, United States, NORC Metabolic and Cellular Analysis Core Center for Women’s Health Research, University of Colorado Denver, Aurora, Co, United States; Malykhina, A.P., Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, United States","Patients with multiple sclerosis (MS) develop a variety of lower urinary tract symptoms (LUTS). We previously characterized a murine model of neurogenic bladder dysfunction induced by a neurotropic strain of a coronavirus. In the present study, we further study the role of long-lasting neurodegeneration on the development of neurogenic bladder dysfunction in mice with corona-virus induced encephalitis (CIE). Long-term follow up study revealed three phenotypes of neurodegenerative symptom development: recovery (REC group), chronic progression (C-PRO group) and chronic disease with relapsing-remitting episodes (C-RELAP group). The levels of IL-1β in REC group, IL-10 in C-RELAP group, and IL-1β, IL-6, IL-10 and TNF-α in C-PRO group were diminished in the brain. The levels of TNF-α in REC group and INF-γ, IL-2, TGF-β and TNF-α in the C-PRO group were also diminished in the urinary bladder. Mice in C-RELAP group showed a delayed recovery of voiding function. In vitro contractility studies determined a decreased basal detrusor tone and reduced amplitude of nerve-mediated contractions in C-RELAP group, whereas C-PRO group had elevated muscle-mediated contractions. In conclusion, mice with CIE developed three phenotypes of neurologic impairment mimicking different types of MS progression in humans and showed differential mechanisms driving neurogenic bladder dysfunction. © 2019, The Author(s).",,,"Campbell, J.D., Burden of multiple sclerosis on direct, indirect costs and quality of life: National US estimates (2014) Mult Scler Relat Disord, 3, pp. 227-236; Fowler, C.J., A UK consensus on the management of the bladder in multiple sclerosis (2009) J Neurol Neurosurg Psychiatry, 80, pp. 470-477; Miller, H., Simpson, C.A., Yeates, W.K., Bladder Dysfunction In Multiple Sclerosis (1965) Br Med J, 1, pp. 1265-1269. , COI: 1:STN:280:DyaF2M%2FotlersQ%3D%3D; Betts, C.D., D’Mellow, M.T., Fowler, C.J., Urinary symptoms and the neurological features of bladder dysfunction in multiple sclerosis (1993) J Neurol Neurosurg Psychiatry, 56, pp. 245-250. , COI: 1:STN:280:DyaK3s3htVGjtQ%3D%3D; Borello-France, D., Bladder and sexual function among women with multiple sclerosis (2004) Mult Scler, 10, pp. 455-461; Hennessey, A., Robertson, N.P., Swingler, R., Compston, D.A., Urinary, faecal and sexual dysfunction in patients with multiple sclerosis (1999) J Neurol, 246, pp. 1027-1032. , COI: 1:STN:280:DC%2BD3c%2Fpslajuw%3D%3D; Awad, S.A., Gajewski, J.B., Sogbein, S.K., Murray, T.J., Field, C.A., Relationship between neurological and urological status in patients with multiple sclerosis (1984) J Urol, 132, pp. 499-502. , COI: 1:STN:280:DyaL2c3pt1CqsQ%3D%3D; Fernández, O., Mechanisms and current treatments of urogenital dysfunction in multiple sclerosis (2002) J Neurol, 249, pp. 1-8; Mattson, D., Petrie, M., Srivastava, D.K., McDermott, M., Multiple sclerosis. Sexual dysfunction and its response to medications (1995) Arch Neurol, 52, pp. 862-868. , COI: 1:STN:280:DyaK2MzptVyhtQ%3D%3D; McCombe, P.A., de Jersey, J., Pender, M.P., Inflammatory cells, microglia and MHC class II antigen-positive cells in the spinal cord of Lewis rats with acute and chronic relapsing experimental autoimmune encephalomyelitis (1994) J Neuroimmunol, 51, pp. 153-167. , COI: 1:CAS:528:DyaK2cXktlaqtL0%3D; McCombe, P.A., Fordyce, B.W., de Jersey, J., Yoong, G., Pender, M.P., Expression of CD45RC and Ia antigen in the spinal cord in acute experimental allergic encephalomyelitis: an immunocytochemical and flow cytometric study (1992) J Neurol Sci, 113, pp. 177-186. , COI: 1:CAS:528:DyaK3sXhs1Ohs7c%3D; McCombe, P.A., Nickson, I., Pender, M.P., Cytokine expression by inflammatory cells obtained from the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis induced by inoculation with myelin basic protein and adjuvants (1998) J Neuroimmunol, 88, pp. 30-38. , COI: 1:CAS:528:DyaK1cXktFGkur0%3D; Rus, V., RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis (2017) J Immunol, 198, pp. 3869-3877; Goverman, J., Autoimmune T cell responses in the central nervous system (2009) Nat Rev Immunol, 9, pp. 393-407; Hemmer, B., Archelos, J.J., Hartung, H.P., New concepts in the immunopathogenesis of multiple sclerosis (2002) Nat Rev Neurosci, 3, pp. 291-301; Mizusawa, H., A rat model for investigation of bladder dysfunction associated with demyelinating disease resembling multiple sclerosis (2000) Neurourol Urodyn, 19, pp. 689-699. , COI: 1:STN:280:DC%2BD3crhsVChtw%3D%3D; Vignes, J.R., Deloire, M.S., Petry, K.G., Nagy, F., Characterization and restoration of altered inhibitory and excitatory control of micturition reflex in experimental autoimmune encephalomyelitis in rats (2007) J Physiol, 578, pp. 439-450; Correale, J., Li, S., Weiner, L.P., Gilmore, W., Effect of persistent mouse hepatitis virus infection on MHC class I expression in murine astrocytes (1995) J Neurosci Res, 40, pp. 10-21; Liu, M.T., Keirstead, H.S., Lane, T.E., Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis (2001) J Immunol, 167, pp. 4091-4097. , COI: 1:CAS:528:DC%2BD3MXntFajur8%3D; Houtman, J.J., Fleming, J.O., Pathogenesis of mouse hepatitis virus-induced demyelination (1996) J Neurovirol, 2, pp. 361-376. , COI: 1:STN:280:DyaK2s7islKltQ%3D%3D; McMillan, M.T., Coronavirus-induced demyelination of neural pathways triggers neurogenic bladder overactivity in a mouse model of multiple sclerosis (2014) Am J Physiol Renal Physiol, 307, pp. F612-F622; Asfaw, T.S., Acute colonic inflammation triggers detrusor instability via activation of TRPV1 receptors in a rat model of pelvic organ cross-sensitization (2011) Am J Physiol Regul Integr Comp Physiol, 300, pp. R1392-R1400; Jäger, A., Dardalhon, V., Sobel, R.A., Bettelli, E., Kuchroo, V.K., Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes (2009) J Immunol, 183, pp. 7169-7177; Fletcher, J.M., Lalor, S.J., Sweeney, C.M., Tubridy, N., Mills, K.H., T cells in multiple sclerosis and experimental autoimmune encephalomyelitis (2010) Clin Exp Immunol, 162, pp. 1-11; Lamarre, N.S., Braverman, A.S., Malykhina, A.P., Barbe, M.F., Ruggieri, M.R., Alterations in nerve-evoked bladder contractions in a coronavirus-induced mouse model of multiple sclerosis (2014) PLoS One, 9; Ziemssen, T., Development of the multiple sclerosis (MS) early mobility impairment questionnaire (EMIQ) (2016) J Neurol, 263, pp. 1969-1983; Lublin, F.D., New multiple sclerosis phenotypic classification (2014) Eur Neurol, 72, pp. 1-5; Nylander, A., Hafler, D.A., Multiple sclerosis (2012) J Clin Invest, 122, pp. 1180-1188; Lu, C.Z., Fredrikson, S., Xiao, B.G., Link, H., Interleukin-2 secreting cells in multiple sclerosis and controls (1993) J Neurol Sci, 120, pp. 99-106. , COI: 1:STN:280:DyaK2c7hvVSlsQ%3D%3D; Titelbaum, D.S., Degenhardt, A., Kinkel, R.P., Anti-tumor necrosis factor alpha-associated multiple sclerosis (2005) AJNR Am J Neuroradiol, 26, pp. 1548-1550. , PID: 15956528; Khavari, R., Elias, S.N., Boone, T., Karmonik, C., Similarity of functional connectivity patterns in patients with multiple sclerosis who void spontaneously versus patients with voiding dysfunction (2019) Neurourol Urodyn, 38, pp. 239-247; Phe, V., Chartier-Kastler, E., Panicker, J.N., Management of neurogenic bladder in patients with multiple sclerosis (2016) Nat Rev Urol, 13, pp. 275-288; Tsunoyama, K., Pathogenesis of reduced or increased bladder sensation (2011) Neurourol Urodyn, 30, pp. 339-343; Tamam, Y., Özdemir, H.H., Gedik, A., Tamam, C., Nazlıkul, H., Efficacy of peripheral lidocaine application (neural therapy) in the treatment of neurogenic detrusor overactivity in multiple sclerosis patients (2017) Neurourol Urodyn, 36, pp. 1832-1838; Ruggieri, M.R., Cannabinoids: Potential Targets for Bladder Dysfunction (2011) Urinary Tract, pp. 425-451. , Springer Berlin Heidelberg, Berlin, Heidelberg; Tyagi, P., Tyagi, V., Yoshimura, N., Chancellor, M., Functional role of cannabinoid receptors in urinary bladder (2010) Indian J Urol, 26, pp. 26-35; Giannantoni, A., Lower urinary tract dysfunction and disability status in patients with multiple sclerosis (1999) Arch Phys Med Rehabil, 80, pp. 437-441. , COI: 1:STN:280:DyaK1M3itFCnug%3D%3D; Beckel, J.M., Birder, L.A., Differential expression and function of nicotinic acetylcholine receptors in the urinary bladder epithelium of the rat (2012) J Physiol, 590, pp. 1465-1480; Tornic, J., Panicker, J.N., The Management of Lower Urinary Tract Dysfunction in Multiple Sclerosis (2018) Curr Neurol Neurosci Rep, 18; Burnstock, G., Purinergic signalling in the urinary tract in health and disease (2013) Purinergic Signalling, 10 (1), pp. 103-155; Moss, H.E., Tansey, E.M., Burnstock, G., Abnormalities of responses to autonomic stimulation in the mouse urinary bladder associated with Semliki Forest virus-induced demyelination (1989) J Urol, 142, pp. 850-854. , COI: 1:STN:280:DyaL1Mzmt1Ojtg%3D%3D; Altuntas, C.Z., Connective tissue and its growth factor CTGF distinguish the morphometric and molecular remodeling of the bladder in a model of neurogenic bladder (2012) Am J Physiol Renal Physiol, 303, pp. F1363-F1369; Manaker, R.A., Piczak, C.V., Miller, A.A., Stanton, M.F., A hepatitis virus complicating studies with mouse leukemia (1961) J Natl Cancer Inst, 27, pp. 29-51. , COI: 1:STN:280:DyaF3c%2FosF2quw%3D%3D, PID: 13766009; Kalincik, T., Multiple Sclerosis Relapses: Epidemiology, Outcomes and Management. A Systematic Review (2015) Neuroepidemiology, 44, pp. 199-214; Lee, S., Yang, G., Bushman, W., Prostatic inflammation induces urinary frequency in adult mice (2015) PLoS One, 10; Uvin, P., The use of cystometry in small rodents: A study of bladder chemosensation (2012) J Vis Exp, , https://doi.org/10.3791/3869; Lei, Q., Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways (2013) J Neuroinflammation, 10","Malykhina, A.P.; Division of Urology, Department of Surgery, University of Colorado DenverUnited States; email: Anna.Malykhina@ucdenver.edu",,"Nature Publishing Group",20452322,,,,"English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85069722612 "Chen Y.-N., Hsu H.-C., Wang S.-W., Lien H.-C., Lu H.-T., Peng S.-K.","35739880000;57211979529;57211982071;57211983874;57211979992;57211983020;","Entry of scotophilus bat coronavirus-512 and severe acute respiratory syndrome coronavirus in human and multiple animal cells",2019,"Pathogens","8","4", 259,"","",,,"10.3390/pathogens8040259","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075556729&doi=10.3390%2fpathogens8040259&partnerID=40&md5=b4a1538db69c04eb447d9dcd1496024e","Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan","Chen, Y.-N., Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan; Hsu, H.-C., Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan; Wang, S.-W., Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan; Lien, H.-C., Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan; Lu, H.-T., Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan; Peng, S.-K., Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, 32020, Taiwan","Bats are natural reservoirs of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Scotophilus bat CoV-512 demonstrates potential for cross-species transmission because its viral RNA and specific antibodies have been detected in three bat species of Taiwan. Understanding the cell tropism of Scotophilus bat CoV-512 is the first step for studying the mechanism of cross-species transmission. In this study, a lentivirus-based pseudovirus was produced using the spike (S) protein of Scotophilus bat CoV-512 or SARS-CoV as a surface protein to test the interaction between coronaviral S protein and its cell receptor on 11 different cells. Susceptible cells expressed red fluorescence protein (RFP) after the entry of RFP-bound green fluorescence protein (GFP)-fused S protein of Scotophilus bat CoV-512 (RFP-Sco-S-eGFP) or RFP-SARS-S pseudovirus, and firefly luciferase (FLuc) activity expressed by cells infected with FLuc-Sco-S-eGFP or FLuc-SARS-S pseudovirus was quantified. Scotophilus bat CoV-512 pseudovirus had significantly higher entry efficiencies in Madin Darby dog kidney epithelial cells (MDCK), black flying fox brain cells (Pabr), and rat small intestine epithelial cells (IEC-6). SARS-CoV pseudovirus had significantly higher entry efficiencies in human embryonic kidney epithelial cells (HEK-293T), pig kidney epithelial cells (PK15), and MDCK cells. These findings demonstrated that Scotophilus bat CoV-512 had a broad host range for cross-species transmission like SARS-CoV. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Cell receptor; Pseudovirus; Scotophilus bat coronavirus-512; Severe acute respiratory syndrome-coronavirus","cell receptor; cell surface protein; dipeptidyl carboxypeptidase; dipeptidyl peptidase IV; green fluorescent protein; luciferase; virus spike protein; animal cell; Article; bat; controlled study; Coronavirinae; Coronavirus 512; electron microscopy; enzyme activity; fluorescence analysis; genetic transfection; HEK293T cell line; host range; human; human cell; IEC-6 cell line; immunofluorescence test; Lentivirus infection; MDCK cell line; microscopy; nonhuman; phylogenetic tree; PK-15 cell line; rat; SARS coronavirus; severe acute respiratory syndrome; vesicular stomatitis; Vesiculovirus; virus entry; virus titration; virus transmission","Update: Outbreak of severe acute respiratory syndrome-worldwide (2003) MMWR, 52, pp. 269-272; (2019) Disease Outbreak News: Middle East Respiratory Syndrome Coronavirus (Mers-Cov)-Saudi Arabia, , https://www.who.int/csr/don/26-august-2019-mers-saudi-arabia/en/, 31 August, accessed on 31 August 2019; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Liu, W., Gao, G.F., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol, 24, pp. 490-502; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol, 86, pp. 3995-4008; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Tsoi, H.W., Wong, B.H., Wong, S.S., Yuen, K.Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045; Woo, P.C., Lau, S.K., Li, K.S., Tsang, A.K., Yuen, K.Y., Genetic relatedness of the novel human group C Betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5 (2012) Emerg. Microbes. Infect, 1; Corman, V.M., Baldwin, H.J., Tateno, A.F., Zerbinati, R.M., Annan, A., Owusu, M., Nkrumah, E.E., Adu-Sarkodie, Y., Evidence for an ancestral association of human coronavirus 229E with bats (2015) J. Virol, 89, pp. 11858-11870; Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J.C., Nagel, J., Gates, J.E., Evidence supporting a zoonotic origin of human coronavirus strain NL63 (2012) J. Virol, 86, pp. 12816-12825; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H., Müller, M.A., Dijkman, R., Muth, D., Fouchier, R.A., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-256; Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Peng, C., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538; Caì, Y., Yú, S., Postnikova, E.N., Mazur, S., Bernbaum, J.G., Burk, R., Zhāng, T., Jordan, I., CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to middle east respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection (2014) Plos ONE, p. 9; Eckerle, I., Corman, V.M., Müller, M.A., Lenk, M., Ulrich, R.G., Drosten, C., Replicative capacity of MERS coronavirus in livestock cell lines (2014) Emerg. Infec. Dis, 20, pp. 276-279; Chen, Y.-N., Phuong, V.N., Chen, H.C., Chou, C.-H., Cheng, H.-C., Wu, C.-H., Detection of the severe acute respiratory syndrome-related coronavirus and Alphacoronavirus in the bat population of Taiwan (2016) Zoonoses Public Health, 63, pp. 608-615; Chen, Y.-N., Su, B.-G., Chen, H.-C., Chou, C.-H., Cheng, H.-C., Detection of specific antibodies to the nucleocapsid protein fragments of severe acute respiratory syndrome-coronavirus and Scotophilus bat coronavirus-512 in three insectivorous bat species (2018) Taiwan Vet. J., 44, pp. 179-188; Huang, Y.W., Dickerman, A.W., Pineyro, P., Li, L., Fang, L., Kiehne, R., Opriessnig, T., Meng, X.J., Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States (2013) Mbio, 4, pp. e00737-e00e13; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Du, L., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J. Virol, 89, pp. 6121-6125; Lin, S.-C., Kappes, M.A., Chen, M.-C., Lin, C.-C., Wang, T.T., Distinct susceptibility and applicability of MDCK derivatives for influenza virus research (2017) Plos ONE, 12; O’Brien, A., Mettelman, R.C., Volk, A., André, N.M., Whittaker, G.R., Baker, S.C., Characterizing replication kinetics and plaque production of type I feline infectious peritonitis virus in three feline cell lines (2018) Virology, 525, pp. 1-9; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 355, pp. 166-172; Li, W., Luo, R., He, Q., Van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase, N., Is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13; Zhang, J., Wu, Z., Yang, H., Aminopeptidase, N., Knockout pigs are not resistant to porcine epidemic diarrhea virus infection (2019) Virol. Sin; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, bur promotes its infectivity via aminopeptidase activity (2016) J. Gen. Virol, 97, pp. 2528-2539; Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Edlund, K., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics (2014) Mol. Cell. Proteom, 13, pp. 397-406; Widagdo, W., Begeman, L., Schipper, D., Run, P.R.V., Cunningham, A.A., Kley, N., Reusken, C.B., Van Den Brand, J.M.A., Tissue distribution of the MERS-Coronavirus receptor in bats (2017) Sci. Rep, 7, p. 1193; Widagdo, W., Raj, V.S., Schipper, D., Kolijn, K., Van Leenders, G., Bosch, B.J., Bensaid, A., Osterhaus, A., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J. Virol, 90, pp. 4838-4842; Meyerholz, D.K., Lambertz, A.M., McCray, P.B., Jr., Dipeptidyl peotidase 4 distribution in the human respiratory tract: Implications for the Middle East respiratory syndrome (2016) Am. J. Pathol, 186, pp. 78-86; Li, W., Sui, J., Huang, I.C., Kuhn, J.H., Radoshitzky, S.R., Marasco, W.A., Choe, H., Farzan, M., The S protein of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2 (2007) Virology, 367, pp. 367-374; Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Li, F., Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases (2016) J. Biol. Chem, 291, pp. 24779-24789; Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Cheung, C.L., Prevalence and genetic diversity of coronaviruses in bats from China (2006) J. Virol, 80, pp. 7481-7490; Kaye, M., Druce, J., Tran, T., Kostecki, R., Chibo, D., Morris, J., Catton, M., Birch, C., SARS-associated coronavirus replication in cell lines (2006) Emerg. Infect. Dis, 12, pp. 128-133; Mossel, E.C., Huang, C., Narayanan, K., Makino, S., Tesh, R.B., Peters, C., Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication (2005) J. Virol, 79, pp. 3846-3850; Lang, J., Yang, N., Deng, J., Liu, K., Yang, P., Zhang, G., Jiang, C., Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans (2011) Plos ONE, 6; Qian, Z., Dominguez, S.R., Holmes, K.V., Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation (2013) Plos ONE, 8; Peck, K.M., Scobey, T., Swanstrom, J., Jensen, K.L., Burch, C.L., Baric, R.S., Heise, M.T., Permissively of dipeptidyl peptidase 4 orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants (2017) J. Virol, 19, pp. e00534-e00e17; Wentworth, D.E., Holmes, K.V., Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): Influence of N-linked glycosylation (2001) J. Virol, 75, pp. 9741-9752; Tusell, S.M., Schittone, S.A., Holmes, K.V., Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants o viral host range (2007) J. Virol., 81, pp. 1261-1273; Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S., Vasilieva, N., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2 (2005) EMBO J, 24, pp. 1634-1643; Amman, B.R., Carroll, S.A., Reed, Z.D., Sealy, T.K., Balinandi, S., Swanepoel, R., Kemp, A., Campbell, S., Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection (2012) Plos Pathog, 8; Perlman, S., Netland, J., Coronaviruses post-SARS: Update on replication and pathogenesis. Nat (2009) Rev. Microbiol, 7, pp. 439-450; Madan, V., Garcia, M.J., Sanz, M.A., Carrasco, L., Viroporin activity of murine hepatitis virus E protein (2005) FEBS Lett, 579, pp. 3607-3612; Yount, B., Roberts, R.S., Sims, A.C., Deming, D., Frieman, M.B., Sparks, J., Denison, M.R., Baric, R.S., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice (2005) J. Virol, 79, pp. 14909-14922; De Haan, C.A., Masters, P.S., Shen, X., Weiss, S., Rottier, P.J., The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host (2002) Virology, 296, pp. 177-189; Narayan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.T., Makino, S., Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells (2008) J. Virol, 82, pp. 4471-4479; Devaraj, S.G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Baker, S.C., Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus (2007) J. Biol. Chem, 282, pp. 32208-32221; Niemeyer, D., Zillinger, T., Nuth, D., Zielecki, F., Horvath, G., Suliman, T., Barchet, W., Muller, M.A., Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonists (2013) J. Virol, 87, pp. 12489-12495; Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A., Palese, P., SARS coronavirus protein Orf3b, Orf6, and nucleocapsid function as interferon antagonists (2006) J. Virol, 81, pp. 548-557; Lau, S.K.P., Zhang, L., Luk, H.K.H., Xiong, L., Peng, X., Li, K.S.M., He, X., Wong, A., Receptor usage of a novel bat lineage C Betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding (2018) J. Infect. Dis, 218, pp. 197-207; Lau, S.K.P., Fan, R.Y.Y., Luk, H.K.H., Zhu, L., Fung, J., Li, K.S.M., Wong, E.Y.M., Kok, R., Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins (2018) Emerg. Microbe Infect, 7, pp. 209-219; Müller, M.A., Raj, V.S., Muth, D., Meyer, B., Kallies, S., Smits, S.L., Wollny, R., Suliman, T., Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines (2012) Mbio, 3, pp. e00515-e00e12; Letko, M., Miazgowicz, K., McMinn, R., Seifert, S.N., Sola, I., Enjuanes, L., Carmody, A., Munster, V., Adaptive evolution of MERS-CoV to species variation in DPP4 (2018) Cell Rep, 24, pp. 1730-1737","Chen, Y.-N.; Department of Bioscience Technology, Chung Yuan Christian UniversityTaiwan; email: yining@cycu.edu.tw",,"MDPI AG",20760817,,,,"English","Pathogens",Article,"Final",Open Access,Scopus,2-s2.0-85075556729 "Hashem A.M., Hassan A.M., Tolah A.M., Alsaadi M.A., Abunada Q., Damanhouri G.A., El-Kafrawy S.A., Picard-Maureau M., Azhar E.I., Hindawi S.I.","57200589744;7402686960;57188767465;57211668012;57211661716;15041913700;12545932500;57211665286;23090055800;23473286600;","Amotosalen and ultraviolet A light efficiently inactivate MERS-coronavirus in human platelet concentrates",2019,"Transfusion Medicine","29","6",,"434","441",,1,"10.1111/tme.12638","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074770711&doi=10.1111%2ftme.12638&partnerID=40&md5=8df281d6c6cdc8d2f5a6978e28aed8ee","Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Cerus Europe B.V, Amersfoort, Netherlands; Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia","Hashem, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Hassan, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Tolah, A.M., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Alsaadi, M.A., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Abunada, Q., Cerus Europe B.V, Amersfoort, Netherlands; Damanhouri, G.A., Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; El-Kafrawy, S.A., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Picard-Maureau, M., Cerus Europe B.V, Amersfoort, Netherlands; Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hindawi, S.I., Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia","Objective: This study aimed to assess the efficacy of the INTERCEPT™ Blood System [amotosalen/ultraviolet A (UVA) light] to reduce the risk of Middle East respiratory syndrome-Coronavirus (MERS-CoV) transmission by human platelet concentrates. Background: Since 2012, more than 2425 MERS-CoV human cases have been reported in 27 countries. The infection causes acute respiratory disease, which was responsible for 838 deaths in these countries, mainly in Saudi Arabia. Viral genomic RNA was detected in whole blood, serum and plasma of infected patients, raising concerns of the safety of blood supplies, especially in endemic areas. Methods: Four apheresis platelet units in 100% plasma were inoculated with a clinical MERS-CoV isolate. Spiked units were then treated with amotosalen/UVA to inactivate MERS-CoV. Infectious and genomic viral titres were quantified by plaque assay and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). Inactivated samples were successively passaged thrice on Vero E6 cells to exclude the presence of residual replication-competent viral particles in inactivated platelets. Results: Complete inactivation of MERS-CoV in spiked platelet units was achieved by treatment with Amotosalen/UVA light with a mean log reduction of 4·48 ± 0·3. Passaging of the inactivated samples in Vero E6 showed no viral replication even after nine days of incubation and three passages. Viral genomic RNA titration in inactivated samples showed titres comparable to those in pre-treatment samples. Conclusion: Amotosalen and UVA light treatment of MERS-CoV-spiked platelet concentrates efficiently and completely inactivated MERS-CoV infectivity (>4 logs), suggesting that such treatment could minimise the risk of transfusion-related MERS-CoV transmission. © 2019 British Blood Transfusion Society","amotosalen; MERS-CoV; pathogen inactivation; platelets; UVA","amotosalen; genomic RNA; messenger RNA; thrombocyte concentrate; virus RNA; animal cell; apheresis; Article; controlled study; human; Middle East respiratory syndrome coronavirus; nonhuman; plaque assay; platelet count; real time reverse transcription polymerase chain reaction; Saudi Arabia; thrombocyte transfusion; ultraviolet A radiation; vascularization; Vero C1008 cell line; virus genome; virus inactivation; virus isolation; virus load; virus particle; virus replication; virus transmission","Al-Amri, S.S., Abbas, A.T., Siddiq, L.A., Alqhamdi, A., Al-Muhanna, M.K., Alhabbab, R.Y., Azhar, E.I., Hashem, A.M., Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein (2017) Scientific Reports, 7, p. 44875. , &; Almekhlafi, G.A., Albarrak, M.M., Mandourah, Y., Presentation and outcome of Middle East respiratory syndrome in Saudi intensive care unit patients (2016) Critical Care, 20, p. 123; Alshukairi, A.N., Zheng, J., Zhao, J., High prevalence of MERS CoV infection in camel Workers in Saudi Arabia (2018) MBio, 9, pp. e01985-e01918; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East respiratory syndrome (2017) New England Journal of Medicine, 376, pp. 584-594; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) New England Journal of Medicine, 370, pp. 2499-2505. , &; Benjamin, R.J., Braschler, T., Weingand, T., Corash, L.M., Hemovigilance monitoring of platelet septic reactions with effective bacterial protection systems (2017) Transfusion, 57, pp. 2946-2957. , &; Candotti, D., Assennato, S.M., Laperche, S., Allain, J.P., Levicnik-Stezinar, S., Multiple HBV transfusion transmissions from undetected occult infections: revising the minimal infectious dose (2018) Gut, 68, pp. 313-321. , &; Cappy, P., Barlet, V., Lucas, Q., Tinard, X., Pillonel, J., Tiberghien, P., Laperche, S., Transfusion of HIV-infected blood products despite highly sensitive nucleic acid testing (2019) Transfusion, 59, pp. 2046-2053. , Gross, S; Castro, G., Merkel, P.A., Giclas, H.E., Amotosalen/UVA treatment inactivates T cells more effectively than the recommended gamma dose for prevention of transfusion-associated graft-versus-host disease (2018) Transfusion, 58, pp. 1506-1515; Chu, H., Zhou, J., Wong, B.H., Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) The Journal of Infectious Diseases, 213, pp. 904-914; Chu, H., Zhou, J., Wong, B.H., Productive replication of Middle East respiratory syndrome coronavirus in monocytederived dendritic cells modulates innate immune response (2014) Virology, 454-455, pp. 197-205; Cid, J., Escolar, G., Lozano, M., Therapeutic efficacy of platelet components treated with amotosalen and ultraviolet a pathogen inactivation method: results of a meta-analysis of randomized controlled trials (2012) Vox Sanguinis, 103, pp. 322-330. , &; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with MERS-coronavirus infection (2016) Clinical Infectious Diseases, 62, pp. 477-483; Eickmann, M., Gravemann, U., Handke, W., Tolksdorf, F., Reichenberg, S., Müllert, T.H., Seltsam, A., Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively (2018) Transfusion, 58, pp. 2202-2207. , &; Hashem, A.M., Algaissi, A., Agrawal, A., Al-amri, S.S., Alhabbab, R.Y., Sohrab, S.S., Almasoud, A., Tseng, C.T., A highly immunogenic, protective and safe adenovirus-based vaccine expressing MERS-CoV S1-CD40L fusion protein in transgenic human DPP4 mouse model (2019) The Journal of Infectious Diseases, , https://doi.org/10.1093/infdis/jiz137, 220, 1558–1567; Hindawi, S.I., Hashem, A.M., Damanhouri, G.A., El-Kafrawy, S.A., Tolah, A.M., Hassan, A.M., Azhar, E.I., Inactivation of Middle East respiratory syndrome-coronavirus in human plasma using amotosalen and ultraviolet a light (2018) Transfusion, 58, pp. 52-59. , &; Jutzi, M., Mansouri, B., Rueesch, M., Amsler, L., Buser, A., Nationwide implementation of pathogen inactivation for all platelet concentrates in Switzerland (2018) Transfusion Medicine and Hemotherapy, 45, pp. 151-156. , &; Keil, S.D., Bowen, R., Marschner, S., Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment (2016) Transfusion, 56, pp. 2948-2552. , &; Kim, S.Y., Park, S.J., Cho, S.Y., Viral RNA in blood as Indicator of severe outcome in Middle East respiratory syndrome coronavirus infection (2016) Emerging Infectious Diseases, 22, pp. 1813-1816; Lanteri, M.C., Kleinman, S.H., Glynn, S.A., Musso, D., Hoots, W.K., Custer, B.S., Sabino, E.C., Busch, M.P., Zika virus: a new threat to the safety of the blood supply with worldwide impact and implications (2016) Transfusion, 56, pp. 1907-1914. , &; Lessler, J., Salje, H., Van Kerkhove, M.D., Estimating the severity and subclinical burden of Middle East respiratory syndrome coronavirus infection in the Kingdom of Saudi Arabia (2016) American Journal of Epidemiology, 83, pp. 657-663; Mackay, I.M., Arden, K.E., Middle East respiratory syndrome: an emerging coronavirus infection tracked by the crowd (2015) Virus Research, 202, pp. 60-88. , &; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: an observational analysis with infection control implications (2014) International Journal of Infectious Diseases, 29, pp. 307-308. , &; Min, C.K., Cheon, S., Ha, N.Y., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Scientific Reports, 6, p. 25359; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infectious Diseases, 15, p. 629; Musso, D., Richard, V., Broult, J., Cao-Lormeau, V.M., Inactivation of dengue virus in plasma with amotosalen and ultraviolet a illumination (2014) Transfusion, 54, pp. 2924-2930. , &; Pinna, D., Sampson-Johannes, A., Clementi, M., Poli, G., Rossini, S., Lin, L., Vicenzi, E., Amotosalen photochemical inactivation of severe acute respiratory syndrome coronavirus in human platelet concentrates (2005) Transfusion Medicine, 15, pp. 269-276. , &; Prowse, C., Component pathogen inactivation: a critical review (2013) Vox Sanguinis, 104, pp. 183-199; Santa Maria, F., Laughhunn, A., Lanteri, M.C., Aubry, M., Musso, D., Stassinopoulos, A., Inactivation of Zika virus in platelet components using amotosalen and ultraviolet a illumination (2017) Transfusion, 57, pp. 2016-2025. , &; Schlenke, P., Pathogen inactivation Technologies for Cellular Blood Components: an update (2014) Transfusion Medicine and Hemotherapy, 41, pp. 309-325; Shehata, M.M., Gomaa, M.R., Ali, M.A., Kayali, G., Middle East respiratory syndrome coronavirus: a comprehensive review (2016) Frontiers of Medicine, 10, pp. 120-136. , &; Stramer, S.L., Current perspectives in transfusion-transmitted infectious diseases: emerging and re-emerging infections (2014) ISBT Science Series, 9, pp. 30-36; Vairo, F., Mammone, A., Lanini, S., Local transmission of chikungunya in Rome and the Lazio region, Italy (2018) PLoS One, 13; (2019), https://www.who.int/emergencies/mers-cov/en/, Middle East respiratory syndrome coronavirus (MERS-CoV). [cited, May 30]; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) New England Journal of Medicine, 367, pp. 1814-1820. , &; Zhou, J., Chu, H., Li, C., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2014) The Journal of Infectious Diseases, 209, pp. 1331-1342","Azhar, E.I.; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversitySaudi Arabia; email: eazhar@kau.edu.sa",,"Blackwell Publishing Ltd",09587578,,TRMDE,"31696565","English","Transfus. Med.",Article,"Final",Open Access,Scopus,2-s2.0-85074770711 "El-Kafrawy S.A., Corman V.M., Tolah A.M., Al Masaudi S.B., Hassan A.M., Müller M.A., Bleicker T., Harakeh S.M., Alzahrani A.A., Alsaaidi G.A., Alagili A.N., Hashem A.M., Zumla A., Drosten C., Azhar E.I.","12545932500;34876424800;57188767465;57194742801;7402686960;24068857400;55376985300;6701870464;57211333493;57211330647;57212387487;57200589744;7006170723;7003813990;23090055800;","Enzootic patterns of Middle East respiratory syndrome coronavirus in imported African and local Arabian dromedary camels: a prospective genomic study",2019,"The Lancet Planetary Health","3","12",,"e521","e528",,3,"10.1016/S2542-5196(19)30243-8","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076532585&doi=10.1016%2fS2542-5196%2819%2930243-8&partnerID=40&md5=00daa03652d536f50121cede539f175b","Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Science, Division of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Centre for Infection Research, associated partner Charité, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation; Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia; Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom; NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom","El-Kafrawy, S.A., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Corman, V.M., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany, Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Centre for Infection Research, associated partner Charité, Berlin, Germany; Tolah, A.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Biological Science, Division of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Al Masaudi, S.B., Department of Biological Science, Division of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Hassan, A.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Müller, M.A., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany, Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Centre for Infection Research, associated partner Charité, Berlin, Germany, Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation; Bleicker, T., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany, Berlin Institute of Health, Institute of Virology, Berlin, Germany; Harakeh, S.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Alzahrani, A.A., Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia; Alsaaidi, G.A., Directorate of Agriculture, Ministry of Environment Water and Agriculture, Makkah Region, Saudi Arabia; Alagili, A.N., Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Hashem, A.M., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Zumla, A., Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, London, United Kingdom, NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom; Drosten, C., Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany, Berlin Institute of Health, Institute of Virology, Berlin, Germany, German Centre for Infection Research, associated partner Charité, Berlin, Germany; Azhar, E.I., Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia","Background: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonotic pathogen endemic to the Arabian Peninsula. Dromedary camels are a likely source of infection and the virus probably originated in Africa. We studied the genetic diversity, geographical structure, infection prevalence, and age-associated prevalence among camels at the largest entry port of camels from Africa into the Arabian Peninsula. Methods: In this prospective genomic study, we took nasal samples from camels imported from Sudan and Djibouti into the Port of Jeddah in Jeddah, Saudi Arabia, over an almost 2-year period and local Arabian camels over 2 months in the year after surveillance of the port. We determined the prevalence of MERS-CoV infection, age-associated patterns of infection, and undertook phylogeographical and migration analyses to determine intercountry virus transmission after local lineage establishment. We compared all virological characteristics between the local and imported cohorts. We compared major gene deletions between African and Arabian strains of the virus. Reproductive numbers were inferred with Bayesian birth death skyline analyses. Findings: Between Aug 10, 2016, and May 3, 2018, we collected samples from 1196 imported camels, of which 868 originated from Sudan and 328 from Djibouti, and between May 1, and June 25, 2018, we collected samples from 472 local camels, of which 189 were from Riyadh and 283 were from Jeddah, Saudi Arabia. Virus prevalence was higher in local camels than in imported camels (224 [47·5%] of 472 vs 157 [13·1%] of 1196; p<0·0001). Infection prevalence peaked among camels older than 1 year and aged up to 2 years in both groups, with 255 (66·9%) of 381 positive cases in this age group. Although the overall geographical distribution of the virus corresponded with the phylogenetic tree topology, some virus exchange was observed between countries corresponding with trade routes in the region. East and west African strains of the virus appear to be geographically separated, with an origin of west African strains in east Africa. African strains of the virus were not re-sampled in Saudi Arabia despite sampling approximately 1 year after importation from Africa. All local Arabian samples contained strains of the virus that belong to a novel recombinant clade (NRC) first detected in 2014 in Saudi Arabia. Reproduction number estimates informed by the sequences suggest sustained endemicity of NRC, with a mean Re of 1·16. Interpretation: Despite frequent imports of MERS-CoV with camels from Africa, African lineages of MERS-CoV do not establish themselves in Saudi Arabia. Arabian strains of the virus should be tested for changes in virulence and transmissibility. Funding: German Ministry of Research and Education, EU Horizon 2020, and Emerging Diseases Clinical Trials Partnership. © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license",,"Africa; age distribution; Arabian Peninsula; Article; Asia; basic reproduction number; cladistics; cohort analysis; controlled study; disease surveillance; dromedary; gene deletion; genetic variability; geographic distribution; geography; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; migration; nonhuman; nose smear; phylogenetic tree; phylogeography; prevalence; prospective study; Saudi Arabia; species comparison; viral genetics; virus strain; virus transmission","Mehand, M.S., Al-Shorbaji, F., Millett, P., Murgue, B., The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts (2018) Antiviral Res, 159, pp. 63-67; Middle East respiratory syndrome coronavirus (MERS-CoV) (2019), https://www.who.int/emergencies/mers-cov/en/, World Health Oragnization Geneva (Accessed 6 December 2019); Kelly-Cirino, C., Mazzola, L.T., Chua, A., Oxenford, C.J., Van Kerkhove, M.D., An updated roadmap for MERS-CoV research and product development: focus on diagnostics (2019) BMJ Glob Health, 4; Müller, M.A., Meyer, B., Corman, V.M., Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study (2015) Lancet Infect Dis, 15, pp. 559-564; Alraddadi, B.M., Watson, J.T., Almarashi, A., Risk factors for primary Middle East respiratory syndrome coronavirus illness in humans, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22, pp. 49-55; Saqib, M., Sieberg, A., Hussain, M.H., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015 (2017) Emerg Infect Dis, 23, pp. 550-551; Müller, M.A., Corman, V.M., Jores, J., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997 (2014) Emerg Infect Dis, 20, pp. 2093-2095; Chu, D.K.W., Hui, K.P.Y., Perera, R.A.P.M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc Natl Acad Sci USA, 115, pp. 3144-3149; Kiambi, S., Corman, V.M., Sitawa, R., Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017 (2018) Emerg Microbes Infect, 7, p. 195; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between Africa and the Middle East (2016) Trop Anim Health Prod, 48, pp. 1277-1282; Meyer, B., Juhasz, J., Barua, R., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerg Infect Dis, 22, pp. 2171-2173; Abdallah, H.R., Faye, B., Typology of camel farming system in Saudi Arabia (2013) Emir J Food Agric, 25, pp. 250-260; Corman, V.M., Müller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17; Corman, V.M., Eckerle, I., Bleicker, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Euro Surveill, 17; Wang, Y., Liu, D., Shi, W., Origin and possible genetic recombination of the Middle East respiratory syndrome coronavirus from the first imported case in China: phylogenetics and coalescence analysis (2015) MBio, 6, pp. e01280-e01315; Sabir, J.S., Lam, T.T., Ahmed, M.M., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84; Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 (2018) Virus Evol, 4; Lemey, P., Rambaut, A., Drummond, A.J., Suchard, M.A., Bayesian phylogeography finds its roots (2009) PLOS Comput Biol, 5; Bielejec, F., Baele, G., Vrancken, B., Suchard, M.A., Rambaut, A., Lemey, P., SpreaD3: interactive visualization of spatiotemporal history and trait evolutionary processes (2016) Mol Biol Evol, 33, pp. 2167-2169; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: detection and analysis of recombination patterns in virus genomes (2015) Virus Evol, 1; Stadler, T., Kühnert, D., Bonhoeffer, S., Drummond, A.J., Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) (2013) Proc Natl Acad Sci USA, 110, pp. 228-233; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface (2018) eLife, 7; Chu, D.K., Oladipo, J.O., Perera, R.A., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill, 20; Chu, D.K., Poon, L.L., Gomaa, M.M., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg Infect Dis, 20, pp. 1049-1053; Lau, S.K., Wernery, R., Wong, E.Y., Polyphyletic origin of MERS coronaviruses and isolation of a novel clade A strain from dromedary camels in the United Arab Emirates (2016) Emerg Microbes Infect, 5, p. e128; Lamers, M.M., Raj, V.S., Shafei, M., Deletion variants of Middle East respiratory syndrome coronavirus from humans, Jordan, 2015 (2016) Emerg Infect Dis, 22, pp. 716-719; Comar, C.E., Goldstein, S.A., Li, Y., Yount, B., Baric, R.S., Weiss, S.R., Antagonism of dsRNA-Induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection (2019) MBio, 10, pp. e00319-e00419; Thornbrough, J.M., Jha, B.K., Yount, B., Middle East respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation (2016) MBio, 7; Drosten, C., Muth, D., Corman, V.M., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clin Infect Dis, 60, pp. 369-377","Azhar, E.I.; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 128442, Saudi Arabia; email: eazhar@kau.edu.sa",,"Elsevier B.V.",25425196,,,"31843456","English","Lancet Planet. Health",Article,"Final",Open Access,Scopus,2-s2.0-85076532585 "Kirchdoerfer R.N., Ward A.B.","16068684500;55945233700;","Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors",2019,"Nature Communications","10","1", 2342,"","",,13,"10.1038/s41467-019-10280-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066329882&doi=10.1038%2fs41467-019-10280-3&partnerID=40&md5=28f30796243e0798e16062ea6b686d87","Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA 92037, United States","Kirchdoerfer, R.N., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA 92037, United States; Ward, A.B., Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, La Jolla, CA 92037, United States","Recent history is punctuated by the emergence of highly pathogenic coronaviruses such as SARS- and MERS-CoV into human circulation. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Here, we present the 3.1 Å resolution structure of the SARS-CoV nsp12 polymerase bound to its essential co-factors, nsp7 and nsp8, using single particle cryo-electron microscopy. nsp12 possesses an architecture common to all viral polymerases as well as a large N-terminal extension containing a kinase-like fold and is bound by two nsp8 co-factors. This structure illuminates the assembly of the coronavirus core RNA-synthesis machinery, provides key insights into nsp12 polymerase catalysis and fidelity and acts as a template for the design of novel antiviral therapeutics. © 2019, The Author(s).",,"nonstructural protein 12; nonstructural protein 7; unclassified drug; viral protein; DNA directed RNA polymerase; viral protein; enzyme; enzyme activity; genome; protein; virus; antioxidant assay; Article; binding site; cryoelectron microscopy; Dengue virus; electron microscopy; enzyme active site; enzyme activity; Escherichia coli; gene mutation; hydrogen bond; mutagenesis; Nidovirales; nonhuman; nucleotide binding site; peptide synthesis; Poliomyelitis virus; protein conformation; protein protein interaction; protein purification; protein RNA binding; protein structure; RNA synthesis; RNA virus; SARS coronavirus; sequence alignment; sequence analysis; sequence homology; site directed mutagenesis; stoichiometry; transcription termination; transmission electron microscopy; virus detection; virus genome; virus morphology; virus replication; X ray crystallography; coenzyme; metabolism; SARS coronavirus; ultrastructure; Coronavirus; SARS coronavirus; Coenzymes; Cryoelectron Microscopy; DNA-Directed RNA Polymerases; Genome, Viral; SARS Virus; Viral Nonstructural Proteins","van der Hoek, L., Human coronaviruses: what do they cause? (2007) Antivir. Ther., 12, pp. 651-658; Update: Severe acute respiratory syndrome--United States, June 11, 2003 (2003) MMWR Morb. Mortal Wkly. Rep, 52, p. 550; Parry, J., Breaches of safety regulations are probable cause of recent SARS outbreak, WHO says (2004) BMJ, 328, p. 1222; Ge, X.Y., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor (2013) Nature, 503, pp. 535-538. , COI: 1:CAS:528:DC%2BC3sXhslSnsLrF; Ziebuhr, J., The coronavirus replicase (2005) Curr. Top. Microbiol. Immunol., 287, pp. 57-94. , COI: 1:CAS:528:DC%2BD2MXht1Kgtg%3D%3D; Ahn, D.G., Choi, J.K., Taylor, D.R., Oh, J.W., Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates (2012) Arch. Virol., 157, pp. 2095-2104. , COI: 1:CAS:528:DC%2BC38Xhs1Sqs7rI; Subissi, L., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities (2014) Proc. Natl. Acad. Sci. USA, 111, pp. E3900-E3909. , COI: 1:CAS:528:DC%2BC2cXhsVGntb3M; Sevajol, M., Subissi, L., Decroly, E., Canard, B., Imbert, I., Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus (2014) Virus Res., 194, pp. 90-99. , COI: 1:CAS:528:DC%2BC2cXhsl2ltrzK; Lehmann, K.C., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses (2015) Nucleic Acids Res., 43, pp. 8416-8434. , COI: 1:CAS:528:DC%2BC2MXhslGqs7jK; Hao, W., Crystal structure of Middle East respiratory syndrome coronavirus helicase (2017) PLoS Pathog., 13; Neuman, B.W., Chamberlain, P., Bowden, F., Joseph, J., Atlas of coronavirus replicase structure (2014) Virus Res., 194, pp. 49-66. , COI: 1:CAS:528:DC%2BC2cXhtFWhtbs%3D; Decroly, E., Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex (2011) PLoS Pathog., 7. , COI: 1:CAS:528:DC%2BC3MXntVajsrY%3D; Ma, Y., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 9436-9441. , COI: 1:CAS:528:DC%2BC2MXhtFGkt7vJ; Zhai, Y., Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer (2005) Nat. Struct. Mol. Biol., 12, pp. 980-986. , COI: 1:CAS:528:DC%2BD2MXht1WqtrbM; Imbert, I., A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus (2006) EMBO J., 25, pp. 4933-4942. , COI: 1:CAS:528:DC%2BD28XhtVyktb%2FJ; te Velthuis, A.J., van den Worm, S.H., Snijder, E.J., The SARS-coronavirus nsp7+ nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension (2012) Nucleic Acids Res., 40, pp. 1737-1747; McDonald, S.M., RNA synthetic mechanisms employed by diverse families of RNA viruses (2013) Wiley Interdiscip. Rev. RNA, 4, pp. 351-367. , COI: 1:CAS:528:DC%2BC3sXpslCgurw%3D; Joseph, J.S., Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs (2006) J. Virol., 80, pp. 7894-7901. , COI: 1:CAS:528:DC%2BD28Xot1yrtr4%3D; Ratia, K., Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 5717-5722. , COI: 1:CAS:528:DC%2BD28XktFaisLc%3D; Peersen, O.B., Picornaviral polymerase structure, function, and fidelity modulation (2017) Virus Res., 234, pp. 4-20. , COI: 1:CAS:528:DC%2BC2sXisFSgsL4%3D; Bruenn, J.A., A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases (2003) Nucleic Acids Res., 31, pp. 1821-1829. , COI: 1:CAS:528:DC%2BD3sXisFeqtLk%3D; Gorbalenya, A.E., The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage (2002) J. Mol. Biol., 324, pp. 47-62. , COI: 1:CAS:528:DC%2BD38XotlWmsLs%3D; Poch, O., Sauvaget, I., Delarue, M., Tordo, N., Identification of four conserved motifs among the RNA-dependent polymerase encoding elements (1989) EMBO J., 8, pp. 3867-3874. , COI: 1:CAS:528:DyaK3cXhvVajug%3D%3D; Gong, P., Peersen, O.B., Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 22505-22510. , COI: 1:CAS:528:DC%2BC3MXkslSktQ%3D%3D; Zamyatkin, D.F., Parra, F., Machin, A., Grochulski, P., Ng, K.K., Binding of 2’-amino-2’-deoxycytidine-5’-triphosphate to norovirus polymerase induces rearrangement of the active site (2009) J. Mol. Biol., 390, pp. 10-16. , COI: 1:CAS:528:DC%2BD1MXnt1Glu74%3D; Bressanelli, S., Tomei, L., Rey, F.A., De Francesco, R., Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides (2002) J. Virol., 76, pp. 3482-3492. , COI: 1:CAS:528:DC%2BD38Xit1Kjs7o%3D; Agostini, M.L., Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) Mbio, 9, pp. e00221-18; Sexton, N.R., Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens (2016) J. Virol., 90, pp. 7415-7428. , COI: 1:CAS:528:DC%2BC28Xhsl2jsr3J; Xiao, Y., Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity (2012) J. Virol., 86, pp. 4444-4454. , COI: 1:CAS:528:DC%2BC38XlsVCgsLc%3D; Brockway, S.M., Clay, C.T., Lu, X.T., Denison, M.R., Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase (2003) J. Virol., 77, pp. 10515-10527. , COI: 1:CAS:528:DC%2BD3sXnsFymtro%3D; Tan, Y.W., Fung, T.S., Shen, H., Huang, M., Liu, D.X., Coronavirus infectious bronchitis virus non-structural proteins 8 and 12 form stable complex independent of the non-translated regions of viral RNA and other viral proteins (2018) Virology, 513, pp. 75-84. , COI: 1:CAS:528:DC%2BC2sXhs1Kqs7bJ; von Brunn, A., Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome (2007) PLoS ONE, 2; Chen, Y., Guo, D., Molecular mechanisms of coronavirus RNA capping and methylation (2016) Virol. Sin., 31, pp. 3-11. , COI: 1:CAS:528:DC%2BC28XisFSms7c%3D; Choi, K.H., Rossmann, M.G., RNA-dependent, RNA polymerases from Flaviviridae (2009) Curr. Opin. Struct. Biol., 19, pp. 746-751. , COI: 1:CAS:528:DC%2BD1MXhsV2gs77K; Holm, L., Laakso, L.M., Dali server update (2016) Nucleic Acids Res., 44, pp. W351-W355. , COI: 1:CAS:528:DC%2BC2sXhtV2itrrO; Kuchibhatla, D.B., Powerful sequence similarity search methods and in-depth manual analyses can identify remote homologs in many apparently “orphan” viral proteins (2014) J. Virol., 88, pp. 10-20; Sreelatha, A., Protein AMPylation by an evolutionarily conserved pseudokinase (2018) Cell, 175, pp. 809-821.e819. , COI: 1:CAS:528:DC%2BC1cXhvVahsb7N; Sutton, G., The nsp9 replicase protein of SARS-coronavirus, structure and functional insights (2004) Structure, 12, pp. 341-353. , COI: 1:CAS:528:DC%2BD2cXht12jtrg%3D; Herzik, M.A., Jr., Wu, M., Lander, G.C., Achieving better-than-3-A resolution by single-particle cryo-EM at 200 keV (2017) Nat. Methods, 14, pp. 1075-1078. , COI: 1:CAS:528:DC%2BC2sXhs1aitL7I; Suloway, C., Automated molecular microscopy: the new Leginon system (2005) J. Struct. Biol., 151, pp. 41-60. , COI: 1:CAS:528:DC%2BD2MXlsFCltbg%3D; Zheng, S.Q., MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy (2017) Nat. Methods, 14, pp. 331-332. , COI: 1:CAS:528:DC%2BC2sXjt1ags7g%3D; Zhang, K., Gctf: Real-time CTF determination and correction (2016) J. Struct. Biol., 193, pp. 1-12. , COI: 1:CAS:528:DC%2BC2MXhvVOqsbzF; Voss, N.R., Yoshioka, C.K., Radermacher, M., Potter, C.S., Carragher, B., DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy (2009) J. Struct. Biol., 166, pp. 205-213. , COI: 1:CAS:528:DC%2BD1MXksVeisbw%3D; Berndsen, Z., Bowman, C., Jang, H., Ward, A.B., EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing (2017) Bioinformatics, 33, pp. 3824-3826. , COI: 1:CAS:528:DC%2BC1cXhvFCnsbjE; Zivanov, J., New tools for automated high-resolution cryo-EM structure determination in RELION-3 (2018) Elife, 7; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat. Methods, 14, pp. 290-296. , COI: 1:CAS:528:DC%2BC2sXitlGisbs%3D; Love, R.A., The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy (2004) Structure, 12, pp. 1533-1544. , COI: 1:CAS:528:DC%2BD2cXmsVKntLc%3D; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 486-501. , COI: 1:CAS:528:DC%2BC3cXksFKisb8%3D; DiMaio, F., Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement (2015) Nat. Methods, 12, pp. 361-365. , COI: 1:CAS:528:DC%2BC2MXjtFems78%3D; Adams, P.D., PHENIX: a comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 213-221. , COI: 1:CAS:528:DC%2BC3cXhs1Sisbc%3D; Williams, C.J., MolProbity: more and better reference data for improved all-atom structure validation (2018) Protein Sci., 27, pp. 293-315. , COI: 1:CAS:528:DC%2BC2sXhvVKgsrnO; Barad, B.A., EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy (2015) Nat. Methods, 12, pp. 943-946. , COI: 1:CAS:528:DC%2BC2MXhtlCksbzO; Sievers, F., Higgins, D.G., Clustal Omega for making accurate alignments of many protein sequences (2018) Protein Sci., 27, pp. 135-145. , COI: 1:CAS:528:DC%2BC2sXhslaltbzE; Ashkenazy, H., ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules (2016) Nucleic Acids Res., 44, pp. W344-W350. , COI: 1:CAS:528:DC%2BC2sXhtV2itrrJ; Zhao, Y., A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication (2015) PLoS Pathog., 11","Kirchdoerfer, R.N.; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, HZ-102, United States; email: rkirchdo@scripps.edu",,"Nature Publishing Group",20411723,,,"31138817","English","Nat. Commun.",Article,"Final",Open Access,Scopus,2-s2.0-85066329882 "Adhikari U., Chabrelie A., Weir M., Boehnke K., McKenzie E., Ikner L., Wang M., Wang Q., Young K., Haas C.N., Rose J., Mitchell J.","55635878100;57200081536;22137121000;56513876000;57211414682;15837071700;57211413798;57211415086;57211410675;7202620514;35427522400;57202425675;","A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting Through Bioaerosols",2019,"Risk Analysis","39","12",,"2608","2624",,,"10.1111/risa.13389","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073832023&doi=10.1111%2frisa.13389&partnerID=40&md5=ea85145eb005ab38f1eebb4f55d8b3ce","Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, United States; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States; Department of Anesthesiology & the Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States; Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, United States; Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States; Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, United States; Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States; Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, United States","Adhikari, U., Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, United States; Chabrelie, A., Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, United States; Weir, M., Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States; Boehnke, K., Department of Anesthesiology & the Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States; McKenzie, E., Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, United States; Ikner, L., Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, United States; Wang, M., Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, United States; Wang, Q., Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Young, K., Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States; Haas, C.N., Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, United States; Rose, J., Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States; Mitchell, J., Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, United States","Middle Eastern respiratory syndrome, an emerging viral infection with a global case fatality rate of 35.5%, caused major outbreaks first in 2012 and 2015, though new cases are continuously reported around the world. Transmission is believed to mainly occur in healthcare settings through aerosolized particles. This study uses Quantitative Microbial Risk Assessment to develop a generalizable model that can assist with interpreting reported outbreak data or predict risk of infection with or without the recommended strategies. The exposure scenario includes a single index patient emitting virus-containing aerosols into the air by coughing, leading to short- and long-range airborne exposures for other patients in the same room, nurses, healthcare workers, and family visitors. Aerosol transport modeling was coupled with Monte Carlo simulation to evaluate the risk of MERS illness for the exposed population. Results from a typical scenario show the daily mean risk of infection to be the highest for the nurses and healthcare workers (8.49 × 10−4 and 7.91 × 10−4, respectively), and the lowest for family visitors and patients staying in the same room (3.12 × 10−4 and 1.29 × 10−4, respectively). Sensitivity analysis indicates that more than 90% of the uncertainty in the risk characterization is due to the viral concentration in saliva. Assessment of risk interventions showed that respiratory masks were found to have a greater effect in reducing the risks for all the groups evaluated (>90% risk reduction), while increasing the air exchange was effective for the other patients in the same room only (up to 58% risk reduction). © 2019 Society for Risk Analysis","Hospital; MERS-CoV; mitigation; QMRA; risk characterization","Aerosols; Atmospheric movements; Hospitals; Intelligent systems; Monte Carlo methods; Nursing; Patient treatment; Risk perception; Sensitivity analysis; Uncertainty analysis; Viruses; Aerosol transport model; Healthcare workers; MERS-CoV; mitigation; QMRA; Quantitative microbial risk assessment; Risk characterization; Viral concentration; Risk assessment; aerosol; disease transmission; health care; hospital sector; indoor air; respiration; risk assessment; uncertainty analysis; virus; Coronavirus","Al-Abdallar, M., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: A serologic, epidemiologic, and clinical description (2014) Clinical Infectious Diseases, 59 (9), pp. 1-9. , http://doi.org/10.1093/cid/ciu359.Hospital-Associated; Al-Tawfiq, J.A., Middle East respiratory syndrome-coronavirus infection: An overview (2013) Journal of Infection and Public Health, 6 (5), pp. 319-322. , http://doi.org/10.1016/j.jiph.2013.06.001; Al-Tawfiq, J.A., Perl, T.M., Middle East respiratory syndrome coronavirus in healthcare settings (2015) Current Opinion in Infectious Diseases, 28 (4), pp. 392-396. , http://doi.org/10.1097/QCO.0000000000000178; Bałazy, A., Toivola, M., Adhikari, A., Sivasubramani, S.K., Reponen, T., Grinshpun, S.A., Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? (2006) American Journal of Infection Control, 34 (2), pp. 51-57. , http://doi.org/10.1016/j.ajic.2005.08.018; Bałazy, A., Toivola, M., Reponen, T., Podgórski, A., Zimmer, A., Grinshpun, S.A., Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles (2006) Annals of Occupational Hygiene, 50 (3), pp. 259-269. , http://doi.org/10.1093/annhyg/mei058; Banik, G.R., Khandaker, G., Rashid, H., Middle East respiratory syndrome coronavirus “MERS-CoV”: Current knowledge gaps (2015) Paediatric Respiratory Reviews, 16 (3), pp. 197-202. , http://doi.org/10.1016/j.prrv.2015.04.002; Borkow, G., Zhou, S.S., Page, T., Gabbay, J., A novel anti-influenza copper oxide containing respiratory face mask (2010) PLoS One, 5 (6), pp. 1-8. , http://doi.org/10.1371/journal.pone.0011295; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk (2013) The Lancet, 382 (9893), pp. 694-699. , http://doi.org/10.1016/S0140-6736(13)61492-0; (2017) Implementing home care and isolation or quarantine of people not requiring hospitalization for MERS-CoV, , https://www.cdc.gov/coronavirus/mers/hcp/home-care.html, Retrieved from; (2017) Preventing MERS-CoV from spreading to others in homes and communities, , https://www.cdc.gov/coronavirus/mers/hcp/home-care-patient.html, Retrieved from; Chabrelie, A., Mitchell, J., Rose, J., Charbonneau, D., Ishida, Y., Evaluation of the influenza risk reduction from antimicrobial spray application on porous surfaces (2018) Risk Analysis, 38 (7), pp. 1502-1517. , http://doi.org/10.1111/risa.12952; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yue, K.Y., Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clinical Microbiology Reviews, 28 (2), pp. 465-522. , http://doi.org/10.1128/CMR.00102-14; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Kim, Y.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) The Lancet, 388 (10048), pp. 994-1001. , http://doi.org/10.1016/S0140-6736(16)30623-7; Cohen, B., Hyman, S., Rosenberg, L., Larson, E., Frequency of patient contact with health care personnel and visitors: Implications for infection prevention (2012) Journal of Investigative Dermatology, 38 (12), pp. 560-565. , http://doi.org/10.1038/jid.2014.371; Corman, V.M., Albarrak, A.M., Omrani, A.S., Albarrak, M.M., Farah, M.E., Almasri, M., Memish, Z.A., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2015) Clinical Infectious Diseases, 62 (4), pp. 477-483. , http://doi.org/10.1093/cid/civ951; Cowling, B.J., Park, M., Fang, V.J., Wu, P., Leung, G.M., Wu, J.T., Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015 (2015) Euro Surveillance, 20 (25), pp. 7-13. , http://doi.org/10.1002/nbm.3369.Three; De Albuquerque, N., Baig, E., Ma, X., Zhang, J., He, W., Rowe, A., Levy, G.A., Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice (2006) Journal of Virology, 80 (21), pp. 10382-10394. , http://doi.org/10.1128/JVI.00747-06; DeDiego, M.L., Pewe, L., Alvarez, E., Rejas, M.T., Perlman, S., Enjuanes, L., Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice (2008) Virology, 376 (2), pp. 379-389. , http://doi.org/10.1016/j.virol.2008.03.005; de Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Ziebuhr, J., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group (2013) Journal of Virology, 87 (14), pp. 7790-7792. , http://doi.org/10.1128/JVI.01244-13; Drosten, C., Muth, D., Corman, V.M., Hussain, R., Al Masri, M., HajOmar, W., Memish, Z.A., An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, Kingdom of Saudi Arabia, 2014 (2015) Clinical Infectious Diseases, 60 (3), pp. 369-377. , http://doi.org/10.1093/cid/ciu812; Duguid, J.P., The size and the duration of air-carriage of respiratory droplets and droplet-nuclei (1946) The Journal of Hygiene, 44 (6), pp. 471-479. , http://doi.org/10.1017/S0022172400019288; Epa, U., (2011) Exposure factors handbook 2011 edition (final), , https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252, Washington, DC, Retrieved from; Gupta, S., Surgical masks vs. N95 respirator masks for protecting health care professionals (2011) Indian Journal of Pediatrics, 78 (2), pp. 242-243. , http://doi.org/10.1007/s12098-010-0264-1; Haas, C., Rose, J., Gerba, C., Quantitative microbial risk assessment (2014) Quantitative microbial risk assessment, pp. 323-373. , https://onlinelibrary.wiley.com/doi/book/10.1002/9781118910030, C. Haas, J. Rose, C. Gerba, (Eds.),, (2nd ed., Hoboken, NJ, John Wiley & Sons, Inc, Retrieved from; Han, H.-J., Wen, H.-I., Zhou, C.-M., Chen, F.-F., Luo, L.-M., Liu, J., Yu, X.-J., Bats as reservoirs of severe emerging infectious diseases (2015) Virus Research, 205, pp. 1-6. , http://doi.org/10.1016/j.virusres.2015.05.006; Hilgenfeld, R., Peiris, M., From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antiviral Research, 100 (1), pp. 286-295. , http://doi.org/10.1016/j.antiviral.2013.08.015; Houng, H.S.H., Norwood, D., Ludwig, G.V., Sun, W., Lin, M., Vaughn, D.W., Development and evaluation of an efficient 3′-noncoding region based SARS coronavirus (SARS-CoV) RT-PCR assay for detection of SARS-CoV infections (2004) Journal of Virological Methods, 120 (1), pp. 33-40. , http://doi.org/10.1016/j.jviromet.2004.04.008; Huang, Y., (2013) ARS: Dose response models, , http://qmrawiki.canr.msu.edu/index.php/SARS:_Dose_Response_Models#_9f6e9f18777d09a3e4569b0d5784d92f, S, Retrieved from; Ijaz, M.K., Brunner, A.H., Sattar, S.A., Nair, R.C., Johnson-Lussenburg, C.M., Survival characteristics of airborne human coronavirus 229E (1985) Journal of General Virology, 66 (12), pp. 2743-2748. , http://doi.org/10.1099/0022-1317-66-12-2743; Ki, M., 2015 MERS outbreak in Korea: Hospital-to-hospital transmission (2015) Epidemiology and Health, 37, pp. 1-4. , http://doi.org/10.4178/epih/e2015033; Kim, K.M., Ki, M., Cho, S.-I., Sung, M., Hong, J.K., Cheong, H.-K., Choi, B.Y., Epidemiologic features of the first MERS outbreak in Korea: Focus on Pyeongtaek St. Mary's Hospital (2015) Epidemiology and Health, 37 (October). , http://doi.org/10.4178/epih/e2015041; Loudon, R., Brown, L., Droplet expulsion from the respiratory tract (1967) The American Review of Respiratory Disease, 95 (3), pp. 435-442. , https://www.atsjournals.org/doi/pdf/10.1164/arrd.1967.95.3.435; Lu, G., Wang, Q., Gao, G.F., Bat-to-human: Spike features determining “host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond (2015) Trends in Microbiology, 23 (8), pp. 468-478. , http://doi.org/10.1016/j.tim.2015.06.003; Memish, Z.A., Assiri, A.M., Al-Tawfiq, J.A., Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: An observational analysis with infection control implications (2014) International Journal of Infectious Diseases, 29, pp. 307-308. , http://doi.org/10.1016/j.ijid.2014.10.002; Min, C.K., Cheon, S., Ha, N.Y., Sohn, K.M., Kim, Y., Aigerim, A., Kim, Y.S., Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity (2016) Scientific Reports, 6 (April), pp. 1-12. , http://doi.org/10.1038/srep25359; Mitchell, J., Weir, M., SARS, , http://www.qmrawiki.org/pathogens/sars, Retrieved from; Muth, D., Corman, V.M., Meyer, B., Assiri, A., Al-Masri, M., Farah, M., Memishc, Z.A., Infectious Middle East respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia (2015) Journal of Clinical Microbiology, 53 (9), pp. 2951-2955. , http://doi.org/10.1128/JCM.01368-15; Nicas, M., Jones, R.M., Relative contributions of four exposure pathways to influenza infection risk (2009) Risk Analysis, 29 (9), pp. 1292-1303. , http://doi.org/10.1111/j.1539-6924.2009.01253.x; Nicas, M., Nazaroff, W., Hubbard, A., Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens (2005) Journal of Occupational and Environmental Hygiene, 2 (3), pp. 143-154. , http://doi.org/10.1080/15459620590918466; Nichol, K., Bigelow, P., O'Brien-Pallas, L., McGeer, A., Manno, M., Holness, D.L., The individual, environmental, and organizational factors that influence nurses’ use of facial protection to prevent occupational transmission of communicable respiratory illness in acute care hospitals (2008) American Journal of Infection Control, 36 (7), pp. 481-487. , http://doi.org/10.1016/j.ajic.2007.12.004; Nishiura, H., Miyamatsu, Y., Chowell, G., Saitoh, M., Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case (2015) Eurosurveillance, 20 (27), pp. 6-11. , http://doi.org/10.2807/1560-7917.ES2015.20.27.21181; Papineni, R.S., Rosenthal, F.S., The size distribution of droplets in the exhaled breath of healthy human subjects (1997) Journal of Aerosol Medicine, 10 (2), pp. 105-116. , http://doi.org/10.1089/jam.1997.10.105; Park, B., Peck, A., Kuehnert, M., Newbern, C., Smelser, C., Comer, J.A., McDonald, C., Lack of SARS transmission among healthcare workers, United States (2004) Emerging Infectious Diseases, 10 (2), pp. 217-224. , http://doi.org/10.3201/eid1002.030746; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Yi, S.J., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Eurosurveillance, 20 (25), pp. 1-5. , http://doi.org/10.2807/1560-7917.ES2015.20.25.21169; Park, J.W., Lee, K.J., Lee, K.H., Lee, S.H., Cho, J.R., Mo, J.W., Nam, H.S., Hospital outbreaks of Middle East respiratory syndrome, Daejeon, South Korea, 2015 (2017) Emerging Infectious Diseases, 23 (6), pp. 898-905. , http://doi.org/10.3201/eid2306.160120; Park, S.H., Kim, Y.S., Jung, Y., Choi, S.Y., Cho, N.H., Jeong, H.W., Sohn, K.M., Outbreaks of Middle East respiratory syndrome in two hospitals initiated by a single patient in Daejeon, South Korea (2016) Infection and Chemotherapy, 48 (2), pp. 99-107. , http://doi.org/10.3947/ic.2016.48.2.99; Poletto, C., Pelat, C., Lévy-Bruhl, D., Boelle, P.Y., Colizza, V., Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach (2016) Eurosurveillance, 19 (6), pp. 1-10. , https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.23.20824; Rengasamy, A., Zhuang, Z., Berryann, R., Respiratory protection against bioaerosols: Literature review and research needs (2004) American Journal of Infection Control, 32 (6), pp. 345-354. , http://doi.org/10.1016/j.ajic.2004.04.199; Sampath, R., Hofstadler, S.A., Blyn, L.B., Eshoo, M.W., Hall, T.A., Massire, C., Ecker, D.J., Rapid identification of emerging pathogens: Coronavirus (2005) Emerging Infectious Diseases, 11 (3), pp. 373-379. , http://doi.org/10.3201/eid1103.040629; Seto, W.H., Airborne transmission and precautions: Facts and myths (2015) Journal of Hospital Infection, 89 (4), pp. 225-228. , http://doi.org/10.1016/j.jhin.2014.11.005; Seto, W., Tsang, D., Yung, R., Ching, T., Ng, T., Ho, M., Peiris, J., Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS) (2003) The Lancet, 361 (9368), pp. 1519-1520. , http://doi.org/10.1016/S0140-6736(03)13168-6; Stilianakis, N.I., Drossinos, Y., Dynamics of infectious disease transmission by inhalable respiratory droplets (2010) Journal of the Royal Society, 7 (50), pp. 1355-1366. , http://doi.org/10.1098/rsif.2010.0026; Sutton, T.C., Subbarao, K., Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus (2015) Virology, 479-480, pp. 247-258. , http://doi.org/10.1016/j.virol.2015.02.030; Thompson, K.A., Pappachan, J.V., Bennett, A.M., Mittal, H., Macken, S., Dove, B.K., Thomson, G., Influenza Aerosols in UK Hospitals during the H1N1 (2009) Pandemic—The risk of aerosol generation during medical procedures (2013) PLoS One, 8 (2), pp. 1-15. , http://doi.org/10.1371/journal.pone.0056278; Tran, K., Cimon, K., Severn, M., Pessoa-Silva, C.L., Conly, J., Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: A systematic review (2012) PLoS One, 7 (4), pp. 1-8. , http://doi.org/10.1371/journal.pone.0035797; Van Doremalen, N., Munster, V.J., Animal models of Middle East respiratory syndrome coronavirus infection (2015) Antiviral Research, 122, pp. 28-38. , http://doi.org/10.1016/j.antiviral.2015.07.005; Watanabe, T., Bartrand, T.A., Weir, M.H., Omura, T., Haas, C.N., Development of a dose-response model for SARS coronavirus (2010) Risk Analysis, 30 (7), pp. 1129-1138. , http://doi.org/10.1111/j.1539-6924.2010.01427.x; Wen, Z., Yu, L., Yang, W., Hu, L., Li, N., Wang, J., Zhang, K., Assessment the protection performance of different level personal respiratory protection masks against viral aerosol (2013) Aerobiologia, 29 (3), pp. 365-372. , http://doi.org/10.1007/s10453-012-9286-7; Widagdo, W., Okba, N.M.A., Stalin Raj, V., Haagmans, B.L., MERS-coronavirus: From discovery to intervention (2017) One Health, 3, pp. 11-16. , http://doi.org/10.1016/j.onehlt.2016.12.001; (2015) Middle East respiratory syndrome coronavirus (MERS-CoV): Summary and risk assessment of current situation in the Republic of Korea and China—As of 19 June 2015, , who.int/csr/disease/coronavirus_infections/risk-assessment-19june2015/en/, Retrieved from; (2018) WHO MERS global summary and assessment of risk, , http://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf, Retrieved from; Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Jiang, S., Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein (2014) Virus Research, 194, pp. 200-210. , http://doi.org/10.1016/j.virusres.2014.10.007; Xiao, S., Li, Y., Sung, M., Wei, J., Yang, Z., A study of the probable transmission routes of MERS-CoV during the first hospital outbreak in the Republic of Korea (2018) Indoor Air, 28 (1), pp. 51-63. , http://doi.org/10.1111/ina.12430; Yin, Y., Gupta, J.K., Zhang, X., Liu, J., Chen, Q., Distributions of respiratory contaminants from a patient with different postures and exhaling modes in a single-bed inpatient room (2011) Building and Environment, 46 (1), pp. 75-81. , http://doi.org/10.1016/j.buildenv.2010.07.003; Zhou, J., Chu, H., Chan, J.F.W., Yuen, K.-Y., Middle East respiratory syndrome coronavirus infection: Virus-host cell interactions and implications on pathogenesis (2015) Virology Journal, 12 (1), p. 218. , http://doi.org/10.1186/s12985-015-0446-6; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) The Lancet, 383 (9932), pp. 1869-1871. , http://doi.org/10.1016/S0140-6736(14)60852-7","Mitchell, J.; Department of Biosystems and Agricultural Engineering, Michigan State UniversityUnited States; email: jade@msu.edu",,"Blackwell Publishing Inc.",02724332,,RIAND,"31524301","English","Risk Anal.",Article,"Final",Open Access,Scopus,2-s2.0-85073832023 "Tokak S., Gülseren Y.D., Özdemir M.","57214800967;57204730615;57200942136;","Determination of epidemiology and seasonal distribution of viral agents detected in children with respiratory tract infection [Solunum yolu enfeksiyonlu çocuklarda saptanan viral etkenlerin epidemiyolojisi ve mevsim dağılımının belirlenmesi]",2019,"Cocuk Enfeksiyon Dergisi","13","4",,"e158","e164",,,"10.5578/ced.201950","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079152526&doi=10.5578%2fced.201950&partnerID=40&md5=abf8ece2312045f74fd2b8ee5b0b2718","Department of Medical Microbiology, KTO Karatay University School of Medicine, Konya, Turkey; Division of Medical Virology, Department of Medical Microbiology, Necmettin Erbakan University School of Meram Medicine, Konya, Turkey","Tokak, S., Department of Medical Microbiology, KTO Karatay University School of Medicine, Konya, Turkey; Gülseren, Y.D., Division of Medical Virology, Department of Medical Microbiology, Necmettin Erbakan University School of Meram Medicine, Konya, Turkey; Özdemir, M., Division of Medical Virology, Department of Medical Microbiology, Necmettin Erbakan University School of Meram Medicine, Konya, Turkey","Objective: The aim of this study was to determine the viral pathogens in the respiratory tract infections of children who applied to various outpatient clinics of our hospital and to investigate their seasonal distribution. Material and Methods: Between January 2016 and January 2017, 997 children (45.1% female, 54.9% male, 0 month-17 years) who were diagnosed with upper or lower respiratory tract infection were included in the study. Twenty-one viral respiratory pathogens were analyzed by multiplex polymerase chain reaction method by using Fast Track FTD kit (Fast Track Diagnosis, Luxemburg). Results: One or more respiratory viruses were detected in 761 (76.3%) of 997 patients and no virus was detected in 236 (22.8%) of the patients. In our study, distrubition of respiratory tract viruses were as; Adenovirus (2.76%), Bocavirus (4.20%), Coronavirus 229E (0.92%), Coronavirus OC43 (6.96%), Enterovirus (6.04%), Metapneumovirus A (4.60%), Metapneumovirus B (4.47%), Parainfluenza 1 (0.13%), Parainfluenza 2 (1.18%), Parainfluenza 3 (8.80%), Parainfluenza 4 (1.18%), Parainfluenza 4a (0.13%), Parainfluenza 4b (0.13%), Rhinovirus (48.75%), RSVA/B (37.84%), Influenza B (3.02%) and Parechovirus (6.57%). When we observe the seasonal distribution of viral agents, RSV was the most common agent in winter and it was rhinovirus in spring, summer and autumn season. Conclusion: Approximately 80% of the patients included in the study had a viral agent that may be responsible for clinical symptoms. For this reason, the rapid and sensitive diagnosis of viruses causing viral respirato-ry infections will reduce the cost of treatment, reduce unnecessary use of antibiotics and prevent the development of resistance to antibiotics and will guide the clinician to prevent the infections caused by these viruses. ©Copyright 2019 by Pediatric Infectious Diseases and Immunization Society.","Multiplex polymerase chain reaction; Respiratory tract infections; Seasonal distribution","complementary DNA; Adenoviridae; adolescent; Article; Bocaparvovirus; bronchitis; bronchopneumonia; child; Enterovirus; female; human; Human coronavirus 229E; Human parainfluenza virus 1; Human parainfluenza virus 2; Human parainfluenza virus 3; Human parainfluenza virus 4; Human respiratory syncytial virus; infant; influenza B; lower respiratory tract infection; major clinical study; male; Metapneumovirus; multiplex polymerase chain reaction; newborn; nonhuman; outpatient department; Parechovirus; physical examination; pneumonia; preschool child; real time polymerase chain reaction; respiratory tract infection; respiratory virus; reverse transcription; Rhinovirus; school child; seasonal variation; species distribution; upper respiratory tract infection; virus detection; virus pathogenesis","Shi, T., McLean, K., Campbell, H., Nair, H., Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis (2015) J Glob Health, 5; Simoes, E.A.F., Cherian, T., Chow, J., Shahid-Salles, S.A., Laxminarayan, R., John, T.J., Acute respiratory infections in children (2006) Disease Control Priorities in Developing Countries, 25. , Jamison DT, Breman JG, Measham AR, 2nd ed. Chapter, Washington (DC): World Bank; Doan, Q., Enarson, P., Kissoon, N., Klassen, T.P., Johnson, D.W., Rapid viral diagnosis for acute febrile respiratory illness in children in the emergency department (2014) Cochrane Database Syst Rev, (15); Sung, R.Y., Chan, P.K., Tsen, T., Li, A.M., Lam, W.Y., Yeung, A.C., Identification of viral and atypical bacterial pathogens in children hospitalized with acute respiratory infections in Hong Kong by multiplex PCR assays (2009) J Med Virol, 8, pp. 153-159; Williams, B.G., Gouws, E., Boschi-Pinto, C., Bryce, J., Dye, C., Estimates of worldwide distribution of child deaths from acute respiratory infections (2002) Lancet Infect Dis, 2, pp. 25-32; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology (2010) Clin Microbiol Rev, 23, pp. 74-98; Sikolia, D.N., Mwololo, K., Cherop, H., Hussein, J.M., Kurui, J., Bwika, A., The prevalence of acute respiratory tract infections and the associated risk factors: A study of children under five years of age in Kibera Lindi Village, Nairobi, Kenya (2002) J Natl Inst Public Health, 51, pp. 67-72; (2004) World Health Report 2004, Report of the Director General, , Geneva: WHO; Perezruiz, M., Pedrosacorral, I., Sanbonmatsugamez, S., Navarromari, J., Laboratory detection of respiratory viruses by automated techniques (2012) Open Virol J, 6, pp. 151-159; Noh, J.Y., Song, J.Y., Cheong, H.J., Choi, W.S., Lee, J., Lee, J.S., Laboratory surveillance of influenza-like illness in seven teaching hospitals, South Korea: 2011-2012 season (2013) Plos One, 8; (1999) Health Situation in the South East Asia Region Monograph, 1994-1997, , New Delhi: WHO; Bharaj, P., Sullender, W.M., Kabra, S.K., Mani, K., Cherian, J., Tyagi, V., Respiratory viral infections detected by multiplex PCR among pediatric patients with lower respiratory tract infections seen at an urban hospital in Delhi from 2005 to 2007 (2009) Virol J, 6, p. 89; Bukhari, E.E., Elhazmi, M.M., Viral agents causing acute lower respiratory tract infections in hospitalized children at a tertiary care center in Saudi Arabia (2013) Saudi Med J, 34, pp. 1151-1155; Çiçek, C., Arslan, A., Saz, E.U., Pullukçu, H., Çok, G., Üst ve alt solunum yolu enfeksiyonu olan hastalarda solunum virüslerinin multipleks PCR yöntemi ile eşzamanlı saptanması (2015) Ege Tıp Dergisi, 54, pp. 8-14; Aktürk, H., Sütçü, M., Badur, M., Törün, S.H., Çıtak, A., Erol, O.B., Evaluation of epidemiological and clinical features of influenza and other respiratory viruses (2015) Turk Pediatri Ars, 50, pp. 217-225; Arbefeville, S., Ferrieri, P., Epidemiologic analysis of respiratory viral infections mainly in hospitalized children and adults in Midwest University Medical Center after the implementation of a 14-virus multiplex nucleic acid amplification test (2017) Am J Clin Pathol, 147, pp. 43-49; Nickbakhsh, S., Thorburn, F., von Wissmann, B., McMenamin, J., Gunson, R.N., Murcia, P.R., Extensive multiplex PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections (2016) Epidemiol Infect, 144, pp. 2064-2076; Ko, D.H., Hyun, J., Kim, H.S., Kim, J.S., Song, W., Kim, H.S., Analysis of respiratory viral infections detected using multiplex real-time PCR in Hwaseong, Korea from 2013 to 2015 (2017) Clin Lab, 63, pp. 1003-1007; Do, A.H., van Doorn, H.R., Nghiem, M.N., Bryant, J.E., Hoang, T.H., Do, Q.H., Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008 (2011) Plos One, 6; Bezerra, P.G., Britto, M.C., Correia, J.B., Duarte Mdo, C., Fonceca, A.M., Rose, K., Viral and atypical bacterial detection in acute respiratory infection in children under five years (2011) Plos One, 6; Haynes, A.K., Fowlkes, A.L., Schneider, E., Mutuc, J.D., Armstrong, G.L., Gerber, S.I., Human metapneumovirus circulation in the United States, 2008 to 2014 (2016) Pediatrics, 137 (5); Erdman, D.D., Xu, W., Gerber, S.I., Gray, G.C., Schnurr, D., Kajon, A.E., Molecular epidemiology of adenovirus type 7 in the United States, 1966-2000 (2002) Emerg Infect Dis, 8, pp. 269-277; Cheng, C.C., Huang, L.M., Kao, C.L., Lee, P.I., Chen, J.M., Lu, C.Y., Molecular and clinical characteristics of adenoviral infections in Taiwanese children in 2004-2005 (2008) Eur J Pediatr, 167, pp. 633-640; Ren, L., Gonzalez, R., Xie, Z., Xiong, Z., Liu, C., Xiang, Z., Human parainfluenza virus type 4 infection in Chinese children with lower respiratory tract infections: A comparison study (2011) J Clin Virol, 51, pp. 209-212; Fy, A.M., Curns, A.T., Harbour, K., Hutwagner, L., Holman, R.C., Anderson, L.J., Seasonal trends of human parainfluenza viral infections: United States, 1990-2004 (2006) Clin Infect Dis, 43 (8), pp. 1016-1022; Zhao, H., Harris, R.J., Ellis, J., Donati, M., Pebody, R.G., Epidemiology of parainfluenza infection in England and Wales, 1998-2013: Any evidence of change? (2017) Epidemiol Infect, 145 (6), pp. 1210-1220; Özdemir, M., Taşbent, F.E., New index of journal and influenza viruses (2018) J Pediatr Infect Dis, 13 (1), p. 001; Allander, T., Human bocavirus (2008) J Clin Virol, 41, pp. 29-33; Martin, E.T., Fairchok, M.P., Kuypers, J., Magaret, A., Zerr, D.M., Wald, A., Frequent and prolonged shedding of bocavirus in young children attending daycare (2010) J Infect Dis, 201, pp. 1625-1632; Moreno, B., Abrego, L., Carrera, J.P., Franco, D., Gaitán, M., Castillo, J., Detection of human bocavirus type 1 infection in Panamanian children with respiratory illness (2016) J Med Virol, 88, pp. 389-394; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J Clin Microbiol, 48, pp. 2940-2947; Varghese, L., Zachariah, P., Vargas, C., Larussa, P., Demmer, R.T., Furuya, Y.E., Epidemiology and clinical features of human coronaviruses in the pediatric population (2018) J Pediatric Infect Dis Soc, 7, pp. 151-158; Litwin, C.M., Bosley, J.G., Seasonality and prevalence of respiratory pathogens detected by multiplex PCR at a tertiary care medical center (2014) Arch Virol, 159, pp. 65-72; Andréoletti, L., Renois, F., Jacques, J., Enteroviruses, L.N.H., Respiratory, I., (2009) Med Sci (Paris), 25, pp. 921-930; Harvala, H., Simmonds, P., Human parechoviruses: Biology, epidemiology and clinical significance (2009) J Clin Virol, 45, pp. 1-9; Jacques, J., Moret, H., Minette, D., Lévêque, N., Jovenin, N., Deslée, G., Epidemiological, molecular, and clinical features of enterovirus respiratory infections in French children between 1999 and 2005 (2008) J Clin Microbiol, 46, pp. 206-213; Siafakas, N., Markoulatos, P., Levidiotou-Stefanou, S., Molecular identification of enteroviruses responsible for an outbreak of aseptic meningitis; implications in clinical practice and epidemiology (2004) Mol Cell Probes, 18, pp. 389-398","Tokak, S.; KTO Karatay Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim DalıTurkey; email: semihtokak@gmail.com",,"AVES",13071068,,,,"English","Cocuk Enfeksiyon Derg.",Article,"Final",Open Access,Scopus,2-s2.0-85079152526 "Kim J.H., Kang M., Park E., Chung D.R., Kim J., Hwang E.S.","57214339420;55453175300;57203161861;7401719232;57208506846;35322149100;","A Simple and Multiplex Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of SARS-CoV",2019,"Biochip Journal","13","4",,"341","351",,,"10.1007/s13206-019-3404-3","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075220535&doi=10.1007%2fs13206-019-3404-3&partnerID=40&md5=88eb08f7d9bdf09f3fc2f6477e3ef243","Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea; Center for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea; Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea; Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea; Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, South Korea","Kim, J.H., Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Kang, M., Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea; Park, E., Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea; Chung, D.R., Center for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea, Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea, Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Kim, J., Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea, Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, South Korea; Hwang, E.S., Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea, Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, South Korea","The current diagnosis of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) relies on laboratory-based tests since its clinical features are nonspecific, unlike other respiratory pathogens. Therefore, the development of a rapid and simple method for on-site detection of SARS-CoV is crucial for the identification and prevention of future SARS outbreaks. In this study, a simple colorimetric and multiplex loop-mediated isothermal amplification (LAMP) assay was developed to rapid screening of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). It can be visually detected based on color change and monitored in real-time with fluorescent signals. The performance of this assay, based on six primers targeting open reading frame (ORF1b) and nucleocapsid (N) genes located in different regions of the SARS-CoV, was compared with real-time RT-PCR assay using various concentrations of target genes. The detection limit of the LAMP assay was comparable to that of real-time RT-PCR assay and therefore a few target RNA to 104-105 copies could be detected within a short period of time (20–25 min). In addition, we established a multiplex real-time LAMP assay to simultaneously detect two target regions within the SARS-CoV genome. Two target sequences were amplified by specific primers in the same reaction tube and revealed that it was able to detect down to 105 copies. The standard curve had a linear relationship with similar amplification efficiencies. The LAMP assay results in shorter “sample-to-answer” time than conventional PCR method. Therefore, it is suitable not only for diagnosis of clinical test, but also for surveillance of SARS virus in developing countries. © 2019, The Korean BioChip Society and Springer.","Colorimetric detection; Loop-mediated isothermal amplification; Point-of-care test; SARS-CoV","Amplification; Color; Colorimetry; Developing countries; Genes; Isotherms; Plants (botany); Polymerase chain reaction; Viruses; Amplification efficiencies; Colorimetric detection; Fluorescent signals; Linear relationships; Loop mediated isothermal amplifications; Point of care; SARS-CoV; Severe acute respiratory syndrome; Diseases; article; developing country; limit of detection; loop mediated isothermal amplification; nonhuman; open reading frame; real time reverse transcription polymerase chain reaction; SARS coronavirus; virus nucleocapsid","Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yuen, K.Y., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) The Lancet, 361 (9366), pp. 1319-1325; Tsang, K.W., Ho, P.L., Ooi, G.C., Yee, W.K., Wang, T., Chan-Yeung, M., Lam, W.K., Lai, K.N., A Cluster of Cases of Severe Acute Respiratory Syndrome in Hong Kong (2003) New England Journal of Medicine, 348 (20), pp. 1977-1985; Kuiken, T., Fouchier, R.A.M., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., Osterhaus, A.D.M.E., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome (2003) The Lancet, 362 (9380), pp. 263-270; Schlagenhauf, P., Ashra, H., Severe acute respiratory syndrome spreads worldwide (2003) The Lancet, 361 (9362), p. 1017; Kenneth, J., Severe Acute Respiratory Syndrome (SARS): The new epidemic (2003) Natl. Med. J. India, 16, pp. 115-116. , PID: 12816197; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Anderson, L.J., A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome (2003) New England Journal of Medicine, 348 (20), pp. 1953-1966; Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003, , https://doi.org/www.who.int/csr/sars/country/table2004_04_21/en/; SARS (Severe Acute Respiratory Syndrome), , https://doi.org/www.who.int/ith/diseases/sars/en/; Chan, J.F.W., Lau, S.K.P., To, K.K.W., Cheng, V.C.C., Woo, P.C.Y., Yuen, K.-Y., Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease (2015) Clinical Microbiology Reviews, 28 (2), pp. 465-522; Gong, S.-R., Bao, L.-L., The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models (2018) Animal Models and Experimental Medicine, 1 (2), pp. 125-133; Cheng, V.C.C., Lau, S.K.P., Woo, P.C.Y., Yuen, K.Y., Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection (2007) Clinical Microbiology Reviews, 20 (4), pp. 660-694; Wong, S.C.C., Development of a quantitative assay for SARS coronavirus and correlation of GAPDH mRNA with SARS coronavirus in clinical specimens (2005) Journal of Clinical Pathology, 58 (3), pp. 276-280; He, Z., Zhuang, H., Zhao, C., Dong, Q., Peng, G., Dwyer, D.E., Using patient-collected clinical samples and sera to detect and quantify the severe acute respiratory syndrome coronavirus (SARS-CoV) (2007) Virology Journal, 4 (1), p. 32; Wu, H.-S., Chiu, S.-C., Tseng, T.-C., Lin, S.-F., Lin, J.-H., Hsu, Y.-F., Wang, M.-C., Su, I.-J., Serologic and Molecular Biologic Methods for SARS-associated Coronavirus Infection, Taiwan (2004) Emerging Infectious Diseases, 10 (2), pp. 305-310; Wang, Y., Yu, L., Kong, X., Sun, L., Application of nanodiagnostics in point-of-care tests for infectious diseases (2017) International Journal of Nanomedicine, 12, pp. 4789-4803; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., Loopmediated isothermal amplification of DNA (2000) Nucleic Acids Res., 28, p. E63. , COI: 1:CAS:528:DC%2BD3cXmtlKqsr8%3D; Tomlinson, J.A., Dickinson, M.J., Boonham, N., Detection of Botrytis cinerea by loop-mediated isothermal amplification (2010) Letters in Applied Microbiology, 51 (6), pp. 650-657; Kubota, R., Vine, B.G., Alvarez, A.M., Jenkins, D.M., Detection of Ralstonia solanacearum by Loop-Mediated Isothermal Amplification (2008) Phytopathology, 98 (9), pp. 1045-1051; Mori, Y., Nagamine, K., Tomita, N., Notomi, T., Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation (2001) Biochemical and Biophysical Research Communications, 289 (1), pp. 150-154; Iwamoto, T., Sonobe, T., Hayashi, K., Loop-Mediated Isothermal Amplification for Direct Detection of Mycobacterium tuberculosis Complex, M. avium, and M. intracellulare in Sputum Samples (2003) Journal of Clinical Microbiology, 41 (6), pp. 2616-2622; Hill, J., Beriwal, S., Chandra, I., Paul, V.K., Kapil, A., Singh, T., Wadowsky, R.M., Vats, A., Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Common Strains of Escherichia coli (2008) Journal of Clinical Microbiology, 46 (8), pp. 2800-2804; Zhou, Q.-J., Wang, L., Chen, J., Wang, R.-N., Shi, Y.-H., Li, C.-H., Zhang, D.-M., Zhang, Y.-J., Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals (2014) Journal of Microbiological Methods, 104, pp. 26-35; Kong, Q.-M., Lu, S.-H., Tong, Q.-B., Lou, D., Chen, R., Zheng, B., Kumagai, T., Zhou, X.-N., Loop-mediated isothermal amplification (LAMP): Early detection of Toxoplasma gondii infection in mice (2012) Parasites & Vectors, 5 (1), p. 2; Kargar, M., Askari, A., Doosti, A., Ghorbani-Dalini, S., Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Hepatitis C virus (2012) Indian Journal of Virology, 23 (1), pp. 18-23; Yoneyama, T., Kiyohara, T., Shimasaki, N., Kobayashi, G., Ota, Y., Notomi, T., Totsuka, A., Wakita, T., Rapid and real-time detection of hepatitis A virus by reverse transcription loop-mediated isothermal amplification assay (2007) Journal of Virological Methods, 145 (2), pp. 162-168; Thai, H.T.C., Le, M.Q., Vuong, C.D., Parida, M., Minekawa, H., Notomi, T., Hasebe, F., Morita, K., Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus (2004) Journal of Clinical Microbiology, 42 (5), pp. 1956-1961; Poon, L.L.M., Rapid Detection of the Severe Acute Respiratory Syndrome (SARS) Coronavirus by a Loop-Mediated Isothermal Amplification Assay (2004) Clinical Chemistry, 50 (6), pp. 1050-1052; Njiru, Z.K., Loop-Mediated Isothermal Amplification Technology: Towards Point of Care Diagnostics (2012) PLoS Neglected Tropical Diseases, 6 (6); Poole, C.B., Ettwiller, L., Tanner, N.A., Evans, T.C., Wanji, S., Carlow, C.K.S., Genome Filtering for New DNA Biomarkers of Loa loa Infection Suitable for Loop-Mediated Isothermal Amplification (2015) PLOS ONE, 10 (9); Shirato, K., Semba, S., El-Kafrawy, S.A., Hassan, A.M., Tolah, A.M., Takayama, I., Kageyama, T., Azhar, E.I., Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus (2018) Journal of Virological Methods, 258, pp. 41-48; Viana, G.M.R., Silva-Flannery, L., Lima Barbosa, D.R., Lucchi, N., do Valle, S.C.N., Farias, S., Barbalho, N., de Oliveira, A.M., Field evaluation of a real time loop-mediated isothermal amplification assay (RealAmp) for malaria diagnosis in Cruzeiro do Sul, Acre, Brazil (2018) PLOS ONE, 13 (7); Sun, M., Liu, H., Huang, J., Peng, J., Fei, F., Zhang, Y., Hsiang, T., Zheng, L., A Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Pectobacterium aroidearum that Causes Soft Rot in Konjac (2019) International Journal of Molecular Sciences, 20 (8), p. 1937; Rahman, S.M.M., Song, H.B., Jin, Y., Oh, J.-K., Lim, M.K., Hong, S.-T., Choi, M.-H., Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples (2017) PLOS Neglected Tropical Diseases, 11 (10); Gadkar, V.J., Goldfarb, D.M., Gantt, S., Tilley, P.A.G., Real-time Detection and Monitoring of Loop Mediated Amplification (LAMP) Reaction Using Self-quenching and De-quenching Fluorogenic Probes (2018) Sci. Rep, , https://doi.org/10.1038/s41598-018-23930-1; Deng, H.-W., Zhou, Y., Recker, R.R., Johnson, M.L., Li, J., Fragment Size Difference between Multiplex and Singleplex PCR Products and Their Practical Implications (2000) BioTechniques, 29 (2), pp. 298-308; Lim, Y., Ng, Y., Tam, J., Liu, D., Human Coronaviruses: A Review of Virus–Host Interactions (2016) Diseases, 4 (4), p. 26; Marra, M.A., The Genome Sequence of the SARS-Associated Coronavirus (2003) Science, 300 (5624), pp. 1399-1404; Almazán, F., Sola, I., Zuñiga, S., Marquez-Jurado, S., Morales, L., Becares, M., Enjuanes, L., Coronavirus reverse genetic systems: Infectious clones and replicons (2014) Virus Research, 189, pp. 262-270; Zhang, X., Zhang, H., Pu, J., Qi, Y., Yu, Q., Xie, Y., Peng, J., Development of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay for Rapid and Quantitative Detection of Fusarium oxysporum f. sp. cubense Tropical Race 4 In Soil (2013) PLoS ONE, 8 (12)","Kang, M.; Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of MedicineSouth Korea; email: minhee.kang@samsung.com",,"SpringerOpen",19760280,,,,"English","Bioch. J.",Article,"Final",Open Access,Scopus,2-s2.0-85075220535 "Di Francesco C.E., Smoglica C., Paoletti B., Angelucci S., Innocenti M., Antonucci A., Di Domenico G., Marsilio F.","8613765300;57211486004;6508184355;57200984076;57211487692;57213283569;57213995522;55788078800;","Detection of selected pathogens in Apennine wolf (Canis lupus italicus) by a non-invasive GPS-based telemetry sampling of two packs from Majella National Park, Italy",2019,"European Journal of Wildlife Research","65","6", 84,"","",,,"10.1007/s10344-019-1326-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074136507&doi=10.1007%2fs10344-019-1326-y&partnerID=40&md5=35b47293a1fb851e35e7a572889c1433","Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, Teramo, 64100, Italy; Majella National Park, Via Badia 28, Sulmona, 67039, Italy","Di Francesco, C.E., Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, Teramo, 64100, Italy; Smoglica, C., Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, Teramo, 64100, Italy; Paoletti, B., Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, Teramo, 64100, Italy; Angelucci, S., Majella National Park, Via Badia 28, Sulmona, 67039, Italy; Innocenti, M., Majella National Park, Via Badia 28, Sulmona, 67039, Italy; Antonucci, A., Majella National Park, Via Badia 28, Sulmona, 67039, Italy; Di Domenico, G., Majella National Park, Via Badia 28, Sulmona, 67039, Italy; Marsilio, F., Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, Teramo, 64100, Italy","In this study, a multi-pathogens survey was conducted to verify the sanitary status of two Italian wolf packs of Majella National Park. Twenty fecal samples (10/pack) were collected using a sampling protocol, based on the combining data from radio-collared wolves with geographic information system (GIS) analysis, allowing to mark off the home range of packs and to recover group-specific and high-quality specimens. Virological screening against the most prevalent canine viruses (protoparvovirus, distemper virus, adenoviruses, and coronaviruses) was carried out by molecular methods, while parasites were detected by means of copromicroscopic and molecular analysis. Canine parvovirus type 2b (CPV-2b) is the most prevalent virus in both packs (7/20), followed by canine adenovirus type 2 (CAdV-2), while no sequences of canine distemper virus and coronaviruses were detected. The sequence analysis of the viruses demonstrated the domestic origin of the infection, highlighting the importance of vaccination of local dogs in order to reduce the risk of exposure of wildlife to these pathogens. Fourteen samples resulted positive for parasites. Capillaria aerophila (sin. Eucoleus aerophilus), Ancylostoma/Uncinaria, Trichuris vulpis eggs, Sarcocystis spp., Cystoisospora canis, and Angiostrongylus vasorum larvae were identified. Echinococcus granulosus sensu stricto (ovine genotype G1) and Giardia duodenalis(canid-specific Assemblage C) were also characterized, providing insights into the wolves’ diet and their effects on environmental contamination. The sampling protocol applied in this study, based on a multidisciplinary approach, represents an innovative tool for the survey of Apennine wolf, able to integrate sanitary data with the ecological and demographic features of this population. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.","Canis lupus italicus; Fecal samples; Global positioning system; Parasites; Viruses",,"Alfano, F., Dowgier, G., Valentino, M.P., Galiero, G., Tinelli, A., Decaro, N., Fusco, G., Identification of pantropic canine coronavirus in a wolf (Canis lupus italicus) in Italy (2018) J Wildl Dis, 55, pp. 504-508. , PID: 30376395; Almberg, E.S., Mech, L.D., Smith, D.W., Sheldon, J.W., Crabtree, R.L., A serological survey of infectious disease in Yellowstone National Park’s canid community (2009) PLoS One, 4. , PID: 19756151, COI: 1:CAS:528:DC%2BD1MXhtlyks7zO; Balboni, A., Verin, R., Morandi, F., Poli, A., Prosperi, S., Battilani, M., Molecular epidemiology of canine adenovirus type 1 and type 2 in free ranging red foxes (Vulpes vulpes) in Italy (2013) Vet Microbiol, 162, pp. 551-557. , PID: 23201241; Battilani, M., Scagliarini, A., Tisato, E., Turilli, C., Jacoboni, I., Casadio, R., Prosperi, S., Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy (2001) J Gen Virol, 82, pp. 1555-1560. , COI: 1:CAS:528:DC%2BD3MXltVelt74%3D, PID: 11413365; Bergner, L.M., Orton, R.J., da Silva, F.A., Shaw, A.E., Becker, D.J., Tello, C., Biek, R., Streicker, D.G., Using noninvasive metagenomics to characterize viral communities from wildlife (2019) Mol Ecol Resour, 19, pp. 128-143. , COI: 1:CAS:528:DC%2BC1MXit1Khsrg%3D, PID: 30240114; Blanco, J.C., Cortés, Y., Surveying wolves without snow: a critical review of the methods used in Spain (2012) It J Mamm, 23, pp. 35-48; Boitani, L., Phillips, M., Jhala, Y., (2018) Canis Lupus, , https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T3746A119623865.en, The IUCN red list of threatened species 2018: e.T3746A119623865; Borecka, A., Gawor, J., Zieba, F., A survey of intestinal helminths in wild carnivores from the Tatra National Park, southern Poland (2013) Ann Parasitol, 59, pp. 169-172. , PID: 24791342; Bowles, J., McManus, D.P., NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus (1993) Int J Parasitol, 23, pp. 969-972. , COI: 1:CAS:528:DyaK2cXmtVSlu7w%3D, PID: 8106191; Bryan, H.M., Darimont, C.T., Hill, J.E., Paquet, P.C., Thompson, R.C., Wagner, B., Smits, J.E., Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: wolves in a coastal archipelago (2012) Parasitology, 139, pp. 781-790. , PID: 22309976; De Liberato, C., Grifoni, G., Lorenzetti, R., Meoli, R., Cocumelli, C., Mastromattei, A., Scholl, F., Eleni, C., Angiostrongylus vasorum in wolves in Italy: prevalence and pathological findings (2017) Parasit Vectors, 10, p. 386. , PID: 28800774; De Motes, C.M., Clemente-Casares, P., Hundesa, A., Martín, M., Girones, R., Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination (2004) Appl Environ Microbiol, 70, pp. 1448-1454. , COI: 1:CAS:528:DC%2BD2cXisVKju74%3D; Di Paolo, A., Piseddu, T., Sebastianelli, M., Manuali, E., Corneli, S., Paniccià, M., Papa, P., Mazzone, P., Detection of Echinococcus granulosus G3 in a wild boar (Sus scrofa) in Central Italy using PCR and sequencing (2017) J Wildl Dis, 53, pp. 399-401. , PID: 28118555; Di Sabatino, D., Lorusso, A., Di Francesco, C.E., Gentile, L., Di Pirro, V., Bellacicco, A.L., Giovannini, A., Savini, G., Arctic lineage-canine distemper virus as a cause of death in Apennine wolves (Canis lupus) in Italy (2014) PLoS One, 9. , PID: 24465373, COI: 1:CAS:528:DC%2BC2cXlsVKlur8%3D; Eleni, C., Grifoni, G., Di Egidio, A., Meoli, R., De Liberato, C., Pathological findings of Angiostrongylus vasorum infection in red foxes (Vulpes vulpes) from Central Italy, with the first report of a disseminated infection in this host species (2014) Parasitol Res, 113, pp. 1247-1250. , PID: 24532011; Eleni, C., De Liberato, C., Azam, D., Morgan, E.R., Traversa, D., Angiostrongylus vasorum in wolves in Italy (2014) Int J Parasitol Parasites Wildl, 3, pp. 12-14. , PID: 24918072; Euzeby, J., (1981) Diagnostic expérimental des helminthoses animales: travaux pratiques d’helminthologie vétérinaire, , Informations Techniques des Services Vétérinaries, Paris; Friesen, O.C., Roth, J.D., Alternative prey use affects helminth parasite infections in grey wolves (2016) J Anim Ecol, 85, pp. 1265-1274. , PID: 27155132; Galaverni, M., Caniglia, R., Fabbri, E., Milanesi, P., Randi, E., One, no one, or one hundred thousand: how many wolves are there currently in Italy? (2016) Mamm Res, 61, pp. 13-24; Garcia, L.A., Viancelli, A., Rigotto, C., Pilotto, M.R., Esteves, P.A., Kunz, A., Barardi, C.R., Surveillance of human and swine adenovirus, human norovirus and swine circovirus in water samples in Santa Catarina, Brazil (2012) J Water Health, 10, pp. 445-452. , COI: 1:CAS:528:DC%2BC38Xhs12lsb7K, PID: 22960488; Gori, F., Armua-Fernandez, M.T., Milanesi, P., Serafini, M., Magi, M., Deplazes, P., Macchioni, F., The occurence of taeniids of wolves in Liguria (northern Italy) (2015) Int J Parasitol Parasites Wildl, 4, pp. 252-255. , PID: 26042204; Hale, R., Swearer, S.E., Ecological traps: current evidence and future directions (2016) Proc R Soc B, 283, p. 20152647. , PID: 26865295, COI: 1:CAS:528:DC%2BC2sXptVCisA%3D%3D; Horak, S., Leedom Larson, K.R., Porcine adenovirus (2016) Swine Health Information Center and Center for Food. Security and Public Health, , http://www.cfsph.iastate.edu/pdf/shic-factsheet-porcine-adenovirus, Accessed 29 May 2019; Hundesa, A., Bofill-Mas, S., Maluquer de Motes, C., Rodriguez-Manzano, J., Bach, A., Casas, M., Girones, R., Development of a quantitative PCR assay for the quantitation of bovine polyomavirus as a microbial source-tracking tool (2010) J Virol Methods, 163, pp. 385-389. , COI: 1:CAS:528:DC%2BC3cXjtleluw%3D%3D, PID: 19887085; Johnson, M.R., Boyd, D.K., Pletscher, D.H., Serologic investigations of canine parvovirus and canine distemper in relation to wolf (Canis lupus) pup mortalities (1994) J Wildl Dis, 30, pp. 270-273. , COI: 1:STN:280:DyaK2czgtVOhug%3D%3D, PID: 8028116; Jolles, A.E., Etienne, R.S., Olff, H., Independent and competing disease risks: implications for host populations in variable environments (2006) Am Nat, 167, pp. 745-757. , PID: 16671018; Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874. , COI: 1:CAS:528:DC%2BC28XhsF2ltrzN; Development of Coordinated Protection Measures for Wolf in Apennines, , www.parcomajella.it/uploads/tx_news/sintesi__collaboratore_2012_pubblicato.pdf, Accessed 29 May 2019; Mech, L.D., Goyal, S.M., Paul, W.J., Newton, W.E., Demographic effects of canine parvovirus on a free-ranging wolf population over 30 years (2008) J Wildl Dis, 44, pp. 824-836. , PID: 18957638; Melegari, I., Sarchese, V., Di Profio, F., Robetto, S., Carella, E., Bermudez Sanchez, S., Orusa, R., Di Martino, B., First molecular identification of kobuviruses in wolves (Canis lupus) in Italy (2018) Arch Virol, 163, pp. 509-513. , COI: 1:CAS:528:DC%2BC2sXhslKntLvK, PID: 29101539; Meriggi, A., Brangi, A., Schenone, L., Signorelli, D., Milanesi, P., Changes of the wolf (Canis lupus) diet in Italy in relation to the increase of wild ungulate abundance (2011) Ethol Ecol Evol, 23, pp. 195-210; Millán, J., López-Bao, J.V., García, E.J., Oleaga, Á., Llaneza, L., Palacios, V., de la Torre, A., Esperón, F., Patterns of exposure of Iberian wolves (Canis lupus) to canine viruses in human-dominated landscapes (2016) Ecohealth, 13, pp. 123-134. , PID: 26589403; Miranda, C., Santos, N., Parrish, C., Thompson, G., Genetic characterization of canine parvovirus in sympatric free-ranging wild carnivores in Portugal (2017) J Wildl Dis, 53 (4), pp. 824-831. , COI: 1:CAS:528:DC%2BC1cXltlOjtbk%3D, PID: 28657857; Molnar, B., Duchamp, C., Mostl, K., Diehl, P.A., Betschart, B., Comparative survey of canine parvovirus, canine distemper virus and canine enteric coronavirus infection in free-ranging wolves of Central Italy and South-Eastern France (2014) Eur Wildl Res, 60, pp. 613-624; Nelson, B., Hebblewhite, M., Ezenwa, V., Shury, T., Merrill, E.H., Paquet, P.C., Schmiegelow, F., Webb, N., Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains (2012) J Wildl Dis, 48, pp. 68-76. , PID: 22247375; Paoletti, B., Traversa, D., Iorio, R., De Berardinis, A., Bartolini, R., Salini, R., Di Cesare, A., Zoonotic parasites in feces and fur of stray and private dogs from Italy (2015) Parasitol Res, 114, pp. 2135-2141. , PID: 25773179; Paoletti, B., Iorio, R., Traversa, D., Di Francesco, C.E., Gentile, L., Angelucci, S., Amicucci, C., Di Cesare, A., Helminth infections in faecal samples of Apennine wolf (Canis lupus italicus) and Marsican brown bear (Ursus arctos marsicanus) in two protected national parks of Central Italy (2017) Ann Parasitol, 63, pp. 205-212. , PID: 29274214; Paoletti, B., Della Salda, L., Di Cesare, A., Iorio, R., Vergara, A., Fava, C., Olivastri, A., Varcasia, A., Epidemiological survey on cystic echinococcosis in wild boar from Central Italy (2019) Parasitol Res, 118, pp. 43-46. , PID: 30315356; Pizzurro, F., Marcacci, M., Zaccaria, G., Orsini, M., Cito, F., Rosamilia, A., Di Renzo, L., Lorusso, A., Genome sequence of canine adenovirus type 1 isolated from a wolf (Canis lupus) in southern Italy (2017) Genome Announc, 5, pp. e00225-e00217. , PID: 28428308; Poglayen, G., Gori, F., Morandi, B., Galuppi, R., Fabbri, E., Caniglia, R., Milanesi, P., Deplazes, P., Italian wolves (Canis lupus italicus Altobello, 1921) and molecular detection of taeniids in the Foreste Casentinesi National Park, northern Italian Apennines (2017) Int J Parasitol Parasites Wildl, 6, pp. 1-7. , PID: 28180084; Poli, A., Arispici, M., Mancianti, F., Abramo, F., Pathology of naturally acquired Angiostrongylus vasorum infection in the red fox (Vulpes vulpes) (1991) Angew Parasitol, 32, pp. 121-126. , COI: 1:STN:280:DyaK38%2Fis12ltQ%3D%3D, PID: 1928794; Ryan, U., Cacciò, S.M., Zoonotic potential of Giardia (2013) Int J Parasitol, 43, pp. 943-956. , COI: 1:CAS:528:DC%2BC3sXhtF2iurnE, PID: 23856595; Sand, H.B., Zimmermann, P., Wabakken, P., Andren, H., Pedersen, H.C., Using GPS technology and GIS cluster analyses to estimate kill-rates in wolf-ungulate ecosystems (2005) Wildl Soc Bull, 33, pp. 914-925; Seamen, D.E., Powell, R.A., An evaluation of the accuracy of kernel density estimators for home range analysis (1996) Ecology, 77, pp. 2075-2085; Segovia, J.M., Torres, J., Miguel, J., Helminths in the wolf, Canis lupus, from North-Western Spain (2001) J Helminthol, 75, pp. 183-192. , COI: 1:STN:280:DC%2BD3MvnsFyhsg%3D%3D, PID: 11520444; Sloss, M.W., Kemp, R.L., Zajac, A.M., (1994) Veterinary clinical parasitology, pp. 3-93. , 6, Wiley- Blackwell, London; Sprent, J.F.A., Notes on Ascaris and Toxascaris, with a definition of Baylisascaris gen. Nov (1968) Parasitology, 58, pp. 185-198. , COI: 1:STN:280:DyaF1c7ptFCmsQ%3D%3D, PID: 4868445; Stojecki, K., Sroka, J., Caccio, S.M., Cencek, T., Dutkiewicz, J., Kusyk, P., Prevalence and molecular typing of Giardia duodenalis in wildlife from eastern Poland (2015) Folia Parasitol (Praha), 62, p. 2015.042. , COI: 1:CAS:528:DC%2BC1cXmtF2ktb0%3D; Stronen, A.V., Sallows, T., Forbes, G.J., Wagner, B., Paquet, P.C., Diseases and parasites in wolves of the Riding Mountain National Park region, Manitoba, Canada (2011) J Wildl Dis, 47, pp. 222-227. , PID: 21270013; Taubert, A., Pantchev, N., Vrhovec, M.G., Bauer, C., Hermosilla, C., Lungworm infections (Angiostrongylus vasorum, Crenosoma vulpis, Aelurostrongylus abstrusus) in dogs and cats in Germany and Denmark in 2003–2007 (2009) Vet Parasitol, 159, pp. 175-180. , PID: 19019555; Traversa, D., Giangaspero, A., Molini, U., Iorio, R., Paoletti, B., Otranto, D., Giansante, C., Genotyping of Cryptosporidium isolates from Chamelea gallina clams in Italy (2004) Appl Environ Microbiol, 70, pp. 4367-4370. , COI: 1:CAS:528:DC%2BD2cXmtFWnu7g%3D, PID: 15240321; Traversa, D., Di Cesare, A., Meloni, S., di Regalbono, A.F., Milillo, P., Pampurini, F., Venco, L., Canine angiostrongylosis in Italy: occurrence of Angiostrongylus vasorum in dogs with compatible clinical pictures (2013) Parasitol Res, 112, pp. 2473-2480. , PID: 23595212; Tucciarone, C.M., Franzo, G., Mazzetto, E., Legnardi, M., Caldin, M., Furlanello, T., Cecchinato, M., Drigo, M., Molecular insight into Italian canine parvovirus heterogeneity and comparison with the worldwide scenario (2018) Infect Genet Evol, 66, pp. 171-179. , COI: 1:CAS:528:DC%2BC1cXhvVGjur3N, PID: 30257188; Urquhart, G.M., Armour, J., Duncan, J.L., Dunn, A.M., Jennings, F.W., (1996) Veterinary parasitology, pp. 4-57. , Blackwell Science, Glasgow; Valerio, A., Antonucci, A., Giuliani, A., Cobolli, M., Andrisano, T., Wolf prey selection and food availability in the multi-prey ecosystem of Majella National Park, Abruzzo (2009) L’uomo nell’ecosistema: Una Relazione Bilanciata? XIX Congresso Della Società Italiana Di Ecologia “Dalle Vette Alpine Alle profondità marine” Bolzano, pp. 105-120. , 15–18 settembre 2009; Worton, B.J., Kernel methods for estimating the utility distribution in home-range studies (1989) Ecology, 70, pp. 164-168","Di Francesco, C.E.; Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, Italy; email: cedifrancesco@unite.it",,"Springer Verlag",16124642,,,,"English","Eur. J. Wildl. Res.",Article,"Final",,Scopus,2-s2.0-85074136507 "Hui D.S.C., Zumla A.","7101862411;7006170723;","Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features",2019,"Infectious Disease Clinics of North America","33","4",,"869","889",,16,"10.1016/j.idc.2019.07.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073828407&doi=10.1016%2fj.idc.2019.07.001&partnerID=40&md5=5efd351eea5a81570d85f05d5d80f23d","Department of Medicine and Therapeutics, Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill StreetLondon NW3 2PF, United Kingdom","Hui, D.S.C., Department of Medicine and Therapeutics, Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Zumla, A., Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill StreetLondon NW3 2PF, United Kingdom","Severe acute respiratory syndrome coronavirus (SARS-CoV), emerged from China and rapidly spread worldwide. Over 8098 people fell ill and 774 died before the epidemic ended in July 2003. Bats are likely an important reservoir for SARS-CoV. SARS-like CoVs have been detected in horseshoe bats and civet cats. The main mode of transmission of SARS-CoV is through inhalation of respiratory droplets. Faeco-oral transmission has been recorded. Strict infection control procedures with respiratory and contact precautions are essential. Fever and respiratory symptoms predominate, and diarrhea is common. Treatment involves supportive care. There are no specific antiviral treatments or vaccines available. © 2019 Elsevier Inc.","Clinical; Coronavirus; Epidemic; Epidemiology; Prevention; SARS","corticosteroid derivative; interferon; proteinase inhibitor; ribavirin; vaccine; airborne infection; antiviral therapy; bat; China; civet (animal); clinical feature; community care; convalescence; diarrhea; electrolyte balance; feces; fever; fluid therapy; geographic distribution; histopathology; history; hospital infection; host cell; human; immune response; immunopathology; incubation time; infection control; influenza; inhalation; intensive care; laboratory diagnosis; morbidity; mortality; mouth; nonhuman; opportunistic infection; oxygen therapy; pathogenesis; prevalence; prognosis; respiratory tract disease; Review; SARS coronavirus; severe acute respiratory syndrome; virology; virus entry; virus transmission; zoonosis; global health; physiology; severe acute respiratory syndrome; virology; Global Health; History, 21st Century; Humans; SARS Virus; Severe Acute Respiratory Syndrome","Zhao, Z., Zhang, F., Xu, M., Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China (2003) J Med Microbiol, 52, pp. 715-720; WHO, List of blue print priority diseases https://www.who.int/blueprint/priority-diseases/en/, Available at: Accessed January7, 2019; Tsang, K.W., Ho, P.L., Ooi, G.C., A cluster of cases of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1977-1985; Peiris, J.S., Lai, S.T., Poon, L.L., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361 (9366), pp. 1319-1325; WHO, Summary of probable SARS cases with onset of illness from 1 November to 31 July 2003 (2003), http://www.who.int/csr/sars/country/table2004_04_21/en/, Available at: Accessed January 10, 2016; WHO, SARS: lessons from a new disease (2003), pp. 71-78. , http://www.who.int/whr/2003/en/whr03_en.pdf?ua=1, [Chapter 5] The World Health Report Available at: Accessed January 10, 2016; Zumla, A., Chan, J.F., Azhar, E.I., Coronaviruses – drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15 (5), pp. 327-347; Drosten, C., Gunther, S., Preiser, W., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1967-1976; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., A novel coronavirus associated with severe acute respiratory syndrome (2003) N Engl J Med, 348, pp. 1953-1966; Marra, M.A., Jones, S.J., Astell, C.R., The genome sequence of the SARS-associated coronavirus (2003) Science, 300, pp. 1399-1404; Ruan, Y.J., Wei, C.L., Ee, L.A., Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection (2003) Lancet, 361, pp. 1779-1785; Du, L., Qiu, J.C., Wang, M., Analysis on the characteristics of blood serum Ab-IgG detective result of severe acute respiratory syndrome patients in Guangzhou, China (2004) Zhonghua Liu Xing Bing Xue Za Zhi, 25 (11), pp. 925-928; Guan, Y., Zheng, B.J., He, Y.Q., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278; Yu, D., Li, H., Xu, R., Prevalence of IgG antibody to SARS-associated coronavirus in animal traders––Guangdong province, China, 2003 (2003) MMWR Morb Mortal Wkly Rep, 52, pp. 986-987; Song, H.D., Tu, C.C., Zhang, G.W., Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human (2005) Proc Natl Acad Sci U S A, 102, pp. 2430-2435; Wang, M., Yan, M., Xu, H., SARS-CoV infection in a restaurant from palm civet (2005) Emerg Infect Dis, 11, pp. 1860-1865; Lau, S.K., Woo, P.C., Li, K.S., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc Natl Acad Sci U S A, 102 (39), pp. 14040-14045; Li, W., Shi, Z., Yu, M., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Gu, J., Korteweg, C., Pathology and pathogenesis of severe acute respiratory syndrome (2007) Am J Pathol, 170, pp. 1136-1147; Chan, P.K., To, K.F., Lo, A.W., Persistent infection of SARS coronavirus in colonic cells in vitro (2004) J Med Virol, 74, pp. 1-7; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc Natl Acad Sci U S A, 102, pp. 11876-11881; Li, W., Moore, M.J., Vasilieva, N., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Hamming, I., Timens, W., Bulthuis, M.L., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis (2004) J Pathol, 203, pp. 631-637; Leung, W.K., To, K.F., Chan, P.K., Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection (2003) Gastroenterology, 125, pp. 1011-1017; Kuba, K., Imai, Y., Rao, S., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury (2005) Nat Med, 11, pp. 875-879; Law, P.T., Wong, C.H., Au, T.C., The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells (2005) J Gen Virol, 86, pp. 1921-1930; Tan, Y.J., Fielding, B.C., Goh, P.Y., Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway (2004) J Virol, 78, pp. 14043-14047; Nicholls, J.M., Poon, L.L., Lee, K.C., Lung pathology of fatal severe acute respiratory syndrome (2003) Lancet, 361, pp. 1773-1778; Franks, T.J., Chong, P.Y., Chui, P., Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore (2003) Hum Pathol, 34, pp. 743-748; Tse, G.M., To, K.F., Chan, P.K., Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS) (2004) J Clin Pathol, 57, pp. 260-265; Haagmans, B.L., Kuiken, T., Martina, B.E., Pegulated interferon-a protects type I pneumocytes against SARS coronavirus infection in macaques (2004) Nat Med, 10, pp. 290-293; Peiris, J.S., Chu, C.M., Cheng, V.C., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study (2003) Lancet, 361, pp. 1767-1772; Cheng, V.C., Hung, I.F., Tang, B.S., Viral replication in the nasopharynx is associated with diarrhea in patients with severe acute respiratory syndrome (2004) Clin Infect Dis, 38, pp. 467-475; Wong, C.K., Lam, C.W.K., Wu, A.K., Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome (2004) Clin Exp Immunol, 136, pp. 95-103; Zhao, J., Zhao, J., Perlman, S., T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice (2010) J Virol, 84 (18), pp. 9318-9325; Channappanavar, R., Fehr, A.R., Vijay, R., Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice (2016) Cell Host Microbe, 19 (2), pp. 181-193; Totura, A.L., Whitmore, A., Agnihothram, S., Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection (2015) MBio, 6. , [pii:e00638-15]; Wang, Y., Liu, L., The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a Toll-like-receptor-related TRAF3-independent mechanism (2016) MBio, 7 (1). , [pii:e01872-15]; Tang, F., Liu, W., Zhang, F., IL-12 RB1 genetic variants contribute to human susceptibility to severe acute respiratory syndrome infection among Chinese (2008) PLoS One, 3 (5), p. e2183; Ip, W.K., Chan, K.H., Law, H.K., Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection (2005) J Infect Dis, 191 (10), pp. 1697-1704; Liu, L., Wei, Q., Lin, Q., Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection (2019) JCI Insight, 4 (4). , [pii:123158]; Zhong, N.S., Zheng, B.J., Li, Y.M., Epidemiology and cause of severe acute respiratory syndrome in Guangdong, People's Republic of China, in February 2003 (2003) Lancet, 362, pp. 1353-1358; Hui, D.S., Sung, J.J., Severe acute respiratory syndrome (2003) Chest, 124 (1), pp. 12-15; Peiris, J.S., Yuen, K.Y., Osterhaus, A.D., The severe acute respiratory syndrome (2003) N Engl J Med, 349, pp. 2431-2441; Lee, N., Hui, D.S., Wu, A., A major outbreak of severe acute respiratory syndrome in Hong Kong (2003) N Engl J Med, 348, pp. 1986-1994; Wong, R.S., Hui, D.S., Index patient and SARS outbreak in Hong Kong (2004) Emerg Infect Dis, 10, pp. 339-341; Loon, S.C., Teoh, S.C., Oon, L.L., The severe acute respiratory syndrome coronavirus in tears (2004) Br J Ophthalmol, 88 (7), pp. 861-863; Yu, I.T., Wong, T.W., Chiu, Y.L., Temporal-spatial analysis of severe acute respiratory syndrome among hospital inpatients (2005) Clin Infect Dis, 40, pp. 1237-1243; Xiao, S., Li, Y., Wong, T.W., Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong (2017) PLoS One, 12 (7), p. e0181558; Booth, T.F., Kournikakis, B., Bastien, N., Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units (2005) J Infect Dis, 191, pp. 1472-1477; WHO, Update 95-SARS: chronology of a serial killer http://www.who.int/csr/don/2003_07_04/en, Available at: Accessed January 10, 2016; Yu, I.T., Xie, Z.H., Tsoi, K.K., Why did outbreaks of severe acute respiratory syndrome occur in some hospital wards but not in others? (2007) Clin Infect Dis, 44, pp. 1017-1025; Tran, K., Cimon, K., Severn, M., Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review (2012) PLoS One, 7, p. e35797; Chu, C.M., Cheng, V.C., Hung, I.F., Viral load distribution in SARS outbreak (2005) Emerg Infect Dis, 11, pp. 1882-1886; Yu, I.T., Li, Y., Wong, T.W., Evidence of airborne transmission of the severe acute respiratory syndrome virus (2004) N Engl J Med, 350, pp. 1731-1739; Yu, I.T., Qiu, H., Tse, L.A., Severe acute respiratory syndrome beyond Amoy Gardens: completing the incomplete legacy (2014) Clin Infect Dis, 58, pp. 683-686; Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Superspreading and the effect of individual variation on disease emergence (2005) Nature, 438 (7066), pp. 355-359; Chiu, W.K., Cheung, P.C.H., Ng, K.L., Severe acute respiratory syndrome in children: experience in a regional hospital in Hong Kong (2003) Pediatr Crit Care Med, 4, pp. 279-283; Donnelly, C.A., Ghani, A.V., Leung, G.M., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong (2003) Lancet, 361, pp. 1761-1766; Leung, G.M., Hedley, A.J., Ho, L.M., The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients (2004) Ann Intern Med, 141, pp. 662-673; Booth, C.M., Matukas, L.M., Tomlinson, G.A., Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area (2003) JAMA, 289, pp. 2801-2809; Chan, J.W., Ng, C.K., Chan, Y.H., Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) (2003) Thorax, 58, pp. 686-689; Tsui, P.T., Kwok, M.L., Yuen, H., Severe acute respiratory syndrome: clinical outcome and prognostic correlates (2003) Emerg Infect Dis, 9, pp. 1064-1069; Hung, E.C., Chim, S.S., Chan, P.K., Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome (2003) Clin Chem, 49, pp. 2108-2109; Lau, K.K., Yu, W.C., Chu, C.M., Possible central nervous system infection by SARS coronavirus (2004) Emerg Infect Dis, 10, pp. 342-344; Wong, K.C., Leung, K.S., Hui, M., Severe acute respiratory syndrome (SARS) in a geriatric patient with a hip fracture. A case report (2003) J Bone Joint Surg Am, 85A, pp. 1339-1342; Hon, K.L., Leung, C.W., Cheng, W.T., Clinical presentations and outcome of severe acute respiratory syndrome in children (2003) Lancet, 561, pp. 1701-1703; Wong, S.F., Chow, K.M., Leung, T.N., Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome (2004) Am J Obstet Gynecol, 191, pp. 292-297; Leung, G.M., Lim, W.W., Ho, L.M., Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups (2006) Epidemiol Infect, 134, pp. 211-221; Hui, D.S., Wong, P.C., Wang, C., SARS: clinical features and diagnosis (2003) Respirology, 8, pp. S20-S24; Hui, D.S., Wong, K.T., Antonio, G.E., Severe acute respiratory syndrome: correlation between clinical outcome and radiologic features (2004) Radiology, 233, pp. 579-585; Pitzer, V.E., Leung, G.M., Lipstich, M., Estimating variability in the transmission of severe acute respiratory syndrome to household contacts in Hong Kong, China (2007) Am J Epidemiol, 166, pp. 355-363; Poon, L.L., Chan, K.H., Wong, O.K., Early diagnosis of SARS coronavirus infection by real time RT-PCR (2003) J Clin Virol, 28, pp. 233-238; Ng, E.K., Hui, D.S., Chan, K.C., Quantitative analysis and prognostic implication of SARS coronavirus in the plasma and serum of patients with severe acute respiratory syndrome (2003) Clin Chem, 49, pp. 1976-1980; Ng, E.K., Ng, P.C., Hon, K.L., Serial analysis of the plasma concentration of SARS coronavirus RNA in pediatric patients with severe acute respiratory syndrome (2003) Clin Chem, 49, pp. 2085-2088; Lee, N., Chan, P.K., Ip, M., Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome (2006) J Clin Virol, 35, pp. 179-184; Tang, F., Quan, Y., Xin, Z.T., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study (2011) J Immunol, 186, pp. 7264-7268; Wong, R.S., Wu, A., To, K.F., Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis (2003) Br Med J, 326, pp. 1358-1362; Wong, W.M., Ho, J.C., Hung, I.F., Temporal patterns of hepatic dysfunction and disease severity in patients with SARS (2003) JAMA, 290, pp. 2663-2665; Wong, K.T., Antonio, G.E., Hui, D.S., Thin section CT of severe acute respiratory syndrome: evaluation of 73 patients exposed to or with the disease (2003) Radiology, 228, pp. 395-400; Gomersall, C.D., Joynt, G.M., Lam, P., Short-term outcome of critically ill patients with severe acute respiratory syndrome (2004) Intensive Care Med, 30, pp. 381-387; Shek, C.C., Ng, P.C., Fung, G.P., Infants born to mothers with severe acute respiratory syndrome (2003) Pediatrics, 112, pp. e254-e256; Sung, J.J., Wu, A., Joynt, G.M., Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak (2004) Thorax, 59, pp. 414-420; Chu, C.M., Cheng, V.C., Hung, I.F., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings (2004) Thorax, 59, pp. 252-256; Chan, K.S., Lai, S.T., Chu, C.M., Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicenter retrospective matched cohort study (2003) Hong Kong Med J, 9, pp. 399-406; Loutfy, M.R., Blatt, L.M., Siminovitch, K.A., Interferon Alfacon-1 plus corticosteroids in severe acute respiratory syndrome. A preliminary study (2003) JAMA, 290, pp. 3222-3228; Fisman, D.N., Hemophagocytic syndrome and infection (2000) Emerg Infect Dis, 6, pp. 601-608; Tsang, O.T., Chau, T.N., Choi, K.W., Coronavirus-positive nasopharyngeal aspirate as predictor for severe acute respiratory syndrome mortality (2003) Emerg Infect Dis, 9, pp. 1381-1387; Wang, H., Ding, Y., Li, X., Fatal aspergillosis in a patient with SARS who was treated with corticosteroids (2003) N Engl J Med, 349, pp. 507-508; Griffith, J.F., Antonio, G.E., Kumta, S.M., Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids (2005) Radiology, 235, pp. 168-175; Lee, N., Allen Chan, K.C., Hui, D.S., Effects of early corticosteroid treatment on plasma SARS-associated coronavirus RNA concentrations in adult patients (2004) J Clin Virol, 31, pp. 304-309; Stockman, L.J., Bellamy, R., Garner, P., SARS: systematic review of treatment effects (2006) PLoS Med, 3, p. e343; Cheng, Y., Wong, R., Soo, Y.O., Use of convalescent plasma therapy in SARS patients in Hong Kong (2005) Eur J Clin Microbiol Infect Dis, 24, pp. 44-46; Soo, Y., Cheng, Y., Wong, R., Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients (2004) Clin Microbiol Infect, 10, pp. 676-678; Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis (2015) J Infect Dis, 211, pp. 80-90; Gao, W., Tamin, A., Soloff, A., Effects of a SARS-associated coronavirus vaccine in monkeys (2003) Lancet, 362, pp. 1895-1896; Zhao, P., Ke, J.S., Qin, Z.L., DNA vaccine of SARS-CoV S gene induces antibody response in mice (2004) Acta Biochim Biophys Sin (Shanghai), 36, pp. 37-41; Yang, Z.Y., Kong, W.P., Huang, Y., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice (2004) Nature, 428, pp. 561-564; Zhong, N.S., Zeng, G.Q., Pandemic planning in China: applying lessons from severe acute respiratory syndrome (2008) Respirology, 13, pp. S33-S35; Seto, W.H., Conly, J.M., Pessoa-Silva, C.L., Infection prevention and control measures for acute respiratory infections in healthcare settings: an update (2013) East Mediterr Health J, 19, pp. S39-S47","Hui, D.S.C.; Department of Medicine and Therapeutics, Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong KongHong Kong; email: dschui@cuhk.edu.hk",,"W.B. Saunders",08915520,,IDCAE,"31668196","English","Infect. Dis. Clin. North Am.",Review,"Final",Open Access,Scopus,2-s2.0-85073828407 "Azhar E.I., Hui D.S.C., Memish Z.A., Drosten C., Zumla A.","23090055800;7101862411;7005059350;7003813990;7006170723;","The Middle East Respiratory Syndrome (MERS)",2019,"Infectious Disease Clinics of North America","33","4",,"891","905",,5,"10.1016/j.idc.2019.08.001","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073813408&doi=10.1016%2fj.idc.2019.08.001&partnerID=40&md5=b7746c4d4d8e8f4201fdd73ec66bd137","Special Infectious Agents Unit, King Fahd Medical Research Centre, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medicine and Therapeutics, Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Infectious Diseases Division, Department of Medicine and Research, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany; Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill StreetLondon NW3 2PF, United Kingdom","Azhar, E.I., Special Infectious Agents Unit, King Fahd Medical Research Centre, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hui, D.S.C., Department of Medicine and Therapeutics, Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Memish, Z.A., College of Medicine, Alfaisal University, Riyadh, Saudi Arabia, Infectious Diseases Division, Department of Medicine and Research, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia; Drosten, C., Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany; Zumla, A., Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill StreetLondon NW3 2PF, United Kingdom","The Middle East respiratory syndrome (MERS) is a novel lethal zoonotic disease of humans caused by the MERS coronavirus (MERS-CoV). Although MERS is endemic to the Middle East, travelers have exported MERS-CoV on return to their home countries. Clinical manifestations range from mild to severe acute respiratory disease and death. The elderly, immunocompromised, and those with chronic comorbid liver, lung, and hepatic conditions have a high mortality rate. There is no specific treatment. Person-to-person spread causes hospital and household outbreaks, and thus improved compliance with internationally recommended infection control protocols and rapid implementation of infection control measures are required. © 2019 Elsevier Inc.","Epidemiology diagnosis; MERS-CoV; Middle East respiratory syndrome coronavirus; Treatment","alisporivir; chloroquine; cyclosporine; lopinavir plus ritonavir; mycophenolic acid; nelfinavir; nitazoxanide; peginterferon alpha2a; ribavirin; camel; clinical feature; diagnostic accuracy; disease transmission; epidemic; health care management; health care personnel; health education; human; incubation time; infection control; laboratory test; Middle East respiratory syndrome; mortality rate; nonhuman; Review; risk factor; animal; Coronavirus infection; global health; Middle East respiratory syndrome coronavirus; physiology; virology; zoonosis; Animals; Coronavirus Infections; Global Health; Humans; Middle East Respiratory Syndrome Coronavirus; Risk Factors; Zoonoses","WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) (2019), https://www.who.int/emergencies/mers-cov/en/, Available at: Accessed June 1, 2019; Zumla, A., Hui, D.S., Perlman, S., Middle East respiratory syndrome (2015) Lancet, 386 (9997), pp. 995-1007; Arabi, Y.M., Balkhy, H.H., Hayden, F.G., Middle East Respiratory syndrome (2017) N Engl J Med, 376 (6), pp. 584-594; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N Engl J Med, 367, pp. 1814-1820; WHO, List of priority Blueprint diseases https://www.who.int/blueprint/priority-diseases/en/, Available at: Accessed January 20, 2019; Alanazi, K.H., Killerby, M.E., Biggs, H.M., Scope and extent of healthcare-associated Middle East respiratory syndrome coronavirus transmission during two contemporaneous outbreaks in Riyadh, Saudi Arabia, 2017 (2019) Infect Control Hosp Epidemiol, 40 (1), pp. 79-88; Oh, M.D., Choe, P.G., Oh, H.S., Middle East respiratory syndrome coronavirus superspreading event involving 81 persons, Korea 2015 (2015) J Korean Med Sci, 30 (11), pp. 1701-1705; Oh, M.D., Park, W.B., Choe, P.G., Viral load kinetics of MERS coronavirus infection (2016) N Engl J Med, 375 (13), pp. 1303-1305; Kang, C.K., Song, K.H., Choe, P.G., Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea (2017) J Korean Med Sci, 32 (5), pp. 744-749; Hui, D.S., Azhar, E.I., Kim, Y.J., Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission (2018) Lancet Infect Dis, 18 (8), pp. e217-e227; WHO, MERS Global summary and assessment of risk https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf, Available at: Accessed January 21, 2019; Reusken, C.B., Haagmans, B.L., Müller, M.A., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect Dis, 13 (10), pp. 859-866; Reusken, C.B., Farag, E.A., Jonges, M., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, 2014 (2014) Euro Surveill, 19 (23). , [pii:20829]; Drosten, C., Kellam, P., Memish, Z.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 371 (14), pp. 1359-1360; Conzade, R., Grant, R., Malik, M.R., Reported direct and indirect contact with dromedary camels among laboratory-confirmed MERS-CoV cases (2018) Viruses, 10 (8). , [pii:E425]; van Doremalen, N., Bushmaker, T., Munster, V.J., Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions (2013) Euro Surveill, 18 (38). , [pii:20590]; Ommeh, S., Zhang, W., Zohaib, A., Genetic evidence of Middle East respiratory syndrome coronavirus (MERS-Cov) and widespread seroprevalence among camels in Kenya (2018) Virol Sin; Liljander, A., Meyer, B., Jores, J., MERS-CoV Antibodies in Humans, Africa, 2013-2014 (2016) Emerg Infect Dis, 22 (6), pp. 1086-1089; Memish, Z.A., Mishra, N., Olival, K.J., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg Infect Dis, 19 (11), pp. 1819-1823; Corman, V.M., Ithete, N.L., Richards, L.R., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J Virol, 88, pp. 11297-11303; Sikkema, R.S., Farag, E.A., Himatt, S., Risk factors for primary Middle East respiratory syndrome coronavirus infection in camel workers in Qatar during 2013-2014: a case-control study (2017) J Infect Dis, 215 (11), pp. 1702-1705; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N Engl J Med, 370 (26), pp. 2499-2505; Memish, Z.A., Cotten, M., Meyer, B., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg Infect Dis, 20 (6), pp. 1012-1015; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, May 2015 (2015) Emerg Infect Dis, 21 (12), pp. 2197-2200; Arwady, M.A., Alraddadi, B., Basler, C., Middle East respiratory syndrome coronavirus transmission in extended family, Saudi Arabia, 2014 (2016) Emerg Infect Dis, 22 (8), pp. 1395-1402; Al-Abdallat, M.M., Payne, D.C., Alqasrawi, S., Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description (2014) Clin Infect Dis, 59 (9), pp. 1225-1233; Garbati, M.A., Fagbo, S.F., Fang, V.J., Comparative study of clinical presentation and risk factors for adverse outcome in patients hospitalised with acute respiratory disease due to MERS coronavirus or other causes (2016) PLoS One, 11 (11), p. e0165978; Assiri, A., McGeer, A., Perl, T.M., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369 (5), pp. 407-416; Arabi, Y.M., Alomari, A., Mandourah, Y., Critically ill healthcare workers with the Middle East Respiratory Syndrome (MERS) (2017) Crit Care Med, 45 (10), pp. 1683-1695; Arabi, Y.M., Mandourah, Y., Al-Hameed, F., Corticosteroid therapy for critically ill patients with middle east respiratory syndrome (2018) Am J Respir Crit Care Med, 197 (6), pp. 757-767; Ahmed, A.E., The predictors of 3- and 30-day mortality in 660 MERS-CoV patients (2017) BMC Infect Dis, 17 (1), p. 615; Yang, Y.M., Hsu, C.Y., Lai, C.C., Impact of comorbidity on fatality rate of patients with middle east respiratory syndrome (2017) Sci Rep, 7 (1), p. 11307; Seys, L.J., Widagdo, W., Verhamme, F.M., DPP4, the MERS coronavirus receptor, is upregulated in lungs of smokers and COPD patients (2018) Clin Infect Dis, 66 (1), pp. 45-53; Zumla, A., Hui, D.S., Infection control and MERS-CoV in health-care workers (2014) Lancet, 383 (9932), pp. 1869-1871; WHO, Clinical management of severe acute respiratory infection when Middle East respiratory syndrome coronavirus (MERS-CoV) infection is suspected. Interim guidance January 2019 https://apps.who.int/iris/bitstream/handle/10665/178529/WHO_MERS_Clinical_15.1_eng.pdf;jsessionid=C30F5404588BE9AA533F2B350A0FED4C?sequence=1, Available at: Accessed June 1, 2019; World Health Organization, Laboratory testing for Middle East respiratory syndrome coronavirus. Interim guidance revised January 2018 (2018), https://apps.who.int/iris/bitstream/handle/10665/259952/WHO-MERS-LAB-15.1-Rev1-2018-eng.pdf?sequence=1, WHO Geneva (Switzerland) Available at: Accessed June 1, 2019; Corman, V.M., Muller, M.A., Costabel, U., Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections (2012) Euro Surveill, 17, p. 20334; Corman, V.M., Albarrak, A.M., Omrani, A.S., Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection (2016) Clin Infect Dis, 62 (4), pp. 477-483; Hashem, A.M., Al-Amri, S.S., Al-Subhi, T.L., Development and validation of different indirect ELISAs for MERS-CoV serological testing (2019) J Immunol Methods, 466, pp. 41-46; WHO, Laboratory biorisk management for laboratories handling human specimens suspected of confirmed to contain novel coronavirus: interim recommendations https://www.who.int/csr/disease/coronavirus_infections/Biosafety_InterimRecommendations_NovelCoronavirus_19Feb13.pdf?ua=1, Available at: Accessed March 22, 2019; Zumla, A., Chan, J.F., Azhar, E.I., Coronaviruses - drug discovery and therapeutic options (2016) Nat Rev Drug Discov, 15 (5), pp. 327-347; Chan, J.F., Yao, Y., Yeung, M.L., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset (2015) J Infect Dis, 212 (12), pp. 1904-1913; Arabi, Y.M., Deeb, A.M., Al-Hameed, F., Macrolides in critically ill patients with Middle East Respiratory syndrome (2019) Int J Infect Dis, 81, pp. 184-190; Arabi, Y.M., Alothman, A., Balkhy, H.H., Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial (2018) Trials, 19 (1), p. 81; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. the Middle East respiratory syndrome (2014) Curr Opin Pulm Med, 20 (3), pp. 233-241; (2019), https://apps.who.int/iris/bitstream/handle/10665/174652/WHO_MERS_IPC_15.1_eng.pdf;jsessionid=F6766551B38E85D0DE2FBBDEB17A0892?sequence=1, WHO. Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection -Interim guidance. Available at: Accessed September 14; Kim, S.W., Park, J.W., Jung, H.D., Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin Infect Dis, 64 (5), pp. 551-557; Middle East respiratory syndrome coronavirus outbreak in the Republic of Korea, 2015 (2015) Osong Public Health Res Perspect, 6, pp. 269-278; Memish, Z.A., Zumla, A.I., Al-Hakeem, R.F., Family cluster of Middle East respiratory syndrome coronavirus infections (2013) N Engl J Med, 368 (26), pp. 2487-2494; Drosten, C., Meyer, B., Müller, M.A., Transmission of MERS-coronavirus in household contacts (2014) N Engl J Med, 371 (9), pp. 828-835; Oboho, I.K., Tomczyk, S.M., Al-Asmari, A.M., 2014 MERS-CoV outbreak in Jeddah–a link to health care facilities (2015) N Engl J Med, 372 (9), pp. 846-854; Omrani, A.S., Matin, M.A., Haddad, Q., A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case (2013) Int J Infect Dis, 17 (9), pp. e668-e672; Siegel, J.D., Rhinehart, E., Jackson, M., Health care infection control practices advisory committee (2007) Am J Infect Control, 35 (10), pp. S65-S164; (2019), https://www.moh.gov.sa/en/CCC/PressReleases/, MERS-CoV daily update. Saudi Arabia: Ministry of Health. Available at:; http://www.cdc.gov/hicpac/2007IP/2007isolationPrecautions.html Accessed July 31; Treatment of MERS-CoV: Information for Clinicians. Clinical decision-making support for treatment of MERS-CoV patient https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/360424/MERS_COV_information_for_clinicians_17_July.pdf, Available at: Accessed June 21, 2019; Schindewolf, C., Menachery, V.D., Middle East respiratory syndrome vaccine candidates: cautious optimism (2019) Viruses, (1), p. 11. , [pii:E74]; Memish, Z.A., Zumla, A., Alhakeem, R.F., Hajj: infectious disease surveillance and control (2014) Lancet, 383 (9934), pp. 2073-2082; Zumla, A., Mwaba, P., Bates, M., The Hajj pilgrimage and surveillance for Middle East Respiratory syndrome coronavirus in pilgrims from African countries (2014) Trop Med Int Health, 19 (7), pp. 838-840; Zumla, A., Rustomjee, R., Ntoumi, F., Middle East Respiratory Syndrome–need for increased vigilance and watchful surveillance for MERS-CoV in sub-Saharan Africa (2015) Int J Infect Dis, 37, pp. 77-79; Hui, D.S., Perlman, S., Zumla, A., Spread of MERS to South Korea and China (2015) Lancet Respir Med, 3 (7), pp. 509-510; MERS: Progress on the global response, remaining challenges and the way forward (2018) Antiviral Res, 159, pp. 35-44","Azhar, E.I.; Special Infectious Agents Unit, King Fahd Medical Research Centre, Faculty of Applied Medical Sciences, King Abdulaziz UniversitySaudi Arabia; email: eazhar@kau.edu.sa",,"W.B. Saunders",08915520,,IDCAE,"31668197","English","Infect. Dis. Clin. North Am.",Review,"Final",Open Access,Scopus,2-s2.0-85073813408 "Wrapp D., McLellan J.S.","57189031611;11140034400;","The 3.1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation",2019,"Journal of Virology","9","23", e00923-19,"","",,,"10.1128/JVI.00923-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074961609&doi=10.1128%2fJVI.00923-19&partnerID=40&md5=735799f4d771bd95c0709c003b9d0d5c","Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States","Wrapp, D., Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States; McLellan, J.S., Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States","Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens. IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines. Copyright © 2019 Wrapp and McLellan. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.","Alphacoronavirus spike; Cryo-EM; PEDV; S1-CTD","sialic acid; virus spike protein; NL63 protein; unclassified drug; virus antigen; virus vaccine; Alphacoronavirus; amino terminal sequence; Article; Betacoronavirus; binding site; conformational transition; cryoelectron microscopy; nonhuman; Porcine epidemic diarrhea virus; priority journal; protein conformation; protein domain; protein expression; protein purification; protein structure; protein subunit; receptor binding; controlled study; drug design; membrane fusion; protein conformation; virus attachment","Wood, E.N., An apparently new syndrome of porcine epidemic diarrhoea (1977) Vet Rec, 100, pp. 243-244. , https://doi.org/10.1136/vr.100.12.243; Shibata, I., Tsuda, T., Mori, M., Ono, M., Sueyoshi, M., Uruno, K., Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages (2000) Vet Microbiol, 72, pp. 173-182. , https://doi.org/10.1016/s0378-1135(99)00199-6; Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Yoon, K.J., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Invest, 25, pp. 649-654. , https://doi.org/10.1177/1040638713501675; Pensaert, M.B., De Bouck, P., A new coronavirus-like particle associated with diarrhea in swine (1978) Arch Virol, 58, pp. 243-247. , https://doi.org/10.1007/bf01317606; Sellnow, T.L., Parker, J.S., Sellnow, D.D., Littlefield, R.S., Helsel, E.M., Getchell, M.C., Smith, J.M., Merrill, S.C., Improving biosecurity through instructional crisis communication: Lessons learned from the PEDv outbreak (2017) J Appl Commun, 101 (4), p. 2. , https://doi.org/10.4148/1051-0834.1298; Alvarez, J., Goede, D., Morrison, R., Perez, A., Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States (2016) Prev Vet Med, 123, pp. 155-160. , https://doi.org/10.1016/j.prevetmed.2015.11.003; Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., Song, C.X., Outbreak of porcine epidemic diarrhea in suckling piglets, China (2012) Emerg Infect Dis, 18, pp. 161-163. , https://doi.org/10.3201/eid1801.111259; Opriessnig, T., Gerber, P.F., Shen, H., De Castro, A., Zhang, J., Chen, Q., Halbur, P., Evaluation of the efficacy of a commercial inactivated genogroup 2b-based porcine epidemic diarrhea virus (PEDV) vaccine and experimental live genogroup 1b exposure against 2b challenge (2017) Vet Res, 48, p. 69. , https://doi.org/10.1186/s13567-017-0472-z; Kocherhans, R., Bridgen, A., Ackermann, M., Tobler, K., Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence (2001) Virus Genes, 23, pp. 137-144. , https://doi.org/10.1023/A:1011831902219; Bosch, B.J., Van Der Zee, R., De Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J Virol, 77, pp. 8801-8811. , https://doi.org/10.1128/JVI.77.16.8801-8811.2003; Wicht, O., Li, W., Willems, L., Meuleman, T.J., Wubbolts, R.W., Van Kuppeveld, F.J., Rottier, P.J., Bosch, B.J., Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture (2014) J Virol, 88, pp. 7952-7961. , https://doi.org/10.1128/JVI.00297-14; Li, W., Luo, R., He, Q., Van Kuppeveld, F.J.M., Rottier, P.J.M., Bosch, B.J., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13. , https://doi.org/10.1016/j.virusres.2017.03.018; Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., Pyrc, K., Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells (2014) J Virol, 88, pp. 13221-13230. , https://doi.org/10.1128/JVI.02078-14; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993. , https://doi.org/10.1038/cr.2013.92; Wu, K., Li, W., Peng, G., Li, F., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor (2009) Proc Natl Acad Sci U S A, 106, pp. 19970-19974. , https://doi.org/10.1073/pnas.0908837106; Li, F., Li, W., Farzan, M., Harrison, S.C., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor (2005) Science, 309, pp. 1864-1868. , https://doi.org/10.1126/science.1116480; Walls, A.C., Tortorici, M.A., Snijder, J., Xiong, X., Bosch, B.J., Rey, F.A., Veesler, D., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc Natl Acad Sci U S A, 114, pp. 11157-11162. , https://doi.org/10.1073/pnas.1708727114; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J Biol Chem, 279, pp. 49414-49419. , https://doi.org/10.1074/jbc.M408782200; Wesley, R.D., Woods, R.D., Cheung, A.K., Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus (1991) J Virol, 65, pp. 3369-3373; Li, C., Li, W., Lucio De Esesarte, E., Guo, H., Van Den Elzen, P., Aarts, E., Van Den Born, E., Bosch, B.J., Posting date. Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J Virol, , https://doi.org/10.1128/JVI.00273-17, 26 May; Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus (2015) J Virol, 89, pp. 6121-6125. , https://doi.org/10.1128/JVI.00430-15; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc Natl Acad Sci U S A, 114, pp. E8508-E8517. , https://doi.org/10.1073/pnas.1712592114; Diep, N.V., Norimine, J., Sueyoshi, M., Lan, N.T., Yamaguchi, R., Novel porcine epidemic diarrhea virus (PEDV) variants with large deletions in the spike (S) gene coexist with PEDV strains possessing an intact S gene in domestic pigs in Japan: A new disease situation (2017) PLoS One, 12. , https://doi.org/10.1371/journal.pone.0170126; Oka, T., Saif, L.J., Marthaler, D., Esseili, M.A., Meulia, T., Lin, C.M., Vlasova, A.N., Wang, Q., Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene (2014) Vet Microbiol, 173, pp. 258-269. , https://doi.org/10.1016/j.vetmic.2014.08.012; Hou, Y., Lin, C.M., Yokoyama, M., Yount, B.L., Marthaler, D., Douglas, A.L., Ghimire, S., Wang, Q., Posting date. Deletion of a 197-amino-acid region in the N-terminal domain of spike protein attenuates porcine epidemic diarrhea virus in piglets (2017) J Virol, , https://doi.org/10.1128/JVI.00227-17, 26 June; Wong, A.H.M., Tomlinson, A.C.A., Zhou, D., Satkunarajah, M., Chen, K., Sharon, C., Desforges, M., Rini, J.M., Receptor-binding loops in alphacoronavirus adaptation and evolution (2017) Nat Commun, 8, p. 1735. , https://doi.org/10.1038/s41467-017-01706-x; Reguera, J., Santiago, C., Mudgal, G., Ordono, D., Enjuanes, L., Casasnovas, J.M., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies (2012) PLoS Pathog, 8. , https://doi.org/10.1371/journal.ppat.1002859; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172. , https://doi.org/10.1016/j.virol.2007.03.031; Shirato, K., Maejima, M., Islam, M.T., Miyazaki, A., Kawase, M., Matsuyama, S., Taguchi, F., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539. , https://doi.org/10.1099/jgv.0.000563; Kirchdoerfer, R.N., Wang, N., Pallesen, J., Wrapp, D., Turner, H.L., Cottrell, C.A., Corbett, K.S., Ward, A.B., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci Rep, 8, p. 15701. , https://doi.org/10.1038/s41598-018-34171-7; Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Gao, G.F., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat Commun, 8, p. 15092. , https://doi.org/10.1038/ncomms15092; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc Natl Acad Sci U S A, 114, pp. E7348-E7357. , https://doi.org/10.1073/pnas.1707304114; Walls, A.C., Xiong, X., Park, Y.J., Tortorici, M.A., Snijder, J., Quispe, J., Cameroni, E., Veesler, D., Unexpected receptor functional mimicry elucidates activation of coronavirus fusion (2019) Cell, 176, pp. 1026e15-1039e15. , https://doi.org/10.1016/j.cell.2018.12.028; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat Struct Mol Biol, 23, pp. 899-905. , https://doi.org/10.1038/nsmb.3293; Tegunov, D., Cramer, P., Real-time cryo-EM data pre-processing with Warp (2018) bioRxiv, , https://doi.org/10.1101/338558; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., CryoSparC: Algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat Methods, 14, pp. 290-296. , https://doi.org/10.1038/nmeth.4169; Ramírez-Aportela, E., Vilas, J.L., Glukhova, A., Melero, R., Conesa, P., Martínez, M., Maluenda, D., Cowen, L., Automatic local resolution-based sharpening of cryo-EM maps (2019) Bioinformatics, , https://doi.org/10.1093/bioinformatics/btz671; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Tai, W., Du, L., Li, F., 15 February 2018, posting date. Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state J Virol, , https://doi.org/10.1128/JVI.01556-17; Liu, C., Ma, Y., Yang, Y., Zheng, Y., Shang, J., Zhou, Y., Jiang, S., Li, F., Cell entry of porcine epidemic diarrhea coronavirus is activated by lysosomal proteases (2016) J Biol Chem, 291, pp. 24779-24786. , https://doi.org/10.1074/jbc.M116.740746; Shang, J., Zheng, Y., Yang, Y., Liu, C., Geng, Q., Luo, C., Zhang, W., Li, F., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14. , https://doi.org/10.1371/journal.ppat.1007009; Tortorici, M.A., Walls, A.C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.J., Veesler, D., Structural basis for human coronavirus attachment to sialic acid receptors (2019) Nat Struct Mol Biol, 26, pp. 481-489. , https://doi.org/10.1038/s41594-019-0233-y; Xiong, X., Tortorici, M.A., Snijder, J., Yoshioka, C., Walls, A.C., Li, W., McGuire, A.T., Veesler, D., Posting date. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2018) J Virol, , https://doi.org/10.1128/JVI.01628-17, 30 January; Kirchdoerfer, R.N., Cottrell, C.A., Wang, N., Pallesen, J., Yassine, H.M., Turner, H.L., Corbett, K.S., Ward, A.B., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , https://doi.org/10.1038/nature17200; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , https://doi.org/10.1038/nature16988; Carragher, B., Kisseberth, N., Kriegman, D., Milligan, R.A., Potter, C.S., Pulokas, J., Reilein, A., Leginon: An automated system for acquisition of images from vitreous ice specimens (2000) J Struct Biol, 132, pp. 33-45. , https://doi.org/10.1006/jsbi.2000.4314; Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr D Biol Crystallogr, 60, pp. 2126-2132. , https://doi.org/10.1107/S0907444904019158; Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Terwilliger, T.C., Phenix: Building new software for automated crystallographic structure determination (2002) Acta Crystallogr D Biol Crystallogr, 58, pp. 1948-1954. , https://doi.org/10.1107/s0907444902016657; Croll, T.I., ISolde: A physically realistic environment for model building into low-resolution electron-density maps (2018) Acta Crystallogr D Struct Biol, 74, pp. 519-530. , https://doi.org/10.1107/S2059798318002425; Grant, T., Rohou, A., Grigorieff, N., CisTEM, user-friendly software for single-particle image processing (2018) Elife, 7. , https://doi.org/10.7554/eLife.35383","McLellan, J.S.; Department of Molecular Biosciences, University of Texas at AustinUnited States; email: jmclellan@austin.utexas.edu",,"American Society for Microbiology",0022538X,,JOVIA,"31534041","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85074961609 "He W., Wang N., Tan J., Wang R., Yang Y., Li G., Guan H., Zheng Y., Shi X., Ye R., Su S., Zhou J.","57205136066;57205136419;57193487401;57193491344;57211085122;57194875807;57210995413;57211085074;57211078997;57211002462;54918814500;54682580100;","Comprehensive codon usage analysis of porcine deltacoronavirus",2019,"Molecular Phylogenetics and Evolution","141",, 106618,"","",,,"10.1016/j.ympev.2019.106618","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072600518&doi=10.1016%2fj.ympev.2019.106618&partnerID=40&md5=e058cf28164a0fce6ba84bd8dcd28185","MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Veterinary Medical Research Center, Zhejiang University, Hangzhou, 310058, China; Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China","He, W., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Wang, N., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Tan, J., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Wang, R., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Yang, Y., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Li, G., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Guan, H., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Zheng, Y., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Shi, X., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Ye, R., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Su, S., MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Zhou, J., MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Veterinary Medical Research Center, Zhejiang University, Hangzhou, 310058, China, Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China, Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China","Porcine deltacoronavirus (PDCoV) is a newly identified coronavirus of pigs that was first reported in Hong Kong in 2012. Since then, many PDCoV isolates have been identified worldwide. In this study, we analyzed the codon usage pattern of the S gene using complete coding sequences and complete PDCoV genomes to gain a deeper understanding of their genetic relationships and evolutionary history. We found that during evolution three groups evolved with a relatively low codon usage bias (effective number of codons (ENC) of 52). The factors driving bias were complex. However, the primary element influencing the codon bias of PDCoVs was natural selection. Our results revealed that different natural environments may have a significant impact on the genetic characteristics of the strains. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus. © 2019 Elsevier Inc.","Codon usage; Evolution; Mutation pressure; Nature selection; PDCoV","nucleotide; animal; codon; codon usage; Coronavirinae; Coronavirus infection; genetic recombination; genetic selection; genetics; phylogeny; pig; principal component analysis; statistical model; swine disease; virology; virus genome; Animals; Codon; Codon Usage; Coronavirus; Coronavirus Infections; Genome, Viral; Likelihood Functions; Nucleotides; Phylogeny; Principal Component Analysis; Recombination, Genetic; Selection, Genetic; Swine; Swine Diseases","Ajayi, T., Dara, R., Misener, M., Pasma, T., Moser, L., Poljak, Z., Herd-level prevalence and incidence of porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV) in swine herds in Ontario, Canada (2018) Transbound. Emerg. Dis., 65 (5), pp. 1197-1207; Belalov, I.S., Lukashev, A.N., Causes and implications of codon usage bias in RNA viruses (2013) Plos One, 8 (2), p. e56642; Butt, A.M., Nasrullah, I., Tong, Y., Genome-wide analysis of codon usage and influencing factors in chikungunya viruses (2014) Plos One, 9 (3), p. e90905; Butt, A.M., Nasrullah, I., Qamar, R., Tong, Y.G., Evolution of codon usage in Zika virus genomes is host and vector specific (2016) Emerg. Microbes Infec., 5 (Oct); Chan, J.F., To, K.K., Tse, H., Jin, D.Y., Yuen, K.Y., Interspecies transmission and emergence of novel viruses: lessons from bats and birds (2013) Trends Microbiol., 21 (10), pp. 544-555; Chen, Y.H., Chen, Y.F., Extensive homologous recombination in classical swine fever virus: A re-evaluation of homologous recombination events in the strain AF407339 (2014) Saudi J. Biol. Sci., 21 (4), pp. 311-316; Chen, Y., Shi, Y.Z., Deng, H.J., Gu, T., Xu, J., Ou, J.X., Characterization of the porcine epidemic diarrhea virus codon usage bias (2014) Infect. Genet. Evol., 28 (Dec), pp. 95-100; Comeron, J.M., Aguade, M., An evaluation of measures of synonymous codon usage bias (1998) J. Mol. Evol., 47 (3), pp. 268-274; Cristina, J., Moreno, P., Moratorio, G., Musto, H., Genome-wide analysis of codon usage bias in Ebolavirus (2015) Virus Res., 196 (Jan), pp. 87-93; Dong, N., Fang, L.R., Zeng, S.L., Sun, Q.Q., Chen, H.C., Xiao, S.B., Porcine Deltacoronavirus in Mainland China (2015) Emerg. Infect. Dis., 21 (12), pp. 2254-2255; Fuglsang, A., Estimating the “Effective number of codons”: The Wright way of determining codon homozygosity leads to superior estimates (2006) Genetics, 172 (2), pp. 1301-1307; Fuglsang, A., Impact of bias discrepancy and amino acid usage on estimates of the effective number of codons used in a gene, and a test for selection on codon usage (2008) Gene, 410 (1), pp. 82-88; Gu, W.J., Zhou, T., Ma, J.M., Sun, X., Lu, Z.H., Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales (2004) Virus Res., 101 (2), pp. 155-161; He, W., Zhang, H., Zhang, Y., Wang, R., Lu, S., Ji, Y., Codon usage bias in the N gene of rabies virus (2017) Infect. Genet. Evol., 54 (Oct), pp. 458-465; He, W., Auclert, L.Z., Zhai, X., Wong, G., Zhang, C., Zhu, H., Interspecies transmission, genetic diversity, and evolutionary dynamics of pseudorabies virus (2018) J. Infect. Dis., 219 (11), pp. 1705-1715; He, W., Zhao, J., Xing, G., Li, G., Wang, R., Wang, Z., Genetic analysis and evolutionary changes of Porcine circovirus 2 (2019) Mol. Phylogenet. Evol., 139, p. 106520. , 2019/10/01/; Hershberg, R., Petrov, D.A., Selection on Codon Bias (2008) Annu. Rev. Genet., 42, pp. 287-299; Homwong, N., Jarvis, M.C., Lam, H.C., Diaz, A., Rovira, A., Nelson, M., Characterization and evolution of porcine deltacoronavirus in the United States (2016) Prev Vet Med., 123 (Jan), pp. 168-174; Janetanakit, T., Lumyai, M., Bunpapong, N., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Porcine Deltacoronavirus, Thailand, 2015 (2016) Emerg. Infect. Dis., 22 (4), pp. 757-759; Jenkins, G.M., Holmes, E.C., The extent of codon usage bias in human RNA viruses and its evolutionary origin (2003) Virus Res., 92 (1), pp. 1-7; Karlin, S., Burge, C., Dinucleotide relative abundance extremes - a genomic signature (1995) Trends Genet., 11 (7), pp. 283-290; King, A.M.Q., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Gorbalenya, A.E., Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018) (2018) Arch. Virol., 163 (9), pp. 2601-2631; Kumar, N., Bera, B.C., Greenbaum, B.D., Bhatia, S., Sood, R., Selvaraj, P., Revelation of influencing factors in overall codon usage bias of equine influenza viruses (2016) PloS one, 11 (4); Lee, J.H., Chung, H.C., Nguyen, V.G., Moon, H.J., Kim, H.K., Park, S.J., Detection and Phylogenetic Analysis of Porcine Deltacoronavirus in Korean Swine Farms, 2015 (2016) Transbound. Emerg. Dis., 63 (3), pp. 248-252. , Jun; Lee, S., Lee, C., Complete genome characterization of Korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc., 2 (6); Li, G., He, W., Zhu, H., Bi, Y., Wang, R., Xing, G., Origin, genetic diversity, and evolutionary dynamics of novel porcine circovirus 3 (2018) Adv. Sci., 5 (9), p. 1800275; Li, G., Wang, H., Wang, S., Xing, G., Zhang, C., Zhang, W., Insights into the genetic and host adaptability of emerging porcine circovirus 3 (2018) Virulence, 9 (1), pp. 1301-1313. , 2018/12/31; Li, G., Zhang, W., Wang, R., Xing, G., Wang, S., Ji, X., Genetic analysis and evolutionary changes of the torque teno sus virus (2019) Int. J. Mol. Sci., 20 (12); Lorsirigool, A., Saeng-chuto, K., Temeeyasen, G., Madapong, A., Tripipat, T., Wegner, M., The first detection and full-length genome sequence of porcine deltacoronavirus isolated in Lao PDR (2016) Arch. Virol., 161 (10), pp. 2909-2911; Marin, A., Bertranpetit, J., Oliver, J.L., Medina, J.R., Variation in G + C-content and codon choice: differences among synonymous codon groups in vertebrate genes (1989) Nucl. Acids Res., 17 (15), pp. 6181-6189; Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., RDP4: detection and analysis of recombination patterns in virus genomes (2015) Virus Evol., 1 (1). , vev003-vev; Matsumoto, T., John, A., Baeza-Centurion, P., Li, B.Y., Akashi, H., Codon usage selection can bias estimation of the fraction of adaptive amino acid fixations (2016) Mol. Biol. Evol., 33 (6), pp. 1580-1589; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211 (Nov), pp. 15-21; Parmley, J.L., Hurst, L.D., How do synonymous mutations affect fitness? (2007) BioEssays: News Rev. Mol., Cell. Develop. Biol., 29 (6), pp. 515-519; Perez-Rivera, C., Ramirez-Mendoza, H., Mendoza-Elvira, S., Segura-Velazquez, R., Sanchez-Betancourt, J.I., First report and phylogenetic analysis of porcine deltacoronavirus in Mexico (2019) Transbound. Emerg. Dis., 66 (4), pp. 1436-1441; Plotkin, J.B., Kudla, G., Synonymous but not the same: the causes and consequences of codon bias (2011) Nat. Rev. Genet., 12 (1), pp. 32-42; Plotkin, J.B., Robins, H., Levine, A.J., Tissue-specific codon usage and the expression of human genes (2004) P. Natl. Acad. Sci. USA, 101 (34), pp. 12588-12591; Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space (2012) System. Biol., 61 (3), pp. 539-542; Rothberg, P.G., Wimmer, E., Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA (1981) Nucl. Acids Res., 9 (23), pp. 6221-6229; Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Vui, D.T., Stott, C.J., Madapong, A., Different lineage of porcine deltacoronavirus in Thailand, Vietnam and Lao PDR in 2015 (2017) Transbound Emerg Dis., 64 (1), pp. 3-10; Sharp, P.M., Li, W.H., An evolutionary perspective on synonymous codon usage in unicellular organisms (1986) J. Mol. Evol., 24 (1-2), pp. 28-38; Shi, S.L., Jiang, Y.R., Liu, Y.Q., Xia, R.X., Qin, L., Selective pressure dominates the synonymous codon usage in parvoviridae (2013) Virus Genes, 46 (1), pp. 10-19; Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies (2014) Bioinformatics (Oxford, England), 30 (9), pp. 1312-1313; Su, S., Wong, G., Shi, W., Liu, J., Lai, A.C.K., Zhou, J., Epidemiology, genetic recombination, and pathogenesis of coronaviruses (2016) Trends Microbiol., 24 (6), pp. 490-502. , 2016/06/01/; Su, S., Gu, M., Liu, D., Cui, J., Gao, G.F., Zhou, J., Epidemiology, evolution,and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China (2017) Trends Microbiol., 25 (9), pp. 713-728. , 2017/09/01/; Sueoka, N., Intrastrand parity rules of DNA base composition and usage biases of synonymous codons (vol 40, pg 318, 1995) (1996) J. Mol. Evol., 42 (2), p. 323; Suzuki, T., Shibahara, T., Imai, N., Yamamoto, T., Ohashi, S., Genetic characterization and pathogenicity of Japanese porcine deltacoronavirus (2018) Infect. Genet. Evol., 61 (Jul), pp. 176-182; van Hemert, F., Berkhout, B., Nucleotide composition of the Zika virus RNA genome and its codon usage (2016) Virol. J., (Jun), p. 13; van Hemert, F., van der Kuyl, A.C., Berkhout, B., Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage (2016) J. Gen. Virol., 97 (Oct), pp. 2608-2619; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg. Infect. Dis., 20 (7), pp. 1227-1230. , Jul; Wang, L., Byrum, B., Zhang, Y., Porcine coronavirus HKU15 detected in 9 US States, 2014 (2014) Emerg. Infect. Dis., 20 (9), pp. 1594-1595; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J. Virol., 86 (7), pp. 3995-4008; Yin, X., Lin, Y., Cai, W., Wei, P., Wang, X., Comprehensive analysis of the overall codon usage patterns in equine infectious anemia virus (2013) Virol. J., 10, p. 356; Zhang, Y., Cheng, Y., Xing, G., Yu, J., Liao, A., Du, L., Detection and spike gene characterization in porcine deltacoronavirus in China during 2016–2018 (2019) Infect. Genet. Evol., 73 (Apr), pp. 151-158","Su, S.; MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Veterinary Medical Research Center, Zhejiang UniversityChina; email: shuosu@njau.edu.cn",,"Academic Press Inc.",10557903,,MPEVE,"31536759","English","Mol. Phylogenet. Evol.",Article,"Final",Open Access,Scopus,2-s2.0-85072600518 "Yuan S., Chu H., Chan J.F.-W., Ye Z.-W., Wen L., Yan B., Lai P.-M., Tee K.-M., Huang J., Chen D., Li C., Zhao X., Yang D., Chiu M.C., Yip C., Poon V.K.-M., Chan C.C.-S., Sze K.-H., Zhou J., Chan I.H.-Y., Kok K.-H., To K.K.-W., Kao R.Y.-T., Lau J.Y.-N., Jin D.-Y., Perlman S., Yuen K.-Y.","55364121100;35781456400;24278817900;56611152500;57190606784;56492071000;57205384561;56740473800;57205385094;57205384309;56060549800;57190608726;56892956900;57201375315;57216110493;54934161900;16021156900;7006735061;7405550443;36344597900;7006862631;14323807300;7101675499;7402446047;7201973614;57204567845;36078079100;","SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target",2019,"Nature Communications","10","1", 120,"","",,13,"10.1038/s41467-018-08015-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059829725&doi=10.1038%2fs41467-018-08015-x&partnerID=40&md5=86a471d5824e275a3868085d906003bd","State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China; Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 570100, China; Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Microbiology and Immunology, University of Iowa, Iowa City, 52242, United States; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong","Yuan, S., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chu, H., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chan, J.F.-W., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 570100, China; Ye, Z.-W., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Wen, L., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yan, B., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Lai, P.-M., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Tee, K.-M., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Huang, J., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chen, D., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Li, C., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Zhao, X., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yang, D., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chiu, M.C., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yip, C., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Poon, V.K.-M., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chan, C.C.-S., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Sze, K.-H., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Zhou, J., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chan, I.H.-Y., Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Kok, K.-H., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; To, K.K.-W., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China; Kao, R.Y.-T., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Lau, J.Y.-N., Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Jin, D.-Y., School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Perlman, S., Department of Microbiology and Immunology, University of Iowa, Iowa City, 52242, United States, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Yuen, K.-Y., State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China, Hainan Medical University–The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 570100, China, The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong","Viruses are obligate intracellular microbes that exploit the host metabolic machineries to meet their biosynthetic demands, making these host pathways potential therapeutic targets. Here, by exploring a lipid library, we show that AM580, a retinoid derivative and RAR-α agonist, is highly potent in interrupting the life cycle of diverse viruses including Middle East respiratory syndrome coronavirus and influenza A virus. Using click chemistry, the overexpressed sterol regulatory element binding protein (SREBP) is shown to interact with AM580, which accounts for its broad-spectrum antiviral activity. Mechanistic studies pinpoint multiple SREBP proteolytic processes and SREBP-regulated lipid biosynthesis pathways, including the downstream viral protein palmitoylation and double-membrane vesicles formation, that are indispensable for virus replication. Collectively, our study identifies a basic lipogenic transactivation event with broad relevance to human viral infections and represents SREBP as a potential target for the development of broad-spectrum antiviral strategies. © 2019, The Author(s).",,"4 [(5,6,7,8 tetrahydro 5,5,8,8 tetramethyl 2 naphthyl)carboxamido]benzoic acid; antivirus agent; sterol regulatory element binding protein; viral protein; 4 [(5,6,7,8 tetrahydro 5,5,8,8 tetramethyl 2 naphthyl)carboxamido]benzoic acid; antivirus agent; benzoic acid; lipid; protein binding; retinoid; sterol regulatory element binding protein; tetralin derivative; antiviral activity; Article; click chemistry; drug protein binding; immune response; in vitro study; Influenza A virus; lipid metabolism; lipidomics; lipogenesis; membrane vesicle; Middle East respiratory syndrome coronavirus; nonhuman; palmitoylation; transactivation; virus infection; virus replication; biosynthesis; chemistry; drug effect; metabolism; physiology; virology; virus infection; Antiviral Agents; Benzoates; Biosynthetic Pathways; Influenza A virus; Lipid Metabolism; Lipids; Middle East Respiratory Syndrome Coronavirus; Protein Binding; Retinoids; Sterol Regulatory Element Binding Proteins; Tetrahydronaphthalenes; Virus Diseases; Virus Replication","Lozano, R., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 (2012) Lancet, 380, pp. 2095-2128; Peiris, J.S., Coronavirus as a possible cause of severe acute respiratory syndrome (2003) Lancet, 361, pp. 1319-1325. , COI: 1:STN:280:DC%2BD3s3gvF2rsA%3D%3D; Chan, J.F., Lau, S.K., Cheng, K.K., Woo, V.C., Yuen, P.C., KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522. , COI: 1:CAS:528:DC%2BC1cXltlyhs74%3D; Yuen, K.Y., Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus (1998) Lancet, 351, pp. 467-471. , COI: 1:STN:280:DyaK1c7ktFGnsw%3D%3D; To, K.K., Chan, J.F., Chen, H., Li, L., Yuen, K.Y., The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities (2013) Lancet Infect. Dis., 13, pp. 809-821; Cheng, V.C., To, K.K., Tse, H., Hung, I.F., Yuen, K.Y., Two years after pandemic influenza A/2009/H1N1: what have we learned? (2012) Clin. Microbiol. Rev., 25, pp. 223-263. , COI: 1:CAS:528:DC%2BC38XotVSlt7w%3D; Huang, P.N., Shih, S.R., Update on enterovirus 71 infection (2014) Curr. Opin. Virol., 5, pp. 98-104. , COI: 1:CAS:528:DC%2BC2cXosVWht7w%3D; Musso, D., Gubler, D.J., Zika virus (2016) Clin. Microbiol. Rev., 29, pp. 487-524. , COI: 1:CAS:528:DC%2BC1cXmsVygsLg%3D; Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y., Coronaviruses - drug discovery and therapeutic options (2016) Nat. Rev. Drug. Discov., 15, pp. 327-347. , COI: 1:CAS:528:DC%2BC28XisVyru70%3D; Simmons, G., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 11876-11881. , COI: 1:CAS:528:DC%2BD2MXpsFGgurw%3D; Kaletsky, R.L., Simmons, G., Bates, P., Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity (2007) J. Virol., 81, pp. 13378-13384. , COI: 1:CAS:528:DC%2BD2sXhsValsbrP; Warren, T.K., Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430 (2014) Nature, 508, pp. 402-405. , COI: 1:CAS:528:DC%2BC2cXmtlWhu7w%3D; Altan-Bonnet, N., Lipid tales of viral replication and transmission (2017) Trends Cell Biol., 27, pp. 201-213. , COI: 1:CAS:528:DC%2BC28XhslWjt7vL; Munger, J., Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy (2008) Nat. Biotechnol., 26, p. 1179. , COI: 1:CAS:528:DC%2BD1cXht1aisrrM; Horton, J.D., Goldstein, J.L., Brown, M.S., SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver (2002) J. Clin. Invest., 109, pp. 1125-1131. , COI: 1:CAS:528:DC%2BD38XjsFals7c%3D; Okuda, S., KEGG Atlas mapping for global analysis of metabolic pathways (2008) Nucleic Acids Res., 36, pp. W423-W426. , COI: 1:CAS:528:DC%2BD1cXptlKku7Y%3D; De Gottardi, A., Spahr, L., Ravier-Dall’Antonia, F., Hadengue, A., Cannabinoid receptor 1 and 2 agonists increase lipid accumulation in hepatocytes (2010) Liver. Int., 30, pp. 1482-1489; Zhou, J., Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus (2017) Sci. Adv., 3, p. eaao4966; Dimitrova, B., Caccia, S., Garattini, E., Guiso, G., Determination of the retinobenzoic acid derivative Am580 in rat plasma by high-performance liquid chromatography (1995) J. Chromatogr. B Biomed. Appl., 667, pp. 301-306. , COI: 1:CAS:528:DyaK2MXmsFGks7s%3D; Zheng, B.J., Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 8091-8096. , COI: 1:CAS:528:DC%2BD1cXns1WntLg%3D; Goldstein, J.L., DeBose-Boyd, R.A., Brown, M.S., Protein sensors for membrane sterols (2006) Cell, 124, pp. 35-46. , COI: 1:CAS:528:DC%2BD28XntVGlug%3D%3D; Tang, J.J., Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques (2011) Cell Metab., 13, pp. 44-56. , COI: 1:CAS:528:DC%2BC3MXhtF2qtg%3D%3D; Yoshikawa, T., Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter (2001) Mol. Cell. Biol., 21, pp. 2991-3000. , COI: 1:CAS:528:DC%2BD3MXivFOqs7s%3D; Parraga, A., Bellsolell, L., Ferre-D’Amare, A.R., Burley, S.K., Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 A resolution (1998) Structure, 6, pp. 661-672. , COI: 1:CAS:528:DyaK1cXjvFWlurs%3D; Lee, S.J., The structure of importin-beta bound to SREBP-2: nuclear import of a transcription factor (2003) Science, 302, pp. 1571-1575. , COI: 1:CAS:528:DC%2BD3sXpt1SmsLY%3D; Oudshoorn, D., Expression and cleavage of Middle East respiratory syndrome Coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with Coronaviral RNA replication (2017) Mbio, 8; Veit, M., Serebryakova, M.V., Kordyukova, L.V., Palmitoylation of influenza virus proteins (2013) Biochem. Soc. Trans., 41, pp. 50-55. , COI: 1:CAS:528:DC%2BC3sXhs1eit7w%3D; Webb, Y., Hermida-Matsumoto, L., Resh, M.D., Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids (2000) J. Biol. Chem., 275, pp. 261-270. , COI: 1:CAS:528:DC%2BD3cXjvVGqsA%3D%3D; Adams, C.M., Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs (2004) J. Biol. Chem., 279, pp. 52772-52780. , COI: 1:CAS:528:DC%2BD2cXhtVCkurvF; Blanc, M., The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response (2013) Immunity, 38, pp. 106-118. , COI: 1:CAS:528:DC%2BC38XhvFWhurzN; Kaur, G., Dufour, J.M., Cell lines: valuable tools or useless artifacts (2012) Spermatogenesis, 2, pp. 1-5; Ivanova, P.T., Milne, S.B., Byrne, M.O., Xiang, Y., Brown, H.A., Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry (2007) Methods Enzymol., 432, pp. 21-57. , COI: 1:CAS:528:DC%2BD1cXhsVeru74%3D; Petersen, J., The major cellular sterol regulatory pathway is required for Andes virus infection (2014) PLoS Pathog., 10; Kleinfelter, L.M., Haploid genetic screen reveals a profound and direct dependence on cholesterol for Hantavirus membrane fusion (2015) mBio, 6. , COI: 1:CAS:528:DC%2BC28XptlWqurg%3D; Munger, J., Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy (2008) Nat. Biotechnol., 26, pp. 1179-1186. , COI: 1:CAS:528:DC%2BD1cXht1aisrrM; Heaton, N.S., Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 17345-17350. , COI: 1:CAS:528:DC%2BC3cXht12lsbrE; Arafa, H.M., Selective agonists of retinoic acid receptors: comparative toxicokinetics and embryonic exposure (2000) Arch. Toxicol., 73, pp. 547-556. , COI: 1:CAS:528:DC%2BD3cXjt1ersA%3D%3D; Miwako, I., Kagechika, H., Tamibarotene (2007) Drugs Today (Barc), 43, pp. 563-568. , COI: 1:CAS:528:DC%2BD2sXhtFyjtLfP; Chan, J.F., Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation (2013) J. Infect. Dis., 207, pp. 1743-1752. , COI: 1:CAS:528:DC%2BC3sXntVOrs7g%3D; Zhou, J., Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis (2014) J. Infect. Dis., 209, pp. 1331-1342. , COI: 1:CAS:528:DC%2BC2cXmsFeqs7g%3D; Kao, R.Y., Identification of influenza A nucleoprotein as an antiviral target (2010) Nat. Biotechnol., 28, pp. 600-605. , COI: 1:CAS:528:DC%2BC3cXmslWmsbc%3D; Chu, H., Middle East respiratory syndrome Coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways (2016) J. Infect. Dis., 213, pp. 904-914. , COI: 1:CAS:528:DC%2BC1cXktFCjtbg%3D; Yeung, M.L., MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2 (2016) Nat. Microbiol, 1, p. 16004. , COI: 1:CAS:528:DC%2BC2sXkvFyrsro%3D; Kim, D., Langmead, B., Salzberg, S.L., HISAT: a fast spliced aligner with low memory requirements (2015) Nat. Methods, 12, pp. 357-360. , COI: 1:CAS:528:DC%2BC2MXjvFOnsL0%3D; Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol., 10; Young, M.D., Wakefield, M.J., Smyth, G.K., Oshlack, A., Gene ontology analysis for RNA-seq: accounting for selection bias (2010) Genome Biol., 11; Kanehisa, M., Goto, S., KEGG: kyoto encyclopedia of genes and genomes (2000) Nucleic Acids Res., 28, pp. 27-30. , COI: 1:CAS:528:DC%2BD3cXhvVGqu74%3D; Sze, K.H., Talaromyces marneffei Mp1p is a virulence factor that binds and sequesters a key proinflammatory lipid to dampen host innate immune response (2017) Cell Chem. Biol., 24, pp. 182-194. , COI: 1:CAS:528:DC%2BC2sXhsVKisr4%3D; Burnum-Johnson, K.E., MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling (2017) Analyst, 142, pp. 442-448. , COI: 1:CAS:528:DC%2BC2sXmsFahsg%3D%3D; Nakayasu, E.S., MPLEx: A robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses (2016) Msystems, 1, p. 16; Tsugawa, H., MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis (2015) Nat. Methods, 12, pp. 523-526. , COI: 1:CAS:528:DC%2BC2MXnslOns78%3D; Kind, T., LipidBlast in silico tandem mass spectrometry database for lipid identification (2013) Nat. Methods, 10, pp. 755-758. , COI: 1:CAS:528:DC%2BC3sXhtVaktLrF; Silva, L.P., Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines (2013) Anal. Chem., 85, pp. 9536-9542. , COI: 1:CAS:528:DC%2BC3sXhsVSit73P; Chong, J., MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis (2018) Nucleic Acids Res., 46, pp. W486-w494; Zhu, Z.J., Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database (2013) Nat. Protoc., 8, pp. 451-460. , COI: 1:CAS:528:DC%2BC3sXisVGru7s%3D; Xia, J., Wishart, D.S., Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst (2011) Nat. Protoc., 6, p. 743. , COI: 1:CAS:528:DC%2BC3MXmvFyqtL0%3D; Chan, J.F., Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor (2017) Antivir. Res., 141, pp. 29-37. , COI: 1:CAS:528:DC%2BC2sXivFWhu7w%3D; Agostini, M.L., Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease (2018) Mbio, 9, p. 18; Furuta, Y., Favipiravir (T-705), a novel viral RNA polymerase inhibitor (2013) Antivir. Res., 100, pp. 446-454. , COI: 1:CAS:528:DC%2BC3sXhslWlsb%2FK; Yuan, S., A novel small-molecule compound disrupts influenza A virus PB2 cap-binding and inhibits viral replication (2016) J. Antimicrob. Chemother, 71, pp. 2489-2497; Yuan, S., Identification of a small-molecule inhibitor of influenza virus via disrupting the subunits interaction of the viral polymerase (2016) Antivir. Res., 125, pp. 34-42. , COI: 1:CAS:528:DC%2BC2MXhvFerurnL; Chan, C.M., Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of Middle East respiratory syndrome Coronavirus (2016) J. Virol., 90, pp. 9114-9127. , COI: 1:CAS:528:DC%2BC2sXhs1ehsrg%3D; Yang, J., The I-TASSER Suite: protein structure and function prediction (2015) Nat. Methods, 12, pp. 7-8. , COI: 1:CAS:528:DC%2BC2cXitFynsr7I; Sastry, G.M., Adzhigirey, M., Day, T., Annabhimoju, R., Sherman, W., Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments (2013) J. Comput. Aided Mol. Des., 27, pp. 221-234; Kim, S., PubChem substance and compound databases (2016) Nucleic Acids Res., 44, pp. D1202-D1213. , COI: 1:CAS:528:DC%2BC2sXhtV2gu7bE; Stroganov, O.V., Novikov, F.N., Stroylov, V.S., Kulkov, V., Chilov, G.G., Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening (2008) J. Chem. Inf. Model., 48, pp. 2371-2385. , COI: 1:CAS:528:DC%2BD1cXhtlKlsrvE; Woo, P.C., Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats (2012) Proc. Natl. Acad. Sci. USA, 109, pp. 5435-5440. , COI: 1:CAS:528:DC%2BC38XlslOjsbw%3D","Yuen, K.-Y.; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong; email: kyyuen@hku.hk",,"Nature Publishing Group",20411723,,,"30631056","English","Nat. Commun.",Article,"Final",Open Access,Scopus,2-s2.0-85059829725 "Zhou H., Chen Y., Zhang S., Niu P., Qin K., Jia W., Huang B., Zhang S., Lan J., Zhang L., Tan W., Wang X.","55505867900;57188840805;57209104443;56096165800;57197273710;57202779613;35082078200;36629744200;57209823113;56542860200;7401959748;36497607000;","Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein",2019,"Nature Communications","10","1", 3068,"","",,1,"10.1038/s41467-019-10897-4","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068834752&doi=10.1038%2fs41467-019-10897-4&partnerID=40&md5=8573669f71889b5457a6c3ab33cd3b86","The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610065, China","Zhou, H., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Chen, Y., Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Zhang, S., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Niu, P., Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Qin, K., Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Jia, W., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Huang, B., Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Zhang, S., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Lan, J., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Zhang, L., Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Tan, W., Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Wang, X., The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China, Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610065, China","Most neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) target the receptor-binding domain (RBD) of the spike glycoprotein and block its binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The epitopes and mechanisms of mAbs targeting non-RBD regions have not been well characterized yet. Here we report the monoclonal antibody 7D10 that binds to the N-terminal domain (NTD) of the spike glycoprotein and inhibits the cell entry of MERS-CoV with high potency. Structure determination and mutagenesis experiments reveal the epitope and critical residues on the NTD for 7D10 binding and neutralization. Further experiments indicate that the neutralization by 7D10 is not solely dependent on the inhibition of DPP4 binding, but also acts after viral cell attachment, inhibiting the pre-fusion to post-fusion conformational change of the spike. These properties give 7D10 a wide neutralization breadth and help explain its synergistic effects with several RBD-targeting antibodies. © 2019, The Author(s).",,"7d10 h momoclonal antibody; anti middle east respiratory syndrome 27 vaccine; anti middle east respiratory syndrome 4 vaccine; anti middle east respiratory syndrome coronavirus residue 1 1297 vaccine; dipeptidyl peptidase IV; epitope; Freund adjuvant; glycoprotein; h5n1 monoclonal antibody; immunoglobulin G1; monoclonal antibody; neutralizing antibody; unclassified drug; virus spike protein; virus vaccine; coronavirus spike glycoprotein; DPP4 protein, human; epitope; neutralizing antibody; protein binding; recombinant protein; virus antibody; antibody; chemical binding; inhibition; neutralization; physiological response; protein; affinity chromatography; animal cell; animal experiment; animal model; antibody production; Article; binding affinity; bioassay; competitive binding assay; conformational transition; controlled study; crystallization; dose response; enzyme active site; enzyme linked immunosorbent assay; epitope mapping; expression vector; female; genetic transfection; HEK293T cell line; human; hybridoma cell culture; IC50; immunization; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; mouse; neutralizing assay; nonhuman; protection assay; protein expression; protein purification; virus attachment; virus entry; virus neutralization; Western blotting; animal; blood; Chlorocebus aethiops; Coronavirus infection; disease model; HEK293 cell line; immunology; isolation and purification; metabolism; Middle East respiratory syndrome coronavirus; protein domain; serodiagnosis; tumor cell line; ultrastructure; Vero cell line; virology; X ray crystallography; Coronavirus; Animals; Antibodies, Neutralizing; Antibodies, Viral; Cell Line, Tumor; Cercopithecus aethiops; Coronavirus Infections; Crystallography, X-Ray; Dipeptidyl Peptidase 4; Disease Models, Animal; Epitope Mapping; Epitopes; Female; HEK293 Cells; Humans; Mice; Middle East Respiratory Syndrome Coronavirus; Neutralization Tests; Protein Binding; Protein Domains; Recombinant Proteins; Spike Glycoprotein, Coronavirus; Vero Cells; Virus Internalization","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P; Chan, J.F., Lau, S.K., Woo, P.C., The emerging novel Middle East respiratory syndrome coronavirus: the “knowns” and “unknowns (2013) J. Formos Med. Assoc., 112, pp. 372-381; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145. , COI: 1:CAS:528:DC%2BC3sXitVWjtrbO; Memish, Z.A., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis., 20, pp. 1012-1015; Bin, S.Y., Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak in South Korea (2016) Clin. Infect. Dis., 62, pp. 755-760. , COI: 1:CAS:528:DC%2BC1cXitVGrtLY%3D; Graham, B.S., Ambrosino, D.M., History of passive antibody administration for prevention and treatment of infectious diseases (2015) Curr Opin. HIV AIDS, 10, pp. 129-134. , COI: 1:CAS:528:DC%2BC2MXmtlCis7o%3D; Wang, N., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993. , COI: 1:CAS:528:DC%2BC3sXht1Wltb%2FM; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl Acad. Sci. USA, 111, pp. 15214-15219. , COI: 1:CAS:528:DC%2BC2cXhs1yhtb7E; Gui, M., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129. , COI: 1:CAS:528:DC%2BC28XitFCls7jL; Pallesen, J., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl Acad. Sci. USA, 114, pp. E7348-E7357. , COI: 1:CAS:528:DC%2BC2sXhtlWmsrfI; Yuan, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8. , COI: 1:CAS:528:DC%2BC2sXlvFCgt74%3D; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog., 14; Du, L., A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein (2014) J. Virol., 88, pp. 7045-7053; Jiang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6, p. 234ra259; Tang, X.C., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl Acad. Sci. USA, 111, pp. E2018-E2026. , COI: 1:CAS:528:DC%2BC2cXntFGisLc%3D; Ying, T., Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies (2014) J. Virol., 88, pp. 7796-7805; Corti, D., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl Acad. Sci. USA, 112, pp. 10473-10478. , COI: 1:CAS:528:DC%2BC2MXht1Crt73I; Pascal, K.E., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl Acad. Sci. USA, 112, pp. 8738-8743. , COI: 1:CAS:528:DC%2BC2MXhtVOrs7%2FN; Li, Y., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res., 25, pp. 1237-1249. , COI: 1:CAS:528:DC%2BC2MXhsFGhs77F; Wang, L., Evaluation of candidate vaccine approaches for MERS-CoV (2015) Nat. Commun., 6. , COI: 1:CAS:528:DC%2BC2MXhtlWhtbbP; Wang, L., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape (2018) J. Virol., 92, pp. e02002-e02017; Niu, P., Ultrapotent Human Neutralizing Antibody Repertoires Against Middle East Respiratory Syndrome Coronavirus From a Recovered Patient (2018) J. Infect. Dis., 218, pp. 1249-1260; Ying, T., Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody (2015) Nat. Commun., 6. , COI: 1:CAS:528:DC%2BC2MXhsFeis7%2FL; Yu, X., Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27 (2015) Sci. Rep., 5. , COI: 1:CAS:528:DC%2BC2MXhsVKhsb3F; Zhang, S., Structural definition of a unique neutralization epitope on the receptor-binding domain of MERS-CoV spike glycoprotein (2018) Cell Rep., 24, pp. 441-452. , COI: 1:CAS:528:DC%2BC1cXhtlSksLjK; Chen, Y., A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein (2017) Emerg. Microbes Infect., 6. , COI: 1:CAS:528:DC%2BC2sXosVaht7Y%3D, PID: 28536429; He, Y., Lu, H., Siddiqui, P., Zhou, Y., Jiang, S., Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies (2005) J. Immunol., 174, pp. 4908-4915. , COI: 1:CAS:528:DC%2BD2MXivFKiurc%3D; Fan, C., Wu, X., Liu, Q., Li, Q., Liu, S., Lu, J., Yang, Y., Wang, Y., A Human DPP4-Knockin Mouse’s Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV (2018) Viruses, 10 (9), p. 448; Cotten, M., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) Mbio, 5, pp. e01062-13; Matsuyama, S., Taguchi, F., Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis (2009) J. Virol., 83, pp. 11133-11141. , COI: 1:CAS:528:DC%2BD1MXhsVSmtL7I; Walls, A.C., Unexpected receptor functional mimicry elucidates activation of coronavirus fusion (2019) Cell, 176, pp. 1026-1039. , COI: 1:CAS:528:DC%2BC1MXisVWgu74%3D, e1015; Channappanavar, R., Protective effect of intranasal regimens containing peptidic middle east respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection (2015) J. Infect. Dis., 212, pp. 1894-1903. , COI: 1:CAS:528:DC%2BC1cXpsVGltg%3D%3D; Agrawal, A.S., Passive transfer of A germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal middle east respiratory syndrome coronavirus infection (2016) Sci. Rep., 6. , COI: 1:CAS:528:DC%2BC28Xhtlyks7rJ; Houser, K.V., Prophylaxis with a middle east respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J. Infect. Dis., 213, pp. 1557-1561. , COI: 1:CAS:528:DC%2BC1cXktFeqsLc%3D; Johnson, R.F., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58. , COI: 1:CAS:528:DC%2BC28XhtVegtr0%3D; Peng, G., Crystal structure of bovine coronavirus spike protein lectin domain (2012) J. Biol. Chem., 287, pp. 41931-41938. , COI: 1:CAS:528:DC%2BC38Xhslyks77I; Peng, G., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor (2011) Proc. Natl Acad. Sci. USA, 108, pp. 10696-10701. , COI: 1:CAS:528:DC%2BC3MXovFenu7g%3D; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , COI: 1:CAS:528:DC%2BC28Xjs1emtb8%3D; Walls, A.C., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , COI: 1:CAS:528:DC%2BC28Xit1aju78%3D; Munro, J.B., Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions (2014) Science, 346, pp. 759-763. , COI: 1:CAS:528:DC%2BC2cXhvVGls7jO; Kwong, P.D., Mascola, J.R., Nabel, G.J., Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning (2013) Nat. Rev. Immunol., 13, pp. 693-701. , COI: 1:CAS:528:DC%2BC3sXhtlWkurrE; Widjaja, I., Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein (2019) Emerg. Microbes Infect., 8, pp. 516-530; Klein, F., HIV therapy by a combination of broadly neutralizing antibodies in humanized mice (2012) Nature, 492, pp. 118-122. , COI: 1:CAS:528:DC%2BC38XhsFOmtLnF; Elshabrawy, H.A., Coughlin, M.M., Baker, S.C., Prabhakar, B.S., Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing (2012) PLoS ONE, 7. , COI: 1:CAS:528:DC%2BC38XhvVaqt7vF; Kong, R., Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes (2015) J. Virol., 89, pp. 2659-2671; Wang, Z., Automatic crystal centring procedure at the SSRF macromolecular crystallography beamline (2016) J. Synchrotron Radiat., 23, pp. 1323-1332. , COI: 1:CAS:528:DC%2BC28XhslylsLfI; Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzym., 276, pp. 307-326. , COI: 1:CAS:528:DyaK2sXivFehsbw%3D; McCoy, A.J., Phaser crystallographic software (2007) J. Appl. Crystallogr., 40, pp. 658-674. , COI: 1:CAS:528:DC%2BD2sXnslWqsLk%3D; Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics (2004) Acta Crystallogr D Biol. Crystallogr., 60, pp. 2126-2132; Adams, P.D., PHENIX: building new software for automated crystallographic structure determination (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 1948-1954; Janson, G., Zhang, C., Prado, M.G., Paiardini, A., PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL (2017) Bioinformatics, 33, pp. 444-446. , COI: 1:CAS:528:DC%2BC1cXhvFagtr%2FN, PID: 28158668; Chou, T.C., Talalay, P., Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors (1984) Adv. Enzym. Regul., 22, pp. 27-55. , COI: 1:CAS:528:DyaL2cXktlaksLk%3D; Chou, T.C., Drug combination studies and their synergy quantification using the Chou-Talalay method (2010) Cancer Res., 70, pp. 440-446. , COI: 1:CAS:528:DC%2BC3cXltlWksA%3D%3D","Wang, X.; The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua UniversityChina; email: xinquanwang@mail.tsinghua.edu.cn",,"Nature Publishing Group",20411723,,,"31296843","English","Nat. Commun.",Article,"Final",Open Access,Scopus,2-s2.0-85068834752 "Dignard C., Leibler J.H.","57215273219;24767636700;","Recent Research on Occupational Animal Exposures and Health Risks: A Narrative Review",2019,"Current environmental health reports","6","4",,"236","246",,,"10.1007/s40572-019-00253-5","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077016653&doi=10.1007%2fs40572-019-00253-5&partnerID=40&md5=df1a5aecd3ac144b91ef88b96ba60e29","Williams College, MA, Williamstown, 01267, United States; Department of Environmental Health, Boston University School of Public Health, MA, 715 Albany St, Boston, 02118, United States","Dignard, C., Williams College, MA, Williamstown, 01267, United States; Leibler, J.H., Department of Environmental Health, Boston University School of Public Health, MA, 715 Albany St, Boston, 02118, United States","PURPOSE OF REVIEW: In the last year, an increasing number of studies have reported on methicillin-resistant Staphylococcus aureus (MRSA) transmission in Africa and Asia and in migrant workers. We reviewed original research on occupational health and safety of animal workers published from January 1, 2018, through June 30, 2019, with a targeted focus on infectious disease studies published in these populations. RECENT FINDINGS: Studies focused on occupational exposures to infectious agents, dust and allergens, pesticides, and occupational injury. Research on zoonotic MRSA used whole genome-sequencing technologies to evaluate transmission in Africa and Asia. Swine worker exposure to porcine coronavirus and emerging influenza A viruses was documented in China. 16s RNA amplicon sequencing identified distinct microbiota compositions in households with active animal farmers. Multiple bioaerosol exposures were assessed for industrial dairy workers. Occupational injury studies highlighted the struggles of Latino animal workers in the USA. These studies highlighted the global expansion of zoonotic antibiotic resistance and identified novel occupational zoonoses of concern. The integration of microbiome assessment and compound mixtures into the evaluation of dust and endotoxin exposures for animal workers marks a new direction for this work.","Endotoxin; Food animal worker; Methicillin-resistant, Staphylococcus aureus; Occupational health; Occupational injury; Zoonotic influenza",,,,,"NLM (Medline)",21965412,,,"31823248","English","Curr Environ Health Rep",Review,"Final",Open Access,Scopus,2-s2.0-85077016653 "Park Y.-J., Walls A.C., Wang Z., Sauer M.M., Li W., Tortorici M.A., Bosch B.-J., DiMaio F., Veesler D.","57199902157;57159082300;57212140868;57212149863;54966542700;6603890184;7003681993;57194085436;25227836200;","Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors",2019,"Nature Structural and Molecular Biology","26","12",,"1151","1157",,5,"10.1038/s41594-019-0334-7","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076049205&doi=10.1038%2fs41594-019-0334-7&partnerID=40&md5=8671f0e291588189de979a8381502f89","Department of Biochemistry, University of Washington, Seattle, WA, United States; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France","Park, Y.-J., Department of Biochemistry, University of Washington, Seattle, WA, United States; Walls, A.C., Department of Biochemistry, University of Washington, Seattle, WA, United States; Wang, Z., Department of Biochemistry, University of Washington, Seattle, WA, United States; Sauer, M.M., Department of Biochemistry, University of Washington, Seattle, WA, United States; Li, W., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; Tortorici, M.A., Department of Biochemistry, University of Washington, Seattle, WA, United States, Institut Pasteur, Unité de Virologie Structurale, Paris, France, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France; Bosch, B.-J., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; DiMaio, F., Department of Biochemistry, University of Washington, Seattle, WA, United States; Veesler, D., Department of Biochemistry, University of Washington, Seattle, WA, United States","The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe and often lethal respiratory illness in humans, and no vaccines or specific treatments are available. Infections are initiated via binding of the MERS-CoV spike (S) glycoprotein to sialosides and dipeptidyl-peptidase 4 (the attachment and entry receptors, respectively). To understand MERS-CoV engagement of sialylated receptors, we determined the cryo-EM structures of S in complex with 5-N-acetyl neuraminic acid, 5-N-glycolyl neuraminic acid, sialyl-LewisX, α2,3-sialyl-N-acetyl-lactosamine and α2,6-sialyl-N-acetyl-lactosamine at 2.7–3.0 Å resolution. We show that recognition occurs via a conserved groove that is essential for MERS-CoV S-mediated attachment to sialosides and entry into human airway epithelial cells. Our data illuminate MERS-CoV S sialoside specificity and suggest that selectivity for α2,3-linked over α2,6-linked receptors results from enhanced interactions with the former class of oligosaccharides. This study provides a structural framework explaining MERS-CoV attachment to sialoside receptors and identifies a site of potential vulnerability to inhibitors of viral entry. © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.",,"glycoprotein; oligosaccharide; sialoside; unclassified drug; coronavirus spike glycoprotein; dipeptidyl peptidase IV; DPP4 protein, human; protein binding; sialic acid derivative; airway epithelium cell; Article; binding site; human; human cell; information processing; ligand binding; Middle East respiratory syndrome coronavirus; priority journal; virus attachment; virus entry; chemistry; comparative study; conformation; cryoelectron microscopy; hemagglutination; metabolism; Middle East respiratory syndrome coronavirus; molecular model; protein analysis; protein conformation; protein domain; structure activity relation; ultrastructure; Binding Sites; Carbohydrate Conformation; Cryoelectron Microscopy; Dipeptidyl Peptidase 4; Hemagglutination, Viral; Humans; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Protein Binding; Protein Conformation; Protein Domains; Protein Interaction Mapping; Sialic Acids; Spike Glycoprotein, Coronavirus; Structure-Activity Relationship","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , COI: 1:CAS:528:DC%2BC38Xhs1ekt73P, PID: 23075143; Haagmans, B.L., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145. , COI: 1:CAS:528:DC%2BC3sXitVWjtrbO, PID: 24355866; Sabir, J.S., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351, pp. 81-84. , COI: 1:CAS:528:DC%2BC2MXitV2nt7nL, PID: 26678874; Woo, P.C., Molecular diversity of coronaviruses in bats (2006) Virology, 351, pp. 180-187. , COI: 1:CAS:528:DC%2BD28XntVyrtbY%3D, PID: 16647731; Menachery, V.D., A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence (2015) Nat. Med., 21, pp. 1508-1513. , COI: 1:CAS:528:DC%2BC2MXhslKgt7nO, PID: 26552008; Menachery, V.D., SARS-like WIV1-CoV poised for human emergence (2016) Proc. Natl Acad. Sci. USA, 113, pp. 3048-3053. , COI: 1:CAS:528:DC%2BC28XktV2msr8%3D, PID: 26976607; Hu, B., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus (2017) PLoS Pathog., 13. , PID: 29190287; Gui, M., Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding (2017) Cell Res., 27, pp. 119-129. , COI: 1:CAS:528:DC%2BC28XitFCls7jL, PID: 28008928; Kirchdoerfer, R.N., Pre-fusion structure of a human coronavirus spike protein (2016) Nature, 531, pp. 118-121. , COI: 1:CAS:528:DC%2BC28Xjs1emtb8%3D, PID: 26935699; Shang, J., Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins (2018) PLoS Pathog, 14. , PID: 29684066; Shang, J., Cryo-EM structure of porcine delta coronavirus spike protein in the pre-fusion state (2018) J. Virol., 92, p. e01556–17. , PID: 29070693; Walls, A.C., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117. , COI: 1:CAS:528:DC%2BC28Xit1aju78%3D, PID: 26855426; Walls, A.C., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905. , COI: 1:CAS:528:DC%2BC28XhsV2rtb3J, PID: 27617430; Xiong, X., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections (2017) J. Virol., 92, pp. e01628-e1617; Yuan, Y., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains (2017) Nat. Commun., 8. , COI: 1:CAS:528:DC%2BC2sXlvFCgt74%3D, PID: 28393837; Walls, A.C., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion (2017) Proc. Natl Acad. Sci. USA, 114, pp. 11157-11162. , COI: 1:CAS:528:DC%2BC2sXhs1SksLjI, PID: 29073020; Kirchdoerfer, R.N., Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis (2018) Sci. Rep., 8. , PID: 30356097; Song, W., Gui, M., Wang, X., Xiang, Y., Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 (2018) PLoS Pathog., 14. , PID: 30102747; Tortorici, M.A., Structural basis for human coronavirus attachment to sialic acid receptors (2019) Nat. Struct. Mol. Biol., 26, pp. 481-489. , PID: 31160783; Walls, A.C., Unexpected receptor functional mimicry elucidates activation of coronavirus fusion (2019) Cell, 176, pp. 1026-1039. , COI: 1:CAS:528:DC%2BC1MXisVWgu74%3D, PID: 30712865; Pallesen, J., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl Acad. Sci. USA, 114, pp. E7348-E7357. , COI: 1:CAS:528:DC%2BC2sXhtlWmsrfI, PID: 28807998; Raj, V.S., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254. , COI: 1:CAS:528:DC%2BC3sXjvFensb8%3D, PID: 23486063; Park, J.E., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism (2016) Proc. Natl Acad. Sci. USA, 113, pp. 12262-12267. , COI: 1:CAS:528:DC%2BC28Xhs1elur3F, PID: 27791014; Millet, J.K., Whittaker, G.R., Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein (2014) Proc. Natl Acad. Sci. USA, 111, pp. 15214-15219. , COI: 1:CAS:528:DC%2BC2cXhs1yhtb7E, PID: 25288733; Earnest, J.T., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases (2017) PLoS Pathog., 13. , PID: 28759649; Earnest, J.T., Hantak, M.P., Park, J.E., Gallagher, T., Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains (2015) J. Virol., 89, pp. 6093-6104. , COI: 1:CAS:528:DC%2BC2MXosFSjt7s%3D, PID: 25833045; Yang, Y., Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus (2015) J. Virol., 89, pp. 9119-9123. , COI: 1:CAS:528:DC%2BC2MXhtlGjtb7F, PID: 26063432; Stencel-Baerenwald, J.E., Reiss, K., Reiter, D.M., Stehle, T., Dermody, T.S., The sweet spot: defining virus–sialic acid interactions (2014) Nat. Rev. Microbiol., 12, pp. 739-749. , COI: 1:CAS:528:DC%2BC2cXhs1GmsbbO, PID: 25263223; Xiong, X., Receptor binding by a ferret-transmissible H5 avian influenza virus (2013) Nature, 497, pp. 392-396. , COI: 1:CAS:528:DC%2BC3sXms1Wgs7s%3D, PID: 23615615; Xiong, X., Receptor binding by an H7N9 influenza virus from humans (2013) Nature, 499, pp. 496-499. , COI: 1:CAS:528:DC%2BC3sXhtFKntbnM, PID: 23787694; Liu, J., Structures of receptor complexes formed by hemagglutinins from the Asian influenza pandemic of 1957 (2009) Proc. Natl Acad. Sci. USA, 106, pp. 17175-17180. , COI: 1:CAS:528:DC%2BD1MXhtlaksL3N, PID: 19805083; Lu, G., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231. , COI: 1:CAS:528:DC%2BC3sXhtVKhtbfK, PID: 23831647; Wang, N., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res, 23, pp. 986-993. , COI: 1:CAS:528:DC%2BC3sXht1Wltb%2FM, PID: 23835475; Li, W., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl Acad. Sci. USA, 114, pp. E8508-E8517. , COI: 1:CAS:528:DC%2BC2sXhsFajsbvF, PID: 28923942; Widagdo, W., Differential expression of the Middle East respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels (2016) J. Virol., 90, pp. 4838-4842. , COI: 1:CAS:528:DC%2BC28XhsVyhurvK, PID: 26889022; Vergara-Alert, J., Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus (2017) Emerg. Infect. Dis., 23, pp. 232-240. , COI: 1:CAS:528:DC%2BC1cXjt1antb4%3D, PID: 27901465; Barlan, A., Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection (2014) J. Virol., 88, pp. 4953-4961. , PID: 24554656; Meyer, B., Serologic assessment of possibility for MERS-CoV infection in equids (2015) Emerg. Infect. Dis., 21, pp. 181-182. , COI: 1:CAS:528:DC%2BC2sXivVKitw%3D%3D, PID: 25531820; Hulswit, R.J.G., Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A (2019) Proc. Natl Acad. Sci. USA, 116, pp. 2681-2690. , COI: 1:CAS:528:DC%2BC1MXivVajs7s%3D, PID: 30679277; Campbell, M.G., Veesler, D., Cheng, A., Potter, C.S., Carragher, B., 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy (2015) eLife, 4; Yu, X., Structural basis of rotavirus strain preference toward N-acetyl- or N-glycolylneuraminic acid-containing receptors (2012) J. Virol., 86, pp. 13456-13466. , COI: 1:CAS:528:DC%2BC38XhslOqtb7P, PID: 23035213; Suzuki, Y., Sialic acid species as a determinant of the host range of influenza A viruses (2000) J. Virol., 74, pp. 11825-11831. , COI: 1:CAS:528:DC%2BD3MXitVGisLs%3D, PID: 11090182; Millet, J.K., Whittaker, G.R., Murine leukemia virus (MLV)-based coronavirus spike-pseudotyped particle production and infection (2016) Bio Protoc., 6. , PID: 28018942; Xiong, X., Recognition of sulphated and fucosylated receptor sialosides by A/Vietnam/1194/2004 (H5N1) influenza virus (2013) Virus Res., 178, pp. 12-14. , COI: 1:CAS:528:DC%2BC3sXhs12ksrrO, PID: 24036174; Wickramasinghe, I.N., de Vries, R.P., Grone, A., de Haan, C.A., Verheije, M.H., Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity (2011) J. Virol., 85, pp. 8903-8912. , COI: 1:CAS:528:DC%2BC3MXhtVKqtbnP, PID: 21697468; Bakkers, M.J., Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity (2017) Cell Host Microbe, 21, pp. 356-366. , COI: 1:CAS:528:DC%2BC2sXktVyltbg%3D, PID: 28279346; Chan, C.M., Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of Middle East respiratory syndrome coronavirus (2016) J. Virol., 90, pp. 9114-9127. , COI: 1:CAS:528:DC%2BC2sXhs1ehsrg%3D, PID: 27489282; Chu, H., Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells (2018) J. Biol. Chem., 293, pp. 11709-11726. , COI: 1:CAS:528:DC%2BC1cXhsVShtrzL, PID: 29887526; Widjaja, I., Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein (2019) Emerg. Microbes Infect., 8, pp. 516-530. , PID: 30938227; Suloway, C., Automated molecular microscopy: the new Leginon system (2005) J. Struct. Biol., 151, pp. 41-60. , COI: 1:CAS:528:DC%2BD2MXlsFCltbg%3D, PID: 15890530; Tegunov, D., Cramer, P., Real-time cryo-electron microscopy data preprocessing with Warp (2019) Nat. Methods, 16, pp. 1146-1152. , COI: 1:CAS:528:DC%2BC1MXhvFejs77E, PID: 31591575; Zivanov, J., New tools for automated high-resolution cryo-EM structure determination in RELION-3 (2018) eLife, 7. , PID: 30412051; Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination (2017) Nat. Methods, 14, pp. 290-296. , COI: 1:CAS:528:DC%2BC2sXitlGisbs%3D, PID: 28165473; Zivanov, J., Nakane, T., Scheres, S.H.W., A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis (2019) IUCrJ, 6, pp. 5-17. , COI: 1:CAS:528:DC%2BC1MXnt1ajuw%3D%3D, PID: 30713699; Scheres, S.H., Chen, S., Prevention of overfitting in cryo-EM structure determination (2012) Nat. Methods, 9, pp. 853-854. , COI: 1:CAS:528:DC%2BC38XhtFWmsLfO, PID: 22842542; Goddard, T.D., Huang, C.C., Ferrin, T.E., Visualizing density maps with UCSF Chimera (2007) J. Struct. Biol., 157, pp. 281-287. , COI: 1:CAS:528:DC%2BD28XhtlaltrfL, PID: 16963278; Brown, A., Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions (2015) Acta Crystallogr. D, 71, pp. 136-153. , COI: 1:CAS:528:DC%2BC2MXhsV2gtr4%3D, PID: 25615868; Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of COOT (2010) Acta Crystallogr. D, 66, pp. 486-501. , COI: 1:CAS:528:DC%2BC3cXksFKisb8%3D, PID: 20383002; DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D., Andre, I., Modeling symmetric macromolecular structures in Rosetta3 (2011) PLoS One, 6. , COI: 1:CAS:528:DC%2BC3MXotFantL0%3D, PID: 21731614; DiMaio, F., Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement (2015) Nat. Methods, 12, pp. 361-365. , COI: 1:CAS:528:DC%2BC2MXjtFems78%3D, PID: 25707030; Frenz, B., Walls, A.C., Egelman, E.H., Veesler, D., DiMaio, F., RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps (2017) Nat. Methods, 14, pp. 797-800. , COI: 1:CAS:528:DC%2BC2sXhtVantL%2FO, PID: 28628127; Frenz, B.D.R., Automatically fixing errors in glycoprotein structures with Rosetta (2019) Structure, 27, pp. 134-139. , COI: 1:CAS:528:DC%2BC1cXhvFKjur7O, PID: 30344107; Walls, A., Crucial steps in the structure determination of a coronavirus spike glycoprotein using cryo-electron microscopy (2017) Protein Sci., 26, pp. 113-121. , COI: 1:CAS:528:DC%2BC28Xhs1yktbjI, PID: 27667334; Wang, R.Y., Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta (2016) eLife, 5. , PID: 27669148; Chen, V.B., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr. D, 66, pp. 12-21. , COI: 1:CAS:528:DC%2BC3cXit1Kktg%3D%3D, PID: 20057044; Barad, B.A., EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy (2015) Nat. Methods, 12, pp. 943-946. , COI: 1:CAS:528:DC%2BC2MXhtlCksbzO, PID: 26280328; Agirre, J., Privateer: software for the conformational validation of carbohydrate structures (2015) Nat. Struct. Mol. Biol., 22, pp. 833-834. , COI: 1:CAS:528:DC%2BC2MXhvVOgtLvL, PID: 26581513; Krissinel, E., Henrick, K., Inference of macromolecular assemblies from crystalline state (2007) J. Mol. Biol., 372, pp. 774-797. , COI: 1:CAS:528:DC%2BD2sXpvFGktb8%3D, PID: 17681537; Goddard, T.D., UCSF ChimeraX: meeting modern challenges in visualization and analysis (2018) Protein Sci, 27, pp. 14-25. , COI: 1:CAS:528:DC%2BC2sXhsVertLjN, PID: 28710774","Veesler, D.; Department of Biochemistry, University of WashingtonUnited States; email: dveesler@uw.edu",,"Nature Research",15459993,,NSMBC,"31792450","English","Nat. Struct. Mol. Biol.",Article,"Final",Open Access,Scopus,2-s2.0-85076049205 "Xu Z., Lin Y., Zou C., Peng P., Wu Y., Wei Y., Liu Y., Gong L., Cao Y., Xue C.","57195944163;57193956631;57209713309;57204434496;57211627223;57190967092;57214950074;57195944977;36039272800;24400445400;","Attenuation and characterization of porcine enteric alphacoronavirus strain GDS04 via serial cell passage",2019,"Veterinary Microbiology","239",, 108489,"","",,,"10.1016/j.vetmic.2019.108489","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074653804&doi=10.1016%2fj.vetmic.2019.108489&partnerID=40&md5=ca5deef19e4fe69fc6dd05d6a0547284","State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China","Xu, Z., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Lin, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Zou, C., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Peng, P., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Wu, Y., College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Wei, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Liu, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Gong, L., College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Cao, Y., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Xue, C., State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China","Porcine enteric alphacoronavirus (PEAV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in newborn piglets. In this study, an original, highly virulent PEAV strain GDS04 was serially passaged in Vero cells. The virus titers and sizes of syncytia increased gradually with the cell passages. Newborn piglets were orally inoculated with PEAV P15, P67 and P100. Compared with P15 and P67, P100 resulted in only mild clinical signs and intestinal lesions in piglets. The virus shedding in feces and viral antigens in intestinal tract were markedly reduced in P100-inoculated piglets. Importantly, all P100-inoculated newborn piglets survived, indicating that P100 was an attenuated variant. Sequence analysis revealed that the virulent strain GDS04 had four, one, six and eleven amino acid differences in membrane, nucleocapsid, spike and ORF1ab proteins, respectively, from P100. Furthermore, more differences in the predicted three-dimensional structure of S protein between GDS04 and P100 were observed, indicating that these differences might be associated with the pathogenicity of PEAV. Collectively, our research successfully prepared a PEAV attenuated variant which might serve as a live attenuated vaccine candidate against PEAV infection. © 2019 Elsevier B.V.","Attenuation; Genomic analysis; Newborn piglets; Pathogenicity; Porcine enteric alphacoronavirus","amino acid; protein orf1ab; unclassified drug; viral protein; virus spike protein; Alphacoronavirus; animal cell; animal experiment; animal model; Article; newborn; nonhuman; piglet; porcine enteric alphacoronavirus; Vero cell line; virus envelope; virus nucleocapsid; virus strain; Alphacoronavirus; animal; Chlorocebus aethiops; Coronavirus infection; genetics; mutation; pathogenicity; veterinary medicine; virology; virulence; Alphacoronavirus; Animals; Chlorocebus aethiops; Coronavirus Infections; Mutation; Vero Cells; Virulence","Aynaud, J.M., B.S, Bottreau, E., Lantier, I., Salmon, H., Vannier, P., Induction of lactogenic immunity to transmissible gastroenteritis virus of swine using an attenuated coronavirus mutant able to survive in the physicochemical environment of the digestive tract (1991) Vet. Microbiol., 26, pp. 227-239; Blanco-Lobo, P., Nogales, A., Rodriguez, L., Martinez-Sobrido, L., Novel approaches for the development of live attenuated influenza vaccines (2019) Viruses, 11; Chen, Q., Gauger, P., Stafne, M., Thomas, J., Arruda, P., Burrough, E., Madson, D., Zhang, J., Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets (2015) Virology, 482, pp. 51-59; Cruz, D.J., Kim, C.J., Shin, H.J., The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus (2008) Virus Res., 132, pp. 192-196; de Haan, C.A., S.M, Vernooij, F., Vennema, H., Rottier, P.J., Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein (1999) J. Virol., 73, pp. 7441-7452; Gong, L., L.J, Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new Bat-HKU2-like coronavirus in Swine, China, 2017 (2017) Emerg. Infect. Dis., 23; Hou, Y., Ke, H., Kim, J., Yoo, D., Su, Y., Boley, P., Chepngeno, J., Wang, Q., Engineering a live attenuated PEDV vaccine candidate via inactivation of the viral 2′-O methyltransferase and the endocytosis signal of the spike protein (2019) J. Virol.; Hou, Y., Meulia, T., Gao, X., Saif, L.J., Wang, Q., Deletion of both the tyrosine-based endocytosis signal and the endoplasmic reticulum retrieval signal in the cytoplasmic tail of spike protein attenuates porcine epidemic diarrhea virus in pigs (2019) J. Virol., 93; Hu, Y., L.W, Gao, T., Cui, Y., Jin, Y., Li, P., Ma, Q., Cao, C., The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-Mediated RIG-I ubiquitination (2017) J. Virol., 91; Jie, T., Benqiang, L., Jinghua, C., Ying, S., Huili, L., Preparation and characterization of an attenuated porcine epidemic diarrhea virus strain by serial passaging (2018) Arch. Virol., 163, pp. 2997-3004; Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., Saif, L.J., Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs (2014) Emerg. Infect. Dis., 20, pp. 662-665; Krug, P.W., Holinka, L.G., O'Donnell, V., Reese, B., Sanford, B., Fernandez-Sainz, I., Gladue, D.P., Borca, M.V., The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome (2015) J. Virol., 89, pp. 2324-2332; Lau, S.K., Woo, P.C., Li, K.S., Huang, Y., Wang, M., Lam, C.S., Xu, H., Yuen, K.Y., Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome (2007) Virology, 367, pp. 428-439; Li, C., Li, W., Lucio de Esesarte, E., Guo, H., van den Elzen, P., Aarts, E., van den Born, E., Bosch, B.J., Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies (2017) J. Virol., 91; Li, K., Bi, Z., Gu, J., Gong, W., Luo, S., Zhang, F., Song, D., Tang, Y., Complete genome sequence of a novel swine acute diarrhea syndrome coronavirus, CH/FJWT/2018, isolated in Fujian, China, in 2018 (2018) Microbiol. Resour. Announc., 7; Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., Bosch, B.J., Cellular entry of the porcine epidemic diarrhea virus (2016) Virus Res., 226, pp. 117-127; Lin, C.M., Hou, Y., Marthaler, D.G., Gao, X., Liu, X., Zheng, L., Saif, L.J., Wang, Q., Attenuation of an original US porcine epidemic diarrhea virus strain PC22A via serial cell culture passage (2017) Vet. Microbiol., 201, pp. 62-71; Malboeuf, C.M., Yang, X., Charlebois, P., Qu, J., Berlin, A.M., Casali, M., Pesko, K.N., Levin, J.Z., Complete viral RNA genome sequencing of ultra-low copy samples by sequence-independent amplification (2013) Nucleic Acids Res., 41, p. e13; Moon, H.W., K.L, Lambert, G., Stark, S.L., Booth, G.D., Age-dependent resistance to transmissible gastroenteritis of swine. III. Effects of epithelial cell kinetics on coronavirus production and on atrophy of intestinal villi (1975) Vet. Pathol., 12, pp. 434-445; Motovski, A., Katevska, V., Belopopska, P., Naĭdenova, N., Veleva, E., Experiments to produce an attenuated strain of the transmissible gastroenteritis virus and its use as a live vaccine (1985) Vet. Med. Nauki., 22, p. 3; Nguyen, V.P., Hogue, B.G., Protein interactions during coronavirus assembly (1997) J. Virol., 71, pp. 9278-9284; O'Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Borca, M.V., African swine fever virus georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus (2015) J. Virol., 89, pp. 6048-6056; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet. Microbiol., 211, pp. 15-21; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol., 27; Rhim, J.S., S.K, Creasy, B., Case, W., Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero) (1969) Proc. Soc. Exp. Biol. Med., 132, pp. 670-678; Shibata, I., T.T, Mori, M., Ono, M., Sueyoshi, M., Uruno, K., Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages (2000) Vet. Microbiol., 72, pp. 173-182; Song, D.S., Oh, J.S., Kang, B.K., Yang, J.S., Moon, H.J., Yoo, H.S., Jang, Y.S., Park, B.K., Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain (2007) Res. Vet. Sci., 82, pp. 134-140; Spaan, W., D.H, Skinner, M., Armstrong, J., Rottier, P., Smeekens, S., van der Zeijst, B.A., Siddell, S.G., Coronavirus mRNA synthesis involves fusion of non-contiguous sequences (1983) EMBO J., 2, pp. 1839-1844; Sturman, L.S., H.K, Behnke, J., Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid (1980) J. Virol., 33, pp. 449-462; Walls, A.C., Tortorici, M.A., Frenz, B., Snijder, J., Li, W., Rey, F.A., DiMaio, F., Veesler, D., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy (2016) Nat. Struct. Mol. Biol., 23, pp. 899-905; Wang, D., Ge, X., Chen, D., Li, J., Cai, Y., Deng, J., Zhou, L., Yang, H., The S gene is necessary but not sufficient for the virulence of porcine epidemic diarrhea virus novel variant strain BJ2011C (2018) J. Virol., 92; Woo, P.C., Huang, Y., Lau, S.K., Yuen, K.Y., Coronavirus genomics and bioinformatics analysis (2010) Viruses, 2, pp. 1804-1820; Xu, Z., Zhang, Y., Gong, L., Huang, L., Lin, Y., Qin, J., Du, Y., Cao, Y., Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets (2019) Transbound. Emerg. Dis., 66, pp. 119-130; Xu, Z., Zhong, H., Huang, S., Zhou, Q., Du, Y., Chen, L., Xue, C., Cao, Y., Porcine deltacoronavirus induces TLR3, IL-12, IFN-alpha, IFN-beta and PKR mRNA expression in infected Peyer's patches in vivo (2019) Vet. Microbiol., 228, pp. 226-233; Xu, Z., Zhong, H., Zhou, Q., Du, Y., Chen, L., Zhang, Y., Xue, C., Cao, Y., A highly pathogenic strain of porcine deltacoronavirus caused watery diarrhea in newborn piglets (2018) Virol. Sin., 33, pp. 131-141; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268; Zhou, L., Sun, Y., Lan, T., Wu, R., Chen, J., Wu, Z., Xie, Q., Ma, J., Retrospective detection and phylogenetic analysis of swine acute diarrhoea syndrome coronavirus in pigs in southern China (2019) Transbound. Emerg. Dis., 66, pp. 687-695; Zhou, L., Sun, Y., Wu, J.L., Mai, K.J., Chen, G.H., Wu, Z.X., Bai, Y., Ma, J.Y., Development of a TaqMan-based real-time RT-PCR assay for the detection of SADS-CoV associated with severe diarrhea disease in pigs (2018) J. Virol. Methods, 255, pp. 66-70; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Ma, J.Y., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258","Xue, C.; School of Life Science, Sun Yat-sen University, Higher Education Mega CenterChina; email: xuechy@mail.sysu.edu.cn",,"Elsevier B.V.",03781135,,VMICD,"31767069","English","Vet. Microbiol.",Article,"Final",Open Access,Scopus,2-s2.0-85074653804 "Shi D., Wang X., Shi H., Zhang J., Han Y., Chen J., Zhang X., Liu J., Zhang J., Ji Z., Jing Z., Feng L.","54399296900;56979423400;55233443300;57211015345;57211015266;8320190900;55851450100;55317283900;57192714108;57192713776;57197728593;55792011500;","Significant interference with porcine epidemic diarrhea virus pandemic and classical strain replication in small-intestine epithelial cells using an shrna expression vector",2019,"Vaccines","7","4", 173,"","",,,"10.3390/vaccines7040173","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074560131&doi=10.3390%2fvaccines7040173&partnerID=40&md5=631114c92a92bbae9e072b2162ff5721","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China","Shi, D., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Wang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Shi, H., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Han, Y., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Chen, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Liu, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Zhang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Ji, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Jing, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China; Feng, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China","Porcine epidemic diarrhea (PED) re-emerged in China in 2010 and is now widespread. Evidence indicates that highly virulent porcine epidemic diarrhea virus (PEDV) strains belonging to genotype G2 caused a large-scale outbreak of diarrhea. Currently, vaccines derived from PEDV classical strains do not effectively prevent infection by virulent PEDV strains, and no specific drug is available to treat the disease. RNA interference (RNAi) is a novel and effective way to cure a wide range of viruses. We constructed three short hairpin RNA (shRNA)-expressing plasmids (shR-N307, shR-N463, and shR-N1071) directed against nucleocapsid (N) and determined their antiviral activities in intestine epithelial cells infected with a classical CV777 strain and LNCT2. We verified that shR-N307, shR-N463, and shR-N1071 effectively inhibited the expression of the transfected N gene in vitro, comparable to the control shRNA. We further demonstrated the shRNAs markedly reduced PEDV CV777 and LNCT2 replication upon downregulation of N production. Therefore, this study provides a new strategy for the design of antiviral methods against coronaviruses by targeting their processivity factors. © 2019, MDPI AG. All rights reserved.","Intestine epithelial cells; N gene; Porcine epidemic diarrhea virus; Processivity factor; RNA interference","genomic RNA; short hairpin RNA; animal cell; antiviral activity; antiviral therapy; Article; cell viability; cell viability assay; controlled study; cytopathogenic effect; drug targeting; Escherichia coli; expression vector; fluorescence microscopy; gene expression; gene sequence; gene silencing; gene therapy; genetic transfection; genotype; human; human cell; ID50 (median infectious dose); immunofluorescence; in vitro study; intestine epithelium cell; nonhuman; pandemic; phylogenetic tree; phylogeny; plasmid; polyacrylamide gel electrophoresis; porcine epidemic diarrhea; Porcine epidemic diarrhea virus; protein expression; radioimmunoprecipitation; Vero C1008 cell line; virus load; virus nucleocapsid; virus replication; Western blotting","Shi, D., Lv, M., Chen, J., Shi, H., Zhang, S., Zhang, X., Feng, L., Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus (2014) Viruses, 6, pp. 1253-1273; Fouchier, R.A., Hartwig, N.G., Bestebroer, T.M., Niemeyer, B., de Jong, J.C., Simon, J.H., Osterhaus, A.D. A previously undescribed coronavirus associated with respiratory disease in humans (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 6212-6216; Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., He, Q., New variants of porcine epidemic diarrhea virus, China (2012) 2011. Emerg. Infect. Dis, 18, pp. 1350-1353; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258; Lai, M.M., Cavanagh, D., The molecular biology of coronaviruses (1997) Adv. Virus Res., 48, pp. 1-100; Duenas-Carrera, S., Alvarez-Lajonchere, L., Alvarez, J.C., Ramos, T., Pichardo, D., Morales, J., Repeated administration of hepatitis C virus core-encoding plasmid to mice does not necessarily increase the immune response generated against this antigen (2001) Biotechnol. Appl. Biochem., 33, pp. 47-51; Madden, C.R., Finegold, M.J., Slagle, B.L., Expression of hepatitis B virus X protein does not alter the accumulation of spontaneous mutations in transgenic mice (2000) J. Virol., 74, pp. 5266-5272; Reifenberg, K., Deutschle, T., Wild, J., Hanano, R., Gastrock-Balitsch, I., Schirmbeck, R., Schlicht, H.J., The hepatitis B virus e antigen cannot pass the murine placenta efficiently and does not induce CTL immune tolerance in H-2(B) mice in utero (1998) Virology, 243, pp. 45-53; Reifenberg, K., Lohler, J., Pudollek, H.P., Schmitteckert, E., Spindler, G., Kock, J., Schlicht, H.J., Long-term expression of the hepatitis B virus core-e-and X-proteins does not cause pathologic changes in transgenic mice (1997) J. Hepatol., 26, pp. 119-130; Chen, J., Liu, X., Shi, D., Shi, H., Zhang, X., Li, C., Chi, Y., Feng, L., Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China (2013) Viruses, 5, pp. 2601-2613; Wang, X., Chen, J., Shi, D., Shi, H., Zhang, X., Yuan, J., Jiang, S., Feng, L., Immunogenicity and antigenic relationships among spike proteins of porcine epidemic diarrhea virus subtypes G1 and G2 (2016) Arch. Virol, 161, pp. 537-547; Aagaard, L., Rossi, J.J., RNAi therapeutics: Principles (2007) Prospects and Challenges. Adv. Drug Deliv. Rev, 59, pp. 75-86; Battistella, M., Marsden, P.A., Advances, Nuances, and Potential Pitfalls When Exploiting the Therapeutic Potential of RNA Interference (2015) Clin Pharm. Ther, pp. 79-87; Brummelkamp, T.R., Bernards, R., Agami, R. A system for stable expression of short interfering RNAs in mammalian cells (2002) Science, 296, pp. 550-553; Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans (1998) Nature, 391, pp. 806-811; Grimm, D., Wang, L., Lee, J.S., Schurmann, N., Gu, S., Borner, K., Storm, T.A., Kay, M.A., Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver (2010) J. Clin. Investig, 120, pp. 3106-3119; Hammond, S.M., Dicing and slicing: The core machinery of the RNA interference pathway (2005) FEBS Lett, 579, pp. 5822-5829; Ontiveros, E., Kuo, L.L., Masters, P.S., Perlman, S., Inactivation of expression of gene 4 of mouse hepatitis virus strain JHM does not affect virulence in the murine CNS (2001) Virology, 289, pp. 230-238; Wang, D., Fang, L., Xiao, S., Porcine epidemic diarrhea in China (2016) Virus Res, 226, pp. 7-13; Shi, D., Shi, H., Sun, D., Chen, J., Zhang, X., Wang, X., Zhang, J., Cao, L., Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth (2017) Sci. Rep., 7; Fingerote, R.J., Cruz, B.M., Gorczynski, R.M., Fung, L.S., Hubbell, H.R., Suhadolnik, R.J., Levy, G.A., (1995) A 2′,5′-Oligoadenylate Analog Inhibits Murine Hepatitis-Virus Strain-3 (Mhv-3) Replication In-Vitro but Does Not Reduce Mhv-3-Related Mortality Or Induction of Procoagulant Activity in Susceptible Mice. J. Gen. Virol; BLOCK-iT™ Rnai Designer, , http://rnaidesigner.thermofisher.com/rnaiexpress/; Basic Local Alignment Search Tool, , http://www.ncbi.nlm.nih.gov/BLAST; Tokuriki, N., Oldfield, C.J., Uversky, V.N., Berezovsky, I.N., Tawfik, D.S., Do viral proteins possess unique biophysical features? (2009) Trends Biochem. Sci, 34, pp. 53-59; Shen, H., Zhang, C., Guo, P., Liu, Z., Zhang, J., Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro (2015) Virus Genes, 51, pp. 252-259; Kuo, L., Hurst-Hess, K.R., Koetzner, C.A., Masters, P.S., Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras (2016) J. Virol., 90, pp. 4357-4368; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39. , CrossRef; Zhang, J., Guo, L., Xu, Y., Yang, L., Shi, H., Feng, L., Wang, Y., Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells (2017) Arch. Virol., 162, pp. 2415-2419; Liu, F., Li, G., Wen, K., Bui, T., Cao, D., Zhang, Y., Yuan, L., Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics (2010) Viral Immunol, 23, pp. 135-149; Pfeiffenberger, E., Sigl, R., Geley, S., (2016) Conditional Rnai Using the Lentiviral GLTR System. Methods Mol. Biol., 1448, pp. 121-138; Khan, A.A., Betel, D., Miller, M.L., Sander, C., Leslie, C.S., Marks, D.S., Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs (2009) Nat. Biotechnol., 27, pp. 549-555; Olejniczak, M., Polak, K., Galka-Marciniak, P., Krzyzosiak, W.J., Recent advances in understanding of the immunological off-target effects of siRNA (2011) Curr. Gene Ther., 11, pp. 532-543","Feng, L.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, China; email: fengli@caas.cn",,"MDPI AG",2076393X,,,,"English","Vaccines",Article,"Final",Open Access,Scopus,2-s2.0-85074560131 "Chen H., Feng R., Muhammad I., Abbas G., Zhang Y., Ren Y., Huang X., Zhang R., Diao L., Wang X., Li G.","57205653224;57212175778;57188663193;57211681307;57189637309;14044206000;57212164931;56739520000;57211684422;51864798500;55625288100;","Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells",2019,"Poultry Science","98","12",,"6367","6377",,,"10.3382/ps/pez465","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076126113&doi=10.3382%2fps%2fpez465&partnerID=40&md5=da596c0ab14a83b0962e2f2321fe7355","Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin, 132101, China; College of Electrical and Information, Northeast Agricultural University, Harbin, 150030, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China","Chen, H., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China, College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin, 132101, China; Feng, R., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Muhammad, I., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Abbas, G., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Zhang, Y., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Ren, Y., College of Electrical and Information, Northeast Agricultural University, Harbin, 150030, China; Huang, X., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Zhang, R., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Diao, L., College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin, 132101, China; Wang, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Li, G., Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China","Avian infectious bronchitis virus (IBV), a coronavirus, causes infectious bronchitis leading to enormous economic loss in the poultry industry worldwide. Hypericin (HY) is an excellent compound that has been investigated in antiviral, antineoplastic, and antidepressant. To investigate the inhibition effect of HY on IBV infection in chicken embryo kidney (CEK) cells, 3 different experimental designs: pre-treatment of cells prior to IBV infection, direct treatment of IBV-infected cells, and pre-treatment of IBV prior to cell infection were used. Quantitative real-time PCR (qRT-PCR), immunofluorescence assay (IFA), flow cytometry, and fluorescence microscopy were performed and virus titer was determined by TCID50. The results revealed that HY had a good anti-IBV effect when HY directly treated the IBV-infected cells, and virus infectivity decreased in a dose-dependent manner. Furthermore, HY inhibited IBV-induced apoptosis in CEK cells, and significantly reduced the mRNA expression levels of Fas, FasL, JNK, Bax, Caspase 3, and Caspase 8, and significantly increased Bcl-2 mRNA expression level in CEK cells. In addition, HY treatment could decrease IBV-induced reactive oxygen species (ROS) generation in CEK cells. These results suggested that HY showed potential antiviral activities against IBV infection involving the inhibition of apoptosis and ROS generation in CEK cells. © 2019 Poultry Science Association Inc.","apoptosis; chicken embryo kidney cells; hypericin; infectious bronchitis virus; reactive oxygen species",,"Abdel-Moneim, A.S., Zlotowski, P., Veits, J., Keil, G.M., Teifke, J.P., Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos (2009) Virol. J., 6, p. 15; Barnes, J., Arnason, J.T., Roufogalis, B.D., St John's wort (Hypericum perforatum L.): botanical, chemical, pharmacological and clinical advances (2019) J. Pharm. Pharmacol, 71, pp. 1-3; Benyeda, Z., Mato, T., Suveges, T., Szabo, E., Kardi, V., Abonyi-Toth, Z., Rusvai, M., Palya, V., Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions (2009) Avian Pathol., 38, pp. 449-456; Bianchini, P., Cozzolino, M., Oneto, M., Pesce, L., Pennacchietti, F., Tognolini, M., Giorgio, C., Viappiani, C., Hypericin-apomyoglobin: an enhanced photosensitizer complex for the treatment of tumor cells (2019) Biomacromolecules, 20, pp. 2024-2033; Birt, D.F., Widrlechner, M.P., Hammer, K.D., Hillwig, M.L., Wei, J., Kraus, G.A., Murphy, P.A., Price, J.P., Hypericum in infection: identification of anti-viral and anti-inflammatory constituents (2009) Pharm. Biol., 47, pp. 774-782; Cakir, A., Mavi, A., Yildirim, A., Duru, M.E., Harmandar, M., Kazaz, C., Isolation and characterization of antioxidant phenolic compounds from the aerial parts of hypericum hyssopifolium L. by activity-guided fractionation (2003) J. Ethnopharmacol., 87, pp. 73-83; Chavez, J.S., Pietras, E.M., Hematopoietic stem cells rock around the clock: circadian fate control via TNF/ROS signals (2018) Cell Stem Cell, 23, pp. 459-460; Chen, Y., Yang, Y., Wang, F., Yang, X., Yao, F., Ming, K., Yuan, W., Liu, J., Antiviral effect of baicalin phospholipid complex against duck hepatitis A virus type 1 (2018) Poult. Sci., 97, pp. 2722-2732; Chhabra, R., Kuchipudi, S.V., Chantrey, J., Ganapathy, K., Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune responses (2016) Virology, 488, pp. 232-241; Cook, J.K., Jackwood, M., Jones, R.C., The long view: 40 years of infectious bronchitis research (2012) Avian Pathol., 41, pp. 239-250; Da Silva, S.E.L., Ferreira, H.L., Garcia, A.F., Silva, F.E.S., Gameiro, R., Fabri, C.U.F., Vieira, D.S., Cardoso, T.C., Mitochondrial bioenergy alterations in avian HD11 macrophages infected with infectious bronchitis virus (2018) Arch. Virol., 163, pp. 1043-1049; De La Torre, J.C., Ren, X., Meng, F., Yin, J., Li, G., Li, X., Wang, C., Herrler, G., Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus (2011) PLoS ONE, 6; De Wit, J.J.S., Malo, A., Cook, J.K.A., Induction of IBV strain-specific neutralizing antibodies and broad spectrum protection in layer pullets primed with IBV massachusetts (mass) and 793B vaccines prior to injection of inactivated vaccine containing mass antigen (2019) Avian Pathol., 48, pp. 135-147; Do, M.H., Kim, S.Y., Hypericin, a naphthodianthrone derivative, prevents methylglyoxal-induced human endothelial cell dysfunction (2017) Biomol. Ther., 25, pp. 158-164; Dziewulska, D., Stenzel, T., Smialek, M., Tykalowski, B., Koncicki, A., An evaluation of the impact of aloe vera and licorice extracts on the course of experimental pigeon paramyxovirus type 1 infection in pigeons (2018) Poult. Sci., 97, pp. 470-476; Elmore, S., Apoptosis: a review of programmed cell death (2007) Toxicol. Pathol., 35, pp. 495-516; Feng, K., Xue, Y., Wang, J., Chen, W., Chen, F., Bi, Y., Xie, Q., Development and efficacy of a novel live-attenuated QX-like nephropathogenic infectious bronchitis virus vaccine in China (2015) Vaccine, 33, pp. 1113-1120; Fung, T.S., Liao, Y., Liu, D.X., The endoplasmic reticulum stress sensor IRE1alpha protects cells from apoptosis induced by the coronavirus infectious bronchitis virus (2014) J. Virol., 88, pp. 12752-12764; Fung, T.S., Liu, D.X., Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun (2017) Cell Death Dis., 8; Gao, X., Wang, C., Chen, Z., Chen, Y., Santhanam, R.K., Xue, Z., Ma, Q., Chen, H., Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2 O2-induced oxidative damage in HepG2 and L02cells (2019) Food Chem. Toxicol., 130, pp. 130-141; Gioti, E.M., Fiamegos, Y.C., Skalkos, D.C., Stalikas, C.D., Antioxidant activity and bioactive components of the aerial parts of hypericum perforatum L. from Epirus, Greece (2009) Food Chem., 117, pp. 398-404; Han, X., Tian, Y., Guan, R., Gao, W., Yang, X., Zhou, L., Wang, H., Infectious bronchitis virus infection induces apoptosis during replication in chicken macrophage HD11 cells (2017) Viruses, 9, p. E198; Hebling, J., Bianchi, L., Basso, F.G., Scheffel, D.L., Soares, D.G., Carrilho, M.R., Pashley, D.H., de Souza Costa, C.A., Cytotoxicity of dimethyl sulfoxide (DMSO) in direct contact with odontoblast-like cells (2015) Dent. Mater., 31, pp. 399-405; Hodgson, T., Casais, R., Dove, B., Britton, P., Cavanagh, D., Recombinant infectious bronchitis coronavirus beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity (2004) J. Virol., 78, pp. 13804-13811; Jacobson, J.M., Feinman, L., Liebes, L., Ostrow, N., Koslowski, V., Tobia, A., Cabana, B.E., Prince, A.M., Pharmacokinetics, safety, and antiviral effects of hypericin, a derivative of St. John's wort plant, in patients with chronic hepatitis C virus infection (2001) Antimicrob. Agents Chemother., 45, pp. 517-524; Laconi, A., Listorti, V., Franzo, G., Cecchinato, M., Naylor, C., Lupini, C., Catelli, E., Molecular characterization of whole genome sequence of infectious bronchitis virus 624I genotype confirms the close relationship with Q1 genotype (2019) Transbound. Emerg. Dis., 66, pp. 207-216; Leber, B., Kale, J., Andrews, D.W., Unleashing blocked apoptosis in cancer cells: new MCL1 inhibitors find their groove (2018) Cancer Discov., 8, pp. 1511-1514; Liang, J.Q., Fang, S., Yuan, Q., Huang, M., Chen, R.A., Fung, T.S., Liu, D.X., N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis (2019) Virology, 531, pp. 48-56; Liao, Y., Fung, T.S., Huang, M., Fang, S.G., Zhong, Y., Liu, D.X., Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway (2013) J. Virol., 87, pp. 8124-8134; Lv, W., Liu, C., Zeng, Y., Li, Y., Chen, W., Shi, D., Guo, S., Explore the potential effect of natural herbals to resist newcastle disease virus (2019) Poult. Sci., 98, pp. 1993-1999; Marrelli, M., Conforti, F., Toniolo, C., Nicoletti, M., Statti, G., Menichini, F., Hypericum perforatum: influences of the habitat on chemical composition, photo-induced cytotoxicity, and antiradical activity (2014) Pharm. Biol., 52, pp. 909-918; Mirmalek, S.A., Azizi, M.A., Jangholi, E., Yadollah-Damavandi, S., Javidi, M.A., Parsa, Y., Parsa, T., Alizadeh-Navaei, R., Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum on the MCF-7 human breast cancer cell line (2015) Cancer Cell Int., 16, p. 3; Miskovsky, P., Hypericin-a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules (2002) Curr. Drug Targets, 3, pp. 55-84; Mo, M.L., Li, M., Huang, B.C., Fan, W.S., Wei, P., Wei, T.C., Cheng, Q.Y., Lang, Y.H., Molecular characterization of major structural protein genes of avian coronavirus infectious bronchitis virus isolates in southern China (2013) Viruses, 5, pp. 3007-3020; Montanha, M.C., Silva, L.L., Pangoni, F.B.B., Cesar, G.B., Gonçalves, R.S., Caetano, W., Hioka, N., Kimura, E., Response surface method optimization of a novel hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy (2017) J. Photochem. Photobiol. B., 170, pp. 247-255; Naesens, L., Bonnafous, P., Agut, H., De Clercq, E., Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts (2006) J. Clin. Virol., 37, pp. S69-S75; Pu, X.Y., Liang, J.P., Wang, X.H., Xu, T., Hua, L.Y., Shang, R.F., Liu, Y., Xing, Y.M., Anti-influenza A virus effect of hypericum perforatum L. extract (2009) Virol. Sin., 24, pp. 19-27; Pu, X.Y., Liang, J.P., Shang, R.F., Zhou, L.Y., Wang, X.H., Li, Y., Therapeutic efficacy of hypericum perforatum L. extract for mice infected with an influenza A virus (2012) Can. J. Physiol. Pharm., 90, pp. 123-130; Ríos-Ocampo, W.A., Daemen, T., Buist-Homan, M., Faber, K.N., Navas, M.C., Moshage, H., Hepatitis C virus core or NS3/4A protein expression preconditions hepatocytes against oxidative stress and endoplasmic reticulum stress (2019) Redox Rep., 24, pp. 17-26; Shih, C.M., Wu, C.H., Wu, W.J., Hsiao, Y.M., Ko, J.L., Hypericin inhibits hepatitis C virus replication via deacetylation and down-regulation of heme oxygenase-1 (2018) Phytomedicine, 46, pp. 193-198; Şimşek, E., Aydemir, E.A., İmir, N., Koçak, O., Kuruoğlu, A., Fışkın, K., Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in hela cells (2015) Neuropeptides, 53, pp. 37-43; Singh, R., Letai, A., Sarosiek, K., Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins (2019) Nat. Rev. Mol. Cell Biol., 20, pp. 175-193; Şueki, F., Ruhi, M.K., Gülsoy, M., The effect of curcumin in antitumor photodynamic therapy: in vitro experiments with Caco-2 and PC-3 cancer lines (2019) Photodiagnosis Photodyn. Ther., 27, pp. 95-99; Sui, X., Yin, J., Ren, X., Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus (2010) Antiviral Res, 85, pp. 346-353; Taher, M.M., Lammering, G.M., Hershey, C.M., Valerie, K.C., Mood-enhancing antidepressant St. John's wort inhibits the activation of human immunodeficiency virus gene expression by ultraviolet light (2002) IUBMB Life, 54, pp. 357-364; Tang, J., Colacino, J.M., Larsen, S.H., Spitzer, W., Virucidal activity of hypericin against enveloped and non-enveloped DNA and RNA viruses (1990) Antiviral Res., 13, pp. 313-325; Westerbeck, J.W., Machamer, C.E., The infectious bronchitis coronavirus envelope protein alters golgi pH to protect spike protein and promote release of infectious virus (2019) J. Virol., 93, pp. e00015-e00019; Wolfle, U., Seelinger, G., Schempp, C.M., Topical application of St. John's wort (Hypericum perforatum) (2014) Planta Med., 80, pp. 109-120; Xie, Z., Zhang, J., Ma, S., Huang, X., Huang, Y., Effect of Chinese herbal medicine treatment on plasma lipid profile and hepatic lipid metabolism in hetian broiler (2017) Poult. Sci., 96, pp. 1918-1924; Xu, L., Zhang, X., Cheng, W., Wang, Y., Yi, K., Wang, Z., Zhang, Y., Zhao, T., Hypericin-photodynamic therapy inhibits the growth of adult T-cell leukemia cells through induction of apoptosis and suppression of viral transcription (2019) Retrovirology, 16, p. 5; Yan, S., Zhao, J., Xie, D., Huang, X., Cheng, J., Guo, Y., Liu, C., Zhang, G., Attenuation, safety, and efficacy of a QX-like infectious bronchitis virus serotype vaccine (2018) Vaccine, 36, pp. 1880-1886; Yin, J., Li, G., Li, J., Yang, Q., Ren, X., In vitro and in vivo effects of Houttuynia cordata on infectious bronchitis virus (2011) Avian Pathol., 40, pp. 491-498; Yu, L., Zhang, X., Wu, T., Su, J., Wang, Y., Wang, Y., Ruan, B., Wu, Y., Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS (2017) BMC Vet. Res., 13, p. 332; Zhai, X.J., Chen, F., Chen, C., Zhu, C.R., Lu, Y.N., LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model (2015) J. Ethnopharmacol., 169, pp. 363-369; Zhang, Z., Yang, X., Xu, P., Wu, X., Zhou, L., Wang, H., Heat shock protein 70 in lung and kidney of specific-pathogen-free chickens is a receptor-associated protein that interacts with the binding domain of the spike protein of infectious bronchitis virus (2017) Arch. Virol., 162, pp. 1625-1631; Zhong, Q., Hu, Y.X., Jin, J.H., Zhao, Y., Zhao, J., Zhang, G.Z., Pathogenicity of virulent infectious bronchitis virus isolate YN on hen ovary and oviduct (2016) Vet. Microbiol., 193, pp. 100-105; Zhou, X., Jiang, W., Liu, Z., Liu, S., Liang, X., Virus infection and death receptor-mediated apoptosis (2017) Viruses, 9, p. E316","Li, G.; Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural UniversityChina; email: ligx@neau.edu.cn",,"Elsevier Inc.",00325791,,,"31399732","English","Poult. Sci.",Article,"Final",Open Access,Scopus,2-s2.0-85076126113 "Jo S., Kim H., Kim S., Shin D.H., Kim M.-S.","57211403569;57214326638;57193241841;15920079700;57203466599;","Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors",2019,"Chemical Biology and Drug Design","94","6",,"2023","2030",,2,"10.1111/cbdd.13604","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073793068&doi=10.1111%2fcbdd.13604&partnerID=40&md5=15268272fbc736c6a7518675720e871c","College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea","Jo, S., College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Kim, H., College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Kim, S., College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Shin, D.H., College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea; Kim, M.-S., College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea","Middle East respiratory syndrome-coronavirus (MERS-CoV) is a zoonotic virus transmitted between animals and human beings. It causes MERS with high mortality rate. However, no vaccine or specific treatment is currently available. Since antiviral activity of some flavonoids is known, we applied a flavonoid library to probe inhibitory compounds against MERS-CoV 3C-like protease (3CLpro). Herbacetin, isobavachalcone, quercetin 3-β-d-glucoside and helichrysetin were found to block the enzymatic activity of MERS-CoV 3CLpro. The binding of the four flavonoids was also confirmed independently using a tryptophan-based fluorescence method. The systematic comparison of the binding affinity of flavonoids made it possible to infer their scaffolds and functional groups required to bind with MERS-CoV 3CLpro. An induced-fit docking analysis revealed that S1 and S2 sites play a role in interaction with flavonoids. The experimental and computational study showed that flavonol and chalcone are favourite scaffolds to bind with the catalytic site of MERS-CoV 3CLpro. It was also deduced that some flavonoid derivatives with hydrophobic or carbohydrate attached to their core structures have a good inhibitory effect. Therefore, we suggest that flavonoids with these characteristics can be used as templates to develop potent MERS-CoV 3CLpro inhibitors. © 2019 John Wiley & Sons A/S.","flavonoid; FRET; inhibitory compounds; MERS-CoV; MERS-CoV 3CLpro","flavonoid; helichrysetin; herbacetin; isobavachalcone; isoquercitrin; Middle East respiratory syndrome coronavirus 3C like protease; proteinase inhibitor; unclassified drug; virus enzyme; antiviral activity; Article; binding affinity; complex formation; drug binding site; drug protein binding; drug structure; enzyme activity; enzyme inhibition; fluorescence; hydrophobicity; Middle East respiratory syndrome coronavirus; molecular docking; molecular library; nonhuman; priority journal","Chuck, C.P., Chow, H.F., Wan, D.C., Wong, K.B., Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses (2011) PLoS ONE, 6 (11); de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nature Reviews Microbiology, 14, pp. 523-534. , https://doi.org/10.1038/nrmicro.2016.81; Erbel, P., Schiering, N., D'Arcy, A., Renatus, M., Kroemer, M., Lim, S.P., Hommel, U., Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus (2006) Nature Structural & Molecular Biology, 13, pp. 372-373; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods in Molecular Biology, 1282, pp. 1-23; Frabasile, S., Koishi, A.C., Kuczera, D., Silveira, G.F., Verri, W.A., Jr., Duarte Dos Santos, C.N., Bordignon, J., The citrus flavanone naringenin impairs dengue virus replication in human cells (2017) Scientific Reports, 7, p. 41864. , https://doi.org/10.1038/srep41864; Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Mainz, D.T., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes (2006) Journal of Medicinal Chemistry, 49, pp. 6177-6196; Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J., Honig, B., Shaw, D.E., Friesner, R.A., A hierarchical approach to all-atom protein loop prediction (2004) Proteins, 55 (2), pp. 351-367. , https://doi.org/10.1002/prot.10613; Jucá, M.M., Cysne Filho, F.M.S., de Almeida, J.C., Mesquita, D.D.S., Barriga, J.R.M., Dias, K.C.F., Barbosa, T.M., Vasconcelos, S.M.M., Flavonoids: Biological activities and therapeutic potential (2018) Natural Product Research, 16, pp. 1-14; Kiat, T.S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N., Rahman, N.A., Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease (2006) Bioorganic & Medicinal Chemistry Letters, 16 (12), pp. 3337-3340. , https://doi.org/10.1016/j.bmcl.2005.12.075; Kumar, V., Tan, K.P., Wang, Y.M., Lin, S.W., Liang, P.H., Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors (2016) Bioorganic & Medicinal Chemistry, 24. , https://doi.org/10.1016/j.bmc.2016.05.013; Kuo, C.-J., Chi, Y.-H., Hsu, J.-A., Liang, P.-H., Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate (2004) Biochemical and Biophysical Research Communications, 318, pp. 862-867. , https://doi.org/10.1016/j.bbrc.2004.04.098; Lin, H., Lan, J., Guan, M., Sheng, F., Zhang, H., Spectroscopic investigation of interaction between mangiferin and bovine serum albumin (2009) Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73, pp. 936-941; Liu, Y.C., Huang, V., Chao, T.C., Hsiao, C.D., Lin, A., Chang, M.F., Chow, L.P., Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease (2005) Biochemical and Biophysical Research Communications, 333, pp. 194-199; Mesel-Lemoine, M., Millet, J., Vidalain, P.-O., Law, H., Vabret, A., Lorin, V., Tangy, F., A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes (2012) Journal of Virology, 86 (14), pp. 7577-7587. , https://doi.org/10.1128/JVI.00269-12; Nakamura, K., Someya, Y., Kumasaka, T., Ueno, G., Yamamoto, M., Sato, T., Tanaka, N., A norovirus protease structure provides insights into active and substrate binding site integrity (2005) Journal of Virology, 79 (21), pp. 13685-13693. , https://doi.org/10.1128/JVI.79.21.13685-13693.2005; Neddle, D., Lountos, G.T., Waugh, D.S., Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity (2015) Acta Cryst., D71, pp. 1102-1111; Pal, H.C., Pearlman, R.L., Afaq, F., Fisetin and its role in chronic diseases (2016) Advances in Experimental Medicine and Biology, 928, pp. 213-244; Rani, N., Bharti, S., Krishnamurthy, B., Bhatia, J., Sharma, C., Amjad Kamal, M., Singh Arya, D., Pharmacological properties and therapeutic potential of naringenin: A citrus flavonoid of pharmaceutical promise (2016) Current Pharmaceutical Design, 22 (28), pp. 4341-4359. , https://doi.org/10.2174/1381612822666160530150936; Seo, D.J., Choi, C., Inhibitory mechanism of five natural flavonoids against murine norovirus (2017) Phytomedicine, 30, pp. 59-66. , https://doi.org/10.1016/j.phymed.2017.04.011; Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., Farid, R., Novel procedure for modeling ligand/receptor induced fit effects (2006) Journal of Medicinal Chemistry, 49 (2), pp. 534-553. , https://doi.org/10.1021/jm050540c; Van Puyvelde, L., De Kimpe, N., Costa, J., Munyjabo, V., Nyirankuliza, S., Hakizamungu, E., Schamp, N., Isolation of flavonoids and a chalcone from Helichrysum odoratissimum and synthesis of helichrysetin (1989) Journal of Natural Products, 52 (3), pp. 629-633. , https://doi.org/10.1021/np50063a025; Wu, A., Wang, Y.I., Zeng, C., Huang, X., Xu, S., Su, C., Guo, D., Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus (2015) Virus Research, 208, pp. 56-65. , https://doi.org/10.1016/j.virusres.2015.05.018; Yadav, V.R., Prasad, S., Sung, B., Aggarwal, B.B., The role of chalcones in suppression of NF-κB-mediated inflammation and cancer (2011) International Immunopharmacology, 11 (3), pp. 295-309. , https://doi.org/10.1016/j.intimp.2010.12.006; Yang, L., Lin, J., Zhou, B., Liu, Y., Zhu, B., Activity of compounds from Taxillus sutchuenensis as inhibitors of HCV NS3 serine protease (2017) Natural Product Research, 31 (4), pp. 487-491; Zakaryan, H., Arabyan, E., Oo, A., Zandi, K., Flavonoids: Promising natural compounds against viral infections (2017) Archives of Virology, 162 (9), pp. 2539-2551. , https://doi.org/10.1007/s00705-017-3417-y","Shin, D.H.; College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha Womans UniversitySouth Korea; email: dhshin55@ewha.ac.kr",,"Blackwell Publishing Ltd",17470277,,CBDDA,"31436895","English","Chem. Biol. Drug Des.",Article,"Final",Open Access,Scopus,2-s2.0-85073793068 "Haverkamp A.-K., Bosch B.J., Spitzbarth I., Lehmbecker A., Te N., Bensaid A., Segalés J., Baumgärtner W.","57202726084;7003681993;14016746000;24450846500;57205248002;7005940684;7005525215;7203023235;","Detection of MERS-CoV antigen on formalin-fixed paraffin-embedded nasal tissue of alpacas by immunohistochemistry using human monoclonal antibodies directed against different epitopes of the spike protein",2019,"Veterinary Immunology and Immunopathology","218",, 109939,"","",,,"10.1016/j.vetimm.2019.109939","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072214199&doi=10.1016%2fj.vetimm.2019.109939&partnerID=40&md5=af25a2fdc0046a7cdcfe12b719201ea6","Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany; Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL 3584, Netherlands; Center for Systems Neuroscience, Hannover, 30559, Germany; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, 08193, Spain; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain","Haverkamp, A.-K., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany; Bosch, B.J., Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, CL 3584, Netherlands; Spitzbarth, I., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany, Center for Systems Neuroscience, Hannover, 30559, Germany; Lehmbecker, A., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany, Center for Systems Neuroscience, Hannover, 30559, Germany; Te, N., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Bensaid, A., IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Segalés, J., Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, 08193, Spain, UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain; Baumgärtner, W., Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, 30559, Germany, Center for Systems Neuroscience, Hannover, 30559, Germany","Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one third of human patients. In recent years, several investigators developed protective antibodies which could be used as prophylaxis in prospective human epidemics. In the current study, eight human monoclonal antibodies (mAbs) with neutralizing and non-neutralizing capabilities, directed against different epitopes of the MERS-coronavirus (MERS-CoV) spike (MERS-S) protein, were investigated with regard to their ability to immunohistochemically detect respective epitopes on formalin-fixed paraffin-embedded (FFPE) nasal tissue sections of MERS-CoV experimentally infected alpacas. The most intense immunoreaction was detected using a neutralizing antibody directed against the receptor binding domain S1B of the MERS-S protein, which produced an immunosignal in the cytoplasm of ciliated respiratory epithelium and along the apical membranous region. A similar staining was obtained by two other mAbs which recognize the sialic acid-binding domain and the ectodomain of the membrane fusion subunit S2, respectively. Five mAbs lacked immunoreactivity for MERS-CoV antigen on FFPE tissue, even though they belong, at least in part, to the same epitope group. In summary, three tested human mAbs demonstrated capacity for detection of MERS-CoV antigen on FFPE samples and may be implemented in double or triple immunohistochemical methods. © 2019 Elsevier B.V.","Immunohistochemistry; Middle East respiratory syndrome coronavirus; Monoclonal human antibodies; Spike protein","epitope; formaldehyde; human monoclonal antibody; membrane fusion protein; neutralizing antibody; paraffin; virus antigen; virus spike protein; vitronectin; coronavirus spike glycoprotein; epitope; monoclonal antibody; virus antibody; virus antigen; alpaca; animal tissue; antigen detection; Article; controlled study; immunohistochemistry; immunoreactivity; Middle East respiratory syndrome coronavirus; nasal tissue; nonhuman; receptor binding; respiratory epithelium; animal; chemistry; human; immunology; Middle East respiratory syndrome coronavirus; New World camelid; nose; prospective study; virology; Animals; Antibodies, Monoclonal; Antibodies, Viral; Antigens, Viral; Camelids, New World; Epitopes; Formaldehyde; Humans; Immunohistochemistry; Middle East Respiratory Syndrome Coronavirus; Nose; Paraffin Embedding; Prospective Studies; Spike Glycoprotein, Coronavirus","Adney, D.R., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Infection, replication, and transmission of Middle East respiratory syndrome coronavirus in alpacas (2016) Emerg. Infect. Dis., 22, pp. 1031-1037; Adney, D.R., Brown, V.R., Porter, S.M., Bielefeldt-Ohmann, H., Hartwig, A.E., Bowen, R.A., Inoculation of goats, sheep, and horses with MERS-CoV does not result in productive viral shedding (2016) Viruses, 8, p. 230; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20, pp. 1999-2005; Agrawal, A.S., Ying, T., Tao, X., Garron, T., Algaissi, A., Wang, Y., Wang, L., Tseng, C.T., Passive transfer of a germline-like neutralizing human monoclonal antibody protects transgenic mice against lethal Middle East respiratory syndrome coronavirus infection (2016) Sci. Rep., 6, p. 31629; Corman, V.M., Ithete, N.L., Richards, L.R., Schoeman, M.C., Preiser, W., Drosten, C., Drexler, J.F., Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat (2014) J. Virol., 88, pp. 11297-11303; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 10473-10478; Cui, J., Eden, J.-S., Holmes, E.C., Wang, L.-F., Adaptive evolution of bat dipeptidyl peptidase 4 (DPP4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus (2013) Virol. J., 10. , 304-304; de Wit, E., Feldmann, F., Horne, E., Martellaro, C., Haddock, E., Bushmaker, T., Rosenke, K., Feldmann, H., Domestic pig unlikely reservoir for MERS-CoV (2017) Emerg. Infect. Dis., 23, pp. 985-988; de Wit, E., Munster, V.J., MERS-CoV: the intermediate host identified? (2013) Lancet Infect. Dis., 13, pp. 827-828; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Duraiyan, J., Govindarajan, R., Kaliyappan, K., Palanisamy, M., Applications of immunohistochemistry (2012) J. Pharm BioAllied Sci, 4, pp. 307-309; Falzarano, D., Kamissoko, B., de Wit, E., Maiga, O., Cronin, J., Samake, K., Traore, A., Feldmann, H., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14, pp. 140-145; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81; Haverkamp, A.K., Lehmbecker, A., Spitzbarth, I., Widagdo, W., Haagmans, B.L., Segales, J., Vergara-Alert, J., Baumgartner, W., Experimental infection of dromedaries with Middle East respiratory syndrome-coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase 4 (2018) Sci. Rep., 8, p. 9778; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D.K.W., Peiris, M., Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound. Emerg. Dis., 64, pp. 344-353; Houser, K.V., Gretebeck, L., Ying, T., Wang, Y., Vogel, L., Lamirande, E.W., Bock, K.W., Subbarao, K., Prophylaxis with a Middle East respiratory syndrome coronavirus (MERS-CoV)-specific human monoclonal antibody protects rabbits from MERS-CoV infection (2016) J. Infect. Dis., 213, pp. 1557-1561; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6; Johnson, R.F., Bagci, U., Keith, L., Tang, X., Mollura, D.J., Zeitlin, L., Qin, J., Marasco, W.A., 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012 (2016) Virology, 490, pp. 49-58; Li, W., Hulswit, R.J.G., Widjaja, I., Raj, V.S., McBride, R., Peng, W., Widagdo, W., Bosch, B.-J., Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. E8508-E8517; Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Yan, J., A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein (2015) Cell Res., 25, pp. 1237-1249; Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Gao, G.F., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 (2013) Nature, 500, pp. 227-231; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., AlHakeem, R., Lipkin, W.I., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Mou, H., Raj, V.S., van Kuppeveld, F.J., Rottier, P.J., Haagmans, B.L., Bosch, B.J., The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies (2013) J. Virol., 87, pp. 9379-9383; Munster, V.J., Adney, D.R., van Doremalen, N., Brown, V.R., Miazgowicz, K.L., Milne-Price, S., Bushmaker, T., Bowen, R.A., Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis) (2016) Sci. Rep., 6, p. 21878; Pallesen, J., Wang, N., Corbett, K.S., Wrapp, D., Kirchdoerfer, R.N., Turner, H.L., Cottrell, C.A., McLellan, J.S., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. E7348-E7357; Pascal, K.E., Coleman, C.M., Mujica, A.O., Kamat, V., Badithe, A., Fairhurst, J., Hunt, C., Kyratsous, C.A., Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 8738-8743; Qiu, H., Sun, S., Xiao, H., Feng, J., Guo, Y., Tai, W., Wang, Y., Zhou, Y., Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection (2016) Antiviral Res., 132, pp. 141-148; Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Muller, M.A., Dijkman, R., Muth, D., Haagmans, B.L., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC (2013) Nature, 495, pp. 251-254; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill., 18, p. 20662; Reusken, C.B., Schilp, C., Raj, V.S., De Bruin, E., Kohl, R.H., Farag, E.A., Haagmans, B.L., Koopmans, M.P., MERS-CoV infection of alpaca in a region where MERS-CoV is endemic (2016) Emerg. Infect. Dis., 22, pp. 1129-1131; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Muller, M.A., Corman, V.M., Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012-2015 (2017) Emerg. Infect. Dis., 23, pp. 550-551; Shi, S.-R., Shi, Y., Taylor, C.R., Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades (2011) J. Histochem. Cytochem., 59, pp. 13-32; Smedley, R.C., Patterson, J.S., Miller, R., Massey, J.P., Wise, A.G., Maes, R.K., Wu, P., Kiupel, M., Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos) (2007) BMC Infect Dis., 7, p. 49; Tang, X.C., Agnihothram, S.S., Jiao, Y., Stanhope, J., Graham, R.L., Peterson, E.C., Avnir, Y., Marasco, W.A., Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. E2018-2026; van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T.M., Raj, V.S., Zaki, A.M., Osterhaus, A.D., Fouchier, R.A., Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans (2012) MBio, 3; Vergara-Alert, J., van den Brand, J.M., Widagdo, W., Munoz, M., Raj, S., Schipper, D., Solanes, D., Segales, J., Livestock susceptibility to infection with Middle East respiratory syndrome coronavirus (2017) Emerg. Infect. Dis., 23, pp. 232-240; Walls, A.C., Tortorici, M.A., Bosch, B.J., Frenz, B., Rottier, P.J.M., DiMaio, F., Rey, F.A., Veesler, D., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer (2016) Nature, 531, pp. 114-117; Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Wang, X., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 (2013) Cell Res., 23, pp. 986-993; Widjaja, I., Wang, C., van Haperen, R., Gutiérrez-Álvarez, J., van Dieren, B., Okba, N.M.A., Raj, V.S., Bosch, B.-J., Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein (2019) Emerg. Microbes Infect., 8, pp. 516-530; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Zumla, A., Hui, D.S., Perlman, S., Middle east respiratory syndrome (2015) Lancet, 386, pp. 995-1007","Baumgärtner, W.; Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Germany; email: Wolfgang.Baumgaertner@tiho-hannover.de",,"Elsevier B.V.",01652427,,VIIMD,"31526954","English","Vet. Immunol. Immunopathol.",Article,"Final",Open Access,Scopus,2-s2.0-85072214199 "Dighe A., Jombart T., Van Kerkhove M.D., Ferguson N.","57193584612;24331843100;15761388700;7103246319;","A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination",2019,"Epidemics","29",, 100350,"","",,3,"10.1016/j.epidem.2019.100350","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066987063&doi=10.1016%2fj.epidem.2019.100350&partnerID=40&md5=0d005c09d12bad6e6aeaf7b48e4c6427","MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Bloomsbury, Keppel St, London, WC1E 7HT, United Kingdom; UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom; Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, Geneva, CH-1211, Switzerland","Dighe, A., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Jombart, T., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Bloomsbury, Keppel St, London, WC1E 7HT, United Kingdom, UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom; Van Kerkhove, M.D., Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, Geneva, CH-1211, Switzerland; Ferguson, N., MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom","Human infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is driven by recurring dromedary-to-human spill-over events, leading decision-makers to consider dromedary vaccination. Dromedary vaccine candidates in the development pipeline are showing hopeful results, but gaps in our understanding of the epidemiology of MERS-CoV in dromedaries must be addressed to design and evaluate potential vaccination strategies. We aim to bring together existing measures of MERS-CoV infection in dromedary camels to assess the distribution of infection, highlighting knowledge gaps and implications for animal vaccination. We systematically reviewed the published literature on MEDLINE, EMBASE and Web of Science that reported seroprevalence and/or prevalence of active MERS-CoV infection in dromedary camels from both cross-sectional and longitudinal studies. 60 studies met our eligibility criteria. Qualitative syntheses determined that MERS-CoV seroprevalence increased with age up to 80–100% in adult dromedaries supporting geographically widespread endemicity of MERS-CoV in dromedaries in both the Arabian Peninsula and countries exporting dromedaries from Africa. The high prevalence of active infection measured in juveniles and at sites where dromedary populations mix should guide further investigation – particularly of dromedary movement – and inform vaccination strategy design and evaluation through mathematical modelling. © 2019 The Authors","Dromedary camels; MERS-CoV; Prevalence of infection; Seroprevalence","Middle East respiratory syndrome coronavirus vaccine; unclassified drug; virus RNA; virus vaccine; age; Article; dromedary; geography; immunity; juvenile; Middle East respiratory syndrome; Middle East respiratory syndrome coronavirus; nonhuman; population and population related phenomena; priority journal; reinfection; seroprevalence; systematic review; vaccination; virus shedding","Abdussamad, A., Holtz, W., Gauly, M., Suleiman, M., Bello, M., Reproduction and breeding in dromedary camels: insights from pastoralists in some selected villages of the Nigeria-Niger corridor (2011) Livest. Res. Rural Dev., 23 (8). , http://www.lrrd.org/lrrd23/8/abdu23178.htm, 2011; Adney, D.R., van Doremalen, N., Brown, V.R., Bushmaker, T., Scott, D., de Wit, E., Bowen, R.A., Munster, V.J., Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels (2014) Emerg. Infect. Dis., 20 (12), pp. 1999-2005; Al-Tawfiq, J.A., Memish, Z.A., Lack of seasonal variation of middle east respiratory syndrome coronavirus (MERS-CoV) (2018) Travel Med. Infect. Dis.; Al Hammadi, Z.M., Chu, D.K., Eltahir, Y.M., Al Hosani, F., Al Mulla, M., Tarnini, W., Hall, A.J., Poon, L.L., Asymptomatic MERS-CoV infection in humans possibly linked to infected dromedaries imported from Oman to United Arab Emirates, may 2015 (2015) Emerg. Infect. Dis., 21 (12), pp. 2197-2200; Al Salihi, S.F., Alrodhan, M.A., Phylogenetic analysis of MERSCoV in human and camels in Iraq (2017) Int. J. Pharm. Res. Allied Sci., 6 (1), pp. 120-129; Alagaili, A.N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S.C., Burbelo, P.D., de Wit, E., Lipkin, W.I., Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia (2014) Erratum appears in MBio., 2014 (2), p. 5. , e01002-14 Note: Burbelo, Peter D [added]]."" mBio 5(2): e00884-00814; Alexandersen, S., Kobinger, G.P., Soule, G., Wernery, U., Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005 (2014) Transbound. Emerg. Dis., 61 (2), pp. 105-108; Alfuwaires, M., Altaher, A., Alhafufi, A., Kandeel, M., Middle east respiratory syndrome coronavirus in healthy and diseased dromedaries (2017) J. Camel Pract. Res., 24 (3), pp. 217-220; Alharbi, N.K., Padron-Regalado, E., Thompson, C.P., Kupke, A., Wells, D., Sloan, M.A., Grehan, K., Gilbert, S.C., ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice (2017) Vaccine, 35 (30), pp. 3780-3788; Ali, A., Derar, D., Alsharari, A., Alsharari, A., Khalil, R., Almundarij, T.I., Alboti, Y., Al-Sobayil, F., Factors affecting reproductive performance in dromedary camel herds in Saudi Arabia (2018) Trop. Anim. Health Prod., 50 (5), pp. 1155-1160; Ali, M., El-Shesheny, R., Kandeil, A., Shehata, M., Elsokary, B., Gomaa, M., Hassan, N., Makonnen, Y.J., Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016 (2017) Euro Surveill., 2017 (May 19), p. 22. , PMID: 28537549."" Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin 22(11): 16(Erratum appears in); Ali, M.A., Shehata, M.M., Gomaa, M.R., Kandeil, A., El-Shesheny, R., Kayed, A.S., El-Taweel, A.N., Kayali, G., Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt (2017) Emerg. Microbes Infect., 6 (1), p. e1; Almutairi, S.E., Boujenane, I., Musaad, A., Awad-Acharari, F., Non-genetic factors influencing reproductive traits and calving weight in Saudi camels (2010) Trop. Anim. Health Prod., 42 (6), pp. 1087-1092; Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., Madani, T.A., Evidence for camel-to-human transmission of MERS coronavirus (2014) N. Engl. J. Med., 370 (26), pp. 2499-2505; Breban, R., Riou, J., Fontanet, A., Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk (2013) Lancet, 382 (9893), pp. 694-699; Broder, C.C., Xu, K., Nikolov, D.B., Zhu, Z., Dimitrov, D.S., Middleton, D., Pallister, J., Wang, L.-F., A treatment for and vaccine against the deadly Hendra and Nipah viruses (2013) Antiviral Res., 100 (1), pp. 8-13; Busani, L., Toson, M., Stegeman, A., Dalla Pozza, M., Comin, A., Mulatti, P., Cecchinato, M., Marangon, S., Vaccination reduced the incidence of outbreaks of low pathogenicity avian influenza in northern Italy (2009) Vaccine, 27 (27), pp. 3655-3661; Cauchemez, S., Van Kerkhove, M.D., Riley, S., Donnelly, C.A., Fraser, C., Ferguson, N.M., Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart (2013) Euro Surveill., 18 (24); Chan, S.M., Damdinjav, B., Perera, R.A., Chu, D.K., Khishgee, B., Enkhbold, B., Poon, L.L., Peiris, M., Absence of MERS-Coronavirus in Bactrian camels, Southern Mongolia, November 2014 (2015) Emerg. Infect. Dis., 21 (7), pp. 1269-1271; Chu, D.K., Oladipo, J.O., Perera, R.A., Kuranga, S.A., Chan, S.M., Poon, L.L., Peiris, M., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Nigeria, 2015 (2015) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 20 (49); Chu, D.K.W., Hui, K.P.Y., Perera, R., Miguel, E., Niemeyer, D., Zhao, J.C., Channappanavar, R., Peiris, M., MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity (2018) Proc. Natl. Acad. Sci. U. S. A., 115 (12), pp. 3144-3149; Chu, D.K.W., Poon, L.L.M., Gomaa, M.M., Shehata, M.M., Perera, R., Abu Zeid, D., El Rifay, A.S., Kayali, G., MERS coronaviruses in dromedary camels, Egypt (2014) Emerg. Infect. Dis., 20 (6), pp. 1049-1053; Clarivate Analytics, EndnoteX8.2. (Version X8.2) [Software] Clarivate Analytics. 2018 (2018); Clarivate Analytics, Web of Science. [Database] Clarivate Analytics (2018), http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=D12CW4GmjGuwicdeqUC&preferencesSaved=, Available from: [Accessed 31st December 2018]; Corman, V., Eckerle, I., Bleicker, T., Zaki, A., Landt, O., Eschbach-Bludau, M., van Boheemen, S., Bestebroer, T., Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction (2012) Eurosurveillance, 17 (39); Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Said, M.Y., Gluecks, I., Muller, M.A., Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 (2014) Emerg. Infect. Dis., 20 (8), pp. 1319-1322; Crameri, G., Durr, P.A., Barr, J., Yu, M., Graham, K., Williams, O.J., Kayali, G., Wang, L.F., Absence of MERS-CoV antibodies in feral camels in Australia: implications for the pathogen's origin and spread (2015) One Health, 1, pp. 76-82; David, D., Rotenberg, D., Khinich, E., Erster, O., Bardenstein, S., van Straten, M., Okba, N.M.A., Davidson, I., Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels (2018) One Health, 5, pp. 65-68; Deem, S.L., Fevre, E.M., Kinnaird, M., Browne, A.S., Muloi, D., Godeke, G.J., Koopmans, M., Reusken, C.B., Serological evidence of MERS-CoV antibodies in dromedary camels (Camelus dromedaries) in Laikipia County, Kenya (2015) PLoS One, 10 (10). , [Erratum appears in PLoS One. 2017 May 18;12 (5):e0178310; PMID: 28542448] [Electronic Resource]; Dudas, G., Carvalho, L.M., Rambaut, A., Bedford, T., MERS-CoV spillover at the camel-human interface.[Erratum appears in Elife. 2018 Apr 19;7: PMID: 29669683] (2018) eLife, 7 (1), p. 16; Elsevier, B.V., Embase Classic+Embase 1947 to 2018 December 31. [Database] Ovid Wolters Kluwer (2018), http://ovidsp.tx.ovid.com/sp-3.32.0a/ovidweb.cgi?&S=BCCGFPDLLKDDGPKGNCDKCCLBGDPNAA00&New+Database=Single%7c4, Available from: [Accessed 31st December 2018]; Falzarano, D., Kamissoko, B., de Wit, E., Maiga, O., Cronin, J., Samake, K., Traore, A., Feldmann, H., Dromedary camels in northern Mali have high seropositivity to MERS-CoV (2017) One Health, 3, pp. 41-43; FAO, FAOSTAT [Internet]. 2016 (2016), http://www.fao.org/faostat/en, Available from: /. [Accessed September 2018]; Farag, E.A., Reusken, C.B., Haagmans, B.L., Mohran, K.A., Stalin Raj, V., Pas, S.D., Voermans, J., Koopmans, M.P., High proportion of MERS-CoV shedding dromedaries at slaughterhouse with a potential epidemiological link to human cases, Qatar 2014 (2015) Infect. Ecol. Epidemiol., 5, p. 28305; Fournié, G., Tripodi, A., Nguyen, T.T.T., Tran, T.T., Bisson, A., Pfeiffer, D.U., Newman, S.H., Investigating poultry trade patterns to guide avian influenza surveillance and control: a case study in Vietnam (2016) Sci. Rep., 6, p. 29463; Fukushi, S., Fukuma, A., Kurosu, T., Watanabe, S., Shimojima, M., Shirato, K., Iwata-Yoshikawa, N., Saijo, M., Characterization of novel monoclonal antibodies against the MERS-coronavirus spike protein and their application in species-independent antibody detection by competitive ELISA (2018) J. Virol. Methods, 251, pp. 22-29; Gardner, E.G., Kelton, D., Poljak, Z., Van Kerkhove, M., von Dobschuetz, S., Greer, A.L., A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome (2019) BMC Infect. Dis., 19 (1), p. 113; Gilbert, M., Golding, N., Zhou, H., Wint, G.W., Robinson, T.P., Tatem, A.J., Lai, S., Guo, D., Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia (2014) Nat. Commun., 5, p. 4116; FAO-OIE-WHO MERS Technical Working Group, MERS: progress on the global response, remaining challenges and the way forward (2018) Antiviral Res., 159, pp. 35-44; Gutierrez, C., Tejedor-Junco, M.T., Gonzalez, M., Lattwein, E., Renneker, S., Presence of antibodies but no evidence for circulation of MERS-CoV in dromedaries on the Canary Islands, 2015 (2015) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 20 (37); Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M., Myers, R., Godeke, G.J., Koopmans, M.P., Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation (2014) Lancet Infect. Dis., 14 (2), pp. 140-145; Haagmans, B.L., van den Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Osterhaus, A.D., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351 (6268), pp. 77-81; Halvorson, D.A., Prevention and management of avian influenza outbreaks: experiences from the United States of America (2009) Revue scientifique et technique, 28 (1), p. 359; Harcourt, J.L., Rudoler, N., Tamin, A., Leshem, E., Rasis, M., Giladi, M., Haynes, L.M., The prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) antibodies in dromedary camels in Israel (2018) Zoonoses Public Health, 31, p. 31; Harrath, R., Abu Duhier, F.M., Sero-prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) specific antibodies in dromedary camels in Tabuk, Saudi Arabia (2018) J. Med. Virol., 90 (8), pp. 1285-1289; Hemida, M.G., Alnaeem, A., Chu, D.K., Perera, R.A., Chan, S.M., Almathen, F., Yau, E., Peiris, M., Longitudinal study of Middle East Respiratory Syndrome coronavirus infection in dromedary camel herds in Saudi Arabia, 2014-2015 (2017) Emerg. Microbes Infect., 6 (6), p. e56; Hemida, M.G., Chu, D.K.W., Poon, L.L.M., Perera, R., Alhammadi, M.A., Ng, H.Y., Siu, L.Y., Peiris, M., MERS coronavirus in dromedary camel herd, Saudi Arabia (2014) Emerg. Infect. Dis., 20 (7), pp. 1231-1234; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D.K., Peiris, M., Dromedary camels and the transmission of middle east respiratory syndrome coronavirus (MERS-CoV) (2017) Transbound. Emerg. Dis., 64 (2), pp. 344-353; Hemida, M.G., Perera, R.A., Al Jassim, R.A., Kayali, G., Siu, L.Y., Wang, P., Chu, K.W., Peiris, M., Seroepidemiology of Middle East respiratory syndrome (MERS) coronavirus in Saudi Arabia (1993) and Australia (2014) and characterisation of assay specificity (2014) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 19 (23), p. 12; Hemida, M.G., Perera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Peiris, M., Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013 (2013) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 18 (50), p. 20659; Islam, A., Epstein, J.H., Rostal, M.K., Islam, S., Rahman, M.Z., Hossain, M.E., Uzzaman, M.S., Daszak, P., Middle east respiratory syndrome coronavirus antibodies in dromedary camels, Bangladesh, 2015 (2018) Emerg. Infect. Dis., 24 (5), pp. 926-928; Kasem, S., Qasim, I., Al-Doweriej, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Saleh, M., Magouz, A., The prevalence of Middle East respiratory Syndrome coronavirus (MERS-CoV) infection in livestock and temporal relation to locations and seasons (2018) J. Infect. Public Health, 29, p. 29; Kasem, S., Qasim, I., Al-Hufofi, A., Hashim, O., Alkarar, A., Abu-Obeida, A., Gaafer, A., Perera, R., Cross-sectional study of MERS-CoV-specific RNA and antibodies in animals that have had contact with MERS patients in Saudi Arabia (2018) J. Infect. Public Health, 11 (3), pp. 331-338; Khalafalla, A.I., Lu, X., Al-Mubarak, A.I., Dalab, A.H., Al-Busadah, K.A., Erdman, D.D., MERS-CoV in upper respiratory tract and lungs of dromedary camels, Saudi Arabia, 2013-2014 (2015) Emerg. Infect. Dis., 21 (7), pp. 1153-1158; Kiambi, S., Corman, V.M., Sitawa, R., Githinji, J., Ngoci, J., Ozomata, A.S., Gardner, E., Kimutai, J., Detection of distinct MERS-Coronavirus strains in dromedary camels from Kenya, 2017 (2018) Emerg. Microbes Infect., 7 (1), p. 195; Lavan, R.P., King, A.I.M., Sutton, D.J., Tunceli, K., Rationale and support for a one Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings (2017) Vaccine, 35 (13), pp. 1668-1674; Li, Y., Khalafalla, A.I., Paden, C.R., Yusof, M.F., Eltahir, Y.M., Al Hammadi, Z.M., Tao, Y., Tong, S., Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates (2017) PLoS One, 12 (9). , [Electronic Resource]; Liu, R., Wen, Z., Wang, J., Ge, J., Chen, H., Bu, Z., Absence of Middle East respiratory syndrome coronavirus in Bactrian camels in the West Inner Mongolia autonomous Region of China: surveillance study results from July 2015 (2015) Emerg. Microbes Infect., 4 (no pagination), p. e73; Memish, Z.A., Cotten, M., Meyer, B., Watson, S.J., Alsahafi, A.J., Al Rabeeah, A.A., Corman, V.M., Drosten, C., Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013 (2014) Emerg. Infect. Dis., 20 (6), pp. 1012-1015; Meyer, B., Juhasz, J., Barua, R., Das Gupta, A., Hakimuddin, F., Corman, V.M., Muller, M.A., Nagy, P., Time course of MERS-CoV infection and immunity in dromedary camels (2016) Emerg. Infect. Dis., 22 (12), pp. 2171-2173; Meyer, B., Muller, M.A., Corman, V.M., Reusken, C.B., Ritz, D., Godeke, G.J., Lattwein, E., Drosten, C., Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013 (2014) Emerg. Infect. Dis., 20 (4), pp. 552-559; Miguel, E., Chevalier, V., Ayelet, G., Ben Bencheikh, M.N., Boussini, H., Chu, D.K., El Berbri, I., Peiris, M., Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015 (2017) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 22 (13), p. 30; Miguel, E., Perera, R.A., Baubekova, A., Chevalier, V., Faye, B., Akhmetsadykov, N., Ng, C.Y., Peiris, M., Absence of middle east respiratory syndrome coronavirus in camelids, Kazakhstan, 2015 (2016) Emerg. Infect. Dis., 22 (3), pp. 555-557; Mohran, K.A., Farag, E., Reusken, C., Raj, V.S., Lamers, M.M., Pas, S.D., Voermans, J., Koopmans, M.P.G., The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reverse-transcription polymerase chain reaction (2016) Revue Scientifique Et Technique-Office International Des Epizooties, 35 (3), pp. 905-911; Monath, T.P., Vaccines against diseases transmitted from animals to humans: a one health paradigm (2013) Vaccine, 31 (46), pp. 5321-5338; Muhairi, S.A., Hosani, F.A., Eltahir, Y.M., Mulla, M.A., Yusof, M.F., Serhan, W.S., Hashem, F.M., Abdelazim, A.S., Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates (2016) Virus Genes, 52 (6), pp. 848-854; Muller, M.A., Corman, V.M., Jores, J., Meyer, B., Younan, M., Liljander, A., Bosch, B.J., Drosten, C., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997 (2014) Emerg. Infect. Dis., 20 (12), pp. 2093-2095; Munyua, P., Corman, V.M., Bitek, A., Osoro, E., Meyer, B., Muller, M.A., Lattwein, E., Njenga, M.K., No serologic evidence of middle east respiratory syndrome coronavirus infection among camel farmers exposed to highly seropositive camel herds: a household linked study, Kenya, 2013 (2017) Am. J. Trop. Med. Hyg., 96 (6), pp. 1318-1324; National Library of Medicine, National Library of Medicine Ovid MEDLINE(R) ALL 1946 to December 31 (2018), http://ovidsp.tx.ovid.com/sp-3.32.0a/ovidweb.cgi?&S=BCCGFPDLLKDDGPKGNCDKCCLBGDPNAA00&New+Database=Single%7c7, [Database] Ovid Wolters Kluwer. Available from: [Accessed 31st December 2018]; Nowotny, N., Kolodziejek, J., Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013 (2014) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 19 (16), p. 20781; OIE - World Organisation for Animal Health, Infection With Coronavirus in Camels, Iran (2014), http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=16411, [Internet]. Available from: [Accessed December 2018]; OIE, World Organisation for Animal Health, Immediate Notification of MERS-CoV in Kuwait [Internet]. 2014 (2014), http://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=15407, Available from: [Accessed December 2018]; OIE, World Organisation for Animal Health, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Case Definition for Reporting to OIE (2017), http://www.oie.int/scientific-expertise/specific-information-and-recommendations/mers-cov, [Internet] Available from /. [Accessed December 2018]; Ommeh, S., Zhang, W., Zohaib, A., Chen, J., Zhang, H., Hu, B., Ge, X.-Y., Obanda, V., Genetic evidence of middle east respiratory syndrome coronavirus (MERS-Cov) and widespread seroprevalence among camels in Kenya (2018) Virol. Sin., pp. 1-9; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Elsayed, E.A., Al Muhairi, S.S.M., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65 (3), pp. 322-333; Perera, R.A., Wang, P., Gomaa, M.R., El-Shesheny, R., Kandeil, A., Bagato, O., Siu, L.Y., Kayali, G., Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013 (2013) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 18 (36), p. pii=20574; Raj, V.S., Farag, E.A., Reusken, C.B., Lamers, M.M., Pas, S.D., Voermans, J., Smits, S.L., Haagmans, B.L., Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 (2014) Emerg. Infect. Dis., 20 (8), pp. 1339-1342; Reusken, C., Haagmans, B.L., Muller, M.A., Gutierrez, C., Godeke, G.J., Meyer, B., Muth, D., Koopmans, M.P.G., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study (2013) Lancet Infect. Dis., 13 (10), pp. 859-866; Reusken, C.B., Ababneh, M., Raj, V.S., Meyer, B., Eljarah, A., Abutarbush, S., Godeke, G.J., Koopmans, M.P., Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013 (2013) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 18 (50), p. 20662; Reusken, C.B., Farag, E.A., Jonges, M., Godeke, G.J., El-Sayed, A.M., Pas, S.D., Raj, V.S., Koopmans, M.P., Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014 (2014) Euro Surveill. Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin, 19 (23), p. 12; Reusken, C.B.E.M., Messadi, L., Feyisa, A., Ularamu, H., Godeke, G.J., Danmarwa, A., Dawo, F., Koopmans, M.P.G., Geographic distribution of MERS coronavirus among dromedary camels, Africa (2014) Emerg. Infect. Dis., 20 (8), pp. 1370-1374; Sabir, J.S., Lam, T.T., Ahmed, M.M., Li, L., Shen, Y., Abo-Aba, S.E., Qureshi, M.I., Guan, Y., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia (2016) Science, 351 (6268), pp. 81-84; Saqib, M., Sieberg, A., Hussain, M.H., Mansoor, M.K., Zohaib, A., Lattwein, E., Muller, M.A., Corman, V.M., Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012-2015 (2017) Emerg. Infect. Dis., 23 (3), pp. 550-551; Shirato, K., Azumano, A., Nakao, T., Hagihara, D., Ishida, M., Tamai, K., Yamazaki, K., Matsuyama, S., Middle East respiratory syndrome coronavirus infection not found in camels in Japan (2015) Jpn. J. Infect. Dis., 68 (3), pp. 256-258; Sikkema, R., Farag, E., Islam, M., Atta, M., Reusken, C., Al-Hajri, M.M., Koopmans, M., Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review (2019) Epidemiol. Infect., 147; So, R.T., Perera, R.A., Oladipo, J.O., Chu, D.K., Kuranga, S.A., Chan, K.-H., Lau, E.H., Webby, R.J., Lack of serological evidence of Middle East respiratory syndrome coronavirus infection in virus exposed camel abattoir workers in Nigeria, 2016 (2018) Euro Surveill., 23 (32); Thwiny, H.T., Al Hamed, T.A., Nazzal, A.R., Seroepidemiological study of Middle East respiratory syndrome (MERS) virus infection in Iraqi dromedary camels (2018) Vet. Arch., 88 (2), pp. 191-200; van Doremalen, N., Hijazeen, Z.S., Holloway, P., Al Omari, B., McDowell, C., Adney, D., Talafha, H.A., Richt, J.A., High prevalence of middle east respiratory coronavirus in young dromedary camels in Jordan (2017) Vector Borne Zoonotic Dis., 17 (2), pp. 155-159; Wernery, U., Corman, V.M., Wong, E.Y., Tsang, A.K., Muth, D., Lau, S.K., Khazanehdari, K., Drosten, C., Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014 (2015) Emerg. Infect. Dis., 21 (6), pp. 1019-1022; Wernery, U., El Rasoul, I.H., Wong, E.Y., Joseph, M., Chen, Y., Jose, S., Tsang, A.K., Woo, P.C., A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age (2015) Emerg. Microbes Infect., 4 (12), p. e74; World Bank, The World Bank: Land Area [Internet] (2016), https://data.worldbank.org/indicator/AG.LND.TOTL.K2, Available from: . [Accessed September 2018]; World Health Organisation, WHO MERS-CoV Global Summary and Assessment of Risk [Internet]. Geneva: WHO (2018), https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1, Available from: [Accessed September 2018]; World Health Organisation, Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, Interim Guidance [Internet] (2018), https://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-testing/en, World Health Organization (WHO/MERS/LAB/15.1/Rev1/2018). Licence: CC BY-NC-SA 3.0 IGO Geneva, Switzerland Available from: / [Accessed September 2018]; Younan, M., Bornstein, S., Gluecks, I.V., MERS and the dromedary camel trade between Africa and the Middle East (2016) Trop. Anim. Health Prod., 48 (6), pp. 1277-1282; Yusof, M.F., Eltahir, Y.M., Serhan, W.S., Hashem, F.M., Elsayed, E.A., Marzoug, B.A., Abdelazim, A.S., Al Muhairi, S.S., Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates (2015) Virus Genes, 50 (3), pp. 509-513; Yusof, M.F., Queen, K., Eltahir, Y.M., Paden, C.R., Al Hammadi, Z., Tao, Y., Li, Y., Al Muhairi, S.S., Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates (2017) Emerg. Microbes Infect., 6 (11), p. e101; Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367 (19), pp. 1814-1820; Zohaib, A., Saqib, M., Athar, M.A., Chen, J., Khan, S., Taj, Z., Sadia, H., Qureshi, M.A., Countrywide survey for MERS-Coronavirus antibodies in dromedaries and humans in Pakistan (2018) Virol. Sin., 33 (5), pp. 410-417","Dighe, A.; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, United Kingdom; email: a.dighe16@imperial.ac.uk",,"Elsevier B.V.",17554365,,,"31201040","English","Epidemics",Article,"Final",Open Access,Scopus,2-s2.0-85066987063 "Shehata M.M., Kandeil A., Mostafa A., Mahmoud S.H., Gomaa M.R., El-Shesheny R., Webby R., Kayali G., Ali M.A.","55857867300;37034258700;35091393800;57191913086;55535974200;36456637800;35448064800;24366561300;55262803600;","A recombinant influenza A/H1N1 carrying a short immunogenic peptide of MERS-CoV as bivalent vaccine in BALB/c mice",2019,"Pathogens","8","4", 281,"","",,,"10.3390/pathogens8040281","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076294645&doi=10.3390%2fpathogens8040281&partnerID=40&md5=e3605aedb5950a7b5c289b7135c8be24","Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, United States; Human Link, Baabda, 1109, Lebanon","Shehata, M.M., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt; Kandeil, A., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt; Mostafa, A., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt; Mahmoud, S.H., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt; Gomaa, M.R., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt; El-Shesheny, R., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Webby, R., Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Kayali, G., Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, United States, Human Link, Baabda, 1109, Lebanon; Ali, M.A., Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Cairo, 12622, Egypt","Middle East Respiratory Syndrome Coronavirus (MERS-CoV) became a global human health threat since its first documentation in humans in 2012. An efficient vaccine for the prophylaxis of humans in hotspots of the infection (e.g., Saudi Arabia) is necessary but no commercial vaccines are yet approved. In this study, a chimeric DNA construct was designed to encode an influenza A/H1N1 NA protein which is flanking immunogenic amino acids (aa) 736–761 of MERS-CoV spike protein. Using the generated chimeric construct, a novel recombinant vaccine strain against pandemic influenza A virus (H1N1pdm09) and MERS-CoV was generated (chimeric bivalent 5 + 3). The chimeric bivalent 5 + 3 vaccine strain comprises a recombinant PR8-based vaccine, expressing the PB1, HA, and chimeric NA of pandemic 2009 H1N1. Interestingly, an increase in replication efficiency of the generated vaccine strain was observed when compared to the PR8-based 5 + 3 H1N1pdm09 vaccine strain that lacks the MERS-CoV spike peptide insert. In BALB/c mice, the inactivated chimeric bivalent vaccine induced potent and specific neutralizing antibodies against MERS-CoV and H1N1pdm09. This novel approach succeeded in developing a recombinant influenza virus with potential use as a bivalent vaccine against H1N1pdm09 and MERS-CoV. This approach provides a basis for the future development of chimeric influenza-based vaccines against MERS-CoV and other viruses. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","H1N1pdm; Influenza vaccine; MERS-CoV; Reverse genetics","inactivated vaccine; protein; recombinant vaccine; sialidase; viral protein; virus vaccine; animal cell; animal experiment; animal model; animal tissue; antibody titer; Article; biosafety; body weight change; clinical effectiveness; controlled study; female; genetic transfection; hemagglutination inhibition; infectious dose; influenza A; Influenza A virus (H1N1); MDCK cell line; Middle East respiratory syndrome coronavirus; mouse; nonhuman; polymerase chain reaction; PRNT50; reverse genetics; survival analysis; TCID50; vaccination; vaccine immunogenicity; vaccine strain; virus detection; virus infection; virus isolation; virus neutralization; virus recombinant; virus replication; virus transmission","Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in saudi arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Gardner, E.G., Kelton, D., Poljak, Z., van Kerkhove, M., von Dobschuetz, S., Greer, A.L., A case-crossover analysis of the impact of weather on primary cases of middle east respiratory syndrome (2019) BMC Infect. Dis., 19; Kim, E., Okada, K., Kenniston, T., Raj, V.S., Alhajri, M.M., Farag, E.A., Alhajri, F., Gambotto, A., Immunogenicity of an adenoviral-based middle east respiratory syndrome coronavirus vaccine in balb/c mice (2014) Vaccine, 32, pp. 5975-5982; Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Tan, W., Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of middle east respiratory syndrome coronavirus (2015) Immunology, 145, pp. 476-484; Shehata, M.M., Gomaa, M.R., Ali, M.A., Kayali, G., Middle east respiratory syndrome coronavirus: A comprehensive review (2016) Front. Med., 10, pp. 120-136; Volz, A., Kupke, A., Song, F., Jany, S., Fux, R., Shams-Eldin, H., Schmidt, J., Becker, S., Protective efficacy of recombinant modified vaccinia virus ankara (Mva) delivering middle east respiratory syndrome coronavirus spike glycoprotein (2015) J. Virol., 89, pp. 8651-8656; Song, F., Fux, R., Provacia, L.B., Volz, A., Eickmann, M., Becker, S., Osterhaus, A.D., Sutter, G., Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies (2013) J. Virol., 87, pp. 11950-11954; Zhao, J., Li, K., Wohlford-Lenane, C., Agnihothram, S.S., Fett, C., Zhao, J., Gale, M.J., Jr., Gallagher, T., Rapid generation of a mouse model for middle east respiratory syndrome (2014) Proc. Natl. Acad. Sci. USA., 111, pp. 4970-4975; Liu, R., Wang, J., Shao, Y., Wang, X., Zhang, H., Shuai, L., Ge, J., Bu, Z., A recombinant vsv-vectored mers-cov vaccine induces neutralizing antibody and t cell responses in rhesus monkeys after single dose immunization (2018) Antivir. Res., 150, pp. 30-38; Hause, B.M., Collin, E.A., Liu, R., Huang, B., Sheng, Z., Lu, W., Wang, D., Li, F., Characterization of a novel influenza virus in cattle and swine: Proposal for a new genus in the orthomyxoviridae family (2014) Mbio, 5, pp. e00031-e00014; Shaw, M.L., Palese, P.O., (2013), 1, pp. 1151-1185. , 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA; Mostafa, A., Abdelwhab, E.M., Mettenleiter, T.C., Pleschka, S., Zoonotic potential of influenza a viruses: A comprehensive overview (2018) Viruses, 10, p. 497; Hamilton, J.R., Vijayakumar, G., Palese, P., A recombinant antibody-expressing influenza virus delays tumor growth in a mouse model (2018) Cell Rep., 22, pp. 1-7; Kotomina, T., Korenkov, D., Matyushenko, V., Prokopenko, P., Rudenko, L., Isakova-Sivak, I., Live attenuated influenza vaccine viral vector induces functional cytotoxic t-cell immune response against foreign cd8+ t-cell epitopes inserted into na and ns1 genes using the 2a self-cleavage site (2018) Hum. Vaccines Immunother., 14, pp. 2964-2970; Yang, Y., Deng, Y., Wen, B., Wang, H., Meng, X., Lan, J., Gao, G.F., Tan, W., The amino acids 736-761 of the mers-cov spike protein induce neutralizing antibodies: Implications for the development of vaccines and antiviral agents (2014) Viral Immunol, 27, pp. 543-550; El-Shesheny, R., Kandeil, A., Bagato, O., Maatouq, A.M., Moatasim, Y., Rubrum, A., Song, M.S., Kayali, G., Molecular characterization of avian influenza h5n1 virus in egypt and the emergence of a novel endemic subclade (2014) J. Gen. Virol., 95, pp. 1444-1463; El-Shesheny, R., Kayali, G., Kandeil, A., Cai, Z., Barakat, A.B., Ghanim, H., Ali, M.A., Antigenic diversity and cross-reactivity of avian influenza h5n1 viruses in egypt between 2006 and 2011 (2012) J. Gen. Virol., 93, pp. 2564-2574; Li, J., Arevalo, M.T., Zeng, M., Engineering influenza viral vectors (2013) Bioengineered, 4, pp. 9-14; Grohskopf, L.A., Alyanak, E., Broder, K.R., Walter, E.B., Fry, A.M., Jernigan, D.B., Prevention and control of seasonal influenza with vaccines: Recommendations of the advisory committee on immunization practices—united states, 2019–2020 influenza season (2019) MMWR Recomm. Rep. Morb. Mortal. Wkl. Rep. Recomm. Rep., 68, pp. 1-21; Robertson, J.S., Nicolson, C., Harvey, R., Johnson, R., Major, D., Guilfoyle, K., Roseby, S., Wallis, C., The development of vaccine viruses against pandemic a(H1n1) influenza (2011) Vaccine, 29, pp. 1836-1843; Mostafa, A., Kanrai, P., Ziebuhr, J., Pleschka, S., The pb1 segment of an influenza a virus h1n1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs (2016) J. Gen. Virol., 97, pp. 620-631; Kittel, C., Sereinig, S., Ferko, B., Stasakova, J., Romanova, J., Wolkerstorfer, A., Katinger, H., Egorov, A., Rescue of influenza virus expressing gfp from the ns1 reading frame (2004) Virology, 324, pp. 67-73; Vieira Machado, A., Naffakh, N., Gerbaud, S., van der Werf, S., Escriou, N., Recombinant influenza a viruses harboring optimized dicistronic na segment with an extended native 5' terminal sequence: Induction of heterospecific b and t cell responses in mice (2006) Virology, 345, pp. 73-87; Laserson, U., Vigneault, F., Gadala-Maria, D., Yaari, G., Uduman, M., Vander Heiden, J.A., Kelton, W., Laserson, J., High-resolution antibody dynamics of vaccine-induced immune responses (2014) Proc. Natl. Acad. Sci., 111, pp. 4928-4933; Rosendahl Huber, S.K., Hendriks, M., Jacobi, R.H.J., van de Kassteele, J., Mandersloot-Oskam, J.C., van Boxtel, R.A.J., Wensing, A.M.J., van Beek, J., Immunogenicity of influenza vaccines: Evidence for differential effect of secondary vaccination on humoral and cellular immunity (2019) Front. Immunol., 9, p. 3103; Adney, D.R., Wang, L., van Doremalen, N., Shi, W., Zhang, Y., Kong, W.P., Miller, M.R., de Wit, E., Efficacy of an adjuvanted middle east respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas (2019) Viruses, 11, p. 212; Wang, Y., Tai, W., Yang, J., Zhao, G., Sun, S., Tseng, C.K., Jiang, S., Gao, J., Receptor-binding domain of mers-cov with optimal immunogen dosage and immunization interval protects human transgenic mice from mers-cov infection (2017) Hum. Vaccines Immunother, 13, pp. 1615-1624; Wang, C., Zheng, X., Gai, W., Wong, G., Wang, H., Jin, H., Feng, N., Li, N., Novel chimeric virus-like particles vaccine displaying mers-cov receptor-binding domain induce specific humoral and cellular immune response in mice (2017) Antivir. Res., 140, pp. 55-61; Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., Webster, R.G., A DNA transfection system for generation of influenza a virus from eight plasmids (2000) Proc. Natl. Acad. Sci. USA., 97, pp. 6108-6113; Reed, L.J., Muench, H., A simple method of estimating fifty per cent endpoints (1938) Am. J. Epidemiol, 27, pp. 493-497; Shehata, M.M., Mostafa, A., Teubner, L., Mahmoud, S.H., Kandeil, A., Elshesheny, R., Frantz, R., Osman, A., Bacterial outer membrane vesicles (Omvs)-based dual vaccine for influenza a h1n1 virus and mers-cov (2019) Vaccines, 7, p. 46","Kayali, G.; Department of Epidemiology, Human Genetics, and Environmental Sciences, University of TexasUnited States; email: ghazi@human-link.org",,"MDPI AG",20760817,,,,"English","Pathogens",Article,"Final",Open Access,Scopus,2-s2.0-85076294645 "Hoang V.-T., Ali-Salem S., Belhouchat K., Meftah M., Sow D., Dao T.-L., Ly T.D.A., Drali T., Ninove L., Yezli S., Alotaibi B., Raoult D., Parola P., Pommier de Santi V., Gautret P.","57202332027;57212027680;55607871900;57204619155;6603822766;57208530490;57196149513;55607739300;26656109700;35996197300;55393168700;57208853524;7006212186;26429906300;36893462000;","Respiratory tract infections among French Hajj pilgrims from 2014 to 2017",2019,"Scientific Reports","9","1", 17771,"","",,1,"10.1038/s41598-019-54370-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075712851&doi=10.1038%2fs41598-019-54370-0&partnerID=40&md5=1a0453de6a4c9524bd96c463c376da45","Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal; Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France; The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Aix Marseille Univ, MEPHI, Marseille, France; French Military Center for Epidemiology and Public Health, Marseille, France","Hoang, V.-T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Ali-Salem, S., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Belhouchat, K., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Meftah, M., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Sow, D., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal; Dao, T.-L., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam; Ly, T.D.A., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Drali, T., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Ninove, L., Unité des Virus Émergents (UVE: Aix-Marseille Univ – IRD 190 – Inserm 1207 – IHU Méditerranée Infection), Marseille, France; Yezli, S., The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Alotaibi, B., The Global Centre for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Raoult, D., IHU-Méditerranée Infection, Marseille, France, Aix Marseille Univ, MEPHI, Marseille, France; Parola, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France; Pommier de Santi, V., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France, French Military Center for Epidemiology and Public Health, Marseille, France; Gautret, P., Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU-Méditerranée Infection, Marseille, France","Respiratory tract infections (RTIs) are common among Hajj pilgrims, but risk factors for RTIs and respiratory pathogen acquisition during the Hajj are not clearly identified. Based on previous studies, most frequent pathogens acquired by Hajj pilgrims were investigated: rhinovirus, human coronaviruses, influenza viruses, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Haemophilus influenzae. 485 pilgrims were included. 82.1% presented with RTIs. Respiratory chronic diseases were associated with cough, Influenza-like illness (ILI) and the acquisition of H. influenzae. Vaccination against invasive pneumococcal diseases (IPD) and influenza was associated with a decrease in the acquisition of S. pneumoniae and prevalence of ILI (aRR = 0.53, 95%CI [0.39–0.73] and aRR = 0.69, 95%CI [0.52–0.92] respectively). Individuals carrying rhinovirus and H. influenzae-S. pneumoniae together were respectively twice and five times more likely to have respiratory symptoms. Individual with H. influenzae-K. pneumoniae carriage were twice (p = 0.04) as likely to develop a cough. The use of disposable handkerchiefs was associated with a decrease in the acquisition of S. aureus (aRR = 0.75, 95%CI [0.57–0.97]). Results could be used to identify pilgrims at increased risk of RTIs and acquisition of respiratory pathogens. Results also confirm the effectiveness of influenza and IPD vaccinations in reducing ILI symptoms and acquisition of S. pneumoniae carriage respectively. © 2019, The Author(s).",,,"Gautret, P., Pilgrims from Marseille, France, to Mecca: demographics and vaccination status (2007) J Travel Med., 14, pp. 132-133; Memish, Hajj: infectious disease surveillance and control (2014) Lancet., 383, pp. 2073-2082; Hoang, V.T., Gautret, P., Infectious Diseases and Mass Gatherings (2018) Curr Infect Dis Rep., 20; Al-Tawfiq, J.A., Benkouiten, S., Memish, Z.A., A systematic review of emerging respiratory viruses at the Hajj and possible coinfection with Streptococcus pneumoniae (2018) Travel Med Infect Dis., 23, pp. 6-13; Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Albarrak, A., Gautret, P., Clinical respiratory infections and pneumonia during the Hajj pilgrimage: A systematic review (2019) Travel Med Infect Dis., 28, pp. 15-26; Gautret, P., Benkouiten, S., Al-Tawfiq, J.A., Memish, Z.A., Hajj-associated viral respiratory infections: A systematic review (2016) Travel Med Infect Dis., 14, pp. 92-109; Al-Tawfiq, J.A., Zumla, A., Memish, Z.A., Respiratory tract infections during the annual Hajj: potential risks and mitigation strategies (2013) Curr Opin Pulm Med., 19, pp. 192-197; Alfelali, M., Changes in the prevalence of influenza-like illness and influenza vaccine uptake among Hajj pilgrims: A 10-year retrospective analysis of data (2015) Vaccine., 33, pp. 2562-2569; Edouard, S., Al-Tawfiq, J.A., Memish, Z.A., Yezli, S., Gautret, P., Impact of the Hajj on pneumococcal carriage and the effect of various pneumococcal vaccines (2018) Vaccine., 36, pp. 7415-7422. , COI: 1:CAS:528:DC%2BC1cXhslegsr3L; Benkouiten, S., Brouqui, P., Gautret, P., Non-pharmaceutical interventions for the prevention of respiratory tract infections during Hajj pilgrimage (2014) Travel Med Infect Dis., 12, pp. 429-442; Alqahtani, A.S., Hand hygiene compliance and effectiveness against respiratory infections among Hajj pilgrims: A systematic review (2018) Infect Disord Drug Targets, , https://doi.org/10.2174/1871526518666181001145041; Barasheed, O., Uptake and effectiveness of facemask against respiratory infections at mass gatherings: a systematic review (2016) Int J Infect Dis., 47, pp. 105-111; (2014) Bull Epidemiol Hebdo. Recommandations Sanitaires Pour Les Voyageurs, , http://opac.invs.sante.fr/doc_num.php?explnum_id=9478; (2014) Ministère Des Affaires Sociales, De La Santé Et Des Droits Des Femmes, , https://solidarites-sante.gouv.fr/IMG/pdf/Calendrier_vaccinal_ministere_sante_2014.pdf, Paris. Calendrier des vaccinations et recommandations vaccinales 2014; (2015) Bull Epidemiol Hebdo. Recommandations Sanitaires Pour Les Voyageurs, , http://invs.santepubliquefrance.fr/beh/2015/reco/pdf/2015_reco_1.pdf; (2015) Ministère Des Affaires Sociales, De La Santé Et Des Droits Des Femmes, , http://solidaritessante.gouv.fr/IMG/pdf/Calendrier_vaccinal_2015.pdf, Paris. Calendrier des vaccinations et recommandations vaccinales 2015; (2016) Bull Epidemiol Hebdo. Recommandations Sanitaires Pour Les Voyageurs, , http://opac.invs.sante.fr/doc_num.php?explnum_id=10383; (2016) Ministère Des Affaires Sociales, De La Santé Et Des Droits Des Femmes, , https://www.mesvaccins.net/textes/Calendrier_vaccinal_2016.pdf, Paris. Calendrier des vaccinations et recommandations vaccinales 2016; (2017) Bull Epidemiol Hebdo. Recommandations Sanitaires Pour Les Voyageurs, , http://opac.invs.sante.fr/doc_num.php?explnum_id=10785; (2017) Ministère Des Affaires Sociales, De La Santé Et Des Droits Des Femmes, , https://www.mesvaccins.net/textes/calendrier_vaccinations_2017.pdf, Paris. Calendrier des vaccinations et recommandations vaccinales 2017; Gautret, P., Benkouiten, S., Griffiths, K., Sridhar, S., The inevitable Hajj cough: Surveillance data in French pilgrims, 2012-2014 (2015) Travel Med Infect Dis., 13, pp. 485-489; Memish, Z.A., Mass gathering and globalization of respiratory pathogens during the 2013 Hajj (2015) Clin Microbiol Infect., 6 (571), pp. e1-e8; Razavi, S.M., Mardani, M., Salamati, P., Infectious Diseases and Preventive Measures During Hajj Mass Gatherings: A Review of the Literature (2018) Arch Clin Infect Dis., 13; (2018) Bull Epidemiol Hebdo. Recommandations Sanitaires Pour Les Voyageurs, , https://www.santepubliquefrance.fr/determinants-de-sante/voyage/documents/magazines-revues/bulletin-epidemiologique-hebdomadaire-25-mai-2018-n-hors-serie-recommandations-sanitaires-pour-les-voyageurs-2018; (2018) Ministère Des Affaires Sociales, De La Santé Et Des Droits Des Femmes, , https://solidarites-sante.gouv.fr/IMG/pdf/calendrier_vaccinations_2018.pdf, Paris. Calendrier des vaccinations et recommandations vaccinales 2018; Alfelali, M., Khandaker, G., Booy, R., Rashid, H., Mismatching between circulating strains and vaccine strains of influenza: Effect on Hajj pilgrims from both hemispheres (2016) Hum Vaccin Immunother, 12, pp. 709-715. , &; Health Requirements and Recommendations for Travelers to Saudi Arabia for Hajj and Umrah – 2018/1439H, , http://www.moh.gov.sa/en/hajj/pages/healthregulations.aspx; Benkouiten, S., Respiratory viruses and bacteria among pilgrims during the 2013 Hajj (2014) Emerg Infect Dis., 20, pp. 1821-1827. , COI: 1:CAS:528:DC%2BC28XitVOisL7P; Benkouiten, S., Comparison of nasal swabs with throat swabs for the detection of respiratory viruses by real-time reverse transcriptase PCR in adult Hajj pilgrims (2015) J Infect., 70, pp. 207-210; Atabani, S.F., Active screening and surveillance in the United Kingdom for Middle East respiratory syndrome coronavirus in returning travellers and pilgrims from the Middle East: a prospective descriptive study for the period 2013-2015 (2016) Int J Infect Dis., 47, pp. 10-14; Al-Abdallat, M.M., Acute respiratory infections among returning Hajj pilgrims-Jordan, 2014 (2017) J Clin Virol., 89, pp. 34-37; Marglani, O.A., Acute rhinosinusitis during Hajj season 2014: Prevalence of bacterial infection and patterns of antimicrobial susceptibility (2016) Travel Med Infect Dis., 14, pp. 583-587; Royston, L., Tapparel, C., Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC (2016) Viruses, 8 (1), p. 16; Musher, D.M., How contagious are common respiratory tract infections? (2003) N Engl J Med., 348, pp. 1256-1266; Wertheim, H.F., The role of nasal carriage in Staphylococcus aureus infections (2005) Lancet Infect Dis., 5, pp. 751-762; Wertheim, H.F., Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers (2004) Lancet., 364, pp. 703-705; Corne, P., Marchandin, H., Jonquet, O., Campos, J., Bañuls, A.L., Molecular evidence that nasal carriage of Staphylococcus aureus plays a role in respiratory tract infections of critically ill patients (2005) J Clin Microbiol., 43, pp. 3491-3493. , COI: 1:CAS:528:DC%2BD2MXntlSltb4%3D; Mulcahy, M.E., McLoughlin, R.M., Staphylococcus aureus and Influenza A Virus: Partners in Coinfection (2016) Mbio., , https://doi.org/10.1128/mBio.02068-16; Momenah, A.M., Moraxella catarrhalis as a Respiratory Tract Pathogen during Umrah and Hajj Seasons (2018) Egyptian Journal of Medical Microbiology., 27, pp. 59-64; Rashid, H., Influenza and the Hajj: defining influenza-like illness clinically (2008) Int J Infect Dis., 12, pp. 102-103; (2018) Body Mass Index – BMI, , http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi; Ninove, N., RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests (2011) PLoS One., 6. , COI: 1:CAS:528:DC%2BC3MXitlSgsLk%3D; McNutt, L.A., Wu, C., Xue, X., Hafner, J.P., Estimating the relative risk in cohort studies and clinical trials of common outcomes (2003) Am J Epidemiol., 157, pp. 940-943","Gautret, P.; Aix Marseille Univ, IRD, AP-HM, SSA, VITROMEFrance; email: philippe.gautret@club-internet.fr",,"Nature Research",20452322,,,"31780750","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85075712851 "Gu W.-Y., Li Y., Liu B.-J., Wang J., Yuan G.-F., Chen S.-J., Zuo Y.-Z., Fan J.-H.","56883667400;57208633136;57195528278;57210790777;57209474356;57209473266;19639571000;36779854000;","Short hairpin RNAs targeting M and N genes reduce replication of porcine deltacoronavirus in ST cells",2019,"Virus Genes","55","6",,"795","801",,,"10.1007/s11262-019-01701-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85071441434&doi=10.1007%2fs11262-019-01701-y&partnerID=40&md5=6f834909aab8160e88ac04af1c5edac6","College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Animal Diseases Control Center of Hebei, Shijiazhuang, 050053, China","Gu, W.-Y., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China, Animal Diseases Control Center of Hebei, Shijiazhuang, 050053, China; Li, Y., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Liu, B.-J., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Wang, J., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Yuan, G.-F., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Chen, S.-J., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Zuo, Y.-Z., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China; Fan, J.-H., College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China","Porcine deltacoronavirus (PDCoV) is a recently identified coronavirus that causes intestinal diseases in neonatal piglets with diarrhea, vomiting, dehydration, and post-infection mortality of 50–100%. Currently, there are no effective treatments or vaccines available to control PDCoV. To study the potential of RNA interference (RNAi) as a strategy against PDCoV infection, two short hairpin RNA (shRNA)-expressing plasmids (pGenesil-M and pGenesil-N) that targeted the M and N genes of PDCoV were constructed and transfected separately into swine testicular (ST) cells, which were then infected with PDCoV strain HB-BD. The potential of the plasmids to inhibit PDCoV replication was evaluated by cytopathic effect, virus titers, and real-time quantitative RT-PCR assay. The cytopathogenicity assays demonstrated that pGenesil-M and pGenesil-N protected ST cells against pathological changes with high specificity and efficacy. The 50% tissue culture infective dose showed that the PDCoV titers in ST cells treated with pGenesil-M and pGenesil-N were reduced 13.2- and 32.4-fold, respectively. Real-time quantitative RT-PCR also confirmed that the amount of viral RNA in cell cultures pre-transfected with pGenesil-M and pGenesil-N was reduced by 45.8 and 56.1%, respectively. This is believed to be the first report to show that shRNAs targeting the M and N genes of PDCoV exert antiviral effects in vitro, which suggests that RNAi is a promising new strategy against PDCoV infection. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.","Nucleocapsidgene; Porcine deltacoronavirus; RNA interference; Short hairpin RNA; Swine testicular cells","short hairpin RNA; virus RNA; small interfering RNA; viral protein; virus RNA; animal cell; Article; cell specificity; controlled study; Coronavirinae; Coronavirus infection; cytopathogenic effect; deltacoronavirus; gene expression; gene targeting; in vitro study; M gene; N gene; nonhuman; nucleotide sequence; pig; plasmid; porcine deltacoronavirus infection; priority journal; real time polymerase chain reaction; RNA interference; testicular cell line; tissue culture; virus gene; virus inhibition; virus load; virus replication; virus strain; animal; Coronavirinae; diarrhea; genetics; growth, development and aging; male; pathogenicity; pathology; swine disease; testis; veterinary medicine; virology; virus replication; Animals; Coronavirus; Coronavirus Infections; Diarrhea; Male; Plasmids; RNA Interference; RNA, Small Interfering; RNA, Viral; Swine; Swine Diseases; Testis; Viral Proteins; Virus Replication","Liu, B.J., Zuo, Y.Z., Gu, W.Y., Luo, S.X., Shi, Q.K., Hou, L.S., Zhong, F., Fan, J.H., Isolation and phylogenetic analysis of porcine deltacoronavirus from pigs with diarrhoea in Hebei province China (2018) Transbound Emerg Dis, 65 (3), pp. 874-882; Li, G., Chen, Q., Harmon, K.M., Yoon, K.J., Schwartz, K.J., Hoogland, M.J., Gauger, P.C., Zhang, J., Full-length genome sequence of porcine deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announc; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Tang, Y., Newly emerged porcine deltacoronavirus associated with diarrhoea in swine in China: identification, prevalence and full-length genome sequence analysis (2015) Transbound Emerg Dis, 62 (6), pp. 575-580; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Yuen, K.Y., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA (2014) Emerg Infect Dis, 20 (7), pp. 1227-1230; Hu, H., Jung, K., Vlasova, A.N., Chepngeno, J., Lu, Z., Wang, Q., Saif, L.J., Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States (2015) J Clin Microbiol, 53 (5), pp. 1537-1548; Lee, S., Lee, C., Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus (2015) Virus Res, 208, pp. 136-145; Zhai, S.L., Wei, W.K., Li, X.P., Wen, X.H., Zhou, X., Zhang, H., Lv, D.H., Wang, D., Occurrence and sequence analysis of porcine deltacoronaviruses in southern China (2016) Virol J, 13, p. 136; Lee, S., Lee, C., Complete genome characterization of korean porcine deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc; Zhang, Z., Chen, J., Shi, H., Chen, X., Shi, D., Feng, L., Yang, B., Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus (2012) Virol J, 9, p. 225; Arndt, A.L., Larson, B.J., Hogue, B.G., A conserved domain in the coronavirus membrane protein tail is important for virus assembly (2010) J Virol, 84, pp. 11418-11428; Fan, J.H., Zuo, Y.Z., Li, J.H., Pei, L.H., Heterogeneity in membrane protein genes of porcine epidemic diarrhea viruses isolated in China (2012) Virus Genes, 45 (1), pp. 113-117; Chang, C.K., Sue, S.C., Yu, T.H., Hsieh, C.M., Tsai, C.K., Chiang, Y.C., Lee, S.J., Huang, T.H., Modular organization of SARS coronavirus nucleocapsid protein (2006) J Biomed Sci, 13 (1), pp. 59-72; Molenkamp, R., Spaan, W.J., Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal (1997) Virology, 239 (1), pp. 78-86; Shen, H., Zhang, C., Guo, P., Liu, Z., Zhang, J., Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro (2015) Virus Genes, 51 (2), pp. 252-259; Sui, H.Y., Zhao, G.Y., Huang, J.D., Jin, D.Y., Yuen, K.Y., Zheng, B.J., Small interfering RNA targeting M2 gene induces effective and long term inhibition of influenza A virus replication (2009) PLoS ONE, 4 (5); Wang, L., Dai, X., Song, H., Yuan, P., Yang, Z., Dong, W., Song, Z., Inhibition of porcine transmissible gastroenteritis virus infection in porcine kidney cells using short hairpin RNAs targeting the membrane gene (2017) Virus Genes, 53 (2), pp. 226-232; Zhou, F., Liang, S., Chen, A.H., Singh, C.O., Bhaskar, R., Niu, Y.S., Miao, Y.G., A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus (2012) Vet Res Commun, 36 (2), pp. 99-105; Homwong, N., Jarvis, M.C., Lam, H.C., Diaz, A., Rovira, A., Nelson, M., Marthaler, D., Characterization and evolution of porcine deltacoronavirus in the United States (2016) Prev Vet Med, 123, pp. 168-174; Madapong, A., Saeng-Chuto, K., Lorsirigool, A., Temeeyasen, G., Srijangwad, A., Tripipat, T., Wegner, M., Nilubol, D., Complete genome sequence of porcine deltacoronavirus isolated in Thailand in 2015 (2016) Genome Announc; Zhang, J., Porcine deltacoronavirus: overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res, 226, pp. 71-84; Fouad, A.M., Soliman, H., Abdallah, E.S.H., Ibrahim, S., El-Matbouli, M., Elkamel, A.A., In-vitro inhibition of spring viremia of carp virus replication by RNA interference targeting the RNA-dependent RNA polymerase gene (2018) J Virol Methods, 263, pp. 14-19; Man, D.K., Chow, M.Y., Casettari, L., Gonzalez-Juarrero, M., Lam, J.K., Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis (2016) Adv Drug Deliv Rev, 102, pp. 21-32; Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., Conklin, D.S., Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells (2002) Genes Dev, 16, pp. 948-958; Dong, N., Fang, L., Yang, H., Liu, H., Du, T., Fang, P., Wang, D., Xiao, S., Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014 (2016) Vet Microbiol, 196, pp. 98-106","Fan, J.-H.; College of Veterinary Medicine, Agricultural University of HebeiChina; email: jinghui76@163.com",,"Springer New York LLC",09208569,,VIGEE,"31463771","English","Virus Genes",Article,"Final",Open Access,Scopus,2-s2.0-85071441434 "Eggers M.","7004065060;","Infectious Disease Management and Control with Povidone Iodine",2019,"Infectious Diseases and Therapy","8","4",,"581","593",,,"10.1007/s40121-019-00260-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070998711&doi=10.1007%2fs40121-019-00260-x&partnerID=40&md5=866ae12e9b29a4243adeb1f7cd2d6f18","Labor Prof Gisela Enders MVZ GbR, Stuttgart, Germany","Eggers, M., Labor Prof Gisela Enders MVZ GbR, Stuttgart, Germany","With reports of vancomycin-resistant enterococci recently emerging in hospital settings, renewed focus is turning to the importance of multifaceted infection prevention efforts. Careful compliance with established hygiene practices by healthcare workers together with effective antiseptic options is essential for the protection of patients from infectious agents. For over 60 years, povidone iodine (PVP-I) formulations have been shown to limit the impact and spread of infectious diseases with potent antiviral, antibacterial and antifungal effects. In addition to a lack of reported resistance, the benefits of PVP-I include an excellent safety profile and a broad spectrum of effect due to its multimodal action. Studies have shown that hand washing with PVP-I-based antiseptics is effective for the decontamination of skin, while PVP-I mouthwashes and gargles significantly reduce viral load in the oral cavity and the oropharynx. The importance of PVP-I has been emphasised by its inclusion in the World Health Organization’s list of essential medicines, and high potency for virucidal activity has been observed against viruses of significant global concern, including hepatitis A and influenza, as well as the Middle-East Respiratory Syndrome and Sudden Acute Respiratory Syndrome coronaviruses. Together with its diverse applications in antimicrobial control, broad accessibility across the globe, and outstanding safety and tolerability profile, PVP-I offers an affordable, potent, and widely available antiseptic option. Funding Mundipharma Singapore Holding Pte Limited. © 2019, The Author(s).","Infection control; Infectious disease; Povidone iodine; Sterility; Viral outbreak",,"Wassilew, N., Seth-Smith, H.M.B., Rolli, E., Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018 (2018) Euro Surveill, 23 (29), p. 1800351; Rubinstein, E., Keynan, Y., Vancomycin-resistant enterococci (2013) Crit Care Clin, 29 (4), pp. 841-852. , PID: 24094380; Prematunge, C., MacDougall, C., Johnstone, J., Adomako, K., Lam, F., Robertson, J., VRE and VSE bacteremia outcomes in the era of effective VRE therapy: a systematic review and metaanalysis (2016) Infect Control Hosp Epidemiol, 37 (1), pp. 26-35. , PID: 26434609; Bell, J.M., Turnidge, J.D., Coombs, G.W., Daley, D.A., Gottlieb, T., Robson, J., George, N., Australian group on antimicrobial resistance Australian Enterobacteriaceae sepsis outcome programme annual report, 2014 (2016) Commun Dis Intell, 40 (2), pp. E229-E235; Pidot, S.J., Gao, W., Buultjens, A.H., Monk, I.R., Guerillot, R., Carter, G.P., Increasing tolerance of hospital Enterococcus faecium to handwash alcohols (2018) Sci Transl Med, 10, p. 6115; Gottrup, F., Apelqvist, J., Bjarnsholt, T., Cooper, R., Moore, Z., Peters, E.J.G., Probst, S., EWMA document: antimicrobials and non-healing wounds: evidence, controversies and suggestions (2013) J Wound Care, 22 (Sup5), pp. S1-S89. , COI: 1:STN:280:DC%2BC2crlt1Kjug%3D%3D, PID: 23921580; Lachapelle, J.M., Castel, O., Fueyo, C.A., Antiseptics in the era of bacterial resistance: a focus on povidone iodine (2013) Future Med, 10, pp. 579-592. , COI: 1:CAS:528:DC%2BC3sXhtlaltLvE; Pierard-Franchimont, C., Paquet, P., Arrese, J.E., Pierard, G.E., Healing rate and bacterial necrotizing vasculitis in venous leg ulcers (1997) Dermatology, 194, pp. 383-387. , COI: 1:STN:280:DyaK2szps1Grsg%3D%3D, PID: 9252771; Bigliardi, P.L., Alsagoff, S.A.L., El-Kafrawi, H.Y., Povidone iodine in wound healing: a review of current concepts and practice (2017) Int J Surg, 44, pp. 260-268. , PID: 28648795; Eggers, M., Eickmann, M., Kowalski, K., Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses (2015) BMC Infect Dis, 15, p. 375. , PID: 26381737; Ripa, S., Bruno, R., Reder, R., (2002) Clinical applications of Povidone-Iodine as a topical antimicrobial handbook of topical antimicrobials industrial applications industrial applications in consumer products and pharmaceuticals, , CRC, Boca Raton; (1995) Biosafety—reference manual, , 2, American Industrial Hygiene Association, Akron; Miller, B., (1986) Laboratory safety: principles and practices, , American Society for Microbiology, Washington, D.C; Eggers, M., Koburger-Janssen, T., Ward, L.S., Newby, C., Müller, S., Bactericidal and virucidal activity of Povidone-Iodine and chlorhexidine gluconate cleansers in an in vivo hand hygiene clinical simulation study (2018) Infect Dis Ther, 7 (2), pp. 235-247. , PID: 29761329; Herruzo, R., Vizcaino, M.J., Yela, R., Surgical hand preparation with chlorhexidine soap or povidone iodine: new methods to increase immediate and residual effectiveness, and provide a safe alternative to alcohol solutions (2018) J Hosp Infect, 98 (4), pp. 365-368. , COI: 1:STN:280:DC%2BC1M7ot1WhtQ%3D%3D, PID: 29107630; Schreier, H., Erdos, G., Reimer, K., Molecular effects of povidone-iodine on relevant microorganisms: an electron-microscopic and biochemical study (1997) Dermatology, 195, pp. 111-116. , PID: 9403268; Mayer, S., Boos, M., Beyer, A., Fluit, A.C., Schmitz, F.J., Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin resistant and -susceptible European isolates of Staphylococcus aureus (2001) J Antimicrob Chemother, 47 (6), pp. 896-897. , COI: 1:CAS:528:DC%2BD3MXksFChsrY%3D, PID: 11389128; Skurray, R.A., Rouch, D.A., Lyon, B.R., Multiresistant Staphylococcus aureus: genetics and evolution of epidemic Australian strains (1998) J Antimicrob Chemother, 21, pp. 19-39; Coia, J.E., Duckworth, G.J., Edwards, D.I., Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities (2006) J Hosp Infect, 63S, p. S1eS44; Kunisada, T., Yamada, K., Oda, S., Hara, O., Investigation on the efficacy of povidone-iodine against antiseptic-resistant species (1997) Dermatology, 195, pp. 14-18. , PID: 9403250; Houang, E.T., Gilmore, O.J.A., Reid, C., Absence of bacterial resistance to povidone iodine (1976) J Clin Pathol, 29, pp. 752-754. , COI: 1:CAS:528:DyaE28XltFOgs74%3D, PID: 821972; Wand, M.E., Bock, L.J., Bonney, L.C., Sutton, J.M., Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine (2017) Antimicrob Agents Chemother, 61 (1). , PID: 27799211; Boyce, J.M., Pittet, D., Centers for Disease Control and Prevention. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force (2002) Morbid Mortal Wkly Rep., 51 (RR-16), pp. 1-45; Eggers, M., Koburger-Janssen, T., Eickmann, M., Zorn, J., In vitro bactericidal and virucidal efficacy of Povidone-Iodine gargle/mouthwash against respiratory and oral tract pathogens (2018) Infect Dis Ther, 7, pp. 249-259. , PID: 29633177; (2014) Influenza (Seasonal), , http://www.who.int/mediacentre/factsheets/fs211/en/, Fact sheet no 211; Sriwilaijaroen, N., Wilairat, P., Hiramatsu, H., Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities (2009) Virol J, 6, p. 124. , PID: 19678928; Kawana, R., Kitamurd, T., Nakagomi, O., Inactivation of human viruses by Povidone-lodine in comparison with other antiseptics (1997) Dermatology, 195, pp. 29-35. , PID: 9403252; Ogata, J., Minami, K., Miyamoto, H., Horishita, T., Ogawa, M., Sata, T., Taniguchi, H., Gargling with povidone-iodine reduces the transport of bacteria during oral intubation (2004) Can J Anesth, 51 (9), pp. 932-936. , PID: 15525622; Edwards, R., Harding, K.G., Bacteria and wound healing (2004) Curr Opin Infect Dis, 17, pp. 91-96. , PID: 15021046; Paddle-Ledinek, J.E., Nasa, Z., Cleland, H.J., Effect of different wound dressings on cell viability and proliferation (2006) Plast Reconstr Surg, 117, pp. 110S-118S. , COI: 1:CAS:528:DC%2BD2sXmsV2htA%3D%3D, PID: 16799377; Boyce, S.T., Warden, G.D., Holder, I.A., Cytotoxicity testing of topical antimicrobial agents on human keratinocytes and fibroblasts for cultured skin grafts (1995) J Burn Care Rehabil, 16, pp. 97-103. , COI: 1:STN:280:DyaK2M3psVSltQ%3D%3D, PID: 7775517; Welch, D., Buonanno, M., Grilj, V., Shuryak, I., Crickmore, C., Bigelow, A.W., Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases (2018) Sci Rep, 8, p. 2752. , PID: 29426899; Larson, E., APIC Guideline for handwashing and hand antisepsis in health care settings (1995) Am J Infect Control, 4, pp. 251-269; Niedner, R., Cytotoxicity and sensitization of povidone-iodine and other frequently used anti-infective agents (1997) Dermatology, 195, pp. 89-92. , PID: 9403263; Steinmann, J., Paulmann, D., Becker, B., Bischoff, B., Steinmann, E., Steinmann, J., Comparison of virucidal activity of alcohol-based hand sanitizers versus antimicrobial hand soaps in vitro and in vivo (2012) J Hosp Infect, 82, pp. 277-280. , COI: 1:STN:280:DC%2BC38bpvF2lsg%3D%3D, PID: 23009803; Eggers, M., Koburger-Janssen, T., Ward, L.S., Newby, C., Muller, S., Bactericidal and virucidal activity of povidone-iodine and chlorhexidine gluconate cleansers in an in vivo hand hygiene clinical simulation study (2018) Infect Dis Ther; Larson, E.L., APIC guidelines for handwashing and hand antisepsis in health care settings (1995) Am J Infect Control, 23 (4), pp. 251-269. , COI: 1:STN:280:DyaK28%2Fis1KgtA%3D%3D, PID: 7503437; Lachapelle, J.M., Castel, O., Casado, A.F., Leroy, B., Micali, G., Tennstedt, D., Lambert, J., Antiseptics in the era of bacterial resistance: a focus on povidone iodine (2013) Clin Pract, 10 (5), p. 579. , COI: 1:CAS:528:DC%2BC3sXhtlaltLvE; Nagatake, T., Ahmed, K., Oishi, K., Prevention of respiratory infections by povidone-iodine gargle (2002) Dermatology, 204, pp. 32-36. , COI: 1:CAS:528:DC%2BD38XktFKntr8%3D, PID: 12011518; Shiraishi, T., Nakagawa, Y., Evaluation of the bactericidal activity of povidone-iodine and commercially available gargle preparations (2002) Dermatology, 204, pp. 37-41. , COI: 1:CAS:528:DC%2BD38XktFKntrw%3D, PID: 12011519; Kramer, A., Dissemond, J., Kim, S., Willy, C., Mayer, D., Papke, R., Tuchmann, F., Assadian, O., Consensus on wound antisepsis: update 2018 (2018) Skin Pharmacol Physiol, 31 (1), pp. 28-58. , COI: 1:CAS:528:DC%2BC1cXhs1yksLs%3D, PID: 29262416; Cherniack, E.P., Bugs as drugs, Part 1: insects: the” new” alternative medicine for the 21st century (2010) Altern Med Rev, 15 (2), pp. 124-135. , PID: 20806997; Nobukuni, K., Hayakawa, N., Namba, R., Ihara, Y., Sato, K., Takada, H., Hayabara, T., Kawahara, S., The influence of long-term treatment with povidone-iodine on thyroid function (1997) Dermatology, 195, pp. 69-72. , PID: 9403259","Eggers, M.; Labor Prof Gisela Enders MVZ GbRGermany; email: eggers@labor-enders.de",,"Adis",21938229,,,,"English","Infect. Dis. Ther.",Review,"Final",Open Access,Scopus,2-s2.0-85070998711 "Kim Y.G., Moon H., Kim S.-Y., Lee Y.-H., Jeong D.-W., Kim K., Moon J.Y., Lee Y.-K., Cho A., Lee H.-S., Park H.C., Lee S.-H.","54412418300;57164276800;56664536400;56344334200;57155802000;57164118000;7403231326;55716130600;56506366900;57208177422;34771965700;55890136000;","Inevitable isolation and the change of stress markers in hemodialysis patients during the 2015 MERS-CoV outbreak in Korea",2019,"Scientific Reports","9","1", 5676,"","",,1,"10.1038/s41598-019-41964-x","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064057123&doi=10.1038%2fs41598-019-41964-x&partnerID=40&md5=74dfc44ba0eaaa158ed3adcedfeac5f2","Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Hallym University College of Medicine, Internal Medicine, Seoul, South Korea; Hallym University College of Medicine, Psychiatry, Seoul, South Korea; Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, South Korea","Kim, Y.G., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Moon, H., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Kim, S.-Y., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Lee, Y.-H., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Jeong, D.-W., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Kim, K., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Moon, J.Y., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea; Lee, Y.-K., Hallym University College of Medicine, Internal Medicine, Seoul, South Korea; Cho, A., Hallym University College of Medicine, Internal Medicine, Seoul, South Korea; Lee, H.-S., Hallym University College of Medicine, Psychiatry, Seoul, South Korea; Park, H.C., Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, South Korea; Lee, S.-H., Division of Nephrology, Kyung Hee University College of Medicine, Seoul, South Korea","During the outbreak of Middle East respiratory syndrome coronavirus(MERS-CoV) in 2015, one hemodialysis patient was infected with MERS-CoV, and the remaining hemodialysis(HD) patients (n = 83) and medical staff (n = 12) had to undergo dialysis treatment in an isolated environment. This study was performed to investigate the effects of stress caused by dialysis treatment under isolation. Plasma samples from the HD patients and medical staff were collected at the time of isolation(M0), the following month(M1), and three months after isolation(M3). Parameters for stress included circulating cell-free genomic DNA(ccf-gDNA), circulating cell-free mitochondria DNA(ccf-mtDNA), and pentraxin-3(PTX-3). Decreased values of Hct, kt/v and ca x p were recovered after the end of two weeks of isolation. The levels of ccf-gDNA and ccf-mtDNA were the highest at M0 and decreased gradually in both HD patients and the medical staff. The normalization of ccf-gDNA and ccf-mtDNA was significantly delayed in HD patients compared with the response in the medical staff. PTX-3 increased only in HD patients and was highest at M0, and it then gradually decreased. Medical isolation and subnormal quality of care during the MERS outbreak caused extreme stress in HD patients. Plasma cell-free DNA and PTX-3 seems to be good indicators of stress and quality of care in HD patients. © 2019, The Author(s).",,,"Assiri, A., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N Engl J Med, 369, pp. 407-416; Moon, S.Y., Middle East Respiratory Syndrome Coronavirus Transmission in Dialysis Unit and Infection Control Interventions in Korea (2016) Infect Control Hosp Epidemiol, 37, pp. 1514-1516; Butt, A.N., Swaminathan, R., Overview of circulating nucleic acids in plasma/serum (2008) Ann N Y Acad Sci, 1137, pp. 236-242; Czamanski-Cohen, J., Decrease in cell free DNA levels following participation in stress reduction techniques among women undergoing infertility treatment (2014) Arch Womens Ment Health, 17, pp. 251-253; Lindqvist, D., Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder (2018) Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 43, pp. 1557-1564; Haller, N., Circulating, cell-free DNA as a marker for exercise load in intermittent sports (2018) PloS one, 13; Cao, H., Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients (2014) PloS one, 9; Tovbin, D., Circulating cell-free DNA in hemodialysis patients predicts mortality (2012) Nephrol Dial Transplant, 27, pp. 3929-3935; Alles, V.V., Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes (1994) Blood, 84, pp. 3483-3493. , COI: 1:CAS:528:DyaK2MXitV2hur4%3D, PID: 7949102; Meijers, B.K., p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients (2009) Clinical journal of the American Society of Nephrology: CJASN, 4, pp. 1932-1938; Kandouz, S., Mohamed, A.S., Zheng, Y., Sandeman, S., Davenport, A., Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration (2016) Hemodialysis international. International Symposium on Home Hemodialysis, 20, pp. 610-617; Ro, J.S., Lee, J.S., Kang, S.C., Jung, H.M., Worry experienced during the 2015 Middle East Respiratory Syndrome (MERS) pandemic in Korea (2017) PloS one, 12; Kim, J.S., Choi, J.S., Factors Influencing Emergency Nurses’ Burnout During an Outbreak of Middle East Respiratory Syndrome Coronavirus in Korea (2016) Asian Nurs Res (Korean Soc Nurs Sci), 10, pp. 295-299; Atamaniuk, J., Kopecky, C., Skoupy, S., Saemann, M.D., Weichhart, T., Apoptotic cell-free DNA promotes inflammation in haemodialysis patients (2012) Nephrol Dial Transplant, 27, pp. 902-905; Jeong, D.W., Effect of blood pressure and glycemic control on the plasma cell-free DNA in hemodialysis patients (2015) Kidney Res Clin Pract, 34, pp. 201-206; Nakahira, K., Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: Derivation and validation (2013) Plos Med, 10. , https://doi.org/10.1371/journal.pmed.1001577, discussion e1001577; Zhang, Q., Circulating mitochondrial DAMPs cause inflammatory responses to injury (2010) Nature, 464, pp. 104-107; Nagata, S., Nagase, H., Kawane, K., Mukae, N., Fukuyama, H., Degradation of chromosomal DNA during apoptosis (2003) Cell Death Differ, 10, pp. 108-116; Viorritto, I.C., Nikolov, N.P., Siegel, R.M., Autoimmunity versus tolerance: can dying cells tip the balance? (2007) Clin Immunol, 122, pp. 125-134; Carracedo, J., Cell apoptosis and hemodialysis-induced inflammation (2002) Kidney Int, pp. 89-93. , https://doi.org/10.1046/j.1523-1755.61.s80.17.x; Kato, S., Aspects of immune dysfunction in end-stage renal disease (2008) Clinical journal of the American Society of Nephrology: CJASN, 3, pp. 1526-1533; Picard, M., Juster, R.P., McEwen, B.S., Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids (2014) Nature reviews. Endocrinology, 10, pp. 303-310; Cai, N., Molecular signatures of major depression (2015) Current biology: CB, 25, pp. 1146-1156; Burbeck, R., Coomber, S., Robinson, S.M., Todd, C., Occupational stress in consultants in accident and emergency medicine: a national survey of levels of stress at work (2002) Emerg Med J, 19, pp. 234-238. , COI: 1:STN:280:DC%2BD383jsVWjtA%3D%3D; Horowitz, M., Wilner, N., Alvarez, W., Impact of Event Scale: a measure of subjective stress (1979) Psychosom Med, 41, pp. 209-218. , COI: 1:STN:280:DyaE1M3kslGjug%3D%3D; Reynolds, D.L., Understanding, compliance and psychological impact of the SARS quarantine experience (2008) Epidemiol Infect, 136, pp. 997-1007; Klouche, M., Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells (2004) Atherosclerosis, 175, pp. 221-228; Tong, M., Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality (2007) Clinical journal of the American Society of Nephrology: CJASN, 2, pp. 889-897; Boehme, M., Pentraxin 3 is elevated in haemodialysis patients and is associated with cardiovascular disease (2007) Nephrol Dial Transplant, 22, pp. 2224-2229; Quan, H., Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries (2011) American journal of epidemiology, 173, pp. 676-682; Clinical practice guidelines for hemodialysis adequacy, update 2006 (2006) Am J Kidney Dis, 48, pp. 2-90. , https://doi.org/10.1053/j.ajkd.2006.03.051; Al, Z.M., Ali, B., Al Toubi, M., HPLC-fluorescence method for measurement of the uremic toxin indoxyl sulfate in plasma (2013) Journal of chromatographic science, 51, pp. 40-43; Nga, T.V., The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens (2010) BMC Infect Dis, 10","Lee, S.-H.; Division of Nephrology, Kyung Hee University College of MedicineSouth Korea; email: lshkidney@khu.ac.kr",,"Nature Publishing Group",20452322,,,"30952879","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85064057123 "To K.K.W., Chan K.-H., Ho J., Pang P.K.P., Ho D.T.Y., Chang A.C.H., Seng C.W., Yip C.C.Y., Cheng V.C.C., Hung I.F.N., Yuen K.-Y.","14323807300;57207851346;8685214100;57202857640;56970520000;57208838888;57208839182;14016999800;23670479400;7006103457;36078079100;","Respiratory virus infection among hospitalized adult patients with or without clinically apparent respiratory infection: a prospective cohort study",2019,"Clinical Microbiology and Infection","25","12",,"1539","1545",,,"10.1016/j.cmi.2019.04.012","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065922865&doi=10.1016%2fj.cmi.2019.04.012&partnerID=40&md5=0596c836588d8f5cbfdb47cbb60d18b1","Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong; State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong","To, K.K.W., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China, Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong; Chan, K.-H., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Ho, J., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Pang, P.K.P., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Ho, D.T.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Chang, A.C.H., Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Seng, C.W., Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yip, C.C.Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong; Cheng, V.C.C., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong; Hung, I.F.N., Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Yuen, K.-Y., Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China, Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong, State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong","Objectives: To determine the viral epidemiology and clinical characteristics of patients with and without clinically apparent respiratory tract infection. Methods: This prospective cohort study was conducted during the 2018 winter influenza season. Adult patients with fever/respiratory symptoms (fever/RS group) were age- and sex-matched with patients without fever/RS (non-fever/RS group) in a 1:1 ratio. Respiratory viruses were tested using NxTAG™ Respiratory Pathogen Panel IVD, a commercially-available multiplex PCR panel. Results: A total of 214 acutely hospitalized patients were included in the final analysis, consisting of 107 with fever/RS (fever/RS group), and 107 age- and sex-matched patients without fever/RS (non-fever/RS group). Respiratory viruses were detected in 34.1% (73/214) of patients, and co-infection occurred in 7.9% (17/214) of patients. The incidence of respiratory virus was higher in the fever/RS group than in the non-fever/RS group (44.9% (48/107) versus 23.4% (25/107), p 0.001). Influenza B virus, enterovirus/rhinovirus and coronaviruses were detected more frequently in the fever/RS group, whereas parainfluenza virus 4B and adenovirus were detected more frequently in the non-fever/RS group. Among the non-fever/RS group, chest discomfort was more common among patients tested positive for respiratory viruses than those without respiratory virus detected (44% (11/25) versus 22% (18/82), p 0.04). Conclusions: Respiratory viruses can be frequently detected among hospitalized patients without typical features of respiratory tract infection. These patients may be a source of nosocomial outbreaks. © 2019 European Society of Clinical Microbiology and Infectious Diseases","Adenovirus; Cardiac complications; Influenza; Parainfluenza virus; Respiratory tract infection","adult; aged; Article; cohort analysis; controlled study; Coronavirinae; coughing; dyspnea; Enterovirus; female; fever; hospital patient; human; Influenza B virus; major clinical study; male; mixed infection; multiplex polymerase chain reaction; Paramyxovirinae; priority journal; prospective study; respiratory tract infection; respiratory virus; rhinorrhea; Rhinovirus; saliva analysis; sore throat; thorax pain; virus detection; adolescent; asymptomatic infection; comparative study; genetics; hospitalization; isolation and purification; middle aged; mixed infection; pathology; respiratory tract infection; saliva; very elderly; virology; virus; virus infection; young adult; Adolescent; Adult; Aged; Aged, 80 and over; Asymptomatic Infections; Coinfection; Female; Hospitalization; Humans; Male; Middle Aged; Multiplex Polymerase Chain Reaction; Prospective Studies; Respiratory Tract Infections; Saliva; Virus Diseases; Viruses; Young Adult","Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., Community-acquired pneumonia requiring hospitalization among U.S. adults (2015) N Engl J Med, 373, pp. 415-427; Charlton, C.L., Babady, E., Ginocchio, C.C., Hatchette, T.F., Jerris, R.C., Li, Y., Practical guidance for clinical microbiology laboratories: viruses causing acute respiratory tract infections (2019) Clin Microbiol Rev, 32; To, K.K., Chan, J.F., Chen, H., Li, L., Yuen, K.Y., The emergence of influenza A h7n9 in human beings 16 years after influenza A h5n1: a tale of two cities (2013) Lancet Infect Dis, 13, pp. 809-821; Shi, T., McAllister, D.A., O'Brien, K.L., Simoes, E.A.F., Madhi, S.A., Gessner, B.D., Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study (2017) Lancet, 390, pp. 946-958; Iuliano, A.D., Roguski, K.M., Chang, H.H., Muscatello, D.J., Palekar, R., Tempia, S., Estimates of global seasonal influenza-associated respiratory mortality: a modelling study (2018) Lancet, 391, pp. 1285-1300; To, K.K., Yip, C.C., Yuen, K.Y., Rhinovirus—from bench to bedside (2017) J Formos Med Assoc, 116, pp. 496-504; To, K.K., Lu, L., Fong, C.H., Wu, A.K., Mok, K.Y., Yip, C.C., Rhinovirus respiratory tract infection in hospitalized adult patients is associated with Th2 response irrespective of asthma (2018) J Infect, 76, pp. 465-474; Shorr, A.F., Fisher, K., Micek, S.T., Kollef, M.H., The burden of viruses in pneumonia associated with acute respiratory failure: an underappreciated issue (2018) Chest, 154, pp. 84-90; Chan, P.K., Tam, W.W., Lee, T.C., Hon, K.L., Lee, N., Chan, M.C., Hospitalization incidence, mortality, and seasonality of common respiratory viruses over a period of 15 years in a developed subtropical city (2015) Medicine (Balt), 94; (2017), http://www.Who.Int/influenza/patient_care/clinical/brave_research_agenda_2013.Pdf?Ua=1, World Health Organization. Research needs for the battle against respiratory viruses (brave). Available at: Accessed on 20 November; Self, W.H., Williams, D.J., Zhu, Y., Ampofo, K., Pavia, A.T., Chappell, J.D., Respiratory viral detection in children and adults: comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J Infect Dis, 213, pp. 584-591; Kwong, J.C., Schwartz, K.L., Campitelli, M.A., Chung, H., Crowcroft, N.S., Karnauchow, T., Acute myocardial infarction after laboratory-confirmed influenza infection (2018) N Engl J Med, 378, pp. 345-353; Russell, E., Yang, A., Tardrew, S., Ison, M.G., Parainfluenza virus in hospitalized adults: a 7-year retrospective study (2019) Clin Infect Dis, 68, pp. 298-305; Blackburn, R., Zhao, H., Pebody, R., Hayward, A., Warren-Gash, C., Laboratory-confirmed respiratory infections as predictors of hospital admission for myocardial infarction and stroke: time-series analysis of English data for 2004–2015 (2018) Clin Infect Dis, 67, pp. 8-17; To, K.K., Wong, S.S., Li, I.W., Hung, I.F., Tse, H., Woo, P.C., Concurrent comparison of epidemiology, clinical presentation and outcome between adult patients suffering from the pandemic influenza A (h1n1) 2009 virus and the seasonal influenza a virus infection (2010) Postgrad Med J, 86, pp. 515-521; Minodier, L., Masse, S., Capai, L., Blanchon, T., Ceccaldi, P.E., van der Werf, S., Clinical and virological factors associated with gastrointestinal symptoms in patients with acute respiratory infection: a two-year prospective study in general practice medicine (2017) BMC Infect Dis, 17, p. 729; To, K.K., Hung, I.F., Li, I.W., Lee, K.L., Koo, C.K., Yan, W.W., Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic h1n1 2009 influenza virus infection (2010) Clin Infect Dis, 50, pp. 850-859; To, K.K., Lau, S.K., Chan, K.H., Mok, K.Y., Luk, H.K., Yip, C.C., Pulmonary and extrapulmonary complications of human rhinovirus infection in critically ill patients (2016) J Clin Virol, 77, pp. 85-91; Yeung, M.L., Yao, Y., Jia, L., Chan, J.F., Chan, K.H., Cheung, K.F., MERS coronavirus induces apoptosis in kidney and lung by upregulating smad7 and fgf2 (2016) Nat Microbiol, 1, p. 16004; Zumla, A., Hui, D.S., Perlman, S., Middle east respiratory syndrome (2015) Lancet, 386, pp. 995-1007; Warren-Gash, C., Blackburn, R., Whitaker, H., McMenamin, J., Hayward, A.C., Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland (2018) Eur Respir J, 51; To, K.K., Lu, L., Yip, C.C., Poon, R.W., Fung, A.M., Cheng, A., Additional molecular testing of saliva specimens improves the detection of respiratory viruses (2017) Emerg Microbe. Infect, 6, p. e49; To, K.K., Yip, C.C., Lai, C.Y., Wong, C.K., Ho, D.T., Pang, P.K., Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study (2019) Clin Microbiol Infect, 25, pp. 372-378; Kim, Y.G., Yun, S.G., Kim, M.Y., Park, K., Cho, C.H., Yoon, S.Y., Comparison between saliva and nasopharyngeal swab specimens for detection of respiratory viruses by multiplex reverse transcription-PCR (2017) J Clin Microbiol, 55, pp. 226-233; Chan, K.H., To, K.K.W., Li, P.T.W., Wong, T.L., Zhang, R., Chik, K.K.H., Evaluation of NxTAG respiratory pathogen panel and comparison with xTAG respiratory viral panel fast v2 and film array respiratory panel for detecting respiratory pathogens in nasopharyngeal aspirates and swine/avian-origin influenza A subtypes in culture isolates (2017) Adv Virol, 2017, p. 1324276; von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gotzsche, P.C., Vandenbroucke, J.P., The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies (2007) PLoS Med, 4, p. e296; Ip, D.K., Lau, L.L., Leung, N.H., Fang, V.J., Chan, K.H., Chu, D.K., Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the community (2017) Clin Infect Dis, 64, pp. 736-742; Munywoki, P.K., Koech, D.C., Agoti, C.N., Bett, A., Cane, P.A., Medley, G.F., Frequent asymptomatic respiratory syncytial virus infections during an epidemic in a rural Kenyan household cohort (2015) J Infect Dis, 212, pp. 1711-1718; Shaman, J., Morita, H., Birger, R., Boyle, M., Comito, D., Lane, B., Asymptomatic summertime shedding of respiratory viruses (2018) J Infect Dis, 217, pp. 1074-1077; Brendish, N.J., Clark, T.W., Antiviral treatment of severe non-influenza respiratory virus infection (2017) Curr Opin Infect Dis, 30, pp. 573-578","Yuen, K.-Y.; Department of Microbiology, Queen Mary Hospital, 19th Floor, Block T, Pokfulam Road, Hong Kong; email: kyyuen@hku.hk",,"Elsevier B.V.",1198743X,,CMINF,"31004768","English","Clin. Microbiol. Infect.",Article,"Final",Open Access,Scopus,2-s2.0-85065922865 "Cirone F., Padalino B., Tullio D., Capozza P., Surdo M.L., Lanave G., Pratelli A.","6602223775;12807292500;57204173592;57205076401;57212241895;55903623000;7004884960;","Prevalence of pathogens related to bovine respiratory disease before and after transportation in beef steers: Preliminary results",2019,"Animals","9","12", 1093,"","",,,"10.3390/ani9121093","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076305995&doi=10.3390%2fani9121093&partnerID=40&md5=55ecf5a94a5b478e0fcd6c0830eb5fcc","Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, Valenzano (Ba), 70010, Italy; Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy; ASL BA—Local Health Authority Veterinary Service, Via dei Mille 29, Bari, 70120, Italy","Cirone, F., Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, Valenzano (Ba), 70010, Italy; Padalino, B., Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy; Tullio, D., ASL BA—Local Health Authority Veterinary Service, Via dei Mille 29, Bari, 70120, Italy; Capozza, P., Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, Valenzano (Ba), 70010, Italy; Surdo, M.L., Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, Valenzano (Ba), 70010, Italy; Lanave, G., Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, Valenzano (Ba), 70010, Italy; Pratelli, A., Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, Valenzano (Ba), 70010, Italy","Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. The prevalence of bovine herpesvirus type 1 (BoHV-1), bovine adenovirus (BAdV), bovine viral diarrhea virus (BVDV), bovine coronavirus (BCoV), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus (BPiV), Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, Mycoplasma bovis, in the nasal microbiota of beef steers before and after the same long-distance journey from France to southern Italy was documented. Fifty-six Limousine animals of three different shipments, travelling on three different days from February to April, were included. Prior to shipment (T0) and four days after arrival (T1), two DNS/animal were collected and tested by Real Time quantitative PCR (qPCR). Univariate logistic regression was carried out, considering time and day as fixed factors and the outcome of qPCR for each pathogen as a dependent categorical dichotomous variable (positive/negative, 1/0). The fact that the number of H. somni positive animals were found to be higher in the third shipment than the first and second one, indicating that this pathogen was already present before loading, is relevant. The prevalence of BCoV, BRSV, M. haemolytica, M. bovis, P. multocida was higher at T1 than T0, suggesting that other factors, such as stress and the epidemiological status of the arrival farm, played a role. The tested animals were not treated before and after transport, and our results are in agreement with the current literature, supporting the hypothesis that the prevalence of pathogens related to BRD would increase after travelling, with an increased risk of pathogens shedding. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.","Bovine respiratory disease; Journey; Steer; Welfare","Article; Bovine coronavirus; Bovine herpesvirus 1; bovine parainfluenza virus; Bovine respiratory syncytial virus; Bovine viral diarrhea virus 1; bullock; cattle disease; feces analysis; Histophilus somni; Human respiratory syncytial virus; infectious agent; lipid bilayer; Mannheimia haemolytica; microflora; mortality; Mycoplasma; Mycoplasma bovis; nonhuman; Pasteurella multocida; prevalence; real time polymerase chain reaction; respiratory tract disease; risk factor; traffic and transport","Griebel, P., Hill, K., Stookey, J., How stress alters immune responses during respiratory infection (2014) Animal Health Res. Rev., 15 (2), pp. 161-165; Earley, B., Buckham Sporer, K., Gupta, S., Invited review: Relationship between cattle transport, immunity and respiratory disease (2017) Animal, 11 (3), pp. 486-492; Storz, J., Lin, X., Purdy, C.W., Chouljenko, V.N., Kousoulas, K.G., Enright, F.M., Gilmore, W.C., Loan, R.W., Coronavirus and Pasteurella Infections in Bovine Shipping Fever Pneumonia and Evans’ Criteria for Causation (2000) J. Clin. Microbiol, 38 (9), pp. 3291-3298; Holman, D.B., Timsit, E., Amat, S., Wade Abbott, D., Buret, A.G., Alexander, T.W., The nasopharyngeal microbiota of beef cattle before and after transport to a feedlot (2017) BMC Microbiology, 17, pp. 70-82; Padalino, B., Raidal, S.L., Knight, P., Celi, P., Jeffcott, L., Muscatello, G., Behaviour during transportation predicts stress response and lower airway contamination in horses (2018) Plos ONE, 13 (3); Padalino, B., Tullio, D., Carone, S., Bozzo, G., Road transport of farm animals: Mortality, morbidity, species and country of origin at a Southern Italian a control post (2018) Animals, 8 (9), p. 155; Šímová, V., Večerek, V., Passantino, A., Voslářová, E., Pre-transport factors affecting the welfare of cattle during road transport for slaughter—A review (2016) Acta Vet. BRNO, 85, pp. 303-318; Padalino, B., Hall, E., Raidal, S., Celi, P., Knight, P., Jeffcott, L., Muscatello, G., A survey on transport management practices associated with injuries and health problems in horses (2016) Plos ONE, 9, pp. 1-16; Griffin, D., Chengappa, M.M., Kuszak, J., McVey, D.S., Bacterial Pathogens of the Bovine Respiratory Disease Complex (2010) Vet. Clin. North Am. Food Anim. Pract., 26 (2), pp. 381-394; Salak-Johnson, J.L., McGlone, J.J., Making sense of apparently conflicting data: Stress and immunity in swine and cattle (2007) J. Anim. Sci, 85, pp. E81-E88; Duff, G.C., Galyean, M.L., Recent advances in management of highly stressed, newly received feedlot cattle (2007) J. Anim. Sci, 85, pp. 823-840; Nickell, J.S., White, B.J., Metaphylactic antimicrobial therapy for bovine respiratory disease in stocker and feedlot cattle (2010) Vet. Clin. Food Anim. Pract., 26, pp. 285-301; Kishimoto, M., Tsuchiaka, S., Rahpaya, S.S., Hasebe, A., Otsu, K., Sugimura, S., Kobayashi, S., Omatsu, T., Development of a one-run real-time PCR. Detection system for pathogens associated with bovine respiratory disease complex (2017) J. Vet. Med. Sci., 79 (3), pp. 517-523; Murray, G.M., O’Neill, R.G., More, S.J., McElroy, M.C., Earley, B., Cassidy, J.P., Evolving views on bovine respiratory disease: An appraisal of selected key pathogens—Part 1 (2016) Vet. J., 217, pp. 95-102; Oma, V.S., Traven, M., Alenius, S., Myrmel, M., Stokstad, M., Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission (2016) Virol. J., 13, pp. 100-111; O’Connor, A., Martin, S.W., Nagy, E., Menzies, P., Harland, R., The relationship between the occurrence of undifferentiated bovine respiratory disease and titer changes to bovine coronavirus and bovine viral diarrhea virus in 3 Ontario feedlots (2001) Can. J. Vet. Res, 65, pp. 137-142; Capik, S.F., White, B.J., Lubbers, B.V., Apley, M.D., Dedonder, K.D., Larson, R.L., Harhay, G.P., Kalbfleisch, T.S., Comparison of the diagnostic performance of bacterial culture of nasopharyngeal swab and bronchoalveolar lavage fluid samples obtained from calves with bovine respiratory disease (2017) Am. J. Vet. Res, 78, pp. 350-358; Timsit, E., Hallewell, J., Booker, C., Tison, N., Amat, S., Alexander, T.W., Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease (2017) Vet. Microbiol., 208, pp. 118-125; Welsh, R.D., Dye, L.B., Payton, M.E., Confer, A.W., Isolation and antimicrobial susceptibilities of bacterial pathogens from bovine pneumonia: 1994–2002 (2004) J. Vet. Diagn. Invest., 16, pp. 426-431; Timsit, E., Workentine, M., Schryvers, A.B., Holman, D.B., van der Meer, F., Alexander, T.W., Evolution of the nasopharyngeal microbiota of beef cattle from weaning to 40 days after arrival at a feedlot (2016) Vet. Microbiol., 187, pp. 75-81; Padalino, B., Raidal, S.L., Carter, N., Celi, P., Muscatello, G., Jeffcott, L., de Silva, K., Immunological, clinical, haematological and oxidative responses to long distance transportation in horses (2017) Res. Vet. Sci., 115, pp. 78-87; Miles, D.G., Overview of the North American beef cattle industry and the incidence of bovine respiratory disease (BRD) (2009) Anim. Health Res. Rev., 10, pp. 101-103","Padalino, B.; Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, Italy; email: barbara.padalino@unibo.it",,"MDPI AG",20762615,,,,"English","Animals",Article,"Final",Open Access,Scopus,2-s2.0-85076305995 "Luo L., Wang S., Zhu L., Fan B., Liu T., Wang L., Zhao P., Dang Y., Sun P., Chen J., Zhang Y., Chang X., Yu Z., Wang H., Guo R., Li B., Zhang K.","56380882300;56034136400;57210987045;56067970100;57210988438;57210986574;57210986240;57207875110;55228545800;57212281392;51565382000;57210986664;50761549900;56685941000;24173114900;57100361000;55461708400;","Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus",2019,"Scientific Reports","9","1", 13186,"","",,,"10.1038/s41598-019-49838-y","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072141106&doi=10.1038%2fs41598-019-49838-y&partnerID=40&md5=0049657efdfbf46c595a803f995a355c","Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China","Luo, L., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Wang, S., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhu, L., Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China; Fan, B., Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China; Liu, T., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Wang, L., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhao, P., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Dang, Y., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Sun, P., College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Chen, J., College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Zhang, Y., College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Chang, X., Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China; Yu, Z., Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China; Wang, H., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Guo, R., Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China; Li, B., Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu 210014, China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225000, China, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Zhang, K., Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China","Swine enteric diseases have caused significant economic loss and have been considered as the major threat to the global swine industry. Several coronaviruses, including transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV), have been identified as the causative agents of these diseases. Effective measures to control these diseases are lacking. The major host cells of transmissible gastroenteritis virus and porcine epidemic diarrhea virus have thought to be epithelial cells on small intestine villi. Aminopeptidase-N (APN) has been described as the putative receptor for entry of transmissible gastroenteritis virus and porcine epidemic diarrhea virus into cells in vitro. Recently, Whitworth et al. have reported that APN knockout pigs are resistant to TGEV but not PEDV after weaning. However, it remains unclear if APN-null neonatal pigs are protected from TGEV. Here we report the generation of APN-null pigs by using CRISPR/Cas9 technology followed by somatic cell nuclear transfer. APN-null pigs are produced with normal pregnancy rate and viability, indicating lack of APN is not embryonic lethal. After viral challenge, APN-null neonatal piglets are resistant to highly virulent transmissible gastroenteritis virus. Histopathological analyses indicate APN-null pigs exhibit normal small intestine villi, while wildtype pigs show typical lesions in small intestines. Immunochemistry analyses confirm that no transmissible gastroenteritis virus antigen is detected in target tissues in APN-null piglets. However, upon porcine epidemic diarrhea virus challenge, APN-null pigs are still susceptible with 100% mortality. Collectively, this report provides a viable tool for producing animals with enhanced resistance to TGEV and clarifies that APN is dispensable for the PEDV infection in pigs. © 2019, The Author(s).",,,"Chattha, K.S., Roth, J.A., Saif, L.J., Strategies for design and application of enteric viral vaccines (2015) Annu Rev Anim Biosci, 3, pp. 375-395; Huang, Y.W., Origin, Evolution, and Genotyping of Emergent Porcine Epidemic Diarrhea Virus Strains in the United States (2013) Mbio, 4. , https://doi.org/10.1128/mBio.00737-13; Ma, Y.M., Origin, Evolution, and Virulence of Porcine Deltacoronaviruses in the United States (2015) Mbio, 6. , https://doi.org/10.1128/mBio.00064-15; Woo, P.C., Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) Journal of virology, 86, pp. 3995-4008; Mole, B., ANIMAL DISEASE Deadly pig virus slips through US borders (2013) Nature, 499, p. 388. , COI: 1:CAS:528:DC%2BC3sXhtFKnurzJ, PID: 23887408; Li, F., Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies (2015) Journal of virology, 89, pp. 1954-1964; Whitworth, K.M., Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus (2016) Nat Biotechnol, 34, pp. 20-22; Chen, L., Lin, Y.L., Peng, G., Li, F., Structural basis for multifunctional roles of mammalian aminopeptidase N (2012) Proc Natl Acad Sci USA, 109, pp. 17966-17971; Delmas, B., Aminopeptidase-N Is a Major Receptor for the Enteropathogenic Coronavirus Tgev (1992) Nature, 357, pp. 417-420; Li, W.T., Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility (2018) Proc Natl Acad Sci USA, 115, pp. E5135-E5143; Wang, B., Porcine Deltacoronavirus Engages the Transmissible Gastroenteritis Virus Functional Receptor Porcine Aminopeptidase N for Infectious Cellular Entry (2018) Journal of virology, 92. , https://doi.org/10.1128/JVI.00318-18; Yeager, C.L., Human Aminopeptidase-N Is a Receptor for Human Coronavirus-229e (1992) Nature, 357, pp. 420-422; Lassnig, C., Development of a transgenic mouse model susceptible to human coronavirus 229E (2005) Proc Natl Acad Sci USA, 102, pp. 8275-8280; Park, J.E., Development of transgenic mouse model expressing porcine aminopeptidase N and its susceptibility to porcine epidemic diarrhea virus (2015) Virus Res, 197, pp. 108-115; Li, B.X., Ge, J.W., Li, Y.J., Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus (2007) Virology, 365, pp. 166-172; Liu, C., Receptor Usage and Cell Entry of Porcine Epidemic Diarrhea Coronavirus (2015) J Virol, 89, pp. 6121-6125; Ji, C.M., Wang, B., Zhou, J.Y., Huang, Y.W., Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells (2018) Virology, 517, pp. 16-23. , COI: 1:CAS:528:DC%2BC1cXjslOgtrY%3D; Li, W., Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry (2017) Virus Res, 235, pp. 6-13; Shirato, K., Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity (2016) J Gen Virol, 97, pp. 2528-2539; Whitworth, K.M., Resistance to coronavirus infection in amino peptidase N-deficient pigs (2019) Transgenic Res, 28, pp. 21-32; Xia, L., Dai, L., Yu, Q., Yang, Q., Persistent Transmissible Gastroenteritis Virus Infection Enhances Enterotoxigenic Escherichia coli K88 Adhesion by Promoting Epithelial-Mesenchymal Transition in Intestinal Epithelial Cells (2017) Journal of Virology, 91. , https://doi.org/10.1128/JVI.01256-17; Ran, F.A., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity (2013) Cell, 154, pp. 1380-1389; Rangel, R., Impaired angiogenesis in aminopeptidase N-null mice (2007) Proc Natl Acad Sci USA, 104, pp. 4588-4593; Burkard, C., Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function (2017) PLoS pathogens, 13; Hu, W.W., Zhang, S., Shen, Y.M., Yang, Q., Epidermal growth factor receptor is a co-factor for transmissible gastroenteritis virus entry (2018) Virology, 521, pp. 33-43; Zhang, R., Mxra8 is a receptor for multiple arthritogenic alphaviruses (2018) Nature, 557, pp. 570-+; Zhu, X., Liu, S., Wang, X., Luo, Z., Shi, Y., Wang, D., Peng, G., Xiao, S., Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection (2018) Emerging Microbes & Infections, 7 (1), pp. 1-13; Ran, F.A., Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity (vol 154, pg 1380, 2013) (2013) Cell, 155, pp. 479-480; Ding, B., WDR5 in porcine preimplantation embryos: expression, regulation of epigenetic modifications and requirement for early developmentdagger (2017) Biology of reproduction, 96, pp. 758-771; Tao, J., DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos (2017) PloS one, 12; Fan, B., Characterization of a pathogenic full-length cDNA clone of a virulent porcine epidemic diarrhea virus strain AH2012/12 in China (2017) Virology, 500, pp. 50-61; Madson, D.M., Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs (2014) Veterinary microbiology, 174, pp. 60-68","Zhang, K.; Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang UniversityChina; email: kzhang@zju.edu.cn",,"Nature Publishing Group",20452322,,,"31515498","English","Sci. Rep.",Article,"Final",Open Access,Scopus,2-s2.0-85072141106 "Willman M., Kobasa D., Kindrachuk J.","57212245885;6602784011;6507134040;","A comparative analysis of factors influencing two outbreaks of middle eastern respiratory syndrome (MERS) in Saudi Arabia and South Korea",2019,"Viruses","11","12", 1119,"","",,1,"10.3390/v11121119","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076309194&doi=10.3390%2fv11121119&partnerID=40&md5=379050c62d2655dd6518fedcb68f7120","High Containment Respiratory Viruses, Special Pathogens, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada","Willman, M., High Containment Respiratory Viruses, Special Pathogens, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Kobasa, D., High Containment Respiratory Viruses, Special Pathogens, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Kindrachuk, J., Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada","In 2012, an emerging viral infection was identified in Saudi Arabia that subsequently spread to 27 additional countries globally, though cases may have occurred elsewhere. The virus was ultimately named Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), and has been endemic in Saudi Arabia since 2012. As of September 2019, 2468 laboratory-confirmed cases with 851 associated deaths have occurred with a case fatality rate of 34.4%, according to theWorld Health Organization. An imported case of MERS occurred in South Korea in 2015, stimulating a multi-month outbreak. Several distinguishing factors emerge upon epidemiological and sociological analysis of the two outbreaks including public awareness of the MERS outbreak, and transmission and synchronization of governing healthcare bodies. South Korea implemented a stringent healthcare model that protected patients and healthcare workers alike through prevention and high levels of public information. In addition, many details about MERS-CoV virology, transmission, pathological progression, and even the reservoir, remain unknown. This paper aims to delineate the key differences between the two regional outbreaks from both a healthcare and personal perspective including differing hospital practices, information and public knowledge, cultural practices, and reservoirs, among others. Further details about differing emergency outbreak responses, public information, and guidelines put in place to protect hospitals and citizens could improve the outcome of future MERS outbreaks. © 2019 by the authors.","Coronavirus; Middle east; Middle east respiratory syndrome (MERS), zoonosis; Saudi Arabia; South Korea","cathepsin; cytokine; decapentaplegic protein; interleukin 8; lactate dehydrogenase; nucleocapsid protein; polyprotein; adult respiratory distress syndrome; awareness; case fatality rate; comparative study; death; disease transmission; ecology; endemic disease; fluorescent antibody technique; health care personnel; health care policy; hospital infection; human; immunocompromised patient; lung fibrosis; lung lavage; Middle East respiratory syndrome; nonhuman; Orthopoxvirus; outcome assessment; pleura thickening; rapid response team; real time polymerase chain reaction; Review; Saudi Arabia; sociological theory; South Korea","Zeng, Z.Q., Chen, D.H., Tan, W.P., Qiu, S.Y., Xu, D., Liang, H.X., Chen, M.X., Liu, W.K., Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: A study of hospitalized children with acute respiratory tract infection in guangzhou China (2018) Eur. J. Clin. Micobiol. Infect. Dis., 37, pp. 363-369; De-Wit, E., Van-Doremalen, N., Falzarano, D., Munster, V.J., SARS and MERS: Recent insights into emerging coronaviruses (2016) Nat. Rev. Microbiol., 14, pp. 523-534; Hilgenfeld, R., Peiris, M., FromSARS to MERS: 10 years of research on highly pathogenic human coronaviruses (2013) Antivir. Res., 100, pp. 286-295; Wang, L.F., Shi, Z., Zhang, S., Field, H., Daszak, P., Eaton, B.T., Review of bats and SARS (2006) Emerg. Infect. Dis., 12, pp. 1834-1840; Sikkema, R.S., Farag, E.A.B.A., Islam, M., Atta, M., Reusken, C.B.E.M., Al-Hajri, M.M., Koopmans, M.P.G., Global status of middle east respiratory syndrome coronavirus in dromedary camels: A systematic review (2019) Epidemiol. Infect., 147, p. 84; (2019) Middle East Respiratory Syndrome Coronvirus (MERS-CoV), , https://www.who.int/emergencies/mers-cov/en/, Available online: (accessed on 14 April); Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle east respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2016) J. Hosp. Infect., 95, pp. 207-213; Faridi, U., Middle east respiratory syndrome coronavirus (MERS-CoV): Impact on Saudi Arabia, 2015 (2018) Saudi. J. Biol. Sci., 25, pp. 1402-1405; Rabaan, A.A., Bazzi, A.M., Al-Ahmed, S.H., Al-Tawfiq, J.A., Molecular aspects of MERS-CoV (2017) Front. Med., 11, pp. 365-377; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods. Mol. Biol., 1282, pp. 1-23; Yang, Y., Zhang, L., Geng, H., Deng, Y., Huang, B., Guo, Y., Zhao, Z., Tan, W., The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of middle east respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists (2013) Protein Cell, 4, pp. 951-961; Dawson, P., Malik, M.R., Parvez, F., Morse, S.S., What have We learned about middle east respiratory syndrome coronavirus emergence in humans? A systematic literature review (2019) Vector Borne Zoonotic. Dis., 19, pp. 174-192; Zhou, Y., Yang, Y., Huang, J., Jiang, S., Du, L., Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain (2019) Viruses, 11, p. 60; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: A key target for antivirals (2017) Expert Opin. Targets, 21, pp. 131-143; Chan, J.F., Lau, S.K., To, K.K., Cheng, V.C., Woo, P.C., Yuen, K.Y., Middle east respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease (2015) Clin. Microbiol. Rev., 28, pp. 465-522; Shirato, K., Kawase, M., Matsuyama, S., Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2 (2013) J. Virol., 87, pp. 12552-12561; Lokugamage, K.G., Narayanan, K., Nakagawa, K., Terasaki, K., Ramirez, S.I., Tseng, C.T., Makino, S., Middle east respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin (2015) J. Virol., 89, pp. 10970-10981; Virlogeux, V., Fang, V.J., Park, M., Wu, J.T., Cowling, B.J., Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia (2016) Sci. Rep., 6, p. 35839; Ki, M., 2015 MERS outbreak in korea: Hospital-to-hospital transmission (2015) Epidemiol. Health, 37; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al-Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the middle east respiratory syndrome coronavirus (2014) MBio, 5, pp. e01062-e01113; Van-Den-Brand, J.M., Smits, S.L., Haagmans, B.L., Pathogenesis of middle east respiratory syndrome coronavirus (2015) J. Pathol., 235, pp. 175-184; Mackay, I.M., Arden, K.E., MERS coronavirus: Diagnostics, epidemiology and transmission (2015) Virol. J., 12, p. 222; Jevšnik, M., Uršič, T., Zigon, N., Lusa, L., Krivec, U., Petrovec, M., Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease (2012) BMC Infect. Dis., 12, p. 365; Birch, C.J., Clothier, H.J., Seccull, A., Tran, T., Catton, M.C., Lambert, S.B., Druce, J.D., Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in melbourne, Australia (2005) Epidemiol. Infect., 133, pp. 273-277; Zaki, A.M., Van-Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from aMan with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820; Das, K.M., Lee, E.Y., Singh, R., Enani, M.A., Al-Dossari, K., Van-Gorkom, K., Larsson, S.G., Langer, R.D., Follow-up chest radiographic findings in patients with MERS-CoV after recovery (2017) Indian J. Radiol. Imaging., 27, pp. 342-349; Al-Johani, S., Hajeer, A.H., MERS-CoV diagnosis: An update (2016) J. Infect. Public Health, 9, pp. 216-219; (2019) CDC Laboratory Testing for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), , https://www.cdc.gov/coronavirus/mers/lab/lab-testing.html, Available online: (accessed on 10 July); Bernard-Stoecklin, S., Nikolay, B., Assiri, A., Saeed, A.A.B., Embarek, P.K.B., El-Bushra, H., Ki, M., Cauchemez, S., Comparative analysis of eleven healthcare-associated outbreaks of middle east respiratory syndrome coronavirus (MERS-CoV) from 2015 to 2017 (2019) Sci. Rep., 9, p. 7385; Memish, Z.A., Zumia, A.I., Al-Hakeem, R.F., Al-Rabeeah, A.A., Stephens, G.M., Family cluster of middle east respiratory syndrome coronavirus infections (2013) N. Engl. J. Med., 368, pp. 2487-2494; Qiu, W., Chu, C., Mao, A., Wu, J., The impacts on health, society, and economy of SARS and H7N9 outbreaks in China: A case comparison study (2018) J. Environ. Public Health, p. 2710185; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Islam, A., Middle east respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Vergara-Alert, J., Van-Den-Brand, J.M., Widagdo, W., Muñoz, M., Raj, S., Schipper, D., Solanes, D., Haagmans, B.L., Livestock susceptibility to infection with middle east respiratory syndrome coronavirus (2017) Emerg. Infect. Dis., 23, pp. 232-240; Elrggal, M.E., Karami, N.A., Rafea, B., Alahmadi, L., Al-Shehri, A., Alamoudi, R., Koshak, H., Cheema, E., Evaluation of preparedness of healthcare student volunteers against middle east respiratory syndrome coronavirus (MERS-CoV) in makkah, Saudi Arabia: A cross-sectional study (2018) Z. Gesundh. Wiss., 26, pp. 607-612; Kang, C.K., Song, K.H., Choe, P.G., Park, W.B., Bang, J.H., Kim, E.S., Park, S.W., Cho, S.I., Clinical and epidemiologic characteristics of spreaders of middle east respiratory syndrome coronavirus during the 2015 outbreak in korea (2017) J. Korean Med. Sci., 32, pp. 744-749; Ohnuma, K., Hatano, R., Komiya, E., Otsuka, H., Itoh, T., Iwao, N., Kaneko, Y., Morimoto, C., A novel role for CD26/dipeptidyl peptidase IV as a therapeutic agent (2018) Front. Biosci., 23, pp. 1754-1779; Eckerle, I., Müller, M.A., Kallies, S., Gotthardt, D.N., Drosten, C., In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during middle east respiratory syndrome (MERS) coronavirus infection (2013) Virol. J., 10, p. 359; Naskalska, A., Dabrowska, A., Nowak, P., Szczepanski, A., Jasik, K., Milewska, A., Ochman, M., Pyrc, K., Novel coronavirus-like particles targeting cells lining the respiratory tract (2018) PLoS ONE, 13; Glowacka, I., Bertram, S., Herzog, P., Pfefferle, S., Steffen, I., Muench, M.O., Simmons, G., Weber, F., Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63 (2010) J. Virol., 84, pp. 1198-1205; Uhal, B.D., Dang, M., Dang, V., Llatos, R., Cano, E., Abdul-Hafez, A., Markey, J., Molina-Molina, M., Cell cycle dependence of ACE-2 explains downregulation in idiopathic pulmonary fibrosis (2010) J. Virol., 84, pp. 1198-1205; García-Laorden, M.I., Lorente, J.A., Flores, C., Slutsky, A.S., Villar, J., Biomarkers for the acute respiratory distress syndrome: How to make the diagnosis more precise (2017) Ann. Transl. Med., 5, p. 283; Heymann, D.L., Rodier, G., Global surveillance, national surveillance, and SARS (2004) Emerg. Infect. Dis., 10, pp. 173-175; Kim, J.Y., Song, J.Y., Yoon, Y.K., Choi, S.H., Song, Y.G., Kim, S.R., Son, H.J., Kim, K.M., Middle east respiratory syndrome infection control and prevention guideline for healthcare facilities (2015) Infect. Chemother., 47, pp. 278-302; Park, J.W., Lee, K.J., Lee, K.H., Lee, S.H., Cho, J.R., Mo, J.W., Choi, S.Y., Hong, J.Y., Hospital outbreaks of middle east respiratory syndrome, daejeon, South Korea, 2015 (2017) Emerg. Infect. Dis., 23, pp. 898-905; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Kim, J.M., Jang, C.I., Choi, J.R., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Middle east respiratory syndrome coronavirus outbreak in the republic of korea (2015) Osong Public Health Res. Perspect., 6, pp. 269-278; Kim, S.W., Park, J.W., Jung, H.D., Yang, J.S., Park, Y.S., Lee, C., Kim, K.M., Hur, Y.J., Risk factors for transmission of middle east respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea (2017) Clin. Infect. Dis., 64, pp. 551-557; (2019) European Center for Disease Prevention and Control, , https://www.ecdc.europa.eu/en/newsevents/epidemiological-update-middle-east-respiratory-syndrome-coronavirus-mers-cov-21-july, Available online: (accessed on 13 February); Majumder, M.S., Rivers, C., Lofgren, E., Fisman, D., Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: Insights from publicly available data (2014) PLoS Curr., p. 6; Oh, M.D., Park, W.B., Park, S.W., Choe, P.G., Bang, J.H., Song, K.H., Kim, E.S., Kim, N.J., Middle east respiratory syndrome: What we learned from the 2015 outbreak in the republic of korea (2018) Korean J. Intern. Med., 33, pp. 233-246; (2019), http://www.emro.who.int/pandemic-epidemic-diseases/merscov/mers-situation-update-december-2018.html, Available online: (accessed on 25 May); Al-Ahmadi, H., Roland, M., Quality of primary health care in Saudi Arabia: A comprehensive review (2005) Int. J. Qual. Health Care, 17, pp. 331-346; Walston, S., Al-Harbi, Y., Al-Omar, B., The changing face of healthcare in Saudi Arabia (2008) Ann. Saudi Med., 28, pp. 243-250; Taylor, A., The scary reason saudi famers are kissing camels (2019) The Washington Post, , https://www.washingtonpost.com/news/worldviews/wp/2014/05/16/the-scary-reason-saudi-farmersare-kissing-camels/?utm_term=.32ceaf8016c7, Available online: (accessed on 10 March); Ajibaili, M., (2019) Saudi Health Minister 'Relieved of His Post', , http://english.alarabiya.net/en/News/middle-east/2014/04/21/Saudi-Health-Minister-relieved-of-duties-.html, Al Arabiya. Available online: (accessed on 14 March); Park, K., Park, J., Kwon, Y.D., Kang, Y., Noh, J.W., Public satisfaction with the healthcare system performance in South Korea: Universal healthcare system (2016) Health Policy, 120, pp. 621-629; Tabekhan, A.K., Alkhaldi, Y.M., Alghamdi, A.K., Patients satisfaction with consultation at primary health care centers in abha city, Saudi Arabia (2018) J. Family Med. Prim. Care, 7, pp. 658-663; Alqahtani, A.S., Rashid, H., Basyouni, M.H., Alhawassi, T.M., Bin-Dhim, N.F., Public response to MERS-CoV in the middle east: IPhone survey in six countries (2017) J. Infect. Public Health, 10, pp. 534-540; Hemida, M.G., Elmoslemany, A., Al-Hizab, F., Alnaeem, A., Almathen, F., Faye, B., Chu, D.K.W., Peiris, M., Dromedary camels and the transmission of middle east respiratory syndrome coronavirus (MERS-CoV) (2018) Transbound Emerg. Dis., 64, pp. 344-353; Abrhaley, A., Leta, S., Medicinal value of camel milk and meat (2018) J. Appl. Anim. Res., p. 46; Elzaki-Ali, R.M., Ahmed, S.H., Al-Mahish, M.A., Camel production in the kingdom of Saudi Arabia: Economic and environmental impacts (2018) Fundam. Appl. Agric., 3, pp. 602-608; Park, J.E., Jung, S., Kim, A., Park, J.W., MERS transmission and risk factors: A systemic review (2018) BMB Public Health, 18, p. 574; Han, H.J., Liu, J.W., Yu, H., Yu, X.J., Neutralizing monoclonal antibodies as promising therapeutics against middle east respiratory syndrome coronavirus infection (2018) Viruses, 10, p. 680; Chong, Y.P., Song, J.Y., Seo, Y.B., Choi, J.P., Shin, H.S., Antiviral treatment guidelines for middle east respiratory syndrome (2015) Infect. Chemother., 47, pp. 212-222; Haagmans, B.L., Van-Den-Brand, J.M., Raj, V.S., Volz, A., Wohlsein, P., Smits, S.L., Schipper, D., Fux, R., An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels (2016) Science, 351, pp. 77-81","Kindrachuk, J.; Department of Medical Microbiology, University of ManitobaCanada; email: Jason.Kindrachuk@umanitoba.ca",,"MDPI AG",19994915,,,"31817037","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85076309194 "Woo J., Lee E.Y., Lee M., Kim T., Cho Y.-E.","56479856100;57201995399;57211826432;57211217935;55666809200;","An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence",2019,"Biochemical and Biophysical Research Communications","520","3",,"499","506",,,"10.1016/j.bbrc.2019.09.115","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073020742&doi=10.1016%2fj.bbrc.2019.09.115&partnerID=40&md5=8d49a2ab731be4744b0429a1493703df","Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea; The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, United States; Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, 06273, South Korea","Woo, J., Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea, The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea; Lee, E.Y., Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, United States; Lee, M., Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea, The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea; Kim, T., Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, 06273, South Korea; Cho, Y.-E., Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea, The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea","The SARS-CoV nucleocapsid (N) protein serves multiple functions in viral replication, transcription, and assembly of the viral genome complex. Coronaviruses specifically package genomic RNA into assembled virions, and in SARS-CoV, it is reported that this process is driven by an interaction between the N-protein and a packaging signal encoded within the viral RNA. While recent studies have uncovered the sequence of this packaging signal, little is known about the specific interaction between the N-protein and the packaging signal sequence, and the mechanisms by which this interaction drives viral genome packaging. In this study, we developed a novel in vivo cell-based assay for examining this interaction between the N-protein and packaging signal RNA for SARS-CoV, as well as other viruses within the coronaviridae family. Our results demonstrate that the N-protein specifically recognizes the SARS-CoV packaging signal with greater affinity compared to signals from other coronaviruses or non-coronavirus species. We also use deletion mapping to identify a 151-nt region within the packaging signal sequence that is critical for N-protein-RNA binding, and conversely, we show that both the N-terminal and C-terminal domains of the N protein are necessary for recognizing the packaging RNA. These results describe, for the first time, in vivo evidence for an interaction between the SARS-CoV N-protein and its packaging signal RNA, and demonstrate the feasibility of using this cell-based assay to further probe viral RNA-protein interactions in future studies. © 2019 Elsevier Inc.","Cell-based assay; Coronavirus; Nucleocapsid; Packaging signal sequence; Protein-RNA interaction; SARS","nucleocapsid protein; virus RNA; amino terminal sequence; Article; binding affinity; carboxy terminal sequence; cell based assay; controlled study; immunoassay; in vivo study; nonhuman; priority journal; process development; protein RNA binding; RNA sequence; SARS coronavirus","Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R., SARS--beginning to understand a new virus (2003) Nat. Rev. Microbiol., 1, pp. 209-218; Chang, C.K., Hou, M.H., Chang, C.F., Hsiao, C.D., Huang, T.H., The SARS coronavirus nucleocapsid protein--forms and functions (2014) Antivir. Res., 103, pp. 39-50; McBride, R., Fielding, B.C., The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis (2012) Viruses, 4, pp. 2902-2923; Liao, H.I., Olson, C.A., Hwang, S., Deng, H., Wong, E., Baric, R.S., Roberts, R.W., Sun, R., mRNA display design of fibronectin-based intrabodies that detect and inhibit severe acute respiratory syndrome coronavirus nucleocapsid protein (2009) J. Biol. Chem., 284, pp. 17512-17520; Fosmire, J.A., Hwang, K., Makino, S., Identification and characterization of a coronavirus packaging signal (1992) J. Virol., 66, pp. 3522-3530; Kuo, L., Masters, P.S., Functional analysis of the murine coronavirus genomic RNA packaging signal (2013) J. Virol., 87, pp. 5182-5192; Chang, C.K., Hsu, Y.L., Chang, Y.H., Chao, F.A., Wu, M.C., Huang, Y.S., Hu, C.K., Huang, T.H., Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging (2009) J. Virol., 83, pp. 2255-2264; Narayanan, K., Chen, C.J., Maeda, J., Makino, S., Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal (2003) J. Virol., 77, pp. 2922-2927; Kuo, L., Koetzner, C.A., Hurst, K.R., Masters, P.S., Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein (2014) J. Virol., 88, pp. 4451-4465; Chen, S.C., van den Born, E., van den Worm, S.H., Pleij, C.W., Snijder, E.J., Olsthoorn, R.C., New structure model for the packaging signal in the genome of group IIa coronaviruses (2007) J. Virol., 81, pp. 6771-6774; Narayanan, K., Makino, S., Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging (2001) J. Virol., 75, pp. 9059-9067; Escors, D., Izeta, A., Capiscol, C., Enjuanes, L., Transmissible gastroenteritis coronavirus packaging signal is located at the 5’ end of the virus genome (2003) J. Virol., 77, pp. 7890-7902; Morales, L., Mateos-Gomez, P.A., Capiscol, C., del Palacio, L., Enjuanes, L., Sola, I., Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5’ end of the genome and promotes viral RNA incorporation into virions in a replication-independent process (2013) J. Virol., 87, pp. 11579-11590; Hsieh, P.K., Chang, S.C., Huang, C.C., Lee, T.T., Hsiao, C.W., Kou, Y.H., Chen, I.Y., Chang, M.F., Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent (2005) J. Virol., 79, pp. 13848-13855; Chen, C.Y., Chang, C.K., Chang, Y.W., Sue, S.C., Bai, H.I., Riang, L., Hsiao, C.D., Huang, T.H., Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA (2007) J. Mol. Biol., 368, pp. 1075-1086; Saikatendu, K.S., Joseph, J.S., Subramanian, V., Neuman, B.W., Buchmeier, M.J., Stevens, R.C., Kuhn, P., Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein (2007) J. Virol., 81, pp. 3913-3921; Tan, Y.W., Fang, S., Fan, H., Lescar, J., Liu, D.X., Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells (2006) Nucleic Acids Res., 34, pp. 4816-4825; Yu, I.M., Gustafson, C.L., Diao, J., Burgner, J.W., 2nd, Li, Z., Zhang, J., Chen, J., Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain (2005) J. Biol. Chem., 280, pp. 23280-23286; Tylor, S., Andonov, A., Cutts, T., Cao, J., Grudesky, E., Van Domselaar, G., Li, X., He, R., The SR-rich motif in SARS-CoV nucleocapsid protein is important for virus replication (2009) Can. J. Microbiol., 55, pp. 254-260; Yu, I.M., Oldham, M.L., Zhang, J., Chen, J., Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae (2006) J. Biol. Chem., 281, pp. 17134-17139; Chang, C.K., Jeyachandran, S., Hu, N.J., Liu, C.L., Lin, S.Y., Wang, Y.S., Chang, Y.M., Hou, M.H., Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human coronavirus nucleocapsid protein (2016) Mol. Biosyst., 12, pp. 59-66; Huang, C.Y., Hsu, Y.L., Chiang, W.L., Hou, M.H., Elucidation of the stability and functional regions of the human coronavirus OC43 nucleocapsid protein (2009) Protein Sci., 18, pp. 2209-2218; Jang, S.I., Kim, Y.H., Paik, S.Y., You, J.C., Development of a cell-based assay probing the specific interaction between the human immunodeficiency virus type 1 nucleocapsid and psi RNA in vivo (2007) J. Virol., 81, pp. 6151-6155; Woo, J., Yu, K.L., Lee, S.H., You, J.C., Development of a functional cell-based assay that probes the specific interaction between influenza A virus NP and its packaging signal sequence RNA (2015) Biochem. Biophys. Res. Commun., 457, pp. 227-233; Jain, C., Belasco, J.G., Rapid genetic analysis of RNA-protein interactions by translational repression in Escherichia coli (2000) Methods Enzymol., 318, pp. 309-332; Hsin, W.C., Chang, C.H., Chang, C.Y., Peng, W.H., Chien, C.L., Chang, M.F., Chang, S.C., Nucleocapsid protein-dependent assembly of the RNA packaging signal of Middle East respiratory syndrome coronavirus (2018) J. Biomed. Sci., 25, p. 47","Cho, Y.-E.; The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of MedicineSouth Korea; email: yecho@yuhs.ac",,"Elsevier B.V.",0006291X,,BBRCA,"31594639","English","Biochem. Biophys. Res. Commun.",Article,"Final",Open Access,Scopus,2-s2.0-85073020742 "Malbon A.J., Fonfara S., Meli M.L., Hahn S., Egberink H., Kipar A.","24401119500;6506305967;7005287100;56452248200;7004767057;7004576445;","Feline infectious peritonitis as a systemic inflammatory disease: Contribution of liver and heart to the pathogenesis",2019,"Viruses","11","12", 1144,"","",,,"10.3390/v11121144","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076458820&doi=10.3390%2fv11121144&partnerID=40&md5=93540f29f6487ed2cdc7e1ce11e73576","Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Small Animal Hospital, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, 00014, Finland; Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, 00014, Finland; Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Royal (Dick) School of Veterinary Studies, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom; Cummings School of Veterinary Medicine, Tufts University, N. Grafton, MA 01536, United States","Malbon, A.J., Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland, Royal (Dick) School of Veterinary Studies, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, United Kingdom; Fonfara, S., Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada, Small Animal Hospital, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, 00014, Finland, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, 00014, Finland; Meli, M.L., Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland, Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland; Hahn, S., Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, 00014, Finland, Cummings School of Veterinary Medicine, Tufts University, N. Grafton, MA 01536, United States; Egberink, H., Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, Netherlands; Kipar, A., Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, 8057, Switzerland, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, 00014, Finland","Feline infectious peritonitis (FIP) is a fatal immune-mediated disease of cats, induced by feline coronavirus (FCoV). A combination of as yet poorly understood host and viral factors combine to cause a minority of FCoV-infected cats to develop FIP. Clinicopathological features include fever, vasculitis, and serositis, with or without effusions; all of which indicate a pro-inflammatory state with cytokine release. As a result, primary immune organs, as well as circulating leukocytes, have thus far been of most interest in previous studies to determine the likely sources of these cytokines. Results have suggested that these tissues alone may not be sufficient to induce the observed inflammation. The current study therefore focussed on the liver and heart, organs with a demonstrated ability to produce cytokines and therefore with huge potential to exacerbate inflammatory processes. The IL-12:IL-10 ratio, a marker of the immune system's inflammatory balance, was skewed towards the pro-inflammatory IL-12 in the liver of cats with FIP. Both organs were found to upregulate mRNA expression of the inflammatory triad of cytokines IL-1β, IL-6, and TNF-α in FIP. This amplifying step may be one of the missing links in the pathogenesis of this enigmatic disease. © 2019 by the authors.","Cardiomyocytes; Feline coronavirus; Feline infectious peritonitis; Hepatocytes; Inflammatory cytokines; Pathogenesis; Systemic inflammatory response","interleukin 10; interleukin 12; interleukin 12p40; interleukin 1beta; interleukin 6; tumor necrosis factor; age; animal experiment; animal model; animal tissue; Article; cardiac muscle cell; cat; controlled study; dot hybridization; effusion; enzyme linked immunosorbent assay; feline infectious peritonitis; female; immunohistochemistry; immunohistology; inflammatory disease; laser capture microdissection; liver cell; male; nonhuman; pathogenesis; protein expression; reverse transcription polymerase chain reaction; upregulation","Hayashi, T., Goto, N., Takahashi, R., Fujiwara, K., Systemic vascular lesions in feline infectious peritonitis (1977) Jpn. J. Vet. Sci., 39, pp. 365-377. , [CrossRef] [PubMed]; Weiss, R.C., Scott, F.W., Pathogenesis of feline infectious peritonitis: Pathologic changes and immunofluorescence (1981) Am. J. Vet. Res., 42, pp. 2036-2048. , [PubMed]; Kipar, A., Bellmann, S., Kremendahl, J., Köhler, K., Reinacher, M., Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis (1998) Vet. Immunol. Immunopathol., 65, pp. 243-257. , [CrossRef]; Kipar, A., May, H., Menger, S., Weber, M., Leukert, W., Reinacher, M., Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis (2005) Vet. Pathol., 42, pp. 321-330. , [CrossRef] [PubMed]; Acar, D.D., Olyslaegers, D.A.J., Dedeurwaerder, A., Roukaerts, I.D.M., Baetens, W., Van Bockstael, S., De Gryse, G.M.A., Nauwynck, H.J., Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes (2016) J. Gen. Virol., 97, pp. 2633-2642. , [CrossRef] [PubMed]; Dinarello, C.A., Historical review of cytokines (2007) Eur. J. Immunol., 37, pp. S34-S45. , [CrossRef]; Akdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Klunker, S., Palomares, O., Interleukins, from 1 to 37, and interferon-: Receptors, functions, and roles in diseases (2011) J. Allergy Clin. Immunol., 127, pp. 701-721. , [CrossRef]; Paltrinieri, S., The feline acute phase reaction (2008) Vet. J., 177, pp. 26-35. , [CrossRef]; Goitsuka, R., Ohashi, T., Ono, K., Yasukawa, K., Koishibara, Y., Fukui, H., Ohsugi, Y., Hasegawa, A., IL-6 activity in feline infectious peritonitis (1990) J. Immunol., 144, pp. 2599-2603; Goitsuka, R., Onda, C., Hirota, Y., Hasegawa, A., Tomoda, I., Feline interleukin 1 production induced by feline infectious peritonitis virus (1988) Jpn. J. Vet. Sci., 50, pp. 209-214. , [CrossRef]; Gunn-Moore, D.A., Caney, S.M., Gruffydd-Jones, T.J., Helps, C.R., Harbour, D.A., Antibody and cytokine responses in kittens during the development of feline infectious peritonitis (FIP) (1998) Vet. Immunol. Immunopathol., 65, pp. 221-242. , [CrossRef]; Kiss, I., Poland, A.M., Pedersen, N.C., Disease outcome and cytokine responses in cats immunized with an avirulent feline infectious peritonitis virus (FIPV)-UCD1 and challenge-exposed with virulent FIPV-UCD8 (2004) J. Feline Med. Surg., 6, pp. 89-97. , [CrossRef] [PubMed]; Gelain, M.E., Meli, M., Paltrinieri, S., Whole blood cytokine profiles in cats infected by feline coronavirus and healthy non-FCoV infected specific pathogen-free cats (2006) J. Feline Med. Surg., 8, pp. 389-399. , [CrossRef] [PubMed]; Mehrbod, P., Harun, M.S.R., Shuid, A.N., Omar, A.R., Transcriptome analysis of feline infectious peritonitis virus infection (2015) Coronaviruses Methods Protoc. Methods Mol. Biol., 1282, pp. 241-250; Harun, M.S.R., Kuan, C.O., Selvarajah, G.T., Wei, T.S., Arshad, S.S., Hair Bejo, M., Omar, A.R., Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats (2013) Virol. J., 10, p. 329. , [CrossRef]; Takano, T., Hohdatsu, T., Toda, A., Tanabe, M., Koyama, H., TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages (2007) Virology, 364, pp. 64-72. , [CrossRef]; Takano, T., Hohdatsu, T., Hashida, Y., Kaneko, Y., Tanabe, M., Koyama, H., A ""possible"" involvement of TNF-alpha in apoptosis induction in peripheral blood lymphocytes of cats with feline infectious peritonitis (2007) Vet. Microbiol., 119, pp. 121-131. , [CrossRef]; Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Apoptosis and T-cell depletion during feline infectious peritonitis (1996) J. Virol., 70, pp. 8977-8983; Kipar, A., Köhler, K., Leukert, W., Reinacher, M., A comparison of lymphatic tissues fromcats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection (2001) J. Comp. Pathol., 125, pp. 182-191. , [CrossRef]; Malbon, A.J., Meli, M.L., Barker, E.N., Davidson, A.D., Tasker, S., Kipar, A., Inflammatory mediators in the mesenteric lymph nodes, site of a possible intermediate phase in the immune response to feline coronavirus and the pathogenesis of feline infectious peritonitis? (2019) J. Comp. Pathol., 166, pp. 69-86. , [CrossRef]; Kipar, A., Meli, M.L., Failing, K., Euler, T., Gomes-Keller, M.A., Schwartz, D., Lutz, H., Reinacher, M., Natural feline coronavirus infection: Differences in cytokine patterns in association with the outcome of infection (2006) Vet. Immunol. Immunopathol., 112, pp. 141-155. , [CrossRef] [PubMed]; Duthie, S., Eckersall, P.D., Addie, D.D., Lawrence, C.E., Jarrett, O., Value of alpha 1-acid glycoprotein in the diagnosis of feline infectious peritonitis (1997) Vet. Rec., 141, pp. 299-303. , [CrossRef] [PubMed]; Giordano, A., Spagnolo, V., Colombo, A., Paltrinieri, S., Changes in some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection (2004) Vet. J., 167, pp. 38-44. , [CrossRef]; Giori, L., Giordano, A., Giudice, C., Grieco, V., Paltrinieri, S., Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases (2011) J. Small Anim. Pract., 52, pp. 152-157. , [CrossRef] [PubMed]; González-Amaro, R., García-Monzón, C., García-Buey, L., Moreno-Otero, R., Alonso, J.L., Yagüe, E., Pivel, J.P., Sánchez-Madrid, F., Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis (1994) J. Exp. Med., 179, pp. 841-848. , [CrossRef] [PubMed]; Alfrey, E.J., Most, D., Wang, X., Lee, L.K., Holm, B., Krieger, N.R., Sibley, R.K., Dafoe, D.C., Interferon-gamma and interleukin-10 messenger RNA are up-regulated after orthotopic liver transplantation in tolerant rats: Evidence for cytokine-mediated immune dysregulation (1995) Surgery, 118, pp. 399-405. , [CrossRef]; Saad, B., Frei, K., Scholl, F.A., Fontana, A., Maier, P., Hepatocyte-derived interleukin-6 and tumor-necrosis factor alpha mediate the lipopolysaccharide-induced acute-phase response and nitric oxide release by cultured rat hepatocytes (1995) Eur. J. Biochem., 229, pp. 349-355. , [CrossRef]; Panesar, N., Tolman, K., Mazuski, J.E., Endotoxin stimulates hepatocyte interleukin-6 production (1999) J. Surg. Res., 85, pp. 251-258. , [CrossRef]; Stonans, I., Stonane, E., Russwurm, S., Deigner, H.P., Böhm, K.J., Wiederhold, M., Jäger, L., Reinhart, K., HepG2 human hepatoma cells express multiple cytokine genes (1999) Cytokine, 11, pp. 151-156. , [CrossRef]; Dikopoulos, N., Wegenka, U., Kröger, A., Hauser, H., Schirmbeck, R., Reimann, J., Recently primed CD8+ T cells entering the liver induce hepatocytes to interact with naïve CD8+ T cells in the mouse (2004) Hepatology, 39, pp. 1256-1266. , [CrossRef]; Fonfara, S., Kitz, S., Hahn, S., Kipar, A., The influence of age and disease presentation on myocardial transcription in cats with hypertrophic cardiomyopathy Res. Vet. Sci., , in preparation; Levy, J.K., Ritchey, J.W., Rottman, J.B., Davidson, M.G., Liang, Y.-H., Jordan, H.L., Tompkins, W.A., Tompkins, M.B., Elevated interleukin-10-to-interleukin-12 ratio in feline immunodeficiency virus-infected cats predicts loss of type 1 immunity to Toxoplasma gondii (1998) J. Infect. Dis., 178, pp. 503-511. , [CrossRef] [PubMed]; Van Hemert, S., Meijerink, M., Molenaar, D., Bron, P.A., De Vos, P., Kleerebezem, M., Wells, J.M., Marco, M.L., Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells (2010) BMC Microbiol., 10, p. 293. , [CrossRef] [PubMed]; Meli, M.L., Kipar, A., Müller, C., Jenal, K., Gönczi, E., Borel, N., Gunn-Moore, D., Reinacher, M., High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type i and in naturally FCoV-infected cats (2004) J. Feline Med. Surg., 6, pp. 69-81. , [CrossRef] [PubMed]; Fonfara, S., Hetzel, U., Hahn, S., Kipar, A., Age- And gender-dependent myocardial transcription patterns of cytokines and extracellular matrix remodelling enzymes in cats with non-cardiac diseases (2015) Exp. Gerontol., 72, pp. 117-123. , [CrossRef] [PubMed]; Leutenegger, C.M., Mislin, C.N., Sigrist, B., Ehrengruber, M.U., Hofmann-Lehmann, R., Lutz, H., Quantitative real-time PCR for the measurement of feline cytokine mRNA (1999) Vet. Immunol. Immunopathol., 71, pp. 291-305. , [CrossRef]; Kipar, A., Leutenegger, C.M., Hetzel, U., Akens, M.K., Mislin, C.N., Reinacher, M., Lutz, H., Cytokine mRNA levels in isolated feline monocytes (2001) Vet. Immunol. Immunopathol., 78, pp. 305-315. , [CrossRef]; Cummings, M., McGinley, C.V., Wilkinson, N., Field, S.L., Duffy, S.R., Orsi, N.M., A robust RNA integrity-preserving staining protocol for laser capture microdissection of endometrial cancer tissue (2011) Anal. Biochem., 416, pp. 123-125. , [CrossRef]; Pfaff, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acids Res., 29, p. e45. , [CrossRef]; Frontera-Acevedo, K., Sakamoto, K., Local pulmonary immune responses in domestic cats naturally infected with Cytauxzoon felis (2015) Vet. Immunol. Immunopathol., 163, pp. 1-7. , [CrossRef]; Kipar, A., Meli, M.L., Feline infectious peritonitis: Still an enigma? (2014) Vet. Pathol., 51, pp. 505-526. , [CrossRef] [PubMed]; Giambelluca, M.S., Laflamme, C., Pouliot, M., Post-transcriptional regulation of tumour necrosis factor alpha biosynthesis: Relevance to the pathophysiology of rheumatoid arthritis (2013) OA Inflamm., 1, pp. 1-6. , [CrossRef]; Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., Sites of feline coronavirus persistence in healthy cats (2010) J. Gen. Virol., 91, pp. 1698-1707. , [CrossRef] [PubMed]; De Groot-Mijnes, J.D.F., Van Dun, J.M., Van Der-Most, G., De Groot, R.J., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2005) J. Virol., 79, pp. 1036-1044. , [CrossRef]; Abbas, A.K., Lichtman, A.H., Pillai, S., (2017) Cellular and Molecular Immunology, , 9th ed.; Saunders Elsevier: Amsterdam, The Netherlands; Olyslaegers, D.A.J., Dedeurwaerder, A., Desmarets, L.M.B., Vermeulen, B.L., Dewerchin, H.L., Nauwynck, H.J., Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis (2013) Vet. Microbiol., 166, pp. 438-449. , [CrossRef]; Watanabe, H., Nakanishi, I., Yamashita, K., Hayakawa, T., Okada, Y., Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: Correlation with cellular invasion (1993) J. Cell Sci., 104, pp. 991-999; Sarén, P., Welgus, H.G., Kovanen, P.T., TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages (1996) J. Immunol., 157, pp. 4159-4165; Robinson, S.C., Scott, K.A., Balkwill, F.R., Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha (2002) Eur. J. Immunol., 32, pp. 404-412. , [CrossRef]; Kent, L.W., Rahemtulla, F., Hockett, R.D., Gilleland, R.C., Michalek, S.M., Effect of lipopolysaccharide and inflammatory cytokines on interleukin-6 production by healthy human gingival fibroblasts (1998) Infect. Immun., 66, pp. 608-614; Takano, T., Ohyama, T., Kokumoto, A., Satoh, R., Hohdatsu, T., Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP (2011) Virus Res., 158, pp. 161-168. , [CrossRef]; Pedersen, N.C., An update on feline infectious peritonitis: Virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132. , [CrossRef] [PubMed]; Loeffer, S., Fayard, B., Weis, J., Weissenberger, J., Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1 (2005) Int. J. Cancer, 115, pp. 202-213. , [CrossRef] [PubMed]; Feurino, L.W., Zhang, Y., Bharadwaj, U., Zhang, R., Li, F., Fisher, W.E., Brunicardi, F.C., Min, L., IL-6 stimulates Th2 type cytokine secretion and upregulates VEGF and NRP-1 expression in pancreatic cancer cells (2007) Cancer Biol. Ther., 6, pp. 1096-1100. , [CrossRef] [PubMed]; Gurkan, O.U., He, C., Zielinski, R., Rabb, H., King, L.S., Dodd-O, J.M., D'Alessio, F.R., Becker, P.M., Interleukin-6 mediates pulmonary vascular permeability in a two-hit model of ventilator-associated lung injury (2011) Exp. Lung Res., 37, pp. 575-584. , [CrossRef] [PubMed]; Kishimoto, T., The biology of interleukin-6 (1989) Blood, 74, pp. 1-10. , [CrossRef] [PubMed]; Iwasaki, H., Takeuchi, O., Teraguchi, S., Matsushita, K., Uehata, T., Kuniyoshi, K., Satoh, T., Standley, D.M., The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1 (2011) Nat. Immunol., 12, pp. 1167-1175. , [CrossRef]; Buchwald, U.K., Geerdes-Fenge, H.F., Vöckler, J., Ziege, S., Lode, H., Interleukin-10: Effects on phagocytosis and adhesion molecule expression of granulocytes and monocytes in a comparison with prednisolone (1999) Eur. J. Med. Res., 4, pp. 85-94; DeWaal Malefyt, R., Abrams, J., Bennett, B., Figdor, C.G., De Vries, J.E., Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes (1991) J. Exp. Med., 174, pp. 1209-1220. , [CrossRef]; Cao, S., Liu, J., Chesi, M., Bergsagel, P.L., Ho, I.-C., Donnelly, R.P., Ma, X., Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma (2002) J. Immunol., 169, pp. 5715-5725. , [CrossRef]; Watson, D.C., Sargianou, M., Panos, G., Interleukin-12 (IL-12)/IL-10 ratio as a marker of disease severity in Crimean-Congo hemorrhagic fever (2012) Clin. Vaccine Immunol., 19, pp. 823-824. , [CrossRef]; Lasarte, J.J., Corrales, F.J., Casares, N., López-Díaz De-Cerio, A., Qian, C., Xie, X., Borrás-Cuesta, F., Prieto, J., Different doses of adenoviral vector expressing IL-12 enhance or depress the immune response to a coadministered antigen: The role of nitric oxide (1999) J. Immunol., 162, pp. 5270-5277. , [PubMed]; Lee, K., Overwijk, W.W., O'Toole, M., Swiniarski, H., Restifo, N.P., Dorner, A.J., Wolf, S.F., Sturmhoefel, K., Dose-dependent and schedule-dependent effects of interleukin-12 on antigen-specific CD8 responses (2000) J. Interf. Cytokine Res., 20, pp. 589-596; Glansbeek, H.L., Haagmans, B.L., Te Lintelo, E.G., Egberink, H.F., Duquesne, V., Aubert, A., Horzinek, M.C., Rottier, P.J.M., Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus (2002) J. Gen. Virol., 83, pp. 1-10. , [CrossRef] [PubMed]","Malbon, A.J.; Institute of Veterinary Pathology, Vetsuisse Faculty, University of ZurichSwitzerland; email: alexandra.malbon@uzh.ch",,"MDPI AG",19994915,,,"31835559","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85076458820 "Ramshaw R.E., Letourneau I.D., Hong A.Y., Hon J., Morgan J.D., Osborne J.C.P., Shirude S., Van Kerkhove M.D., Hay S.I., Pigott D.M.","57215330169;57196039454;57215325930;57215304252;57212347646;57215316599;57195557748;15761388700;7101875313;55320335600;","A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences",2019,"Scientific data","6","1",,"318","",,,"10.1038/s41597-019-0330-0","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076456770&doi=10.1038%2fs41597-019-0330-0&partnerID=40&md5=cc7e7bb8ba0498ea058ffbcf021feb9a","Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, MD, Baltimore, 21205, United States; Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20Geneva 1211, Switzerland; Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States","Ramshaw, R.E., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Letourneau, I.D., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Hong, A.Y., Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, MD, Baltimore, 21205, United States; Hon, J., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Morgan, J.D., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Osborne, J.C.P., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Shirude, S., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Van Kerkhove, M.D., Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20Geneva 1211, Switzerland; Hay, S.I., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States, Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States; Pigott, D.M., Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States, Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States","As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover.",,,,,,"NLM (Medline)",20524463,,,"31836720","English","Sci Data",Article,"Final",Open Access,Scopus,2-s2.0-85076456770 "Prada D., Boyd V., Baker M.L., O'Dea M., Jackson B.","57210968992;8863044500;56753420600;23061467400;57196697651;","Viral diversity of microbats within the south west botanical province of western Australia",2019,"Viruses","11","12", 1157,"","",,,"10.3390/v11121157","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076702838&doi=10.3390%2fv11121157&partnerID=40&md5=6db7c4747f03b8054aa720657a477ec2","School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; Health and Biosecurity Business Unit, Australian Animal Health Laboratories, CSIRO, Geelong, VIC 3220, Australia","Prada, D., School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; Boyd, V., Health and Biosecurity Business Unit, Australian Animal Health Laboratories, CSIRO, Geelong, VIC 3220, Australia; Baker, M.L., Health and Biosecurity Business Unit, Australian Animal Health Laboratories, CSIRO, Geelong, VIC 3220, Australia; O'Dea, M., School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; Jackson, B., School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia","Bats are known reservoirs of a wide variety of viruses that rarely result in overt clinical disease in the bat host. However, anthropogenic influences on the landscape and climate can change species assemblages and interactions, as well as undermine host-resilience. The cumulative result is a disturbance of bat-pathogen dynamics, which facilitate spillover events to sympatric species, and may threaten bat communities already facing synergistic stressors through ecological change. Therefore, characterisation of viral pathogens in bat communities provides important basal information to monitor and predict the emergence of diseases relevant to conservation and public health. This study used targeted molecular techniques, serological assays and next generation sequencing to characterise adenoviruses, coronaviruses and paramyxoviruses from 11 species of insectivorous bats within the South West Botanical Province of Western Australia. Phylogenetic analysis indicated complex ecological interactions including virus-host associations, cross-species infections, and multiple viral strains circulating concurrently within selected bat populations. Additionally, we describe the entire coding sequences for five alphacoronaviruses (representing four putative new species), and one novel adenovirus. Results indicate that viral burden (both prevalence and richness) is not homogeneous among species, with Chalinolobus gouldii identified as a key epidemiological element within the studied communities. © 2019 by the authors.","Adenovirus; Coronavirus; Insectivorous bats; Next generation sequencing; Paramyxovirus; Serology; Viral diversity; Western Australia","DNA polymerase; RNA directed RNA polymerase; Alphacoronavirus; amino acid sequence; antibody titer; Article; Atadenovirus; bat; Betacoronavirus; biodiversity; Coronavirinae; cross infection; Gammacoronavirus; geographic distribution; Hendra virus; microbial diversity; Middle East respiratory syndrome coronavirus; next generation sequencing; Nipah virus; nonhuman; Paramyxoviridae; phylogenetic tree; phylogeny; Porcine epidemic diarrhea virus; prevalence; protein database; public health; reverse transcription polymerase chain reaction; RNA extraction; Sanger sequencing; SARS coronavirus; sequence analysis; seroconversion; serology; seroprevalence; structural gene; taxonomy; viral diversity; virus cell interaction; virus detection; virus genome; virus isolation; virus load; virus transmission; Western Australia; whole genome sequencing","Drexler, J.F., Corman, V.M., Drosten, C., Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS (2014) Antiviral Res., 101, pp. 45-56. , [CrossRef] [PubMed]; Marsh, G.A., De Jong, C., Barr, J.A., Tachedjian, M., Smith, C., Middleton, D., Yu, M., Haring, V., Cedar Virus: A novel Henipavirus isolated from Australian bats (2012) PLoS Pathog., 8. , [CrossRef] [PubMed]; Carroll, D., Daszak, P., Wolfe, N.D., Gao, G.F., Morel, C.M., Morzaria, S., Pablos-Méndez, A., Mazet, J.A.K., The global virome project (2018) Science (80-. ), 359, pp. 872-874. , [CrossRef] [PubMed]; Bradley, C.A., Altizer, S., Urbanization and the ecology of wildlife diseases (2007) Trends Ecol. Evol., 22, pp. 95-102. , [CrossRef]; Altizer, S., Ostfeld, R.S., Johnson, P.T.J., Kutz, S., Harvell, C.D., Climate change and infectious diseases: From evidence to a predictive framework (2013) Science (80-. ), 341, pp. 514-519. , [CrossRef]; Plowright, R.K., Foley, P., Field, H.E., Dobson, A.P., Foley, J.E., Eby, P., Daszak, P., Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (Pteropus spp.) (2011) Proceedings. Biol. Sci., 278, pp. 3703-3712. , [CrossRef]; Walsh, M.G., Wiethoelter, A., Haseeb, M.A., The impact of human population pressure on flying fox niches and the potential consequences for Hendra virus spillover (2017) Sci. Rep., 7, p. 8226. , [CrossRef]; Jung, K., Threlfall, C.G., Urbanisation and its effects on bats-A global meta-analysis (2016) Bats in the Anthropocene: Conservation of Bats in A Changing World, pp. 13-33. , Voigt, C.C., Kingston, T., Eds.; Springer International Publishing: London, UK; Roberts, K.E., Hadfield, J.D., Sharma, M.D., Longdon, B., Changes in temperature alter the potential outcomes of virus host shifts (2018) PLoS Pathog., 14. , [CrossRef]; Gervasi, S.S., Burgan, S.C., Hofmeister, E., Unnasch, T.R., Martin, L.B., Stress hormones predict a host superspreader phenotype in the West Nile virus system (2017) Proc. R. Soc. B Biol. Sci., 284, p. 20171090. , [CrossRef]; Davy, C.M., Donaldson, M.E., Subudhi, S., Rapin, N., Warnecke, L., Turner, J.M., Bollinger, T.K., Kunkel, E.L., White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats (2018) Sci. Rep., 8, p. 15508. , [CrossRef]; Giles, J.R., Eby, P., Parry, H., Peel, A.J., Plowright, R.K., Westcott, D.A., McCallum, H., Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for Hendra virus ecology (2018) Sci. Rep., 8, pp. 1-19. , [CrossRef] [PubMed]; Tompkins, D.M., Carver, S., Jones, M.E., Krkošek, M., Skerratt, L.F., Emerging infectious diseases of wildlife: A critical perspective (2015) Trends Parasitol., 31, pp. 149-159. , [CrossRef] [PubMed]; Hayman, D.T.S., Bats as viral reservoirs (2016) Annu. Rev. Virol., 3, pp. 77-99. , [CrossRef] [PubMed]; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., AlHakeem, R., Islam, A., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1824. , [CrossRef]; Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Tsoi, H.-W., Wong, B.H.L., Wong, S.S.Y., Yuen, K.-Y., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 14040-14045. , [CrossRef]; Reusken, C.B., Haagmans, B.L., Müller, M.A., Gutierrez, C., Godeke, G.-J., Meyer, B., Muth, D., Corman, V.M., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study (2013) Lancet Infect. Dis., 13, pp. 859-866. , [CrossRef]; Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Yuan, J., Shi, Z., Host range, prevalence, and genetic diversity of adenoviruses in bats (2010) J. Virol., 84, pp. 3889-3897. , [CrossRef]; Chen, E.C., Yagi, S., Kelly, K.R., Mendoza, S.P., Maninger, N., Rosenthal, A., Spinner, A., Lerche, N.W., Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony (2011) PLoS Pathog., 7. , [CrossRef]; Mahalingam, S., Herrero, L.J., Playford, E.G., Spann, K., Herring, B., Rolph, M.S., Middleton, D., Wang, L.-F., Hendra virus: An emerging paramyxovirus in Australia (2012) Lancet Infect. Dis., 12, pp. 799-807. , [CrossRef]; Mohd Nor, M.N., Gan, C.H., Ong, B.L., Nipah virus infection of pigs in peninsular Malaysia (2000) Rev. Sci. Tech., 19, pp. 160-165. , [CrossRef]; Field, H., Jordan, D., Edson, D., Morris, S., Melville, D., Parry-Jones, K., Broos, A., Davis, R., Spatiotemporal aspects of hendra virus infection in pteropid bats (Flying-Foxes) in Eastern Australia (2015) PLoS ONE, 10, pp. 1-14. , [CrossRef] [PubMed]; Mackenzie, J.S., Field, H.E., Guyatt, K.J., Managing emerging diseases borne by fruit bats (flying foxes), with particular reference to henipaviruses and Australian bat lyssavirus (2003) J. Appl. Microbiol., 94, pp. 59-69. , [CrossRef] [PubMed]; Ng, J.H.J., Baker, M.L., Bats and bat-borne diseases: A perspective on Australian megabats (2013) Aust. J. Zool., 61, p. 48. , [CrossRef]; Gould, A.R., Kattenbelt, J.A., Gumley, S.G., Lunt, R.A., Characterisation of an Australian bat lyssavirus variant isolated from an insectivorous bat (2002) Virus Res., 89, pp. 1-28. , [CrossRef]; Field, H.E., Evidence of Australian bat lyssavirus infection in diverse Australian bat taxa (2018) Zoonoses Public Health, 65, pp. 742-748. , [CrossRef] [PubMed]; Prada, D., Boyd, V., Baker, M., Jackson, B., O'Dea, M., Insights into Australian bat lyssavirus in insectivorous bats of Western Australia (2019) Trop. Med. Infect. Dis., 4, p. 46. , [CrossRef]; Smith, C.S., De Jong, C.E., Meers, J., Henning, J., Wang, L.-F., Field, H.E., Coronavirus infection and diversity in bats in the Australasian region (2016) Ecohealth, 13, pp. 72-82. , [CrossRef]; Jeong, J., Smith, C.S., Peel, A.J., Plowright, R.K., Kerlin, D.H., McBroom, J., McCallum, H., Persistent infections support maintenance of a coronavirus in a population of Australian bats (Myotis macropus) (2017) Epidemiol. Infect., 145, pp. 2053-2061. , [CrossRef]; Holz, P.H., Lumsden, L.F., Druce, J., Legione, A.R., Vaz, P., Devlin, J.M., Hufschmid, J., Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses (2018) PLoS ONE, 13. , [CrossRef]; Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, pp. 853-858. , [CrossRef]; Wardell-Johnson, G., Wardell-Johnson, A., Bradby, K., Robinson, T., Bateman, P.W., Williams, K., Keesing, A., Burbridge, M., Application of a Gondwanan perspective to restore ecological integrity in the south-western Australian global biodiversity hotspot (2016) Restor. Ecol., pp. 1-11. , [CrossRef]; Churchill, S., (2008) Australian Bats, , 2nd ed.; Allen & Unwin: Crows Nest, Australia; Goldstein, T., (2017) Personal Communication, , University of California, Davis, CA, USA; Tong, S., Chern, S.-W.W., Li, Y., Pallansch, M.A., Anderson, L.J., Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses (2008) J. Clin. Microbiol., 46, pp. 2652-2658. , [CrossRef] [PubMed]; O'Dea, M.A., Jackson, B., Jackson, C., Xavier, P., Warren, K., Discovery and partial genomic characterisation of a novel nidovirus associated with respiratory disease in wild shingleback lizards (Tiliqua rugosa) (2016) PLoS ONE, p. 11. , [CrossRef] [PubMed]; Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Prjibelski, A.D., SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing (2012) J. Comput. Biol., 19, pp. 455-477. , [CrossRef] [PubMed]; Buchfink, B., Xie, C., Huson, D.H., Fast and sensitive protein alignment using DIAMOND (2015) Nat. Methods, 12, pp. 59-60. , [CrossRef] [PubMed]; Roy, S., Vandenberghe, L.H., Kryazhimskiy, S., Grant, R., Calcedo, R., Yuan, X., Keough, M., Medina-Jaszek, C.A., Isolation and characterization of adenoviruses persistently shed from the gastrointestinal tract of non-human primates (2009) PLoS Pathog., 5. , [CrossRef]; Lacroix, A., Duong, V., Hul, V., San, S., Davun, H., Omaliss, K., Chea, S., Silithammavong, S., Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia (2017) Infect. Genet. Evol., 48, pp. 10-18. , [CrossRef]; Quan, P.-L., Firth, C., Street, C., Henriquez, J.A., Petrosov, A., Tashmukhamedova, A., Hutchison, S.K., Niezgoda, M., Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria (2010) MBio, 1, pp. e00208-e00210. , [CrossRef]; Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797. , [CrossRef]; Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res., 30, pp. 3059-3066. , [CrossRef]; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms (2018) Mol. Biol. Evol., 35, pp. 1547-1549. , [CrossRef]; Ronquist, F., Teslenko, M., Van Der-Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Huelsenbeck, J.P., Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61, pp. 539-542. , [CrossRef]; Stamatakis, A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies (2014) Bioinformatics, 30, pp. 1312-1313. , [CrossRef]; Bossart, K.N., McEachern, J.A., Hickey, A.C., Choudhry, V., Dimitrov, D.S., Eaton, B.T., Wang, L.-F., Neutralization assays for differential henipavirus serology using Bio-Plex Protein Array Systems (2007) J. Virol. Methods, 142, pp. 29-40. , [CrossRef]; Boyd, V., Smith, I., Crameri, G., Burroughs, A.L., Durr, P.A., White, J., Cowled, C., Wang, L.F., Development of multiplexed bead arrays for the simultaneous detection of nucleic acid from multiple viruses in bat samples (2015) J. Virol. Methods, 223, pp. 5-12. , [CrossRef]; Hayman, D.T.S., Wang, L.F., Barr, J., Baker, K.S., Suu-Ire, R., Broder, C.C., Cunningham, A.A., Wood, J.L.N., Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa (2011) PLoS ONE, 6. , [CrossRef]; Hayman, D.T.S., Suu-Ire, R., Breed, A.C., McEachern, J.A., Wang, L., Wood, J.L.N., Cunningham, A.A., Evidence of henipavirus infection in West African fruit bats (2008) PLoS ONE, 3. , [CrossRef]; Plowright, R.K., Field, H.E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P., Foley, J.E., Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes ( Pteropus scapulatus ) (2008) Proc. R. Soc. B Biol. Sci., 275, pp. 861-869. , [CrossRef]; Breed, A.C., Yu, M., Barr, J.A., Crameri, G., Thalmann, C.M., Wang, L.F., Prevalence of henipavirus and rubulavirus antibodies in pteropid bats, Papua New Guinea (2010) Emerg. Infect. Dis., 16, pp. 1997-1999. , [CrossRef]; Brown, L.D., Cai, T.T., Dasgupta, A., Interval estimation for a binomial proportion (2001) Stat. Sci., 16, pp. 101-133. , [CrossRef]; Aragon, T., (2017) Epitools: Epidemiology Tools, , https://CRAN.R-project.org/package=epitools, R package version 0.5-10. Published 26 October (accessed on 20 April 2019); Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Zhu, Y., Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases (2016) ISME J., 10, pp. 609-620. , [CrossRef] [PubMed]; Iglesias-Caballero, M., Juste, J., Vázquez-Morón, S., Falcon, A., Aznar-Lopez, C., Ibáñez, C., Pozo, F., Garin, I., New adenovirus groups in western palaearctic bats (2018) Viruses, 10, p. 443. , [CrossRef]; Vidovszky, M.Z., Kohl, C., Boldogh, S., Görföl, T., Wibbelt, G., Kurth, A., Harrach, B., Random sampling of the Central European bat fauna reveals the existence of numerous hitherto unknown adenoviruses (2015) Acta Vet. Hung., 63, pp. 508-525. , [CrossRef]; Wray, A.K., Olival, K.J., Morán, D., Lopez, M.R., Alvarez, D., Navarrete-Macias, I., Liang, E., Daszak, P., Viral diversity, prey preference, and Bartonella prevalence in Desmodus rotundus in Guatemala (2016) Ecohealth, 13, pp. 761-774. , [CrossRef]; Chu, D.K.W., Poon, L.L.M., Chan, K.H., Chen, H., Guan, Y., Yuen, K.Y., Peiris, J.S.M., Coronaviruses in bent-winged bats (Miniopterus spp.) (2006) J. Gen. Virol., 87, pp. 2461-2466. , [CrossRef]; Dominguez, S.R., O'Shea, T.J., Oko, L.M., Holmes, K.V., Detection of group 1 coronaviruses in bats in North America (2007) Emerg. Infect. Dis., 13, pp. 1295-1300. , [CrossRef]; Moreira-Soto, A., Taylor-Castillo, L., Vargas-Vargas, N., Rodríguez-Herrera, B., Jiménez, C., Corrales-Aguilar, E., Neotropical bats from Costa Rica harbour diverse coronaviruses (2015) Zoonoses Public Health, 62, pp. 501-505. , [CrossRef]; Wilkinson, D.A., Temmam, S., Lebarbenchon, C., Lagadec, E., Chotte, J., Guillebaud, J., Ramasindrazana, B., Goodman, S.M., Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean (2012) Virus Res., 170, pp. 159-163. , [CrossRef]; Yuan, L., Li, M., Li, L., Monagin, C., Chmura, A.A., Schneider, B.S., Epstein, J.H., Daszak, P., Evidence for retrovirus and paramyxovirus infection of multiple bat species in China (2014) Viruses, 6, pp. 2138-2154. , [CrossRef]; Gloza-Rausch, F., Ipsen, A., Seebens, A., Göttsche, M., Panning, M., Drexler, J.F., Petersen, N., Müller, M., Detection and prevalence patterns of group i coronaviruses in bats, northern Germany (2008) Emerg. Infect. Dis., 14, pp. 626-631. , [CrossRef]; Rizzo, F., Edenborough, K.M., Toffoli, R., Culasso, P., Zoppi, S., Dondo, A., Robetto, S., Kurth, A., Coronavirus and paramyxovirus in bats from Northwest Italy (2017) BMC Vet. Res., 13, p. 396. , [CrossRef]; Asano, K.M., Hora, A.S., Scheffer, K.C., Fahl, W.O., Iamamoto, K., Mori, E., Brandão, P.E., Alphacoronavirus in urban Molossidae and Phyllostomidae bats, Brazil (2016) Virol. J., 13, p. 110. , [CrossRef]; Zheng, X.Y., Qiu, M., Chen, H.F., Chen, S.W., Xiao, J.P., Jiang, L.N., Huo, S.T., Liu, S., Molecular detection and phylogenetic characterization of bat and human adenoviruses in Southern China (2016) Vector-Borne Zoonotic Dis., 16, pp. 423-427. , [CrossRef]; Conrardy, C., Tao, Y., Kuzmin, I.V., Niezgoda, M., Agwanda, B., Breiman, R.F., Anderson, L.J., Tong, S., Short report: Molecular detection of adenoviruses, rhabdoviruses, and paramyxoviruses in bats from Kenya (2014) Am. J. Trop. Med. Hyg., 91, pp. 258-266. , [CrossRef]; Lumsden, L.F., Bennett, A.F., Silins, J.E., Selection of roost sites by the lesser long-eared bat (Nyctophilus geoffroyi) and Gould's wattled bat (Chalinolobus gouldii) in south-eastern Australia (2002) J. Zool., 257, pp. S095283690200081X. , [CrossRef]; Rueegger, N., Law, B., Goldingay, R., Interspecific differences and commonalities in maternity roosting by tree cavity-roosting bats over a maternity season in a timber production landscape (2018) PLoS ONE, 13. , [CrossRef]; Burgar, J.M., Craig, M.D., Stokes, V.L., The importance of mature forest as bat roosting habitat within a production landscape (2015) For. Ecol. Manage., 356, pp. 112-123. , [CrossRef]; Bender, R., (2018) The Melbourne Bat Box Monitoring Program, Melbourne, Australia, , Personal communication; Zhou, P., Fan, H., Lan, T., Yang, X.-L., Shi, W.-F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556, pp. 255-258. , [CrossRef]; Benkö, M., Harrach, B., Molecular evolution of adenoviruses (2003) Adenoviruses: Model and Vectors in Virus-Host Interactions, pp. 3-35. , Doerfler, W., Böhm, P., Eds.; Springer: Berlin/Heidelberg, Germany; Hackenbrack, N., Rogers, M.B., Ashley, R.E., Keel, M.K., Kubiski, S.V., Bryan, J.A., Ghedin, E., Allison, A.B., Evolution and cryo-electron microscopy capsid structure of a north American bat adenovirus and its relationship to other mastadenoviruses (2017) J. Virol., 91, pp. e01504-e01516. , [CrossRef]; Sonntag, M., Mühldorfer, K., Speck, S., Wibbelt, G., Kurth, A., New adenovirus in bats, Germany (2009) Emerg. Infect. Dis., 15, pp. 2052-2055. , [CrossRef]; Jánoska, M., Vidovszky, M., Molnár, V., Liptovszky, M., Harrach, B., Benko, M., Novel adenoviruses and herpesviruses detected in bats (2011) Vet. J., 189, pp. 118-121. , [CrossRef] [PubMed]; Wu, Z., Ren, X., Yang, L., Hu, Y., Yang, J., He, G., Zhang, J., Du, J., Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces (2012) J. Virol., 86, pp. 10999-11012. , [CrossRef] [PubMed]; Bensch, S., Hellgren, O., Pérez-Tris, J., MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages (2009) Mol. Ecol. Resour., 9, pp. 1353-1358. , [CrossRef] [PubMed]; Drexler, J.F., Corman, V.M., Müller, M.A., Maganga, G.D., Vallo, P., Binger, T., Gloza-Rausch, F., Yordanov, S., Bats host major mammalian paramyxoviruses (2012) Nat. Commun., 3, p. 796. , [CrossRef] [PubMed]; Fischer, K., Zeus, V., Kwasnitschka, L., Kerth, G., Haase, M., Groschup, M.H., Balkema-Buschmann, A., Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany (2016) Infect. Genet. Evol., 37, pp. 108-116. , [CrossRef]; Peel, A.J., McKinley, T.J., Baker, K.S., Barr, J.A., Crameri, G., Hayman, D.T.S., Feng, Y.-R., Cunningham, A.A., Use of cross-reactive serological assays for detecting novel pathogens in wildlife: Assessing an appropriate cutoff for henipavirus assays in African bats (2013) J. Virol. Methods, 193, pp. 295-303. , [CrossRef]; Burroughs, A.L., Durr, P.A., Boyd, V., Graham, K., White, J.R., Todd, S., Barr, J., Meers, J., Hendra virus infection dynamics in the grey-headed flying fox (Pteropus poliocephalus) at the southern-most extent of its range: Further evidence this species does not readily transmit the virus to horses (2016) PLoS ONE, 11. , [CrossRef]; Wong, S., Lau, S., Woo, P., Yuen, K.-Y., Bats as a continuing source of emerging infections in humans (2007) Rev. Med. Virol., 17, pp. 67-91. , [CrossRef]; Luis, A.D., Hayman, D.T.S., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R.C., Mills, J.N., Cunningham, A.A., A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? (2013) Proc. Biol. Sci., 280, pp. 1-9. , [CrossRef]; Olival, K.J., Hosseini, P.R., Zambrana-Torrelio, C., Ross, N., Bogich, T.L., Daszak, P., Host and viral traits predict zoonotic spillover from mammals (2017) Nature, 546, pp. 646-650. , [CrossRef]; Turmelle, A.S., Olival, K.J., Correlates of viral richness in bats (Order Chiroptera) (2009) Ecohealth, 6, pp. 522-539. , [CrossRef] [PubMed]; Maganga, G.D., Bourgarel, M., Vallo, P., Dallo, T.D., Ngoagouni, C., Drexler, J.F., Drosten, C., Morand, S., Bat distribution size or shape as determinant of viral richness in African bats (2014) PLoS ONE, 9. , [CrossRef] [PubMed]; Gay, N., Olival, K.J., Bumrungsri, S., Siriaroonrat, B., Bourgarel, M., Morand, S., Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters (2014) Int. J. Parasitol. Parasites Wildl., 3, pp. 161-170. , [CrossRef] [PubMed]; Bordes, F., Morand, S., The impact of multiple infections on wild animal hosts: A review (2011) Infect. Ecol. Epidemiol., p. 1. , [CrossRef]; Woolhouse, M.E.J., Gowtage-Sequeria, S., Host range and emerging and reemerging pathogens (2005) Emerg. Infect. Dis., 11, pp. 1842-1847. , [CrossRef]; Streicker, D.G., Turmelle, A.S., Vonhof, M.J., Kuzmin, I.V., McCracken, G.F., Rupprecht, C.E., Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats (2010) Science (80-. ), 329, pp. 676-679. , [CrossRef]; Basham, R., Law, B., Banks, P., Microbats in a ""leafy"" urban landscape: Are they persisting, and what factors influence their presence? (2011) Austral Ecol., 36, pp. 663-678. , [CrossRef]; Straka, T.M., Lentini, P.E., Lumsden, L.F., Wintle, B.A., Van Der-Ree, R., Urban bat communities are affected by wetland size, quality, and pollution levels (2016) Ecol. Evol., 6, pp. 4761-4774. , [CrossRef]; Bullen, R.D., McKenzie, N.L., Seasonal range variation of Tadarida australis (Chiroptera: Molossidae) in Western Australia: The impact of enthalpy (2005) Aust. J. Zool., 53, pp. 145-156. , [CrossRef]; Hammarin, A.L., Berndtsson, L.T., Falk, K., Nedinge, M., Olsson, G., Lundkvist, A., Lyssavirus-reactive antibodies in Swedish bats (2016) Infect. Ecol. Epidemiol., 6, p. 31262. , [CrossRef]; Amengual, B., Bourhy, H., López-Roig, M., Serra-Cobo, J., Temporal dynamics of European bat lyssavirus type 1 and survival of Myotis myotis bats in natural colonies (2007) PLoS ONE, 2. , [CrossRef] [PubMed]; Peel, A.J., Wells, K., Giles, J., Boyd, V., Burroughs, A., Edson, D., Crameri, G., Wang, L.-F., Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover (2019) Emerg. Microbes Infect., 8, pp. 1314-1323. , [CrossRef] [PubMed]","Prada, D.; School of Veterinary Medicine, Murdoch UniversityAustralia; email: 32589004@student.murdoch.edu.au",,"MDPI AG",19994915,,,"31847282","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85076702838 "Agostini M.L., Pruijssers A.J., Chappell J.D., Gribble J., Lu X., Andres E.L., Bluemling G.R., Lockwood M.A., Sheahan T.P., Sims A.C., Natchus M.G., Saindane M., Kolykhalov A.A., Painter G.R., Baric R.S., Denison M.R.","57203043706;15832723300;7102682277;57215137993;56137171400;57195516811;57191750996;57198323498;15756255200;7102763252;6602539833;6602754217;6701684999;7007053503;57205312930;7101971810;","Small-Molecule Antiviral β-d-N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance",2019,"Journal of virology","93","24",,"","",,3,"10.1128/JVI.01348-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075814794&doi=10.1128%2fJVI.01348-19&partnerID=40&md5=19b0eca4335780dbd8542bce4635b647","Department of Pathology, Microbiology, Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Emory Institute for Drug Development, Emory University, Atlanta, GA, United States; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel HillNC, United States; Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States","Agostini, M.L., Department of Pathology, Microbiology, Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States; Pruijssers, A.J., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Chappell, J.D., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Gribble, J., Department of Pathology, Microbiology, Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States; Lu, X., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Andres, E.L., Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States; Bluemling, G.R., Emory Institute for Drug Development, Emory University, Atlanta, GA, United States; Lockwood, M.A., Emory Institute for Drug Development, Emory University, Atlanta, GA, United States; Sheahan, T.P., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel HillNC, United States; Sims, A.C., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel HillNC, United States; Natchus, M.G., Emory Institute for Drug Development, Emory University, Atlanta, GA, United States; Saindane, M., Emory Institute for Drug Development, Emory University, Atlanta, GA, United States; Kolykhalov, A.A., Emory Institute for Drug Development, Emory University, Atlanta, GA, United States; Painter, G.R., Emory Institute for Drug Development, Emory University, Atlanta, GA, United States, Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States; Baric, R.S., Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel HillNC, United States; Denison, M.R., Department of Pathology, Microbiology, Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States","Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). β-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 μM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 μM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections. Copyright © 2019 American Society for Microbiology.","antiviral resistance; coronavirus; MERS-CoV; nucleoside analogue; pandemic; RdRp; RNA-dependent RNA polymerase; SARS-CoV",,,,,"NLM (Medline)",10985514,,,"31578288","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85075814794 "Yang Y.-L., Qin P., Wang B., Liu Y., Xu G.-H., Peng L., Zhou J., Zhu S.J., Huang Y.-W.","57195945518;57195247636;57195253684;57202267588;57210374604;57210800179;54682580100;57215119563;8291778500;","Broad Cross-Species Infection of Cultured Cells by Bat HKU2-Related Swine Acute Diarrhea Syndrome Coronavirus and Identification of Its Replication in Murine Dendritic Cells In Vivo Highlight Its Potential for Diverse Interspecies Transmission",2019,"Journal of virology","93","24",,"","",,,"10.1128/JVI.01448-19","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075814380&doi=10.1128%2fJVI.01448-19&partnerID=40&md5=0ed406a7e37e9889947fe6733b168bba","Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China","Yang, Y.-L., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Qin, P., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Wang, B., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Liu, Y., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Xu, G.-H., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Peng, L., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhou, J., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhu, S.J., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Huang, Y.-W., Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China","Outbreaks of severe diarrhea in neonatal piglets in Guangdong, China, in 2017 resulted in the isolation and discovery of a novel swine enteric alphacoronavirus (SeACoV) derived from the species Rhinolophus bat coronavirus HKU2 (Y. Pan, X. Tian, P. Qin, B. Wang, et al., Vet Microbiol 211:15-21, 2017). SeACoV was later referred to as swine acute diarrhea syndrome CoV (SADS-CoV) by another group (P. Zhou, H. Fan, T. Lan, X.-L. Yang, et al., Nature 556:255-258, 2018). The present study was set up to investigate the potential species barriers of SADS-CoV in vitro and in vivo We first demonstrated that SADS-CoV possesses a broad species tropism and is able to infect cell lines from diverse species, including bats, mice, rats, gerbils, hamsters, pigs, chickens, nonhuman primates, and humans. Trypsin contributes to but is not essential for SADS-CoV propagation in vitro Furthermore, C57BL/6J mice were inoculated with the virus via oral or intraperitoneal routes. Although the mice exhibited only subclinical infection, they supported viral replication and prolonged infection in the spleen. SADS-CoV nonstructural proteins and double-stranded RNA were detected in splenocytes of the marginal zone on the edge of lymphatic follicles, indicating active replication of SADS-CoV in the mouse model. We identified that splenic dendritic cells (DCs) are the major targets of virus infection by immunofluorescence and flow cytometry approaches. Finally, we demonstrated that SADS-CoV does not utilize known CoV receptors for cellular entry. The ability of SADS-CoV to replicate in various cells lines from a broad range of species and the unexpected tropism for murine DCs provide important insights into the biology of this bat-origin CoV, highlighting its possible ability to cross interspecies barriers.IMPORTANCE Infections with bat-origin coronaviruses (CoVs) (severe acute respiratory syndrome CoV [SARS-CoV] and Middle East respiratory syndrome CoV [MERS-CoV]) have caused severe illness in humans after ""host jump"" events. Recently, a novel bat-HKU2-like CoV named swine acute diarrhea syndrome CoV (SADS-CoV) has emerged in southern China, causing lethal diarrhea in newborn piglets. It is important to assess the species barriers of SADS-CoV infection since the animal hosts (other than pigs and bats) and zoonotic potential are still unknown. An in vitro susceptibility study revealed a broad species tropism of SADS-CoV, including various rodent and human cell lines. We established a mouse model of SADS-CoV infection, identifying its active replication in splenic dendritic cells, which suggests that SADS-CoV has the potential to infect rodents. These findings highlight the potential cross-species transmissibility of SADS-CoV, although further surveillance in other animal populations is needed to fully understand the ecology of this bat-HKU2-origin CoV. Copyright © 2019 American Society for Microbiology.","Coronavirus; interspecies transmission; mouse infection model; SADS-CoV",,,,,"NLM (Medline)",10985514,,,"31554686","English","J. Virol.",Article,"Final",Open Access,Scopus,2-s2.0-85075814380 "Meher G., Bhattacharjya S., Chakraborty H.","57194104033;6701366148;7004384777;","Membrane Cholesterol Modulates Oligomeric Status and Peptide-Membrane Interaction of Severe Acute Respiratory Syndrome Coronavirus Fusion Peptide",2019,"Journal of Physical Chemistry B","123","50",,"10654","10662",,,"10.1021/acs.jpcb.9b08455","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077016546&doi=10.1021%2facs.jpcb.9b08455&partnerID=40&md5=37c86d8f078b52f4fb2a305709ccd654","School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India; Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive637551, Singapore","Meher, G., School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India; Bhattacharjya, S., School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive637551, Singapore; Chakraborty, H., School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India","The N-terminal fusion peptide (residues 770-788) of an S2 glycoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV), exposed upon receptor binding, is crucial for virus entry into the host cell. The fusion peptide alters the membrane organization and dynamics of the host membrane to facilitate membrane fusion. Generally, the effect of the fusion peptide on the membrane is sensitive to the lipid composition of target membranes. In the present work, we have utilized steady-state and time-resolved fluorescence spectroscopy in tandem with circular dichroism spectroscopy to elucidate the binding, oligomeric status, and secondary structure of the fusion peptide and its impact on the depth-dependent membrane organization and dynamics. We have used depth-dependent fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and its trimethylammonium derivative (TMA-DPH), to evaluate the effect of the peptide binding along the bilayer normal. We have exploited the energy transfer efficiency of tryptophan between TMA-DPH and DPH to determine the relative location of the solitary tryptophan present in the membrane-bound fusion peptide. We have further evaluated the effect of membrane cholesterol on the binding and organization of the peptide and the impact of peptide binding on the depth-dependent physical properties of the membrane at various cholesterol concentrations. Our results clearly demonstrate that the membrane cholesterol alters the oligomeric status of the membrane-bound peptide and the effect of peptide binding on the depth-dependent membrane organization and dynamics. The role of cholesterol is important, as the eukaryotic host cells contain a good amount of cholesterol that might be important for the entry of pathogenic viruses. Copyright © 2019 American Chemical Society.",,"Amino acids; Binding energy; Cell membranes; Cholesterol; Circular dichroism spectroscopy; Dichroism; Diseases; Dynamics; Energy transfer; Fluorescence; Fluorescence spectroscopy; Oligomers; Viruses; Energy transfer efficiency; Fluorescence probes; Membrane cholesterol; Peptide-membrane interactions; Relative location; Secondary structures; Severe acute respiratory syndrome coronavirus; Time-resolved fluorescence spectroscopy; Peptides","Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R., SARS-Beginning to understand a new virus (2003) Nat. Rev. Microbiol., 1, pp. 209-218; Hofmann, H., Pohlmann, S., Cellular entry of the SARS coronavirus (2004) Trends Microbiol., 12, pp. 466-472; Guillen, J., De Almeida, R.F., Prieto, M., Villalain, J., Structural and dynamic characterization of the interaction of the putative fusion peptide of the S2 SARS-CoV virus protein with lipid membranes (2008) J. Phys. Chem. B, 112, pp. 6997-7007; Gallagher, T.M., Buchmeier, M.J., Coronavirus spike proteins in viral entry and pathogenesis (2001) Virology, 279, pp. 371-374; Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Mason, R.J., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 15748-15753; Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Greenough, T.C., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus (2003) Nature, 426, pp. 450-454; Beniac, D.R., De Varennes, S.L., Andonov, A., He, R., Booth, T.F., Conformational reorganization of the SARS coronavirus spike following receptor binding: Implications for membrane fusion (2007) PLoS One, 2, p. e1082; Taguchi, F., Shimazaki, Y.K., Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: Involvement in fusion activity (2000) J. Gen. Virol., 81, pp. 2867-2871; Cavanagh, D., Davis, P.J., Coronavirus IBV: Removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells (1986) J. Gen. Virol., 67, pp. 1443-1448; Taguchi, F., The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding (1995) J. Virol., 69 (11), p. 7260; Tripet, B., Howard, M.W., Jobling, M., Holmes, R.K., Holmes, K.V., Hodges, R.S., Structural characterization of the SARS-coronavirus spike S fusion protein core (2004) J. Biol. Chem., 279, pp. 20836-20849; Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Jiang, S., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors (2004) Lancet, 363, pp. 938-947; Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J., Rottier, P.J., Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 8455-8460; Bosch, B.J., Van Der Zee, R., De Haan, C.A., Rottier, P.J., The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex (2003) J. Virol., 77, pp. 8801-8811; Hakansson-McReynolds, S., Jiang, S., Rong, L., Caffrey, M., Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state (2006) J. Biol. Chem., 281, pp. 11965-11971; Deng, Y., Liu, J., Zheng, Q., Yong, W., Lu, M., Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein (2006) Structure, 14, pp. 889-899; Supekar, V.M., Bruckmann, C., Ingallinella, P., Bianchi, E., Pessi, A., Carfí, A., Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 17958-17963; Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F., Rao, Z., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core (2004) J. Biol. Chem., 279, pp. 49414-49419; Pattnaik, G.P., Meher, G., Chakraborty, H., Exploring the Mechanism of Viral Peptide-Induced Membrane Fusion (2018) Adv. Exp. Med. Biol., 1112, pp. 69-78; Simmons, G., Gosalia, D.N., Rennekamp, A.J., Reeves, J.D., Diamond, S.L., Bates, P., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 11876-11881; Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., Jiang, C., SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway (2008) Cell Res., 18, pp. 290-301; Guillen, J., De Almeida, R.F., Prieto, M., Villalain, J., Interaction of a peptide corresponding to the loop domain of the S2 SARS-CoV virus protein with model membranes (2009) Mol. Membr. Biol., 26, pp. 236-248; Meher, G., Sinha, S., Pattnaik, G.P., Ghosh Dastidar, S., Chakraborty, H., Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide to Promote Membrane Fusion (2019) J. Phys. Chem. B, 123, pp. 7113-7122; Meher, G., Chakraborty, H., Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure (2019) J. Membr. Biol., 252, p. 261; Guillen, J., Kinnunen, P.K., Villalain, J., Membrane insertion of the three main membranotropic sequences from SARS-CoV S2 glycoprotein (2008) Biochim. Biophys. Acta, Biomembr., 1778, pp. 2765-2774; Lai, A.L., Moorthy, A.E., Li, Y., Tamm, L.K., Fusion activity of HIV gp41 fusion domain is related to its secondary structure and depth of membrane insertion in a cholesterol-dependent fashion (2012) J. Mol. Biol., 418, pp. 3-15; Mahajan, M., Bhattacharjya, S., NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion (2015) Biochim. Biophys. Acta, Biomembr., 1848, pp. 721-730; Mahajan, M., Chatterjee, D., Bhuvaneswari, K., Pillay, S., Bhattacharjya, S., NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion (2018) Biochim. Biophys. Acta, Biomembr., 1860, pp. 407-415; Sainz, B., Jr., Rausch, J.M., Gallaher, W.R., Garry, R.F., Wimley, W.C., Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein (2005) J. Virol., 79, pp. 7195-7206; MacDonald, R.C., MacDonald, R.I., Menco, B.P., Takeshita, K., Subbarao, N.K., Hu, L.R., Small-volume extrusion apparatus for preparation of large, unilamellar vesicles (1991) Biochim. Biophys. Acta, Biomembr., 1061, pp. 297-303; Meher, G., Chakraborty, H., Influence of Eugenol on the Organization and Dynamics of Lipid Membranes: A Phase-Dependent Study (2018) Langmuir, 34, pp. 2344-2351; Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , 3 rd ed. Springer; Whitmore, L., Wallace, B.A., Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases (2008) Biopolymers, 89, pp. 392-400; Whitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Res., 32, pp. W668-W673; Kaiser, R.D., London, E., Location of diphenylhexatriene (DPH) and its derivatives within membranes: Comparison of different fluorescence quenching analyses of membrane depth (1998) Biochemistry, 37, pp. 8180-8190; Wu, P., Brand, L., Resonance energy transfer: Methods and applications (1994) Anal. Biochem., 218, pp. 1-13; Pattnaik, G.P., Chakraborty, H., Coronin 1 derived tryptophan-aspartic acid containing peptides inhibit membrane fusion (2018) Chem. Phys. Lipids, 217, pp. 35-42; Koppaka, V., Lentz, B.R., Binding of bovine factor Va to phosphatidylcholine membranes (1996) Biophys. J., 70, pp. 2930-2937; Meher, G., Chakraborty, H., Organization and dynamics of Trp14 of hemagglutinin fusion peptide in membrane mimetic environment (2017) Chem. Phys. Lipids, 205, pp. 48-54; Ganguly, S., Clayton, A.H., Chattopadhyay, A., Organization of higher-order oligomers of the serotonin(1)(A) receptor explored utilizing homo-FRET in live cells (2011) Biophys. J., 100, pp. 361-368; Chakraborty, H., Chattopadhyay, A., Excitements and challenges in GPCR oligomerization: Molecular insight from FRET (2015) ACS Chem. Neurosci., 6, pp. 199-206; Jameson, D.A., (2014) Introduction to Fluorescence, , CRC Press: Boca Raton, FL; Chan, D.C., Fass, D., Berger, J.M., Kim, P.S., Core structure of gp41 from the HIV envelope glycoprotein (1997) Cell, 89, pp. 263-273; Qiang, W., Sun, Y., Weliky, D.P., A strong correlation between fusogenicity and membrane insertion depth of the HIV fusion peptide (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 15314-15319; Xiao, X., Feng, Y., Chakraborti, S., Dimitrov, D.S., Oligomerization of the SARS-CoV S glycoprotein: Dimerization of the N-terminus and trimerization of the ectodomain (2004) Biochem. Biophys. Res. Commun., 322, pp. 93-99; Pattnaik, G.P., Chakraborty, H., Cholesterol Alters the Inhibitory Efficiency of Peptide-based Membrane Fusion Inhibitor (2019) Biochim. Biophys. Acta, Biomembr., 1861, p. 183056; Kielian, M., Mechanisms of Virus Membrane Fusion Proteins (2014) Annu. Rev. Virol., 1, pp. 171-189","Bhattacharjya, S.; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore; email: surajit@ntu.edu.sg",,"American Chemical Society",15206106,,JPCBF,"31743644","English","J Phys Chem B",Article,"Final",,Scopus,2-s2.0-85077016546 "Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie L., Dubé M., Talbot P.J.","6701643379;54583844300;57212536139;57212537932;57192878218;23110008700;7102670281;","Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system?",2019,"Viruses","12","1", 14,"","",,,"10.3390/v12010014","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076952408&doi=10.3390%2fv12010014&partnerID=40&md5=1ce72daa30b66dd5cabf633716c5b201","Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada; Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H3T 1J4, Canada","Desforges, M., Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada; Le Coupanec, A., Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada; Dubeau, P., Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada; Bourgouin, A., Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada; Lajoie, L., Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; Dubé, M., Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada, Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H3T 1J4, Canada; Talbot, P.J., Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada","Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).","Acute and chronic neurological diseases; CNS infection; Encephalitis; Encephalopathy; Human coronavirus; Human respiratory virus; Neuroinvasion; Respiratory viral infection","cyclin dependent kinase 8; long untranslated RNA; microRNA 16; tumor promoter; unclassified drug; x inactive specific transcript; A-549 cell line; animal model; animal tissue; bioinformatics; cell cycle S phase; cell migration; cell migration assay; cell proliferation; cell proliferation assay; chemiluminescence immunoassay; colony formation; controlled study; flow cytometry; gene expression level; gene knockdown; gene overexpression; genetic transfection; human; human cell; human tissue; immunohistochemistry; luciferase assay; microscopy; mouse; NCI-H1299 cell line; NCI-H292 cell line; NCI-H460 cell line; non small cell lung cancer; nonhuman; pathogenesis; protein expression; real time reverse transcription polymerase chain reaction; Review; RNA extraction; tumor growth; upregulation; Western blotting","Bale, J.F., Jr., Virus and immune-mediated encephalitides: Epidemiology, diagnosis, treatment, and prevention (2015) Pediatr. Neurol., 53, pp. 3-12. , CrossRef PubMed; Mailles, A., Stahl, J.P., Bloch, K.C., Update and new insights in encephalitis (2017) Clin. Microbiol. Infect., 23, pp. 607-613. , CrossRef PubMed; Big, C., Reineck, L.A., Aronoff, D.M., Viral infections of the central nervous system: A case-based review (2009) Clin. Med. Res., 7, pp. 142-146. , CrossRef PubMed; Tyler, K.L., Acute viral encephalitis (2018) N. Engl. J. Med., 379, pp. 557-566; Griffin, D.E., Emergence and re-emergence of viral diseases of the central nervous system (2010) Prog. Neurobiol., 91, pp. 95-101; John, C.C., Carabin, H., Montano, S.M., Bangirana, P., Zunt, J.R., Peterson, P.K., Global research priorities for infections that affect the nervous system (2015) Nature, 527, pp. S178-S186; Vareille, M., Kieninger, E., Edwards, M.R., Regamey, N., The airway epithelium: Soldier in the fight against respiratory viruses (2011) Clin. Microbiol. Rev., 24, pp. 210-229; Bohmwald, K., Galvez, N.M.S., Rios, M., Kalergis, A.M., Neurologic alterations due to respiratory virus infections (2018) Front. Cell Neurosci., 12, p. 386; Cesario, T.C., Viruses associated with pneumonia in adults (2012) Clin. Infect. Dis., 55, pp. 107-113; Ison, M.G., Hayden, F.G., Viral infections in immunocompromised patients: What's new with respiratory viruses? (2002) Curr. Opin. Infect. Dis., 15, pp. 355-367; Jartti, T., Jartti, L., Ruuskanen, O., Soderlund-Venermo, M., New respiratory viral infections (2012) Curr. Opin. Pulm. Med., 18, pp. 271-278. , CrossRef PubMed; Sloots, T.P., Whiley, D.M., Lambert, S.B., Nissen, M.D., Emerging respiratory agents: New viruses for old diseases? (2008) J. Clin. Virol., 42, pp. 233-243. , CrossRef PubMed; Brouard, J., Vabret, A., Nimal-Cuvillon, D., Bach, N., Bessiere, A., Arion, A., Freymuth, F., Epidemiology of acute upper and lower respiratory tract infections in children (2007) Rev. Prat., 57, pp. 1759-1766; Nicholls, J.M., Butany, J., Poon, L.L., Chan, K.H., Beh, S.L., Poutanen, S., Peiris, J.S., Wong, M., Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS (2006) PLoS Med, 3; Talbot, H.K., Falsey, A.R., The diagnosis of viral respiratory disease in older adults (2010) Clin. Infect. Dis., 50, pp. 747-751; Tregoning, J.S., Schwarze, J., Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology (2010) Clin. Microbiol. Rev., 23, pp. 74-98; Pochon, C., Voigt, S., Respiratory virus infections in hematopoietic cell transplant recipients (2018) Front. Microbiol., 9, p. 3294; Coverstone, A.M., Wang, L., Sumino, K., Beyond respiratory syncytial virus and rhinovirus in the pathogenesis and exacerbation of asthma: The role of metapneumovirus, bocavirus and influenza virus (2019) Immunol. Allergy Clin. North. Am., 39, pp. 391-401; Linden, D., Guo-Parke, H., Coyle, P.V., Fairley, D., McAuley, D.F., Taggart, C.C., Kidney, J., Respiratory viral infection: A potential “missing link” in the pathogenesis of COPD (2019) Eur. Respir. Rev., p. 28; Nichols, W.G., Peck Campbell, A.J., Boeckh, M., Respiratory viruses other than influenza virus: Impact and therapeutic advances (2008) Clin. Microbiol. Rev., 21, pp. 274-290; Kustin, T., Ling, G., Sharabi, S., Ram, D., Friedman, N., Zuckerman, N., Bucris, E.D., Mandelboim, M., A method to identify respiratory virus infections in clinical samples using next-generation sequencing (2019) Sci. Rep., 9, p. 2606; Berry, M., Gamieldien, J., Fielding, B.C., Identification of new respiratory viruses in the new millennium (2015) Viruses, 7, pp. 996-1019. , CrossRef PubMed; Paden, C.R., Yusof, M., Al Hammadi, Z.M., Queen, K., Tao, Y., Eltahir, Y.M., Elsayed, E.A., Khalafalla, A.I., Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE (2018) Zoonoses Public Health, 65, pp. 322-333. , CrossRef PubMed; Vonesch, N., Binazzi, A., Bonafede, M., Melis, P., Ruggieri, A., Iavicoli, S., Tomao, P., Emerging zoonotic viral infections of occupational health importance (2019) Pathog. Dis., 77. , CrossRef PubMed; Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Zhang, H., Bats are natural reservoirs of SARS-like coronaviruses (2005) Science, 310, pp. 676-679; Corman, V.M., Muth, D., Niemeyer, D., Drosten, C., Hosts and sources of endemic human coronaviruses (2018) Adv. Virus. Res., 100, pp. 163-188; Sayed, A., Bottu, A., Qaisar, M., Mane, M.P., Acharya, Y., Nipah virus: A narrative review of viral characteristics and epidemiological determinants (2019) Public Health, 173, pp. 97-104; Borkenhagen, L.K., Salman, M.D., Ma, M.J., Gray, G.C., Animal influenza virus infections in humans: A commentary (2019) Int. J. Infect. Dis., 88, pp. 113-119; Lyons, J., McArthur, J., Emerging infections of the central nervous system (2013) Curr. Infect. Dis. Rep., 15, pp. 576-582; Kalil, A.C., Thomas, P.G., Influenza virus-related critical illness: Pathophysiology and epidemiology (2019) Crit. Care, 23, p. 258; Vabret, A., Dina, J., Brison, E., Brouard, J., Freymuth, F., Human coronaviruses (2009) Pathol. Biol., 57, pp. 149-160. , CrossRef PubMed; Antonucci, R., Chiappe, S., Porcella, A., Rosatelli, D., Fanos, V., Bronchiolitis-associated encephalopathy in critically-ill infants: An underestimated complication? (2010) J. Matern Fetal Neonatal Med., 23, pp. 431-436. , CrossRef PubMed; Desforges, M., Le Coupanec, A., Brison, E., Meessen-Pinard, M., Talbot, P.J., Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans (2014) Adv. Exp. Med. Biol., 807, pp. 75-96; McGavern, D.B., Kang, S.S., Illuminating viral infections in the nervous system (2011) Nat. Rev. Immunol., 11, pp. 318-329; Koyuncu, O.O., Hogue, I.B., Enquist, L.W., Virus infections in the nervous system (2013) Cell Host Microbe, 13, pp. 379-393; Berth, S.H., Leopold, P.L., Morfini, G.N., Virus-induced neuronal dysfunction and degeneration (2009) Front. Biosci., 14, pp. 5239-5259; Dahm, T., Rudolph, H., Schwerk, C., Schroten, H., Tenenbaum, T., Neuroinvasion and inflammation in viral central nervous system infections (2016) Mediat. Inflamm., 2016, p. 8562805; Desforges, M., Le Coupanec, A., Stodola, J.K., Meessen-Pinard, M., Talbot, P.J., Human coronaviruses: Viral and cellular factors involved in neuroinvasiveness and neuropathogenesis (2014) Virus Res, 194, pp. 145-158; Schwerk, C., Tenenbaum, T., Kim, K.S., Schroten, H., The choroid plexus-a multi-role player during infectious diseases of the CNS (2015) Front. Cell Neurosci., 9, p. 80; Kim, W.K., Corey, S., Alvarez, X., Williams, K., Monocyte/macrophage traffic in HIV and SIV encephalitis (2003) J. Leukoc. Biol., 74, pp. 650-656; Argyris, E.G., Acheampong, E., Wang, F., Huang, J., Chen, K., Mukhtar, M., Zhang, H., The interferon-induced expression of APOBEC3G in human blood-brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system (2007) Virology, 367, pp. 440-451. , CrossRef PubMed; Atluri, V.S., Hidalgo, M., Samikkannu, T., Kurapati, K.R., Jayant, R.D., Sagar, V., Nair, M.P., Effect of human immunodeficiency virus on blood-brain barrier integrity and function: An update (2015) Front. Cell Neurosci., 9, p. 212. , CrossRef PubMed; Wang, H., Sun, J., Goldstein, H., Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide (2008) J. Virol., 82, pp. 7591-7600. , CrossRef PubMed; Sellner, J., Simon, F., Meyding-Lamade, U., Leib, S.L., Herpes-simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation (2006) Brain Res, 1125, pp. 155-162. , CrossRef PubMed; Spindler, K.R., Hsu, T.H., Viral disruption of the blood-brain barrier (2012) Trends Microbiol, 20, pp. 282-290. , CrossRef PubMed; Bentz, G.L., Jarquin-Pardo, M., Chan, G., Smith, M.S., Sinzger, C., Yurochko, A.D., Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV (2006) J. Virol., 80, pp. 11539-11555. , CrossRef PubMed; Chan, G., Nogalski, M.T., Stevenson, E.V., Yurochko, A.D., Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: A strategy for viral dissemination (2012) J. Leukoc. Biol., 92, pp. 743-752; Rhoades, R.E., Tabor-Godwin, J.M., Tsueng, G., Feuer, R., Enterovirus infections of the central nervous system (2011) Virology, 411, pp. 288-305. , CrossRef PubMed; Feuer, R., Mena, I., Pagarigan, R.R., Harkins, S., Hassett, D.E., Whitton, J.L., Coxsackievirus B3 and the neonatal CNS: The roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease (2003) Am. J. Pathol., 163, pp. 1379-1393; Neal, J.W., Flaviviruses are neurotropic, but how do they invade the CNS? (2014) J. Infect., 69, pp. 203-215; Couderc, T., Chretien, F., Schilte, C., Disson, O., Brigitte, M., Guivel-Benhassine, F., Touret, Y., Schuffenecker, I., A mouse model for Chikungunya: Young age and inefficient type-I interferon signaling are risk factors for severe disease (2008) PLoS Pathog, 4. , CrossRef PubMed; Schneider, H., Weber, C.E., Schoeller, J., Steinmann, U., Borkowski, J., Ishikawa, H., Findeisen, P., Schwerk, C., Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier (2012) Virus Res, 170, pp. 66-74. , CrossRef PubMed; Halfhide, C.P., Flanagan, B.F., Brearey, S.P., Hunt, J.A., Fonceca, A.M., McNamara, P.S., Howarth, D., Smyth, R.L., Respiratory syncytial virus binds and undergoes transcription in neutrophils from the blood and airways of infants with severe bronchiolitis (2011) J. Infect. Dis., 204, pp. 451-458. , CrossRef PubMed; Rohwedder, A., Keminer, O., Forster, J., Schneider, K., Schneider, E., Werchau, H., Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction (1998) J. Med. Virol., 54, pp. 320-327; Mathieu, C., Pohl, C., Szecsi, J., Trajkovic-Bodennec, S., Devergnas, S., Raoul, H., Cosset, F.L., Horvat, B., Nipah virus uses leukocytes for efficient dissemination within a host (2011) J. Virol., 85, pp. 7863-7871. , CrossRef PubMed; Escaffre, O., Borisevich, V., Rockx, B., Pathogenesis of Hendra and Nipah virus infection in humans (2013) J. Infect. Dev. Ctries, 7, pp. 308-311; Choi, S.M., Xie, H., Campbell, A.P., Kuypers, J., Leisenring, W., Boudreault, A.A., Englund, J.A., Boeckh, M., Influenza viral RNA detection in blood as a marker to predict disease severity in hematopoietic cell transplant recipients (2012) J. Infect. Dis., 206, pp. 1872-1877; Tse, H., To, K.K., Wen, X., Chen, H., Chan, K.H., Tsoi, H.W., Li, I.W., Yuen, K.Y., Clinical and virological factors associated with viremia in pandemic influenza A/H1N1/2009 virus infection (2011) PLoS ONE, 6; Xu, H., Yasui, O., Tsuruoka, H., Kuroda, K., Hayashi, K., Yamada, A., Ishizaki, T., Hosaka, Y., Isolation of type B influenza virus from the blood of children (1998) Clin. Infect. Dis., 27, pp. 654-655; Imamura, T., Suzuki, A., Lupisan, S., Kamigaki, T., Okamoto, M., Roy, C.N., Olveda, R., Oshitani, H., Detection of enterovirus 68 in serum from pediatric patients with pneumonia and their clinical outcomes (2014) Influenza Other Respir. Viruses, 8, pp. 21-24; Mori, I., Transolfactory neuroinvasion by viruses threatens the human brain (2015) Acta Virol, 59, pp. 338-349. , CrossRef PubMed; Bryche, B., Fretaud, M., Saint-Albin Deliot, A., Galloux, M., Sedano, L., Langevin, C., Descamps, D., Le Goffic, R., Respiratory syncytial virus tropism for olfactory sensory neurons in mice (2019) J. Neurochem., p. 14936. , CrossRef PubMed; Dups, J., Middleton, D., Yamada, M., Monaghan, P., Long, F., Robinson, R., Marsh, G.A., Wang, L.F., A new model for Hendra virus encephalitis in the mouse (2012) PLoS ONE, 7. , CrossRef PubMed; Lochhead, J.J., Kellohen, K.L., Ronaldson, P.T., Davis, T.P., Distribution of insulin in trigeminal nerve and brain after intranasal administration (2019) Sci. Rep., 9, p. 2621. , CrossRef PubMed; Lochhead, J.J., Thorne, R.G., Intranasal delivery of biologics to the central nervous system (2012) Adv. Drug. Deliv. Rev., 64, pp. 614-628. , CrossRef PubMed; Driessen, A.K., Farrell, M.J., Mazzone, S.B., McGovern, A.E., Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough (2016) Respir. Physiol. Neurobiol., 226, pp. 115-120; Audrit, K.J., Delventhal, L., Aydin, O., Nassenstein, C., The nervous system of airways and its remodeling in inflammatory lung diseases (2017) Cell Tissue Res, 367, pp. 571-590; Park, C.H., Ishinaka, M., Takada, A., Kida, H., Kimura, T., Ochiai, K., Umemura, T., The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice (2002) Arch. Virol., 147, pp. 1425-1436; Matsuda, K., Park, C.H., Sunden, Y., Kimura, T., Ochiai, K., Kida, H., Umemura, T., The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice (2004) Vet. Pathol., 41, pp. 101-107; Bookstaver, P.B., Mohorn, P.L., Shah, A., Tesh, L.D., Quidley, A.M., Kothari, R., Bland, C.M., Weissman, S., Management of viral central nervous system infections: A primer for clinicians (2017) J. Cent. Nerv. Syst. Dis., 9; Kennedy, P.G., Viral encephalitis: Causes, differential diagnosis, and management (2004) J. Neurol. Neurosurg. Psychiatry, 75, pp. i10-i15. , CrossRef PubMed; Kennedy, P.G., Viral encephalitis (2005) J. Neurol., 252, pp. 268-272. , CrossRef PubMed; Costa, B.K.D., Sato, D.K., Viral encephalitis: A practical review on diagnostic approach and treatment (2019) J. Pediatr., , CrossRef PubMed; Giraudon, P., Bernard, A., Inflammation in neuroviral diseases (2010) J. Neural Transm., 117, pp. 899-906. , CrossRef PubMed; Whitley, R.J., Gnann, J.W., Viral encephalitis: Familiar infections and emerging pathogens (2002) Lancet, 359, pp. 507-513; Koskiniemi, M., Rautonen, J., Lehtokoski-Lehtiniemi, E., Vaheri, A., Epidemiology of encephalitis in children: A 20-year survey (1991) Ann. Neurol., 29, pp. 492-497; Hankins, D.G., Rosekrans, J.A., Overview, prevention, and treatment of rabies (2004) Mayo Clin. Proc., 79, pp. 671-676; Stahl, J.P., Mailles, A., Herpes simplex virus encephalitis update (2019) Curr. Opin. Infect. Dis., 32, pp. 239-243; Steiner, I., Benninger, F., Manifestations of herpes virus infections in the nervous system (2018) Neurol. Clin., 36, pp. 725-738; Kennedy, P.G., Chaudhuri, A., Herpes simplex encephalitis (2002) J. Neurol. Neurosurg Psychiatry, 73, pp. 237-238; Aurelian, L., HSV-induced apoptosis in herpes encephalitis (2005) Curr. Top. Microbiol. Immunol., 289, pp. 79-111; Beckham, J.D., Tyler, K.L., Arbovirus infections (2015) Continuum (Minneap Minn), 21, pp. 1599-1611. , CrossRef PubMed; Ronca, S.E., Dineley, K.T., Paessler, S., Neurological sequelae resulting from encephalitic alphavirus infection (2016) Front. Microbiol., 7, p. 959. , CrossRef PubMed; Yun, S.I., Lee, Y.M., Zika virus: An emerging flavivirus (2017) J. Microbiol., 55, pp. 204-219; Ritter, J.M., Martines, R.B., Zaki, S.R., Zika virus: Pathology from the pandemic (2017) Arch. Pathol. Lab. Med., 141, pp. 49-59; Sips, G.J., Wilschut, J., Smit, J.M., Neuroinvasive flavivirus infections (2012) Rev. Med. Virol., 22, pp. 69-87; Mackenzie, J.S., Gubler, D.J., Petersen, L.R., Emerging flaviviruses: The spread and resurgence of Japanese encephalitis, West Nile and dengue viruses (2004) Nat. Med., 10, pp. S98-S109; Mueller, S., Wimmer, E., Cello, J., Poliovirus and poliomyelitis: A tale of guts, brains, and an accidental event (2005) Virus Res, 111, pp. 175-193; Mattson, M.P., Haughey, N.J., Nath, A., Cell death in HIV dementia (2005) Cell Death Differ, 12, pp. 893-904; Pandey, H.S., Seth, P., Friends turn foe-astrocytes contribute to neuronal damage in neuroAIDS (2019) J. Mol. Neurosci., 69, pp. 286-297; Balcom, E.F., Roda, W.C., Cohen, E.A., Li, M.Y., Power, C., HIV-1 persistence in the central nervous system: Viral and host determinants during antiretroviral therapy (2019) Curr. Opin. Virol., 38, pp. 54-62. , CrossRef PubMed; Nath, A., Berger, J., HIV Dementia (2004) Curr. Treat. Options Neurol., 6, pp. 139-151. , CrossRef PubMed; Gordon, J., Gallia, G.L., Del Valle, L., Amini, S., Khalili, K., Human polyomavirus JCV and expression of myelin genes (2000) J. Neurovirol., 6, pp. S92-S97; Weissert, R., Progressive multifocal leukoencephalopathy (2011) J. Neuroimmunol., 231, pp. 73-77; Wollebo, H.S., White, M.K., Gordon, J., Berger, J.R., Khalili, K., Persistence and pathogenesis of the neurotropic polyomavirus JC (2015) Ann. Neurol., 77, pp. 560-570; Kaplan, J.E., Osame, M., Kubota, H., Igata, A., Nishitani, H., Maeda, Y., Khabbaz, R.F., Janssen, R.S., The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I (1990) J. Acquir. Immune Defic. Syndr., 3, pp. 1096-1101; Schoini, P., Karampitsakos, T., Avdikou, M., Athanasopoulou, A., Tsoukalas, G., Tzouvelekis, A., Measles pneumonitis (2019) Adv. Respir. Med., 87, pp. 63-67; Albarello, F., Cristofaro, M., Busi Rizzi, E., Giancola, M.L., Nicastri, E., Schinina, V., Pulmonary measles disease: Old and new imaging tools (2018) Radiol. Med., 123, pp. 935-943; O'Donnell, L.A., Rall, G.F., Blue moon neurovirology: The merits of studying rare CNS diseases of viral origin (2010) J. Neuroimmune Pharmacol., 5, pp. 443-455; Wilson, M.R., Ludlow, M., Duprex, W.P., Human paramyxoviruses and infections of the central nervous system (2013) Neuroviral Infections. RNA Viruses and Retroviruses, pp. 341-372. , Singh, S.K., Ruzek, D., Eds.; CRC Press/Taylor and Francis: Boca Raton, FL, USA; Leibovitch, E.C., Jacobson, S., Viruses in chronic progressive neurologic disease (2018) Mult. Scler., 24, pp. 48-52; Itzhaki, R.F., Dobson, C.B., Wozniak, M.A., Herpes simplex virus type 1 and Alzheimer's disease (2004) Ann. Neurol., 55, pp. 299-300. , author reply 300-1. CrossRef PubMed; Ludlow, M., Kortekaas, J., Herden, C., Hoffmann, B., Tappe, D., Trebst, C., Griffin, D.E., Brown, A.S., Neurotropic virus infections as the cause of immediate and delayed neuropathology (2016) Acta Neuropathol, 131, pp. 159-184. , CrossRef PubMed; Majde, J.A., Neuroinflammation resulting from covert brain invasion by common viruses-a potential role in local and global neurodegeneration (2010) Med. Hypotheses, 75, pp. 204-213. , CrossRef PubMed; Lebov, J.F., Brown, L.M., MacDonald, P.D.M., Robertson, K., Bowman, N.M., Hooper, S.R., Becker-Dreps, S., Review: Evidence of neurological sequelae in children with acquired Zika virus infection (2018) Pediatr. Neurol., 85, pp. 16-20. , CrossRef PubMed; Weatherhead, J.E., Miller, V.E., Garcia, M.N., Hasbun, R., Salazar, L., Dimachkie, M.M., Murray, K.O., Long-term neurological outcomes in West Nile virus-infected patients: An observational study (2015) Am. J. Trop. Med. Hyg, 92, pp. 1006-1012. , CrossRef PubMed; Athar, P., Hasbun, R., Nolan, M.S., Salazar, L., Woods, S.P., Sheikh, K., Murray, K.O., Long-term neuromuscular outcomes of west nile virus infection: A clinical and electromyographic evaluation of patients with a history of infection (2018) Muscle Nerve, 57, pp. 77-82; Edridge, A.W.D., Deijs, M., Van Zeggeren, I.E., Kinsella, C.M., Jebbink, M.F., Bakker, M., Van De Beek, D., Van Der Hoek, L., Viral metagenomics on cerebrospinal fluid (2019) Genes, 10, p. 332; Granerod, J., Cunningham, R., Zuckerman, M., Mutton, K., Davies, N.W., Walsh, A.L., Ward, K.N., Clewley, J.P., Causality in acute encephalitis: Defining aetiologies (2010) Epidemiol. Infect., 138, pp. 783-800; Granerod, J., Tam, C.C., Crowcroft, N.S., Davies, N.W., Borchert, M., Thomas, S.L., Challenge of the unknown. A systematic review of acute encephalitis in non-outbreak situations (2010) Neurology, 75, pp. 924-932; Schibler, M., Brito, F., Zanella, M.C., Zdobnov, E.M., Laubscher, F., L'Huillier, A.G., Ambrosioni, J., Docquier, M., Viral sequences detection by high-throughput sequencing in cerebrospinal fluid of individuals with and without central nervous system disease (2019) Genes, 10, p. 625; King, A.M.Q., Lefkowitz, E.J., Mushegian, A.R., Adams, M.J., Dutilh, B.E., Gorbalenya, A.E., Harrach, B., Knowles, N.J., Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018) (2018) Arch. Virol., 163, pp. 2601-2631. , CrossRef PubMed; Nair, H., Nokes, D.J., Gessner, B.D., Dherani, M., Madhi, S.A., Singleton, R.J., O'Brien, K.L., Bruce, N., Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis (2010) Lancet, 375, pp. 1545-1555; Stensballe, L.G., Devasundaram, J.K., Simoes, E.A., Respiratory syncytial virus epidemics: The ups and downs of a seasonal virus (2003) Pediatr. Infect. Dis. J., 22, pp. S21-S32; Nam, H.H., Ison, M.G., Respiratory syncytial virus infection in adults (2019) BMJ, p. 366; Picone, S., Mondi, V., Di Palma, F., Martini, L., Paolillo, P., Neonatal encephalopathy and SIADH during RSV infection (2019) Am. J. Perinatol., 36, pp. S106-S109. , CrossRef PubMed; Bohmwald, K., Espinoza, J.A., Gonzalez, P.A., Bueno, S.M., Riedel, C.A., Kalergis, A.M., Central nervous system alterations caused by infection with the human respiratory syncytial virus (2014) Rev. Med. Virol., 24, pp. 407-419; Morichi, S., Kawashima, H., Ioi, H., Yamanaka, G., Kashiwagi, Y., Hoshika, A., Nakayama, T., Watanabe, Y., Classification of acute encephalopathy in respiratory syncytial virus infection (2011) J. Infect. Chemother., 17, pp. 776-781. , CrossRef PubMed; Kawashima, H., Ioi, H., Ushio, M., Yamanaka, G., Matsumoto, S., Nakayama, T., Cerebrospinal fluid analysis in children with seizures from respiratory syncytial virus infection (2009) Scand. J. Infect. Dis., 41, pp. 228-231; Zlateva, K.T., Van Ranst, M., Detection of subgroup B respiratory syncytial virus in the cerebrospinal fluid of a patient with respiratory syncytial virus pneumonia (2004) Pediatr. Infect. Dis. J., 23, pp. 1065-1066; Millichap, J.J., Wainwright, M.S., Neurological complications of respiratory syncytial virus infection: Case series and review of literature (2009) J. Child. Neurol., 24, pp. 1499-1503; Ng, Y.T., Cox, C., Atkins, J., Butler, I.J., Encephalopathy associated with respiratory syncytial virus bronchiolitis (2001) J. Child. Neurol., 16, pp. 105-108. , CrossRef PubMed; Hirayama, K., Sakazaki, H., Murakami, S., Yonezawa, S., Fujimoto, K., Seto, T., Tanaka, K., Murata, R., Sequential MRI, SPECT and PET in respiratory syncytial virus encephalitis (1999) Pediatr. Radiol., 29, pp. 282-286. , CrossRef PubMed; Morton, R.E., Dinwiddie, R., Marshall, W.C., Matthew, D.J., Respiratory syncytial virus infection causing neurological disorder in neonates (1981) Lancet, 1, pp. 1426-1427; Cappel, R., Thiry, L., Clinet, G., Viral antibodies in the CSF after acute CNS infections (1975) Arch. Neurol., 32, pp. 629-631; Wallace, S.J., Zealley, H., Neurological, electroencephalographic, and virological findings in febrile cheldren (1970) Arch. Dis. Child., 45, pp. 611-623; Espinoza, J.A., Bohmwald, K., Cespedes, P.F., Gomez, R.S., Riquelme, S.A., Cortes, C.M., Valenzuela, J.A., Bueno, S.M., Impaired learning resulting from respiratory syncytial virus infection (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 9112-9117; Van Den Hoogen, B.G., De Jong, J.C., Groen, J., Kuiken, T., De Groot, R., Fouchier, R.A., Osterhaus, A.D., A newly discovered human pneumovirus isolated from young children with respiratory tract disease (2001) Nat. Med., 7, pp. 719-724; Edwards, K.M., Zhu, Y., Griffin, M.R., Weinberg, G.A., Hall, C.B., Szilagyi, P.G., Staat, M.A., Williams, J.V., Burden of human metapneumovirus infection in young children (2013) N. Engl. J. Med., 368, pp. 633-643; Jeannet, N., Van Den Hoogen, B.G., Schefold, J.C., Suter-Riniker, F., Sommerstein, R., Cerebrospinal fluid findings in an adult with human metapneumovirus-associated encephalitis (2017) Emerg. Infect. Dis., 23, p. 370; Fok, A., Mateevici, C., Lin, B., Chandra, R.V., Chong, V.H., Encephalitis-associated human metapneumovirus pneumonia in adult, Australia (2015) Emerg. Infect. Dis., 21, pp. 2074-2076; Tan, Y.L., Wee, T.C., Adult human metapneumovirus encephalitis: A case report highlighting challenges in clinical management and functional outcome (2017) Med. J. Malays., 72, pp. 372-373; Schildgen, O., Glatzel, T., Geikowski, T., Scheibner, B., Matz, B., Bindl, L., Born, M., Knopfle, G., Human metapneumovirus RNA in encephalitis patient (2005) Emerg. Infect. Dis., 11, pp. 467-470. , CrossRef PubMed; Sanchez Fernandez, I., Rebollo Polo, M., Munoz-Almagro, C., Monfort Carretero, L., Fernandez Urena, S., Rueda Munoz, A., Colome Roura, R., Perez Duenas, B., Human metapneumovirus in the cerebrospinal fluid of a patient with acute encephalitis (2012) Arch. Neurol., 69, pp. 649-652. , CrossRef PubMed; Dawes, B.E., Freiberg, A.N., Henipavirus infection of the central nervous system (2019) Pathog Dis, p. 77. , CrossRef PubMed; Escaffre, O., Borisevich, V., Carmical, J.R., Prusak, D., Prescott, J., Feldmann, H., Rockx, B., Henipavirus pathogenesis in human respiratory epithelial cells (2013) J. Virol., 87, pp. 3284-3294. , CrossRef PubMed; Ochani, R.K., Batra, S., Shaikh, A., Asad, A., Nipah virus-the rising epidemic: A review (2019) Infez. Med., 27, pp. 117-127; Ang, B.S.P., Lim, T.C.C., Wang, L., Nipah virus infection (2018) J. Clin. Microbiol., 56, pp. e01875-e01917; Wong, K.T., Robertson, T., Ong, B.B., Chong, J.W., Yaiw, K.C., Wang, L.F., Ansford, A.J., Tannenberg, A., Human Hendra virus infection causes acute and relapsing encephalitis (2009) Neuropathol. Appl. Neurobiol., 35, pp. 296-305; Wong, K.T., Shieh, W.J., Kumar, S., Norain, K., Abdullah, W., Guarner, J., Goldsmith, C.S., Tan, C.T., Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis (2002) Am. J. Pathol., 161, pp. 2153-2167; Sejvar, J.J., Hossain, J., Saha, S.K., Gurley, E.S., Banu, S., Hamadani, J.D., Faiz, M.A., Mollah, A.H., Long-term neurological and functional outcome in Nipah virus infection (2007) Ann. Neurol., 62, pp. 235-242; Ng, B.Y., Lim, C.C., Yeoh, A., Lee, W.L., Neuropsychiatric sequelae of Nipah virus encephalitis (2004) J. Neuropsychiatry Clin. Neurosci., 16, pp. 500-504. , CrossRef PubMed; Wong, K.T., Tan, C.T., Clinical and pathological manifestations of human henipavirus infection (2012) Curr. Top. Microbiol. Immunol., 359, pp. 95-104; Munster, V.J., Prescott, J.B., Bushmaker, T., Long, D., Rosenke, R., Thomas, T., Scott, D., De Wit, E., Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route (2012) Sci. Rep., 2, p. 736. , CrossRef PubMed; Liu, J., Coffin, K.M., Johnston, S.C., Babka, A.M., Bell, T.M., Long, S.Y., Honko, A.N., Zeng, X., Nipah virus persists in the brains of nonhuman primate survivors (2019) JCI Insight, p. 4. , CrossRef PubMed; Tan, C.T., Goh, K.J., Wong, K.T., Sarji, S.A., Chua, K.B., Chew, N.K., Murugasu, P., Tan, K.S., Relapsed and late-onset Nipah encephalitis (2002) Ann. Neurol., 51, pp. 703-708; Kuiken, T., Riteau, B., Fouchier, R.A., Rimmelzwaan, G.F., Pathogenesis of influenza virus infections: The good, the bad and the ugly (2012) Curr. Opin. Virol., 2, pp. 276-286; Asha, K., Kumar, B., Emerging influenza D virus threat: What we know so far! (2019) J. Clin. Med., 8, p. 192; Nicholson, K.G., Wood, J.M., Zambon, M., Influenza (2003) Lancet, 362, pp. 1733-1745; Popescu, C.P., Florescu, S.A., Lupulescu, E., Zaharia, M., Tardei, G., Lazar, M., Ceausu, E., Ruta, S.M., Neurologic complications of influenza B virus infection in adults, Romania (2017) Emerg. Infect. Dis., 23, pp. 574-581; Jang, H., Boltz, D., Sturm-Ramirez, K., Shepherd, K.R., Jiao, Y., Webster, R., Smeyne, R.J., Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 14063-14068; Kuiken, T., Taubenberger, J.K., Pathology of human influenza revisited (2008) Vaccine, 26, pp. D59-D66. , CrossRef PubMed; Sivadon-Tardy, V., Orlikowski, D., Porcher, R., Sharshar, T., Durand, M.C., Enouf, V., Rozenberg, F., Van Der Werf, S., Guillain-Barre syndrome and influenza virus infection (2009) Clin. Infect. Dis., 48, pp. 48-56. , CrossRef PubMed; Millichap, J.G., Millichap, J.J., Role of viral infections in the etiology of febrile seizures (2006) Pediatr. Neurol., 35, pp. 165-172. , CrossRef PubMed; Ozkale, Y., Erol, I., Ozkale, M., Demir, S., Alehan, F., Acute disseminated encephalomyelitis associated with influenza A H1N1 infection (2012) Pediatr. Neurol., 47, pp. 62-64; Toovey, S., Influenza-associated central nervous system dysfunction: A literature review (2008) Travel Med. Infect. Dis., 6, pp. 114-124; Wang, G.F., Li, W., Li, K., Acute encephalopathy and encephalitis caused by influenza virus infection (2010) Curr. Opin. Neurol., 23, pp. 305-311; Zeng, H., Quinet, S., Huang, W., Gan, Y., Han, C., He, Y., Wang, Y., Clinical and MRI features of neurological complications after influenza A (H1N1) infection in critically ill children (2013) Pediatr. Radiol., 43, pp. 1182-1189; Shinya, K., Makino, A., Hatta, M., Watanabe, S., Kim, J.H., Hatta, Y., Gao, P., Kawaoka, Y., Subclinical brain injury caused by H5N1 influenza virus infection (2011) J. Virol., 85, pp. 5202-5207; Hosseini, S., Wilk, E., Michaelsen-Preusse, K., Gerhauser, I., Baumgartner, W., Geffers, R., Schughart, K., Korte, M., Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function (2018) J. Neurosci., 38, pp. 3060-3080; Beraki, S., Aronsson, F., Karlsson, H., Ogren, S.O., Kristensson, K., Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice (2005) Mol. Psychiatry, 10, pp. 299-308; Jurgens, H.A., Amancherla, K., Johnson, R.W., Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice (2012) J. Neurosci., 32, pp. 3958-3968. , CrossRef PubMed; Chen, Q., Liu, Y., Lu, A., Ni, K., Xiang, Z., Wen, K., Tu, W., Influenza virus infection exacerbates experimental autoimmune encephalomyelitis disease by promoting type I T cells infiltration into central nervous system (2017) J. Autoimmun., 77, pp. 1-10. , CrossRef PubMed; Oikonen, M., Laaksonen, M., Aalto, V., Ilonen, J., Salonen, R., Eralinna, J.P., Panelius, M., Salmi, A., Temporal relationship between environmental influenza A and Epstein-Barr viral infections and high multiple sclerosis relapse occurrence (2011) Mult. Scler., 17, pp. 672-680. , CrossRef PubMed; Edwards, S., Zvartau, M., Clarke, H., Irving, W., Blumhardt, L.D., Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis (1998) J. Neurol. Neurosurg Psychiatry, 64, pp. 736-741. , CrossRef PubMed; Andres, C., Vila, J., Gimferrer, L., Pinana, M., Esperalba, J., Codina, M.G., Barnes, M., Rubio, S., Surveillance of enteroviruses from paediatric patients attended at a tertiary hospital in Catalonia from 2014 to 2017 (2019) J. Clin. Virol., 110, pp. 29-35. , CrossRef PubMed; Rao, S., Messacar, K., Torok, M.R., Rick, A.M., Holzberg, J., Montano, A., Bagdure, D., Nix, W.A., Enterovirus D68 in critically ill children: A comparison with pandemic H1N1 influenza (2016) Pediatr. Crit. Care Med., 17, pp. 1023-1031. , CrossRef PubMed; Lei, X., Xiao, X., Wang, J., Innate immunity evasion by enteroviruses: Insights into virus-host interaction (2016) Viruses, 8, p. 22; Tebruegge, M., Curtis, N., Enterovirus infections in neonates (2009) Semin. Fetal Neonatal Med., 14, pp. 222-227; Hazama, K., Shiihara, T., Tsukagoshi, H., Matsushige, T., Dowa, Y., Watanabe, M., Rhinovirus-associated acute encephalitis/encephalopathy and cerebellitis (2019) Brain Dev, 41, pp. 551-554; Anastasina, M., Domanska, A., Palm, K., Butcher, S., Human picornaviruses associated with neurological diseases and their neutralization by antibodies (2017) J. Gen. Virol, 98, pp. 1145-1158; Helfferich, J., Knoester, M., Van Leer-Buter, C.C., Neuteboom, R.F., Meiners, L.C., Niesters, H.G., Brouwer, O.F., Acute flaccid myelitis and enterovirus D68: Lessons from the past and present (2019) Eur. J. Pediatr., 178, pp. 1305-1315. , CrossRef PubMed; Christy, A., Messacar, K., Acute flaccid myelitis associated with enterovirus D68: A review (2019) J. Child. Neurol., 34, pp. 511-516. , CrossRef PubMed; Khan, F., Enterovirus D68: Acute respiratory illness and the 2014 outbreak (2015) Emerg. Med. Clin. N. Am., 33, pp. e19-e32. , CrossRef PubMed; Pons-Salort, M., Parker, E.P., Grassly, N.C., The epidemiology of non-polio enteroviruses: Recent advances and outstanding questions (2015) Curr. Opin. Infect. Dis., 28, pp. 479-487; Brian, D.A., Baric, R.S., Coronavirus genome structure and replication (2005) Curr. Top. Microbiol. Immunol., 287, pp. 1-30; Greig, A.S., Mitchell, D., Corner, A.H., Bannister, G.L., Meads, E.B., Julian, R.J., A hemagglutinating virus producing encephalomyelitis in baby pigs (1962) Can. J. Comp. Med. Vet. Sci., 26, pp. 49-56; Foley, J.E., Lapointe, J.M., Koblik, P., Poland, A., Pedersen, N.C., Diagnostic features of clinical neurologic feline infectious peritonitis (1998) J. Vet. Intern. Med., 12, pp. 415-423; Foley, J.E., Rand, C., Leutenegger, C., Inflammation and changes in cytokine levels in neurological feline infectious peritonitis (2003) J. Feline Med. Surg., 5, pp. 313-322; Lampert, P.W., Sims, J.K., Kniazeff, A.J., Mechanism of demyelination in JHM virus encephalomyelitis. Electron microscopic studies (1973) Acta Neuropathol, 24, pp. 76-85; Bender, S.J., Weiss, S.R., Pathogenesis of murine coronavirus in the central nervous system (2010) J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol., 5, pp. 336-354; Cowley, T.J., Weiss, S.R., Murine coronavirus neuropathogenesis: Determinants of virulence (2010) J. Neurovirology, 16, pp. 427-434; Hosking, M.P., Lane, T.E., The pathogenesis of murine coronavirus infection of the central nervous system (2010) Crit. Rev. Immunol., 30, pp. 119-130. , CrossRef PubMed; Myint, S.H., Human coronavirus infections (1995) The Coronaviridae, pp. 389-401. , Siddell, S.G., Ed.; Plenum Press: New York, NY, USA; Tyrrell, D.A., Bynoe, M.L., Cultivation of a novel type of common-cold virus in organ cultures (1965) Br. Med. J., 1, pp. 1467-1470. , CrossRef PubMed; Hamre, D., Procknow, J.J., A new virus isolated from the human respiratory tract (1966) Proc. Soc. Exp. Biol. Med., 121, pp. 190-193; McIntosh, K., Becker, W.B., Chanock, R.M., Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease (1967) Proc. Natl. Acad. Sci. USA, 58, pp. 2268-2273; Drosten, C., Gunther, S., Preiser, W., Van Der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Fouchier, R.A., Identification of a novel coronavirus in patients with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1967-1976; Fouchier, R.A., Kuiken, T., Schutten, M., Van Amerongen, G., Van Doornum, G.J., Van Den Hoogen, B.G., Peiris, M., Osterhaus, A.D., Aetiology: Koch's postulates fulfilled for SARS virus (2003) Nature, 423, p. 240; Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Lim, W., A novel coronavirus associated with severe acute respiratory syndrome (2003) N. Engl. J. Med., 348, pp. 1953-1966; Van Der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-Van Dillen, P.M., Berkhout, B., Identification of a new human coronavirus (2004) Nat. Med., 10, pp. 368-373; Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Luk, W.K., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia (2005) J. Virol., 79, pp. 884-895; Zaki, A.M., Van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia (2012) N. Engl. J. Med., 367, pp. 1814-1820. , CrossRef PubMed; Cabeca, T.K., Granato, C., Bellei, N., Epidemiological and clinical features of human coronavirus infections among different subsets of patients. (2013) Influenza Other Respir. Viruses, 7, pp. 1040-1047. , CrossRef PubMed; Gaunt, E.R., Hardie, A., Claas, E.C., Simmonds, P., Templeton, K.E., Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method (2010) J. Clin. Microbiol., 48, pp. 2940-2947. , CrossRef PubMed; Larson, H.E., Reed, S.E., Tyrrell, D.A., Isolation of rhinoviruses and coronaviruses from 38 colds in adults (1980) J. Med. Virol., 5, pp. 221-229; Chiu, S.S., Chan, K.H., Chu, K.W., Kwan, S.W., Guan, Y., Poon, L.L., Peiris, J.S., Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China (2005) Clin. Infect. Dis., 40, pp. 1721-1729; Mackay, I.M., Arden, K.E., Speicher, D.J., O'Neil, N.T., McErlean, P.K., Greer, R.M., Nissen, M.D., Sloots, T.P., Co-circulation of four human coronaviruses (HCoVs) in Queensland children with acute respiratory tract illnesses in 2004 (2012) Viruses, 4, pp. 637-653; Theamboonlers, A., Samransamruajkit, R., Thongme, C., Amonsin, A., Chongsrisawat, V., Poovorawan, Y., Human coronavirus infection among children with acute lower respiratory tract infection in Thailand (2007) Intervirology, 50, pp. 71-77; Oong, X.Y., Ng, K.T., Takebe, Y., Ng, L.J., Chan, K.G., Chook, J.B., Kamarulzaman, A., Tee, K.K., Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: Phylogenetic, spatiotemporal and transmission network analyses (2017) Emerg. Microbes Infect., 6; Zhang, Y., Li, J., Xiao, Y., Zhang, J., Wang, Y., Chen, L., Paranhos-Baccala, G., Wang, J., Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination (2015) J. Infect., 70, pp. 641-650; Dominguez, S.R., Sims, G.E., Wentworth, D.E., Halpin, R.A., Robinson, C.C., Town, C.D., Holmes, K.V., Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination (2012) J. Gen. Virol., 93, pp. 2387-2398; Gerna, G., Campanini, G., Rovida, F., Percivalle, E., Sarasini, A., Marchi, A., Baldanti, F., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients (2006) J. Med. Virol., 78, pp. 938-949. , CrossRef PubMed; Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., So, L.Y., Woo, P.C., Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination (2011) J. Virol., 85, pp. 11325-11337. , CrossRef PubMed; Vabret, A., Dina, J., Mourez, T., Gouarin, S., Petitjean, J., Van Der Werf, S., Freymuth, F., Inter- And intra-variant genetic heterogeneity of human coronavirus OC43 strains in France (2006) J. Gen. Virol., 87, pp. 3349-3353. , CrossRef PubMed; Vijgen, L., Lemey, P., Keyaerts, E., Van Ranst, M., Genetic variability of human respiratory coronavirus OC43 (2005) J. Virol., 79, pp. 3223-3224. , author reply 3224-3225. CrossRef; Woo, P.C., Lau, S.K., Yip, C.C., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1 (2006) J. Virol., 80, pp. 7136-7145; Talbot, P.J., Jacomy, H., Desforges, M., Pathogenesis of human coronaviruses other than severe acute respiratory syndrome coronavirus (2008) Nidoviruses, pp. 313-324. , Perlman, S., Gallagher, T., Snijder, E.J., Eds.; ASM Press: Washington, DC, USA; Greenberg, S.B., Update on human rhinovirus and coronavirus infections (2016) Semin. Respir. Crit. Care Med., 37, pp. 555-571; Lee, J., Storch, G.A., Characterization of human coronavirus OC43 and human coronavirus NL63 infections among hospitalized children <5 years of age (2014) Pediatr. Infect. Dis. J., 33, pp. 814-820; Self, W.H., Williams, D.J., Zhu, Y., Ampofo, K., Pavia, A.T., Chappell, J.D., Hymas, W.C., Schneider, E., Respiratory viral detection in children and adults: Comparing asymptomatic controls and patients with community-acquired pneumonia (2016) J. Infect. Dis., 213, pp. 584-591; Ogimi, C., Englund, J.A., Bradford, M.C., Qin, X., Boeckh, M., Waghmare, A., Characteristics and outcomes of coronavirus infection in children: The role of viral factors and an immunocompromised state (2019) J. Pediatric Infect. Dis. Soc., 8, pp. 21-28; Ogimi, C., Greninger, A.L., Waghmare, A.A., Kuypers, J.M., Shean, R.C., Xie, H., Leisenring, W.M., Englund, J.A., Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: Risk factors and viral genome evolution (2017) J. Infect. Dis., 216, pp. 203-209; Ogimi, C., Waghmare, A.A., Kuypers, J.M., Xie, H., Yeung, C.C., Leisenring, W.M., Seo, S., Englund, J.A., Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies (2017) Clin. Infect. Dis., 64, pp. 1532-1539. , CrossRef PubMed; Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Guan, Y.J., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China (2003) Science, 302, pp. 276-278. , CrossRef PubMed; Braden, C.R., Dowell, S.F., Jernigan, D.B., Hughes, J.M., Progress in global surveillance and response capacity 10 years after severe acute respiratory syndrome (2013) Emerg. Infect. Dis., 19, pp. 864-869. , CrossRef PubMed; Cherry, J.D., The chronology of the 2002-2003 SARS mini pandemic (2004) Paediatr. Respir. Rev., 5, pp. 262-269. , CrossRef PubMed; Cherry, J.D., Krogstad, P., SARS: The first pandemic of the 21st century (2004) Pediatr. Res., 56, pp. 1-5. , CrossRef PubMed; Van Den Brand, J.M., Haagmans, B.L., Van Riel, D., Osterhaus, A.D., Kuiken, T., The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models (2014) J. Comp. Pathol., 151, pp. 83-112; Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Xie, Z., Multiple organ infection and the pathogenesis of SARS (2005) J. Exp. Med., 202, pp. 415-424; Raj, V.S., Osterhaus, A.D., Fouchier, R.A., Haagmans, B.L., MERS: Emergence of a novel human coronavirus (2014) Curr. Opin. Virol., 5, pp. 58-62; Coleman, C.M., Frieman, M.B., Emergence of the middle east respiratory syndrome coronavirus (2013) PLoS Pathog, 9; De Groot, R.J., Baker, S.C., Baric, R.S., Brown, C.S., Drosten, C., Enjuanes, L., Fouchier, R.A., Memish, Z., Middle east respiratory syndrome coronavirus (MERS-CoV); announcement of the Coronavirus Study Group (2013) J. Virol., 5, pp. 13-15; Cotten, M., Watson, S.J., Kellam, P., Al-Rabeeah, A.A., Makhdoom, H.Q., Assiri, A., Al-Tawfiq, J.A., AlRabiah, F.A., Transmission and evolution of the middle east respiratory syndrome coronavirus in Saudi Arabia: A descriptive genomic study (2013) Lancet, 382, pp. 1993-2002; Cotten, M., Watson, S.J., Zumla, A.I., Makhdoom, H.Q., Palser, A.L., Ong, S.H., Al Rabeeah, A.A., Al-Tawfiq, J.A., Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus (2014) mBio, 5. , CrossRef PubMed; Memish, Z.A., Cotten, M., Watson, S.J., Kellam, P., Zumla, A., Alhakeem, R.F., Assiri, A., Al-Tawfiq, J.A., Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A descriptive genomic study (2014) Int. J. Infect. Dis., 23, pp. 63-68. , CrossRef PubMed; Al-Tawfiq, J.A., Assiri, A., Memish, Z.A., Middle East respiratory syndrome novel corona MERS-CoV infection. Epidemiology and outcome update (2013) Saudi. Med. J., 34, pp. 991-994; Assiri, A., Al-Tawfiq, J.A., Al-Rabeeah, A.A., Al-Rabiah, F.A., Al-Hajjar, S., Al-Barrak, A., Flemban, H., Al-Hakeem, R.F., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study (2013) Lancet Infect. Dis., 13, pp. 752-761; Assiri, A., McGeer, A., Perl, T.M., Price, C.S., Al Rabeeah, A.A., Cummings, D.A., Alabdullatif, Z.N., Makhdoom, H., Hospital outbreak of Middle East respiratory syndrome coronavirus (2013) N. Engl. J. Med., 369, pp. 407-416; Haagmans, B.L., Osterhaus, A.D., Neutralizing the MERS coronavirus threat (2014) Sci. Transl. Med., 6, p. 235fs19; Cho, S.Y., Kang, J.M., Ha, Y.E., Park, G.E., Lee, J.Y., Ko, J.H., Lee, J.Y., Jo, I.J., MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study (2016) Lancet, 388, pp. 994-1001; Park, H.Y., Lee, E.J., Ryu, Y.W., Kim, Y., Kim, H., Lee, H., Yi, S.J., Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015 (2015) Euro Surveill, 20, pp. 1-6; Hemida, M.G., Middle East Respiratory Syndrome Coronavirus and the One Health concept (2019) PeerJ, 7, p. e7556; Al-Omari, A., Rabaan, A.A., Salih, S., Al-Tawfiq, J.A., Memish, Z.A., MERS coronavirus outbreak: Implications for emerging viral infections (2019) Diagn. Microbiol. Infect. Dis., 93, pp. 265-285. , CrossRef PubMed; Mackay, I.M., Arden, K.E., An opportunistic pathogen afforded ample opportunities: Middle East respiratory syndrome coronavirus (2017) Viruses, 9, p. 369. , CrossRef PubMed; Hui, D.S., Memish, Z.A., Zumla, A., Severe acute respiratory syndrome vs. The Middle East respiratory syndrome (2014) Curr. Opin. Pulm. Med., 20, pp. 233-241. , CrossRef PubMed; Peiris, J.S., Guan, Y., Yuen, K.Y., Severe acute respiratory syndrome (2004) Nat. Med., 10, pp. S88-S97. , CrossRef PubMed; Jevsnik, M., Steyer, A., Pokorn, M., Mrvic, T., Grosek, S., Strle, F., Lusa, L., Petrovec, M., The role of human coronaviruses in children hospitalized for acute bronchiolitis, acute gastroenteritis, and febrile seizures: A 2-year prospective study (2016) PLoS ONE, 11. , CrossRef PubMed; Riski, H., Hovi, T., Coronavirus infections of man associated with diseases other than the common cold (1980) J. Med. Virol., 6, pp. 259-265; Gerna, G., Passarani, N., Battaglia, M., Rondanelli, E.G., Human enteric coronaviruses: Antigenic relatedness to human coronavirus OC43 and possible etiologic role in viral gastroenteritis (1985) J. Infect. Dis., 151, pp. 796-803; Resta, S., Luby, J.P., Rosenfeld, C.R., Siegel, J.D., Isolation and propagation of a human enteric coronavirus (1985) Science, 229, pp. 978-981; Esper, F., Ou, Z., Huang, Y.T., Human coronaviruses are uncommon in patients with gastrointestinal illness (2010) J. Clin. Virol., 48, pp. 131-133; Risku, M., Lappalainen, S., Rasanen, S., Vesikari, T., Detection of human coronaviruses in children with acute gastroenteritis (2010) J. Clin. Virol., 48, pp. 27-30; Morfopoulou, S., Brown, J.R., Davies, E.G., Anderson, G., Virasami, A., Qasim, W., Chong, W.K., Desforges, M., Human coronavirus OC43 associated with fatal encephalitis (2016) N. Engl. J. Med., 375, pp. 497-498. , CrossRef PubMed; Arbour, N., Day, R., Newcombe, J., Talbot, P.J., Neuroinvasion by human respiratory coronaviruses (2000) J. Virol., 74, pp. 8913-8921. , CrossRef PubMed; Cristallo, A., Gambaro, F., Biamonti, G., Ferrante, P., Battaglia, M., Cereda, P.M., Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients (1997) New Microbiol, 20, pp. 105-114; Fazzini, E., Fleming, J., Fahn, S., Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson's disease (1992) Mov. Disord., 7, pp. 153-158; Stewart, J.N., Mounir, S., Talbot, P.J., Human coronavirus gene expression in the brains of multiple sclerosis patients (1992) Virology, 191, pp. 502-505; Yeh, E.A., Collins, A., Cohen, M.E., Duffner, P.K., Faden, H., Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis (2004) Pediatrics, 113, pp. e73-e76; Chilvers, M.A., McKean, M., Rutman, A., Myint, B.S., Silverman, M., O'Callaghan, C., The effects of coronavirus on human nasal ciliated respiratory epithelium (2001) Eur. Respir. J., 18, pp. 965-970; Dijkman, R., Jebbink, M.F., Koekkoek, S.M., Deijs, M., Jonsdottir, H.R., Molenkamp, R., Ieven, M., Van Der Hoek, L., Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism (2013) J. Virol., 87, pp. 6081-6090; Desforges, M., Miletti, T.C., Gagnon, M., Talbot, P.J., Activation of human monocytes after infection by human coronavirus 229E (2007) Virus Res, 130, pp. 228-240; Collins, A.R., In vitro detection of apoptosis in monocytes/macrophages infected with human coronavirus (2002) Clin. Diagn Lab. Immunol., 9, pp. 1392-1395; Mesel-Lemoine, M., Millet, J., Vidalain, P.O., Law, H., Vabret, A., Lorin, V., Escriou, N., Tangy, F., A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes (2012) J. Virol., 86, pp. 7577-7587. , CrossRef PubMed; Wentworth, D.E., Tresnan, D.B., Turner, B.C., Lerman, I.R., Bullis, B., Hemmila, E.M., Levis, R., Holmes, K.V., Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo (2005) Virology, 335, pp. 185-197. , CrossRef PubMed; Spiegel, M., Weber, F., Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus (2006) Virol. J., 3, p. 17. , CrossRef PubMed; Reuter, J.D., Gomez, D.L., Wilson, J.H., Van Den Pol, A.N., Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain (2004) J. Virol., 78, pp. 1473-1487; Lassnig, C., Sanchez, C.M., Egerbacher, M., Walter, I., Majer, S., Kolbe, T., Pallares, P., Muller, M., Development of a transgenic mouse model susceptible to human coronavirus 229E (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 8275-8280; Mori, I., Nishiyama, Y., Yokochi, T., Kimura, Y., Olfactory transmission of neurotropic viruses (2005) J. Neurovirology, 11, pp. 129-137; Durrant, D.M., Ghosh, S., Klein, R.S., The olfactory bulb: An immunosensory effector organ during neurotropic viral infections (2016) ACS Chem. Neurosci., 7, pp. 464-469; Jacomy, H., Talbot, P.J., Vacuolating encephalitis in mice infected by human coronavirus OC43 (2003) Virology, 315, pp. 20-33; McCray, P.B., Jr., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., Netland, J., Sigmund, C.D., Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus (2007) J. Virol., 81, pp. 813-821; Butler, N., Pewe, L., Trandem, K., Perlman, S., Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated (2006) Virology, 347, pp. 410-421; St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J., Human respiratory coronavirus OC43: Genetic stability and neuroinvasion (2004) J. Virol., 78, pp. 8824-8834. , CrossRef PubMed; Netland, J., Meyerholz, D.K., Moore, S., Cassell, M., Perlman, S., Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2 (2008) J. Virol., 82, pp. 7264-7275. , CrossRef PubMed; Le Coupanec, A., Desforges, M., Meessen-Pinard, M., Dube, M., Day, R., Seidah, N.G., Talbot, P.J., Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system (2015) PLoS Pathog, 11. , CrossRef PubMed; Jacomy, H., St-Jean, J.R., Brison, E., Marceau, G., Desforges, M., Talbot, P.J., Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination (2010) J. Neurovirology, 16, pp. 279-293. , CrossRef PubMed; Brison, E., Jacomy, H., Desforges, M., Talbot, P.J., Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein (2011) J. Virol., 85, pp. 12464-12473; Dube, M., Le Coupanec, A., Wong, A.H.M., Rini, J.M., Desforges, M., Talbot, P.J., Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43 (2018) J. Virol., 92; Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Zhong, N., Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis (2005) Clin. Infect. Dis., 41, pp. 1089-1096; Turgay, C., Emine, T., Ozlem, K., Muhammet, S.P., Haydar, A.T., A rare cause of acute flaccid paralysis: Human coronaviruses (2015) J. Pediatr. Neurosci., 10, pp. 280-281; Lau, K.K., Yu, W.C., Chu, C.M., Lau, S.T., Sheng, B., Yuen, K.Y., Possible central nervous system infection by SARS coronavirus (2004) Emerg. Infect. Dis., 10, pp. 342-344; Sharma, K., Tengsupakul, S., Sanchez, O., Phaltas, R., Maertens, P., Guillain-Barre syndrome with unilateral peripheral facial and bulbar palsy in a child: A case report (2019) SAGE Open Med. Case Rep., 7; Principi, N., Bosis, S., Esposito, S., Effects of coronavirus infections in children (2010) Emerg. Infect. Dis., 16, pp. 183-188. , CrossRef PubMed; Tsai, L.K., Hsieh, S.T., Chang, Y.C., Neurological manifestations in severe acute respiratory syndrome (2005) Acta Neurol. Taiwan, 14, pp. 113-119; Algahtani, H., Subahi, A., Shirah, B., Neurological complications of Middle East respiratory syndrome coronavirus: A report of two cases and review of the literature (2016) Case Rep. Neurol. Med., 2016, p. 3502683. , CrossRef PubMed; Arabi, Y.M., Harthi, A., Hussein, J., Bouchama, A., Johani, S., Hajeer, A.H., Saeed, B.T., AlDabbagh, T., Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV) (2015) Infection, 43, pp. 495-501; Kim, K.H., Tandi, T.E., Choi, J.W., Moon, J.M., Kim, M.S., Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: Epidemiology, characteristics and public health implications (2017) J. Hosp. Infect., 95, pp. 207-213; Li, Y., Li, H., Fan, R., Wen, B., Zhang, J., Cao, X., Wang, C., Li, X., Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children (2016) Intervirology, 59, pp. 163-169; Murray, R.S., Brown, B., Brian, D., Cabirac, G.F., Detection of coronavirus RNA and antigen in multiple sclerosis brain (1992) Ann. Neurol., 31, pp. 525-533; Sibley, W.A., Bamford, C.R., Clark, K., Clinical viral infections and multiple sclerosis (1985) Lancet, 1, pp. 1313-1315; Johnson-Lussenburg, C.M., Zheng, Q., Coronavirus and multiple sclerosis: Results of a case/control longitudinal serological study (1987) Adv. Exp. Med. Biol., 218, pp. 421-429; Fehr, A.R., Perlman, S., Coronaviruses: An overview of their replication and pathogenesis (2015) Methods Mol. Biol., 1282, pp. 1-23; Tseng, S.S., SARS, avian flu, bioterror: Infection control awareness for the optometrist (2007) Clin. Exp. Optom., 90, pp. 31-35. , CrossRef PubMed; Severance, E.G., Dickerson, F.B., Viscidi, R.P., Bossis, I., Stallings, C.R., Origoni, A.E., Sullens, A., Yolken, R.H., Coronavirus immunoreactivity in individuals with a recent onset of psychotic symptoms (2011) Schizophr. Bull., 37, pp. 101-107. , CrossRef PubMed; Jean, A., Quach, C., Yung, A., Semret, M., Severity and outcome associated with human coronavirus OC43 infections among children (2013) Pediatr. Infect. Dis. J., 32, pp. 325-329; Jacomy, H., Fragoso, G., Almazan, G., Mushynski, W.E., Talbot, P.J., Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice (2006) Virology, 349, pp. 335-346. , CrossRef PubMed; Do Carmo, S., Jacomy, H., Talbot, P.J., Rassart, E., Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice (2008) J. Neurosci., 28, pp. 10330-10338. , CrossRef PubMed; Brison, E., Jacomy, H., Desforges, M., Talbot, P.J., Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus (2014) J. Virol., 88, pp. 1548-1563. , CrossRef PubMed; Kim, J.E., Heo, J.H., Kim, H.O., Song, S.H., Park, S.S., Park, T.H., Ahn, J.Y., Choi, J.P., Neurological complications during treatment of Middle East respiratory syndrome (2017) J. Clin. Neurol., 13, pp. 227-233; Tomishima, M.J., Enquist, L.W., In vivo egress of an alphaherpesvirus from axons (2002) J. Virol., 76, pp. 8310-8317; Shen, L., Yang, Y., Ye, F., Liu, G., Desforges, M., Talbot, P.J., Tan, W., Safe and sensitive antiviral screening platform based on recombinant human coronavirus OC43 expressing the luciferase reporter gene (2016) Antimicrob. Agents Chemother., 60, pp. 5492-5503; Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., Deng, Y., Cen, S., High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses (2019) J. Virol., 93; Niu, J., Shen, L., Huang, B., Ye, F., Zhao, L., Wang, H., Deng, Y., Tan, W., Non-invasive bioluminescence imaging of HCoV-OC43 infection and therapy in the central nervous system of live mice Antivir. Res., 2020 (173), p. 104646; Desforges, M., Desjardins, J., Zhang, C., Talbot, P.J., The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus (2013) J. Virol., 87, pp. 3097-3107. , CrossRef PubMed; Stodola, J.K., Dubois, G., Le Coupanec, A., Desforges, M., Talbot, P.J., The OC43 human coronavirus envelope protein is critical for infectious virus production and propagation in neuronal cells and is a determinant of neurovirulence and CNS pathology (2018) Virology, 515, pp. 134-149. , CrossRef PubMed; Arbour, N., Cote, G., Lachance, C., Tardieu, M., Cashman, N.R., Talbot, P.J., Acute and persistent infection of human neural cell lines by human coronavirus OC43 (1999) J. Virol., 73, pp. 3338-3350; Arbour, N., Ekande, S., Cote, G., Lachance, C., Chagnon, F., Tardieu, M., Cashman, N.R., Talbot, P.J., Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E (1999) J. Virol., 73, pp. 3326-3337; Vasek, M.J., Garber, C., Dorsey, D., Durrant, D.M., Bollman, B., Soung, A., Yu, J., Wilton, D.K., A complement-microglial axis drives synapse loss during virus-induced memory impairment (2016) Nature, 534, pp. 538-543; Agner, S.C., Klein, R.S., Viruses have multiple paths to central nervous system pathology (2018) Curr. Opin. Neurol., 31, pp. 313-317; Kurtzke, J.F., Epidemiologic evidence for multiple sclerosis as an infection (1993) Clin. Microbiol. Rev., 6, pp. 382-427; Cusick, M.F., Libbey, J.E., Fujinami, R.S., Multiple sclerosis: Autoimmunity and viruses (2013) Curr. Opin. Rheumato, 25, pp. 496-501; Gilden, D.H., Infectious causes of multiple sclerosis (2005) Lancet Neurol, 4, pp. 195-202; Kakalacheva, K., Munz, C., Lunemann, J.D., Viral triggers of multiple sclerosis (2011) Biochim. Biophys Acta, 1812, pp. 132-140. , CrossRef PubMed; Saberi, A., Akhondzadeh, S., Kazemi, S., Infectious agents and different course of multiple sclerosis: A systematic review (2018) Acta Neurol. Belg., 118, pp. 361-377. , CrossRef PubMed; Smatti, M.K., Cyprian, F.S., Nasrallah, G.K., Al Thani, A.A., Almishal, R.O., Yassine, H.M., Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms (2019) Viruses, 11, p. 762. , CrossRef PubMed; Desforges, M., Favreau, D.J., Brison, E., Desjardins, J., Meessen-Pinard, M., Jacomy, H., Talbot, P.J., Human coronaviruses. Respiratory pathogens revisited as infectious neuroinvasive, neurtropic, and neurovirulent agents (2013) Neuroviral Infections. RNA Viruses and Retroviruses, pp. 93-121. , Singh, S.K., Ruzek, D., Eds.; CRC Press/Taylor and Francis: Boca Raton, FL, USA; Boucher, A., Desforges, M., Duquette, P., Talbot, P.J., Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients (2007) Clin. Immunol., 123, pp. 258-267; Talbot, P.J., Paquette, J.S., Ciurli, C., Antel, J.P., Ouellet, F., Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis (1996) Ann. Neurol., 39, pp. 233-240; Amor, S., Puentes, F., Baker, D., Van Der Valk, P., Inflammation in neurodegenerative diseases (2010) Immunology, 129, pp. 154-169; Carmen, J., Rothstein, J.D., Kerr, D.A., Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis (2009) Brain Res, 1263, pp. 143-154; Favreau, D.J., Desforges, M., St-Jean, J.R., Talbot, P.J., A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus (2009) Virology, 395, pp. 255-267; Favreau, D.J., Meessen-Pinard, M., Desforges, M., Talbot, P.J., Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable (2012) J. Virol., 86, pp. 81-93; Meessen-Pinard, M., Le Coupanec, A., Desforges, M., Talbot, P.J., Pivotal role of receptor-interacting protein kinase 1 and mixed lineage kinase domain-like in neuronal cell death induced by the human neuroinvasive coronavirus OC43 (2017) J. Virol., 91; Galluzzi, L., Vitale, I., Abrams, J.M., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., Dawson, T.M., Fulda, S., Molecular definitions of cell death subroutines: Recommendations of the nomenclature committee on cell death 2012 (2012) Cell Death Differ, 19, pp. 107-120. , CrossRef PubMed; Cruz, J.L., Sola, I., Becares, M., Alberca, B., Plana, J., Enjuanes, L., Zuniga, S., Coronavirus gene 7 counteracts host defenses and modulates virus virulence (2011) PLoS Pathog, 7. , CrossRef PubMed; Zhao, L., Birdwell, L.D., Wu, A., Elliott, R., Rose, K.M., Phillips, J.M., Li, Y., Weiss, S.R., Cell-type-specific activation of the oligoadenylate synthetase-RNase L pathway by a murine coronavirus (2013) J. Virol., 87, pp. 8408-8418; Zhao, L., Jha, B.K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A.E., Silverman, R.H., Weiss, S.R., Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology (2012) Cell Host Microbe, 11, pp. 607-616; Zhao, L., Rose, K.M., Elliott, R., Van Rooijen, N., Weiss, S.R., Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus (2011) J. Virol., 85, pp. 10058-10068. , CrossRef PubMed; Talbot, P.J., Desforges, M., Brison, E., Jacomy, H., Coronaviruses as Encephalitis-inducing infectious agents (2011) Non-Flavirus Encephalitis, pp. 185-202. , Tkachev, S., Ed.; In-Tech: London, UK; Wilson, M.R., Sample, H.A., Zorn, K.C., Arevalo, S., Yu, G., Neuhaus, J., Federman, S., Langelier, C., Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis (2019) N. Engl. J. Med., 380, pp. 2327-2340; Souza, L.D.C., Blawid, R., Silva, J.M.F., Nagata, T., Human virome in nasopharynx and tracheal secretion samples (2019) Mem. Inst. Oswaldo Cruz, 114; Koch, R., (1942) The Aetiology of Tuberculosis (Translation of Die Aetiologie Der Tuberculose (1882), , Dover Publications: New York, NY, USA; Fredericks, D.N., Relman, D.A., Sequence-based identification of microbial pathogens: A reconsideration of Koch's postulates (1996) Clin. Microbiol. Rev., 9, pp. 18-33; Hill, A.B., The environment and disease: Association or causation? (1965) Proc. R. Soc. Med., 58, pp. 295-300; Giovannoni, G., Cutter, G.R., Lunemann, J., Martin, R., Munz, C., Sriram, S., Steiner, I., Gaydos, C.A., Infectious causes of multiple sclerosis (2006) Lancet Neurol, 5, pp. 887-894","Desforges, M.; Laboratory of Neuroimmunovirology, Institut National de la Recherche Scientifique (INRS), Institut Armand-Frappier, Université du QuébecCanada; email: marc.desforges@iaf.inrs.ca",,"MDPI AG",19994915,,,"31861926","English","Viruses",Review,"Final",Open Access,Scopus,2-s2.0-85076952408 "Kato T., Takami Y., Kumar Deo V., Park E.Y.","55270209300;57211385567;57211387370;7402224773;","Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells",2019,"Journal of Biotechnology","306",,,"177","184",,,"10.1016/j.jbiotec.2019.10.007","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073749551&doi=10.1016%2fj.jbiotec.2019.10.007&partnerID=40&md5=36360c3d54ca815c09a00022aa90cca8","Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Office for International Collaborations, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan","Kato, T., Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Takami, Y., Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Kumar Deo, V., Office for International Collaborations, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan; Park, E.Y., Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan","Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012, and over 2000 infections and 800 deaths have been confirmed in 27 countries. However, to date, no commercial vaccine is available. In this study, structural proteins of MERS-CoV were expressed in silkworm larvae and Bm5 cells for the development of vaccine candidates against MERS-CoV and diagnostic methods. The spike (S) protein of MERS-CoV lacking its transmembrane and cytoplasmic domains (SΔTM) was secreted into the hemolymph of silkworm larvae using a bombyxin signal peptide and purified using affinity chromatography. The purified SΔTM forms small nanoparticles as well as the full-length S protein and has the ability to bind human dipeptidyl peptidase 4 (DPP4), which is a receptor of MERS-CoV. These results indicate that bioactive SΔTM was expressed in silkworm larvae. To produce MERS-CoV-like particles (MERS-CoV-LPs), the coexpression of spike proteins was performed in Bm5 cells and envelope (E) and membrane (M) proteins secreted E and M proteins extracellularly, suggesting that MERS-CoV-LPs may be formed. However, this S protein was not displayed on virus-like particles (VLPs) even though E and M proteins were secreted into the culture supernatant. By surfactant treatment and mechanical extrusion using S protein- or three structural protein-expressing Bm5 cells, S protein-displaying nanovesicles with diameters of approximately 100-200 nm were prepared and confirmed by immuno-TEM. The mechanical extrusion method is favorable for obtaining uniform recombinant protein-displaying nanovesicles from cultured cells. The purified SΔTM from silkworm larvae and S protein-displaying nanovesicles from Bm5 cells may lead to the development of nanoparticle-based vaccines against MERS-CoV and the diagnostic detection of MERS-CoV. © 2019 Elsevier B.V.","Bm5 cell; Coronavirus; Middle East respiratory syndrome; Silkworm; Vaccine; Virus-like particle","Affinity chromatography; Animals; Cell proliferation; Cells; Chemical detection; Cytology; Extrusion; Nanoparticles; Purification; Vaccines; Viruses; Coronaviruses; Culture supernatant; Cytoplasmic domains; Dipeptidyl peptidase; Middle East; Silkworm; Surfactant treatment; Virus-like particles; Recombinant proteins; bombyxin; dipeptidyl peptidase IV; envelope protein; membrane protein; nanoparticle; recombinant protein; signal peptide; structural protein; surfactant; virus spike protein; affinity chromatography; animal cell; Article; Bombyx mori; hemolymph; insect cell; larva; Middle East respiratory syndrome coronavirus; nonhuman; priority journal; sucrose density gradient centrifugation; virus like agent","Chan, J.F., Li, K.S., To, K.K., Cheng, V.C., Chen, H., Yuen, K.Y., Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? (2012) J. Infect., 65, pp. 477-489; Charlton Hume, H.K., Vidigal, J., Carrondo, M.J.T., Middelberg, A.P.J., Roldão, A., Lua, L.H.L., Synthetic biology for bioengineering virus-like particle vaccines (2019) Biotechnol. Bioeng., 116, pp. 919-935; Coleman, C.M., Liu, Y.V., Mu, H., Taylor, J.K., Massare, M., Flyer, D.C., Smith, G.E., Frieman, M.B., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice (2014) Vaccine, 32, pp. 3169-3174; Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Lanzavecchia, A., Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 10473-10478; Du, L., Yang, Y., Zhou, Y., Lu, L., Li, F., Jiang, S., MERS-CoV spike protein: a key target for antivirals (2017) Expert Opin. Ther. Targets, 21, pp. 131-143; Fuenmayor, J., Gòdia, F., Cervera, L., Production of virus-like particles for vaccines (2017) N. Biotechnol., 39, pp. 174-180; Gangadaran, P., Hong, C.M., Oh, J.M., Rajendran, R.L., Kalimuthu, S., Son, S.H., Gopal, A., Ahn, B.C., In vivo non-invasive imaging of radio-labeled exosome-mimetics derived from red blood cells in mice (2018) Front. Pharmacol., 9, p. 817; Gibson, D.G., Enzymatic assembly of overlapping DNA fragments (2011) Methods Enzymol., 498, pp. 349-361; Guo, P., Huang, J., Zhao, Y., Martin, C.R., Zare, R.N., Moses, M.A., Nanomaterial preparation by extrusion through nanoporous membranes (2018) Small, 14; Health Protection Agency (HPA), UK Novel Coronavirus Investigation team, Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013 (2013) Euro Surveill., 18, p. 20427; Jiang, L., Wang, N., Zuo, T., Shi, X., Poon, K.M., Wu, Y., Gao, F., Zhang, L., Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein (2014) Sci. Transl. Med., 6; Jang, S.C., Kim, O.Y., Yoon, C.M., Choi, D.S., Roh, T.Y., Park, J., Nilsson, J., Gho, Y.S., Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors (2013) ACS Nano, 7, pp. 7698-7710; Kato, T., Manoha, S.L., Tanaka, S., Park, E.Y., High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV) displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization (2009) BMC Biotechnol., 9, p. 55; Kato, T., Kajikawa, M., Maenaka, K., Park, E.Y., Silkworm expression system as a platform technology in life science (2010) Appl. Microbiol. Biotechnol., 85, pp. 459-470; Ma, C., Li, Y., Wang, L., Zhao, G., Tao, X., Tseng, C.T., Zhou, Y., Jiang, S., Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: implication for designing novel mucosal MERS vaccines (2014) Vaccine, 32, pp. 2100-2108; Ma, C., Wang, L., Tao, X., Zhang, N., Yang, Y., Tseng, C.K., Li, F., Du, L., Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-the importance of immunofocusing in subunit vaccine design (2014) Vaccine, 32, pp. 6170-6176; McBride, C.E., Li, J., Machamer, C.E., The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein (2007) J. Virol., 81, pp. 2418-2428; Memish, Z.A., Mishra, N., Olival, K.J., Fagbo, S.F., Kapoor, V., Epstein, J.H., Alhakeem, R., Lipkin, W.I., Middle East respiratory syndrome coronavirus in bats, Saudi Arabia (2013) Emerg. Infect. Dis., 19, pp. 1819-1823; Mi, P., Zhang, P., Liu, G., Bio-inspired virus-like nanovesicle for effective vaccination (2016) Hum. Vaccin. Immunother., 12, pp. 2090-2091; Minkner, R., Park, E.Y., Purification of virus-like particles (VLPs) expressed in the silkworm Bombyx mori (2018) Biotechnol. Lett., 40, pp. 659-666; Mortola, E., Roy, P., Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system (2004) FEBS Lett., 576, pp. 174-178; Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., Park, E.Y., Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system (2005) Biochem. Biophys. Res. Commun., 326, pp. 564-569; Rohovie, M.J., Nagasawa, M., Swartz, J.R., Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery (2017) Bioeng. Transl. Med., 2, pp. 43-57; Siu, Y.L., Teoh, K.T., Lo, J., Chan, C.M., Kien, F., Escriou, N., Tsao, S.W., Nal, B., The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles (2008) J. Virol., 82, pp. 11318-11330; Ujike, M., Huang, C., Shirato, K., Makino, S., Taguchi, F., The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles (2016) J. Gen. Virol., 97, pp. 1853-1864; Usami, A., Suzuki, T., Nagaya, H., Kaki, H., Ishiyama, S., Silkworm as a host of baculovirus expression (2010) Curr. Pharm. Biotechnol., 11, pp. 246-250; Wang, Q., Qi, J., Yuan, Y., Xuan, Y., Han, P., Wan, Y., Ji, W., Gao, G.F., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26 (2014) Cell Host Microbe, 16, pp. 328-337; Wang, C., Zheng, X., Gai, W., Zhao, Y., Wang, H., Wang, H., Feng, N., Xia, X., MERS-CoV virus-like particles produced in insect cells induce specific humoral and cellular immunity in rhesus macaques (2017) Oncotarget, 8, pp. 12686-12694; Weissmann, F., Petzold, G., VanderLinden, R., Huis In't Veld, P.J., Brown, N.G., Lampert, F., Westermann, S., Peters, J.M., biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. E2564-E2569; https://www.who.int/emergencies/mers-cov/en/, WHO, 2019; Zhang, P., Chen, Y., Zeng, Y., Shen, C., Li, R., Guo, Z., Li, S., Chen, X., Virus-mimetic nanovesicles as a versatile antigen-delivery system (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. E6129-E6138","Park, E.Y.; Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Japan; email: park.enoch@shizuoka.ac.jp",,"Elsevier B.V.",01681656,,JBITD,"31614169","English","J. Biotechnol.",Article,"Final",Open Access,Scopus,2-s2.0-85073749551 "Zhang F., Luo S., Gu J., Li Z., Li K., Yuan W., Ye Y., Li H., Ding Z., Song D., Tang Y.","56764850300;57195742163;57205407349;57207967073;57200579323;57205302098;41662531500;57195737313;56152913000;56571933000;57199306900;","Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018",2019,"BMC Veterinary Research","15","1", 470,"","",,,"10.1186/s12917-019-2212-2","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077287373&doi=10.1186%2fs12917-019-2212-2&partnerID=40&md5=c40e044704d4765a611265e1b40a2bad","Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China; Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China","Zhang, F., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Luo, S., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Gu, J., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Li, Z., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Li, K., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Yuan, W., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Ye, Y., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Li, H., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Ding, Z., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Song, D., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China; Tang, Y., Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, 330045, China, Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China","Background: In China, large-scale outbreaks of severe diarrhea caused by viruses have occurred in pigs since late 2010. To investigate the prevalence and genetic evolution of diarrhea-associated viruses responsible for the outbreaks, a total of 2987 field diarrheal samples collected from 168 pig farms in five provinces in Southern China during 2012-2018 were tested. Results: Porcine epidemic diarrhea virus (PEDV) was most frequently detected virus with prevalence rates between 50.21 and 62.10% in samples, and 96.43% (162/168) in premises, respectively. Porcine deltacoronavirus (PDCoV) was the second prevalent virus with prevalence rates ranging from 19.62 to 29.19% in samples, and 70.24% (118/168) in premises, respectively. Both transmissible gastroenteritis virus (TGEV) and porcine rotavirus (PoRV) were detected at low prevalence rates of < 3% in samples and 10.12% in premises. In this study, we identified a newly emerged swine acute diarrhea syndrome coronavirus (SADS-CoV) in diarrheal samples of piglets from Fujian province in Southern China, and the prevalence rate of SADS-CoV was 10.29% (7/68). Co-infections of these diarrhea-associated viruses were common. The most frequent co-infection was PEDV with PDCoV, with an average detection rate of 12.72% (380/2987, ranging from 8.26-17.33%). Phylogenetic analysis revealed that PEDVs circulating in Southern China during the last 7 years were clustered with the variant strains of PEDV in genotype IIa. The most frequent mutations were present in the collagenase equivalent (COE) and epitope regions of the spike gene of the PEDVs currently circulating in the field. Genetic relationships of PDCoVs were closely related with Chinese strains, other than those present in the USA, South Korea, Thailand and Lao's public. Conclusions: The findings of this study indicated that variant PEDV, PDCoV, and SADS-CoV were leading etiologic agents of porcine diarrhea, and either mono-infections or co-infections of pathogenic enteric CoVs were common in pigs in Southern China during 2012-2018. Thus, significant attention should be paid in order to effectively prevent and control porcine viral diarrhea. © 2019 The Author(s).","Porcine deltacoronavirus; Porcine diarrhea; Porcine epidemic diarrhea virus; Prevalence; Swine acute diarrhea syndrome coronavirus","adult; animal tissue; Article; China; Coronavirinae; diarrhea; epidemic; feces; gene mutation; genotype; milk; mixed infection; molecular diagnosis; molecular evolution; molecular phylogeny; nonhuman; phylogeny; pig farming; piglet; Porcine deltacoronavirus; Porcine epidemic diarrhea virus; porcine rotavirus; small intestine; Swine acute diarrhea syndrome coronavirus; swine disease; Transmissible gastroenteritis virus; virus detection; virus gene; virus strain","Sun, D., Wang, X., Wei, S., Chen, J., Feng, L., Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review (2016) J Vet Med Sci, 78 (3), pp. 355-363. , 26537549 1:CAS:528:DC%2BC2sXpvFamtw%3D%3D 26537549; Wang, L., Byrum, B., Zhang, Y., New variant of porcine epidemic diarrhea virus, United States, 2014 (2014) Emerg Infect Dis, 20 (5), pp. 917-919. , 24750580 4012824; Hua Xuan, D.X.D.W., Culture of porcine epidemic diarrhea virus by using pig intestinal monolayer cell (1984) J People's Liberation Army Vet Univ, 4, pp. 202-208; Zhi, Z., Yaqin, D., Shuang, L., Faxing, W., Weixing, S., Xiaocheng, L., Survey and surveillance of porcine epidemic dairrhea in some provinces in China (2019) China Anim Health Inspection, 31 (10), pp. 47-51; Feng, L., The updated epidemic and controls of swine enteric coronavirus in China (2014) In international meeting of swine enteric coronavirus diseases (SECD), 22. , Chicago; Vlasova, A.N., Marthaler, D., Wang, Q., Culhane, M.R., Rossow, K.D., Rovira, A., Collins, J., Saif, L.J., Distinct characteristics and complex evolution of PEDV strains, North America, may 2013-February 2014 (2014) Emerg Infect Dis, 20 (10), pp. 1620-1628. , 25279722 4193278; Li, R., Qiao, S., Yang, Y., Guo, J., Xie, S., Zhou, E., Zhang, G., Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China (2016) Virus Genes, 52 (1), pp. 91-98. , 26743534 1:CAS:528:DC%2BC28Xks1KlsQ%3D%3D; Chen, Q., Gauger, P.C., Stafne, M.R., Thomas, J.T., Madson, D.M., Huang, H., Zheng, Y., Zhang, J., Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets (2016) J Gen Virol, 97 (5), pp. 1107-1121. , 1:CAS:528:DC%2BC28XhvVGks7vI 26841768; Stevenson, G., Hoang, H., Schwartz, K., Burrough, E., Sun, D., Madson, D., Cooper, V., Yoon, K., Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences (2013) J Vet Diagn Investig, 25 (5), pp. 649-654; Mole, B., Deadly pig virus slips through US borders (2013) Nature, 499, p. 388. , 1:CAS:528:DC%2BC3sXhtFKnurzJ 23887408 23887408; Lee, S., Lee, C., Complete genome characterization of Korean porcine Deltacoronavirus strain KOR/KNU14-04/2014 (2014) Genome Announc, 2 (6), pp. e01191-e01114. , 25428966 4246158; Cheun-Arom, T., Temeeyasen, G., Tripipat, T., Kaewprommal, P., Piriyapongsa, J., Sukrong, S., Chongcharoen, W., Nilubol, D., Full-length genome analysis of two genetically distinct variants of porcine epidemic diarrhea virus in Thailand (2016) Infect Genet Evol, 44, pp. 114-121. , 1:CAS:528:DC%2BC28XhtFeqsrjP 27353184 27353184; Diep, N.V., Sueyoshi, M., Izzati, U., Fuke, N., Teh, A., Lan, N.T., Yamaguchi, R., Appearance of US-like porcine epidemic diarrhoea virus (PEDV) strains before US outbreaks and genetic heterogeneity of PEDVs collected in northern Vietnam during 2012-2015 (2018) Transbound Emerg Dis, 65 (1), pp. e83-e93. , 1:CAS:528:DC%2BC1cXhtFKhurs%3D 28758349 28758349; Garcia, G.G., Aquino, M., Balbin, M.M., Belotindos, L.P., Supnet, J.G., Mingala, C.N., Characterisation of porcine epidemic diarrhea virus isolates during the 2014-2015 outbreak in the Philippines (2018) Virusdisease, 29 (3), pp. 342-348. , 30159369 6111962; Ojkic, D., Hazlett, M., Fairles, J., Marom, A., Slavic, D., Maxie, G., Alexandersen, S., Burlatschenko, S., The first case of porcine epidemic diarrhea in Canada (2015) Can Vet J, 56 (2), pp. 149-152. , 25694663 4298265; Trujillo-Ortega, M.E., Beltran-Figueroa, R., Garcia-Hernandez, M.E., Juarez-Ramirez, M., Sotomayor-Gonzalez, A., Hernandez-Villegas, E.N., Becerra-Hernandez, J.F., Sarmiento-Silva, R.E., Isolation and characterization of porcine epidemic diarrhea virus associated with the 2014 disease outbreak in Mexico: Case report (2016) BMC Vet Res, 12 (1), p. 132. , 27357720 4928271; Steinrigl, A., Fernandez, S.R., Stoiber, F., Pikalo, J., Sattler, T., Schmoll, F., First detection, clinical presentation and phylogenetic characterization of porcine epidemic diarrhea virus in Austria (2015) BMC Vet Res, 11, p. 310. , 26714453 4696200 1:CAS:528:DC%2BC2sXlsFKqtw%3D%3D; Pensaert, M.B., Martelli, P., Porcine epidemic diarrhea: A retrospect from Europe and matters of debate (2016) Virus Res, 226, pp. 1-6. , 1:CAS:528:DC%2BC28XhtFSitbzE 27317168 27317168; Woo, P.C., Lau, S.K., Lam, C.S., Lau, C.C., Tsang, A.K., Lau, J.H., Bai, R., Wang, M., Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus (2012) J Virol, 86 (7), pp. 3995-4008. , 1:CAS:528:DC%2BC38XktlOrsr8%3D 22278237 3302495; Wang, L., Byrum, B., Zhang, Y., Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014 (2014) Emerg Infect Dis, 20 (7), pp. 1227-1230. , 1:CAS:528:DC%2BC2cXhslaks73J 24964136 4073853; Marthaler, D., Raymond, L., Jiang, Y., Collins, J., Rossow, K., Rovira, A., Rapid detection, complete genome sequencing, and phylogenetic analysis of porcine deltacoronavirus (2014) Emerg Infect Dis, 20 (8), pp. 1347-1350. , 25075556 4111195 1:CAS:528:DC%2BC1MXnvVart74%3D; Song, D., Zhou, X., Peng, Q., Chen, Y., Zhang, F., Huang, T., Zhang, T., Wu, Q., Newly emerged porcine Deltacoronavirus associated with Diarrhoea in swine in China: Identification, prevalence and full-length genome sequence analysis (2015) Transbound Emerg Dis, 62 (6), pp. 575-580. , 1:CAS:528:DC%2BC2MXhslKltr7M 26250097; Gong, L., Li, J., Zhou, Q., Xu, Z., Chen, L., Zhang, Y., Xue, C., Cao, Y., A new bat-HKU2-like coronavirus in swine, China, 2017 (2017) Emerg Infect Dis, 23 (9), pp. 1607-1609. , 1:CAS:528:DC%2BC1cXitVGisrjF 5572857 5572857; Fu, X., Fang, B., Liu, Y., Cai, M., Jun, J., Ma, J., Bu, D., Wang, H., Newly emerged porcine enteric alphacoronavirus in southern China: Identification, origin and evolutionary history analysis (2018) Infect Genet Evol, 62, pp. 179-187. , 29704627; Zhou, P., Fan, H., Lan, T., Yang, X.L., Shi, W.F., Zhang, W., Zhu, Y., Mani, S., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin (2018) Nature, 556 (7700), pp. 255-258. , 1:CAS:528:DC%2BC1cXosVCgtbo%3D 29618817; Laude, H., Rasschaert, D., Delmas, B., Godet, M., Gelfi, J., Charley, B., Molecular biology of transmissible gastroenteritis virus (1990) Vet Microbiol, 23 (1-4), pp. 147-154. , 1:CAS:528:DyaK3cXmtVGmsb4%3D 2169670; Matthijnssens, J., Otto, P.H., Ciarlet, M., Desselberger, U., Van Ranst, M., Johne, R., VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation (2012) Arch Virol, 157 (6), pp. 1177-1182. , 1:CAS:528:DC%2BC38XnvVSrs7s%3D 22430951; Vidal, A., Martin-Valls, G.E., Tello, M., Mateu, E., Martin, M., Darwich, L., Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the north east of Spain (2019) Vet Microbiol, 237, p. 108419. , 1:CAS:528:DC%2BC1MXhvVSnsrfP 31585655; Ding, Z., An, K., Xie, L., Wu, W., Zhang, R., Wang, D., Fang, Y., Fang, L., Transmissible gastroenteritis virus infection induces NF-kappaB activation through RLR-mediated signaling (2017) Virology, 507, pp. 170-178. , 1:CAS:528:DC%2BC2sXms1Cgsbs%3D 28448848; Zhao, J., Shi, B.J., Huang, X.G., Peng, M.Y., Zhang, X.M., He, D.N., Pang, R., Chen, P.Y., A multiplex RT-PCR assay for rapid and differential diagnosis of four porcine diarrhea associated viruses in field samples from pig farms in East China from 2010 to 2012 (2013) J Virol Methods, 194 (1-2), pp. 107-112. , 1:CAS:528:DC%2BC3sXhsleqs7bK 23988656 23988656; Ding, G., Fu, Y., Li, B., Chen, J., Wang, J., Yin, B., Sha, W., Liu, G., Development of a multiplex RT-PCR for the detection of major diarrheal viruses in pig herds in China (2019) Transbound Emerg Dis, pp. 1-8; Zhang, Q., Liu, X., Fang, Y., Zhou, P., Wang, Y., Zhang, Y., Detection and phylogenetic analyses of spike genes in porcine epidemic diarrhea virus strains circulating in China in 2016-2017 (2017) Virol J, 14 (1), p. 194. , 29017599 5634871 1:CAS:528:DC%2BC1cXitVOnsLnL; Saif, L.J., Animal coronaviruses: What can they teach us about the severe acute respiratory syndrome? (2004) Rev Sci Tech, 23 (2), pp. 643-660. , 1:STN:280:DC%2BD2M%2FntlOrtg%3D%3D 15702725 15702725; Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Zhang, X., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China (2017) Vet Microbiol, 211, pp. 15-21. , 1:CAS:528:DC%2BC2sXhsF2gsrfK 29102111 29102111; Zhang, J., Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution (2016) Virus Res, 226, pp. 71-84. , 1:CAS:528:DC%2BC28XhtVWks73M 27270129 27270129; Lin, C.M., Saif, L.J., Marthaler, D., Wang, Q., Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains (2016) Virus Res, 226, pp. 20-39. , 1:CAS:528:DC%2BC28Xht1eju7bP 27288724 27288724; Hulswit, R.J., De Haan, C.A., Bosch, B.J., Coronavirus spike protein and tropism changes (2016) Adv Virus Res, 96, pp. 29-57. , 1:STN:280:DC%2BC2svnvFSisg%3D%3D 27712627 27712627; Chang, S.H., Bae, J.L., Kang, T.J., Kim, J., Chung, G.H., Lim, C.W., Laude, H., Jang, Y.S., Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus (2002) Mol Cells, 14 (2), pp. 295-299. , 1:CAS:528:DC%2BD38XpsVais70%3D 12442904 12442904; Ge, J.W., Liu, D.Q., Li, Y.J., Construction of recombinant lactobacilli expressing the core neutralizing epitope (COE) of porcine epidemic diarrhea virus and a fusion protein consisting of COE and Escherichia coli heat-labile enterotoxin B, and comparison of the immune responses by orogastric immunization (2012) Can J Microbiol, 58 (11), pp. 1258-1267. , 1:CAS:528:DC%2BC38XhsF2hsb3N 23145823 23145823; Saeng-Chuto, K., Stott, C.J., Wegner, M., Senasuthum, R., Tantituvanont, A., Nilubol, D., Retrospective investigation and evolutionary analysis of a novel porcine deltacoronavirus strain detected in Thailand from 2008 to 2015 (2017) Arch Virol, 162 (7), pp. 2103-2108. , 1:CAS:528:DC%2BC2sXkvVyqsb8%3D 28337545; Li, G., Chen, Q., Harmon, K.M., Yoon, K.J., Schwartz, K.J., Hoogland, M.J., Gauger, P.C., Zhang, J., Full-length genome sequence of porcine Deltacoronavirus strain USA/IA/2014/8734 (2014) Genome Announc, 2 (2), pp. e00278-e00214. , 24723718 3983307; Wang, L., Hayes, J., Sarver, C., Byrum, B., Zhang, Y., Porcine deltacoronavirus: Histological lesions and genetic characterization (2016) Arch Virol, 161 (1), pp. 171-175. , 1:CAS:528:DC%2BC2MXhs1yjs7zJ 26475155","Song, D.; Key Laboratory for Animal Health of Jiangxi ProvinceChina; email: sdpjxau@hotmail.com",,"BioMed Central Ltd.",17466148,,,"31881873","English","BMC Vet. Res.",Article,"Final",Open Access,Scopus,2-s2.0-85077287373 "Chen S., Tian J., Li Z., Kang H., Zhang J., Huang J., Yin H., Hu X., Qu L.","57193357295;55250898000;57189626856;56574568500;56703555400;57212145376;57209792493;56599303100;53164772600;","Feline infectious peritonitis virus NSP5 inhibits type I interferon production by cleaving NEMO at multiple sites",2019,"Viruses","12","1", 43,"","",,,"10.3390/v12010043","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077574207&doi=10.3390%2fv12010043&partnerID=40&md5=52c9d40f74657968b083321d24eecf8e","State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China","Chen, S., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Tian, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Li, Z., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Kang, H., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Zhang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Huang, J., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Yin, H., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Hu, X., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China; Qu, L., State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China","Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-β (IFN-β) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-β production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites—glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-β promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response. © 2019 by the authors.","Cleavage; DF2; NEMO; Nsp5; Type I IFN","beta interferon; I kappa B kinase gamma; immunoglobulin enhancer binding protein; interferon; interferon regulatory factor 3; interferon stimulated gene factor 3; polyinosinic polycytidylic acid; tumor necrosis factor receptor associated factor 1; Article; controlled study; CRFK cell line; feline infectious peritonitis; Feline infectious peritonitis virus; female; genetic transfection; HEK293T cell line; human; human cell; immune response; immunofluorescence; immunoprecipitation; innate immunity; luciferase assay; mouse; nonhuman; nsp5 gene; plasmid; protein cleavage; protein expression; real time reverse transcription polymerase chain reaction; Sendai virus; signal transduction; site directed mutagenesis; ubiquitination; virus gene; virus strain; Western blotting","Biek, R., Ruth, T.K., Murphy, K.M., Anderson, C.R., Jr., Johnson, M., DeSimone, R., Gray, R., Poss, M., Factors associated with pathogen seroprevalence and infection in Rocky Mountain cougars (2006) J. Wildl. Dis., 42, pp. 606-615. , CrossRef PubMed; Hofmann-Lehmann, R., Fehr, D., Grob, M., Elgizoli, M., Packer, C., Martenson, J.S., O’Brien, S.J., Lutz, H., Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa (1996) Clin. Diagn. Lab. Immunol., 3, pp. 554-562; Olsen, C.W., A review of feline infectious peritonitis virus: Molecular biology, immunopathogenesis, clinical aspects, and vaccination (1993) Vet. Microbiol., 36, pp. 1-37; Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., The prevalence of types I and II feline coronavirus infections in cats (1992) J. Vet. Med. Sci., 54, pp. 557-562. , CrossRef PubMed; Kim, Y., Liu, H., Galasiti Kankanamalage, A.C., Weerasekara, S., Hua, D.H., Groutas, W.C., Chang, K.O., Pedersen, N.C., Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor (2016) PLoS Pathog, 12; Rottier, P.J., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein (2005) J. Virol., 79, pp. 14122-14130; Chang, H.W., de Groot, R.J., Egberink, H.F., Rottier, P.J., Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene (2010) J. Gen. Virol., 91, pp. 415-420; Pedersen, N.C., Liu, H., Dodd, K.A., Pesavento, P.A., Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis (2009) Viruses, 1, pp. 166-184; Vennema, H., Poland, A., Foley, J., Pedersen, N.C., Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses (1998) Virology, 243, pp. 150-157; Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis (2001) Vet. Microbiol., 81, pp. 227-234; de Groot-Mijnes, J.D., van Dun, J.M., van der Most, R.G., de Groot, R.J., Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease (2005) J. Virol., 79, pp. 1036-1044. , CrossRef PubMed; Felten, S., Weider, K., Doenges, S., Gruendl, S., Hartmann, K., Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis (2015) J. Feline Med. Surg., 19, pp. 321-335. , CrossRef PubMed; Sangl, L., Matiasek, K., Felten, S., Grundl, S., Bergmann, M., Balzer, H.J., Pantchev, N., Hartmann, K., Detection of feline coronavirus mutations in paraffin-embedded tissues in cats with feline infectious peritonitis and controls (2019) J. Feline Med. Surg., 21, pp. 133-142. , CrossRef PubMed; Pedersen, N.C., An update on feline infectious peritonitis: Virology and immunopathogenesis (2014) Vet. J., 201, pp. 123-132; Pedersen, N.C., Eckstrand, C., Liu, H., Leutenegger, C., Murphy, B., Levels of feline infectious peritonitis virus in blood, effusions, and various tissues and the role of lymphopenia in disease outcome following experimental infection (2015) Vet. Microbiol., 175, pp. 157-166; Dean, G.A., Olivry, T., Stanton, C., Pedersen, N.C., In vivo cytokine response to experimental feline infectious peritonitis virus infection (2003) Vet. Microbiol., 97, pp. 1-12; Ritz, S., Egberink, H., Hartmann, K., Effect of feline interferon-omega on the survival time and quality of life of cats with feline infectious peritonitis (2007) J. Vet. Intern. Med., 21, pp. 1193-1197; Fischer, Y., Ritz, S., Weber, K., Sauter-Louis, C., Hartmann, K., Randomized, placebo controlled study of the effect of propentofylline on survival time and quality of life of cats with feline infectious peritonitis (2011) J. Vet. Intern. Med., 25, pp. 1270-1276; Kim, Y., Shivanna, V., Narayanan, S., Prior, A.M., Weerasekara, S., Hua, D.H., Kankanamalage, A.C., Chang, K.O., Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses (2015) J. Virol., 89, pp. 4942-4950; Enjuanes, L., Almazan, F., Sola, I., Zuniga, S., Biochemical aspects of coronavirus replication and virus-host interaction (2006) Annu. Rev. Microbiol., 60, pp. 211-230; Gorbalenya, A.E., Enjuanes, L., Ziebuhr, J., Snijder, E.J., Nidovirales: Evolving the largest RNA virus genome (2006) Virus Res, 117, pp. 17-37. , CrossRef PubMed; Spaan, W., Cavanagh, D., Horzinek, M.C., Coronaviruses: Structure and genome expression (1988) J. Gen. Virol., 69, pp. 2939-2952; St John, S.E., Therkelsen, M.D., Nyalapatla, P.R., Osswald, H.L., Ghosh, A.K., Mesecar, A.D., X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design (2015) Bioorg. Med. Chem. Lett., 25, pp. 5072-5077. , CrossRef PubMed; Adedeji, A.O., Sarafianos, S.G., Antiviral drugs specific for coronaviruses in preclinical development (2014) Curr. Opin. Virol., 8, pp. 45-53. , CrossRef PubMed; de Clercq, E., Potential antivirals and antiviral strategies against SARS coronavirus infections (2006) Expert Rev. Anti Infect. Ther., 4, pp. 291-302. , CrossRef PubMed; Wu, J., Chen, Z.J., Innate immune sensing and signaling of cytosolic nucleic acids (2014) Annu. Rev. Immunol., 32, pp. 461-488; Seth, R.B., Sun, L., Ea, C.K., Chen, Z.J., Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 (2005) Cell, 122, pp. 669-682; Darnell, J.E., Jr., Kerr, I.M., Stark, G.R., Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins (1994) Science, 264, pp. 1415-1421; Chen, Z.J., Ubiquitin signalling in the NF-kappaB pathway (2005) Nat. Cell Biol., 7, pp. 758-765; Chariot, A., Leonardi, A., Muller, J., Bonif, M., Brown, K., Siebenlist, U., Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases (2002) J. Biol. Chem., 277, pp. 37029-37036; Agou, F., Traincard, F., Vinolo, E., Courtois, G., Yamaoka, S., Israel, A., Veron, M., The trimerization domain of NEMO is composed of the interacting C-terminal CC2 and LZ coiled-coil subdomains (2004) J. Biol. Chem., 279, pp. 27861-27869. , CrossRef PubMed; Zhao, T., Yang, L., Sun, Q., Arguello, M., Ballard, D.W., Hiscott, J., Lin, R., The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways (2007) Nat. Immunol., 8, pp. 592-600. , CrossRef PubMed; Zhang, Q., Shi, K., Yoo, D., Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1 (2016) Virology, 489, pp. 252-268. , CrossRef PubMed; Chen, X., Yang, X., Zheng, Y., Yang, Y., Xing, Y., Chen, Z., SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex (2014) Protein Cell, 5, pp. 369-381. , CrossRef PubMed; Kindler, E., Thiel, V., To sense or not to sense viral RNA—Essentials of coronavirus innate immune evasion (2014) Curr. Opin. Microbiol., 20, pp. 69-75. , CrossRef PubMed; Menachery, V.D., Gralinski, L.E., Mitchell, H.D., Dinnon, K.H., 3rd, Leist, S.R., Yount, B.L., Jr., Graham, R.L., Cockrell, A.S., Middle East respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis (2017) mSphere, 2. , CrossRef PubMed; Dedeurwaerder, A., Olyslaegers, D.A., Desmarets, L.M., Roukaerts, I.D., Theuns, S., Nauwynck, H.J., ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-alpha-induced antiviral response (2014) J. Gen. Virol., 95, pp. 393-402; Tian, J., Zhang, X., Wu, H., Liu, C., Liu, J., Hu, X., Qu, L., Assessment of the IFN-beta response to four feline caliciviruses: Infection in CRFK cells (2015) Infect. Genet. Evol., 34, pp. 352-360; Tian, J., Liu, Y., Liu, X., Sun, X., Zhang, J., Qu, L., Feline herpesvirus 1 US3 blocks the type I interferon signal pathway by targeting interferon regulatory factor 3 dimerization in a kinase-independent manner (2018) J. Virol., 92; Schneider, W.M., Chevillotte, M.D., Rice, C.M., Interferon-stimulated genes: A complex web of host defenses (2014) Annu. Rev. Immunol., 32, pp. 513-545; Wang, D., Fang, L., Shi, Y., Zhang, H., Gao, L., Peng, G., Chen, H., Xiao, S., Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO (2016) J. Virol., 90, pp. 2090-2101. , CrossRef PubMed; Chuck, C.P., Chong, L.T., Chen, C., Chow, H.F., Wan, D.C., Wong, K.B., Profiling of substrate specificity of SARS-CoV 3CL (2010) PLoS ONE, 5. , CrossRef PubMed; Chuck, C.P., Chow, H.F., Wan, D.C., Wong, K.B., Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses (2011) PLoS ONE, 6. , CrossRef PubMed; Ramos, H.J., Gale, M., Jr., RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity (2011) Curr. Opin. Virol., 1, pp. 167-176; Pearson, M., LaVoy, A., Evans, S., Vilander, A., Webb, C., Graham, B., Musselman, E., Dean, G.A., Mucosal immune response to feline enteric coronavirus infection (2019) Viruses, 11, p. 906; Murphy, B.G., Perron, M., Murakami, E., Bauer, K., Park, Y., Eckstrand, C., Liepnieks, M., Pedersen, N.C., The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies (2018) Vet. Microbiol., 219, pp. 226-233; Lei, X., Sun, Z., Liu, X., Jin, Q., He, B., Wang, J., Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3 (2011) J. Virol., 85, pp. 8811-8818; Lei, X., Xiao, X., Xue, Q., Jin, Q., He, B., Wang, J., Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses (2013) J. Virol., 87, pp. 1690-1698; Huang, L., Liu, Q., Zhang, L., Zhang, Q., Hu, L., Li, C., Wang, S., Yu, H., Encephalomyocarditis Virus 3C Protease Relieves TRAF Family Member-associated NF-kappaB Activator (TANK) Inhibitory Effect on TRAF6-mediated NF-kappaB Signaling through Cleavage of TANK (2015) J. Biol. Chem., 290, pp. 27618-27632; Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., Zhang, Z., Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling (2012) J. Virol., 86, pp. 9311-9322; Wang, D., Fang, L., Wei, D., Zhang, H., Luo, R., Chen, H., Li, K., Xiao, S., Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon (2014) J. Virol., 88, pp. 10252-10258; Huang, C., Zhang, Q., Guo, X.K., Yu, Z.B., Xu, A.T., Tang, J., Feng, W.H., Porcine reproductive and respiratory syndrome virus nonstructural protein 4 antagonizes beta interferon expression by targeting the NF-kappaB essential modulator (2014) J. Virol., 88, pp. 10934-10945; Qian, S., Fan, W., Liu, T., Wu, M., Zhang, H., Cui, X., Zhou, Y., Chen, H., Seneca Valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and tank for cleavage (2017) J. Virol., 91","Hu, X.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesChina; email: huxiaoliang@caas.cn",,"MDPI AG",19994915,,,"31905881","English","Viruses",Article,"Final",Open Access,Scopus,2-s2.0-85077574207